name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
CategoryTheory.Subgroupoid.galoisConnection_map_comap
Mathlib/CategoryTheory/Groupoid/Subgroupoid.lean
theorem galoisConnection_map_comap (hφ : Function.Injective φ.obj) : GaloisConnection (map φ hφ) (comap φ)
case mpr.im C : Type u inst✝¹ : Groupoid C D : Type u_1 inst✝ : Groupoid D φ : C ⥤ D hφ : Function.Injective φ.obj S : Subgroupoid C T : Subgroupoid D h : ∀ {c d : C}, S.arrows c d ⊆ (comap φ T).arrows c d c d : D c✝ d✝ : C a : c✝ ⟶ d✝ gφS : a ∈ S.arrows c✝ d✝ ⊢ φ.map a ∈ T.arrows (φ.obj c✝) (φ.obj d✝)
exact h gφS
no goals
16163661f1ed9a8a
PFunctor.liftr_iff
Mathlib/Data/PFunctor/Univariate/Basic.lean
theorem liftr_iff {α : Type u} (r : α → α → Prop) (x y : P α) : Liftr r x y ↔ ∃ a f₀ f₁, x = ⟨a, f₀⟩ ∧ y = ⟨a, f₁⟩ ∧ ∀ i, r (f₀ i) (f₁ i)
case h.left P : PFunctor.{u} α : Type u r : α → α → Prop x y : ↑P α a : P.A f₀ f₁ : P.B a → α xeq : x = ⟨a, f₀⟩ yeq : y = ⟨a, f₁⟩ h : ∀ (i : P.B a), r (f₀ i) (f₁ i) ⊢ (fun t => (↑t).1) <$> ⟨a, fun i => ⟨(f₀ i, f₁ i), ⋯⟩⟩ = x
rw [xeq]
case h.left P : PFunctor.{u} α : Type u r : α → α → Prop x y : ↑P α a : P.A f₀ f₁ : P.B a → α xeq : x = ⟨a, f₀⟩ yeq : y = ⟨a, f₁⟩ h : ∀ (i : P.B a), r (f₀ i) (f₁ i) ⊢ (fun t => (↑t).1) <$> ⟨a, fun i => ⟨(f₀ i, f₁ i), ⋯⟩⟩ = ⟨a, f₀⟩
50cdcbaa1a8a2d3e
StieltjesFunction.ae_hasDerivAt
Mathlib/Analysis/Calculus/Monotone.lean
theorem StieltjesFunction.ae_hasDerivAt (f : StieltjesFunction) : ∀ᵐ x, HasDerivAt f (rnDeriv f.measure volume x).toReal x
case h f : StieltjesFunction x : ℝ hx : Tendsto (fun a => f.measure a / volume a) ((vitaliFamily volume 1).filterAt x) (𝓝 (f.measure.rnDeriv volume x)) h'x : f.measure.rnDeriv volume x < ⊤ h''x : ¬leftLim (↑f) x ≠ ↑f x y : ℝ hxy : x < y ⊢ (ENNReal.toReal ∘ (fun a => f.measure a / volume a) ∘ fun y => Icc x y) y = (↑f y - ↑f x) / (y - x)
simp only [comp_apply, StieltjesFunction.measure_Icc, Real.volume_Icc, Classical.not_not.1 h''x]
case h f : StieltjesFunction x : ℝ hx : Tendsto (fun a => f.measure a / volume a) ((vitaliFamily volume 1).filterAt x) (𝓝 (f.measure.rnDeriv volume x)) h'x : f.measure.rnDeriv volume x < ⊤ h''x : ¬leftLim (↑f) x ≠ ↑f x y : ℝ hxy : x < y ⊢ (ENNReal.ofReal (↑f y - ↑f x) / ENNReal.ofReal (y - x)).toReal = (↑f y - ↑f x) / (y - x)
5dba92ed00d1be0b
LawfulFunctor.map_inj_right_of_nonempty
Mathlib/.lake/packages/batteries/Batteries/Control/Monad.lean
theorem _root_.LawfulFunctor.map_inj_right_of_nonempty [Functor f] [LawfulFunctor f] [Nonempty α] {g : α → β} (h : ∀ {x y : α}, g x = g y → x = y) {x y : f α} : g <$> x = g <$> y ↔ x = y
case mp f : Type u_1 → Type u_2 α β : Type u_1 inst✝² : Functor f inst✝¹ : LawfulFunctor f inst✝ : Nonempty α g : α → β h : ∀ {x y : α}, g x = g y → x = y x y : f α ⊢ g <$> x = g <$> y → x = y
let g' a := if h : ∃ b, g b = a then h.choose else Classical.ofNonempty
case mp f : Type u_1 → Type u_2 α β : Type u_1 inst✝² : Functor f inst✝¹ : LawfulFunctor f inst✝ : Nonempty α g : α → β h : ∀ {x y : α}, g x = g y → x = y x y : f α g' : β → α := fun a => if h : ∃ b, g b = a then h.choose else Classical.ofNonempty ⊢ g <$> x = g <$> y → x = y
9ff9346398dc10b4
HasFPowerSeriesAt.locally_ne_zero
Mathlib/Analysis/Analytic/IsolatedZeros.lean
theorem locally_ne_zero (hp : HasFPowerSeriesAt f p z₀) (h : p ≠ 0) : ∀ᶠ z in 𝓝[≠] z₀, f z ≠ 0
𝕜 : Type u_1 inst✝² : NontriviallyNormedField 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E p : FormalMultilinearSeries 𝕜 𝕜 E f : 𝕜 → E z₀ : 𝕜 hp : HasFPowerSeriesAt f p z₀ h : p ≠ 0 h2 : ContinuousAt ((swap dslope z₀)^[p.order] f) z₀ ⊢ ∀ᶠ (x : 𝕜) in 𝓝 z₀, x ∈ {z₀}ᶜ → f x ≠ 0
have h3 := h2.eventually_ne (iterate_dslope_fslope_ne_zero hp h)
𝕜 : Type u_1 inst✝² : NontriviallyNormedField 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E p : FormalMultilinearSeries 𝕜 𝕜 E f : 𝕜 → E z₀ : 𝕜 hp : HasFPowerSeriesAt f p z₀ h : p ≠ 0 h2 : ContinuousAt ((swap dslope z₀)^[p.order] f) z₀ h3 : ∀ᶠ (z : 𝕜) in 𝓝 z₀, (swap dslope z₀)^[p.order] f z ≠ 0 ⊢ ∀ᶠ (x : 𝕜) in 𝓝 z₀, x ∈ {z₀}ᶜ → f x ≠ 0
225b3fe7c92728de
AlgebraicIndependent.aeval_comp_mvPolynomialOptionEquivPolynomialAdjoin
Mathlib/RingTheory/AlgebraicIndependent/Basic.lean
theorem AlgebraicIndependent.aeval_comp_mvPolynomialOptionEquivPolynomialAdjoin (hx : AlgebraicIndependent R x) (a : A) : RingHom.comp (↑(Polynomial.aeval a : Polynomial (adjoin R (Set.range x)) →ₐ[_] A) : Polynomial (adjoin R (Set.range x)) →+* A) hx.mvPolynomialOptionEquivPolynomialAdjoin.toRingHom = ↑(MvPolynomial.aeval fun o : Option ι => o.elim a x : MvPolynomial (Option ι) R →ₐ[R] A)
