name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
Nat.log_div_mul_self
Mathlib/Data/Nat/Log.lean
theorem log_div_mul_self (b n : ℕ) : log b (n / b * b) = log b n
b n : ℕ ⊢ log b (n / b * b) = log b n
rcases le_or_lt b 1 with hb | hb
case inl b n : ℕ hb : b ≤ 1 ⊢ log b (n / b * b) = log b n case inr b n : ℕ hb : 1 < b ⊢ log b (n / b * b) = log b n
e0df15fc98715957
MeasureTheory.Lp.simpleFunc.toSimpleFunc_toLp
Mathlib/MeasureTheory/Function/SimpleFuncDenseLp.lean
theorem toSimpleFunc_toLp (f : α →ₛ E) (hfi : MemLp f p μ) : toSimpleFunc (toLp f hfi) =ᵐ[μ] f
α : Type u_1 E : Type u_4 inst✝¹ : MeasurableSpace α inst✝ : NormedAddCommGroup E p : ℝ≥0∞ μ : Measure α f : α →ₛ E hfi : MemLp (⇑f) p μ ⊢ ⇑(toSimpleFunc (toLp f hfi)) =ᶠ[ae μ] ⇑f
rw [← AEEqFun.mk_eq_mk]
α : Type u_1 E : Type u_4 inst✝¹ : MeasurableSpace α inst✝ : NormedAddCommGroup E p : ℝ≥0∞ μ : Measure α f : α →ₛ E hfi : MemLp (⇑f) p μ ⊢ AEEqFun.mk ⇑(toSimpleFunc (toLp f hfi)) ?m.234584 = AEEqFun.mk ⇑f ?m.234585 α : Type u_1 E : Type u_4 inst✝¹ : MeasurableSpace α inst✝ : NormedAddCommGroup E p : ℝ≥0∞ μ : Measure α f : α →ₛ E hfi : MemLp (⇑f) p μ ⊢ AEStronglyMeasurable (⇑(toSimpleFunc (toLp f hfi))) μ α : Type u_1 E : Type u_4 inst✝¹ : MeasurableSpace α inst✝ : NormedAddCommGroup E p : ℝ≥0∞ μ : Measure α f : α →ₛ E hfi : MemLp (⇑f) p μ ⊢ AEStronglyMeasurable (⇑f) μ
833193308ce49be3
hasFDerivAt_update
Mathlib/Analysis/Calculus/FDeriv/Pi.lean
theorem hasFDerivAt_update (x : ∀ i, E i) {i : ι} (y : E i) : HasFDerivAt (Function.update x i) (.pi (Pi.single i (.id 𝕜 (E i)))) y
𝕜 : Type u_1 ι : Type u_2 inst✝⁴ : DecidableEq ι inst✝³ : Fintype ι inst✝² : NontriviallyNormedField 𝕜 E : ι → Type u_3 inst✝¹ : (i : ι) → NormedAddCommGroup (E i) inst✝ : (i : ι) → NormedSpace 𝕜 (E i) x : (i : ι) → E i i : ι y : E i l : E i →L[𝕜] (i : ι) → E i := ContinuousLinearMap.pi (Pi.single i (ContinuousLinearMap.id 𝕜 (E i))) update_eq : Function.update x i = (fun x_1 => x) + ⇑l ∘ fun x_1 => x_1 - x i ⊢ HasFDerivAt ((fun x_1 => x) + ⇑l ∘ fun x_1 => x_1 - x i) l y
convert (hasFDerivAt_const _ _).add (l.hasFDerivAt.comp y (hasFDerivAt_sub_const (x i)))
case h.e'_12.h.h 𝕜 : Type u_1 ι : Type u_2 inst✝⁴ : DecidableEq ι inst✝³ : Fintype ι inst✝² : NontriviallyNormedField 𝕜 E : ι → Type u_3 inst✝¹ : (i : ι) → NormedAddCommGroup (E i) inst✝ : (i : ι) → NormedSpace 𝕜 (E i) x : (i : ι) → E i i : ι y : E i l : E i →L[𝕜] (i : ι) → E i := ContinuousLinearMap.pi (Pi.single i (ContinuousLinearMap.id 𝕜 (E i))) update_eq : Function.update x i = (fun x_1 => x) + ⇑l ∘ fun x_1 => x_1 - x i e_8✝ : Pi.addCommGroup = SeminormedAddCommGroup.toAddCommGroup he✝ : Pi.module ι E 𝕜 = NormedSpace.toModule e_10✝ : Pi.topologicalSpace = UniformSpace.toTopologicalSpace ⊢ l = 0 + l.comp (ContinuousLinearMap.id 𝕜 (E i))
1a0c7205e23fe373
IsCauSeq.series_ratio_test
Mathlib/Algebra/Order/CauSeq/BigOperators.lean
lemma series_ratio_test {f : ℕ → β} (n : ℕ) (r : α) (hr0 : 0 ≤ r) (hr1 : r < 1) (h : ∀ m, n ≤ m → abv (f m.succ) ≤ r * abv (f m)) : IsCauSeq abv fun m ↦ ∑ n ∈ range m, f n
case inr.succ α : Type u_1 β : Type u_2 inst✝³ : LinearOrderedField α inst✝² : Ring β abv : β → α inst✝¹ : IsAbsoluteValue abv inst✝ : Archimedean α f : ℕ → β r : α hr0 : 0 ≤ r hr1 : r < 1 har1 : |r| < 1 hr : 0 < r k : ℕ ih : ∀ (n : ℕ), (∀ (m : ℕ), n ≤ m → abv (f m.succ) ≤ r * abv (f m)) → ∀ (m : ℕ), n.succ ≤ m → m = k + n.succ → abv (f m) ≤ abv (f n.succ) * r⁻¹ ^ n.succ * r ^ m n : ℕ h : ∀ (m : ℕ), n ≤ m → abv (f m.succ) ≤ r * abv (f m) m : ℕ hmn : n.succ ≤ m hk : m = k + 1 + n.succ kn : k + n.succ ≥ n.succ ⊢ abv (f m) ≤ abv (f n.succ) * r⁻¹ ^ n.succ * r ^ m
rw [hk, Nat.succ_add, pow_succ r, ← mul_assoc]
case inr.succ α : Type u_1 β : Type u_2 inst✝³ : LinearOrderedField α inst✝² : Ring β abv : β → α inst✝¹ : IsAbsoluteValue abv inst✝ : Archimedean α f : ℕ → β r : α hr0 : 0 ≤ r hr1 : r < 1 har1 : |r| < 1 hr : 0 < r k : ℕ ih : ∀ (n : ℕ), (∀ (m : ℕ), n ≤ m → abv (f m.succ) ≤ r * abv (f m)) → ∀ (m : ℕ), n.succ ≤ m → m = k + n.succ → abv (f m) ≤ abv (f n.succ) * r⁻¹ ^ n.succ * r ^ m n : ℕ h : ∀ (m : ℕ), n ≤ m → abv (f m.succ) ≤ r * abv (f m) m : ℕ hmn : n.succ ≤ m hk : m = k + 1 + n.succ kn : k + n.succ ≥ n.succ ⊢ abv (f (k + n.succ).succ) ≤ abv (f n.succ) * r⁻¹ ^ n.succ * r ^ (k + n.succ) * r
1eb29c24e9473c8d
fixed_of_fixed1_aux1
Mathlib/RingTheory/Invariant.lean
theorem fixed_of_fixed1_aux1 [DecidableEq (Ideal B)] : ∃ a b : B, (∀ g : G, g • a = a) ∧ a ∉ Q ∧ ∀ g : G, algebraMap B (B ⧸ Q) (g • b) = algebraMap B (B ⧸ Q) (if g • Q = Q then a else 0)
case intro.intro.intro.intro.intro B : Type u_2 inst✝⁵ : CommRing B G : Type u_3 inst✝⁴ : Group G inst✝³ : Finite G inst✝² : MulSemiringAction G B Q : Ideal B inst✝¹ : Q.IsPrime inst✝ : DecidableEq (Ideal B) val✝ : Fintype G P : Ideal B := (Finset.filter (fun g => g • Q ≠ Q) Finset.univ).inf fun g => g • Q h1 : ¬P ≤ Q b : B hbQ : b ∉ Q hbP : ∀ (g : G), g • Q ≠ Q → b ∈ g • Q f : B[X] := MulSemiringAction.charpoly G b q : (B ⧸ Q)[X] hq : map (algebraMap B (B ⧸ Q)) f = X ^ rootMultiplicity 0 (map (algebraMap B (B ⧸ Q)) f) * q hq0 : ¬X ∣ q j : ℕ := rootMultiplicity 0 (map (algebraMap B (B ⧸ Q)) f) k : ℕ := q.natDegree r : B[X] := ∑ i ∈ Finset.range (k + 1), (monomial i) (f.coeff (i + j)) hr✝ : map (algebraMap B (B ⧸ Q)) r = q hf : eval b f = 0 hr : eval b r ∈ Q ⊢ ∃ a b, (∀ (g : G), g • a = a) ∧ a ∉ Q ∧ ∀ (g : G), (algebraMap B (B ⧸ Q)) (g • b) = (algebraMap B (B ⧸ Q)) (if g • Q = Q then a else 0)
let a := f.coeff j
case intro.intro.intro.intro.intro B : Type u_2 inst✝⁵ : CommRing B G : Type u_3 inst✝⁴ : Group G inst✝³ : Finite G inst✝² : MulSemiringAction G B Q : Ideal B inst✝¹ : Q.IsPrime inst✝ : DecidableEq (Ideal B) val✝ : Fintype G P : Ideal B := (Finset.filter (fun g => g • Q ≠ Q) Finset.univ).inf fun g => g • Q h1 : ¬P ≤ Q b : B hbQ : b ∉ Q hbP : ∀ (g : G), g • Q ≠ Q → b ∈ g • Q f : B[X] := MulSemiringAction.charpoly G b q : (B ⧸ Q)[X] hq : map (algebraMap B (B ⧸ Q)) f = X ^ rootMultiplicity 0 (map (algebraMap B (B ⧸ Q)) f) * q hq0 : ¬X ∣ q j : ℕ := rootMultiplicity 0 (map (algebraMap B (B ⧸ Q)) f) k : ℕ := q.natDegree r : B[X] := ∑ i ∈ Finset.range (k + 1), (monomial i) (f.coeff (i + j)) hr✝ : map (algebraMap B (B ⧸ Q)) r = q hf : eval b f = 0 hr : eval b r ∈ Q a : B := f.coeff j ⊢ ∃ a b, (∀ (g : G), g • a = a) ∧ a ∉ Q ∧ ∀ (g : G), (algebraMap B (B ⧸ Q)) (g • b) = (algebraMap B (B ⧸ Q)) (if g • Q = Q then a else 0)
807fb7b15a430402
Complex.isTheta_cpow_rpow
Mathlib/Analysis/SpecialFunctions/Pow/Asymptotics.lean
theorem isTheta_cpow_rpow (hl_im : IsBoundedUnder (· ≤ ·) l fun x => |(g x).im|) (hl : ∀ᶠ x in l, f x = 0 → re (g x) = 0 → g x = 0) : (fun x => f x ^ g x) =Θ[l] fun x => ‖f x‖ ^ (g x).re := calc (fun x => f x ^ g x) =Θ[l] (fun x => ‖f x‖ ^ (g x).re / Real.exp (arg (f x) * im (g x))) := .of_norm_eventuallyEq <| hl.mono fun _ => norm_cpow_of_imp _ =Θ[l] fun x => ‖f x‖ ^ (g x).re / (1 : ℝ) := (isTheta_refl _ _).div (isTheta_exp_arg_mul_im hl_im) _ =ᶠ[l] (fun x => ‖f x‖ ^ (g x).re)
α : Type u_1 l : Filter α f g : α → ℂ hl_im : IsBoundedUnder (fun x1 x2 => x1 ≤ x2) l fun x => |(g x).im| hl : ∀ᶠ (x : α) in l, f x = 0 → (g x).re = 0 → g x = 0 ⊢ (fun x => ‖f x‖ ^ (g x).re / 1) =ᶠ[l] fun x => ‖f x‖ ^ (g x).re
simp only [ofReal_one, div_one, EventuallyEq.rfl]
no goals
1d341a53588709b8
Ordnode.all_node4R
Mathlib/Data/Ordmap/Ordset.lean
theorem all_node4R {P l x m y r} : @All α P (node4R l x m y r) ↔ All P l ∧ P x ∧ All P m ∧ P y ∧ All P r
α : Type u_1 P : α → Prop l : Ordnode α x : α m : Ordnode α y : α r : Ordnode α ⊢ All P (l.node4R x m y r) ↔ All P l ∧ P x ∧ All P m ∧ P y ∧ All P r
cases m <;> simp [node4R, all_node', All, all_node3R, and_assoc]
no goals
d6ed2f27bea4da55
gauge_lt_one_of_mem_of_isOpen
Mathlib/Analysis/Convex/Gauge.lean
theorem gauge_lt_one_of_mem_of_isOpen (hs₂ : IsOpen s) {x : E} (hx : x ∈ s) : gauge s x < 1 := interior_subset_gauge_lt_one s <| by rwa [hs₂.interior_eq]
E : Type u_2 inst✝³ : AddCommGroup E inst✝² : Module ℝ E s : Set E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul ℝ E hs₂ : IsOpen s x : E hx : x ∈ s ⊢ x ∈ interior s
rwa [hs₂.interior_eq]
no goals
e4ebe6789d2a641b
RingHom.finitePresentation_ofLocalizationSpanTarget
Mathlib/RingTheory/RingHom/FinitePresentation.lean
theorem finitePresentation_ofLocalizationSpanTarget : OfLocalizationSpanTarget @FinitePresentation
case mk R S : Type u_1 inst✝¹ : CommRing R inst✝ : CommRing S f✝ : R →+* S s : Finset S hs : Ideal.span ↑s = ⊤ this✝ : Algebra R S := f✝.toAlgebra H : ∀ (r : { x // x ∈ s }), Algebra.FinitePresentation R (Localization.Away ↑r) hfintype : Algebra.FiniteType R S n : ℕ f : MvPolynomial (Fin n) R →ₐ[R] S hf : Function.Surjective ⇑f l : ↑↑s →₀ S hl : (Finsupp.linearCombination S Subtype.val) l = 1 g' : { x // x ∈ s } → MvPolynomial (Fin n) R hg' : ∀ (g : { x // x ∈ s }), f (g' g) = ↑g h' : { x // x ∈ s } → MvPolynomial (Fin n) R hh' : ∀ (g : { x // x ∈ s }), f (h' g) = l g I : Ideal (MvPolynomial (Fin n) R) := Ideal.span {∑ g : { x // x ∈ s }, g' g * h' g - 1} A : Type u_1 := MvPolynomial (Fin n) R ⧸ I hfI : ∀ a ∈ I, f a = 0 f' : A →ₐ[R] S := Ideal.Quotient.liftₐ I f hfI hf' : Function.Surjective ⇑f' t : Finset A := Finset.image (fun g => (Ideal.Quotient.mk I) (g' g)) Finset.univ ht : Ideal.span ↑t = ⊤ this : Algebra.FinitePresentation R A g : A hg : g ∈ t ⊢ ∃ a, ∃ (hb : a ∈ s), (Ideal.Quotient.mk I) (g' ⟨a, hb⟩) = ↑⟨g, hg⟩
convert hg
case a R S : Type u_1 inst✝¹ : CommRing R inst✝ : CommRing S f✝ : R →+* S s : Finset S hs : Ideal.span ↑s = ⊤ this✝ : Algebra R S := f✝.toAlgebra H : ∀ (r : { x // x ∈ s }), Algebra.FinitePresentation R (Localization.Away ↑r) hfintype : Algebra.FiniteType R S n : ℕ f : MvPolynomial (Fin n) R →ₐ[R] S hf : Function.Surjective ⇑f l : ↑↑s →₀ S hl : (Finsupp.linearCombination S Subtype.val) l = 1 g' : { x // x ∈ s } → MvPolynomial (Fin n) R hg' : ∀ (g : { x // x ∈ s }), f (g' g) = ↑g h' : { x // x ∈ s } → MvPolynomial (Fin n) R hh' : ∀ (g : { x // x ∈ s }), f (h' g) = l g I : Ideal (MvPolynomial (Fin n) R) := Ideal.span {∑ g : { x // x ∈ s }, g' g * h' g - 1} A : Type u_1 := MvPolynomial (Fin n) R ⧸ I hfI : ∀ a ∈ I, f a = 0 f' : A →ₐ[R] S := Ideal.Quotient.liftₐ I f hfI hf' : Function.Surjective ⇑f' t : Finset A := Finset.image (fun g => (Ideal.Quotient.mk I) (g' g)) Finset.univ ht : Ideal.span ↑t = ⊤ this : Algebra.FinitePresentation R A g : A hg : g ∈ t ⊢ (∃ a, ∃ (hb : a ∈ s), (Ideal.Quotient.mk I) (g' ⟨a, hb⟩) = ↑⟨g, hg⟩) ↔ g ∈ t
