name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
integral_withDensity_eq_integral_smul
Mathlib/MeasureTheory/Integral/SetIntegral.lean
theorem integral_withDensity_eq_integral_smul {f : X → ℝ≥0} (f_meas : Measurable f) (g : X → E) : ∫ x, g x ∂μ.withDensity (fun x => f x) = ∫ x, f x • g x ∂μ
case pos.refine_2.hf X : Type u_1 E : Type u_3 inst✝² : MeasurableSpace X μ : Measure X inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E f : X → ℝ≥0 f_meas : Measurable f g : X → E hE : CompleteSpace E hg : Integrable g (μ.withDensity fun x => ↑(f x)) u u' : X → E a✝ : Disjoint (support u) (support u') u_int : Integrable u (μ.withDensity fun x => ↑(f x)) u'_int : Integrable u' (μ.withDensity fun x => ↑(f x)) h : (∫ (x : X), u x ∂μ.withDensity fun x => ↑(f x)) = ∫ (x : X), f x • u x ∂μ h' : (∫ (x : X), u' x ∂μ.withDensity fun x => ↑(f x)) = ∫ (x : X), f x • u' x ∂μ ⊢ Integrable (fun x => f x • u x) μ
exact (integrable_withDensity_iff_integrable_smul f_meas).1 u_int
no goals
cd239c0816bb7a0c
Field.primitive_element_inf_aux
Mathlib/FieldTheory/PrimitiveElement.lean
theorem primitive_element_inf_aux [Algebra.IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E α β : E inst✝¹ : Algebra F E inst✝ : Algebra.IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* (Polynomial.map ιFE g).SplittingField := algebraMap E (Polynomial.map ιFE g).SplittingField c : F γ : E := α + c • β p : (↥F⟮γ⟯)[X] := EuclideanDomain.gcd ((Polynomial.map (algebraMap F ↥F⟮γ⟯) f).comp (C (AdjoinSimple.gen F γ) - C ⟨(algebraMap F E) c, ⋯⟩ * X)) (Polynomial.map (algebraMap F ↥F⟮γ⟯) g) h : E[X] := EuclideanDomain.gcd ((Polynomial.map ιFE f).comp (C γ - C (ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 h_sep : h.Separable h_root : eval β h = 0 h_splits : Splits ιEE' h x : (Polynomial.map ιFE g).SplittingField hx : eval₂ ιEE' x h = 0 hc : -(ιEE' γ - ιEE' (ιFE c) * x - ιEE' α) / (x - ιEE' β) ≠ (ιEE'.comp ιFE) c ⊢ x = ιEE' β
by_contra a
F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E α β : E inst✝¹ : Algebra F E inst✝ : Algebra.IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* (Polynomial.map ιFE g).SplittingField := algebraMap E (Polynomial.map ιFE g).SplittingField c : F γ : E := α + c • β p : (↥F⟮γ⟯)[X] := EuclideanDomain.gcd ((Polynomial.map (algebraMap F ↥F⟮γ⟯) f).comp (C (AdjoinSimple.gen F γ) - C ⟨(algebraMap F E) c, ⋯⟩ * X)) (Polynomial.map (algebraMap F ↥F⟮γ⟯) g) h : E[X] := EuclideanDomain.gcd ((Polynomial.map ιFE f).comp (C γ - C (ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 h_sep : h.Separable h_root : eval β h = 0 h_splits : Splits ιEE' h x : (Polynomial.map ιFE g).SplittingField hx : eval₂ ιEE' x h = 0 hc : -(ιEE' γ - ιEE' (ιFE c) * x - ιEE' α) / (x - ιEE' β) ≠ (ιEE'.comp ιFE) c a : ¬x = ιEE' β ⊢ False
c759c025da469f0d
List.append_cancel_left_eq
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/BasicAux.lean
theorem append_cancel_left_eq (as bs cs : List α) : (as ++ bs = as ++ cs) = (bs = cs)
α : Type u_1 as bs cs : List α ⊢ (as ++ bs = as ++ cs) = (bs = cs)
apply propext
case a α : Type u_1 as bs cs : List α ⊢ as ++ bs = as ++ cs ↔ bs = cs
e65cb60e56da7011
Finset.smul_stabilizer_of_no_doubling_aux
Mathlib/Combinatorics/Additive/VerySmallDoubling.lean
@[to_additive] private lemma smul_stabilizer_of_no_doubling_aux (hA : #(A * A) ≤ #A) (ha : a ∈ A) : a •> (stabilizer G A : Set G) = A ∧ (stabilizer G A : Set G) <• a = A
case refine_2 G : Type u_1 inst✝¹ : Group G inst✝ : DecidableEq G A : Finset G a : G hA : #(A * A) ≤ #A ha : a ∈ A smul_A : ∀ {a : G}, a ∈ A → a •> A = A * A A_smul : ∀ {a : G}, a ∈ A → A <• a = A * A smul_A_eq_A_smul : ∀ {a : G}, a ∈ A → a •> A = A <• a mul_mem_A_comm : ∀ {x a : G}, a ∈ A → (x * a ∈ A ↔ a * x ∈ A) H : Subgroup G := stabilizer G A inv_smul_A : ∀ {a : G}, a ∈ A → a⁻¹ •> ↑A = ↑H ⊢ a⁻¹ •> (↑A <• a) = ↑A
norm_cast
case refine_2 G : Type u_1 inst✝¹ : Group G inst✝ : DecidableEq G A : Finset G a : G hA : #(A * A) ≤ #A ha : a ∈ A smul_A : ∀ {a : G}, a ∈ A → a •> A = A * A A_smul : ∀ {a : G}, a ∈ A → A <• a = A * A smul_A_eq_A_smul : ∀ {a : G}, a ∈ A → a •> A = A <• a mul_mem_A_comm : ∀ {x a : G}, a ∈ A → (x * a ∈ A ↔ a * x ∈ A) H : Subgroup G := stabilizer G A inv_smul_A : ∀ {a : G}, a ∈ A → a⁻¹ •> ↑A = ↑H ⊢ a⁻¹ •> (A <• a) = A
edbd4fa4141174b5
Std.Sat.AIG.denote_mkIfCached
Mathlib/.lake/packages/lean4/src/lean/Std/Sat/AIG/If.lean
theorem denote_mkIfCached {aig : AIG α} {input : TernaryInput aig} : ⟦aig.mkIfCached input, assign⟧ = if ⟦aig, input.discr, assign⟧ then ⟦aig, input.lhs, assign⟧ else ⟦aig, input.rhs, assign⟧
α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α assign : α → Bool aig : AIG α input : aig.TernaryInput ⊢ ⟦assign, aig.mkIfCached input⟧ = (⟦assign, { aig := aig, ref := input.discr }⟧ && ⟦assign, { aig := aig, ref := input.lhs }⟧ || !⟦assign, { aig := aig, ref := input.discr }⟧ && ⟦assign, { aig := aig, ref := input.rhs }⟧)
unfold mkIfCached
α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α assign : α → Bool aig : AIG α input : aig.TernaryInput ⊢ ⟦assign, let res := aig.mkAndCached { lhs := input.discr, rhs := input.lhs }; let aig_1 := res.aig; let lhsRef := res.ref; let input_1 := input.cast ⋯; let res_1 := aig_1.mkNotCached input_1.discr; let aig_2 := res_1.aig; let notDiscr := res_1.ref; let input_2 := input_1.cast ⋯; let res_2 := aig_2.mkAndCached { lhs := notDiscr, rhs := input_2.rhs }; let aig_3 := res_2.aig; let rhsRef := res_2.ref; let lhsRef := lhsRef.cast ⋯; aig_3.mkOrCached { lhs := lhsRef, rhs := rhsRef }⟧ = (⟦assign, { aig := aig, ref := input.discr }⟧ && ⟦assign, { aig := aig, ref := input.lhs }⟧ || !⟦assign, { aig := aig, ref := input.discr }⟧ && ⟦assign, { aig := aig, ref := input.rhs }⟧)
d6ac530231c33d37
Polynomial.natSepDegree_eq_of_splits
Mathlib/FieldTheory/SeparableDegree.lean
theorem natSepDegree_eq_of_splits [DecidableEq E] (h : f.Splits (algebraMap F E)) : f.natSepDegree = (f.aroots E).toFinset.card
F : Type u E : Type v inst✝³ : Field F inst✝² : Field E inst✝¹ : Algebra F E f : F[X] inst✝ : DecidableEq E h : Splits (algebraMap F E) f ⊢ f.natSepDegree = (f.aroots E).toFinset.card
rw [aroots, ← (SplittingField.lift f h).comp_algebraMap, ← map_map, roots_map _ ((splits_id_iff_splits _).mpr <| SplittingField.splits f), Multiset.toFinset_map, Finset.card_image_of_injective _ (RingHom.injective _), natSepDegree]
no goals
85af115cea509baa
div_le_egauge_closedBall
Mathlib/Analysis/Convex/EGauge.lean
lemma div_le_egauge_closedBall (r : ℝ≥0) (x : E) : ‖x‖ₑ / r ≤ egauge 𝕜 (closedBall 0 r) x
case intro.intro 𝕜 : Type u_1 inst✝² : NormedField 𝕜 E : Type u_2 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace 𝕜 E r : ℝ≥0 c : 𝕜 y : E hy : ‖y‖₊ ≤ r ⊢ ‖(fun x => c • x) y‖ₑ / ↑r ≤ ‖c‖ₑ
rw [enorm_smul]
case intro.intro 𝕜 : Type u_1 inst✝² : NormedField 𝕜 E : Type u_2 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace 𝕜 E r : ℝ≥0 c : 𝕜 y : E hy : ‖y‖₊ ≤ r ⊢ ‖c‖ₑ * ‖y‖ₑ / ↑r ≤ ‖c‖ₑ
62824bbc48d3b01b
Finset.Nat.antidiagonal_filter_fst_le_of_le
Mathlib/Data/Finset/NatAntidiagonal.lean
@[simp] lemma antidiagonal_filter_fst_le_of_le {n k : ℕ} (h : k ≤ n) : (antidiagonal n).filter (fun a ↦ a.fst ≤ k) = (antidiagonal k).map (Embedding.prodMap (Embedding.refl ℕ) ⟨_, add_left_injective (n - k)⟩)
n k : ℕ h : k ≤ n aux₁ : (fun a => a.1 ≤ k) = (fun a => a.2 ≤ k) ∘ ⇑(Equiv.prodComm ℕ ℕ).symm aux₂ : ∀ (i j : ℕ), (∃ a b, a + b = k ∧ b = i ∧ a + (n - k) = j) ↔ ∃ a b, a + b = k ∧ a = i ∧ b + (n - k) = j ⊢ filter (fun a => a.1 ≤ k) (map (Equiv.prodComm ℕ ℕ).toEmbedding (antidiagonal n)) = map ((Embedding.refl ℕ).prodMap { toFun := fun x => x + (n - k), inj' := ⋯ }) (antidiagonal k)
simp_rw [aux₁, ← map_filter, antidiagonal_filter_snd_le_of_le h, map_map]
n k : ℕ h : k ≤ n aux₁ : (fun a => a.1 ≤ k) = (fun a => a.2 ≤ k) ∘ ⇑(Equiv.prodComm ℕ ℕ).symm aux₂ : ∀ (i j : ℕ), (∃ a b, a + b = k ∧ b = i ∧ a + (n - k) = j) ↔ ∃ a b, a + b = k ∧ a = i ∧ b + (n - k) = j ⊢ map (({ toFun := fun x => x + (n - k), inj' := ⋯ }.prodMap (Embedding.refl ℕ)).trans (Equiv.prodComm ℕ ℕ).toEmbedding) (antidiagonal k) = map ((Embedding.refl ℕ).prodMap { toFun := fun x => x + (n - k), inj' := ⋯ }) (antidiagonal k)
25436f958f45eaed
CategoryTheory.Functor.final_of_final_comp
Mathlib/CategoryTheory/Limits/Final.lean
theorem final_of_final_comp [hF : Final F] [hFG : Final (F ⋙ G)] : Final G
C : Type u₁ inst✝² : Category.{v₁, u₁} C D : Type u₂ inst✝¹ : Category.{v₂, u₂} D E : Type u₃ inst✝ : Category.{v₃, u₃} E F : C ⥤ D G : D ⥤ E hFG : (F ⋙ G).Final s₁ : C ≌ AsSmall C := AsSmall.equiv s₂ : D ≌ AsSmall D := AsSmall.equiv hF : ∀ (G : AsSmall D ⥤ Type (max (max (max (max (max u₁ u₂) u₃) v₁) v₂) v₃)), IsIso (colimit.pre G (s₁.inverse ⋙ F ⋙ s₂.functor)) s₃ : E ≌ AsSmall E := AsSmall.equiv _i : s₁.inverse ⋙ (F ⋙ G) ⋙ s₃.functor ≅ (s₁.inverse ⋙ F ⋙ s₂.functor) ⋙ s₂.inverse ⋙ G ⋙ s₃.functor := isoWhiskerLeft (s₁.inverse ⋙ F) (isoWhiskerRight s₂.unitIso (G ⋙ s₃.functor)) ⊢ ∀ (G_1 : AsSmall E ⥤ Type (max (max (max (max (max u₁ u₂) u₃) v₁) v₂) v₃)), IsIso (colimit.pre G_1 (s₂.inverse ⋙ G ⋙ s₃.functor))
rw [final_iff_comp_equivalence (F ⋙ G) s₃.functor, final_iff_equivalence_comp s₁.inverse, final_natIso_iff _i, final_iff_isIso_colimit_pre] at hFG
C : Type u₁ inst✝² : Category.{v₁, u₁} C D : Type u₂ inst✝¹ : Category.{v₂, u₂} D E : Type u₃ inst✝ : Category.{v₃, u₃} E F : C ⥤ D G : D ⥤ E s₁ : C ≌ AsSmall C := AsSmall.equiv s₂ : D ≌ AsSmall D := AsSmall.equiv hF : ∀ (G : AsSmall D ⥤ Type (max (max (max (max (max u₁ u₂) u₃) v₁) v₂) v₃)), IsIso (colimit.pre G (s₁.inverse ⋙ F ⋙ s₂.functor)) s₃ : E ≌ AsSmall E := AsSmall.equiv hFG : ∀ (G_1 : AsSmall E ⥤ Type (max (max (max (max (max u₁ u₂) u₃) v₁) v₂) v₃)), IsIso (colimit.pre G_1 ((s₁.inverse ⋙ F ⋙ s₂.functor) ⋙ s₂.inverse ⋙ G ⋙ s₃.functor)) _i : s₁.inverse ⋙ (F ⋙ G) ⋙ s₃.functor ≅ (s₁.inverse ⋙ F ⋙ s₂.functor) ⋙ s₂.inverse ⋙ G ⋙ s₃.functor := isoWhiskerLeft (s₁.inverse ⋙ F) (isoWhiskerRight s₂.unitIso (G ⋙ s₃.functor)) ⊢ ∀ (G_1 : AsSmall E ⥤ Type (max (max (max (max (max u₁ u₂) u₃) v₁) v₂) v₃)), IsIso (colimit.pre G_1 (s₂.inverse ⋙ G ⋙ s₃.functor))
dddeec27ae17bdc0
Pell.IsFundamental.exists_of_not_isSquare
Mathlib/NumberTheory/Pell.lean
theorem exists_of_not_isSquare (h₀ : 0 < d) (hd : ¬IsSquare d) : ∃ a : Solution₁ d, IsFundamental a
case intro.intro d : ℤ h₀ : 0 < d hd : ¬IsSquare d a : Solution₁ d ha₁ : 1 < a.x ha₂ : 0 < a.y P : ∃ x', 1 < x' ∧ ∃ y', 0 < y' ∧ ↑x' ^ 2 - d * y' ^ 2 = 1 x₁ : ℕ := Nat.find P ⊢ ∃ a, IsFundamental a
obtain ⟨hx, y₁, hy₀, hy₁⟩ := Nat.find_spec P