case refine_1 ι : Type u_1 R : Type u_3 A : Type u_5 x : ι → A inst✝² : CommRing R inst✝¹ : CommRing A inst✝ : Algebra R A hx : AlgebraicIndependent R x a : A r : R ⊢ (Polynomial.aeval a) (hx.mvPolynomialOptionEquivPolynomialAdjoin (C r)) = (aeval fun o => o.elim a x) (C r)
rw [hx.mvPolynomialOptionEquivPolynomialAdjoin_C, aeval_C, Polynomial.aeval_C, IsScalarTower.algebraMap_apply R (adjoin R (range x)) A]
no goals
ba3a3173da6809fd
MeasureTheory.AEStronglyMeasurable.integrable_truncation
Mathlib/Probability/StrongLaw.lean
theorem _root_.MeasureTheory.AEStronglyMeasurable.integrable_truncation [IsFiniteMeasure μ] (hf : AEStronglyMeasurable f μ) {A : ℝ} : Integrable (truncation f A) μ
α : Type u_1 m : MeasurableSpace α μ : Measure α f : α → ℝ inst✝ : IsFiniteMeasure μ hf : AEStronglyMeasurable f μ A : ℝ ⊢ Integrable (truncation f A) μ
rw [← memLp_one_iff_integrable]
α : Type u_1 m : MeasurableSpace α μ : Measure α f : α → ℝ inst✝ : IsFiniteMeasure μ hf : AEStronglyMeasurable f μ A : ℝ ⊢ MemLp (truncation f A) 1 μ
cc0b527a01dab8e7
nhds_list
Mathlib/Topology/List.lean
theorem nhds_list (as : List α) : 𝓝 as = traverse 𝓝 as
case refine_2.intro.intro.intro.intro α : Type u_1 inst✝ : TopologicalSpace α l : List α s : Set (List α) u✝ : List (Set α) hu✝ : List.Forall₂ (fun b s => s ∈ 𝓝 b) l u✝ hus : sequence u✝ ⊆ s v : List (Set α) hv : List.Forall₂ (fun a s => IsOpen s ∧ a ∈ s) l v hvs : sequence v ⊆ s this : sequence v ∈ traverse 𝓝 l u : List α hu : u ∈ sequence v ⊢ u ∈ {x | (fun y => s ∈ traverse 𝓝 y) x}
have hu := (List.mem_traverse _ _).1 hu
case refine_2.intro.intro.intro.intro α : Type u_1 inst✝ : TopologicalSpace α l : List α s : Set (List α) u✝ : List (Set α) hu✝¹ : List.Forall₂ (fun b s => s ∈ 𝓝 b) l u✝ hus : sequence u✝ ⊆ s v : List (Set α) hv : List.Forall₂ (fun a s => IsOpen s ∧ a ∈ s) l v hvs : sequence v ⊆ s this : sequence v ∈ traverse 𝓝 l u : List α hu✝ : u ∈ sequence v hu : List.Forall₂ (fun b a => b ∈ id a) u v ⊢ u ∈ {x | (fun y => s ∈ traverse 𝓝 y) x}
8c67666fd5977816
Primrec.vector_get
Mathlib/Computability/Primrec.lean
theorem vector_get {n} : Primrec₂ (@List.Vector.get α n) := option_some_iff.1 <| (list_get?.comp (vector_toList.comp fst) (fin_val.comp snd)).of_eq fun a => by rw [Vector.get_eq_get_toList, ← List.get?_eq_get] rfl
α : Type u_1 inst✝ : Primcodable α n : ℕ a : List.Vector α n × Fin n ⊢ a.1.toList.get? ↑a.2 = some (a.1.get a.2)
rw [Vector.get_eq_get_toList, ← List.get?_eq_get]
α : Type u_1 inst✝ : Primcodable α n : ℕ a : List.Vector α n × Fin n ⊢ a.1.toList.get? ↑a.2 = a.1.toList.get? ↑(Fin.cast ⋯ a.2)
9cffdc77f2d561e0
circleIntegrable_sub_zpow_iff
Mathlib/MeasureTheory/Integral/CircleIntegral.lean
theorem circleIntegrable_sub_zpow_iff {c w : ℂ} {R : ℝ} {n : ℤ} : CircleIntegrable (fun z => (z - w) ^ n) c R ↔ R = 0 ∨ 0 ≤ n ∨ w ∉ sphere c |R|
case mp.intro.intro.intro.intro c : ℂ R : ℝ n : ℤ hR : R ≠ 0 hn : n < 0 θ : ℝ hθ : θ ∈ Ioc 0 (2 * π) ⊢ ¬IntervalIntegrable (fun θ_1 => (circleMap 0 R θ_1 * I) • (circleMap c R θ_1 - circleMap c R θ) ^ n) volume 0 (2 * π)
replace hθ : θ ∈ [[0, 2 * π]] := Icc_subset_uIcc (Ioc_subset_Icc_self hθ)
case mp.intro.intro.intro.intro c : ℂ R : ℝ n : ℤ hR : R ≠ 0 hn : n < 0 θ : ℝ hθ : θ ∈ [[0, 2 * π]] ⊢ ¬IntervalIntegrable (fun θ_1 => (circleMap 0 R θ_1 * I) • (circleMap c R θ_1 - circleMap c R θ) ^ n) volume 0 (2 * π)
8d16963f19b22485
OreLocalization.smul_add
Mathlib/RingTheory/OreLocalization/Basic.lean
theorem smul_add (z : R[S⁻¹]) (x y : X[S⁻¹]) : z • (x + y) = z • x + z • y
case c.c.c.mk.mk.intro R : Type u_1 inst✝³ : Monoid R S : Submonoid R inst✝² : OreSet S X : Type u_2 inst✝¹ : AddMonoid X inst✝ : DistribMulAction R X r₁ : X s₁ : ↥S r₂ : X s₂ : ↥S r₃ : R s₃ : ↥S ra : R sa : ↥S ha : ↑(sa * s₁) = ra * ↑s₂ ⊢ oreNum r₃ (sa * s₁) • (sa • r₁ + ra • r₂) /ₒ (oreDenom r₃ (sa * s₁) * s₃) = oreNum r₃ (sa * s₁) • sa • r₁ /ₒ (oreDenom r₃ (sa * s₁) * s₃) + (r₃ /ₒ s₃) • (ra • r₂ /ₒ (sa * s₁))
rw [oreDiv_smul_oreDiv]
case c.c.c.mk.mk.intro R : Type u_1 inst✝³ : Monoid R S : Submonoid R inst✝² : OreSet S X : Type u_2 inst✝¹ : AddMonoid X inst✝ : DistribMulAction R X r₁ : X s₁ : ↥S r₂ : X s₂ : ↥S r₃ : R s₃ : ↥S ra : R sa : ↥S ha : ↑(sa * s₁) = ra * ↑s₂ ⊢ oreNum r₃ (sa * s₁) • (sa • r₁ + ra • r₂) /ₒ (oreDenom r₃ (sa * s₁) * s₃) = oreNum r₃ (sa * s₁) • sa • r₁ /ₒ (oreDenom r₃ (sa * s₁) * s₃) + oreNum r₃ (sa * s₁) • ra • r₂ /ₒ (oreDenom r₃ (sa * s₁) * s₃)
6684be5195a12015
HasProd.of_nat_of_neg_add_one
