name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
Set.star_mem_center
Mathlib/Algebra/Star/Center.lean
theorem Set.star_mem_center (ha : a ∈ Set.center R) : star a ∈ Set.center R where comm
R : Type u_1 inst✝¹ : Mul R inst✝ : StarMul R a : R ha : a ∈ center R b c : R ⊢ star a * star (star c * star b) = star (star c * star b * a)
rw [← star_mul]
no goals
c15bad2514aa2cf1
Quiver.Push.lift_comp
Mathlib/Combinatorics/Quiver/Push.lean
theorem lift_comp : (of σ ⋙q lift σ φ τ h) = φ
case h_map.h V : Type u_1 inst✝¹ : Quiver V W : Type u_2 σ : V → W W' : Type u_3 inst✝ : Quiver W' φ : V ⥤q W' τ : W → W' h : ∀ (x : V), φ.obj x = τ (σ x) X Y : V f : X ⟶ Y ⊢ HEq (⋯.mpr (φ.map f)) (⋯ ▸ ⋯ ▸ φ.map f)
apply (cast_heq _ _).trans
case h_map.h V : Type u_1 inst✝¹ : Quiver V W : Type u_2 σ : V → W W' : Type u_3 inst✝ : Quiver W' φ : V ⥤q W' τ : W → W' h : ∀ (x : V), φ.obj x = τ (σ x) X Y : V f : X ⟶ Y ⊢ HEq (φ.map f) (⋯ ▸ ⋯ ▸ φ.map f)
2ad23c8af09b67fc
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.clear_insert_inductive_case
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/RupAddResult.lean
theorem clear_insert_inductive_case {n : Nat} (f : DefaultFormula n) (f_assignments_size : f.assignments.size = n) (units : Array (Literal (PosFin n))) (units_nodup : ∀ i : Fin units.size, ∀ j : Fin units.size, i ≠ j → units[i] ≠ units[j]) (idx : Fin units.size) (assignments : Array Assignment) (ih : ClearInsertInductionMotive f f_assignments_size units idx.1 assignments) : ClearInsertInductionMotive f f_assignments_size units (idx.1 + 1) (clearUnit assignments units[idx])
n : Nat f : DefaultFormula n f_assignments_size : f.assignments.size = n units : Array (Literal (PosFin n)) units_nodup : ∀ (i j : Fin units.size), i ≠ j → units[i] ≠ units[j] idx : Fin units.size assignments : Array Assignment hsize : assignments.size = n hsize' : (clearUnit assignments units[idx]).size = n i : Fin n j1 : Fin units.size j1_ge_idx : ↑j1 ≥ ↑idx j2 : Fin units.size j2_ge_idx : ↑j2 ≥ ↑idx i_gt_zero : ↑i > 0 ih1 : units[↑j1] = (⟨↑i, ⋯⟩, true) ih2 : units[↑j2] = (⟨↑i, ⋯⟩, false) ih3 : assignments[↑i] = both ih4 : f.assignments[↑i] = unassigned ih5 : ∀ (k : Fin units.size), ↑k ≥ ↑idx → ¬k = j1 → ¬k = j2 → ¬units[↑k].fst.val = ↑i idx_ne_j1 : ¬idx = j1 idx_eq_j2 : idx = j2 k : Fin units.size k_ge_idx_add_one : ↑k ≥ ↑idx + 1 k_ne_j1 : k ≠ j1 h1 : units[k].fst.val = ↑i h2 : ¬units[↑k].snd = true ⊢ k ≠ idx
intro k_eq_idx
n : Nat f : DefaultFormula n f_assignments_size : f.assignments.size = n units : Array (Literal (PosFin n)) units_nodup : ∀ (i j : Fin units.size), i ≠ j → units[i] ≠ units[j] idx : Fin units.size assignments : Array Assignment hsize : assignments.size = n hsize' : (clearUnit assignments units[idx]).size = n i : Fin n j1 : Fin units.size j1_ge_idx : ↑j1 ≥ ↑idx j2 : Fin units.size j2_ge_idx : ↑j2 ≥ ↑idx i_gt_zero : ↑i > 0 ih1 : units[↑j1] = (⟨↑i, ⋯⟩, true) ih2 : units[↑j2] = (⟨↑i, ⋯⟩, false) ih3 : assignments[↑i] = both ih4 : f.assignments[↑i] = unassigned ih5 : ∀ (k : Fin units.size), ↑k ≥ ↑idx → ¬k = j1 → ¬k = j2 → ¬units[↑k].fst.val = ↑i idx_ne_j1 : ¬idx = j1 idx_eq_j2 : idx = j2 k : Fin units.size k_ge_idx_add_one : ↑k ≥ ↑idx + 1 k_ne_j1 : k ≠ j1 h1 : units[k].fst.val = ↑i h2 : ¬units[↑k].snd = true k_eq_idx : k = idx ⊢ False
c90be518eb885cb1
dite_ne_right_iff
Mathlib/Logic/Basic.lean
theorem dite_ne_right_iff : (dite P A fun _ ↦ b) ≠ b ↔ ∃ h, A h ≠ b
α : Sort u_1 P : Prop inst✝ : Decidable P b : α A : P → α ⊢ (dite P A fun x => b) ≠ b ↔ ∃ h, A h ≠ b
simp only [Ne, dite_eq_right_iff, not_forall]
no goals
f3fd6e49415d8434
Matroid.IsBasis.isBasis_isRestriction
Mathlib/Data/Matroid/Restrict.lean
theorem IsBasis.isBasis_isRestriction (hI : M.IsBasis I X) (hNM : N ≤r M) (hX : X ⊆ N.E) : N.IsBasis I X
α : Type u_1 M : Matroid α I X : Set α N : Matroid α hI : M.IsBasis I X hNM : N ≤r M hX : X ⊆ N.E ⊢ N.IsBasis I X
obtain ⟨R, hR, rfl⟩ := hNM
case intro.intro α : Type u_1 M : Matroid α I X : Set α hI : M.IsBasis I X R : Set α hR : R ⊆ M.E hX : X ⊆ (M ↾ R).E ⊢ (M ↾ R).IsBasis I X
6c3f3b707679054a
BoxIntegral.unitPartition.prepartition_tag
Mathlib/Analysis/BoxIntegral/UnitPartition.lean
theorem prepartition_tag {ν : ι → ℤ} {B : Box ι} (hν : ν ∈ admissibleIndex n B) : (prepartition n B).tag (box n ν) = tag n ν
ι : Type u_1 n : ℕ inst✝¹ : NeZero n inst✝ : Fintype ι ν : ι → ℤ B : Box ι hν : ν ∈ admissibleIndex n B ⊢ (prepartition n B).tag (box n ν) = tag n ν
dsimp only [prepartition]
ι : Type u_1 n : ℕ inst✝¹ : NeZero n inst✝ : Fintype ι ν : ι → ℤ B : Box ι hν : ν ∈ admissibleIndex n B ⊢ (if hI : ∃ ν_1 ∈ admissibleIndex n B, box n ν = box n ν_1 then tag n hI.choose else ⋯.choose) = tag n ν
50d6717226e9f93f
SimpleGraph.Subgraph.IsMatching.even_card
Mathlib/Combinatorics/SimpleGraph/Matching.lean
theorem IsMatching.even_card [Fintype M.verts] (h : M.IsMatching) : Even M.verts.toFinset.card
V : Type u_1 G : SimpleGraph V M : G.Subgraph inst✝ : Fintype ↑M.verts h : M.IsMatching ⊢ Even M.verts.toFinset.card
classical rw [isMatching_iff_forall_degree] at h use M.coe.edgeFinset.card rw [← two_mul, ← M.coe.sum_degrees_eq_twice_card_edges] convert_to _ = Finset.sum Finset.univ fun v => SimpleGraph.degree (Subgraph.coe M) v using 3 simp [h, Finset.card_univ]
no goals
c50af873c5d088dd
List.perm_dlookup
Mathlib/Data/List/Sigma.lean
theorem perm_dlookup (a : α) {l₁ l₂ : List (Sigma β)} (nd₁ : l₁.NodupKeys) (nd₂ : l₂.NodupKeys) (p : l₁ ~ l₂) : dlookup a l₁ = dlookup a l₂
α : Type u β : α → Type v inst✝ : DecidableEq α a : α l₁ l₂ : List (Sigma β) nd₁ : l₁.NodupKeys nd₂ : l₂.NodupKeys p : l₁ ~ l₂ ⊢ dlookup a l₁ = dlookup a l₂
ext b
case a α : Type u β : α → Type v inst✝ : DecidableEq α a : α l₁ l₂ : List (Sigma β) nd₁ : l₁.NodupKeys nd₂ : l₂.NodupKeys p : l₁ ~ l₂ b : β a ⊢ b ∈ dlookup a l₁ ↔ b ∈ dlookup a l₂
0a0c8107a3d4edc7
Set.Ioo_union_Ioo'
Mathlib/Order/Interval/Set/Basic.lean
theorem Ioo_union_Ioo' (h₁ : c < b) (h₂ : a < d) : Ioo a b ∪ Ioo c d = Ioo (min a c) (max b d)
case pos α : Type u_1 inst✝ : LinearOrder α a b c d : α h₁ : c < b h₂ : a < d x : α hc : ¬c < x hd : x < d hxb : x < b ⊢ a < x ∧ x < b ∨ c < x ∧ x < d ↔ (a < x ∨ c < x) ∧ (x < b ∨ x < d)
simp only [hxb, and_true, hc, false_and, or_false, true_or]
no goals
925542e85b57dafe
PiNat.mem_cylinder_iff_eq
Mathlib/Topology/MetricSpace/PiNat.lean
theorem mem_cylinder_iff_eq {x y : ∀ n, E n} {n : ℕ} : y ∈ cylinder x n ↔ cylinder y n = cylinder x n
case mp.h₂ E : ℕ → Type u_1 x y : (n : ℕ) → E n n : ℕ hy : y ∈ cylinder x n z : (n : ℕ) → E n hz : z ∈ cylinder x n i : ℕ hi : i < n ⊢ z i = y i
rw [hy i hi]
case mp.h₂ E : ℕ → Type u_1 x y : (n : ℕ) → E n n : ℕ hy : y ∈ cylinder x n z : (n : ℕ) → E n hz : z ∈ cylinder x n i : ℕ hi : i < n ⊢ z i = x i
1650d6a7263b81d8
OreLocalization.smul'_char
Mathlib/GroupTheory/OreLocalization/Basic.lean
theorem smul'_char (r₁ : R) (r₂ : X) (s₁ s₂ : S) (u : S) (v : R) (huv : u * r₁ = v * s₂) : OreLocalization.smul' r₁ s₁ r₂ s₂ = v • r₂ /ₒ (u * s₁)
R : Type u_1 inst✝² : Monoid R S : Submonoid R inst✝¹ : OreSet S X : Type u_2 inst✝ : MulAction R X r₁ : R r₂ : X s₁ s₂ u : ↥S v : R huv : ↑u * r₁ = v * ↑s₂ ⊢ oreNum r₁ s₂ • r₂ /ₒ (oreDenom r₁ s₂ * s₁) = v • r₂ /ₒ (u * s₁)
have h₀ := ore_eq r₁ s₂
R : Type u_1 inst✝² : Monoid R S : Submonoid R inst✝¹ : OreSet S X : Type u_2 inst✝ : MulAction R X r₁ : R r₂ : X s₁ s₂ u : ↥S v : R huv : ↑u * r₁ = v * ↑s₂ h₀ : ↑(oreDenom r₁ s₂) * r₁ = oreNum r₁ s₂ * ↑s₂ ⊢ oreNum r₁ s₂ • r₂ /ₒ (oreDenom r₁ s₂ * s₁) = v • r₂ /ₒ (u * s₁)
158523f845373f5e
List.max?_le_iff
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/MinMax.lean
theorem max?_le_iff [Max α] [LE α] (max_le_iff : ∀ a b c : α, max b c ≤ a ↔ b ≤ a ∧ c ≤ a) : {xs : List α} → xs.max? = some a → ∀ {x}, a ≤ x ↔ ∀ b ∈ xs, b ≤ x | nil => by simp | cons x xs => by rw [max?]; rintro ⟨⟩ y induction xs generalizing x with | nil => simp | cons y xs ih => simp [ih, max_le_iff, and_assoc]
α : Type u_1 a : α inst✝¹ : Max α inst✝ : LE α max_le_iff : ∀ (a b c : α), max b c ≤ a ↔ b ≤ a ∧ c ≤ a x : α xs : List α ⊢ some (foldl max x xs) = some a → ∀ {x_1 : α}, a ≤ x_1 ↔ ∀ (b : α), b ∈ x :: xs → b ≤ x_1
rintro ⟨⟩ y
case refl α : Type u_1 inst✝¹ : Max α inst✝ : LE α max_le_iff : ∀ (a b c : α), max b c ≤ a ↔ b ≤ a ∧ c ≤ a x : α xs : List α y : α ⊢ foldl max x xs ≤ y ↔ ∀ (b : α), b ∈ x :: xs → b ≤ y
a37680aba98f711a
Finset.centerMass_empty
Mathlib/Analysis/Convex/Combination.lean
theorem Finset.centerMass_empty : (∅ : Finset ι).centerMass w z = 0
R : Type u_1 E : Type u_3 ι : Type u_5 inst✝² : LinearOrderedField R inst✝¹ : AddCommGroup E inst✝ : Module R E w : ι → R z : ι → E ⊢ ∅.centerMass w z = 0
simp only [centerMass, sum_empty, smul_zero]
no goals
4677fe032673d938
GromovHausdorff.totallyBounded
Mathlib/Topology/MetricSpace/GromovHausdorff.lean
theorem totallyBounded {t : Set GHSpace} {C : ℝ} {u : ℕ → ℝ} {K : ℕ → ℕ} (ulim : Tendsto u atTop (𝓝 0)) (hdiam : ∀ p ∈ t, diam (univ : Set (GHSpace.Rep p)) ≤ C) (hcov : ∀ p ∈ t, ∀ n : ℕ, ∃ s : Set (GHSpace.Rep p), (#s) ≤ K n ∧ univ ⊆ ⋃ x ∈ s, ball x (u n)) : TotallyBounded t
case intro.refine_2.mk.mk t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ p ∈ t, diam univ ≤ C hcov : ∀ p ∈ t, ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ x ∈ s, ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ n_1 ≥ n, dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set p.Rep N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ p ∈ t, univ ⊆ ⋃ x ∈ s p, ball x (u n) M : ℕ := ⌊ε⁻¹ * (C ⊔ 0)⌋₊ F : GHSpace → (k : Fin (K n).succ) × (Fin ↑k → Fin ↑k → Fin M.succ) := fun p => ⟨⟨N p, ⋯⟩, fun a b => ⟨M ⊓ ⌊ε⁻¹ * dist ((E p).symm a) ((E p).symm b)⌋₊, ⋯⟩⟩ p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) ⟨p, pt⟩ = (fun p => F ↑p) ⟨q, qt⟩ Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => (E q).symm (Fin.cast Npq ((E p) x)) ⊢ dist ↑⟨p, pt⟩ ↑⟨q, qt⟩ < δ
let Φ : s p → q.Rep := fun x => Ψ x
case intro.refine_2.mk.mk t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ p ∈ t, diam univ ≤ C hcov : ∀ p ∈ t, ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ x ∈ s, ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ n_1 ≥ n, dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set p.Rep N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ p ∈ t, univ ⊆ ⋃ x ∈ s p, ball x (u n) M : ℕ := ⌊ε⁻¹ * (C ⊔ 0)⌋₊ F : GHSpace → (k : Fin (K n).succ) × (Fin ↑k → Fin ↑k → Fin M.succ) := fun p => ⟨⟨N p, ⋯⟩, fun a b => ⟨M ⊓ ⌊ε⁻¹ * dist ((E p).symm a) ((E p).symm b)⌋₊, ⋯⟩⟩ p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) ⟨p, pt⟩ = (fun p => F ↑p) ⟨q, qt⟩ Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => (E q).symm (Fin.cast Npq ((E p) x)) Φ : ↑(s p) → q.Rep := fun x => ↑(Ψ x) ⊢ dist ↑⟨p, pt⟩ ↑⟨q, qt⟩ < δ
c10025d34debaff9
Matroid.IsBasis.closure_eq_closure
Mathlib/Data/Matroid/Closure.lean
lemma IsBasis.closure_eq_closure (h : M.IsBasis I X) : M.closure I = M.closure X
α : Type u_2 M : Matroid α X I : Set α h : M.IsBasis I X ⊢ M.closure X ⊆ M.closure {x | M.IsBasis I (insert x I)}
exact M.closure_subset_closure fun e he ↦ (h.isBasis_subset (subset_insert _ _) (insert_subset he h.subset))
no goals
7e99c226dd2c4c16
ENNReal.div_zero
Mathlib/Data/ENNReal/Inv.lean
theorem div_zero (h : a ≠ 0) : a / 0 = ∞
a : ℝ≥0∞ h : a ≠ 0 ⊢ a / 0 = ⊤
simp [div_eq_mul_inv, h]
no goals
6209f8f22d805448
MeasureTheory.lintegral_rpow_eq_lintegral_meas_lt_mul
Mathlib/Analysis/SpecialFunctions/Pow/Integral.lean
theorem lintegral_rpow_eq_lintegral_meas_lt_mul : ∫⁻ ω, ENNReal.ofReal (f ω ^ p) ∂μ = ENNReal.ofReal p * ∫⁻ t in Ioi 0, μ {a : α | t < f a} * ENNReal.ofReal (t ^ (p - 1))
α : Type u_1 inst✝ : MeasurableSpace α f : α → ℝ μ : Measure α f_nn : 0 ≤ᶠ[ae μ] f f_mble : AEMeasurable f μ p : ℝ p_pos : 0 < p ⊢ ENNReal.ofReal p * ∫⁻ (t : ℝ) in Ioi 0, μ {a | t ≤ f a} * ENNReal.ofReal (t ^ (p - 1)) = ENNReal.ofReal p * ∫⁻ (t : ℝ) in Ioi 0, μ {a | t < f a} * ENNReal.ofReal (t ^ (p - 1))
apply congr_arg fun z => ENNReal.ofReal p * z
α : Type u_1 inst✝ : MeasurableSpace α f : α → ℝ μ : Measure α f_nn : 0 ≤ᶠ[ae μ] f f_mble : AEMeasurable f μ p : ℝ p_pos : 0 < p ⊢ ∫⁻ (t : ℝ) in Ioi 0, μ {a | t ≤ f a} * ENNReal.ofReal (t ^ (p - 1)) = ∫⁻ (t : ℝ) in Ioi 0, μ {a | t < f a} * ENNReal.ofReal (t ^ (p - 1))
a9a2c0230dbc8681
Array.fst_unzip
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Lemmas.lean
theorem fst_unzip (as : Array (α × β)) : (Array.unzip as).fst = as.map Prod.fst
case mk α : Type u_1 β : Type u_2 as : List (α × β) ⊢ (foldl (fun x x_1 => (x.fst.push x_1.fst, x.snd.push x_1.snd)) (#[], #[]) { toList := as }).fst = map Prod.fst { toList := as }
simp only [List.foldl_toArray']
case mk α : Type u_1 β : Type u_2 as : List (α × β) ⊢ (List.foldl (fun x x_1 => (x.fst.push x_1.fst, x.snd.push x_1.snd)) (#[], #[]) as).fst = map Prod.fst { toList := as }
3740fb34d2c56eb2
RootPairing.exists_ge_zero_eq_rootForm
Mathlib/LinearAlgebra/RootSystem/Finite/CanonicalBilinear.lean
theorem exists_ge_zero_eq_rootForm [Fintype ι] (x : M) (hx : x ∈ span S (range P.root)) : ∃ s ≥ 0, algebraMap S R s = P.RootForm x x
ι : Type u_1 R : Type u_2 M : Type u_3 N : Type u_4 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup M inst✝⁹ : Module R M inst✝⁸ : AddCommGroup N inst✝⁷ : Module R N P : RootPairing ι R M N S : Type u_5 inst✝⁶ : LinearOrderedCommRing S inst✝⁵ : Algebra S R inst✝⁴ : FaithfulSMul S R inst✝³ : Module S M inst✝² : IsScalarTower S R M inst✝¹ : P.IsValuedIn S inst✝ : Fintype ι x : M hx : x ∈ span S (range ⇑P.root) ⊢ ∃ s ≥ 0, (algebraMap S R) s = (P.RootForm x) x
refine ⟨(P.posRootForm S).posForm ⟨x, hx⟩ ⟨x, hx⟩, IsSumSq.nonneg ?_, by simp [posRootForm]⟩
ι : Type u_1 R : Type u_2 M : Type u_3 N : Type u_4 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup M inst✝⁹ : Module R M inst✝⁸ : AddCommGroup N inst✝⁷ : Module R N P : RootPairing ι R M N S : Type u_5 inst✝⁶ : LinearOrderedCommRing S inst✝⁵ : Algebra S R inst✝⁴ : FaithfulSMul S R inst✝³ : Module S M inst✝² : IsScalarTower S R M inst✝¹ : P.IsValuedIn S inst✝ : Fintype ι x : M hx : x ∈ span S (range ⇑P.root) ⊢ IsSumSq (((P.posRootForm S).posForm ⟨x, hx⟩) ⟨x, hx⟩)
