name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
Submodule.topologicalClosure_eq_top_iff
Mathlib/Analysis/InnerProductSpace/Projection.lean
theorem Submodule.topologicalClosure_eq_top_iff [CompleteSpace E] : K.topologicalClosure = ⊤ ↔ Kᗮ = ⊥
case mp 𝕜 : Type u_1 E : Type u_2 inst✝³ : RCLike 𝕜 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E K : Submodule 𝕜 E inst✝ : CompleteSpace E h : Kᗮᗮ = ⊤ ⊢ Kᗮ = ⊥
rw [← Submodule.triorthogonal_eq_orthogonal, h, Submodule.top_orthogonal_eq_bot]
no goals
2b2708d5ffbe295d
Std.Tactic.BVDecide.BVExpr.bitblast.blastConst.go_decl_eq
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Circuit/Impl/Const.lean
theorem blastConst.go_decl_eq {aig : AIG α} (i : Nat) (s : AIG.RefVec aig i) (val : BitVec w) (hi : i ≤ w) : ∀ (curr : Nat) (h1) (h2), (go aig val i s hi).aig.decls[curr]'h2 = aig.decls[curr]'h1
case isFalse α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat aig : AIG α i : Nat s : aig.RefVec i val : BitVec w hi : i ≤ w res : AIG.RefVecEntry α w h✝ : ¬i < w hgo : { aig := aig, vec := ⋯ ▸ s } = res curr✝ : Nat h1✝ : curr✝ < aig.decls.size h2✝ : curr✝ < { aig := aig, vec := ⋯ ▸ s }.aig.decls.size ⊢ { aig := aig, vec := ⋯ ▸ s }.aig.decls[curr✝] = aig.decls[curr✝]
simp
no goals
a8695d661d5b3e87
Multiset.map_add_left_Icc
Mathlib/Algebra/Order/Interval/Multiset.lean
lemma map_add_left_Icc (a b c : α) : (Icc a b).map (c + ·) = Icc (c + a) (c + b)
α : Type u_1 inst✝² : OrderedCancelAddCommMonoid α inst✝¹ : ExistsAddOfLE α inst✝ : LocallyFiniteOrder α a b c : α ⊢ map (fun x => c + x) (Icc a b) = Icc (c + a) (c + b)
rw [Icc, Icc, ← Finset.image_add_left_Icc, Finset.image_val, ((Finset.nodup _).map <| add_right_injective c).dedup]
no goals
68ad9583fea709f0
Submodule.torsionBySet_eq_torsionBySet_span
Mathlib/Algebra/Module/Torsion.lean
theorem torsionBySet_eq_torsionBySet_span : torsionBySet R M s = torsionBySet R M (Ideal.span s)
R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M s : Set R x : M hx : x ∈ torsionBySet R M s ⊢ x ∈ torsionBySet R M ↑(Ideal.span s)
rw [mem_torsionBySet_iff] at hx ⊢
R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M s : Set R x : M hx : ∀ (a : ↑s), ↑a • x = 0 ⊢ ∀ (a : ↑↑(Ideal.span s)), ↑a • x = 0
c230c0cb287e0d48
UniqueProds.toTwoUniqueProds_of_group
Mathlib/Algebra/Group/UniqueProds/Basic.lean
theorem toTwoUniqueProds_of_group {G} [Group G] [UniqueProds G] : TwoUniqueProds G where uniqueMul_of_one_lt_card {A B} hc
case intro.intro.intro.intro G : Type u_1 inst✝¹ : Group G inst✝ : UniqueProds G A B : Finset G hc : A.Nonempty ∧ B.Nonempty ∧ (1 < #A ∨ 1 < #B) a : G ha : a ∈ A b : G hb : b ∈ B hu : UniqueMul A B a b C : Finset G := map { toFun := fun x => a⁻¹ * x, inj' := ⋯ } A D : Finset G := map { toFun := fun x => x * b⁻¹, inj' := ⋯ } B hcard : 1 < #C ∨ 1 < #D hC : 1 ∈ C ⊢ ∃ p1 ∈ A ×ˢ B, ∃ p2 ∈ A ×ˢ B, p1 ≠ p2 ∧ UniqueMul A B p1.1 p1.2 ∧ UniqueMul A B p2.1 p2.2
have hD : 1 ∈ D := mem_map.mpr ⟨b, hb, mul_inv_cancel b⟩
case intro.intro.intro.intro G : Type u_1 inst✝¹ : Group G inst✝ : UniqueProds G A B : Finset G hc : A.Nonempty ∧ B.Nonempty ∧ (1 < #A ∨ 1 < #B) a : G ha : a ∈ A b : G hb : b ∈ B hu : UniqueMul A B a b C : Finset G := map { toFun := fun x => a⁻¹ * x, inj' := ⋯ } A D : Finset G := map { toFun := fun x => x * b⁻¹, inj' := ⋯ } B hcard : 1 < #C ∨ 1 < #D hC : 1 ∈ C hD : 1 ∈ D ⊢ ∃ p1 ∈ A ×ˢ B, ∃ p2 ∈ A ×ˢ B, p1 ≠ p2 ∧ UniqueMul A B p1.1 p1.2 ∧ UniqueMul A B p2.1 p2.2
17753faf97209b5d
MeasureTheory.eLpNorm_one_le_of_le
Mathlib/MeasureTheory/Integral/Bochner.lean
theorem eLpNorm_one_le_of_le {r : ℝ≥0} (hfint : Integrable f μ) (hfint' : 0 ≤ ∫ x, f x ∂μ) (hf : ∀ᵐ ω ∂μ, f ω ≤ r) : eLpNorm f 1 μ ≤ 2 * μ Set.univ * r
case pos α : Type u_1 m0 : MeasurableSpace α μ : Measure α f : α → ℝ r : ℝ≥0 hfint : Integrable f μ hfint' : ∫ (a : α), ↑(-f a).toNNReal ∂μ ≤ ∫ (a : α), ↑(f a).toNNReal ∂μ hf : ∀ᵐ (ω : α) ∂μ, f ω ≤ ↑r hr : ¬r = 0 hμ this : IsFiniteMeasure μ hposbdd : ∫ (ω : α), f ω ⊔ 0 ∂μ ≤ (μ univ).toReal • ↑r ⊢ (∫ (a : α), ‖f a‖ ^ ENNReal.toReal 1 ∂μ) ^ (ENNReal.toReal 1)⁻¹ ≤ (2 * μ univ * ↑r).toReal
simp_rw [ENNReal.one_toReal, _root_.inv_one, Real.rpow_one, Real.norm_eq_abs, ← max_zero_add_max_neg_zero_eq_abs_self, ← Real.coe_toNNReal']
case pos α : Type u_1 m0 : MeasurableSpace α μ : Measure α f : α → ℝ r : ℝ≥0 hfint : Integrable f μ hfint' : ∫ (a : α), ↑(-f a).toNNReal ∂μ ≤ ∫ (a : α), ↑(f a).toNNReal ∂μ hf : ∀ᵐ (ω : α) ∂μ, f ω ≤ ↑r hr : ¬r = 0 hμ this : IsFiniteMeasure μ hposbdd : ∫ (ω : α), f ω ⊔ 0 ∂μ ≤ (μ univ).toReal • ↑r ⊢ ∫ (a : α), ↑(f a).toNNReal + ↑(-f a).toNNReal ∂μ ≤ (2 * μ univ * ↑r).toReal
f01ab8867e396603
Associates.factors_eq_top_iff_zero
Mathlib/RingTheory/UniqueFactorizationDomain/FactorSet.lean
theorem factors_eq_top_iff_zero {a : Associates α} : a.factors = ⊤ ↔ a = 0
α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : UniqueFactorizationMonoid α a : Associates α a✝ : Nontrivial α ⊢ a.factors = ⊤ ↔ a = 0
exact ⟨fun h ↦ by rwa [← factors_prod a, FactorSet.prod_eq_zero_iff], fun h ↦ h ▸ factors_zero⟩
no goals
6a5578fd4a14b73f
MvPolynomial.eval₂Hom_eq_constantCoeff_of_vars
Mathlib/Algebra/MvPolynomial/Variables.lean
theorem eval₂Hom_eq_constantCoeff_of_vars (f : R →+* S) {g : σ → S} {p : MvPolynomial σ R} (hp : ∀ i ∈ p.vars, g i = 0) : eval₂Hom f g p = f (constantCoeff p)
case neg.h₀.intro R : Type u S : Type v σ : Type u_1 inst✝¹ : CommSemiring R inst✝ : CommSemiring S f : R →+* S g : σ → S p : MvPolynomial σ R hp : ∀ i ∈ p.vars, g i = 0 h0 : ¬constantCoeff p = 0 d : σ →₀ ℕ hd : d ∈ p.support hd0 : d ≠ 0 i : σ hi : i ∈ d.support ⊢ g i ^ d i = 0
rw [hp, zero_pow (Finsupp.mem_support_iff.1 hi)]
case neg.h₀.intro.a R : Type u S : Type v σ : Type u_1 inst✝¹ : CommSemiring R inst✝ : CommSemiring S f : R →+* S g : σ → S p : MvPolynomial σ R hp : ∀ i ∈ p.vars, g i = 0 h0 : ¬constantCoeff p = 0 d : σ →₀ ℕ hd : d ∈ p.support hd0 : d ≠ 0 i : σ hi : i ∈ d.support ⊢ i ∈ p.vars
9913c8045ed6a111
List.isInfix_iff
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Nat/Sublist.lean
theorem isInfix_iff : l₁ <:+: l₂ ↔ ∃ k, l₁.length + k ≤ l₂.length ∧ ∀ i (h : i < l₁.length), l₂[i + k]? = some l₁[i]
case mp.intro.intro.intro α✝ : Type u_1 l₁ l₂ : List α✝ h : l₁ <:+: l₂ t : List α✝ s : ∀ (i : Nat) (h : i < t.length), l₂[i]? = some t[i] p' : l₁.length ≤ t.length p : ∀ (i : Nat) (h : i < l₁.length), t[i + t.length - l₁.length]? = some l₁[i] ⊢ ∀ (i : Nat) (h : i < l₁.length), l₂[i + (t.length - l₁.length)]? = some l₁[i]
intro i h
case mp.intro.intro.intro α✝ : Type u_1 l₁ l₂ : List α✝ h✝ : l₁ <:+: l₂ t : List α✝ s : ∀ (i : Nat) (h : i < t.length), l₂[i]? = some t[i] p' : l₁.length ≤ t.length p : ∀ (i : Nat) (h : i < l₁.length), t[i + t.length - l₁.length]? = some l₁[i] i : Nat h : i < l₁.length ⊢ l₂[i + (t.length - l₁.length)]? = some l₁[i]
8c836fc6d0b14b98
MulAction.IsBlock.inter
Mathlib/GroupTheory/GroupAction/Blocks.lean
/-- The intersection of two blocks is a block. -/ @[to_additive "The intersection of two blocks is a block."] lemma IsBlock.inter {B₁ B₂ : Set X} (h₁ : IsBlock G B₁) (h₂ : IsBlock G B₂) : IsBlock G (B₁ ∩ B₂)
G : Type u_1 inst✝¹ : Group G X : Type u_2 inst✝ : MulAction G X B₁ B₂ : Set X h₁ : ∀ ⦃g₁ g₂ : G⦄, (g₁ • B₁ ∩ g₂ • B₁).Nonempty → g₁ • B₁ = g₂ • B₁ h₂ : ∀ ⦃g₁ g₂ : G⦄, (g₁ • B₂ ∩ g₂ • B₂).Nonempty → g₁ • B₂ = g₂ • B₂ ⊢ ∀ ⦃g₁ g₂ : G⦄, (g₁ • B₁ ∩ g₁ • B₂ ∩ (g₂ • B₁ ∩ g₂ • B₂)).Nonempty → g₁ • B₁ ∩ g₁ • B₂ = g₂ • B₁ ∩ g₂ • B₂
rintro g₁ g₂ ⟨a, ha₁, ha₂⟩
case intro.intro G : Type u_1 inst✝¹ : Group G X : Type u_2 inst✝ : MulAction G X B₁ B₂ : Set X h₁ : ∀ ⦃g₁ g₂ : G⦄, (g₁ • B₁ ∩ g₂ • B₁).Nonempty → g₁ • B₁ = g₂ • B₁ h₂ : ∀ ⦃g₁ g₂ : G⦄, (g₁ • B₂ ∩ g₂ • B₂).Nonempty → g₁ • B₂ = g₂ • B₂ g₁ g₂ : G a : X ha₁ : a ∈ g₁ • B₁ ∩ g₁ • B₂ ha₂ : a ∈ g₂ • B₁ ∩ g₂ • B₂ ⊢ g₁ • B₁ ∩ g₁ • B₂ = g₂ • B₁ ∩ g₂ • B₂
2ca5b21c71032d0b
Nat.dvd_mod_iff
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Nat/Dvd.lean
theorem dvd_mod_iff {k m n : Nat} (h: k ∣ n) : k ∣ m % n ↔ k ∣ m
k m n : Nat h : k ∣ n ⊢ k ∣ m % n ↔ k ∣ m
have := Nat.dvd_add_iff_left (m := m % n) <| Nat.dvd_trans h <| Nat.dvd_mul_right n (m / n)
k m n : Nat h : k ∣ n this : k ∣ m % n ↔ k ∣ m % n + n * (m / n) ⊢ k ∣ m % n ↔ k ∣ m
b09e403fb2a88dde
Equiv.Perm.signAux_mul
Mathlib/GroupTheory/Perm/Sign.lean
theorem signAux_mul {n : ℕ} (f g : Perm (Fin n)) : signAux (f * g) = signAux f * signAux g
case mk n : ℕ f g : Perm (Fin n) a b : Fin n hab : ⟨a, b⟩ ∈ finPairsLT n ⊢ (if (f * g) a ≤ (f * g) b then -1 else 1) = (if f (if x : g b < g a then ⟨g a, g b⟩ else ⟨g b, g a⟩).fst ≤ f (if x : g b < g a then ⟨g a, g b⟩ else ⟨g b, g a⟩).snd then -1 else 1) * if g⁻¹ (if x : g b < g a then ⟨g a, g b⟩ else ⟨g b, g a⟩).fst ≤ g⁻¹ (if x : g b < g a then ⟨g a, g b⟩ else ⟨g b, g a⟩).snd then -1 else 1
rw [mul_apply, mul_apply]
case mk n : ℕ f g : Perm (Fin n) a b : Fin n hab : ⟨a, b⟩ ∈ finPairsLT n ⊢ (if f (g a) ≤ f (g b) then -1 else 1) = (if f (if x : g b < g a then ⟨g a, g b⟩ else ⟨g b, g a⟩).fst ≤ f (if x : g b < g a then ⟨g a, g b⟩ else ⟨g b, g a⟩).snd then -1 else 1) * if g⁻¹ (if x : g b < g a then ⟨g a, g b⟩ else ⟨g b, g a⟩).fst ≤ g⁻¹ (if x : g b < g a then ⟨g a, g b⟩ else ⟨g b, g a⟩).snd then -1 else 1
84ff998cb9c928fb
Turing.tr_reaches₁
Mathlib/Computability/PostTuringMachine.lean
theorem tr_reaches₁ {σ₁ σ₂ f₁ f₂} {tr : σ₁ → σ₂ → Prop} (H : Respects f₁ f₂ tr) {a₁ a₂} (aa : tr a₁ a₂) {b₁} (ab : Reaches₁ f₁ a₁ b₁) : ∃ b₂, tr b₁ b₂ ∧ Reaches₁ f₂ a₂ b₂
σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₁ : σ₁ ab : Reaches₁ f₁ a₁ b₁ ⊢ ∃ b₂, tr b₁ b₂ ∧ Reaches₁ f₂ a₂ b₂
induction' ab with c₁ ac c₁ d₁ _ cd IH
case single σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₁ c₁ : σ₁ ac : c₁ ∈ f₁ a₁ ⊢ ∃ b₂, tr c₁ b₂ ∧ Reaches₁ f₂ a₂ b₂ case tail σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₁ c₁ d₁ : σ₁ a✝ : TransGen (fun a b => b ∈ f₁ a) a₁ c₁ cd : d₁ ∈ f₁ c₁ IH : ∃ b₂, tr c₁ b₂ ∧ Reaches₁ f₂ a₂ b₂ ⊢ ∃ b₂, tr d₁ b₂ ∧ Reaches₁ f₂ a₂ b₂
e28f0270b9420a4c
CategoryTheory.epi_iff_surjective_up_to_refinements
Mathlib/CategoryTheory/Abelian/Refinements.lean
lemma epi_iff_surjective_up_to_refinements (f : X ⟶ Y) : Epi f ↔ ∀ ⦃A : C⦄ (y : A ⟶ Y), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x : A' ⟶ X), π ≫ y = x ≫ f
