name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib/Tactic/Ring/Basic.lean
theorem add_pf_add_lt (a₁ : R) (_ : a₂ + b = c) : (a₁ + a₂) + b = a₁ + c
R : Type u_1 inst✝ : CommSemiring R a₂ b c a₁ : R x✝ : a₂ + b = c ⊢ a₁ + a₂ + b = a₁ + c
simp [*, add_assoc]
no goals
901ae75805bb27f1
Polynomial.sumIDeriv_apply_of_lt
Mathlib/Algebra/Polynomial/SumIteratedDerivative.lean
theorem sumIDeriv_apply_of_lt {p : R[X]} {n : ℕ} (hn : p.natDegree < n) : sumIDeriv p = ∑ i ∈ range n, derivative^[i] p
R : Type u_1 inst✝ : Semiring R p : R[X] n : ℕ hn : p.natDegree < n ⊢ (derivativeFinsupp p).support ⊆ range n
simp [hn]
no goals
382c86a4c222b5bf
integral_sin_sq_mul_cos_sq
Mathlib/Analysis/SpecialFunctions/Integrals.lean
theorem integral_sin_sq_mul_cos_sq : ∫ x in a..b, sin x ^ 2 * cos x ^ 2 = (b - a) / 8 - (sin (4 * b) - sin (4 * a)) / 32
a b : ℝ h1 : ∀ (c : ℝ), (1 - c) / 2 * ((1 + c) / 2) = (1 - c ^ 2) / 4 h2 : Continuous fun x => cos (2 * x) ^ 2 ⊢ ∀ (x : ℝ), cos x * sin x = sin (2 * x) / 2
intro
a b : ℝ h1 : ∀ (c : ℝ), (1 - c) / 2 * ((1 + c) / 2) = (1 - c ^ 2) / 4 h2 : Continuous fun x => cos (2 * x) ^ 2 x✝ : ℝ ⊢ cos x✝ * sin x✝ = sin (2 * x✝) / 2
91a2e24802ea5818
Equiv.Perm.IsCycle.pow_iff
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
theorem IsCycle.pow_iff [Finite β] {f : Perm β} (hf : IsCycle f) {n : ℕ} : IsCycle (f ^ n) ↔ n.Coprime (orderOf f)
case intro.mpr.intro β : Type u_3 inst✝ : Finite β f : Perm β hf : f.IsCycle n : ℕ val✝ : Fintype β h : n.Coprime (orderOf f) m : ℕ hm : (f ^ n) ^ m = f hf' : ((f ^ n) ^ m).IsCycle x : β hx : x ∈ (f ^ n).support ⊢ x ∈ ((f ^ n) ^ m).support
rw [hm]
case intro.mpr.intro β : Type u_3 inst✝ : Finite β f : Perm β hf : f.IsCycle n : ℕ val✝ : Fintype β h : n.Coprime (orderOf f) m : ℕ hm : (f ^ n) ^ m = f hf' : ((f ^ n) ^ m).IsCycle x : β hx : x ∈ (f ^ n).support ⊢ x ∈ f.support
66cd6cfb46d266c4
CompletelyDistribLattice.MinimalAxioms.iSup_iInf_eq
Mathlib/Order/CompleteBooleanAlgebra.lean
lemma iSup_iInf_eq (f : ∀ i, κ i → α) : let _ := minAx.toCompleteLattice ⨆ i, ⨅ j, f i j = ⨅ g : ∀ i, κ i, ⨆ i, f i (g i)
α : Type u ι : Sort w κ : ι → Sort w' minAx : MinimalAxioms α f : (i : ι) → κ i → α x✝ : CompleteLattice α := minAx.toCompleteLattice g : ((i : ι) → κ i) → ι a : ι ha : ∀ (b : κ a), ∃ f, ∃ (h : a = g f), h ▸ b = f (g f) ⊢ ⨅ i, f (g i) (i (g i)) ≤ ⨆ i, ⨅ j, f i j
refine le_trans ?_ (le_iSup _ a)
α : Type u ι : Sort w κ : ι → Sort w' minAx : MinimalAxioms α f : (i : ι) → κ i → α x✝ : CompleteLattice α := minAx.toCompleteLattice g : ((i : ι) → κ i) → ι a : ι ha : ∀ (b : κ a), ∃ f, ∃ (h : a = g f), h ▸ b = f (g f) ⊢ ⨅ i, f (g i) (i (g i)) ≤ ⨅ j, f a j
be0a16e095a6ee29
Filter.isBoundedUnder_le_mul_of_nonneg
Mathlib/Order/LiminfLimsup.lean
lemma isBoundedUnder_le_mul_of_nonneg [Mul α] [Zero α] [Preorder α] [PosMulMono α] [MulPosMono α] {f : Filter ι} {u v : ι → α} (h₁ : 0 ≤ᶠ[f] u) (h₂ : IsBoundedUnder (fun x1 x2 ↦ x1 ≤ x2) f u) (h₃ : 0 ≤ᶠ[f] v) (h₄ : IsBoundedUnder (fun x1 x2 ↦ x1 ≤ x2) f v) : IsBoundedUnder (fun x1 x2 ↦ x1 ≤ x2) f (u * v)
case intro α : Type u_1 ι : Type u_4 inst✝⁴ : Mul α inst✝³ : Zero α inst✝² : Preorder α inst✝¹ : PosMulMono α inst✝ : MulPosMono α f : Filter ι u v : ι → α h₁ : 0 ≤ᶠ[f] u h₂ : IsBoundedUnder (fun x1 x2 => x1 ≤ x2) f u h₃ : 0 ≤ᶠ[f] v h₄ : IsBoundedUnder (fun x1 x2 => x1 ≤ x2) f v U : α hU : ∀ᶠ (x : ι) in f, u x ≤ U ⊢ IsBoundedUnder (fun x1 x2 => x1 ≤ x2) f (u * v)
obtain ⟨V, hV⟩ := h₄.eventually_le
case intro.intro α : Type u_1 ι : Type u_4 inst✝⁴ : Mul α inst✝³ : Zero α inst✝² : Preorder α inst✝¹ : PosMulMono α inst✝ : MulPosMono α f : Filter ι u v : ι → α h₁ : 0 ≤ᶠ[f] u h₂ : IsBoundedUnder (fun x1 x2 => x1 ≤ x2) f u h₃ : 0 ≤ᶠ[f] v h₄ : IsBoundedUnder (fun x1 x2 => x1 ≤ x2) f v U : α hU : ∀ᶠ (x : ι) in f, u x ≤ U V : α hV : ∀ᶠ (x : ι) in f, v x ≤ V ⊢ IsBoundedUnder (fun x1 x2 => x1 ≤ x2) f (u * v)
5d150f01f7a3ba19
IsSl2Triple.symm
Mathlib/Algebra/Lie/Sl2.lean
lemma symm (ht : IsSl2Triple h e f) : IsSl2Triple (-h) f e where h_ne_zero
L : Type u_2 inst✝ : LieRing L h e f : L ht : IsSl2Triple h e f ⊢ ⁅f, e⁆ = -h
rw [← neg_eq_iff_eq_neg, lie_skew, ht.lie_e_f]
no goals
8d56a793b514175c
Real.fderiv_fourierChar_neg_bilinear_left_apply
Mathlib/Analysis/Fourier/FourierTransformDeriv.lean
lemma fderiv_fourierChar_neg_bilinear_left_apply (v y : V) (w : W) : fderiv ℝ (fun v ↦ (𝐞 (-L v w) : ℂ)) v y = -2 * π * I * L y w * 𝐞 (-L v w)
V : Type u_1 W : Type u_2 inst✝³ : NormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : NormedAddCommGroup W inst✝ : NormedSpace ℝ W L : V →L[ℝ] W →L[ℝ] ℝ v y : V w : W ⊢ 2 * ↑π * I * ↑(𝐞 (-(L v) w)) * ↑((L y) w) = 2 * ↑π * I * ↑((L y) w) * ↑(𝐞 (-(L v) w))
ring
no goals
4c67b50984595267
FermatLastTheoremForThreeGen.Solution.lambda_dvd_a_add_eta_sq_mul_b
Mathlib/NumberTheory/FLT/Three.lean
/-- Given `(S : Solution)`, we have that `λ ∣ (S.a + η ^ 2 * S.b)`. -/ lemma lambda_dvd_a_add_eta_sq_mul_b : λ ∣ (S.a + η ^ 2 * S.b)
K : Type u_1 inst✝ : Field K ζ : K hζ : IsPrimitiveRoot ζ ↑3 S : Solution hζ ⊢ λ ∣ S.a + ↑η ^ 2 * S.b
rw [show S.a + η ^ 2 * S.b = (S.a + S.b) + λ ^ 2 * S.b + 2 * λ * S.b by rw [coe_eta]; ring]
K : Type u_1 inst✝ : Field K ζ : K hζ : IsPrimitiveRoot ζ ↑3 S : Solution hζ ⊢ λ ∣ S.a + S.b + λ ^ 2 * S.b + 2 * λ * S.b
f2c6a6b69d1d3fef
Finsupp.some_single_some
Mathlib/Data/Finsupp/Basic.lean
theorem some_single_some [Zero M] (a : α) (m : M) : (single (Option.some a) m : Option α →₀ M).some = single a m
α : Type u_1 M : Type u_5 inst✝ : Zero M a : α m : M ⊢ (single (Option.some a) m).some = single a m
ext b
case h α : Type u_1 M : Type u_5 inst✝ : Zero M a : α m : M b : α ⊢ (single (Option.some a) m).some b = (single a m) b
6bf60aa718869f43
ProbabilityTheory.gaussianPDFReal_inv_mul
Mathlib/Probability/Distributions/Gaussian.lean
lemma gaussianPDFReal_inv_mul {μ : ℝ} {v : ℝ≥0} {c : ℝ} (hc : c ≠ 0) (x : ℝ) : gaussianPDFReal μ v (c⁻¹ * x) = |c| * gaussianPDFReal (c * μ) (⟨c^2, sq_nonneg _⟩ * v) x
case refine_2.e_x μ : ℝ v : ℝ≥0 c : ℝ hc : c ≠ 0 x : ℝ ⊢ -(x - c * μ) ^ 2 / (c ^ 2 * (2 * ↑v)) = -(x - c * μ) ^ 2 / (2 * (c ^ 2 * ↑v))
congr 1
case refine_2.e_x.e_a μ : ℝ v : ℝ≥0 c : ℝ hc : c ≠ 0 x : ℝ ⊢ c ^ 2 * (2 * ↑v) = 2 * (c ^ 2 * ↑v)
3d362dec61aca464
MeasureTheory.TendstoInMeasure.exists_seq_tendsto_ae
Mathlib/MeasureTheory/Function/ConvergenceInMeasure.lean
theorem TendstoInMeasure.exists_seq_tendsto_ae (hfg : TendstoInMeasure μ f atTop g) : ∃ ns : ℕ → ℕ, StrictMono ns ∧ ∀ᵐ x ∂μ, Tendsto (fun i => f (ns i) x) atTop (𝓝 (g x))
case intro.intro α : Type u_1 E : Type u_4 m : MeasurableSpace α μ : Measure α inst✝ : MetricSpace E f : ℕ → α → E g : α → E hfg : TendstoInMeasure μ f atTop g h_lt_ε_real : ∀ (ε : ℝ), 0 < ε → ∃ k, 2 * 2⁻¹ ^ k < ε ns : ℕ → ℕ := ExistsSeqTendstoAe.seqTendstoAeSeq hfg S : ℕ → Set α := fun k => {x | 2⁻¹ ^ k ≤ dist (f (ns k) x) (g x)} hμS_le : ∀ (k : ℕ), μ (S k) ≤ 2⁻¹ ^ k s : Set α := limsup S atTop hs : s = limsup S atTop hμs : μ s = 0 x : α ε : ℝ hε : ε > 0 N k : ℕ hk_lt_ε : 2 * 2⁻¹ ^ k < ε n : ℕ hn_ge : n ≥ N ⊔ (k - 1) hNx : dist (f (ns n) x) (g x) < 2⁻¹ ^ n h_inv_n_le_k : 2⁻¹ ^ n ≤ 2 * 2⁻¹ ^ k ⊢ dist (f (ns n) x) (g x) ≤ 2 * 2⁻¹ ^ k
exact le_trans hNx.le h_inv_n_le_k
no goals
125226675bee6dd7
finprod_eq_mulIndicator_apply
Mathlib/Algebra/BigOperators/Finprod.lean
theorem finprod_eq_mulIndicator_apply (s : Set α) (f : α → M) (a : α) : ∏ᶠ _ : a ∈ s, f a = mulIndicator s f a
α : Type u_1 M : Type u_5 inst✝ : CommMonoid M s : Set α f : α → M a : α ⊢ ∏ᶠ (_ : a ∈ s), f a = s.mulIndicator f a
convert finprod_eq_if (M := M) (p := a ∈ s) (x := f a)
no goals
6f1b0d2d634b0a0d
smoothSheafCommRing.isUnit_stalk_iff
Mathlib/Geometry/Manifold/Sheaf/LocallyRingedSpace.lean
theorem smoothSheafCommRing.isUnit_stalk_iff {x : M} (f : (smoothSheafCommRing IM 𝓘(𝕜) M 𝕜).presheaf.stalk x) : IsUnit f ↔ f ∉ RingHom.ker (smoothSheafCommRing.eval IM 𝓘(𝕜) M 𝕜 x)
𝕜 : Type u inst✝⁵ : NontriviallyNormedField 𝕜 EM : Type u_1 inst✝⁴ : NormedAddCommGroup EM inst✝³ : NormedSpace 𝕜 EM HM : Type u_2 inst✝² : TopologicalSpace HM IM : ModelWithCorners 𝕜 EM HM M : Type u inst✝¹ : TopologicalSpace M inst✝ : ChartedSpace HM M x : M S : TopCat.Presheaf CommRingCat (TopCat.of M) := (smoothSheafCommRing IM 𝓘(𝕜, 𝕜) M 𝕜).presheaf U : Opens M hxU : x ∈ U f : C^∞⟮IM, ↥U; 𝓘(𝕜, 𝕜), 𝕜⟯ hf : (eval IM 𝓘(𝕜, 𝕜) M 𝕜 x) ((CategoryTheory.ConcreteCategory.hom (S.germ U x hxU)) f) ≠ 0 hf' : f ⟨x, hxU⟩ ≠ 0 V₀ : Set ↥U hV₀f : ∀ y ∈ V₀, f y ≠ 0 hV₀ : IsOpen V₀ hxV₀ : ⟨x, hxU⟩ ∈ V₀ V : Opens M := { carrier := Subtype.val '' V₀, is_open' := ⋯ } hUV : V ≤ U ⊢ V₀ = Set.range (Set.inclusion hUV)
convert (Set.range_inclusion hUV).symm
case h.e'_2.h 𝕜 : Type u inst✝⁵ : NontriviallyNormedField 𝕜 EM : Type u_1 inst✝⁴ : NormedAddCommGroup EM inst✝³ : NormedSpace 𝕜 EM HM : Type u_2 inst✝² : TopologicalSpace HM IM : ModelWithCorners 𝕜 EM HM M : Type u inst✝¹ : TopologicalSpace M inst✝ : ChartedSpace HM M x : M S : TopCat.Presheaf CommRingCat (TopCat.of M) := (smoothSheafCommRing IM 𝓘(𝕜, 𝕜) M 𝕜).presheaf U : Opens M hxU : x ∈ U f : C^∞⟮IM, ↥U; 𝓘(𝕜, 𝕜), 𝕜⟯ hf : (eval IM 𝓘(𝕜, 𝕜) M 𝕜 x) ((CategoryTheory.ConcreteCategory.hom (S.germ U x hxU)) f) ≠ 0 hf' : f ⟨x, hxU⟩ ≠ 0 V₀ : Set ↥U hV₀f : ∀ y ∈ V₀, f y ≠ 0 hV₀ : IsOpen V₀ hxV₀ : ⟨x, hxU⟩ ∈ V₀ V : Opens M := { carrier := Subtype.val '' V₀, is_open' := ⋯ } hUV : V ≤ U e_1✝ : Set ↥U = Set ↑↑U ⊢ V₀ = {x | ↑x ∈ ↑V}
f7ca29d724eff4f4
LaurentPolynomial.isLocalization
Mathlib/Algebra/Polynomial/Laurent.lean
theorem isLocalization : IsLocalization (Submonoid.powers (X : R[X])) R[T;T⁻¹] := { map_units' := fun ⟨t, ht⟩ => by obtain ⟨n, rfl⟩ := ht rw [algebraMap_eq_toLaurent, toLaurent_X_pow] exact isUnit_T ↑n surj' := fun f => by induction' f using LaurentPolynomial.induction_on_mul_T with f n have : X ^ n ∈ Submonoid.powers (X : R[X]) := ⟨n, rfl⟩ refine ⟨(f, ⟨_, this⟩), ?_⟩ simp only [algebraMap_eq_toLaurent, toLaurent_X_pow, mul_T_assoc, neg_add_cancel, T_zero, mul_one] exists_of_eq := fun {f g} => by rw [algebraMap_eq_toLaurent, algebraMap_eq_toLaurent, Polynomial.toLaurent_inj] rintro rfl exact ⟨1, rfl⟩ }
R : Type u_1 inst✝ : CommSemiring R x✝ : ↥(Submonoid.powers X) t : R[X] ht : t ∈ Submonoid.powers X ⊢ IsUnit ((algebraMap R[X] R[T;T⁻¹]) ↑⟨t, ht⟩)
obtain ⟨n, rfl⟩ := ht
case intro R : Type u_1 inst✝ : CommSemiring R x✝ : ↥(Submonoid.powers X) n : ℕ ⊢ IsUnit ((algebraMap R[X] R[T;T⁻¹]) ↑⟨(fun x => X ^ x) n, ⋯⟩)
142317cb84f0217d
lt_inv_comm₀
Mathlib/Algebra/Order/GroupWithZero/Unbundled.lean
/-- See also `lt_inv_of_lt_inv₀` for a one-sided implication with one fewer assumption. -/ lemma lt_inv_comm₀ (ha : 0 < a) (hb : 0 < b) : a < b⁻¹ ↔ b < a⁻¹
G₀ : Type u_2 inst✝⁵ : GroupWithZero G₀ inst✝⁴ : PartialOrder G₀ inst✝³ : ZeroLEOneClass G₀ inst✝² : PosMulReflectLT G₀ a b : G₀ inst✝¹ : MulPosStrictMono G₀ inst✝ : PosMulStrictMono G₀ ha : 0 < a hb : 0 < b ⊢ a < b⁻¹ ↔ b < a⁻¹
rw [← inv_lt_inv₀ (inv_pos.2 hb) ha, inv_inv]
no goals
47d89a3268cf1fcb
AlgebraicGeometry.sourceAffineLocally_isLocal