Mathlib/Topology/Algebra/InfiniteSum/NatInt.lean
@[to_additive HasSum.of_nat_of_neg_add_one] lemma HasProd.of_nat_of_neg_add_one {f : ℤ → M} (hf₁ : HasProd (fun n : ℕ ↦ f n) m) (hf₂ : HasProd (fun n : ℕ ↦ f (-(n + 1))) m') : HasProd f (m * m')
case disjoint M : Type u_1 inst✝² : CommMonoid M inst✝¹ : TopologicalSpace M m m' : M inst✝ : ContinuousMul M f : ℤ → M hf₁ : HasProd (fun n => f ↑n) m hf₂ : HasProd (fun n => f (-(↑n + 1))) m' hi₂ : Injective Int.negSucc ⊢ Disjoint (Set.range Nat.cast) (Set.range Int.negSucc)
rw [disjoint_iff_inf_le]
case disjoint M : Type u_1 inst✝² : CommMonoid M inst✝¹ : TopologicalSpace M m m' : M inst✝ : ContinuousMul M f : ℤ → M hf₁ : HasProd (fun n => f ↑n) m hf₂ : HasProd (fun n => f (-(↑n + 1))) m' hi₂ : Injective Int.negSucc ⊢ Set.range Nat.cast ⊓ Set.range Int.negSucc ≤ ⊥
edc6df3233be9c8f
MeasureTheory.tendstoInMeasure_of_tendsto_ae_of_stronglyMeasurable
Mathlib/MeasureTheory/Function/ConvergenceInMeasure.lean
theorem tendstoInMeasure_of_tendsto_ae_of_stronglyMeasurable [IsFiniteMeasure μ] (hf : ∀ n, StronglyMeasurable (f n)) (hg : StronglyMeasurable g) (hfg : ∀ᵐ x ∂μ, Tendsto (fun n => f n x) atTop (𝓝 (g x))) : TendstoInMeasure μ f atTop g
case neg.intro.intro.intro.intro α : Type u_1 E : Type u_4 m : MeasurableSpace α μ : Measure α inst✝¹ : MetricSpace E f : ℕ → α → E g : α → E inst✝ : IsFiniteMeasure μ hf : ∀ (n : ℕ), StronglyMeasurable (f n) hg : StronglyMeasurable g hfg : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => f n x) atTop (𝓝 (g x)) ε : ℝ hε : 0 < ε δ : ℝ≥0 hδ : 0 < ↑δ t : Set α left✝ : MeasurableSet t ht : μ t ≤ ↑δ hunif : ∀ ε > 0, ∀ᶠ (n : ℕ) in atTop, ∀ x ∈ tᶜ, dist (g x) (f n x) < ε ⊢ ∃ N, ∀ n ≥ N, μ {x | ε ≤ dist (f n x) (g x)} ≤ ↑δ
obtain ⟨N, hN⟩ := eventually_atTop.1 (hunif ε hε)
case neg.intro.intro.intro.intro.intro α : Type u_1 E : Type u_4 m : MeasurableSpace α μ : Measure α inst✝¹ : MetricSpace E f : ℕ → α → E g : α → E inst✝ : IsFiniteMeasure μ hf : ∀ (n : ℕ), StronglyMeasurable (f n) hg : StronglyMeasurable g hfg : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => f n x) atTop (𝓝 (g x)) ε : ℝ hε : 0 < ε δ : ℝ≥0 hδ : 0 < ↑δ t : Set α left✝ : MeasurableSet t ht : μ t ≤ ↑δ hunif : ∀ ε > 0, ∀ᶠ (n : ℕ) in atTop, ∀ x ∈ tᶜ, dist (g x) (f n x) < ε N : ℕ hN : ∀ b ≥ N, ∀ x ∈ tᶜ, dist (g x) (f b x) < ε ⊢ ∃ N, ∀ n ≥ N, μ {x | ε ≤ dist (f n x) (g x)} ≤ ↑δ
6928bb0aed59df15
Cardinal.add_lt_of_lt
Mathlib/SetTheory/Cardinal/Arithmetic.lean
theorem add_lt_of_lt {a b c : Cardinal} (hc : ℵ₀ ≤ c) (h1 : a < c) (h2 : b < c) : a + b < c := (add_le_add (le_max_left a b) (le_max_right a b)).trans_lt <| (lt_or_le (max a b) ℵ₀).elim (fun h => (add_lt_aleph0 h h).trans_le hc) fun h => by rw [add_eq_self h]; exact max_lt h1 h2
a b c : Cardinal.{u_1} hc : ℵ₀ ≤ c h1 : a < c h2 : b < c h : ℵ₀ ≤ a ⊔ b ⊢ a ⊔ b + a ⊔ b < c
rw [add_eq_self h]
a b c : Cardinal.{u_1} hc : ℵ₀ ≤ c h1 : a < c h2 : b < c h : ℵ₀ ≤ a ⊔ b ⊢ a ⊔ b < c
9be722ee8004ffbc
MeasureTheory.tendsto_of_integral_tendsto_of_monotone
Mathlib/MeasureTheory/Integral/Bochner.lean
/-- If a monotone sequence of functions has an upper bound and the sequence of integrals of these functions tends to the integral of the upper bound, then the sequence of functions converges almost everywhere to the upper bound. -/ lemma tendsto_of_integral_tendsto_of_monotone {μ : Measure α} {f : ℕ → α → ℝ} {F : α → ℝ} (hf_int : ∀ n, Integrable (f n) μ) (hF_int : Integrable F μ) (hf_tendsto : Tendsto (fun i ↦ ∫ a, f i a ∂μ) atTop (𝓝 (∫ a, F a ∂μ))) (hf_mono : ∀ᵐ a ∂μ, Monotone (fun i ↦ f i a)) (hf_bound : ∀ᵐ a ∂μ, ∀ i, f i a ≤ F a) : ∀ᵐ a ∂μ, Tendsto (fun i ↦ f i a) atTop (𝓝 (F a))
α : Type u_1 m : MeasurableSpace α μ : Measure α f : ℕ → α → ℝ F : α → ℝ hf_int : ∀ (n : ℕ), Integrable (f n) μ hF_int : Integrable F μ hf_tendsto : Tendsto (fun i => ∫ (a : α), f i a ∂μ) atTop (𝓝 (∫ (a : α), F a ∂μ)) hf_mono : ∀ᵐ (a : α) ∂μ, Monotone fun i => f i a hf_bound : ∀ᵐ (a : α) ∂μ, ∀ (i : ℕ), f i a ≤ F a f' : ℕ → α → ℝ≥0∞ := fun n a => ENNReal.ofReal (f n a - f 0 a) F' : α → ℝ≥0∞ := fun a => ENNReal.ofReal (F a - f 0 a) hf'_int_eq : ∀ (i : ℕ), ∫⁻ (a : α), f' i a ∂μ = ENNReal.ofReal (∫ (a : α), f i a ∂μ - ∫ (a : α), f 0 a ∂μ) ⊢ ∫⁻ (a : α), F' a ∂μ = ENNReal.ofReal (∫ (a : α), F a ∂μ - ∫ (a : α), f 0 a ∂μ)
unfold F'
