name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
MeasureTheory.Measure.haar.index_union_eq
Mathlib/MeasureTheory/Measure/Haar/Basic.lean
theorem index_union_eq (K₁ K₂ : Compacts G) {V : Set G} (hV : (interior V).Nonempty) (h : Disjoint (K₁.1 * V⁻¹) (K₂.1 * V⁻¹)) : index (K₁.1 ∪ K₂.1) V = index K₁.1 V + index K₂.1 V
G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : IsTopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : (interior V).Nonempty h : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹) s : Finset G h1s : K₁.carrier ∪ K₂.carrier ⊆ ⋃ g ∈ s, (fun h => g * h) ⁻¹' V h2s : s.card = index (K₁.carrier ∪ K₂.carrier) V ⊢ ∀ K ⊆ ⋃ g ∈ s, (fun h => g * h) ⁻¹' V, index K V ≤ (Finset.filter (fun g => ((fun h => g * h) ⁻¹' V ∩ K).Nonempty) s).card
intro K hK
G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : IsTopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : (interior V).Nonempty h : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹) s : Finset G h1s : K₁.carrier ∪ K₂.carrier ⊆ ⋃ g ∈ s, (fun h => g * h) ⁻¹' V h2s : s.card = index (K₁.carrier ∪ K₂.carrier) V K : Set G hK : K ⊆ ⋃ g ∈ s, (fun h => g * h) ⁻¹' V ⊢ index K V ≤ (Finset.filter (fun g => ((fun h => g * h) ⁻¹' V ∩ K).Nonempty) s).card
ee267d5d5caa75d7
Commute.geom_sum₂_comm
Mathlib/Algebra/GeomSum.lean
theorem Commute.geom_sum₂_comm {α : Type u} [Semiring α] {x y : α} (n : ℕ) (h : Commute x y) : ∑ i ∈ range n, x ^ i * y ^ (n - 1 - i) = ∑ i ∈ range n, y ^ i * x ^ (n - 1 - i)
case succ α : Type u inst✝ : Semiring α x y : α h : Commute x y n✝ : ℕ ⊢ ∑ r ∈ range (n✝ + 1), x ^ (n✝ - r) * y ^ (n✝ - (n✝ - r)) = ∑ x_1 ∈ range (n✝ + 1), y ^ x_1 * x ^ (n✝ - x_1)
refine Finset.sum_congr rfl fun i hi => ?_
case succ α : Type u inst✝ : Semiring α x y : α h : Commute x y n✝ i : ℕ hi : i ∈ range (n✝ + 1) ⊢ x ^ (n✝ - i) * y ^ (n✝ - (n✝ - i)) = y ^ i * x ^ (n✝ - i)
d014dffa9922c8e6
LucasLehmer.order_ω
Mathlib/NumberTheory/LucasLehmer.lean
theorem order_ω (p' : ℕ) (h : lucasLehmerResidue (p' + 2) = 0) : orderOf (ωUnit (p' + 2)) = 2 ^ (p' + 2)
case h₁ p' : ℕ h✝ : lucasLehmerResidue (p' + 2) = 0 o : orderOf (ωUnit (p' + 2)) ∣ 2 ^ (p' + 1) ω_pow : ω ^ 2 ^ (p' + 1) = 1 h : 1 = -1 this : Fact (2 < ↑(q (p' + 2))) ⊢ False
apply ZMod.neg_one_ne_one h.symm
no goals
9c324a727016e67e
IsPGroup.index
Mathlib/GroupTheory/PGroup.lean
theorem index (H : Subgroup G) [H.FiniteIndex] : ∃ n : ℕ, H.index = p ^ n
case intro p : ℕ G : Type u_1 inst✝¹ : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) H : Subgroup G inst✝ : H.FiniteIndex n : ℕ hn : Nat.card (G ⧸ H.normalCore) = p ^ n ⊢ ∃ n, H.index = p ^ n
obtain ⟨k, _, hk2⟩ := (Nat.dvd_prime_pow hp.out).mp ((congr_arg _ (H.normalCore.index_eq_card.trans hn)).mp (Subgroup.index_dvd_of_le H.normalCore_le))
case intro.intro.intro p : ℕ G : Type u_1 inst✝¹ : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) H : Subgroup G inst✝ : H.FiniteIndex n : ℕ hn : Nat.card (G ⧸ H.normalCore) = p ^ n k : ℕ left✝ : k ≤ n hk2 : H.index = p ^ k ⊢ ∃ n, H.index = p ^ n
9a50fce724440741
PMF.pure_bindOnSupport
Mathlib/Probability/ProbabilityMassFunction/Monad.lean
theorem pure_bindOnSupport (a : α) (f : ∀ (a' : α) (_ : a' ∈ (pure a).support), PMF β) : (pure a).bindOnSupport f = f a ((mem_support_pure_iff a a).mpr rfl)
α : Type u_1 β : Type u_2 a : α f : (a' : α) → a' ∈ (pure a).support → PMF β b : β ⊢ ((pure a).bindOnSupport f) b = (f a ⋯) b
simp only [bindOnSupport_apply, pure_apply]
α : Type u_1 β : Type u_2 a : α f : (a' : α) → a' ∈ (pure a).support → PMF β b : β ⊢ (∑' (a_1 : α), (if a_1 = a then 1 else 0) * if h : (if a_1 = a then 1 else 0) = 0 then 0 else (f a_1 h) b) = (f a ⋯) b
da2d186076f1fc8c
List.one_lt_prod_of_one_lt
Mathlib/Algebra/Order/BigOperators/Group/List.lean
@[to_additive sum_pos] lemma one_lt_prod_of_one_lt [OrderedCommMonoid M] : ∀ l : List M, (∀ x ∈ l, (1 : M) < x) → l ≠ [] → 1 < l.prod | [], _, h => (h rfl).elim | [b], h, _ => by simpa using h | a :: b :: l, hl₁, _ => by simp only [forall_eq_or_imp, List.mem_cons] at hl₁ rw [List.prod_cons] apply one_lt_mul_of_lt_of_le' hl₁.1 apply le_of_lt ((b :: l).one_lt_prod_of_one_lt _ (l.cons_ne_nil b)) intro x hx; cases hx · exact hl₁.2.1 · exact hl₁.2.2 _ ‹_›
M : Type u_3 inst✝ : OrderedCommMonoid M a b : M l : List M hl₁ : ∀ (x : M), x ∈ a :: b :: l → 1 < x x✝ : a :: b :: l ≠ [] ⊢ 1 < (a :: b :: l).prod
simp only [forall_eq_or_imp, List.mem_cons] at hl₁
M : Type u_3 inst✝ : OrderedCommMonoid M a b : M l : List M x✝ : a :: b :: l ≠ [] hl₁ : 1 < a ∧ 1 < b ∧ ∀ (a : M), a ∈ l → 1 < a ⊢ 1 < (a :: b :: l).prod
081aa2408de598f4
List.min?_mem
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/MinMax.lean
theorem min?_mem [Min α] (min_eq_or : ∀ a b : α, min a b = a ∨ min a b = b) : {xs : List α} → xs.min? = some a → a ∈ xs
α : Type u_1 a : α inst✝ : Min α min_eq_or : ∀ (a b : α), min a b = a ∨ min a b = b xs : List α ⊢ xs.min? = some a → a ∈ xs
match xs with | nil => simp | x :: xs => simp only [min?_cons', Option.some.injEq, List.mem_cons] intro eq induction xs generalizing x with | nil => simp at eq simp [eq] | cons y xs ind => simp at eq have p := ind _ eq cases p with | inl p => cases min_eq_or x y with | _ q => simp [p, q] | inr p => simp [p, mem_cons]
no goals
f362dcf8097d474b
AlgebraicGeometry.StructureSheaf.locally_const_basicOpen
Mathlib/AlgebraicGeometry/StructureSheaf.lean
theorem locally_const_basicOpen (U : Opens (PrimeSpectrum.Top R)) (s : (structureSheaf R).1.obj (op U)) (x : U) : ∃ (f g : R) (i : PrimeSpectrum.basicOpen g ⟶ U), x.1 ∈ PrimeSpectrum.basicOpen g ∧ (const R f g (PrimeSpectrum.basicOpen g) fun _ hy => hy) = (structureSheaf R).1.map i.op s
case right R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) x : ↥U V : Opens ↑(PrimeSpectrum.Top R) hxV : ↑x ∈ V.carrier iVU : V ⟶ U f g : R hVDg : V ≤ PrimeSpectrum.basicOpen g s_eq : const R f g V hVDg = (ConcreteCategory.hom ((structureSheaf R).val.map iVU.op)) s h : R hxDh : ↑x ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) h hDhV : PrimeSpectrum.basicOpen h ≤ V n : ℕ c : R hc : c * g = h ^ (n + 1) basic_opens_eq : PrimeSpectrum.basicOpen (h ^ (n + 1)) = PrimeSpectrum.basicOpen h i_basic_open : PrimeSpectrum.basicOpen (h ^ (n + 1)) ⟶ V ⊢ const R (f * c) (h ^ (n + 1)) (PrimeSpectrum.basicOpen (h ^ (n + 1))) ⋯ = const R f g (PrimeSpectrum.basicOpen (h ^ (n + 1))) ⋯
apply const_ext
case right.h R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) x : ↥U V : Opens ↑(PrimeSpectrum.Top R) hxV : ↑x ∈ V.carrier iVU : V ⟶ U f g : R hVDg : V ≤ PrimeSpectrum.basicOpen g s_eq : const R f g V hVDg = (ConcreteCategory.hom ((structureSheaf R).val.map iVU.op)) s h : R hxDh : ↑x ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) h hDhV : PrimeSpectrum.basicOpen h ≤ V n : ℕ c : R hc : c * g = h ^ (n + 1) basic_opens_eq : PrimeSpectrum.basicOpen (h ^ (n + 1)) = PrimeSpectrum.basicOpen h i_basic_open : PrimeSpectrum.basicOpen (h ^ (n + 1)) ⟶ V ⊢ f * c * g = f * h ^ (n + 1)
2f7a4a8aeea28445
Nat.totient_dvd_of_dvd
Mathlib/Data/Nat/Totient.lean
theorem totient_dvd_of_dvd {a b : ℕ} (h : a ∣ b) : φ a ∣ φ b
case inr.inr a b : ℕ h : a ∣ b ha0 : a ≠ 0 hb0 : b ≠ 0 hab' : a.primeFactors ⊆ b.primeFactors ⊢ (a.factorization.prod fun p k => p ^ (k - 1) * (p - 1)) ∣ b.factorization.prod fun p k => p ^ (k - 1) * (p - 1)
refine Finsupp.prod_dvd_prod_of_subset_of_dvd hab' fun p _ => mul_dvd_mul ?_ dvd_rfl
case inr.inr a b : ℕ h : a ∣ b ha0 : a ≠ 0 hb0 : b ≠ 0 hab' : a.primeFactors ⊆ b.primeFactors p : ℕ x✝ : p ∈ a.factorization.support ⊢ p ^ (a.factorization p - 1) ∣ p ^ (b.factorization p - 1)
7f5cb7bbc1d70ca0
inf_eq_and_sup_eq_iff
Mathlib/Order/Lattice.lean
lemma inf_eq_and_sup_eq_iff : a ⊓ b = c ∧ a ⊔ b = c ↔ a = c ∧ b = c
case refine_2.intro α : Type u inst✝ : Lattice α b : α ⊢ b ⊓ b = b ∧ b ⊔ b = b
exact ⟨inf_idem _, sup_idem _⟩
no goals
b5e04850b5913ca9
Cardinal.cast_toNat_eq_iff_lt_aleph0
Mathlib/SetTheory/Cardinal/ToNat.lean
theorem cast_toNat_eq_iff_lt_aleph0 {c : Cardinal} : (toNat c) = c ↔ c < ℵ₀
case mp c : Cardinal.{u_1} h : ↑0 = c h' : ℵ₀ ≤ ↑0 ⊢ False
absurd h'
case mp c : Cardinal.{u_1} h : ↑0 = c h' : ℵ₀ ≤ ↑0 ⊢ ¬ℵ₀ ≤ ↑0
253bbb93e898740d
LieSubmodule.inclusion_injective
Mathlib/Algebra/Lie/Submodule.lean
theorem inclusion_injective : Function.Injective (inclusion h) := fun x y ↦ by simp only [inclusion_apply, imp_self, Subtype.mk_eq_mk, SetLike.coe_eq_coe]
R : Type u L : Type v M : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : LieRingModule L M N N' : LieSubmodule R L M h : N ≤ N' x y : ↥N ⊢ (inclusion h) x = (inclusion h) y → x = y
simp only [inclusion_apply, imp_self, Subtype.mk_eq_mk, SetLike.coe_eq_coe]
no goals
65836dc5dc3baf09
LinearIndependent.lt_aleph0_of_finite
Mathlib/LinearAlgebra/Dimension/Finite.lean
theorem lt_aleph0_of_finite {ι : Type w} [Module.Finite R M] {v : ι → M} (h : LinearIndependent R v) : #ι < ℵ₀
R : Type u M : Type v inst✝⁴ : Ring R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : StrongRankCondition R ι : Type w inst✝ : Module.Finite R M v : ι → M h : LinearIndependent R v ⊢ #ι < ℵ₀
apply Cardinal.lift_lt.1
R : Type u M : Type v inst✝⁴ : Ring R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : StrongRankCondition R ι : Type w inst✝ : Module.Finite R M v : ι → M h : LinearIndependent R v ⊢ lift.{?u.115417, w} #ι < lift.{?u.115417, w} ℵ₀
1685e2b4d3164a12
gal_C_isSolvable
Mathlib/FieldTheory/AbelRuffini.lean
theorem gal_C_isSolvable (x : F) : IsSolvable (C x).Gal
F : Type u_1 inst✝ : Field F x : F ⊢ IsSolvable (C x).Gal
infer_instance
no goals
2a0583745baed498
MvQPF.liftP_iff_of_isUniform
Mathlib/Data/QPF/Multivariate/Basic.lean
theorem liftP_iff_of_isUniform (h : q.IsUniform) {α : TypeVec n} (x : F α) (p : ∀ i, α i → Prop) : LiftP p x ↔ ∀ (i), ∀ u ∈ supp x i, p i u
