name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
coprime_sq_sub_sq_add_of_odd_even
Mathlib/NumberTheory/PythagoreanTriples.lean
theorem coprime_sq_sub_sq_add_of_odd_even {m n : ℤ} (h : Int.gcd m n = 1) (hm : m % 2 = 1) (hn : n % 2 = 0) : Int.gcd (m ^ 2 - n ^ 2) (m ^ 2 + n ^ 2) = 1
m n : ℤ h : m.gcd n = 1 hm : m % 2 = 1 hn : n % 2 = 0 ⊢ n.gcd m = 1
rwa [Int.gcd_comm]
no goals
c291954e54251a00
Module.Flat.trans
Mathlib/RingTheory/Flat/Stability.lean
theorem trans [Flat R S] [Flat S M] : Flat R M
case hf R : Type u S : Type v M : Type w inst✝¹⁰ : CommSemiring R inst✝⁹ : CommSemiring S inst✝⁸ : Algebra R S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : Module S M inst✝⁴ : IsScalarTower R S M inst✝³ : Flat R S inst✝² : Flat S M P : Type u inst✝¹ : AddCommMonoid P inst✝ : Module R P N : Submodule R P ⊢ Function.Injective ⇑((AlgebraTensorModule.lTensor S S) N.subtype)
apply Flat.lTensor_preserves_injective_linearMap
case hf.hf R : Type u S : Type v M : Type w inst✝¹⁰ : CommSemiring R inst✝⁹ : CommSemiring S inst✝⁸ : Algebra R S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : Module S M inst✝⁴ : IsScalarTower R S M inst✝³ : Flat R S inst✝² : Flat S M P : Type u inst✝¹ : AddCommMonoid P inst✝ : Module R P N : Submodule R P ⊢ Function.Injective ⇑N.subtype
3a1589fe28d19c18
SignType.map_cast
Mathlib/Data/Sign.lean
/-- Casting out of `SignType` respects composition with suitable bundled homomorphism types. -/ lemma map_cast {α β F : Type*} [AddGroupWithOne α] [One β] [SubtractionMonoid β] [FunLike F α β] [AddMonoidHomClass F α β] [OneHomClass F α β] (f : F) (s : SignType) : f s = s
α : Type u_2 β : Type u_3 F : Type u_4 inst✝⁵ : AddGroupWithOne α inst✝⁴ : One β inst✝³ : SubtractionMonoid β inst✝² : FunLike F α β inst✝¹ : AddMonoidHomClass F α β inst✝ : OneHomClass F α β f : F s : SignType ⊢ f ↑s = ↑s
apply map_cast' <;> simp
no goals
1d59dc3f39335785
SimplexCategory.Truncated.morphismProperty_eq_top
Mathlib/AlgebraicTopology/SimplexCategory/MorphismProperty.lean
lemma Truncated.morphismProperty_eq_top {d : ℕ} (W : MorphismProperty (Truncated d)) [W.IsMultiplicative] (δ_mem : ∀ (n : ℕ) (hn : n < d) (i : Fin (n + 2)), W (SimplexCategory.δ (n := n) i : ⟨.mk n, by dsimp; omega⟩ ⟶ ⟨.mk (n + 1), by dsimp; omega⟩)) (σ_mem : ∀ (n : ℕ) (hn : n < d) (i : Fin (n + 1)), W (SimplexCategory.σ (n := n) i : ⟨.mk (n + 1), by dsimp; omega⟩ ⟶ ⟨.mk n, by dsimp; omega⟩)) : W = ⊤
case pos d : ℕ W : MorphismProperty (Truncated d) inst✝ : W.IsMultiplicative δ_mem : ∀ (n : ℕ) (hn : n < d) (i : Fin (n + 2)), W (δ i) σ_mem : ∀ (n : ℕ) (hn : n < d) (i : Fin (n + 1)), W (σ i) c : ℕ hc : ∀ (a : ℕ) (ha : a ≤ d) (b : ℕ) (hb : b ≤ d) (f : { obj := mk a, property := ha } ⟶ { obj := mk b, property := hb }), a + b = c → W f a : ℕ ha : a ≤ d b : ℕ hb : b ≤ d f : { obj := mk a, property := ha } ⟶ { obj := mk b, property := hb } h : a + b = c + 1 f' : mk a ⟶ mk b := f h₁ : Function.Surjective ⇑(Hom.toOrderHom f') h₂ : Function.Injective ⇑(Hom.toOrderHom f') ⊢ W f case neg d : ℕ W : MorphismProperty (Truncated d) inst✝ : W.IsMultiplicative δ_mem : ∀ (n : ℕ) (hn : n < d) (i : Fin (n + 2)), W (δ i) σ_mem : ∀ (n : ℕ) (hn : n < d) (i : Fin (n + 1)), W (σ i) c : ℕ hc : ∀ (a : ℕ) (ha : a ≤ d) (b : ℕ) (hb : b ≤ d) (f : { obj := mk a, property := ha } ⟶ { obj := mk b, property := hb }), a + b = c → W f a : ℕ ha : a ≤ d b : ℕ hb : b ≤ d f : { obj := mk a, property := ha } ⟶ { obj := mk b, property := hb } h : a + b = c + 1 f' : mk a ⟶ mk b := f h₁ : Function.Surjective ⇑(Hom.toOrderHom f') h₂ : ¬Function.Injective ⇑(Hom.toOrderHom f') ⊢ W f
swap
case neg d : ℕ W : MorphismProperty (Truncated d) inst✝ : W.IsMultiplicative δ_mem : ∀ (n : ℕ) (hn : n < d) (i : Fin (n + 2)), W (δ i) σ_mem : ∀ (n : ℕ) (hn : n < d) (i : Fin (n + 1)), W (σ i) c : ℕ hc : ∀ (a : ℕ) (ha : a ≤ d) (b : ℕ) (hb : b ≤ d) (f : { obj := mk a, property := ha } ⟶ { obj := mk b, property := hb }), a + b = c → W f a : ℕ ha : a ≤ d b : ℕ hb : b ≤ d f : { obj := mk a, property := ha } ⟶ { obj := mk b, property := hb } h : a + b = c + 1 f' : mk a ⟶ mk b := f h₁ : Function.Surjective ⇑(Hom.toOrderHom f') h₂ : ¬Function.Injective ⇑(Hom.toOrderHom f') ⊢ W f case pos d : ℕ W : MorphismProperty (Truncated d) inst✝ : W.IsMultiplicative δ_mem : ∀ (n : ℕ) (hn : n < d) (i : Fin (n + 2)), W (δ i) σ_mem : ∀ (n : ℕ) (hn : n < d) (i : Fin (n + 1)), W (σ i) c : ℕ hc : ∀ (a : ℕ) (ha : a ≤ d) (b : ℕ) (hb : b ≤ d) (f : { obj := mk a, property := ha } ⟶ { obj := mk b, property := hb }), a + b = c → W f a : ℕ ha : a ≤ d b : ℕ hb : b ≤ d f : { obj := mk a, property := ha } ⟶ { obj := mk b, property := hb } h : a + b = c + 1 f' : mk a ⟶ mk b := f h₁ : Function.Surjective ⇑(Hom.toOrderHom f') h₂ : Function.Injective ⇑(Hom.toOrderHom f') ⊢ W f
ad7c40b6f9a9b699
List.takeWhile_replicate
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/TakeDrop.lean
theorem takeWhile_replicate (p : α → Bool) : (replicate n a).takeWhile p = if p a then replicate n a else []
α : Type u_1 n : Nat a : α p : α → Bool ⊢ takeWhile p (replicate n a) = if p a = true then replicate n a else []
rw [takeWhile_replicate_eq_filter, filter_replicate]
no goals
5fd7fa1468541db7
CategoryTheory.Limits.Types.isColimit_iff_bijective_desc
Mathlib/CategoryTheory/Limits/Types.lean
theorem isColimit_iff_bijective_desc : Nonempty (IsColimit c) ↔ (Quot.desc c).Bijective
case refine_1 J : Type v inst✝ : Category.{w, v} J F : J ⥤ Type u c : Cocone F ⊢ Nonempty (IsColimit c) → Function.Bijective (Quot.desc c)
refine fun ⟨hc⟩ => ⟨fun x y h => ?_, fun x => ?_⟩
case refine_1.refine_1 J : Type v inst✝ : Category.{w, v} J F : J ⥤ Type u c : Cocone F x✝ : Nonempty (IsColimit c) hc : IsColimit c x y : Quot F h : Quot.desc c x = Quot.desc c y ⊢ x = y case refine_1.refine_2 J : Type v inst✝ : Category.{w, v} J F : J ⥤ Type u c : Cocone F x✝ : Nonempty (IsColimit c) hc : IsColimit c x : c.pt ⊢ ∃ a, Quot.desc c a = x
53580cf8744b2af5
OrderEmbedding.minimal_apply_mem_inter_range_iff
Mathlib/Order/Minimal.lean
theorem minimal_apply_mem_inter_range_iff : Minimal (· ∈ t ∩ range f) (f x) ↔ Minimal (fun x ↦ f x ∈ t) x
case refine_2 α : Type u_1 x : α inst✝¹ : Preorder α β : Type u_2 inst✝ : Preorder β f : α ↪o β t : Set β h : Minimal (fun x => f x ∈ t) x ⊢ ∀ ⦃y : β⦄, (fun x => x ∈ t ∩ range ⇑f) y → y ≤ f x → f x ≤ y
rintro _ ⟨hyt, ⟨y, rfl⟩⟩
case refine_2.intro.intro α : Type u_1 x : α inst✝¹ : Preorder α β : Type u_2 inst✝ : Preorder β f : α ↪o β t : Set β h : Minimal (fun x => f x ∈ t) x y : α hyt : f y ∈ t ⊢ f y ≤ f x → f x ≤ f y
f37f6f9881265078
MeasureTheory.FiniteMeasure.tendsto_testAgainstNN_of_tendsto_normalize_testAgainstNN_of_tendsto_mass
Mathlib/MeasureTheory/Measure/ProbabilityMeasure.lean
theorem tendsto_testAgainstNN_of_tendsto_normalize_testAgainstNN_of_tendsto_mass {γ : Type*} {F : Filter γ} {μs : γ → FiniteMeasure Ω} (μs_lim : Tendsto (fun i ↦ (μs i).normalize) F (𝓝 μ.normalize)) (mass_lim : Tendsto (fun i ↦ (μs i).mass) F (𝓝 μ.mass)) (f : Ω →ᵇ ℝ≥0) : Tendsto (fun i ↦ (μs i).testAgainstNN f) F (𝓝 (μ.testAgainstNN f))
case pos Ω : Type u_1 inst✝² : Nonempty Ω m0 : MeasurableSpace Ω μ : FiniteMeasure Ω inst✝¹ : TopologicalSpace Ω inst✝ : OpensMeasurableSpace Ω γ : Type u_2 F : Filter γ μs : γ → FiniteMeasure Ω μs_lim : Tendsto (fun i => (μs i).normalize) F (𝓝 μ.normalize) f : Ω →ᵇ ℝ≥0 h_mass : μ.mass = 0 mass_lim : Tendsto (fun i => (μs i).mass) F (𝓝 0) ⊢ Tendsto (fun i => (μs i).testAgainstNN f) F (𝓝 0)
exact tendsto_zero_testAgainstNN_of_tendsto_zero_mass mass_lim f
no goals
9f1d40834d04327a
Complex.Gamma_eq_zero_iff
Mathlib/Analysis/SpecialFunctions/Gamma/Beta.lean
theorem Gamma_eq_zero_iff (s : ℂ) : Gamma s = 0 ↔ ∃ m : ℕ, s = -m
case mpr.intro m : ℕ ⊢ Gamma (-↑m) = 0
exact Gamma_neg_nat_eq_zero m
no goals
9897780b3450ce6d
Configuration.HasLines.pointCount_le_lineCount
Mathlib/Combinatorics/Configuration.lean
theorem HasLines.pointCount_le_lineCount [HasLines P L] {p : P} {l : L} (h : p ∉ l) [Finite { l : L // p ∈ l }] : pointCount P l ≤ lineCount L p
case pos P : Type u_1 L : Type u_2 inst✝² : Membership P L inst✝¹ : HasLines P L p : P l : L h : p ∉ l inst✝ : Finite { l // p ∈ l } hf : Infinite { p // p ∈ l } ⊢ pointCount P l ≤ lineCount L p
exact (le_of_eq Nat.card_eq_zero_of_infinite).trans (zero_le (lineCount L p))
no goals
b4269a73233e853a
CompactT2.ExtremallyDisconnected.projective
Mathlib/Topology/ExtremallyDisconnected.lean
theorem CompactT2.ExtremallyDisconnected.projective [ExtremallyDisconnected A] [CompactSpace A] [T2Space A] : CompactT2.Projective A
case intro.intro.intro A : Type u inst✝⁹ : TopologicalSpace A inst✝⁸ : ExtremallyDisconnected A inst✝⁷ : CompactSpace A inst✝⁶ : T2Space A B C : Type u inst✝⁵ : TopologicalSpace B inst✝⁴ : TopologicalSpace C inst✝³ : CompactSpace B inst✝² : T2Space B inst✝¹ : CompactSpace C inst✝ : T2Space C φ : A → C f : B → C φ_cont : Continuous φ f_cont : Continuous f f_surj : Surjective f D : Set (A × B) := {x | φ x.1 = f x.2} D_comp : CompactSpace ↑D π₁ : ↑D → A := Prod.fst ∘ Subtype.val π₁_cont : Continuous π₁ π₁_surj : Surjective π₁ E : Set ↑D left✝ : CompactSpace ↑E E_onto : π₁ '' E = univ E_min : ∀ (E₀ : Set ↑E), E₀ ≠ univ → IsClosed E₀ → E.restrict π₁ '' E₀ ≠ univ ρ : ↑E → A := E.restrict π₁ ρ_cont : Continuous ρ ρ_surj : Surjective ρ ρ' : ↑E ≃ₜ A := ExtremallyDisconnected.homeoCompactToT2 ρ_cont ρ_surj E_min π₂ : ↑D → B := Prod.snd ∘ Subtype.val π₂_cont : Continuous π₂ ⊢ f ∘ E.restrict π₂ ∘ ⇑ρ'.symm = φ
suffices f ∘ E.restrict π₂ = φ ∘ ρ' by rw [← comp_assoc, this, comp_assoc, Homeomorph.self_comp_symm, comp_id]
case intro.intro.intro A : Type u inst✝⁹ : TopologicalSpace A inst✝⁸ : ExtremallyDisconnected A inst✝⁷ : CompactSpace A inst✝⁶ : T2Space A B C : Type u inst✝⁵ : TopologicalSpace B inst✝⁴ : TopologicalSpace C inst✝³ : CompactSpace B inst✝² : T2Space B inst✝¹ : CompactSpace C inst✝ : T2Space C φ : A → C f : B → C φ_cont : Continuous φ f_cont : Continuous f f_surj : Surjective f D : Set (A × B) := {x | φ x.1 = f x.2} D_comp : CompactSpace ↑D π₁ : ↑D → A := Prod.fst ∘ Subtype.val π₁_cont : Continuous π₁ π₁_surj : Surjective π₁ E : Set ↑D left✝ : CompactSpace ↑E E_onto : π₁ '' E = univ E_min : ∀ (E₀ : Set ↑E), E₀ ≠ univ → IsClosed E₀ → E.restrict π₁ '' E₀ ≠ univ ρ : ↑E → A := E.restrict π₁ ρ_cont : Continuous ρ ρ_surj : Surjective ρ ρ' : ↑E ≃ₜ A := ExtremallyDisconnected.homeoCompactToT2 ρ_cont ρ_surj E_min π₂ : ↑D → B := Prod.snd ∘ Subtype.val π₂_cont : Continuous π₂ ⊢ f ∘ E.restrict π₂ = φ ∘ ⇑ρ'
