name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
WeierstrassCurve.Affine.CoordinateRing.XYIdeal_neg_mul
Mathlib/AlgebraicGeometry/EllipticCurve/Group.lean
lemma XYIdeal_neg_mul {x y : F} (h : W.Nonsingular x y) : XYIdeal W x (C <| W.negY x y) * XYIdeal W x (C y) = XIdeal W x
case h.e'_2.h.inr F : Type u inst✝ : Field F W : Affine F x y : F h : W.Nonsingular x y Y_rw : (Y - C (C y)) * (Y - C (C (W.negY x y))) - C (X - C x) * (C (X ^ 2 + C (x + W.a₂) * X + C (x ^ 2 + W.a₂ * x + W.a₄)) - C (C W.a₁) * Y) = W.polynomial * 1 hy : 2 * y + W.a₁ * x + W.a₃ ≠ 0 W_Y : F := 2 * y + W.a₁ * x + W.a₃ ⊢ C (C (2 * y + W.a₁ * x + W.a₃)) * (0 * (C (X ^ 2 + C (x + W.a₂) * X + C (x ^ 2 + W.a₂ * x + W.a₄)) - C (C W.a₁) * Y)) = C (C (2 * y + W.a₁ * x + W.a₃)) * (1 + 0 * C (X - C x) + C (C W_Y⁻¹) * (Y - C (C y)) + C (C (W_Y⁻¹ * -1)) * (Y - C (C (-y - W.a₁ * x - W.a₃))))
simp only [W_Y, mul_add, ← mul_assoc, ← C_mul, mul_inv_cancel₀ hy]
case h.e'_2.h.inr F : Type u inst✝ : Field F W : Affine F x y : F h : W.Nonsingular x y Y_rw : (Y - C (C y)) * (Y - C (C (W.negY x y))) - C (X - C x) * (C (X ^ 2 + C (x + W.a₂) * X + C (x ^ 2 + W.a₂ * x + W.a₄)) - C (C W.a₁) * Y) = W.polynomial * 1 hy : 2 * y + W.a₁ * x + W.a₃ ≠ 0 W_Y : F := 2 * y + W.a₁ * x + W.a₃ ⊢ C (C (2 * y + W.a₁ * x + W.a₃)) * 0 * (C (X ^ 2 + C (x + W.a₂) * X + C (x ^ 2 + W.a₂ * x + W.a₄)) - C (C W.a₁) * Y) = C (C (2 * y + W.a₁ * x + W.a₃)) * 1 + C (C (2 * y + W.a₁ * x + W.a₃)) * 0 * C (X - C x) + C (C 1) * (Y - C (C y)) + C (C (1 * -1)) * (Y - C (C (-y - W.a₁ * x - W.a₃)))
a91b7de170ddf2df
VertexOperator.coeff_eq_zero_of_lt_order
Mathlib/Algebra/Vertex/VertexOperator.lean
theorem coeff_eq_zero_of_lt_order (A : VertexOperator R V) (n : ℤ) (x : V) (h : n < HahnSeries.order ((HahnModule.of R).symm (A x))) : coeff A n x = 0
R : Type u_1 V : Type u_2 inst✝² : CommRing R inst✝¹ : AddCommGroup V inst✝ : Module R V A : VertexOperator R V n : ℤ x : V h : n < ((HahnModule.of R).symm (A x)).order ⊢ (coeff A n) x = 0
rw [coeff_eq_ncoeff, ncoeff_eq_zero_of_lt_order A (-n - 1) x]
R : Type u_1 V : Type u_2 inst✝² : CommRing R inst✝¹ : AddCommGroup V inst✝ : Module R V A : VertexOperator R V n : ℤ x : V h : n < ((HahnModule.of R).symm (A x)).order ⊢ -(-n - 1) - 1 < ((HahnModule.of R).symm (A x)).order
9542f332c3e527ee
FinitePlace.mulSupport_finite
Mathlib/NumberTheory/NumberField/FinitePlaces.lean
theorem mulSupport_finite {x : K} (h_x_nezero : x ≠ 0) : (Function.mulSupport fun w : FinitePlace K ↦ w x).Finite
case intro.intro.intro K : Type u_1 inst✝¹ : Field K inst✝ : NumberField K a b : 𝓞 K hb : b ∈ nonZeroDivisors (𝓞 K) h_x_nezero : (algebraMap (𝓞 K) K) a / (algebraMap (𝓞 K) K) b ≠ 0 ⊢ (Function.mulSupport fun w => w ((algebraMap (𝓞 K) K) a / (algebraMap (𝓞 K) K) b)).Finite
simp_all only [ne_eq, div_eq_zero_iff, FaithfulSMul.algebraMap_eq_zero_iff, not_or, map_div₀]
case intro.intro.intro K : Type u_1 inst✝¹ : Field K inst✝ : NumberField K a b : 𝓞 K hb : b ∈ nonZeroDivisors (𝓞 K) h_x_nezero : ¬a = 0 ∧ ¬b = 0 ⊢ (Function.mulSupport fun w => w ((algebraMap (𝓞 K) K) a) / w ((algebraMap (𝓞 K) K) b)).Finite
ed8d1c38a85537eb
Multiset.prod_hom₂_ne_zero
Mathlib/Algebra/BigOperators/Group/Multiset/Basic.lean
theorem prod_hom₂_ne_zero [CommMonoid γ] {s : Multiset ι} (hs : s ≠ 0) (f : α → β → γ) (hf : ∀ a b c d, f (a * b) (c * d) = f a c * f b d) (f₁ : ι → α) (f₂ : ι → β) : (s.map fun i => f (f₁ i) (f₂ i)).prod = f (s.map f₁).prod (s.map f₂).prod
case h ι : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_6 inst✝² : CommMonoid α inst✝¹ : CommMonoid β inst✝ : CommMonoid γ f : α → β → γ hf : ∀ (a b : α) (c d : β), f (a * b) (c * d) = f a c * f b d f₁ : ι → α f₂ : ι → β a✝ : List ι hs : ⟦a✝⟧ ≠ 0 ⊢ (map (fun i => f (f₁ i) (f₂ i)) ⟦a✝⟧).prod = f (map f₁ ⟦a✝⟧).prod (map f₂ ⟦a✝⟧).prod
aesop (add simp List.prod_hom₂_nonempty)
no goals
27df2ec069e39e33
CategoryTheory.regularTopology.parallelPair_pullback_initial
Mathlib/CategoryTheory/Sites/Coherent/RegularSheaves.lean
theorem parallelPair_pullback_initial {X B : C} (π : X ⟶ B) (c : PullbackCone π π) (hc : IsLimit c) : (parallelPair (C := (Sieve.ofArrows (fun (_ : Unit) => X) (fun _ => π)).arrows.categoryᵒᵖ) (Y := op ((Presieve.categoryMk _ (c.fst ≫ π) ⟨_, c.fst, π, ofArrows.mk (), rfl⟩))) (X := op ((Presieve.categoryMk _ π (Sieve.ofArrows_mk _ _ Unit.unit)))) (Quiver.Hom.op (Over.homMk c.fst)) (Quiver.Hom.op (Over.homMk c.snd c.condition.symm))).Initial
case h₁ C : Type u_1 inst✝ : Category.{u_4, u_1} C X B : C π : X ⟶ B c : PullbackCone π π hc : IsLimit c ⊢ ∀ (Z : (Sieve.ofArrows (fun x => X) fun x => π).arrows.categoryᵒᵖ), Nonempty (op ((Sieve.ofArrows (fun x => X) fun x => π).arrows.categoryMk π ⋯) ⟶ Z)
intro ⟨Z⟩
case h₁ C : Type u_1 inst✝ : Category.{u_4, u_1} C X B : C π : X ⟶ B c : PullbackCone π π hc : IsLimit c Z : (Sieve.ofArrows (fun x => X) fun x => π).arrows.category ⊢ Nonempty (op ((Sieve.ofArrows (fun x => X) fun x => π).arrows.categoryMk π ⋯) ⟶ op Z)
d548d8c18bc207b1
Polynomial.hilbertPoly_mul_one_sub_pow_add
Mathlib/RingTheory/Polynomial/HilbertPoly.lean
lemma hilbertPoly_mul_one_sub_pow_add (p : F[X]) (d e : ℕ) : hilbertPoly (p * (1 - X) ^ e) (d + e) = hilbertPoly p d
F : Type u_1 inst✝¹ : Field F inst✝ : CharZero F p : F[X] d e : ℕ ⊢ (p * (1 - X) ^ e).hilbertPoly (d + e) = p.hilbertPoly d
induction e with | zero => simp | succ e he => rw [pow_add, pow_one, ← mul_assoc, ← add_assoc, hilbertPoly_mul_one_sub_succ, he]
no goals
afc62f2d64fc85e6
NNReal.summable_schlomilch_iff
Mathlib/Analysis/PSeries.lean
theorem summable_schlomilch_iff {C : ℕ} {u : ℕ → ℕ} {f : ℕ → ℝ≥0} (hf : ∀ ⦃m n⦄, 0 < m → m ≤ n → f n ≤ f m) (h_pos : ∀ n, 0 < u n) (hu_strict : StrictMono u) (hC_nonzero : C ≠ 0) (h_succ_diff : SuccDiffBounded C u) : (Summable fun k : ℕ => (u (k + 1) - (u k : ℝ≥0)) * f (u k)) ↔ Summable f
C : ℕ u : ℕ → ℕ f : ℕ → ℝ≥0 hf : ∀ ⦃m n : ℕ⦄, 0 < m → m ≤ n → f n ≤ f m h_pos : ∀ (n : ℕ), 0 < u n hu_strict : StrictMono u hC_nonzero : C ≠ 0 h_succ_diff : SuccDiffBounded C u ⊢ (Summable fun k => (↑(u (k + 1)) - ↑(u k)) * f (u k)) ↔ Summable f
simp only [← tsum_coe_ne_top_iff_summable, Ne, not_iff_not, ENNReal.coe_mul]
C : ℕ u : ℕ → ℕ f : ℕ → ℝ≥0 hf : ∀ ⦃m n : ℕ⦄, 0 < m → m ≤ n → f n ≤ f m h_pos : ∀ (n : ℕ), 0 < u n hu_strict : StrictMono u hC_nonzero : C ≠ 0 h_succ_diff : SuccDiffBounded C u ⊢ ∑' (b : ℕ), ↑(↑(u (b + 1)) - ↑(u b)) * ↑(f (u b)) = ⊤ ↔ ∑' (b : ℕ), ↑(f b) = ⊤
04bdd8552d6d0c58
Filter.eventuallyConst_atTop_nat
Mathlib/Order/Filter/EventuallyConst.lean
lemma eventuallyConst_atTop_nat {f : ℕ → α} : EventuallyConst f atTop ↔ ∃ n, ∀ m, n ≤ m → f (m + 1) = f m
α : Type u_1 f : ℕ → α ⊢ (∃ i, ∀ (j : ℕ), i ≤ j → f j = f i) ↔ ∃ n, ∀ (m : ℕ), n ≤ m → f (m + 1) = f m
refine exists_congr fun n ↦ ⟨fun h m hm ↦ ?_, fun h m hm ↦ ?_⟩
case refine_1 α : Type u_1 f : ℕ → α n : ℕ h : ∀ (j : ℕ), n ≤ j → f j = f n m : ℕ hm : n ≤ m ⊢ f (m + 1) = f m case refine_2 α : Type u_1 f : ℕ → α n : ℕ h : ∀ (m : ℕ), n ≤ m → f (m + 1) = f m m : ℕ hm : n ≤ m ⊢ f m = f n
2a5354aa8c8f975c
GroupWithZero.dvd_iff
Mathlib/Algebra/GroupWithZero/Divisibility.lean
/-- `∣` is not a useful definition if an inverse is available. -/ @[simp] lemma GroupWithZero.dvd_iff {m n : α} : m ∣ n ↔ (m = 0 → n = 0)
case refine_1 α : Type u_1 inst✝ : GroupWithZero α m n : α x✝ : m ∣ n hm : m = 0 a : α ha : n = m * a ⊢ n = 0
simp [hm, ha]
no goals
8c07e094e9905dbc
CategoryTheory.Quotient.compClosure_iff_self
Mathlib/CategoryTheory/Quotient.lean
lemma compClosure_iff_self [h : Congruence r] {X Y : C} (f g : X ⟶ Y) : CompClosure r f g ↔ r f g
case mp C : Type u_1 inst✝ : Category.{u_2, u_1} C r : HomRel C h : Congruence r X Y : C f g : X ⟶ Y hfg : CompClosure r f g ⊢ r f g
induction' hfg with m m' hm
case mp.intro C : Type u_1 inst✝ : Category.{u_2, u_1} C r : HomRel C h : Congruence r X Y : C f g : X ⟶ Y m m' : C hm : X ⟶ m m₁✝ m₂✝ : m ⟶ m' g✝ : m' ⟶ Y h✝ : r m₁✝ m₂✝ ⊢ r (hm ≫ m₁✝ ≫ g✝) (hm ≫ m₂✝ ≫ g✝)
c4ae7ee6099a17ac
cfcₙHom_of_cfcHom_map_quasispectrum
Mathlib/Analysis/CStarAlgebra/ContinuousFunctionalCalculus/NonUnital.lean
lemma cfcₙHom_of_cfcHom_map_quasispectrum {a : A} (ha : p a) : ∀ f : C(σₙ R a, R)₀, σₙ R (cfcₙHom_of_cfcHom R ha f) = range f
case h.mp R : Type u_1 A : Type u_2 p : A → Prop inst✝⁹ : Semifield R inst✝⁸ : StarRing R inst✝⁷ : MetricSpace R inst✝⁶ : IsTopologicalSemiring R inst✝⁵ : ContinuousStar R inst✝⁴ : Ring A inst✝³ : StarRing A inst✝² : TopologicalSpace A inst✝¹ : Algebra R A inst✝ : ContinuousFunctionalCalculus R p a : A ha : p a f : C(↑(σₙ R a), R)₀ x : R ⊢ x ∈ range ⇑((compStarAlgHom' R R { toFun := Set.inclusion ⋯, continuous_toFun := ⋯ }) (toContinuousMapHom f)) ∪ {0} → x ∈ range ⇑f
rintro (⟨x, rfl⟩ | rfl)
case h.mp.inl.intro R : Type u_1 A : Type u_2 p : A → Prop inst✝⁹ : Semifield R inst✝⁸ : StarRing R inst✝⁷ : MetricSpace R inst✝⁶ : IsTopologicalSemiring R inst✝⁵ : ContinuousStar R inst✝⁴ : Ring A inst✝³ : StarRing A inst✝² : TopologicalSpace A inst✝¹ : Algebra R A inst✝ : ContinuousFunctionalCalculus R p a : A ha : p a f : C(↑(σₙ R a), R)₀ x : ↑(spectrum R a) ⊢ ((compStarAlgHom' R R { toFun := Set.inclusion ⋯, continuous_toFun := ⋯ }) (toContinuousMapHom f)) x ∈ range ⇑f case h.mp.inr R : Type u_1 A : Type u_2 p : A → Prop inst✝⁹ : Semifield R inst✝⁸ : StarRing R inst✝⁷ : MetricSpace R inst✝⁶ : IsTopologicalSemiring R inst✝⁵ : ContinuousStar R inst✝⁴ : Ring A inst✝³ : StarRing A inst✝² : TopologicalSpace A inst✝¹ : Algebra R A inst✝ : ContinuousFunctionalCalculus R p a : A ha : p a f : C(↑(σₙ R a), R)₀ ⊢ 0 ∈ range ⇑f
c7d41f5330214066
Polynomial.support_derivativeFinsupp_subset_range
Mathlib/Algebra/Polynomial/Derivative.lean
theorem support_derivativeFinsupp_subset_range {p : R[X]} {n : ℕ} (h : p.natDegree < n) : (derivativeFinsupp p).support ⊆ range n
R : Type u inst✝ : Semiring R p : R[X] n : ℕ h : p.natDegree < n ⊢ (Finsupp.onFinset (range (p.natDegree + 1)) (fun x => (⇑derivative)^[x] p) ⋯).support ⊆ range n
exact Finsupp.support_onFinset_subset.trans (Finset.range_subset.mpr h)
no goals
f53dd0fd16286f86
MeasureTheory.LevyProkhorov.continuous_equiv_symm_probabilityMeasure
Mathlib/MeasureTheory/Measure/LevyProkhorovMetric.lean
lemma LevyProkhorov.continuous_equiv_symm_probabilityMeasure : Continuous (LevyProkhorov.equiv (α := ProbabilityMeasure Ω)).symm
case intro.intro.intro.intro.intro.intro Ω : Type u_1 inst✝³ : PseudoMetricSpace Ω inst✝² : MeasurableSpace Ω inst✝¹ : OpensMeasurableSpace Ω inst✝ : SeparableSpace Ω P : ProbabilityMeasure Ω ε : ℝ ε_pos : ε > 0 third_ε_pos : 0 < ε / 3 third_ε_pos' : 0 < ENNReal.ofReal (ε / 3) Es : ℕ → Set Ω Es_mble : ∀ (n : ℕ), MeasurableSet (Es n) Es_bdd : ∀ (n : ℕ), Bornology.IsBounded (Es n) Es_diam : ∀ (n : ℕ), diam (Es n) ≤ ε / 3 Es_cover : ⋃ n, Es n = univ Es_disjoint : Pairwise fun n m => Disjoint (Es n) (Es m) N : ℕ hN : ↑P (⋃ j ∈ Iio N, Es j)ᶜ < ENNReal.ofReal (ε / 3) Js_finite : {J | J ⊆ Iio N}.Finite Gs : Set (Set Ω) := (fun J => thickening (ε / 3) (⋃ j ∈ J, Es j)) '' {J | J ⊆ Iio N} Gs_open : ∀ (J : Set ℕ), IsOpen (thickening (ε / 3) (⋃ j ∈ J, Es j)) ⊢ ∀ᶠ (x : ProbabilityMeasure Ω) in 𝓝 P, dist ((equiv (ProbabilityMeasure Ω)).symm x) ((equiv (ProbabilityMeasure Ω)).symm P) < ε
have mem_nhds_P (G : Set Ω) (G_open : IsOpen G) : {Q | P.toMeasure G < Q.toMeasure G + ENNReal.ofReal (ε/3)} ∈ 𝓝 P := P.toMeasure_add_pos_gt_mem_nhds G_open third_ε_pos'
case intro.intro.intro.intro.intro.intro Ω : Type u_1 inst✝³ : PseudoMetricSpace Ω inst✝² : MeasurableSpace Ω inst✝¹ : OpensMeasurableSpace Ω inst✝ : SeparableSpace Ω P : ProbabilityMeasure Ω ε : ℝ ε_pos : ε > 0 third_ε_pos : 0 < ε / 3 third_ε_pos' : 0 < ENNReal.ofReal (ε / 3) Es : ℕ → Set Ω Es_mble : ∀ (n : ℕ), MeasurableSet (Es n) Es_bdd : ∀ (n : ℕ), Bornology.IsBounded (Es n) Es_diam : ∀ (n : ℕ), diam (Es n) ≤ ε / 3 Es_cover : ⋃ n, Es n = univ Es_disjoint : Pairwise fun n m => Disjoint (Es n) (Es m) N : ℕ hN : ↑P (⋃ j ∈ Iio N, Es j)ᶜ < ENNReal.ofReal (ε / 3) Js_finite : {J | J ⊆ Iio N}.Finite Gs : Set (Set Ω) := (fun J => thickening (ε / 3) (⋃ j ∈ J, Es j)) '' {J | J ⊆ Iio N} Gs_open : ∀ (J : Set ℕ), IsOpen (thickening (ε / 3) (⋃ j ∈ J, Es j)) mem_nhds_P : ∀ (G : Set Ω), IsOpen G → {Q | ↑P G < ↑Q G + ENNReal.ofReal (ε / 3)} ∈ 𝓝 P ⊢ ∀ᶠ (x : ProbabilityMeasure Ω) in 𝓝 P, dist ((equiv (ProbabilityMeasure Ω)).symm x) ((equiv (ProbabilityMeasure Ω)).symm P) < ε
1196bd5a9632bf03
Affine.Simplex.reindex_reindex_symm
Mathlib/LinearAlgebra/AffineSpace/Independent.lean
theorem reindex_reindex_symm {m n : ℕ} (s : Simplex k P m) (e : Fin (m + 1) ≃ Fin (n + 1)) : (s.reindex e).reindex e.symm = s
k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P m n : ℕ s : Simplex k P m e : Fin (m + 1) ≃ Fin (n + 1) ⊢ (s.reindex e).reindex e.symm = s
rw [← reindex_trans, Equiv.self_trans_symm, reindex_refl]
no goals
b2e5e2423f27403a
Std.DHashMap.Internal.List.getValue?_eq_getEntry?