case mk.mp n : ℕ F : TypeVec.{u} n → Type u_1 q : MvQPF F h : IsUniform α : TypeVec.{u} n x : F α p : (i : Fin2 n) → α i → Prop a : (P F).A f : (P F).B a ⟹ α ⊢ (∃ a_1 f_1, abs ⟨a, f⟩ = abs ⟨a_1, f_1⟩ ∧ ∀ (i : Fin2 n) (j : (P F).B a_1 i), p i (f_1 i j)) → ∀ (i : Fin2 n), ∀ u ∈ supp (abs ⟨a, f⟩) i, p i u
rintro ⟨a', f', abseq, hf⟩ u
case mk.mp.intro.intro.intro n : ℕ F : TypeVec.{u} n → Type u_1 q : MvQPF F h : IsUniform α : TypeVec.{u} n x : F α p : (i : Fin2 n) → α i → Prop a : (P F).A f : (P F).B a ⟹ α a' : (P F).A f' : (P F).B a' ⟹ α abseq : abs ⟨a, f⟩ = abs ⟨a', f'⟩ hf : ∀ (i : Fin2 n) (j : (P F).B a' i), p i (f' i j) u : Fin2 n ⊢ ∀ u_1 ∈ supp (abs ⟨a, f⟩) u, p u u_1
ce4f84e9bd6acfdc
LinearMap.IsSymmetric.inner_map_polarization
Mathlib/Analysis/InnerProductSpace/Symmetric.lean
theorem IsSymmetric.inner_map_polarization {T : E →ₗ[𝕜] E} (hT : T.IsSymmetric) (x y : E) : ⟪T x, y⟫ = (⟪T (x + y), x + y⟫ - ⟪T (x - y), x - y⟫ - I * ⟪T (x + (I : 𝕜) • y), x + (I : 𝕜) • y⟫ + I * ⟪T (x - (I : 𝕜) • y), x - (I : 𝕜) • y⟫) / 4
𝕜 : Type u_1 E : Type u_2 inst✝² : RCLike 𝕜 inst✝¹ : SeminormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E T : E →ₗ[𝕜] E hT : T.IsSymmetric x y : E ⊢ inner (T x) y = (inner (T (x + y)) (x + y) - inner (T (x - y)) (x - y) - I * inner (T (x + I • y)) (x + I • y) + I * inner (T (x - I • y)) (x - I • y)) / 4
rcases@I_mul_I_ax 𝕜 _ with (h | h)
case inl 𝕜 : Type u_1 E : Type u_2 inst✝² : RCLike 𝕜 inst✝¹ : SeminormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E T : E →ₗ[𝕜] E hT : T.IsSymmetric x y : E h : I = 0 ⊢ inner (T x) y = (inner (T (x + y)) (x + y) - inner (T (x - y)) (x - y) - I * inner (T (x + I • y)) (x + I • y) + I * inner (T (x - I • y)) (x - I • y)) / 4 case inr 𝕜 : Type u_1 E : Type u_2 inst✝² : RCLike 𝕜 inst✝¹ : SeminormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E T : E →ₗ[𝕜] E hT : T.IsSymmetric x y : E h : I * I = -1 ⊢ inner (T x) y = (inner (T (x + y)) (x + y) - inner (T (x - y)) (x - y) - I * inner (T (x + I • y)) (x + I • y) + I * inner (T (x - I • y)) (x - I • y)) / 4
fda02a1d3405d981
List.append_sublist_of_sublist_left
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Nat/Sublist.lean
theorem append_sublist_of_sublist_left {xs ys zs : List α} (h : zs <+ xs) : xs ++ ys <+ zs ↔ ys = [] ∧ xs = zs
case mp α : Type u_1 xs ys zs : List α h : zs <+ xs ⊢ xs ++ ys <+ zs → ys = [] ∧ xs = zs
intro h'
case mp α : Type u_1 xs ys zs : List α h : zs <+ xs h' : xs ++ ys <+ zs ⊢ ys = [] ∧ xs = zs
444ed8b01bf1eceb
Matrix.vecAlt0_vecAppend
Mathlib/Data/Fin/VecNotation.lean
theorem vecAlt0_vecAppend (v : Fin n → α) : vecAlt0 rfl (vecAppend rfl v v) = v ∘ (fun n ↦ n + n)
case neg.e_a.e_val α : Type u n : ℕ v : Fin n → α i : Fin n h : n ≤ ↑i + ↑i ⊢ ↑i + ↑i - n < n
omega
no goals
4c85d9edab2b8fd9
Hopf_.antipode_antipode
Mathlib/CategoryTheory/Monoidal/Hopf_.lean
theorem antipode_antipode (A : Hopf_ C) (comm : (β_ _ _).hom ≫ A.X.X.mul = A.X.X.mul) : A.antipode ≫ A.antipode = 𝟙 A.X.X.X
C : Type u₁ inst✝² : Category.{v₁, u₁} C inst✝¹ : MonoidalCategory C inst✝ : BraidedCategory C A : Hopf_ C comm : (β_ A.X.X.X A.X.X.X).hom ≫ A.X.X.mul = A.X.X.mul ⊢ A.antipode ≫ A.antipode = 𝟙 A.X.X.X
apply left_inv_eq_right_inv (M := Conv ((Bimon_.toComon_ C).obj A.X) A.X.X) (a := A.antipode)
case hba C : Type u₁ inst✝² : Category.{v₁, u₁} C inst✝¹ : MonoidalCategory C inst✝ : BraidedCategory C A : Hopf_ C comm : (β_ A.X.X.X A.X.X.X).hom ≫ A.X.X.mul = A.X.X.mul ⊢ A.antipode ≫ A.antipode * A.antipode = 1 case hac C : Type u₁ inst✝² : Category.{v₁, u₁} C inst✝¹ : MonoidalCategory C inst✝ : BraidedCategory C A : Hopf_ C comm : (β_ A.X.X.X A.X.X.X).hom ≫ A.X.X.mul = A.X.X.mul ⊢ A.antipode * 𝟙 A.X.X.X = 1
f8b404c4d62ad46c
Nat.any_eq_anyTR
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Nat/Fold.lean
theorem any_eq_anyTR : @any = @anyTR := funext fun n => funext fun f => let rec go : ∀ m n f, any (m + n) f = (any n (fun i h => f i (by omega)) || anyTR.loop (m + n) f m (by omega)) | 0, n, f => by simp [anyTR.loop] have t : 0 + n = n
n✝ : Nat f✝ : (i : Nat) → i < n✝ → Bool m n : Nat f : (i : Nat) → i < m.succ + n → Bool t : m + 1 + n = m + (n + 1) ⊢ (m + 1 + n).any f = ((n.any fun i h => f i ⋯) || (f (m + 1 + n - (m + 1)) ⋯ || anyTR.loop (m + 1 + n) f m ⋯))
rw [any_congr t, anyTR_loop_congr t, go, any, Bool.or_assoc]
n✝ : Nat f✝ : (i : Nat) → i < n✝ → Bool m n : Nat f : (i : Nat) → i < m.succ + n → Bool t : m + 1 + n = m + (n + 1) ⊢ ((n.any fun i h => f i ⋯) || (f n ⋯ || anyTR.loop (m + (n + 1)) (fun i h => f i ⋯) m ⋯)) = ((n.any fun i h => f i ⋯) || (f (m + 1 + n - (m + 1)) ⋯ || anyTR.loop (m + (n + 1)) (fun i h => f i ⋯) m ⋯))
323bfd38fa3324f5
LinearIndependent.disjoint_span_image
Mathlib/LinearAlgebra/LinearIndependent/Basic.lean
theorem LinearIndependent.disjoint_span_image (hv : LinearIndependent R v) {s t : Set ι} (hs : Disjoint s t) : Disjoint (Submodule.span R <| v '' s) (Submodule.span R <| v '' t)
case intro.intro.intro.intro ι : Type u' R : Type u_2 M : Type u_4 v : ι → M inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M hv : LinearIndependent R v s t : Set ι hs : Disjoint s t l₁ : ι →₀ R hl₁ : l₁ ∈ Finsupp.supported R R s l₂ : ι →₀ R hl₂ : l₂ ∈ Finsupp.supported R R t H : l₂ = l₁ ⊢ (Finsupp.linearCombination R v) l₁ = 0
subst l₂
case intro.intro.intro.intro ι : Type u' R : Type u_2 M : Type u_4 v : ι → M inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M hv : LinearIndependent R v s t : Set ι hs : Disjoint s t l₁ : ι →₀ R hl₁ : l₁ ∈ Finsupp.supported R R s hl₂ : l₁ ∈ Finsupp.supported R R t ⊢ (Finsupp.linearCombination R v) l₁ = 0
c57e657967127b39
CategoryTheory.ShortComplex.Splitting.ext_s
Mathlib/Algebra/Homology/ShortComplex/Exact.lean
lemma ext_s (s s' : S.Splitting) (h : s.s = s'.s) : s = s'
case mk.mk C : Type u_1 inst✝¹ : Category.{u_3, u_1} C inst✝ : Preadditive C S : ShortComplex C this : Mono S.f r✝ : S.X₂ ⟶ S.X₁ s✝ : S.X₃ ⟶ S.X₂ f_r✝¹ : S.f ≫ r✝ = 𝟙 S.X₁ s_g✝¹ : s✝ ≫ S.g = 𝟙 S.X₃ id✝¹ : r✝ ≫ S.f + S.g ≫ s✝ = 𝟙 S.X₂ f_r✝ : S.f ≫ { r := r✝, s := s✝, f_r := f_r✝¹, s_g := s_g✝¹, id := id✝¹ }.r = 𝟙 S.X₁ s_g✝ : { r := r✝, s := s✝, f_r := f_r✝¹, s_g := s_g✝¹, id := id✝¹ }.s ≫ S.g = 𝟙 S.X₃ id✝ : { r := r✝, s := s✝, f_r := f_r✝¹, s_g := s_g✝¹, id := id✝¹ }.r ≫ S.f + S.g ≫ { r := r✝, s := s✝, f_r := f_r✝¹, s_g := s_g✝¹, id := id✝¹ }.s = 𝟙 S.X₂ ⊢ { r := r✝, s := s✝, f_r := f_r✝¹, s_g := s_g✝¹, id := id✝¹ } = { r := { r := r✝, s := s✝, f_r := f_r✝¹, s_g := s_g✝¹, id := id✝¹ }.r, s := { r := r✝, s := s✝, f_r := f_r✝¹, s_g := s_g✝¹, id := id✝¹ }.s, f_r := f_r✝, s_g := s_g✝, id := id✝ }
rfl
no goals
500be6a8e246a01c
CategoryTheory.Functor.homologySequence_exact₁
Mathlib/CategoryTheory/Triangulated/HomologicalFunctor.lean
lemma homologySequence_exact₁ : (ShortComplex.mk _ _ (F.homologySequenceδ_comp T hT _ _ h)).Exact
C : Type u_1 A : Type u_3 inst✝⁹ : Category.{u_5, u_1} C inst✝⁸ : HasShift C ℤ inst✝⁷ : Category.{u_4, u_3} A F : C ⥤ A inst✝⁶ : HasZeroObject C inst✝⁵ : Preadditive C inst✝⁴ : ∀ (n : ℤ), (shiftFunctor C n).Additive inst✝³ : Pretriangulated C inst✝² : Abelian A inst✝¹ : F.IsHomological inst✝ : F.ShiftSequence ℤ T : Triangle C hT : T ∈ distinguishedTriangles n₀ n₁ : ℤ h : n₀ + 1 = n₁ ⊢ (-(F.shiftIso (-1) n₁ n₀ ⋯).hom.app T.obj₃) ≫ F.homologySequenceδ T n₀ n₁ h = (F.shift n₁).map (-(shiftFunctor C (-1)).map T.mor₃ ≫ (shiftFunctorCompIsoId C 1 (-1) ⋯).hom.app T.obj₁) ≫ 𝟙 ((F.shift n₁).obj T.obj₁)
simp only [homologySequenceδ, neg_comp, map_neg, comp_id, F.shiftIso_hom_app_comp_shiftMap_of_add_eq_zero T.mor₃ (-1) (neg_add_cancel 1) n₀ n₁ (by omega)]
no goals
0cf33dbfc66ec25c
Profinite.NobelingProof.C1_projOrd
Mathlib/Topology/Category/Profinite/Nobeling.lean
theorem C1_projOrd {x : I → Bool} (hx : x ∈ C1 C ho) : SwapTrue o (Proj (ord I · < o) x) = x
case pos I : Type u C : Set (I → Bool) inst✝¹ : LinearOrder I inst✝ : WellFoundedLT I o : Ordinal.{u} hsC : contained C (Order.succ o) ho : o < Ordinal.type fun x1 x2 => x1 < x2 x : I → Bool hx : x ∈ C1 C ho i : I hi : ord I i = o ⊢ true = x i
rw [ord_term ho] at hi
case pos I : Type u C : Set (I → Bool) inst✝¹ : LinearOrder I inst✝ : WellFoundedLT I o : Ordinal.{u} hsC : contained C (Order.succ o) ho : o < Ordinal.type fun x1 x2 => x1 < x2 x : I → Bool hx : x ∈ C1 C ho i : I hi : term I ho = i ⊢ true = x i
3124430fb4afb78c
iSup_succ
Mathlib/Order/SuccPred/CompleteLinearOrder.lean
theorem iSup_succ [SuccOrder α] (x : α) : ⨆ a : Iio x, succ a.1 = x
α : Type u_2 inst✝¹ : ConditionallyCompleteLinearOrderBot α inst✝ : SuccOrder α x : α H : BddAbove (range fun a => succ ↑a) ⊢ ∀ (i : ↑(Iio x)), succ ↑i ≤ x
exact fun a ↦ succ_le_of_lt a.2
no goals
1ac61462e616078c
TopCat.GlueData.ι_eq_iff_rel
Mathlib/Topology/Gluing.lean
theorem ι_eq_iff_rel (i j : D.J) (x : D.U i) (y : D.U j) : 𝖣.ι i x = 𝖣.ι j y ↔ D.Rel ⟨i, x⟩ ⟨j, y⟩
case mp D : GlueData i j : D.J x : ↑(D.U i) y : ↑(D.U j) ⊢ (ConcreteCategory.hom (D.ι i)) x = (ConcreteCategory.hom (D.ι j)) y → D.Rel ⟨i, x⟩ ⟨j, y⟩
delta GlueData.ι
case mp D : GlueData i j : D.J x : ↑(D.U i) y : ↑(D.U j) ⊢ (ConcreteCategory.hom (Multicoequalizer.π D.diagram i)) x = (ConcreteCategory.hom (Multicoequalizer.π D.diagram j)) y → D.Rel ⟨i, x⟩ ⟨j, y⟩
e0a110dda282edcf
Set.seq_seq
Mathlib/Data/Set/Lattice.lean
theorem seq_seq {s : Set (β → γ)} {t : Set (α → β)} {u : Set α} : seq s (seq t u) = seq (seq ((· ∘ ·) '' s) t) u
α : Type u_1 β : Type u_2 γ : Type u_3 s : Set (β → γ) t : Set (α → β) u : Set α ⊢ image2 (fun f a => f a) s (image2 (fun f a => f a) t u) = image2 (fun f a => f a) (image2 (fun x1 x2 => x1 ∘ x2) s t) u
exact .symm <| image2_assoc fun _ _ _ ↦ rfl
no goals
14b1c2e4f91292bb
IsPrime.to_maximal_ideal
Mathlib/RingTheory/PrincipalIdealDomain.lean
theorem to_maximal_ideal [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] {S : Ideal R} [hpi : IsPrime S] (hS : S ≠ ⊥) : IsMaximal S := isMaximal_iff.2 ⟨(ne_top_iff_one S).1 hpi.1, by intro T x hST hxS hxT obtain ⟨z, hz⟩ := (mem_iff_generator_dvd _).1 (hST <| generator_mem S) cases hpi.mem_or_mem (show generator T * z ∈ S from hz ▸ generator_mem S) with | inl h => have hTS : T ≤ S