case mpr C : Type u_2 inst✝¹ : Category.{u_1, u_2} C inst✝ : Abelian C X Y : C f : X ⟶ Y hf : ∀ ⦃A : C⦄ (y : A ⟶ Y), ∃ A' π, ∃ (_ : Epi π), ∃ x, π ≫ y = x ≫ f ⊢ Epi f
obtain ⟨A, π, hπ, a', fac⟩ := hf (𝟙 Y)
case mpr.intro.intro.intro.intro C : Type u_2 inst✝¹ : Category.{u_1, u_2} C inst✝ : Abelian C X Y : C f : X ⟶ Y hf : ∀ ⦃A : C⦄ (y : A ⟶ Y), ∃ A' π, ∃ (_ : Epi π), ∃ x, π ≫ y = x ≫ f A : C π : A ⟶ Y hπ : Epi π a' : A ⟶ X fac : π ≫ 𝟙 Y = a' ≫ f ⊢ Epi f
8dab997ceac1b3da
Nat.mul_add_div
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Nat/Lemmas.lean
theorem mul_add_div {m : Nat} (m_pos : m > 0) (x y : Nat) : (m * x + y) / m = x + y / m
m : Nat m_pos : m > 0 x✝ y x : Nat ⊢ (m + y - m) / m = y / m
rw [Nat.add_comm, Nat.add_sub_cancel]
no goals
1f0d931c34325414
SimpleGraph.Walk.IsCycle.ncard_neighborSet_toSubgraph_eq_two
Mathlib/Combinatorics/SimpleGraph/Connectivity/Subgraph.lean
lemma ncard_neighborSet_toSubgraph_eq_two {u v} {p : G.Walk u u} (hpc : p.IsCycle) (h : v ∈ p.support) : (p.toSubgraph.neighborSet v).ncard = 2
case neg V : Type u G : SimpleGraph V u v : V p : G.Walk u u hpc : p.IsCycle i : ℕ hi : p.getVert i = v ∧ i ≤ p.length he : i ≠ 0 ∧ i ≠ p.length ⊢ {p.getVert (i - 1), p.getVert (i + 1)}.ncard = 2
exact Set.ncard_pair (hpc.getVert_sub_one_neq_getVert_add_one (by omega))
no goals
ab28954a43d4f7d4
MeasureTheory.ae_eq_zero_of_forall_setIntegral_isClosed_eq_zero
Mathlib/MeasureTheory/Function/AEEqOfIntegral.lean
/-- If an integrable function has zero integral on all closed sets, then it is zero almost everywhere. -/ lemma ae_eq_zero_of_forall_setIntegral_isClosed_eq_zero {μ : Measure β} {f : β → E} (hf : Integrable f μ) (h'f : ∀ (s : Set β), IsClosed s → ∫ x in s, f x ∂μ = 0) : f =ᵐ[μ] 0
E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E β : Type u_3 inst✝² : TopologicalSpace β inst✝¹ : MeasurableSpace β inst✝ : BorelSpace β μ : Measure β f : β → E hf : Integrable f μ h'f : ∀ (s : Set β), IsClosed s → ∫ (x : β) in s, f x ∂μ = 0 ⊢ f =ᶠ[ae μ] 0
suffices ∀ s, MeasurableSet s → ∫ x in s, f x ∂μ = 0 from hf.ae_eq_zero_of_forall_setIntegral_eq_zero (fun s hs _ ↦ this s hs)
E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E β : Type u_3 inst✝² : TopologicalSpace β inst✝¹ : MeasurableSpace β inst✝ : BorelSpace β μ : Measure β f : β → E hf : Integrable f μ h'f : ∀ (s : Set β), IsClosed s → ∫ (x : β) in s, f x ∂μ = 0 ⊢ ∀ (s : Set β), MeasurableSet s → ∫ (x : β) in s, f x ∂μ = 0
365da9d95bd79d4b
ENNReal.count_const_le_le_of_tsum_le
Mathlib/MeasureTheory/Integral/Lebesgue.lean
theorem _root_.ENNReal.count_const_le_le_of_tsum_le [MeasurableSingletonClass α] {a : α → ℝ≥0∞} (a_mble : Measurable a) {c : ℝ≥0∞} (tsum_le_c : ∑' i, a i ≤ c) {ε : ℝ≥0∞} (ε_ne_zero : ε ≠ 0) (ε_ne_top : ε ≠ ∞) : Measure.count { i : α | ε ≤ a i } ≤ c / ε
α : Type u_1 inst✝¹ : MeasurableSpace α inst✝ : MeasurableSingletonClass α a : α → ℝ≥0∞ a_mble : Measurable a c : ℝ≥0∞ tsum_le_c : ∫⁻ (a_1 : α), a a_1 ∂count ≤ c ε : ℝ≥0∞ ε_ne_zero : ε ≠ 0 ε_ne_top : ε ≠ ⊤ ⊢ (∫⁻ (a_1 : α), a a_1 ∂count) / ε ≤ c / ε
exact ENNReal.div_le_div tsum_le_c rfl.le
no goals
ce4e73ea7ab5815d
MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part
Mathlib/Probability/Martingale/Upcrossing.lean
theorem Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part [IsFiniteMeasure μ] (a b : ℝ) (hf : Submartingale f ℱ μ) (N : ℕ) : (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[fun ω => (f N ω - a)⁺]
case neg Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω f : ℕ → Ω → ℝ ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ a b : ℝ hf : Submartingale f ℱ μ N : ℕ hab : b - a ≤ 0 ⊢ (b - a) * ∫ (x : Ω), ↑(upcrossingsBefore a b f N x) ∂μ ≤ ∫ (x : Ω), (fun ω => (f N ω - a)⁺) x ∂μ
exact le_trans (mul_nonpos_of_nonpos_of_nonneg hab (by positivity)) (integral_nonneg fun ω => posPart_nonneg _)
no goals
f5d86ca3fe8817f4
LieModule.maxGenEigenSpace_toEnd_eq_top
Mathlib/Algebra/Lie/Nilpotent.lean
@[simp] lemma maxGenEigenSpace_toEnd_eq_top [IsNilpotent L M] (x : L) : ((toEnd R L M x).maxGenEigenspace 0) = ⊤
case h R : Type u L : Type v M : Type w inst✝⁷ : CommRing R inst✝⁶ : LieRing L inst✝⁵ : LieAlgebra R L inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : LieRingModule L M inst✝¹ : LieModule R L M inst✝ : IsNilpotent L M x : L m : M ⊢ m ∈ ((toEnd R L M) x).maxGenEigenspace 0 ↔ m ∈ ⊤
simp only [Module.End.mem_maxGenEigenspace, zero_smul, sub_zero, Submodule.mem_top, iff_true]
case h R : Type u L : Type v M : Type w inst✝⁷ : CommRing R inst✝⁶ : LieRing L inst✝⁵ : LieAlgebra R L inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : LieRingModule L M inst✝¹ : LieModule R L M inst✝ : IsNilpotent L M x : L m : M ⊢ ∃ k, ((toEnd R L M) x ^ k) m = 0
752679eb38a55f7e
MeasureTheory.Measure.lintegral_condKernel_mem
Mathlib/Probability/Kernel/Disintegration/Integral.lean
lemma lintegral_condKernel_mem {s : Set (β × Ω)} (hs : MeasurableSet s) : ∫⁻ x, ρ.condKernel x {y | (x, y) ∈ s} ∂ρ.fst = ρ s
β : Type u_1 Ω : Type u_2 mβ : MeasurableSpace β inst✝³ : MeasurableSpace Ω inst✝² : StandardBorelSpace Ω inst✝¹ : Nonempty Ω ρ : Measure (β × Ω) inst✝ : IsFiniteMeasure ρ s : Set (β × Ω) hs : MeasurableSet s ⊢ ∫⁻ (x : β), (ρ.condKernel x) {y | (x, y) ∈ s} ∂ρ.fst = ∫⁻ (a : β), (ρ.condKernel a) (Prod.mk a ⁻¹' s) ∂ρ.fst
rfl
no goals
dd1b430e9eb07fd6
Equiv.Perm.card_isConj_eq
Mathlib/GroupTheory/Perm/Centralizer.lean
theorem card_isConj_eq : Nat.card {h : Perm α | IsConj g h} = (Fintype.card α)! / ((Fintype.card α - g.cycleType.sum)! * g.cycleType.prod * (∏ n ∈ g.cycleType.toFinset, (g.cycleType.count n)!))
α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α g : Perm α ⊢ Nat.card ↑{h | IsConj g h} * ((Fintype.card α - g.cycleType.sum)! * g.cycleType.prod * ∏ n ∈ g.cycleType.toFinset, (Multiset.count n g.cycleType)!) = Nat.card ↑{h | IsConj g h} * ((Fintype.card α - g.cycleType.sum)! * g.cycleType.prod * ∏ n ∈ g.cycleType.toFinset, (Multiset.count n g.cycleType)!)
rfl
no goals
167cd0ded0acc7ee
Polynomial.isNoetherianRing
Mathlib/RingTheory/Polynomial/Basic.lean
theorem Polynomial.isNoetherianRing [inst : IsNoetherianRing R] : IsNoetherianRing R[X] := isNoetherianRing_iff.2 ⟨fun I : Ideal R[X] => let M := inst.wf.min (Set.range I.leadingCoeffNth) ⟨_, ⟨0, rfl⟩⟩ have hm : M ∈ Set.range I.leadingCoeffNth := WellFounded.min_mem _ _ _ let ⟨N, HN⟩ := hm let ⟨s, hs⟩ := I.is_fg_degreeLE N have hm2 : ∀ k, I.leadingCoeffNth k ≤ M := fun k => Or.casesOn (le_or_lt k N) (fun h => HN ▸ I.leadingCoeffNth_mono h) fun h _ hx => Classical.by_contradiction fun hxm => haveI : IsNoetherian R R := inst have : ¬M < I.leadingCoeffNth k
case h.inr R : Type u inst✝ : CommRing R inst : IsNoetherianRing R I : Ideal R[X] M : Submodule R R := ⋯.min (Set.range I.leadingCoeffNth) ⋯ hm : M ∈ Set.range I.leadingCoeffNth N : ℕ HN : I.leadingCoeffNth N = M s : Finset R[X] hs : Submodule.span R ↑s = I.degreeLE ↑N hm2 : ∀ (k : ℕ), I.leadingCoeffNth k ≤ M hs2 : ∀ {x : R[X]}, x ∈ I.degreeLE ↑N → x ∈ Ideal.span ↑s this✝ : Submodule.span R[X] ↑s = Ideal.span ↑s k : ℕ ih : ∀ m < k, ∀ ⦃p : R[X]⦄, p ∈ I → p.natDegree = m → p ∈ Ideal.span ↑s p : R[X] hp : p ∈ I hn : p.natDegree = k h : N < k hp0 : p ≠ 0 this : 0 ≠ 1 ⊢ p ∈ Ideal.span ↑s
haveI : Nontrivial R := ⟨⟨0, 1, this⟩⟩
case h.inr R : Type u inst✝ : CommRing R inst : IsNoetherianRing R I : Ideal R[X] M : Submodule R R := ⋯.min (Set.range I.leadingCoeffNth) ⋯ hm : M ∈ Set.range I.leadingCoeffNth N : ℕ HN : I.leadingCoeffNth N = M s : Finset R[X] hs : Submodule.span R ↑s = I.degreeLE ↑N hm2 : ∀ (k : ℕ), I.leadingCoeffNth k ≤ M hs2 : ∀ {x : R[X]}, x ∈ I.degreeLE ↑N → x ∈ Ideal.span ↑s this✝¹ : Submodule.span R[X] ↑s = Ideal.span ↑s k : ℕ ih : ∀ m < k, ∀ ⦃p : R[X]⦄, p ∈ I → p.natDegree = m → p ∈ Ideal.span ↑s p : R[X] hp : p ∈ I hn : p.natDegree = k h : N < k hp0 : p ≠ 0 this✝ : 0 ≠ 1 this : Nontrivial R ⊢ p ∈ Ideal.span ↑s
2e2f75e5c85b5a04
HasStrictFDerivAt.of_local_left_inverse
Mathlib/Analysis/Calculus/FDeriv/Equiv.lean
theorem HasStrictFDerivAt.of_local_left_inverse {f : E → F} {f' : E ≃L[𝕜] F} {g : F → E} {a : F} (hg : ContinuousAt g a) (hf : HasStrictFDerivAt f (f' : E →L[𝕜] F) (g a)) (hfg : ∀ᶠ y in 𝓝 a, f (g y) = y) : HasStrictFDerivAt g (f'.symm : F →L[𝕜] E) a
𝕜 : Type u_1 inst✝⁴ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E F : Type u_3 inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F f : E → F f' : E ≃L[𝕜] F g : F → E a : F hf : HasStrictFDerivAt f (↑f') (g a) hg : ContinuousAt (Prod.map g g) (a, a) hfg : ∀ᶠ (p : F × F) in 𝓝 (a, a), f (g p.1) = p.1 ∧ f (g p.2) = p.2 ⊢ (fun p => f' (g p.1 - g p.2) - (p.1 - p.2)) =o[𝓝 (a, a)] fun p => p.1 - p.2
refine ((hf.isLittleO.comp_tendsto hg).symm.congr' (hfg.mono ?_) (Eventually.of_forall fun _ => rfl)).trans_isBigO ?_
case refine_1 𝕜 : Type u_1 inst✝⁴ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E F : Type u_3 inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F f : E → F f' : E ≃L[𝕜] F g : F → E a : F hf : HasStrictFDerivAt f (↑f') (g a) hg : ContinuousAt (Prod.map g g) (a, a) hfg : ∀ᶠ (p : F × F) in 𝓝 (a, a), f (g p.1) = p.1 ∧ f (g p.2) = p.2 ⊢ ∀ (x : F × F), f (g x.1) = x.1 ∧ f (g x.2) = x.2 → (fun x => ↑f' ((Prod.map g g x).1 - (Prod.map g g x).2) - (f (Prod.map g g x).1 - f (Prod.map g g x).2)) x = f' (g x.1 - g x.2) - (x.1 - x.2) case refine_2 𝕜 : Type u_1 inst✝⁴ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E F : Type u_3 inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F f : E → F f' : E ≃L[𝕜] F g : F → E a : F hf : HasStrictFDerivAt f (↑f') (g a) hg : ContinuousAt (Prod.map g g) (a, a) hfg : ∀ᶠ (p : F × F) in 𝓝 (a, a), f (g p.1) = p.1 ∧ f (g p.2) = p.2 ⊢ ((fun p => p.1 - p.2) ∘ Prod.map g g) =O[𝓝 (a, a)] fun p => p.1 - p.2
d8cfc8e27908f328
Set.Iio_diff_Iic
Mathlib/Order/Interval/Set/Basic.lean
theorem Iio_diff_Iic : Iio b \ Iic a = Ioo a b
α : Type u_1 inst✝ : LinearOrder α a b : α ⊢ Iio b \ Iic a = Ioo a b
rw [diff_eq, compl_Iic, inter_comm, Ioi_inter_Iio]
no goals
5076b6ab365f9ef8
Finset.SupIndep.sigma
Mathlib/Order/SupIndep.lean
theorem SupIndep.sigma {β : ι → Type*} {s : Finset ι} {g : ∀ i, Finset (β i)} {f : Sigma β → α} (hs : s.SupIndep fun i => (g i).sup fun b => f ⟨i, b⟩) (hg : ∀ i ∈ s, (g i).SupIndep fun b => f ⟨i, b⟩) : (s.sigma g).SupIndep f