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Internal/List/Associative.lean
theorem getValue?_eq_getEntry? [BEq α] {l : List ((_ : α) × β)} {a : α} : getValue? a l = (getEntry? a l).map (·.2)
α : Type u β : Type v inst✝ : BEq α l : List ((_ : α) × β) a : α ⊢ getValue? a l = Option.map (fun x => x.snd) (getEntry? a l)
induction l using assoc_induction
case nil α : Type u β : Type v inst✝ : BEq α a : α ⊢ getValue? a [] = Option.map (fun x => x.snd) (getEntry? a []) case cons α : Type u β : Type v inst✝ : BEq α a k✝ : α v✝ : β tail✝ : List ((_ : α) × β) a✝ : getValue? a tail✝ = Option.map (fun x => x.snd) (getEntry? a tail✝) ⊢ getValue? a (⟨k✝, v✝⟩ :: tail✝) = Option.map (fun x => x.snd) (getEntry? a (⟨k✝, v✝⟩ :: tail✝))
687d94ddd91ab084
MeasureTheory.leastGE_eq_min
Mathlib/Probability/Martingale/BorelCantelli.lean
theorem leastGE_eq_min (π : Ω → ℕ) (r : ℝ) (ω : Ω) {n : ℕ} (hπn : ∀ ω, π ω ≤ n) : leastGE f r (π ω) ω = min (π ω) (leastGE f r n ω)
case pos Ω : Type u_1 f : ℕ → Ω → ℝ π : Ω → ℕ r : ℝ ω : Ω n : ℕ hπn : ∀ (ω : Ω), π ω ≤ n hle : π ω ≤ leastGE f r n ω h : ∃ j ∈ Set.Icc 0 (π ω), f j ω ∈ Set.Ici r ⊢ π ω ≤ hitting f (Set.Ici r) 0 (π ω) ω
refine hle.trans (Eq.le ?_)
case pos Ω : Type u_1 f : ℕ → Ω → ℝ π : Ω → ℕ r : ℝ ω : Ω n : ℕ hπn : ∀ (ω : Ω), π ω ≤ n hle : π ω ≤ leastGE f r n ω h : ∃ j ∈ Set.Icc 0 (π ω), f j ω ∈ Set.Ici r ⊢ leastGE f r n ω = hitting f (Set.Ici r) 0 (π ω) ω
ed2cf0baa21c4237
Nat.Linear.PolyCnstr.denote_mul
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Nat/Linear.lean
theorem PolyCnstr.denote_mul (ctx : Context) (k : Nat) (c : PolyCnstr) : (c.mul (k+1)).denote ctx = c.denote ctx
case mk ctx : Context k : Nat eq : Bool lhs rhs : Poly ⊢ denote ctx (mul (k + 1) { eq := eq, lhs := lhs, rhs := rhs }) = denote ctx { eq := eq, lhs := lhs, rhs := rhs }
have : k ≠ 0 → k + 1 ≠ 1 := by intro h; match k with | 0 => contradiction | k+1 => simp [Nat.succ.injEq]
case mk ctx : Context k : Nat eq : Bool lhs rhs : Poly this : k ≠ 0 → k + 1 ≠ 1 ⊢ denote ctx (mul (k + 1) { eq := eq, lhs := lhs, rhs := rhs }) = denote ctx { eq := eq, lhs := lhs, rhs := rhs }
135a439c1fc286b8
Dynamics.coverMincard_le_netMaxcard
Mathlib/Dynamics/TopologicalEntropy/NetEntropy.lean
/-- Given an entourage `U` and a time `n`, a minimal dynamical cover by `U ○ U` has a smaller cardinality than a maximal dynamical net by `U`. This lemma is the second of two key results to compare two versions topological entropy: with cover and with nets. -/ lemma coverMincard_le_netMaxcard (T : X → X) (F : Set X) {U : Set (X × X)} (U_rfl : idRel ⊆ U) (U_symm : SymmetricRel U) (n : ℕ) : coverMincard T F (U ○ U) n ≤ netMaxcard T F U n
X : Type u_1 T : X → X F : Set X U : Set (X × X) U_rfl : idRel ⊆ U U_symm : SymmetricRel U n : ℕ h✝ : netMaxcard T F U n < ⊤ s : Finset X s_net : IsDynNetIn T F U n ↑s s_netMaxcard : ↑s.card = netMaxcard T F U n h : ¬IsDynCoverOf T F (U ○ U) n ↑s x : X x_F : x ∈ F x_uncov : ∀ x_1 ∈ s, x ∉ ball x_1 (dynEntourage T (U ○ U) n) larger_net : IsDynNetIn T F U n ↑(insert x s) x_s : x ∈ s ⊢ x ∈ ball x idRel
simp only [ball, mem_preimage, mem_idRel]
no goals
78a05381e650bf91
Turing.ToPartrec.Code.fix_eval
Mathlib/Computability/TMConfig.lean
theorem fix_eval (f) : (fix f).eval = PFun.fix fun v => (f.eval v).map fun v => if v.headI = 0 then Sum.inl v.tail else Sum.inr v.tail
f : Code ⊢ f.fix.eval = PFun.fix fun v => Part.map (fun v => if v.headI = 0 then Sum.inl v.tail else Sum.inr v.tail) (f.eval v)
simp [eval]
no goals
a2d428e524749890
ContinuousMultilinearMap.hasBasis_nhds_zero_of_basis
Mathlib/Topology/Algebra/Module/Multilinear/Topology.lean
theorem hasBasis_nhds_zero_of_basis {ι : Type*} {p : ι → Prop} {b : ι → Set F} (h : (𝓝 (0 : F)).HasBasis p b) : (𝓝 (0 : ContinuousMultilinearMap 𝕜 E F)).HasBasis (fun Si : Set (Π i, E i) × ι => IsVonNBounded 𝕜 Si.1 ∧ p Si.2) fun Si => { f | MapsTo f Si.1 (b Si.2) }
case refine_2 𝕜 : Type u_1 ι✝ : Type u_2 E : ι✝ → Type u_3 F : Type u_4 inst✝⁷ : NormedField 𝕜 inst✝⁶ : (i : ι✝) → TopologicalSpace (E i) inst✝⁵ : (i : ι✝) → AddCommGroup (E i) inst✝⁴ : (i : ι✝) → Module 𝕜 (E i) inst✝³ : AddCommGroup F inst✝² : Module 𝕜 F inst✝¹ : TopologicalSpace F inst✝ : IsTopologicalAddGroup F ι : Type u_5 p : ι → Prop b : ι → Set F h : (𝓝 0).HasBasis p b this✝ : UniformSpace F := IsTopologicalAddGroup.toUniformSpace F this : UniformAddGroup F ⊢ DirectedOn (fun x1 x2 => x1 ⊆ x2) {s | IsVonNBounded 𝕜 s}
exact directedOn_of_sup_mem fun _ _ => Bornology.IsVonNBounded.union
no goals
40e37d0cf509b7bc
Continuous.exists_forall_le_of_hasCompactMulSupport
Mathlib/Topology/Order/Compact.lean
theorem Continuous.exists_forall_le_of_hasCompactMulSupport [ClosedIicTopology α] [Nonempty β] [One α] {f : β → α} (hf : Continuous f) (h : HasCompactMulSupport f) : ∃ x : β, ∀ y : β, f x ≤ f y
case intro.intro.intro α : Type u_2 β : Type u_3 inst✝⁵ : LinearOrder α inst✝⁴ : TopologicalSpace α inst✝³ : TopologicalSpace β inst✝² : ClosedIicTopology α inst✝¹ : Nonempty β inst✝ : One α f : β → α hf : Continuous f h : HasCompactMulSupport f x : β hx : ∀ (i : β), f x ≤ f i ⊢ ∃ x, ∀ (y : β), f x ≤ f y
exact ⟨x, hx⟩
no goals
486261c2aee938dc
FirstOrder.Language.ElementaryEmbedding.map_formula
Mathlib/ModelTheory/ElementaryMaps.lean
theorem map_formula (f : M ↪ₑ[L] N) {α : Type*} (φ : L.Formula α) (x : α → M) : φ.Realize (f ∘ x) ↔ φ.Realize x
L : Language M : Type u_1 N : Type u_2 inst✝¹ : L.Structure M inst✝ : L.Structure N f : M ↪ₑ[L] N α : Type u_5 φ : L.Formula α x : α → M ⊢ φ.Realize (⇑f ∘ x) ↔ φ.Realize x
rw [Formula.Realize, Formula.Realize, ← f.map_boundedFormula, Unique.eq_default (f ∘ default)]
no goals
9885612a339f98d4
SeparatingDual.t2Space
Mathlib/Analysis/NormedSpace/HahnBanach/SeparatingDual.lean
theorem t2Space [T2Space R] : T2Space V
R : Type u_1 V : Type u_2 inst✝⁶ : Ring R inst✝⁵ : AddCommGroup V inst✝⁴ : TopologicalSpace V inst✝³ : TopologicalSpace R inst✝² : Module R V inst✝¹ : SeparatingDual R V inst✝ : T2Space R ⊢ T2Space V
apply (t2Space_iff _).2 (fun {x} {y} hxy ↦ ?_)
R : Type u_1 V : Type u_2 inst✝⁶ : Ring R inst✝⁵ : AddCommGroup V inst✝⁴ : TopologicalSpace V inst✝³ : TopologicalSpace R inst✝² : Module R V inst✝¹ : SeparatingDual R V inst✝ : T2Space R x y : V hxy : x ≠ y ⊢ ∃ u v, IsOpen u ∧ IsOpen v ∧ x ∈ u ∧ y ∈ v ∧ Disjoint u v
4550ff38167d811f
NumberField.mixedEmbedding.norm_unit
Mathlib/NumberTheory/NumberField/CanonicalEmbedding/Basic.lean
theorem norm_unit (u : (𝓞 K)ˣ) : mixedEmbedding.norm (mixedEmbedding K u) = 1
K : Type u_1 inst✝¹ : Field K inst✝ : NumberField K u : (𝓞 K)ˣ ⊢ mixedEmbedding.norm ((mixedEmbedding K) ((algebraMap (𝓞 K) K) ↑u)) = 1
rw [norm_eq_norm, Units.norm, Rat.cast_one]
no goals
4c804f965b90f8ea
Std.DHashMap.Internal.Raw₀.wfImp_expandIfNecessary
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Internal/WF.lean
theorem wfImp_expandIfNecessary [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (m : Raw₀ α β) (h : Raw.WFImp m.1) : Raw.WFImp (expandIfNecessary m).1
case isFalse.refine_2 α : Type u β : α → Type v inst✝³ : BEq α inst✝² : Hashable α inst✝¹ : EquivBEq α inst✝ : LawfulHashable α m : Raw₀ α β size : Nat buckets : Array (AssocList α β) hm : 0 < { size := size, buckets := buckets }.buckets.size h : Raw.WFImp ⟨{ size := size, buckets := buckets }, hm⟩.val h✝ : ¬Std.DHashMap.Internal.numBucketsForCapacity✝ ⟨{ size := size, buckets := buckets }, hm⟩.1.size ≤ ⟨{ size := size, buckets := buckets }, hm⟩.1.buckets.size this : toListModel (expand ⟨buckets, hm⟩).val ~ toListModel buckets ⊢ (toListModel ⟨{ size := size, buckets := buckets }, hm⟩.val.buckets).length = (toListModel ⟨{ size := ⟨{ size := size, buckets := buckets }, hm⟩.1.size, buckets := (expand ⟨⟨{ size := size, buckets := buckets }, hm⟩.1.buckets, ⋯⟩).val }, ⋯⟩.val.buckets).length
simpa using this.symm.length_eq
no goals
1c1b7d9917a856cf
inv_zpow'
Mathlib/Algebra/Group/Basic.lean
@[to_additive (attr := simp) zsmul_neg'] lemma inv_zpow' (a : α) (n : ℤ) : a⁻¹ ^ n = a ^ (-n)
α : Type u_1 inst✝ : DivisionMonoid α a : α n : ℤ ⊢ a⁻¹ ^ n = a ^ (-n)
rw [inv_zpow, zpow_neg]
no goals
add5a4260d0d109c
Set.einfsep_insert
Mathlib/Topology/MetricSpace/Infsep.lean
theorem einfsep_insert : einfsep (insert x s) = (⨅ (y ∈ s) (_ : x ≠ y), edist x y) ⊓ s.einfsep
case inr.inl α : Type u_1 inst✝ : PseudoEMetricSpace α s : Set α y : α hy : y ∈ s z : α hyz : y ≠ z ⊢ ⨅ y ∈ s, ⨅ (_ : z ≠ y), edist z y ≤ edist y z ∨ s.einfsep ≤ edist y z
rw [edist_comm]
case inr.inl α : Type u_1 inst✝ : PseudoEMetricSpace α s : Set α y : α hy : y ∈ s z : α hyz : y ≠ z ⊢ ⨅ y ∈ s, ⨅ (_ : z ≠ y), edist z y ≤ edist z y ∨ s.einfsep ≤ edist z y
f40a03789d1fa38e
Ideal.Quotient.quotient_ring_saturate
Mathlib/RingTheory/Ideal/Quotient/Defs.lean
theorem quotient_ring_saturate (s : Set R) : mk I ⁻¹' (mk I '' s) = ⋃ x : I, (fun y => x.1 + y) '' s
case h R : Type u inst✝¹ : Ring R I : Ideal R inst✝ : I.IsTwoSided s : Set R x : R ⊢ x ∈ ⇑(mk I) ⁻¹' (⇑(mk I) '' s) ↔ x ∈ ⋃ x, (fun y => ↑x + y) '' s
simp only [mem_preimage, mem_image, mem_iUnion, Ideal.Quotient.eq]
case h R : Type u inst✝¹ : Ring R I : Ideal R inst✝ : I.IsTwoSided s : Set R x : R ⊢ (∃ x_1 ∈ s, x_1 - x ∈ I) ↔ ∃ i, ∃ x_1 ∈ s, ↑i + x_1 = x
6db8fbab47f6b2ab
Finset.prod_eq_mul
Mathlib/Algebra/BigOperators/Group/Finset/Basic.lean
theorem prod_eq_mul {s : Finset α} {f : α → β} (a b : α) (hn : a ≠ b) (h₀ : ∀ c ∈ s, c ≠ a ∧ c ≠ b → f c = 1) (ha : a ∉ s → f a = 1) (hb : b ∉ s → f b = 1) : ∏ x ∈ s, f x = f a * f b
α : Type u_3 β : Type u_4 inst✝ : CommMonoid β s : Finset α f : α → β a b : α hn : a ≠ b h₀ : ∀ c ∈ s, c ≠ a ∧ c ≠ b → f c = 1 ha : a ∉ s → f a = 1 hb : b ∉ s → f b = 1 this : DecidableEq α ⊢ ∏ x ∈ s, f x = f a * f b
by_cases h₁ : a ∈ s <;> by_cases h₂ : b ∈ s
case pos α : Type u_3 β : Type u_4 inst✝ : CommMonoid β s : Finset α f : α → β a b : α hn : a ≠ b h₀ : ∀ c ∈ s, c ≠ a ∧ c ≠ b → f c = 1 ha : a ∉ s → f a = 1 hb : b ∉ s → f b = 1 this : DecidableEq α h₁ : a ∈ s h₂ : b ∈ s ⊢ ∏ x ∈ s, f x = f a * f b case neg α : Type u_3 β : Type u_4 inst✝ : CommMonoid β s : Finset α f : α → β a b : α hn : a ≠ b h₀ : ∀ c ∈ s, c ≠ a ∧ c ≠ b → f c = 1 ha : a ∉ s → f a = 1 hb : b ∉ s → f b = 1 this : DecidableEq α h₁ : a ∈ s h₂ : b ∉ s ⊢ ∏ x ∈ s, f x = f a * f b case pos α : Type u_3 β : Type u_4 inst✝ : CommMonoid β s : Finset α f : α → β a b : α hn : a ≠ b h₀ : ∀ c ∈ s, c ≠ a ∧ c ≠ b → f c = 1 ha : a ∉ s → f a = 1 hb : b ∉ s → f b = 1 this : DecidableEq α h₁ : a ∉ s h₂ : b ∈ s ⊢ ∏ x ∈ s, f x = f a * f b case neg α : Type u_3 β : Type u_4 inst✝ : CommMonoid β s : Finset α f : α → β a b : α hn : a ≠ b h₀ : ∀ c ∈ s, c ≠ a ∧ c ≠ b → f c = 1 ha : a ∉ s → f a = 1 hb : b ∉ s → f b = 1 this : DecidableEq α h₁ : a ∉ s h₂ : b ∉ s ⊢ ∏ x ∈ s, f x = f a * f b