Mathlib/AlgebraicGeometry/Morphisms/RingHomProperties.lean
theorem sourceAffineLocally_isLocal (h₁ : RingHom.RespectsIso P) (h₂ : RingHom.LocalizationAwayPreserves P) (h₃ : RingHom.OfLocalizationSpan P) : (sourceAffineLocally P).IsLocal
case to_basicOpen.a P : {R S : Type u} → [inst : CommRing R] → [inst_1 : CommRing S] → (R →+* S) → Prop h₁ : RingHom.RespectsIso fun {R S} [CommRing R] [CommRing S] => P h₂ : RingHom.LocalizationAwayPreserves fun {R S} [CommRing R] [CommRing S] => P h₃ : RingHom.OfLocalizationSpan fun {R S} [CommRing R] [CommRing S] => P X Y : Scheme inst✝ : IsAffine Y f : X ⟶ Y r : ↑Γ(Y, ⊤) H : sourceAffineLocally (fun {R S} [CommRing R] [CommRing S] => P) f U : ↑X.affineOpens hU : ↑U ≤ f ⁻¹ᵁ Y.basicOpen r this : X.basicOpen ((ConcreteCategory.hom (Scheme.Hom.appLE f ⊤ ↑U ⋯)) r) = ↑U ⊢ P (CommRingCat.Hom.hom (Scheme.Hom.appLE f ⊤ ↑U ⋯))
exact H U
no goals
222ac1262a013627
RingSubgroupsBasis.hasBasis_nhds
Mathlib/Topology/Algebra/Nonarchimedean/Bases.lean
theorem hasBasis_nhds (a : A) : HasBasis (@nhds A hB.topology a) (fun _ => True) fun i => { b | b - a ∈ B i } := ⟨by intro s rw [(hB.toRingFilterBasis.toAddGroupFilterBasis.nhds_hasBasis a).mem_iff] simp only [true_and] constructor · rintro ⟨-, ⟨i, rfl⟩, hi⟩ use i suffices h : { b : A | b - a ∈ B i } = (fun y => a + y) '' ↑(B i) by rw [h] assumption simp only [image_add_left, neg_add_eq_sub] ext b simp · rintro ⟨i, hi⟩ use B i constructor · use i · rw [image_subset_iff] rintro b b_in apply hi simpa using b_in⟩
A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B a : A s : Set A i : ι hi : (fun y => a + y) '' ↑(B i) ⊆ s h : {b | b - a ∈ B i} = (fun y => a + y) '' ↑(B i) ⊢ (fun y => a + y) '' ↑(B i) ⊆ s
assumption
no goals
9189cb0f666030cd
Associates.factors_eq_some_iff_ne_zero
Mathlib/RingTheory/UniqueFactorizationDomain/FactorSet.lean
theorem factors_eq_some_iff_ne_zero {a : Associates α} : (∃ s : Multiset { p : Associates α // Irreducible p }, a.factors = s) ↔ a ≠ 0
α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : UniqueFactorizationMonoid α a : Associates α ⊢ (∃ s, a.factors = ↑s) ↔ a ≠ 0
simp_rw [@eq_comm _ a.factors, ← WithTop.ne_top_iff_exists]
α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : UniqueFactorizationMonoid α a : Associates α ⊢ a.factors ≠ ⊤ ↔ a ≠ 0
b75a386d076c5824
CategoryTheory.Pretriangulated.Opposite.distinguished_cocone_triangle
Mathlib/CategoryTheory/Triangulated/Opposite/Pretriangulated.lean
lemma distinguished_cocone_triangle {X Y : Cᵒᵖ} (f : X ⟶ Y) : ∃ (Z : Cᵒᵖ) (g : Y ⟶ Z) (h : Z ⟶ X⟦(1 : ℤ)⟧), Triangle.mk f g h ∈ distinguishedTriangles C
case intro.intro.intro C : Type u_1 inst✝⁵ : Category.{u_2, u_1} C inst✝⁴ : HasShift C ℤ inst✝³ : HasZeroObject C inst✝² : Preadditive C inst✝¹ : ∀ (n : ℤ), (shiftFunctor C n).Additive inst✝ : Pretriangulated C X Y : Cᵒᵖ f : X ⟶ Y Z : C g : Z ⟶ Opposite.unop Y h : Opposite.unop X ⟶ (shiftFunctor C 1).obj Z H : Triangle.mk g f.unop h ∈ Pretriangulated.distinguishedTriangles ⊢ Opposite.unop ((triangleOpEquivalence C).inverse.obj (Triangle.mk f g.op ((opShiftFunctorEquivalence C 1).counitIso.inv.app (Opposite.op Z) ≫ (shiftFunctor Cᵒᵖ 1).map h.op))) ≅ Triangle.mk g f.unop h
exact Triangle.isoMk _ _ (Iso.refl _) (Iso.refl _) (Iso.refl _) (by simp) (by simp) (Quiver.Hom.op_inj (by simp [shift_unop_opShiftFunctorEquivalence_counitIso_inv_app]))
no goals
272fd5c34afae8cc
continuous_of_uniform_approx_of_continuous
Mathlib/Topology/UniformSpace/UniformConvergence.lean
theorem continuous_of_uniform_approx_of_continuous (L : ∀ u ∈ 𝓤 β, ∃ F, Continuous F ∧ ∀ y, (f y, F y) ∈ u) : Continuous f := continuous_iff_continuousOn_univ.mpr <| continuousOn_of_uniform_approx_of_continuousOn <| by simpa [continuous_iff_continuousOn_univ] using L
α : Type u β : Type v inst✝¹ : UniformSpace β f : α → β inst✝ : TopologicalSpace α L : ∀ u ∈ 𝓤 β, ∃ F, Continuous F ∧ ∀ (y : α), (f y, F y) ∈ u ⊢ ∀ u ∈ 𝓤 β, ∃ F, ContinuousOn F univ ∧ ∀ y ∈ univ, (f y, F y) ∈ u
simpa [continuous_iff_continuousOn_univ] using L
no goals
f0dfef3ce1b3096c
SimpleGraph.Subgraph.coe_deleteEdges_eq
Mathlib/Combinatorics/SimpleGraph/Subgraph.lean
theorem coe_deleteEdges_eq (s : Set (Sym2 V)) : (G'.deleteEdges s).coe = G'.coe.deleteEdges (Sym2.map (↑) ⁻¹' s)
V : Type u G : SimpleGraph V G' : G.Subgraph s : Set (Sym2 V) ⊢ (G'.deleteEdges s).coe = G'.coe.deleteEdges (Sym2.map Subtype.val ⁻¹' s)
ext ⟨v, hv⟩ ⟨w, hw⟩
case Adj.h.mk.h.mk.a V : Type u G : SimpleGraph V G' : G.Subgraph s : Set (Sym2 V) v : V hv : v ∈ (G'.deleteEdges s).verts w : V hw : w ∈ (G'.deleteEdges s).verts ⊢ (G'.deleteEdges s).coe.Adj ⟨v, hv⟩ ⟨w, hw⟩ ↔ (G'.coe.deleteEdges (Sym2.map Subtype.val ⁻¹' s)).Adj ⟨v, hv⟩ ⟨w, hw⟩
4a500f910601c6eb
Nat.ascFactorial_eq_factorial_mul_choose'
Mathlib/Data/Nat/Choose/Basic.lean
theorem ascFactorial_eq_factorial_mul_choose' (n k : ℕ) : n.ascFactorial k = k ! * (n + k - 1).choose k
n k : ℕ ⊢ n.ascFactorial k = k ! * (n + k - 1).choose k
cases n
case zero k : ℕ ⊢ ascFactorial 0 k = k ! * (0 + k - 1).choose k case succ k n✝ : ℕ ⊢ (n✝ + 1).ascFactorial k = k ! * (n✝ + 1 + k - 1).choose k
007644bc8cc9572c
MeasureTheory.integral_fintype_prod_eq_prod
Mathlib/MeasureTheory/Integral/Pi.lean
theorem integral_fintype_prod_eq_prod (ι : Type*) [Fintype ι] {E : ι → Type*} (f : (i : ι) → E i → 𝕜) [∀ i, MeasureSpace (E i)] [∀ i, SigmaFinite (volume : Measure (E i))] : ∫ x : (i : ι) → E i, ∏ i, f i (x i) = ∏ i, ∫ x, f i x
𝕜 : Type u_1 inst✝³ : RCLike 𝕜 ι : Type u_2 inst✝² : Fintype ι E : ι → Type u_3 f : (i : ι) → E i → 𝕜 inst✝¹ : (i : ι) → MeasureSpace (E i) inst✝ : ∀ (i : ι), SigmaFinite volume e : Fin (card ι) ≃ ι := (equivFin ι).symm ⊢ ∫ (x : (b : Fin (card ι)) → E (e b)), ∏ i : ι, f i ((MeasurableEquiv.piCongrLeft E e) x i) = ∏ i : ι, ∫ (x : E i), f i x
simp_rw [← e.prod_comp, MeasurableEquiv.coe_piCongrLeft, Equiv.piCongrLeft_apply_apply, MeasureTheory.integral_fin_nat_prod_eq_prod]
no goals
ab006eba2a45fcbb
Complex.hasSum_taylorSeries_log
Mathlib/Analysis/SpecialFunctions/Complex/LogBounds.lean
/-- The Taylor series of the complex logarithm at `1` converges to the logarithm in the open unit disk. -/ lemma hasSum_taylorSeries_log {z : ℂ} (hz : ‖z‖ < 1) : HasSum (fun n : ℕ ↦ (-1) ^ (n + 1) * z ^ n / n) (log (1 + z))
case refine_2 z : ℂ hz : ‖z‖ < 1 ⊢ (fun x => logTaylor x z - log (1 + z)) =o[atTop] fun x => 1
refine IsLittleO.trans_isBigO ?_ <| isBigO_const_one ℂ (1 : ℝ) atTop
case refine_2 z : ℂ hz : ‖z‖ < 1 ⊢ (fun x => logTaylor x z - log (1 + z)) =o[atTop] fun _x => 1
c6ad5f4f2717ef3d
SimpleGraph.IsTuranMaximal.not_adj_trans
Mathlib/Combinatorics/SimpleGraph/Turan.lean
/-- In a Turán-maximal graph, non-adjacency is transitive. -/ lemma not_adj_trans (h : G.IsTuranMaximal r) (hts : ¬G.Adj t s) (hsu : ¬G.Adj s u) : ¬G.Adj t u
case right V : Type u_1 inst✝¹ : Fintype V G : SimpleGraph V inst✝ : DecidableRel G.Adj r : ℕ s t u : V hts : ¬G.Adj t s hsu : ¬G.Adj s u hst : ¬G.Adj s t dst : G.degree s = G.degree t dsu : G.degree s = G.degree u h : G.Adj t u cf : G.CliqueFree (r + 1) nst : s ≠ t ntu : t ≠ u this : ¬(G.replaceVertex s t).Adj s u l1 : (G.replaceVertex s t).degree s = G.degree s ⊢ #G.edgeFinset < #G.edgeFinset + (G.replaceVertex s t).degree s - (G.replaceVertex s t).degree u
have l2 : (G.replaceVertex s t).degree u = G.degree u - 1 := by rw [degree, degree, ← card_singleton t, ← card_sdiff (by simp [h.symm])] congr 1; ext v simp only [mem_neighborFinset, mem_sdiff, mem_singleton, replaceVertex] split_ifs <;> simp_all [adj_comm]
case right V : Type u_1 inst✝¹ : Fintype V G : SimpleGraph V inst✝ : DecidableRel G.Adj r : ℕ s t u : V hts : ¬G.Adj t s hsu : ¬G.Adj s u hst : ¬G.Adj s t dst : G.degree s = G.degree t dsu : G.degree s = G.degree u h : G.Adj t u cf : G.CliqueFree (r + 1) nst : s ≠ t ntu : t ≠ u this : ¬(G.replaceVertex s t).Adj s u l1 : (G.replaceVertex s t).degree s = G.degree s l2 : (G.replaceVertex s t).degree u = G.degree u - 1 ⊢ #G.edgeFinset < #G.edgeFinset + (G.replaceVertex s t).degree s - (G.replaceVertex s t).degree u
320247f515c2bcdc
Array.swap_swap
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Lemmas.lean
theorem swap_swap (a : Array α) {i j : Nat} (hi hj) : (a.swap i j hi hj).swap i j ((a.size_swap ..).symm ▸ hi) ((a.size_swap ..).symm ▸ hj) = a
case h₁ α : Type u_1 a : Array α i j : Nat hi : i < a.size hj : j < a.size ⊢ ((a.swap i j hi hj).swap i j ⋯ ⋯).size = a.size
simp only [size_swap]
no goals
8af4d36a7bf83b1e
Set.MapsTo.restrict_surjective_iff
Mathlib/Data/Set/Function.lean
theorem MapsTo.restrict_surjective_iff (h : MapsTo f s t) : Surjective (MapsTo.restrict _ _ _ h) ↔ SurjOn f s t
α : Type u_1 β : Type u_2 s : Set α t : Set β f : α → β h : MapsTo f s t h' : Surjective (restrict f s t h) b : β hb : b ∈ t a : α ha : a ∈ s ha' : restrict f s t h ⟨a, ha⟩ = ⟨b, hb⟩ ⊢ f a = b
simpa [Subtype.ext_iff] using ha'
no goals
3f017aab25bc5663
Dynamics.log_coverMincard_le_add
Mathlib/Dynamics/TopologicalEntropy/CoverEntropy.lean
lemma log_coverMincard_le_add {T : X → X} {F : Set X} (F_inv : MapsTo T F F) {U : Set (X × X)} (U_symm : SymmetricRel U) {m n : ℕ} (m_pos : 0 < m) (n_pos : 0 < n) : log (coverMincard T F (U ○ U) n) / n ≤ log (coverMincard T F U m) / m + log (coverMincard T F U m) / n
case inr X : Type u_1 T : X → X F : Set X F_inv : MapsTo T F F U : Set (X × X) U_symm : SymmetricRel U m n : ℕ m_pos : 0 < m n_pos : 0 < n F_nemp : F.Nonempty h_nm : 0 ≤ ↑(n / m) h_log : 0 ≤ (↑(coverMincard T F U m)).log ⊢ (↑(coverMincard T F (U ○ U) n)).log / ↑n ≤ (↑(coverMincard T F U m)).log / ↑m + (↑(coverMincard T F U m)).log / ↑n
have n_div_n := EReal.div_self (natCast_ne_bot n) (natCast_ne_top n) (Nat.cast_pos'.2 n_pos).ne.symm
case inr X : Type u_1 T : X → X F : Set X F_inv : MapsTo T F F U : Set (X × X) U_symm : SymmetricRel U m n : ℕ m_pos : 0 < m n_pos : 0 < n F_nemp : F.Nonempty h_nm : 0 ≤ ↑(n / m) h_log : 0 ≤ (↑(coverMincard T F U m)).log n_div_n : ↑n / ↑n = 1 ⊢ (↑(coverMincard T F (U ○ U) n)).log / ↑n ≤ (↑(coverMincard T F U m)).log / ↑m + (↑(coverMincard T F U m)).log / ↑n
bfe34c9eb0da6d6f
Finset.pairwiseDisjoint_fibers
Mathlib/Data/Finset/Union.lean
private lemma pairwiseDisjoint_fibers : Set.PairwiseDisjoint ↑t fun a ↦ s.filter (f · = a) := fun x' hx y' hy hne ↦ by simp_rw [disjoint_left, mem_filter]; rintro i ⟨_, rfl⟩ ⟨_, rfl⟩; exact hne rfl
case intro.intro α : Type u_1 β : Type u_2 inst✝ : DecidableEq β s : Finset α t : Finset β f : α → β i : α left✝¹ : i ∈ s hx : f i ∈ ↑t left✝ : i ∈ s hy : f i ∈ ↑t hne : f i ≠ f i ⊢ False
exact hne rfl
no goals
b21a107221de7caf
exists_continuous_one_zero_of_isCompact_of_isGδ
Mathlib/Topology/UrysohnsLemma.lean
theorem exists_continuous_one_zero_of_isCompact_of_isGδ [RegularSpace X] [LocallyCompactSpace X] {s t : Set X} (hs : IsCompact s) (h's : IsGδ s) (ht : IsClosed t) (hd : Disjoint s t) : ∃ f : C(X, ℝ), s = f ⁻¹' {1} ∧ EqOn f 0 t ∧ HasCompactSupport f ∧ ∀ x, f x ∈ Icc (0 : ℝ) 1