R : Type u inst✝² : CommRing R inst✝¹ : IsDomain R inst✝ : IsPrincipalIdealRing R S : Ideal R hpi : S.IsPrime hS : S ≠ ⊥ T : Ideal R x : R hST : S ≤ T hxS : x ∉ S hxT : x ∈ T z : R hz : generator S = generator T * z h : generator T ∈ S ⊢ T ≤ S
rwa [← T.span_singleton_generator, Ideal.span_le, singleton_subset_iff]
no goals
3054b0cfc56f1a76
MeasureTheory.integral_convolution
Mathlib/Analysis/Convolution.lean
theorem integral_convolution [MeasurableAdd₂ G] [MeasurableNeg G] [NormedSpace ℝ E] [NormedSpace ℝ E'] [CompleteSpace E] [CompleteSpace E'] (hf : Integrable f ν) (hg : Integrable g μ) : ∫ x, (f ⋆[L, ν] g) x ∂μ = L (∫ x, f x ∂ν) (∫ x, g x ∂μ)
𝕜 : Type u𝕜 G : Type uG E : Type uE E' : Type uE' F : Type uF inst✝¹⁹ : NormedAddCommGroup E inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedAddCommGroup F f : G → E g : G → E' inst✝¹⁶ : RCLike 𝕜 inst✝¹⁵ : NormedSpace 𝕜 E inst✝¹⁴ : NormedSpace 𝕜 E' inst✝¹³ : NormedSpace ℝ F inst✝¹² : NormedSpace 𝕜 F inst✝¹¹ : MeasurableSpace G μ ν : Measure G L : E →L[𝕜] E' →L[𝕜] F inst✝¹⁰ : CompleteSpace F inst✝⁹ : AddGroup G inst✝⁸ : SFinite μ inst✝⁷ : SFinite ν inst✝⁶ : μ.IsAddRightInvariant inst✝⁵ : MeasurableAdd₂ G inst✝⁴ : MeasurableNeg G inst✝³ : NormedSpace ℝ E inst✝² : NormedSpace ℝ E' inst✝¹ : CompleteSpace E inst✝ : CompleteSpace E' hf : Integrable f ν hg : Integrable g μ ⊢ ∫ (y : G), (L (f y)) (∫ (x : G), g x ∂μ) ∂ν = (L (∫ (x : G), f x ∂ν)) (∫ (x : G), g x ∂μ)
exact (L.flip (∫ x, g x ∂μ)).integral_comp_comm hf
no goals
2dbbac4c3b182b0e
integrableOn_peak_smul_of_integrableOn_of_tendsto
Mathlib/MeasureTheory/Integral/PeakFunction.lean
theorem integrableOn_peak_smul_of_integrableOn_of_tendsto (hs : MeasurableSet s) (h'st : t ∈ 𝓝[s] x₀) (hlφ : ∀ u : Set α, IsOpen u → x₀ ∈ u → TendstoUniformlyOn φ 0 l (s \ u)) (hiφ : Tendsto (fun i ↦ ∫ x in t, φ i x ∂μ) l (𝓝 1)) (h'iφ : ∀ᶠ i in l, AEStronglyMeasurable (φ i) (μ.restrict s)) (hmg : IntegrableOn g s μ) (hcg : Tendsto g (𝓝[s] x₀) (𝓝 a)) : ∀ᶠ i in l, IntegrableOn (fun x => φ i x • g x) s μ
α : Type u_1 E : Type u_2 ι : Type u_3 hm : MeasurableSpace α μ : Measure α inst✝³ : TopologicalSpace α inst✝² : BorelSpace α inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E g : α → E l : Filter ι x₀ : α s t : Set α φ : ι → α → ℝ a : E hs : MeasurableSet s h'st : t ∈ 𝓝[s] x₀ hlφ : ∀ (u : Set α), IsOpen u → x₀ ∈ u → TendstoUniformlyOn φ 0 l (s \ u) hiφ : Tendsto (fun e => ‖∫ (x : α) in t, φ e x ∂μ - 1‖) l (𝓝 0) h'iφ : ∀ᶠ (i : ι) in l, AEStronglyMeasurable (φ i) (μ.restrict s) hmg : IntegrableOn g s μ hcg : Tendsto g (𝓝[s] x₀) (𝓝 a) u : Set α u_open : IsOpen u x₀u : x₀ ∈ u ut : s ∩ u ⊆ t hu : ∀ x ∈ u ∩ s, g x ∈ ball a 1 i : ι hi : ∀ x ∈ s \ u, dist (0 x) (φ i x) < 1 h'i : ‖∫ (x : α) in t, φ i x ∂μ - 1‖ < 1 h''i : AEStronglyMeasurable (φ i) (μ.restrict s) I : IntegrableOn (φ i) t μ ⊢ MemLp (φ i) ⊤ (μ.restrict (s \ u))
apply memLp_top_of_bound (h''i.mono_set diff_subset) 1
α : Type u_1 E : Type u_2 ι : Type u_3 hm : MeasurableSpace α μ : Measure α inst✝³ : TopologicalSpace α inst✝² : BorelSpace α inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E g : α → E l : Filter ι x₀ : α s t : Set α φ : ι → α → ℝ a : E hs : MeasurableSet s h'st : t ∈ 𝓝[s] x₀ hlφ : ∀ (u : Set α), IsOpen u → x₀ ∈ u → TendstoUniformlyOn φ 0 l (s \ u) hiφ : Tendsto (fun e => ‖∫ (x : α) in t, φ e x ∂μ - 1‖) l (𝓝 0) h'iφ : ∀ᶠ (i : ι) in l, AEStronglyMeasurable (φ i) (μ.restrict s) hmg : IntegrableOn g s μ hcg : Tendsto g (𝓝[s] x₀) (𝓝 a) u : Set α u_open : IsOpen u x₀u : x₀ ∈ u ut : s ∩ u ⊆ t hu : ∀ x ∈ u ∩ s, g x ∈ ball a 1 i : ι hi : ∀ x ∈ s \ u, dist (0 x) (φ i x) < 1 h'i : ‖∫ (x : α) in t, φ i x ∂μ - 1‖ < 1 h''i : AEStronglyMeasurable (φ i) (μ.restrict s) I : IntegrableOn (φ i) t μ ⊢ ∀ᵐ (x : α) ∂μ.restrict (s \ u), ‖φ i x‖ ≤ 1
4601b22b48a125d5
Std.Sat.AIG.denote_mkConst
Mathlib/.lake/packages/lean4/src/lean/Std/Sat/AIG/Lemmas.lean
theorem denote_mkConst {aig : AIG α} : ⟦(aig.mkConst val), assign⟧ = val
α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α assign : α → Bool val : Bool aig : AIG α b✝ : Bool heq : val = b✝ ⊢ b✝ = val
rw [heq]
no goals
d9e8c97541c0a83f
EuclideanGeometry.existsUnique_dist_eq_of_insert
Mathlib/Geometry/Euclidean/Circumcenter.lean
theorem existsUnique_dist_eq_of_insert {s : AffineSubspace ℝ P} [HasOrthogonalProjection s.direction] {ps : Set P} (hnps : ps.Nonempty) {p : P} (hps : ps ⊆ s) (hp : p ∉ s) (hu : ∃! cs : Sphere P, cs.center ∈ s ∧ ps ⊆ (cs : Set P)) : ∃! cs₂ : Sphere P, cs₂.center ∈ affineSpan ℝ (insert p (s : Set P)) ∧ insert p ps ⊆ (cs₂ : Set P)
case h.right.mk.intro.intro.intro.intro.intro V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : InnerProductSpace ℝ V inst✝² : MetricSpace P inst✝¹ : NormedAddTorsor V P s : AffineSubspace ℝ P inst✝ : HasOrthogonalProjection s.direction ps : Set P hnps : ps.Nonempty p : P hps : ps ⊆ ↑s hp : p ∉ s this : Nonempty ↥s cc : P cr : ℝ hcccru : ∀ (y : Sphere P), y.center ∈ s ∧ ps ⊆ Metric.sphere y.center y.radius → y = { center := cc, radius := cr } hcc : cc ∈ s hcr : ps ⊆ Metric.sphere cc cr x : ℝ := dist cc ↑((orthogonalProjection s) p) y : ℝ := dist p ↑((orthogonalProjection s) p) hy0 : y ≠ 0 ycc₂ : ℝ := (x * x + y * y - cr * cr) / (2 * y) cc₂ : P := (ycc₂ / y) • (p -ᵥ ↑((orthogonalProjection s) p)) +ᵥ cc cr₂ : ℝ := √(cr * cr + ycc₂ * ycc₂) hpo : p = 1 • (p -ᵥ ↑((orthogonalProjection s) p)) +ᵥ ↑((orthogonalProjection s) p) cc₃ : P cr₃ : ℝ hcc₃ : cc₃ ∈ affineSpan ℝ (insert p ↑s) hcr₃ : insert p ps ⊆ Metric.sphere cc₃ cr₃ t₃ : ℝ cc₃' : P hcc₃' : cc₃' ∈ s hcc₃'' : cc₃ = t₃ • (p -ᵥ ↑((orthogonalProjection s) p)) +ᵥ cc₃' cr₃' : ℝ hcr₃' : ∀ p₁ ∈ ps, dist p₁ ↑⟨cc₃', hcc₃'⟩ = cr₃' ⊢ { center := cc₃, radius := cr₃ } = { center := cc₂, radius := cr₂ }
have hu := hcccru ⟨cc₃', cr₃'⟩
case h.right.mk.intro.intro.intro.intro.intro V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : InnerProductSpace ℝ V inst✝² : MetricSpace P inst✝¹ : NormedAddTorsor V P s : AffineSubspace ℝ P inst✝ : HasOrthogonalProjection s.direction ps : Set P hnps : ps.Nonempty p : P hps : ps ⊆ ↑s hp : p ∉ s this : Nonempty ↥s cc : P cr : ℝ hcccru : ∀ (y : Sphere P), y.center ∈ s ∧ ps ⊆ Metric.sphere y.center y.radius → y = { center := cc, radius := cr } hcc : cc ∈ s hcr : ps ⊆ Metric.sphere cc cr x : ℝ := dist cc ↑((orthogonalProjection s) p) y : ℝ := dist p ↑((orthogonalProjection s) p) hy0 : y ≠ 0 ycc₂ : ℝ := (x * x + y * y - cr * cr) / (2 * y) cc₂ : P := (ycc₂ / y) • (p -ᵥ ↑((orthogonalProjection s) p)) +ᵥ cc cr₂ : ℝ := √(cr * cr + ycc₂ * ycc₂) hpo : p = 1 • (p -ᵥ ↑((orthogonalProjection s) p)) +ᵥ ↑((orthogonalProjection s) p) cc₃ : P cr₃ : ℝ hcc₃ : cc₃ ∈ affineSpan ℝ (insert p ↑s) hcr₃ : insert p ps ⊆ Metric.sphere cc₃ cr₃ t₃ : ℝ cc₃' : P hcc₃' : cc₃' ∈ s hcc₃'' : cc₃ = t₃ • (p -ᵥ ↑((orthogonalProjection s) p)) +ᵥ cc₃' cr₃' : ℝ hcr₃' : ∀ p₁ ∈ ps, dist p₁ ↑⟨cc₃', hcc₃'⟩ = cr₃' hu : { center := cc₃', radius := cr₃' }.center ∈ s ∧ ps ⊆ Metric.sphere { center := cc₃', radius := cr₃' }.center { center := cc₃', radius := cr₃' }.radius → { center := cc₃', radius := cr₃' } = { center := cc, radius := cr } ⊢ { center := cc₃, radius := cr₃ } = { center := cc₂, radius := cr₂ }
6d31314b3548c9e7
TopologicalSpace.exists_isInducing_l_infty
Mathlib/Topology/Metrizable/Urysohn.lean
theorem exists_isInducing_l_infty : ∃ f : X → ℕ →ᵇ ℝ, IsInducing f
X : Type u_1 inst✝² : TopologicalSpace X inst✝¹ : RegularSpace X inst✝ : SecondCountableTopology X B : Set (Set X) hBc : B.Countable hB : IsTopologicalBasis B s : Set (Set X × Set X) := {UV | UV ∈ B ×ˢ B ∧ closure UV.1 ⊆ UV.2} this✝¹ : Encodable ↑s this✝ : TopologicalSpace ↑s := ⊥ this : DiscreteTopology ↑s hd : ∀ (UV : ↑s), Disjoint (closure (↑UV).1) (↑UV).2ᶜ ε : ↑s → ℝ ε01 : ∀ (UV : ↑s), ε UV ∈ Ioc 0 1 hε : Tendsto ε cofinite (𝓝 0) UV : ↑s ⊢ ∃ f, EqOn (⇑f) 0 (↑UV).1 ∧ EqOn (⇑f) (fun x => ε UV) (↑UV).2ᶜ ∧ ∀ (x : X), f x ∈ Icc 0 (ε UV)
rcases exists_continuous_zero_one_of_isClosed isClosed_closure (hB.isOpen UV.2.1.2).isClosed_compl (hd UV) with ⟨f, hf₀, hf₁, hf01⟩
case intro.intro.intro X : Type u_1 inst✝² : TopologicalSpace X inst✝¹ : RegularSpace X inst✝ : SecondCountableTopology X B : Set (Set X) hBc : B.Countable hB : IsTopologicalBasis B s : Set (Set X × Set X) := {UV | UV ∈ B ×ˢ B ∧ closure UV.1 ⊆ UV.2} this✝¹ : Encodable ↑s this✝ : TopologicalSpace ↑s := ⊥ this : DiscreteTopology ↑s hd : ∀ (UV : ↑s), Disjoint (closure (↑UV).1) (↑UV).2ᶜ ε : ↑s → ℝ ε01 : ∀ (UV : ↑s), ε UV ∈ Ioc 0 1 hε : Tendsto ε cofinite (𝓝 0) UV : ↑s f : C(X, ℝ) hf₀ : EqOn (⇑f) 0 (closure (↑UV).1) hf₁ : EqOn (⇑f) 1 (↑UV).2ᶜ hf01 : ∀ (x : X), f x ∈ Icc 0 1 ⊢ ∃ f, EqOn (⇑f) 0 (↑UV).1 ∧ EqOn (⇑f) (fun x => ε UV) (↑UV).2ᶜ ∧ ∀ (x : X), f x ∈ Icc 0 (ε UV)
7bd5745f003136ce
Complex.sum_div_factorial_le
Mathlib/Data/Complex/Exponential.lean
theorem sum_div_factorial_le {α : Type*} [LinearOrderedField α] (n j : ℕ) (hn : 0 < n) : (∑ m ∈ range j with n ≤ m, (1 / m.factorial : α)) ≤ n.succ / (n.factorial * n) := calc (∑ m ∈ range j with n ≤ m, (1 / m.factorial : α)) = ∑ m ∈ range (j - n), (1 / ((m + n).factorial : α))
α : Type u_1 inst✝ : LinearOrderedField α n j : ℕ hn : 0 < n h₁ : ↑n.succ ≠ 1 h₂ : ↑n.succ ≠ 0 h₃ : ↑n.factorial * ↑n ≠ 0 ⊢ (↑n.factorial)⁻¹ * ∑ m ∈ range (j - n), (↑n.succ)⁻¹ ^ m = (↑n.succ - ↑n.succ * (↑n.succ)⁻¹ ^ (j - n)) / (↑n.factorial * ↑n)
have h₄ : (n.succ - 1 : α) = n := by simp
α : Type u_1 inst✝ : LinearOrderedField α n j : ℕ hn : 0 < n h₁ : ↑n.succ ≠ 1 h₂ : ↑n.succ ≠ 0 h₃ : ↑n.factorial * ↑n ≠ 0 h₄ : ↑n.succ - 1 = ↑n ⊢ (↑n.factorial)⁻¹ * ∑ m ∈ range (j - n), (↑n.succ)⁻¹ ^ m = (↑n.succ - ↑n.succ * (↑n.succ)⁻¹ ^ (j - n)) / (↑n.factorial * ↑n)
e59fd4ab785bbc73
CategoryTheory.ShortComplex.exact_iff_mono_cokernel_desc
Mathlib/Algebra/Homology/ShortComplex/Exact.lean
lemma exact_iff_mono_cokernel_desc [S.HasHomology] [HasCokernel S.f] : S.Exact ↔ Mono (cokernel.desc S.f S.g S.zero)