1e270402a60647b4
Submodule.linearMap_eq_iff_of_span_eq_top
Mathlib/LinearAlgebra/Span/Basic.lean
lemma linearMap_eq_iff_of_span_eq_top (f g : M →ₗ[R] N) {S : Set M} (hM : span R S = ⊤) : f = g ↔ ∀ (s : S), f s = g s
case h.e'_1.a.mpr R : Type u_1 M : Type u_4 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M N : Type u_9 inst✝¹ : AddCommMonoid N inst✝ : Module R N f g : M →ₗ[R] N S : Set M hM : span R S = ⊤ h : f ∘ₗ ⊤.subtype = g ∘ₗ ⊤.subtype ⊢ f = g
ext x
case h.e'_1.a.mpr.h R : Type u_1 M : Type u_4 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M N : Type u_9 inst✝¹ : AddCommMonoid N inst✝ : Module R N f g : M →ₗ[R] N S : Set M hM : span R S = ⊤ h : f ∘ₗ ⊤.subtype = g ∘ₗ ⊤.subtype x : M ⊢ f x = g x
0643c3f955b1db39
Algebra.IsAlgebraic.exists_integral_multiples
Mathlib/RingTheory/Algebraic/Integral.lean
theorem _root_.Algebra.IsAlgebraic.exists_integral_multiples [NoZeroDivisors R] [alg : Algebra.IsAlgebraic R A] (s : Finset A) : ∃ y ≠ (0 : R), ∀ z ∈ s, IsIntegral R (y • z)
R : Type u_1 A : Type u_3 inst✝³ : CommRing R inst✝² : Ring A inst✝¹ : Algebra R A inst✝ : NoZeroDivisors R alg : Algebra.IsAlgebraic R A s : Finset A this : Nontrivial R r : A → R hr : ∀ (x : A), r x ≠ 0 int : ∀ (x : A), IsIntegral R (r x • x) x✝ : A h : x✝ ∈ s ⊢ IsIntegral R ((∏ x ∈ s, r x) • x✝)
classical rw [← Finset.prod_erase_mul _ _ h, mul_smul]
R : Type u_1 A : Type u_3 inst✝³ : CommRing R inst✝² : Ring A inst✝¹ : Algebra R A inst✝ : NoZeroDivisors R alg : Algebra.IsAlgebraic R A s : Finset A this : Nontrivial R r : A → R hr : ∀ (x : A), r x ≠ 0 int : ∀ (x : A), IsIntegral R (r x • x) x✝ : A h : x✝ ∈ s ⊢ IsIntegral R ((∏ x ∈ s.erase x✝, r x) • r x✝ • x✝)
918ed071598a1fa2
MvPolynomial.support_mul_X
Mathlib/Algebra/MvPolynomial/Basic.lean
theorem support_mul_X (s : σ) (p : MvPolynomial σ R) : (p * X s).support = p.support.map (addRightEmbedding (Finsupp.single s 1)) := AddMonoidAlgebra.support_mul_single p _ (by simp) _
R : Type u σ : Type u_1 inst✝ : CommSemiring R s : σ p : MvPolynomial σ R ⊢ ∀ (y : R), y * 1 = 0 ↔ y = 0
simp
no goals
ac13dbd48e946e2f
Algebra.basicOpen_subset_unramifiedLocus_iff
Mathlib/RingTheory/Unramified/Locus.lean
lemma basicOpen_subset_unramifiedLocus_iff {f : A} : ↑(PrimeSpectrum.basicOpen f) ⊆ unramifiedLocus R A ↔ Algebra.FormallyUnramified R (Localization.Away f)
R A : Type u inst✝² : CommRing R inst✝¹ : CommRing A inst✝ : Algebra R A f : A ⊢ ↑(PrimeSpectrum.basicOpen f) ⊆ unramifiedLocus R A ↔ FormallyUnramified R (Localization.Away f)
rw [unramifiedLocus_eq_compl_support, Set.subset_compl_comm, PrimeSpectrum.basicOpen_eq_zeroLocus_compl, compl_compl, ← LocalizedModule.subsingleton_iff_support_subset, Algebra.formallyUnramified_iff]
R A : Type u inst✝² : CommRing R inst✝¹ : CommRing A inst✝ : Algebra R A f : A ⊢ Subsingleton (LocalizedModule (Submonoid.powers f) (Ω[A⁄R])) ↔ Subsingleton (Ω[Localization.Away f⁄R])
897aba214e911642
Module.End.eigenspace_restrict_eq_bot
Mathlib/LinearAlgebra/Eigenspace/Basic.lean
theorem eigenspace_restrict_eq_bot {f : End R M} {p : Submodule R M} (hfp : ∀ x ∈ p, f x ∈ p) {μ : R} (hμp : Disjoint (f.eigenspace μ) p) : eigenspace (f.restrict hfp) μ = ⊥
R : Type v M : Type w inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M f : End R M p : Submodule R M hfp : ∀ x ∈ p, f x ∈ p μ : R hμp : Disjoint (f.eigenspace μ) p ⊢ eigenspace (LinearMap.restrict f hfp) μ ≤ ⊥
intro x hx
R : Type v M : Type w inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M f : End R M p : Submodule R M hfp : ∀ x ∈ p, f x ∈ p μ : R hμp : Disjoint (f.eigenspace μ) p x : ↥p hx : x ∈ eigenspace (LinearMap.restrict f hfp) μ ⊢ x ∈ ⊥
234c8da254101d84
EMetric.NonemptyCompacts.isClosed_in_closeds
Mathlib/Topology/MetricSpace/Closeds.lean
theorem NonemptyCompacts.isClosed_in_closeds [CompleteSpace α] : IsClosed (range <| @NonemptyCompacts.toCloseds α _ _)
case refine_1.intro.intro α : Type u inst✝¹ : EMetricSpace α inst✝ : CompleteSpace α this : range NonemptyCompacts.toCloseds = {s | (↑s).Nonempty ∧ IsCompact ↑s} s : Closeds α hs : s ∈ closure {s | (↑s).Nonempty ∧ IsCompact ↑s} t : Closeds α ht : t ∈ {s | (↑s).Nonempty ∧ IsCompact ↑s} Dst : edist t s < ⊤ ⊢ (↑s).Nonempty
exact nonempty_of_hausdorffEdist_ne_top ht.1 (ne_of_lt Dst)
no goals
47173bb814bf33e2
List.max?_mem
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/MinMax.lean
theorem max?_mem [Max α] (min_eq_or : ∀ a b : α, max a b = a ∨ max a b = b) : {xs : List α} → xs.max? = some a → a ∈ xs | nil => by simp | cons x xs => by rw [max?]; rintro ⟨⟩ induction xs generalizing x with simp at * | cons y xs ih => rcases ih (max x y) with h | h <;> simp [h] simp [← or_assoc, min_eq_or x y]
α : Type u_1 a : α inst✝ : Max α min_eq_or : ∀ (a b : α), max a b = a ∨ max a b = b ⊢ [].max? = some a → a ∈ []
simp
no goals
7317c10ebce96da2
Batteries.LTCmp.eq_compareOfLessAndEq
Mathlib/.lake/packages/batteries/Batteries/Classes/Order.lean
theorem LTCmp.eq_compareOfLessAndEq [LT α] [DecidableEq α] [BEq α] [LawfulBEq α] [BEqCmp cmp] [LTCmp cmp] (x y : α) [Decidable (x < y)] : cmp x y = compareOfLessAndEq x y
case isFalse.isFalse.eq α : Type u_1 cmp : α → α → Ordering inst✝⁶ : LT α inst✝⁵ : DecidableEq α inst✝⁴ : BEq α inst✝³ : LawfulBEq α inst✝² : BEqCmp cmp inst✝¹ : LTCmp cmp x y : α inst✝ : Decidable (x < y) h1 : ¬x < y h2 : ¬x = y e : cmp x y = Ordering.eq ⊢ Ordering.eq = Ordering.gt
cases h2 (BEqCmp.cmp_iff_eq.1 e)
no goals
f00bdc3f2d775dc4
Directed.strictConvex_iUnion
Mathlib/Analysis/Convex/Strict.lean
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i)
case intro 𝕜 : Type u_1 E : Type u_3 inst✝³ : OrderedSemiring 𝕜 inst✝² : TopologicalSpace E inst✝¹ : AddCommMonoid E inst✝ : SMul 𝕜 E ι : Sort u_6 s : ι → Set E hdir : Directed (fun x1 x2 => x1 ⊆ x2) s hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i) x y : E hy : ∃ i, y ∈ s i hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 i : ι hx : x ∈ s i ⊢ a • x + b • y ∈ interior (⋃ i, s i)
obtain ⟨j, hy⟩ := hy
case intro.intro 𝕜 : Type u_1 E : Type u_3 inst✝³ : OrderedSemiring 𝕜 inst✝² : TopologicalSpace E inst✝¹ : AddCommMonoid E inst✝ : SMul 𝕜 E ι : Sort u_6 s : ι → Set E hdir : Directed (fun x1 x2 => x1 ⊆ x2) s hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i) x y : E hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 i : ι hx : x ∈ s i j : ι hy : y ∈ s j ⊢ a • x + b • y ∈ interior (⋃ i, s i)
5a828b9512ea5146
AddCommGroup.DirectLimit.map_id
Mathlib/Algebra/Colimit/Module.lean
@[simp] lemma map_id : map (fun _ ↦ AddMonoidHom.id _) (fun _ _ _ ↦ rfl) = AddMonoidHom.id (DirectLimit G f) := DFunLike.ext _ _ <| by rintro ⟨x⟩; refine x.induction_on (by simp) (fun _ ↦ map_apply_of _ _) (by simp +contextual)
ι : Type u_2 inst✝² : Preorder ι G : ι → Type u_3 inst✝¹ : (i : ι) → AddCommMonoid (G i) f : (i j : ι) → i ≤ j → G i →+ G j inst✝ : DecidableEq ι x✝ : DirectLimit G f x : DirectSum ι G ⊢ (map (fun x => AddMonoidHom.id (G x)) ⋯) (Quot.mk (⇑(addConGen (Module.DirectLimit.Eqv fun i j hij => (f i j hij).toNatLinearMap)).toSetoid) 0) = (AddMonoidHom.id (DirectLimit G f)) (Quot.mk (⇑(addConGen (Module.DirectLimit.Eqv fun i j hij => (f i j hij).toNatLinearMap)).toSetoid) 0)
simp
no goals
909e489a38ff0289
Tuple.sort_eq_refl_iff_monotone
Mathlib/Data/Fin/Tuple/Sort.lean
theorem sort_eq_refl_iff_monotone : sort f = Equiv.refl _ ↔ Monotone f
n : ℕ α : Type u_1 inst✝ : LinearOrder α f : Fin n → α ⊢ sort f = Equiv.refl (Fin n) ↔ Monotone f
rw [eq_comm, eq_sort_iff, Equiv.coe_refl, Function.comp_id]
n : ℕ α : Type u_1 inst✝ : LinearOrder α f : Fin n → α ⊢ (Monotone f ∧ ∀ (i j : Fin n), i < j → f (id i) = f (id j) → id i < id j) ↔ Monotone f
1b1478e08b64e551
Metric.infDist_le_dist_of_mem
Mathlib/Topology/MetricSpace/HausdorffDistance.lean
theorem infDist_le_dist_of_mem (h : y ∈ s) : infDist x s ≤ dist x y
α : Type u inst✝ : PseudoMetricSpace α s : Set α x y : α h : y ∈ s ⊢ (infEdist x s).toReal ≤ (edist x y).toReal
exact ENNReal.toReal_mono (edist_ne_top _ _) (infEdist_le_edist_of_mem h)
no goals
998d62bdb3720f39
CategoryTheory.Sieve.generate_le_iff
Mathlib/CategoryTheory/Sites/Sieves.lean
theorem generate_le_iff (R : Presieve X) (S : Sieve X) : generate R ≤ S ↔ R ≤ S := ⟨fun H _ _ hg => H _ ⟨_, 𝟙 _, _, hg, id_comp _⟩, fun ss Y f => by rintro ⟨Z, f, g, hg, rfl⟩ exact S.downward_closed (ss Z hg) f⟩
C : Type u₁ inst✝ : Category.{v₁, u₁} C X : C R : Presieve X S : Sieve X ss : R ≤ S.arrows Y : C f : Y ⟶ X ⊢ (generate R).arrows f → S.arrows f
rintro ⟨Z, f, g, hg, rfl⟩
case intro.intro.intro.intro C : Type u₁ inst✝ : Category.{v₁, u₁} C X : C R : Presieve X S : Sieve X ss : R ≤ S.arrows Y Z : C f : Y ⟶ Z g : Z ⟶ X hg : R g ⊢ S.arrows (f ≫ g)
b906d353ddc8fcba
Zlattice.FG
Mathlib/Algebra/Module/ZLattice/Basic.lean
theorem Zlattice.FG [hs : IsZLattice K L] : L.FG
K : Type u_1 inst✝⁷ : NormedLinearOrderedField K inst✝⁶ : HasSolidNorm K inst✝⁵ : FloorRing K E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace K E inst✝² : FiniteDimensional K E inst✝¹ : ProperSpace E L : Submodule ℤ E inst✝ : DiscreteTopology ↥L hs : IsZLattice K L s : Set E h_incl : s ⊆ ↑L h_span : span K s = span K ↑L h_lind : LinearIndependent K Subtype.val ⊢ s ⊆ Set.range Subtype.val
simp only [Subtype.range_coe_subtype, Set.setOf_mem_eq, subset_rfl]
no goals
68cb8b310e25c5ae
LieHom.surjective_rangeRestrict
Mathlib/Algebra/Lie/Subalgebra.lean
theorem surjective_rangeRestrict : Function.Surjective f.rangeRestrict
case mk R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ y : L₂ hy : y ∈ f.range ⊢ ∃ a, f.rangeRestrict a = ⟨y, hy⟩
