name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
Ordinal.range_omega
Mathlib/SetTheory/Cardinal/Aleph.lean
theorem range_omega : range omega = {x | ω ≤ x ∧ IsInitial x}
case h.mpr x : Ordinal.{u_1} ⊢ x ∈ {x | ω ≤ x ∧ x.IsInitial} → x ∈ range ⇑ω_
rintro ⟨ha', ha⟩
case h.mpr.intro x : Ordinal.{u_1} ha' : ω ≤ x ha : x.IsInitial ⊢ x ∈ range ⇑ω_
2b8a699686971ec4
WeierstrassCurve.Projective.Point.toAffine_add
Mathlib/AlgebraicGeometry/EllipticCurve/Projective.lean
lemma toAffine_add {P Q : Fin 3 → F} (hP : W.Nonsingular P) (hQ : W.Nonsingular Q) : toAffine W (W.add P Q) = toAffine W P + toAffine W Q
case neg F : Type u inst✝ : Field F W : Projective F P Q : Fin 3 → F hP : W.Nonsingular P hQ : W.Nonsingular Q hPz : ¬P z = 0 hQz : ¬Q z = 0 hxy : ¬(P x * Q z = Q x * P z ∧ P y * Q z = W.negY Q * P z) ⊢ toAffine W (W.add P Q) = toAffine W P + toAffine W Q
have := toAffine_add_of_Z_ne_zero hP hQ hPz hQz hxy
case neg F : Type u inst✝ : Field F W : Projective F P Q : Fin 3 → F hP : W.Nonsingular P hQ : W.Nonsingular Q hPz : ¬P z = 0 hQz : ¬Q z = 0 hxy : ¬(P x * Q z = Q x * P z ∧ P y * Q z = W.negY Q * P z) this : toAffine W ![(Projective.toAffine W).addX (P x / P z) (Q x / Q z) ((Projective.toAffine W).slope (P x / P z) (Q x / Q z) (P y / P z) (Q y / Q z)), (Projective.toAffine W).addY (P x / P z) (Q x / Q z) (P y / P z) ((Projective.toAffine W).slope (P x / P z) (Q x / Q z) (P y / P z) (Q y / Q z)), 1] = toAffine W P + toAffine W Q ⊢ toAffine W (W.add P Q) = toAffine W P + toAffine W Q
7a72ea913c00d8ec
Nat.digits_add
Mathlib/Data/Nat/Digits.lean
theorem digits_add (b : ℕ) (h : 1 < b) (x y : ℕ) (hxb : x < b) (hxy : x ≠ 0 ∨ y ≠ 0) : digits b (x + b * y) = x :: digits b y
case intro.succ x b : ℕ h : 1 < b + 2 hxb : x < b + 2 n✝ : ℕ hxy : x ≠ 0 ∨ n✝ + 1 ≠ 0 ⊢ (b + 2).digits (x + (b + 2) * (n✝ + 1)) = x :: (b + 2).digits (n✝ + 1)
dsimp [digits]
case intro.succ x b : ℕ h : 1 < b + 2 hxb : x < b + 2 n✝ : ℕ hxy : x ≠ 0 ∨ n✝ + 1 ≠ 0 ⊢ (b + 2).digitsAux ⋯ (x + (b + 2) * (n✝ + 1)) = x :: (b + 2).digitsAux ⋯ (n✝ + 1)
5707ca6647bd00ed
Polynomial.isLocalHom_expand
Mathlib/Algebra/Polynomial/Expand.lean
theorem isLocalHom_expand {p : ℕ} (hp : 0 < p) : IsLocalHom (expand R p)
R : Type u inst✝¹ : CommRing R inst✝ : IsDomain R p : ℕ hp : 0 < p f : R[X] hf1 : IsUnit ((expand R p) f) ⊢ IsUnit f
have hf2 := eq_C_of_degree_eq_zero (degree_eq_zero_of_isUnit hf1)
R : Type u inst✝¹ : CommRing R inst✝ : IsDomain R p : ℕ hp : 0 < p f : R[X] hf1 : IsUnit ((expand R p) f) hf2 : (expand R p) f = C (((expand R p) f).coeff 0) ⊢ IsUnit f
39ad0872e0293086
CompactIccSpace.mk'
Mathlib/Topology/Order/Compact.lean
lemma CompactIccSpace.mk' [TopologicalSpace α] [Preorder α] (h : ∀ {a b : α}, a ≤ b → IsCompact (Icc a b)) : CompactIccSpace α where isCompact_Icc {a b}
α : Type u_1 inst✝¹ : TopologicalSpace α inst✝ : Preorder α h : ∀ {a b : α}, a ≤ b → IsCompact (Icc a b) a b : α hab : ¬a ≤ b ⊢ IsCompact ∅
exact isCompact_empty
no goals
a8529e4e18c5748e
Finset.powersetCard_map
Mathlib/Data/Finset/Powerset.lean
theorem powersetCard_map {β : Type*} (f : α ↪ β) (n : ℕ) (s : Finset α) : powersetCard n (s.map f) = (powersetCard n s).map (mapEmbedding f).toEmbedding := ext fun t => by simp only [card_map, mem_powersetCard, le_eq_subset, gt_iff_lt, mem_map, mapEmbedding_apply] constructor · classical intro h have : map f (filter (fun x => (f x ∈ t)) s) = t
case mp α : Type u_1 β : Type u_2 f : α ↪ β n : ℕ s : Finset α t : Finset β h : t ⊆ map f s ∧ #t = n this : map f (filter (fun x => f x ∈ t) s) = t ⊢ filter (fun x => f x ∈ t) s ⊆ s ∧ n = n
simp
no goals
dfde83e9b4eb52a7
CompHausLike.LocallyConstant.presheaf_ext
Mathlib/Condensed/Discrete/LocallyConstant.lean
/-- To check equality of two elements of `X(S)`, it suffices to check equality after composing with each `X(S) → X(Sᵢ)`. -/ lemma presheaf_ext (X : (CompHausLike.{u} P)ᵒᵖ ⥤ Type max u w) [PreservesFiniteProducts X] (x y : X.obj ⟨S⟩) [HasExplicitFiniteCoproducts.{u} P] (h : ∀ (a : Fiber f), X.map (sigmaIncl f a).op x = X.map (sigmaIncl f a).op y) : x = y
case a.a.h P : TopCat → Prop inst✝³ : ∀ (S : CompHausLike P) (p : ↑S.toTop → Prop), HasProp P (Subtype p) S : CompHausLike P Y : (CompHausLike P)ᵒᵖ ⥤ Type (max u w) inst✝² : HasProp P PUnit.{u + 1} f : LocallyConstant (↑S.toTop) (Y.obj (op (of P PUnit.{u + 1}))) X : (CompHausLike P)ᵒᵖ ⥤ Type (max u w) inst✝¹ : PreservesFiniteProducts X x y : X.obj (op S) inst✝ : HasExplicitFiniteCoproducts P a : Fiber ⇑f h : X.map (sigmaIncl f a).op x = X.map (sigmaIncl f a).op y ⊢ sigmaComparison X (fun a => ↑(fiber f a).toTop) ((X.mapIso (sigmaIso f).op).hom x) a = sigmaComparison X (fun a => ↑(fiber f a).toTop) ((X.mapIso (sigmaIso f).op).hom y) a
rw [← sigmaComparison_comp_sigmaIso] at h
case a.a.h P : TopCat → Prop inst✝³ : ∀ (S : CompHausLike P) (p : ↑S.toTop → Prop), HasProp P (Subtype p) S : CompHausLike P Y : (CompHausLike P)ᵒᵖ ⥤ Type (max u w) inst✝² : HasProp P PUnit.{u + 1} f : LocallyConstant (↑S.toTop) (Y.obj (op (of P PUnit.{u + 1}))) X : (CompHausLike P)ᵒᵖ ⥤ Type (max u w) inst✝¹ : PreservesFiniteProducts X x y : X.obj (op S) inst✝ : HasExplicitFiniteCoproducts P a : Fiber ⇑f h : ((X.mapIso (sigmaIso f).op).hom ≫ (sigmaComparison X fun a => ↑(fiber f a).toTop) ≫ fun g => g a) x = ((X.mapIso (sigmaIso f).op).hom ≫ (sigmaComparison X fun a => ↑(fiber f a).toTop) ≫ fun g => g a) y ⊢ sigmaComparison X (fun a => ↑(fiber f a).toTop) ((X.mapIso (sigmaIso f).op).hom x) a = sigmaComparison X (fun a => ↑(fiber f a).toTop) ((X.mapIso (sigmaIso f).op).hom y) a
4aad38c3a12edfe7
GaloisConnection.u_eq
Mathlib/Order/GaloisConnection/Defs.lean
theorem u_eq {z : α} {y : β} : u y = z ↔ ∀ x, x ≤ z ↔ l x ≤ y
α : Type u β : Type v inst✝¹ : PartialOrder α inst✝ : Preorder β l : α → β u : β → α gc : GaloisConnection l u z : α y : β ⊢ u y = z ↔ ∀ (x : α), x ≤ z ↔ l x ≤ y
constructor
case mp α : Type u β : Type v inst✝¹ : PartialOrder α inst✝ : Preorder β l : α → β u : β → α gc : GaloisConnection l u z : α y : β ⊢ u y = z → ∀ (x : α), x ≤ z ↔ l x ≤ y case mpr α : Type u β : Type v inst✝¹ : PartialOrder α inst✝ : Preorder β l : α → β u : β → α gc : GaloisConnection l u z : α y : β ⊢ (∀ (x : α), x ≤ z ↔ l x ≤ y) → u y = z
f90e2defec673558
aux1
Mathlib/Algebra/Jordan/Basic.lean
theorem aux1 {a b c : A} : ⁅L a + L b + L c, L (a * a) + L (b * b) + L (c * c) + 2 • L (a * b) + 2 • L (c * a) + 2 • L (b * c)⁆ = ⁅L a, L (a * a)⁆ + ⁅L a, L (b * b)⁆ + ⁅L a, L (c * c)⁆ + ⁅L a, 2 • L (a * b)⁆ + ⁅L a, 2 • L (c * a)⁆ + ⁅L a, 2 • L (b * c)⁆ + (⁅L b, L (a * a)⁆ + ⁅L b, L (b * b)⁆ + ⁅L b, L (c * c)⁆ + ⁅L b, 2 • L (a * b)⁆ + ⁅L b, 2 • L (c * a)⁆ + ⁅L b, 2 • L (b * c)⁆) + (⁅L c, L (a * a)⁆ + ⁅L c, L (b * b)⁆ + ⁅L c, L (c * c)⁆ + ⁅L c, 2 • L (a * b)⁆ + ⁅L c, 2 • L (c * a)⁆ + ⁅L c, 2 • L (b * c)⁆)
A : Type u_1 inst✝ : NonUnitalNonAssocCommRing A a b c : A ⊢ ⁅L a + L b + L c, L (a * a) + L (b * b) + L (c * c) + 2 • L (a * b) + 2 • L (c * a) + 2 • L (b * c)⁆ = ⁅L a, L (a * a)⁆ + ⁅L a, L (b * b)⁆ + ⁅L a, L (c * c)⁆ + ⁅L a, 2 • L (a * b)⁆ + ⁅L a, 2 • L (c * a)⁆ + ⁅L a, 2 • L (b * c)⁆ + (⁅L b, L (a * a)⁆ + ⁅L b, L (b * b)⁆ + ⁅L b, L (c * c)⁆ + ⁅L b, 2 • L (a * b)⁆ + ⁅L b, 2 • L (c * a)⁆ + ⁅L b, 2 • L (b * c)⁆) + (⁅L c, L (a * a)⁆ + ⁅L c, L (b * b)⁆ + ⁅L c, L (c * c)⁆ + ⁅L c, 2 • L (a * b)⁆ + ⁅L c, 2 • L (c * a)⁆ + ⁅L c, 2 • L (b * c)⁆)
rw [add_lie, add_lie]
A : Type u_1 inst✝ : NonUnitalNonAssocCommRing A a b c : A ⊢ ⁅L a, L (a * a) + L (b * b) + L (c * c) + 2 • L (a * b) + 2 • L (c * a) + 2 • L (b * c)⁆ + ⁅L b, L (a * a) + L (b * b) + L (c * c) + 2 • L (a * b) + 2 • L (c * a) + 2 • L (b * c)⁆ + ⁅L c, L (a * a) + L (b * b) + L (c * c) + 2 • L (a * b) + 2 • L (c * a) + 2 • L (b * c)⁆ = ⁅L a, L (a * a)⁆ + ⁅L a, L (b * b)⁆ + ⁅L a, L (c * c)⁆ + ⁅L a, 2 • L (a * b)⁆ + ⁅L a, 2 • L (c * a)⁆ + ⁅L a, 2 • L (b * c)⁆ + (⁅L b, L (a * a)⁆ + ⁅L b, L (b * b)⁆ + ⁅L b, L (c * c)⁆ + ⁅L b, 2 • L (a * b)⁆ + ⁅L b, 2 • L (c * a)⁆ + ⁅L b, 2 • L (b * c)⁆) + (⁅L c, L (a * a)⁆ + ⁅L c, L (b * b)⁆ + ⁅L c, L (c * c)⁆ + ⁅L c, 2 • L (a * b)⁆ + ⁅L c, 2 • L (c * a)⁆ + ⁅L c, 2 • L (b * c)⁆)
b5c23462450b58db
Equiv.Perm.support_subtype_perm
Mathlib/GroupTheory/Perm/Support.lean
theorem support_subtype_perm [DecidableEq α] {s : Finset α} (f : Perm α) (h) : (f.subtypePerm h : Perm s).support = ({x | f x ≠ x} : Finset s)
α : Type u_1 inst✝ : DecidableEq α s : Finset α f : Perm α h : ∀ (x : α), x ∈ s ↔ f x ∈ s ⊢ (f.subtypePerm h).support = filter (fun x => f ↑x ≠ ↑x) univ
ext
case h α : Type u_1 inst✝ : DecidableEq α s : Finset α f : Perm α h : ∀ (x : α), x ∈ s ↔ f x ∈ s a✝ : { x // x ∈ s } ⊢ a✝ ∈ (f.subtypePerm h).support ↔ a✝ ∈ filter (fun x => f ↑x ≠ ↑x) univ
ba506bad3e009e97
MeasureTheory.measure_isClosed_eq_of_forall_lintegral_eq_of_isFiniteMeasure
Mathlib/MeasureTheory/Measure/HasOuterApproxClosed.lean
theorem measure_isClosed_eq_of_forall_lintegral_eq_of_isFiniteMeasure {Ω : Type*} [MeasurableSpace Ω] [TopologicalSpace Ω] [HasOuterApproxClosed Ω] [OpensMeasurableSpace Ω] {μ ν : Measure Ω} [IsFiniteMeasure μ] (h : ∀ (f : Ω →ᵇ ℝ≥0), ∫⁻ x, f x ∂μ = ∫⁻ x, f x ∂ν) {F : Set Ω} (F_closed : IsClosed F) : μ F = ν F
case measure_univ_lt_top Ω : Type u_1 inst✝⁴ : MeasurableSpace Ω inst✝³ : TopologicalSpace Ω inst✝² : HasOuterApproxClosed Ω inst✝¹ : OpensMeasurableSpace Ω μ ν : Measure Ω inst✝ : IsFiniteMeasure μ h : ∀ (f : Ω →ᵇ ℝ≥0), ∫⁻ (x : Ω), ↑(f x) ∂μ = ∫⁻ (x : Ω), ↑(f x) ∂ν F : Set Ω F_closed : IsClosed F whole : μ univ = ν univ ⊢ ν univ < ⊤
simp [← whole]
no goals
545c1e4b7e0daa43
Asymptotics.isLittleO_norm_left
Mathlib/Analysis/Asymptotics/Defs.lean
theorem isLittleO_norm_left : (fun x => ‖f' x‖) =o[l] g ↔ f' =o[l] g
α : Type u_1 F : Type u_4 E' : Type u_6 inst✝¹ : Norm F inst✝ : SeminormedAddCommGroup E' g : α → F f' : α → E' l : Filter α ⊢ (∀ ⦃c : ℝ⦄, 0 < c → IsBigOWith c l (fun x => ‖f' x‖) g) ↔ ∀ ⦃c : ℝ⦄, 0 < c → IsBigOWith c l f' g
exact forall₂_congr fun _ _ => isBigOWith_norm_left
no goals
403b9aa052c68398
bernsteinPolynomial.sum_mul_smul
Mathlib/RingTheory/Polynomial/Bernstein.lean