cf1b0b2424f372a7
OrderIso.preimage_Ioc
Mathlib/Order/Interval/Set/OrderIso.lean
theorem preimage_Ioc (e : α ≃o β) (a b : β) : e ⁻¹' Ioc a b = Ioc (e.symm a) (e.symm b)
α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β e : α ≃o β a b : β ⊢ ⇑e ⁻¹' Ioc a b = Ioc (e.symm a) (e.symm b)
simp [← Ioi_inter_Iic]
no goals
21a1b5a3fc34c6f4
CategoryTheory.Equivalence.funInvIdAssoc_hom_app
Mathlib/CategoryTheory/Equivalence.lean
theorem funInvIdAssoc_hom_app (e : C ≌ D) (F : C ⥤ E) (X : C) : (funInvIdAssoc e F).hom.app X = F.map (e.unitInv.app X)
C : Type u₁ inst✝² : Category.{v₁, u₁} C D : Type u₂ inst✝¹ : Category.{v₂, u₂} D E : Type u₃ inst✝ : Category.{v₃, u₃} E e : C ≌ D F : C ⥤ E X : C ⊢ (e.funInvIdAssoc F).hom.app X = F.map (e.unitInv.app X)
dsimp [funInvIdAssoc]
C : Type u₁ inst✝² : Category.{v₁, u₁} C D : Type u₂ inst✝¹ : Category.{v₂, u₂} D E : Type u₃ inst✝ : Category.{v₃, u₃} E e : C ≌ D F : C ⥤ E X : C ⊢ 𝟙 (F.obj (e.inverse.obj (e.functor.obj X))) ≫ F.map (e.unitIso.inv.app X) ≫ 𝟙 (F.obj X) = F.map (e.unitInv.app X)
a493c6cd0239349e
DirichletCharacter.differentiable_completedLFunction
Mathlib/NumberTheory/LSeries/DirichletContinuation.lean
/-- The completed L-function of a non-trivial Dirichlet character is differentiable everywhere. -/ lemma differentiable_completedLFunction {χ : DirichletCharacter ℂ N} (hχ : χ ≠ 1) : Differentiable ℂ (completedLFunction χ)
N : ℕ inst✝ : NeZero N χ : DirichletCharacter ℂ N hχ : χ ≠ 1 ⊢ Differentiable ℂ (completedLFunction χ)
refine fun s ↦ differentiableAt_completedLFunction _ _ (Or.inr ?_) (Or.inr hχ)
N : ℕ inst✝ : NeZero N χ : DirichletCharacter ℂ N hχ : χ ≠ 1 s : ℂ ⊢ N ≠ 1
6832c38e9a2c9f2e
FirstOrder.Language.BoundedFormula.realize_toFormula
Mathlib/ModelTheory/Semantics.lean
theorem realize_toFormula (φ : L.BoundedFormula α n) (v : α ⊕ (Fin n) → M) : φ.toFormula.Realize v ↔ φ.Realize (v ∘ Sum.inl) (v ∘ Sum.inr)
case all L : Language M : Type w inst✝ : L.Structure M α : Type u' n n✝ : ℕ f✝ : L.BoundedFormula α (n✝ + 1) ih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), f✝.toFormula.Realize v ↔ f✝.Realize (v ∘ Sum.inl) (v ∘ Sum.inr) v : α ⊕ Fin n✝ → M a : M h : f✝.toFormula.Realize (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) ↔ f✝.Realize (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a) ⊢ (relabel (Sum.elim (Sum.inl ∘ Sum.inl) (Sum.map Sum.inr id ∘ ⇑finSumFinEquiv.symm)) f✝.toFormula).Realize v (snoc default a) ↔ f✝.Realize (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)
rw [← h, realize_relabel, Formula.Realize, iff_iff_eq]
case all L : Language M : Type w inst✝ : L.Structure M α : Type u' n n✝ : ℕ f✝ : L.BoundedFormula α (n✝ + 1) ih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), f✝.toFormula.Realize v ↔ f✝.Realize (v ∘ Sum.inl) (v ∘ Sum.inr) v : α ⊕ Fin n✝ → M a : M h : f✝.toFormula.Realize (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) ↔ f✝.Realize (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a) ⊢ Realize f✝.toFormula (Sum.elim v (snoc default a ∘ castAdd 0) ∘ Sum.elim (Sum.inl ∘ Sum.inl) (Sum.map Sum.inr id ∘ ⇑finSumFinEquiv.symm)) (snoc default a ∘ natAdd 1) = Realize f✝.toFormula (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) default
9745031cf13e24da
Zsqrtd.norm_eq_zero
Mathlib/NumberTheory/Zsqrtd/Basic.lean
theorem norm_eq_zero {d : ℤ} (h_nonsquare : ∀ n : ℤ, d ≠ n * n) (a : ℤ√d) : norm a = 0 ↔ a = 0
d : ℤ h_nonsquare : ∀ (n : ℤ), d ≠ n * n a : ℤ√d ha : a.re * a.re = d * a.im * a.im h : d < 0 ⊢ d * (a.im * a.im) ≤ 0
exact mul_nonpos_of_nonpos_of_nonneg h.le (mul_self_nonneg _)
no goals
1741f43679b93652
Std.DHashMap.Internal.List.mem_eraseKey_of_key_beq_eq_false
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Internal/List/Associative.lean
theorem mem_eraseKey_of_key_beq_eq_false [BEq α] {a : α} {l : List ((a : α) × β a)} (p : (a : α) × β a) (hne : (p.1 == a) = false) : p ∈ eraseKey a l ↔ p ∈ l
case isFalse α : Type u β : α → Type v inst✝ : BEq α a : α p : (a : α) × β a hne : (p.fst == a) = false head✝ : (a : α) × β a tail✝ : List ((a : α) × β a) ih : p ∈ eraseKey a tail✝ ↔ p ∈ tail✝ h✝ : ¬(head✝.fst == a) = true ⊢ p ∈ ⟨head✝.fst, head✝.snd⟩ :: eraseKey a tail✝ ↔ p = head✝ ∨ p ∈ tail✝
next h => simp only [List.mem_cons, ih]
no goals
997dbbc69c0b9544
CompHaus.effectiveEpiFamily_tfae
Mathlib/Topology/Category/CompHaus/EffectiveEpi.lean
theorem effectiveEpiFamily_tfae {α : Type} [Finite α] {B : CompHaus.{u}} (X : α → CompHaus.{u}) (π : (a : α) → (X a ⟶ B)) : TFAE [ EffectiveEpiFamily X π , Epi (Sigma.desc π) , ∀ b : B, ∃ (a : α) (x : X a), π a x = b ]
α : Type inst✝ : Finite α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B tfae_2_to_1 : Epi (Sigma.desc π) → EffectiveEpiFamily X π tfae_1_to_2 : EffectiveEpiFamily X π → Epi (Sigma.desc π) tfae_3_to_2 : (∀ (b : ↑B.toTop), ∃ a x, (ConcreteCategory.hom (π a)) x = b) → Epi (Sigma.desc π) x✝ : Epi (Sigma.desc π) e : Function.Surjective ⇑(ConcreteCategory.hom (Sigma.desc π)) i : ∐ X ≅ finiteCoproduct X := (colimit.isColimit (Discrete.functor X)).coconePointUniqueUpToIso (finiteCoproduct.isColimit X) b : ↑B.toTop ⊢ ∃ a x, (ConcreteCategory.hom (π a)) x = b
obtain ⟨t, rfl⟩ := e b
case intro α : Type inst✝ : Finite α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B tfae_2_to_1 : Epi (Sigma.desc π) → EffectiveEpiFamily X π tfae_1_to_2 : EffectiveEpiFamily X π → Epi (Sigma.desc π) tfae_3_to_2 : (∀ (b : ↑B.toTop), ∃ a x, (ConcreteCategory.hom (π a)) x = b) → Epi (Sigma.desc π) x✝ : Epi (Sigma.desc π) e : Function.Surjective ⇑(ConcreteCategory.hom (Sigma.desc π)) i : ∐ X ≅ finiteCoproduct X := (colimit.isColimit (Discrete.functor X)).coconePointUniqueUpToIso (finiteCoproduct.isColimit X) t : ↑(∐ X).toTop ⊢ ∃ a x, (ConcreteCategory.hom (π a)) x = (ConcreteCategory.hom (Sigma.desc π)) t
0aeead2cda12faf0
exists_associated_pow_of_mul_eq_pow
Mathlib/Algebra/GCDMonoid/Basic.lean
theorem exists_associated_pow_of_mul_eq_pow [GCDMonoid α] {a b c : α} (hab : IsUnit (gcd a b)) {k : ℕ} (h : a * b = c ^ k) : ∃ d : α, Associated (d ^ k) a
case h α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α hab : IsUnit (gcd a b) k : ℕ h : a * b = c ^ k h✝ : Nontrivial α ha : ¬a = 0 hb : ¬b = 0 hk : k > 0 hc✝ : c ∣ a * b d₁ d₂ : α hd₁ : d₁ ∣ a hd₂ : d₂ ∣ b hc : c = d₁ * d₂ ⊢ Associated (d₁ ^ k) a
obtain ⟨h0₁, ⟨a', ha'⟩⟩ := pow_dvd_of_mul_eq_pow ha hab h hc hd₁
case h.intro.intro α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α hab : IsUnit (gcd a b) k : ℕ h : a * b = c ^ k h✝ : Nontrivial α ha : ¬a = 0 hb : ¬b = 0 hk : k > 0 hc✝ : c ∣ a * b d₁ d₂ : α hd₁ : d₁ ∣ a hd₂ : d₂ ∣ b hc : c = d₁ * d₂ h0₁ : d₁ ^ k ≠ 0 a' : α ha' : a = d₁ ^ k * a' ⊢ Associated (d₁ ^ k) a
4887d5e0abe68a27
Polynomial.degree_X_pow
Mathlib/Algebra/Polynomial/Degree/Definitions.lean
theorem degree_X_pow : degree ((X : R[X]) ^ n) = n
R : Type u inst✝¹ : Semiring R inst✝ : Nontrivial R n : ℕ ⊢ (X ^ n).degree = ↑n
rw [X_pow_eq_monomial, degree_monomial _ (one_ne_zero' R)]
no goals
3ebf6c97e2df715a
FirstOrder.Language.PartialEquiv.cod_le_cod
Mathlib/ModelTheory/PartialEquiv.lean
theorem cod_le_cod {f g : M ≃ₚ[L] N} : f ≤ g → f.cod ≤ g.cod
case intro L : Language M : Type w N : Type w' inst✝¹ : L.Structure M inst✝ : L.Structure N f g : M ≃ₚ[L] N w✝ : f.dom ≤ g.dom eq_fun : g.cod.subtype.comp (g.toEquiv.toEmbedding.comp (inclusion w✝)) = f.cod.subtype.comp f.toEquiv.toEmbedding n : N hn : n ∈ f.cod m : ↥f.dom := f.toEquiv.symm ⟨n, hn⟩ ⊢ n ∈ g.cod
have : ((subtype _).comp f.toEquiv.toEmbedding) m = n := by simp only [m, Embedding.comp_apply, Equiv.coe_toEmbedding, Equiv.apply_symm_apply, coe_subtype]
case intro L : Language M : Type w N : Type w' inst✝¹ : L.Structure M inst✝ : L.Structure N f g : M ≃ₚ[L] N w✝ : f.dom ≤ g.dom eq_fun : g.cod.subtype.comp (g.toEquiv.toEmbedding.comp (inclusion w✝)) = f.cod.subtype.comp f.toEquiv.toEmbedding n : N hn : n ∈ f.cod m : ↥f.dom := f.toEquiv.symm ⟨n, hn⟩ this : (f.cod.subtype.comp f.toEquiv.toEmbedding) m = n ⊢ n ∈ g.cod
058229ae64672064
PiTensorProduct.mul_comm
Mathlib/RingTheory/PiTensorProduct.lean
protected lemma mul_comm (x y : ⨂[R] i, A i) : mul x y = mul y x
ι : Type u_1 R : Type u_3 A : ι → Type u_4 inst✝² : CommSemiring R inst✝¹ : (i : ι) → CommSemiring (A i) inst✝ : (i : ι) → Algebra R (A i) x y : ⨂[R] (i : ι), A i ⊢ mul = mul.flip
ext x y
case H.H.H.H ι : Type u_1 R : Type u_3 A : ι → Type u_4 inst✝² : CommSemiring R inst✝¹ : (i : ι) → CommSemiring (A i) inst✝ : (i : ι) → Algebra R (A i) x✝ y✝ : ⨂[R] (i : ι), A i x y : (i : ι) → A i ⊢ (((mul.compMultilinearMap (tprod R)) x).compMultilinearMap (tprod R)) y = (((mul.flip.compMultilinearMap (tprod R)) x).compMultilinearMap (tprod R)) y
ad1d587b41a97abc
PresentedGroup.generated_by
Mathlib/GroupTheory/PresentedGroup.lean
theorem generated_by (rels : Set (FreeGroup α)) (H : Subgroup (PresentedGroup rels)) (h : ∀ j : α, PresentedGroup.of j ∈ H) (x : PresentedGroup rels) : x ∈ H
case H.Cm α : Type u_1 rels : Set (FreeGroup α) H : Subgroup (PresentedGroup rels) h : ∀ (j : α), of j ∈ H x✝ y✝ : FreeGroup α a✝¹ : (mk rels) x✝ ∈ H a✝ : (mk rels) y✝ ∈ H ⊢ (mk rels) (x✝ * y✝) ∈ H
rename_i h1 h2
case H.Cm α : Type u_1 rels : Set (FreeGroup α) H : Subgroup (PresentedGroup rels) h : ∀ (j : α), of j ∈ H x✝ y✝ : FreeGroup α h1 : (mk rels) x✝ ∈ H h2 : (mk rels) y✝ ∈ H ⊢ (mk rels) (x✝ * y✝) ∈ H
36af71a0cd1686c5
AList.lookupFinsupp_support
Mathlib/Data/Finsupp/AList.lean
theorem lookupFinsupp_support [DecidableEq α] [DecidableEq M] (l : AList fun _x : α => M) : l.lookupFinsupp.support = (l.1.filter fun x => Sigma.snd x ≠ 0).keys.toFinset
α : Type u_1 M : Type u_2 inst✝² : Zero M inst✝¹ : DecidableEq α inst✝ : DecidableEq M l : AList fun _x => M ⊢ (filter (fun x => decide (x.snd ≠ 0)) l.entries).keys.toFinset = (filter (fun x => decide (x.snd ≠ 0)) l.entries).keys.toFinset
congr!
no goals
f877487f8fda3140
ContinuousLinearMap.inner_map_map_iff_adjoint_comp_self
Mathlib/Analysis/InnerProductSpace/Adjoint.lean
theorem inner_map_map_iff_adjoint_comp_self (u : H →L[𝕜] K) : (∀ x y : H, ⟪u x, u y⟫_𝕜 = ⟪x, y⟫_𝕜) ↔ adjoint u ∘L u = 1
case refine_1 𝕜 : Type u_1 inst✝⁶ : RCLike 𝕜 H : Type u_5 inst✝⁵ : NormedAddCommGroup H inst✝⁴ : InnerProductSpace 𝕜 H inst✝³ : CompleteSpace H K : Type u_6 inst✝² : NormedAddCommGroup K inst✝¹ : InnerProductSpace 𝕜 K inst✝ : CompleteSpace K u : H →L[𝕜] K h : ∀ (x y : H), ⟪u x, u y⟫_𝕜 = ⟪x, y⟫_𝕜 x : H ⊢ ((adjoint u).comp u) x = 1 x
refine ext_inner_right 𝕜 fun y ↦ ?_
case refine_1 𝕜 : Type u_1 inst✝⁶ : RCLike 𝕜 H : Type u_5 inst✝⁵ : NormedAddCommGroup H inst✝⁴ : InnerProductSpace 𝕜 H inst✝³ : CompleteSpace H K : Type u_6 inst✝² : NormedAddCommGroup K inst✝¹ : InnerProductSpace 𝕜 K inst✝ : CompleteSpace K u : H →L[𝕜] K h : ∀ (x y : H), ⟪u x, u y⟫_𝕜 = ⟪x, y⟫_𝕜 x y : H ⊢ ⟪((adjoint u).comp u) x, y⟫_𝕜 = ⟪1 x, y⟫_𝕜
76c8f2fe76b6a005
ValuationRing.le_total
Mathlib/RingTheory/Valuation/ValuationRing.lean
theorem le_total (a b : ValueGroup A K) : a ≤ b ∨ b ≤ a
case mk.mk.intro.intro.intro.intro.intro.intro.intro.inl.h A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a b : ValueGroup A K xa ya : A hya : ya ∈ nonZeroDivisors A xb yb : A hyb : yb ∈ nonZeroDivisors A this✝ : (algebraMap A K) ya ≠ 0 this : (algebraMap A K) yb ≠ 0 c : A h : xa * yb * c = xb * ya ⊢ Quot.mk (⇑(MulAction.orbitRel Aˣ K)) ((algebraMap A K) xb / (algebraMap A K) yb) ≤ Quot.mk (⇑(MulAction.orbitRel Aˣ K)) ((algebraMap A K) xa / (algebraMap A K) ya)
use c
case h A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a b : ValueGroup A K xa ya : A hya : ya ∈ nonZeroDivisors A xb yb : A hyb : yb ∈ nonZeroDivisors A this✝ : (algebraMap A K) ya ≠ 0 this : (algebraMap A K) yb ≠ 0 c : A h : xa * yb * c = xb * ya ⊢ c • ((algebraMap A K) xa / (algebraMap A K) ya) = (algebraMap A K) xb / (algebraMap A K) yb
43f1ff2b88bd99b5
IncidenceAlgebra.mu_toDual
Mathlib/Combinatorics/Enumerative/IncidenceAlgebra.lean
@[simp] lemma mu_toDual (a b : α) : mu 𝕜 (toDual a) (toDual b) = mu 𝕜 b a
𝕜 : Type u_2 α : Type u_5 inst✝³ : Ring 𝕜 inst✝² : PartialOrder α inst✝¹ : LocallyFiniteOrder α inst✝ : DecidableEq α a b : α this✝ : DecidableRel fun x1 x2 => x1 ≤ x2 := Classical.decRel fun x1 x2 => x1 ≤ x2 mud : IncidenceAlgebra 𝕜 αᵒᵈ := { toFun := fun a b => (mu 𝕜) (ofDual b) (ofDual a), eq_zero_of_not_le' := ⋯ } this : mud * zeta 𝕜 * mu 𝕜 = mu 𝕜 * zeta 𝕜 * mu 𝕜 ⊢ mu 𝕜 = mud
symm
𝕜 : Type u_2 α : Type u_5 inst✝³ : Ring 𝕜 inst✝² : PartialOrder α inst✝¹ : LocallyFiniteOrder α inst✝ : DecidableEq α a b : α this✝ : DecidableRel fun x1 x2 => x1 ≤ x2 := Classical.decRel fun x1 x2 => x1 ≤ x2 mud : IncidenceAlgebra 𝕜 αᵒᵈ := { toFun := fun a b => (mu 𝕜) (ofDual b) (ofDual a), eq_zero_of_not_le' := ⋯ } this : mud * zeta 𝕜 * mu 𝕜 = mu 𝕜 * zeta 𝕜 * mu 𝕜 ⊢ mud = mu 𝕜
95f4eed14862eb7a
Submodule.mem_sSup_iff_exists_finset
Mathlib/LinearAlgebra/Finsupp/Span.lean
theorem Submodule.mem_sSup_iff_exists_finset {S : Set (Submodule R M)} {m : M} : m ∈ sSup S ↔ ∃ s : Finset (Submodule R M), ↑s ⊆ S ∧ m ∈ ⨆ i ∈ s, i
case h.e'_3.h.e'_4.h.pq.a.a R : Type u_1 M : Type u_2 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M S : Set (Submodule R M) m : M x✝¹ : ∃ s, ↑s ⊆ S ∧ m ∈ ⨆ i ∈ s, i s : Finset (Submodule R M) hsS : ↑s ⊆ S hs : m ∈ ⨆ i ∈ s, i x✝ : Submodule R M ⊢ x✝ ∈ s ↔ x✝ ∈ S ∧ x✝ ∈ s
aesop
no goals
4a53431e2aac6cd1
ContDiffWithinAt.contDiffOn'
Mathlib/Analysis/Calculus/ContDiff/Defs.lean
theorem ContDiffWithinAt.contDiffOn' (hm : m ≤ n) (h' : m = ∞ → n = ω) (h : ContDiffWithinAt 𝕜 n f s x) : ∃ u, IsOpen u ∧ x ∈ u ∧ ContDiffOn 𝕜 m f (insert x s ∩ u)
