name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
HomologicalComplex.HomologySequence.epi_homologyMap_τ₃
Mathlib/Algebra/Homology/HomologySequenceLemmas.lean
lemma epi_homologyMap_τ₃ (i : ι) (h₁ : Epi (homologyMap φ.τ₂ i)) (h₂ : ∀ j, c.Rel i j → Epi (homologyMap φ.τ₁ j)) (h₃ : ∀ j, c.Rel i j → Mono (homologyMap φ.τ₂ j)) : Epi (homologyMap φ.τ₃ i)
case pos.intro.hR₁ C : Type u_1 ι : Type u_2 inst✝¹ : Category.{u_3, u_1} C inst✝ : Abelian C c : ComplexShape ι S₁ S₂ : ShortComplex (HomologicalComplex C c) φ : S₁ ⟶ S₂ hS₁ : S₁.ShortExact hS₂ : S₂.ShortExact i : ι h₁ : Epi (homologyMap φ.τ₂ i) h₂ : ∀ (j : ι), c.Rel i j → Epi (homologyMap φ.τ₁ j) h₃ : ∀ (j : ι), c.Rel i j → Mono (homologyMap φ.τ₂ j) j : ι hij : c.Rel i j ⊢ ((δ₀Functor ⋙ δlastFunctor).obj (composableArrows₅ hS₁ i j hij)).Exact
exact (composableArrows₅_exact hS₁ i j hij).δ₀.δlast
no goals
92d458a0d828d6da
Filter.tendsto_lift'
Mathlib/Order/Filter/Lift.lean
theorem tendsto_lift' {m : γ → β} {l : Filter γ} : Tendsto m l (f.lift' h) ↔ ∀ s ∈ f, ∀ᶠ a in l, m a ∈ h s
α : Type u_1 β : Type u_2 γ : Type u_3 f : Filter α h : Set α → Set β m : γ → β l : Filter γ ⊢ Tendsto m l (f.lift' h) ↔ ∀ s ∈ f, ∀ᶠ (a : γ) in l, m a ∈ h s
simp only [Filter.lift', tendsto_lift, tendsto_principal, comp]
no goals
76aa4804ab3151d6
mem_affineSpan_iff_eq_affineCombination
Mathlib/LinearAlgebra/AffineSpace/Combination.lean
theorem mem_affineSpan_iff_eq_affineCombination [Nontrivial k] {p1 : P} {p : ι → P} : p1 ∈ affineSpan k (Set.range p) ↔ ∃ (s : Finset ι) (w : ι → k), ∑ i ∈ s, w i = 1 ∧ p1 = s.affineCombination k p w
case mpr.intro.intro.intro ι : Type u_1 k : Type u_2 V : Type u_3 P : Type u_4 inst✝⁴ : Ring k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : Nontrivial k p : ι → P s : Finset ι w : ι → k hw : ∑ i ∈ s, w i = 1 ⊢ (Finset.affineCombination k s p) w ∈ affineSpan k (Set.range p)
exact affineCombination_mem_affineSpan hw p
no goals
0958d0945311e8cf
BitVec.eq_of_getLsbD_eq
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Lemmas.lean
theorem eq_of_getLsbD_eq {x y : BitVec w} (pred : ∀ i, i < w → x.getLsbD i = y.getLsbD i) : x = y
w : Nat x y : BitVec w pred : ∀ (i : Nat), i < w → x.getLsbD i = y.getLsbD i ⊢ x = y
apply eq_of_toNat_eq
case a w : Nat x y : BitVec w pred : ∀ (i : Nat), i < w → x.getLsbD i = y.getLsbD i ⊢ x.toNat = y.toNat
c491b21788cdd007
UniformOnFun.uniformSpace_eq_inf_precomp_of_cover
Mathlib/Topology/UniformSpace/UniformConvergenceTopology.lean
theorem uniformSpace_eq_inf_precomp_of_cover {δ₁ δ₂ : Type*} (φ₁ : δ₁ → α) (φ₂ : δ₂ → α) (𝔗₁ : Set (Set δ₁)) (𝔗₂ : Set (Set δ₂)) (h_image₁ : MapsTo (φ₁ '' ·) 𝔗₁ 𝔖) (h_image₂ : MapsTo (φ₂ '' ·) 𝔗₂ 𝔖) (h_preimage₁ : MapsTo (φ₁ ⁻¹' ·) 𝔖 𝔗₁) (h_preimage₂ : MapsTo (φ₂ ⁻¹' ·) 𝔖 𝔗₂) (h_cover : ∀ S ∈ 𝔖, S ⊆ range φ₁ ∪ range φ₂) : 𝒱(α, β, 𝔖, _) = .comap (ofFun 𝔗₁ ∘ (· ∘ φ₁) ∘ toFun 𝔖) 𝒱(δ₁, β, 𝔗₁, _) ⊓ .comap (ofFun 𝔗₂ ∘ (· ∘ φ₂) ∘ toFun 𝔖) 𝒱(δ₂, β, 𝔗₂, _)
case refine_1 α : Type u_1 β : Type u_2 inst✝ : UniformSpace β 𝔖 : Set (Set α) δ₁ : Type u_5 δ₂ : Type u_6 φ₁ : δ₁ → α φ₂ : δ₂ → α 𝔗₁ : Set (Set δ₁) 𝔗₂ : Set (Set δ₂) h_image₁ : MapsTo (fun x => φ₁ '' x) 𝔗₁ 𝔖 h_image₂ : MapsTo (fun x => φ₂ '' x) 𝔗₂ 𝔖 h_preimage₁ : MapsTo (fun x => φ₁ ⁻¹' x) 𝔖 𝔗₁ h_preimage₂ : MapsTo (fun x => φ₂ ⁻¹' x) 𝔖 𝔗₂ h_cover : ∀ S ∈ 𝔖, S ⊆ range φ₁ ∪ range φ₂ ψ₁ : (S : Set α) → ↑(φ₁ ⁻¹' S) → ↑S := fun S => S.restrictPreimage φ₁ ψ₂ : (S : Set α) → ↑(φ₂ ⁻¹' S) → ↑S := fun S => S.restrictPreimage φ₂ this : ∀ S ∈ 𝔖, UniformFun.uniformSpace (↑S) β = UniformSpace.comap (fun x => x ∘ ψ₁ S) (UniformFun.uniformSpace (↑(φ₁ ⁻¹' S)) β) ⊓ UniformSpace.comap (fun x => x ∘ ψ₂ S) (UniformFun.uniformSpace (↑(φ₂ ⁻¹' S)) β) ⊢ uniformSpace α β 𝔖 ≤ UniformSpace.comap (⇑(ofFun 𝔗₁) ∘ (fun x => x ∘ φ₁) ∘ ⇑(toFun 𝔖)) (uniformSpace δ₁ β 𝔗₁)
rw [← uniformContinuous_iff]
case refine_1 α : Type u_1 β : Type u_2 inst✝ : UniformSpace β 𝔖 : Set (Set α) δ₁ : Type u_5 δ₂ : Type u_6 φ₁ : δ₁ → α φ₂ : δ₂ → α 𝔗₁ : Set (Set δ₁) 𝔗₂ : Set (Set δ₂) h_image₁ : MapsTo (fun x => φ₁ '' x) 𝔗₁ 𝔖 h_image₂ : MapsTo (fun x => φ₂ '' x) 𝔗₂ 𝔖 h_preimage₁ : MapsTo (fun x => φ₁ ⁻¹' x) 𝔖 𝔗₁ h_preimage₂ : MapsTo (fun x => φ₂ ⁻¹' x) 𝔖 𝔗₂ h_cover : ∀ S ∈ 𝔖, S ⊆ range φ₁ ∪ range φ₂ ψ₁ : (S : Set α) → ↑(φ₁ ⁻¹' S) → ↑S := fun S => S.restrictPreimage φ₁ ψ₂ : (S : Set α) → ↑(φ₂ ⁻¹' S) → ↑S := fun S => S.restrictPreimage φ₂ this : ∀ S ∈ 𝔖, UniformFun.uniformSpace (↑S) β = UniformSpace.comap (fun x => x ∘ ψ₁ S) (UniformFun.uniformSpace (↑(φ₁ ⁻¹' S)) β) ⊓ UniformSpace.comap (fun x => x ∘ ψ₂ S) (UniformFun.uniformSpace (↑(φ₂ ⁻¹' S)) β) ⊢ UniformContinuous (⇑(ofFun 𝔗₁) ∘ (fun x => x ∘ φ₁) ∘ ⇑(toFun 𝔖))
687e94ee2bcbcd2a
ContinuousMap.tendsto_concat
Mathlib/Topology/ContinuousMap/Interval.lean
theorem tendsto_concat {ι : Type*} {p : Filter ι} {F : ι → C(Icc a b, E)} {G : ι → C(Icc b c, E)} (hfg : ∀ᶠ i in p, (F i) ⊤ = (G i) ⊥) (hfg' : f ⊤ = g ⊥) (hf : Tendsto F p (𝓝 f)) (hg : Tendsto G p (𝓝 g)) : Tendsto (fun i => concat (F i) (G i)) p (𝓝 (concat f g))
α : Type u_1 inst✝⁵ : LinearOrder α inst✝⁴ : TopologicalSpace α inst✝³ : OrderTopology α a b c : α inst✝² : Fact (a ≤ b) inst✝¹ : Fact (b ≤ c) E : Type u_2 inst✝ : TopologicalSpace E f : C(↑(Icc a b), E) g : C(↑(Icc b c), E) ι : Type u_3 p : Filter ι F : ι → C(↑(Icc a b), E) G : ι → C(↑(Icc b c), E) hfg : ∀ᶠ (i : ι) in p, (F i) ⊤ = (G i) ⊥ hfg' : f ⊤ = g ⊥ hf : ∀ (K : Set ↑(Icc a b)), IsCompact K → ∀ (U : Set E), IsOpen U → MapsTo (⇑f) K U → ∀ᶠ (a_4 : ι) in p, MapsTo (⇑(F a_4)) K U hg : ∀ (K : Set ↑(Icc b c)), IsCompact K → ∀ (U : Set E), IsOpen U → MapsTo (⇑g) K U → ∀ᶠ (a : ι) in p, MapsTo (⇑(G a)) K U K : Set ↑(Icc a c) hK : IsCompact K U : Set E hU : IsOpen U hfgU : MapsTo (⇑(f.concat g)) K U h : b ∈ Icc a c K₁ : Set ↑(Icc a b) := ⇑projIccCM '' (Subtype.val '' (K ∩ Iic ⟨b, h⟩)) K₂ : Set ↑(Icc b c) := ⇑projIccCM '' (Subtype.val '' (K ∩ Ici ⟨b, h⟩)) hK₁ : IsCompact K₁ hK₂ : IsCompact K₂ ⊢ MapsTo (⇑f) K₁ U
rw [← concat_comp_IccInclusionLeft hfg']
α : Type u_1 inst✝⁵ : LinearOrder α inst✝⁴ : TopologicalSpace α inst✝³ : OrderTopology α a b c : α inst✝² : Fact (a ≤ b) inst✝¹ : Fact (b ≤ c) E : Type u_2 inst✝ : TopologicalSpace E f : C(↑(Icc a b), E) g : C(↑(Icc b c), E) ι : Type u_3 p : Filter ι F : ι → C(↑(Icc a b), E) G : ι → C(↑(Icc b c), E) hfg : ∀ᶠ (i : ι) in p, (F i) ⊤ = (G i) ⊥ hfg' : f ⊤ = g ⊥ hf : ∀ (K : Set ↑(Icc a b)), IsCompact K → ∀ (U : Set E), IsOpen U → MapsTo (⇑f) K U → ∀ᶠ (a_4 : ι) in p, MapsTo (⇑(F a_4)) K U hg : ∀ (K : Set ↑(Icc b c)), IsCompact K → ∀ (U : Set E), IsOpen U → MapsTo (⇑g) K U → ∀ᶠ (a : ι) in p, MapsTo (⇑(G a)) K U K : Set ↑(Icc a c) hK : IsCompact K U : Set E hU : IsOpen U hfgU : MapsTo (⇑(f.concat g)) K U h : b ∈ Icc a c K₁ : Set ↑(Icc a b) := ⇑projIccCM '' (Subtype.val '' (K ∩ Iic ⟨b, h⟩)) K₂ : Set ↑(Icc b c) := ⇑projIccCM '' (Subtype.val '' (K ∩ Ici ⟨b, h⟩)) hK₁ : IsCompact K₁ hK₂ : IsCompact K₂ ⊢ MapsTo (⇑((f.concat g).comp IccInclusionLeft)) K₁ U
c35e3215284e9199
MeasureTheory.aecover_closedBall
Mathlib/MeasureTheory/Integral/IntegralEqImproper.lean
theorem aecover_closedBall {x : α} {r : ι → ℝ} (hr : Tendsto r l atTop) : AECover μ l (fun i ↦ Metric.closedBall x (r i)) where measurableSet _ := Metric.isClosed_closedBall.measurableSet ae_eventually_mem
α : Type u_1 ι : Type u_2 inst✝² : MeasurableSpace α μ : Measure α l : Filter ι inst✝¹ : PseudoMetricSpace α inst✝ : OpensMeasurableSpace α x : α r : ι → ℝ hr : Tendsto r l atTop ⊢ ∀ᵐ (x_1 : α) ∂μ, ∀ᶠ (i : ι) in l, x_1 ∈ Metric.closedBall x (r i)
filter_upwards with y
case h α : Type u_1 ι : Type u_2 inst✝² : MeasurableSpace α μ : Measure α l : Filter ι inst✝¹ : PseudoMetricSpace α inst✝ : OpensMeasurableSpace α x : α r : ι → ℝ hr : Tendsto r l atTop y : α ⊢ ∀ᶠ (i : ι) in l, y ∈ Metric.closedBall x (r i)
e1922ff051f90e65
ContinuousLinearMap.image_rayleigh_eq_image_rayleigh_sphere
Mathlib/Analysis/InnerProductSpace/Rayleigh.lean
theorem image_rayleigh_eq_image_rayleigh_sphere {r : ℝ} (hr : 0 < r) : rayleighQuotient T '' {0}ᶜ = rayleighQuotient T '' sphere 0 r
case h.mp.intro.intro.refine_2 𝕜 : Type u_1 inst✝² : RCLike 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E T : E →L[𝕜] E r : ℝ hr : 0 < r a : ℝ x : E hx : x ≠ 0 hxT : T.rayleighQuotient x = a this✝ : ‖x‖ ≠ 0 c : 𝕜 := ↑‖x‖⁻¹ * ↑r this : c ≠ 0 ⊢ T.rayleighQuotient x = a
exact hxT
no goals
bd99a26fc5847de3
AddCircle.addWellApproximable_ae_empty_or_univ
Mathlib/NumberTheory/WellApproximable.lean
theorem addWellApproximable_ae_empty_or_univ (δ : ℕ → ℝ) (hδ : Tendsto δ atTop (𝓝 0)) : (∀ᵐ x, ¬addWellApproximable 𝕊 δ x) ∨ ∀ᵐ x, addWellApproximable 𝕊 δ x
T : ℝ hT : Fact (0 < T) δ : ℕ → ℝ hδ : Tendsto δ atTop (𝓝 0) this : SemilatticeSup Nat.Primes := Nat.Subtype.semilatticeSup Irreducible μ : Measure 𝕊 := volume u : Nat.Primes → 𝕊 := fun p => ↑(↑1 / ↑↑p * T) ⊢ ∀ (p : Nat.Primes), addOrderOf (u p) = ↑p
rintro ⟨p, hp⟩
case mk T : ℝ hT : Fact (0 < T) δ : ℕ → ℝ hδ : Tendsto δ atTop (𝓝 0) this : SemilatticeSup Nat.Primes := Nat.Subtype.semilatticeSup Irreducible μ : Measure 𝕊 := volume u : Nat.Primes → 𝕊 := fun p => ↑(↑1 / ↑↑p * T) p : ℕ hp : Nat.Prime p ⊢ addOrderOf (u ⟨p, hp⟩) = ↑⟨p, hp⟩
aeca070d334a419e
isOpen_pi_iff
Mathlib/Topology/Constructions.lean
theorem isOpen_pi_iff {s : Set (∀ a, π a)} : IsOpen s ↔ ∀ f, f ∈ s → ∃ (I : Finset ι) (u : ∀ a, Set (π a)), (∀ a, a ∈ I → IsOpen (u a) ∧ f a ∈ u a) ∧ (I : Set ι).pi u ⊆ s
case refine_1.intro.intro.intro.refine_1 ι : Type u_5 π : ι → Type u_6 T : (i : ι) → TopologicalSpace (π i) s : Set ((a : ι) → π a) a : (a : ι) → π a x✝ : a ∈ s I : Finset ι t : (i : ι) → Set (π i) h1 : ∀ (i : ι), ∃ t_1 ⊆ t i, IsOpen t_1 ∧ a i ∈ t_1 h2 : (↑I).pi t ⊆ s i : ι hi : i ∈ I ⊢ IsOpen ⋯.choose ∧ a i ∈ ⋯.choose
exact (h1 i).choose_spec.2
no goals
aadda838155adaf1
Partrec.sumCasesOn_left
Mathlib/Computability/Partrec.lean
theorem sumCasesOn_left {f : α → β ⊕ γ} {g : α → β →. σ} {h : α → γ → σ} (hf : Computable f) (hg : Partrec₂ g) (hh : Computable₂ h) : @Partrec _ σ _ _ fun a => Sum.casesOn (f a) (g a) fun c => Part.some (h a c) := (sumCasesOn_right (sumCasesOn hf (sumInr.comp snd).to₂ (sumInl.comp snd).to₂) hh hg).of_eq fun a => by cases f a <;> simp
α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → β ⊕ γ g : α → β →. σ h : α → γ → σ hf : Computable f hg : Partrec₂ g hh : Computable₂ h a : α ⊢ Sum.casesOn (Sum.casesOn (f a) (fun b => Sum.inr (a, b).2) fun b => Sum.inl (a, b).2) (fun b => Part.some (h a b)) (g a) = Sum.casesOn (f a) (g a) fun c => Part.some (h a c)
cases f a <;> simp
no goals
ca9a891f7dbff9f0
NNReal.add_rpow_le_one_of_add_le_one
Mathlib/Analysis/MeanInequalitiesPow.lean
theorem add_rpow_le_one_of_add_le_one {p : ℝ} (a b : ℝ≥0) (hab : a + b ≤ 1) (hp1 : 1 ≤ p) : a ^ p + b ^ p ≤ 1