theorem sum_mul_smul (n : ℕ) : (∑ ν ∈ Finset.range (n + 1), (ν * (ν - 1)) • bernsteinPolynomial R n ν) = (n * (n - 1)) • X ^ 2
R : Type u_1 inst✝ : CommRing R n : ℕ x : MvPolynomial Bool R := MvPolynomial.X true y : MvPolynomial Bool R := MvPolynomial.X false pderiv_true_x : (pderiv true) x = 1 pderiv_true_y : (pderiv true) y = 0 e : Bool → R[X] := fun i => bif i then X else 1 - X ⊢ ∑ ν ∈ Finset.range (n + 1), (ν * (ν - 1)) • bernsteinPolynomial R n ν = (n * (n - 1)) • X ^ 2
trans MvPolynomial.aeval e (pderiv true (pderiv true ((x + y) ^ n))) * X ^ 2
R : Type u_1 inst✝ : CommRing R n : ℕ x : MvPolynomial Bool R := MvPolynomial.X true y : MvPolynomial Bool R := MvPolynomial.X false pderiv_true_x : (pderiv true) x = 1 pderiv_true_y : (pderiv true) y = 0 e : Bool → R[X] := fun i => bif i then X else 1 - X ⊢ ∑ ν ∈ Finset.range (n + 1), (ν * (ν - 1)) • bernsteinPolynomial R n ν = (MvPolynomial.aeval e) ((pderiv true) ((pderiv true) ((x + y) ^ n))) * X ^ 2 R : Type u_1 inst✝ : CommRing R n : ℕ x : MvPolynomial Bool R := MvPolynomial.X true y : MvPolynomial Bool R := MvPolynomial.X false pderiv_true_x : (pderiv true) x = 1 pderiv_true_y : (pderiv true) y = 0 e : Bool → R[X] := fun i => bif i then X else 1 - X ⊢ (MvPolynomial.aeval e) ((pderiv true) ((pderiv true) ((x + y) ^ n))) * X ^ 2 = (n * (n - 1)) • X ^ 2
5a1ea5f98d0a949e
isPreconnected_of_forall_constant
Mathlib/Topology/Connected/Clopen.lean
theorem isPreconnected_of_forall_constant {s : Set α} (hs : ∀ f : α → Bool, ContinuousOn f s → ∀ x ∈ s, ∀ y ∈ s, f x = f y) : IsPreconnected s
α : Type u inst✝ : TopologicalSpace α s : Set α hs : ∀ (f : α → Bool), ContinuousOn f s → ∀ x ∈ s, ∀ y ∈ s, f x = f y u v : Set α u_op : IsOpen u v_op : IsOpen v hsuv : s ⊆ u ∪ v x : α x_in_s : x ∈ s x_in_u : x ∈ u H : s ∩ (u ∩ v) = ∅ y : α y_in_s : y ∈ s y_in_v : y ∈ v hy : y ∉ u ⊢ IsClosed (Subtype.val ⁻¹' v)ᶜ
exact (v_op.preimage continuous_subtype_val).isClosed_compl
no goals
0b9dc97844bbc91c
Function.Injective.of_comp_right
Mathlib/Logic/Function/Basic.lean
theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h)
case intro α : Sort u_1 β : Sort u_2 γ : Sort u_3 f : α → β g : γ → α I : Injective (f ∘ g) hg : Surjective g y : α x : γ h : f (g x) = f y ⊢ g x = y
obtain ⟨y, rfl⟩ := hg y
case intro.intro α : Sort u_1 β : Sort u_2 γ : Sort u_3 f : α → β g : γ → α I : Injective (f ∘ g) hg : Surjective g x y : γ h : f (g x) = f (g y) ⊢ g x = g y
6d531765884ca3ef
Lean.Order.admissible_pprod_snd
Mathlib/.lake/packages/lean4/src/lean/Init/Internal/Order/Basic.lean
theorem admissible_pprod_snd {α : Sort u} {β : Sort v} [CCPO α] [CCPO β] (P : β → Prop) (hadm : admissible P) : admissible (fun (x : α ×' β) => P x.2)
α : Sort u β : Sort v inst✝¹ : CCPO α inst✝ : CCPO β P : β → Prop hadm : admissible P c : α ×' β → Prop hchain : chain c h : ∀ (x : α ×' β), c x → (fun x => P x.snd) x ⊢ P (CCPO.csup c).snd
apply hadm _ (PProd.chain.chain_snd hchain)
α : Sort u β : Sort v inst✝¹ : CCPO α inst✝ : CCPO β P : β → Prop hadm : admissible P c : α ×' β → Prop hchain : chain c h : ∀ (x : α ×' β), c x → (fun x => P x.snd) x ⊢ ∀ (x : β), PProd.chain.snd c x → P x
ad0d9d2474ff8268
IsAssociatedPrime.annihilator_le
Mathlib/RingTheory/Ideal/AssociatedPrime.lean
theorem IsAssociatedPrime.annihilator_le (h : IsAssociatedPrime I M) : (⊤ : Submodule R M).annihilator ≤ I
case intro.intro R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M x : M hI : Ideal.IsPrime (ker (toSpanSingleton R M x)) ⊢ ⊤.annihilator ≤ ker (toSpanSingleton R M x)
rw [← Submodule.annihilator_span_singleton]
case intro.intro R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M x : M hI : Ideal.IsPrime (ker (toSpanSingleton R M x)) ⊢ ⊤.annihilator ≤ (Submodule.span R {x}).annihilator
194886cc2bb570ce
Order.krullDim_pos_iff
Mathlib/Order/KrullDimension.lean
lemma krullDim_pos_iff : 0 < krullDim α ↔ ∃ x y : α, x < y
α : Type u_1 inst✝ : Preorder α ⊢ krullDim α ≤ 0 ↔ ∀ (x y : α), ¬x < y
simp_rw [← isMax_iff_forall_not_lt, ← krullDim_nonpos_iff_forall_isMax]
no goals
dc766689907bf295
ENNReal.half_lt_self
Mathlib/Data/ENNReal/Inv.lean
theorem half_lt_self (hz : a ≠ 0) (ht : a ≠ ∞) : a / 2 < a
case intro a : ℝ≥0 hz : a ≠ 0 ⊢ a / 2 < a case intro a : ℝ≥0 hz : a ≠ 0 ⊢ 2 ≠ 0
exacts [NNReal.half_lt_self hz, two_ne_zero' _]
no goals
4240ca8b153ca5da
Submonoid.LocalizationMap.sec_spec'
Mathlib/GroupTheory/MonoidLocalization/Basic.lean
theorem sec_spec' {f : LocalizationMap S N} (z : N) : f.toMap (f.sec z).1 = f.toMap (f.sec z).2 * z
M : Type u_1 inst✝¹ : CommMonoid M S : Submonoid M N : Type u_2 inst✝ : CommMonoid N f : S.LocalizationMap N z : N ⊢ f.toMap (f.sec z).1 = f.toMap ↑(f.sec z).2 * z
rw [mul_comm, sec_spec]
no goals
9d8069dcf2618fd1
MeasureTheory.StronglyMeasurable.integral_kernel_prod_right
Mathlib/Probability/Kernel/MeasurableIntegral.lean
theorem StronglyMeasurable.integral_kernel_prod_right ⦃f : α → β → E⦄ (hf : StronglyMeasurable (uncurry f)) : StronglyMeasurable fun x => ∫ y, f x y ∂κ x
α : Type u_1 β : Type u_2 mα : MeasurableSpace α mβ : MeasurableSpace β κ : Kernel α β E : Type u_4 inst✝² : NormedAddCommGroup E inst✝¹ : IsSFiniteKernel κ inst✝ : NormedSpace ℝ E f : α → β → E hf : StronglyMeasurable (uncurry f) hE : CompleteSpace E this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0}) s : ℕ → SimpleFunc (α × β) E := SimpleFunc.approxOn (uncurry f) ⋯ (range (uncurry f) ∪ {0}) 0 ⋯ s' : ℕ → α → SimpleFunc β E := fun n x => (s n).comp (Prod.mk x) ⋯ f' : ℕ → α → E := fun n => {x | Integrable (f x) (κ x)}.indicator fun x => SimpleFunc.integral (κ x) (s' n x) ⊢ ∀ (n : ℕ), StronglyMeasurable (f' n)
intro n
α : Type u_1 β : Type u_2 mα : MeasurableSpace α mβ : MeasurableSpace β κ : Kernel α β E : Type u_4 inst✝² : NormedAddCommGroup E inst✝¹ : IsSFiniteKernel κ inst✝ : NormedSpace ℝ E f : α → β → E hf : StronglyMeasurable (uncurry f) hE : CompleteSpace E this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0}) s : ℕ → SimpleFunc (α × β) E := SimpleFunc.approxOn (uncurry f) ⋯ (range (uncurry f) ∪ {0}) 0 ⋯ s' : ℕ → α → SimpleFunc β E := fun n x => (s n).comp (Prod.mk x) ⋯ f' : ℕ → α → E := fun n => {x | Integrable (f x) (κ x)}.indicator fun x => SimpleFunc.integral (κ x) (s' n x) n : ℕ ⊢ StronglyMeasurable (f' n)
8e2e9c2ee13e9a95
Array.map_induction
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Lemmas.lean
theorem map_induction (as : Array α) (f : α → β) (motive : Nat → Prop) (h0 : motive 0) (p : Fin as.size → β → Prop) (hs : ∀ i, motive i.1 → p i (f as[i]) ∧ motive (i+1)) : motive as.size ∧ ∃ eq : (as.map f).size = as.size, ∀ i h, p ⟨i, h⟩ ((as.map f)[i])
case neg α : Type u_1 β : Type u_2 as : Array α f : α → β motive : Nat → Prop h0 : motive 0 p : Fin as.size → β → Prop hs : ∀ (i : Fin as.size), motive ↑i → p i (f as[i]) ∧ motive (↑i + 1) i : Fin as.size b : Array β m : motive ↑i eq : b.size = ↑i w : ∀ (i : Fin as.size) (h2 : ↑i < b.size), p i b[↑i] j : Fin as.size h✝ : ↑j < ((fun r a => r.push (f a)) b as[i]).size h : ↑j < b.size + 1 h' : ¬↑j < b.size ⊢ p j (f as[↑i])
simp only [show j = i by omega]
case neg α : Type u_1 β : Type u_2 as : Array α f : α → β motive : Nat → Prop h0 : motive 0 p : Fin as.size → β → Prop hs : ∀ (i : Fin as.size), motive ↑i → p i (f as[i]) ∧ motive (↑i + 1) i : Fin as.size b : Array β m : motive ↑i eq : b.size = ↑i w : ∀ (i : Fin as.size) (h2 : ↑i < b.size), p i b[↑i] j : Fin as.size h✝ : ↑j < ((fun r a => r.push (f a)) b as[i]).size h : ↑j < b.size + 1 h' : ¬↑j < b.size ⊢ p i (f as[↑i])
07b92593a639a2fd
Orientation.oangle_eq_of_angle_eq_of_sign_eq
Mathlib/Geometry/Euclidean/Angle/Oriented/Basic.lean
theorem oangle_eq_of_angle_eq_of_sign_eq {w x y z : V} (h : InnerProductGeometry.angle w x = InnerProductGeometry.angle y z) (hs : (o.oangle w x).sign = (o.oangle y z).sign) : o.oangle w x = o.oangle y z
case inr.inr V : Type u_1 inst✝² : NormedAddCommGroup V inst✝¹ : InnerProductSpace ℝ V inst✝ : Fact (finrank ℝ V = 2) o : Orientation ℝ V (Fin 2) w x y : V h : InnerProductGeometry.angle w x = InnerProductGeometry.angle y 0 hs : (o.oangle w x).sign = (o.oangle y 0).sign ⊢ (o.oangle w x).sign = 0 ∧ (o.oangle y 0).sign = 0
simpa using hs
no goals
ec88cb80dbeb7f16
LinearMap.bot_lt_ker_of_det_eq_zero
Mathlib/LinearAlgebra/Determinant.lean
theorem bot_lt_ker_of_det_eq_zero {𝕜 : Type*} [Field 𝕜] [Module 𝕜 M] {f : M →ₗ[𝕜] M} (hf : LinearMap.det f = 0) : ⊥ < LinearMap.ker f
M : Type u_2 inst✝² : AddCommGroup M 𝕜 : Type u_7 inst✝¹ : Field 𝕜 inst✝ : Module 𝕜 M f : M →ₗ[𝕜] M hf : LinearMap.det f = 0 this : FiniteDimensional 𝕜 M ⊢ ⊥ < ker f
contrapose hf
M : Type u_2 inst✝² : AddCommGroup M 𝕜 : Type u_7 inst✝¹ : Field 𝕜 inst✝ : Module 𝕜 M f : M →ₗ[𝕜] M this : FiniteDimensional 𝕜 M hf : ¬⊥ < ker f ⊢ ¬LinearMap.det f = 0
92fd01011447bbe2
Ideal.ideal_prod_prime
Mathlib/RingTheory/Ideal/Prod.lean
theorem ideal_prod_prime (I : Ideal (R × S)) : I.IsPrime ↔ (∃ p : Ideal R, p.IsPrime ∧ I = Ideal.prod p ⊤) ∨ ∃ p : Ideal S, p.IsPrime ∧ I = Ideal.prod ⊤ p
case mp.inl R : Type u S : Type v inst✝¹ : Semiring R inst✝ : Semiring S I : Ideal (R × S) hI : ((map (RingHom.fst R S) I).prod (map (RingHom.snd R S) I)).IsPrime h : map (RingHom.fst R S) I = ⊤ ⊢ (∃ p, p.IsPrime ∧ (map (RingHom.fst R S) I).prod (map (RingHom.snd R S) I) = p.prod ⊤) ∨ ∃ p, p.IsPrime ∧ (map (RingHom.fst R S) I).prod (map (RingHom.snd R S) I) = ⊤.prod p
right
case mp.inl.h R : Type u S : Type v inst✝¹ : Semiring R inst✝ : Semiring S I : Ideal (R × S) hI : ((map (RingHom.fst R S) I).prod (map (RingHom.snd R S) I)).IsPrime h : map (RingHom.fst R S) I = ⊤ ⊢ ∃ p, p.IsPrime ∧ (map (RingHom.fst R S) I).prod (map (RingHom.snd R S) I) = ⊤.prod p
5d31973d7dbcd867
LinearMap.det_smul
Mathlib/LinearAlgebra/Determinant.lean
theorem det_smul [Module.Free A M] (c : A) (f : M →ₗ[A] M) : LinearMap.det (c • f) = c ^ Module.finrank A M * LinearMap.det f