C : Type u_1 inst✝³ : Category.{u_3, u_1} C inst✝² : Preadditive C S : ShortComplex C inst✝¹ : S.HasHomology inst✝ : HasCokernel S.f ⊢ S.opcyclesIsoCokernel.symm.hom ≫ (Arrow.mk S.fromOpcycles).hom = (Arrow.mk (cokernel.desc S.f S.g ⋯)).hom ≫ (Iso.refl (Arrow.mk (cokernel.desc S.f S.g ⋯)).right).hom
aesop_cat
no goals
180cebf98bee6054
Plausible.InjectiveFunction.applyId_injective
Mathlib/Testing/Plausible/Functions.lean
theorem applyId_injective [DecidableEq α] {xs ys : List α} (h₀ : List.Nodup xs) (h₁ : xs ~ ys) : Injective.{u + 1, u + 1} (List.applyId (xs.zip ys))
case pos α : Type u inst✝ : DecidableEq α xs ys : List α h₀ : xs.Nodup h₁ : xs ~ ys x y : α h : applyId (xs.zip ys) x = applyId (xs.zip ys) y hx : applyId (xs.zip ys) x ∉ ys hy : applyId (xs.zip ys) y ∈ ys ⊢ x = y
rw [h] at hx
case pos α : Type u inst✝ : DecidableEq α xs ys : List α h₀ : xs.Nodup h₁ : xs ~ ys x y : α h : applyId (xs.zip ys) x = applyId (xs.zip ys) y hx : applyId (xs.zip ys) y ∉ ys hy : applyId (xs.zip ys) y ∈ ys ⊢ x = y
159dee04a35ae3d2
orthogonalProjectionFn_norm_sq
Mathlib/Analysis/InnerProductSpace/Projection.lean
theorem orthogonalProjectionFn_norm_sq (v : E) : ‖v‖ * ‖v‖ = ‖v - orthogonalProjectionFn K v‖ * ‖v - orthogonalProjectionFn K v‖ + ‖orthogonalProjectionFn K v‖ * ‖orthogonalProjectionFn K v‖
𝕜 : Type u_1 E : Type u_2 inst✝³ : RCLike 𝕜 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E K : Submodule 𝕜 E inst✝ : HasOrthogonalProjection K v : E p : E := orthogonalProjectionFn K v h' : ⟪v - p, p⟫_𝕜 = 0 ⊢ ‖v‖ * ‖v‖ = ‖v - p‖ * ‖v - p‖ + ‖p‖ * ‖p‖
convert norm_add_sq_eq_norm_sq_add_norm_sq_of_inner_eq_zero (v - p) p h' using 2 <;> simp
no goals
40e939907977a6d5
MeasureTheory.FiniteMeasure.tendsto_of_forall_integral_tendsto
Mathlib/MeasureTheory/Measure/FiniteMeasure.lean
theorem tendsto_of_forall_integral_tendsto {γ : Type*} {F : Filter γ} {μs : γ → FiniteMeasure Ω} {μ : FiniteMeasure Ω} (h : ∀ f : Ω →ᵇ ℝ, Tendsto (fun i ↦ ∫ x, f x ∂(μs i : Measure Ω)) F (𝓝 (∫ x, f x ∂(μ : Measure Ω)))) : Tendsto μs F (𝓝 μ)
Ω : Type u_1 inst✝² : MeasurableSpace Ω inst✝¹ : TopologicalSpace Ω inst✝ : OpensMeasurableSpace Ω γ : Type u_2 F : Filter γ μs : γ → FiniteMeasure Ω μ : FiniteMeasure Ω h : ∀ (f : Ω →ᵇ ℝ), Tendsto (fun i => ∫ (x : Ω), f x ∂↑(μs i)) F (𝓝 (∫ (x : Ω), f x ∂↑μ)) f : Ω →ᵇ ℝ≥0 lip : LipschitzWith 1 NNReal.toReal f₀ : Ω →ᵇ ℝ := comp NNReal.toReal lip f _def_f₀ : f₀ = comp NNReal.toReal lip f f₀_eq : ⇑f₀ = NNReal.toReal ∘ ⇑f f₀_nn : 0 ≤ ⇑f₀ f₀_ae_nn : 0 ≤ᶠ[ae ↑μ] ⇑f₀ f₀_ae_nns : ∀ (i : γ), 0 ≤ᶠ[ae ↑(μs i)] ⇑f₀ ⊢ Tendsto (fun n => (∫⁻ (x : Ω), ↑(f x) ∂↑(μs n)).toReal) F (𝓝 (∫⁻ (x : Ω), ↑(f x) ∂↑μ).toReal)
have aux := integral_eq_lintegral_of_nonneg_ae f₀_ae_nn f₀.continuous.measurable.aestronglyMeasurable
Ω : Type u_1 inst✝² : MeasurableSpace Ω inst✝¹ : TopologicalSpace Ω inst✝ : OpensMeasurableSpace Ω γ : Type u_2 F : Filter γ μs : γ → FiniteMeasure Ω μ : FiniteMeasure Ω h : ∀ (f : Ω →ᵇ ℝ), Tendsto (fun i => ∫ (x : Ω), f x ∂↑(μs i)) F (𝓝 (∫ (x : Ω), f x ∂↑μ)) f : Ω →ᵇ ℝ≥0 lip : LipschitzWith 1 NNReal.toReal f₀ : Ω →ᵇ ℝ := comp NNReal.toReal lip f _def_f₀ : f₀ = comp NNReal.toReal lip f f₀_eq : ⇑f₀ = NNReal.toReal ∘ ⇑f f₀_nn : 0 ≤ ⇑f₀ f₀_ae_nn : 0 ≤ᶠ[ae ↑μ] ⇑f₀ f₀_ae_nns : ∀ (i : γ), 0 ≤ᶠ[ae ↑(μs i)] ⇑f₀ aux : ∫ (a : Ω), f₀ a ∂↑μ = (∫⁻ (a : Ω), ENNReal.ofReal (f₀ a) ∂↑μ).toReal ⊢ Tendsto (fun n => (∫⁻ (x : Ω), ↑(f x) ∂↑(μs n)).toReal) F (𝓝 (∫⁻ (x : Ω), ↑(f x) ∂↑μ).toReal)
921a8ca53571d4e5
continuousOn_extendFrom
Mathlib/Topology/ExtendFrom.lean
theorem continuousOn_extendFrom [RegularSpace Y] {f : X → Y} {A B : Set X} (hB : B ⊆ closure A) (hf : ∀ x ∈ B, ∃ y, Tendsto f (𝓝[A] x) (𝓝 y)) : ContinuousOn (extendFrom A f) B
case intro.intro.intro.intro X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : RegularSpace Y f : X → Y A B : Set X hB : B ⊆ closure A hf : ∀ x ∈ B, ∃ y, Tendsto f (𝓝[A] x) (𝓝 y) φ : X → Y := extendFrom A f x : X x_in : x ∈ B V' : Set Y V'_in : V' ∈ 𝓝 (φ x) V'_closed : IsClosed V' V : Set X V_in : V ∈ 𝓝 x V_op : IsOpen V hV : V ∩ A ⊆ f ⁻¹' V' y : X hyV : y ∈ V hyB : y ∈ B this : (𝓝[A] y).NeBot limy : Tendsto f (𝓝[A] y) (𝓝 (φ y)) ⊢ φ y ∈ V'
have hVy : V ∈ 𝓝 y := IsOpen.mem_nhds V_op hyV
case intro.intro.intro.intro X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : RegularSpace Y f : X → Y A B : Set X hB : B ⊆ closure A hf : ∀ x ∈ B, ∃ y, Tendsto f (𝓝[A] x) (𝓝 y) φ : X → Y := extendFrom A f x : X x_in : x ∈ B V' : Set Y V'_in : V' ∈ 𝓝 (φ x) V'_closed : IsClosed V' V : Set X V_in : V ∈ 𝓝 x V_op : IsOpen V hV : V ∩ A ⊆ f ⁻¹' V' y : X hyV : y ∈ V hyB : y ∈ B this : (𝓝[A] y).NeBot limy : Tendsto f (𝓝[A] y) (𝓝 (φ y)) hVy : V ∈ 𝓝 y ⊢ φ y ∈ V'
a5bc0b035e892139
ModularGroup.three_lt_four_mul_im_sq_of_mem_fdo
Mathlib/NumberTheory/Modular.lean
theorem three_lt_four_mul_im_sq_of_mem_fdo (h : z ∈ 𝒟ᵒ) : 3 < 4 * z.im ^ 2
z : ℍ h : z ∈ 𝒟ᵒ ⊢ 3 < 4 * z.im ^ 2
have : 1 < z.re * z.re + z.im * z.im := by simpa [Complex.normSq_apply] using h.1
z : ℍ h : z ∈ 𝒟ᵒ this : 1 < z.re * z.re + z.im * z.im ⊢ 3 < 4 * z.im ^ 2
7788c720e6fb7c46
Semifield.isCoprime_iff
Mathlib/RingTheory/Coprime/Basic.lean
/-- `IsCoprime` is not a useful definition if an inverse is available. -/ @[simp] lemma Semifield.isCoprime_iff {R : Type*} [Semifield R] {m n : R} : IsCoprime m n ↔ m ≠ 0 ∨ n ≠ 0
case inl R : Type u_1 inst✝ : Semifield R m : R ⊢ IsCoprime m 0 ↔ m ≠ 0 ∨ 0 ≠ 0
simp [isCoprime_zero_right]
no goals
746c9755a6938d1d
CategoryTheory.Pretriangulated.productTriangle_distinguished
Mathlib/CategoryTheory/Triangulated/Pretriangulated.lean
/-- A product of distinguished triangles is distinguished -/ lemma productTriangle_distinguished {J : Type*} (T : J → Triangle C) (hT : ∀ j, T j ∈ distTriang C) [HasProduct (fun j => (T j).obj₁)] [HasProduct (fun j => (T j).obj₂)] [HasProduct (fun j => (T j).obj₃)] [HasProduct (fun j => (T j).obj₁⟦(1 : ℤ)⟧)] : productTriangle T ∈ distTriang C
C : Type u inst✝⁸ : Category.{v, u} C inst✝⁷ : HasZeroObject C inst✝⁶ : HasShift C ℤ inst✝⁵ : Preadditive C inst✝⁴ : ∀ (n : ℤ), (shiftFunctor C n).Additive hC : Pretriangulated C J : Type u_1 T : J → Triangle C hT : ∀ (j : J), T j ∈ distinguishedTriangles inst✝³ : HasProduct fun j => (T j).obj₁ inst✝² : HasProduct fun j => (T j).obj₂ inst✝¹ : HasProduct fun j => (T j).obj₃ inst✝ : HasProduct fun j => (shiftFunctor C 1).obj (T j).obj₁ f₁ : (∏ᶜ fun j => (T j).obj₁) ⟶ ∏ᶜ fun j => (T j).obj₂ := Limits.Pi.map fun j => (T j).mor₁ Z : C f₂ : (∏ᶜ fun j => (T j).obj₂) ⟶ Z f₃ : Z ⟶ (shiftFunctor C 1).obj (∏ᶜ fun j => (T j).obj₁) T' : Triangle C := Triangle.mk f₁ f₂ f₃ hT' : T' ∈ distinguishedTriangles φ : (j : J) → T' ⟶ T j := fun j => completeDistinguishedTriangleMorphism T' (T j) hT' ⋯ (Pi.π (fun j => (T j).obj₁) j) (Pi.π (fun j => (T j).obj₂) j) ⋯ φ' : T' ⟶ productTriangle T := productTriangle.lift T φ h₁ : φ'.hom₁ = 𝟙 T'.obj₁ h₂ : φ'.hom₂ = 𝟙 T'.obj₂ ⊢ IsIso φ'.hom₁
rw [h₁]
C : Type u inst✝⁸ : Category.{v, u} C inst✝⁷ : HasZeroObject C inst✝⁶ : HasShift C ℤ inst✝⁵ : Preadditive C inst✝⁴ : ∀ (n : ℤ), (shiftFunctor C n).Additive hC : Pretriangulated C J : Type u_1 T : J → Triangle C hT : ∀ (j : J), T j ∈ distinguishedTriangles inst✝³ : HasProduct fun j => (T j).obj₁ inst✝² : HasProduct fun j => (T j).obj₂ inst✝¹ : HasProduct fun j => (T j).obj₃ inst✝ : HasProduct fun j => (shiftFunctor C 1).obj (T j).obj₁ f₁ : (∏ᶜ fun j => (T j).obj₁) ⟶ ∏ᶜ fun j => (T j).obj₂ := Limits.Pi.map fun j => (T j).mor₁ Z : C f₂ : (∏ᶜ fun j => (T j).obj₂) ⟶ Z f₃ : Z ⟶ (shiftFunctor C 1).obj (∏ᶜ fun j => (T j).obj₁) T' : Triangle C := Triangle.mk f₁ f₂ f₃ hT' : T' ∈ distinguishedTriangles φ : (j : J) → T' ⟶ T j := fun j => completeDistinguishedTriangleMorphism T' (T j) hT' ⋯ (Pi.π (fun j => (T j).obj₁) j) (Pi.π (fun j => (T j).obj₂) j) ⋯ φ' : T' ⟶ productTriangle T := productTriangle.lift T φ h₁ : φ'.hom₁ = 𝟙 T'.obj₁ h₂ : φ'.hom₂ = 𝟙 T'.obj₂ ⊢ IsIso (𝟙 T'.obj₁)
ce9c86c420201fe7
Set.Countable.isPathConnected_compl_of_one_lt_rank
Mathlib/Analysis/NormedSpace/Connected.lean
theorem Set.Countable.isPathConnected_compl_of_one_lt_rank (h : 1 < Module.rank ℝ E) {s : Set E} (hs : s.Countable) : IsPathConnected sᶜ
case h E : Type u_1 inst✝⁴ : AddCommGroup E inst✝³ : Module ℝ E inst✝² : TopologicalSpace E inst✝¹ : ContinuousAdd E inst✝ : ContinuousSMul ℝ E h : 1 < Module.rank ℝ E s : Set E hs : s.Countable this : Nontrivial E a : E ha : a ∈ sᶜ b : E hb : b ∈ sᶜ hab : a ≠ b c : E := 2⁻¹ • (a + b) x : E := 2⁻¹ • (b - a) Ia : c - x = a Ib : c + x = b x_ne_zero : x ≠ 0 y : E hy : LinearIndependent ℝ ![x, y] A : {t | ([c + x-[ℝ]c + t • y] ∩ s).Nonempty}.Countable B : {t | ([c - x-[ℝ]c + t • y] ∩ s).Nonempty}.Countable t : ℝ z : E := c + t • y ht : [c + x-[ℝ]c + t • y] ∩ s = ∅ ∧ [c - x-[ℝ]c + t • y] ∩ s = ∅ ⊢ [a-[ℝ]z] ⊆ sᶜ
rw [subset_compl_iff_disjoint_right, disjoint_iff_inter_eq_empty]
case h E : Type u_1 inst✝⁴ : AddCommGroup E inst✝³ : Module ℝ E inst✝² : TopologicalSpace E inst✝¹ : ContinuousAdd E inst✝ : ContinuousSMul ℝ E h : 1 < Module.rank ℝ E s : Set E hs : s.Countable this : Nontrivial E a : E ha : a ∈ sᶜ b : E hb : b ∈ sᶜ hab : a ≠ b c : E := 2⁻¹ • (a + b) x : E := 2⁻¹ • (b - a) Ia : c - x = a Ib : c + x = b x_ne_zero : x ≠ 0 y : E hy : LinearIndependent ℝ ![x, y] A : {t | ([c + x-[ℝ]c + t • y] ∩ s).Nonempty}.Countable B : {t | ([c - x-[ℝ]c + t • y] ∩ s).Nonempty}.Countable t : ℝ z : E := c + t • y ht : [c + x-[ℝ]c + t • y] ∩ s = ∅ ∧ [c - x-[ℝ]c + t • y] ∩ s = ∅ ⊢ [a-[ℝ]z] ∩ s = ∅
a2405a5e761a2c4d
Std.DHashMap.Raw.get!_modify_self
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/RawLemmas.lean
theorem get!_modify_self [LawfulBEq α] {k : α} [Inhabited (β k)] {f : β k → β k} (h : m.WF) : (m.modify k f).get! k = ((m.get? k).map f).get!
α : Type u β : α → Type v inst✝³ : BEq α inst✝² : Hashable α m : Raw α β inst✝¹ : LawfulBEq α k : α inst✝ : Inhabited (β k) f : β k → β k h : m.WF ⊢ (m.modify k f).get! k = (Option.map f (m.get? k)).get!