case inl.intro.intro.intro.intro.intro.intro.intro 𝕜 : Type u inst✝⁴ : NontriviallyNormedField 𝕜 E : Type uE inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E F : Type uF inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F s : Set E f : E → F x : E m : WithTop ℕ∞ hm : m ≤ ω h' : m = ∞ → ω = ω t : Set E ht : t ∈ 𝓝[insert x s] x p : E → FormalMultilinearSeries 𝕜 E F hp : HasFTaylorSeriesUpToOn ω f p t h'p : ∀ (i : ℕ), AnalyticOn 𝕜 (fun x => p x i) t u : Set E huo : IsOpen u hxu : x ∈ u hut : u ∩ insert x s ⊆ t ⊢ ∃ u, IsOpen u ∧ x ∈ u ∧ ContDiffOn 𝕜 m f (insert x s ∩ u)
rw [inter_comm] at hut
case inl.intro.intro.intro.intro.intro.intro.intro 𝕜 : Type u inst✝⁴ : NontriviallyNormedField 𝕜 E : Type uE inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E F : Type uF inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F s : Set E f : E → F x : E m : WithTop ℕ∞ hm : m ≤ ω h' : m = ∞ → ω = ω t : Set E ht : t ∈ 𝓝[insert x s] x p : E → FormalMultilinearSeries 𝕜 E F hp : HasFTaylorSeriesUpToOn ω f p t h'p : ∀ (i : ℕ), AnalyticOn 𝕜 (fun x => p x i) t u : Set E huo : IsOpen u hxu : x ∈ u hut : insert x s ∩ u ⊆ t ⊢ ∃ u, IsOpen u ∧ x ∈ u ∧ ContDiffOn 𝕜 m f (insert x s ∩ u)
252a1c681d4d0950
Ring.choose_eq_nat_choose
Mathlib/RingTheory/Binomial.lean
theorem choose_eq_nat_choose [NatPowAssoc R] (n k : ℕ) : choose (n : R) k = Nat.choose n k
case zero R : Type u_1 inst✝³ : NonAssocRing R inst✝² : Pow R ℕ inst✝¹ : BinomialRing R inst✝ : NatPowAssoc R k : ℕ ⊢ choose (↑0) k = ↑(Nat.choose 0 k)
cases k with | zero => rw [choose_zero_right, Nat.choose_zero_right, Nat.cast_one] | succ k => rw [Nat.cast_zero, choose_zero_succ, Nat.choose_zero_succ, Nat.cast_zero]
no goals
1e26b94f806077b3
hasFDerivAt_exp_of_mem_ball
Mathlib/Analysis/SpecialFunctions/Exponential.lean
theorem hasFDerivAt_exp_of_mem_ball [CharZero 𝕂] {x : 𝔸} (hx : x ∈ EMetric.ball (0 : 𝔸) (expSeries 𝕂 𝔸).radius) : HasFDerivAt (exp 𝕂) (exp 𝕂 x • (1 : 𝔸 →L[𝕂] 𝔸)) x
𝕂 : Type u_1 𝔸 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕂 inst✝³ : NormedCommRing 𝔸 inst✝² : NormedAlgebra 𝕂 𝔸 inst✝¹ : CompleteSpace 𝔸 inst✝ : CharZero 𝕂 x : 𝔸 hx : x ∈ EMetric.ball 0 (expSeries 𝕂 𝔸).radius hpos : 0 < (expSeries 𝕂 𝔸).radius ⊢ (fun h => exp 𝕂 x * (exp 𝕂 (0 + h) - exp 𝕂 0 - (ContinuousLinearMap.id 𝕂 𝔸) h)) =ᶠ[𝓝 0] fun h => exp 𝕂 (x + h) - exp 𝕂 x - exp 𝕂 x • (ContinuousLinearMap.id 𝕂 𝔸) h
have : ∀ᶠ h in 𝓝 (0 : 𝔸), h ∈ EMetric.ball (0 : 𝔸) (expSeries 𝕂 𝔸).radius := EMetric.ball_mem_nhds _ hpos
𝕂 : Type u_1 𝔸 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕂 inst✝³ : NormedCommRing 𝔸 inst✝² : NormedAlgebra 𝕂 𝔸 inst✝¹ : CompleteSpace 𝔸 inst✝ : CharZero 𝕂 x : 𝔸 hx : x ∈ EMetric.ball 0 (expSeries 𝕂 𝔸).radius hpos : 0 < (expSeries 𝕂 𝔸).radius this : ∀ᶠ (h : 𝔸) in 𝓝 0, h ∈ EMetric.ball 0 (expSeries 𝕂 𝔸).radius ⊢ (fun h => exp 𝕂 x * (exp 𝕂 (0 + h) - exp 𝕂 0 - (ContinuousLinearMap.id 𝕂 𝔸) h)) =ᶠ[𝓝 0] fun h => exp 𝕂 (x + h) - exp 𝕂 x - exp 𝕂 x • (ContinuousLinearMap.id 𝕂 𝔸) h
b912975acf3383c5
Filter.HasBasis.liminf_eq_ite
Mathlib/Order/LiminfLimsup.lean
theorem HasBasis.liminf_eq_ite {v : Filter ι} {p : ι' → Prop} {s : ι' → Set ι} [Countable (Subtype p)] [Nonempty (Subtype p)] (hv : v.HasBasis p s) (f : ι → α) : liminf f v = if ∃ (j : Subtype p), s j = ∅ then sSup univ else if ∀ (j : Subtype p), ¬BddBelow (range (fun (i : s j) ↦ f i)) then sSup ∅ else ⨆ (j : Subtype p), ⨅ (i : s (liminf_reparam f s p j)), f i
case neg.H α : Type u_1 ι : Type u_4 ι' : Type u_5 inst✝² : ConditionallyCompleteLinearOrder α v : Filter ι p : ι' → Prop s : ι' → Set ι inst✝¹ : Countable (Subtype p) inst✝ : Nonempty (Subtype p) hv : v.HasBasis p s f : ι → α H : ¬∃ j, s ↑j = ∅ H' : ¬∀ (j : Subtype p), ¬BddBelow (range fun i => f ↑i) ⊢ ∃ j, BddBelow (range fun i => f ↑i)
push_neg at H'
case neg.H α : Type u_1 ι : Type u_4 ι' : Type u_5 inst✝² : ConditionallyCompleteLinearOrder α v : Filter ι p : ι' → Prop s : ι' → Set ι inst✝¹ : Countable (Subtype p) inst✝ : Nonempty (Subtype p) hv : v.HasBasis p s f : ι → α H : ¬∃ j, s ↑j = ∅ H' : ∃ j, BddBelow (range fun i => f ↑i) ⊢ ∃ j, BddBelow (range fun i => f ↑i)
f25bd96869eaf9b2
MeasureTheory.Measure.map_linearMap_addHaar_eq_smul_addHaar
Mathlib/MeasureTheory/Measure/Lebesgue/EqHaar.lean
theorem map_linearMap_addHaar_eq_smul_addHaar {f : E →ₗ[ℝ] E} (hf : LinearMap.det f ≠ 0) : Measure.map f μ = ENNReal.ofReal |(LinearMap.det f)⁻¹| • μ
case h E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : FiniteDimensional ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure f : E →ₗ[ℝ] E ι : Type := Fin (finrank ℝ E) this✝¹ : FiniteDimensional ℝ (ι → ℝ) this✝ : finrank ℝ E = finrank ℝ (ι → ℝ) e : E ≃ₗ[ℝ] ι → ℝ g : (ι → ℝ) →ₗ[ℝ] ι → ℝ hf : LinearMap.det g ≠ 0 hg : g = ↑e ∘ₗ f ∘ₗ ↑e.symm gdet : LinearMap.det g = LinearMap.det f fg : f = ↑e.symm ∘ₗ g ∘ₗ ↑e Ce : Continuous ⇑e Cg : Continuous ⇑g Cesymm : Continuous ⇑e.symm this : (map (⇑e) μ).IsAddHaarMeasure x : E ⊢ (⇑e.symm ∘ ⇑e) x = id x
simp only [id, Function.comp_apply, LinearEquiv.symm_apply_apply]
no goals
99679000a5dbc25a
List.last_eq_of_concat_eq
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Lemmas.lean
theorem last_eq_of_concat_eq {a b : α} {l₁ l₂ : List α} : concat l₁ a = concat l₂ b → a = b
α : Type u_1 a b : α l₁ l₂ : List α ⊢ l₁.concat a = l₂.concat b → a = b
simp only [concat_eq_append]
α : Type u_1 a b : α l₁ l₂ : List α ⊢ l₁ ++ [a] = l₂ ++ [b] → a = b
478662c2630897dd
Nat.max_sq_add_min_le_pair
Mathlib/Data/Nat/Pairing.lean
theorem max_sq_add_min_le_pair (m n : ℕ) : max m n ^ 2 + min m n ≤ pair m n
case inl m n : ℕ h : m < n ⊢ (m ⊔ n) ^ 2 + m ⊓ n ≤ if m < n then n * n + m else m * m + m + n
rw [if_pos h, max_eq_right h.le, min_eq_left h.le, Nat.pow_two]
no goals
bf37f67bbb78318d
IsIntegrallyClosed.eq_map_mul_C_of_dvd
Mathlib/RingTheory/Polynomial/GaussLemma.lean
theorem IsIntegrallyClosed.eq_map_mul_C_of_dvd [IsIntegrallyClosed R] {f : R[X]} (hf : f.Monic) {g : K[X]} (hg : g ∣ f.map (algebraMap R K)) : ∃ g' : R[X], g'.map (algebraMap R K) * (C <| leadingCoeff g) = g
R : Type u_1 inst✝⁴ : CommRing R K : Type u_2 inst✝³ : Field K inst✝² : Algebra R K inst✝¹ : IsFractionRing R K inst✝ : IsIntegrallyClosed R f : R[X] hf : f.Monic g : K[X] hg : g ∣ map (algebraMap R K) f g_ne_0 : g ≠ 0 g_mul_dvd : g * C g.leadingCoeff⁻¹ ∣ map (algebraMap R K) f algeq : ↥(integralClosure R K) ≃ₐ[R] R := ((integralClosure R K).equivOfEq ⊥ ⋯).trans (Algebra.botEquivOfInjective ⋯) this : (algebraMap R K).comp (↑algeq).toRingHom = (integralClosure R K).toSubring.subtype ⊢ ∃ g', map (algebraMap R K) g' = g * C g.leadingCoeff⁻¹
have H := (mem_lifts _).1 (integralClosure.mem_lifts_of_monic_of_dvd_map K hf (monic_mul_leadingCoeff_inv g_ne_0) g_mul_dvd)
R : Type u_1 inst✝⁴ : CommRing R K : Type u_2 inst✝³ : Field K inst✝² : Algebra R K inst✝¹ : IsFractionRing R K inst✝ : IsIntegrallyClosed R f : R[X] hf : f.Monic g : K[X] hg : g ∣ map (algebraMap R K) f g_ne_0 : g ≠ 0 g_mul_dvd : g * C g.leadingCoeff⁻¹ ∣ map (algebraMap R K) f algeq : ↥(integralClosure R K) ≃ₐ[R] R := ((integralClosure R K).equivOfEq ⊥ ⋯).trans (Algebra.botEquivOfInjective ⋯) this : (algebraMap R K).comp (↑algeq).toRingHom = (integralClosure R K).toSubring.subtype H : ∃ q, map (algebraMap (↥(integralClosure R K)) K) q = g * C g.leadingCoeff⁻¹ ⊢ ∃ g', map (algebraMap R K) g' = g * C g.leadingCoeff⁻¹
918c3567824cf666
MeasureTheory.JordanDecomposition.toSignedMeasure_injective
Mathlib/MeasureTheory/Decomposition/Jordan.lean
theorem toSignedMeasure_injective : Injective <| @JordanDecomposition.toSignedMeasure α _
α : Type u_1 inst✝ : MeasurableSpace α j₁ j₂ : JordanDecomposition α hj : j₁.toSignedMeasure = j₂.toSignedMeasure S : Set α hS₁ : MeasurableSet S hS₂ : j₁.toSignedMeasure ≤[S] 0 hS₃ : 0 ≤[Sᶜ] j₁.toSignedMeasure hS₄ : j₁.posPart S = 0 hS₅ : j₁.negPart Sᶜ = 0 T : Set α hT₁ : MeasurableSet T hT₂ : j₁.toSignedMeasure ≤[T] 0 hT₃ : 0 ≤[Tᶜ] j₁.toSignedMeasure hT₄ : j₂.posPart T = 0 hT₅ : j₂.negPart Tᶜ = 0 hST₁ : ↑j₁.toSignedMeasure (symmDiff Sᶜ Tᶜ) = 0 i : Set α hi : MeasurableSet i hμ₁ : (j₁.posPart i).toReal = ↑j₁.toSignedMeasure (i ∩ Sᶜ) ⊢ (j₂.posPart (i ∩ T ∪ i ∩ Tᶜ)).toReal = (j₂.posPart (i ∩ Tᶜ)).toReal
rw [measure_union, show j₂.posPart (i ∩ T) = 0 from nonpos_iff_eq_zero.1 (hT₄ ▸ measure_mono Set.inter_subset_right), zero_add]
case hd α : Type u_1 inst✝ : MeasurableSpace α j₁ j₂ : JordanDecomposition α hj : j₁.toSignedMeasure = j₂.toSignedMeasure S : Set α hS₁ : MeasurableSet S hS₂ : j₁.toSignedMeasure ≤[S] 0 hS₃ : 0 ≤[Sᶜ] j₁.toSignedMeasure hS₄ : j₁.posPart S = 0 hS₅ : j₁.negPart Sᶜ = 0 T : Set α hT₁ : MeasurableSet T hT₂ : j₁.toSignedMeasure ≤[T] 0 hT₃ : 0 ≤[Tᶜ] j₁.toSignedMeasure hT₄ : j₂.posPart T = 0 hT₅ : j₂.negPart Tᶜ = 0 hST₁ : ↑j₁.toSignedMeasure (symmDiff Sᶜ Tᶜ) = 0 i : Set α hi : MeasurableSet i hμ₁ : (j₁.posPart i).toReal = ↑j₁.toSignedMeasure (i ∩ Sᶜ) ⊢ Disjoint (i ∩ T) (i ∩ Tᶜ) case h α : Type u_1 inst✝ : MeasurableSpace α j₁ j₂ : JordanDecomposition α hj : j₁.toSignedMeasure = j₂.toSignedMeasure S : Set α hS₁ : MeasurableSet S hS₂ : j₁.toSignedMeasure ≤[S] 0 hS₃ : 0 ≤[Sᶜ] j₁.toSignedMeasure hS₄ : j₁.posPart S = 0 hS₅ : j₁.negPart Sᶜ = 0 T : Set α hT₁ : MeasurableSet T hT₂ : j₁.toSignedMeasure ≤[T] 0 hT₃ : 0 ≤[Tᶜ] j₁.toSignedMeasure hT₄ : j₂.posPart T = 0 hT₅ : j₂.negPart Tᶜ = 0 hST₁ : ↑j₁.toSignedMeasure (symmDiff Sᶜ Tᶜ) = 0 i : Set α hi : MeasurableSet i hμ₁ : (j₁.posPart i).toReal = ↑j₁.toSignedMeasure (i ∩ Sᶜ) ⊢ MeasurableSet (i ∩ Tᶜ)
dcb73e0ca837cd73
cfcₙHom_comp
Mathlib/Analysis/CStarAlgebra/ContinuousFunctionalCalculus/NonUnital.lean
theorem cfcₙHom_comp [UniqueHom R A] (f : C(σₙ R a, R)₀) (f' : C(σₙ R a, σₙ R (cfcₙHom ha f))₀) (hff' : ∀ x, f x = f' x) (g : C(σₙ R (cfcₙHom ha f), R)₀) : cfcₙHom ha (g.comp f') = cfcₙHom (cfcₙHom_predicate ha f) g
case refine_2 R : Type u_1 A : Type u_2 p : A → Prop inst✝¹² : CommSemiring R inst✝¹¹ : Nontrivial R inst✝¹⁰ : StarRing R inst✝⁹ : MetricSpace R inst✝⁸ : IsTopologicalSemiring R inst✝⁷ : ContinuousStar R inst✝⁶ : NonUnitalRing A inst✝⁵ : StarRing A inst✝⁴ : TopologicalSpace A inst✝³ : Module R A inst✝² : IsScalarTower R A A inst✝¹ : SMulCommClass R A A instCFCₙ : NonUnitalContinuousFunctionalCalculus R p a : A ha : p a inst✝ : UniqueHom R A f : C(↑(σₙ R a), R)₀ f' : C(↑(σₙ R a), ↑(σₙ R ((cfcₙHom ha) f)))₀ hff' : ∀ (x : ↑(σₙ R a)), f x = ↑(f' x) g : C(↑(σₙ R ((cfcₙHom ha) f)), R)₀ ψ : C(↑(σₙ R ((cfcₙHom ha) f)), R)₀ →⋆ₙₐ[R] C(↑(σₙ R a), R)₀ := { toFun := fun x => x.comp f', map_smul' := ⋯, map_zero' := ⋯, map_add' := ⋯, map_mul' := ⋯, map_star' := ⋯ } φ : C(↑(σₙ R ((cfcₙHom ha) f)), R)₀ →⋆ₙₐ[R] A := (cfcₙHom ha).comp ψ ⊢ φ { toContinuousMap := ContinuousMap.restrict (σₙ R ((cfcₙHom ha) f)) (ContinuousMap.id R), map_zero' := ⋯ } = (cfcₙHom ha) f
simp only [φ, ψ, NonUnitalStarAlgHom.comp_apply, NonUnitalStarAlgHom.coe_mk', NonUnitalAlgHom.coe_mk]
case refine_2 R : Type u_1 A : Type u_2 p : A → Prop inst✝¹² : CommSemiring R inst✝¹¹ : Nontrivial R inst✝¹⁰ : StarRing R inst✝⁹ : MetricSpace R inst✝⁸ : IsTopologicalSemiring R inst✝⁷ : ContinuousStar R inst✝⁶ : NonUnitalRing A inst✝⁵ : StarRing A inst✝⁴ : TopologicalSpace A inst✝³ : Module R A inst✝² : IsScalarTower R A A inst✝¹ : SMulCommClass R A A instCFCₙ : NonUnitalContinuousFunctionalCalculus R p a : A ha : p a inst✝ : UniqueHom R A f : C(↑(σₙ R a), R)₀ f' : C(↑(σₙ R a), ↑(σₙ R ((cfcₙHom ha) f)))₀ hff' : ∀ (x : ↑(σₙ R a)), f x = ↑(f' x) g : C(↑(σₙ R ((cfcₙHom ha) f)), R)₀ ψ : C(↑(σₙ R ((cfcₙHom ha) f)), R)₀ →⋆ₙₐ[R] C(↑(σₙ R a), R)₀ := { toFun := fun x => x.comp f', map_smul' := ⋯, map_zero' := ⋯, map_add' := ⋯, map_mul' := ⋯, map_star' := ⋯ } φ : C(↑(σₙ R ((cfcₙHom ha) f)), R)₀ →⋆ₙₐ[R] A := (cfcₙHom ha).comp ψ ⊢ (cfcₙHom ha) ({ toContinuousMap := ContinuousMap.restrict (σₙ R ((cfcₙHom ha) f)) (ContinuousMap.id R), map_zero' := ⋯ }.comp f') = (cfcₙHom ha) f
5eff7aa8f4f5d67a
TopCat.GlueData.rel_equiv
Mathlib/Topology/Gluing.lean
theorem rel_equiv : Equivalence D.Rel := ⟨fun x => ⟨inv (D.f _ _) x.2, IsIso.inv_hom_id_apply (D.f x.fst x.fst) _, -- Use `elementwise_of%` elaborator instead of `IsIso.inv_hom_id_apply` to work around -- `ConcreteCategory`/`HasForget` mismatch: by simp [elementwise_of% IsIso.inv_hom_id (D.f x.fst x.fst)]⟩, by rintro a b ⟨x, e₁, e₂⟩ exact ⟨D.t _ _ x, e₂, by rw [← e₁, D.t_inv_apply]⟩, by rintro ⟨i, a⟩ ⟨j, b⟩ ⟨k, c⟩ ⟨x, e₁, e₂⟩ rintro ⟨y, e₃, e₄⟩ let z := (pullbackIsoProdSubtype (D.f j i) (D.f j k)).inv ⟨⟨_, _⟩, e₂.trans e₃.symm⟩ have eq₁ : (D.t j i) ((pullback.fst _ _ : _ /-(D.f j k)-/ ⟶ D.V (j, i)) z) = x
case mk.mk.mk.intro.intro.intro.intro D : GlueData i : D.J a : ↑(D.U i) j : D.J b : ↑(D.U j) k : D.J c : ↑(D.U k) x : ↑(D.V (⟨i, a⟩.fst, ⟨j, b⟩.fst)) e₁ : (ConcreteCategory.hom (D.f ⟨i, a⟩.fst ⟨j, b⟩.fst)) x = ⟨i, a⟩.snd e₂ : (ConcreteCategory.hom (D.f ⟨j, b⟩.fst ⟨i, a⟩.fst)) ((ConcreteCategory.hom (D.t ⟨i, a⟩.fst ⟨j, b⟩.fst)) x) = ⟨j, b⟩.snd y : ↑(D.V (⟨j, b⟩.fst, ⟨k, c⟩.fst)) e₃ : (ConcreteCategory.hom (D.f ⟨j, b⟩.fst ⟨k, c⟩.fst)) y = ⟨j, b⟩.snd e₄ : (ConcreteCategory.hom (D.f ⟨k, c⟩.fst ⟨j, b⟩.fst)) ((ConcreteCategory.hom (D.t ⟨j, b⟩.fst ⟨k, c⟩.fst)) y) = ⟨k, c⟩.snd ⊢ D.Rel ⟨i, a⟩ ⟨k, c⟩
let z := (pullbackIsoProdSubtype (D.f j i) (D.f j k)).inv ⟨⟨_, _⟩, e₂.trans e₃.symm⟩
case mk.mk.mk.intro.intro.intro.intro D : GlueData i : D.J a : ↑(D.U i) j : D.J b : ↑(D.U j) k : D.J c : ↑(D.U k) x : ↑(D.V (⟨i, a⟩.fst, ⟨j, b⟩.fst)) e₁ : (ConcreteCategory.hom (D.f ⟨i, a⟩.fst ⟨j, b⟩.fst)) x = ⟨i, a⟩.snd e₂ : (ConcreteCategory.hom (D.f ⟨j, b⟩.fst ⟨i, a⟩.fst)) ((ConcreteCategory.hom (D.t ⟨i, a⟩.fst ⟨j, b⟩.fst)) x) = ⟨j, b⟩.snd y : ↑(D.V (⟨j, b⟩.fst, ⟨k, c⟩.fst)) e₃ : (ConcreteCategory.hom (D.f ⟨j, b⟩.fst ⟨k, c⟩.fst)) y = ⟨j, b⟩.snd e₄ : (ConcreteCategory.hom (D.f ⟨k, c⟩.fst ⟨j, b⟩.fst)) ((ConcreteCategory.hom (D.t ⟨j, b⟩.fst ⟨k, c⟩.fst)) y) = ⟨k, c⟩.snd z : ↑(pullback (D.f j i) (D.f j k)) := (ConcreteCategory.hom (pullbackIsoProdSubtype (D.f j i) (D.f j k)).inv) ⟨((ConcreteCategory.hom (D.t ⟨i, a⟩.fst ⟨j, b⟩.fst)) x, y), ⋯⟩ ⊢ D.Rel ⟨i, a⟩ ⟨k, c⟩
ff5fea99544ad2bd
ContinuousMap.sublattice_closure_eq_top
Mathlib/Topology/ContinuousMap/StoneWeierstrass.lean
theorem sublattice_closure_eq_top (L : Set C(X, ℝ)) (nA : L.Nonempty) (inf_mem : ∀ᵉ (f ∈ L) (g ∈ L), f ⊓ g ∈ L) (sup_mem : ∀ᵉ (f ∈ L) (g ∈ L), f ⊔ g ∈ L) (sep : L.SeparatesPointsStrongly) : closure L = ⊤
