name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
LinearMap.commute_pow_left_of_commute
Mathlib/Algebra/Module/LinearMap/End.lean
theorem commute_pow_left_of_commute [Semiring R₂] [AddCommMonoid M₂] [Module R₂ M₂] {σ₁₂ : R →+* R₂} {f : M →ₛₗ[σ₁₂] M₂} {g : Module.End R M} {g₂ : Module.End R₂ M₂} (h : g₂.comp f = f.comp g) (k : ℕ) : (g₂ ^ k).comp f = f.comp (g ^ k)
R : Type u_1 R₂ : Type u_2 M : Type u_4 M₂ : Type u_6 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : Semiring R₂ inst✝¹ : AddCommMonoid M₂ inst✝ : Module R₂ M₂ σ₁₂ : R →+* R₂ f : M →ₛₗ[σ₁₂] M₂ g : Module.End R M g₂ : Module.End R₂ M₂ h : comp g₂ f = f.comp g k : ℕ ⊢ comp (g₂ ^ k) f = f.comp (g ^ k)
induction k with | zero => simp only [pow_zero, one_eq_id, id_comp, comp_id] | succ k ih => rw [pow_succ', pow_succ', LinearMap.mul_eq_comp, LinearMap.comp_assoc, ih, ← LinearMap.comp_assoc, h, LinearMap.comp_assoc, LinearMap.mul_eq_comp]
no goals
b5769a82a32d21d9
BoundedContinuousFunction.nnnorm_eq_iSup_nnnorm
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
theorem nnnorm_eq_iSup_nnnorm : ‖f‖₊ = ⨆ x : α, ‖f x‖₊ := Subtype.ext <| (norm_eq_iSup_norm f).trans <| by simp_rw [val_eq_coe, NNReal.coe_iSup, coe_nnnorm]
α : Type u β : Type v inst✝¹ : TopologicalSpace α inst✝ : SeminormedAddCommGroup β f : α →ᵇ β ⊢ ⨆ x, ‖f x‖ = ↑(⨆ x, ‖f x‖₊)
simp_rw [val_eq_coe, NNReal.coe_iSup, coe_nnnorm]
no goals
441fc6e8ef1fb666
List.rdropWhile_prefix
Mathlib/Data/List/DropRight.lean
theorem rdropWhile_prefix : l.rdropWhile p <+: l
α : Type u_1 p : α → Bool l : List α ⊢ dropWhile p l.reverse <:+ l.reverse
exact dropWhile_suffix _
no goals
76c8126580e6ade9
Nat.zero_shiftLeft
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Nat/Lemmas.lean
theorem zero_shiftLeft : ∀ n, 0 <<< n = 0 | 0 => by simp [shiftLeft] | n + 1 => by simp [shiftLeft, zero_shiftLeft n, shiftLeft_succ]
n : Nat ⊢ 0 <<< (n + 1) = 0
simp [shiftLeft, zero_shiftLeft n, shiftLeft_succ]
no goals
918057f1ae6c6cc6
Nat.bitIndices_twoPowsum
Mathlib/Data/Nat/BitIndices.lean
theorem bitIndices_twoPowsum {L : List ℕ} (hL : List.Sorted (· < ·) L) : (L.map (fun i ↦ 2^i)).sum.bitIndices = L
case refine_1 a : ℕ L : List ℕ hL✝ : Sorted (fun x1 x2 => x1 < x2) (a :: L) hL : Sorted (fun x1 x2 => x1 < x2) L haL : ∀ b ∈ L, a + 1 ≤ b ⊢ Sorted (fun x1 x2 => x1 < x2) (map (fun x => x - (a + 1)) L)
rwa [Sorted, pairwise_map, Pairwise.and_mem, Pairwise.iff (S := fun x y ↦ x ∈ L ∧ y ∈ L ∧ x < y), ← Pairwise.and_mem]
case refine_1.H a : ℕ L : List ℕ hL✝ : Sorted (fun x1 x2 => x1 < x2) (a :: L) hL : Sorted (fun x1 x2 => x1 < x2) L haL : ∀ b ∈ L, a + 1 ≤ b ⊢ ∀ (a_1 b : ℕ), a_1 ∈ L ∧ b ∈ L ∧ a_1 - (a + 1) < b - (a + 1) ↔ a_1 ∈ L ∧ b ∈ L ∧ a_1 < b
aa09887952bda01a
cauchy_comap_uniformSpace
Mathlib/Topology/UniformSpace/Cauchy.lean
lemma cauchy_comap_uniformSpace {u : UniformSpace β} {α} {f : α → β} {l : Filter α} : Cauchy (uniformSpace := comap f u) l ↔ Cauchy (map f l)
β : Type v u : UniformSpace β α : Type u_1 f : α → β l : Filter α ⊢ l.NeBot ∧ l ×ˢ l ≤ 𝓤 α ↔ l.NeBot ∧ l ×ˢ l ≤ Filter.comap (fun p => (f p.1, f p.2)) (𝓤 β)
rfl
no goals
55f7837fd4c2f391
Finset.prod_mul_eq_prod_mul_of_exists
Mathlib/Algebra/BigOperators/Group/Finset/Basic.lean
@[to_additive] lemma prod_mul_eq_prod_mul_of_exists {s : Finset α} {f : α → β} {b₁ b₂ : β} (a : α) (ha : a ∈ s) (h : f a * b₁ = f a * b₂) : (∏ a ∈ s, f a) * b₁ = (∏ a ∈ s, f a) * b₂
α : Type u_3 β : Type u_4 inst✝ : CommMonoid β s : Finset α f : α → β b₁ b₂ : β a : α ha : a ∈ s h : f a * b₁ = f a * b₂ ⊢ (∏ a ∈ insert a (s.erase a), f a) * b₁ = (∏ a ∈ insert a (s.erase a), f a) * b₂
simp only [mem_erase, ne_eq, not_true_eq_false, false_and, not_false_eq_true, prod_insert]
α : Type u_3 β : Type u_4 inst✝ : CommMonoid β s : Finset α f : α → β b₁ b₂ : β a : α ha : a ∈ s h : f a * b₁ = f a * b₂ ⊢ (f a * ∏ a ∈ s.erase a, f a) * b₁ = (f a * ∏ a ∈ s.erase a, f a) * b₂
a3aed55c11bc4378
CategoryTheory.Pseudofunctor.Grothendieck.Hom.ext
Mathlib/CategoryTheory/Bicategory/Grothendieck.lean
@[ext (iff := false)] lemma Hom.ext (f g : a ⟶ b) (hfg₁ : f.base = g.base) (hfg₂ : f.fiber = g.fiber ≫ eqToHom (hfg₁ ▸ rfl)) : f = g
case mk.mk.h.e_7 𝒮 : Type u₁ inst✝ : Category.{v₁, u₁} 𝒮 F : Pseudofunctor (LocallyDiscrete 𝒮ᵒᵖ) Cat a b : ∫ F base✝¹ : a.base ⟶ b.base fiber✝¹ : a.fiber ⟶ (F.map base✝¹.op.toLoc).obj b.fiber base✝ : a.base ⟶ b.base fiber✝ : a.fiber ⟶ (F.map base✝.op.toLoc).obj b.fiber hfg₁ : base✝¹ = base✝ hfg₂ : { base := base✝¹, fiber := fiber✝¹ }.fiber = { base := base✝, fiber := fiber✝ }.fiber ≫ eqToHom ⋯ ⊢ HEq fiber✝¹ fiber✝
rw [← conj_eqToHom_iff_heq _ _ rfl (hfg₁ ▸ rfl)]
case mk.mk.h.e_7 𝒮 : Type u₁ inst✝ : Category.{v₁, u₁} 𝒮 F : Pseudofunctor (LocallyDiscrete 𝒮ᵒᵖ) Cat a b : ∫ F base✝¹ : a.base ⟶ b.base fiber✝¹ : a.fiber ⟶ (F.map base✝¹.op.toLoc).obj b.fiber base✝ : a.base ⟶ b.base fiber✝ : a.fiber ⟶ (F.map base✝.op.toLoc).obj b.fiber hfg₁ : base✝¹ = base✝ hfg₂ : { base := base✝¹, fiber := fiber✝¹ }.fiber = { base := base✝, fiber := fiber✝ }.fiber ≫ eqToHom ⋯ ⊢ fiber✝¹ = eqToHom ⋯ ≫ fiber✝ ≫ eqToHom ⋯
103bfbb7b575eef6
List.getLast?_attachWith
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Attach.lean
theorem getLast?_attachWith {P : α → Prop} {xs : List α} {H : ∀ (a : α), a ∈ xs → P a} : (xs.attachWith P H).getLast? = xs.getLast?.pbind (fun a h => some ⟨a, H _ (mem_of_getLast? h)⟩)
α : Type u_1 P : α → Prop xs : List α H : ∀ (a : α), a ∈ xs → P a ⊢ (xs.attachWith P H).getLast? = xs.getLast?.pbind fun a h => some ⟨a, ⋯⟩
rw [getLast?_eq_head?_reverse, reverse_attachWith, head?_attachWith]
α : Type u_1 P : α → Prop xs : List α H : ∀ (a : α), a ∈ xs → P a ⊢ (xs.reverse.head?.pbind fun a h => some ⟨a, ⋯⟩) = xs.getLast?.pbind fun a h => some ⟨a, ⋯⟩
056955597a0f4250
IsLocalization.isNoetherianRing
Mathlib/RingTheory/Localization/Submodule.lean
theorem isNoetherianRing (h : IsNoetherianRing R) : IsNoetherianRing S
R : Type u_1 inst✝³ : CommSemiring R M : Submonoid R S : Type u_2 inst✝² : CommSemiring S inst✝¹ : Algebra R S inst✝ : IsLocalization M S h : WellFounded fun x1 x2 => x1 > x2 ⊢ WellFounded fun x1 x2 => x1 > x2
exact OrderEmbedding.wellFounded (IsLocalization.orderEmbedding M S).dual h
no goals
92d014786be6866b
Turing.PartrecToTM2.codeSupp'_supports
Mathlib/Computability/TMToPartrec.lean
theorem codeSupp'_supports {S c k} (H : codeSupp c k ⊆ S) : Supports (codeSupp' c k) S
case fix S : Finset Λ' f : Code IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S k : Cont' H : codeSupp f.fix k ⊆ S H' : trStmts₁ (trNormal f.fix k) ⊆ S ∧ codeSupp f (Cont'.fix f k) ⊆ S ⊢ Supports (codeSupp' f.fix k) S
refine trStmts₁_supports' (trNormal_supports H) (Finset.union_subset_left H) fun h => ?_
case fix S : Finset Λ' f : Code IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S k : Cont' H : codeSupp f.fix k ⊆ S H' : trStmts₁ (trNormal f.fix k) ⊆ S ∧ codeSupp f (Cont'.fix f k) ⊆ S h : codeSupp' f (Cont'.fix f k) ∪ (trStmts₁ (Λ'.clear natEnd main (trNormal f (Cont'.fix f k))) ∪ {Λ'.ret k}) ⊆ S ⊢ Supports (codeSupp' f (Cont'.fix f k) ∪ (trStmts₁ (Λ'.clear natEnd main (trNormal f (Cont'.fix f k))) ∪ {Λ'.ret k})) S
5fb2278c84599fe0
Std.Sat.AIG.denote_mkConst
Mathlib/.lake/packages/lean4/src/lean/Std/Sat/AIG/Lemmas.lean
theorem denote_mkConst {aig : AIG α} : ⟦(aig.mkConst val), assign⟧ = val
case h_2 α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α assign : α → Bool val : Bool aig : AIG α idx✝ : α heq✝ : (aig.mkConst val).aig.decls[(aig.mkConst val).ref.gate] = Decl.atom idx✝ ⊢ assign idx✝ = val
next heq => rw [mkConst, Array.getElem_push_eq] at heq contradiction
no goals
d9e8c97541c0a83f
Finset.image_subset_image
Mathlib/Data/Finset/Image.lean
theorem image_subset_image {s₁ s₂ : Finset α} (h : s₁ ⊆ s₂) : s₁.image f ⊆ s₂.image f
α : Type u_1 β : Type u_2 inst✝ : DecidableEq β f : α → β s₁ s₂ : Finset α h : s₁ ⊆ s₂ ⊢ image f s₁ ⊆ image f s₂
simp only [subset_def, image_val, subset_dedup', dedup_subset', Multiset.map_subset_map h]
no goals
c14dad4cf638562a
MeromorphicOn.isClopen_setOf_order_eq_top
Mathlib/Analysis/Meromorphic/Order.lean
theorem isClopen_setOf_order_eq_top : IsClopen { u : U | (hf u.1 u.2).order = ⊤ }
case pos 𝕜 : Type u_1 inst✝² : NontriviallyNormedField 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E f : 𝕜 → E U : Set 𝕜 hf : MeromorphicOn f U z : ↑U t' : Set 𝕜 h₁t' : ∀ y ∈ t', y ∈ {↑z}ᶜ → f y = 0 h₂t' : IsOpen t' h₃t' : ↑z ∈ t' w : ↑U hw : w ∈ Subtype.val ⁻¹' t' h₁w : w = z ⊢ ∃ t, (∀ y ∈ t, ¬y = ↑w → f y = 0) ∧ IsOpen t ∧ ↑w ∈ t
rw [h₁w]
case pos 𝕜 : Type u_1 inst✝² : NontriviallyNormedField 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E f : 𝕜 → E U : Set 𝕜 hf : MeromorphicOn f U z : ↑U t' : Set 𝕜 h₁t' : ∀ y ∈ t', y ∈ {↑z}ᶜ → f y = 0 h₂t' : IsOpen t' h₃t' : ↑z ∈ t' w : ↑U hw : w ∈ Subtype.val ⁻¹' t' h₁w : w = z ⊢ ∃ t, (∀ y ∈ t, ¬y = ↑z → f y = 0) ∧ IsOpen t ∧ ↑z ∈ t
7349d8844a909f0d
Complex.circleIntegral_eq_zero_of_differentiable_on_off_countable
Mathlib/Analysis/Complex/CauchyIntegral.lean
theorem circleIntegral_eq_zero_of_differentiable_on_off_countable {R : ℝ} (h0 : 0 ≤ R) {f : ℂ → E} {c : ℂ} {s : Set ℂ} (hs : s.Countable) (hc : ContinuousOn f (closedBall c R)) (hd : ∀ z ∈ ball c R \ s, DifferentiableAt ℂ f z) : (∮ z in C(c, R), f z) = 0
E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E R : ℝ h0 : 0 ≤ R f : ℂ → E c : ℂ s : Set ℂ hs : s.Countable hc : ContinuousOn f (closedBall c R) hd : ∀ z ∈ ball c R \ s, DifferentiableAt ℂ f z ⊢ (∮ (z : ℂ) in C(c, R), f z) = 0
rcases h0.eq_or_lt with (rfl | h0)
case inl E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ s : Set ℂ hs : s.Countable h0 : 0 ≤ 0 hc : ContinuousOn f (closedBall c 0) hd : ∀ z ∈ ball c 0 \ s, DifferentiableAt ℂ f z ⊢ (∮ (z : ℂ) in C(c, 0), f z) = 0 case inr E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E R : ℝ h0✝ : 0 ≤ R f : ℂ → E c : ℂ s : Set ℂ hs : s.Countable hc : ContinuousOn f (closedBall c R) hd : ∀ z ∈ ball c R \ s, DifferentiableAt ℂ f z h0 : 0 < R ⊢ (∮ (z : ℂ) in C(c, R), f z) = 0
f3ece393078c11db
mul_gauge_le_norm
Mathlib/Analysis/Convex/Gauge.lean
theorem mul_gauge_le_norm (hs : Metric.ball (0 : E) r ⊆ s) : r * gauge s x ≤ ‖x‖
E : Type u_2 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s : Set E r : ℝ x : E hs : ball 0 r ⊆ s ⊢ r * gauge s x ≤ ‖x‖
obtain hr | hr := le_or_lt r 0
case inl E : Type u_2 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s : Set E r : ℝ x : E hs : ball 0 r ⊆ s hr : r ≤ 0 ⊢ r * gauge s x ≤ ‖x‖ case inr E : Type u_2 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s : Set E r : ℝ x : E hs : ball 0 r ⊆ s hr : 0 < r ⊢ r * gauge s x ≤ ‖x‖
a8c9db9a8bb59ee6
CategoryTheory.MorphismProperty.pullback_map
Mathlib/CategoryTheory/MorphismProperty/Limits.lean
theorem pullback_map [HasPullbacks C] [IsStableUnderBaseChange P] [P.IsStableUnderComposition] {S X X' Y Y' : C} {f : X ⟶ S} {g : Y ⟶ S} {f' : X' ⟶ S} {g' : Y' ⟶ S} {i₁ : X ⟶ X'} {i₂ : Y ⟶ Y'} (h₁ : P i₁) (h₂ : P i₂) (e₁ : f = i₁ ≫ f') (e₂ : g = i₂ ≫ g') : P (pullback.map f g f' g' i₁ i₂ (𝟙 _) ((Category.comp_id _).trans e₁) ((Category.comp_id _).trans e₂))
case hf C : Type u inst✝³ : Category.{v, u} C P : MorphismProperty C inst✝² : HasPullbacks C inst✝¹ : P.IsStableUnderBaseChange inst✝ : P.IsStableUnderComposition S X X' Y Y' : C f : X ⟶ S g : Y ⟶ S f' : X' ⟶ S g' : Y' ⟶ S i₁ : X ⟶ X' i₂ : Y ⟶ Y' h₁ : P i₁ h₂ : P i₂ e₁ : f = i₁ ≫ f' e₂ : g = i₂ ≫ g' this : pullback.map f g f' g' i₁ i₂ (𝟙 S) ⋯ ⋯ = ((pullbackSymmetry (Over.mk f).hom (Over.mk g).hom).hom ≫ ((Over.pullback (Over.mk f).hom).map (Over.homMk i₂ ⋯)).left) ≫ (pullbackSymmetry (Over.mk g').hom (Over.mk f).hom).hom ≫ ((Over.pullback g').map (Over.homMk i₁ ⋯)).left ⊢ P ((Over.pullback (Over.mk f).hom).map (Over.homMk i₂ ⋯)).left case hg C : Type u inst✝³ : Category.{v, u} C P : MorphismProperty C inst✝² : HasPullbacks C inst✝¹ : P.IsStableUnderBaseChange inst✝ : P.IsStableUnderComposition S X X' Y Y' : C f : X ⟶ S g : Y ⟶ S f' : X' ⟶ S g' : Y' ⟶ S i₁ : X ⟶ X' i₂ : Y ⟶ Y' h₁ : P i₁ h₂ : P i₂ e₁ : f = i₁ ≫ f' e₂ : g = i₂ ≫ g' this : pullback.map f g f' g' i₁ i₂ (𝟙 S) ⋯ ⋯ = ((pullbackSymmetry (Over.mk f).hom (Over.mk g).hom).hom ≫ ((Over.pullback (Over.mk f).hom).map (Over.homMk i₂ ⋯)).left) ≫ (pullbackSymmetry (Over.mk g').hom (Over.mk f).hom).hom ≫ ((Over.pullback g').map (Over.homMk i₁ ⋯)).left ⊢ P ((Over.pullback g').map (Over.homMk i₁ ⋯)).left
