name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
IsSimpleRing.isField_center
Mathlib/RingTheory/SimpleRing/Field.lean
lemma isField_center (A : Type*) [Ring A] [IsSimpleRing A] : IsField (Subring.center A) where exists_pair_ne := ⟨0, 1, zero_ne_one⟩ mul_comm := mul_comm mul_inv_cancel
case a A : Type u_1 inst✝¹ : Ring A inst✝ : IsSimpleRing A x : A hx1✝ : x ∈ Subring.center A hx1 : ∀ (g : A), g * x = x * g hx2 : x ≠ 0 I : TwoSidedIdeal A := mk' (Set.range fun x_1 => x * x_1) ⋯ ⋯ ⋯ ⋯ ⋯ y : A hy : x * y = 1 ⊢ ↑(⟨x, hx1✝⟩ * ⟨y, ⋯⟩) = ↑1
exact hy
no goals
08d555f2a5a9e7b4
FiniteMultiplicity.not_pow_dvd_of_multiplicity_lt
Mathlib/RingTheory/Multiplicity.lean
theorem FiniteMultiplicity.not_pow_dvd_of_multiplicity_lt (hf : FiniteMultiplicity a b) {m : ℕ} (hm : multiplicity a b < m) : ¬a ^ m ∣ b
case hm α : Type u_1 inst✝ : Monoid α a b : α hf : FiniteMultiplicity a b m : ℕ hm : multiplicity a b < m ⊢ ↑(multiplicity a b) < ↑m
norm_cast
no goals
8a0c58939e3c5124
Polynomial.trailingDegree_mul
Mathlib/Algebra/Polynomial/RingDivision.lean
theorem trailingDegree_mul : (p * q).trailingDegree = p.trailingDegree + q.trailingDegree
case neg R : Type u inst✝¹ : Semiring R inst✝ : NoZeroDivisors R p q : R[X] hp : ¬p = 0 hq : ¬q = 0 ⊢ ↑(p.natTrailingDegree + q.natTrailingDegree) = ↑p.natTrailingDegree + ↑q.natTrailingDegree
apply WithTop.coe_add
no goals
c261f6a7f5279160
RightDerivMeasurableAux.D_subset_differentiable_set
Mathlib/Analysis/Calculus/FDeriv/Measurable.lean
theorem D_subset_differentiable_set {K : Set F} (hK : IsComplete K) : D f K ⊆ { x | DifferentiableWithinAt ℝ f (Ici x) x ∧ derivWithin f (Ici x) x ∈ K }
F : Type u_1 inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace ℝ F f : ℝ → F K : Set F hK : IsComplete K P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n x : ℝ hx : x ∈ D f K n : ℕ → ℕ L : ℕ → ℕ → ℕ → F hn : ∀ (e p q : ℕ), n e ≤ p → n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e) e p q e' p' q' : ℕ hp : n e ≤ p hq : n e ≤ q hp' : n e' ≤ p' hq' : n e' ≤ q' he' : e ≤ e' r : ℕ := n e ⊔ n e' I : (1 / 2) ^ e' ≤ (1 / 2) ^ e J1 : ‖L e p q - L e p r‖ ≤ 4 * (1 / 2) ^ e J2 : ‖L e p r - L e' p' r‖ ≤ 4 * (1 / 2) ^ e ⊢ ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
have J3 : ‖L e' p' r - L e' p' q'‖ ≤ 4 * (1 / 2) ^ e := by have I1 : x ∈ A f (L e' p' r) ((1 / 2) ^ p') ((1 / 2) ^ e') := (hn e' p' r hp' (le_max_right _ _)).2.1 have I2 : x ∈ A f (L e' p' q') ((1 / 2) ^ p') ((1 / 2) ^ e') := (hn e' p' q' hp' hq').2.1 exact norm_sub_le_of_mem_A P _ (A_mono _ _ I I1) (A_mono _ _ I I2)
F : Type u_1 inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace ℝ F f : ℝ → F K : Set F hK : IsComplete K P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n x : ℝ hx : x ∈ D f K n : ℕ → ℕ L : ℕ → ℕ → ℕ → F hn : ∀ (e p q : ℕ), n e ≤ p → n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e) e p q e' p' q' : ℕ hp : n e ≤ p hq : n e ≤ q hp' : n e' ≤ p' hq' : n e' ≤ q' he' : e ≤ e' r : ℕ := n e ⊔ n e' I : (1 / 2) ^ e' ≤ (1 / 2) ^ e J1 : ‖L e p q - L e p r‖ ≤ 4 * (1 / 2) ^ e J2 : ‖L e p r - L e' p' r‖ ≤ 4 * (1 / 2) ^ e J3 : ‖L e' p' r - L e' p' q'‖ ≤ 4 * (1 / 2) ^ e ⊢ ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
807a865e58286923
MvQPF.Fix.dest_mk
Mathlib/Data/QPF/Multivariate/Constructions/Fix.lean
theorem Fix.dest_mk (x : F (append1 α (Fix F α))) : Fix.dest (Fix.mk x) = x
n : ℕ F : TypeVec.{u} (n + 1) → Type u q : MvQPF F α : TypeVec.{u} n x : F (α ::: Fix F α) ⊢ mk ∘ dest = _root_.id
ext (x : Fix F α)
case h n : ℕ F : TypeVec.{u} (n + 1) → Type u q : MvQPF F α : TypeVec.{u} n x✝ : F (α ::: Fix F α) x : Fix F α ⊢ (mk ∘ dest) x = _root_.id x
8fb388f4bdc9d3ad
Valued.cauchy_iff
Mathlib/Topology/Algebra/Valued/ValuationTopology.lean
theorem cauchy_iff {F : Filter R} : Cauchy F ↔ F.NeBot ∧ ∀ γ : Γ₀ˣ, ∃ M ∈ F, ∀ᵉ (x ∈ M) (y ∈ M), (v (y - x) : Γ₀) < γ
case mpr.intro R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ _i : Valued R Γ₀ F : Filter R h : ∀ (γ : Γ₀ˣ), ∃ M ∈ F, ∀ x ∈ M, ∀ y ∈ M, v (y - x) < ↑γ γ : Γ₀ˣ ⊢ ∃ M ∈ F, ∀ x ∈ M, ∀ y ∈ M, y - x ∈ ↑(v.ltAddSubgroup γ)
exact h γ
no goals
b2f003a68b1d7766
UniqueFactorizationMonoid.le_emultiplicity_iff_replicate_le_normalizedFactors
Mathlib/RingTheory/UniqueFactorizationDomain/Multiplicity.lean
theorem le_emultiplicity_iff_replicate_le_normalizedFactors {a b : R} {n : ℕ} (ha : Irreducible a) (hb : b ≠ 0) : ↑n ≤ emultiplicity a b ↔ replicate n (normalize a) ≤ normalizedFactors b
case succ.mpr R : Type u_2 inst✝² : CancelCommMonoidWithZero R inst✝¹ : UniqueFactorizationMonoid R inst✝ : NormalizationMonoid R a : R ha : Irreducible a n : ℕ ih : ∀ {b : R}, b ≠ 0 → (a ^ n ∣ b ↔ replicate n (normalize a) ≤ normalizedFactors b) b : R hb : b ≠ 0 ⊢ replicate (n + 1) (normalize a) ≤ normalizedFactors b → a ^ (n + 1) ∣ b
rw [Multiset.le_iff_exists_add]
case succ.mpr R : Type u_2 inst✝² : CancelCommMonoidWithZero R inst✝¹ : UniqueFactorizationMonoid R inst✝ : NormalizationMonoid R a : R ha : Irreducible a n : ℕ ih : ∀ {b : R}, b ≠ 0 → (a ^ n ∣ b ↔ replicate n (normalize a) ≤ normalizedFactors b) b : R hb : b ≠ 0 ⊢ (∃ u, normalizedFactors b = replicate (n + 1) (normalize a) + u) → a ^ (n + 1) ∣ b
c787fb02983994e3
Ideal.map_sInf
Mathlib/RingTheory/Ideal/Maps.lean
theorem map_sInf {A : Set (Ideal R)} {f : F} (hf : Function.Surjective f) : (∀ J ∈ A, RingHom.ker f ≤ J) → map f (sInf A) = sInf (map f '' A)
case refine_2 R : Type u_1 S : Type u_2 F : Type u_3 inst✝² : Ring R inst✝¹ : Ring S inst✝ : FunLike F R S rc : RingHomClass F R S A : Set (Ideal R) f : F hf : Function.Surjective ⇑f h : ∀ J ∈ A, RingHom.ker f ≤ J y : S hy : y ∈ sInf (map f '' A) ⊢ y ∈ map f (sInf A)
obtain ⟨x, hx⟩ := hf y
case refine_2.intro R : Type u_1 S : Type u_2 F : Type u_3 inst✝² : Ring R inst✝¹ : Ring S inst✝ : FunLike F R S rc : RingHomClass F R S A : Set (Ideal R) f : F hf : Function.Surjective ⇑f h : ∀ J ∈ A, RingHom.ker f ≤ J y : S hy : y ∈ sInf (map f '' A) x : R hx : f x = y ⊢ y ∈ map f (sInf A)
e404a4c82d5f962e
MeasureTheory.hasFDerivAt_convolution_right_with_param
Mathlib/Analysis/Convolution.lean
theorem hasFDerivAt_convolution_right_with_param {g : P → G → E'} {s : Set P} {k : Set G} (hs : IsOpen s) (hk : IsCompact k) (hgs : ∀ p, ∀ x, p ∈ s → x ∉ k → g p x = 0) (hf : LocallyIntegrable f μ) (hg : ContDiffOn 𝕜 1 (↿g) (s ×ˢ univ)) (q₀ : P × G) (hq₀ : q₀.1 ∈ s) : HasFDerivAt (fun q : P × G => (f ⋆[L, μ] g q.1) q.2) ((f ⋆[L.precompR (P × G), μ] fun x : G => fderiv 𝕜 (↿g) (q₀.1, x)) q₀.2) q₀
case pos 𝕜 : Type u𝕜 G : Type uG E : Type uE E' : Type uE' F : Type uF P : Type uP inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedAddCommGroup E' inst✝¹¹ : NormedAddCommGroup F f : G → E inst✝¹⁰ : RCLike 𝕜 inst✝⁹ : NormedSpace 𝕜 E inst✝⁸ : NormedSpace 𝕜 E' inst✝⁷ : NormedSpace ℝ F inst✝⁶ : NormedSpace 𝕜 F inst✝⁵ : MeasurableSpace G inst✝⁴ : NormedAddCommGroup G inst✝³ : BorelSpace G inst✝² : NormedSpace 𝕜 G inst✝¹ : NormedAddCommGroup P inst✝ : NormedSpace 𝕜 P μ : Measure G L : E →L[𝕜] E' →L[𝕜] F g : P → G → E' s : Set P k : Set G hs : IsOpen s hk : IsCompact k hgs : ∀ (p : P) (x : G), p ∈ s → x ∉ k → g p x = 0 hf : LocallyIntegrable f μ hg : ContDiffOn 𝕜 1 (↿g) (s ×ˢ univ) q₀ : P × G hq₀ : q₀.1 ∈ s g' : P × G → P × G →L[𝕜] E' := fderiv 𝕜 ↿g A✝ : ∀ p ∈ s, Continuous (g p) A' : ∀ (q : P × G), q.1 ∈ s → s ×ˢ univ ∈ 𝓝 q g'_zero : ∀ (p : P) (x : G), p ∈ s → x ∉ k → g' (p, x) = 0 A : IsCompact ({q₀.1} ×ˢ k) t : Set (P × G) kt : {q₀.1} ×ˢ k ⊆ t t_open : IsOpen t ht : Bornology.IsBounded (g' '' t) ε : ℝ εpos : 0 < ε hε : thickening ε ({q₀.1} ×ˢ k) ⊆ t h'ε : ball q₀.1 ε ⊆ s C : ℝ Cpos : 0 < C hC : g' '' t ⊆ closedBall 0 C p : P x : G hp : ‖p - q₀.1‖ < ε hps : p ∈ s hx : x ∈ k H : (p, x) ∈ t this : g' (p, x) ∈ closedBall 0 C ⊢ ‖g' (p, x)‖ ≤ C
rwa [mem_closedBall_zero_iff] at this
no goals
681ec723c7fd0b70
cauchy_map_of_uniformCauchySeqOn_fderiv
Mathlib/Analysis/Calculus/UniformLimitsDeriv.lean
theorem cauchy_map_of_uniformCauchySeqOn_fderiv {s : Set E} (hs : IsOpen s) (h's : IsPreconnected s) (hf' : UniformCauchySeqOn f' l s) (hf : ∀ n : ι, ∀ y : E, y ∈ s → HasFDerivAt (f n) (f' n y) y) {x₀ x : E} (hx₀ : x₀ ∈ s) (hx : x ∈ s) (hfg : Cauchy (map (fun n => f n x₀) l)) : Cauchy (map (fun n => f n x) l)
case h ι : Type u_1 l : Filter ι E : Type u_2 inst✝⁵ : NormedAddCommGroup E 𝕜 : Type u_3 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : IsRCLikeNormedField 𝕜 inst✝² : NormedSpace 𝕜 E G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace 𝕜 G f : ι → E → G f' : ι → E → E →L[𝕜] G s : Set E hs : IsOpen s h's : IsPreconnected s hf' : UniformCauchySeqOn f' l s hf : ∀ (n : ι), ∀ y ∈ s, HasFDerivAt (f n) (f' n y) y x₀ x✝ : E hx₀ : x₀ ∈ s hx : x✝ ∈ s hfg : Cauchy (map (fun n => f n x₀) l) this : l.NeBot t : Set E := {y | y ∈ s ∧ Cauchy (map (fun n => f n y) l)} A : ∀ (x : E) (ε : ℝ), x ∈ t → Metric.ball x ε ⊆ s → Metric.ball x ε ⊆ t open_t : IsOpen t st_nonempty : (s ∩ t).Nonempty x : E xt : x ∈ closure t xs : x ∈ s ε : ℝ εpos : ε > 0 hε : Metric.ball x ε ⊆ s y : E yt : y ∈ t hxy : dist x y < ε / 2 ⊢ ε / 2 + dist y x ≤ ε
rw [dist_comm]
case h ι : Type u_1 l : Filter ι E : Type u_2 inst✝⁵ : NormedAddCommGroup E 𝕜 : Type u_3 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : IsRCLikeNormedField 𝕜 inst✝² : NormedSpace 𝕜 E G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace 𝕜 G f : ι → E → G f' : ι → E → E →L[𝕜] G s : Set E hs : IsOpen s h's : IsPreconnected s hf' : UniformCauchySeqOn f' l s hf : ∀ (n : ι), ∀ y ∈ s, HasFDerivAt (f n) (f' n y) y x₀ x✝ : E hx₀ : x₀ ∈ s hx : x✝ ∈ s hfg : Cauchy (map (fun n => f n x₀) l) this : l.NeBot t : Set E := {y | y ∈ s ∧ Cauchy (map (fun n => f n y) l)} A : ∀ (x : E) (ε : ℝ), x ∈ t → Metric.ball x ε ⊆ s → Metric.ball x ε ⊆ t open_t : IsOpen t st_nonempty : (s ∩ t).Nonempty x : E xt : x ∈ closure t xs : x ∈ s ε : ℝ εpos : ε > 0 hε : Metric.ball x ε ⊆ s y : E yt : y ∈ t hxy : dist x y < ε / 2 ⊢ ε / 2 + dist x y ≤ ε
774a9e47a2906047
Set.compl_ordConnectedSection_ordSeparatingSet_mem_nhdsGE
Mathlib/Topology/Order/T5.lean
theorem compl_ordConnectedSection_ordSeparatingSet_mem_nhdsGE (hd : Disjoint s (closure t)) (ha : a ∈ s) : (ordConnectedSection (ordSeparatingSet s t))ᶜ ∈ 𝓝[≥] a
case pos X : Type u_1 inst✝² : LinearOrder X inst✝¹ : TopologicalSpace X inst✝ : OrderTopology X a : X s t : Set X hd : Disjoint s (closure t) ha : a ∈ s hmem : tᶜ ∈ 𝓝[≥] a b : X hab : a ≤ b hmem' : Icc a b ∈ 𝓝[≥] a hsub : Icc a b ⊆ tᶜ H : Disjoint (Icc a b) (s.ordSeparatingSet t).ordConnectedSection ⊢ (s.ordSeparatingSet t).ordConnectedSectionᶜ ∈ 𝓝[≥] a
exact mem_of_superset hmem' (disjoint_left.1 H)
no goals
a4a4d83ca57ecaff
Group.card_center_add_sum_card_noncenter_eq_card
Mathlib/GroupTheory/ClassEquation.lean
theorem Group.card_center_add_sum_card_noncenter_eq_card (G) [Group G] [∀ x : ConjClasses G, Fintype x.carrier] [Fintype G] [Fintype <| Subgroup.center G] [Fintype <| noncenter G] : Fintype.card (Subgroup.center G) + ∑ x ∈ (noncenter G).toFinset, x.carrier.toFinset.card = Fintype.card G
case h.e'_2.h.e'_6 G : Type u_2 inst✝⁴ : Group G inst✝³ : (x : ConjClasses G) → Fintype ↑x.carrier inst✝² : Fintype G inst✝¹ : Fintype ↥(Subgroup.center G) inst✝ : Fintype ↑(noncenter G) ⊢ ∑ x ∈ (noncenter G).toFinset, x.carrier.toFinset.card = ∑ᶠ (x : ConjClasses G) (_ : x ∈ noncenter G), Nat.card ↑x.carrier
rw [← finsum_set_coe_eq_finsum_mem (noncenter G), finsum_eq_sum_of_fintype, ← Finset.sum_set_coe]
case h.e'_2.h.e'_6 G : Type u_2 inst✝⁴ : Group G inst✝³ : (x : ConjClasses G) → Fintype ↑x.carrier inst✝² : Fintype G inst✝¹ : Fintype ↥(Subgroup.center G) inst✝ : Fintype ↑(noncenter G) ⊢ ∑ i : ↑(noncenter G), (↑i).carrier.toFinset.card = ∑ i : ↑(noncenter G), Nat.card ↑(↑i).carrier