case intro.intro.intro.intro.intro d : ℤ h₀ : 0 < d hd : ¬IsSquare d a : Solution₁ d ha₁ : 1 < a.x ha₂ : 0 < a.y P : ∃ x', 1 < x' ∧ ∃ y', 0 < y' ∧ ↑x' ^ 2 - d * y' ^ 2 = 1 x₁ : ℕ := Nat.find P hx : 1 < Nat.find P y₁ : ℤ hy₀ : 0 < y₁ hy₁ : ↑(Nat.find P) ^ 2 - d * y₁ ^ 2 = 1 ⊢ ∃ a, IsFundamental a
c0439655d6c2a144
Turing.TM2to1.tr_respects_aux₁
Mathlib/Computability/TuringMachine.lean
theorem tr_respects_aux₁ {k} (o q v) {S : List (Γ k)} {L : ListBlank (∀ k, Option (Γ k))} (hL : L.map (proj k) = ListBlank.mk (S.map some).reverse) (n) (H : n ≤ S.length) : Reaches₀ (TM1.step (tr M)) ⟨some (go k o q), v, Tape.mk' ∅ (addBottom L)⟩ ⟨some (go k o q), v, (Tape.move Dir.right)^[n] (Tape.mk' ∅ (addBottom L))⟩
case succ K : Type u_1 Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : DecidableEq K M : Λ → TM2.Stmt Γ Λ σ k : K o : StAct K Γ σ k q : TM2.Stmt Γ Λ σ v : σ S : List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ListBlank.map (proj k) L = ListBlank.mk (List.map some S).reverse n : ℕ IH : n ≤ S.length → Reaches₀ (TM1.step (tr M)) { l := some (go k o q), var := v, Tape := Tape.mk' ∅ (addBottom L) } { l := some (go k o q), var := v, Tape := (Tape.move Dir.right)^[n] (Tape.mk' ∅ (addBottom L)) } H : n + 1 ≤ S.length ⊢ some (bif (some S.reverse[n]).isNone then TM1.stepAux (trStAct (goto fun x x => ret q) o) v ((Tape.move Dir.right)^[n] (Tape.mk' ∅ (addBottom L))) else { l := some (go k o q), var := v, Tape := Tape.move Dir.right ((Tape.move Dir.right)^[n] (Tape.mk' ∅ (addBottom L))) }) = some { l := some (go k o q), var := v, Tape := Tape.move Dir.right ((Tape.move Dir.right)^[n] (Tape.mk' ∅ (addBottom L))) }
rfl
no goals
89a4408472c01123
MeasureTheory.condExp_bot'
Mathlib/MeasureTheory/Function/ConditionalExpectation/Basic.lean
theorem condExp_bot' [hμ : NeZero μ] (f : α → E) : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ
case pos.intro α : Type u_1 E : Type u_3 m₀ : MeasurableSpace α μ : Measure α inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E hμ : NeZero μ f : α → E hμ_finite : IsFiniteMeasure μ h_meas : StronglyMeasurable (μ[f|⊥]) c : E h_eq : μ[f|⊥] = fun x => c ⊢ (fun x => c) = fun x => (μ Set.univ).toReal⁻¹ • ∫ (x : α), f x ∂μ
have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condExp bot_le
case pos.intro α : Type u_1 E : Type u_3 m₀ : MeasurableSpace α μ : Measure α inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E hμ : NeZero μ f : α → E hμ_finite : IsFiniteMeasure μ h_meas : StronglyMeasurable (μ[f|⊥]) c : E h_eq : μ[f|⊥] = fun x => c h_integral : ∫ (x : α), (μ[f|⊥]) x ∂μ = ∫ (x : α), f x ∂μ ⊢ (fun x => c) = fun x => (μ Set.univ).toReal⁻¹ • ∫ (x : α), f x ∂μ
46233d8f5b2c46f3
WithTop.isGLB_sInf'
Mathlib/Order/ConditionallyCompleteLattice/Basic.lean
theorem isGLB_sInf' {β : Type*} [ConditionallyCompleteLattice β] {s : Set (WithTop β)} (hs : BddBelow s) : IsGLB s (sInf s)
case neg.some.intro.none β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) h : ¬s ⊆ {⊤} a : β ha : Option.some a ∈ s hb : none ∈ lowerBounds s ⊢ False
apply h
case neg.some.intro.none β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) h : ¬s ⊆ {⊤} a : β ha : Option.some a ∈ s hb : none ∈ lowerBounds s ⊢ s ⊆ {⊤}
ef7c47c8bf1f8b74
Array.unzip_zipIdx_eq_prod
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Range.lean
theorem unzip_zipIdx_eq_prod (l : Array α) {n : Nat} : (l.zipIdx n).unzip = (l, range' n l.size)
α : Type u_1 l : Array α n : Nat ⊢ (l.zipIdx n).unzip = (l, range' n l.size)
simp only [zipIdx_eq_zip_range', unzip_zip, size_range']
no goals
fc318d30133c04de
List.rtakeWhile_eq_nil_iff
Mathlib/Data/List/DropRight.lean
theorem rtakeWhile_eq_nil_iff : rtakeWhile p l = [] ↔ ∀ hl : l ≠ [], ¬p (l.getLast hl)
case append_singleton.refine_2 α : Type u_1 p : α → Bool l✝ l : List α a : α a✝ : rtakeWhile p l = [] ↔ ∀ (hl : l ≠ []), ¬p (l.getLast hl) = true h : ¬l ++ [a] = [] → ¬p a = true ⊢ (match p a with | true => a :: takeWhile p l.reverse | false => []).reverse = []
simp [h]
no goals
76d022d188e44678
ZMod.val_neg_of_ne_zero
Mathlib/Data/ZMod/Basic.lean
theorem val_neg_of_ne_zero {n : ℕ} [nz : NeZero n] (a : ZMod n) [na : NeZero a] : (- a).val = n - a.val
n : ℕ nz : NeZero n a : ZMod n na : NeZero a ⊢ (-a).val = n - a.val
simp_all [neg_val a, na.out]
no goals
81f31a342a7ea1f8
CompleteOrthogonalIdempotents.lift_of_isNilpotent_ker_aux
Mathlib/RingTheory/Idempotents.lean
lemma CompleteOrthogonalIdempotents.lift_of_isNilpotent_ker_aux (h : ∀ x ∈ RingHom.ker f, IsNilpotent x) {n} {e : Fin n → S} (he : CompleteOrthogonalIdempotents e) (he' : ∀ i, e i ∈ f.range) : ∃ e' : Fin n → R, CompleteOrthogonalIdempotents e' ∧ f ∘ e' = e
case inl R : Type u_1 S : Type u_2 inst✝¹ : Ring R inst✝ : Ring S f : R →+* S h : ∀ x ∈ RingHom.ker f, IsNilpotent x n : ℕ e : Fin n → S he : CompleteOrthogonalIdempotents e he' : ∀ (i : Fin n), e i ∈ f.range h✝ : Subsingleton R ⊢ ∃ e', CompleteOrthogonalIdempotents e' ∧ ⇑f ∘ e' = e
choose e' he' using he'
case inl R : Type u_1 S : Type u_2 inst✝¹ : Ring R inst✝ : Ring S f : R →+* S h : ∀ x ∈ RingHom.ker f, IsNilpotent x n : ℕ e : Fin n → S he : CompleteOrthogonalIdempotents e h✝ : Subsingleton R e' : Fin n → R he' : ∀ (i : Fin n), f (e' i) = e i ⊢ ∃ e', CompleteOrthogonalIdempotents e' ∧ ⇑f ∘ e' = e
25d0a2b72a62cc0b
Array.getElem_swap_right
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Lemmas.lean
theorem getElem_swap_right (a : Array α) {i j : Nat} {hi hj} : (a.swap i j hi hj)[j]'(by simpa using hj) = a[i]
α : Type u_1 a : Array α i j : Nat hi : i < a.size hj : j < a.size ⊢ (a.swap i j hi hj)[j] = a[i]
simp [swap_def, getElem_set]
no goals
08a360bc701e5699
List.dropInfix?_go_eq_some_iff
Mathlib/.lake/packages/batteries/Batteries/Data/List/Lemmas.lean
theorem dropInfix?_go_eq_some_iff [BEq α] {i l acc p s : List α} : dropInfix?.go i l acc = some (p, s) ↔ ∃ p', p = acc.reverse ++ p' ∧ -- `i` is an infix up to `==` (∃ i', l = p' ++ i' ++ s ∧ i' == i) ∧ -- and there is no shorter prefix for which that is the case (∀ p'' i'' s'', l = p'' ++ i'' ++ s'' → i'' == i → p''.length ≥ p'.length)
case h_2.h_1.mp.intro.intro.intro.intro.intro.inl.intro α : Type u_1 inst✝ : BEq α i acc s x✝² x✝¹ : List α a : α x✝ : Option (List α) p' i' : List α h₂✝ : (i' == i) = true w : ∀ (p'' i'' s'' : List α), p' ++ i' ++ s = p'' ++ i'' ++ s'' → (i'' == i) = true → p''.length ≥ p'.length i'' s'' : List α h : (i'' ++ s'').dropPrefix? i = none h₂ : (i'' == i) = true h₁ : i'' ++ s'' = a :: (p' ++ (i' ++ s)) this : (i'' ++ s'').dropPrefix? i = some s'' ⊢ p'.length + 1 ≤ [].length
simp_all
no goals
2a30116d5cc9db54
MeasureTheory.Content.outerMeasure_caratheodory
Mathlib/MeasureTheory/Measure/Content.lean
theorem outerMeasure_caratheodory (A : Set G) : MeasurableSet[μ.outerMeasure.caratheodory] A ↔ ∀ U : Opens G, μ.outerMeasure (U ∩ A) + μ.outerMeasure (U \ A) ≤ μ.outerMeasure U
G : Type w inst✝¹ : TopologicalSpace G μ : Content G inst✝ : R1Space G A : Set G ⊢ MeasurableSet A ↔ ∀ (U : Set G) (hU : IsOpen U), μ.outerMeasure (↑{ carrier := U, is_open' := hU } ∩ A) + μ.outerMeasure (↑{ carrier := U, is_open' := hU } \ A) ≤ μ.outerMeasure ↑{ carrier := U, is_open' := hU }
apply inducedOuterMeasure_caratheodory
case msU G : Type w inst✝¹ : TopologicalSpace G μ : Content G inst✝ : R1Space G A : Set G ⊢ ∀ ⦃f : ℕ → Set G⦄ (hm : ∀ (i : ℕ), IsOpen (f i)), μ.innerContent { carrier := ⋃ i, f i, is_open' := ⋯ } ≤ ∑' (i : ℕ), μ.innerContent { carrier := f i, is_open' := ⋯ } case m_mono G : Type w inst✝¹ : TopologicalSpace G μ : Content G inst✝ : R1Space G A : Set G ⊢ ∀ ⦃s₁ s₂ : Set G⦄ (hs₁ : IsOpen s₁) (hs₂ : IsOpen s₂), s₁ ⊆ s₂ → μ.innerContent { carrier := s₁, is_open' := hs₁ } ≤ μ.innerContent { carrier := s₂, is_open' := hs₂ } case PU G : Type w inst✝¹ : TopologicalSpace G μ : Content G inst✝ : R1Space G A : Set G ⊢ ∀ ⦃f : ℕ → Set G⦄, (∀ (i : ℕ), IsOpen (f i)) → IsOpen (⋃ i, f i)
6934270734572b0d
Matrix.det_mul_comm
Mathlib/LinearAlgebra/Matrix/Determinant/Basic.lean
theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M)
m : Type u_1 inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M N : Matrix m m R ⊢ (M * N).det = (N * M).det
rw [det_mul, det_mul, mul_comm]
no goals
f1ac106dfe851275
CFC.nnrpow_nnrpow_inv
Mathlib/Analysis/SpecialFunctions/ContinuousFunctionalCalculus/Rpow/Basic.lean
lemma nnrpow_nnrpow_inv (a : A) {x : ℝ≥0} (hx : x ≠ 0) (ha : 0 ≤ a
A : Type u_1 inst✝⁹ : PartialOrder A inst✝⁸ : NonUnitalRing A inst✝⁷ : TopologicalSpace A inst✝⁶ : StarRing A inst✝⁵ : Module ℝ A inst✝⁴ : SMulCommClass ℝ A A inst✝³ : IsScalarTower ℝ A A inst✝² : NonUnitalContinuousFunctionalCalculus ℝ≥0 fun a => 0 ≤ a inst✝¹ : IsTopologicalRing A inst✝ : T2Space A a : A x : ℝ≥0 hx : x ≠ 0 ha : autoParam (0 ≤ a) _auto✝ ⊢ (a ^ x) ^ x⁻¹ = a
simp [mul_inv_cancel₀ hx, nnrpow_one _ ha]
no goals
a935765bd05916a2
MeasureTheory.GridLines.T_insert_le_T_lmarginal_singleton
Mathlib/Analysis/FunctionalSpaces/SobolevInequality.lean
theorem T_insert_le_T_lmarginal_singleton [∀ i, SigmaFinite (μ i)] (hp₀ : 0 ≤ p) (s : Finset ι) (hp : (s.card : ℝ) * p ≤ 1) (i : ι) (hi : i ∉ s) {f : (∀ i, A i) → ℝ≥0∞} (hf : Measurable f) : T μ p f (insert i s) ≤ T μ p (∫⋯∫⁻_{i}, f ∂μ) s
ι : Type u_1 A : ι → Type u_2 inst✝² : (i : ι) → MeasurableSpace (A i) μ : (i : ι) → Measure (A i) inst✝¹ : DecidableEq ι p : ℝ inst✝ : ∀ (i : ι), SigmaFinite (μ i) hp₀ : 0 ≤ p s : Finset ι hp : ↑(#s) * p ≤ 1 i : ι hi : i ∉ s f : ((i : ι) → A i) → ℝ≥0∞ hf : Measurable f x : (i : ι) → A i X : A i → (a : ι) → A a := update x i hF₁ : ∀ {j : ι}, Measurable fun t => (∫⋯∫⁻_{j}, f ∂μ) (X t) hF₀ : Measurable fun t => f (X t) k : ℝ := ↑(#s) hk' : 0 ≤ 1 - k * p this : ∀ (t : A i), (∫⋯∫⁻_{i}, f ∂μ) (X t) = (∫⋯∫⁻_{i}, f ∂μ) x ⊢ ∫⁻ (t : A i), (∫⋯∫⁻_{i}, f ∂μ) x ^ p * (f (X t) ^ (1 - k * p) * ∏ j ∈ s, (∫⋯∫⁻_{j}, f ∂μ) (X t) ^ p) ∂μ i = (∫⋯∫⁻_{i}, f ∂μ) x ^ p * ∫⁻ (t : A i), f (X t) ^ (1 - k * p) * ∏ j ∈ s, (∫⋯∫⁻_{j}, f ∂μ) (X t) ^ p ∂μ i
rw [lintegral_const_mul]
case hf ι : Type u_1 A : ι → Type u_2 inst✝² : (i : ι) → MeasurableSpace (A i) μ : (i : ι) → Measure (A i) inst✝¹ : DecidableEq ι p : ℝ inst✝ : ∀ (i : ι), SigmaFinite (μ i) hp₀ : 0 ≤ p s : Finset ι hp : ↑(#s) * p ≤ 1 i : ι hi : i ∉ s f : ((i : ι) → A i) → ℝ≥0∞ hf : Measurable f x : (i : ι) → A i X : A i → (a : ι) → A a := update x i hF₁ : ∀ {j : ι}, Measurable fun t => (∫⋯∫⁻_{j}, f ∂μ) (X t) hF₀ : Measurable fun t => f (X t) k : ℝ := ↑(#s) hk' : 0 ≤ 1 - k * p this : ∀ (t : A i), (∫⋯∫⁻_{i}, f ∂μ) (X t) = (∫⋯∫⁻_{i}, f ∂μ) x ⊢ Measurable fun t => f (X t) ^ (1 - k * p) * ∏ j ∈ s, (∫⋯∫⁻_{j}, f ∂μ) (X t) ^ p
0fcf193773af0ce8
Std.DHashMap.Internal.Raw₀.toListModel_eraseₘ
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Internal/WF.lean
theorem toListModel_eraseₘ [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] {m : Raw₀ α β} {a : α} (h : Raw.WFImp m.1) : Perm (toListModel (m.eraseₘ a).1.buckets) (eraseKey a (toListModel m.1.buckets))