case intro.intro.intro.intro.intro.intro.intro.intro.intro X : Type u_1 inst✝² : TopologicalSpace X inst✝¹ : RegularSpace X inst✝ : LocallyCompactSpace X s t : Set X hs : IsCompact s h's : IsGδ s ht : IsClosed t hd : Disjoint s t U : ℕ → Set X U_open : ∀ (n : ℕ), IsOpen (U n) hU : s = ⋂ n, U n m : Set X m_comp : IsCompact m sm : s ⊆ interior m mt : m ⊆ tᶜ f : ℕ → C(X, ℝ) fs : ∀ (n : ℕ), EqOn (⇑(f n)) 1 s fm : ∀ (n : ℕ), EqOn (⇑(f n)) 0 (U n ∩ interior m)ᶜ _hf : ∀ (n : ℕ), HasCompactSupport ⇑(f n) f_range : ∀ (n : ℕ) (x : X), (f n) x ∈ Icc 0 1 u : ℕ → ℝ u_pos : ∀ (i : ℕ), 0 < u i u_sum : Summable u hu : ∑' (i : ℕ), u i = 1 ⊢ ∃ f, s = ⇑f ⁻¹' {1} ∧ EqOn (⇑f) 0 t ∧ HasCompactSupport ⇑f ∧ ∀ (x : X), f x ∈ Icc 0 1
let g : X → ℝ := fun x ↦ ∑' n, u n * f n x
case intro.intro.intro.intro.intro.intro.intro.intro.intro X : Type u_1 inst✝² : TopologicalSpace X inst✝¹ : RegularSpace X inst✝ : LocallyCompactSpace X s t : Set X hs : IsCompact s h's : IsGδ s ht : IsClosed t hd : Disjoint s t U : ℕ → Set X U_open : ∀ (n : ℕ), IsOpen (U n) hU : s = ⋂ n, U n m : Set X m_comp : IsCompact m sm : s ⊆ interior m mt : m ⊆ tᶜ f : ℕ → C(X, ℝ) fs : ∀ (n : ℕ), EqOn (⇑(f n)) 1 s fm : ∀ (n : ℕ), EqOn (⇑(f n)) 0 (U n ∩ interior m)ᶜ _hf : ∀ (n : ℕ), HasCompactSupport ⇑(f n) f_range : ∀ (n : ℕ) (x : X), (f n) x ∈ Icc 0 1 u : ℕ → ℝ u_pos : ∀ (i : ℕ), 0 < u i u_sum : Summable u hu : ∑' (i : ℕ), u i = 1 g : X → ℝ := fun x => ∑' (n : ℕ), u n * (f n) x ⊢ ∃ f, s = ⇑f ⁻¹' {1} ∧ EqOn (⇑f) 0 t ∧ HasCompactSupport ⇑f ∧ ∀ (x : X), f x ∈ Icc 0 1
06fdcc97382f69bb
Complex.ofReal_arctan
Mathlib/Analysis/SpecialFunctions/Complex/Arctan.lean
theorem ofReal_arctan (x : ℝ) : (Real.arctan x : ℂ) = arctan x
x : ℝ ⊢ ↑(Real.arctan x) = (↑x).arctan
conv_rhs => rw [← Real.tan_arctan x]
x : ℝ ⊢ ↑(Real.arctan x) = (↑(Real.tan (Real.arctan x))).arctan
d799d1afd10876e7
Nat.bisect_lt_stop
Mathlib/.lake/packages/batteries/Batteries/Data/Nat/Bisect.lean
theorem bisect_lt_stop {p : Nat → Bool} (h : start < stop) (hstart : p start = true) (hstop : p stop = false) : bisect h hstart hstop < stop
case isTrue start stop : Nat p : Nat → Bool h : start < stop hstart : p start = true hstop : p stop = false h✝ : start < start.avg stop ⊢ (match hmid : p (start.avg stop) with | false => bisect h✝ hstart hmid | true => bisect ⋯ hmid hstop) < stop
split
case isTrue.h_1 start stop : Nat p : Nat → Bool h : start < stop hstart : p start = true hstop : p stop = false h✝ : start < start.avg stop heq✝ : p (start.avg stop) = false ⊢ bisect h✝ hstart ⋯ < stop case isTrue.h_2 start stop : Nat p : Nat → Bool h : start < stop hstart : p start = true hstop : p stop = false h✝ : start < start.avg stop heq✝ : p (start.avg stop) = true ⊢ bisect ⋯ ⋯ hstop < stop
fc35ee5a21c978ac
Int.two_pow_two_pow_add_two_pow_two_pow
Mathlib/NumberTheory/Multiplicity.lean
theorem Int.two_pow_two_pow_add_two_pow_two_pow {x y : ℤ} (hx : ¬2 ∣ x) (hxy : 4 ∣ x - y) (i : ℕ) : emultiplicity 2 (x ^ 2 ^ i + y ^ 2 ^ i) = ↑(1 : ℕ)
x y : ℤ hx : ¬2 ∣ x hxy : 4 ∣ x - y i : ℕ ⊢ Odd x
rwa [← Int.not_even_iff_odd, even_iff_two_dvd]
no goals
c2c4f247c9f39fe5
Sigma.isConnected_iff
Mathlib/Topology/Connected/Clopen.lean
theorem Sigma.isConnected_iff [∀ i, TopologicalSpace (π i)] {s : Set (Σi, π i)} : IsConnected s ↔ ∃ i t, IsConnected t ∧ s = Sigma.mk i '' t
case refine_2.intro.intro.intro ι : Type u_1 π : ι → Type u_2 inst✝ : (i : ι) → TopologicalSpace (π i) i : ι t : Set (π i) ht : IsConnected t ⊢ IsConnected (mk i '' t)
exact ht.image _ continuous_sigmaMk.continuousOn
no goals
1455e050525a61d2
MeasureTheory.SignedMeasure.toJordanDecomposition_zero
Mathlib/MeasureTheory/Decomposition/Jordan.lean
theorem toJordanDecomposition_zero : (0 : SignedMeasure α).toJordanDecomposition = 0
case a α : Type u_1 inst✝ : MeasurableSpace α ⊢ (toJordanDecomposition 0).toSignedMeasure = toSignedMeasure 0
simp [toSignedMeasure_zero]
no goals
00269c9e6b672618
MeasureTheory.lintegral_comp_eq_lintegral_meas_le_mul_of_measurable
Mathlib/MeasureTheory/Integral/Layercake.lean
theorem lintegral_comp_eq_lintegral_meas_le_mul_of_measurable (μ : Measure α) (f_nn : 0 ≤ f) (f_mble : Measurable f) (g_intble : ∀ t > 0, IntervalIntegrable g volume 0 t) (g_mble : Measurable g) (g_nn : ∀ t > 0, 0 ≤ g t) : ∫⁻ ω, ENNReal.ofReal (∫ t in (0)..f ω, g t) ∂μ = ∫⁻ t in Ioi 0, μ {a : α | t ≤ f a} * ENNReal.ofReal (g t)
α : Type u_1 inst✝ : MeasurableSpace α f : α → ℝ g : ℝ → ℝ μ : Measure α f_nn : 0 ≤ f f_mble : Measurable f g_intble : ∀ t > 0, IntervalIntegrable g volume 0 t g_mble : Measurable g g_nn : ∀ t > 0, 0 ≤ g t f_nonneg : ∀ (ω : α), 0 ≤ f ω H1 : ¬g =ᶠ[ae (volume.restrict (Ioi 0))] 0 s : ℝ s_pos : s > 0 hs : 0 < ∫ (x : ℝ) in Ioc 0 s, g x ∂volume h's : μ {a | s < f a} = ⊤ A : ∫⁻ (t : ℝ) in Ioi 0, μ {a | t ≤ f a} * ENNReal.ofReal (g t) = ⊤ ⊢ ⊤ = ENNReal.ofReal (∫ (t : ℝ) in 0 ..s, g t) * ⊤
rw [ENNReal.mul_top]
α : Type u_1 inst✝ : MeasurableSpace α f : α → ℝ g : ℝ → ℝ μ : Measure α f_nn : 0 ≤ f f_mble : Measurable f g_intble : ∀ t > 0, IntervalIntegrable g volume 0 t g_mble : Measurable g g_nn : ∀ t > 0, 0 ≤ g t f_nonneg : ∀ (ω : α), 0 ≤ f ω H1 : ¬g =ᶠ[ae (volume.restrict (Ioi 0))] 0 s : ℝ s_pos : s > 0 hs : 0 < ∫ (x : ℝ) in Ioc 0 s, g x ∂volume h's : μ {a | s < f a} = ⊤ A : ∫⁻ (t : ℝ) in Ioi 0, μ {a | t ≤ f a} * ENNReal.ofReal (g t) = ⊤ ⊢ ENNReal.ofReal (∫ (t : ℝ) in 0 ..s, g t) ≠ 0
6098eac6b53bede3
OrthonormalBasis.volume_parallelepiped
Mathlib/MeasureTheory/Measure/Haar/InnerProductSpace.lean
theorem OrthonormalBasis.volume_parallelepiped (b : OrthonormalBasis ι ℝ F) : volume (parallelepiped b) = 1
ι : Type u_1 F : Type u_3 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : InnerProductSpace ℝ F inst✝³ : MeasurableSpace F inst✝² : BorelSpace F inst✝¹ : Fintype ι inst✝ : FiniteDimensional ℝ F b : OrthonormalBasis ι ℝ F this : Fact (finrank ℝ F = finrank ℝ F) ⊢ volume (parallelepiped ⇑b) = 1
let o := (stdOrthonormalBasis ℝ F).toBasis.orientation
ι : Type u_1 F : Type u_3 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : InnerProductSpace ℝ F inst✝³ : MeasurableSpace F inst✝² : BorelSpace F inst✝¹ : Fintype ι inst✝ : FiniteDimensional ℝ F b : OrthonormalBasis ι ℝ F this : Fact (finrank ℝ F = finrank ℝ F) o : Orientation ℝ F (Fin (finrank ℝ F)) := (stdOrthonormalBasis ℝ F).toBasis.orientation ⊢ volume (parallelepiped ⇑b) = 1
6ace9de66174bbdf
Ordnode.Raised.dist_le'
Mathlib/Data/Ordmap/Ordset.lean
theorem Raised.dist_le' {n m} (H : Raised n m) : Nat.dist m n ≤ 1
n m : ℕ H : Raised n m ⊢ m.dist n ≤ 1
rw [Nat.dist_comm]
n m : ℕ H : Raised n m ⊢ n.dist m ≤ 1
914217f208d8a07a
MeasureTheory.SimpleFunc.range_eq_empty_of_isEmpty
Mathlib/MeasureTheory/Function/SimpleFunc.lean
theorem range_eq_empty_of_isEmpty {β} [hα : IsEmpty α] (f : α →ₛ β) : f.range = ∅
case intro α : Type u_1 inst✝ : MeasurableSpace α β : Type u_5 hα : IsEmpty α f : α →ₛ β y : β hy_mem : y ∈ f.range ⊢ False
rw [SimpleFunc.mem_range, Set.mem_range] at hy_mem
case intro α : Type u_1 inst✝ : MeasurableSpace α β : Type u_5 hα : IsEmpty α f : α →ₛ β y : β hy_mem : ∃ y_1, f y_1 = y ⊢ False
ba9f32d2d6566746
PowerSeries.binomialSeries_nat
Mathlib/RingTheory/PowerSeries/Binomial.lean
@[simp] lemma binomialSeries_nat [CommRing A] (d : ℕ) : binomialSeries A (d : ℤ) = (1 + X) ^ d
case pos A : Type u_2 inst✝ : CommRing A d n : ℕ h : d < n k : ℕ hk : k ∈ range (d + 1) hkd : k ≤ d ⊢ (coeff A (n - k)) ↑(d.choose k) = 0
rw [← map_natCast (C A), coeff_ne_zero_C (by omega)]
no goals
41f98537d51fbeb7
PowerBasis.dim_le_natDegree_of_root
Mathlib/RingTheory/PowerBasis.lean
theorem dim_le_natDegree_of_root (pb : PowerBasis A S) {p : A[X]} (ne_zero : p ≠ 0) (root : aeval pb.gen p = 0) : pb.dim ≤ p.natDegree
S : Type u_2 inst✝² : Ring S A : Type u_4 inst✝¹ : CommRing A inst✝ : Algebra A S pb : PowerBasis A S p : A[X] ne_zero : p ≠ 0 root : (aeval pb.gen) p = 0 hlt : p.natDegree < pb.dim ⊢ ∑ i : Fin pb.dim, (monomial ↑i) (p.coeff ↑i) = 0
refine Fintype.sum_eq_zero _ fun i => ?_
S : Type u_2 inst✝² : Ring S A : Type u_4 inst✝¹ : CommRing A inst✝ : Algebra A S pb : PowerBasis A S p : A[X] ne_zero : p ≠ 0 root : (aeval pb.gen) p = 0 hlt : p.natDegree < pb.dim i : Fin pb.dim ⊢ (monomial ↑i) (p.coeff ↑i) = 0
ce294df16a59e170
CategoryTheory.Limits.IsBilimit.total
Mathlib/CategoryTheory/Preadditive/Biproducts.lean
theorem IsBilimit.total {f : J → C} {b : Bicone f} (i : b.IsBilimit) : ∑ j : J, b.π j ≫ b.ι j = 𝟙 b.pt := i.isLimit.hom_ext fun j => by classical cases j simp [sum_comp, b.ι_π, comp_dite]
C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preadditive C J : Type inst✝ : Fintype J f : J → C b : Bicone f i : b.IsBilimit j : Discrete J ⊢ (∑ j : J, b.π j ≫ b.ι j) ≫ b.toCone.π.app j = 𝟙 b.pt ≫ b.toCone.π.app j
cases j
case mk C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preadditive C J : Type inst✝ : Fintype J f : J → C b : Bicone f i : b.IsBilimit as✝ : J ⊢ (∑ j : J, b.π j ≫ b.ι j) ≫ b.toCone.π.app { as := as✝ } = 𝟙 b.pt ≫ b.toCone.π.app { as := as✝ }
2d1f111e47cc7625
Subgroup.SchurZassenhausInduction.step2
Mathlib/GroupTheory/SchurZassenhaus.lean
theorem step2 (K : Subgroup G) [K.Normal] (hK : K ≤ N) : K = ⊥ ∨ K = N
case intro.refine_2 G : Type u inst✝³ : Group G N : Subgroup G inst✝² : N.Normal h1 : (Nat.card ↥N).Coprime N.index h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Finite G'], Nat.card G' < Nat.card G → ∀ {N' : Subgroup G'} [inst_2 : N'.Normal], (Nat.card ↥N').Coprime N'.index → ∃ H', N'.IsComplement' H' h3 : ∀ (H : Subgroup G), ¬N.IsComplement' H inst✝¹ : Finite G K : Subgroup G inst✝ : K.Normal hK : K ≤ N this : Function.Surjective ⇑(QuotientGroup.mk' K) h4 : K ≠ ⊥ ∧ K ≠ N h5 : Nat.card (G ⧸ K) < Nat.card G h6 : (Nat.card ↥(map (QuotientGroup.mk' K) N)).Coprime (map (QuotientGroup.mk' K) N).index H : Subgroup (G ⧸ K) hH : (map (QuotientGroup.mk' K) N).IsComplement' H ⊢ comap (QuotientGroup.mk' K) H ≠ ⊤
rw [← comap_top (QuotientGroup.mk' K)]
case intro.refine_2 G : Type u inst✝³ : Group G N : Subgroup G inst✝² : N.Normal h1 : (Nat.card ↥N).Coprime N.index h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Finite G'], Nat.card G' < Nat.card G → ∀ {N' : Subgroup G'} [inst_2 : N'.Normal], (Nat.card ↥N').Coprime N'.index → ∃ H', N'.IsComplement' H' h3 : ∀ (H : Subgroup G), ¬N.IsComplement' H inst✝¹ : Finite G K : Subgroup G inst✝ : K.Normal hK : K ≤ N this : Function.Surjective ⇑(QuotientGroup.mk' K) h4 : K ≠ ⊥ ∧ K ≠ N h5 : Nat.card (G ⧸ K) < Nat.card G h6 : (Nat.card ↥(map (QuotientGroup.mk' K) N)).Coprime (map (QuotientGroup.mk' K) N).index H : Subgroup (G ⧸ K) hH : (map (QuotientGroup.mk' K) N).IsComplement' H ⊢ comap (QuotientGroup.mk' K) H ≠ comap (QuotientGroup.mk' K) ⊤
1296e7e9af1910d3
CategoryTheory.Paths.morphismProperty_eq_top
Mathlib/CategoryTheory/PathCategory/MorphismProperty.lean
