name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
CategoryTheory.shiftFunctorCompIsoId_add'_inv_app
Mathlib/CategoryTheory/Shift/Basic.lean
lemma shiftFunctorCompIsoId_add'_inv_app : (shiftFunctorCompIsoId C p' p hp).inv.app X = (shiftFunctorCompIsoId C n' n hn).inv.app X ≫ (shiftFunctorCompIsoId C m' m hm).inv.app (X⟦n'⟧)⟦n⟧' ≫ (shiftFunctorAdd' C m n p h).inv.app (X⟦n'⟧⟦m'⟧) ≫ ((shiftFunctorAdd' C n' m' p' (by rw [← add_left_inj p, hp, ← h, add_assoc, ← add_assoc m', hm, zero_add, hn])).inv.app X)⟦p⟧'
C : Type u A : Type u_1 inst✝² : Category.{v, u} C inst✝¹ : AddGroup A inst✝ : HasShift C A X : C m n p m' n' p' : A hm : m' + m = 0 hn : n' + n = 0 hp : p' + p = 0 h : m + n = p ⊢ p' + m + n = 0
rw [add_assoc, h, hp]
no goals
1740b8167511ce6d
CliffordAlgebra.evenOdd_induction
Mathlib/LinearAlgebra/CliffordAlgebra/Grading.lean
theorem evenOdd_induction (n : ZMod 2) {motive : ∀ x, x ∈ evenOdd Q n → Prop} (range_ι_pow : ∀ (v) (h : v ∈ LinearMap.range (ι Q) ^ n.val), motive v (Submodule.mem_iSup_of_mem ⟨n.val, n.natCast_zmod_val⟩ h)) (add : ∀ x y hx hy, motive x hx → motive y hy → motive (x + y) (Submodule.add_mem _ hx hy)) (ι_mul_ι_mul : ∀ m₁ m₂ x hx, motive x hx → motive (ι Q m₁ * ι Q m₂ * x) (zero_add n ▸ SetLike.mul_mem_graded (ι_mul_ι_mem_evenOdd_zero Q m₁ m₂) hx)) (x : CliffordAlgebra Q) (hx : x ∈ evenOdd Q n) : motive x hx
R : Type u_1 M : Type u_2 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M n : ZMod 2 motive : (x : CliffordAlgebra Q) → x ∈ evenOdd Q n → Prop range_ι_pow : ∀ (v : CliffordAlgebra Q) (h : v ∈ LinearMap.range (ι Q) ^ n.val), motive v ⋯ add : ∀ (x y : CliffordAlgebra Q) (hx : x ∈ evenOdd Q n) (hy : y ∈ evenOdd Q n), motive x hx → motive y hy → motive (x + y) ⋯ ι_mul_ι_mul : ∀ (m₁ m₂ : M) (x : CliffordAlgebra Q) (hx : x ∈ evenOdd Q n), motive x hx → motive ((ι Q) m₁ * (ι Q) m₂ * x) ⋯ x : CliffordAlgebra Q hx : x ∈ evenOdd Q n ⊢ motive x hx
apply Submodule.iSup_induction' (C := motive) _ _ (range_ι_pow 0 (Submodule.zero_mem _)) add
R : Type u_1 M : Type u_2 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M n : ZMod 2 motive : (x : CliffordAlgebra Q) → x ∈ evenOdd Q n → Prop range_ι_pow : ∀ (v : CliffordAlgebra Q) (h : v ∈ LinearMap.range (ι Q) ^ n.val), motive v ⋯ add : ∀ (x y : CliffordAlgebra Q) (hx : x ∈ evenOdd Q n) (hy : y ∈ evenOdd Q n), motive x hx → motive y hy → motive (x + y) ⋯ ι_mul_ι_mul : ∀ (m₁ m₂ : M) (x : CliffordAlgebra Q) (hx : x ∈ evenOdd Q n), motive x hx → motive ((ι Q) m₁ * (ι Q) m₂ * x) ⋯ x : CliffordAlgebra Q hx : x ∈ evenOdd Q n ⊢ ∀ (i : { n_1 // ↑n_1 = n }) (x : CliffordAlgebra Q) (hx : x ∈ LinearMap.range (ι Q) ^ ↑i), motive x ⋯
3b3d6ba6e257fdcc
List.sublist_of_orderEmbedding_getElem?_eq
Mathlib/Data/List/NodupEquivFin.lean
theorem sublist_of_orderEmbedding_getElem?_eq {l l' : List α} (f : ℕ ↪o ℕ) (hf : ∀ ix : ℕ, l[ix]? = l'[f ix]?) : l <+ l'
α : Type u_1 hd : α tl : List α IH : ∀ {l' : List α} (f : ℕ ↪o ℕ), (∀ (ix : ℕ), tl[ix]? = l'[f ix]?) → tl <+ l' l' : List α f : ℕ ↪o ℕ hf : ∀ (ix : ℕ), (hd :: tl)[ix]? = l'[f ix]? w : f 0 < l'.length h : l'[f 0] = hd a b : ℕ ⊢ 0 < b + 1
exact b.succ_pos
no goals
1ef7e5e229e83d6a
Real.volume_pi_ball
Mathlib/MeasureTheory/Measure/Lebesgue/Basic.lean
theorem volume_pi_ball (a : ι → ℝ) {r : ℝ} (hr : 0 < r) : volume (Metric.ball a r) = ENNReal.ofReal ((2 * r) ^ Fintype.card ι)
ι : Type u_1 inst✝ : Fintype ι a : ι → ℝ r : ℝ hr : 0 < r ⊢ volume (Metric.ball a r) = ofReal ((2 * r) ^ Fintype.card ι)
simp only [MeasureTheory.volume_pi_ball a hr, volume_ball, Finset.prod_const]
ι : Type u_1 inst✝ : Fintype ι a : ι → ℝ r : ℝ hr : 0 < r ⊢ ofReal (2 * r) ^ Finset.univ.card = ofReal ((2 * r) ^ Fintype.card ι)
6926f174b772b926
Submodule.goursat
Mathlib/LinearAlgebra/Goursat.lean
/-- **Goursat's lemma** for an arbitrary submodule of a product. If `L` is a submodule of `M × N`, then there exist submodules `M'' ≤ M' ≤ M` and `N'' ≤ N' ≤ N` such that `L ≤ M' × N'`, and `L` is (the image in `M × N` of) the preimage of the graph of an `R`-linear isomorphism `M' ⧸ M'' ≃ N' ⧸ N''`. -/ lemma goursat : ∃ (M' : Submodule R M) (N' : Submodule R N) (M'' : Submodule R M') (N'' : Submodule R N') (e : (M' ⧸ M'') ≃ₗ[R] N' ⧸ N''), L = (e.graph.comap <| M''.mkQ.prodMap N''.mkQ).map (M'.subtype.prodMap N'.subtype)
case h.h.mk.mp R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : Ring R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup N inst✝ : Module R N L : Submodule R (M × N) M' : Submodule R M := map (LinearMap.fst R M N) L N' : Submodule R N := map (LinearMap.snd R M N) L P : ↥L →ₗ[R] ↥M' := (LinearMap.fst R M N).submoduleMap L Q : ↥L →ₗ[R] ↥N' := (LinearMap.snd R M N).submoduleMap L L' : Submodule R (↥M' × ↥N') := LinearMap.range (P.prod Q) hL₁' : Surjective (Prod.fst ∘ ⇑L'.subtype) hL₂' : Surjective (Prod.snd ∘ ⇑L'.subtype) e : (↥M' ⧸ L'.goursatFst) ≃ₗ[R] ↥N' ⧸ L'.goursatSnd he : LinearMap.range (L'.goursatFst.mkQ.prodMap L'.goursatSnd.mkQ ∘ₗ L'.subtype) = (↑e).graph m : M n : N hmn : (m, n) ∈ L ⊢ (m, n) ∈ map (M'.subtype.prodMap N'.subtype) (LinearMap.range (P.prod Q))
simp only [mem_map, LinearMap.mem_range, prod_apply, Subtype.exists, Prod.exists, coe_prodMap, coe_subtype, Prod.map_apply, Prod.mk.injEq, exists_and_right, exists_eq_right_right, exists_eq_right, M', N', fst_apply, snd_apply]
case h.h.mk.mp R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : Ring R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup N inst✝ : Module R N L : Submodule R (M × N) M' : Submodule R M := map (LinearMap.fst R M N) L N' : Submodule R N := map (LinearMap.snd R M N) L P : ↥L →ₗ[R] ↥M' := (LinearMap.fst R M N).submoduleMap L Q : ↥L →ₗ[R] ↥N' := (LinearMap.snd R M N).submoduleMap L L' : Submodule R (↥M' × ↥N') := LinearMap.range (P.prod Q) hL₁' : Surjective (Prod.fst ∘ ⇑L'.subtype) hL₂' : Surjective (Prod.snd ∘ ⇑L'.subtype) e : (↥M' ⧸ L'.goursatFst) ≃ₗ[R] ↥N' ⧸ L'.goursatSnd he : LinearMap.range (L'.goursatFst.mkQ.prodMap L'.goursatSnd.mkQ ∘ₗ L'.subtype) = (↑e).graph m : M n : N hmn : (m, n) ∈ L ⊢ ∃ (x : ∃ x, (m, x) ∈ L) (x_1 : ∃ a, (a, n) ∈ L), ∃ a b, ∃ (b_1 : (a, b) ∈ L), Pi.prod ⇑P ⇑Q ⟨(a, b), b_1⟩ = (⟨m, ⋯⟩, ⟨n, ⋯⟩)
8bafbf13c72f3711
Finset.support_sum_eq
Mathlib/Data/Finsupp/BigOperators.lean
theorem Finset.support_sum_eq [AddCommMonoid M] (s : Finset (ι →₀ M)) (hs : (s : Set (ι →₀ M)).PairwiseDisjoint Finsupp.support) : (s.sum id).support = Finset.sup s Finsupp.support
case intro.intro.hr ι : Type u_1 M : Type u_2 inst✝¹ : DecidableEq ι inst✝ : AddCommMonoid M l : List (ι →₀ M) hn : l.Nodup hs : (↑l.toFinset).PairwiseDisjoint Finsupp.support ⊢ Symmetric (Disjoint on Finsupp.support)
intro x y hxy
case intro.intro.hr ι : Type u_1 M : Type u_2 inst✝¹ : DecidableEq ι inst✝ : AddCommMonoid M l : List (ι →₀ M) hn : l.Nodup hs : (↑l.toFinset).PairwiseDisjoint Finsupp.support x y : ι →₀ M hxy : (Disjoint on Finsupp.support) x y ⊢ (Disjoint on Finsupp.support) y x
67f7aca84a3dab37
FirstOrder.Language.Theory.isSatisfiable_iff_isFinitelySatisfiable
Mathlib/ModelTheory/Satisfiability.lean
theorem isSatisfiable_iff_isFinitelySatisfiable {T : L.Theory} : T.IsSatisfiable ↔ T.IsFinitelySatisfiable := ⟨Theory.IsSatisfiable.isFinitelySatisfiable, fun h => by classical set M : Finset T → Type max u v := fun T0 : Finset T => (h (T0.map (Function.Embedding.subtype fun x => x ∈ T)) T0.map_subtype_subset).some.Carrier let M' := Filter.Product (Ultrafilter.of (Filter.atTop : Filter (Finset T))) M have h' : M' ⊨ T
L : Language T : L.Theory h : T.IsFinitelySatisfiable M : Finset ↑T → Type (max u v) := fun T0 => ↑(Nonempty.some ⋯) M' : Type (max u v) := (↑(Ultrafilter.of Filter.atTop)).Product M ⊢ M' ⊨ T
refine ⟨fun φ hφ => ?_⟩
L : Language T : L.Theory h : T.IsFinitelySatisfiable M : Finset ↑T → Type (max u v) := fun T0 => ↑(Nonempty.some ⋯) M' : Type (max u v) := (↑(Ultrafilter.of Filter.atTop)).Product M φ : L.Sentence hφ : φ ∈ T ⊢ M' ⊨ φ
360797a9dc61769a
PartialHomeomorph.contDiffAt_symm
Mathlib/Analysis/Calculus/ContDiff/Operations.lean
theorem PartialHomeomorph.contDiffAt_symm [CompleteSpace E] (f : PartialHomeomorph E F) {f₀' : E ≃L[𝕜] F} {a : F} (ha : a ∈ f.target) (hf₀' : HasFDerivAt f (f₀' : E →L[𝕜] F) (f.symm a)) (hf : ContDiffAt 𝕜 n f (f.symm a)) : ContDiffAt 𝕜 n f.symm a
case hsuc.intro.intro.intro.intro.refine_2 𝕜 : Type u_1 inst✝⁵ : NontriviallyNormedField 𝕜 E : Type uE inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace 𝕜 E F : Type uF inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F n✝ : WithTop ℕ∞ inst✝ : CompleteSpace E f : PartialHomeomorph E F f₀' : E ≃L[𝕜] F a : F ha : a ∈ f.target hf₀' : HasFDerivAt (↑f) (↑f₀') (↑f.symm a) n : ℕ IH : ContDiffAt 𝕜 (↑↑n) (↑f) (↑f.symm a) → ContDiffAt 𝕜 (↑↑n) (↑f.symm) a hf : ContDiffAt 𝕜 (↑↑n.succ) (↑f) (↑f.symm a) f' : E → E →L[𝕜] F hf' : ContDiffAt 𝕜 (↑n) f' (↑f.symm a) u : Set E hu : u ∈ 𝓝 (↑f.symm a) hff' : ∀ x ∈ u, HasFDerivAt (↑f) (f' x) x eq_f₀' : f' (↑f.symm a) = ↑f₀' h_deriv₁ : ContDiffAt 𝕜 (↑n) inverse (f' (↑f.symm a)) ⊢ ContDiffAt 𝕜 (↑n) (inverse ∘ f' ∘ ↑f.symm) a
have h_deriv₂ : ContDiffAt 𝕜 n f.symm a := by refine IH (hf.of_le ?_) norm_cast exact Nat.le_succ n
case hsuc.intro.intro.intro.intro.refine_2 𝕜 : Type u_1 inst✝⁵ : NontriviallyNormedField 𝕜 E : Type uE inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace 𝕜 E F : Type uF inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F n✝ : WithTop ℕ∞ inst✝ : CompleteSpace E f : PartialHomeomorph E F f₀' : E ≃L[𝕜] F a : F ha : a ∈ f.target hf₀' : HasFDerivAt (↑f) (↑f₀') (↑f.symm a) n : ℕ IH : ContDiffAt 𝕜 (↑↑n) (↑f) (↑f.symm a) → ContDiffAt 𝕜 (↑↑n) (↑f.symm) a hf : ContDiffAt 𝕜 (↑↑n.succ) (↑f) (↑f.symm a) f' : E → E →L[𝕜] F hf' : ContDiffAt 𝕜 (↑n) f' (↑f.symm a) u : Set E hu : u ∈ 𝓝 (↑f.symm a) hff' : ∀ x ∈ u, HasFDerivAt (↑f) (f' x) x eq_f₀' : f' (↑f.symm a) = ↑f₀' h_deriv₁ : ContDiffAt 𝕜 (↑n) inverse (f' (↑f.symm a)) h_deriv₂ : ContDiffAt 𝕜 (↑n) (↑f.symm) a ⊢ ContDiffAt 𝕜 (↑n) (inverse ∘ f' ∘ ↑f.symm) a
db52077be919f1af
krullTopology_mem_nhds_one_iff
Mathlib/FieldTheory/KrullTopology.lean
lemma krullTopology_mem_nhds_one_iff (K L : Type*) [Field K] [Field L] [Algebra K L] (s : Set (L ≃ₐ[K] L)) : s ∈ 𝓝 1 ↔ ∃ E : IntermediateField K L, FiniteDimensional K E ∧ (E.fixingSubgroup : Set (L ≃ₐ[K] L)) ⊆ s
case mp.intro.intro.intro.intro.intro.intro K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L s : Set (L ≃ₐ[K] L) E : IntermediateField K L fin : E ∈ finiteExts K L hE : (fun g => g.carrier) E.fixingSubgroup ⊆ s ⊢ ∃ E, FiniteDimensional K ↥E ∧ ↑E.fixingSubgroup ⊆ s
exact ⟨E, fin, hE⟩
no goals
f860557d167209ce
inr_comp_cfcₙHom_eq_cfcₙAux
Mathlib/Analysis/CStarAlgebra/ContinuousFunctionalCalculus/Basic.lean
lemma inr_comp_cfcₙHom_eq_cfcₙAux {A : Type*} [NonUnitalCStarAlgebra A] (a : A) [ha : IsStarNormal a] : (inrNonUnitalStarAlgHom ℂ A).comp (cfcₙHom ha) = cfcₙAux (isStarNormal_inr (R := ℂ) (A := A)) a ha
A : Type u_2 inst✝ : NonUnitalCStarAlgebra A a : A ha : IsStarNormal a h : ∀ (a : A), IsStarNormal ↑a ↔ IsStarNormal a ⊢ ((inrNonUnitalStarAlgHom ℂ A).comp (cfcₙHom ha)) { toContinuousMap := ContinuousMap.restrict (σₙ ℂ a) (ContinuousMap.id ℂ), map_zero' := ⋯ } = ↑a
congrm(inr $(cfcₙHom_id ha))
no goals
6489793b55e07998
LocalSubring.exists_le_valuationSubring
Mathlib/RingTheory/Valuation/LocalSubring.lean
@[stacks 00IA] lemma LocalSubring.exists_le_valuationSubring (A : LocalSubring K) : ∃ B : ValuationSubring K, A ≤ B.toLocalSubring
case refine_2.mk.intro.mk.intro K : Type u_3 inst✝ : Field K A✝ : LocalSubring K s : Set (LocalSubring K) hs : s ⊆ Set.Ici A✝ H : IsChain (fun x1 x2 => x1 ≤ x2) s y : LocalSubring K hys : y ∈ s inst : Nonempty ↑s hdir : Directed LE.le (toSubring ∘ fun x => ↑x) A : LocalSubring K hA : A ∈ s a : K haA : a ∈ A.toSubring h : IsUnit ((Subring.inclusion ⋯) ⟨a, haA⟩) b : K hb : b ∈ (mk (⨆ i, (↑i).toSubring)).toSubring e : (Subring.inclusion ⋯) ⟨a, haA⟩ * ⟨b, hb⟩ = 1 B : { a // a ∈ s } hbB : b ∈ (↑B).toSubring ⊢ IsUnit ⟨a, haA⟩
obtain ⟨C, hCA, hCB⟩ := H.directed ⟨A, hA⟩ B