e8d5dab4b658ff9d
CompleteOrthogonalIdempotents.option
Mathlib/RingTheory/Idempotents.lean
lemma CompleteOrthogonalIdempotents.option (he : OrthogonalIdempotents e) : CompleteOrthogonalIdempotents (Option.elim · (1 - ∑ i, e i) e) where __ := he.option _ he.isIdempotentElem_sum.one_sub (by simp [sub_mul, he.isIdempotentElem_sum.eq]) (by simp [mul_sub, he.isIdempotentElem_sum.eq]) complete
R : Type u_1 inst✝¹ : Ring R I : Type u_3 e : I → R inst✝ : Fintype I he : OrthogonalIdempotents e ⊢ (∑ i : I, e i) * (1 - ∑ i : I, e i) = 0
simp [mul_sub, he.isIdempotentElem_sum.eq]
no goals
0de3189373444a28
YoungDiagram.le_of_transpose_le
Mathlib/Combinatorics/Young/YoungDiagram.lean
theorem le_of_transpose_le {μ ν : YoungDiagram} (h_le : μ.transpose ≤ ν) : μ ≤ ν.transpose := fun c hc => by simp only [mem_cells, mem_transpose] apply h_le simpa
μ ν : YoungDiagram h_le : μ.transpose ≤ ν c : ℕ × ℕ hc : c ∈ μ.cells ⊢ c ∈ ν.transpose.cells
simp only [mem_cells, mem_transpose]
μ ν : YoungDiagram h_le : μ.transpose ≤ ν c : ℕ × ℕ hc : c ∈ μ.cells ⊢ c.swap ∈ ν
daeba2068d2a3d79
Std.Tactic.BVDecide.LRAT.Internal.CNF.unsat_of_convertLRAT_unsat
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Convert.lean
theorem CNF.unsat_of_convertLRAT_unsat (cnf : CNF Nat) : Unsatisfiable (PosFin (cnf.numLiterals + 1)) (CNF.convertLRAT cnf) → cnf.Unsat
cnf : CNF Nat ⊢ Unsatisfiable (PosFin (cnf.numLiterals + 1)) (convertLRAT cnf) → cnf.Unsat
intro h1
cnf : CNF Nat h1 : Unsatisfiable (PosFin (cnf.numLiterals + 1)) (convertLRAT cnf) ⊢ cnf.Unsat
c8ce4969f2703677
Polynomial.Chebyshev.U_two
Mathlib/RingTheory/Polynomial/Chebyshev.lean
theorem U_two : U R 2 = 4 * X ^ 2 - 1
R : Type u_1 inst✝ : CommRing R this : U R (0 + 2) = 2 * X * U R (0 + 1) - U R 0 ⊢ U R 2 = 4 * X ^ 2 - 1
simp only [zero_add, U_one, U_zero] at this
R : Type u_1 inst✝ : CommRing R this : U R 2 = 2 * X * (2 * X) - 1 ⊢ U R 2 = 4 * X ^ 2 - 1
487a90767cd81216
InnerProductSpace.volume_ball
Mathlib/MeasureTheory/Measure/Lebesgue/VolumeOfBalls.lean
theorem volume_ball (x : E) (r : ℝ) : volume (Metric.ball x r) = (.ofReal r) ^ finrank ℝ E * .ofReal (sqrt π ^ finrank ℝ E / Gamma (finrank ℝ E / 2 + 1))
E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace ℝ E inst✝³ : FiniteDimensional ℝ E inst✝² : MeasurableSpace E inst✝¹ : BorelSpace E inst✝ : Nontrivial E x : E r : ℝ ⊢ volume (⇑(stdOrthonormalBasis ℝ E).repr.symm ⁻¹' ball x r) = ENNReal.ofReal r ^ finrank ℝ E * ENNReal.ofReal (√π ^ finrank ℝ E / Gamma (↑(finrank ℝ E) / 2 + 1))
have : Nonempty (Fin (finrank ℝ E)) := Fin.pos_iff_nonempty.mp finrank_pos
E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace ℝ E inst✝³ : FiniteDimensional ℝ E inst✝² : MeasurableSpace E inst✝¹ : BorelSpace E inst✝ : Nontrivial E x : E r : ℝ this : Nonempty (Fin (finrank ℝ E)) ⊢ volume (⇑(stdOrthonormalBasis ℝ E).repr.symm ⁻¹' ball x r) = ENNReal.ofReal r ^ finrank ℝ E * ENNReal.ofReal (√π ^ finrank ℝ E / Gamma (↑(finrank ℝ E) / 2 + 1))
f59bc6460603aea9
PowerSeries.invOneSubPow_inv_zero_eq_one
Mathlib/RingTheory/PowerSeries/WellKnown.lean
theorem invOneSubPow_inv_zero_eq_one : (invOneSubPow S 0).inv = 1
S : Type u_1 inst✝ : CommRing S ⊢ (invOneSubPow S 0).inv = 1
delta invOneSubPow
S : Type u_1 inst✝ : CommRing S ⊢ (match 0 with | 0 => 1 | d.succ => { val := mk fun n => ↑((d + n).choose d), inv := (1 - X) ^ (d + 1), val_inv := ⋯, inv_val := ⋯ }).inv = 1
7dafa51690c0a633
Matrix.GeneralLinearGroup.map_apply
Mathlib/LinearAlgebra/Matrix/GeneralLinearGroup/Defs.lean
@[simp] protected lemma map_apply (f : R →+* S) (i j : n) (g : GL n R) : map f g i j = f (g i j)
n : Type u inst✝³ : DecidableEq n inst✝² : Fintype n R : Type v inst✝¹ : CommRing R S : Type u_1 inst✝ : CommRing S f : R →+* S i j : n g : GL n R ⊢ ↑((map f) g) i j = f (↑g i j)
rfl
no goals
81a5e24c960b3c84
NormedDivisionRing.norm_eq_one_iff_ne_zero_of_discrete
Mathlib/Analysis/Normed/Field/Basic.lean
lemma norm_eq_one_iff_ne_zero_of_discrete {x : 𝕜} : ‖x‖ = 1 ↔ x ≠ 0
case mpr.intro.intro.inr.inr 𝕜 : Type u_5 inst✝¹ : NormedDivisionRing 𝕜 inst✝ : DiscreteTopology 𝕜 x : 𝕜 hx : x ≠ 0 ε : ℝ εpos : ε > 0 h' : ∀ (y : 𝕜), ‖y‖ < ε → y = 0 H : ∀ {𝕜 : Type u_5} [inst : NormedDivisionRing 𝕜] [inst_1 : DiscreteTopology 𝕜] {x : 𝕜}, x ≠ 0 → (∀ (y : 𝕜), ‖y‖ < ε → y = 0) → ‖x‖ < 1 → ‖x‖ = 1 h✝ : 1 ≤ ‖x‖ h : ‖x⁻¹‖ < 1 ⊢ ‖x⁻¹‖ = 1
exact H (by simpa) h' h
no goals
3b2eee4d3f7ad472
Finset.inductive_claim_mul
Mathlib/Combinatorics/Additive/SmallTripling.lean
@[to_additive] private lemma inductive_claim_mul (hm : 3 ≤ m) (h : ∀ ε : Fin 3 → ℤ, (∀ i, |ε i| = 1) → #((finRange 3).map fun i ↦ A ^ ε i).prod ≤ k * #A) (ε : Fin m → ℤ) (hε : ∀ i, |ε i| = 1) : #((finRange m).map fun i ↦ A ^ ε i).prod ≤ k ^ (m - 2) * #A
G : Type u_1 inst✝¹ : DecidableEq G inst✝ : Group G A : Finset G k : ℝ m✝ : ℕ h : ∀ (ε : Fin 3 → ℤ), (∀ (i : Fin 3), |ε i| = 1) → ↑(#(List.map (fun i => A ^ ε i) (finRange 3)).prod) ≤ k * ↑(#A) m : ℕ hm : 3 ≤ m + 1 ih : ∀ (ε : Fin (m + 1) → ℤ), (∀ (i : Fin (m + 1)), |ε i| = 1) → ↑(#(List.map (fun i => A ^ ε i) (finRange (m + 1))).prod) ≤ k ^ (m + 1 - 2) * ↑(#A) ε : Fin (m + 1 + 1) → ℤ hε : ∀ (i : Fin (m + 1 + 1)), |ε i| = 1 hm₀ : m ≠ 0 hε₀ : ∀ (i : Fin (m + 1 + 1)), ε i ≠ 0 hA : A.Nonempty hk : 0 ≤ k π : {n : ℕ} → (Fin n → ℤ) → Finset G := fun {n} δ => (List.map (fun i => A ^ δ i) (finRange n)).prod V : Finset G := π ![-ε 1, -ε 0] W : Finset G := π (tail (tail ε)) ⊢ ∀ (i : Fin m), |Fin.cons 1 (tail (tail ε)) i.succ| = 1
simp [hε, Fin.tail]
no goals
75599e5c7cd8b516
LinearMap.span_singleton_inf_orthogonal_eq_bot
Mathlib/LinearAlgebra/SesquilinearForm.lean
theorem span_singleton_inf_orthogonal_eq_bot (B : V₁ →ₛₗ[J₁] V₁ →ₛₗ[J₁'] V₂) (x : V₁) (hx : ¬B.IsOrtho x x) : (K₁ ∙ x) ⊓ Submodule.orthogonalBilin (K₁ ∙ x) B = ⊥
K : Type u_13 K₁ : Type u_14 V₁ : Type u_17 V₂ : Type u_18 inst✝⁵ : Field K inst✝⁴ : Field K₁ inst✝³ : AddCommGroup V₁ inst✝² : Module K₁ V₁ inst✝¹ : AddCommGroup V₂ inst✝ : Module K V₂ J₁ J₁' : K₁ →+* K B : V₁ →ₛₗ[J₁] V₁ →ₛₗ[J₁'] V₂ x : V₁ hx : ¬B.IsOrtho x x μ : V₁ → K₁ h : J₁' (μ x) • (B x) x = 0 y : J₁' (μ x) = 0 ⊢ μ x = 0
simpa using y
no goals
b7086190b7929afb
MeasureTheory.MemLp.piecewise
Mathlib/MeasureTheory/Function/LpSeminorm/Basic.lean
protected lemma MemLp.piecewise [DecidablePred (· ∈ s)] {g} (hs : MeasurableSet s) (hf : MemLp f p (μ.restrict s)) (hg : MemLp g p (μ.restrict sᶜ)) : MemLp (s.piecewise f g) p μ
α : Type u_1 F : Type u_4 m0 : MeasurableSpace α p : ℝ≥0∞ μ : Measure α inst✝¹ : NormedAddCommGroup F f : α → F s : Set α inst✝ : DecidablePred fun x => x ∈ s g : α → F hs : MeasurableSet s hf : MemLp f p (μ.restrict s) hg : MemLp g p (μ.restrict sᶜ) ⊢ MemLp (s.piecewise f g) p μ
by_cases hp_zero : p = 0
case pos α : Type u_1 F : Type u_4 m0 : MeasurableSpace α p : ℝ≥0∞ μ : Measure α inst✝¹ : NormedAddCommGroup F f : α → F s : Set α inst✝ : DecidablePred fun x => x ∈ s g : α → F hs : MeasurableSet s hf : MemLp f p (μ.restrict s) hg : MemLp g p (μ.restrict sᶜ) hp_zero : p = 0 ⊢ MemLp (s.piecewise f g) p μ case neg α : Type u_1 F : Type u_4 m0 : MeasurableSpace α p : ℝ≥0∞ μ : Measure α inst✝¹ : NormedAddCommGroup F f : α → F s : Set α inst✝ : DecidablePred fun x => x ∈ s g : α → F hs : MeasurableSet s hf : MemLp f p (μ.restrict s) hg : MemLp g p (μ.restrict sᶜ) hp_zero : ¬p = 0 ⊢ MemLp (s.piecewise f g) p μ
1ca9f3d97936c1de
IsCyclotomicExtension.Rat.isIntegralClosure_adjoin_singleton_of_prime_pow
Mathlib/NumberTheory/Cyclotomic/Rat.lean
theorem isIntegralClosure_adjoin_singleton_of_prime_pow [hcycl : IsCyclotomicExtension {p ^ k} ℚ K] (hζ : IsPrimitiveRoot ζ ↑(p ^ k)) : IsIntegralClosure (adjoin ℤ ({ζ} : Set K)) ℤ K
p : ℕ+ K : Type u inst✝¹ : Field K ζ : K hp : Fact (Nat.Prime ↑p) inst✝ : CharZero K x : K h : IsIntegral ℤ x u : ℤˣ n n✝ : ℕ hcycl : IsCyclotomicExtension {p ^ (n✝ + 1)} ℚ K hζ : IsPrimitiveRoot ζ ↑(p ^ (n✝ + 1)) B : PowerBasis ℚ K := IsPrimitiveRoot.subOnePowerBasis ℚ hζ hint : IsIntegral ℤ B.gen this : FiniteDimensional ℚ K := finiteDimensional {p ^ (n✝ + 1)} ℚ K hun : Algebra.discr ℚ ⇑(IsPrimitiveRoot.subOnePowerBasis ℚ hζ).basis = ↑↑u * ↑↑p ^ n H : (algebraMap ℚ K) ↑↑p ^ n * x ∈ adjoin ℤ {B.gen} h₁ : minpoly ℚ (ζ - 1) = map (algebraMap ℤ ℚ) (minpoly ℤ (ζ - 1)) h₂ : map (algebraMap ℤ ℚ) (minpoly ℤ (ζ - 1)) = (map (algebraMap ℤ ℚ) (cyclotomic ↑(p ^ (n✝ + 1)) ℤ)).comp (X + 1) ⊢ X + 1 = map (algebraMap ℤ ℚ) (X + 1)
simp
no goals
076c1160c95c322f
ZMod.erdos_ginzburg_ziv_prime
Mathlib/Combinatorics/Additive/ErdosGinzburgZiv.lean
theorem ZMod.erdos_ginzburg_ziv_prime (a : ι → ZMod p) (hs : #s = 2 * p - 1) : ∃ t ⊆ s, #t = p ∧ ∑ i ∈ t, a i = 0
case intro.refine_2.refine_2 ι : Type u_1 p : ℕ inst✝ : Fact (Nat.Prime p) s : Finset ι a : ι → ZMod p hs : #s = 2 * p - 1 this : NeZero p N : ℕ := Fintype.card { x // (eval x) (f₁ s a) = 0 ∧ (eval x) (f₂ s a) = 0 } zero_sol : { x // (eval x) (f₁ s a) = 0 ∧ (eval x) (f₂ s a) = 0 } := ⟨0, ⋯⟩ hN₀ : 0 < N hs' : 2 * p - 1 = Fintype.card { x // x ∈ s } hpN : p ∣ N x : { x // (eval x) (f₁ s a) = 0 ∧ (eval x) (f₂ s a) = 0 } hx : x ≠ zero_sol ⊢ p ∣ #(filter (fun a_1 => ↑x a_1 ≠ 0) univ)
rw [← CharP.cast_eq_zero_iff (ZMod p), ← Finset.sum_boole]
case intro.refine_2.refine_2 ι : Type u_1 p : ℕ inst✝ : Fact (Nat.Prime p) s : Finset ι a : ι → ZMod p hs : #s = 2 * p - 1 this : NeZero p N : ℕ := Fintype.card { x // (eval x) (f₁ s a) = 0 ∧ (eval x) (f₂ s a) = 0 } zero_sol : { x // (eval x) (f₁ s a) = 0 ∧ (eval x) (f₂ s a) = 0 } := ⟨0, ⋯⟩ hN₀ : 0 < N hs' : 2 * p - 1 = Fintype.card { x // x ∈ s } hpN : p ∣ N x : { x // (eval x) (f₁ s a) = 0 ∧ (eval x) (f₂ s a) = 0 } hx : x ≠ zero_sol ⊢ (∑ x_1 : { x // x ∈ s }, if ↑x x_1 ≠ 0 then 1 else 0) = 0
3ec57b8d04698567
map_pow
Mathlib/Algebra/Group/Hom/Defs.lean
theorem map_pow [Monoid G] [Monoid H] [MonoidHomClass F G H] (f : F) (a : G) : ∀ n : ℕ, f (a ^ n) = f a ^ n | 0 => by rw [pow_zero, pow_zero, map_one] | n + 1 => by rw [pow_succ, pow_succ, map_mul, map_pow f a n]
G : Type u_7 H : Type u_8 F : Type u_9 inst✝³ : FunLike F G H inst✝² : Monoid G inst✝¹ : Monoid H inst✝ : MonoidHomClass F G H f : F a : G ⊢ f (a ^ 0) = f a ^ 0
rw [pow_zero, pow_zero, map_one]
no goals
8dd45a2472407108
mul_eq_mul_iff_eq_and_eq_of_pos'
Mathlib/Algebra/Order/GroupWithZero/Unbundled.lean
theorem mul_eq_mul_iff_eq_and_eq_of_pos' [PosMulStrictMono α] [MulPosStrictMono α] (hab : a ≤ b) (hcd : c ≤ d) (b0 : 0 < b) (c0 : 0 < c) : a * c = b * d ↔ a = b ∧ c = d
case intro α : Type u_3 a c : α inst✝³ : MulZeroClass α inst✝² : PartialOrder α inst✝¹ : PosMulStrictMono α inst✝ : MulPosStrictMono α c0 : 0 < c hab : a ≤ a b0 : 0 < a hcd : c ≤ c ⊢ a * c = a * c
rfl
no goals
0b2a445217aa945f
Array.getElem_insertIdx
Mathlib/.lake/packages/batteries/Batteries/Data/Array/Lemmas.lean
theorem getElem_insertIdx (as : Array α) (i : Nat) (h : i ≤ as.size) (v : α) (k) (h' : k < (as.insertIdx i v).size) : (as.insertIdx i v)[k] = if h₁ : k < i then as[k]'(by omega) else if h₂ : k = i then v else as[k - 1]'(by simp at h'; omega)
α : Type u_1 as : Array α i : Nat h : i ≤ as.size v : α k : Nat h' : k < (as.insertIdx i v h).size ⊢ (if h₁ : k < i then (as.push v)[k] else if h₂ : k = i then if i ≤ as.size then (as.push v)[as.size] else (as.push v)[i] else if k ≤ as.size then (as.push v)[k - 1] else (as.push v)[k]) = if h₁ : k < i then as[k] else if h₂ : k = i then v else as[k - 1]
simp only [size_insertIdx] at h'
α : Type u_1 as : Array α i : Nat h : i ≤ as.size v : α k : Nat h'✝ : k < (as.insertIdx i v h).size h' : k < as.size + 1 ⊢ (if h₁ : k < i then (as.push v)[k] else if h₂ : k = i then if i ≤ as.size then (as.push v)[as.size] else (as.push v)[i] else if k ≤ as.size then (as.push v)[k - 1] else (as.push v)[k]) = if h₁ : k < i then as[k] else if h₂ : k = i then v else as[k - 1]