b8a9d37b6d16fdce
nhds_translation_mul_inv₀
Mathlib/Topology/Algebra/GroupWithZero.lean
theorem nhds_translation_mul_inv₀ (ha : a ≠ 0) : comap (· * a⁻¹) (𝓝 1) = 𝓝 a := ((Homeomorph.mulRight₀ a ha).symm.comap_nhds_eq 1).trans <| by simp
G₀ : Type u_3 inst✝² : TopologicalSpace G₀ inst✝¹ : GroupWithZero G₀ inst✝ : ContinuousMul G₀ a : G₀ ha : a ≠ 0 ⊢ 𝓝 ((Homeomorph.mulRight₀ a ha).symm.symm 1) = 𝓝 a
simp
no goals
52157c1cb0ba3371
EuclideanGeometry.cos_oangle_left_of_oangle_eq_pi_div_two
Mathlib/Geometry/Euclidean/Angle/Oriented/RightAngle.lean
theorem cos_oangle_left_of_oangle_eq_pi_div_two {p₁ p₂ p₃ : P} (h : ∡ p₁ p₂ p₃ = ↑(π / 2)) : Real.Angle.cos (∡ p₃ p₁ p₂) = dist p₁ p₂ / dist p₁ p₃
V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : InnerProductSpace ℝ V inst✝² : MetricSpace P inst✝¹ : NormedAddTorsor V P hd2 : Fact (finrank ℝ V = 2) inst✝ : Oriented ℝ V (Fin 2) p₁ p₂ p₃ : P h : ∡ p₁ p₂ p₃ = ↑(π / 2) hs : (∡ p₃ p₁ p₂).sign = 1 ⊢ (∡ p₃ p₁ p₂).cos = dist p₁ p₂ / dist p₁ p₃
rw [oangle_eq_angle_of_sign_eq_one hs, angle_comm, Real.Angle.cos_coe, cos_angle_of_angle_eq_pi_div_two (angle_rev_eq_pi_div_two_of_oangle_eq_pi_div_two h), dist_comm p₁ p₃]
no goals
ba5dea16c292725b
Std.DHashMap.Raw.Const.size_insertMany_list
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/RawLemmas.lean
theorem size_insertMany_list [EquivBEq α] [LawfulHashable α] (h : m.WF) {l : List (α × β)} (distinct : l.Pairwise (fun a b => (a.1 == b.1) = false)) : (∀ (a : α), a ∈ m → (l.map Prod.fst).contains a = false) → (insertMany m l).size = m.size + l.length
α : Type u inst✝³ : BEq α inst✝² : Hashable α β : Type v m : Raw α fun x => β inst✝¹ : EquivBEq α inst✝ : LawfulHashable α h : m.WF l : List (α × β) distinct : List.Pairwise (fun a b => (a.fst == b.fst) = false) l ⊢ (∀ (a : α), a ∈ m → (List.map Prod.fst l).contains a = false) → (insertMany m l).size = m.size + l.length
simp [mem_iff_contains]
α : Type u inst✝³ : BEq α inst✝² : Hashable α β : Type v m : Raw α fun x => β inst✝¹ : EquivBEq α inst✝ : LawfulHashable α h : m.WF l : List (α × β) distinct : List.Pairwise (fun a b => (a.fst == b.fst) = false) l ⊢ (∀ (a : α), m.contains a = true → (List.map Prod.fst l).contains a = false) → (insertMany m l).size = m.size + l.length
a12d055fe38ab205
Set.mul_mem_center
Mathlib/Algebra/Group/Center.lean
theorem mul_mem_center {z₁ z₂ : M} (hz₁ : z₁ ∈ Set.center M) (hz₂ : z₂ ∈ Set.center M) : z₁ * z₂ ∈ Set.center M where comm a := calc z₁ * z₂ * a = z₂ * z₁ * a
M : Type u_1 inst✝ : Mul M z₁ z₂ : M hz₁ : z₁ ∈ center M hz₂ : z₂ ∈ center M a : M ⊢ z₁ * z₂ * a = z₂ * z₁ * a
rw [hz₁.comm]
no goals
234c184ae8bc3c45
IncidenceAlgebra.mu_toDual
Mathlib/Combinatorics/Enumerative/IncidenceAlgebra.lean
@[simp] lemma mu_toDual (a b : α) : mu 𝕜 (toDual a) (toDual b) = mu 𝕜 b a
𝕜 : Type u_2 α : Type u_5 inst✝³ : Ring 𝕜 inst✝² : PartialOrder α inst✝¹ : LocallyFiniteOrder α inst✝ : DecidableEq α this : DecidableRel fun x1 x2 => x1 ≤ x2 := Classical.decRel fun x1 x2 => x1 ≤ x2 mud : IncidenceAlgebra 𝕜 αᵒᵈ := { toFun := fun a b => (mu 𝕜) (ofDual b) (ofDual a), eq_zero_of_not_le' := ⋯ } a b : αᵒᵈ a✝ : a ≤ b ⊢ (∑ x ∈ Icc a b, if x ≤ b then mud a x else 0) = ∑ x ∈ Icc a b, mud a x
congr! with x hx
case a 𝕜 : Type u_2 α : Type u_5 inst✝³ : Ring 𝕜 inst✝² : PartialOrder α inst✝¹ : LocallyFiniteOrder α inst✝ : DecidableEq α this : DecidableRel fun x1 x2 => x1 ≤ x2 := Classical.decRel fun x1 x2 => x1 ≤ x2 mud : IncidenceAlgebra 𝕜 αᵒᵈ := { toFun := fun a b => (mu 𝕜) (ofDual b) (ofDual a), eq_zero_of_not_le' := ⋯ } a b : αᵒᵈ a✝ : a ≤ b x : αᵒᵈ hx : x ∈ Icc a b ⊢ (if x ≤ b then mud a x else 0) = mud a x
95f4eed14862eb7a
MeasureTheory.IsSetSemiring.exists_disjoint_finset_diff_eq
Mathlib/MeasureTheory/SetSemiring.lean
/-- In a semiring of sets `C`, for all set `s ∈ C` and finite set of sets `I ⊆ C`, there is a finite set of sets in `C` whose union is `s \ ⋃₀ I`. See `IsSetSemiring.disjointOfDiffUnion` for a definition that gives such a set. -/ lemma exists_disjoint_finset_diff_eq (hC : IsSetSemiring C) (hs : s ∈ C) (hI : ↑I ⊆ C) : ∃ J : Finset (Set α), ↑J ⊆ C ∧ PairwiseDisjoint (J : Set (Set α)) id ∧ s \ ⋃₀ I = ⋃₀ J
α : Type u_1 C : Set (Set α) s : Set α I : Finset (Set α) hC : IsSetSemiring C hs : s ∈ C hI : ↑I ⊆ C ⊢ ∃ J, ↑J ⊆ C ∧ (↑J).PairwiseDisjoint id ∧ s \ ⋃₀ ↑I = ⋃₀ ↑J
induction I using Finset.induction with | empty => simp only [coe_empty, sUnion_empty, diff_empty, exists_prop] refine ⟨{s}, singleton_subset_set_iff.mpr hs, ?_⟩ simp only [coe_singleton, pairwiseDisjoint_singleton, sUnion_singleton, eq_self_iff_true, and_self_iff] | @insert t I' _ h => ?_
case insert α : Type u_1 C : Set (Set α) s : Set α I : Finset (Set α) hC : IsSetSemiring C hs : s ∈ C t : Set α I' : Finset (Set α) a✝ : t ∉ I' h : ↑I' ⊆ C → ∃ J, ↑J ⊆ C ∧ (↑J).PairwiseDisjoint id ∧ s \ ⋃₀ ↑I' = ⋃₀ ↑J hI : ↑(insert t I') ⊆ C ⊢ ∃ J, ↑J ⊆ C ∧ (↑J).PairwiseDisjoint id ∧ s \ ⋃₀ ↑(insert t I') = ⋃₀ ↑J
0bd1b80571fe1ad6
ContinuousMap.exists_extension_forall_mem
Mathlib/Topology/TietzeExtension.lean
theorem ContinuousMap.exists_extension_forall_mem (he : IsClosedEmbedding e) {Y : Type v} [TopologicalSpace Y] (f : C(X₁, Y)) {t : Set Y} (hf : ∀ x, f x ∈ t) [ht : TietzeExtension.{u, v} t] : ∃ (g : C(X, Y)), (∀ x, g x ∈ t) ∧ g.comp ⟨e, he.continuous⟩ = f
X₁ : Type u₁ inst✝³ : TopologicalSpace X₁ X : Type u inst✝² : TopologicalSpace X inst✝¹ : NormalSpace X e : X₁ → X he : IsClosedEmbedding e Y : Type v inst✝ : TopologicalSpace Y f : C(X₁, Y) t : Set Y hf : ∀ (x : X₁), f x ∈ t ht : TietzeExtension ↑t g : C(X, ↑t) hg : g.comp { toFun := e, continuous_toFun := ⋯ } = { toFun := Set.codRestrict (⇑f) t hf, continuous_toFun := ⋯ } ⊢ ∀ (x : X), ({ toFun := Subtype.val, continuous_toFun := ⋯ }.comp g) x ∈ t
simp
no goals
fe8dbdda96ca6b44
ONote.nf_repr_split'
Mathlib/SetTheory/Ordinal/Notation.lean
theorem nf_repr_split' : ∀ {o o' m} [NF o], split' o = (o', m) → NF o' ∧ repr o = ω * repr o' + m | 0, o', m, _, p => by injection p; substs o' m; simp [NF.zero] | oadd e n a, o', m, h, p => by by_cases e0 : e = 0 <;> simp [e0, split, split'] at p ⊢ · rcases p with ⟨rfl, rfl⟩ simp [h.zero_of_zero e0, NF.zero] · revert p rcases h' : split' a with ⟨a', m'⟩ haveI := h.fst haveI := h.snd obtain ⟨IH₁, IH₂⟩ := nf_repr_split' h' simp only [IH₂, and_imp] intros substs o' m have : (ω : Ordinal.{0}) ^ repr e = ω ^ (1 : Ordinal.{0}) * ω ^ (repr e - 1)
case neg.mk.intro e : ONote n : ℕ+ a : ONote h : (e.oadd n a).NF e0 : ¬e = 0 a' : ONote m' : ℕ h' : a.split' = (a', m') this✝ : e.NF this : a.NF IH₁ : a'.NF IH₂ : a.repr = ω * a'.repr + ↑m' ⊢ ((e - 1).oadd n a').NF ∧ ω ^ e.repr * ↑↑n + (ω * a'.repr + ↑m') = ω * ((e - 1).oadd n a').repr + ↑m'
have : (ω : Ordinal.{0}) ^ repr e = ω ^ (1 : Ordinal.{0}) * ω ^ (repr e - 1) := by have := mt repr_inj.1 e0 rw [← opow_add, Ordinal.add_sub_cancel_of_le (one_le_iff_ne_zero.2 this)]
case neg.mk.intro e : ONote n : ℕ+ a : ONote h : (e.oadd n a).NF e0 : ¬e = 0 a' : ONote m' : ℕ h' : a.split' = (a', m') this✝¹ : e.NF this✝ : a.NF IH₁ : a'.NF IH₂ : a.repr = ω * a'.repr + ↑m' this : ω ^ e.repr = ω ^ 1 * ω ^ (e.repr - 1) ⊢ ((e - 1).oadd n a').NF ∧ ω ^ e.repr * ↑↑n + (ω * a'.repr + ↑m') = ω * ((e - 1).oadd n a').repr + ↑m'
d0a92888056b95d7
AlgebraicGeometry.Scheme.Hom.isAffineOpen_iff_of_isOpenImmersion
Mathlib/AlgebraicGeometry/AffineScheme.lean
theorem _root_.AlgebraicGeometry.Scheme.Hom.isAffineOpen_iff_of_isOpenImmersion (f : AlgebraicGeometry.Scheme.Hom X Y) [H : IsOpenImmersion f] {U : X.Opens} : IsAffineOpen (f ''ᵁ U) ↔ IsAffineOpen U
case refine_1 X Y : Scheme f : X.Hom Y H : IsOpenImmersion f U : X.Opens hU : IsAffineOpen (f ''ᵁ U) ⊢ ⇑(ConcreteCategory.hom f.base) '' Set.range ⇑(ConcreteCategory.hom (X.ofRestrict ⋯).base) = Set.range ⇑(ConcreteCategory.hom (Y.ofRestrict ⋯).base)
dsimp [Opens.coe_inclusion', Scheme.restrict]
case refine_1 X Y : Scheme f : X.Hom Y H : IsOpenImmersion f U : X.Opens hU : IsAffineOpen (f ''ᵁ U) ⊢ ⇑(ConcreteCategory.hom f.base) '' Set.range Subtype.val = Set.range Subtype.val
b53847fef8065733
Algebra.PowerBasis.norm_gen_eq_prod_roots
Mathlib/RingTheory/Norm/Basic.lean
theorem PowerBasis.norm_gen_eq_prod_roots [Algebra R F] (pb : PowerBasis R S) (hf : (minpoly R pb.gen).Splits (algebraMap R F)) : algebraMap R F (norm R pb.gen) = ((minpoly R pb.gen).aroots F).prod
R : Type u_1 S : Type u_2 inst✝⁴ : CommRing R inst✝³ : Ring S inst✝² : Algebra R S F : Type u_6 inst✝¹ : Field F inst✝ : Algebra R F pb : PowerBasis R S hf : Splits (algebraMap R F) (minpoly R pb.gen) ⊢ (algebraMap R F) ((norm R) pb.gen) = ((minpoly R pb.gen).aroots F).prod
haveI := Module.nontrivial R F
R : Type u_1 S : Type u_2 inst✝⁴ : CommRing R inst✝³ : Ring S inst✝² : Algebra R S F : Type u_6 inst✝¹ : Field F inst✝ : Algebra R F pb : PowerBasis R S hf : Splits (algebraMap R F) (minpoly R pb.gen) this : Nontrivial R ⊢ (algebraMap R F) ((norm R) pb.gen) = ((minpoly R pb.gen).aroots F).prod
7493349ed609fb88
Submonoid.mem_iSup_of_directed
Mathlib/Algebra/Group/Submonoid/Membership.lean
theorem mem_iSup_of_directed {ι} [hι : Nonempty ι] {S : ι → Submonoid M} (hS : Directed (· ≤ ·) S) {x : M} : (x ∈ ⨆ i, S i) ↔ ∃ i, x ∈ S i
case refine_2.intro.intro.intro.intro M : Type u_1 inst✝ : MulOneClass M ι : Sort u_4 hι : Nonempty ι S : ι → Submonoid M hS : Directed (fun x1 x2 => x1 ≤ x2) S x✝ x y : M i : ι hi : x ∈ S i j : ι hj : y ∈ S j k : ι hki : S i ≤ S k hkj : S j ≤ S k ⊢ ∃ i, x * y ∈ S i
exact ⟨k, (S k).mul_mem (hki hi) (hkj hj)⟩
no goals
69c68e2a28aaf244
Array.zip_map'
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Zip.lean
theorem zip_map' (f : α → β) (g : α → γ) (l : Array α) : zip (l.map f) (l.map g) = l.map fun a => (f a, g a)
case mk α : Type u_1 β : Type u_2 γ : Type u_3 f : α → β g : α → γ toList✝ : List α ⊢ (map f { toList := toList✝ }).zip (map g { toList := toList✝ }) = map (fun a => (f a, g a)) { toList := toList✝ }
simp [List.zip_map']
no goals
0d061830ab950cab
Nat.choose_mul_add
Mathlib/Data/Nat/Choose/Mul.lean
theorem choose_mul_add {m n : ℕ} (hn : n ≠ 0) : (m * n + n).choose n = (m + 1) * (m * n + n - 1).choose (n - 1)
m n : ℕ hn : n ≠ 0 p : ℕ := n - 1 hp : n = p + 1 ⊢ (m * n + n).choose n * ((m * n)! * n !) = (m + 1) * (m * n + n - 1).choose p * ((m * n)! * n !)
simp only [hp, add_succ_sub_one]
m n : ℕ hn : n ≠ 0 p : ℕ := n - 1 hp : n = p + 1 ⊢ (m * (p + 1) + (p + 1)).choose (p + 1) * ((m * (p + 1))! * (p + 1)!) = (m + 1) * (m * (p + 1) + p).choose p * ((m * (p + 1))! * (p + 1)!)