b9106c52ac5adf76
IsCyclotomicExtension.finite_of_singleton
Mathlib/NumberTheory/Cyclotomic/Basic.lean
theorem finite_of_singleton [IsDomain B] [h : IsCyclotomicExtension {n} A B] : Module.Finite A B
n : ℕ+ A : Type u B : Type v inst✝³ : CommRing A inst✝² : CommRing B inst✝¹ : Algebra A B inst✝ : IsDomain B h : IsCyclotomicExtension {n} A B ⊢ (Subalgebra.toSubmodule (adjoin A {b | ∃ n_1 ∈ {n}, b ^ ↑n_1 = 1})).FG
refine fg_adjoin_of_finite ?_ fun b hb => ?_
case refine_1 n : ℕ+ A : Type u B : Type v inst✝³ : CommRing A inst✝² : CommRing B inst✝¹ : Algebra A B inst✝ : IsDomain B h : IsCyclotomicExtension {n} A B ⊢ {b | ∃ n_1 ∈ {n}, b ^ ↑n_1 = 1}.Finite case refine_2 n : ℕ+ A : Type u B : Type v inst✝³ : CommRing A inst✝² : CommRing B inst✝¹ : Algebra A B inst✝ : IsDomain B h : IsCyclotomicExtension {n} A B b : B hb : b ∈ {b | ∃ n_1 ∈ {n}, b ^ ↑n_1 = 1} ⊢ IsIntegral A b
cc2a3c4a254e9a04
Finset.prod_sum
Mathlib/Algebra/BigOperators/Ring/Finset.lean
/-- The product over a sum can be written as a sum over the product of sets, `Finset.Pi`. `Finset.prod_univ_sum` is an alternative statement when the product is over `univ`. -/ lemma prod_sum (s : Finset ι) (t : ∀ i, Finset (κ i)) (f : ∀ i, κ i → α) : ∏ a ∈ s, ∑ b ∈ t a, f a b = ∑ p ∈ s.pi t, ∏ x ∈ s.attach, f x.1 (p x.1 x.2)
ι : Type u_1 α : Type u_3 κ : ι → Type u_6 inst✝¹ : CommSemiring α inst✝ : DecidableEq ι t : (i : ι) → Finset (κ i) f : (i : ι) → κ i → α a : ι s : Finset ι ha : a ∉ s ih : ∏ a ∈ s, ∑ b ∈ t a, f a b = ∑ p ∈ s.pi t, ∏ x ∈ s.attach, f (↑x) (p ↑x ⋯) ⊢ ∀ x ∈ t a, ∀ y ∈ t a, x ≠ y → Disjoint (image (Pi.cons s a x) (s.pi t)) (image (Pi.cons s a y) (s.pi t))
intro x _ y _ h
ι : Type u_1 α : Type u_3 κ : ι → Type u_6 inst✝¹ : CommSemiring α inst✝ : DecidableEq ι t : (i : ι) → Finset (κ i) f : (i : ι) → κ i → α a : ι s : Finset ι ha : a ∉ s ih : ∏ a ∈ s, ∑ b ∈ t a, f a b = ∑ p ∈ s.pi t, ∏ x ∈ s.attach, f (↑x) (p ↑x ⋯) x : κ a a✝¹ : x ∈ t a y : κ a a✝ : y ∈ t a h : x ≠ y ⊢ Disjoint (image (Pi.cons s a x) (s.pi t)) (image (Pi.cons s a y) (s.pi t))
13d6d8ff7aa531dd
is_descending_rev_series_of_is_ascending
Mathlib/GroupTheory/Nilpotent.lean
theorem is_descending_rev_series_of_is_ascending {H : ℕ → Subgroup G} {n : ℕ} (hn : H n = ⊤) (hasc : IsAscendingCentralSeries H) : IsDescendingCentralSeries fun m : ℕ => H (n - m)
G : Type u_1 inst✝ : Group G H : ℕ → Subgroup G n : ℕ hn : H n = ⊤ hasc : IsAscendingCentralSeries H ⊢ IsDescendingCentralSeries fun m => H (n - m)
obtain ⟨h0, hH⟩ := hasc
case intro G : Type u_1 inst✝ : Group G H : ℕ → Subgroup G n : ℕ hn : H n = ⊤ h0 : H 0 = ⊥ hH : ∀ (x : G) (n : ℕ), x ∈ H (n + 1) → ∀ (g : G), x * g * x⁻¹ * g⁻¹ ∈ H n ⊢ IsDescendingCentralSeries fun m => H (n - m)
2e0985d2d77b7a82
List.mapIdx_reverse
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/MapIdx.lean
theorem mapIdx_reverse {l : List α} {f : Nat → α → β} : l.reverse.mapIdx f = (mapIdx (fun i => f (l.length - 1 - i)) l).reverse
α : Type u_1 β : Type u_2 l : List α f : Nat → α → β i : Nat h : l.length ≤ i ⊢ (mapIdx (fun i => f (l.length - 1 - i)) l).reverse.length ≤ i
simp [h]
no goals
8086284ec8908f69
Normal.exists_isSplittingField
Mathlib/FieldTheory/Normal/Basic.lean
theorem Normal.exists_isSplittingField [h : Normal F K] [FiniteDimensional F K] : ∃ p : F[X], IsSplittingField F K p
case refine_2 F : Type u_1 K : Type u_2 inst✝³ : Field F inst✝² : Field K inst✝¹ : Algebra F K h : Normal F K inst✝ : FiniteDimensional F K s : Basis (↑(Basis.ofVectorSpaceIndex F K)) F K := Basis.ofVectorSpace F K x : ↑(Basis.ofVectorSpaceIndex F K) ⊢ (map (algebraMap F K) (∏ x : ↑(Basis.ofVectorSpaceIndex F K), minpoly F (s x))).IsRoot (s x)
rw [IsRoot.def, eval_map, ← aeval_def, map_prod]
case refine_2 F : Type u_1 K : Type u_2 inst✝³ : Field F inst✝² : Field K inst✝¹ : Algebra F K h : Normal F K inst✝ : FiniteDimensional F K s : Basis (↑(Basis.ofVectorSpaceIndex F K)) F K := Basis.ofVectorSpace F K x : ↑(Basis.ofVectorSpaceIndex F K) ⊢ ∏ x_1 : ↑(Basis.ofVectorSpaceIndex F K), (aeval (s x)) (minpoly F (s x_1)) = 0
cf09608356970b0b
Digraph.toSimpleGraphStrict_top
Mathlib/Combinatorics/Digraph/Orientation.lean
@[simp] lemma toSimpleGraphStrict_top : (⊤ : Digraph V).toSimpleGraphStrict = ⊤
case Adj.h.h.a V : Type u_1 x✝¹ x✝ : V ⊢ ⊤.toSimpleGraphStrict.Adj x✝¹ x✝ ↔ ⊤.Adj x✝¹ x✝
exact ⟨And.left, fun h ↦ ⟨h.ne, trivial, trivial⟩⟩
no goals
4eed4830ef54132b
descPochhammer_natDegree
Mathlib/RingTheory/Polynomial/Pochhammer.lean
theorem descPochhammer_natDegree (n : ℕ) [NoZeroDivisors R] [Nontrivial R] : (descPochhammer R n).natDegree = n
case succ R : Type u inst✝² : Ring R inst✝¹ : NoZeroDivisors R inst✝ : Nontrivial R n✝ : ℕ hn : (descPochhammer R (n✝ + 1)).natDegree = n✝ + 1 this : (X - ↑(n✝ + 1)).natDegree = 1 ⊢ descPochhammer R (n✝ + 1) ≠ 0
refine ne_zero_of_natDegree_gt <| hn.symm ▸ Nat.add_one_pos _
no goals
57895a57672af1e9
TensorProduct.exists_multiset
Mathlib/LinearAlgebra/TensorProduct/Finiteness.lean
theorem exists_multiset (x : M ⊗[R] N) : ∃ S : Multiset (M × N), x = (S.map fun i ↦ i.1 ⊗ₜ[R] i.2).sum
R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : CommSemiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid N inst✝¹ : Module R M inst✝ : Module R N ⊢ 0 = (Multiset.map (fun i => i.1 ⊗ₜ[R] i.2) 0).sum
simp
no goals
9710e818bf6f1606
mul_eq_of_eq_mul_inv
Mathlib/Algebra/Group/Basic.lean
theorem mul_eq_of_eq_mul_inv (h : a = c * b⁻¹) : a * b = c
G : Type u_3 inst✝ : Group G a b c : G h : a = c * b⁻¹ ⊢ a * b = c
simp [h]
no goals
001033476801b2c2
mul_left_inj_of_comparable
Mathlib/Algebra/Order/Monoid/Unbundled/Basic.lean
@[to_additive] lemma mul_left_inj_of_comparable [MulRightStrictMono α] {a b c : α} (h : b ≤ c ∨ c ≤ b) : c * a = b * a ↔ c = b
α : Type u_1 inst✝² : Mul α inst✝¹ : PartialOrder α inst✝ : MulRightStrictMono α a b c : α h : b ≤ c ∨ c ≤ b h' : ¬c = b ⊢ ¬c * a = b * a
obtain h | h := h
case inl α : Type u_1 inst✝² : Mul α inst✝¹ : PartialOrder α inst✝ : MulRightStrictMono α a b c : α h' : ¬c = b h : b ≤ c ⊢ ¬c * a = b * a case inr α : Type u_1 inst✝² : Mul α inst✝¹ : PartialOrder α inst✝ : MulRightStrictMono α a b c : α h' : ¬c = b h : c ≤ b ⊢ ¬c * a = b * a
298e7bc96f7b1c47
Filter.mem_iInf_finset
Mathlib/Order/Filter/Finite.lean
theorem mem_iInf_finset {s : Finset α} {f : α → Filter β} {t : Set β} : (t ∈ ⨅ a ∈ s, f a) ↔ ∃ p : α → Set β, (∀ a ∈ s, p a ∈ f a) ∧ t = ⋂ a ∈ s, p a
case refine_1.intro.intro α : Type u β : Type v s : Finset α f : α → Filter β p : Subtype (Membership.mem s) → Set β hp : ∀ (i : Subtype (Membership.mem s)), p i ∈ f ↑i h : ⋂ i, p i ∈ ⨅ x, f ↑x ⊢ ∀ (x : Subtype (Membership.mem s)), (fun a => if h : a ∈ s then p ⟨a, h⟩ else univ) ↑(id x) = p x
rintro ⟨a, ha⟩
case refine_1.intro.intro.mk α : Type u β : Type v s : Finset α f : α → Filter β p : Subtype (Membership.mem s) → Set β hp : ∀ (i : Subtype (Membership.mem s)), p i ∈ f ↑i h : ⋂ i, p i ∈ ⨅ x, f ↑x a : α ha : a ∈ s ⊢ (fun a => if h : a ∈ s then p ⟨a, h⟩ else univ) ↑(id ⟨a, ha⟩) = p ⟨a, ha⟩
9233bcf1393f0994
integral_smul_const
Mathlib/MeasureTheory/Integral/SetIntegral.lean
theorem integral_smul_const {𝕜 : Type*} [RCLike 𝕜] [NormedSpace 𝕜 E] [CompleteSpace E] (f : X → 𝕜) (c : E) : ∫ x, f x • c ∂μ = (∫ x, f x ∂μ) • c
case neg X : Type u_1 E : Type u_3 inst✝⁵ : MeasurableSpace X μ : Measure X inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E 𝕜 : Type u_6 inst✝² : RCLike 𝕜 inst✝¹ : NormedSpace 𝕜 E inst✝ : CompleteSpace E f : X → 𝕜 c : E hf : ¬Integrable f μ ⊢ ∫ (x : X), f x • c ∂μ = (∫ (x : X), f x ∂μ) • c
by_cases hc : c = 0
case pos X : Type u_1 E : Type u_3 inst✝⁵ : MeasurableSpace X μ : Measure X inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E 𝕜 : Type u_6 inst✝² : RCLike 𝕜 inst✝¹ : NormedSpace 𝕜 E inst✝ : CompleteSpace E f : X → 𝕜 c : E hf : ¬Integrable f μ hc : c = 0 ⊢ ∫ (x : X), f x • c ∂μ = (∫ (x : X), f x ∂μ) • c case neg X : Type u_1 E : Type u_3 inst✝⁵ : MeasurableSpace X μ : Measure X inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E 𝕜 : Type u_6 inst✝² : RCLike 𝕜 inst✝¹ : NormedSpace 𝕜 E inst✝ : CompleteSpace E f : X → 𝕜 c : E hf : ¬Integrable f μ hc : ¬c = 0 ⊢ ∫ (x : X), f x • c ∂μ = (∫ (x : X), f x ∂μ) • c
aac8ef1cc4baf728
VitaliFamily.ae_tendsto_measure_inter_div
Mathlib/MeasureTheory/Covering/Differentiation.lean
theorem ae_tendsto_measure_inter_div (s : Set α) : ∀ᵐ x ∂μ.restrict s, Tendsto (fun a => μ (s ∩ a) / μ a) (v.filterAt x) (𝓝 1)
α : Type u_1 inst✝³ : PseudoMetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ inst✝² : SecondCountableTopology α inst✝¹ : BorelSpace α inst✝ : IsLocallyFiniteMeasure μ s : Set α ⊢ ∀ᵐ (x : α) ∂μ.restrict s, Tendsto (fun a => μ (s ∩ a) / μ a) (v.filterAt x) (𝓝 1)
let t := toMeasurable μ s
α : Type u_1 inst✝³ : PseudoMetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ inst✝² : SecondCountableTopology α inst✝¹ : BorelSpace α inst✝ : IsLocallyFiniteMeasure μ s : Set α t : Set α := toMeasurable μ s ⊢ ∀ᵐ (x : α) ∂μ.restrict s, Tendsto (fun a => μ (s ∩ a) / μ a) (v.filterAt x) (𝓝 1)
8186fdd8c3259bbd
SpectrumRestricts.nnreal_iff_spectralRadius_le
Mathlib/Analysis/Normed/Algebra/Spectrum.lean
lemma nnreal_iff_spectralRadius_le [Algebra ℝ A] {a : A} {t : ℝ≥0} (ht : spectralRadius ℝ a ≤ t) : SpectrumRestricts a ContinuousMap.realToNNReal ↔ spectralRadius ℝ (algebraMap ℝ A t - a) ≤ t
case refine_2 A : Type u_3 inst✝¹ : Ring A inst✝ : Algebra ℝ A a : A t : ℝ≥0 ht : spectralRadius ℝ a ≤ ↑t this : spectrum ℝ a ⊆ Set.Icc (-↑t) ↑t h : ∀ x ∈ spectrum ℝ a, ‖↑t - x‖₊ ≤ t ⊢ ∀ x ∈ spectrum ℝ a, 0 ≤ x
peel h with x hx h_le
case refine_2.h.h A : Type u_3 inst✝¹ : Ring A inst✝ : Algebra ℝ A a : A t : ℝ≥0 ht : spectralRadius ℝ a ≤ ↑t this : spectrum ℝ a ⊆ Set.Icc (-↑t) ↑t h : ∀ x ∈ spectrum ℝ a, ‖↑t - x‖₊ ≤ t x : ℝ hx : x ∈ spectrum ℝ a h_le : ‖↑t - x‖₊ ≤ t ⊢ 0 ≤ x
23e88e5a29773e00
Vector.any_eq
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Vector/Lemmas.lean
theorem any_eq {xs : Vector α n} {p : α → Bool} : xs.any p = decide (∃ i : Nat, ∃ h, p (xs[i]'h))
case neg α : Type u_1 n : Nat xs : Vector α n p : α → Bool h : ¬xs.any p = true ⊢ xs.any p = decide (∃ i h, p xs[i] = true)
simp_all [any_eq_false]
no goals
ae6da32304da43f5
SimpleGraph.chromaticNumber_le_iff_colorable
Mathlib/Combinatorics/SimpleGraph/Coloring.lean
theorem chromaticNumber_le_iff_colorable {n : ℕ} : G.chromaticNumber ≤ n ↔ G.Colorable n
V : Type u G : SimpleGraph V n : ℕ h : G.chromaticNumber ≤ ↑n this : ∃ n, G.Colorable n ⊢ G.Colorable n
obtain ⟨m, hm⟩ := this
case intro V : Type u G : SimpleGraph V n : ℕ h : G.chromaticNumber ≤ ↑n m : ℕ hm : G.Colorable m ⊢ G.Colorable n