case refine_2.mk.intro.mk.intro.intro.intro K : Type u_3 inst✝ : Field K A✝ : LocalSubring K s : Set (LocalSubring K) hs : s ⊆ Set.Ici A✝ H : IsChain (fun x1 x2 => x1 ≤ x2) s y : LocalSubring K hys : y ∈ s inst : Nonempty ↑s hdir : Directed LE.le (toSubring ∘ fun x => ↑x) A : LocalSubring K hA : A ∈ s a : K haA : a ∈ A.toSubring h : IsUnit ((Subring.inclusion ⋯) ⟨a, haA⟩) b : K hb : b ∈ (mk (⨆ i, (↑i).toSubring)).toSubring e : (Subring.inclusion ⋯) ⟨a, haA⟩ * ⟨b, hb⟩ = 1 B : { a // a ∈ s } hbB : b ∈ (↑B).toSubring C : { a // a ∈ s } hCA : (fun x => ↑x) ⟨A, hA⟩ ≤ (fun x => ↑x) C hCB : (fun x => ↑x) B ≤ (fun x => ↑x) C ⊢ IsUnit ⟨a, haA⟩
926576b935296dd2
smul_singleton_mem_nhds_of_sigmaCompact
Mathlib/Topology/Algebra/Group/OpenMapping.lean
theorem smul_singleton_mem_nhds_of_sigmaCompact {U : Set G} (hU : U ∈ 𝓝 1) (x : X) : U • {x} ∈ 𝓝 x
G : Type u_1 X : Type u_2 inst✝⁹ : TopologicalSpace G inst✝⁸ : TopologicalSpace X inst✝⁷ : Group G inst✝⁶ : IsTopologicalGroup G inst✝⁵ : MulAction G X inst✝⁴ : SigmaCompactSpace G inst✝³ : BaireSpace X inst✝² : T2Space X inst✝¹ : ContinuousSMul G X inst✝ : IsPretransitive G X U : Set G hU : U ∈ 𝓝 1 x : X V : Set G V_mem : V ∈ 𝓝 1 V_closed : IsClosed V V_symm : V⁻¹ = V VU : V * V ⊆ U s : Set G s_count : s.Countable hs : ⋃ g ∈ s, g • V = univ K : ℕ → Set G := compactCovering G F : ℕ × ↑s → Set X := fun p => (K p.1 ∩ ↑p.2 • V) • {x} this✝ : Nonempty X this : Encodable ↑s n : ℕ g : G hg : g ∈ s H : IsCompact ((fun g => g • x) '' (K n ∩ g • V)) ⊢ IsCompact (F (n, ⟨g, hg⟩))
simpa only [F, smul_singleton] using H
no goals
09fff4470c6f8515
List.mapFinIdx_append
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/MapIdx.lean
theorem mapFinIdx_append {K L : List α} {f : (i : Nat) → α → (h : i < (K ++ L).length) → β} : (K ++ L).mapFinIdx f = K.mapFinIdx (fun i a h => f i a (by simp; omega)) ++ L.mapFinIdx (fun i a h => f (i + K.length) a (by simp; omega))
case h α : Type u_1 β : Type u_2 K L : List α f : (i : Nat) → α → i < (K ++ L).length → β i : Nat h₁ : i < ((K ++ L).mapFinIdx f).length h₂ : i < ((K.mapFinIdx fun i a h => f i a ⋯) ++ L.mapFinIdx fun i a h => f (i + K.length) a ⋯).length ⊢ f i (K ++ L)[i] ⋯ = if h : i < K.length then f i K[i] ⋯ else f (i - K.length + K.length) L[i - K.length] ⋯
split <;> rename_i h
case h.isTrue α : Type u_1 β : Type u_2 K L : List α f : (i : Nat) → α → i < (K ++ L).length → β i : Nat h₁ : i < ((K ++ L).mapFinIdx f).length h₂ : i < ((K.mapFinIdx fun i a h => f i a ⋯) ++ L.mapFinIdx fun i a h => f (i + K.length) a ⋯).length h : i < K.length ⊢ f i (K ++ L)[i] ⋯ = f i K[i] ⋯ case h.isFalse α : Type u_1 β : Type u_2 K L : List α f : (i : Nat) → α → i < (K ++ L).length → β i : Nat h₁ : i < ((K ++ L).mapFinIdx f).length h₂ : i < ((K.mapFinIdx fun i a h => f i a ⋯) ++ L.mapFinIdx fun i a h => f (i + K.length) a ⋯).length h : ¬i < K.length ⊢ f i (K ++ L)[i] ⋯ = f (i - K.length + K.length) L[i - K.length] ⋯
3176fb50755ce896
Measurable.liminf'
Mathlib/MeasureTheory/Constructions/BorelSpace/Order.lean
theorem Measurable.liminf' {ι ι'} {f : ι → δ → α} {v : Filter ι} (hf : ∀ i, Measurable (f i)) {p : ι' → Prop} {s : ι' → Set ι} (hv : v.HasCountableBasis p s) (hs : ∀ j, (s j).Countable) : Measurable fun x => liminf (f · x) v
α : Type u_1 δ : Type u_4 inst✝⁴ : TopologicalSpace α mα : MeasurableSpace α inst✝³ : BorelSpace α mδ : MeasurableSpace δ inst✝² : ConditionallyCompleteLinearOrder α inst✝¹ : OrderTopology α inst✝ : SecondCountableTopology α ι : Type u_5 ι' : Type u_6 f : ι → δ → α v : Filter ι hf : ∀ (i : ι), Measurable (f i) p : ι' → Prop s : ι' → Set ι hv : v.HasCountableBasis p s hs : ∀ (j : ι'), (s j).Countable this✝ : Countable (Subtype p) hp : Nonempty (Subtype p) H : ¬∃ j, s ↑j = ∅ this : ∀ (i : ι'), Countable ↑(s i) m : Subtype p → Set δ := fun j => {x | BddBelow (range fun i => f (↑i) x)} m_meas : ∀ (j : Subtype p), MeasurableSet (m j) mc_meas : MeasurableSet {x | ∀ (j : Subtype p), x ∉ m j} j : Subtype p reparam : δ → Subtype p → Subtype p := fun x => liminf_reparam (fun i => f i x) s p F0 : Subtype p → δ → α := fun j x => ⨅ i, f (↑i) x F0_meas : ∀ (j : Subtype p), Measurable (F0 j) F1 : δ → α := fun x => F0 (reparam x j) x hF1 : F1 = fun x => F0 (reparam x j) x g : ℕ → Subtype p := Classical.choose ⋯ x : δ ⊢ ∃ n, x ∈ m (g n) ∨ ∀ (k : Subtype p), x ∉ m k
by_cases H : ∃ k, x ∈ m k
case pos α : Type u_1 δ : Type u_4 inst✝⁴ : TopologicalSpace α mα : MeasurableSpace α inst✝³ : BorelSpace α mδ : MeasurableSpace δ inst✝² : ConditionallyCompleteLinearOrder α inst✝¹ : OrderTopology α inst✝ : SecondCountableTopology α ι : Type u_5 ι' : Type u_6 f : ι → δ → α v : Filter ι hf : ∀ (i : ι), Measurable (f i) p : ι' → Prop s : ι' → Set ι hv : v.HasCountableBasis p s hs : ∀ (j : ι'), (s j).Countable this✝ : Countable (Subtype p) hp : Nonempty (Subtype p) H✝ : ¬∃ j, s ↑j = ∅ this : ∀ (i : ι'), Countable ↑(s i) m : Subtype p → Set δ := fun j => {x | BddBelow (range fun i => f (↑i) x)} m_meas : ∀ (j : Subtype p), MeasurableSet (m j) mc_meas : MeasurableSet {x | ∀ (j : Subtype p), x ∉ m j} j : Subtype p reparam : δ → Subtype p → Subtype p := fun x => liminf_reparam (fun i => f i x) s p F0 : Subtype p → δ → α := fun j x => ⨅ i, f (↑i) x F0_meas : ∀ (j : Subtype p), Measurable (F0 j) F1 : δ → α := fun x => F0 (reparam x j) x hF1 : F1 = fun x => F0 (reparam x j) x g : ℕ → Subtype p := Classical.choose ⋯ x : δ H : ∃ k, x ∈ m k ⊢ ∃ n, x ∈ m (g n) ∨ ∀ (k : Subtype p), x ∉ m k case neg α : Type u_1 δ : Type u_4 inst✝⁴ : TopologicalSpace α mα : MeasurableSpace α inst✝³ : BorelSpace α mδ : MeasurableSpace δ inst✝² : ConditionallyCompleteLinearOrder α inst✝¹ : OrderTopology α inst✝ : SecondCountableTopology α ι : Type u_5 ι' : Type u_6 f : ι → δ → α v : Filter ι hf : ∀ (i : ι), Measurable (f i) p : ι' → Prop s : ι' → Set ι hv : v.HasCountableBasis p s hs : ∀ (j : ι'), (s j).Countable this✝ : Countable (Subtype p) hp : Nonempty (Subtype p) H✝ : ¬∃ j, s ↑j = ∅ this : ∀ (i : ι'), Countable ↑(s i) m : Subtype p → Set δ := fun j => {x | BddBelow (range fun i => f (↑i) x)} m_meas : ∀ (j : Subtype p), MeasurableSet (m j) mc_meas : MeasurableSet {x | ∀ (j : Subtype p), x ∉ m j} j : Subtype p reparam : δ → Subtype p → Subtype p := fun x => liminf_reparam (fun i => f i x) s p F0 : Subtype p → δ → α := fun j x => ⨅ i, f (↑i) x F0_meas : ∀ (j : Subtype p), Measurable (F0 j) F1 : δ → α := fun x => F0 (reparam x j) x hF1 : F1 = fun x => F0 (reparam x j) x g : ℕ → Subtype p := Classical.choose ⋯ x : δ H : ¬∃ k, x ∈ m k ⊢ ∃ n, x ∈ m (g n) ∨ ∀ (k : Subtype p), x ∉ m k
92aa2e449ca3c5d1
Lat.id_apply
Mathlib/Order/Category/Lat.lean
lemma id_apply (X : Lat) (x : X) : (𝟙 X : X ⟶ X) x = x
X : Lat x : ↑X ⊢ (ConcreteCategory.hom (𝟙 X)) x = x
simp
no goals
32c5b178eb0b3749
MeasureTheory.condExp_bot_ae_eq
Mathlib/MeasureTheory/Function/ConditionalExpectation/Basic.lean
theorem condExp_bot_ae_eq (f : α → E) : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ
case inl α : Type u_1 E : Type u_3 m₀ : MeasurableSpace α inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : α → E ⊢ 0[f|⊥] =ᶠ[ae 0] fun x => (0 Set.univ).toReal⁻¹ • ∫ (x : α), f x ∂0
rw [ae_zero]
case inl α : Type u_1 E : Type u_3 m₀ : MeasurableSpace α inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : α → E ⊢ 0[f|⊥] =ᶠ[⊥] fun x => (0 Set.univ).toReal⁻¹ • ∫ (x : α), f x ∂0
767e3c75448f429e
AlgebraicTopology.AlternatingFaceMapComplex.d_squared
Mathlib/AlgebraicTopology/AlternatingFaceMapComplex.lean
theorem d_squared (n : ℕ) : objD X (n + 1) ≫ objD X n = 0
case h.mk.e_a.H C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C n : ℕ P : Type := Fin (n + 2) × Fin (n + 3) S : Finset P := Finset.filter (fun ij => ↑ij.2 ≤ ↑ij.1) Finset.univ φ : (ij : P) → ij ∈ S → P := fun ij hij => (ij.2.castLT ⋯, ij.1.succ) i : Fin (n + 2) j : Fin (n + 3) hij : (i, j) ∈ S ⊢ (i, j).2 ≤ (i, j).1.castSucc
simpa [S] using hij
no goals
795ab48b2006c7af
AlgebraicGeometry.ProjectiveSpectrum.Proj.isLocalization_atPrime
Mathlib/AlgebraicGeometry/ProjectiveSpectrum/Scheme.lean
/-- If `x` is a point in the basic open set `D(f)` where `f` is a homogeneous element of positive degree, then the homogeneously localized ring `A⁰ₓ` has the universal property of the localization of `A⁰_f` at `φ(x)` where `φ : Proj|D(f) ⟶ Spec A⁰_f` is the morphism of locally ringed space constructed as above. -/ lemma isLocalization_atPrime (f) (x : pbo f) {m} (f_deg : f ∈ 𝒜 m) (hm : 0 < m) : @IsLocalization (Away 𝒜 f) _ ((toSpec 𝒜 f).base x).asIdeal.primeCompl (AtPrime 𝒜 x.1.asHomogeneousIdeal.toIdeal) _ (mapId 𝒜 (Submonoid.powers_le.mpr x.2)).toAlgebra
case exists_of_eq.intro.intro.intro.intro.intro.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A x : ↥(pbo f) m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m this : Algebra (A⁰_ f) (AtPrime 𝒜 (↑x).asHomogeneousIdeal.toIdeal) := (mapId 𝒜 ⋯).toAlgebra y z : NumDenSameDeg 𝒜 (Submonoid.powers f) e✝ : (algebraMap (A⁰_ f) (AtPrime 𝒜 (↑x).asHomogeneousIdeal.toIdeal)) (HomogeneousLocalization.mk y) = (algebraMap (A⁰_ f) (AtPrime 𝒜 (↑x).asHomogeneousIdeal.toIdeal)) (HomogeneousLocalization.mk z) i : ℕ c : A hc : c ∈ 𝒜 i hc' : c ∉ (↑x).asHomogeneousIdeal e : c * (↑z.den * ↑y.num) = c * (↑y.den * ↑z.num) ⊢ HomogeneousLocalization.val (↑⟨HomogeneousLocalization.mk { deg := m * i, num := ⟨c ^ m, ⋯⟩, den := ⟨f ^ i, ⋯⟩, den_mem := ⋯ }, ⋯⟩ * HomogeneousLocalization.mk y) = HomogeneousLocalization.val (↑⟨HomogeneousLocalization.mk { deg := m * i, num := ⟨c ^ m, ⋯⟩, den := ⟨f ^ i, ⋯⟩, den_mem := ⋯ }, ⋯⟩ * HomogeneousLocalization.mk z)
simp only [val_mul, val_mk, mk_eq_mk', ← IsLocalization.mk'_mul, Submonoid.mk_mul_mk, IsLocalization.mk'_eq_iff_eq, mul_assoc]
case exists_of_eq.intro.intro.intro.intro.intro.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A x : ↥(pbo f) m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m this : Algebra (A⁰_ f) (AtPrime 𝒜 (↑x).asHomogeneousIdeal.toIdeal) := (mapId 𝒜 ⋯).toAlgebra y z : NumDenSameDeg 𝒜 (Submonoid.powers f) e✝ : (algebraMap (A⁰_ f) (AtPrime 𝒜 (↑x).asHomogeneousIdeal.toIdeal)) (HomogeneousLocalization.mk y) = (algebraMap (A⁰_ f) (AtPrime 𝒜 (↑x).asHomogeneousIdeal.toIdeal)) (HomogeneousLocalization.mk z) i : ℕ c : A hc : c ∈ 𝒜 i hc' : c ∉ (↑x).asHomogeneousIdeal e : c * (↑z.den * ↑y.num) = c * (↑y.den * ↑z.num) ⊢ (algebraMap A (Localization (Submonoid.powers f))) (f ^ i * (↑z.den * (c ^ m * ↑y.num))) = (algebraMap A (Localization (Submonoid.powers f))) (f ^ i * (↑y.den * (c ^ m * ↑z.num)))
afc745eaf2bf3f81
Polynomial.add_scaleRoots_of_natDegree_eq
Mathlib/RingTheory/Polynomial/ScaleRoots.lean
lemma add_scaleRoots_of_natDegree_eq (p q : R[X]) (r : R) (h : natDegree p = natDegree q) : r ^ (natDegree p - natDegree (p + q)) • (p + q).scaleRoots r = p.scaleRoots r + q.scaleRoots r
case a R : Type u_1 inst✝ : CommSemiring R p q : R[X] r : R h : p.natDegree = q.natDegree n : ℕ ⊢ (r ^ (p.natDegree - (p + q).natDegree) • (p + q).scaleRoots r).coeff n = (p.scaleRoots r + q.scaleRoots r).coeff n
simp only [coeff_smul, coeff_scaleRoots, coeff_add, smul_eq_mul, mul_comm (r ^ _), ← pow_add, ← h, ← add_mul, add_comm (_ - n)]
case a R : Type u_1 inst✝ : CommSemiring R p q : R[X] r : R h : p.natDegree = q.natDegree n : ℕ ⊢ (p.coeff n + q.coeff n) * r ^ ((p + q).natDegree - n) * r ^ (p.natDegree - (p + q).natDegree) = (p.coeff n + q.coeff n) * r ^ (p.natDegree - n)
5945b7da60f24c45
Subgroup.Normal.commutator_le_of_self_sup_commutative_eq_top
Mathlib/GroupTheory/Abelianization.lean
theorem Subgroup.Normal.commutator_le_of_self_sup_commutative_eq_top {N : Subgroup G} [N.Normal] {H : Subgroup G} (hHN : N ⊔ H = ⊤) (hH : Subgroup.IsCommutative H) : _root_.commutator G ≤ N
G : Type u inst✝¹ : Group G N : Subgroup G inst✝ : N.Normal H : Subgroup G hHN : N ⊔ H = ⊤ hH : H.IsCommutative φ : ↥H →ₙ* G ⧸ N := ↑((QuotientGroup.mk' N).comp H.subtype) ⊢ Subgroup.map (QuotientGroup.mk' N) ⊤ = ⊤
rw [← MonoidHom.range_eq_map, MonoidHom.range_eq_top]
G : Type u inst✝¹ : Group G N : Subgroup G inst✝ : N.Normal H : Subgroup G hHN : N ⊔ H = ⊤ hH : H.IsCommutative φ : ↥H →ₙ* G ⧸ N := ↑((QuotientGroup.mk' N).comp H.subtype) ⊢ Function.Surjective ⇑(QuotientGroup.mk' N)
4f1c7225fbfaf09a
ModP.mul_ne_zero_of_pow_p_ne_zero
Mathlib/RingTheory/Perfection.lean
theorem mul_ne_zero_of_pow_p_ne_zero {x y : ModP O p} (hx : x ^ p ≠ 0) (hy : y ^ p ≠ 0) : x * y ≠ 0