/-- A reformulation of `CategoryTheory.Paths.induction` in terms of `MorphismProperty`. -/ lemma morphismProperty_eq_top (P : MorphismProperty (Paths V)) (id : ∀ {v : V}, P (𝟙 (of.obj v))) (comp : ∀ {u v w : V} (p : of.obj u ⟶ of.obj v) (q : v ⟶ w), P p → P (p ≫ of.map q)) : P = ⊤
V : Type u₁ inst✝ : Quiver V P : MorphismProperty (Paths V) id : ∀ {v : V}, P (𝟙 (of.obj v)) comp : ∀ {u v w : V} (p : of.obj u ⟶ of.obj v) (q : v ⟶ w), P p → P (p ≫ of.map q) ⊢ P = ⊤
ext
case h V : Type u₁ inst✝ : Quiver V P : MorphismProperty (Paths V) id : ∀ {v : V}, P (𝟙 (of.obj v)) comp : ∀ {u v w : V} (p : of.obj u ⟶ of.obj v) (q : v ⟶ w), P p → P (p ≫ of.map q) X✝ Y✝ : Paths V f✝ : X✝ ⟶ Y✝ ⊢ P f✝ ↔ ⊤ f✝
d99e50c08e2889c2
CategoryTheory.Pretriangulated.shiftFunctorAdd'_op_hom_app
Mathlib/CategoryTheory/Triangulated/Opposite/Basic.lean
lemma shiftFunctorAdd'_op_hom_app (X : Cᵒᵖ) (a₁ a₂ a₃ : ℤ) (h : a₁ + a₂ = a₃) (b₁ b₂ b₃ : ℤ) (h₁ : a₁ + b₁ = 0) (h₂ : a₂ + b₂ = 0) (h₃ : a₃ + b₃ = 0) : (shiftFunctorAdd' Cᵒᵖ a₁ a₂ a₃ h).hom.app X = (shiftFunctorOpIso C _ _ h₃).hom.app X ≫ ((shiftFunctorAdd' C b₁ b₂ b₃ (by omega)).inv.app X.unop).op ≫ (shiftFunctorOpIso C _ _ h₂).inv.app _ ≫ (shiftFunctor Cᵒᵖ a₂).map ((shiftFunctorOpIso C _ _ h₁).inv.app X)
C : Type u_1 inst✝¹ : Category.{?u.8759, u_1} C inst✝ : HasShift C ℤ X : Cᵒᵖ a₁ a₂ a₃ : ℤ h : a₁ + a₂ = a₃ b₁ b₂ b₃ : ℤ h₁ : a₁ + b₁ = 0 h₂ : a₂ + b₂ = 0 h₃ : a₃ + b₃ = 0 ⊢ b₁ + b₂ = b₃
omega
no goals
b022e71c424a408a
Matrix.zero_vecMul
Mathlib/Data/Matrix/Mul.lean
theorem zero_vecMul [Fintype m] (A : Matrix m n α) : 0 ᵥ* A = 0
m : Type u_2 n : Type u_3 α : Type v inst✝¹ : NonUnitalNonAssocSemiring α inst✝ : Fintype m A : Matrix m n α ⊢ 0 ᵥ* A = 0
ext
case h m : Type u_2 n : Type u_3 α : Type v inst✝¹ : NonUnitalNonAssocSemiring α inst✝ : Fintype m A : Matrix m n α x✝ : n ⊢ (0 ᵥ* A) x✝ = 0 x✝
6f71e2a75f0cc832
hasSum_one_div_nat_pow_mul_sin
Mathlib/NumberTheory/ZetaValues.lean
theorem hasSum_one_div_nat_pow_mul_sin {k : ℕ} (hk : k ≠ 0) {x : ℝ} (hx : x ∈ Icc (0 : ℝ) 1) : HasSum (fun n : ℕ => 1 / (n : ℝ) ^ (2 * k + 1) * Real.sin (2 * π * n * x)) ((-1 : ℝ) ^ (k + 1) * (2 * π) ^ (2 * k + 1) / 2 / (2 * k + 1)! * (Polynomial.map (algebraMap ℚ ℝ) (Polynomial.bernoulli (2 * k + 1))).eval x)
case h.e'_6 k : ℕ hk : k ≠ 0 x : ℝ hx : x ∈ Icc 0 1 ⊢ (-1) ^ (k + 1) * I * (2 * ↑π) ^ (2 * k + 1) / ↑(2 * k + 1)! * ↑(bernoulliFun (2 * k + 1) x) = -(2 * ↑π * I) ^ (2 * k + 1) / ↑(2 * k + 1)! * ↑(bernoulliFun (2 * k + 1) x)
congr
case h.e'_6.e_a.e_a k : ℕ hk : k ≠ 0 x : ℝ hx : x ∈ Icc 0 1 ⊢ (-1) ^ (k + 1) * I * (2 * ↑π) ^ (2 * k + 1) = -(2 * ↑π * I) ^ (2 * k + 1)
4ffa37bf4994910e
iSup_ge_eq_iSup_nat_add
Mathlib/Order/CompleteLattice.lean
theorem iSup_ge_eq_iSup_nat_add (u : ℕ → α) (n : ℕ) : ⨆ i ≥ n, u i = ⨆ i, u (i + n)
case a α : Type u_1 inst✝ : CompleteLattice α u : ℕ → α n : ℕ ⊢ ∀ (i : ℕ), u (i + n) ≤ ⨆ i, ⨆ (_ : i ≥ n), u i
exact fun i => le_sSup ⟨i + n, iSup_pos (Nat.le_add_left _ _)⟩
no goals
bc70894f4edb606a
Perfect.exists_nat_bool_injection
Mathlib/Topology/MetricSpace/Perfect.lean
theorem Perfect.exists_nat_bool_injection (hC : Perfect C) (hnonempty : C.Nonempty) [CompleteSpace α] : ∃ f : (ℕ → Bool) → α, range f ⊆ C ∧ Continuous f ∧ Injective f
case property α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C hnonempty : C.Nonempty inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (nhds 0) upos : ∀ (n : ℕ), 0 < u n P : Type (max 0 u_1) := { E // Perfect E ∧ E.Nonempty } C0 C1 : {C : Set α} → Perfect C → C.Nonempty → {ε : ℝ≥0∞} → 0 < ε → Set α h0 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : C.Nonempty) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C0 hC hnonempty hε) ∧ (C0 hC hnonempty hε).Nonempty ∧ C0 hC hnonempty hε ⊆ C ∧ EMetric.diam (C0 hC hnonempty hε) ≤ ε h1 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : C.Nonempty) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C1 hC hnonempty hε) ∧ (C1 hC hnonempty hε).Nonempty ∧ C1 hC hnonempty hε ⊆ C ∧ EMetric.diam (C1 hC hnonempty hε) ≤ ε hdisj : ∀ {C : Set α} (hC : Perfect C) (hnonempty : C.Nonempty) {ε : ℝ≥0∞} (hε : 0 < ε), Disjoint (C0 hC hnonempty hε) (C1 hC hnonempty hε) l : List Bool ih : P ⊢ Perfect (C1 ⋯ ⋯ ⋯) ∧ (C1 ⋯ ⋯ ⋯).Nonempty
exact ⟨(h1 _ _ _).1, (h1 _ _ _).2.1⟩
no goals
ef9f9f33b845189a
Ordinal.isNormal_preOmega
Mathlib/SetTheory/Cardinal/Aleph.lean
theorem isNormal_preOmega : IsNormal preOmega
o : Ordinal.{u_1} ho : o.IsLimit a : Ordinal.{u_1} ha : ∀ b < o, preOmega b ≤ a b : Ordinal.{u_1} hb : b < o ⊢ (preOmega b).card < a.card
apply lt_of_lt_of_le _ (card_le_card <| ha _ (ho.succ_lt hb))
o : Ordinal.{u_1} ho : o.IsLimit a : Ordinal.{u_1} ha : ∀ b < o, preOmega b ≤ a b : Ordinal.{u_1} hb : b < o ⊢ (preOmega b).card < (preOmega (succ b)).card
a6ce36b2d6f95c46
MvPolynomial.isWeightedHomogeneous_monomial
Mathlib/RingTheory/MvPolynomial/WeightedHomogeneous.lean
theorem isWeightedHomogeneous_monomial (w : σ → M) (d : σ →₀ ℕ) (r : R) {m : M} (hm : weight w d = m) : IsWeightedHomogeneous w (monomial d r) m
R : Type u_1 M : Type u_2 inst✝¹ : CommSemiring R σ : Type u_3 inst✝ : AddCommMonoid M w : σ → M d : σ →₀ ℕ r : R m : M hm : (weight w) d = m c : σ →₀ ℕ hc : coeff c ((monomial d) r) ≠ 0 ⊢ (weight w) c = m
rw [coeff_monomial] at hc
R : Type u_1 M : Type u_2 inst✝¹ : CommSemiring R σ : Type u_3 inst✝ : AddCommMonoid M w : σ → M d : σ →₀ ℕ r : R m : M hm : (weight w) d = m c : σ →₀ ℕ hc : (if d = c then r else 0) ≠ 0 ⊢ (weight w) c = m
8e3ee3ec219eecc4
csSup_mem_of_not_isSuccPrelimit
Mathlib/Order/SuccPred/CompleteLinearOrder.lean
lemma csSup_mem_of_not_isSuccPrelimit (hne : s.Nonempty) (hbdd : BddAbove s) (hlim : ¬ IsSuccPrelimit (sSup s)) : sSup s ∈ s
α : Type u_2 inst✝ : ConditionallyCompleteLinearOrder α s : Set α hne : s.Nonempty hbdd : BddAbove s hlim : ¬IsSuccPrelimit (sSup s) ⊢ sSup s ∈ s
obtain ⟨y, hy⟩ := not_forall_not.mp hlim
case intro α : Type u_2 inst✝ : ConditionallyCompleteLinearOrder α s : Set α hne : s.Nonempty hbdd : BddAbove s hlim : ¬IsSuccPrelimit (sSup s) y : α hy : y ⋖ sSup s ⊢ sSup s ∈ s
f419e4f7b2c0f097
Real.b_ne_one'
Mathlib/Analysis/SpecialFunctions/Log/Base.lean
theorem b_ne_one' : b ≠ 1
b : ℝ hb : 1 < b ⊢ b ≠ 1
linarith
no goals
f91dfa1112df941b
List.Vector.eraseIdx_insertIdx'
Mathlib/Data/Vector/Basic.lean
theorem eraseIdx_insertIdx' {v : Vector α (n + 1)} : ∀ {i : Fin (n + 1)} {j : Fin (n + 2)}, eraseIdx (j.succAbove i) (insertIdx a j v) = insertIdx a (i.predAbove j) (eraseIdx i v) | ⟨i, hi⟩, ⟨j, hj⟩ => by dsimp [insertIdx, eraseIdx, Fin.succAbove, Fin.predAbove] rw [Subtype.mk_eq_mk] simp only [Fin.lt_iff_val_lt_val] split_ifs with hij · rcases Nat.exists_eq_succ_of_ne_zero (Nat.pos_iff_ne_zero.1 (lt_of_le_of_lt (Nat.zero_le _) hij)) with ⟨j, rfl⟩ rw [← List.insertIdx_eraseIdx_of_ge] · simp; rfl · simpa · simpa [Nat.lt_succ_iff] using hij · dsimp rw [← List.insertIdx_eraseIdx_of_le i j _ _ _] · rfl · simpa · simpa [not_lt] using hij
α : Type u_1 n : ℕ a : α v : Vector α (n + 1) i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 2 ⊢ (List.insertIdx j a ↑v).eraseIdx ↑(if i < j then ⟨i, ⋯⟩ else ⟨i + 1, ⋯⟩) = List.insertIdx (↑(if h : i < j then ⟨j, hj⟩.pred ⋯ else ⟨j, hj⟩.castPred ⋯)) a ↑(match v with | ⟨l, p⟩ => ⟨l.eraseIdx i, ⋯⟩)
split_ifs with hij
case pos α : Type u_1 n : ℕ a : α v : Vector α (n + 1) i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 2 hij : i < j ⊢ (List.insertIdx j a ↑v).eraseIdx ↑⟨i, ⋯⟩ = List.insertIdx (↑(⟨j, hj⟩.pred ⋯)) a ↑(match v with | ⟨l, p⟩ => ⟨l.eraseIdx i, ⋯⟩) case neg α : Type u_1 n : ℕ a : α v : Vector α (n + 1) i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 2 hij : ¬i < j ⊢ (List.insertIdx j a ↑v).eraseIdx ↑⟨i + 1, ⋯⟩ = List.insertIdx (↑(⟨j, hj⟩.castPred ⋯)) a ↑(match v with | ⟨l, p⟩ => ⟨l.eraseIdx i, ⋯⟩)
8db247d22bea6750
MeasureTheory.setToFun_neg
Mathlib/MeasureTheory/Integral/SetToL1.lean
theorem setToFun_neg (hT : DominatedFinMeasAdditive μ T C) (f : α → E) : setToFun μ T hT (-f) = -setToFun μ T hT f
case neg α : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F m : MeasurableSpace α μ : Measure α inst✝ : CompleteSpace F T : Set α → E →L[ℝ] F C : ℝ hT : DominatedFinMeasAdditive μ T C f : α → E hf : ¬Integrable f μ ⊢ ¬Integrable (-f) μ
rwa [← integrable_neg_iff] at hf
no goals
ac93434dec24c688
RingHom.OfLocalizationSpanTarget.ofIsLocalization
Mathlib/RingTheory/LocalProperties/Basic.lean
lemma RingHom.OfLocalizationSpanTarget.ofIsLocalization (hP : RingHom.OfLocalizationSpanTarget P) (hP' : RingHom.RespectsIso P) {R S : Type u} [CommRing R] [CommRing S] (f : R →+* S) (s : Set S) (hs : Ideal.span s = ⊤) (hT : ∀ r : s, ∃ (T : Type u) (_ : CommRing T) (_ : Algebra S T) (_ : IsLocalization.Away (r : S) T), P ((algebraMap S T).comp f)) : P f
case intro.intro.intro.intro P : {R S : Type u} → [inst : CommRing R] → [inst_1 : CommRing S] → (R →+* S) → Prop hP : OfLocalizationSpanTarget fun {R S} [CommRing R] [CommRing S] => P hP' : RespectsIso fun {R S} [CommRing R] [CommRing S] => P R S : Type u inst✝¹ : CommRing R inst✝ : CommRing S f : R →+* S s : Set S hs : Ideal.span s = ⊤ hT✝ : ∀ (r : ↑s), ∃ T x x_1, ∃ (_ : IsLocalization.Away (↑r) T), P ((algebraMap S T).comp f) r : ↑s T : Type u w✝² : CommRing T w✝¹ : Algebra S T w✝ : IsLocalization.Away (↑r) T hT : P ((algebraMap S T).comp f) ⊢ P ((algebraMap S (Localization.Away ↑r)).comp f)
convert hP'.1 _ (Localization.algEquiv (R := S) (Submonoid.powers (r : S)) T).symm.toRingEquiv hT
case h.e'_5 P : {R S : Type u} → [inst : CommRing R] → [inst_1 : CommRing S] → (R →+* S) → Prop hP : OfLocalizationSpanTarget fun {R S} [CommRing R] [CommRing S] => P hP' : RespectsIso fun {R S} [CommRing R] [CommRing S] => P R S : Type u inst✝¹ : CommRing R inst✝ : CommRing S f : R →+* S s : Set S hs : Ideal.span s = ⊤ hT✝ : ∀ (r : ↑s), ∃ T x x_1, ∃ (_ : IsLocalization.Away (↑r) T), P ((algebraMap S T).comp f) r : ↑s T : Type u w✝² : CommRing T w✝¹ : Algebra S T w✝ : IsLocalization.Away (↑r) T hT : P ((algebraMap S T).comp f) ⊢ (algebraMap S (Localization.Away ↑r)).comp f = (Localization.algEquiv (Submonoid.powers ↑r) T).symm.toRingEquiv.toRingHom.comp ((algebraMap S T).comp f)
e05ee18a3e87f750
ENNReal.mul_div_cancel_right
Mathlib/Data/ENNReal/Inv.lean
/-- See `ENNReal.mul_div_cancel_right'` for a stronger version. -/ protected lemma mul_div_cancel_right (hb₀ : b ≠ 0) (hb : b ≠ ∞) : a * b / b = a := ENNReal.mul_div_cancel_right' (by simp [hb₀]) (by simp [hb])
a b : ℝ≥0∞ hb₀ : b ≠ 0 hb : b ≠ ⊤ ⊢ b = ⊤ → a = 0
simp [hb]
no goals
39621360c887d130
GaussianInt.mod_four_eq_three_of_nat_prime_of_prime
Mathlib/NumberTheory/Zsqrtd/QuadraticReciprocity.lean
theorem mod_four_eq_three_of_nat_prime_of_prime (p : ℕ) [hp : Fact p.Prime] (hpi : Prime (p : ℤ[i])) : p % 4 = 3 := hp.1.eq_two_or_odd.elim (fun hp2 => by have := hpi.irreducible.isUnit_or_isUnit (a := ⟨1, 1⟩) (b := ⟨1, -1⟩) simp [hp2, Zsqrtd.ext_iff, ← norm_eq_one_iff, norm_def] at this) fun hp1 => by_contradiction fun hp3 : p % 4 ≠ 3 => by have hp41 : p % 4 = 1