exacts [baseChange_map _ (Over.homMk _ e₂.symm : Over.mk g ⟶ Over.mk g') h₂, baseChange_map _ (Over.homMk _ e₁.symm : Over.mk f ⟶ Over.mk f') h₁]
no goals
25efcf6d428e3aaa
Localization.localRingHom_comp
Mathlib/RingTheory/Localization/AtPrime.lean
theorem localRingHom_comp {S : Type*} [CommSemiring S] (J : Ideal S) [hJ : J.IsPrime] (K : Ideal P) [hK : K.IsPrime] (f : R →+* S) (hIJ : I = J.comap f) (g : S →+* P) (hJK : J = K.comap g) : localRingHom I K (g.comp f) (by rw [hIJ, hJK, Ideal.comap_comap f g]) = (localRingHom J K g hJK).comp (localRingHom I J f hIJ) := localRingHom_unique _ _ _ _ fun r => by simp only [Function.comp_apply, RingHom.coe_comp, localRingHom_to_map]
R : Type u_1 inst✝² : CommSemiring R P : Type u_3 inst✝¹ : CommSemiring P I : Ideal R hI : I.IsPrime S : Type u_4 inst✝ : CommSemiring S J : Ideal S hJ : J.IsPrime K : Ideal P hK : K.IsPrime f : R →+* S hIJ : I = Ideal.comap f J g : S →+* P hJK : J = Ideal.comap g K r : R ⊢ ((localRingHom J K g hJK).comp (localRingHom I J f hIJ)) ((algebraMap R (Localization.AtPrime I)) r) = (algebraMap P (Localization.AtPrime K)) ((g.comp f) r)
simp only [Function.comp_apply, RingHom.coe_comp, localRingHom_to_map]
no goals
e31563396387eb68
NNReal.exists_pos_sum_of_countable
Mathlib/Analysis/SpecificLimits/Basic.lean
theorem exists_pos_sum_of_countable {ε : ℝ≥0} (hε : ε ≠ 0) (ι) [Countable ι] : ∃ ε' : ι → ℝ≥0, (∀ i, 0 < ε' i) ∧ ∃ c, HasSum ε' c ∧ c < ε
case intro.intro.intro ε : ℝ≥0 hε : ε ≠ 0 ι : Type u_4 inst✝ : Countable ι val✝ : Encodable ι a : ℝ≥0 a0 : 0 < a aε : a < ε ⊢ ∃ ε', (∀ (i : ι), 0 < ε' i) ∧ ∃ c, HasSum ε' c ∧ c < ε
obtain ⟨ε', hε', c, hc, hcε⟩ := posSumOfEncodable a0 ι
case intro.intro.intro.mk.intro.intro.intro ε : ℝ≥0 hε : ε ≠ 0 ι : Type u_4 inst✝ : Countable ι val✝ : Encodable ι a : ℝ≥0 a0 : 0 < a aε : a < ε ε' : ι → ℝ hε' : ∀ (i : ι), 0 < ε' i c : ℝ hc : HasSum ε' c hcε : c ≤ (fun a => ↑a) a ⊢ ∃ ε', (∀ (i : ι), 0 < ε' i) ∧ ∃ c, HasSum ε' c ∧ c < ε
108a495dfe8666a5
Complex.norm_log_one_add_half_le_self
Mathlib/Analysis/SpecialFunctions/Complex/LogBounds.lean
/-- For `‖z‖ ≤ 1/2`, the complex logarithm is bounded by `(3/2) * ‖z‖`. -/ lemma norm_log_one_add_half_le_self {z : ℂ} (hz : ‖z‖ ≤ 1/2) : ‖(log (1 + z))‖ ≤ (3/2) * ‖z‖
z : ℂ hz : ‖z‖ ≤ 1 / 2 hz3 : (1 - ‖z‖)⁻¹ ≤ 2 hz4 : ‖z‖ ^ 2 * (1 - ‖z‖)⁻¹ / 2 ≤ ‖z‖ / 2 * 2 / 2 ⊢ ‖z‖ ^ 2 * (1 - ‖z‖)⁻¹ / 2 + ‖z‖ ≤ 3 / 2 * ‖z‖
simp only [isUnit_iff_ne_zero, ne_eq, OfNat.ofNat_ne_zero, not_false_eq_true, IsUnit.div_mul_cancel] at hz4
z : ℂ hz : ‖z‖ ≤ 1 / 2 hz3 : (1 - ‖z‖)⁻¹ ≤ 2 hz4 : ‖z‖ ^ 2 * (1 - ‖z‖)⁻¹ / 2 ≤ ‖z‖ / 2 ⊢ ‖z‖ ^ 2 * (1 - ‖z‖)⁻¹ / 2 + ‖z‖ ≤ 3 / 2 * ‖z‖
f3a688a3bed721f7
CompleteLattice.isStronglyAtomic
Mathlib/Order/Atoms.lean
theorem CompleteLattice.isStronglyAtomic [IsUpperModularLattice α] [IsAtomistic α] : IsStronglyAtomic α where exists_covBy_le_of_lt a b hab
case intro.intro.inr α : Type u_2 inst✝² : CompleteLattice α inst✝¹ : IsUpperModularLattice α inst✝ : IsAtomistic α a : α s : Set α h : ∀ a ∈ s, IsAtom a hab : a < sSup s x : α hx : x ∈ s hcon : ¬a ⋖ x ⊔ a h_inf : x ⊓ a = x ⊢ x ≤ a
rwa [inf_eq_left] at h_inf
no goals
f38a963c485d9a59
IsCompact.closure_subset_measurableSet
Mathlib/MeasureTheory/Constructions/BorelSpace/Basic.lean
theorem IsCompact.closure_subset_measurableSet [R1Space γ] {K s : Set γ} (hK : IsCompact K) (hs : MeasurableSet s) (hKs : K ⊆ s) : closure K ⊆ s
γ : Type u_3 inst✝³ : TopologicalSpace γ inst✝² : MeasurableSpace γ inst✝¹ : BorelSpace γ inst✝ : R1Space γ K s : Set γ hK : IsCompact K hs : MeasurableSet s hKs : K ⊆ s ⊢ closure K ⊆ s
rw [hK.closure_eq_biUnion_inseparable, iUnion₂_subset_iff]
γ : Type u_3 inst✝³ : TopologicalSpace γ inst✝² : MeasurableSpace γ inst✝¹ : BorelSpace γ inst✝ : R1Space γ K s : Set γ hK : IsCompact K hs : MeasurableSet s hKs : K ⊆ s ⊢ ∀ i ∈ K, {y | Inseparable i y} ⊆ s
a5ffbea07edba0de
CategoryTheory.strongEpi_of_strongEpi
Mathlib/CategoryTheory/Limits/Shapes/StrongEpi.lean
theorem strongEpi_of_strongEpi [StrongEpi (f ≫ g)] : StrongEpi g := { epi := epi_of_epi f g llp := fun {X Y} z _ => by constructor intro u v sq have h₀ : (f ≫ u) ≫ z = (f ≫ g) ≫ v
case sq_hasLift C : Type u inst✝¹ : Category.{v, u} C P Q R : C f : P ⟶ Q g : Q ⟶ R inst✝ : StrongEpi (f ≫ g) X Y : C z : X ⟶ Y x✝ : Mono z ⊢ ∀ {f : Q ⟶ X} {g_1 : R ⟶ Y} (sq : CommSq f g z g_1), sq.HasLift
intro u v sq
case sq_hasLift C : Type u inst✝¹ : Category.{v, u} C P Q R : C f : P ⟶ Q g : Q ⟶ R inst✝ : StrongEpi (f ≫ g) X Y : C z : X ⟶ Y x✝ : Mono z u : Q ⟶ X v : R ⟶ Y sq : CommSq u g z v ⊢ sq.HasLift
9c6107457dbbc63b
Substring.ValidFor.prevn
Mathlib/.lake/packages/batteries/Batteries/Data/String/Lemmas.lean
theorem prevn : ∀ {s}, ValidFor l (m₁.reverse ++ m₂) r s → ∀ n, s.prevn n ⟨utf8Len m₁⟩ = ⟨utf8Len (m₁.drop n)⟩ | _, _, 0 => by simp [Substring.prevn] | s, h, n+1 => by simp only [Substring.prevn] match m₁ with | [] => simp | c::m₁ => rw [List.reverse_cons, List.append_assoc] at h have := h.prev; simp at this; simp [this, h.prevn n]
l m₂ r m₁ : List Char s : Substring h : ValidFor l (m₁.reverse ++ m₂) r s n : Nat ⊢ s.prevn (n + 1) { byteIdx := utf8Len m₁ } = { byteIdx := utf8Len (List.drop (n + 1) m₁) }
simp only [Substring.prevn]
l m₂ r m₁ : List Char s : Substring h : ValidFor l (m₁.reverse ++ m₂) r s n : Nat ⊢ s.prevn n (s.prev { byteIdx := utf8Len m₁ }) = { byteIdx := utf8Len (List.drop (n + 1) m₁) }
335aa626418f50e2
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.insertRatUnits_postcondition
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/RatAddResult.lean
theorem insertRatUnits_postcondition {n : Nat} (f : DefaultFormula n) (hf : f.ratUnits = #[] ∧ f.assignments.size = n) (units : CNF.Clause (PosFin n)) : let assignments := (insertRatUnits f units).fst.assignments have hsize : assignments.size = n
case h n : Nat f : DefaultFormula n hf : f.ratUnits = #[] ∧ f.assignments.size = n units : CNF.Clause (PosFin n) hsize : f.assignments.size = n i : Fin n ⊢ f.assignments[↑i] = f.assignments[↑i] ∧ ∀ (j : Fin f.ratUnits.size), f.ratUnits[j].fst.val ≠ ↑i
simp only [Fin.getElem_fin, ne_eq, true_and, Bool.not_eq_true, exists_and_right]
case h n : Nat f : DefaultFormula n hf : f.ratUnits = #[] ∧ f.assignments.size = n units : CNF.Clause (PosFin n) hsize : f.assignments.size = n i : Fin n ⊢ ∀ (j : Fin f.ratUnits.size), ¬f.ratUnits[↑j].fst.val = ↑i
ea6eb4c6355fd3da
BoxIntegral.Box.mk'_eq_coe
Mathlib/Analysis/BoxIntegral/Box/Basic.lean
theorem mk'_eq_coe {l u : ι → ℝ} : mk' l u = I ↔ l = I.lower ∧ u = I.upper
case mk ι : Type u_1 l u lI uI : ι → ℝ hI : ∀ (i : ι), lI i < uI i ⊢ mk' l u = ↑{ lower := lI, upper := uI, lower_lt_upper := hI } ↔ l = { lower := lI, upper := uI, lower_lt_upper := hI }.lower ∧ u = { lower := lI, upper := uI, lower_lt_upper := hI }.upper
rw [mk']
case mk ι : Type u_1 l u lI uI : ι → ℝ hI : ∀ (i : ι), lI i < uI i ⊢ (if h : ∀ (i : ι), l i < u i then ↑{ lower := l, upper := u, lower_lt_upper := h } else ⊥) = ↑{ lower := lI, upper := uI, lower_lt_upper := hI } ↔ l = { lower := lI, upper := uI, lower_lt_upper := hI }.lower ∧ u = { lower := lI, upper := uI, lower_lt_upper := hI }.upper
5a138799670a8b97
Set.range_comp_subset_range
Mathlib/Data/Set/Image.lean
theorem range_comp_subset_range (f : α → β) (g : β → γ) : range (g ∘ f) ⊆ range g
α : Type u_1 β : Type u_2 γ : Type u_3 f : α → β g : β → γ ⊢ range (g ∘ f) ⊆ range g
rw [range_comp]
α : Type u_1 β : Type u_2 γ : Type u_3 f : α → β g : β → γ ⊢ g '' range f ⊆ range g
bb913eede991123d
ProbabilityTheory.eqOn_complexMGF_of_mgf'
Mathlib/Probability/Moments/ComplexMGF.lean
/-- If two random variables have the same moment generating function then they have the same `complexMGF` on the vertical strip `{z | z.re ∈ interior (integrableExpSet X μ)}`. TODO: once we know that equal `mgf` implies equal distributions, we will be able to show that the `complexMGF` are equal everywhere, not only on the strip. This lemma will be used in the proof of the equality of distributions. -/ lemma eqOn_complexMGF_of_mgf' (hXY : mgf X μ = mgf Y μ') (hμμ' : μ = 0 ↔ μ' = 0) : Set.EqOn (complexMGF X μ) (complexMGF Y μ') {z | z.re ∈ interior (integrableExpSet X μ)}
case neg Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω Ω' : Type u_3 mΩ' : MeasurableSpace Ω' Y : Ω' → ℝ μ' : Measure Ω' hXY : mgf X μ = mgf Y μ' hμμ' : μ = 0 ↔ μ' = 0 h_empty : (interior (integrableExpSet X μ)).Nonempty ⊢ Set.EqOn (complexMGF X μ) (complexMGF Y μ') {z | z.re ∈ interior (integrableExpSet X μ)}
obtain ⟨t, ht⟩ := h_empty
case neg.intro Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω Ω' : Type u_3 mΩ' : MeasurableSpace Ω' Y : Ω' → ℝ μ' : Measure Ω' hXY : mgf X μ = mgf Y μ' hμμ' : μ = 0 ↔ μ' = 0 t : ℝ ht : t ∈ interior (integrableExpSet X μ) ⊢ Set.EqOn (complexMGF X μ) (complexMGF Y μ') {z | z.re ∈ interior (integrableExpSet X μ)}
a1be17aeb598938f
Polynomial.contract_mul_expand
Mathlib/Algebra/Polynomial/Expand.lean
theorem contract_mul_expand {p : ℕ} (hp : p ≠ 0) (f g : R[X]) : contract p (f * expand R p g) = contract p f * g
case pos R : Type u inst✝ : CommSemiring R p : ℕ hp : p ≠ 0 f g : R[X] n x y : ℕ eq : (x, y).1 + (x, y).2 = n * p nex : ¬∃ a, a.1 + a.2 = n ∧ (a.1 * p, a.2 * p) = (x, y) h : p ∣ y ⊢ f.coeff (x, y).1 * ((expand R p) g).coeff (x, y).2 = 0
obtain ⟨x, rfl⟩ : p ∣ x := (Nat.dvd_add_iff_left h).mpr (eq ▸ dvd_mul_left p n)
case pos.intro R : Type u inst✝ : CommSemiring R p : ℕ hp : p ≠ 0 f g : R[X] n y : ℕ h : p ∣ y x : ℕ eq : (p * x, y).1 + (p * x, y).2 = n * p nex : ¬∃ a, a.1 + a.2 = n ∧ (a.1 * p, a.2 * p) = (p * x, y) ⊢ f.coeff (p * x, y).1 * ((expand R p) g).coeff (p * x, y).2 = 0
c12f546c03101c96
MeasureTheory.ae_bdd_liminf_atTop_of_eLpNorm_bdd
Mathlib/MeasureTheory/Function/LpSeminorm/Basic.lean
theorem ae_bdd_liminf_atTop_of_eLpNorm_bdd {p : ℝ≥0∞} (hp : p ≠ 0) {f : ℕ → α → E} (hfmeas : ∀ n, Measurable (f n)) (hbdd : ∀ n, eLpNorm (f n) p μ ≤ R) : ∀ᵐ x ∂μ, liminf (fun n => (‖f n x‖ₑ)) atTop < ∞
α : Type u_1 E : Type u_3 m0 : MeasurableSpace α μ : Measure α inst✝² : NormedAddCommGroup E inst✝¹ : MeasurableSpace E inst✝ : OpensMeasurableSpace E R : ℝ≥0 p : ℝ≥0∞ hp : p ≠ 0 f : ℕ → α → E hfmeas : ∀ (n : ℕ), Measurable (f n) hbdd : ∀ (n : ℕ), eLpNorm (f n) p μ ≤ ↑R ⊢ ∀ᵐ (x : α) ∂μ, liminf (fun n => ‖f n x‖ₑ) atTop < ⊤
by_cases hp' : p = ∞
case pos α : Type u_1 E : Type u_3 m0 : MeasurableSpace α μ : Measure α inst✝² : NormedAddCommGroup E inst✝¹ : MeasurableSpace E inst✝ : OpensMeasurableSpace E R : ℝ≥0 p : ℝ≥0∞ hp : p ≠ 0 f : ℕ → α → E hfmeas : ∀ (n : ℕ), Measurable (f n) hbdd : ∀ (n : ℕ), eLpNorm (f n) p μ ≤ ↑R hp' : p = ⊤ ⊢ ∀ᵐ (x : α) ∂μ, liminf (fun n => ‖f n x‖ₑ) atTop < ⊤ case neg α : Type u_1 E : Type u_3 m0 : MeasurableSpace α μ : Measure α inst✝² : NormedAddCommGroup E inst✝¹ : MeasurableSpace E inst✝ : OpensMeasurableSpace E R : ℝ≥0 p : ℝ≥0∞ hp : p ≠ 0 f : ℕ → α → E hfmeas : ∀ (n : ℕ), Measurable (f n) hbdd : ∀ (n : ℕ), eLpNorm (f n) p μ ≤ ↑R hp' : ¬p = ⊤ ⊢ ∀ᵐ (x : α) ∂μ, liminf (fun n => ‖f n x‖ₑ) atTop < ⊤
56256701164a29db
Algebra.FinitePresentation.ker_fg_of_mvPolynomial
Mathlib/RingTheory/FinitePresentation.lean