case pos K : Type u₁ inst✝² : Field K v : Valuation K ℝ≥0 O : Type u₂ inst✝¹ : CommRing O inst✝ : Algebra O K hv : v.Integers O p : ℕ hp : Fact (Nat.Prime p) r : O hx : v ↑p ^ (1 / ↑p) < v ((algebraMap O K) r) s : O hy : v ↑p ^ (1 / ↑p) < v ((algebraMap O K) s) h1p : 0 < 1 / ↑p hvp : v ↑p = 0 ⊢ v ↑p ≤ v ↑p ^ (1 / ↑p) * v ↑p ^ (1 / ↑p)
rw [hvp]
case pos K : Type u₁ inst✝² : Field K v : Valuation K ℝ≥0 O : Type u₂ inst✝¹ : CommRing O inst✝ : Algebra O K hv : v.Integers O p : ℕ hp : Fact (Nat.Prime p) r : O hx : v ↑p ^ (1 / ↑p) < v ((algebraMap O K) r) s : O hy : v ↑p ^ (1 / ↑p) < v ((algebraMap O K) s) h1p : 0 < 1 / ↑p hvp : v ↑p = 0 ⊢ 0 ≤ 0 ^ (1 / ↑p) * 0 ^ (1 / ↑p)
fcaa6e56fffb7efd
Real.exists_extension_norm_eq
Mathlib/Analysis/NormedSpace/HahnBanach/Extension.lean
theorem exists_extension_norm_eq (p : Subspace ℝ E) (f : p →L[ℝ] ℝ) : ∃ g : E →L[ℝ] ℝ, (∀ x : p, g x = f x) ∧ ‖g‖ = ‖f‖
E : Type u_1 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E p : Subspace ℝ E f : ↥p →L[ℝ] ℝ c : ℝ hc : 0 < c x : E ⊢ (fun x => ‖f‖ * ‖x‖) (c • x) = c * (fun x => ‖f‖ * ‖x‖) x
simp only [norm_smul c x, Real.norm_eq_abs, abs_of_pos hc, mul_left_comm]
no goals
0f306ef1f16e3415
CategoryTheory.Limits.preservesBinaryBiproduct_of_preservesBinaryProduct
Mathlib/CategoryTheory/Preadditive/Biproducts.lean
/-- A functor between preadditive categories that preserves (zero morphisms and) binary products preserves binary biproducts. -/ lemma preservesBinaryBiproduct_of_preservesBinaryProduct {X Y : C} [PreservesLimit (pair X Y) F] : PreservesBinaryBiproduct X Y F where preserves {b} hb := ⟨isBinaryBilimitOfIsLimit _ <| IsLimit.ofIsoLimit ((IsLimit.postcomposeHomEquiv (diagramIsoPair _) (F.mapCone b.toCone)).symm (isLimitOfPreserves F hb.isLimit)) <| Cones.ext (by dsimp; rfl) fun j => by rcases j with ⟨⟨⟩⟩ <;> simp⟩
C : Type u inst✝⁵ : Category.{v, u} C inst✝⁴ : Preadditive C D : Type u' inst✝³ : Category.{v', u'} D inst✝² : Preadditive D F : C ⥤ D inst✝¹ : F.PreservesZeroMorphisms X Y : C inst✝ : PreservesLimit (pair X Y) F b : BinaryBicone X Y hb : b.IsBilimit ⊢ F.obj b.pt ≅ F.obj b.pt
rfl
no goals
07a7c7d65f60322c
PMF.toOuterMeasure_bindOnSupport_apply
Mathlib/Probability/ProbabilityMassFunction/Monad.lean
theorem toOuterMeasure_bindOnSupport_apply : (p.bindOnSupport f).toOuterMeasure s = ∑' a, p a * if h : p a = 0 then 0 else (f a h).toOuterMeasure s
α : Type u_1 β : Type u_2 p : PMF α f : (a : α) → a ∈ p.support → PMF β s : Set β ⊢ (p.bindOnSupport f).toOuterMeasure s = ∑' (a : α), p a * if h : p a = 0 then 0 else (f a h).toOuterMeasure s
simp only [toOuterMeasure_apply, Set.indicator_apply, bindOnSupport_apply]
α : Type u_1 β : Type u_2 p : PMF α f : (a : α) → a ∈ p.support → PMF β s : Set β ⊢ ∑' (x : β), s.indicator (⇑(p.bindOnSupport f)) x = ∑' (a : α), p a * if h : p a = 0 then 0 else ∑' (x : β), s.indicator (⇑(f a ⋯)) x
48552b8cdb86bb57
MeasureTheory.withDensity_inv_same₀
Mathlib/MeasureTheory/Measure/WithDensity.lean
lemma withDensity_inv_same₀ {μ : Measure α} {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) (hf_ne_zero : ∀ᵐ x ∂μ, f x ≠ 0) (hf_ne_top : ∀ᵐ x ∂μ, f x ≠ ∞) : (μ.withDensity f).withDensity (fun x ↦ (f x)⁻¹) = μ
case h α : Type u_1 m0 : MeasurableSpace α μ : Measure α f : α → ℝ≥0∞ hf : AEMeasurable f μ hf_ne_zero✝ : ∀ᵐ (x : α) ∂μ, f x ≠ 0 hf_ne_top✝ : ∀ᵐ (x : α) ∂μ, f x ≠ ⊤ x : α hf_ne_zero : f x ≠ 0 hf_ne_top : f x ≠ ⊤ ⊢ f x * (f x)⁻¹ = 1 x
rw [ENNReal.mul_inv_cancel hf_ne_zero hf_ne_top, Pi.one_apply]
no goals
afe625e716585194
MeasureTheory.absolutelyContinuous_of_isMulLeftInvariant
Mathlib/MeasureTheory/Group/Prod.lean
theorem absolutelyContinuous_of_isMulLeftInvariant [IsMulLeftInvariant ν] (hν : ν ≠ 0) : μ ≪ ν
G : Type u_1 inst✝⁷ : MeasurableSpace G inst✝⁶ : Group G inst✝⁵ : MeasurableMul₂ G μ ν : Measure G inst✝⁴ : SFinite ν inst✝³ : SFinite μ inst✝² : MeasurableInv G inst✝¹ : μ.IsMulLeftInvariant inst✝ : ν.IsMulLeftInvariant hν : ν ≠ 0 s : Set G sm : MeasurableSet s hνs : ν s = 0 h1 : μ s = 0 ⊢ μ s = 0
exact h1
no goals
3b30d34d996bb593
Array.toList_fst_unzip
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Lemmas.lean
theorem toList_fst_unzip (as : Array (α × β)) : as.unzip.1.toList = as.toList.unzip.1
α : Type u_1 β : Type u_2 as : Array (α × β) ⊢ as.unzip.fst.toList = as.toList.unzip.fst
simp
no goals
5d0be5483eada628
tprod_empty
Mathlib/Topology/Algebra/InfiniteSum/Basic.lean
theorem tprod_empty [IsEmpty β] : ∏' b, f b = 1
α : Type u_1 β : Type u_2 inst✝² : CommMonoid α inst✝¹ : TopologicalSpace α f : β → α inst✝ : IsEmpty β ⊢ ∏' (b : β), f b = 1
rw [tprod_eq_prod (s := (∅ : Finset β))] <;> simp
no goals
38ca6830aa7e9b06
ZMod.LFunction_stdAddChar_eq_expZeta
Mathlib/NumberTheory/LSeries/ZMod.lean
/-- The `LFunction` of the function `x ↦ e (j * x)`, where `e : ZMod N → ℂ` is the standard additive character, is `expZeta (j / N)`. Note this is not at all obvious from the definitions, and we prove it by analytic continuation from the convergence range. -/ lemma LFunction_stdAddChar_eq_expZeta (j : ZMod N) (s : ℂ) (hjs : j ≠ 0 ∨ s ≠ 1) : LFunction (fun k ↦ 𝕖 (j * k)) s = expZeta (ZMod.toAddCircle j) s
N : ℕ inst✝ : NeZero N j : ZMod N s : ℂ hjs : j ≠ 0 ∨ s ≠ 1 U : Set ℂ := if j = 0 then {z | z ≠ 1} else Set.univ V : Set ℂ := {z | 1 < z.re} hUo : IsOpen U f : ℂ → ℂ := LFunction fun k => 𝕖 (j * k) g : ℂ → ℂ := expZeta (toAddCircle j) hU : ∀ {u : ℂ}, u ∈ U ↔ u ≠ 1 ∨ j ≠ 0 hf : AnalyticOnNhd ℂ f U hg : AnalyticOnNhd ℂ g U hUc : IsPreconnected U hV : V ∈ 𝓝 2 hUmem : 2 ∈ U hUmem' : s ∈ U ⊢ f =ᶠ[𝓝 2] g
filter_upwards [hV] with z using LFunction_stdAddChar_eq_expZeta_of_one_lt_re _
no goals
11c978f7c59083e2
CategoryTheory.Adjunction.full_L_of_isSplitEpi_unit_app
Mathlib/CategoryTheory/Adjunction/FullyFaithful.lean
/-- If each component of the unit is a split epimorphism, then the left adjoint is full. -/ lemma full_L_of_isSplitEpi_unit_app [∀ X, IsSplitEpi (h.unit.app X)] : L.Full where map_surjective {X Y} f
case h C : Type u₁ inst✝² : Category.{v₁, u₁} C D : Type u₂ inst✝¹ : Category.{v₂, u₂} D L : C ⥤ D R : D ⥤ C h : L ⊣ R inst✝ : ∀ (X : C), IsSplitEpi (h.unit.app X) X Y : C f : L.obj X ⟶ L.obj Y ⊢ L.map (section_ (h.unit.app Y)) = h.counit.app (L.obj Y)
rw [← comp_id (L.map (section_ (h.unit.app Y)))]
case h C : Type u₁ inst✝² : Category.{v₁, u₁} C D : Type u₂ inst✝¹ : Category.{v₂, u₂} D L : C ⥤ D R : D ⥤ C h : L ⊣ R inst✝ : ∀ (X : C), IsSplitEpi (h.unit.app X) X Y : C f : L.obj X ⟶ L.obj Y ⊢ L.map (section_ (h.unit.app Y)) ≫ 𝟙 (L.obj ((𝟭 C).obj Y)) = h.counit.app (L.obj Y)
99582905f384847b
List.splitLengths_length_getElem
Mathlib/Data/List/SplitLengths.lean
theorem splitLengths_length_getElem {α : Type*} (l : List α) (sz : List ℕ) (h : sz.sum ≤ l.length) (i : ℕ) (hi : i < (sz.splitLengths l).length) : (sz.splitLengths l)[i].length = sz[i]'(by simpa using hi)
α : Type u_2 l : List α sz : List ℕ h : sz.sum ≤ l.length i : ℕ hi : i < (sz.splitLengths l).length ⊢ (sz.splitLengths l)[i].length = sz[i]
have := map_splitLengths_length l sz h
α : Type u_2 l : List α sz : List ℕ h : sz.sum ≤ l.length i : ℕ hi : i < (sz.splitLengths l).length this : map length (sz.splitLengths l) = sz ⊢ (sz.splitLengths l)[i].length = sz[i]
4e55a93adad03450
MeasureTheory.exists_measure_iInter_lt
Mathlib/MeasureTheory/Measure/MeasureSpace.lean
theorem exists_measure_iInter_lt {α ι : Type*} {_ : MeasurableSpace α} {μ : Measure α} [SemilatticeSup ι] [Countable ι] {f : ι → Set α} (hm : ∀ i, NullMeasurableSet (f i) μ) {ε : ℝ≥0∞} (hε : 0 < ε) (hfin : ∃ i, μ (f i) ≠ ∞) (hfem : ⋂ n, f n = ∅) : ∃ m, μ (⋂ n ≤ m, f n) < ε
α : Type u_8 ι : Type u_9 x✝ : MeasurableSpace α μ : Measure α inst✝¹ : SemilatticeSup ι inst✝ : Countable ι f : ι → Set α hm : ∀ (i : ι), NullMeasurableSet (f i) μ ε : ℝ≥0∞ hε : 0 < ε hfin : ∃ i, μ (f i) ≠ ⊤ hfem : ⋂ n, f n = ∅ ⊢ ∃ m, μ (⋂ n, ⋂ (_ : n ≤ m), f n) < ε
let F m := μ (⋂ n ≤ m, f n)
α : Type u_8 ι : Type u_9 x✝ : MeasurableSpace α μ : Measure α inst✝¹ : SemilatticeSup ι inst✝ : Countable ι f : ι → Set α hm : ∀ (i : ι), NullMeasurableSet (f i) μ ε : ℝ≥0∞ hε : 0 < ε hfin : ∃ i, μ (f i) ≠ ⊤ hfem : ⋂ n, f n = ∅ F : ι → ℝ≥0∞ := fun m => μ (⋂ n, ⋂ (_ : n ≤ m), f n) ⊢ ∃ m, μ (⋂ n, ⋂ (_ : n ≤ m), f n) < ε
1f737bad22d86841
PhragmenLindelof.horizontal_strip
Mathlib/Analysis/Complex/PhragmenLindelof.lean
theorem horizontal_strip (hfd : DiffContOnCl ℂ f (im ⁻¹' Ioo a b)) (hB : ∃ c < π / (b - a), ∃ B, f =O[comap (_root_.abs ∘ re) atTop ⊓ 𝓟 (im ⁻¹' Ioo a b)] fun z ↦ expR (B * expR (c * |z.re|))) (hle_a : ∀ z : ℂ, im z = a → ‖f z‖ ≤ C) (hle_b : ∀ z, im z = b → ‖f z‖ ≤ C) (hza : a ≤ im z) (hzb : im z ≤ b) : ‖f z‖ ≤ C
case neg E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E C✝ : ℝ f : ℂ → E z : ℂ C : ℝ hC₀ : 0 < C a b : ℝ hza : a - b < z.im hle_a : ∀ (z : ℂ), z.im = a - b → ‖f z‖ ≤ C hzb : z.im < a + b hle_b : ∀ (z : ℂ), z.im = a + b → ‖f z‖ ≤ C hfd : DiffContOnCl ℂ f (im ⁻¹' Ioo (a - b) (a + b)) hab : a - b < a + b hb : 0 < b hπb : 0 < π / 2 / b c : ℝ hc : c < π / 2 / b B : ℝ hO : f =O[comap (abs ∘ re) atTop ⊓ 𝓟 (im ⁻¹' Ioo (a - b) (a + b))] fun z => expR (B * expR (c * |z.re|)) d : ℝ hcd : c < d hd₀ : 0 < d hb' : d * b < π / 2 aff : ℂ → ℂ := fun w => ↑d * (w - ↑a * I) g : ℝ → ℂ → ℂ := fun ε w => cexp (↑ε * (cexp (aff w) + cexp (-aff w))) ε : ℝ ε₀ : ε < 0 δ : ℝ δ₀ : δ < 0 hδ : ∀ ⦃w : ℂ⦄, w.im ∈ Icc (a - b) (a + b) → ‖g ε w‖ ≤ expR (δ * expR (d * |w.re|)) hg₁ : ∀ (w : ℂ), w.im = a - b ∨ w.im = a + b → ‖g ε w‖ ≤ 1 R : ℝ hzR : |z.re| < R hR : ∀ (w : ℂ), |w.re| = R → w.im ∈ Ioo (a - b) (a + b) → ‖g ε w • f w‖ ≤ C hR₀ : 0 < R hgd : Differentiable ℂ (g ε) hd : DiffContOnCl ℂ (fun w => g ε w • f w) (Ioo (-R) R ×ℂ Ioo (a - b) (a + b)) w : ℂ him : ¬(w.im = a - b ∨ w.im = a + b) hw : w ∈ {-R, R} ×ℂ Icc (a - b) (a + b) ⊢ ‖g ε w • f w‖ ≤ C
have hw' := eq_endpoints_or_mem_Ioo_of_mem_Icc hw.2
case neg E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E C✝ : ℝ f : ℂ → E z : ℂ C : ℝ hC₀ : 0 < C a b : ℝ hza : a - b < z.im hle_a : ∀ (z : ℂ), z.im = a - b → ‖f z‖ ≤ C hzb : z.im < a + b hle_b : ∀ (z : ℂ), z.im = a + b → ‖f z‖ ≤ C hfd : DiffContOnCl ℂ f (im ⁻¹' Ioo (a - b) (a + b)) hab : a - b < a + b hb : 0 < b hπb : 0 < π / 2 / b c : ℝ hc : c < π / 2 / b B : ℝ hO : f =O[comap (abs ∘ re) atTop ⊓ 𝓟 (im ⁻¹' Ioo (a - b) (a + b))] fun z => expR (B * expR (c * |z.re|)) d : ℝ hcd : c < d hd₀ : 0 < d hb' : d * b < π / 2 aff : ℂ → ℂ := fun w => ↑d * (w - ↑a * I) g : ℝ → ℂ → ℂ := fun ε w => cexp (↑ε * (cexp (aff w) + cexp (-aff w))) ε : ℝ ε₀ : ε < 0 δ : ℝ δ₀ : δ < 0 hδ : ∀ ⦃w : ℂ⦄, w.im ∈ Icc (a - b) (a + b) → ‖g ε w‖ ≤ expR (δ * expR (d * |w.re|)) hg₁ : ∀ (w : ℂ), w.im = a - b ∨ w.im = a + b → ‖g ε w‖ ≤ 1 R : ℝ hzR : |z.re| < R hR : ∀ (w : ℂ), |w.re| = R → w.im ∈ Ioo (a - b) (a + b) → ‖g ε w • f w‖ ≤ C hR₀ : 0 < R hgd : Differentiable ℂ (g ε) hd : DiffContOnCl ℂ (fun w => g ε w • f w) (Ioo (-R) R ×ℂ Ioo (a - b) (a + b)) w : ℂ him : ¬(w.im = a - b ∨ w.im = a + b) hw : w ∈ {-R, R} ×ℂ Icc (a - b) (a + b) hw' : w.im = a - b ∨ w.im = a + b ∨ w.im ∈ Ioo (a - b) (a + b) ⊢ ‖g ε w • f w‖ ≤ C
96530d0dcac40a71
Finset.antidiagonal.snd_le
Mathlib/Algebra/Order/Antidiag/Prod.lean
theorem antidiagonal.snd_le {n : A} {kl : A × A} (hlk : kl ∈ antidiagonal n) : kl.2 ≤ n
A : Type u_1 inst✝² : OrderedAddCommMonoid A inst✝¹ : CanonicallyOrderedAdd A inst✝ : HasAntidiagonal A n : A kl : A × A hlk : kl ∈ antidiagonal n ⊢ kl.2 ≤ n
rw [le_iff_exists_add]
A : Type u_1 inst✝² : OrderedAddCommMonoid A inst✝¹ : CanonicallyOrderedAdd A inst✝ : HasAntidiagonal A n : A kl : A × A hlk : kl ∈ antidiagonal n ⊢ ∃ c, n = kl.2 + c
a346e570b0197919
EReal.add_pos
Mathlib/Data/Real/EReal.lean
theorem add_pos {a b : EReal} (ha : 0 < a) (hb : 0 < b) : 0 < a + b
case h_real b : EReal hb : 0 < b a✝ : ℝ ha : 0 < ↑a✝ ⊢ 0 < ↑a✝ + b
induction b
case h_real.h_bot a✝ : ℝ ha : 0 < ↑a✝ hb : 0 < ⊥ ⊢ 0 < ↑a✝ + ⊥ case h_real.h_real a✝¹ : ℝ ha : 0 < ↑a✝¹ a✝ : ℝ hb : 0 < ↑a✝ ⊢ 0 < ↑a✝¹ + ↑a✝ case h_real.h_top a✝ : ℝ ha : 0 < ↑a✝ hb : 0 < ⊤ ⊢ 0 < ↑a✝ + ⊤
ea146a9f917f5977
CategoryTheory.Grothendieck.fiber_eqToHom
Mathlib/CategoryTheory/Grothendieck.lean
theorem fiber_eqToHom {X Y : Grothendieck F} (h : X = Y) : (eqToHom h).fiber = eqToHom (by subst h; simp)
C : Type u inst✝¹ : Category.{v, u} C D : Type u₁ inst✝ : Category.{v₁, u₁} D F : C ⥤ Cat X : Grothendieck F ⊢ (F.map (eqToHom ⋯).base).obj X.fiber = X.fiber