case isTrue α : Type u β : α → Type v inst✝³ : BEq α inst✝² : Hashable α inst✝¹ : EquivBEq α inst✝ : LawfulHashable α m : Raw₀ α β a : α h : Raw.WFImp m.val h✝ : m.containsₘ a = true ⊢ toListModel (m.eraseₘaux a).val.buckets ~ eraseKey a (toListModel m.val.buckets)
exact toListModel_eraseₘaux m a h
no goals
579b712bf51eaa66
isLindelof_of_countable_subcover
Mathlib/Topology/Compactness/Lindelof.lean
theorem isLindelof_of_countable_subcover (h : ∀ {ι : Type u} (U : ι → Set X), (∀ i, IsOpen (U i)) → (s ⊆ ⋃ i, U i) → ∃ t : Set ι, t.Countable ∧ s ⊆ ⋃ i ∈ t, U i) : IsLindelof s := fun f hf hfs ↦ by contrapose! h simp only [ClusterPt, not_neBot, ← disjoint_iff, SetCoe.forall', (nhds_basis_opens _).disjoint_iff_left] at h choose fsub U hU hUf using h refine ⟨s, U, fun x ↦ (hU x).2, fun x hx ↦ mem_iUnion.2 ⟨⟨x, hx⟩, (hU _).1 ⟩, ?_⟩ intro t ht h have uinf := f.sets_of_superset (le_principal_iff.1 fsub) h have uninf : ⋂ i ∈ t, (U i)ᶜ ∈ f := (countable_bInter_mem ht).mpr (fun _ _ ↦ hUf _) rw [← compl_iUnion₂] at uninf have uninf := compl_not_mem uninf simp only [compl_compl] at uninf contradiction
X : Type u inst✝ : TopologicalSpace X s : Set X f : Filter X hf : f.NeBot hfs : CountableInterFilter f fsub : f ≤ 𝓟 s U : ↑s → Set X hU : ∀ (x : ↑s), ↑x ∈ U x ∧ IsOpen (U x) hUf : ∀ (x : ↑s), (U x)ᶜ ∈ f ⊢ ∃ ι U, (∀ (i : ι), IsOpen (U i)) ∧ s ⊆ ⋃ i, U i ∧ ∀ (t : Set ι), t.Countable → ¬s ⊆ ⋃ i ∈ t, U i
refine ⟨s, U, fun x ↦ (hU x).2, fun x hx ↦ mem_iUnion.2 ⟨⟨x, hx⟩, (hU _).1 ⟩, ?_⟩
X : Type u inst✝ : TopologicalSpace X s : Set X f : Filter X hf : f.NeBot hfs : CountableInterFilter f fsub : f ≤ 𝓟 s U : ↑s → Set X hU : ∀ (x : ↑s), ↑x ∈ U x ∧ IsOpen (U x) hUf : ∀ (x : ↑s), (U x)ᶜ ∈ f ⊢ ∀ (t : Set ↑s), t.Countable → ¬s ⊆ ⋃ i ∈ t, U i
55d21432f93098bb
Cardinal.mk_emptyCollection_iff
Mathlib/SetTheory/Cardinal/Basic.lean
theorem mk_emptyCollection_iff {α : Type u} {s : Set α} : #s = 0 ↔ s = ∅
case mpr α : Type u ⊢ #↑∅ = 0
exact mk_emptyCollection _
no goals
4ba248ce53138d76
Complex.countable_preimage_exp
Mathlib/Analysis/SpecialFunctions/Complex/Log.lean
theorem countable_preimage_exp {s : Set ℂ} : (exp ⁻¹' s).Countable ↔ s.Countable
s : Set ℂ ⊢ (cexp ⁻¹' s).Countable ↔ s.Countable
refine ⟨fun hs => ?_, fun hs => ?_⟩
case refine_1 s : Set ℂ hs : (cexp ⁻¹' s).Countable ⊢ s.Countable case refine_2 s : Set ℂ hs : s.Countable ⊢ (cexp ⁻¹' s).Countable
e3fd0c8739ed6e00
LinearPMap.image_iff
Mathlib/LinearAlgebra/LinearPMap.lean
theorem image_iff {f : E →ₗ.[R] F} {x : E} {y : F} (hx : x ∈ f.domain) : y = f ⟨x, hx⟩ ↔ (x, y) ∈ f.graph
case h R : Type u_1 inst✝⁴ : Ring R E : Type u_2 inst✝³ : AddCommGroup E inst✝² : Module R E F : Type u_3 inst✝¹ : AddCommGroup F inst✝ : Module R F f : E →ₗ.[R] F x : E y : F hx : x ∈ f.domain h : y = ↑f ⟨x, hx⟩ ⊢ ↑⟨x, hx⟩ = (x, y).1 ∧ ↑f ⟨x, hx⟩ = (x, y).2
simp [h]
no goals
e4b78bc1d49361b4
RCLike.conj_neg_I
Mathlib/Analysis/RCLike/Basic.lean
theorem conj_neg_I : conj (-I) = (I : K)
K : Type u_1 inst✝ : RCLike K ⊢ (starRingEnd K) (-I) = I
rw [map_neg, conj_I, neg_neg]
no goals
6cda6b26eb47e5ed
Equiv.Perm.count_le_one_of_centralizer_le_alternating
Mathlib/GroupTheory/SpecificGroups/Alternating/Centralizer.lean
theorem count_le_one_of_centralizer_le_alternating (h : Subgroup.centralizer {g} ≤ alternatingGroup α) : ∀ i, g.cycleType.count i ≤ 1
α : Type u_1 inst✝¹ : Fintype α inst✝ : DecidableEq α g : Perm α h : Subgroup.centralizer {g} ≤ alternatingGroup α c : Perm α hc : c ∈ g.cycleFactorsFinset d : Perm α hd : d ∈ g.cycleFactorsFinset hm : #c.support = #d.support hm' : c ≠ d τ : Perm { x // x ∈ g.cycleFactorsFinset } := swap ⟨c, hc⟩ ⟨d, hd⟩ a : g.Basis hτ : τ ∈ range_toPermHom' g k : ↥(Subgroup.centralizer {g}) := a.toCentralizer ⟨τ, hτ⟩ hk : k = a.toCentralizer ⟨τ, hτ⟩ ⊢ a.toCentralizer (⟨τ, hτ⟩ ^ 2) = 1
convert MonoidHom.map_one _
case h.e'_2.h.e'_6 α : Type u_1 inst✝¹ : Fintype α inst✝ : DecidableEq α g : Perm α h : Subgroup.centralizer {g} ≤ alternatingGroup α c : Perm α hc : c ∈ g.cycleFactorsFinset d : Perm α hd : d ∈ g.cycleFactorsFinset hm : #c.support = #d.support hm' : c ≠ d τ : Perm { x // x ∈ g.cycleFactorsFinset } := swap ⟨c, hc⟩ ⟨d, hd⟩ a : g.Basis hτ : τ ∈ range_toPermHom' g k : ↥(Subgroup.centralizer {g}) := a.toCentralizer ⟨τ, hτ⟩ hk : k = a.toCentralizer ⟨τ, hτ⟩ ⊢ ⟨τ, hτ⟩ ^ 2 = 1
1a7e68d832b229d5
AlgebraicGeometry.IsIntegralHom.iff_universallyClosed_and_isAffineHom
Mathlib/AlgebraicGeometry/Morphisms/Integral.lean
lemma iff_universallyClosed_and_isAffineHom {X Y : Scheme.{u}} {f : X ⟶ Y} : IsIntegralHom f ↔ UniversallyClosed f ∧ IsAffineHom f
X Y : Scheme f : X ⟶ Y ⊢ IsIntegralHom f ↔ UniversallyClosed f ∧ IsAffineHom f
refine ⟨fun _ ↦ ⟨inferInstance, inferInstance⟩, fun ⟨H₁, H₂⟩ ↦ ?_⟩
X Y : Scheme f : X ⟶ Y x✝ : UniversallyClosed f ∧ IsAffineHom f H₁ : UniversallyClosed f H₂ : IsAffineHom f ⊢ IsIntegralHom f
f7362dfec0323cb8
rieszContentAux_union
Mathlib/MeasureTheory/Integral/RieszMarkovKakutani/Basic.lean
lemma rieszContentAux_union {K₁ K₂ : TopologicalSpace.Compacts X} (disj : Disjoint (K₁ : Set X) K₂) : rieszContentAux Λ (K₁ ⊔ K₂) = rieszContentAux Λ K₁ + rieszContentAux Λ K₂
case intro.intro.intro.intro X : Type u_1 inst✝² : TopologicalSpace X Λ : (X →C_c ℝ≥0) →ₗ[ℝ≥0] ℝ≥0 inst✝¹ : T2Space X inst✝ : LocallyCompactSpace X K₁ K₂ : Compacts X disj : Disjoint ↑K₁ ↑K₂ b : ℝ≥0 f : X →C_c ℝ≥0 hf : f ∈ {f | ∀ x ∈ K₁ ⊔ K₂, 1 ≤ f x} Λf_eq_b : Λ f = b hsuppf : ∀ x ∈ K₁ ⊔ K₂, x ∈ support ⇑f hsubsuppf : ↑K₁ ∪ ↑K₂ ⊆ tsupport ⇑f g₁ g₂ : X →C_c ℝ≥0 hg₁ : EqOn (⇑g₁) 1 K₁.carrier hg₂ : EqOn (⇑g₂) 1 K₂.carrier sum_g : EqOn (⇑(g₁ + g₂)) 1 (tsupport f.toFun) f_eq_sum : f = g₁ * f + g₂ * f aux₁ : ∀ x ∈ K₁, 1 ≤ (g₁ * f) x ⊢ rieszContentAux Λ K₁ + rieszContentAux Λ K₂ ≤ Λ (g₁ * f) + Λ (g₂ * f)
have aux₂ : ∀ x ∈ K₂, 1 ≤ (g₂ * f) x := by intro x x_in_K₂ simp [hg₂ x_in_K₂, hf x (mem_union_right _ x_in_K₂)]
case intro.intro.intro.intro X : Type u_1 inst✝² : TopologicalSpace X Λ : (X →C_c ℝ≥0) →ₗ[ℝ≥0] ℝ≥0 inst✝¹ : T2Space X inst✝ : LocallyCompactSpace X K₁ K₂ : Compacts X disj : Disjoint ↑K₁ ↑K₂ b : ℝ≥0 f : X →C_c ℝ≥0 hf : f ∈ {f | ∀ x ∈ K₁ ⊔ K₂, 1 ≤ f x} Λf_eq_b : Λ f = b hsuppf : ∀ x ∈ K₁ ⊔ K₂, x ∈ support ⇑f hsubsuppf : ↑K₁ ∪ ↑K₂ ⊆ tsupport ⇑f g₁ g₂ : X →C_c ℝ≥0 hg₁ : EqOn (⇑g₁) 1 K₁.carrier hg₂ : EqOn (⇑g₂) 1 K₂.carrier sum_g : EqOn (⇑(g₁ + g₂)) 1 (tsupport f.toFun) f_eq_sum : f = g₁ * f + g₂ * f aux₁ : ∀ x ∈ K₁, 1 ≤ (g₁ * f) x aux₂ : ∀ x ∈ K₂, 1 ≤ (g₂ * f) x ⊢ rieszContentAux Λ K₁ + rieszContentAux Λ K₂ ≤ Λ (g₁ * f) + Λ (g₂ * f)
764e0d74e1f8077b
HurwitzZeta.hasSum_nat_completedSinZeta
Mathlib/NumberTheory/LSeries/HurwitzZetaOdd.lean
/-- Formula for `completedSinZeta` as a Dirichlet series in the convergence range (second version, with sum over `ℕ`). -/ lemma hasSum_nat_completedSinZeta (a : ℝ) {s : ℂ} (hs : 1 < re s) : HasSum (fun n : ℕ ↦ Gammaℝ (s + 1) * Real.sin (2 * π * a * n) / (n : ℂ) ^ s) (completedSinZeta a s)
case inr a : ℝ s : ℂ hs : 1 < s.re this : HasSum (fun n => ((s + 1).Gammaℝ * -I * ↑(↑n).sign * cexp (2 * ↑π * I * ↑a * ↑n) + (s + 1).Gammaℝ * -I * -↑(↑n).sign * cexp (2 * ↑π * I * ↑a * -↑n)) / ↑n ^ s / 2) (completedSinZeta (↑a) s) n : ℕ h : n ≠ 0 ⊢ (s + 1).Gammaℝ * ((cexp (-↑(2 * π * a * ↑n) * I) - cexp (↑(2 * π * a * ↑n) * I)) * I / 2) / ↑n ^ s = ((s + 1).Gammaℝ * -I * 1 * cexp (2 * ↑π * I * ↑a * ↑n) + (s + 1).Gammaℝ * -I * -1 * cexp (2 * ↑π * I * ↑a * -↑n)) / 2 / ↑n ^ s
simp only [← mul_div_assoc, push_cast, mul_assoc (Gammaℝ _), ← mul_add]
case inr a : ℝ s : ℂ hs : 1 < s.re this : HasSum (fun n => ((s + 1).Gammaℝ * -I * ↑(↑n).sign * cexp (2 * ↑π * I * ↑a * ↑n) + (s + 1).Gammaℝ * -I * -↑(↑n).sign * cexp (2 * ↑π * I * ↑a * -↑n)) / ↑n ^ s / 2) (completedSinZeta (↑a) s) n : ℕ h : n ≠ 0 ⊢ (s + 1).Gammaℝ * ((cexp (-(2 * ↑π * ↑a * ↑n) * I) - cexp (2 * ↑π * ↑a * ↑n * I)) * I) / 2 / ↑n ^ s = (s + 1).Gammaℝ * (-I * 1 * cexp (2 * ↑π * I * ↑a * ↑n) + -I * -1 * cexp (2 * ↑π * I * ↑a * -↑n)) / 2 / ↑n ^ s
8aa52d71fc22a1d9
Partrec.option_some_iff
Mathlib/Computability/Partrec.lean
theorem option_some_iff {f : α →. σ} : (Partrec fun a => (f a).map Option.some) ↔ Partrec f := ⟨fun h => (Nat.Partrec.ppred.comp h).of_eq fun n => by simp [Part.bind_assoc, bind_some_eq_map], fun hf => hf.map (option_some.comp snd).to₂⟩
α : Type u_1 σ : Type u_4 inst✝¹ : Primcodable α inst✝ : Primcodable σ f : α →. σ h : Partrec fun a => Part.map Option.some (f a) n : ℕ ⊢ (do let n ← (↑(decode n)).bind fun a => Part.map encode ((fun a => Part.map Option.some (f a)) a) ↑n.ppred) = (↑(decode n)).bind fun a => Part.map encode (f a)
simp [Part.bind_assoc, bind_some_eq_map]
no goals
3633b675f3ed41db
StrictConvexOn.map_sum_eq_iff'
Mathlib/Analysis/Convex/Jensen.lean
/-- Canonical form of the **equality case of Jensen's equality**. For a strictly convex function `f` and nonnegative weights `w`, we have `f (∑ i ∈ t, w i • p i) = ∑ i ∈ t, w i • f (p i)` if and only if the points `p` with nonzero weight are all equal (and in fact all equal to their center of mass wrt `w`). -/ lemma StrictConvexOn.map_sum_eq_iff' (hf : StrictConvexOn 𝕜 s f) (h₀ : ∀ i ∈ t, 0 ≤ w i) (h₁ : ∑ i ∈ t, w i = 1) (hmem : ∀ i ∈ t, p i ∈ s) : f (∑ i ∈ t, w i • p i) = ∑ i ∈ t, w i • f (p i) ↔ ∀ j ∈ t, w j ≠ 0 → p j = ∑ i ∈ t, w i • p i
case h₀ 𝕜 : Type u_1 E : Type u_2 β : Type u_4 ι : Type u_5 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : OrderedAddCommGroup β inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f : E → β t : Finset ι w : ι → 𝕜 p : ι → E hf : StrictConvexOn 𝕜 s f h₀ : ∀ i ∈ t, 0 ≤ w i h₁ : ∑ i ∈ t, w i = 1 hmem : ∀ i ∈ t, p i ∈ s hw : ∀ i ∈ t, w i • p i ≠ 0 → w i ≠ 0 hw' : ∀ i ∈ t, w i • f (p i) ≠ 0 → w i ≠ 0 ⊢ ∀ i ∈ filter (fun x => w x ≠ 0) t, 0 < w i
simp +contextual [(h₀ _ _).gt_iff_ne]
no goals
41fab4df447312ea
MeasureTheory.Measure.MeasureDense.of_generateFrom_isSetAlgebra_sigmaFinite
Mathlib/MeasureTheory/Measure/SeparableMeasure.lean
theorem Measure.MeasureDense.of_generateFrom_isSetAlgebra_sigmaFinite (h𝒜 : IsSetAlgebra 𝒜) (S : μ.FiniteSpanningSetsIn 𝒜) (hgen : m = MeasurableSpace.generateFrom 𝒜) : μ.MeasureDense 𝒜 where measurable s hs := hgen ▸ measurableSet_generateFrom hs approx s ms hμs ε ε_pos
X : Type u_1 m : MeasurableSpace X μ : Measure X 𝒜 : Set (Set X) h𝒜 : IsSetAlgebra 𝒜 S : μ.FiniteSpanningSetsIn 𝒜 hgen : m = MeasurableSpace.generateFrom 𝒜 s : Set X ms : MeasurableSet s hμs : μ s ≠ ⊤ ε : ℝ ε_pos : 0 < ε T : ℕ → Set X := Accumulate S.set n : ℕ ⊢ T n ∈ 𝒜
simpa using h𝒜.biUnion_mem {k | k ≤ n}.toFinset (fun k _ ↦ S.set_mem k)
no goals
9296ab2335ceb925
Polynomial.isNilpotent_reflect_iff
