name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
FormalMultilinearSeries.comp_assoc
Mathlib/Analysis/Analytic/Composition.lean
theorem comp_assoc (r : FormalMultilinearSeries 𝕜 G H) (q : FormalMultilinearSeries 𝕜 F G) (p : FormalMultilinearSeries 𝕜 E F) : (r.comp q).comp p = r.comp (q.comp p)
case h.H 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝⁸ : NontriviallyNormedField 𝕜 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace 𝕜 E inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F inst✝³ : NormedAddCommGroup G inst✝² : NormedSpace 𝕜 G inst✝¹ : NormedAddCommGroup H inst✝ : NormedSpace 𝕜 H r : FormalMultilinearSeries 𝕜 G H q : FormalMultilinearSeries 𝕜 F G p : FormalMultilinearSeries 𝕜 E F n : ℕ v : Fin n → E f : (a : Composition n) × Composition a.length → H := fun c => (r c.snd.length) (q.applyComposition c.snd (p.applyComposition c.fst v)) g : (c : Composition n) × ((i : Fin c.length) → Composition (c.blocksFun i)) → H := fun c => (r c.fst.length) fun i => (q (c.snd i).length) (p.applyComposition (c.snd i) (v ∘ ⇑(c.fst.embedding i))) ⊢ ∑ c : (a : Composition n) × Composition a.length, f c = ∑ c : (c : Composition n) × ((i : Fin c.length) → Composition (c.blocksFun i)), g c
rw [← (sigmaEquivSigmaPi n).sum_comp]
case h.H 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝⁸ : NontriviallyNormedField 𝕜 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace 𝕜 E inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F inst✝³ : NormedAddCommGroup G inst✝² : NormedSpace 𝕜 G inst✝¹ : NormedAddCommGroup H inst✝ : NormedSpace 𝕜 H r : FormalMultilinearSeries 𝕜 G H q : FormalMultilinearSeries 𝕜 F G p : FormalMultilinearSeries 𝕜 E F n : ℕ v : Fin n → E f : (a : Composition n) × Composition a.length → H := fun c => (r c.snd.length) (q.applyComposition c.snd (p.applyComposition c.fst v)) g : (c : Composition n) × ((i : Fin c.length) → Composition (c.blocksFun i)) → H := fun c => (r c.fst.length) fun i => (q (c.snd i).length) (p.applyComposition (c.snd i) (v ∘ ⇑(c.fst.embedding i))) ⊢ ∑ c : (a : Composition n) × Composition a.length, f c = ∑ i : (a : Composition n) × Composition a.length, g ((sigmaEquivSigmaPi n) i)
e6d21021eddd0ef4
Asymptotics.isBigO_iff''
Mathlib/Analysis/Asymptotics/Defs.lean
theorem isBigO_iff'' {g : α → E'''} : f =O[l] g ↔ ∃ c > 0, ∀ᶠ x in l, c * ‖f x‖ ≤ ‖g x‖
case mp α : Type u_1 E : Type u_3 E''' : Type u_12 inst✝¹ : Norm E inst✝ : SeminormedAddGroup E''' f : α → E l : Filter α g : α → E''' h : f =O[l] g ⊢ ∃ c > 0, ∀ᶠ (x : α) in l, c * ‖f x‖ ≤ ‖g x‖ case mpr α : Type u_1 E : Type u_3 E''' : Type u_12 inst✝¹ : Norm E inst✝ : SeminormedAddGroup E''' f : α → E l : Filter α g : α → E''' h : ∃ c > 0, ∀ᶠ (x : α) in l, c * ‖f x‖ ≤ ‖g x‖ ⊢ f =O[l] g
case mp => rw [isBigO_iff'] at h obtain ⟨c, ⟨hc_pos, hc⟩⟩ := h refine ⟨c⁻¹, ⟨by positivity, ?_⟩⟩ filter_upwards [hc] with x hx rwa [inv_mul_le_iff₀ (by positivity)]
case mpr α : Type u_1 E : Type u_3 E''' : Type u_12 inst✝¹ : Norm E inst✝ : SeminormedAddGroup E''' f : α → E l : Filter α g : α → E''' h : ∃ c > 0, ∀ᶠ (x : α) in l, c * ‖f x‖ ≤ ‖g x‖ ⊢ f =O[l] g
4acf1af7764c6d02
Algebra.pow_smul_mem_of_smul_subset_of_mem_adjoin
Mathlib/RingTheory/Adjoin/Basic.lean
theorem pow_smul_mem_of_smul_subset_of_mem_adjoin [CommSemiring B] [Algebra R B] [Algebra A B] [IsScalarTower R A B] (r : A) (s : Set B) (B' : Subalgebra R B) (hs : r • s ⊆ B') {x : B} (hx : x ∈ adjoin R s) (hr : algebraMap A B r ∈ B') : ∃ n₀ : ℕ, ∀ n ≥ n₀, r ^ n • x ∈ B'
case h R : Type uR A : Type uA B : Type uB inst✝⁶ : CommSemiring R inst✝⁵ : CommSemiring A inst✝⁴ : Algebra R A inst✝³ : CommSemiring B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B r : A s : Set B B' : Subalgebra R B hs : r • s ⊆ ↑B' hr : (algebraMap A B) r ∈ B' l : ↑↑(Submonoid.closure s) →₀ R n₁ : ↥(Submonoid.closure s) → ℕ n₂ : ∀ (x : ↥(Submonoid.closure s)), r ^ n₁ x • ↑x ∈ Submonoid.closure (r • s) n : ℕ hn : n ≥ l.support.sup n₁ ⊢ (l.sum fun a b => r ^ n • b • ↑a) ∈ B'
refine B'.toSubmodule.sum_mem ?_
case h R : Type uR A : Type uA B : Type uB inst✝⁶ : CommSemiring R inst✝⁵ : CommSemiring A inst✝⁴ : Algebra R A inst✝³ : CommSemiring B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B r : A s : Set B B' : Subalgebra R B hs : r • s ⊆ ↑B' hr : (algebraMap A B) r ∈ B' l : ↑↑(Submonoid.closure s) →₀ R n₁ : ↥(Submonoid.closure s) → ℕ n₂ : ∀ (x : ↥(Submonoid.closure s)), r ^ n₁ x • ↑x ∈ Submonoid.closure (r • s) n : ℕ hn : n ≥ l.support.sup n₁ ⊢ ∀ c ∈ l.support, (fun a b => r ^ n • b • ↑a) c (l c) ∈ Subalgebra.toSubmodule B'
c0ccc6b7c63e5bab
RCLike.tendsto_add_mul_div_add_mul_atTop_nhds
Mathlib/Analysis/SpecificLimits/RCLike.lean
theorem RCLike.tendsto_add_mul_div_add_mul_atTop_nhds (a b c : 𝕜) {d : 𝕜} (hd : d ≠ 0) : Tendsto (fun k : ℕ ↦ (a + c * k) / (b + d * k)) atTop (𝓝 (c / d))
case hl 𝕜 : Type u_1 inst✝ : RCLike 𝕜 a b c d : 𝕜 hd : d ≠ 0 ⊢ ?f₁ =ᶠ[atTop] fun k => (a + c * ↑k) / (b + d * ↑k) case h 𝕜 : Type u_1 inst✝ : RCLike 𝕜 a b c d : 𝕜 hd : d ≠ 0 ⊢ Tendsto ?f₁ atTop (𝓝 (c / d)) case f₁ 𝕜 : Type u_1 inst✝ : RCLike 𝕜 a b c d : 𝕜 hd : d ≠ 0 ⊢ ℕ → 𝕜
case f₁ => exact fun k ↦ (a * (↑k)⁻¹ + c) / (b * (↑k)⁻¹ + d)
case hl 𝕜 : Type u_1 inst✝ : RCLike 𝕜 a b c d : 𝕜 hd : d ≠ 0 ⊢ (fun k => (a * (↑k)⁻¹ + c) / (b * (↑k)⁻¹ + d)) =ᶠ[atTop] fun k => (a + c * ↑k) / (b + d * ↑k) case h 𝕜 : Type u_1 inst✝ : RCLike 𝕜 a b c d : 𝕜 hd : d ≠ 0 ⊢ Tendsto (fun k => (a * (↑k)⁻¹ + c) / (b * (↑k)⁻¹ + d)) atTop (𝓝 (c / d))
6d8178cde5b196f7
Ordinal.enumOrd_isNormal_iff_isClosed
Mathlib/SetTheory/Ordinal/Topology.lean
theorem enumOrd_isNormal_iff_isClosed (hs : ¬ BddAbove s) : IsNormal (enumOrd s) ↔ IsClosed s
s : Set Ordinal.{u} hs : ¬BddAbove s Hs : StrictMono (enumOrd s) h : IsNormal (enumOrd s) ι : Type u hι : Nonempty ι f : ι → Ordinal.{u} hf : ∀ (i : ι), f i ∈ s g : ι → Ordinal.{u} := fun i => (enumOrdOrderIso s hs).symm ⟨f i, ⋯⟩ this : enumOrd s (⨆ i, g i) = ⨆ i, f i ⊢ ⨆ i, f i ∈ s
rw [← this]
s : Set Ordinal.{u} hs : ¬BddAbove s Hs : StrictMono (enumOrd s) h : IsNormal (enumOrd s) ι : Type u hι : Nonempty ι f : ι → Ordinal.{u} hf : ∀ (i : ι), f i ∈ s g : ι → Ordinal.{u} := fun i => (enumOrdOrderIso s hs).symm ⟨f i, ⋯⟩ this : enumOrd s (⨆ i, g i) = ⨆ i, f i ⊢ enumOrd s (⨆ i, g i) ∈ s
0e0eef18c9d95dc4
Int.natAbs_eq_natAbs_iff
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Int/Order.lean
theorem natAbs_eq_natAbs_iff {a b : Int} : a.natAbs = b.natAbs ↔ a = b ∨ a = -b
case mpr.inl b : Int ⊢ b.natAbs = b.natAbs
rfl
no goals
e42c147e74a9944d
isPathConnected_sphere
Mathlib/Analysis/NormedSpace/Connected.lean
theorem isPathConnected_sphere (h : 1 < Module.rank ℝ E) (x : E) {r : ℝ} (hr : 0 ≤ r) : IsPathConnected (sphere x r)
case h₁ E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E h : 1 < Module.rank ℝ E x : E r : ℝ hr : 0 ≤ r rpos : 0 < r f : E → E := fun y => x + (r * ‖y‖⁻¹) • y A : ContinuousOn f {0}ᶜ B : IsPathConnected {0}ᶜ C : IsPathConnected (f '' {0}ᶜ) ⊢ f '' {0}ᶜ ⊆ sphere x r
rintro - ⟨y, hy, rfl⟩
case h₁.intro.intro E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E h : 1 < Module.rank ℝ E x : E r : ℝ hr : 0 ≤ r rpos : 0 < r f : E → E := fun y => x + (r * ‖y‖⁻¹) • y A : ContinuousOn f {0}ᶜ B : IsPathConnected {0}ᶜ C : IsPathConnected (f '' {0}ᶜ) y : E hy : y ∈ {0}ᶜ ⊢ f y ∈ sphere x r
8571eaf7ed341480
Pell.exists_of_not_isSquare
Mathlib/NumberTheory/Pell.lean
theorem exists_of_not_isSquare (h₀ : 0 < d) (hd : ¬IsSquare d) : ∃ x y : ℤ, x ^ 2 - d * y ^ 2 = 1 ∧ y ≠ 0
d : ℤ h₀ : 0 < d hd : ¬IsSquare d ξ : ℝ := √↑d hξ : Irrational ξ M : ℤ hM₁ : 2 * |ξ| + 1 < ↑M hM : {q | |q.num ^ 2 - d * ↑q.den ^ 2| < M}.Infinite m : ℤ hm : {q | q.num ^ 2 - d * ↑q.den ^ 2 = m}.Infinite hm₀ : m ≠ 0 this : NeZero m.natAbs f : ℚ → ZMod m.natAbs × ZMod m.natAbs := fun q => (↑q.num, ↑q.den) q₁ : ℚ h₁ : q₁.num ^ 2 - d * ↑q₁.den ^ 2 = m q₂ : ℚ h₂ : q₂.num ^ 2 - d * ↑q₂.den ^ 2 = m hne : q₁ ≠ q₂ hqf : f q₁ = f q₂ hq1 : ↑q₁.num = ↑q₂.num hq2 : ↑q₁.den = ↑q₂.den ⊢ ↑q₂.num ^ 2 - ↑d * ↑q₂.den ^ 2 = 0
norm_cast
d : ℤ h₀ : 0 < d hd : ¬IsSquare d ξ : ℝ := √↑d hξ : Irrational ξ M : ℤ hM₁ : 2 * |ξ| + 1 < ↑M hM : {q | |q.num ^ 2 - d * ↑q.den ^ 2| < M}.Infinite m : ℤ hm : {q | q.num ^ 2 - d * ↑q.den ^ 2 = m}.Infinite hm₀ : m ≠ 0 this : NeZero m.natAbs f : ℚ → ZMod m.natAbs × ZMod m.natAbs := fun q => (↑q.num, ↑q.den) q₁ : ℚ h₁ : q₁.num ^ 2 - d * ↑q₁.den ^ 2 = m q₂ : ℚ h₂ : q₂.num ^ 2 - d * ↑q₂.den ^ 2 = m hne : q₁ ≠ q₂ hqf : f q₁ = f q₂ hq1 : ↑q₁.num = ↑q₂.num hq2 : ↑q₁.den = ↑q₂.den ⊢ ↑(q₂.num ^ 2 - d * ↑(q₂.den ^ 2)) = 0
e113d5ba2b34ead4
HomologicalComplex.HomologySequence.epi_homologyMap_τ₃
Mathlib/Algebra/Homology/HomologySequenceLemmas.lean
lemma epi_homologyMap_τ₃ (i : ι) (h₁ : Epi (homologyMap φ.τ₂ i)) (h₂ : ∀ j, c.Rel i j → Epi (homologyMap φ.τ₁ j)) (h₃ : ∀ j, c.Rel i j → Mono (homologyMap φ.τ₂ j)) : Epi (homologyMap φ.τ₃ i)
case pos C : Type u_1 ι : Type u_2 inst✝¹ : Category.{u_3, u_1} C inst✝ : Abelian C c : ComplexShape ι S₁ S₂ : ShortComplex (HomologicalComplex C c) φ : S₁ ⟶ S₂ hS₁ : S₁.ShortExact hS₂ : S₂.ShortExact i : ι h₁ : Epi (homologyMap φ.τ₂ i) h₂ : ∀ (j : ι), c.Rel i j → Epi (homologyMap φ.τ₁ j) h₃ : ∀ (j : ι), c.Rel i j → Mono (homologyMap φ.τ₂ j) hi : ∃ j, c.Rel i j ⊢ Epi (homologyMap φ.τ₃ i)
obtain ⟨j, hij⟩ := hi
case pos.intro C : Type u_1 ι : Type u_2 inst✝¹ : Category.{u_3, u_1} C inst✝ : Abelian C c : ComplexShape ι S₁ S₂ : ShortComplex (HomologicalComplex C c) φ : S₁ ⟶ S₂ hS₁ : S₁.ShortExact hS₂ : S₂.ShortExact i : ι h₁ : Epi (homologyMap φ.τ₂ i) h₂ : ∀ (j : ι), c.Rel i j → Epi (homologyMap φ.τ₁ j) h₃ : ∀ (j : ι), c.Rel i j → Mono (homologyMap φ.τ₂ j) j : ι hij : c.Rel i j ⊢ Epi (homologyMap φ.τ₃ i)
92d458a0d828d6da
cfcₙ_cases
Mathlib/Analysis/CStarAlgebra/ContinuousFunctionalCalculus/NonUnital.lean
lemma cfcₙ_cases (P : A → Prop) (a : A) (f : R → R) (h₀ : P 0) (haf : ∀ (hf : ContinuousOn f (σₙ R a)) h0 ha, P (cfcₙHom ha ⟨⟨_, hf.restrict⟩, h0⟩)) : P (cfcₙ f a)
case neg.inr.inr R : Type u_1 A : Type u_2 p : A → Prop inst✝¹¹ : CommSemiring R inst✝¹⁰ : Nontrivial R inst✝⁹ : StarRing R inst✝⁸ : MetricSpace R inst✝⁷ : IsTopologicalSemiring R inst✝⁶ : ContinuousStar R inst✝⁵ : NonUnitalRing A inst✝⁴ : StarRing A inst✝³ : TopologicalSpace A inst✝² : Module R A inst✝¹ : IsScalarTower R A A inst✝ : SMulCommClass R A A instCFCₙ : NonUnitalContinuousFunctionalCalculus R p P : A → Prop a : A f : R → R h₀ : P 0 haf : ∀ (hf : ContinuousOn f (σₙ R a)) (h0 : { toFun := (σₙ R a).restrict f, continuous_toFun := ⋯ } 0 = 0) (ha : p a), P ((cfcₙHom ha) { toFun := (σₙ R a).restrict f, continuous_toFun := ⋯, map_zero' := h0 }) h : ¬p a ⊢ P (cfcₙ f a)
rwa [cfcₙ_apply_of_not_predicate _ h]
no goals
3d5960a87dec8e02
contDiffOn_succ_iff_hasFDerivWithinAt
Mathlib/Analysis/Calculus/ContDiff/Defs.lean
theorem contDiffOn_succ_iff_hasFDerivWithinAt (hn : n ≠ ∞) : ContDiffOn 𝕜 (n + 1) f s ↔ ∀ x ∈ s, ∃ u ∈ 𝓝[insert x s] x, (n = ω → AnalyticOn 𝕜 f u) ∧ ∃ f' : E → E →L[𝕜] F, (∀ x ∈ u, HasFDerivWithinAt f (f' x) u x) ∧ ContDiffOn 𝕜 n f' u