p : ℕ hp : Fact (Nat.Prime p) hpi : Prime ↑p hp1 : p % 2 = 1 hp3 : p % 4 ≠ 3 hp41 : p % 4 = 1 k : ZMod p hk : -1 = k * k ⊢ False
obtain ⟨k, k_lt_p, rfl⟩ : ∃ (k' : ℕ) (_ : k' < p), (k' : ZMod p) = k := by exact ⟨k.val, k.val_lt, ZMod.natCast_zmod_val k⟩
case intro.intro p : ℕ hp : Fact (Nat.Prime p) hpi : Prime ↑p hp1 : p % 2 = 1 hp3 : p % 4 ≠ 3 hp41 : p % 4 = 1 k : ℕ k_lt_p : k < p hk : -1 = ↑k * ↑k ⊢ False
9ab49eaa8ecd58e2
MvQPF.wEquiv.symm
Mathlib/Data/QPF/Multivariate/Constructions/Fix.lean
theorem wEquiv.symm {α : TypeVec n} (x y : q.P.W α) : WEquiv x y → WEquiv y x
case trans n : ℕ F : TypeVec.{u} (n + 1) → Type u q : MvQPF F α : TypeVec.{u} n x✝ y✝ x y z : (P F).W α _e₁ : WEquiv x y _e₂ : WEquiv y z ih₁ : WEquiv y x ih₂ : WEquiv z y ⊢ WEquiv z x
exact MvQPF.WEquiv.trans _ _ _ ih₂ ih₁
no goals
1c556c738b614841
RegularExpression.star_rmatch_iff
Mathlib/Computability/RegularExpressions.lean
theorem star_rmatch_iff (P : RegularExpression α) : ∀ x : List α, (star P).rmatch x ↔ ∃ S : List (List α), x = S.flatten ∧ ∀ t ∈ S, t ≠ [] ∧ P.rmatch t := fun x => by have IH := fun t (_h : List.length t < List.length x) => star_rmatch_iff P t clear star_rmatch_iff constructor · rcases x with - | ⟨a, x⟩ · intro _h use []; dsimp; tauto · rw [rmatch, deriv, mul_rmatch_iff] rintro ⟨t, u, hs, ht, hu⟩ have hwf : u.length < (List.cons a x).length
α : Type u_1 inst✝ : DecidableEq α P : RegularExpression α a : α x : List α IH : ∀ (t : List α), t.length < (a :: x).length → (P.star.rmatch t = true ↔ ∃ S, t = S.flatten ∧ ∀ t ∈ S, t ≠ [] ∧ P.rmatch t = true) U : List (List α) b : α t : List α helem : ∀ t_1 ∈ (b :: t) :: U, t_1 ≠ [] ∧ P.rmatch t_1 = true hsum : a = b ∧ x = t ++ U.flatten ⊢ U.flatten.length < (a :: x).length
rw [hsum.1, hsum.2]
α : Type u_1 inst✝ : DecidableEq α P : RegularExpression α a : α x : List α IH : ∀ (t : List α), t.length < (a :: x).length → (P.star.rmatch t = true ↔ ∃ S, t = S.flatten ∧ ∀ t ∈ S, t ≠ [] ∧ P.rmatch t = true) U : List (List α) b : α t : List α helem : ∀ t_1 ∈ (b :: t) :: U, t_1 ≠ [] ∧ P.rmatch t_1 = true hsum : a = b ∧ x = t ++ U.flatten ⊢ U.flatten.length < (b :: (t ++ U.flatten)).length
8215ce2ddbd6bd2a
tendsto_integral_mulExpNegMulSq_comp
Mathlib/Analysis/SpecialFunctions/MulExpNegMulSqIntegral.lean
theorem tendsto_integral_mulExpNegMulSq_comp (g : E →ᵇ ℝ) : Tendsto (fun ε => ∫ x, mulExpNegMulSq ε (g x) ∂P) (𝓝[>] 0) (𝓝 (∫ x, g x ∂P))
case a.intro E : Type u_1 inst✝³ : TopologicalSpace E inst✝² : MeasurableSpace E inst✝¹ : BorelSpace E P : Measure E inst✝ : IsFiniteMeasure P g : E →ᵇ ℝ u : ℕ → ℝ hu : Tendsto u atTop (𝓝[>] 0) N : ℕ hupos : ∀ b ≥ N, u b ∈ Set.Ioi 0 ⊢ Tendsto ((fun ε => ∫ (x : E), ε.mulExpNegMulSq (g x) ∂P) ∘ u) atTop (𝓝 (∫ (x : E), g x ∂P))
apply tendsto_integral_filter_of_norm_le_const ?h_meas ?h_bound ?h_lim
case h_meas E : Type u_1 inst✝³ : TopologicalSpace E inst✝² : MeasurableSpace E inst✝¹ : BorelSpace E P : Measure E inst✝ : IsFiniteMeasure P g : E →ᵇ ℝ u : ℕ → ℝ hu : Tendsto u atTop (𝓝[>] 0) N : ℕ hupos : ∀ b ≥ N, u b ∈ Set.Ioi 0 ⊢ ∀ᶠ (n : ℕ) in atTop, AEStronglyMeasurable (fun ω => (u n).mulExpNegMulSq (g ω)) P case h_bound E : Type u_1 inst✝³ : TopologicalSpace E inst✝² : MeasurableSpace E inst✝¹ : BorelSpace E P : Measure E inst✝ : IsFiniteMeasure P g : E →ᵇ ℝ u : ℕ → ℝ hu : Tendsto u atTop (𝓝[>] 0) N : ℕ hupos : ∀ b ≥ N, u b ∈ Set.Ioi 0 ⊢ ∃ C, ∀ᶠ (n : ℕ) in atTop, ∀ᵐ (ω : E) ∂P, ‖(u n).mulExpNegMulSq (g ω)‖ ≤ C case h_lim E : Type u_1 inst✝³ : TopologicalSpace E inst✝² : MeasurableSpace E inst✝¹ : BorelSpace E P : Measure E inst✝ : IsFiniteMeasure P g : E →ᵇ ℝ u : ℕ → ℝ hu : Tendsto u atTop (𝓝[>] 0) N : ℕ hupos : ∀ b ≥ N, u b ∈ Set.Ioi 0 ⊢ ∀ᵐ (ω : E) ∂P, Tendsto (fun n => (u n).mulExpNegMulSq (g ω)) atTop (𝓝 (g ω))
9677e28f00b7be5e
MeasureTheory.lintegral_lintegral_mul_inv
Mathlib/MeasureTheory/Group/Prod.lean
theorem lintegral_lintegral_mul_inv [IsMulLeftInvariant ν] (f : G → G → ℝ≥0∞) (hf : AEMeasurable (uncurry f) (μ.prod ν)) : (∫⁻ x, ∫⁻ y, f (y * x) x⁻¹ ∂ν ∂μ) = ∫⁻ x, ∫⁻ y, f x y ∂ν ∂μ
G : Type u_1 inst✝⁷ : MeasurableSpace G inst✝⁶ : Group G inst✝⁵ : MeasurableMul₂ G μ ν : Measure G inst✝⁴ : SFinite ν inst✝³ : SFinite μ inst✝² : MeasurableInv G inst✝¹ : μ.IsMulLeftInvariant inst✝ : ν.IsMulLeftInvariant f : G → G → ℝ≥0∞ hf : AEMeasurable (uncurry f) (μ.prod ν) h : Measurable fun z => (z.2 * z.1, z.1⁻¹) h2f : AEMeasurable (uncurry fun x y => f (y * x) x⁻¹) (μ.prod ν) ⊢ ∫⁻ (z : G × G), f (z.2 * z.1) z.1⁻¹ ∂μ.prod ν = ∫⁻ (z : G × G), f z.1 z.2 ∂μ.prod ν
conv_rhs => rw [← (measurePreserving_mul_prod_inv μ ν).map_eq]
G : Type u_1 inst✝⁷ : MeasurableSpace G inst✝⁶ : Group G inst✝⁵ : MeasurableMul₂ G μ ν : Measure G inst✝⁴ : SFinite ν inst✝³ : SFinite μ inst✝² : MeasurableInv G inst✝¹ : μ.IsMulLeftInvariant inst✝ : ν.IsMulLeftInvariant f : G → G → ℝ≥0∞ hf : AEMeasurable (uncurry f) (μ.prod ν) h : Measurable fun z => (z.2 * z.1, z.1⁻¹) h2f : AEMeasurable (uncurry fun x y => f (y * x) x⁻¹) (μ.prod ν) ⊢ ∫⁻ (z : G × G), f (z.2 * z.1) z.1⁻¹ ∂μ.prod ν = ∫⁻ (z : G × G), f z.1 z.2 ∂map (fun z => (z.2 * z.1, z.1⁻¹)) (μ.prod ν)
5030442f8dec594f
AffineSubspace.direction_affineSpan_insert
Mathlib/LinearAlgebra/AffineSpace/AffineSubspace/Basic.lean
theorem direction_affineSpan_insert {s : AffineSubspace k P} {p₁ p₂ : P} (hp₁ : p₁ ∈ s) : (affineSpan k (insert p₂ (s : Set P))).direction = Submodule.span k {p₂ -ᵥ p₁} ⊔ s.direction
k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : AffineSubspace k P p₁ p₂ : P hp₁ : p₁ ∈ s ⊢ (affineSpan k (↑s ∪ ↑(affineSpan k {p₂}))).direction = s.direction ⊔ Submodule.span k {p₂ -ᵥ p₁}
change (s ⊔ affineSpan k {p₂}).direction = _
k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : AffineSubspace k P p₁ p₂ : P hp₁ : p₁ ∈ s ⊢ (s ⊔ affineSpan k {p₂}).direction = s.direction ⊔ Submodule.span k {p₂ -ᵥ p₁}
35d3596013473b81
Nat.Partrec.Code.evaln_sound
Mathlib/Computability/PartrecCode.lean
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n | 0, _, n, x, h => by simp [evaln] at h | k + 1, c, n, x, h => by induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;> simp [eval, evaln, Option.bind_eq_some, Seq.seq] at h ⊢ <;> obtain ⟨_, h⟩ := h iterate 4 simpa [pure, PFun.pure, eq_comm] using h · -- pair cf cg rcases h with ⟨y, ef, z, eg, rfl⟩ exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩ · --comp hf hg rcases h with ⟨y, eg, ef⟩ exact ⟨_, hg _ _ eg, hf _ _ ef⟩ · -- prec cf cg revert h induction' n.unpair.2 with m IH generalizing x <;> simp [Option.bind_eq_some] · apply hf · refine fun y h₁ h₂ => ⟨y, IH _ ?_, ?_⟩ · have := evaln_mono k.le_succ h₁ simp [evaln, Option.bind_eq_some] at this exact this.2 · exact hg _ _ h₂ · -- rfind' cf rcases h with ⟨m, h₁, h₂⟩ by_cases m0 : m = 0 <;> simp [m0] at h₂ · exact ⟨0, ⟨by simpa [m0] using hf _ _ h₁, fun {m} => (Nat.not_lt_zero _).elim⟩, by simp [h₂]⟩ · have := evaln_sound h₂ simp [eval] at this rcases this with ⟨y, ⟨hy₁, hy₂⟩, rfl⟩ refine ⟨y + 1, ⟨by simpa [add_comm, add_left_comm] using hy₁, fun {i} im => ?_⟩, by simp [add_comm, add_left_comm]⟩ rcases i with - | i · exact ⟨m, by simpa using hf _ _ h₁, m0⟩ · rcases hy₂ (Nat.lt_of_succ_lt_succ im) with ⟨z, hz, z0⟩ exact ⟨z, by simpa [add_comm, add_left_comm] using hz, z0⟩
k : ℕ cf : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ cf.eval n n : ℕ left✝ : n ≤ k m : ℕ h₁ : evaln (k + 1) cf n = some m m0 : ¬m = 0 y : ℕ hy₁ : 0 ∈ cf.eval (Nat.pair (unpair n).1 (y + ((unpair n).2 + 1))) hy₂ : ∀ {m : ℕ}, m < y → ∃ a ∈ cf.eval (Nat.pair (unpair n).1 (m + ((unpair n).2 + 1))), ¬a = 0 h₂ : evaln k cf.rfind' (Nat.pair (unpair n).1 ((unpair n).2 + 1)) = some (y + ((unpair n).2 + 1)) i : ℕ im : i + 1 < y + 1 z : ℕ hz : z ∈ cf.eval (Nat.pair (unpair n).1 (i + ((unpair n).2 + 1))) z0 : ¬z = 0 ⊢ z ∈ cf.eval (Nat.pair (unpair n).1 (i + 1 + (unpair n).2))
simpa [add_comm, add_left_comm] using hz
no goals
0a43fa3ebdc9ae7d
Asymptotics.IsBigOWith.prod_left_same
Mathlib/Analysis/Asymptotics/Defs.lean
theorem IsBigOWith.prod_left_same (hf : IsBigOWith c l f' k') (hg : IsBigOWith c l g' k') : IsBigOWith c l (fun x => (f' x, g' x)) k'
α : Type u_1 E' : Type u_6 F' : Type u_7 G' : Type u_8 inst✝² : SeminormedAddCommGroup E' inst✝¹ : SeminormedAddCommGroup F' inst✝ : SeminormedAddCommGroup G' c : ℝ f' : α → E' g' : α → F' k' : α → G' l : Filter α hf : IsBigOWith c l f' k' hg : IsBigOWith c l g' k' ⊢ IsBigOWith c l (fun x => (f' x, g' x)) k'
rw [isBigOWith_iff] at *
α : Type u_1 E' : Type u_6 F' : Type u_7 G' : Type u_8 inst✝² : SeminormedAddCommGroup E' inst✝¹ : SeminormedAddCommGroup F' inst✝ : SeminormedAddCommGroup G' c : ℝ f' : α → E' g' : α → F' k' : α → G' l : Filter α hf : ∀ᶠ (x : α) in l, ‖f' x‖ ≤ c * ‖k' x‖ hg : ∀ᶠ (x : α) in l, ‖g' x‖ ≤ c * ‖k' x‖ ⊢ ∀ᶠ (x : α) in l, ‖(f' x, g' x)‖ ≤ c * ‖k' x‖
4d78b2c090b9c6ef
MvPolynomial.IsWeightedHomogeneous.weightedHomogeneousComponent_same
Mathlib/RingTheory/MvPolynomial/WeightedHomogeneous.lean
theorem IsWeightedHomogeneous.weightedHomogeneousComponent_same {m : M} {p : MvPolynomial σ R} (hp : IsWeightedHomogeneous w p m) : weightedHomogeneousComponent w m p = p
case a R : Type u_1 M : Type u_2 inst✝¹ : CommSemiring R σ : Type u_3 inst✝ : AddCommMonoid M w : σ → M m : M p : MvPolynomial σ R hp : IsWeightedHomogeneous w p m x : σ →₀ ℕ ⊢ (if (weight w) x = m then coeff x p else 0) = coeff x p
by_cases zero_coeff : coeff x p = 0
case pos R : Type u_1 M : Type u_2 inst✝¹ : CommSemiring R σ : Type u_3 inst✝ : AddCommMonoid M w : σ → M m : M p : MvPolynomial σ R hp : IsWeightedHomogeneous w p m x : σ →₀ ℕ zero_coeff : coeff x p = 0 ⊢ (if (weight w) x = m then coeff x p else 0) = coeff x p case neg R : Type u_1 M : Type u_2 inst✝¹ : CommSemiring R σ : Type u_3 inst✝ : AddCommMonoid M w : σ → M m : M p : MvPolynomial σ R hp : IsWeightedHomogeneous w p m x : σ →₀ ℕ zero_coeff : ¬coeff x p = 0 ⊢ (if (weight w) x = m then coeff x p else 0) = coeff x p
61924f9884b810f2
Algebra.FormallyEtale.iff_exists_algEquiv_prod
Mathlib/RingTheory/Etale/Field.lean
theorem iff_exists_algEquiv_prod [EssFiniteType K A] : FormallyEtale K A ↔ ∃ (I : Type u) (_ : Finite I) (Ai : I → Type u) (_ : ∀ i, Field (Ai i)) (_ : ∀ i, Algebra K (Ai i)) (_ : A ≃ₐ[K] Π i, Ai i), ∀ i, Algebra.IsSeparable K (Ai i)
K A : Type u inst✝³ : Field K inst✝² : CommRing A inst✝¹ : Algebra K A inst✝ : EssFiniteType K A I : Type u w✝² : Finite I Ai : I → Type u w✝¹ : (i : I) → Field (Ai i) w✝ : (i : I) → Algebra K (Ai i) e : A ≃ₐ[K] (i : I) → Ai i h✝ : ∀ (i : I), Algebra.IsSeparable K (Ai i) i : I this✝¹ : Algebra A (Ai i) := ((Pi.evalRingHom Ai i).comp e.toRingEquiv.toRingHom).toAlgebra this✝ : IsScalarTower K A (Ai i) this : FiniteType A (Ai i) ⊢ EssFiniteType K (Ai i)
exact EssFiniteType.comp K A (Ai i)
no goals
bed71e21534c428f
DualNumber.isMaximal_span_singleton_eps
Mathlib/RingTheory/DualNumber.lean
lemma isMaximal_span_singleton_eps [DivisionRing K] : (Ideal.span {ε} : Ideal K[ε]).IsMaximal
case refine_2.inr.inr K : Type u_2 inst✝ : DivisionRing K hI : Ideal.span {ε} < ⊤ ⊢ ⊤ = ⊤