simp
no goals
6408252bccdc4edc
Array.toList_filterMap'
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Lemmas.lean
theorem toList_filterMap' (f : α → Option β) (l : Array α) (w : stop = l.size) : (l.filterMap f 0 stop).toList = l.toList.filterMap f
α : Type u_1 β : Type u_2 f : α → Option β l : Array α ⊢ (filterMap f l).toList = List.filterMap f l.toList
dsimp only [filterMap, filterMapM]
α : Type u_1 β : Type u_2 f : α → Option β l : Array α ⊢ (foldlM (fun bs a => do let __do_lift ← f a match __do_lift with | some b => pure (bs.push b) | none => pure bs) #[] l).run.toList = List.filterMap f l.toList
0bf06d250b5cdb33
gramSchmidt_orthogonal
Mathlib/Analysis/InnerProductSpace/GramSchmidtOrtho.lean
theorem gramSchmidt_orthogonal (f : ι → E) {a b : ι} (h₀ : a ≠ b) : ⟪gramSchmidt 𝕜 f a, gramSchmidt 𝕜 f b⟫ = 0
case neg.h 𝕜 : Type u_1 E : Type u_2 inst✝⁵ : RCLike 𝕜 inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace 𝕜 E ι : Type u_3 inst✝² : LinearOrder ι inst✝¹ : LocallyFiniteOrderBot ι inst✝ : WellFoundedLT ι f : ι → E b✝ b : ι ih : ∀ y < b, ∀ a < y, inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f y) = 0 a : ι h₀ : a < b h : ¬gramSchmidt 𝕜 f a = 0 ⊢ inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f a) ≠ 0
rwa [inner_self_ne_zero]
no goals
a5e33da8a7158e66
ProbabilityTheory.cond_iInter
Mathlib/Probability/Independence/Basic.lean
/-- The probability of an intersection of preimages conditioning on another intersection factors into a product. -/ lemma cond_iInter [Finite ι] (hY : ∀ i, Measurable (Y i)) (hindep : iIndepFun (fun _ ↦ mα.prod mβ) (fun i ω ↦ (X i ω, Y i ω)) μ) (hf : ∀ i ∈ s, MeasurableSet[mα.comap (X i)] (f i)) (hy : ∀ i ∉ s, μ (Y i ⁻¹' t i) ≠ 0) (ht : ∀ i, MeasurableSet (t i)) : μ[⋂ i ∈ s, f i | ⋂ i, Y i ⁻¹' t i] = ∏ i ∈ s, μ[f i | Y i in t i]
ι : Type u_6 Ω : Type u_7 α : Type u_8 β : Type u_9 mΩ : MeasurableSpace Ω mα : MeasurableSpace α mβ : MeasurableSpace β μ : Measure Ω X : ι → Ω → α Y : ι → Ω → β f : ι → Set Ω t : ι → Set β s : Finset ι inst✝ : Finite ι hY : ∀ (i : ι), Measurable (Y i) hindep : iIndepFun (fun x => mα.prod mβ) (fun i ω => (X i ω, Y i ω)) μ hf : ∀ i ∈ s, MeasurableSet (f i) hy : ∀ i ∉ s, μ (Y i ⁻¹' t i) ≠ 0 ht : ∀ (i : ι), MeasurableSet (t i) this : IsProbabilityMeasure μ val✝ : Fintype ι g : ι → Set Ω := fun i' => if i' ∈ s then Y i' ⁻¹' t i' ∩ f i' else Y i' ⁻¹' t i' i : ι ⊢ MeasurableSet (g i)
by_cases hi : i ∈ s <;> simp only [hi, ↓reduceIte, g]
case pos ι : Type u_6 Ω : Type u_7 α : Type u_8 β : Type u_9 mΩ : MeasurableSpace Ω mα : MeasurableSpace α mβ : MeasurableSpace β μ : Measure Ω X : ι → Ω → α Y : ι → Ω → β f : ι → Set Ω t : ι → Set β s : Finset ι inst✝ : Finite ι hY : ∀ (i : ι), Measurable (Y i) hindep : iIndepFun (fun x => mα.prod mβ) (fun i ω => (X i ω, Y i ω)) μ hf : ∀ i ∈ s, MeasurableSet (f i) hy : ∀ i ∉ s, μ (Y i ⁻¹' t i) ≠ 0 ht : ∀ (i : ι), MeasurableSet (t i) this : IsProbabilityMeasure μ val✝ : Fintype ι g : ι → Set Ω := fun i' => if i' ∈ s then Y i' ⁻¹' t i' ∩ f i' else Y i' ⁻¹' t i' i : ι hi : i ∈ s ⊢ MeasurableSet (Y i ⁻¹' t i ∩ f i) case neg ι : Type u_6 Ω : Type u_7 α : Type u_8 β : Type u_9 mΩ : MeasurableSpace Ω mα : MeasurableSpace α mβ : MeasurableSpace β μ : Measure Ω X : ι → Ω → α Y : ι → Ω → β f : ι → Set Ω t : ι → Set β s : Finset ι inst✝ : Finite ι hY : ∀ (i : ι), Measurable (Y i) hindep : iIndepFun (fun x => mα.prod mβ) (fun i ω => (X i ω, Y i ω)) μ hf : ∀ i ∈ s, MeasurableSet (f i) hy : ∀ i ∉ s, μ (Y i ⁻¹' t i) ≠ 0 ht : ∀ (i : ι), MeasurableSet (t i) this : IsProbabilityMeasure μ val✝ : Fintype ι g : ι → Set Ω := fun i' => if i' ∈ s then Y i' ⁻¹' t i' ∩ f i' else Y i' ⁻¹' t i' i : ι hi : i ∉ s ⊢ MeasurableSet (Y i ⁻¹' t i)
299952e2d8d690c9
Order.Ideal.isProper_of_not_mem
Mathlib/Order/Ideal.lean
theorem isProper_of_not_mem {I : Ideal P} {p : P} (nmem : p ∉ I) : IsProper I := ⟨fun hp ↦ by have := mem_univ p rw [← hp] at this exact nmem this⟩
P : Type u_1 inst✝ : LE P I : Ideal P p : P nmem : p ∉ I hp : ↑I = univ ⊢ False
have := mem_univ p
P : Type u_1 inst✝ : LE P I : Ideal P p : P nmem : p ∉ I hp : ↑I = univ this : p ∈ univ ⊢ False
eedecb497d07f70f
Std.Sat.AIG.RefVec.zip.go_get_aux
Mathlib/.lake/packages/lean4/src/lean/Std/Sat/AIG/RefVecOperator/Zip.lean
theorem go_get_aux {aig : AIG α} (curr : Nat) (hcurr : curr ≤ len) (s : RefVec aig curr) (lhs rhs : RefVec aig len) (f : (aig : AIG α) → BinaryInput aig → Entrypoint α) [LawfulOperator α BinaryInput f] [chainable : LawfulZipOperator α f] : -- The hfoo here is a trick to make the dependent type gods happy ∀ (idx : Nat) (hidx : idx < curr) (hfoo), (go aig curr s hcurr lhs rhs f).vec.get idx (by omega) = (s.get idx hidx).cast hfoo
case isFalse α : Type inst✝² : Hashable α inst✝¹ : DecidableEq α len : Nat aig : AIG α curr : Nat hcurr : curr ≤ len s : aig.RefVec curr lhs rhs : aig.RefVec len f : (aig : AIG α) → aig.BinaryInput → Entrypoint α inst✝ : LawfulOperator α BinaryInput f chainable : LawfulZipOperator α f idx : Nat hidx : idx < curr res : RefVecEntry α len h✝ : ¬curr < len hgo : { aig := aig, vec := ⋯ ▸ s } = res ⊢ ∀ (hfoo : aig.decls.size ≤ res.aig.decls.size), res.vec.get idx ⋯ = (s.get idx hidx).cast hfoo
rw [← hgo]
case isFalse α : Type inst✝² : Hashable α inst✝¹ : DecidableEq α len : Nat aig : AIG α curr : Nat hcurr : curr ≤ len s : aig.RefVec curr lhs rhs : aig.RefVec len f : (aig : AIG α) → aig.BinaryInput → Entrypoint α inst✝ : LawfulOperator α BinaryInput f chainable : LawfulZipOperator α f idx : Nat hidx : idx < curr res : RefVecEntry α len h✝ : ¬curr < len hgo : { aig := aig, vec := ⋯ ▸ s } = res ⊢ ∀ (hfoo : aig.decls.size ≤ { aig := aig, vec := ⋯ ▸ s }.aig.decls.size), { aig := aig, vec := ⋯ ▸ s }.vec.get idx ⋯ = (s.get idx hidx).cast hfoo
90c056b58a9b7a80
orderOf_pow_dvd
Mathlib/GroupTheory/OrderOfElement.lean
theorem orderOf_pow_dvd (n : ℕ) : orderOf (x ^ n) ∣ orderOf x
G : Type u_1 inst✝ : Monoid G x : G n : ℕ ⊢ orderOf (x ^ n) ∣ orderOf x
rw [orderOf_dvd_iff_pow_eq_one, pow_right_comm, pow_orderOf_eq_one, one_pow]
no goals
68c1a84e882fb930
FreeGroup.Red.red_iff_irreducible
Mathlib/GroupTheory/FreeGroup/Basic.lean
theorem red_iff_irreducible {x1 b1 x2 b2} (h : (x1, b1) ≠ (x2, b2)) : Red [(x1, !b1), (x2, b2)] L ↔ L = [(x1, !b1), (x2, b2)]
α : Type u L : List (α × Bool) x1 : α b1 : Bool x2 : α b2 : Bool h : (x1, b1) ≠ (x2, b2) ⊢ Red [(x1, !b1), (x2, b2)] L ↔ L = [(x1, !b1), (x2, b2)]
apply reflTransGen_iff_eq
case h α : Type u L : List (α × Bool) x1 : α b1 : Bool x2 : α b2 : Bool h : (x1, b1) ≠ (x2, b2) ⊢ ∀ (b : List (α × Bool)), ¬Step [(x1, !b1), (x2, b2)] b
f87886f761db64c8
Array.mapM_map_eq_foldl
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Lemmas.lean
theorem mapM_map_eq_foldl (as : Array α) (f : α → β) (i) : mapM.map (m := Id) f as i b = as.foldl (start := i) (fun r a => r.push (f a)) b
α : Type u_1 β : Type u_2 b : Array β as : Array α f : α → β i : Nat ⊢ (if hlt : i < as.size then do let __do_lift ← f as[i] mapM.map f as (i + 1) (b.push __do_lift) else pure b) = foldl (fun r a => r.push (f a)) b as i
split <;> rename_i h
case isTrue α : Type u_1 β : Type u_2 b : Array β as : Array α f : α → β i : Nat h : i < as.size ⊢ (do let __do_lift ← f as[i] mapM.map f as (i + 1) (b.push __do_lift)) = foldl (fun r a => r.push (f a)) b as i case isFalse α : Type u_1 β : Type u_2 b : Array β as : Array α f : α → β i : Nat h : ¬i < as.size ⊢ pure b = foldl (fun r a => r.push (f a)) b as i
a2d615417b2bd811
MonoidHom.noncommCoprod_range
Mathlib/GroupTheory/NoncommCoprod.lean
lemma noncommCoprod_range {M N P : Type*} [Group M] [Group N] [Group P] (f : M →* P) (g : N →* P) (comm : ∀ (m : M) (n : N), Commute (f m) (g n)) : (noncommCoprod f g comm).range = f.range ⊔ g.range
case a.left.intro M : Type u_4 N : Type u_5 P : Type u_6 inst✝² : Group M inst✝¹ : Group N inst✝ : Group P f : M →* P g : N →* P comm : ∀ (m : M) (n : N), Commute (f m) (g n) a : M ⊢ f a ∈ (f.noncommCoprod g comm).range
exact ⟨(a, 1), by rw [noncommCoprod_apply, map_one, mul_one]⟩
no goals
a43981614b1c4850
SimpleGraph.Walk.takeUntil_takeUntil
Mathlib/Combinatorics/SimpleGraph/Connectivity/WalkDecomp.lean
lemma takeUntil_takeUntil {w x : V} (p : G.Walk u v) (hw : w ∈ p.support) (hx : x ∈ (p.takeUntil w hw).support) : (p.takeUntil w hw).takeUntil x hx = p.takeUntil x (p.support_takeUntil_subset hw hx)
case case3 V : Type u G : SimpleGraph V v u : V inst✝ : DecidableEq V w x : V p : G.Walk u v a w' v' : V hadj : G.Adj a v' q : G.Walk v' w' u' : V hu'✝ : u' ∈ (cons hadj q).support hau'✝ : ¬a = u' hau' : a ≠ u' x✝ : u' ∈ (cons hadj q).support ih : ∀ (hx : x ∈ (q.takeUntil u' ⋯).support), (q.takeUntil u' ⋯).takeUntil x hx = q.takeUntil x ⋯ hx✝ : x ∈ ((cons hadj q).takeUntil u' hu'✝).support hu' : u' ∈ q.support hx : x = a ∨ x ∈ (q.takeUntil u' hu').support ⊢ ((cons hadj q).takeUntil u' hu'✝).takeUntil x hx✝ = (cons hadj q).takeUntil x ⋯
by_cases hx' : x = a
case pos V : Type u G : SimpleGraph V v u : V inst✝ : DecidableEq V w x : V p : G.Walk u v a w' v' : V hadj : G.Adj a v' q : G.Walk v' w' u' : V hu'✝ : u' ∈ (cons hadj q).support hau'✝ : ¬a = u' hau' : a ≠ u' x✝ : u' ∈ (cons hadj q).support ih : ∀ (hx : x ∈ (q.takeUntil u' ⋯).support), (q.takeUntil u' ⋯).takeUntil x hx = q.takeUntil x ⋯ hx✝ : x ∈ ((cons hadj q).takeUntil u' hu'✝).support hu' : u' ∈ q.support hx : x = a ∨ x ∈ (q.takeUntil u' hu').support hx' : x = a ⊢ ((cons hadj q).takeUntil u' hu'✝).takeUntil x hx✝ = (cons hadj q).takeUntil x ⋯ case neg V : Type u G : SimpleGraph V v u : V inst✝ : DecidableEq V w x : V p : G.Walk u v a w' v' : V hadj : G.Adj a v' q : G.Walk v' w' u' : V hu'✝ : u' ∈ (cons hadj q).support hau'✝ : ¬a = u' hau' : a ≠ u' x✝ : u' ∈ (cons hadj q).support ih : ∀ (hx : x ∈ (q.takeUntil u' ⋯).support), (q.takeUntil u' ⋯).takeUntil x hx = q.takeUntil x ⋯ hx✝ : x ∈ ((cons hadj q).takeUntil u' hu'✝).support hu' : u' ∈ q.support hx : x = a ∨ x ∈ (q.takeUntil u' hu').support hx' : ¬x = a ⊢ ((cons hadj q).takeUntil u' hu'✝).takeUntil x hx✝ = (cons hadj q).takeUntil x ⋯
c3b1f330685fe6f0
Cycle.support_formPerm
Mathlib/GroupTheory/Perm/Cycle/Concrete.lean
theorem support_formPerm [Fintype α] (s : Cycle α) (h : Nodup s) (hn : Nontrivial s) : support (formPerm s h) = s.toFinset
α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α s : Cycle α h : s.Nodup hn : s.Nontrivial ⊢ (s.formPerm h).support = s.toFinset
induction' s using Quot.inductionOn with s
case h α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α s : List α h : Nodup (Quot.mk (⇑(IsRotated.setoid α)) s) hn : Nontrivial (Quot.mk (⇑(IsRotated.setoid α)) s) ⊢ (formPerm (Quot.mk (⇑(IsRotated.setoid α)) s) h).support = toFinset (Quot.mk (⇑(IsRotated.setoid α)) s)
c975caac8b3ab4b4
Vector.toArray_mapM_go
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Vector/Lemmas.lean
theorem toArray_mapM_go [Monad m] [LawfulMonad m] (f : α → m β) (v : Vector α n) (i h r) : toArray <$> mapM.go f v i h r = Array.mapM.map f v.toArray i r.toArray
m : Type u_1 → Type u_2 α : Type u_3 β : Type u_1 n : Nat inst✝¹ : Monad m inst✝ : LawfulMonad m f : α → m β v : Vector α n i : Nat h : i ≤ n r : Vector β i ⊢ (toArray <$> if h' : i < n then do let __do_lift ← f v[i] mapM.go f v (i + 1) ⋯ (r.push __do_lift) else pure (Vector.cast ⋯ r)) = Array.mapM.map f v.toArray i r.toArray
unfold Array.mapM.map
m : Type u_1 → Type u_2 α : Type u_3 β : Type u_1 n : Nat inst✝¹ : Monad m inst✝ : LawfulMonad m f : α → m β v : Vector α n i : Nat h : i ≤ n r : Vector β i ⊢ (toArray <$> if h' : i < n then do let __do_lift ← f v[i] mapM.go f v (i + 1) ⋯ (r.push __do_lift) else pure (Vector.cast ⋯ r)) = if hlt : i < v.size then do let __do_lift ← f v.toArray[i] Array.mapM.map f v.toArray (i + 1) (r.push __do_lift) else pure r.toArray
b8bb1e3d17c268d2
IsAntichain.volume_eq_zero
Mathlib/MeasureTheory/Order/UpperLower.lean
theorem IsAntichain.volume_eq_zero [Nonempty ι] (hs : IsAntichain (· ≤ ·) s) : volume s = 0
ι : Type u_1 inst✝¹ : Fintype ι s : Set (ι → ℝ) inst✝ : Nonempty ι hs : IsAntichain (fun x1 x2 => x1 ≤ x2) s ⊢ s ⊆ frontier s
rw [← closure_diff_interior, hs.interior_eq_empty, diff_empty]
ι : Type u_1 inst✝¹ : Fintype ι s : Set (ι → ℝ) inst✝ : Nonempty ι hs : IsAntichain (fun x1 x2 => x1 ≤ x2) s ⊢ s ⊆ closure s