rw [mem_range] at hy
case mk R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ y : L₂ hy✝ : y ∈ f.range hy : ∃ y_1, f y_1 = y ⊢ ∃ a, f.rangeRestrict a = ⟨y, hy✝⟩
31a7c87f261059cd
AddMonoidAlgebra.supDegree_sub_lt_of_leadingCoeff_eq
Mathlib/Algebra/MonoidAlgebra/Degree.lean
lemma supDegree_sub_lt_of_leadingCoeff_eq (hD : D.Injective) {R} [CommRing R] {p q : R[A]} (hd : p.supDegree D = q.supDegree D) (hc : p.leadingCoeff D = q.leadingCoeff D) : (p - q).supDegree D < p.supDegree D ∨ p = q
case refine_2 A : Type u_3 B : Type u_5 inst✝³ : LinearOrder B inst✝² : OrderBot B D : A → B inst✝¹ : AddZeroClass A hD : Function.Injective D R : Type u_8 inst✝ : CommRing R p q : R[A] hd : supDegree D p = supDegree D q hc : leadingCoeff D p = leadingCoeff D q he : ¬(p - q) (Function.invFun D (supDegree D (p - q))) = 0 ⊢ supDegree D (p - q) ≠ supDegree D p
refine fun h => he ?_
case refine_2 A : Type u_3 B : Type u_5 inst✝³ : LinearOrder B inst✝² : OrderBot B D : A → B inst✝¹ : AddZeroClass A hD : Function.Injective D R : Type u_8 inst✝ : CommRing R p q : R[A] hd : supDegree D p = supDegree D q hc : leadingCoeff D p = leadingCoeff D q he : ¬(p - q) (Function.invFun D (supDegree D (p - q))) = 0 h : supDegree D (p - q) = supDegree D p ⊢ (p - q) (Function.invFun D (supDegree D (p - q))) = 0
8a45d765e6091c8f
OrthogonalFamily.summable_iff_norm_sq_summable
Mathlib/Analysis/InnerProductSpace/Subspace.lean
theorem OrthogonalFamily.summable_iff_norm_sq_summable [CompleteSpace E] (f : ∀ i, G i) : (Summable fun i => V i (f i)) ↔ Summable fun i => ‖f i‖ ^ 2
case mpr 𝕜 : Type u_1 E : Type u_2 inst✝⁵ : RCLike 𝕜 inst✝⁴ : SeminormedAddCommGroup E inst✝³ : InnerProductSpace 𝕜 E ι : Type u_4 G : ι → Type u_5 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V inst✝ : CompleteSpace E f : (i : ι) → G i hf : ∀ ε > 0, ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → |∑ i ∈ m, ‖f i‖ ^ 2 - ∑ i ∈ n, ‖f i‖ ^ 2| < ε ε : ℝ hε : ε > 0 hε' : 0 < ε ^ 2 / 2 ⊢ ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → ‖∑ i ∈ m, (V i) (f i) - ∑ i ∈ n, (V i) (f i)‖ < ε
obtain ⟨a, H⟩ := hf _ hε'
case mpr.intro 𝕜 : Type u_1 E : Type u_2 inst✝⁵ : RCLike 𝕜 inst✝⁴ : SeminormedAddCommGroup E inst✝³ : InnerProductSpace 𝕜 E ι : Type u_4 G : ι → Type u_5 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V inst✝ : CompleteSpace E f : (i : ι) → G i hf : ∀ ε > 0, ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → |∑ i ∈ m, ‖f i‖ ^ 2 - ∑ i ∈ n, ‖f i‖ ^ 2| < ε ε : ℝ hε : ε > 0 hε' : 0 < ε ^ 2 / 2 a : Finset ι H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → |∑ i ∈ m, ‖f i‖ ^ 2 - ∑ i ∈ n, ‖f i‖ ^ 2| < ε ^ 2 / 2 ⊢ ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → ‖∑ i ∈ m, (V i) (f i) - ∑ i ∈ n, (V i) (f i)‖ < ε
ef6c5d8e8db28ff0
round_sub_int
Mathlib/Algebra/Order/Round.lean
theorem round_sub_int (x : α) (y : ℤ) : round (x - y) = round x - y
α : Type u_2 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α x : α y : ℤ ⊢ round (x + -↑y) = round x - y
norm_cast
α : Type u_2 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α x : α y : ℤ ⊢ round (x + ↑(-y)) = round x - y
bbc77d223e07e350
Submodule.prod_sup_prod
Mathlib/LinearAlgebra/Span/Basic.lean
theorem prod_sup_prod : prod p q₁ ⊔ prod p' q₁' = prod (p ⊔ p') (q₁ ⊔ q₁')
R : Type u_1 M : Type u_4 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M p p' : Submodule R M M' : Type u_9 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' q₁ q₁' : Submodule R M' ⊢ ∀ (a : M) (b : M'), a ∈ p ⊔ p' → b ∈ q₁ ⊔ q₁' → (a, b) ∈ p.prod q₁ ⊔ p'.prod q₁'
intro xx yy hxx hyy
R : Type u_1 M : Type u_4 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M p p' : Submodule R M M' : Type u_9 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' q₁ q₁' : Submodule R M' xx : M yy : M' hxx : xx ∈ p ⊔ p' hyy : yy ∈ q₁ ⊔ q₁' ⊢ (xx, yy) ∈ p.prod q₁ ⊔ p'.prod q₁'
6bc60ca9bdd6f33f
ExtremallyDisconnected.homeoCompactToT2_injective
Mathlib/Topology/ExtremallyDisconnected.lean
private lemma ExtremallyDisconnected.homeoCompactToT2_injective [ExtremallyDisconnected A] [T2Space A] [T2Space E] [CompactSpace E] {ρ : E → A} (ρ_cont : Continuous ρ) (ρ_surj : ρ.Surjective) (zorn_subset : ∀ E₀ : Set E, E₀ ≠ univ → IsClosed E₀ → ρ '' E₀ ≠ univ) : ρ.Injective
case intro.intro.intro.intro.intro.intro A E : Type u inst✝⁵ : TopologicalSpace A inst✝⁴ : TopologicalSpace E inst✝³ : ExtremallyDisconnected A inst✝² : T2Space A inst✝¹ : T2Space E inst✝ : CompactSpace E ρ : E → A ρ_cont : Continuous ρ ρ_surj : Surjective ρ zorn_subset : ∀ (E₀ : Set E), E₀ ≠ univ → IsClosed E₀ → ρ '' E₀ ≠ univ x₁ x₂ : E hρx : ρ x₁ = ρ x₂ hx : ¬x₁ = x₂ G₁ G₂ : Set E G₁_open : IsOpen G₁ G₂_open : IsOpen G₂ hx₁ : x₁ ∈ G₁ hx₂ : x₂ ∈ G₂ disj : Disjoint G₁ G₂ G₁_comp : IsCompact G₁ᶜ ⊢ False
have G₂_comp : IsCompact G₂ᶜ := IsClosed.isCompact G₂_open.isClosed_compl
case intro.intro.intro.intro.intro.intro A E : Type u inst✝⁵ : TopologicalSpace A inst✝⁴ : TopologicalSpace E inst✝³ : ExtremallyDisconnected A inst✝² : T2Space A inst✝¹ : T2Space E inst✝ : CompactSpace E ρ : E → A ρ_cont : Continuous ρ ρ_surj : Surjective ρ zorn_subset : ∀ (E₀ : Set E), E₀ ≠ univ → IsClosed E₀ → ρ '' E₀ ≠ univ x₁ x₂ : E hρx : ρ x₁ = ρ x₂ hx : ¬x₁ = x₂ G₁ G₂ : Set E G₁_open : IsOpen G₁ G₂_open : IsOpen G₂ hx₁ : x₁ ∈ G₁ hx₂ : x₂ ∈ G₂ disj : Disjoint G₁ G₂ G₁_comp : IsCompact G₁ᶜ G₂_comp : IsCompact G₂ᶜ ⊢ False
76a8066ab0a4e7d4
MvPolynomial.C_mem_coeffsIn
Mathlib/Algebra/MvPolynomial/Basic.lean
@[simp] lemma C_mem_coeffsIn : C x ∈ coeffsIn σ M ↔ x ∈ M
R : Type u_2 S : Type u_3 σ : Type u_4 inst✝² : CommSemiring R inst✝¹ : CommSemiring S inst✝ : Module R S M : Submodule R S x : S ⊢ C x ∈ coeffsIn σ M ↔ x ∈ M
simpa using monomial_mem_coeffsIn (i := 0)
no goals
169ffb43e59394e5
CategoryTheory.Presieve.extend_restrict
Mathlib/CategoryTheory/Sites/IsSheafFor.lean
theorem extend_restrict {x : FamilyOfElements P (generate R).arrows} (t : x.Compatible) : (x.restrict (le_generate R)).sieveExtend = x
C : Type u₁ inst✝ : Category.{v₁, u₁} C P : Cᵒᵖ ⥤ Type w X : C R : Presieve X x : FamilyOfElements P (generate R).arrows t : x.SieveCompatible ⊢ (FamilyOfElements.restrict ⋯ x).sieveExtend = x
funext _ _ h
case h.h.h C : Type u₁ inst✝ : Category.{v₁, u₁} C P : Cᵒᵖ ⥤ Type w X : C R : Presieve X x : FamilyOfElements P (generate R).arrows t : x.SieveCompatible x✝¹ : C x✝ : x✝¹ ⟶ X h : (generate R).arrows x✝ ⊢ (FamilyOfElements.restrict ⋯ x).sieveExtend x✝ h = x x✝ h
ee85a8bbbc52acdf
ProbabilityTheory.iteratedDeriv_two_cgf
Mathlib/Probability/Moments/MGFAnalytic.lean
lemma iteratedDeriv_two_cgf (h : v ∈ interior (integrableExpSet X μ)) : iteratedDeriv 2 (cgf X μ) v = μ[fun ω ↦ (X ω)^2 * exp (v * X ω)] / mgf X μ v - deriv (cgf X μ) v ^ 2
case pos Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω v : ℝ h : v ∈ interior (integrableExpSet X μ) hμ : μ = 0 this : deriv 0 = 0 ⊢ deriv (deriv (cgf X μ)) v = (∫ (x : Ω), (fun ω => X ω ^ 2 * rexp (v * X ω)) x ∂μ) / mgf X μ v - deriv (cgf X μ) v ^ 2
simp [hμ, this]
no goals
24002d4e2edb89d3
SimpleGraph.Walk.snd_takeUntil
Mathlib/Combinatorics/SimpleGraph/Connectivity/WalkDecomp.lean
lemma snd_takeUntil (hsu : w ≠ u) (p : G.Walk u v) (h : w ∈ p.support) : (p.takeUntil w h).snd = p.snd
V : Type u G : SimpleGraph V v w u : V inst✝ : DecidableEq V hsu : w ≠ u p : G.Walk u v h : w ∈ p.support ⊢ 1 ≤ (p.takeUntil w h).length
by_contra! hc
V : Type u G : SimpleGraph V v w u : V inst✝ : DecidableEq V hsu : w ≠ u p : G.Walk u v h : w ∈ p.support hc : (p.takeUntil w h).length < 1 ⊢ False
0b75184ebe6222be
intervalIntegral.integral_eq_zero_iff_of_le_of_nonneg_ae
Mathlib/MeasureTheory/Integral/IntervalIntegral.lean
theorem integral_eq_zero_iff_of_le_of_nonneg_ae (hab : a ≤ b) (hf : 0 ≤ᵐ[μ.restrict (Ioc a b)] f) (hfi : IntervalIntegrable f μ a b) : ∫ x in a..b, f x ∂μ = 0 ↔ f =ᵐ[μ.restrict (Ioc a b)] 0
f : ℝ → ℝ a b : ℝ μ : Measure ℝ hab : a ≤ b hf : 0 ≤ᶠ[ae (μ.restrict (Ioc a b))] f hfi : IntervalIntegrable f μ a b ⊢ ∫ (x : ℝ) in a..b, f x ∂μ = 0 ↔ f =ᶠ[ae (μ.restrict (Ioc a b))] 0
rw [integral_of_le hab, integral_eq_zero_iff_of_nonneg_ae hf hfi.1]
no goals
63ad7e2fd29d7d88
Lean.Omega.IntList.dot_sdiv_left
Mathlib/.lake/packages/lean4/src/lean/Init/Omega/IntList.lean
theorem dot_sdiv_left (xs ys : IntList) {d : Int} (h : d ∣ xs.gcd) : dot (xs.sdiv d) ys = (dot xs ys) / d
case cons.cons d x : Int xs : List Int ih : ∀ (ys : IntList), d ∣ ↑(gcd xs) → (sdiv xs d).dot ys = dot xs ys / d h : d ∣ ↑(gcd (x :: xs)) y : Int ys : List Int wx : d ∣ x ⊢ (sdiv (x :: xs) d).dot (y :: ys) = dot (x :: xs) (y :: ys) / d
have wxy : d ∣ x * y := Int.dvd_trans wx (Int.dvd_mul_right x y)
case cons.cons d x : Int xs : List Int ih : ∀ (ys : IntList), d ∣ ↑(gcd xs) → (sdiv xs d).dot ys = dot xs ys / d h : d ∣ ↑(gcd (x :: xs)) y : Int ys : List Int wx : d ∣ x wxy : d ∣ x * y ⊢ (sdiv (x :: xs) d).dot (y :: ys) = dot (x :: xs) (y :: ys) / d
77e481063fc36653
ae_eq_const_or_exists_average_ne_compl
Mathlib/Analysis/Convex/Integral.lean
theorem ae_eq_const_or_exists_average_ne_compl [IsFiniteMeasure μ] (hfi : Integrable f μ) : f =ᵐ[μ] const α (⨍ x, f x ∂μ) ∨ ∃ t, MeasurableSet t ∧ μ t ≠ 0 ∧ μ tᶜ ≠ 0 ∧ (⨍ x in t, f x ∂μ) ≠ ⨍ x in tᶜ, f x ∂μ
case neg α : Type u_1 E : Type u_2 m0 : MeasurableSpace α inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure α f : α → E inst✝ : IsFiniteMeasure μ hfi : Integrable f μ H : ∀ (t : Set α), MeasurableSet t → μ t ≠ 0 → μ tᶜ ≠ 0 → ⨍ (x : α) in t, f x ∂μ = ⨍ (x : α) in tᶜ, f x ∂μ t : Set α ht : MeasurableSet t h₀ : ¬μ t = 0 ⊢ ∫ (x : α) in t, f x ∂μ = (μ t).toReal • ⨍ (x : α), f x ∂μ
by_cases h₀' : μ tᶜ = 0
case pos α : Type u_1 E : Type u_2 m0 : MeasurableSpace α inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure α f : α → E inst✝ : IsFiniteMeasure μ hfi : Integrable f μ H : ∀ (t : Set α), MeasurableSet t → μ t ≠ 0 → μ tᶜ ≠ 0 → ⨍ (x : α) in t, f x ∂μ = ⨍ (x : α) in tᶜ, f x ∂μ t : Set α ht : MeasurableSet t h₀ : ¬μ t = 0 h₀' : μ tᶜ = 0 ⊢ ∫ (x : α) in t, f x ∂μ = (μ t).toReal • ⨍ (x : α), f x ∂μ case neg α : Type u_1 E : Type u_2 m0 : MeasurableSpace α inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure α f : α → E inst✝ : IsFiniteMeasure μ hfi : Integrable f μ H : ∀ (t : Set α), MeasurableSet t → μ t ≠ 0 → μ tᶜ ≠ 0 → ⨍ (x : α) in t, f x ∂μ = ⨍ (x : α) in tᶜ, f x ∂μ t : Set α ht : MeasurableSet t h₀ : ¬μ t = 0 h₀' : ¬μ tᶜ = 0 ⊢ ∫ (x : α) in t, f x ∂μ = (μ t).toReal • ⨍ (x : α), f x ∂μ
