name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
WittVector.irreducible
Mathlib/RingTheory/WittVector/DiscreteValuationRing.lean
theorem irreducible : Irreducible (p : 𝕎 k)
p : ℕ hp✝ : Fact (Nat.Prime p) k : Type u_1 inst✝¹ : Field k inst✝ : CharP k p hp : ¬IsUnit ↑p a b : 𝕎 k hab : ↑p = a * b ⊢ a ≠ 0 ∧ b ≠ 0
rw [← mul_ne_zero_iff]
p : ℕ hp✝ : Fact (Nat.Prime p) k : Type u_1 inst✝¹ : Field k inst✝ : CharP k p hp : ¬IsUnit ↑p a b : 𝕎 k hab : ↑p = a * b ⊢ a * b ≠ 0
bbcbb7f9941815f7
Multiset.lt_replicate_succ
Mathlib/Data/Multiset/Replicate.lean
theorem lt_replicate_succ {m : Multiset α} {x : α} {n : ℕ} : m < replicate (n + 1) x ↔ m ≤ replicate n x
case mpr α : Type u_1 m : Multiset α x : α n : ℕ h : m ≤ replicate n x ⊢ ∃ a, a ::ₘ m ≤ replicate (n + 1) x
rw [replicate_succ]
case mpr α : Type u_1 m : Multiset α x : α n : ℕ h : m ≤ replicate n x ⊢ ∃ a, a ::ₘ m ≤ x ::ₘ replicate n x
c4daba5a64d21b93
Units.map_id
Mathlib/Algebra/Group/Units/Hom.lean
theorem map_id : map (MonoidHom.id M) = MonoidHom.id Mˣ
M : Type u inst✝ : Monoid M ⊢ map (MonoidHom.id M) = MonoidHom.id Mˣ
ext
case h.a M : Type u inst✝ : Monoid M x✝ : Mˣ ⊢ ↑((map (MonoidHom.id M)) x✝) = ↑((MonoidHom.id Mˣ) x✝)
1b22afc8edfce4c1
exists_associated_pow_of_associated_pow_mul
Mathlib/RingTheory/PrincipalIdealDomain.lean
theorem exists_associated_pow_of_associated_pow_mul {a b c : R} (hab : IsCoprime a b) {k : ℕ} (h : Associated (c ^ k) (a * b)) : ∃ d : R, Associated (d ^ k) a
R : Type u inst✝² : CommRing R inst✝¹ : IsBezout R inst✝ : IsDomain R a b c : R hab : IsCoprime a b k : ℕ h : Associated (c ^ k) (a * b) ⊢ ∃ d, Associated (d ^ k) a
obtain ⟨u, hu⟩ := h.symm
case intro R : Type u inst✝² : CommRing R inst✝¹ : IsBezout R inst✝ : IsDomain R a b c : R hab : IsCoprime a b k : ℕ h : Associated (c ^ k) (a * b) u : Rˣ hu : a * b * ↑u = c ^ k ⊢ ∃ d, Associated (d ^ k) a
bc8e53465e1fd9a4
Lean.Order.PProd.chain.chain_snd
Mathlib/.lake/packages/lean4/src/lean/Init/Internal/Order/Basic.lean
theorem PProd.chain.chain_snd [CCPO α] [CCPO β] {c : α ×' β → Prop} (hchain : chain c) : chain (chain.snd c)
α : Sort u β : Sort v inst✝¹ : CCPO α inst✝ : CCPO β c : α ×' β → Prop hchain : chain c ⊢ chain (snd c)
intro b₁ b₂ ⟨a₁, h₁⟩ ⟨a₂, h₂⟩
α : Sort u β : Sort v inst✝¹ : CCPO α inst✝ : CCPO β c : α ×' β → Prop hchain : chain c b₁ b₂ : β a₁ : α h₁ : c ⟨a₁, b₁⟩ a₂ : α h₂ : c ⟨a₂, b₂⟩ ⊢ b₁ ⊑ b₂ ∨ b₂ ⊑ b₁
2afa3a24950d92b0
wellQuasiOrdered_iff_exists_monotone_subseq
Mathlib/Order/WellQuasiOrder.lean
theorem wellQuasiOrdered_iff_exists_monotone_subseq [IsPreorder α r] : WellQuasiOrdered r ↔ ∀ f : ℕ → α, ∃ g : ℕ ↪o ℕ, ∀ m n : ℕ, m ≤ n → r (f (g m)) (f (g n))
case mpr α : Type u_1 r : α → α → Prop inst✝ : IsPreorder α r h : ∀ (f : ℕ → α), ∃ g, ∀ (m n : ℕ), m ≤ n → r (f (g m)) (f (g n)) f : ℕ → α ⊢ ∃ m n, m < n ∧ r (f m) (f n)
obtain ⟨g, gmon⟩ := h f
case mpr.intro α : Type u_1 r : α → α → Prop inst✝ : IsPreorder α r h : ∀ (f : ℕ → α), ∃ g, ∀ (m n : ℕ), m ≤ n → r (f (g m)) (f (g n)) f : ℕ → α g : ℕ ↪o ℕ gmon : ∀ (m n : ℕ), m ≤ n → r (f (g m)) (f (g n)) ⊢ ∃ m n, m < n ∧ r (f m) (f n)
7dbc797b6874056a
MulAction.mem_stabilizer_set'
Mathlib/Algebra/Pointwise/Stabilizer.lean
@[to_additive] lemma mem_stabilizer_set' {s : Set α} (hs : s.Finite) : a ∈ stabilizer G s ↔ ∀ ⦃b⦄, b ∈ s → a • b ∈ s
case intro G : Type u_1 α : Type u_3 inst✝¹ : Group G inst✝ : MulAction G α a : G s : Finset α ⊢ a ∈ stabilizer G ↑s ↔ ∀ ⦃b : α⦄, b ∈ ↑s → a • b ∈ ↑s
classical simp [-mem_stabilizer_iff, mem_stabilizer_finset']
no goals
e7c951482f224830
MeasureTheory.le_iInf₂_lintegral
Mathlib/MeasureTheory/Integral/Lebesgue.lean
theorem le_iInf₂_lintegral {ι : Sort*} {ι' : ι → Sort*} (f : ∀ i, ι' i → α → ℝ≥0∞) : ∫⁻ a, ⨅ (i) (h : ι' i), f i h a ∂μ ≤ ⨅ (i) (h : ι' i), ∫⁻ a, f i h a ∂μ
α : Type u_1 m : MeasurableSpace α μ : Measure α ι : Sort u_5 ι' : ι → Sort u_6 f : (i : ι) → ι' i → α → ℝ≥0∞ ⊢ ∫⁻ (a : α), ⨅ i, ⨅ h, f i h a ∂μ ≤ ⨅ i, ⨅ h, ∫⁻ (a : α), f i h a ∂μ
convert (monotone_lintegral μ).map_iInf₂_le f with a
case h.e'_3.h.e'_4.h α : Type u_1 m : MeasurableSpace α μ : Measure α ι : Sort u_5 ι' : ι → Sort u_6 f : (i : ι) → ι' i → α → ℝ≥0∞ a : α ⊢ ⨅ i, ⨅ h, f i h a = (⨅ i, ⨅ j, f i j) a
7d117a4e84758191
Finset.card_Icc_finset
Mathlib/Data/Finset/Interval.lean
theorem card_Icc_finset (h : s ⊆ t) : (Icc s t).card = 2 ^ (t.card - s.card)
α : Type u_1 inst✝ : DecidableEq α s t : Finset α h : s ⊆ t u : Finset α hu : u ∈ ↑(t \ s).powerset v : Finset α hv : v ∈ ↑(t \ s).powerset huv : s ⊔ u = s ⊔ v ⊢ u = v
rw [mem_coe, mem_powerset] at hu hv
α : Type u_1 inst✝ : DecidableEq α s t : Finset α h : s ⊆ t u : Finset α hu : u ⊆ t \ s v : Finset α hv : v ⊆ t \ s huv : s ⊔ u = s ⊔ v ⊢ u = v
0e69e1d78dcfe219
Std.DHashMap.Internal.Raw₀.Const.isHashSelf_updateBucket_alter
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Internal/WF.lean
theorem isHashSelf_updateBucket_alter [BEq α] [EquivBEq α] [Hashable α] [LawfulHashable α] {m : Raw₀ α (fun _ => β)} (h : Raw.WFImp m.1) {a : α} {f : Option β → Option β} : IsHashSelf (updateBucket m.1.buckets m.2 a (AssocList.Const.alter a f))
α : Type u β : Type v inst✝³ : BEq α inst✝² : EquivBEq α inst✝¹ : Hashable α inst✝ : LawfulHashable α m : Raw₀ α fun x => β h : Raw.WFImp m.val a : α f : Option β → Option β l : AssocList α fun x => β p : (_ : α) × β hp : p ∈ (AssocList.Const.alter a f l).toList ⊢ containsKey p.fst l.toList = true ∨ hash p.fst = hash a
rw [AssocList.Const.toList_alter.mem_iff] at hp
α : Type u β : Type v inst✝³ : BEq α inst✝² : EquivBEq α inst✝¹ : Hashable α inst✝ : LawfulHashable α m : Raw₀ α fun x => β h : Raw.WFImp m.val a : α f : Option β → Option β l : AssocList α fun x => β p : (_ : α) × β hp : p ∈ Const.alterKey a f l.toList ⊢ containsKey p.fst l.toList = true ∨ hash p.fst = hash a
3a3a3bad02424c04
Finset.prod_filter_mul_prod_filter_not
Mathlib/Algebra/BigOperators/Group/Finset/Basic.lean
theorem prod_filter_mul_prod_filter_not (s : Finset α) (p : α → Prop) [DecidablePred p] [∀ x, Decidable (¬p x)] (f : α → β) : (∏ x ∈ s with p x, f x) * ∏ x ∈ s with ¬p x, f x = ∏ x ∈ s, f x
α : Type u_3 β : Type u_4 inst✝² : CommMonoid β s : Finset α p : α → Prop inst✝¹ : DecidablePred p inst✝ : (x : α) → Decidable ¬p x f : α → β ⊢ (∏ x ∈ filter (fun x => p x) s, f x) * ∏ x ∈ filter (fun x => ¬p x) s, f x = ∏ x ∈ s, f x
have := Classical.decEq α
α : Type u_3 β : Type u_4 inst✝² : CommMonoid β s : Finset α p : α → Prop inst✝¹ : DecidablePred p inst✝ : (x : α) → Decidable ¬p x f : α → β this : DecidableEq α ⊢ (∏ x ∈ filter (fun x => p x) s, f x) * ∏ x ∈ filter (fun x => ¬p x) s, f x = ∏ x ∈ s, f x
cd0e75d5f61fce7d
IsDenseInducing.extend_Z_bilin_key
Mathlib/Topology/Algebra/UniformGroup/Basic.lean
theorem extend_Z_bilin_key (x₀ : α) (y₀ : γ) : ∃ U ∈ comap e (𝓝 x₀), ∃ V ∈ comap f (𝓝 y₀), ∀ x ∈ U, ∀ x' ∈ U, ∀ (y) (_ : y ∈ V) (y') (_ : y' ∈ V), (fun p : β × δ => φ p.1 p.2) (x', y') - (fun p : β × δ => φ p.1 p.2) (x, y) ∈ W'
α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹² : TopologicalSpace α inst✝¹¹ : AddCommGroup α inst✝¹⁰ : IsTopologicalAddGroup α inst✝⁹ : TopologicalSpace β inst✝⁸ : AddCommGroup β inst✝⁷ : TopologicalSpace γ inst✝⁶ : AddCommGroup γ inst✝⁵ : IsTopologicalAddGroup γ inst✝⁴ : TopologicalSpace δ inst✝³ : AddCommGroup δ inst✝² : UniformSpace G inst✝¹ : AddCommGroup G e : β →+ α de : IsDenseInducing ⇑e f : δ →+ γ df : IsDenseInducing ⇑f φ : β →+ δ →+ G hφ : Continuous fun p => (φ p.1) p.2 W' : Set G W'_nhd : W' ∈ 𝓝 0 inst✝ : UniformAddGroup G x₀ : α y₀ : γ ee : β × β → α × α := fun u => (e u.1, e u.2) ff : δ × δ → γ × γ := fun u => (f u.1, f u.2) lim_φ : Tendsto (fun p => (φ p.1) p.2) (𝓝 (0, 0)) (𝓝 0) lim_sub_sub : Tendsto (fun p => (p.1.2 - p.1.1, p.2.2 - p.2.1)) (comap ee (𝓝 (x₀, x₀)) ×ˢ comap ff (𝓝 (y₀, y₀))) (𝓝 0 ×ˢ 𝓝 0) ⊢ Tendsto (fun p => (fun p => (φ p.1) p.2) (p.1.2 - p.1.1, p.2.2 - p.2.1)) (comap ee (𝓝 (x₀, x₀)) ×ˢ comap ff (𝓝 (y₀, y₀))) (𝓝 0)
rw [← nhds_prod_eq] at lim_sub_sub
α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹² : TopologicalSpace α inst✝¹¹ : AddCommGroup α inst✝¹⁰ : IsTopologicalAddGroup α inst✝⁹ : TopologicalSpace β inst✝⁸ : AddCommGroup β inst✝⁷ : TopologicalSpace γ inst✝⁶ : AddCommGroup γ inst✝⁵ : IsTopologicalAddGroup γ inst✝⁴ : TopologicalSpace δ inst✝³ : AddCommGroup δ inst✝² : UniformSpace G inst✝¹ : AddCommGroup G e : β →+ α de : IsDenseInducing ⇑e f : δ →+ γ df : IsDenseInducing ⇑f φ : β →+ δ →+ G hφ : Continuous fun p => (φ p.1) p.2 W' : Set G W'_nhd : W' ∈ 𝓝 0 inst✝ : UniformAddGroup G x₀ : α y₀ : γ ee : β × β → α × α := fun u => (e u.1, e u.2) ff : δ × δ → γ × γ := fun u => (f u.1, f u.2) lim_φ : Tendsto (fun p => (φ p.1) p.2) (𝓝 (0, 0)) (𝓝 0) lim_sub_sub : Tendsto (fun p => (p.1.2 - p.1.1, p.2.2 - p.2.1)) (comap ee (𝓝 (x₀, x₀)) ×ˢ comap ff (𝓝 (y₀, y₀))) (𝓝 (0, 0)) ⊢ Tendsto (fun p => (fun p => (φ p.1) p.2) (p.1.2 - p.1.1, p.2.2 - p.2.1)) (comap ee (𝓝 (x₀, x₀)) ×ˢ comap ff (𝓝 (y₀, y₀))) (𝓝 0)
965b7a7f03c398d2
ApproximatesLinearOn.norm_fderiv_sub_le
Mathlib/MeasureTheory/Function/Jacobian.lean
theorem _root_.ApproximatesLinearOn.norm_fderiv_sub_le {A : E →L[ℝ] E} {δ : ℝ≥0} (hf : ApproximatesLinearOn f A s δ) (hs : MeasurableSet s) (f' : E → E →L[ℝ] E) (hf' : ∀ x ∈ s, HasFDerivWithinAt f (f' x) s x) : ∀ᵐ x ∂μ.restrict s, ‖f' x - A‖₊ ≤ δ
E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : FiniteDimensional ℝ E s : Set E f : E → E inst✝² : MeasurableSpace E inst✝¹ : BorelSpace E μ : Measure E inst✝ : μ.IsAddHaarMeasure A : E →L[ℝ] E δ : ℝ≥0 hf : ApproximatesLinearOn f A s δ hs : MeasurableSet s f' : E → E →L[ℝ] E hf' : ∀ x ∈ s, HasFDerivWithinAt f (f' x) s x x : E hx : Tendsto (fun r => μ (s ∩ closedBall x r) / μ (closedBall x r)) (𝓝[>] 0) (𝓝 1) xs : x ∈ s z : E H : ∀ (ε : ℝ), 0 < ε → ‖(f' x - A) z‖ ≤ (↑δ + ε) * (‖z‖ + ε) + ‖f' x - A‖ * ε this : Tendsto (fun ε => (↑δ + ε) * (‖z‖ + ε) + ‖f' x - A‖ * ε) (𝓝[>] 0) (𝓝 ((↑δ + 0) * (‖z‖ + 0) + ‖f' x - A‖ * 0)) ⊢ ‖(f' x - A) z‖ ≤ ↑δ * ‖z‖
simp only [add_zero, mul_zero] at this
