name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
Finset.prod_ite_zero
Mathlib/Algebra/BigOperators/GroupWithZero/Finset.lean
lemma prod_ite_zero : (∏ i ∈ s, if p i then f i else 0) = if ∀ i ∈ s, p i then ∏ i ∈ s, f i else 0
case neg ι : Type u_1 M₀ : Type u_4 inst✝¹ : CommMonoidWithZero M₀ p : ι → Prop inst✝ : DecidablePred p f : ι → M₀ s : Finset ι h : ∃ i ∈ s, ¬p i ⊢ (∏ i ∈ s, if p i then f i else 0) = 0
rcases h with ⟨i, hi, hq⟩
case neg.intro.intro ι : Type u_1 M₀ : Type u_4 inst✝¹ : CommMonoidWithZero M₀ p : ι → Prop inst✝ : DecidablePred p f : ι → M₀ s : Finset ι i : ι hi : i ∈ s hq : ¬p i ⊢ (∏ i ∈ s, if p i then f i else 0) = 0
78166aee35f52bfd
FirstOrder.Language.isExtensionPair_iff_exists_embedding_closure_singleton_sup
Mathlib/ModelTheory/PartialEquiv.lean
theorem isExtensionPair_iff_exists_embedding_closure_singleton_sup : L.IsExtensionPair M N ↔ ∀ (S : L.Substructure M) (_ : S.FG) (f : S ↪[L] N) (m : M), ∃ g : (closure L {m} ⊔ S : L.Substructure M) ↪[L] N, f = g.comp (Substructure.inclusion le_sup_right)
case refine_1.intro.mk.intro.intro L : Language M : Type w N : Type w' inst✝¹ : L.Structure M inst✝ : L.Structure N h : L.IsExtensionPair M N S : L.Substructure M S_FG : S.FG f : ↥S ↪[L] N m : M f' : M ≃ₚ[L] N hf' : f'.dom.FG mf' : m ∈ (↑⟨f', hf'⟩).dom ff'1 : (↑⟨{ dom := S, cod := f.toHom.range, toEquiv := f.equivRange }, S_FG⟩).dom ≤ (↑⟨f', hf'⟩).dom ff'2 : (↑⟨f', hf'⟩).cod.subtype.comp ((↑⟨f', hf'⟩).toEquiv.toEmbedding.comp (Substructure.inclusion ff'1)) = (↑⟨{ dom := S, cod := f.toHom.range, toEquiv := f.equivRange }, S_FG⟩).cod.subtype.comp (↑⟨{ dom := S, cod := f.toHom.range, toEquiv := f.equivRange }, S_FG⟩).toEquiv.toEmbedding ⊢ ∃ g, f = g.comp (Substructure.inclusion ⋯)
refine ⟨f'.toEmbedding.comp (Substructure.inclusion ?_), ?_⟩
case refine_1.intro.mk.intro.intro.refine_1 L : Language M : Type w N : Type w' inst✝¹ : L.Structure M inst✝ : L.Structure N h : L.IsExtensionPair M N S : L.Substructure M S_FG : S.FG f : ↥S ↪[L] N m : M f' : M ≃ₚ[L] N hf' : f'.dom.FG mf' : m ∈ (↑⟨f', hf'⟩).dom ff'1 : (↑⟨{ dom := S, cod := f.toHom.range, toEquiv := f.equivRange }, S_FG⟩).dom ≤ (↑⟨f', hf'⟩).dom ff'2 : (↑⟨f', hf'⟩).cod.subtype.comp ((↑⟨f', hf'⟩).toEquiv.toEmbedding.comp (Substructure.inclusion ff'1)) = (↑⟨{ dom := S, cod := f.toHom.range, toEquiv := f.equivRange }, S_FG⟩).cod.subtype.comp (↑⟨{ dom := S, cod := f.toHom.range, toEquiv := f.equivRange }, S_FG⟩).toEquiv.toEmbedding ⊢ (closure L).toFun {m} ⊔ S ≤ f'.dom case refine_1.intro.mk.intro.intro.refine_2 L : Language M : Type w N : Type w' inst✝¹ : L.Structure M inst✝ : L.Structure N h : L.IsExtensionPair M N S : L.Substructure M S_FG : S.FG f : ↥S ↪[L] N m : M f' : M ≃ₚ[L] N hf' : f'.dom.FG mf' : m ∈ (↑⟨f', hf'⟩).dom ff'1 : (↑⟨{ dom := S, cod := f.toHom.range, toEquiv := f.equivRange }, S_FG⟩).dom ≤ (↑⟨f', hf'⟩).dom ff'2 : (↑⟨f', hf'⟩).cod.subtype.comp ((↑⟨f', hf'⟩).toEquiv.toEmbedding.comp (Substructure.inclusion ff'1)) = (↑⟨{ dom := S, cod := f.toHom.range, toEquiv := f.equivRange }, S_FG⟩).cod.subtype.comp (↑⟨{ dom := S, cod := f.toHom.range, toEquiv := f.equivRange }, S_FG⟩).toEquiv.toEmbedding ⊢ f = (f'.toEmbedding.comp (Substructure.inclusion ?refine_1.intro.mk.intro.intro.refine_1)).comp (Substructure.inclusion ⋯)
5f72d9d9514858fa
le_limsup_mul
Mathlib/Topology/Algebra/Order/LiminfLimsup.lean
lemma le_limsup_mul (h₁ : 0 ≤ᶠ[f] u) (h₂ : IsBoundedUnder (fun x1 x2 ↦ x1 ≤ x2) f u) (h₃ : 0 ≤ᶠ[f] v) (h₄ : IsBoundedUnder (fun x1 x2 ↦ x1 ≤ x2) f v) : (limsup u f) * liminf v f ≤ limsup (u * v) f
ι : Type u_1 f : Filter ι inst✝ : f.NeBot u v : ι → ℝ h₁ : 0 ≤ᶠ[f] u h₂ : IsBoundedUnder (fun x1 x2 => x1 ≤ x2) f u h₃ : 0 ≤ᶠ[f] v h₄ : IsBoundedUnder (fun x1 x2 => x1 ≤ x2) f v h : IsCoboundedUnder (fun x1 x2 => x1 ≤ x2) f fun x => u x * v x h' : IsBoundedUnder (fun x1 x2 => x1 ≤ x2) f (u * v) u0 : 0 ≤ limsup u f uv : 0 ≤ limsup (u * v) f a : ℝ x✝ : a ≥ 0 au : a < limsup u f b : ℝ b0 : b ≥ 0 bv : b < liminf v f c : ℝ c_ab : c < a * b ⊢ ∃ᶠ (a : ι) in f, c < u a * v a
refine ((frequently_lt_of_lt_limsup (isBoundedUnder_of_eventually_ge h₁).isCoboundedUnder_le au).and_eventually ((eventually_lt_of_lt_liminf bv (isBoundedUnder_of_eventually_ge h₃)).and (h₁.and h₃))).mono fun x ⟨xa, ⟨xb, u0, _⟩⟩ ↦ ?_
ι : Type u_1 f : Filter ι inst✝ : f.NeBot u v : ι → ℝ h₁ : 0 ≤ᶠ[f] u h₂ : IsBoundedUnder (fun x1 x2 => x1 ≤ x2) f u h₃ : 0 ≤ᶠ[f] v h₄ : IsBoundedUnder (fun x1 x2 => x1 ≤ x2) f v h : IsCoboundedUnder (fun x1 x2 => x1 ≤ x2) f fun x => u x * v x h' : IsBoundedUnder (fun x1 x2 => x1 ≤ x2) f (u * v) u0✝ : 0 ≤ limsup u f uv : 0 ≤ limsup (u * v) f a : ℝ x✝¹ : a ≥ 0 au : a < limsup u f b : ℝ b0 : b ≥ 0 bv : b < liminf v f c : ℝ c_ab : c < a * b x : ι x✝ : a < u x ∧ b < v x ∧ 0 x ≤ u x ∧ 0 x ≤ v x xa : a < u x xb : b < v x u0 : 0 x ≤ u x right✝ : 0 x ≤ v x ⊢ c < u x * v x
0975ba9cb811681a
MeasureTheory.Martingale.ae_not_tendsto_atTop_atBot
Mathlib/Probability/Martingale/BorelCantelli.lean
theorem Martingale.ae_not_tendsto_atTop_atBot [IsFiniteMeasure μ] (hf : Martingale f ℱ μ) (hbdd : ∀ᵐ ω ∂μ, ∀ i, |f (i + 1) ω - f i ω| ≤ R) : ∀ᵐ ω ∂μ, ¬Tendsto (fun n => f n ω) atTop atBot
Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Martingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R ⊢ ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => f n ω) atTop atBot
filter_upwards [hf.bddAbove_range_iff_bddBelow_range hbdd] with ω hω htop using unbounded_of_tendsto_atBot htop (hω.1 <| bddAbove_range_of_tendsto_atTop_atBot htop)
no goals
e27ebab8a5fba485
Subspace.biUnion_ne_univ_of_top_nmem
Mathlib/GroupTheory/CosetCover.lean
theorem Subspace.biUnion_ne_univ_of_top_nmem (hs : ⊤ ∉ s) : ⋃ p ∈ s, (p : Set E) ≠ Set.univ
k : Type u_1 E : Type u_2 inst✝³ : DivisionRing k inst✝² : Infinite k inst✝¹ : AddCommGroup E inst✝ : Module k E s : Finset (Subspace k E) hs : ⊤ ∉ s hcovers : ⋃ p ∈ s, ↑p = Set.univ p : Subspace k E hp : p ∈ s hfi : (Submodule.toAddSubgroup p).FiniteIndex this : Finite (E ⧸ p) ⊢ False
have : Nontrivial (E ⧸ p) := Submodule.Quotient.nontrivial_of_lt_top p (ne_of_mem_of_not_mem hp hs).lt_top
k : Type u_1 E : Type u_2 inst✝³ : DivisionRing k inst✝² : Infinite k inst✝¹ : AddCommGroup E inst✝ : Module k E s : Finset (Subspace k E) hs : ⊤ ∉ s hcovers : ⋃ p ∈ s, ↑p = Set.univ p : Subspace k E hp : p ∈ s hfi : (Submodule.toAddSubgroup p).FiniteIndex this✝ : Finite (E ⧸ p) this : Nontrivial (E ⧸ p) ⊢ False
dc216810ed8fea9b
Set.indicator_prod_one
Mathlib/Algebra/GroupWithZero/Indicator.lean
lemma indicator_prod_one {t : Set κ} {j : κ} : (s ×ˢ t).indicator (1 : ι × κ → M₀) (i, j) = s.indicator 1 i * t.indicator 1 j
ι : Type u_1 κ : Type u_2 M₀ : Type u_4 inst✝ : MulZeroOneClass M₀ s : Set ι i : ι t : Set κ j : κ ⊢ (if i ∈ s ∧ j ∈ t then 1 (i, j) else 0) = (if i ∈ s then 1 i else 0) * if j ∈ t then 1 j else 0
split_ifs with h₀ <;> simp only [Pi.one_apply, mul_one, mul_zero] <;> tauto
no goals
820eedd294002773
ENNReal.aemeasurable_of_tendsto'
Mathlib/MeasureTheory/Constructions/BorelSpace/Real.lean
/-- A limit (over a general filter) of a.e.-measurable `ℝ≥0∞` valued functions is a.e.-measurable. -/ lemma aemeasurable_of_tendsto' {ι : Type*} {f : ι → α → ℝ≥0∞} {g : α → ℝ≥0∞} {μ : Measure α} (u : Filter ι) [NeBot u] [IsCountablyGenerated u] (hf : ∀ i, AEMeasurable (f i) μ) (hlim : ∀ᵐ a ∂μ, Tendsto (fun i ↦ f i a) u (𝓝 (g a))) : AEMeasurable g μ
case intro α : Type u_1 mα : MeasurableSpace α ι : Type u_5 f : ι → α → ℝ≥0∞ g : α → ℝ≥0∞ μ : Measure α u : Filter ι inst✝¹ : u.NeBot inst✝ : u.IsCountablyGenerated hf : ∀ (i : ι), AEMeasurable (f i) μ hlim : ∀ᵐ (a : α) ∂μ, Tendsto (fun i => f i a) u (𝓝 (g a)) v : ℕ → ι hv : Tendsto v atTop u ⊢ AEMeasurable g μ
have h'f : ∀ n, AEMeasurable (f (v n)) μ := fun n ↦ hf (v n)
case intro α : Type u_1 mα : MeasurableSpace α ι : Type u_5 f : ι → α → ℝ≥0∞ g : α → ℝ≥0∞ μ : Measure α u : Filter ι inst✝¹ : u.NeBot inst✝ : u.IsCountablyGenerated hf : ∀ (i : ι), AEMeasurable (f i) μ hlim : ∀ᵐ (a : α) ∂μ, Tendsto (fun i => f i a) u (𝓝 (g a)) v : ℕ → ι hv : Tendsto v atTop u h'f : ∀ (n : ℕ), AEMeasurable (f (v n)) μ ⊢ AEMeasurable g μ
6eeaf457edae86bb
CategoryTheory.Functor.eval_section_injective_of_eventually_injective
Mathlib/CategoryTheory/CofilteredSystem.lean
theorem eval_section_injective_of_eventually_injective {j} (Finj : ∀ (i) (f : i ⟶ j), (F.map f).Injective) (i) (f : i ⟶ j) : (fun s : F.sections => s.val j).Injective
case intro.intro.intro J : Type u inst✝¹ : Category.{u_1, u} J F : J ⥤ Type v inst✝ : IsCofilteredOrEmpty J j : J Finj : ∀ (i : J) (f : i ⟶ j), Function.Injective (F.map f) i : J f : i ⟶ j s₀ s₁ : ↑F.sections k m : J mi : m ⟶ i h : F.map (mi ≫ f) (↑s₀ m) = F.map (mi ≫ f) (↑s₁ m) mk : m ⟶ k h✝ : True ⊢ F.map mk (↑s₀ m) = F.map mk (↑s₁ m)
exact congr_arg _ (Finj m (mi ≫ f) h)
no goals
925c0614fa26e0a4
MvQPF.Cofix.bisim_aux
Mathlib/Data/QPF/Multivariate/Constructions/Cofix.lean
theorem Cofix.bisim_aux {α : TypeVec n} (r : Cofix F α → Cofix F α → Prop) (h' : ∀ x, r x x) (h : ∀ x y, r x y → appendFun id (Quot.mk r) <$$> Cofix.dest x = appendFun id (Quot.mk r) <$$> Cofix.dest y) : ∀ x y, r x y → x = y
case a n : ℕ F : TypeVec.{u} (n + 1) → Type u q : MvQPF F α : TypeVec.{u} n r : Cofix F α → Cofix F α → Prop h' : ∀ (x : Cofix F α), r x x h : ∀ (x y : Cofix F α), r x y → (TypeVec.id ::: Quot.mk r) <$$> x.dest = (TypeVec.id ::: Quot.mk r) <$$> y.dest x y : (P F).M α rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y) r' : (P F).M α → (P F).M α → Prop := fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y) hr' : r' = fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y) a b : (P F).M α r'ab : r' a b h₀ : (TypeVec.id ::: Quot.mk r ∘ Quot.mk Mcongr) <$$> MvQPF.abs (M.dest (P F) a) = (TypeVec.id ::: Quot.mk r ∘ Quot.mk Mcongr) <$$> MvQPF.abs (M.dest (P F) b) u v : (P F).M α cuv : Mcongr u v ⊢ r' u v
dsimp [r', hr']
case a n : ℕ F : TypeVec.{u} (n + 1) → Type u q : MvQPF F α : TypeVec.{u} n r : Cofix F α → Cofix F α → Prop h' : ∀ (x : Cofix F α), r x x h : ∀ (x y : Cofix F α), r x y → (TypeVec.id ::: Quot.mk r) <$$> x.dest = (TypeVec.id ::: Quot.mk r) <$$> y.dest x y : (P F).M α rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y) r' : (P F).M α → (P F).M α → Prop := fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y) hr' : r' = fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y) a b : (P F).M α r'ab : r' a b h₀ : (TypeVec.id ::: Quot.mk r ∘ Quot.mk Mcongr) <$$> MvQPF.abs (M.dest (P F) a) = (TypeVec.id ::: Quot.mk r ∘ Quot.mk Mcongr) <$$> MvQPF.abs (M.dest (P F) b) u v : (P F).M α cuv : Mcongr u v ⊢ r (Quot.mk Mcongr u) (Quot.mk Mcongr v)
0af76fe163f43a26
exists_sSupIndep_isCompl_sSup_atoms
Mathlib/Order/CompactlyGenerated/Basic.lean
theorem exists_sSupIndep_isCompl_sSup_atoms (h : sSup { a : α | IsAtom a } = ⊤) (b : α) : ∃ s : Set α, sSupIndep s ∧ IsCompl b (sSup s) ∧ ∀ ⦃a⦄, a ∈ s → IsAtom a
case inr α : Type u_2 inst✝² : CompleteLattice α inst✝¹ : IsModularLattice α inst✝ : IsCompactlyGenerated α h : sSup {a | IsAtom a} = ⊤ b : α s : Set α s_max : ∀ ⦃t : Set α⦄, t ∈ {s | sSupIndep s ∧ Disjoint b (sSup s) ∧ ∀ a ∈ s, IsAtom a} → s ⊆ t → s = t s_ind : sSupIndep s b_inf_Sup_s : Disjoint b (sSup s) s_atoms : ∀ a ∈ s, IsAtom a a : α ha : a ∈ {a | IsAtom a} con : Disjoint a (b ⊔ sSup s) a_dis_Sup_s : Disjoint a (sSup s) x : α hx : x ∈ s ∨ x = a xa : x ≠ a ⊢ Disjoint x (sSup ((s ∪ {a}) \ {x}))
have h : (s ∪ {a}) \ {x} = s \ {x} ∪ {a} := by simp only [Set.union_singleton] rw [Set.insert_diff_of_not_mem] rw [Set.mem_singleton_iff] exact Ne.symm xa