case mp.intro.intro.intro.intro.intro.intro.intro.intro 𝕜 : Type u inst✝⁴ : NontriviallyNormedField 𝕜 E : Type uE inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E F : Type uF inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F s : Set E f : E → F n : WithTop ℕ∞ hn : n ≠ ∞ h : ContDiffOn 𝕜 (n + 1) f s x : E hx : x ∈ s u : Set E hu : u ∈ 𝓝[s] x f_an : n = ω → AnalyticOn 𝕜 f u f' : E → E →L[𝕜] F hf' : ∀ x ∈ u, HasFDerivWithinAt f (f' x) u x Hf' : ContDiffWithinAt 𝕜 n f' u x v : Set E vu : v ∈ 𝓝[insert x u] x v'u : v ⊆ insert x u hv : ContDiffOn 𝕜 n f' v xu : x ∈ u ⊢ ∃ u ∈ 𝓝[s] x, (n = ω → AnalyticOn 𝕜 f u) ∧ ∃ f', (∀ x ∈ u, HasFDerivWithinAt f (f' x) u x) ∧ ContDiffOn 𝕜 n f' u
rw [insert_eq_of_mem xu] at vu v'u
case mp.intro.intro.intro.intro.intro.intro.intro.intro 𝕜 : Type u inst✝⁴ : NontriviallyNormedField 𝕜 E : Type uE inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E F : Type uF inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F s : Set E f : E → F n : WithTop ℕ∞ hn : n ≠ ∞ h : ContDiffOn 𝕜 (n + 1) f s x : E hx : x ∈ s u : Set E hu : u ∈ 𝓝[s] x f_an : n = ω → AnalyticOn 𝕜 f u f' : E → E →L[𝕜] F hf' : ∀ x ∈ u, HasFDerivWithinAt f (f' x) u x Hf' : ContDiffWithinAt 𝕜 n f' u x v : Set E vu : v ∈ 𝓝[u] x v'u : v ⊆ u hv : ContDiffOn 𝕜 n f' v xu : x ∈ u ⊢ ∃ u ∈ 𝓝[s] x, (n = ω → AnalyticOn 𝕜 f u) ∧ ∃ f', (∀ x ∈ u, HasFDerivWithinAt f (f' x) u x) ∧ ContDiffOn 𝕜 n f' u
e4422b8510aa07a9
Filter.tendsto_div_const_atBot_iff_neg
Mathlib/Order/Filter/AtTopBot/Field.lean
/-- If `f` tends to infinity along a nontrivial filter, `fun x ↦ f x / r` tends to negative infinity if and only if `r < 0`. -/ lemma tendsto_div_const_atBot_iff_neg [NeBot l] (h : Tendsto f l atTop) : Tendsto (fun x ↦ f x / r) l atBot ↔ r < 0
α : Type u_1 β : Type u_2 inst✝¹ : LinearOrderedField α l : Filter β f : β → α r : α inst✝ : l.NeBot h : Tendsto f l atTop ⊢ Tendsto (fun x => f x / r) l atBot ↔ r < 0
simp [div_eq_mul_inv, tendsto_mul_const_atBot_iff_neg h]
no goals
3c6c9b852805b0a3
ProbabilityTheory.Kernel.measure_zero_or_one_of_measurableSet_limsup_atBot
Mathlib/Probability/Independence/ZeroOne.lean
theorem Kernel.measure_zero_or_one_of_measurableSet_limsup_atBot (h_le : ∀ n, s n ≤ m0) (h_indep : iIndep s κ μα) {t : Set Ω} (ht_tail : MeasurableSet[limsup s atBot] t) : ∀ᵐ a ∂μα, κ a t = 0 ∨ κ a t = 1
α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α s : ι → MeasurableSpace Ω m0 : MeasurableSpace Ω κ : Kernel α Ω μα : Measure α inst✝² : SemilatticeInf ι inst✝¹ : NoMinOrder ι inst✝ : Nonempty ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s κ μα t : Set Ω ht_tail : MeasurableSet t a : α ha : IsProbabilityMeasure (κ a) ⊢ IsFiniteMeasure (κ a)
infer_instance
no goals
35288fc2d8b5a0f6
Finmap.not_mem_erase_self
Mathlib/Data/Finmap.lean
theorem not_mem_erase_self {a : α} {s : Finmap β} : ¬a ∈ erase a s
α : Type u β : α → Type v inst✝ : DecidableEq α a : α s : Finmap β ⊢ a ∉ erase a s
rw [mem_erase, not_and_or, not_not]
α : Type u β : α → Type v inst✝ : DecidableEq α a : α s : Finmap β ⊢ a = a ∨ a ∉ s
400c19d554d88abf
CategoryTheory.IsPushout.inl_isoPushout_inv
Mathlib/CategoryTheory/Limits/Shapes/Pullback/CommSq.lean
theorem inl_isoPushout_inv (h : IsPushout f g inl inr) [HasPushout f g] : pushout.inl _ _ ≫ h.isoPushout.inv = inl
C : Type u₁ inst✝¹ : Category.{v₁, u₁} C Z X Y P : C f : Z ⟶ X g : Z ⟶ Y inl : X ⟶ P inr : Y ⟶ P h : IsPushout f g inl inr inst✝ : HasPushout f g ⊢ pushout.inl f g ≫ (colimit.isoColimitCocone { cocone := PushoutCocone.mk inl inr ⋯, isColimit := h.isColimit }).hom = inl
simp
no goals
bb6667f750039bbb
SimpleGraph.three_le_egirth
Mathlib/Combinatorics/SimpleGraph/Girth.lean
lemma three_le_egirth : 3 ≤ G.egirth
case pos α : Type u_1 G : SimpleGraph α h : G.egirth = ⊤ ⊢ 3 ≤ ⊤
apply le_top
no goals
ea32850d40d27a7e
Filter.HasBasis.lebesgue_number_lemma
Mathlib/Topology/UniformSpace/Compact.lean
theorem Filter.HasBasis.lebesgue_number_lemma {ι' ι : Sort*} {p : ι' → Prop} {V : ι' → Set (α × α)} {U : ι → Set α} (hbasis : (𝓤 α).HasBasis p V) (hK : IsCompact K) (hopen : ∀ j, IsOpen (U j)) (hcover : K ⊆ ⋃ j, U j) : ∃ i, p i ∧ ∀ x ∈ K, ∃ j, ball x (V i) ⊆ U j
α : Type ua inst✝ : UniformSpace α K : Set α ι' : Sort u_2 ι : Sort u_3 p : ι' → Prop V : ι' → Set (α × α) U : ι → Set α hbasis : (𝓤 α).HasBasis p V hK : IsCompact K hopen : ∀ (j : ι), IsOpen (U j) hcover : K ⊆ ⋃ j, U j ⊢ ∀ ⦃s t : Set (α × α)⦄, s ⊆ t → (∀ x ∈ K, ∃ i, ball x t ⊆ U i) → ∀ x ∈ K, ∃ i, ball x s ⊆ U i
exact fun s t hst ht x hx ↦ (ht x hx).imp fun i hi ↦ Subset.trans (ball_mono hst _) hi
no goals
acfb123237652f8a
ascPochhammer_map
Mathlib/RingTheory/Polynomial/Pochhammer.lean
theorem ascPochhammer_map (f : S →+* T) (n : ℕ) : (ascPochhammer S n).map f = ascPochhammer T n
case succ S : Type u inst✝¹ : Semiring S T : Type v inst✝ : Semiring T f : S →+* T n : ℕ ih : map f (ascPochhammer S n) = ascPochhammer T n ⊢ map f (ascPochhammer S (n + 1)) = ascPochhammer T (n + 1)
simp [ih, ascPochhammer_succ_left, map_comp]
no goals
da57e8e75083539b
Fin.init_snoc
Mathlib/Data/Fin/Tuple/Basic.lean
theorem init_snoc : init (snoc p x) = p
case h n : ℕ α : Fin (n + 1) → Sort u_1 x : α (last n) p : (i : Fin n) → α i.castSucc i : Fin n ⊢ p (i.castSucc.castLT ⋯) = p i
convert cast_eq rfl (p i)
no goals
80c09a1e40ce8e6e
Std.Tactic.BVDecide.BVExpr.bitblast.denote_blastShiftRight
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Circuit/Lemmas/Operations/ShiftRight.lean
theorem denote_blastShiftRight (aig : AIG α) (target : ArbitraryShiftTarget aig w0) (lhs : BitVec w0) (rhs : BitVec target.n) (assign : α → Bool) (hleft : ∀ (idx : Nat) (hidx : idx < w0), ⟦aig, target.target.get idx hidx, assign⟧ = lhs.getLsbD idx) (hright : ∀ (idx : Nat) (hidx : idx < target.n), ⟦aig, target.distance.get idx hidx, assign⟧ = rhs.getLsbD idx) : ∀ (idx : Nat) (hidx : idx < w0), ⟦ (blastShiftRight aig target).aig, (blastShiftRight aig target).vec.get idx hidx, assign ⟧ = (lhs >>> rhs).getLsbD idx
case mk α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w0 : Nat aig : AIG α lhs : BitVec w0 assign : α → Bool idx : Nat hidx : idx < w0 res : RefVecEntry α w0 n : Nat target : aig.RefVec w0 distance : aig.RefVec n rhs : BitVec { n := n, target := target, distance := distance }.n hleft : ∀ (idx : Nat) (hidx : idx < w0), ⟦assign, { aig := aig, ref := { n := n, target := target, distance := distance }.target.get idx hidx }⟧ = lhs.getLsbD idx hright : ∀ (idx : Nat) (hidx : idx < { n := n, target := target, distance := distance }.n), ⟦assign, { aig := aig, ref := { n := n, target := target, distance := distance }.distance.get idx hidx }⟧ = rhs.getLsbD idx hres : (if n = 0 then { aig := aig, vec := target } else blastShiftRight.go (blastShiftRight.twoPowShift aig { n := n, lhs := target, rhs := distance, pow := 0 }).aig (distance.cast ⋯) 0 (blastShiftRight.twoPowShift aig { n := n, lhs := target, rhs := distance, pow := 0 }).vec) = res ⊢ ⟦assign, { aig := res.aig, ref := res.vec.get idx hidx }⟧ = (lhs.ushiftRightRec rhs ({ n := n, target := target, distance := distance }.n - 1)).getLsbD idx
split at hres
case mk.isTrue α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w0 : Nat aig : AIG α lhs : BitVec w0 assign : α → Bool idx : Nat hidx : idx < w0 res : RefVecEntry α w0 n : Nat target : aig.RefVec w0 distance : aig.RefVec n rhs : BitVec { n := n, target := target, distance := distance }.n hleft : ∀ (idx : Nat) (hidx : idx < w0), ⟦assign, { aig := aig, ref := { n := n, target := target, distance := distance }.target.get idx hidx }⟧ = lhs.getLsbD idx hright : ∀ (idx : Nat) (hidx : idx < { n := n, target := target, distance := distance }.n), ⟦assign, { aig := aig, ref := { n := n, target := target, distance := distance }.distance.get idx hidx }⟧ = rhs.getLsbD idx h✝ : n = 0 hres : { aig := aig, vec := target } = res ⊢ ⟦assign, { aig := res.aig, ref := res.vec.get idx hidx }⟧ = (lhs.ushiftRightRec rhs ({ n := n, target := target, distance := distance }.n - 1)).getLsbD idx case mk.isFalse α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w0 : Nat aig : AIG α lhs : BitVec w0 assign : α → Bool idx : Nat hidx : idx < w0 res : RefVecEntry α w0 n : Nat target : aig.RefVec w0 distance : aig.RefVec n rhs : BitVec { n := n, target := target, distance := distance }.n hleft : ∀ (idx : Nat) (hidx : idx < w0), ⟦assign, { aig := aig, ref := { n := n, target := target, distance := distance }.target.get idx hidx }⟧ = lhs.getLsbD idx hright : ∀ (idx : Nat) (hidx : idx < { n := n, target := target, distance := distance }.n), ⟦assign, { aig := aig, ref := { n := n, target := target, distance := distance }.distance.get idx hidx }⟧ = rhs.getLsbD idx h✝ : ¬n = 0 hres : blastShiftRight.go (blastShiftRight.twoPowShift aig { n := n, lhs := target, rhs := distance, pow := 0 }).aig (distance.cast ⋯) 0 (blastShiftRight.twoPowShift aig { n := n, lhs := target, rhs := distance, pow := 0 }).vec = res ⊢ ⟦assign, { aig := res.aig, ref := res.vec.get idx hidx }⟧ = (lhs.ushiftRightRec rhs ({ n := n, target := target, distance := distance }.n - 1)).getLsbD idx
e96a4b8802385854
SpectrumRestricts.cfc
Mathlib/Analysis/CStarAlgebra/ContinuousFunctionalCalculus/Restrict.lean
theorem cfc (f : C(S, R)) (halg : IsUniformEmbedding (algebraMap R S)) (h0 : p 0) (h : ∀ a, p a ↔ q a ∧ SpectrumRestricts a f) : ContinuousFunctionalCalculus R p where predicate_zero := h0 spectrum_nonempty a ha := ((h a).mp ha).2.image ▸ (ContinuousFunctionalCalculus.spectrum_nonempty a ((h a).mp ha).1 |>.image f) compactSpace_spectrum a
R : Type u_1 S : Type u_2 A : Type u_3 p q : A → Prop inst✝²⁰ : Semifield R inst✝¹⁹ : StarRing R inst✝¹⁸ : MetricSpace R inst✝¹⁷ : IsTopologicalSemiring R inst✝¹⁶ : ContinuousStar R inst✝¹⁵ : Semifield S inst✝¹⁴ : StarRing S inst✝¹³ : MetricSpace S inst✝¹² : IsTopologicalSemiring S inst✝¹¹ : ContinuousStar S inst✝¹⁰ : Ring A inst✝⁹ : StarRing A inst✝⁸ : Algebra S A inst✝⁷ : Algebra R S inst✝⁶ : Algebra R A inst✝⁵ : IsScalarTower R S A inst✝⁴ : StarModule R S inst✝³ : ContinuousSMul R S inst✝² : TopologicalSpace A inst✝¹ : ContinuousFunctionalCalculus S q inst✝ : CompleteSpace R f : C(S, R) halg : IsUniformEmbedding ⇑(algebraMap R S) h0 : p 0 h : ∀ (a : A), p a ↔ q a ∧ SpectrumRestricts a ⇑f a : A ha : p a g : C(↑(spectrum R a), R) ⊢ ⇑(algebraMap R S) ⁻¹' range ⇑({ toFun := ⇑(StarAlgHom.ofId R S), continuous_toFun := ⋯ }.comp (g.comp { toFun := Subtype.map ⇑f ⋯, continuous_toFun := ⋯ })) = range ⇑g
ext x
case h R : Type u_1 S : Type u_2 A : Type u_3 p q : A → Prop inst✝²⁰ : Semifield R inst✝¹⁹ : StarRing R inst✝¹⁸ : MetricSpace R inst✝¹⁷ : IsTopologicalSemiring R inst✝¹⁶ : ContinuousStar R inst✝¹⁵ : Semifield S inst✝¹⁴ : StarRing S inst✝¹³ : MetricSpace S inst✝¹² : IsTopologicalSemiring S inst✝¹¹ : ContinuousStar S inst✝¹⁰ : Ring A inst✝⁹ : StarRing A inst✝⁸ : Algebra S A inst✝⁷ : Algebra R S inst✝⁶ : Algebra R A inst✝⁵ : IsScalarTower R S A inst✝⁴ : StarModule R S inst✝³ : ContinuousSMul R S inst✝² : TopologicalSpace A inst✝¹ : ContinuousFunctionalCalculus S q inst✝ : CompleteSpace R f : C(S, R) halg : IsUniformEmbedding ⇑(algebraMap R S) h0 : p 0 h : ∀ (a : A), p a ↔ q a ∧ SpectrumRestricts a ⇑f a : A ha : p a g : C(↑(spectrum R a), R) x : R ⊢ x ∈ ⇑(algebraMap R S) ⁻¹' range ⇑({ toFun := ⇑(StarAlgHom.ofId R S), continuous_toFun := ⋯ }.comp (g.comp { toFun := Subtype.map ⇑f ⋯, continuous_toFun := ⋯ })) ↔ x ∈ range ⇑g
ea9b650e25b4334d
Ideal.map_includeRight_eq
Mathlib/LinearAlgebra/TensorProduct/RightExactness.lean