p : ℝ a b : ℝ≥0 hab : a + b ≤ 1 hp1 : 1 ≤ p h_le_one : ∀ x ≤ 1, x ^ p ≤ x ha : a ≤ 1 ⊢ a ^ p + b ^ p ≤ 1
have hb : b ≤ 1 := (self_le_add_left b a).trans hab
p : ℝ a b : ℝ≥0 hab : a + b ≤ 1 hp1 : 1 ≤ p h_le_one : ∀ x ≤ 1, x ^ p ≤ x ha : a ≤ 1 hb : b ≤ 1 ⊢ a ^ p + b ^ p ≤ 1
21837d813a208442
Polynomial.Monic.mul_left_eq_zero_iff
Mathlib/Algebra/Polynomial/Monic.lean
theorem Monic.mul_left_eq_zero_iff (h : Monic p) {q : R[X]} : q * p = 0 ↔ q = 0
R : Type u inst✝ : Semiring R p : R[X] h : p.Monic q : R[X] ⊢ q * p = 0 ↔ q = 0
by_cases hq : q = 0 <;> simp [h.mul_left_ne_zero, hq]
no goals
5f9daa1e5ac6cc25
nodup_permsOfList
Mathlib/Data/Fintype/Perm.lean
theorem nodup_permsOfList : ∀ {l : List α}, l.Nodup → (permsOfList l).Nodup | [], _ => by simp [permsOfList] | a :: l, hl => by have hl' : l.Nodup := hl.of_cons have hln' : (permsOfList l).Nodup := nodup_permsOfList hl' have hmeml : ∀ {f : Perm α}, f ∈ permsOfList l → f a = a := fun {f} hf => not_not.1 (mt (mem_of_mem_permsOfList hf _) (nodup_cons.1 hl).1) rw [permsOfList, List.nodup_append, List.nodup_flatMap, pairwise_iff_getElem] refine ⟨?_, ⟨⟨?_,?_ ⟩, ?_⟩⟩ · exact hln' · exact fun _ _ => hln'.map fun _ _ => mul_left_cancel · intros i j hi hj hij x hx₁ hx₂ let ⟨f, hf⟩ := List.mem_map.1 hx₁ let ⟨g, hg⟩ := List.mem_map.1 hx₂ have hix : x a = l[i]
α : Type u_1 inst✝ : DecidableEq α a : α l : List α hl : (a :: l).Nodup hl' : l.Nodup ⊢ (permsOfList (a :: l)).Nodup
have hln' : (permsOfList l).Nodup := nodup_permsOfList hl'
α : Type u_1 inst✝ : DecidableEq α a : α l : List α hl : (a :: l).Nodup hl' : l.Nodup hln' : (permsOfList l).Nodup ⊢ (permsOfList (a :: l)).Nodup
1438bc15e355e5ea
Ordnode.size_erase_of_mem
Mathlib/Data/Ordmap/Ordset.lean
theorem size_erase_of_mem [DecidableRel (α := α) (· ≤ ·)] {x : α} {t a₁ a₂} (h : Valid' a₁ t a₂) (h_mem : x ∈ t) : size (erase x t) = size t - 1
case node.lt.intro α : Type u_1 inst✝¹ : Preorder α inst✝ : DecidableRel fun x1 x2 => x1 ≤ x2 x : α size✝ : ℕ t_l : Ordnode α t_x : α t_r : Ordnode α a₁ : WithBot α a₂ : WithTop α h : Valid' a₁ (node size✝ t_l t_x t_r) a₂ h_mem : mem x t_l = true t_ih_l : (erase x t_l).size = t_l.size - 1 t_l_valid : Valid' a₁ (erase x t_l) ↑t_x t_l_size : Raised (erase x t_l).size t_l.size ⊢ 0 < t_l.size → t_l.size - 1 + t_r.size + 1 = (node (t_l.size + t_r.size + 1) t_l t_x t_r).size - 1
rcases t_l.size with - | t_l_size <;> intro h_pos_t_l_size
case node.lt.intro.zero α : Type u_1 inst✝¹ : Preorder α inst✝ : DecidableRel fun x1 x2 => x1 ≤ x2 x : α size✝ : ℕ t_l : Ordnode α t_x : α t_r : Ordnode α a₁ : WithBot α a₂ : WithTop α h : Valid' a₁ (node size✝ t_l t_x t_r) a₂ h_mem : mem x t_l = true t_ih_l : (erase x t_l).size = t_l.size - 1 t_l_valid : Valid' a₁ (erase x t_l) ↑t_x t_l_size : Raised (erase x t_l).size t_l.size h_pos_t_l_size : 0 < 0 ⊢ 0 - 1 + t_r.size + 1 = (node (0 + t_r.size + 1) t_l t_x t_r).size - 1 case node.lt.intro.succ α : Type u_1 inst✝¹ : Preorder α inst✝ : DecidableRel fun x1 x2 => x1 ≤ x2 x : α size✝ : ℕ t_l : Ordnode α t_x : α t_r : Ordnode α a₁ : WithBot α a₂ : WithTop α h : Valid' a₁ (node size✝ t_l t_x t_r) a₂ h_mem : mem x t_l = true t_ih_l : (erase x t_l).size = t_l.size - 1 t_l_valid : Valid' a₁ (erase x t_l) ↑t_x t_l_size✝ : Raised (erase x t_l).size t_l.size t_l_size : ℕ h_pos_t_l_size : 0 < t_l_size + 1 ⊢ t_l_size + 1 - 1 + t_r.size + 1 = (node (t_l_size + 1 + t_r.size + 1) t_l t_x t_r).size - 1
53892aba6b42beb8
Language.IsRegular.finite_range_leftQuotient
Mathlib/Computability/MyhillNerode.lean
theorem IsRegular.finite_range_leftQuotient (h : L.IsRegular) : (Set.range L.leftQuotient).Finite
α : Type u L : Language α h : L.IsRegular σ : Type x : Fintype σ M : DFA α σ hM : M.accepts = L ⊢ (Set.range (M.acceptsFrom ∘ M.eval)).Finite
exact Set.finite_of_finite_preimage (Set.toFinite _) (Set.range_comp_subset_range M.eval M.acceptsFrom)
no goals
d7d0b6cc243f4b64
Dense.eq_zero_of_inner_left
Mathlib/Analysis/InnerProductSpace/Projection.lean
theorem eq_zero_of_inner_left (hK : Dense (K : Set E)) (h : ∀ v : K, ⟪x, v⟫ = 0) : x = 0
𝕜 : Type u_1 E : Type u_2 inst✝² : RCLike 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E K : Submodule 𝕜 E x : E hK : Dense ↑K h : ∀ (v : ↥K), ⟪x, ↑v⟫_𝕜 = 0 this : (fun x_1 => ⟪x, x_1⟫_𝕜) = 0 ⊢ x = 0
simpa using congr_fun this x
no goals
af006bdd87720de1
Real.le_rpow_iff_log_le
Mathlib/Analysis/SpecialFunctions/Pow/Real.lean
theorem le_rpow_iff_log_le (hx : 0 < x) (hy : 0 < y) : x ≤ y ^ z ↔ log x ≤ z * log y
x y z : ℝ hx : 0 < x hy : 0 < y ⊢ x ≤ y ^ z ↔ log x ≤ z * log y
rw [← log_le_log_iff hx (rpow_pos_of_pos hy z), log_rpow hy]
no goals
3899b76360f158ae
List.findSome?_cons_of_isNone
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Find.lean
theorem findSome?_cons_of_isNone (l) (h : (f a).isNone) : findSome? f (a :: l) = findSome? f l
α✝¹ : Type u_1 α✝ : Type u_2 f : α✝¹ → Option α✝ a : α✝¹ l : List α✝¹ h : (f a).isNone = true ⊢ findSome? f (a :: l) = findSome? f l
simp only [findSome?]
α✝¹ : Type u_1 α✝ : Type u_2 f : α✝¹ → Option α✝ a : α✝¹ l : List α✝¹ h : (f a).isNone = true ⊢ (match f a with | some b => some b | none => findSome? f l) = findSome? f l
274529f5d3b93fb6
AlternatingMap.map_linearDependent
Mathlib/LinearAlgebra/Alternating/Basic.lean
theorem map_linearDependent {K : Type*} [Ring K] {M : Type*} [AddCommGroup M] [Module K M] {N : Type*} [AddCommGroup N] [Module K N] [NoZeroSMulDivisors K N] (f : M [⋀^ι]→ₗ[K] N) (v : ι → M) (h : ¬LinearIndependent K v) : f v = 0
case intro.intro.intro.intro.intro ι : Type u_7 K : Type u_12 inst✝⁵ : Ring K M : Type u_13 inst✝⁴ : AddCommGroup M inst✝³ : Module K M N : Type u_14 inst✝² : AddCommGroup N inst✝¹ : Module K N inst✝ : NoZeroSMulDivisors K N f : M [⋀^ι]→ₗ[K] N v : ι → M h✝ : ¬LinearIndependent K v s : Finset ι g : ι → K h : ∑ i ∈ s, g i • v i = 0 i : ι hi : i ∈ s hz : g i ≠ 0 ⊢ f v = 0
letI := Classical.decEq ι
case intro.intro.intro.intro.intro ι : Type u_7 K : Type u_12 inst✝⁵ : Ring K M : Type u_13 inst✝⁴ : AddCommGroup M inst✝³ : Module K M N : Type u_14 inst✝² : AddCommGroup N inst✝¹ : Module K N inst✝ : NoZeroSMulDivisors K N f : M [⋀^ι]→ₗ[K] N v : ι → M h✝ : ¬LinearIndependent K v s : Finset ι g : ι → K h : ∑ i ∈ s, g i • v i = 0 i : ι hi : i ∈ s hz : g i ≠ 0 this : DecidableEq ι := Classical.decEq ι ⊢ f v = 0
e59a2621ba7004bf
PrimeSpectrum.isMax_iff
Mathlib/RingTheory/Spectrum/Prime/Basic.lean
/-- Also see `PrimeSpectrum.isClosed_singleton_iff_isMaximal` -/ lemma isMax_iff {x : PrimeSpectrum R} : IsMax x ↔ x.asIdeal.IsMaximal
R : Type u inst✝ : CommSemiring R x : PrimeSpectrum R hx : IsMax x I : Ideal R hI : x.asIdeal < I e : ¬I = ⊤ ⊢ False
obtain ⟨m, hm, hm'⟩ := Ideal.exists_le_maximal I e
case intro.intro R : Type u inst✝ : CommSemiring R x : PrimeSpectrum R hx : IsMax x I : Ideal R hI : x.asIdeal < I e : ¬I = ⊤ m : Ideal R hm : m.IsMaximal hm' : I ≤ m ⊢ False
9dca787d9a1cc302
MeasureTheory.setIntegral_abs_condExp_le
Mathlib/MeasureTheory/Function/ConditionalExpectation/Real.lean
theorem setIntegral_abs_condExp_le {s : Set α} (hs : MeasurableSet[m] s) (f : α → ℝ) : ∫ x in s, |(μ[f|m]) x| ∂μ ≤ ∫ x in s, |f x| ∂μ
case neg α : Type u_1 m m0 : MeasurableSpace α μ : Measure α s : Set α hs : MeasurableSet s f : α → ℝ hnm : m ≤ m0 hfint : ¬Integrable f μ ⊢ ∫ (x : α) in s, |(μ[f|m]) x| ∂μ ≤ ∫ (x : α) in s, |f x| ∂μ
simp only [condExp_of_not_integrable hfint, Pi.zero_apply, abs_zero, integral_const, Algebra.id.smul_eq_mul, mul_zero]
case neg α : Type u_1 m m0 : MeasurableSpace α μ : Measure α s : Set α hs : MeasurableSet s f : α → ℝ hnm : m ≤ m0 hfint : ¬Integrable f μ ⊢ 0 ≤ ∫ (x : α) in s, |f x| ∂μ
f75c894a42ad0f54
AlgebraicGeometry.Scheme.Pullback.gluedLift_p2
Mathlib/AlgebraicGeometry/Pullbacks.lean
theorem gluedLift_p2 : gluedLift 𝒰 f g s ≫ p2 𝒰 f g = s.snd
case h X Y Z : Scheme 𝒰 : X.OpenCover f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (𝒰.map i ≫ f) g s : PullbackCone f g ⊢ ∀ (b : (MultispanShape.prod (Cover.pullbackCover 𝒰 s.fst).gluedCover.J).R), Multicoequalizer.π (Cover.pullbackCover 𝒰 s.fst).gluedCover.diagram b ≫ (Cover.pullbackCover 𝒰 s.fst).fromGlued ≫ gluedLift 𝒰 f g s ≫ p2 𝒰 f g = Multicoequalizer.π (Cover.pullbackCover 𝒰 s.fst).gluedCover.diagram b ≫ (Cover.pullbackCover 𝒰 s.fst).fromGlued ≫ s.snd
intro b
case h X Y Z : Scheme 𝒰 : X.OpenCover f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (𝒰.map i ≫ f) g s : PullbackCone f g b : (MultispanShape.prod (Cover.pullbackCover 𝒰 s.fst).gluedCover.J).R ⊢ Multicoequalizer.π (Cover.pullbackCover 𝒰 s.fst).gluedCover.diagram b ≫ (Cover.pullbackCover 𝒰 s.fst).fromGlued ≫ gluedLift 𝒰 f g s ≫ p2 𝒰 f g = Multicoequalizer.π (Cover.pullbackCover 𝒰 s.fst).gluedCover.diagram b ≫ (Cover.pullbackCover 𝒰 s.fst).fromGlued ≫ s.snd
70923766d5abff15
translate_eq_domAddActMk_vadd
Mathlib/Algebra/Group/Translate.lean
lemma translate_eq_domAddActMk_vadd (a : G) (f : G → α) : τ a f = DomAddAct.mk (-a) +ᵥ f
α : Type u_2 G : Type u_5 inst✝ : AddCommGroup G a : G f : G → α ⊢ τ a f = DomAddAct.mk (-a) +ᵥ f
ext
case h α : Type u_2 G : Type u_5 inst✝ : AddCommGroup G a : G f : G → α x✝ : G ⊢ τ a f x✝ = (DomAddAct.mk (-a) +ᵥ f) x✝
a65c08f1373518e1
exists_lt_of_lt_ciSup'
Mathlib/Order/ConditionallyCompleteLattice/Indexed.lean
theorem exists_lt_of_lt_ciSup' {f : ι → α} {a : α} (h : a < ⨆ i, f i) : ∃ i, a < f i
α : Type u_1 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrderBot α f : ι → α a : α h : ∀ (i : ι), f i ≤ a ⊢ ⨆ i, f i ≤ a
exact ciSup_le' h
no goals
713921a54fab7993
Subring.comap_map_eq
Mathlib/Algebra/Ring/Subring/Basic.lean
theorem comap_map_eq (f : R →+* S) (s : Subring R) : (s.map f).comap f = s ⊔ closure (f ⁻¹' {0})
case a.intro.intro R : Type u S : Type v inst✝¹ : Ring R inst✝ : Ring S f : R →+* S s : Subring R x y : R hy : y ∈ s hxy : x - y ∈ ⇑f ⁻¹' {0} ⊢ x ∈ s ⊔ closure (⇑f ⁻¹' {0})
rw [← closure_eq s, ← closure_union, ← add_sub_cancel y x]
case a.intro.intro R : Type u S : Type v inst✝¹ : Ring R inst✝ : Ring S f : R →+* S s : Subring R x y : R hy : y ∈ s hxy : x - y ∈ ⇑f ⁻¹' {0} ⊢ y + (x - y) ∈ closure (↑s ∪ ⇑f ⁻¹' {0})
1888ddc34813b7fe
Multiset.singleton_eq_cons_iff
Mathlib/Data/Multiset/ZeroCons.lean
theorem singleton_eq_cons_iff {a b : α} (m : Multiset α) : {a} = b ::ₘ m ↔ a = b ∧ m = 0
α : Type u_1 a b : α m : Multiset α ⊢ {a} = b ::ₘ m ↔ a = b ∧ m = 0
rw [← cons_zero, cons_eq_cons]
α : Type u_1 a b : α m : Multiset α ⊢ (a = b ∧ 0 = m ∨ a ≠ b ∧ ∃ cs, 0 = b ::ₘ cs ∧ m = a ::ₘ cs) ↔ a = b ∧ m = 0
90ad7bc55698b478
FormalMultilinearSeries.compPartialSumTarget_tendsto_prod_atTop
Mathlib/Analysis/Analytic/Composition.lean
theorem compPartialSumTarget_tendsto_prod_atTop : Tendsto (fun (p : ℕ × ℕ) => compPartialSumTarget 0 p.1 p.2) atTop atTop