case mk.mk α : Type u_1 ι : Type u_3 inst✝¹ : DistribLattice α inst✝ : OrderBot α β : ι → Type u_5 s : Finset ι g : (i : ι) → Finset (β i) f : Sigma β → α hs : s.SupIndep fun i => (g i).sup fun b => f ⟨i, b⟩ hg : ∀ i ∈ s, (g i).SupIndep fun b => f ⟨i, b⟩ t : Finset ((i : ι) × β i) ht : t ⊆ s.sigma g i : ι b : β i hi : ⟨i, b⟩.fst ∈ s ∧ ⟨i, b⟩.snd ∈ g ⟨i, b⟩.fst hit : ⟨i, b⟩ ∉ t j : ι c : β j hbc : ⟨i, b⟩ ≠ ⟨j, c⟩ hj : ⟨j, c⟩.fst ∈ s ∧ ⟨j, c⟩.snd ∈ g ⟨j, c⟩.fst ⊢ Disjoint (f ⟨i, b⟩) (f ⟨j, c⟩)
obtain rfl | hij := eq_or_ne i j
case mk.mk.inl α : Type u_1 ι : Type u_3 inst✝¹ : DistribLattice α inst✝ : OrderBot α β : ι → Type u_5 s : Finset ι g : (i : ι) → Finset (β i) f : Sigma β → α hs : s.SupIndep fun i => (g i).sup fun b => f ⟨i, b⟩ hg : ∀ i ∈ s, (g i).SupIndep fun b => f ⟨i, b⟩ t : Finset ((i : ι) × β i) ht : t ⊆ s.sigma g i : ι b : β i hi : ⟨i, b⟩.fst ∈ s ∧ ⟨i, b⟩.snd ∈ g ⟨i, b⟩.fst hit : ⟨i, b⟩ ∉ t c : β i hbc : ⟨i, b⟩ ≠ ⟨i, c⟩ hj : ⟨i, c⟩.fst ∈ s ∧ ⟨i, c⟩.snd ∈ g ⟨i, c⟩.fst ⊢ Disjoint (f ⟨i, b⟩) (f ⟨i, c⟩) case mk.mk.inr α : Type u_1 ι : Type u_3 inst✝¹ : DistribLattice α inst✝ : OrderBot α β : ι → Type u_5 s : Finset ι g : (i : ι) → Finset (β i) f : Sigma β → α hs : s.SupIndep fun i => (g i).sup fun b => f ⟨i, b⟩ hg : ∀ i ∈ s, (g i).SupIndep fun b => f ⟨i, b⟩ t : Finset ((i : ι) × β i) ht : t ⊆ s.sigma g i : ι b : β i hi : ⟨i, b⟩.fst ∈ s ∧ ⟨i, b⟩.snd ∈ g ⟨i, b⟩.fst hit : ⟨i, b⟩ ∉ t j : ι c : β j hbc : ⟨i, b⟩ ≠ ⟨j, c⟩ hj : ⟨j, c⟩.fst ∈ s ∧ ⟨j, c⟩.snd ∈ g ⟨j, c⟩.fst hij : i ≠ j ⊢ Disjoint (f ⟨i, b⟩) (f ⟨j, c⟩)
7fa06dd50219bf7d
List.contains_eq_any_beq
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Lemmas.lean
theorem contains_eq_any_beq [BEq α] (l : List α) (a : α) : l.contains a = l.any (a == ·)
α : Type u_1 inst✝ : BEq α l : List α a : α ⊢ l.contains a = l.any fun x => a == x
induction l with simp | cons b l => cases b == a <;> simp [*]
no goals
fb26e2848314e439
CategoryTheory.InitiallySmall.exists_small_weakly_initial_set
Mathlib/CategoryTheory/Limits/FinallySmall.lean
theorem InitiallySmall.exists_small_weakly_initial_set [InitiallySmall.{w} J] : ∃ (s : Set J) (_ : Small.{w} s), ∀ i, ∃ j ∈ s, Nonempty (j ⟶ i)
case intro J : Type u inst✝¹ : Category.{v, u} J inst✝ : InitiallySmall J i : J f : CostructuredArrow (fromInitialModel J) i ⊢ ∃ j ∈ Set.range (fromInitialModel J).obj, Nonempty (j ⟶ i)
exact ⟨(fromInitialModel J).obj f.left, Set.mem_range_self _, ⟨f.hom⟩⟩
no goals
a939e0d8e64f8cce
MeasureTheory.crossing_pos_eq
Mathlib/Probability/Martingale/Upcrossing.lean
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n
case zero.h Ω : Type u_1 a b : ℝ f : ℕ → Ω → ℝ N n : ℕ hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a ω : Ω ⊢ (if ∃ j ∈ Set.Icc ⊥ N, (f j ω - a)⁺ ∈ Set.Iic 0 then sInf (Set.Icc ⊥ N ∩ {i | (f i ω - a)⁺ ≤ 0}) else N) = if ∃ j ∈ Set.Icc ⊥ N, f j ω ∈ Set.Iic a then sInf (Set.Icc ⊥ N ∩ {i | f i ω ≤ a}) else N
split_ifs with h₁ h₂ h₂
case pos Ω : Type u_1 a b : ℝ f : ℕ → Ω → ℝ N n : ℕ hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a ω : Ω h₁ : ∃ j ∈ Set.Icc ⊥ N, (f j ω - a)⁺ ∈ Set.Iic 0 h₂ : ∃ j ∈ Set.Icc ⊥ N, f j ω ∈ Set.Iic a ⊢ sInf (Set.Icc ⊥ N ∩ {i | (f i ω - a)⁺ ≤ 0}) = sInf (Set.Icc ⊥ N ∩ {i | f i ω ≤ a}) case neg Ω : Type u_1 a b : ℝ f : ℕ → Ω → ℝ N n : ℕ hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a ω : Ω h₁ : ∃ j ∈ Set.Icc ⊥ N, (f j ω - a)⁺ ∈ Set.Iic 0 h₂ : ¬∃ j ∈ Set.Icc ⊥ N, f j ω ∈ Set.Iic a ⊢ sInf (Set.Icc ⊥ N ∩ {i | (f i ω - a)⁺ ≤ 0}) = N case pos Ω : Type u_1 a b : ℝ f : ℕ → Ω → ℝ N n : ℕ hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a ω : Ω h₁ : ¬∃ j ∈ Set.Icc ⊥ N, (f j ω - a)⁺ ∈ Set.Iic 0 h₂ : ∃ j ∈ Set.Icc ⊥ N, f j ω ∈ Set.Iic a ⊢ N = sInf (Set.Icc ⊥ N ∩ {i | f i ω ≤ a}) case neg Ω : Type u_1 a b : ℝ f : ℕ → Ω → ℝ N n : ℕ hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a ω : Ω h₁ : ¬∃ j ∈ Set.Icc ⊥ N, (f j ω - a)⁺ ∈ Set.Iic 0 h₂ : ¬∃ j ∈ Set.Icc ⊥ N, f j ω ∈ Set.Iic a ⊢ N = N
3016c9a152ee0783
Equiv.Perm.signAux3_mul_and_swap
Mathlib/GroupTheory/Perm/Sign.lean
theorem signAux3_mul_and_swap [Finite α] (f g : Perm α) (s : Multiset α) (hs : ∀ x, x ∈ s) : signAux3 (f * g) hs = signAux3 f hs * signAux3 g hs ∧ Pairwise fun x y => signAux3 (swap x y) hs = -1
case intro.intro α : Type u inst✝¹ : DecidableEq α inst✝ : Finite α f g : Perm α s : Multiset α hs : ∀ (x : α), x ∈ s n : ℕ e : α ≃ Fin n ⊢ (f * g).signAux3 hs = f.signAux3 hs * g.signAux3 hs ∧ Pairwise fun x y => (swap x y).signAux3 hs = -1
induction s using Quotient.inductionOn with | _ l => ?_
case intro.intro.h α : Type u inst✝¹ : DecidableEq α inst✝ : Finite α f g : Perm α n : ℕ e : α ≃ Fin n l : List α hs : ∀ (x : α), x ∈ ⟦l⟧ ⊢ (f * g).signAux3 hs = f.signAux3 hs * g.signAux3 hs ∧ Pairwise fun x y => (swap x y).signAux3 hs = -1
e47fa89a1e6e7e6b
Submodule.map₂_flip
Mathlib/Algebra/Module/Submodule/Bilinear.lean
theorem map₂_flip (f : M →ₗ[R] N →ₗ[R] P) (p : Submodule R M) (q : Submodule R N) : map₂ f.flip q p = map₂ f p q
R : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 inst✝⁶ : CommSemiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid N inst✝³ : AddCommMonoid P inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R P f : M →ₗ[R] N →ₗ[R] P p : Submodule R M q : Submodule R N ⊢ map₂ f.flip q p = map₂ f p q
rw [map₂_eq_span_image2, map₂_eq_span_image2, Set.image2_swap]
R : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 inst✝⁶ : CommSemiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid N inst✝³ : AddCommMonoid P inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R P f : M →ₗ[R] N →ₗ[R] P p : Submodule R M q : Submodule R N ⊢ span R (image2 (fun a b => (f.flip b) a) ↑p ↑q) = span R (image2 (fun m n => (f m) n) ↑p ↑q)
c2948043df7d31d6
preNormEDS'_zero
Mathlib/NumberTheory/EllipticDivisibilitySequence.lean
@[simp] lemma preNormEDS'_zero : preNormEDS' b c d 0 = 0
R : Type u inst✝ : CommRing R b c d : R ⊢ preNormEDS' b c d 0 = 0
rw [preNormEDS']
no goals
8216425111a51661
Vector.zipWith_eq_append_iff
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Vector/Zip.lean
theorem zipWith_eq_append_iff {f : α → β → γ} {l₁ : Vector α (n + m)} {l₂ : Vector β (n + m)} : zipWith f l₁ l₂ = l₁' ++ l₂' ↔ ∃ w x y z, l₁ = w ++ x ∧ l₂ = y ++ z ∧ l₁' = zipWith f w y ∧ l₂' = zipWith f x z
case mk.mk.mk.mk α : Type u_1 β : Type u_2 γ : Type u_3 f : α → β → γ l₁ : Array α l₂ : Array β l₁' l₂' : Array γ h₁ : l₁.size = l₁'.size + l₂'.size h₂ : l₂.size = l₁'.size + l₂'.size ⊢ (∃ w x y z, w.size = y.size ∧ l₁ = w ++ x ∧ l₂ = y ++ z ∧ l₁' = Array.zipWith f w y ∧ l₂' = Array.zipWith f x z) ↔ ∃ w x y z, l₁ = w.toArray ++ x.toArray ∧ l₂ = y.toArray ++ z.toArray ∧ l₁' = Array.zipWith f w.toArray y.toArray ∧ l₂' = Array.zipWith f x.toArray z.toArray
constructor
case mk.mk.mk.mk.mp α : Type u_1 β : Type u_2 γ : Type u_3 f : α → β → γ l₁ : Array α l₂ : Array β l₁' l₂' : Array γ h₁ : l₁.size = l₁'.size + l₂'.size h₂ : l₂.size = l₁'.size + l₂'.size ⊢ (∃ w x y z, w.size = y.size ∧ l₁ = w ++ x ∧ l₂ = y ++ z ∧ l₁' = Array.zipWith f w y ∧ l₂' = Array.zipWith f x z) → ∃ w x y z, l₁ = w.toArray ++ x.toArray ∧ l₂ = y.toArray ++ z.toArray ∧ l₁' = Array.zipWith f w.toArray y.toArray ∧ l₂' = Array.zipWith f x.toArray z.toArray case mk.mk.mk.mk.mpr α : Type u_1 β : Type u_2 γ : Type u_3 f : α → β → γ l₁ : Array α l₂ : Array β l₁' l₂' : Array γ h₁ : l₁.size = l₁'.size + l₂'.size h₂ : l₂.size = l₁'.size + l₂'.size ⊢ (∃ w x y z, l₁ = w.toArray ++ x.toArray ∧ l₂ = y.toArray ++ z.toArray ∧ l₁' = Array.zipWith f w.toArray y.toArray ∧ l₂' = Array.zipWith f x.toArray z.toArray) → ∃ w x y z, w.size = y.size ∧ l₁ = w ++ x ∧ l₂ = y ++ z ∧ l₁' = Array.zipWith f w y ∧ l₂' = Array.zipWith f x z
5f549609bded35f4
LieSubmodule.coe_lieSpan_submodule_eq_iff
Mathlib/Algebra/Lie/Submodule.lean
theorem coe_lieSpan_submodule_eq_iff {p : Submodule R M} : (lieSpan R L (p : Set M) : Submodule R M) = p ↔ ∃ N : LieSubmodule R L M, ↑N = p
case mp R : Type u L : Type v M : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : LieRingModule L M p : Submodule R M h : ↑(lieSpan R L ↑p) = p ⊢ ∀ (x : L), ∀ m ∈ p, ⁅x, m⁆ ∈ p
intro x m hm
case mp R : Type u L : Type v M : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : LieRingModule L M p : Submodule R M h : ↑(lieSpan R L ↑p) = p x : L m : M hm : m ∈ p ⊢ ⁅x, m⁆ ∈ p
d79ccad0b81418ff
RingHom.isIntegralElem_leadingCoeff_mul
Mathlib/RingTheory/IntegralClosure/IsIntegralClosure/Basic.lean
theorem RingHom.isIntegralElem_leadingCoeff_mul (h : p.eval₂ f x = 0) : f.IsIntegralElem (f p.leadingCoeff * x)
R : Type u_1 S : Type u_4 inst✝¹ : CommRing R inst✝ : CommRing S f : R →+* S p : R[X] x : S h : eval₂ f x p = 0 ⊢ f.IsIntegralElem (f p.leadingCoeff * x)
by_cases h' : 1 ≤ p.natDegree
case pos R : Type u_1 S : Type u_4 inst✝¹ : CommRing R inst✝ : CommRing S f : R →+* S p : R[X] x : S h : eval₂ f x p = 0 h' : 1 ≤ p.natDegree ⊢ f.IsIntegralElem (f p.leadingCoeff * x) case neg R : Type u_1 S : Type u_4 inst✝¹ : CommRing R inst✝ : CommRing S f : R →+* S p : R[X] x : S h : eval₂ f x p = 0 h' : ¬1 ≤ p.natDegree ⊢ f.IsIntegralElem (f p.leadingCoeff * x)
4106733008ad0ff9
Matrix.inv_zero
Mathlib/LinearAlgebra/Matrix/NonsingularInverse.lean
theorem inv_zero : (0 : Matrix n n α)⁻¹ = 0
case inr.inl.a n : Type u' α : Type v inst✝² : Fintype n inst✝¹ : DecidableEq n inst✝ : CommRing α ht : Nontrivial α hc this : IsEmpty n i j✝ : n ⊢ 0⁻¹ i j✝ = 0 i j✝
exact (IsEmpty.false i).elim
no goals
c56610e4c48982cf
Nat.descFactorial_le
Mathlib/Data/Nat/Factorial/Basic.lean
theorem descFactorial_le (n : ℕ) {k m : ℕ} (h : k ≤ m) : k.descFactorial n ≤ m.descFactorial n
n k m : ℕ h : k ≤ m ⊢ k.descFactorial n ≤ m.descFactorial n
induction n with | zero => rfl | succ n ih => rw [descFactorial_succ, descFactorial_succ] exact Nat.mul_le_mul (Nat.sub_le_sub_right h n) ih
no goals
d456a0d47d0a2baf
sum_div_nat_floor_pow_sq_le_div_sq
Mathlib/Analysis/SpecificLimits/FloorPow.lean
theorem sum_div_nat_floor_pow_sq_le_div_sq (N : ℕ) {j : ℝ} (hj : 0 < j) {c : ℝ} (hc : 1 < c) : (∑ i ∈ range N with j < ⌊c ^ i⌋₊, (1 : ℝ) / (⌊c ^ i⌋₊ : ℝ) ^ 2) ≤ c ^ 5 * (c - 1)⁻¹ ^ 3 / j ^ 2
N : ℕ j : ℝ hj : 0 < j c : ℝ hc : 1 < c ⊢ ∑ i ∈ filter (fun i => j < ↑⌊c ^ i⌋₊) (range N), 1 / ↑⌊c ^ i⌋₊ ^ 2 ≤ c ^ 5 * (c - 1)⁻¹ ^ 3 / j ^ 2