theorem ker_fg_of_mvPolynomial {n : ℕ} (f : MvPolynomial (Fin n) R →ₐ[R] A) (hf : Function.Surjective f) [FinitePresentation R A] : f.toRingHom.ker.FG
case intro.intro.intro.intro R : Type w₁ A : Type w₂ inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A n : ℕ f : MvPolynomial (Fin n) R →ₐ[R] A hf : Surjective ⇑f inst✝ : FinitePresentation R A m : ℕ f' : MvPolynomial (Fin m) R →ₐ[R] A hf' : Surjective ⇑f' s : Finset (MvPolynomial (Fin m) R) hs : Ideal.span ↑s = RingHom.ker f'.toRingHom RXn : Type (max 0 w₁) := MvPolynomial (Fin n) R RXm : Type (max 0 w₁) := MvPolynomial (Fin m) R g : Fin n → MvPolynomial (Fin m) R hg : ∀ (i : Fin n), f' (g i) = f (MvPolynomial.X i) h : Fin m → MvPolynomial (Fin n) R hh : ∀ (i : Fin m), f (h i) = f' (MvPolynomial.X i) aeval_h : RXm →ₐ[R] RXn := MvPolynomial.aeval h g' : Fin n → RXn := fun i => MvPolynomial.X i - aeval_h (g i) ⊢ Ideal.span ↑(Finset.image g' Finset.univ ∪ Finset.image (⇑aeval_h) s) = RingHom.ker f.toRingHom
simp only [Finset.coe_image, Finset.coe_union, Finset.coe_univ, Set.image_univ]
case intro.intro.intro.intro R : Type w₁ A : Type w₂ inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A n : ℕ f : MvPolynomial (Fin n) R →ₐ[R] A hf : Surjective ⇑f inst✝ : FinitePresentation R A m : ℕ f' : MvPolynomial (Fin m) R →ₐ[R] A hf' : Surjective ⇑f' s : Finset (MvPolynomial (Fin m) R) hs : Ideal.span ↑s = RingHom.ker f'.toRingHom RXn : Type (max 0 w₁) := MvPolynomial (Fin n) R RXm : Type (max 0 w₁) := MvPolynomial (Fin m) R g : Fin n → MvPolynomial (Fin m) R hg : ∀ (i : Fin n), f' (g i) = f (MvPolynomial.X i) h : Fin m → MvPolynomial (Fin n) R hh : ∀ (i : Fin m), f (h i) = f' (MvPolynomial.X i) aeval_h : RXm →ₐ[R] RXn := MvPolynomial.aeval h g' : Fin n → RXn := fun i => MvPolynomial.X i - aeval_h (g i) ⊢ Ideal.span (Set.range g' ∪ ⇑aeval_h '' ↑s) = RingHom.ker f.toRingHom
37c27acde7e67205
Nat.diag_induction
Mathlib/Data/Nat/Init.lean
theorem diag_induction (P : ℕ → ℕ → Prop) (ha : ∀ a, P (a + 1) (a + 1)) (hb : ∀ b, P 0 (b + 1)) (hd : ∀ a b, a < b → P (a + 1) b → P a (b + 1) → P (a + 1) (b + 1)) : ∀ a b, a < b → P a b | 0, _ + 1, _ => hb _ | a + 1, b + 1, h => by apply hd _ _ (Nat.add_lt_add_iff_right.1 h) · have this : a + 1 = b ∨ a + 1 < b
P : ℕ → ℕ → Prop ha : ∀ (a : ℕ), P (a + 1) (a + 1) hb : ∀ (b : ℕ), P 0 (b + 1) hd : ∀ (a b : ℕ), a < b → P (a + 1) b → P a (b + 1) → P (a + 1) (b + 1) a b : ℕ h : a + 1 < b + 1 ⊢ P (a + 1) (b + 1)
apply hd _ _ (Nat.add_lt_add_iff_right.1 h)
case a P : ℕ → ℕ → Prop ha : ∀ (a : ℕ), P (a + 1) (a + 1) hb : ∀ (b : ℕ), P 0 (b + 1) hd : ∀ (a b : ℕ), a < b → P (a + 1) b → P a (b + 1) → P (a + 1) (b + 1) a b : ℕ h : a + 1 < b + 1 ⊢ P (a + 1) b case a P : ℕ → ℕ → Prop ha : ∀ (a : ℕ), P (a + 1) (a + 1) hb : ∀ (b : ℕ), P 0 (b + 1) hd : ∀ (a b : ℕ), a < b → P (a + 1) b → P a (b + 1) → P (a + 1) (b + 1) a b : ℕ h : a + 1 < b + 1 ⊢ P a (b + 1)
42f141b2edc38622
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.sat_of_confirmRupHint_insertRup_fold
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/RupAddSound.lean
theorem sat_of_confirmRupHint_insertRup_fold {n : Nat} (f : DefaultFormula n) (f_readyForRupAdd : ReadyForRupAdd f) (c : DefaultClause n) (rupHints : Array Nat) (p : PosFin n → Bool) (pf : p ⊨ f) : let fc := insertRupUnits f (negate c) let confirmRupHint_fold_res := rupHints.foldl (confirmRupHint fc.1.clauses) (fc.1.assignments, [], false, false) 0 rupHints.size confirmRupHint_fold_res.2.2.1 = true → p ⊨ c
case neg.intro.intro n : Nat f : DefaultFormula n f_readyForRupAdd : f.ReadyForRupAdd c : DefaultClause n rupHints : Array Nat p : PosFin n → Bool pf : p ⊨ f fc : DefaultFormula n × Bool := f.insertRupUnits c.negate confirmRupHint_fold_res : Array Assignment × CNF.Clause (PosFin n) × Bool × Bool := Array.foldl (confirmRupHint fc.fst.clauses) (fc.fst.assignments, [], false, false) rupHints confirmRupHint_success : confirmRupHint_fold_res.snd.snd.fst = true motive : Nat → Array Assignment × CNF.Clause (PosFin n) × Bool × Bool → Prop := fc.fst.ConfirmRupHintFoldEntailsMotive h_base : motive 0 (fc.fst.assignments, [], false, false) h_inductive : ∀ (idx : Fin rupHints.size) (acc : Array Assignment × CNF.Clause (PosFin n) × Bool × Bool), motive (↑idx) acc → fc.fst.ConfirmRupHintFoldEntailsMotive (↑idx + 1) (confirmRupHint fc.fst.clauses acc rupHints[idx]) left✝ : (Array.foldl (confirmRupHint fc.fst.clauses) (fc.fst.assignments, [], false, false) rupHints).fst.size = n h1 : Limplies (PosFin n) fc.fst (Array.foldl (confirmRupHint fc.fst.clauses) (fc.fst.assignments, [], false, false) rupHints).fst h2 : (Array.foldl (confirmRupHint fc.fst.clauses) (fc.fst.assignments, [], false, false) rupHints).snd.snd.fst = true → Incompatible (PosFin n) (Array.foldl (confirmRupHint fc.fst.clauses) (fc.fst.assignments, [], false, false) rupHints).fst fc.fst fc_incompatible_confirmRupHint_fold_res : Incompatible (PosFin n) fc.fst (Array.foldl (confirmRupHint fc.fst.clauses) (fc.fst.assignments, [], false, false) rupHints).fst pc : ∀ (x : PosFin n), ((x, false) ∈ Clause.toList c → decide (p x = false) = false) ∧ ((x, true) ∈ Clause.toList c → decide (p x = true) = false) unsat_c : DefaultClause n unsat_c_in_fc : unsat_c ∈ fc.fst.toList p_unsat_c : ¬(p ⊨ unsat_c) ⊢ False
have unsat_c_in_fc := mem_of_insertRupUnits f (negate c) unsat_c unsat_c_in_fc
case neg.intro.intro n : Nat f : DefaultFormula n f_readyForRupAdd : f.ReadyForRupAdd c : DefaultClause n rupHints : Array Nat p : PosFin n → Bool pf : p ⊨ f fc : DefaultFormula n × Bool := f.insertRupUnits c.negate confirmRupHint_fold_res : Array Assignment × CNF.Clause (PosFin n) × Bool × Bool := Array.foldl (confirmRupHint fc.fst.clauses) (fc.fst.assignments, [], false, false) rupHints confirmRupHint_success : confirmRupHint_fold_res.snd.snd.fst = true motive : Nat → Array Assignment × CNF.Clause (PosFin n) × Bool × Bool → Prop := fc.fst.ConfirmRupHintFoldEntailsMotive h_base : motive 0 (fc.fst.assignments, [], false, false) h_inductive : ∀ (idx : Fin rupHints.size) (acc : Array Assignment × CNF.Clause (PosFin n) × Bool × Bool), motive (↑idx) acc → fc.fst.ConfirmRupHintFoldEntailsMotive (↑idx + 1) (confirmRupHint fc.fst.clauses acc rupHints[idx]) left✝ : (Array.foldl (confirmRupHint fc.fst.clauses) (fc.fst.assignments, [], false, false) rupHints).fst.size = n h1 : Limplies (PosFin n) fc.fst (Array.foldl (confirmRupHint fc.fst.clauses) (fc.fst.assignments, [], false, false) rupHints).fst h2 : (Array.foldl (confirmRupHint fc.fst.clauses) (fc.fst.assignments, [], false, false) rupHints).snd.snd.fst = true → Incompatible (PosFin n) (Array.foldl (confirmRupHint fc.fst.clauses) (fc.fst.assignments, [], false, false) rupHints).fst fc.fst fc_incompatible_confirmRupHint_fold_res : Incompatible (PosFin n) fc.fst (Array.foldl (confirmRupHint fc.fst.clauses) (fc.fst.assignments, [], false, false) rupHints).fst pc : ∀ (x : PosFin n), ((x, false) ∈ Clause.toList c → decide (p x = false) = false) ∧ ((x, true) ∈ Clause.toList c → decide (p x = true) = false) unsat_c : DefaultClause n unsat_c_in_fc✝ : unsat_c ∈ fc.fst.toList p_unsat_c : ¬(p ⊨ unsat_c) unsat_c_in_fc : unsat_c ∈ List.map Clause.unit c.negate ∨ unsat_c ∈ f.toList ⊢ False
5ee4e43f082bad4a
torusMap_sub_center
Mathlib/MeasureTheory/Integral/TorusIntegral.lean
theorem torusMap_sub_center (c : ℂⁿ) (R : ℝⁿ) (θ : ℝⁿ) : torusMap c R θ - c = torusMap 0 R θ
case h n : ℕ c : Fin n → ℂ R θ : Fin n → ℝ i : Fin n ⊢ (torusMap c R θ - c) i = torusMap 0 R θ i
simp [torusMap]
no goals
bacd7c5510414d1d
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.confirmRupHint_preserves_invariant_helper
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/RupAddResult.lean
theorem confirmRupHint_preserves_invariant_helper {n : Nat} (f : DefaultFormula n) (f_assignments_size : f.assignments.size = n) (acc : Array Assignment × CNF.Clause (PosFin n) × Bool × Bool) (hsize : acc.1.size = n) (l : Literal (PosFin n)) (ih : DerivedLitsInvariant f f_assignments_size acc.1 hsize acc.2.1) (h : ¬hasAssignment l.snd acc.fst[l.fst.val]! = true) : have hsize' : (Array.modify acc.1 l.1.1 (addAssignment l.snd)).size = n
case intro n : Nat f : DefaultFormula n f_assignments_size : f.assignments.size = n acc : Array Assignment × CNF.Clause (PosFin n) × Bool × Bool hsize : acc.fst.size = n l : Literal (PosFin n) ih : f.DerivedLitsInvariant f_assignments_size acc.fst hsize acc.snd.fst h : ¬hasAssignment l.snd acc.fst[l.fst.val]! = true hsize'✝ : (acc.fst.modify l.fst.val (addAssignment l.snd)).size = n := Eq.mpr (id (congrArg (fun _a => _a = n) (Array.size_modify acc.fst l.fst.val (addAssignment l.snd)))) hsize i : Fin n i_in_bounds : ↑i < acc.fst.size l_in_bounds : l.fst.val < acc.fst.size j1 j2 : Fin (List.length acc.snd.fst) j1_eq_i : (List.get acc.snd.fst j1).fst.val = ↑i j2_eq_i : (List.get acc.snd.fst j2).fst.val = ↑i j1_eq_true : (List.get acc.snd.fst j1).snd = true j2_eq_false : (List.get acc.snd.fst j2).snd = false h1 : acc.fst[↑i] = both h2 : f.assignments[↑i] = unassigned h3 : ∀ (k : Fin (List.length acc.snd.fst)), k ≠ j1 → k ≠ j2 → (List.get acc.snd.fst k).fst.val ≠ ↑i j1_succ_in_bounds : ↑j1 + 1 < (l :: acc.snd.fst).length j2_succ_in_bounds : ↑j2 + 1 < (l :: acc.snd.fst).length j1_succ : Fin (l :: acc.snd.fst).length := ⟨↑j1 + 1, j1_succ_in_bounds⟩ j2_succ : Fin (l :: acc.snd.fst).length := ⟨↑j2 + 1, j2_succ_in_bounds⟩ l_ne_i : l.fst.val ≠ ↑i k : Fin (List.length acc.snd.fst + 1) k_ne_j1_succ : ¬k = j1_succ k_ne_j2_succ : ¬k = j2_succ zero_in_bounds : 0 < (l :: acc.snd.fst).length k_ne_zero : ¬k = ⟨0, zero_in_bounds⟩ k_val_ne_zero : ↑k ≠ 0 k' : Nat k_eq_k'_succ : ↑k = k' + 1 k'_succ_in_bounds : k' + 1 < (l :: acc.snd.fst).length ⊢ ∃ k' k'_succ_in_bounds, k = ⟨k' + 1, k'_succ_in_bounds⟩
apply Exists.intro k' ∘ Exists.intro k'_succ_in_bounds
case intro n : Nat f : DefaultFormula n f_assignments_size : f.assignments.size = n acc : Array Assignment × CNF.Clause (PosFin n) × Bool × Bool hsize : acc.fst.size = n l : Literal (PosFin n) ih : f.DerivedLitsInvariant f_assignments_size acc.fst hsize acc.snd.fst h : ¬hasAssignment l.snd acc.fst[l.fst.val]! = true hsize'✝ : (acc.fst.modify l.fst.val (addAssignment l.snd)).size = n := Eq.mpr (id (congrArg (fun _a => _a = n) (Array.size_modify acc.fst l.fst.val (addAssignment l.snd)))) hsize i : Fin n i_in_bounds : ↑i < acc.fst.size l_in_bounds : l.fst.val < acc.fst.size j1 j2 : Fin (List.length acc.snd.fst) j1_eq_i : (List.get acc.snd.fst j1).fst.val = ↑i j2_eq_i : (List.get acc.snd.fst j2).fst.val = ↑i j1_eq_true : (List.get acc.snd.fst j1).snd = true j2_eq_false : (List.get acc.snd.fst j2).snd = false h1 : acc.fst[↑i] = both h2 : f.assignments[↑i] = unassigned h3 : ∀ (k : Fin (List.length acc.snd.fst)), k ≠ j1 → k ≠ j2 → (List.get acc.snd.fst k).fst.val ≠ ↑i j1_succ_in_bounds : ↑j1 + 1 < (l :: acc.snd.fst).length j2_succ_in_bounds : ↑j2 + 1 < (l :: acc.snd.fst).length j1_succ : Fin (l :: acc.snd.fst).length := ⟨↑j1 + 1, j1_succ_in_bounds⟩ j2_succ : Fin (l :: acc.snd.fst).length := ⟨↑j2 + 1, j2_succ_in_bounds⟩ l_ne_i : l.fst.val ≠ ↑i k : Fin (List.length acc.snd.fst + 1) k_ne_j1_succ : ¬k = j1_succ k_ne_j2_succ : ¬k = j2_succ zero_in_bounds : 0 < (l :: acc.snd.fst).length k_ne_zero : ¬k = ⟨0, zero_in_bounds⟩ k_val_ne_zero : ↑k ≠ 0 k' : Nat k_eq_k'_succ : ↑k = k' + 1 k'_succ_in_bounds : k' + 1 < (l :: acc.snd.fst).length ⊢ k = ⟨k' + 1, k'_succ_in_bounds⟩
02ca1706b397b254
Vector.mem_mkVector
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Vector/Lemmas.lean
theorem mem_mkVector {a b : α} {n} : b ∈ mkVector n a ↔ n ≠ 0 ∧ b = a
α : Type u_1 a b : α n : Nat ⊢ b ∈ mkVector n a ↔ n ≠ 0 ∧ b = a
unfold mkVector
α : Type u_1 a b : α n : Nat ⊢ b ∈ { toArray := mkArray n a, size_toArray := ⋯ } ↔ n ≠ 0 ∧ b = a
1fa18089178a4584
CategoryTheory.PreGaloisCategory.exists_set_ker_evaluation_subset_of_isOpen