e697af406be31b26
PFunctor.M.ext
Mathlib/Data/PFunctor/Univariate/M.lean
theorem ext [Inhabited (M F)] (x y : M F) (H : ∀ ps : Path F, iselect ps x = iselect ps y) : x = y
case H.succ.hrec F : PFunctor.{u} inst✝ : Inhabited F.M x y : F.M H : ∀ (ps : Path F), (isubtree ps x).head = (isubtree ps y).head i : ℕ i_ih : x.approx i = y.approx i ps : Path F H' : i = length ps ⊢ iselect ps x = iselect ps y
cases H'
case H.succ.hrec.refl F : PFunctor.{u} inst✝ : Inhabited F.M x y : F.M H : ∀ (ps : Path F), (isubtree ps x).head = (isubtree ps y).head ps : Path F i_ih : x.approx (length ps) = y.approx (length ps) ⊢ iselect ps x = iselect ps y
d42c81fe4cdd416b
Submodule.span_preimage_eq
Mathlib/LinearAlgebra/Quotient/Basic.lean
theorem span_preimage_eq [RingHomSurjective τ₁₂] {f : M →ₛₗ[τ₁₂] M₂} {s : Set M₂} (h₀ : s.Nonempty) (h₁ : s ⊆ range f) : span R (f ⁻¹' s) = (span R₂ s).comap f
R : Type u_1 M : Type u_2 inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M R₂ : Type u_3 M₂ : Type u_4 inst✝³ : Ring R₂ inst✝² : AddCommGroup M₂ inst✝¹ : Module R₂ M₂ τ₁₂ : R →+* R₂ inst✝ : RingHomSurjective τ₁₂ f : M →ₛₗ[τ₁₂] M₂ s : Set M₂ h₀ : s.Nonempty h₁ : s ⊆ ↑(range f) y : M₂ := Classical.choose h₀ hy : y ∈ s ⊢ ker f ≤ span R (⇑f ⁻¹' s)
rw [ker_le_iff]
R : Type u_1 M : Type u_2 inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M R₂ : Type u_3 M₂ : Type u_4 inst✝³ : Ring R₂ inst✝² : AddCommGroup M₂ inst✝¹ : Module R₂ M₂ τ₁₂ : R →+* R₂ inst✝ : RingHomSurjective τ₁₂ f : M →ₛₗ[τ₁₂] M₂ s : Set M₂ h₀ : s.Nonempty h₁ : s ⊆ ↑(range f) y : M₂ := Classical.choose h₀ hy : y ∈ s ⊢ ∃ y ∈ range f, ⇑f ⁻¹' {y} ⊆ ↑(span R (⇑f ⁻¹' s))
5560c859997de634
Matrix.det_eq_of_forall_row_eq_smul_add_const_aux
Mathlib/LinearAlgebra/Matrix/Determinant/Basic.lean
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_ : ∀ i j, A i j = B i j + c i * B k j), det A = det B
case empty n : Type u_2 inst✝² : DecidableEq n inst✝¹ : Fintype n R : Type v inst✝ : CommRing R A B : Matrix n n R ⊢ ∀ (c : n → R), (∀ i ∉ ∅, c i = 0) → ∀ k ∉ ∅, (∀ (i j : n), A i j = B i j + c i * B k j) → A.det = B.det
rintro c hs k - A_eq
case empty n : Type u_2 inst✝² : DecidableEq n inst✝¹ : Fintype n R : Type v inst✝ : CommRing R A B : Matrix n n R c : n → R hs : ∀ i ∉ ∅, c i = 0 k : n A_eq : ∀ (i j : n), A i j = B i j + c i * B k j ⊢ A.det = B.det
7739d96b149cd534
Equiv.Perm.cycle_zpow_mem_support_iff
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
theorem cycle_zpow_mem_support_iff {g : Perm α} (hg : g.IsCycle) {n : ℤ} {x : α} (hx : g x ≠ x) : (g ^ n) x = x ↔ n % #g.support = 0
case mp α : Type u_2 inst✝¹ : Fintype α inst✝ : DecidableEq α g : Perm α hg : g.IsCycle n : ℤ x : α hx : g x ≠ x q : ℤ := n / ↑(#g.support) r : ℤ := n % ↑(#g.support) m : ℕ hm : r = ↑m div_euc : ↑m + ↑(orderOf g) * q = n ∧ m < orderOf g ⊢ (g ^ m) x = x → g ^ m = 1
intro hgm
case mp α : Type u_2 inst✝¹ : Fintype α inst✝ : DecidableEq α g : Perm α hg : g.IsCycle n : ℤ x : α hx : g x ≠ x q : ℤ := n / ↑(#g.support) r : ℤ := n % ↑(#g.support) m : ℕ hm : r = ↑m div_euc : ↑m + ↑(orderOf g) * q = n ∧ m < orderOf g hgm : (g ^ m) x = x ⊢ g ^ m = 1
53814599c33ac8eb
HomologicalComplex.extendCyclesIso_inv_iCycles
Mathlib/Algebra/Homology/Embedding/ExtendHomology.lean
@[reassoc (attr := simp)] lemma extendCyclesIso_inv_iCycles : (K.extendCyclesIso e hj').inv ≫ (K.extend e).iCycles j' = K.iCycles j ≫ (K.extendXIso e hj').inv
ι : Type u_1 ι' : Type u_2 c : ComplexShape ι c' : ComplexShape ι' C : Type u_3 inst✝⁴ : Category.{u_4, u_3} C inst✝³ : HasZeroMorphisms C inst✝² : HasZeroObject C K : HomologicalComplex C c e : c.Embedding c' j : ι j' : ι' hj' : e.f j = j' inst✝¹ : K.HasHomology j inst✝ : (K.extend e).HasHomology j' ⊢ (K.extendCyclesIso e hj').inv ≫ (K.extend e).iCycles j' = K.iCycles j ≫ (K.extendXIso e hj').inv
simp only [← cancel_epi (K.extendCyclesIso e hj').hom, Iso.hom_inv_id_assoc, extendCyclesIso_hom_iCycles_assoc, Iso.hom_inv_id, comp_id]
no goals
e2549df1b0ab6814
SeminormFamily.basisSets_intersect
Mathlib/Analysis/LocallyConvex/WithSeminorms.lean
theorem basisSets_intersect (U V : Set E) (hU : U ∈ p.basisSets) (hV : V ∈ p.basisSets) : ∃ z ∈ p.basisSets, z ⊆ U ∩ V
case h 𝕜 : Type u_1 E : Type u_5 ι : Type u_8 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : SeminormFamily 𝕜 E ι U V : Set E hU✝ : U ∈ p.basisSets hV✝ : V ∈ p.basisSets s : Finset ι r₁ : ℝ hr₁ : 0 < r₁ hU : U = (s.sup p).ball 0 r₁ t : Finset ι r₂ : ℝ hr₂ : 0 < r₂ hV : V = (t.sup p).ball 0 r₂ ⊢ ((s ∪ t).sup p).ball 0 (r₁ ⊓ r₂) ∈ p.basisSets ∧ ((s ∪ t).sup p).ball 0 (r₁ ⊓ r₂) ⊆ U ∩ V
refine ⟨p.basisSets_mem (s ∪ t) (lt_min_iff.mpr ⟨hr₁, hr₂⟩), ?_⟩
case h 𝕜 : Type u_1 E : Type u_5 ι : Type u_8 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : SeminormFamily 𝕜 E ι U V : Set E hU✝ : U ∈ p.basisSets hV✝ : V ∈ p.basisSets s : Finset ι r₁ : ℝ hr₁ : 0 < r₁ hU : U = (s.sup p).ball 0 r₁ t : Finset ι r₂ : ℝ hr₂ : 0 < r₂ hV : V = (t.sup p).ball 0 r₂ ⊢ ((s ∪ t).sup p).ball 0 (r₁ ⊓ r₂) ⊆ U ∩ V
b495b149a3cd9a84
Matrix.mulVec_surjective_iff_exists_right_inverse
Mathlib/LinearAlgebra/Matrix/NonsingularInverse.lean
theorem mulVec_surjective_iff_exists_right_inverse [DecidableEq m] [Finite m] [Fintype n] {A : Matrix m n R} : Function.Surjective A.mulVec ↔ ∃ B : Matrix n m R, A * B = 1
m : Type u n : Type u' R : Type u_2 inst✝³ : Semiring R inst✝² : DecidableEq m inst✝¹ : Finite m inst✝ : Fintype n A : Matrix m n R ⊢ Function.Surjective A.mulVec ↔ ∃ B, A * B = 1
cases nonempty_fintype m
case intro m : Type u n : Type u' R : Type u_2 inst✝³ : Semiring R inst✝² : DecidableEq m inst✝¹ : Finite m inst✝ : Fintype n A : Matrix m n R val✝ : Fintype m ⊢ Function.Surjective A.mulVec ↔ ∃ B, A * B = 1
e2574278ca6dc051
Vector.any_eq_false
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Vector/Lemmas.lean
theorem any_eq_false {p : α → Bool} {xs : Vector α n} : xs.any p = false ↔ ∀ (i : Nat) (_ : i < n), ¬p xs[i]
α : Type u_1 n : Nat p : α → Bool xs : Vector α n ⊢ (¬∃ i x, p xs[i] = true) ↔ ∀ (i : Nat) (x : i < n), ¬p xs[i] = true
simp
no goals
f691f53d621bf9a1
MeasureTheory.integral_simpleFunc_larger_space
Mathlib/MeasureTheory/Integral/Bochner.lean
theorem integral_simpleFunc_larger_space (hm : m ≤ m0) (f : @SimpleFunc β m F) (hf_int : Integrable f μ) : ∫ x, f x ∂μ = ∑ x ∈ @SimpleFunc.range β F m f, ENNReal.toReal (μ (f ⁻¹' {x})) • x
F : Type u_3 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F β : Type u_6 m m0 : MeasurableSpace β μ : Measure β hm : m ≤ m0 f : β →ₛ F hf_int : Integrable (⇑f) μ ⊢ Integrable (⇑(SimpleFunc.toLargerSpace hm f)) μ
rwa [SimpleFunc.coe_toLargerSpace_eq]
no goals
f561880c405f28b4
Fintype.nonempty_field_iff
Mathlib/FieldTheory/Cardinality.lean
theorem Fintype.nonempty_field_iff {α} [Fintype α] : Nonempty (Field α) ↔ IsPrimePow ‖α‖
α : Type u_1 inst✝ : Fintype α ⊢ IsPrimePow ‖α‖ → Nonempty (Field α)
rintro ⟨p, n, hp, hn, hα⟩
case intro.intro.intro.intro α : Type u_1 inst✝ : Fintype α p n : ℕ hp : Prime p hn : 0 < n hα : p ^ n = ‖α‖ ⊢ Nonempty (Field α)
3fa2a395eda1ffe4
MeasureTheory.not_frequently_of_upcrossings_lt_top
Mathlib/Probability/Martingale/Convergence.lean
theorem not_frequently_of_upcrossings_lt_top (hab : a < b) (hω : upcrossings a b f ω ≠ ∞) : ¬((∃ᶠ n in atTop, f n ω < a) ∧ ∃ᶠ n in atTop, b < f n ω)
case intro Ω : Type u_1 a b : ℝ f : ℕ → Ω → ℝ ω : Ω hab : a < b hω : ∃ k, ∀ (N : ℕ), upcrossingsBefore a b f N ω < k h₁ : ∀ (a_1 : ℕ), ∃ b ≥ a_1, f b ω < a h₂ : ∀ (a : ℕ), ∃ b_1 ≥ a, b < f b_1 ω ⊢ False
refine Classical.not_not.2 hω ?_
case intro Ω : Type u_1 a b : ℝ f : ℕ → Ω → ℝ ω : Ω hab : a < b hω : ∃ k, ∀ (N : ℕ), upcrossingsBefore a b f N ω < k h₁ : ∀ (a_1 : ℕ), ∃ b ≥ a_1, f b ω < a h₂ : ∀ (a : ℕ), ∃ b_1 ≥ a, b < f b_1 ω ⊢ ¬∃ k, ∀ (N : ℕ), upcrossingsBefore a b f N ω < k
123352cc62fc6065
FractionalIdeal.mul_one_div_le_one
Mathlib/RingTheory/FractionalIdeal/Operations.lean
theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≤ 1
case neg R₁ : Type u_3 inst✝⁴ : CommRing R₁ K : Type u_4 inst✝³ : Field K inst✝² : Algebra R₁ K inst✝¹ : IsFractionRing R₁ K inst✝ : IsDomain R₁ I : FractionalIdeal R₁⁰ K hI : ¬I = 0 ⊢ I * (1 / I) ≤ 1
rw [← coe_le_coe, coe_mul, coe_div hI, coe_one]
case neg R₁ : Type u_3 inst✝⁴ : CommRing R₁ K : Type u_4 inst✝³ : Field K inst✝² : Algebra R₁ K inst✝¹ : IsFractionRing R₁ K inst✝ : IsDomain R₁ I : FractionalIdeal R₁⁰ K hI : ¬I = 0 ⊢ ↑I * (1 / ↑I) ≤ 1
7b63428ed5392dc6
ProbabilityTheory.strong_law_Lp
Mathlib/Probability/StrongLaw.lean
theorem strong_law_Lp {p : ℝ≥0∞} (hp : 1 ≤ p) (hp' : p ≠ ∞) (X : ℕ → Ω → E) (hℒp : MemLp (X 0) p μ) (hindep : Pairwise ((IndepFun · · μ) on X)) (hident : ∀ i, IdentDistrib (X i) (X 0) μ μ) : Tendsto (fun (n : ℕ) => eLpNorm (fun ω => (n : ℝ) ⁻¹ • (∑ i ∈ range n, X i ω) - μ[X 0]) p μ) atTop (𝓝 0)
case neg Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : MeasurableSpace E inst✝ : BorelSpace E p : ℝ≥0∞ hp : 1 ≤ p hp' : p ≠ ⊤ X : ℕ → Ω → E hℒp : MemLp (X 0) p μ hindep : Pairwise ((fun x1 x2 => IndepFun x1 x2 μ) on X) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) μ μ h : ¬∀ᵐ (ω : Ω) ∂μ, X 0 ω = 0 this : IsProbabilityMeasure μ hmeas : ∀ (i : ℕ), AEStronglyMeasurable (X i) μ hint : Integrable (X 0) μ havg : ∀ (n : ℕ), AEStronglyMeasurable (fun ω => (↑n)⁻¹ • ∑ i ∈ range n, X i ω) μ ⊢ UnifIntegrable (fun n => (↑n)⁻¹ • ∑ i ∈ range n, X i) p μ
apply UniformIntegrable.unifIntegrable
case neg.hf Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : MeasurableSpace E inst✝ : BorelSpace E p : ℝ≥0∞ hp : 1 ≤ p hp' : p ≠ ⊤ X : ℕ → Ω → E hℒp : MemLp (X 0) p μ hindep : Pairwise ((fun x1 x2 => IndepFun x1 x2 μ) on X) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) μ μ h : ¬∀ᵐ (ω : Ω) ∂μ, X 0 ω = 0 this : IsProbabilityMeasure μ hmeas : ∀ (i : ℕ), AEStronglyMeasurable (X i) μ hint : Integrable (X 0) μ havg : ∀ (n : ℕ), AEStronglyMeasurable (fun ω => (↑n)⁻¹ • ∑ i ∈ range n, X i ω) μ ⊢ UniformIntegrable (fun n => (↑n)⁻¹ • ∑ i ∈ range n, X i) p μ
8d69987f63824be4
MvPowerSeries.coeff_mul_right_one_sub_of_lt_order
Mathlib/RingTheory/MvPowerSeries/Order.lean
theorem coeff_mul_right_one_sub_of_lt_order (d : σ →₀ ℕ) (h : degree d < g.order) : coeff R d ((1 - g) * f) = coeff R d f
σ : Type u_1 R : Type u_3 inst✝ : Ring R f g : MvPowerSeries σ R d : σ →₀ ℕ h : ↑((weight fun x => 1) d) < g.order ⊢ (coeff R d) ((1 - g) * f) = (coeff R d) f
exact coeff_mul_right_one_sub_of_lt_weightedOrder _ h
no goals
9ca22027bb019392
Monotone.tendsto_le_alternating_series
Mathlib/Analysis/SpecificLimits/Normed.lean
theorem Monotone.tendsto_le_alternating_series (hfl : Tendsto (fun n ↦ ∑ i ∈ range n, (-1) ^ i * f i) atTop (𝓝 l)) (hfm : Monotone f) (k : ℕ) : l ≤ ∑ i ∈ range (2 * k), (-1) ^ i * f i
E : Type u_2 inst✝² : OrderedRing E inst✝¹ : TopologicalSpace E inst✝ : OrderClosedTopology E l : E f : ℕ → E hfl : Tendsto (fun n => ∑ i ∈ Finset.range n, (-1) ^ i * f i) atTop (𝓝 l) hfm : Monotone f k : ℕ ha : Antitone fun n => ∑ i ∈ Finset.range (2 * n), (-1) ^ i * f i n : ℕ ⊢ n ≤ 2 * n
omega
no goals
8204a47cf4df7c65
Matrix.Nondegenerate.toBilin'
Mathlib/LinearAlgebra/Matrix/BilinearForm.lean
theorem _root_.Matrix.Nondegenerate.toBilin' {M : Matrix ι ι R₂} (h : M.Nondegenerate) : M.toBilin'.Nondegenerate := fun x hx => h.eq_zero_of_ortho fun y => by simpa only [toBilin'_apply'] using hx y
R₂ : Type u_3 inst✝² : CommRing R₂ ι : Type u_6 inst✝¹ : DecidableEq ι inst✝ : Fintype ι M : Matrix ι ι R₂ h : M.Nondegenerate x : ι → R₂ hx : ∀ (n : ι → R₂), ((Matrix.toBilin' M) x) n = 0 y : ι → R₂ ⊢ x ⬝ᵥ M *ᵥ y = 0
simpa only [toBilin'_apply'] using hx y
no goals
1afb909a5fd4bc4d
spectrum_diagonal
Mathlib/LinearAlgebra/Eigenspace/Matrix.lean
/-- The spectrum of the diagonal operator is the range of the diagonal viewed as a function. -/ lemma spectrum_diagonal [Field R] (d : n → R) : spectrum R (diagonal d) = Set.range d
case h R : Type u_1 n : Type u_2 inst✝² : DecidableEq n inst✝¹ : Fintype n inst✝ : Field R d : n → R μ : R ⊢ μ ∈ spectrum R (diagonal d) ↔ μ ∈ Set.range d
rw [← AlgEquiv.spectrum_eq (toLinAlgEquiv <| Pi.basisFun R n), ← hasEigenvalue_iff_mem_spectrum]
case h R : Type u_1 n : Type u_2 inst✝² : DecidableEq n inst✝¹ : Fintype n inst✝ : Field R d : n → R μ : R ⊢ HasEigenvalue ((toLinAlgEquiv (Pi.basisFun R n)) (diagonal d)) μ ↔ μ ∈ Set.range d