case pos M : Type u_2 inst✝³ : AddCommGroup M A : Type u_5 inst✝² : CommRing A inst✝¹ : Module A M inst✝ : Module.Free A M c : A f : M →ₗ[A] M a✝ : Nontrivial A H : ∃ s, Nonempty (Basis { x // x ∈ s } A M) this : Module.Finite A M ⊢ LinearMap.det (c • f) = c ^ Module.finrank A M * LinearMap.det f
simp only [← det_toMatrix (Module.finBasis A M), LinearEquiv.map_smul, Fintype.card_fin, Matrix.det_smul]
no goals
8fdbe434c6a19498
isLindelof_open_iff_eq_countable_iUnion_of_isTopologicalBasis
Mathlib/Topology/Compactness/Lindelof.lean
theorem isLindelof_open_iff_eq_countable_iUnion_of_isTopologicalBasis (b : ι → Set X) (hb : IsTopologicalBasis (Set.range b)) (hb' : ∀ i, IsLindelof (b i)) (U : Set X) : IsLindelof U ∧ IsOpen U ↔ ∃ s : Set ι, s.Countable ∧ U = ⋃ i ∈ s, b i
case mp.intro.intro.intro.intro.intro.refine_1 X : Type u ι : Type u_1 inst✝ : TopologicalSpace X b : ι → Set X hb : IsTopologicalBasis (range b) hb' : ∀ (i : ι), IsLindelof (b i) Y : Type u f' : Y → ι h₁ : IsLindelof (⋃ i, (b ∘ f') i) h₂ : IsOpen (⋃ i, (b ∘ f') i) hf' : ∀ (i : Y), b (f' i) = (b ∘ f') i t : Set Y ht : t.Countable ∧ ⋃ i, (b ∘ f') i ⊆ ⋃ i ∈ t, (b ∘ f') i i : Y hi : i ∈ t ⊢ (b ∘ f') i ⊆ ⋃ x, b ↑x
exact Set.subset_iUnion (fun i : t.image f' => b i) ⟨_, mem_image_of_mem _ hi⟩
no goals
5ea85c22866d42e2
Function.update_eq_updateFinset
Mathlib/Data/Finset/Update.lean
theorem update_eq_updateFinset {i y} : Function.update x i y = updateFinset x {i} (uniqueElim y)
ι : Type u_1 π : ι → Sort u_2 x : (i : ι) → π i inst✝ : DecidableEq ι i : ι y : π i ⊢ update x i y = updateFinset x {i} (uniqueElim y)
congr with j
case h ι : Type u_1 π : ι → Sort u_2 x : (i : ι) → π i inst✝ : DecidableEq ι i : ι y : π i j : ι ⊢ update x i y j = updateFinset x {i} (uniqueElim y) j
f513edede4d792eb
MeasureTheory.ae_nonneg_of_forall_setIntegral_nonneg_of_sigmaFinite
Mathlib/MeasureTheory/Function/AEEqOfIntegral.lean
theorem ae_nonneg_of_forall_setIntegral_nonneg_of_sigmaFinite [SigmaFinite μ] {f : α → ℝ} (hf_int_finite : ∀ s, MeasurableSet s → μ s < ∞ → IntegrableOn f s μ) (hf_zero : ∀ s, MeasurableSet s → μ s < ∞ → 0 ≤ ∫ x in s, f x ∂μ) : 0 ≤ᵐ[μ] f
case h α : Type u_1 m0 : MeasurableSpace α μ : Measure α inst✝ : SigmaFinite μ f : α → ℝ hf_int_finite : ∀ (s : Set α), MeasurableSet s → μ s < ⊤ → IntegrableOn f s μ hf_zero : ∀ (s : Set α), MeasurableSet s → μ s < ⊤ → 0 ≤ ∫ (x : α) in s, f x ∂μ t : Set α t_meas : MeasurableSet t t_lt_top : μ t < ⊤ ⊢ ∀ᵐ (x : α) ∂μ.restrict t, 0 x ≤ f x
apply ae_nonneg_restrict_of_forall_setIntegral_nonneg_inter (hf_int_finite t t_meas t_lt_top)
case h α : Type u_1 m0 : MeasurableSpace α μ : Measure α inst✝ : SigmaFinite μ f : α → ℝ hf_int_finite : ∀ (s : Set α), MeasurableSet s → μ s < ⊤ → IntegrableOn f s μ hf_zero : ∀ (s : Set α), MeasurableSet s → μ s < ⊤ → 0 ≤ ∫ (x : α) in s, f x ∂μ t : Set α t_meas : MeasurableSet t t_lt_top : μ t < ⊤ ⊢ ∀ (s : Set α), MeasurableSet s → μ (s ∩ t) < ⊤ → 0 ≤ ∫ (x : α) in s ∩ t, f x ∂μ
c952d9bd03e52640
Filter.tendsto_iff_ptendsto
Mathlib/Order/Filter/Partial.lean
theorem tendsto_iff_ptendsto (l₁ : Filter α) (l₂ : Filter β) (s : Set α) (f : α → β) : Tendsto f (l₁ ⊓ 𝓟 s) l₂ ↔ PTendsto (PFun.res f s) l₁ l₂
α : Type u β : Type v l₁ : Filter α l₂ : Filter β s : Set α f : α → β ⊢ Tendsto f (l₁ ⊓ 𝓟 s) l₂ ↔ PTendsto (PFun.res f s) l₁ l₂
simp only [Tendsto, PTendsto, pmap_res]
no goals
1ad49e0b0e6acd7e
Metric.cthickening_subset_iUnion_closedBall_of_lt
Mathlib/Topology/MetricSpace/Thickening.lean
theorem cthickening_subset_iUnion_closedBall_of_lt {α : Type*} [PseudoMetricSpace α] (E : Set α) {δ δ' : ℝ} (hδ₀ : 0 < δ') (hδδ' : δ < δ') : cthickening δ E ⊆ ⋃ x ∈ E, closedBall x δ'
α : Type u_2 inst✝ : PseudoMetricSpace α E : Set α δ δ' : ℝ hδ₀ : 0 < δ' hδδ' : δ < δ' x : α hx : x ∈ thickening δ' E ⊢ x ∈ ⋃ x ∈ E, closedBall x δ'
obtain ⟨y, hy₁, hy₂⟩ := mem_thickening_iff.mp hx
case intro.intro α : Type u_2 inst✝ : PseudoMetricSpace α E : Set α δ δ' : ℝ hδ₀ : 0 < δ' hδδ' : δ < δ' x : α hx : x ∈ thickening δ' E y : α hy₁ : y ∈ E hy₂ : dist x y < δ' ⊢ x ∈ ⋃ x ∈ E, closedBall x δ'
b330ebd17268c278
BoundedContinuousFunction.dist_lt_iff_of_compact
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
theorem dist_lt_iff_of_compact [CompactSpace α] (C0 : (0 : ℝ) < C) : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C
case mpr α : Type u β : Type v inst✝² : TopologicalSpace α inst✝¹ : PseudoMetricSpace β f g : α →ᵇ β C : ℝ inst✝ : CompactSpace α C0 : 0 < C ⊢ (∀ (x : α), dist (f x) (g x) < C) → dist f g < C
by_cases h : Nonempty α
case pos α : Type u β : Type v inst✝² : TopologicalSpace α inst✝¹ : PseudoMetricSpace β f g : α →ᵇ β C : ℝ inst✝ : CompactSpace α C0 : 0 < C h : Nonempty α ⊢ (∀ (x : α), dist (f x) (g x) < C) → dist f g < C case neg α : Type u β : Type v inst✝² : TopologicalSpace α inst✝¹ : PseudoMetricSpace β f g : α →ᵇ β C : ℝ inst✝ : CompactSpace α C0 : 0 < C h : ¬Nonempty α ⊢ (∀ (x : α), dist (f x) (g x) < C) → dist f g < C
fb7b148d1f803c70
Ideal.Filtration.submodule_closure_single
Mathlib/RingTheory/Filtration.lean
theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid
case neg R : Type u_1 M : Type u_2 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F : I.Filtration M i : ℕ m : M hm : m ∈ ↑(F.N i) j : ℕ h : ¬i = j ⊢ 0 ∈ F.N j
exact (F.N j).zero_mem
no goals
bd336799b08b1c57
Multiset.map_count_True_eq_filter_card
Mathlib/Data/Multiset/Filter.lean
theorem map_count_True_eq_filter_card (s : Multiset α) (p : α → Prop) [DecidablePred p] : (s.map p).count True = card (s.filter p)
α : Type u_1 s : Multiset α p : α → Prop inst✝ : DecidablePred p ⊢ count True (map p s) = (filter p s).card
simp only [count_eq_card_filter_eq, filter_map, card_map, Function.id_comp, eq_true_eq_id, Function.comp_apply]
no goals
be5c1f40ec148462
Set.wellFoundedOn_range
Mathlib/Order/WellFoundedSet.lean
theorem wellFoundedOn_range : (range f).WellFoundedOn r ↔ WellFounded (r on f)
case mk.intro.refine_1 α : Type u_2 β : Type u_3 r : α → α → Prop f : β → α f' : β → ↑(range f) := fun c => ⟨f c, ⋯⟩ h : WellFounded (r on f) c : β ⊢ ∀ {a : β} {b : ↑(range f)}, r ↑b ↑(f' a) → ∃ c, f' c = b
rintro _ ⟨_, c', rfl⟩ -
case mk.intro.refine_1.mk.intro α : Type u_2 β : Type u_3 r : α → α → Prop f : β → α f' : β → ↑(range f) := fun c => ⟨f c, ⋯⟩ h : WellFounded (r on f) c a✝ c' : β ⊢ ∃ c, f' c = ⟨f c', ⋯⟩
cfcccc1dfe69da6c
PowerSeries.map_surjective
Mathlib/RingTheory/PowerSeries/Basic.lean
theorem map_surjective (f : S →+* T) (hf : Function.Surjective f) : Function.Surjective (PowerSeries.map f)
case h.h S : Type u_2 T : Type u_3 inst✝¹ : Semiring S inst✝ : Semiring T f : S →+* T hf : Function.Surjective ⇑f g : T⟦X⟧ k : ℕ ⊢ f (Classical.choose ⋯) = (coeff T k) g
exact Classical.choose_spec (hf ((coeff T k) g))
no goals
22da55e7c554d77c
MeasureTheory.tilted_eq_withDensity_nnreal
Mathlib/MeasureTheory/Measure/Tilted.lean
lemma tilted_eq_withDensity_nnreal (μ : Measure α) (f : α → ℝ) : μ.tilted f = μ.withDensity (fun x ↦ ((↑) : ℝ≥0 → ℝ≥0∞) (⟨exp (f x) / ∫ x, exp (f x) ∂μ, by positivity⟩ : ℝ≥0))
case e_f.h α : Type u_1 mα : MeasurableSpace α μ : Measure α f : α → ℝ x : α ⊢ ENNReal.ofReal (rexp (f x) / ∫ (x : α), rexp (f x) ∂μ) = ↑⟨rexp (f x) / ∫ (x : α), rexp (f x) ∂μ, ⋯⟩
rw [ENNReal.ofReal_eq_coe_nnreal]
no goals
bedb4f144f9ee107
Ideal.absNorm_span_singleton
Mathlib/RingTheory/Ideal/Norm/AbsNorm.lean
theorem absNorm_span_singleton (r : S) : absNorm (span ({r} : Set S)) = (Algebra.norm ℤ r).natAbs
case neg S : Type u_1 inst✝⁴ : CommRing S inst✝³ : Nontrivial S inst✝² : IsDedekindDomain S inst✝¹ : Module.Free ℤ S inst✝ : Module.Finite ℤ S r : S hr : ¬r = 0 this : Fintype (S ⧸ span {r}) := (span {r}).fintypeQuotientOfFreeOfNeBot ⋯ b : Basis (Module.Free.ChooseBasisIndex ℤ S) ℤ S := Module.Free.chooseBasis ℤ S ⊢ (LinearMap.det (↑ℤ (Submodule.subtype (span {r})) ∘ₗ (↑(b.equiv (basisSpanSingleton b hr) (Equiv.refl (Module.Free.ChooseBasisIndex ℤ S)))).toIntLinearMap)).natAbs = (LinearMap.det ((Algebra.lmul ℤ S) r)).natAbs
congr
case neg.e_m.h.e_6.h S : Type u_1 inst✝⁴ : CommRing S inst✝³ : Nontrivial S inst✝² : IsDedekindDomain S inst✝¹ : Module.Free ℤ S inst✝ : Module.Finite ℤ S r : S hr : ¬r = 0 this : Fintype (S ⧸ span {r}) := (span {r}).fintypeQuotientOfFreeOfNeBot ⋯ b : Basis (Module.Free.ChooseBasisIndex ℤ S) ℤ S := Module.Free.chooseBasis ℤ S ⊢ ↑ℤ (Submodule.subtype (span {r})) ∘ₗ (↑(b.equiv (basisSpanSingleton b hr) (Equiv.refl (Module.Free.ChooseBasisIndex ℤ S)))).toIntLinearMap = (Algebra.lmul ℤ S) r
d5532931e84e3a93
Topology.RelCWComplex.cellFrontier_subset_skeletonLT
Mathlib/Topology/CWComplex/Classical/Basic.lean
lemma RelCWComplex.cellFrontier_subset_skeletonLT [RelCWComplex C D] (n : ℕ) (j : cell C n) : cellFrontier n j ⊆ skeletonLT C n
case intro.h X : Type u_1 t : TopologicalSpace X C D : Set X inst✝ : RelCWComplex C D n : ℕ j : cell C n I : (m : ℕ) → Finset (cell C m) hI : cellFrontier n j ⊆ D ∪ ⋃ m, ⋃ (_ : m < n), ⋃ j ∈ I m, closedCell m j ⊢ ⋃ m, ⋃ (_ : m < n), ⋃ j ∈ I m, closedCell m j ⊆ ⋃ m, ⋃ (_ : ↑m < ↑n), ⋃ j, closedCell m j
intro x xmem
case intro.h X : Type u_1 t : TopologicalSpace X C D : Set X inst✝ : RelCWComplex C D n : ℕ j : cell C n I : (m : ℕ) → Finset (cell C m) hI : cellFrontier n j ⊆ D ∪ ⋃ m, ⋃ (_ : m < n), ⋃ j ∈ I m, closedCell m j x : X xmem : x ∈ ⋃ m, ⋃ (_ : m < n), ⋃ j ∈ I m, closedCell m j ⊢ x ∈ ⋃ m, ⋃ (_ : ↑m < ↑n), ⋃ j, closedCell m j
b66d81e5a34117fe
Equiv.Perm.eq_sign_of_surjective_hom
Mathlib/GroupTheory/Perm/Sign.lean
theorem eq_sign_of_surjective_hom {s : Perm α →* ℤˣ} (hs : Surjective s) : s = sign := have : ∀ {f}, IsSwap f → s f = -1 := fun {f} ⟨x, y, hxy, hxy'⟩ => hxy'.symm ▸ by_contradiction fun h => by have : ∀ f, IsSwap f → s f = 1 := fun f ⟨a, b, hab, hab'⟩ => by rw [← isConj_iff_eq, ← Or.resolve_right (Int.units_eq_one_or _) h, hab'] exact s.map_isConj (isConj_swap hab hxy) let ⟨g, hg⟩ := hs (-1) let ⟨l, hl⟩ := (truncSwapFactors g).out have : ∀ a ∈ l.map s, a = (1 : ℤˣ) := fun a ha => let ⟨g, hg⟩ := List.mem_map.1 ha hg.2 ▸ this _ (hl.2 _ hg.1) have : s l.prod = 1