case inr α : Type u_2 inst✝² : CompleteLattice α inst✝¹ : IsModularLattice α inst✝ : IsCompactlyGenerated α h✝ : sSup {a | IsAtom a} = ⊤ b : α s : Set α s_max : ∀ ⦃t : Set α⦄, t ∈ {s | sSupIndep s ∧ Disjoint b (sSup s) ∧ ∀ a ∈ s, IsAtom a} → s ⊆ t → s = t s_ind : sSupIndep s b_inf_Sup_s : Disjoint b (sSup s) s_atoms : ∀ a ∈ s, IsAtom a a : α ha : a ∈ {a | IsAtom a} con : Disjoint a (b ⊔ sSup s) a_dis_Sup_s : Disjoint a (sSup s) x : α hx : x ∈ s ∨ x = a xa : x ≠ a h : (s ∪ {a}) \ {x} = s \ {x} ∪ {a} ⊢ Disjoint x (sSup ((s ∪ {a}) \ {x}))
04808f5eaf22927f
Dioph.inject_dummies_lem
Mathlib/NumberTheory/Dioph.lean
theorem inject_dummies_lem (f : β → γ) (g : γ → Option β) (inv : ∀ x, g (f x) = some x) (p : Poly (α ⊕ β)) (v : α → ℕ) : (∃ t, p (v ⊗ t) = 0) ↔ ∃ t, p.map (inl ⊗ inr ∘ f) (v ⊗ t) = 0
α β γ : Type u f : β → γ g : γ → Option β inv : ∀ (x : β), g (f x) = some x p : Poly (α ⊕ β) v : α → ℕ t : β → ℕ ht : p (v ⊗ t) = 0 this : (v ⊗ (0 ::ₒ t) ∘ g) ∘ (inl ⊗ inr ∘ f) = v ⊗ t ⊢ p ((v ⊗ (0 ::ₒ t) ∘ g) ∘ (inl ⊗ inr ∘ f)) = 0
rwa [this]
no goals
92ce2273a39f5fe6
exists_seq_forall_proj_of_forall_finite
Mathlib/Order/KonigLemma.lean
theorem exists_seq_forall_proj_of_forall_finite {α : ℕ → Type*} [Finite (α 0)] [∀ i, Nonempty (α i)] (π : {i j : ℕ} → (hij : i ≤ j) → α j → α i) (π_refl : ∀ ⦃i⦄ (a : α i), π rfl.le a = a) (π_trans : ∀ ⦃i j k⦄ (hij : i ≤ j) (hjk : j ≤ k) a, π hij (π hjk a) = π (hij.trans hjk) a) (hfin : ∀ i a, {b : α (i+1) | π (Nat.le_add_right i 1) b = a}.Finite) : ∃ f : (i : ℕ) → α i, ∀ ⦃i j⦄ (hij : i ≤ j), π hij (f j) = f i
α : ℕ → Type u_1 inst✝¹ : Finite (α 0) inst✝ : ∀ (i : ℕ), Nonempty (α i) π : {i j : ℕ} → i ≤ j → α j → α i π_refl : ∀ ⦃i : ℕ⦄ (a : α i), π ⋯ a = a π_trans : ∀ ⦃i j k : ℕ⦄ (hij : i ≤ j) (hjk : j ≤ k) (a : α k), π hij (π hjk a) = π ⋯ a hfin : ∀ (i : ℕ) (a : α i), {b | π ⋯ b = a}.Finite αs : Type u_1 := (i : ℕ) × α i x✝ : PartialOrder αs := PartialOrder.mk ⋯ hcovby : ∀ {a b : αs}, a ⋖ b ↔ a ≤ b ∧ a.fst + 1 = b.fst i : ℕ a b : α i hne : ⟨i, a⟩ ≠ ⟨i, b⟩ hij : i ≤ i h2 : π hij b = a ⊢ False
simp [← h2, π_refl] at hne
no goals
271fcb2e96bcf388
Polynomial.continuous_eval₂
Mathlib/Topology/Algebra/Polynomial.lean
theorem continuous_eval₂ [Semiring S] (p : S[X]) (f : S →+* R) : Continuous fun x => p.eval₂ f x
R : Type u_1 S : Type u_2 inst✝³ : Semiring R inst✝² : TopologicalSpace R inst✝¹ : IsTopologicalSemiring R inst✝ : Semiring S p : S[X] f : S →+* R ⊢ Continuous fun x => p.sum fun e a => f a * x ^ e
exact continuous_finset_sum _ fun c _ => continuous_const.mul (continuous_pow _)
no goals
d0ed11350349de73
CategoryTheory.Limits.prod.map_id_id
Mathlib/CategoryTheory/Limits/Shapes/BinaryProducts.lean
theorem prod.map_id_id {X Y : C} [HasBinaryProduct X Y] : prod.map (𝟙 X) (𝟙 Y) = 𝟙 _
C : Type u inst✝¹ : Category.{v, u} C X Y : C inst✝ : HasBinaryProduct X Y ⊢ map (𝟙 X) (𝟙 Y) = 𝟙 (X ⨯ Y)
ext <;> simp
no goals
8a43ed8999e5542d
HasCompactSupport.enorm_le_lintegral_Ici_deriv
Mathlib/MeasureTheory/Integral/IntegralEqImproper.lean
lemma _root_.HasCompactSupport.enorm_le_lintegral_Ici_deriv {F : Type*} [NormedAddCommGroup F] [NormedSpace ℝ F] {f : ℝ → F} (hf : ContDiff ℝ 1 f) (h'f : HasCompactSupport f) (x : ℝ) : ‖f x‖ₑ ≤ ∫⁻ y in Iic x, ‖deriv f y‖ₑ
F : Type u_2 inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace ℝ F f : ℝ → F hf : ContDiff ℝ 1 f h'f : HasCompactSupport f x : ℝ I : F →L[ℝ] Completion F := Completion.toComplL f' : ℝ → Completion F := ⇑I ∘ f hf' : ContDiff ℝ 1 f' ⊢ ‖f x‖ₑ ≤ ∫⁻ (y : ℝ) in Iic x, ‖deriv f y‖ₑ
have h'f' : HasCompactSupport f' := h'f.comp_left rfl
F : Type u_2 inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace ℝ F f : ℝ → F hf : ContDiff ℝ 1 f h'f : HasCompactSupport f x : ℝ I : F →L[ℝ] Completion F := Completion.toComplL f' : ℝ → Completion F := ⇑I ∘ f hf' : ContDiff ℝ 1 f' h'f' : HasCompactSupport f' ⊢ ‖f x‖ₑ ≤ ∫⁻ (y : ℝ) in Iic x, ‖deriv f y‖ₑ
43d9795b86d3ea3e
Rat.finite_rat_abs_sub_lt_one_div_den_sq
Mathlib/NumberTheory/DiophantineApproximation/Basic.lean
theorem finite_rat_abs_sub_lt_one_div_den_sq (ξ : ℚ) : {q : ℚ | |ξ - q| < 1 / (q.den : ℚ) ^ 2}.Finite
ξ : ℚ f : ℚ → ℤ × ℕ := fun q => (q.num, q.den) s : Set ℚ := {q | |ξ - q| < 1 / ↑q.den ^ 2} hinj : Function.Injective f H : f '' s ⊆ ⋃ y ∈ Ioc 0 ξ.den, Icc (⌈ξ * ↑y⌉ - 1) (⌊ξ * ↑y⌋ + 1) ×ˢ {y} ⊢ s.Finite
refine (Finite.subset ?_ H).of_finite_image hinj.injOn
ξ : ℚ f : ℚ → ℤ × ℕ := fun q => (q.num, q.den) s : Set ℚ := {q | |ξ - q| < 1 / ↑q.den ^ 2} hinj : Function.Injective f H : f '' s ⊆ ⋃ y ∈ Ioc 0 ξ.den, Icc (⌈ξ * ↑y⌉ - 1) (⌊ξ * ↑y⌋ + 1) ×ˢ {y} ⊢ (⋃ y ∈ Ioc 0 ξ.den, Icc (⌈ξ * ↑y⌉ - 1) (⌊ξ * ↑y⌋ + 1) ×ˢ {y}).Finite
dc62b04147c652be
Profinite.exists_isClopen_of_cofiltered
Mathlib/Topology/Category/Profinite/CofilteredLimit.lean
theorem exists_isClopen_of_cofiltered {U : Set C.pt} (hC : IsLimit C) (hU : IsClopen U) : ∃ (j : J) (V : Set (F.obj j)), IsClopen V ∧ U = C.π.app j ⁻¹' V
case refine_3.intro.intro.intro.intro.refine_2.h.mpr.intro.intro J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F U : Set ↑C.pt.toTop hC : IsLimit C hU : IsClopen U S : Set (Set ↑(toTopCat.mapCone C).pt) hS : S ⊆ {U | ∃ j, ∃ V ∈ (fun j => {W | IsClopen W}) j, U = ⇑(ConcreteCategory.hom ((toTopCat.mapCone C).π.app j)) ⁻¹' V} h : U = ⋃₀ S j : ↑S → J := fun s => Exists.choose ⋯ V : (s : ↑S) → Set ↑(F.obj (j s)).toTop := fun s => ⋯.choose hV : ∀ (s : ↑S), IsClopen (V s) ∧ ↑s = ⇑(ConcreteCategory.hom (C.π.app (j s))) ⁻¹' V s hUo : ∀ (i : ↑S), IsOpen ((fun s => ⇑(ConcreteCategory.hom (C.π.app (j s))) ⁻¹' V s) i) hsU : U ⊆ ⋃ i, (fun s => ⇑(ConcreteCategory.hom (C.π.app (j s))) ⁻¹' V s) i G : Finset ↑S hG : U ⊆ ⋃ i ∈ G, (fun s => ⇑(ConcreteCategory.hom (C.π.app (j s))) ⁻¹' V s) i j0 : J hj0 : ∀ {X : J}, X ∈ Finset.image j G → Nonempty (j0 ⟶ X) f : (s : ↑S) → s ∈ G → (j0 ⟶ j s) := fun s hs => ⋯.some W : ↑S → Set ↑(F.obj j0).toTop := fun s => if hs : s ∈ G then ⇑(ConcreteCategory.hom (F.map (f s hs))) ⁻¹' V s else Set.univ x : ↑C.pt.toTop s : ↑S hs : s ∈ G hx : x ∈ ⇑(ConcreteCategory.hom (C.π.app j0)) ⁻¹' if h : s ∈ G then ⇑(ConcreteCategory.hom (F.map (f s ⋯))) ⁻¹' V s else Set.univ ⊢ x ∈ ↑s
rw [(hV s).2]
case refine_3.intro.intro.intro.intro.refine_2.h.mpr.intro.intro J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F U : Set ↑C.pt.toTop hC : IsLimit C hU : IsClopen U S : Set (Set ↑(toTopCat.mapCone C).pt) hS : S ⊆ {U | ∃ j, ∃ V ∈ (fun j => {W | IsClopen W}) j, U = ⇑(ConcreteCategory.hom ((toTopCat.mapCone C).π.app j)) ⁻¹' V} h : U = ⋃₀ S j : ↑S → J := fun s => Exists.choose ⋯ V : (s : ↑S) → Set ↑(F.obj (j s)).toTop := fun s => ⋯.choose hV : ∀ (s : ↑S), IsClopen (V s) ∧ ↑s = ⇑(ConcreteCategory.hom (C.π.app (j s))) ⁻¹' V s hUo : ∀ (i : ↑S), IsOpen ((fun s => ⇑(ConcreteCategory.hom (C.π.app (j s))) ⁻¹' V s) i) hsU : U ⊆ ⋃ i, (fun s => ⇑(ConcreteCategory.hom (C.π.app (j s))) ⁻¹' V s) i G : Finset ↑S hG : U ⊆ ⋃ i ∈ G, (fun s => ⇑(ConcreteCategory.hom (C.π.app (j s))) ⁻¹' V s) i j0 : J hj0 : ∀ {X : J}, X ∈ Finset.image j G → Nonempty (j0 ⟶ X) f : (s : ↑S) → s ∈ G → (j0 ⟶ j s) := fun s hs => ⋯.some W : ↑S → Set ↑(F.obj j0).toTop := fun s => if hs : s ∈ G then ⇑(ConcreteCategory.hom (F.map (f s hs))) ⁻¹' V s else Set.univ x : ↑C.pt.toTop s : ↑S hs : s ∈ G hx : x ∈ ⇑(ConcreteCategory.hom (C.π.app j0)) ⁻¹' if h : s ∈ G then ⇑(ConcreteCategory.hom (F.map (f s ⋯))) ⁻¹' V s else Set.univ ⊢ x ∈ ⇑(ConcreteCategory.hom (C.π.app (j s))) ⁻¹' V s
0fb8cdb8a6309b67
Submodule.mem_annihilator_span
Mathlib/RingTheory/Ideal/Maps.lean
theorem mem_annihilator_span (s : Set M) (r : R) : r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0
R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M s : Set M r : R ⊢ (∀ n ∈ span R s, r • n = 0) ↔ ∀ (n : ↑s), r • ↑n = 0
constructor
case mp R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M s : Set M r : R ⊢ (∀ n ∈ span R s, r • n = 0) → ∀ (n : ↑s), r • ↑n = 0 case mpr R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M s : Set M r : R ⊢ (∀ (n : ↑s), r • ↑n = 0) → ∀ n ∈ span R s, r • n = 0
c2ed1bab9d23d491
IsCompact.inf_nhdsSet_eq_biSup
Mathlib/Topology/Compactness/Compact.lean
theorem IsCompact.inf_nhdsSet_eq_biSup {K : Set X} (hK : IsCompact K) (l : Filter X) : l ⊓ (𝓝ˢ K) = ⨆ x ∈ K, l ⊓ 𝓝 x
X : Type u inst✝ : TopologicalSpace X K : Set X hK : IsCompact K l : Filter X ⊢ l ⊓ 𝓝ˢ K = ⨆ x ∈ K, l ⊓ 𝓝 x
simp only [inf_comm l, hK.nhdsSet_inf_eq_biSup]
no goals
ecb4032335740849
Nat.mod_add_div'
Mathlib/Data/Nat/Init.lean
lemma mod_add_div' (a b : ℕ) : a % b + a / b * b = a
a b : ℕ ⊢ a % b + a / b * b = a
rw [Nat.mul_comm]
a b : ℕ ⊢ a % b + b * (a / b) = a
37db04288b7cd338
OrdinalApprox.lfpApprox_add_one
Mathlib/SetTheory/Ordinal/FixedPointApproximants.lean
theorem lfpApprox_add_one (h : x ≤ f x) (a : Ordinal) : lfpApprox f x (a+1) = f (lfpApprox f x a)
case a α : Type u inst✝ : CompleteLattice α f : α →o α x : α h : x ≤ f x a : Ordinal.{u} ⊢ f (lfpApprox f x a) ≤ sSup ({x_1 | ∃ b, ∃ (_ : b < a + 1), f (lfpApprox f x b) = x_1} ∪ {x})
apply le_sSup
case a.a α : Type u inst✝ : CompleteLattice α f : α →o α x : α h : x ≤ f x a : Ordinal.{u} ⊢ f (lfpApprox f x a) ∈ {x_1 | ∃ b, ∃ (_ : b < a + 1), f (lfpApprox f x b) = x_1} ∪ {x}
27ca93c209470fa4
LSeries.mul_delta
Mathlib/NumberTheory/LSeries/Basic.lean
lemma mul_delta {f : ℕ → ℂ} (h : f 1 = 1) : f * δ = δ
f : ℕ → ℂ h : f 1 = 1 ⊢ f * δ = δ
rw [mul_delta_eq_smul_delta, h, one_smul]
no goals
258e3795b76ffed3
MeasureTheory.L2.norm_sq_eq_inner'
Mathlib/MeasureTheory/Function/L2Space.lean
theorem norm_sq_eq_inner' (f : α →₂[μ] E) : ‖f‖ ^ 2 = RCLike.re ⟪f, f⟫
α : Type u_1 E : Type u_2 𝕜 : Type u_4 inst✝³ : RCLike 𝕜 inst✝² : MeasurableSpace α μ : Measure α inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E f : ↥(Lp E 2 μ) h_two : ENNReal.toReal 2 = 2 ⊢ ‖f‖ ^ 2 = RCLike.re (inner f f)
rw [inner_def, integral_inner_eq_sq_eLpNorm, norm_def, ← ENNReal.toReal_pow, RCLike.ofReal_re, ENNReal.toReal_eq_toReal (ENNReal.pow_ne_top (Lp.eLpNorm_ne_top f)) _]
α : Type u_1 E : Type u_2 𝕜 : Type u_4 inst✝³ : RCLike 𝕜 inst✝² : MeasurableSpace α μ : Measure α inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E f : ↥(Lp E 2 μ) h_two : ENNReal.toReal 2 = 2 ⊢ eLpNorm (↑↑f) 2 μ ^ 2 = ∫⁻ (a : α), ↑‖↑↑f a‖₊ ^ 2 ∂μ α : Type u_1 E : Type u_2 𝕜 : Type u_4 inst✝³ : RCLike 𝕜 inst✝² : MeasurableSpace α μ : Measure α inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E f : ↥(Lp E 2 μ) h_two : ENNReal.toReal 2 = 2 ⊢ ∫⁻ (a : α), ↑‖↑↑f a‖₊ ^ 2 ∂μ ≠ ⊤
629fb9c7e3401fd8
AlgebraicGeometry.sourceAffineLocally_respectsIso
Mathlib/AlgebraicGeometry/Morphisms/RingHomProperties.lean
theorem sourceAffineLocally_respectsIso (h₁ : RingHom.RespectsIso P) : (sourceAffineLocally P).toProperty.RespectsIso
case h₁ P : {R S : Type u} → [inst : CommRing R] → [inst_1 : CommRing S] → (R →+* S) → Prop h₁ : RingHom.RespectsIso fun {R S} [CommRing R] [CommRing S] => P X Y Z : Scheme e : X ≅ Y f : Y ⟶ Z inst✝ : IsAffine Z H : sourceAffineLocally (fun {R S} [CommRing R] [CommRing S] => P) f U : ↑X.affineOpens this : IsIso (Scheme.Hom.appLE e.hom (e.hom ''ᵁ ↑U) ↑U ⋯) ⊢ P (CommRingCat.Hom.hom (Scheme.Hom.appLE (e.hom ≫ f) ⊤ ↑U ⋯))
rw [← Scheme.appLE_comp_appLE _ _ ⊤ (e.hom ''ᵁ U) U.1 le_top (e.hom.preimage_image_eq _).ge, CommRingCat.hom_comp, h₁.cancel_right_isIso]