case h'.mk n : ℕ c : Composition n ⊢ ∃ n_1, ⟨n, c⟩ ∈ compPartialSumTarget 0 n_1.1 n_1.2
simp only [mem_compPartialSumTarget_iff]
case h'.mk n : ℕ c : Composition n ⊢ ∃ n_1, 0 ≤ c.length ∧ c.length < n_1.1 ∧ ∀ (j : Fin c.length), c.blocksFun j < n_1.2
9e49e40e6afc4679
ProbabilityTheory.Kernel.iIndepSets.indepSets
Mathlib/Probability/Independence/Kernel.lean
theorem iIndepSets.indepSets {s : ι → Set (Set Ω)} {_mΩ : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : Measure α} (h_indep : iIndepSets s κ μ) {i j : ι} (hij : i ≠ j) : IndepSets (s i) (s j) κ μ
α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α s : ι → Set (Set Ω) _mΩ : MeasurableSpace Ω κ : Kernel α Ω μ : Measure α h_indep : iIndepSets s κ μ i j : ι hij : i ≠ j t₁ t₂ : Set Ω ht₁ : t₁ ∈ s i ht₂ : t₂ ∈ s j hf_m : ∀ x ∈ {i, j}, (if x = i then t₁ else t₂) ∈ s x ⊢ ∀ᵐ (a : α) ∂μ, (κ a) (t₁ ∩ t₂) = (κ a) t₁ * (κ a) t₂
have h1 : t₁ = ite (i = i) t₁ t₂ := by simp only [if_true, eq_self_iff_true]
α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α s : ι → Set (Set Ω) _mΩ : MeasurableSpace Ω κ : Kernel α Ω μ : Measure α h_indep : iIndepSets s κ μ i j : ι hij : i ≠ j t₁ t₂ : Set Ω ht₁ : t₁ ∈ s i ht₂ : t₂ ∈ s j hf_m : ∀ x ∈ {i, j}, (if x = i then t₁ else t₂) ∈ s x h1 : t₁ = if i = i then t₁ else t₂ ⊢ ∀ᵐ (a : α) ∂μ, (κ a) (t₁ ∩ t₂) = (κ a) t₁ * (κ a) t₂
f62ea0e10e361ba7
logEmbeddingQuot_injective
Mathlib/NumberTheory/NumberField/Units/DirichletTheorem.lean
theorem logEmbeddingQuot_injective : Function.Injective (logEmbeddingQuot K)
K : Type u_1 inst✝¹ : Field K inst✝ : NumberField K a₁✝ a₂✝ : Additive ((𝓞 K)ˣ ⧸ torsion K) h : (QuotientGroup.kerLift (AddMonoidHom.toMultiplicative' (logEmbedding K))) ((QuotientGroup.quotientMulEquivOfEq ⋯) (Additive.toMul a₁✝)) = (QuotientGroup.kerLift (AddMonoidHom.toMultiplicative' (logEmbedding K))) ((QuotientGroup.quotientMulEquivOfEq ⋯) (Additive.toMul a₂✝)) ⊢ a₁✝ = a₂✝
exact (EmbeddingLike.apply_eq_iff_eq _).mp <| (QuotientGroup.kerLift_injective _).eq_iff.mp h
no goals
bd3f79cf52e597d4
differentiableWithinAt_localInvariantProp
Mathlib/Geometry/Manifold/MFDeriv/Defs.lean
theorem differentiableWithinAt_localInvariantProp : (contDiffGroupoid 1 I).LocalInvariantProp (contDiffGroupoid 1 I') (DifferentiableWithinAtProp I I') := { is_local
𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E H : Type u_3 inst✝³ : TopologicalSpace H I : ModelWithCorners 𝕜 E H E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : NormedSpace 𝕜 E' H' : Type u_6 inst✝ : TopologicalSpace H' I' : ModelWithCorners 𝕜 E' H' s : Set H x : H f : H → H' e : PartialHomeomorph H H he : e ∈ contDiffGroupoid 1 I hx : x ∈ e.source h : DifferentiableWithinAt 𝕜 (↑I' ∘ f ∘ ↑I.symm) (↑I.symm ⁻¹' s ∩ range ↑I) ((↑I ∘ ↑e.symm ∘ ↑I.symm) (↑I (↑e x))) this : ↑I x = (↑I ∘ ↑e.symm ∘ ↑I.symm) (↑I (↑e x)) ⊢ DifferentiableWithinAt 𝕜 (↑I' ∘ (f ∘ ↑e.symm) ∘ ↑I.symm) (↑I.symm ⁻¹' (↑e.symm ⁻¹' s) ∩ range ↑I) (↑I (↑e x))
have : I (e x) ∈ I.symm ⁻¹' e.target ∩ Set.range I := by simp only [hx, mfld_simps]
𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E H : Type u_3 inst✝³ : TopologicalSpace H I : ModelWithCorners 𝕜 E H E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : NormedSpace 𝕜 E' H' : Type u_6 inst✝ : TopologicalSpace H' I' : ModelWithCorners 𝕜 E' H' s : Set H x : H f : H → H' e : PartialHomeomorph H H he : e ∈ contDiffGroupoid 1 I hx : x ∈ e.source h : DifferentiableWithinAt 𝕜 (↑I' ∘ f ∘ ↑I.symm) (↑I.symm ⁻¹' s ∩ range ↑I) ((↑I ∘ ↑e.symm ∘ ↑I.symm) (↑I (↑e x))) this✝ : ↑I x = (↑I ∘ ↑e.symm ∘ ↑I.symm) (↑I (↑e x)) this : ↑I (↑e x) ∈ ↑I.symm ⁻¹' e.target ∩ range ↑I ⊢ DifferentiableWithinAt 𝕜 (↑I' ∘ (f ∘ ↑e.symm) ∘ ↑I.symm) (↑I.symm ⁻¹' (↑e.symm ⁻¹' s) ∩ range ↑I) (↑I (↑e x))
3d1405d37db22f10
CharP.intCast_injOn_Ico
Mathlib/Algebra/CharP/Basic.lean
lemma intCast_injOn_Ico [IsRightCancelAdd R] : InjOn (Int.cast : ℤ → R) (Ico 0 p)
case intro.intro.intro.intro R : Type u_1 inst✝² : AddGroupWithOne R p : ℕ inst✝¹ : CharP R p inst✝ : IsRightCancelAdd R a b : ℕ ha : a < p hb : b < p hab : ↑a = ↑b ⊢ a = b
exact natCast_injOn_Iio _ _ ha hb hab
no goals
bb28179ddf918e8c
List.set_eq_take_append_cons_drop
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Nat/TakeDrop.lean
theorem set_eq_take_append_cons_drop (l : List α) (n : Nat) (a : α) : l.set n a = if n < l.length then l.take n ++ a :: l.drop (n + 1) else l
α : Type u_1 l : List α n : Nat a : α ⊢ l.set n a = if n < l.length then take n l ++ a :: drop (n + 1) l else l
split <;> rename_i h
case isTrue α : Type u_1 l : List α n : Nat a : α h : n < l.length ⊢ l.set n a = take n l ++ a :: drop (n + 1) l case isFalse α : Type u_1 l : List α n : Nat a : α h : ¬n < l.length ⊢ l.set n a = l
9fb4c99baced165c
MatrixEquivTensor.invFun_add
Mathlib/RingTheory/MatrixAlgebra.lean
theorem invFun_add (M N : Matrix n n A) : invFun n R A (M + N) = invFun n R A M + invFun n R A N
n : Type u_1 R : Type u_2 A : Type u_3 inst✝⁴ : CommSemiring R inst✝³ : Semiring A inst✝² : Algebra R A inst✝¹ : DecidableEq n inst✝ : Fintype n M N : Matrix n n A ⊢ invFun n R A (M + N) = invFun n R A M + invFun n R A N
simp [invFun, add_tmul, Finset.sum_add_distrib]
no goals
abd2f857ec4e647f
lineDerivWithin_congr
Mathlib/Analysis/Calculus/LineDeriv/Basic.lean
theorem lineDerivWithin_congr (hs : EqOn f₁ f s) (hx : f₁ x = f x) : lineDerivWithin 𝕜 f₁ s x v = lineDerivWithin 𝕜 f s x v := derivWithin_congr (fun _ hy ↦ hs hy) (by simpa using hx)
𝕜 : Type u_1 inst✝⁴ : NontriviallyNormedField 𝕜 F : Type u_2 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F E : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E f f₁ : E → F s : Set E x v : E hs : EqOn f₁ f s hx : f₁ x = f x ⊢ f₁ (x + 0 • v) = f (x + 0 • v)
simpa using hx
no goals
5091d628b6956273
isInvertible_mfderiv_extChartAt
Mathlib/Geometry/Manifold/MFDeriv/Atlas.lean
lemma isInvertible_mfderiv_extChartAt {y : M} (hy : y ∈ (extChartAt I x).source) : (mfderiv I 𝓘(𝕜, E) (extChartAt I x) y).IsInvertible
𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E H : Type u_3 inst✝³ : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝² : TopologicalSpace M inst✝¹ : ChartedSpace H M inst✝ : IsManifold I 1 M x y : M hy : y ∈ (extChartAt I x).source h'y : ↑(extChartAt I x) y ∈ (extChartAt I x).target Z : (mfderiv I 𝓘(𝕜, E) (↑(extChartAt I x)) (↑(extChartAt I x).symm (↑(extChartAt I x) y))).IsInvertible this : ↑(extChartAt I x).symm (↑(extChartAt I x) y) = y ⊢ (mfderiv I 𝓘(𝕜, E) (↑(extChartAt I x)) y).IsInvertible
rwa [this] at Z
no goals
a106f7bde02a2a5a
List.eq_replicate_or_eq_replicate_append_cons
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Lemmas.lean
theorem eq_replicate_or_eq_replicate_append_cons {α : Type _} (l : List α) : (l = []) ∨ (∃ n a, l = replicate n a ∧ 0 < n) ∨ (∃ n a b l', l = replicate n a ++ b :: l' ∧ 0 < n ∧ a ≠ b)
case neg.h α : Type u_1 x : α n : Nat a : α h : 0 < n h' : ¬x = a ⊢ ∃ n_1 a_1 b l', x :: replicate n a = replicate n_1 a_1 ++ b :: l' ∧ 0 < n_1 ∧ a_1 ≠ b
refine ⟨1, x, a, replicate (n - 1) a, ?_, by decide, h'⟩
case neg.h α : Type u_1 x : α n : Nat a : α h : 0 < n h' : ¬x = a ⊢ x :: replicate n a = replicate 1 x ++ a :: replicate (n - 1) a
1321b019df9b3ed1
MeasureTheory.IsProjectiveLimit.unique
Mathlib/MeasureTheory/Constructions/Projective.lean
theorem unique [∀ i, IsFiniteMeasure (P i)] (hμ : IsProjectiveLimit μ P) (hν : IsProjectiveLimit ν P) : μ = ν
ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → MeasurableSpace (α i) P : (J : Finset ι) → Measure ((j : { x // x ∈ J }) → α ↑j) μ ν : Measure ((i : ι) → α i) inst✝ : ∀ (i : Finset ι), IsFiniteMeasure (P i) hμ : IsProjectiveLimit μ P hν : IsProjectiveLimit ν P ⊢ μ = ν
haveI : IsFiniteMeasure μ := hμ.isFiniteMeasure
ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → MeasurableSpace (α i) P : (J : Finset ι) → Measure ((j : { x // x ∈ J }) → α ↑j) μ ν : Measure ((i : ι) → α i) inst✝ : ∀ (i : Finset ι), IsFiniteMeasure (P i) hμ : IsProjectiveLimit μ P hν : IsProjectiveLimit ν P this : IsFiniteMeasure μ ⊢ μ = ν
ef569de89d8ae529
PiLp.edist_comm
Mathlib/Analysis/Normed/Lp/PiLp.lean
theorem edist_comm (f g : PiLp p β) : edist f g = edist g f
p : ℝ≥0∞ ι : Type u_2 β : ι → Type u_4 inst✝¹ : Fintype ι inst✝ : (i : ι) → PseudoEMetricSpace (β i) f g : PiLp p β ⊢ edist f g = edist g f
rcases p.trichotomy with (rfl | rfl | h)
case inl ι : Type u_2 β : ι → Type u_4 inst✝¹ : Fintype ι inst✝ : (i : ι) → PseudoEMetricSpace (β i) f g : PiLp 0 β ⊢ edist f g = edist g f case inr.inl ι : Type u_2 β : ι → Type u_4 inst✝¹ : Fintype ι inst✝ : (i : ι) → PseudoEMetricSpace (β i) f g : PiLp ⊤ β ⊢ edist f g = edist g f case inr.inr p : ℝ≥0∞ ι : Type u_2 β : ι → Type u_4 inst✝¹ : Fintype ι inst✝ : (i : ι) → PseudoEMetricSpace (β i) f g : PiLp p β h : 0 < p.toReal ⊢ edist f g = edist g f
8220f242121bf124
Filter.EventuallyEq.iteratedDeriv_eq
Mathlib/Analysis/Calculus/IteratedDeriv/Lemmas.lean
lemma Filter.EventuallyEq.iteratedDeriv_eq (n : ℕ) {f g : 𝕜 → F} {x : 𝕜} (hfg : f =ᶠ[𝓝 x] g) : iteratedDeriv n f x = iteratedDeriv n g x
𝕜 : Type u_1 inst✝² : NontriviallyNormedField 𝕜 F : Type u_2 inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F n : ℕ f g : 𝕜 → F x : 𝕜 hfg : f =ᶠ[𝓝 x] g ⊢ iteratedDeriv n f x = iteratedDeriv n g x
simp only [← iteratedDerivWithin_univ, iteratedDerivWithin_eq_iteratedFDerivWithin]
𝕜 : Type u_1 inst✝² : NontriviallyNormedField 𝕜 F : Type u_2 inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F n : ℕ f g : 𝕜 → F x : 𝕜 hfg : f =ᶠ[𝓝 x] g ⊢ ((iteratedFDerivWithin 𝕜 n f Set.univ x) fun x => 1) = (iteratedFDerivWithin 𝕜 n g Set.univ x) fun x => 1
714f8c22c6d22c1a
Cardinal.aleph_mul_aleph
Mathlib/SetTheory/Cardinal/Arithmetic.lean
theorem aleph_mul_aleph (o₁ o₂ : Ordinal) : ℵ_ o₁ * ℵ_ o₂ = ℵ_ (max o₁ o₂)
o₁ o₂ : Ordinal.{u_1} ⊢ ℵ_ o₁ * ℵ_ o₂ = ℵ_ (o₁ ⊔ o₂)
rw [Cardinal.mul_eq_max (aleph0_le_aleph o₁) (aleph0_le_aleph o₂), aleph_max]
no goals
3f107d0a8bd850a6
Algebra.IsPushout.symm
Mathlib/RingTheory/IsTensorProduct.lean
theorem Algebra.IsPushout.symm (h : Algebra.IsPushout R S R' S') : Algebra.IsPushout R R' S S'
R : Type u_1 S : Type v₃ inst✝¹⁰ : CommSemiring R inst✝⁹ : CommSemiring S inst✝⁸ : Algebra R S R' : Type u_6 S' : Type u_7 inst✝⁷ : CommSemiring R' inst✝⁶ : CommSemiring S' inst✝⁵ : Algebra R R' inst✝⁴ : Algebra S S' inst✝³ : Algebra R' S' inst✝² : Algebra R S' inst✝¹ : IsScalarTower R R' S' inst✝ : IsScalarTower R S S' h : IsPushout R S R' S' x✝ : Algebra R' (S ⊗[R] R') := TensorProduct.includeRight.toAlgebra r : R' x : R' ⊗[R] S ⊢ ⋯.equiv ((TensorProduct.comm R R' S) (r • x)) = r • ⋯.equiv ((TensorProduct.comm R R' S) x)
refine TensorProduct.induction_on x ?_ ?_ ?_