Mathlib/RingTheory/Polynomial/Nilpotent.lean
@[simp] lemma isNilpotent_reflect_iff {P : R[X]} {N : ℕ} (hN : P.natDegree ≤ N) : IsNilpotent (reflect N P) ↔ IsNilpotent P
case refine_2.inr R : Type u_1 inst✝ : CommRing R P : R[X] N : ℕ hN : P.natDegree ≤ N h : ∀ (i : ℕ), IsNilpotent (P.coeff i) i : ℕ hi : N < i ⊢ IsNilpotent ((reflect N P).coeff i)
simpa [revAt_eq_self_of_lt hi] using h i
no goals
1304bc3605015049
integral_exp_Iic
Mathlib/Analysis/SpecialFunctions/ImproperIntegrals.lean
theorem integral_exp_Iic (c : ℝ) : ∫ x : ℝ in Iic c, exp x = exp c
c : ℝ ⊢ ∫ (x : ℝ) in Iic c, rexp x = rexp c
refine tendsto_nhds_unique (intervalIntegral_tendsto_integral_Iic _ (integrableOn_exp_Iic _) tendsto_id) ?_
c : ℝ ⊢ Tendsto (fun i => ∫ (x : ℝ) in id i..c, rexp x) atBot (𝓝 (rexp c))
7661757092c3e442
MeasureTheory.convolution_assoc'
Mathlib/Analysis/Convolution.lean
theorem convolution_assoc' (hL : ∀ (x : E) (y : E') (z : E''), L₂ (L x y) z = L₃ x (L₄ y z)) {x₀ : G} (hfg : ∀ᵐ y ∂μ, ConvolutionExistsAt f g y L ν) (hgk : ∀ᵐ x ∂ν, ConvolutionExistsAt g k x L₄ μ) (hi : Integrable (uncurry fun x y => (L₃ (f y)) ((L₄ (g (x - y))) (k (x₀ - x)))) (μ.prod ν)) : ((f ⋆[L, ν] g) ⋆[L₂, μ] k) x₀ = (f ⋆[L₃, ν] g ⋆[L₄, μ] k) x₀ := calc ((f ⋆[L, ν] g) ⋆[L₂, μ] k) x₀ = ∫ t, L₂ (∫ s, L (f s) (g (t - s)) ∂ν) (k (x₀ - t)) ∂μ := rfl _ = ∫ t, ∫ s, L₂ (L (f s) (g (t - s))) (k (x₀ - t)) ∂ν ∂μ := (integral_congr_ae (hfg.mono fun t ht => ((L₂.flip (k (x₀ - t))).integral_comp_comm ht).symm)) _ = ∫ t, ∫ s, L₃ (f s) (L₄ (g (t - s)) (k (x₀ - t))) ∂ν ∂μ
𝕜 : Type u𝕜 G : Type uG E : Type uE E' : Type uE' E'' : Type uE'' F : Type uF F' : Type uF' F'' : Type uF'' inst✝²⁶ : NormedAddCommGroup E inst✝²⁵ : NormedAddCommGroup E' inst✝²⁴ : NormedAddCommGroup E'' inst✝²³ : NormedAddCommGroup F f : G → E g : G → E' inst✝²² : RCLike 𝕜 inst✝²¹ : NormedSpace 𝕜 E inst✝²⁰ : NormedSpace 𝕜 E' inst✝¹⁹ : NormedSpace 𝕜 E'' inst✝¹⁸ : NormedSpace ℝ F inst✝¹⁷ : NormedSpace 𝕜 F inst✝¹⁶ : MeasurableSpace G μ ν : Measure G L : E →L[𝕜] E' →L[𝕜] F inst✝¹⁵ : CompleteSpace F inst✝¹⁴ : NormedAddCommGroup F' inst✝¹³ : NormedSpace ℝ F' inst✝¹² : NormedSpace 𝕜 F' inst✝¹¹ : CompleteSpace F' inst✝¹⁰ : NormedAddCommGroup F'' inst✝⁹ : NormedSpace ℝ F'' inst✝⁸ : NormedSpace 𝕜 F'' inst✝⁷ : CompleteSpace F'' k : G → E'' L₂ : F →L[𝕜] E'' →L[𝕜] F' L₃ : E →L[𝕜] F'' →L[𝕜] F' L₄ : E' →L[𝕜] E'' →L[𝕜] F'' inst✝⁶ : AddGroup G inst✝⁵ : SFinite μ inst✝⁴ : SFinite ν inst✝³ : μ.IsAddRightInvariant inst✝² : MeasurableAdd₂ G inst✝¹ : ν.IsAddRightInvariant inst✝ : MeasurableNeg G hL : ∀ (x : E) (y : E') (z : E''), (L₂ ((L x) y)) z = (L₃ x) ((L₄ y) z) x₀ : G hfg : ∀ᵐ (y : G) ∂μ, ConvolutionExistsAt f g y L ν hgk : ∀ᵐ (x : G) ∂ν, ConvolutionExistsAt g k x L₄ μ hi : Integrable (uncurry fun x y => (L₃ (f y)) ((L₄ (g (x - y))) (k (x₀ - x)))) (μ.prod ν) ⊢ ∫ (t : G), ∫ (s : G), (L₂ ((L (f s)) (g (t - s)))) (k (x₀ - t)) ∂ν ∂μ = ∫ (t : G), ∫ (s : G), (L₃ (f s)) ((L₄ (g (t - s))) (k (x₀ - t))) ∂ν ∂μ
simp_rw [hL]
no goals
c9badc48511fd05a
Ordinal.card_opow_omega0
Mathlib/SetTheory/Cardinal/Arithmetic.lean
theorem card_opow_omega0 {a : Ordinal} (h : 1 < a) : card (a ^ ω) = max ℵ₀ a.card
a : Ordinal.{u_1} h : 1 < a ⊢ (a ^ ω).card = ℵ₀ ⊔ a.card
rw [card_opow_eq_of_omega0_le_right h le_rfl, card_omega0, max_comm]
no goals
1db76db8aaa2c304
RootPairing.Base.root_sub_root_mem_of_mem_of_mem
Mathlib/LinearAlgebra/RootSystem/Finite/Lemmas.lean
/-- This is Lemma 2.5 (a) from [Geck](Geck2017). -/ lemma root_sub_root_mem_of_mem_of_mem (hk : α k + α i - α j ∈ Φ) (hkj : k ≠ j) (hk' : α k + α i ∈ Φ) : α k - α j ∈ Φ
case a ι : Type u_1 R : Type u_2 M : Type u_3 N : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : AddCommGroup M inst✝⁸ : Module R M inst✝⁷ : AddCommGroup N inst✝⁶ : Module R N P : RootPairing ι R M N inst✝⁵ : Finite ι inst✝⁴ : CharZero R inst✝³ : P.IsCrystallographic inst✝² : NoZeroDivisors R inst✝¹ : NoZeroSMulDivisors R M inst✝ : NoZeroSMulDivisors R N b : P.Base i j k : ι hij : i ≠ j hi : i ∈ b.support hj : j ∈ b.support hkj : k ≠ j hk' : P.root k + P.root i ∈ range ⇑P.root hm : P.pairingIn ℤ j k ≤ 0 l : ι hl : P.root l = P.root k + P.root i - P.root j hli : l ≠ i hkl : P.pairingIn ℤ l k ≤ 0 ⊢ P.pairing l k = 2 + P.pairing i k - P.pairing j k
simpa using (P.coroot' k : M →ₗ[R] R).congr_arg hl
no goals
83118c1462129643
Subfield.rangeOfWType_eq_top
Mathlib/SetTheory/Cardinal/Subfield.lean
private lemma rangeOfWType_eq_top : rangeOfWType s = ⊤ := top_le_iff.mp fun a _ ↦ by rw [← SetLike.mem_coe, ← Subtype.val_injective.mem_set_image] change ↑a ∈ map (closure s).subtype _ refine closure_le.mpr (fun a ha ↦ ?_) a.prop exact ⟨⟨a, subset_closure ha⟩, ⟨WType.mk (.inr ⟨a, ha⟩) Empty.rec, rfl⟩, rfl⟩
α : Type u s : Set α inst✝ : DivisionRing α a : ↥(closure s) x✝ : a ∈ ⊤ ⊢ a ∈ Subfield.rangeOfWType s
rw [← SetLike.mem_coe, ← Subtype.val_injective.mem_set_image]
α : Type u s : Set α inst✝ : DivisionRing α a : ↥(closure s) x✝ : a ∈ ⊤ ⊢ ↑a ∈ Subtype.val '' ↑(Subfield.rangeOfWType s)
5e9759fd58ebfc99
ite_zero_mul
Mathlib/Algebra/Ring/Defs.lean
lemma ite_zero_mul : ite P a 0 * b = ite P (a * b) 0
α : Type u inst✝¹ : MulZeroClass α P : Prop inst✝ : Decidable P a b : α ⊢ (if P then a else 0) * b = if P then a * b else 0
simp
no goals
36825256d2657813
Finset.Colex.IsInitSeg.shadow
Mathlib/Combinatorics/SetFamily/KruskalKatona.lean
/-- The shadow of an initial segment is also an initial segment. -/ protected lemma IsInitSeg.shadow [Finite α] (h₁ : IsInitSeg 𝒜 r) : IsInitSeg (∂ 𝒜) (r - 1)
case intro α : Type u_1 inst✝¹ : LinearOrder α 𝒜 : Finset (Finset α) r : ℕ inst✝ : Finite α h₁ : IsInitSeg 𝒜 r val✝ : Fintype α ⊢ IsInitSeg (∂ 𝒜) (r - 1)
obtain rfl | hr := Nat.eq_zero_or_pos r
case intro.inl α : Type u_1 inst✝¹ : LinearOrder α 𝒜 : Finset (Finset α) inst✝ : Finite α val✝ : Fintype α h₁ : IsInitSeg 𝒜 0 ⊢ IsInitSeg (∂ 𝒜) (0 - 1) case intro.inr α : Type u_1 inst✝¹ : LinearOrder α 𝒜 : Finset (Finset α) r : ℕ inst✝ : Finite α h₁ : IsInitSeg 𝒜 r val✝ : Fintype α hr : r > 0 ⊢ IsInitSeg (∂ 𝒜) (r - 1)
95646344ed44f65c
ZetaAsymptotics.term_tsum_of_lt
Mathlib/NumberTheory/Harmonic/ZetaAsymp.lean
/-- For `1 < s`, the topological sum of `ZetaAsymptotics.term (n + 1) s` over all `n : ℕ` is `1 / (s - 1) - ζ s / s`. -/ lemma term_tsum_of_lt {s : ℝ} (hs : 1 < s) : term_tsum s = (1 / (s - 1) - 1 / s * ∑' n : ℕ, 1 / (n + 1 : ℝ) ^ s)
case ha.hg s : ℝ hs : 1 < s ⊢ Tendsto (fun x => 1 / s * (∑ n ∈ Finset.range x, 1 / (↑n + 1) ^ s - ↑x / (↑x + 1) ^ s)) atTop (𝓝 (1 / s * ∑' (n : ℕ), 1 / (↑n + 1) ^ s))
rw [← sub_zero (tsum _)]
case ha.hg s : ℝ hs : 1 < s ⊢ Tendsto (fun x => 1 / s * (∑ n ∈ Finset.range x, 1 / (↑n + 1) ^ s - ↑x / (↑x + 1) ^ s)) atTop (𝓝 (1 / s * (∑' (n : ℕ), 1 / (↑n + 1) ^ s - 0)))
11b22989b7bc0459
WeierstrassCurve.Projective.equation_smul
Mathlib/AlgebraicGeometry/EllipticCurve/Projective.lean
lemma equation_smul (P : Fin 3 → R) {u : R} (hu : IsUnit u) : W'.Equation (u • P) ↔ W'.Equation P := have hP (u : R) {P : Fin 3 → R} (hP : W'.Equation P) : W'.Equation <| u • P
R : Type r inst✝ : CommRing R W' : Projective R P : Fin 3 → R u : R hu : IsUnit u hP : ∀ (u : R) {P : Fin 3 → R}, W'.Equation P → W'.Equation (u • P) h : W'.Equation (u • P) ⊢ W'.Equation P
convert hP ↑hu.unit⁻¹ h
case h.e'_4 R : Type r inst✝ : CommRing R W' : Projective R P : Fin 3 → R u : R hu : IsUnit u hP : ∀ (u : R) {P : Fin 3 → R}, W'.Equation P → W'.Equation (u • P) h : W'.Equation (u • P) ⊢ P = ↑hu.unit⁻¹ • u • P
05e310694fabdfc8
nhds_of_nhdsWithin_of_nhds
Mathlib/Topology/ContinuousOn.lean
theorem nhds_of_nhdsWithin_of_nhds {s t : Set α} {a : α} (h1 : s ∈ 𝓝 a) (h2 : t ∈ 𝓝[s] a) : t ∈ 𝓝 a
case intro.intro α : Type u_1 inst✝ : TopologicalSpace α s t : Set α a : α h1 : s ∈ 𝓝 a h2 : t ∈ 𝓝[s] a w✝ : Set α Hw : w✝ ∈ 𝓝 a hw : w✝ ∩ s ⊆ t ⊢ t ∈ 𝓝 a
exact (𝓝 a).sets_of_superset ((𝓝 a).inter_sets Hw h1) hw
no goals
b6c7be9aae52b9b2
integral_gaussian_complex
Mathlib/Analysis/SpecialFunctions/Gaussian/GaussianIntegral.lean
theorem integral_gaussian_complex {b : ℂ} (hb : 0 < re b) : ∫ x : ℝ, cexp (-b * (x : ℂ) ^ 2) = (π / b) ^ (1 / 2 : ℂ)
b : ℂ hb : 0 < b.re nv : ∀ {b : ℂ}, 0 < b.re → b ≠ 0 this : ∀ (x : ℝ), cexp (-1 * ↑x ^ 2) = ↑(rexp (-1 * x ^ 2)) ⊢ ↑(∫ (x : ℝ), rexp (-1 * x ^ 2)) = ↑(π / 1) ^ ↑(1 / 2)
rw [← ofReal_cpow, ofReal_inj]
b : ℂ hb : 0 < b.re nv : ∀ {b : ℂ}, 0 < b.re → b ≠ 0 this : ∀ (x : ℝ), cexp (-1 * ↑x ^ 2) = ↑(rexp (-1 * x ^ 2)) ⊢ ∫ (x : ℝ), rexp (-1 * x ^ 2) = (π / 1) ^ (1 / 2) case hx b : ℂ hb : 0 < b.re nv : ∀ {b : ℂ}, 0 < b.re → b ≠ 0 this : ∀ (x : ℝ), cexp (-1 * ↑x ^ 2) = ↑(rexp (-1 * x ^ 2)) ⊢ 0 ≤ π / 1
76ad93bf18e975c2
MeasureTheory.OuterMeasure.IsMetric.borel_le_caratheodory
Mathlib/MeasureTheory/Measure/Hausdorff.lean
theorem borel_le_caratheodory (hm : IsMetric μ) : borel X ≤ μ.caratheodory
case neg X : Type u_2 inst✝ : EMetricSpace X μ : OuterMeasure X hm : μ.IsMetric t : Set X ht : t ∈ {s | IsClosed s} s : Set X S : ℕ → Set X := fun n => {x | x ∈ s ∧ (↑n)⁻¹ ≤ infEdist x t} Ssep : ∀ (n : ℕ), Metric.AreSeparated (S n) t Ssep' : ∀ (n : ℕ), Metric.AreSeparated (S n) (s ∩ t) S_sub : ∀ (n : ℕ), S n ⊆ s \ t hSs : ∀ (n : ℕ), μ (s ∩ t) + μ (S n) ≤ μ s iUnion_S : ⋃ n, S n = s \ t htop : ¬μ (s \ t) = ⊤ r n : ℕ ⊢ ∑ a ∈ Finset.range n, μ (S (2 * a + 1 + r) \ S (2 * a + r)) ≤ μ (⋃ n, S n)
rw [← hm.finset_iUnion_of_pairwise_separated]
case neg X : Type u_2 inst✝ : EMetricSpace X μ : OuterMeasure X hm : μ.IsMetric t : Set X ht : t ∈ {s | IsClosed s} s : Set X S : ℕ → Set X := fun n => {x | x ∈ s ∧ (↑n)⁻¹ ≤ infEdist x t} Ssep : ∀ (n : ℕ), Metric.AreSeparated (S n) t Ssep' : ∀ (n : ℕ), Metric.AreSeparated (S n) (s ∩ t) S_sub : ∀ (n : ℕ), S n ⊆ s \ t hSs : ∀ (n : ℕ), μ (s ∩ t) + μ (S n) ≤ μ s iUnion_S : ⋃ n, S n = s \ t htop : ¬μ (s \ t) = ⊤ r n : ℕ ⊢ μ (⋃ i ∈ Finset.range n, S (2 * i + 1 + r) \ S (2 * i + r)) ≤ μ (⋃ n, S n) case neg X : Type u_2 inst✝ : EMetricSpace X μ : OuterMeasure X hm : μ.IsMetric t : Set X ht : t ∈ {s | IsClosed s} s : Set X S : ℕ → Set X := fun n => {x | x ∈ s ∧ (↑n)⁻¹ ≤ infEdist x t} Ssep : ∀ (n : ℕ), Metric.AreSeparated (S n) t Ssep' : ∀ (n : ℕ), Metric.AreSeparated (S n) (s ∩ t) S_sub : ∀ (n : ℕ), S n ⊆ s \ t hSs : ∀ (n : ℕ), μ (s ∩ t) + μ (S n) ≤ μ s iUnion_S : ⋃ n, S n = s \ t htop : ¬μ (s \ t) = ⊤ r n : ℕ ⊢ ∀ i ∈ Finset.range n, ∀ j ∈ Finset.range n, i ≠ j → Metric.AreSeparated (S (2 * i + 1 + r) \ S (2 * i + r)) (S (2 * j + 1 + r) \ S (2 * j + r))
603b48ab3190787f
Set.ncard_eq_of_bijective
Mathlib/Data/Set/Card.lean
theorem ncard_eq_of_bijective {n : ℕ} (f : ∀ i, i < n → α) (hf : ∀ a ∈ s, ∃ i, ∃ h : i < n, f i h = a) (hf' : ∀ (i) (h : i < n), f i h ∈ s) (f_inj : ∀ (i j) (hi : i < n) (hj : j < n), f i hi = f j hj → i = j) : s.ncard = n