/-- The ideal of `A ⊗[R] B` generated by `I` is the image of `A ⊗[R] I` -/ lemma Ideal.map_includeRight_eq (I : Ideal B) : (I.map (Algebra.TensorProduct.includeRight : B →ₐ[R] A ⊗[R] B)).restrictScalars R = LinearMap.range (LinearMap.lTensor A (Submodule.subtype (I.restrictScalars R)))
case h R : Type u_1 inst✝⁴ : CommSemiring R A : Type u_2 B : Type u_3 inst✝³ : Semiring A inst✝² : Semiring B inst✝¹ : Algebra R A inst✝ : Algebra R B I : Ideal B x✝ : A ⊗[R] B hx : x✝ ∈ Submodule.span (A ⊗[R] B) (⇑includeRight '' ↑I) x : A ⊗[R] ↥(Submodule.restrictScalars R I) ⊢ (LinearMap.lTensor A (Submodule.restrictScalars R I).subtype) 0 = 0 • (LinearMap.lTensor A (Submodule.restrictScalars R I).subtype) x
simp only [map_zero, smul_eq_mul, zero_mul]
no goals
433dfbb2c63fd4cd
LinearMap.trace_one
Mathlib/LinearAlgebra/Trace.lean
theorem trace_one : trace R M 1 = (finrank R M : R)
case inr R : Type u_1 inst✝⁴ : CommRing R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : Free R M inst✝ : Module.Finite R M h✝ : Nontrivial R ⊢ (trace R M) 1 = ↑(finrank R M)
have b := Module.Free.chooseBasis R M
case inr R : Type u_1 inst✝⁴ : CommRing R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : Free R M inst✝ : Module.Finite R M h✝ : Nontrivial R b : Basis (Free.ChooseBasisIndex R M) R M ⊢ (trace R M) 1 = ↑(finrank R M)
4959d10d80e34ef9
Submodule.exists_sub_one_mem_and_smul_eq_zero_of_fg_of_le_smul
Mathlib/RingTheory/Finiteness/Nakayama.lean
theorem exists_sub_one_mem_and_smul_eq_zero_of_fg_of_le_smul {R : Type*} [CommRing R] {M : Type*} [AddCommGroup M] [Module R M] (I : Ideal R) (N : Submodule R M) (hn : N.FG) (hin : N ≤ I • N) : ∃ r : R, r - 1 ∈ I ∧ ∀ n ∈ N, r • n = (0 : M)
R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R N : Submodule R M hn : N.FG hin : N ≤ I • N ⊢ ∃ r, r - 1 ∈ I ∧ ∀ n ∈ N, r • n = 0
rw [fg_def] at hn
R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R N : Submodule R M hn : ∃ S, S.Finite ∧ span R S = N hin : N ≤ I • N ⊢ ∃ r, r - 1 ∈ I ∧ ∀ n ∈ N, r • n = 0
ddde3c87abdd1812
SimpleGraph.Walk.dropLast_concat
Mathlib/Combinatorics/SimpleGraph/Walk.lean
@[simp] lemma dropLast_concat {t u v} (p : G.Walk u v) (h : G.Adj v t) : (p.concat h).dropLast = p.copy rfl (by simp)
case cons V : Type u G : SimpleGraph V t u v u✝ v✝ w✝ : V h✝ : G.Adj u✝ v✝ p✝ : G.Walk v✝ w✝ p_ih✝ : ∀ (h : G.Adj w✝ t), (p✝.concat h).dropLast = p✝.copy ⋯ ⋯ h : G.Adj w✝ t ⊢ cons h✝ ((p✝.concat h).dropLast.copy ⋯ ⋯) = (cons h✝ p✝).copy ⋯ ⋯
simp [*]
no goals
d5401d0415d66680
MeasureTheory.Measure.map_smul
Mathlib/MeasureTheory/Measure/Map.lean
theorem map_smul {R : Type*} [SMul R ℝ≥0∞] [IsScalarTower R ℝ≥0∞ ℝ≥0∞] (c : R) (μ : Measure α) (f : α → β) : (c • μ).map f = c • μ.map f
case pos α : Type u_1 β : Type u_2 mα : MeasurableSpace α mβ : MeasurableSpace β R : Type u_4 inst✝¹ : SMul R ℝ≥0∞ inst✝ : IsScalarTower R ℝ≥0∞ ℝ≥0∞ μ : Measure α f : α → β c : ℝ≥0∞ hc : c ≠ 0 hf : AEMeasurable f μ hfc : AEMeasurable f (c • μ) ⊢ map f (c • μ) = c • map f μ
simp only [← mapₗ_mk_apply_of_aemeasurable hf, ← mapₗ_mk_apply_of_aemeasurable hfc, LinearMap.map_smulₛₗ, RingHom.id_apply]
case pos α : Type u_1 β : Type u_2 mα : MeasurableSpace α mβ : MeasurableSpace β R : Type u_4 inst✝¹ : SMul R ℝ≥0∞ inst✝ : IsScalarTower R ℝ≥0∞ ℝ≥0∞ μ : Measure α f : α → β c : ℝ≥0∞ hc : c ≠ 0 hf : AEMeasurable f μ hfc : AEMeasurable f (c • μ) ⊢ c • (mapₗ (AEMeasurable.mk f hfc)) μ = c • (mapₗ (AEMeasurable.mk f hf)) μ
6b7fed798cea7599
dimH_range_le_of_locally_lipschitzOn
Mathlib/Topology/MetricSpace/HausdorffDimension.lean
theorem dimH_range_le_of_locally_lipschitzOn [SecondCountableTopology X] {f : X → Y} (hf : ∀ x : X, ∃ C : ℝ≥0, ∃ s ∈ 𝓝 x, LipschitzOnWith C f s) : dimH (range f) ≤ dimH (univ : Set X)
X : Type u_2 Y : Type u_3 inst✝² : EMetricSpace X inst✝¹ : EMetricSpace Y inst✝ : SecondCountableTopology X f : X → Y hf : ∀ (x : X), ∃ C, ∃ s ∈ 𝓝 x, LipschitzOnWith C f s ⊢ dimH (f '' univ) ≤ dimH univ
refine dimH_image_le_of_locally_lipschitzOn fun x _ => ?_
X : Type u_2 Y : Type u_3 inst✝² : EMetricSpace X inst✝¹ : EMetricSpace Y inst✝ : SecondCountableTopology X f : X → Y hf : ∀ (x : X), ∃ C, ∃ s ∈ 𝓝 x, LipschitzOnWith C f s x : X x✝ : x ∈ univ ⊢ ∃ C, ∃ t ∈ 𝓝[univ] x, LipschitzOnWith C f t
2d461ca5b4f2951f
rothNumberNat_le_ruzsaSzemerediNumberNat
Mathlib/Combinatorics/Extremal/RuzsaSzemeredi.lean
lemma rothNumberNat_le_ruzsaSzemerediNumberNat (n : ℕ) : (2 * n + 1) * rothNumberNat n ≤ ruzsaSzemerediNumberNat (6 * n + 3)
n : ℕ α : Type := Fin (2 * n + 1) this✝ : Coprime 2 (2 * n + 1) this : Fact (IsUnit 2) ⊢ ruzsaSzemerediNumber (α ⊕ α ⊕ α) = ruzsaSzemerediNumberNat (6 * n + 3)
simp_rw [← ruzsaSzemerediNumberNat_card, Fintype.card_sum, α, Fintype.card_fin]
n : ℕ α : Type := Fin (2 * n + 1) this✝ : Coprime 2 (2 * n + 1) this : Fact (IsUnit 2) ⊢ ruzsaSzemerediNumberNat (2 * n + 1 + (2 * n + 1 + (2 * n + 1))) = ruzsaSzemerediNumberNat (6 * n + 3)
f10db59dd468e568
Submodule.isInternal_prime_power_torsion_of_is_torsion_by_ideal
Mathlib/Algebra/Module/DedekindDomain.lean
theorem isInternal_prime_power_torsion_of_is_torsion_by_ideal [DecidableEq (Ideal R)] {I : Ideal R} (hI : I ≠ ⊥) (hM : Module.IsTorsionBySet R M I) : DirectSum.IsInternal fun p : (factors I).toFinset => torsionBySet R M (p ^ (factors I).count ↑p : Ideal R)
R : Type u inst✝⁵ : CommRing R inst✝⁴ : IsDomain R M : Type v inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : IsDedekindDomain R inst✝ : DecidableEq (Ideal R) I : Ideal R hI : I ≠ ⊥ hM : Module.IsTorsionBySet R M ↑I P : Multiset (Ideal R) := factors I prime_of_mem : ∀ p ∈ P.toFinset, Prime p p : Ideal R hp : p ∈ ↑(factors I).toFinset q : Ideal R hq : q ∈ ↑(factors I).toFinset pq : p ≠ q ⊢ ¬(Multiset.count q P ≠ 0 ∧ p = normalize q)
exact fun H => pq <| H.2.trans <| normalize_eq q
no goals
342bfde6ba181719
List.Forall₂.prod_le_prod'
Mathlib/Algebra/Order/BigOperators/Group/List.lean
@[to_additive sum_le_sum] lemma Forall₂.prod_le_prod' [Preorder M] [MulRightMono M] [MulLeftMono M] {l₁ l₂ : List M} (h : Forall₂ (· ≤ ·) l₁ l₂) : l₁.prod ≤ l₂.prod
case cons M : Type u_3 inst✝³ : Monoid M inst✝² : Preorder M inst✝¹ : MulRightMono M inst✝ : MulLeftMono M l₁ l₂ : List M a b : M la lb : List M hab : a ≤ b ih : Forall₂ (fun x1 x2 => x1 ≤ x2) la lb ih' : la.prod ≤ lb.prod ⊢ (a :: la).prod ≤ (b :: lb).prod
simpa only [prod_cons] using mul_le_mul' hab ih'
no goals
1e4e14213ff126b1
Subgroup.IsComplement.equiv_snd_eq_iff_rightCosetEquivalence
Mathlib/GroupTheory/Complement.lean
theorem equiv_snd_eq_iff_rightCosetEquivalence {g₁ g₂ : G} : (hHT.equiv g₁).snd = (hHT.equiv g₂).snd ↔ RightCosetEquivalence H g₁ g₂
case mpr.py₂ G : Type u_1 inst✝ : Group G H : Subgroup G T : Set G hHT : IsComplement (↑H) T g₁ g₂ : G h : g₂ * g₁⁻¹ ∈ H ⊢ g₁ * (↑(hHT.equiv g₂).2)⁻¹ ∈ ↑H
rw [SetLike.mem_coe, ← mul_mem_cancel_left h]
case mpr.py₂ G : Type u_1 inst✝ : Group G H : Subgroup G T : Set G hHT : IsComplement (↑H) T g₁ g₂ : G h : g₂ * g₁⁻¹ ∈ H ⊢ g₂ * g₁⁻¹ * (g₁ * (↑(hHT.equiv g₂).2)⁻¹) ∈ H
f30a129f3cb5b12f
Dynamics.coverMincard_le_netMaxcard
Mathlib/Dynamics/TopologicalEntropy/NetEntropy.lean
/-- Given an entourage `U` and a time `n`, a minimal dynamical cover by `U ○ U` has a smaller cardinality than a maximal dynamical net by `U`. This lemma is the second of two key results to compare two versions topological entropy: with cover and with nets. -/ lemma coverMincard_le_netMaxcard (T : X → X) (F : Set X) {U : Set (X × X)} (U_rfl : idRel ⊆ U) (U_symm : SymmetricRel U) (n : ℕ) : coverMincard T F (U ○ U) n ≤ netMaxcard T F U n
case inr.intro.intro.h.intro.intro X : Type u_1 T : X → X F : Set X U : Set (X × X) U_rfl : idRel ⊆ U U_symm : SymmetricRel U n : ℕ h✝ : netMaxcard T F U n < ⊤ s : Finset X s_net : IsDynNetIn T F U n ↑s s_netMaxcard : ↑s.card = netMaxcard T F U n h : ¬IsDynCoverOf T F (U ○ U) n ↑s x : X x_F : x ∈ F x_uncov : ∀ x_1 ∈ s, x ∉ ball x_1 (dynEntourage T (U ○ U) n) larger_net : IsDynNetIn T F U n ↑(insert x s) ⊢ netMaxcard T F U n < ↑(insert x s).card
rw [← s_netMaxcard, Nat.cast_lt]
case inr.intro.intro.h.intro.intro X : Type u_1 T : X → X F : Set X U : Set (X × X) U_rfl : idRel ⊆ U U_symm : SymmetricRel U n : ℕ h✝ : netMaxcard T F U n < ⊤ s : Finset X s_net : IsDynNetIn T F U n ↑s s_netMaxcard : ↑s.card = netMaxcard T F U n h : ¬IsDynCoverOf T F (U ○ U) n ↑s x : X x_F : x ∈ F x_uncov : ∀ x_1 ∈ s, x ∉ ball x_1 (dynEntourage T (U ○ U) n) larger_net : IsDynNetIn T F U n ↑(insert x s) ⊢ s.card < (insert x s).card
78a05381e650bf91
TopCat.Presheaf.app_surjective_of_stalkFunctor_map_bijective
Mathlib/Topology/Sheaves/Stalks.lean
theorem app_surjective_of_stalkFunctor_map_bijective {F G : Sheaf C X} (f : F ⟶ G) (U : Opens X) (h : ∀ x ∈ U, Function.Bijective ((stalkFunctor C x).map f.1)) : Function.Surjective (f.1.app (op U))
case intro.intro.intro.intro.intro.intro.intro.intro C : Type u inst✝⁶ : Category.{v, u} C inst✝⁵ : HasColimits C X : TopCat FC : C → C → Type u_1 CC : C → Type v inst✝⁴ : (X Y : C) → FunLike (FC X Y) (CC X) (CC Y) instCC : ConcreteCategory C FC inst✝³ : PreservesFilteredColimits (forget C) inst✝² : HasLimits C inst✝¹ : PreservesLimits (forget C) inst✝ : (forget C).ReflectsIsomorphisms F G : Sheaf C X f : F ⟶ G U : Opens ↑X h : ∀ x ∈ U, Function.Bijective ⇑(ConcreteCategory.hom ((stalkFunctor C x).map f.val)) t : CC (G.val.obj (op U)) x : ↑X hx : x ∈ U V₁ : Opens ↑X hxV₁ : x ∈ V₁ s₁ : ToType (F.presheaf.obj (op V₁)) hs₁ : (ConcreteCategory.hom (germ G.val V₁ x hxV₁)) ((ConcreteCategory.hom (f.val.app (op V₁))) s₁) = (ConcreteCategory.hom (G.presheaf.germ U x hx)) t V₂ : Opens ↑X hxV₂ : x ∈ V₂ iV₂V₁ : V₂ ⟶ V₁ iV₂U : V₂ ⟶ U heq : (ConcreteCategory.hom (G.presheaf.map iV₂V₁.op)) ((ConcreteCategory.hom (f.val.app (op V₁))) s₁) = (ConcreteCategory.hom (G.presheaf.map iV₂U.op)) t ⊢ ∃ V, ∃ (_ : x ∈ V), ∃ iVU s, (ConcreteCategory.hom (f.val.app (op V))) s = (ConcreteCategory.hom (G.val.map iVU.op)) t
use V₂, hxV₂, iV₂U, F.1.map iV₂V₁.op s₁
case h C : Type u inst✝⁶ : Category.{v, u} C inst✝⁵ : HasColimits C X : TopCat FC : C → C → Type u_1 CC : C → Type v inst✝⁴ : (X Y : C) → FunLike (FC X Y) (CC X) (CC Y) instCC : ConcreteCategory C FC inst✝³ : PreservesFilteredColimits (forget C) inst✝² : HasLimits C inst✝¹ : PreservesLimits (forget C) inst✝ : (forget C).ReflectsIsomorphisms F G : Sheaf C X f : F ⟶ G U : Opens ↑X h : ∀ x ∈ U, Function.Bijective ⇑(ConcreteCategory.hom ((stalkFunctor C x).map f.val)) t : CC (G.val.obj (op U)) x : ↑X hx : x ∈ U V₁ : Opens ↑X hxV₁ : x ∈ V₁ s₁ : ToType (F.presheaf.obj (op V₁)) hs₁ : (ConcreteCategory.hom (germ G.val V₁ x hxV₁)) ((ConcreteCategory.hom (f.val.app (op V₁))) s₁) = (ConcreteCategory.hom (G.presheaf.germ U x hx)) t V₂ : Opens ↑X hxV₂ : x ∈ V₂ iV₂V₁ : V₂ ⟶ V₁ iV₂U : V₂ ⟶ U heq : (ConcreteCategory.hom (G.presheaf.map iV₂V₁.op)) ((ConcreteCategory.hom (f.val.app (op V₁))) s₁) = (ConcreteCategory.hom (G.presheaf.map iV₂U.op)) t ⊢ (ConcreteCategory.hom (f.val.app (op V₂))) ((ConcreteCategory.hom (F.val.map iV₂V₁.op)) s₁) = (ConcreteCategory.hom (G.val.map iV₂U.op)) t
6bc960e8b7229d89
Matrix.vecMul_injective_iff
Mathlib/LinearAlgebra/Matrix/ToLin.lean
theorem Matrix.vecMul_injective_iff {R : Type*} [CommRing R] {M : Matrix m n R} : Function.Injective M.vecMul ↔ LinearIndependent R (fun i ↦ M i)
case refine_1.h m : Type u_3 n : Type u_4 inst✝¹ : Fintype m R : Type u_5 inst✝ : CommRing R M : Matrix m n R h : ∀ (x : m → R), x ᵥ* M = 0 → x = 0 c : m → R h0 : ∑ i : m, c i • M i = 0 i : n ⊢ (c ᵥ* M) i = (∑ i : m, c i • M i) i