simp_to_raw using Raw₀.get!_modify_self
no goals
7dca714267dac1d9
Real.Gamma_ne_zero
Mathlib/Analysis/SpecialFunctions/Gamma/Basic.lean
theorem Gamma_ne_zero {s : ℝ} (hs : ∀ m : ℕ, s ≠ -m) : Gamma s ≠ 0
case hs n✝ : ℕ n_ih : ∀ {s : ℝ}, (∀ (m : ℕ), s ≠ -↑m) → -↑n✝ < s → Gamma s ≠ 0 s : ℝ hs' : -↑(n✝ + 1) < s m : ℕ hs : s + 1 = -↑m ⊢ s = -↑(1 + m)
rw [← eq_sub_iff_add_eq] at hs
case hs n✝ : ℕ n_ih : ∀ {s : ℝ}, (∀ (m : ℕ), s ≠ -↑m) → -↑n✝ < s → Gamma s ≠ 0 s : ℝ hs' : -↑(n✝ + 1) < s m : ℕ hs : s = -↑m - 1 ⊢ s = -↑(1 + m)
b27fef48da598597
List.isSome_isPrefixOf?_eq_isPrefixOf
Mathlib/.lake/packages/batteries/Batteries/Data/List/Lemmas.lean
theorem isSome_isPrefixOf?_eq_isPrefixOf [BEq α] (xs ys : List α) : (xs.isPrefixOf? ys).isSome = xs.isPrefixOf ys
α : Type u_1 inst✝ : BEq α xs ys : List α head✝¹ : α tail✝¹ : List α head✝ : α tail✝ : List α ⊢ ((head✝¹ :: tail✝¹).isPrefixOf? (head✝ :: tail✝)).isSome = (head✝¹ :: tail✝¹).isPrefixOf (head✝ :: tail✝)
simp only [List.isPrefixOf?, List.isPrefixOf]
α : Type u_1 inst✝ : BEq α xs ys : List α head✝¹ : α tail✝¹ : List α head✝ : α tail✝ : List α ⊢ (if (head✝¹ == head✝) = true then tail✝¹.isPrefixOf? tail✝ else none).isSome = (head✝¹ == head✝ && tail✝¹.isPrefixOf tail✝)
fcd4d9aaeffcffb4
MeasureTheory.integral_le_measure
Mathlib/MeasureTheory/Integral/SetIntegral.lean
lemma integral_le_measure {f : X → ℝ} {s : Set X} (hs : ∀ x ∈ s, f x ≤ 1) (h's : ∀ x ∈ sᶜ, f x ≤ 0) : ENNReal.ofReal (∫ x, f x ∂μ) ≤ μ s
case pos.hf X : Type u_1 mX : MeasurableSpace X μ : Measure X f : X → ℝ s : Set X hs : ∀ x ∈ s, f x ≤ 1 h's : ∀ x ∈ sᶜ, f x ≤ 0 H : Integrable f μ g : X → ℝ := fun x => f x ⊔ 0 g_int : Integrable g μ this : ENNReal.ofReal (∫ (x : X), f x ∂μ) ≤ ENNReal.ofReal (∫ (x : X), g x ∂μ) ⊢ ∀ (a : X), ENNReal.ofReal (g a) ≤ 1
intro x
case pos.hf X : Type u_1 mX : MeasurableSpace X μ : Measure X f : X → ℝ s : Set X hs : ∀ x ∈ s, f x ≤ 1 h's : ∀ x ∈ sᶜ, f x ≤ 0 H : Integrable f μ g : X → ℝ := fun x => f x ⊔ 0 g_int : Integrable g μ this : ENNReal.ofReal (∫ (x : X), f x ∂μ) ≤ ENNReal.ofReal (∫ (x : X), g x ∂μ) x : X ⊢ ENNReal.ofReal (g x) ≤ 1
3c1b6cc50ba267ee
HahnSeries.map_single
Mathlib/RingTheory/HahnSeries/Basic.lean
@[simp] protected lemma map_single [Zero S] (f : ZeroHom R S) : (single a r).map f = single a (f r)
Γ : Type u_1 R : Type u_3 S : Type u_4 inst✝² : PartialOrder Γ inst✝¹ : Zero R a : Γ r : R inst✝ : Zero S f : ZeroHom R S ⊢ ((single a) r).map f = (single a) (f r)
ext g
case coeff.h Γ : Type u_1 R : Type u_3 S : Type u_4 inst✝² : PartialOrder Γ inst✝¹ : Zero R a : Γ r : R inst✝ : Zero S f : ZeroHom R S g : Γ ⊢ (((single a) r).map f).coeff g = ((single a) (f r)).coeff g
7a9473dc78274d3e
EuclideanGeometry.collinear_iff_eq_or_eq_or_angle_eq_zero_or_angle_eq_pi
Mathlib/Geometry/Euclidean/Angle/Unoriented/Affine.lean
theorem collinear_iff_eq_or_eq_or_angle_eq_zero_or_angle_eq_pi {p₁ p₂ p₃ : P} : Collinear ℝ ({p₁, p₂, p₃} : Set P) ↔ p₁ = p₂ ∨ p₃ = p₂ ∨ ∠ p₁ p₂ p₃ = 0 ∨ ∠ p₁ p₂ p₃ = π
V : Type u_1 P : Type u_2 inst✝³ : NormedAddCommGroup V inst✝² : InnerProductSpace ℝ V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P p₁ p₂ p₃ : P ⊢ Collinear ℝ {p₁, p₂, p₃} ↔ p₁ = p₂ ∨ p₃ = p₂ ∨ ∠ p₁ p₂ p₃ = 0 ∨ ∠ p₁ p₂ p₃ = π
refine ⟨fun h => ?_, fun h => ?_⟩
case refine_1 V : Type u_1 P : Type u_2 inst✝³ : NormedAddCommGroup V inst✝² : InnerProductSpace ℝ V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P p₁ p₂ p₃ : P h : Collinear ℝ {p₁, p₂, p₃} ⊢ p₁ = p₂ ∨ p₃ = p₂ ∨ ∠ p₁ p₂ p₃ = 0 ∨ ∠ p₁ p₂ p₃ = π case refine_2 V : Type u_1 P : Type u_2 inst✝³ : NormedAddCommGroup V inst✝² : InnerProductSpace ℝ V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P p₁ p₂ p₃ : P h : p₁ = p₂ ∨ p₃ = p₂ ∨ ∠ p₁ p₂ p₃ = 0 ∨ ∠ p₁ p₂ p₃ = π ⊢ Collinear ℝ {p₁, p₂, p₃}
6d4fda70b0d8e02f
LieIdeal.coe_killingCompl_top
Mathlib/Algebra/Lie/TraceForm.lean
lemma coe_killingCompl_top : killingCompl R L ⊤ = LinearMap.ker (killingForm R L)
case h R : Type u_1 L : Type u_3 inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L x : L ⊢ x ∈ (toLieSubalgebra R L (killingCompl R L ⊤)).toSubmodule ↔ x ∈ LinearMap.ker (killingForm R L)
simp [LinearMap.ext_iff, LinearMap.BilinForm.IsOrtho, LieModule.traceForm_comm R L L x]
no goals
3f3bf71632928c7f
Real.sin_pi_div_six
Mathlib/Analysis/SpecialFunctions/Trigonometric/Basic.lean
theorem sin_pi_div_six : sin (π / 6) = 1 / 2
⊢ cos (π / 2 - π / 6) = cos (π / 3)
congr
case e_x ⊢ π / 2 - π / 6 = π / 3
bd3bee9dce573540
Ideal.ideal_prod_eq
Mathlib/RingTheory/Ideal/Prod.lean
theorem ideal_prod_eq (I : Ideal (R × S)) : I = Ideal.prod (map (RingHom.fst R S) I : Ideal R) (map (RingHom.snd R S) I)
case h.mk R : Type u S : Type v inst✝¹ : Semiring R inst✝ : Semiring S I : Ideal (R × S) r : R s : S ⊢ (r, s) ∈ I ↔ (r, s) ∈ (map (RingHom.fst R S) I).prod (map (RingHom.snd R S) I)
rw [mem_prod, mem_map_iff_of_surjective (RingHom.fst R S) Prod.fst_surjective, mem_map_iff_of_surjective (RingHom.snd R S) Prod.snd_surjective]
case h.mk R : Type u S : Type v inst✝¹ : Semiring R inst✝ : Semiring S I : Ideal (R × S) r : R s : S ⊢ (r, s) ∈ I ↔ (∃ x ∈ I, (RingHom.fst R S) x = r) ∧ ∃ x ∈ I, (RingHom.snd R S) x = s
01de65c949d940b4
Real.Angle.abs_cos_eq_of_two_zsmul_eq
Mathlib/Analysis/SpecialFunctions/Trigonometric/Angle.lean
theorem abs_cos_eq_of_two_zsmul_eq {θ ψ : Angle} (h : (2 : ℤ) • θ = (2 : ℤ) • ψ) : |cos θ| = |cos ψ|
θ ψ : Angle h : 2 • θ = 2 • ψ ⊢ |θ.cos| = |ψ.cos|
exact abs_cos_eq_of_two_nsmul_eq h
no goals
b40ff988772aa5a4
norm_image_sub_le_of_norm_deriv_right_le_segment
Mathlib/Analysis/Calculus/MeanValue.lean
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : ℝ → E} {C : ℝ} (hf : ContinuousOn f (Icc a b)) (hf' : ∀ x ∈ Ico a b, HasDerivWithinAt f (f' x) (Ici x) x) (bound : ∀ x ∈ Ico a b, ‖f' x‖ ≤ C) : ∀ x ∈ Icc a b, ‖f x - f a‖ ≤ C * (x - a)
E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E f : ℝ → E a b : ℝ f' : ℝ → E C : ℝ hf : ContinuousOn f (Icc a b) hf' : ∀ x ∈ Ico a b, HasDerivWithinAt f (f' x) (Ici x) x bound : ∀ x ∈ Ico a b, ‖f' x‖ ≤ C g : ℝ → E := fun x => f x - f a hg : ContinuousOn g (Icc a b) hg' : ∀ x ∈ Ico a b, HasDerivWithinAt g (f' x) (Ici x) x B : ℝ → ℝ := fun x => C * (x - a) hB : ∀ (x : ℝ), HasDerivAt B C x ⊢ ‖g a‖ ≤ B a
simp only [g, B]
E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E f : ℝ → E a b : ℝ f' : ℝ → E C : ℝ hf : ContinuousOn f (Icc a b) hf' : ∀ x ∈ Ico a b, HasDerivWithinAt f (f' x) (Ici x) x bound : ∀ x ∈ Ico a b, ‖f' x‖ ≤ C g : ℝ → E := fun x => f x - f a hg : ContinuousOn g (Icc a b) hg' : ∀ x ∈ Ico a b, HasDerivWithinAt g (f' x) (Ici x) x B : ℝ → ℝ := fun x => C * (x - a) hB : ∀ (x : ℝ), HasDerivAt B C x ⊢ ‖f a - f a‖ ≤ C * (a - a)
2ebbef8de7fd661c
IsDiscreteValuationRing.aux_pid_of_ufd_of_unique_irreducible
Mathlib/RingTheory/DiscreteValuationRing/Basic.lean
theorem aux_pid_of_ufd_of_unique_irreducible (R : Type u) [CommRing R] [IsDomain R] [UniqueFactorizationMonoid R] (h₁ : ∃ p : R, Irreducible p) (h₂ : ∀ ⦃p q : R⦄, Irreducible p → Irreducible q → Associated p q) : IsPrincipalIdealRing R
case h R : Type u inst✝² : CommRing R inst✝¹ : IsDomain R inst✝ : UniqueFactorizationMonoid R h₁ : ∃ p, Irreducible p h₂ : ∀ ⦃p q : R⦄, Irreducible p → Irreducible q → Associated p q I : Ideal R I0 : I = ⊥ ⊢ ⊥ = Submodule.span R {0}
simp only [Set.singleton_zero, Submodule.span_zero]
no goals
378c4d5b6b1ec199
Set.smul_Icc
Mathlib/Algebra/Order/Group/Pointwise/Interval.lean
@[to_additive (attr := simp)] lemma smul_Icc (a b c : α) : a • Icc b c = Icc (a * b) (a * c)
case h.mp α : Type u_1 inst✝² : LinearOrderedCommMonoid α inst✝¹ : MulLeftReflectLE α inst✝ : ExistsMulOfLE α a b c x : α ⊢ x ∈ a • Icc b c → x ∈ Icc (a * b) (a * c)
rintro ⟨y, ⟨hby, hyc⟩, rfl⟩
case h.mp.intro.intro.intro α : Type u_1 inst✝² : LinearOrderedCommMonoid α inst✝¹ : MulLeftReflectLE α inst✝ : ExistsMulOfLE α a b c y : α hby : b ≤ y hyc : y ≤ c ⊢ (fun x => a • x) y ∈ Icc (a * b) (a * c)
2d2bbce6d2f58d9e
BitVec.setWidth_setWidth
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Lemmas.lean
theorem setWidth_setWidth {x : BitVec u} {w v : Nat} (h : ¬ (v < u ∧ v < w)) : setWidth w (setWidth v x) = setWidth w x
case pred u : Nat x : BitVec u w v : Nat h : ¬(v < u ∧ v < w) i✝ : Nat a✝ : i✝ < w ⊢ x.getLsbD i✝ = true → i✝ < v
intro h
case pred u : Nat x : BitVec u w v : Nat h✝ : ¬(v < u ∧ v < w) i✝ : Nat a✝ : i✝ < w h : x.getLsbD i✝ = true ⊢ i✝ < v
46fa8a6e672650cc
Real.pi_lt_sqrtTwoAddSeries
Mathlib/Data/Real/Pi/Bounds.lean
theorem pi_lt_sqrtTwoAddSeries (n : ℕ) : π < 2 ^ (n + 1) * √(2 - sqrtTwoAddSeries 0 n) + 1 / 4 ^ n
n : ℕ ⊢ 0 < π / 2 ^ (n + 2)
positivity
no goals
02d82b689d50a592
Array.getElem_extract_loop_ge
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Lemmas.lean
theorem getElem_extract_loop_ge (as bs : Array α) (size start : Nat) (hge : i ≥ bs.size) (h : i < (extract.loop as size start bs).size) (h' := getElem_extract_loop_ge_aux as bs size start hge h) : (extract.loop as size start bs)[i] = as[start + i - bs.size]
α : Type u_1 as : Array α size : Nat bs : Array α start : Nat this✝ : start < as.size ih : ∀ (bs_1 : Array α) (start : Nat) (hge : bs.size ≥ bs_1.size) (h : bs.size < (extract.loop as size start bs_1).size) (h' : optParam (start + bs.size - bs_1.size < as.size) ⋯), (extract.loop as size start bs_1)[bs.size] = as[start + bs.size - bs_1.size] hge : bs.size ≥ bs.size h : bs.size < (extract.loop as (size + 1) start bs).size h' : optParam (start + bs.size - bs.size < as.size) ⋯ this : bs.size < (extract.loop as size (start + 1) (bs.push as[start])).size heq : (extract.loop as (size + 1) start bs)[bs.size] = (extract.loop as size (start + 1) (bs.push as[start]))[bs.size] h₁ : bs.size < (bs.push as[start]).size h₂ : bs.size < (extract.loop as size (start + 1) (bs.push as[start])).size ⊢ (extract.loop as size (start + 1) (bs.push as[start]))[bs.size] = as[start]
rw [getElem_extract_loop_lt as (bs.push as[start]) size (start+1) h₁ h₂, getElem_push_eq]
no goals
89ddb2da716cb704
Ideal.mem_iInf_smul_pow_eq_bot_iff
Mathlib/RingTheory/Filtration.lean
theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (⨅ i : ℕ, I ^ i • ⊤ : Submodule R M) ↔ ∃ r : I, (r : R) • x = x
case mp R : Type u_1 M : Type u_2 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M I : Ideal R inst✝¹ : IsNoetherianRing R inst✝ : Module.Finite R M x : M N : Submodule R M := ⨅ i, I ^ i • ⊤ hN : ∀ (k : ℕ), (I.stableFiltration ⊤ ⊓ I.trivialFiltration N).N k = N ⊢ x ∈ ⨅ i, I ^ i • ⊤ → ∃ r, ↑r • x = x
obtain ⟨r, hr₁, hr₂⟩ := Submodule.exists_mem_and_smul_eq_self_of_fg_of_le_smul I N (IsNoetherian.noetherian N) (by obtain ⟨k, hk⟩ := (I.stableFiltration_stable ⊤).inter_right (I.trivialFiltration N) have := hk k (le_refl _) rw [hN, hN] at this exact le_of_eq this.symm)