fdfdf49480067dc7
List.not_lex_antisymm
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/BasicAux.lean
theorem not_lex_antisymm [DecidableEq α] {r : α → α → Prop} [DecidableRel r] (antisymm : ∀ x y : α, ¬ r x y → ¬ r y x → x = y) {as bs : List α} (h₁ : ¬ Lex r bs as) (h₂ : ¬ Lex r as bs) : as = bs := match as, bs with | [], [] => rfl | [], _::_ => False.elim <| h₂ (List.Lex.nil ..) | _::_, [] => False.elim <| h₁ (List.Lex.nil ..) | a::as, b::bs => by by_cases hab : r a b · exact False.elim <| h₂ (List.Lex.rel hab) · by_cases eq : a = b · subst eq have h₁ : ¬ Lex r bs as := fun h => h₁ (List.Lex.cons h) have h₂ : ¬ Lex r as bs := fun h => h₂ (List.Lex.cons h) simp [not_lex_antisymm antisymm h₁ h₂] · exfalso by_cases hba : r b a · exact h₁ (Lex.rel hba) · exact eq (antisymm _ _ hab hba)
case pos α : Type u_1 inst✝¹ : DecidableEq α r : α → α → Prop inst✝ : DecidableRel r antisymm : ∀ (x y : α), ¬r x y → ¬r y x → x = y as✝ bs✝ : List α a : α as bs : List α h₁✝ : ¬Lex r (a :: bs) (a :: as) h₂ : ¬Lex r (a :: as) (a :: bs) hab : ¬r a a h₁ : ¬Lex r bs as ⊢ a :: as = a :: bs
have h₂ : ¬ Lex r as bs := fun h => h₂ (List.Lex.cons h)
case pos α : Type u_1 inst✝¹ : DecidableEq α r : α → α → Prop inst✝ : DecidableRel r antisymm : ∀ (x y : α), ¬r x y → ¬r y x → x = y as✝ bs✝ : List α a : α as bs : List α h₁✝ : ¬Lex r (a :: bs) (a :: as) h₂✝ : ¬Lex r (a :: as) (a :: bs) hab : ¬r a a h₁ : ¬Lex r bs as h₂ : ¬Lex r as bs ⊢ a :: as = a :: bs
bc20d604ba52bc59
Complex.HadamardThreeLines.sSupNormIm_scale_right
Mathlib/Analysis/Complex/Hadamard.lean
/-- The supremum of the norm of `scale f l u` on the line `z.re = 1` is the same as the supremum of `f` on the line `z.re = u`. -/ lemma sSupNormIm_scale_right (f : ℂ → E) {l u : ℝ} (hul : l < u) : sSupNormIm (scale f l u) 1 = sSupNormIm f u
case h.right E : Type u_1 inst✝ : NormedAddCommGroup E f : ℂ → E l u : ℝ hul : l < u e : E z : ℂ hz₁ : z.re = u hz₂ : f z = e ⊢ f (↑l + 1 * (z - ↑l)) = e
simp only [one_mul, add_sub_cancel, hz₂]
no goals
3565defd141fb614
List.rel_perm_imp
Mathlib/Data/List/Perm/Basic.lean
theorem rel_perm_imp (hr : RightUnique r) : (Forall₂ r ⇒ Forall₂ r ⇒ (· → ·)) Perm Perm := fun a b h₁ c d h₂ h => have : (flip (Forall₂ r) ∘r Perm ∘r Forall₂ r) b d := ⟨a, h₁, c, h, h₂⟩ have : ((flip (Forall₂ r) ∘r Forall₂ r) ∘r Perm) b d
α : Type u_1 β : Type u_2 r : α → β → Prop hr : RightUnique r a : List α b : List β h₁ : Forall₂ r a b c : List α d : List β h₂ : Forall₂ r c d h : a ~ c this : (flip (Forall₂ r) ∘r Perm ∘r Forall₂ r) b d ⊢ ((flip (Forall₂ r) ∘r Forall₂ r) ∘r Perm) b d
rwa [← forall₂_comp_perm_eq_perm_comp_forall₂, ← Relation.comp_assoc] at this
no goals
b9753c3618954b7a
ZetaAsymptotics.term_nonneg
Mathlib/NumberTheory/Harmonic/ZetaAsymp.lean
lemma term_nonneg (n : ℕ) (s : ℝ) : 0 ≤ term n s
n : ℕ s : ℝ ⊢ 0 ≤ term n s
rw [term, intervalIntegral.integral_of_le (by simp)]
n : ℕ s : ℝ ⊢ 0 ≤ ∫ (x : ℝ) in Ioc (↑n) (↑n + 1), (x - ↑n) / x ^ (s + 1) ∂volume
53bd7b8921be03b5
ContinuousLinearMap.closed_complemented_range_of_isCompl_of_ker_eq_bot
Mathlib/Analysis/Normed/Operator/Banach.lean
theorem closed_complemented_range_of_isCompl_of_ker_eq_bot {F : Type*} [NormedAddCommGroup F] [NormedSpace 𝕜 F] [CompleteSpace F] (f : E →L[𝕜] F) (G : Submodule 𝕜 F) (h : IsCompl (LinearMap.range f) G) (hG : IsClosed (G : Set F)) (hker : ker f = ⊥) : IsClosed (LinearMap.range f : Set F)
𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_3 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : CompleteSpace E F : Type u_5 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : CompleteSpace F f : E →L[𝕜] F G : Submodule 𝕜 F h : IsCompl (LinearMap.range f) G hG : IsClosed ↑G hker : LinearMap.ker f = ⊥ ⊢ IsClosed ↑(LinearMap.range f)
haveI : CompleteSpace G := hG.completeSpace_coe
𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_3 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : CompleteSpace E F : Type u_5 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : CompleteSpace F f : E →L[𝕜] F G : Submodule 𝕜 F h : IsCompl (LinearMap.range f) G hG : IsClosed ↑G hker : LinearMap.ker f = ⊥ this : CompleteSpace ↥G ⊢ IsClosed ↑(LinearMap.range f)
3ffb2bcc15aa85d2
SetTheory.PGame.zero_lt_neg_iff
Mathlib/SetTheory/Game/PGame.lean
theorem zero_lt_neg_iff {x : PGame} : 0 < -x ↔ x < 0
x : PGame ⊢ 0 < -x ↔ x < 0
rw [lt_neg_iff, neg_zero]
no goals
1fca89bf4fe60a8a
Ideal.exists_ideal_over_prime_of_isIntegral_of_isPrime
Mathlib/RingTheory/Ideal/GoingUp.lean
theorem exists_ideal_over_prime_of_isIntegral_of_isPrime [Algebra.IsIntegral R S] (P : Ideal R) [IsPrime P] (I : Ideal S) [IsPrime I] (hIP : I.comap (algebraMap R S) ≤ P) : ∃ Q ≥ I, IsPrime Q ∧ Q.comap (algebraMap R S) = P
R : Type u_1 inst✝⁵ : CommRing R S : Type u_2 inst✝⁴ : CommRing S inst✝³ : Algebra R S inst✝² : Algebra.IsIntegral R S P : Ideal R inst✝¹ : P.IsPrime I : Ideal S inst✝ : I.IsPrime hIP : comap (algebraMap R S) I ≤ P ⊢ RingHom.ker (Quotient.mk (comap (algebraMap R S) I)) ≤ P
simp [hIP]
no goals
8b33395f9cef74a0
AddCircle.isAddFundamentalDomain_of_ae_ball
Mathlib/MeasureTheory/Group/AddCircle.lean
theorem isAddFundamentalDomain_of_ae_ball (I : Set <| AddCircle T) (u x : AddCircle T) (hu : IsOfFinAddOrder u) (hI : I =ᵐ[volume] ball x (T / (2 * addOrderOf u))) : IsAddFundamentalDomain (AddSubgroup.zmultiples u) I
T : ℝ hT : Fact (0 < T) I : Set (AddCircle T) u x : AddCircle T hu : IsOfFinAddOrder u G : AddSubgroup (AddCircle T) := AddSubgroup.zmultiples u n : ℕ := addOrderOf u B : Set (AddCircle T) := ball x (T / (2 * ↑n)) hI : I =ᶠ[ae volume] B ⊢ 1 ≤ ↑n
norm_cast
T : ℝ hT : Fact (0 < T) I : Set (AddCircle T) u x : AddCircle T hu : IsOfFinAddOrder u G : AddSubgroup (AddCircle T) := AddSubgroup.zmultiples u n : ℕ := addOrderOf u B : Set (AddCircle T) := ball x (T / (2 * ↑n)) hI : I =ᶠ[ae volume] B ⊢ 1 ≤ n
3261dbc8487460b6
PowerSeries.hasSum_of_monomials_self
Mathlib/RingTheory/PowerSeries/PiTopology.lean
theorem hasSum_of_monomials_self (f : PowerSeries R) : HasSum (fun d : ℕ => monomial R d (coeff R d f)) f
case h.e'_5.h.h.e_5.h.e_n R : Type u_1 inst✝¹ : Semiring R inst✝ : TopologicalSpace R f : R⟦X⟧ x✝ : Unit →₀ ℕ ⊢ Finsupp.single () (x✝ PUnit.unit) = x✝ case h.e'_5.h.h.e_6.h.e_a.e_n R : Type u_1 inst✝¹ : Semiring R inst✝ : TopologicalSpace R f : R⟦X⟧ x✝ : Unit →₀ ℕ ⊢ Finsupp.single () (x✝ PUnit.unit) = x✝
all_goals { ext; simp }
no goals
413402dfd03be0a0
CategoryTheory.GrothendieckTopology.W_inverseImage_whiskeringLeft
Mathlib/CategoryTheory/Sites/Equivalence.lean
lemma W_inverseImage_whiskeringLeft : K.W.inverseImage ((whiskeringLeft Dᵒᵖ Cᵒᵖ A).obj G.op) = J.W
C : Type u₁ inst✝⁶ : Category.{v₁, u₁} C J : GrothendieckTopology C D : Type u₂ inst✝⁵ : Category.{v₂, u₂} D K : GrothendieckTopology D G : D ⥤ C A : Type u₃ inst✝⁴ : Category.{v₃, u₃} A inst✝³ : G.IsCoverDense J inst✝² : G.Full inst✝¹ : G.IsContinuous K J inst✝ : (G.sheafPushforwardContinuous A K J).EssSurj P Q : Cᵒᵖ ⥤ A f : P ⟶ Q ⊢ K.W = LeftBousfield.W fun x => x ∈ Set.range (sheafToPresheaf J A ⋙ (whiskeringLeft Dᵒᵖ Cᵒᵖ A).obj G.op).obj
rw [W_eq_W_range_sheafToPresheaf_obj, ← LeftBousfield.W_isoClosure]
C : Type u₁ inst✝⁶ : Category.{v₁, u₁} C J : GrothendieckTopology C D : Type u₂ inst✝⁵ : Category.{v₂, u₂} D K : GrothendieckTopology D G : D ⥤ C A : Type u₃ inst✝⁴ : Category.{v₃, u₃} A inst✝³ : G.IsCoverDense J inst✝² : G.Full inst✝¹ : G.IsContinuous K J inst✝ : (G.sheafPushforwardContinuous A K J).EssSurj P Q : Cᵒᵖ ⥤ A f : P ⟶ Q ⊢ LeftBousfield.W (ObjectProperty.isoClosure fun x => x ∈ Set.range (sheafToPresheaf K A).obj) = LeftBousfield.W fun x => x ∈ Set.range (sheafToPresheaf J A ⋙ (whiskeringLeft Dᵒᵖ Cᵒᵖ A).obj G.op).obj
5d43f5abfc41ecac
Stream'.WSeq.liftRel_flatten
Mathlib/Data/Seq/WSeq.lean
theorem liftRel_flatten {R : α → β → Prop} {c1 : Computation (WSeq α)} {c2 : Computation (WSeq β)} (h : c1.LiftRel (LiftRel R) c2) : LiftRel R (flatten c1) (flatten c2) := let S s t := ∃ c1 c2, s = flatten c1 ∧ t = flatten c2 ∧ Computation.LiftRel (LiftRel R) c1 c2 ⟨S, ⟨c1, c2, rfl, rfl, h⟩, fun {s t} h => match s, t, h with | _, _, ⟨c1, c2, rfl, rfl, h⟩ => by simp only [destruct_flatten]; apply liftRel_bind _ _ h intro a b ab; apply Computation.LiftRel.imp _ _ _ (liftRel_destruct ab) intro a b; apply LiftRelO.imp_right intro s t h; refine ⟨Computation.pure s, Computation.pure t, ?_, ?_, ?_⟩ <;> -- Porting note: These 2 theorems should be excluded. simp [h, -liftRel_pure_left, -liftRel_pure_right]⟩
α : Type u β : Type v R : α → β → Prop c1✝ : Computation (WSeq α) c2✝ : Computation (WSeq β) h✝¹ : Computation.LiftRel (LiftRel R) c1✝ c2✝ S : WSeq α → WSeq β → Prop := fun s t => ∃ c1 c2, s = flatten c1 ∧ t = flatten c2 ∧ Computation.LiftRel (LiftRel R) c1 c2 s : WSeq α t : WSeq β h✝ : S s t c1 : Computation (WSeq α) c2 : Computation (WSeq β) h : Computation.LiftRel (LiftRel R) c1 c2 ⊢ ∀ {a : WSeq α} {b : WSeq β}, LiftRel R a b → Computation.LiftRel (LiftRelO R S) a.destruct b.destruct
intro a b ab
α : Type u β : Type v R : α → β → Prop c1✝ : Computation (WSeq α) c2✝ : Computation (WSeq β) h✝¹ : Computation.LiftRel (LiftRel R) c1✝ c2✝ S : WSeq α → WSeq β → Prop := fun s t => ∃ c1 c2, s = flatten c1 ∧ t = flatten c2 ∧ Computation.LiftRel (LiftRel R) c1 c2 s : WSeq α t : WSeq β h✝ : S s t c1 : Computation (WSeq α) c2 : Computation (WSeq β) h : Computation.LiftRel (LiftRel R) c1 c2 a : WSeq α b : WSeq β ab : LiftRel R a b ⊢ Computation.LiftRel (LiftRelO R S) a.destruct b.destruct
e2278a6885cf1b11
Option.get_attach
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Option/Attach.lean