have cpos : 0 < c := zero_lt_one.trans hc
N : ℕ j : ℝ hj : 0 < j c : ℝ hc : 1 < c cpos : 0 < c ⊢ ∑ i ∈ filter (fun i => j < ↑⌊c ^ i⌋₊) (range N), 1 / ↑⌊c ^ i⌋₊ ^ 2 ≤ c ^ 5 * (c - 1)⁻¹ ^ 3 / j ^ 2
a23322a47b698b23
LieSubmodule.ucs_le_of_normalizer_eq_self
Mathlib/Algebra/Lie/Nilpotent.lean
theorem ucs_le_of_normalizer_eq_self (h : N₁.normalizer = N₁) (k : ℕ) : (⊥ : LieSubmodule R L M).ucs k ≤ N₁
R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M N₁ : LieSubmodule R L M inst✝ : LieModule R L M h : N₁.normalizer = N₁ k : ℕ ⊢ ucs k ⊥ ≤ N₁
rw [← ucs_eq_self_of_normalizer_eq_self h k]
R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M N₁ : LieSubmodule R L M inst✝ : LieModule R L M h : N₁.normalizer = N₁ k : ℕ ⊢ ucs k ⊥ ≤ ucs k N₁
14ab1f8caa3b3baf
isLocalHom_of_le_jacobson_bot
Mathlib/RingTheory/Henselian.lean
theorem isLocalHom_of_le_jacobson_bot {R : Type*} [CommRing R] (I : Ideal R) (h : I ≤ Ideal.jacobson ⊥) : IsLocalHom (Ideal.Quotient.mk I)
case h R : Type u_1 inst✝ : CommRing R I : Ideal R h : I ≤ ⊥.jacobson a b : R hb : a * b - 1 ∈ I ⊢ a * b - 1 ∈ ⊥.jacobson
exact h hb
no goals
a961c7da2da42bc3
BitVec.msb_umod
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Lemmas.lean
theorem msb_umod {x y : BitVec w} : (x % y).msb = (x.msb && (x < y || y == 0#w))
w : Nat x y : BitVec w ⊢ (x % y).msb = (x.msb && (decide (x < y) || y == 0#w))
rw [msb_eq_decide, toNat_umod]
w : Nat x y : BitVec w ⊢ decide (2 ^ (w - 1) ≤ x.toNat % y.toNat) = (x.msb && (decide (x < y) || y == 0#w))
a4b9057a3dee0f33
Sylow.normal_of_all_max_subgroups_normal
Mathlib/GroupTheory/Sylow.lean
theorem normal_of_all_max_subgroups_normal [Finite G] (hnc : ∀ H : Subgroup G, IsCoatom H → H.Normal) {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : P.Normal := normalizer_eq_top_iff.mp (by rcases eq_top_or_exists_le_coatom P.normalizer with (heq | ⟨K, hK, hNK⟩) · exact heq · haveI := hnc _ hK have hPK : P ≤ K := le_trans le_normalizer hNK refine (hK.1 ?_).elim rw [← sup_of_le_right hNK, P.normalizer_sup_eq_top' hPK])
case inr.intro.intro G : Type u inst✝³ : Group G inst✝² : Finite G hnc : ∀ (H : Subgroup G), IsCoatom H → H.Normal p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G K : Subgroup G hK : IsCoatom K hNK : (↑P).normalizer ≤ K this : K.Normal hPK : ↑P ≤ K ⊢ K = ⊤
rw [← sup_of_le_right hNK, P.normalizer_sup_eq_top' hPK]
no goals
5ffcd9d1c9397554
RingHom.IsStableUnderBaseChange.mk
Mathlib/RingTheory/RingHomProperties.lean
theorem IsStableUnderBaseChange.mk (h₁ : RespectsIso @P) (h₂ : ∀ ⦃R S T⦄ [CommRing R] [CommRing S] [CommRing T], ∀ [Algebra R S] [Algebra R T], P (algebraMap R T) → P (Algebra.TensorProduct.includeLeftRingHom : S →+* TensorProduct R S T)) : IsStableUnderBaseChange @P
P : {R S : Type u} → [inst : CommRing R] → [inst_1 : CommRing S] → (R →+* S) → Prop h₁ : RespectsIso P h₂ : ∀ ⦃R S T : Type u⦄ [inst : CommRing R] [inst_1 : CommRing S] [inst_2 : CommRing T] [inst_3 : Algebra R S] [inst_4 : Algebra R T], P (algebraMap R T) → P Algebra.TensorProduct.includeLeftRingHom R S R' S' : Type u inst✝¹⁰ : CommRing R inst✝⁹ : CommRing S inst✝⁸ : CommRing R' inst✝⁷ : CommRing S' inst✝⁶ : Algebra R S inst✝⁵ : Algebra R R' inst✝⁴ : Algebra R S' inst✝³ : Algebra S S' inst✝² : Algebra R' S' inst✝¹ : IsScalarTower R S S' inst✝ : IsScalarTower R R' S' h : Algebra.IsPushout R S R' S' H : P (algebraMap R S) e : TensorProduct R R' S ≃ₛₗ[id R'] S' := ⋯.equiv f' : TensorProduct R R' S →ₐ[R] S' := Algebra.TensorProduct.productMap (IsScalarTower.toAlgHom R R' S') (IsScalarTower.toAlgHom R S S') this : ∀ (x : TensorProduct R R' S), e x = f' x x y : TensorProduct R R' S ⊢ f' (x * y) = f' x * f' y
exact map_mul f' _ _
no goals
b9f11fd814b95109
MeasureTheory.StronglyMeasurable.integral_prod_right
Mathlib/MeasureTheory/Integral/Prod.lean
theorem MeasureTheory.StronglyMeasurable.integral_prod_right [SFinite ν] ⦃f : α → β → E⦄ (hf : StronglyMeasurable (uncurry f)) : StronglyMeasurable fun x => ∫ y, f x y ∂ν
case pos α : Type u_1 β : Type u_2 E : Type u_3 inst✝⁴ : MeasurableSpace α inst✝³ : MeasurableSpace β ν : Measure β inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : SFinite ν f : α → β → E hf : StronglyMeasurable (uncurry f) hE : CompleteSpace E this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E this : SeparableSpace ↑(range (uncurry f) ∪ {0}) s : ℕ → SimpleFunc (α × β) E := SimpleFunc.approxOn (uncurry f) ⋯ (range (uncurry f) ∪ {0}) 0 ⋯ s' : ℕ → α → SimpleFunc β E := fun n x => (s n).comp (Prod.mk x) ⋯ f' : ℕ → α → E := fun n => {x | Integrable (f x) ν}.indicator fun x => SimpleFunc.integral ν (s' n x) hf' : ∀ (n : ℕ), StronglyMeasurable (f' n) h2f' : Tendsto f' atTop (𝓝 fun x => ∫ (y : β), f x y ∂ν) ⊢ StronglyMeasurable fun x => ∫ (y : β), f x y ∂ν
exact stronglyMeasurable_of_tendsto _ hf' h2f'
no goals
8f3d348cb36760b7
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.assignmentsInvariant_insertRupUnits_of_assignmentsInvariant
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/RupAddSound.lean
theorem assignmentsInvariant_insertRupUnits_of_assignmentsInvariant {n : Nat} (f : DefaultFormula n) (f_readyForRupAdd : ReadyForRupAdd f) (units : CNF.Clause (PosFin n)) : AssignmentsInvariant (insertRupUnits f units).1
n : Nat f : DefaultFormula n f_readyForRupAdd : f.ReadyForRupAdd units : CNF.Clause (PosFin n) h : let assignments := (f.insertRupUnits units).fst.assignments; let_fun hsize := ⋯; let rupUnits := (f.insertRupUnits units).fst.rupUnits; InsertUnitInvariant f.assignments ⋯ rupUnits assignments hsize ⊢ (f.insertRupUnits units).fst.assignments.size = n
rw [size_assignments_insertRupUnits, f_readyForRupAdd.2.1]
no goals
7537b9cac0fe9952
ProbabilityTheory.paretoCDFReal_eq_integral
Mathlib/Probability/Distributions/Pareto.lean
/-- CDF of the Pareto distribution equals the integral of the PDF. -/ lemma paretoCDFReal_eq_integral (ht : 0 < t) (hr : 0 < r) (x : ℝ) : cdf (paretoMeasure t r) x = ∫ x in Iic x, paretoPDFReal t r x
t r : ℝ ht : 0 < t hr : 0 < r x : ℝ ⊢ ↑(cdf (paretoMeasure t r)) x = ∫ (x : ℝ) in Iic x, paretoPDFReal t r x
have : IsProbabilityMeasure (paretoMeasure t r) := isProbabilityMeasure_paretoMeasure ht hr
t r : ℝ ht : 0 < t hr : 0 < r x : ℝ this : IsProbabilityMeasure (paretoMeasure t r) ⊢ ↑(cdf (paretoMeasure t r)) x = ∫ (x : ℝ) in Iic x, paretoPDFReal t r x
186b65518841aa4b
IsSelfAdjoint.map_spectrum_real
Mathlib/Analysis/CStarAlgebra/Hom.lean
lemma IsSelfAdjoint.map_spectrum_real {F A B : Type*} [CStarAlgebra A] [CStarAlgebra B] [FunLike F A B] [AlgHomClass F ℂ A B] [StarHomClass F A B] {a : A} (ha : IsSelfAdjoint a) (φ : F) (hφ : Function.Injective φ) : spectrum ℝ (φ a) = spectrum ℝ a
F : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CStarAlgebra A inst✝³ : CStarAlgebra B inst✝² : FunLike F A B inst✝¹ : AlgHomClass F ℂ A B inst✝ : StarHomClass F A B a : A ha : IsSelfAdjoint a φ : F hφ : Function.Injective ⇑φ h_spec : spectrum ℝ ((StarAlgHom.restrictScalars ℝ ↑φ) a) ⊆ spectrum ℝ a ⊢ spectrum ℝ (φ a) = spectrum ℝ a
refine Set.eq_of_subset_of_subset h_spec fun x hx ↦ ?_
F : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CStarAlgebra A inst✝³ : CStarAlgebra B inst✝² : FunLike F A B inst✝¹ : AlgHomClass F ℂ A B inst✝ : StarHomClass F A B a : A ha : IsSelfAdjoint a φ : F hφ : Function.Injective ⇑φ h_spec : spectrum ℝ ((StarAlgHom.restrictScalars ℝ ↑φ) a) ⊆ spectrum ℝ a x : ℝ hx : x ∈ spectrum ℝ a ⊢ x ∈ spectrum ℝ (φ a)
50868c8d7abd5f84
LocalSubring.map_maximalIdeal_eq_top_of_isMax
Mathlib/RingTheory/Valuation/LocalSubring.lean
lemma LocalSubring.map_maximalIdeal_eq_top_of_isMax {R : LocalSubring K} (hR : IsMax R) {S : Subring K} (hS : R.toSubring < S) : (maximalIdeal R.toSubring).map (Subring.inclusion hS.le) = ⊤
case mk K : Type u_3 inst✝ : Field K R : LocalSubring K hR : IsMax R S : Subring K hS : R.toSubring < S mR : Ideal ↥S := Ideal.map (Subring.inclusion ⋯) (maximalIdeal ↥R.toSubring) h_is_not_top : ¬Ideal.map (Subring.inclusion ⋯) (maximalIdeal ↥R.toSubring) = ⊤ M : Ideal ↥S h_is_max : M.IsMaximal h_incl : Ideal.map (Subring.inclusion ⋯) (maximalIdeal ↥R.toSubring) ≤ M fSₘ : LocalSubring K := ofPrime S M a : K h_a_inR : a ∈ R.toSubring h_fa_isUnit : ⟨a, ⋯⟩ ∈ M.primeCompl h : ¬IsUnit ⟨a, h_a_inR⟩ ⊢ False
rw [← mem_nonunits_iff, ← mem_maximalIdeal] at h
case mk K : Type u_3 inst✝ : Field K R : LocalSubring K hR : IsMax R S : Subring K hS : R.toSubring < S mR : Ideal ↥S := Ideal.map (Subring.inclusion ⋯) (maximalIdeal ↥R.toSubring) h_is_not_top : ¬Ideal.map (Subring.inclusion ⋯) (maximalIdeal ↥R.toSubring) = ⊤ M : Ideal ↥S h_is_max : M.IsMaximal h_incl : Ideal.map (Subring.inclusion ⋯) (maximalIdeal ↥R.toSubring) ≤ M fSₘ : LocalSubring K := ofPrime S M a : K h_a_inR : a ∈ R.toSubring h_fa_isUnit : ⟨a, ⋯⟩ ∈ M.primeCompl h : ⟨a, h_a_inR⟩ ∈ maximalIdeal ↥R.toSubring ⊢ False
5f96bfa4acaf9956
Std.Tactic.BVDecide.BVExpr.bitblast.mkOverflowBit.go_decl_eq
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Circuit/Impl/Carry.lean
theorem go_decl_eq {aig : AIG α} {cin} {lhs rhs : AIG.RefVec aig w} : ∀ (idx : Nat) (h1) (h2), (go aig lhs rhs curr cin).aig.decls[idx]'h2 = aig.decls[idx]'h1
α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w curr : Nat aig : AIG α cin : aig.Ref lhs rhs : aig.RefVec w res : AIG.Entrypoint α hgo : (if hidx : curr < w then go (mkFullAdderCarry aig { lhs := lhs.get curr hidx, rhs := rhs.get curr hidx, cin := cin }).aig (lhs.cast ⋯) (rhs.cast ⋯) (curr + 1) (mkFullAdderCarry aig { lhs := lhs.get curr hidx, rhs := rhs.get curr hidx, cin := cin }).ref else { aig := aig, ref := cin }) = res ⊢ ∀ (idx : Nat) (h1 : idx < aig.decls.size) (h2 : idx < res.aig.decls.size), res.aig.decls[idx] = aig.decls[idx]
split at hgo
case isTrue α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w curr : Nat aig : AIG α cin : aig.Ref lhs rhs : aig.RefVec w res : AIG.Entrypoint α h✝ : curr < w hgo : go (mkFullAdderCarry aig { lhs := lhs.get curr h✝, rhs := rhs.get curr h✝, cin := cin }).aig (lhs.cast ⋯) (rhs.cast ⋯) (curr + 1) (mkFullAdderCarry aig { lhs := lhs.get curr h✝, rhs := rhs.get curr h✝, cin := cin }).ref = res ⊢ ∀ (idx : Nat) (h1 : idx < aig.decls.size) (h2 : idx < res.aig.decls.size), res.aig.decls[idx] = aig.decls[idx] case isFalse α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w curr : Nat aig : AIG α cin : aig.Ref lhs rhs : aig.RefVec w res : AIG.Entrypoint α h✝ : ¬curr < w hgo : { aig := aig, ref := cin } = res ⊢ ∀ (idx : Nat) (h1 : idx < aig.decls.size) (h2 : idx < res.aig.decls.size), res.aig.decls[idx] = aig.decls[idx]