case refine_1 R : Type u_1 S : Type v₃ inst✝¹⁰ : CommSemiring R inst✝⁹ : CommSemiring S inst✝⁸ : Algebra R S R' : Type u_6 S' : Type u_7 inst✝⁷ : CommSemiring R' inst✝⁶ : CommSemiring S' inst✝⁵ : Algebra R R' inst✝⁴ : Algebra S S' inst✝³ : Algebra R' S' inst✝² : Algebra R S' inst✝¹ : IsScalarTower R R' S' inst✝ : IsScalarTower R S S' h : IsPushout R S R' S' x✝ : Algebra R' (S ⊗[R] R') := TensorProduct.includeRight.toAlgebra r : R' x : R' ⊗[R] S ⊢ ⋯.equiv ((TensorProduct.comm R R' S) (r • 0)) = r • ⋯.equiv ((TensorProduct.comm R R' S) 0) case refine_2 R : Type u_1 S : Type v₃ inst✝¹⁰ : CommSemiring R inst✝⁹ : CommSemiring S inst✝⁸ : Algebra R S R' : Type u_6 S' : Type u_7 inst✝⁷ : CommSemiring R' inst✝⁶ : CommSemiring S' inst✝⁵ : Algebra R R' inst✝⁴ : Algebra S S' inst✝³ : Algebra R' S' inst✝² : Algebra R S' inst✝¹ : IsScalarTower R R' S' inst✝ : IsScalarTower R S S' h : IsPushout R S R' S' x✝ : Algebra R' (S ⊗[R] R') := TensorProduct.includeRight.toAlgebra r : R' x : R' ⊗[R] S ⊢ ∀ (x : R') (y : S), ⋯.equiv ((TensorProduct.comm R R' S) (r • x ⊗ₜ[R] y)) = r • ⋯.equiv ((TensorProduct.comm R R' S) (x ⊗ₜ[R] y)) case refine_3 R : Type u_1 S : Type v₃ inst✝¹⁰ : CommSemiring R inst✝⁹ : CommSemiring S inst✝⁸ : Algebra R S R' : Type u_6 S' : Type u_7 inst✝⁷ : CommSemiring R' inst✝⁶ : CommSemiring S' inst✝⁵ : Algebra R R' inst✝⁴ : Algebra S S' inst✝³ : Algebra R' S' inst✝² : Algebra R S' inst✝¹ : IsScalarTower R R' S' inst✝ : IsScalarTower R S S' h : IsPushout R S R' S' x✝ : Algebra R' (S ⊗[R] R') := TensorProduct.includeRight.toAlgebra r : R' x : R' ⊗[R] S ⊢ ∀ (x y : R' ⊗[R] S), ⋯.equiv ((TensorProduct.comm R R' S) (r • x)) = r • ⋯.equiv ((TensorProduct.comm R R' S) x) → ⋯.equiv ((TensorProduct.comm R R' S) (r • y)) = r • ⋯.equiv ((TensorProduct.comm R R' S) y) → ⋯.equiv ((TensorProduct.comm R R' S) (r • (x + y))) = r • ⋯.equiv ((TensorProduct.comm R R' S) (x + y))
ee0cd1db0e501e91
padicNorm.add_eq_max_of_ne
Mathlib/NumberTheory/Padics/PadicNorm.lean
theorem add_eq_max_of_ne {q r : ℚ} (hne : padicNorm p q ≠ padicNorm p r) : padicNorm p (q + r) = max (padicNorm p q) (padicNorm p r)
case inr p : ℕ hp : Fact (Nat.Prime p) q r : ℚ hne : padicNorm p q ≠ padicNorm p r this : ∀ {p : ℕ} [hp : Fact (Nat.Prime p)] {q r : ℚ}, padicNorm p q ≠ padicNorm p r → padicNorm p r < padicNorm p q → padicNorm p (q + r) = padicNorm p q ⊔ padicNorm p r hlt : ¬padicNorm p r < padicNorm p q ⊢ padicNorm p (r + q) = padicNorm p r ⊔ padicNorm p q
exact this hne.symm (hne.lt_or_lt.resolve_right hlt)
no goals
cd0b52cee2afa794
Complex.ofReal_cpow_of_nonpos
Mathlib/Analysis/SpecialFunctions/Pow/Real.lean
theorem ofReal_cpow_of_nonpos {x : ℝ} (hx : x ≤ 0) (y : ℂ) : (x : ℂ) ^ y = (-x : ℂ) ^ y * exp (π * I * y)
x : ℝ hx : x ≤ 0 y : ℂ ⊢ ↑x ^ y = (-↑x) ^ y * cexp (↑π * I * y)
rcases hx.eq_or_lt with (rfl | hlt)
case inl y : ℂ hx : 0 ≤ 0 ⊢ ↑0 ^ y = (-↑0) ^ y * cexp (↑π * I * y) case inr x : ℝ hx : x ≤ 0 y : ℂ hlt : x < 0 ⊢ ↑x ^ y = (-↑x) ^ y * cexp (↑π * I * y)
206b85c721316ad4
div_eq_quo_add_sum_rem_div
Mathlib/Algebra/Polynomial/PartialFractions.lean
theorem div_eq_quo_add_sum_rem_div (f : R[X]) {ι : Type*} {g : ι → R[X]} {s : Finset ι} (hg : ∀ i ∈ s, (g i).Monic) (hcop : Set.Pairwise ↑s fun i j => IsCoprime (g i) (g j)) : ∃ (q : R[X]) (r : ι → R[X]), (∀ i ∈ s, (r i).degree < (g i).degree) ∧ ((↑f : K) / ∏ i ∈ s, ↑(g i)) = ↑q + ∑ i ∈ s, (r i : K) / (g i : K)
case insert.intro.intro.intro.intro.intro.intro.intro.intro.refine_2 R : Type inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type inst✝² : Field K inst✝¹ : Algebra R[X] K inst✝ : IsFractionRing R[X] K ι : Type u_1 g : ι → R[X] a : ι b : Finset ι hab : a ∉ b Hind : ∀ (f : R[X]), (∀ i ∈ b, (g i).Monic) → ((↑b).Pairwise fun i j => IsCoprime (g i) (g j)) → ∃ q r, (∀ i ∈ b, (r i).degree < (g i).degree) ∧ ↑f / ∏ i ∈ b, ↑(g i) = ↑q + ∑ i ∈ b, ↑(r i) / ↑(g i) f : R[X] hg : ∀ i ∈ insert a b, (g i).Monic hcop : (↑(insert a b)).Pairwise fun i j => IsCoprime (g i) (g j) q₀ r₁ r₂ : R[X] hdeg₁ : r₁.degree < (g a).degree left✝ : r₂.degree < (∏ i ∈ b, g i).degree hf : ↑f / (↑(g a) * ↑(∏ i ∈ b, g i)) = ↑q₀ + ↑r₁ / ↑(g a) + ↑r₂ / ↑(∏ i ∈ b, g i) q : R[X] r : ι → R[X] hrdeg : ∀ i ∈ b, (r i).degree < (g i).degree IH : ↑?m.17923 / ∏ i ∈ b, ↑(g i) = ↑q + ∑ i ∈ b, ↑(r i) / ↑(g i) ⊢ ↑f / ∏ i ∈ insert a b, ↑(g i) = ↑(q₀ + q) + ∑ i ∈ insert a b, ↑((fun i => if i = a then r₁ else r i) i) / ↑(g i)
norm_cast at hf IH ⊢
case insert.intro.intro.intro.intro.intro.intro.intro.intro.refine_2 R : Type inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type inst✝² : Field K inst✝¹ : Algebra R[X] K inst✝ : IsFractionRing R[X] K ι : Type u_1 g : ι → R[X] a : ι b : Finset ι hab : a ∉ b Hind : ∀ (f : R[X]), (∀ i ∈ b, (g i).Monic) → ((↑b).Pairwise fun i j => IsCoprime (g i) (g j)) → ∃ q r, (∀ i ∈ b, (r i).degree < (g i).degree) ∧ ↑f / ∏ i ∈ b, ↑(g i) = ↑q + ∑ i ∈ b, ↑(r i) / ↑(g i) f : R[X] hg : ∀ i ∈ insert a b, (g i).Monic hcop : (↑(insert a b)).Pairwise fun i j => IsCoprime (g i) (g j) q₀ r₁ r₂ : R[X] hdeg₁ : r₁.degree < (g a).degree left✝ : r₂.degree < (∏ i ∈ b, g i).degree hf✝ : ↑f / (↑(g a) * ↑(∏ i ∈ b, g i)) = ↑q₀ + ↑r₁ / ↑(g a) + ↑r₂ / ↑(∏ i ∈ b, g i) q : R[X] r : ι → R[X] hrdeg : ∀ i ∈ b, (r i).degree < (g i).degree hf : ↑f / ↑(g a * ∏ i ∈ b, g i) = ↑q₀ + ↑r₁ / ↑(g a) + ↑r₂ / ↑(∏ i ∈ b, g i) IH : ↑?m.17923 / ↑(∏ i ∈ b, g i) = ↑q + ∑ i ∈ b, ↑(r i) / ↑(g i) ⊢ ↑f / ↑(∏ i ∈ insert a b, g i) = ↑(q₀ + q) + ∑ x ∈ insert a b, ↑(if x = a then r₁ else r x) / ↑(g x)
ab72339ad54ec2a6
FractionalIdeal.mem_zero_iff
Mathlib/RingTheory/FractionalIdeal/Basic.lean
theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩
R : Type u_1 inst✝² : CommRing R S : Submonoid R P : Type u_2 inst✝¹ : CommRing P inst✝ : Algebra R P x : P hx : x = 0 ⊢ (Algebra.linearMap R P) 0 = x
simp [hx]
no goals
0682cefbc56573ad
Quantale.bot_mul
Mathlib/Algebra/Order/Quantale.lean
theorem bot_mul : ⊥ * x = ⊥
α : Type u_3 inst✝² : Semigroup α inst✝¹ : CompleteLattice α inst✝ : IsQuantale α x : α ⊢ ⊥ * x = ⊥
rw [← sSup_empty, sSup_mul_distrib]
α : Type u_3 inst✝² : Semigroup α inst✝¹ : CompleteLattice α inst✝ : IsQuantale α x : α ⊢ ⨆ y ∈ ∅, y * x = sSup ∅
ae1fb907b443c888
AffineMap.lineMap_apply_module
Mathlib/LinearAlgebra/AffineSpace/AffineMap.lean
theorem lineMap_apply_module (p₀ p₁ : V1) (c : k) : lineMap p₀ p₁ c = (1 - c) • p₀ + c • p₁
k : Type u_1 V1 : Type u_2 inst✝² : Ring k inst✝¹ : AddCommGroup V1 inst✝ : Module k V1 p₀ p₁ : V1 c : k ⊢ (lineMap p₀ p₁) c = (1 - c) • p₀ + c • p₁
simp [lineMap_apply_module', smul_sub, sub_smul]
k : Type u_1 V1 : Type u_2 inst✝² : Ring k inst✝¹ : AddCommGroup V1 inst✝ : Module k V1 p₀ p₁ : V1 c : k ⊢ c • p₁ - c • p₀ + p₀ = p₀ - c • p₀ + c • p₁
37b76ea914db748b
Nat.primeFactors_one
Mathlib/Data/Nat/PrimeFin.lean
@[simp] lemma primeFactors_one : primeFactors 1 = ∅
case h a✝ : ℕ ⊢ a✝ ∈ primeFactors 1 ↔ a✝ ∈ ∅
simpa using Prime.ne_one
no goals
674f6d87bcdf4ccf
MvPolynomial.weightedHomogeneousSubmodule_eq_finsupp_supported
Mathlib/RingTheory/MvPolynomial/WeightedHomogeneous.lean
theorem weightedHomogeneousSubmodule_eq_finsupp_supported (w : σ → M) (m : M) : weightedHomogeneousSubmodule R w m = Finsupp.supported R R { d | weight w d = m }
R : Type u_1 M : Type u_2 inst✝¹ : CommSemiring R σ : Type u_3 inst✝ : AddCommMonoid M w : σ → M m : M ⊢ weightedHomogeneousSubmodule R w m = supported R R {d | (weight w) d = m}
ext x
case h R : Type u_1 M : Type u_2 inst✝¹ : CommSemiring R σ : Type u_3 inst✝ : AddCommMonoid M w : σ → M m : M x : MvPolynomial σ R ⊢ x ∈ weightedHomogeneousSubmodule R w m ↔ x ∈ supported R R {d | (weight w) d = m}
1504e28071b2bf79
RingHom.finiteType_isStableUnderBaseChange
Mathlib/RingTheory/RingHom/FiniteType.lean
theorem finiteType_isStableUnderBaseChange : IsStableUnderBaseChange @FiniteType
case h₁ ⊢ RespectsIso @FiniteType
exact finiteType_respectsIso
no goals
32090bc17de5e6dc
CategoryTheory.mateEquiv_vcomp
Mathlib/CategoryTheory/Adjunction/Mates.lean
theorem mateEquiv_vcomp (α : TwoSquare G₁ L₁ L₂ H₁) (β : TwoSquare G₂ L₂ L₃ H₂) : (mateEquiv adj₁ adj₃) (α ≫ₕ β) = (mateEquiv adj₁ adj₂ α) ≫ᵥ (mateEquiv adj₂ adj₃ β)
case h A : Type u₁ B : Type u₂ C : Type u₃ D : Type u₄ E : Type u₅ F : Type u₆ inst✝⁵ : Category.{v₁, u₁} A inst✝⁴ : Category.{v₂, u₂} B inst✝³ : Category.{v₃, u₃} C inst✝² : Category.{v₄, u₄} D inst✝¹ : Category.{v₅, u₅} E inst✝ : Category.{v₆, u₆} F G₁ : A ⥤ C G₂ : C ⥤ E H₁ : B ⥤ D H₂ : D ⥤ F L₁ : A ⥤ B R₁ : B ⥤ A L₂ : C ⥤ D R₂ : D ⥤ C L₃ : E ⥤ F R₃ : F ⥤ E adj₁ : L₁ ⊣ R₁ adj₂ : L₂ ⊣ R₂ adj₃ : L₃ ⊣ R₃ α : TwoSquare G₁ L₁ L₂ H₁ β : TwoSquare G₂ L₂ L₃ H₂ b : B ⊢ adj₃.unit.app (G₂.obj (G₁.obj (R₁.obj b))) ≫ R₃.map (β.natTrans.app (G₁.obj (R₁.obj b))) ≫ R₃.map (H₂.map (α.natTrans.app (R₁.obj b))) ≫ R₃.map (H₂.map (H₁.map (adj₁.counit.app b))) = adj₃.unit.app (G₂.obj (G₁.obj (R₁.obj b))) ≫ R₃.map (β.app (G₁.obj (R₁.obj b))) ≫ (R₃.map (H₂.map (𝟙 (L₂.obj (G₁.obj (R₁.obj b))))) ≫ R₃.map (H₂.map (α.natTrans.app (R₁.obj b)))) ≫ R₃.map (H₂.map (H₁.map (adj₁.counit.app b)))
simp only [map_id, id_comp]
no goals
e571c91f29550453
seminormFromConst_seq_one
Mathlib/Analysis/Normed/Ring/SeminormFromConst.lean
theorem seminormFromConst_seq_one (n : ℕ) (hn : 1 ≤ n) : seminormFromConst_seq c f 1 n = 1
R : Type u_1 inst✝ : CommRing R c : R f : RingSeminorm R hc : f c ≠ 0 hpm : IsPowMul ⇑f n : ℕ hn : 1 ≤ n ⊢ seminormFromConst_seq c f 1 n = 1
simp only [seminormFromConst_seq]
R : Type u_1 inst✝ : CommRing R c : R f : RingSeminorm R hc : f c ≠ 0 hpm : IsPowMul ⇑f n : ℕ hn : 1 ≤ n ⊢ f (1 * c ^ n) / f c ^ n = 1
cdcce5ae9812f7ce
SimplexCategory.eq_comp_δ_of_not_surjective'
Mathlib/AlgebraicTopology/SimplexCategory/Basic.lean
theorem eq_comp_δ_of_not_surjective' {n : ℕ} {Δ : SimplexCategory} (θ : Δ ⟶ mk (n + 1)) (i : Fin (n + 2)) (hi : ∀ x, θ.toOrderHom x ≠ i) : ∃ θ' : Δ ⟶ mk n, θ = θ' ≫ δ i
case neg n : ℕ Δ : SimplexCategory θ : Δ ⟶ ⦋n + 1⦌ i : Fin (n + 2) hi : ∀ (x : Fin (Δ.len + 1)), (Hom.toOrderHom θ) x ≠ i h : i < Fin.last (n + 1) x : Fin (Δ.len + 1) h' : i < (Hom.toOrderHom θ) x ⊢ (Hom.toOrderHom θ) x = i.succAbove (((Hom.toOrderHom θ) x).pred ⋯)
rw [Fin.succAbove_of_le_castSucc i _]
case neg n : ℕ Δ : SimplexCategory θ : Δ ⟶ ⦋n + 1⦌ i : Fin (n + 2) hi : ∀ (x : Fin (Δ.len + 1)), (Hom.toOrderHom θ) x ≠ i h : i < Fin.last (n + 1) x : Fin (Δ.len + 1) h' : i < (Hom.toOrderHom θ) x ⊢ (Hom.toOrderHom θ) x = (((Hom.toOrderHom θ) x).pred ⋯).succ case neg n : ℕ Δ : SimplexCategory θ : Δ ⟶ ⦋n + 1⦌ i : Fin (n + 2) hi : ∀ (x : Fin (Δ.len + 1)), (Hom.toOrderHom θ) x ≠ i h : i < Fin.last (n + 1) x : Fin (Δ.len + 1) h' : i < (Hom.toOrderHom θ) x ⊢ i ≤ (((Hom.toOrderHom θ) x).pred ⋯).castSucc
4424d07c1d7e8eb1
Submonoid.leftInv_leftInv_eq
Mathlib/GroupTheory/Submonoid/Inverses.lean