simp
no goals
4856da4c4e023ce4
GromovHausdorff.toGHSpace_eq_toGHSpace_iff_isometryEquiv
Mathlib/Topology/MetricSpace/GromovHausdorff.lean
theorem toGHSpace_eq_toGHSpace_iff_isometryEquiv {X : Type u} [MetricSpace X] [CompactSpace X] [Nonempty X] {Y : Type v} [MetricSpace Y] [CompactSpace Y] [Nonempty Y] : toGHSpace X = toGHSpace Y ↔ Nonempty (X ≃ᵢ Y) := ⟨by simp only [toGHSpace] rw [Quotient.eq] rintro ⟨e⟩ have I : (NonemptyCompacts.kuratowskiEmbedding X ≃ᵢ NonemptyCompacts.kuratowskiEmbedding Y) = (range (kuratowskiEmbedding X) ≃ᵢ range (kuratowskiEmbedding Y))
X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y ⊢ ⟦NonemptyCompacts.kuratowskiEmbedding X⟧ = ⟦NonemptyCompacts.kuratowskiEmbedding Y⟧ → Nonempty (X ≃ᵢ Y)
rw [Quotient.eq]
X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y ⊢ IsometryRel.setoid (NonemptyCompacts.kuratowskiEmbedding X) (NonemptyCompacts.kuratowskiEmbedding Y) → Nonempty (X ≃ᵢ Y)
458e5e4306906052
Turing.PartrecToTM2.tr_ret_respects
Mathlib/Computability/TMToPartrec.lean
theorem tr_ret_respects (k v s) : ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) ⟨some (Λ'.ret (trCont k)), s, K'.elim (trList v) [] [] (trContStack k)⟩ b₂
case fix f : Code k : Cont IH : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' this : if v.headI = 0 then natEnd (trList v).head?.iget = true ∧ (trList v).tail = trList v.tail else natEnd (trList v).head?.iget = false ∧ (trList v).tail = (trNat v.headI).tail ++ Γ'.cons :: trList v.tail ⊢ ∃ b₂, TrCfg (if v.headI = 0 then stepRet k v.tail else stepNormal f (Cont.fix f k) v.tail) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont (Cont.fix f k))), var := s, stk := elim (trList v) [] [] (trContStack (Cont.fix f k)) } b₂
by_cases h : v.headI = 0 <;> simp only [h, ite_true, ite_false] at this ⊢
case pos f : Code k : Cont IH : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' h : v.headI = 0 this : natEnd (trList v).head?.iget = true ∧ (trList v).tail = trList v.tail ⊢ ∃ b₂, TrCfg (stepRet k v.tail) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont (Cont.fix f k))), var := s, stk := elim (trList v) [] [] (trContStack (Cont.fix f k)) } b₂ case neg f : Code k : Cont IH : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' h : ¬v.headI = 0 this : natEnd (trList v).head?.iget = false ∧ (trList v).tail = (trNat v.headI).tail ++ Γ'.cons :: trList v.tail ⊢ ∃ b₂, TrCfg (stepNormal f (Cont.fix f k) v.tail) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont (Cont.fix f k))), var := s, stk := elim (trList v) [] [] (trContStack (Cont.fix f k)) } b₂
5079d8447f8a95d7
hasFDerivWithinAt_closure_of_tendsto_fderiv
Mathlib/Analysis/Calculus/FDeriv/Extend.lean
theorem hasFDerivWithinAt_closure_of_tendsto_fderiv {f : E → F} {s : Set E} {x : E} {f' : E →L[ℝ] F} (f_diff : DifferentiableOn ℝ f s) (s_conv : Convex ℝ s) (s_open : IsOpen s) (f_cont : ∀ y ∈ closure s, ContinuousWithinAt f s y) (h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')) : HasFDerivWithinAt f f' (closure s) x
case mk.intro E : Type u_1 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E F : Type u_2 inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace ℝ F f : E → F s : Set E x : E f' : E →L[ℝ] F f_diff : DifferentiableOn ℝ f s s_conv : Convex ℝ s s_open : IsOpen s f_cont : ∀ y ∈ closure s, ContinuousWithinAt f s y h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f') hx : x ∈ closure s ε : ℝ ε_pos : 0 < ε δ : ℝ δ_pos : δ > 0 hδ : ∀ y ∈ s, dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε B : Set E := ball x δ u v : E u_in : (u, v).1 ∈ B ∩ s v_in : (u, v).2 ∈ B ∩ s conv : Convex ℝ (B ∩ s) ⊢ ‖f (u, v).2 - f (u, v).1 - (f' (u, v).2 - f' (u, v).1)‖ ≤ ε * ‖(u, v).2 - (u, v).1‖
have diff : DifferentiableOn ℝ f (B ∩ s) := f_diff.mono inter_subset_right
case mk.intro E : Type u_1 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E F : Type u_2 inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace ℝ F f : E → F s : Set E x : E f' : E →L[ℝ] F f_diff : DifferentiableOn ℝ f s s_conv : Convex ℝ s s_open : IsOpen s f_cont : ∀ y ∈ closure s, ContinuousWithinAt f s y h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f') hx : x ∈ closure s ε : ℝ ε_pos : 0 < ε δ : ℝ δ_pos : δ > 0 hδ : ∀ y ∈ s, dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε B : Set E := ball x δ u v : E u_in : (u, v).1 ∈ B ∩ s v_in : (u, v).2 ∈ B ∩ s conv : Convex ℝ (B ∩ s) diff : DifferentiableOn ℝ f (B ∩ s) ⊢ ‖f (u, v).2 - f (u, v).1 - (f' (u, v).2 - f' (u, v).1)‖ ≤ ε * ‖(u, v).2 - (u, v).1‖
b73104c22d482296
IsCompact.nonempty_iInter_of_directed_nonempty_isCompact_isClosed
Mathlib/Topology/Compactness/Compact.lean
theorem IsCompact.nonempty_iInter_of_directed_nonempty_isCompact_isClosed {ι : Type v} [hι : Nonempty ι] (t : ι → Set X) (htd : Directed (· ⊇ ·) t) (htn : ∀ i, (t i).Nonempty) (htc : ∀ i, IsCompact (t i)) (htcl : ∀ i, IsClosed (t i)) : (⋂ i, t i).Nonempty
case intro.intro X : Type u inst✝ : TopologicalSpace X ι : Type v hι : Nonempty ι t : ι → Set X htd : Directed (fun x1 x2 => x1 ⊇ x2) t htc : ∀ (i : ι), IsCompact (t i) htcl : ∀ (i : ι), IsClosed (t i) i₀ : ι := hι.some htn : ∀ (i : ι), (t i).Nonempty i j : ι hji₀ : t i₀ ⊇ t j hji : t i ⊇ t j ⊢ (t i₀ ∩ t i).Nonempty
exact (htn j).mono (subset_inter hji₀ hji)
no goals
6ce44587c65756d8
bernoulliPowerSeries_mul_exp_sub_one
Mathlib/NumberTheory/Bernoulli.lean
theorem bernoulliPowerSeries_mul_exp_sub_one : bernoulliPowerSeries A * (exp A - 1) = X
case h.succ.succ.h A : Type u_1 inst✝¹ : CommRing A inst✝ : Algebra ℚ A n : ℕ hfact : ∀ (m : ℕ), ↑m ! ≠ 0 hite2 : (if n.succ = 0 then 1 else 0) = 0 x : ℕ × ℕ h : x.1 + x.2 = n.succ ⊢ ↑x.2! * (↑x.2 + 1) = (↑x.2 + 1) * ↑x.2! ∨ (x.1 + x.2)! = 0
left
case h.succ.succ.h.h A : Type u_1 inst✝¹ : CommRing A inst✝ : Algebra ℚ A n : ℕ hfact : ∀ (m : ℕ), ↑m ! ≠ 0 hite2 : (if n.succ = 0 then 1 else 0) = 0 x : ℕ × ℕ h : x.1 + x.2 = n.succ ⊢ ↑x.2! * (↑x.2 + 1) = (↑x.2 + 1) * ↑x.2!
0c6cdd2eaa278054
EReal.nhds_bot_basis
Mathlib/Topology/Instances/EReal/Lemmas.lean
theorem nhds_bot_basis : (𝓝 (⊥ : EReal)).HasBasis (fun _ : ℝ ↦ True) (Iio ·)
case intro.intro x : EReal hx : ⊥ < x y : ℚ hxy : ↑↑y < x ⊢ ∃ i', True ∧ Iio ↑i' ⊆ Iio x
exact ⟨_, trivial, Iio_subset_Iio hxy.le⟩
no goals
ed8f653a28830301
EuclideanDomain.mod_eq_zero
Mathlib/Algebra/EuclideanDomain/Basic.lean
theorem mod_eq_zero {a b : R} : a % b = 0 ↔ b ∣ a := ⟨fun h => by rw [← div_add_mod a b, h, add_zero] exact dvd_mul_right _ _, fun ⟨c, e⟩ => by rw [e, ← add_left_cancel_iff, div_add_mod, add_zero] haveI := Classical.dec by_cases b0 : b = 0 · simp only [b0, zero_mul] · rw [mul_div_cancel_left₀ _ b0]⟩
R : Type u inst✝ : EuclideanDomain R a b : R x✝ : b ∣ a c : R e : a = b * c this : (p : Prop) → Decidable p ⊢ b * c = b * (b * c / b)
by_cases b0 : b = 0
case pos R : Type u inst✝ : EuclideanDomain R a b : R x✝ : b ∣ a c : R e : a = b * c this : (p : Prop) → Decidable p b0 : b = 0 ⊢ b * c = b * (b * c / b) case neg R : Type u inst✝ : EuclideanDomain R a b : R x✝ : b ∣ a c : R e : a = b * c this : (p : Prop) → Decidable p b0 : ¬b = 0 ⊢ b * c = b * (b * c / b)
b42d0fe6e6a8faaf
ContinuousLinearMap.apply_norm_sq_eq_inner_adjoint_left
Mathlib/Analysis/InnerProductSpace/Adjoint.lean
theorem apply_norm_sq_eq_inner_adjoint_left (A : E →L[𝕜] F) (x : E) : ‖A x‖ ^ 2 = re ⟪(A† ∘L A) x, x⟫
𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : RCLike 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace 𝕜 E inst✝² : InnerProductSpace 𝕜 F inst✝¹ : CompleteSpace E inst✝ : CompleteSpace F A : E →L[𝕜] F x : E ⊢ ⟪((adjoint A).comp A) x, x⟫_𝕜 = ⟪(adjoint A) (A x), x⟫_𝕜
rfl
no goals
777303bf55f47c11
ENNReal.funMulInvSnorm_rpow
Mathlib/MeasureTheory/Integral/MeanInequalities.lean
theorem funMulInvSnorm_rpow {p : ℝ} (hp0 : 0 < p) {f : α → ℝ≥0∞} {a : α} : funMulInvSnorm f p μ a ^ p = f a ^ p * (∫⁻ c, f c ^ p ∂μ)⁻¹
α : Type u_1 inst✝ : MeasurableSpace α μ : Measure α p : ℝ hp0 : 0 < p f : α → ℝ≥0∞ a : α ⊢ ((∫⁻ (c : α), f c ^ p ∂μ) ^ (1 / p))⁻¹ ^ p = (∫⁻ (c : α), f c ^ p ∂μ)⁻¹
rw [inv_rpow, ← rpow_mul, one_div_mul_cancel hp0.ne', rpow_one]
no goals
221200e8b4b5a745
MeasureTheory.Measure.IsEverywherePos.IsGdelta_of_isMulLeftInvariant
Mathlib/MeasureTheory/Measure/EverywherePos.lean
/-- If a compact closed set is everywhere positive with respect to a left-invariant measure on a topological group, then it is a Gδ set. This is nontrivial, as there is no second-countability or metrizability assumption in the statement, so a general compact closed set has no reason to be a countable intersection of open sets. -/ @[to_additive] lemma IsEverywherePos.IsGdelta_of_isMulLeftInvariant {k : Set G} (h : μ.IsEverywherePos k) (hk : IsCompact k) (h'k : IsClosed k) : IsGδ k
case intro.intro.intro.intro.intro G : Type u_2 inst✝⁸ : Group G inst✝⁷ : TopologicalSpace G inst✝⁶ : IsTopologicalGroup G inst✝⁵ : LocallyCompactSpace G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G μ : Measure G inst✝² : μ.IsMulLeftInvariant inst✝¹ : IsFiniteMeasureOnCompacts μ inst✝ : μ.InnerRegularCompactLTTop k : Set G h : μ.IsEverywherePos k hk : IsCompact k h'k : IsClosed k u : ℕ → ℝ≥0∞ u_mem : ∀ (n : ℕ), u n ∈ Ioo 0 1 u_lim : Tendsto u atTop (𝓝 0) W : ℕ → Set G W_open : ∀ (n : ℕ), IsOpen (W n) mem_W : ∀ (n : ℕ), 1 ∈ W n hW : ∀ (n : ℕ), ∀ g ∈ W n * W n, μ (g • k \ k) < u n V : ℕ → Set G := fun n => ⋂ i ∈ Finset.range n, W i x : G hx : x ∈ ⋂ n, V n * k v : ℕ → G hv : ∀ (i : ℕ), v i ∈ V i y : ℕ → G hy : ∀ (i : ℕ), y i ∈ k hvy : ∀ (i : ℕ), (fun x1 x2 => x1 * x2) (v i) (y i) = x z : G zk : z ∈ k hz : MapClusterPt z atTop y A : ∀ (n : ℕ), μ ((x * z⁻¹) • k \ k) ≤ u n ⊢ x ∈ k
have B : μ (((x * z ⁻¹) • k) \ k) = 0 := le_antisymm (ge_of_tendsto u_lim (Eventually.of_forall A)) bot_le
case intro.intro.intro.intro.intro G : Type u_2 inst✝⁸ : Group G inst✝⁷ : TopologicalSpace G inst✝⁶ : IsTopologicalGroup G inst✝⁵ : LocallyCompactSpace G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G μ : Measure G inst✝² : μ.IsMulLeftInvariant inst✝¹ : IsFiniteMeasureOnCompacts μ inst✝ : μ.InnerRegularCompactLTTop k : Set G h : μ.IsEverywherePos k hk : IsCompact k h'k : IsClosed k u : ℕ → ℝ≥0∞ u_mem : ∀ (n : ℕ), u n ∈ Ioo 0 1 u_lim : Tendsto u atTop (𝓝 0) W : ℕ → Set G W_open : ∀ (n : ℕ), IsOpen (W n) mem_W : ∀ (n : ℕ), 1 ∈ W n hW : ∀ (n : ℕ), ∀ g ∈ W n * W n, μ (g • k \ k) < u n V : ℕ → Set G := fun n => ⋂ i ∈ Finset.range n, W i x : G hx : x ∈ ⋂ n, V n * k v : ℕ → G hv : ∀ (i : ℕ), v i ∈ V i y : ℕ → G hy : ∀ (i : ℕ), y i ∈ k hvy : ∀ (i : ℕ), (fun x1 x2 => x1 * x2) (v i) (y i) = x z : G zk : z ∈ k hz : MapClusterPt z atTop y A : ∀ (n : ℕ), μ ((x * z⁻¹) • k \ k) ≤ u n B : μ ((x * z⁻¹) • k \ k) = 0 ⊢ x ∈ k
5dba91f75a485a07
MeasureTheory.Measure.mkMetric_le_liminf_tsum
Mathlib/MeasureTheory/Measure/Hausdorff.lean