α : Type u inst✝¹ : DecidableEq α inst✝ : Fintype α s : Perm α →* ℤˣ hs : Surjective ⇑s f✝ : Perm α x✝¹ : f✝.IsSwap x y : α hxy : x ≠ y hxy' : f✝ = swap x y h : ¬s (swap x y) = -1 f : Perm α x✝ : f.IsSwap a b : α hab : a ≠ b hab' : f = swap a b ⊢ IsConj (s (swap a b)) (s (swap x y))
exact s.map_isConj (isConj_swap hab hxy)
no goals
8e0d79dcb0016e04
BitVec.getLsbD_sshiftRight
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Lemmas.lean
theorem getLsbD_sshiftRight (x : BitVec w) (s i : Nat) : getLsbD (x.sshiftRight s) i = (!decide (w ≤ i) && if s + i < w then x.getLsbD (s + i) else x.msb)
case pos w : Nat x : BitVec w s i : Nat hmsb : x.msb = false hi : i ≥ w ⊢ x.getLsbD (s + i) = (!decide (w ≤ i) && (decide (s + i < w) && x.getLsbD (s + i)))
simp only [hi, decide_true, Bool.not_true, Bool.false_and]
case pos w : Nat x : BitVec w s i : Nat hmsb : x.msb = false hi : i ≥ w ⊢ x.getLsbD (s + i) = false
3860ec5babbfcdfd
EuclideanGeometry.dist_smul_vadd_eq_dist
Mathlib/Geometry/Euclidean/Basic.lean
theorem dist_smul_vadd_eq_dist {v : V} (p₁ p₂ : P) (hv : v ≠ 0) (r : ℝ) : dist (r • v +ᵥ p₁) p₂ = dist p₁ p₂ ↔ r = 0 ∨ r = -2 * ⟪v, p₁ -ᵥ p₂⟫ / ⟪v, v⟫
V : Type u_1 P : Type u_2 inst✝³ : NormedAddCommGroup V inst✝² : InnerProductSpace ℝ V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P v : V p₁ p₂ : P hv : v ≠ 0 r : ℝ hvi : inner v v ≠ 0 hd : discrim (inner v v) (2 * inner v (p₁ -ᵥ p₂)) 0 = 2 * inner v (p₁ -ᵥ p₂) * (2 * inner v (p₁ -ᵥ p₂)) ⊢ inner v v * (r * r) + 2 * inner v (p₁ -ᵥ p₂) * r + 0 = 0 ↔ r = 0 ∨ r = -2 * inner v (p₁ -ᵥ p₂) / inner v v
rw [quadratic_eq_zero_iff hvi hd, neg_add_cancel, zero_div, neg_mul_eq_neg_mul, ← mul_sub_right_distrib, sub_eq_add_neg, ← mul_two, mul_assoc, mul_div_assoc, mul_div_mul_left, mul_div_assoc]
case hc V : Type u_1 P : Type u_2 inst✝³ : NormedAddCommGroup V inst✝² : InnerProductSpace ℝ V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P v : V p₁ p₂ : P hv : v ≠ 0 r : ℝ hvi : inner v v ≠ 0 hd : discrim (inner v v) (2 * inner v (p₁ -ᵥ p₂)) 0 = 2 * inner v (p₁ -ᵥ p₂) * (2 * inner v (p₁ -ᵥ p₂)) ⊢ 2 ≠ 0
44b00dbdc3b3f9e2
CategoryTheory.ShortComplex.HomologyData.right_homologyIso_eq_left_homologyIso_trans_iso
Mathlib/Algebra/Homology/ShortComplex/Homology.lean
lemma HomologyData.right_homologyIso_eq_left_homologyIso_trans_iso (h : S.HomologyData) [S.HasHomology] : h.right.homologyIso = h.left.homologyIso ≪≫ h.iso
C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasZeroMorphisms C S : ShortComplex C h : S.HomologyData inst✝ : S.HasHomology ⊢ h.iso = h.left.homologyIso.symm ≪≫ h.right.homologyIso
ext
case w C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasZeroMorphisms C S : ShortComplex C h : S.HomologyData inst✝ : S.HasHomology ⊢ h.iso.hom = (h.left.homologyIso.symm ≪≫ h.right.homologyIso).hom
17b29b5f5a626f43
ae_eq_zero_of_integral_smooth_smul_eq_zero
Mathlib/Analysis/Distribution/AEEqOfIntegralContDiff.lean
theorem ae_eq_zero_of_integral_smooth_smul_eq_zero [SigmaCompactSpace M] (hf : LocallyIntegrable f μ) (h : ∀ g : M → ℝ, ContMDiff I 𝓘(ℝ) ∞ g → HasCompactSupport g → ∫ x, g x • f x ∂μ = 0) : ∀ᵐ x ∂μ, f x = 0
case h.refine_2 E : Type u_1 inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedSpace ℝ E inst✝¹¹ : FiniteDimensional ℝ E F : Type u_2 inst✝¹⁰ : NormedAddCommGroup F inst✝⁹ : NormedSpace ℝ F inst✝⁸ : CompleteSpace F H : Type u_3 inst✝⁷ : TopologicalSpace H I : ModelWithCorners ℝ E H M : Type u_4 inst✝⁶ : TopologicalSpace M inst✝⁵ : ChartedSpace H M inst✝⁴ : IsManifold I ∞ M inst✝³ : MeasurableSpace M inst✝² : BorelSpace M inst✝¹ : T2Space M f : M → F μ : Measure M inst✝ : SigmaCompactSpace M hf : LocallyIntegrable f μ h : ∀ (g : M → ℝ), ContMDiff I 𝓘(ℝ, ℝ) ∞ g → HasCompactSupport g → ∫ (x : M), g x • f x ∂μ = 0 this✝⁴ : LocallyCompactSpace H this✝³ : LocallyCompactSpace M this✝² : SecondCountableTopology H this✝¹ : SecondCountableTopology M this✝ : MetrizableSpace M x✝ : MetricSpace M := metrizableSpaceMetric M s : Set M hs : IsCompact s δ : ℝ δpos : 0 < δ hδ : IsCompact (cthickening δ s) u : ℕ → ℝ u_pos : ∀ (n : ℕ), u n ∈ Ioo 0 δ u_lim : Tendsto u atTop (𝓝 0) v : ℕ → Set M := fun n => thickening (u n) s K : Set M K_compact : IsCompact K vK : ∀ (n : ℕ), v n ⊆ K g : ℕ → M → ℝ g_supp : ∀ (n : ℕ), support (g n) = v n g_diff : ∀ (n : ℕ), ContMDiff I 𝓘(ℝ, ℝ) ∞ (g n) g_range : ∀ (n : ℕ), range (g n) ⊆ Icc 0 1 hg : ∀ (n : ℕ), ∀ x ∈ s, g n x = 1 bound : M → ℝ := K.indicator fun x => ‖f x‖ A : ∀ (n : ℕ), AEStronglyMeasurable (fun x => g n x • f x) μ B : Integrable bound μ n : ℕ x : M hxK : x ∉ K this : g n x = 0 ⊢ ‖g n x‖ * ‖f x‖ ≤ 0
simp [this]
no goals
28fe4c32a4a6619f
WeierstrassCurve.Jacobian.smul_equiv_smul
Mathlib/AlgebraicGeometry/EllipticCurve/Jacobian.lean
lemma smul_equiv_smul (P Q : Fin 3 → R) {u v : R} (hu : IsUnit u) (hv : IsUnit v) : u • P ≈ v • Q ↔ P ≈ Q
R : Type r inst✝ : CommRing R P Q : Fin 3 → R u v : R hu : IsUnit u hv : IsUnit v ⊢ u • P ≈ v • Q ↔ P ≈ Q
rw [← Quotient.eq_iff_equiv, ← Quotient.eq_iff_equiv, smul_eq P hu, smul_eq Q hv]
no goals
f39d76a9b9e30427
InformationTheory.not_differentiableWithinAt_klFun_Iio_zero
Mathlib/InformationTheory/KullbackLeibler/KLFun.lean
lemma not_differentiableWithinAt_klFun_Iio_zero : ¬ DifferentiableWithinAt ℝ klFun (Iio 0) 0
⊢ Tendsto (deriv klFun) (nhdsWithin 0 (Iio 0)) atBot
rw [deriv_klFun]
⊢ Tendsto log (nhdsWithin 0 (Iio 0)) atBot
ca4c2cf48091d252
Equiv.Perm.pow_mod_card_support_cycleOf_self_apply
Mathlib/GroupTheory/Perm/Cycle/Factors.lean
theorem pow_mod_card_support_cycleOf_self_apply [DecidableEq α] [Fintype α] (f : Perm α) (n : ℕ) (x : α) : (f ^ (n % #(f.cycleOf x).support)) x = (f ^ n) x
α : Type u_2 inst✝¹ : DecidableEq α inst✝ : Fintype α f : Perm α n : ℕ x : α ⊢ (f ^ (n % #(f.cycleOf x).support)) x = (f ^ n) x
by_cases hx : f x = x
case pos α : Type u_2 inst✝¹ : DecidableEq α inst✝ : Fintype α f : Perm α n : ℕ x : α hx : f x = x ⊢ (f ^ (n % #(f.cycleOf x).support)) x = (f ^ n) x case neg α : Type u_2 inst✝¹ : DecidableEq α inst✝ : Fintype α f : Perm α n : ℕ x : α hx : ¬f x = x ⊢ (f ^ (n % #(f.cycleOf x).support)) x = (f ^ n) x
a2e5f09535723482
Profinite.NobelingProof.CC_exact
Mathlib/Topology/Category/Profinite/Nobeling.lean
theorem CC_exact {f : LocallyConstant C ℤ} (hf : Linear_CC' C hsC ho f = 0) : ∃ y, πs C o y = f
case refine_3.h.mk.inr.h.e_6.h I : Type u C : Set (I → Bool) inst✝¹ : LinearOrder I inst✝ : WellFoundedLT I o : Ordinal.{u} hC : IsClosed C hsC : contained C (Order.succ o) ho : o < Ordinal.type fun x1 x2 => x1 < x2 f : LocallyConstant ↑C ℤ hf : ⇑((LocallyConstant.comapₗ ℤ { toFun := CC'₁ C hsC ho, continuous_toFun := ⋯ }) f) = ⇑((LocallyConstant.comapₗ ℤ { toFun := CC'₀ C ho, continuous_toFun := ⋯ }) f) C₀C : ↑(C0 C ho) → ↑C := fun x => ⟨↑x, ⋯⟩ h₀ : Continuous C₀C C₁C : ↑(π (C1 C ho) fun x => ord I x < o) → ↑C := fun x => ⟨SwapTrue o ↑x, ⋯⟩ h₁ : Continuous C₁C x : I → Bool hx : x ∈ C hx₁ : x ∈ C1 C ho hx₁' : ↑(ProjRestrict C (fun x => ord I x < o) ⟨x, hx⟩) ∈ π (C1 C ho) fun x => ord I x < o ⊢ SwapTrue o ↑(ProjRestrict C (fun x => ord I x < o) ⟨x, hx⟩) = x
exact C1_projOrd C hsC ho hx₁
no goals
c7ebbbfd480d7eed
Std.DHashMap.Internal.Raw₀.contains_of_contains_insertIfNew'
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Internal/RawLemmas.lean
theorem contains_of_contains_insertIfNew' [EquivBEq α] [LawfulHashable α] (h : m.1.WF) {k a : α} {v : β k} : (m.insertIfNew k v).contains a → ¬((k == a) ∧ m.contains k = false) → m.contains a
α : Type u β : α → Type v m : Raw₀ α β inst✝³ : BEq α inst✝² : Hashable α inst✝¹ : EquivBEq α inst✝ : LawfulHashable α h : m.val.WF k a : α v : β k ⊢ (m.insertIfNew k v).contains a = true → ¬((k == a) = true ∧ m.contains k = false) → m.contains a = true
simp_to_model [insertIfNew] using List.containsKey_of_containsKey_insertEntryIfNew'
no goals
129fb185f1b6dc87
Vitali.exists_disjoint_subfamily_covering_enlargement
Mathlib/MeasureTheory/Covering/Vitali.lean
theorem exists_disjoint_subfamily_covering_enlargement (B : ι → Set α) (t : Set ι) (δ : ι → ℝ) (τ : ℝ) (hτ : 1 < τ) (δnonneg : ∀ a ∈ t, 0 ≤ δ a) (R : ℝ) (δle : ∀ a ∈ t, δ a ≤ R) (hne : ∀ a ∈ t, (B a).Nonempty) : ∃ u ⊆ t, u.PairwiseDisjoint B ∧ ∀ a ∈ t, ∃ b ∈ u, (B a ∩ B b).Nonempty ∧ δ a ≤ τ * δ b
case intro.intro.intro α : Type u_1 ι : Type u_2 B : ι → Set α t : Set ι δ : ι → ℝ τ : ℝ hτ : 1 < τ δnonneg : ∀ a ∈ t, 0 ≤ δ a R : ℝ δle : ∀ a ∈ t, δ a ≤ R hne : ∀ a ∈ t, (B a).Nonempty T : Set (Set ι) := {u | u ⊆ t ∧ u.PairwiseDisjoint B ∧ ∀ a ∈ t, ∀ b ∈ u, (B a ∩ B b).Nonempty → ∃ c ∈ u, (B a ∩ B c).Nonempty ∧ δ a ≤ τ * δ c} u : Set ι hu : Maximal (fun x => x ∈ T) u a : ι hat : a ∈ t hcon : ∀ b ∈ u, (B a ∩ B b).Nonempty → τ * δ b < δ a a_disj : ∀ c ∈ u, Disjoint (B a) (B c) A : Set ι := {a' | a' ∈ t ∧ ∀ c ∈ u, Disjoint (B a') (B c)} Anonempty : A.Nonempty m : ℝ := sSup (δ '' A) bddA : BddAbove (δ '' A) a' : ι a'A : a' ∈ A ha' : m / τ ≤ δ a' ⊢ False
clear hat hcon a_disj a
case intro.intro.intro α : Type u_1 ι : Type u_2 B : ι → Set α t : Set ι δ : ι → ℝ τ : ℝ hτ : 1 < τ δnonneg : ∀ a ∈ t, 0 ≤ δ a R : ℝ δle : ∀ a ∈ t, δ a ≤ R hne : ∀ a ∈ t, (B a).Nonempty T : Set (Set ι) := {u | u ⊆ t ∧ u.PairwiseDisjoint B ∧ ∀ a ∈ t, ∀ b ∈ u, (B a ∩ B b).Nonempty → ∃ c ∈ u, (B a ∩ B c).Nonempty ∧ δ a ≤ τ * δ c} u : Set ι hu : Maximal (fun x => x ∈ T) u A : Set ι := {a' | a' ∈ t ∧ ∀ c ∈ u, Disjoint (B a') (B c)} Anonempty : A.Nonempty m : ℝ := sSup (δ '' A) bddA : BddAbove (δ '' A) a' : ι a'A : a' ∈ A ha' : m / τ ≤ δ a' ⊢ False
e38a150de4970f9c
SimplexCategory.iso_eq_iso_refl
Mathlib/AlgebraicTopology/SimplexCategory/Basic.lean
theorem iso_eq_iso_refl {x : SimplexCategory} (e : x ≅ x) : e = Iso.refl x
case w.a x : SimplexCategory e : x ≅ x h : Finset.univ.card = x.len + 1 eq₁ : RelIso.toRelEmbedding (orderIsoOfIso e) = Finset.univ.orderEmbOfFin h eq₂ : RelIso.toRelEmbedding (orderIsoOfIso (Iso.refl x)) = Finset.univ.orderEmbOfFin h ⊢ Hom.toOrderHom e.hom = Hom.toOrderHom (Iso.refl x).hom
convert congr_arg (fun φ => (OrderEmbedding.toOrderHom φ)) (eq₁.trans eq₂.symm)