Mathlib/CategoryTheory/Galois/Topology.lean
/-- If `H` is an open subset of `Aut F` such that `1 ∈ H`, there exists a finite set `I` of connected objects of `C` such that every `σ : Aut F` that induces the identity on `F.obj X` for all `X ∈ I` is contained in `H`. In other words: The kernel of the evaluation map `Aut F →* ∏ X : I ↦ Aut (F.obj X)` is contained in `H`. -/ lemma exists_set_ker_evaluation_subset_of_isOpen {H : Set (Aut F)} (h1 : 1 ∈ H) (h : IsOpen H) : ∃ (I : Set C) (_ : Fintype I), (∀ X ∈ I, IsConnected X) ∧ (∀ σ : Aut F, (∀ X : I, σ.hom.app X = 𝟙 (F.obj X)) → σ ∈ H)
case intro.intro.intro.intro.intro.refine_2 C : Type u₁ inst✝² : Category.{u₂, u₁} C F : C ⥤ FintypeCat inst✝¹ : GaloisCategory C inst✝ : FiberFunctor F U : Set ((X : C) → Aut (F.obj X)) hUopen : IsOpen U h1 : 1 ∈ ⇑(autEmbedding F) ⁻¹' U h : IsOpen (⇑(autEmbedding F) ⁻¹' U) I : Finset C u : (a : C) → Set (Aut (F.obj a)) ho : ∀ a ∈ I, IsOpen (u a) ∧ 1 a ∈ u a ha : (↑I).pi u ⊆ U fι : { x // x ∈ I } → Type ff : (X : { x // x ∈ I }) → fι X → C fc : (X : { x // x ∈ I }) → (i : fι X) → ff X i ⟶ ↑X h4 : (X : { x // x ∈ I }) → Limits.IsColimit (Limits.Cofan.mk (↑X) (fc X)) h5 : ∀ (X : { x // x ∈ I }) (i : fι X), IsConnected (ff X i) h6 : ∀ (X : { x // x ∈ I }), Finite (fι X) ⊢ ∀ (σ : Aut F), (∀ (X : ↑(⋃ X, Set.range (ff X))), σ.hom.app ↑X = 𝟙 (F.obj ↑X)) → σ ∈ ⇑(autEmbedding F) ⁻¹' U
refine fun σ h ↦ ha (fun X XinI ↦ ?_)
case intro.intro.intro.intro.intro.refine_2 C : Type u₁ inst✝² : Category.{u₂, u₁} C F : C ⥤ FintypeCat inst✝¹ : GaloisCategory C inst✝ : FiberFunctor F U : Set ((X : C) → Aut (F.obj X)) hUopen : IsOpen U h1 : 1 ∈ ⇑(autEmbedding F) ⁻¹' U h✝ : IsOpen (⇑(autEmbedding F) ⁻¹' U) I : Finset C u : (a : C) → Set (Aut (F.obj a)) ho : ∀ a ∈ I, IsOpen (u a) ∧ 1 a ∈ u a ha : (↑I).pi u ⊆ U fι : { x // x ∈ I } → Type ff : (X : { x // x ∈ I }) → fι X → C fc : (X : { x // x ∈ I }) → (i : fι X) → ff X i ⟶ ↑X h4 : (X : { x // x ∈ I }) → Limits.IsColimit (Limits.Cofan.mk (↑X) (fc X)) h5 : ∀ (X : { x // x ∈ I }) (i : fι X), IsConnected (ff X i) h6 : ∀ (X : { x // x ∈ I }), Finite (fι X) σ : Aut F h : ∀ (X : ↑(⋃ X, Set.range (ff X))), σ.hom.app ↑X = 𝟙 (F.obj ↑X) X : C XinI : X ∈ ↑I ⊢ (autEmbedding F) σ X ∈ u X
de843c96b0bb42c2
Polynomial.dickson_one_one_eq_chebyshev_C
Mathlib/RingTheory/Polynomial/Dickson.lean
theorem dickson_one_one_eq_chebyshev_C : ∀ n, dickson 1 (1 : R) n = Chebyshev.C R n | 0 => by simp only [Chebyshev.C_zero, mul_one, one_comp, dickson_zero] norm_num | 1 => by rw [dickson_one, Nat.cast_one, Chebyshev.C_one] | n + 2 => by rw [dickson_add_two, C_1, Nat.cast_add, Nat.cast_two, Chebyshev.C_add_two, dickson_one_one_eq_chebyshev_C (n + 1), dickson_one_one_eq_chebyshev_C n] push_cast ring
R : Type u_1 inst✝ : CommRing R n : ℕ ⊢ X * Chebyshev.C R (↑n + 1) - 1 * Chebyshev.C R ↑n = X * Chebyshev.C R (↑n + 1) - Chebyshev.C R ↑n
ring
no goals
b6460d95bc6e9fea
ZNum.bit1_of_bit1
Mathlib/Data/Num/Lemmas.lean
theorem bit1_of_bit1 : ∀ n : ZNum, n + n + 1 = n.bit1 | 0 => rfl | pos a => congr_arg pos a.bit1_of_bit1 | neg a => show PosNum.sub' 1 (a + a) = _ by rw [PosNum.one_sub', a.bit0_of_bit0]; rfl
a : PosNum ⊢ a.bit0.pred'.toZNumNeg = (neg a).bit1
rfl
no goals
4d88b544d8176352
MeasureTheory.generateFrom_measurableCylinders
Mathlib/MeasureTheory/Constructions/Cylinders.lean
theorem generateFrom_measurableCylinders : MeasurableSpace.generateFrom (measurableCylinders α) = MeasurableSpace.pi
case a ι : Type u_1 α : ι → Type u_2 inst✝ : (i : ι) → MeasurableSpace (α i) S : Set ((i : ι) → α i) hS : S ∈ measurableCylinders α ⊢ MeasurableSet S
obtain ⟨s, S, hSm, rfl⟩ := (mem_measurableCylinders _).mp hS
case a.intro.intro.intro ι : Type u_1 α : ι → Type u_2 inst✝ : (i : ι) → MeasurableSpace (α i) s : Finset ι S : Set ((i : { x // x ∈ s }) → α ↑i) hSm : MeasurableSet S hS : cylinder s S ∈ measurableCylinders α ⊢ MeasurableSet (cylinder s S)
ec147fd1a1925118
hasFPowerSeriesWithinAt_iff_exists_hasFPowerSeriesAt
Mathlib/Analysis/Analytic/Within.lean
/-- `f` has power series `p` at `x` iff some local extension of `f` has that series -/ lemma hasFPowerSeriesWithinAt_iff_exists_hasFPowerSeriesAt [CompleteSpace F] {f : E → F} {p : FormalMultilinearSeries 𝕜 E F} {s : Set E} {x : E} : HasFPowerSeriesWithinAt f p s x ↔ ∃ g, f =ᶠ[𝓝[insert x s] x] g ∧ HasFPowerSeriesAt g p x
case mp 𝕜 : Type u_1 inst✝⁵ : NontriviallyNormedField 𝕜 E : Type u_2 F : Type u_3 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace 𝕜 E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : CompleteSpace F f : E → F p : FormalMultilinearSeries 𝕜 E F s : Set E x : E r : ℝ≥0∞ h : HasFPowerSeriesWithinOnBall f p s x r ⊢ ∃ g, f =ᶠ[𝓝[insert x s] x] g ∧ HasFPowerSeriesAt g p x
rcases hasFPowerSeriesWithinOnBall_iff_exists_hasFPowerSeriesOnBall.mp h with ⟨g, e, h⟩
case mp.intro.intro 𝕜 : Type u_1 inst✝⁵ : NontriviallyNormedField 𝕜 E : Type u_2 F : Type u_3 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace 𝕜 E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : CompleteSpace F f : E → F p : FormalMultilinearSeries 𝕜 E F s : Set E x : E r : ℝ≥0∞ h✝ : HasFPowerSeriesWithinOnBall f p s x r g : E → F e : EqOn f g (insert x s ∩ EMetric.ball x r) h : HasFPowerSeriesOnBall g p x r ⊢ ∃ g, f =ᶠ[𝓝[insert x s] x] g ∧ HasFPowerSeriesAt g p x
7d75f453304e4e39
HomologicalComplex.liftCycles_homologyπ_eq_zero_of_boundary
Mathlib/Algebra/Homology/ShortComplex/HomologicalComplex.lean
@[reassoc] lemma liftCycles_homologyπ_eq_zero_of_boundary {A : C} (k : A ⟶ K.X i) (j : ι) (hj : c.next i = j) {i' : ι} (x : A ⟶ K.X i') (hx : k = x ≫ K.d i' i) : K.liftCycles k j hj (by rw [hx, assoc, K.d_comp_d, comp_zero]) ≫ K.homologyπ i = 0
C : Type u_1 inst✝² : Category.{u_3, u_1} C inst✝¹ : HasZeroMorphisms C ι : Type u_2 c : ComplexShape ι K : HomologicalComplex C c i : ι inst✝ : K.HasHomology i A : C k : A ⟶ K.X i j : ι hj : c.next i = j i' : ι x : A ⟶ K.X i' hx : k = x ≫ K.d i' i h : ¬c.Rel i' i ⊢ K.liftCycles k j hj ⋯ = 0
rw [K.shape _ _ h, comp_zero] at hx
C : Type u_1 inst✝² : Category.{u_3, u_1} C inst✝¹ : HasZeroMorphisms C ι : Type u_2 c : ComplexShape ι K : HomologicalComplex C c i : ι inst✝ : K.HasHomology i A : C k : A ⟶ K.X i j : ι hj : c.next i = j i' : ι x : A ⟶ K.X i' hx✝ : k = x ≫ K.d i' i hx : k = 0 h : ¬c.Rel i' i ⊢ K.liftCycles k j hj ⋯ = 0
5f8a23e175db7b00
PMF.bindOnSupport_eq_bind
Mathlib/Probability/ProbabilityMassFunction/Monad.lean
theorem bindOnSupport_eq_bind (p : PMF α) (f : α → PMF β) : (p.bindOnSupport fun a _ => f a) = p.bind f
case h α : Type u_1 β : Type u_2 p : PMF α f : α → PMF β b : β ⊢ (p.bindOnSupport fun a x => f a) b = (p.bind f) b
have : ∀ a, ite (p a = 0) 0 (p a * f a b) = p a * f a b := fun a => ite_eq_right_iff.2 fun h => h.symm ▸ symm (zero_mul <| f a b)
case h α : Type u_1 β : Type u_2 p : PMF α f : α → PMF β b : β this : ∀ (a : α), (if p a = 0 then 0 else p a * (f a) b) = p a * (f a) b ⊢ (p.bindOnSupport fun a x => f a) b = (p.bind f) b
73d900efddd30ac9
List.Sublist.find?_isSome
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Find.lean
theorem Sublist.find?_isSome {l₁ l₂ : List α} (h : l₁ <+ l₂) : (l₁.find? p).isSome → (l₂.find? p).isSome
case cons₂.h_1 α : Type u_1 p : α → Bool l₁ l₂ l₁✝ l₂✝ : List α a : α h : l₁✝ <+ l₂✝ ih : (find? p l₁✝).isSome = true → (find? p l₂✝).isSome = true x✝ : Bool heq✝ : p a = true ⊢ (some a).isSome = true → (some a).isSome = true
simp
no goals
2274f4ca6e276067
List.sublist_of_orderEmbedding_getElem?_eq
Mathlib/Data/List/NodupEquivFin.lean
theorem sublist_of_orderEmbedding_getElem?_eq {l l' : List α} (f : ℕ ↪o ℕ) (hf : ∀ ix : ℕ, l[ix]? = l'[f ix]?) : l <+ l'
α : Type u_1 hd : α tl : List α IH : ∀ {l' : List α} (f : ℕ ↪o ℕ), (∀ (ix : ℕ), tl[ix]? = l'[f ix]?) → tl <+ l' l' : List α f : ℕ ↪o ℕ hf : ∀ (ix : ℕ), (hd :: tl)[ix]? = l'[f ix]? w : f 0 < l'.length h : l'[f 0] = hd f' : ℕ ↪o ℕ := OrderEmbedding.ofMapLEIff (fun i => f (i + 1) - (f 0 + 1)) ⋯ this : ∀ (ix : ℕ), tl[ix]? = (drop (f 0 + 1) l')[f' ix]? ⊢ [hd] <+ take (f 0 + 1) l'
rw [List.singleton_sublist, ← h, l'.getElem_take' _ (Nat.lt_succ_self _)]
α : Type u_1 hd : α tl : List α IH : ∀ {l' : List α} (f : ℕ ↪o ℕ), (∀ (ix : ℕ), tl[ix]? = l'[f ix]?) → tl <+ l' l' : List α f : ℕ ↪o ℕ hf : ∀ (ix : ℕ), (hd :: tl)[ix]? = l'[f ix]? w : f 0 < l'.length h : l'[f 0] = hd f' : ℕ ↪o ℕ := OrderEmbedding.ofMapLEIff (fun i => f (i + 1) - (f 0 + 1)) ⋯ this : ∀ (ix : ℕ), tl[ix]? = (drop (f 0 + 1) l')[f' ix]? ⊢ (take (f 0).succ l')[f 0] ∈ take (f 0 + 1) l'
1ef7e5e229e83d6a
ordinaryHypergeometricSeries_eq_zero_iff
Mathlib/Analysis/SpecialFunctions/OrdinaryHypergeometric.lean
/-- An iff variation on `ordinaryHypergeometricSeries_eq_zero_of_nonpos_int` for `[RCLike 𝕂]`. -/ lemma ordinaryHypergeometricSeries_eq_zero_iff (n : ℕ) : ordinaryHypergeometricSeries 𝔸 a b c n = 0 ↔ ∃ k < n, k = -a ∨ k = -b ∨ k = -c
𝕂 : Type u_1 𝔸 : Type u_2 inst✝² : RCLike 𝕂 inst✝¹ : NormedDivisionRing 𝔸 inst✝ : NormedAlgebra 𝕂 𝔸 a b c : 𝕂 n : ℕ ⊢ ordinaryHypergeometricSeries 𝔸 a b c n = 0 ↔ ∃ k < n, ↑k = -a ∨ ↑k = -b ∨ ↑k = -c
refine ⟨fun h ↦ ?_, fun zero ↦ ?_⟩
case refine_1 𝕂 : Type u_1 𝔸 : Type u_2 inst✝² : RCLike 𝕂 inst✝¹ : NormedDivisionRing 𝔸 inst✝ : NormedAlgebra 𝕂 𝔸 a b c : 𝕂 n : ℕ h : ordinaryHypergeometricSeries 𝔸 a b c n = 0 ⊢ ∃ k < n, ↑k = -a ∨ ↑k = -b ∨ ↑k = -c case refine_2 𝕂 : Type u_1 𝔸 : Type u_2 inst✝² : RCLike 𝕂 inst✝¹ : NormedDivisionRing 𝔸 inst✝ : NormedAlgebra 𝕂 𝔸 a b c : 𝕂 n : ℕ zero : ∃ k < n, ↑k = -a ∨ ↑k = -b ∨ ↑k = -c ⊢ ordinaryHypergeometricSeries 𝔸 a b c n = 0
a493be1d40c674b2
Matroid.IsBase.compl_closure_diff_singleton_isCocircuit
Mathlib/Data/Matroid/Circuit.lean
/-- For an element `e` of a base `B`, the complement of the closure of `B \ {e}` is a cocircuit. -/ lemma IsBase.compl_closure_diff_singleton_isCocircuit (hB : M.IsBase B) (he : e ∈ B) : M.IsCocircuit (M.E \ M.closure (B \ {e}))
α : Type u_1 M : Matroid α e : α B : Set α hB : M.IsBase B he : e ∈ B hB' : Minimal M.Spanning B X : Set α hX : ¬M.Spanning (M.E \ X) hXss : X ⊆ M.E ∧ Disjoint X (M.closure (B \ {e})) f : α hf : f ∈ M.E \ X fcl : f ∉ M.closure (B \ {e}) ⊢ M.Spanning (M.E \ X)
suffices hsp : M.IsBase (insert f (B \ {e})) by refine hsp.spanning.superset <| insert_subset hf <| (M.subset_closure _ (diff_subset.trans hB.subset_ground)).trans ?_ rw [subset_diff, and_iff_left hXss.2.symm] apply closure_subset_ground
α : Type u_1 M : Matroid α e : α B : Set α hB : M.IsBase B he : e ∈ B hB' : Minimal M.Spanning B X : Set α hX : ¬M.Spanning (M.E \ X) hXss : X ⊆ M.E ∧ Disjoint X (M.closure (B \ {e})) f : α hf : f ∈ M.E \ X fcl : f ∉ M.closure (B \ {e}) ⊢ M.IsBase (insert f (B \ {e}))
2fdba0a4d6c9650b
ENNReal.one_lt_rpow_of_pos_of_lt_one_of_neg
Mathlib/Analysis/SpecialFunctions/Pow/NNReal.lean
theorem one_lt_rpow_of_pos_of_lt_one_of_neg {x : ℝ≥0∞} {z : ℝ} (hx1 : 0 < x) (hx2 : x < 1) (hz : z < 0) : 1 < x ^ z
case intro z : ℝ hz : z < 0 x : ℝ≥0 hx1 : 0 < x hx2 : x < 1 ⊢ 1 < ↑x ^ z
simp [← coe_rpow_of_ne_zero (ne_of_gt hx1), NNReal.one_lt_rpow_of_pos_of_lt_one_of_neg hx1 hx2 hz]
no goals
791f2a51a4cfdc09
Polynomial.coeff_multiset_prod_of_natDegree_le
Mathlib/Algebra/Polynomial/BigOperators.lean
theorem coeff_multiset_prod_of_natDegree_le (n : ℕ) (hl : ∀ p ∈ t, natDegree p ≤ n) : coeff t.prod ((Multiset.card t) * n) = (t.map fun p => coeff p n).prod
case h R : Type u inst✝ : CommSemiring R t : Multiset R[X] n : ℕ a✝ : List R[X] hl : ∀ p ∈ ⟦a✝⟧, p.natDegree ≤ n ⊢ (prod ⟦a✝⟧).coeff (Multiset.card ⟦a✝⟧ * n) = (Multiset.map (fun p => p.coeff n) ⟦a✝⟧).prod
simpa using coeff_list_prod_of_natDegree_le _ _ hl
no goals
0c4bdb6b8810b577
Finsupp.support_sum_eq_biUnion
Mathlib/Algebra/BigOperators/Finsupp.lean