case h₁ P : {R S : Type u} → [inst : CommRing R] → [inst_1 : CommRing S] → (R →+* S) → Prop h₁ : RingHom.RespectsIso fun {R S} [CommRing R] [CommRing S] => P X Y Z : Scheme e : X ≅ Y f : Y ⟶ Z inst✝ : IsAffine Z H : sourceAffineLocally (fun {R S} [CommRing R] [CommRing S] => P) f U : ↑X.affineOpens this : IsIso (Scheme.Hom.appLE e.hom (e.hom ''ᵁ ↑U) ↑U ⋯) ⊢ P (CommRingCat.Hom.hom (Scheme.Hom.appLE f ⊤ (e.hom ''ᵁ ↑U) ⋯))
37a0eb41f0553cd7
Std.DHashMap.Internal.List.distinctKeys_cons_iff
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Internal/List/Associative.lean
theorem distinctKeys_cons_iff [BEq α] [PartialEquivBEq α] {l : List ((a : α) × β a)} {k : α} {v : β k} : DistinctKeys (⟨k, v⟩ :: l) ↔ DistinctKeys l ∧ (containsKey k l) = false
case refine_1 α : Type u β : α → Type v inst✝¹ : BEq α inst✝ : PartialEquivBEq α l : List ((a : α) × β a) k : α v : β k x✝ : DistinctKeys (⟨k, v⟩ :: l) h : List.Pairwise (fun a b => (a == b) = false) (keys (⟨k, v⟩ :: l)) ⊢ DistinctKeys l ∧ containsKey k l = false
rw [keys_cons, pairwise_cons] at h
case refine_1 α : Type u β : α → Type v inst✝¹ : BEq α inst✝ : PartialEquivBEq α l : List ((a : α) × β a) k : α v : β k x✝ : DistinctKeys (⟨k, v⟩ :: l) h : (∀ (a' : α), a' ∈ keys l → (k == a') = false) ∧ List.Pairwise (fun a b => (a == b) = false) (keys l) ⊢ DistinctKeys l ∧ containsKey k l = false
62b2d49d16d3b84a
AlgebraicGeometry.Scheme.OpenCover.ext_elem
Mathlib/AlgebraicGeometry/Cover/Open.lean
/-- If two global sections agree after restriction to each member of an open cover, then they agree globally. -/ lemma OpenCover.ext_elem {X : Scheme.{u}} {U : X.Opens} (f g : Γ(X, U)) (𝒰 : X.OpenCover) (h : ∀ i : 𝒰.J, (𝒰.map i).app U f = (𝒰.map i).app U g) : f = g
case h X : Scheme U : X.Opens f g : ↑Γ(X, U) 𝒰 : X.OpenCover x : ↑↑X.toPresheafedSpace h : (ConcreteCategory.hom (X.presheaf.map (homOfLE ⋯).op ≫ (IsOpenImmersion.ΓIso (𝒰.map (𝒰.f x)) U).inv)) f = (ConcreteCategory.hom (X.presheaf.map (homOfLE ⋯).op ≫ (IsOpenImmersion.ΓIso (𝒰.map (𝒰.f x)) U).inv)) g ⊢ (ConcreteCategory.hom (X.sheaf.val.map (homOfLE ⋯).op)) f = (ConcreteCategory.hom (X.sheaf.val.map (homOfLE ⋯).op)) g
exact (IsOpenImmersion.ΓIso (𝒰.map (𝒰.f x)) U).commRingCatIsoToRingEquiv.symm.injective h
no goals
dba4a0de0786d781
Polynomial.exists_partition_polynomial_aux
Mathlib/NumberTheory/ClassNumber/AdmissibleCardPowDegree.lean
theorem exists_partition_polynomial_aux (n : ℕ) {ε : ℝ} (hε : 0 < ε) {b : Fq[X]} (hb : b ≠ 0) (A : Fin n → Fq[X]) : ∃ t : Fin n → Fin (Fintype.card Fq ^ ⌈-log ε / log (Fintype.card Fq)⌉₊), ∀ i₀ i₁ : Fin n, t i₀ = t i₁ ↔ (cardPowDegree (A i₁ % b - A i₀ % b) : ℝ) < cardPowDegree b • ε
Fq : Type u_1 inst✝¹ : Fintype Fq inst✝ : Field Fq n : ℕ ε : ℝ hε : 0 < ε b : Fq[X] hb : b ≠ 0 A : Fin n → Fq[X] ⊢ 0 < ↑(cardPowDegree b) * ε
exact mul_pos (Int.cast_pos.mpr (AbsoluteValue.pos _ hb)) hε
no goals
d529c9a5494d9218
CategoryTheory.Monoidal.Reflective.isIso_tfae
Mathlib/CategoryTheory/Monoidal/Braided/Reflection.lean
theorem isIso_tfae : List.TFAE [ ∀ (c : C) (d : D), IsIso (adj.unit.app ((ihom d).obj (R.obj c))) , ∀ (c : C) (d : D), IsIso ((pre (adj.unit.app d)).app (R.obj c)) , ∀ (d d' : D), IsIso (L.map ((adj.unit.app d) ▷ d')) , ∀ (d d' : D), IsIso (L.map ((adj.unit.app d) ⊗ (adj.unit.app d')))]
C : Type u_1 D : Type u_2 inst✝⁶ : Category.{u_4, u_1} C inst✝⁵ : Category.{u_3, u_2} D inst✝⁴ : MonoidalCategory D inst✝³ : SymmetricCategory D inst✝² : MonoidalClosed D R : C ⥤ D inst✝¹ : R.Faithful inst✝ : R.Full L : D ⥤ C adj : L ⊣ R tfae_3_to_4 : (∀ (d d' : D), IsIso (L.map (adj.unit.app d ▷ d'))) → ∀ (d d' : D), IsIso (L.map (adj.unit.app d ⊗ adj.unit.app d')) tfae_4_to_1 : (∀ (d d' : D), IsIso (L.map (adj.unit.app d ⊗ adj.unit.app d'))) → ∀ (c : C) (d : D), IsIso (adj.unit.app ((ihom d).obj (R.obj c))) h : ∀ (c : C) (d : D), IsIso (adj.unit.app ((ihom d).obj (R.obj c))) d d' : D c : C w₁ : (coyoneda.map (L.map (adj.unit.app d ▷ d')).op).app c = ⇑(adj.homEquiv (Opposite.unop (Opposite.op ((𝟭 D).obj d ⊗ d'))) c).symm ∘ (coyoneda.map (adj.unit.app d ▷ d').op).app (R.obj c) ∘ ⇑(adj.homEquiv (Opposite.unop (Opposite.op ((L ⋙ R).obj d ⊗ d'))) c) w₂ : (coyoneda.map (adj.unit.app d ▷ d').op).app (R.obj c) = ((yoneda.obj (R.obj c)).mapIso (β_ (Opposite.op d') (Opposite.op ((𝟭 D).toPrefunctor.1 d)))).hom ∘ (coyoneda.map (d' ◁ adj.unit.app d).op).app (R.obj c) ∘ ((yoneda.obj (R.obj c)).mapIso (β_ (Opposite.op ((L ⋙ R).toPrefunctor.1 d)) (Opposite.op d'))).hom w₃ : (coyoneda.map (d' ◁ adj.unit.app d).op).app (R.obj c) = ⇑((ihom.adjunction d').homEquiv (Opposite.unop (Opposite.op ((𝟭 D).obj d))) (R.obj c)).symm ∘ (coyoneda.map (adj.unit.app d).op).app ((ihom d').obj (R.obj c)) ∘ ⇑((ihom.adjunction d').homEquiv (Opposite.unop (Opposite.op ((L ⋙ R).obj d))) (R.obj c)) w₄ : (coyoneda.map (adj.unit.app d).op).app ((ihom d').obj (R.obj c)) ≫ (coyoneda.obj (Opposite.op d)).map (adj.unit.app ((ihom d').obj (R.obj c))) = (coyoneda.obj (Opposite.op ((L ⋙ R).obj d))).map (adj.unit.app ((ihom d').obj (R.obj c))) ≫ (coyoneda.map (adj.unit.app d).op).app ((L ⋙ R).obj ((ihom d').obj (R.obj c))) ⊢ IsIso ((coyoneda.map (adj.unit.app d).op).app ((ihom d').obj (R.obj c)) ≫ (coyoneda.obj (Opposite.op d)).map (adj.unit.app ((ihom d').obj (R.obj c))))
rw [w₄]
C : Type u_1 D : Type u_2 inst✝⁶ : Category.{u_4, u_1} C inst✝⁵ : Category.{u_3, u_2} D inst✝⁴ : MonoidalCategory D inst✝³ : SymmetricCategory D inst✝² : MonoidalClosed D R : C ⥤ D inst✝¹ : R.Faithful inst✝ : R.Full L : D ⥤ C adj : L ⊣ R tfae_3_to_4 : (∀ (d d' : D), IsIso (L.map (adj.unit.app d ▷ d'))) → ∀ (d d' : D), IsIso (L.map (adj.unit.app d ⊗ adj.unit.app d')) tfae_4_to_1 : (∀ (d d' : D), IsIso (L.map (adj.unit.app d ⊗ adj.unit.app d'))) → ∀ (c : C) (d : D), IsIso (adj.unit.app ((ihom d).obj (R.obj c))) h : ∀ (c : C) (d : D), IsIso (adj.unit.app ((ihom d).obj (R.obj c))) d d' : D c : C w₁ : (coyoneda.map (L.map (adj.unit.app d ▷ d')).op).app c = ⇑(adj.homEquiv (Opposite.unop (Opposite.op ((𝟭 D).obj d ⊗ d'))) c).symm ∘ (coyoneda.map (adj.unit.app d ▷ d').op).app (R.obj c) ∘ ⇑(adj.homEquiv (Opposite.unop (Opposite.op ((L ⋙ R).obj d ⊗ d'))) c) w₂ : (coyoneda.map (adj.unit.app d ▷ d').op).app (R.obj c) = ((yoneda.obj (R.obj c)).mapIso (β_ (Opposite.op d') (Opposite.op ((𝟭 D).toPrefunctor.1 d)))).hom ∘ (coyoneda.map (d' ◁ adj.unit.app d).op).app (R.obj c) ∘ ((yoneda.obj (R.obj c)).mapIso (β_ (Opposite.op ((L ⋙ R).toPrefunctor.1 d)) (Opposite.op d'))).hom w₃ : (coyoneda.map (d' ◁ adj.unit.app d).op).app (R.obj c) = ⇑((ihom.adjunction d').homEquiv (Opposite.unop (Opposite.op ((𝟭 D).obj d))) (R.obj c)).symm ∘ (coyoneda.map (adj.unit.app d).op).app ((ihom d').obj (R.obj c)) ∘ ⇑((ihom.adjunction d').homEquiv (Opposite.unop (Opposite.op ((L ⋙ R).obj d))) (R.obj c)) w₄ : (coyoneda.map (adj.unit.app d).op).app ((ihom d').obj (R.obj c)) ≫ (coyoneda.obj (Opposite.op d)).map (adj.unit.app ((ihom d').obj (R.obj c))) = (coyoneda.obj (Opposite.op ((L ⋙ R).obj d))).map (adj.unit.app ((ihom d').obj (R.obj c))) ≫ (coyoneda.map (adj.unit.app d).op).app ((L ⋙ R).obj ((ihom d').obj (R.obj c))) ⊢ IsIso ((coyoneda.obj (Opposite.op ((L ⋙ R).obj d))).map (adj.unit.app ((ihom d').obj (R.obj c))) ≫ (coyoneda.map (adj.unit.app d).op).app ((L ⋙ R).obj ((ihom d').obj (R.obj c))))
8ccd82e9c49cc7ac
TopCat.GlueData.eqvGen_of_π_eq
Mathlib/Topology/Gluing.lean
theorem eqvGen_of_π_eq -- Porting note: was `{x y : ∐ D.U} (h : 𝖣.π x = 𝖣.π y)` {x y : sigmaObj (β := D.toGlueData.J) (C := TopCat) D.toGlueData.U} (h : 𝖣.π x = 𝖣.π y) : Relation.EqvGen (Function.Coequalizer.Rel 𝖣.diagram.fstSigmaMap 𝖣.diagram.sndSigmaMap) x y
D : GlueData x y : ↑(∐ D.U) h : (ConcreteCategory.hom (coequalizer.π D.diagram.fstSigmaMap D.diagram.sndSigmaMap ≫ (Multicoequalizer.isoCoequalizer D.diagram).inv)) x = (ConcreteCategory.hom (coequalizer.π D.diagram.fstSigmaMap D.diagram.sndSigmaMap ≫ (Multicoequalizer.isoCoequalizer D.diagram).inv)) y ⊢ Relation.EqvGen (Function.Coequalizer.Rel ⇑(ConcreteCategory.hom D.diagram.fstSigmaMap) ⇑(ConcreteCategory.hom D.diagram.sndSigmaMap)) x y
replace h : coequalizer.π D.diagram.fstSigmaMap D.diagram.sndSigmaMap x = coequalizer.π D.diagram.fstSigmaMap D.diagram.sndSigmaMap y := (TopCat.mono_iff_injective (Multicoequalizer.isoCoequalizer 𝖣.diagram).inv).mp inferInstance h
D : GlueData x y : ↑(∐ D.U) h : (ConcreteCategory.hom (coequalizer.π D.diagram.fstSigmaMap D.diagram.sndSigmaMap)) x = (ConcreteCategory.hom (coequalizer.π D.diagram.fstSigmaMap D.diagram.sndSigmaMap)) y ⊢ Relation.EqvGen (Function.Coequalizer.Rel ⇑(ConcreteCategory.hom D.diagram.fstSigmaMap) ⇑(ConcreteCategory.hom D.diagram.sndSigmaMap)) x y
387fc6985553187a
Substring.ValidFor.dropWhile
Mathlib/.lake/packages/batteries/Batteries/Data/String/Lemmas.lean
theorem dropWhile (p : Char → Bool) : ∀ {s}, ValidFor l m r s → ValidFor (l ++ m.takeWhile p) (m.dropWhile p) r (s.dropWhile p) | _, ⟨⟩ => by simp only [Substring.dropWhile, takeWhileAux_of_valid] apply ValidFor.of_eq <;> simp rw [Nat.add_assoc, ← utf8Len_append (m.takeWhile p), List.takeWhile_append_dropWhile]
l m r : List Char p : Char → Bool ⊢ ValidFor (l ++ List.takeWhile p m) (List.dropWhile p m) r { str := { data := l ++ m ++ r }, startPos := { byteIdx := utf8Len l + utf8Len (List.takeWhile p m) }, stopPos := { byteIdx := utf8Len l + utf8Len m } }
apply ValidFor.of_eq <;> simp
case a l m r : List Char p : Char → Bool ⊢ utf8Len l + utf8Len m = utf8Len l + utf8Len (List.takeWhile p m) + utf8Len (List.dropWhile p m)
326f60c986ce8ca4
isNilpotent_of_pos_nilpotencyClass
Mathlib/RingTheory/Nilpotent/Defs.lean
lemma isNilpotent_of_pos_nilpotencyClass (hx : 0 < nilpotencyClass x) : IsNilpotent x
R : Type u_1 x : R inst✝¹ : Zero R inst✝ : Pow R ℕ hx : 0 < nilpotencyClass x s : Set ℕ := {k | x ^ k = 0} ⊢ IsNilpotent x
change s.Nonempty
R : Type u_1 x : R inst✝¹ : Zero R inst✝ : Pow R ℕ hx : 0 < nilpotencyClass x s : Set ℕ := {k | x ^ k = 0} ⊢ s.Nonempty
47bfbe3b27fe953d
pow_add_pow_le
Mathlib/Algebra/Order/Ring/Basic.lean
theorem pow_add_pow_le (hx : 0 ≤ x) (hy : 0 ≤ y) (hn : n ≠ 0) : x ^ n + y ^ n ≤ (x + y) ^ n
case intro.succ R : Type u_3 inst✝ : OrderedSemiring R x y : R hx : 0 ≤ x hy : 0 ≤ y k : ℕ ih : k + 1 ≠ 0 → x ^ (k + 1) + y ^ (k + 1) ≤ (x + y) ^ (k + 1) hn : k + 1 + 1 ≠ 0 n : ℕ := k.succ h1 : 0 ≤ x * y ^ n + y * x ^ n ⊢ x ^ (k + 1 + 1) + y ^ (k + 1 + 1) ≤ (x + y) ^ (k + 1 + 1)
have h2 := add_nonneg hx hy
case intro.succ R : Type u_3 inst✝ : OrderedSemiring R x y : R hx : 0 ≤ x hy : 0 ≤ y k : ℕ ih : k + 1 ≠ 0 → x ^ (k + 1) + y ^ (k + 1) ≤ (x + y) ^ (k + 1) hn : k + 1 + 1 ≠ 0 n : ℕ := k.succ h1 : 0 ≤ x * y ^ n + y * x ^ n h2 : 0 ≤ x + y ⊢ x ^ (k + 1 + 1) + y ^ (k + 1 + 1) ≤ (x + y) ^ (k + 1 + 1)
1b4313a1aa17f256
Ideal.FinrankQuotientMap.span_eq_top
Mathlib/NumberTheory/RamificationInertia/Basic.lean
theorem FinrankQuotientMap.span_eq_top [IsDomain R] [IsDomain S] [Algebra K L] [Module.Finite R S] [Algebra R L] [IsScalarTower R S L] [IsScalarTower R K L] [Algebra.IsAlgebraic R S] [NoZeroSMulDivisors R K] (hp : p ≠ ⊤) (b : Set S) (hb' : Submodule.span R b ⊔ (p.map (algebraMap R S)).restrictScalars R = ⊤) : Submodule.span K (algebraMap S L '' b) = ⊤
R : Type u inst✝¹⁶ : CommRing R S : Type v inst✝¹⁵ : CommRing S p : Ideal R inst✝¹⁴ : Algebra R S K : Type u_1 inst✝¹³ : Field K inst✝¹² : Algebra R K L : Type u_2 inst✝¹¹ : Field L inst✝¹⁰ : Algebra S L inst✝⁹ : IsFractionRing S L inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : Module.Finite R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : Algebra.IsAlgebraic R S inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ⇑(algebraMap R L) M : Submodule R S := Submodule.span R b n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i A : Matrix (Fin n) (Fin n) R := Matrix.of A' - 1 B : Matrix (Fin n) (Fin n) R := A.adjugate A_smul : ∀ (i : Fin n), ∑ j : Fin n, A i j • a j = 0 d_smul : ∀ (i : Fin n), A.det • a i = 0 span_d : Submodule.restrictScalars R (Submodule.span S {(algebraMap R S) A.det}) ≤ M this : Nontrivial (R ⧸ p) ⊢ (Quotient.mk p) A.det = ((Quotient.mk p).mapMatrix A).det