E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : FiniteDimensional ℝ E s : Set E f : E → E inst✝² : MeasurableSpace E inst✝¹ : BorelSpace E μ : Measure E inst✝ : μ.IsAddHaarMeasure A : E →L[ℝ] E δ : ℝ≥0 hf : ApproximatesLinearOn f A s δ hs : MeasurableSet s f' : E → E →L[ℝ] E hf' : ∀ x ∈ s, HasFDerivWithinAt f (f' x) s x x : E hx : Tendsto (fun r => μ (s ∩ closedBall x r) / μ (closedBall x r)) (𝓝[>] 0) (𝓝 1) xs : x ∈ s z : E H : ∀ (ε : ℝ), 0 < ε → ‖(f' x - A) z‖ ≤ (↑δ + ε) * (‖z‖ + ε) + ‖f' x - A‖ * ε this : Tendsto (fun ε => (↑δ + ε) * (‖z‖ + ε) + ‖f' x - A‖ * ε) (𝓝[>] 0) (𝓝 (↑δ * ‖z‖)) ⊢ ‖(f' x - A) z‖ ≤ ↑δ * ‖z‖
99ae4fc7a76b96c9
MeasureTheory.IsStoppingTime.measurableSet_gt'
Mathlib/Probability/Process/Stopping.lean
theorem measurableSet_gt' (hτ : IsStoppingTime f τ) (i : ι) : MeasurableSet[hτ.measurableSpace] {ω | i < τ ω}
case h Ω : Type u_1 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ : Ω → ι hτ : IsStoppingTime f τ i : ι ω : Ω ⊢ ω ∈ {ω | i < τ ω} ↔ ω ∈ {ω | τ ω ≤ i}ᶜ
simp
no goals
5f50fd378320aa23
AlgebraicGeometry.universallyClosed_eq_universallySpecializing
Mathlib/AlgebraicGeometry/Morphisms/UniversallyClosed.lean
lemma universallyClosed_eq_universallySpecializing : @UniversallyClosed = (topologically @SpecializingMap).universally ⊓ @QuasiCompact
case a ⊢ (topologically @SpecializingMap ⊓ @QuasiCompact).universally ≤ (topologically @IsClosedMap).universally
exact universally_mono fun X Y f ⟨h₁, h₂⟩ ↦ (isClosedMap_iff_specializingMap _).mpr h₁
no goals
862e4b8e16a6249b
RightDerivMeasurableAux.differentiable_set_subset_D
Mathlib/Analysis/Calculus/FDeriv/Measurable.lean
theorem differentiable_set_subset_D : { x | DifferentiableWithinAt ℝ f (Ici x) x ∧ derivWithin f (Ici x) x ∈ K } ⊆ D f K
case intro.intro F : Type u_1 inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace ℝ F f : ℝ → F K : Set F x : ℝ hx : x ∈ {x | DifferentiableWithinAt ℝ f (Ici x) x ∧ derivWithin f (Ici x) x ∈ K} e : ℕ this : 0 < (1 / 2) ^ e R : ℝ R_pos : R > 0 hR : ∀ r ∈ Ioo 0 R, x ∈ A f (derivWithin f (Ici x) x) r ((1 / 2) ^ e) ⊢ x ∈ ⋃ n, ⋂ p, ⋂ (_ : p ≥ n), ⋂ q, ⋂ (_ : q ≥ n), B f K ((1 / 2) ^ p) ((1 / 2) ^ q) ((1 / 2) ^ e)
obtain ⟨n, hn⟩ : ∃ n : ℕ, (1 / 2) ^ n < R := exists_pow_lt_of_lt_one R_pos (by norm_num : (1 : ℝ) / 2 < 1)
case intro.intro.intro F : Type u_1 inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace ℝ F f : ℝ → F K : Set F x : ℝ hx : x ∈ {x | DifferentiableWithinAt ℝ f (Ici x) x ∧ derivWithin f (Ici x) x ∈ K} e : ℕ this : 0 < (1 / 2) ^ e R : ℝ R_pos : R > 0 hR : ∀ r ∈ Ioo 0 R, x ∈ A f (derivWithin f (Ici x) x) r ((1 / 2) ^ e) n : ℕ hn : (1 / 2) ^ n < R ⊢ x ∈ ⋃ n, ⋂ p, ⋂ (_ : p ≥ n), ⋂ q, ⋂ (_ : q ≥ n), B f K ((1 / 2) ^ p) ((1 / 2) ^ q) ((1 / 2) ^ e)
02ae9336af5f07d4
mem_nhds_induced
Mathlib/Topology/Order.lean
theorem mem_nhds_induced [T : TopologicalSpace α] (f : β → α) (a : β) (s : Set β) : s ∈ @nhds β (TopologicalSpace.induced f T) a ↔ ∃ u ∈ 𝓝 (f a), f ⁻¹' u ⊆ s
α : Type u β : Type v T : TopologicalSpace α f : β → α a : β s : Set β this : TopologicalSpace β := induced f T ⊢ s ∈ 𝓝 a ↔ ∃ u ∈ 𝓝 (f a), f ⁻¹' u ⊆ s
simp_rw [mem_nhds_iff, isOpen_induced_iff]
α : Type u β : Type v T : TopologicalSpace α f : β → α a : β s : Set β this : TopologicalSpace β := induced f T ⊢ (∃ t ⊆ s, (∃ t_1, IsOpen t_1 ∧ f ⁻¹' t_1 = t) ∧ a ∈ t) ↔ ∃ u, (∃ t ⊆ u, IsOpen t ∧ f a ∈ t) ∧ f ⁻¹' u ⊆ s
64abb6c0366449b9
AkraBazziRecurrence.smoothingFn_mul_asympBound_isBigO_T
Mathlib/Computability/AkraBazzi/AkraBazzi.lean
/-- The main proof of the lower bound part of the Akra-Bazzi theorem. The factor `1 + ε n` does not change the asymptotic order, but is needed for the induction step to go through. -/ lemma smoothingFn_mul_asympBound_isBigO_T : (fun (n : ℕ) => (1 + ε n) * asympBound g a b n) =O[atTop] T
case bc.h.h.a0 α : Type u_1 inst✝¹ : Fintype α T : ℕ → ℝ g : ℝ → ℝ a b : α → ℝ r : α → ℕ → ℕ inst✝ : Nonempty α R : AkraBazziRecurrence T g a b r b' : ℝ := b (min_bi b) / 2 hb_pos : 0 < b' c₁ : ℝ hc₁ : c₁ > 0 h_sumTransform_aux : ∀ᶠ (n : ℕ) in atTop, ∀ (i : α), sumTransform (p a b) g (r i n) n ≤ c₁ * g ↑n n₀ : ℕ n₀_ge_Rn₀ : R.n₀ ≤ n₀ h_b_floor : 0 < ⌊b' * ↑n₀⌋₊ h_smoothing_pos : ∀ (y : ℕ), n₀ ≤ y → 0 < 1 + ε ↑y h_smoothing_pos' : ∀ (y : ℕ), ⌊b' * ↑n₀⌋₊ ≤ y → 0 < 1 + ε ↑y h_asympBound_pos : ∀ (y : ℕ), n₀ ≤ y → 0 < asympBound g a b y h_asympBound_r_pos : ∀ (y : ℕ), n₀ ≤ y → ∀ (i : α), 0 < asympBound g a b (r i y) h_asympBound_floor : ∀ (y : ℕ), ⌊b' * ↑n₀⌋₊ ≤ y → 0 < asympBound g a b y n₀_pos : 0 < n₀ h_smoothing_r_pos : ∀ (y : ℕ), n₀ ≤ y → ∀ (i : α), 0 < 1 + ε ↑(r i y) bound2 : ∀ (y : ℕ), n₀ ≤ y → ∀ (i : α), b i ^ p a b * ↑y ^ p a b * (1 + ε ↑y) ≤ ↑(r i y) ^ p a b * (1 + ε ↑(r i y)) h_smoothingFn_floor : ∀ (y : ℕ), ⌊b' * ↑n₀⌋₊ ≤ y → 0 < 1 + ε ↑y h_sumTransform : ∀ (y : ℕ), n₀ ≤ y → ∀ (i : α), sumTransform (p a b) g (r i y) y ≤ c₁ * g ↑y h_bi_le_r : ∀ (y : ℕ), n₀ ≤ y → ∀ (i : α), b (min_bi b) / 2 * ↑y ≤ ↑(r i y) h_exp : ∀ (y : ℕ), n₀ ≤ y → ⌈rexp 1⌉₊ ≤ y h_base_nonempty : (Ico ⌊b (min_bi b) / 2 * ↑n₀⌋₊ n₀).Nonempty base_min : ℝ := (Ico ⌊b' * ↑n₀⌋₊ n₀).inf' h_base_nonempty fun n => T n / ((1 + ε ↑n) * asympBound g a b n) base_min_def : base_min = (Ico ⌊b' * ↑n₀⌋₊ n₀).inf' h_base_nonempty fun n => T n / ((1 + ε ↑n) * asympBound g a b n) C : ℝ := (2 * c₁)⁻¹ ⊓ base_min hC_pos : 0 < C h_base : ∀ n ∈ Ico ⌊b' * ↑n₀⌋₊ n₀, C * ((1 + ε ↑n) * asympBound g a b n) ≤ T n n : ℕ h_ind : ∀ m < n, m ≥ n₀ → 0 < asympBound g a b m → 0 < 1 + ε ↑m → C * ((1 + ε ↑m) * asympBound g a b m) ≤ T m hn : n ≥ n₀ h_asympBound_pos' : 0 < asympBound g a b n h_one_sub_smoothingFn_pos' : 0 < 1 + ε ↑n b_mul_n₀_le_ri : ∀ (i : α), ⌊b' * ↑n₀⌋₊ ≤ r i n g_pos : 0 ≤ g ↑n i : α a✝ : i ∈ univ j : ℕ x✝ : j ∈ range (r i n) ⊢ 0 ≤ g ↑j ∧ 0 ≤ ↑j ^ (p a b + 1) ∨ g ↑j ≤ 0 ∧ ↑j ^ (p a b + 1) ≤ 0
exact Or.inl ⟨R.g_nonneg j (by positivity), by positivity⟩
no goals
82bb51116c3f899e
IsCyclotomicExtension.union_right
Mathlib/NumberTheory/Cyclotomic/Basic.lean
theorem union_right [h : IsCyclotomicExtension (S ∪ T) A B] : IsCyclotomicExtension T (adjoin A {b : B | ∃ a : ℕ+, a ∈ S ∧ b ^ (a : ℕ) = 1}) B
S T : Set ℕ+ A : Type u B : Type v inst✝² : CommRing A inst✝¹ : CommRing B inst✝ : Algebra A B h : IsCyclotomicExtension (S ∪ T) A B this : {b | ∃ n ∈ S ∪ T, b ^ ↑n = 1} = {b | ∃ n ∈ S, b ^ ↑n = 1} ∪ {b | ∃ n ∈ T, b ^ ↑n = 1} ⊢ IsCyclotomicExtension T (↥(adjoin A {b | ∃ a ∈ S, b ^ ↑a = 1})) B
refine ⟨fun hn => ((isCyclotomicExtension_iff _ A _).1 h).1 (mem_union_right S hn), fun b => ?_⟩
S T : Set ℕ+ A : Type u B : Type v inst✝² : CommRing A inst✝¹ : CommRing B inst✝ : Algebra A B h : IsCyclotomicExtension (S ∪ T) A B this : {b | ∃ n ∈ S ∪ T, b ^ ↑n = 1} = {b | ∃ n ∈ S, b ^ ↑n = 1} ∪ {b | ∃ n ∈ T, b ^ ↑n = 1} b : B ⊢ b ∈ adjoin ↥(adjoin A {b | ∃ a ∈ S, b ^ ↑a = 1}) {b | ∃ n ∈ T, b ^ ↑n = 1}
e81df93a8ce1e666
Batteries.RBSet.findP?_insert_of_ne
Mathlib/.lake/packages/batteries/Batteries/Data/RBMap/Lemmas.lean
theorem findP?_insert_of_ne [@TransCmp α cmp] [IsStrictCut cmp cut] (t : RBSet α cmp) (h : cut v ≠ .eq) : (t.insert v).findP? cut = t.findP? cut
α : Type u_1 cmp : α → α → Ordering cut : α → Ordering v : α inst✝¹ : TransCmp cmp inst✝ : IsStrictCut cmp cut t : RBSet α cmp h : cut v ≠ Ordering.eq u : α h' : cut u = Ordering.eq ⊢ t.find? v ≠ some u
exact mt (fun h => by rwa [IsCut.congr (cut := cut) (find?_some_eq_eq h)]) h
no goals
885241d4721d2736
isJacobsonRing_localization
Mathlib/RingTheory/Jacobson/Ring.lean
theorem isJacobsonRing_localization [H : IsJacobsonRing R] : IsJacobsonRing S
case pos R : Type u_1 S : Type u_2 inst✝³ : CommRing R inst✝² : CommRing S y : R inst✝¹ : Algebra R S inst✝ : Away y S H : IsJacobsonRing R P' : Ideal S hP'✝ : P'.IsPrime hP' : (Ideal.comap (algebraMap R S) P').IsPrime hPM : Disjoint ↑(powers y) ↑(Ideal.comap (algebraMap R S) P') hP : (Ideal.comap (algebraMap R S) P').jacobson = Ideal.comap (algebraMap R S) P' x : R hx : x ∈ sInf {I | Ideal.comap (algebraMap R S) P' ≤ I ∧ I.IsMaximal ∧ y ∉ I} J : Ideal R hJ : J ∈ {J | Ideal.comap (algebraMap R S) P' ≤ J ∧ J.IsMaximal} h : y ∈ J ⊢ x * y ∈ J
exact J.mul_mem_left x h
no goals
4266ea15949c3cae
Polynomial.IsPrimitive.dvd_of_fraction_map_dvd_fraction_map
Mathlib/RingTheory/Polynomial/GaussLemma.lean
theorem IsPrimitive.dvd_of_fraction_map_dvd_fraction_map {p q : R[X]} (hp : p.IsPrimitive) (hq : q.IsPrimitive) (h_dvd : p.map (algebraMap R K) ∣ q.map (algebraMap R K)) : p ∣ q
case intro.intro.mk R : Type u_1 inst✝⁵ : CommRing R K : Type u_2 inst✝⁴ : Field K inst✝³ : Algebra R K inst✝² : IsFractionRing R K inst✝¹ : IsDomain R inst✝ : NormalizedGCDMonoid R p q : R[X] hp : p.IsPrimitive hq : q.IsPrimitive r : K[X] hr : map (algebraMap R K) q = map (algebraMap R K) p * r s : R hs : map (algebraMap R K) (integerNormalization R⁰ r) = C ((algebraMap R K) s) * r h : p ∣ q * C s s0 : s = 0 ⊢ s ∉ R⁰
simp [s0, mem_nonZeroDivisors_iff_ne_zero]
no goals
e016a9b0390ddacb
linearIndependent_sum
Mathlib/LinearAlgebra/LinearIndependent/Basic.lean
theorem linearIndependent_sum {v : ι ⊕ ι' → M} : LinearIndependent R v ↔ LinearIndependent R (v ∘ Sum.inl) ∧ LinearIndependent R (v ∘ Sum.inr) ∧ Disjoint (Submodule.span R (range (v ∘ Sum.inl))) (Submodule.span R (range (v ∘ Sum.inr)))
case refine_2.intro.intro.inl ι : Type u' ι' : Type u_1 R : Type u_2 M : Type u_4 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M v : ι ⊕ ι' → M hl : ∀ (s : Finset ι) (g : ι → R), ∑ i ∈ s, g i • (v ∘ Sum.inl) i = 0 → ∀ i ∈ s, g i = 0 hr : ∀ (s : Finset ι') (g : ι' → R), ∑ i ∈ s, g i • (v ∘ Sum.inr) i = 0 → ∀ i ∈ s, g i = 0 hlr : ∀ x ∈ span R (v '' range Sum.inl), ∀ y ∈ span R (v '' range Sum.inr), x = y → x = 0 s : Finset (ι ⊕ ι') g : ι ⊕ ι' → R hg : ∑ i ∈ s, g i • v i = 0 this : ∑ i ∈ s.preimage Sum.inl ⋯, (fun x => g x • v x) (Sum.inl i) = -∑ i ∈ s.preimage Sum.inr ⋯, (fun x => g x • v x) (Sum.inr i) A : ∑ c ∈ s.preimage Sum.inl ⋯, (fun x => g x • v x) (Sum.inl c) = 0 i : ι hi : Sum.inl i ∈ s ⊢ g (Sum.inl i) = 0
exact hl _ _ A i (Finset.mem_preimage.2 hi)
no goals
2518c65a54e13190