theorem get_attach {o : Option α} (h : o.attach.isSome = true) : o.attach.get h = ⟨o.get (by simpa using h), by simp⟩
case some α : Type u_1 val✝ : α h : (some val✝).attach.isSome = true ⊢ (some val✝).attach.get h = ⟨(some val✝).get ⋯, ⋯⟩
simp [get_some]
no goals
4c6e8d0a413cc9e7
continuous_algebraMap_iff_smul
Mathlib/Topology/Algebra/Algebra.lean
theorem continuous_algebraMap_iff_smul [IsTopologicalSemiring A] : Continuous (algebraMap R A) ↔ Continuous fun p : R × A => p.1 • p.2
R : Type u_1 A : Type u inst✝⁵ : CommSemiring R inst✝⁴ : Semiring A inst✝³ : Algebra R A inst✝² : TopologicalSpace R inst✝¹ : TopologicalSpace A inst✝ : IsTopologicalSemiring A h : Continuous ⇑(algebraMap R A) ⊢ Continuous fun p => p.1 • p.2
simp only [Algebra.smul_def]
R : Type u_1 A : Type u inst✝⁵ : CommSemiring R inst✝⁴ : Semiring A inst✝³ : Algebra R A inst✝² : TopologicalSpace R inst✝¹ : TopologicalSpace A inst✝ : IsTopologicalSemiring A h : Continuous ⇑(algebraMap R A) ⊢ Continuous fun p => (algebraMap R A) p.1 * p.2
cf5084d686cf2d34
ContinuousMapZero.induction_on
Mathlib/Topology/ContinuousMap/StoneWeierstrass.lean
/-- An induction principle for `C(s, 𝕜)₀`. -/ @[elab_as_elim] lemma ContinuousMapZero.induction_on {s : Set 𝕜} [Zero s] (h0 : ((0 : s) : 𝕜) = 0) {p : C(s, 𝕜)₀ → Prop} (zero : p 0) (id : p (.id h0)) (star_id : p (star (.id h0))) (add : ∀ f g, p f → p g → p (f + g)) (mul : ∀ f g, p f → p g → p (f * g)) (smul : ∀ (r : 𝕜) f, p f → p (r • f)) (closure : (∀ f ∈ adjoin 𝕜 {(.id h0 : C(s, 𝕜)₀)}, p f) → ∀ f, p f) (f : C(s, 𝕜)₀) : p f
case mem.inl 𝕜 : Type u_1 inst✝¹ : RCLike 𝕜 s : Set 𝕜 inst✝ : Zero ↑s h0 : ↑0 = 0 p : C(↑s, 𝕜)₀ → Prop zero : p 0 id : p (ContinuousMapZero.id h0) star_id : p (star (ContinuousMapZero.id h0)) add : ∀ (f g : C(↑s, 𝕜)₀), p f → p g → p (f + g) mul : ∀ (f g : C(↑s, 𝕜)₀), p f → p g → p (f * g) smul : ∀ (r : 𝕜) (f : C(↑s, 𝕜)₀), p f → p (r • f) closure : (∀ f ∈ adjoin 𝕜 {ContinuousMapZero.id h0}, p f) → ∀ (f : C(↑s, 𝕜)₀), p f f✝ f : C(↑s, 𝕜)₀ ⊢ p (ContinuousMapZero.id h0) case mem.inr 𝕜 : Type u_1 inst✝¹ : RCLike 𝕜 s : Set 𝕜 inst✝ : Zero ↑s h0 : ↑0 = 0 p : C(↑s, 𝕜)₀ → Prop zero : p 0 id : p (ContinuousMapZero.id h0) star_id : p (star (ContinuousMapZero.id h0)) add : ∀ (f g : C(↑s, 𝕜)₀), p f → p g → p (f + g) mul : ∀ (f g : C(↑s, 𝕜)₀), p f → p g → p (f * g) smul : ∀ (r : 𝕜) (f : C(↑s, 𝕜)₀), p f → p (r • f) closure : (∀ f ∈ adjoin 𝕜 {ContinuousMapZero.id h0}, p f) → ∀ (f : C(↑s, 𝕜)₀), p f f✝ f : C(↑s, 𝕜)₀ ⊢ p (star (ContinuousMapZero.id h0))
all_goals assumption
no goals
0762fdd5f4173a39
List.reduceOption_map
Mathlib/Data/List/ReduceOption.lean
theorem reduceOption_map {l : List (Option α)} {f : α → β} : reduceOption (map (Option.map f) l) = map f (reduceOption l)
case nil α : Type u_1 β : Type u_2 f : α → β ⊢ (map (Option.map f) []).reduceOption = map f [].reduceOption
simp only [reduceOption_nil, map_nil]
no goals
cc6651bb2af464b1
Monoid.CoprodI.NeWord.inv_prod
Mathlib/GroupTheory/CoprodI.lean
theorem inv_prod {i j} (w : NeWord G i j) : w.inv.prod = w.prod⁻¹
ι : Type u_1 G : ι → Type u_4 inst✝ : (i : ι) → Group (G i) i j : ι w : NeWord G i j ⊢ w.inv.prod = w.prod⁻¹
induction w <;> simp [inv, *]
no goals
ac1d569673d1fc27
Orientation.oangle_sign_neg_right
Mathlib/Geometry/Euclidean/Angle/Oriented/Basic.lean
theorem oangle_sign_neg_right (x y : V) : (o.oangle x (-y)).sign = -(o.oangle x y).sign
case neg V : Type u_1 inst✝² : NormedAddCommGroup V inst✝¹ : InnerProductSpace ℝ V inst✝ : Fact (finrank ℝ V = 2) o : Orientation ℝ V (Fin 2) x y : V hx : ¬x = 0 ⊢ (o.oangle x (-y)).sign = -(o.oangle x y).sign
by_cases hy : y = 0
case pos V : Type u_1 inst✝² : NormedAddCommGroup V inst✝¹ : InnerProductSpace ℝ V inst✝ : Fact (finrank ℝ V = 2) o : Orientation ℝ V (Fin 2) x y : V hx : ¬x = 0 hy : y = 0 ⊢ (o.oangle x (-y)).sign = -(o.oangle x y).sign case neg V : Type u_1 inst✝² : NormedAddCommGroup V inst✝¹ : InnerProductSpace ℝ V inst✝ : Fact (finrank ℝ V = 2) o : Orientation ℝ V (Fin 2) x y : V hx : ¬x = 0 hy : ¬y = 0 ⊢ (o.oangle x (-y)).sign = -(o.oangle x y).sign
5c2729a61cddd080
UnitAddTorus.mFourierSubalgebra_separatesPoints
Mathlib/Analysis/Fourier/AddCircleMulti.lean
theorem mFourierSubalgebra_separatesPoints : (mFourierSubalgebra d).SeparatesPoints
case intro d : Type u_1 inst✝ : Fintype d x y : UnitAddTorus d i : d hi : ¬x i = y i ⊢ ∃ f ∈ (fun f => ⇑f) '' ↑(mFourierSubalgebra d).toSubalgebra, f x ≠ f y
refine ⟨_, ⟨mFourier (Pi.single i 1), subset_adjoin ⟨Pi.single i 1, rfl⟩, rfl⟩, ?_⟩
case intro d : Type u_1 inst✝ : Fintype d x y : UnitAddTorus d i : d hi : ¬x i = y i ⊢ (fun f => ⇑f) (mFourier (Pi.single i 1)) x ≠ (fun f => ⇑f) (mFourier (Pi.single i 1)) y
62716958135bef29
List.mapFinIdx_eq_cons_iff'
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/MapIdx.lean
theorem mapFinIdx_eq_cons_iff' {l : List α} {b : β} {f : (i : Nat) → α → (h : i < l.length) → β} : l.mapFinIdx f = b :: l₂ ↔ l.head?.pbind (fun x m => (f 0 x (by cases l <;> simp_all))) = some b ∧ l.tail?.attach.map (fun ⟨t, m⟩ => t.mapFinIdx fun i a h => f (i + 1) a (by cases l <;> simp_all)) = some l₂
α : Type u_1 β : Type u_2 l₂ : List β l : List α b : β f : (i : Nat) → α → i < l.length → β ⊢ l.mapFinIdx f = b :: l₂ ↔ (l.head?.pbind fun x m => some (f 0 x ⋯)) = some b ∧ Option.map (fun x => match x with | ⟨t, m⟩ => t.mapFinIdx fun i a h => f (i + 1) a ⋯) l.tail?.attach = some l₂
cases l <;> simp
no goals
2970fe8e7c7f7a5b
ONote.scale_opowAux
Mathlib/SetTheory/Ordinal/Notation.lean
theorem scale_opowAux (e a0 a : ONote) [NF e] [NF a0] [NF a] : ∀ k m, repr (opowAux e a0 a k m) = ω ^ repr e * repr (opowAux 0 a0 a k m) | 0, m => by cases m <;> simp [opowAux] | k + 1, m => by by_cases h : m = 0 · simp [h, opowAux, mul_add, opow_add, mul_assoc, scale_opowAux _ _ _ k] · -- Porting note: rewrote proof rw [opowAux]; swap · assumption rw [opowAux]; swap · assumption rw [repr_add, repr_scale, scale_opowAux _ _ _ k] simp only [repr_add, repr_scale, opow_add, mul_assoc, zero_add, mul_add]
case neg e a0 a : ONote inst✝² : e.NF inst✝¹ : a0.NF inst✝ : a.NF k m : ℕ h : ¬m = 0 ⊢ ((e + a0.mulNat k).scale a + e.opowAux a0 a k m).repr = ω ^ e.repr * (opowAux 0 a0 a (k + 1) m).repr
rw [opowAux]
case neg e a0 a : ONote inst✝² : e.NF inst✝¹ : a0.NF inst✝ : a.NF k m : ℕ h : ¬m = 0 ⊢ ((e + a0.mulNat k).scale a + e.opowAux a0 a k m).repr = ω ^ e.repr * ((0 + a0.mulNat k).scale a + opowAux 0 a0 a k m).repr case neg.x_2 e a0 a : ONote inst✝² : e.NF inst✝¹ : a0.NF inst✝ : a.NF k m : ℕ h : ¬m = 0 ⊢ m = 0 → False
b7f13d71a1db69ef
mul_le_mul_iff_of_ge
Mathlib/Algebra/Order/Monoid/Unbundled/Basic.lean
@[to_additive] lemma mul_le_mul_iff_of_ge [MulLeftStrictMono α] [MulRightStrictMono α] {a₁ a₂ b₁ b₂ : α} (ha : a₁ ≤ a₂) (hb : b₁ ≤ b₂) : a₂ * b₂ ≤ a₁ * b₁ ↔ a₁ = a₂ ∧ b₁ = b₂
α : Type u_1 inst✝³ : Mul α inst✝² : PartialOrder α inst✝¹ : MulLeftStrictMono α inst✝ : MulRightStrictMono α a₁ a₂ b₁ b₂ : α ha : a₁ ≤ a₂ hb : b₁ ≤ b₂ this✝ : MulLeftMono α this : MulRightMono α ⊢ a₁ = a₂ ∧ b₁ = b₂ → a₂ * b₂ ≤ a₁ * b₁
rintro ⟨rfl, rfl⟩
case intro α : Type u_1 inst✝³ : Mul α inst✝² : PartialOrder α inst✝¹ : MulLeftStrictMono α inst✝ : MulRightStrictMono α a₁ b₁ : α this✝ : MulLeftMono α this : MulRightMono α ha : a₁ ≤ a₁ hb : b₁ ≤ b₁ ⊢ a₁ * b₁ ≤ a₁ * b₁
9c6e86cfc88a99bc
SeminormFamily.basisSets_smul_left
Mathlib/Analysis/LocallyConvex/WithSeminorms.lean
theorem basisSets_smul_left (x : 𝕜) (U : Set E) (hU : U ∈ p.basisSets) : ∃ V ∈ p.addGroupFilterBasis.sets, V ⊆ (fun y : E => x • y) ⁻¹' U
case pos 𝕜 : Type u_1 E : Type u_5 ι : Type u_8 inst✝³ : NormedField 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E p : SeminormFamily 𝕜 E ι inst✝ : Nonempty ι x : 𝕜 U : Set E hU✝ : U ∈ p.basisSets s : Finset ι r : ℝ hr : 0 < r hU : U = (s.sup p).ball 0 r h : x ≠ 0 ⊢ ∃ V ∈ AddGroupFilterBasis.toFilterBasis.sets, V ⊆ (fun y => x • y) ⁻¹' (s.sup p).ball 0 r
rw [(s.sup p).smul_ball_preimage 0 r x h, smul_zero]
case pos 𝕜 : Type u_1 E : Type u_5 ι : Type u_8 inst✝³ : NormedField 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E p : SeminormFamily 𝕜 E ι inst✝ : Nonempty ι x : 𝕜 U : Set E hU✝ : U ∈ p.basisSets s : Finset ι r : ℝ hr : 0 < r hU : U = (s.sup p).ball 0 r h : x ≠ 0 ⊢ ∃ V ∈ AddGroupFilterBasis.toFilterBasis.sets, V ⊆ (s.sup p).ball 0 (r / ‖x‖)
746096ac124c9ebb
solvableByRad.isSolvable'
Mathlib/FieldTheory/AbelRuffini.lean
theorem isSolvable' {α : E} {q : F[X]} (q_irred : Irreducible q) (q_aeval : aeval α q = 0) (hα : IsSolvableByRad F α) : IsSolvable q.Gal
F : Type u_1 inst✝² : Field F E : Type u_2 inst✝¹ : Field E inst✝ : Algebra F E α : E q : F[X] q_irred : Irreducible q q_aeval : (aeval α) q = 0 hα : IsSolvableByRad F α this : IsSolvable (q * C q.leadingCoeff⁻¹).Gal ⊢ ¬q = 0 ∧ ¬q.leadingCoeff = 0
exact ⟨q_irred.ne_zero, leadingCoeff_ne_zero.mpr q_irred.ne_zero⟩
no goals
d267ed0ecc2c4dbe
MeasureTheory.volume_sum_rpow_le
Mathlib/MeasureTheory/Measure/Lebesgue/VolumeOfBalls.lean
theorem MeasureTheory.volume_sum_rpow_le [Nonempty ι] {p : ℝ} (hp : 1 ≤ p) (r : ℝ) : volume {x : ι → ℝ | (∑ i, |x i| ^ p) ^ (1 / p) ≤ r} = (.ofReal r) ^ card ι * .ofReal ((2 * Gamma (1 / p + 1)) ^ card ι / Gamma (card ι / p + 1))
ι : Type u_1 inst✝¹ : Fintype ι inst✝ : Nonempty ι p : ℝ hp : 1 ≤ p r : ℝ h₁ : 0 < p eq_norm : ∀ (x : ι → ℝ), ‖x‖ = (∑ x_1 : ι, |x x_1| ^ p) ^ (1 / p) this : Fact (1 ≤ ENNReal.ofReal p) nm_zero : ‖0‖ = 0 ⊢ volume {x | (∑ i : ι, |x i| ^ p) ^ (1 / p) ≤ r} = ENNReal.ofReal r ^ card ι * ENNReal.ofReal ((2 * Gamma (1 / p + 1)) ^ card ι / Gamma (↑(card ι) / p + 1))
have eq_zero := fun x : ι → ℝ => norm_eq_zero (E := PiLp (.ofReal p) (fun _ : ι => ℝ)) (a := x)
ι : Type u_1 inst✝¹ : Fintype ι inst✝ : Nonempty ι p : ℝ hp : 1 ≤ p r : ℝ h₁ : 0 < p eq_norm : ∀ (x : ι → ℝ), ‖x‖ = (∑ x_1 : ι, |x x_1| ^ p) ^ (1 / p) this : Fact (1 ≤ ENNReal.ofReal p) nm_zero : ‖0‖ = 0 eq_zero : ∀ (x : ι → ℝ), ‖x‖ = 0 ↔ x = 0 ⊢ volume {x | (∑ i : ι, |x i| ^ p) ^ (1 / p) ≤ r} = ENNReal.ofReal r ^ card ι * ENNReal.ofReal ((2 * Gamma (1 / p + 1)) ^ card ι / Gamma (↑(card ι) / p + 1))
b43945fead980666