case pos X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : L.Nonempty inf_mem : ∀ f ∈ L, ∀ g ∈ L, f ⊓ g ∈ L sup_mem : ∀ f ∈ L, ∀ g ∈ L, f ⊔ g ∈ L sep : ∀ (v : X → ℝ) (x y : X), ∃ f ∈ L, f x = v x ∧ f y = v y f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X g : X → X → C(X, ℝ) hg : ∀ (x y : X), g x y ∈ L w₁ : ∀ (x y : X), (g x y) x = f x w₂ : ∀ (x y : X), (g x y) y = f y U : X → X → Set X := fun x y => {z | f z - ε < (g x y) z} U_nhd_y : ∀ (x y : X), U x y ∈ 𝓝 y ys : X → Finset X := fun x => ⋯.choose ys_w : ∀ (x : X), ⋃ y ∈ ys x, U x y = ⊤ := fun x => Exists.choose_spec (CompactSpace.elim_nhds_subcover (U x) (U_nhd_y x)) ys_nonempty : ∀ (x : X), (ys x).Nonempty h : X → ↑L := fun x => ⟨(ys x).sup' ⋯ fun y => g x y, ⋯⟩ lt_h : ∀ (x z : X), f z - ε < ↑(h x) z h_eq : ∀ (x : X), ↑(h x) x = f x W : X → Set X := fun x => {z | ↑(h x) z < f z + ε} W_nhd : ∀ (x : X), W x ∈ 𝓝 x xs : Finset X := ⋯.choose xs_w : ⋃ x ∈ xs, W x = ⊤ := Exists.choose_spec (CompactSpace.elim_nhds_subcover W W_nhd) xs_nonempty : xs.Nonempty ⊢ ∃ x, dist x f < ε ∧ x ∈ L
let k : (L : Type _) := ⟨xs.inf' xs_nonempty fun x => (h x : C(X, ℝ)), Finset.inf'_mem _ inf_mem _ _ _ fun x _ => (h x).2⟩
case pos X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : L.Nonempty inf_mem : ∀ f ∈ L, ∀ g ∈ L, f ⊓ g ∈ L sup_mem : ∀ f ∈ L, ∀ g ∈ L, f ⊔ g ∈ L sep : ∀ (v : X → ℝ) (x y : X), ∃ f ∈ L, f x = v x ∧ f y = v y f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X g : X → X → C(X, ℝ) hg : ∀ (x y : X), g x y ∈ L w₁ : ∀ (x y : X), (g x y) x = f x w₂ : ∀ (x y : X), (g x y) y = f y U : X → X → Set X := fun x y => {z | f z - ε < (g x y) z} U_nhd_y : ∀ (x y : X), U x y ∈ 𝓝 y ys : X → Finset X := fun x => ⋯.choose ys_w : ∀ (x : X), ⋃ y ∈ ys x, U x y = ⊤ := fun x => Exists.choose_spec (CompactSpace.elim_nhds_subcover (U x) (U_nhd_y x)) ys_nonempty : ∀ (x : X), (ys x).Nonempty h : X → ↑L := fun x => ⟨(ys x).sup' ⋯ fun y => g x y, ⋯⟩ lt_h : ∀ (x z : X), f z - ε < ↑(h x) z h_eq : ∀ (x : X), ↑(h x) x = f x W : X → Set X := fun x => {z | ↑(h x) z < f z + ε} W_nhd : ∀ (x : X), W x ∈ 𝓝 x xs : Finset X := ⋯.choose xs_w : ⋃ x ∈ xs, W x = ⊤ := Exists.choose_spec (CompactSpace.elim_nhds_subcover W W_nhd) xs_nonempty : xs.Nonempty k : ↑L := ⟨xs.inf' xs_nonempty fun x => ↑(h x), ⋯⟩ ⊢ ∃ x, dist x f < ε ∧ x ∈ L
fe3c7b7c90fed6eb
FiberBundle.exists_trivialization_Icc_subset
Mathlib/Topology/FiberBundle/Basic.lean
theorem FiberBundle.exists_trivialization_Icc_subset [ConditionallyCompleteLinearOrder B] [OrderTopology B] [FiberBundle F E] (a b : B) : ∃ e : Trivialization F (π F E), Icc a b ⊆ e.baseSet
B : Type u_2 F : Type u_3 inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace F E : B → Type u_5 inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : (b : B) → TopologicalSpace (E b) inst✝² : ConditionallyCompleteLinearOrder B inst✝¹ : OrderTopology B inst✝ : FiberBundle F E a b : B ea : Trivialization F TotalSpace.proj hea : a ∈ ea.baseSet hab : a ≤ b s : Set B := {x | x ∈ Icc a b ∧ ∃ e, Icc a x ⊆ e.baseSet} ha : a ∈ s sne : s.Nonempty hsb : b ∈ upperBounds s sbd : BddAbove s c : B := sSup s hsc : IsLUB s c hc : c ∈ Icc a b ec : Trivialization F TotalSpace.proj hec : Icc a c ⊆ ec.baseSet hlt : c < b ⊢ ∃ d ∈ Ioc c b, ∃ e, Icc a d ⊆ e.baseSet
obtain ⟨d, hdcb, hd⟩ : ∃ d ∈ Ioc c b, Ico c d ⊆ ec.baseSet := (mem_nhdsGE_iff_exists_mem_Ioc_Ico_subset hlt).1 (mem_nhdsWithin_of_mem_nhds <| IsOpen.mem_nhds ec.open_baseSet (hec ⟨hc.1, le_rfl⟩))
case intro.intro B : Type u_2 F : Type u_3 inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace F E : B → Type u_5 inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : (b : B) → TopologicalSpace (E b) inst✝² : ConditionallyCompleteLinearOrder B inst✝¹ : OrderTopology B inst✝ : FiberBundle F E a b : B ea : Trivialization F TotalSpace.proj hea : a ∈ ea.baseSet hab : a ≤ b s : Set B := {x | x ∈ Icc a b ∧ ∃ e, Icc a x ⊆ e.baseSet} ha : a ∈ s sne : s.Nonempty hsb : b ∈ upperBounds s sbd : BddAbove s c : B := sSup s hsc : IsLUB s c hc : c ∈ Icc a b ec : Trivialization F TotalSpace.proj hec : Icc a c ⊆ ec.baseSet hlt : c < b d : B hdcb : d ∈ Ioc c b hd : Ico c d ⊆ ec.baseSet ⊢ ∃ d ∈ Ioc c b, ∃ e, Icc a d ⊆ e.baseSet
0bdc8a2531150ce5
Set.preimage_eq
Mathlib/Data/Rel.lean
theorem preimage_eq (f : α → β) (s : Set β) : f ⁻¹' s = (Function.graph f).preimage s
α : Type u_1 β : Type u_2 f : α → β s : Set β ⊢ f ⁻¹' s = (Function.graph f).preimage s
simp [Set.preimage, Rel.preimage, Rel.inv, flip, Rel.image]
no goals
a2db40cb9d7f6b63
IsTopologicalGroup.exists_mulInvClosureNhd
Mathlib/Topology/Algebra/OpenSubgroup.lean
@[to_additive] lemma exists_mulInvClosureNhd {W : Set G} (WClopen : IsClopen W) : ∃ T, mulInvClosureNhd T W
case h G : Type u_1 inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : IsTopologicalGroup G inst✝ : CompactSpace G W : Set G WClopen : IsClopen W S : Set G Smemnhds : S ∈ 𝓝 1 mulclose : W * S ⊆ W U : Set G UsubS : U ⊆ S Uopen : IsOpen U onememU : 1 ∈ U ⊢ mulInvClosureNhd (U ∩ U⁻¹) W
constructor
case h.nhd G : Type u_1 inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : IsTopologicalGroup G inst✝ : CompactSpace G W : Set G WClopen : IsClopen W S : Set G Smemnhds : S ∈ 𝓝 1 mulclose : W * S ⊆ W U : Set G UsubS : U ⊆ S Uopen : IsOpen U onememU : 1 ∈ U ⊢ U ∩ U⁻¹ ∈ 𝓝 1 case h.inv G : Type u_1 inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : IsTopologicalGroup G inst✝ : CompactSpace G W : Set G WClopen : IsClopen W S : Set G Smemnhds : S ∈ 𝓝 1 mulclose : W * S ⊆ W U : Set G UsubS : U ⊆ S Uopen : IsOpen U onememU : 1 ∈ U ⊢ (U ∩ U⁻¹)⁻¹ = U ∩ U⁻¹ case h.isOpen G : Type u_1 inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : IsTopologicalGroup G inst✝ : CompactSpace G W : Set G WClopen : IsClopen W S : Set G Smemnhds : S ∈ 𝓝 1 mulclose : W * S ⊆ W U : Set G UsubS : U ⊆ S Uopen : IsOpen U onememU : 1 ∈ U ⊢ IsOpen (U ∩ U⁻¹) case h.mul G : Type u_1 inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : IsTopologicalGroup G inst✝ : CompactSpace G W : Set G WClopen : IsClopen W S : Set G Smemnhds : S ∈ 𝓝 1 mulclose : W * S ⊆ W U : Set G UsubS : U ⊆ S Uopen : IsOpen U onememU : 1 ∈ U ⊢ W * (U ∩ U⁻¹) ⊆ W
839b8de3a333177c
Multiset.prod_eq_zero_iff
Mathlib/Algebra/BigOperators/Ring/Multiset.lean
@[simp] lemma prod_eq_zero_iff : s.prod = 0 ↔ (0 : α) ∈ s := Quotient.inductionOn s fun l ↦ by rw [quot_mk_to_coe, prod_coe]; exact List.prod_eq_zero_iff
α : Type u_2 inst✝² : CommMonoidWithZero α inst✝¹ : NoZeroDivisors α inst✝ : Nontrivial α s : Multiset α l : List α ⊢ l.prod = 0 ↔ 0 ∈ ↑l
exact List.prod_eq_zero_iff
no goals
a8ac0f2168c4fc46
IsFreeGroupoid.SpanningTree.endIsFree
Mathlib/GroupTheory/FreeGroup/NielsenSchreier.lean
/-- Given a free groupoid and an arborescence of its generating quiver, the vertex group at the root is freely generated by loops coming from generating arrows in the complement of the tree. -/ lemma endIsFree : IsFreeGroup (End (root' T)) := IsFreeGroup.ofUniqueLift ((wideSubquiverEquivSetTotal <| wideSubquiverSymmetrify T)ᶜ : Set _) (fun e => loopOfHom T (of e.val.hom)) (by intro X _ f let f' : Labelling (Generators G) X := fun a b e => if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f ⟨⟨a, b, e⟩, h⟩ rcases unique_lift f' with ⟨F', hF', uF'⟩ refine ⟨F'.mapEnd _, ?_, ?_⟩ · suffices ∀ {x y} (q : x ⟶ y), F'.map (loopOfHom T q) = (F'.map q : X) by rintro ⟨⟨a, b, e⟩, h⟩ erw [Functor.mapEnd_apply, this, hF'] exact dif_neg h intros x y q suffices ∀ {a} (p : Path (root T) a), F'.map (homOfPath T p) = 1 by simp only [this, treeHom, comp_as_mul, inv_as_inv, loopOfHom, inv_one, mul_one, one_mul, Functor.map_inv, Functor.map_comp] intro a p induction' p with b c p e ih · rw [homOfPath, F'.map_id, id_as_one] rw [homOfPath, F'.map_comp, comp_as_mul, ih, mul_one] rcases e with ⟨e | e, eT⟩ · rw [hF'] exact dif_pos (Or.inl eT) · rw [F'.map_inv, inv_as_inv, inv_eq_one, hF'] exact dif_pos (Or.inr eT) · intro E hE ext x suffices (functorOfMonoidHom T E).map x = F'.map x by simpa only [loopOfHom, functorOfMonoidHom, IsIso.inv_id, treeHom_root, Category.id_comp, Category.comp_id] using this congr apply uF' intro a b e change E (loopOfHom T _) = dite _ _ _ split_ifs with h · rw [loopOfHom_eq_id T e h, ← End.one_def, E.map_one] · exact hE ⟨⟨a, b, e⟩, h⟩)
G : Type u inst✝³ : Groupoid G inst✝² : IsFreeGroupoid G T : WideSubquiver (Symmetrify (Generators G)) inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T) X : Type u inst✝ : Group X f : ↑(wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X f' : Labelling (Generators G) X := fun a b e => if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f ⟨{ left := a, right := b, hom := e }, h⟩ F' : G ⥤ CategoryTheory.SingleObj X hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g uF' : ∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F' this : ∀ {x y : G} (q : x ⟶ y), F'.map (loopOfHom T q) = F'.map q ⊢ (fun F => ∀ (a : ↑(wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ), F ((fun e => loopOfHom T (of (↑e).hom)) a) = f a) (Functor.mapEnd (IsFreeGroupoid.SpanningTree.root' T) F')
rintro ⟨⟨a, b, e⟩, h⟩
case mk.mk G : Type u inst✝³ : Groupoid G inst✝² : IsFreeGroupoid G T : WideSubquiver (Symmetrify (Generators G)) inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T) X : Type u inst✝ : Group X f : ↑(wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X f' : Labelling (Generators G) X := fun a b e => if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f ⟨{ left := a, right := b, hom := e }, h⟩ F' : G ⥤ CategoryTheory.SingleObj X hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g uF' : ∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F' this : ∀ {x y : G} (q : x ⟶ y), F'.map (loopOfHom T q) = F'.map q a b : Generators G e : a ⟶ b h : { left := a, right := b, hom := e } ∈ (wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ ⊢ (Functor.mapEnd (IsFreeGroupoid.SpanningTree.root' T) F') ((fun e => loopOfHom T (of (↑e).hom)) ⟨{ left := a, right := b, hom := e }, h⟩) = f ⟨{ left := a, right := b, hom := e }, h⟩
4742e81f46ca4ae4
Multiset.dvd_gcd
Mathlib/Algebra/GCDMonoid/Multiset.lean
theorem dvd_gcd {s : Multiset α} {a : α} : a ∣ s.gcd ↔ ∀ b ∈ s, a ∣ b := Multiset.induction_on s (by simp) (by simp +contextual [or_imp, forall_and, dvd_gcd_iff])
α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s : Multiset α a : α ⊢ ∀ (a_1 : α) (s : Multiset α), (a ∣ s.gcd ↔ ∀ b ∈ s, a ∣ b) → (a ∣ (a_1 ::ₘ s).gcd ↔ ∀ b ∈ a_1 ::ₘ s, a ∣ b)
simp +contextual [or_imp, forall_and, dvd_gcd_iff]
no goals
d31ce47f486f81e6
Turing.ToPartrec.Code.exists_code
Mathlib/Computability/TMConfig.lean
theorem exists_code {n} {f : List.Vector ℕ n →. ℕ} (hf : Nat.Partrec' f) : ∃ c : Code, ∀ v : List.Vector ℕ n, c.eval v.1 = pure <$> f v
case neg n✝¹ : ℕ f✝ : List.Vector ℕ n✝¹ →. ℕ n✝ : ℕ f : List.Vector ℕ (n✝ + 1) → ℕ a✝ : Nat.Partrec' ↑f cf : Code v : List.Vector ℕ n✝ hf : ∀ (a : ℕ), cf.eval (a :: ↑v) = Part.some [f (a ::ᵥ v)] v' v₀ : List ℕ n : ℕ h2 : v' ∈ PFun.fix (fun v => (cf.eval v).bind fun y => Part.some (if y.headI = 0 then Sum.inl (v.headI.succ :: v.tail) else Sum.inr (v.headI.succ :: v.tail))) (n :: ↑v) IH : ∀ (a'' : List ℕ), (Sum.inr a'' ∈ (cf.eval (n :: ↑v)).bind fun y => Part.some (if y.headI = 0 then Sum.inl ((n :: ↑v).headI.succ :: (n :: ↑v).tail) else Sum.inr ((n :: ↑v).headI.succ :: (n :: ↑v).tail))) → ∀ (n : ℕ), a'' = n :: ↑v → (∀ m < n, ¬f (m ::ᵥ v) = 0) → ∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [v'.headI.pred] hm : ∀ m < n, ¬f (m ::ᵥ v) = 0 h : ¬[f (n ::ᵥ v)].headI = 0 this : Sum.inl v' ∈ Part.some (Sum.inr ((n :: ↑v).headI.succ :: (n :: ↑v).tail)) ∨ ∃ a', Sum.inr a' ∈ Part.some (Sum.inr ((n :: ↑v).headI.succ :: (n :: ↑v).tail)) ∧ v' ∈ PFun.fix (fun v => (cf.eval v).bind fun y => Part.some (if y.headI = 0 then Sum.inl (v.headI.succ :: v.tail) else Sum.inr (v.headI.succ :: v.tail))) a' ⊢ ∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [v'.headI.pred]
refine IH (n.succ::v.val) (by simp_all) _ rfl fun m h' => ?_
case neg n✝¹ : ℕ f✝ : List.Vector ℕ n✝¹ →. ℕ n✝ : ℕ f : List.Vector ℕ (n✝ + 1) → ℕ a✝ : Nat.Partrec' ↑f cf : Code v : List.Vector ℕ n✝ hf : ∀ (a : ℕ), cf.eval (a :: ↑v) = Part.some [f (a ::ᵥ v)] v' v₀ : List ℕ n : ℕ h2 : v' ∈ PFun.fix (fun v => (cf.eval v).bind fun y => Part.some (if y.headI = 0 then Sum.inl (v.headI.succ :: v.tail) else Sum.inr (v.headI.succ :: v.tail))) (n :: ↑v) IH : ∀ (a'' : List ℕ), (Sum.inr a'' ∈ (cf.eval (n :: ↑v)).bind fun y => Part.some (if y.headI = 0 then Sum.inl ((n :: ↑v).headI.succ :: (n :: ↑v).tail) else Sum.inr ((n :: ↑v).headI.succ :: (n :: ↑v).tail))) → ∀ (n : ℕ), a'' = n :: ↑v → (∀ m < n, ¬f (m ::ᵥ v) = 0) → ∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [v'.headI.pred] hm : ∀ m < n, ¬f (m ::ᵥ v) = 0 h : ¬[f (n ::ᵥ v)].headI = 0 this : Sum.inl v' ∈ Part.some (Sum.inr ((n :: ↑v).headI.succ :: (n :: ↑v).tail)) ∨ ∃ a', Sum.inr a' ∈ Part.some (Sum.inr ((n :: ↑v).headI.succ :: (n :: ↑v).tail)) ∧ v' ∈ PFun.fix (fun v => (cf.eval v).bind fun y => Part.some (if y.headI = 0 then Sum.inl (v.headI.succ :: v.tail) else Sum.inr (v.headI.succ :: v.tail))) a' m : ℕ h' : m < n.succ ⊢ ¬f (m ::ᵥ v) = 0
01823c87e1740c3b
ContDiffWithinAt.differentiableWithinAt_iteratedFDerivWithin
Mathlib/Analysis/Calculus/ContDiff/Defs.lean
theorem ContDiffWithinAt.differentiableWithinAt_iteratedFDerivWithin {m : ℕ} (h : ContDiffWithinAt 𝕜 n f s x) (hmn : m < n) (hs : UniqueDiffOn 𝕜 (insert x s)) : DifferentiableWithinAt 𝕜 (iteratedFDerivWithin 𝕜 m f s) s x
case intro.intro.intro 𝕜 : Type u inst✝⁴ : NontriviallyNormedField 𝕜 E : Type uE inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E F : Type uF inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F s : Set E f : E → F x : E n : WithTop ℕ∞ m : ℕ h : ContDiffWithinAt 𝕜 n f s x hmn : ↑m < n hs : UniqueDiffOn 𝕜 (insert x s) this : ↑m + 1 ≠ ∞ u : Set E uo : IsOpen u xu : x ∈ u t : Set E := insert x s ∩ u hu : ContDiffOn 𝕜 (↑(m + 1)) f t A : t =ᶠ[𝓝[≠] x] s B : iteratedFDerivWithin 𝕜 m f s =ᶠ[𝓝 x] iteratedFDerivWithin 𝕜 m f t ⊢ DifferentiableWithinAt 𝕜 (iteratedFDerivWithin 𝕜 m f s) s x