CategoryTheory.MorphismProperty.map_id_eq_isoClosure
Mathlib/CategoryTheory/MorphismProperty/Basic.lean
lemma map_id_eq_isoClosure (P : MorphismProperty C) : P.map (𝟭 _) = P.isoClosure
case a C : Type u inst✝ : Category.{v, u} C P : MorphismProperty C ⊢ P ≤ P.isoClosure.inverseImage (𝟭 C)
intro X Y f hf
case a C : Type u inst✝ : Category.{v, u} C P : MorphismProperty C X Y : C f : X ⟶ Y hf : P f ⊢ P.isoClosure.inverseImage (𝟭 C) f
be21352197170292
MeasureTheory.SimpleFunc.const_lintegral
Mathlib/MeasureTheory/Function/SimpleFunc.lean
theorem const_lintegral (c : ℝ≥0∞) : (const α c).lintegral μ = c * μ univ
case inr α : Type u_1 m : MeasurableSpace α μ : Measure α c : ℝ≥0∞ h✝ : Nonempty α ⊢ c * μ ((fun x => c) ⁻¹' {c}) = c * μ univ
rw [preimage_const_of_mem (mem_singleton c)]
no goals
4222a64e67e68cc4
IsPrimePow.factorization_minFac_ne_zero
Mathlib/Data/Nat/Factorization/PrimePow.lean
lemma IsPrimePow.factorization_minFac_ne_zero {n : ℕ} (hn : IsPrimePow n) : n.factorization n.minFac ≠ 0
n : ℕ hn : IsPrimePow n ⊢ ¬(¬Nat.Prime n.minFac ∨ ¬n.minFac ∣ n ∨ n = 0)
push_neg
n : ℕ hn : IsPrimePow n ⊢ Nat.Prime n.minFac ∧ n.minFac ∣ n ∧ n ≠ 0
f87a3b63f3edf769
HasDerivWithinAt.clm_apply
Mathlib/Analysis/Calculus/Deriv/Mul.lean
theorem HasDerivWithinAt.clm_apply (hc : HasDerivWithinAt c c' s x) (hu : HasDerivWithinAt u u' s x) : HasDerivWithinAt (fun y => (c y) (u y)) (c' (u x) + c x u') s x
𝕜 : Type u inst✝⁴ : NontriviallyNormedField 𝕜 F : Type v inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F x : 𝕜 s : Set 𝕜 G : Type u_2 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace 𝕜 G c : 𝕜 → F →L[𝕜] G c' : F →L[𝕜] G u : 𝕜 → F u' : F hc : HasDerivWithinAt c c' s x hu : HasDerivWithinAt u u' s x this : HasDerivWithinAt (fun y => (c y) (u y)) (((c x).comp (smulRight 1 u') + (smulRight 1 c').flip (u x)) 1) s x ⊢ HasDerivWithinAt (fun y => (c y) (u y)) (c' (u x) + (c x) u') s x
rwa [add_apply, comp_apply, flip_apply, smulRight_apply, smulRight_apply, one_apply, one_smul, one_smul, add_comm] at this
no goals
b2df66ae9b2ccd18
SupIrred.finset_sup_eq
Mathlib/Order/Irreducible.lean
theorem SupIrred.finset_sup_eq (ha : SupIrred a) (h : s.sup f = a) : ∃ i ∈ s, f i = a
case empty ι : Type u_1 α : Type u_2 inst✝¹ : SemilatticeSup α a : α inst✝ : OrderBot α s : Finset ι f : ι → α ha : SupIrred a h : ∅.sup f = a ⊢ ∃ i ∈ ∅, f i = a
simpa [ha.ne_bot] using h.symm
no goals
4acb7029d3da247f
ConvexOn.continuousOn_tfae
Mathlib/Analysis/Convex/Continuous.lean
lemma ConvexOn.continuousOn_tfae (hC : IsOpen C) (hC' : C.Nonempty) (hf : ConvexOn ℝ C f) : TFAE [ LocallyLipschitzOn C f, ContinuousOn f C, ∃ x₀ ∈ C, ContinuousAt f x₀, ∃ x₀ ∈ C, (𝓝 x₀).IsBoundedUnder (· ≤ ·) f, ∀ ⦃x₀⦄, x₀ ∈ C → (𝓝 x₀).IsBoundedUnder (· ≤ ·) f, ∀ ⦃x₀⦄, x₀ ∈ C → (𝓝 x₀).IsBoundedUnder (· ≤ ·) |f|]
E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E C : Set E f : E → ℝ hC : IsOpen C hC' : C.Nonempty hf : ConvexOn ℝ C f tfae_1_to_2 : LocallyLipschitzOn C f → ContinuousOn f C tfae_2_to_3 : ContinuousOn f C → ∃ x₀ ∈ C, ContinuousAt f x₀ x₀ : E hx₀ : x₀ ∈ C h : ContinuousAt f x₀ ⊢ f x₀ < f x₀ + 1
simp
no goals
d7a82928a7cc2bf5
IsMulFreimanHom.comp
Mathlib/Combinatorics/Additive/FreimanHom.lean
@[to_additive] lemma IsMulFreimanHom.comp (hg : IsMulFreimanHom n B C g) (hf : IsMulFreimanHom n A B f) : IsMulFreimanHom n A C (g ∘ f) where mapsTo := hg.mapsTo.comp hf.mapsTo map_prod_eq_map_prod s t hsA htA hs ht h
α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : CommMonoid α inst✝¹ : CommMonoid β inst✝ : CommMonoid γ A : Set α B : Set β C : Set γ f : α → β g : β → γ n : ℕ hg : IsMulFreimanHom n B C g hf : IsMulFreimanHom n A B f s t : Multiset α hsA : ∀ ⦃x : α⦄, x ∈ s → x ∈ A htA : ∀ ⦃x : α⦄, x ∈ t → x ∈ A hs : s.card = n ht : t.card = n h : s.prod = t.prod ⊢ (map (g ∘ f) s).prod = (map (g ∘ f) t).prod
rw [← map_map, ← map_map]
α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : CommMonoid α inst✝¹ : CommMonoid β inst✝ : CommMonoid γ A : Set α B : Set β C : Set γ f : α → β g : β → γ n : ℕ hg : IsMulFreimanHom n B C g hf : IsMulFreimanHom n A B f s t : Multiset α hsA : ∀ ⦃x : α⦄, x ∈ s → x ∈ A htA : ∀ ⦃x : α⦄, x ∈ t → x ∈ A hs : s.card = n ht : t.card = n h : s.prod = t.prod ⊢ (map g (map f s)).prod = (map g (map f t)).prod
df817a6de52f5c2c
Wbtw.collinear
Mathlib/Analysis/Convex/Between.lean
theorem Wbtw.collinear {x y z : P} (h : Wbtw R x y z) : Collinear R ({x, y, z} : Set P)
case inr.inl.intro.intro R : Type u_1 V : Type u_2 P : Type u_4 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x z : P t : R ⊢ ∃ r, (lineMap x z) t = r • (z -ᵥ x) +ᵥ x
exact ⟨t, rfl⟩
no goals
d43d75b5cd5fb4e5
Fin.inv_partialProd_mul_eq_contractNth
Mathlib/Algebra/BigOperators/Fin.lean
theorem inv_partialProd_mul_eq_contractNth {G : Type*} [Group G] (g : Fin (n + 1) → G) (j : Fin (n + 1)) (k : Fin n) : (partialProd g (j.succ.succAbove (Fin.castSucc k)))⁻¹ * partialProd g (j.succAbove k).succ = j.contractNth (· * ·) g k
case inr.inr.h n : ℕ G : Type u_3 inst✝ : Group G g : Fin (n + 1) → G j : Fin (n + 1) k : Fin n h : ↑j < ↑k ⊢ j.succ ≤ k.castSucc.castSucc
rw [le_iff_val_le_val, val_succ]
case inr.inr.h n : ℕ G : Type u_3 inst✝ : Group G g : Fin (n + 1) → G j : Fin (n + 1) k : Fin n h : ↑j < ↑k ⊢ ↑j + 1 ≤ ↑k.castSucc.castSucc
f84a17ef32860b19
zero_lt_one_add_norm_sq'
Mathlib/Analysis/Normed/Group/Basic.lean
theorem zero_lt_one_add_norm_sq' (x : E) : 0 < 1 + ‖x‖ ^ 2
E : Type u_5 inst✝ : SeminormedGroup E x : E ⊢ 0 < 1 + ‖x‖ ^ 2
positivity
no goals
b35ff64791d12e79
MeasureTheory.lintegral_comp_eq_lintegral_meas_le_mul_of_measurable
Mathlib/MeasureTheory/Integral/Layercake.lean
theorem lintegral_comp_eq_lintegral_meas_le_mul_of_measurable (μ : Measure α) (f_nn : 0 ≤ f) (f_mble : Measurable f) (g_intble : ∀ t > 0, IntervalIntegrable g volume 0 t) (g_mble : Measurable g) (g_nn : ∀ t > 0, 0 ≤ g t) : ∫⁻ ω, ENNReal.ofReal (∫ t in (0)..f ω, g t) ∂μ = ∫⁻ t in Ioi 0, μ {a : α | t ≤ f a} * ENNReal.ofReal (g t)
α : Type u_1 inst✝ : MeasurableSpace α f : α → ℝ g : ℝ → ℝ μ : Measure α f_nn : 0 ≤ f f_mble : Measurable f g_intble : ∀ t > 0, IntervalIntegrable g volume 0 t g_mble : Measurable g g_nn : ∀ t > 0, 0 ≤ g t f_nonneg : ∀ (ω : α), 0 ≤ f ω H1 : ¬g =ᶠ[ae (volume.restrict (Ioi 0))] 0 H2 : ∀ s > 0, 0 < ∫ (t : ℝ) in 0 ..s, g t → μ {a | s < f a} ≠ ⊤ M_bdd : BddAbove {s | g =ᶠ[ae (volume.restrict (Ioc 0 s))] 0} M : ℝ := sSup {s | g =ᶠ[ae (volume.restrict (Ioc 0 s))] 0} zero_mem : 0 ∈ {s | g =ᶠ[ae (volume.restrict (Ioc 0 s))] 0} M_nonneg : 0 ≤ M hgM : g =ᶠ[ae (volume.restrict (Ioc 0 M))] 0 ν : Measure α := μ.restrict {a | M < f a} u : ℕ → ℝ uM : ∀ (n : ℕ), M < u n ulim : Tendsto u atTop (𝓝 M) n : ℕ ⊢ μ ({a | f a ≤ M} ∩ {a | M < f a}) = 0
convert measure_empty (μ := μ)
case h.e'_2.h.e'_6 α : Type u_1 inst✝ : MeasurableSpace α f : α → ℝ g : ℝ → ℝ μ : Measure α f_nn : 0 ≤ f f_mble : Measurable f g_intble : ∀ t > 0, IntervalIntegrable g volume 0 t g_mble : Measurable g g_nn : ∀ t > 0, 0 ≤ g t f_nonneg : ∀ (ω : α), 0 ≤ f ω H1 : ¬g =ᶠ[ae (volume.restrict (Ioi 0))] 0 H2 : ∀ s > 0, 0 < ∫ (t : ℝ) in 0 ..s, g t → μ {a | s < f a} ≠ ⊤ M_bdd : BddAbove {s | g =ᶠ[ae (volume.restrict (Ioc 0 s))] 0} M : ℝ := sSup {s | g =ᶠ[ae (volume.restrict (Ioc 0 s))] 0} zero_mem : 0 ∈ {s | g =ᶠ[ae (volume.restrict (Ioc 0 s))] 0} M_nonneg : 0 ≤ M hgM : g =ᶠ[ae (volume.restrict (Ioc 0 M))] 0 ν : Measure α := μ.restrict {a | M < f a} u : ℕ → ℝ uM : ∀ (n : ℕ), M < u n ulim : Tendsto u atTop (𝓝 M) n : ℕ ⊢ {a | f a ≤ M} ∩ {a | M < f a} = ∅
6098eac6b53bede3
MultilinearMap.map_sum_finset_aux
Mathlib/LinearAlgebra/Multilinear/Basic.lean
theorem map_sum_finset_aux [DecidableEq ι] [Fintype ι] {n : ℕ} (h : (∑ i, #(A i)) = n) : (f fun i => ∑ j ∈ A i, g i j) = ∑ r ∈ piFinset A, f fun i => g i (r i)
R : Type uR ι : Type uι M₁ : ι → Type v₁ M₂ : Type v₂ inst✝⁶ : Semiring R inst✝⁵ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M₂ f : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i inst✝¹ : DecidableEq ι inst✝ : Fintype ι this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ m < n, ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, #(A i) = m → (f fun i => ∑ j ∈ A i, g i j) = ∑ r ∈ piFinset A, f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, #(A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ Ai_singleton : ∀ (i : ι), #(A i) ≤ 1 Ai_card : ∀ (i : ι), #(A i) = 1 r : (i : ι) → α i hr : r ∈ piFinset A ⊢ (f fun i => g i (r i)) = f fun i => ∑ j ∈ A i, g i j
congr with i
case h.e_6.h.h R : Type uR ι : Type uι M₁ : ι → Type v₁ M₂ : Type v₂ inst✝⁶ : Semiring R inst✝⁵ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M₂ f : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i inst✝¹ : DecidableEq ι inst✝ : Fintype ι this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ m < n, ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, #(A i) = m → (f fun i => ∑ j ∈ A i, g i j) = ∑ r ∈ piFinset A, f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, #(A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ Ai_singleton : ∀ (i : ι), #(A i) ≤ 1 Ai_card : ∀ (i : ι), #(A i) = 1 r : (i : ι) → α i hr : r ∈ piFinset A i : ι ⊢ g i (r i) = ∑ j ∈ A i, g i j
981a316f387f732a
MeasureTheory.tendsto_lintegral_filter_of_dominated_convergence
Mathlib/MeasureTheory/Integral/Lebesgue.lean
theorem tendsto_lintegral_filter_of_dominated_convergence {ι} {l : Filter ι} [l.IsCountablyGenerated] {F : ι → α → ℝ≥0∞} {f : α → ℝ≥0∞} (bound : α → ℝ≥0∞) (hF_meas : ∀ᶠ n in l, Measurable (F n)) (h_bound : ∀ᶠ n in l, ∀ᵐ a ∂μ, F n a ≤ bound a) (h_fin : ∫⁻ a, bound a ∂μ ≠ ∞) (h_lim : ∀ᵐ a ∂μ, Tendsto (fun n => F n a) l (𝓝 (f a))) : Tendsto (fun n => ∫⁻ a, F n a ∂μ) l (𝓝 <| ∫⁻ a, f a ∂μ)
α : Type u_1 m : MeasurableSpace α μ : Measure α ι : Type u_5 l : Filter ι inst✝ : l.IsCountablyGenerated F : ι → α → ℝ≥0∞ f bound : α → ℝ≥0∞ hF_meas : ∀ᶠ (n : ι) in l, Measurable (F n) h_bound : ∀ᶠ (n : ι) in l, ∀ᵐ (a : α) ∂μ, F n a ≤ bound a h_fin : ∫⁻ (a : α), bound a ∂μ ≠ ⊤ h_lim : ∀ᵐ (a : α) ∂μ, Tendsto (fun n => F n a) l (𝓝 (f a)) x : ℕ → ι xl : Tendsto x atTop l hxl : ∀ s ∈ l, ∃ a, ∀ b ≥ a, x b ∈ s h : ∃ a, ∀ b ≥ a, x b ∈ {x | (fun n => Measurable (F n)) x} ∩ {x | (fun n => ∀ᵐ (a : α) ∂μ, F n a ≤ bound a) x} ⊢ Tendsto ((fun n => ∫⁻ (a : α), F n a ∂μ) ∘ x) atTop (𝓝 (∫⁻ (a : α), f a ∂μ))