α : Type u_1 m : MeasurableSpace α μ : Measure α f : ℕ → α → ℝ F : α → ℝ hf_int : ∀ (n : ℕ), Integrable (f n) μ hF_int : Integrable F μ hf_tendsto : Tendsto (fun i => ∫ (a : α), f i a ∂μ) atTop (𝓝 (∫ (a : α), F a ∂μ)) hf_mono : ∀ᵐ (a : α) ∂μ, Monotone fun i => f i a hf_bound : ∀ᵐ (a : α) ∂μ, ∀ (i : ℕ), f i a ≤ F a f' : ℕ → α → ℝ≥0∞ := fun n a => ENNReal.ofReal (f n a - f 0 a) F' : α → ℝ≥0∞ := fun a => ENNReal.ofReal (F a - f 0 a) hf'_int_eq : ∀ (i : ℕ), ∫⁻ (a : α), f' i a ∂μ = ENNReal.ofReal (∫ (a : α), f i a ∂μ - ∫ (a : α), f 0 a ∂μ) ⊢ ∫⁻ (a : α), ENNReal.ofReal (F a - f 0 a) ∂μ = ENNReal.ofReal (∫ (a : α), F a ∂μ - ∫ (a : α), f 0 a ∂μ)
a54f15f3a6cf0f39
Equiv.Perm.alternatingGroup_le_of_index_le_two
Mathlib/GroupTheory/SpecificGroups/Alternating.lean
theorem alternatingGroup_le_of_index_le_two {G : Subgroup (Equiv.Perm α)} (hG : G.index ≤ 2) : alternatingGroup α ≤ G
case inr.inl α : Type u_1 inst✝¹ : Fintype α inst✝ : DecidableEq α G : Subgroup (Perm α) hG : G.index ≤ 2 h✝ : G.index > 0 h : G.index = Nat.succ 0 ⊢ alternatingGroup α ≤ G
exact index_eq_one.mp h ▸ le_top
no goals
c86d5a49b767e282
Nat.preimage_Ioc
Mathlib/Algebra/Order/Floor.lean
theorem preimage_Ioc {a b : α} (ha : 0 ≤ a) (hb : 0 ≤ b) : (Nat.cast : ℕ → α) ⁻¹' Set.Ioc a b = Set.Ioc ⌊a⌋₊ ⌊b⌋₊
α : Type u_2 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a b : α ha : 0 ≤ a hb : 0 ≤ b ⊢ Nat.cast ⁻¹' Ioc a b = Ioc ⌊a⌋₊ ⌊b⌋₊
ext
case h α : Type u_2 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a b : α ha : 0 ≤ a hb : 0 ≤ b x✝ : ℕ ⊢ x✝ ∈ Nat.cast ⁻¹' Ioc a b ↔ x✝ ∈ Ioc ⌊a⌋₊ ⌊b⌋₊
d1f291a40be12756
EMetric.hausdorffEdist_triangle
Mathlib/Topology/MetricSpace/HausdorffDistance.lean
theorem hausdorffEdist_triangle : hausdorffEdist s u ≤ hausdorffEdist s t + hausdorffEdist t u
α : Type u inst✝ : PseudoEMetricSpace α s t u : Set α ⊢ (⨆ x ∈ s, infEdist x u) ⊔ ⨆ y ∈ u, infEdist y s ≤ hausdorffEdist s t + hausdorffEdist t u
simp only [sup_le_iff, iSup_le_iff]
α : Type u inst✝ : PseudoEMetricSpace α s t u : Set α ⊢ (∀ i ∈ s, infEdist i u ≤ hausdorffEdist s t + hausdorffEdist t u) ∧ ∀ i ∈ u, infEdist i s ≤ hausdorffEdist s t + hausdorffEdist t u
91d661feb399f899
LieAlgebra.IsSemisimple.finitelyAtomistic
Mathlib/Algebra/Lie/Semisimple/Basic.lean
/-- In a semisimple Lie algebra, Lie ideals that are contained in the supremum of a finite collection of atoms are themselves the supremum of a finite subcollection of those atoms. By a compactness argument, this statement can be extended to arbitrary sets of atoms. See `atomistic`. The proof is by induction on the finite set of atoms. -/ private lemma finitelyAtomistic : ∀ s : Finset (LieIdeal R L), ↑s ⊆ {I : LieIdeal R L | IsAtom I} → ∀ I : LieIdeal R L, I ≤ s.sup id → ∃ t ⊆ s, I = t.sup id
case inr.intro.intro.intro.intro.intro.intro.left.a.a R : Type u_1 L : Type u_2 inst✝³ : CommRing R inst✝² : LieRing L inst✝¹ : LieAlgebra R L inst✝ : IsSemisimple R L s : Finset (LieIdeal R L) hs : ↑s ⊆ {I | IsAtom I} I : LieIdeal R L hI✝ : I ≤ s.sup id S : Set (LieIdeal R L) := {I | IsAtom I} hI : I < s.sup id J : LieIdeal R L hJs : J ∈ s hJI : ¬J ≤ I s' : Finset (LieIdeal R L) := s.erase J hs' : s' ⊂ s hs'S : ↑s' ⊆ S K : LieIdeal R L := s'.sup id y : L hy : y ∈ id J z : L hz : z ∈ K hx : y + z ∈ I j : ↥J ⊢ ⁅↑j, z⁆ ∈ ⁅J, sSup ↑s'⁆
apply LieSubmodule.lie_mem_lie j.2
case inr.intro.intro.intro.intro.intro.intro.left.a.a R : Type u_1 L : Type u_2 inst✝³ : CommRing R inst✝² : LieRing L inst✝¹ : LieAlgebra R L inst✝ : IsSemisimple R L s : Finset (LieIdeal R L) hs : ↑s ⊆ {I | IsAtom I} I : LieIdeal R L hI✝ : I ≤ s.sup id S : Set (LieIdeal R L) := {I | IsAtom I} hI : I < s.sup id J : LieIdeal R L hJs : J ∈ s hJI : ¬J ≤ I s' : Finset (LieIdeal R L) := s.erase J hs' : s' ⊂ s hs'S : ↑s' ⊆ S K : LieIdeal R L := s'.sup id y : L hy : y ∈ id J z : L hz : z ∈ K hx : y + z ∈ I j : ↥J ⊢ z ∈ sSup ↑s'
9feaa310a91f7482
LaurentPolynomial.smeval_zero
Mathlib/Algebra/Polynomial/Laurent.lean
theorem smeval_zero : (0 : R[T;T⁻¹]).smeval x = (0 : S)
R : Type u_1 S : Type u_2 inst✝³ : Semiring R inst✝² : AddCommMonoid S inst✝¹ : SMulWithZero R S inst✝ : Monoid S x : Sˣ ⊢ smeval 0 x = 0
simp only [smeval_eq_sum, Finsupp.sum_zero_index]
no goals
117a0a2d2c710f52
FormalMultilinearSeries.ofScalars_series_injective
Mathlib/Analysis/Analytic/OfScalars.lean
theorem ofScalars_series_injective [Nontrivial E] : Function.Injective (ofScalars E (𝕜 := 𝕜))
𝕜 : Type u_1 E : Type u_2 inst✝⁵ : Field 𝕜 inst✝⁴ : Ring E inst✝³ : Algebra 𝕜 E inst✝² : TopologicalSpace E inst✝¹ : IsTopologicalRing E inst✝ : Nontrivial E a₁✝ a₂✝ : ℕ → 𝕜 h : ¬a₁✝ = a₂✝ ⊢ ¬ofScalars E a₁✝ = ofScalars E a₂✝
simp_rw [FormalMultilinearSeries.ext_iff, ofScalars, ContinuousMultilinearMap.ext_iff, ContinuousMultilinearMap.smul_apply]