Real.pi_gt_d2
Mathlib/Data/Real/Pi/Bounds.lean
theorem pi_gt_d2 : 3.14 < π
⊢ 3.14 < π
pi_lower_bound [338 / 239, 704 / 381, 1940 / 989, 1447 / 727]
no goals
77800e38bc315fa9
Zsqrtd.le_arch
Mathlib/NumberTheory/Zsqrtd/Basic.lean
theorem le_arch (a : ℤ√d) : ∃ n : ℕ, a ≤ n
case intro.intro d : ℕ a : ℤ√↑d x y : ℕ h : a ≤ { re := ↑x, im := ↑y } ⊢ { re := ↑x, im := ↑y } ≤ ↑(x + d * y)
change Nonneg ⟨↑x + d * y - ↑x, 0 - ↑y⟩
case intro.intro d : ℕ a : ℤ√↑d x y : ℕ h : a ≤ { re := ↑x, im := ↑y } ⊢ { re := ↑x + ↑d * ↑y - ↑x, im := 0 - ↑y }.Nonneg
8d26cc96bf8abedc
Bimod.whiskerRight_comp_bimod
Mathlib/CategoryTheory/Monoidal/Bimod.lean
theorem whiskerRight_comp_bimod {W X Y Z : Mon_ C} {M M' : Bimod W X} (f : M ⟶ M') (N : Bimod X Y) (P : Bimod Y Z) : whiskerRight f (N.tensorBimod P) = (associatorBimod M N P).inv ≫ whiskerRight (whiskerRight f N) P ≫ (associatorBimod M' N P).hom
C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C inst✝² : HasCoequalizers C inst✝¹ : ∀ (X : C), PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : ∀ (X : C), PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) W X Y Z : Mon_ C M M' : Bimod W X f : M ⟶ M' N : Bimod X Y P : Bimod Y Z ⊢ whiskerRight f (N.tensorBimod P) = (M.associatorBimod N P).inv ≫ whiskerRight (whiskerRight f N) P ≫ (M'.associatorBimod N P).hom
dsimp [tensorHom, tensorBimod, associatorBimod]
C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C inst✝² : HasCoequalizers C inst✝¹ : ∀ (X : C), PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : ∀ (X : C), PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) W X Y Z : Mon_ C M M' : Bimod W X f : M ⟶ M' N : Bimod X Y P : Bimod Y Z ⊢ whiskerRight f { X := TensorBimod.X N P, actLeft := TensorBimod.actLeft N P, one_actLeft := ⋯, left_assoc := ⋯, actRight := TensorBimod.actRight N P, actRight_one := ⋯, right_assoc := ⋯, middle_assoc := ⋯ } = (isoOfIso { hom := AssociatorBimod.hom M N P, inv := AssociatorBimod.inv M N P, hom_inv_id := ⋯, inv_hom_id := ⋯ } ⋯ ⋯).inv ≫ whiskerRight (whiskerRight f N) P ≫ (isoOfIso { hom := AssociatorBimod.hom M' N P, inv := AssociatorBimod.inv M' N P, hom_inv_id := ⋯, inv_hom_id := ⋯ } ⋯ ⋯).hom
2725ee4aa075b079
doublyStochastic_sum_perm_aux
Mathlib/Analysis/Convex/Birkhoff.lean
/-- If M is a scalar multiple of a doubly stochastic matrix, then it is a conical combination of permutation matrices. This is most useful when M is a doubly stochastic matrix, in which case the combination is convex. This particular formulation is chosen to make the inductive step easier: we no longer need to rescale each time a permutation matrix is subtracted. -/ private lemma doublyStochastic_sum_perm_aux (M : Matrix n n R) (s : R) (hs : 0 ≤ s) (hM : ∃ M' ∈ doublyStochastic R n, M = s • M') : ∃ w : Equiv.Perm n → R, (∀ σ, 0 ≤ w σ) ∧ ∑ σ, w σ • σ.permMatrix R = M
R : Type u_1 n : Type u_2 inst✝² : Fintype n inst✝¹ : DecidableEq n inst✝ : LinearOrderedField R M : Matrix n n R s : R hs : 0 ≤ s hM : ∃ M' ∈ doublyStochastic R n, M = s • M' ⊢ ∃ w, (∀ (σ : Equiv.Perm n), 0 ≤ w σ) ∧ ∑ σ : Equiv.Perm n, w σ • Equiv.Perm.permMatrix R σ = M
rcases isEmpty_or_nonempty n
case inl R : Type u_1 n : Type u_2 inst✝² : Fintype n inst✝¹ : DecidableEq n inst✝ : LinearOrderedField R M : Matrix n n R s : R hs : 0 ≤ s hM : ∃ M' ∈ doublyStochastic R n, M = s • M' h✝ : IsEmpty n ⊢ ∃ w, (∀ (σ : Equiv.Perm n), 0 ≤ w σ) ∧ ∑ σ : Equiv.Perm n, w σ • Equiv.Perm.permMatrix R σ = M case inr R : Type u_1 n : Type u_2 inst✝² : Fintype n inst✝¹ : DecidableEq n inst✝ : LinearOrderedField R M : Matrix n n R s : R hs : 0 ≤ s hM : ∃ M' ∈ doublyStochastic R n, M = s • M' h✝ : Nonempty n ⊢ ∃ w, (∀ (σ : Equiv.Perm n), 0 ≤ w σ) ∧ ∑ σ : Equiv.Perm n, w σ • Equiv.Perm.permMatrix R σ = M
fe82d3c50ee8248f
Batteries.UnionFind.root_link
Mathlib/.lake/packages/batteries/Batteries/Data/UnionFind/Lemmas.lean
theorem root_link {self : UnionFind} {x y : Fin self.size} (xroot : self.parent x = x) (yroot : self.parent y = y) : ∃ r, (r = x ∨ r = y) ∧ ∀ i, (link self x y yroot).rootD i = if self.rootD i = x ∨ self.rootD i = y then r.1 else self.rootD i
self : UnionFind x y : Fin self.size xroot : self.parent ↑x = ↑x yroot : self.parent ↑y = ↑y h : ¬↑x = ↑y this : ∀ {x y : Fin self.size}, self.parent ↑x = ↑x → self.parent ↑y = ↑y → ∀ {m : UnionFind}, (∀ (i : Nat), m.parent i = if ↑y = i then ↑x else self.parent i) → ∃ r, (r = x ∨ r = y) ∧ ∀ (i : Nat), m.rootD i = if self.rootD i = ↑x ∨ self.rootD i = ↑y then ↑r else self.rootD i hr : self.rank ↑y < self.rank ↑x ⊢ ∃ r, (r = x ∨ r = y) ∧ ∀ (i : Nat), (self.link x y yroot).rootD i = if self.rootD i = ↑x ∨ self.rootD i = ↑y then ↑r else self.rootD i
exact this xroot yroot fun i => by simp [parent_link, h, hr]
no goals
d17902f7f8b46530
MeasureTheory.Measure.addHaar_unitClosedBall_eq_addHaar_unitBall
Mathlib/MeasureTheory/Measure/Lebesgue/EqHaar.lean
theorem addHaar_unitClosedBall_eq_addHaar_unitBall : μ (closedBall (0 : E) 1) = μ (ball 0 1)
E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : FiniteDimensional ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure A : Tendsto (fun r => ENNReal.ofReal (r ^ finrank ℝ E) * μ (closedBall 0 1)) (𝓝[<] 1) (𝓝 (ENNReal.ofReal (1 ^ finrank ℝ E) * μ (closedBall 0 1))) ⊢ μ (closedBall 0 1) ≤ μ (ball 0 1)
simp only [one_pow, one_mul, ENNReal.ofReal_one] at A
E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : FiniteDimensional ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure A : Tendsto (fun r => ENNReal.ofReal (r ^ finrank ℝ E) * μ (closedBall 0 1)) (𝓝[<] 1) (𝓝 (μ (closedBall 0 1))) ⊢ μ (closedBall 0 1) ≤ μ (ball 0 1)
fec794d9d0962e21
Matrix.toLin_one
Mathlib/LinearAlgebra/Matrix/ToLin.lean
theorem Matrix.toLin_one : Matrix.toLin v₁ v₁ 1 = LinearMap.id
R : Type u_1 inst✝⁴ : CommSemiring R n : Type u_4 inst✝³ : Fintype n inst✝² : DecidableEq n M₁ : Type u_5 inst✝¹ : AddCommMonoid M₁ inst✝ : Module R M₁ v₁ : Basis n R M₁ ⊢ (toLin v₁ v₁) 1 = LinearMap.id
rw [← LinearMap.toMatrix_id v₁, Matrix.toLin_toMatrix]
no goals
0fc717586a9e23ee
Option.get_ite'
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Option/Lemmas.lean
theorem get_ite' {p : Prop} [Decidable p] (h) : (if p then none else some b).get h = b
α✝ : Type u_1 b : α✝ p : Prop inst✝ : Decidable p h : (if p then none else some b).isSome = true ⊢ (if h : p then none else some ((fun x => b) h)).isSome = true
simpa using h
no goals
9191a3197025dfa5
Ideal.inertiaDeg_comap_eq
Mathlib/NumberTheory/RamificationInertia/Basic.lean
lemma inertiaDeg_comap_eq (e : S ≃ₐ[R] S₁) (P : Ideal S₁) [p.IsMaximal] : inertiaDeg p (P.comap e) = inertiaDeg p P
case pos R : Type u inst✝⁵ : CommRing R S : Type v inst✝⁴ : CommRing S p : Ideal R S₁ : Type u_1 inst✝³ : CommRing S₁ inst✝² : Algebra R S₁ inst✝¹ : Algebra R S e : S ≃ₐ[R] S₁ P : Ideal S₁ inst✝ : p.IsMaximal he : comap f (comap e P) = p ↔ comap (algebraMap R S₁) P = p h : P.LiesOver p ⊢ finrank (R ⧸ p) (S ⧸ comap e P) = finrank (R ⧸ p) (S₁ ⧸ P)
exact (Quotient.algEquivOfEqComap p e rfl).toLinearEquiv.finrank_eq
no goals
808161996d92d945
RelSeries.nonempty_of_finiteDimensional
Mathlib/Order/RelSeries.lean
lemma nonempty_of_finiteDimensional [r.FiniteDimensional] : Nonempty α
case intro α : Type u_1 r : Rel α α inst✝ : r.FiniteDimensional p : RelSeries r h✝ : ∀ (y : RelSeries r), y.length ≤ p.length ⊢ Nonempty α
exact ⟨p 0⟩
no goals
a04bbe4eba35b6fb
ClassGroup.exists_mem_finsetApprox
Mathlib/NumberTheory/ClassNumber/Finite.lean
theorem exists_mem_finsetApprox (a : S) {b} (hb : b ≠ (0 : R)) : ∃ q : S, ∃ r ∈ finsetApprox bS adm, abv (Algebra.norm R (r • a - b • q)) < abv (Algebra.norm R (algebraMap R S b))
R : Type u_1 S : Type u_2 inst✝⁷ : EuclideanDomain R inst✝⁶ : CommRing S inst✝⁵ : IsDomain S inst✝⁴ : Algebra R S abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : abv.IsAdmissible inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε ε_le : ↑(normBound abv bS) * (abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(abv b) ^ ↑(Fintype.card ι) μ : Fin (cardM bS adm).succ ↪ R := distinctElems bS adm hμ : μ = distinctElems bS adm s : ι →₀ R := bS.repr a s_eq : ∀ (i : ι), s i = (bS.repr a) i qs : Fin (cardM bS adm).succ → ι → R := fun j i => μ j * s i / b ⊢ ∃ q, ∃ r ∈ finsetApprox bS adm, abv ((Algebra.norm R) (r • a - b • q)) < abv ((Algebra.norm R) ((algebraMap R S) b))
let rs : Fin (cardM bS adm).succ → ι → R := fun j i => μ j * s i % b
R : Type u_1 S : Type u_2 inst✝⁷ : EuclideanDomain R inst✝⁶ : CommRing S inst✝⁵ : IsDomain S inst✝⁴ : Algebra R S abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : abv.IsAdmissible inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε ε_le : ↑(normBound abv bS) * (abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(abv b) ^ ↑(Fintype.card ι) μ : Fin (cardM bS adm).succ ↪ R := distinctElems bS adm hμ : μ = distinctElems bS adm s : ι →₀ R := bS.repr a s_eq : ∀ (i : ι), s i = (bS.repr a) i qs : Fin (cardM bS adm).succ → ι → R := fun j i => μ j * s i / b rs : Fin (cardM bS adm).succ → ι → R := fun j i => μ j * s i % b ⊢ ∃ q, ∃ r ∈ finsetApprox bS adm, abv ((Algebra.norm R) (r • a - b • q)) < abv ((Algebra.norm R) ((algebraMap R S) b))
57a52f480b46c47f
List.ext_getElem
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Lemmas.lean
theorem ext_getElem {l₁ l₂ : List α} (hl : length l₁ = length l₂) (h : ∀ (i : Nat) (h₁ : i < l₁.length) (h₂ : i < l₂.length), l₁[i]'h₁ = l₂[i]'h₂) : l₁ = l₂ := ext_getElem? fun n => if h₁ : n < length l₁ then by simp_all [getElem?_eq_getElem] else by have h₁ := Nat.le_of_not_lt h₁ rw [getElem?_eq_none h₁, getElem?_eq_none]; rwa [← hl]
α : Type u_1 l₁ l₂ : List α hl : l₁.length = l₂.length h : ∀ (i : Nat) (h₁ : i < l₁.length) (h₂ : i < l₂.length), l₁[i] = l₂[i] n : Nat h₁ : ¬n < l₁.length ⊢ l₁[n]? = l₂[n]?
have h₁ := Nat.le_of_not_lt h₁
α : Type u_1 l₁ l₂ : List α hl : l₁.length = l₂.length h : ∀ (i : Nat) (h₁ : i < l₁.length) (h₂ : i < l₂.length), l₁[i] = l₂[i] n : Nat h₁✝ : ¬n < l₁.length h₁ : l₁.length ≤ n ⊢ l₁[n]? = l₂[n]?