4ec1c55975e623fc
analyticGroupoid_prod
Mathlib/Geometry/Manifold/AnalyticManifold.lean
theorem analyticGroupoid_prod {E A : Type} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace A] {F B : Type} [NormedAddCommGroup F] [NormedSpace 𝕜 F] [TopologicalSpace B] {I : ModelWithCorners 𝕜 E A} {J : ModelWithCorners 𝕜 F B} {f : PartialHomeomorph A A} {g : PartialHomeomorph B B} (fa : f ∈ analyticGroupoid I) (ga : g ∈ analyticGroupoid J) : f.prod g ∈ analyticGroupoid (I.prod J)
𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B fa : f ∈ analyticGroupoid I ga : g ∈ analyticGroupoid J pe : range ↑(I.prod J) = (range ↑I).prod (range ↑J) ⊢ f.prod g ∈ analyticGroupoid (I.prod J)
simp only [mem_analyticGroupoid, Function.comp, image_subset_iff] at fa ga ⊢
𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B pe : range ↑(I.prod J) = (range ↑I).prod (range ↑J) fa : AnalyticOn 𝕜 (↑I ∘ ↑f ∘ ↑I.symm) (↑I.symm ⁻¹' f.source ∩ range ↑I) ∧ AnalyticOn 𝕜 (↑I ∘ ↑f.symm ∘ ↑I.symm) (↑I.symm ⁻¹' f.target ∩ range ↑I) ga : AnalyticOn 𝕜 (↑J ∘ ↑g ∘ ↑J.symm) (↑J.symm ⁻¹' g.source ∩ range ↑J) ∧ AnalyticOn 𝕜 (↑J ∘ ↑g.symm ∘ ↑J.symm) (↑J.symm ⁻¹' g.target ∩ range ↑J) ⊢ AnalyticOn 𝕜 (↑(I.prod J) ∘ ↑(f.prod g) ∘ ↑(I.prod J).symm) (↑(I.prod J).symm ⁻¹' (f.prod g).source ∩ range ↑(I.prod J)) ∧ AnalyticOn 𝕜 (↑(I.prod J) ∘ ↑(f.prod g).symm ∘ ↑(I.prod J).symm) (↑(I.prod J).symm ⁻¹' (f.prod g).target ∩ range ↑(I.prod J))
a63b9a12fa883575
Submodule.goursat_surjective
Mathlib/LinearAlgebra/Goursat.lean
/-- **Goursat's lemma** for a submodule of a product with surjective projections. If `L` is a submodule of `M × N` which projects fully on both factors, then there exist submodules `M' ≤ M` and `N' ≤ N` such that `M' × N' ≤ L` and the image of `L` in `(M ⧸ M') × (N ⧸ N')` is the graph of an isomorphism of `R`-modules `(M ⧸ M') ≃ (N ⧸ N')`. `M` and `N` can be explicitly constructed as `L.goursatFst` and `L.goursatSnd` respectively. -/ lemma goursat_surjective : ∃ e : (M ⧸ L.goursatFst) ≃ₗ[R] N ⧸ L.goursatSnd, LinearMap.range ((L.goursatFst.mkQ.prodMap L.goursatSnd.mkQ).comp L.subtype) = e.graph
R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : Ring R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup N inst✝ : Module R N L : Submodule R (M × N) hL₁ : Surjective (Prod.fst ∘ ⇑L.subtype) hL₂ : Surjective (Prod.snd ∘ ⇑L.subtype) e : M ⧸ L.goursatFst ≃+ N ⧸ L.goursatSnd he : (((QuotientAddGroup.mk' L.toAddSubgroup.goursatFst).prodMap (QuotientAddGroup.mk' L.toAddSubgroup.goursatSnd)).comp L.toAddSubgroup.subtype).range = e.toAddMonoidHom.graph r : R x : M ⧸ L.goursatFst ⊢ r • (x, e x) ∈ (((QuotientAddGroup.mk' L.toAddSubgroup.goursatFst).prodMap (QuotientAddGroup.mk' L.toAddSubgroup.goursatSnd)).comp L.toAddSubgroup.subtype).range
have : (x, e x) ∈ e.toAddMonoidHom.graph := rfl
R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : Ring R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup N inst✝ : Module R N L : Submodule R (M × N) hL₁ : Surjective (Prod.fst ∘ ⇑L.subtype) hL₂ : Surjective (Prod.snd ∘ ⇑L.subtype) e : M ⧸ L.goursatFst ≃+ N ⧸ L.goursatSnd he : (((QuotientAddGroup.mk' L.toAddSubgroup.goursatFst).prodMap (QuotientAddGroup.mk' L.toAddSubgroup.goursatSnd)).comp L.toAddSubgroup.subtype).range = e.toAddMonoidHom.graph r : R x : M ⧸ L.goursatFst this : (x, e x) ∈ e.toAddMonoidHom.graph ⊢ r • (x, e x) ∈ (((QuotientAddGroup.mk' L.toAddSubgroup.goursatFst).prodMap (QuotientAddGroup.mk' L.toAddSubgroup.goursatSnd)).comp L.toAddSubgroup.subtype).range
6911146a30de3dd6
Std.DHashMap.Internal.List.containsKey_cons_eq_false
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Internal/List/Associative.lean
theorem containsKey_cons_eq_false [BEq α] {l : List ((a : α) × β a)} {k a : α} {v : β k} : (containsKey a (⟨k, v⟩ :: l) = false) ↔ ((k == a) = false) ∧ (containsKey a l = false)
α : Type u β : α → Type v inst✝ : BEq α l : List ((a : α) × β a) k a : α v : β k ⊢ containsKey a (⟨k, v⟩ :: l) = false ↔ (k == a) = false ∧ containsKey a l = false
simp [containsKey_cons, not_or]
no goals
d481c3eefe9b8882
UniformSpace.Completion.mem_uniformity_dist
Mathlib/Topology/MetricSpace/Completion.lean
theorem mem_uniformity_dist (s : Set (Completion α × Completion α)) : s ∈ 𝓤 (Completion α) ↔ ∃ ε > 0, ∀ {a b}, dist a b < ε → (a, b) ∈ s
case mp.intro.intro.intro.intro.intro α : Type u inst✝ : PseudoMetricSpace α s : Set (Completion α × Completion α) hs : s ∈ 𝓤 (Completion α) t : Set (Completion α × Completion α) ht : t ∈ 𝓤 (Completion α) tclosed : IsClosed t ts : t ⊆ s A : {x | (↑x.1, ↑x.2) ∈ t} ∈ 𝓤 α ε : ℝ εpos : ε > 0 hε : ∀ ⦃a b : α⦄, dist a b < ε → (a, b) ∈ {x | (↑x.1, ↑x.2) ∈ t} x y : Completion α hxy : dist x y < ε this : ε ≤ dist x y ∨ (x, y) ∈ t ⊢ (x, y) ∈ s
simp only [not_le.mpr hxy, false_or, not_le] at this
case mp.intro.intro.intro.intro.intro α : Type u inst✝ : PseudoMetricSpace α s : Set (Completion α × Completion α) hs : s ∈ 𝓤 (Completion α) t : Set (Completion α × Completion α) ht : t ∈ 𝓤 (Completion α) tclosed : IsClosed t ts : t ⊆ s A : {x | (↑x.1, ↑x.2) ∈ t} ∈ 𝓤 α ε : ℝ εpos : ε > 0 hε : ∀ ⦃a b : α⦄, dist a b < ε → (a, b) ∈ {x | (↑x.1, ↑x.2) ∈ t} x y : Completion α hxy : dist x y < ε this : (x, y) ∈ t ⊢ (x, y) ∈ s
c4dfc92c04080ea5
Equiv.Perm.mem_cycleType_iff
Mathlib/GroupTheory/Perm/Cycle/Type.lean
theorem mem_cycleType_iff {n : ℕ} {σ : Perm α} : n ∈ cycleType σ ↔ ∃ c τ, σ = c * τ ∧ Disjoint c τ ∧ IsCycle c ∧ c.support.card = n
case mp.mk.mk.intro.intro α : Type u_1 inst✝¹ : Fintype α inst✝ : DecidableEq α n : ℕ l : List (Perm α) h : n ∈ l.prod.cycleType x✝ : Trunc { l_1 // l_1.prod = l.prod ∧ (∀ g ∈ l_1, g.IsCycle) ∧ List.Pairwise Disjoint l_1 } hlc : ∀ g ∈ l, g.IsCycle hld : List.Pairwise Disjoint l ⊢ ∃ c τ, l.prod = c * τ ∧ c.Disjoint τ ∧ c.IsCycle ∧ c.support.card = n
rw [cycleType_eq _ rfl hlc hld, Multiset.mem_coe, List.mem_map] at h
case mp.mk.mk.intro.intro α : Type u_1 inst✝¹ : Fintype α inst✝ : DecidableEq α n : ℕ l : List (Perm α) h : ∃ a ∈ l, (Finset.card ∘ support) a = n x✝ : Trunc { l_1 // l_1.prod = l.prod ∧ (∀ g ∈ l_1, g.IsCycle) ∧ List.Pairwise Disjoint l_1 } hlc : ∀ g ∈ l, g.IsCycle hld : List.Pairwise Disjoint l ⊢ ∃ c τ, l.prod = c * τ ∧ c.Disjoint τ ∧ c.IsCycle ∧ c.support.card = n
d7502a60859fe51e
Equiv.Perm.subtypeCongr.symm
Mathlib/Logic/Equiv/Basic.lean
theorem Perm.subtypeCongr.symm : (ep.subtypeCongr en).symm = Perm.subtypeCongr ep.symm en.symm
ε : Type u_9 p : ε → Prop inst✝ : DecidablePred p ep : Perm { a // p a } en : Perm { a // ¬p a } ⊢ Equiv.symm (ep.subtypeCongr en) = subtypeCongr (Equiv.symm ep) (Equiv.symm en)
ext x
case H ε : Type u_9 p : ε → Prop inst✝ : DecidablePred p ep : Perm { a // p a } en : Perm { a // ¬p a } x : ε ⊢ (Equiv.symm (ep.subtypeCongr en)) x = (subtypeCongr (Equiv.symm ep) (Equiv.symm en)) x
2d99a37b0398671d
CategoryTheory.IsPushout.isVanKampen_iff
Mathlib/CategoryTheory/Adhesive.lean
theorem IsPushout.isVanKampen_iff (H : IsPushout f g h i) : H.IsVanKampen ↔ IsVanKampenColimit (PushoutCocone.mk h i H.w)
case mp.refine_5.mpr C : Type u inst✝ : Category.{v, u} C W X Y Z : C f : W ⟶ X g : W ⟶ Y h : X ⟶ Z i : Y ⟶ Z H✝ : IsPushout f g h i H : H✝.IsVanKampen F' : WalkingSpan ⥤ C c' : Cocone F' α : F' ⟶ span f g fα : c'.pt ⟶ (PushoutCocone.mk h i ⋯).pt eα : α ≫ (PushoutCocone.mk h i ⋯).ι = c'.ι ≫ (Functor.const WalkingSpan).map fα hα : NatTrans.Equifibered α ⊢ (∀ (j : WalkingSpan), IsPullback (c'.ι.app j) (α.app j) fα ((PushoutCocone.mk h i ⋯).ι.app j)) → IsPullback (c'.ι.app WalkingSpan.left) (α.app WalkingSpan.left) fα h ∧ IsPullback (c'.ι.app WalkingSpan.right) (α.app WalkingSpan.right) fα i
intro h
case mp.refine_5.mpr C : Type u inst✝ : Category.{v, u} C W X Y Z : C f : W ⟶ X g : W ⟶ Y h✝ : X ⟶ Z i : Y ⟶ Z H✝ : IsPushout f g h✝ i H : H✝.IsVanKampen F' : WalkingSpan ⥤ C c' : Cocone F' α : F' ⟶ span f g fα : c'.pt ⟶ (PushoutCocone.mk h✝ i ⋯).pt eα : α ≫ (PushoutCocone.mk h✝ i ⋯).ι = c'.ι ≫ (Functor.const WalkingSpan).map fα hα : NatTrans.Equifibered α h : ∀ (j : WalkingSpan), IsPullback (c'.ι.app j) (α.app j) fα ((PushoutCocone.mk h✝ i ⋯).ι.app j) ⊢ IsPullback (c'.ι.app WalkingSpan.left) (α.app WalkingSpan.left) fα h✝ ∧ IsPullback (c'.ι.app WalkingSpan.right) (α.app WalkingSpan.right) fα i
03b3318bb2e454c2
IsMulFreimanHom.mono
Mathlib/Combinatorics/Additive/FreimanHom.lean
@[to_additive] lemma IsMulFreimanHom.mono (hmn : m ≤ n) (hf : IsMulFreimanHom n A B f) : IsMulFreimanHom m A B f where mapsTo := hf.mapsTo map_prod_eq_map_prod s t hsA htA hs ht h
case inr.intro.refine_2 α : Type u_2 β : Type u_3 inst✝¹ : CommMonoid α inst✝ : CancelCommMonoid β A : Set α B : Set β f : α → β m n : ℕ hmn : m ≤ n hf : IsMulFreimanHom n A B f s t : Multiset α hsA : ∀ ⦃x : α⦄, x ∈ s → x ∈ A htA : ∀ ⦃x : α⦄, x ∈ t → x ∈ A hs : s.card = m ht : t.card = m h : s.prod = t.prod a✝ : α ha✝ : a✝ ∈ A a : α ha : a ∈ t + replicate (n - m) a✝ ⊢ a ∈ A
rw [Multiset.mem_add] at ha
case inr.intro.refine_2 α : Type u_2 β : Type u_3 inst✝¹ : CommMonoid α inst✝ : CancelCommMonoid β A : Set α B : Set β f : α → β m n : ℕ hmn : m ≤ n hf : IsMulFreimanHom n A B f s t : Multiset α hsA : ∀ ⦃x : α⦄, x ∈ s → x ∈ A htA : ∀ ⦃x : α⦄, x ∈ t → x ∈ A hs : s.card = m ht : t.card = m h : s.prod = t.prod a✝ : α ha✝ : a✝ ∈ A a : α ha : a ∈ t ∨ a ∈ replicate (n - m) a✝ ⊢ a ∈ A
b2311f9c87a69848
DirichletCharacter.factorsThrough_iff_ker_unitsMap
Mathlib/NumberTheory/DirichletCharacter/Basic.lean
/-- A Dirichlet character `χ` factors through `d | n` iff its associated unit-group hom is trivial on the kernel of `ZMod.unitsMap`. -/ lemma factorsThrough_iff_ker_unitsMap {d : ℕ} [NeZero n] (hd : d ∣ n) : FactorsThrough χ d ↔ (ZMod.unitsMap hd).ker ≤ χ.toUnitHom.ker
case refine_1 R : Type u_1 inst✝¹ : CommMonoidWithZero R n : ℕ χ : DirichletCharacter R n d : ℕ inst✝ : NeZero n hd : d ∣ n x✝ : χ.FactorsThrough d x : (ZMod n)ˣ hx : x ∈ (ZMod.unitsMap hd).ker w✝ : d ∣ n χ₀ : DirichletCharacter R d hχ₀ : χ = (changeLevel w✝) χ₀ ⊢ x ∈ (toUnitHom χ).ker
rw [MonoidHom.mem_ker, hχ₀, changeLevel_toUnitHom, MonoidHom.comp_apply, hx, map_one]
no goals
c8fa781f768f7329
IsZGroup.of_injective
Mathlib/GroupTheory/SpecificGroups/ZGroup.lean
theorem of_injective [hG' : IsZGroup G'] (hf : Function.Injective f) : IsZGroup G
G : Type u_1 G' : Type u_2 inst✝¹ : Group G inst✝ : Group G' f : G →* G' hG' : ∀ (p : ℕ), Nat.Prime p → ∀ (P : Sylow p G'), IsCyclic ↥↑P hf : Function.Injective ⇑f p : ℕ hp : Nat.Prime p P : Sylow p G ⊢ IsCyclic ↥↑P
obtain ⟨Q, hQ⟩ := P.exists_comap_eq_of_injective hf