simp [vecMul, dotProduct]
no goals
bce4056b31b0bb97
Basis.SmithNormalForm.toAddSubgroup_index_eq_pow_mul_prod
Mathlib/LinearAlgebra/FreeModule/Int.lean
/-- Given a submodule `N` in Smith normal form of a free `R`-module, its index as an additive subgroup is an appropriate power of the cardinality of `R` multiplied by the product of the indexes of the ideals generated by each basis vector. -/ lemma toAddSubgroup_index_eq_pow_mul_prod [Module R M] {N : Submodule R M} (snf : Basis.SmithNormalForm N ι n) : N.toAddSubgroup.index = Nat.card R ^ (Fintype.card ι - n) * ∏ i : Fin n, (Ideal.span {snf.a i}).toAddSubgroup.index
ι : Type u_1 R : Type u_2 M : Type u_3 n : ℕ inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Fintype ι inst✝ : Module R M N : Submodule R M bM : Basis ι R M bN : Basis (Fin n) R ↥N f : Fin n ↪ ι a : Fin n → R snf : ∀ (i : Fin n), ↑(bN i) = a i • bM (f i) N' : Submodule R (ι → R) := Submodule.map bM.equivFun N hN' : N' = Submodule.map bM.equivFun N bN' : Basis (Fin n) R ↥N' := bN.map (bM.equivFun.submoduleMap N) snf' : ∀ (i : Fin n), ↑(bN' i) = Pi.single (f i) (a i) hNN' : N.toAddSubgroup.index = N'.toAddSubgroup.index c : Fin n → R i : ι h : ∃ j, f j = i j : Fin n hj : j ≠ h.choose hinj : f j ≠ f h.choose ⊢ (c j • if i = f j then a j else 0) = 0
rw [h.choose_spec] at hinj
ι : Type u_1 R : Type u_2 M : Type u_3 n : ℕ inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Fintype ι inst✝ : Module R M N : Submodule R M bM : Basis ι R M bN : Basis (Fin n) R ↥N f : Fin n ↪ ι a : Fin n → R snf : ∀ (i : Fin n), ↑(bN i) = a i • bM (f i) N' : Submodule R (ι → R) := Submodule.map bM.equivFun N hN' : N' = Submodule.map bM.equivFun N bN' : Basis (Fin n) R ↥N' := bN.map (bM.equivFun.submoduleMap N) snf' : ∀ (i : Fin n), ↑(bN' i) = Pi.single (f i) (a i) hNN' : N.toAddSubgroup.index = N'.toAddSubgroup.index c : Fin n → R i : ι h : ∃ j, f j = i j : Fin n hj : j ≠ h.choose hinj : f j ≠ i ⊢ (c j • if i = f j then a j else 0) = 0
3d7a9cb7455a5c0f
Nat.repr_length
Mathlib/Data/Nat/Digits.lean
/-- The core implementation of `Nat.repr` returns a String with length less than or equal to the number of digits in the decimal number (represented by `e`). For example, the decimal string representation of any number less than 1000 (10 ^ 3) has a length less than or equal to 3. -/ lemma repr_length (n e : Nat) : 0 < e → n < 10 ^ e → (Nat.repr n).length <= e
e n : ℕ e0 : 0 < e he : n + 1 < 10 ^ e hterm : ¬n.succ / 10 = 0 ⊢ (toDigitsCore 10 (n + 1 + 1) (n + 1) []).length ≤ e
exact toDigitsCore_length 10 (by decide) (Nat.succ n + 1) (Nat.succ n) e he e0
no goals
d511f3017bbee59f
MvPolynomial.mem_image_comap_C_basicOpen
Mathlib/RingTheory/Spectrum/Prime/Polynomial.lean
lemma mem_image_comap_C_basicOpen (f : MvPolynomial σ R) (x : PrimeSpectrum R) : x ∈ comap (C (σ := σ)) '' basicOpen f ↔ ∃ i, f.coeff i ∉ x.asIdeal
R : Type u_2 inst✝ : CommRing R σ : Type u_1 f : MvPolynomial σ R x : PrimeSpectrum R ⊢ x ∈ ⇑(comap C) '' ↑(basicOpen f) ↔ (map (algebraMap R x.asIdeal.ResidueField)) f ≠ 0
refine (mem_image_comap_basicOpen _ _).trans (not_iff_not.mpr ?_)
R : Type u_2 inst✝ : CommRing R σ : Type u_1 f : MvPolynomial σ R x : PrimeSpectrum R ⊢ IsNilpotent ((algebraMap (MvPolynomial σ R) (MvPolynomial σ R ⊗[R] x.asIdeal.ResidueField)) f) ↔ (map (algebraMap R x.asIdeal.ResidueField)) f = 0
8f5871a9394f4ea4
Rat.toNNRat_inv
Mathlib/Data/NNRat/Lemmas.lean
lemma toNNRat_inv (q : ℚ) : toNNRat q⁻¹ = (toNNRat q)⁻¹
case inr q : ℚ hq : 0 ≤ q ⊢ (↑q.toNNRat)⁻¹.toNNRat = q.toNNRat⁻¹
rw [← coe_inv, toNNRat_coe]
no goals
69eeea9e2e5af2bb
Fin.snoc_update
Mathlib/Data/Fin/Tuple/Basic.lean
theorem snoc_update : snoc (update p i y) x = update (snoc p x) i.castSucc y
case pos n : ℕ α : Fin (n + 1) → Sort u_1 x : α (last n) p : (i : Fin n) → α i.castSucc i : Fin n y : α i.castSucc j : Fin (n + 1) h : ↑j < n ⊢ (if h : ↑j < n then cast ⋯ (update p i y (j.castLT h)) else cast ⋯ x) = update (snoc p x) i.castSucc y j
simp only [h]
case pos n : ℕ α : Fin (n + 1) → Sort u_1 x : α (last n) p : (i : Fin n) → α i.castSucc i : Fin n y : α i.castSucc j : Fin (n + 1) h : ↑j < n ⊢ (if h_1 : True then cast ⋯ (update p i y (j.castLT ⋯)) else cast ⋯ x) = update (snoc p x) i.castSucc y j
4eef9dec140e05c3
AbsoluteValue.exists_partition_int
Mathlib/NumberTheory/ClassNumber/AdmissibleAbs.lean
theorem exists_partition_int (n : ℕ) {ε : ℝ} (hε : 0 < ε) {b : ℤ} (hb : b ≠ 0) (A : Fin n → ℤ) : ∃ t : Fin n → Fin ⌈1 / ε⌉₊, ∀ i₀ i₁, t i₀ = t i₁ → ↑(abs (A i₁ % b - A i₀ % b)) < abs b • ε
case refine_1 n : ℕ ε : ℝ hε : 0 < ε b : ℤ hb : b ≠ 0 A : Fin n → ℤ hb' : 0 < ↑|b| hbε : 0 < |b| • ε hfloor : ∀ (i : Fin n), 0 ≤ ⌊↑(A i % b) / |b| • ε⌋ i : Fin n ⊢ ↑(A i % b) / ↑|b| / ε < ↑↑⌈1 / ε⌉₊
apply lt_of_lt_of_le _ (Nat.le_ceil _)
n : ℕ ε : ℝ hε : 0 < ε b : ℤ hb : b ≠ 0 A : Fin n → ℤ hb' : 0 < ↑|b| hbε : 0 < |b| • ε hfloor : ∀ (i : Fin n), 0 ≤ ⌊↑(A i % b) / |b| • ε⌋ i : Fin n ⊢ ↑(A i % b) / ↑|b| / ε < 1 / ε
b91f00c7ed7d0496
PowerSeries.maximalIdeal_eq_span_X
Mathlib/RingTheory/PowerSeries/Inverse.lean
theorem maximalIdeal_eq_span_X : IsLocalRing.maximalIdeal (k⟦X⟧) = Ideal.span {X}
case left k : Type u_2 inst✝ : Field k ⊢ ¬X ∣ 1
exact Prime.not_dvd_one X_prime
no goals
e0962a486b118068
Fin.zero_eq_one_iff
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Fin/Lemmas.lean
theorem zero_eq_one_iff {n : Nat} [NeZero n] : (0 : Fin n) = 1 ↔ n = 1
case mpr n : Nat inst✝ : NeZero n ⊢ n = 1 → 0 = 1
rintro rfl
case mpr inst✝ : NeZero 1 ⊢ 0 = 1
1b6c9cdc3a95a9f5
Vector.all_bne
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Vector/Lemmas.lean
theorem all_bne [BEq α] {xs : Vector α n} : (xs.all fun x => a != x) = !xs.contains a
case mk α : Type u_1 a : α inst✝ : BEq α xs : Array α ⊢ ({ toArray := xs, size_toArray := ⋯ }.all fun x => a != x) = !{ toArray := xs, size_toArray := ⋯ }.contains a
simp [Array.all_bne]
no goals
2ecfac75e4394e13
Polynomial.natDegree_sum_eq_of_disjoint
Mathlib/Algebra/Polynomial/Degree/Lemmas.lean
theorem natDegree_sum_eq_of_disjoint (f : S → R[X]) (s : Finset S) (h : Set.Pairwise { i | i ∈ s ∧ f i ≠ 0 } (Ne on natDegree ∘ f)) : natDegree (s.sum f) = s.sup fun i => natDegree (f i)
case pos.intro.intro R : Type u S : Type v inst✝ : Semiring R f : S → R[X] s : Finset S h : {i | i ∈ s ∧ f i ≠ 0}.Pairwise (Ne on natDegree ∘ f) x : S hx : x ∈ s hx' : f x ≠ 0 ⊢ (s.sum f).natDegree = s.sup fun i => (f i).natDegree
have hs : s.Nonempty := ⟨x, hx⟩
case pos.intro.intro R : Type u S : Type v inst✝ : Semiring R f : S → R[X] s : Finset S h : {i | i ∈ s ∧ f i ≠ 0}.Pairwise (Ne on natDegree ∘ f) x : S hx : x ∈ s hx' : f x ≠ 0 hs : s.Nonempty ⊢ (s.sum f).natDegree = s.sup fun i => (f i).natDegree
daf835299b38da62
Ordinal.add_le_of_limit
Mathlib/SetTheory/Ordinal/Arithmetic.lean
theorem add_le_of_limit {a b c : Ordinal} (h : IsLimit b) : a + b ≤ c ↔ ∀ b' < b, a + b' ≤ c := ⟨fun h _ l => (add_le_add_left l.le _).trans h, fun H => le_of_not_lt <| by -- Porting note: `induction` tactics are required because of the parser bug. induction a using inductionOn with | H α r => induction b using inductionOn with | H β s => intro l suffices ∀ x : β, Sum.Lex r s (Sum.inr x) (enum _ ⟨_, l⟩) by -- Porting note: `revert` & `intro` is required because `cases'` doesn't replace -- `enum _ _ l` in `this`. revert this; rcases enum _ ⟨_, l⟩ with x | x <;> intro this · cases this (enum s ⟨0, h.pos⟩) · exact irrefl _ (this _) intro x rw [← typein_lt_typein (Sum.Lex r s), typein_enum] have := H _ (h.succ_lt (typein_lt_type s x)) rw [add_succ, succ_le_iff] at this refine (RelEmbedding.ofMonotone (fun a => ?_) fun a b => ?_).ordinal_type_le.trans_lt this · rcases a with ⟨a | b, h⟩ · exact Sum.inl a · exact Sum.inr ⟨b, by cases h; assumption⟩ · rcases a with ⟨a | a, h₁⟩ <;> rcases b with ⟨b | b, h₂⟩ <;> cases h₁ <;> cases h₂ <;> rintro ⟨⟩ <;> constructor <;> assumption⟩
case inr c : Ordinal.{u_4} α : Type u_4 r : α → α → Prop inst✝¹ : IsWellOrder α r β : Type u_4 s : β → β → Prop inst✝ : IsWellOrder β s h : (type s).IsLimit H : ∀ b' < type s, type r + b' ≤ c l : c < type r + type s x : β this : type r + (typein s).toRelEmbedding x < c b : β h✝ : s b x ⊢ s b x
assumption
no goals
51d16ae877a4fc6c
zpow_neg_mul_zpow_self
Mathlib/Algebra/GroupWithZero/Units/Basic.lean
lemma zpow_neg_mul_zpow_self (n : ℤ) (ha : a ≠ 0) : a ^ (-n) * a ^ n = 1
G₀ : Type u_3 inst✝ : GroupWithZero G₀ a : G₀ n : ℤ ha : a ≠ 0 ⊢ a ^ (-n) * a ^ n = 1
rw [zpow_neg]
G₀ : Type u_3 inst✝ : GroupWithZero G₀ a : G₀ n : ℤ ha : a ≠ 0 ⊢ (a ^ n)⁻¹ * a ^ n = 1
71024ef797df0d81
strictConvexOn_exp
Mathlib/Analysis/Convex/SpecificFunctions/Basic.lean
theorem strictConvexOn_exp : StrictConvexOn ℝ univ exp
x y z : ℝ hxy : x < y hyz : y < z h1 : 0 < y - x h2 : x - y < 0 ⊢ rexp y - rexp x = rexp y - rexp (y + (x - y))
ring_nf
no goals
12b8c11111e0e8d6
ProbabilityTheory.strong_law_aux2
Mathlib/Probability/StrongLaw.lean
theorem strong_law_aux2 {c : ℝ} (c_one : 1 < c) : ∀ᵐ ω, (fun n : ℕ => ∑ i ∈ range ⌊c ^ n⌋₊, truncation (X i) i ω - 𝔼[∑ i ∈ range ⌊c ^ n⌋₊, truncation (X i) i]) =o[atTop] fun n : ℕ => (⌊c ^ n⌋₊ : ℝ)
case intro.intro.intro Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) ℙ hindep : Pairwise ((fun f g => IndepFun f g ℙ) on X) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) ℙ ℙ hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c v : ℕ → ℝ v_pos : ∀ (n : ℕ), 0 < v n v_lim : Tendsto v atTop (𝓝 0) ⊢ ∀ᵐ (ω : Ω), (fun n => ∑ i ∈ range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), (∑ i ∈ range ⌊c ^ n⌋₊, truncation (X i) ↑i) a) =o[atTop] fun n => ↑⌊c ^ n⌋₊
have := fun i => strong_law_aux1 X hint hindep hident hnonneg c_one (v_pos i)
case intro.intro.intro Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) ℙ hindep : Pairwise ((fun f g => IndepFun f g ℙ) on X) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) ℙ ℙ hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c v : ℕ → ℝ v_pos : ∀ (n : ℕ), 0 < v n v_lim : Tendsto v atTop (𝓝 0) this : ∀ (i : ℕ), ∀ᵐ (ω : Ω), ∀ᶠ (n : ℕ) in atTop, |∑ i ∈ range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), (∑ i ∈ range ⌊c ^ n⌋₊, truncation (X i) ↑i) a| < v i * ↑⌊c ^ n⌋₊ ⊢ ∀ᵐ (ω : Ω), (fun n => ∑ i ∈ range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), (∑ i ∈ range ⌊c ^ n⌋₊, truncation (X i) ↑i) a) =o[atTop] fun n => ↑⌊c ^ n⌋₊
0a014d4dcbee42df
MeasureTheory.ProbabilityMeasure.map_fst_prod
Mathlib/MeasureTheory/Measure/FiniteMeasureProd.lean
/-- The first marginal of a product probability measure is the first probability measure. -/ @[simp] lemma map_fst_prod : (μ.prod ν).map measurable_fst.aemeasurable = μ
case a α : Type u_1 inst✝¹ : MeasurableSpace α β : Type u_2 inst✝ : MeasurableSpace β μ : ProbabilityMeasure α ν : ProbabilityMeasure β ⊢ ↑((μ.prod ν).map ⋯) = ↑μ
simp only [val_eq_to_measure, toMeasure_map, toMeasure_prod, Measure.map_fst_prod, measure_univ, one_smul]
no goals
99d5022a084cc581
Complex.arg_mem_Ioc
Mathlib/Analysis/SpecialFunctions/Complex/Arg.lean
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π
z : ℂ ⊢ z.arg ∈ Ioc (-π) π
have hπ : 0 < π := Real.pi_pos
z : ℂ hπ : 0 < π ⊢ z.arg ∈ Ioc (-π) π
5bfcd13fb0005b53
HasFDerivWithinAt.abs_of_pos
Mathlib/Analysis/Calculus/Deriv/Abs.lean