a6f9d9f9cd7f0083
LinearMap.eventually_iSup_ker_pow_eq
Mathlib/RingTheory/Noetherian/Defs.lean
lemma LinearMap.eventually_iSup_ker_pow_eq (f : M →ₗ[R] M) : ∀ᶠ n in atTop, ⨆ m, LinearMap.ker (f ^ m) = LinearMap.ker (f ^ n)
case intro R : Type u_1 M : Type u_2 inst✝³ : Semiring R inst✝² : AddCommMonoid M inst✝¹ : Module R M inst✝ : IsNoetherian R M f : M →ₗ[R] M n : ℕ hn : ∀ (m : ℕ), n ≤ m → ker (f ^ n) = ker (f ^ m) m : ℕ hm : m ≥ n l : ℕ ⊢ ker (f ^ l) ≤ ker (f ^ m)
rcases le_or_lt m l with h | h
case intro.inl R : Type u_1 M : Type u_2 inst✝³ : Semiring R inst✝² : AddCommMonoid M inst✝¹ : Module R M inst✝ : IsNoetherian R M f : M →ₗ[R] M n : ℕ hn : ∀ (m : ℕ), n ≤ m → ker (f ^ n) = ker (f ^ m) m : ℕ hm : m ≥ n l : ℕ h : m ≤ l ⊢ ker (f ^ l) ≤ ker (f ^ m) case intro.inr R : Type u_1 M : Type u_2 inst✝³ : Semiring R inst✝² : AddCommMonoid M inst✝¹ : Module R M inst✝ : IsNoetherian R M f : M →ₗ[R] M n : ℕ hn : ∀ (m : ℕ), n ≤ m → ker (f ^ n) = ker (f ^ m) m : ℕ hm : m ≥ n l : ℕ h : l < m ⊢ ker (f ^ l) ≤ ker (f ^ m)
f69959d360e4ff43
Std.Tactic.BVDecide.Normalize.BitVec.ofNatLt_reduce
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Normalize/BitVec.lean
theorem BitVec.ofNatLt_reduce (n : Nat) (h) : BitVec.ofNatLt n h = BitVec.ofNat w n
w n : Nat h : n < 2 ^ w ⊢ n#'h = BitVec.ofNat w n
simp [BitVec.ofNatLt, BitVec.ofNat, Fin.ofNat', Nat.mod_eq_of_lt h]
no goals
cf3efc0727a0b39d
CauSeq.trichotomy
Mathlib/Algebra/Order/CauSeq/Basic.lean
theorem trichotomy (f : CauSeq α abs) : Pos f ∨ LimZero f ∨ Pos (-f)
case inr.intro.intro.intro.refine_2.intro α : Type u_1 inst✝ : LinearOrderedField α f : CauSeq α abs h✝ : ¬f.LimZero K : α K0 : K > 0 hK : ∃ i, ∀ j ≥ i, K ≤ |↑f j| i : ℕ hi : ∀ j ≥ i, K ≤ |↑f j| ∧ ∀ k ≥ j, |↑f k - ↑f j| < K h : ↑f i ≤ 0 j : ℕ ij : j ≥ i this : K ≤ |↑f j| h₁ : K ≤ |↑f i| h₂ : ∀ k ≥ i, |↑f k - ↑f i| < K ⊢ ↑f j ≤ 0
rw [abs_of_nonpos h] at h₁
case inr.intro.intro.intro.refine_2.intro α : Type u_1 inst✝ : LinearOrderedField α f : CauSeq α abs h✝ : ¬f.LimZero K : α K0 : K > 0 hK : ∃ i, ∀ j ≥ i, K ≤ |↑f j| i : ℕ hi : ∀ j ≥ i, K ≤ |↑f j| ∧ ∀ k ≥ j, |↑f k - ↑f j| < K h : ↑f i ≤ 0 j : ℕ ij : j ≥ i this : K ≤ |↑f j| h₁ : K ≤ -↑f i h₂ : ∀ k ≥ i, |↑f k - ↑f i| < K ⊢ ↑f j ≤ 0
b071776ee71c7fea
Matrix.det_mul
Mathlib/LinearAlgebra/Matrix/Determinant/Basic.lean
theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i
n : Type u_2 inst✝² : DecidableEq n inst✝¹ : Fintype n R : Type v inst✝ : CommRing R M N : Matrix n n R σ : Perm n x✝ : σ ∈ univ τ : Perm n ⊢ (∏ i : n, N (σ i) i) * ↑↑(sign τ) * ∏ j : n, M (τ j) (σ j) = (∏ i : n, N (σ i) i) * (↑↑(sign σ) * ↑↑(sign ((Equiv.mulRight σ⁻¹) τ))) * ∏ i : n, M (((Equiv.mulRight σ⁻¹) τ) i) i
have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply]
n : Type u_2 inst✝² : DecidableEq n inst✝¹ : Fintype n R : Type v inst✝ : CommRing R M N : Matrix n n R σ : Perm n x✝ : σ ∈ univ τ : Perm n this : ∏ j : n, M (τ j) (σ j) = ∏ j : n, M ((τ * σ⁻¹) j) j ⊢ (∏ i : n, N (σ i) i) * ↑↑(sign τ) * ∏ j : n, M (τ j) (σ j) = (∏ i : n, N (σ i) i) * (↑↑(sign σ) * ↑↑(sign ((Equiv.mulRight σ⁻¹) τ))) * ∏ i : n, M (((Equiv.mulRight σ⁻¹) τ) i) i
396c3d4a14f910cc
Polynomial.X_pow_sub_one_eq_prod
Mathlib/RingTheory/Polynomial/Cyclotomic/Basic.lean
theorem X_pow_sub_one_eq_prod {ζ : R} {n : ℕ} (hpos : 0 < n) (h : IsPrimitiveRoot ζ n) : X ^ n - 1 = ∏ ζ ∈ nthRootsFinset n R, (X - C ζ)
R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R ζ : R n : ℕ hpos : 0 < n h : IsPrimitiveRoot ζ n ⊢ X ^ n - 1 = (Multiset.map (fun ζ => X - C ζ) (nthRoots n 1)).prod
rw [nthRoots]
R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R ζ : R n : ℕ hpos : 0 < n h : IsPrimitiveRoot ζ n ⊢ X ^ n - 1 = (Multiset.map (fun ζ => X - C ζ) (X ^ n - C 1).roots).prod
7a9fe34619bf1b6b
measurable_of_isOpen
Mathlib/MeasureTheory/Constructions/BorelSpace/Basic.lean
theorem measurable_of_isOpen {f : δ → γ} (hf : ∀ s, IsOpen s → MeasurableSet (f ⁻¹' s)) : Measurable f
γ : Type u_3 δ : Type u_5 inst✝³ : TopologicalSpace γ inst✝² : MeasurableSpace γ inst✝¹ : BorelSpace γ inst✝ : MeasurableSpace δ f : δ → γ hf : ∀ (s : Set γ), IsOpen s → MeasurableSet (f ⁻¹' s) ⊢ Measurable f
exact measurable_generateFrom hf
no goals
dde88b7086bdeb51
Multiset.le_inter
Mathlib/Data/Multiset/UnionInter.lean
lemma le_inter (h₁ : s ≤ t) (h₂ : s ≤ u) : s ≤ t ∩ u
α : Type u_1 inst✝ : DecidableEq α t : Multiset α ⊢ ∀ {s u : Multiset α}, s ≤ t → s ≤ u → s ≤ t ∩ u
refine @(Multiset.induction_on t ?_ fun a t IH => ?_) <;> intros s u h₁ h₂
case refine_1 α : Type u_1 inst✝ : DecidableEq α t s u : Multiset α h₁ : s ≤ 0 h₂ : s ≤ u ⊢ s ≤ 0 ∩ u case refine_2 α : Type u_1 inst✝ : DecidableEq α t✝ : Multiset α a : α t : Multiset α IH : ∀ {s u : Multiset α}, s ≤ t → s ≤ u → s ≤ t ∩ u s u : Multiset α h₁ : s ≤ a ::ₘ t h₂ : s ≤ u ⊢ s ≤ (a ::ₘ t) ∩ u
eac334b2668878dc
exists_norm_eq_iInf_of_complete_convex
Mathlib/Analysis/InnerProductSpace/Projection.lean
theorem exists_norm_eq_iInf_of_complete_convex {K : Set F} (ne : K.Nonempty) (h₁ : IsComplete K) (h₂ : Convex ℝ K) : ∀ u : F, ∃ v ∈ K, ‖u - v‖ = ⨅ w : K, ‖u - w‖ := fun u => by let δ := ⨅ w : K, ‖u - w‖ letI : Nonempty K := ne.to_subtype have zero_le_δ : 0 ≤ δ := le_ciInf fun _ => norm_nonneg _ have δ_le : ∀ w : K, δ ≤ ‖u - w‖ := ciInf_le ⟨0, Set.forall_mem_range.2 fun _ => norm_nonneg _⟩ have δ_le' : ∀ w ∈ K, δ ≤ ‖u - w‖ := fun w hw => δ_le ⟨w, hw⟩ -- Step 1: since `δ` is the infimum, can find a sequence `w : ℕ → K` in `K` -- such that `‖u - w n‖ < δ + 1 / (n + 1)` (which implies `‖u - w n‖ --> δ`); -- maybe this should be a separate lemma have exists_seq : ∃ w : ℕ → K, ∀ n, ‖u - w n‖ < δ + 1 / (n + 1)
F : Type u_3 inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F K : Set F ne : K.Nonempty h₁ : IsComplete K h₂ : Convex ℝ K u : F δ : ℝ := ⨅ w, ‖u - ↑w‖ this✝ : Nonempty ↑K := Set.Nonempty.to_subtype ne zero_le_δ : 0 ≤ δ δ_le : ∀ (w : ↑K), δ ≤ ‖u - ↑w‖ δ_le' : ∀ w ∈ K, δ ≤ ‖u - w‖ w : ℕ → ↑K hw : ∀ (n : ℕ), ‖u - ↑(w n)‖ < δ + 1 / (↑n + 1) norm_tendsto : Tendsto (fun n => ‖u - ↑(w n)‖) atTop (𝓝 δ) b✝ : ℕ → ℝ := fun n => 8 * δ * (1 / (↑n + 1)) + 4 * (1 / (↑n + 1)) * (1 / (↑n + 1)) p q N : ℕ hp : N ≤ p hq : N ≤ q wp : F := ↑(w p) wq : F := ↑(w q) a : F := u - wq b : F := u - wp half : ℝ := 1 / 2 div : ℝ := 1 / (↑N + 1) this : 4 * ‖u - half • (wq + wp)‖ * ‖u - half • (wq + wp)‖ + ‖wp - wq‖ * ‖wp - wq‖ = 2 * (‖a‖ * ‖a‖ + ‖b‖ * ‖b‖) eq : δ ≤ ‖u - half • (wq + wp)‖ eq₁ : 4 * δ * δ ≤ 4 * ‖u - half • (wq + wp)‖ * ‖u - half • (wq + wp)‖ eq₂ : ‖a‖ ≤ δ + div eq₂' : ‖b‖ ≤ δ + div ⊢ 2 * ((δ + div) * (δ + div) + (δ + div) * (δ + div)) - 4 * δ * δ = 8 * δ * div + 4 * div * div
ring
no goals
1aed30586c16c1ed
MeasureTheory.lintegral_trim
Mathlib/MeasureTheory/Integral/Lebesgue.lean
theorem lintegral_trim {μ : Measure α} (hm : m ≤ m0) {f : α → ℝ≥0∞} (hf : Measurable[m] f) : ∫⁻ a, f a ∂μ.trim hm = ∫⁻ a, f a ∂μ
case refine_2 α : Type u_1 m m0 : MeasurableSpace α μ : Measure α hm : m ≤ m0 f✝ : α → ℝ≥0∞ hf✝ : Measurable f✝ f g : α → ℝ≥0∞ a✝¹ : Disjoint (support f) (support g) hf : Measurable f a✝ : Measurable g hf_prop : ∫⁻ (a : α), f a ∂μ.trim hm = ∫⁻ (a : α), f a ∂μ hg_prop : ∫⁻ (a : α), g a ∂μ.trim hm = ∫⁻ (a : α), g a ∂μ ⊢ ∫⁻ (a : α), (f + g) a ∂μ.trim hm = ∫⁻ (a : α), (f + g) a ∂μ
have h_m := lintegral_add_left (μ := Measure.trim μ hm) hf g
case refine_2 α : Type u_1 m m0 : MeasurableSpace α μ : Measure α hm : m ≤ m0 f✝ : α → ℝ≥0∞ hf✝ : Measurable f✝ f g : α → ℝ≥0∞ a✝¹ : Disjoint (support f) (support g) hf : Measurable f a✝ : Measurable g hf_prop : ∫⁻ (a : α), f a ∂μ.trim hm = ∫⁻ (a : α), f a ∂μ hg_prop : ∫⁻ (a : α), g a ∂μ.trim hm = ∫⁻ (a : α), g a ∂μ h_m : ∫⁻ (a : α), f a + g a ∂μ.trim hm = ∫⁻ (a : α), f a ∂μ.trim hm + ∫⁻ (a : α), g a ∂μ.trim hm ⊢ ∫⁻ (a : α), (f + g) a ∂μ.trim hm = ∫⁻ (a : α), (f + g) a ∂μ
ba450faf648821cd
FractionalIdeal.spanSingleton_one
Mathlib/RingTheory/FractionalIdeal/Operations.lean
theorem spanSingleton_one : spanSingleton S (1 : P) = 1
case a R : Type u_1 inst✝³ : CommRing R S : Submonoid R P : Type u_2 inst✝² : CommRing P inst✝¹ : Algebra R P inst✝ : IsLocalization S P x✝ : P ⊢ ∀ (a : R), a • 1 = x✝ ↔ (algebraMap R P) a = x✝
intro x'
case a R : Type u_1 inst✝³ : CommRing R S : Submonoid R P : Type u_2 inst✝² : CommRing P inst✝¹ : Algebra R P inst✝ : IsLocalization S P x✝ : P x' : R ⊢ x' • 1 = x✝ ↔ (algebraMap R P) x' = x✝
dd02abd64f210f57
List.findIdx_cons
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Find.lean
theorem findIdx_cons (p : α → Bool) (b : α) (l : List α) : (b :: l).findIdx p = bif p b then 0 else (l.findIdx p) + 1
case nil α : Type u_1 p✝ : α → Bool b : α l : List α p : α → Bool n : Nat ⊢ findIdx.go p [] (n + 1) = findIdx.go p [] n + 1
unfold findIdx.go
case nil α : Type u_1 p✝ : α → Bool b : α l : List α p : α → Bool n : Nat ⊢ n + 1 = n + 1
5f956aebe5d1eb40
PosNum.divMod_to_nat
Mathlib/Data/Num/Lemmas.lean
theorem divMod_to_nat (d n : PosNum) : (n / d : ℕ) = (divMod d n).1 ∧ (n % d : ℕ) = (divMod d n).2
case bit1.mk.h₁ d n : PosNum q r : Num IH : ↑r + ↑d * ↑q = ↑n ∧ ↑r < ↑d ⊢ 2 * ↑r + 1 + ↑d * (↑q + ↑q) = ↑n + ↑n + 1
rw [← two_mul, ← two_mul, add_right_comm, mul_left_comm, ← mul_add, IH.1]
no goals
16ea79c4525f4751
Set.image2_eq_seq
Mathlib/Data/Set/Lattice.lean
theorem image2_eq_seq (f : α → β → γ) (s : Set α) (t : Set β) : image2 f s t = seq (f '' s) t
α : Type u_1 β : Type u_2 γ : Type u_3 f : α → β → γ s : Set α t : Set β ⊢ image2 f s t = (f '' s).seq t
rw [seq_eq_image2, image2_image_left]
no goals
c71db0f6c3851dfd
PiLp.nndist_eq_of_L1
Mathlib/Analysis/Normed/Lp/PiLp.lean
theorem nndist_eq_of_L1 (x y : PiLp 1 β) : nndist x y = ∑ i, nndist (x i) (y i) := NNReal.eq <| by push_cast; exact dist_eq_of_L1 _ _
ι : Type u_2 β : ι → Type u_4 inst✝¹ : Fintype ι inst✝ : (i : ι) → SeminormedAddCommGroup (β i) x y : PiLp 1 β ⊢ ↑(nndist x y) = ↑(∑ i : ι, nndist (x i) (y i))
push_cast
ι : Type u_2 β : ι → Type u_4 inst✝¹ : Fintype ι inst✝ : (i : ι) → SeminormedAddCommGroup (β i) x y : PiLp 1 β ⊢ dist x y = ∑ x_1 : ι, dist (x x_1) (y x_1)
abdf87638648d230
ContMDiffWithinAt.mfderivWithin
Mathlib/Geometry/Manifold/ContMDiffMFDeriv.lean
theorem ContMDiffWithinAt.mfderivWithin {x₀ : N} {f : N → M → M'} {g : N → M} {t : Set N} {u : Set M} (hf : ContMDiffWithinAt (J.prod I) I' n (Function.uncurry f) (t ×ˢ u) (x₀, g x₀)) (hg : ContMDiffWithinAt J I m g t x₀) (hx₀ : x₀ ∈ t) (hu : MapsTo g t u) (hmn : m + 1 ≤ n) (h'u : UniqueMDiffOn I u) : haveI : IsManifold I 1 M := .of_le (le_trans le_add_self hmn) haveI : IsManifold I' 1 M' := .of_le (le_trans le_add_self hmn) ContMDiffWithinAt J 𝓘(𝕜, E →L[𝕜] E') m (inTangentCoordinates I I' g (fun x => f x (g x)) (fun x => mfderivWithin I I' (f x) u (g x)) x₀) t x₀