α : Type u_1 s : Set α n : ℕ f : (i : ℕ) → i < n → α hf : ∀ a ∈ s, ∃ i, ∃ (h : i < n), f i h = a hf' : ∀ (i : ℕ) (h : i < n), f i h ∈ s f_inj : ∀ (i j : ℕ) (hi : i < n) (hj : j < n), f i hi = f j hj → i = j f' : Fin n → α := fun i => f ↑i ⋯ ⊢ s = f' '' univ
ext x
case h α : Type u_1 s : Set α n : ℕ f : (i : ℕ) → i < n → α hf : ∀ a ∈ s, ∃ i, ∃ (h : i < n), f i h = a hf' : ∀ (i : ℕ) (h : i < n), f i h ∈ s f_inj : ∀ (i j : ℕ) (hi : i < n) (hj : j < n), f i hi = f j hj → i = j f' : Fin n → α := fun i => f ↑i ⋯ x : α ⊢ x ∈ s ↔ x ∈ f' '' univ
e5caade2630c707b
affineIndependent_equiv
Mathlib/LinearAlgebra/AffineSpace/Independent.lean
theorem affineIndependent_equiv {ι' : Type*} (e : ι ≃ ι') {p : ι' → P} : AffineIndependent k (p ∘ e) ↔ AffineIndependent k p
k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 ι' : Type u_5 e : ι ≃ ι' p : ι' → P ⊢ AffineIndependent k (p ∘ ⇑e) ↔ AffineIndependent k p
refine ⟨?_, AffineIndependent.comp_embedding e.toEmbedding⟩
k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 ι' : Type u_5 e : ι ≃ ι' p : ι' → P ⊢ AffineIndependent k (p ∘ ⇑e) → AffineIndependent k p
1095c6848a2c441d
List.take_eq_self_iff
Mathlib/Data/List/TakeDrop.lean
@[simp] lemma take_eq_self_iff (x : List α) {n : ℕ} : x.take n = x ↔ x.length ≤ n := ⟨fun h ↦ by rw [← h]; simp; omega, take_of_length_le⟩
α : Type u x : List α n : ℕ h : take n x = x ⊢ x.length ≤ n
rw [← h]
α : Type u x : List α n : ℕ h : take n x = x ⊢ (take n x).length ≤ n
bb60c7701b0127c7
ValuationSubring.valuation_unit
Mathlib/RingTheory/Valuation/ValuationSubring.lean
theorem valuation_unit (a : Aˣ) : A.valuation a = 1
K : Type u inst✝ : Field K A : ValuationSubring K a : (↥A)ˣ ⊢ ∃ a_1, ↑↑a_1 * 1 = ↑↑a
use a
case h K : Type u inst✝ : Field K A : ValuationSubring K a : (↥A)ˣ ⊢ ↑↑a * 1 = ↑↑a
bfe56c9cfacbd2e1
CategoryTheory.toNerve₂.mk_naturality_δ1i
Mathlib/AlgebraicTopology/SimplicialSet/NerveAdjunction.lean
lemma toNerve₂.mk_naturality_δ1i (i : Fin 3) : toNerve₂.mk.naturalityProperty F (δ₂ i)
case h.«1» C : Type u inst✝ : SmallCategory C X : SSet.Truncated 2 F : oneTruncation₂.obj X ⟶ ReflQuiv.of C hyp : ∀ (φ : X.obj (op { obj := [2], property := ⋯ })), F.map (ev02₂ φ) = F.map (ev01₂ φ) ≫ F.map (ev12₂ φ) x : X.obj (op { obj := [1 + 1], property := ⋯ }) ⊢ ComposableArrows.mk₁ (F.map { edge := X.map (δ 1).op x, src_eq := ⋯, tgt_eq := ⋯ }) = (nerve C).map (δ 1).op (ComposableArrows.mk₂ (F.map (ev01₂ x)) (F.map (ev12₂ x)))
show _ = (nerve C).δ 1 _
case h.«1» C : Type u inst✝ : SmallCategory C X : SSet.Truncated 2 F : oneTruncation₂.obj X ⟶ ReflQuiv.of C hyp : ∀ (φ : X.obj (op { obj := [2], property := ⋯ })), F.map (ev02₂ φ) = F.map (ev01₂ φ) ≫ F.map (ev12₂ φ) x : X.obj (op { obj := [1 + 1], property := ⋯ }) ⊢ ComposableArrows.mk₁ (F.map { edge := X.map (δ 1).op x, src_eq := ⋯, tgt_eq := ⋯ }) = SimplicialObject.δ (nerve C) 1 (ComposableArrows.mk₂ (F.map (ev01₂ x)) (F.map (ev12₂ x)))
4128d2c817244193
CategoryTheory.Presieve.isSheafFor_of_factorsThru
Mathlib/CategoryTheory/Sites/Coverage.lean
lemma isSheafFor_of_factorsThru {X : C} {S T : Presieve X} (P : Cᵒᵖ ⥤ Type*) (H : S.FactorsThru T) (hS : S.IsSheafFor P) (h : ∀ ⦃Y : C⦄ ⦃f : Y ⟶ X⦄, T f → ∃ (R : Presieve Y), R.IsSeparatedFor P ∧ R.FactorsThruAlong S f) : T.IsSheafFor P
case refine_2 C : Type u_3 inst✝ : Category.{u_2, u_3} C X : C S T : Presieve X P : Cᵒᵖ ⥤ Type u_1 h : ∀ ⦃Y : C⦄ ⦃f : Y ⟶ X⦄, T f → ∃ R, IsSeparatedFor P R ∧ R.FactorsThruAlong S f hS : IsSeparatedFor P S ∧ ∀ (x : FamilyOfElements P S), x.Compatible → ∃ t, x.IsAmalgamation t W : ⦃Z : C⦄ → ⦃g : Z ⟶ X⦄ → S g → C i : ⦃Z : C⦄ → ⦃g : Z ⟶ X⦄ → (a : S g) → Z ⟶ W a e : ⦃Z : C⦄ → ⦃g : Z ⟶ X⦄ → (a : S g) → W a ⟶ X h1 : ∀ ⦃Z : C⦄ ⦃g : Z ⟶ X⦄ (a : S g), T (e a) h2 : ∀ ⦃Z : C⦄ ⦃g : Z ⟶ X⦄ (a : S g), i a ≫ e a = g x : FamilyOfElements P T hx : x.Compatible y : FamilyOfElements P S := fun Y g hg => P.map (i hg).op (x (e hg) ⋯) hy : y.Compatible left✝ : IsSeparatedFor P S h2' : ∀ (x : FamilyOfElements P S), x.Compatible → ∃ t, x.IsAmalgamation t ⊢ ∃ t, x.IsAmalgamation t
obtain ⟨z, hz⟩ := h2' y hy
case refine_2.intro C : Type u_3 inst✝ : Category.{u_2, u_3} C X : C S T : Presieve X P : Cᵒᵖ ⥤ Type u_1 h : ∀ ⦃Y : C⦄ ⦃f : Y ⟶ X⦄, T f → ∃ R, IsSeparatedFor P R ∧ R.FactorsThruAlong S f hS : IsSeparatedFor P S ∧ ∀ (x : FamilyOfElements P S), x.Compatible → ∃ t, x.IsAmalgamation t W : ⦃Z : C⦄ → ⦃g : Z ⟶ X⦄ → S g → C i : ⦃Z : C⦄ → ⦃g : Z ⟶ X⦄ → (a : S g) → Z ⟶ W a e : ⦃Z : C⦄ → ⦃g : Z ⟶ X⦄ → (a : S g) → W a ⟶ X h1 : ∀ ⦃Z : C⦄ ⦃g : Z ⟶ X⦄ (a : S g), T (e a) h2 : ∀ ⦃Z : C⦄ ⦃g : Z ⟶ X⦄ (a : S g), i a ≫ e a = g x : FamilyOfElements P T hx : x.Compatible y : FamilyOfElements P S := fun Y g hg => P.map (i hg).op (x (e hg) ⋯) hy : y.Compatible left✝ : IsSeparatedFor P S h2' : ∀ (x : FamilyOfElements P S), x.Compatible → ∃ t, x.IsAmalgamation t z : P.obj (Opposite.op X) hz : y.IsAmalgamation z ⊢ ∃ t, x.IsAmalgamation t
d4cb88a64ea278af
Real.tendsto_rightDeriv_mul_log_atTop
Mathlib/Analysis/SpecialFunctions/Log/NegMulLog.lean
lemma tendsto_rightDeriv_mul_log_atTop : Tendsto (fun x ↦ derivWithin (fun x ↦ x * log x) (Set.Ioi x) x) atTop atTop
⊢ Tendsto (fun x => derivWithin (fun x => x * log x) (Set.Ioi x) x) atTop atTop
refine (tendsto_congr' ?_).mpr (tendsto_log_atTop.atTop_add (tendsto_const_nhds (x := 1)))
⊢ (fun x => derivWithin (fun x => x * log x) (Set.Ioi x) x) =ᶠ[atTop] fun x => log x + 1
963a998f76dc66b7
exists_idempotent_of_compact_t2_of_continuous_mul_left
Mathlib/Topology/Algebra/Semigroup.lean
theorem exists_idempotent_of_compact_t2_of_continuous_mul_left {M} [Nonempty M] [Semigroup M] [TopologicalSpace M] [CompactSpace M] [T2Space M] (continuous_mul_left : ∀ r : M, Continuous (· * r)) : ∃ m : M, m * m = m
case hts M : Type u_1 inst✝⁴ : Nonempty M inst✝³ : Semigroup M inst✝² : TopologicalSpace M inst✝¹ : CompactSpace M inst✝ : T2Space M continuous_mul_left : ∀ (r : M), Continuous fun x => x * r S : Set (Set M) := {N | IsClosed N ∧ N.Nonempty ∧ ∀ m ∈ N, ∀ m' ∈ N, m * m' ∈ N} N : Set M hN : Minimal (fun x => x ∈ S) N N_closed : IsClosed N N_mul : ∀ m ∈ N, ∀ m' ∈ N, m * m' ∈ N m : M hm : m ∈ N ⊢ (fun x => x * m) '' N ⊆ N
rintro _ ⟨m', hm', rfl⟩
case hts.intro.intro M : Type u_1 inst✝⁴ : Nonempty M inst✝³ : Semigroup M inst✝² : TopologicalSpace M inst✝¹ : CompactSpace M inst✝ : T2Space M continuous_mul_left : ∀ (r : M), Continuous fun x => x * r S : Set (Set M) := {N | IsClosed N ∧ N.Nonempty ∧ ∀ m ∈ N, ∀ m' ∈ N, m * m' ∈ N} N : Set M hN : Minimal (fun x => x ∈ S) N N_closed : IsClosed N N_mul : ∀ m ∈ N, ∀ m' ∈ N, m * m' ∈ N m : M hm : m ∈ N m' : M hm' : m' ∈ N ⊢ (fun x => x * m) m' ∈ N
fc87b9dbd8289f3d
IsSeparable.of_algebra_isSeparable_of_isSeparable
Mathlib/FieldTheory/SeparableDegree.lean
theorem IsSeparable.of_algebra_isSeparable_of_isSeparable [Algebra E K] [IsScalarTower F E K] [Algebra.IsSeparable F E] {x : K} (hsep : IsSeparable E x) : IsSeparable F x
F : Type u E : Type v inst✝⁷ : Field F inst✝⁶ : Field E inst✝⁵ : Algebra F E K : Type w inst✝⁴ : Field K inst✝³ : Algebra F K inst✝² : Algebra E K inst✝¹ : IsScalarTower F E K inst✝ : Algebra.IsSeparable F E x : K f : E[X] := minpoly E x hf : f = minpoly E x E' : IntermediateField F E := adjoin F ↑f.coeffs this✝⁵ : FiniteDimensional F ↥E' g : (↥E')[X] h : Polynomial.map (algebraMap (↥E') E) g = f hx : x ∈ restrictScalars F (↥E')⟮x⟯ hzero : (aeval x) g = 0 halg : IsIntegral (↥E') x hsep : (minpoly (↥E') x).Separable this✝⁴ : Algebra.IsSeparable F ↥E' this✝³ : Algebra.IsSeparable ↥E' ↥(↥E')⟮x⟯ this✝² : FiniteDimensional ↥E' ↥(↥E')⟮x⟯ this✝¹ : FiniteDimensional F ↥(↥E')⟮x⟯ this✝ : Algebra.IsAlgebraic ↥E' ↥(↥E')⟮x⟯ this : Algebra.IsSeparable F ↥(↥E')⟮x⟯ ⊢ IsSeparable F x
change Algebra.IsSeparable F (restrictScalars F E'⟮x⟯) at this
F : Type u E : Type v inst✝⁷ : Field F inst✝⁶ : Field E inst✝⁵ : Algebra F E K : Type w inst✝⁴ : Field K inst✝³ : Algebra F K inst✝² : Algebra E K inst✝¹ : IsScalarTower F E K inst✝ : Algebra.IsSeparable F E x : K f : E[X] := minpoly E x hf : f = minpoly E x E' : IntermediateField F E := adjoin F ↑f.coeffs this✝⁵ : FiniteDimensional F ↥E' g : (↥E')[X] h : Polynomial.map (algebraMap (↥E') E) g = f hx : x ∈ restrictScalars F (↥E')⟮x⟯ hzero : (aeval x) g = 0 halg : IsIntegral (↥E') x hsep : (minpoly (↥E') x).Separable this✝⁴ : Algebra.IsSeparable F ↥E' this✝³ : Algebra.IsSeparable ↥E' ↥(↥E')⟮x⟯ this✝² : FiniteDimensional ↥E' ↥(↥E')⟮x⟯ this✝¹ : FiniteDimensional F ↥(↥E')⟮x⟯ this✝ : Algebra.IsAlgebraic ↥E' ↥(↥E')⟮x⟯ this : Algebra.IsSeparable F ↥(restrictScalars F (↥E')⟮x⟯) ⊢ IsSeparable F x
6901ddfd7b743413
NonUnitalSubsemiring.closure_addSubmonoid_closure
Mathlib/RingTheory/NonUnitalSubsemiring/Basic.lean
theorem closure_addSubmonoid_closure {s : Set R} : closure ↑(AddSubmonoid.closure s) = closure s
case h R : Type u inst✝ : NonUnitalNonAssocSemiring R s : Set R x : R ⊢ x ∈ closure ↑(AddSubmonoid.closure s) ↔ x ∈ closure s
refine ⟨fun hx => ?_, fun hx => closure_mono AddSubmonoid.subset_closure hx⟩
case h R : Type u inst✝ : NonUnitalNonAssocSemiring R s : Set R x : R hx : x ∈ closure ↑(AddSubmonoid.closure s) ⊢ x ∈ closure s
904943feed2d9199
Complex.countable_preimage_exp
Mathlib/Analysis/SpecialFunctions/Complex/Log.lean
theorem countable_preimage_exp {s : Set ℂ} : (exp ⁻¹' s).Countable ↔ s.Countable
case refine_1 s : Set ℂ hs : (cexp ⁻¹' s).Countable ⊢ s ⊆ s ∪ {0}
exact Set.subset_union_left
no goals
e3fd0c8739ed6e00
TensorProduct.uncurry_apply
Mathlib/LinearAlgebra/TensorProduct/Basic.lean
theorem uncurry_apply (f : M →ₗ[R] N →ₗ[R] P) (m : M) (n : N) : uncurry R M N P f (m ⊗ₜ n) = f m n
R : Type u_1 inst✝⁶ : CommSemiring R M : Type u_5 N : Type u_6 P : Type u_7 inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid N inst✝³ : AddCommMonoid P inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R P f : M →ₗ[R] N →ₗ[R] P m : M n : N ⊢ ((uncurry R M N P) f) (m ⊗ₜ[R] n) = (f m) n
rw [uncurry, LinearMap.flip_apply, lift.tmul]
R : Type u_1 inst✝⁶ : CommSemiring R M : Type u_5 N : Type u_6 P : Type u_7 inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid N inst✝³ : AddCommMonoid P inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R P f : M →ₗ[R] N →ₗ[R] P m : M n : N ⊢ (((LinearMap.lflip ∘ₗ LinearMap.id.flip) m) n) f = (f m) n
5731556e40a15182
Algebra.IsSeparable.insepDegree_eq
Mathlib/FieldTheory/SeparableClosure.lean
theorem Algebra.IsSeparable.insepDegree_eq [Algebra.IsSeparable F E] : insepDegree F E = 1
F : Type u E : Type v inst✝³ : Field F inst✝² : Field E inst✝¹ : Algebra F E inst✝ : Algebra.IsSeparable F E ⊢ insepDegree F E = 1
rw [insepDegree, (separableClosure.eq_top_iff F E).2 ‹_›, IntermediateField.rank_top]
no goals