011239b59ded190c
Ideal.ramificationIdx_tower
Mathlib/NumberTheory/RamificationInertia/Basic.lean
theorem ramificationIdx_tower [IsDedekindDomain S] [IsDedekindDomain T] {f : R →+* S} {g : S →+* T} {p : Ideal R} {P : Ideal S} {Q : Ideal T} [hpm : P.IsPrime] [hqm : Q.IsPrime] (hg0 : map g P ≠ ⊥) (hfg : map (g.comp f) p ≠ ⊥) (hg : map g P ≤ Q) : ramificationIdx (g.comp f) p Q = ramificationIdx f p P * ramificationIdx g P Q
R : Type u_1 S : Type u_2 T : Type u_3 inst✝⁴ : CommRing R inst✝³ : CommRing S inst✝² : CommRing T inst✝¹ : IsDedekindDomain S inst✝ : IsDedekindDomain T f : R →+* S g : S →+* T p : Ideal R P : Ideal S Q : Ideal T hpm : P.IsPrime hqm : Q.IsPrime hg0 : map g P ≠ ⊥ hfg : map (g.comp f) p ≠ ⊥ hg : map g P ≤ Q hf0 : map f p ≠ ⊥ hp0 : P ≠ ⊥ hq0 : Q ≠ ⊥ this : P.IsMaximal := Ring.DimensionLEOne.maximalOfPrime hp0 hpm ⊢ Multiset.count Q (normalizedFactors (map g (map f p))) = Multiset.count P (normalizedFactors (map f p)) * Multiset.count Q (normalizedFactors (map g P))
rcases eq_prime_pow_mul_coprime hf0 P with ⟨I, hcp, heq⟩
case intro.intro R : Type u_1 S : Type u_2 T : Type u_3 inst✝⁴ : CommRing R inst✝³ : CommRing S inst✝² : CommRing T inst✝¹ : IsDedekindDomain S inst✝ : IsDedekindDomain T f : R →+* S g : S →+* T p : Ideal R P : Ideal S Q : Ideal T hpm : P.IsPrime hqm : Q.IsPrime hg0 : map g P ≠ ⊥ hfg : map (g.comp f) p ≠ ⊥ hg : map g P ≤ Q hf0 : map f p ≠ ⊥ hp0 : P ≠ ⊥ hq0 : Q ≠ ⊥ this : P.IsMaximal := Ring.DimensionLEOne.maximalOfPrime hp0 hpm I : Ideal S hcp : P ⊔ I = ⊤ heq : map f p = P ^ Multiset.count P (normalizedFactors (map f p)) * I ⊢ Multiset.count Q (normalizedFactors (map g (map f p))) = Multiset.count P (normalizedFactors (map f p)) * Multiset.count Q (normalizedFactors (map g P))
57208cf4c3229e08
HurwitzZeta.cosZeta_two_mul_nat'
Mathlib/NumberTheory/LSeries/HurwitzZetaValues.lean
theorem cosZeta_two_mul_nat' (hk : k ≠ 0) (hx : x ∈ Icc (0 : ℝ) 1) : cosZeta x (2 * k) = (-1) ^ (k + 1) / (2 * k) / Gammaℂ (2 * k) * ((Polynomial.bernoulli (2 * k)).map (algebraMap ℚ ℂ)).eval (x : ℂ)
k : ℕ x : ℝ hk : k ≠ 0 hx : x ∈ Icc 0 1 ⊢ 2 * k = 2 * k - 1 + 1
omega
no goals
1afe05416a6f544c
isPreconnected_iff_subset_of_disjoint
Mathlib/Topology/Connected/Clopen.lean
theorem isPreconnected_iff_subset_of_disjoint {s : Set α} : IsPreconnected s ↔ ∀ u v, IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v
case mpr α : Type u inst✝ : TopologicalSpace α s : Set α h : ∀ (u v : Set α), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v ⊢ IsPreconnected s
intro u v hu hv hs hsu hsv
case mpr α : Type u inst✝ : TopologicalSpace α s : Set α h : ∀ (u v : Set α), IsOpen u → IsOpen v → s ⊆ u ∪ v → s ∩ (u ∩ v) = ∅ → s ⊆ u ∨ s ⊆ v u v : Set α hu : IsOpen u hv : IsOpen v hs : s ⊆ u ∪ v hsu : (s ∩ u).Nonempty hsv : (s ∩ v).Nonempty ⊢ (s ∩ (u ∩ v)).Nonempty
5ba8ba0723cc89a0
List.getElem?_zip_eq_some
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Zip.lean
theorem getElem?_zip_eq_some {l₁ : List α} {l₂ : List β} {z : α × β} {i : Nat} : (zip l₁ l₂)[i]? = some z ↔ l₁[i]? = some z.1 ∧ l₂[i]? = some z.2
case mk.mp α : Type u_1 β : Type u_2 l₁ : List α l₂ : List β i : Nat fst✝ : α snd✝ : β ⊢ (∃ x y, l₁[i]? = some x ∧ l₂[i]? = some y ∧ (x, y) = (fst✝, snd✝)) → l₁[i]? = some (fst✝, snd✝).fst ∧ l₂[i]? = some (fst✝, snd✝).snd
rintro ⟨x, y, h₀, h₁, h₂⟩
case mk.mp.intro.intro.intro.intro α : Type u_1 β : Type u_2 l₁ : List α l₂ : List β i : Nat fst✝ : α snd✝ : β x : α y : β h₀ : l₁[i]? = some x h₁ : l₂[i]? = some y h₂ : (x, y) = (fst✝, snd✝) ⊢ l₁[i]? = some (fst✝, snd✝).fst ∧ l₂[i]? = some (fst✝, snd✝).snd
ff8f01ddc18035f4
measurableSet_of_differentiableAt_of_isComplete
Mathlib/Analysis/Calculus/FDeriv/Measurable.lean
theorem measurableSet_of_differentiableAt_of_isComplete {K : Set (E →L[𝕜] F)} (hK : IsComplete K) : MeasurableSet { x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K }
case h 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F f : E → F inst✝¹ : MeasurableSpace E inst✝ : OpensMeasurableSpace E K : Set (E →L[𝕜] F) hK : IsComplete K b✝⁵ b✝⁴ b✝³ : ℕ b✝² : b✝³ ≥ b✝⁴ b✝¹ : ℕ b✝ : b✝¹ ≥ b✝⁴ ⊢ MeasurableSet (B f K ((1 / 2) ^ b✝³) ((1 / 2) ^ b✝¹) ((1 / 2) ^ b✝⁵))
exact isOpen_B.measurableSet
no goals
52d0ecf301f78f7c
Finset.Colex.toColex_le_toColex_iff_max'_mem
Mathlib/Combinatorics/Colex.lean
lemma toColex_le_toColex_iff_max'_mem : toColex s ≤ toColex t ↔ ∀ hst : s ≠ t, (s ∆ t).max' (symmDiff_nonempty.2 hst) ∈ t
case refine_1 α : Type u_1 inst✝ : LinearOrder α s t : Finset α h : { ofColex := s } ≤ { ofColex := t } hst : s ≠ t m : α := (s ∆ t).max' ⋯ hmt : m ∉ t hms : m ∈ s ⊢ False
have ⟨b, hbt, hbs, hmb⟩ := h hms hmt
case refine_1 α : Type u_1 inst✝ : LinearOrder α s t : Finset α h : { ofColex := s } ≤ { ofColex := t } hst : s ≠ t m : α := (s ∆ t).max' ⋯ hmt : m ∉ t hms : m ∈ s b : α hbt : b ∈ { ofColex := t }.ofColex hbs : b ∉ { ofColex := s }.ofColex hmb : m ≤ b ⊢ False
d10c7adb0b42c816
exists_idempotent_of_compact_t2_of_continuous_mul_left
Mathlib/Topology/Algebra/Semigroup.lean
theorem exists_idempotent_of_compact_t2_of_continuous_mul_left {M} [Nonempty M] [Semigroup M] [TopologicalSpace M] [CompactSpace M] [T2Space M] (continuous_mul_left : ∀ r : M, Continuous (· * r)) : ∃ m : M, m * m = m
case hts M : Type u_1 inst✝⁴ : Nonempty M inst✝³ : Semigroup M inst✝² : TopologicalSpace M inst✝¹ : CompactSpace M inst✝ : T2Space M continuous_mul_left : ∀ (r : M), Continuous fun x => x * r S : Set (Set M) := {N | IsClosed N ∧ N.Nonempty ∧ ∀ m ∈ N, ∀ m' ∈ N, m * m' ∈ N} N : Set M hN : Minimal (fun x => x ∈ S) N N_closed : IsClosed N N_mul : ∀ m ∈ N, ∀ m' ∈ N, m * m' ∈ N m : M hm : m ∈ N scaling_eq_self : (fun x => x * m) '' N = N ⊢ N ∩ {m' | m' * m = m} ⊆ N
apply Set.inter_subset_left
no goals
fc87b9dbd8289f3d
Array.idxOf_append
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Find.lean
theorem idxOf_append [BEq α] [LawfulBEq α] {l₁ l₂ : Array α} {a : α} : (l₁ ++ l₂).idxOf a = if a ∈ l₁ then l₁.idxOf a else l₂.idxOf a + l₁.size
case isTrue α : Type u_1 inst✝¹ : BEq α inst✝ : LawfulBEq α l₁ l₂ : Array α a : α h : findIdx (fun x => x == a) l₁ < l₁.size ⊢ findIdx (fun x => x == a) l₁ = if a ∈ l₁ then findIdx (fun x => x == a) l₁ else findIdx (fun x => x == a) l₂ + l₁.size
rw [if_pos]
case isTrue.hc α : Type u_1 inst✝¹ : BEq α inst✝ : LawfulBEq α l₁ l₂ : Array α a : α h : findIdx (fun x => x == a) l₁ < l₁.size ⊢ a ∈ l₁
89e05ccae61f1c71
Polynomial.nodup_roots
Mathlib/FieldTheory/Separable.lean
theorem nodup_roots {p : R[X]} (hsep : Separable p) : p.roots.Nodup
R : Type u inst✝¹ : CommRing R inst✝ : IsDomain R p : R[X] hsep : p.Separable ⊢ p.roots.Nodup
exact Multiset.nodup_iff_count_le_one.mpr (count_roots_le_one hsep)
no goals
9a735a83b34f0a01
List.take_add
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Nat/TakeDrop.lean
theorem take_add (l : List α) (m n : Nat) : l.take (m + n) = l.take m ++ (l.drop m).take n
α : Type u_1 l : List α m n : Nat ⊢ take (m + n) l = take m l ++ take n (drop m l)
suffices take (m + n) (take m l ++ drop m l) = take m l ++ take n (drop m l) by rw [take_append_drop] at this assumption
α : Type u_1 l : List α m n : Nat ⊢ take (m + n) (take m l ++ drop m l) = take m l ++ take n (drop m l)
9de2ed38ee21ad27
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.deleteOne_preserves_strongAssignmentsInvariant
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/Lemmas.lean
theorem deleteOne_preserves_strongAssignmentsInvariant {n : Nat} (f : DefaultFormula n) (id : Nat) : StrongAssignmentsInvariant f → StrongAssignmentsInvariant (deleteOne f id)
n : Nat f : DefaultFormula n id : Nat hsize : f.assignments.size = n hf : ∀ (i : PosFin n) (b : Bool), hasAssignment b f.assignments[i.val] = true → unit (i, b) ∈ f.toList hsize' : (f.deleteOne id).assignments.size = n i : PosFin n b : Bool hb : hasAssignment b (f.deleteOne id).assignments[i.val] = true i_in_bounds : i.val < f.assignments.size c : DefaultClause n heq : f.clauses[id]! = some c ⊢ unit (i, b) ∈ (match some c with | none => { clauses := f.clauses, rupUnits := f.rupUnits, ratUnits := f.ratUnits, assignments := f.assignments } | some { clause := [l], nodupkey := nodupkey, nodup := nodup } => { clauses := f.clauses.set! id none, rupUnits := f.rupUnits, ratUnits := f.ratUnits, assignments := f.assignments.modify l.fst.val (removeAssignment l.snd) } | some val => { clauses := f.clauses.set! id none, rupUnits := f.rupUnits, ratUnits := f.ratUnits, assignments := f.assignments }).toList
by_cases hl : ∃ l : Literal (PosFin n), c = unit l
case pos n : Nat f : DefaultFormula n id : Nat hsize : f.assignments.size = n hf : ∀ (i : PosFin n) (b : Bool), hasAssignment b f.assignments[i.val] = true → unit (i, b) ∈ f.toList hsize' : (f.deleteOne id).assignments.size = n i : PosFin n b : Bool hb : hasAssignment b (f.deleteOne id).assignments[i.val] = true i_in_bounds : i.val < f.assignments.size c : DefaultClause n heq : f.clauses[id]! = some c hl : ∃ l, c = unit l ⊢ unit (i, b) ∈ (match some c with | none => { clauses := f.clauses, rupUnits := f.rupUnits, ratUnits := f.ratUnits, assignments := f.assignments } | some { clause := [l], nodupkey := nodupkey, nodup := nodup } => { clauses := f.clauses.set! id none, rupUnits := f.rupUnits, ratUnits := f.ratUnits, assignments := f.assignments.modify l.fst.val (removeAssignment l.snd) } | some val => { clauses := f.clauses.set! id none, rupUnits := f.rupUnits, ratUnits := f.ratUnits, assignments := f.assignments }).toList case neg n : Nat f : DefaultFormula n id : Nat hsize : f.assignments.size = n hf : ∀ (i : PosFin n) (b : Bool), hasAssignment b f.assignments[i.val] = true → unit (i, b) ∈ f.toList hsize' : (f.deleteOne id).assignments.size = n i : PosFin n b : Bool hb : hasAssignment b (f.deleteOne id).assignments[i.val] = true i_in_bounds : i.val < f.assignments.size c : DefaultClause n heq : f.clauses[id]! = some c hl : ¬∃ l, c = unit l ⊢ unit (i, b) ∈ (match some c with | none => { clauses := f.clauses, rupUnits := f.rupUnits, ratUnits := f.ratUnits, assignments := f.assignments } | some { clause := [l], nodupkey := nodupkey, nodup := nodup } => { clauses := f.clauses.set! id none, rupUnits := f.rupUnits, ratUnits := f.ratUnits, assignments := f.assignments.modify l.fst.val (removeAssignment l.snd) } | some val => { clauses := f.clauses.set! id none, rupUnits := f.rupUnits, ratUnits := f.ratUnits, assignments := f.assignments }).toList
0ab20a88767ce69e
Polynomial.eval_eq_prod_roots_sub_of_splits_id
Mathlib/Algebra/Polynomial/Splits.lean
theorem eval_eq_prod_roots_sub_of_splits_id {p : K[X]} (hsplit : Splits (RingHom.id K) p) (v : K) : eval v p = p.leadingCoeff * (p.roots.map fun a ↦ v - a).prod
case h.e'_3.h.e'_6.h.e'_3.a.h.e'_4.h K : Type v inst✝ : Field K p : K[X] hsplit : Splits (RingHom.id K) p v : K ⊢ p = map (algebraMap K K) p
rw [Algebra.id.map_eq_id, map_id]
no goals
320f211ee0f86418
HomologicalComplex.mapBifunctor₂₃.ι_D₁
Mathlib/Algebra/Homology/BifunctorAssociator.lean
@[reassoc (attr := simp)] lemma ι_D₁ : ι F G₂₃ K₁ K₂ K₃ c₁₂ c₂₃ c₄ i₁ i₂ i₃ j h ≫ D₁ F G₂₃ K₁ K₂ K₃ c₂₃ c₄ j j' = d₁ F G₂₃ K₁ K₂ K₃ c₁₂ c₂₃ c₄ i₁ i₂ i₃ j'