𝕜 : Type u_1 E : Type u_2 inst✝⁵ : Field 𝕜 inst✝⁴ : Ring E inst✝³ : Algebra 𝕜 E inst✝² : TopologicalSpace E inst✝¹ : IsTopologicalRing E inst✝ : Nontrivial E a₁✝ a₂✝ : ℕ → 𝕜 h : ¬a₁✝ = a₂✝ ⊢ ¬∀ (n : ℕ) (x : Fin n → E), a₁✝ n • (ContinuousMultilinearMap.mkPiAlgebraFin 𝕜 n E) x = a₂✝ n • (ContinuousMultilinearMap.mkPiAlgebraFin 𝕜 n E) x
006f2d7f0b972d3b
DirichletCharacter.summable_neg_log_one_sub_mul_prime_cpow
Mathlib/NumberTheory/LSeries/Nonvanishing.lean
/-- The logarithms of the Euler factors of a Dirichlet L-series form a summable sequence. -/ lemma summable_neg_log_one_sub_mul_prime_cpow {s : ℂ} (hs : 1 < s.re) : Summable fun p : Nat.Primes ↦ -log (1 - χ p * (p : ℂ) ^ (-s))
N : ℕ χ : DirichletCharacter ℂ N s : ℂ hs : 1 < s.re p : Nat.Primes ⊢ ‖χ ↑↑p * ↑↑p ^ (-s)‖ ≤ ↑↑p ^ (-s).re
simpa only [norm_mul, norm_natCast_cpow_of_re_ne_zero _ <| re_neg_ne_zero_of_one_lt_re hs] using mul_le_of_le_one_left (by positivity) (χ.norm_le_one _)
no goals
c65e3b63625e4ce9
Polynomial.natDegree_add_le_iff_left
Mathlib/Algebra/Polynomial/Degree/Lemmas.lean
theorem natDegree_add_le_iff_left {n : ℕ} (p q : R[X]) (qn : q.natDegree ≤ n) : (p + q).natDegree ≤ n ↔ p.natDegree ≤ n
R : Type u inst✝ : Semiring R n : ℕ p q : R[X] qn : q.natDegree ≤ n ⊢ (p + q).natDegree ≤ n ↔ p.natDegree ≤ n
refine ⟨fun h => ?_, fun h => natDegree_add_le_of_degree_le h qn⟩
R : Type u inst✝ : Semiring R n : ℕ p q : R[X] qn : q.natDegree ≤ n h : (p + q).natDegree ≤ n ⊢ p.natDegree ≤ n
581fd3e77b8887b0
AlgebraicGeometry.stalkwise_isLocalAtSource_of_respectsIso
Mathlib/AlgebraicGeometry/Morphisms/Constructors.lean
/-- If `P` respects isos, then `stalkwise P` is local at the source. -/ lemma stalkwise_isLocalAtSource_of_respectsIso (hP : RingHom.RespectsIso P) : IsLocalAtSource (stalkwise P)
P : {R S : Type u} → [inst : CommRing R] → [inst_1 : CommRing S] → (R →+* S) → Prop hP : RingHom.RespectsIso fun {R S} [CommRing R] [CommRing S] => P this : (stalkwise fun {R S} [CommRing R] [CommRing S] => P).RespectsIso := stalkwise_respectsIso hP X Y : Scheme f : X ⟶ Y ι : Type u U : ι → X.Opens hU : iSup U = ⊤ hf : ∀ (i : ι), stalkwise (fun {R S} [CommRing R] [CommRing S] => P) ((U i).ι ≫ f) x : ↑↑X.toPresheafedSpace ⊢ x ∈ iSup U
rw [hU]
P : {R S : Type u} → [inst : CommRing R] → [inst_1 : CommRing S] → (R →+* S) → Prop hP : RingHom.RespectsIso fun {R S} [CommRing R] [CommRing S] => P this : (stalkwise fun {R S} [CommRing R] [CommRing S] => P).RespectsIso := stalkwise_respectsIso hP X Y : Scheme f : X ⟶ Y ι : Type u U : ι → X.Opens hU : iSup U = ⊤ hf : ∀ (i : ι), stalkwise (fun {R S} [CommRing R] [CommRing S] => P) ((U i).ι ≫ f) x : ↑↑X.toPresheafedSpace ⊢ x ∈ ⊤
6976c8cc8afa0527
exists_isIntegralCurve_of_isIntegralCurveOn
Mathlib/Geometry/Manifold/IntegralCurve/UniformTime.lean
/-- If there exists `ε > 0` such that the local integral curve at each point `x : M` is defined at least on an open interval `Ioo (-ε) ε`, then every point on `M` has a global integral curve passing through it. See Lemma 9.15, [J.M. Lee (2012)][lee2012]. -/ lemma exists_isIntegralCurve_of_isIntegralCurveOn [BoundarylessManifold I M] {v : (x : M) → TangentSpace I x} (hv : ContMDiff I I.tangent 1 (fun x ↦ (⟨x, v x⟩ : TangentBundle I M))) {ε : ℝ} (hε : 0 < ε) (h : ∀ x : M, ∃ γ : ℝ → M, γ 0 = x ∧ IsIntegralCurveOn γ v (Ioo (-ε) ε)) (x : M) : ∃ γ : ℝ → M, γ 0 = x ∧ IsIntegralCurve γ v
case intro.intro.intro.intro E : Type u_1 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℝ E H : Type u_2 inst✝⁵ : TopologicalSpace H I : ModelWithCorners ℝ E H M : Type u_3 inst✝⁴ : TopologicalSpace M inst✝³ : ChartedSpace H M inst✝² : IsManifold I 1 M inst✝¹ : T2Space M inst✝ : BoundarylessManifold I M v : (x : M) → TangentSpace I x hv : ContMDiff I I.tangent 1 fun x => { proj := x, snd := v x } ε : ℝ hε : 0 < ε h : ∀ (x : M), ∃ γ, γ 0 = x ∧ IsIntegralCurveOn γ v (Ioo (-ε) ε) x : M s : Set ℝ := {a | ∃ γ, γ 0 = x ∧ IsIntegralCurveOn γ v (Ioo (-a) a)} hbdd : ∀ (x : ℝ), ∃ y ∈ s, x < y a y : ℝ hlt : a < y γ : ℝ → M hγ1 : γ 0 = x hγ2 : IsIntegralCurveOn γ v (Ioo (-y) y) ⊢ ∃ γ, γ 0 = x ∧ IsIntegralCurveOn γ v (Ioo (-a) a)
exact ⟨γ, hγ1, hγ2.mono <| Ioo_subset_Ioo (neg_le_neg hlt.le) hlt.le⟩
no goals
bd02ea3fe1e0f263
CanonicallyOrderedAdd.list_prod_pos
Mathlib/Algebra/Order/BigOperators/Ring/List.lean