bc4a66fe7e0f27f7
MonomialOrder.div
Mathlib/RingTheory/MvPolynomial/Groebner.lean
theorem div {ι : Type*} {b : ι → MvPolynomial σ R} (hb : ∀ i, IsUnit (m.leadingCoeff (b i))) (f : MvPolynomial σ R) : ∃ (g : ι →₀ (MvPolynomial σ R)) (r : MvPolynomial σ R), f = Finsupp.linearCombination _ b g + r ∧ (∀ i, m.degree (b i * (g i)) ≼[m] m.degree f) ∧ (∀ c ∈ r.support, ∀ i, ¬ (m.degree (b i) ≤ c))
case neg σ : Type u_1 m : MonomialOrder σ R : Type u_2 inst✝ : CommRing R ι : Type u_3 b : ι → MvPolynomial σ R hb : ∀ (i : ι), IsUnit (m.leadingCoeff (b i)) f : MvPolynomial σ R hb' : ∀ (i : ι), m.degree (b i) ≠ 0 hf0 : ¬f = 0 hf : ∀ (i : ι), ¬m.degree (b i) ≤ m.degree f g' : ι →₀ MvPolynomial σ R r' : MvPolynomial σ R H' : m.subLTerm f = (Finsupp.linearCombination (MvPolynomial σ R) b) g' + r' ∧ (∀ (i : ι), m.toSyn (m.degree (b i * g' i)) ≤ m.toSyn (m.degree (m.subLTerm f))) ∧ ∀ c ∈ r'.support, ∀ (i : ι), ¬m.degree (b i) ≤ c c : σ →₀ ℕ hc : c ∈ (r' + (monomial (m.degree f)) (m.leadingCoeff f)).support i : ι hc' : c ∉ r'.support ⊢ ¬m.degree (b i) ≤ c
convert hf i
case h.e'_1.h.e'_4 σ : Type u_1 m : MonomialOrder σ R : Type u_2 inst✝ : CommRing R ι : Type u_3 b : ι → MvPolynomial σ R hb : ∀ (i : ι), IsUnit (m.leadingCoeff (b i)) f : MvPolynomial σ R hb' : ∀ (i : ι), m.degree (b i) ≠ 0 hf0 : ¬f = 0 hf : ∀ (i : ι), ¬m.degree (b i) ≤ m.degree f g' : ι →₀ MvPolynomial σ R r' : MvPolynomial σ R H' : m.subLTerm f = (Finsupp.linearCombination (MvPolynomial σ R) b) g' + r' ∧ (∀ (i : ι), m.toSyn (m.degree (b i * g' i)) ≤ m.toSyn (m.degree (m.subLTerm f))) ∧ ∀ c ∈ r'.support, ∀ (i : ι), ¬m.degree (b i) ≤ c c : σ →₀ ℕ hc : c ∈ (r' + (monomial (m.degree f)) (m.leadingCoeff f)).support i : ι hc' : c ∉ r'.support ⊢ c = m.degree f
f995acdac7645677
EReal.limsup_add_bot_of_ne_top
Mathlib/Topology/Instances/EReal/Lemmas.lean
lemma limsup_add_bot_of_ne_top (h : limsup u f = ⊥) (h' : limsup v f ≠ ⊤) : limsup (u + v) f = ⊥
α : Type u_3 f : Filter α u v : α → EReal h : limsup u f = ⊥ h' : limsup v f ≠ ⊤ ⊢ ⊥ ≠ ⊤ ∨ limsup v f ≠ ⊥
exact .inl bot_ne_top
no goals
41c306a0a8f0f954
HallMarriageTheorem.hall_hard_inductive_step_A
Mathlib/Combinatorics/Hall/Finite.lean
theorem hall_hard_inductive_step_A {n : ℕ} (hn : Fintype.card ι = n + 1) (ht : ∀ s : Finset ι, #s ≤ #(s.biUnion t)) (ih : ∀ {ι' : Type u} [Fintype ι'] (t' : ι' → Finset α), Fintype.card ι' ≤ n → (∀ s' : Finset ι', #s' ≤ #(s'.biUnion t')) → ∃ f : ι' → α, Function.Injective f ∧ ∀ x, f x ∈ t' x) (ha : ∀ s : Finset ι, s.Nonempty → s ≠ univ → #s < #(s.biUnion t)) : ∃ f : ι → α, Function.Injective f ∧ ∀ x, f x ∈ t x
ι : Type u α : Type v inst✝¹ : DecidableEq α t : ι → Finset α inst✝ : Fintype ι n : ℕ hn : Fintype.card ι = n + 1 ht : ∀ (s : Finset ι), #s ≤ #(s.biUnion t) ih : ∀ {ι' : Type u} [inst : Fintype ι'] (t' : ι' → Finset α), Fintype.card ι' ≤ n → (∀ (s' : Finset ι'), #s' ≤ #(s'.biUnion t')) → ∃ f, Function.Injective f ∧ ∀ (x : ι'), f x ∈ t' x ha : ∀ (s : Finset ι), s.Nonempty → s ≠ univ → #s < #(s.biUnion t) this✝ : Nonempty ι this : DecidableEq ι x : ι := Classical.arbitrary ι y : α hy : y ∈ t x ι' : Set ι := {x' | x' ≠ x} t' : ↑ι' → Finset α := fun x' => (t ↑x').erase y card_ι' : Fintype.card ↑ι' = n f' : ↑ι' → α hfinj : Function.Injective f' hfr : ∀ (x : ↑ι'), f' x ∈ t' x z₁ z₂ : ι ⊢ ∀ {x : ↑ι'}, y ≠ f' x
intro x h
ι : Type u α : Type v inst✝¹ : DecidableEq α t : ι → Finset α inst✝ : Fintype ι n : ℕ hn : Fintype.card ι = n + 1 ht : ∀ (s : Finset ι), #s ≤ #(s.biUnion t) ih : ∀ {ι' : Type u} [inst : Fintype ι'] (t' : ι' → Finset α), Fintype.card ι' ≤ n → (∀ (s' : Finset ι'), #s' ≤ #(s'.biUnion t')) → ∃ f, Function.Injective f ∧ ∀ (x : ι'), f x ∈ t' x ha : ∀ (s : Finset ι), s.Nonempty → s ≠ univ → #s < #(s.biUnion t) this✝ : Nonempty ι this : DecidableEq ι x✝ : ι := Classical.arbitrary ι y : α hy : y ∈ t x✝ ι' : Set ι := {x' | x' ≠ x✝} t' : ↑ι' → Finset α := fun x' => (t ↑x').erase y card_ι' : Fintype.card ↑ι' = n f' : ↑ι' → α hfinj : Function.Injective f' hfr : ∀ (x : ↑ι'), f' x ∈ t' x z₁ z₂ : ι x : ↑ι' h : y = f' x ⊢ False
258330b4009c5e5d
IsPrimitiveRoot.minpoly_dvd_pow_mod
Mathlib/RingTheory/RootsOfUnity/Minpoly.lean
theorem minpoly_dvd_pow_mod {p : ℕ} [hprime : Fact p.Prime] (hdiv : ¬p ∣ n) : map (Int.castRingHom (ZMod p)) (minpoly ℤ μ) ∣ map (Int.castRingHom (ZMod p)) (minpoly ℤ (μ ^ p)) ^ p
n : ℕ K : Type u_1 inst✝² : CommRing K μ : K h : IsPrimitiveRoot μ n inst✝¹ : IsDomain K inst✝ : CharZero K p : ℕ hprime : Fact (Nat.Prime p) hdiv : ¬p ∣ n Q : ℤ[X] := minpoly ℤ (μ ^ p) hfrob : map (Int.castRingHom (ZMod p)) Q ^ p = map (Int.castRingHom (ZMod p)) ((expand ℤ p) Q) ⊢ map (Int.castRingHom (ZMod p)) (minpoly ℤ μ) ∣ map (Int.castRingHom (ZMod p)) ((expand ℤ p) Q)
apply RingHom.map_dvd (mapRingHom (Int.castRingHom (ZMod p)))
n : ℕ K : Type u_1 inst✝² : CommRing K μ : K h : IsPrimitiveRoot μ n inst✝¹ : IsDomain K inst✝ : CharZero K p : ℕ hprime : Fact (Nat.Prime p) hdiv : ¬p ∣ n Q : ℤ[X] := minpoly ℤ (μ ^ p) hfrob : map (Int.castRingHom (ZMod p)) Q ^ p = map (Int.castRingHom (ZMod p)) ((expand ℤ p) Q) ⊢ minpoly ℤ μ ∣ (expand ℤ p) Q
f3a17101a3651aa0
MeasureTheory.continuousOn_convolution_right_with_param
Mathlib/Analysis/Convolution.lean
theorem continuousOn_convolution_right_with_param {g : P → G → E'} {s : Set P} {k : Set G} (hk : IsCompact k) (hgs : ∀ p, ∀ x, p ∈ s → x ∉ k → g p x = 0) (hf : LocallyIntegrable f μ) (hg : ContinuousOn (↿g) (s ×ˢ univ)) : ContinuousOn (fun q : P × G => (f ⋆[L, μ] g q.1) q.2) (s ×ˢ univ)
𝕜 : Type u𝕜 G : Type uG E : Type uE E' : Type uE' F : Type uF P : Type uP inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedAddCommGroup E' inst✝¹¹ : NormedAddCommGroup F f : G → E inst✝¹⁰ : NontriviallyNormedField 𝕜 inst✝⁹ : NormedSpace 𝕜 E inst✝⁸ : NormedSpace 𝕜 E' inst✝⁷ : NormedSpace 𝕜 F L : E →L[𝕜] E' →L[𝕜] F inst✝⁶ : MeasurableSpace G μ : Measure G inst✝⁵ : NormedSpace ℝ F inst✝⁴ : AddGroup G inst✝³ : TopologicalSpace G inst✝² : IsTopologicalAddGroup G inst✝¹ : BorelSpace G inst✝ : TopologicalSpace P g : P → G → E' s : Set P k : Set G hk : IsCompact k hgs : ∀ (p : P) (x : G), p ∈ s → x ∉ k → g p x = 0 hf : LocallyIntegrable f μ hg : ContinuousOn (↿g) (s ×ˢ univ) H : ¬∀ p ∈ s, ∀ (x : G), g p x = 0 this✝ : LocallyCompactSpace G q₀ : P x₀ : G hq₀ : (q₀, x₀).1 ∈ s t : Set G t_comp : IsCompact t ht : t ∈ 𝓝 x₀ k' : Set G := -k +ᵥ t k'_comp : IsCompact k' g' : P × G → G → E' := fun p x => g p.1 (p.2 - x) s' : Set (P × G) := s ×ˢ t this : uncurry g' = uncurry g ∘ fun w => (w.1.1, w.1.2 - w.2) ⊢ ContinuousOn (uncurry g') (s' ×ˢ univ)
rw [this]
𝕜 : Type u𝕜 G : Type uG E : Type uE E' : Type uE' F : Type uF P : Type uP inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedAddCommGroup E' inst✝¹¹ : NormedAddCommGroup F f : G → E inst✝¹⁰ : NontriviallyNormedField 𝕜 inst✝⁹ : NormedSpace 𝕜 E inst✝⁸ : NormedSpace 𝕜 E' inst✝⁷ : NormedSpace 𝕜 F L : E →L[𝕜] E' →L[𝕜] F inst✝⁶ : MeasurableSpace G μ : Measure G inst✝⁵ : NormedSpace ℝ F inst✝⁴ : AddGroup G inst✝³ : TopologicalSpace G inst✝² : IsTopologicalAddGroup G inst✝¹ : BorelSpace G inst✝ : TopologicalSpace P g : P → G → E' s : Set P k : Set G hk : IsCompact k hgs : ∀ (p : P) (x : G), p ∈ s → x ∉ k → g p x = 0 hf : LocallyIntegrable f μ hg : ContinuousOn (↿g) (s ×ˢ univ) H : ¬∀ p ∈ s, ∀ (x : G), g p x = 0 this✝ : LocallyCompactSpace G q₀ : P x₀ : G hq₀ : (q₀, x₀).1 ∈ s t : Set G t_comp : IsCompact t ht : t ∈ 𝓝 x₀ k' : Set G := -k +ᵥ t k'_comp : IsCompact k' g' : P × G → G → E' := fun p x => g p.1 (p.2 - x) s' : Set (P × G) := s ×ˢ t this : uncurry g' = uncurry g ∘ fun w => (w.1.1, w.1.2 - w.2) ⊢ ContinuousOn (uncurry g ∘ fun w => (w.1.1, w.1.2 - w.2)) (s' ×ˢ univ)
a579c7593509cfe8
MeasurableEmbedding.rnDeriv_map
Mathlib/MeasureTheory/Decomposition/RadonNikodym.lean
lemma _root_.MeasurableEmbedding.rnDeriv_map (hf : MeasurableEmbedding f) (μ ν : Measure α) [SigmaFinite μ] [SigmaFinite ν] : (fun x ↦ (μ.map f).rnDeriv (ν.map f) (f x)) =ᵐ[ν] μ.rnDeriv ν
case refine_1 α : Type u_1 β : Type u_2 m : MeasurableSpace α mβ : MeasurableSpace β f : α → β hf : MeasurableEmbedding f μ ν : Measure α inst✝¹ : SigmaFinite μ inst✝ : SigmaFinite ν this✝¹ : SigmaFinite (map f ν) this✝ : SigmaFinite (map f (μ.singularPart ν)) this : SigmaFinite (map f (ν.withDensity (μ.rnDeriv ν))) h_add : (fun x => (map f (μ.singularPart ν) + map f (ν.withDensity (μ.rnDeriv ν))).rnDeriv (map f ν) (f x)) =ᶠ[ae ν] fun x => ((map f (μ.singularPart ν)).rnDeriv (map f ν) + (map f (ν.withDensity (μ.rnDeriv ν))).rnDeriv (map f ν)) (f x) ⊢ (fun x => (map f (μ.singularPart ν)).rnDeriv (map f ν) x) =ᶠ[ae (map f ν)] 0
refine Measure.rnDeriv_eq_zero_of_mutuallySingular ?_ Measure.AbsolutelyContinuous.rfl
case refine_1 α : Type u_1 β : Type u_2 m : MeasurableSpace α mβ : MeasurableSpace β f : α → β hf : MeasurableEmbedding f μ ν : Measure α inst✝¹ : SigmaFinite μ inst✝ : SigmaFinite ν this✝¹ : SigmaFinite (map f ν) this✝ : SigmaFinite (map f (μ.singularPart ν)) this : SigmaFinite (map f (ν.withDensity (μ.rnDeriv ν))) h_add : (fun x => (map f (μ.singularPart ν) + map f (ν.withDensity (μ.rnDeriv ν))).rnDeriv (map f ν) (f x)) =ᶠ[ae ν] fun x => ((map f (μ.singularPart ν)).rnDeriv (map f ν) + (map f (ν.withDensity (μ.rnDeriv ν))).rnDeriv (map f ν)) (f x) ⊢ map f (μ.singularPart ν) ⟂ₘ map f ν
ea80b5c7d85148f7
MvPolynomial.totalDegree_add_eq_left_of_totalDegree_lt
Mathlib/Algebra/MvPolynomial/Degrees.lean
theorem totalDegree_add_eq_left_of_totalDegree_lt {p q : MvPolynomial σ R} (h : q.totalDegree < p.totalDegree) : (p + q).totalDegree = p.totalDegree
R : Type u σ : Type u_1 inst✝ : CommSemiring R p q : MvPolynomial σ R h : q.totalDegree < p.totalDegree hp : ¬p = 0 b : σ →₀ ℕ hb₁ : b ∈ p.support hb₂ : (p.support.sup fun m => (toMultiset m).card) = (toMultiset b).card ⊢ b ∉ q.support
contrapose! h
R : Type u σ : Type u_1 inst✝ : CommSemiring R p q : MvPolynomial σ R hp : ¬p = 0 b : σ →₀ ℕ hb₁ : b ∈ p.support hb₂ : (p.support.sup fun m => (toMultiset m).card) = (toMultiset b).card h : b ∈ q.support ⊢ p.totalDegree ≤ q.totalDegree
554f88c9f1d39d60
Set.Definable.image_comp_embedding
Mathlib/ModelTheory/Definability.lean
theorem Definable.image_comp_embedding {s : Set (β → M)} (h : A.Definable L s) (f : α ↪ β) [Finite β] : A.Definable L ((fun g : β → M => g ∘ f) '' s)
case intro M : Type w A : Set M L : Language inst✝¹ : L.Structure M α : Type u₁ β : Type u_1 s : Set (β → M) h : A.Definable L s f : α ↪ β inst✝ : Finite β val✝ : Fintype β x : α → M ⊢ x ∈ (fun g => g ∘ Sum.inl) '' ((fun g => g ∘ ⇑((Equiv.ofInjective ⇑f ⋯).sumCongr (Fintype.equivFin ↑(range ⇑f)ᶜ).symm)) '' ((fun g => g ∘ ⇑(Equiv.Set.sumCompl (range ⇑f))) '' s)) ↔ x ∈ (fun g => g ∘ ⇑f) '' s
simp only [mem_preimage, mem_image, exists_exists_and_eq_and]
case intro M : Type w A : Set M L : Language inst✝¹ : L.Structure M α : Type u₁ β : Type u_1 s : Set (β → M) h : A.Definable L s f : α ↪ β inst✝ : Finite β val✝ : Fintype β x : α → M ⊢ (∃ a ∈ s, ((a ∘ ⇑(Equiv.Set.sumCompl (range ⇑f))) ∘ ⇑((Equiv.ofInjective ⇑f ⋯).sumCongr (Fintype.equivFin ↑(range ⇑f)ᶜ).symm)) ∘ Sum.inl = x) ↔ ∃ x_1 ∈ s, x_1 ∘ ⇑f = x
7b3adb8c33237ade
CategoryTheory.Arrow.functor_ext
Mathlib/CategoryTheory/Comma/Arrow.lean
/-- Extensionality lemma for functors `C ⥤ D` which uses as an assumption that the induced maps `Arrow C → Arrow D` coincide. -/ lemma Arrow.functor_ext {F G : C ⥤ D} (h : ∀ ⦃X Y : C⦄ (f : X ⟶ Y), F.mapArrow.obj (Arrow.mk f) = G.mapArrow.obj (Arrow.mk f)) : F = G := Functor.ext (fun X ↦ congr_arg Comma.left (h (𝟙 X))) (fun X Y f ↦ by have := h f simp only [Functor.mapArrow_obj, mk_eq_mk_iff] at this tauto)
C : Type u_1 D : Type u_2 inst✝¹ : Category.{u_3, u_1} C inst✝ : Category.{u_4, u_2} D F G : C ⥤ D h : ∀ ⦃X Y : C⦄ (f : X ⟶ Y), F.mapArrow.obj (mk f) = G.mapArrow.obj (mk f) X Y : C f : X ⟶ Y this : ∃ hX hY, F.map (mk f).hom = eqToHom hX ≫ G.map (mk f).hom ≫ eqToHom ⋯ ⊢ F.map f = eqToHom ⋯ ≫ G.map f ≫ eqToHom ⋯
tauto
no goals
8fbf458ec71e16c4
Polynomial.Monic.sub_of_right
Mathlib/Algebra/Polynomial/Monic.lean
theorem Monic.sub_of_right {p q : R[X]} (hq : q.leadingCoeff = -1) (hpq : degree p < degree q) : Monic (p - q)