case neg C₁ : Type u_1 C₂ : Type u_2 C₂₃ : Type u_4 C₃ : Type u_5 C₄ : Type u_6 inst✝²² : Category.{u_15, u_1} C₁ inst✝²¹ : Category.{u_17, u_2} C₂ inst✝²⁰ : Category.{u_16, u_5} C₃ inst✝¹⁹ : Category.{u_13, u_6} C₄ inst✝¹⁸ : Category.{u_14, u_4} C₂₃ inst✝¹⁷ : HasZeroMorphisms C₁ inst✝¹⁶ : HasZeroMorphisms C₂ inst✝¹⁵ : HasZeroMorphisms C₃ inst✝¹⁴ : Preadditive C₂₃ inst✝¹³ : Preadditive C₄ F : C₁ ⥤ C₂₃ ⥤ C₄ G₂₃ : C₂ ⥤ C₃ ⥤ C₂₃ inst✝¹² : G₂₃.PreservesZeroMorphisms inst✝¹¹ : ∀ (X₂ : C₂), (G₂₃.obj X₂).PreservesZeroMorphisms inst✝¹⁰ : F.PreservesZeroMorphisms inst✝⁹ : ∀ (X₁ : C₁), (F.obj X₁).Additive ι₁ : Type u_7 ι₂ : Type u_8 ι₃ : Type u_9 ι₁₂ : Type u_10 ι₂₃ : Type u_11 ι₄ : Type u_12 inst✝⁸ : DecidableEq ι₄ c₁ : ComplexShape ι₁ c₂ : ComplexShape ι₂ c₃ : ComplexShape ι₃ K₁ : HomologicalComplex C₁ c₁ K₂ : HomologicalComplex C₂ c₂ K₃ : HomologicalComplex C₃ c₃ c₁₂ : ComplexShape ι₁₂ c₂₃ : ComplexShape ι₂₃ c₄ : ComplexShape ι₄ inst✝⁷ : TotalComplexShape c₁ c₂ c₁₂ inst✝⁶ : TotalComplexShape c₁₂ c₃ c₄ inst✝⁵ : TotalComplexShape c₂ c₃ c₂₃ inst✝⁴ : TotalComplexShape c₁ c₂₃ c₄ inst✝³ : K₂.HasMapBifunctor K₃ G₂₃ c₂₃ inst✝² : c₁.Associative c₂ c₃ c₁₂ c₂₃ c₄ inst✝¹ : DecidableEq ι₂₃ inst✝ : K₁.HasMapBifunctor (K₂.mapBifunctor K₃ G₂₃ c₂₃) F c₄ i₁ : ι₁ i₂ : ι₂ i₃ : ι₃ j j' : ι₄ h : c₁.r c₂ c₃ c₁₂ c₄ (i₁, i₂, i₃) = j h₁ : c₁.Rel i₁ (c₁.next i₁) h₂ : ¬c₁.π c₂₃ c₄ (c₁.next i₁, c₂.π c₃ c₂₃ (i₂, i₃)) = j' ⊢ (F.obj (K₁.X i₁)).map (K₂.ιMapBifunctor K₃ G₂₃ c₂₃ i₂ i₃ (c₂.π c₃ c₂₃ (i₂, i₃)) ⋯) ≫ mapBifunctor.d₁ K₁ (K₂.mapBifunctor K₃ G₂₃ c₂₃) F c₄ i₁ (c₂.π c₃ c₂₃ (i₂, i₃)) j' = c₁.ε₁ c₂₃ c₄ (i₁, c₂.π c₃ c₂₃ (i₂, i₃)) • (F.map (K₁.d i₁ (c₁.next i₁))).app ((G₂₃.obj (K₂.X i₂)).obj (K₃.X i₃)) ≫ ιOrZero F G₂₃ K₁ K₂ K₃ c₁₂ c₂₃ c₄ (c₁.next i₁) i₂ i₃ j'
rw [mapBifunctor.d₁_eq_zero' _ _ _ _ h₁ _ _ h₂, comp_zero, ιOrZero_eq_zero _ _ _ _ _ _ _ _ _ _ _ _ (by simpa only [← ComplexShape.assoc c₁ c₂ c₃ c₁₂ c₂₃ c₄] using h₂), comp_zero, smul_zero]
no goals
17fbb9fb2dacf758
Quaternion.star_add_self'
Mathlib/Algebra/Quaternion.lean
theorem star_add_self' : star a + a = ↑(2 * a.re)
R : Type u_3 inst✝ : CommRing R a : ℍ[R] ⊢ star a + a = ↑(2 * a.re)
simp [a.star_add_self', Quaternion.coe]
no goals
273f122e0341abe5
ADEInequality.admissible_of_one_lt_sumInv_aux'
Mathlib/NumberTheory/ADEInequality.lean
theorem admissible_of_one_lt_sumInv_aux' {p q r : ℕ+} (hpq : p ≤ q) (hqr : q ≤ r) (H : 1 < sumInv {p, q, r}) : Admissible {p, q, r}
case «1».«1».«2» H : 1 < sumInv {2, 3, 5} ⊢ Admissible {2, 3, 5}
exact admissible_E8
no goals
c39aaad1fdce9db3
uniform_continuous_npow_on_bounded
Mathlib/Algebra/Order/Field/Basic.lean
theorem uniform_continuous_npow_on_bounded (B : α) {ε : α} (hε : 0 < ε) (n : ℕ) : ∃ δ > 0, ∀ q r : α, |r| ≤ B → |q - r| ≤ δ → |q ^ n - r ^ n| < ε
α : Type u_2 inst✝ : LinearOrderedField α ε : α hε : 0 < ε n : ℕ B : α B_pos : 0 < B pos : 0 < 1 + ↑n * (B + 1) ^ (n - 1) ⊢ ∃ δ > 0, ∀ (q r : α), |r| ≤ B → |q - r| ≤ δ → |q ^ n - r ^ n| < ε
refine ⟨min 1 (ε / (1 + n * (B + 1) ^ (n - 1))), lt_min zero_lt_one (div_pos hε pos), fun q r hr hqr ↦ (abs_pow_sub_pow_le ..).trans_lt ?_⟩
α : Type u_2 inst✝ : LinearOrderedField α ε : α hε : 0 < ε n : ℕ B : α B_pos : 0 < B pos : 0 < 1 + ↑n * (B + 1) ^ (n - 1) q r : α hr : |r| ≤ B hqr : |q - r| ≤ 1 ⊓ ε / (1 + ↑n * (B + 1) ^ (n - 1)) ⊢ |q - r| * ↑n * (|q| ⊔ |r|) ^ (n - 1) < ε
57190a32e8b7a13d
MeasureTheory.SimpleFunc.tendsto_approxOn_Lp_eLpNorm
Mathlib/MeasureTheory/Function/SimpleFuncDenseLp.lean
theorem tendsto_approxOn_Lp_eLpNorm [OpensMeasurableSpace E] {f : β → E} (hf : Measurable f) {s : Set E} {y₀ : E} (h₀ : y₀ ∈ s) [SeparableSpace s] (hp_ne_top : p ≠ ∞) {μ : Measure β} (hμ : ∀ᵐ x ∂μ, f x ∈ closure s) (hi : eLpNorm (fun x => f x - y₀) p μ < ∞) : Tendsto (fun n => eLpNorm (⇑(approxOn f hf s y₀ h₀ n) - f) p μ) atTop (𝓝 0)
case neg β : Type u_2 E : Type u_4 inst✝⁴ : MeasurableSpace β inst✝³ : MeasurableSpace E inst✝² : NormedAddCommGroup E p : ℝ≥0∞ inst✝¹ : OpensMeasurableSpace E f : β → E hf : Measurable f s : Set E y₀ : E h₀ : y₀ ∈ s inst✝ : SeparableSpace ↑s hp_ne_top : p ≠ ⊤ μ : Measure β hμ : ∀ᵐ (x : β) ∂μ, f x ∈ closure s hi : eLpNorm (fun x => f x - y₀) p μ < ⊤ hp_zero : ¬p = 0 hp : 0 < p.toReal hF_meas : ∀ (n : ℕ), Measurable fun x => ‖(approxOn f hf s y₀ h₀ n) x - f x‖ₑ ^ p.toReal h_bound : ∀ (n : ℕ), (fun x => ‖(approxOn f hf s y₀ h₀ n) x - f x‖ₑ ^ p.toReal) ≤ᶠ[ae μ] fun x => ‖f x - y₀‖ₑ ^ p.toReal ⊢ Tendsto (fun n => ∫⁻ (x : β), ‖(approxOn f hf s y₀ h₀ n) x - f x‖ₑ ^ p.toReal ∂μ) atTop (𝓝 0)
have h_fin : (∫⁻ a : β, ‖f a - y₀‖ₑ ^ p.toReal ∂μ) ≠ ⊤ := (lintegral_rpow_enorm_lt_top_of_eLpNorm_lt_top hp_zero hp_ne_top hi).ne
case neg β : Type u_2 E : Type u_4 inst✝⁴ : MeasurableSpace β inst✝³ : MeasurableSpace E inst✝² : NormedAddCommGroup E p : ℝ≥0∞ inst✝¹ : OpensMeasurableSpace E f : β → E hf : Measurable f s : Set E y₀ : E h₀ : y₀ ∈ s inst✝ : SeparableSpace ↑s hp_ne_top : p ≠ ⊤ μ : Measure β hμ : ∀ᵐ (x : β) ∂μ, f x ∈ closure s hi : eLpNorm (fun x => f x - y₀) p μ < ⊤ hp_zero : ¬p = 0 hp : 0 < p.toReal hF_meas : ∀ (n : ℕ), Measurable fun x => ‖(approxOn f hf s y₀ h₀ n) x - f x‖ₑ ^ p.toReal h_bound : ∀ (n : ℕ), (fun x => ‖(approxOn f hf s y₀ h₀ n) x - f x‖ₑ ^ p.toReal) ≤ᶠ[ae μ] fun x => ‖f x - y₀‖ₑ ^ p.toReal h_fin : ∫⁻ (a : β), ‖f a - y₀‖ₑ ^ p.toReal ∂μ ≠ ⊤ ⊢ Tendsto (fun n => ∫⁻ (x : β), ‖(approxOn f hf s y₀ h₀ n) x - f x‖ₑ ^ p.toReal ∂μ) atTop (𝓝 0)
14fb55fde699407c
Batteries.TransCmp.ge_trans
Mathlib/.lake/packages/batteries/Batteries/Classes/Order.lean
theorem ge_trans (h₁ : cmp x y ≠ .lt) (h₂ : cmp y z ≠ .lt) : cmp x z ≠ .lt
cmp✝ : ?m.1056 → ?m.1056 → Ordering inst✝¹ : TransCmp cmp✝ x✝ : Sort ?u.1054 cmp : x✝ → x✝ → Ordering inst✝ : TransCmp cmp x y z : x✝ h₁ : cmp x y ≠ Ordering.lt h₂ : cmp y z ≠ Ordering.lt ⊢ cmp x z ≠ Ordering.lt
have := @TransCmp.le_trans _ cmp _ z y x
cmp✝ : ?m.1056 → ?m.1056 → Ordering inst✝¹ : TransCmp cmp✝ x✝ : Sort ?u.1054 cmp : x✝ → x✝ → Ordering inst✝ : TransCmp cmp x y z : x✝ h₁ : cmp x y ≠ Ordering.lt h₂ : cmp y z ≠ Ordering.lt this : cmp z y ≠ Ordering.gt → cmp y x ≠ Ordering.gt → cmp z x ≠ Ordering.gt ⊢ cmp x z ≠ Ordering.lt
4751489e9cc9dd5c
Set.Countable.exists_cycleOn
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
theorem Countable.exists_cycleOn (hs : s.Countable) : ∃ f : Perm α, f.IsCycleOn s ∧ { x | f x ≠ x } ⊆ s
case inl α : Type u_2 s : Set α hs : s.Countable hs' : s.Finite ⊢ ∃ f, f.IsCycleOn s ∧ {x | f x ≠ x} ⊆ s
refine ⟨hs'.toFinset.toList.formPerm, ?_, fun x hx => by simpa using List.mem_of_formPerm_apply_ne hx⟩
case inl α : Type u_2 s : Set α hs : s.Countable hs' : s.Finite ⊢ hs'.toFinset.toList.formPerm.IsCycleOn s
3d6b7d8394578748
PowerSeries.rescale_rescale
Mathlib/RingTheory/PowerSeries/Basic.lean
theorem rescale_rescale (f : R⟦X⟧) (a b : R) : rescale b (rescale a f) = rescale (a * b) f
R : Type u_1 inst✝ : CommSemiring R f : R⟦X⟧ a b : R ⊢ (rescale b) ((rescale a) f) = (rescale (a * b)) f
ext n
case h R : Type u_1 inst✝ : CommSemiring R f : R⟦X⟧ a b : R n : ℕ ⊢ (coeff R n) ((rescale b) ((rescale a) f)) = (coeff R n) ((rescale (a * b)) f)
c9e5f469c78eee85
Ordinal.enum_zero_eq_bot
Mathlib/SetTheory/Ordinal/Basic.lean
theorem enum_zero_eq_bot {o : Ordinal} (ho : 0 < o) : enum (α := o.toType) (· < ·) ⟨0, by rwa [type_toType]⟩ = have H := toTypeOrderBot (o := o) (by rintro rfl; simp at ho) (⊥ : o.toType) := rfl
α : Type u β : Type v γ : Type w r : α → α → Prop s : β → β → Prop t : γ → γ → Prop ho : 0 < 0 ⊢ False
simp at ho
no goals
3abc0f22abce2cbf
Set.Finite.eq_insert_of_subset_of_encard_eq_succ
Mathlib/Data/Set/Card.lean
theorem Finite.eq_insert_of_subset_of_encard_eq_succ (hs : s.Finite) (h : s ⊆ t) (hst : t.encard = s.encard + 1) : ∃ a, t = insert a s
α : Type u_1 s t : Set α hs : s.Finite h : s ⊆ t hst : ∃ x, t \ s = {x} ⊢ ∃ a, t = insert a s
obtain ⟨x, hx⟩ := hst
case intro α : Type u_1 s t : Set α hs : s.Finite h : s ⊆ t x : α hx : t \ s = {x} ⊢ ∃ a, t = insert a s
01f82d8d3260074c
nhds_le_of_le
Mathlib/Topology/Basic.lean
theorem nhds_le_of_le {f} (h : x ∈ s) (o : IsOpen s) (sf : 𝓟 s ≤ f) : 𝓝 x ≤ f
X : Type u x : X s : Set X inst✝ : TopologicalSpace X f : Filter X h : x ∈ s o : IsOpen s sf : 𝓟 s ≤ f ⊢ 𝓝 x ≤ f
rw [nhds_def]
X : Type u x : X s : Set X inst✝ : TopologicalSpace X f : Filter X h : x ∈ s o : IsOpen s sf : 𝓟 s ≤ f ⊢ ⨅ s ∈ {s | x ∈ s ∧ IsOpen s}, 𝓟 s ≤ f
5315946d02b462ae
SzemerediRegularity.average_density_near_total_density
Mathlib/Combinatorics/SimpleGraph/Regularity/Chunk.lean
theorem average_density_near_total_density [Nonempty α] (hPα : #P.parts * 16 ^ #P.parts ≤ card α) (hPε : ↑100 ≤ ↑4 ^ #P.parts * ε ^ 5) (hε₁ : ε ≤ 1) {hU : U ∈ P.parts} {hV : V ∈ P.parts} {A B : Finset (Finset α)} (hA : A ⊆ (chunk hP G ε hU).parts) (hB : B ⊆ (chunk hP G ε hV).parts) : |(∑ ab ∈ A.product B, G.edgeDensity ab.1 ab.2 : ℝ) / (#A * #B) - G.edgeDensity (A.biUnion id) (B.biUnion id)| ≤ ε ^ 5 / 49
case left α : Type u_1 inst✝³ : Fintype α inst✝² : DecidableEq α P : Finpartition univ hP : P.IsEquipartition G : SimpleGraph α inst✝¹ : DecidableRel G.Adj ε : ℝ U V : Finset α inst✝ : Nonempty α hPα : #P.parts * 16 ^ #P.parts ≤ Fintype.card α hPε : 100 ≤ 4 ^ #P.parts * ε ^ 5 hε₁ : ε ≤ 1 hU : U ∈ P.parts hV : V ∈ P.parts A B : Finset (Finset α) hA : A ⊆ (chunk hP G ε hU).parts hB : B ⊆ (chunk hP G ε hV).parts ⊢ (∑ ab ∈ A.product B, ↑(G.edgeDensity ab.1 ab.2)) / (↑(#A) * ↑(#B)) - ↑(G.edgeDensity (A.biUnion id) (B.biUnion id)) ≤ ε ^ 5 / 49
rw [sub_le_iff_le_add']
case left α : Type u_1 inst✝³ : Fintype α inst✝² : DecidableEq α P : Finpartition univ hP : P.IsEquipartition G : SimpleGraph α inst✝¹ : DecidableRel G.Adj ε : ℝ U V : Finset α inst✝ : Nonempty α hPα : #P.parts * 16 ^ #P.parts ≤ Fintype.card α hPε : 100 ≤ 4 ^ #P.parts * ε ^ 5 hε₁ : ε ≤ 1 hU : U ∈ P.parts hV : V ∈ P.parts A B : Finset (Finset α) hA : A ⊆ (chunk hP G ε hU).parts hB : B ⊆ (chunk hP G ε hV).parts ⊢ (∑ ab ∈ A.product B, ↑(G.edgeDensity ab.1 ab.2)) / (↑(#A) * ↑(#B)) ≤ ↑(G.edgeDensity (A.biUnion id) (B.biUnion id)) + ε ^ 5 / 49
02b0f7a417394026
PrimeSpectrum.zeroLocus_eq_top_iff
Mathlib/RingTheory/Spectrum/Prime/Basic.lean
theorem zeroLocus_eq_top_iff (s : Set R) : zeroLocus s = ⊤ ↔ s ⊆ nilradical R
case mpr R : Type u inst✝ : CommSemiring R s : Set R ⊢ s ⊆ ↑(nilradical R) → zeroLocus s = ⊤
rw [eq_top_iff]
case mpr R : Type u inst✝ : CommSemiring R s : Set R ⊢ s ⊆ ↑(nilradical R) → ⊤ ≤ zeroLocus s
71fbfa23dbaec95e
Option.bnot_comp_isNone
Mathlib/Data/Option/Basic.lean
@[simp] lemma bnot_comp_isNone : (! ·) ∘ @Option.isNone α = Option.isSome
case h α : Type u_1 x : Option α ⊢ ((fun x => !x) ∘ isNone) x = x.isSome
simp
no goals
109babd3d6c26ac2
isSeparatedMap_iff_nhds
Mathlib/Topology/SeparatedMap.lean
lemma isSeparatedMap_iff_nhds {f : X → Y} : IsSeparatedMap f ↔ ∀ x₁ x₂, f x₁ = f x₂ → x₁ ≠ x₂ → ∃ s₁ ∈ 𝓝 x₁, ∃ s₂ ∈ 𝓝 x₂, Disjoint s₁ s₂
X : Type u_1 Y : Sort u_2 inst✝ : TopologicalSpace X f : X → Y ⊢ IsSeparatedMap f ↔ ∀ (x₁ x₂ : X), f x₁ = f x₂ → x₁ ≠ x₂ → ∃ s₁ ∈ 𝓝 x₁, ∃ s₂ ∈ 𝓝 x₂, Disjoint s₁ s₂
simp_rw [isSeparatedMap_iff_disjoint_nhds, Filter.disjoint_iff]
no goals
4566b3fda4ad57cf
SzemerediRegularity.card_aux₂
Mathlib/Combinatorics/SimpleGraph/Regularity/Bound.lean
theorem card_aux₂ (hP : P.IsEquipartition) (hu : u ∈ P.parts) (hucard : #u ≠ m * 4 ^ #P.parts + a) : (4 ^ #P.parts - (a + 1)) * m + (a + 1) * (m + 1) = #u
α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α P : Finpartition univ u : Finset α hP : P.IsEquipartition hu : u ∈ P.parts hucard : #u ≠ m * 4 ^ #P.parts + a ⊢ m * 4 ^ #P.parts ≤ Fintype.card α / #P.parts
rw [stepBound, ← Nat.div_div_eq_div_mul]
α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α P : Finpartition univ u : Finset α hP : P.IsEquipartition hu : u ∈ P.parts hucard : #u ≠ m * 4 ^ #P.parts + a ⊢ Fintype.card α / #P.parts / 4 ^ #P.parts * 4 ^ #P.parts ≤ Fintype.card α / #P.parts
c434f1e0b19cc540
Polynomial.aeval_sumIDeriv
Mathlib/Algebra/Polynomial/SumIteratedDerivative.lean
theorem aeval_sumIDeriv (p : R[X]) (q : ℕ) : ∃ gp : R[X], gp.natDegree ≤ p.natDegree - q ∧ ∀ (r : A), (X - C r) ^ q ∣ p.map (algebraMap R A) → aeval r (sumIDeriv p) = q ! • aeval r gp