rcases h with ⟨k, h⟩
case intro α : Type u_1 m : MeasurableSpace α μ : Measure α ι : Type u_5 l : Filter ι inst✝ : l.IsCountablyGenerated F : ι → α → ℝ≥0∞ f bound : α → ℝ≥0∞ hF_meas : ∀ᶠ (n : ι) in l, Measurable (F n) h_bound : ∀ᶠ (n : ι) in l, ∀ᵐ (a : α) ∂μ, F n a ≤ bound a h_fin : ∫⁻ (a : α), bound a ∂μ ≠ ⊤ h_lim : ∀ᵐ (a : α) ∂μ, Tendsto (fun n => F n a) l (𝓝 (f a)) x : ℕ → ι xl : Tendsto x atTop l hxl : ∀ s ∈ l, ∃ a, ∀ b ≥ a, x b ∈ s k : ℕ h : ∀ b ≥ k, x b ∈ {x | (fun n => Measurable (F n)) x} ∩ {x | (fun n => ∀ᵐ (a : α) ∂μ, F n a ≤ bound a) x} ⊢ Tendsto ((fun n => ∫⁻ (a : α), F n a ∂μ) ∘ x) atTop (𝓝 (∫⁻ (a : α), f a ∂μ))
879da8b2b29c96c4
Nat.primeFactorsList_prime
Mathlib/Data/Nat/Factors.lean
theorem primeFactorsList_prime {p : ℕ} (hp : Nat.Prime p) : p.primeFactorsList = [p]
p : ℕ hp : Prime p this✝ : p = p - 2 + 2 this : p.minFac = p ⊢ p.minFac :: (p / p.minFac).primeFactorsList = [p]
simp only [this, primeFactorsList, Nat.div_self (Nat.Prime.pos hp)]
no goals
671d32de56a629cc
Submodule.spanRank_toENat_eq_iInf_finset_card
Mathlib/Algebra/Module/SpanRank.lean
lemma spanRank_toENat_eq_iInf_finset_card (p : Submodule R M) : p.spanRank.toENat = ⨅ (s : {s : Set M // s.Finite ∧ span R s = p}), (s.2.1.toFinset.card : ℕ∞)
case inr R : Type u_1 M : Type u inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M p : Submodule R M h2 : ⨅ s, ⨅ (_ : span R s = p), s.encard ≠ ⊤ ⊢ ⨅ s, ⨅ (_ : span R s = p), s.encard = ⨅ s, ↑⋯.toFinset.card
apply le_antisymm
case inr.a R : Type u_1 M : Type u inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M p : Submodule R M h2 : ⨅ s, ⨅ (_ : span R s = p), s.encard ≠ ⊤ ⊢ ⨅ s, ⨅ (_ : span R s = p), s.encard ≤ ⨅ s, ↑⋯.toFinset.card case inr.a R : Type u_1 M : Type u inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M p : Submodule R M h2 : ⨅ s, ⨅ (_ : span R s = p), s.encard ≠ ⊤ ⊢ ⨅ s, ↑⋯.toFinset.card ≤ ⨅ s, ⨅ (_ : span R s = p), s.encard
f74636938a98e2b3
CategoryTheory.MorphismProperty.pullbacks_le
Mathlib/CategoryTheory/MorphismProperty/Limits.lean
lemma pullbacks_le [P.IsStableUnderBaseChange] : P.pullbacks ≤ P
C : Type u inst✝¹ : Category.{v, u} C P : MorphismProperty C inst✝ : P.IsStableUnderBaseChange ⊢ P.pullbacks ≤ P
rwa [← isStableUnderBaseChange_iff_pullbacks_le]
no goals
15b19b1863dec296
MeasureTheory.UnifTight.aeeq
Mathlib/MeasureTheory/Function/UnifTight.lean
theorem aeeq (hf : UnifTight f p μ) (hfg : ∀ n, f n =ᵐ[μ] g n) : UnifTight g p μ
case intro.intro α : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace α μ : Measure α inst✝ : NormedAddCommGroup β f g : ι → α → β p : ℝ≥0∞ hf : UnifTight f p μ hfg : ∀ (n : ι), f n =ᶠ[ae μ] g n ε : ℝ≥0 hε : 0 < ε s : Set α hμs : μ s ≠ ⊤ hfε : ∀ (i : ι), eLpNorm (sᶜ.indicator (f i)) p μ ≤ ↑ε ⊢ ∃ s, μ s ≠ ⊤ ∧ ∀ (i : ι), eLpNorm (sᶜ.indicator (g i)) p μ ≤ ↑ε
refine ⟨s, hμs, fun n => (le_of_eq <| eLpNorm_congr_ae ?_).trans (hfε n)⟩
case intro.intro α : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace α μ : Measure α inst✝ : NormedAddCommGroup β f g : ι → α → β p : ℝ≥0∞ hf : UnifTight f p μ hfg : ∀ (n : ι), f n =ᶠ[ae μ] g n ε : ℝ≥0 hε : 0 < ε s : Set α hμs : μ s ≠ ⊤ hfε : ∀ (i : ι), eLpNorm (sᶜ.indicator (f i)) p μ ≤ ↑ε n : ι ⊢ sᶜ.indicator (g n) =ᶠ[ae μ] sᶜ.indicator (f n)
453e4514d55787ac
Std.Tactic.BVDecide.BVExpr.bitblast.blastUdiv.denote_go_eq_divRec_q
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Circuit/Lemmas/Operations/Udiv.lean
theorem denote_go_eq_divRec_q (aig : AIG α) (assign : α → Bool) (curr : Nat) (lhs rhs rbv qbv : BitVec w) (falseRef trueRef : AIG.Ref aig) (n d q r : AIG.RefVec aig w) (wn wr : Nat) (hleft : ∀ (idx : Nat) (hidx : idx < w), ⟦aig, n.get idx hidx, assign⟧ = lhs.getLsbD idx) (hright : ∀ (idx : Nat) (hidx : idx < w), ⟦aig, d.get idx hidx, assign⟧ = rhs.getLsbD idx) (hq : ∀ (idx : Nat) (hidx : idx < w), ⟦aig, q.get idx hidx, assign⟧ = qbv.getLsbD idx) (hr : ∀ (idx : Nat) (hidx : idx < w), ⟦aig, r.get idx hidx, assign⟧ = rbv.getLsbD idx) (hfalse : ⟦aig, falseRef, assign⟧ = false) (htrue : ⟦aig, trueRef, assign⟧ = true) : ∀ (idx : Nat) (hidx : idx < w), ⟦ (go aig curr falseRef trueRef n d wn wr q r).aig, (go aig curr falseRef trueRef n d wn wr q r).q.get idx hidx, assign ⟧ = (BitVec.divRec curr { n := lhs, d := rhs} { wn, wr, q := qbv, r := rbv }).q.getLsbD idx
case hq α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat assign : α → Bool lhs rhs : BitVec w curr : Nat ih : ∀ (aig : AIG α) (rbv qbv : BitVec w) (falseRef trueRef : aig.Ref) (n d q r : aig.RefVec w) (wn wr : Nat), (∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := n.get idx hidx }⟧ = lhs.getLsbD idx) → (∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := d.get idx hidx }⟧ = rhs.getLsbD idx) → (∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := q.get idx hidx }⟧ = qbv.getLsbD idx) → (∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := r.get idx hidx }⟧ = rbv.getLsbD idx) → ⟦assign, { aig := aig, ref := falseRef }⟧ = false → ⟦assign, { aig := aig, ref := trueRef }⟧ = true → ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := (go aig curr falseRef trueRef n d wn wr q r).aig, ref := (go aig curr falseRef trueRef n d wn wr q r).q.get idx hidx }⟧ = (BitVec.divRec curr { n := lhs, d := rhs } { wn := wn, wr := wr, q := qbv, r := rbv }).q.getLsbD idx aig : AIG α rbv qbv : BitVec w falseRef trueRef : aig.Ref n d q r : aig.RefVec w wn wr : Nat hleft : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := n.get idx hidx }⟧ = lhs.getLsbD idx hright : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := d.get idx hidx }⟧ = rhs.getLsbD idx hq : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := q.get idx hidx }⟧ = qbv.getLsbD idx hr : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := r.get idx hidx }⟧ = rbv.getLsbD idx hfalse : ⟦assign, { aig := aig, ref := falseRef }⟧ = false htrue : ⟦assign, { aig := aig, ref := trueRef }⟧ = true idx : Nat hidx : idx < w hdiscr : { wn := wn, wr := wr, q := qbv, r := rbv }.r.shiftConcat (lhs.getLsbD ({ wn := wn, wr := wr, q := qbv, r := rbv }.wn - 1)) < rhs ⊢ ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := (blastDivSubtractShift aig falseRef trueRef n d wn wr q r).aig, ref := (blastDivSubtractShift aig falseRef trueRef n d wn wr q r).q.get idx hidx }⟧ = ({ wn := wn, wr := wr, q := qbv, r := rbv }.q.shiftConcat false).getLsbD idx
intro idx hidx
case hq α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat assign : α → Bool lhs rhs : BitVec w curr : Nat ih : ∀ (aig : AIG α) (rbv qbv : BitVec w) (falseRef trueRef : aig.Ref) (n d q r : aig.RefVec w) (wn wr : Nat), (∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := n.get idx hidx }⟧ = lhs.getLsbD idx) → (∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := d.get idx hidx }⟧ = rhs.getLsbD idx) → (∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := q.get idx hidx }⟧ = qbv.getLsbD idx) → (∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := r.get idx hidx }⟧ = rbv.getLsbD idx) → ⟦assign, { aig := aig, ref := falseRef }⟧ = false → ⟦assign, { aig := aig, ref := trueRef }⟧ = true → ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := (go aig curr falseRef trueRef n d wn wr q r).aig, ref := (go aig curr falseRef trueRef n d wn wr q r).q.get idx hidx }⟧ = (BitVec.divRec curr { n := lhs, d := rhs } { wn := wn, wr := wr, q := qbv, r := rbv }).q.getLsbD idx aig : AIG α rbv qbv : BitVec w falseRef trueRef : aig.Ref n d q r : aig.RefVec w wn wr : Nat hleft : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := n.get idx hidx }⟧ = lhs.getLsbD idx hright : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := d.get idx hidx }⟧ = rhs.getLsbD idx hq : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := q.get idx hidx }⟧ = qbv.getLsbD idx hr : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := r.get idx hidx }⟧ = rbv.getLsbD idx hfalse : ⟦assign, { aig := aig, ref := falseRef }⟧ = false htrue : ⟦assign, { aig := aig, ref := trueRef }⟧ = true idx✝ : Nat hidx✝ : idx✝ < w hdiscr : { wn := wn, wr := wr, q := qbv, r := rbv }.r.shiftConcat (lhs.getLsbD ({ wn := wn, wr := wr, q := qbv, r := rbv }.wn - 1)) < rhs idx : Nat hidx : idx < w ⊢ ⟦assign, { aig := (blastDivSubtractShift aig falseRef trueRef n d wn wr q r).aig, ref := (blastDivSubtractShift aig falseRef trueRef n d wn wr q r).q.get idx hidx }⟧ = ({ wn := wn, wr := wr, q := qbv, r := rbv }.q.shiftConcat false).getLsbD idx
edb5936f3962e4a9
LieAlgebra.isEngelian_of_subsingleton
Mathlib/Algebra/Lie/Engel.lean
theorem LieAlgebra.isEngelian_of_subsingleton [Subsingleton L] : LieAlgebra.IsEngelian R L
case h R : Type u₁ L : Type u₂ inst✝³ : CommRing R inst✝² : LieRing L inst✝¹ : LieAlgebra R L inst✝ : Subsingleton L M : Type u_1 _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L M _i4 : LieModule R L M _h : ∀ (x : L), IsNilpotent ((toEnd R L M) x) ⊢ lowerCentralSeries ℤ L M 1 = ⊥
simp
no goals
e1bc69c104947d71
SimpleGraph.IsCycles.exists_cycle_toSubgraph_verts_eq_connectedComponentSupp
Mathlib/Combinatorics/SimpleGraph/Matching.lean
lemma IsCycles.exists_cycle_toSubgraph_verts_eq_connectedComponentSupp [Finite V] {c : G.ConnectedComponent} (h : G.IsCycles) (hv : v ∈ c.supp) (hn : (G.neighborSet v).Nonempty) : ∃ (p : G.Walk v v), p.IsCycle ∧ p.toSubgraph.verts = c.supp
case intro.intro.intro V : Type u_1 G : SimpleGraph V v : V inst✝ : Finite V c : G.ConnectedComponent h : G.IsCycles hv : v ∈ c.supp w : V hw : w ∈ G.neighborSet v u : V p : G.Walk u u hp : p.IsCycle ∧ s(v, w) ∈ p.edges ⊢ ∃ p, p.IsCycle ∧ p.toSubgraph.verts = c.supp
have hvp : v ∈ p.support := SimpleGraph.Walk.fst_mem_support_of_mem_edges _ hp.2