0e1562c4999c3b0c
SzemerediRegularity.eps_le_card_star_div
Mathlib/Combinatorics/SimpleGraph/Regularity/Chunk.lean
theorem eps_le_card_star_div [Nonempty α] (hPα : #P.parts * 16 ^ #P.parts ≤ card α) (hPε : ↑100 ≤ ↑4 ^ #P.parts * ε ^ 5) (hε₁ : ε ≤ 1) (hU : U ∈ P.parts) (hV : V ∈ P.parts) (hUV : U ≠ V) (hunif : ¬G.IsUniform ε U V) : ↑4 / ↑5 * ε ≤ #(star hP G ε hU V) / ↑4 ^ #P.parts
case h₁.h₂.h.hba α : Type u_1 inst✝³ : Fintype α inst✝² : DecidableEq α P : Finpartition univ hP : P.IsEquipartition G : SimpleGraph α inst✝¹ : DecidableRel G.Adj ε : ℝ U V : Finset α inst✝ : Nonempty α hPα : #P.parts * 16 ^ #P.parts ≤ Fintype.card α hPε : 100 ≤ 4 ^ #P.parts * ε ^ 5 hε₁ : ε ≤ 1 hU : U ∈ P.parts hV : V ∈ P.parts hUV : U ≠ V hunif : ¬G.IsUniform ε U V hm : 0 ≤ 1 - (↑m)⁻¹ hε : 0 ≤ 1 - ε / 10 hε₀ : 0 < ε ⊢ 9 ≤ ↑m case h₂ α : Type u_1 inst✝³ : Fintype α inst✝² : DecidableEq α P : Finpartition univ hP : P.IsEquipartition G : SimpleGraph α inst✝¹ : DecidableRel G.Adj ε : ℝ U V : Finset α inst✝ : Nonempty α hPα : #P.parts * 16 ^ #P.parts ≤ Fintype.card α hPε : 100 ≤ 4 ^ #P.parts * ε ^ 5 hε₁ : ε ≤ 1 hU : U ∈ P.parts hV : V ∈ P.parts hUV : U ≠ V hunif : ¬G.IsUniform ε U V hm : 0 ≤ 1 - (↑m)⁻¹ hε : 0 ≤ 1 - ε / 10 hε₀ : 0 < ε ⊢ ε ≤ ↑(#(G.nonuniformWitness ε U V)) / ↑(#U)
exacts [mod_cast (show 9 ≤ 100 by norm_num).trans (hundred_le_m hPα hPε hε₁), (le_div_iff₀' <| cast_pos.2 (P.nonempty_of_mem_parts hU).card_pos).2 <| G.le_card_nonuniformWitness hunif]
no goals
1f26219e271e2883
Polynomial.eraseLead_add_of_degree_lt_right
Mathlib/Algebra/Polynomial/EraseLead.lean
theorem eraseLead_add_of_degree_lt_right {p q : R[X]} (pq : p.degree < q.degree) : (p + q).eraseLead = p + q.eraseLead
case a R : Type u_1 inst✝ : Semiring R p q : R[X] pq : p.degree < q.degree n : ℕ ⊢ (p + q).eraseLead.coeff n = (p + q.eraseLead).coeff n
by_cases nd : n = q.natDegree
case pos R : Type u_1 inst✝ : Semiring R p q : R[X] pq : p.degree < q.degree n : ℕ nd : n = q.natDegree ⊢ (p + q).eraseLead.coeff n = (p + q.eraseLead).coeff n case neg R : Type u_1 inst✝ : Semiring R p q : R[X] pq : p.degree < q.degree n : ℕ nd : ¬n = q.natDegree ⊢ (p + q).eraseLead.coeff n = (p + q.eraseLead).coeff n
557f2f23d484ef7d
List.map_eq_append_iff
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Lemmas.lean
theorem map_eq_append_iff {f : α → β} : map f l = L₁ ++ L₂ ↔ ∃ l₁ l₂, l = l₁ ++ l₂ ∧ map f l₁ = L₁ ∧ map f l₂ = L₂
α : Type u_1 β : Type u_2 l : List α L₁ L₂ : List β f : α → β ⊢ map f l = L₁ ++ L₂ ↔ ∃ l₁ l₂, l = l₁ ++ l₂ ∧ map f l₁ = L₁ ∧ map f l₂ = L₂
rw [← filterMap_eq_map, filterMap_eq_append_iff]
no goals
53ce71e1143d847a
Array.zipIdx_eq_append_iff
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Range.lean
theorem zipIdx_eq_append_iff {l : Array α} {k : Nat} : zipIdx l k = l₁ ++ l₂ ↔ ∃ l₁' l₂', l = l₁' ++ l₂' ∧ l₁ = zipIdx l₁' k ∧ l₂ = zipIdx l₂' (k + l₁'.size)
case mk α : Type u_1 l₁ l₂ : Array (α × Nat) k : Nat l : List α ⊢ { toList := l }.zipIdx k = l₁ ++ l₂ ↔ ∃ l₁' l₂', { toList := l } = l₁' ++ l₂' ∧ l₁ = l₁'.zipIdx k ∧ l₂ = l₂'.zipIdx (k + l₁'.size)
rcases l₁ with ⟨l₁⟩
case mk.mk α : Type u_1 l₂ : Array (α × Nat) k : Nat l : List α l₁ : List (α × Nat) ⊢ { toList := l }.zipIdx k = { toList := l₁ } ++ l₂ ↔ ∃ l₁' l₂', { toList := l } = l₁' ++ l₂' ∧ { toList := l₁ } = l₁'.zipIdx k ∧ l₂ = l₂'.zipIdx (k + l₁'.size)
f19008c60afcfe32
Int.two_pow_two_pow_add_two_pow_two_pow
Mathlib/NumberTheory/Multiplicity.lean
theorem Int.two_pow_two_pow_add_two_pow_two_pow {x y : ℤ} (hx : ¬2 ∣ x) (hxy : 4 ∣ x - y) (i : ℕ) : emultiplicity 2 (x ^ 2 ^ i + y ^ 2 ^ i) = ↑(1 : ℕ)
case refine_1 x y : ℤ hx : ¬2 ∣ x hxy : 4 ∣ x - y i : ℕ hx_odd : Odd x hxy_even : Even (x - y) hy_odd : Odd y ⊢ Even (x ^ 2 ^ i + y ^ 2 ^ i)
exact hx_odd.pow.add_odd hy_odd.pow
no goals
c2c4f247c9f39fe5
List.comp_traverse
Mathlib/Control/Traversable/Instances.lean
theorem comp_traverse {α β γ} (f : β → F γ) (g : α → G β) (x : List α) : List.traverse (Comp.mk ∘ (f <$> ·) ∘ g) x = Comp.mk (List.traverse f <$> List.traverse g x)
F G : Type u → Type u inst✝² : Applicative F inst✝¹ : Applicative G inst✝ : LawfulApplicative G α : Type u_1 β γ : Type u f : β → F γ g : α → G β x : List α ⊢ List.traverse (Comp.mk ∘ (fun x => f <$> x) ∘ g) x = Comp.mk (List.traverse f <$> List.traverse g x)
induction x <;> simp! [*, functor_norm] <;> rfl
no goals
bb693fd619cb6dd2
GromovHausdorff.HD_lipschitz_aux2
Mathlib/Topology/MetricSpace/GromovHausdorffRealized.lean
theorem HD_lipschitz_aux2 (f g : Cb X Y) : (⨆ y, ⨅ x, f (inl x, inr y)) ≤ (⨆ y, ⨅ x, g (inl x, inr y)) + dist f g
X : Type u Y : Type v inst✝³ : MetricSpace X inst✝² : MetricSpace Y inst✝¹ : Nonempty X inst✝ : Nonempty Y f g : GromovHausdorff.Cb X Y ⊢ ⨆ y, ⨅ x, f (inl x, inr y) ≤ (⨆ y, ⨅ x, g (inl x, inr y)) + dist f g
obtain ⟨cg, hcg⟩ := g.isBounded_range.bddBelow
case intro X : Type u Y : Type v inst✝³ : MetricSpace X inst✝² : MetricSpace Y inst✝¹ : Nonempty X inst✝ : Nonempty Y f g : GromovHausdorff.Cb X Y cg : ℝ hcg : cg ∈ lowerBounds (range ⇑g) ⊢ ⨆ y, ⨅ x, f (inl x, inr y) ≤ (⨆ y, ⨅ x, g (inl x, inr y)) + dist f g
640179802facac4b
Valuation.Integers.isPrincipalIdealRing_iff_not_denselyOrdered
Mathlib/RingTheory/Valuation/Archimedean.lean
lemma isPrincipalIdealRing_iff_not_denselyOrdered [MulArchimedean Γ₀] (hv : Integers v O) : IsPrincipalIdealRing O ↔ ¬ DenselyOrdered (Set.range v)
case inr F : Type u_1 Γ₀ : Type u_2 O : Type u_3 inst✝⁴ : Field F inst✝³ : LinearOrderedCommGroupWithZero Γ₀ inst✝² : CommRing O inst✝¹ : Algebra O F v : Valuation F Γ₀ inst✝ : MulArchimedean Γ₀ hv : v.Integers O H : ¬DenselyOrdered ↑(Set.range ⇑v) h✝ : Nontrivial (↥(MonoidHom.mrange v))ˣ this✝ : IsDomain O this : ValuationRing O ⊢ IsPrincipalIdealRing O
have : IsBezout O := ValuationRing.instIsBezout
case inr F : Type u_1 Γ₀ : Type u_2 O : Type u_3 inst✝⁴ : Field F inst✝³ : LinearOrderedCommGroupWithZero Γ₀ inst✝² : CommRing O inst✝¹ : Algebra O F v : Valuation F Γ₀ inst✝ : MulArchimedean Γ₀ hv : v.Integers O H : ¬DenselyOrdered ↑(Set.range ⇑v) h✝ : Nontrivial (↥(MonoidHom.mrange v))ˣ this✝¹ : IsDomain O this✝ : ValuationRing O this : IsBezout O ⊢ IsPrincipalIdealRing O
ebfcccdd17f449e6
CategoryTheory.Injective.injective_iff_preservesEpimorphisms_yoneda_obj
Mathlib/CategoryTheory/Preadditive/Injective/Basic.lean
theorem injective_iff_preservesEpimorphisms_yoneda_obj (J : C) : Injective J ↔ (yoneda.obj J).PreservesEpimorphisms
C : Type u₁ inst✝ : Category.{v₁, u₁} C J : C ⊢ Injective J ↔ (yoneda.obj J).PreservesEpimorphisms
rw [injective_iff_projective_op, Projective.projective_iff_preservesEpimorphisms_coyoneda_obj]
C : Type u₁ inst✝ : Category.{v₁, u₁} C J : C ⊢ (coyoneda.obj (op (op J))).PreservesEpimorphisms ↔ (yoneda.obj J).PreservesEpimorphisms
7e092be94d48cd63
ZMod.pow_card
Mathlib/FieldTheory/Finite/Basic.lean
theorem pow_card {p : ℕ} [Fact p.Prime] (x : ZMod p) : x ^ p = x
p : ℕ inst✝ : Fact (Nat.Prime p) x : ZMod p h : x ^ Fintype.card (ZMod p) = x ⊢ x ^ p = x
rwa [ZMod.card p] at h
no goals
c86d93b485cf12ae
MeasureTheory.ae_nonneg_of_forall_setIntegral_nonneg_of_sigmaFinite
Mathlib/MeasureTheory/Function/AEEqOfIntegral.lean
theorem ae_nonneg_of_forall_setIntegral_nonneg_of_sigmaFinite [SigmaFinite μ] {f : α → ℝ} (hf_int_finite : ∀ s, MeasurableSet s → μ s < ∞ → IntegrableOn f s μ) (hf_zero : ∀ s, MeasurableSet s → μ s < ∞ → 0 ≤ ∫ x in s, f x ∂μ) : 0 ≤ᵐ[μ] f
case h α : Type u_1 m0 : MeasurableSpace α μ : Measure α inst✝ : SigmaFinite μ f : α → ℝ hf_int_finite : ∀ (s : Set α), MeasurableSet s → μ s < ⊤ → IntegrableOn f s μ hf_zero : ∀ (s : Set α), MeasurableSet s → μ s < ⊤ → 0 ≤ ∫ (x : α) in s, f x ∂μ t : Set α t_meas : MeasurableSet t t_lt_top : μ t < ⊤ ⊢ ∀ (s : Set α), MeasurableSet s → μ (s ∩ t) < ⊤ → 0 ≤ ∫ (x : α) in s ∩ t, f x ∂μ
intro s s_meas _
case h α : Type u_1 m0 : MeasurableSpace α μ : Measure α inst✝ : SigmaFinite μ f : α → ℝ hf_int_finite : ∀ (s : Set α), MeasurableSet s → μ s < ⊤ → IntegrableOn f s μ hf_zero : ∀ (s : Set α), MeasurableSet s → μ s < ⊤ → 0 ≤ ∫ (x : α) in s, f x ∂μ t : Set α t_meas : MeasurableSet t t_lt_top : μ t < ⊤ s : Set α s_meas : MeasurableSet s a✝ : μ (s ∩ t) < ⊤ ⊢ 0 ≤ ∫ (x : α) in s ∩ t, f x ∂μ
c952d9bd03e52640
Real.arsinh_nonpos_iff
Mathlib/Analysis/SpecialFunctions/Arsinh.lean
theorem arsinh_nonpos_iff : arsinh x ≤ 0 ↔ x ≤ 0
x : ℝ ⊢ arsinh x ≤ 0 ↔ x ≤ 0
rw [← sinh_le_sinh, sinh_zero, sinh_arsinh]
no goals
103cd864840149b0
Algebra.algebraMap_intTrace
Mathlib/RingTheory/IntegralClosure/IntegralRestrict.lean
lemma Algebra.algebraMap_intTrace (x : B) : algebraMap A K (Algebra.intTrace A B x) = Algebra.trace K L (algebraMap B L x)
A : Type u_1 K : Type u_2 L : Type u_3 B : Type u_4 inst✝¹⁹ : CommRing A inst✝¹⁸ : CommRing B inst✝¹⁷ : Algebra A B inst✝¹⁶ : Field K inst✝¹⁵ : Field L inst✝¹⁴ : Algebra A K inst✝¹³ : IsFractionRing A K inst✝¹² : Algebra B L inst✝¹¹ : Algebra K L inst✝¹⁰ : Algebra A L inst✝⁹ : IsScalarTower A B L inst✝⁸ : IsScalarTower A K L inst✝⁷ : IsIntegralClosure B A L inst✝⁶ : FiniteDimensional K L inst✝⁵ : IsDomain A inst✝⁴ : IsIntegrallyClosed A inst✝³ : IsDomain B inst✝² : IsIntegrallyClosed B inst✝¹ : Module.Finite A B inst✝ : NoZeroSMulDivisors A B x : B this✝¹ : IsIntegralClosure B A (FractionRing B) this✝ : IsLocalization (algebraMapSubmonoid B A⁰) (FractionRing B) this : FiniteDimensional (FractionRing A) (FractionRing B) ⊢ (algebraMap A K) ((intTrace A B) x) = (trace K L) ((algebraMap B L) x)
haveI := IsIntegralClosure.isFractionRing_of_finite_extension A K L B
A : Type u_1 K : Type u_2 L : Type u_3 B : Type u_4 inst✝¹⁹ : CommRing A inst✝¹⁸ : CommRing B inst✝¹⁷ : Algebra A B inst✝¹⁶ : Field K inst✝¹⁵ : Field L inst✝¹⁴ : Algebra A K inst✝¹³ : IsFractionRing A K inst✝¹² : Algebra B L inst✝¹¹ : Algebra K L inst✝¹⁰ : Algebra A L inst✝⁹ : IsScalarTower A B L inst✝⁸ : IsScalarTower A K L inst✝⁷ : IsIntegralClosure B A L inst✝⁶ : FiniteDimensional K L inst✝⁵ : IsDomain A inst✝⁴ : IsIntegrallyClosed A inst✝³ : IsDomain B inst✝² : IsIntegrallyClosed B inst✝¹ : Module.Finite A B inst✝ : NoZeroSMulDivisors A B x : B this✝² : IsIntegralClosure B A (FractionRing B) this✝¹ : IsLocalization (algebraMapSubmonoid B A⁰) (FractionRing B) this✝ : FiniteDimensional (FractionRing A) (FractionRing B) this : IsFractionRing B L ⊢ (algebraMap A K) ((intTrace A B) x) = (trace K L) ((algebraMap B L) x)