theorem support_sum_eq_biUnion {α : Type*} {ι : Type*} {M : Type*} [DecidableEq α] [AddCommMonoid M] {g : ι → α →₀ M} (s : Finset ι) (h : ∀ i₁ i₂, i₁ ≠ i₂ → Disjoint (g i₁).support (g i₂).support) : (∑ i ∈ s, g i).support = s.biUnion fun i => (g i).support
case refine_2 α : Type u_16 ι : Type u_17 M : Type u_18 inst✝¹ : DecidableEq α inst✝ : AddCommMonoid M g : ι → α →₀ M s✝ : Finset ι h : ∀ (i₁ i₂ : ι), i₁ ≠ i₂ → Disjoint (g i₁).support (g i₂).support i : ι s : Finset ι hi : i ∉ s ⊢ ((∑ i ∈ s, g i).support = s.biUnion fun i => (g i).support) → (∑ i ∈ insert i s, g i).support = (insert i s).biUnion fun i => (g i).support
simp only [hi, sum_insert, not_false_iff, biUnion_insert]
case refine_2 α : Type u_16 ι : Type u_17 M : Type u_18 inst✝¹ : DecidableEq α inst✝ : AddCommMonoid M g : ι → α →₀ M s✝ : Finset ι h : ∀ (i₁ i₂ : ι), i₁ ≠ i₂ → Disjoint (g i₁).support (g i₂).support i : ι s : Finset ι hi : i ∉ s ⊢ ((∑ i ∈ s, g i).support = s.biUnion fun i => (g i).support) → (g i + ∑ i ∈ s, g i).support = (g i).support ∪ s.biUnion fun i => (g i).support
a2dd55934f7fcee5
Polynomial.finiteMultiplicity_of_degree_pos_of_monic
Mathlib/Algebra/Polynomial/Div.lean
theorem finiteMultiplicity_of_degree_pos_of_monic (hp : (0 : WithBot ℕ) < degree p) (hmp : Monic p) (hq : q ≠ 0) : FiniteMultiplicity p q := have zn0 : (0 : R) ≠ 1 := haveI := Nontrivial.of_polynomial_ne hq zero_ne_one ⟨natDegree q, fun ⟨r, hr⟩ => by have hp0 : p ≠ 0 := fun hp0 => by simp [hp0] at hp have hr0 : r ≠ 0 := fun hr0 => by subst hr0; simp [hq] at hr have hpn1 : leadingCoeff p ^ (natDegree q + 1) = 1
R : Type u inst✝ : Semiring R p q : R[X] hp : 0 < p.degree hmp : p.Monic hq : q ≠ 0 zn0 : 0 ≠ 1 x✝ : p ^ (q.natDegree + 1) ∣ q r : R[X] hr : q = p ^ (q.natDegree + 1) * r hp0 : p ≠ 0 hr0 : r ≠ 0 ⊢ p.leadingCoeff ^ (q.natDegree + 1) = 1
simp [show _ = _ from hmp]
no goals
e99ce1288ab09150
Real.summable_nat_rpow_inv
Mathlib/Analysis/PSeries.lean
theorem summable_nat_rpow_inv {p : ℝ} : Summable (fun n => ((n : ℝ) ^ p)⁻¹ : ℕ → ℝ) ↔ 1 < p
p : ℝ ⊢ (Summable fun n => (↑n ^ p)⁻¹) ↔ 1 < p
rcases le_or_lt 0 p with hp | hp
case inl p : ℝ hp : 0 ≤ p ⊢ (Summable fun n => (↑n ^ p)⁻¹) ↔ 1 < p case inr p : ℝ hp : p < 0 ⊢ (Summable fun n => (↑n ^ p)⁻¹) ↔ 1 < p
3c89ea3843e56182
ZMod.Ico_map_valMinAbs_natAbs_eq_Ico_map_id
Mathlib/NumberTheory/LegendreSymbol/GaussEisensteinLemmas.lean
theorem Ico_map_valMinAbs_natAbs_eq_Ico_map_id (p : ℕ) [hp : Fact p.Prime] (a : ZMod p) (hap : a ≠ 0) : ((Ico 1 (p / 2).succ).1.map fun (x : ℕ) => (a * x).valMinAbs.natAbs) = (Ico 1 (p / 2).succ).1.map fun a => a
case refine_3 p : ℕ hp : Fact (Nat.Prime p) a : ZMod p hap : a ≠ 0 he : ∀ {x : ℕ}, x ∈ Ico 1 (p / 2).succ → x ≠ 0 ∧ x ≤ p / 2 hep : ∀ {x : ℕ}, x ∈ Ico 1 (p / 2).succ → x < p hpe : ∀ {x : ℕ}, x ∈ Ico 1 (p / 2).succ → ¬p ∣ x hmem : ∀ x ∈ Ico 1 (p / 2).succ, (a * ↑x).valMinAbs.natAbs ∈ Ico 1 (p / 2).succ b : ℕ hb : b ∈ Ico 1 (p / 2).succ ⊢ (a * ↑(↑b / a).valMinAbs.natAbs).valMinAbs.natAbs = b
rw [natCast_natAbs_valMinAbs]
case refine_3 p : ℕ hp : Fact (Nat.Prime p) a : ZMod p hap : a ≠ 0 he : ∀ {x : ℕ}, x ∈ Ico 1 (p / 2).succ → x ≠ 0 ∧ x ≤ p / 2 hep : ∀ {x : ℕ}, x ∈ Ico 1 (p / 2).succ → x < p hpe : ∀ {x : ℕ}, x ∈ Ico 1 (p / 2).succ → ¬p ∣ x hmem : ∀ x ∈ Ico 1 (p / 2).succ, (a * ↑x).valMinAbs.natAbs ∈ Ico 1 (p / 2).succ b : ℕ hb : b ∈ Ico 1 (p / 2).succ ⊢ (a * if (↑b / a).val ≤ p / 2 then ↑b / a else -(↑b / a)).valMinAbs.natAbs = b
e252720ce4f19196
Submodule.exists_of_finrank_lt
Mathlib/LinearAlgebra/Dimension/RankNullity.lean
lemma Submodule.exists_of_finrank_lt (N : Submodule R M) (h : finrank R N < finrank R M) : ∃ m : M, ∀ r : R, r ≠ 0 → r • m ∉ N
R : Type u_1 M : Type u inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : HasRankNullity.{u, u_1} R inst✝¹ : StrongRankCondition R inst✝ : Module.Finite R M N : Submodule R M h : finrank R ↥N < finrank R M ⊢ ∃ m, ∀ (r : R), r ≠ 0 → r • m ∉ N
obtain ⟨s, hs, hs'⟩ := exists_finset_linearIndependent_of_le_finrank (R := R) (M := M ⧸ N) le_rfl
case intro.intro R : Type u_1 M : Type u inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : HasRankNullity.{u, u_1} R inst✝¹ : StrongRankCondition R inst✝ : Module.Finite R M N : Submodule R M h : finrank R ↥N < finrank R M s : Finset (M ⧸ N) hs : s.card = finrank R (M ⧸ N) hs' : LinearIndependent R Subtype.val ⊢ ∃ m, ∀ (r : R), r ≠ 0 → r • m ∉ N
d0deb43894149df2
Mon_.Mon_tensor_mul_one
Mathlib/CategoryTheory/Monoidal/Mon_.lean
theorem Mon_tensor_mul_one (M N : Mon_ C) : (M.X ⊗ N.X) ◁ ((λ_ (𝟙_ C)).inv ≫ (M.one ⊗ N.one)) ≫ tensorμ M.X N.X M.X N.X ≫ (M.mul ⊗ N.mul) = (ρ_ (M.X ⊗ N.X)).hom
C : Type u₁ inst✝² : Category.{v₁, u₁} C inst✝¹ : MonoidalCategory C inst✝ : BraidedCategory C M N : Mon_ C ⊢ (M.X ⊗ N.X) ◁ ((λ_ (𝟙_ C)).inv ≫ (M.one ⊗ N.one)) ≫ tensorμ M.X N.X M.X N.X ≫ (M.mul ⊗ N.mul) = (ρ_ (M.X ⊗ N.X)).hom
simp only [MonoidalCategory.whiskerLeft_comp_assoc]
C : Type u₁ inst✝² : Category.{v₁, u₁} C inst✝¹ : MonoidalCategory C inst✝ : BraidedCategory C M N : Mon_ C ⊢ (M.X ⊗ N.X) ◁ (λ_ (𝟙_ C)).inv ≫ (M.X ⊗ N.X) ◁ (M.one ⊗ N.one) ≫ tensorμ M.X N.X M.X N.X ≫ (M.mul ⊗ N.mul) = (ρ_ (M.X ⊗ N.X)).hom
ab2c59919df5e976
nullMeasurableSet_eq_fun
Mathlib/MeasureTheory/Group/Arithmetic.lean
theorem nullMeasurableSet_eq_fun {E} [MeasurableSpace E] [AddGroup E] [MeasurableSingletonClass E] [MeasurableSub₂ E] {f g : α → E} (hf : AEMeasurable f μ) (hg : AEMeasurable g μ) : NullMeasurableSet { x | f x = g x } μ
α : Type u_3 m : MeasurableSpace α μ : Measure α E : Type u_5 inst✝³ : MeasurableSpace E inst✝² : AddGroup E inst✝¹ : MeasurableSingletonClass E inst✝ : MeasurableSub₂ E f g : α → E hf : AEMeasurable f μ hg : AEMeasurable g μ ⊢ NullMeasurableSet {x | f x = g x} μ
apply (measurableSet_eq_fun hf.measurable_mk hg.measurable_mk).nullMeasurableSet.congr
α : Type u_3 m : MeasurableSpace α μ : Measure α E : Type u_5 inst✝³ : MeasurableSpace E inst✝² : AddGroup E inst✝¹ : MeasurableSingletonClass E inst✝ : MeasurableSub₂ E f g : α → E hf : AEMeasurable f μ hg : AEMeasurable g μ ⊢ {x | AEMeasurable.mk f hf x = AEMeasurable.mk g hg x} =ᶠ[ae μ] {x | f x = g x}
61e903ad7d72f47f
MeasureTheory.Measure.MeasureDense.nonempty'
Mathlib/MeasureTheory/Measure/SeparableMeasure.lean
theorem Measure.MeasureDense.nonempty' (h𝒜 : μ.MeasureDense 𝒜) : {s | s ∈ 𝒜 ∧ μ s ≠ ∞}.Nonempty
X : Type u_1 m : MeasurableSpace X μ : Measure X 𝒜 : Set (Set X) h𝒜 : μ.MeasureDense 𝒜 ⊢ μ ∅ ≠ ⊤
simp
no goals
ee3a4f6befa99af8
MeasureTheory.Measure.exists_null_set_measure_lt_of_disjoint
Mathlib/MeasureTheory/Measure/MutuallySingular.lean
lemma exists_null_set_measure_lt_of_disjoint (h : Disjoint μ ν) {ε : ℝ≥0} (hε : 0 < ε) : ∃ s, μ s = 0 ∧ ν sᶜ ≤ 2 * ε
α : Type u_1 m0 : MeasurableSpace α μ ν : Measure α h : Disjoint μ ν ε : ℝ≥0 hε : 0 < ε h₁ : sInf {m | ∃ t, m = μ t + ν tᶜ} = 0 n : ℕ ⊢ ∃ x ∈ {m | ∃ t, m = μ t + ν tᶜ}, x < ↑ε * (1 / 2) ^ n
refine exists_lt_of_csInf_lt ⟨ν univ, ∅, by simp⟩ <| h₁ ▸ ENNReal.mul_pos ?_ (by simp)
α : Type u_1 m0 : MeasurableSpace α μ ν : Measure α h : Disjoint μ ν ε : ℝ≥0 hε : 0 < ε h₁ : sInf {m | ∃ t, m = μ t + ν tᶜ} = 0 n : ℕ ⊢ ↑ε ≠ 0
46dcd329efc0e15f
mdifferentiableWithinAt_iff_target_inter
Mathlib/Geometry/Manifold/MFDeriv/Basic.lean
theorem mdifferentiableWithinAt_iff_target_inter {f : M → M'} {s : Set M} {x : M} : MDifferentiableWithinAt I I' f s x ↔ ContinuousWithinAt f s x ∧ DifferentiableWithinAt 𝕜 (writtenInExtChartAt I I' x f) ((extChartAt I x).target ∩ (extChartAt I x).symm ⁻¹' s) ((extChartAt I x) x)
𝕜 : Type u_1 inst✝¹⁰ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedSpace 𝕜 E H : Type u_3 inst✝⁷ : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝⁶ : TopologicalSpace M inst✝⁵ : ChartedSpace H M E' : Type u_5 inst✝⁴ : NormedAddCommGroup E' inst✝³ : NormedSpace 𝕜 E' H' : Type u_6 inst✝² : TopologicalSpace H' I' : ModelWithCorners 𝕜 E' H' M' : Type u_7 inst✝¹ : TopologicalSpace M' inst✝ : ChartedSpace H' M' f : M → M' s : Set M x : M f' : E →L[𝕜] E' ⊢ HasFDerivWithinAt (writtenInExtChartAt I I' x f) f' (↑(extChartAt I x).symm ⁻¹' s ∩ range ↑I) (↑(extChartAt I x) x) ↔ HasFDerivWithinAt (writtenInExtChartAt I I' x f) f' ((extChartAt I x).target ∩ ↑(extChartAt I x).symm ⁻¹' s) (↑(extChartAt I x) x)
rw [inter_comm]
𝕜 : Type u_1 inst✝¹⁰ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedSpace 𝕜 E H : Type u_3 inst✝⁷ : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝⁶ : TopologicalSpace M inst✝⁵ : ChartedSpace H M E' : Type u_5 inst✝⁴ : NormedAddCommGroup E' inst✝³ : NormedSpace 𝕜 E' H' : Type u_6 inst✝² : TopologicalSpace H' I' : ModelWithCorners 𝕜 E' H' M' : Type u_7 inst✝¹ : TopologicalSpace M' inst✝ : ChartedSpace H' M' f : M → M' s : Set M x : M f' : E →L[𝕜] E' ⊢ HasFDerivWithinAt (writtenInExtChartAt I I' x f) f' (range ↑I ∩ ↑(extChartAt I x).symm ⁻¹' s) (↑(extChartAt I x) x) ↔ HasFDerivWithinAt (writtenInExtChartAt I I' x f) f' ((extChartAt I x).target ∩ ↑(extChartAt I x).symm ⁻¹' s) (↑(extChartAt I x) x)
a64a17f87a4a2dee
Asymptotics.isBigO_mul_iff_isBigO_div
Mathlib/Analysis/Asymptotics/Lemmas.lean
lemma isBigO_mul_iff_isBigO_div {f g h : α → 𝕜} (hf : ∀ᶠ x in l, f x ≠ 0) : (fun x ↦ f x * g x) =O[l] h ↔ g =O[l] (fun x ↦ h x / f x)
case refine_2 α : Type u_1 𝕜 : Type u_15 inst✝ : NormedDivisionRing 𝕜 l : Filter α f g h : α → 𝕜 hf : ∀ᶠ (x : α) in l, f x ≠ 0 x✝ : ∃ c > 0, ∀ᶠ (x : α) in l, ‖g x‖ ≤ c * ‖h x / f x‖ c : ℝ hc : c > 0 H : ∀ᶠ (x : α) in l, ‖g x‖ ≤ c * ‖h x / f x‖ x : α hx : f x ≠ 0 ⊢ ‖g x‖ ≤ c * ‖h x / f x‖ ↔ ‖f x * g x‖ ≤ c * ‖h x‖
rw [norm_mul, norm_div, ← mul_div_assoc, le_div_iff₀' (norm_pos_iff.mpr hx)]
no goals
219d5b36b9b4d2b9
MeasureTheory.integral_condExpL2_eq
Mathlib/MeasureTheory/Function/ConditionalExpectation/CondexpL2.lean
theorem integral_condExpL2_eq (hm : m ≤ m0) (f : Lp E' 2 μ) (hs : MeasurableSet[m] s) (hμs : μ s ≠ ∞) : ∫ x in s, (condExpL2 E' 𝕜 hm f : α → E') x ∂μ = ∫ x in s, f x ∂μ
α : Type u_1 E' : Type u_3 𝕜 : Type u_7 inst✝⁴ : RCLike 𝕜 inst✝³ : NormedAddCommGroup E' inst✝² : InnerProductSpace 𝕜 E' inst✝¹ : CompleteSpace E' inst✝ : NormedSpace ℝ E' m m0 : MeasurableSpace α μ : Measure α s : Set α hm : m ≤ m0 f : ↥(Lp E' 2 μ) hs : MeasurableSet s hμs : μ s ≠ ⊤ ⊢ ∫ (x : α) in s, ↑↑↑((condExpL2 E' 𝕜 hm) f) x ∂μ = ∫ (x : α) in s, ↑↑f x ∂μ
rw [← sub_eq_zero, ← integral_sub' (integrableOn_Lp_of_measure_ne_top _ fact_one_le_two_ennreal.elim hμs) (integrableOn_Lp_of_measure_ne_top _ fact_one_le_two_ennreal.elim hμs)]
α : Type u_1 E' : Type u_3 𝕜 : Type u_7 inst✝⁴ : RCLike 𝕜 inst✝³ : NormedAddCommGroup E' inst✝² : InnerProductSpace 𝕜 E' inst✝¹ : CompleteSpace E' inst✝ : NormedSpace ℝ E' m m0 : MeasurableSpace α μ : Measure α s : Set α hm : m ≤ m0 f : ↥(Lp E' 2 μ) hs : MeasurableSet s hμs : μ s ≠ ⊤ ⊢ ∫ (a : α) in s, (↑↑↑((condExpL2 E' 𝕜 hm) f) - ↑↑f) a ∂μ = 0
f34acd4f2cd16da9
Basis.SmithNormalForm.toAddSubgroup_index_eq_pow_mul_prod
Mathlib/LinearAlgebra/FreeModule/Int.lean
/-- Given a submodule `N` in Smith normal form of a free `R`-module, its index as an additive subgroup is an appropriate power of the cardinality of `R` multiplied by the product of the indexes of the ideals generated by each basis vector. -/ lemma toAddSubgroup_index_eq_pow_mul_prod [Module R M] {N : Submodule R M} (snf : Basis.SmithNormalForm N ι n) : N.toAddSubgroup.index = Nat.card R ^ (Fintype.card ι - n) * ∏ i : Fin n, (Ideal.span {snf.a i}).toAddSubgroup.index