theorem HasFDerivWithinAt.abs_of_pos (hf : HasFDerivWithinAt f f' s x) (h₀ : 0 < f x) : HasFDerivWithinAt (fun x ↦ |f x|) f' s x
case h.e'_12 E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E f : E → ℝ f' : E →L[ℝ] ℝ s : Set E x : E hf : HasFDerivWithinAt f f' s x h₀ : 0 < f x ⊢ f' = 1 • f'
simp
no goals
fa607aa50b983aec
MeasureTheory.Measure.tendsto_IicSnd_atBot
Mathlib/Probability/Kernel/Disintegration/CondCDF.lean
theorem tendsto_IicSnd_atBot [IsFiniteMeasure ρ] {s : Set α} (hs : MeasurableSet s) : Tendsto (fun r : ℚ ↦ ρ.IicSnd r s) atBot (𝓝 0)
α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s h_empty : ρ (s ×ˢ ∅) = 0 q r : ℚ hqr : q ≤ r x : ℝ hx : x ∈ Iic ↑(-r) ⊢ x ∈ Iic ↑(-q)
simp only [Rat.cast_neg, mem_Iic] at hx ⊢
α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s h_empty : ρ (s ×ˢ ∅) = 0 q r : ℚ hqr : q ≤ r x : ℝ hx : x ≤ -↑r ⊢ x ≤ -↑q
cd38db034d7af3e8
MeasureTheory.measurable_stoppedValue
Mathlib/Probability/Process/Stopping.lean
theorem measurable_stoppedValue [MetrizableSpace β] [MeasurableSpace β] [BorelSpace β] (hf_prog : ProgMeasurable f u) (hτ : IsStoppingTime f τ) : Measurable[hτ.measurableSpace] (stoppedValue u τ)
Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁹ : LinearOrder ι inst✝⁸ : MeasurableSpace ι inst✝⁷ : TopologicalSpace ι inst✝⁶ : OrderTopology ι inst✝⁵ : SecondCountableTopology ι inst✝⁴ : BorelSpace ι inst✝³ : TopologicalSpace β u : ι → Ω → β τ : Ω → ι f : Filtration ι m inst✝² : MetrizableSpace β inst✝¹ : MeasurableSpace β inst✝ : BorelSpace β hf_prog : ProgMeasurable f u hτ : IsStoppingTime f τ h_str_meas : ∀ (i : ι), StronglyMeasurable (stoppedValue u fun ω => τ ω ⊓ i) t : Set β ht : MeasurableSet t i : ι this : stoppedValue u τ ⁻¹' t ∩ {ω | τ ω ≤ i} = (stoppedValue u fun ω => τ ω ⊓ i) ⁻¹' t ∩ {ω | τ ω ≤ i} ⊢ MeasurableSet (stoppedValue u τ ⁻¹' t ∩ {ω | τ ω ≤ i})
rw [this]
Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁹ : LinearOrder ι inst✝⁸ : MeasurableSpace ι inst✝⁷ : TopologicalSpace ι inst✝⁶ : OrderTopology ι inst✝⁵ : SecondCountableTopology ι inst✝⁴ : BorelSpace ι inst✝³ : TopologicalSpace β u : ι → Ω → β τ : Ω → ι f : Filtration ι m inst✝² : MetrizableSpace β inst✝¹ : MeasurableSpace β inst✝ : BorelSpace β hf_prog : ProgMeasurable f u hτ : IsStoppingTime f τ h_str_meas : ∀ (i : ι), StronglyMeasurable (stoppedValue u fun ω => τ ω ⊓ i) t : Set β ht : MeasurableSet t i : ι this : stoppedValue u τ ⁻¹' t ∩ {ω | τ ω ≤ i} = (stoppedValue u fun ω => τ ω ⊓ i) ⁻¹' t ∩ {ω | τ ω ≤ i} ⊢ MeasurableSet ((stoppedValue u fun ω => τ ω ⊓ i) ⁻¹' t ∩ {ω | τ ω ≤ i})
1bd0ad42e2bec67b
HasFPowerSeriesAt.eventually_hasSum_of_comp
Mathlib/Analysis/Analytic/Inverse.lean
lemma HasFPowerSeriesAt.eventually_hasSum_of_comp {f : E → F} {g : F → G} {q : FormalMultilinearSeries 𝕜 F G} {p : FormalMultilinearSeries 𝕜 E F} {x : E} (hgf : HasFPowerSeriesAt (g ∘ f) (q.comp p) x) (hf : HasFPowerSeriesAt f p x) (hq : 0 < q.radius) : ∀ᶠ y in 𝓝 0, HasSum (fun n : ℕ => q n fun _ : Fin n => (f (x + y) - f x)) (g (f (x + y)))
case h 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace 𝕜 G f : E → F g : F → G q : FormalMultilinearSeries 𝕜 F G p : FormalMultilinearSeries 𝕜 E F x : E hgf : HasFPowerSeriesAt (g ∘ f) (q.comp p) x hf : HasFPowerSeriesAt f p x hq : 0 < q.radius this : ∀ᶠ (y : E) in 𝓝 0, f (x + y) - f x ∈ EMetric.ball 0 q.radius y : E hy : Tendsto (fun a => q.partialSum a.1 (p.partialSum a.2 y - (p 0) fun x => 0)) atTop (𝓝 ((g ∘ f) (x + y))) h'y : Tendsto (fun n => p.partialSum n y) atTop (𝓝 (f (x + y))) h''y : f (x + y) - f x ∈ EMetric.ball 0 q.radius L : Tendsto (fun n => q.partialSum n (f (x + y) - f x)) atTop (𝓝 (g (f (x + y)))) C : CauchySeq fun s => ∑ n ∈ s, (q n) fun x_1 => f (x + y) - f x ⊢ HasSum (fun n => (q n) fun x_1 => f (x + y) - f x) (g (f (x + y)))
exact tendsto_nhds_of_cauchySeq_of_subseq C tendsto_finset_range L
no goals
879ec15fea67d40e
RingHom.finite_ofLocalizationSpan
Mathlib/RingTheory/RingHom/Finite.lean
theorem RingHom.finite_ofLocalizationSpan : RingHom.OfLocalizationSpan @RingHom.Finite
R S : Type u_1 inst✝¹ : CommRing R inst✝ : CommRing S f : R →+* S s : Finset R hs : Ideal.span ↑s = ⊤ this✝² : Algebra R S := f.toAlgebra this✝¹ : (r : { x // x ∈ s }) → Algebra (Localization.Away ↑r) (Localization.Away (f ↑r)) := fun r => (Localization.awayMap f ↑r).toAlgebra this✝ : ∀ (r : { x // x ∈ s }), IsLocalization (Submonoid.map (algebraMap R S) (Submonoid.powers ↑r)) (Localization.Away (f ↑r)) this : ∀ (r : { x // x ∈ s }), IsScalarTower R (Localization.Away ↑r) (Localization.Away (f ↑r)) s₁ : (r : { x // x ∈ s }) → Finset (Localization.Away (f ↑r)) s₂ : ∀ (r : { x // x ∈ s }), Submodule.span (Localization.Away ↑r) ↑(s₁ r) = ⊤ sf : { x // x ∈ s } → Finset S := fun x => IsLocalization.finsetIntegerMultiple (Submonoid.powers (f ↑x)) (s₁ x) x : S r : ↑↑s ⊢ (algebraMap S (Localization.Away (f ↑r))) x ∈ Submodule.span (Localization.Away ↑r) ↑(s₁ r)
rw [s₂ r]
R S : Type u_1 inst✝¹ : CommRing R inst✝ : CommRing S f : R →+* S s : Finset R hs : Ideal.span ↑s = ⊤ this✝² : Algebra R S := f.toAlgebra this✝¹ : (r : { x // x ∈ s }) → Algebra (Localization.Away ↑r) (Localization.Away (f ↑r)) := fun r => (Localization.awayMap f ↑r).toAlgebra this✝ : ∀ (r : { x // x ∈ s }), IsLocalization (Submonoid.map (algebraMap R S) (Submonoid.powers ↑r)) (Localization.Away (f ↑r)) this : ∀ (r : { x // x ∈ s }), IsScalarTower R (Localization.Away ↑r) (Localization.Away (f ↑r)) s₁ : (r : { x // x ∈ s }) → Finset (Localization.Away (f ↑r)) s₂ : ∀ (r : { x // x ∈ s }), Submodule.span (Localization.Away ↑r) ↑(s₁ r) = ⊤ sf : { x // x ∈ s } → Finset S := fun x => IsLocalization.finsetIntegerMultiple (Submonoid.powers (f ↑x)) (s₁ x) x : S r : ↑↑s ⊢ (algebraMap S (Localization.Away (f ↑r))) x ∈ ⊤
9687fc93cf781ddc
Polynomial.degree_div_lt
Mathlib/Algebra/Polynomial/FieldDivision.lean
theorem degree_div_lt (hp : p ≠ 0) (hq : 0 < degree q) : degree (p / q) < degree p
R : Type u inst✝ : Field R p q : R[X] hp : p ≠ 0 hq : 0 < q.degree hq0 : q = 0 ⊢ False
simp [hq0] at hq
no goals
8175cb88ff4d388e
FormalMultilinearSeries.compPartialSumTargetSet_image_compPartialSumSource
Mathlib/Analysis/Analytic/Composition.lean
theorem compPartialSumTargetSet_image_compPartialSumSource (m M N : ℕ) (i : Σ n, Composition n) (hi : i ∈ compPartialSumTargetSet m M N) : ∃ (j : _) (hj : j ∈ compPartialSumSource m M N), compChangeOfVariables m M N j hj = i
case mk.refine_2 m M N n : ℕ c : Composition n hi : ⟨n, c⟩ ∈ compPartialSumTargetSet m M N ⊢ (ofFn fun a => c.blocks.get a) = c.blocks
conv_rhs => rw [← List.ofFn_get c.blocks]
no goals
ef44e0f46a80a4f8
MeasureTheory.continuousOn_convolution_right_with_param_comp
Mathlib/Analysis/Convolution.lean
theorem continuousOn_convolution_right_with_param_comp {s : Set P} {v : P → G} (hv : ContinuousOn v s) {g : P → G → E'} {k : Set G} (hk : IsCompact k) (hgs : ∀ p, ∀ x, p ∈ s → x ∉ k → g p x = 0) (hf : LocallyIntegrable f μ) (hg : ContinuousOn (↿g) (s ×ˢ univ)) : ContinuousOn (fun x => (f ⋆[L, μ] g x) (v x)) s
𝕜 : Type u𝕜 G : Type uG E : Type uE E' : Type uE' F : Type uF P : Type uP inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedAddCommGroup E' inst✝¹¹ : NormedAddCommGroup F f : G → E inst✝¹⁰ : NontriviallyNormedField 𝕜 inst✝⁹ : NormedSpace 𝕜 E inst✝⁸ : NormedSpace 𝕜 E' inst✝⁷ : NormedSpace 𝕜 F L : E →L[𝕜] E' →L[𝕜] F inst✝⁶ : MeasurableSpace G μ : Measure G inst✝⁵ : NormedSpace ℝ F inst✝⁴ : AddGroup G inst✝³ : TopologicalSpace G inst✝² : IsTopologicalAddGroup G inst✝¹ : BorelSpace G inst✝ : TopologicalSpace P s : Set P v : P → G hv : ContinuousOn v s g : P → G → E' k : Set G hk : IsCompact k hgs : ∀ (p : P) (x : G), p ∈ s → x ∉ k → g p x = 0 hf : LocallyIntegrable f μ hg : ContinuousOn (↿g) (s ×ˢ univ) ⊢ MapsTo (fun x => (_root_.id x, v x)) s (s ×ˢ univ)
intro x hx
𝕜 : Type u𝕜 G : Type uG E : Type uE E' : Type uE' F : Type uF P : Type uP inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedAddCommGroup E' inst✝¹¹ : NormedAddCommGroup F f : G → E inst✝¹⁰ : NontriviallyNormedField 𝕜 inst✝⁹ : NormedSpace 𝕜 E inst✝⁸ : NormedSpace 𝕜 E' inst✝⁷ : NormedSpace 𝕜 F L : E →L[𝕜] E' →L[𝕜] F inst✝⁶ : MeasurableSpace G μ : Measure G inst✝⁵ : NormedSpace ℝ F inst✝⁴ : AddGroup G inst✝³ : TopologicalSpace G inst✝² : IsTopologicalAddGroup G inst✝¹ : BorelSpace G inst✝ : TopologicalSpace P s : Set P v : P → G hv : ContinuousOn v s g : P → G → E' k : Set G hk : IsCompact k hgs : ∀ (p : P) (x : G), p ∈ s → x ∉ k → g p x = 0 hf : LocallyIntegrable f μ hg : ContinuousOn (↿g) (s ×ˢ univ) x : P hx : x ∈ s ⊢ (fun x => (_root_.id x, v x)) x ∈ s ×ˢ univ
8a59b4459ff1f975
contDiffWithinAt_localInvariantProp_of_le
Mathlib/Geometry/Manifold/ContMDiff/Defs.lean
theorem contDiffWithinAt_localInvariantProp_of_le (n m : WithTop ℕ∞) (hmn : m ≤ n) : (contDiffGroupoid n I).LocalInvariantProp (contDiffGroupoid n I') (ContDiffWithinAtProp I I' m) where is_local {s x u f} u_open xu
case h₁ 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E H : Type u_3 inst✝³ : TopologicalSpace H I : ModelWithCorners 𝕜 E H E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : NormedSpace 𝕜 E' H' : Type u_6 inst✝ : TopologicalSpace H' I' : ModelWithCorners 𝕜 E' H' n m : WithTop ℕ∞ hmn : m ≤ n s : Set H x : H f g : H → H' h : ∀ y ∈ s, f y = g y hx : f x = g x hf : ContDiffWithinAtProp I I' m f s x y : E hy : ↑I.symm y ∈ s ∧ y ∈ range ↑I ⊢ (↑I' ∘ g ∘ ↑I.symm) y = (↑I' ∘ f ∘ ↑I.symm) y
simp only [h, hy, mfld_simps]
no goals
841928255da4a913
Set.image_sigmaMk_preimage_sigmaMap
Mathlib/Data/Set/Sigma.lean
theorem image_sigmaMk_preimage_sigmaMap {β : ι' → Type*} {f : ι → ι'} (hf : Function.Injective f) (g : ∀ i, α i → β (f i)) (i : ι) (s : Set (β (f i))) : Sigma.mk i '' (g i ⁻¹' s) = Sigma.map f g ⁻¹' (Sigma.mk (f i) '' s)
ι : Type u_1 ι' : Type u_2 α : ι → Type u_3 β : ι' → Type u_4 f : ι → ι' hf : Function.Injective f g : (i : ι) → α i → β (f i) i : ι s : Set (β (f i)) ⊢ Sigma.map f g ⁻¹' (Sigma.mk (f i) '' s) ⊆ Sigma.mk i '' (g i ⁻¹' s)
rintro ⟨j, x⟩ ⟨y, hys, hxy⟩
case mk.intro.intro ι : Type u_1 ι' : Type u_2 α : ι → Type u_3 β : ι' → Type u_4 f : ι → ι' hf : Function.Injective f g : (i : ι) → α i → β (f i) i : ι s : Set (β (f i)) j : ι x : α j y : β (f i) hys : y ∈ s hxy : ⟨f i, y⟩ = Sigma.map f g ⟨j, x⟩ ⊢ ⟨j, x⟩ ∈ Sigma.mk i '' (g i ⁻¹' s)
81b64c1b0c0d75fb
QuotientGroup.leftRel_eq
Mathlib/GroupTheory/Coset/Defs.lean
theorem leftRel_eq : ⇑(leftRel s) = fun x y => x⁻¹ * y ∈ s := funext₂ <| by simp only [eq_iff_iff] apply leftRel_apply
α : Type u_1 inst✝ : Group α s : Subgroup α ⊢ ∀ (a b : α), (leftRel s) a b ↔ a⁻¹ * b ∈ s
apply leftRel_apply
no goals
4c518f60fe2e6d5d
Set.PartiallyWellOrderedOn.union
Mathlib/Order/WellFoundedSet.lean
theorem PartiallyWellOrderedOn.union (hs : s.PartiallyWellOrderedOn r) (ht : t.PartiallyWellOrderedOn r) : (s ∪ t).PartiallyWellOrderedOn r
case intro.inl α : Type u_2 r : α → α → Prop s t : Set α hs : s.PartiallyWellOrderedOn r ht : t.PartiallyWellOrderedOn r f : ℕ → α hf : ∀ (n : ℕ), f n ∈ s ∪ t g : ℕ ↪o ℕ hgs : ∀ (n : ℕ), f (g n) ∈ s ⊢ ∃ m n, m < n ∧ r (f m) (f n)
rcases hs _ hgs with ⟨m, n, hlt, hr⟩
case intro.inl.intro.intro.intro α : Type u_2 r : α → α → Prop s t : Set α hs : s.PartiallyWellOrderedOn r ht : t.PartiallyWellOrderedOn r f : ℕ → α hf : ∀ (n : ℕ), f n ∈ s ∪ t g : ℕ ↪o ℕ hgs : ∀ (n : ℕ), f (g n) ∈ s m n : ℕ hlt : m < n hr : r (f (g m)) (f (g n)) ⊢ ∃ m n, m < n ∧ r (f m) (f n)