d6085620fefd6e71
Complex.ofReal_sub
Mathlib/Data/Complex/Basic.lean
theorem ofReal_sub (r s : ℝ) : ((r - s : ℝ) : ℂ) = r - s := Complex.ext_iff.2 <| by simp [ofReal]
r s : ℝ ⊢ (↑(r - s)).re = (↑r - ↑s).re ∧ (↑(r - s)).im = (↑r - ↑s).im
simp [ofReal]
no goals
1c727796bad13de7
Int.induction_on
Mathlib/Data/Int/Init.lean
/-- Induction on integers: prove a proposition `p i` by proving the base case `p 0`, the upwards induction step `p i → p (i + 1)` and the downwards induction step `p (-i) → p (-i - 1)`. It is used as the default induction principle for the `induction` tactic. -/ @[elab_as_elim, induction_eliminator] protected lemma induction_on {p : ℤ → Prop} (i : ℤ) (hz : p 0) (hp : ∀ i : ℕ, p i → p (i + 1)) (hn : ∀ i : ℕ, p (-i) → p (-i - 1)) : p i
p : ℤ → Prop i : ℤ hz : p 0 hp : ∀ (i : ℕ), p ↑i → p (↑i + 1) hn : ∀ (i : ℕ), p (-↑i) → p (-↑i - 1) ⊢ p i
cases i with | ofNat i => induction i with | zero => exact hz | succ i ih => exact hp _ ih | negSucc i => suffices ∀ n : ℕ, p (-n) from this (i + 1) intro n; induction n with | zero => simp [hz] | succ n ih => simpa [ofNat_succ, Int.neg_add, Int.sub_eq_add_neg] using hn _ ih
no goals
b52be7c1ec7d3694
Surreal.double_powHalf_succ_eq_powHalf
Mathlib/SetTheory/Surreal/Dyadic.lean
theorem double_powHalf_succ_eq_powHalf (n : ℕ) : 2 * powHalf (n + 1) = powHalf n
n : ℕ ⊢ powHalf (n + 1) + powHalf (n + 1) = powHalf n
exact Quotient.sound (PGame.add_powHalf_succ_self_eq_powHalf n)
no goals
fb76cc4ba70ef026
Lean.Omega.Constraint.scale_sat
Mathlib/.lake/packages/lean4/src/lean/Init/Omega/Constraint.lean
theorem scale_sat {c : Constraint} (k) (w : c.sat t) : (scale k c).sat (k * t)
case isTrue t : Int c : Constraint k : Int w : c.sat t = true h✝ : k = 0 ⊢ (if c.isImpossible = true then c else { lowerBound := some 0, upperBound := some 0 }).sat (k * t) = true
split
case isTrue.isTrue t : Int c : Constraint k : Int w : c.sat t = true h✝¹ : k = 0 h✝ : c.isImpossible = true ⊢ c.sat (k * t) = true case isTrue.isFalse t : Int c : Constraint k : Int w : c.sat t = true h✝¹ : k = 0 h✝ : ¬c.isImpossible = true ⊢ { lowerBound := some 0, upperBound := some 0 }.sat (k * t) = true
498e5968042038b0
Monotone.isBoundedUnder_le_comp_iff
Mathlib/Order/LiminfLimsup.lean
theorem Monotone.isBoundedUnder_le_comp_iff [Nonempty β] [LinearOrder β] [Preorder γ] [NoMaxOrder γ] {g : β → γ} {f : α → β} {l : Filter α} (hg : Monotone g) (hg' : Tendsto g atTop atTop) : IsBoundedUnder (· ≤ ·) l (g ∘ f) ↔ IsBoundedUnder (· ≤ ·) l f
case intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : Nonempty β inst✝² : LinearOrder β inst✝¹ : Preorder γ inst✝ : NoMaxOrder γ g : β → γ f : α → β l : Filter α hg : Monotone g hg' : Tendsto g atTop atTop c : γ hc : ∀ᶠ (a : α) in l, (fun x1 x2 => x1 ≤ x2) ((g ∘ f) a) c ⊢ IsBoundedUnder (fun x1 x2 => x1 ≤ x2) l f
obtain ⟨b, hb⟩ : ∃ b, ∀ a ≥ b, c < g a := eventually_atTop.1 (hg'.eventually_gt_atTop c)
case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : Nonempty β inst✝² : LinearOrder β inst✝¹ : Preorder γ inst✝ : NoMaxOrder γ g : β → γ f : α → β l : Filter α hg : Monotone g hg' : Tendsto g atTop atTop c : γ hc : ∀ᶠ (a : α) in l, (fun x1 x2 => x1 ≤ x2) ((g ∘ f) a) c b : β hb : ∀ a ≥ b, c < g a ⊢ IsBoundedUnder (fun x1 x2 => x1 ≤ x2) l f
27bb41283202a063
ProbabilityTheory.IsRatCondKernelCDFAux.iInf_rat_gt_eq
Mathlib/Probability/Kernel/Disintegration/CDFToKernel.lean
lemma IsRatCondKernelCDFAux.iInf_rat_gt_eq (hf : IsRatCondKernelCDFAux f κ ν) [IsFiniteKernel κ] [IsFiniteKernel ν] (a : α) : ∀ᵐ t ∂(ν a), ∀ q : ℚ, ⨅ r : Ioi q, f (a, t) r = f (a, t) q
case refine_2 α : Type u_1 β : Type u_2 mα : MeasurableSpace α mβ : MeasurableSpace β κ : Kernel α (β × ℝ) ν : Kernel α β f : α × β → ℚ → ℝ hf : IsRatCondKernelCDFAux f κ ν inst✝¹ : IsFiniteKernel κ inst✝ : IsFiniteKernel ν a : α q : ℚ ⊢ ∀ (s : Set β), MeasurableSet s → (ν a) s < ⊤ → IntegrableOn (fun a_3 => f (a, a_3) q) s (ν a)
exact fun _ _ _ ↦ (hf.integrable a _).integrableOn
no goals
1a4c60aca8d6f13b
Sym2.mem_pmap_iff
Mathlib/Data/Sym/Sym2.lean
@[simp] lemma mem_pmap_iff {P : α → Prop} (f : ∀ a, P a → β) (z : Sym2 α) (h : ∀ a ∈ z, P a) (b : β) : b ∈ z.pmap f h ↔ ∃ (a : α) (ha : a ∈ z), b = f a (h a ha)
case h α : Type u_1 β : Type u_2 P : α → Prop f : (a : α) → P a → β b : β x y : α h : ∀ a ∈ s(x, y), P a ⊢ b ∈ pmap f s(x, y) h ↔ ∃ a, ∃ (ha : a ∈ s(x, y)), b = f a ⋯
rw [pmap_pair f x y h]
case h α : Type u_1 β : Type u_2 P : α → Prop f : (a : α) → P a → β b : β x y : α h : ∀ a ∈ s(x, y), P a ⊢ b ∈ s(f x ⋯, f y ⋯) ↔ ∃ a, ∃ (ha : a ∈ s(x, y)), b = f a ⋯
81eb87bfc55a6028
locallyConnectedSpace_iff_connectedComponentIn_open
Mathlib/Topology/Connected/LocallyConnected.lean
theorem locallyConnectedSpace_iff_connectedComponentIn_open : LocallyConnectedSpace α ↔ ∀ F : Set α, IsOpen F → ∀ x ∈ F, IsOpen (connectedComponentIn F x)
α : Type u inst✝ : TopologicalSpace α ⊢ LocallyConnectedSpace α ↔ ∀ (F : Set α), IsOpen F → ∀ x ∈ F, IsOpen (connectedComponentIn F x)
constructor
case mp α : Type u inst✝ : TopologicalSpace α ⊢ LocallyConnectedSpace α → ∀ (F : Set α), IsOpen F → ∀ x ∈ F, IsOpen (connectedComponentIn F x) case mpr α : Type u inst✝ : TopologicalSpace α ⊢ (∀ (F : Set α), IsOpen F → ∀ x ∈ F, IsOpen (connectedComponentIn F x)) → LocallyConnectedSpace α
2f496f7313e9e2c7
Std.DHashMap.Internal.List.getKey?_insertListConst_of_mem
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Internal/List/Associative.lean
theorem getKey?_insertListConst_of_mem [BEq α] [EquivBEq α] {l : List ((_ : α) × β)} {toInsert : List (α × β)} {k k' : α} (k_beq : k == k') (distinct_l : DistinctKeys l) (distinct_toInsert : toInsert.Pairwise (fun a b => (a.1 == b.1) = false)) (mem : k ∈ toInsert.map Prod.fst) : getKey? k' (insertListConst l toInsert) = some k
case distinct_toInsert α : Type u β : Type v inst✝¹ : BEq α inst✝ : EquivBEq α l : List ((_ : α) × β) toInsert : List (α × β) k k' : α k_beq : (k == k') = true distinct_l : DistinctKeys l distinct_toInsert : List.Pairwise (fun a b => (a.fst == b.fst) = false) toInsert mem : k ∈ List.map Prod.fst toInsert ⊢ List.Pairwise (fun a b => (a.fst == b.fst) = false) (List.map Prod.toSigma toInsert)
simpa [List.pairwise_map]
no goals
28a901ceec5fb004
Matroid.IsBase.mem_fundCocircuit_iff_mem_fundCircuit
Mathlib/Data/Matroid/Circuit.lean
/-- Fundamental circuits and cocircuits of a base `B` play dual roles; `e` belongs to the fundamental cocircuit for `B` and `f` if and only if `f` belongs to the fundamental circuit for `e` and `B`. This statement isn't so reasonable unless `f ∈ B` and `e ∉ B`, but holds due to junk values even without these assumptions. -/ lemma IsBase.mem_fundCocircuit_iff_mem_fundCircuit {e f : α} (hB : M.IsBase B) : e ∈ M.fundCocircuit f B ↔ f ∈ M.fundCircuit e B
case inr.inr.inr.intro α : Type u_1 M : Matroid α B : Set α hB : M.IsBase B e f : α he : M✶.Indep (insert f (M✶.E \ B) \ {e}) hne : e ≠ f hB'✝ : M✶.IsBase (M✶.E \ B) hfE : f ∈ M.E hfB : f ∈ B heE : e ∈ M.E heB : e ∉ B hB' : M.IsBase (M.E \ (insert f (M✶.E \ B) \ {e})) ⊢ insert e B ⊆ insert e (insert f (B \ {f}))
simp [hfB]
no goals
ba4cbc4ce0daa07a
AkraBazziRecurrence.GrowsPolynomially.rpow
Mathlib/Computability/AkraBazzi/GrowsPolynomially.lean
protected lemma GrowsPolynomially.rpow (p : ℝ) (hf : GrowsPolynomially f) (hf_nonneg : ∀ᶠ x in atTop, 0 ≤ f x) : GrowsPolynomially fun x => (f x) ^ p
f : ℝ → ℝ p : ℝ hf : GrowsPolynomially f hf_nonneg : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x b : ℝ hb : b ∈ Set.Ioo 0 1 c₁ : ℝ hc₁_mem : 0 < c₁ c₂ : ℝ hc₂_mem : c₂ > 0 hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x) hc₁p : 0 < c₁ ^ p hc₂p : 0 < c₂ ^ p hp : p < 0 hpos : ∀ᶠ (x : ℝ) in atTop, 0 < f x ⊢ ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, (fun x => f x ^ p) u ∈ Set.Icc (c₂ ^ p * (fun x => f x ^ p) x) (c₁ ^ p * (fun x => f x ^ p) x)
filter_upwards [eventually_gt_atTop 0, hfnew, hpos, (tendsto_id.const_mul_atTop hb.1).eventually_forall_ge_atTop hpos] with x _ hf₁ hf_pos hf_pos₂
case h f : ℝ → ℝ p : ℝ hf : GrowsPolynomially f hf_nonneg : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x b : ℝ hb : b ∈ Set.Ioo 0 1 c₁ : ℝ hc₁_mem : 0 < c₁ c₂ : ℝ hc₂_mem : c₂ > 0 hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x) hc₁p : 0 < c₁ ^ p hc₂p : 0 < c₂ ^ p hp : p < 0 hpos : ∀ᶠ (x : ℝ) in atTop, 0 < f x x : ℝ a✝ : 0 < x hf₁ : ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x) hf_pos : 0 < f x hf_pos₂ : ∀ (y : ℝ), b * id x ≤ y → 0 < f y ⊢ ∀ u ∈ Set.Icc (b * x) x, f u ^ p ∈ Set.Icc (c₂ ^ p * f x ^ p) (c₁ ^ p * f x ^ p)
cc486cdea8b0b615
Commute.pow_eq_pow_iff_of_coprime
Mathlib/Data/Int/GCD.lean
protected lemma Commute.pow_eq_pow_iff_of_coprime (hab : Commute a b) (hmn : m.Coprime n) : a ^ m = b ^ n ↔ ∃ c, a = c ^ n ∧ b = c ^ m
case pos α : Type u_1 inst✝ : GroupWithZero α a b : α m n : ℕ hab : Commute a b hmn : m.Coprime n h : a ^ m = b ^ n h✝ : m = 0 ⊢ ∃ c, a = c ^ n ∧ b = c ^ m
aesop
no goals
a6f86fafcc8e993a
MeasureTheory.integral_comp_rpow_Ioi
Mathlib/MeasureTheory/Integral/IntegralEqImproper.lean
theorem integral_comp_rpow_Ioi (g : ℝ → E) {p : ℝ} (hp : p ≠ 0) : (∫ x in Ioi 0, (|p| * x ^ (p - 1)) • g (x ^ p)) = ∫ y in Ioi 0, g y
case inl E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E g : ℝ → E p : ℝ hp : p ≠ 0 S : Set ℝ := Ioi 0 a1 : ∀ x ∈ S, HasDerivWithinAt (fun t => t ^ p) (p * x ^ (p - 1)) S x h : p < 0 ⊢ InjOn (fun x => x ^ p) S
apply StrictAntiOn.injOn
case inl.H E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E g : ℝ → E p : ℝ hp : p ≠ 0 S : Set ℝ := Ioi 0 a1 : ∀ x ∈ S, HasDerivWithinAt (fun t => t ^ p) (p * x ^ (p - 1)) S x h : p < 0 ⊢ StrictAntiOn (fun x => x ^ p) S
2e1724a0aef0efd0
RegularExpression.char_rmatch_iff
Mathlib/Computability/RegularExpressions.lean
theorem char_rmatch_iff (a : α) (x : List α) : rmatch (char a) x ↔ x = [a]
case cons.nil α : Type u_1 inst✝ : DecidableEq α a head✝ : α ⊢ (char a).rmatch [head✝] = true ↔ [head✝] = [a]