case intro.intro.intro V : Type u_1 G : SimpleGraph V v : V inst✝ : Finite V c : G.ConnectedComponent h : G.IsCycles hv : v ∈ c.supp w : V hw : w ∈ G.neighborSet v u : V p : G.Walk u u hp : p.IsCycle ∧ s(v, w) ∈ p.edges hvp : v ∈ p.support ⊢ ∃ p, p.IsCycle ∧ p.toSubgraph.verts = c.supp
449969e7dbb35e13
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.deleteOne_preserves_strongAssignmentsInvariant
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/Lemmas.lean
theorem deleteOne_preserves_strongAssignmentsInvariant {n : Nat} (f : DefaultFormula n) (id : Nat) : StrongAssignmentsInvariant f → StrongAssignmentsInvariant (deleteOne f id)
case inl.h n : Nat f : DefaultFormula n id : Nat hsize : f.assignments.size = n hsize' : (f.deleteOne id).assignments.size = n i : PosFin n b : Bool i_in_bounds : i.val < f.assignments.size c : DefaultClause n heq : f.clauses[id]! = some c l : Literal (PosFin n) hl : c = { clause := [l], nodupkey := ⋯, nodup := ⋯ } l_eq_i : l.fst.val = i.val l_ne_b : l.snd = !b hb✝ : hasAssignment b (removeAssignment (!b) f.assignments[i.val]) = true hb : hasAssignment b f.assignments[i.val] = true hf : some (unit (i, b)) ∈ f.clauses.toList ⊢ some (unit (i, b)) ∈ (f.clauses.set! id none).toList
simp only [Array.set!, Array.setIfInBounds]
case inl.h n : Nat f : DefaultFormula n id : Nat hsize : f.assignments.size = n hsize' : (f.deleteOne id).assignments.size = n i : PosFin n b : Bool i_in_bounds : i.val < f.assignments.size c : DefaultClause n heq : f.clauses[id]! = some c l : Literal (PosFin n) hl : c = { clause := [l], nodupkey := ⋯, nodup := ⋯ } l_eq_i : l.fst.val = i.val l_ne_b : l.snd = !b hb✝ : hasAssignment b (removeAssignment (!b) f.assignments[i.val]) = true hb : hasAssignment b f.assignments[i.val] = true hf : some (unit (i, b)) ∈ f.clauses.toList ⊢ some (unit (i, b)) ∈ (if h : id < f.clauses.size then f.clauses.set id none h else f.clauses).toList
0ab20a88767ce69e
IsLocalizedModule.mk_eq_mk'
Mathlib/Algebra/Module/LocalizedModule/Basic.lean
theorem mk_eq_mk' (s : S) (m : M) : LocalizedModule.mk m s = mk' (LocalizedModule.mkLinearMap S M) m s
R : Type u_1 inst✝² : CommSemiring R S : Submonoid R M : Type u_2 inst✝¹ : AddCommMonoid M inst✝ : Module R M s : ↥S m : M ⊢ LocalizedModule.mk m s = mk' (LocalizedModule.mkLinearMap S M) m s
rw [eq_comm, mk'_eq_iff, Submonoid.smul_def, LocalizedModule.smul'_mk, ← Submonoid.smul_def, LocalizedModule.mk_cancel, LocalizedModule.mkLinearMap_apply]
no goals
a62df2ede51f1c8a
CliffordAlgebra.forall_mul_self_eq_iff
Mathlib/LinearAlgebra/CliffordAlgebra/Basic.lean
theorem forall_mul_self_eq_iff {A : Type*} [Ring A] [Algebra R A] (h2 : IsUnit (2 : A)) (f : M →ₗ[R] A) : (∀ x, f x * f x = algebraMap _ _ (Q x)) ↔ (LinearMap.mul R A).compl₂ f ∘ₗ f + (LinearMap.mul R A).flip.compl₂ f ∘ₗ f = Q.polarBilin.compr₂ (Algebra.linearMap R A)
R : Type u_1 inst✝⁴ : CommRing R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M Q : QuadraticForm R M A : Type u_4 inst✝¹ : Ring A inst✝ : Algebra R A h2 : IsUnit 2 f : M →ₗ[R] A x : M h : ∀ (x y : M), f x * f y + f y * f x = (algebraMap R A) (QuadraticMap.polar (⇑Q) x y) ⊢ f x * f x = (algebraMap R A) (Q x)
apply h2.mul_left_cancel
R : Type u_1 inst✝⁴ : CommRing R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M Q : QuadraticForm R M A : Type u_4 inst✝¹ : Ring A inst✝ : Algebra R A h2 : IsUnit 2 f : M →ₗ[R] A x : M h : ∀ (x y : M), f x * f y + f y * f x = (algebraMap R A) (QuadraticMap.polar (⇑Q) x y) ⊢ 2 * (f x * f x) = 2 * (algebraMap R A) (Q x)
a627073501885bf0
NumberField.Units.dirichletUnitTheorem.exists_unit
Mathlib/NumberTheory/NumberField/Units/DirichletTheorem.lean
theorem exists_unit (w₁ : InfinitePlace K) : ∃ u : (𝓞 K)ˣ, ∀ w : InfinitePlace K, w ≠ w₁ → Real.log (w u) < 0
K : Type u_1 inst✝¹ : Field K inst✝ : NumberField K w₁ : InfinitePlace K ⊢ ∃ x, minkowskiBound K 1 < ↑x * ↑(convexBodyLTFactor K)
exact ENNReal.exists_nat_mul_gt (ENNReal.coe_ne_zero.mpr (convexBodyLTFactor_ne_zero K)) (ne_of_lt (minkowskiBound_lt_top K 1))
no goals
a5c11596a1c04e50
faaDiBruno_aux2
Mathlib/Analysis/Calculus/ContDiff/FaaDiBruno.lean
/-- Composing a formal multilinear series with an ordered partition extended by adding a left point to an already existing atom of index `i` corresponds to updating the `i`th block, using `p (c.partSize i + 1)` instead of `p (c.partSize i)` there. This is one of the terms that appears when differentiating in the Faa di Bruno formula, going from step `m` to step `m + 1`. -/ private lemma faaDiBruno_aux2 {m : ℕ} (q : FormalMultilinearSeries 𝕜 F G) (p : FormalMultilinearSeries 𝕜 E F) (c : OrderedFinpartition m) (i : Fin c.length) : (q.compAlongOrderedFinpartition p (c.extend (some i))).curryLeft = ((c.compAlongOrderedFinpartitionL 𝕜 E F G (q c.length)).toContinuousLinearMap (fun i ↦ p (c.partSize i)) i).comp (p (c.partSize i + 1)).curryLeft
case h.H 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace 𝕜 G m : ℕ q : FormalMultilinearSeries 𝕜 F G p : FormalMultilinearSeries 𝕜 E F c : OrderedFinpartition m i : Fin c.length e : E v : Fin m → E ⊢ ((q c.length) fun m_1 => (p (update c.partSize i (c.partSize i + 1) m_1)) (cons e v ∘ if h : m_1 = i then (fun i_1 => cases 0 (succ ∘ c.emb i) i_1) ∘ Fin.cast ⋯ else succ ∘ c.emb m_1 ∘ Fin.cast ⋯)) = (q c.length) fun m_1 => (update (fun i => p (c.partSize i)) i ((p (c.partSize i + 1)).curryLeft e) m_1) (v ∘ c.emb m_1)
congr
case h.H.h.e_6.h 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace 𝕜 G m : ℕ q : FormalMultilinearSeries 𝕜 F G p : FormalMultilinearSeries 𝕜 E F c : OrderedFinpartition m i : Fin c.length e : E v : Fin m → E ⊢ (fun m_1 => (p (update c.partSize i (c.partSize i + 1) m_1)) (cons e v ∘ if h : m_1 = i then (fun i_1 => cases 0 (succ ∘ c.emb i) i_1) ∘ Fin.cast ⋯ else succ ∘ c.emb m_1 ∘ Fin.cast ⋯)) = fun m_1 => (update (fun i => p (c.partSize i)) i ((p (c.partSize i + 1)).curryLeft e) m_1) (v ∘ c.emb m_1)
0043cf301ba04e46
CategoryTheory.isVanKampenColimit_of_isEmpty
Mathlib/CategoryTheory/Limits/VanKampen.lean
theorem isVanKampenColimit_of_isEmpty [HasStrictInitialObjects C] [IsEmpty J] {F : J ⥤ C} (c : Cocone F) (hc : IsColimit c) : IsVanKampenColimit c
J : Type v' inst✝³ : Category.{u', v'} J C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasStrictInitialObjects C inst✝ : IsEmpty J F : J ⥤ C c : Cocone F hc : IsColimit c this : IsVanKampenColimit (asEmptyCocone c.pt) ⊢ IsVanKampenColimit (Cocone.whisker (equivalenceOfIsEmpty (Discrete PEmpty.{1}) J).functor c)
exact (this.precompose_isIso (Functor.uniqueFromEmpty ((equivalenceOfIsEmpty (Discrete PEmpty.{1}) J).functor ⋙ F)).hom).of_iso (Cocones.ext (Iso.refl _) (by simp))
no goals
eeac24dc087b2172
exists_squarefree_dvd_pow_of_ne_zero
Mathlib/Algebra/Squarefree/Basic.lean
lemma _root_.exists_squarefree_dvd_pow_of_ne_zero {x : R} (hx : x ≠ 0) : ∃ (y : R) (n : ℕ), Squarefree y ∧ y ∣ x ∧ x ∣ y ^ n
case pos R : Type u_1 inst✝¹ : CancelCommMonoidWithZero R inst✝ : UniqueFactorizationMonoid R z p : R hz : z ≠ 0 hp : Irreducible p ih : z ≠ 0 → ∃ y n, Squarefree y ∧ y ∣ z ∧ z ∣ y ^ n hx : p * z ≠ 0 y : R n : ℕ hy : Squarefree y hyx : y ∣ z hy' : z ∣ y ^ n hn : n > 0 hp' : p ∣ y ⊢ ∃ y n, Squarefree y ∧ y ∣ p * z ∧ p * z ∣ y ^ n
exact ⟨y, n + 1, hy, dvd_mul_of_dvd_right hyx _, mul_comm p z ▸ pow_succ y n ▸ mul_dvd_mul hy' hp'⟩
no goals
2f11f1533d70f050
Vector.attach_map
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Vector/Attach.lean
theorem attach_map {l : Vector α n} (f : α → β) : (l.map f).attach = l.attach.map (fun ⟨x, h⟩ => ⟨f x, mem_map_of_mem f h⟩)
α : Type u_1 n : Nat β : Type u_2 l : Vector α n f : α → β ⊢ (map f l).attach = map (fun x => match x with | ⟨x, h⟩ => ⟨f x, ⋯⟩) l.attach
cases l
case mk α : Type u_1 n : Nat β : Type u_2 f : α → β toArray✝ : Array α size_toArray✝ : toArray✝.size = n ⊢ (map f { toArray := toArray✝, size_toArray := size_toArray✝ }).attach = map (fun x => match x with | ⟨x, h⟩ => ⟨f x, ⋯⟩) { toArray := toArray✝, size_toArray := size_toArray✝ }.attach
136b979f9fc12efc
conformalAt_iff_isConformalMap_fderiv
Mathlib/Analysis/Calculus/Conformal/NormedSpace.lean
theorem conformalAt_iff_isConformalMap_fderiv {f : X → Y} {x : X} : ConformalAt f x ↔ IsConformalMap (fderiv ℝ f x)
case neg X : Type u_1 Y : Type u_2 inst✝³ : NormedAddCommGroup X inst✝² : NormedAddCommGroup Y inst✝¹ : NormedSpace ℝ X inst✝ : NormedSpace ℝ Y f : X → Y x : X H : IsConformalMap (fderiv ℝ f x) h : ¬DifferentiableAt ℝ f x ⊢ ConformalAt f x
nontriviality X
X : Type u_1 Y : Type u_2 inst✝³ : NormedAddCommGroup X inst✝² : NormedAddCommGroup Y inst✝¹ : NormedSpace ℝ X inst✝ : NormedSpace ℝ Y f : X → Y x : X H : IsConformalMap (fderiv ℝ f x) h : ¬DifferentiableAt ℝ f x a✝ : Nontrivial X ⊢ ConformalAt f x
7b61d25756689bca
Nat.nth_lt_of_lt_count
Mathlib/Data/Nat/Nth.lean
theorem nth_lt_of_lt_count {n k : ℕ} (h : k < count p n) : nth p k < n
p : ℕ → Prop inst✝ : DecidablePred p n k : ℕ h : k < count p n ⊢ nth p k < n
refine (count_monotone p).reflect_lt ?_
p : ℕ → Prop inst✝ : DecidablePred p n k : ℕ h : k < count p n ⊢ count p (nth p k) < count p n
136d9032986f9438
ProbabilityTheory.evariance_mul
Mathlib/Probability/Variance.lean
theorem evariance_mul (c : ℝ) (X : Ω → ℝ) (μ : Measure Ω) : evariance (fun ω => c * X ω) μ = ENNReal.ofReal (c ^ 2) * evariance X μ
case e_f.h Ω : Type u_1 mΩ : MeasurableSpace Ω c : ℝ X : Ω → ℝ μ : Measure Ω ω : Ω ⊢ ‖c * X ω - ∫ (x : Ω), c * X x ∂μ‖ₑ ^ 2 = ENNReal.ofReal (c ^ 2) * ‖X ω - ∫ (x : Ω), X x ∂μ‖ₑ ^ 2
rw [integral_mul_left, ← mul_sub, enorm_mul, mul_pow, ← enorm_pow, Real.enorm_of_nonneg (sq_nonneg _)]
no goals
87d7e9ed9d5e8329
HurwitzZeta.cosKernel_neg
Mathlib/NumberTheory/LSeries/HurwitzZetaEven.lean
@[simp] lemma cosKernel_neg (a : UnitAddCircle) (x : ℝ) : cosKernel (-a) x = cosKernel a x
case H x z✝ : ℝ ⊢ cosKernel (-↑z✝) x = cosKernel (↑z✝) x
simp [← QuotientAddGroup.mk_neg, ← ofReal_inj, cosKernel_def]
no goals
d86ba7455a7df237
Finset.affineCombinationLineMapWeights_apply_of_ne
Mathlib/LinearAlgebra/AffineSpace/Combination.lean