rw [RingHom.map_det]
no goals
53ab591d29bce2fe
Batteries.HashMap.Imp.expand_size
Mathlib/.lake/packages/batteries/Batteries/Data/HashMap/WF.lean
theorem expand_size [Hashable α] {buckets : Buckets α β} : (expand sz buckets).buckets.size = buckets.size
case b α : Type u_1 β : Type u_2 sz : Nat inst✝ : Hashable α buckets : Buckets α β i : Nat source : Array (AssocList α β) target : Buckets α β hs : ∀ (j : Nat), j < i → source.toList[j]?.getD AssocList.nil = AssocList.nil H : i < source.size ⊢ (List.map (fun x => x.toList.length) (source.set i AssocList.nil H).toList).sum + (AssocList.foldl reinsertAux target source[i]).size = (List.map (fun x => x.toList.length) source.toList).sum + target.size
case b => simp only [Array.length_toList, Array.toList_set, Array.get_eq_getElem, AssocList.foldl_eq] refine have ⟨l₁, l₂, h₁, _, eq⟩ := List.exists_of_set H; eq ▸ ?_ rw [h₁] simp only [Buckets.size_eq, List.map_append, List.map_cons, AssocList.toList, List.length_nil, Nat.sum_append, List.sum_cons, Nat.zero_add, Array.length_toList] rw [Nat.add_assoc, Nat.add_assoc, Nat.add_assoc]; congr 1 (conv => rhs; rw [Nat.add_left_comm]); congr 1 rw [Array.getElem_toList] have := @reinsertAux_size α β _; simp [Buckets.size] at this induction source[i].toList generalizing target <;> simp [*, Nat.succ_add]; rfl
no goals
5e56d234c0d941c0
singleton_mem_nhdsWithin_of_mem_discrete
Mathlib/Topology/Separation/Basic.lean
theorem singleton_mem_nhdsWithin_of_mem_discrete {s : Set X} [DiscreteTopology s] {x : X} (hx : x ∈ s) : {x} ∈ 𝓝[s] x
X : Type u_1 inst✝¹ : TopologicalSpace X s : Set X inst✝ : DiscreteTopology ↑s x : X hx : x ∈ s this : {⟨x, hx⟩} ∈ 𝓝 ⟨x, hx⟩ ⊢ {x} ∈ 𝓝[s] x
simpa only [nhdsWithin_eq_map_subtype_coe hx, image_singleton] using @image_mem_map _ _ _ ((↑) : s → X) _ this
no goals
235f75a071720217
transcendental_aeval_iff
Mathlib/RingTheory/Algebraic/Integral.lean
theorem transcendental_aeval_iff {r : A} {f : K[X]} : Transcendental K (Polynomial.aeval r f) ↔ Transcendental K r ∧ Transcendental K f
K : Type u_1 A : Type u_4 inst✝² : Field K inst✝¹ : Ring A inst✝ : Algebra K A r : A f : K[X] h : IsIntegral K r ⊢ IsIntegral K ((aeval r) f)
exact .of_mem_of_fg _ h.fg_adjoin_singleton _ (aeval_mem_adjoin_singleton _ _)
no goals
71dfaf2de2b26676
PythagoreanTriple.coprime_classification'
Mathlib/NumberTheory/PythagoreanTriples.lean
theorem coprime_classification' {x y z : ℤ} (h : PythagoreanTriple x y z) (h_coprime : Int.gcd x y = 1) (h_parity : x % 2 = 1) (h_pos : 0 < z) : ∃ m n, x = m ^ 2 - n ^ 2 ∧ y = 2 * m * n ∧ z = m ^ 2 + n ^ 2 ∧ Int.gcd m n = 1 ∧ (m % 2 = 0 ∧ n % 2 = 1 ∨ m % 2 = 1 ∧ n % 2 = 0) ∧ 0 ≤ m
case h.inl.right.inr x y z : ℤ h : PythagoreanTriple x y z h_coprime : x.gcd y = 1 h_parity : x % 2 = 1 h_pos : 0 < z m n : ℤ ht3 : m.gcd n = 1 ht4 : m % 2 = 0 ∧ n % 2 = 1 ∨ m % 2 = 1 ∧ n % 2 = 0 hm : m < 0 h_odd : x = m ^ 2 - n ^ 2 ∧ y = 2 * m * n h_neg : z = -(m ^ 2 + n ^ 2) ⊢ False
revert h_pos
case h.inl.right.inr x y z : ℤ h : PythagoreanTriple x y z h_coprime : x.gcd y = 1 h_parity : x % 2 = 1 m n : ℤ ht3 : m.gcd n = 1 ht4 : m % 2 = 0 ∧ n % 2 = 1 ∨ m % 2 = 1 ∧ n % 2 = 0 hm : m < 0 h_odd : x = m ^ 2 - n ^ 2 ∧ y = 2 * m * n h_neg : z = -(m ^ 2 + n ^ 2) ⊢ 0 < z → False
36cd8cbffd99f6d1
essSup_comp_quotientGroup_mk
Mathlib/MeasureTheory/Measure/Haar/Quotient.lean
/-- The `essSup` of a function `g` on the quotient space `G ⧸ Γ` with respect to the pushforward of the restriction, `μ_𝓕`, of a right-invariant measure `μ` to a fundamental domain `𝓕`, is the same as the `essSup` of `g`'s lift to the universal cover `G` with respect to `μ`. -/ @[to_additive "The `essSup` of a function `g` on the additive quotient space `G ⧸ Γ` with respect to the pushforward of the restriction, `μ_𝓕`, of a right-invariant measure `μ` to a fundamental domain `𝓕`, is the same as the `essSup` of `g`'s lift to the universal cover `G` with respect to `μ`."] lemma essSup_comp_quotientGroup_mk [μ.IsMulRightInvariant] {g : G ⧸ Γ → ℝ≥0∞} (g_ae_measurable : AEMeasurable g μ_𝓕) : essSup g μ_𝓕 = essSup (fun (x : G) ↦ g x) μ
G : Type u_1 inst✝⁸ : Group G inst✝⁷ : MeasurableSpace G inst✝⁶ : TopologicalSpace G inst✝⁵ : IsTopologicalGroup G inst✝⁴ : BorelSpace G μ : Measure G Γ : Subgroup G 𝓕 : Set G h𝓕 : IsFundamentalDomain (↥Γ.op) 𝓕 μ inst✝³ : Countable ↥Γ inst✝² : MeasurableSpace (G ⧸ Γ) inst✝¹ : BorelSpace (G ⧸ Γ) inst✝ : μ.IsMulRightInvariant g : G ⧸ Γ → ℝ≥0∞ g_ae_measurable : AEMeasurable g (map QuotientGroup.mk (μ.restrict 𝓕)) ⊢ essSup g (map QuotientGroup.mk (μ.restrict 𝓕)) = essSup (fun x => g ↑x) μ
have hπ : Measurable (QuotientGroup.mk : G → G ⧸ Γ) := continuous_quotient_mk'.measurable
G : Type u_1 inst✝⁸ : Group G inst✝⁷ : MeasurableSpace G inst✝⁶ : TopologicalSpace G inst✝⁵ : IsTopologicalGroup G inst✝⁴ : BorelSpace G μ : Measure G Γ : Subgroup G 𝓕 : Set G h𝓕 : IsFundamentalDomain (↥Γ.op) 𝓕 μ inst✝³ : Countable ↥Γ inst✝² : MeasurableSpace (G ⧸ Γ) inst✝¹ : BorelSpace (G ⧸ Γ) inst✝ : μ.IsMulRightInvariant g : G ⧸ Γ → ℝ≥0∞ g_ae_measurable : AEMeasurable g (map QuotientGroup.mk (μ.restrict 𝓕)) hπ : Measurable QuotientGroup.mk ⊢ essSup g (map QuotientGroup.mk (μ.restrict 𝓕)) = essSup (fun x => g ↑x) μ
88454486251e53cb
fourierCoeffOn_of_hasDeriv_right
Mathlib/Analysis/Fourier/AddCircle.lean
theorem fourierCoeffOn_of_hasDeriv_right {a b : ℝ} (hab : a < b) {f f' : ℝ → ℂ} {n : ℤ} (hn : n ≠ 0) (hf : ContinuousOn f [[a, b]]) (hff' : ∀ x, x ∈ Ioo (min a b) (max a b) → HasDerivWithinAt f (f' x) (Ioi x) x) (hf' : IntervalIntegrable f' volume a b) : fourierCoeffOn hab f n = 1 / (-2 * π * I * n) * (fourier (-n) (a : AddCircle (b - a)) * (f b - f a) - (b - a) * fourierCoeffOn hab f' n)
a b : ℝ hab : a < b f f' : ℝ → ℂ n : ℤ hn : n ≠ 0 hf : ContinuousOn f [[a, b]] hff' : ∀ x ∈ Ioo (a ⊓ b) (a ⊔ b), HasDerivWithinAt f (f' x) (Ioi x) x hf' : IntervalIntegrable f' volume a b hT : Fact (0 < b - a) this : ∀ (u v w : ℂ), u * (↑(b - a) / v * w) = ↑(b - a) / v * (u * w) ⊢ ↑(b - a) / (-2 * ↑π * I * ↑n) = ↑(b - a) * (1 / (-2 * ↑π * I * ↑n))
ring
no goals
0be290c2ece914fe
CochainComplex.HomComplex.δ_neg_one_cochain
Mathlib/Algebra/Homology/HomotopyCategory/HomComplex.lean
lemma δ_neg_one_cochain (z : Cochain F G (-1)) : δ (-1) 0 z = Cochain.ofHom (Homotopy.nullHomotopicMap' (fun i j hij => z.v i j (by dsimp at hij; rw [← hij, add_neg_cancel_right])))
case h C : Type u inst✝¹ : Category.{v, u} C inst✝ : Preadditive C F G : CochainComplex C ℤ z : Cochain F G (-1) p : ℤ ⊢ (δ (-1) 0 z).v p p ⋯ = (Cochain.ofHom (Homotopy.nullHomotopicMap' fun i j hij => z.v i j ⋯)).v p p ⋯
rw [δ_v (-1) 0 (neg_add_cancel 1) _ p p (add_zero p) (p-1) (p+1) rfl rfl]
case h C : Type u inst✝¹ : Category.{v, u} C inst✝ : Preadditive C F G : CochainComplex C ℤ z : Cochain F G (-1) p : ℤ ⊢ z.v p (p - 1) ⋯ ≫ G.d (p - 1) p + Int.negOnePow 0 • F.d p (p + 1) ≫ z.v (p + 1) p ⋯ = (Cochain.ofHom (Homotopy.nullHomotopicMap' fun i j hij => z.v i j ⋯)).v p p ⋯
f568289a63d09e4d
WeierstrassCurve.b₄_of_isCharTwoJEqZeroNF
Mathlib/AlgebraicGeometry/EllipticCurve/NormalForms.lean
theorem b₄_of_isCharTwoJEqZeroNF : W.b₄ = 2 * W.a₄
R : Type u_1 inst✝¹ : CommRing R W : WeierstrassCurve R inst✝ : W.IsCharTwoJEqZeroNF ⊢ 2 * W.a₄ + 0 * W.a₃ = 2 * W.a₄
ring1
no goals
8570716c4ac7b64b
Complex.norm_log_one_add_half_le_self
Mathlib/Analysis/SpecialFunctions/Complex/LogBounds.lean
/-- For `‖z‖ ≤ 1/2`, the complex logarithm is bounded by `(3/2) * ‖z‖`. -/ lemma norm_log_one_add_half_le_self {z : ℂ} (hz : ‖z‖ ≤ 1/2) : ‖(log (1 + z))‖ ≤ (3/2) * ‖z‖
case hab.h₁ z : ℂ hz : ‖z‖ ≤ 1 / 2 hz3 : (1 - ‖z‖)⁻¹ ≤ 2 ⊢ ‖z‖ * ‖z‖ ≤ ‖z‖ * (1 / 2)
apply mul_le_mul (by simp only [mul_one, le_refl]) (by simpa only [one_div] using hz) (norm_nonneg z) (by simp only [mul_one, norm_nonneg])
no goals
f3a688a3bed721f7
EReal.left_distrib_of_nonneg
Mathlib/Data/Real/EReal.lean
lemma left_distrib_of_nonneg {a b c : EReal} (ha : 0 ≤ a) (hb : 0 ≤ b) : c * (a + b) = c * a + c * b
a b c : EReal ha : 0 ≤ a hb : 0 ≤ b ⊢ (a + b) * c = a * c + b * c
exact right_distrib_of_nonneg ha hb
no goals
bba678c65cf093fc
Convex.helly_theorem'
Mathlib/Analysis/Convex/Radon.lean
theorem helly_theorem' {F : ι → Set E} {s : Finset ι} (h_convex : ∀ i ∈ s, Convex 𝕜 (F i)) (h_inter : ∀ I ⊆ s, #I ≤ finrank 𝕜 E + 1 → (⋂ i ∈ I, F i).Nonempty) : (⋂ i ∈ s, F i).Nonempty
case h.h 𝕜 : Type u_2 E : Type u_3 inst✝³ : LinearOrderedField 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : FiniteDimensional 𝕜 E n k : ℕ h_card : finrank 𝕜 E + 1 ≤ k hk : ∀ {ι : Type u_1} {F : ι → Set E} {s : Finset ι}, (∀ i ∈ s, Convex 𝕜 (F i)) → (∀ I ⊆ s, #I ≤ finrank 𝕜 E + 1 → (⋂ i ∈ I, F i).Nonempty) → #s = k → (⋂ i ∈ s, F i).Nonempty ι : Type u_1 F : ι → Set E s : Finset ι h_convex : ∀ i ∈ s, Convex 𝕜 (F i) h_inter : ∀ I ⊆ s, #I ≤ finrank 𝕜 E + 1 → (⋂ i ∈ I, F i).Nonempty hn : #s = k + 1 a : { x // x ∈ s } → E := fun i => ⋯.some h_ind : ¬AffineIndependent 𝕜 a I : Set { x // x ∈ s } p : E hp_I : p ∈ (convexHull 𝕜) (a '' I) hp_Ic : p ∈ (convexHull 𝕜) (a '' Iᶜ) i✝ : ι hi : i✝ ∈ Membership.mem s.val i : { x // x ∈ s } := ⟨i✝, hi⟩ ⊢ ∀ (J : Set { x // x ∈ s }), i ∈ J → (convexHull 𝕜) (a '' Jᶜ) ⊆ F ↑i
intro J hi
case h.h 𝕜 : Type u_2 E : Type u_3 inst✝³ : LinearOrderedField 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : FiniteDimensional 𝕜 E n k : ℕ h_card : finrank 𝕜 E + 1 ≤ k hk : ∀ {ι : Type u_1} {F : ι → Set E} {s : Finset ι}, (∀ i ∈ s, Convex 𝕜 (F i)) → (∀ I ⊆ s, #I ≤ finrank 𝕜 E + 1 → (⋂ i ∈ I, F i).Nonempty) → #s = k → (⋂ i ∈ s, F i).Nonempty ι : Type u_1 F : ι → Set E s : Finset ι h_convex : ∀ i ∈ s, Convex 𝕜 (F i) h_inter : ∀ I ⊆ s, #I ≤ finrank 𝕜 E + 1 → (⋂ i ∈ I, F i).Nonempty hn : #s = k + 1 a : { x // x ∈ s } → E := fun i => ⋯.some h_ind : ¬AffineIndependent 𝕜 a I : Set { x // x ∈ s } p : E hp_I : p ∈ (convexHull 𝕜) (a '' I) hp_Ic : p ∈ (convexHull 𝕜) (a '' Iᶜ) i✝ : ι hi✝ : i✝ ∈ Membership.mem s.val i : { x // x ∈ s } := ⟨i✝, hi✝⟩ J : Set { x // x ∈ s } hi : i ∈ J ⊢ (convexHull 𝕜) (a '' Jᶜ) ⊆ F ↑i
d589b7c5c4686ede
CStarAlgebra.directedOn_nonneg_ball
Mathlib/Analysis/CStarAlgebra/ApproximateUnit.lean
lemma CStarAlgebra.directedOn_nonneg_ball : DirectedOn (· ≤ ·) ({x : A | 0 ≤ x} ∩ Metric.ball 0 1)
case intro.intro.refine_1 A : Type u_1 inst✝² : NonUnitalCStarAlgebra A inst✝¹ : PartialOrder A inst✝ : StarOrderedRing A f : ℝ≥0 → ℝ≥0 := fun x => 1 - (1 + x)⁻¹ g : ℝ≥0 → ℝ≥0 := fun x => x * (1 - x)⁻¹ this : ∀ (a b : A), 0 ≤ a → 0 ≤ b → ‖a‖ < 1 → ‖b‖ < 1 → a ≤ cfcₙ f (cfcₙ g a + cfcₙ g b) a : A ha₁ : 0 ≤ a b : A hb₁ : 0 ≤ b ha₂ : ‖a‖ < 1 hb₂ : ‖b‖ < 1 ⊢ cfcₙ f (cfcₙ g a + cfcₙ g b) ∈ Metric.ball 0 1
simpa only [Metric.mem_ball, dist_zero_right] using norm_cfcₙ_one_sub_one_add_inv_lt_one _
no goals
dd87a5ac42b34be2
ProbabilityTheory.Kernel.setIntegral_density_of_measurableSet
Mathlib/Probability/Kernel/Disintegration/Density.lean
/-- Auxiliary lemma for `setIntegral_density`. -/ lemma setIntegral_density_of_measurableSet (hκν : fst κ ≤ ν) [IsFiniteKernel ν] (n : ℕ) (a : α) {s : Set β} (hs : MeasurableSet s) {A : Set γ} (hA : MeasurableSet[countableFiltration γ n] A) : ∫ x in A, density κ ν a x s ∂(ν a) = (κ a (A ×ˢ s)).toReal