have C : DifferentiableWithinAt 𝕜 (iteratedFDerivWithin 𝕜 m f t) t x := hu.differentiableOn_iteratedFDerivWithin (Nat.cast_lt.2 m.lt_succ_self) (hs.inter uo) x ⟨mem_insert _ _, xu⟩
case intro.intro.intro 𝕜 : Type u inst✝⁴ : NontriviallyNormedField 𝕜 E : Type uE inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E F : Type uF inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F s : Set E f : E → F x : E n : WithTop ℕ∞ m : ℕ h : ContDiffWithinAt 𝕜 n f s x hmn : ↑m < n hs : UniqueDiffOn 𝕜 (insert x s) this : ↑m + 1 ≠ ∞ u : Set E uo : IsOpen u xu : x ∈ u t : Set E := insert x s ∩ u hu : ContDiffOn 𝕜 (↑(m + 1)) f t A : t =ᶠ[𝓝[≠] x] s B : iteratedFDerivWithin 𝕜 m f s =ᶠ[𝓝 x] iteratedFDerivWithin 𝕜 m f t C : DifferentiableWithinAt 𝕜 (iteratedFDerivWithin 𝕜 m f t) t x ⊢ DifferentiableWithinAt 𝕜 (iteratedFDerivWithin 𝕜 m f s) s x
028f7d28b24d29ba
ProbabilityTheory.IsMeasurableRatCDF.monotone_stieltjesFunctionAux
Mathlib/Probability/Kernel/Disintegration/MeasurableStieltjes.lean
lemma IsMeasurableRatCDF.monotone_stieltjesFunctionAux (a : α) : Monotone (IsMeasurableRatCDF.stieltjesFunctionAux f a)
α : Type u_1 f : α → ℚ → ℝ inst✝ : MeasurableSpace α hf : IsMeasurableRatCDF f a : α x y : ℝ hxy : x ≤ y ⊢ Nonempty { r' // y < ↑r' }
obtain ⟨r, hrx⟩ := exists_rat_gt y
case intro α : Type u_1 f : α → ℚ → ℝ inst✝ : MeasurableSpace α hf : IsMeasurableRatCDF f a : α x y : ℝ hxy : x ≤ y r : ℚ hrx : y < ↑r ⊢ Nonempty { r' // y < ↑r' }
b8b32d0abfad29b9
Real.continuousAt_rpow_of_ne
Mathlib/Analysis/SpecialFunctions/Pow/Continuity.lean
theorem continuousAt_rpow_of_ne (p : ℝ × ℝ) (hp : p.1 ≠ 0) : ContinuousAt (fun p : ℝ × ℝ => p.1 ^ p.2) p
case inl p : ℝ × ℝ hp : p.1 < 0 ⊢ ContinuousAt (fun p => p.1 ^ p.2) p
rw [continuousAt_congr (rpow_eq_nhds_of_neg hp)]
case inl p : ℝ × ℝ hp : p.1 < 0 ⊢ ContinuousAt (fun x => rexp (log x.1 * x.2) * cos (x.2 * π)) p
2e69ae2bc8a153ac
NumberField.mixedEmbedding.volume_preserving_negAt
Mathlib/NumberTheory/NumberField/CanonicalEmbedding/Basic.lean
theorem volume_preserving_negAt [NumberField K] : MeasurePreserving (negAt s)
case pos K : Type u_1 inst✝¹ : Field K s : Set { w // w.IsReal } inst✝ : NumberField K w : { w // w.IsReal } hw : w ∈ s ⊢ MeasurePreserving (↑(neg ℝ).toLinearEquiv).toAddHom.1 volume volume
exact Measure.measurePreserving_neg _
no goals
299b1d1145ec3899
Ideal.map_mk_comap_factor
Mathlib/RingTheory/Ideal/Quotient/PowTransition.lean
lemma Ideal.map_mk_comap_factor [J.IsTwoSided] [K.IsTwoSided] (hIJ : J ≤ I) (hJK : K ≤ J) : (I.map (mk J)).comap (factor hJK) = I.map (mk K)
case h.refine_2.intro.intro R : Type u_1 inst✝² : Ring R I J K : Ideal R inst✝¹ : J.IsTwoSided inst✝ : K.IsTwoSided hIJ : J ≤ I hJK : K ≤ J x : R ⧸ K h : x ∈ map (mk K) I r : R hr : r ∈ ↑I eq : (mk K) r = x ⊢ x ∈ comap (factor hJK) (map (mk J) I)
simpa only [← eq] using mem_map_of_mem (mk J) hr
no goals
c5e0a4d45fe78c35
Polynomial.support_update
Mathlib/Algebra/Polynomial/Basic.lean
theorem support_update (p : R[X]) (n : ℕ) (a : R) [Decidable (a = 0)] : support (p.update n a) = if a = 0 then p.support.erase n else insert n p.support
R : Type u inst✝¹ : Semiring R p : R[X] n : ℕ a : R inst✝ : Decidable (a = 0) ⊢ (p.update n a).support = if a = 0 then p.support.erase n else insert n p.support
cases p
case ofFinsupp R : Type u inst✝¹ : Semiring R n : ℕ a : R inst✝ : Decidable (a = 0) toFinsupp✝ : R[ℕ] ⊢ ({ toFinsupp := toFinsupp✝ }.update n a).support = if a = 0 then { toFinsupp := toFinsupp✝ }.support.erase n else insert n { toFinsupp := toFinsupp✝ }.support
4d38e0e4d9b9c2de
exteriorPower.pairingDual_apply_apply_eq_one_zero
Mathlib/LinearAlgebra/ExteriorPower/Pairing.lean
lemma pairingDual_apply_apply_eq_one_zero (a b : Fin n ↪o ι) (h : a ≠ b) : pairingDual R M n (ιMulti _ _ (f ∘ a)) (ιMulti _ _ (x ∘ b)) = 0
R : Type u_1 M : Type u_2 inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_3 inst✝ : LinearOrder ι x : ι → M f : ι → Module.Dual R M h₀ : ∀ ⦃i j : ι⦄, i ≠ j → (f i) (x j) = 0 n : ℕ a b : Fin n ↪o ι h : a ≠ b σ : Equiv.Perm (Fin n) x✝ : σ ∈ Finset.univ h' : ¬∏ x_1 : Fin n, (f (a x_1)) (x (b (σ x_1))) = 0 this : ⇑a = ⇑b ∘ ⇑σ i j : Fin n hij : i ≤ j ⊢ σ i ≤ σ j
have h'' := congr_fun this
R : Type u_1 M : Type u_2 inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_3 inst✝ : LinearOrder ι x : ι → M f : ι → Module.Dual R M h₀ : ∀ ⦃i j : ι⦄, i ≠ j → (f i) (x j) = 0 n : ℕ a b : Fin n ↪o ι h : a ≠ b σ : Equiv.Perm (Fin n) x✝ : σ ∈ Finset.univ h' : ¬∏ x_1 : Fin n, (f (a x_1)) (x (b (σ x_1))) = 0 this : ⇑a = ⇑b ∘ ⇑σ i j : Fin n hij : i ≤ j h'' : ∀ (a_1 : Fin n), a a_1 = (⇑b ∘ ⇑σ) a_1 ⊢ σ i ≤ σ j
fd3ea1bd40177425
Bimod.whisker_assoc_bimod
Mathlib/CategoryTheory/Monoidal/Bimod.lean
theorem whisker_assoc_bimod {W X Y Z : Mon_ C} (M : Bimod W X) {N N' : Bimod X Y} (f : N ⟶ N') (P : Bimod Y Z) : whiskerRight (whiskerLeft M f) P = (associatorBimod M N P).hom ≫ whiskerLeft M (whiskerRight f P) ≫ (associatorBimod M N' P).inv
case h.h C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C inst✝² : HasCoequalizers C inst✝¹ : ∀ (X : C), PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : ∀ (X : C), PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) W X Y Z : Mon_ C M : Bimod W X N N' : Bimod X Y f : N ⟶ N' P : Bimod Y Z ⊢ coequalizer.π (M.actRight ▷ N.X) ((α_ M.X X.X N.X).hom ≫ M.X ◁ N.actLeft) ▷ P.X ≫ colimMap (parallelPairHom (M.actRight ▷ N.X) ((α_ M.X X.X N.X).hom ≫ M.X ◁ N.actLeft) (M.actRight ▷ N'.X) ((α_ M.X X.X N'.X).hom ≫ M.X ◁ N'.actLeft) ((M.X ⊗ X.X) ◁ f.hom) (M.X ◁ f.hom) ⋯ ⋯) ▷ P.X ≫ colimit.ι (parallelPair (TensorBimod.actRight M N' ▷ P.X) ((α_ (TensorBimod.X M N') Y.X P.X).hom ≫ TensorBimod.X M N' ◁ P.actLeft)) WalkingParallelPair.one = coequalizer.π (M.actRight ▷ N.X) ((α_ M.X X.X N.X).hom ≫ M.X ◁ N.actLeft) ▷ P.X ≫ (((PreservesCoequalizer.iso (tensorRight P.X) (M.actRight ▷ N.X) ((α_ M.X X.X N.X).hom ≫ M.X ◁ N.actLeft)).inv ≫ coequalizer.desc ((α_ M.X N.X P.X).hom ≫ M.X ◁ coequalizer.π (N.actRight ▷ P.X) ((α_ N.X Y.X P.X).hom ≫ N.X ◁ P.actLeft) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X N P) ((α_ M.X X.X (TensorBimod.X N P)).hom ≫ M.X ◁ TensorBimod.actLeft N P)) ⋯) ≫ colimMap (parallelPairHom (M.actRight ▷ TensorBimod.X N P) ((α_ M.X X.X (TensorBimod.X N P)).hom ≫ M.X ◁ TensorBimod.actLeft N P) (M.actRight ▷ TensorBimod.X N' P) ((α_ M.X X.X (TensorBimod.X N' P)).hom ≫ M.X ◁ TensorBimod.actLeft N' P) ((M.X ⊗ X.X) ◁ colimMap (parallelPairHom (N.actRight ▷ P.X) ((α_ N.X Y.X P.X).hom ≫ N.X ◁ P.actLeft) (N'.actRight ▷ P.X) ((α_ N'.X Y.X P.X).hom ≫ N'.X ◁ P.actLeft) (f.hom ▷ Y.X ▷ P.X) (f.hom ▷ P.X) ⋯ ⋯)) (M.X ◁ colimMap (parallelPairHom (N.actRight ▷ P.X) ((α_ N.X Y.X P.X).hom ≫ N.X ◁ P.actLeft) (N'.actRight ▷ P.X) ((α_ N'.X Y.X P.X).hom ≫ N'.X ◁ P.actLeft) (f.hom ▷ Y.X ▷ P.X) (f.hom ▷ P.X) ⋯ ⋯)) ⋯ ⋯)) ≫ AssociatorBimod.inv M N' P
slice_lhs 1 2 => rw [← comp_whiskerRight, ι_colimMap, parallelPairHom_app_one]
case h.h C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C inst✝² : HasCoequalizers C inst✝¹ : ∀ (X : C), PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : ∀ (X : C), PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) W X Y Z : Mon_ C M : Bimod W X N N' : Bimod X Y f : N ⟶ N' P : Bimod Y Z ⊢ (M.X ◁ f.hom ≫ colimit.ι (parallelPair (M.actRight ▷ N'.X) ((α_ M.X X.X N'.X).hom ≫ M.X ◁ N'.actLeft)) WalkingParallelPair.one) ▷ P.X ≫ colimit.ι (parallelPair (TensorBimod.actRight M N' ▷ P.X) ((α_ (TensorBimod.X M N') Y.X P.X).hom ≫ TensorBimod.X M N' ◁ P.actLeft)) WalkingParallelPair.one = coequalizer.π (M.actRight ▷ N.X) ((α_ M.X X.X N.X).hom ≫ M.X ◁ N.actLeft) ▷ P.X ≫ (((PreservesCoequalizer.iso (tensorRight P.X) (M.actRight ▷ N.X) ((α_ M.X X.X N.X).hom ≫ M.X ◁ N.actLeft)).inv ≫ coequalizer.desc ((α_ M.X N.X P.X).hom ≫ M.X ◁ coequalizer.π (N.actRight ▷ P.X) ((α_ N.X Y.X P.X).hom ≫ N.X ◁ P.actLeft) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X N P) ((α_ M.X X.X (TensorBimod.X N P)).hom ≫ M.X ◁ TensorBimod.actLeft N P)) ⋯) ≫ colimMap (parallelPairHom (M.actRight ▷ TensorBimod.X N P) ((α_ M.X X.X (TensorBimod.X N P)).hom ≫ M.X ◁ TensorBimod.actLeft N P) (M.actRight ▷ TensorBimod.X N' P) ((α_ M.X X.X (TensorBimod.X N' P)).hom ≫ M.X ◁ TensorBimod.actLeft N' P) ((M.X ⊗ X.X) ◁ colimMap (parallelPairHom (N.actRight ▷ P.X) ((α_ N.X Y.X P.X).hom ≫ N.X ◁ P.actLeft) (N'.actRight ▷ P.X) ((α_ N'.X Y.X P.X).hom ≫ N'.X ◁ P.actLeft) (f.hom ▷ Y.X ▷ P.X) (f.hom ▷ P.X) ⋯ ⋯)) (M.X ◁ colimMap (parallelPairHom (N.actRight ▷ P.X) ((α_ N.X Y.X P.X).hom ≫ N.X ◁ P.actLeft) (N'.actRight ▷ P.X) ((α_ N'.X Y.X P.X).hom ≫ N'.X ◁ P.actLeft) (f.hom ▷ Y.X ▷ P.X) (f.hom ▷ P.X) ⋯ ⋯)) ⋯ ⋯)) ≫ AssociatorBimod.inv M N' P
64d3d49872bb8a8d
Vector.find?_toList
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Vector/Lemmas.lean
theorem find?_toList (p : α → Bool) (v : Vector α n) : v.toList.find? p = v.find? p
α : Type n : Nat p : α → Bool v : Vector α n ⊢ List.find? p v.toList = find? p v
cases v
case mk α : Type n : Nat p : α → Bool toArray✝ : Array α size_toArray✝ : toArray✝.size = n ⊢ List.find? p { toArray := toArray✝, size_toArray := size_toArray✝ }.toList = find? p { toArray := toArray✝, size_toArray := size_toArray✝ }
36dd87d502ce7afa
LinearIndependent.map_pow_expChar_pow_of_fd_isSeparable
Mathlib/FieldTheory/PurelyInseparable/PerfectClosure.lean
theorem LinearIndependent.map_pow_expChar_pow_of_fd_isSeparable [FiniteDimensional F E] [Algebra.IsSeparable F E] (h : LinearIndependent F v) : LinearIndependent F (v · ^ q ^ n)
case h.e'_4.h F : Type u E : Type v inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E q n : ℕ hF : ExpChar F q ι : Type u_1 v : ι → E inst✝¹ : FiniteDimensional F E inst✝ : Algebra.IsSeparable F E h : LinearIndependent F v h' : LinearIndepOn F id (Set.range v) ι' : Set E := h'.extend ⋯ b : Basis (↑ι') F E := Basis.extend h' this : Fintype ↑ι' := FiniteDimensional.fintypeBasisIndex b H : LinearIndependent F fun (x : ↑ι') => b x ^ q ^ n f : ι → ↑ι' := fun i => ⟨v i, ⋯⟩ x✝ : ι ⊢ v x✝ ^ q ^ n = (Basis.extend h') (f x✝) ^ q ^ n
rw [Basis.extend_apply_self]
no goals
ad56485109349825
nhdsSet_univ
Mathlib/Topology/NhdsSet.lean
theorem nhdsSet_univ : 𝓝ˢ (univ : Set X) = ⊤
X : Type u_1 inst✝ : TopologicalSpace X ⊢ 𝓝ˢ univ = ⊤
rw [isOpen_univ.nhdsSet_eq, principal_univ]
no goals
b67f0727997ec829
Std.Tactic.BVDecide.BVExpr.bitblast.blastUdiv.denote_blastDivSubtractShift_r
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Circuit/Lemmas/Operations/Udiv.lean
theorem denote_blastDivSubtractShift_r (aig : AIG α) (assign : α → Bool) (lhs rhs : BitVec w) (falseRef trueRef : AIG.Ref aig) (n d : AIG.RefVec aig w) (wn wr : Nat) (q r : AIG.RefVec aig w) (qbv rbv : BitVec w) (hleft : ∀ (idx : Nat) (hidx : idx < w), ⟦aig, n.get idx hidx, assign⟧ = lhs.getLsbD idx) (hright : ∀ (idx : Nat) (hidx : idx < w), ⟦aig, d.get idx hidx, assign⟧ = rhs.getLsbD idx) (hr : ∀ (idx : Nat) (hidx : idx < w), ⟦aig, r.get idx hidx, assign⟧ = rbv.getLsbD idx) (hfalse : ⟦aig, falseRef, assign⟧ = false) : ∀ (idx : Nat) (hidx : idx < w), ⟦ (blastDivSubtractShift aig falseRef trueRef n d wn wr q r).aig, (blastDivSubtractShift aig falseRef trueRef n d wn wr q r).r.get idx hidx, assign ⟧ = (BitVec.divSubtractShift { n := lhs, d := rhs } { wn := wn, wr := wr, q := qbv, r := rbv }).r.getLsbD idx
α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat aig : AIG α assign : α → Bool lhs rhs : BitVec w falseRef trueRef : aig.Ref n d : aig.RefVec w wn wr : Nat q r : aig.RefVec w qbv rbv : BitVec w hleft : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := n.get idx hidx }⟧ = lhs.getLsbD idx hright : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := d.get idx hidx }⟧ = rhs.getLsbD idx hr : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := r.get idx hidx }⟧ = rbv.getLsbD idx hfalse : ⟦assign, { aig := aig, ref := falseRef }⟧ = false idx : Nat hidx : idx < w ⊢ (if ⟦assign, BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }⟧ = true then ⟦assign, { aig := (RefVec.ite (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).aig { discr := (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).ref, lhs := (((blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := ((blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).vec.cast ⋯).cast ⋯ }).aig, ref := ((((((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.get idx hidx).cast ⋯).cast ⋯).cast ⋯).cast ⋯).cast ⋯ }⟧ else ⟦assign, { aig := (RefVec.ite (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).aig { discr := (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).ref, lhs := (((blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := ((blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).vec.cast ⋯).cast ⋯ }).aig, ref := (((blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).vec.get idx hidx).cast ⋯).cast ⋯ }⟧) = (if rbv.shiftConcat (lhs.getLsbD (wn - 1)) < rhs then { wn := wn - 1, wr := wr + 1, q := qbv.shiftConcat false, r := rbv.shiftConcat (lhs.getLsbD (wn - 1)) } else { wn := wn - 1, wr := wr + 1, q := qbv.shiftConcat true, r := rbv.shiftConcat (lhs.getLsbD (wn - 1)) - rhs }).r.getLsbD idx
rw [BVPred.mkUlt_denote_eq (lhs := rbv.shiftConcat (lhs.getLsbD (wn - 1))) (rhs := rhs)]