𝕜 : Type u_1 inst✝¹⁵ : NontriviallyNormedField 𝕜 m n : WithTop ℕ∞ E : Type u_2 inst✝¹⁴ : NormedAddCommGroup E inst✝¹³ : NormedSpace 𝕜 E H : Type u_3 inst✝¹² : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝¹¹ : TopologicalSpace M inst✝¹⁰ : ChartedSpace H M E' : Type u_5 inst✝⁹ : NormedAddCommGroup E' inst✝⁸ : NormedSpace 𝕜 E' H' : Type u_6 inst✝⁷ : TopologicalSpace H' I' : ModelWithCorners 𝕜 E' H' M' : Type u_7 inst✝⁶ : TopologicalSpace M' inst✝⁵ : ChartedSpace H' M' F : Type u_8 inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace 𝕜 F G : Type u_9 inst✝² : TopologicalSpace G J : ModelWithCorners 𝕜 F G N : Type u_10 inst✝¹ : TopologicalSpace N inst✝ : ChartedSpace G N Js : IsManifold J n N Is : IsManifold I n M I's : IsManifold I' n M' x₀ : N f : N → M → M' g : N → M t : Set N u : Set M hf : ContMDiffWithinAt (J.prod I) I' n (uncurry f) (t ×ˢ u) (x₀, g x₀) hg : ContMDiffWithinAt J I m g t x₀ hx₀ : x₀ ∈ t hu : MapsTo g t u hmn : m + 1 ≤ n h'u : UniqueMDiffOn I u this✝² : IsManifold I 1 M this✝¹ : IsManifold I' 1 M' this✝ : IsManifold J 1 N this : IsManifold J m N t' : Set N := t ∩ g ⁻¹' (extChartAt I (g x₀)).source ht't : t' ⊆ t hx₀gx₀ : (x₀, g x₀) ∈ t ×ˢ u h4f✝ : ContinuousWithinAt (fun x => f x (g x)) t x₀ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f x₀ (g x₀))).source ∈ 𝓝[t] x₀ ⊢ 1 ≠ ↑⊤
simp
no goals
b011e1f26afdb375
LinearMap.finrank_maxGenEigenspace
Mathlib/LinearAlgebra/Eigenspace/Zero.lean
lemma finrank_maxGenEigenspace (φ : Module.End K M) : finrank K (φ.maxGenEigenspace 0) = natTrailingDegree (φ.charpoly)
K : Type u_2 M : Type u_3 inst✝³ : Field K inst✝² : AddCommGroup M inst✝¹ : Module K M inst✝ : Module.Finite K M φ : End K M V : Submodule K M := φ.maxGenEigenspace 0 hV : V = ⨆ n, ker (φ ^ n) W : Submodule K M := ⨅ n, range (φ ^ n) hVW : IsCompl V W ⊢ ∀ (x : M) (x_1 : ℕ), (φ ^ x_1) x = 0 → ∃ k, (φ ^ k) (φ x) = 0
intro x n hx
K : Type u_2 M : Type u_3 inst✝³ : Field K inst✝² : AddCommGroup M inst✝¹ : Module K M inst✝ : Module.Finite K M φ : End K M V : Submodule K M := φ.maxGenEigenspace 0 hV : V = ⨆ n, ker (φ ^ n) W : Submodule K M := ⨅ n, range (φ ^ n) hVW : IsCompl V W x : M n : ℕ hx : (φ ^ n) x = 0 ⊢ ∃ k, (φ ^ k) (φ x) = 0
b669b1274d0f8ced
IsLocalizedModule.lift_rank_eq
Mathlib/LinearAlgebra/Dimension/Localization.lean
lemma IsLocalizedModule.lift_rank_eq : Cardinal.lift.{v} (Module.rank S N) = Cardinal.lift.{v'} (Module.rank R M)
R : Type u S : Type u' M : Type v N : Type v' inst✝¹⁰ : CommRing R inst✝⁹ : CommRing S inst✝⁸ : AddCommGroup M inst✝⁷ : AddCommGroup N inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Algebra R S inst✝³ : Module S N inst✝² : IsScalarTower R S N p : Submonoid R inst✝¹ : IsLocalization p S f : M →ₗ[R] N inst✝ : IsLocalizedModule p f hp : p ≤ R⁰ ⊢ Cardinal.lift.{v, v'} (Module.rank S N) = Cardinal.lift.{v', v} (Module.rank R M)
cases subsingleton_or_nontrivial R
case inl R : Type u S : Type u' M : Type v N : Type v' inst✝¹⁰ : CommRing R inst✝⁹ : CommRing S inst✝⁸ : AddCommGroup M inst✝⁷ : AddCommGroup N inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Algebra R S inst✝³ : Module S N inst✝² : IsScalarTower R S N p : Submonoid R inst✝¹ : IsLocalization p S f : M →ₗ[R] N inst✝ : IsLocalizedModule p f hp : p ≤ R⁰ h✝ : Subsingleton R ⊢ Cardinal.lift.{v, v'} (Module.rank S N) = Cardinal.lift.{v', v} (Module.rank R M) case inr R : Type u S : Type u' M : Type v N : Type v' inst✝¹⁰ : CommRing R inst✝⁹ : CommRing S inst✝⁸ : AddCommGroup M inst✝⁷ : AddCommGroup N inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Algebra R S inst✝³ : Module S N inst✝² : IsScalarTower R S N p : Submonoid R inst✝¹ : IsLocalization p S f : M →ₗ[R] N inst✝ : IsLocalizedModule p f hp : p ≤ R⁰ h✝ : Nontrivial R ⊢ Cardinal.lift.{v, v'} (Module.rank S N) = Cardinal.lift.{v', v} (Module.rank R M)
85b7978350d6d455
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.deleteOne_preserves_strongAssignmentsInvariant
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/Lemmas.lean
theorem deleteOne_preserves_strongAssignmentsInvariant {n : Nat} (f : DefaultFormula n) (id : Nat) : StrongAssignmentsInvariant f → StrongAssignmentsInvariant (deleteOne f id)
n : Nat f : DefaultFormula n id : Nat hsize : f.assignments.size = n hf : ∀ (i : PosFin n) (b : Bool), hasAssignment b f.assignments[i.val] = true → unit (i, b) ∈ f.toList hsize' : (f.deleteOne id).assignments.size = n i : PosFin n b : Bool hb : hasAssignment b (f.deleteOne id).assignments[i.val] = true i_in_bounds : i.val < f.assignments.size c : DefaultClause n heq : f.clauses[id]! = some c hl : ∀ (x : PosFin n), ¬c = { clause := [(x, false)], nodupkey := ⋯, nodup := ⋯ } ∧ ¬c = { clause := [(x, true)], nodupkey := ⋯, nodup := ⋯ } x✝² : Option (DefaultClause n) val✝ : DefaultClause n x✝¹ : ∀ (l : Literal (PosFin n)) (nodupkey : ∀ (l_1 : PosFin n), ¬(l_1, true) ∈ [l] ∨ ¬(l_1, false) ∈ [l]) (nodup : [l].Nodup), val✝ = { clause := [l], nodupkey := nodupkey, nodup := nodup } → False heq✝ : some c = some val✝ x✝ : Option (DefaultClause n) heq2 : f.clauses[id]! = none ⊢ { clauses := f.clauses, rupUnits := f.rupUnits, ratUnits := f.ratUnits, assignments := f.assignments } = { clauses := f.clauses.set! id none, rupUnits := f.rupUnits, ratUnits := f.ratUnits, assignments := f.assignments }
simp [heq] at heq2
no goals
0ab20a88767ce69e
CategoryTheory.PreGaloisCategory.toAut_continuous
Mathlib/CategoryTheory/Galois/IsFundamentalgroup.lean
lemma toAut_continuous [TopologicalSpace G] [IsTopologicalGroup G] [∀ (X : C), ContinuousSMul G (F.obj X)] : Continuous (toAut F G)
case hf C : Type u₁ inst✝⁸ : Category.{u₂, u₁} C F : C ⥤ FintypeCat G : Type u_1 inst✝⁷ : Group G inst✝⁶ : (X : C) → MulAction G (F.obj X).carrier inst✝⁵ : IsNaturalSMul F G inst✝⁴ : GaloisCategory C inst✝³ : FiberFunctor F inst✝² : TopologicalSpace G inst✝¹ : IsTopologicalGroup G inst✝ : ∀ (X : C), ContinuousSMul G (F.obj X).carrier ⊢ ∀ A ∈ nhds 1, ⇑(toAut F G) ⁻¹' A ∈ nhds 1
intro A hA
case hf C : Type u₁ inst✝⁸ : Category.{u₂, u₁} C F : C ⥤ FintypeCat G : Type u_1 inst✝⁷ : Group G inst✝⁶ : (X : C) → MulAction G (F.obj X).carrier inst✝⁵ : IsNaturalSMul F G inst✝⁴ : GaloisCategory C inst✝³ : FiberFunctor F inst✝² : TopologicalSpace G inst✝¹ : IsTopologicalGroup G inst✝ : ∀ (X : C), ContinuousSMul G (F.obj X).carrier A : Set (Aut F) hA : A ∈ nhds 1 ⊢ ⇑(toAut F G) ⁻¹' A ∈ nhds 1
6f49297602372823
finprod_eq_dif
Mathlib/Algebra/BigOperators/Finprod.lean
theorem finprod_eq_dif {p : Prop} [Decidable p] (f : p → M) : ∏ᶠ i, f i = if h : p then f h else 1
case neg M : Type u_2 inst✝¹ : CommMonoid M p : Prop inst✝ : Decidable p f : p → M h : ¬p ⊢ ∏ᶠ (i : p), f i = 1
haveI : IsEmpty p := ⟨h⟩
case neg M : Type u_2 inst✝¹ : CommMonoid M p : Prop inst✝ : Decidable p f : p → M h : ¬p this : IsEmpty p ⊢ ∏ᶠ (i : p), f i = 1
79648c5d95d89f12
nhds_hasBasis_absConvex_open
Mathlib/Analysis/LocallyConvex/AbsConvex.lean
theorem nhds_hasBasis_absConvex_open : (𝓝 (0 : E)).HasBasis (fun s => (0 : E) ∈ s ∧ IsOpen s ∧ AbsConvex 𝕜 s) id
case refine_2 𝕜 : Type u_1 E : Type u_2 inst✝⁹ : NontriviallyNormedField 𝕜 inst✝⁸ : AddCommGroup E inst✝⁷ : Module 𝕜 E inst✝⁶ : Module ℝ E inst✝⁵ : SMulCommClass ℝ 𝕜 E inst✝⁴ : TopologicalSpace E inst✝³ : LocallyConvexSpace ℝ E inst✝² : ContinuousSMul 𝕜 E inst✝¹ : ContinuousSMul ℝ E inst✝ : IsTopologicalAddGroup E ⊢ ∀ (i' : Set E), 0 ∈ i' ∧ IsOpen i' ∧ AbsConvex 𝕜 i' → ∃ i, (i ∈ 𝓝 0 ∧ AbsConvex 𝕜 i) ∧ id i ⊆ id i'
rintro s ⟨hs_zero, hs_open, hs_balanced, hs_convex⟩
case refine_2.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 inst✝⁹ : NontriviallyNormedField 𝕜 inst✝⁸ : AddCommGroup E inst✝⁷ : Module 𝕜 E inst✝⁶ : Module ℝ E inst✝⁵ : SMulCommClass ℝ 𝕜 E inst✝⁴ : TopologicalSpace E inst✝³ : LocallyConvexSpace ℝ E inst✝² : ContinuousSMul 𝕜 E inst✝¹ : ContinuousSMul ℝ E inst✝ : IsTopologicalAddGroup E s : Set E hs_zero : 0 ∈ s hs_open : IsOpen s hs_balanced : Balanced 𝕜 s hs_convex : Convex ℝ s ⊢ ∃ i, (i ∈ 𝓝 0 ∧ AbsConvex 𝕜 i) ∧ id i ⊆ id s
168de266ed5a05f9
AddGrp.epi_iff_surjective
Mathlib/Algebra/Category/Grp/EpiMono.lean
theorem epi_iff_surjective : Epi f ↔ Function.Surjective f
A B : AddGrp f : A ⟶ B e' : Epi f ⊢ Epi (groupAddGroupEquivalence.inverse.map f)
apply groupAddGroupEquivalence.inverse.map_epi
no goals
faf0569f4a3fa45b
CategoryTheory.toNerve₂.mk_naturality_σ1i
Mathlib/AlgebraicTopology/SimplicialSet/NerveAdjunction.lean
lemma toNerve₂.mk_naturality_σ1i (i : Fin 2) : toNerve₂.mk.naturalityProperty F (σ₂ i)
case e_f.«1» C : Type u inst✝ : SmallCategory C X : SSet.Truncated 2 F : oneTruncation₂.obj X ⟶ ReflQuiv.of C hyp : ∀ (φ : X.obj (op { obj := [2], property := ⋯ })), F.map (ev02₂ φ) = F.map (ev01₂ φ) ≫ F.map (ev12₂ φ) ⊢ mk.naturalityProperty F (δ₂ 2 ⋯ ⋯ ≫ σ₂ ((fun i => i) ⟨1, ⋯⟩) ⋯ ⋯)
dsimp only [Fin.mk_one]
case e_f.«1» C : Type u inst✝ : SmallCategory C X : SSet.Truncated 2 F : oneTruncation₂.obj X ⟶ ReflQuiv.of C hyp : ∀ (φ : X.obj (op { obj := [2], property := ⋯ })), F.map (ev02₂ φ) = F.map (ev01₂ φ) ≫ F.map (ev12₂ φ) ⊢ mk.naturalityProperty F (δ₂ 2 ⋯ ⋯ ≫ σ₂ 1 ⋯ ⋯)
6f808b30451e4c20
MeasureTheory.Submartingale.exists_ae_tendsto_of_bdd
Mathlib/Probability/Martingale/Convergence.lean
theorem Submartingale.exists_ae_tendsto_of_bdd [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (hbdd : ∀ n, eLpNorm (f n) 1 μ ≤ R) : ∀ᵐ ω ∂μ, ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ (n : ℕ), eLpNorm (f n) 1 μ ≤ ↑R ⊢ ∀ᵐ (ω : Ω) ∂μ, ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
filter_upwards [hf.upcrossings_ae_lt_top hbdd, ae_bdd_liminf_atTop_of_eLpNorm_bdd one_ne_zero (fun n => (hf.stronglyMeasurable n).measurable.mono (ℱ.le n) le_rfl) hbdd] with ω h₁ h₂
case h Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ (n : ℕ), eLpNorm (f n) 1 μ ≤ ↑R ω : Ω h₁ : ∀ (a b : ℚ), a < b → upcrossings (↑a) (↑b) f ω < ⊤ h₂ : liminf (fun n => ‖f n ω‖ₑ) atTop < ⊤ ⊢ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
9cb271f428a74c4f
Action.SingleObj.preservesColimit
Mathlib/CategoryTheory/Action/Limits.lean
/-- `F : C ⥤ SingleObj G ⥤ V` preserves the colimit of some `K : J ⥤ C` if it does evaluated at `SingleObj.star G`. -/ private lemma SingleObj.preservesColimit (F : C ⥤ SingleObj G ⥤ V) {J : Type w₁} [Category.{w₂} J] (K : J ⥤ C) (h : PreservesColimit K (F ⋙ (evaluation (SingleObj G) V).obj (SingleObj.star G))) : PreservesColimit K F
case H V : Type (u + 1) inst✝³ : LargeCategory V G : Type u inst✝² : Monoid G C : Type t₁ inst✝¹ : Category.{t₂, t₁} C F : C ⥤ SingleObj G ⥤ V J : Type w₁ inst✝ : Category.{w₂, w₁} J K : J ⥤ C h : PreservesColimit K (F ⋙ (evaluation (SingleObj G) V).obj (SingleObj.star G)) ⊢ ∀ (k : SingleObj G), PreservesColimit K (F ⋙ (evaluation (SingleObj G) V).obj k)
intro _
case H V : Type (u + 1) inst✝³ : LargeCategory V G : Type u inst✝² : Monoid G C : Type t₁ inst✝¹ : Category.{t₂, t₁} C F : C ⥤ SingleObj G ⥤ V J : Type w₁ inst✝ : Category.{w₂, w₁} J K : J ⥤ C h : PreservesColimit K (F ⋙ (evaluation (SingleObj G) V).obj (SingleObj.star G)) k✝ : SingleObj G ⊢ PreservesColimit K (F ⋙ (evaluation (SingleObj G) V).obj k✝)