case intro G : Type u_1 G' : Type u_2 inst✝¹ : Group G inst✝ : Group G' f : G →* G' hG' : ∀ (p : ℕ), Nat.Prime p → ∀ (P : Sylow p G'), IsCyclic ↥↑P hf : Function.Injective ⇑f p : ℕ hp : Nat.Prime p P : Sylow p G Q : Sylow p G' hQ : Subgroup.comap f ↑Q = ↑P ⊢ IsCyclic ↥↑P
c14359612b1097e9
orthonormal_subtype_iff_ite
Mathlib/Analysis/InnerProductSpace/Orthonormal.lean
theorem orthonormal_subtype_iff_ite [DecidableEq E] {s : Set E} : Orthonormal 𝕜 (Subtype.val : s → E) ↔ ∀ v ∈ s, ∀ w ∈ s, ⟪v, w⟫ = if v = w then 1 else 0
case mp 𝕜 : Type u_1 E : Type u_2 inst✝³ : RCLike 𝕜 inst✝² : SeminormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E inst✝ : DecidableEq E s : Set E h : ∀ (i j : { x // x ∈ s }), inner ↑i ↑j = if i = j then 1 else 0 v : E hv : v ∈ s w : E hw : w ∈ s ⊢ inner v w = if v = w then 1 else 0
convert h ⟨v, hv⟩ ⟨w, hw⟩ using 1
case h.e'_3 𝕜 : Type u_1 E : Type u_2 inst✝³ : RCLike 𝕜 inst✝² : SeminormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E inst✝ : DecidableEq E s : Set E h : ∀ (i j : { x // x ∈ s }), inner ↑i ↑j = if i = j then 1 else 0 v : E hv : v ∈ s w : E hw : w ∈ s ⊢ (if v = w then 1 else 0) = if ⟨v, hv⟩ = ⟨w, hw⟩ then 1 else 0
215f388e20565e1c
Array.map_filterMap
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Lemmas.lean
theorem map_filterMap (f : α → Option β) (g : β → γ) (l : Array α) : map g (filterMap f l) = filterMap (fun x => (f x).map g) l
case mk α : Type u_1 β : Type u_2 γ : Type u_3 f : α → Option β g : β → γ toList✝ : List α ⊢ map g (filterMap f { toList := toList✝ }) = filterMap (fun x => Option.map g (f x)) { toList := toList✝ }
simp [List.map_filterMap]
no goals
06e8d21c0c8a1df4
Basis.flag_le_ker_dual
Mathlib/LinearAlgebra/Basis/Flag.lean
theorem flag_le_ker_dual (b : Basis (Fin n) R M) (k : Fin n) : b.flag k.castSucc ≤ LinearMap.ker (b.dualBasis k)
R : Type u_1 M : Type u_2 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M n : ℕ b : Basis (Fin n) R M k : Fin n ⊢ b.flag k.castSucc ≤ LinearMap.ker (b.dualBasis k)
nontriviality R
R : Type u_1 M : Type u_2 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M n : ℕ b : Basis (Fin n) R M k : Fin n a✝ : Nontrivial R ⊢ b.flag k.castSucc ≤ LinearMap.ker (b.dualBasis k)
2680ceded4b0a4a4
String.extract.go₂_add_right_cancel
Mathlib/.lake/packages/batteries/Batteries/Data/String/Lemmas.lean
theorem extract.go₂_add_right_cancel (s : List Char) (i e n : Nat) : go₂ s ⟨i + n⟩ ⟨e + n⟩ = go₂ s ⟨i⟩ ⟨e⟩
s : List Char i e n : Nat ⊢ go₂ s { byteIdx := i + n } { byteIdx := e + n } = go₂ s { byteIdx := i } { byteIdx := e }
apply utf8InductionOn s ⟨i⟩ ⟨e⟩ (motive := fun s i => go₂ s ⟨i.byteIdx + n⟩ ⟨e + n⟩ = go₂ s i ⟨e⟩) <;> simp only [ne_eq, go₂, pos_add_char, implies_true, ↓reduceIte]
case ind s : List Char i e n : Nat ⊢ ∀ (c : Char) (cs : List Char) (i : Pos), ¬i = { byteIdx := e } → go₂ cs { byteIdx := i.byteIdx + c.utf8Size + n } { byteIdx := e + n } = go₂ cs (i + c) { byteIdx := e } → (if { byteIdx := i.byteIdx + n } = { byteIdx := e + n } then [] else c :: go₂ cs ({ byteIdx := i.byteIdx + n } + c) { byteIdx := e + n }) = if i = { byteIdx := e } then [] else c :: go₂ cs (i + c) { byteIdx := e }
aa43f0044528d480
measurable_to_countable
Mathlib/MeasureTheory/MeasurableSpace/Basic.lean
theorem measurable_to_countable [MeasurableSpace α] [Countable α] [MeasurableSpace β] {f : β → α} (h : ∀ y, MeasurableSet (f ⁻¹' {f y})) : Measurable f := fun s _ => by rw [← biUnion_preimage_singleton] refine MeasurableSet.iUnion fun y => MeasurableSet.iUnion fun hy => ?_ by_cases hyf : y ∈ range f · rcases hyf with ⟨y, rfl⟩ apply h · simp only [preimage_singleton_eq_empty.2 hyf, MeasurableSet.empty]
α : Type u_1 β : Type u_2 inst✝² : MeasurableSpace α inst✝¹ : Countable α inst✝ : MeasurableSpace β f : β → α h : ∀ (y : β), MeasurableSet (f ⁻¹' {f y}) s : Set α x✝ : MeasurableSet s ⊢ MeasurableSet (⋃ y ∈ s, f ⁻¹' {y})
refine MeasurableSet.iUnion fun y => MeasurableSet.iUnion fun hy => ?_
α : Type u_1 β : Type u_2 inst✝² : MeasurableSpace α inst✝¹ : Countable α inst✝ : MeasurableSpace β f : β → α h : ∀ (y : β), MeasurableSet (f ⁻¹' {f y}) s : Set α x✝ : MeasurableSet s y : α hy : y ∈ s ⊢ MeasurableSet (f ⁻¹' {y})
650f582eeb8f0ee3
FractionalIdeal.mem_div_iff_of_nonzero
Mathlib/RingTheory/FractionalIdeal/Operations.lean
theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J ≠ 0) {x} : x ∈ I / J ↔ ∀ y ∈ J, x * y ∈ I
R₁ : Type u_3 inst✝⁴ : CommRing R₁ K : Type u_4 inst✝³ : Field K inst✝² : Algebra R₁ K inst✝¹ : IsFractionRing R₁ K inst✝ : IsDomain R₁ I J : FractionalIdeal R₁⁰ K h : J ≠ 0 x : K ⊢ x ∈ I / J ↔ ∀ y ∈ J, x * y ∈ I
rw [div_nonzero h]
R₁ : Type u_3 inst✝⁴ : CommRing R₁ K : Type u_4 inst✝³ : Field K inst✝² : Algebra R₁ K inst✝¹ : IsFractionRing R₁ K inst✝ : IsDomain R₁ I J : FractionalIdeal R₁⁰ K h : J ≠ 0 x : K ⊢ x ∈ ⟨↑I / ↑J, ⋯⟩ ↔ ∀ y ∈ J, x * y ∈ I
16a839d94995fb99
eigenvalue_nonneg_of_nonneg
Mathlib/Analysis/InnerProductSpace/Spectrum.lean
theorem eigenvalue_nonneg_of_nonneg {μ : ℝ} {T : E →ₗ[𝕜] E} (hμ : HasEigenvalue T μ) (hnn : ∀ x : E, 0 ≤ RCLike.re ⟪x, T x⟫) : 0 ≤ μ
𝕜 : Type u_1 inst✝² : RCLike 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E μ : ℝ T : E →ₗ[𝕜] E hμ : HasEigenvalue T ↑μ hnn : ∀ (x : E), 0 ≤ RCLike.re (inner x (T x)) v : E hv : HasEigenvector T (↑μ) v hpos : 0 < ‖v‖ ^ 2 ⊢ RCLike.re (inner v (T v)) = μ * ‖v‖ ^ 2
have := congr_arg RCLike.re (inner_product_apply_eigenvector hv.1)
𝕜 : Type u_1 inst✝² : RCLike 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E μ : ℝ T : E →ₗ[𝕜] E hμ : HasEigenvalue T ↑μ hnn : ∀ (x : E), 0 ≤ RCLike.re (inner x (T x)) v : E hv : HasEigenvector T (↑μ) v hpos : 0 < ‖v‖ ^ 2 this : RCLike.re (inner v (T v)) = RCLike.re (↑μ * ↑‖v‖ ^ 2) ⊢ RCLike.re (inner v (T v)) = μ * ‖v‖ ^ 2
492082ccb8bb9f68
List.prod_pos
Mathlib/Algebra/Order/BigOperators/GroupWithZero/List.lean
lemma prod_pos {s : List R} (h : ∀ a ∈ s, 0 < a) : 0 < s.prod
case nil R : Type u_1 inst✝⁴ : CommMonoidWithZero R inst✝³ : PartialOrder R inst✝² : ZeroLEOneClass R inst✝¹ : PosMulStrictMono R inst✝ : NeZero 1 h : ∀ (a : R), a ∈ [] → 0 < a ⊢ 0 < [].prod
simp
no goals
38ed21843183e9b5
Fin.zero_eq_one_iff
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Fin/Lemmas.lean
theorem zero_eq_one_iff {n : Nat} [NeZero n] : (0 : Fin n) = 1 ↔ n = 1
n : Nat inst✝ : NeZero n ⊢ 0 = 1 ↔ n = 1
constructor
case mp n : Nat inst✝ : NeZero n ⊢ 0 = 1 → n = 1 case mpr n : Nat inst✝ : NeZero n ⊢ n = 1 → 0 = 1
1b6c9cdc3a95a9f5
AlgebraicGeometry.Proj.SpecMap_awayMap_awayι
Mathlib/AlgebraicGeometry/ProjectiveSpectrum/Basic.lean
@[reassoc] lemma SpecMap_awayMap_awayι : Spec.map (CommRingCat.ofHom (awayMap 𝒜 g_deg hx)) ≫ awayι 𝒜 f f_deg hm = awayι 𝒜 x (hx ▸ SetLike.mul_mem_graded f_deg g_deg) (hm.trans_le (m.le_add_right m'))
R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m m' : ℕ g : A g_deg : g ∈ 𝒜 m' x : A hx : x = f * g ⊢ Spec.map (CommRingCat.ofHom (awayMap 𝒜 g_deg hx)) ≫ awayι 𝒜 f f_deg hm = awayι 𝒜 x ⋯ ⋯
rw [awayι, awayι, Iso.eq_inv_comp, basicOpenIsoSpec_hom, basicOpenToSpec_SpecMap_awayMap_assoc, ← basicOpenIsoSpec_hom _ _ f_deg hm, Iso.hom_inv_id_assoc, Scheme.homOfLE_ι]
no goals
2318ee59dae8782b
MeasureTheory.SignedMeasure.bddBelow_measureOfNegatives
Mathlib/MeasureTheory/Decomposition/SignedHahn.lean
theorem bddBelow_measureOfNegatives : BddBelow s.measureOfNegatives
α : Type u_1 inst✝ : MeasurableSpace α s : SignedMeasure α h : ∀ (x : ℝ), ∃ x_1 ∈ s.measureOfNegatives, x_1 < x f : ℕ → ℝ hf : ∀ (n : ℕ), f n ∈ s.measureOfNegatives ∧ f n < -↑n B : ℕ → Set α hmeas : ∀ (n : ℕ), MeasurableSet (B n) hr : ∀ (n : ℕ), s ≤[B n] 0 h_lt : ∀ (n : ℕ), ↑s (B n) < -↑n A : Set α := ⋃ n, B n hA : A = ⋃ n, B n n : ℕ ⊢ ↑s ((⋃ i, B i) \ B n) + ↑s (B n) ≤ ↑s (B n)
refine add_le_of_nonpos_left ?_
α : Type u_1 inst✝ : MeasurableSpace α s : SignedMeasure α h : ∀ (x : ℝ), ∃ x_1 ∈ s.measureOfNegatives, x_1 < x f : ℕ → ℝ hf : ∀ (n : ℕ), f n ∈ s.measureOfNegatives ∧ f n < -↑n B : ℕ → Set α hmeas : ∀ (n : ℕ), MeasurableSet (B n) hr : ∀ (n : ℕ), s ≤[B n] 0 h_lt : ∀ (n : ℕ), ↑s (B n) < -↑n A : Set α := ⋃ n, B n hA : A = ⋃ n, B n n : ℕ ⊢ ↑s ((⋃ i, B i) \ B n) ≤ 0
317f19e924fb7de4
isFiniteLength_of_exists_compositionSeries
Mathlib/RingTheory/FiniteLength.lean
theorem isFiniteLength_of_exists_compositionSeries (h : ∃ s : CompositionSeries (Submodule R M), s.head = ⊥ ∧ s.last = ⊤) : IsFiniteLength R M := Submodule.topEquiv.isFiniteLength <| by obtain ⟨s, s_head, s_last⟩ := h rw [← s_last] suffices ∀ i, IsFiniteLength R (s i) from this (Fin.last _) intro i induction' i using Fin.induction with i ih · change IsFiniteLength R s.head; rw [s_head]; exact .of_subsingleton let cov := s.step i have := (covBy_iff_quot_is_simple cov.le).mp cov have := ((s i.castSucc).comap (s i.succ).subtype).equivMapOfInjective _ (Submodule.injective_subtype _) rw [Submodule.map_comap_subtype, inf_of_le_right cov.le] at this exact .of_simple_quotient (this.symm.isFiniteLength ih)
case intro.intro.succ R : Type u_1 inst✝² : Ring R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M s : CompositionSeries (Submodule R M) s_head : RelSeries.head s = ⊥ s_last : RelSeries.last s = ⊤ i : Fin s.length ih : IsFiniteLength R ↥(s.toFun i.castSucc) cov : JordanHolderLattice.IsMaximal (s.toFun i.castSucc) (s.toFun i.succ) := s.step i this✝ : IsSimpleModule R (↥(s.toFun i.succ) ⧸ Submodule.comap (s.toFun i.succ).subtype (s.toFun i.castSucc)) this : ↥(Submodule.comap (s.toFun i.succ).subtype (s.toFun i.castSucc)) ≃ₗ[R] ↥(Submodule.map (s.toFun i.succ).subtype (Submodule.comap (s.toFun i.succ).subtype (s.toFun i.castSucc))) ⊢ IsFiniteLength R ↥(s.toFun i.succ)
rw [Submodule.map_comap_subtype, inf_of_le_right cov.le] at this
case intro.intro.succ R : Type u_1 inst✝² : Ring R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M s : CompositionSeries (Submodule R M) s_head : RelSeries.head s = ⊥ s_last : RelSeries.last s = ⊤ i : Fin s.length ih : IsFiniteLength R ↥(s.toFun i.castSucc) cov : JordanHolderLattice.IsMaximal (s.toFun i.castSucc) (s.toFun i.succ) := s.step i this✝ : IsSimpleModule R (↥(s.toFun i.succ) ⧸ Submodule.comap (s.toFun i.succ).subtype (s.toFun i.castSucc)) this : ↥(Submodule.comap (s.toFun i.succ).subtype (s.toFun i.castSucc)) ≃ₗ[R] ↥(s.toFun i.castSucc) ⊢ IsFiniteLength R ↥(s.toFun i.succ)
9accf3c3b4183124
Ordinal.opow_add
Mathlib/SetTheory/Ordinal/Exponential.lean
theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c
case inr.inr.H₂ a b : Ordinal.{u_1} a0 : a ≠ 0 a1 : 1 < a c : Ordinal.{u_1} IH : a ^ (b + c) = a ^ b * a ^ c ⊢ a ^ (b + succ c) = a ^ b * a ^ succ c
rw [add_succ, opow_succ, IH, opow_succ, mul_assoc]
no goals
afa4314c87d949ea
MeasureTheory.eLpNorm_mono_nnnorm_ae
Mathlib/MeasureTheory/Function/LpSeminorm/Basic.lean