case mp.intro.intro R : Type u_1 M : Type u_2 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M I : Ideal R inst✝¹ : IsNoetherianRing R inst✝ : Module.Finite R M x : M N : Submodule R M := ⨅ i, I ^ i • ⊤ hN : ∀ (k : ℕ), (I.stableFiltration ⊤ ⊓ I.trivialFiltration N).N k = N r : R hr₁ : r ∈ I hr₂ : ∀ n ∈ N, r • n = n ⊢ x ∈ ⨅ i, I ^ i • ⊤ → ∃ r, ↑r • x = x
12c98f9d25221f64
DihedralGroup.exponent
Mathlib/GroupTheory/SpecificGroups/Dihedral.lean
theorem exponent : Monoid.exponent (DihedralGroup n) = lcm n 2
case inr.a.a n : ℕ hn : NeZero n ⊢ ∀ (g : DihedralGroup n), g ^ lcm n 2 = 1
rintro (m | m)
case inr.a.a.r n : ℕ hn : NeZero n m : ZMod n ⊢ r m ^ lcm n 2 = 1 case inr.a.a.sr n : ℕ hn : NeZero n m : ZMod n ⊢ sr m ^ lcm n 2 = 1
5619adb1153445d8
OreLocalization.add_smul
Mathlib/RingTheory/OreLocalization/Ring.lean
theorem add_smul (y z : R[S⁻¹]) (x : X[S⁻¹]) : (y + z) • x = y • x + z • x
R : Type u_1 inst✝³ : Semiring R S : Submonoid R inst✝² : OreSet S X : Type u_2 inst✝¹ : AddCommMonoid X inst✝ : Module R X r₁ : X s₁ : ↥S r₂ : R s₂ : ↥S r₃ : R s₃ : ↥S ra : R sa : ↥S ha : ↑sa * ↑s₂ = ra * ↑s₃ rb : R sb : ↥S hb : ↑sb * sa • r₂ = rb * ↑s₁ ⊢ ↑sb * ra * ↑s₃ ∈ S
rw [mul_assoc, ← ha]
R : Type u_1 inst✝³ : Semiring R S : Submonoid R inst✝² : OreSet S X : Type u_2 inst✝¹ : AddCommMonoid X inst✝ : Module R X r₁ : X s₁ : ↥S r₂ : R s₂ : ↥S r₃ : R s₃ : ↥S ra : R sa : ↥S ha : ↑sa * ↑s₂ = ra * ↑s₃ rb : R sb : ↥S hb : ↑sb * sa • r₂ = rb * ↑s₁ ⊢ ↑sb * (↑sa * ↑s₂) ∈ S
79dc4eb2119c8abc
MeasureTheory.Measure.haarScalarFactor_smul
Mathlib/MeasureTheory/Measure/Haar/Unique.lean
@[to_additive (attr := simp) addHaarScalarFactor_smul] lemma haarScalarFactor_smul [LocallyCompactSpace G] (μ' μ : Measure G) [IsHaarMeasure μ] [IsFiniteMeasureOnCompacts μ'] [IsMulLeftInvariant μ'] {c : ℝ≥0} : haarScalarFactor (c • μ') μ = c • haarScalarFactor μ' μ
G : Type u_1 inst✝⁸ : TopologicalSpace G inst✝⁷ : Group G inst✝⁶ : IsTopologicalGroup G inst✝⁵ : MeasurableSpace G inst✝⁴ : BorelSpace G inst✝³ : LocallyCompactSpace G μ' μ : Measure G inst✝² : μ.IsHaarMeasure inst✝¹ : IsFiniteMeasureOnCompacts μ' inst✝ : μ'.IsMulLeftInvariant c : ℝ≥0 g : G → ℝ g_cont : Continuous g g_comp : HasCompactSupport ⇑{ toFun := g, continuous_toFun := g_cont } g_nonneg : 0 ≤ { toFun := g, continuous_toFun := g_cont } g_one : { toFun := g, continuous_toFun := g_cont } 1 ≠ 0 int_g_ne_zero : ∫ (x : G), g x ∂μ ≠ 0 ⊢ (∫ (x : G), g x ∂c • μ') / ∫ (x : G), g x ∂μ = (c • ∫ (x : G), g x ∂μ') / ∫ (x : G), g x ∂μ
simp
no goals
25416b28ad97352c
CategoryTheory.Limits.Types.isIso_colimitPointwiseProductToProductColimit
Mathlib/CategoryTheory/Limits/FilteredColimitCommutesProduct.lean
theorem Types.isIso_colimitPointwiseProductToProductColimit (F : ∀ i, I i ⥤ Type u) : IsIso (colimitPointwiseProductToProductColimit F)
α : Type u I : α → Type u inst✝¹ : (i : α) → SmallCategory (I i) inst✝ : ∀ (i : α), IsFiltered (I i) F : (i : α) → I i ⥤ Type u ky : (i : α) → I i yk₀ : (pointwiseProduct F).obj ky ky' : (i : α) → I i yk₀' : (pointwiseProduct F).obj ky' k : (i : α) → I i := IsFiltered.max ky ky' yk : ∏ᶜ fun s => (F s).obj (k s) := (pointwiseProduct F).map (IsFiltered.leftToMax ky ky') yk₀ yk' : ∏ᶜ fun s => (F s).obj (k s) := (pointwiseProduct F).map (IsFiltered.rightToMax ky ky') yk₀' hyk₀ : colimit.ι (pointwiseProduct F) ky yk₀ = colimit.ι (pointwiseProduct F) k yk hyk₀' : colimit.ι (pointwiseProduct F) ky' yk₀' = colimit.ι (pointwiseProduct F) k yk' hy : colimitPointwiseProductToProductColimit F (colimit.ι (pointwiseProduct F) k yk) = colimitPointwiseProductToProductColimit F (colimit.ι (pointwiseProduct F) k yk') k' : (s : α) → I s f : (s : α) → k s ⟶ k' s hk' : ∀ (s : α), (F s).map (f s) (Pi.π (fun s => (F s).obj (k s)) s yk) = (F s).map (f s) (Pi.π (fun s => (F s).obj (k s)) s yk') x✝ : Discrete α s : α ⊢ limit.π (Discrete.functor fun s => (F s).obj (k' s)) { as := s } ((pointwiseProduct F).map f yk) = limit.π (Discrete.functor fun s => (F s).obj (k' s)) { as := s } ((pointwiseProduct F).map f yk')
simpa using hk' _
no goals
fc31391d5c273e31
TwoSidedIdeal.mem_span_iff
Mathlib/RingTheory/TwoSidedIdeal/Operations.lean
lemma mem_span_iff {s : Set R} {x} : x ∈ span s ↔ ∀ (I : TwoSidedIdeal R), s ⊆ I → x ∈ I
R : Type u_1 inst✝ : NonUnitalNonAssocRing R s : Set R x : R h : x ∈ { ringCon := sInf {s_1 | ∀ (x y : R), x - y ∈ s → s_1 x y} } I : TwoSidedIdeal R hI : s ⊆ ↑I ⊢ x ∈ I
refine sInf_le (α := RingCon R) ?_ h
R : Type u_1 inst✝ : NonUnitalNonAssocRing R s : Set R x : R h : x ∈ { ringCon := sInf {s_1 | ∀ (x y : R), x - y ∈ s → s_1 x y} } I : TwoSidedIdeal R hI : s ⊆ ↑I ⊢ I.ringCon ∈ {s_1 | ∀ (x y : R), x - y ∈ s → s_1 x y}
3e62e9a67bfb15af
DyckWord.infix_of_le
Mathlib/Combinatorics/Enumerative/DyckWord.lean
lemma infix_of_le (h : p ≤ q) : p.toList <:+: q.toList
case tail.inr p q m r : DyckWord _pm : Relation.ReflTransGen (fun p q => p = q.insidePart ∨ p = q.outsidePart) p m mq : m = r.insidePart ∨ m = r.outsidePart ih : ↑p <:+: ↑m hr : r ≠ 0 this : [U] ++ ↑r.insidePart ++ [D] ++ ↑r.outsidePart = ↑r ⊢ ↑p <:+: ↑r
rcases mq with hm | hm
case tail.inr.inl p q m r : DyckWord _pm : Relation.ReflTransGen (fun p q => p = q.insidePart ∨ p = q.outsidePart) p m ih : ↑p <:+: ↑m hr : r ≠ 0 this : [U] ++ ↑r.insidePart ++ [D] ++ ↑r.outsidePart = ↑r hm : m = r.insidePart ⊢ ↑p <:+: ↑r case tail.inr.inr p q m r : DyckWord _pm : Relation.ReflTransGen (fun p q => p = q.insidePart ∨ p = q.outsidePart) p m ih : ↑p <:+: ↑m hr : r ≠ 0 this : [U] ++ ↑r.insidePart ++ [D] ++ ↑r.outsidePart = ↑r hm : m = r.outsidePart ⊢ ↑p <:+: ↑r
b036e2b83cf27c51
FiniteField.isSquare_odd_prime_iff
Mathlib/NumberTheory/LegendreSymbol/QuadraticChar/GaussSum.lean
theorem FiniteField.isSquare_odd_prime_iff (hF : ringChar F ≠ 2) {p : ℕ} [Fact p.Prime] (hp : p ≠ 2) : IsSquare (p : F) ↔ quadraticChar (ZMod p) (χ₄ (Fintype.card F) * Fintype.card F) ≠ -1
case neg F : Type u_1 inst✝² : Field F inst✝¹ : Fintype F hF : ringChar F ≠ 2 p : ℕ inst✝ : Fact (Nat.Prime p) hp : p ≠ 2 hFp : ¬ringChar F = p ⊢ IsSquare ↑p ↔ (quadraticChar (ZMod p)) (↑(χ₄ ↑(Fintype.card F)) * ↑(Fintype.card F)) ≠ -1
rw [← Iff.not_left (@quadraticChar_neg_one_iff_not_isSquare F _ _ _ _), quadraticChar_odd_prime hF hp]
case neg F : Type u_1 inst✝² : Field F inst✝¹ : Fintype F hF : ringChar F ≠ 2 p : ℕ inst✝ : Fact (Nat.Prime p) hp : p ≠ 2 hFp : ¬ringChar F = p ⊢ ringChar F ≠ p
355421dc3af479ff
Prop.forall_iff
Mathlib/Logic/Basic.lean
theorem Prop.forall_iff {p : Prop → Prop} : (∀ h, p h) ↔ p False ∧ p True := ⟨fun H ↦ ⟨H _, H _⟩, fun ⟨h₁, h₂⟩ h ↦ by by_cases H : h <;> simpa only [H]⟩
p : Prop → Prop x✝ : p False ∧ p True h : Prop h₁ : p False h₂ : p True ⊢ p h
by_cases H : h <;> simpa only [H]
no goals
908b1823c34063a7
MvPolynomial.coeff_X_pow
Mathlib/Algebra/MvPolynomial/Basic.lean
theorem coeff_X_pow [DecidableEq σ] (i : σ) (m) (k : ℕ) : coeff m (X i ^ k : MvPolynomial σ R) = if Finsupp.single i k = m then 1 else 0
R : Type u σ : Type u_1 inst✝¹ : CommSemiring R inst✝ : DecidableEq σ i : σ m : σ →₀ ℕ k : ℕ ⊢ coeff m (X i ^ k) = if Finsupp.single i k = m then 1 else 0
have := coeff_monomial m (Finsupp.single i k) (1 : R)
R : Type u σ : Type u_1 inst✝¹ : CommSemiring R inst✝ : DecidableEq σ i : σ m : σ →₀ ℕ k : ℕ this : coeff m ((monomial (Finsupp.single i k)) 1) = if Finsupp.single i k = m then 1 else 0 ⊢ coeff m (X i ^ k) = if Finsupp.single i k = m then 1 else 0
969e05a9f8c23cb9
Matrix.det_succ_row
Mathlib/LinearAlgebra/Matrix/Determinant/Basic.lean
theorem det_succ_row {n : ℕ} (A : Matrix (Fin n.succ) (Fin n.succ) R) (i : Fin n.succ) : det A = ∑ j : Fin n.succ, (-1) ^ (i + j : ℕ) * A i j * det (A.submatrix i.succAbove j.succAbove)
case e_a R : Type v inst✝ : CommRing R n : ℕ A : Matrix (Fin n.succ) (Fin n.succ) R i : Fin n.succ this : A.det = (-1) ^ ↑i * ↑↑(sign i.cycleRange⁻¹) * A.det ⊢ ∑ j : Fin n.succ, (-1) ^ ↑j * A.submatrix (⇑i.cycleRange⁻¹) id 0 j * ((A.submatrix (⇑i.cycleRange⁻¹) id).submatrix Fin.succ j.succAbove).det = ∑ i_1 : Fin n.succ, (-1) ^ ↑i_1 * (A i i_1 * (A.submatrix i.succAbove i_1.succAbove).det)
refine Finset.sum_congr rfl fun j _ => ?_
case e_a R : Type v inst✝ : CommRing R n : ℕ A : Matrix (Fin n.succ) (Fin n.succ) R i : Fin n.succ this : A.det = (-1) ^ ↑i * ↑↑(sign i.cycleRange⁻¹) * A.det j : Fin n.succ x✝ : j ∈ univ ⊢ (-1) ^ ↑j * A.submatrix (⇑i.cycleRange⁻¹) id 0 j * ((A.submatrix (⇑i.cycleRange⁻¹) id).submatrix Fin.succ j.succAbove).det = (-1) ^ ↑j * (A i j * (A.submatrix i.succAbove j.succAbove).det)
d17ec63e8ba7211a
Subgroup.exists_finiteIndex_of_leftCoset_cover_aux
Mathlib/GroupTheory/CosetCover.lean
theorem exists_finiteIndex_of_leftCoset_cover_aux [DecidableEq (Subgroup G)] (j : ι) (hj : j ∈ s) (hcovers' : ⋃ i ∈ s.filter (H · = H j), g i • (H i : Set G) ≠ Set.univ) : ∃ i ∈ s, H i ≠ H j ∧ (H i).FiniteIndex
case refine_2 G : Type u_1 inst✝¹ : Group G inst✝ : DecidableEq (Subgroup G) n : ℕ ih : ∀ m < n, ∀ {ι : Type u_2} {H : ι → Subgroup G} {g : ι → G} {s : Finset ι}, ⋃ i ∈ s, g i • ↑(H i) = Set.univ → ∀ j ∈ s, ⋃ i ∈ Finset.filter (fun x => H x = H j) s, g i • ↑(H i) ≠ Set.univ → m = (Finset.image H s).card → ∃ i ∈ s, H i ≠ H j ∧ (H i).FiniteIndex ι : Type u_2 H : ι → Subgroup G g : ι → G s : Finset ι hcovers : ⋃ i ∈ s, g i • ↑(H i) = Set.univ j : ι hj : j ∈ s hcovers' : ⋃ i ∈ Finset.filter (fun x => H x = H j) s, g i • ↑(H i) ≠ Set.univ hn : n = (Finset.image H s).card x : G hx : ∀ i ∈ s, H i = H j → ↑(g i) ≠ ↑x y z : G hz : z ∈ y • ↑(H j) i : ι hi : i ∈ s hmem : ↑(g i) = ↑(x * (y⁻¹ * z)) ⊢ z ∈ (y * x⁻¹ * g i) • ↑(H i)
simpa [mem_leftCoset_iff, SetLike.mem_coe, QuotientGroup.eq, mul_assoc] using hmem
no goals
d6e7c1f1fddf36c9
Matrix.zpow_add
Mathlib/LinearAlgebra/Matrix/ZPow.lean
theorem zpow_add {A : M} (ha : IsUnit A.det) (m n : ℤ) : A ^ (m + n) = A ^ m * A ^ n
case hp n' : Type u_1 inst✝² : DecidableEq n' inst✝¹ : Fintype n' R : Type u_2 inst✝ : CommRing R A : M ha : IsUnit A.det m : ℤ n : ℕ ihn : A ^ (m + ↑n) = A ^ m * A ^ ↑n ⊢ A ^ (m + (↑n + 1)) = A ^ m * A ^ (↑n + 1)
simp only [← add_assoc, zpow_add_one ha, ihn, mul_assoc]
no goals
825209b07812538f
Real.norm_deriv_mulExpNegMulSq_le_one
Mathlib/Analysis/SpecialFunctions/MulExpNegMulSq.lean
theorem norm_deriv_mulExpNegMulSq_le_one (hε : 0 < ε) (x : ℝ) : ‖deriv (mulExpNegMulSq ε) x‖ ≤ 1
ε : ℝ hε : 0 < ε x : ℝ y : ℝ := ε * x * x heq : rexp (-y) + x * (rexp (-y) * (-2 * ε * x)) = rexp (-y) * (1 - 2 * y) hy : y = ε * x * x hynonneg : 0 ≤ y ⊢ 2 * y ≤ 1 + rexp y ∧ 1 ≤ rexp y + 2 * y
refine ⟨le_trans two_mul_le_exp ((le_add_iff_nonneg_left (exp y)).mpr zero_le_one), ?_⟩
ε : ℝ hε : 0 < ε x : ℝ y : ℝ := ε * x * x heq : rexp (-y) + x * (rexp (-y) * (-2 * ε * x)) = rexp (-y) * (1 - 2 * y) hy : y = ε * x * x hynonneg : 0 ≤ y ⊢ 1 ≤ rexp y + 2 * y
fd284f88458aa015
CategoryTheory.RelCat.rel_iso_iff
Mathlib/CategoryTheory/Category/RelCat.lean
theorem rel_iso_iff {X Y : RelCat} (r : X ⟶ Y) : IsIso (C := RelCat) r ↔ ∃ f : (Iso (C := Type u) X Y), graphFunctor.map f.hom = r