f3a0133939d0621b
CategoryTheory.tensorRightHomEquiv_symm_coevaluation_comp_whiskerRight
Mathlib/CategoryTheory/Monoidal/Rigid/Basic.lean
theorem tensorRightHomEquiv_symm_coevaluation_comp_whiskerRight {Y Y' Z : C} [ExactPairing Y Y'] (f : Y ⟶ Z) : (tensorRightHomEquiv _ Y _ _).symm (η_ Y Y' ≫ f ▷ Y') = (λ_ _).hom ≫ f := calc _ = η_ Y Y' ▷ Y ⊗≫ (f ▷ (Y' ⊗ Y) ≫ Z ◁ ε_ Y Y') ⊗≫ 𝟙 _
C : Type u₁ inst✝² : Category.{v₁, u₁} C inst✝¹ : MonoidalCategory C Y Y' Z : C inst✝ : ExactPairing Y Y' f : Y ⟶ Z ⊢ η_ Y Y' ▷ Y ⊗≫ (Y ◁ ε_ Y Y' ≫ f ▷ 𝟙_ C) ⊗≫ 𝟙 Z = (η_ Y Y' ▷ Y ⊗≫ Y ◁ ε_ Y Y') ⊗≫ f
monoidal
no goals
0f6e5fba767e74b3
Complex.affine_of_mapsTo_ball_of_exists_norm_dslope_eq_div
Mathlib/Analysis/Complex/Schwarz.lean
theorem affine_of_mapsTo_ball_of_exists_norm_dslope_eq_div [CompleteSpace E] [StrictConvexSpace ℝ E] (hd : DifferentiableOn ℂ f (ball c R₁)) (h_maps : Set.MapsTo f (ball c R₁) (ball (f c) R₂)) (h_z₀ : z₀ ∈ ball c R₁) (h_eq : ‖dslope f c z₀‖ = R₂ / R₁) : Set.EqOn f (fun z => f c + (z - c) • dslope f c z₀) (ball c R₁)
E : Type u_1 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℂ E R₁ R₂ : ℝ f : ℂ → E c z₀ : ℂ inst✝¹ : CompleteSpace E inst✝ : StrictConvexSpace ℝ E hd : DifferentiableOn ℂ f (ball c R₁) h_maps : MapsTo f (ball c R₁) (ball (f c) R₂) h_z₀ : z₀ ∈ ball c R₁ h_eq : ‖dslope f c z₀‖ = R₂ / R₁ ⊢ EqOn f (fun z => f c + (z - c) • dslope f c z₀) (ball c R₁)
set g := dslope f c
E : Type u_1 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℂ E R₁ R₂ : ℝ f : ℂ → E c z₀ : ℂ inst✝¹ : CompleteSpace E inst✝ : StrictConvexSpace ℝ E hd : DifferentiableOn ℂ f (ball c R₁) h_maps : MapsTo f (ball c R₁) (ball (f c) R₂) h_z₀ : z₀ ∈ ball c R₁ g : ℂ → E := dslope f c h_eq : ‖g z₀‖ = R₂ / R₁ ⊢ EqOn f (fun z => f c + (z - c) • g z₀) (ball c R₁)
b6a020ab208bf1a6
Seminorm.closedBall_smul_ball
Mathlib/Analysis/Seminorm.lean
theorem closedBall_smul_ball (p : Seminorm 𝕜 E) {r₁ : ℝ} (hr₁ : r₁ ≠ 0) (r₂ : ℝ) : Metric.closedBall (0 : 𝕜) r₁ • p.ball 0 r₂ ⊆ p.ball 0 (r₁ * r₂)
𝕜 : Type u_3 E : Type u_7 inst✝² : SeminormedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : Seminorm 𝕜 E r₁ : ℝ hr₁ : r₁ ≠ 0 r₂ : ℝ ⊢ ∀ (a : 𝕜), ‖a‖ ≤ r₁ → ∀ (b : E), p b < r₂ → ‖a‖ * p b < r₁ * r₂
refine fun a ha b hb ↦ mul_lt_mul' ha hb (apply_nonneg _ _) ?_
𝕜 : Type u_3 E : Type u_7 inst✝² : SeminormedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : Seminorm 𝕜 E r₁ : ℝ hr₁ : r₁ ≠ 0 r₂ : ℝ a : 𝕜 ha : ‖a‖ ≤ r₁ b : E hb : p b < r₂ ⊢ 0 < r₁
938a7d7f28bc0b1a
MonomialOrder.degree_sub_of_lt
Mathlib/RingTheory/MvPolynomial/MonomialOrder.lean
theorem degree_sub_of_lt {f g : MvPolynomial σ R} (h : m.degree g ≺[m] m.degree f) : m.degree (f - g) = m.degree f
case h σ : Type u_1 m : MonomialOrder σ R : Type u_2 inst✝ : CommRing R f g : MvPolynomial σ R h : m.toSyn (m.degree g) < m.toSyn (m.degree f) ⊢ m.toSyn (m.degree (-g)) < m.toSyn (m.degree f)
simp only [degree_neg, h]
no goals
9b98f46c96318252
PrimeSpectrum.mem_image_comap_zeroLocus_sdiff
Mathlib/RingTheory/Spectrum/Prime/Polynomial.lean
/-- Let `A` be an `R`-algebra. `𝔭 : Spec R` is in the image of `Z(I) ∩ D(f) ⊆ Spec S` if and only if `f` is not nilpotent on `κ(𝔭) ⊗ A ⧸ I`. -/ lemma mem_image_comap_zeroLocus_sdiff (f : A) (s : Set A) (x) : x ∈ comap (algebraMap R A) '' (zeroLocus s \ zeroLocus {f}) ↔ ¬ IsNilpotent (algebraMap A ((A ⧸ Ideal.span s) ⊗[R] x.asIdeal.ResidueField) f)
case mp.intro.intro.intro R : Type u_2 A : Type u_1 inst✝² : CommRing R inst✝¹ : CommRing A inst✝ : Algebra R A f : A s : Set A q : PrimeSpectrum A H : IsNilpotent ((algebraMap A ((A ⧸ Ideal.span s) ⊗[R] ((comap (algebraMap R A)) q).asIdeal.ResidueField)) f) hqg : s ⊆ ↑q.asIdeal hqf : f ∉ q.asIdeal hs : Ideal.span s ≤ RingHom.ker (algebraMap A q.asIdeal.ResidueField) ⊢ False
let F : (A ⧸ Ideal.span s) ⊗[R] (q.asIdeal.comap (algebraMap R A)).ResidueField →ₐ[A] q.asIdeal.ResidueField := Algebra.TensorProduct.lift (Ideal.Quotient.liftₐ (Ideal.span s) (Algebra.ofId A _) hs) (Ideal.ResidueField.mapₐ _ _ rfl) fun _ _ ↦ .all _ _
case mp.intro.intro.intro R : Type u_2 A : Type u_1 inst✝² : CommRing R inst✝¹ : CommRing A inst✝ : Algebra R A f : A s : Set A q : PrimeSpectrum A H : IsNilpotent ((algebraMap A ((A ⧸ Ideal.span s) ⊗[R] ((comap (algebraMap R A)) q).asIdeal.ResidueField)) f) hqg : s ⊆ ↑q.asIdeal hqf : f ∉ q.asIdeal hs : Ideal.span s ≤ RingHom.ker (algebraMap A q.asIdeal.ResidueField) F : (A ⧸ Ideal.span s) ⊗[R] (Ideal.comap (algebraMap R A) q.asIdeal).ResidueField →ₐ[A] q.asIdeal.ResidueField := Algebra.TensorProduct.lift (Ideal.Quotient.liftₐ (Ideal.span s) (Algebra.ofId A q.asIdeal.ResidueField) hs) (Ideal.ResidueField.mapₐ (Ideal.comap (algebraMap R A) q.asIdeal) q.asIdeal ⋯) ⋯ ⊢ False
b5370dee55806ec3
IsPrimitiveRoot.pow_isRoot_minpoly
Mathlib/RingTheory/RootsOfUnity/Minpoly.lean
theorem pow_isRoot_minpoly {m : ℕ} (hcop : Nat.Coprime m n) : IsRoot (map (Int.castRingHom K) (minpoly ℤ μ)) (μ ^ m)
n : ℕ K : Type u_1 inst✝² : CommRing K μ : K h : IsPrimitiveRoot μ n inst✝¹ : IsDomain K inst✝ : CharZero K m : ℕ hcop : m.Coprime n ⊢ (map (Int.castRingHom K) (minpoly ℤ μ)).IsRoot (μ ^ m)
simp only [minpoly_eq_pow_coprime h hcop, IsRoot.def, eval_map]
n : ℕ K : Type u_1 inst✝² : CommRing K μ : K h : IsPrimitiveRoot μ n inst✝¹ : IsDomain K inst✝ : CharZero K m : ℕ hcop : m.Coprime n ⊢ eval₂ (Int.castRingHom K) (μ ^ m) (minpoly ℤ (μ ^ m)) = 0
21b43582b0c980ed
MeasureTheory.tendsto_Lp_finite_of_tendstoInMeasure
Mathlib/MeasureTheory/Function/UniformIntegrable.lean
theorem tendsto_Lp_finite_of_tendstoInMeasure [IsFiniteMeasure μ] (hp : 1 ≤ p) (hp' : p ≠ ∞) (hf : ∀ n, AEStronglyMeasurable (f n) μ) (hg : MemLp g p μ) (hui : UnifIntegrable f p μ) (hfg : TendstoInMeasure μ f atTop g) : Tendsto (fun n ↦ eLpNorm (f n - g) p μ) atTop (𝓝 0)
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ : Measure α inst✝¹ : NormedAddCommGroup β p : ℝ≥0∞ f : ℕ → α → β g : α → β inst✝ : IsFiniteMeasure μ hp : 1 ≤ p hp' : p ≠ ⊤ hf : ∀ (n : ℕ), AEStronglyMeasurable (f n) μ hg : MemLp g p μ hui : UnifIntegrable f p μ hfg : TendstoInMeasure μ f atTop g ⊢ Tendsto (fun n => eLpNorm (f n - g) p μ) atTop (𝓝 0)
refine tendsto_of_subseq_tendsto fun ns hns => ?_
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ : Measure α inst✝¹ : NormedAddCommGroup β p : ℝ≥0∞ f : ℕ → α → β g : α → β inst✝ : IsFiniteMeasure μ hp : 1 ≤ p hp' : p ≠ ⊤ hf : ∀ (n : ℕ), AEStronglyMeasurable (f n) μ hg : MemLp g p μ hui : UnifIntegrable f p μ hfg : TendstoInMeasure μ f atTop g ns : ℕ → ℕ hns : Tendsto ns atTop atTop ⊢ ∃ ms, Tendsto (fun n => eLpNorm (f (ns (ms n)) - g) p μ) atTop (𝓝 0)
6a9a7bb3da79aee9
PerfectPairing.exists_basis_basis_of_span_eq_top_of_mem_algebraMap
Mathlib/LinearAlgebra/PerfectPairing/Restrict.lean
/-- If a perfect pairing over a field `L` takes values in a subfield `K` along two `K`-subspaces whose `L` span is full, then these subspaces induce a `K`-structure in the sense of [*Algebra I*, Bourbaki : Chapter II, §8.1 Definition 1][bourbaki1989]. -/ lemma exists_basis_basis_of_span_eq_top_of_mem_algebraMap (M' : Submodule K M) (N' : Submodule K N) (hM : span L (M' : Set M) = ⊤) (hN : span L (N' : Set N) = ⊤) (hp : ∀ᵉ (x ∈ M') (y ∈ N'), p x y ∈ (algebraMap K L).range) : ∃ (n : ℕ) (b : Basis (Fin n) L M) (b' : Basis (Fin n) K M'), ∀ i, b i = b' i
K : Type u_1 L : Type u_2 M : Type u_3 N : Type u_4 inst✝⁹ : Field K inst✝⁸ : Field L inst✝⁷ : Algebra K L inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup N inst✝⁴ : Module L M inst✝³ : Module L N inst✝² : Module K M inst✝¹ : Module K N inst✝ : IsScalarTower K L M p : PerfectPairing L M N M' : Submodule K M N' : Submodule K N hM : span L ↑M' = ⊤ hN : span L ↑N' = ⊤ hp : ∀ x ∈ M', ∀ y ∈ N', (p x) y ∈ (algebraMap K L).range this✝¹ : IsReflexive L M this✝ : IsReflexive L N v : Set M hv₁ : v ⊆ ↑M' hv₂ : span L v = ⊤ hv₃✝ : LinearIndependent L Subtype.val b : Basis { x // x ∈ v } L M := Basis.mk hv₃✝ ⋯ this : Fintype ↑v v' : ↑v → ↥M' := fun i => ⟨↑i, ⋯⟩ hv₃ : LinearIndependent K Subtype.val ⊢ LinearIndependent (ι := ↑v) K v'
rw [show ((↑) : v → M) = M'.subtype ∘ v' by ext; simp [v']] at hv₃
K : Type u_1 L : Type u_2 M : Type u_3 N : Type u_4 inst✝⁹ : Field K inst✝⁸ : Field L inst✝⁷ : Algebra K L inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup N inst✝⁴ : Module L M inst✝³ : Module L N inst✝² : Module K M inst✝¹ : Module K N inst✝ : IsScalarTower K L M p : PerfectPairing L M N M' : Submodule K M N' : Submodule K N hM : span L ↑M' = ⊤ hN : span L ↑N' = ⊤ hp : ∀ x ∈ M', ∀ y ∈ N', (p x) y ∈ (algebraMap K L).range this✝¹ : IsReflexive L M this✝ : IsReflexive L N v : Set M hv₁ : v ⊆ ↑M' hv₂ : span L v = ⊤ hv₃✝ : LinearIndependent L Subtype.val b : Basis { x // x ∈ v } L M := Basis.mk hv₃✝ ⋯ this : Fintype ↑v v' : ↑v → ↥M' := fun i => ⟨↑i, ⋯⟩ hv₃ : LinearIndependent K (⇑M'.subtype ∘ v') ⊢ LinearIndependent (ι := ↑v) K v'
28e714660261030d
IsPrimitiveRoot.prod_one_sub_pow_eq_order
Mathlib/RingTheory/RootsOfUnity/Lemmas.lean
/-- If `μ` is a primitive `n`th root of unity in `R`, then `∏(1≤k<n) (1-μ^k) = n`. (Stated with `n+1` in place of `n` to avoid the condition `n ≠ 0`.) -/ lemma prod_one_sub_pow_eq_order {n : ℕ} {μ : R} (hμ : IsPrimitiveRoot μ (n + 1)) : ∏ k ∈ range n, (1 - μ ^ (k + 1)) = n + 1
R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R n : ℕ μ : R hμ : IsPrimitiveRoot μ (n + 1) this : eval 1 (∏ k ∈ range n, (X - C (μ ^ (k + 1) * 1))) = eval 1 (∑ i ∈ range (n + 1), X ^ i) ⊢ ∏ k ∈ range n, (1 - μ ^ (k + 1)) = ↑n + 1
simpa only [mul_one, map_pow, eval_prod, eval_sub, eval_X, eval_pow, eval_C, eval_geom_sum, one_pow, sum_const, card_range, nsmul_eq_mul, Nat.cast_add, Nat.cast_one] using this
no goals
3f906da38fed75a1
mellin_hasDerivAt_of_isBigO_rpow
Mathlib/Analysis/MellinTransform.lean
theorem mellin_hasDerivAt_of_isBigO_rpow [NormedSpace ℂ E] {a b : ℝ} {f : ℝ → E} {s : ℂ} (hfc : LocallyIntegrableOn f (Ioi 0)) (hf_top : f =O[atTop] (· ^ (-a))) (hs_top : s.re < a) (hf_bot : f =O[𝓝[>] 0] (· ^ (-b))) (hs_bot : b < s.re) : MellinConvergent (fun t => log t • f t) s ∧ HasDerivAt (mellin f) (mellin (fun t => log t • f t) s) s
case hf.refine_2 E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) volume hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[>] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (volume.restrict (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) volume ⊢ ContinuousOn log (Ioi 0)
exact continuousOn_log.mono (subset_compl_singleton_iff.mpr not_mem_Ioi_self)
no goals
3ad5d9a87042b6f9
LinearMap.trace_prodMap
Mathlib/LinearAlgebra/Trace.lean
theorem trace_prodMap : trace R (M × N) ∘ₗ prodMapLinear R M N M N R = (coprod id id : R × R →ₗ[R] R) ∘ₗ prodMap (trace R M) (trace R N)