/-- A variant of `List.prod_pos` for `CanonicallyOrderedAdd`. -/ @[simp] lemma CanonicallyOrderedAdd.list_prod_pos {α : Type*} [CommSemiring α] [PartialOrder α] [CanonicallyOrderedAdd α] [NoZeroDivisors α] [Nontrivial α] : ∀ {l : List α}, 0 < l.prod ↔ (∀ x ∈ l, (0 : α) < x) | [] => by simp | (x :: xs) => by simp_rw [List.prod_cons, List.forall_mem_cons, CanonicallyOrderedAdd.mul_pos, list_prod_pos]
α : Type u_2 inst✝⁴ : CommSemiring α inst✝³ : PartialOrder α inst✝² : CanonicallyOrderedAdd α inst✝¹ : NoZeroDivisors α inst✝ : Nontrivial α x : α xs : List α ⊢ 0 < (x :: xs).prod ↔ ∀ (x_1 : α), x_1 ∈ x :: xs → 0 < x_1
simp_rw [List.prod_cons, List.forall_mem_cons, CanonicallyOrderedAdd.mul_pos, list_prod_pos]
no goals
fd38ef0dd441caee
HomologicalComplex₂.D₁_D₂
Mathlib/Algebra/Homology/TotalComplex.lean
@[reassoc] lemma D₁_D₂ (i₁₂ i₁₂' i₁₂'' : I₁₂) : K.D₁ c₁₂ i₁₂ i₁₂' ≫ K.D₂ c₁₂ i₁₂' i₁₂'' = - K.D₂ c₁₂ i₁₂ i₁₂' ≫ K.D₁ c₁₂ i₁₂' i₁₂''
C : Type u_1 inst✝⁴ : Category.{u_5, u_1} C inst✝³ : Preadditive C I₁ : Type u_2 I₂ : Type u_3 I₁₂ : Type u_4 c₁ : ComplexShape I₁ c₂ : ComplexShape I₂ K : HomologicalComplex₂ C c₁ c₂ c₁₂ : ComplexShape I₁₂ inst✝² : TotalComplexShape c₁ c₂ c₁₂ inst✝¹ : DecidableEq I₁₂ inst✝ : K.HasTotal c₁₂ i₁₂ i₁₂' i₁₂'' : I₁₂ ⊢ K.D₁ c₁₂ i₁₂ i₁₂' ≫ K.D₂ c₁₂ i₁₂' i₁₂'' = -K.D₂ c₁₂ i₁₂ i₁₂' ≫ K.D₁ c₁₂ i₁₂' i₁₂''
simp
no goals
a22ae8c4124b91f0
CategoryTheory.Functor.pointwiseLeftKanExtension_desc_app
Mathlib/CategoryTheory/Functor/KanExtension/Pointwise.lean
@[simp] lemma pointwiseLeftKanExtension_desc_app (G : D ⥤ H) (α : F ⟶ L ⋙ G) (Y : D) : ((pointwiseLeftKanExtension L F).descOfIsLeftKanExtension (pointwiseLeftKanExtensionUnit L F) G α |>.app Y) = colimit.desc _ (costructuredArrowMapCocone L F G α Y)
C : Type u_1 D : Type u_2 H : Type u_3 inst✝³ : Category.{u_6, u_1} C inst✝² : Category.{u_4, u_2} D inst✝¹ : Category.{u_5, u_3} H L : C ⥤ D F : C ⥤ H inst✝ : L.HasPointwiseLeftKanExtension F G : D ⥤ H α : F ⟶ L ⋙ G Y : D β : L.pointwiseLeftKanExtension F ⟶ G := { app := fun Y => colimit.desc (CostructuredArrow.proj L Y ⋙ F) (L.costructuredArrowMapCocone F G α Y), naturality := ⋯ } ⊢ ((L.pointwiseLeftKanExtension F).descOfIsLeftKanExtension (L.pointwiseLeftKanExtensionUnit F) G α).app Y = colimit.desc (CostructuredArrow.proj L Y ⋙ F) (L.costructuredArrowMapCocone F G α Y)
have h : (pointwiseLeftKanExtension L F).descOfIsLeftKanExtension (pointwiseLeftKanExtensionUnit L F) G α = β := by apply hom_ext_of_isLeftKanExtension (α := pointwiseLeftKanExtensionUnit L F) aesop
C : Type u_1 D : Type u_2 H : Type u_3 inst✝³ : Category.{u_6, u_1} C inst✝² : Category.{u_4, u_2} D inst✝¹ : Category.{u_5, u_3} H L : C ⥤ D F : C ⥤ H inst✝ : L.HasPointwiseLeftKanExtension F G : D ⥤ H α : F ⟶ L ⋙ G Y : D β : L.pointwiseLeftKanExtension F ⟶ G := { app := fun Y => colimit.desc (CostructuredArrow.proj L Y ⋙ F) (L.costructuredArrowMapCocone F G α Y), naturality := ⋯ } h : (L.pointwiseLeftKanExtension F).descOfIsLeftKanExtension (L.pointwiseLeftKanExtensionUnit F) G α = β ⊢ ((L.pointwiseLeftKanExtension F).descOfIsLeftKanExtension (L.pointwiseLeftKanExtensionUnit F) G α).app Y = colimit.desc (CostructuredArrow.proj L Y ⋙ F) (L.costructuredArrowMapCocone F G α Y)
a3d14f6988b1bd2f
HasFPowerSeriesOnBall.fderiv
Mathlib/Analysis/Calculus/FDeriv/Analytic.lean
theorem HasFPowerSeriesOnBall.fderiv [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : HasFPowerSeriesOnBall (fderiv 𝕜 f) p.derivSeries x r
case refine_2 𝕜 : Type u_1 inst✝⁵ : NontriviallyNormedField 𝕜 E : Type u inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace 𝕜 E F : Type v inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F p : FormalMultilinearSeries 𝕜 E F r : ℝ≥0∞ f : E → F x : E inst✝ : CompleteSpace F h : HasFPowerSeriesOnBall f p x r z : E hz : z ∈ EMetric.ball x r ⊢ (fun z => (continuousMultilinearCurryFin1 𝕜 E F) (p.changeOrigin (z - x) 1)) z = fderiv 𝕜 f z
dsimp only
case refine_2 𝕜 : Type u_1 inst✝⁵ : NontriviallyNormedField 𝕜 E : Type u inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace 𝕜 E F : Type v inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F p : FormalMultilinearSeries 𝕜 E F r : ℝ≥0∞ f : E → F x : E inst✝ : CompleteSpace F h : HasFPowerSeriesOnBall f p x r z : E hz : z ∈ EMetric.ball x r ⊢ (continuousMultilinearCurryFin1 𝕜 E F) (p.changeOrigin (z - x) 1) = fderiv 𝕜 f z
fd4e9439d16c4d4e
ProbabilityTheory.iCondIndepSets_iff
Mathlib/Probability/Independence/Conditional.lean
lemma iCondIndepSets_iff (π : ι → Set (Set Ω)) (hπ : ∀ i s (_hs : s ∈ π i), MeasurableSet s) (μ : Measure Ω) [IsFiniteMeasure μ] : iCondIndepSets m' hm' π μ ↔ ∀ (s : Finset ι) {f : ι → Set Ω} (_H : ∀ i, i ∈ s → f i ∈ π i), μ⟦⋂ i ∈ s, f i | m'⟧ =ᵐ[μ] ∏ i ∈ s, (μ⟦f i | m'⟧)