case mp X Y : RelCat r : X ⟶ Y h : IsIso r h1 : ∀ (a b : X), (r ≫ inv r) a b = 𝟙 X a b h2 : ∀ (a b : Y), (inv r ≫ r) a b = 𝟙 Y a b ⊢ ∃ f, graphFunctor.map f.hom = r
simp only [RelCat.Hom.rel_comp_apply₂, RelCat.Hom.rel_id_apply₂, eq_iff_iff] at h1 h2
case mp X Y : RelCat r : X ⟶ Y h : IsIso r h1 : ∀ (a b : X), (∃ y, r a y ∧ inv r y b) ↔ a = b h2 : ∀ (a b : Y), (∃ y, inv r a y ∧ r y b) ↔ a = b ⊢ ∃ f, graphFunctor.map f.hom = r
a2d7764e00cdb24d
monovary_inv_right₀
Mathlib/Algebra/Order/Monovary.lean
@[simp] lemma monovary_inv_right₀ (hg : StrongLT 0 g) : Monovary f g⁻¹ ↔ Antivary f g := forall_swap.trans <| forall₂_congr fun i j ↦ by simp [inv_lt_inv₀ (hg _) (hg _)]
ι : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemifield α inst✝ : LinearOrderedSemifield β f : ι → α g : ι → β hg : StrongLT 0 g i j : ι ⊢ g⁻¹ j < g⁻¹ i → f j ≤ f i ↔ g i < g j → f j ≤ f i
simp [inv_lt_inv₀ (hg _) (hg _)]
no goals
2f45565a54105e52
Nat.Partrec.Code.hG
Mathlib/Computability/PartrecCode.lean
theorem hG : Primrec G
case hpc a : Primrec fun a => ofNat (ℕ × Code) a.length k✝¹ : Primrec fun a => (ofNat (ℕ × Code) a.1.length).1 n✝¹ : Primrec Prod.snd k✝ : Primrec fun a => (ofNat (ℕ × Code) a.1.1.length).1 n✝ : Primrec fun a => a.1.2 k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) a.1.1.length).2 L : Primrec fun a => a.1.1.1 k : Primrec fun a => (ofNat (ℕ × Code) a.1.1.1.length).1 n : Primrec fun a => a.1.1.2 ⊢ Primrec fun a => let z := (unpair a.1.1.2).1; Nat.casesOn (unpair a.1.1.2).2 (Nat.Partrec.Code.lup a.1.1.1 ((ofNat (ℕ × Code) a.1.1.1.length).1, a.2.1) z) fun y => do let i ← Nat.Partrec.Code.lup a.1.1.1 (a.1.2, (ofNat (ℕ × Code) a.1.1.1.length).2) (Nat.pair z y) Nat.Partrec.Code.lup a.1.1.1 ((ofNat (ℕ × Code) a.1.1.1.length).1, a.2.2.1) (Nat.pair z (Nat.pair y i))
have cf := Primrec.fst.comp (Primrec.snd (α := (List (List (Option ℕ)) × ℕ) × ℕ) (β := Code × Code × Option ℕ × Option ℕ))
case hpc a : Primrec fun a => ofNat (ℕ × Code) a.length k✝¹ : Primrec fun a => (ofNat (ℕ × Code) a.1.length).1 n✝¹ : Primrec Prod.snd k✝ : Primrec fun a => (ofNat (ℕ × Code) a.1.1.length).1 n✝ : Primrec fun a => a.1.2 k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) a.1.1.length).2 L : Primrec fun a => a.1.1.1 k : Primrec fun a => (ofNat (ℕ × Code) a.1.1.1.length).1 n : Primrec fun a => a.1.1.2 cf : Primrec fun a => a.2.1 ⊢ Primrec fun a => let z := (unpair a.1.1.2).1; Nat.casesOn (unpair a.1.1.2).2 (Nat.Partrec.Code.lup a.1.1.1 ((ofNat (ℕ × Code) a.1.1.1.length).1, a.2.1) z) fun y => do let i ← Nat.Partrec.Code.lup a.1.1.1 (a.1.2, (ofNat (ℕ × Code) a.1.1.1.length).2) (Nat.pair z y) Nat.Partrec.Code.lup a.1.1.1 ((ofNat (ℕ × Code) a.1.1.1.length).1, a.2.2.1) (Nat.pair z (Nat.pair y i))
4867ddf124efd4e0
MeasureTheory.Lp.simpleFunc.dense
Mathlib/MeasureTheory/Function/SimpleFuncDenseLp.lean
theorem dense (hp_ne_top : p ≠ ∞) : Dense (Lp.simpleFunc E p μ : Set (Lp E p μ))
α : Type u_1 E : Type u_4 inst✝² : MeasurableSpace α inst✝¹ : NormedAddCommGroup E p : ℝ≥0∞ μ : Measure α inst✝ : Fact (1 ≤ p) hp_ne_top : p ≠ ⊤ ⊢ Dense ↑(simpleFunc E p μ)
simpa only [denseRange_subtype_val] using simpleFunc.denseRange (E := E) (μ := μ) hp_ne_top
no goals
74254ecfcc7f02f0
QuadraticMap.polar_add
Mathlib/LinearAlgebra/QuadraticForm/Basic.lean
theorem polar_add (f g : M → N) (x y : M) : polar (f + g) x y = polar f x y + polar g x y
M : Type u_4 N : Type u_5 inst✝¹ : AddCommGroup M inst✝ : AddCommGroup N f g : M → N x y : M ⊢ polar (f + g) x y = polar f x y + polar g x y
simp only [polar, Pi.add_apply]
M : Type u_4 N : Type u_5 inst✝¹ : AddCommGroup M inst✝ : AddCommGroup N f g : M → N x y : M ⊢ f (x + y) + g (x + y) - (f x + g x) - (f y + g y) = f (x + y) - f x - f y + (g (x + y) - g x - g y)
bc9c98d787f29584
exists_lt_ack_of_nat_primrec
Mathlib/Computability/Ackermann.lean
theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n
case pair f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g IHf : ∃ m, ∀ (n : ℕ), f n < ack m n IHg : ∃ m, ∀ (n : ℕ), g n < ack m n ⊢ ∃ m, ∀ (n : ℕ), (fun n => pair (f n) (g n)) n < ack m n case comp f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g IHf : ∃ m, ∀ (n : ℕ), f n < ack m n IHg : ∃ m, ∀ (n : ℕ), g n < ack m n ⊢ ∃ m, ∀ (n : ℕ), (fun n => f (g n)) n < ack m n case prec f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g IHf : ∃ m, ∀ (n : ℕ), f n < ack m n IHg : ∃ m, ∀ (n : ℕ), g n < ack m n ⊢ ∃ m, ∀ (n : ℕ), unpaired (fun z n => rec (f z) (fun y IH => g (pair z (pair y IH))) n) n < ack m n
all_goals obtain ⟨a, ha⟩ := IHf; obtain ⟨b, hb⟩ := IHg
case pair.intro.intro f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n ⊢ ∃ m, ∀ (n : ℕ), (fun n => pair (f n) (g n)) n < ack m n case comp.intro.intro f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n ⊢ ∃ m, ∀ (n : ℕ), (fun n => f (g n)) n < ack m n case prec.intro.intro f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n ⊢ ∃ m, ∀ (n : ℕ), unpaired (fun z n => rec (f z) (fun y IH => g (pair z (pair y IH))) n) n < ack m n
e97338bb483aa942
Matrix.PosSemidef.inv
Mathlib/LinearAlgebra/Matrix/PosDef.lean
protected lemma inv [DecidableEq n] {M : Matrix n n R} (hM : M.PosSemidef) : M⁻¹.PosSemidef
case neg n : Type u_2 R : Type u_3 inst✝⁴ : Fintype n inst✝³ : CommRing R inst✝² : PartialOrder R inst✝¹ : StarRing R inst✝ : DecidableEq n M : Matrix n n R hM : M.PosSemidef h : ¬IsUnit M.det ⊢ PosSemidef 0
exact .zero
no goals
665a36634fb462d8
MeasureTheory.integral_llr_tilted_right
Mathlib/MeasureTheory/Measure/LogLikelihoodRatio.lean
lemma integral_llr_tilted_right [IsProbabilityMeasure μ] [SigmaFinite ν] (hμν : μ ≪ ν) (hfμ : Integrable f μ) (hfν : Integrable (fun x ↦ exp (f x)) ν) (h_int : Integrable (llr μ ν) μ) : ∫ x, llr μ (ν.tilted f) x ∂μ = ∫ x, llr μ ν x ∂μ - ∫ x, f x ∂μ + log (∫ x, exp (f x) ∂ν)
α : Type u_1 mα : MeasurableSpace α μ ν : Measure α f : α → ℝ inst✝¹ : IsProbabilityMeasure μ inst✝ : SigmaFinite ν hμν : μ ≪ ν hfμ : Integrable f μ hfν : Integrable (fun x => rexp (f x)) ν h_int : Integrable (llr μ ν) μ ⊢ ∫ (a : α), -f a ∂μ + ∫ (a : α), log (∫ (x : α), rexp (f x) ∂ν) ∂μ + ∫ (a : α), llr μ ν a ∂μ = ∫ (a : α), -f a ∂μ + log (∫ (x : α), rexp (f x) ∂ν) + ∫ (x : α), llr μ ν x ∂μ α : Type u_1 mα : MeasurableSpace α μ ν : Measure α f : α → ℝ inst✝¹ : IsProbabilityMeasure μ inst✝ : SigmaFinite ν hμν : μ ≪ ν hfμ : Integrable f μ hfν : Integrable (fun x => rexp (f x)) ν h_int : Integrable (llr μ ν) μ ⊢ Integrable (fun a => -f a) μ
swap
α : Type u_1 mα : MeasurableSpace α μ ν : Measure α f : α → ℝ inst✝¹ : IsProbabilityMeasure μ inst✝ : SigmaFinite ν hμν : μ ≪ ν hfμ : Integrable f μ hfν : Integrable (fun x => rexp (f x)) ν h_int : Integrable (llr μ ν) μ ⊢ Integrable (fun a => -f a) μ α : Type u_1 mα : MeasurableSpace α μ ν : Measure α f : α → ℝ inst✝¹ : IsProbabilityMeasure μ inst✝ : SigmaFinite ν hμν : μ ≪ ν hfμ : Integrable f μ hfν : Integrable (fun x => rexp (f x)) ν h_int : Integrable (llr μ ν) μ ⊢ ∫ (a : α), -f a ∂μ + ∫ (a : α), log (∫ (x : α), rexp (f x) ∂ν) ∂μ + ∫ (a : α), llr μ ν a ∂μ = ∫ (a : α), -f a ∂μ + log (∫ (x : α), rexp (f x) ∂ν) + ∫ (x : α), llr μ ν x ∂μ
618388524e9eb506
InnerProductGeometry.cos_eq_zero_iff_angle_eq_pi_div_two
Mathlib/Geometry/Euclidean/Angle/Unoriented/Basic.lean
theorem cos_eq_zero_iff_angle_eq_pi_div_two : cos (angle x y) = 0 ↔ angle x y = π / 2
V : Type u_1 inst✝¹ : NormedAddCommGroup V inst✝ : InnerProductSpace ℝ V x y : V ⊢ π / 2 ∈ Icc 0 π
constructor <;> linarith [pi_pos]
no goals
5da138e792432e8b
Commute.isNilpotent_sum
Mathlib/RingTheory/Nilpotent/Basic.lean
protected lemma isNilpotent_sum {ι : Type*} {s : Finset ι} {f : ι → R} (hnp : ∀ i ∈ s, IsNilpotent (f i)) (h_comm : ∀ i j, i ∈ s → j ∈ s → Commute (f i) (f j)) : IsNilpotent (∑ i ∈ s, f i)
case insert.hx R : Type u_1 inst✝ : Semiring R ι : Type u_3 f : ι → R j : ι s : Finset ι hj : j ∉ s ih : (∀ i ∈ s, IsNilpotent (f i)) → (∀ (i j : ι), i ∈ s → j ∈ s → Commute (f i) (f j)) → IsNilpotent (∑ i ∈ s, f i) hnp : ∀ i ∈ insert j s, IsNilpotent (f i) h_comm : ∀ (i j_1 : ι), i ∈ insert j s → j_1 ∈ insert j s → Commute (f i) (f j_1) ⊢ IsNilpotent (f j)
apply hnp
case insert.hx.a R : Type u_1 inst✝ : Semiring R ι : Type u_3 f : ι → R j : ι s : Finset ι hj : j ∉ s ih : (∀ i ∈ s, IsNilpotent (f i)) → (∀ (i j : ι), i ∈ s → j ∈ s → Commute (f i) (f j)) → IsNilpotent (∑ i ∈ s, f i) hnp : ∀ i ∈ insert j s, IsNilpotent (f i) h_comm : ∀ (i j_1 : ι), i ∈ insert j s → j_1 ∈ insert j s → Commute (f i) (f j_1) ⊢ j ∈ insert j s
d22c464defd4e821
mem_closure_of_gauge_le_one
Mathlib/Analysis/Convex/Gauge.lean
theorem mem_closure_of_gauge_le_one (hc : Convex ℝ s) (hs₀ : 0 ∈ s) (ha : Absorbent ℝ s) (h : gauge s x ≤ 1) : x ∈ closure s
E : Type u_2 inst✝³ : AddCommGroup E inst✝² : Module ℝ E s : Set E x : E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul ℝ E hc : Convex ℝ s hs₀ : 0 ∈ s ha : Absorbent ℝ s h : gauge s x ≤ 1 this : ∀ᶠ (r : ℝ) in 𝓝[<] 1, r • x ∈ s ⊢ Tendsto (fun x_1 => x_1 • x) (𝓝[<] 1) (𝓝 x)
exact Filter.Tendsto.mono_left (Continuous.tendsto' (by fun_prop) _ _ (one_smul _ _)) inf_le_left
no goals
1bb11cde2da67157
MeasureTheory.L2.inner_indicatorConstLp_eq_setIntegral_inner
Mathlib/MeasureTheory/Function/L2Space.lean
theorem inner_indicatorConstLp_eq_setIntegral_inner (f : Lp E 2 μ) (hs : MeasurableSet s) (c : E) (hμs : μ s ≠ ∞) : (⟪indicatorConstLp 2 hs hμs c, f⟫ : 𝕜) = ∫ x in s, ⟪c, f x⟫ ∂μ
α : Type u_1 E : Type u_2 𝕜 : Type u_4 inst✝³ : RCLike 𝕜 inst✝² : MeasurableSpace α μ : Measure α inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E s : Set α f : ↥(Lp E 2 μ) hs : MeasurableSet s c : E hμs : μ s ≠ ⊤ ⊢ ∫ (x : α) in s, inner (↑↑(indicatorConstLp 2 hs hμs c) x) (↑↑f x) ∂μ + ∫ (x : α) in sᶜ, inner (↑↑(indicatorConstLp 2 hs hμs c) x) (↑↑f x) ∂μ = ∫ (x : α) in s, inner c (↑↑f x) ∂μ
have h_left : (∫ x in s, ⟪(indicatorConstLp 2 hs hμs c) x, f x⟫ ∂μ) = ∫ x in s, ⟪c, f x⟫ ∂μ := by suffices h_ae_eq : ∀ᵐ x ∂μ, x ∈ s → ⟪indicatorConstLp 2 hs hμs c x, f x⟫ = ⟪c, f x⟫ from setIntegral_congr_ae hs h_ae_eq have h_indicator : ∀ᵐ x : α ∂μ, x ∈ s → indicatorConstLp 2 hs hμs c x = c := indicatorConstLp_coeFn_mem refine h_indicator.mono fun x hx hxs => ?_ congr exact hx hxs
α : Type u_1 E : Type u_2 𝕜 : Type u_4 inst✝³ : RCLike 𝕜 inst✝² : MeasurableSpace α μ : Measure α inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E s : Set α f : ↥(Lp E 2 μ) hs : MeasurableSet s c : E hμs : μ s ≠ ⊤ h_left : ∫ (x : α) in s, inner (↑↑(indicatorConstLp 2 hs hμs c) x) (↑↑f x) ∂μ = ∫ (x : α) in s, inner c (↑↑f x) ∂μ ⊢ ∫ (x : α) in s, inner (↑↑(indicatorConstLp 2 hs hμs c) x) (↑↑f x) ∂μ + ∫ (x : α) in sᶜ, inner (↑↑(indicatorConstLp 2 hs hμs c) x) (↑↑f x) ∂μ = ∫ (x : α) in s, inner c (↑↑f x) ∂μ
550df0062a1bcf16
SetTheory.PGame.insertRight_equiv_of_lf
Mathlib/SetTheory/Game/PGame.lean