R : Type u_1 inst✝⁸ : CommRing R M : Type u_2 inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M N : Type u_3 inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N inst✝³ : Free R M inst✝² : Module.Finite R M inst✝¹ : Free R N inst✝ : Module.Finite R N e : (Dual R M ⊗[R] M × Dual R N ⊗[R] N) ≃ₗ[R] (M →ₗ[R] M) × (N →ₗ[R] N) := (dualTensorHomEquiv R M M).prod (dualTensorHomEquiv R N N) h : Function.Surjective ⇑↑e ⊢ (trace R (M × N) ∘ₗ prodMapLinear R M N M N R) ∘ₗ ↑e = (id.coprod id ∘ₗ (trace R M).prodMap (trace R N)) ∘ₗ ↑e
ext
case hl.a.h.h R : Type u_1 inst✝⁸ : CommRing R M : Type u_2 inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M N : Type u_3 inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N inst✝³ : Free R M inst✝² : Module.Finite R M inst✝¹ : Free R N inst✝ : Module.Finite R N e : (Dual R M ⊗[R] M × Dual R N ⊗[R] N) ≃ₗ[R] (M →ₗ[R] M) × (N →ₗ[R] N) := (dualTensorHomEquiv R M M).prod (dualTensorHomEquiv R N N) h : Function.Surjective ⇑↑e x✝¹ : Dual R M x✝ : M ⊢ ((AlgebraTensorModule.curry (((trace R (M × N) ∘ₗ prodMapLinear R M N M N R) ∘ₗ ↑e) ∘ₗ inl R (Dual R M ⊗[R] M) (Dual R N ⊗[R] N))) x✝¹) x✝ = ((AlgebraTensorModule.curry (((id.coprod id ∘ₗ (trace R M).prodMap (trace R N)) ∘ₗ ↑e) ∘ₗ inl R (Dual R M ⊗[R] M) (Dual R N ⊗[R] N))) x✝¹) x✝ case hr.a.h.h R : Type u_1 inst✝⁸ : CommRing R M : Type u_2 inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M N : Type u_3 inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N inst✝³ : Free R M inst✝² : Module.Finite R M inst✝¹ : Free R N inst✝ : Module.Finite R N e : (Dual R M ⊗[R] M × Dual R N ⊗[R] N) ≃ₗ[R] (M →ₗ[R] M) × (N →ₗ[R] N) := (dualTensorHomEquiv R M M).prod (dualTensorHomEquiv R N N) h : Function.Surjective ⇑↑e x✝¹ : Dual R N x✝ : N ⊢ ((AlgebraTensorModule.curry (((trace R (M × N) ∘ₗ prodMapLinear R M N M N R) ∘ₗ ↑e) ∘ₗ inr R (Dual R M ⊗[R] M) (Dual R N ⊗[R] N))) x✝¹) x✝ = ((AlgebraTensorModule.curry (((id.coprod id ∘ₗ (trace R M).prodMap (trace R N)) ∘ₗ ↑e) ∘ₗ inr R (Dual R M ⊗[R] M) (Dual R N ⊗[R] N))) x✝¹) x✝
9f1ec8a0dddb51eb
Algebra.discr_isIntegral
Mathlib/RingTheory/Discriminant.lean
theorem discr_isIntegral {b : ι → L} (h : ∀ i, IsIntegral R (b i)) : IsIntegral R (discr K b)
ι : Type w inst✝⁹ : DecidableEq ι inst✝⁸ : Fintype ι K : Type u L : Type v inst✝⁷ : Field K inst✝⁶ : Field L inst✝⁵ : Algebra K L inst✝⁴ : Module.Finite K L R : Type z inst✝³ : CommRing R inst✝² : Algebra R K inst✝¹ : Algebra R L inst✝ : IsScalarTower R K L b : ι → L h : ∀ (i : ι), IsIntegral R (b i) ⊢ IsIntegral R (traceMatrix K b).det
exact IsIntegral.det fun i j ↦ isIntegral_trace ((h i).mul (h j))
no goals
63e7b8a9e0f0411b
summable_iff_cauchySeq_finset_and_tsum_mem
Mathlib/Topology/Algebra/InfiniteSum/GroupCompletion.lean
theorem summable_iff_cauchySeq_finset_and_tsum_mem (f : β → α) : Summable f ↔ CauchySeq (fun s : Finset β ↦ ∑ b ∈ s, f b) ∧ ∑' i, toCompl (f i) ∈ Set.range toCompl
case mpr.intro α : Type u_1 β : Type u_2 inst✝² : AddCommGroup α inst✝¹ : UniformSpace α inst✝ : UniformAddGroup α f : β → α h_cauchy : CauchySeq fun s => ∑ b ∈ s, f b h_tsum : ∑' (i : β), toCompl (f i) ∈ Set.range ⇑toCompl ⊢ Summable (⇑toCompl ∘ f) ∧ ∑' (i : β), toCompl (f i) ∈ Set.range ⇑toCompl
constructor
case mpr.intro.left α : Type u_1 β : Type u_2 inst✝² : AddCommGroup α inst✝¹ : UniformSpace α inst✝ : UniformAddGroup α f : β → α h_cauchy : CauchySeq fun s => ∑ b ∈ s, f b h_tsum : ∑' (i : β), toCompl (f i) ∈ Set.range ⇑toCompl ⊢ Summable (⇑toCompl ∘ f) case mpr.intro.right α : Type u_1 β : Type u_2 inst✝² : AddCommGroup α inst✝¹ : UniformSpace α inst✝ : UniformAddGroup α f : β → α h_cauchy : CauchySeq fun s => ∑ b ∈ s, f b h_tsum : ∑' (i : β), toCompl (f i) ∈ Set.range ⇑toCompl ⊢ ∑' (i : β), toCompl (f i) ∈ Set.range ⇑toCompl
8ed3f0cc17cd0b17
ProbabilityTheory.Kernel.measurable_kernel_prod_mk_left_of_finite
Mathlib/Probability/Kernel/MeasurableLIntegral.lean
theorem measurable_kernel_prod_mk_left_of_finite {t : Set (α × β)} (ht : MeasurableSet t) (hκs : ∀ a, IsFiniteMeasure (κ a)) : Measurable fun a => κ a (Prod.mk a ⁻¹' t)
α : Type u_1 β : Type u_2 mα : MeasurableSpace α mβ : MeasurableSpace β κ : Kernel α β t : Set (α × β) hκs : ∀ (a : α), IsFiniteMeasure (κ a) t₁ : Set α ht₁ : MeasurableSet t₁ t₂ : Set β ht₂ : MeasurableSet t₂ ⊢ (fun a => (κ a) (if a ∈ t₁ then t₂ else ∅)) = fun a => if a ∈ t₁ then (κ a) t₂ else 0
ext1 a
case h α : Type u_1 β : Type u_2 mα : MeasurableSpace α mβ : MeasurableSpace β κ : Kernel α β t : Set (α × β) hκs : ∀ (a : α), IsFiniteMeasure (κ a) t₁ : Set α ht₁ : MeasurableSet t₁ t₂ : Set β ht₂ : MeasurableSet t₂ a : α ⊢ (κ a) (if a ∈ t₁ then t₂ else ∅) = if a ∈ t₁ then (κ a) t₂ else 0
4c14e8ca6e5d1721
Topology.IsInducing.le_functorObj_iff
Mathlib/Topology/Category/TopCat/Opens.lean
lemma le_functorObj_iff {X Y : TopCat} {f : X ⟶ Y} (hf : IsInducing f) {U : Opens X} {V : Opens Y} : V ≤ hf.functorObj U ↔ (Opens.map f).obj V ≤ U
X Y : TopCat f : X ⟶ Y hf : IsInducing ⇑(ConcreteCategory.hom f) U : Opens ↑X V : Opens ↑Y ⊢ V ≤ hf.functorObj U ↔ (Opens.map f).obj V ≤ U
obtain ⟨U, hU⟩ := U
case mk X Y : TopCat f : X ⟶ Y hf : IsInducing ⇑(ConcreteCategory.hom f) V : Opens ↑Y U : Set ↑X hU : IsOpen U ⊢ V ≤ hf.functorObj { carrier := U, is_open' := hU } ↔ (Opens.map f).obj V ≤ { carrier := U, is_open' := hU }
f5d72770c98cc6d6
LSeries.positive_of_differentiable_of_eqOn
Mathlib/NumberTheory/LSeries/Positivity.lean
/-- If all values of `a : ℕ → ℂ` are nonnegative reals and `a 1` is positive, and the L-series of `a` agrees with an entire function `f` on some open right half-plane where it converges, then `f` is real and positive on `ℝ`. -/ lemma positive_of_differentiable_of_eqOn {a : ℕ → ℂ} (ha₀ : 0 ≤ a) (ha₁ : 0 < a 1) {f : ℂ → ℂ} (hf : Differentiable ℂ f) {x : ℝ} (hx : abscissaOfAbsConv a ≤ x) (hf' : {s | x < s.re}.EqOn f (LSeries a)) (y : ℝ) : 0 < f y
a : ℕ → ℂ ha₀ : 0 ≤ a ha₁ : 0 < a 1 f : ℂ → ℂ hf : Differentiable ℂ f x : ℝ hx : abscissaOfAbsConv a ≤ ↑x hf' : Set.EqOn f (LSeries a) {s | x < s.re} y : ℝ hxy : x < x ⊔ y + 1 hxy' : abscissaOfAbsConv a < ↑(x ⊔ y) + 1 hys : ↑(x ⊔ y) + 1 ∈ {s | x < s.re} ⊢ 0 < f (↑(x ⊔ y) + 1)
simpa only [hf' hys, ofReal_add, ofReal_one] using positive ha₀ ha₁ hxy'
no goals
69608794dd5901ab
Equiv.Perm.filter_parts_partition_eq_cycleType
Mathlib/GroupTheory/Perm/Cycle/Type.lean
theorem filter_parts_partition_eq_cycleType {σ : Perm α} : ((partition σ).parts.filter fun n => 2 ≤ n) = σ.cycleType
α : Type u_1 inst✝¹ : Fintype α inst✝ : DecidableEq α σ : Perm α a : ℕ h : a ∈ Multiset.replicate (Fintype.card α - σ.support.card) 1 ⊢ ¬2 ≤ 1
decide
no goals
889c6c104ebfc117
Batteries.RBNode.min?_mem
Mathlib/.lake/packages/batteries/Batteries/Data/RBMap/Lemmas.lean
theorem min?_mem {t : RBNode α} (h : t.min? = some a) : a ∈ t
case cons.refl α : Type u_1 a : α t : RBNode α tail✝ : List α ⊢ a ∈ a :: tail✝
constructor
no goals
589a118f7141b07d
IsSelfAdjoint.sq_nonneg
Mathlib/Algebra/Order/Star/Basic.lean
theorem IsSelfAdjoint.sq_nonneg {a : R} (ha : IsSelfAdjoint a) : 0 ≤ a ^ 2
R : Type u inst✝³ : Semiring R inst✝² : PartialOrder R inst✝¹ : StarRing R inst✝ : StarOrderedRing R a : R ha : IsSelfAdjoint a ⊢ 0 ≤ a ^ 2
simp [sq, ha.mul_self_nonneg]
no goals
6fb21375459f007d
GaussianFourier.tendsto_verticalIntegral
Mathlib/Analysis/SpecialFunctions/Gaussian/FourierTransform.lean
theorem tendsto_verticalIntegral (hb : 0 < b.re) (c : ℝ) : Tendsto (verticalIntegral b c) atTop (𝓝 0)
case hf b : ℂ hb : 0 < b.re c : ℝ ⊢ Tendsto (fun x => b.re * x ^ 2 - 2 * |b.im| * |c| * x) atTop atTop
simp_rw [sq, ← mul_assoc, ← sub_mul]
case hf b : ℂ hb : 0 < b.re c : ℝ ⊢ Tendsto (fun x => (b.re * x - 2 * |b.im| * |c|) * x) atTop atTop
d42274eb447fca3c
IsSeparatedMap.comp_right
Mathlib/Topology/SeparatedMap.lean
theorem IsSeparatedMap.comp_right {f : X → Y} (sep : IsSeparatedMap f) {g : A → X} (cont : Continuous g) (inj : g.Injective) : IsSeparatedMap (f ∘ g)
X : Type u_1 Y : Sort u_2 A : Type u_3 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace A f : X → Y sep : IsClosed (Function.pullbackDiagonal f) g : A → X cont : Continuous g inj : Function.Injective g ⊢ IsClosed (Function.mapPullback g id g ⋯ ⋯ ⁻¹' Function.pullbackDiagonal f)
exact sep.preimage (cont.mapPullback cont)
no goals
b4436a2198ba72e6
Array.le_iff_lt_or_eq
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Lex/Lemmas.lean
theorem le_iff_lt_or_eq [DecidableEq α] [LT α] [DecidableLT α] [Std.Irrefl (· < · : α → α → Prop)] [Std.Antisymm (¬ · < · : α → α → Prop)] [Std.Total (¬ · < · : α → α → Prop)] {l₁ l₂ : Array α} : l₁ ≤ l₂ ↔ l₁ < l₂ ∨ l₁ = l₂
α : Type u_1 inst✝⁵ : DecidableEq α inst✝⁴ : LT α inst✝³ : DecidableLT α inst✝² : Std.Irrefl fun x1 x2 => x1 < x2 inst✝¹ : Std.Antisymm fun x1 x2 => ¬x1 < x2 inst✝ : Std.Total fun x1 x2 => ¬x1 < x2 l₁ l₂ : Array α ⊢ l₁ ≤ l₂ ↔ l₁ < l₂ ∨ l₁ = l₂
simpa using List.le_iff_lt_or_eq (l₁ := l₁.toList) (l₂ := l₂.toList)
no goals
382d4a7da3893ff7
Equiv.Perm.CycleType.count_def
Mathlib/GroupTheory/Perm/Cycle/Type.lean
theorem CycleType.count_def {σ : Perm α} (n : ℕ) : σ.cycleType.count n = Fintype.card {c : σ.cycleFactorsFinset // (c : Perm α).support.card = n }
α : Type u_1 inst✝¹ : Fintype α inst✝ : DecidableEq α σ : Perm α n : ℕ ⊢ Multiset.count n σ.cycleType = Fintype.card { c // (↑c).support.card = n }
rw [cycleType, Multiset.count_eq_card_filter_eq]
α : Type u_1 inst✝¹ : Fintype α inst✝ : DecidableEq α σ : Perm α n : ℕ ⊢ (Multiset.filter (fun x => n = x) (Multiset.map (Finset.card ∘ support) σ.cycleFactorsFinset.val)).card = Fintype.card { c // (↑c).support.card = n }
d7a2a31666eddd8f
MeasureTheory.Measure.LebesgueDecomposition.iSup_mem_measurableLE
Mathlib/MeasureTheory/Decomposition/Lebesgue.lean
theorem iSup_mem_measurableLE (f : ℕ → α → ℝ≥0∞) (hf : ∀ n, f n ∈ measurableLE μ ν) (n : ℕ) : (fun x ↦ ⨆ (k) (_ : k ≤ n), f k x) ∈ measurableLE μ ν
case zero.right α : Type u_1 m : MeasurableSpace α μ ν : Measure α f : ℕ → α → ℝ≥0∞ hf : ∀ (n : ℕ), f n ∈ measurableLE μ ν ⊢ ∀ (A : Set α), MeasurableSet A → ∫⁻ (x : α) in A, (fun x => ⨆ k, ⨆ (_ : k ≤ 0), f k x) x ∂μ ≤ ν A
intro A hA
case zero.right α : Type u_1 m : MeasurableSpace α μ ν : Measure α f : ℕ → α → ℝ≥0∞ hf : ∀ (n : ℕ), f n ∈ measurableLE μ ν A : Set α hA : MeasurableSet A ⊢ ∫⁻ (x : α) in A, (fun x => ⨆ k, ⨆ (_ : k ≤ 0), f k x) x ∂μ ≤ ν A
252de3e134c10542
groupCohomology.resolution.diagonalSucc_hom_single
Mathlib/RepresentationTheory/GroupCohomology/Resolution.lean
theorem diagonalSucc_hom_single (f : Gⁿ⁺¹) (a : k) : (diagonalSucc k G n).hom.hom (single f a) = single (f 0) 1 ⊗ₜ single (fun i => (f (Fin.castSucc i))⁻¹ * f i.succ) a