case h.intro ι : Type u_1 R : Type u_2 M : Type u_3 n : ℕ inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Fintype ι inst✝ : Module R M N : Submodule R M bM : Basis ι R M bN : Basis (Fin n) R ↥N f : Fin n ↪ ι a : Fin n → R snf : ∀ (i : Fin n), ↑(bN i) = a i • bM (f i) N' : Submodule R (ι → R) := Submodule.map bM.equivFun N hN'✝ : N' = Submodule.map bM.equivFun N bN' : Basis (Fin n) R ↥N' := bN.map (bM.equivFun.submoduleMap N) snf' : ∀ (i : Fin n), ↑(bN' i) = Pi.single (f i) (a i) hNN' : N.toAddSubgroup.index = N'.toAddSubgroup.index hN' : N'.toAddSubgroup = AddSubgroup.pi Set.univ fun i => Submodule.toAddSubgroup (Ideal.span {if h : ∃ j, f j = i then a h.choose else 0}) f' : Fin n → { x // x ∈ Finset.filter (fun x => ∃ j, f j = x) Finset.univ } := fun i => ⟨f i, ⋯⟩ hf' : Function.Injective f' f'' : Fin n ↪ { x // x ∈ Finset.filter (fun x => ∃ j, f j = x) Finset.univ } := { toFun := f', inj' := hf' } x : { x // x ∈ Finset.filter (fun x => ∃ j, f j = x) Finset.univ } i : Fin n hi : f i = ↑x ⊢ ∃ a, f'' a = x
refine ⟨i, ?_⟩
case h.intro ι : Type u_1 R : Type u_2 M : Type u_3 n : ℕ inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Fintype ι inst✝ : Module R M N : Submodule R M bM : Basis ι R M bN : Basis (Fin n) R ↥N f : Fin n ↪ ι a : Fin n → R snf : ∀ (i : Fin n), ↑(bN i) = a i • bM (f i) N' : Submodule R (ι → R) := Submodule.map bM.equivFun N hN'✝ : N' = Submodule.map bM.equivFun N bN' : Basis (Fin n) R ↥N' := bN.map (bM.equivFun.submoduleMap N) snf' : ∀ (i : Fin n), ↑(bN' i) = Pi.single (f i) (a i) hNN' : N.toAddSubgroup.index = N'.toAddSubgroup.index hN' : N'.toAddSubgroup = AddSubgroup.pi Set.univ fun i => Submodule.toAddSubgroup (Ideal.span {if h : ∃ j, f j = i then a h.choose else 0}) f' : Fin n → { x // x ∈ Finset.filter (fun x => ∃ j, f j = x) Finset.univ } := fun i => ⟨f i, ⋯⟩ hf' : Function.Injective f' f'' : Fin n ↪ { x // x ∈ Finset.filter (fun x => ∃ j, f j = x) Finset.univ } := { toFun := f', inj' := hf' } x : { x // x ∈ Finset.filter (fun x => ∃ j, f j = x) Finset.univ } i : Fin n hi : f i = ↑x ⊢ f'' i = x
3d7a9cb7455a5c0f
RelEmbedding.wellFounded_iff_no_descending_seq
Mathlib/Order/OrderIsoNat.lean
theorem wellFounded_iff_no_descending_seq : WellFounded r ↔ IsEmpty (((· > ·) : ℕ → ℕ → Prop) ↪r r)
α : Type u_1 r : α → α → Prop inst✝ : IsStrictOrder α r ⊢ WellFounded r ↔ IsEmpty ((fun x1 x2 => x1 > x2) ↪r r)
constructor
case mp α : Type u_1 r : α → α → Prop inst✝ : IsStrictOrder α r ⊢ WellFounded r → IsEmpty ((fun x1 x2 => x1 > x2) ↪r r) case mpr α : Type u_1 r : α → α → Prop inst✝ : IsStrictOrder α r ⊢ IsEmpty ((fun x1 x2 => x1 > x2) ↪r r) → WellFounded r
a6580d144ed4d55c
Finsupp.toMultiset_inf
Mathlib/Data/Finsupp/Multiset.lean
theorem toMultiset_inf [DecidableEq α] (f g : α →₀ ℕ) : toMultiset (f ⊓ g) = toMultiset f ∩ toMultiset g
case a α : Type u_1 inst✝ : DecidableEq α f g : α →₀ ℕ a✝ : α ⊢ Multiset.count a✝ (toMultiset (f ⊓ g)) = Multiset.count a✝ (toMultiset f ∩ toMultiset g)
simp_rw [Multiset.count_inter, Finsupp.count_toMultiset, Finsupp.inf_apply]
no goals
8dc92bc5d42502cf
compl_beattySeq'
Mathlib/NumberTheory/Rayleigh.lean
theorem compl_beattySeq' {r s : ℝ} (hrs : r.IsConjExponent s) : {beattySeq' r k | k}ᶜ = {beattySeq s k | k}
r s : ℝ hrs : r.IsConjExponent s ⊢ {x | ∃ k, beattySeq' r k = x}ᶜ = {x | ∃ k, beattySeq s k = x}
rw [← compl_beattySeq hrs.symm, compl_compl]
no goals
9d55751ae3eab88e
Real.cos_one_le
Mathlib/Data/Complex/Trigonometric.lean
theorem cos_one_le : cos 1 ≤ 2 / 3 := calc cos 1 ≤ |(1 : ℝ)| ^ 4 * (5 / 96) + (1 - 1 ^ 2 / 2) := sub_le_iff_le_add.1 (abs_sub_le_iff.1 (cos_bound (by simp))).1 _ ≤ 2 / 3
⊢ |1| ≤ 1
simp
no goals
48c3779b08bee2a9
CategoryTheory.Equalizer.FirstObj.ext
Mathlib/CategoryTheory/Sites/EqualizerSheafCondition.lean
@[ext] lemma FirstObj.ext (z₁ z₂ : FirstObj P R) (h : ∀ (Y : C) (f : Y ⟶ X) (hf : R f), (Pi.π _ ⟨Y, f, hf⟩ : FirstObj P R ⟶ _) z₁ = (Pi.π _ ⟨Y, f, hf⟩ : FirstObj P R ⟶ _) z₂) : z₁ = z₂
case w.mk.mk.mk C : Type u inst✝ : Category.{v, u} C P : Cᵒᵖ ⥤ Type (max v u) X : C R : Presieve X z₁ z₂ : FirstObj P R h : ∀ (Y : C) (f : Y ⟶ X) (hf : R f), Pi.π (fun f => P.obj (op f.fst)) ⟨Y, ⟨f, hf⟩⟩ z₁ = Pi.π (fun f => P.obj (op f.fst)) ⟨Y, ⟨f, hf⟩⟩ z₂ Y : C f : Y ⟶ X hf : R f ⊢ limit.π (Discrete.functor fun f => P.obj (op f.fst)) { as := ⟨Y, ⟨f, hf⟩⟩ } z₁ = limit.π (Discrete.functor fun f => P.obj (op f.fst)) { as := ⟨Y, ⟨f, hf⟩⟩ } z₂
exact h Y f hf
no goals
8938781a772e1fb2
Finset.filter_eq
Mathlib/Data/Finset/Basic.lean
theorem filter_eq [DecidableEq β] (s : Finset β) (b : β) : s.filter (Eq b) = ite (b ∈ s) {b} ∅
β : Type u_2 inst✝ : DecidableEq β s : Finset β b : β ⊢ filter (Eq b) s = if b ∈ s then {b} else ∅
split_ifs with h
case pos β : Type u_2 inst✝ : DecidableEq β s : Finset β b : β h : b ∈ s ⊢ filter (Eq b) s = {b} case neg β : Type u_2 inst✝ : DecidableEq β s : Finset β b : β h : b ∉ s ⊢ filter (Eq b) s = ∅
9fc7f62c5981b89a
Fintype.existsUnique_iff_card_one
Mathlib/Data/Fintype/Card.lean
theorem existsUnique_iff_card_one {α} [Fintype α] (p : α → Prop) [DecidablePred p] : (∃! a : α, p a) ↔ #{x | p x} = 1
α : Type u_4 inst✝¹ : Fintype α p : α → Prop inst✝ : DecidablePred p x : α ⊢ ((fun a => p a) x ∧ ∀ (y : α), (fun a => p a) y → y = x) ↔ filter (fun x => p x) univ = {x}
simp only [forall_true_left, Subset.antisymm_iff, subset_singleton_iff', singleton_subset_iff, true_and, and_comm, mem_univ, mem_filter]
no goals
4e1554b432de7ff6
two_nsmul_lie_lmul_lmul_add_add_eq_zero
Mathlib/Algebra/Jordan/Basic.lean
theorem two_nsmul_lie_lmul_lmul_add_add_eq_zero (a b c : A) : 2 • (⁅L a, L (b * c)⁆ + ⁅L b, L (c * a)⁆ + ⁅L c, L (a * b)⁆) = 0
A : Type u_1 inst✝¹ : NonUnitalNonAssocCommRing A inst✝ : IsCommJordan A a b c : A ⊢ 2 • (⁅L a, L (b * c)⁆ + ⁅L b, L (c * a)⁆ + ⁅L c, L (a * b)⁆) = 0
symm
A : Type u_1 inst✝¹ : NonUnitalNonAssocCommRing A inst✝ : IsCommJordan A a b c : A ⊢ 0 = 2 • (⁅L a, L (b * c)⁆ + ⁅L b, L (c * a)⁆ + ⁅L c, L (a * b)⁆)
fbf41adf7c29b267
Complex.norm_cpow_of_imp
Mathlib/Analysis/SpecialFunctions/Pow/Real.lean
theorem norm_cpow_of_imp {z w : ℂ} (h : z = 0 → w.re = 0 → w = 0) : ‖z ^ w‖ = ‖z‖ ^ w.re / Real.exp (arg z * im w)
case inr.inr w : ℂ h : 0 = 0 → w.re = 0 → w = 0 hw : w.re ≠ 0 ⊢ ‖0 ^ w‖ = 0 ^ w.re / rexp (arg 0 * w.im)
rw [Real.zero_rpow hw, zero_div, zero_cpow, norm_zero]
case inr.inr w : ℂ h : 0 = 0 → w.re = 0 → w = 0 hw : w.re ≠ 0 ⊢ w ≠ 0
f0a8ca76acd54989
accPt_iff_frequently
Mathlib/Topology/Basic.lean
theorem accPt_iff_frequently (x : X) (C : Set X) : AccPt x (𝓟 C) ↔ ∃ᶠ y in 𝓝 x, y ≠ x ∧ y ∈ C
X : Type u inst✝ : TopologicalSpace X x : X C : Set X ⊢ AccPt x (𝓟 C) ↔ ∃ᶠ (y : X) in 𝓝 x, y ≠ x ∧ y ∈ C
simp [acc_principal_iff_cluster, clusterPt_principal_iff_frequently, and_comm]
no goals
0d9cb88735e1fe10
VitaliFamily.ae_tendsto_rnDeriv_of_absolutelyContinuous
Mathlib/MeasureTheory/Covering/Differentiation.lean
theorem ae_tendsto_rnDeriv_of_absolutelyContinuous : ∀ᵐ x ∂μ, Tendsto (fun a => ρ a / μ a) (v.filterAt x) (𝓝 (ρ.rnDeriv μ x))
α : Type u_1 inst✝⁴ : PseudoMetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ A : (μ.withDensity (v.limRatioMeas hρ)).rnDeriv μ =ᶠ[ae μ] v.limRatioMeas hρ ⊢ ∀ᵐ (x : α) ∂μ, Tendsto (fun a => ρ a / μ a) (v.filterAt x) (𝓝 (ρ.rnDeriv μ x))
rw [v.withDensity_limRatioMeas_eq hρ] at A
α : Type u_1 inst✝⁴ : PseudoMetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ A : ρ.rnDeriv μ =ᶠ[ae μ] v.limRatioMeas hρ ⊢ ∀ᵐ (x : α) ∂μ, Tendsto (fun a => ρ a / μ a) (v.filterAt x) (𝓝 (ρ.rnDeriv μ x))
e1b9b24b7141c8ab
ZFSet.sUnion_lem
Mathlib/SetTheory/ZFC/Basic.lean
theorem sUnion_lem {α β : Type u} (A : α → PSet) (B : β → PSet) (αβ : ∀ a, ∃ b, Equiv (A a) (B b)) : ∀ a, ∃ b, Equiv ((sUnion ⟨α, A⟩).Func a) ((sUnion ⟨β, B⟩).Func b) | ⟨a, c⟩ => by let ⟨b, hb⟩ := αβ a induction' ea : A a with γ Γ induction' eb : B b with δ Δ rw [ea, eb] at hb obtain ⟨γδ, δγ⟩ := hb let c : (A a).Type := c let ⟨d, hd⟩ := γδ (by rwa [ea] at c) use ⟨b, Eq.ndrec d (Eq.symm eb)⟩ change PSet.Equiv ((A a).Func c) ((B b).Func (Eq.ndrec d eb.symm)) match A a, B b, ea, eb, c, d, hd with | _, _, rfl, rfl, _, _, hd => exact hd
case mk.mk.intro α β : Type u A : α → PSet.{u} B : β → PSet.{u} αβ : ∀ (a : α), ∃ b, (A a).Equiv (B b) a : (PSet.mk α A).Type c : ((PSet.mk α A).Func a).Type b : β γ : Type u Γ : γ → PSet.{u} A_ih✝¹ : ∀ (a_1 : γ), A a = Γ a_1 → ∃ b, ((⋃₀ PSet.mk α A).Func ⟨a, c⟩).Equiv ((⋃₀ PSet.mk β B).Func b) ea : A a = PSet.mk γ Γ δ : Type u Δ : δ → PSet.{u} A_ih✝ : ∀ (a_1 : δ), B b = Δ a_1 → ∃ b, ((⋃₀ PSet.mk α A).Func ⟨a, c⟩).Equiv ((⋃₀ PSet.mk β B).Func b) eb : B b = PSet.mk δ Δ γδ : ∀ (a : γ), ∃ b, (Γ a).Equiv (Δ b) δγ : ∀ (b : δ), ∃ a, (Γ a).Equiv (Δ b) ⊢ ∃ b, ((⋃₀ PSet.mk α A).Func ⟨a, c⟩).Equiv ((⋃₀ PSet.mk β B).Func b)
let c : (A a).Type := c
case mk.mk.intro α β : Type u A : α → PSet.{u} B : β → PSet.{u} αβ : ∀ (a : α), ∃ b, (A a).Equiv (B b) a : (PSet.mk α A).Type c✝ : ((PSet.mk α A).Func a).Type b : β γ : Type u Γ : γ → PSet.{u} A_ih✝¹ : ∀ (a_1 : γ), A a = Γ a_1 → ∃ b, ((⋃₀ PSet.mk α A).Func ⟨a, c✝⟩).Equiv ((⋃₀ PSet.mk β B).Func b) ea : A a = PSet.mk γ Γ δ : Type u Δ : δ → PSet.{u} A_ih✝ : ∀ (a_1 : δ), B b = Δ a_1 → ∃ b, ((⋃₀ PSet.mk α A).Func ⟨a, c✝⟩).Equiv ((⋃₀ PSet.mk β B).Func b) eb : B b = PSet.mk δ Δ γδ : ∀ (a : γ), ∃ b, (Γ a).Equiv (Δ b) δγ : ∀ (b : δ), ∃ a, (Γ a).Equiv (Δ b) c : (A a).Type := c✝ ⊢ ∃ b, ((⋃₀ PSet.mk α A).Func ⟨a, c✝⟩).Equiv ((⋃₀ PSet.mk β B).Func b)
45858e0f18942367
CategoryTheory.ShortComplex.exact_iff_epi_imageToKernel
Mathlib/CategoryTheory/Abelian/Exact.lean
theorem exact_iff_epi_imageToKernel : S.Exact ↔ Epi (imageToKernel S.f S.g S.zero)
C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Abelian C S : ShortComplex C ⊢ S.Exact ↔ Epi (imageToKernel S.f S.g ⋯)
rw [S.exact_iff_epi_imageToKernel']
C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Abelian C S : ShortComplex C ⊢ Epi (imageToKernel' S.f S.g ⋯) ↔ Epi (imageToKernel S.f S.g ⋯)
ea672dc3f1e3da8c
SemiNormedGrp.explicitCokernelDesc_unique
Mathlib/Analysis/Normed/Group/SemiNormedGrp/Kernels.lean
theorem explicitCokernelDesc_unique {X Y Z : SemiNormedGrp.{u}} {f : X ⟶ Y} {g : Y ⟶ Z} (w : f ≫ g = 0) (e : explicitCokernel f ⟶ Z) (he : explicitCokernelπ f ≫ e = g) : e = explicitCokernelDesc w
X Y Z : SemiNormedGrp f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 e : explicitCokernel f ⟶ Z he : explicitCokernelπ f ≫ e = g ⊢ e = explicitCokernelDesc w
apply (isColimitCokernelCocone f).uniq (Cofork.ofπ g (by simp [w]))
case x X Y Z : SemiNormedGrp f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 e : explicitCokernel f ⟶ Z he : explicitCokernelπ f ≫ e = g ⊢ ∀ (j : WalkingParallelPair), (cokernelCocone f).ι.app j ≫ e = (Cofork.ofπ g ⋯).ι.app j
d83ba6fbc8e92dee
Polynomial.exists_approx_polynomial_aux
Mathlib/NumberTheory/ClassNumber/AdmissibleCardPowDegree.lean
theorem exists_approx_polynomial_aux [Ring Fq] {d : ℕ} {m : ℕ} (hm : Fintype.card Fq ^ d ≤ m) (b : Fq[X]) (A : Fin m.succ → Fq[X]) (hA : ∀ i, degree (A i) < degree b) : ∃ i₀ i₁, i₀ ≠ i₁ ∧ degree (A i₁ - A i₀) < ↑(natDegree b - d)
case right Fq : Type u_1 inst✝¹ : Fintype Fq inst✝ : Ring Fq d m : ℕ hm : Fintype.card Fq ^ d ≤ m b : Fq[X] A : Fin m.succ → Fq[X] hA : ∀ (i : Fin m.succ), (A i).degree < b.degree hb : b ≠ 0 f : Fin m.succ → Fin d → Fq := fun i j => (A i).coeff (b.natDegree - ↑j.succ) this : Fintype.card (Fin d → Fq) < Fintype.card (Fin m.succ) i₀ i₁ : Fin m.succ i_ne : i₀ ≠ i₁ i_eq : f i₀ = f i₁ ⊢ (A i₁ - A i₀).degree < ↑(b.natDegree - d)
refine (degree_lt_iff_coeff_zero _ _).mpr fun j hj => ?_
case right Fq : Type u_1 inst✝¹ : Fintype Fq inst✝ : Ring Fq d m : ℕ hm : Fintype.card Fq ^ d ≤ m b : Fq[X] A : Fin m.succ → Fq[X] hA : ∀ (i : Fin m.succ), (A i).degree < b.degree hb : b ≠ 0 f : Fin m.succ → Fin d → Fq := fun i j => (A i).coeff (b.natDegree - ↑j.succ) this : Fintype.card (Fin d → Fq) < Fintype.card (Fin m.succ) i₀ i₁ : Fin m.succ i_ne : i₀ ≠ i₁ i_eq : f i₀ = f i₁ j : ℕ hj : b.natDegree - d ≤ j ⊢ (A i₁ - A i₀).coeff j = 0
98b1c3c064e383ea
Valued.continuous_extension
Mathlib/Topology/Algebra/Valued/ValuedField.lean
theorem continuous_extension : Continuous (Valued.extension : hat K → Γ₀)