ab7f5b714fcc49f6
CategoryTheory.ShortComplex.SnakeInput.δ_apply
Mathlib/Algebra/Homology/ShortComplex/ConcreteCategory.lean
/-- This lemma allows the computation of the connecting homomorphism `D.δ` when `D : SnakeInput C` and `C` is a concrete category. -/ lemma δ_apply (x₃ : ToType (D.L₀.X₃)) (x₂ : ToType (D.L₁.X₂)) (x₁ : ToType (D.L₂.X₁)) (h₂ : D.L₁.g x₂ = D.v₀₁.τ₃ x₃) (h₁ : D.L₂.f x₁ = D.v₁₂.τ₂ x₂) : D.δ x₃ = D.v₂₃.τ₁ x₁
case a C : Type u inst✝⁶ : Category.{v, u} C FC : C → C → Type u_1 CC : C → Type v inst✝⁵ : (X Y : C) → FunLike (FC X Y) (CC X) (CC Y) inst✝⁴ : ConcreteCategory C FC inst✝³ : HasForget₂ C Ab inst✝² : Abelian C inst✝¹ : (forget₂ C Ab).Additive inst✝ : (forget₂ C Ab).PreservesHomology D : SnakeInput C x₃ : ToType D.L₀.X₃ x₂ : ToType D.L₁.X₂ x₁ : ToType D.L₂.X₁ h₂ : (ConcreteCategory.hom D.L₁.g) x₂ = (ConcreteCategory.hom D.v₀₁.τ₃) x₃ h₁ : (ConcreteCategory.hom D.L₂.f) x₁ = (ConcreteCategory.hom D.v₁₂.τ₂) x₂ this✝ : PreservesFiniteLimits (forget₂ C Ab) this : PreservesFiniteLimits (forget C) eq : (ConcreteCategory.hom D.δ) x₃ = (ConcreteCategory.hom D.v₂₃.τ₁) ((ConcreteCategory.hom D.φ₁) (Concrete.pullbackMk D.L₁.g D.v₀₁.τ₃ x₂ x₃ h₂)) eq₁ : (ConcreteCategory.hom (pullback.fst D.L₁.g D.v₀₁.τ₃)) (Concrete.pullbackMk D.L₁.g D.v₀₁.τ₃ x₂ x₃ h₂) = x₂ eq₂ : (ConcreteCategory.hom (pullback.snd D.L₁.g D.v₀₁.τ₃)) (Concrete.pullbackMk D.L₁.g D.v₀₁.τ₃ x₂ x₃ h₂) = x₃ ⊢ (ConcreteCategory.hom D.L₂.f) ((ConcreteCategory.hom D.φ₁) (Concrete.pullbackMk D.L₁.g D.v₀₁.τ₃ x₂ x₃ h₂)) = (ConcreteCategory.hom D.L₂.f) x₁
rw [← ConcreteCategory.comp_apply, φ₁_L₂_f]
case a C : Type u inst✝⁶ : Category.{v, u} C FC : C → C → Type u_1 CC : C → Type v inst✝⁵ : (X Y : C) → FunLike (FC X Y) (CC X) (CC Y) inst✝⁴ : ConcreteCategory C FC inst✝³ : HasForget₂ C Ab inst✝² : Abelian C inst✝¹ : (forget₂ C Ab).Additive inst✝ : (forget₂ C Ab).PreservesHomology D : SnakeInput C x₃ : ToType D.L₀.X₃ x₂ : ToType D.L₁.X₂ x₁ : ToType D.L₂.X₁ h₂ : (ConcreteCategory.hom D.L₁.g) x₂ = (ConcreteCategory.hom D.v₀₁.τ₃) x₃ h₁ : (ConcreteCategory.hom D.L₂.f) x₁ = (ConcreteCategory.hom D.v₁₂.τ₂) x₂ this✝ : PreservesFiniteLimits (forget₂ C Ab) this : PreservesFiniteLimits (forget C) eq : (ConcreteCategory.hom D.δ) x₃ = (ConcreteCategory.hom D.v₂₃.τ₁) ((ConcreteCategory.hom D.φ₁) (Concrete.pullbackMk D.L₁.g D.v₀₁.τ₃ x₂ x₃ h₂)) eq₁ : (ConcreteCategory.hom (pullback.fst D.L₁.g D.v₀₁.τ₃)) (Concrete.pullbackMk D.L₁.g D.v₀₁.τ₃ x₂ x₃ h₂) = x₂ eq₂ : (ConcreteCategory.hom (pullback.snd D.L₁.g D.v₀₁.τ₃)) (Concrete.pullbackMk D.L₁.g D.v₀₁.τ₃ x₂ x₃ h₂) = x₃ ⊢ (ConcreteCategory.hom D.φ₂) (Concrete.pullbackMk D.L₁.g D.v₀₁.τ₃ x₂ x₃ h₂) = (ConcreteCategory.hom D.L₂.f) x₁
ed36ceab2c4785e2
List.mk_mem_sym2
Mathlib/Data/List/Sym.lean
theorem mk_mem_sym2 {xs : List α} {a b : α} (ha : a ∈ xs) (hb : b ∈ xs) : s(a, b) ∈ xs.sym2
case cons.inl.inr.h α : Type u_1 a b : α xs : List α ih : a ∈ xs → b ∈ xs → s(a, b) ∈ xs.sym2 hb : b ∈ xs ⊢ (∃ y ∈ xs, s(a, b) = s(a, y)) ∨ s(a, b) ∈ xs.sym2
left
case cons.inl.inr.h.h α : Type u_1 a b : α xs : List α ih : a ∈ xs → b ∈ xs → s(a, b) ∈ xs.sym2 hb : b ∈ xs ⊢ ∃ y ∈ xs, s(a, b) = s(a, y)
2e917f6e418f8710
MeasureTheory.mul_le_integral_rnDeriv_of_ac
Mathlib/MeasureTheory/Decomposition/IntegralRNDeriv.lean
/-- For a convex continuous function `f` on `[0, ∞)`, if `μ` is absolutely continuous with respect to `ν`, then `(ν univ).toReal * f ((μ univ).toReal / (ν univ).toReal) ≤ ∫ x, f (μ.rnDeriv ν x).toReal ∂ν`. -/ lemma mul_le_integral_rnDeriv_of_ac [IsFiniteMeasure μ] [IsFiniteMeasure ν] (hf_cvx : ConvexOn ℝ (Ici 0) f) (hf_cont : ContinuousWithinAt f (Ici 0) 0) (hf_int : Integrable (fun x ↦ f (μ.rnDeriv ν x).toReal) ν) (hμν : μ ≪ ν) : (ν univ).toReal * f ((μ univ).toReal / (ν univ).toReal) ≤ ∫ x, f (μ.rnDeriv ν x).toReal ∂ν
α : Type u_1 mα : MeasurableSpace α μ ν : Measure α f : ℝ → ℝ inst✝¹ : IsFiniteMeasure μ inst✝ : IsFiniteMeasure ν hf_cvx : ConvexOn ℝ (Ici 0) f hf_cont : ContinuousWithinAt f (Ici 0) 0 hf_int : Integrable (fun x => f (μ.rnDeriv ν x).toReal) ν hμν : μ ≪ ν hν : ¬ν = 0 this✝ : NeZero ν μ' : Measure α := (ν univ)⁻¹ • μ ν' : Measure α := (ν univ)⁻¹ • ν this : IsFiniteMeasure μ' hμν' : μ' ≪ ν' h1' : μ'.rnDeriv ν' =ᶠ[ae ν'] (ν univ)⁻¹ • μ.rnDeriv ν' ⊢ μ'.rnDeriv ν' =ᶠ[ae ν] (ν univ)⁻¹ • μ.rnDeriv ν'
rwa [Measure.ae_smul_measure_eq] at h1'
case hc α : Type u_1 mα : MeasurableSpace α μ ν : Measure α f : ℝ → ℝ inst✝¹ : IsFiniteMeasure μ inst✝ : IsFiniteMeasure ν hf_cvx : ConvexOn ℝ (Ici 0) f hf_cont : ContinuousWithinAt f (Ici 0) 0 hf_int : Integrable (fun x => f (μ.rnDeriv ν x).toReal) ν hμν : μ ≪ ν hν : ¬ν = 0 this✝ : NeZero ν μ' : Measure α := (ν univ)⁻¹ • μ ν' : Measure α := (ν univ)⁻¹ • ν this : IsFiniteMeasure μ' hμν' : μ' ≪ ν' h1' : μ'.rnDeriv ν' =ᶠ[ae ν'] (ν univ)⁻¹ • μ.rnDeriv ν' ⊢ (ν univ)⁻¹ ≠ 0
0004fdd48300255a
Stream'.Seq.of_mem_append
Mathlib/Data/Seq/Seq.lean
theorem of_mem_append {s₁ s₂ : Seq α} {a : α} (h : a ∈ append s₁ s₂) : a ∈ s₁ ∨ a ∈ s₂
case cons.inr.intro α : Type u s₂ : Seq α a : α ss : Seq α h : a ∈ ss b : α s' : Seq α o : a = b ∨ ∀ {s₁ : Seq α}, a ∈ s₁.append s₂ → s₁.append s₂ = s' → a ∈ s₁ ∨ a ∈ s₂ c : α t₁ : Seq α m✝ : a ∈ (cons c t₁).append s₂ e : (cons c t₁).append s₂ = cons b s' this : ((cons c t₁).append s₂).destruct = (cons b s').destruct m : a ∈ t₁.append s₂ i1 : c = b i2 : t₁.append s₂ = s' ⊢ a ∈ cons c t₁ ∨ a ∈ s₂
rcases o with e' | IH
case cons.inr.intro.inl α : Type u s₂ : Seq α a : α ss : Seq α h : a ∈ ss b : α s' : Seq α c : α t₁ : Seq α m✝ : a ∈ (cons c t₁).append s₂ e : (cons c t₁).append s₂ = cons b s' this : ((cons c t₁).append s₂).destruct = (cons b s').destruct m : a ∈ t₁.append s₂ i1 : c = b i2 : t₁.append s₂ = s' e' : a = b ⊢ a ∈ cons c t₁ ∨ a ∈ s₂ case cons.inr.intro.inr α : Type u s₂ : Seq α a : α ss : Seq α h : a ∈ ss b : α s' : Seq α c : α t₁ : Seq α m✝ : a ∈ (cons c t₁).append s₂ e : (cons c t₁).append s₂ = cons b s' this : ((cons c t₁).append s₂).destruct = (cons b s').destruct m : a ∈ t₁.append s₂ i1 : c = b i2 : t₁.append s₂ = s' IH : ∀ {s₁ : Seq α}, a ∈ s₁.append s₂ → s₁.append s₂ = s' → a ∈ s₁ ∨ a ∈ s₂ ⊢ a ∈ cons c t₁ ∨ a ∈ s₂
616ea8064ee30260
List.beq_nil_iff
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Lemmas.lean
theorem beq_nil_iff [BEq α] {l : List α} : (l == []) = l.isEmpty
α : Type u_1 inst✝ : BEq α l : List α ⊢ (l == []) = l.isEmpty
cases l <;> rfl
no goals
05ad7d584fefaf2c
Set.uIcc_self
Mathlib/Order/Interval/Set/UnorderedInterval.lean
lemma uIcc_self : [[a, a]] = {a}
α : Type u_1 inst✝ : Lattice α a : α ⊢ [[a, a]] = {a}
simp [uIcc]
no goals
0006f3407891f91d
countable_right_of_prod_of_nonempty
Mathlib/Data/Countable/Basic.lean
lemma countable_right_of_prod_of_nonempty [Nonempty α] (h : Countable (α × β)) : Countable β
α : Type u β : Type v inst✝ : Nonempty α h : ¬Countable β ⊢ ¬Countable (α × β)
rw [not_countable_iff] at *
α : Type u β : Type v inst✝ : Nonempty α h : Uncountable β ⊢ Uncountable (α × β)
92df1e3fe766c302
IsLocalization.Away.commutes
Mathlib/RingTheory/Localization/Away/Basic.lean
/-- If `S₁` is the localization of `R` away from `f` and `S₂` is the localization away from `g`, then any localization `T` of `S₂` away from `f` is also a localization of `S₁` away from `g`. -/ lemma commutes {R : Type*} [CommSemiring R] (S₁ S₂ T : Type*) [CommSemiring S₁] [CommSemiring S₂] [CommSemiring T] [Algebra R S₁] [Algebra R S₂] [Algebra R T] [Algebra S₁ T] [Algebra S₂ T] [IsScalarTower R S₁ T] [IsScalarTower R S₂ T] (x y : R) [IsLocalization.Away x S₁] [IsLocalization.Away y S₂] [IsLocalization.Away (algebraMap R S₂ x) T] : IsLocalization.Away (algebraMap R S₁ y) T
case h.e.h.e'_3.h R : Type u_5 inst✝¹³ : CommSemiring R S₁ : Type u_6 S₂ : Type u_7 T : Type u_8 inst✝¹² : CommSemiring S₁ inst✝¹¹ : CommSemiring S₂ inst✝¹⁰ : CommSemiring T inst✝⁹ : Algebra R S₁ inst✝⁸ : Algebra R S₂ inst✝⁷ : Algebra R T inst✝⁶ : Algebra S₁ T inst✝⁵ : Algebra S₂ T inst✝⁴ : IsScalarTower R S₁ T inst✝³ : IsScalarTower R S₂ T x y : R inst✝² : Away x S₁ inst✝¹ : Away y S₂ inst✝ : Away ((algebraMap R S₂) x) T this : IsLocalization (Algebra.algebraMapSubmonoid S₂ (Submonoid.powers x)) T ⊢ Submonoid.powers ((algebraMap R S₁) y) = Algebra.algebraMapSubmonoid S₁ (Submonoid.powers y)
ext x
case h.e.h.e'_3.h.h R : Type u_5 inst✝¹³ : CommSemiring R S₁ : Type u_6 S₂ : Type u_7 T : Type u_8 inst✝¹² : CommSemiring S₁ inst✝¹¹ : CommSemiring S₂ inst✝¹⁰ : CommSemiring T inst✝⁹ : Algebra R S₁ inst✝⁸ : Algebra R S₂ inst✝⁷ : Algebra R T inst✝⁶ : Algebra S₁ T inst✝⁵ : Algebra S₂ T inst✝⁴ : IsScalarTower R S₁ T inst✝³ : IsScalarTower R S₂ T x✝ y : R inst✝² : Away x✝ S₁ inst✝¹ : Away y S₂ inst✝ : Away ((algebraMap R S₂) x✝) T this : IsLocalization (Algebra.algebraMapSubmonoid S₂ (Submonoid.powers x✝)) T x : S₁ ⊢ x ∈ Submonoid.powers ((algebraMap R S₁) y) ↔ x ∈ Algebra.algebraMapSubmonoid S₁ (Submonoid.powers y)
ce56f98c4df0dd7c
Cardinal.mk_subset_mk_lt_cof
Mathlib/SetTheory/Cardinal/Cofinality.lean
theorem mk_subset_mk_lt_cof {α : Type*} (h : ∀ x < #α, 2 ^ x < #α) : #{ s : Set α // #s < cof (#α).ord } = #α
case inl α : Type u_1 h : ∀ x < #α, 2 ^ x < #α ha : #α = 0 ⊢ #{ s // #↑s < (#α).ord.cof } = #α
simp [ha]
no goals
6c44834aaa390522
IsProperMap.prodMap
Mathlib/Topology/Maps/Proper/Basic.lean
/-- A binary product of proper maps is proper. -/ lemma IsProperMap.prodMap {g : Z → W} (hf : IsProperMap f) (hg : IsProperMap g) : IsProperMap (Prod.map f g)
X : Type u_1 Y : Type u_2 Z : Type u_3 W : Type u_4 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace W f : X → Y g : Z → W hf : Continuous f ∧ ∀ ⦃𝒰 : Ultrafilter X⦄ ⦃y : Y⦄, Tendsto f (↑𝒰) (𝓝 y) → ∃ x, f x = y ∧ ↑𝒰 ≤ 𝓝 x hg : Continuous g ∧ ∀ ⦃𝒰 : Ultrafilter Z⦄ ⦃y : W⦄, Tendsto g (↑𝒰) (𝓝 y) → ∃ x, g x = y ∧ ↑𝒰 ≤ 𝓝 x 𝒰 : Ultrafilter (X × Z) y : Y w : W hyw : Tendsto (fun n => (Prod.map f g n).1) (↑𝒰) (𝓝 y) ∧ Tendsto (fun n => (Prod.map f g n).2) (↑𝒰) (𝓝 w) x : X hxy : f x = y hx : ↑(Ultrafilter.map fst 𝒰) ≤ 𝓝 x ⊢ Tendsto g (↑(Ultrafilter.map snd 𝒰)) (𝓝 w)
simpa using hyw.2
no goals
137a7c14fc720f6e
Equiv.Perm.Disjoint.disjoint_cycleFactorsFinset
Mathlib/GroupTheory/Perm/Cycle/Factors.lean
theorem Disjoint.disjoint_cycleFactorsFinset {f g : Perm α} (h : Disjoint f g) : _root_.Disjoint (cycleFactorsFinset f) (cycleFactorsFinset g)
α : Type u_2 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α h : _root_.Disjoint f.support g.support x : Perm α hf : ∀ (a : α), x a ≠ a → x a = f a a : α ha : x a ≠ a hg : ∀ (a : α), x a ≠ a → x a = g a ⊢ a ∈ f.support ∩ g.support
simp [ha, ← hf a ha, ← hg a ha]
no goals
f04b07da2504b5bf
Multiset.Subset.ndunion_eq_right
Mathlib/Data/Multiset/FinsetOps.lean
theorem Subset.ndunion_eq_right {s t : Multiset α} (h : s ⊆ t) : s.ndunion t = t