theorem affineCombinationLineMapWeights_apply_of_ne [DecidableEq ι] {i j t : ι} (hi : t ≠ i) (hj : t ≠ j) (c : k) : affineCombinationLineMapWeights i j c t = 0
k : Type u_1 inst✝¹ : Ring k ι : Type u_4 inst✝ : DecidableEq ι i j t : ι hi : t ≠ i hj : t ≠ j c : k ⊢ affineCombinationLineMapWeights i j c t = 0
simp [affineCombinationLineMapWeights, hi, hj]
no goals
4ae27d481b521f8c
Finset.subset_union_elim
Mathlib/Data/Finset/Basic.lean
theorem subset_union_elim {s : Finset α} {t₁ t₂ : Set α} (h : ↑s ⊆ t₁ ∪ t₂) : ∃ s₁ s₂ : Finset α, s₁ ∪ s₂ = s ∧ ↑s₁ ⊆ t₁ ∧ ↑s₂ ⊆ t₂ \ t₁
case refine_3 α : Type u_1 inst✝ : DecidableEq α s : Finset α t₁ t₂ : Set α h : ↑s ⊆ t₁ ∪ t₂ x : α ⊢ x ∈ ↑(filter (fun x => x ∉ t₁) s) → x ∈ t₂ \ t₁
simp only [not_not, coe_filter, Set.mem_setOf_eq, Set.mem_diff, and_imp]
case refine_3 α : Type u_1 inst✝ : DecidableEq α s : Finset α t₁ t₂ : Set α h : ↑s ⊆ t₁ ∪ t₂ x : α ⊢ x ∈ s → x ∉ t₁ → x ∈ t₂ ∧ x ∉ t₁
124422836b3c4eb9
MeasureTheory.lpMeasSubgroupToLpTrim_right_inv
Mathlib/MeasureTheory/Function/ConditionalExpectation/AEMeasurable.lean
theorem lpMeasSubgroupToLpTrim_right_inv (hm : m ≤ m0) : Function.RightInverse (lpTrimToLpMeasSubgroup F p μ hm) (lpMeasSubgroupToLpTrim F p μ hm)
α : Type u_1 F : Type u_2 p : ℝ≥0∞ inst✝ : NormedAddCommGroup F m m0 : MeasurableSpace α μ : Measure α hm : m ≤ m0 f : ↥(Lp F p (μ.trim hm)) ⊢ lpMeasSubgroupToLpTrim F p μ hm (lpTrimToLpMeasSubgroup F p μ hm f) = f
ext1
case h α : Type u_1 F : Type u_2 p : ℝ≥0∞ inst✝ : NormedAddCommGroup F m m0 : MeasurableSpace α μ : Measure α hm : m ≤ m0 f : ↥(Lp F p (μ.trim hm)) ⊢ ↑↑(lpMeasSubgroupToLpTrim F p μ hm (lpTrimToLpMeasSubgroup F p μ hm f)) =ᶠ[ae (μ.trim hm)] ↑↑f
1f4f24d97edaec61
Std.Tactic.BVDecide.BVExpr.bitblast.blastRotateLeft.go_get_aux
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Circuit/Lemmas/Operations/RotateLeft.lean
theorem go_get_aux (aig : AIG α) (distance : Nat) (input : AIG.RefVec aig w) (curr : Nat) (hcurr : curr ≤ w) (s : AIG.RefVec aig curr) : ∀ (idx : Nat) (hidx : idx < curr), (go input distance curr hcurr s).get idx (by omega) = s.get idx hidx
α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat aig : AIG α distance : Nat input : aig.RefVec w curr : Nat hcurr : curr ≤ w s : aig.RefVec curr idx : Nat hidx : idx < curr h✝ : ¬curr < w ⊢ curr = w
omega
no goals
e1ea21e0c26513f1
IsDedekindDomain.HeightOneSpectrum.adicCompletion.mul_nonZeroDivisor_mem_adicCompletionIntegers
Mathlib/RingTheory/DedekindDomain/AdicValuation.lean
lemma adicCompletion.mul_nonZeroDivisor_mem_adicCompletionIntegers (v : HeightOneSpectrum R) (a : v.adicCompletion K) : ∃ b ∈ R⁰, a * b ∈ v.adicCompletionIntegers K
case neg.intro.intro R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R a : adicCompletion K v d : ℤ ha : 0 < d hd : Valued.v a = ↑(ofAdd d) ϖ : R hϖ : v.intValuationDef ϖ = ↑(ofAdd (-1)) hϖ0 : ϖ ≠ 0 ⊢ d + d * -1 ≤ 0
omega
no goals
8327a4d56ea55b92
Set.diff_iInter
Mathlib/Data/Set/Lattice.lean
theorem diff_iInter (s : Set β) (t : ι → Set β) : (s \ ⋂ i, t i) = ⋃ i, s \ t i
β : Type u_2 ι : Sort u_5 s : Set β t : ι → Set β ⊢ s \ ⋂ i, t i = ⋃ i, s \ t i
rw [diff_eq, compl_iInter, inter_iUnion]
β : Type u_2 ι : Sort u_5 s : Set β t : ι → Set β ⊢ ⋃ i, s ∩ (t i)ᶜ = ⋃ i, s \ t i
2a5c736d07abb686
List.getElem?_eraseIdx_of_lt
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Nat/Erase.lean
theorem getElem?_eraseIdx_of_lt (l : List α) (i : Nat) (j : Nat) (h : j < i) : (l.eraseIdx i)[j]? = l[j]?
α : Type u_1 l : List α i j : Nat h : j < i ⊢ (l.eraseIdx i)[j]? = l[j]?
rw [getElem?_eraseIdx]
α : Type u_1 l : List α i j : Nat h : j < i ⊢ (if j < i then l[j]? else l[j + 1]?) = l[j]?
01167548286c9ee6
PNat.XgcdType.reduce_a
Mathlib/Data/PNat/Xgcd.lean
theorem reduce_a {u : XgcdType} (h : u.r = 0) : u.reduce = u.finish
u : XgcdType h : u.r = 0 ⊢ u.reduce = u.finish
rw [reduce]
u : XgcdType h : u.r = 0 ⊢ (if x : u.r = 0 then u.finish else u.step.reduce.flip) = u.finish
6004cbbfaf421ae5
BoxIntegral.norm_volume_sub_integral_face_upper_sub_lower_smul_le
Mathlib/Analysis/BoxIntegral/DivergenceTheorem.lean
theorem norm_volume_sub_integral_face_upper_sub_lower_smul_le {f : (Fin (n + 1) → ℝ) → E} {f' : (Fin (n + 1) → ℝ) →L[ℝ] E} (hfc : ContinuousOn f (Box.Icc I)) {x : Fin (n + 1) → ℝ} (hxI : x ∈ (Box.Icc I)) {a : E} {ε : ℝ} (h0 : 0 < ε) (hε : ∀ y ∈ (Box.Icc I), ‖f y - a - f' (y - x)‖ ≤ ε * ‖y - x‖) {c : ℝ≥0} (hc : I.distortion ≤ c) : ‖(∏ j, (I.upper j - I.lower j)) • f' (Pi.single i 1) - (integral (I.face i) ⊥ (f ∘ i.insertNth (α := fun _ ↦ ℝ) (I.upper i)) BoxAdditiveMap.volume - integral (I.face i) ⊥ (f ∘ i.insertNth (α := fun _ ↦ ℝ) (I.lower i)) BoxAdditiveMap.volume)‖ ≤ 2 * ε * c * ∏ j, (I.upper j - I.lower j)
E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) →L[ℝ] E hfc : ContinuousOn f (Box.Icc I) x : Fin (n + 1) → ℝ hxI : x ∈ Box.Icc I a : E ε : ℝ h0 : 0 < ε hε : ∀ y ∈ Box.Icc I, ‖f y - a - f' (y - x)‖ ≤ ε * ‖y - x‖ c : ℝ≥0 hc : I.distortion ≤ c e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := i.insertNth Hl : I.lower i ∈ Set.Icc (I.lower i) (I.upper i) Hu : I.upper i ∈ Set.Icc (I.lower i) (I.upper i) Hi : ∀ x ∈ Set.Icc (I.lower i) (I.upper i), Integrable (I.face i) ⊥ (f ∘ e x) BoxAdditiveMap.volume this : ∀ y ∈ Box.Icc (I.face i), ‖f' (Pi.single i (I.upper i - I.lower i)) - (f (e (I.upper i) y) - f (e (I.lower i) y))‖ ≤ 2 * ε * diam (Box.Icc I) ⊢ ‖integral (I.face i) ⊥ (fun x => f' (Pi.single i (I.upper i - I.lower i)) - (f (e (I.upper i) x) - f (e (I.lower i) x))) BoxAdditiveMap.volume‖ ≤ (volume ↑(I.face i)).toReal * (2 * ε * ↑c * (I.upper i - I.lower i))
refine norm_integral_le_of_le_const (fun y hy => (this y hy).trans ?_) volume
E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) →L[ℝ] E hfc : ContinuousOn f (Box.Icc I) x : Fin (n + 1) → ℝ hxI : x ∈ Box.Icc I a : E ε : ℝ h0 : 0 < ε hε : ∀ y ∈ Box.Icc I, ‖f y - a - f' (y - x)‖ ≤ ε * ‖y - x‖ c : ℝ≥0 hc : I.distortion ≤ c e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := i.insertNth Hl : I.lower i ∈ Set.Icc (I.lower i) (I.upper i) Hu : I.upper i ∈ Set.Icc (I.lower i) (I.upper i) Hi : ∀ x ∈ Set.Icc (I.lower i) (I.upper i), Integrable (I.face i) ⊥ (f ∘ e x) BoxAdditiveMap.volume this : ∀ y ∈ Box.Icc (I.face i), ‖f' (Pi.single i (I.upper i - I.lower i)) - (f (e (I.upper i) y) - f (e (I.lower i) y))‖ ≤ 2 * ε * diam (Box.Icc I) y : Fin n → ℝ hy : y ∈ Box.Icc (I.face i) ⊢ 2 * ε * diam (Box.Icc I) ≤ 2 * ε * ↑c * (I.upper i - I.lower i)
6dcd75375355bac1
Matrix.SpecialLinearGroup.SL2_inv_expl_det
Mathlib/LinearAlgebra/Matrix/SpecialLinearGroup.lean
theorem SL2_inv_expl_det (A : SL(2, R)) : det ![![A.1 1 1, -A.1 0 1], ![-A.1 1 0, A.1 0 0]] = 1
R : Type v inst✝ : CommRing R A : SL(2, R) ⊢ ↑A 0 0 * ↑A 1 1 - ↑A 0 1 * ↑A 1 0 = 1
have := A.2
R : Type v inst✝ : CommRing R A : SL(2, R) this : (↑A).det = 1 ⊢ ↑A 0 0 * ↑A 1 1 - ↑A 0 1 * ↑A 1 0 = 1
54dbb0fb2273aa1b
WeierstrassCurve.Projective.negY_of_Z_ne_zero
Mathlib/AlgebraicGeometry/EllipticCurve/Projective.lean
lemma negY_of_Z_ne_zero {P : Fin 3 → F} (hPz : P z ≠ 0) : W.negY P / P z = W.toAffine.negY (P x / P z) (P y / P z)
case a.a F : Type u inst✝ : Field F W : Projective F P : Fin 3 → F hPz : P z ≠ 0 ⊢ W.negY P / P z + -W.a₃ * 1 - ((toAffine W).negY (P x / P z) (P y / P z) + -W.a₃ * (P z / P z)) = 0
rw [negY, Affine.negY]
case a.a F : Type u inst✝ : Field F W : Projective F P : Fin 3 → F hPz : P z ≠ 0 ⊢ (-P y - W.a₁ * P x - W.a₃ * P z) / P z + -W.a₃ * 1 - (-(P y / P z) - (toAffine W).a₁ * (P x / P z) - (toAffine W).a₃ + -W.a₃ * (P z / P z)) = 0
bbf88f4f5524fe5a
CategoryTheory.BinaryCofan.isPullback_initial_to_of_isVanKampen
Mathlib/CategoryTheory/Limits/VanKampen.lean
theorem BinaryCofan.isPullback_initial_to_of_isVanKampen [HasInitial C] {c : BinaryCofan X Y} (h : IsVanKampenColimit c) : IsPullback (initial.to _) (initial.to _) c.inl c.inr
case refine_1 C : Type u inst✝¹ : Category.{v, u} C X Y : C inst✝ : HasInitial C c : BinaryCofan X Y h : IsVanKampenColimit c ⊢ mapPair (initial.to X) (𝟙 Y) ≫ c.ι = (BinaryCofan.mk (initial.to Y) (𝟙 Y)).ι ≫ (Functor.const (Discrete WalkingPair)).map c.inr
ext ⟨⟨⟩⟩ <;> dsimp
case refine_1.w.h.mk.left C : Type u inst✝¹ : Category.{v, u} C X Y : C inst✝ : HasInitial C c : BinaryCofan X Y h : IsVanKampenColimit c ⊢ initial.to X ≫ c.inl = initial.to Y ≫ c.inr
1d49a7be83228de8
AddMonoidWithOne.ext
Mathlib/Algebra/Ring/Ext.lean
theorem AddMonoidWithOne.ext ⦃inst₁ inst₂ : AddMonoidWithOne R⦄ (h_add : local_hAdd[R, inst₁] = local_hAdd[R, inst₂]) (h_one : (letI := inst₁; One.one : R) = (letI := inst₂; One.one : R)) : inst₁ = inst₂
case mk.mk.mk.mk R : Type u toAddMonoid✝¹ : AddMonoid R toOne✝¹ : One R natCast✝¹ : ℕ → R natCast_zero✝¹ : NatCast.natCast 0 = 0 natCast_succ✝¹ : ∀ (n : ℕ), NatCast.natCast (n + 1) = NatCast.natCast n + 1 toAddMonoid✝ : AddMonoid R toOne✝ : One R natCast✝ : ℕ → R natCast_zero✝ : NatCast.natCast 0 = 0 natCast_succ✝ : ∀ (n : ℕ), NatCast.natCast (n + 1) = NatCast.natCast n + 1 h_add : HAdd.hAdd = HAdd.hAdd h_one : One.one = One.one h_monoid : toAddMonoid = toAddMonoid h_zero' : AddMonoid.toZero = AddMonoid.toZero h_one' : toOne = toOne h_natCast : NatCast.natCast = NatCast.natCast ⊢ mk natCast_zero✝¹ natCast_succ✝¹ = mk natCast_zero✝ natCast_succ✝
congr
no goals
8c33f554d55741a3
ENNReal.tendsto_atTop_zero_iff_lt_of_antitone
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
theorem tendsto_atTop_zero_iff_lt_of_antitone {β : Type*} [Nonempty β] [SemilatticeSup β] {f : β → ℝ≥0∞} (hf : Antitone f) : Filter.Tendsto f Filter.atTop (𝓝 0) ↔ ∀ ε, 0 < ε → ∃ n : β, f n < ε
case neg β : Type u_4 inst✝¹ : Nonempty β inst✝ : SemilatticeSup β f : β → ℝ≥0∞ hf : Antitone f h : ∀ (ε : ℝ≥0∞), 0 < ε → ∃ n, f n ≤ ε ε : ℝ≥0∞ hε : 0 < ε n : β hn : f n ≤ 1 ⊓ ε / 2 hε_top : ¬ε = ⊤ ⊢ 1 < 2
norm_num
no goals
8491377f7bac7c56
Algebra.TensorProduct.includeLeft_map_center_le
Mathlib/Algebra/Central/TensorProduct.lean
lemma Algebra.TensorProduct.includeLeft_map_center_le : (Subalgebra.center K B).map includeLeft ≤ Subalgebra.center K (B ⊗[K] C)