k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G f : Fin (n + 1) → G a : k ⊢ (ModuleCat.Hom.hom (𝟙 ((linearization k G).obj (Action.leftRegular G)).V ⊗ (linearizationTrivialIso k G (Fin n → G)).hom.hom)) (single ((Equiv.refl (G × (Fin n → G))) (f 0, fun i => (f i.castSucc)⁻¹ * f i.succ)).1 1 ⊗ₜ[k] single ((Equiv.refl (G × (Fin n → G))) (f 0, fun i => (f i.castSucc)⁻¹ * f i.succ)).2 a) = single (f 0) 1 ⊗ₜ[k] single (fun i => (f i.castSucc)⁻¹ * f i.succ) a
rfl
no goals
33dec4a2165d0b2f
Mathlib.Meta.NormNum.minFacHelper_1
Mathlib/Tactic/NormNum/Prime.lean
theorem minFacHelper_1 {n k k' : ℕ} (e : k + 2 = k') (h : MinFacHelper n k) (np : minFac n ≠ k) : MinFacHelper n k'
case refine_2.inr.inl n k k' : ℕ e : k + 2 = k' h : MinFacHelper n k np : n.minFac ≠ k h2✝ : k < n.minFac h2 : k.succ = n.minFac h3 : 2 ∣ n.minFac ⊢ 2 = n.minFac
rw [dvd_prime <| minFac_prime h.one_lt.ne'] at h3
case refine_2.inr.inl n k k' : ℕ e : k + 2 = k' h : MinFacHelper n k np : n.minFac ≠ k h2✝ : k < n.minFac h2 : k.succ = n.minFac h3 : 2 = 1 ∨ 2 = n.minFac ⊢ 2 = n.minFac
0bac89197e80246f
Complex.GammaIntegral_ofReal
Mathlib/Analysis/SpecialFunctions/Gamma/Basic.lean
theorem GammaIntegral_ofReal (s : ℝ) : GammaIntegral ↑s = ↑(∫ x : ℝ in Ioi 0, Real.exp (-x) * x ^ (s - 1))
s : ℝ this : ∀ (r : ℝ), ↑r = ↑r ⊢ ∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (↑s - 1) = ↑(∫ (x : ℝ) in Ioi 0, rexp (-x) * x ^ (s - 1))
conv_rhs => rw [this, ← _root_.integral_ofReal]
s : ℝ this : ∀ (r : ℝ), ↑r = ↑r ⊢ ∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (↑s - 1) = ∫ (x : ℝ) in Ioi 0, ↑(rexp (-x) * x ^ (s - 1))
52e5eb39fcb5c44d
EuclideanGeometry.Cospherical.affineIndependent
Mathlib/Geometry/Euclidean/Sphere/Basic.lean
theorem Cospherical.affineIndependent {s : Set P} (hs : Cospherical s) {p : Fin 3 → P} (hps : Set.range p ⊆ s) (hpi : Function.Injective p) : AffineIndependent ℝ p
V : Type u_1 P : Type u_2 inst✝³ : NormedAddCommGroup V inst✝² : InnerProductSpace ℝ V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P s : Set P p : Fin 3 → P hps : Set.range p ⊆ s hpi : Function.Injective p v : V hv0 : v ≠ 0 c : P r : ℝ hs : ∀ p ∈ s, dist p c = r hs' : ∀ (i : Fin 3), dist (p i) c = r f : Fin 3 → ℝ hf : ∀ (i : Fin 3), p i = f i • v +ᵥ p 0 hf0 : f 0 = 0 hfi : Function.Injective f hsd : ∀ (i : Fin 3), f i = 0 ∨ f i = -2 * inner v (p 0 -ᵥ c) / inner v v hfn0 : ∀ (i : Fin 3), i ≠ 0 → f i ≠ 0 ⊢ ∀ (i : Fin 3), i ≠ 0 → f i = -2 * inner v (p 0 -ᵥ c) / inner v v
intro i hi
V : Type u_1 P : Type u_2 inst✝³ : NormedAddCommGroup V inst✝² : InnerProductSpace ℝ V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P s : Set P p : Fin 3 → P hps : Set.range p ⊆ s hpi : Function.Injective p v : V hv0 : v ≠ 0 c : P r : ℝ hs : ∀ p ∈ s, dist p c = r hs' : ∀ (i : Fin 3), dist (p i) c = r f : Fin 3 → ℝ hf : ∀ (i : Fin 3), p i = f i • v +ᵥ p 0 hf0 : f 0 = 0 hfi : Function.Injective f hsd : ∀ (i : Fin 3), f i = 0 ∨ f i = -2 * inner v (p 0 -ᵥ c) / inner v v hfn0 : ∀ (i : Fin 3), i ≠ 0 → f i ≠ 0 i : Fin 3 hi : i ≠ 0 ⊢ f i = -2 * inner v (p 0 -ᵥ c) / inner v v
41419d3ed5b040ce
HasDerivAt.lhopital_zero_atTop
Mathlib/Analysis/Calculus/LHopital.lean
theorem lhopital_zero_atTop (hff' : ∀ᶠ x in atTop, HasDerivAt f (f' x) x) (hgg' : ∀ᶠ x in atTop, HasDerivAt g (g' x) x) (hg' : ∀ᶠ x in atTop, g' x ≠ 0) (hftop : Tendsto f atTop (𝓝 0)) (hgtop : Tendsto g atTop (𝓝 0)) (hdiv : Tendsto (fun x => f' x / g' x) atTop l) : Tendsto (fun x => f x / g x) atTop l
case intro.intro.intro.intro.intro.intro.intro l✝ : Filter ℝ f f' g g' : ℝ → ℝ hftop : Tendsto f atTop (𝓝 0) hgtop : Tendsto g atTop (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atTop l✝ s₁ : Set ℝ hs₁ : s₁ ∈ atTop hff' : ∀ y ∈ s₁, HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ atTop hgg' : ∀ y ∈ s₂, HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ atTop hg' : ∀ y ∈ s₃, g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ l : ℝ hl : ∀ b ≥ l, b ∈ s hl' : Ioi l ⊆ s ⊢ Tendsto (fun x => f x / g x) atTop l✝
refine lhopital_zero_atTop_on_Ioi ?_ ?_ (fun x hx => hg' x <| (hl' hx).2) hftop hgtop hdiv <;> intro x hx <;> apply_assumption <;> first | exact (hl' hx).1.1| exact (hl' hx).1.2
no goals
8b13f0337ff756ee
Set.ncard_eq_three
Mathlib/Data/Set/Card.lean
theorem ncard_eq_three : s.ncard = 3 ↔ ∃ x y z, x ≠ y ∧ x ≠ z ∧ y ≠ z ∧ s = {x, y, z}
case refine_2 α : Type u_1 s : Set α h : s.encard = 3 ⊢ ↑s.encard.toNat = 3
simp [h]
no goals
81e51a925750236b
Finset.ofDual_max'
Mathlib/Data/Finset/Max.lean
theorem ofDual_max' {s : Finset αᵒᵈ} (hs : s.Nonempty) : ofDual (max' s hs) = min' (s.image ofDual) (hs.image _)
α : Type u_2 inst✝ : LinearOrder α s : Finset αᵒᵈ hs : s.Nonempty ⊢ ↑(ofDual (s.max' hs)) = ↑((image (⇑ofDual) s).min' ⋯)
simp only [max'_eq_sup', id_eq, ofDual_sup', Function.comp_apply, coe_inf', min'_eq_inf', inf_image]
α : Type u_2 inst✝ : LinearOrder α s : Finset αᵒᵈ hs : s.Nonempty ⊢ s.inf (WithTop.some ∘ fun x => ofDual x) = s.inf ((WithTop.some ∘ fun x => x) ∘ ⇑ofDual)
7560dd1c58b579c0
Bimod.TensorBimod.middle_assoc'
Mathlib/CategoryTheory/Monoidal/Bimod.lean
theorem middle_assoc' : (actLeft P Q ▷ T.X) ≫ actRight P Q = (α_ R.X _ T.X).hom ≫ (R.X ◁ actRight P Q) ≫ actLeft P Q
C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C inst✝² : HasCoequalizers C R S T : Mon_ C P : Bimod R S Q : Bimod S T inst✝¹ : ∀ (X : C), PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : ∀ (X : C), PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) ⊢ (α_ R.X P.X Q.X).inv ▷ T.X ≫ (((α_ (R.X ⊗ P.X) Q.X T.X).hom ≫ P.actLeft ▷ (Q.X ⊗ T.X)) ≫ P.X ◁ Q.actRight) ≫ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X S.X Q.X).hom ≫ P.X ◁ Q.actLeft) = (α_ R.X (P.X ⊗ Q.X) T.X).hom ≫ R.X ◁ (α_ P.X Q.X T.X).hom ≫ (α_ R.X P.X (Q.X ⊗ T.X)).inv ≫ (P.actLeft ▷ (Q.X ⊗ T.X) ≫ P.X ◁ Q.actRight) ≫ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X S.X Q.X).hom ≫ P.X ◁ Q.actLeft)
simp
no goals
81405f27cb7d242f
Module.Finite.exists_smul_of_comp_eq_of_isLocalizedModule
Mathlib/Algebra/Module/FinitePresentation.lean
lemma Module.Finite.exists_smul_of_comp_eq_of_isLocalizedModule [hM : Module.Finite R M] (g₁ g₂ : M →ₗ[R] N) (h : f.comp g₁ = f.comp g₂) : ∃ (s : S), s • g₁ = s • g₂
case h R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁷ : CommRing R inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M inst✝⁴ : AddCommGroup N inst✝³ : Module R N inst✝² : AddCommGroup N' inst✝¹ : Module R N' S : Submonoid R f : N →ₗ[R] N' inst✝ : IsLocalizedModule S f g₁ g₂ : M →ₗ[R] N h : f ∘ₗ g₁ = f ∘ₗ g₂ s : M → ↥S hs : ∀ (x : M), s x • g₁ x = s x • g₂ x σ : Finset M hσ : Submodule.span R ↑σ = ⊤ ⊢ σ.prod s • g₁ = σ.prod s • g₂
rw [← sub_eq_zero, ← LinearMap.ker_eq_top, ← top_le_iff, ← hσ, Submodule.span_le]
case h R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁷ : CommRing R inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M inst✝⁴ : AddCommGroup N inst✝³ : Module R N inst✝² : AddCommGroup N' inst✝¹ : Module R N' S : Submonoid R f : N →ₗ[R] N' inst✝ : IsLocalizedModule S f g₁ g₂ : M →ₗ[R] N h : f ∘ₗ g₁ = f ∘ₗ g₂ s : M → ↥S hs : ∀ (x : M), s x • g₁ x = s x • g₂ x σ : Finset M hσ : Submodule.span R ↑σ = ⊤ ⊢ ↑σ ⊆ ↑(LinearMap.ker (σ.prod s • g₁ - σ.prod s • g₂))
014a59324e17703b
ContinuousLinearMap.opNorm_prod
Mathlib/Analysis/NormedSpace/OperatorNorm/Prod.lean
theorem opNorm_prod (f : E →L[𝕜] F) (g : E →L[𝕜] G) : ‖f.prod g‖ = ‖(f, g)‖ := le_antisymm (opNorm_le_bound _ (norm_nonneg _) fun x => by simpa only [prod_apply, Prod.norm_def, max_mul_of_nonneg, norm_nonneg] using max_le_max (le_opNorm f x) (le_opNorm g x)) <| max_le (opNorm_le_bound _ (norm_nonneg _) fun x => (le_max_left _ _).trans ((f.prod g).le_opNorm x)) (opNorm_le_bound _ (norm_nonneg _) fun x => (le_max_right _ _).trans ((f.prod g).le_opNorm x))
𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : SeminormedAddCommGroup E inst✝⁴ : SeminormedAddCommGroup F inst✝³ : SeminormedAddCommGroup G inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace 𝕜 F inst✝ : NormedSpace 𝕜 G f : E →L[𝕜] F g : E →L[𝕜] G x : E ⊢ ‖(f.prod g) x‖ ≤ ‖(f, g)‖ * ‖x‖
simpa only [prod_apply, Prod.norm_def, max_mul_of_nonneg, norm_nonneg] using max_le_max (le_opNorm f x) (le_opNorm g x)
no goals
998a3d540cbc0d33
Polynomial.add_modByMonic
Mathlib/Algebra/Polynomial/Div.lean
lemma add_modByMonic (p₁ p₂ : R[X]) : (p₁ + p₂) %ₘ q = p₁ %ₘ q + p₂ %ₘ q
case pos R : Type u inst✝ : CommRing R q p₁ p₂ : R[X] hq : q.Monic ⊢ (p₁ + p₂) %ₘ q = p₁ %ₘ q + p₂ %ₘ q
rcases subsingleton_or_nontrivial R with hR | hR
case pos.inl R : Type u inst✝ : CommRing R q p₁ p₂ : R[X] hq : q.Monic hR : Subsingleton R ⊢ (p₁ + p₂) %ₘ q = p₁ %ₘ q + p₂ %ₘ q case pos.inr R : Type u inst✝ : CommRing R q p₁ p₂ : R[X] hq : q.Monic hR : Nontrivial R ⊢ (p₁ + p₂) %ₘ q = p₁ %ₘ q + p₂ %ₘ q
f3e37a67abb7d804
CHSH_inequality_of_comm
Mathlib/Algebra/Star/CHSH.lean
theorem CHSH_inequality_of_comm [OrderedCommRing R] [StarRing R] [StarOrderedRing R] [Algebra ℝ R] [OrderedSMul ℝ R] (A₀ A₁ B₀ B₁ : R) (T : IsCHSHTuple A₀ A₁ B₀ B₁) : A₀ * B₀ + A₀ * B₁ + A₁ * B₀ - A₁ * B₁ ≤ 2
R : Type u inst✝⁴ : OrderedCommRing R inst✝³ : StarRing R inst✝² : StarOrderedRing R inst✝¹ : Algebra ℝ R inst✝ : OrderedSMul ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ P : R := 2 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ idem : P * P = 4 * P ⊢ P = (1 / 4) • (P * P)
have h : 4 * P = (4 : ℝ) • P := by simp [map_ofNat, Algebra.smul_def]
R : Type u inst✝⁴ : OrderedCommRing R inst✝³ : StarRing R inst✝² : StarOrderedRing R inst✝¹ : Algebra ℝ R inst✝ : OrderedSMul ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ P : R := 2 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ idem : P * P = 4 * P h : 4 * P = 4 • P ⊢ P = (1 / 4) • (P * P)
69323f291cd142bc
round_natCast
Mathlib/Algebra/Order/Round.lean
theorem round_natCast (n : ℕ) : round (n : α) = n
α : Type u_2 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α n : ℕ ⊢ round ↑n = ↑n
simp [round]
no goals
e277d16a891225e1
TensorProduct.equivFinsuppOfBasisRight_symm
Mathlib/LinearAlgebra/TensorProduct/Basis.lean
lemma TensorProduct.equivFinsuppOfBasisRight_symm : (TensorProduct.equivFinsuppOfBasisRight 𝒞).symm.toLinearMap = Finsupp.lsum R fun i ↦ (TensorProduct.mk R M N).flip (𝒞 i)
case h.h R : Type u_1 M : Type u_3 N : Type u_4 κ : Type u_6 inst✝⁵ : CommSemiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid N inst✝¹ : Module R N inst✝ : DecidableEq κ 𝒞 : Basis κ R N a✝ : κ x✝ : M ⊢ (↑(equivFinsuppOfBasisRight 𝒞).symm ∘ₗ Finsupp.lsingle a✝) x✝ = (((Finsupp.lsum R) fun i => (mk R M N).flip (𝒞 i)) ∘ₗ Finsupp.lsingle a✝) x✝
simp [equivFinsuppOfBasisRight]
no goals
0009cfbe297fadaa