α : Type u_1 inst✝ : DecidableEq α s t : Multiset α h : s ⊆ t ⊢ s.ndunion t = t
induction s, t using Quot.induction_on₂
case h α : Type u_1 inst✝ : DecidableEq α a✝ b✝ : List α h : Quot.mk (⇑(isSetoid α)) a✝ ⊆ Quot.mk (⇑(isSetoid α)) b✝ ⊢ ndunion (Quot.mk (⇑(isSetoid α)) a✝) (Quot.mk (⇑(isSetoid α)) b✝) = Quot.mk (⇑(isSetoid α)) b✝
a3900f9c2876fc14
DirichletCharacter.convolution_mul_moebius
Mathlib/NumberTheory/LSeries/Dirichlet.lean
/-- The convolution of a Dirichlet character `χ` with the twist `χ * μ` is `δ`, the indicator function of `{1}`. -/ lemma convolution_mul_moebius {n : ℕ} (χ : DirichletCharacter ℂ n) : ↗χ ⍟ (↗χ * ↗μ) = δ
n : ℕ χ : DirichletCharacter ℂ n this : (1 ⍟ fun x => ↑(μ x)) = δ ⊢ (fun n_1 => χ ↑n_1) * 1 ⍟ ((fun n_1 => χ ↑n_1) * fun n => ↑(μ n)) = δ
simpa only [mul_convolution_distrib χ 1 ↗μ, this] using mul_delta _
no goals
1c03f0abaacee504
NNReal.concaveOn_rpow
Mathlib/Analysis/Convex/SpecificFunctions/Pow.lean
lemma concaveOn_rpow {p : ℝ} (hp₀ : 0 ≤ p) (hp₁ : p ≤ 1) : ConcaveOn ℝ≥0 univ fun x : ℝ≥0 ↦ x ^ p
p : ℝ hp₀ : 0 ≤ p hp₁ : p ≤ 1 ⊢ ConcaveOn ℝ≥0 univ fun x => x ^ p
rcases eq_or_lt_of_le hp₀ with (rfl | hp₀)
case inl hp₀ : 0 ≤ 0 hp₁ : 0 ≤ 1 ⊢ ConcaveOn ℝ≥0 univ fun x => x ^ 0 case inr p : ℝ hp₀✝ : 0 ≤ p hp₁ : p ≤ 1 hp₀ : 0 < p ⊢ ConcaveOn ℝ≥0 univ fun x => x ^ p
825e34473ac8096f
List.lex_eq_decide_lex
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Lex.lean
theorem lex_eq_decide_lex [DecidableEq α] (lt : α → α → Bool) : lex l₁ l₂ lt = decide (Lex (fun x y => lt x y) l₁ l₂)
case cons.nil α : Type u_1 inst✝ : DecidableEq α lt : α → α → Bool a : α l₁ : List α ih : ∀ {l₂ : List α}, l₁.lex l₂ lt = decide (Lex (fun x y => lt x y = true) l₁ l₂) ⊢ (a :: l₁).lex [] lt = decide (Lex (fun x y => lt x y = true) (a :: l₁) [])
simp [lex]
no goals
9226dc6b1512e752
Basis.prod_apply_inl_snd
Mathlib/LinearAlgebra/Basis/Basic.lean
theorem prod_apply_inl_snd (i) : (b.prod b' (Sum.inl i)).2 = 0 := b'.repr.injective <| by ext j simp only [Basis.prod, Basis.coe_ofRepr, LinearEquiv.symm_trans_apply, LinearEquiv.prod_symm, LinearEquiv.prod_apply, b'.repr.apply_symm_apply, LinearEquiv.symm_symm, repr_self, Equiv.toFun_as_coe, Finsupp.snd_sumFinsuppLEquivProdFinsupp, LinearEquiv.map_zero, Finsupp.zero_apply] apply Finsupp.single_eq_of_ne Sum.inl_ne_inr
case h ι : Type u_1 ι' : Type u_2 R : Type u_3 M : Type u_5 M' : Type u_6 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b : Basis ι R M b' : Basis ι' R M' i : ι j : ι' ⊢ (single (Sum.inl i) 1) (Sum.inr j) = 0
apply Finsupp.single_eq_of_ne Sum.inl_ne_inr
no goals
30421bfd5860cfaf
AlgebraicIndependent.isTranscendenceBasis_iff
Mathlib/RingTheory/AlgebraicIndependent/TranscendenceBasis.lean
theorem AlgebraicIndependent.isTranscendenceBasis_iff {ι : Type w} {R : Type u} [CommRing R] [Nontrivial R] {A : Type v} [CommRing A] [Algebra R A] {x : ι → A} (i : AlgebraicIndependent R x) : IsTranscendenceBasis R x ↔ ∀ (κ : Type v) (w : κ → A) (_ : AlgebraicIndependent R w) (j : ι → κ) (_ : w ∘ j = x), Surjective j
case right ι : Type w R : Type u inst✝³ : CommRing R inst✝² : Nontrivial R A : Type v inst✝¹ : CommRing A inst✝ : Algebra R A x : ι → A i : AlgebraicIndependent R x w : Set A i' : AlgebraicIndependent R Subtype.val h : range x ≤ w p : Surjective fun i => ⟨x i, ⋯⟩ q : (fun s => Subtype.val '' s) (range fun i => ⟨x i, ⋯⟩) = (fun s => Subtype.val '' s) univ ⊢ range x = w
dsimp at q
case right ι : Type w R : Type u inst✝³ : CommRing R inst✝² : Nontrivial R A : Type v inst✝¹ : CommRing A inst✝ : Algebra R A x : ι → A i : AlgebraicIndependent R x w : Set A i' : AlgebraicIndependent R Subtype.val h : range x ≤ w p : Surjective fun i => ⟨x i, ⋯⟩ q : (Subtype.val '' range fun i => ⟨x i, ⋯⟩) = Subtype.val '' univ ⊢ range x = w
5618ce02d41569c5
Matrix.Pivot.exists_isTwoBlockDiagonal_list_transvec_mul_mul_list_transvec
Mathlib/LinearAlgebra/Matrix/Transvection.lean
theorem exists_isTwoBlockDiagonal_list_transvec_mul_mul_list_transvec (M : Matrix (Fin r ⊕ Unit) (Fin r ⊕ Unit) 𝕜) : ∃ L L' : List (TransvectionStruct (Fin r ⊕ Unit) 𝕜), IsTwoBlockDiagonal ((L.map toMatrix).prod * M * (L'.map toMatrix).prod)
case neg.intro.inl 𝕜 : Type u_3 inst✝ : Field 𝕜 r : ℕ M : Matrix (Fin r ⊕ Unit) (Fin r ⊕ Unit) 𝕜 hM : M (inr ()) (inr ()) = 0 H : (¬∀ (i : Fin r) (j : Unit), of (fun i j => M (inl i) (inr j)) i j = 0 i j) ∨ ¬∀ (i : Unit) (j : Fin r), of (fun i j => M (inr i) (inl j)) i j = 0 i j i : Fin r h : M (inl i) (inr ()) ≠ 0 M' : Matrix (Fin r ⊕ Unit) (Fin r ⊕ Unit) 𝕜 := transvection (inr ()) (inl i) 1 * M ⊢ ∃ L L', ((List.map toMatrix L).prod * M * (List.map toMatrix L').prod).IsTwoBlockDiagonal
have hM' : M' (inr unit) (inr unit) ≠ 0 := by simpa [M', hM]
case neg.intro.inl 𝕜 : Type u_3 inst✝ : Field 𝕜 r : ℕ M : Matrix (Fin r ⊕ Unit) (Fin r ⊕ Unit) 𝕜 hM : M (inr ()) (inr ()) = 0 H : (¬∀ (i : Fin r) (j : Unit), of (fun i j => M (inl i) (inr j)) i j = 0 i j) ∨ ¬∀ (i : Unit) (j : Fin r), of (fun i j => M (inr i) (inl j)) i j = 0 i j i : Fin r h : M (inl i) (inr ()) ≠ 0 M' : Matrix (Fin r ⊕ Unit) (Fin r ⊕ Unit) 𝕜 := transvection (inr ()) (inl i) 1 * M hM' : M' (inr ()) (inr ()) ≠ 0 ⊢ ∃ L L', ((List.map toMatrix L).prod * M * (List.map toMatrix L').prod).IsTwoBlockDiagonal
ef47f5e7783abe91
exists_pos_right_iff_sameRay_and_ne_zero
Mathlib/LinearAlgebra/Ray.lean
theorem exists_pos_right_iff_sameRay_and_ne_zero (hy : y ≠ 0) : (∃ r : R, 0 < r ∧ x = r • y) ↔ SameRay R x y ∧ x ≠ 0
R : Type u_1 inst✝² : LinearOrderedField R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M x y : M hy : y ≠ 0 ⊢ (∃ r, 0 < r ∧ x = r • y) ↔ SameRay R y x ∧ x ≠ 0
simp_rw [eq_comm (a := x)]
R : Type u_1 inst✝² : LinearOrderedField R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M x y : M hy : y ≠ 0 ⊢ (∃ r, 0 < r ∧ r • y = x) ↔ SameRay R y x ∧ x ≠ 0
37f9b198aa5d64db
Array.foldr_reverse'
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Lemmas.lean
theorem foldr_reverse' (l : Array α) (f : α → β → β) (b) (w : start = l.size) : l.reverse.foldr f b start 0 = l.foldl (fun x y => f y x) b
α : Type u_1 β : Type u_2 start : Nat l : Array α f : α → β → β b : β w : start = l.size ⊢ foldr f b l.reverse start = foldl (fun x y => f y x) b l
simp [w, foldl_eq_foldlM, foldr_eq_foldrM]
no goals
cf5c1b5bec5a35f5
ModelWithCorners.interior_disjointUnion
Mathlib/Geometry/Manifold/IsManifold/InteriorBoundary.lean
lemma interior_disjointUnion : ModelWithCorners.interior (I := I) (M ⊕ M') = Sum.inl '' (ModelWithCorners.interior (I := I) M) ∪ Sum.inr '' (ModelWithCorners.interior (I := I) M')
𝕜 : Type u_1 inst✝⁷ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace 𝕜 E H : Type u_3 inst✝⁴ : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝³ : TopologicalSpace M inst✝² : ChartedSpace H M M' : Type u_5 inst✝¹ : TopologicalSpace M' inst✝ : ChartedSpace H M' p : M ⊕ M' hp : p ∈ Sum.inl '' ModelWithCorners.interior M ∪ Sum.inr '' ModelWithCorners.interior M' h : p.isLeft = true x : M := p.getLeft h x_eq : x = p.getLeft h ⊢ p ∈ Sum.inl '' ModelWithCorners.interior M
obtain (good | ⟨y, hy, hxy⟩) := hp
case inl 𝕜 : Type u_1 inst✝⁷ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace 𝕜 E H : Type u_3 inst✝⁴ : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝³ : TopologicalSpace M inst✝² : ChartedSpace H M M' : Type u_5 inst✝¹ : TopologicalSpace M' inst✝ : ChartedSpace H M' p : M ⊕ M' h : p.isLeft = true x : M := p.getLeft h x_eq : x = p.getLeft h good : p ∈ Sum.inl '' ModelWithCorners.interior M ⊢ p ∈ Sum.inl '' ModelWithCorners.interior M case inr.intro.intro 𝕜 : Type u_1 inst✝⁷ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace 𝕜 E H : Type u_3 inst✝⁴ : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝³ : TopologicalSpace M inst✝² : ChartedSpace H M M' : Type u_5 inst✝¹ : TopologicalSpace M' inst✝ : ChartedSpace H M' p : M ⊕ M' h : p.isLeft = true x : M := p.getLeft h x_eq : x = p.getLeft h y : M' hy : y ∈ ModelWithCorners.interior M' hxy : Sum.inr y = p ⊢ p ∈ Sum.inl '' ModelWithCorners.interior M
a37cb5a73686bbc7
EisensteinSeries.div_max_sq_ge_one
Mathlib/NumberTheory/ModularForms/EisensteinSeries/UniformConvergence.lean
lemma div_max_sq_ge_one (x : Fin 2 → ℤ) (hx : x ≠ 0) : 1 ≤ (x 0 / ‖x‖) ^ 2 ∨ 1 ≤ (x 1 / ‖x‖) ^ 2
x : Fin 2 → ℤ hx : x ≠ 0 ⊢ 1 ≤ (↑(x 0) / ‖x‖) ^ 2 ∨ 1 ≤ (↑(x 1) / ‖x‖) ^ 2
refine (max_choice (x 0).natAbs (x 1).natAbs).imp (fun H0 ↦ ?_) (fun H1 ↦ ?_)
case refine_1 x : Fin 2 → ℤ hx : x ≠ 0 H0 : (x 0).natAbs ⊔ (x 1).natAbs = (x 0).natAbs ⊢ 1 ≤ (↑(x 0) / ‖x‖) ^ 2 case refine_2 x : Fin 2 → ℤ hx : x ≠ 0 H1 : (x 0).natAbs ⊔ (x 1).natAbs = (x 1).natAbs ⊢ 1 ≤ (↑(x 1) / ‖x‖) ^ 2
897aecfdc409c454
VectorFourier.norm_fourierPowSMulRight_iteratedFDeriv_fourierIntegral_le
Mathlib/Analysis/Fourier/FourierTransformDeriv.lean
theorem norm_fourierPowSMulRight_iteratedFDeriv_fourierIntegral_le [FiniteDimensional ℝ V] {μ : Measure V} [Measure.IsAddHaarMeasure μ] {K N : ℕ∞} (hf : ContDiff ℝ N f) (h'f : ∀ (k n : ℕ), k ≤ K → n ≤ N → Integrable (fun v ↦ ‖v‖^k * ‖iteratedFDeriv ℝ n f v‖) μ) {k n : ℕ} (hk : k ≤ K) (hn : n ≤ N) {w : W} : ‖fourierPowSMulRight (-L.flip) (iteratedFDeriv ℝ k (fourierIntegral 𝐞 μ L.toLinearMap₂ f)) w n‖ ≤ (2 * π) ^ k * (2 * k + 2) ^ n * ‖L‖ ^ k * ∑ p ∈ Finset.range (k + 1) ×ˢ Finset.range (n + 1), ∫ v, ‖v‖ ^ p.1 * ‖iteratedFDeriv ℝ p.2 f v‖ ∂μ
E : Type u_1 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedSpace ℂ E V : Type u_2 W : Type u_3 inst✝⁷ : NormedAddCommGroup V inst✝⁶ : NormedSpace ℝ V inst✝⁵ : NormedAddCommGroup W inst✝⁴ : NormedSpace ℝ W L : V →L[ℝ] W →L[ℝ] ℝ f : V → E inst✝³ : MeasurableSpace V inst✝² : BorelSpace V inst✝¹ : FiniteDimensional ℝ V μ : Measure V inst✝ : μ.IsAddHaarMeasure K N : ℕ∞ hf : ContDiff ℝ (↑N) f h'f : ∀ (k n : ℕ), ↑k ≤ K → ↑n ≤ N → Integrable (fun v => ‖v‖ ^ k * ‖iteratedFDeriv ℝ n f v‖) μ k n : ℕ hk : ↑k ≤ K hn : ↑n ≤ N w : W ⊢ ∫ (v : V), ‖iteratedFDeriv ℝ n (fun v => fourierPowSMulRight L f v k) v‖ ∂μ ≤ (2 * π) ^ k * (2 * ↑k + 2) ^ n * ‖L‖ ^ k * ∑ p ∈ Finset.range (k + 1) ×ˢ Finset.range (n + 1), ∫ (v : V), ‖v‖ ^ p.1 * ‖iteratedFDeriv ℝ p.2 f v‖ ∂μ
have I p (hp : p ∈ Finset.range (k + 1) ×ˢ Finset.range (n + 1)) : Integrable (fun v ↦ ‖v‖ ^ p.1 * ‖iteratedFDeriv ℝ p.2 f v‖) μ := by simp only [Finset.mem_product, Finset.mem_range_succ_iff] at hp exact h'f _ _ (le_trans (by simpa using hp.1) hk) (le_trans (by simpa using hp.2) hn)
E : Type u_1 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedSpace ℂ E V : Type u_2 W : Type u_3 inst✝⁷ : NormedAddCommGroup V inst✝⁶ : NormedSpace ℝ V inst✝⁵ : NormedAddCommGroup W inst✝⁴ : NormedSpace ℝ W L : V →L[ℝ] W →L[ℝ] ℝ f : V → E inst✝³ : MeasurableSpace V inst✝² : BorelSpace V inst✝¹ : FiniteDimensional ℝ V μ : Measure V inst✝ : μ.IsAddHaarMeasure K N : ℕ∞ hf : ContDiff ℝ (↑N) f h'f : ∀ (k n : ℕ), ↑k ≤ K → ↑n ≤ N → Integrable (fun v => ‖v‖ ^ k * ‖iteratedFDeriv ℝ n f v‖) μ k n : ℕ hk : ↑k ≤ K hn : ↑n ≤ N w : W I : ∀ p ∈ Finset.range (k + 1) ×ˢ Finset.range (n + 1), Integrable (fun v => ‖v‖ ^ p.1 * ‖iteratedFDeriv ℝ p.2 f v‖) μ ⊢ ∫ (v : V), ‖iteratedFDeriv ℝ n (fun v => fourierPowSMulRight L f v k) v‖ ∂μ ≤ (2 * π) ^ k * (2 * ↑k + 2) ^ n * ‖L‖ ^ k * ∑ p ∈ Finset.range (k + 1) ×ˢ Finset.range (n + 1), ∫ (v : V), ‖v‖ ^ p.1 * ‖iteratedFDeriv ℝ p.2 f v‖ ∂μ