case h.e'_2 x : SimplexCategory e : x ≅ x h : Finset.univ.card = x.len + 1 eq₁ : RelIso.toRelEmbedding (orderIsoOfIso e) = Finset.univ.orderEmbOfFin h eq₂ : RelIso.toRelEmbedding (orderIsoOfIso (Iso.refl x)) = Finset.univ.orderEmbOfFin h ⊢ Hom.toOrderHom e.hom = OrderEmbedding.toOrderHom (RelIso.toRelEmbedding (orderIsoOfIso e))
c8a68730c47018a8
MeasureTheory.withDensity_eq_zero_iff
Mathlib/MeasureTheory/Measure/WithDensity.lean
theorem withDensity_eq_zero_iff {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) : μ.withDensity f = 0 ↔ f =ᵐ[μ] 0
α : Type u_1 m0 : MeasurableSpace α μ : Measure α f : α → ℝ≥0∞ hf : AEMeasurable f μ ⊢ μ.withDensity f = 0 ↔ f =ᶠ[ae μ] 0
rw [← measure_univ_eq_zero, withDensity_apply _ .univ, restrict_univ, lintegral_eq_zero_iff' hf]
no goals
c9442168a7b3da0c
Finset.filter_and
Mathlib/Data/Finset/Basic.lean
theorem filter_and (s : Finset α) : (s.filter fun a => p a ∧ q a) = s.filter p ∩ s.filter q := ext fun _ => by simp [mem_filter, mem_inter, and_comm, and_left_comm, and_self_iff, and_assoc]
α : Type u_1 p q : α → Prop inst✝² : DecidablePred p inst✝¹ : DecidablePred q inst✝ : DecidableEq α s : Finset α x✝ : α ⊢ x✝ ∈ filter (fun a => p a ∧ q a) s ↔ x✝ ∈ filter p s ∩ filter q s
simp [mem_filter, mem_inter, and_comm, and_left_comm, and_self_iff, and_assoc]
no goals
9c62be78010bf282
Equiv.Perm.OnCycleFactors.kerParam_range_eq_centralizer_of_count_le_one
Mathlib/GroupTheory/SpecificGroups/Alternating/Centralizer.lean
theorem OnCycleFactors.kerParam_range_eq_centralizer_of_count_le_one (h_count : ∀ i, g.cycleType.count i ≤ 1) : (kerParam g).range = Subgroup.centralizer {g}
case h.H.a α : Type u_1 inst✝¹ : Fintype α inst✝ : DecidableEq α g : Perm α h_count : ∀ (i : ℕ), Multiset.count i g.cycleType ≤ 1 x : Perm α hx : x ∈ Subgroup.centralizer {g} c : { x // x ∈ g.cycleFactorsFinset } ⊢ ↑(((toPermHom g) ⟨x, ⋯⟩) c) = ↑(1 c)
rw [← Multiset.nodup_iff_count_le_one, cycleType_def, Multiset.nodup_map_iff_inj_on (cycleFactorsFinset g).nodup] at h_count
case h.H.a α : Type u_1 inst✝¹ : Fintype α inst✝ : DecidableEq α g : Perm α h_count : ∀ x ∈ g.cycleFactorsFinset.val, ∀ y ∈ g.cycleFactorsFinset.val, (card ∘ support) x = (card ∘ support) y → x = y x : Perm α hx : x ∈ Subgroup.centralizer {g} c : { x // x ∈ g.cycleFactorsFinset } ⊢ ↑(((toPermHom g) ⟨x, ⋯⟩) c) = ↑(1 c)
50f9021ffb5b7a29
frattini_le_comap_frattini_of_surjective
Mathlib/GroupTheory/Frattini.lean
lemma frattini_le_comap_frattini_of_surjective (hφ : Function.Surjective φ) : frattini G ≤ (frattini H).comap φ
G : Type u_1 H : Type u_2 inst✝¹ : Group G inst✝ : Group H φ : G →* H hφ : Function.Surjective ⇑φ ⊢ ∀ i ∈ {H_1 | IsCoatom H_1}, ⨅ a ∈ {H | IsCoatom H}, a ≤ comap φ i
intro M hM
G : Type u_1 H : Type u_2 inst✝¹ : Group G inst✝ : Group H φ : G →* H hφ : Function.Surjective ⇑φ M : Subgroup H hM : M ∈ {H_1 | IsCoatom H_1} ⊢ ⨅ a ∈ {H | IsCoatom H}, a ≤ comap φ M
07175ba0874095b4
int_prod_range_nonneg
Mathlib/Analysis/Convex/SpecificFunctions/Deriv.lean
theorem int_prod_range_nonneg (m : ℤ) (n : ℕ) (hn : Even n) : 0 ≤ ∏ k ∈ Finset.range n, (m - k)
case intro.succ m : ℤ n : ℕ ihn : 0 ≤ ∏ k ∈ Finset.range (2 * n), (m - ↑k) ⊢ 0 ≤ ∏ k ∈ Finset.range (n + 1 + (n + 1)), (m - ↑k)
rw [← two_mul, mul_add, mul_one, ← one_add_one_eq_two, ← add_assoc, Finset.prod_range_succ, Finset.prod_range_succ, mul_assoc]
case intro.succ m : ℤ n : ℕ ihn : 0 ≤ ∏ k ∈ Finset.range (2 * n), (m - ↑k) ⊢ 0 ≤ (∏ x ∈ Finset.range ((1 + 1) * n), (m - ↑x)) * ((m - ↑((1 + 1) * n)) * (m - ↑((1 + 1) * n + 1)))
845865b3fc92c079
SimpleGraph.isClique_map_finset_iff_of_nontrivial
Mathlib/Combinatorics/SimpleGraph/Clique.lean
theorem isClique_map_finset_iff_of_nontrivial (ht : t.Nontrivial) : (G.map f).IsClique t ↔ ∃ (s : Finset α), G.IsClique s ∧ s.map f = t
case mpr α : Type u_1 β : Type u_2 G : SimpleGraph α f : α ↪ β t : Finset β ht : t.Nontrivial ⊢ (∃ s, G.IsClique ↑s ∧ map f s = t) → (SimpleGraph.map f G).IsClique ↑t
rintro ⟨s, hs, rfl⟩
case mpr.intro.intro α : Type u_1 β : Type u_2 G : SimpleGraph α f : α ↪ β s : Finset α hs : G.IsClique ↑s ht : (map f s).Nontrivial ⊢ (SimpleGraph.map f G).IsClique ↑(map f s)
666a9cd7c64db5fe
min_assoc
Mathlib/Order/Defs/LinearOrder.lean
lemma min_assoc (a b c : α) : min (min a b) c = min a (min b c)
case h₃.h₂ α : Type u_1 inst✝ : LinearOrder α a b c d : α h₁ : d ≤ a h₂ : d ≤ min b c ⊢ d ≤ c
apply le_trans h₂
case h₃.h₂ α : Type u_1 inst✝ : LinearOrder α a b c d : α h₁ : d ≤ a h₂ : d ≤ min b c ⊢ min b c ≤ c
c74984dcee9d4eb0
MeasureTheory.unifIntegrable_subsingleton
Mathlib/MeasureTheory/Function/UniformIntegrable.lean
theorem unifIntegrable_subsingleton [Subsingleton ι] (hp_one : 1 ≤ p) (hp_top : p ≠ ∞) {f : ι → α → β} (hf : ∀ i, MemLp (f i) p μ) : UnifIntegrable f p μ
case pos.intro.intro.intro α : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace α μ : Measure α inst✝¹ : NormedAddCommGroup β p : ℝ≥0∞ inst✝ : Subsingleton ι hp_one : 1 ≤ p hp_top : p ≠ ⊤ f : ι → α → β hf : ∀ (i : ι), MemLp (f i) p μ ε : ℝ hε : 0 < ε i : ι δ : ℝ hδpos : 0 < δ hδ : ∀ (s : Set α), MeasurableSet s → μ s ≤ ENNReal.ofReal δ → eLpNorm (s.indicator (f i)) p μ ≤ ENNReal.ofReal ε j : ι s : Set α hs : MeasurableSet s hμs : μ s ≤ ENNReal.ofReal δ ⊢ eLpNorm (s.indicator (f j)) p μ ≤ ENNReal.ofReal ε
convert hδ s hs hμs
no goals
b4be6a9aa99176d2
MeasureTheory.Measure.tendsto_addHaar_inter_smul_one_of_density_one_aux
Mathlib/MeasureTheory/Measure/Lebesgue/EqHaar.lean
theorem tendsto_addHaar_inter_smul_one_of_density_one_aux (s : Set E) (hs : MeasurableSet s) (x : E) (h : Tendsto (fun r => μ (s ∩ closedBall x r) / μ (closedBall x r)) (𝓝[>] 0) (𝓝 1)) (t : Set E) (ht : MeasurableSet t) (h't : μ t ≠ 0) (h''t : μ t ≠ ∞) : Tendsto (fun r : ℝ => μ (s ∩ ({x} + r • t)) / μ ({x} + r • t)) (𝓝[>] 0) (𝓝 1)
case e_a E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : FiniteDimensional ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure s : Set E hs : MeasurableSet s x : E h : Tendsto (fun r => μ (s ∩ closedBall x r) / μ (closedBall x r)) (𝓝[>] 0) (𝓝 1) t : Set E ht : MeasurableSet t h't : μ t ≠ 0 h''t : μ t ≠ ⊤ u v : Set E uzero : μ u ≠ 0 utop : μ u ≠ ⊤ vmeas : MeasurableSet v ⊢ μ u - μ (vᶜ ∩ u) = μ (v ∩ u)
rw [inter_comm _ u, inter_comm _ u, eq_comm]
case e_a E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : FiniteDimensional ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure s : Set E hs : MeasurableSet s x : E h : Tendsto (fun r => μ (s ∩ closedBall x r) / μ (closedBall x r)) (𝓝[>] 0) (𝓝 1) t : Set E ht : MeasurableSet t h't : μ t ≠ 0 h''t : μ t ≠ ⊤ u v : Set E uzero : μ u ≠ 0 utop : μ u ≠ ⊤ vmeas : MeasurableSet v ⊢ μ (u ∩ v) = μ u - μ (u ∩ vᶜ)
a092845449b3addf
Array.filterMap_flatMap
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Lemmas.lean
theorem filterMap_flatMap {β γ} (l : Array α) (g : α → Array β) (f : β → Option γ) : (l.flatMap g).filterMap f = l.flatMap fun a => (g a).filterMap f
α : Type u_1 β : Type u_2 γ : Type u_3 l : Array α g : α → Array β f : β → Option γ ⊢ filterMap f (flatMap g l) = flatMap (fun a => filterMap f (g a)) l
rcases l with ⟨l⟩
case mk α : Type u_1 β : Type u_2 γ : Type u_3 g : α → Array β f : β → Option γ l : List α ⊢ filterMap f (flatMap g { toList := l }) = flatMap (fun a => filterMap f (g a)) { toList := l }
2e88c183d4eabbce
SimplexCategory.mkOfSucc_δ_gt
Mathlib/AlgebraicTopology/SimplexCategory/Basic.lean
/-- If `i + 1 > j`, `mkOfSucc i ≫ δ j` is the morphism `⦋1⦌ ⟶ ⦋n⦌` that sends `0` and `1` to `i + 1` and `i + 2`, respectively. -/ lemma mkOfSucc_δ_gt {n : ℕ} {i : Fin n} {j : Fin (n + 2)} (h : j < i.succ.castSucc) : mkOfSucc i ≫ δ j = mkOfSucc i.succ
case a.h.h.h.«_@».Mathlib.AlgebraicTopology.SimplexCategory.Defs._hyg.913.«1».h n : ℕ i : Fin n j : Fin (n + 2) h : j < i.succ.castSucc ⊢ j ≤ ((Hom.toOrderHom (mkOfSucc i)) ((fun i => i) ⟨1, ⋯⟩)).castSucc
exact Nat.le_of_lt h
no goals
d2722ed2284db630
List.mk_mem_sym2
Mathlib/Data/List/Sym.lean
theorem mk_mem_sym2 {xs : List α} {a b : α} (ha : a ∈ xs) (hb : b ∈ xs) : s(a, b) ∈ xs.sym2
case cons.inl.inl.h α : Type u_1 b : α xs : List α ih : b ∈ xs → b ∈ xs → s(b, b) ∈ xs.sym2 ⊢ s(b, b) = s(b, b)
rfl
no goals
2e917f6e418f8710
MeasureTheory.integral_exp_pos
Mathlib/MeasureTheory/Integral/Bochner.lean
lemma integral_exp_pos {μ : Measure α} {f : α → ℝ} [hμ : NeZero μ] (hf : Integrable (fun x ↦ Real.exp (f x)) μ) : 0 < ∫ x, Real.exp (f x) ∂μ
α : Type u_1 m : MeasurableSpace α μ : Measure α f : α → ℝ hμ : NeZero μ hf : Integrable (fun x => Real.exp (f x)) μ ⊢ 0 < μ (Function.support fun x => Real.exp (f x))
suffices (Function.support fun x ↦ Real.exp (f x)) = Set.univ by simp [this, hμ.out]
α : Type u_1 m : MeasurableSpace α μ : Measure α f : α → ℝ hμ : NeZero μ hf : Integrable (fun x => Real.exp (f x)) μ ⊢ (Function.support fun x => Real.exp (f x)) = univ
2514b71f6019debc
MeasureTheory.SignedMeasure.findExistsOneDivLT_min
Mathlib/MeasureTheory/Decomposition/SignedHahn.lean
theorem findExistsOneDivLT_min (hi : ¬s ≤[i] 0) {m : ℕ} (hm : m < findExistsOneDivLT s i) : ¬ExistsOneDivLT s i m
α : Type u_1 inst✝ : MeasurableSpace α s : SignedMeasure α i : Set α hi : ¬s ≤[i] 0 m : ℕ hm : m < Nat.find ⋯ ⊢ ¬MeasureTheory.SignedMeasure.ExistsOneDivLT s i m
exact Nat.find_min _ hm
no goals
c1ddab5c74d4c5c1
BitVec.getMsbD_concat
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Lemmas.lean
theorem getMsbD_concat {i w : Nat} {b : Bool} {x : BitVec w} : (x.concat b).getMsbD i = if i < w then x.getMsbD i else decide (i = w) && b
case neg i w : Nat b : Bool x : BitVec w h₀ : ¬i = w h₁ : ¬i < w a✝ : i < w + 1 ⊢ b = false
omega
no goals
d05db0a79a970455
IsNilpotent.exp_add_of_commute
Mathlib/RingTheory/Nilpotent/Exp.lean
theorem exp_add_of_commute {a b : A} (h₁ : Commute a b) (h₂ : IsNilpotent a) (h₃ : IsNilpotent b) : exp (a + b) = exp a * exp b