case refine_2 R : Type u_1 inst✝² : CommSemiring R A : Type u_3 inst✝¹ : CommRing A inst✝ : Algebra R A p : R[X] q : ℕ c : ℕ → R[X] c_le : ∀ (k : ℕ), (c k).natDegree ≤ p.natDegree - q hc : ∀ (k : ℕ) (r : A), (X - C r) ^ q ∣ map (algebraMap R A) p → (aeval r) ((⇑derivative)^[k] p) = q ! • (aeval r) (c k) r : A p' : A[X] hp : map (algebraMap R A) p = (X - C r) ^ q * p' ⊢ (aeval r) (sumIDeriv p) = q ! • (aeval r) ((range (p.natDegree + 1)).sum c)
rw [sumIDeriv_apply, map_sum]
case refine_2 R : Type u_1 inst✝² : CommSemiring R A : Type u_3 inst✝¹ : CommRing A inst✝ : Algebra R A p : R[X] q : ℕ c : ℕ → R[X] c_le : ∀ (k : ℕ), (c k).natDegree ≤ p.natDegree - q hc : ∀ (k : ℕ) (r : A), (X - C r) ^ q ∣ map (algebraMap R A) p → (aeval r) ((⇑derivative)^[k] p) = q ! • (aeval r) (c k) r : A p' : A[X] hp : map (algebraMap R A) p = (X - C r) ^ q * p' ⊢ ∑ x ∈ range (p.natDegree + 1), (aeval r) ((⇑derivative)^[x] p) = q ! • (aeval r) ((range (p.natDegree + 1)).sum c)
cc0687230b071aee
LightCondensed.isoLocallyConstantOfIsColimit_inv
Mathlib/Condensed/Discrete/Colimit.lean
lemma isoLocallyConstantOfIsColimit_inv (X : LightProfinite.{u}ᵒᵖ ⥤ Type u) [PreservesFiniteProducts X] (hX : ∀ S : LightProfinite.{u}, (IsColimit <| X.mapCocone (coconeRightOpOfCone S.asLimitCone))) : (isoLocallyConstantOfIsColimit X hX).inv = (CompHausLike.LocallyConstant.counitApp.{u, u} X)
X : LightProfiniteᵒᵖ ⥤ Type u inst✝ : PreservesFiniteProducts X hX : (S : LightProfinite) → IsColimit (X.mapCocone (coconeRightOpOfCone S.asLimitCone)) ⊢ (lanPresheafExt (isoFinYoneda X ≪≫ (locallyConstantIsoFinYoneda X).symm)).inv ≫ (lanPresheafNatIso hX).hom = (lanPresheafNatIso fun x => isColimitLocallyConstantPresheafDiagram (X.obj (Opposite.op (toLightProfinite.obj (of PUnit.{u + 1})))) x).hom ≫ counitApp X
ext S : 2
case w.h X : LightProfiniteᵒᵖ ⥤ Type u inst✝ : PreservesFiniteProducts X hX : (S : LightProfinite) → IsColimit (X.mapCocone (coconeRightOpOfCone S.asLimitCone)) S : LightProfiniteᵒᵖ ⊢ ((lanPresheafExt (isoFinYoneda X ≪≫ (locallyConstantIsoFinYoneda X).symm)).inv ≫ (lanPresheafNatIso hX).hom).app S = ((lanPresheafNatIso fun x => isColimitLocallyConstantPresheafDiagram (X.obj (Opposite.op (toLightProfinite.obj (of PUnit.{u + 1})))) x).hom ≫ counitApp X).app S
abf613c72e544f89
ModuleCat.Tilde.isUnit_toStalk
Mathlib/AlgebraicGeometry/Modules/Tilde.lean
lemma isUnit_toStalk (x : PrimeSpectrum.Top R) (r : x.asIdeal.primeCompl) : IsUnit ((algebraMap R (Module.End R ((tildeInModuleCat M).stalk x))) r)
R : Type u inst✝ : CommRing R M : ModuleCat R x : ↑(PrimeSpectrum.Top R) r : ↥x.asIdeal.primeCompl st : ↑(M.tildeInModuleCat.stalk x) ⊢ ∃ a, ((algebraMap R (Module.End R ↑(M.tildeInModuleCat.stalk x))) ↑r) a = st
obtain ⟨U, mem, s, rfl⟩ := germ_exist (F := M.tildeInModuleCat) x st
case intro.intro.intro R : Type u inst✝ : CommRing R M : ModuleCat R x : ↑(PrimeSpectrum.Top R) r : ↥x.asIdeal.primeCompl U : Opens ↑(PrimeSpectrum.Top R) mem : x ∈ U s : ToType (M.tildeInModuleCat.obj (op U)) ⊢ ∃ a, ((algebraMap R (Module.End R ↑(M.tildeInModuleCat.stalk x))) ↑r) a = (ConcreteCategory.hom (M.tildeInModuleCat.germ U x mem)) s
623712519fb560df
Pell.pos_generator_iff_fundamental
Mathlib/NumberTheory/Pell.lean
theorem pos_generator_iff_fundamental (a : Solution₁ d) : (1 < a.x ∧ 0 < a.y ∧ ∀ b : Solution₁ d, ∃ n : ℤ, b = a ^ n ∨ b = -a ^ n) ↔ IsFundamental a
d : ℤ a : Solution₁ d h : 1 < a.x ∧ 0 < a.y ∧ ∀ (b : Solution₁ d), ∃ n, b = a ^ n ∨ b = -a ^ n h₀ : 0 < d ⊢ IsFundamental a
have hd := d_nonsquare_of_one_lt_x h.1
d : ℤ a : Solution₁ d h : 1 < a.x ∧ 0 < a.y ∧ ∀ (b : Solution₁ d), ∃ n, b = a ^ n ∨ b = -a ^ n h₀ : 0 < d hd : ¬IsSquare d ⊢ IsFundamental a
b8f76271aac4cb87
MeasureTheory.Measure.haarScalarFactor_eq_mul
Mathlib/MeasureTheory/Measure/Haar/Unique.lean
@[to_additive addHaarScalarFactor_eq_mul] lemma haarScalarFactor_eq_mul (μ' μ ν : Measure G) [IsHaarMeasure μ] [IsHaarMeasure ν] [IsFiniteMeasureOnCompacts μ'] [IsMulLeftInvariant μ'] : haarScalarFactor μ' ν = haarScalarFactor μ' μ * haarScalarFactor μ ν
case pos.intro.mk.intro.intro G : Type u_1 inst✝⁸ : TopologicalSpace G inst✝⁷ : Group G inst✝⁶ : IsTopologicalGroup G inst✝⁵ : MeasurableSpace G inst✝⁴ : BorelSpace G μ' μ ν : Measure G inst✝³ : μ.IsHaarMeasure inst✝² : ν.IsHaarMeasure inst✝¹ : IsFiniteMeasureOnCompacts μ' inst✝ : μ'.IsMulLeftInvariant hG : LocallyCompactSpace G g : G → ℝ g_cont : Continuous g g_comp : HasCompactSupport ⇑{ toFun := g, continuous_toFun := g_cont } g_nonneg : 0 ≤ { toFun := g, continuous_toFun := g_cont } g_one : { toFun := g, continuous_toFun := g_cont } 1 ≠ 0 Z : μ'.haarScalarFactor ν • ∫ (x : G), g x ∂ν = (μ'.haarScalarFactor μ * μ.haarScalarFactor ν) • ∫ (x : G), g x ∂ν int_g_pos : 0 < ∫ (x : G), g x ∂ν ⊢ μ'.haarScalarFactor ν = μ'.haarScalarFactor μ * μ.haarScalarFactor ν
change (haarScalarFactor μ' ν : ℝ) * ∫ (x : G), g x ∂ν = (haarScalarFactor μ' μ * haarScalarFactor μ ν : ℝ≥0) * ∫ (x : G), g x ∂ν at Z
case pos.intro.mk.intro.intro G : Type u_1 inst✝⁸ : TopologicalSpace G inst✝⁷ : Group G inst✝⁶ : IsTopologicalGroup G inst✝⁵ : MeasurableSpace G inst✝⁴ : BorelSpace G μ' μ ν : Measure G inst✝³ : μ.IsHaarMeasure inst✝² : ν.IsHaarMeasure inst✝¹ : IsFiniteMeasureOnCompacts μ' inst✝ : μ'.IsMulLeftInvariant hG : LocallyCompactSpace G g : G → ℝ g_cont : Continuous g g_comp : HasCompactSupport ⇑{ toFun := g, continuous_toFun := g_cont } g_nonneg : 0 ≤ { toFun := g, continuous_toFun := g_cont } g_one : { toFun := g, continuous_toFun := g_cont } 1 ≠ 0 int_g_pos : 0 < ∫ (x : G), g x ∂ν Z : ↑(μ'.haarScalarFactor ν) * ∫ (x : G), g x ∂ν = ↑(μ'.haarScalarFactor μ * μ.haarScalarFactor ν) * ∫ (x : G), g x ∂ν ⊢ μ'.haarScalarFactor ν = μ'.haarScalarFactor μ * μ.haarScalarFactor ν
b359337938580166
Algebra.FormallyUnramified.bijective_of_isAlgClosed_of_isLocalRing
Mathlib/RingTheory/Unramified/Field.lean
theorem bijective_of_isAlgClosed_of_isLocalRing [IsAlgClosed K] [IsLocalRing A] : Function.Bijective (algebraMap K A)
K : Type u_1 A : Type u_2 inst✝⁶ : Field K inst✝⁵ : CommRing A inst✝⁴ : Algebra K A inst✝³ : FormallyUnramified K A inst✝² : EssFiniteType K A inst✝¹ : IsAlgClosed K inst✝ : IsLocalRing A this✝¹ : Module.Finite K A this✝ : IsArtinianRing A hA : IsNilpotent (IsLocalRing.maximalIdeal A) this : Function.Bijective ⇑(ofId K (A ⧸ IsLocalRing.maximalIdeal A)) e : K ≃ₐ[K] A ⧸ IsLocalRing.maximalIdeal A := let __spread.0 := ofId K (A ⧸ IsLocalRing.maximalIdeal A); let __spread.1 := Equiv.ofBijective (⇑(ofId K (A ⧸ IsLocalRing.maximalIdeal A))) this; { toFun := (↑↑__spread.0.toRingHom).toFun, invFun := __spread.1.invFun, left_inv := ⋯, right_inv := ⋯, map_mul' := ⋯, map_add' := ⋯, commutes' := ⋯ } e' : A ⊗[K] (A ⧸ IsLocalRing.maximalIdeal A) ≃ₐ[A] A := (TensorProduct.congr AlgEquiv.refl e.symm).trans (TensorProduct.rid K A A) f : A ⧸ IsLocalRing.maximalIdeal A →ₗ[A] A := e'.toLinearMap ∘ₗ sec K A (A ⧸ IsLocalRing.maximalIdeal A) hf : (ofId A (A ⧸ IsLocalRing.maximalIdeal A)).toLinearMap ∘ₗ f = LinearMap.id hf₁ : f 1 • 1 = 1 ⊢ Function.Bijective ⇑(algebraMap K A)
have hf₂ : 1 - f 1 ∈ IsLocalRing.maximalIdeal A := by rw [← Ideal.Quotient.eq_zero_iff_mem, map_sub, map_one, ← Ideal.Quotient.algebraMap_eq, algebraMap_eq_smul_one, hf₁, sub_self]
K : Type u_1 A : Type u_2 inst✝⁶ : Field K inst✝⁵ : CommRing A inst✝⁴ : Algebra K A inst✝³ : FormallyUnramified K A inst✝² : EssFiniteType K A inst✝¹ : IsAlgClosed K inst✝ : IsLocalRing A this✝¹ : Module.Finite K A this✝ : IsArtinianRing A hA : IsNilpotent (IsLocalRing.maximalIdeal A) this : Function.Bijective ⇑(ofId K (A ⧸ IsLocalRing.maximalIdeal A)) e : K ≃ₐ[K] A ⧸ IsLocalRing.maximalIdeal A := let __spread.0 := ofId K (A ⧸ IsLocalRing.maximalIdeal A); let __spread.1 := Equiv.ofBijective (⇑(ofId K (A ⧸ IsLocalRing.maximalIdeal A))) this; { toFun := (↑↑__spread.0.toRingHom).toFun, invFun := __spread.1.invFun, left_inv := ⋯, right_inv := ⋯, map_mul' := ⋯, map_add' := ⋯, commutes' := ⋯ } e' : A ⊗[K] (A ⧸ IsLocalRing.maximalIdeal A) ≃ₐ[A] A := (TensorProduct.congr AlgEquiv.refl e.symm).trans (TensorProduct.rid K A A) f : A ⧸ IsLocalRing.maximalIdeal A →ₗ[A] A := e'.toLinearMap ∘ₗ sec K A (A ⧸ IsLocalRing.maximalIdeal A) hf : (ofId A (A ⧸ IsLocalRing.maximalIdeal A)).toLinearMap ∘ₗ f = LinearMap.id hf₁ : f 1 • 1 = 1 hf₂ : 1 - f 1 ∈ IsLocalRing.maximalIdeal A ⊢ Function.Bijective ⇑(algebraMap K A)
5099a67fd835b73a
exists_subset_iUnion_ball_radius_lt
Mathlib/Topology/MetricSpace/ShrinkingLemma.lean
theorem exists_subset_iUnion_ball_radius_lt {r : ι → ℝ} (hs : IsClosed s) (uf : ∀ x ∈ s, { i | x ∈ ball (c i) (r i) }.Finite) (us : s ⊆ ⋃ i, ball (c i) (r i)) : ∃ r' : ι → ℝ, (s ⊆ ⋃ i, ball (c i) (r' i)) ∧ ∀ i, r' i < r i
case intro.intro.intro α : Type u ι : Type v inst✝¹ : MetricSpace α inst✝ : ProperSpace α c : ι → α s : Set α r : ι → ℝ hs : IsClosed s uf : ∀ x ∈ s, {i | x ∈ ball (c i) (r i)}.Finite us : s ⊆ ⋃ i, ball (c i) (r i) v : ι → Set α hsv : s ⊆ iUnion v hvc : ∀ (i : ι), IsClosed (v i) hcv : ∀ (i : ι), v i ⊆ ball (c i) (r i) this : ∀ (i : ι), ∃ r' < r i, v i ⊆ ball (c i) r' ⊢ ∃ r', s ⊆ ⋃ i, ball (c i) (r' i) ∧ ∀ (i : ι), r' i < r i
choose r' hlt hsub using this
case intro.intro.intro α : Type u ι : Type v inst✝¹ : MetricSpace α inst✝ : ProperSpace α c : ι → α s : Set α r : ι → ℝ hs : IsClosed s uf : ∀ x ∈ s, {i | x ∈ ball (c i) (r i)}.Finite us : s ⊆ ⋃ i, ball (c i) (r i) v : ι → Set α hsv : s ⊆ iUnion v hvc : ∀ (i : ι), IsClosed (v i) hcv : ∀ (i : ι), v i ⊆ ball (c i) (r i) r' : ι → ℝ hlt : ∀ (i : ι), r' i < r i hsub : ∀ (i : ι), v i ⊆ ball (c i) (r' i) ⊢ ∃ r', s ⊆ ⋃ i, ball (c i) (r' i) ∧ ∀ (i : ι), r' i < r i
65cf1a842fcca693
Matrix.submatrix_cons_row
Mathlib/Data/Matrix/Notation.lean
theorem submatrix_cons_row (A : Matrix m' n' α) (i : m') (row : Fin m → m') (col : o' → n') : submatrix A (vecCons i row) col = vecCons (fun j => A i (col j)) (submatrix A row col)
case a α : Type u m : ℕ m' : Type uₘ n' : Type uₙ o' : Type uₒ A : Matrix m' n' α i✝ : m' row : Fin m → m' col : o' → n' i : Fin m.succ j : o' ⊢ A.submatrix (vecCons i✝ row) col i j = vecCons (fun j => A i✝ (col j)) (A.submatrix row col) i j
refine Fin.cases ?_ ?_ i <;> simp [submatrix]
no goals
eaf0044103452b4d
Polynomial.isRoot_cyclotomic_iff'
Mathlib/RingTheory/Polynomial/Cyclotomic/Roots.lean
theorem isRoot_cyclotomic_iff' {n : ℕ} {K : Type*} [Field K] {μ : K} [NeZero (n : K)] : IsRoot (cyclotomic n K) μ ↔ IsPrimitiveRoot μ n
case intro.intro.intro.intro n : ℕ K : Type u_2 inst✝¹ : Field K μ : K inst✝ : NeZero ↑n hnpos : 0 < n hμn : orderOf μ ∣ n hnμ : orderOf μ ≠ n ho : 0 < orderOf μ i : ℕ hio : i ∣ orderOf μ key : i < n key' : i ∣ n hni : {i, n} ⊆ n.divisors k : K[X] hk : cyclotomic i K = (X - C μ) * k j : K[X] hj : cyclotomic n K = (X - C μ) * j this : (∏ x ∈ n.divisors \ {i, n}, cyclotomic x K) * ((X - C μ) * k * ((X - C μ) * j)) = X ^ n - 1 hn : Squarefree (X ^ n - 1) ⊢ False
rw [← this, Squarefree] at hn
case intro.intro.intro.intro n : ℕ K : Type u_2 inst✝¹ : Field K μ : K inst✝ : NeZero ↑n hnpos : 0 < n hμn : orderOf μ ∣ n hnμ : orderOf μ ≠ n ho : 0 < orderOf μ i : ℕ hio : i ∣ orderOf μ key : i < n key' : i ∣ n hni : {i, n} ⊆ n.divisors k : K[X] hk : cyclotomic i K = (X - C μ) * k j : K[X] hj : cyclotomic n K = (X - C μ) * j this : (∏ x ∈ n.divisors \ {i, n}, cyclotomic x K) * ((X - C μ) * k * ((X - C μ) * j)) = X ^ n - 1 hn : ∀ (x : K[X]), x * x ∣ (∏ x ∈ n.divisors \ {i, n}, cyclotomic x K) * ((X - C μ) * k * ((X - C μ) * j)) → IsUnit x ⊢ False
1a9be958c6bf03ef
Algebra.FinitePresentation.equiv
Mathlib/RingTheory/FinitePresentation.lean
theorem equiv [FinitePresentation R A] (e : A ≃ₐ[R] B) : FinitePresentation R B