theorem eLpNorm_mono_nnnorm_ae {f : α → F} {g : α → G} (h : ∀ᵐ x ∂μ, ‖f x‖₊ ≤ ‖g x‖₊) : eLpNorm f p μ ≤ eLpNorm g p μ
α : Type u_1 F : Type u_4 G : Type u_5 m0 : MeasurableSpace α p : ℝ≥0∞ μ : Measure α inst✝¹ : NormedAddCommGroup F inst✝ : NormedAddCommGroup G f : α → F g : α → G h : ∀ᵐ (x : α) ∂μ, ‖f x‖₊ ≤ ‖g x‖₊ ⊢ (if p = 0 then 0 else if p = ⊤ then eLpNormEssSup f μ else eLpNorm' f p.toReal μ) ≤ if p = 0 then 0 else if p = ⊤ then eLpNormEssSup g μ else eLpNorm' g p.toReal μ
split_ifs
case pos α : Type u_1 F : Type u_4 G : Type u_5 m0 : MeasurableSpace α p : ℝ≥0∞ μ : Measure α inst✝¹ : NormedAddCommGroup F inst✝ : NormedAddCommGroup G f : α → F g : α → G h : ∀ᵐ (x : α) ∂μ, ‖f x‖₊ ≤ ‖g x‖₊ h✝ : p = 0 ⊢ 0 ≤ 0 case pos α : Type u_1 F : Type u_4 G : Type u_5 m0 : MeasurableSpace α p : ℝ≥0∞ μ : Measure α inst✝¹ : NormedAddCommGroup F inst✝ : NormedAddCommGroup G f : α → F g : α → G h : ∀ᵐ (x : α) ∂μ, ‖f x‖₊ ≤ ‖g x‖₊ h✝¹ : ¬p = 0 h✝ : p = ⊤ ⊢ eLpNormEssSup f μ ≤ eLpNormEssSup g μ case neg α : Type u_1 F : Type u_4 G : Type u_5 m0 : MeasurableSpace α p : ℝ≥0∞ μ : Measure α inst✝¹ : NormedAddCommGroup F inst✝ : NormedAddCommGroup G f : α → F g : α → G h : ∀ᵐ (x : α) ∂μ, ‖f x‖₊ ≤ ‖g x‖₊ h✝¹ : ¬p = 0 h✝ : ¬p = ⊤ ⊢ eLpNorm' f p.toReal μ ≤ eLpNorm' g p.toReal μ
c947aa79422e40ae
PowerBasis.equivOfRoot_map
Mathlib/RingTheory/PowerBasis.lean
theorem equivOfRoot_map (pb : PowerBasis A S) (e : S ≃ₐ[A] S') (h₁ h₂) : pb.equivOfRoot (pb.map e) h₁ h₂ = e
case h S : Type u_2 inst✝⁴ : Ring S A : Type u_4 inst✝³ : CommRing A S' : Type u_7 inst✝² : CommRing S' inst✝¹ : Algebra A S inst✝ : Algebra A S' pb : PowerBasis A S e : S ≃ₐ[A] S' h₁ : (aeval pb.gen) (minpoly A (pb.map e).gen) = 0 h₂ : (aeval (pb.map e).gen) (minpoly A pb.gen) = 0 x : S ⊢ (pb.equivOfRoot (pb.map e) h₁ h₂) x = e x
obtain ⟨f, rfl⟩ := pb.exists_eq_aeval' x
case h.intro S : Type u_2 inst✝⁴ : Ring S A : Type u_4 inst✝³ : CommRing A S' : Type u_7 inst✝² : CommRing S' inst✝¹ : Algebra A S inst✝ : Algebra A S' pb : PowerBasis A S e : S ≃ₐ[A] S' h₁ : (aeval pb.gen) (minpoly A (pb.map e).gen) = 0 h₂ : (aeval (pb.map e).gen) (minpoly A pb.gen) = 0 f : A[X] ⊢ (pb.equivOfRoot (pb.map e) h₁ h₂) ((aeval pb.gen) f) = e ((aeval pb.gen) f)
4ff31263b0b81a61
Polynomial.dickson_one_one_eq_chebyshev_C
Mathlib/RingTheory/Polynomial/Dickson.lean
theorem dickson_one_one_eq_chebyshev_C : ∀ n, dickson 1 (1 : R) n = Chebyshev.C R n | 0 => by simp only [Chebyshev.C_zero, mul_one, one_comp, dickson_zero] norm_num | 1 => by rw [dickson_one, Nat.cast_one, Chebyshev.C_one] | n + 2 => by rw [dickson_add_two, C_1, Nat.cast_add, Nat.cast_two, Chebyshev.C_add_two, dickson_one_one_eq_chebyshev_C (n + 1), dickson_one_one_eq_chebyshev_C n] push_cast ring
R : Type u_1 inst✝ : CommRing R ⊢ 3 - ↑1 = Chebyshev.C R ↑0
norm_num
no goals
b6460d95bc6e9fea
List.Vector.insertIdx_comm
Mathlib/Data/Vector/Basic.lean
theorem insertIdx_comm (a b : α) (i j : Fin (n + 1)) (h : i ≤ j) : ∀ v : Vector α n, (v.insertIdx a i).insertIdx b j.succ = (v.insertIdx b j).insertIdx a (Fin.castSucc i) | ⟨l, hl⟩ => by refine Subtype.eq ?_ simp only [insertIdx_val, Fin.val_succ, Fin.castSucc, Fin.coe_castAdd] apply List.insertIdx_comm · assumption · rw [hl] exact Nat.le_of_succ_le_succ j.2
α : Type u_1 n : ℕ a b : α i j : Fin (n + 1) h : i ≤ j l : List α hl : l.length = n ⊢ ↑(insertIdx b j.succ (insertIdx a i ⟨l, hl⟩)) = ↑(insertIdx a i.castSucc (insertIdx b j ⟨l, hl⟩))
simp only [insertIdx_val, Fin.val_succ, Fin.castSucc, Fin.coe_castAdd]
α : Type u_1 n : ℕ a b : α i j : Fin (n + 1) h : i ≤ j l : List α hl : l.length = n ⊢ List.insertIdx (↑j + 1) b (List.insertIdx (↑i) a l) = List.insertIdx (↑i) a (List.insertIdx (↑j) b l)
e169c22cbc8ad2b0
AlgebraicGeometry.exists_lift_of_germInjective_aux
Mathlib/AlgebraicGeometry/SpreadingOut.lean
lemma exists_lift_of_germInjective_aux {U : X.Opens} {x : X} (hxU) (φ : A ⟶ X.presheaf.stalk x) (φRA : R ⟶ A) (φRX : R ⟶ Γ(X, U)) (hφRA : RingHom.FiniteType φRA.hom) (e : φRA ≫ φ = φRX ≫ X.presheaf.germ U x hxU) : ∃ (V : X.Opens) (hxV : x ∈ V), V ≤ U ∧ RingHom.range φ.hom ≤ RingHom.range (X.presheaf.germ V x hxV).hom
case mk.intro X : Scheme R A : CommRingCat U : X.Opens x : ↑↑X.toPresheafedSpace hxU : x ∈ U φ : A ⟶ X.presheaf.stalk x φRA : R ⟶ A φRX : R ⟶ Γ(X, U) e : φRA ≫ φ = φRX ≫ X.presheaf.germ U x hxU this✝² : Algebra ↑R ↑A := (CommRingCat.Hom.hom φRA).toAlgebra s : Finset ↑A hs : Algebra.adjoin ↑R ↑s = ⊤ W : ↑A → TopologicalSpace.Opens ↑↑X.toPresheafedSpace hxW : ∀ (t : ↑A), x ∈ W t f : (t : ↑A) → ToType (X.presheaf.obj (Opposite.op (W t))) hf : ∀ (t : ↑A), (ConcreteCategory.hom (X.presheaf.germ (W t) x ⋯)) (f t) = (ConcreteCategory.hom φ) t H : x ∈ s.inf W ⊓ U this✝¹ : Algebra ↑R ↑Γ(X, U) := (CommRingCat.Hom.hom φRX).toAlgebra this✝ : Algebra ↑R ↑(X.presheaf.stalk x) := (CommRingCat.Hom.hom (φRX ≫ X.presheaf.germ U x hxU)).toAlgebra this : Algebra ↑R ↑(X.presheaf.obj (Opposite.op (s.inf W ⊓ U))) := (CommRingCat.Hom.hom (φRX ≫ X.presheaf.map (homOfLE ⋯).op)).toAlgebra φ' : ↑A →ₐ[↑R] ↑(X.presheaf.stalk x) := let __src := CommRingCat.Hom.hom φ; { toRingHom := __src, commutes' := ⋯ } ψ : ↑Γ(X, s.inf W ⊓ U) →ₐ[↑R] ↑(X.presheaf.stalk x) := let __src := CommRingCat.Hom.hom (X.presheaf.germ (s.inf W ⊓ U) x H); { toRingHom := __src, commutes' := ⋯ } ⊢ ⇑φ' '' ↑s ⊆ ↑ψ.range
rintro _ ⟨i, hi, rfl : φ i = _⟩
case mk.intro.intro.intro X : Scheme R A : CommRingCat U : X.Opens x : ↑↑X.toPresheafedSpace hxU : x ∈ U φ : A ⟶ X.presheaf.stalk x φRA : R ⟶ A φRX : R ⟶ Γ(X, U) e : φRA ≫ φ = φRX ≫ X.presheaf.germ U x hxU this✝² : Algebra ↑R ↑A := (CommRingCat.Hom.hom φRA).toAlgebra s : Finset ↑A hs : Algebra.adjoin ↑R ↑s = ⊤ W : ↑A → TopologicalSpace.Opens ↑↑X.toPresheafedSpace hxW : ∀ (t : ↑A), x ∈ W t f : (t : ↑A) → ToType (X.presheaf.obj (Opposite.op (W t))) hf : ∀ (t : ↑A), (ConcreteCategory.hom (X.presheaf.germ (W t) x ⋯)) (f t) = (ConcreteCategory.hom φ) t H : x ∈ s.inf W ⊓ U this✝¹ : Algebra ↑R ↑Γ(X, U) := (CommRingCat.Hom.hom φRX).toAlgebra this✝ : Algebra ↑R ↑(X.presheaf.stalk x) := (CommRingCat.Hom.hom (φRX ≫ X.presheaf.germ U x hxU)).toAlgebra this : Algebra ↑R ↑(X.presheaf.obj (Opposite.op (s.inf W ⊓ U))) := (CommRingCat.Hom.hom (φRX ≫ X.presheaf.map (homOfLE ⋯).op)).toAlgebra φ' : ↑A →ₐ[↑R] ↑(X.presheaf.stalk x) := let __src := CommRingCat.Hom.hom φ; { toRingHom := __src, commutes' := ⋯ } ψ : ↑Γ(X, s.inf W ⊓ U) →ₐ[↑R] ↑(X.presheaf.stalk x) := let __src := CommRingCat.Hom.hom (X.presheaf.germ (s.inf W ⊓ U) x H); { toRingHom := __src, commutes' := ⋯ } i : ↑A hi : i ∈ ↑s ⊢ (ConcreteCategory.hom φ) i ∈ ↑ψ.range
b042b93e0fb8cec3
AlgebraicTopology.DoldKan.N₁Γ₀_hom_app_f_f
Mathlib/AlgebraicTopology/DoldKan/GammaCompN.lean
theorem N₁Γ₀_hom_app_f_f (K : ChainComplex C ℕ) (n : ℕ) : (N₁Γ₀.hom.app K).f.f n = (Γ₀.splitting K).toKaroubiNondegComplexIsoN₁.inv.f.f n
C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ n : ℕ ⊢ (N₁Γ₀.hom.app K).f.f n = (Γ₀.splitting K).toKaroubiNondegComplexIsoN₁.inv.f.f n
rw [N₁Γ₀_hom_app]
C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ n : ℕ ⊢ ((Γ₀.splitting K).toKaroubiNondegComplexIsoN₁.inv ≫ (toKaroubi (ChainComplex C ℕ)).map (Γ₀NondegComplexIso K).hom).f.f n = (Γ₀.splitting K).toKaroubiNondegComplexIsoN₁.inv.f.f n
ad3ce58090f74d82
PseudoMetricSpace.le_two_mul_dist_ofPreNNDist
Mathlib/Topology/Metrizable/Uniformity.lean
theorem le_two_mul_dist_ofPreNNDist (d : X → X → ℝ≥0) (dist_self : ∀ x, d x x = 0) (dist_comm : ∀ x y, d x y = d y x) (hd : ∀ x₁ x₂ x₃ x₄, d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄))) (x y : X) : ↑(d x y) ≤ 2 * @dist X (@PseudoMetricSpace.toDist X (PseudoMetricSpace.ofPreNNDist d dist_self dist_comm)) x y
case intro.intro.refine_3.inr X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * (d x₁ x₂ ⊔ (d x₂ x₃ ⊔ d x₃ x₄)) hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x y : X l : List X ihn : ∀ m < l.length, ∀ (x y : X) (l : List X), l.length = m → d x y ≤ 2 * (zipWith d (x :: l) (l ++ [y])).sum L : List ℝ≥0 := zipWith d (x :: l) (l ++ [y]) hL_len : L.length = l.length + 1 hd₀ : d x y ≠ 0 s : Set ℕ := {m | 2 * (take m L).sum ≤ L.sum} hs₀ : 0 ∈ s hsne : s.Nonempty M : ℕ hMl✝ : M ≤ l.length hMs : IsGreatest s M hM_lt : M < L.length hM_ltx : M < (x :: l).length hM_lty : M < (l ++ [y]).length hMl : M < l.length hlen : (drop (M + 1) l).length = l.length - (M + 1) hlen_lt : l.length - (M + 1) < l.length ⊢ d l[M] y ≤ L.sum
refine (ihn _ hlen_lt _ y _ hlen).trans ?_
case intro.intro.refine_3.inr X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * (d x₁ x₂ ⊔ (d x₂ x₃ ⊔ d x₃ x₄)) hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x y : X l : List X ihn : ∀ m < l.length, ∀ (x y : X) (l : List X), l.length = m → d x y ≤ 2 * (zipWith d (x :: l) (l ++ [y])).sum L : List ℝ≥0 := zipWith d (x :: l) (l ++ [y]) hL_len : L.length = l.length + 1 hd₀ : d x y ≠ 0 s : Set ℕ := {m | 2 * (take m L).sum ≤ L.sum} hs₀ : 0 ∈ s hsne : s.Nonempty M : ℕ hMl✝ : M ≤ l.length hMs : IsGreatest s M hM_lt : M < L.length hM_ltx : M < (x :: l).length hM_lty : M < (l ++ [y]).length hMl : M < l.length hlen : (drop (M + 1) l).length = l.length - (M + 1) hlen_lt : l.length - (M + 1) < l.length ⊢ 2 * (zipWith d (l[M] :: drop (M + 1) l) (drop (M + 1) l ++ [y])).sum ≤ L.sum
a217eb6776c388b0
Real.tendsto_sum_range_one_div_nat_succ_atTop
Mathlib/Analysis/PSeries.lean
theorem tendsto_sum_range_one_div_nat_succ_atTop : Tendsto (fun n => ∑ i ∈ Finset.range n, (1 / (i + 1) : ℝ)) atTop atTop
i : ℕ ⊢ 0 ≤ 1 / (↑i + 1)
positivity
no goals
f6048eb1630d795c
RingHom.OfLocalizationSpanTarget.ofLocalizationSpan
Mathlib/RingTheory/LocalProperties/Basic.lean
theorem RingHom.OfLocalizationSpanTarget.ofLocalizationSpan (hP : RingHom.OfLocalizationSpanTarget @P) (hP' : RingHom.StableUnderCompositionWithLocalizationAwaySource @P) : RingHom.OfLocalizationSpan @P
P : {R S : Type u} → [inst : CommRing R] → [inst_1 : CommRing S] → (R →+* S) → Prop hP : OfLocalizationSpanTarget P hP' : StableUnderCompositionWithLocalizationAwaySource P R S : Type u inst✝¹ : CommRing R inst✝ : CommRing S f : R →+* S s : Set R hs : Ideal.span s = ⊤ hs' : ∀ (r : ↑s), P (Localization.awayMap f ↑r) ⊢ P f
apply_fun Ideal.map f at hs
P : {R S : Type u} → [inst : CommRing R] → [inst_1 : CommRing S] → (R →+* S) → Prop hP : OfLocalizationSpanTarget P hP' : StableUnderCompositionWithLocalizationAwaySource P R S : Type u inst✝¹ : CommRing R inst✝ : CommRing S f : R →+* S s : Set R hs' : ∀ (r : ↑s), P (Localization.awayMap f ↑r) hs : Ideal.map f (Ideal.span s) = Ideal.map f ⊤ ⊢ P f
4181d293dd91340a
ThreeGPFree.eq_right
Mathlib/Combinatorics/Additive/AP/Three/Defs.lean