Ω : Type u_1 ι : Type u_2 m' mΩ : MeasurableSpace Ω inst✝¹ : StandardBorelSpace Ω hm' : m' ≤ mΩ π : ι → Set (Set Ω) hπ : ∀ (i : ι), ∀ s ∈ π i, MeasurableSet s μ : Measure Ω inst✝ : IsFiniteMeasure μ h_eq' : ∀ (s : Finset ι) (f : ι → Set Ω), (∀ i ∈ s, f i ∈ π i) → ∀ i ∈ s, (fun ω => (((condExpKernel μ m') ω) (f i)).toReal) =ᶠ[ae μ] μ[(f i).indicator fun ω => 1|m'] ⊢ (∀ (s : Finset ι) {f : ι → Set Ω}, (∀ i ∈ s, f i ∈ π i) → ∀ᵐ (a : Ω) ∂μ.trim hm', ((condExpKernel μ m') a) (⋂ i ∈ s, f i) = ∏ i ∈ s, ((condExpKernel μ m') a) (f i)) ↔ ∀ (s : Finset ι) {f : ι → Set Ω}, (∀ i ∈ s, f i ∈ π i) → μ[(⋂ i ∈ s, f i).indicator fun ω => 1|m'] =ᶠ[ae μ] ∏ i ∈ s, μ[(f i).indicator fun ω => 1|m']
have h_eq : ∀ (s : Finset ι) (f : ι → Set Ω) (_H : ∀ i, i ∈ s → f i ∈ π i), ∀ᵐ ω ∂μ, ∀ i ∈ s, ENNReal.toReal (condExpKernel μ m' ω (f i)) = (μ⟦f i | m'⟧) ω := by intros s f H simp_rw [← Finset.mem_coe] rw [ae_ball_iff (Finset.countable_toSet s)] exact h_eq' s f H
Ω : Type u_1 ι : Type u_2 m' mΩ : MeasurableSpace Ω inst✝¹ : StandardBorelSpace Ω hm' : m' ≤ mΩ π : ι → Set (Set Ω) hπ : ∀ (i : ι), ∀ s ∈ π i, MeasurableSet s μ : Measure Ω inst✝ : IsFiniteMeasure μ h_eq' : ∀ (s : Finset ι) (f : ι → Set Ω), (∀ i ∈ s, f i ∈ π i) → ∀ i ∈ s, (fun ω => (((condExpKernel μ m') ω) (f i)).toReal) =ᶠ[ae μ] μ[(f i).indicator fun ω => 1|m'] h_eq : ∀ (s : Finset ι) (f : ι → Set Ω), (∀ i ∈ s, f i ∈ π i) → ∀ᵐ (ω : Ω) ∂μ, ∀ i ∈ s, (((condExpKernel μ m') ω) (f i)).toReal = (μ[(f i).indicator fun ω => 1|m']) ω ⊢ (∀ (s : Finset ι) {f : ι → Set Ω}, (∀ i ∈ s, f i ∈ π i) → ∀ᵐ (a : Ω) ∂μ.trim hm', ((condExpKernel μ m') a) (⋂ i ∈ s, f i) = ∏ i ∈ s, ((condExpKernel μ m') a) (f i)) ↔ ∀ (s : Finset ι) {f : ι → Set Ω}, (∀ i ∈ s, f i ∈ π i) → μ[(⋂ i ∈ s, f i).indicator fun ω => 1|m'] =ᶠ[ae μ] ∏ i ∈ s, μ[(f i).indicator fun ω => 1|m']
7769d795b81eae16
Std.DHashMap.Internal.Raw₀.toListModel_containsThenInsertIfNew
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Internal/WF.lean
theorem toListModel_containsThenInsertIfNew [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] {m : Raw₀ α β} (h : Raw.WFImp m.1) {a : α} {b : β a} : Perm (toListModel (m.containsThenInsertIfNew a b).2.1.2) (insertEntryIfNew a b (toListModel m.1.2))
α : Type u β : α → Type v inst✝³ : BEq α inst✝² : Hashable α inst✝¹ : EquivBEq α inst✝ : LawfulHashable α m : Raw₀ α β h : Raw.WFImp m.val a : α b : β a ⊢ toListModel (m.containsThenInsertIfNew a b).snd.val.buckets ~ insertEntryIfNew a b (toListModel m.val.buckets)
rw [containsThenInsertIfNew_eq_insertIfNewₘ]
α : Type u β : α → Type v inst✝³ : BEq α inst✝² : Hashable α inst✝¹ : EquivBEq α inst✝ : LawfulHashable α m : Raw₀ α β h : Raw.WFImp m.val a : α b : β a ⊢ toListModel (m.insertIfNewₘ a b).val.buckets ~ insertEntryIfNew a b (toListModel m.val.buckets)
93b483d3edaad7a9
measurableSet_eq_fun'
Mathlib/MeasureTheory/Group/Arithmetic.lean
@[measurability] lemma measurableSet_eq_fun' {β : Type*} [AddCommMonoid β] [PartialOrder β] [CanonicallyOrderedAdd β] [Sub β] [OrderedSub β] {_ : MeasurableSpace β} [MeasurableSub₂ β] [MeasurableSingletonClass β] {f g : α → β} (hf : Measurable f) (hg : Measurable g) : MeasurableSet {x | f x = g x}
case h α : Type u_3 m : MeasurableSpace α β : Type u_5 inst✝⁶ : AddCommMonoid β inst✝⁵ : PartialOrder β inst✝⁴ : CanonicallyOrderedAdd β inst✝³ : Sub β inst✝² : OrderedSub β x✝¹ : MeasurableSpace β inst✝¹ : MeasurableSub₂ β inst✝ : MeasurableSingletonClass β f g : α → β hf : Measurable f hg : Measurable g x✝ : α ⊢ f x✝ = g x✝ ↔ f x✝ ≤ g x✝ ∧ g x✝ ≤ f x✝
exact ⟨fun h ↦ ⟨h.le, h.symm.le⟩, fun h ↦ le_antisymm h.1 h.2⟩
no goals
c0e843245b8a108c
Nat.Prime.deficient_pow
Mathlib/NumberTheory/FactorisationProperties.lean
theorem Prime.deficient_pow (h : Prime n) : Deficient (n ^ m)
case inr n m : ℕ h : Prime n h✝ : m > 0 h1 : (n ^ m).properDivisors = image (fun x => n ^ x) (range m) ⊢ (n ^ m).Deficient
have h2 : ∑ i ∈ image (fun x => n ^ x) (range m), i = ∑ i ∈ range m, n^i := by rw [Finset.sum_image] rintro x _ y _ apply pow_injective_of_not_isUnit h.not_unit <| Prime.ne_zero h
case inr n m : ℕ h : Prime n h✝ : m > 0 h1 : (n ^ m).properDivisors = image (fun x => n ^ x) (range m) h2 : ∑ i ∈ image (fun x => n ^ x) (range m), i = ∑ i ∈ range m, n ^ i ⊢ (n ^ m).Deficient
244ad8ad5eb9d7f5
Polynomial.Sequence.linearIndependent
Mathlib/Algebra/Polynomial/Sequence.lean