R : Type w₁ A : Type w₂ B : Type w₃ inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Algebra R A inst✝² : CommRing B inst✝¹ : Algebra R B inst✝ : FinitePresentation R A e : A ≃ₐ[R] B n : ℕ f : MvPolynomial (Fin n) R →ₐ[R] A hf : Surjective ⇑f ∧ (RingHom.ker f.toRingHom).FG h : ((↑e).comp f).toRingHom = (↑e).comp f.toRingHom h1 : ↑e.toRingEquiv = (↑e).toRingHom ⊢ ((↑e).comp f).toRingHom = (↑e.toRingEquiv).comp f.toRingHom
rw [h, h1]
no goals
a2eafda990ed0fda
InnerProductSpace.ext_inner_left_basis
Mathlib/Analysis/InnerProductSpace/Dual.lean
theorem ext_inner_left_basis {ι : Type*} {x y : E} (b : Basis ι 𝕜 E) (h : ∀ i : ι, ⟪b i, x⟫ = ⟪b i, y⟫) : x = y
𝕜 : Type u_1 E : Type u_2 inst✝² : RCLike 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E ι : Type u_3 x y : E b : Basis ι 𝕜 E h : ∀ (i : ι), ⟪b i, x⟫_𝕜 = ⟪b i, y⟫_𝕜 ⊢ ∀ (i : ι), ↑((toDualMap 𝕜 E) x) (b i) = ↑((toDualMap 𝕜 E) y) (b i)
intro i
𝕜 : Type u_1 E : Type u_2 inst✝² : RCLike 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E ι : Type u_3 x y : E b : Basis ι 𝕜 E h : ∀ (i : ι), ⟪b i, x⟫_𝕜 = ⟪b i, y⟫_𝕜 i : ι ⊢ ↑((toDualMap 𝕜 E) x) (b i) = ↑((toDualMap 𝕜 E) y) (b i)
25adf881a5ddade4
MeasureTheory.tendsto_Lp_of_tendsto_ae_of_meas
Mathlib/MeasureTheory/Function/UnifTight.lean
theorem tendsto_Lp_of_tendsto_ae_of_meas (hp : 1 ≤ p) (hp' : p ≠ ∞) {f : ℕ → α → β} {g : α → β} (hf : ∀ n, StronglyMeasurable (f n)) (hg : StronglyMeasurable g) (hg' : MemLp g p μ) (hui : UnifIntegrable f p μ) (hut : UnifTight f p μ) (hfg : ∀ᵐ x ∂μ, Tendsto (fun n => f n x) atTop (𝓝 (g x))) : Tendsto (fun n => eLpNorm (f n - g) p μ) atTop (𝓝 0)
case h α : Type u_1 β : Type u_2 m : MeasurableSpace α inst✝ : NormedAddCommGroup β μ : Measure α p : ℝ≥0∞ hp : 1 ≤ p hp' : p ≠ ⊤ f : ℕ → α → β g : α → β hf : ∀ (n : ℕ), StronglyMeasurable (f n) hg : StronglyMeasurable g hg' : MemLp g p μ hui : UnifIntegrable f p μ hut : UnifTight f p μ hfg : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => f n x) atTop (𝓝 (g x)) ε : ℝ≥0∞ hε : ε > 0 hfinε : ε ≠ ⊤ hμ : ¬μ = 0 hε' : 0 < ε / 3 Eg : Set α hmEg : MeasurableSet Eg hμEg : μ Eg < ⊤ hgε : eLpNorm (Egᶜ.indicator g) p μ < ε / 3 Ef : Set α hmEf : MeasurableSet Ef hμEf : μ Ef < ⊤ hfε : ∀ (i : ℕ), eLpNorm (Efᶜ.indicator (f i)) p μ ≤ ε / 3 E : Set α := Ef ∪ Eg hmE : MeasurableSet E hfmE : μ E < ⊤ hgE' : MemLp g p (μ.restrict E) huiE : UnifIntegrable f p (μ.restrict E) hfgE : ∀ᵐ (x : α) ∂μ.restrict E, Tendsto (fun n => f n x) atTop (𝓝 (g x)) ffmE : Fact (μ E < ⊤) hInner : ∀ ε > 0, ∃ N, ∀ n ≥ N, eLpNorm (f n - g) p (μ.restrict E) ≤ ε N : ℕ hfngε : ∀ n ≥ N, eLpNorm (f n - g) p (μ.restrict E) ≤ ε / 3 n : ℕ hn : n ≥ N hmfngE : AEStronglyMeasurable (E.indicator (f n - g)) μ hfngEε : eLpNorm (E.indicator (f n - g)) p μ ≤ ε / 3 hmgEc : AEStronglyMeasurable (Eᶜ.indicator g) μ ⊢ eLpNorm (f n - g) p μ ≤ ε
have hgEcε := calc eLpNorm (Eᶜ.indicator g) p μ ≤ eLpNorm (Efᶜ.indicator (Egᶜ.indicator g)) p μ := by unfold E; rw [compl_union, ← indicator_indicator] _ ≤ eLpNorm (Egᶜ.indicator g) p μ := eLpNorm_indicator_le _ _ ≤ ε / 3 := hgε.le
case h α : Type u_1 β : Type u_2 m : MeasurableSpace α inst✝ : NormedAddCommGroup β μ : Measure α p : ℝ≥0∞ hp : 1 ≤ p hp' : p ≠ ⊤ f : ℕ → α → β g : α → β hf : ∀ (n : ℕ), StronglyMeasurable (f n) hg : StronglyMeasurable g hg' : MemLp g p μ hui : UnifIntegrable f p μ hut : UnifTight f p μ hfg : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => f n x) atTop (𝓝 (g x)) ε : ℝ≥0∞ hε : ε > 0 hfinε : ε ≠ ⊤ hμ : ¬μ = 0 hε' : 0 < ε / 3 Eg : Set α hmEg : MeasurableSet Eg hμEg : μ Eg < ⊤ hgε : eLpNorm (Egᶜ.indicator g) p μ < ε / 3 Ef : Set α hmEf : MeasurableSet Ef hμEf : μ Ef < ⊤ hfε : ∀ (i : ℕ), eLpNorm (Efᶜ.indicator (f i)) p μ ≤ ε / 3 E : Set α := Ef ∪ Eg hmE : MeasurableSet E hfmE : μ E < ⊤ hgE' : MemLp g p (μ.restrict E) huiE : UnifIntegrable f p (μ.restrict E) hfgE : ∀ᵐ (x : α) ∂μ.restrict E, Tendsto (fun n => f n x) atTop (𝓝 (g x)) ffmE : Fact (μ E < ⊤) hInner : ∀ ε > 0, ∃ N, ∀ n ≥ N, eLpNorm (f n - g) p (μ.restrict E) ≤ ε N : ℕ hfngε : ∀ n ≥ N, eLpNorm (f n - g) p (μ.restrict E) ≤ ε / 3 n : ℕ hn : n ≥ N hmfngE : AEStronglyMeasurable (E.indicator (f n - g)) μ hfngEε : eLpNorm (E.indicator (f n - g)) p μ ≤ ε / 3 hmgEc : AEStronglyMeasurable (Eᶜ.indicator g) μ hgEcε : eLpNorm (Eᶜ.indicator g) p μ ≤ ε / 3 ⊢ eLpNorm (f n - g) p μ ≤ ε
77334843f098ce11
Doset.rel_bot_eq_right_group_rel
Mathlib/GroupTheory/DoubleCoset.lean
theorem rel_bot_eq_right_group_rel (H : Subgroup G) : ⇑(setoid ↑H ↑(⊥ : Subgroup G)) = ⇑(QuotientGroup.rightRel H)
case h.h.a.mp G : Type u_1 inst✝ : Group G H : Subgroup G a b : G ⊢ (∃ a_1 ∈ H, ∃ b_1 ∈ ⊥, b = a_1 * a * b_1) → b * a⁻¹ ∈ H
rintro ⟨b, hb, a, rfl : a = 1, rfl⟩
case h.h.a.mp.intro.intro.intro.intro G : Type u_1 inst✝ : Group G H : Subgroup G a b : G hb : b ∈ H ⊢ b * a * 1 * a⁻¹ ∈ H
81e081d58dc15cf2
Lean.Omega.IntList.dvd_bmod_dot_sub_dot_bmod
Mathlib/.lake/packages/lean4/src/lean/Init/Omega/IntList.lean
theorem dvd_bmod_dot_sub_dot_bmod (m : Nat) (xs ys : IntList) : (m : Int) ∣ bmod_dot_sub_dot_bmod m xs ys
case cons.cons m : Nat x : Int xs : List Int ih : ∀ (ys : IntList), ((dot xs ys).bmod m - (bmod xs m).dot ys) % ↑m = 0 y : Int ys : List Int ⊢ ((dot (x :: xs) (y :: ys)).bmod m - (bmod (x :: xs) m).dot (y :: ys)) % ↑m = 0
simp only [IntList.dot_cons₂, List.map_cons]
case cons.cons m : Nat x : Int xs : List Int ih : ∀ (ys : IntList), ((dot xs ys).bmod m - (bmod xs m).dot ys) % ↑m = 0 y : Int ys : List Int ⊢ ((x * y + dot xs ys).bmod m - (x.bmod m * y + dot (List.map (fun x => x.bmod m) xs) ys)) % ↑m = 0
6132ead5a527f997
ContinuousLinearEquiv.comp_contDiff_iff
Mathlib/Analysis/Calculus/ContDiff/Basic.lean
theorem ContinuousLinearEquiv.comp_contDiff_iff (e : F ≃L[𝕜] G) : ContDiff 𝕜 n (e ∘ f) ↔ ContDiff 𝕜 n f
𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type uE inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type uF inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type uG inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace 𝕜 G f : E → F n : WithTop ℕ∞ e : F ≃L[𝕜] G ⊢ ContDiff 𝕜 n (⇑e ∘ f) ↔ ContDiff 𝕜 n f
simp only [← contDiffOn_univ, e.comp_contDiffOn_iff]
no goals
207fd33cbf80f360
integral_withDensity_eq_integral_smul
Mathlib/MeasureTheory/Integral/SetIntegral.lean
theorem integral_withDensity_eq_integral_smul {f : X → ℝ≥0} (f_meas : Measurable f) (g : X → E) : ∫ x, g x ∂μ.withDensity (fun x => f x) = ∫ x, f x • g x ∂μ
case pos.refine_2 X : Type u_1 E : Type u_3 inst✝² : MeasurableSpace X μ : Measure X inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E f : X → ℝ≥0 f_meas : Measurable f g : X → E hE : CompleteSpace E hg : Integrable g (μ.withDensity fun x => ↑(f x)) u u' : X → E a✝ : Disjoint (support u) (support u') u_int : Integrable u (μ.withDensity fun x => ↑(f x)) u'_int : Integrable u' (μ.withDensity fun x => ↑(f x)) h : (∫ (x : X), u x ∂μ.withDensity fun x => ↑(f x)) = ∫ (x : X), f x • u x ∂μ h' : (∫ (x : X), u' x ∂μ.withDensity fun x => ↑(f x)) = ∫ (x : X), f x • u' x ∂μ ⊢ (∫ (x : X), (u + u') x ∂μ.withDensity fun x => ↑(f x)) = ∫ (x : X), f x • (u + u') x ∂μ
change (∫ x : X, u x + u' x ∂μ.withDensity fun x : X => ↑(f x)) = ∫ x : X, f x • (u x + u' x) ∂μ
case pos.refine_2 X : Type u_1 E : Type u_3 inst✝² : MeasurableSpace X μ : Measure X inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E f : X → ℝ≥0 f_meas : Measurable f g : X → E hE : CompleteSpace E hg : Integrable g (μ.withDensity fun x => ↑(f x)) u u' : X → E a✝ : Disjoint (support u) (support u') u_int : Integrable u (μ.withDensity fun x => ↑(f x)) u'_int : Integrable u' (μ.withDensity fun x => ↑(f x)) h : (∫ (x : X), u x ∂μ.withDensity fun x => ↑(f x)) = ∫ (x : X), f x • u x ∂μ h' : (∫ (x : X), u' x ∂μ.withDensity fun x => ↑(f x)) = ∫ (x : X), f x • u' x ∂μ ⊢ (∫ (x : X), u x + u' x ∂μ.withDensity fun x => ↑(f x)) = ∫ (x : X), f x • (u x + u' x) ∂μ
cd239c0816bb7a0c
ONote.exists_lt_mul_omega0'
Mathlib/SetTheory/Ordinal/Notation.lean
theorem exists_lt_mul_omega0' {o : Ordinal} ⦃a⦄ (h : a < o * ω) : ∃ i : ℕ, a < o * ↑i + o
case intro.intro.intro o a : Ordinal.{u_1} h : a < o * ω i : ℕ hi : ↑i < ω h' : a < o * ↑i ⊢ ∃ i, a < o * ↑i + o
exact ⟨i, h'.trans_le (le_add_right _ _)⟩
no goals
f61b5b41f10b767b
MeasureTheory.ae_ae_add_linearMap_mem_iff
Mathlib/MeasureTheory/Measure/Haar/Disintegration.lean
/-- Given a linear map `L : E → F`, a property holds almost everywhere in `F` if and only if, almost everywhere in `F`, it holds almost everywhere along the subspace spanned by the image of `L`. This is an instance of a disintegration argument for additive Haar measures. -/ lemma ae_ae_add_linearMap_mem_iff [LocallyCompactSpace F] {s : Set F} (hs : MeasurableSet s) : (∀ᵐ y ∂ν, ∀ᵐ x ∂μ, y + L x ∈ s) ↔ ∀ᵐ y ∂ν, y ∈ s
𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹³ : NontriviallyNormedField 𝕜 inst✝¹² : CompleteSpace 𝕜 inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : MeasurableSpace E inst✝⁹ : BorelSpace E inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : MeasurableSpace F inst✝⁵ : BorelSpace F inst✝⁴ : NormedSpace 𝕜 F L : E →ₗ[𝕜] F μ : Measure E ν : Measure F inst✝³ : μ.IsAddHaarMeasure inst✝² : ν.IsAddHaarMeasure inst✝¹ : LocallyCompactSpace E inst✝ : LocallyCompactSpace F s : Set F hs : MeasurableSet s this✝² : FiniteDimensional 𝕜 E this✝¹ : FiniteDimensional 𝕜 F this✝ : ProperSpace E this : ProperSpace F M : F × E →ₗ[𝕜] F := LinearMap.id.coprod L ⊢ (∀ᵐ (y : F) ∂ν, ∀ᵐ (x : E) ∂μ, y + L x ∈ s) ↔ ∀ᵐ (y : F) ∂ν, y ∈ s
have M_cont : Continuous M := M.continuous_of_finiteDimensional
𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹³ : NontriviallyNormedField 𝕜 inst✝¹² : CompleteSpace 𝕜 inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : MeasurableSpace E inst✝⁹ : BorelSpace E inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : MeasurableSpace F inst✝⁵ : BorelSpace F inst✝⁴ : NormedSpace 𝕜 F L : E →ₗ[𝕜] F μ : Measure E ν : Measure F inst✝³ : μ.IsAddHaarMeasure inst✝² : ν.IsAddHaarMeasure inst✝¹ : LocallyCompactSpace E inst✝ : LocallyCompactSpace F s : Set F hs : MeasurableSet s this✝² : FiniteDimensional 𝕜 E this✝¹ : FiniteDimensional 𝕜 F this✝ : ProperSpace E this : ProperSpace F M : F × E →ₗ[𝕜] F := LinearMap.id.coprod L M_cont : Continuous ⇑M ⊢ (∀ᵐ (y : F) ∂ν, ∀ᵐ (x : E) ∂μ, y + L x ∈ s) ↔ ∀ᵐ (y : F) ∂ν, y ∈ s
b5abd4dbf886cc53
MulAction.le_stabilizer_smul_right
Mathlib/GroupTheory/GroupAction/Defs.lean
@[to_additive] lemma le_stabilizer_smul_right {G'} [Group G'] [SMul α β] [MulAction G' β] [SMulCommClass G' α β] (a : α) (b : β) : stabilizer G' b ≤ stabilizer G' (a • b)
α : Type u_2 β : Type u_3 G' : Type u_4 inst✝³ : Group G' inst✝² : SMul α β inst✝¹ : MulAction G' β inst✝ : SMulCommClass G' α β a : α b : β ⊢ ∀ ⦃x : G'⦄, x • b = b → a • x • b = a • b
rintro a h
α : Type u_2 β : Type u_3 G' : Type u_4 inst✝³ : Group G' inst✝² : SMul α β inst✝¹ : MulAction G' β inst✝ : SMulCommClass G' α β a✝ : α b : β a : G' h : a • b = b ⊢ a✝ • a • b = a✝ • b
ea3d9b7b5188c240
DirectSum.coe_decompose_mul_of_left_mem_of_le
Mathlib/RingTheory/GradedAlgebra/Basic.lean
theorem coe_decompose_mul_of_left_mem_of_le (a_mem : a ∈ 𝒜 i) (h : i ≤ n) : (decompose 𝒜 (a * b) n : A) = a * decompose 𝒜 b (n - i)
case intro ι : Type u_1 A : Type u_3 σ : Type u_4 inst✝¹⁰ : Semiring A inst✝⁹ : DecidableEq ι inst✝⁸ : AddCommMonoid ι inst✝⁷ : PartialOrder ι inst✝⁶ : CanonicallyOrderedAdd ι inst✝⁵ : SetLike σ A inst✝⁴ : AddSubmonoidClass σ A 𝒜 : ι → σ inst✝³ : GradedRing 𝒜 b : A n i : ι inst✝² : Sub ι inst✝¹ : OrderedSub ι inst✝ : AddLeftReflectLE ι h : i ≤ n a : ↥(𝒜 i) ⊢ ↑(((decompose 𝒜) (↑a * b)) n) = ↑a * ↑(((decompose 𝒜) b) (n - i))