rw [rmatch, deriv, List.singleton_inj]
case cons.nil α : Type u_1 inst✝ : DecidableEq α a head✝ : α ⊢ (if a = head✝ then 1 else 0).rmatch [] = true ↔ head✝ = a
23bc4fc84fb55aa6
CategoryTheory.Functor.commShiftIso_add'
Mathlib/CategoryTheory/Shift/CommShift.lean
lemma commShiftIso_add' {a b c : A} (h : a + b = c) : F.commShiftIso c = CommShift.isoAdd' h (F.commShiftIso a) (F.commShiftIso b)
C : Type u_1 D : Type u_2 inst✝⁵ : Category.{u_7, u_1} C inst✝⁴ : Category.{u_6, u_2} D F : C ⥤ D A : Type u_4 inst✝³ : AddMonoid A inst✝² : HasShift C A inst✝¹ : HasShift D A inst✝ : F.CommShift A a b c : A h : a + b = c ⊢ F.commShiftIso c = CommShift.isoAdd' h (F.commShiftIso a) (F.commShiftIso b)
subst h
C : Type u_1 D : Type u_2 inst✝⁵ : Category.{u_7, u_1} C inst✝⁴ : Category.{u_6, u_2} D F : C ⥤ D A : Type u_4 inst✝³ : AddMonoid A inst✝² : HasShift C A inst✝¹ : HasShift D A inst✝ : F.CommShift A a b : A ⊢ F.commShiftIso (a + b) = CommShift.isoAdd' ⋯ (F.commShiftIso a) (F.commShiftIso b)
0c360e580cd4cf04
CategoryTheory.GrothendieckTopology.W_eq_W_range_sheafToPresheaf_obj
Mathlib/CategoryTheory/Sites/Localization.lean
lemma W_eq_W_range_sheafToPresheaf_obj : J.W = LeftBousfield.W (· ∈ Set.range (sheafToPresheaf J A).obj)
case h.h.a.mpr C : Type u_1 inst✝¹ : Category.{u_3, u_1} C J : GrothendieckTopology C A : Type u_2 inst✝ : Category.{u_4, u_2} A P : Cᵒᵖ ⥤ A ⊢ P ∈ Set.range (sheafToPresheaf J A).obj → Presheaf.IsSheaf J P
rintro ⟨F, rfl⟩
case h.h.a.mpr.intro C : Type u_1 inst✝¹ : Category.{u_3, u_1} C J : GrothendieckTopology C A : Type u_2 inst✝ : Category.{u_4, u_2} A F : Sheaf J A ⊢ Presheaf.IsSheaf J ((sheafToPresheaf J A).obj F)
9ae0a5f641cf1151
ascPochhammer_eval_neg_coe_nat_of_lt
Mathlib/RingTheory/Polynomial/Pochhammer.lean
theorem ascPochhammer_eval_neg_coe_nat_of_lt {n k : ℕ} (h : k < n) : (ascPochhammer R n).eval (-(k : R)) = 0
case succ.inr.inr R : Type u inst✝ : Ring R k n : ℕ ih : k < n → eval (-↑k) (ascPochhammer R n) = 0 h : k < n + 1 hkn : n < k ⊢ eval (-↑k) (ascPochhammer R n) * (-↑k + ↑n) = 0
omega
no goals
a05c0c4c7884ccf5
Computation.exists_of_mem_parallel
Mathlib/Data/Seq/Parallel.lean
theorem exists_of_mem_parallel {S : WSeq (Computation α)} {a} (h : a ∈ parallel S) : ∃ c ∈ S, a ∈ c
case cons.inr.inr.intro.intro.inl α : Type u S : WSeq (Computation α) a : α h✝ : a ∈ parallel S F : List (Computation α) → α ⊕ List (Computation α) → Prop := fun l a => Sum.casesOn a (fun a => ∃ c, c ∈ l ∧ a ∈ c) fun l' => ∀ (a' : α), (∃ c, c ∈ l' ∧ a' ∈ c) → ∃ c, c ∈ l ∧ a' ∈ c c : Computation α l val✝ : List (Computation α) IH : F l (Sum.inr val✝) c' : Computation α h : c.destruct = Sum.inr c' a' : α d : Computation α ad : a' ∈ c' e : d = c' ⊢ a' ∈ c'.think
exact think_mem ad
no goals
b380dbfafe118cb2
Order.pred_iterate
Mathlib/Algebra/Order/SuccPred.lean
theorem pred_iterate [AddCommGroupWithOne α] [PredSubOrder α] (x : α) (n : ℕ) : pred^[n] x = x - n
case zero α : Type u_1 inst✝² : Preorder α inst✝¹ : AddCommGroupWithOne α inst✝ : PredSubOrder α x : α ⊢ pred^[0] x = x - ↑0
rw [Function.iterate_zero_apply, Nat.cast_zero, sub_zero]
no goals
a9be6dc84df758d0
uniformCauchySeqOn_ball_of_fderiv
Mathlib/Analysis/Calculus/UniformLimitsDeriv.lean
theorem uniformCauchySeqOn_ball_of_fderiv {r : ℝ} (hf' : UniformCauchySeqOn f' l (Metric.ball x r)) (hf : ∀ n : ι, ∀ y : E, y ∈ Metric.ball x r → HasFDerivAt (f n) (f' n y) y) (hfg : Cauchy (map (fun n => f n x) l)) : UniformCauchySeqOn f l (Metric.ball x r)
case inr.left ι : Type u_1 l : Filter ι E : Type u_2 inst✝⁵ : NormedAddCommGroup E 𝕜 : Type u_3 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : IsRCLikeNormedField 𝕜 inst✝² : NormedSpace 𝕜 E G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace 𝕜 G f : ι → E → G f' : ι → E → E →L[𝕜] G x : E r : ℝ hf : ∀ (n : ι), ∀ y ∈ Metric.ball x r, HasFDerivAt (f n) (f' n y) y hfg : Cauchy (map (fun n => f n x) l) this✝¹ : RCLike 𝕜 := IsRCLikeNormedField.rclike 𝕜 hf' : ∀ ε > 0, ∀ᶠ (n : ι × ι) in l ×ˢ l, ∀ x_1 ∈ Metric.ball x r, dist (0 x_1) (f' n.1 x_1 - f' n.2 x_1) < ε this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E this : l.NeBot hr : 0 < r ε : ℝ hε : ε > 0 ⊢ ∀ᶠ (n : ι × ι) in l ×ˢ l, ∀ x_1 ∈ Metric.ball x r, dist (0 x_1) (f n.1 x_1 - f n.2 x_1 - (f n.1 x - f n.2 x)) < ε
obtain ⟨q, hqpos, hq⟩ : ∃ q : ℝ, 0 < q ∧ q * r < ε := by simp_rw [mul_comm] exact exists_pos_mul_lt hε.lt r
case inr.left.intro.intro ι : Type u_1 l : Filter ι E : Type u_2 inst✝⁵ : NormedAddCommGroup E 𝕜 : Type u_3 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : IsRCLikeNormedField 𝕜 inst✝² : NormedSpace 𝕜 E G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace 𝕜 G f : ι → E → G f' : ι → E → E →L[𝕜] G x : E r : ℝ hf : ∀ (n : ι), ∀ y ∈ Metric.ball x r, HasFDerivAt (f n) (f' n y) y hfg : Cauchy (map (fun n => f n x) l) this✝¹ : RCLike 𝕜 := IsRCLikeNormedField.rclike 𝕜 hf' : ∀ ε > 0, ∀ᶠ (n : ι × ι) in l ×ˢ l, ∀ x_1 ∈ Metric.ball x r, dist (0 x_1) (f' n.1 x_1 - f' n.2 x_1) < ε this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E this : l.NeBot hr : 0 < r ε : ℝ hε : ε > 0 q : ℝ hqpos : 0 < q hq : q * r < ε ⊢ ∀ᶠ (n : ι × ι) in l ×ˢ l, ∀ x_1 ∈ Metric.ball x r, dist (0 x_1) (f n.1 x_1 - f n.2 x_1 - (f n.1 x - f n.2 x)) < ε
982ef3c3832b9fcd
Nat.choose_le_middle_of_le_half_left
Mathlib/Data/Nat/Choose/Basic.lean
theorem choose_le_middle_of_le_half_left {n r : ℕ} (hr : r ≤ n / 2) : choose n r ≤ choose n (n / 2)
case of_succ n r k : ℕ hk : k < n / 2 ih : n.choose (k + 1) ≤ n.choose (n / 2) ⊢ n.choose k ≤ n.choose (n / 2)
exact (choose_le_succ_of_lt_half_left hk).trans ih
no goals
26f4fa89c0e23b03
StrictConvexOn.ae_eq_const_or_map_average_lt
Mathlib/Analysis/Convex/Integral.lean
theorem StrictConvexOn.ae_eq_const_or_map_average_lt [IsFiniteMeasure μ] (hg : StrictConvexOn ℝ s g) (hgc : ContinuousOn g s) (hsc : IsClosed s) (hfs : ∀ᵐ x ∂μ, f x ∈ s) (hfi : Integrable f μ) (hgi : Integrable (g ∘ f) μ) : f =ᵐ[μ] const α (⨍ x, f x ∂μ) ∨ g (⨍ x, f x ∂μ) < ⨍ x, g (f x) ∂μ
case intro.intro.intro.intro α : Type u_1 E : Type u_2 m0 : MeasurableSpace α inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure α s : Set E f : α → E g : E → ℝ inst✝ : IsFiniteMeasure μ hg : StrictConvexOn ℝ s g hgc : ContinuousOn g s hsc : IsClosed s hfs : ∀ᵐ (x : α) ∂μ, f x ∈ s hfi : Integrable f μ hgi : Integrable (g ∘ f) μ this : ∀ {t : Set α}, μ t ≠ 0 → ⨍ (x : α) in t, f x ∂μ ∈ s ∧ g (⨍ (x : α) in t, f x ∂μ) ≤ ⨍ (x : α) in t, g (f x) ∂μ t : Set α hm : MeasurableSet t h₀ : μ t ≠ 0 h₀' : μ tᶜ ≠ 0 hne : ⨍ (x : α) in t, f x ∂μ ≠ ⨍ (x : α) in tᶜ, f x ∂μ ⊢ g (⨍ (x : α), f x ∂μ) < ⨍ (x : α), g (f x) ∂μ
rcases average_mem_openSegment_compl_self hm.nullMeasurableSet h₀ h₀' (hfi.prod_mk hgi) with ⟨a, b, ha, hb, hab, h_avg⟩
case intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 E : Type u_2 m0 : MeasurableSpace α inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure α s : Set E f : α → E g : E → ℝ inst✝ : IsFiniteMeasure μ hg : StrictConvexOn ℝ s g hgc : ContinuousOn g s hsc : IsClosed s hfs : ∀ᵐ (x : α) ∂μ, f x ∈ s hfi : Integrable f μ hgi : Integrable (g ∘ f) μ this : ∀ {t : Set α}, μ t ≠ 0 → ⨍ (x : α) in t, f x ∂μ ∈ s ∧ g (⨍ (x : α) in t, f x ∂μ) ≤ ⨍ (x : α) in t, g (f x) ∂μ t : Set α hm : MeasurableSet t h₀ : μ t ≠ 0 h₀' : μ tᶜ ≠ 0 hne : ⨍ (x : α) in t, f x ∂μ ≠ ⨍ (x : α) in tᶜ, f x ∂μ a b : ℝ ha : 0 < a hb : 0 < b hab : a + b = 1 h_avg : a • ⨍ (x : α) in t, (f x, (g ∘ f) x) ∂μ + b • ⨍ (x : α) in tᶜ, (f x, (g ∘ f) x) ∂μ = ⨍ (x : α), (f x, (g ∘ f) x) ∂μ ⊢ g (⨍ (x : α), f x ∂μ) < ⨍ (x : α), g (f x) ∂μ
444c949c6a58f0aa
LieSubmodule.lieIdeal_oper_eq_linear_span'
Mathlib/Algebra/Lie/IdealOperations.lean
theorem lieIdeal_oper_eq_linear_span' [LieModule R L M] : (↑⁅I, N⁆ : Submodule R M) = Submodule.span R { ⁅x, n⁆ | (x ∈ I) (n ∈ N) }
case e_s.h.mp R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : LieRingModule L M N : LieSubmodule R L M inst✝¹ : LieAlgebra R L I : LieIdeal R L inst✝ : LieModule R L M m : M ⊢ m ∈ {x | ∃ x_1 n, ⁅↑x_1, ↑n⁆ = x} → m ∈ {x | ∃ x_1 ∈ I, ∃ n ∈ N, ⁅x_1, n⁆ = x}
rintro ⟨⟨x, hx⟩, ⟨n, hn⟩, rfl⟩
case e_s.h.mp.intro.mk.intro.mk R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : LieRingModule L M N : LieSubmodule R L M inst✝¹ : LieAlgebra R L I : LieIdeal R L inst✝ : LieModule R L M x : L hx : x ∈ I n : M hn : n ∈ N ⊢ ⁅↑⟨x, hx⟩, ↑⟨n, hn⟩⁆ ∈ {x | ∃ x_1 ∈ I, ∃ n ∈ N, ⁅x_1, n⁆ = x}
36507cbeea573138
Matrix.trace_conj'
Mathlib/LinearAlgebra/Matrix/NonsingularInverse.lean
theorem trace_conj' {M : Matrix m m α} (h : IsUnit M) (N : Matrix m m α) : trace (M⁻¹ * N * M) = trace N
m : Type u α : Type v inst✝² : CommRing α inst✝¹ : Fintype m inst✝ : DecidableEq m M : Matrix m m α h : IsUnit M N : Matrix m m α ⊢ (M⁻¹ * N * M).trace = N.trace
rw [← h.unit_spec, ← coe_units_inv, trace_units_conj']
no goals
11436d193d30d3c3
Equiv.sigmaCongrRight_sigmaEquivProd
Mathlib/Logic/Equiv/Basic.lean
theorem sigmaCongrRight_sigmaEquivProd : (sigmaCongrRight e).trans (sigmaEquivProd α₁ β₂) = (sigmaEquivProd α₁ β₁).trans (prodCongrRight e)
case H.mk α₁ : Type u_9 β₁ : Type u_11 β₂ : Type u_12 e : α₁ → β₁ ≃ β₂ a : α₁ b : β₁ ⊢ ((sigmaCongrRight e).trans (sigmaEquivProd α₁ β₂)) ⟨a, b⟩ = ((sigmaEquivProd α₁ β₁).trans (prodCongrRight e)) ⟨a, b⟩
simp
no goals
97976782b908e05a
isPrimePow_pow_iff
Mathlib/Data/Nat/Factorization/PrimePow.lean
theorem isPrimePow_pow_iff {n k : ℕ} (hk : k ≠ 0) : IsPrimePow (n ^ k) ↔ IsPrimePow n
case h n k : ℕ hk : k ≠ 0 p : ℕ hp : Nat.Prime p ⊢ p ∣ n ^ k ↔ p ∣ n
exact ⟨hp.dvd_of_dvd_pow, fun t => t.trans (dvd_pow_self _ hk)⟩
no goals
da98ff94f5a183d6
MeasureTheory.Measure.singularPart_smul_right
Mathlib/MeasureTheory/Decomposition/Lebesgue.lean
theorem singularPart_smul_right (μ ν : Measure α) (r : ℝ≥0) (hr : r ≠ 0) : μ.singularPart (r • ν) = μ.singularPart ν
case h.e'_3.h.e'_6.h.e'_4.h α : Type u_1 m : MeasurableSpace α μ ν : Measure α r : ℝ≥0 hr : r ≠ 0 hl : μ.HaveLebesgueDecomposition ν x : α ⊢ (↑r • r⁻¹ • μ.rnDeriv ν) x = μ.rnDeriv ν x
simp only [Pi.smul_apply]
case h.e'_3.h.e'_6.h.e'_4.h α : Type u_1 m : MeasurableSpace α μ ν : Measure α r : ℝ≥0 hr : r ≠ 0 hl : μ.HaveLebesgueDecomposition ν x : α ⊢ ↑r • r⁻¹ • μ.rnDeriv ν x = μ.rnDeriv ν x
ba33040902f46823