α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝¹ : CountablyGenerated γ κ : Kernel α (γ × β) ν : Kernel α γ hκν : κ.fst ≤ ν inst✝ : IsFiniteKernel ν n : ℕ a : α s : Set β hs : MeasurableSet s A : Set γ hA : MeasurableSet A h : Tendsto (fun i => ∫ (x : γ) in A, κ.densityProcess ν i a x s ∂ν a) atTop (𝓝 (∫ (x : γ) in A, κ.density ν a x s ∂ν a)) ⊢ ∫ (x : γ) in A, κ.density ν a x s ∂ν a = limsup (fun i => ∫ (x : γ) in A, κ.densityProcess ν i a x s ∂ν a) atTop
rw [h.limsup_eq]
no goals
973b1e917f8f26ce
SemilatticeInf.ext
Mathlib/Order/Lattice.lean
theorem SemilatticeInf.ext {α} {A B : SemilatticeInf α} (H : ∀ x y : α, (haveI := A; x ≤ y) ↔ x ≤ y) : A = B
case mk.mk.refl.e_inf.h.h α : Type u_1 toPartialOrder✝ : PartialOrder α inf✝¹ : α → α → α inf_le_left✝¹ : ∀ (a b : α), inf✝¹ a b ≤ a inf_le_right✝¹ : ∀ (a b : α), inf✝¹ a b ≤ b le_inf✝¹ : ∀ (a b c : α), a ≤ b → a ≤ c → a ≤ inf✝¹ b c inf✝ : α → α → α inf_le_left✝ : ∀ (a b : α), inf✝ a b ≤ a inf_le_right✝ : ∀ (a b : α), inf✝ a b ≤ b le_inf✝ : ∀ (a b c : α), a ≤ b → a ≤ c → a ≤ inf✝ b c H : ∀ (x y : α), x ≤ y ↔ x ≤ y x✝¹ x✝ : α ⊢ inf✝¹ x✝¹ x✝ = inf✝ x✝¹ x✝
apply SemilatticeInf.ext_inf H
no goals
e11959820adb9936
isClosed_of_spaced_out
Mathlib/Topology/UniformSpace/Separation.lean
theorem isClosed_of_spaced_out [T0Space α] {V₀ : Set (α × α)} (V₀_in : V₀ ∈ 𝓤 α) {s : Set α} (hs : s.Pairwise fun x y => (x, y) ∉ V₀) : IsClosed s
case intro.intro.intro.h.intro.intro.h.intro.intro α : Type u inst✝¹ : UniformSpace α inst✝ : T0Space α V₀ : Set (α × α) V₀_in : V₀ ∈ 𝓤 α s : Set α hs : s.Pairwise fun x y => (x, y) ∉ V₀ V₁ : Set (α × α) V₁_in : V₁ ∈ 𝓤 α V₁_symm : SymmetricRel V₁ h_comp : V₁ ○ V₁ ⊆ V₀ x : α hx : ∀ {V : Set (α × α)}, V ∈ 𝓤 α → (ball x V ∩ s).Nonempty V : Set (α × α) V_in : V ∈ 𝓤 α a✝ : SymmetricRel V z : α hz : z ∈ ball x (V₁ ∩ V) hz' : z ∈ s hy : z ∈ ball x V₁ hy' : z ∈ s ⊢ (x, z) ∈ V
exact ball_inter_right x _ _ hz
no goals
3bca2cffbaff4806
Bool.lt_trans
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Bool.lean
theorem lt_trans : ∀ {x y z : Bool}, x < y → y < z → x < z
⊢ ∀ {x y z : Bool}, x < y → y < z → x < z
decide
no goals
8582e02182357a8e
mulLeftLinearMap_eq_zero_iff
Mathlib/Data/Matrix/Bilinear.lean
theorem mulLeftLinearMap_eq_zero_iff [Nonempty n] (a : Matrix l m A) : mulLeftLinearMap n R a = 0 ↔ a = 0
case mpr l : Type u_1 m : Type u_2 n : Type u_3 R : Type u_5 A : Type u_6 inst✝⁶ : Fintype m inst✝⁵ : DecidableEq m inst✝⁴ : Semiring R inst✝³ : Semiring A inst✝² : Module R A inst✝¹ : SMulCommClass R A A inst✝ : Nonempty n a : Matrix l m A h : a = 0 ⊢ mulLeftLinearMap n R a = 0
rw [h]
case mpr l : Type u_1 m : Type u_2 n : Type u_3 R : Type u_5 A : Type u_6 inst✝⁶ : Fintype m inst✝⁵ : DecidableEq m inst✝⁴ : Semiring R inst✝³ : Semiring A inst✝² : Module R A inst✝¹ : SMulCommClass R A A inst✝ : Nonempty n a : Matrix l m A h : a = 0 ⊢ mulLeftLinearMap n R 0 = 0
4d8d625502868ba9
MvQPF.suppPreservation_iff_isUniform
Mathlib/Data/QPF/Multivariate/Basic.lean
theorem suppPreservation_iff_isUniform : q.SuppPreservation ↔ q.IsUniform
case mpr n : ℕ F : TypeVec.{u} n → Type u_1 q : MvQPF F ⊢ IsUniform → SuppPreservation
rintro h α ⟨a, f⟩
case mpr.mk n : ℕ F : TypeVec.{u} n → Type u_1 q : MvQPF F h : IsUniform α : TypeVec.{u} n a : (P F).A f : (P F).B a ⟹ α ⊢ supp (abs ⟨a, f⟩) = supp ⟨a, f⟩
08d317fabec2531c
quotient_norm_add_le
Mathlib/Analysis/Normed/Group/Quotient.lean
theorem quotient_norm_add_le (S : AddSubgroup M) (x y : M ⧸ S) : ‖x + y‖ ≤ ‖x‖ + ‖y‖
case intro.intro.intro M : Type u_1 inst✝ : SeminormedAddCommGroup M S : AddSubgroup M x y : M ⊢ ‖↑x + ↑y‖ ≤ ‖↑x‖ + ‖↑y‖
simp only [← mk'_apply, ← map_add, quotient_norm_mk_eq, sInf_image']
case intro.intro.intro M : Type u_1 inst✝ : SeminormedAddCommGroup M S : AddSubgroup M x y : M ⊢ ⨅ a, ‖x + y + ↑a‖ ≤ (⨅ a, ‖x + ↑a‖) + ⨅ a, ‖y + ↑a‖
410baaa27ccbacc2
List.cons_subperm_of_not_mem_of_mem
Mathlib/.lake/packages/batteries/Batteries/Data/List/Perm.lean
theorem cons_subperm_of_not_mem_of_mem {a : α} {l₁ l₂ : List α} (h₁ : a ∉ l₁) (h₂ : a ∈ l₂) (s : l₁ <+~ l₂) : a :: l₁ <+~ l₂
α : Type u_1 a : α l₂ l r₁ l₂✝ : List α b : α s'✝ : r₁ <+ l₂✝ ih : ∀ {l₁ : List α}, ¬a ∈ l₁ → a ∈ l₂✝ → r₁ ~ l₁ → a :: l₁ <+~ l₂✝ l₁ : List α h₁ : ¬a ∈ l₁ p : r₁ ~ l₁ h₂ : a = b ∨ a ∈ l₂✝ m : a ∈ l₂✝ t : List α p' : t ~ a :: l₁ s' : t <+ l₂✝ ⊢ a :: l₁ <+~ b :: l₂✝
exact ⟨t, p', s'.cons _⟩
no goals
5432dae05155b132
GaussianInt.mod_four_eq_three_of_nat_prime_of_prime
Mathlib/NumberTheory/Zsqrtd/QuadraticReciprocity.lean
theorem mod_four_eq_three_of_nat_prime_of_prime (p : ℕ) [hp : Fact p.Prime] (hpi : Prime (p : ℤ[i])) : p % 4 = 3 := hp.1.eq_two_or_odd.elim (fun hp2 => by have := hpi.irreducible.isUnit_or_isUnit (a := ⟨1, 1⟩) (b := ⟨1, -1⟩) simp [hp2, Zsqrtd.ext_iff, ← norm_eq_one_iff, norm_def] at this) fun hp1 => by_contradiction fun hp3 : p % 4 ≠ 3 => by have hp41 : p % 4 = 1
p : ℕ hp : Fact (Nat.Prime p) hpi : Prime ↑p hp1 : p % 2 = 1 hp3 : p % 4 ≠ 3 hp41 : p % 4 = 1 k : ℕ k_lt_p : k < p hk : -1 = ↑k * ↑k hpk : p ∣ k ^ 2 + 1 ⊢ ↑k ^ 2 + 1 = { re := ↑k, im := 1 } * { re := ↑k, im := -1 }
ext <;> simp [sq]
no goals
9ab49eaa8ecd58e2
Polynomial.coeff_hermite_explicit
Mathlib/RingTheory/Polynomial/Hermite/Basic.lean
theorem coeff_hermite_explicit : ∀ n k : ℕ, coeff (hermite (2 * n + k)) k = (-1) ^ n * (2 * n - 1)‼ * Nat.choose (2 * n + k) k | 0, _ => by simp | n + 1, 0 => by convert coeff_hermite_succ_zero (2 * n + 1) using 1 -- Porting note: ring_nf did not solve the goal on line 165 rw [coeff_hermite_explicit n 1, (by rw [Nat.left_distrib, mul_one, Nat.add_one_sub_one] : 2 * (n + 1) - 1 = 2 * n + 1), Nat.doubleFactorial_add_one, Nat.choose_zero_right, Nat.choose_one_right, pow_succ] push_cast ring | n + 1, k + 1 => by let hermite_explicit : ℕ → ℕ → ℤ := fun n k => (-1) ^ n * (2 * n - 1)‼ * Nat.choose (2 * n + k) k have hermite_explicit_recur : ∀ n k : ℕ, hermite_explicit (n + 1) (k + 1) = hermite_explicit (n + 1) k - (k + 2) * hermite_explicit n (k + 2)
n : ℕ ⊢ 2 * (n + 1) - 1 = 2 * n + 1
rw [Nat.left_distrib, mul_one, Nat.add_one_sub_one]
no goals
76b4bea6433d05b5
Std.DHashMap.Internal.List.getValueCast_insertEntry_self
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Internal/List/Associative.lean
theorem getValueCast_insertEntry_self [BEq α] [LawfulBEq α] {l : List ((a : α) × β a)} {k : α} {v : β k} : getValueCast k (insertEntry k v l) containsKey_insertEntry_self = v
α : Type u β : α → Type v inst✝¹ : BEq α inst✝ : LawfulBEq α l : List ((a : α) × β a) k : α v : β k ⊢ getValueCast k (insertEntry k v l) ⋯ = v
simp [getValueCast_insertEntry]
no goals
a32e05cc0c740ceb
MeasureTheory.lintegral_pow_le_pow_lintegral_fderiv
Mathlib/Analysis/FunctionalSpaces/SobolevInequality.lean
theorem lintegral_pow_le_pow_lintegral_fderiv {u : E → F} (hu : ContDiff ℝ 1 u) (h2u : HasCompactSupport u) {p : ℝ} (hp : Real.IsConjExponent (finrank ℝ E) p) : ∫⁻ x, ‖u x‖ₑ ^ p ∂μ ≤ lintegralPowLePowLIntegralFDerivConst μ p * (∫⁻ x, ‖fderiv ℝ u x‖ₑ ∂μ) ^ p
case h.e'_5.h.e'_4.h.h.e'_3 F : Type u_3 inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedSpace ℝ F E : Type u_4 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : FiniteDimensional ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure u : E → F hu : ContDiff ℝ 1 u h2u : HasCompactSupport u p : ℝ hp✝ : (↑(finrank ℝ E)).IsConjExponent p C : ℝ≥0 := lintegralPowLePowLIntegralFDerivConst μ p ι : Type := Fin (finrank ℝ E) hιcard : #ι = finrank ℝ E this✝ : finrank ℝ E = finrank ℝ (ι → ℝ) e : E ≃L[ℝ] ι → ℝ := ContinuousLinearEquiv.ofFinrankEq this✝ this : (Measure.map (⇑e.symm) volume).IsAddHaarMeasure hp : (↑#ι).IsConjExponent p h0p : 0 ≤ p c : ℝ≥0 := μ.addHaarScalarFactor (Measure.map (⇑e.symm) volume) hc : 0 < c h2c : μ = c • Measure.map (⇑e.symm) volume h3c : ↑c ≠ 0 h0C : C = c * ‖↑e.symm‖₊ ^ p * (c ^ p)⁻¹ hC : C * c ^ p = c * ‖↑e.symm‖₊ ^ p v : (ι → ℝ) → F := u ∘ ⇑e.symm hv : ContDiff ℝ 1 v h2v : HasCompactSupport v y : ι → ℝ ⊢ DifferentiableAt ℝ (⇑e.symm) y
exact e.symm.differentiableAt
no goals
7e7c86c82b1c72d8
tendsto_sum_mul_atTop_nhds_one_sub_integral
Mathlib/NumberTheory/AbelSummation.lean
theorem tendsto_sum_mul_atTop_nhds_one_sub_integral (hf_diff : ∀ t ∈ Set.Ici 0, DifferentiableAt ℝ f t) (hf_int : LocallyIntegrableOn (deriv f) (Set.Ici 0)) {l : 𝕜} (h_lim : Tendsto (fun n : ℕ ↦ f n * ∑ k ∈ Icc 0 n, c k) atTop (𝓝 l)) {g : ℝ → 𝕜} (hg_dom : (fun t ↦ deriv f t * ∑ k ∈ Icc 0 ⌊t⌋₊, c k) =O[atTop] g) (hg_int : IntegrableAtFilter g atTop) : Tendsto (fun n : ℕ ↦ ∑ k ∈ Icc 0 n, f k * c k) atTop (𝓝 (l - ∫ t in Set.Ioi 0, deriv f t * ∑ k ∈ Icc 0 ⌊t⌋₊, c k))
𝕜 : Type u_1 inst✝ : RCLike 𝕜 c : ℕ → 𝕜 f : ℝ → 𝕜 hf_diff : ∀ t ∈ Set.Ici 0, DifferentiableAt ℝ f t hf_int : LocallyIntegrableOn (deriv f) (Set.Ici 0) volume l : 𝕜 h_lim : Tendsto (fun n => f ↑n * ∑ k ∈ Icc 0 n, c k) atTop (𝓝 l) g : ℝ → 𝕜 hg_dom : (fun t => deriv f t * ∑ k ∈ Icc 0 ⌊t⌋₊, c k) =O[atTop] g hg_int : IntegrableAtFilter g atTop volume h_lim' : Tendsto (fun n => ∫ (t : ℝ) in Set.Ioc 0 ↑n, deriv f t * ∑ k ∈ Icc 0 ⌊t⌋₊, c k) atTop (𝓝 (∫ (t : ℝ) in Set.Ioi 0, deriv f t * ∑ k ∈ Icc 0 ⌊t⌋₊, c k)) ⊢ Tendsto (fun n => ∑ k ∈ Icc 0 n, f ↑k * c k) atTop (𝓝 (l - ∫ (t : ℝ) in Set.Ioi 0, deriv f t * ∑ k ∈ Icc 0 ⌊t⌋₊, c k))
refine (h_lim.sub h_lim').congr (fun _ ↦ ?_)
𝕜 : Type u_1 inst✝ : RCLike 𝕜 c : ℕ → 𝕜 f : ℝ → 𝕜 hf_diff : ∀ t ∈ Set.Ici 0, DifferentiableAt ℝ f t hf_int : LocallyIntegrableOn (deriv f) (Set.Ici 0) volume l : 𝕜 h_lim : Tendsto (fun n => f ↑n * ∑ k ∈ Icc 0 n, c k) atTop (𝓝 l) g : ℝ → 𝕜 hg_dom : (fun t => deriv f t * ∑ k ∈ Icc 0 ⌊t⌋₊, c k) =O[atTop] g hg_int : IntegrableAtFilter g atTop volume h_lim' : Tendsto (fun n => ∫ (t : ℝ) in Set.Ioc 0 ↑n, deriv f t * ∑ k ∈ Icc 0 ⌊t⌋₊, c k) atTop (𝓝 (∫ (t : ℝ) in Set.Ioi 0, deriv f t * ∑ k ∈ Icc 0 ⌊t⌋₊, c k)) x✝ : ℕ ⊢ f ↑x✝ * ∑ k ∈ Icc 0 x✝, c k - ∫ (t : ℝ) in Set.Ioc 0 ↑x✝, deriv f t * ∑ k ∈ Icc 0 ⌊t⌋₊, c k = ∑ k ∈ Icc 0 x✝, f ↑k * c k
b58ce824ebf3d435
HasFDerivAtFilter.iterate
Mathlib/Analysis/Calculus/FDeriv/Comp.lean
theorem HasFDerivAtFilter.iterate {f : E → E} {f' : E →L[𝕜] E} (hf : HasFDerivAtFilter f f' x L) (hL : Tendsto f L L) (hx : f x = x) (n : ℕ) : HasFDerivAtFilter f^[n] (f' ^ n) x L
𝕜 : Type u_1 inst✝² : NontriviallyNormedField 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E x : E L : Filter E f : E → E f' : E →L[𝕜] E hf : HasFDerivAtFilter f f' x L hL : Tendsto f L L hx : f x = x n : ℕ ⊢ HasFDerivAtFilter f^[n] (f' ^ n) x L
induction n with | zero => exact hasFDerivAtFilter_id x L | succ n ihn => rw [Function.iterate_succ, pow_succ] rw [← hx] at ihn exact ihn.comp x hf hL
no goals
1115050efc37856a
MeasureTheory.withDensityᵥ_smul_eq_withDensityᵥ_withDensity
Mathlib/MeasureTheory/VectorMeasure/WithDensity.lean
theorem withDensityᵥ_smul_eq_withDensityᵥ_withDensity {f : α → ℝ≥0} {g : α → E} (hf : AEMeasurable f μ) (hfg : Integrable (f • g) μ) : μ.withDensityᵥ (f • g) = (μ.withDensity (fun x ↦ f x)).withDensityᵥ g
case h α : Type u_1 m : MeasurableSpace α μ : Measure α E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E f : α → ℝ≥0 g : α → E hf : AEMeasurable f μ hfg : Integrable (f • g) μ s : Set α hs : MeasurableSet s ⊢ ∫ (x : α) in s, (f • g) x ∂μ = ∫ (x : α) in s, f x • g x ∂μ
simp only [Pi.smul_apply']
no goals
d5e2cb953e5e689a
ProbabilityTheory.integral_compProd
Mathlib/Probability/Kernel/Composition/IntegralCompProd.lean
theorem integral_compProd : ∀ {f : β × γ → E} (_ : Integrable f ((κ ⊗ₖ η) a)), ∫ z, f z ∂(κ ⊗ₖ η) a = ∫ x, ∫ y, f (x, y) ∂η (a, x) ∂κ a