theorem leftInv_leftInv_eq (hS : S ≤ IsUnit.submonoid M) : S.leftInv.leftInv = S
M : Type u_1 inst✝ : Monoid M S : Submonoid M hS : S ≤ IsUnit.submonoid M x : M hx : x ∈ S ⊢ x = ↑(IsUnit.unit ⋯)⁻¹⁻¹
rw [inv_inv (hS hx).unit]
M : Type u_1 inst✝ : Monoid M S : Submonoid M hS : S ≤ IsUnit.submonoid M x : M hx : x ∈ S ⊢ x = ↑(IsUnit.unit ⋯)
41ba8e94ab6aae76
Int.bitwise_diff
Mathlib/Data/Int/Bitwise.lean
theorem bitwise_diff : (bitwise fun a b => a && not b) = ldiff
case h.h.ofNat.negSucc m n : ℕ ⊢ ↑(Nat.bitwise (fun x y => x && !!y) m n) = ↑(m &&& n)
congr
case h.h.ofNat.negSucc.e_a.e_f m n : ℕ ⊢ (fun x y => x && !!y) = and
875421a4253732b9
NumberField.abs_discr_gt_two
Mathlib/NumberTheory/NumberField/Discriminant/Basic.lean
theorem abs_discr_gt_two (h : 1 < finrank ℚ K) : 2 < |discr K|
K : Type u_1 inst✝¹ : Field K inst✝ : NumberField K h : Nat.succ 1 ≤ finrank ℚ K ⊢ 2 < |discr K|
rify
K : Type u_1 inst✝¹ : Field K inst✝ : NumberField K h : Nat.succ 1 ≤ finrank ℚ K ⊢ 2 < |↑(discr K)|
33a91f7b5a5a4855
IsPrimitiveRoot.minpoly_dvd_expand
Mathlib/RingTheory/RootsOfUnity/Minpoly.lean
theorem minpoly_dvd_expand {p : ℕ} (hdiv : ¬p ∣ n) : minpoly ℤ μ ∣ expand ℤ p (minpoly ℤ (μ ^ p))
n : ℕ K : Type u_1 inst✝² : CommRing K μ : K h : IsPrimitiveRoot μ n inst✝¹ : IsDomain K inst✝ : CharZero K p : ℕ hdiv : ¬p ∣ n ⊢ minpoly ℤ μ ∣ (expand ℤ p) (minpoly ℤ (μ ^ p))
rcases n.eq_zero_or_pos with (rfl | hpos)
case inl K : Type u_1 inst✝² : CommRing K μ : K inst✝¹ : IsDomain K inst✝ : CharZero K p : ℕ h : IsPrimitiveRoot μ 0 hdiv : ¬p ∣ 0 ⊢ minpoly ℤ μ ∣ (expand ℤ p) (minpoly ℤ (μ ^ p)) case inr n : ℕ K : Type u_1 inst✝² : CommRing K μ : K h : IsPrimitiveRoot μ n inst✝¹ : IsDomain K inst✝ : CharZero K p : ℕ hdiv : ¬p ∣ n hpos : n > 0 ⊢ minpoly ℤ μ ∣ (expand ℤ p) (minpoly ℤ (μ ^ p))
765e9f715d5c1ba0
AkraBazziRecurrence.GrowsPolynomially.eventually_atTop_nonneg_or_nonpos
Mathlib/Computability/AkraBazzi/GrowsPolynomially.lean
lemma eventually_atTop_nonneg_or_nonpos (hf : GrowsPolynomially f) : (∀ᶠ x in atTop, 0 ≤ f x) ∨ (∀ᶠ x in atTop, f x ≤ 0)
case h f : ℝ → ℝ hf : GrowsPolynomially f c₁ : ℝ left✝¹ : c₁ > 0 c₂ : ℝ left✝ : c₂ > 0 h : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (1 / 2 * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x) heq : c₁ = c₂ c : ℝ hc✝ : ∀ᶠ (x : ℝ) in atTop, f x = c hpos : 0 ≤ c a✝ : ℝ hc : f a✝ = c ⊢ 0 ≤ f a✝
simpa only [hc]
no goals
69674f7264744f71
List.Perm.sym2
Mathlib/Data/List/Sym.lean
theorem Perm.sym2 {xs ys : List α} (h : xs ~ ys) : xs.sym2 ~ ys.sym2
α : Type u_1 xs ys : List α h : xs ~ ys ⊢ xs.sym2 ~ ys.sym2
induction h with | nil => rfl | cons x h ih => simp only [List.sym2, map_cons, cons_append, perm_cons] exact (h.map _).append ih | swap x y xs => simp only [List.sym2, map_cons, cons_append] conv => enter [1,2,1]; rw [Sym2.eq_swap] refine Perm.trans (Perm.swap ..) (Perm.trans (Perm.cons _ ?_) (Perm.swap ..)) simp only [← Multiset.coe_eq_coe, ← Multiset.cons_coe, ← Multiset.coe_add, ← Multiset.singleton_add] simp only [add_assoc, add_left_comm] | trans _ _ ih1 ih2 => exact ih1.trans ih2
no goals
1e06895f6b2940d7
Polynomial.degree_C_mul_of_isUnit
Mathlib/Algebra/Polynomial/Degree/Operations.lean
lemma degree_C_mul_of_isUnit (ha : IsUnit a) (p : R[X]) : (C a * p).degree = p.degree
R : Type u a : R inst✝ : Semiring R ha : IsUnit a p : R[X] hp : p ≠ 0 a✝ : Nontrivial R ⊢ (C a * p).degree = p.degree
rw [degree_mul', degree_C ha.ne_zero]
R : Type u a : R inst✝ : Semiring R ha : IsUnit a p : R[X] hp : p ≠ 0 a✝ : Nontrivial R ⊢ 0 + p.degree = p.degree R : Type u a : R inst✝ : Semiring R ha : IsUnit a p : R[X] hp : p ≠ 0 a✝ : Nontrivial R ⊢ (C a).leadingCoeff * p.leadingCoeff ≠ 0
3f26757d26394e37
Nat.isPowerOfTwo_nextPowerOfTwo
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Nat/Power2.lean
theorem isPowerOfTwo_nextPowerOfTwo (n : Nat) : n.nextPowerOfTwo.isPowerOfTwo
n : Nat x✝ : (power : Nat) ×' (_ : power > 0) ×' power.isPowerOfTwo a✝² : ∀ (y : (power : Nat) ×' (_ : power > 0) ×' power.isPowerOfTwo), (invImage (fun x => PSigma.casesOn x fun power h₁ => PSigma.casesOn h₁ fun h₁ h₂ => n - power) instWellFoundedRelationOfSizeOf).1 y x✝ → (nextPowerOfTwo.go n y.1 ⋯).isPowerOfTwo power : Nat h₁✝ : (_ : power > 0) ×' power.isPowerOfTwo a✝¹ : ∀ (y : (power : Nat) ×' (_ : power > 0) ×' power.isPowerOfTwo), (invImage (fun x => PSigma.casesOn x fun power h₁ => PSigma.casesOn h₁ fun h₁ h₂ => n - power) instWellFoundedRelationOfSizeOf).1 y ⟨power, h₁✝⟩ → (nextPowerOfTwo.go n y.1 ⋯).isPowerOfTwo h₁ : power > 0 h₂ : power.isPowerOfTwo a✝ : ∀ (y : (power : Nat) ×' (_ : power > 0) ×' power.isPowerOfTwo), (invImage (fun x => PSigma.casesOn x fun power h₁ => PSigma.casesOn h₁ fun h₁ h₂ => n - power) instWellFoundedRelationOfSizeOf).1 y ⟨power, ⟨h₁, h₂⟩⟩ → (nextPowerOfTwo.go n y.1 ⋯).isPowerOfTwo h✝ : power < n ⊢ n - power * 2 < n - power
apply nextPowerOfTwo_dec <;> assumption
no goals
d389d9357b608488
MonoidHom.noncommPiCoprod_mulSingle
Mathlib/GroupTheory/NoncommPiCoprod.lean
theorem noncommPiCoprod_mulSingle [DecidableEq ι] (i : ι) (y : N i) : noncommPiCoprod ϕ hcomm (Pi.mulSingle i y) = ϕ i y
M : Type u_1 inst✝³ : Monoid M ι : Type u_2 inst✝² : Fintype ι N : ι → Type u_3 inst✝¹ : (i : ι) → Monoid (N i) ϕ : (i : ι) → N i →* M hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute ((ϕ i) x) ((ϕ j) y) inst✝ : DecidableEq ι i : ι y : N i ⊢ (ϕ i) (Pi.mulSingle i y i) * (Finset.univ.erase i).noncommProd (fun j => (ϕ j) (Pi.mulSingle i y j)) ⋯ = (ϕ i) y
rw [Pi.mulSingle_eq_same]
M : Type u_1 inst✝³ : Monoid M ι : Type u_2 inst✝² : Fintype ι N : ι → Type u_3 inst✝¹ : (i : ι) → Monoid (N i) ϕ : (i : ι) → N i →* M hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute ((ϕ i) x) ((ϕ j) y) inst✝ : DecidableEq ι i : ι y : N i ⊢ (ϕ i) y * (Finset.univ.erase i).noncommProd (fun j => (ϕ j) (Pi.mulSingle i y j)) ⋯ = (ϕ i) y
df2c5930d6887abc
AddCircle.addWellApproximable_ae_empty_or_univ
Mathlib/NumberTheory/WellApproximable.lean
theorem addWellApproximable_ae_empty_or_univ (δ : ℕ → ℝ) (hδ : Tendsto δ atTop (𝓝 0)) : (∀ᵐ x, ¬addWellApproximable 𝕊 δ x) ∨ ∀ᵐ x, addWellApproximable 𝕊 δ x
case neg.h.intro.inr.inl T : ℝ hT : Fact (0 < T) δ : ℕ → ℝ hδ : Tendsto δ atTop (𝓝 0) this : SemilatticeSup Nat.Primes := Nat.Subtype.semilatticeSup Irreducible μ : Measure 𝕊 := volume u : Nat.Primes → 𝕊 := fun p => ↑(↑1 / ↑↑p * T) hu₀ : ∀ (p : Nat.Primes), addOrderOf (u p) = ↑p hu : Tendsto (addOrderOf ∘ u) atTop atTop E : Set 𝕊 := addWellApproximable 𝕊 δ X : ℕ → Set 𝕊 := fun n => approxAddOrderOf 𝕊 n (δ n) A : ℕ → Set 𝕊 := fun p => blimsup X atTop fun n => 0 < n ∧ ¬p ∣ n B : ℕ → Set 𝕊 := fun p => blimsup X atTop fun n => 0 < n ∧ p ∣ n ∧ ¬p * p ∣ n C : ℕ → Set 𝕊 := fun p => blimsup X atTop fun n => 0 < n ∧ p ^ 2 ∣ n hA₀ : ∀ (p : ℕ), MeasurableSet (A p) hB₀ : ∀ (p : ℕ), MeasurableSet (B p) hE₀ : NullMeasurableSet E μ hE₁ : ∀ (p : ℕ), E = A p ∪ B p ∪ C p hE₂ : ∀ (p : Nat.Primes), A ↑p =ᶠ[ae μ] ∅ ∧ B ↑p =ᶠ[ae μ] ∅ → E =ᶠ[ae μ] C ↑p hA : ∀ (p : Nat.Primes), A ↑p =ᶠ[ae μ] ∅ ∨ A ↑p =ᶠ[ae μ] univ hB : ∀ (p : Nat.Primes), B ↑p =ᶠ[ae μ] ∅ ∨ B ↑p =ᶠ[ae μ] univ hC : ∀ (p : Nat.Primes), u p +ᵥ C ↑p = C ↑p p : Nat.Primes h✝¹ : ¬B ↑p =ᶠ[ae μ] ∅ h✝ : B ↑p =ᶠ[ae μ] ∅ ⊢ A ↑p ∪ B ↑p ∪ C ↑p =ᶠ[ae volume] univ
contradiction
no goals
aeca070d334a419e
ContinuousMap.tendsto_iff_forall_isCompact_tendstoUniformlyOn
Mathlib/Topology/UniformSpace/CompactConvergence.lean
theorem tendsto_iff_forall_isCompact_tendstoUniformlyOn {ι : Type u₃} {p : Filter ι} {F : ι → C(α, β)} {f} : Tendsto F p (𝓝 f) ↔ ∀ K, IsCompact K → TendstoUniformlyOn (fun i a => F i a) f p K
α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β ι : Type u₃ p : Filter ι F : ι → C(α, β) f : C(α, β) ⊢ (∀ (K : Set α), IsCompact K → ∀ (U : Set β), IsOpen U → MapsTo (⇑f) K U → ∀ᶠ (a : ι) in p, MapsTo (⇑(F a)) K U) ↔ ∀ (K : Set α), IsCompact K → TendstoUniformlyOn (fun i a => (F i) a) (⇑f) p K
constructor
case mp α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β ι : Type u₃ p : Filter ι F : ι → C(α, β) f : C(α, β) ⊢ (∀ (K : Set α), IsCompact K → ∀ (U : Set β), IsOpen U → MapsTo (⇑f) K U → ∀ᶠ (a : ι) in p, MapsTo (⇑(F a)) K U) → ∀ (K : Set α), IsCompact K → TendstoUniformlyOn (fun i a => (F i) a) (⇑f) p K case mpr α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β ι : Type u₃ p : Filter ι F : ι → C(α, β) f : C(α, β) ⊢ (∀ (K : Set α), IsCompact K → TendstoUniformlyOn (fun i a => (F i) a) (⇑f) p K) → ∀ (K : Set α), IsCompact K → ∀ (U : Set β), IsOpen U → MapsTo (⇑f) K U → ∀ᶠ (a : ι) in p, MapsTo (⇑(F a)) K U
db1a421b2350af85
RingHom.FinitePresentation.polynomial_induction
Mathlib/RingTheory/FinitePresentation.lean
/-- Induction principle for finitely presented ring homomorphisms. For a property to hold for all finitely presented ring homs, it suffices for it to hold for `Polynomial.C : R → R[X]`, surjective ring homs with finitely generated kernels, and to be closed under composition. Note that to state this conveniently for ring homs between rings of different universes, we carry around two predicates `P` and `Q`, which should be "the same" apart from universes: * `P`, for ring homs `(R : Type u) → (S : Type u)`. * `Q`, for ring homs `(R : Type u) → (S : Type v)`. -/ lemma polynomial_induction (P : ∀ (R : Type u) [CommRing R] (S : Type u) [CommRing S], (R →+* S) → Prop) (Q : ∀ (R : Type u) [CommRing R] (S : Type v) [CommRing S], (R →+* S) → Prop) (polynomial : ∀ (R) [CommRing R], P R R[X] C) (fg_ker : ∀ (R : Type u) [CommRing R] (S : Type v) [CommRing S] (f : R →+* S), Surjective f → (ker f).FG → Q R S f) (comp : ∀ (R) [CommRing R] (S) [CommRing S] (T) [CommRing T] (f : R →+* S) (g : S →+* T), P R S f → Q S T g → Q R T (g.comp f)) {R : Type u} {S : Type v} [CommRing R] [CommRing S] (f : R →+* S) (hf : f.FinitePresentation) : Q R S f
case mk.intro.intro.intro P : (R : Type u) → [inst : CommRing R] → (S : Type u) → [inst_1 : CommRing S] → (R →+* S) → Prop Q : (R : Type u) → [inst : CommRing R] → (S : Type v) → [inst_1 : CommRing S] → (R →+* S) → Prop polynomial : ∀ (R : Type u) [inst : CommRing R], P R R[X] C fg_ker : ∀ (R : Type u) [inst : CommRing R] (S : Type v) [inst_1 : CommRing S] (f : R →+* S), Surjective ⇑f → (ker f).FG → Q R S f comp : ∀ (R : Type u) [inst : CommRing R] (S : Type u) [inst_1 : CommRing S] (T : Type v) [inst_2 : CommRing T] (f : R →+* S) (g : S →+* T), P R S f → Q S T g → Q R T (g.comp f) R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S f : R →+* S this✝ : Algebra R S := f.toAlgebra n : ℕ g : MvPolynomial (Fin n) R →ₐ[R] S g' : MvPolynomial (Fin n) R →+* S hg : Surjective ⇑g' hg' : (ker g').FG this : g'.comp MvPolynomial.C = f ⊢ Q R S f
subst this