2f912f07888fb86c
Nat.two_pow_pred_mod_two_pow
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Nat/Lemmas.lean
theorem two_pow_pred_mod_two_pow (h : 0 < w) : 2 ^ (w - 1) % 2 ^ w = 2 ^ (w - 1)
w : Nat h : 0 < w ⊢ 1 < 2
omega
no goals
4b63a19c5ed33e08
MeasureTheory.Measure.haar.chaar_empty
Mathlib/MeasureTheory/Measure/Haar/Basic.lean
theorem chaar_empty (K₀ : PositiveCompacts G) : chaar K₀ ⊥ = 0
G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : IsTopologicalGroup G K₀ : PositiveCompacts G ⊢ chaar K₀ ⊥ = 0
let eval : (Compacts G → ℝ) → ℝ := fun f => f ⊥
G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : IsTopologicalGroup G K₀ : PositiveCompacts G eval : (Compacts G → ℝ) → ℝ := fun f => f ⊥ ⊢ chaar K₀ ⊥ = 0
c7a9478c0abc9e00
exists_continuous_nonneg_pos
Mathlib/Topology/UrysohnsLemma.lean
theorem exists_continuous_nonneg_pos [RegularSpace X] [LocallyCompactSpace X] (x : X) : ∃ f : C(X, ℝ), HasCompactSupport f ∧ 0 ≤ (f : X → ℝ) ∧ f x ≠ 0
case intro.intro.intro.intro.intro.intro X : Type u_1 inst✝² : TopologicalSpace X inst✝¹ : RegularSpace X inst✝ : LocallyCompactSpace X x : X k : Set X hk : IsCompact k k_mem : k ∈ 𝓝 x f : C(X, ℝ) fk : EqOn (⇑f) 1 k f_comp : HasCompactSupport ⇑f hf : ∀ (x : X), f x ∈ Icc 0 1 ⊢ f x ≠ 0
have := fk (mem_of_mem_nhds k_mem)
case intro.intro.intro.intro.intro.intro X : Type u_1 inst✝² : TopologicalSpace X inst✝¹ : RegularSpace X inst✝ : LocallyCompactSpace X x : X k : Set X hk : IsCompact k k_mem : k ∈ 𝓝 x f : C(X, ℝ) fk : EqOn (⇑f) 1 k f_comp : HasCompactSupport ⇑f hf : ∀ (x : X), f x ∈ Icc 0 1 this : f x = 1 x ⊢ f x ≠ 0
d3cde429bf91b0e7
finprod_mem_iUnion
Mathlib/Algebra/BigOperators/Finprod.lean
theorem finprod_mem_iUnion [Finite ι] {t : ι → Set α} (h : Pairwise (Disjoint on t)) (ht : ∀ i, (t i).Finite) : ∏ᶠ a ∈ ⋃ i : ι, t i, f a = ∏ᶠ i, ∏ᶠ a ∈ t i, f a
case intro.intro α : Type u_1 ι : Type u_3 M : Type u_5 inst✝¹ : CommMonoid M f : α → M inst✝ : Finite ι val✝ : Fintype ι t : ι → Finset α h : Pairwise (Disjoint on fun i => ↑(t i)) ⊢ ∏ᶠ (a : α) (_ : a ∈ ⋃ i, (fun i => ↑(t i)) i), f a = ∏ᶠ (i : ι) (a : α) (_ : a ∈ (fun i => ↑(t i)) i), f a
rw [← biUnion_univ, ← Finset.coe_univ, ← Finset.coe_biUnion, finprod_mem_coe_finset, Finset.prod_biUnion]
case intro.intro α : Type u_1 ι : Type u_3 M : Type u_5 inst✝¹ : CommMonoid M f : α → M inst✝ : Finite ι val✝ : Fintype ι t : ι → Finset α h : Pairwise (Disjoint on fun i => ↑(t i)) ⊢ ∏ x : ι, ∏ i ∈ t x, f i = ∏ᶠ (i : ι) (a : α) (_ : a ∈ (fun i => ↑(t i)) i), f a case intro.intro α : Type u_1 ι : Type u_3 M : Type u_5 inst✝¹ : CommMonoid M f : α → M inst✝ : Finite ι val✝ : Fintype ι t : ι → Finset α h : Pairwise (Disjoint on fun i => ↑(t i)) ⊢ (↑Finset.univ).PairwiseDisjoint t
df5991dc52740a08
strictConvexOn_of_slope_strict_mono_adjacent
Mathlib/Analysis/Convex/Slope.lean
theorem strictConvexOn_of_slope_strict_mono_adjacent (hs : Convex 𝕜 s) (hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) < (f z - f y) / (z - y)) : StrictConvexOn 𝕜 s f := LinearOrder.strictConvexOn_of_lt hs fun x hx z hz hxz a b ha hb hab => by let y := a * x + b * z have hxy : x < y
𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hs : Convex 𝕜 s hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) < (f z - f y) / (z - y) x : 𝕜 hx : x ∈ s z : 𝕜 hz : z ∈ s hxz : x < z a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 y : 𝕜 := a * x + b * z ⊢ f (a • x + b • z) < a • f x + b • f z
have hxy : x < y := by rw [← one_mul x, ← hab, add_mul] exact add_lt_add_left ((mul_lt_mul_left hb).2 hxz) _
𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hs : Convex 𝕜 s hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) < (f z - f y) / (z - y) x : 𝕜 hx : x ∈ s z : 𝕜 hz : z ∈ s hxz : x < z a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 y : 𝕜 := a * x + b * z hxy : x < y ⊢ f (a • x + b • z) < a • f x + b • f z
0f2988c10bcecabb
IncidenceAlgebra.zeta_prod_apply
Mathlib/Combinatorics/Enumerative/IncidenceAlgebra.lean
lemma zeta_prod_apply (a b : α × β) : zeta 𝕜 a b = zeta 𝕜 a.1 b.1 * zeta 𝕜 a.2 b.2
𝕜 : Type u_2 α : Type u_5 β : Type u_6 inst✝⁴ : Ring 𝕜 inst✝³ : Preorder α inst✝² : Preorder β inst✝¹ : DecidableRel fun x1 x2 => x1 ≤ x2 inst✝ : DecidableRel fun x1 x2 => x1 ≤ x2 a b : α × β ⊢ (zeta 𝕜) a b = (zeta 𝕜) a.1 b.1 * (zeta 𝕜) a.2 b.2
simp [← ite_and, Prod.le_def, and_comm]
no goals
c7b77d79335a807b
ArithmeticFunction.sum_eq_iff_sum_smul_moebius_eq
Mathlib/NumberTheory/ArithmeticFunction.lean
theorem sum_eq_iff_sum_smul_moebius_eq [AddCommGroup R] {f g : ℕ → R} : (∀ n > 0, ∑ i ∈ n.divisors, f i = g n) ↔ ∀ n > 0, ∑ x ∈ n.divisorsAntidiagonal, μ x.fst • g x.snd = f n
R : Type u_1 inst✝ : AddCommGroup R f g : ℕ → R f' : ArithmeticFunction R := { toFun := fun x => if x = 0 then 0 else f x, map_zero' := ⋯ } g' : ArithmeticFunction R := { toFun := fun x => if x = 0 then 0 else g x, map_zero' := ⋯ } ⊢ (∀ n > 0, ∑ i ∈ n.divisors, f i = g n) ↔ ∀ n > 0, ∑ x ∈ n.divisorsAntidiagonal, μ x.1 • g x.2 = f n
trans (ζ : ArithmeticFunction ℤ) • f' = g'
R : Type u_1 inst✝ : AddCommGroup R f g : ℕ → R f' : ArithmeticFunction R := { toFun := fun x => if x = 0 then 0 else f x, map_zero' := ⋯ } g' : ArithmeticFunction R := { toFun := fun x => if x = 0 then 0 else g x, map_zero' := ⋯ } ⊢ (∀ n > 0, ∑ i ∈ n.divisors, f i = g n) ↔ ↑ζ • f' = g' R : Type u_1 inst✝ : AddCommGroup R f g : ℕ → R f' : ArithmeticFunction R := { toFun := fun x => if x = 0 then 0 else f x, map_zero' := ⋯ } g' : ArithmeticFunction R := { toFun := fun x => if x = 0 then 0 else g x, map_zero' := ⋯ } ⊢ ↑ζ • f' = g' ↔ ∀ n > 0, ∑ x ∈ n.divisorsAntidiagonal, μ x.1 • g x.2 = f n
2f30d3e992a2cea6
IsRelPrime.mul_right
Mathlib/Algebra/Divisibility/Units.lean
theorem IsRelPrime.mul_right (H1 : IsRelPrime x y) (H2 : IsRelPrime x z) : IsRelPrime x (y * z)
α : Type u_1 inst✝¹ : CommMonoid α x y z : α inst✝ : DecompositionMonoid α H1 : IsRelPrime y x H2 : IsRelPrime z x ⊢ IsRelPrime (y * z) x
exact H1.mul_left H2
no goals
ac436550352dc02b
CategoryTheory.Monoidal.Reflective.isIso_tfae
Mathlib/CategoryTheory/Monoidal/Braided/Reflection.lean
theorem isIso_tfae : List.TFAE [ ∀ (c : C) (d : D), IsIso (adj.unit.app ((ihom d).obj (R.obj c))) , ∀ (c : C) (d : D), IsIso ((pre (adj.unit.app d)).app (R.obj c)) , ∀ (d d' : D), IsIso (L.map ((adj.unit.app d) ▷ d')) , ∀ (d d' : D), IsIso (L.map ((adj.unit.app d) ⊗ (adj.unit.app d')))]
case h.h C : Type u_1 D : Type u_2 inst✝⁶ : Category.{u_4, u_1} C inst✝⁵ : Category.{u_3, u_2} D inst✝⁴ : MonoidalCategory D inst✝³ : SymmetricCategory D inst✝² : MonoidalClosed D R : C ⥤ D inst✝¹ : R.Faithful inst✝ : R.Full L : D ⥤ C adj : L ⊣ R tfae_3_to_4 : (∀ (d d' : D), IsIso (L.map (adj.unit.app d ▷ d'))) → ∀ (d d' : D), IsIso (L.map (adj.unit.app d ⊗ adj.unit.app d')) tfae_4_to_1 : (∀ (d d' : D), IsIso (L.map (adj.unit.app d ⊗ adj.unit.app d'))) → ∀ (c : C) (d : D), IsIso (adj.unit.app ((ihom d).obj (R.obj c))) tfae_1_to_3 : (∀ (c : C) (d : D), IsIso (adj.unit.app ((ihom d).obj (R.obj c)))) → ∀ (d d' : D), IsIso (L.map (adj.unit.app d ▷ d')) d d' : D c : C w₁ : (coyoneda.map (L.map (adj.unit.app d ▷ d')).op).app c = ⇑(adj.homEquiv (Opposite.unop (Opposite.op ((𝟭 D).obj d ⊗ d'))) c).symm ∘ (coyoneda.map (adj.unit.app d ▷ d').op).app (R.obj c) ∘ ⇑(adj.homEquiv (Opposite.unop (Opposite.op ((L ⋙ R).obj d ⊗ d'))) c) w₂ : (yoneda.map ((pre (adj.unit.app d)).app (R.obj c))).app (Opposite.op d') = ⇑((ihom.adjunction d).homEquiv d' (R.obj c)) ∘ (coyoneda.map (adj.unit.app d ▷ d').op).app (R.obj c) ∘ ⇑((ihom.adjunction ((L ⋙ R).obj d)).homEquiv d' (R.obj c)).symm ⊢ IsIso ((yoneda.map ((pre (adj.unit.app d)).app (R.obj c))).app (Opposite.op d')) ↔ IsIso ((coyoneda.map (L.map (adj.unit.app d ▷ d')).op).app c)
rw [w₂, w₁, isIso_iff_bijective, isIso_iff_bijective]
case h.h C : Type u_1 D : Type u_2 inst✝⁶ : Category.{u_4, u_1} C inst✝⁵ : Category.{u_3, u_2} D inst✝⁴ : MonoidalCategory D inst✝³ : SymmetricCategory D inst✝² : MonoidalClosed D R : C ⥤ D inst✝¹ : R.Faithful inst✝ : R.Full L : D ⥤ C adj : L ⊣ R tfae_3_to_4 : (∀ (d d' : D), IsIso (L.map (adj.unit.app d ▷ d'))) → ∀ (d d' : D), IsIso (L.map (adj.unit.app d ⊗ adj.unit.app d')) tfae_4_to_1 : (∀ (d d' : D), IsIso (L.map (adj.unit.app d ⊗ adj.unit.app d'))) → ∀ (c : C) (d : D), IsIso (adj.unit.app ((ihom d).obj (R.obj c))) tfae_1_to_3 : (∀ (c : C) (d : D), IsIso (adj.unit.app ((ihom d).obj (R.obj c)))) → ∀ (d d' : D), IsIso (L.map (adj.unit.app d ▷ d')) d d' : D c : C w₁ : (coyoneda.map (L.map (adj.unit.app d ▷ d')).op).app c = ⇑(adj.homEquiv (Opposite.unop (Opposite.op ((𝟭 D).obj d ⊗ d'))) c).symm ∘ (coyoneda.map (adj.unit.app d ▷ d').op).app (R.obj c) ∘ ⇑(adj.homEquiv (Opposite.unop (Opposite.op ((L ⋙ R).obj d ⊗ d'))) c) w₂ : (yoneda.map ((pre (adj.unit.app d)).app (R.obj c))).app (Opposite.op d') = ⇑((ihom.adjunction d).homEquiv d' (R.obj c)) ∘ (coyoneda.map (adj.unit.app d ▷ d').op).app (R.obj c) ∘ ⇑((ihom.adjunction ((L ⋙ R).obj d)).homEquiv d' (R.obj c)).symm ⊢ Function.Bijective (⇑((ihom.adjunction d).homEquiv d' (R.obj c)) ∘ (coyoneda.map (adj.unit.app d ▷ d').op).app (R.obj c) ∘ ⇑((ihom.adjunction ((L ⋙ R).obj d)).homEquiv d' (R.obj c)).symm) ↔ Function.Bijective (⇑(adj.homEquiv (Opposite.unop (Opposite.op ((𝟭 D).obj d ⊗ d'))) c).symm ∘ (coyoneda.map (adj.unit.app d ▷ d').op).app (R.obj c) ∘ ⇑(adj.homEquiv (Opposite.unop (Opposite.op ((L ⋙ R).obj d ⊗ d'))) c))
8ccd82e9c49cc7ac
Affine.Simplex.inner_mongePoint_vsub_face_centroid_vsub
Mathlib/Geometry/Euclidean/MongePoint.lean
theorem inner_mongePoint_vsub_face_centroid_vsub {n : ℕ} (s : Simplex ℝ P (n + 2)) {i₁ i₂ : Fin (n + 3)} : ⟪s.mongePoint -ᵥ ({i₁, i₂}ᶜ : Finset (Fin (n + 3))).centroid ℝ s.points, s.points i₁ -ᵥ s.points i₂⟫ = 0
case neg V : Type u_1 P : Type u_2 inst✝³ : NormedAddCommGroup V inst✝² : InnerProductSpace ℝ V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P n : ℕ s : Simplex ℝ P (n + 2) i₁ i₂ : Fin (n + 3) h : ¬i₁ = i₂ hs : ∑ i : PointsWithCircumcenterIndex (n + 2), (pointWeightsWithCircumcenter i₁ - pointWeightsWithCircumcenter i₂) i = 0 fs : Finset (Fin (n + 3)) := {i₁, i₂} hfs : ∀ i ∉ fs, i ≠ i₁ ∧ i ≠ i₂ ⊢ -(∑ x : Fin (n + 2 + 1), ∑ x_1 : PointsWithCircumcenterIndex (n + 2), (if x = i₁ ∨ x = i₂ then (↑(n + 1))⁻¹ else 0) * (pointWeightsWithCircumcenter i₁ - pointWeightsWithCircumcenter i₂) x_1 * (dist (s.points x) (s.pointsWithCircumcenter x_1) * dist (s.points x) (s.pointsWithCircumcenter x_1)) + ∑ x : PointsWithCircumcenterIndex (n + 2), -2 / ↑(n + 1) * (pointWeightsWithCircumcenter i₁ - pointWeightsWithCircumcenter i₂) x * (dist s.circumcenter (s.pointsWithCircumcenter x) * dist s.circumcenter (s.pointsWithCircumcenter x))) / 2 = 0
rw [← sum_subset fs.subset_univ _]