case h.e'_2 α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝³ : NormedAddCommGroup E a : α κ : Kernel α β inst✝² : IsSFiniteKernel κ η : Kernel (α × β) γ inst✝¹ : IsSFiniteKernel η inst✝ : NormedSpace ℝ E f✝ : β × γ → E hE : CompleteSpace E f g : β × γ → E hfg : f =ᶠ[ae ((κ ⊗ₖ η) a)] g a✝ : Integrable f ((κ ⊗ₖ η) a) hf : ∫ (z : β × γ), f z ∂(κ ⊗ₖ η) a = ∫ (x : β), ∫ (y : γ), f (x, y) ∂η (a, x) ∂κ a ⊢ ∫ (z : β × γ), g z ∂(κ ⊗ₖ η) a = ∫ (z : β × γ), f z ∂(κ ⊗ₖ η) a
exact integral_congr_ae hfg.symm
no goals
0414f2f4340089bd
Monoid.CoprodI.Word.mem_smul_iff
Mathlib/GroupTheory/CoprodI.lean
theorem mem_smul_iff {i j : ι} {m₁ : M i} {m₂ : M j} {w : Word M} : ⟨_, m₁⟩ ∈ (of m₂ • w).toList ↔ (¬i = j ∧ ⟨i, m₁⟩ ∈ w.toList) ∨ (m₁ ≠ 1 ∧ ∃ (hij : i = j),(⟨i, m₁⟩ ∈ w.toList.tail) ∨ (∃ m', ⟨j, m'⟩ ∈ w.toList.head? ∧ m₁ = hij ▸ (m₂ * m')) ∨ (w.fstIdx ≠ some j ∧ m₁ = hij ▸ m₂))
case neg ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) inst✝¹ : DecidableEq ι inst✝ : (i : ι) → DecidableEq (M i) j : ι m₂ : M j w : Word M m₁ : M j hw : ⟨j, m₁⟩ ∉ w.toList.tail ⊢ (⟨j, m₁⟩ ∈ w.toList.tail ∨ ¬m₁ = 1 ∧ m₁ = m₂ * if h : ∃ (h : ¬w.toList = []), (w.toList.head h).fst = j then ⋯ ▸ (w.toList.head ⋯).snd else 1) ↔ ¬m₁ = 1 ∧ (⟨j, m₁⟩ ∈ w.toList.tail ∨ (∃ m', ⟨j, m'⟩ ∈ w.toList.head? ∧ m₁ = m₂ * m') ∨ ¬w.fstIdx = some j ∧ m₁ = m₂)
simp only [hw, false_or, Option.mem_def, ne_eq, and_congr_right_iff]
case neg ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) inst✝¹ : DecidableEq ι inst✝ : (i : ι) → DecidableEq (M i) j : ι m₂ : M j w : Word M m₁ : M j hw : ⟨j, m₁⟩ ∉ w.toList.tail ⊢ ¬m₁ = 1 → ((m₁ = m₂ * if h : ∃ (h : ¬w.toList = []), (w.toList.head h).fst = j then ⋯ ▸ (w.toList.head ⋯).snd else 1) ↔ (∃ m', w.toList.head? = some ⟨j, m'⟩ ∧ m₁ = m₂ * m') ∨ ¬w.fstIdx = some j ∧ m₁ = m₂)
1bd393897e7ca3ac
EReal.tendsto_nhds_bot_iff_real
Mathlib/Topology/Instances/EReal/Lemmas.lean
theorem tendsto_nhds_bot_iff_real {α : Type*} {m : α → EReal} {f : Filter α} : Tendsto m f (𝓝 ⊥) ↔ ∀ x : ℝ, ∀ᶠ a in f, m a < x := nhds_bot_basis.tendsto_right_iff.trans <| by simp only [true_implies, mem_Iio]
α : Type u_2 m : α → EReal f : Filter α ⊢ (∀ (i : ℝ), True → ∀ᶠ (x : α) in f, m x ∈ Iio ↑i) ↔ ∀ (x : ℝ), ∀ᶠ (a : α) in f, m a < ↑x
simp only [true_implies, mem_Iio]
no goals
4549be55b30cd7f3
legendreSym.quadratic_reciprocity
Mathlib/NumberTheory/LegendreSymbol/QuadraticReciprocity.lean
theorem quadratic_reciprocity (hp : p ≠ 2) (hq : q ≠ 2) (hpq : p ≠ q) : legendreSym q p * legendreSym p q = (-1) ^ (p / 2 * (q / 2))
p q : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Fact (Nat.Prime q) hp : p ≠ 2 hq : q ≠ 2 hpq : p ≠ q hp₁ : p % 2 = 1 hq₁ : q % 2 = 1 hq₂ : ringChar (ZMod q) ≠ 2 h : (quadraticChar (ZMod p)) ↑q = (quadraticChar (ZMod q)) (↑(χ₄ ↑p) * ↑p) ⊢ legendreSym q ↑p * legendreSym p ↑q = (-1) ^ (p / 2 * (q / 2))
have nc : ∀ n r : ℕ, ((n : ℤ) : ZMod r) = n := fun n r => by norm_cast
p q : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Fact (Nat.Prime q) hp : p ≠ 2 hq : q ≠ 2 hpq : p ≠ q hp₁ : p % 2 = 1 hq₁ : q % 2 = 1 hq₂ : ringChar (ZMod q) ≠ 2 h : (quadraticChar (ZMod p)) ↑q = (quadraticChar (ZMod q)) (↑(χ₄ ↑p) * ↑p) nc : ∀ (n r : ℕ), ↑↑n = ↑n ⊢ legendreSym q ↑p * legendreSym p ↑q = (-1) ^ (p / 2 * (q / 2))
1533f920a3f1cd59
Std.Tactic.BVDecide.LRAT.Internal.CNF.unsat_of_convertLRAT_unsat
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Convert.lean
theorem CNF.unsat_of_convertLRAT_unsat (cnf : CNF Nat) : Unsatisfiable (PosFin (cnf.numLiterals + 1)) (CNF.convertLRAT cnf) → cnf.Unsat
case a cnf : CNF Nat assignment : PosFin (cnf.numLiterals + 1) → Bool h1 : ¬(assignment ⊨ DefaultFormula.ofArray (convertLRAT' (lift cnf)).toArray) ⊢ CNF.eval assignment (lift cnf) = false
apply eq_false_of_ne_true
case a.a cnf : CNF Nat assignment : PosFin (cnf.numLiterals + 1) → Bool h1 : ¬(assignment ⊨ DefaultFormula.ofArray (convertLRAT' (lift cnf)).toArray) ⊢ ¬CNF.eval assignment (lift cnf) = true
c8ce4969f2703677
List.find?_flatten_eq_some_iff
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Find.lean
theorem find?_flatten_eq_some_iff {xs : List (List α)} {p : α → Bool} {a : α} : xs.flatten.find? p = some a ↔ p a ∧ ∃ as ys zs bs, xs = as ++ (ys ++ a :: zs) :: bs ∧ (∀ a ∈ as, ∀ x ∈ a, !p x) ∧ (∀ x ∈ ys, !p x)
case mpr.intro.intro.intro.intro.intro.intro.intro α : Type u_1 p : α → Bool a : α h : p a = true as : List (List α) ys zs : List α bs : List (List α) h₁ : ∀ (a : List α), a ∈ as → ∀ (x : α), x ∈ a → (!p x) = true h₂ : ∀ (x : α), x ∈ ys → (!p x) = true ⊢ p a = true ∧ ∃ as_1 bs_1, (as ++ (ys ++ a :: zs) :: bs).flatten = as_1 ++ a :: bs_1 ∧ ∀ (a : α), a ∈ as_1 → (!p a) = true
refine ⟨h, as.flatten ++ ys, zs ++ bs.flatten, by simp, ?_⟩
case mpr.intro.intro.intro.intro.intro.intro.intro α : Type u_1 p : α → Bool a : α h : p a = true as : List (List α) ys zs : List α bs : List (List α) h₁ : ∀ (a : List α), a ∈ as → ∀ (x : α), x ∈ a → (!p x) = true h₂ : ∀ (x : α), x ∈ ys → (!p x) = true ⊢ ∀ (a : α), a ∈ as.flatten ++ ys → (!p a) = true
b3081438100b7db8
Wbtw.sameRay_vsub
Mathlib/Analysis/Convex/Between.lean
theorem Wbtw.sameRay_vsub {x y z : P} (h : Wbtw R x y z) : SameRay R (y -ᵥ x) (z -ᵥ y)
case intro.intro.intro.inr R : Type u_1 V : Type u_2 P : Type u_4 inst✝³ : StrictOrderedCommRing R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x z : P ht0 : 0 ≤ 0 ht1 : 0 ≤ 1 ⊢ SameRay R ((0 • (z -ᵥ x) +ᵥ x) -ᵥ x) (z -ᵥ (0 • (z -ᵥ x) +ᵥ x))
simp
no goals
420bf32587db852e
IsometryEquiv.midpoint_fixed
Mathlib/Analysis/Normed/Affine/MazurUlam.lean
theorem midpoint_fixed {x y : PE} : ∀ e : PE ≃ᵢ PE, e x = x → e y = y → e (midpoint ℝ x y) = midpoint ℝ x y
E : Type u_1 PE : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : MetricSpace PE inst✝ : NormedAddTorsor E PE x y : PE z : PE := midpoint ℝ x y s : Set (PE ≃ᵢ PE) := {e | e x = x ∧ e y = y} this : Nonempty ↑s h_bdd : BddAbove (range fun e => dist (↑e z) z) R : PE ≃ᵢ PE := (pointReflection ℝ z).toIsometryEquiv f : PE ≃ᵢ PE → PE ≃ᵢ PE := fun e => ((e.trans R).trans e.symm).trans R hf_dist : ∀ (e : PE ≃ᵢ PE), dist ((f e) z) z = 2 * dist (e z) z ⊢ ∀ (e : PE ≃ᵢ PE), e x = x → e y = y → e z = z
have hf_maps_to : MapsTo f s s := by rintro e ⟨hx, hy⟩ constructor <;> simp [f, R, z, hx, hy, e.symm_apply_eq.2 hx.symm, e.symm_apply_eq.2 hy.symm]
E : Type u_1 PE : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : MetricSpace PE inst✝ : NormedAddTorsor E PE x y : PE z : PE := midpoint ℝ x y s : Set (PE ≃ᵢ PE) := {e | e x = x ∧ e y = y} this : Nonempty ↑s h_bdd : BddAbove (range fun e => dist (↑e z) z) R : PE ≃ᵢ PE := (pointReflection ℝ z).toIsometryEquiv f : PE ≃ᵢ PE → PE ≃ᵢ PE := fun e => ((e.trans R).trans e.symm).trans R hf_dist : ∀ (e : PE ≃ᵢ PE), dist ((f e) z) z = 2 * dist (e z) z hf_maps_to : MapsTo f s s ⊢ ∀ (e : PE ≃ᵢ PE), e x = x → e y = y → e z = z
b718555705b87dec
sSup_sUnion
Mathlib/Data/Set/Lattice.lean
theorem sSup_sUnion (s : Set (Set β)) : sSup (⋃₀ s) = ⨆ t ∈ s, sSup t
β : Type u_2 inst✝ : CompleteLattice β s : Set (Set β) ⊢ sSup (⋃₀ s) = ⨆ t ∈ s, sSup t
simp only [sUnion_eq_biUnion, sSup_eq_iSup, iSup_iUnion]
no goals
b34aa5abf2637a7b
Filter.HasBasis.le_basis_iff
Mathlib/Order/Filter/Bases.lean
theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i'
α : Type u_1 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α p' : ι' → Prop s' : ι' → Set α hl : l.HasBasis p s hl' : l'.HasBasis p' s' ⊢ l ≤ l' ↔ ∀ (i' : ι'), p' i' → ∃ i, p i ∧ s i ⊆ s' i'
simp only [hl'.ge_iff, hl.mem_iff]
no goals
407295017a0d1906
SetTheory.PGame.grundyValue_nim_add_nim
Mathlib/SetTheory/Game/Nim.lean
theorem grundyValue_nim_add_nim (x y : Ordinal) : grundyValue (nim x + nim y) = ∗x + ∗y
x y : Ordinal.{u_1} ⊢ (nim x + nim y).grundyValue = toNimber x + toNimber y
apply (grundyValue_le_of_forall_moveLeft _).antisymm (le_grundyValue_of_Iio_subset_moveLeft _)
x y : Ordinal.{u_1} ⊢ ∀ (i : (nim x + nim y).LeftMoves), ((nim x + nim y).moveLeft i).grundyValue ≠ toNimber x + toNimber y x y : Ordinal.{u_1} ⊢ Set.Iio (toNimber x + toNimber y) ⊆ Set.range (grundyValue ∘ (nim x + nim y).moveLeft)
1ed3a29368c61fe4
List.sublist_append_iff
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Sublist.lean
theorem sublist_append_iff {l : List α} : l <+ r₁ ++ r₂ ↔ ∃ l₁ l₂, l = l₁ ++ l₂ ∧ l₁ <+ r₁ ∧ l₂ <+ r₂
case cons.mpr.intro.intro.intro.intro.cons₂ α : Type u_1 r₂ : List α r : α r₁ : List α ih : ∀ {l : List α}, l <+ r₁ ++ r₂ ↔ ∃ l₁ l₂, l = l₁ ++ l₂ ∧ l₁ <+ r₁ ∧ l₂ <+ r₂ l₂ : List α w₂ : l₂ <+ r₂ l₁✝ : List α w₁ : l₁✝ <+ r₁ ⊢ r :: l₁✝ ++ l₂ <+ r :: r₁ ++ r₂
rename_i l
case cons.mpr.intro.intro.intro.intro.cons₂ α : Type u_1 r₂ : List α r : α r₁ : List α ih : ∀ {l : List α}, l <+ r₁ ++ r₂ ↔ ∃ l₁ l₂, l = l₁ ++ l₂ ∧ l₁ <+ r₁ ∧ l₂ <+ r₂ l₂ : List α w₂ : l₂ <+ r₂ l : List α w₁ : l <+ r₁ ⊢ r :: l ++ l₂ <+ r :: r₁ ++ r₂
1d98f3fb3ce2dcde
Polynomial.hasStrictDerivAt
Mathlib/Analysis/Calculus/Deriv/Polynomial.lean
theorem hasStrictDerivAt (x : 𝕜) : HasStrictDerivAt (fun x => p.eval x) (p.derivative.eval x) x
case h_add 𝕜 : Type u inst✝ : NontriviallyNormedField 𝕜 p✝ : 𝕜[X] x : 𝕜 p q : 𝕜[X] hp : HasStrictDerivAt (fun x => eval x p) (eval x (derivative p)) x hq : HasStrictDerivAt (fun x => eval x q) (eval x (derivative q)) x ⊢ HasStrictDerivAt (fun x => eval x (p + q)) (eval x (derivative (p + q))) x
simpa using hp.add hq
no goals
a78192851f8d6b6d
ZMod.isSquare_neg_one_of_eq_sq_add_sq_of_isCoprime
Mathlib/NumberTheory/SumTwoSquares.lean
theorem ZMod.isSquare_neg_one_of_eq_sq_add_sq_of_isCoprime {n x y : ℤ} (h : n = x ^ 2 + y ^ 2) (hc : IsCoprime x y) : IsSquare (-1 : ZMod n.natAbs)
n x y : ℤ h : n = x ^ 2 + y ^ 2 hc : IsCoprime x y ⊢ IsCoprime x n
have hc2 : IsCoprime (x ^ 2) (y ^ 2) := hc.pow
n x y : ℤ h : n = x ^ 2 + y ^ 2 hc : IsCoprime x y hc2 : IsCoprime (x ^ 2) (y ^ 2) ⊢ IsCoprime x n
1f943d046c7310cd
PowerSeries.trunc_one_X
Mathlib/RingTheory/PowerSeries/Trunc.lean
lemma trunc_one_X : trunc (R := R) 1 X = 0
R : Type u_1 inst✝ : Semiring R ⊢ trunc 1 X = 0
simp
no goals
800ca48eab182a1c
Rat.numberField_discr
Mathlib/NumberTheory/NumberField/Discriminant/Defs.lean
theorem numberField_discr : discr ℚ = 1
b : Basis (Fin 1) ℤ (𝓞 ℚ) := (Basis.singleton (Fin 1) ℤ).map ringOfIntegersEquiv.toAddEquiv.toIntLinearEquiv.symm ⊢ discr ℚ = 1
calc NumberField.discr ℚ _ = Algebra.discr ℤ b := by convert (discr_eq_discr ℚ b).symm _ = Algebra.trace ℤ (𝓞 ℚ) (b default * b default) := by rw [Algebra.discr_def, Matrix.det_unique, Algebra.traceMatrix_apply, Algebra.traceForm_apply] _ = Algebra.trace ℤ (𝓞 ℚ) 1 := by rw [Basis.map_apply, RingEquiv.toAddEquiv_eq_coe, AddEquiv.toIntLinearEquiv_symm, AddEquiv.coe_toIntLinearEquiv, Basis.singleton_apply, show (AddEquiv.symm ↑ringOfIntegersEquiv) (1 : ℤ) = ringOfIntegersEquiv.symm 1 by rfl, map_one, mul_one] _ = 1 := by rw [Algebra.trace_eq_matrix_trace b]; norm_num
no goals
d094a928336499b7
WeierstrassCurve.Projective.nonsingularLift_addMap
Mathlib/AlgebraicGeometry/EllipticCurve/Projective.lean
lemma nonsingularLift_addMap {P Q : PointClass F} (hP : W.NonsingularLift P) (hQ : W.NonsingularLift Q) : W.NonsingularLift <| W.addMap P Q
case mk F : Type u inst✝ : Field F W : Projective F P Q : PointClass F hQ : W.NonsingularLift Q a✝ : Fin 3 → F hP : W.NonsingularLift (Quot.mk (⇑(MulAction.orbitRel Fˣ (Fin 3 → F))) a✝) ⊢ W.NonsingularLift (W.addMap (Quot.mk (⇑(MulAction.orbitRel Fˣ (Fin 3 → F))) a✝) Q)
rcases Q