@[to_additive] lemma ThreeGPFree.eq_right (hs : ThreeGPFree s) : ∀ ⦃a⦄, a ∈ s → ∀ ⦃b⦄, b ∈ s → ∀ ⦃c⦄, c ∈ s → a * c = b * b → b = c
α : Type u_2 inst✝ : CancelCommMonoid α s : Set α hs : ThreeGPFree s ⊢ ∀ ⦃a : α⦄, a ∈ s → ∀ ⦃b : α⦄, b ∈ s → ∀ ⦃c : α⦄, c ∈ s → a * c = b * b → b = c
rintro a ha b hb c hc habc
α : Type u_2 inst✝ : CancelCommMonoid α s : Set α hs : ThreeGPFree s a : α ha : a ∈ s b : α hb : b ∈ s c : α hc : c ∈ s habc : a * c = b * b ⊢ b = c
4028df386179b41e
weightedVSub_mem_vectorSpan_pair
Mathlib/LinearAlgebra/AffineSpace/Independent.lean
theorem weightedVSub_mem_vectorSpan_pair {p : ι → P} (h : AffineIndependent k p) {w w₁ w₂ : ι → k} {s : Finset ι} (hw : ∑ i ∈ s, w i = 0) (hw₁ : ∑ i ∈ s, w₁ i = 1) (hw₂ : ∑ i ∈ s, w₂ i = 1) : s.weightedVSub p w ∈ vectorSpan k ({s.affineCombination k p w₁, s.affineCombination k p w₂} : Set P) ↔ ∃ r : k, ∀ i ∈ s, w i = r * (w₁ i - w₂ i)
case refine_1.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P h : AffineIndependent k p w w₁ w₂ : ι → k s : Finset ι hw : ∑ i ∈ s, w i = 0 hw₁ : ∑ i ∈ s, w₁ i = 1 hw₂ : ∑ i ∈ s, w₂ i = 1 r : k hr : (s.weightedVSub p) (r • (w₁ - w₂) - w) = 0 i : ι hi : i ∈ s hw' : ∑ j ∈ s, (r • (w₁ - w₂) - w) j = 0 ⊢ w i = r * (w₁ i - w₂ i)
have hr' := h s _ hw' hr i hi
case refine_1.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P h : AffineIndependent k p w w₁ w₂ : ι → k s : Finset ι hw : ∑ i ∈ s, w i = 0 hw₁ : ∑ i ∈ s, w₁ i = 1 hw₂ : ∑ i ∈ s, w₂ i = 1 r : k hr : (s.weightedVSub p) (r • (w₁ - w₂) - w) = 0 i : ι hi : i ∈ s hw' : ∑ j ∈ s, (r • (w₁ - w₂) - w) j = 0 hr' : (r • (w₁ - w₂) - w) i = 0 ⊢ w i = r * (w₁ i - w₂ i)
6e1484c0d97194ef
Orientation.oangle_add
Mathlib/Geometry/Euclidean/Angle/Oriented/Basic.lean
theorem oangle_add {x y z : V} (hx : x ≠ 0) (hy : y ≠ 0) (hz : z ≠ 0) : o.oangle x y + o.oangle y z = o.oangle x z
V : Type u_1 inst✝² : NormedAddCommGroup V inst✝¹ : InnerProductSpace ℝ V inst✝ : Fact (finrank ℝ V = 2) o : Orientation ℝ V (Fin 2) x y z : V hx : x ≠ 0 hy : y ≠ 0 hz : z ≠ 0 ⊢ 0 < ‖y‖ ^ 2
positivity
no goals
9ab057dbb8d9890d
Polynomial.roots_expand_pow
Mathlib/FieldTheory/Perfect.lean
theorem roots_expand_pow : (expand R (p ^ n) f).roots = p ^ n • f.roots.map (iterateFrobeniusEquiv R p n).symm
R : Type u_1 inst✝³ : CommRing R inst✝² : IsDomain R p n : ℕ inst✝¹ : ExpChar R p f : R[X] inst✝ : PerfectRing R p r : R ⊢ p ^ n * (filter (fun x => r ^ p ^ n = x) f.roots).card = p ^ n * (filter (fun a => r = (iterateFrobeniusEquiv R p n).symm a) f.roots).card
congr
case e_a.e_a.e_p R : Type u_1 inst✝³ : CommRing R inst✝² : IsDomain R p n : ℕ inst✝¹ : ExpChar R p f : R[X] inst✝ : PerfectRing R p r : R ⊢ (fun x => r ^ p ^ n = x) = fun a => r = (iterateFrobeniusEquiv R p n).symm a
a4f5e4fcb5483444
FractionalIdeal.div_spanSingleton
Mathlib/RingTheory/FractionalIdeal/Operations.lean
theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J
case neg.a R₁ : Type u_3 inst✝⁴ : CommRing R₁ K : Type u_4 inst✝³ : Field K inst✝² : Algebra R₁ K inst✝¹ : IsFractionRing R₁ K inst✝ : IsDomain R₁ J : FractionalIdeal R₁⁰ K d : K hd : ¬d = 0 h_spand : spanSingleton R₁⁰ d ≠ 0 x : K hx : ∀ y ∈ ↑(spanSingleton R₁⁰ d), x * y ∈ ↑J ⊢ x ∈ ↑(1 / spanSingleton R₁⁰ d * J)
specialize hx d (mem_spanSingleton_self R₁⁰ d)
case neg.a R₁ : Type u_3 inst✝⁴ : CommRing R₁ K : Type u_4 inst✝³ : Field K inst✝² : Algebra R₁ K inst✝¹ : IsFractionRing R₁ K inst✝ : IsDomain R₁ J : FractionalIdeal R₁⁰ K d : K hd : ¬d = 0 h_spand : spanSingleton R₁⁰ d ≠ 0 x : K hx : x * d ∈ ↑J ⊢ x ∈ ↑(1 / spanSingleton R₁⁰ d * J)
3a4f3cf63940a3cf
AlgebraicGeometry.spread_out_unique_of_isGermInjective'
Mathlib/AlgebraicGeometry/SpreadingOut.lean
/-- A variant of `spread_out_unique_of_isGermInjective` whose condition is an equality of scheme morphisms instead of ring homomorphisms. -/ lemma spread_out_unique_of_isGermInjective' {x : X} [X.IsGermInjectiveAt x] (f g : X ⟶ Y) (e : X.fromSpecStalk x ≫ f = X.fromSpecStalk x ≫ g) : ∃ (U : X.Opens), x ∈ U ∧ U.ι ≫ f = U.ι ≫ g
case H.a X Y : Scheme x : ↑↑X.toPresheafedSpace inst✝ : X.IsGermInjectiveAt x f g : X ⟶ Y e : X.fromSpecStalk x ≫ f = X.fromSpecStalk x ≫ g ⊢ Spec.map (Scheme.Hom.stalkMap f x) = Spec.map (Y.presheaf.stalkSpecializes ⋯ ≫ Scheme.Hom.stalkMap g x)
rw [← cancel_mono (Y.fromSpecStalk _)]
case H.a X Y : Scheme x : ↑↑X.toPresheafedSpace inst✝ : X.IsGermInjectiveAt x f g : X ⟶ Y e : X.fromSpecStalk x ≫ f = X.fromSpecStalk x ≫ g ⊢ Spec.map (Scheme.Hom.stalkMap f x) ≫ Y.fromSpecStalk ((ConcreteCategory.hom f.base) x) = Spec.map (Y.presheaf.stalkSpecializes ⋯ ≫ Scheme.Hom.stalkMap g x) ≫ Y.fromSpecStalk ((ConcreteCategory.hom f.base) x)
d4de83ebc27f644e
Real.deriv_binEntropy
Mathlib/Analysis/SpecialFunctions/BinaryEntropy.lean
/-- Binary entropy has derivative `log (1 - p) - log p`. It's not differentiable at `0` or `1` but the junk values of `deriv` and `log` coincide there. -/ lemma deriv_binEntropy (p : ℝ) : deriv binEntropy p = log (1 - p) - log p
case pos.intro p : ℝ hp₀ : p ≠ 0 hp₁ : 1 - p ≠ 0 ⊢ deriv binEntropy p = log (1 - p) - log p
rw [binEntropy_eq_negMulLog_add_negMulLog_one_sub', deriv_add, deriv_comp_const_sub, deriv_negMulLog hp₀, deriv_negMulLog hp₁]
case pos.intro p : ℝ hp₀ : p ≠ 0 hp₁ : 1 - p ≠ 0 ⊢ -log p - 1 + -(-log (1 - p) - 1) = log (1 - p) - log p case pos.intro.hf p : ℝ hp₀ : p ≠ 0 hp₁ : 1 - p ≠ 0 ⊢ DifferentiableAt ℝ negMulLog p case pos.intro.hg p : ℝ hp₀ : p ≠ 0 hp₁ : 1 - p ≠ 0 ⊢ DifferentiableAt ℝ (fun p => (1 - p).negMulLog) p
0fb63a8146fa8624
Polynomial.card_roots_le_derivative
Mathlib/Analysis/Calculus/LocalExtr/Polynomial.lean
theorem card_roots_le_derivative (p : ℝ[X]) : Multiset.card p.roots ≤ Multiset.card (derivative p).roots + 1 := calc Multiset.card p.roots = ∑ x ∈ p.roots.toFinset, p.roots.count x := (Multiset.toFinset_sum_count_eq _).symm _ = ∑ x ∈ p.roots.toFinset, (p.roots.count x - 1 + 1) := (Eq.symm <| Finset.sum_congr rfl fun _ hx => tsub_add_cancel_of_le <| Nat.succ_le_iff.2 <| Multiset.count_pos.2 <| Multiset.mem_toFinset.1 hx) _ = (∑ x ∈ p.roots.toFinset, (p.rootMultiplicity x - 1)) + p.roots.toFinset.card
p : ℝ[X] x : ℝ hx : x ∈ (derivative p).roots.toFinset \ p.roots.toFinset ⊢ 0 < Multiset.count x (derivative p).roots
rw [Multiset.count_pos, ← Multiset.mem_toFinset]
p : ℝ[X] x : ℝ hx : x ∈ (derivative p).roots.toFinset \ p.roots.toFinset ⊢ x ∈ (derivative p).roots.toFinset
08e969b6e08acf5a
MeasureTheory.FiniteMeasure.limsup_measure_closed_le_of_tendsto
Mathlib/MeasureTheory/Measure/Portmanteau.lean
theorem FiniteMeasure.limsup_measure_closed_le_of_tendsto {Ω ι : Type*} {L : Filter ι} [MeasurableSpace Ω] [TopologicalSpace Ω] [HasOuterApproxClosed Ω] [OpensMeasurableSpace Ω] {μ : FiniteMeasure Ω} {μs : ι → FiniteMeasure Ω} (μs_lim : Tendsto μs L (𝓝 μ)) {F : Set Ω} (F_closed : IsClosed F) : (L.limsup fun i ↦ (μs i : Measure Ω) F) ≤ (μ : Measure Ω) F
case inr.h.intro Ω : Type u_1 ι : Type u_2 L : Filter ι inst✝³ : MeasurableSpace Ω inst✝² : TopologicalSpace Ω inst✝¹ : HasOuterApproxClosed Ω inst✝ : OpensMeasurableSpace Ω μ : FiniteMeasure Ω μs : ι → FiniteMeasure Ω μs_lim : Tendsto μs L (𝓝 μ) F : Set Ω F_closed : IsClosed F hne : L.NeBot ε : ℝ≥0 ε_pos : 0 < ε a✝ : ↑μ F < ⊤ ε_pos' : ↑ε / 2 ≠ 0 fs : ℕ → Ω →ᵇ ℝ≥0 := F_closed.apprSeq key₁ : Tendsto (fun n => ∫⁻ (ω : Ω), ↑((fs n) ω) ∂↑μ) atTop (𝓝 (↑μ F)) room₁ : ↑μ F < ↑μ F + ↑ε / 2 M : ℕ hM : ∀ b ≥ M, ∫⁻ (ω : Ω), ↑((fs b) ω) ∂↑μ < ↑μ F + ↑ε / 2 key₂ : Tendsto (fun i => ∫⁻ (x : Ω), ↑((fs M) x) ∂↑(μs i)) L (𝓝 (∫⁻ (x : Ω), ↑((fs M) x) ∂↑μ)) room₂ : ∫⁻ (a : Ω), ↑((fs M) a) ∂↑μ < ∫⁻ (a : Ω), ↑((fs M) a) ∂↑μ + ↑ε / 2 ⊢ limsup (fun i => ↑(μs i) F) L ≤ ↑μ F + ↑ε
have ev_near := key₂.eventually_le_const room₂
case inr.h.intro Ω : Type u_1 ι : Type u_2 L : Filter ι inst✝³ : MeasurableSpace Ω inst✝² : TopologicalSpace Ω inst✝¹ : HasOuterApproxClosed Ω inst✝ : OpensMeasurableSpace Ω μ : FiniteMeasure Ω μs : ι → FiniteMeasure Ω μs_lim : Tendsto μs L (𝓝 μ) F : Set Ω F_closed : IsClosed F hne : L.NeBot ε : ℝ≥0 ε_pos : 0 < ε a✝ : ↑μ F < ⊤ ε_pos' : ↑ε / 2 ≠ 0 fs : ℕ → Ω →ᵇ ℝ≥0 := F_closed.apprSeq key₁ : Tendsto (fun n => ∫⁻ (ω : Ω), ↑((fs n) ω) ∂↑μ) atTop (𝓝 (↑μ F)) room₁ : ↑μ F < ↑μ F + ↑ε / 2 M : ℕ hM : ∀ b ≥ M, ∫⁻ (ω : Ω), ↑((fs b) ω) ∂↑μ < ↑μ F + ↑ε / 2 key₂ : Tendsto (fun i => ∫⁻ (x : Ω), ↑((fs M) x) ∂↑(μs i)) L (𝓝 (∫⁻ (x : Ω), ↑((fs M) x) ∂↑μ)) room₂ : ∫⁻ (a : Ω), ↑((fs M) a) ∂↑μ < ∫⁻ (a : Ω), ↑((fs M) a) ∂↑μ + ↑ε / 2 ev_near : ∀ᶠ (a : ι) in L, ∫⁻ (x : Ω), ↑((fs M) x) ∂↑(μs a) ≤ ∫⁻ (a : Ω), ↑((fs M) a) ∂↑μ + ↑ε / 2 ⊢ limsup (fun i => ↑(μs i) F) L ≤ ↑μ F + ↑ε
ffd329bb427f57b4
generator_maximal_submoduleImage_dvd
Mathlib/LinearAlgebra/FreeModule/PID.lean
theorem generator_maximal_submoduleImage_dvd {N O : Submodule R M} (hNO : N ≤ O) {ϕ : O →ₗ[R] R} (hϕ : ∀ ψ : O →ₗ[R] R, ¬ϕ.submoduleImage N < ψ.submoduleImage N) [(ϕ.submoduleImage N).IsPrincipal] (y : M) (yN : y ∈ N) (ϕy_eq : ϕ ⟨y, hNO yN⟩ = generator (ϕ.submoduleImage N)) (ψ : O →ₗ[R] R) : generator (ϕ.submoduleImage N) ∣ ψ ⟨y, hNO yN⟩
case intro.intro R : Type u_2 inst✝⁵ : CommRing R M : Type u_3 inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : IsDomain R inst✝¹ : IsPrincipalIdealRing R N O : Submodule R M hNO : N ≤ O ϕ : ↥O →ₗ[R] R hϕ : ∀ (ψ : ↥O →ₗ[R] R), ¬ϕ.submoduleImage N < ψ.submoduleImage N inst✝ : (ϕ.submoduleImage N).IsPrincipal y : M yN : y ∈ N ϕy_eq : ϕ ⟨y, ⋯⟩ = generator (ϕ.submoduleImage N) ψ : ↥O →ₗ[R] R a : R := generator (ϕ.submoduleImage N) d : R := generator (span R {a, ψ ⟨y, ⋯⟩}) d_dvd_left : d ∣ a d_dvd_right : d ∣ ψ ⟨y, ⋯⟩ r₁ r₂ : R d_eq : d = r₁ * a + r₂ * ψ ⟨y, ⋯⟩ ψ' : ↥O →ₗ[R] R := r₁ • ϕ + r₂ • ψ this : span R {d} ≤ ψ'.submoduleImage N ⊢ ψ'.submoduleImage N = span R {generator (ϕ.submoduleImage N)}
rw [span_singleton_generator]
case intro.intro R : Type u_2 inst✝⁵ : CommRing R M : Type u_3 inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : IsDomain R inst✝¹ : IsPrincipalIdealRing R N O : Submodule R M hNO : N ≤ O ϕ : ↥O →ₗ[R] R hϕ : ∀ (ψ : ↥O →ₗ[R] R), ¬ϕ.submoduleImage N < ψ.submoduleImage N inst✝ : (ϕ.submoduleImage N).IsPrincipal y : M yN : y ∈ N ϕy_eq : ϕ ⟨y, ⋯⟩ = generator (ϕ.submoduleImage N) ψ : ↥O →ₗ[R] R a : R := generator (ϕ.submoduleImage N) d : R := generator (span R {a, ψ ⟨y, ⋯⟩}) d_dvd_left : d ∣ a d_dvd_right : d ∣ ψ ⟨y, ⋯⟩ r₁ r₂ : R d_eq : d = r₁ * a + r₂ * ψ ⟨y, ⋯⟩ ψ' : ↥O →ₗ[R] R := r₁ • ϕ + r₂ • ψ this : span R {d} ≤ ψ'.submoduleImage N ⊢ ψ'.submoduleImage N = ϕ.submoduleImage N
4b17bcc7455f624f
Real.quadratic_root_cos_pi_div_five
Mathlib/Analysis/SpecialFunctions/Trigonometric/Basic.lean
theorem quadratic_root_cos_pi_div_five : letI c := cos (π / 5) 4 * c ^ 2 - 2 * c - 1 = 0