case intro.intro A : Type u_1 inst✝¹ : Ring A inst✝ : Algebra ℚ A a b : A h₁ : Commute a b n₁ : ℕ hn₁ : a ^ n₁ = 0 n₂ : ℕ hn₂ : b ^ n₂ = 0 N : ℕ := n₁ ⊔ n₂ h₄ : a ^ (N + 1) = 0 h₅ : b ^ (N + 1) = 0 R2N : Finset ℕ := range (2 * N + 1) hR2N : R2N = range (2 * N + 1) RN : Finset ℕ := range (N + 1) hRN : RN = range (N + 1) s₁ : ∑ i ∈ R2N, (↑i !)⁻¹ • (a + b) ^ i = ∑ ij ∈ filter (fun ij => ij.1 + ij.2 ≤ 2 * N) (R2N ×ˢ R2N), ((↑ij.1!)⁻¹ * (↑ij.2!)⁻¹) • (a ^ ij.1 * b ^ ij.2) z₁ : ∑ ij ∈ filter (fun ij => ¬ij.1 + ij.2 ≤ 2 * N) (R2N ×ˢ R2N), ((↑ij.1!)⁻¹ * (↑ij.2!)⁻¹) • (a ^ ij.1 * b ^ ij.2) = 0 split₁ : ∑ x ∈ filter (fun x => x.1 + x.2 ≤ 2 * N) (R2N ×ˢ R2N), ((↑x.1!)⁻¹ * (↑x.2!)⁻¹) • (a ^ x.1 * b ^ x.2) + ∑ x ∈ filter (fun x => ¬x.1 + x.2 ≤ 2 * N) (R2N ×ˢ R2N), ((↑x.1!)⁻¹ * (↑x.2!)⁻¹) • (a ^ x.1 * b ^ x.2) = ∑ x ∈ R2N ×ˢ R2N, ((↑x.1!)⁻¹ * (↑x.2!)⁻¹) • (a ^ x.1 * b ^ x.2) ⊢ ∑ i ∈ R2N, (↑i !)⁻¹ • (a + b) ^ i = (∑ i ∈ RN, (↑i !)⁻¹ • a ^ i) * ∑ i ∈ RN, (↑i !)⁻¹ • b ^ i
rw [z₁, add_zero] at split₁
case intro.intro A : Type u_1 inst✝¹ : Ring A inst✝ : Algebra ℚ A a b : A h₁ : Commute a b n₁ : ℕ hn₁ : a ^ n₁ = 0 n₂ : ℕ hn₂ : b ^ n₂ = 0 N : ℕ := n₁ ⊔ n₂ h₄ : a ^ (N + 1) = 0 h₅ : b ^ (N + 1) = 0 R2N : Finset ℕ := range (2 * N + 1) hR2N : R2N = range (2 * N + 1) RN : Finset ℕ := range (N + 1) hRN : RN = range (N + 1) s₁ : ∑ i ∈ R2N, (↑i !)⁻¹ • (a + b) ^ i = ∑ ij ∈ filter (fun ij => ij.1 + ij.2 ≤ 2 * N) (R2N ×ˢ R2N), ((↑ij.1!)⁻¹ * (↑ij.2!)⁻¹) • (a ^ ij.1 * b ^ ij.2) z₁ : ∑ ij ∈ filter (fun ij => ¬ij.1 + ij.2 ≤ 2 * N) (R2N ×ˢ R2N), ((↑ij.1!)⁻¹ * (↑ij.2!)⁻¹) • (a ^ ij.1 * b ^ ij.2) = 0 split₁ : ∑ x ∈ filter (fun x => x.1 + x.2 ≤ 2 * N) (R2N ×ˢ R2N), ((↑x.1!)⁻¹ * (↑x.2!)⁻¹) • (a ^ x.1 * b ^ x.2) = ∑ x ∈ R2N ×ˢ R2N, ((↑x.1!)⁻¹ * (↑x.2!)⁻¹) • (a ^ x.1 * b ^ x.2) ⊢ ∑ i ∈ R2N, (↑i !)⁻¹ • (a + b) ^ i = (∑ i ∈ RN, (↑i !)⁻¹ • a ^ i) * ∑ i ∈ RN, (↑i !)⁻¹ • b ^ i
925becc4d11e37f5
Matrix.vecMul_surjective_iff_isUnit
Mathlib/LinearAlgebra/Matrix/NonsingularInverse.lean
theorem vecMul_surjective_iff_isUnit {A : Matrix m m R} : Function.Surjective A.vecMul ↔ IsUnit A
m : Type u inst✝² : DecidableEq m R : Type u_2 inst✝¹ : CommRing R inst✝ : Fintype m A : Matrix m m R ⊢ (Function.Surjective fun v => v ᵥ* A) ↔ IsUnit A
rw [vecMul_surjective_iff_exists_left_inverse, exists_left_inverse_iff_isUnit]
no goals
68d65ce87950505f
ProbabilityTheory.Kernel.measurable_kernel_prod_mk_left'
Mathlib/Probability/Kernel/MeasurableLIntegral.lean
theorem measurable_kernel_prod_mk_left' [IsSFiniteKernel η] {s : Set (β × γ)} (hs : MeasurableSet s) (a : α) : Measurable fun b => η (a, b) (Prod.mk b ⁻¹' s)
α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ η : Kernel (α × β) γ inst✝ : IsSFiniteKernel η s : Set (β × γ) hs : MeasurableSet s a : α this : ∀ (b : β), Prod.mk b ⁻¹' s = {c | ((a, b), c) ∈ {p | (p.1.2, p.2) ∈ s}} ⊢ Measurable fun b => (η (a, b)) (Prod.mk b ⁻¹' s)
simp_rw [this]
α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ η : Kernel (α × β) γ inst✝ : IsSFiniteKernel η s : Set (β × γ) hs : MeasurableSet s a : α this : ∀ (b : β), Prod.mk b ⁻¹' s = {c | ((a, b), c) ∈ {p | (p.1.2, p.2) ∈ s}} ⊢ Measurable fun b => (η (a, b)) {c | ((a, b), c) ∈ {p | (p.1.2, p.2) ∈ s}}
294fa3b0e5a4ba28
Complex.sin_pi_div_two
Mathlib/Analysis/SpecialFunctions/Trigonometric/Basic.lean
theorem sin_pi_div_two : sin (π / 2) = 1 := calc sin (π / 2) = Real.sin (π / 2)
⊢ sin (↑π / 2) = sin ↑(π / 2)
simp
no goals
13ffcbe8ac348cd9
RingQuot.mkAlgHom_rel
Mathlib/Algebra/RingQuot.lean
theorem mkAlgHom_rel {s : A → A → Prop} {x y : A} (w : s x y) : mkAlgHom S s x = mkAlgHom S s y
S : Type uS inst✝² : CommSemiring S A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A s : A → A → Prop x y : A w : s x y ⊢ (mkAlgHom S s) x = (mkAlgHom S s) y
simp [mkAlgHom_def, mkRingHom_def, Quot.sound (Rel.of w)]
no goals
19211ff2cf6e7d06
MeasureTheory.condExp_congr_ae
Mathlib/MeasureTheory/Function/ConditionalExpectation/Basic.lean
theorem condExp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m]
case pos α : Type u_1 E : Type u_3 m m₀ : MeasurableSpace α μ : Measure α f g : α → E inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E h : f =ᶠ[ae μ] g hm : m ≤ m₀ ⊢ μ[f|m] =ᶠ[ae μ] μ[g|m]
by_cases hμm : SigmaFinite (μ.trim hm)
case pos α : Type u_1 E : Type u_3 m m₀ : MeasurableSpace α μ : Measure α f g : α → E inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E h : f =ᶠ[ae μ] g hm : m ≤ m₀ hμm : SigmaFinite (μ.trim hm) ⊢ μ[f|m] =ᶠ[ae μ] μ[g|m] case neg α : Type u_1 E : Type u_3 m m₀ : MeasurableSpace α μ : Measure α f g : α → E inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E h : f =ᶠ[ae μ] g hm : m ≤ m₀ hμm : ¬SigmaFinite (μ.trim hm) ⊢ μ[f|m] =ᶠ[ae μ] μ[g|m]
e0e9f7f4839f4674
AlgebraicTopology.DoldKan.HigherFacesVanish.comp_Hσ_eq
Mathlib/AlgebraicTopology/DoldKan/Faces.lean
theorem comp_Hσ_eq {Y : C} {n a q : ℕ} {φ : Y ⟶ X _⦋n + 1⦌} (v : HigherFacesVanish q φ) (hnaq : n = a + q) : φ ≫ (Hσ q).f (n + 1) = -φ ≫ X.δ ⟨a + 1, Nat.succ_lt_succ (Nat.lt_succ_iff.mpr (Nat.le.intro hnaq.symm))⟩ ≫ X.σ ⟨a, Nat.lt_succ_iff.mpr (Nat.le.intro hnaq.symm)⟩
case a C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X _⦋n + 1⦌ v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q simplif : ∀ (a b c d e f : Y ⟶ X _⦋n + 1⦌), b = f → d + e = 0 → c + a = 0 → a + b + (c + d + e) = f ⊢ Odd (a + (a + 1))
exact ⟨a, by omega⟩
no goals
964779d74b03b839
ZMod.isSquare_neg_one_iff'
Mathlib/NumberTheory/SumTwoSquares.lean
theorem ZMod.isSquare_neg_one_iff' {n : ℕ} (hn : Squarefree n) : IsSquare (-1 : ZMod n) ↔ ∀ {q : ℕ}, q ∣ n → q % 4 ≠ 3
n : ℕ hn : Squarefree n help : ∀ (a b : ZMod 4), a ≠ 3 → b ≠ 3 → a * b ≠ 3 ⊢ IsSquare (-1) ↔ ∀ {q : ℕ}, q ∣ n → q % 4 ≠ 3
rw [ZMod.isSquare_neg_one_iff hn]
n : ℕ hn : Squarefree n help : ∀ (a b : ZMod 4), a ≠ 3 → b ≠ 3 → a * b ≠ 3 ⊢ (∀ {q : ℕ}, Nat.Prime q → q ∣ n → q % 4 ≠ 3) ↔ ∀ {q : ℕ}, q ∣ n → q % 4 ≠ 3
2086e5554fd0b596
Set.iUnion_prod_of_monotone
Mathlib/Data/Set/Lattice.lean
theorem iUnion_prod_of_monotone [SemilatticeSup α] {s : α → Set β} {t : α → Set γ} (hs : Monotone s) (ht : Monotone t) : ⋃ x, s x ×ˢ t x = (⋃ x, s x) ×ˢ ⋃ x, t x
case h.mk.left α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : SemilatticeSup α s : α → Set β t : α → Set γ hs : Monotone s ht : Monotone t z : β w : γ x : α hz : z ∈ s x hw : w ∈ t x ⊢ (∃ i, z ∈ s i) ∧ ∃ i, w ∈ t i
exact ⟨⟨x, hz⟩, x, hw⟩
no goals
6c8a94814fe2d781
Option.all_guard
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Option/Lemmas.lean
theorem all_guard (p : α → Prop) [DecidablePred p] (a : α) : Option.all q (guard p a) = (!p a || q a)
α : Type u_1 q : α → Bool p : α → Prop inst✝ : DecidablePred p a : α ⊢ Option.all q (guard p a) = (!decide (p a) || q a)
simp only [guard]
α : Type u_1 q : α → Bool p : α → Prop inst✝ : DecidablePred p a : α ⊢ Option.all q (if p a then some a else none) = (!decide (p a) || q a)
9b1dd0ac49b2d23d
CategoryTheory.Localization.Monoidal.rightUnitor_hom_app
Mathlib/CategoryTheory/Localization/Monoidal.lean
lemma rightUnitor_hom_app (X : C) : (ρ_ ((L').obj X)).hom = (L').obj X ◁ (ε' L W ε).inv ≫ (μ _ _ _ _ _).hom ≫ (L').map (ρ_ X).hom
C : Type u_1 D : Type u_2 inst✝⁴ : Category.{u_4, u_1} C inst✝³ : Category.{u_3, u_2} D L : C ⥤ D W : MorphismProperty C inst✝² : MonoidalCategory C inst✝¹ : W.IsMonoidal inst✝ : L.IsLocalization W unit : D ε : L.obj (𝟙_ C) ≅ unit X : C ⊢ (ρ_ (L'.obj X)).hom = L'.obj X ◁ (ε' L W ε).inv ≫ (μ L W ε X (𝟙_ C)).hom ≫ L'.map (ρ_ X).hom
dsimp [monoidalCategoryStruct, rightUnitor]
C : Type u_1 D : Type u_2 inst✝⁴ : Category.{u_4, u_1} C inst✝³ : Category.{u_3, u_2} D L : C ⥤ D W : MorphismProperty C inst✝² : MonoidalCategory C inst✝¹ : W.IsMonoidal inst✝ : L.IsLocalization W unit : D ε : L.obj (𝟙_ C) ≅ unit X : C ⊢ ((tensorBifunctor L W ε).obj (L'.obj X)).map ε.inv ≫ (liftNatTrans L' W (tensorRight (𝟙_ C) ⋙ L') L' ((tensorBifunctor L W ε).flip.obj (L'.obj (𝟙_ C))) (𝟭 (LocalizedMonoidal L W ε)) (whiskerRight (rightUnitorNatIso C).hom L' ≫ L.leftUnitor.hom)).app (L'.obj X) = ((tensorBifunctor L W ε).obj (L'.obj X)).map (ε' L W ε).inv ≫ (μ L W ε X (𝟙_ C)).hom ≫ L'.map (ρ_ X).hom
57a5c56b0a9e267c
Topology.IsScott.scott_eq_upper_of_completeLinearOrder
Mathlib/Topology/Order/ScottTopology.lean
lemma scott_eq_upper_of_completeLinearOrder : scott α univ = upper α
case a.h.a α : Type u_1 inst✝ : CompleteLinearOrder α this✝ : TopologicalSpace α := upper α U : Set α this : TopologicalSpace α := scott α univ ⊢ IsOpen U ↔ U = univ ∨ ∃ a, (Iic a)ᶜ = U
rw [@isOpen_iff_Iic_compl_or_univ _ _ (scott α univ) ({ topology_eq_scott := rfl }) U]
no goals
feb5d9ba88e61dd3
Submodule.baseChange_span
Mathlib/LinearAlgebra/TensorProduct/Tower.lean
@[simp] lemma baseChange_span (s : Set M) : (span R s).baseChange A = span A (TensorProduct.mk R A M 1 '' s)
case intro.intro R : Type u_1 M : Type u_2 A : Type u_3 inst✝⁴ : CommSemiring R inst✝³ : Semiring A inst✝² : Algebra R A inst✝¹ : AddCommMonoid M inst✝ : Module R M s : Set M m : M hm : m ∈ span R s ⊢ ((TensorProduct.mk R A M) 1) m ∈ ↑(span A (⇑((TensorProduct.mk R A M) 1) '' s))
apply span_induction (p := fun m' _ ↦ (1 : A) ⊗ₜ[R] m' ∈ span A (TensorProduct.mk R A M 1 '' s)) (hx := hm)
case intro.intro.mem R : Type u_1 M : Type u_2 A : Type u_3 inst✝⁴ : CommSemiring R inst✝³ : Semiring A inst✝² : Algebra R A inst✝¹ : AddCommMonoid M inst✝ : Module R M s : Set M m : M hm : m ∈ span R s ⊢ ∀ (x : M) (h : x ∈ s), (fun m' x => 1 ⊗ₜ[R] m' ∈ span A (⇑((TensorProduct.mk R A M) 1) '' s)) x ⋯ case intro.intro.zero R : Type u_1 M : Type u_2 A : Type u_3 inst✝⁴ : CommSemiring R inst✝³ : Semiring A inst✝² : Algebra R A inst✝¹ : AddCommMonoid M inst✝ : Module R M s : Set M m : M hm : m ∈ span R s ⊢ 1 ⊗ₜ[R] 0 ∈ span A (⇑((TensorProduct.mk R A M) 1) '' s) case intro.intro.add R : Type u_1 M : Type u_2 A : Type u_3 inst✝⁴ : CommSemiring R inst✝³ : Semiring A inst✝² : Algebra R A inst✝¹ : AddCommMonoid M inst✝ : Module R M s : Set M m : M hm : m ∈ span R s ⊢ ∀ (x y : M) (hx : x ∈ span R s) (hy : y ∈ span R s), (fun m' x => 1 ⊗ₜ[R] m' ∈ span A (⇑((TensorProduct.mk R A M) 1) '' s)) x hx → (fun m' x => 1 ⊗ₜ[R] m' ∈ span A (⇑((TensorProduct.mk R A M) 1) '' s)) y hy → (fun m' x => 1 ⊗ₜ[R] m' ∈ span A (⇑((TensorProduct.mk R A M) 1) '' s)) (x + y) ⋯ case intro.intro.smul R : Type u_1 M : Type u_2 A : Type u_3 inst✝⁴ : CommSemiring R inst✝³ : Semiring A inst✝² : Algebra R A inst✝¹ : AddCommMonoid M inst✝ : Module R M s : Set M m : M hm : m ∈ span R s ⊢ ∀ (a : R) (x : M) (hx : x ∈ span R s), (fun m' x => 1 ⊗ₜ[R] m' ∈ span A (⇑((TensorProduct.mk R A M) 1) '' s)) x hx → (fun m' x => 1 ⊗ₜ[R] m' ∈ span A (⇑((TensorProduct.mk R A M) 1) '' s)) (a • x) ⋯