α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat aig : AIG α assign : α → Bool lhs rhs : BitVec w falseRef trueRef : aig.Ref n d : aig.RefVec w wn wr : Nat q r : aig.RefVec w qbv rbv : BitVec w hleft : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := n.get idx hidx }⟧ = lhs.getLsbD idx hright : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := d.get idx hidx }⟧ = rhs.getLsbD idx hr : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := r.get idx hidx }⟧ = rbv.getLsbD idx hfalse : ⟦assign, { aig := aig, ref := falseRef }⟧ = false idx : Nat hidx : idx < w ⊢ (if (rbv.shiftConcat (lhs.getLsbD (wn - 1))).ult rhs = true then ⟦assign, { aig := (RefVec.ite (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).aig { discr := (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).ref, lhs := (((blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := ((blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).vec.cast ⋯).cast ⋯ }).aig, ref := ((((((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.get idx hidx).cast ⋯).cast ⋯).cast ⋯).cast ⋯).cast ⋯ }⟧ else ⟦assign, { aig := (RefVec.ite (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).aig { discr := (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).ref, lhs := (((blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := ((blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).vec.cast ⋯).cast ⋯ }).aig, ref := (((blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).vec.get idx hidx).cast ⋯).cast ⋯ }⟧) = (if rbv.shiftConcat (lhs.getLsbD (wn - 1)) < rhs then { wn := wn - 1, wr := wr + 1, q := qbv.shiftConcat false, r := rbv.shiftConcat (lhs.getLsbD (wn - 1)) } else { wn := wn - 1, wr := wr + 1, q := qbv.shiftConcat true, r := rbv.shiftConcat (lhs.getLsbD (wn - 1)) - rhs }).r.getLsbD idx case hleft α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat aig : AIG α assign : α → Bool lhs rhs : BitVec w falseRef trueRef : aig.Ref n d : aig.RefVec w wn wr : Nat q r : aig.RefVec w qbv rbv : BitVec w hleft : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := n.get idx hidx }⟧ = lhs.getLsbD idx hright : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := d.get idx hidx }⟧ = rhs.getLsbD idx hr : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := r.get idx hidx }⟧ = rbv.getLsbD idx hfalse : ⟦assign, { aig := aig, ref := falseRef }⟧ = false idx : Nat hidx : idx < w ⊢ ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig, ref := { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }.lhs.get idx hidx }⟧ = (rbv.shiftConcat (lhs.getLsbD (wn - 1))).getLsbD idx case hright α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat aig : AIG α assign : α → Bool lhs rhs : BitVec w falseRef trueRef : aig.Ref n d : aig.RefVec w wn wr : Nat q r : aig.RefVec w qbv rbv : BitVec w hleft : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := n.get idx hidx }⟧ = lhs.getLsbD idx hright : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := d.get idx hidx }⟧ = rhs.getLsbD idx hr : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := r.get idx hidx }⟧ = rbv.getLsbD idx hfalse : ⟦assign, { aig := aig, ref := falseRef }⟧ = false idx : Nat hidx : idx < w ⊢ ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig, ref := { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }.rhs.get idx hidx }⟧ = rhs.getLsbD idx
249a96ab3a68ac7e
lemma₁
Mathlib/NumberTheory/LSeries/SumCoeff.lean
theorem lemma₁ (hlim : Tendsto (fun n : ℕ ↦ (∑ k ∈ Icc 1 n, f k) / n) atTop (𝓝 l)) {s : ℝ} (hs : 1 < s) : IntegrableOn (fun t : ℝ ↦ (∑ k ∈ Icc 1 ⌊t⌋₊, f k) * (t : ℂ) ^ (-(s : ℂ) - 1)) (Set.Ici 1)
f : ℕ → ℂ l : ℂ hlim : Tendsto (fun n => (∑ k ∈ Icc 1 n, f k) / ↑n) atTop (𝓝 l) s : ℝ hs : 1 < s h₁ : LocallyIntegrableOn (fun t => (∑ k ∈ Icc 1 ⌊t⌋₊, f k) * ↑t ^ (-↑s - 1)) (Set.Ici 1) volume ⊢ (fun t => ∑ k ∈ Icc 1 ⌊t⌋₊, f k) =O[atTop] fun t => t
refine IsBigO.trans_isEquivalent ?_ isEquivalent_nat_floor
f : ℕ → ℂ l : ℂ hlim : Tendsto (fun n => (∑ k ∈ Icc 1 n, f k) / ↑n) atTop (𝓝 l) s : ℝ hs : 1 < s h₁ : LocallyIntegrableOn (fun t => (∑ k ∈ Icc 1 ⌊t⌋₊, f k) * ↑t ^ (-↑s - 1)) (Set.Ici 1) volume ⊢ (fun t => ∑ k ∈ Icc 1 ⌊t⌋₊, f k) =O[atTop] fun x => ↑⌊x⌋₊
44984ad91259849f
Filter.tendsto_const_mul_atTop_iff_pos
Mathlib/Order/Filter/AtTopBot/Field.lean
theorem tendsto_const_mul_atTop_iff_pos [NeBot l] (h : Tendsto f l atTop) : Tendsto (fun x => r * f x) l atTop ↔ 0 < r
case intro.intro α : Type u_1 β : Type u_2 inst✝¹ : LinearOrderedSemifield α l : Filter β f : β → α r : α inst✝ : l.NeBot h : Tendsto f l atTop hrf : Tendsto (fun x => r * f x) l atTop hr : r ≤ 0 x : β hx : 0 ≤ f x hrx : 0 < r * f x ⊢ False
exact (mul_nonpos_of_nonpos_of_nonneg hr hx).not_lt hrx
no goals
f67b1f5dc7971625
AlgebraicGeometry.isCompact_basicOpen
Mathlib/AlgebraicGeometry/Morphisms/QuasiCompact.lean
theorem isCompact_basicOpen (X : Scheme) {U : X.Opens} (hU : IsCompact (U : Set X)) (f : Γ(X, U)) : IsCompact (X.basicOpen f : Set X)
case intro.intro X : Scheme U : X.Opens hU : IsCompact ↑U f : ↑Γ(X, U) s : Set ↑X.affineOpens hs : s.Finite e : ↑U = ⋃ i ∈ s, ↑↑i g : ↑s → ↑X.affineOpens := fun V => ⟨↑↑V ⊓ X.basicOpen f, ⋯⟩ this : Finite ↑s ⊢ ⋃ i ∈ s, ↑↑i ∩ ↑(X.toRingedSpace.basicOpen f) = ⋃ i ∈ Set.range g, ↑↑i
apply le_antisymm <;> apply Set.iUnion₂_subset
case intro.intro.a.h X : Scheme U : X.Opens hU : IsCompact ↑U f : ↑Γ(X, U) s : Set ↑X.affineOpens hs : s.Finite e : ↑U = ⋃ i ∈ s, ↑↑i g : ↑s → ↑X.affineOpens := fun V => ⟨↑↑V ⊓ X.basicOpen f, ⋯⟩ this : Finite ↑s ⊢ ∀ i ∈ s, ↑↑i ∩ ↑(X.toRingedSpace.basicOpen f) ⊆ ⋃ i ∈ Set.range g, ↑↑i case intro.intro.a.h X : Scheme U : X.Opens hU : IsCompact ↑U f : ↑Γ(X, U) s : Set ↑X.affineOpens hs : s.Finite e : ↑U = ⋃ i ∈ s, ↑↑i g : ↑s → ↑X.affineOpens := fun V => ⟨↑↑V ⊓ X.basicOpen f, ⋯⟩ this : Finite ↑s ⊢ ∀ i ∈ Set.range g, ↑↑i ⊆ ⋃ i ∈ s, ↑↑i ∩ ↑(X.toRingedSpace.basicOpen f)
85d4cb2bab8ba3ba
ENNReal.lintegral_Lp_add_le
Mathlib/MeasureTheory/Integral/MeanInequalities.lean
theorem lintegral_Lp_add_le {p : ℝ} {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ) (hg : AEMeasurable g μ) (hp1 : 1 ≤ p) : (∫⁻ a, (f + g) a ^ p ∂μ) ^ (1 / p) ≤ (∫⁻ a, f a ^ p ∂μ) ^ (1 / p) + (∫⁻ a, g a ^ p ∂μ) ^ (1 / p)
α : Type u_1 inst✝ : MeasurableSpace α μ : Measure α p : ℝ f g : α → ℝ≥0∞ hf : AEMeasurable f μ hg : AEMeasurable g μ hp1 : 1 ≤ p hp_pos : 0 < p hf_top : ¬∫⁻ (a : α), f a ^ p ∂μ = ⊤ hg_top : ¬∫⁻ (a : α), g a ^ p ∂μ = ⊤ h1 : ¬p = 1 ⊢ p ≠ 1
exact h1
no goals
917d466c6455bcc8
exists_prime_orderOf_dvd_card
Mathlib/GroupTheory/Perm/Cycle/Type.lean
theorem _root_.exists_prime_orderOf_dvd_card {G : Type*} [Group G] [Fintype G] (p : ℕ) [hp : Fact p.Prime] (hdvd : p ∣ Fintype.card G) : ∃ x : G, orderOf x = p
G : Type u_3 inst✝¹ : Group G inst✝ : Fintype G p : ℕ hp : Fact (Nat.Prime p) hdvd : p ∣ Fintype.card G hp' : p - 1 ≠ 0 Scard : p ∣ Fintype.card ↑(vectorsProdEqOne G p) f : ℕ → ↑(vectorsProdEqOne G p) → ↑(vectorsProdEqOne G p) := fun k v => VectorsProdEqOne.rotate v k hf1 : ∀ (v : ↑(vectorsProdEqOne G p)), f 0 v = v hf2 : ∀ (j k : ℕ) (v : ↑(vectorsProdEqOne G p)), f k (f j v) = f (j + k) v hf3 : ∀ (v : ↑(vectorsProdEqOne G p)), f p v = v s : ↑(vectorsProdEqOne G p) ⊢ f (p - 1) (f 1 s) = s
rw [hf2, add_tsub_cancel_of_le hp.out.one_lt.le, hf3]
no goals
8d70eb3bee101171
Monoid.exponent_prod
Mathlib/GroupTheory/Exponent.lean
theorem Monoid.exponent_prod {M₁ M₂ : Type*} [Monoid M₁] [Monoid M₂] : exponent (M₁ × M₂) = lcm (exponent M₁) (exponent M₂)
case refine_1 M₁ : Type u_1 M₂ : Type u_2 inst✝¹ : Monoid M₁ inst✝ : Monoid M₂ ⊢ exponent (M₁ × M₂) ∣ GCDMonoid.lcm (exponent M₁) (exponent M₂)
refine exponent_dvd_of_forall_pow_eq_one fun g ↦ ?_
case refine_1 M₁ : Type u_1 M₂ : Type u_2 inst✝¹ : Monoid M₁ inst✝ : Monoid M₂ g : M₁ × M₂ ⊢ g ^ GCDMonoid.lcm (exponent M₁) (exponent M₂) = 1
6a9d76694de00ba8
refinement_of_locallyCompact_sigmaCompact_of_nhds_basis_set
Mathlib/Topology/Compactness/Paracompact.lean
theorem refinement_of_locallyCompact_sigmaCompact_of_nhds_basis_set [WeaklyLocallyCompactSpace X] [SigmaCompactSpace X] [T2Space X] {ι : X → Type u} {p : ∀ x, ι x → Prop} {B : ∀ x, ι x → Set X} {s : Set X} (hs : IsClosed s) (hB : ∀ x ∈ s, (𝓝 x).HasBasis (p x) (B x)) : ∃ (α : Type v) (c : α → X) (r : ∀ a, ι (c a)), (∀ a, c a ∈ s ∧ p (c a) (r a)) ∧ (s ⊆ ⋃ a, B (c a) (r a)) ∧ LocallyFinite fun a ↦ B (c a) (r a)
case refine_2 X : Type v inst✝³ : TopologicalSpace X inst✝² : WeaklyLocallyCompactSpace X inst✝¹ : SigmaCompactSpace X inst✝ : T2Space X ι : X → Type u p : (x : X) → ι x → Prop B : (x : X) → ι x → Set X s : Set X hs : IsClosed s hB : ∀ x ∈ s, (𝓝 x).HasBasis (p x) (B x) K' : CompactExhaustion X := CompactExhaustion.choice X K : CompactExhaustion X := K'.shiftr.shiftr Kdiff : ℕ → Set X := fun n => K (n + 1) \ interior (K n) hKcov : ∀ (x : X), x ∈ Kdiff (K'.find x + 1) Kdiffc : ∀ (n : ℕ), IsCompact (Kdiff n ∩ s) this : ∀ (n : ℕ) (x : ↑(Kdiff (n + 1) ∩ s)), (K n)ᶜ ∈ 𝓝 ↑x r : (n : ℕ) → (x : ↑(Kdiff (n + 1) ∩ s)) → ι ↑x hrp : ∀ (n : ℕ) (x : ↑(Kdiff (n + 1) ∩ s)), p (↑x) (r n x) hr : ∀ (n : ℕ) (x : ↑(Kdiff (n + 1) ∩ s)), B (↑x) (r n x) ⊆ (K n)ᶜ hxr : ∀ (n : ℕ) (x : X) (hx : x ∈ Kdiff (n + 1) ∩ s), B x (r n ⟨x, hx⟩) ∈ 𝓝 x T : (n : ℕ) → Finset ↑(Kdiff (n + 1) ∩ s) hT : ∀ (n : ℕ), Kdiff (n + 1) ∩ s ⊆ ⋃ x ∈ T n, B (↑x) (r n ⟨↑x, ⋯⟩) T' : (n : ℕ) → Set ↑(Kdiff (n + 1) ∩ s) := fun n => ↑(T n) x : X hx : x ∈ s ⊢ ∃ i, x ∈ B ((fun a => ↑↑a.snd) i) ((fun a => r a.fst ↑a.snd) i)
rcases mem_iUnion₂.1 (hT _ ⟨hKcov x, hx⟩) with ⟨⟨c, hc⟩, hcT, hcx⟩
case refine_2.intro.mk.intro X : Type v inst✝³ : TopologicalSpace X inst✝² : WeaklyLocallyCompactSpace X inst✝¹ : SigmaCompactSpace X inst✝ : T2Space X ι : X → Type u p : (x : X) → ι x → Prop B : (x : X) → ι x → Set X s : Set X hs : IsClosed s hB : ∀ x ∈ s, (𝓝 x).HasBasis (p x) (B x) K' : CompactExhaustion X := CompactExhaustion.choice X K : CompactExhaustion X := K'.shiftr.shiftr Kdiff : ℕ → Set X := fun n => K (n + 1) \ interior (K n) hKcov : ∀ (x : X), x ∈ Kdiff (K'.find x + 1) Kdiffc : ∀ (n : ℕ), IsCompact (Kdiff n ∩ s) this : ∀ (n : ℕ) (x : ↑(Kdiff (n + 1) ∩ s)), (K n)ᶜ ∈ 𝓝 ↑x r : (n : ℕ) → (x : ↑(Kdiff (n + 1) ∩ s)) → ι ↑x hrp : ∀ (n : ℕ) (x : ↑(Kdiff (n + 1) ∩ s)), p (↑x) (r n x) hr : ∀ (n : ℕ) (x : ↑(Kdiff (n + 1) ∩ s)), B (↑x) (r n x) ⊆ (K n)ᶜ hxr : ∀ (n : ℕ) (x : X) (hx : x ∈ Kdiff (n + 1) ∩ s), B x (r n ⟨x, hx⟩) ∈ 𝓝 x T : (n : ℕ) → Finset ↑(Kdiff (n + 1) ∩ s) hT : ∀ (n : ℕ), Kdiff (n + 1) ∩ s ⊆ ⋃ x ∈ T n, B (↑x) (r n ⟨↑x, ⋯⟩) T' : (n : ℕ) → Set ↑(Kdiff (n + 1) ∩ s) := fun n => ↑(T n) x : X hx : x ∈ s c : X hc : c ∈ Kdiff (K'.find x + 1) ∩ s hcT : ⟨c, hc⟩ ∈ T (K'.find x) hcx : x ∈ B (↑⟨c, hc⟩) (r (K'.find x) ⟨↑⟨c, hc⟩, ⋯⟩) ⊢ ∃ i, x ∈ B ((fun a => ↑↑a.snd) i) ((fun a => r a.fst ↑a.snd) i)
d7d8360667f4b953
HNNExtension.NormalWord.of_smul_eq_smul
Mathlib/GroupTheory/HNNExtension.lean
theorem of_smul_eq_smul (g : G) (w : NormalWord d) : (of g : HNNExtension G A B φ) • w = g • w
G : Type u_1 inst✝ : Group G A B : Subgroup G φ : ↥A ≃* ↥B d : TransversalPair G A B g : G w : NormalWord d ⊢ of g • w = g • w
simp [instHSMul, SMul.smul, MulAction.toEndHom]
no goals
c79a48fcf81ba796
Std.Tactic.BVDecide.BVExpr.bitblast.denote_blastUdiv
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Circuit/Lemmas/Operations/Udiv.lean
theorem denote_blastUdiv (aig : AIG α) (lhs rhs : BitVec w) (assign : α → Bool) (input : BinaryRefVec aig w) (hleft : ∀ (idx : Nat) (hidx : idx < w), ⟦aig, input.lhs.get idx hidx, assign⟧ = lhs.getLsbD idx) (hright : ∀ (idx : Nat) (hidx : idx < w), ⟦aig, input.rhs.get idx hidx, assign⟧ = rhs.getLsbD idx) : ∀ (idx : Nat) (hidx : idx < w), ⟦(blastUdiv aig input).aig, (blastUdiv aig input).vec.get idx hidx, assign⟧ = (lhs / rhs).getLsbD idx
case htrue α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat aig : AIG α lhs rhs : BitVec w assign : α → Bool input : aig.BinaryRefVec w hleft : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := input.lhs.get idx hidx }⟧ = lhs.getLsbD idx hright : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := input.rhs.get idx hidx }⟧ = rhs.getLsbD idx idx : Nat hidx : idx < w hdiscr✝ : ¬⟦assign, { aig := (blastUdiv.go (BVPred.mkEq (((blastConst aig 0#w).aig.mkConstCached false).aig.mkConstCached true).aig { lhs := (((input.cast ⋯).cast ⋯).cast ⋯).rhs, rhs := ((blastConst aig 0#w).vec.cast ⋯).cast ⋯ }).aig w { gate := ((blastConst aig 0#w).aig.mkConstCached false).ref.gate, hgate := ⋯ } { gate := (((blastConst aig 0#w).aig.mkConstCached false).aig.mkConstCached true).ref.gate, hgate := ⋯ } ((((input.cast ⋯).cast ⋯).cast ⋯).lhs.cast ⋯) ((((input.cast ⋯).cast ⋯).cast ⋯).rhs.cast ⋯) w 0 ((((blastConst aig 0#w).vec.cast ⋯).cast ⋯).cast ⋯) ((((blastConst aig 0#w).vec.cast ⋯).cast ⋯).cast ⋯)).aig, ref := { gate := (BVPred.mkEq (((blastConst aig 0#w).aig.mkConstCached false).aig.mkConstCached true).aig { lhs := (((input.cast ⋯).cast ⋯).cast ⋯).rhs, rhs := ((blastConst aig 0#w).vec.cast ⋯).cast ⋯ }).ref.gate, hgate := ⋯ } }⟧ = true hdiscr : ¬(rhs == 0#w) = true hzero : 0#w < rhs ⊢ ⟦assign, { aig := (BVPred.mkEq (((blastConst aig 0#w).aig.mkConstCached false).aig.mkConstCached true).aig { lhs := (((input.cast ⋯).cast ⋯).cast ⋯).rhs, rhs := ((blastConst aig 0#w).vec.cast ⋯).cast ⋯ }).aig, ref := { gate := (((blastConst aig 0#w).aig.mkConstCached false).aig.mkConstCached true).ref.gate, hgate := ⋯ } }⟧ = true
rw [AIG.LawfulOperator.denote_mem_prefix (f := BVPred.mkEq)]