6ddc71b98482ae57
AlgebraicGeometry.HasRingHomProperty.isLocal_ringHomProperty_of_isLocalAtSource_of_isLocalAtTarget
Mathlib/AlgebraicGeometry/Morphisms/RingHomProperties.lean
lemma isLocal_ringHomProperty_of_isLocalAtSource_of_isLocalAtTarget [IsLocalAtTarget P] [IsLocalAtSource P] : RingHom.PropertyIsLocal fun f ↦ P (Spec.map (CommRingCat.ofHom f))
case ofLocalizationSpanTarget P : MorphismProperty Scheme inst✝¹ : IsLocalAtTarget P inst✝ : IsLocalAtSource P hP : RingHom.RespectsIso fun {R S} [CommRing R] [CommRing S] f => P (Spec.map (CommRingCat.ofHom f)) ⊢ RingHom.OfLocalizationSpanTarget fun {R S} [CommRing R] [CommRing S] f => P (Spec.map (CommRingCat.ofHom f))
intros R S _ _ f s hs H
case ofLocalizationSpanTarget P : MorphismProperty Scheme inst✝³ : IsLocalAtTarget P inst✝² : IsLocalAtSource P hP : RingHom.RespectsIso fun {R S} [CommRing R] [CommRing S] f => P (Spec.map (CommRingCat.ofHom f)) R S : Type u inst✝¹ : CommRing R inst✝ : CommRing S f : R →+* S s : Set S hs : Ideal.span s = ⊤ H : ∀ (r : ↑s), (fun {R S} [CommRing R] [CommRing S] f => P (Spec.map (CommRingCat.ofHom f))) ((algebraMap S (Localization.Away ↑r)).comp f) ⊢ P (Spec.map (CommRingCat.ofHom f))
b9bae3dd3914b2b4
intervalIntegral.intervalIntegrable_log'
Mathlib/Analysis/SpecialFunctions/Integrals.lean
theorem intervalIntegrable_log' : IntervalIntegrable log volume a b
case h₂f.hab.h.hpos a b x : ℝ hx : 0 < x s : ℝ hs₁ : 0 < s hs₂ : s < 1 ⊢ log s ≤ 0
exact (log_nonpos_iff hs₁.le).mpr hs₂.le
no goals
d485782e2df5cd2b
EReal.nhdsWithin_top
Mathlib/Topology/Instances/EReal/Lemmas.lean
lemma nhdsWithin_top : 𝓝[≠] (⊤ : EReal) = (atTop).map Real.toEReal
case pos x : EReal hx : x < ⊤ hx_bot : x = ⊥ ⊢ ∃ i', Ico ↑i' ⊤ ⊆ Ici x ∩ {⊤}ᶜ
simp [hx_bot]
no goals
44a55101f1792898
Std.DHashMap.Internal.Raw₀.get!_eq_default
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Internal/RawLemmas.lean
theorem get!_eq_default [LawfulBEq α] (h : m.1.WF) {a : α} [Inhabited (β a)] : m.contains a = false → m.get! a = default
α : Type u β : α → Type v m : Raw₀ α β inst✝³ : BEq α inst✝² : Hashable α inst✝¹ : LawfulBEq α h : m.val.WF a : α inst✝ : Inhabited (β a) ⊢ m.contains a = false → m.get! a = default
simp_to_model using List.getValueCast!_eq_default
no goals
00227ee183807c1b
AlgebraicGeometry.isPullback_opens_inf
Mathlib/AlgebraicGeometry/Restrict.lean
lemma isPullback_opens_inf {X : Scheme} (U V : X.Opens) : IsPullback (X.homOfLE inf_le_left) (X.homOfLE inf_le_right) U.ι V.ι := (isPullback_morphismRestrict V.ι U).of_iso (V.ι.isoImage _ ≪≫ X.isoOfEq (V.functor_map_eq_inf U)) (Iso.refl _) (Iso.refl _) (Iso.refl _) (by simp [← cancel_mono U.ι]) (by simp [← cancel_mono V.ι]) (by simp) (by simp)
X : Scheme U V : X.Opens ⊢ V.ι ≫ (Iso.refl X).hom = (Iso.refl ↑V).hom ≫ V.ι
simp
no goals
d85d3594e7244cad
Option.attachWith_eq_none_iff
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Option/Attach.lean
theorem attachWith_eq_none_iff {p : α → Prop} {o : Option α} (H : ∀ a ∈ o, p a) : o.attachWith p H = none ↔ o = none
α : Type u_1 p : α → Prop o : Option α H : ∀ (a : α), a ∈ o → p a ⊢ o.attachWith p H = none ↔ o = none
cases o <;> simp
no goals
fe17c1b9bea5c567
Vitali.exists_disjoint_covering_ae
Mathlib/MeasureTheory/Covering/Vitali.lean
theorem exists_disjoint_covering_ae [PseudoMetricSpace α] [MeasurableSpace α] [OpensMeasurableSpace α] [SecondCountableTopology α] (μ : Measure α) [IsLocallyFiniteMeasure μ] (s : Set α) (t : Set ι) (C : ℝ≥0) (r : ι → ℝ) (c : ι → α) (B : ι → Set α) (hB : ∀ a ∈ t, B a ⊆ closedBall (c a) (r a)) (μB : ∀ a ∈ t, μ (closedBall (c a) (3 * r a)) ≤ C * μ (B a)) (ht : ∀ a ∈ t, (interior (B a)).Nonempty) (h't : ∀ a ∈ t, IsClosed (B a)) (hf : ∀ x ∈ s, ∀ ε > (0 : ℝ), ∃ a ∈ t, r a ≤ ε ∧ c a = x) : ∃ u ⊆ t, u.Countable ∧ u.PairwiseDisjoint B ∧ μ (s \ ⋃ a ∈ u, B a) = 0
α : Type u_1 ι : Type u_2 inst✝⁴ : PseudoMetricSpace α inst✝³ : MeasurableSpace α inst✝² : OpensMeasurableSpace α inst✝¹ : SecondCountableTopology α μ : Measure α inst✝ : IsLocallyFiniteMeasure μ s : Set α t : Set ι C : ℝ≥0 r : ι → ℝ c : ι → α B : ι → Set α hB : ∀ a ∈ t, B a ⊆ closedBall (c a) (r a) μB : ∀ a ∈ t, μ (closedBall (c a) (3 * r a)) ≤ ↑C * μ (B a) ht : ∀ a ∈ t, (interior (B a)).Nonempty h't : ∀ a ∈ t, IsClosed (B a) hf : ∀ x ∈ s, ∀ ε > 0, ∃ a ∈ t, r a ≤ ε ∧ c a = x R : α → ℝ hR0 : ∀ (x : α), 0 < R x hR1 : ∀ (x : α), R x ≤ 1 hRμ : ∀ (x : α), μ (closedBall x (20 * R x)) < ⊤ t' : Set ι := {a | a ∈ t ∧ r a ≤ R (c a)} A : ∀ a ∈ t', r a ≤ 1 A' : ∀ a ∈ t', (B a).Nonempty a : ι ha : a ∈ t' ⊢ 0 ≤ r a
exact nonempty_closedBall.1 ((A' a ha).mono (hB a ha.1))
no goals
4466d2fc3e80cb3f
Lagrange.interpolate_eq_sum_interpolate_insert_sdiff
Mathlib/LinearAlgebra/Lagrange.lean
theorem interpolate_eq_sum_interpolate_insert_sdiff (hvt : Set.InjOn v t) (hs : s.Nonempty) (hst : s ⊆ t) : interpolate t v r = ∑ i ∈ s, interpolate (insert i (t \ s)) v r * Lagrange.basis s v i
F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι v r : ι → F hvt : Set.InjOn v ↑t hs✝ : s.Nonempty hst : s ⊆ t i : ι hi : i ∈ s hs : 1 ≤ #s hst' : #s ≤ #t ⊢ #t = 1 + (#t - #s) + (#s - 1)
rw [add_assoc, tsub_add_tsub_cancel hst' hs, ← add_tsub_assoc_of_le (hs.trans hst'), Nat.succ_add_sub_one, zero_add]
no goals
071129da26397277
toIcoMod_apply_left
Mathlib/Algebra/Order/ToIntervalMod.lean
theorem toIcoMod_apply_left (a : α) : toIcoMod hp a a = a
α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a : α ⊢ a = a + 0 • p
simp
no goals
543de7a2df64cb87
EuclideanGeometry.Sphere.oangle_center_eq_two_zsmul_oangle
Mathlib/Geometry/Euclidean/Angle/Sphere.lean
theorem oangle_center_eq_two_zsmul_oangle {s : Sphere P} {p₁ p₂ p₃ : P} (hp₁ : p₁ ∈ s) (hp₂ : p₂ ∈ s) (hp₃ : p₃ ∈ s) (hp₂p₁ : p₂ ≠ p₁) (hp₂p₃ : p₂ ≠ p₃) : ∡ p₁ s.center p₃ = (2 : ℤ) • ∡ p₁ p₂ p₃
V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : InnerProductSpace ℝ V inst✝² : MetricSpace P inst✝¹ : NormedAddTorsor V P hd2 : Fact (finrank ℝ V = 2) inst✝ : Oriented ℝ V (Fin 2) s : Sphere P p₁ p₂ p₃ : P hp₁ : ‖p₁ -ᵥ s.center‖ = s.radius hp₂ : ‖p₂ -ᵥ s.center‖ = s.radius hp₃ : ‖p₃ -ᵥ s.center‖ = s.radius hp₂p₁ : p₂ ≠ p₁ hp₂p₃ : p₂ ≠ p₃ ⊢ ∡ p₁ s.center p₃ = 2 • ∡ p₁ p₂ p₃
rw [oangle, oangle, o.oangle_eq_two_zsmul_oangle_sub_of_norm_eq_real _ _ hp₂ hp₁ hp₃] <;> simp [hp₂p₁, hp₂p₃]
no goals
528367b8f3bfb27f
CategoryTheory.Limits.inr_inr_pushoutRightPushoutInlIso_hom
Mathlib/CategoryTheory/Limits/Shapes/Pullback/Pasting.lean
theorem inr_inr_pushoutRightPushoutInlIso_hom : pushout.inr _ _ ≫ pushout.inr _ _ ≫ (pushoutRightPushoutInlIso f g f').hom = pushout.inr _ _
C : Type u inst✝² : Category.{v, u} C W X Y Z : C f : X ⟶ Y g : X ⟶ Z f' : Y ⟶ W inst✝¹ : HasPushout f g inst✝ : HasPushout f' (pushout.inl f g) ⊢ (pushout.inr f g ≫ pushout.inr f' (pushout.inl f g)) ≫ (pushoutRightPushoutInlIso f g f').hom = pushout.inr (f ≫ f') g
apply IsColimit.comp_coconePointUniqueUpToIso_hom (pasteVertIsPushout rfl _ _) _ WalkingSpan.right
no goals
3bb021acc1f9a6f6
Nat.Prime.pow_inj
Mathlib/Data/Nat/Prime/Int.lean
/-- Two prime powers with positive exponents are equal only when the primes and the exponents are equal. -/ lemma Prime.pow_inj {p q m n : ℕ} (hp : p.Prime) (hq : q.Prime) (h : p ^ (m + 1) = q ^ (n + 1)) : p = q ∧ m = n
p q m n : ℕ hp : Prime p hq : Prime q h : p ^ (m + 1) = q ^ (n + 1) H : p = q ⊢ p = q ∧ m = n
exact ⟨H, succ_inj'.mp <| Nat.pow_right_injective hq.two_le (H ▸ h)⟩
no goals
1ef68e89a4d2ad2f
CategoryTheory.SmallObject.succStruct_prop_le_propArrow
Mathlib/CategoryTheory/SmallObject/IsCardinalForSmallObjectArgument.lean
lemma succStruct_prop_le_propArrow : (succStruct I κ).prop ≤ (propArrow.{w} I).functorCategory (Arrow C)
case mk C : Type u inst✝³ : Category.{v, u} C I : MorphismProperty C κ : Cardinal.{w} inst✝² : Fact κ.IsRegular inst✝¹ : OrderBot κ.ord.toType inst✝ : I.IsCardinalForSmallObjectArgument κ this✝² : LocallySmall.{w, v, u} C this✝¹ : IsSmall.{w, v, u} I this✝ : ∀ (X Y : C) (p : X ⟶ Y), HasColimitsOfShape (Discrete (FunctorObjIndex I.homFamily p)) C this : HasPushouts C X✝ Y✝ : Arrow C ⥤ Arrow C f✝ : X✝ ⟶ Y✝ F : Arrow C ⥤ Arrow C f : Arrow C j : FunctorObjIndex I.homFamily (F.obj f).hom ⊢ ofHoms I.homFamily ((Discrete.natTrans fun X => functorObjLeftFamily I.homFamily (F.obj f).hom X.as).app { as := j })
constructor
no goals
c7ca3759aa559e4f
mem_generatePiSystem_iUnion_elim'
Mathlib/MeasureTheory/PiSystem.lean
theorem mem_generatePiSystem_iUnion_elim' {α β} {g : β → Set (Set α)} {s : Set β} (h_pi : ∀ b ∈ s, IsPiSystem (g b)) (t : Set α) (h_t : t ∈ generatePiSystem (⋃ b ∈ s, g b)) : ∃ (T : Finset β) (f : β → Set α), ↑T ⊆ s ∧ (t = ⋂ b ∈ T, f b) ∧ ∀ b ∈ T, f b ∈ g b
case intro.intro.intro.refine_1.h.mpr α : Type u_3 β : Type u_4 g : β → Set (Set α) s : Set β h_pi : ∀ b ∈ s, IsPiSystem (g b) T : Finset (Subtype s) f : Subtype s → Set α h_t' : ∀ b ∈ T, f b ∈ (g ∘ Subtype.val) b h_t : ⋂ b ∈ T, f b ∈ generatePiSystem (⋃ b ∈ s, g b) this : ⋂ b ∈ T, f b ∈ generatePiSystem (⋃ b, (g ∘ Subtype.val) b) a : α ⊢ a ∈ ⋂ b ∈ Finset.image (fun x => ↑x) T, Function.extend (fun x => ↑x) f (fun x => ∅) b → a ∈ ⋂ b ∈ T, f b
simp (config := { proj := false }) only [Set.mem_iInter, Subtype.forall, Finset.set_biInter_finset_image]