theorem mkMetric_le_liminf_tsum {β : Type*} {ι : β → Type*} [∀ n, Countable (ι n)] (s : Set X) {l : Filter β} (r : β → ℝ≥0∞) (hr : Tendsto r l (𝓝 0)) (t : ∀ n : β, ι n → Set X) (ht : ∀ᶠ n in l, ∀ i, diam (t n i) ≤ r n) (hst : ∀ᶠ n in l, s ⊆ ⋃ i, t n i) (m : ℝ≥0∞ → ℝ≥0∞) : mkMetric m s ≤ liminf (fun n => ∑' i, m (diam (t n i))) l
X : Type u_2 inst✝³ : EMetricSpace X inst✝² : MeasurableSpace X inst✝¹ : BorelSpace X β : Type u_4 ι : β → Type u_5 inst✝ : ∀ (n : β), Countable (ι n) s : Set X l : Filter β r : β → ℝ≥0∞ hr : Tendsto r l (𝓝 0) t : (n : β) → ι n → Set X ht : ∀ᶠ (n : β) in l, ∀ (i : ι n), diam (t n i) ≤ r n hst : ∀ᶠ (n : β) in l, s ⊆ ⋃ i, t n i m : ℝ≥0∞ → ℝ≥0∞ this : (n : β) → Encodable (ι n) ε : ℝ≥0∞ hε : 0 < ε ⊢ ⨅ t, ⨅ (_ : s ⊆ iUnion t), ⨅ (_ : ∀ (n : ℕ), diam (t n) ≤ ε), ∑' (n : ℕ), ⨆ (_ : (t n).Nonempty), m (diam (t n)) ≤ liminf (fun n => ∑' (i : ι n), m (diam (t n i))) l
refine le_of_forall_gt_imp_ge_of_dense fun c hc => ?_
X : Type u_2 inst✝³ : EMetricSpace X inst✝² : MeasurableSpace X inst✝¹ : BorelSpace X β : Type u_4 ι : β → Type u_5 inst✝ : ∀ (n : β), Countable (ι n) s : Set X l : Filter β r : β → ℝ≥0∞ hr : Tendsto r l (𝓝 0) t : (n : β) → ι n → Set X ht : ∀ᶠ (n : β) in l, ∀ (i : ι n), diam (t n i) ≤ r n hst : ∀ᶠ (n : β) in l, s ⊆ ⋃ i, t n i m : ℝ≥0∞ → ℝ≥0∞ this : (n : β) → Encodable (ι n) ε : ℝ≥0∞ hε : 0 < ε c : ℝ≥0∞ hc : liminf (fun n => ∑' (i : ι n), m (diam (t n i))) l < c ⊢ ⨅ t, ⨅ (_ : s ⊆ iUnion t), ⨅ (_ : ∀ (n : ℕ), diam (t n) ≤ ε), ∑' (n : ℕ), ⨆ (_ : (t n).Nonempty), m (diam (t n)) ≤ c
45914e8e7bc6bf9d
CategoryTheory.PresheafHom.IsSheafFor.exists_app
Mathlib/CategoryTheory/Sites/SheafHom.lean
lemma exists_app (hx : x.Compatible) (g : Y ⟶ X) : ∃ (φ : F.obj (op Y) ⟶ G.obj (op Y)), ∀ {Z : C} (p : Z ⟶ Y) (hp : S (p ≫ g)), φ ≫ G.map p.op = F.map p.op ≫ (x (p ≫ g) hp).app ⟨Over.mk (𝟙 Z)⟩
C : Type u inst✝¹ : Category.{v, u} C A : Type u' inst✝ : Category.{v', u'} A F G : Cᵒᵖ ⥤ A X : C S : Sieve X hG : ⦃Y : C⦄ → (f : Y ⟶ X) → IsLimit (G.mapCone (Sieve.pullback f S).arrows.cocone.op) x : Presieve.FamilyOfElements (presheafHom F G) S.arrows Y : C hx : x.Compatible g : Y ⟶ X c : Cone ((Sieve.pullback g S).arrows.diagram.op ⋙ G) := { pt := F.obj (op Y), π := { app := fun x_1 => match x_1 with | op { obj := Z, property := hZ } => F.map Z.hom.op ≫ (x (Z.hom ≫ g) hZ).app (op (Over.mk (𝟙 (unop (op ((𝟭 C).obj Z.left)))))), naturality := ⋯ } } ⊢ ∃ φ, ∀ {Z : C} (p : Z ⟶ Y) (hp : S.arrows (p ≫ g)), φ ≫ G.map p.op = F.map p.op ≫ (x (p ≫ g) hp).app (op (Over.mk (𝟙 Z)))
use (hG g).lift c
case h C : Type u inst✝¹ : Category.{v, u} C A : Type u' inst✝ : Category.{v', u'} A F G : Cᵒᵖ ⥤ A X : C S : Sieve X hG : ⦃Y : C⦄ → (f : Y ⟶ X) → IsLimit (G.mapCone (Sieve.pullback f S).arrows.cocone.op) x : Presieve.FamilyOfElements (presheafHom F G) S.arrows Y : C hx : x.Compatible g : Y ⟶ X c : Cone ((Sieve.pullback g S).arrows.diagram.op ⋙ G) := { pt := F.obj (op Y), π := { app := fun x_1 => match x_1 with | op { obj := Z, property := hZ } => F.map Z.hom.op ≫ (x (Z.hom ≫ g) hZ).app (op (Over.mk (𝟙 (unop (op ((𝟭 C).obj Z.left)))))), naturality := ⋯ } } ⊢ ∀ {Z : C} (p : Z ⟶ Y) (hp : S.arrows (p ≫ g)), (hG g).lift c ≫ G.map p.op = F.map p.op ≫ (x (p ≫ g) hp).app (op (Over.mk (𝟙 Z)))
8103034d905afbca
HasStrictDerivAt.clm_comp
Mathlib/Analysis/Calculus/Deriv/Mul.lean
theorem HasStrictDerivAt.clm_comp (hc : HasStrictDerivAt c c' x) (hd : HasStrictDerivAt d d' x) : HasStrictDerivAt (fun y => (c y).comp (d y)) (c'.comp (d x) + (c x).comp d') x
𝕜 : Type u inst✝⁶ : NontriviallyNormedField 𝕜 F : Type v inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F E : Type w inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E x : 𝕜 G : Type u_2 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace 𝕜 G c : 𝕜 → F →L[𝕜] G c' : F →L[𝕜] G d : 𝕜 → E →L[𝕜] F d' : E →L[𝕜] F hc : HasStrictDerivAt c c' x hd : HasStrictDerivAt d d' x ⊢ HasStrictDerivAt (fun y => (c y).comp (d y)) (c'.comp (d x) + (c x).comp d') x
have := (hc.hasStrictFDerivAt.clm_comp hd.hasStrictFDerivAt).hasStrictDerivAt
𝕜 : Type u inst✝⁶ : NontriviallyNormedField 𝕜 F : Type v inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F E : Type w inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E x : 𝕜 G : Type u_2 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace 𝕜 G c : 𝕜 → F →L[𝕜] G c' : F →L[𝕜] G d : 𝕜 → E →L[𝕜] F d' : E →L[𝕜] F hc : HasStrictDerivAt c c' x hd : HasStrictDerivAt d d' x this : HasStrictDerivAt (fun y => (c y).comp (d y)) ((((compL 𝕜 E F G) (c x)).comp (smulRight 1 d') + ((compL 𝕜 E F G).flip (d x)).comp (smulRight 1 c')) 1) x ⊢ HasStrictDerivAt (fun y => (c y).comp (d y)) (c'.comp (d x) + (c x).comp d') x
ac2874cca97d8015
Nat.one_ascFactorial
Mathlib/Data/Nat/Factorial/Basic.lean
theorem one_ascFactorial : ∀ (k : ℕ), (1 : ℕ).ascFactorial k = k.factorial | 0 => ascFactorial_zero 1 | (k+1) => by rw [ascFactorial_succ, one_ascFactorial k, Nat.add_comm, factorial_succ]
k : ℕ ⊢ ascFactorial 1 (k + 1) = (k + 1)!
rw [ascFactorial_succ, one_ascFactorial k, Nat.add_comm, factorial_succ]
no goals
087e1a0544fd70ba
NumberField.hermiteTheorem.finite_of_discr_bdd_of_isReal
Mathlib/NumberTheory/NumberField/Discriminant/Basic.lean
theorem finite_of_discr_bdd_of_isReal : {K : { F : IntermediateField ℚ A // FiniteDimensional ℚ F} | haveI : NumberField K := @NumberField.mk _ _ inferInstance K.prop {w : InfinitePlace K | IsReal w}.Nonempty ∧ |discr K| ≤ N }.Finite
case intro.intro.refine_4 A : Type u_2 inst✝¹ : Field A inst✝ : CharZero A N : ℕ D : ℕ := rankOfDiscrBdd N B : ℝ≥0 := boundOfDiscBdd N C : ℕ := ⌈(B ⊔ 1) ^ D * ↑(D.choose (D / 2))⌉₊ x✝¹ : { F // FiniteDimensional ℚ ↥F } K : IntermediateField ℚ A hK₀ : FiniteDimensional ℚ ↥K x✝ : ⟨K, hK₀⟩ ∈ {K | {w | w.IsReal}.Nonempty ∧ |discr ↥↑K| ≤ ↑N} hK₂ : |discr ↥↑⟨K, hK₀⟩| ≤ ↑N this✝¹ : CharZero ↥K this✝ : NumberField ↥K w₀ : InfinitePlace ↥↑⟨K, hK₀⟩ hw₀ : w₀ ∈ {w | w.IsReal} this : minkowskiBound (↥K) 1 < ↑(convexBodyLTFactor ↥K) * ↑B x : 𝓞 ↥K hx₁ : ℚ⟮↑x⟯ = ⊤ hx₂ : ∀ (w : InfinitePlace ↥K), w ↑x < ↑(B ⊔ 1) hx : IsIntegral ℤ ((algebraMap (𝓞 ↥K) ↥K) x) ⊢ K = ℚ⟮↑↑x⟯
rw [← (IntermediateField.lift_injective _).eq_iff, eq_comm] at hx₁
case intro.intro.refine_4 A : Type u_2 inst✝¹ : Field A inst✝ : CharZero A N : ℕ D : ℕ := rankOfDiscrBdd N B : ℝ≥0 := boundOfDiscBdd N C : ℕ := ⌈(B ⊔ 1) ^ D * ↑(D.choose (D / 2))⌉₊ x✝¹ : { F // FiniteDimensional ℚ ↥F } K : IntermediateField ℚ A hK₀ : FiniteDimensional ℚ ↥K x✝ : ⟨K, hK₀⟩ ∈ {K | {w | w.IsReal}.Nonempty ∧ |discr ↥↑K| ≤ ↑N} hK₂ : |discr ↥↑⟨K, hK₀⟩| ≤ ↑N this✝¹ : CharZero ↥K this✝ : NumberField ↥K w₀ : InfinitePlace ↥↑⟨K, hK₀⟩ hw₀ : w₀ ∈ {w | w.IsReal} this : minkowskiBound (↥K) 1 < ↑(convexBodyLTFactor ↥K) * ↑B x : 𝓞 ↥K hx₁ : IntermediateField.lift ⊤ = IntermediateField.lift ℚ⟮↑x⟯ hx₂ : ∀ (w : InfinitePlace ↥K), w ↑x < ↑(B ⊔ 1) hx : IsIntegral ℤ ((algebraMap (𝓞 ↥K) ↥K) x) ⊢ K = ℚ⟮↑↑x⟯
258b240e119b72fe
MeasureTheory.limsup_trim
Mathlib/MeasureTheory/Function/LpSeminorm/Trim.lean
theorem limsup_trim (hm : m ≤ m0) {f : α → ℝ≥0∞} (hf : Measurable[m] f) : limsup f (ae (μ.trim hm)) = limsup f (ae μ)
case h α : Type u_1 m m0 : MeasurableSpace α μ : Measure α hm : m ≤ m0 f : α → ℝ≥0∞ hf : Measurable f a : ℝ≥0∞ ⊢ a ∈ {a | ∀ᵐ (n : α) ∂μ.trim hm, f n ≤ a} ↔ a ∈ {a | ∀ᵐ (n : α) ∂μ, f n ≤ a}
suffices h_meas_eq : μ { x | ¬f x ≤ a } = μ.trim hm { x | ¬f x ≤ a } by simp_rw [Set.mem_setOf_eq, ae_iff, h_meas_eq]
case h α : Type u_1 m m0 : MeasurableSpace α μ : Measure α hm : m ≤ m0 f : α → ℝ≥0∞ hf : Measurable f a : ℝ≥0∞ ⊢ μ {x | ¬f x ≤ a} = (μ.trim hm) {x | ¬f x ≤ a}
77906aab397d62a7
isPreconnected_of_forall
Mathlib/Topology/Connected/Basic.lean
theorem isPreconnected_of_forall {s : Set α} (x : α) (H : ∀ y ∈ s, ∃ t, t ⊆ s ∧ x ∈ t ∧ y ∈ t ∧ IsPreconnected t) : IsPreconnected s
case intro.intro.intro.intro.inl α : Type u inst✝ : TopologicalSpace α s : Set α x : α H : ∀ y ∈ s, ∃ t ⊆ s, x ∈ t ∧ y ∈ t ∧ IsPreconnected t u v : Set α hu : IsOpen u hv : IsOpen v hs : s ⊆ u ∪ v z : α zs : z ∈ s zu : z ∈ u y : α ys : y ∈ s yv : y ∈ v xs : x ∈ s xu : x ∈ u ⊢ (s ∩ (u ∩ v)).Nonempty
rcases H y ys with ⟨t, ts, xt, yt, ht⟩
case intro.intro.intro.intro.inl.intro.intro.intro.intro α : Type u inst✝ : TopologicalSpace α s : Set α x : α H : ∀ y ∈ s, ∃ t ⊆ s, x ∈ t ∧ y ∈ t ∧ IsPreconnected t u v : Set α hu : IsOpen u hv : IsOpen v hs : s ⊆ u ∪ v z : α zs : z ∈ s zu : z ∈ u y : α ys : y ∈ s yv : y ∈ v xs : x ∈ s xu : x ∈ u t : Set α ts : t ⊆ s xt : x ∈ t yt : y ∈ t ht : IsPreconnected t ⊢ (s ∩ (u ∩ v)).Nonempty
72217f788baa5fcd
ONote.repr_opow
Mathlib/SetTheory/Ordinal/Notation.lean
theorem repr_opow (o₁ o₂) [NF o₁] [NF o₂] : repr (o₁ ^ o₂) = repr o₁ ^ repr o₂
case mk.intro.oadd.intro.mk.intro.succ o₁ o₂ : ONote inst✝¹ : o₁.NF inst✝ : o₂.NF m : ℕ a0 : ONote n : ℕ+ a' : ONote e₁ : o₁.split = (a0.oadd n a', m) N₁ : (a0.oadd n a').NF r₁ : o₁.repr = (a0.oadd n a').repr + ↑m this✝ : a0.NF this : a'.NF a00 : a0.repr ≠ 0 ad : ω ∣ a'.repr al : a'.repr + ↑m < ω ^ a0.repr aa : (a' + ↑m).repr = a'.repr + ↑m b' : ONote left✝ : b'.NF k : ℕ e₂ : o₂.split' = (b', k + 1) r₂ : o₂.repr = ω * b'.repr + ↑(k + 1) ⊢ (match (scale 1 b', k + 1) with | (b, 0) => (a0 * b).oadd 1 0 | (b, k.succ) => (a0 * b + a0.mulNat k).scale (a0.oadd n a') + (a0 * b).opowAux a0 ((a0.oadd n a').mulNat m) k m).repr = (ω ^ a0.repr * ↑↑n + a'.repr + ↑m) ^ o₂.repr
simp [opow, opowAux2, r₂, opow_add, opow_mul, mul_assoc, add_assoc]
case mk.intro.oadd.intro.mk.intro.succ o₁ o₂ : ONote inst✝¹ : o₁.NF inst✝ : o₂.NF m : ℕ a0 : ONote n : ℕ+ a' : ONote e₁ : o₁.split = (a0.oadd n a', m) N₁ : (a0.oadd n a').NF r₁ : o₁.repr = (a0.oadd n a').repr + ↑m this✝ : a0.NF this : a'.NF a00 : a0.repr ≠ 0 ad : ω ∣ a'.repr al : a'.repr + ↑m < ω ^ a0.repr aa : (a' + ↑m).repr = a'.repr + ↑m b' : ONote left✝ : b'.NF k : ℕ e₂ : o₂.split' = (b', k + 1) r₂ : o₂.repr = ω * b'.repr + ↑(k + 1) ⊢ ((ω ^ a0.repr) ^ ω) ^ b'.repr * ((ω ^ a0.repr) ^ k * (ω ^ a0.repr * ↑↑n + a'.repr)) + ((a0 * scale 1 b').opowAux a0 (a0.oadd n a' * ↑m) k m).repr = ((ω ^ a0.repr * ↑↑n + (a'.repr + ↑m)) ^ ω) ^ b'.repr * ((ω ^ a0.repr * ↑↑n + (a'.repr + ↑m)) ^ k * (ω ^ a0.repr * ↑↑n + (a'.repr + ↑m)))
778175cafc8055e7
SimpleGraph.colorable_iff_exists_bdd_nat_coloring
Mathlib/Combinatorics/SimpleGraph/Coloring.lean
theorem colorable_iff_exists_bdd_nat_coloring (n : ℕ) : G.Colorable n ↔ ∃ C : G.Coloring ℕ, ∀ v, C v < n
case mpr.intro V : Type u G : SimpleGraph V n : ℕ C : G.Coloring ℕ Cf : ∀ (v : V), C v < n ⊢ G.Colorable n
refine ⟨Coloring.mk ?_ ?_⟩
case mpr.intro.refine_1 V : Type u G : SimpleGraph V n : ℕ C : G.Coloring ℕ Cf : ∀ (v : V), C v < n ⊢ V → Fin n case mpr.intro.refine_2 V : Type u G : SimpleGraph V n : ℕ C : G.Coloring ℕ Cf : ∀ (v : V), C v < n ⊢ ∀ {v w : V}, G.Adj v w → ?mpr.intro.refine_1 v ≠ ?mpr.intro.refine_1 w
d1efc174a6faab8a
TopologicalSpace.isTopologicalBasis_of_isOpen_of_nhds
Mathlib/Topology/Bases.lean