R : Type u inst✝ : Ring R p q : R[X] hq : q.leadingCoeff = -1 hpq : p.degree < q.degree this : (-q).coeff (-q).natDegree = 1 ⊢ (p - q).Monic
rw [sub_eq_add_neg]
R : Type u inst✝ : Ring R p q : R[X] hq : q.leadingCoeff = -1 hpq : p.degree < q.degree this : (-q).coeff (-q).natDegree = 1 ⊢ (p + -q).Monic
0f87bd252fa796db
Matrix.stdBasisMatrix_eq_of_single_single
Mathlib/Data/Matrix/Basis.lean
theorem stdBasisMatrix_eq_of_single_single (i : m) (j : n) (a : α) : stdBasisMatrix i j a = Matrix.of (Pi.single i (Pi.single j a))
m : Type u_2 n : Type u_3 α : Type u_5 inst✝² : DecidableEq m inst✝¹ : DecidableEq n inst✝ : Zero α i : m j : n a : α ⊢ stdBasisMatrix i j a = of (Pi.single i (Pi.single j a))
ext a b
case a m : Type u_2 n : Type u_3 α : Type u_5 inst✝² : DecidableEq m inst✝¹ : DecidableEq n inst✝ : Zero α i : m j : n a✝ : α a : m b : n ⊢ stdBasisMatrix i j a✝ a b = of (Pi.single i (Pi.single j a✝)) a b
4ae8f56c1d529f84
ProbabilityTheory.Kernel.IndepSet.measure_inter_eq_mul
Mathlib/Probability/Independence/Kernel.lean
theorem IndepSet.measure_inter_eq_mul {_m0 : MeasurableSpace Ω} (κ : Kernel α Ω) (μ : Measure α) (h : IndepSet s t κ μ) : ∀ᵐ a ∂μ, κ a (s ∩ t) = κ a s * κ a t := Indep.indepSets h _ _ (by simp) (by simp)
α : Type u_1 Ω : Type u_2 _mα : MeasurableSpace α s t : Set Ω _m0 : MeasurableSpace Ω κ : Kernel α Ω μ : Measure α h : IndepSet s t κ μ ⊢ s ∈ {s}
simp
no goals
04d47f0b74fc340f
AlgebraicGeometry.SurjectiveOnStalks.isEmbedding_pullback
Mathlib/AlgebraicGeometry/Morphisms/SurjectiveOnStalks.lean
/-- If `Y ⟶ S` is surjective on stalks, then for every `X ⟶ S`, `X ×ₛ Y` is a subset of `X × Y` (cartesian product as topological spaces) with the induced topology. -/ lemma isEmbedding_pullback {X Y S : Scheme.{u}} (f : X ⟶ S) (g : Y ⟶ S) [SurjectiveOnStalks g] : IsEmbedding (fun x ↦ ((pullback.fst f g).base x, (pullback.snd f g).base x))
case refine_2.intro.intro.intro.intro.intro.intro.refine_3 X Y S : Scheme f : X ⟶ S g : Y ⟶ S inst✝ : SurjectiveOnStalks g L : ↑↑(pullback f g).toPresheafedSpace → ↑↑X.toPresheafedSpace × ↑↑Y.toPresheafedSpace := fun x => ((ConcreteCategory.hom (pullback.fst f g).base) x, (ConcreteCategory.hom (pullback.snd f g).base) x) H : ∀ (R A B : CommRingCat) (f' : Spec A ⟶ Spec R) (g' : Spec B ⟶ Spec R) (iX : Spec A ⟶ X) (iY : Spec B ⟶ Y) (iS : Spec R ⟶ S) (e₁ : f' ≫ iS = iX ≫ f) (e₂ : g' ≫ iS = iY ≫ g), IsOpenImmersion iX → IsOpenImmersion iY → IsOpenImmersion iS → IsEmbedding (L ∘ ⇑(ConcreteCategory.hom (pullback.map f' g' f g iX iY iS e₁ e₂).base)) 𝒰 : S.OpenCover := S.affineOpenCover.openCover 𝒱 : (i : (Scheme.Cover.pullbackCover 𝒰 f).J) → ((Scheme.Cover.pullbackCover 𝒰 f).obj i).OpenCover := fun i => ((Scheme.Cover.pullbackCover 𝒰 f).obj i).affineOpenCover.openCover 𝒲 : (i : (Scheme.Cover.pullbackCover 𝒰 g).J) → ((Scheme.Cover.pullbackCover 𝒰 g).obj i).OpenCover := fun i => ((Scheme.Cover.pullbackCover 𝒰 g).obj i).affineOpenCover.openCover U : (i : (Scheme.Cover.pullbackCover 𝒰 f).J) × (𝒱 i).J × (𝒲 i).J → TopologicalSpace.Opens (↑↑X.toPresheafedSpace × ↑↑Y.toPresheafedSpace) := fun ijk => { carrier := {P | P.1 ∈ Scheme.Hom.opensRange ((𝒱 ijk.fst).map ijk.snd.1 ≫ (Scheme.Cover.pullbackCover 𝒰 f).map ijk.fst) ∧ P.2 ∈ Scheme.Hom.opensRange ((𝒲 ijk.fst).map ijk.snd.2 ≫ (Scheme.Cover.pullbackCover 𝒰 g).map ijk.fst)}, is_open' := ⋯ } this : Set.range L ⊆ ↑(iSup U) 𝓤 : Scheme.Cover (@IsOpenImmersion) (pullback f g) := Scheme.Cover.bind (Scheme.Pullback.openCoverOfBase 𝒰 f g) fun i => Scheme.Pullback.openCoverOfLeftRight (𝒱 i) (𝒲 i) (pullback.snd f (𝒰.map i)) (pullback.snd g (𝒰.map i)) i : (i : (Scheme.Cover.pullbackCover 𝒰 f).J) × (𝒱 i).J × (𝒲 i).J x : ↑↑(pullback f g).toPresheafedSpace x₁ : ↑↑((𝒱 i.fst).obj i.snd.1).toPresheafedSpace hx₁ : (ConcreteCategory.hom ((𝒱 i.fst).map i.snd.1 ≫ (Scheme.Cover.pullbackCover 𝒰 f).map i.fst).base) x₁ = ((fun x => ((ConcreteCategory.hom (pullback.fst f g).base) x, (ConcreteCategory.hom (pullback.snd f g).base) x)) x).1 x₂ : ↑↑((𝒲 i.fst).obj i.snd.2).toPresheafedSpace hx₂ : (ConcreteCategory.hom ((𝒲 i.fst).map i.snd.2 ≫ (Scheme.Cover.pullbackCover 𝒰 g).map i.fst).base) x₂ = ((fun x => ((ConcreteCategory.hom (pullback.fst f g).base) x, (ConcreteCategory.hom (pullback.snd f g).base) x)) x).2 x₁' : ↑↑(pullback (pullback.fst f g) ((𝒱 i.fst).map i.snd.1 ≫ (Scheme.Cover.pullbackCover 𝒰 f).map i.fst)).toPresheafedSpace hx₁' : (ConcreteCategory.hom (pullback.fst (pullback.fst f g) ((𝒱 i.fst).map i.snd.1 ≫ (Scheme.Cover.pullbackCover 𝒰 f).map i.fst)).base) x₁' = x x₂' : ↑↑(pullback (pullback.snd f g) ((𝒲 i.fst).map i.snd.2 ≫ (Scheme.Cover.pullbackCover 𝒰 g).map i.fst)).toPresheafedSpace hx₂' : (ConcreteCategory.hom (pullback.fst (pullback.snd f g) ((𝒲 i.fst).map i.snd.2 ≫ (Scheme.Cover.pullbackCover 𝒰 g).map i.fst)).base) x₂' = x z : ↑↑(pullback (pullback.fst (pullback.fst f g) ((𝒱 i.fst).map i.snd.1 ≫ (Scheme.Cover.pullbackCover 𝒰 f).map i.fst)) (pullback.fst (pullback.snd f g) ((𝒲 i.fst).map i.snd.2 ≫ (Scheme.Cover.pullbackCover 𝒰 g).map i.fst))).toPresheafedSpace hz : (ConcreteCategory.hom (pullback.fst (pullback.fst (pullback.fst f g) ((𝒱 i.fst).map i.snd.1 ≫ (Scheme.Cover.pullbackCover 𝒰 f).map i.fst)) (pullback.fst (pullback.snd f g) ((𝒲 i.fst).map i.snd.2 ≫ (Scheme.Cover.pullbackCover 𝒰 g).map i.fst))).base) z = x₁' ⊢ (ConcreteCategory.hom ((pullbackFstFstIso ((𝒱 i.fst).map i.snd.1 ≫ pullback.snd f (𝒰.map i.fst)) ((𝒲 i.fst).map i.snd.2 ≫ pullback.snd g (𝒰.map i.fst)) f g ((𝒱 i.fst).map i.snd.1 ≫ (Scheme.Cover.pullbackCover 𝒰 f).map i.fst) ((𝒲 i.fst).map i.snd.2 ≫ (Scheme.Cover.pullbackCover 𝒰 g).map i.fst) (𝒰.map i.fst) ⋯ ⋯).hom ≫ 𝓤.map i).base) z = (ConcreteCategory.hom (pullback.fst (pullback.fst (pullback.fst f g) ((𝒱 i.fst).map i.snd.1 ≫ (Scheme.Cover.pullbackCover 𝒰 f).map i.fst)) (pullback.fst (pullback.snd f g) ((𝒲 i.fst).map i.snd.2 ≫ (Scheme.Cover.pullbackCover 𝒰 g).map i.fst)) ≫ pullback.fst (pullback.fst f g) ((𝒱 i.fst).map i.snd.1 ≫ (Scheme.Cover.pullbackCover 𝒰 f).map i.fst)).base) z
congr 5
case refine_2.intro.intro.intro.intro.intro.intro.refine_3.e_a.e_a.e_self.e_self.e_self X Y S : Scheme f : X ⟶ S g : Y ⟶ S inst✝ : SurjectiveOnStalks g L : ↑↑(pullback f g).toPresheafedSpace → ↑↑X.toPresheafedSpace × ↑↑Y.toPresheafedSpace := fun x => ((ConcreteCategory.hom (pullback.fst f g).base) x, (ConcreteCategory.hom (pullback.snd f g).base) x) H : ∀ (R A B : CommRingCat) (f' : Spec A ⟶ Spec R) (g' : Spec B ⟶ Spec R) (iX : Spec A ⟶ X) (iY : Spec B ⟶ Y) (iS : Spec R ⟶ S) (e₁ : f' ≫ iS = iX ≫ f) (e₂ : g' ≫ iS = iY ≫ g), IsOpenImmersion iX → IsOpenImmersion iY → IsOpenImmersion iS → IsEmbedding (L ∘ ⇑(ConcreteCategory.hom (pullback.map f' g' f g iX iY iS e₁ e₂).base)) 𝒰 : S.OpenCover := S.affineOpenCover.openCover 𝒱 : (i : (Scheme.Cover.pullbackCover 𝒰 f).J) → ((Scheme.Cover.pullbackCover 𝒰 f).obj i).OpenCover := fun i => ((Scheme.Cover.pullbackCover 𝒰 f).obj i).affineOpenCover.openCover 𝒲 : (i : (Scheme.Cover.pullbackCover 𝒰 g).J) → ((Scheme.Cover.pullbackCover 𝒰 g).obj i).OpenCover := fun i => ((Scheme.Cover.pullbackCover 𝒰 g).obj i).affineOpenCover.openCover U : (i : (Scheme.Cover.pullbackCover 𝒰 f).J) × (𝒱 i).J × (𝒲 i).J → TopologicalSpace.Opens (↑↑X.toPresheafedSpace × ↑↑Y.toPresheafedSpace) := fun ijk => { carrier := {P | P.1 ∈ Scheme.Hom.opensRange ((𝒱 ijk.fst).map ijk.snd.1 ≫ (Scheme.Cover.pullbackCover 𝒰 f).map ijk.fst) ∧ P.2 ∈ Scheme.Hom.opensRange ((𝒲 ijk.fst).map ijk.snd.2 ≫ (Scheme.Cover.pullbackCover 𝒰 g).map ijk.fst)}, is_open' := ⋯ } this : Set.range L ⊆ ↑(iSup U) 𝓤 : Scheme.Cover (@IsOpenImmersion) (pullback f g) := Scheme.Cover.bind (Scheme.Pullback.openCoverOfBase 𝒰 f g) fun i => Scheme.Pullback.openCoverOfLeftRight (𝒱 i) (𝒲 i) (pullback.snd f (𝒰.map i)) (pullback.snd g (𝒰.map i)) i : (i : (Scheme.Cover.pullbackCover 𝒰 f).J) × (𝒱 i).J × (𝒲 i).J x : ↑↑(pullback f g).toPresheafedSpace x₁ : ↑↑((𝒱 i.fst).obj i.snd.1).toPresheafedSpace hx₁ : (ConcreteCategory.hom ((𝒱 i.fst).map i.snd.1 ≫ (Scheme.Cover.pullbackCover 𝒰 f).map i.fst).base) x₁ = ((fun x => ((ConcreteCategory.hom (pullback.fst f g).base) x, (ConcreteCategory.hom (pullback.snd f g).base) x)) x).1 x₂ : ↑↑((𝒲 i.fst).obj i.snd.2).toPresheafedSpace hx₂ : (ConcreteCategory.hom ((𝒲 i.fst).map i.snd.2 ≫ (Scheme.Cover.pullbackCover 𝒰 g).map i.fst).base) x₂ = ((fun x => ((ConcreteCategory.hom (pullback.fst f g).base) x, (ConcreteCategory.hom (pullback.snd f g).base) x)) x).2 x₁' : ↑↑(pullback (pullback.fst f g) ((𝒱 i.fst).map i.snd.1 ≫ (Scheme.Cover.pullbackCover 𝒰 f).map i.fst)).toPresheafedSpace hx₁' : (ConcreteCategory.hom (pullback.fst (pullback.fst f g) ((𝒱 i.fst).map i.snd.1 ≫ (Scheme.Cover.pullbackCover 𝒰 f).map i.fst)).base) x₁' = x x₂' : ↑↑(pullback (pullback.snd f g) ((𝒲 i.fst).map i.snd.2 ≫ (Scheme.Cover.pullbackCover 𝒰 g).map i.fst)).toPresheafedSpace hx₂' : (ConcreteCategory.hom (pullback.fst (pullback.snd f g) ((𝒲 i.fst).map i.snd.2 ≫ (Scheme.Cover.pullbackCover 𝒰 g).map i.fst)).base) x₂' = x z : ↑↑(pullback (pullback.fst (pullback.fst f g) ((𝒱 i.fst).map i.snd.1 ≫ (Scheme.Cover.pullbackCover 𝒰 f).map i.fst)) (pullback.fst (pullback.snd f g) ((𝒲 i.fst).map i.snd.2 ≫ (Scheme.Cover.pullbackCover 𝒰 g).map i.fst))).toPresheafedSpace hz : (ConcreteCategory.hom (pullback.fst (pullback.fst (pullback.fst f g) ((𝒱 i.fst).map i.snd.1 ≫ (Scheme.Cover.pullbackCover 𝒰 f).map i.fst)) (pullback.fst (pullback.snd f g) ((𝒲 i.fst).map i.snd.2 ≫ (Scheme.Cover.pullbackCover 𝒰 g).map i.fst))).base) z = x₁' ⊢ (pullbackFstFstIso ((𝒱 i.fst).map i.snd.1 ≫ pullback.snd f (𝒰.map i.fst)) ((𝒲 i.fst).map i.snd.2 ≫ pullback.snd g (𝒰.map i.fst)) f g ((𝒱 i.fst).map i.snd.1 ≫ (Scheme.Cover.pullbackCover 𝒰 f).map i.fst) ((𝒲 i.fst).map i.snd.2 ≫ (Scheme.Cover.pullbackCover 𝒰 g).map i.fst) (𝒰.map i.fst) ⋯ ⋯).hom ≫ 𝓤.map i = pullback.fst (pullback.fst (pullback.fst f g) ((𝒱 i.fst).map i.snd.1 ≫ (Scheme.Cover.pullbackCover 𝒰 f).map i.fst)) (pullback.fst (pullback.snd f g) ((𝒲 i.fst).map i.snd.2 ≫ (Scheme.Cover.pullbackCover 𝒰 g).map i.fst)) ≫ pullback.fst (pullback.fst f g) ((𝒱 i.fst).map i.snd.1 ≫ (Scheme.Cover.pullbackCover 𝒰 f).map i.fst)
9509c1734d72b9a6
RingHom.finiteType_holdsForLocalizationAway
Mathlib/RingTheory/RingHom/FiniteType.lean
theorem finiteType_holdsForLocalizationAway : HoldsForLocalizationAway @FiniteType
case h.e'_5.h R S : Type u_1 inst✝³ : CommRing R inst✝² : CommRing S inst✝¹ : Algebra R S r : R inst✝ : IsLocalization.Away r S this : Algebra.FiniteType R S r✝ : R x✝ : S ⊢ (let_fun I := (algebraMap R S).toAlgebra; r✝ • x✝) = r✝ • x✝
rw [Algebra.smul_def]
case h.e'_5.h R S : Type u_1 inst✝³ : CommRing R inst✝² : CommRing S inst✝¹ : Algebra R S r : R inst✝ : IsLocalization.Away r S this : Algebra.FiniteType R S r✝ : R x✝ : S ⊢ (let_fun I := (algebraMap R S).toAlgebra; r✝ • x✝) = (algebraMap R S) r✝ * x✝
97309f76efa63e45
Int.le_ceil_iff
Mathlib/Algebra/Order/Floor.lean
lemma le_ceil_iff : z ≤ ⌈a⌉ ↔ z - 1 < a
α : Type u_2 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a : α ⊢ z ≤ ⌈a⌉ ↔ ↑z - 1 < a
rw [← sub_one_lt_iff, lt_ceil]
α : Type u_2 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a : α ⊢ ↑(z - 1) < a ↔ ↑z - 1 < a
a0620efd241d7464
MeasureTheory.aemeasurable_withDensity_ennreal_iff'
Mathlib/MeasureTheory/Measure/WithDensity.lean
theorem aemeasurable_withDensity_ennreal_iff' {f : α → ℝ≥0} (hf : AEMeasurable f μ) {g : α → ℝ≥0∞} : AEMeasurable g (μ.withDensity fun x => (f x : ℝ≥0∞)) ↔ AEMeasurable (fun x => (f x : ℝ≥0∞) * g x) μ
case h α : Type u_1 m0 : MeasurableSpace α μ : Measure α f : α → ℝ≥0 hf : AEMeasurable f μ g : α → ℝ≥0∞ f' : α → ℝ≥0 hf'_m : Measurable f' hf'_ae : f =ᶠ[ae μ] f' g' : α → ℝ≥0∞ g'meas : Measurable g' hg' : ∀ᵐ (x : α) ∂μ, ↑(f x) ≠ 0 → g x = g' x A : MeasurableSet {x | f' x ≠ 0} a : α ha : ↑(f a) ≠ 0 → g a = g' a h'a : f a = f' a h_a_nonneg : f' a ≠ 0 ⊢ ↑(f a) * g a = ↑(f' a) * g' a
have : (f' a : ℝ≥0∞) ≠ 0 := by simpa only [Ne, ENNReal.coe_eq_zero] using h_a_nonneg
case h α : Type u_1 m0 : MeasurableSpace α μ : Measure α f : α → ℝ≥0 hf : AEMeasurable f μ g : α → ℝ≥0∞ f' : α → ℝ≥0 hf'_m : Measurable f' hf'_ae : f =ᶠ[ae μ] f' g' : α → ℝ≥0∞ g'meas : Measurable g' hg' : ∀ᵐ (x : α) ∂μ, ↑(f x) ≠ 0 → g x = g' x A : MeasurableSet {x | f' x ≠ 0} a : α ha : ↑(f a) ≠ 0 → g a = g' a h'a : f a = f' a h_a_nonneg : f' a ≠ 0 this : ↑(f' a) ≠ 0 ⊢ ↑(f a) * g a = ↑(f' a) * g' a