case intro.intro.intro.refine_1.h.mpr α : Type u_3 β : Type u_4 g : β → Set (Set α) s : Set β h_pi : ∀ b ∈ s, IsPiSystem (g b) T : Finset (Subtype s) f : Subtype s → Set α h_t' : ∀ b ∈ T, f b ∈ (g ∘ Subtype.val) b h_t : ⋂ b ∈ T, f b ∈ generatePiSystem (⋃ b ∈ s, g b) this : ⋂ b ∈ T, f b ∈ generatePiSystem (⋃ b, (g ∘ Subtype.val) b) a : α ⊢ (∀ (a_1 : β) (b : a_1 ∈ s), ⟨a_1, b⟩ ∈ T → a ∈ Function.extend (fun x => ↑x) f (fun x => ∅) ↑⟨a_1, b⟩) → ∀ (a_2 : β) (b : s a_2), ⟨a_2, b⟩ ∈ T → a ∈ f ⟨a_2, b⟩
61b8f425d6f37a71
Cardinal.derivFamily_lt_ord_lift
Mathlib/SetTheory/Cardinal/Cofinality.lean
theorem derivFamily_lt_ord_lift {ι : Type u} {f : ι → Ordinal → Ordinal} {c} (hc : IsRegular c) (hι : lift.{v} #ι < c) (hc' : c ≠ ℵ₀) (hf : ∀ i, ∀ b < c.ord, f i b < c.ord) {a} : a < c.ord → derivFamily f a < c.ord
ι : Type u f : ι → Ordinal.{max u v} → Ordinal.{max u v} c : Cardinal.{max u v} hc : c.IsRegular hι : lift.{v, u} #ι < c hc' : c ≠ ℵ₀ hf : ∀ (i : ι), ∀ b < c.ord, f i b < c.ord hω : ℵ₀ < c.ord.cof ⊢ lift.{?u.136517, u} #ι < c.ord.cof
rwa [hc.cof_eq]
no goals
a8993783bfefcfe4
Nat.sub_add_lt_sub
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Nat/Lemmas.lean
theorem sub_add_lt_sub (h₁ : m + k ≤ n) (h₂ : 0 < k) : n - (m + k) < n - m
m k n : Nat h₁ : m + k ≤ n h₂ : 0 < k ⊢ n - (m + k) < n - m
rw [← Nat.sub_sub]
m k n : Nat h₁ : m + k ≤ n h₂ : 0 < k ⊢ n - m - k < n - m
7010e8c373a07d29
Matrix.vec2_add
Mathlib/Data/Matrix/Notation.lean
theorem vec2_add [Add α] (a₀ a₁ b₀ b₁ : α) : ![a₀, a₁] + ![b₀, b₁] = ![a₀ + b₀, a₁ + b₁]
α : Type u inst✝ : Add α a₀ a₁ b₀ b₁ : α ⊢ ![a₀, a₁] + ![b₀, b₁] = ![a₀ + b₀, a₁ + b₁]
rw [cons_add_cons, cons_add_cons, empty_add_empty]
no goals
1843967cad1c041b
PreTilt.isDomain
Mathlib/RingTheory/Perfection.lean
theorem isDomain : IsDomain (PreTilt O p)
K : Type u₁ inst✝⁴ : Field K v : Valuation K ℝ≥0 O : Type u₂ inst✝³ : CommRing O inst✝² : Algebra O K hv : v.Integers O p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Fact ¬IsUnit ↑p hp : Nat.Prime p this : Nontrivial (PreTilt O p) ⊢ IsDomain (PreTilt O p)
haveI : NoZeroDivisors (PreTilt O p) := ⟨fun hfg => by simp_rw [← map_eq_zero hv] at hfg ⊢; contrapose! hfg; rw [Valuation.map_mul] exact mul_ne_zero hfg.1 hfg.2⟩
K : Type u₁ inst✝⁴ : Field K v : Valuation K ℝ≥0 O : Type u₂ inst✝³ : CommRing O inst✝² : Algebra O K hv : v.Integers O p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Fact ¬IsUnit ↑p hp : Nat.Prime p this✝ : Nontrivial (PreTilt O p) this : NoZeroDivisors (PreTilt O p) ⊢ IsDomain (PreTilt O p)
2dffd41f28def1f7
Directed.rel_sequence
Mathlib/Logic/Encodable/Basic.lean
theorem rel_sequence {r : β → β → Prop} {f : α → β} (hf : Directed r f) (a : α) : r (f a) (f (hf.sequence f (encode a + 1)))
α : Type u_1 β : Type u_2 inst✝¹ : Encodable α inst✝ : Inhabited α r : β → β → Prop f : α → β hf : Directed r f a : α ⊢ r (f a) (f (Directed.sequence f hf (encode a + 1)))
simp only [Directed.sequence, add_eq, Nat.add_zero, encodek, and_self]
α : Type u_1 β : Type u_2 inst✝¹ : Encodable α inst✝ : Inhabited α r : β → β → Prop f : α → β hf : Directed r f a : α ⊢ r (f a) (f (Classical.choose ⋯))
b03bb4bc3e2c3e3e
Complex.ofReal_zsmul
Mathlib/Data/Complex/Basic.lean
@[norm_cast] lemma ofReal_zsmul (n : ℤ) (r : ℝ) : ↑(n • r) = n • (r : ℂ)
n : ℤ r : ℝ ⊢ ↑(n • r) = n • ↑r
simp
no goals
47613677c80f8fa6
MeasureTheory.L1.setToL1_add_left
Mathlib/MeasureTheory/Integral/SetToL1.lean
theorem setToL1_add_left (hT : DominatedFinMeasAdditive μ T C) (hT' : DominatedFinMeasAdditive μ T' C') (f : α →₁[μ] E) : setToL1 (hT.add hT') f = setToL1 hT f + setToL1 hT' f
α : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F m : MeasurableSpace α μ : Measure α inst✝ : CompleteSpace F T T' : Set α → E →L[ℝ] F C C' : ℝ hT : DominatedFinMeasAdditive μ T C hT' : DominatedFinMeasAdditive μ T' C' f : ↥(Lp E 1 μ) this : setToL1 ⋯ = setToL1 hT + setToL1 hT' ⊢ (setToL1 ⋯) f = (setToL1 hT) f + (setToL1 hT') f
rw [this, ContinuousLinearMap.add_apply]
no goals
1f9caebaa466b1da
Function.Semiconj.mapsTo_preimage
Mathlib/Data/Set/Function.lean
theorem mapsTo_preimage (h : Semiconj f fa fb) {s t : Set β} (hb : MapsTo fb s t) : MapsTo fa (f ⁻¹' s) (f ⁻¹' t) := fun x hx => by simp only [mem_preimage, h x, hb hx]
α : Type u_1 β : Type u_2 fa : α → α fb : β → β f : α → β h : Semiconj f fa fb s t : Set β hb : MapsTo fb s t x : α hx : x ∈ f ⁻¹' s ⊢ fa x ∈ f ⁻¹' t
simp only [mem_preimage, h x, hb hx]
no goals
44955fef6b6923dd
Nat.Partrec.Code.evaln_mono
Mathlib/Computability/PartrecCode.lean
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n | 0, k₂, c, n, x, _, h => by simp [evaln] at h | k + 1, k₂ + 1, c, n, x, hl, h => by have hl' := Nat.le_of_succ_le_succ hl have : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ }
k k₂ : ℕ c : Code n x : ℕ hl : k + 1 ≤ k₂ + 1 h : x ∈ evaln (k + 1) c n hl' : k ≤ k₂ ⊢ ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left, exists_const, and_imp]
k k₂ : ℕ c : Code n x : ℕ hl : k + 1 ≤ k₂ + 1 h : x ∈ evaln (k + 1) c n hl' : k ≤ k₂ ⊢ ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (o₁ = some x → o₂ = some x) → n ≤ k → o₁ = some x → n ≤ k₂ ∧ o₂ = some x
231a1123011d0046
approxOrderOf.image_pow_subset
Mathlib/NumberTheory/WellApproximable.lean
theorem image_pow_subset (n : ℕ) (hm : 0 < m) : (fun (y : A) => y ^ m) '' approxOrderOf A (n * m) δ ⊆ approxOrderOf A n (m * δ)
case intro.intro A : Type u_1 inst✝ : SeminormedCommGroup A m : ℕ δ : ℝ n : ℕ hm : 0 < m a : A ha : a ∈ approxOrderOf A (n * m) δ ⊢ (fun y => y ^ m) a ∈ approxOrderOf A n (↑m * δ)
obtain ⟨b, hb : orderOf b = n * m, hab : a ∈ ball b δ⟩ := mem_approxOrderOf_iff.mp ha
case intro.intro.intro.intro A : Type u_1 inst✝ : SeminormedCommGroup A m : ℕ δ : ℝ n : ℕ hm : 0 < m a : A ha : a ∈ approxOrderOf A (n * m) δ b : A hb : orderOf b = n * m hab : a ∈ ball b δ ⊢ (fun y => y ^ m) a ∈ approxOrderOf A n (↑m * δ)
b8cbbccee333ecb1
ascPochhammer_eval_neg_eq_descPochhammer
Mathlib/RingTheory/Polynomial/Pochhammer.lean
theorem ascPochhammer_eval_neg_eq_descPochhammer (r : R) : ∀ (k : ℕ), (ascPochhammer R k).eval (-r) = (-1)^k * (descPochhammer R k).eval r | 0 => by rw [ascPochhammer_zero, descPochhammer_zero] simp only [eval_one, pow_zero, mul_one] | (k+1) => by rw [ascPochhammer_succ_right, mul_add, eval_add, eval_mul_X, ← Nat.cast_comm, eval_natCast_mul, Nat.cast_comm, ← mul_add, ascPochhammer_eval_neg_eq_descPochhammer r k, mul_assoc, descPochhammer_succ_right, mul_sub, eval_sub, eval_mul_X, ← Nat.cast_comm, eval_natCast_mul, pow_add, pow_one, mul_assoc ((-1)^k) (-1), mul_sub, neg_one_mul, neg_mul_eq_mul_neg, Nat.cast_comm, sub_eq_add_neg, neg_one_mul, neg_neg, ← mul_add]
R : Type u inst✝ : Ring R r : R k : ℕ ⊢ eval (-r) (ascPochhammer R (k + 1)) = (-1) ^ (k + 1) * eval r (descPochhammer R (k + 1))
rw [ascPochhammer_succ_right, mul_add, eval_add, eval_mul_X, ← Nat.cast_comm, eval_natCast_mul, Nat.cast_comm, ← mul_add, ascPochhammer_eval_neg_eq_descPochhammer r k, mul_assoc, descPochhammer_succ_right, mul_sub, eval_sub, eval_mul_X, ← Nat.cast_comm, eval_natCast_mul, pow_add, pow_one, mul_assoc ((-1)^k) (-1), mul_sub, neg_one_mul, neg_mul_eq_mul_neg, Nat.cast_comm, sub_eq_add_neg, neg_one_mul, neg_neg, ← mul_add]
no goals
91e878a9eb30688b
Submodule.mem_sSup_iff_exists_finset
Mathlib/LinearAlgebra/Finsupp/Span.lean
theorem Submodule.mem_sSup_iff_exists_finset {S : Set (Submodule R M)} {m : M} : m ∈ sSup S ↔ ∃ s : Finset (Submodule R M), ↑s ⊆ S ∧ m ∈ ⨆ i ∈ s, i
case refine_2 R : Type u_1 M : Type u_2 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M S : Set (Submodule R M) m : M x✝ : ∃ s, m ∈ ⨆ i ∈ s, ↑i s : Finset (Subtype (Membership.mem S)) hs : m ∈ ⨆ i ∈ s, ↑i ⊢ m ∈ ⨆ i, ⨆ (hi : i ∈ S), ⨆ (_ : ⟨i, hi⟩ ∈ s), i
rwa [iSup_subtype']
no goals
4a53431e2aac6cd1
Polynomial.isUnitTrinomial_iff
Mathlib/Algebra/Polynomial/UnitTrinomial.lean
theorem isUnitTrinomial_iff : p.IsUnitTrinomial ↔ #p.support = 3 ∧ ∀ k ∈ p.support, IsUnit (p.coeff k)
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro k m n : ℕ hkm : k < m hmn : m < n x y z : ℤ hp : #{k, m, n} = 3 ∧ ∀ k_1 ∈ {k, m, n}, IsUnit ((C x * X ^ k + C y * X ^ m + C z * X ^ n).coeff k_1) hx : IsUnit ((x + y * if k = m then 1 else 0) + z * if k = n then 1 else 0) hy : IsUnit ((x * if m = k then 1 else 0) + y + z * if m = n then 1 else 0) hz : IsUnit (((x * if n = k then 1 else 0) + y * if n = m then 1 else 0) + z) ⊢ (C x * X ^ k + C y * X ^ m + C z * X ^ n).IsUnitTrinomial
rw [if_neg hkm.ne, if_neg (hkm.trans hmn).ne] at hx
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro k m n : ℕ hkm : k < m hmn : m < n x y z : ℤ hp : #{k, m, n} = 3 ∧ ∀ k_1 ∈ {k, m, n}, IsUnit ((C x * X ^ k + C y * X ^ m + C z * X ^ n).coeff k_1) hx : IsUnit (x + y * 0 + z * 0) hy : IsUnit ((x * if m = k then 1 else 0) + y + z * if m = n then 1 else 0) hz : IsUnit (((x * if n = k then 1 else 0) + y * if n = m then 1 else 0) + z) ⊢ (C x * X ^ k + C y * X ^ m + C z * X ^ n).IsUnitTrinomial
649352ed7b796161
Nat.le_div_iff_mul_le
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Nat/Div/Basic.lean
theorem le_div_iff_mul_le (k0 : 0 < k) : x ≤ y / k ↔ x * k ≤ y
case ind.zero y k : Nat h : 0 < k ∧ k ≤ y IH : ∀ {x : Nat}, 0 < k → (x ≤ (y - k) / k ↔ x * k ≤ y - k) k0 : 0 < k ⊢ 0 ≤ (y - k) / k + 1 ↔ 0 * k ≤ y
simp [zero_le]
no goals
50e411e07a3e340f