case mk.intro.intro.intro P : (R : Type u) → [inst : CommRing R] → (S : Type u) → [inst_1 : CommRing S] → (R →+* S) → Prop Q : (R : Type u) → [inst : CommRing R] → (S : Type v) → [inst_1 : CommRing S] → (R →+* S) → Prop polynomial : ∀ (R : Type u) [inst : CommRing R], P R R[X] C fg_ker : ∀ (R : Type u) [inst : CommRing R] (S : Type v) [inst_1 : CommRing S] (f : R →+* S), Surjective ⇑f → (ker f).FG → Q R S f comp : ∀ (R : Type u) [inst : CommRing R] (S : Type u) [inst_1 : CommRing S] (T : Type v) [inst_2 : CommRing T] (f : R →+* S) (g : S →+* T), P R S f → Q S T g → Q R T (g.comp f) R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S n : ℕ g' : MvPolynomial (Fin n) R →+* S hg : Surjective ⇑g' hg' : (ker g').FG this : Algebra R S := (g'.comp MvPolynomial.C).toAlgebra g : MvPolynomial (Fin n) R →ₐ[R] S ⊢ Q R S (g'.comp MvPolynomial.C)
7a593dd7687244ec
finite_powers
Mathlib/GroupTheory/OrderOfElement.lean
@[to_additive (attr := simp)] lemma finite_powers : (powers a : Set G).Finite ↔ IsOfFinOrder a
G : Type u_1 inst✝ : LeftCancelMonoid G a : G h : (↑(powers a)).Finite ⊢ IsOfFinOrder a
obtain ⟨m, n, hmn, ha⟩ := h.exists_lt_map_eq_of_forall_mem (f := fun n : ℕ ↦ a ^ n) (fun n ↦ by simp [mem_powers_iff])
case intro.intro.intro G : Type u_1 inst✝ : LeftCancelMonoid G a : G h : (↑(powers a)).Finite m n : ℕ hmn : m < n ha : a ^ m = a ^ n ⊢ IsOfFinOrder a
2594fbf04d0aff1b
CategoryTheory.MonoidalCategory.leftUnitor_tensor_inv'
Mathlib/CategoryTheory/Monoidal/CoherenceLemmas.lean
theorem leftUnitor_tensor_inv' (X Y : C) : (λ_ (X ⊗ Y)).inv = ((λ_ X).inv ⊗ 𝟙 Y) ≫ (α_ (𝟙_ C) X Y).hom
C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : MonoidalCategory C X Y : C ⊢ (λ_ (X ⊗ Y)).inv = ((λ_ X).inv ⊗ 𝟙 Y) ≫ (α_ (𝟙_ C) X Y).hom
monoidal_coherence
no goals
22f4a25417a36d13
TopologicalSpace.Clopens.exists_finset_eq_sup_prod
Mathlib/Topology/ClopenBox.lean
theorem exists_finset_eq_sup_prod (W : Clopens (X × Y)) : ∃ (I : Finset (Clopens X × Clopens Y)), W = I.sup fun i ↦ i.1 ×ˢ i.2
case h X : Type u_1 Y : Type u_2 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : CompactSpace Y inst✝ : CompactSpace X W : Clopens (X × Y) U : X × Y → Clopens X hxU : ∀ x ∈ W, x.1 ∈ U x V : X × Y → Clopens Y hxV : ∀ x ∈ W, x.2 ∈ V x hUV : ∀ x ∈ W, U x ×ˢ V x ≤ W I : Finset (X × Y) hIW : ∀ x ∈ I, x ∈ W.carrier hWI : W.carrier ⊆ ⋃ x ∈ I, ↑(U x) ×ˢ ↑(V x) ⊢ W = I.sup ((fun i => i.1 ×ˢ i.2) ∘ fun x => (U x, V x))
refine le_antisymm (fun x hx ↦ ?_) (Finset.sup_le fun x hx ↦ ?_)
case h.refine_1 X : Type u_1 Y : Type u_2 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : CompactSpace Y inst✝ : CompactSpace X W : Clopens (X × Y) U : X × Y → Clopens X hxU : ∀ x ∈ W, x.1 ∈ U x V : X × Y → Clopens Y hxV : ∀ x ∈ W, x.2 ∈ V x hUV : ∀ x ∈ W, U x ×ˢ V x ≤ W I : Finset (X × Y) hIW : ∀ x ∈ I, x ∈ W.carrier hWI : W.carrier ⊆ ⋃ x ∈ I, ↑(U x) ×ˢ ↑(V x) x : X × Y hx : x ∈ ↑W ⊢ x ∈ ↑(I.sup ((fun i => i.1 ×ˢ i.2) ∘ fun x => (U x, V x))) case h.refine_2 X : Type u_1 Y : Type u_2 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : CompactSpace Y inst✝ : CompactSpace X W : Clopens (X × Y) U : X × Y → Clopens X hxU : ∀ x ∈ W, x.1 ∈ U x V : X × Y → Clopens Y hxV : ∀ x ∈ W, x.2 ∈ V x hUV : ∀ x ∈ W, U x ×ˢ V x ≤ W I : Finset (X × Y) hIW : ∀ x ∈ I, x ∈ W.carrier hWI : W.carrier ⊆ ⋃ x ∈ I, ↑(U x) ×ˢ ↑(V x) x : X × Y hx : x ∈ I ⊢ ((fun i => i.1 ×ˢ i.2) ∘ fun x => (U x, V x)) x ≤ W
da4f184b61cb0200
List.set_set_perm'
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Nat/Perm.lean
theorem set_set_perm' {as : List α} {i j : Nat} (h₁ : i < as.length) (h₂ : i + j < as.length) (hj : 0 < j) : (as.set i as[i + j]).set (i + j) as[i] ~ as
α : Type u_1 as : List α i j : Nat h₁ : i < as.length h₂ : i + j < as.length hj : 0 < j this : as = take i as ++ as[i] :: drop (i + 1) (take (i + j) as) ++ as[i + j] :: drop (i + j + 1) as ⊢ (as.set i as[i + j]).set (i + j) as[i] ~ as
conv => lhs; congr; congr; rw [this]
α : Type u_1 as : List α i j : Nat h₁ : i < as.length h₂ : i + j < as.length hj : 0 < j this : as = take i as ++ as[i] :: drop (i + 1) (take (i + j) as) ++ as[i + j] :: drop (i + j + 1) as ⊢ ((take i as ++ as[i] :: drop (i + 1) (take (i + j) as) ++ as[i + j] :: drop (i + j + 1) as).set i as[i + j]).set (i + j) as[i] ~ as
9b51820a9079599a
doublyStochastic_sum_perm_aux
Mathlib/Analysis/Convex/Birkhoff.lean
/-- If M is a scalar multiple of a doubly stochastic matrix, then it is a conical combination of permutation matrices. This is most useful when M is a doubly stochastic matrix, in which case the combination is convex. This particular formulation is chosen to make the inductive step easier: we no longer need to rescale each time a permutation matrix is subtracted. -/ private lemma doublyStochastic_sum_perm_aux (M : Matrix n n R) (s : R) (hs : 0 ≤ s) (hM : ∃ M' ∈ doublyStochastic R n, M = s • M') : ∃ w : Equiv.Perm n → R, (∀ σ, 0 ≤ w σ) ∧ ∑ σ, w σ • σ.permMatrix R = M
case mk R : Type u_1 n : Type u_2 inst✝² : Fintype n inst✝¹ : DecidableEq n inst✝ : LinearOrderedField R h✝ : Nonempty n d : ℕ ih : ∀ m < d, ∀ (M : Matrix n n R) (s : R), 0 ≤ s → (∃ M' ∈ doublyStochastic R n, M = s • M') → #(filter (fun i => M i.1 i.2 ≠ 0) univ) = m → ∃ w, (∀ (σ : Equiv.Perm n), 0 ≤ w σ) ∧ ∑ σ : Equiv.Perm n, w σ • Equiv.Perm.permMatrix R σ = M M : Matrix n n R s : R hs : 0 ≤ s hM : (∀ (i j : n), 0 ≤ M i j) ∧ (∀ (i : n), ∑ j : n, M i j = s) ∧ ∀ (j : n), ∑ i : n, M i j = s hd : #(filter (fun i => M i.1 i.2 ≠ 0) univ) = d hs'✝ : 0 < s σ : Equiv.Perm n hσ : ∀ (i j : n), M i j = 0 → Equiv.Perm.permMatrix R σ i j = 0 i : n hi : i ∈ univ hi' : ∀ x' ∈ univ, M i (σ i) ≤ M x' (σ x') N : Matrix n n R := M - M i (σ i) • Equiv.Perm.permMatrix R σ hMi' : 0 < M i (σ i) s' : R := s - M i (σ i) hs' : 0 ≤ s' this : ∃ M' ∈ doublyStochastic R n, N = s' • M' i' j' : n hN' : ¬N i' j' = 0 hM' : M i' j' = 0 ⊢ False
simp only [sub_apply, hM', smul_apply, PEquiv.toMatrix_apply, Equiv.toPEquiv_apply, Option.mem_def, Option.some.injEq, smul_eq_mul, mul_ite, mul_one, mul_zero, zero_sub, neg_eq_zero, ite_eq_right_iff, Classical.not_imp, N] at hN'
case mk R : Type u_1 n : Type u_2 inst✝² : Fintype n inst✝¹ : DecidableEq n inst✝ : LinearOrderedField R h✝ : Nonempty n d : ℕ ih : ∀ m < d, ∀ (M : Matrix n n R) (s : R), 0 ≤ s → (∃ M' ∈ doublyStochastic R n, M = s • M') → #(filter (fun i => M i.1 i.2 ≠ 0) univ) = m → ∃ w, (∀ (σ : Equiv.Perm n), 0 ≤ w σ) ∧ ∑ σ : Equiv.Perm n, w σ • Equiv.Perm.permMatrix R σ = M M : Matrix n n R s : R hs : 0 ≤ s hM : (∀ (i j : n), 0 ≤ M i j) ∧ (∀ (i : n), ∑ j : n, M i j = s) ∧ ∀ (j : n), ∑ i : n, M i j = s hd : #(filter (fun i => M i.1 i.2 ≠ 0) univ) = d hs'✝ : 0 < s σ : Equiv.Perm n hσ : ∀ (i j : n), M i j = 0 → Equiv.Perm.permMatrix R σ i j = 0 i : n hi : i ∈ univ hi' : ∀ x' ∈ univ, M i (σ i) ≤ M x' (σ x') N : Matrix n n R := M - M i (σ i) • Equiv.Perm.permMatrix R σ hMi' : 0 < M i (σ i) s' : R := s - M i (σ i) hs' : 0 ≤ s' this : ∃ M' ∈ doublyStochastic R n, N = s' • M' i' j' : n hM' : M i' j' = 0 hN' : σ i' = j' ∧ ¬M i (σ i) = 0 ⊢ False
fe82d3c50ee8248f
exists_zpow_eq_one
Mathlib/GroupTheory/OrderOfElement.lean
theorem exists_zpow_eq_one (x : G) : ∃ (i : ℤ) (_ : i ≠ 0), x ^ (i : ℤ) = 1
case intro.intro G : Type u_1 inst✝¹ : Group G inst✝ : Finite G x : G w : ℕ hw1 : w > 0 hw2 : IsPeriodicPt (fun x_1 => x * x_1) w 1 ⊢ x ^ w = 1
exact (isPeriodicPt_mul_iff_pow_eq_one _).mp hw2
no goals
98741314826b3115
HahnSeries.embDomain_single
Mathlib/RingTheory/HahnSeries/Basic.lean
theorem embDomain_single {f : Γ ↪o Γ'} {g : Γ} {r : R} : embDomain f (single g r) = single (f g) r
case pos Γ : Type u_1 Γ' : Type u_2 R : Type u_3 inst✝² : PartialOrder Γ inst✝¹ : Zero R inst✝ : PartialOrder Γ' f : Γ ↪o Γ' g : Γ r : R g' : Γ' h : ¬g' = f g hr : r = 0 ⊢ g' ∉ ⇑f '' ((single g) r).support
simp [hr]
no goals
b834b49fe6448d2a
pow_sub_one_dvd_differentIdeal_aux
Mathlib/RingTheory/DedekindDomain/Different.lean
lemma pow_sub_one_dvd_differentIdeal_aux [IsFractionRing B L] [IsDedekindDomain A] [NoZeroSMulDivisors A B] [Module.Finite A B] {p : Ideal A} [p.IsMaximal] (P : Ideal B) {e : ℕ} (he : e ≠ 0) (hp : p ≠ ⊥) (hP : P ^ e ∣ p.map (algebraMap A B)) : P ^ (e - 1) ∣ differentIdeal A B
case a A : Type u_1 K : Type u_2 L : Type u B : Type u_3 inst✝²² : CommRing A inst✝²¹ : Field K inst✝²⁰ : CommRing B inst✝¹⁹ : Field L inst✝¹⁸ : Algebra A K inst✝¹⁷ : Algebra B L inst✝¹⁶ : Algebra A B inst✝¹⁵ : Algebra K L inst✝¹⁴ : Algebra A L inst✝¹³ : IsScalarTower A K L inst✝¹² : IsScalarTower A B L inst✝¹¹ : IsDomain A inst✝¹⁰ : IsFractionRing A K inst✝⁹ : FiniteDimensional K L inst✝⁸ : Algebra.IsSeparable K L inst✝⁷ : IsIntegralClosure B A L inst✝⁶ : IsIntegrallyClosed A inst✝⁵ : IsDedekindDomain B inst✝⁴ : IsFractionRing B L inst✝³ : IsDedekindDomain A inst✝² : NoZeroSMulDivisors A B inst✝¹ : Module.Finite A B p : Ideal A inst✝ : p.IsMaximal P : Ideal B e : ℕ he : e ≠ 0 hp : p ≠ ⊥ hP : P ^ e ∣ Ideal.map (algebraMap A B) p a : Ideal B ha : Ideal.map (algebraMap A B) p = P ^ (e - 1) * a hp' : ¬Ideal.map (algebraMap A B) p = ⊥ habot : a ≠ ⊥ hPbot : P ≠ ⊥ this✝ : Ideal.map (algebraMap A B) p ∣ a ^ e this : ∀ x ∈ a, (intTrace A B) x ∈ p ⊢ (↑(P ^ (e - 1)))⁻¹⁻¹ = (↑a / ↑(Ideal.map (algebraMap A B) p))⁻¹
simp only [inv_inv, ha, FractionalIdeal.coeIdeal_mul, inv_div, ne_eq, FractionalIdeal.coeIdeal_eq_zero, mul_div_assoc]
case a A : Type u_1 K : Type u_2 L : Type u B : Type u_3 inst✝²² : CommRing A inst✝²¹ : Field K inst✝²⁰ : CommRing B inst✝¹⁹ : Field L inst✝¹⁸ : Algebra A K inst✝¹⁷ : Algebra B L inst✝¹⁶ : Algebra A B inst✝¹⁵ : Algebra K L inst✝¹⁴ : Algebra A L inst✝¹³ : IsScalarTower A K L inst✝¹² : IsScalarTower A B L inst✝¹¹ : IsDomain A inst✝¹⁰ : IsFractionRing A K inst✝⁹ : FiniteDimensional K L inst✝⁸ : Algebra.IsSeparable K L inst✝⁷ : IsIntegralClosure B A L inst✝⁶ : IsIntegrallyClosed A inst✝⁵ : IsDedekindDomain B inst✝⁴ : IsFractionRing B L inst✝³ : IsDedekindDomain A inst✝² : NoZeroSMulDivisors A B inst✝¹ : Module.Finite A B p : Ideal A inst✝ : p.IsMaximal P : Ideal B e : ℕ he : e ≠ 0 hp : p ≠ ⊥ hP : P ^ e ∣ Ideal.map (algebraMap A B) p a : Ideal B ha : Ideal.map (algebraMap A B) p = P ^ (e - 1) * a hp' : ¬Ideal.map (algebraMap A B) p = ⊥ habot : a ≠ ⊥ hPbot : P ≠ ⊥ this✝ : Ideal.map (algebraMap A B) p ∣ a ^ e this : ∀ x ∈ a, (intTrace A B) x ∈ p ⊢ ↑(P ^ (e - 1)) = ↑(P ^ (e - 1)) * (↑a / ↑a)
18a0d9e4648de8c5
IsPrimitiveRoot.minpoly_eq_pow
Mathlib/RingTheory/RootsOfUnity/Minpoly.lean
theorem minpoly_eq_pow {p : ℕ} [hprime : Fact p.Prime] (hdiv : ¬p ∣ n) : minpoly ℤ μ = minpoly ℤ (μ ^ p)