θ : ℝ := π / 5 hθ : θ = π / 5 c : ℝ := cos θ ⊢ 4 * c ^ 2 - 2 * c - 1 = 0
set s := sin θ
θ : ℝ := π / 5 hθ : θ = π / 5 c : ℝ := cos θ s : ℝ := sin θ ⊢ 4 * c ^ 2 - 2 * c - 1 = 0
9a015197b0eb09bb
QPF.liftp_iff'
Mathlib/Data/QPF/Univariate/Basic.lean
theorem liftp_iff' {α : Type u} (p : α → Prop) (x : F α) : Liftp p x ↔ ∃ u : q.P α, abs u = x ∧ ∀ i, p (u.snd i)
case mpr F : Type u → Type u q : QPF F α : Type u p : α → Prop x : F α ⊢ (∃ u, abs u = x ∧ ∀ (i : (P F).B u.fst), p (u.snd i)) → Liftp p x
rintro ⟨⟨a, f⟩, h₀, h₁⟩
case mpr.intro.mk.intro F : Type u → Type u q : QPF F α : Type u p : α → Prop x : F α a : (P F).A f : (P F).B a → α h₀ : abs ⟨a, f⟩ = x h₁ : ∀ (i : (P F).B ⟨a, f⟩.fst), p (⟨a, f⟩.snd i) ⊢ Liftp p x
c3df4c9273e86559
Finset.prod_multiset_count_of_subset
Mathlib/Algebra/BigOperators/Group/Finset/Basic.lean
theorem prod_multiset_count_of_subset [DecidableEq α] [CommMonoid α] (m : Multiset α) (s : Finset α) (hs : m.toFinset ⊆ s) : m.prod = ∏ i ∈ s, i ^ m.count i
α : Type u_3 inst✝¹ : DecidableEq α inst✝ : CommMonoid α m : Multiset α s : Finset α ⊢ m.toFinset ⊆ s → m.prod = ∏ i ∈ s, i ^ Multiset.count i m
refine Quot.induction_on m fun l => ?_
α : Type u_3 inst✝¹ : DecidableEq α inst✝ : CommMonoid α m : Multiset α s : Finset α l : List α ⊢ Multiset.toFinset (Quot.mk (⇑(isSetoid α)) l) ⊆ s → Multiset.prod (Quot.mk (⇑(isSetoid α)) l) = ∏ i ∈ s, i ^ Multiset.count i (Quot.mk (⇑(isSetoid α)) l)
e4be7971d594c2a8
MeasureTheory.addHaar_image_le_mul_of_det_lt
Mathlib/MeasureTheory/Function/Jacobian.lean
theorem addHaar_image_le_mul_of_det_lt (A : E →L[ℝ] E) {m : ℝ≥0} (hm : ENNReal.ofReal |A.det| < m) : ∀ᶠ δ in 𝓝[>] (0 : ℝ≥0), ∀ (s : Set E) (f : E → E), ApproximatesLinearOn f A s δ → μ (f '' s) ≤ m * μ s
case h E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : FiniteDimensional ℝ E inst✝² : MeasurableSpace E inst✝¹ : BorelSpace E μ : Measure E inst✝ : μ.IsAddHaarMeasure A : E →L[ℝ] E m : ℝ≥0 hm : ENNReal.ofReal |A.det| < ↑m d : ℝ≥0∞ := ENNReal.ofReal |A.det| ε : ℝ hε : μ (closedBall 0 ε + ⇑A '' closedBall 0 1) < ↑m * μ (closedBall 0 1) εpos : 0 < ε this : Iio ⟨ε, ⋯⟩ ∈ 𝓝 0 δ : ℝ≥0 s : Set E f : E → E hf : ApproximatesLinearOn f A s δ hδ : ↑δ < ε I : ∀ (x : E) (r : ℝ), x ∈ s → 0 ≤ r → μ (f '' (s ∩ closedBall x r)) ≤ ↑m * μ (closedBall x r) a : ℝ≥0∞ ha : 0 < a ⊢ μ (f '' s) ≤ ↑m * (μ s + a)
obtain ⟨t, r, t_count, ts, rpos, st, μt⟩ : ∃ (t : Set E) (r : E → ℝ), t.Countable ∧ t ⊆ s ∧ (∀ x : E, x ∈ t → 0 < r x) ∧ (s ⊆ ⋃ x ∈ t, closedBall x (r x)) ∧ (∑' x : ↥t, μ (closedBall (↑x) (r ↑x))) ≤ μ s + a := Besicovitch.exists_closedBall_covering_tsum_measure_le μ ha.ne' (fun _ => Ioi 0) s fun x _ δ δpos => ⟨δ / 2, by simp [half_pos δpos, δpos]⟩
case h.intro.intro.intro.intro.intro.intro E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : FiniteDimensional ℝ E inst✝² : MeasurableSpace E inst✝¹ : BorelSpace E μ : Measure E inst✝ : μ.IsAddHaarMeasure A : E →L[ℝ] E m : ℝ≥0 hm : ENNReal.ofReal |A.det| < ↑m d : ℝ≥0∞ := ENNReal.ofReal |A.det| ε : ℝ hε : μ (closedBall 0 ε + ⇑A '' closedBall 0 1) < ↑m * μ (closedBall 0 1) εpos : 0 < ε this : Iio ⟨ε, ⋯⟩ ∈ 𝓝 0 δ : ℝ≥0 s : Set E f : E → E hf : ApproximatesLinearOn f A s δ hδ : ↑δ < ε I : ∀ (x : E) (r : ℝ), x ∈ s → 0 ≤ r → μ (f '' (s ∩ closedBall x r)) ≤ ↑m * μ (closedBall x r) a : ℝ≥0∞ ha : 0 < a t : Set E r : E → ℝ t_count : t.Countable ts : t ⊆ s rpos : ∀ x ∈ t, 0 < r x st : s ⊆ ⋃ x ∈ t, closedBall x (r x) μt : ∑' (x : ↑t), μ (closedBall (↑x) (r ↑x)) ≤ μ s + a ⊢ μ (f '' s) ≤ ↑m * (μ s + a)
35c8118ffea35652
Array.flatten_eq_push_iff
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Lemmas.lean
theorem flatten_eq_push_iff {xs : Array (Array α)} {ys : Array α} {y : α} : xs.flatten = ys.push y ↔ ∃ (as : Array (Array α)) (bs : Array α) (cs : Array (Array α)), xs = as.push (bs.push y) ++ cs ∧ (∀ l, l ∈ cs → l = #[]) ∧ ys = as.flatten ++ bs
case of.mk α : Type u_1 y : α xs : List (List α) ys : List α ⊢ ((∃ as bs, xs = as ++ bs ∧ ys = as.flatten ∧ [y] = bs.flatten) ∨ ∃ as bs c cs ds, xs = as ++ (bs ++ c :: cs) :: ds ∧ ys = as.flatten ++ bs ∧ [y] = c :: cs ++ ds.flatten) ↔ ∃ as bs cs, (List.map List.toArray xs).toArray = as.push (bs.push y) ++ cs ∧ (∀ (l : Array α), l ∈ cs → l = #[]) ∧ { toList := ys } = as.flatten ++ bs
constructor
case of.mk.mp α : Type u_1 y : α xs : List (List α) ys : List α ⊢ ((∃ as bs, xs = as ++ bs ∧ ys = as.flatten ∧ [y] = bs.flatten) ∨ ∃ as bs c cs ds, xs = as ++ (bs ++ c :: cs) :: ds ∧ ys = as.flatten ++ bs ∧ [y] = c :: cs ++ ds.flatten) → ∃ as bs cs, (List.map List.toArray xs).toArray = as.push (bs.push y) ++ cs ∧ (∀ (l : Array α), l ∈ cs → l = #[]) ∧ { toList := ys } = as.flatten ++ bs case of.mk.mpr α : Type u_1 y : α xs : List (List α) ys : List α ⊢ (∃ as bs cs, (List.map List.toArray xs).toArray = as.push (bs.push y) ++ cs ∧ (∀ (l : Array α), l ∈ cs → l = #[]) ∧ { toList := ys } = as.flatten ++ bs) → (∃ as bs, xs = as ++ bs ∧ ys = as.flatten ∧ [y] = bs.flatten) ∨ ∃ as bs c cs ds, xs = as ++ (bs ++ c :: cs) :: ds ∧ ys = as.flatten ++ bs ∧ [y] = c :: cs ++ ds.flatten
dbe592481896286a
EReal.sign_mul_inv_abs
Mathlib/Data/Real/EReal.lean
lemma sign_mul_inv_abs (a : EReal) : (sign a) * (a.abs : EReal)⁻¹ = a⁻¹
case h_real.inr.inr a : ℝ a_pos : 0 < a ⊢ (↑(↑a).abs)⁻¹ = (↑a)⁻¹
simp only [abs_def a, coe_ennreal_ofReal, abs_nonneg, max_eq_left]
case h_real.inr.inr a : ℝ a_pos : 0 < a ⊢ (↑|a|)⁻¹ = (↑a)⁻¹
ac24005922bb1b5a
FreeGroup.Red.cons_nil_iff_singleton
Mathlib/GroupTheory/FreeGroup/Basic.lean
theorem cons_nil_iff_singleton {x b} : Red ((x, b) :: L) [] ↔ Red L [(x, not b)] := Iff.intro (fun h => by have h₁ : Red ((x, not b) :: (x, b) :: L) [(x, not b)] := cons_cons h have h₂ : Red ((x, not b) :: (x, b) :: L) L := ReflTransGen.single Step.cons_not_rev let ⟨L', h₁, h₂⟩ := church_rosser h₁ h₂ rw [singleton_iff] at h₁ subst L' assumption) fun h => (cons_cons h).tail Step.cons_not
α : Type u L : List (α × Bool) x : α b : Bool h : Red ((x, b) :: L) [] h₁✝ : Red ((x, !b) :: (x, b) :: L) [(x, !b)] h₂✝ : Red ((x, !b) :: (x, b) :: L) L L' : List (α × Bool) h₁ : L' = [(x, !b)] h₂ : Red L L' ⊢ Red L [(x, !b)]
subst L'
α : Type u L : List (α × Bool) x : α b : Bool h : Red ((x, b) :: L) [] h₁ : Red ((x, !b) :: (x, b) :: L) [(x, !b)] h₂✝ : Red ((x, !b) :: (x, b) :: L) L h₂ : Red L [(x, !b)] ⊢ Red L [(x, !b)]
76d3bdec0b2e0f0e
ModularCyclotomicCharacter.id
Mathlib/NumberTheory/Cyclotomic/CyclotomicCharacter.lean
lemma id : χ₀ n (RingEquiv.refl L) = 1
case inr L : Type u inst✝² : CommRing L inst✝¹ : IsDomain L n : ℕ inst✝ : NeZero n t : ↥(rootsOfUnity n L) this✝ : 1 ≤ Fintype.card ↥(rootsOfUnity n L) h : 1 = Fintype.card ↥(rootsOfUnity n L) this : Subsingleton ↥(rootsOfUnity n L) ⊢ (RingEquiv.refl L) ↑↑t = ↑(↑t ^ ZMod.val 1)
obtain rfl : t = 1 := Subsingleton.elim t 1
case inr L : Type u inst✝² : CommRing L inst✝¹ : IsDomain L n : ℕ inst✝ : NeZero n this✝ : 1 ≤ Fintype.card ↥(rootsOfUnity n L) h : 1 = Fintype.card ↥(rootsOfUnity n L) this : Subsingleton ↥(rootsOfUnity n L) ⊢ (RingEquiv.refl L) ↑↑1 = ↑(↑1 ^ ZMod.val 1)
e6a95e075637730f
MeasureTheory.IsFundamentalDomain.essSup_measure_restrict
Mathlib/MeasureTheory/Group/FundamentalDomain.lean
theorem essSup_measure_restrict (hs : IsFundamentalDomain G s μ) {f : α → ℝ≥0∞} (hf : ∀ γ : G, ∀ x : α, f (γ • x) = f x) : essSup f (μ.restrict s) = essSup f μ
case h G : Type u_1 α : Type u_3 inst✝⁶ : Group G inst✝⁵ : MulAction G α inst✝⁴ : MeasurableSpace α s : Set α μ : Measure α inst✝³ : MeasurableSpace G inst✝² : MeasurableSMul G α inst✝¹ : SMulInvariantMeasure G α μ inst✝ : Countable G hs : IsFundamentalDomain G s μ f : α → ℝ≥0∞ hf : ∀ (γ : G) (x : α), f (γ • x) = f x a : ℝ≥0∞ ha : μ ({x | a < f x} ∩ s) = 0 γ : G x : α ⊢ γ⁻¹ • x ∈ {x | a < f x} ↔ x ∈ {x | a < f x}
simp only [mem_setOf_eq, hf γ⁻¹ x]
no goals
a614a13e054bad33
Matrix.trace_one
Mathlib/LinearAlgebra/Matrix/Trace.lean
theorem trace_one : trace (1 : Matrix n n R) = Fintype.card n
n : Type u_3 R : Type u_6 inst✝² : Fintype n inst✝¹ : DecidableEq n inst✝ : AddCommMonoidWithOne R ⊢ trace 1 = ↑(Fintype.card n)
simp_rw [trace, diag_one, Pi.one_def, Finset.sum_const, nsmul_one, Finset.card_univ]
no goals
435b81581bcb1989
ProbabilityTheory.setLIntegral_stieltjesOfMeasurableRat
Mathlib/Probability/Kernel/Disintegration/CDFToKernel.lean
lemma setLIntegral_stieltjesOfMeasurableRat [IsFiniteKernel κ] (hf : IsRatCondKernelCDF f κ ν) (a : α) (x : ℝ) {s : Set β} (hs : MeasurableSet s) : ∫⁻ b in s, ENNReal.ofReal (stieltjesOfMeasurableRat f hf.measurable (a, b) x) ∂(ν a) = κ a (s ×ˢ Iic x)
case neg.h.e_6.h.e_a.h α : Type u_1 β : Type u_2 mα : MeasurableSpace α mβ : MeasurableSpace β κ : Kernel α (β × ℝ) ν : Kernel α β f : α × β → ℚ → ℝ inst✝ : IsFiniteKernel κ hf : IsRatCondKernelCDF f κ ν a : α x : ℝ s : Set β hs : MeasurableSet s hρ_zero : ¬(ν a).restrict s = 0 h : ∫⁻ (b : β) in s, ENNReal.ofReal (↑(stieltjesOfMeasurableRat f ⋯ (a, b)) x) ∂ν a = ∫⁻ (b : β) in s, ⨅ r, ENNReal.ofReal (↑(stieltjesOfMeasurableRat f ⋯ (a, b)) ↑↑r) ∂ν a h_nonempty : Nonempty { r' // x < ↑r' } y : ℝ ⊢ (∀ (a : ℚ), x < ↑a → y ≤ ↑a) ↔ y ≤ x
exact ⟨le_of_forall_lt_rat_imp_le, fun hyx q hq ↦ hyx.trans hq.le⟩
no goals
2b5f63b20150553c
List.exists_pw_disjoint_with_card
Mathlib/GroupTheory/Perm/Cycle/PossibleTypes.lean
theorem List.exists_pw_disjoint_with_card {α : Type*} [Fintype α] {c : List ℕ} (hc : c.sum ≤ Fintype.card α) : ∃ o : List (List α), o.map length = c ∧ (∀ s ∈ o, s.Nodup) ∧ Pairwise List.Disjoint o
case h.left α : Type u_2 inst✝ : Fintype α c : List ℕ hc : c.sum ≤ Fintype.card α klift : (n : ℕ) → n < Fintype.card α → Fin (Fintype.card α) := fun n hn => ⟨n, hn⟩ klift' : (l : List ℕ) → (∀ a ∈ l, a < Fintype.card α) → List (Fin (Fintype.card α)) := fun l hl => pmap klift l hl hc'_lt : ∀ l ∈ c.ranges, ∀ n ∈ l, n < Fintype.card α l : List (List (Fin (Fintype.card α))) := pmap klift' c.ranges hc'_lt hl : ∀ (a : List ℕ) (ha : a ∈ c.ranges), map (⇑Fin.valEmbedding) (klift' a ⋯) = a ⊢ map length (map (map ⇑(Fintype.equivFin α).symm) l) = map length c.ranges
simp only [l, klift', map_map, map_pmap, Function.comp_apply, length_map, length_pmap, pmap_eq_map]
no goals
463233383e1ded3a
Nat.fib_add
Mathlib/Data/Nat/Fib/Basic.lean
theorem fib_add (m n : ℕ) : fib (m + n + 1) = fib m * fib n + fib (m + 1) * fib (n + 1)
m n : ℕ ⊢ fib (m + n + 1) = fib m * fib n + fib (m + 1) * fib (n + 1)
induction' n with n ih generalizing m
case zero m : ℕ ⊢ fib (m + 0 + 1) = fib m * fib 0 + fib (m + 1) * fib (0 + 1) case succ n : ℕ ih : ∀ (m : ℕ), fib (m + n + 1) = fib m * fib n + fib (m + 1) * fib (n + 1) m : ℕ ⊢ fib (m + (n + 1) + 1) = fib m * fib (n + 1) + fib (m + 1) * fib (n + 1 + 1)
b5bcd98a5f87fcbc