case intro.intro.add K : Type u_1 B : Type u_2 C : Type u_3 inst✝⁴ : CommSemiring K inst✝³ : Semiring B inst✝² : Semiring C inst✝¹ : Algebra K B inst✝ : Algebra K C b : B hb0 : ∀ (b_1 : B), b_1 * b = b * b_1 x✝ y✝ : B ⊗[K] C a✝¹ : x✝ * includeLeft b = includeLeft b * x✝ a✝ : y✝ * includeLeft b = includeLeft b * y✝ ⊢ (x✝ + y✝) * includeLeft b = includeLeft b * (x✝ + y✝)
simp_all [add_mul, mul_add]
no goals
b5e2e4a224adead8
SetTheory.PGame.Impartial.exists_right_move_equiv_iff_fuzzy_zero
Mathlib/SetTheory/Game/Impartial.lean
theorem exists_right_move_equiv_iff_fuzzy_zero : (∃ j, G.moveRight j ≈ 0) ↔ G ‖ 0
G : PGame inst✝ : G.Impartial hn : ∃ j, G.moveRight j ≤ 0 ⊢ ∃ j, G.moveRight j ≈ 0
obtain ⟨i, hi⟩ := hn
case intro G : PGame inst✝ : G.Impartial i : G.RightMoves hi : G.moveRight i ≤ 0 ⊢ ∃ j, G.moveRight j ≈ 0
dab6002e73196c9e
LieAlgebra.hasCentralRadical_and_of_isIrreducible_of_isFaithful
Mathlib/Algebra/Lie/Semisimple/Lemmas.lean
lemma hasCentralRadical_and_of_isIrreducible_of_isFaithful : HasCentralRadical k L ∧ (∀ x, x ∈ center k L ↔ toEnd k L M x ∈ k ∙ LinearMap.id)
case intro k : Type u_1 L : Type u_2 M : Type u_3 inst✝¹² : Field k inst✝¹¹ : CharZero k inst✝¹⁰ : LieRing L inst✝⁹ : LieAlgebra k L inst✝⁸ : Module.Finite k L inst✝⁷ : AddCommGroup M inst✝⁶ : Module k M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule k L M inst✝³ : Module.Finite k M inst✝² : LieModule.IsIrreducible k L M inst✝¹ : IsFaithful k L M inst✝ : IsTriangularizable k L M _i : Nontrivial M χ : Dual k ↥(radical k L) N : LieSubmodule k L M := weightSpaceOfIsLieTower k M ⇑χ hχ : N = ⊤ ⊢ HasCentralRadical k L ∧ ∀ (x : L), x ∈ center k L ↔ (toEnd k L M) x ∈ Submodule.span k {LinearMap.id}
replace hχ (x : L) (hx : x ∈ radical k L) : toEnd k _ M x = χ ⟨x, hx⟩ • LinearMap.id := by ext m have hm : ∀ (y : L) (hy : y ∈ radical k L), ⁅y, m⁆ = χ ⟨y, hy⟩ • m := by simpa [N, weightSpaceOfIsLieTower, mem_weightSpace] using (hχ ▸ mem_top _ : m ∈ N) simpa using hm x hx
case intro k : Type u_1 L : Type u_2 M : Type u_3 inst✝¹² : Field k inst✝¹¹ : CharZero k inst✝¹⁰ : LieRing L inst✝⁹ : LieAlgebra k L inst✝⁸ : Module.Finite k L inst✝⁷ : AddCommGroup M inst✝⁶ : Module k M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule k L M inst✝³ : Module.Finite k M inst✝² : LieModule.IsIrreducible k L M inst✝¹ : IsFaithful k L M inst✝ : IsTriangularizable k L M _i : Nontrivial M χ : Dual k ↥(radical k L) N : LieSubmodule k L M := weightSpaceOfIsLieTower k M ⇑χ hχ : ∀ (x : L) (hx : x ∈ radical k L), (toEnd k L M) x = χ ⟨x, hx⟩ • LinearMap.id ⊢ HasCentralRadical k L ∧ ∀ (x : L), x ∈ center k L ↔ (toEnd k L M) x ∈ Submodule.span k {LinearMap.id}
92e7bead74bccd0a
CategoryTheory.MorphismProperty.universally_le
Mathlib/CategoryTheory/MorphismProperty/Limits.lean
theorem universally_le (P : MorphismProperty C) : P.universally ≤ P
C : Type u inst✝ : Category.{v, u} C P : MorphismProperty C X Y : C f : X ⟶ Y hf : P.universally f ⊢ f ≫ 𝟙 Y = 𝟙 X ≫ f
rw [Category.comp_id, Category.id_comp]
no goals
155ec1c81c975a26
EuclideanGeometry.angle_lt_pi_div_two_of_angle_eq_pi_div_two
Mathlib/Geometry/Euclidean/Angle/Unoriented/RightAngle.lean
theorem angle_lt_pi_div_two_of_angle_eq_pi_div_two {p₁ p₂ p₃ : P} (h : ∠ p₁ p₂ p₃ = π / 2) (h0 : p₃ ≠ p₂) : ∠ p₂ p₃ p₁ < π / 2
V : Type u_1 P : Type u_2 inst✝³ : NormedAddCommGroup V inst✝² : InnerProductSpace ℝ V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P p₁ p₂ p₃ : P h : ∠ p₁ p₂ p₃ = π / 2 h0 : p₃ ≠ p₂ ⊢ ∠ p₂ p₃ p₁ < π / 2
rw [angle, ← inner_eq_zero_iff_angle_eq_pi_div_two, real_inner_comm, ← neg_eq_zero, ← inner_neg_left, neg_vsub_eq_vsub_rev] at h
V : Type u_1 P : Type u_2 inst✝³ : NormedAddCommGroup V inst✝² : InnerProductSpace ℝ V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P p₁ p₂ p₃ : P h : inner (p₂ -ᵥ p₃) (p₁ -ᵥ p₂) = 0 h0 : p₃ ≠ p₂ ⊢ ∠ p₂ p₃ p₁ < π / 2
eb5d456a193260b4
IsUpperSet.div_right
Mathlib/Algebra/Order/UpperLower.lean
theorem IsUpperSet.div_right (hs : IsUpperSet s) : IsUpperSet (s / t)
α : Type u_1 inst✝ : OrderedCommGroup α s t : Set α hs : IsUpperSet s ⊢ IsUpperSet (s * t⁻¹)
exact hs.mul_right
no goals
7bc864668d916ff9
tendsto_div_of_monotone_of_tendsto_div_floor_pow
Mathlib/Analysis/SpecificLimits/FloorPow.lean
theorem tendsto_div_of_monotone_of_tendsto_div_floor_pow (u : ℕ → ℝ) (l : ℝ) (hmono : Monotone u) (c : ℕ → ℝ) (cone : ∀ k, 1 < c k) (clim : Tendsto c atTop (𝓝 1)) (hc : ∀ k, Tendsto (fun n : ℕ => u ⌊c k ^ n⌋₊ / ⌊c k ^ n⌋₊) atTop (𝓝 l)) : Tendsto (fun n => u n / n) atTop (𝓝 l)
u : ℕ → ℝ l : ℝ hmono : Monotone u c : ℕ → ℝ cone : ∀ (k : ℕ), 1 < c k clim : Tendsto c atTop (𝓝 1) hc : ∀ (k : ℕ), Tendsto (fun n => u ⌊c k ^ n⌋₊ / ↑⌊c k ^ n⌋₊) atTop (𝓝 l) a : ℝ ha : 1 < a k : ℕ hk : c k < a n : ℕ ⊢ 1 ≤ ↑⌊c k ^ n⌋₊
simp only [Real.rpow_natCast, Nat.one_le_cast, Nat.one_le_floor_iff, one_le_pow₀ (cone k).le]
no goals
39b6908bafcd74f7
LinearIndependent.iSupIndep_span_singleton
Mathlib/LinearAlgebra/LinearIndependent/Lemmas.lean
theorem LinearIndependent.iSupIndep_span_singleton (hv : LinearIndependent R v) : iSupIndep fun i => R ∙ v i
ι : Type u' R : Type u_2 M : Type u_4 v : ι → M inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M hv : LinearIndependent R v i : ι m : M hm : m ∈ span R {v i} ⊓ ⨆ j, ⨆ (_ : j ≠ i), span R {v j} ⊢ m ∈ ⊥
simp only [mem_inf, mem_span_singleton, iSup_subtype'] at hm
ι : Type u' R : Type u_2 M : Type u_4 v : ι → M inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M hv : LinearIndependent R v i : ι m : M hm : (∃ a, a • v i = m) ∧ m ∈ ⨆ x, span R {v ↑x} ⊢ m ∈ ⊥
15c8499de3d7ad45
ZMod.subsingleton_iff
Mathlib/Data/ZMod/Basic.lean
lemma subsingleton_iff {n : ℕ} : Subsingleton (ZMod n) ↔ n = 1
n : ℕ ⊢ Subsingleton (ZMod n) ↔ n = 1
constructor
case mp n : ℕ ⊢ Subsingleton (ZMod n) → n = 1 case mpr n : ℕ ⊢ n = 1 → Subsingleton (ZMod n)
3a46eadf39430283
IsAtom.le_iff
Mathlib/Order/Atoms.lean
theorem IsAtom.le_iff (h : IsAtom a) : x ≤ a ↔ x = ⊥ ∨ x = a
α : Type u_2 inst✝¹ : PartialOrder α inst✝ : OrderBot α a x : α h : IsAtom a ⊢ x ≤ a ↔ x = ⊥ ∨ x = a
rw [le_iff_lt_or_eq, h.lt_iff]
no goals
56462cd397d981f8
IsOpen.exists_subset_affineIndependent_span_eq_top
Mathlib/Analysis/Normed/Affine/AddTorsorBases.lean
theorem IsOpen.exists_subset_affineIndependent_span_eq_top {u : Set P} (hu : IsOpen u) (hne : u.Nonempty) : ∃ s ⊆ u, AffineIndependent ℝ ((↑) : s → P) ∧ affineSpan ℝ s = ⊤
V : Type u_1 P : Type u_2 inst✝³ : NormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P u : Set P hu : IsOpen u hne : u.Nonempty ⊢ ∃ s ⊆ u, AffineIndependent ℝ Subtype.val ∧ affineSpan ℝ s = ⊤
rcases hne with ⟨x, hx⟩
case intro V : Type u_1 P : Type u_2 inst✝³ : NormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P u : Set P hu : IsOpen u x : P hx : x ∈ u ⊢ ∃ s ⊆ u, AffineIndependent ℝ Subtype.val ∧ affineSpan ℝ s = ⊤
5ed0ed984803d56e
Set.Icc_union_Icc'
Mathlib/Order/Interval/Set/Basic.lean
theorem Icc_union_Icc' (h₁ : c ≤ b) (h₂ : a ≤ d) : Icc a b ∪ Icc c d = Icc (min a c) (max b d)
case pos α : Type u_1 inst✝ : LinearOrder α a b c d : α h₁ : c ≤ b h₂ : a ≤ d x : α hc : c ≤ x hd : x ≤ d ⊢ a ≤ x ∧ x ≤ b ∨ c ≤ x ∧ x ≤ d ↔ (a ≤ x ∨ c ≤ x) ∧ (x ≤ b ∨ x ≤ d)
simp only [hc, hd, and_self, or_true]
no goals
75dfe9f0a698fa98
BitVec.signExtend_eq_not_setWidth_not_of_msb_true
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Lemmas.lean
theorem signExtend_eq_not_setWidth_not_of_msb_true {x : BitVec w} {v : Nat} (hmsb : x.msb = true) : x.signExtend v = ~~~((~~~x).setWidth v)
case a.a w : Nat x : BitVec w v : Nat hmsb : x.msb = true ⊢ (2 ^ w - 1 - x.toNat) % 2 ^ v + 1 ≤ ?a.m✝
apply Nat.succ_le_of_lt
case a.a.h w : Nat x : BitVec w v : Nat hmsb : x.msb = true ⊢ (2 ^ w - 1 - x.toNat) % 2 ^ v < ?a.m✝
f7344d955b079af2
LocallyBoundedVariationOn.ae_differentiableAt
Mathlib/Analysis/BoundedVariation.lean
theorem ae_differentiableAt {f : ℝ → V} (h : LocallyBoundedVariationOn f univ) : ∀ᵐ x, DifferentiableAt ℝ f x
case h V : Type u_3 inst✝² : NormedAddCommGroup V inst✝¹ : NormedSpace ℝ V inst✝ : FiniteDimensional ℝ V f : ℝ → V h : LocallyBoundedVariationOn f univ x : ℝ hx : x ∈ univ → DifferentiableWithinAt ℝ f univ x ⊢ DifferentiableAt ℝ f x
rw [differentiableWithinAt_univ] at hx
case h V : Type u_3 inst✝² : NormedAddCommGroup V inst✝¹ : NormedSpace ℝ V inst✝ : FiniteDimensional ℝ V f : ℝ → V h : LocallyBoundedVariationOn f univ x : ℝ hx : x ∈ univ → DifferentiableAt ℝ f x ⊢ DifferentiableAt ℝ f x
33a41388c6885a3e
NumberField.InfinitePlace.card_complex_embeddings
Mathlib/NumberTheory/NumberField/Embeddings.lean
theorem card_complex_embeddings : card { φ : K →+* ℂ // ¬ComplexEmbedding.IsReal φ } = 2 * nrComplexPlaces K
K : Type u_2 inst✝¹ : Field K inst✝ : NumberField K w : InfinitePlace K hw : w.IsComplex x✝ : { x // mkComplex x = ⟨w, hw⟩ } φ : { φ // ¬ComplexEmbedding.IsReal φ } hφ : mkComplex φ = ⟨w, hw⟩ ⊢ mk ↑φ = w
rwa [Subtype.ext_iff] at hφ
no goals
20c4978209cddac1
Matroid.cRk_mono
Mathlib/Data/Matroid/Rank/Cardinal.lean
theorem cRk_mono (M : Matroid α) : Monotone M.cRk
α : Type u M : Matroid α ⊢ ∀ ⦃a b : Set α⦄, a ⊆ b → ∀ ⦃I : Set α⦄, M.IsBasis' I a → #↑I ≤ M.cRk b
intro X Y hXY I hIX
α : Type u M : Matroid α X Y : Set α hXY : X ⊆ Y I : Set α hIX : M.IsBasis' I X ⊢ #↑I ≤ M.cRk Y
e3dc976a5390a380
UniqueFactorizationMonoid.radical_eq_of_associated
Mathlib/RingTheory/Radical.lean
theorem radical_eq_of_associated {a b : M} (h : Associated a b) : radical a = radical b
M : Type u_1 inst✝² : CancelCommMonoidWithZero M inst✝¹ : NormalizationMonoid M inst✝ : UniqueFactorizationMonoid M a b : M h : Associated a b ⊢ (primeFactors a).prod id = (primeFactors b).prod id
rw [h.primeFactors_eq]
no goals
2fbd16dae46948ca
Nat.Prime.factorization_pos_of_dvd
Mathlib/Data/Nat/Factorization/Defs.lean
theorem Prime.factorization_pos_of_dvd {n p : ℕ} (hp : p.Prime) (hn : n ≠ 0) (h : p ∣ n) : 0 < n.factorization p
n p : ℕ hp : Prime p hn : n ≠ 0 h : p ∣ n ⊢ 0 < n.factorization p
rwa [← primeFactorsList_count_eq, count_pos_iff, mem_primeFactorsList_iff_dvd hn hp]