case mk.mk F : Type u inst✝ : Field F W : Projective F P Q : PointClass F a✝¹ : Fin 3 → F hP : W.NonsingularLift (Quot.mk (⇑(MulAction.orbitRel Fˣ (Fin 3 → F))) a✝¹) a✝ : Fin 3 → F hQ : W.NonsingularLift (Quot.mk (⇑(MulAction.orbitRel Fˣ (Fin 3 → F))) a✝) ⊢ W.NonsingularLift (W.addMap (Quot.mk (⇑(MulAction.orbitRel Fˣ (Fin 3 → F))) a✝¹) (Quot.mk (⇑(MulAction.orbitRel Fˣ (Fin 3 → F))) a✝))
3e0b375aec5be89b
SimpleGraph.Walk.mem_support_iff_exists_getVert
Mathlib/Combinatorics/SimpleGraph/Connectivity/WalkDecomp.lean
theorem mem_support_iff_exists_getVert {u v w : V} {p : G.Walk v w} : u ∈ p.support ↔ ∃ n, p.getVert n = u ∧ n ≤ p.length
case h V : Type u G : SimpleGraph V u v w : V p : G.Walk v w n : ℕ hn : p.getVert (n + 1) = u ∧ n + 1 ≤ p.length hnp : ¬p.Nil ⊢ p.tail.getVert n = u ∧ n ≤ p.tail.length
rwa [getVert_tail, ← Nat.add_one_le_add_one_iff, length_tail_add_one hnp]
no goals
2d1fd9978307d9f8
Equiv.Perm.cycleFactorsFinset_mul_inv_mem_eq_sdiff
Mathlib/GroupTheory/Perm/Cycle/Factors.lean
theorem cycleFactorsFinset_mul_inv_mem_eq_sdiff [DecidableEq α] [Fintype α] {f g : Perm α} (h : f ∈ cycleFactorsFinset g) : cycleFactorsFinset (g * f⁻¹) = cycleFactorsFinset g \ {f}
case refine_3.inl α : Type u_2 inst✝¹ : DecidableEq α inst✝ : Fintype α g f✝ σ τ : Perm α hd : σ.Disjoint τ a✝ : σ.IsCycle hσ : ∀ {f : Perm α}, f ∈ σ.cycleFactorsFinset → (σ * f⁻¹).cycleFactorsFinset = σ.cycleFactorsFinset \ {f} hτ : ∀ {f : Perm α}, f ∈ τ.cycleFactorsFinset → (τ * f⁻¹).cycleFactorsFinset = τ.cycleFactorsFinset \ {f} f : Perm α hf : f ∈ σ.cycleFactorsFinset ⊢ (σ * τ * f⁻¹).cycleFactorsFinset = (σ.cycleFactorsFinset ∪ τ.cycleFactorsFinset) \ {f}
rw [hd.commute.eq, union_comm, union_sdiff_distrib, sdiff_singleton_eq_erase, erase_eq_of_not_mem, mul_assoc, Disjoint.cycleFactorsFinset_mul_eq_union, hσ hf]
case refine_3.inl α : Type u_2 inst✝¹ : DecidableEq α inst✝ : Fintype α g f✝ σ τ : Perm α hd : σ.Disjoint τ a✝ : σ.IsCycle hσ : ∀ {f : Perm α}, f ∈ σ.cycleFactorsFinset → (σ * f⁻¹).cycleFactorsFinset = σ.cycleFactorsFinset \ {f} hτ : ∀ {f : Perm α}, f ∈ τ.cycleFactorsFinset → (τ * f⁻¹).cycleFactorsFinset = τ.cycleFactorsFinset \ {f} f : Perm α hf : f ∈ σ.cycleFactorsFinset ⊢ τ.Disjoint (σ * f⁻¹) case refine_3.inl α : Type u_2 inst✝¹ : DecidableEq α inst✝ : Fintype α g f✝ σ τ : Perm α hd : σ.Disjoint τ a✝ : σ.IsCycle hσ : ∀ {f : Perm α}, f ∈ σ.cycleFactorsFinset → (σ * f⁻¹).cycleFactorsFinset = σ.cycleFactorsFinset \ {f} hτ : ∀ {f : Perm α}, f ∈ τ.cycleFactorsFinset → (τ * f⁻¹).cycleFactorsFinset = τ.cycleFactorsFinset \ {f} f : Perm α hf : f ∈ σ.cycleFactorsFinset ⊢ f ∉ τ.cycleFactorsFinset
3d77fd0de031f082
Stream.fst_take_succ
Mathlib/.lake/packages/batteries/Batteries/Data/Stream.lean
theorem fst_take_succ [Stream σ α] (s : σ) : (take s (n+1)).fst = match next? s with | none => [] | some (a, s) => a :: (take s n).fst
σ : Type u_1 α : Type u_2 n : Nat inst✝ : Stream σ α s : σ ⊢ (match next? s with | none => ([], s) | some (a, s) => (a :: (take s n).fst, (take s n).snd)).fst = match next? s with | none => [] | some (a, s) => a :: (take s n).fst
split <;> rfl
no goals
ae89cbd25284fdc5
VectorFourier.fourierIntegral_continuous
Mathlib/Analysis/Fourier/FourierTransform.lean
theorem fourierIntegral_continuous [FirstCountableTopology W] (he : Continuous e) (hL : Continuous fun p : V × W ↦ L p.1 p.2) {f : V → E} (hf : Integrable f μ) : Continuous (fourierIntegral e μ L f)
case h_cont 𝕜 : Type u_1 inst✝¹³ : CommRing 𝕜 V : Type u_2 inst✝¹² : AddCommGroup V inst✝¹¹ : Module 𝕜 V inst✝¹⁰ : MeasurableSpace V W : Type u_3 inst✝⁹ : AddCommGroup W inst✝⁸ : Module 𝕜 W E : Type u_4 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : IsTopologicalRing 𝕜 inst✝³ : TopologicalSpace V inst✝² : BorelSpace V inst✝¹ : TopologicalSpace W e : AddChar 𝕜 𝕊 μ : Measure V L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜 inst✝ : FirstCountableTopology W he : Continuous ⇑e hL : Continuous fun p => (L p.1) p.2 f : V → E hf : Integrable f μ v : V ⊢ Continuous fun x => -(L v) x
exact (hL.comp (continuous_prod_mk.mpr ⟨continuous_const, continuous_id⟩)).neg
no goals
eee0139c18fc1a81
PresheafOfModules.Sheafify.smul_add
Mathlib/Algebra/Category/ModuleCat/Presheaf/Sheafify.lean
protected lemma smul_add : smul α φ r (m + m') = smul α φ r m + smul α φ r m'
case a.intro.intro.intro.intro.intro C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C J : GrothendieckTopology C R₀ : Cᵒᵖ ⥤ RingCat R : Sheaf J RingCat α : R₀ ⟶ R.val inst✝³ : Presheaf.IsLocallyInjective J α inst✝² : Presheaf.IsLocallySurjective J α M₀ : PresheafOfModules R₀ A : Sheaf J AddCommGrp φ : M₀.presheaf ⟶ A.val inst✝¹ : Presheaf.IsLocallyInjective J φ inst✝ : Presheaf.IsLocallySurjective J φ X : Cᵒᵖ r : ↑(R.val.obj X) m m' : ↑(A.val.obj X) S : Sieve (Opposite.unop X) := Presheaf.imageSieve α r ⊓ Presheaf.imageSieve φ m ⊓ Presheaf.imageSieve φ m' hS : S ∈ J (Opposite.unop X) Y : C f : Y ⟶ Opposite.unop X r₀ : ToType (R₀.obj (Opposite.op Y)) hr₀ : (ConcreteCategory.hom (α.app (Opposite.op Y))) r₀ = (ConcreteCategory.hom (R.val.map f.op)) r m₀ : ↑(M₀.obj (Opposite.op Y)) hm₀ : (ConcreteCategory.hom (φ.app (Opposite.op Y))) m₀ = (ConcreteCategory.hom (A.val.map f.op)) m m₀' : ↑(M₀.obj (Opposite.op Y)) hm₀' : (ConcreteCategory.hom (φ.app (Opposite.op Y))) m₀' = (ConcreteCategory.hom (A.val.map f.op)) m' ⊢ (ConcreteCategory.hom (A.val.map f.op)) (smul α φ r (m + m')) = (ConcreteCategory.hom (A.val.map f.op)) (smul α φ r m + smul α φ r m')
rw [(A.val.map f.op).hom.map_add, map_smul_eq α φ r m f.op r₀ hr₀ m₀ hm₀, map_smul_eq α φ r m' f.op r₀ hr₀ m₀' hm₀', map_smul_eq α φ r (m + m') f.op r₀ hr₀ (m₀ + m₀') (by rw [map_add, map_add, hm₀, hm₀']), smul_add, map_add]
no goals
e45a9bac6c91f436
Fin.accumulate_injective
Mathlib/RingTheory/MvPolynomial/Symmetric/FundamentalTheorem.lean
lemma accumulate_injective {n m} (hnm : n ≤ m) : Function.Injective (accumulate n m)
n m : ℕ hnm : n ≤ m ⊢ Function.Injective ⇑(accumulate n m)
refine fun t s he ↦ funext fun i ↦ ?_
n m : ℕ hnm : n ≤ m t s : Fin n → ℕ he : (accumulate n m) t = (accumulate n m) s i : Fin n ⊢ t i = s i
48331ce5ab536779
SchwartzMap.pow_mul_le_of_le_of_pow_mul_le
Mathlib/Analysis/Distribution/SchwartzSpace.lean
/-- Pointwise inequality to control `x ^ k * f` in terms of `1 / (1 + x) ^ l` if one controls both `f` (with a bound `C₁`) and `x ^ (k + l) * f` (with a bound `C₂`). This will be used to check integrability of `x ^ k * f x` when `f` is a Schwartz function, and to control explicitly its integral in terms of suitable seminorms of `f`. -/ lemma pow_mul_le_of_le_of_pow_mul_le {C₁ C₂ : ℝ} {k l : ℕ} {x f : ℝ} (hx : 0 ≤ x) (hf : 0 ≤ f) (h₁ : f ≤ C₁) (h₂ : x ^ (k + l) * f ≤ C₂) : x ^ k * f ≤ 2 ^ l * (C₁ + C₂) * (1 + x) ^ (- (l : ℝ))
C₁ C₂ : ℝ k l : ℕ x f : ℝ hx : 0 ≤ x hf : 0 ≤ f h₁ : f ≤ C₁ h₂ : x ^ (k + l) * f ≤ C₂ this✝ : 0 ≤ C₂ this : 2 ^ l * (C₁ + C₂) * (1 + x) ^ (-↑l) = ((1 + x) / 2) ^ (-↑l) * (C₁ + C₂) h'x : 1 ≤ x ⊢ 0 ≤ ((1 + x) / 2) ^ (-↑l)
positivity
no goals
53024ad59cf95cae
div_eq_quo_add_rem_div_add_rem_div
Mathlib/Algebra/Polynomial/PartialFractions.lean
theorem div_eq_quo_add_rem_div_add_rem_div (f : R[X]) {g₁ g₂ : R[X]} (hg₁ : g₁.Monic) (hg₂ : g₂.Monic) (hcoprime : IsCoprime g₁ g₂) : ∃ q r₁ r₂ : R[X], r₁.degree < g₁.degree ∧ r₂.degree < g₂.degree ∧ (f : K) / (↑g₁ * ↑g₂) = ↑q + ↑r₁ / ↑g₁ + ↑r₂ / ↑g₂
case intro.intro R : Type inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type inst✝² : Field K inst✝¹ : Algebra R[X] K inst✝ : IsFractionRing R[X] K f g₁ g₂ : R[X] hg₁ : g₁.Monic hg₂ : g₂.Monic c d : R[X] hcd : c * g₁ + d * g₂ = 1 hg₁' : ↑g₁ ≠ 0 hg₂' : ↑g₂ ≠ 0 hfc : f * c %ₘ g₂ + g₂ * (f * c /ₘ g₂) = f * c ⊢ ↑f / (↑g₁ * ↑g₂) = ↑(f * d /ₘ g₁ + f * c /ₘ g₂) + ↑(f * d %ₘ g₁) / ↑g₁ + ↑(f * c %ₘ g₂) / ↑g₂
have hfd := modByMonic_add_div (f * d) hg₁
case intro.intro R : Type inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type inst✝² : Field K inst✝¹ : Algebra R[X] K inst✝ : IsFractionRing R[X] K f g₁ g₂ : R[X] hg₁ : g₁.Monic hg₂ : g₂.Monic c d : R[X] hcd : c * g₁ + d * g₂ = 1 hg₁' : ↑g₁ ≠ 0 hg₂' : ↑g₂ ≠ 0 hfc : f * c %ₘ g₂ + g₂ * (f * c /ₘ g₂) = f * c hfd : f * d %ₘ g₁ + g₁ * (f * d /ₘ g₁) = f * d ⊢ ↑f / (↑g₁ * ↑g₂) = ↑(f * d /ₘ g₁ + f * c /ₘ g₂) + ↑(f * d %ₘ g₁) / ↑g₁ + ↑(f * c %ₘ g₂) / ↑g₂
950f38e99f21aa33
linearIndependent_le_span_aux'
Mathlib/LinearAlgebra/Dimension/StrongRankCondition.lean
theorem linearIndependent_le_span_aux' {ι : Type*} [Fintype ι] (v : ι → M) (i : LinearIndependent R v) (w : Set M) [Fintype w] (s : range v ≤ span R w) : Fintype.card ι ≤ Fintype.card w
case i R : Type u M : Type v inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : StrongRankCondition R ι : Type u_1 inst✝¹ : Fintype ι v : ι → M i : LinearIndependent R v w : Set M inst✝ : Fintype ↑w s : range v ≤ ↑(span R w) f g : ι →₀ R h : (linearCombination R Subtype.val) ((linearCombination R fun i => Span.repr R w ⟨v i, ⋯⟩) f) = (linearCombination R Subtype.val) ((linearCombination R fun i => Span.repr R w ⟨v i, ⋯⟩) g) ⊢ f = g
simp only [linearCombination_linearCombination, Submodule.coe_mk, Span.finsupp_linearCombination_repr] at h
case i R : Type u M : Type v inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : StrongRankCondition R ι : Type u_1 inst✝¹ : Fintype ι v : ι → M i : LinearIndependent R v w : Set M inst✝ : Fintype ↑w s : range v ≤ ↑(span R w) f g : ι →₀ R h : (linearCombination R fun b => v b) f = (linearCombination R fun b => v b) g ⊢ f = g
675e1368e54dbc1d
continuousOn_list_prod
Mathlib/Topology/Algebra/Monoid.lean
theorem continuousOn_list_prod {f : ι → X → M} (l : List ι) {t : Set X} (h : ∀ i ∈ l, ContinuousOn (f i) t) : ContinuousOn (fun a => (l.map fun i => f i a).prod) t
ι : Type u_1 M : Type u_3 X : Type u_5 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace M inst✝¹ : Monoid M inst✝ : ContinuousMul M f : ι → X → M l : List ι t : Set X h : ∀ i ∈ l, ContinuousOn (f i) t x : X hx : x ∈ t ⊢ ContinuousWithinAt (fun a => (List.map (fun i => f i a) l).prod) t x
rw [continuousWithinAt_iff_continuousAt_restrict _ hx]
ι : Type u_1 M : Type u_3 X : Type u_5 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace M inst✝¹ : Monoid M inst✝ : ContinuousMul M f : ι → X → M l : List ι t : Set X h : ∀ i ∈ l, ContinuousOn (f i) t x : X hx : x ∈ t ⊢ ContinuousAt (t.restrict fun a => (List.map (fun i => f i a) l).prod) ⟨x, hx⟩
df53e6c7d2182796
Polynomial.sumIDeriv_C
Mathlib/Algebra/Polynomial/SumIteratedDerivative.lean
theorem sumIDeriv_C (a : R) : sumIDeriv (C a) = C a
R : Type u_1 inst✝ : Semiring R a : R ⊢ sumIDeriv (C a) = C a
rw [sumIDeriv_apply, natDegree_C, zero_add, sum_range_one, Function.iterate_zero_apply]
no goals
bb038e3d9f21b78a
IsModuleTopology.continuous_bilinear_of_pi_fintype
Mathlib/Topology/Algebra/Module/ModuleTopology.lean
theorem continuous_bilinear_of_pi_fintype (ι : Type*) [Finite ι] (bil : (ι → R) →ₗ[R] B →ₗ[R] C) : Continuous (fun ab ↦ bil ab.1 ab.2 : ((ι → R) × B → C))
R : Type u_1 inst✝¹⁰ : TopologicalSpace R inst✝⁹ : CommSemiring R B : Type u_2 inst✝⁸ : AddCommMonoid B inst✝⁷ : Module R B inst✝⁶ : TopologicalSpace B inst✝⁵ : IsModuleTopology R B C : Type u_3 inst✝⁴ : AddCommMonoid C inst✝³ : Module R C inst✝² : TopologicalSpace C inst✝¹ : IsModuleTopology R C ι : Type u_4 inst✝ : Finite ι bil : (ι → R) →ₗ[R] B →ₗ[R] C val✝ : Fintype ι ⊢ (fun fb => (bil fb.1) fb.2) = fun fb => ∑ i : ι, fb.1 i • (bil ⇑(Finsupp.single i 1)) fb.2
ext ⟨f, b⟩