case a K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ⇑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑x ∈ V → v x = 1 V' : Set (hat K) V'_in : V' ∈ 𝓝 1 zeroV' : 0 ∉ V' hV' : ∀ x ∈ V', ∀ y ∈ V', x * y⁻¹ ∈ V nhds_right : (fun x => x * x₀) '' V' ∈ 𝓝 x₀ z₀ : K y₀ : hat K y₀_in : y₀ ∈ V' hz₀ : ↑z₀ = y₀ * x₀ z₀_ne : z₀ ≠ 0 vz₀_ne : v z₀ ≠ 0 a : K y : hat K y_in : y ∈ V' ha : ↑a = (fun x => x * x₀) y this : ↑z₀⁻¹ = (↑z₀)⁻¹ ⊢ y * y₀⁻¹ ∈ V
solve_by_elim
no goals
af62a79ad478b7b6
RingHom.OfLocalizationSpan.ofIsLocalization
Mathlib/RingTheory/LocalProperties/Basic.lean
lemma RingHom.OfLocalizationSpan.ofIsLocalization (hP : RingHom.OfLocalizationSpan P) (hPi : RingHom.RespectsIso P) {R S : Type u} [CommRing R] [CommRing S] (f : R →+* S) (s : Set R) (hs : Ideal.span s = ⊤) (hT : ∀ r : s, ∃ (Rᵣ Sᵣ : Type u) (_ : CommRing Rᵣ) (_ : CommRing Sᵣ) (_ : Algebra R Rᵣ) (_ : Algebra S Sᵣ) (_ : IsLocalization.Away r.val Rᵣ) (_ : IsLocalization.Away (f r.val) Sᵣ) (fᵣ : Rᵣ →+* Sᵣ) (_ : fᵣ.comp (algebraMap R Rᵣ) = (algebraMap S Sᵣ).comp f), P fᵣ) : P f
case h.a P : {R S : Type u} → [inst : CommRing R] → [inst_1 : CommRing S] → (R →+* S) → Prop hP : OfLocalizationSpan fun {R S} [CommRing R] [CommRing S] => P hPi : RespectsIso fun {R S} [CommRing R] [CommRing S] => P R S : Type u inst✝¹ : CommRing R inst✝ : CommRing S f : R →+* S s : Set R hs : Ideal.span s = ⊤ hT : ∀ (r : ↑s), ∃ Rᵣ Sᵣ x x_1 x_2 x_3, ∃ (_ : IsLocalization.Away (↑r) Rᵣ) (_ : IsLocalization.Away (f ↑r) Sᵣ), ∃ fᵣ, ∃ (_ : fᵣ.comp (algebraMap R Rᵣ) = (algebraMap S Sᵣ).comp f), P fᵣ r : ↑s Rᵣ Sᵣ : Type u w✝⁵ : CommRing Rᵣ w✝⁴ : CommRing Sᵣ w✝³ : Algebra R Rᵣ w✝² : Algebra S Sᵣ w✝¹ : IsLocalization.Away (↑r) Rᵣ w✝ : IsLocalization.Away (f ↑r) Sᵣ fᵣ : Rᵣ →+* Sᵣ hfᵣ : fᵣ.comp (algebraMap R Rᵣ) = (algebraMap S Sᵣ).comp f hf : P fᵣ e₁ : Localization (Submonoid.powers ↑r) ≃+* Rᵣ := (Localization.algEquiv (Submonoid.powers ↑r) Rᵣ).toRingEquiv e₂ : Sᵣ ≃+* Localization (Submonoid.powers (f ↑r)) := (IsLocalization.algEquiv (Submonoid.powers (f ↑r)) (Localization (Submonoid.powers (f ↑r))) Sᵣ).symm.toRingEquiv x : R this : fᵣ ((algebraMap R Rᵣ) x) = (algebraMap S Sᵣ) (f x) ⊢ ((Localization.awayMap f ↑r).comp (algebraMap R (Localization.Away ↑r))) x = (((e₂.toRingHom.comp fᵣ).comp e₁.toRingHom).comp (algebraMap R (Localization.Away ↑r))) x
simp [-AlgEquiv.symm_toRingEquiv, e₂, e₁, Localization.awayMap, IsLocalization.Away.map, this]
no goals
57208d6eb9a6680e
Stream'.Seq.ofStream_cons
Mathlib/Data/Seq/Seq.lean
theorem ofStream_cons (a : α) (s) : ofStream (a::s) = cons a (ofStream s)
case a α : Type u a : α s : Stream' α ⊢ ↑↑(a :: s) = ↑(cons a ↑s)
simp only [ofStream, cons]
case a α : Type u a : α s : Stream' α ⊢ Stream'.map some (a :: s) = some a :: Stream'.map some s
83329d52b9e3fbd1
εNFA.mem_evalFrom_iff_exists_path
Mathlib/Computability/EpsilonNFA.lean
theorem mem_evalFrom_iff_exists_path {s₁ s₂ : σ} {x : List α} : s₂ ∈ M.evalFrom {s₁} x ↔ ∃ x', x'.reduceOption = x ∧ M.IsPath s₁ s₂ x'
case h α : Type u σ : Type v M : εNFA α σ s₁ : σ x : List α a : α ih : ∀ {s₂ : σ}, s₂ ∈ M.evalFrom {s₁} x ↔ ∃ x', x'.reduceOption = x ∧ M.IsPath s₁ s₂ x' s₂ : σ x' : List (Option α) left✝¹ : x'.reduceOption = x n : ℕ t : σ left✝ : M.IsPath s₁ t x' u : σ a✝¹ : u ∈ M.step t (some a) a✝ : M.IsPath u s₂ (List.replicate n none) ⊢ (∃ x', x'.reduceOption = x ∧ M.IsPath s₁ t x') ∧ ∃ t_1 ∈ M.step t (some a), s₂ ∈ M.εClosure {t_1}
simp_rw [mem_εClosure_iff_exists_path]
case h α : Type u σ : Type v M : εNFA α σ s₁ : σ x : List α a : α ih : ∀ {s₂ : σ}, s₂ ∈ M.evalFrom {s₁} x ↔ ∃ x', x'.reduceOption = x ∧ M.IsPath s₁ s₂ x' s₂ : σ x' : List (Option α) left✝¹ : x'.reduceOption = x n : ℕ t : σ left✝ : M.IsPath s₁ t x' u : σ a✝¹ : u ∈ M.step t (some a) a✝ : M.IsPath u s₂ (List.replicate n none) ⊢ (∃ x', x'.reduceOption = x ∧ M.IsPath s₁ t x') ∧ ∃ t_1 ∈ M.step t (some a), ∃ n, M.IsPath t_1 s₂ (List.replicate n none)
0cc554a961b550e6
NNReal.hasSum_lt
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
theorem hasSum_lt {f g : α → ℝ≥0} {sf sg : ℝ≥0} {i : α} (h : ∀ a : α, f a ≤ g a) (hi : f i < g i) (hf : HasSum f sf) (hg : HasSum g sg) : sf < sg
α : Type u_1 f g : α → ℝ≥0 sf sg : ℝ≥0 i : α h : ∀ (a : α), f a ≤ g a hi : f i < g i hf : HasSum f sf hg : HasSum g sg ⊢ sf < sg
have A : ∀ a : α, (f a : ℝ) ≤ g a := fun a => NNReal.coe_le_coe.2 (h a)
α : Type u_1 f g : α → ℝ≥0 sf sg : ℝ≥0 i : α h : ∀ (a : α), f a ≤ g a hi : f i < g i hf : HasSum f sf hg : HasSum g sg A : ∀ (a : α), ↑(f a) ≤ ↑(g a) ⊢ sf < sg
20fbd3087b2d07f5
cfc_unitary_iff
Mathlib/Analysis/CStarAlgebra/ContinuousFunctionalCalculus/Unitary.lean
lemma cfc_unitary_iff (f : R → R) (a : A) (ha : p a
R : Type u_1 A : Type u_2 p : A → Prop inst✝⁹ : CommRing R inst✝⁸ : StarRing R inst✝⁷ : MetricSpace R inst✝⁶ : IsTopologicalRing R inst✝⁵ : ContinuousStar R inst✝⁴ : TopologicalSpace A inst✝³ : Ring A inst✝² : StarRing A inst✝¹ : Algebra R A inst✝ : ContinuousFunctionalCalculus R p f : R → R a : A ha : autoParam (p a) _auto✝ hf : autoParam (ContinuousOn f (spectrum R a)) _auto✝ ⊢ Set.EqOn (fun x => star (f x) * f x) 1 (spectrum R a) ↔ ∀ x ∈ spectrum R a, star (f x) * f x = 1
exact Iff.rfl
no goals
15a1186830c6c735
iInf_nat_gt_zero_eq
Mathlib/Order/CompleteLattice.lean
theorem iInf_nat_gt_zero_eq (f : ℕ → α) : ⨅ i > 0, f i = ⨅ i, f (i + 1)
α : Type u_1 inst✝ : CompleteLattice α f : ℕ → α ⊢ ⨅ i, ⨅ (_ : i > 0), f i = ⨅ b ∈ {i | 0 < i}, f b
simp
no goals
92650371ae8e0867
Int.neg_inj
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Int/Lemmas.lean
theorem neg_inj {a b : Int} : -a = -b ↔ a = b := ⟨fun h => by rw [← Int.neg_neg a, ← Int.neg_neg b, h], congrArg _⟩
a b : Int h : -a = -b ⊢ a = b
rw [← Int.neg_neg a, ← Int.neg_neg b, h]
no goals
6b223a7d16cecaae
ProbabilityTheory.Kernel.measure_mutuallySingularSetSlice
Mathlib/Probability/Kernel/RadonNikodym.lean
lemma measure_mutuallySingularSetSlice (κ η : Kernel α γ) [IsFiniteKernel κ] [IsFiniteKernel η] (a : α) : η a (mutuallySingularSetSlice κ η a) = 0
α : Type u_1 γ : Type u_2 mα : MeasurableSpace α mγ : MeasurableSpace γ hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ κ η : Kernel α γ inst✝¹ : IsFiniteKernel κ inst✝ : IsFiniteKernel η a : α ⊢ ∀ᵐ (x : γ) ∂(κ + η) a, x ∈ {x | 1 ≤ κ.rnDerivAux (κ + η) a x} → ENNReal.ofReal (1 - κ.rnDerivAux (κ + η) a x) = 0 x
refine ae_of_all _ (fun x hx ↦ ?_)
α : Type u_1 γ : Type u_2 mα : MeasurableSpace α mγ : MeasurableSpace γ hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ κ η : Kernel α γ inst✝¹ : IsFiniteKernel κ inst✝ : IsFiniteKernel η a : α x : γ hx : x ∈ {x | 1 ≤ κ.rnDerivAux (κ + η) a x} ⊢ ENNReal.ofReal (1 - κ.rnDerivAux (κ + η) a x) = 0 x
638794919b061bb4
Fermat42.exists_pos_odd_minimal
Mathlib/NumberTheory/FLT/Four.lean
theorem exists_pos_odd_minimal {a b c : ℤ} (h : Fermat42 a b c) : ∃ a0 b0 c0, Minimal a0 b0 c0 ∧ a0 % 2 = 1 ∧ 0 < c0
a b c : ℤ h : Fermat42 a b c ⊢ ∃ a0 b0 c0, Minimal a0 b0 c0 ∧ a0 % 2 = 1 ∧ 0 < c0
obtain ⟨a0, b0, c0, hf, hc⟩ := exists_odd_minimal h
case intro.intro.intro.intro a b c : ℤ h : Fermat42 a b c a0 b0 c0 : ℤ hf : Minimal a0 b0 c0 hc : a0 % 2 = 1 ⊢ ∃ a0 b0 c0, Minimal a0 b0 c0 ∧ a0 % 2 = 1 ∧ 0 < c0
40b8a5ec6f6e5769
Nat.div_add_mod
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Nat/Div/Basic.lean
theorem div_add_mod (m n : Nat) : n * (m / n) + m % n = m
case isTrue m n : Nat h : 0 < n ∧ n ≤ m ⊢ n * ite (0 < n ∧ n ≤ m) ((m - n) / n + 1) 0 + ite (0 < n ∧ n ≤ m) ((m - n) % n) m = m
simp [h]
case isTrue m n : Nat h : 0 < n ∧ n ≤ m ⊢ n * ((m - n) / n + 1) + (m - n) % n = m
df24cb9cf4f4c4c8
EquicontinuousWithinAt.closure'
Mathlib/Topology/UniformSpace/Equicontinuity.lean
theorem EquicontinuousWithinAt.closure' {A : Set Y} {u : Y → X → α} {S : Set X} {x₀ : X} (hA : EquicontinuousWithinAt (u ∘ (↑) : A → X → α) S x₀) (hu₁ : Continuous (S.restrict ∘ u)) (hu₂ : Continuous (eval x₀ ∘ u)) : EquicontinuousWithinAt (u ∘ (↑) : closure A → X → α) S x₀
case h X : Type u_3 Y : Type u_5 α : Type u_6 tX : TopologicalSpace X tY : TopologicalSpace Y uα : UniformSpace α A : Set Y u : Y → X → α S : Set X x₀ : X hA : EquicontinuousWithinAt (u ∘ Subtype.val) S x₀ hu₁ : Continuous (S.restrict ∘ u) hu₂ : Continuous (eval x₀ ∘ u) U : Set (α × α) hU : U ∈ 𝓤 α V : Set (α × α) hV : V ∈ 𝓤 α hVclosed : IsClosed V hVU : V ⊆ U x : X hxS : x ∈ S hx : A ⊆ (fun f => (u f x₀, u f x)) ⁻¹' V ⊢ ∀ (x_1 : Y) (h : x_1 ∈ closure A), ((u ∘ Subtype.val) ⟨x_1, h⟩ x₀, (u ∘ Subtype.val) ⟨x_1, h⟩ x) ∈ U
refine (closure_minimal hx <| hVclosed.preimage <| hu₂.prod_mk ?_).trans (preimage_mono hVU)
case h X : Type u_3 Y : Type u_5 α : Type u_6 tX : TopologicalSpace X tY : TopologicalSpace Y uα : UniformSpace α A : Set Y u : Y → X → α S : Set X x₀ : X hA : EquicontinuousWithinAt (u ∘ Subtype.val) S x₀ hu₁ : Continuous (S.restrict ∘ u) hu₂ : Continuous (eval x₀ ∘ u) U : Set (α × α) hU : U ∈ 𝓤 α V : Set (α × α) hV : V ∈ 𝓤 α hVclosed : IsClosed V hVU : V ⊆ U x : X hxS : x ∈ S hx : A ⊆ (fun f => (u f x₀, u f x)) ⁻¹' V ⊢ Continuous fun f => u f x
361f94e89ea73217
Submodule.pow_induction_on_left'
Mathlib/Algebra/Algebra/Operations.lean
theorem pow_induction_on_left' {C : ∀ (n : ℕ) (x), x ∈ M ^ n → Prop} (algebraMap : ∀ r : R, C 0 (algebraMap _ _ r) (algebraMap_mem r)) (add : ∀ x y i hx hy, C i x hx → C i y hy → C i (x + y) (add_mem ‹_› ‹_›)) (mem_mul : ∀ m (hm : m ∈ M), ∀ (i x hx), C i x hx → C i.succ (m * x) ((pow_succ' M i).symm ▸ (mul_mem_mul hm hx))) {n : ℕ} {x : A} (hx : x ∈ M ^ n) : C n x hx
case succ R : Type u inst✝² : CommSemiring R A : Type v inst✝¹ : Semiring A inst✝ : Algebra R A M : Submodule R A C : (n : ℕ) → (x : A) → x ∈ M ^ n → Prop algebraMap : ∀ (r : R), C 0 ((_root_.algebraMap R A) r) ⋯ add : ∀ (x y : A) (i : ℕ) (hx : x ∈ M ^ i) (hy : y ∈ M ^ i), C i x hx → C i y hy → C i (x + y) ⋯ mem_mul : ∀ (m : A) (hm : m ∈ M) (i : ℕ) (x : A) (hx : x ∈ M ^ i), C i x hx → C i.succ (m * x) ⋯ n : ℕ n_ih : ∀ {x : A} (hx : x ∈ M ^ n), C n x hx x : A ⊢ ∀ (hx : x ∈ M ^ (n + 1)), C (n + 1) x hx
simp_rw [pow_succ']
case succ R : Type u inst✝² : CommSemiring R A : Type v inst✝¹ : Semiring A inst✝ : Algebra R A M : Submodule R A C : (n : ℕ) → (x : A) → x ∈ M ^ n → Prop algebraMap : ∀ (r : R), C 0 ((_root_.algebraMap R A) r) ⋯ add : ∀ (x y : A) (i : ℕ) (hx : x ∈ M ^ i) (hy : y ∈ M ^ i), C i x hx → C i y hy → C i (x + y) ⋯ mem_mul : ∀ (m : A) (hm : m ∈ M) (i : ℕ) (x : A) (hx : x ∈ M ^ i), C i x hx → C i.succ (m * x) ⋯ n : ℕ n_ih : ∀ {x : A} (hx : x ∈ M ^ n), C n x hx x : A ⊢ ∀ (hx : x ∈ M * M ^ n), C (n + 1) x ⋯
3b52ec55a98ce91f
totallyBounded_insert
Mathlib/Topology/UniformSpace/Cauchy.lean
@[simp] lemma totallyBounded_insert (a : α) {s : Set α} : TotallyBounded (insert a s) ↔ TotallyBounded s
α : Type u uniformSpace : UniformSpace α a : α s : Set α ⊢ TotallyBounded (insert a s) ↔ TotallyBounded s
simp_rw [← singleton_union, totallyBounded_union, totallyBounded_singleton, true_and]
no goals
bdc41a3331cf846e
Orientation.measure_orthonormalBasis
Mathlib/MeasureTheory/Measure/Haar/InnerProductSpace.lean
theorem Orientation.measure_orthonormalBasis (o : Orientation ℝ F (Fin n)) (b : OrthonormalBasis ι ℝ F) : o.volumeForm.measure (parallelepiped b) = 1
ι : Type u_1 F : Type u_3 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : InnerProductSpace ℝ F inst✝³ : MeasurableSpace F inst✝² : BorelSpace F inst✝¹ : Fintype ι inst✝ : FiniteDimensional ℝ F n : ℕ _i : Fact (finrank ℝ F = n) o : Orientation ℝ F (Fin n) b : OrthonormalBasis ι ℝ F ⊢ o.volumeForm.measure (parallelepiped ⇑b) = 1
have e : ι ≃ Fin n := by refine Fintype.equivFinOfCardEq ?_ rw [← _i.out, finrank_eq_card_basis b.toBasis]
ι : Type u_1 F : Type u_3 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : InnerProductSpace ℝ F inst✝³ : MeasurableSpace F inst✝² : BorelSpace F inst✝¹ : Fintype ι inst✝ : FiniteDimensional ℝ F n : ℕ _i : Fact (finrank ℝ F = n) o : Orientation ℝ F (Fin n) b : OrthonormalBasis ι ℝ F e : ι ≃ Fin n ⊢ o.volumeForm.measure (parallelepiped ⇑b) = 1