dcaedd5200da7dda
LinearOrderedCommGroupWithZero.wellFoundedOn_setOf_le_lt_iff_nonempty_discrete_of_ne_zero
Mathlib/GroupTheory/ArchimedeanDensely.lean
lemma LinearOrderedCommGroupWithZero.wellFoundedOn_setOf_le_lt_iff_nonempty_discrete_of_ne_zero {G₀ : Type*} [LinearOrderedCommGroupWithZero G₀] [Nontrivial G₀ˣ] {g : G₀} (hg : g ≠ 0) : Set.WellFoundedOn {x : G₀ | g ≤ x} (· < ·) ↔ Nonempty (G₀ ≃*o ℤₘ₀)
case refine_1 G₀ : Type u_2 inst✝¹ : LinearOrderedCommGroupWithZero G₀ inst✝ : Nontrivial G₀ˣ g : G₀ hg : g ≠ 0 this : ({x | g ≤ x}.WellFoundedOn fun x1 x2 => x1 < x2) ↔ {x | Units.mk0 g hg ≤ x}.WellFoundedOn fun x1 x2 => x1 < x2 f : G₀ˣ ≃*o Multiplicative ℤ ⊢ G₀ ≃* ℤₘ₀
exact WithZero.withZeroUnitsEquiv.symm.trans f.withZero
no goals
dd175bef7c0a0720
WeierstrassCurve.exists_variableChange_of_char_ne_two_or_three
Mathlib/AlgebraicGeometry/EllipticCurve/IsomOfJ.lean
private lemma exists_variableChange_of_char_ne_two_or_three {p : ℕ} [CharP F p] (hchar2 : p ≠ 2) (hchar3 : p ≠ 3) (heq : E.j = E'.j) : ∃ C : VariableChange F, E.variableChange C = E'
case pos.intro F : Type u_1 inst✝⁶ : Field F inst✝⁵ : IsSepClosed F E✝ E'✝ : WeierstrassCurve F inst✝⁴ : E✝.IsElliptic inst✝³ : E'✝.IsElliptic p : ℕ inst✝² : CharP F p hchar2 : 2 ≠ 0 hchar3 : 3 ≠ 0 this✝³ : NeZero 2 this✝² : NeZero 4 this✝¹ : NeZero 6 this✝ : Invertible 2 := invertibleOfNonzero hchar2 this : Invertible 3 := invertibleOfNonzero hchar3 E : WeierstrassCurve F inst✝¹ : E.IsElliptic h✝¹ : E.IsShortNF E' : WeierstrassCurve F inst✝ : E'.IsElliptic h✝ : E'.IsShortNF heq : E.a₄ ^ 3 * E'.a₆ ^ 2 = E'.a₄ ^ 3 * E.a₆ ^ 2 ha₄✝ : ¬E.a₄ = 0 ha₆ : E.a₆ = 0 ha₄ : E.a₄ ≠ 0 ha₆' : E'.a₆ = 0 ha₄' : E'.a₄ ≠ 0 u : F hu : u ^ 4 = E.a₄ / E'.a₄ ⊢ ∃ C, E.variableChange C = E'
have hu0 : u ≠ 0 := by rw [← pow_ne_zero_iff four_ne_zero, hu, div_ne_zero_iff] exact ⟨ha₄, ha₄'⟩
case pos.intro F : Type u_1 inst✝⁶ : Field F inst✝⁵ : IsSepClosed F E✝ E'✝ : WeierstrassCurve F inst✝⁴ : E✝.IsElliptic inst✝³ : E'✝.IsElliptic p : ℕ inst✝² : CharP F p hchar2 : 2 ≠ 0 hchar3 : 3 ≠ 0 this✝³ : NeZero 2 this✝² : NeZero 4 this✝¹ : NeZero 6 this✝ : Invertible 2 := invertibleOfNonzero hchar2 this : Invertible 3 := invertibleOfNonzero hchar3 E : WeierstrassCurve F inst✝¹ : E.IsElliptic h✝¹ : E.IsShortNF E' : WeierstrassCurve F inst✝ : E'.IsElliptic h✝ : E'.IsShortNF heq : E.a₄ ^ 3 * E'.a₆ ^ 2 = E'.a₄ ^ 3 * E.a₆ ^ 2 ha₄✝ : ¬E.a₄ = 0 ha₆ : E.a₆ = 0 ha₄ : E.a₄ ≠ 0 ha₆' : E'.a₆ = 0 ha₄' : E'.a₄ ≠ 0 u : F hu : u ^ 4 = E.a₄ / E'.a₄ hu0 : u ≠ 0 ⊢ ∃ C, E.variableChange C = E'
5599f8482dc6841e
ClassGroup.normBound_pos
Mathlib/NumberTheory/ClassNumber/Finite.lean
theorem normBound_pos : 0 < normBound abv bS
case intro.a.a R : Type u_1 S : Type u_2 inst✝⁵ : EuclideanDomain R inst✝⁴ : CommRing S inst✝³ : IsDomain S inst✝² : Algebra R S abv : AbsoluteValue R ℤ ι : Type u_5 inst✝¹ : DecidableEq ι inst✝ : Fintype ι bS : Basis ι R S h : ∀ (i j k : ι), (Algebra.leftMulMatrix bS) (bS i) j k = 0 i j k : ι ⊢ (Algebra.leftMulMatrix bS) (bS i) j k = 0 j k
simp [h, DMatrix.zero_apply]
no goals
963a57f6107a0e82
Set.chainHeight_union_eq
Mathlib/Order/Height.lean
theorem chainHeight_union_eq (s t : Set α) (H : ∀ a ∈ s, ∀ b ∈ t, a < b) : (s ∪ t).chainHeight = s.chainHeight + t.chainHeight
α : Type u_1 inst✝ : Preorder α s t : Set α H : ∀ a ∈ s, ∀ b ∈ t, a < b l : List α hl : l ∈ s.subchain l' : List α hl' : l' ∈ t.subchain h : t.chainHeight = ↑l'.length ⊢ l.length + l'.length ≤ (l ++ l').length + 0
simp
no goals
5b4afeceba92ad8b
MvPolynomial.comp_aeval
Mathlib/Algebra/MvPolynomial/Eval.lean
theorem comp_aeval {B : Type*} [CommSemiring B] [Algebra R B] (φ : S₁ →ₐ[R] B) : φ.comp (aeval f) = aeval fun i => φ (f i)
R : Type u S₁ : Type v σ : Type u_1 inst✝⁴ : CommSemiring R inst✝³ : CommSemiring S₁ inst✝² : Algebra R S₁ f : σ → S₁ B : Type u_2 inst✝¹ : CommSemiring B inst✝ : Algebra R B φ : S₁ →ₐ[R] B ⊢ φ.comp (aeval f) = aeval fun i => φ (f i)
ext i
case hf R : Type u S₁ : Type v σ : Type u_1 inst✝⁴ : CommSemiring R inst✝³ : CommSemiring S₁ inst✝² : Algebra R S₁ f : σ → S₁ B : Type u_2 inst✝¹ : CommSemiring B inst✝ : Algebra R B φ : S₁ →ₐ[R] B i : σ ⊢ (φ.comp (aeval f)) (X i) = (aeval fun i => φ (f i)) (X i)
f133e2b6967db436
IsCyclotomicExtension.Rat.Three.eq_one_or_neg_one_of_unit_of_congruent
Mathlib/NumberTheory/Cyclotomic/Three.lean
theorem eq_one_or_neg_one_of_unit_of_congruent [NumberField K] [IsCyclotomicExtension {3} ℚ K] (hcong : ∃ n : ℤ, λ ^ 2 ∣ (u - n : 𝓞 K)) : u = 1 ∨ u = -1
K : Type u_1 inst✝² : Field K ζ : K hζ : IsPrimitiveRoot ζ ↑3 u : (𝓞 K)ˣ inst✝¹ : NumberField K inst✝ : IsCyclotomicExtension {3} ℚ K hcong : ∃ n, 3 ∣ ↑u - ↑n ⊢ u = 1 ∨ u = -1
have hζ := IsCyclotomicExtension.zeta_spec 3 ℚ K
K : Type u_1 inst✝² : Field K ζ : K hζ✝ : IsPrimitiveRoot ζ ↑3 u : (𝓞 K)ˣ inst✝¹ : NumberField K inst✝ : IsCyclotomicExtension {3} ℚ K hcong : ∃ n, 3 ∣ ↑u - ↑n hζ : IsPrimitiveRoot (zeta 3 ℚ K) ↑3 ⊢ u = 1 ∨ u = -1
220139a45fa38b2d
AddMonoidAlgebra.Monic.mul
Mathlib/Algebra/MonoidAlgebra/Degree.lean
lemma Monic.mul (hD : D.Injective) (hadd : ∀ a1 a2, D (a1 + a2) = D a1 + D a2) (hp : p.Monic D) (hq : q.Monic D) : (p * q).Monic D
R : Type u_1 A : Type u_3 B : Type u_5 inst✝⁶ : Semiring R inst✝⁵ : LinearOrder B inst✝⁴ : OrderBot B p q : R[A] D : A → B inst✝³ : AddZeroClass A inst✝² : Add B inst✝¹ : AddLeftStrictMono B inst✝ : AddRightStrictMono B hD : Function.Injective D hadd : ∀ (a1 a2 : A), D (a1 + a2) = D a1 + D a2 hp : Monic D p hq : Monic D q ⊢ leadingCoeff D p = 1
exact hp
no goals
17d05e24584ac857
Finset.small_alternating_pow_of_small_tripling
Mathlib/Combinatorics/Additive/SmallTripling.lean
/-- If `A` has small tripling, say with constant `K`, then `A` has small alternating powers, in the sense that `|A^±1 * ... * A^±1|` is at most `|A|` times a constant exponential in the number of terms in the product. When `A` is symmetric (`A⁻¹ = A`), the base of the exponential can be lowered from `K ^ 3` to `K`, where `K` is the tripling constant. See `Finset.small_pow_of_small_tripling`. -/ @[to_additive "If `A` has small tripling, say with constant `K`, then `A` has small alternating powers, in the sense that `|±A ± ... ± A|` is at most `|A|` times a constant exponential in the number of terms in the product. When `A` is symmetric (`-A = A`), the base of the exponential can be lowered from `K ^ 3` to `K`, where `K` is the tripling constant. See `Finset.small_nsmul_of_small_tripling`."] lemma small_alternating_pow_of_small_tripling (hm : 3 ≤ m) (hA : #(A ^ 3) ≤ K * #A) (ε : Fin m → ℤ) (hε : ∀ i, |ε i| = 1) : #((finRange m).map fun i ↦ A ^ ε i).prod ≤ K ^ (3 * (m - 2)) * #A
case inr G : Type u_1 inst✝¹ : DecidableEq G inst✝ : Group G A : Finset G K : ℝ m : ℕ hm : 3 ≤ m hA : ↑(#(A ^ 3)) ≤ K * ↑(#A) ε : Fin m → ℤ hε : ∀ (i : Fin m), |ε i| = 1 hm₀ : m ≠ 0 hε₀ : ∀ (i : Fin m), ε i ≠ 0 hA₀ : A.Nonempty hK₁ : 1 ≤ K δ : Fin 3 → ℤ hδ : ∀ (i : Fin 3), |δ i| = 1 ⊢ ↑(#(A ^ δ 0 * A ^ δ 1 * A ^ δ 2)) ≤ K ^ 3 * ↑(#A)
simp only [zero_le_one, abs_eq, Int.reduceNeg, forall_iff_succ, isValue, succ_zero_eq_one, succ_one_eq_two, IsEmpty.forall_iff, and_true] at hδ
case inr G : Type u_1 inst✝¹ : DecidableEq G inst✝ : Group G A : Finset G K : ℝ m : ℕ hm : 3 ≤ m hA : ↑(#(A ^ 3)) ≤ K * ↑(#A) ε : Fin m → ℤ hε : ∀ (i : Fin m), |ε i| = 1 hm₀ : m ≠ 0 hε₀ : ∀ (i : Fin m), ε i ≠ 0 hA₀ : A.Nonempty hK₁ : 1 ≤ K δ : Fin 3 → ℤ hδ : (δ 0 = 1 ∨ δ 0 = -1) ∧ (δ 1 = 1 ∨ δ 1 = -1) ∧ (δ 2 = 1 ∨ δ 2 = -1) ⊢ ↑(#(A ^ δ 0 * A ^ δ 1 * A ^ δ 2)) ≤ K ^ 3 * ↑(#A)
647fdb3ae1591fd5
PFunctor.M.ext_aux
Mathlib/Data/PFunctor/Univariate/M.lean
theorem ext_aux [Inhabited (M F)] [DecidableEq F.A] {n : ℕ} (x y z : M F) (hx : Agree' n z x) (hy : Agree' n z y) (hrec : ∀ ps : Path F, n = ps.length → iselect ps x = iselect ps y) : x.approx (n + 1) = y.approx (n + 1)
case succ.step.step.f.f F : PFunctor.{u} inst✝¹ : Inhabited F.M inst✝ : DecidableEq F.A n : ℕ n_ih : ∀ (x y z : F.M), Agree' n z x → Agree' n z y → (∀ (ps : Path F), n = length ps → iselect ps x = iselect ps y) → x.approx (n + 1) = y.approx (n + 1) z : F.M a✝⁹ : F.A x✝¹ y✝¹ : F.B a✝⁹ → F.M a✝⁸ : ∀ (i : F.B a✝⁹), Agree' n (x✝¹ i) (y✝¹ i) a✝⁷ : z = M.mk ⟨a✝⁹, x✝¹⟩ a✝⁶ : F.A x✝ y✝ : F.B a✝⁶ → F.M a✝⁵ : ∀ (i : F.B a✝⁶), Agree' n (x✝ i) (y✝ i) a✝⁴ : z = M.mk ⟨a✝⁶, x✝⟩ a✝³ : F.A f✝¹ : F.B a✝³ → F.M a✝² : M.mk ⟨a✝³, f✝¹⟩ = M.mk ⟨a✝⁹, y✝¹⟩ a✝¹ : F.A f✝ : F.B a✝¹ → F.M a✝ : M.mk ⟨a✝¹, f✝⟩ = M.mk ⟨a✝⁶, y✝⟩ hrec : ∀ (ps : Path F), n + 1 = length ps → iselect ps (M.mk ⟨a✝³, f✝¹⟩) = iselect ps (M.mk ⟨a✝¹, f✝⟩) ⊢ (M.mk ⟨a✝³, f✝¹⟩).approx (n + 1 + 1) = (M.mk ⟨a✝¹, f✝⟩).approx (n + 1 + 1)
subst z
case succ.step.step.f.f F : PFunctor.{u} inst✝¹ : Inhabited F.M inst✝ : DecidableEq F.A n : ℕ n_ih : ∀ (x y z : F.M), Agree' n z x → Agree' n z y → (∀ (ps : Path F), n = length ps → iselect ps x = iselect ps y) → x.approx (n + 1) = y.approx (n + 1) a✝⁸ : F.A x✝¹ y✝¹ : F.B a✝⁸ → F.M a✝⁷ : ∀ (i : F.B a✝⁸), Agree' n (x✝¹ i) (y✝¹ i) a✝⁶ : F.A x✝ y✝ : F.B a✝⁶ → F.M a✝⁵ : ∀ (i : F.B a✝⁶), Agree' n (x✝ i) (y✝ i) a✝⁴ : F.A f✝¹ : F.B a✝⁴ → F.M a✝³ : M.mk ⟨a✝⁴, f✝¹⟩ = M.mk ⟨a✝⁸, y✝¹⟩ a✝² : F.A f✝ : F.B a✝² → F.M a✝¹ : M.mk ⟨a✝², f✝⟩ = M.mk ⟨a✝⁶, y✝⟩ hrec : ∀ (ps : Path F), n + 1 = length ps → iselect ps (M.mk ⟨a✝⁴, f✝¹⟩) = iselect ps (M.mk ⟨a✝², f✝⟩) a✝ : M.mk ⟨a✝⁸, x✝¹⟩ = M.mk ⟨a✝⁶, x✝⟩ ⊢ (M.mk ⟨a✝⁴, f✝¹⟩).approx (n + 1 + 1) = (M.mk ⟨a✝², f✝⟩).approx (n + 1 + 1)
4a16a3c615b0519f
CategoryTheory.unit_mateEquiv
Mathlib/CategoryTheory/Adjunction/Mates.lean
theorem unit_mateEquiv (α : TwoSquare G L₁ L₂ H) (c : C) : G.map (adj₁.unit.app c) ≫ (mateEquiv adj₁ adj₂ α).app _ = adj₂.unit.app _ ≫ R₂.map (α.app _)