theorem isTopologicalBasis_of_isOpen_of_nhds {s : Set (Set α)} (h_open : ∀ u ∈ s, IsOpen u) (h_nhds : ∀ (a : α) (u : Set α), a ∈ u → IsOpen u → ∃ v ∈ s, a ∈ v ∧ v ⊆ u) : IsTopologicalBasis s := .of_hasBasis_nhds <| fun a ↦ (nhds_basis_opens a).to_hasBasis' (by simpa [and_assoc] using h_nhds a) fun _ ⟨hts, hat⟩ ↦ (h_open _ hts).mem_nhds hat
α : Type u t : TopologicalSpace α s : Set (Set α) h_open : ∀ u ∈ s, IsOpen u h_nhds : ∀ (a : α) (u : Set α), a ∈ u → IsOpen u → ∃ v ∈ s, a ∈ v ∧ v ⊆ u a : α ⊢ ∀ (i : Set α), a ∈ i ∧ IsOpen i → ∃ i', (i' ∈ s ∧ a ∈ i') ∧ id i' ⊆ i
simpa [and_assoc] using h_nhds a
no goals
f15e782a19fbea2c
root_X_pow_sub_C_ne_zero'
Mathlib/FieldTheory/KummerPolynomial.lean
lemma root_X_pow_sub_C_ne_zero' {n : ℕ} {a : K} (hn : 0 < n) (ha : a ≠ 0) : (AdjoinRoot.root (X ^ n - C a)) ≠ 0
case inl K : Type u inst✝ : Field K a : K ha : a ≠ 0 hn : 0 < Nat.succ 0 ⊢ root (X ^ Nat.succ 0 - C a) ≠ 0
rw [pow_one]
case inl K : Type u inst✝ : Field K a : K ha : a ≠ 0 hn : 0 < Nat.succ 0 ⊢ root (X - C a) ≠ 0
153688240a8b7f53
Lean.Grind.Bool.not_eq_of_eq_true
Mathlib/.lake/packages/lean4/src/lean/Init/Grind/Lemmas.lean
theorem Bool.not_eq_of_eq_true {a : Bool} (h : a = true) : (!a) = false
a : Bool h : a = true ⊢ (!a) = false
simp [h]
no goals
285707a31c5dceed
powersEquivPowers_apply
Mathlib/GroupTheory/OrderOfElement.lean
theorem powersEquivPowers_apply (h : orderOf x = orderOf y) (n : ℕ) : powersEquivPowers h ⟨x ^ n, n, rfl⟩ = ⟨y ^ n, n, rfl⟩
G : Type u_1 inst✝¹ : LeftCancelMonoid G inst✝ : Finite G x y : G h : orderOf x = orderOf y n : ℕ ⊢ (finCongr h) ⟨n % orderOf x, ⋯⟩ = ⟨n % orderOf y, ⋯⟩
simp [h]
no goals
50b349098b756c8a
padicNorm.values_discrete
Mathlib/NumberTheory/Padics/PadicNorm.lean
theorem values_discrete {q : ℚ} (hq : q ≠ 0) : ∃ z : ℤ, padicNorm p q = (p : ℚ) ^ (-z) := ⟨padicValRat p q, by simp [padicNorm, hq]⟩
p : ℕ q : ℚ hq : q ≠ 0 ⊢ padicNorm p q = ↑p ^ (-padicValRat p q)
simp [padicNorm, hq]
no goals
79f7011f2887507d
Action.rightDual_ρ
Mathlib/CategoryTheory/Action/Monoidal.lean
theorem rightDual_ρ [RightRigidCategory V] (h : H) : Xᘁ.ρ h = (X.ρ (h⁻¹ : H))ᘁ
V : Type (u + 1) inst✝³ : LargeCategory V inst✝² : MonoidalCategory V H : Type u inst✝¹ : Group H X : Action V H inst✝ : RightRigidCategory V h : H ⊢ Xᘁ.ρ h = X.ρ h⁻¹ᘁ
rw [← SingleObj.inv_as_inv]
V : Type (u + 1) inst✝³ : LargeCategory V inst✝² : MonoidalCategory V H : Type u inst✝¹ : Group H X : Action V H inst✝ : RightRigidCategory V h : H ⊢ Xᘁ.ρ h = X.ρ (inv h)ᘁ case x V : Type (u + 1) inst✝³ : LargeCategory V inst✝² : MonoidalCategory V H : Type u inst✝¹ : Group H X : Action V H inst✝ : RightRigidCategory V h : H ⊢ SingleObj H case y V : Type (u + 1) inst✝³ : LargeCategory V inst✝² : MonoidalCategory V H : Type u inst✝¹ : Group H X : Action V H inst✝ : RightRigidCategory V h : H ⊢ SingleObj H
467c60d5375160b7
strictConcaveOn_log_Ioi
Mathlib/Analysis/Convex/SpecificFunctions/Basic.lean
theorem strictConcaveOn_log_Ioi : StrictConcaveOn ℝ (Ioi 0) log
x y z : ℝ hx : 0 < x hz : 0 < z hxy : x < y hyz : y < z hy : 0 < y h : 0 < y - x ⊢ y⁻¹ < (log y - log x) / (y - x)
rw [lt_div_iff₀ h]
x y z : ℝ hx : 0 < x hz : 0 < z hxy : x < y hyz : y < z hy : 0 < y h : 0 < y - x ⊢ y⁻¹ * (y - x) < log y - log x
b669e8d780cc761c
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.sat_of_confirmRupHint_insertRup_fold
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/RupAddSound.lean
theorem sat_of_confirmRupHint_insertRup_fold {n : Nat} (f : DefaultFormula n) (f_readyForRupAdd : ReadyForRupAdd f) (c : DefaultClause n) (rupHints : Array Nat) (p : PosFin n → Bool) (pf : p ⊨ f) : let fc := insertRupUnits f (negate c) let confirmRupHint_fold_res := rupHints.foldl (confirmRupHint fc.1.clauses) (fc.1.assignments, [], false, false) 0 rupHints.size confirmRupHint_fold_res.2.2.1 = true → p ⊨ c
case neg.intro.intro.inl.intro.inr.intro n : Nat f : DefaultFormula n f_readyForRupAdd : f.ReadyForRupAdd c : DefaultClause n rupHints : Array Nat p : PosFin n → Bool pf : p ⊨ f fc : DefaultFormula n × Bool := f.insertRupUnits c.negate confirmRupHint_fold_res : Array Assignment × CNF.Clause (PosFin n) × Bool × Bool := Array.foldl (confirmRupHint fc.fst.clauses) (fc.fst.assignments, [], false, false) rupHints confirmRupHint_success : confirmRupHint_fold_res.snd.snd.fst = true motive : Nat → Array Assignment × CNF.Clause (PosFin n) × Bool × Bool → Prop := fc.fst.ConfirmRupHintFoldEntailsMotive h_base : motive 0 (fc.fst.assignments, [], false, false) h_inductive : ∀ (idx : Fin rupHints.size) (acc : Array Assignment × CNF.Clause (PosFin n) × Bool × Bool), motive (↑idx) acc → fc.fst.ConfirmRupHintFoldEntailsMotive (↑idx + 1) (confirmRupHint fc.fst.clauses acc rupHints[idx]) left✝ : (Array.foldl (confirmRupHint fc.fst.clauses) (fc.fst.assignments, [], false, false) rupHints).fst.size = n h1 : Limplies (PosFin n) fc.fst (Array.foldl (confirmRupHint fc.fst.clauses) (fc.fst.assignments, [], false, false) rupHints).fst h2 : (Array.foldl (confirmRupHint fc.fst.clauses) (fc.fst.assignments, [], false, false) rupHints).snd.snd.fst = true → Incompatible (PosFin n) (Array.foldl (confirmRupHint fc.fst.clauses) (fc.fst.assignments, [], false, false) rupHints).fst fc.fst fc_incompatible_confirmRupHint_fold_res : Incompatible (PosFin n) fc.fst (Array.foldl (confirmRupHint fc.fst.clauses) (fc.fst.assignments, [], false, false) rupHints).fst pc : ∀ (x : PosFin n), ((x, false) ∈ Clause.toList c → decide (p x = false) = false) ∧ ((x, true) ∈ Clause.toList c → decide (p x = true) = false) unsat_c : DefaultClause n unsat_c_in_fc : unsat_c ∈ fc.fst.toList p_unsat_c : ¬(p ⊨ unsat_c) v : PosFin n v_in_neg_c : (v, true) ∈ c.negate unsat_c_eq : Clause.unit (v, true) = unsat_c ⊢ False
simp only [negate_eq, List.mem_map, Prod.exists, Bool.exists_bool] at v_in_neg_c
case neg.intro.intro.inl.intro.inr.intro n : Nat f : DefaultFormula n f_readyForRupAdd : f.ReadyForRupAdd c : DefaultClause n rupHints : Array Nat p : PosFin n → Bool pf : p ⊨ f fc : DefaultFormula n × Bool := f.insertRupUnits c.negate confirmRupHint_fold_res : Array Assignment × CNF.Clause (PosFin n) × Bool × Bool := Array.foldl (confirmRupHint fc.fst.clauses) (fc.fst.assignments, [], false, false) rupHints confirmRupHint_success : confirmRupHint_fold_res.snd.snd.fst = true motive : Nat → Array Assignment × CNF.Clause (PosFin n) × Bool × Bool → Prop := fc.fst.ConfirmRupHintFoldEntailsMotive h_base : motive 0 (fc.fst.assignments, [], false, false) h_inductive : ∀ (idx : Fin rupHints.size) (acc : Array Assignment × CNF.Clause (PosFin n) × Bool × Bool), motive (↑idx) acc → fc.fst.ConfirmRupHintFoldEntailsMotive (↑idx + 1) (confirmRupHint fc.fst.clauses acc rupHints[idx]) left✝ : (Array.foldl (confirmRupHint fc.fst.clauses) (fc.fst.assignments, [], false, false) rupHints).fst.size = n h1 : Limplies (PosFin n) fc.fst (Array.foldl (confirmRupHint fc.fst.clauses) (fc.fst.assignments, [], false, false) rupHints).fst h2 : (Array.foldl (confirmRupHint fc.fst.clauses) (fc.fst.assignments, [], false, false) rupHints).snd.snd.fst = true → Incompatible (PosFin n) (Array.foldl (confirmRupHint fc.fst.clauses) (fc.fst.assignments, [], false, false) rupHints).fst fc.fst fc_incompatible_confirmRupHint_fold_res : Incompatible (PosFin n) fc.fst (Array.foldl (confirmRupHint fc.fst.clauses) (fc.fst.assignments, [], false, false) rupHints).fst pc : ∀ (x : PosFin n), ((x, false) ∈ Clause.toList c → decide (p x = false) = false) ∧ ((x, true) ∈ Clause.toList c → decide (p x = true) = false) unsat_c : DefaultClause n unsat_c_in_fc : unsat_c ∈ fc.fst.toList p_unsat_c : ¬(p ⊨ unsat_c) v : PosFin n unsat_c_eq : Clause.unit (v, true) = unsat_c v_in_neg_c : ∃ a, (a, false) ∈ c.toList ∧ Literal.negate (a, false) = (v, true) ∨ (a, true) ∈ c.toList ∧ Literal.negate (a, true) = (v, true) ⊢ False
5ee4e43f082bad4a
Padic.exi_rat_seq_conv_cauchy
Mathlib/NumberTheory/Padics/PadicNumbers.lean
theorem exi_rat_seq_conv_cauchy : IsCauSeq (padicNorm p) (limSeq f) := fun ε hε ↦ by have hε3 : 0 < ε / 3 := div_pos hε (by norm_num) let ⟨N, hN⟩ := exi_rat_seq_conv f hε3 let ⟨N2, hN2⟩ := f.cauchy₂ hε3 exists max N N2 intro j hj suffices padicNormE (limSeq f j - f (max N N2) + (f (max N N2) - limSeq f (max N N2)) : ℚ_[p]) < ε by ring_nf at this ⊢ rw [← padicNormE.eq_padic_norm'] exact mod_cast this apply lt_of_le_of_lt · apply padicNormE.add_le · rw [← add_thirds ε] apply _root_.add_lt_add · suffices padicNormE (limSeq f j - f j + (f j - f (max N N2)) : ℚ_[p]) < ε / 3 + ε / 3 by simpa only [sub_add_sub_cancel] apply lt_of_le_of_lt · apply padicNormE.add_le · apply _root_.add_lt_add · rw [padicNormE.map_sub] apply mod_cast hN j exact le_of_max_le_left hj · exact hN2 _ (le_of_max_le_right hj) _ (le_max_right _ _) · apply mod_cast hN (max N N2) apply le_max_left
p : ℕ inst✝ : Fact (Nat.Prime p) f : CauSeq ℚ_[p] ⇑padicNormE ε : ℚ hε : ε > 0 hε3 : 0 < ε / 3 ⊢ ∃ i, ∀ j ≥ i, padicNorm p (limSeq f j - limSeq f i) < ε
let ⟨N, hN⟩ := exi_rat_seq_conv f hε3
p : ℕ inst✝ : Fact (Nat.Prime p) f : CauSeq ℚ_[p] ⇑padicNormE ε : ℚ hε : ε > 0 hε3 : 0 < ε / 3 N : ℕ hN : ∀ i ≥ N, padicNormE (↑f i - ↑(limSeq f i)) < ε / 3 ⊢ ∃ i, ∀ j ≥ i, padicNorm p (limSeq f j - limSeq f i) < ε
5532e11826254be6
NNRat.cast_injective
Mathlib/Data/Rat/Cast/CharZero.lean
lemma cast_injective : Injective ((↑) : ℚ≥0 → α)
α : Type u_3 inst✝¹ : DivisionSemiring α inst✝ : CharZero α p q : ℚ≥0 hpq : ↑p = ↑q ⊢ p = q
rw [NNRat.cast_def, NNRat.cast_def, Commute.div_eq_div_iff] at hpq
α : Type u_3 inst✝¹ : DivisionSemiring α inst✝ : CharZero α p q : ℚ≥0 hpq : ↑p.num * ↑q.den = ↑q.num * ↑p.den ⊢ p = q case hbd α : Type u_3 inst✝¹ : DivisionSemiring α inst✝ : CharZero α p q : ℚ≥0 hpq : ↑p.num / ↑p.den = ↑q.num / ↑q.den ⊢ Commute ↑p.den ↑q.den case hb α : Type u_3 inst✝¹ : DivisionSemiring α inst✝ : CharZero α p q : ℚ≥0 hpq : ↑p.num / ↑p.den = ↑q.num / ↑q.den ⊢ ↑p.den ≠ 0 case hd α : Type u_3 inst✝¹ : DivisionSemiring α inst✝ : CharZero α p q : ℚ≥0 hpq : ↑p.num / ↑p.den = ↑q.num / ↑q.den ⊢ ↑q.den ≠ 0
db8f302d56c944d4
HallMarriageTheorem.hall_cond_of_restrict
Mathlib/Combinatorics/Hall/Finite.lean
theorem hall_cond_of_restrict {ι : Type u} {t : ι → Finset α} {s : Finset ι} (ht : ∀ s : Finset ι, #s ≤ #(s.biUnion t)) (s' : Finset (s : Set ι)) : #s' ≤ #(s'.biUnion fun a' => t a')
α : Type v inst✝ : DecidableEq α ι : Type u t : ι → Finset α s : Finset ι ht : ∀ (s : Finset ι), #s ≤ #(s.biUnion t) s' : Finset ↑↑s ⊢ #s' ≤ #(s'.biUnion fun a' => t ↑a')
rw [← card_image_of_injective s' Subtype.coe_injective]
α : Type v inst✝ : DecidableEq α ι : Type u t : ι → Finset α s : Finset ι ht : ∀ (s : Finset ι), #s ≤ #(s.biUnion t) s' : Finset ↑↑s ⊢ #(image (fun a => ↑a) s') ≤ #(s'.biUnion fun a' => t ↑a')
3655e829fac3e08f
ENat.add_one_natCast_le_withTop_of_lt
Mathlib/Data/ENat/Basic.lean
lemma add_one_natCast_le_withTop_of_lt {m : ℕ} {n : WithTop ℕ∞} (h : m < n) : (m + 1 : ℕ) ≤ n
m : ℕ n✝ : WithTop ℕ∞ n : ℕ h : ↑m < ↑n ⊢ ↑(m + 1) ≤ ↑n
simpa only [Nat.cast_le, ge_iff_le, Nat.cast_lt] using h
no goals
bb69bb09eeb550e5