case neg V : Type u_1 P : Type u_2 inst✝³ : NormedAddCommGroup V inst✝² : InnerProductSpace ℝ V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P n : ℕ s : Simplex ℝ P (n + 2) i₁ i₂ : Fin (n + 3) h : ¬i₁ = i₂ hs : ∑ i : PointsWithCircumcenterIndex (n + 2), (pointWeightsWithCircumcenter i₁ - pointWeightsWithCircumcenter i₂) i = 0 fs : Finset (Fin (n + 3)) := {i₁, i₂} hfs : ∀ i ∉ fs, i ≠ i₁ ∧ i ≠ i₂ ⊢ -(∑ x ∈ fs, ∑ x_1 : PointsWithCircumcenterIndex (n + 2), (if x = i₁ ∨ x = i₂ then (↑(n + 1))⁻¹ else 0) * (pointWeightsWithCircumcenter i₁ - pointWeightsWithCircumcenter i₂) x_1 * (dist (s.points x) (s.pointsWithCircumcenter x_1) * dist (s.points x) (s.pointsWithCircumcenter x_1)) + ∑ x : PointsWithCircumcenterIndex (n + 2), -2 / ↑(n + 1) * (pointWeightsWithCircumcenter i₁ - pointWeightsWithCircumcenter i₂) x * (dist s.circumcenter (s.pointsWithCircumcenter x) * dist s.circumcenter (s.pointsWithCircumcenter x))) / 2 = 0 V : Type u_1 P : Type u_2 inst✝³ : NormedAddCommGroup V inst✝² : InnerProductSpace ℝ V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P n : ℕ s : Simplex ℝ P (n + 2) i₁ i₂ : Fin (n + 3) h : ¬i₁ = i₂ hs : ∑ i : PointsWithCircumcenterIndex (n + 2), (pointWeightsWithCircumcenter i₁ - pointWeightsWithCircumcenter i₂) i = 0 fs : Finset (Fin (n + 3)) := {i₁, i₂} hfs : ∀ i ∉ fs, i ≠ i₁ ∧ i ≠ i₂ ⊢ ∀ x ∈ univ, x ∉ fs → ∑ x_1 : PointsWithCircumcenterIndex (n + 2), (if x = i₁ ∨ x = i₂ then (↑(n + 1))⁻¹ else 0) * (pointWeightsWithCircumcenter i₁ - pointWeightsWithCircumcenter i₂) x_1 * (dist (s.points x) (s.pointsWithCircumcenter x_1) * dist (s.points x) (s.pointsWithCircumcenter x_1)) = 0
4dd62aff1c506de0
PFunctor.M.agree_iff_agree'
Mathlib/Data/PFunctor/Univariate/M.lean
theorem agree_iff_agree' {n : ℕ} (x y : M F) : Agree (x.approx n) (y.approx <| n + 1) ↔ Agree' n x y
case mpr.succ.step.f.f.refl.refl.a F : PFunctor.{u} n✝ : ℕ n_ih : ∀ (x y : F.M), Agree' n✝ x y → Agree (x.approx n✝) (y.approx (n✝ + 1)) a : F.A x' y' : F.B a → F.M a✝² : ∀ (i : F.B a), Agree' n✝ (x' i) (y' i) a✝¹ : M.mk ⟨a, x'⟩ = M.mk ⟨a, x'⟩ a✝ : M.mk ⟨a, y'⟩ = M.mk ⟨a, y'⟩ i : F.B a ⊢ Agree ((x' i).approx n✝) ((y' i).approx (n✝ + 1))
apply n_ih
case mpr.succ.step.f.f.refl.refl.a.h F : PFunctor.{u} n✝ : ℕ n_ih : ∀ (x y : F.M), Agree' n✝ x y → Agree (x.approx n✝) (y.approx (n✝ + 1)) a : F.A x' y' : F.B a → F.M a✝² : ∀ (i : F.B a), Agree' n✝ (x' i) (y' i) a✝¹ : M.mk ⟨a, x'⟩ = M.mk ⟨a, x'⟩ a✝ : M.mk ⟨a, y'⟩ = M.mk ⟨a, y'⟩ i : F.B a ⊢ Agree' n✝ (x' i) (y' i)
74e48f06950cd29d
ZetaAsymptotics.continuousOn_term
Mathlib/NumberTheory/Harmonic/ZetaAsymp.lean
lemma continuousOn_term (n : ℕ) : ContinuousOn (fun x ↦ term (n + 1) x) (Ici 1)
case h_cont.h.refine_2 n : ℕ x : ℝ hx : x ∈ Ioc (↑(n + 1)) (↑(n + 1) + 1) s : ℝ hs : 1 ≤ s ⊢ x ^ (s + 1) ≠ 0
exact (rpow_pos_of_pos ((Nat.cast_pos.mpr (by simp)).trans hx.1) _).ne'
no goals
bbd328e1b624f3ab
NumberField.house.ξ_ne_0
Mathlib/NumberTheory/NumberField/House.lean
theorem ξ_ne_0 : ξ K x ≠ 0
K : Type u_1 inst✝¹ : Field K inst✝ : NumberField K β : Type u_3 x : β × (K →+* ℂ) → ℤ hxl : x ≠ 0 H : NumberField.house.ξ K x = 0 ⊢ False
apply hxl
K : Type u_1 inst✝¹ : Field K inst✝ : NumberField K β : Type u_3 x : β × (K →+* ℂ) → ℤ hxl : x ≠ 0 H : NumberField.house.ξ K x = 0 ⊢ x = 0
d09ff3eeaba5df9f
ProbabilityTheory.iteratedDeriv_two_cgf_eq_integral
Mathlib/Probability/Moments/MGFAnalytic.lean
lemma iteratedDeriv_two_cgf_eq_integral (h : v ∈ interior (integrableExpSet X μ)) : iteratedDeriv 2 (cgf X μ) v = μ[fun ω ↦ (X ω - deriv (cgf X μ) v)^2 * exp (v * X ω)] / mgf X μ v
case e_a.hb Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω v : ℝ h : v ∈ interior (integrableExpSet X μ) hμ : ¬μ = 0 ⊢ mgf X μ v ≠ 0
exact (mgf_pos' hμ (interior_subset (s := integrableExpSet X μ) h)).ne'
no goals
f81a041fb4b6f1f5
CategoryTheory.IsFiltered.iff_nonempty_limit
Mathlib/CategoryTheory/Limits/Filtered.lean
theorem IsFiltered.iff_nonempty_limit : IsFiltered C ↔ ∀ {J : Type v} [SmallCategory J] [FinCategory J] (F : J ⥤ C), ∃ (X : C), Nonempty (limit (F.op ⋙ yoneda.obj X))
case refine_1.intro C : Type u inst✝ : Category.{v, u} C h : ∀ {J : Type v} [inst : SmallCategory J] [inst_1 : FinCategory J] (F : J ⥤ C), Nonempty (Cocone F) J : Type v x✝¹ : SmallCategory J x✝ : FinCategory J F : J ⥤ C c : Cocone F ⊢ ∃ X, Nonempty (limit (F.op ⋙ yoneda.obj X))
exact ⟨c.pt, ⟨(limitCompYonedaIsoCocone F c.pt).inv c.ι⟩⟩
no goals
c0b0888232b0e657
minSmoothness_add
Mathlib/Analysis/Calculus/FDeriv/Symmetric.lean
lemma minSmoothness_add {n m : WithTop ℕ∞} : minSmoothness 𝕜 (n + m) = minSmoothness 𝕜 n + m
𝕜 : Type u_1 inst✝ : NontriviallyNormedField 𝕜 n m : WithTop ℕ∞ ⊢ minSmoothness 𝕜 (n + m) = minSmoothness 𝕜 n + m
simp only [minSmoothness]
𝕜 : Type u_1 inst✝ : NontriviallyNormedField 𝕜 n m : WithTop ℕ∞ ⊢ (if IsRCLikeNormedField 𝕜 then n + m else ω) = (if IsRCLikeNormedField 𝕜 then n else ω) + m
6dbf34c7a3eb9f1b
Subgroup.isCoatom_comap_of_surjective
Mathlib/Algebra/Group/Subgroup/Order.lean
lemma isCoatom_comap_of_surjective {H : Type*} [Group H] {φ : G →* H} (hφ : Function.Surjective φ) {M : Subgroup H} (hM : IsCoatom M) : IsCoatom (M.comap φ)
case refine_2 G : Type u_1 inst✝¹ : Group G H : Type u_2 inst✝ : Group H φ : G →* H hφ : Function.Surjective ⇑φ M : Subgroup H hM✝ : IsCoatom M K : Subgroup G hK : comap φ M < K hM : comap φ M < comap φ (map φ K) → comap φ (map φ K) = comap φ ⊤ ⊢ K = ⊤
rw [comap_map_eq_self ((M.ker_le_comap φ).trans hK.le), comap_top] at hM
case refine_2 G : Type u_1 inst✝¹ : Group G H : Type u_2 inst✝ : Group H φ : G →* H hφ : Function.Surjective ⇑φ M : Subgroup H hM✝ : IsCoatom M K : Subgroup G hK : comap φ M < K hM : comap φ M < K → K = ⊤ ⊢ K = ⊤
1eac4c9273ad2e88
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.reduce_fold_fn_preserves_induction_motive
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/RupAddSound.lean
theorem reduce_fold_fn_preserves_induction_motive {c_arr : Array (Literal (PosFin n))} {assignment : Array Assignment} (idx : Fin c_arr.size) (res : ReduceResult (PosFin n)) (ih : ReducePostconditionInductionMotive c_arr assignment idx.1 res) : ReducePostconditionInductionMotive c_arr assignment (idx.1 + 1) (reduce_fold_fn assignment res c_arr[idx])
n : Nat c_arr : Array (Literal (PosFin n)) assignment : Array Assignment idx : Fin c_arr.size i : PosFin n b : Bool p : PosFin n → Bool j : Fin c_arr.size j_lt_idx_add_one : ↑j < ↑idx + 1 p_entails_c_arr_j : p ⊨ c_arr[↑j] acc✝ : ReduceResult (PosFin n) ih : ReducePostconditionInductionMotive c_arr assignment (↑idx) reducedToEmpty x✝ : Assignment heq : assignment[c_arr[↑idx].fst.val]! = pos h : c_arr[↑idx] = (i, b) c_arr_idx_eq_true : b = true hp : hasAssignment (decide (p c_arr[↑idx].fst = false)) pos = false ⊢ p ⊨ (i, b)
by_cases p c_arr[idx.val].1
case pos n : Nat c_arr : Array (Literal (PosFin n)) assignment : Array Assignment idx : Fin c_arr.size i : PosFin n b : Bool p : PosFin n → Bool j : Fin c_arr.size j_lt_idx_add_one : ↑j < ↑idx + 1 p_entails_c_arr_j : p ⊨ c_arr[↑j] acc✝ : ReduceResult (PosFin n) ih : ReducePostconditionInductionMotive c_arr assignment (↑idx) reducedToEmpty x✝ : Assignment heq : assignment[c_arr[↑idx].fst.val]! = pos h : c_arr[↑idx] = (i, b) c_arr_idx_eq_true : b = true hp : hasAssignment (decide (p c_arr[↑idx].fst = false)) pos = false h✝ : p c_arr[↑idx].fst = true ⊢ p ⊨ (i, b) case neg n : Nat c_arr : Array (Literal (PosFin n)) assignment : Array Assignment idx : Fin c_arr.size i : PosFin n b : Bool p : PosFin n → Bool j : Fin c_arr.size j_lt_idx_add_one : ↑j < ↑idx + 1 p_entails_c_arr_j : p ⊨ c_arr[↑j] acc✝ : ReduceResult (PosFin n) ih : ReducePostconditionInductionMotive c_arr assignment (↑idx) reducedToEmpty x✝ : Assignment heq : assignment[c_arr[↑idx].fst.val]! = pos h : c_arr[↑idx] = (i, b) c_arr_idx_eq_true : b = true hp : hasAssignment (decide (p c_arr[↑idx].fst = false)) pos = false h✝ : ¬p c_arr[↑idx].fst = true ⊢ p ⊨ (i, b)
681a60500ce41fce
Real.binEntropy_neg_of_neg
Mathlib/Analysis/SpecialFunctions/BinaryEntropy.lean
/-- Outside the usual range of `binEntropy`, it is negative. This is due to `log p = log |p|`. -/ lemma binEntropy_neg_of_neg (hp : p < 0) : binEntropy p < 0
case pos p : ℝ hp : p < 0 hp' : p < -1 this : log p < log (1 - p) ⊢ -p * log p < (1 - p) * log (1 - p)
nlinarith [log_pos_of_lt_neg_one hp']
no goals
c3c271761677db38
HasFiniteFPowerSeriesOnBall.mk'
Mathlib/Analysis/Analytic/CPolynomialDef.lean
theorem HasFiniteFPowerSeriesOnBall.mk' {f : E → F} {p : FormalMultilinearSeries 𝕜 E F} {x : E} {n : ℕ} {r : ℝ≥0∞} (finite : ∀ (m : ℕ), n ≤ m → p m = 0) (pos : 0 < r) (sum_eq : ∀ y ∈ EMetric.ball 0 r, (∑ i ∈ Finset.range n, p i fun _ ↦ y) = f (x + y)) : HasFiniteFPowerSeriesOnBall f p x n r where r_le := p.radius_eq_top_of_eventually_eq_zero (Filter.eventually_atTop.mpr ⟨n, finite⟩) ▸ le_top r_pos := pos hasSum hy := sum_eq _ hy ▸ hasSum_sum_of_ne_finset_zero fun m hm ↦ by rw [Finset.mem_range, not_lt] at hm; rw [finite m hm]; rfl finite := finite
𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F f : E → F p : FormalMultilinearSeries 𝕜 E F x : E n : ℕ r : ℝ≥0∞ finite : ∀ (m : ℕ), n ≤ m → p m = 0 pos : 0 < r sum_eq : ∀ y ∈ EMetric.ball 0 r, (∑ i ∈ Finset.range n, (p i) fun x => y) = f (x + y) y✝ : E hy : y✝ ∈ EMetric.ball 0 r m : ℕ hm : m ∉ Finset.range n ⊢ ((p m) fun x => y✝) = 0
rw [Finset.mem_range, not_lt] at hm
𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F f : E → F p : FormalMultilinearSeries 𝕜 E F x : E n : ℕ r : ℝ≥0∞ finite : ∀ (m : ℕ), n ≤ m → p m = 0 pos : 0 < r sum_eq : ∀ y ∈ EMetric.ball 0 r, (∑ i ∈ Finset.range n, (p i) fun x => y) = f (x + y) y✝ : E hy : y✝ ∈ EMetric.ball 0 r m : ℕ hm : n ≤ m ⊢ ((p m) fun x => y✝) = 0
65df954b712c494a
Array.mapIdx_eq_append_iff
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/MapIdx.lean
theorem mapIdx_eq_append_iff {l : Array α} {f : Nat → α → β} {l₁ l₂ : Array β} : mapIdx f l = l₁ ++ l₂ ↔ ∃ (l₁' : Array α) (l₂' : Array α), l = l₁' ++ l₂' ∧ l₁'.mapIdx f = l₁ ∧ l₂'.mapIdx (fun i => f (i + l₁'.size)) = l₂
case mk.mk.mk α : Type u_1 β : Type u_2 f : Nat → α → β l : List α l₁ l₂ : List β ⊢ mapIdx f { toList := l } = { toList := l₁ } ++ { toList := l₂ } ↔ ∃ l₁' l₂', { toList := l } = l₁' ++ l₂' ∧ mapIdx f l₁' = { toList := l₁ } ∧ mapIdx (fun i => f (i + l₁'.size)) l₂' = { toList := l₂ }
simp only [List.mapIdx_toArray, List.append_toArray, mk.injEq, List.mapIdx_eq_append_iff, toArray_eq_append_iff]
case mk.mk.mk α : Type u_1 β : Type u_2 f : Nat → α → β l : List α l₁ l₂ : List β ⊢ (∃ l₁' l₂', l = l₁' ++ l₂' ∧ List.mapIdx f l₁' = l₁ ∧ List.mapIdx (fun i => f (i + l₁'.length)) l₂' = l₂) ↔ ∃ l₁' l₂', l = l₁'.toList ++ l₂'.toList ∧ mapIdx f l₁' = { toList := l₁ } ∧ mapIdx (fun i => f (i + l₁'.size)) l₂' = { toList := l₂ }
34328ac48040b85d
ProbabilityTheory.evariance_def'
Mathlib/Probability/Variance.lean
theorem evariance_def' [IsProbabilityMeasure μ] {X : Ω → ℝ} (hX : AEStronglyMeasurable X μ) : evariance X μ = (∫⁻ ω, ‖X ω‖ₑ ^ 2 ∂μ) - ENNReal.ofReal (μ[X] ^ 2)
case neg Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω inst✝ : IsProbabilityMeasure μ X : Ω → ℝ hX : AEStronglyMeasurable X μ hℒ : ¬MemLp X 2 μ ⊢ ∫⁻ (ω : Ω), ‖X ω‖ₑ ^ 2 ∂μ = ⊤ ∧ ENNReal.ofReal ((∫ (x : Ω), X x ∂μ) ^ 2) ≠ ⊤
refine ⟨?_, ENNReal.ofReal_ne_top⟩
case neg Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω inst✝ : IsProbabilityMeasure μ X : Ω → ℝ hX : AEStronglyMeasurable X μ hℒ : ¬MemLp X 2 μ ⊢ ∫⁻ (ω : Ω), ‖X ω‖ₑ ^ 2 ∂μ = ⊤
eb83c290f9e735d8
MeasureTheory.Measure.addHaar_eq_zero_of_disjoint_translates
Mathlib/MeasureTheory/Measure/Lebesgue/EqHaar.lean
theorem addHaar_eq_zero_of_disjoint_translates {E : Type*} [NormedAddCommGroup E] [NormedSpace ℝ E] [MeasurableSpace E] [BorelSpace E] [FiniteDimensional ℝ E] (μ : Measure E) [IsAddHaarMeasure μ] {s : Set E} (u : ℕ → E) (hu : IsBounded (range u)) (hs : Pairwise (Disjoint on fun n => {u n} + s)) (h's : MeasurableSet s) : μ s = 0