C : Type u₁ D : Type u₂ E : Type u₃ F : Type u₄ inst✝³ : Category.{v₁, u₁} C inst✝² : Category.{v₂, u₂} D inst✝¹ : Category.{v₃, u₃} E inst✝ : Category.{v₄, u₄} F G : C ⥤ E H : D ⥤ F L₁ : C ⥤ D R₁ : D ⥤ C L₂ : E ⥤ F R₂ : F ⥤ E adj₁ : L₁ ⊣ R₁ adj₂ : L₂ ⊣ R₂ α : TwoSquare G L₁ L₂ H c : C ⊢ adj₂.unit.app (G.obj c) ≫ R₂.map (α.app c ≫ (L₁ ⋙ H).map (adj₁.unit.app c)) ≫ R₂.map (H.map (adj₁.counit.app (L₁.obj c))) = adj₂.unit.app (G.obj c) ≫ R₂.map (α.app c)
rw [R₂.map_comp]
C : Type u₁ D : Type u₂ E : Type u₃ F : Type u₄ inst✝³ : Category.{v₁, u₁} C inst✝² : Category.{v₂, u₂} D inst✝¹ : Category.{v₃, u₃} E inst✝ : Category.{v₄, u₄} F G : C ⥤ E H : D ⥤ F L₁ : C ⥤ D R₁ : D ⥤ C L₂ : E ⥤ F R₂ : F ⥤ E adj₁ : L₁ ⊣ R₁ adj₂ : L₂ ⊣ R₂ α : TwoSquare G L₁ L₂ H c : C ⊢ adj₂.unit.app (G.obj c) ≫ (R₂.map (α.app c) ≫ R₂.map ((L₁ ⋙ H).map (adj₁.unit.app c))) ≫ R₂.map (H.map (adj₁.counit.app (L₁.obj c))) = adj₂.unit.app (G.obj c) ≫ R₂.map (α.app c)
75158210b8e0ab27
PowerSeries.coeff_succ_X_mul
Mathlib/RingTheory/PowerSeries/Basic.lean
theorem coeff_succ_X_mul (n : ℕ) (φ : R⟦X⟧) : coeff R (n + 1) (X * φ) = coeff R n φ
R : Type u_1 inst✝ : Semiring R n : ℕ φ : R⟦X⟧ ⊢ (coeff R (n + 1)) (X * φ) = (coeff R n) φ
simp only [coeff, Finsupp.single_add, add_comm n 1]
R : Type u_1 inst✝ : Semiring R n : ℕ φ : R⟦X⟧ ⊢ (MvPowerSeries.coeff R (single () 1 + single () n)) (X * φ) = (MvPowerSeries.coeff R (single () n)) φ
98d9de423b9dd68f
Algebra.norm_eq_zero_iff
Mathlib/RingTheory/Norm/Basic.lean
theorem norm_eq_zero_iff [IsDomain R] [IsDomain S] [Module.Free R S] [Module.Finite R S] {x : S} : norm R x = 0 ↔ x = 0
case mp.intro.intro.refine_2 R : Type u_1 S : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : Ring S inst✝⁴ : Algebra R S inst✝³ : IsDomain R inst✝² : IsDomain S inst✝¹ : Free R S inst✝ : Module.Finite R S x : S b : Basis (Free.ChooseBasisIndex R S) R S := Free.chooseBasis R S decEq : DecidableEq (Free.ChooseBasisIndex R S) := Classical.decEq (Free.ChooseBasisIndex R S) v : Free.ChooseBasisIndex R S → R v_ne : v ≠ 0 hv : ⇑(b.repr (x * ∑ i : Free.ChooseBasisIndex R S, v i • b i)) = 0 ⊢ ∑ i : Free.ChooseBasisIndex R S, v i • b i ≠ 0
contrapose! v_ne with sum_eq
case mp.intro.intro.refine_2 R : Type u_1 S : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : Ring S inst✝⁴ : Algebra R S inst✝³ : IsDomain R inst✝² : IsDomain S inst✝¹ : Free R S inst✝ : Module.Finite R S x : S b : Basis (Free.ChooseBasisIndex R S) R S := Free.chooseBasis R S decEq : DecidableEq (Free.ChooseBasisIndex R S) := Classical.decEq (Free.ChooseBasisIndex R S) v : Free.ChooseBasisIndex R S → R hv : ⇑(b.repr (x * ∑ i : Free.ChooseBasisIndex R S, v i • b i)) = 0 sum_eq : ∑ i : Free.ChooseBasisIndex R S, v i • b i = 0 ⊢ v = 0
b22c4acf9f81550f
Monotone.tendsto_le_alternating_series
Mathlib/Analysis/SpecificLimits/Normed.lean
theorem Monotone.tendsto_le_alternating_series (hfl : Tendsto (fun n ↦ ∑ i ∈ range n, (-1) ^ i * f i) atTop (𝓝 l)) (hfm : Monotone f) (k : ℕ) : l ≤ ∑ i ∈ range (2 * k), (-1) ^ i * f i
E : Type u_2 inst✝² : OrderedRing E inst✝¹ : TopologicalSpace E inst✝ : OrderClosedTopology E l : E f : ℕ → E hfl : Tendsto (fun n => ∑ i ∈ Finset.range n, (-1) ^ i * f i) atTop (𝓝 l) hfm : Monotone f k : ℕ ha : Antitone fun n => ∑ i ∈ Finset.range (2 * n), (-1) ^ i * f i ⊢ l ≤ ∑ i ∈ Finset.range (2 * k), (-1) ^ i * f i
exact ha.le_of_tendsto (hfl.comp (tendsto_atTop_mono (fun n ↦ by dsimp; omega) tendsto_id)) _
no goals
8204a47cf4df7c65
Ordinal.bsup_comp
Mathlib/SetTheory/Ordinal/Arithmetic.lean
theorem bsup_comp {o o' : Ordinal.{max u v}} {f : ∀ a < o, Ordinal.{max u v w}} (hf : ∀ {i j} (hi) (hj), i ≤ j → f i hi ≤ f j hj) {g : ∀ a < o', Ordinal.{max u v}} (hg : blsub.{_, u} o' g = o) : (bsup.{_, w} o' fun a ha => f (g a ha) (by rw [← hg]; apply lt_blsub)) = bsup.{_, w} o f
α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop o o' : Ordinal.{max u v} f : (a : Ordinal.{max u v}) → a < o → Ordinal.{max u v w} hf : ∀ {i j : Ordinal.{max u v}} (hi : i < o) (hj : j < o), i ≤ j → f i hi ≤ f j hj g : (a : Ordinal.{max u v}) → a < o' → Ordinal.{max u v} hg : o'.blsub g = o a : Ordinal.{max u v} ha : a < o' ⊢ g a ha < o
rw [← hg]
α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop o o' : Ordinal.{max u v} f : (a : Ordinal.{max u v}) → a < o → Ordinal.{max u v w} hf : ∀ {i j : Ordinal.{max u v}} (hi : i < o) (hj : j < o), i ≤ j → f i hi ≤ f j hj g : (a : Ordinal.{max u v}) → a < o' → Ordinal.{max u v} hg : o'.blsub g = o a : Ordinal.{max u v} ha : a < o' ⊢ g a ha < o'.blsub g
2780919a3a9c7fa6
seminormFromBounded_of_mul_is_mul
Mathlib/Analysis/Normed/Ring/SeminormFromBounded.lean
theorem seminormFromBounded_of_mul_is_mul (f_nonneg : 0 ≤ f) (f_mul : ∀ x y : R, f (x * y) ≤ c * f x * f y) {x : R} (hx : ∀ y : R, f (x * y) = f x * f y) (y : R) : seminormFromBounded' f (x * y) = seminormFromBounded' f x * seminormFromBounded' f y
R : Type u_1 inst✝ : CommRing R f : R → ℝ c : ℝ f_nonneg : 0 ≤ f f_mul : ∀ (x y : R), f (x * y) ≤ c * f x * f y x : R hx : ∀ (y : R), f (x * y) = f x * f y y : R ⊢ seminormFromBounded' f (x * y) = f x * seminormFromBounded' f y
simp only [seminormFromBounded', mul_assoc, hx, mul_div_assoc, Real.mul_iSup_of_nonneg (f_nonneg _)]
no goals
ef647cab5d35766f
Algebra.FormallySmooth.of_isLocalization
Mathlib/RingTheory/Smooth/Basic.lean
theorem of_isLocalization : FormallySmooth R Rₘ
case h R Rₘ : Type u inst✝⁵ : CommRing R inst✝⁴ : CommRing Rₘ M : Submonoid R inst✝³ : Algebra R Rₘ inst✝² : IsLocalization M Rₘ Q : Type u inst✝¹ : CommRing Q inst✝ : Algebra R Q I : Ideal Q e : I ^ 2 = ⊥ f : Rₘ →ₐ[R] Q ⧸ I this✝ : ∀ (x : ↥M), IsUnit ((algebraMap R Q) ↑x) this : Rₘ →ₐ[R] Q := let __src := IsLocalization.lift this✝; { toRingHom := __src, commutes' := ⋯ } ⊢ (Ideal.Quotient.mkₐ R I).comp this = f
apply AlgHom.coe_ringHom_injective
case h.a R Rₘ : Type u inst✝⁵ : CommRing R inst✝⁴ : CommRing Rₘ M : Submonoid R inst✝³ : Algebra R Rₘ inst✝² : IsLocalization M Rₘ Q : Type u inst✝¹ : CommRing Q inst✝ : Algebra R Q I : Ideal Q e : I ^ 2 = ⊥ f : Rₘ →ₐ[R] Q ⧸ I this✝ : ∀ (x : ↥M), IsUnit ((algebraMap R Q) ↑x) this : Rₘ →ₐ[R] Q := let __src := IsLocalization.lift this✝; { toRingHom := __src, commutes' := ⋯ } ⊢ ↑((Ideal.Quotient.mkₐ R I).comp this) = ↑f
c255f8ab1df303c7
orthogonalProjection_orthogonal_val
Mathlib/Analysis/InnerProductSpace/Projection.lean
theorem orthogonalProjection_orthogonal_val (u : E) : (orthogonalProjection Kᗮ u : E) = u - orthogonalProjection K u := eq_orthogonalProjection_of_mem_orthogonal' (sub_orthogonalProjection_mem_orthogonal _) (K.le_orthogonal_orthogonal (orthogonalProjection K u).2) <| by simp
𝕜 : Type u_1 E : Type u_2 inst✝³ : RCLike 𝕜 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E K : Submodule 𝕜 E inst✝ : HasOrthogonalProjection K u : E ⊢ u = u - ↑((orthogonalProjection K) u) + ↑((orthogonalProjection K) u)
simp
no goals
c46bfc1d61ea2db4
Finset.gcd_mul_left
Mathlib/Algebra/GCDMonoid/Finset.lean
theorem gcd_mul_left {a : α} : (s.gcd fun x ↦ a * f x) = normalize a * s.gcd f
case refine_1 α : Type u_2 β : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s : Finset β f : β → α a : α ⊢ (∅.gcd fun x => a * f x) = normalize a * ∅.gcd f
simp
no goals
2fbe9fbe832756a5
Finset.shadow_singleton
Mathlib/Combinatorics/SetFamily/Shadow.lean
theorem shadow_singleton (a : α) : ∂ {{a}} = {∅}
α : Type u_1 inst✝ : DecidableEq α a : α ⊢ ∂ {{a}} = {∅}
simp [shadow]
no goals
4e99d1d02a66f08a
Filter.Tendsto.if
Mathlib/Order/Filter/Tendsto.lean
theorem Tendsto.if {l₁ : Filter α} {l₂ : Filter β} {f g : α → β} {p : α → Prop} [∀ x, Decidable (p x)] (h₀ : Tendsto f (l₁ ⊓ 𝓟 { x | p x }) l₂) (h₁ : Tendsto g (l₁ ⊓ 𝓟 { x | ¬p x }) l₂) : Tendsto (fun x => if p x then f x else g x) l₁ l₂
case h α : Type u_1 β : Type u_2 l₁ : Filter α l₂ : Filter β f g : α → β p : α → Prop inst✝ : (x : α) → Decidable (p x) h₀ : ∀ s ∈ l₂, {x | x ∈ {x | p x} → x ∈ f ⁻¹' s} ∈ l₁ h₁ : ∀ s ∈ l₂, {x | x ∈ {x | ¬p x} → x ∈ g ⁻¹' s} ∈ l₁ s : Set β hs : s ∈ l₂ x : α hp₀ : p x → x ∈ f ⁻¹' s hp₁ : ¬p x → x ∈ g ⁻¹' s ⊢ x ∈ (fun x => if p x then f x else g x) ⁻¹' s
rw [mem_preimage]
case h α : Type u_1 β : Type u_2 l₁ : Filter α l₂ : Filter β f g : α → β p : α → Prop inst✝ : (x : α) → Decidable (p x) h₀ : ∀ s ∈ l₂, {x | x ∈ {x | p x} → x ∈ f ⁻¹' s} ∈ l₁ h₁ : ∀ s ∈ l₂, {x | x ∈ {x | ¬p x} → x ∈ g ⁻¹' s} ∈ l₁ s : Set β hs : s ∈ l₂ x : α hp₀ : p x → x ∈ f ⁻¹' s hp₁ : ¬p x → x ∈ g ⁻¹' s ⊢ (if p x then f x else g x) ∈ s
75dfb26837786deb
CategoryTheory.Limits.limitCurrySwapCompLimIsoLimitCurryCompLim_hom_π_π
Mathlib/CategoryTheory/Limits/Fubini.lean
theorem limitCurrySwapCompLimIsoLimitCurryCompLim_hom_π_π {j} {k} : (limitCurrySwapCompLimIsoLimitCurryCompLim G).hom ≫ limit.π _ j ≫ limit.π _ k = (limit.π _ k ≫ limit.π _ j : limit (_ ⋙ lim) ⟶ _)
J : Type u_1 K : Type u_2 inst✝⁵ : Category.{u_6, u_1} J inst✝⁴ : Category.{u_5, u_2} K C : Type u_3 inst✝³ : Category.{u_4, u_3} C G : J × K ⥤ C inst✝² : HasLimitsOfShape K C inst✝¹ : HasLimitsOfShape J C inst✝ : HasLimit (curry.obj G ⋙ lim) j : J k : K ⊢ (limitIsoLimitCurryCompLim (Prod.swap K J ⋙ G)).inv ≫ limit.π (Prod.swap K J ⋙ G) ((Prod.braiding K J).inverse.obj (j, k)) ≫ (Iso.refl (Prod.swap K J ⋙ G)).inv.app ((Prod.braiding K J).inverse.obj (j, k)) ≫ G.map ((Prod.braiding K J).counit.app (j, k)) = limit.π (curry.obj (Prod.swap K J ⋙ G) ⋙ lim) k ≫ limit.π ((curry.obj (Prod.swap K J ⋙ G)).obj k) j
dsimp [Equivalence.counit]
J : Type u_1 K : Type u_2 inst✝⁵ : Category.{u_6, u_1} J inst✝⁴ : Category.{u_5, u_2} K C : Type u_3 inst✝³ : Category.{u_4, u_3} C G : J × K ⥤ C inst✝² : HasLimitsOfShape K C inst✝¹ : HasLimitsOfShape J C inst✝ : HasLimit (curry.obj G ⋙ lim) j : J k : K ⊢ (limitIsoLimitCurryCompLim (Prod.swap K J ⋙ G)).inv ≫ limit.π (Prod.swap K J ⋙ G) (k, j) ≫ 𝟙 (G.obj (j, k)) ≫ G.map (𝟙 j, 𝟙 k) = limit.π (curry.obj (Prod.swap K J ⋙ G) ⋙ lim) k ≫ limit.π ((curry.obj (Prod.swap K J ⋙ G)).obj k) j
8a461539900f6f44