rwa [decompose_mul, decompose_coe, coe_of_mul_apply_of_le]
no goals
86975a0e97272182
IsDenseInducing.extend_Z_bilin_key
Mathlib/Topology/Algebra/UniformGroup/Basic.lean
theorem extend_Z_bilin_key (x₀ : α) (y₀ : γ) : ∃ U ∈ comap e (𝓝 x₀), ∃ V ∈ comap f (𝓝 y₀), ∀ x ∈ U, ∀ x' ∈ U, ∀ (y) (_ : y ∈ V) (y') (_ : y' ∈ V), (fun p : β × δ => φ p.1 p.2) (x', y') - (fun p : β × δ => φ p.1 p.2) (x, y) ∈ W'
α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹² : TopologicalSpace α inst✝¹¹ : AddCommGroup α inst✝¹⁰ : IsTopologicalAddGroup α inst✝⁹ : TopologicalSpace β inst✝⁸ : AddCommGroup β inst✝⁷ : TopologicalSpace γ inst✝⁶ : AddCommGroup γ inst✝⁵ : IsTopologicalAddGroup γ inst✝⁴ : TopologicalSpace δ inst✝³ : AddCommGroup δ inst✝² : UniformSpace G inst✝¹ : AddCommGroup G e : β →+ α de : IsDenseInducing ⇑e f : δ →+ γ df : IsDenseInducing ⇑f φ : β →+ δ →+ G hφ : Continuous fun p => (φ p.1) p.2 W' : Set G W'_nhd : W' ∈ 𝓝 0 inst✝ : UniformAddGroup G x₀ : α y₀ : γ ee : β × β → α × α := fun u => (e u.1, e u.2) ff : δ × δ → γ × γ := fun u => (f u.1, f u.2) lim_φ : Tendsto (fun p => (φ p.1) p.2) (𝓝 (0, 0)) (𝓝 0) lim_sub_sub : Tendsto (fun p => (p.1.2 - p.1.1, p.2.2 - p.2.1)) (comap ee (𝓝 (x₀, x₀)) ×ˢ comap ff (𝓝 (y₀, y₀))) (𝓝 (0, 0)) ⊢ Tendsto (fun p => (fun p => (φ p.1) p.2) (p.1.2 - p.1.1, p.2.2 - p.2.1)) (comap ee (𝓝 (x₀, x₀)) ×ˢ comap ff (𝓝 (y₀, y₀))) (𝓝 0)
exact Tendsto.comp lim_φ lim_sub_sub
no goals
965b7a7f03c398d2
traceForm_dualBasis_powerBasis_eq
Mathlib/RingTheory/Trace/Basic.lean
/-- The dual basis of a powerbasis `{1, x, x²...}` under the trace form is `aᵢ / f'(x)`, with `f` being the minimal polynomial of `x` and `f / (X - x) = ∑ aᵢxⁱ`. -/ lemma traceForm_dualBasis_powerBasis_eq [FiniteDimensional K L] [Algebra.IsSeparable K L] (pb : PowerBasis K L) (i) : (Algebra.traceForm K L).dualBasis (traceForm_nondegenerate K L) pb.basis i = (minpolyDiv K pb.gen).coeff i / aeval pb.gen (derivative <| minpoly K pb.gen)
case a K : Type u_4 L : Type u_5 inst✝⁴ : Field K inst✝³ : Field L inst✝² : Algebra K L inst✝¹ : FiniteDimensional K L inst✝ : Algebra.IsSeparable K L pb : PowerBasis K L i j : Fin pb.dim ⊢ (if j = i then 1 else 0) = ((traceForm K L) ((minpolyDiv K pb.gen).coeff ↑i / (aeval pb.gen) (derivative (minpoly K pb.gen)))) (pb.basis j)
apply (algebraMap K (AlgebraicClosure K)).injective
case a.a K : Type u_4 L : Type u_5 inst✝⁴ : Field K inst✝³ : Field L inst✝² : Algebra K L inst✝¹ : FiniteDimensional K L inst✝ : Algebra.IsSeparable K L pb : PowerBasis K L i j : Fin pb.dim ⊢ (algebraMap K (AlgebraicClosure K)) (if j = i then 1 else 0) = (algebraMap K (AlgebraicClosure K)) (((traceForm K L) ((minpolyDiv K pb.gen).coeff ↑i / (aeval pb.gen) (derivative (minpoly K pb.gen)))) (pb.basis j))
619b8227edc12ad8
tangentCone_nonempty_of_properSpace
Mathlib/Analysis/Calculus/TangentCone.lean
theorem tangentCone_nonempty_of_properSpace [ProperSpace E] {s : Set E} {x : E} (hx : (𝓝[s \ {x}] x).NeBot) : (tangentConeAt 𝕜 s x ∩ {0}ᶜ).Nonempty
𝕜 : Type u_1 inst✝³ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : ProperSpace E s : Set E x : E hx : (𝓝[s \ {x}] x).NeBot u : ℕ → ℝ u_pos : ∀ (n : ℕ), 0 < u n u_lim : Tendsto u atTop (𝓝 0) v : ℕ → E hv : ∀ (n : ℕ), v n ∈ s \ {x} ∩ Metric.ball x (u n) d : ℕ → E := fun n => v n - x M : ∀ (n : ℕ), x + d n ∈ s \ {x} r : 𝕜 hr : 1 < ‖r‖ c : ℕ → 𝕜 c_ne : ∀ (n : ℕ), c n ≠ 0 c_le : ∀ (n : ℕ), ‖c n • d n‖ < 1 le_c : ∀ (n : ℕ), 1 / ‖r‖ ≤ ‖c n • d n‖ hc : ∀ (n : ℕ), ‖c n‖⁻¹ ≤ 1⁻¹ * ‖r‖ * ‖d n‖ B : ∀ (n : ℕ), ‖c n‖⁻¹ ≤ 1⁻¹ * ‖r‖ * u n ⊢ Tendsto (fun t => 1⁻¹ * ‖r‖ * u t) atTop (𝓝 0)
simpa using u_lim.const_mul _
no goals
67a7ea69bc3c4c99
Filter.HasBasis.exists_antitone_subbasis
Mathlib/Order/Filter/CountablyGenerated.lean
theorem HasBasis.exists_antitone_subbasis {f : Filter α} [h : f.IsCountablyGenerated] {p : ι' → Prop} {s : ι' → Set α} (hs : f.HasBasis p s) : ∃ x : ℕ → ι', (∀ i, p (x i)) ∧ f.HasAntitoneBasis fun i => s (x i)
case h.e'_4 α : Type u_1 ι' : Sort u_5 f : Filter α h : f.IsCountablyGenerated p : ι' → Prop s : ι' → Set α hs : f.HasBasis p s x' : ℕ → Set α hx' : f = ⨅ i, 𝓟 (x' i) this✝ : ∀ (i : ℕ), x' i ∈ f x : ℕ → { i // p i } := fun n => Nat.recOn n (hs.index (x' 0) ⋯) fun n xn => hs.index (x' (n + 1) ∩ s ↑xn) ⋯ x_anti : Antitone fun i => s ↑(x i) x_subset : ∀ (i : ℕ), s ↑(x i) ⊆ x' i this : (⨅ i, 𝓟 (s ↑(x i))).HasAntitoneBasis fun i => s ↑(x i) ⊢ f = ⨅ i, 𝓟 (s ↑(x i))
exact le_antisymm (le_iInf fun i => le_principal_iff.2 <| by cases i <;> apply hs.set_index_mem) (hx'.symm ▸ le_iInf fun i => le_principal_iff.2 <| this.1.mem_iff.2 ⟨i, trivial, x_subset i⟩)
no goals
25d2caa8c01b800f
Field.finite_intermediateField_of_exists_primitive_element
Mathlib/FieldTheory/PrimitiveElement.lean
theorem finite_intermediateField_of_exists_primitive_element [Algebra.IsAlgebraic F E] (h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E)
case intro F : Type u_1 E : Type u_2 inst✝³ : Field F inst✝² : Field E inst✝¹ : Algebra F E inst✝ : Algebra.IsAlgebraic F E this : FiniteDimensional F E α : E hprim : F⟮α⟯ = ⊤ f : F[X] := minpoly F α G : Type (max 0 u_2) := { g // g.Monic ∧ g ∣ Polynomial.map (algebraMap F E) f } hfin : Finite G g : IntermediateField F E → G := fun K => ⟨Polynomial.map (algebraMap (↥K) E) (minpoly (↥K) α), ⋯⟩ hinj : Function.Injective g ⊢ Finite (IntermediateField F E)
exact Finite.of_injective g hinj
no goals
eb1d16f038b5b8d7
Array.toList_filterMap'
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Lemmas.lean
theorem toList_filterMap' (f : α → Option β) (l : Array α) (w : stop = l.size) : (l.filterMap f 0 stop).toList = l.toList.filterMap f
α : Type u_1 β : Type u_2 stop : Nat f : α → Option β l : Array α w : stop = l.size ⊢ (filterMap f l 0 stop).toList = List.filterMap f l.toList
subst w
α : Type u_1 β : Type u_2 f : α → Option β l : Array α ⊢ (filterMap f l).toList = List.filterMap f l.toList
0bf06d250b5cdb33
RingHom.locally_localizationAwayPreserves
Mathlib/RingTheory/RingHom/Locally.lean
/-- If `P` is preserved by localization away, then so is `Locally P`. -/ lemma locally_localizationAwayPreserves (hPl : LocalizationAwayPreserves P) : LocalizationAwayPreserves (Locally P)
case intro.intro P : {R S : Type u} → [inst : CommRing R] → [inst_1 : CommRing S] → (R →+* S) → Prop hPl : LocalizationAwayPreserves fun {R S} [CommRing R] [CommRing S] => P R S : Type u inst✝⁷ : CommRing R inst✝⁶ : CommRing S f : R →+* S r : R R' S' : Type u inst✝⁵ : CommRing R' inst✝⁴ : CommRing S' inst✝³ : Algebra R R' inst✝² : Algebra S S' inst✝¹ : IsLocalization.Away r R' inst✝ : IsLocalization.Away (f r) S' s : Set S hsone : Ideal.span s = ⊤ hs : ∀ t ∈ s, (fun {R S} [CommRing R] [CommRing S] => P) ((algebraMap S (Localization.Away t)).comp f) ⊢ Locally (fun {R S} [CommRing R] [CommRing S] => P) (IsLocalization.Away.map R' S' f r)
rw [locally_iff_exists hPl.respectsIso]
case intro.intro P : {R S : Type u} → [inst : CommRing R] → [inst_1 : CommRing S] → (R →+* S) → Prop hPl : LocalizationAwayPreserves fun {R S} [CommRing R] [CommRing S] => P R S : Type u inst✝⁷ : CommRing R inst✝⁶ : CommRing S f : R →+* S r : R R' S' : Type u inst✝⁵ : CommRing R' inst✝⁴ : CommRing S' inst✝³ : Algebra R R' inst✝² : Algebra S S' inst✝¹ : IsLocalization.Away r R' inst✝ : IsLocalization.Away (f r) S' s : Set S hsone : Ideal.span s = ⊤ hs : ∀ t ∈ s, (fun {R S} [CommRing R] [CommRing S] => P) ((algebraMap S (Localization.Away t)).comp f) ⊢ ∃ ι s, ∃ (_ : Ideal.span (Set.range s) = ⊤), ∃ Sₜ x x_1, ∃ (_ : ∀ (i : ι), IsLocalization.Away (s i) (Sₜ i)), ∀ (i : ι), P ((algebraMap S' (Sₜ i)).comp (IsLocalization.Away.map R' S' f r))
2508d7210fe7161f
StrictMonoOn.lt_iff_lt
Mathlib/Order/Monotone/Basic.lean
theorem StrictMonoOn.lt_iff_lt (hf : StrictMonoOn f s) {a b : α} (ha : a ∈ s) (hb : b ∈ s) : f a < f b ↔ a < b
α : Type u β : Type v inst✝¹ : LinearOrder α inst✝ : Preorder β f : α → β s : Set α hf : StrictMonoOn f s a b : α ha : a ∈ s hb : b ∈ s ⊢ f a < f b ↔ a < b
rw [lt_iff_le_not_le, lt_iff_le_not_le, hf.le_iff_le ha hb, hf.le_iff_le hb ha]
no goals
ae88eff3482df926
LinearMap.isNilpotent_trace_of_isNilpotent
Mathlib/LinearAlgebra/Trace.lean
lemma isNilpotent_trace_of_isNilpotent {f : M →ₗ[R] M} (hf : IsNilpotent f) : IsNilpotent (trace R M f)
R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M f : M →ₗ[R] M hf : IsNilpotent f ⊢ IsNilpotent ((trace R M) f)
by_cases H : ∃ s : Finset M, Nonempty (Basis s R M)
case pos R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M f : M →ₗ[R] M hf : IsNilpotent f H : ∃ s, Nonempty (Basis { x // x ∈ s } R M) ⊢ IsNilpotent ((trace R M) f) case neg R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M f : M →ₗ[R] M hf : IsNilpotent f H : ¬∃ s, Nonempty (Basis { x // x ∈ s } R M) ⊢ IsNilpotent ((trace R M) f)
e91dd2e7e36757a1
aestronglyMeasurable_withDensity_iff
Mathlib/MeasureTheory/Function/StronglyMeasurable/Lemmas.lean
theorem aestronglyMeasurable_withDensity_iff {E : Type*} [NormedAddCommGroup E] [NormedSpace ℝ E] {f : α → ℝ≥0} (hf : Measurable f) {g : α → E} : AEStronglyMeasurable g (μ.withDensity fun x => (f x : ℝ≥0∞)) ↔ AEStronglyMeasurable (fun x => (f x : ℝ) • g x) μ
case h α : Type u_1 m : MeasurableSpace α μ : Measure α E : Type u_4 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E f : α → ℝ≥0 hf : Measurable f g g' : α → E g'meas : StronglyMeasurable g' hg' : (fun x => ↑(f x) • g x) =ᶠ[ae μ] g' x : α hx : ↑(f x) • g x = g' x h'x : ↑(f x) ≠ 0 ⊢ ↑(f x) ≠ 0
simp only [Ne, ENNReal.coe_eq_zero] at h'x
case h α : Type u_1 m : MeasurableSpace α μ : Measure α E : Type u_4 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E f : α → ℝ≥0 hf : Measurable f g g' : α → E g'meas : StronglyMeasurable g' hg' : (fun x => ↑(f x) • g x) =ᶠ[ae μ] g' x : α hx : ↑(f x) • g x = g' x h'x : ¬f x = 0 ⊢ ↑(f x) ≠ 0
7323180b64a0b378
Monoid.PushoutI.Reduced.eq_empty_of_mem_range
Mathlib/GroupTheory/PushoutI.lean
theorem Reduced.eq_empty_of_mem_range (hφ : ∀ i, Injective (φ i)) {w : Word G} (hw : Reduced φ w) (h : ofCoprodI w.prod ∈ (base φ).range) : w = .empty
case intro ι : Type u_1 G : ι → Type u_2 H : Type u_3 inst✝¹ : (i : ι) → Group (G i) inst✝ : Group H φ : (i : ι) → H →* G i hφ : ∀ (i : ι), Injective ⇑(φ i) w : Word G hw : Reduced φ w h : ofCoprodI w.prod ∈ (base φ).range d : Transversal φ ⊢ w = Word.empty
rcases hw.exists_normalWord_prod_eq d with ⟨w', hw'prod, hw'map⟩
case intro.intro.intro ι : Type u_1 G : ι → Type u_2 H : Type u_3 inst✝¹ : (i : ι) → Group (G i) inst✝ : Group H φ : (i : ι) → H →* G i hφ : ∀ (i : ι), Injective ⇑(φ i) w : Word G hw : Reduced φ w h : ofCoprodI w.prod ∈ (base φ).range d : Transversal φ w' : NormalWord d hw'prod : w'.prod = ofCoprodI w.prod hw'map : List.map Sigma.fst w'.toList = List.map Sigma.fst w.toList ⊢ w = Word.empty
fdebf49757164932
Finset.prod_involution
Mathlib/Algebra/BigOperators/Group/Finset/Basic.lean
/-- The difference with `Finset.prod_ninvolution` is that the involution is allowed to use membership of the domain of the product, rather than being a non-dependent function. -/ @[to_additive "The difference with `Finset.sum_ninvolution` is that the involution is allowed to use membership of the domain of the sum, rather than being a non-dependent function."] lemma prod_involution (g : ∀ a ∈ s, α) (hg₁ : ∀ a ha, f a * f (g a ha) = 1) (hg₃ : ∀ a ha, f a ≠ 1 → g a ha ≠ a) (g_mem : ∀ a ha, g a ha ∈ s) (hg₄ : ∀ a ha, g (g a ha) (g_mem a ha) = a) : ∏ x ∈ s, f x = 1