/-- Adding a gift horse right option does not change the value of `x`. A gift horse right option is a game `x'` with `x ⧏ x'`. It is called "gift horse" because it seems like Right has gotten the "gift" of a new option, but actually the value of the game did not change. -/ lemma insertRight_equiv_of_lf {x x' : PGame} (h : x ⧏ x') : insertRight x x' ≈ x
x x' : PGame h : x ⧏ x' ⊢ x.insertRight x' ≈ x
rw [← neg_equiv_neg_iff, ← neg_insertLeft_neg]
x x' : PGame h : x ⧏ x' ⊢ (-x).insertLeft (-x') ≈ -x
50f28abf4680854a
AffineSubspace.coe_direction_eq_vsub_set_right
Mathlib/LinearAlgebra/AffineSpace/AffineSubspace/Defs.lean
theorem coe_direction_eq_vsub_set_right {s : AffineSubspace k P} {p : P} (hp : p ∈ s) : (s.direction : Set V) = (· -ᵥ p) '' s
case refine_1 k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : AffineSubspace k P p : P hp : p ∈ s ⊢ ↑s -ᵥ ↑s ≤ (fun x => x -ᵥ p) '' ↑s
rintro v ⟨p₁, hp₁, p₂, hp₂, rfl⟩
case refine_1.intro.intro.intro.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : AffineSubspace k P p : P hp : p ∈ s p₁ : P hp₁ : p₁ ∈ ↑s p₂ : P hp₂ : p₂ ∈ ↑s ⊢ (fun x1 x2 => x1 -ᵥ x2) p₁ p₂ ∈ (fun x => x -ᵥ p) '' ↑s
d2d0dab6124cb47b
Nat.mem_factoredNumbers'
Mathlib/NumberTheory/SmoothNumbers.lean
/-- `m` is `s`-factored if and only if all prime divisors of `m` are in `s`. -/ lemma mem_factoredNumbers' {s : Finset ℕ} {m : ℕ} : m ∈ factoredNumbers s ↔ ∀ p, p.Prime → p ∣ m → p ∈ s
case intro.intro s : Finset ℕ m p : ℕ hp₁ : 1 + s.sup id ≤ p hp₂ : Prime p ⊢ (m ≠ 0 ∧ ∀ p ≤ m, Prime p → p ∣ m → p ∈ s) ↔ ∀ (p : ℕ), Prime p → p ∣ m → p ∈ s
refine ⟨fun ⟨H₀, H₁⟩ ↦ fun p hp₁ hp₂ ↦ H₁ p (le_of_dvd (Nat.pos_of_ne_zero H₀) hp₂) hp₁ hp₂, fun H ↦ ⟨fun h ↦ lt_irrefl p ?_, fun p _ ↦ H p⟩⟩
case intro.intro s : Finset ℕ m p : ℕ hp₁ : 1 + s.sup id ≤ p hp₂ : Prime p H : ∀ (p : ℕ), Prime p → p ∣ m → p ∈ s h : m = 0 ⊢ p < p
6c2d6475c8785202
Real.aux₂
Mathlib/NumberTheory/DiophantineApproximation/Basic.lean
theorem aux₂ : 0 < u - ⌊ξ⌋ * v ∧ u - ⌊ξ⌋ * v < v
case intro.intro.intro.refine_2 ξ : ℝ u v : ℤ hv : 2 ≤ v hcop : IsCoprime u v left✝ : v = 1 → -(1 / 2) < ξ - ↑u h : -1 + ξ * (↑v * (2 * ↑v - 1)) < ↑u * (2 * ↑v - 1) ∧ ↑u * (2 * ↑v - 1) < 1 + ξ * (↑v * (2 * ↑v - 1)) hv₀ : 0 < ↑v hv₀' : 0 < 2 * ↑v - 1 hv₁ : 0 < 2 * v - 1 hu₀ : 0 ≤ u - ⌊ξ⌋ * v hu₁ : u - ⌊ξ⌋ * v ≤ v hf : u - ⌊ξ⌋ * v = v huv_cop : v = 1 ∨ v = -1 ⊢ False
rcases huv_cop with huv_cop | huv_cop <;> linarith only [hv, huv_cop]
no goals
b733bf52b4cb0f24
Subsemigroup.le_prod_iff
Mathlib/Algebra/Group/Subsemigroup/Operations.lean
theorem le_prod_iff {s : Subsemigroup M} {t : Subsemigroup N} {u : Subsemigroup (M × N)} : u ≤ s.prod t ↔ u.map (fst M N) ≤ s ∧ u.map (snd M N) ≤ t
case mp M : Type u_1 N : Type u_2 inst✝¹ : Mul M inst✝ : Mul N s : Subsemigroup M t : Subsemigroup N u : Subsemigroup (M × N) h : u ≤ s.prod t ⊢ map (fst M N) u ≤ s ∧ map (snd M N) u ≤ t
constructor
case mp.left M : Type u_1 N : Type u_2 inst✝¹ : Mul M inst✝ : Mul N s : Subsemigroup M t : Subsemigroup N u : Subsemigroup (M × N) h : u ≤ s.prod t ⊢ map (fst M N) u ≤ s case mp.right M : Type u_1 N : Type u_2 inst✝¹ : Mul M inst✝ : Mul N s : Subsemigroup M t : Subsemigroup N u : Subsemigroup (M × N) h : u ≤ s.prod t ⊢ map (snd M N) u ≤ t
b59429101fcfc181
Ideal.quotientInfToPiQuotient_surj
Mathlib/RingTheory/Ideal/Quotient/Operations.lean
lemma quotientInfToPiQuotient_surj {I : ι → Ideal R} (hI : Pairwise (IsCoprime on I)) : Surjective (quotientInfToPiQuotient I)
case intro R : Type u_2 inst✝¹ : CommRing R ι : Type u_3 inst✝ : Finite ι I : ι → Ideal R hI : Pairwise (IsCoprime on I) val✝ : Fintype ι g : (i : ι) → R ⧸ I i f : ι → R hf : ∀ (i : ι), (Quotient.mk (I i)) (f i) = g i e : ι → R he : ∀ (i : ι), (Quotient.mk (I i)) (e i) = 1 ∧ ∀ (j : ι), j ≠ i → (Quotient.mk (I j)) (e i) = 0 ⊢ ∃ a, (quotientInfToPiQuotient I) a = g
use mk _ (∑ i, f i*e i)
case h R : Type u_2 inst✝¹ : CommRing R ι : Type u_3 inst✝ : Finite ι I : ι → Ideal R hI : Pairwise (IsCoprime on I) val✝ : Fintype ι g : (i : ι) → R ⧸ I i f : ι → R hf : ∀ (i : ι), (Quotient.mk (I i)) (f i) = g i e : ι → R he : ∀ (i : ι), (Quotient.mk (I i)) (e i) = 1 ∧ ∀ (j : ι), j ≠ i → (Quotient.mk (I j)) (e i) = 0 ⊢ (quotientInfToPiQuotient I) ((Quotient.mk (⨅ i, I i)) (∑ i : ι, f i * e i)) = g
df184cf9a63521b9
MulOpposite.unop_list_prod
Mathlib/Algebra/BigOperators/Group/List/Lemmas.lean
lemma unop_list_prod (l : List Mᵐᵒᵖ) : l.prod.unop = (l.map unop).reverse.prod
M : Type u_4 inst✝ : Monoid M l : List Mᵐᵒᵖ ⊢ unop l.prod = (map unop l).reverse.prod
rw [← op_inj, op_unop, MulOpposite.op_list_prod, map_reverse, map_map, reverse_reverse, op_comp_unop, map_id]
no goals
f143ab63d179e213
Measurable.ennreal_tsum'
Mathlib/MeasureTheory/Constructions/BorelSpace/Real.lean
theorem Measurable.ennreal_tsum' {ι} [Countable ι] {f : ι → α → ℝ≥0∞} (h : ∀ i, Measurable (f i)) : Measurable (∑' i, f i)
case h.e'_5.h α : Type u_1 mα : MeasurableSpace α ι : Type u_5 inst✝ : Countable ι f : ι → α → ℝ≥0∞ h : ∀ (i : ι), Measurable (f i) x : α ⊢ (∑' (i : ι), f i) x = ∑' (i : ι), f i x
exact tsum_apply (Pi.summable.2 fun _ => ENNReal.summable)
no goals
d25ac079611c84ba
MeasureTheory.BoundedContinuousFunction.integral_le_of_levyProkhorovEDist_lt
Mathlib/MeasureTheory/Measure/LevyProkhorovMetric.lean
/-- Assuming `levyProkhorovEDist μ ν < ε`, we can bound `∫ f ∂μ` in terms of `∫ t in (0, ‖f‖], ν (thickening ε {x | f(x) ≥ t}) dt` and `‖f‖`. -/ lemma BoundedContinuousFunction.integral_le_of_levyProkhorovEDist_lt (μ ν : Measure Ω) [IsFiniteMeasure μ] [IsFiniteMeasure ν] {ε : ℝ} (ε_pos : 0 < ε) (hμν : levyProkhorovEDist μ ν < ENNReal.ofReal ε) (f : Ω →ᵇ ℝ) (f_nn : 0 ≤ᵐ[μ] f) : ∫ ω, f ω ∂μ ≤ (∫ t in Ioc 0 ‖f‖, ENNReal.toReal (ν (thickening ε {a | t ≤ f a}))) + ε * ‖f‖
Ω : Type u_1 inst✝⁴ : MeasurableSpace Ω inst✝³ : PseudoMetricSpace Ω inst✝² : OpensMeasurableSpace Ω μ ν : Measure Ω inst✝¹ : IsFiniteMeasure μ inst✝ : IsFiniteMeasure ν ε : ℝ ε_pos : 0 < ε hμν : levyProkhorovEDist μ ν < ENNReal.ofReal ε f : Ω →ᵇ ℝ f_nn : 0 ≤ᶠ[ae μ] ⇑f key : (fun t => (μ {a | t ≤ f a}).toReal) ≤ fun t => (ν (thickening ε {a | t ≤ f a})).toReal + ε intble₁ : IntegrableOn (fun t => (μ {a | t ≤ f a}).toReal) (Ioc 0 ‖f‖) volume t : ℝ ⊢ (ν (thickening ε {a | t ≤ f a})).toReal ≤ (ν univ).toReal
exact ENNReal.toReal_mono (measure_ne_top _ _) <| measure_mono (subset_univ _)
no goals
abad1a50e7cd6063
FormalMultilinearSeries.apply_eq_prod_smul_coeff
Mathlib/Analysis/Calculus/FormalMultilinearSeries.lean
theorem apply_eq_prod_smul_coeff : p n y = (∏ i, y i) • p.coeff n
𝕜 : Type u E : Type v inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E p : FormalMultilinearSeries 𝕜 𝕜 E n : ℕ y : Fin n → 𝕜 ⊢ (p n) y = (∏ i : Fin n, y i) • p.coeff n
convert (p n).toMultilinearMap.map_smul_univ y 1
case h.e'_2.h.e'_1.h 𝕜 : Type u E : Type v inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E p : FormalMultilinearSeries 𝕜 𝕜 E n : ℕ y : Fin n → 𝕜 x✝ : Fin n ⊢ y x✝ = y x✝ • 1 x✝
f6c046f6e19a80f3
isLowerSet_iff_Iio_subset
Mathlib/Order/UpperLower/Basic.lean
theorem isLowerSet_iff_Iio_subset : IsLowerSet s ↔ ∀ ⦃a⦄, a ∈ s → Iio a ⊆ s
α : Type u_1 inst✝ : PartialOrder α s : Set α ⊢ IsLowerSet s ↔ ∀ ⦃a : α⦄, a ∈ s → Iio a ⊆ s
simp [isLowerSet_iff_forall_lt, subset_def, @forall_swap (_ ∈ s)]
no goals
49a750b788a9af3f
Complex.analyticAt_iff_eventually_differentiableAt
Mathlib/Analysis/Complex/CauchyIntegral.lean
theorem analyticAt_iff_eventually_differentiableAt {f : ℂ → E} {c : ℂ} : AnalyticAt ℂ f c ↔ ∀ᶠ z in 𝓝 c, DifferentiableAt ℂ f z
case h E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ fa : AnalyticAt ℂ f c ⊢ ∀ (a : ℂ), AnalyticAt ℂ f a → DifferentiableAt ℂ f a
apply AnalyticAt.differentiableAt
no goals
6373504a7ca915e7
bernoulli'PowerSeries_mul_exp_sub_one
Mathlib/NumberTheory/Bernoulli.lean
theorem bernoulli'PowerSeries_mul_exp_sub_one : bernoulli'PowerSeries A * (exp A - 1) = X * exp A
case h.e'_2 A : Type u_1 inst✝¹ : CommRing A inst✝ : Algebra ℚ A n : ℕ ⊢ ∑ i ∈ antidiagonal n, bernoulli' i.1 / ↑i.1! * ((↑i.2 + 1) * ↑i.2!)⁻¹ * ↑n ! = ∑ k ∈ antidiagonal n, ↑((k.1 + k.2).choose k.2) / (↑k.2 + 1) * bernoulli' k.1
apply sum_congr rfl
case h.e'_2 A : Type u_1 inst✝¹ : CommRing A inst✝ : Algebra ℚ A n : ℕ ⊢ ∀ x ∈ antidiagonal n, bernoulli' x.1 / ↑x.1! * ((↑x.2 + 1) * ↑x.2!)⁻¹ * ↑n ! = ↑((x.1 + x.2).choose x.2) / (↑x.2 + 1) * bernoulli' x.1
42e6710e61d9a85a
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.reduce_postcondition
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/RupAddSound.lean
theorem reduce_postcondition {n : Nat} (c : DefaultClause n) (assignment : Array Assignment) : (reduce c assignment = reducedToEmpty → Incompatible (PosFin n) c assignment) ∧ (∀ l : Literal (PosFin n), reduce c assignment = reducedToUnit l → ∀ (p : (PosFin n) → Bool), p ⊨ assignment → p ⊨ c → p ⊨ l)
n : Nat c : DefaultClause n assignment : Array Assignment c_arr : Array (Literal (PosFin n)) := List.toArray c.clause c_clause_rw : c.clause = c_arr.toList motive : Nat → ReduceResult (PosFin n) → Prop := ReducePostconditionInductionMotive c_arr assignment ⊢ ∀ (a : PosFin n) (b : Bool), (reducedToEmpty = reducedToUnit (a, b)) = False
intros
n : Nat c : DefaultClause n assignment : Array Assignment c_arr : Array (Literal (PosFin n)) := List.toArray c.clause c_clause_rw : c.clause = c_arr.toList motive : Nat → ReduceResult (PosFin n) → Prop := ReducePostconditionInductionMotive c_arr assignment a✝ : PosFin n b✝ : Bool ⊢ (reducedToEmpty = reducedToUnit (a✝, b✝)) = False
bc01533c0ab5cdb8
IsDenseInducing.extend_Z_bilin_aux
Mathlib/Topology/Algebra/UniformGroup/Defs.lean
theorem extend_Z_bilin_aux (x₀ : α) (y₁ : δ) : ∃ U₂ ∈ comap e (𝓝 x₀), ∀ x ∈ U₂, ∀ x' ∈ U₂, (fun p : β × δ => φ p.1 p.2) (x' - x, y₁) ∈ W'
α : Type u_1 β : Type u_2 δ : Type u_4 G : Type u_5 inst✝⁸ : TopologicalSpace α inst✝⁷ : AddCommGroup α inst✝⁶ : IsTopologicalAddGroup α inst✝⁵ : TopologicalSpace β inst✝⁴ : AddCommGroup β inst✝³ : TopologicalSpace δ inst✝² : AddCommGroup δ inst✝¹ : UniformSpace G inst✝ : AddCommGroup G e : β →+ α de : IsDenseInducing ⇑e φ : β →+ δ →+ G hφ : Continuous fun p => (φ p.1) p.2 W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₁ : δ ⊢ ∃ U₂ ∈ comap (⇑e) (𝓝 x₀), ∀ x ∈ U₂, ∀ x' ∈ U₂, (fun p => (φ p.1) p.2) (x' - x, y₁) ∈ W'
let Nx := 𝓝 x₀
α : Type u_1 β : Type u_2 δ : Type u_4 G : Type u_5 inst✝⁸ : TopologicalSpace α inst✝⁷ : AddCommGroup α inst✝⁶ : IsTopologicalAddGroup α inst✝⁵ : TopologicalSpace β inst✝⁴ : AddCommGroup β inst✝³ : TopologicalSpace δ inst✝² : AddCommGroup δ inst✝¹ : UniformSpace G inst✝ : AddCommGroup G e : β →+ α de : IsDenseInducing ⇑e φ : β →+ δ →+ G hφ : Continuous fun p => (φ p.1) p.2 W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₁ : δ Nx : Filter α := 𝓝 x₀ ⊢ ∃ U₂ ∈ comap (⇑e) (𝓝 x₀), ∀ x ∈ U₂, ∀ x' ∈ U₂, (fun p => (φ p.1) p.2) (x' - x, y₁) ∈ W'
6766ff934c6fdbf1