case h.mk R : Type u_1 inst✝¹⁰ : TopologicalSpace R inst✝⁹ : CommSemiring R B : Type u_2 inst✝⁸ : AddCommMonoid B inst✝⁷ : Module R B inst✝⁶ : TopologicalSpace B inst✝⁵ : IsModuleTopology R B C : Type u_3 inst✝⁴ : AddCommMonoid C inst✝³ : Module R C inst✝² : TopologicalSpace C inst✝¹ : IsModuleTopology R C ι : Type u_4 inst✝ : Finite ι bil : (ι → R) →ₗ[R] B →ₗ[R] C val✝ : Fintype ι f : ι → R b : B ⊢ (bil (f, b).1) (f, b).2 = ∑ i : ι, (f, b).1 i • (bil ⇑(Finsupp.single i 1)) (f, b).2
81eedbff87e7f06b
InnerProductSpace.Core.inner_smul_right
Mathlib/Analysis/InnerProductSpace/Defs.lean
theorem inner_smul_right (x y : F) {r : 𝕜} : ⟪x, r • y⟫ = r * ⟪x, y⟫
𝕜 : Type u_1 F : Type u_3 inst✝² : RCLike 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : PreInnerProductSpace.Core 𝕜 F x y : F r : 𝕜 ⊢ ⟪x, r • y⟫_𝕜 = r * ⟪x, y⟫_𝕜
rw [← inner_conj_symm, inner_smul_left]
𝕜 : Type u_1 F : Type u_3 inst✝² : RCLike 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : PreInnerProductSpace.Core 𝕜 F x y : F r : 𝕜 ⊢ (starRingEnd 𝕜) ((starRingEnd 𝕜) r * ⟪y, x⟫_𝕜) = r * ⟪x, y⟫_𝕜
e16f7c85017c8904
AlgebraicGeometry.HasAffineProperty.diagonal_of_openCover
Mathlib/AlgebraicGeometry/Morphisms/Constructors.lean
theorem HasAffineProperty.diagonal_of_openCover (P) {Q} [HasAffineProperty P Q] {X Y : Scheme.{u}} (f : X ⟶ Y) (𝒰 : Scheme.OpenCover.{u} Y) [∀ i, IsAffine (𝒰.obj i)] (𝒰' : ∀ i, Scheme.OpenCover.{u} (pullback f (𝒰.map i))) [∀ i j, IsAffine ((𝒰' i).obj j)] (h𝒰' : ∀ i j k, Q (pullback.mapDesc ((𝒰' i).map j) ((𝒰' i).map k) (𝒰.pullbackHom f i))) : P.diagonal f
case mk.mk.convert_2 P : MorphismProperty Scheme Q : AffineTargetMorphismProperty inst✝² : HasAffineProperty P Q X Y : Scheme f : X ⟶ Y 𝒰 : Y.OpenCover inst✝¹ : ∀ (i : 𝒰.J), IsAffine (𝒰.obj i) 𝒰' : (i : 𝒰.J) → (pullback f (𝒰.map i)).OpenCover inst✝ : ∀ (i : 𝒰.J) (j : (𝒰' i).J), IsAffine ((𝒰' i).obj j) h𝒰' : ∀ (i : 𝒰.J) (j k : (𝒰' i).J), Q (pullback.mapDesc ((𝒰' i).map j) ((𝒰' i).map k) (Scheme.Cover.pullbackHom 𝒰 f i)) this : Q.IsLocal := isLocal_affineProperty P 𝒱 : Scheme.Cover (@IsOpenImmersion) (pullback f f) := Scheme.Cover.bind (Scheme.Pullback.openCoverOfBase 𝒰 f f) fun i => Scheme.Pullback.openCoverOfLeftRight (𝒰' i) (𝒰' i) (pullback.snd f (𝒰.map i)) (pullback.snd f (𝒰.map i)) i1 : ∀ (i : 𝒱.J), IsAffine (𝒱.obj i) i : (Scheme.Pullback.openCoverOfBase 𝒰 f f).J j k : (𝒰' i).J ⊢ pullback.map ((𝒰' i).map j ≫ pullback.snd f (𝒰.map i)) ((𝒰' i).map k ≫ pullback.snd f (𝒰.map i)) f f ((𝒰' i).map j ≫ pullback.fst f (𝒰.map i)) ((𝒰' i).map k ≫ pullback.fst f (𝒰.map i)) (𝒰.map i) ⋯ ⋯ ≫ 𝟙 (pullback.diagonalObj f) = 𝟙 (pullback ((𝒰' i).map j ≫ pullback.snd f (𝒰.map i)) ((𝒰' i).map k ≫ pullback.snd f (𝒰.map i))) ≫ pullback.map ((𝒰' i).map j ≫ pullback.snd f (𝒰.map i)) ((𝒰' i).map k ≫ pullback.snd f (𝒰.map i)) (pullback.snd f (𝒰.map i)) (pullback.snd f (𝒰.map i)) ((𝒰' i).map j) ((𝒰' i).map k) (𝟙 (𝒰.obj i)) ⋯ ⋯ ≫ pullback.map (pullback.snd f (𝒰.map i)) (pullback.snd f (𝒰.map i)) f f (pullback.fst f (𝒰.map i)) (pullback.fst f (𝒰.map i)) (𝒰.map i) ⋯ ⋯
ext1 <;> simp
no goals
69fa16ea5623a629
ENNReal.zero_rpow_def
Mathlib/Analysis/SpecialFunctions/Pow/NNReal.lean
theorem zero_rpow_def (y : ℝ) : (0 : ℝ≥0∞) ^ y = if 0 < y then 0 else if y = 0 then 1 else ⊤
case inl y : ℝ H : 0 < y ⊢ 0 ^ y = if 0 < y then 0 else if y = 0 then 1 else ⊤
simp [H, ne_of_gt, zero_rpow_of_pos, lt_irrefl]
no goals
ccd7a3d0a0150b8a
intervalIntegral.integrableOn_deriv_right_of_nonneg
Mathlib/MeasureTheory/Integral/FundThmCalculus.lean
theorem integrableOn_deriv_right_of_nonneg (hcont : ContinuousOn g (Icc a b)) (hderiv : ∀ x ∈ Ioo a b, HasDerivWithinAt g (g' x) (Ioi x) x) (g'pos : ∀ x ∈ Ioo a b, 0 ≤ g' x) : IntegrableOn g' (Ioc a b)
case pos g' g : ℝ → ℝ a b : ℝ hcont : ContinuousOn g (Icc a b) hderiv : ∀ x ∈ Ioo a b, HasDerivWithinAt g (g' x) (Ioi x) x g'pos : ∀ x ∈ Ioo a b, 0 ≤ g' x hab : a < b ⊢ IntegrableOn g' (Ioc a b) volume
rw [integrableOn_Ioc_iff_integrableOn_Ioo]
case pos g' g : ℝ → ℝ a b : ℝ hcont : ContinuousOn g (Icc a b) hderiv : ∀ x ∈ Ioo a b, HasDerivWithinAt g (g' x) (Ioi x) x g'pos : ∀ x ∈ Ioo a b, 0 ≤ g' x hab : a < b ⊢ IntegrableOn g' (Ioo a b) volume
87311e9302ce7d99
List.zipLeft_eq_zipLeft'
Mathlib/Data/List/Map2.lean
theorem zipLeft_eq_zipLeft' (as : List α) (bs : List β) : zipLeft as bs = (zipLeft' as bs).fst
case cons α : Type u β : Type v bs : List β head✝ : α atl : List α ⊢ zipWithLeft Prod.mk (head✝ :: atl) bs = (zipWithLeft' Prod.mk (head✝ :: atl) bs).fst
cases bs with | nil => rfl | cons _ btl => rw [zipWithLeft, zipWithLeft', cons_inj_right] exact @zipLeft_eq_zipLeft' atl btl
no goals
9c125819a53618fa
List.head_filterMap_of_eq_some
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Lemmas.lean
theorem head_filterMap_of_eq_some {f : α → Option β} {l : List α} (w : l ≠ []) {b : β} (h : f (l.head w) = some b) : (filterMap f l).head ((ne_nil_of_mem (mem_filterMap.2 ⟨_, head_mem w, h⟩))) = b
case cons α : Type u_1 β : Type u_2 f : α → Option β b : β a : α l : List α w : a :: l ≠ [] h : f ((a :: l).head w) = some b ⊢ (filterMap f (a :: l)).head ⋯ = b
simp only [head_cons] at h
case cons α : Type u_1 β : Type u_2 f : α → Option β b : β a : α l : List α w : a :: l ≠ [] h : f a = some b ⊢ (filterMap f (a :: l)).head ⋯ = b
b256857532480341
Int.bmod_zero
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Int/DivModLemmas.lean
theorem bmod_zero : Int.bmod 0 m = 0
m✝ m : Nat h : ↑m / 2 + 2 / 2 ≤ 0 ⊢ 2 ≠ 0 m✝ m : Nat h : (↑m + (1 + 1)) / 2 ≤ 0 ⊢ 2 ∣ 1 + 1
all_goals decide
no goals
aafdd0ab2162fca6
CoxeterSystem.getD_rightInvSeq_mul_self
Mathlib/GroupTheory/Coxeter/Inversion.lean
theorem getD_rightInvSeq_mul_self (ω : List B) (j : ℕ) : ((ris ω).getD j 1) * ((ris ω).getD j 1) = 1
B : Type u_1 W : Type u_2 inst✝ : Group W M : CoxeterMatrix B cs : CoxeterSystem M W ω : List B j : ℕ ⊢ (cs.rightInvSeq ω).getD j 1 * (cs.rightInvSeq ω).getD j 1 = 1
simp_rw [getD_rightInvSeq, mul_assoc]
B : Type u_1 W : Type u_2 inst✝ : Group W M : CoxeterMatrix B cs : CoxeterSystem M W ω : List B j : ℕ ⊢ (cs.wordProd (drop (j + 1) ω))⁻¹ * ((Option.map cs.simple ω[j]?).getD 1 * (cs.wordProd (drop (j + 1) ω) * ((cs.wordProd (drop (j + 1) ω))⁻¹ * ((Option.map cs.simple ω[j]?).getD 1 * cs.wordProd (drop (j + 1) ω))))) = 1
6874aa1b2b35417c
MeasureTheory.LevyProkhorov.continuous_equiv_symm_probabilityMeasure
Mathlib/MeasureTheory/Measure/LevyProkhorovMetric.lean
lemma LevyProkhorov.continuous_equiv_symm_probabilityMeasure : Continuous (LevyProkhorov.equiv (α := ProbabilityMeasure Ω)).symm
Ω : Type u_1 inst✝³ : PseudoMetricSpace Ω inst✝² : MeasurableSpace Ω inst✝¹ : OpensMeasurableSpace Ω inst✝ : SeparableSpace Ω P : ProbabilityMeasure Ω ε : ℝ ε_pos : ε > 0 third_ε_pos : 0 < ε / 3 third_ε_pos' : 0 < ENNReal.ofReal (ε / 3) Es : ℕ → Set Ω Es_mble : ∀ (n : ℕ), MeasurableSet (Es n) Es_bdd : ∀ (n : ℕ), Bornology.IsBounded (Es n) Es_diam : ∀ (n : ℕ), diam (Es n) ≤ ε / 3 Es_cover : ⋃ n, Es n = univ Es_disjoint : Pairwise fun n m => Disjoint (Es n) (Es m) N : ℕ hN : ↑P (⋃ j ∈ Iio N, Es j)ᶜ < ENNReal.ofReal (ε / 3) Js_finite : {J | J ⊆ Iio N}.Finite Gs : Set (Set Ω) := (fun J => thickening (ε / 3) (⋃ j ∈ J, Es j)) '' {J | J ⊆ Iio N} Gs_open : ∀ (J : Set ℕ), IsOpen (thickening (ε / 3) (⋃ j ∈ J, Es j)) mem_nhds_P : ∀ (G : Set Ω), IsOpen G → {Q | ↑P G < ↑Q G + ENNReal.ofReal (ε / 3)} ∈ 𝓝 P Q : ProbabilityMeasure Ω hQ : ∀ i ⊆ Iio N, ↑P (⋃ i_2 ∈ i, thickening (ε / 3) (Es i_2)) < ↑Q (⋃ i_2 ∈ i, thickening (ε / 3) (Es i_2)) + ENNReal.ofReal (ε / 3) δ : ℝ B : Set Ω δ_gt : 2 * (ε / 3) < δ x✝ : MeasurableSet B JB : Set ℕ := {i | B ∩ Es i ≠ ∅ ∧ i ∈ Iio N} B_subset : B ⊆ (⋃ i ∈ JB, thickening (ε / 3) (Es i)) ∪ (⋃ j ∈ Iio N, Es j)ᶜ subset_thickB : ⋃ i ∈ JB, thickening (ε / 3) (Es i) ⊆ thickening δ B ⊢ ↑((equiv (ProbabilityMeasure Ω)).symm P) B ≤ ↑((equiv (ProbabilityMeasure Ω)).symm Q) (thickening δ B) + ENNReal.ofReal δ
apply (measure_mono B_subset).trans ((measure_union_le _ _).trans ?_)
Ω : Type u_1 inst✝³ : PseudoMetricSpace Ω inst✝² : MeasurableSpace Ω inst✝¹ : OpensMeasurableSpace Ω inst✝ : SeparableSpace Ω P : ProbabilityMeasure Ω ε : ℝ ε_pos : ε > 0 third_ε_pos : 0 < ε / 3 third_ε_pos' : 0 < ENNReal.ofReal (ε / 3) Es : ℕ → Set Ω Es_mble : ∀ (n : ℕ), MeasurableSet (Es n) Es_bdd : ∀ (n : ℕ), Bornology.IsBounded (Es n) Es_diam : ∀ (n : ℕ), diam (Es n) ≤ ε / 3 Es_cover : ⋃ n, Es n = univ Es_disjoint : Pairwise fun n m => Disjoint (Es n) (Es m) N : ℕ hN : ↑P (⋃ j ∈ Iio N, Es j)ᶜ < ENNReal.ofReal (ε / 3) Js_finite : {J | J ⊆ Iio N}.Finite Gs : Set (Set Ω) := (fun J => thickening (ε / 3) (⋃ j ∈ J, Es j)) '' {J | J ⊆ Iio N} Gs_open : ∀ (J : Set ℕ), IsOpen (thickening (ε / 3) (⋃ j ∈ J, Es j)) mem_nhds_P : ∀ (G : Set Ω), IsOpen G → {Q | ↑P G < ↑Q G + ENNReal.ofReal (ε / 3)} ∈ 𝓝 P Q : ProbabilityMeasure Ω hQ : ∀ i ⊆ Iio N, ↑P (⋃ i_2 ∈ i, thickening (ε / 3) (Es i_2)) < ↑Q (⋃ i_2 ∈ i, thickening (ε / 3) (Es i_2)) + ENNReal.ofReal (ε / 3) δ : ℝ B : Set Ω δ_gt : 2 * (ε / 3) < δ x✝ : MeasurableSet B JB : Set ℕ := {i | B ∩ Es i ≠ ∅ ∧ i ∈ Iio N} B_subset : B ⊆ (⋃ i ∈ JB, thickening (ε / 3) (Es i)) ∪ (⋃ j ∈ Iio N, Es j)ᶜ subset_thickB : ⋃ i ∈ JB, thickening (ε / 3) (Es i) ⊆ thickening δ B ⊢ ↑((equiv (ProbabilityMeasure Ω)).symm P) (⋃ i ∈ JB, thickening (ε / 3) (Es i)) + ↑((equiv (ProbabilityMeasure Ω)).symm P) (⋃ j ∈ Iio N, Es j)ᶜ ≤ ↑((equiv (ProbabilityMeasure Ω)).symm Q) (thickening δ B) + ENNReal.ofReal δ
1196bd5a9632bf03
CategoryTheory.FinitaryPreExtensive.sigma_desc_iso
Mathlib/CategoryTheory/Extensive.lean
lemma FinitaryPreExtensive.sigma_desc_iso [FinitaryPreExtensive C] {α : Type} [Finite α] {X : C} {Z : α → C} (π : (a : α) → Z a ⟶ X) {Y : C} (f : Y ⟶ X) (hπ : IsIso (Sigma.desc π)) : IsIso (Sigma.desc ((fun _ ↦ pullback.fst _ _) : (a : α) → pullback f (π a) ⟶ _))
C : Type u inst✝² : Category.{v, u} C inst✝¹ : FinitaryPreExtensive C α : Type inst✝ : Finite α X : C Z : α → C π : (a : α) → Z a ⟶ X Y : C f : Y ⟶ X hπ : IsIso (Sigma.desc π) this : IsColimit (Cofan.mk X π) := (coproductIsCoproduct Z).ofPointIso ⊢ IsColimit (Cofan.mk Y fun x => pullback.fst f (π x))
refine (FinitaryPreExtensive.isUniversal_finiteCoproducts this (Cofan.mk _ ((fun _ ↦ pullback.fst _ _) : (a : α) → pullback f (π a) ⟶ _)) (Discrete.natTrans fun i ↦ pullback.snd _ _) f ?_ (NatTrans.equifibered_of_discrete _) ?_).some
case refine_1 C : Type u inst✝² : Category.{v, u} C inst✝¹ : FinitaryPreExtensive C α : Type inst✝ : Finite α X : C Z : α → C π : (a : α) → Z a ⟶ X Y : C f : Y ⟶ X hπ : IsIso (Sigma.desc π) this : IsColimit (Cofan.mk X π) := (coproductIsCoproduct Z).ofPointIso ⊢ (Discrete.natTrans fun i => pullback.snd f (π i.as)) ≫ (Cofan.mk X π).ι = (Cofan.mk Y fun x => pullback.fst f (π x)).ι ≫ (Functor.const (Discrete α)).map f case refine_2 C : Type u inst✝² : Category.{v, u} C inst✝¹ : FinitaryPreExtensive C α : Type inst✝ : Finite α X : C Z : α → C π : (a : α) → Z a ⟶ X Y : C f : Y ⟶ X hπ : IsIso (Sigma.desc π) this : IsColimit (Cofan.mk X π) := (coproductIsCoproduct Z).ofPointIso ⊢ ∀ (j : Discrete α), IsPullback ((Cofan.mk Y fun x => pullback.fst f (π x)).ι.app j) ((Discrete.natTrans fun i => pullback.snd f (π i.as)).app j) f ((Cofan.mk X π).ι.app j)
800d0cda5060197f
Matroid.Indep.fundCircuit_isCircuit
Mathlib/Data/Matroid/Circuit.lean
lemma Indep.fundCircuit_isCircuit (hI : M.Indep I) (hecl : e ∈ M.closure I) (heI : e ∉ I) : M.IsCircuit (M.fundCircuit e I)
case refine_1 α : Type u_1 M : Matroid α I : Set α e : α hI : M.Indep I hecl : e ∈ M.closure I heI : e ∉ I aux : ⋂₀ {J | J ⊆ I ∧ e ∈ M.closure J} ⊆ I ⊢ e ∉ ⋂₀ {J | J ⊆ I ∧ e ∈ M.closure J}
simp [show ∃ x ⊆ I, e ∈ M.closure x ∧ e ∉ x from ⟨I, by simp [hecl, heI]⟩]
no goals
640cc0ceac07193c