E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : FiniteDimensional ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure s : Set E u : ℕ → E hu : Bornology.IsBounded (range u) hs : Pairwise (Disjoint on fun n => {u n} + s) h's : MeasurableSet s R : ℝ ⊢ μ (s ∩ closedBall 0 R) = 0
apply addHaar_eq_zero_of_disjoint_translates_aux μ u (isBounded_closedBall.subset inter_subset_right) hu _ (h's.inter measurableSet_closedBall)
E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : FiniteDimensional ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure s : Set E u : ℕ → E hu : Bornology.IsBounded (range u) hs : Pairwise (Disjoint on fun n => {u n} + s) h's : MeasurableSet s R : ℝ ⊢ Pairwise (Disjoint on fun n => {u n} + s ∩ closedBall 0 R)
d6dc5eb0e45c9230
NeZero.of_map
Mathlib/Algebra/GroupWithZero/Hom.lean
lemma of_map (f : F) [neZero : NeZero (f a)] : NeZero a := ⟨fun h ↦ ne (f a) <| by rw [h]; exact ZeroHomClass.map_zero f⟩
F : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : Zero α inst✝² : Zero β inst✝¹ : FunLike F α β inst✝ : ZeroHomClass F α β a : α f : F neZero : NeZero (f a) h : a = 0 ⊢ f a = 0
rw [h]
F : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : Zero α inst✝² : Zero β inst✝¹ : FunLike F α β inst✝ : ZeroHomClass F α β a : α f : F neZero : NeZero (f a) h : a = 0 ⊢ f 0 = 0
aa20fb6a33fbb663
smul_orthogonalProjection_singleton
Mathlib/Analysis/InnerProductSpace/Projection.lean
theorem smul_orthogonalProjection_singleton {v : E} (w : E) : ((‖v‖ ^ 2 : ℝ) : 𝕜) • (orthogonalProjection (𝕜 ∙ v) w : E) = ⟪v, w⟫ • v
𝕜 : Type u_1 E : Type u_2 inst✝² : RCLike 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E v w : E this : ↑((orthogonalProjection (Submodule.span 𝕜 {v})) (↑‖v‖ ^ 2 • w)) = ⟪v, w⟫_𝕜 • v ⊢ ↑(‖v‖ ^ 2) • ↑((orthogonalProjection (Submodule.span 𝕜 {v})) w) = ⟪v, w⟫_𝕜 • v
simpa using this
no goals
eea63064d21a7d29
Std.Tactic.BVDecide.BVExpr.bitblast.blastZeroExtend.go_denote_eq
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Circuit/Lemmas/Operations/ZeroExtend.lean
theorem go_denote_eq (aig : AIG α) (w : Nat) (input : AIG.RefVec aig w) (newWidth curr : Nat) (hcurr : curr ≤ newWidth) (s : AIG.RefVec aig curr) (assign : α → Bool) : ∀ (idx : Nat) (hidx1 : idx < newWidth), curr ≤ idx → ⟦ (go aig w input newWidth curr hcurr s).aig, (go aig w input newWidth curr hcurr s).vec.get idx hidx1, assign ⟧ = if hidx : idx < w then ⟦aig, input.get idx hidx, assign⟧ else false
α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α aig : AIG α w : Nat input : aig.RefVec w newWidth curr : Nat hcurr : curr ≤ newWidth s : aig.RefVec curr assign : α → Bool idx : Nat hidx1 : idx < newWidth hidx2 : curr ≤ idx ⊢ ⟦assign, { aig := (go aig w input newWidth curr hcurr s).aig, ref := (go aig w input newWidth curr hcurr s).vec.get idx hidx1 }⟧ = if hidx : idx < w then ⟦assign, { aig := aig, ref := input.get idx hidx }⟧ else false
generalize hgo : go aig w input newWidth curr hcurr s = res
α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α aig : AIG α w : Nat input : aig.RefVec w newWidth curr : Nat hcurr : curr ≤ newWidth s : aig.RefVec curr assign : α → Bool idx : Nat hidx1 : idx < newWidth hidx2 : curr ≤ idx res : RefVecEntry α newWidth hgo : go aig w input newWidth curr hcurr s = res ⊢ ⟦assign, { aig := res.aig, ref := res.vec.get idx hidx1 }⟧ = if hidx : idx < w then ⟦assign, { aig := aig, ref := input.get idx hidx }⟧ else false
4f5d95c54c74e073
NonarchimedeanGroup.cauchySeq_prod_of_tendsto_cofinite_one
Mathlib/Topology/Algebra/InfiniteSum/Nonarchimedean.lean
theorem cauchySeq_prod_of_tendsto_cofinite_one {f : α → G} (hf : Tendsto f cofinite (𝓝 1)) : CauchySeq (fun s ↦ ∏ i ∈ s, f i)
case intro α : Type u_1 G : Type u_2 inst✝³ : CommGroup G inst✝² : UniformSpace G inst✝¹ : UniformGroup G inst✝ : NonarchimedeanGroup G f : α → G hf : Tendsto f cofinite (𝓝 1) U : Set G hU : U ∈ 𝓝 1 V : OpenSubgroup G hV : ↑V ⊆ U ⊢ ∃ s, ∀ (t : Finset α), Disjoint t s → ∏ b ∈ t, f b ∈ U
use (tendsto_def.mp hf V V.mem_nhds_one).toFinset
case h α : Type u_1 G : Type u_2 inst✝³ : CommGroup G inst✝² : UniformSpace G inst✝¹ : UniformGroup G inst✝ : NonarchimedeanGroup G f : α → G hf : Tendsto f cofinite (𝓝 1) U : Set G hU : U ∈ 𝓝 1 V : OpenSubgroup G hV : ↑V ⊆ U ⊢ ∀ (t : Finset α), Disjoint t (Set.Finite.toFinset ⋯) → ∏ b ∈ t, f b ∈ U
8faaca2207b959f4
PrimeMultiset.prod_ofNatList
Mathlib/Data/PNat/Factors.lean
theorem prod_ofNatList (l : List ℕ) (h) : ((ofNatList l h).prod : ℕ) = l.prod
l : List ℕ h : ∀ p ∈ l, Nat.Prime p ⊢ ↑(ofNatList l h).prod = l.prod
have := prod_ofNatMultiset (l : Multiset ℕ) h
l : List ℕ h : ∀ p ∈ l, Nat.Prime p this : ↑(ofNatMultiset (↑l) h).prod = (↑l).prod ⊢ ↑(ofNatList l h).prod = l.prod
a0b6e678c5f86872
Ideal.injective_algebraMap_quotient_residueField
Mathlib/RingTheory/LocalRing/ResidueField/Ideal.lean
lemma Ideal.injective_algebraMap_quotient_residueField : Function.Injective (algebraMap (R ⧸ I) I.ResidueField)
R : Type u_1 inst✝¹ : CommRing R I : Ideal R inst✝ : I.IsPrime ⊢ RingHom.ker (algebraMap (R ⧸ I) I.ResidueField) = ⊥
refine (Ideal.ker_quotient_lift _ _).trans ?_
R : Type u_1 inst✝¹ : CommRing R I : Ideal R inst✝ : I.IsPrime ⊢ map (Quotient.mk I) (RingHom.ker ↑(Algebra.ofId R I.ResidueField)) = ⊥
a3bc889e6f8e164d
Multiset.prod_map_neg
Mathlib/Algebra/BigOperators/Ring/Multiset.lean
@[simp] lemma prod_map_neg (s : Multiset α) : (s.map Neg.neg).prod = (-1) ^ card s * s.prod := Quotient.inductionOn s (by simp)
α : Type u_2 inst✝¹ : CommMonoid α inst✝ : HasDistribNeg α s : Multiset α ⊢ ∀ (a : List α), (map Neg.neg ⟦a⟧).prod = (-1) ^ card ⟦a⟧ * prod ⟦a⟧
simp
no goals
428036c611cb1c3f
Nat.sqrt.lt_iter_succ_sq
Mathlib/Data/Nat/Sqrt.lean
lemma sqrt.lt_iter_succ_sq (n guess : ℕ) (hn : n < (guess + 1) * (guess + 1)) : n < (sqrt.iter n guess + 1) * (sqrt.iter n guess + 1)
n guess : ℕ hn : n < (guess + 1) * (guess + 1) m : ℕ := (guess + n / guess) / 2 ⊢ n < ((if (guess + n / guess) / 2 < guess then iter n ((guess + n / guess) / 2) else guess) + 1) * ((if (guess + n / guess) / 2 < guess then iter n ((guess + n / guess) / 2) else guess) + 1)
split_ifs with h
case pos n guess : ℕ hn : n < (guess + 1) * (guess + 1) m : ℕ := (guess + n / guess) / 2 h : (guess + n / guess) / 2 < guess ⊢ n < (iter n ((guess + n / guess) / 2) + 1) * (iter n ((guess + n / guess) / 2) + 1) case neg n guess : ℕ hn : n < (guess + 1) * (guess + 1) m : ℕ := (guess + n / guess) / 2 h : ¬(guess + n / guess) / 2 < guess ⊢ n < (guess + 1) * (guess + 1)
d01ade80ccfefae8
List.mem_of_elem_eq_true
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Basic.lean
theorem mem_of_elem_eq_true [BEq α] [LawfulBEq α] {a : α} {as : List α} : elem a as = true → a ∈ as
α : Type u inst✝¹ : BEq α inst✝ : LawfulBEq α a : α as : List α ⊢ elem a nil = true → a ∈ nil
simp [elem]
no goals
f8b48be2038fd24e
IsLocallyConstant.apply_eq_of_isPreconnected
Mathlib/Topology/LocallyConstant/Basic.lean
theorem apply_eq_of_isPreconnected {f : X → Y} (hf : IsLocallyConstant f) {s : Set X} (hs : IsPreconnected s) {x y : X} (hx : x ∈ s) (hy : y ∈ s) : f x = f y
X : Type u_1 Y : Type u_2 inst✝ : TopologicalSpace X f : X → Y hf : IsLocallyConstant f s : Set X hs : IsPreconnected s x y : X hx : x ∈ s hy : y ∈ s ⊢ f x = f y
let U := f ⁻¹' {f y}
X : Type u_1 Y : Type u_2 inst✝ : TopologicalSpace X f : X → Y hf : IsLocallyConstant f s : Set X hs : IsPreconnected s x y : X hx : x ∈ s hy : y ∈ s U : Set X := f ⁻¹' {f y} ⊢ f x = f y
29d497e5ddecc234
TensorProduct.tmul_sum
Mathlib/LinearAlgebra/TensorProduct/Basic.lean
theorem tmul_sum (m : M) {α : Type*} (s : Finset α) (n : α → N) : (m ⊗ₜ[R] ∑ a ∈ s, n a) = ∑ a ∈ s, m ⊗ₜ[R] n a
R : Type u_1 inst✝⁴ : CommSemiring R M : Type u_5 N : Type u_6 inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid N inst✝¹ : Module R M inst✝ : Module R N m : M α : Type u_11 s : Finset α n : α → N ⊢ m ⊗ₜ[R] ∑ a ∈ s, n a = ∑ a ∈ s, m ⊗ₜ[R] n a
classical induction s using Finset.induction with | empty => simp | insert has ih => simp [Finset.sum_insert has, tmul_add, ih]
no goals
b1511420f934e3d1
RootPairing.linearIndependent_iff_coxeterWeight_ne_four
Mathlib/LinearAlgebra/RootSystem/Reduced.lean
/-- See also `RootPairing.linearIndependent_iff_coxeterWeightIn_ne_four`. -/ lemma linearIndependent_iff_coxeterWeight_ne_four : LinearIndependent R ![P.root i, P.root j] ↔ P.coxeterWeight i j ≠ 4
ι : Type u_1 R : Type u_2 M : Type u_3 N : Type u_4 inst✝⁷ : CommRing R inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M inst✝⁴ : AddCommGroup N inst✝³ : Module R N P : RootPairing ι R M N i j : ι inst✝² : Finite ι inst✝¹ : CharZero R inst✝ : NoZeroSMulDivisors R M this : NoZeroSMulDivisors ℤ M h : ¬LinearIndependent R ![P.root j, P.root i] h₁ : P.pairing j i • P.root i = 2 • P.root j h₂ : P.pairing i j • P.root j = 2 • P.root i ⊢ P.coxeterWeight i j = 4
suffices P.coxeterWeight i j • P.root i = (4 : R) • P.root i from smul_left_injective R (P.ne_zero i) this
ι : Type u_1 R : Type u_2 M : Type u_3 N : Type u_4 inst✝⁷ : CommRing R inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M inst✝⁴ : AddCommGroup N inst✝³ : Module R N P : RootPairing ι R M N i j : ι inst✝² : Finite ι inst✝¹ : CharZero R inst✝ : NoZeroSMulDivisors R M this : NoZeroSMulDivisors ℤ M h : ¬LinearIndependent R ![P.root j, P.root i] h₁ : P.pairing j i • P.root i = 2 • P.root j h₂ : P.pairing i j • P.root j = 2 • P.root i ⊢ P.coxeterWeight i j • P.root i = 4 • P.root i
3e389464a4fe8362
MeasureTheory.Measure.haveLebesgueDecomposition_spec
Mathlib/MeasureTheory/Decomposition/Lebesgue.lean
theorem haveLebesgueDecomposition_spec (μ ν : Measure α) [h : HaveLebesgueDecomposition μ ν] : Measurable (μ.rnDeriv ν) ∧ μ.singularPart ν ⟂ₘ ν ∧ μ = μ.singularPart ν + ν.withDensity (μ.rnDeriv ν)
α : Type u_1 m : MeasurableSpace α μ ν : Measure α h : μ.HaveLebesgueDecomposition ν ⊢ Measurable (μ.rnDeriv ν) ∧ μ.singularPart ν ⟂ₘ ν ∧ μ = μ.singularPart ν + ν.withDensity (μ.rnDeriv ν)
rw [singularPart, rnDeriv, dif_pos h, dif_pos h]
α : Type u_1 m : MeasurableSpace α μ ν : Measure α h : μ.HaveLebesgueDecomposition ν ⊢ Measurable (Classical.choose ⋯).2 ∧ (Classical.choose ⋯).1 ⟂ₘ ν ∧ μ = (Classical.choose ⋯).1 + ν.withDensity (Classical.choose ⋯).2
d00ff8c00e79ec10
ArithmeticFunction.LSeries_zeta_eq_riemannZeta
Mathlib/NumberTheory/LSeries/Dirichlet.lean
/-- The L-series of the arithmetic function `ζ` equals the Riemann Zeta Function on its domain of convergence `1 < re s`. -/ lemma LSeries_zeta_eq_riemannZeta {s : ℂ} (hs : 1 < s.re) : L ↗ζ s = riemannZeta s
s : ℂ hs : 1 < s.re ⊢ L (fun n => ↑(ζ n)) s = riemannZeta s
suffices ∑' n, term (fun n ↦ if n = 0 then 0 else 1) s n = ∑' n : ℕ, 1 / (n : ℂ) ^ s by simpa [LSeries, zeta_eq_tsum_one_div_nat_cpow hs]
s : ℂ hs : 1 < s.re ⊢ ∑' (n : ℕ), term (fun n => if n = 0 then 0 else 1) s n = ∑' (n : ℕ), 1 / ↑n ^ s
326702a7da7dacde
Ordinal.op_eq_self_of_principal
Mathlib/SetTheory/Ordinal/Principal.lean
theorem op_eq_self_of_principal (hao : a < o) (H : IsNormal (op a)) (ho : Principal op o) (ho' : IsLimit o) : op a o = o
a o : Ordinal.{u} op : Ordinal.{u} → Ordinal.{u} → Ordinal.{u} hao : a < o H : IsNormal (op a) ho : Principal op o ho' : o.IsLimit ⊢ ∀ i < o, op a i ≤ o
exact fun b hbo => (ho hao hbo).le
no goals
3c41dd1f09f9fc53