case refine_1 n : ℕ K : Type u_1 inst✝² : CommRing K μ : K h : IsPrimitiveRoot μ n inst✝¹ : IsDomain K inst✝ : CharZero K p : ℕ hprime : Fact (Nat.Prime p) hdiv : ¬p ∣ n hn : ¬n = 0 hpos : 0 < n P : ℤ[X] := minpoly ℤ μ Q : ℤ[X] := minpoly ℤ (μ ^ p) hdiff : ¬P = Q Pmonic : P.Monic Qmonic : Q.Monic Pirr : Irreducible P Qirr : Irreducible Q PQprim : (P * Q).IsPrimitive aux : Irreducible P ↔ Irreducible (map (Int.castRingHom ℚ) P) ⊢ ¬P ∣ Q
intro hdiv
case refine_1 n : ℕ K : Type u_1 inst✝² : CommRing K μ : K h : IsPrimitiveRoot μ n inst✝¹ : IsDomain K inst✝ : CharZero K p : ℕ hprime : Fact (Nat.Prime p) hdiv✝ : ¬p ∣ n hn : ¬n = 0 hpos : 0 < n P : ℤ[X] := minpoly ℤ μ Q : ℤ[X] := minpoly ℤ (μ ^ p) hdiff : ¬P = Q Pmonic : P.Monic Qmonic : Q.Monic Pirr : Irreducible P Qirr : Irreducible Q PQprim : (P * Q).IsPrimitive aux : Irreducible P ↔ Irreducible (map (Int.castRingHom ℚ) P) hdiv : P ∣ Q ⊢ False
60585a9f1d93c365
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.reduce_fold_fn_preserves_induction_motive
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/RupAddSound.lean
theorem reduce_fold_fn_preserves_induction_motive {c_arr : Array (Literal (PosFin n))} {assignment : Array Assignment} (idx : Fin c_arr.size) (res : ReduceResult (PosFin n)) (ih : ReducePostconditionInductionMotive c_arr assignment idx.1 res) : ReducePostconditionInductionMotive c_arr assignment (idx.1 + 1) (reduce_fold_fn assignment res c_arr[idx])
case right.h_4 n : Nat c_arr : Array (Literal (PosFin n)) assignment : Array Assignment idx : Fin c_arr.size i : PosFin n b : Bool p : PosFin n → Bool hp : p ⊨ assignment j : Fin c_arr.size j_lt_idx_add_one : ↑j < ↑idx + 1 p_entails_c_arr_j : p ⊨ c_arr[↑j] acc✝ : ReduceResult (PosFin n) ih : ReducePostconditionInductionMotive c_arr assignment (↑idx) reducedToNonunit h : reducedToNonunit = reducedToUnit (i, b) ⊢ p ⊨ (i, b)
simp at h
no goals
681a60500ce41fce
CategoryTheory.GrothendieckTopology.toPlus_naturality
Mathlib/CategoryTheory/Sites/Plus.lean
theorem toPlus_naturality {P Q : Cᵒᵖ ⥤ D} (η : P ⟶ Q) : η ≫ J.toPlus Q = J.toPlus _ ≫ J.plusMap η
case w.h C : Type u inst✝³ : Category.{v, u} C J : GrothendieckTopology C D : Type w inst✝² : Category.{max v u, w} D inst✝¹ : ∀ (P : Cᵒᵖ ⥤ D) (X : C) (S : J.Cover X), HasMultiequalizer (S.index P) inst✝ : ∀ (X : C), HasColimitsOfShape (J.Cover X)ᵒᵖ D P Q : Cᵒᵖ ⥤ D η : P ⟶ Q x✝ : Cᵒᵖ ⊢ (η ≫ J.toPlus Q).app x✝ = (J.toPlus P ≫ J.plusMap η).app x✝
dsimp [toPlus, plusMap]
case w.h C : Type u inst✝³ : Category.{v, u} C J : GrothendieckTopology C D : Type w inst✝² : Category.{max v u, w} D inst✝¹ : ∀ (P : Cᵒᵖ ⥤ D) (X : C) (S : J.Cover X), HasMultiequalizer (S.index P) inst✝ : ∀ (X : C), HasColimitsOfShape (J.Cover X)ᵒᵖ D P Q : Cᵒᵖ ⥤ D η : P ⟶ Q x✝ : Cᵒᵖ ⊢ η.app x✝ ≫ ⊤.toMultiequalizer Q ≫ colimit.ι (J.diagram Q (unop x✝)) (op ⊤) = (⊤.toMultiequalizer P ≫ colimit.ι (J.diagram P (unop x✝)) (op ⊤)) ≫ colimMap (J.diagramNatTrans η (unop x✝))
684ea2b09c5da0f6
fourierIntegral_half_period_translate
Mathlib/Analysis/Fourier/RiemannLebesgueLemma.lean
theorem fourierIntegral_half_period_translate {w : V} (hw : w ≠ 0) : (∫ v : V, 𝐞 (-⟪v, w⟫) • f (v + i w)) = -∫ v : V, 𝐞 (-⟪v, w⟫) • f v
case h E : Type u_1 V : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℂ E f : V → E inst✝⁴ : NormedAddCommGroup V inst✝³ : MeasurableSpace V inst✝² : BorelSpace V inst✝¹ : InnerProductSpace ℝ V inst✝ : FiniteDimensional ℝ V w : V hw : w ≠ 0 ⊢ ‖w‖ ^ 2 ≠ 0
rwa [Ne, sq_eq_zero_iff, norm_eq_zero]
no goals
851451860b8c873e
Int.gcd_dvd_iff
Mathlib/Data/Int/GCD.lean
theorem gcd_dvd_iff {a b : ℤ} {n : ℕ} : gcd a b ∣ n ↔ ∃ x y : ℤ, ↑n = a * x + b * y
a b : ℤ n : ℕ ⊢ a.gcd b ∣ n ↔ ∃ x y, ↑n = a * x + b * y
constructor
case mp a b : ℤ n : ℕ ⊢ a.gcd b ∣ n → ∃ x y, ↑n = a * x + b * y case mpr a b : ℤ n : ℕ ⊢ (∃ x y, ↑n = a * x + b * y) → a.gcd b ∣ n
a5bf30f837d31f28
Array.getElem_extract_loop_ge_aux
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Lemmas.lean
theorem getElem_extract_loop_ge_aux (as bs : Array α) (size start : Nat) (hge : i ≥ bs.size) (h : i < (extract.loop as size start bs).size) : start + i - bs.size < as.size
case h α : Type u_1 i : Nat as bs : Array α size start : Nat hge : i ≥ bs.size h : i < (extract.loop as size start bs).size ⊢ min size (as.size - start) ≤ as.size - start
exact Nat.min_le_right ..
no goals
be0a6fd7e95fa817
WeierstrassCurve.Jacobian.eval_polynomialY_of_Z_ne_zero
Mathlib/AlgebraicGeometry/EllipticCurve/Jacobian.lean
lemma eval_polynomialY_of_Z_ne_zero {P : Fin 3 → F} (hPz : P z ≠ 0) : eval P W.polynomialY / P z ^ 3 = W.toAffine.polynomialY.evalEval (P x / P z ^ 2) (P y / P z ^ 3)
case a.a F : Type u inst✝ : Field F W : Jacobian F P : Fin 3 → F hPz : P z ≠ 0 ⊢ (eval P) W.polynomialY / P z ^ 3 + (W.a₁ * P x / P z ^ 2 * 1 + W.a₃ * 1) - (Polynomial.evalEval (P x / P z ^ 2) (P y / P z ^ 3) (toAffine W).polynomialY + (W.a₁ * P x / P z ^ 2 * (P z / P z) + W.a₃ * (P z ^ 3 / P z ^ 3))) = 0
rw [eval_polynomialY, Affine.evalEval_polynomialY]
case a.a F : Type u inst✝ : Field F W : Jacobian F P : Fin 3 → F hPz : P z ≠ 0 ⊢ (2 * P y + W.a₁ * P x * P z + W.a₃ * P z ^ 3) / P z ^ 3 + (W.a₁ * P x / P z ^ 2 * 1 + W.a₃ * 1) - (2 * (P y / P z ^ 3) + (toAffine W).a₁ * (P x / P z ^ 2) + (toAffine W).a₃ + (W.a₁ * P x / P z ^ 2 * (P z / P z) + W.a₃ * (P z ^ 3 / P z ^ 3))) = 0
ce8e9326e0978937
ENNReal.inv_rpow
Mathlib/Analysis/SpecialFunctions/Pow/NNReal.lean
theorem inv_rpow (x : ℝ≥0∞) (y : ℝ) : x⁻¹ ^ y = (x ^ y)⁻¹
case inr.inr.inr x : ℝ≥0∞ y : ℝ hy : y < 0 ∨ 0 < y h0 : x ≠ 0 h_top : x ≠ ⊤ ⊢ x⁻¹ ^ y = (x ^ y)⁻¹
apply ENNReal.eq_inv_of_mul_eq_one_left
case inr.inr.inr.h x : ℝ≥0∞ y : ℝ hy : y < 0 ∨ 0 < y h0 : x ≠ 0 h_top : x ≠ ⊤ ⊢ x⁻¹ ^ y * x ^ y = 1
b19d8c607ccb3ad9
Surreal.Multiplication.mul_right_le_of_equiv
Mathlib/SetTheory/Surreal/Multiplication.lean
theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric) (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y
case h₂.left x₁ x₂ y : PGame h₁ : x₁.Numeric h₂ : x₂.Numeric h₁₂ : IH24 x₁ x₂ y h₂₁ : IH24 x₂ x₁ y he : x₁ ≈ x₂ he' : -x₁ ≈ -x₂ i✝ : x₂.LeftMoves j✝ : (-y).LeftMoves ⊢ ⟦x₂.mulOption (-y) i✝ j✝⟧ < ⟦x₁ * -y⟧
apply mulOption_lt_mul_of_equiv h₂ (ih24_neg h₂₁).2 (symm he)
no goals
e1812a149e6bada9
MeasureTheory.L2.norm_sq_eq_inner'
Mathlib/MeasureTheory/Function/L2Space.lean
theorem norm_sq_eq_inner' (f : α →₂[μ] E) : ‖f‖ ^ 2 = RCLike.re ⟪f, f⟫
α : Type u_1 E : Type u_2 𝕜 : Type u_4 inst✝³ : RCLike 𝕜 inst✝² : MeasurableSpace α μ : Measure α inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E f : ↥(Lp E 2 μ) ⊢ ENNReal.toReal 2 = 2
simp
no goals
629fb9c7e3401fd8
LieAlgebra.zeroRootSubalgebra_eq_of_is_cartan
Mathlib/Algebra/Lie/Weights/Cartan.lean
theorem zeroRootSubalgebra_eq_of_is_cartan (H : LieSubalgebra R L) [H.IsCartanSubalgebra] [IsNoetherian R L] : zeroRootSubalgebra R L H = H
R : Type u_1 L : Type u_2 inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L H : LieSubalgebra R L inst✝¹ : H.IsCartanSubalgebra inst✝ : IsNoetherian R L this : rootSpace H 0 ≤ H.toLieSubmodule ⊢ zeroRootSubalgebra R L H ≤ H
exact fun x hx => this hx
no goals
f049cf760aeeca8e
Multiset.prod_map_sum
Mathlib/Algebra/BigOperators/Ring/Multiset.lean
lemma prod_map_sum {s : Multiset (Multiset α)} : prod (s.map sum) = sum ((Sections s).map prod) := Multiset.induction_on s (by simp) fun a s ih ↦ by simp [ih, map_bind, sum_map_mul_left, sum_map_mul_right]
α : Type u_2 inst✝ : CommSemiring α s : Multiset (Multiset α) ⊢ (map sum 0).prod = (map prod (Sections 0)).sum
simp
no goals
fb98ee7bf5561634
isOpen.dynEntourage
Mathlib/Dynamics/TopologicalEntropy/DynamicalEntourage.lean
lemma _root_.isOpen.dynEntourage [TopologicalSpace X] {T : X → X} (T_cont : Continuous T) {U : Set (X × X)} (U_open : IsOpen U) (n : ℕ) : IsOpen (dynEntourage T U n)
X : Type u_1 inst✝ : TopologicalSpace X T : X → X T_cont : Continuous T U : Set (X × X) U_open : IsOpen U n : ℕ k : ↑(Ico 0 n) ⊢ IsOpen ((map T T)^[↑k] ⁻¹' U)
exact U_open.preimage ((T_cont.prodMap T_cont).iterate k)
no goals
c6bf64c8430f1d4c
Matrix.isNilpotent_charpoly_sub_pow_of_isNilpotent
Mathlib/LinearAlgebra/Matrix/Charpoly/Coeff.lean
lemma isNilpotent_charpoly_sub_pow_of_isNilpotent (hM : IsNilpotent M) : IsNilpotent (M.charpoly - X ^ (Fintype.card n))
R : Type u inst✝² : CommRing R n : Type v inst✝¹ : DecidableEq n inst✝ : Fintype n M : Matrix n n R hM : IsNilpotent M a✝ : Nontrivial R p : R[X] := M.charpolyRev hp : p - 1 = X * (p /ₘ X) ⊢ IsNilpotent (M.charpoly - X ^ Fintype.card n)
have : IsNilpotent (p /ₘ X) := (Polynomial.isUnit_iff'.mp (isUnit_charpolyRev_of_isNilpotent hM)).2
R : Type u inst✝² : CommRing R n : Type v inst✝¹ : DecidableEq n inst✝ : Fintype n M : Matrix n n R hM : IsNilpotent M a✝ : Nontrivial R p : R[X] := M.charpolyRev hp : p - 1 = X * (p /ₘ X) this : IsNilpotent (p /ₘ X) ⊢ IsNilpotent (M.charpoly - X ^ Fintype.card n)
2fe27623d5fcf0fa
SimpContFract.determinant_aux
Mathlib/Algebra/ContinuedFractions/Determinant.lean
theorem determinant_aux (hyp : n = 0 ∨ ¬(↑s : GenContFract K).TerminatedAt (n - 1)) : ((↑s : GenContFract K).contsAux n).a * ((↑s : GenContFract K).contsAux (n + 1)).b - ((↑s : GenContFract K).contsAux n).b * ((↑s : GenContFract K).contsAux (n + 1)).a = (-1) ^ n
K : Type u_1 inst✝ : Field K s : SimpContFract K n✝ n : ℕ hyp : n + 1 = 0 ∨ ¬(↑s).TerminatedAt (n + 1 - 1) g : GenContFract K := ↑s conts : Pair K := g.contsAux (n + 2) pred_conts : Pair K := g.contsAux (n + 1) pred_conts_eq : pred_conts = g.contsAux (n + 1) ppred_conts : Pair K := g.contsAux n IH : n = 0 ∨ ¬(↑s).TerminatedAt (n - 1) → ppred_conts.a * pred_conts.b - ppred_conts.b * pred_conts.a = (-1) ^ n ppred_conts_eq : ppred_conts = g.contsAux n pA : K := pred_conts.a pB : K := pred_conts.b ppA : K := ppred_conts.a ppB : K := ppred_conts.b not_terminated_at_n : ¬g.TerminatedAt n gp : Pair K s_nth_eq : g.s.get? n = some gp this : ppA * pB - ppB * pA = (-1) ^ n pow_succ_n : (-1) ^ (n + 1) = -1 * (-1) ^ n ⊢ pA * ppB - pB * ppA = (-1) ^ (n + 1)
rw [pow_succ_n, ← this]
K : Type u_1 inst✝ : Field K s : SimpContFract K n✝ n : ℕ hyp : n + 1 = 0 ∨ ¬(↑s).TerminatedAt (n + 1 - 1) g : GenContFract K := ↑s conts : Pair K := g.contsAux (n + 2) pred_conts : Pair K := g.contsAux (n + 1) pred_conts_eq : pred_conts = g.contsAux (n + 1) ppred_conts : Pair K := g.contsAux n IH : n = 0 ∨ ¬(↑s).TerminatedAt (n - 1) → ppred_conts.a * pred_conts.b - ppred_conts.b * pred_conts.a = (-1) ^ n ppred_conts_eq : ppred_conts = g.contsAux n pA : K := pred_conts.a pB : K := pred_conts.b ppA : K := ppred_conts.a ppB : K := ppred_conts.b not_terminated_at_n : ¬g.TerminatedAt n gp : Pair K s_nth_eq : g.s.get? n = some gp this : ppA * pB - ppB * pA = (-1) ^ n pow_succ_n : (-1) ^ (n + 1) = -1 * (-1) ^ n ⊢ pA * ppB - pB * ppA = -1 * (ppA * pB - ppB * pA)
5478ed7427a774c4
Ideal.Filtration.submodule_closure_single
Mathlib/RingTheory/Filtration.lean
theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid
case a R : Type u_1 M : Type u_2 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F : I.Filtration M f : PolynomialModule R M hf : f ∈ F.submodule.toAddSubmonoid ⊢ Finsupp.sum f Finsupp.single ∈ AddSubmonoid.closure (⋃ i, ⇑(single R i) '' ↑(F.N i))
apply AddSubmonoid.sum_mem _ _
R : Type u_1 M : Type u_2 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F : I.Filtration M f : PolynomialModule R M hf : f ∈ F.submodule.toAddSubmonoid ⊢ ∀ c ∈ f.support, Finsupp.single c (f c) ∈ AddSubmonoid.closure (⋃ i, ⇑(single R i) '' ↑(F.N i))
bd336799b08b1c57
HomologicalComplex.mapBifunctor₂₃.d₁_eq_zero
Mathlib/Algebra/Homology/BifunctorAssociator.lean
lemma d₁_eq_zero (i₁ : ι₁) (i₂ : ι₂) (i₃ : ι₃) (j : ι₄) (h : ¬ c₁.Rel i₁ (c₁.next i₁)) : d₁ F G₂₃ K₁ K₂ K₃ c₁₂ c₂₃ c₄ i₁ i₂ i₃ j = 0
C₁ : Type u_1 C₂ : Type u_2 C₂₃ : Type u_4 C₃ : Type u_5 C₄ : Type u_6 inst✝²² : Category.{u_15, u_1} C₁ inst✝²¹ : Category.{u_17, u_2} C₂ inst✝²⁰ : Category.{u_16, u_5} C₃ inst✝¹⁹ : Category.{u_13, u_6} C₄ inst✝¹⁸ : Category.{u_14, u_4} C₂₃ inst✝¹⁷ : HasZeroMorphisms C₁ inst✝¹⁶ : HasZeroMorphisms C₂ inst✝¹⁵ : HasZeroMorphisms C₃ inst✝¹⁴ : Preadditive C₂₃ inst✝¹³ : Preadditive C₄ F : C₁ ⥤ C₂₃ ⥤ C₄ G₂₃ : C₂ ⥤ C₃ ⥤ C₂₃ inst✝¹² : G₂₃.PreservesZeroMorphisms inst✝¹¹ : ∀ (X₂ : C₂), (G₂₃.obj X₂).PreservesZeroMorphisms inst✝¹⁰ : F.PreservesZeroMorphisms inst✝⁹ : ∀ (X₁ : C₁), (F.obj X₁).Additive ι₁ : Type u_7 ι₂ : Type u_8 ι₃ : Type u_9 ι₁₂ : Type u_10 ι₂₃ : Type u_11 ι₄ : Type u_12 inst✝⁸ : DecidableEq ι₄ c₁ : ComplexShape ι₁ c₂ : ComplexShape ι₂ c₃ : ComplexShape ι₃ K₁ : HomologicalComplex C₁ c₁ K₂ : HomologicalComplex C₂ c₂ K₃ : HomologicalComplex C₃ c₃ c₁₂ : ComplexShape ι₁₂ c₂₃ : ComplexShape ι₂₃ c₄ : ComplexShape ι₄ inst✝⁷ : TotalComplexShape c₁ c₂ c₁₂ inst✝⁶ : TotalComplexShape c₁₂ c₃ c₄ inst✝⁵ : TotalComplexShape c₂ c₃ c₂₃ inst✝⁴ : TotalComplexShape c₁ c₂₃ c₄ inst✝³ : K₂.HasMapBifunctor K₃ G₂₃ c₂₃ inst✝² : c₁.Associative c₂ c₃ c₁₂ c₂₃ c₄ inst✝¹ : DecidableEq ι₂₃ inst✝ : K₁.HasMapBifunctor (K₂.mapBifunctor K₃ G₂₃ c₂₃) F c₄ i₁ : ι₁ i₂ : ι₂ i₃ : ι₃ j : ι₄ h : ¬c₁.Rel i₁ (c₁.next i₁) ⊢ d₁ F G₂₃ K₁ K₂ K₃ c₁₂ c₂₃ c₄ i₁ i₂ i₃ j = 0
dsimp [d₁]
C₁ : Type u_1 C₂ : Type u_2 C₂₃ : Type u_4 C₃ : Type u_5 C₄ : Type u_6 inst✝²² : Category.{u_15, u_1} C₁ inst✝²¹ : Category.{u_17, u_2} C₂ inst✝²⁰ : Category.{u_16, u_5} C₃ inst✝¹⁹ : Category.{u_13, u_6} C₄ inst✝¹⁸ : Category.{u_14, u_4} C₂₃ inst✝¹⁷ : HasZeroMorphisms C₁ inst✝¹⁶ : HasZeroMorphisms C₂ inst✝¹⁵ : HasZeroMorphisms C₃ inst✝¹⁴ : Preadditive C₂₃ inst✝¹³ : Preadditive C₄ F : C₁ ⥤ C₂₃ ⥤ C₄ G₂₃ : C₂ ⥤ C₃ ⥤ C₂₃ inst✝¹² : G₂₃.PreservesZeroMorphisms inst✝¹¹ : ∀ (X₂ : C₂), (G₂₃.obj X₂).PreservesZeroMorphisms inst✝¹⁰ : F.PreservesZeroMorphisms inst✝⁹ : ∀ (X₁ : C₁), (F.obj X₁).Additive ι₁ : Type u_7 ι₂ : Type u_8 ι₃ : Type u_9 ι₁₂ : Type u_10 ι₂₃ : Type u_11 ι₄ : Type u_12 inst✝⁸ : DecidableEq ι₄ c₁ : ComplexShape ι₁ c₂ : ComplexShape ι₂ c₃ : ComplexShape ι₃ K₁ : HomologicalComplex C₁ c₁ K₂ : HomologicalComplex C₂ c₂ K₃ : HomologicalComplex C₃ c₃ c₁₂ : ComplexShape ι₁₂ c₂₃ : ComplexShape ι₂₃ c₄ : ComplexShape ι₄ inst✝⁷ : TotalComplexShape c₁ c₂ c₁₂ inst✝⁶ : TotalComplexShape c₁₂ c₃ c₄ inst✝⁵ : TotalComplexShape c₂ c₃ c₂₃ inst✝⁴ : TotalComplexShape c₁ c₂₃ c₄ inst✝³ : K₂.HasMapBifunctor K₃ G₂₃ c₂₃ inst✝² : c₁.Associative c₂ c₃ c₁₂ c₂₃ c₄ inst✝¹ : DecidableEq ι₂₃ inst✝ : K₁.HasMapBifunctor (K₂.mapBifunctor K₃ G₂₃ c₂₃) F c₄ i₁ : ι₁ i₂ : ι₂ i₃ : ι₃ j : ι₄ h : ¬c₁.Rel i₁ (c₁.next i₁) ⊢ c₁.ε₁ c₂₃ c₄ (i₁, c₂.π c₃ c₂₃ (i₂, i₃)) • (F.map (K₁.d i₁ (c₁.next i₁))).app ((G₂₃.obj (K₂.X i₂)).obj (K₃.X i₃)) ≫ ιOrZero F G₂₃ K₁ K₂ K₃ c₁₂ c₂₃ c₄ (c₁.next i₁) i₂ i₃ j = 0
27ea0ca2b0bbb349
Function.Embedding.setValue_eq
Mathlib/Logic/Embedding/Basic.lean
theorem setValue_eq {α β} (f : α ↪ β) (a : α) (b : β) [∀ a', Decidable (a' = a)] [∀ a', Decidable (f a' = b)] : setValue f a b a = b
α : Sort u_1 β : Sort u_2 f : α ↪ β a : α b : β inst✝¹ : (a' : α) → Decidable (a' = a) inst✝ : (a' : α) → Decidable (f a' = b) ⊢ (f.setValue a b) a = b
simp [setValue]
no goals
116318157d574adc
LinearMap.quotientInfEquivSupQuotient_surjective
Mathlib/LinearAlgebra/Isomorphisms.lean
theorem quotientInfEquivSupQuotient_surjective (p p' : Submodule R M) : Function.Surjective (quotientInfToSupQuotient p p')
R : Type u_1 M : Type u_2 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M p p' : Submodule R M ⊢ Function.Surjective ⇑(quotientInfToSupQuotient p p')
rw [← range_eq_top, quotientInfToSupQuotient, range_liftQ, eq_top_iff']
R : Type u_1 M : Type u_2 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M p p' : Submodule R M ⊢ ∀ (x : ↥(p ⊔ p') ⧸ comap (p ⊔ p').subtype p'), x ∈ range (subToSupQuotient p p')
7b2f7728722e9e70
Projectivization.card
Mathlib/LinearAlgebra/Projectivization/Cardinality.lean
/-- Fraction free cardinality formula for the points of `ℙ k V` if `k` and `V` are finite (for silly reasons the formula also holds when `k` and `V` are infinite). See `Projectivization.card'` and `Projectivization.card''` for other spellings of the formula. -/ lemma card : Nat.card V - 1 = Nat.card (ℙ k V) * (Nat.card k - 1)
case inr k : Type u_1 V : Type u_2 inst✝² : DivisionRing k inst✝¹ : AddCommGroup V inst✝ : Module k V a✝ : Nontrivial V this✝ : ∀ (k : Type u_1) (V : Type u_2) [inst : DivisionRing k] [inst_1 : AddCommGroup V] [inst_2 : Module k V], Nontrivial V → Finite k → Nat.card V - 1 = Nat.card (ℙ k V) * (Nat.card k - 1) h : Infinite k this : Infinite V ⊢ Nat.card V - 1 = Nat.card (ℙ k V) * (Nat.card k - 1)
simp
no goals
1d5a95497a0b5f13
Rat.AbsoluteValue.equiv_real_of_unbounded
Mathlib/NumberTheory/Ostrowski.lean
theorem equiv_real_of_unbounded : f ≈ real
case intro.inr.inl f : AbsoluteValue ℚ ℝ notbdd : ¬∀ (n : ℕ), f ↑n ≤ 1 m : ℕ hm : ¬f ↑m ≤ 1 oneltm : 1 < m s : ℝ := logb (↑m) (f ↑m) hs : s = logb (↑m) (f ↑m) ⊢ f ↑1 ^ s⁻¹ = real ↑1
simp
no goals
6f20338292d04472
MeasureTheory.setIntegral_gt_gt
Mathlib/MeasureTheory/Integral/SetIntegral.lean
theorem setIntegral_gt_gt {R : ℝ} {f : X → ℝ} (hR : 0 ≤ R) (hfint : IntegrableOn f {x | ↑R < f x} μ) (hμ : μ {x | ↑R < f x} ≠ 0) : (μ {x | ↑R < f x}).toReal * R < ∫ x in {x | ↑R < f x}, f x ∂μ
case hf X : Type u_1 mX : MeasurableSpace X μ : Measure X R : ℝ f : X → ℝ hR : 0 ≤ R hfint : IntegrableOn f {x | R < f x} μ hμ : μ {x | R < f x} ≠ 0 this : IntegrableOn (fun x => R) {x | R < f x} μ ⊢ 0 ≤ᶠ[ae (μ.restrict {x | R < f x})] fun a => f a - R
rw [Pi.zero_def, EventuallyLE, ae_restrict_iff₀]
case hf X : Type u_1 mX : MeasurableSpace X μ : Measure X R : ℝ f : X → ℝ hR : 0 ≤ R hfint : IntegrableOn f {x | R < f x} μ hμ : μ {x | R < f x} ≠ 0 this : IntegrableOn (fun x => R) {x | R < f x} μ ⊢ ∀ᵐ (x : X) ∂μ, x ∈ {x | R < f x} → 0 ≤ f x - R case hf X : Type u_1 mX : MeasurableSpace X μ : Measure X R : ℝ f : X → ℝ hR : 0 ≤ R hfint : IntegrableOn f {x | R < f x} μ hμ : μ {x | R < f x} ≠ 0 this : IntegrableOn (fun x => R) {x | R < f x} μ ⊢ NullMeasurableSet {x | 0 ≤ f x - R} (μ.restrict {x | R < f x})
d0b4505621d161b9
LieSubmodule.lcs_le_self
Mathlib/Algebra/Lie/Nilpotent.lean
theorem lcs_le_self : N.lcs k ≤ N
case zero R : Type u L : Type v M : Type w inst✝⁵ : CommRing R inst✝⁴ : LieRing L inst✝³ : LieAlgebra R L inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : LieRingModule L M k : ℕ N : LieSubmodule R L M ⊢ lcs 0 N ≤ N
simp
no goals
cadb8f5db137edd1
IsOpen.continuous_piecewise_of_specializes
Mathlib/Topology/Inseparable.lean
theorem IsOpen.continuous_piecewise_of_specializes [DecidablePred (· ∈ s)] (hs : IsOpen s) (hf : Continuous f) (hg : Continuous g) (hspec : ∀ x, f x ⤳ g x) : Continuous (s.piecewise f g)
X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y s : Set X f g : X → Y inst✝ : DecidablePred fun x => x ∈ s hs : IsOpen s hf : Continuous f hg : Continuous g hspec : ∀ (x : X), f x ⤳ g x this : ∀ (U : Set Y), IsOpen U → g ⁻¹' U ⊆ f ⁻¹' U U : Set Y hU : IsOpen U ⊢ IsOpen (f ⁻¹' U ∩ s ∪ g ⁻¹' U)
exact hU.preimage hf |>.inter hs |>.union (hU.preimage hg)
no goals
2854524e4bf53082
CoxeterSystem.IsReduced.nodup_rightInvSeq
Mathlib/GroupTheory/Coxeter/Inversion.lean
theorem IsReduced.nodup_rightInvSeq {ω : List B} (rω : cs.IsReduced ω) : List.Nodup (ris ω)
case e_opt.e_a B : Type u_1 W : Type u_2 inst✝ : Group W M : CoxeterMatrix B cs : CoxeterSystem M W ω : List B rω : cs.IsReduced ω j j' : ℕ j_lt_j' : j < j' j'_lt_length : j' < ω.length dup : (cs.rightInvSeq ω).getD j 1 = (cs.rightInvSeq ω).getD j' 1 t : W := (cs.rightInvSeq ω).getD j 1 h₁ : t = (cs.rightInvSeq ω).getD j 1 t' : W := (cs.rightInvSeq (ω.eraseIdx j)).getD (j' - 1) 1 h₂ : t' = (cs.rightInvSeq (ω.eraseIdx j)).getD (j' - 1) 1 ⊢ ω[j + 1 + (j' - 1 - (List.take j ω).length)]? = ω[j']?
congr
case e_opt.e_a.e_a B : Type u_1 W : Type u_2 inst✝ : Group W M : CoxeterMatrix B cs : CoxeterSystem M W ω : List B rω : cs.IsReduced ω j j' : ℕ j_lt_j' : j < j' j'_lt_length : j' < ω.length dup : (cs.rightInvSeq ω).getD j 1 = (cs.rightInvSeq ω).getD j' 1 t : W := (cs.rightInvSeq ω).getD j 1 h₁ : t = (cs.rightInvSeq ω).getD j 1 t' : W := (cs.rightInvSeq (ω.eraseIdx j)).getD (j' - 1) 1 h₂ : t' = (cs.rightInvSeq (ω.eraseIdx j)).getD (j' - 1) 1 ⊢ j + 1 + (j' - 1 - (List.take j ω).length) = j'
4f092e79e4ea2c15
LieSubalgebra.normalizer_eq_self_of_engel_le
Mathlib/Algebra/Lie/EngelSubalgebra.lean
/-- A Lie-subalgebra of an Artinian Lie algebra is self-normalizing if it contains an Engel subalgebra. See `LieSubalgebra.normalizer_engel` for a proof that Engel subalgebras are self-normalizing, avoiding the Artinian condition. -/ lemma normalizer_eq_self_of_engel_le [IsArtinian R L] (H : LieSubalgebra R L) (x : L) (h : engel R x ≤ H) : normalizer H = H
case intro.a.h R : Type u_1 L : Type u_2 inst✝³ : CommRing R inst✝² : LieRing L inst✝¹ : LieAlgebra R L inst✝ : IsArtinian R L H : LieSubalgebra R L x : L h : engel R x ≤ H N : LieSubalgebra R L := H.normalizer aux₁ : ∀ n ∈ N, ⁅x, n⁆ ∈ H aux₂ : ∀ n ∈ N, ⁅x, n⁆ ∈ N dx : ↥N →ₗ[R] ↥N := LinearMap.restrict ((ad R L) x) aux₂ k : ℕ hk : Codisjoint (LinearMap.ker (dx ^ (k + 1))) (LinearMap.range (dx ^ (k + 1))) ⊢ LinearMap.range (dx ^ (k + 1)) ≤ Submodule.comap N.subtype H.toSubmodule
rintro _ ⟨y, rfl⟩
case intro.a.h.intro R : Type u_1 L : Type u_2 inst✝³ : CommRing R inst✝² : LieRing L inst✝¹ : LieAlgebra R L inst✝ : IsArtinian R L H : LieSubalgebra R L x : L h : engel R x ≤ H N : LieSubalgebra R L := H.normalizer aux₁ : ∀ n ∈ N, ⁅x, n⁆ ∈ H aux₂ : ∀ n ∈ N, ⁅x, n⁆ ∈ N dx : ↥N →ₗ[R] ↥N := LinearMap.restrict ((ad R L) x) aux₂ k : ℕ hk : Codisjoint (LinearMap.ker (dx ^ (k + 1))) (LinearMap.range (dx ^ (k + 1))) y : ↥N ⊢ (dx ^ (k + 1)) y ∈ Submodule.comap N.subtype H.toSubmodule
253d8e16fa48a5a4