no goals
ea65c5f724cd4b24
CochainComplex.mappingCone.inl_snd_assoc
Mathlib/Algebra/Homology/HomotopyCategory/MappingCone.lean
@[simp] lemma inl_snd_assoc {K : CochainComplex C ℤ} {d e f : ℤ} (γ : Cochain G K d) (he : 0 + d = e) (hf : -1 + e = f) : (inl φ).comp ((snd φ).comp γ he) hf = 0
C : Type u_1 inst✝² : Category.{u_3, u_1} C inst✝¹ : Preadditive C F G : CochainComplex C ℤ φ : F ⟶ G inst✝ : HasHomotopyCofiber φ K : CochainComplex C ℤ d e f : ℤ γ : Cochain G K d he : 0 + d = e hf : -1 + e = f ⊢ (inl φ).comp ((snd φ).comp γ he) hf = 0
obtain rfl : e = d := by omega
C : Type u_1 inst✝² : Category.{u_3, u_1} C inst✝¹ : Preadditive C F G : CochainComplex C ℤ φ : F ⟶ G inst✝ : HasHomotopyCofiber φ K : CochainComplex C ℤ e f : ℤ hf : -1 + e = f γ : Cochain G K e he : 0 + e = e ⊢ (inl φ).comp ((snd φ).comp γ he) hf = 0
91c568454ffe6b85
Sbtw.dist_lt_max_dist
Mathlib/Analysis/Convex/StrictConvexBetween.lean
theorem Sbtw.dist_lt_max_dist (p : P) {p₁ p₂ p₃ : P} (h : Sbtw ℝ p₁ p₂ p₃) : dist p₂ p < max (dist p₁ p) (dist p₃ p)
case intro.inr.inl.intro V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : NormedSpace ℝ V inst✝² : StrictConvexSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P p p₁ p₂ p₃ : P hp₁p₃ : p₁ -ᵥ p ≠ p₃ -ᵥ p h : p₂ = p₃ hp₂p₁ : p₂ ≠ p₁ hp₂p₃ : p₂ ≠ p₃ ⊢ dist p₂ p < dist p₁ p ⊔ dist p₃ p
exact False.elim (hp₂p₃ h)
no goals
9aa41ffc37e88f54
Order.exists_series_of_le_height
Mathlib/Order/KrullDimension.lean
/-- There exist a series ending in a element for any length up to the element’s height. -/ lemma exists_series_of_le_height (a : α) {n : ℕ} (h : n ≤ height a) : ∃ p : LTSeries α, p.last = a ∧ p.length = n
case h.left α : Type u_1 inst✝ : Preorder α a : α n : ℕ hne : Nonempty { p // RelSeries.last p = a } m : ℕ h : n ≤ m ha : ⨆ x, ↑(↑x).length = ↑m p : LTSeries α hlast : RelSeries.last p = a hlen : p.length = m ⊢ (RelSeries.drop p ⟨m - n, ⋯⟩).last = a
simp [hlast]
no goals
0e15cb2199a1ee03
CochainComplex.HomComplex.Cochain.comp_smul
Mathlib/Algebra/Homology/HomotopyCategory/HomComplex.lean
@[simp] protected lemma comp_smul {n₁ n₂ n₁₂ : ℤ} (z₁ : Cochain F G n₁) (k : R) (z₂ : Cochain G K n₂) (h : n₁ + n₂ = n₁₂ ) : z₁.comp (k • z₂) h = k • (z₁.comp z₂ h)
case h C : Type u inst✝³ : Category.{v, u} C inst✝² : Preadditive C R : Type u_1 inst✝¹ : Ring R inst✝ : Linear R C F G K : CochainComplex C ℤ n₁ n₂ n₁₂ : ℤ z₁ : Cochain F G n₁ k : R z₂ : Cochain G K n₂ h : n₁ + n₂ = n₁₂ p q : ℤ hpq : p + n₁₂ = q ⊢ (z₁.comp (k • z₂) h).v p q hpq = (k • z₁.comp z₂ h).v p q hpq
simp only [comp_v _ _ h p _ q rfl (by omega), smul_v, Linear.comp_smul]
no goals
e74ac95f7982b3df
WeierstrassCurve.Jacobian.nonsingular_add
Mathlib/AlgebraicGeometry/EllipticCurve/Jacobian.lean
lemma nonsingular_add {P Q : Fin 3 → F} (hP : W.Nonsingular P) (hQ : W.Nonsingular Q) : W.Nonsingular <| W.add P Q
case pos F : Type u inst✝ : Field F W : Jacobian F P Q : Fin 3 → F hP : W.Nonsingular P hQ : W.Nonsingular Q hPz : ¬P z = 0 hQz : Q z = 0 ⊢ W.Nonsingular (W.add P Q)
simpa only [add_of_Z_eq_zero_right hQ.left hPz hQz, nonsingular_smul _ ((isUnit_X_of_Z_eq_zero hQ hQz).mul <| Ne.isUnit hPz).neg]
no goals
756dd04fce6f14ae
UniqueFactorizationMonoid.dvd_of_mem_normalizedFactors
Mathlib/RingTheory/UniqueFactorizationDomain/NormalizedFactors.lean
theorem dvd_of_mem_normalizedFactors {a p : α} (H : p ∈ normalizedFactors a) : p ∣ a
case neg α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : UniqueFactorizationMonoid α a p : α H : p ∈ normalizedFactors a hcases : ¬a = 0 ⊢ p ∣ a
exact dvd_trans (Multiset.dvd_prod H) (Associated.dvd (prod_normalizedFactors hcases))
no goals
bc3d62cbe119c393
ax_grothendieck_of_definable
Mathlib/FieldTheory/AxGrothendieck.lean
theorem ax_grothendieck_of_definable [CompatibleRing K] {c : Set K} (S : Set (ι → K)) (hS : c.Definable Language.ring S) (ps : ι → MvPolynomial ι K) : S.MapsTo (fun v i => eval v (ps i)) S → S.InjOn (fun v i => eval v (ps i)) → S.SurjOn (fun v i => eval v (ps i)) S
K : Type u_1 ι : Type u_2 inst✝³ : Field K inst✝² : IsAlgClosed K inst✝¹ : Finite ι inst✝ : CompatibleRing K c : Set K S : Set (ι → K) hS : c.Definable ring S ps : ι → MvPolynomial ι K this : Fintype ι := Fintype.ofFinite ι ⊢ Set.MapsTo (fun v i => (eval v) (ps i)) S S → Set.InjOn (fun v i => (eval v) (ps i)) S → Set.SurjOn (fun v i => (eval v) (ps i)) S S
let p : ℕ := ringChar K
K : Type u_1 ι : Type u_2 inst✝³ : Field K inst✝² : IsAlgClosed K inst✝¹ : Finite ι inst✝ : CompatibleRing K c : Set K S : Set (ι → K) hS : c.Definable ring S ps : ι → MvPolynomial ι K this : Fintype ι := Fintype.ofFinite ι p : ℕ := ringChar K ⊢ Set.MapsTo (fun v i => (eval v) (ps i)) S S → Set.InjOn (fun v i => (eval v) (ps i)) S → Set.SurjOn (fun v i => (eval v) (ps i)) S S
933d6add8d5d058a
Surreal.Multiplication.ih1_neg_left
Mathlib/SetTheory/Surreal/Multiplication.lean
lemma ih1_neg_left : IH1 x y → IH1 (-x) y := fun h x₁ x₂ y' h₁ h₂ hy ↦ by rw [isOption_neg] at h₁ h₂ exact P24_neg_left.2 (h h₂ h₁ hy)
x y : PGame h : IH1 x y x₁ x₂ y' : PGame h₁ : (-x₁).IsOption x h₂ : (-x₂).IsOption x hy : y' = y ∨ y'.IsOption y ⊢ P24 x₁ x₂ y'
exact P24_neg_left.2 (h h₂ h₁ hy)
no goals
cae1455068d0158a
AffineBasis.exists_affineBasis_of_finiteDimensional
Mathlib/LinearAlgebra/AffineSpace/FiniteDimensional.lean
theorem exists_affineBasis_of_finiteDimensional [Fintype ι] [FiniteDimensional k V] (h : Fintype.card ι = Module.finrank k V + 1) : Nonempty (AffineBasis ι k P)
case intro.intro ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁵ : AddCommGroup V inst✝⁴ : AffineSpace V P inst✝³ : DivisionRing k inst✝² : Module k V inst✝¹ : Fintype ι inst✝ : FiniteDimensional k V h : Fintype.card ι = Module.finrank k V + 1 s : Set P b : AffineBasis (↑s) k P hb : ⇑b = Subtype.val ⊢ Nonempty (AffineBasis ι k P)
lift s to Finset P using b.finite_set
case intro.intro.intro ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁵ : AddCommGroup V inst✝⁴ : AffineSpace V P inst✝³ : DivisionRing k inst✝² : Module k V inst✝¹ : Fintype ι inst✝ : FiniteDimensional k V h : Fintype.card ι = Module.finrank k V + 1 s : Finset P b : AffineBasis (↑↑s) k P hb : ⇑b = Subtype.val ⊢ Nonempty (AffineBasis ι k P)
e510723a41bc6600
CategoryTheory.finrank_hom_simple_simple_eq_zero_iff
Mathlib/CategoryTheory/Preadditive/Schur.lean
theorem finrank_hom_simple_simple_eq_zero_iff (X Y : C) [FiniteDimensional 𝕜 (X ⟶ X)] [FiniteDimensional 𝕜 (X ⟶ Y)] [Simple X] [Simple Y] : finrank 𝕜 (X ⟶ Y) = 0 ↔ IsEmpty (X ≅ Y)
C : Type u_1 inst✝⁹ : Category.{u_3, u_1} C inst✝⁸ : Preadditive C 𝕜 : Type u_2 inst✝⁷ : Field 𝕜 inst✝⁶ : IsAlgClosed 𝕜 inst✝⁵ : Linear 𝕜 C inst✝⁴ : HasKernels C X Y : C inst✝³ : FiniteDimensional 𝕜 (X ⟶ X) inst✝² : FiniteDimensional 𝕜 (X ⟶ Y) inst✝¹ : Simple X inst✝ : Simple Y this : finrank 𝕜 (X ⟶ Y) ≤ 1 ⊢ finrank 𝕜 (X ⟶ Y) = 0 ↔ ¬finrank 𝕜 (X ⟶ Y) = 1
omega
no goals
36d01ca65cae1c3e
geom_sum_ne_zero
Mathlib/Algebra/GeomSum.lean
theorem geom_sum_ne_zero [LinearOrderedRing α] (hx : x ≠ -1) (hn : n ≠ 0) : ∑ i ∈ range n, x ^ i ≠ 0
case succ.succ α : Type u x : α inst✝ : LinearOrderedRing α hx : x ≠ -1 n : ℕ hn : n + 1 + 1 ≠ 0 ⊢ ∑ i ∈ range (n + 1 + 1), x ^ i ≠ 0
rw [Ne, eq_neg_iff_add_eq_zero, ← Ne] at hx
case succ.succ α : Type u x : α inst✝ : LinearOrderedRing α hx : x + 1 ≠ 0 n : ℕ hn : n + 1 + 1 ≠ 0 ⊢ ∑ i ∈ range (n + 1 + 1), x ^ i ≠ 0
276116b8a692415e
Batteries.UnionFind.setParentBump_rankD_lt
Mathlib/.lake/packages/batteries/Batteries/Data/UnionFind/Basic.lean
theorem setParentBump_rankD_lt {arr : Array UFNode} {x y : Fin arr.size} (hroot : arr[x.1].rank < arr[y.1].rank ∨ arr[y.1].parent = y) (H : arr[x.1].rank ≤ arr[y.1].rank) {i : Nat} (rankD_lt : parentD arr i ≠ i → rankD arr i < rankD arr (parentD arr i)) (hP : parentD arr' i = if x.1 = i then y.1 else parentD arr i) (hR : ∀ {i}, rankD arr' i = if y.1 = i ∧ arr[x.1].rank = arr[y.1].rank then arr[y.1].rank + 1 else rankD arr i) : ¬parentD arr' i = i → rankD arr' i < rankD arr' (parentD arr' i)
case isFalse.isFalse arr' arr : Array UFNode x y : Fin arr.size hroot : arr[↑x].rank < arr[↑y].rank ∨ arr[↑y].parent = ↑y H : arr[↑x].rank ≤ arr[↑y].rank i : Nat rankD_lt : ¬parentD arr i = i → rankD arr i < rankD arr (parentD arr i) hP hR : True h₁ : ¬↑x = i h₂ : ¬(↑y = i ∧ arr[↑x].rank = arr[↑y].rank) h : ¬parentD arr i = i this : rankD arr i < rankD arr (parentD arr i) ⊢ rankD arr i < if ↑y = parentD arr i ∧ arr[↑x].rank = arr[↑y].rank then arr[↑y].rank + 1 else rankD arr (parentD arr i)
split <;> rename_i h₃
case isFalse.isFalse.isTrue arr' arr : Array UFNode x y : Fin arr.size hroot : arr[↑x].rank < arr[↑y].rank ∨ arr[↑y].parent = ↑y H : arr[↑x].rank ≤ arr[↑y].rank i : Nat rankD_lt : ¬parentD arr i = i → rankD arr i < rankD arr (parentD arr i) hP hR : True h₁ : ¬↑x = i h₂ : ¬(↑y = i ∧ arr[↑x].rank = arr[↑y].rank) h : ¬parentD arr i = i this : rankD arr i < rankD arr (parentD arr i) h₃ : ↑y = parentD arr i ∧ arr[↑x].rank = arr[↑y].rank ⊢ rankD arr i < arr[↑y].rank + 1 case isFalse.isFalse.isFalse arr' arr : Array UFNode x y : Fin arr.size hroot : arr[↑x].rank < arr[↑y].rank ∨ arr[↑y].parent = ↑y H : arr[↑x].rank ≤ arr[↑y].rank i : Nat rankD_lt : ¬parentD arr i = i → rankD arr i < rankD arr (parentD arr i) hP hR : True h₁ : ¬↑x = i h₂ : ¬(↑y = i ∧ arr[↑x].rank = arr[↑y].rank) h : ¬parentD arr i = i this : rankD arr i < rankD arr (parentD arr i) h₃ : ¬(↑y = parentD arr i ∧ arr[↑x].rank = arr[↑y].rank) ⊢ rankD arr i < rankD arr (parentD arr i)
9fe4c92bd6627be1
UV.le_of_mem_compression_of_not_mem
Mathlib/Combinatorics/SetFamily/Compression/UV.lean
theorem le_of_mem_compression_of_not_mem (h : a ∈ 𝓒 u v s) (ha : a ∉ s) : u ≤ a
case neg α : Type u_1 inst✝³ : GeneralizedBooleanAlgebra α inst✝² : DecidableRel Disjoint inst✝¹ : DecidableRel fun x1 x2 => x1 ≤ x2 s : Finset α u v a : α inst✝ : DecidableEq α ha : a ∉ s b : α hb : b ∈ s h : ¬(Disjoint u b ∧ v ≤ b) hba : b = a ⊢ u ≤ a
cases ne_of_mem_of_not_mem hb ha hba
no goals
2a4bf00f4796d46c