case htrue α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat aig : AIG α lhs rhs : BitVec w assign : α → Bool input : aig.BinaryRefVec w hleft : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := input.lhs.get idx hidx }⟧ = lhs.getLsbD idx hright : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := input.rhs.get idx hidx }⟧ = rhs.getLsbD idx idx : Nat hidx : idx < w hdiscr✝ : ¬⟦assign, { aig := (blastUdiv.go (BVPred.mkEq (((blastConst aig 0#w).aig.mkConstCached false).aig.mkConstCached true).aig { lhs := (((input.cast ⋯).cast ⋯).cast ⋯).rhs, rhs := ((blastConst aig 0#w).vec.cast ⋯).cast ⋯ }).aig w { gate := ((blastConst aig 0#w).aig.mkConstCached false).ref.gate, hgate := ⋯ } { gate := (((blastConst aig 0#w).aig.mkConstCached false).aig.mkConstCached true).ref.gate, hgate := ⋯ } ((((input.cast ⋯).cast ⋯).cast ⋯).lhs.cast ⋯) ((((input.cast ⋯).cast ⋯).cast ⋯).rhs.cast ⋯) w 0 ((((blastConst aig 0#w).vec.cast ⋯).cast ⋯).cast ⋯) ((((blastConst aig 0#w).vec.cast ⋯).cast ⋯).cast ⋯)).aig, ref := { gate := (BVPred.mkEq (((blastConst aig 0#w).aig.mkConstCached false).aig.mkConstCached true).aig { lhs := (((input.cast ⋯).cast ⋯).cast ⋯).rhs, rhs := ((blastConst aig 0#w).vec.cast ⋯).cast ⋯ }).ref.gate, hgate := ⋯ } }⟧ = true hdiscr : ¬(rhs == 0#w) = true hzero : 0#w < rhs ⊢ ⟦assign, { aig := (((blastConst aig 0#w).aig.mkConstCached false).aig.mkConstCached true).aig, ref := { gate := (((blastConst aig 0#w).aig.mkConstCached false).aig.mkConstCached true).ref.gate, hgate := ?htrue } }⟧ = true case htrue α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat aig : AIG α lhs rhs : BitVec w assign : α → Bool input : aig.BinaryRefVec w hleft : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := input.lhs.get idx hidx }⟧ = lhs.getLsbD idx hright : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := input.rhs.get idx hidx }⟧ = rhs.getLsbD idx idx : Nat hidx : idx < w hdiscr✝ : ¬⟦assign, { aig := (blastUdiv.go (BVPred.mkEq (((blastConst aig 0#w).aig.mkConstCached false).aig.mkConstCached true).aig { lhs := (((input.cast ⋯).cast ⋯).cast ⋯).rhs, rhs := ((blastConst aig 0#w).vec.cast ⋯).cast ⋯ }).aig w { gate := ((blastConst aig 0#w).aig.mkConstCached false).ref.gate, hgate := ⋯ } { gate := (((blastConst aig 0#w).aig.mkConstCached false).aig.mkConstCached true).ref.gate, hgate := ⋯ } ((((input.cast ⋯).cast ⋯).cast ⋯).lhs.cast ⋯) ((((input.cast ⋯).cast ⋯).cast ⋯).rhs.cast ⋯) w 0 ((((blastConst aig 0#w).vec.cast ⋯).cast ⋯).cast ⋯) ((((blastConst aig 0#w).vec.cast ⋯).cast ⋯).cast ⋯)).aig, ref := { gate := (BVPred.mkEq (((blastConst aig 0#w).aig.mkConstCached false).aig.mkConstCached true).aig { lhs := (((input.cast ⋯).cast ⋯).cast ⋯).rhs, rhs := ((blastConst aig 0#w).vec.cast ⋯).cast ⋯ }).ref.gate, hgate := ⋯ } }⟧ = true hdiscr : ¬(rhs == 0#w) = true hzero : 0#w < rhs ⊢ (((blastConst aig 0#w).aig.mkConstCached false).aig.mkConstCached true).ref.gate < (((blastConst aig 0#w).aig.mkConstCached false).aig.mkConstCached true).aig.decls.size
1e06923b53c4a62f
CategoryTheory.Abelian.epiWithInjectiveKernel_iff
Mathlib/CategoryTheory/Abelian/EpiWithInjectiveKernel.lean
/-- A morphism `g : X ⟶ Y` is epi with an injective kernel iff there exists a morphism `f : I ⟶ X` with `I` injective such that `f ≫ g = 0` and the short complex `I ⟶ X ⟶ Y` has a splitting. -/ lemma epiWithInjectiveKernel_iff {X Y : C} (g : X ⟶ Y) : epiWithInjectiveKernel g ↔ ∃ (I : C) (_ : Injective I) (f : I ⟶ X) (w : f ≫ g = 0), Nonempty (ShortComplex.mk f g w).Splitting
case mpr.intro.intro.intro.intro.intro C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Abelian C X Y : C g : X ⟶ Y I : C w✝ : Injective I f : I ⟶ X w : f ≫ g = 0 σ : (ShortComplex.mk f g w).Splitting this : IsSplitEpi g e : I ≅ kernel g := ⋯.fIsKernel.conePointUniqueUpToIso (limit.isLimit (parallelPair (ShortComplex.mk f g w).g 0)) ⊢ epiWithInjectiveKernel g
exact ⟨inferInstance, Injective.of_iso e inferInstance⟩
no goals
0c2777975f72cb4f
RootPairing.Base.eq_one_or_neg_one_of_mem_support_of_smul_mem
Mathlib/LinearAlgebra/RootSystem/Base.lean
lemma eq_one_or_neg_one_of_mem_support_of_smul_mem [Finite ι] [CharZero R] [NoZeroSMulDivisors ℤ M] [NoZeroSMulDivisors ℤ N] (i : ι) (h : i ∈ b.support) (t : R) (ht : t • P.root i ∈ range P.root) : t = 1 ∨ t = - 1
case intro.intro.intro ι : Type u_1 R : Type u_2 M : Type u_3 N : Type u_4 inst✝⁸ : CommRing R inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N P : RootPairing ι R M N b : P.Base inst✝³ : Finite ι inst✝² : CharZero R inst✝¹ : NoZeroSMulDivisors ℤ M inst✝ : NoZeroSMulDivisors ℤ N i : ι h : i ∈ b.support t : R z : ℤ hz : ↑z * t = 1 s : R hs : s * t = 1 ht : s • P.coroot i ∈ range ⇑P.coroot w : ℤ hw : ↑w * s = 1 this : ↑z * ↑w = 1 ⊢ z = 1 ∨ z = -1
norm_cast at this
case intro.intro.intro ι : Type u_1 R : Type u_2 M : Type u_3 N : Type u_4 inst✝⁸ : CommRing R inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N P : RootPairing ι R M N b : P.Base inst✝³ : Finite ι inst✝² : CharZero R inst✝¹ : NoZeroSMulDivisors ℤ M inst✝ : NoZeroSMulDivisors ℤ N i : ι h : i ∈ b.support t : R z : ℤ hz : ↑z * t = 1 s : R hs : s * t = 1 ht : s • P.coroot i ∈ range ⇑P.coroot w : ℤ hw : ↑w * s = 1 this : z * w = 1 ⊢ z = 1 ∨ z = -1
439980ec01794b6b
AlgebraNorm.extends_norm
Mathlib/Analysis/Normed/Algebra/Norm.lean
theorem extends_norm (hf1 : f 1 = 1) (a : R) : f (algebraMap R S a) = ‖a‖
R : Type u_1 inst✝² : SeminormedCommRing R S : Type u_2 inst✝¹ : Ring S inst✝ : Algebra R S f : AlgebraNorm R S hf1 : f 1 = 1 a : R ⊢ f ((algebraMap R S) a) = ‖a‖
rw [Algebra.algebraMap_eq_smul_one]
R : Type u_1 inst✝² : SeminormedCommRing R S : Type u_2 inst✝¹ : Ring S inst✝ : Algebra R S f : AlgebraNorm R S hf1 : f 1 = 1 a : R ⊢ f (a • 1) = ‖a‖
431c6dca7cb059de
Complex.convexHull_reProdIm
Mathlib/Analysis/Complex/Convex.lean
/-- A version of `convexHull_prod` for `Set.reProdIm`. -/ lemma convexHull_reProdIm (s t : Set ℝ) : convexHull ℝ (s ×ℂ t) = convexHull ℝ s ×ℂ convexHull ℝ t := calc convexHull ℝ (equivRealProdLm ⁻¹' (s ×ˢ t)) = equivRealProdLm ⁻¹' convexHull ℝ (s ×ˢ t)
s t : Set ℝ ⊢ ⇑equivRealProdLm ⁻¹' (convexHull ℝ) s ×ˢ (convexHull ℝ) t = (convexHull ℝ) s ×ℂ (convexHull ℝ) t
rfl
no goals
592c11d91a158a4b
CantorScheme.ClosureAntitone.map_of_vanishingDiam
Mathlib/Topology/MetricSpace/CantorScheme.lean
theorem ClosureAntitone.map_of_vanishingDiam [CompleteSpace α] (hdiam : VanishingDiam A) (hanti : ClosureAntitone A) (hnonempty : ∀ l, (A l).Nonempty) : (inducedMap A).1 = univ
β : Type u_1 α : Type u_2 A : List β → Set α inst✝¹ : PseudoMetricSpace α inst✝ : CompleteSpace α hdiam : VanishingDiam A hanti : ClosureAntitone A hnonempty : ∀ (l : List β), (A l).Nonempty x : ℕ → β u : ℕ → α hu : ∀ (n : ℕ), u n ∈ A (res x n) ⊢ x ∈ (inducedMap A).fst
have umem : ∀ n m : ℕ, n ≤ m → u m ∈ A (res x n) := by have : Antitone fun n : ℕ => A (res x n) := by refine antitone_nat_of_succ_le ?_ intro n apply hanti.antitone intro n m hnm exact this hnm (hu _)
β : Type u_1 α : Type u_2 A : List β → Set α inst✝¹ : PseudoMetricSpace α inst✝ : CompleteSpace α hdiam : VanishingDiam A hanti : ClosureAntitone A hnonempty : ∀ (l : List β), (A l).Nonempty x : ℕ → β u : ℕ → α hu : ∀ (n : ℕ), u n ∈ A (res x n) umem : ∀ (n m : ℕ), n ≤ m → u m ∈ A (res x n) ⊢ x ∈ (inducedMap A).fst
84475af12dd43d16
Ideal.finsuppTotal_apply_eq_of_fintype
Mathlib/RingTheory/Ideal/Operations.lean
theorem finsuppTotal_apply_eq_of_fintype [Fintype ι] (f : ι →₀ I) : finsuppTotal ι M I v f = ∑ i, (f i : R) • v i
case h ι : Type u_1 M : Type u_2 inst✝³ : AddCommGroup M R : Type u_3 inst✝² : CommRing R inst✝¹ : Module R M I : Ideal R v : ι → M inst✝ : Fintype ι f : ι →₀ ↥I ⊢ ∀ (i : ι), ↑0 • v i = 0
exact fun _ => zero_smul _ _
no goals
b52934c6ae1d2ce2
MeasureTheory.integrableOn_image_iff_integrableOn_abs_deriv_smul
Mathlib/MeasureTheory/Function/Jacobian.lean
theorem integrableOn_image_iff_integrableOn_abs_deriv_smul {s : Set ℝ} {f : ℝ → ℝ} {f' : ℝ → ℝ} (hs : MeasurableSet s) (hf' : ∀ x ∈ s, HasDerivWithinAt f (f' x) s x) (hf : InjOn f s) (g : ℝ → F) : IntegrableOn g (f '' s) ↔ IntegrableOn (fun x => |f' x| • g (f x)) s
F : Type u_2 inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace ℝ F s : Set ℝ f f' : ℝ → ℝ hs : MeasurableSet s hf' : ∀ x ∈ s, HasDerivWithinAt f (f' x) s x hf : InjOn f s g : ℝ → F ⊢ IntegrableOn g (f '' s) volume ↔ IntegrableOn (fun x => |f' x| • g (f x)) s volume
simpa only [det_one_smulRight] using integrableOn_image_iff_integrableOn_abs_det_fderiv_smul volume hs (fun x hx => (hf' x hx).hasFDerivWithinAt) hf g
no goals
cfe539c64d05a471
AffineMap.pi_ext_zero
Mathlib/LinearAlgebra/AffineSpace/AffineMap.lean
theorem pi_ext_zero (h : ∀ i x, f (Pi.single i x) = g (Pi.single i x)) (h₂ : f 0 = g 0) : f = g
case h₁.h k : Type u_2 V2 : Type u_5 P2 : Type u_6 inst✝⁷ : Ring k inst✝⁶ : AddCommGroup V2 inst✝⁵ : AffineSpace V2 P2 inst✝⁴ : Module k V2 ι : Type u_9 φv : ι → Type u_10 inst✝³ : (i : ι) → AddCommGroup (φv i) inst✝² : (i : ι) → Module k (φv i) inst✝¹ : Finite ι inst✝ : DecidableEq ι f g : ((i : ι) → φv i) →ᵃ[k] P2 h : ∀ (i : ι) (x : φv i), f (Pi.single i x) = g (Pi.single i x) h₂ : f 0 = g 0 i : ι x : φv i s₁ : f (Pi.single i x) = g (Pi.single i x) s₂ : f (Pi.single i x +ᵥ 0) = f.linear (Pi.single i x) +ᵥ f 0 s₃ : g (Pi.single i x +ᵥ 0) = g.linear (Pi.single i x) +ᵥ g 0 ⊢ f.linear (Pi.single i x) = g.linear (Pi.single i x)
rw [vadd_eq_add, add_zero] at s₂ s₃
case h₁.h k : Type u_2 V2 : Type u_5 P2 : Type u_6 inst✝⁷ : Ring k inst✝⁶ : AddCommGroup V2 inst✝⁵ : AffineSpace V2 P2 inst✝⁴ : Module k V2 ι : Type u_9 φv : ι → Type u_10 inst✝³ : (i : ι) → AddCommGroup (φv i) inst✝² : (i : ι) → Module k (φv i) inst✝¹ : Finite ι inst✝ : DecidableEq ι f g : ((i : ι) → φv i) →ᵃ[k] P2 h : ∀ (i : ι) (x : φv i), f (Pi.single i x) = g (Pi.single i x) h₂ : f 0 = g 0 i : ι x : φv i s₁ : f (Pi.single i x) = g (Pi.single i x) s₂ : f (Pi.single i x) = f.linear (Pi.single i x) +ᵥ f 0 s₃ : g (Pi.single i x) = g.linear (Pi.single i x) +ᵥ g 0 ⊢ f.linear (Pi.single i x) = g.linear (Pi.single i x)
f4a501a2d9ab4d4a
Turing.TM2to1.tr_respects_aux
Mathlib/Computability/TuringMachine.lean
theorem tr_respects_aux {q v T k} {S : ∀ k, List (Γ k)} (hT : ∀ k, ListBlank.map (proj k) T = ListBlank.mk ((S k).map some).reverse) (o : StAct K Γ σ k) (IH : ∀ {v : σ} {S : ∀ k : K, List (Γ k)} {T : ListBlank (∀ k, Option (Γ k))}, (∀ k, ListBlank.map (proj k) T = ListBlank.mk ((S k).map some).reverse) → ∃ b, TrCfg (TM2.stepAux q v S) b ∧ Reaches (TM1.step (tr M)) (TM1.stepAux (trNormal q) v (Tape.mk' ∅ (addBottom T))) b) : ∃ b, TrCfg (TM2.stepAux (stRun o q) v S) b ∧ Reaches (TM1.step (tr M)) (TM1.stepAux (trNormal (stRun o q)) v (Tape.mk' ∅ (addBottom T))) b
K : Type u_1 Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : DecidableEq K M : Λ → TM2.Stmt Γ Λ σ q : TM2.Stmt Γ Λ σ v : σ T : ListBlank ((i : K) → Option (Γ i)) k : K S : (k : K) → List (Γ k) hT : ∀ (k : K), ListBlank.map (proj k) T = ListBlank.mk (List.map some (S k)).reverse o : StAct K Γ σ k IH : ∀ {v : σ} {S : (k : K) → List (Γ k)} {T : ListBlank ((k : K) → Option (Γ k))}, (∀ (k : K), ListBlank.map (proj k) T = ListBlank.mk (List.map some (S k)).reverse) → ∃ b, TrCfg (TM2.stepAux q v S) b ∧ Reaches (TM1.step (tr M)) (TM1.stepAux (trNormal q) v (Tape.mk' ∅ (addBottom T))) b hgo : Reaches₀ (TM1.step (tr M)) { l := some (go k o q), var := v, Tape := Tape.mk' ∅ (addBottom T) } { l := some (go k o q), var := v, Tape := (Tape.move Dir.right)^[(S k).length] (Tape.mk' ∅ (addBottom T)) } ⊢ ∃ b, TrCfg (TM2.stepAux q (stVar v (S k) o) (update S k (stWrite v (S k) o))) b ∧ Reaches (TM1.step (tr M)) (TM1.stepAux (goto fun x x => go k o q) v (Tape.mk' ∅ (addBottom T))) b
obtain ⟨T', hT', hrun⟩ := tr_respects_aux₂ (Λ := Λ) hT o
case intro.intro K : Type u_1 Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : DecidableEq K M : Λ → TM2.Stmt Γ Λ σ q : TM2.Stmt Γ Λ σ v : σ T : ListBlank ((i : K) → Option (Γ i)) k : K S : (k : K) → List (Γ k) hT : ∀ (k : K), ListBlank.map (proj k) T = ListBlank.mk (List.map some (S k)).reverse o : StAct K Γ σ k IH : ∀ {v : σ} {S : (k : K) → List (Γ k)} {T : ListBlank ((k : K) → Option (Γ k))}, (∀ (k : K), ListBlank.map (proj k) T = ListBlank.mk (List.map some (S k)).reverse) → ∃ b, TrCfg (TM2.stepAux q v S) b ∧ Reaches (TM1.step (tr M)) (TM1.stepAux (trNormal q) v (Tape.mk' ∅ (addBottom T))) b hgo : Reaches₀ (TM1.step (tr M)) { l := some (go k o q), var := v, Tape := Tape.mk' ∅ (addBottom T) } { l := some (go k o q), var := v, Tape := (Tape.move Dir.right)^[(S k).length] (Tape.mk' ∅ (addBottom T)) } T' : ListBlank ((k : K) → Option (Γ k)) hT' : ∀ (k_1 : K), ListBlank.map (proj k_1) T' = ListBlank.mk (List.map some (update S k (stWrite ?m.137053 (S k) o) k_1)).reverse hrun : TM1.stepAux (trStAct ?m.137052 o) ?m.137053 ((Tape.move Dir.right)^[(S k).length] (Tape.mk' ∅ (addBottom T))) = TM1.stepAux ?m.137052 (stVar ?m.137053 (S k) o) ((Tape.move Dir.right)^[(update S k (stWrite ?m.137053 (S k) o) k).length] (Tape.mk' ∅ (addBottom T'))) ⊢ ∃ b, TrCfg (TM2.stepAux q (stVar v (S k) o) (update S k (stWrite v (S k) o))) b ∧ Reaches (TM1.step (tr M)) (TM1.stepAux (goto fun x x => go k o q) v (Tape.mk' ∅ (addBottom T))) b
87971184416ca292
SimpleGraph.deleteEdges_edgeSet
Mathlib/Combinatorics/SimpleGraph/Basic.lean
@[simp] lemma deleteEdges_edgeSet (G G' : SimpleGraph V) : G.deleteEdges G'.edgeSet = G \ G'
case Adj.h.h.a V : Type u G G' : SimpleGraph V x✝¹ x✝ : V ⊢ (G.deleteEdges G'.edgeSet).Adj x✝¹ x✝ ↔ (G \ G').Adj x✝¹ x✝
simp
no goals
01becce2541a1a09
image_subset_closure_compl_image_compl_of_isOpen
Mathlib/Topology/ExtremallyDisconnected.lean
/-- Lemma 2.1 in [Gleason, *Projective topological spaces*][gleason1958]: if $\rho$ is a continuous surjection from a topological space $E$ to a topological space $A$ satisfying the "Zorn subset condition", then $\rho(G)$ is contained in the closure of $A \setminus \rho(E \setminus G)$ for any open set $G$ of $E$. -/ lemma image_subset_closure_compl_image_compl_of_isOpen {ρ : E → A} (ρ_cont : Continuous ρ) (ρ_surj : ρ.Surjective) (zorn_subset : ∀ E₀ : Set E, E₀ ≠ univ → IsClosed E₀ → ρ '' E₀ ≠ univ) {G : Set E} (hG : IsOpen G) : ρ '' G ⊆ closure ((ρ '' Gᶜ)ᶜ)
case neg.intro.intro A E : Type u inst✝¹ : TopologicalSpace A inst✝ : TopologicalSpace E ρ : E → A ρ_cont : Continuous ρ ρ_surj : Surjective ρ zorn_subset : ∀ (E₀ : Set E), E₀ ≠ univ → IsClosed E₀ → ρ '' E₀ ≠ univ G : Set E hG : IsOpen G G_empty : ¬G = ∅ N : Set A N_open : IsOpen N e : E he : e ∈ G ha : ρ e ∈ ρ '' G hN : ρ e ∈ N ⊢ (N ∩ (ρ '' Gᶜ)ᶜ).Nonempty
have nonempty : (G ∩ ρ⁻¹' N).Nonempty := ⟨e, mem_inter he <| mem_preimage.mpr hN⟩
case neg.intro.intro A E : Type u inst✝¹ : TopologicalSpace A inst✝ : TopologicalSpace E ρ : E → A ρ_cont : Continuous ρ ρ_surj : Surjective ρ zorn_subset : ∀ (E₀ : Set E), E₀ ≠ univ → IsClosed E₀ → ρ '' E₀ ≠ univ G : Set E hG : IsOpen G G_empty : ¬G = ∅ N : Set A N_open : IsOpen N e : E he : e ∈ G ha : ρ e ∈ ρ '' G hN : ρ e ∈ N nonempty : (G ∩ ρ ⁻¹' N).Nonempty ⊢ (N ∩ (ρ '' Gᶜ)ᶜ).Nonempty
7e7582b54cb8739a