case H.inl α : Type u_3 β : Type u_4 s : Finset α f : α → β inst✝ : CommMonoid β ih : ∀ t ⊂ ∅, ∀ (g : (a : α) → a ∈ t → α), (∀ (a : α) (ha : a ∈ t), f a * f (g a ha) = 1) → (∀ (a : α) (ha : a ∈ t), f a ≠ 1 → g a ha ≠ a) → ∀ (g_mem : ∀ (a : α) (ha : a ∈ t), g a ha ∈ t), (∀ (a : α) (ha : a ∈ t), g (g a ha) ⋯ = a) → ∏ x ∈ t, f x = 1 g : (a : α) → a ∈ ∅ → α hg₁ : ∀ (a : α) (ha : a ∈ ∅), f a * f (g a ha) = 1 hg₃ : ∀ (a : α) (ha : a ∈ ∅), f a ≠ 1 → g a ha ≠ a g_mem : ∀ (a : α) (ha : a ∈ ∅), g a ha ∈ ∅ hg₄ : ∀ (a : α) (ha : a ∈ ∅), g (g a ha) ⋯ = a ⊢ ∏ x ∈ ∅, f x = 1
simp
no goals
c4a7eebc4974ed1c
Cardinal.iSup_lt_lift_of_isRegular
Mathlib/SetTheory/Cardinal/Cofinality.lean
theorem iSup_lt_lift_of_isRegular {ι} {f : ι → Cardinal} {c} (hc : IsRegular c) (hι : Cardinal.lift.{v, u} #ι < c) : (∀ i, f i < c) → iSup.{max u v + 1, u + 1} f < c := iSup_lt_lift.{u, v} (by rwa [hc.cof_eq])
ι : Type u f : ι → Cardinal.{max u v} c : Cardinal.{max u v} hc : c.IsRegular hι : lift.{v, u} #ι < c ⊢ lift.{v, u} #ι < c.ord.cof
rwa [hc.cof_eq]
no goals
93ea3e735ac3fb34
AnalyticOnNhd.isClopen_setOf_order_eq_top
Mathlib/Analysis/Analytic/Order.lean
theorem isClopen_setOf_order_eq_top (h₁f : AnalyticOnNhd 𝕜 f U) : IsClopen { u : U | (h₁f u.1 u.2).order = ⊤ }
case pos 𝕜 : Type u_1 inst✝² : NontriviallyNormedField 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E f : 𝕜 → E U : Set 𝕜 h₁f : AnalyticOnNhd 𝕜 f U z : ↑U hz : z ∈ {u | ⋯.order = ⊤}ᶜ h : ∀ᶠ (z : 𝕜) in 𝓝[≠] ↑z, f z ≠ 0 t' : Set 𝕜 h₁t' : ∀ y ∈ t', y ∈ {↑z}ᶜ → f y ≠ 0 h₂t' : IsOpen t' h₃t' : ↑z ∈ t' w : ↑U hw : w ∈ Subtype.val ⁻¹' t' h₁w : w = z ⊢ ¬⋯.order = ⊤
rwa [h₁w]
no goals
d5d16b4618a2912b
List.forIn'_congr
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Monadic.lean
theorem forIn'_congr [Monad m] {as bs : List α} (w : as = bs) {b b' : β} (hb : b = b') {f : (a' : α) → a' ∈ as → β → m (ForInStep β)} {g : (a' : α) → a' ∈ bs → β → m (ForInStep β)} (h : ∀ a m b, f a (by simpa [w] using m) b = g a m b) : forIn' as b f = forIn' bs b' g
case cons.cons.intro.e_a.h.yield m : Type u_1 → Type u_2 α : Type u_3 β : Type u_1 inst✝ : Monad m b✝ b' : β hb : b✝ = b' a : α as : List α f : (a' : α) → a' ∈ a :: as → β → m (ForInStep β) ih : ∀ {as_1 : List α} (w : as_1 = as) {b b' : β}, b = b' → ∀ {f : (a' : α) → a' ∈ as_1 → β → m (ForInStep β)} {g : (a' : α) → a' ∈ as → β → m (ForInStep β)}, (∀ (a : α) (m_1 : a ∈ as) (b : β), f a ⋯ b = g a m_1 b) → forIn' as_1 b f = forIn' as b' g g : (a' : α) → a' ∈ a :: as → β → m (ForInStep β) w : a :: as = a :: as h : ∀ (a_1 : α) (m_1 : a_1 ∈ a :: as) (b : β), f a_1 ⋯ b = g a_1 m_1 b b : β ⊢ (forIn' as b fun a' m b => f a' ⋯ b) = forIn' as b fun a' m b => g a' ⋯ b
rw [ih rfl rfl]
case cons.cons.intro.e_a.h.yield m : Type u_1 → Type u_2 α : Type u_3 β : Type u_1 inst✝ : Monad m b✝ b' : β hb : b✝ = b' a : α as : List α f : (a' : α) → a' ∈ a :: as → β → m (ForInStep β) ih : ∀ {as_1 : List α} (w : as_1 = as) {b b' : β}, b = b' → ∀ {f : (a' : α) → a' ∈ as_1 → β → m (ForInStep β)} {g : (a' : α) → a' ∈ as → β → m (ForInStep β)}, (∀ (a : α) (m_1 : a ∈ as) (b : β), f a ⋯ b = g a m_1 b) → forIn' as_1 b f = forIn' as b' g g : (a' : α) → a' ∈ a :: as → β → m (ForInStep β) w : a :: as = a :: as h : ∀ (a_1 : α) (m_1 : a_1 ∈ a :: as) (b : β), f a_1 ⋯ b = g a_1 m_1 b b : β ⊢ ∀ (a_1 : α) (m_1 : a_1 ∈ as) (b : β), f a_1 ⋯ b = g a_1 ⋯ b
b21e9d91722268c4
ContinuousMapZero.induction_on
Mathlib/Topology/ContinuousMap/StoneWeierstrass.lean
/-- An induction principle for `C(s, 𝕜)₀`. -/ @[elab_as_elim] lemma ContinuousMapZero.induction_on {s : Set 𝕜} [Zero s] (h0 : ((0 : s) : 𝕜) = 0) {p : C(s, 𝕜)₀ → Prop} (zero : p 0) (id : p (.id h0)) (star_id : p (star (.id h0))) (add : ∀ f g, p f → p g → p (f + g)) (mul : ∀ f g, p f → p g → p (f * g)) (smul : ∀ (r : 𝕜) f, p f → p (r • f)) (closure : (∀ f ∈ adjoin 𝕜 {(.id h0 : C(s, 𝕜)₀)}, p f) → ∀ f, p f) (f : C(s, 𝕜)₀) : p f
𝕜 : Type u_1 inst✝¹ : RCLike 𝕜 s : Set 𝕜 inst✝ : Zero ↑s h0 : ↑0 = 0 p : C(↑s, 𝕜)₀ → Prop zero : p 0 id : p (ContinuousMapZero.id h0) star_id : p (star (ContinuousMapZero.id h0)) add : ∀ (f g : C(↑s, 𝕜)₀), p f → p g → p (f + g) mul : ∀ (f g : C(↑s, 𝕜)₀), p f → p g → p (f * g) smul : ∀ (r : 𝕜) (f : C(↑s, 𝕜)₀), p f → p (r • f) closure : (∀ f ∈ adjoin 𝕜 {ContinuousMapZero.id h0}, p f) → ∀ (f : C(↑s, 𝕜)₀), p f f✝ f : C(↑s, 𝕜)₀ hf : f ∈ adjoin 𝕜 {ContinuousMapZero.id h0} ⊢ p f
induction hf using NonUnitalAlgebra.adjoin_induction with | mem f hf => simp only [Set.mem_union, Set.mem_singleton_iff, Set.mem_star] at hf rw [star_eq_iff_star_eq, eq_comm (b := f)] at hf obtain (rfl | rfl) := hf all_goals assumption | zero => exact zero | add _ _ _ _ hf hg => exact add _ _ hf hg | mul _ _ _ _ hf hg => exact mul _ _ hf hg | smul _ _ _ hf => exact smul _ _ hf
no goals
0762fdd5f4173a39
OreLocalization.cardinalMk_le
Mathlib/GroupTheory/OreLocalization/Cardinality.lean
theorem cardinalMk_le : #(OreLocalization S R) ≤ #R
R : Type u inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S ⊢ #(OreLocalization S R) ≤ #R
convert ← cardinalMk_le_max S R
case h.e'_4 R : Type u inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S ⊢ lift.{u, u} #↥S ⊔ lift.{u, u} #R = #R
1786d0b66b771678
Finset.filter_product_card
Mathlib/Data/Finset/Prod.lean
theorem filter_product_card (s : Finset α) (t : Finset β) (p : α → Prop) (q : β → Prop) [DecidablePred p] [DecidablePred q] : ((s ×ˢ t).filter fun x : α × β => (p x.1) = (q x.2)).card = (s.filter p).card * (t.filter q).card + (s.filter (¬ p ·)).card * (t.filter (¬ q ·)).card
α : Type u_1 β : Type u_2 s : Finset α t : Finset β p : α → Prop q : β → Prop inst✝¹ : DecidablePred p inst✝ : DecidablePred q ⊢ Disjoint (filter (fun x => p x.1 ∧ q x.2) (s ×ˢ t)) (filter (fun x => ¬p x.1 ∧ ¬q x.2) (s ×ˢ t))
apply Finset.disjoint_filter_filter'
case h α : Type u_1 β : Type u_2 s : Finset α t : Finset β p : α → Prop q : β → Prop inst✝¹ : DecidablePred p inst✝ : DecidablePred q ⊢ Disjoint (fun x => p x.1 ∧ q x.2) fun x => ¬p x.1 ∧ ¬q x.2
7c6ab28370bb9c47
exists_idempotent_of_compact_t2_of_continuous_mul_left
Mathlib/Topology/Algebra/Semigroup.lean
theorem exists_idempotent_of_compact_t2_of_continuous_mul_left {M} [Nonempty M] [Semigroup M] [TopologicalSpace M] [CompactSpace M] [T2Space M] (continuous_mul_left : ∀ r : M, Continuous (· * r)) : ∃ m : M, m * m = m
case ht.refine_2.intro.intro M : Type u_1 inst✝⁴ : Nonempty M inst✝³ : Semigroup M inst✝² : TopologicalSpace M inst✝¹ : CompactSpace M inst✝ : T2Space M continuous_mul_left : ∀ (r : M), Continuous fun x => x * r S : Set (Set M) := {N | IsClosed N ∧ N.Nonempty ∧ ∀ m ∈ N, ∀ m' ∈ N, m * m' ∈ N} N : Set M hN : Minimal (fun x => x ∈ S) N N_closed : IsClosed N N_mul : ∀ m ∈ N, ∀ m' ∈ N, m * m' ∈ N m : M hm : m ∈ N scaling_eq_self : (fun x => x * m) '' N = N m'' : M mem'' : m'' ∈ N eq'' : m'' * m = m m' : M mem' : m' ∈ N eq' : m' * m = m ⊢ m'' * m' ∈ N ∩ {m' | m' * m = m}
refine ⟨N_mul _ mem'' _ mem', ?_⟩
case ht.refine_2.intro.intro M : Type u_1 inst✝⁴ : Nonempty M inst✝³ : Semigroup M inst✝² : TopologicalSpace M inst✝¹ : CompactSpace M inst✝ : T2Space M continuous_mul_left : ∀ (r : M), Continuous fun x => x * r S : Set (Set M) := {N | IsClosed N ∧ N.Nonempty ∧ ∀ m ∈ N, ∀ m' ∈ N, m * m' ∈ N} N : Set M hN : Minimal (fun x => x ∈ S) N N_closed : IsClosed N N_mul : ∀ m ∈ N, ∀ m' ∈ N, m * m' ∈ N m : M hm : m ∈ N scaling_eq_self : (fun x => x * m) '' N = N m'' : M mem'' : m'' ∈ N eq'' : m'' * m = m m' : M mem' : m' ∈ N eq' : m' * m = m ⊢ m'' * m' ∈ {m' | m' * m = m}
fc87b9dbd8289f3d
Nat.two_pow_sub_pow
Mathlib/NumberTheory/Multiplicity.lean
theorem Nat.two_pow_sub_pow {x y : ℕ} (hxy : 2 ∣ x - y) (hx : ¬2 ∣ x) {n : ℕ} (hn : Even n) : emultiplicity 2 (x ^ n - y ^ n) + 1 = emultiplicity 2 (x + y) + emultiplicity 2 (x - y) + emultiplicity 2 n
case inl x y : ℕ hxy : 2 ∣ x - y hx : ¬2 ∣ x n : ℕ hn : Even n hyx : y ≤ x ⊢ emultiplicity ↑2 ↑(x ^ n - y ^ n) + 1 = emultiplicity ↑2 ↑(x + y) + emultiplicity 2 (x - y) + emultiplicity 2 n
rw [← Int.natCast_emultiplicity]
case inl x y : ℕ hxy : 2 ∣ x - y hx : ¬2 ∣ x n : ℕ hn : Even n hyx : y ≤ x ⊢ emultiplicity ↑2 ↑(x ^ n - y ^ n) + 1 = emultiplicity ↑2 ↑(x + y) + emultiplicity ↑2 ↑(x - y) + emultiplicity 2 n
82c1a70b09fb7622
Submodule.fg_of_fg_map_of_fg_inf_ker
Mathlib/RingTheory/Finiteness/Finsupp.lean
theorem fg_of_fg_map_of_fg_inf_ker (f : M →ₗ[R] P) {s : Submodule R M} (hs1 : (s.map f).FG) (hs2 : (s ⊓ LinearMap.ker f).FG) : s.FG
case intro.intro R : Type u_1 M : Type u_2 P : Type u_4 inst✝⁴ : Ring R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup P inst✝ : Module R P f : M →ₗ[R] P s : Submodule R M this✝² : DecidableEq R this✝¹ : DecidableEq M this✝ : DecidableEq P t1 : Finset P ht1 : span R ↑t1 = map f s t2 : Finset M ht2 : span R ↑t2 = s ⊓ LinearMap.ker f y : P hy : y ∈ t1 this : y ∈ map f s x : M hx1 : x ∈ s hx2 : f x = y ⊢ ∃ x ∈ s, f x = y
exact ⟨x, hx1, hx2⟩
no goals
db8c10624993c4e9
Matrix.blockDiagonal_tsum
Mathlib/Topology/Instances/Matrix.lean
theorem Matrix.blockDiagonal_tsum [DecidableEq p] [T2Space R] {f : X → p → Matrix m n R} : blockDiagonal (∑' x, f x) = ∑' x, blockDiagonal (f x)
case neg X : Type u_1 m : Type u_4 n : Type u_5 p : Type u_6 R : Type u_8 inst✝³ : AddCommMonoid R inst✝² : TopologicalSpace R inst✝¹ : DecidableEq p inst✝ : T2Space R f : X → p → Matrix m n R hf : ¬Summable f hft : ¬Summable fun x => blockDiagonal (f x) ⊢ blockDiagonal (∑' (x : X), f x) = ∑' (x : X), blockDiagonal (f x)
rw [tsum_eq_zero_of_not_summable hf, tsum_eq_zero_of_not_summable hft]
case neg X : Type u_1 m : Type u_4 n : Type u_5 p : Type u_6 R : Type u_8 inst✝³ : AddCommMonoid R inst✝² : TopologicalSpace R inst✝¹ : DecidableEq p inst✝ : T2Space R f : X → p → Matrix m n R hf : ¬Summable f hft : ¬Summable fun x => blockDiagonal (f x) ⊢ blockDiagonal 0 = 0
baf1709573783a76
tendsto_comp_of_locally_uniform_limit
Mathlib/Topology/UniformSpace/UniformConvergence.lean
theorem tendsto_comp_of_locally_uniform_limit (h : ContinuousAt f x) (hg : Tendsto g p (𝓝 x)) (hunif : ∀ u ∈ 𝓤 β, ∃ t ∈ 𝓝 x, ∀ᶠ n in p, ∀ y ∈ t, (f y, F n y) ∈ u) : Tendsto (fun n => F n (g n)) p (𝓝 (f x))
α : Type u β : Type v ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β x : α p : Filter ι g : ι → α inst✝ : TopologicalSpace α h : ContinuousWithinAt f univ x hg : Tendsto g p (𝓝[univ] x) hunif : ∀ u ∈ 𝓤 β, ∃ t ∈ 𝓝[univ] x, ∀ᶠ (n : ι) in p, ∀ y ∈ t, (f y, F n y) ∈ u ⊢ Tendsto (fun n => F n (g n)) p (𝓝 (f x))
exact tendsto_comp_of_locally_uniform_limit_within h hg hunif
no goals
c49b6ba895f95c85
PhragmenLindelof.isBigO_sub_exp_rpow
Mathlib/Analysis/Complex/PhragmenLindelof.lean
theorem isBigO_sub_exp_rpow {a : ℝ} {f g : ℂ → E} {l : Filter ℂ} (hBf : ∃ c < a, ∃ B, f =O[cobounded ℂ ⊓ l] fun z => expR (B * ‖z‖ ^ c)) (hBg : ∃ c < a, ∃ B, g =O[cobounded ℂ ⊓ l] fun z => expR (B * ‖z‖ ^ c)) : ∃ c < a, ∃ B, (f - g) =O[cobounded ℂ ⊓ l] fun z => expR (B * ‖z‖ ^ c)
case intro.intro.intro E : Type u_1 inst✝ : NormedAddCommGroup E a : ℝ f g : ℂ → E l : Filter ℂ hBg : ∃ c < a, ∃ B, g =O[cobounded ℂ ⊓ l] fun z => expR (B * ‖z‖ ^ c) this : ∀ {c₁ c₂ B₁ B₂ : ℝ}, c₁ ≤ c₂ → 0 ≤ B₂ → B₁ ≤ B₂ → (fun z => expR (B₁ * ‖z‖ ^ c₁)) =O[cobounded ℂ ⊓ l] fun z => expR (B₂ * ‖z‖ ^ c₂) cf : ℝ hcf : cf < a Bf : ℝ hOf : f =O[cobounded ℂ ⊓ l] fun z => expR (Bf * ‖z‖ ^ cf) ⊢ ∃ c < a, ∃ B, (f - g) =O[cobounded ℂ ⊓ l] fun z => expR (B * ‖z‖ ^ c)
rcases hBg with ⟨cg, hcg, Bg, hOg⟩
case intro.intro.intro.intro.intro.intro E : Type u_1 inst✝ : NormedAddCommGroup E a : ℝ f g : ℂ → E l : Filter ℂ this : ∀ {c₁ c₂ B₁ B₂ : ℝ}, c₁ ≤ c₂ → 0 ≤ B₂ → B₁ ≤ B₂ → (fun z => expR (B₁ * ‖z‖ ^ c₁)) =O[cobounded ℂ ⊓ l] fun z => expR (B₂ * ‖z‖ ^ c₂) cf : ℝ hcf : cf < a Bf : ℝ hOf : f =O[cobounded ℂ ⊓ l] fun z => expR (Bf * ‖z‖ ^ cf) cg : ℝ hcg : cg < a Bg : ℝ hOg : g =O[cobounded ℂ ⊓ l] fun z => expR (Bg * ‖z‖ ^ cg) ⊢ ∃ c < a, ∃ B, (f - g) =O[cobounded ℂ ⊓ l] fun z => expR (B * ‖z‖ ^ c)
e171bfb3f43c7813