77b4661ed8572b43
CategoryTheory.Functor.IsStronglyCartesian.isIso_of_base_isIso
Mathlib/CategoryTheory/FiberedCategory/Cartesian.lean
/-- A strongly cartesian morphism lying over an isomorphism is an isomorphism. -/ lemma isIso_of_base_isIso (φ : a ⟶ b) [IsStronglyCartesian p f φ] [IsIso f] : IsIso φ
case map 𝒮 : Type u₁ 𝒳 : Type u₂ inst✝³ : Category.{v₁, u₁} 𝒮 inst✝² : Category.{v₂, u₂} 𝒳 p : 𝒳 ⥤ 𝒮 a b : 𝒳 φ : a ⟶ b inst✝¹ : p.IsStronglyCartesian (p.map φ) φ inst✝ : IsIso (p.map φ) φ' : b ⟶ a := map p (p.map φ) φ ⋯ (𝟙 b) ⊢ IsIso φ
use φ'
case h 𝒮 : Type u₁ 𝒳 : Type u₂ inst✝³ : Category.{v₁, u₁} 𝒮 inst✝² : Category.{v₂, u₂} 𝒳 p : 𝒳 ⥤ 𝒮 a b : 𝒳 φ : a ⟶ b inst✝¹ : p.IsStronglyCartesian (p.map φ) φ inst✝ : IsIso (p.map φ) φ' : b ⟶ a := map p (p.map φ) φ ⋯ (𝟙 b) ⊢ φ ≫ φ' = 𝟙 a ∧ φ' ≫ φ = 𝟙 b
13d70784d154b200
Batteries.HashMap.Imp.erase_size
Mathlib/.lake/packages/batteries/Batteries/Data/HashMap/WF.lean
theorem erase_size [BEq α] [Hashable α] {m : Imp α β} {k} (h : m.size = m.buckets.size) : (erase m k).size = (erase m k).buckets.size
α : Type u_1 β : Type u_2 inst✝¹ : BEq α inst✝ : Hashable α m : Imp α β k : α h : m.size = m.buckets.size c✝ : Bool H : AssocList.contains k m.buckets.val[(mkIdx ⋯ (hash k).toUSize).val.toNat] = true w✝¹ w✝ : List (AssocList α β) left✝ : w✝¹.length = (mkIdx ⋯ (hash k).toUSize).val.toNat ⊢ m.buckets.val[(mkIdx ⋯ (hash k).toUSize).val.toNat].toList.length = (List.eraseP (fun x => x.fst == k) m.buckets.val[(mkIdx ⋯ (hash k).toUSize).val.toNat].toList).length + 1
simp only [AssocList.contains_eq, List.any_eq_true] at H
α : Type u_1 β : Type u_2 inst✝¹ : BEq α inst✝ : Hashable α m : Imp α β k : α h : m.size = m.buckets.size c✝ : Bool w✝¹ w✝ : List (AssocList α β) left✝ : w✝¹.length = (mkIdx ⋯ (hash k).toUSize).val.toNat H : ∃ x, x ∈ m.buckets.val[(mkIdx ⋯ (hash k).toUSize).val.toNat].toList ∧ (x.fst == k) = true ⊢ m.buckets.val[(mkIdx ⋯ (hash k).toUSize).val.toNat].toList.length = (List.eraseP (fun x => x.fst == k) m.buckets.val[(mkIdx ⋯ (hash k).toUSize).val.toNat].toList).length + 1
d2f35150aae92845
BoxIntegral.IntegrationParams.MemBaseSet.filter
Mathlib/Analysis/BoxIntegral/Partition/Filter.lean
theorem MemBaseSet.filter (hπ : l.MemBaseSet I c r π) (p : Box ι → Prop) : l.MemBaseSet I c r (π.filter p)
case intro.intro.refine_1.h.mp ι : Type u_1 inst✝ : Fintype ι I : Box ι c : ℝ≥0 l : IntegrationParams π : TaggedPrepartition I r : (ι → ℝ) → ↑(Set.Ioi 0) hπ : l.MemBaseSet I c r π p : Box ι → Prop hD : l.bDistortion = true π₁ : Prepartition I hπ₁U : π₁.iUnion = ↑I \ π.iUnion hc : π₁.distortion ≤ c π₂ : TaggedPrepartition I := π.filter fun J => ¬p J this : Disjoint π₁.iUnion π₂.iUnion h : (π.filter p).iUnion ⊆ π.iUnion x : ι → ℝ ⊢ x ∈ ↑I \ π.iUnion ∪ π.iUnion \ (π.filter p).iUnion → x ∈ ↑I \ (π.filter p).iUnion
rintro (⟨hxI, hxπ⟩ | ⟨hxπ, hxp⟩)
case intro.intro.refine_1.h.mp.inl.intro ι : Type u_1 inst✝ : Fintype ι I : Box ι c : ℝ≥0 l : IntegrationParams π : TaggedPrepartition I r : (ι → ℝ) → ↑(Set.Ioi 0) hπ : l.MemBaseSet I c r π p : Box ι → Prop hD : l.bDistortion = true π₁ : Prepartition I hπ₁U : π₁.iUnion = ↑I \ π.iUnion hc : π₁.distortion ≤ c π₂ : TaggedPrepartition I := π.filter fun J => ¬p J this : Disjoint π₁.iUnion π₂.iUnion h : (π.filter p).iUnion ⊆ π.iUnion x : ι → ℝ hxI : x ∈ ↑I hxπ : x ∉ π.iUnion ⊢ x ∈ ↑I \ (π.filter p).iUnion case intro.intro.refine_1.h.mp.inr.intro ι : Type u_1 inst✝ : Fintype ι I : Box ι c : ℝ≥0 l : IntegrationParams π : TaggedPrepartition I r : (ι → ℝ) → ↑(Set.Ioi 0) hπ : l.MemBaseSet I c r π p : Box ι → Prop hD : l.bDistortion = true π₁ : Prepartition I hπ₁U : π₁.iUnion = ↑I \ π.iUnion hc : π₁.distortion ≤ c π₂ : TaggedPrepartition I := π.filter fun J => ¬p J this : Disjoint π₁.iUnion π₂.iUnion h : (π.filter p).iUnion ⊆ π.iUnion x : ι → ℝ hxπ : x ∈ π.iUnion hxp : x ∉ (π.filter p).iUnion ⊢ x ∈ ↑I \ (π.filter p).iUnion
0560a2437e9c3b72
List.Nat.nodup_antidiagonalTuple
Mathlib/Data/Fin/Tuple/NatAntidiagonal.lean
theorem nodup_antidiagonalTuple (k n : ℕ) : List.Nodup (antidiagonalTuple k n)
case succ.right.succ.refine_1 k : ℕ ih : ∀ (n : ℕ), (antidiagonalTuple k n).Nodup n : ℕ n_ih : Pairwise (Function.onFun Disjoint fun ni => map (fun x => Fin.cons ni.1 x) (antidiagonalTuple k ni.2)) (antidiagonal n) a : ℕ × ℕ ha : a ∈ map (Prod.map Nat.succ id) (antidiagonal n) x : Fin (k + 1) → ℕ hx₁ : x ∈ (fun ni => map (fun x => Fin.cons ni.1 x) (antidiagonalTuple k ni.2)) (0, n + 1) hx₂ : x ∈ (fun ni => map (fun x => Fin.cons ni.1 x) (antidiagonalTuple k ni.2)) a ⊢ False
rw [List.mem_map] at hx₁ hx₂ ha
case succ.right.succ.refine_1 k : ℕ ih : ∀ (n : ℕ), (antidiagonalTuple k n).Nodup n : ℕ n_ih : Pairwise (Function.onFun Disjoint fun ni => map (fun x => Fin.cons ni.1 x) (antidiagonalTuple k ni.2)) (antidiagonal n) a : ℕ × ℕ ha : ∃ a_1 ∈ antidiagonal n, Prod.map Nat.succ id a_1 = a x : Fin (k + 1) → ℕ hx₁ : ∃ a ∈ antidiagonalTuple k (0, n + 1).2, Fin.cons (0, n + 1).1 a = x hx₂ : ∃ a_1 ∈ antidiagonalTuple k a.2, Fin.cons a.1 a_1 = x ⊢ False
4c17a19ec5bf0ba2
Computation.terminates_parallel
Mathlib/Data/Seq/Parallel.lean
theorem terminates_parallel {S : WSeq (Computation α)} {c} (h : c ∈ S) [T : Terminates c] : Terminates (parallel S)
case zero.inr.inl α : Type u S✝ : WSeq (Computation α) c✝ : Computation α h✝ : c✝ ∈ S✝ T✝ : c✝.Terminates l : List (Computation α) S : Stream'.Seq (Option (Computation α)) c : Computation α T : c.Terminates a✝ : some (some c) = S.get? 0 H : S.destruct = some (some c, S.tail) a : α h : parallel.aux2 l = Sum.inl a C : corec parallel.aux1 (l, S) = pure a ⊢ (corec parallel.aux1 (l, S)).Terminates
rw [C]
case zero.inr.inl α : Type u S✝ : WSeq (Computation α) c✝ : Computation α h✝ : c✝ ∈ S✝ T✝ : c✝.Terminates l : List (Computation α) S : Stream'.Seq (Option (Computation α)) c : Computation α T : c.Terminates a✝ : some (some c) = S.get? 0 H : S.destruct = some (some c, S.tail) a : α h : parallel.aux2 l = Sum.inl a C : corec parallel.aux1 (l, S) = pure a ⊢ (pure a).Terminates
b95c6ab968566afe
List.chain'_of_mem_splitByLoop
Mathlib/Data/List/SplitBy.lean
theorem chain'_of_mem_splitByLoop {r : α → α → Bool} {l : List α} {a : α} {g : List α} (hga : ∀ b ∈ g.head?, r b a) (hg : g.Chain' fun y x ↦ r x y) (h : m ∈ splitBy.loop r l a g []) : m.Chain' fun x y ↦ r x y
case cons.h_2.inl α : Type u_1 r : α → α → Bool b : α l : List α a : α g : List α hga : ∀ (b : α), b ∈ g.head? → r b a = true hg : Chain' (fun y x => r x y = true) g x✝ : Bool heq✝ : r a b = false IH : ∀ {a_1 : α} {g_1 : List α}, (∀ (b : α), b ∈ g_1.head? → r b a_1 = true) → Chain' (fun y x => r x y = true) g_1 → g.reverse ++ [a] ∈ splitBy.loop r l a_1 g_1 [] → Chain' (fun x y => r x y = true) (g.reverse ++ [a]) ⊢ Chain' (fun y x => r x y = true) (g.reverse ++ [a]).reverse
rw [reverse_append, reverse_cons, reverse_nil, nil_append, reverse_reverse]
case cons.h_2.inl α : Type u_1 r : α → α → Bool b : α l : List α a : α g : List α hga : ∀ (b : α), b ∈ g.head? → r b a = true hg : Chain' (fun y x => r x y = true) g x✝ : Bool heq✝ : r a b = false IH : ∀ {a_1 : α} {g_1 : List α}, (∀ (b : α), b ∈ g_1.head? → r b a_1 = true) → Chain' (fun y x => r x y = true) g_1 → g.reverse ++ [a] ∈ splitBy.loop r l a_1 g_1 [] → Chain' (fun x y => r x y = true) (g.reverse ++ [a]) ⊢ Chain' (fun y x => r x y = true) ([a] ++ g)
f1b83979d934bdc8
norm_iteratedFDerivWithin_comp_le_aux
Mathlib/Analysis/Calculus/ContDiff/Bounds.lean
theorem norm_iteratedFDerivWithin_comp_le_aux {Fu Gu : Type u} [NormedAddCommGroup Fu] [NormedSpace 𝕜 Fu] [NormedAddCommGroup Gu] [NormedSpace 𝕜 Gu] {g : Fu → Gu} {f : E → Fu} {n : ℕ} {s : Set E} {t : Set Fu} {x : E} (hg : ContDiffOn 𝕜 n g t) (hf : ContDiffOn 𝕜 n f s) (ht : UniqueDiffOn 𝕜 t) (hs : UniqueDiffOn 𝕜 s) (hst : MapsTo f s t) (hx : x ∈ s) {C : ℝ} {D : ℝ} (hC : ∀ i, i ≤ n → ‖iteratedFDerivWithin 𝕜 i g t (f x)‖ ≤ C) (hD : ∀ i, 1 ≤ i → i ≤ n → ‖iteratedFDerivWithin 𝕜 i f s x‖ ≤ D ^ i) : ‖iteratedFDerivWithin 𝕜 n (g ∘ f) s x‖ ≤ n ! * C * D ^ n
𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type uE inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E Fu : Type u inst✝³ : NormedAddCommGroup Fu inst✝² : NormedSpace 𝕜 Fu f : E → Fu s : Set E t : Set Fu x : E ht : UniqueDiffOn 𝕜 t hs : UniqueDiffOn 𝕜 s hst : MapsTo f s t hx : x ∈ s C D : ℝ n : ℕ IH : ∀ m ≤ n, ∀ {Gu : Type u} [inst : NormedAddCommGroup Gu] [inst_1 : NormedSpace 𝕜 Gu] {g : Fu → Gu}, ContDiffOn 𝕜 (↑m) g t → ContDiffOn 𝕜 (↑m) f s → (∀ i ≤ m, ‖iteratedFDerivWithin 𝕜 i g t (f x)‖ ≤ C) → (∀ (i : ℕ), 1 ≤ i → i ≤ m → ‖iteratedFDerivWithin 𝕜 i f s x‖ ≤ D ^ i) → ‖iteratedFDerivWithin 𝕜 m (g ∘ f) s x‖ ≤ ↑m ! * C * D ^ m Gu : Type u inst✝¹ : NormedAddCommGroup Gu inst✝ : NormedSpace 𝕜 Gu g : Fu → Gu hg : ContDiffOn 𝕜 (↑(n + 1)) g t hf : ContDiffOn 𝕜 (↑(n + 1)) f s hC : ∀ i ≤ n + 1, ‖iteratedFDerivWithin 𝕜 i g t (f x)‖ ≤ C hD : ∀ (i : ℕ), 1 ≤ i → i ≤ n + 1 → ‖iteratedFDerivWithin 𝕜 i f s x‖ ≤ D ^ i M : ↑n < ↑n.succ Cnonneg : 0 ≤ C Dnonneg : 0 ≤ D I : ∀ i ∈ Finset.range (n + 1), ‖iteratedFDerivWithin 𝕜 i (fderivWithin 𝕜 g t ∘ f) s x‖ ≤ ↑i ! * C * D ^ i J : ∀ (i : ℕ), ‖iteratedFDerivWithin 𝕜 (n - i) (fderivWithin 𝕜 f s) s x‖ ≤ D ^ (n - i + 1) ⊢ ‖iteratedFDerivWithin 𝕜 n (fun y => fderivWithin 𝕜 (g ∘ f) s y) s x‖ = ‖iteratedFDerivWithin 𝕜 n (fun y => ((ContinuousLinearMap.compL 𝕜 E Fu Gu) (fderivWithin 𝕜 g t (f y))) (fderivWithin 𝕜 f s y)) s x‖
have L : (1 : WithTop ℕ∞) ≤ n.succ := by simpa only [ENat.coe_one, Nat.one_le_cast] using n.succ_pos
𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type uE inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E Fu : Type u inst✝³ : NormedAddCommGroup Fu inst✝² : NormedSpace 𝕜 Fu f : E → Fu s : Set E t : Set Fu x : E ht : UniqueDiffOn 𝕜 t hs : UniqueDiffOn 𝕜 s hst : MapsTo f s t hx : x ∈ s C D : ℝ n : ℕ IH : ∀ m ≤ n, ∀ {Gu : Type u} [inst : NormedAddCommGroup Gu] [inst_1 : NormedSpace 𝕜 Gu] {g : Fu → Gu}, ContDiffOn 𝕜 (↑m) g t → ContDiffOn 𝕜 (↑m) f s → (∀ i ≤ m, ‖iteratedFDerivWithin 𝕜 i g t (f x)‖ ≤ C) → (∀ (i : ℕ), 1 ≤ i → i ≤ m → ‖iteratedFDerivWithin 𝕜 i f s x‖ ≤ D ^ i) → ‖iteratedFDerivWithin 𝕜 m (g ∘ f) s x‖ ≤ ↑m ! * C * D ^ m Gu : Type u inst✝¹ : NormedAddCommGroup Gu inst✝ : NormedSpace 𝕜 Gu g : Fu → Gu hg : ContDiffOn 𝕜 (↑(n + 1)) g t hf : ContDiffOn 𝕜 (↑(n + 1)) f s hC : ∀ i ≤ n + 1, ‖iteratedFDerivWithin 𝕜 i g t (f x)‖ ≤ C hD : ∀ (i : ℕ), 1 ≤ i → i ≤ n + 1 → ‖iteratedFDerivWithin 𝕜 i f s x‖ ≤ D ^ i M : ↑n < ↑n.succ Cnonneg : 0 ≤ C Dnonneg : 0 ≤ D I : ∀ i ∈ Finset.range (n + 1), ‖iteratedFDerivWithin 𝕜 i (fderivWithin 𝕜 g t ∘ f) s x‖ ≤ ↑i ! * C * D ^ i J : ∀ (i : ℕ), ‖iteratedFDerivWithin 𝕜 (n - i) (fderivWithin 𝕜 f s) s x‖ ≤ D ^ (n - i + 1) L : 1 ≤ ↑n.succ ⊢ ‖iteratedFDerivWithin 𝕜 n (fun y => fderivWithin 𝕜 (g ∘ f) s y) s x‖ = ‖iteratedFDerivWithin 𝕜 n (fun y => ((ContinuousLinearMap.compL 𝕜 E Fu Gu) (fderivWithin 𝕜 g t (f y))) (fderivWithin 𝕜 f s y)) s x‖
59e1e58bb3dc8aba
rank_quotient_add_rank_le
Mathlib/LinearAlgebra/Dimension/Constructions.lean
theorem rank_quotient_add_rank_le [Nontrivial R] (M' : Submodule R M) : Module.rank R (M ⧸ M') + Module.rank R M' ≤ Module.rank R M
R : Type u M : Type v inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : Nontrivial R M' : Submodule R M this : Nonempty { s // LinearIndepOn R id s } ⊢ (⨆ ι, #↑↑ι) + ⨆ ι, #↑↑ι ≤ Module.rank R M
have := nonempty_linearIndependent_set R M'
R : Type u M : Type v inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : Nontrivial R M' : Submodule R M this✝ : Nonempty { s // LinearIndepOn R id s } this : Nonempty { s // LinearIndepOn R id s } ⊢ (⨆ ι, #↑↑ι) + ⨆ ι, #↑↑ι ≤ Module.rank R M
b200648a4815e8fa