8318f0ae43be69ad
BoundedContinuousFunction.dist_extend_extend
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
theorem dist_extend_extend (f : α ↪ δ) (g₁ g₂ : α →ᵇ β) (h₁ h₂ : δ →ᵇ β) : dist (g₁.extend f h₁) (g₂.extend f h₂) = max (dist g₁ g₂) (dist (h₁.restrict (range f)ᶜ) (h₂.restrict (range f)ᶜ))
case refine_3 α : Type u β : Type v inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β δ : Type u_2 inst✝¹ : TopologicalSpace δ inst✝ : DiscreteTopology δ f : α ↪ δ g₁ g₂ : α →ᵇ β h₁ h₂ : δ →ᵇ β x : ↑(range ⇑f)ᶜ ⊢ dist ((h₁.restrict (range ⇑f)ᶜ) x) ((h₂.restrict (range ⇑f)ᶜ) x) ≤ dist (extend f g₁ h₁) (extend f g₂ h₂)
calc dist (h₁ x) (h₂ x) = dist (extend f g₁ h₁ x) (extend f g₂ h₂ x) := by rw [extend_apply' x.coe_prop, extend_apply' x.coe_prop] _ ≤ _ := dist_coe_le_dist _
no goals
45cb1096070ba961
Int.not_even_iff
Mathlib/Algebra/Group/Int/Even.lean
lemma not_even_iff : ¬Even n ↔ n % 2 = 1
n : ℤ ⊢ ¬Even n ↔ n % 2 = 1
rw [even_iff, emod_two_ne_zero]
no goals
2a3dce372a304bf1
Submodule.exists_fg_le_eq_rTensor_subtype
Mathlib/RingTheory/Finiteness/TensorProduct.lean
theorem exists_fg_le_eq_rTensor_subtype (x : N ⊗ M) : ∃ (J : Submodule R N) (_ : J.FG) (y : J ⊗ M), x = rTensor M J.subtype y
case add.intro.intro.intro.intro.intro.intro R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : CommSemiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid N inst✝¹ : Module R M inst✝ : Module R N J₁ : Submodule R N fg₁ : J₁.FG y₁ : ↥J₁ ⊗[R] M J₂ : Submodule R N fg₂ : J₂.FG y₂ : ↥J₂ ⊗[R] M ⊢ ∃ J, ∃ (_ : J.FG), ∃ y, (rTensor M J₁.subtype) y₁ + (rTensor M J₂.subtype) y₂ = (rTensor M J.subtype) y
refine ⟨J₁ ⊔ J₂, fg₁.sup fg₂, rTensor M (J₁.inclusion le_sup_left) y₁ + rTensor M (J₂.inclusion le_sup_right) y₂, ?_⟩
case add.intro.intro.intro.intro.intro.intro R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : CommSemiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid N inst✝¹ : Module R M inst✝ : Module R N J₁ : Submodule R N fg₁ : J₁.FG y₁ : ↥J₁ ⊗[R] M J₂ : Submodule R N fg₂ : J₂.FG y₂ : ↥J₂ ⊗[R] M ⊢ (rTensor M J₁.subtype) y₁ + (rTensor M J₂.subtype) y₂ = (rTensor M (J₁ ⊔ J₂).subtype) ((rTensor M (inclusion ⋯)) y₁ + (rTensor M (inclusion ⋯)) y₂)
24b6c2f045083d77
List.prev_reverse_eq_next
Mathlib/Data/List/Cycle.lean
theorem prev_reverse_eq_next (l : List α) (h : Nodup l) (x : α) (hx : x ∈ l) : prev l.reverse x (mem_reverse.mpr hx) = next l x hx
α : Type u_1 inst✝ : DecidableEq α l : List α h : l.Nodup x : α hx : x ∈ l ⊢ l.reverse.prev x ⋯ = l.next x hx
obtain ⟨k, hk, rfl⟩ := getElem_of_mem hx
case intro.intro α : Type u_1 inst✝ : DecidableEq α l : List α h : l.Nodup k : ℕ hk : k < l.length hx : l[k] ∈ l ⊢ l.reverse.prev l[k] ⋯ = l.next l[k] hx
223a9f0719f3b161
LinearMap.mem_submoduleImage
Mathlib/Algebra/Module/Submodule/Range.lean
theorem mem_submoduleImage {M' : Type*} [AddCommMonoid M'] [Module R M'] {O : Submodule R M} {ϕ : O →ₗ[R] M'} {N : Submodule R M} {x : M'} : x ∈ ϕ.submoduleImage N ↔ ∃ (y : _) (yO : y ∈ O), y ∈ N ∧ ϕ ⟨y, yO⟩ = x
case refine_1 R : Type u_1 M : Type u_5 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M M' : Type u_10 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' O : Submodule R M ϕ : ↥O →ₗ[R] M' N : Submodule R M x : M' ⊢ (∃ y, O.subtype y ∈ N ∧ ϕ y = x) → ∃ y, ∃ (yO : y ∈ O), y ∈ N ∧ ϕ ⟨y, yO⟩ = x
rintro ⟨⟨y, yO⟩, yN : y ∈ N, h⟩
case refine_1.intro.mk.intro R : Type u_1 M : Type u_5 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M M' : Type u_10 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' O : Submodule R M ϕ : ↥O →ₗ[R] M' N : Submodule R M x : M' y : M yO : y ∈ O yN : y ∈ N h : ϕ ⟨y, yO⟩ = x ⊢ ∃ y, ∃ (yO : y ∈ O), y ∈ N ∧ ϕ ⟨y, yO⟩ = x
956940ccbba13812
PiTensorProduct.algebraMap_apply
Mathlib/RingTheory/PiTensorProduct.lean
lemma algebraMap_apply (r : R') (i : ι) [DecidableEq ι] : algebraMap R' (⨂[R] i, A i) r = tprod R (Pi.mulSingle i (algebraMap R' (A i) r))
ι : Type u_1 R' : Type u_2 R : Type u_3 A : ι → Type u_4 inst✝⁷ : CommSemiring R' inst✝⁶ : CommSemiring R inst✝⁵ : (i : ι) → Semiring (A i) inst✝⁴ : Algebra R' R inst✝³ : (i : ι) → Algebra R (A i) inst✝² : (i : ι) → Algebra R' (A i) inst✝¹ : ∀ (i : ι), IsScalarTower R' R (A i) r : R' i : ι inst✝ : DecidableEq ι ⊢ Pi.mulSingle i (r • 1) = update (fun i => 1) i (r • 1)
rfl
no goals
182d0b1194f24ced
SzemerediRegularity.card_chunk
Mathlib/Combinatorics/SimpleGraph/Regularity/Chunk.lean
theorem card_chunk (hm : m ≠ 0) : #(chunk hP G ε hU).parts = 4 ^ #P.parts
case neg α : Type u_1 inst✝² : Fintype α inst✝¹ : DecidableEq α P : Finpartition univ hP : P.IsEquipartition G : SimpleGraph α inst✝ : DecidableRel G.Adj ε : ℝ U : Finset α hU : U ∈ P.parts hm : m ≠ 0 h✝ : ¬#U = m * 4 ^ #P.parts + (Fintype.card α / #P.parts - m * 4 ^ #P.parts) ⊢ #(equitabilise ⋯).parts = 4 ^ #P.parts
rw [card_parts_equitabilise _ _ hm, tsub_add_cancel_of_le a_add_one_le_four_pow_parts_card]
no goals
ed00f8abb571263d
Subgroup.exists_pow_mem_of_index_ne_zero
Mathlib/GroupTheory/Index.lean
@[to_additive] lemma exists_pow_mem_of_index_ne_zero (h : H.index ≠ 0) (a : G) : ∃ n, 0 < n ∧ n ≤ H.index ∧ a ^ n ∈ H
G : Type u_1 inst✝ : Group G H : Subgroup G h : H.index ≠ 0 a : G n₁ n₂ : ℕ hlt : n₁ < n₂ hle : n₂ ≤ H.index he : ↑(a ^ n₂) = ↑(a ^ n₁) ⊢ n₂ - n₁ ≤ H.index
omega
no goals
e678927c1f4a5913
minpolyDiv_monic
Mathlib/FieldTheory/Minpoly/MinpolyDiv.lean
lemma minpolyDiv_monic : Monic (minpolyDiv R x)
R : Type u_2 S : Type u_1 inst✝² : CommRing R inst✝¹ : CommRing S inst✝ : Algebra R S x : S hx : IsIntegral R x a✝ : Nontrivial S this : (minpolyDiv R x).leadingCoeff * (X - C x).leadingCoeff = 1 ⊢ (minpolyDiv R x).Monic
simpa using this
no goals
2b365b24f6e61a1f
Polynomial.eq_of_degree_sub_lt_of_eval_finset_eq
Mathlib/LinearAlgebra/Lagrange.lean
theorem eq_of_degree_sub_lt_of_eval_finset_eq (degree_fg_lt : (f - g).degree < #s) (eval_fg : ∀ x ∈ s, f.eval x = g.eval x) : f = g
R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R f g : R[X] s : Finset R degree_fg_lt : (f - g).degree < ↑(#s) eval_fg : ∀ x ∈ s, eval x f = eval x g ⊢ ∀ x ∈ s, eval x f = eval x g
exact eval_fg
no goals
a45b7536783fc75f
Vector.eq_push_append_of_mem
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Vector/Lemmas.lean
theorem eq_push_append_of_mem {xs : Vector α n} {x : α} (h : x ∈ xs) : ∃ (n₁ n₂ : Nat) (as : Vector α n₁) (bs : Vector α n₂) (h : n₁ + 1 + n₂ = n), xs = (as.push x ++ bs).cast h ∧ x ∉ as
case mk.intro.intro.intro α : Type u_1 x : α xs : Array α h✝ : x ∈ { toArray := xs, size_toArray := ⋯ } as bs : Array α h : xs = as.push x ++ bs w : ¬x ∈ as ⊢ ∃ n₁ n₂ as bs h, { toArray := xs, size_toArray := ⋯ } = Vector.cast h (as.push x ++ bs) ∧ ¬x ∈ as
obtain rfl := h
case mk.intro.intro.intro α : Type u_1 x : α as bs : Array α w : ¬x ∈ as h : x ∈ { toArray := as.push x ++ bs, size_toArray := ⋯ } ⊢ ∃ n₁ n₂ as_1 bs_1 h, { toArray := as.push x ++ bs, size_toArray := ⋯ } = Vector.cast h (as_1.push x ++ bs_1) ∧ ¬x ∈ as_1
10d47003372b5a57
Polynomial.map_mod_divByMonic
Mathlib/Algebra/Polynomial/Div.lean
theorem map_mod_divByMonic [Ring S] (f : R →+* S) (hq : Monic q) : (p /ₘ q).map f = p.map f /ₘ q.map f ∧ (p %ₘ q).map f = p.map f %ₘ q.map f
R : Type u S : Type v inst✝¹ : Ring R p q : R[X] inst✝ : Ring S f : R →+* S hq : q.Monic ⊢ map f (p /ₘ q) = map f p /ₘ map f q ∧ map f (p %ₘ q) = map f p %ₘ map f q
nontriviality S
R : Type u S : Type v inst✝¹ : Ring R p q : R[X] inst✝ : Ring S f : R →+* S hq : q.Monic a✝ : Nontrivial S ⊢ map f (p /ₘ q) = map f p /ₘ map f q ∧ map f (p %ₘ q) = map f p %ₘ map f q
bad20178d8d590e7
AnalyticOnNhd.isClopen_setOf_order_eq_top
Mathlib/Analysis/Analytic/Order.lean
theorem isClopen_setOf_order_eq_top (h₁f : AnalyticOnNhd 𝕜 f U) : IsClopen { u : U | (h₁f u.1 u.2).order = ⊤ }
case right 𝕜 : Type u_1 inst✝² : NontriviallyNormedField 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E f : 𝕜 → E U : Set 𝕜 h₁f : AnalyticOnNhd 𝕜 f U z : ↑U hz : ∃ t, (∀ y ∈ t, f y = 0) ∧ IsOpen t ∧ ↑z ∈ t ⊢ ∃ x ⊆ {x | ∃ t, (∀ y ∈ t, f y = 0) ∧ IsOpen t ∧ ↑x ∈ t}, IsOpen x ∧ z ∈ x
obtain ⟨t', h₁t', h₂t', h₃t'⟩ := hz
case right.intro.intro.intro 𝕜 : Type u_1 inst✝² : NontriviallyNormedField 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E f : 𝕜 → E U : Set 𝕜 h₁f : AnalyticOnNhd 𝕜 f U z : ↑U t' : Set 𝕜 h₁t' : ∀ y ∈ t', f y = 0 h₂t' : IsOpen t' h₃t' : ↑z ∈ t' ⊢ ∃ x ⊆ {x | ∃ t, (∀ y ∈ t, f y = 0) ∧ IsOpen t ∧ ↑x ∈ t}, IsOpen x ∧ z ∈ x
d5d16b4618a2912b
CoxeterSystem.length_eq_one_iff
Mathlib/GroupTheory/Coxeter/Length.lean
theorem length_eq_one_iff {w : W} : ℓ w = 1 ↔ ∃ i : B, w = s i
case mpr B : Type u_1 W : Type u_2 inst✝ : Group W M : CoxeterMatrix B cs : CoxeterSystem M W w : W ⊢ (∃ i, w = cs.simple i) → cs.length w = 1
rintro ⟨i, rfl⟩
case mpr.intro B : Type u_1 W : Type u_2 inst✝ : Group W M : CoxeterMatrix B cs : CoxeterSystem M W i : B ⊢ cs.length (cs.simple i) = 1
cc0b68a3032cf331
HolderOnWith.hausdorffMeasure_image_le
Mathlib/MeasureTheory/Measure/Hausdorff.lean
theorem hausdorffMeasure_image_le (h : HolderOnWith C r f s) (hr : 0 < r) {d : ℝ} (hd : 0 ≤ d) : μH[d] (f '' s) ≤ (C : ℝ≥0∞) ^ d * μH[r * d] s
case inl.inr.intro X : Type u_2 Y : Type u_3 inst✝⁵ : EMetricSpace X inst✝⁴ : EMetricSpace Y inst✝³ : MeasurableSpace X inst✝² : BorelSpace X inst✝¹ : MeasurableSpace Y inst✝ : BorelSpace Y r : ℝ≥0 f : X → Y s : Set X hr : 0 < r d : ℝ hd : 0 ≤ d h : HolderOnWith 0 r f s x : X hx : x ∈ s this : f '' s = {f x} ⊢ μH[d] (f '' s) ≤ ↑0 ^ d * μH[↑r * d] s
rw [this]
case inl.inr.intro X : Type u_2 Y : Type u_3 inst✝⁵ : EMetricSpace X inst✝⁴ : EMetricSpace Y inst✝³ : MeasurableSpace X inst✝² : BorelSpace X inst✝¹ : MeasurableSpace Y inst✝ : BorelSpace Y r : ℝ≥0 f : X → Y s : Set X hr : 0 < r d : ℝ hd : 0 ≤ d h : HolderOnWith 0 r f s x : X hx : x ∈ s this : f '' s = {f x} ⊢ μH[d] {f x} ≤ ↑0 ^ d * μH[↑r * d] s
cf145f55a786d8cb
TopologicalSpace.isTopologicalBasis_of_subbasis
Mathlib/Topology/Bases.lean
theorem isTopologicalBasis_of_subbasis {s : Set (Set α)} (hs : t = generateFrom s) : IsTopologicalBasis ((fun f => ⋂₀ f) '' { f : Set (Set α) | f.Finite ∧ f ⊆ s })
case refine_3.intro.intro.intro α : Type u s : Set (Set α) this : TopologicalSpace α := generateFrom s t : Set (Set α) hft : t.Finite htb : t ⊆ s ⊢ IsOpen ((fun f => ⋂₀ f) t)
exact hft.isOpen_sInter fun s hs ↦ GenerateOpen.basic _ <| htb hs
no goals
0ac20a1a81c48653
LinearRecurrence.eq_mk_of_is_sol_of_eq_init
Mathlib/Algebra/LinearRecurrence.lean