ruzsaSzemerediNumberNat_asymptotic_lower_bound
Mathlib/Combinatorics/Extremal/RuzsaSzemeredi.lean
theorem ruzsaSzemerediNumberNat_asymptotic_lower_bound : (fun n ↦ n ^ 2 * exp (-4 * sqrt (log n)) : ℕ → ℝ) =O[atTop] fun n ↦ (ruzsaSzemerediNumberNat n : ℝ)
x : ℕ hx : x ≥ 15 ⊢ ↑x ≤ 12 * ↑((x - 3) / 6)
norm_cast
x : ℕ hx : x ≥ 15 ⊢ x ≤ 12 * ((x - 3) / 6)
72990b3a12cc99c5
LieSubmodule.lieIdeal_oper_eq_linear_span'
Mathlib/Algebra/Lie/IdealOperations.lean
theorem lieIdeal_oper_eq_linear_span' [LieModule R L M] : (↑⁅I, N⁆ : Submodule R M) = Submodule.span R { ⁅x, n⁆ | (x ∈ I) (n ∈ N) }
case e_s.h.mpr R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : LieRingModule L M N : LieSubmodule R L M inst✝¹ : LieAlgebra R L I : LieIdeal R L inst✝ : LieModule R L M m : M ⊢ m ∈ {x | ∃ x_1 ∈ I, ∃ n ∈ N, ⁅x_1, n⁆ = x} → m ∈ {x | ∃ x_1 n, ⁅↑x_1, ↑n⁆ = x}
rintro ⟨x, hx, n, hn, rfl⟩
case e_s.h.mpr.intro.intro.intro.intro R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : LieRingModule L M N : LieSubmodule R L M inst✝¹ : LieAlgebra R L I : LieIdeal R L inst✝ : LieModule R L M x : L hx : x ∈ I n : M hn : n ∈ N ⊢ ⁅x, n⁆ ∈ {x | ∃ x_1 n, ⁅↑x_1, ↑n⁆ = x}
36507cbeea573138
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.insertUnitInvariant_insertUnit
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/RupAddResult.lean
theorem insertUnitInvariant_insertUnit {n : Nat} (assignments0 : Array Assignment) (assignments0_size : assignments0.size = n) (units : Array (Literal (PosFin n))) (assignments : Array Assignment) (assignments_size : assignments.size = n) (foundContradiction : Bool) (l : Literal (PosFin n)) : InsertUnitInvariant assignments0 assignments0_size units assignments assignments_size → let update_res := insertUnit (units, assignments, foundContradiction) l have update_res_size : update_res.snd.fst.size = n
case neg n : Nat assignments0 : Array Assignment assignments0_size : assignments0.size = n units : Array (Literal (PosFin n)) assignments : Array Assignment assignments_size : assignments.size = n foundContradiction : Bool l : Literal (PosFin n) i : Fin n i_in_bounds : ↑i < assignments.size l_in_bounds : l.fst.val < assignments.size j : Fin units.size b : Bool i_gt_zero : ↑i > 0 h4 : ∀ (k : Fin units.size), ¬k = j → ¬units[↑k].fst.val = ↑i h5 : ¬hasAssignment l.snd assignments[l.fst.val]! = true i_eq_l : ↑i = l.fst.val units_size_lt_updatedUnits_size : units.size < (insertUnit (units, assignments, foundContradiction) l).fst.size mostRecentUnitIdx : Fin (insertUnit (units, assignments, foundContradiction) l).fst.size := ⟨units.size, units_size_lt_updatedUnits_size⟩ j_lt_updatedUnits_size : ↑j < (insertUnit (units, assignments, foundContradiction) l).fst.size h1 : units[↑j] = (⟨↑i, ⋯⟩, true) h2 : assignments[↑i] = addAssignment true assignments0[↑i] h3 : hasAssignment true assignments0[↑i] = false hb : b = true hl : l.snd = false k : Fin (if hasAssignment l.snd assignments[l.fst.val]! = true then (units, assignments, foundContradiction) else (units.push (l.fst, l.snd), assignments.modify l.fst.val (addAssignment l.snd), foundContradiction || assignments[l.fst.val]! != unassigned)).fst.size k_ne_j : ¬k = ⟨↑j, j_lt_updatedUnits_size⟩ k_ne_l : ¬k = mostRecentUnitIdx h : ¬↑k < units.size ⊢ ¬(if h : ↑k < units.size then units[↑k] else (l.fst, l.snd)).fst.val = ↑i
exfalso
case neg n : Nat assignments0 : Array Assignment assignments0_size : assignments0.size = n units : Array (Literal (PosFin n)) assignments : Array Assignment assignments_size : assignments.size = n foundContradiction : Bool l : Literal (PosFin n) i : Fin n i_in_bounds : ↑i < assignments.size l_in_bounds : l.fst.val < assignments.size j : Fin units.size b : Bool i_gt_zero : ↑i > 0 h4 : ∀ (k : Fin units.size), ¬k = j → ¬units[↑k].fst.val = ↑i h5 : ¬hasAssignment l.snd assignments[l.fst.val]! = true i_eq_l : ↑i = l.fst.val units_size_lt_updatedUnits_size : units.size < (insertUnit (units, assignments, foundContradiction) l).fst.size mostRecentUnitIdx : Fin (insertUnit (units, assignments, foundContradiction) l).fst.size := ⟨units.size, units_size_lt_updatedUnits_size⟩ j_lt_updatedUnits_size : ↑j < (insertUnit (units, assignments, foundContradiction) l).fst.size h1 : units[↑j] = (⟨↑i, ⋯⟩, true) h2 : assignments[↑i] = addAssignment true assignments0[↑i] h3 : hasAssignment true assignments0[↑i] = false hb : b = true hl : l.snd = false k : Fin (if hasAssignment l.snd assignments[l.fst.val]! = true then (units, assignments, foundContradiction) else (units.push (l.fst, l.snd), assignments.modify l.fst.val (addAssignment l.snd), foundContradiction || assignments[l.fst.val]! != unassigned)).fst.size k_ne_j : ¬k = ⟨↑j, j_lt_updatedUnits_size⟩ k_ne_l : ¬k = mostRecentUnitIdx h : ¬↑k < units.size ⊢ False
4e9908103f3f6d5f
Polynomial.reflect_mul_induction
Mathlib/Algebra/Polynomial/Reverse.lean
theorem reflect_mul_induction (cf cg : ℕ) : ∀ N O : ℕ, ∀ f g : R[X], #f.support ≤ cf.succ → #g.support ≤ cg.succ → f.natDegree ≤ N → g.natDegree ≤ O → reflect (N + O) (f * g) = reflect N f * reflect O g
R : Type u_1 inst✝ : Semiring R cf cg : ℕ ⊢ ∀ (N O : ℕ) (f g : R[X]), #f.support ≤ cf.succ → #g.support ≤ cg.succ → f.natDegree ≤ N → g.natDegree ≤ O → reflect (N + O) (f * g) = reflect N f * reflect O g
induction' cf with cf hcf
case zero R : Type u_1 inst✝ : Semiring R cg : ℕ ⊢ ∀ (N O : ℕ) (f g : R[X]), #f.support ≤ Nat.succ 0 → #g.support ≤ cg.succ → f.natDegree ≤ N → g.natDegree ≤ O → reflect (N + O) (f * g) = reflect N f * reflect O g case succ R : Type u_1 inst✝ : Semiring R cg cf : ℕ hcf : ∀ (N O : ℕ) (f g : R[X]), #f.support ≤ cf.succ → #g.support ≤ cg.succ → f.natDegree ≤ N → g.natDegree ≤ O → reflect (N + O) (f * g) = reflect N f * reflect O g ⊢ ∀ (N O : ℕ) (f g : R[X]), #f.support ≤ (cf + 1).succ → #g.support ≤ cg.succ → f.natDegree ≤ N → g.natDegree ≤ O → reflect (N + O) (f * g) = reflect N f * reflect O g
0a2af005637b9810
Vitali.exists_disjoint_covering_ae
Mathlib/MeasureTheory/Covering/Vitali.lean
theorem exists_disjoint_covering_ae [PseudoMetricSpace α] [MeasurableSpace α] [OpensMeasurableSpace α] [SecondCountableTopology α] (μ : Measure α) [IsLocallyFiniteMeasure μ] (s : Set α) (t : Set ι) (C : ℝ≥0) (r : ι → ℝ) (c : ι → α) (B : ι → Set α) (hB : ∀ a ∈ t, B a ⊆ closedBall (c a) (r a)) (μB : ∀ a ∈ t, μ (closedBall (c a) (3 * r a)) ≤ C * μ (B a)) (ht : ∀ a ∈ t, (interior (B a)).Nonempty) (h't : ∀ a ∈ t, IsClosed (B a)) (hf : ∀ x ∈ s, ∀ ε > (0 : ℝ), ∃ a ∈ t, r a ≤ ε ∧ c a = x) : ∃ u ⊆ t, u.Countable ∧ u.PairwiseDisjoint B ∧ μ (s \ ⋃ a ∈ u, B a) = 0
α : Type u_1 ι : Type u_2 inst✝⁴ : PseudoMetricSpace α inst✝³ : MeasurableSpace α inst✝² : OpensMeasurableSpace α inst✝¹ : SecondCountableTopology α μ : Measure α inst✝ : IsLocallyFiniteMeasure μ s : Set α t : Set ι C : ℝ≥0 r : ι → ℝ c : ι → α B : ι → Set α hB : ∀ a ∈ t, B a ⊆ closedBall (c a) (r a) μB : ∀ a ∈ t, μ (closedBall (c a) (3 * r a)) ≤ ↑C * μ (B a) ht : ∀ a ∈ t, (interior (B a)).Nonempty h't : ∀ a ∈ t, IsClosed (B a) hf : ∀ x ∈ s, ∀ ε > 0, ∃ a ∈ t, r a ≤ ε ∧ c a = x R : α → ℝ hR0 : ∀ (x : α), 0 < R x hR1 : ∀ (x : α), R x ≤ 1 hRμ : ∀ (x : α), μ (closedBall x (20 * R x)) < ⊤ t' : Set ι := {a | a ∈ t ∧ r a ≤ R (c a)} u : Set ι ut' : u ⊆ t' u_disj : u.PairwiseDisjoint B hu : ∀ a ∈ t', ∃ b ∈ u, (B a ∩ B b).Nonempty ∧ r a ≤ 2 * r b ut : u ⊆ t u_count : u.Countable x : α x✝ : x ∈ s \ ⋃ a ∈ u, B a v : Set ι := {a | a ∈ u ∧ (B a ∩ ball x (R x)).Nonempty} vu : v ⊆ u Idist_v : ∀ a ∈ v, dist (c a) x ≤ r a + R x R0 : ℝ := sSup (r '' v) R0_def : R0 = sSup (r '' v) ⊢ BddAbove (r '' v)
refine ⟨1, fun r' hr' => ?_⟩
α : Type u_1 ι : Type u_2 inst✝⁴ : PseudoMetricSpace α inst✝³ : MeasurableSpace α inst✝² : OpensMeasurableSpace α inst✝¹ : SecondCountableTopology α μ : Measure α inst✝ : IsLocallyFiniteMeasure μ s : Set α t : Set ι C : ℝ≥0 r : ι → ℝ c : ι → α B : ι → Set α hB : ∀ a ∈ t, B a ⊆ closedBall (c a) (r a) μB : ∀ a ∈ t, μ (closedBall (c a) (3 * r a)) ≤ ↑C * μ (B a) ht : ∀ a ∈ t, (interior (B a)).Nonempty h't : ∀ a ∈ t, IsClosed (B a) hf : ∀ x ∈ s, ∀ ε > 0, ∃ a ∈ t, r a ≤ ε ∧ c a = x R : α → ℝ hR0 : ∀ (x : α), 0 < R x hR1 : ∀ (x : α), R x ≤ 1 hRμ : ∀ (x : α), μ (closedBall x (20 * R x)) < ⊤ t' : Set ι := {a | a ∈ t ∧ r a ≤ R (c a)} u : Set ι ut' : u ⊆ t' u_disj : u.PairwiseDisjoint B hu : ∀ a ∈ t', ∃ b ∈ u, (B a ∩ B b).Nonempty ∧ r a ≤ 2 * r b ut : u ⊆ t u_count : u.Countable x : α x✝ : x ∈ s \ ⋃ a ∈ u, B a v : Set ι := {a | a ∈ u ∧ (B a ∩ ball x (R x)).Nonempty} vu : v ⊆ u Idist_v : ∀ a ∈ v, dist (c a) x ≤ r a + R x R0 : ℝ := sSup (r '' v) R0_def : R0 = sSup (r '' v) r' : ℝ hr' : r' ∈ r '' v ⊢ r' ≤ 1
4466d2fc3e80cb3f
CharTwo.of_one_ne_zero_of_two_eq_zero
Mathlib/Algebra/CharP/Two.lean
theorem of_one_ne_zero_of_two_eq_zero (h₁ : (1 : R) ≠ 0) (h₂ : (2 : R) = 0) : CharP R 2 where cast_eq_zero_iff' n
case inr R : Type u_1 inst✝ : AddMonoidWithOne R h₁ : 1 ≠ 0 h₂ : 2 = 0 n : ℕ hn : Odd n ⊢ ¬↑n = 0
rwa [natCast_eq_one_of_odd_of_two_eq_zero hn h₂]
no goals
64f3abafce47a6cd
MvPolynomial.degrees_rename
Mathlib/Algebra/MvPolynomial/Degrees.lean
theorem degrees_rename (f : σ → τ) (φ : MvPolynomial σ R) : (rename f φ).degrees ⊆ φ.degrees.map f
R : Type u σ : Type u_1 τ : Type u_2 inst✝ : CommSemiring R f : σ → τ φ : MvPolynomial σ R ⊢ ((rename f) φ).degrees ⊆ Multiset.map f φ.degrees
classical intro i rw [mem_degrees, Multiset.mem_map] rintro ⟨d, hd, hi⟩ obtain ⟨x, rfl, hx⟩ := coeff_rename_ne_zero _ _ _ hd simp only [Finsupp.mapDomain, Finsupp.mem_support_iff] at hi rw [sum_apply, Finsupp.sum] at hi contrapose! hi rw [Finset.sum_eq_zero] intro j hj simp only [exists_prop, mem_degrees] at hi specialize hi j ⟨x, hx, hj⟩ rw [Finsupp.single_apply, if_neg hi]
no goals
b4bc66e6c91de3f2
LinearMap.finrank_range_add_finrank_ker
Mathlib/LinearAlgebra/FiniteDimensional.lean
theorem finrank_range_add_finrank_ker [FiniteDimensional K V] (f : V →ₗ[K] V₂) : finrank K (LinearMap.range f) + finrank K (LinearMap.ker f) = finrank K V
K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V f : V →ₗ[K] V₂ ⊢ finrank K (V ⧸ ker f) + finrank K ↥(ker f) = finrank K V
exact Submodule.finrank_quotient_add_finrank _
no goals
4e1d011075378c2d
CompleteOrthogonalIdempotents.iff_ortho_complete
Mathlib/RingTheory/Idempotents.lean
/-- If a family is complete orthogonal, it consists of idempotents. -/ lemma CompleteOrthogonalIdempotents.iff_ortho_complete : CompleteOrthogonalIdempotents e ↔ Pairwise (e · * e · = 0) ∧ ∑ i, e i = 1
R : Type u_1 inst✝¹ : Semiring R I : Type u_3 e : I → R inst✝ : Fintype I ⊢ CompleteOrthogonalIdempotents e ↔ (Pairwise fun x1 x2 => e x1 * e x2 = 0) ∧ ∑ i : I, e i = 1
rw [completeOrthogonalIdempotents_iff, orthogonalIdempotents_iff, and_assoc, and_iff_right_of_imp]
R : Type u_1 inst✝¹ : Semiring R I : Type u_3 e : I → R inst✝ : Fintype I ⊢ (Pairwise fun x1 x2 => e x1 * e x2 = 0) ∧ ∑ i : I, e i = 1 → ∀ (i : I), IsIdempotentElem (e i)
5c7c10bb3cc35a64
AffineSubspace.wSameSide_and_wOppSide_iff
Mathlib/Analysis/Convex/Side.lean
theorem wSameSide_and_wOppSide_iff {s : AffineSubspace R P} {x y : P} : s.WSameSide x y ∧ s.WOppSide x y ↔ x ∈ s ∨ y ∈ s
case mp R : Type u_1 V : Type u_2 P : Type u_4 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P s : AffineSubspace R P x y : P ⊢ s.WSameSide x y ∧ s.WOppSide x y → x ∈ s ∨ y ∈ s
rintro ⟨hs, ho⟩
case mp.intro R : Type u_1 V : Type u_2 P : Type u_4 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P s : AffineSubspace R P x y : P hs : s.WSameSide x y ho : s.WOppSide x y ⊢ x ∈ s ∨ y ∈ s
f4466fd45c8d23c6
MeasureTheory.MemLp.eLpNormEssSup_indicator_norm_ge_eq_zero
Mathlib/MeasureTheory/Function/UniformIntegrable.lean
theorem MemLp.eLpNormEssSup_indicator_norm_ge_eq_zero (hf : MemLp f ∞ μ) (hmeas : StronglyMeasurable f) : ∃ M : ℝ, eLpNormEssSup ({ x | M ≤ ‖f x‖₊ }.indicator f) μ = 0
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ : Measure α inst✝ : NormedAddCommGroup β f : α → β hf : MemLp f ⊤ μ hmeas : StronglyMeasurable f hbdd : eLpNormEssSup f μ < ⊤ ⊢ eLpNormEssSup ({x | (eLpNorm f ⊤ μ + 1).toReal ≤ ↑‖f x‖₊}.indicator f) μ = 0
rw [eLpNormEssSup_indicator_eq_eLpNormEssSup_restrict]
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ : Measure α inst✝ : NormedAddCommGroup β f : α → β hf : MemLp f ⊤ μ hmeas : StronglyMeasurable f hbdd : eLpNormEssSup f μ < ⊤ ⊢ eLpNormEssSup f (μ.restrict {x | (eLpNorm f ⊤ μ + 1).toReal ≤ ↑‖f x‖₊}) = 0 α : Type u_1 β : Type u_2 m : MeasurableSpace α μ : Measure α inst✝ : NormedAddCommGroup β f : α → β hf : MemLp f ⊤ μ hmeas : StronglyMeasurable f hbdd : eLpNormEssSup f μ < ⊤ ⊢ MeasurableSet {x | (eLpNorm f ⊤ μ + 1).toReal ≤ ↑‖f x‖₊}
ee15b826545be751
Valuation.map_one_add_of_lt
Mathlib/RingTheory/Valuation/Basic.lean
theorem map_one_add_of_lt (h : v x < 1) : v (1 + x) = 1
R : Type u_3 Γ₀ : Type u_4 inst✝¹ : Ring R inst✝ : LinearOrderedCommMonoidWithZero Γ₀ v : Valuation R Γ₀ x : R h : v x < v 1 ⊢ v (1 + x) = 1
simpa only [v.map_one] using v.map_add_eq_of_lt_left h
no goals
7e61d6fa588dc2ee
WellFounded.prod_lex_of_wellFoundedOn_fiber
Mathlib/Order/WellFoundedSet.lean
theorem WellFounded.prod_lex_of_wellFoundedOn_fiber (hα : WellFounded (rα on f)) (hβ : ∀ a, (f ⁻¹' {a}).WellFoundedOn (rβ on g)) : WellFounded (Prod.Lex rα rβ on fun c => (f c, g c))
α : Type u_2 β : Type u_3 γ : Type u_4 rα : α → α → Prop rβ : β → β → Prop f : γ → α g : γ → β hα : WellFounded (rα on f) hβ : ∀ (a : α), (f ⁻¹' {a}).WellFoundedOn (rβ on g) ⊢ WellFounded (Prod.Lex rα rβ on fun c => (f c, g c))
refine ((psigma_lex (wellFoundedOn_range.2 hα) fun a => hβ a).onFun (f := fun c => ⟨⟨_, c, rfl⟩, c, rfl⟩)).mono fun c c' h => ?_
α : Type u_2 β : Type u_3 γ : Type u_4 rα : α → α → Prop rβ : β → β → Prop f : γ → α g : γ → β hα : WellFounded (rα on f) hβ : ∀ (a : α), (f ⁻¹' {a}).WellFoundedOn (rβ on g) c c' : γ h : (Prod.Lex rα rβ on fun c => (f c, g c)) c c' ⊢ ((PSigma.Lex (fun a b => rα ↑a ↑b) fun a a_1 b => (rβ on g) ↑a_1 ↑b) on fun c => ⟨⟨f c, ⋯⟩, ⟨c, ⋯⟩⟩) c c'
56092b86f3486016