8b1f28ad3ee0d17a
bernsteinPolynomial.iterate_derivative_at_0
Mathlib/RingTheory/Polynomial/Bernstein.lean
theorem iterate_derivative_at_0 (n ν : ℕ) : (Polynomial.derivative^[ν] (bernsteinPolynomial R n ν)).eval 0 = (ascPochhammer R ν).eval ((n - (ν - 1) : ℕ) : R)
case pos.succ.inr R : Type u_1 inst✝ : CommRing R ν : ℕ ih : ∀ (n : ℕ), ν ≤ n → eval 0 ((⇑derivative)^[ν] (bernsteinPolynomial R n ν)) = eval (↑(n - (ν - 1))) (ascPochhammer R ν) n : ℕ h : ν + 1 ≤ n h' : ν ≤ n - 1 h'' : ν > 0 ⊢ ↑n * eval (↑(n - 1 - (ν - 1))) (ascPochhammer R ν) = ↑(n - ν) * eval (↑(n - ν) + 1) (ascPochhammer R ν)
have : n - 1 - (ν - 1) = n - ν := by omega
case pos.succ.inr R : Type u_1 inst✝ : CommRing R ν : ℕ ih : ∀ (n : ℕ), ν ≤ n → eval 0 ((⇑derivative)^[ν] (bernsteinPolynomial R n ν)) = eval (↑(n - (ν - 1))) (ascPochhammer R ν) n : ℕ h : ν + 1 ≤ n h' : ν ≤ n - 1 h'' : ν > 0 this : n - 1 - (ν - 1) = n - ν ⊢ ↑n * eval (↑(n - 1 - (ν - 1))) (ascPochhammer R ν) = ↑(n - ν) * eval (↑(n - ν) + 1) (ascPochhammer R ν)
2869d2a115228592
Ordinal.principal_mul_iff_mul_left_eq
Mathlib/SetTheory/Ordinal/Principal.lean
theorem principal_mul_iff_mul_left_eq : Principal (· * ·) o ↔ ∀ a, 0 < a → a < o → a * o = o
case h.e'_2.h.e'_5.a o : Ordinal.{u} h : Principal (fun x1 x2 => x1 * x2) o a : Ordinal.{u} ha₀ : 0 < a hao : a < o ho : o ≤ 2 ⊢ a < 2
exact hao.trans_le ho
no goals
5ae376ccba37fa39
MeasurableSet.iUnion_of_monotone_of_frequently
Mathlib/MeasureTheory/MeasurableSpace/Basic.lean
theorem iUnion_of_monotone_of_frequently {ι : Type*} [Preorder ι] [(atTop : Filter ι).IsCountablyGenerated] {s : ι → Set α} (hsm : Monotone s) (hs : ∃ᶠ i in atTop, MeasurableSet (s i)) : MeasurableSet (⋃ i, s i)
case intro.intro α : Type u_1 inst✝² : MeasurableSpace α ι : Type u_6 inst✝¹ : Preorder ι inst✝ : atTop.IsCountablyGenerated s : ι → Set α hsm : Monotone s hs : ∃ᶠ (i : ι) in atTop, MeasurableSet (s i) x : ℕ → ι hx : Tendsto x atTop atTop hxm : ∀ (n : ℕ), MeasurableSet (s (x n)) ⊢ MeasurableSet (⋃ i, s i)
rw [← hsm.iUnion_comp_tendsto_atTop hx]
case intro.intro α : Type u_1 inst✝² : MeasurableSpace α ι : Type u_6 inst✝¹ : Preorder ι inst✝ : atTop.IsCountablyGenerated s : ι → Set α hsm : Monotone s hs : ∃ᶠ (i : ι) in atTop, MeasurableSet (s i) x : ℕ → ι hx : Tendsto x atTop atTop hxm : ∀ (n : ℕ), MeasurableSet (s (x n)) ⊢ MeasurableSet (⋃ a, s (x a))
eaf9c9d5846defea
AdicCompletion.ofTensorProduct_iso
Mathlib/RingTheory/AdicCompletion/AsTensorProduct.lean
private lemma ofTensorProduct_iso [Fintype ι] [IsNoetherianRing R] : IsIso (ModuleCat.ofHom (ofTensorProduct I M))
case refine_4 R : Type u inst✝⁴ : CommRing R I : Ideal R M : Type u inst✝³ : AddCommGroup M inst✝² : Module R M ι : Type f : (ι → R) →ₗ[R] M hf : Function.Surjective ⇑f inst✝¹ : Fintype ι inst✝ : IsNoetherianRing R ⊢ Mono (ComposableArrows.app' (AdicCompletion.firstRowToSecondRow I M f) 4 ⋯)
apply ConcreteCategory.mono_of_injective
case refine_4.i R : Type u inst✝⁴ : CommRing R I : Ideal R M : Type u inst✝³ : AddCommGroup M inst✝² : Module R M ι : Type f : (ι → R) →ₗ[R] M hf : Function.Surjective ⇑f inst✝¹ : Fintype ι inst✝ : IsNoetherianRing R ⊢ Function.Injective ⇑(ConcreteCategory.hom (ComposableArrows.app' (AdicCompletion.firstRowToSecondRow I M f) 4 ⋯))
76224af4d5a35f57
PreTilt.valAux_eq
Mathlib/RingTheory/Perfection.lean
theorem valAux_eq {f : PreTilt O p} {n : ℕ} (hfn : coeff _ _ n f ≠ 0) : valAux K v O p f = ModP.preVal K v O p (coeff _ _ n f) ^ p ^ n
case intro.succ.intro K : Type u₁ inst✝⁴ : Field K v : Valuation K ℝ≥0 O : Type u₂ inst✝³ : CommRing O inst✝² : Algebra O K hv : v.Integers O p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Fact ¬IsUnit ↑p f : PreTilt O p h : ∃ n, (coeff (ModP O p) p n) f ≠ 0 k : ℕ ih : (coeff (ModP O p) p (Nat.find h + k)) f ≠ 0 → ModP.preVal K v O p ((coeff (ModP O p) p (Nat.find h)) f) ^ p ^ Nat.find h = ModP.preVal K v O p ((coeff (ModP O p) p (Nat.find h + k)) f) ^ p ^ (Nat.find h + k) hfn : (coeff (ModP O p) p (Nat.find h + (k + 1))) f ≠ 0 x : O hx : (Ideal.Quotient.mk (Ideal.span {↑p})) x = (coeff (ModP O p) p (Nat.find h + k + 1)) f h1 : (Ideal.Quotient.mk (Ideal.span {↑p})) x ≠ 0 ⊢ ModP.preVal K v O p ((coeff (ModP O p) p (Nat.find h)) f) ^ p ^ Nat.find h = ModP.preVal K v O p ((coeff (ModP O p) p (Nat.find h + (k + 1))) f) ^ p ^ (Nat.find h + (k + 1))
have h2 : (Ideal.Quotient.mk _ (x ^ p) : ModP O p) ≠ 0 := by erw [RingHom.map_pow, hx, ← RingHom.map_pow, coeff_pow_p] exact coeff_nat_find_add_ne_zero k
case intro.succ.intro K : Type u₁ inst✝⁴ : Field K v : Valuation K ℝ≥0 O : Type u₂ inst✝³ : CommRing O inst✝² : Algebra O K hv : v.Integers O p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Fact ¬IsUnit ↑p f : PreTilt O p h : ∃ n, (coeff (ModP O p) p n) f ≠ 0 k : ℕ ih : (coeff (ModP O p) p (Nat.find h + k)) f ≠ 0 → ModP.preVal K v O p ((coeff (ModP O p) p (Nat.find h)) f) ^ p ^ Nat.find h = ModP.preVal K v O p ((coeff (ModP O p) p (Nat.find h + k)) f) ^ p ^ (Nat.find h + k) hfn : (coeff (ModP O p) p (Nat.find h + (k + 1))) f ≠ 0 x : O hx : (Ideal.Quotient.mk (Ideal.span {↑p})) x = (coeff (ModP O p) p (Nat.find h + k + 1)) f h1 : (Ideal.Quotient.mk (Ideal.span {↑p})) x ≠ 0 h2 : (Ideal.Quotient.mk (Ideal.span {↑p})) (x ^ p) ≠ 0 ⊢ ModP.preVal K v O p ((coeff (ModP O p) p (Nat.find h)) f) ^ p ^ Nat.find h = ModP.preVal K v O p ((coeff (ModP O p) p (Nat.find h + (k + 1))) f) ^ p ^ (Nat.find h + (k + 1))
821b0935f5925da0
TrivSqZeroExt.norm_inl
Mathlib/Analysis/Normed/Algebra/TrivSqZeroExt.lean
theorem norm_inl (r : R) : ‖(inl r : tsze R M)‖ = ‖r‖
R : Type u_3 M : Type u_4 inst✝¹ : SeminormedRing R inst✝ : SeminormedAddCommGroup M r : R ⊢ ‖inl r‖ = ‖r‖
simp [norm_def]
no goals
47694de979f8454e
PrimeSpectrum.isCompact_basicOpen
Mathlib/RingTheory/Spectrum/Prime/Topology.lean
theorem isCompact_basicOpen (f : R) : IsCompact (basicOpen f : Set (PrimeSpectrum R))
R : Type u inst✝ : CommSemiring R f : R ⊢ IsCompact ↑(basicOpen f)
rw [← localization_away_comap_range (Localization (Submonoid.powers f))]
R : Type u inst✝ : CommSemiring R f : R ⊢ IsCompact (Set.range ⇑(comap (algebraMap R (Localization (Submonoid.powers f)))))
5fb4b47b3c5996fe
UpperSet.mem_iInf_iff
Mathlib/Order/UpperLower/Basic.lean
theorem mem_iInf_iff {f : ι → UpperSet α} : (a ∈ ⨅ i, f i) ↔ ∃ i, a ∈ f i
α : Type u_1 ι : Sort u_4 inst✝ : LE α a : α f : ι → UpperSet α ⊢ a ∈ ⨅ i, f i ↔ ∃ i, a ∈ f i
rw [← SetLike.mem_coe, coe_iInf]
α : Type u_1 ι : Sort u_4 inst✝ : LE α a : α f : ι → UpperSet α ⊢ a ∈ ⋃ i, ↑(f i) ↔ ∃ i, a ∈ f i
6c69d7bdb2398f7e
AffineIndependent.convexHull_inter
Mathlib/Analysis/Convex/Combination.lean
/-- Two simplices glue nicely if the union of their vertices is affine independent. -/ lemma AffineIndependent.convexHull_inter (hs : AffineIndependent R ((↑) : s → E)) (ht₁ : t₁ ⊆ s) (ht₂ : t₂ ⊆ s) : convexHull R (t₁ ∩ t₂ : Set E) = convexHull R t₁ ∩ convexHull R t₂
R : Type u_1 E : Type u_3 inst✝² : LinearOrderedField R inst✝¹ : AddCommGroup E inst✝ : Module R E s t₁ t₂ : Finset E hs : AffineIndependent R Subtype.val ht₁ : t₁ ⊆ s ht₂ : t₂ ⊆ s x : E w₁ : E → R h₁w₁ : ∀ y ∈ t₁, 0 ≤ w₁ y h₂w₁ : ∑ y ∈ t₁, w₁ y = 1 h₃w₁ : ∑ y ∈ t₁, w₁ y • y = x w₂ : E → R h₂w₂ : ∑ y ∈ t₂, w₂ y = 1 h₃w₂ : ∑ y ∈ t₂, w₂ y • y = x w : E → R := fun x => (if x ∈ t₁ then w₁ x else 0) - if x ∈ t₂ then w₂ x else 0 h₁w : ∑ i ∈ s, w i = 0 ⊢ ∑ x ∈ s, w x • x = 0
simp only [w, sub_smul, zero_smul, ite_smul, Finset.sum_sub_distrib, ← Finset.sum_filter, h₃w₁, Finset.filter_mem_eq_inter, Finset.inter_eq_right.2 ht₁, Finset.inter_eq_right.2 ht₂, h₃w₂, sub_self]
no goals
c5414b8b46240fda
ascending_central_series_le_upper
Mathlib/GroupTheory/Nilpotent.lean
theorem ascending_central_series_le_upper (H : ℕ → Subgroup G) (hH : IsAscendingCentralSeries H) : ∀ n : ℕ, H n ≤ upperCentralSeries G n | 0 => hH.1.symm ▸ le_refl ⊥ | n + 1 => by intro x hx rw [mem_upperCentralSeries_succ_iff] exact fun y => ascending_central_series_le_upper H hH n (hH.2 x n hx y)
G : Type u_1 inst✝ : Group G H : ℕ → Subgroup G hH : IsAscendingCentralSeries H n : ℕ x : G hx : x ∈ H (n + 1) ⊢ x ∈ upperCentralSeries G (n + 1)
rw [mem_upperCentralSeries_succ_iff]
G : Type u_1 inst✝ : Group G H : ℕ → Subgroup G hH : IsAscendingCentralSeries H n : ℕ x : G hx : x ∈ H (n + 1) ⊢ ∀ (y : G), x * y * x⁻¹ * y⁻¹ ∈ upperCentralSeries G n
67368f32a22ec98a
integral_mul_rpow_one_add_sq
Mathlib/Analysis/SpecialFunctions/Integrals.lean
theorem integral_mul_rpow_one_add_sq {t : ℝ} (ht : t ≠ -1) : (∫ x : ℝ in a..b, x * (↑1 + x ^ 2) ^ t) = (↑1 + b ^ 2) ^ (t + 1) / (↑2 * (t + ↑1)) - (↑1 + a ^ 2) ^ (t + 1) / (↑2 * (t + ↑1))
case h.e'_2 a b t : ℝ ht : t ≠ -1 this : ∀ (x s : ℝ), ↑((1 + x ^ 2) ^ s) = (1 + ↑x ^ 2) ^ ↑s ⊢ ∫ (x : ℝ) in a..b, ↑(x * (1 + x ^ 2) ^ t) = ∫ (x : ℝ) in ?convert_1..?convert_2, ↑x * (1 + ↑x ^ 2) ^ ↑t
congr with x : 1
case h.e'_2.e_f.h a b t : ℝ ht : t ≠ -1 this : ∀ (x s : ℝ), ↑((1 + x ^ 2) ^ s) = (1 + ↑x ^ 2) ^ ↑s x : ℝ ⊢ ↑(x * (1 + x ^ 2) ^ t) = ↑x * (1 + ↑x ^ 2) ^ ↑t
06efdbf5b78963b9
Real.tan_zero
Mathlib/Data/Complex/Trigonometric.lean
theorem tan_zero : tan 0 = 0
⊢ tan 0 = 0
simp [tan]
no goals
6b0d08623a116e2f
Real.pi_lt_sqrtTwoAddSeries
Mathlib/Data/Real/Pi/Bounds.lean
theorem pi_lt_sqrtTwoAddSeries (n : ℕ) : π < 2 ^ (n + 1) * √(2 - sqrtTwoAddSeries 0 n) + 1 / 4 ^ n
n : ℕ ⊢ 0 ≤ 2 ^ (n + 2)
positivity
no goals
02d82b689d50a592
Pell.Solution₁.eq_zero_of_d_neg
Mathlib/NumberTheory/Pell.lean
theorem eq_zero_of_d_neg (h₀ : d < 0) (a : Solution₁ d) : a.x = 0 ∨ a.y = 0
d : ℤ h₀ : d < 0 a : Solution₁ d h : a.x ≠ 0 ∧ a.y ≠ 0 h1 : 0 < a.x ^ 2 ⊢ a.x ^ 2 - d * a.y ^ 2 ≠ 1
have h2 := sq_pos_of_ne_zero h.2
d : ℤ h₀ : d < 0 a : Solution₁ d h : a.x ≠ 0 ∧ a.y ≠ 0 h1 : 0 < a.x ^ 2 h2 : 0 < a.y ^ 2 ⊢ a.x ^ 2 - d * a.y ^ 2 ≠ 1
50a8ed2852157cdb
ComplexShape.not_mem_range_embeddingUpIntGE_iff
Mathlib/Algebra/Homology/Embedding/Basic.lean
lemma not_mem_range_embeddingUpIntGE_iff (n : ℤ) : (∀ (i : ℕ), (embeddingUpIntGE p).f i ≠ n) ↔ n < p
p n : ℤ ⊢ (∀ (i : ℕ), (embeddingUpIntGE p).f i ≠ n) ↔ n < p
constructor
case mp p n : ℤ ⊢ (∀ (i : ℕ), (embeddingUpIntGE p).f i ≠ n) → n < p case mpr p n : ℤ ⊢ n < p → ∀ (i : ℕ), (embeddingUpIntGE p).f i ≠ n
7d00f879499fc2b7
Prod.map_surjective
Mathlib/Data/Prod/Basic.lean
theorem map_surjective [Nonempty γ] [Nonempty δ] {f : α → γ} {g : β → δ} : Surjective (map f g) ↔ Surjective f ∧ Surjective g := ⟨fun h => ⟨fun c => by inhabit δ obtain ⟨⟨a, b⟩, h⟩ := h (c, default) exact ⟨a, congr_arg Prod.fst h⟩, fun d => by inhabit γ obtain ⟨⟨a, b⟩, h⟩ := h (default, d) exact ⟨b, congr_arg Prod.snd h⟩⟩, fun h => h.1.prodMap h.2⟩
α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : Nonempty γ inst✝ : Nonempty δ f : α → γ g : β → δ h : Surjective (map f g) d : δ ⊢ ∃ a, g a = d
inhabit γ
α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : Nonempty γ inst✝ : Nonempty δ f : α → γ g : β → δ h : Surjective (map f g) d : δ inhabited_h : Inhabited γ ⊢ ∃ a, g a = d
7bc55de06597f56e
Surreal.Multiplication.P3.trans
Mathlib/SetTheory/Surreal/Multiplication.lean
lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂
x₁ x₂ x₃ y₁ y₂ : PGame h₁ : P3 x₁ x₂ y₁ y₂ h₂ : P3 x₂ x₃ y₁ y₂ ⊢ P3 x₁ x₃ y₁ y₂
rw [P3] at h₁ h₂
x₁ x₂ x₃ y₁ y₂ : PGame h₁ : ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ h₂ : ⟦x₂ * y₂⟧ + ⟦x₃ * y₁⟧ < ⟦x₂ * y₁⟧ + ⟦x₃ * y₂⟧ ⊢ P3 x₁ x₃ y₁ y₂
86ed7f5d4e0f46c8
Finset.sq_sum_div_le_sum_sq_div
Mathlib/Algebra/Order/BigOperators/Ring/Finset.lean
theorem sq_sum_div_le_sum_sq_div [LinearOrderedSemifield R] [ExistsAddOfLE R] (s : Finset ι) (f : ι → R) {g : ι → R} (hg : ∀ i ∈ s, 0 < g i) : (∑ i ∈ s, f i) ^ 2 / ∑ i ∈ s, g i ≤ ∑ i ∈ s, f i ^ 2 / g i
ι : Type u_1 R : Type u_2 inst✝¹ : LinearOrderedSemifield R inst✝ : ExistsAddOfLE R s : Finset ι f g : ι → R hg : ∀ i ∈ s, 0 < g i hg' : ∀ i ∈ s, 0 ≤ g i ⊢ (∑ i ∈ s, f i) ^ 2 / ∑ i ∈ s, g i ≤ ∑ i ∈ s, f i ^ 2 / g i
have H : ∀ i ∈ s, 0 ≤ f i ^ 2 / g i := fun i hi ↦ div_nonneg (sq_nonneg _) (hg' i hi)
ι : Type u_1 R : Type u_2 inst✝¹ : LinearOrderedSemifield R inst✝ : ExistsAddOfLE R s : Finset ι f g : ι → R hg : ∀ i ∈ s, 0 < g i hg' : ∀ i ∈ s, 0 ≤ g i H : ∀ i ∈ s, 0 ≤ f i ^ 2 / g i ⊢ (∑ i ∈ s, f i) ^ 2 / ∑ i ∈ s, g i ≤ ∑ i ∈ s, f i ^ 2 / g i
b364a97d5e265cff