theorem eq_mk_of_is_sol_of_eq_init {u : ℕ → α} {init : Fin E.order → α} (h : E.IsSolution u) (heq : ∀ n : Fin E.order, u n = init n) : ∀ n, u n = E.mkSol init n
case neg.e_f.h α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α u : ℕ → α init : Fin E.order → α h : E.IsSolution u heq : ∀ (n : Fin E.order), u ↑n = init n n : ℕ h' : ¬n < E.order k : Fin E.order this : n - E.order + ↑k < n ⊢ E.coeffs k * E.mkSol init (n - E.order + ↑k) = E.coeffs k * E.mkSol init (n - E.order + E.order - E.order + ↑k)
simp
no goals
c844dd4d1e0a7cc3
AddAction.automorphize_smul_left
Mathlib/Topology/Algebra/InfiniteSum/Module.lean
/-- Automorphization of a function into an `R`-`Module` distributes, that is, commutes with the `R`-scalar multiplication. -/ lemma AddAction.automorphize_smul_left [AddGroup α] [AddAction α β] (f : β → M) (g : Quotient (AddAction.orbitRel α β) → R) : AddAction.automorphize ((g ∘ (@Quotient.mk' _ (_))) • f) = g • (AddAction.automorphize f : Quotient (AddAction.orbitRel α β) → M)
α : Type u_1 β : Type u_2 M : Type u_11 inst✝⁷ : TopologicalSpace M inst✝⁶ : AddCommMonoid M inst✝⁵ : T2Space M R : Type u_12 inst✝⁴ : DivisionRing R inst✝³ : Module R M inst✝² : ContinuousConstSMul R M inst✝¹ : AddGroup α inst✝ : AddAction α β f : β → M g : Quotient (orbitRel α β) → R x : Quotient (orbitRel α β) b : β π : β → Quotient (orbitRel α β) := Quotient.mk (orbitRel α β) a : α ⊢ (orbitRel α β) (a +ᵥ b) b
use a
no goals
f7dea7bb2091769a
TopologicalSpace.Opens.isCompactElement_iff
Mathlib/Topology/Sets/Opens.lean
theorem isCompactElement_iff (s : Opens α) : CompleteLattice.IsCompactElement s ↔ IsCompact (s : Set α)
case refine_1.intro α : Type u_2 inst✝ : TopologicalSpace α s : Opens α H : ∀ (ι : Type u_2) (s_1 : ι → Opens α), s ≤ iSup s_1 → ∃ t, s ≤ t.sup s_1 ι : Type u_2 U : ι → Set α hU : ∀ (i : ι), IsOpen (U i) hU' : ↑s ⊆ ⋃ i, U i t : Finset ι ht : s ≤ t.sup fun i => { carrier := U i, is_open' := ⋯ } ⊢ ∃ t, ↑s ⊆ ⋃ i ∈ t, U i
refine ⟨t, Set.Subset.trans ht ?_⟩
case refine_1.intro α : Type u_2 inst✝ : TopologicalSpace α s : Opens α H : ∀ (ι : Type u_2) (s_1 : ι → Opens α), s ≤ iSup s_1 → ∃ t, s ≤ t.sup s_1 ι : Type u_2 U : ι → Set α hU : ∀ (i : ι), IsOpen (U i) hU' : ↑s ⊆ ⋃ i, U i t : Finset ι ht : s ≤ t.sup fun i => { carrier := U i, is_open' := ⋯ } ⊢ ↑(t.sup fun i => { carrier := U i, is_open' := ⋯ }) ⊆ ⋃ i ∈ t, U i
1b1f1c194abbad2e
IsFractionRing.stabilizerHom_surjective
Mathlib/RingTheory/Invariant.lean
theorem IsFractionRing.stabilizerHom_surjective : Function.Surjective (stabilizerHom G P Q K L)
A : Type u_1 B : Type u_2 inst✝¹⁹ : CommRing A inst✝¹⁸ : CommRing B inst✝¹⁷ : Algebra A B G : Type u_3 inst✝¹⁶ : Group G inst✝¹⁵ : Finite G inst✝¹⁴ : MulSemiringAction G B inst✝¹³ : SMulCommClass G A B P : Ideal A Q : Ideal B inst✝¹² : Q.IsPrime inst✝¹¹ : Q.LiesOver P K : Type u_4 L : Type u_5 inst✝¹⁰ : Field K inst✝⁹ : Field L inst✝⁸ : Algebra (A ⧸ P) K inst✝⁷ : Algebra (B ⧸ Q) L inst✝⁶ : Algebra (A ⧸ P) L inst✝⁵ : IsScalarTower (A ⧸ P) (B ⧸ Q) L inst✝⁴ : Algebra K L inst✝³ : IsScalarTower (A ⧸ P) K L inst✝² : Algebra.IsInvariant A B G inst✝¹ : IsFractionRing (A ⧸ P) K inst✝ : IsFractionRing (B ⧸ Q) L x✝ : MulSemiringAction (↥(MulAction.stabilizer G Q)) L := MulSemiringAction.compHom L (stabilizerHom G P Q K L) f : L ≃ₐ[K] L ⊢ ∃ a, (stabilizerHom G P Q K L) a = f
obtain ⟨g, hg⟩ := FixedPoints.toAlgAut_surjective (MulAction.stabilizer G Q) L (AlgEquiv.ofRingEquiv (f := f) (fun x ↦ fixed_of_fixed2 G P Q K L f x x.2))
case intro A : Type u_1 B : Type u_2 inst✝¹⁹ : CommRing A inst✝¹⁸ : CommRing B inst✝¹⁷ : Algebra A B G : Type u_3 inst✝¹⁶ : Group G inst✝¹⁵ : Finite G inst✝¹⁴ : MulSemiringAction G B inst✝¹³ : SMulCommClass G A B P : Ideal A Q : Ideal B inst✝¹² : Q.IsPrime inst✝¹¹ : Q.LiesOver P K : Type u_4 L : Type u_5 inst✝¹⁰ : Field K inst✝⁹ : Field L inst✝⁸ : Algebra (A ⧸ P) K inst✝⁷ : Algebra (B ⧸ Q) L inst✝⁶ : Algebra (A ⧸ P) L inst✝⁵ : IsScalarTower (A ⧸ P) (B ⧸ Q) L inst✝⁴ : Algebra K L inst✝³ : IsScalarTower (A ⧸ P) K L inst✝² : Algebra.IsInvariant A B G inst✝¹ : IsFractionRing (A ⧸ P) K inst✝ : IsFractionRing (B ⧸ Q) L x✝ : MulSemiringAction (↥(MulAction.stabilizer G Q)) L := MulSemiringAction.compHom L (stabilizerHom G P Q K L) f : L ≃ₐ[K] L g : ↥(MulAction.stabilizer G Q) hg : (MulSemiringAction.toAlgAut (↥(MulAction.stabilizer G Q)) (↥(FixedPoints.subfield (↥(MulAction.stabilizer G Q)) L)) L) g = AlgEquiv.ofRingEquiv ⋯ ⊢ ∃ a, (stabilizerHom G P Q K L) a = f
1aebdd9199a9aae9
Polynomial.mem_closure_X_union_C
Mathlib/RingTheory/Jacobson/Ring.lean
lemma mem_closure_X_union_C {R : Type*} [Ring R] (p : R[X]) : p ∈ Subring.closure (insert X {f | f.degree ≤ 0} : Set R[X])
case refine_1.a.a R : Type u_1 inst✝ : Ring R p : R[X] r : R ⊢ C r ∈ {f | f.degree ≤ 0}
exact degree_C_le
no goals
9a8a4355ff754a01
iSupIndep.linearIndependent
Mathlib/LinearAlgebra/DFinsupp.lean
theorem iSupIndep.linearIndependent [NoZeroSMulDivisors R N] {ι} (p : ι → Submodule R N) (hp : iSupIndep p) {v : ι → N} (hv : ∀ i, v i ∈ p i) (hv' : ∀ i, v i ≠ 0) : LinearIndependent R v
R : Type u_2 N : Type u_5 inst✝³ : Ring R inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : NoZeroSMulDivisors R N ι : Type u_6 p : ι → Submodule R N hp : iSupIndep p v : ι → N hv : ∀ (i : ι), v i ∈ p i hv' : ∀ (i : ι), v i ≠ 0 x✝¹ : DecidableEq ι := Classical.decEq ι x✝ : DecidableEq R := Classical.decEq R ⊢ LinearIndependent R v
rw [linearIndependent_iff]
R : Type u_2 N : Type u_5 inst✝³ : Ring R inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : NoZeroSMulDivisors R N ι : Type u_6 p : ι → Submodule R N hp : iSupIndep p v : ι → N hv : ∀ (i : ι), v i ∈ p i hv' : ∀ (i : ι), v i ≠ 0 x✝¹ : DecidableEq ι := Classical.decEq ι x✝ : DecidableEq R := Classical.decEq R ⊢ ∀ (l : ι →₀ R), (Finsupp.linearCombination R v) l = 0 → l = 0
5ab7ea3a741397a7
Besicovitch.TauPackage.color_lt
Mathlib/MeasureTheory/Covering/Besicovitch.lean
theorem color_lt {i : Ordinal.{u}} (hi : i < p.lastStep) {N : ℕ} (hN : IsEmpty (SatelliteConfig α N p.τ)) : p.color i < N
case h α : Type u_1 inst✝¹ : MetricSpace α β : Type u inst✝ : Nonempty β p : TauPackage β α N : ℕ hN : IsEmpty (SatelliteConfig α N p.τ) i : Ordinal.{u} IH : ∀ k < i, k < p.lastStep → p.color k < N hi : i < p.lastStep A : Set ℕ := ⋃ j, ⋃ (_ : (closedBall (p.c (p.index ↑j)) (p.r (p.index ↑j)) ∩ closedBall (p.c (p.index i)) (p.r (p.index i))).Nonempty), {p.color ↑j} color_i : p.color i = sInf (univ \ A) N_mem : N ∈ univ \ A ⊢ sInf (univ \ A) ≠ N
intro Inf_eq_N
case h α : Type u_1 inst✝¹ : MetricSpace α β : Type u inst✝ : Nonempty β p : TauPackage β α N : ℕ hN : IsEmpty (SatelliteConfig α N p.τ) i : Ordinal.{u} IH : ∀ k < i, k < p.lastStep → p.color k < N hi : i < p.lastStep A : Set ℕ := ⋃ j, ⋃ (_ : (closedBall (p.c (p.index ↑j)) (p.r (p.index ↑j)) ∩ closedBall (p.c (p.index i)) (p.r (p.index i))).Nonempty), {p.color ↑j} color_i : p.color i = sInf (univ \ A) N_mem : N ∈ univ \ A Inf_eq_N : sInf (univ \ A) = N ⊢ False
70d4d5d8aa8a7de2
Std.Tactic.BVDecide.BVExpr.bitblast.go_decl_eq
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Circuit/Impl/Expr.lean
theorem bitblast.go_decl_eq (aig : AIG BVBit) (expr : BVExpr w) : ∀ (idx : Nat) (h1) (h2), (go aig expr).val.aig.decls[idx]'h2 = aig.decls[idx]'h1
case h2 w idx w✝ : Nat op : BVUnOp expr : BVExpr w✝ ih : ∀ (aig : AIG BVBit) (h1 : idx < aig.decls.size) (h2 : idx < (go aig expr).val.aig.decls.size), (go aig expr).val.aig.decls[idx] = aig.decls[idx] aig : AIG BVBit h1 : idx < aig.decls.size n✝ : Nat h2 : idx < (go aig (un (BVUnOp.arithShiftRightConst n✝) expr)).val.aig.decls.size this : aig.decls.size ≤ (go aig expr).val.aig.decls.size ⊢ idx < (go aig expr).val.aig.decls.size
omega
no goals
f92988d5a1595b39
ZMod.eq_one_or_isUnit_sub_one
Mathlib/FieldTheory/Finite/Basic.lean
theorem ZMod.eq_one_or_isUnit_sub_one {n p k : ℕ} [Fact p.Prime] (hn : n = p ^ k) (a : ZMod n) (ha : (orderOf a).Coprime n) : a = 1 ∨ IsUnit (a - 1)
n p k : ℕ inst✝ : Fact (Nat.Prime p) hn : n = p ^ k a : ZMod n ha : (orderOf a).Coprime n ⊢ a = 1 ∨ IsUnit (a - 1)
rcases eq_or_ne n 0 with rfl | hn0
case inl p k : ℕ inst✝ : Fact (Nat.Prime p) hn : 0 = p ^ k a : ZMod 0 ha : (orderOf a).Coprime 0 ⊢ a = 1 ∨ IsUnit (a - 1) case inr n p k : ℕ inst✝ : Fact (Nat.Prime p) hn : n = p ^ k a : ZMod n ha : (orderOf a).Coprime n hn0 : n ≠ 0 ⊢ a = 1 ∨ IsUnit (a - 1)
e140f007bb03a360
CategoryTheory.Sheaf.isPullback_square_op_map_yoneda_presheafToSheaf_yoneda_iff
Mathlib/CategoryTheory/Sites/MayerVietorisSquare.lean
lemma Sheaf.isPullback_square_op_map_yoneda_presheafToSheaf_yoneda_iff [HasWeakSheafify J (Type v)] (F : Sheaf J (Type v)) (sq : Square C) : (sq.op.map ((yoneda ⋙ presheafToSheaf J _).op ⋙ yoneda.obj F)).IsPullback ↔ (sq.op.map F.val).IsPullback
case refine_4.h C : Type u inst✝¹ : Category.{v, u} C J : GrothendieckTopology C inst✝ : HasWeakSheafify J (Type v) F : Sheaf J (Type v) sq : Square C x : (sq.op.map ((yoneda ⋙ presheafToSheaf J (Type v)).op ⋙ yoneda.obj F)).X₃ ⊢ (⇑(((sheafificationAdjunction J (Type v)).homEquiv (yoneda.obj (unop sq.op.X₄)) F).trans yonedaEquiv) ∘ (sq.op.map ((yoneda ⋙ presheafToSheaf J (Type v)).op ⋙ yoneda.obj F)).f₃₄) x = ((sq.op.map F.val).f₃₄ ∘ ⇑(((sheafificationAdjunction J (Type v)).homEquiv (yoneda.obj (unop sq.op.X₃)) F).trans yonedaEquiv)) x
dsimp
case refine_4.h C : Type u inst✝¹ : Category.{v, u} C J : GrothendieckTopology C inst✝ : HasWeakSheafify J (Type v) F : Sheaf J (Type v) sq : Square C x : (sq.op.map ((yoneda ⋙ presheafToSheaf J (Type v)).op ⋙ yoneda.obj F)).X₃ ⊢ yonedaEquiv (((sheafificationAdjunction J (Type v)).homEquiv (yoneda.obj sq.X₁) F) ((presheafToSheaf J (Type v)).map (yoneda.map sq.f₁₃) ≫ x)) = F.val.map sq.f₁₃.op (yonedaEquiv (((sheafificationAdjunction J (Type v)).homEquiv (yoneda.obj sq.X₃) F) x))
bfe4e0c25299bb4f
AkraBazziRecurrence.exists_eventually_const_mul_le_r
Mathlib/Computability/AkraBazzi/AkraBazzi.lean
lemma exists_eventually_const_mul_le_r : ∃ c ∈ Set.Ioo (0 : ℝ) 1, ∀ᶠ (n : ℕ) in atTop, ∀ i, c * n ≤ r i n
α : Type u_1 inst✝¹ : Fintype α T : ℕ → ℝ g : ℝ → ℝ a b : α → ℝ r : α → ℕ → ℕ inst✝ : Nonempty α R : AkraBazziRecurrence T g a b r ⊢ ∃ c ∈ Set.Ioo 0 1, ∀ᶠ (n : ℕ) in atTop, ∀ (i : α), c * ↑n ≤ ↑(r i n)
have gt_zero : 0 < b (min_bi b) := R.b_pos (min_bi b)
α : Type u_1 inst✝¹ : Fintype α T : ℕ → ℝ g : ℝ → ℝ a b : α → ℝ r : α → ℕ → ℕ inst✝ : Nonempty α R : AkraBazziRecurrence T g a b r gt_zero : 0 < b (min_bi b) ⊢ ∃ c ∈ Set.Ioo 0 1, ∀ᶠ (n : ℕ) in atTop, ∀ (i : α), c * ↑n ≤ ↑(r i n)
bc15a40b01d9e13e
MeasureTheory.Measure.withDensity_rnDeriv_le
Mathlib/MeasureTheory/Decomposition/Lebesgue.lean
theorem withDensity_rnDeriv_le (μ ν : Measure α) : ν.withDensity (μ.rnDeriv ν) ≤ μ
case neg α : Type u_1 m : MeasurableSpace α μ ν : Measure α hl : ¬μ.HaveLebesgueDecomposition ν ⊢ 0 ≤ μ
exact Measure.zero_le μ
no goals
2275dc5f7cdbb54c