Polynomial.ringHom_ext
Mathlib/Algebra/Polynomial/Monomial.lean
theorem ringHom_ext {S} [Semiring S] {f g : R[X] →+* S} (h₁ : ∀ a, f (C a) = g (C a)) (h₂ : f X = g X) : f = g
R : Type u inst✝¹ : Semiring R S : Type u_1 inst✝ : Semiring S f g : R[X] →+* S h₁ : ∀ (a : R), f (C a) = g (C a) h₂ : f X = g X f' : AddMonoidAlgebra R ℕ →+* S := f.comp (toFinsuppIso R).symm.toRingHom hf' : f' = f.comp (toFinsuppIso R).symm.toRingHom g' : AddMonoidAlgebra R ℕ →+* S := g.comp (toFinsuppIso R).symm.toRingHom hg' : g' = g.comp (toFinsuppIso R).symm.toRingHom A : f' = g' B : f = f'.comp ↑(toFinsuppIso R) ⊢ f = g
have C' : g = g'.comp (toFinsuppIso R) := by rw [hg', RingHom.comp_assoc] ext x simp only [RingEquiv.toRingHom_eq_coe, RingEquiv.symm_apply_apply, Function.comp_apply, RingHom.coe_comp, RingEquiv.coe_toRingHom]
R : Type u inst✝¹ : Semiring R S : Type u_1 inst✝ : Semiring S f g : R[X] →+* S h₁ : ∀ (a : R), f (C a) = g (C a) h₂ : f X = g X f' : AddMonoidAlgebra R ℕ →+* S := f.comp (toFinsuppIso R).symm.toRingHom hf' : f' = f.comp (toFinsuppIso R).symm.toRingHom g' : AddMonoidAlgebra R ℕ →+* S := g.comp (toFinsuppIso R).symm.toRingHom hg' : g' = g.comp (toFinsuppIso R).symm.toRingHom A : f' = g' B : f = f'.comp ↑(toFinsuppIso R) C' : g = g'.comp ↑(toFinsuppIso R) ⊢ f = g
0a7f72cbc18ffb89
Real.cos_lt_one_div_sqrt_sq_add_one
Mathlib/Analysis/SpecialFunctions/Trigonometric/Bounds.lean
theorem cos_lt_one_div_sqrt_sq_add_one {x : ℝ} (hx1 : -(3 * π / 2) ≤ x) (hx2 : x ≤ 3 * π / 2) (hx3 : x ≠ 0) : cos x < (1 / √(x ^ 2 + 1) : ℝ)
x : ℝ hx1 : -(3 * π / 2) ≤ x hx2 : x ≤ 3 * π / 2 hx3 : x ≠ 0 this : ∀ {y : ℝ}, 0 < y → y ≤ 3 * π / 2 → cos y < 1 / √(y ^ 2 + 1) h✝ : x < 0 ⊢ 0 < -x
linarith
no goals
f405817ae92adc5b
sdiff_sup
Mathlib/Order/BooleanAlgebra.lean
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z)
α : Type u x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) = ⊥
rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, inf_comm (y \ z), inf_inf_sdiff, inf_bot_eq]
no goals
d036844b47839f50
Besicovitch.exists_closedBall_covering_tsum_measure_le
Mathlib/MeasureTheory/Covering/Besicovitch.lean
theorem exists_closedBall_covering_tsum_measure_le (μ : Measure α) [SFinite μ] [Measure.OuterRegular μ] {ε : ℝ≥0∞} (hε : ε ≠ 0) (f : α → Set ℝ) (s : Set α) (hf : ∀ x ∈ s, ∀ δ > 0, (f x ∩ Ioo 0 δ).Nonempty) : ∃ (t : Set α) (r : α → ℝ), t.Countable ∧ t ⊆ s ∧ (∀ x ∈ t, r x ∈ f x) ∧ (s ⊆ ⋃ x ∈ t, closedBall x (r x)) ∧ (∑' x : t, μ (closedBall x (r x))) ≤ μ s + ε
case intro.intro.intro α : Type u_1 inst✝⁶ : MetricSpace α inst✝⁵ : SecondCountableTopology α inst✝⁴ : MeasurableSpace α inst✝³ : OpensMeasurableSpace α inst✝² : HasBesicovitchCovering α μ : Measure α inst✝¹ : SFinite μ inst✝ : μ.OuterRegular ε : ℝ≥0∞ hε : ε ≠ 0 f : α → Set ℝ s : Set α hf : ∀ x ∈ s, ∀ δ > 0, (f x ∩ Ioo 0 δ).Nonempty u : Set α su : u ⊇ s u_open : IsOpen u μu : μ u ≤ μ s + ε / 2 R : α → ℝ hR : ∀ x ∈ s, R x > 0 ∧ ball x (R x) ⊆ u ⊢ ∃ t r, t.Countable ∧ t ⊆ s ∧ (∀ x ∈ t, r x ∈ f x) ∧ s ⊆ ⋃ x ∈ t, closedBall x (r x) ∧ ∑' (x : ↑t), μ (closedBall (↑x) (r ↑x)) ≤ μ s + ε
obtain ⟨t0, r0, t0_count, t0s, hr0, μt0, t0_disj⟩ : ∃ (t0 : Set α) (r0 : α → ℝ), t0.Countable ∧ t0 ⊆ s ∧ (∀ x ∈ t0, r0 x ∈ f x ∩ Ioo 0 (R x)) ∧ μ (s \ ⋃ x ∈ t0, closedBall x (r0 x)) = 0 ∧ t0.PairwiseDisjoint fun x => closedBall x (r0 x) := exists_disjoint_closedBall_covering_ae μ f s hf R fun x hx => (hR x hx).1
case intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 inst✝⁶ : MetricSpace α inst✝⁵ : SecondCountableTopology α inst✝⁴ : MeasurableSpace α inst✝³ : OpensMeasurableSpace α inst✝² : HasBesicovitchCovering α μ : Measure α inst✝¹ : SFinite μ inst✝ : μ.OuterRegular ε : ℝ≥0∞ hε : ε ≠ 0 f : α → Set ℝ s : Set α hf : ∀ x ∈ s, ∀ δ > 0, (f x ∩ Ioo 0 δ).Nonempty u : Set α su : u ⊇ s u_open : IsOpen u μu : μ u ≤ μ s + ε / 2 R : α → ℝ hR : ∀ x ∈ s, R x > 0 ∧ ball x (R x) ⊆ u t0 : Set α r0 : α → ℝ t0_count : t0.Countable t0s : t0 ⊆ s hr0 : ∀ x ∈ t0, r0 x ∈ f x ∩ Ioo 0 (R x) μt0 : μ (s \ ⋃ x ∈ t0, closedBall x (r0 x)) = 0 t0_disj : t0.PairwiseDisjoint fun x => closedBall x (r0 x) ⊢ ∃ t r, t.Countable ∧ t ⊆ s ∧ (∀ x ∈ t, r x ∈ f x) ∧ s ⊆ ⋃ x ∈ t, closedBall x (r x) ∧ ∑' (x : ↑t), μ (closedBall (↑x) (r ↑x)) ≤ μ s + ε
181682c2ed74f98b
WeierstrassCurve.exists_variableChange_of_char_two
Mathlib/AlgebraicGeometry/EllipticCurve/IsomOfJ.lean
private lemma exists_variableChange_of_char_two (heq : E.j = E'.j) : ∃ C : VariableChange F, E.variableChange C = E'
case intro.of_j_ne_zero.intro.of_j_eq_zero F : Type u_1 inst✝⁶ : Field F inst✝⁵ : IsSepClosed F E E' : WeierstrassCurve F inst✝⁴ : E.IsElliptic inst✝³ : E'.IsElliptic inst✝² : CharP F 2 heq : E.j = E'.j C : VariableChange F inst✝¹ : (E.variableChange C).IsCharTwoJNeZeroNF C' : VariableChange F inst✝ : (E'.variableChange C').IsCharTwoJEqZeroNF ⊢ ∃ C, E.variableChange C = E'
have h := (E.variableChange C).j_ne_zero_of_isCharTwoJNeZeroNF_of_char_two
case intro.of_j_ne_zero.intro.of_j_eq_zero F : Type u_1 inst✝⁶ : Field F inst✝⁵ : IsSepClosed F E E' : WeierstrassCurve F inst✝⁴ : E.IsElliptic inst✝³ : E'.IsElliptic inst✝² : CharP F 2 heq : E.j = E'.j C : VariableChange F inst✝¹ : (E.variableChange C).IsCharTwoJNeZeroNF C' : VariableChange F inst✝ : (E'.variableChange C').IsCharTwoJEqZeroNF h : (E.variableChange C).j ≠ 0 ⊢ ∃ C, E.variableChange C = E'
777fc2b6b6b2f928
Std.Tactic.BVDecide.BVExpr.bitblast.blastZeroExtend.go_denote_eq
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Circuit/Lemmas/Operations/ZeroExtend.lean
theorem go_denote_eq (aig : AIG α) (w : Nat) (input : AIG.RefVec aig w) (newWidth curr : Nat) (hcurr : curr ≤ newWidth) (s : AIG.RefVec aig curr) (assign : α → Bool) : ∀ (idx : Nat) (hidx1 : idx < newWidth), curr ≤ idx → ⟦ (go aig w input newWidth curr hcurr s).aig, (go aig w input newWidth curr hcurr s).vec.get idx hidx1, assign ⟧ = if hidx : idx < w then ⟦aig, input.get idx hidx, assign⟧ else false
case isTrue.inr.isFalse.isFalse α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α aig : AIG α w : Nat input : aig.RefVec w newWidth curr : Nat hcurr : curr ≤ newWidth s : aig.RefVec curr assign : α → Bool idx : Nat hidx1 : idx < newWidth hidx2 : curr ≤ idx res : RefVecEntry α newWidth h✝³ : curr < newWidth h✝² : curr < idx h✝¹ : ¬curr < w hgo : go (aig.mkConstCached false).aig w (input.cast ⋯) newWidth (curr + 1) ⋯ ((s.cast ⋯).push (aig.mkConstCached false).ref) = res h✝ : ¬idx < w ⊢ false = false
rfl
no goals
4f5d95c54c74e073
IsLocalization.surj''
Mathlib/RingTheory/Localization/InvSubmonoid.lean
theorem surj'' (z : S) : ∃ (r : R) (m : M), z = r • (toInvSubmonoid M S m : S)
case intro.mk R : Type u_1 inst✝³ : CommRing R M : Submonoid R S : Type u_2 inst✝² : CommRing S inst✝¹ : Algebra R S inst✝ : IsLocalization M S z : S r : R m : ↥M e : z * (algebraMap R S) ↑(r, m).2 = (algebraMap R S) r ⊢ z = r • ↑((toInvSubmonoid M S) m)
rw [Algebra.smul_def, ← e, mul_assoc]
case intro.mk R : Type u_1 inst✝³ : CommRing R M : Submonoid R S : Type u_2 inst✝² : CommRing S inst✝¹ : Algebra R S inst✝ : IsLocalization M S z : S r : R m : ↥M e : z * (algebraMap R S) ↑(r, m).2 = (algebraMap R S) r ⊢ z = z * ((algebraMap R S) ↑(r, m).2 * ↑((toInvSubmonoid M S) m))
de1a619505f23744
Complex.norm_exp_ofReal
Mathlib/Data/Complex/Exponential.lean
theorem norm_exp_ofReal (x : ℝ) : ‖exp x‖ = Real.exp x
x : ℝ ⊢ ‖↑(Real.exp x)‖ = Real.exp x
exact Complex.norm_of_nonneg (le_of_lt (Real.exp_pos _))
no goals
aa9d89e7b46b7208
MeasureTheory.integral_trim_simpleFunc
Mathlib/MeasureTheory/Integral/Bochner.lean
theorem integral_trim_simpleFunc (hm : m ≤ m0) (f : @SimpleFunc β m F) (hf_int : Integrable f μ) : ∫ x, f x ∂μ = ∫ x, f x ∂μ.trim hm
F : Type u_3 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F β : Type u_6 m m0 : MeasurableSpace β μ : Measure β hm : m ≤ m0 f : β →ₛ F hf_int : Integrable (⇑f) μ hf : StronglyMeasurable ⇑f hf_int_m : Integrable (⇑f) (μ.trim hm) ⊢ ∫ (x : β), f x ∂μ = ∫ (x : β), f x ∂μ.trim hm
rw [integral_simpleFunc_larger_space (le_refl m) f hf_int_m, integral_simpleFunc_larger_space hm f hf_int]
F : Type u_3 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F β : Type u_6 m m0 : MeasurableSpace β μ : Measure β hm : m ≤ m0 f : β →ₛ F hf_int : Integrable (⇑f) μ hf : StronglyMeasurable ⇑f hf_int_m : Integrable (⇑f) (μ.trim hm) ⊢ ∑ x ∈ f.range, (μ (⇑f ⁻¹' {x})).toReal • x = ∑ x ∈ f.range, ((μ.trim hm) (⇑f ⁻¹' {x})).toReal • x
adb2d33a8f6ec844
RingHom.FormallyUnramified.ofLocalizationPrime
Mathlib/RingTheory/RingHom/Unramified.lean
lemma ofLocalizationPrime : OfLocalizationPrime FormallyUnramified
⊢ OfLocalizationPrime fun {R S} [CommRing R] [CommRing S] => FormallyUnramified
intros R S _ _ f H
R S : Type u_3 inst✝¹ : CommRing R inst✝ : CommRing S f : R →+* S H : ∀ (J : Ideal S) (x : J.IsPrime), (fun {R S} [CommRing R] [CommRing S] => FormallyUnramified) (Localization.localRingHom (Ideal.comap f J) J f ⋯) ⊢ f.FormallyUnramified
4a1b7e80bb139389
maximal_orthonormal_iff_orthogonalComplement_eq_bot
Mathlib/Analysis/InnerProductSpace/Projection.lean
theorem maximal_orthonormal_iff_orthogonalComplement_eq_bot (hv : Orthonormal 𝕜 ((↑) : v → E)) : (∀ u ⊇ v, Orthonormal 𝕜 ((↑) : u → E) → u = v) ↔ (span 𝕜 v)ᗮ = ⊥
case mp.intro.intro 𝕜 : Type u_1 E : Type u_2 inst✝² : RCLike 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E v : Set E hv : Orthonormal 𝕜 Subtype.val x : E hx' : x ∈ (span 𝕜 v)ᗮ hx : x ≠ 0 e : E := (↑‖x‖)⁻¹ • x he : ‖e‖ = 1 he' : e ∈ (span 𝕜 v)ᗮ he'' : e ∉ v ⊢ ∃ u ⊇ v, Orthonormal 𝕜 Subtype.val ∧ u ≠ v
refine ⟨insert e v, v.subset_insert e, ⟨?_, ?_⟩, (ne_insert_of_not_mem v he'').symm⟩
case mp.intro.intro.refine_1 𝕜 : Type u_1 E : Type u_2 inst✝² : RCLike 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E v : Set E hv : Orthonormal 𝕜 Subtype.val x : E hx' : x ∈ (span 𝕜 v)ᗮ hx : x ≠ 0 e : E := (↑‖x‖)⁻¹ • x he : ‖e‖ = 1 he' : e ∈ (span 𝕜 v)ᗮ he'' : e ∉ v ⊢ ∀ (i : { x // x ∈ insert e v }), ‖↑i‖ = 1 case mp.intro.intro.refine_2 𝕜 : Type u_1 E : Type u_2 inst✝² : RCLike 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E v : Set E hv : Orthonormal 𝕜 Subtype.val x : E hx' : x ∈ (span 𝕜 v)ᗮ hx : x ≠ 0 e : E := (↑‖x‖)⁻¹ • x he : ‖e‖ = 1 he' : e ∈ (span 𝕜 v)ᗮ he'' : e ∉ v ⊢ Pairwise fun i j => ⟪↑i, ↑j⟫_𝕜 = 0
ce0a185108c33220