/-- Polynomials in a polynomial sequence are linearly independent. -/ lemma linearIndependent : LinearIndependent R S := linearIndependent_iff'.mpr <| fun s g eqzero i hi ↦ by by_cases hsupzero : s.sup (fun i ↦ (g i • S i).degree) = ⊥ · have le_sup := Finset.le_sup hi (f := fun i ↦ (g i • S i).degree) exact (smul_eq_zero_iff_left (S.ne_zero i)).mp <| degree_eq_bot.mp (eq_bot_mono le_sup hsupzero) have hpairwise : {i | i ∈ s ∧ g i • S i ≠ 0}.Pairwise (Ne on fun i ↦ (g i • S i).degree)
case pos R : Type u_1 inst✝¹ : Ring R S : Sequence R inst✝ : NoZeroDivisors R s : Finset ℕ g : ℕ → R eqzero : ∑ i ∈ s, g i • ↑S i = 0 i : ℕ hi : i ∈ s hsupzero : (s.sup fun i => (g i • ↑S i).degree) = ⊥ le_sup : (fun i => (g i • ↑S i).degree) i ≤ s.sup fun i => (g i • ↑S i).degree ⊢ g i = 0
exact (smul_eq_zero_iff_left (S.ne_zero i)).mp <| degree_eq_bot.mp (eq_bot_mono le_sup hsupzero)
no goals
760e019bda62fdf2
ContinuousSMul.of_basis_zero
Mathlib/Topology/Algebra/FilterBasis.lean
theorem _root_.ContinuousSMul.of_basis_zero {ι : Type*} [IsTopologicalRing R] [TopologicalSpace M] [IsTopologicalAddGroup M] {p : ι → Prop} {b : ι → Set M} (h : HasBasis (𝓝 0) p b) (hsmul : ∀ {i}, p i → ∃ V ∈ 𝓝 (0 : R), ∃ j, p j ∧ V • b j ⊆ b i) (hsmul_left : ∀ (x₀ : R) {i}, p i → ∃ j, p j ∧ MapsTo (x₀ • ·) (b j) (b i)) (hsmul_right : ∀ (m₀ : M) {i}, p i → ∀ᶠ x in 𝓝 (0 : R), x • m₀ ∈ b i) : ContinuousSMul R M
case hmulleft R : Type u_1 M : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : TopologicalSpace R inst✝⁴ : AddCommGroup M inst✝³ : Module R M ι : Type u_3 inst✝² : IsTopologicalRing R inst✝¹ : TopologicalSpace M inst✝ : IsTopologicalAddGroup M p : ι → Prop b : ι → Set M h : (𝓝 0).HasBasis p b hsmul : ∀ {i : ι}, p i → ∃ V ∈ 𝓝 0, ∃ j, p j ∧ V • b j ⊆ b i hsmul_left : ∀ (x₀ : R) {i : ι}, p i → ∃ j, p j ∧ MapsTo (fun x => x₀ • x) (b j) (b i) hsmul_right : ∀ (m₀ : M) {i : ι}, p i → ∀ᶠ (x : R) in 𝓝 0, x • m₀ ∈ b i m₀ : M i : ι hi : p i ⊢ ∀ᶠ (x : R) in 𝓝 0, x • m₀ ∈ b i
exact hsmul_right m₀ hi
no goals
4f90af5932a68739
LinearIndependent.map_of_isPurelyInseparable_of_isSeparable
Mathlib/FieldTheory/PurelyInseparable/Tower.lean
theorem LinearIndependent.map_of_isPurelyInseparable_of_isSeparable [IsPurelyInseparable F E] {ι : Type*} {v : ι → K} (hsep : ∀ i : ι, IsSeparable F (v i)) (h : LinearIndependent F v) : LinearIndependent E v
case neg F : Type u E : Type v inst✝⁷ : Field F inst✝⁶ : Field E inst✝⁵ : Algebra F E K : Type w inst✝⁴ : Field K inst✝³ : Algebra F K inst✝² : Algebra E K inst✝¹ : IsScalarTower F E K inst✝ : IsPurelyInseparable F E ι : Type u_1 v : ι → K hsep : ∀ (i : ι), IsSeparable F (v i) h : LinearIndependent F v q : ℕ h✝ : ExpChar F q this✝ : ExpChar K q l : ι →₀ E hl : (Finsupp.linearCombination E v) l = 0 i✝ : ι f : ι → ℕ hf : ∀ (i : ι), l i ^ q ^ f i ∈ (algebraMap F E).range n : ℕ := l.support.sup f this : q ^ n ≠ 0 i : ι hs : i ∉ l.support ⊢ l i ^ q ^ n ∈ (algebraMap F E).range
exact ⟨0, by rw [map_zero, Finsupp.not_mem_support_iff.1 hs, zero_pow this]⟩
no goals
e47247a3e0a1480f
AlgebraicGeometry.isLocallyNoetherian_of_isOpenImmersion
Mathlib/AlgebraicGeometry/Noetherian.lean
lemma isLocallyNoetherian_of_isOpenImmersion {Y : Scheme} (f : X ⟶ Y) [IsOpenImmersion f] [IsLocallyNoetherian Y] : IsLocallyNoetherian X
X Y : Scheme f : X ⟶ Y inst✝¹ : IsOpenImmersion f inst✝ : IsLocallyNoetherian Y U : ↑X.affineOpens V : ↑Y.affineOpens := ⟨f ''ᵁ ↑U, ⋯⟩ this : Scheme.Hom.opensRange f ⊓ ↑V = ↑V ⊢ Γ(Y, Scheme.Hom.opensRange f ⊓ f ''ᵁ ↑U) ≅ Γ(Y, ↑V)
rw [this]
no goals
2ec02523b8c91c80
IsPrimal.mul
Mathlib/Algebra/GroupWithZero/Divisibility.lean
theorem IsPrimal.mul {α} [CancelCommMonoidWithZero α] {m n : α} (hm : IsPrimal m) (hn : IsPrimal n) : IsPrimal (m * n)
case inr.intro.intro.intro.intro.intro.intro α : Type u_2 inst✝ : CancelCommMonoidWithZero α n : α hn : IsPrimal n a₁ a₂ b c : α hm : IsPrimal (a₁ * a₂) h0 : a₁ * a₂ ≠ 0 h : a₁ * a₂ * n ∣ a₁ * b * (a₂ * c) ⊢ ∃ a₁_1 a₂_1, a₁_1 ∣ a₁ * b ∧ a₂_1 ∣ a₂ * c ∧ a₁ * a₂ * n = a₁_1 * a₂_1
rw [mul_mul_mul_comm, mul_dvd_mul_iff_left h0] at h
case inr.intro.intro.intro.intro.intro.intro α : Type u_2 inst✝ : CancelCommMonoidWithZero α n : α hn : IsPrimal n a₁ a₂ b c : α hm : IsPrimal (a₁ * a₂) h0 : a₁ * a₂ ≠ 0 h : n ∣ b * c ⊢ ∃ a₁_1 a₂_1, a₁_1 ∣ a₁ * b ∧ a₂_1 ∣ a₂ * c ∧ a₁ * a₂ * n = a₁_1 * a₂_1
ab5031a4a2a30aa7
Complex.exp_ofReal_mul_I_im
Mathlib/Data/Complex/Trigonometric.lean
theorem exp_ofReal_mul_I_im (x : ℝ) : (exp (x * I)).im = Real.sin x
x : ℝ ⊢ (cexp (↑x * I)).im = Real.sin x
simp [exp_mul_I, sin_ofReal_re]
no goals
b2d7c31527804ab0
IsLocalization.Away.mul
Mathlib/RingTheory/Localization/Away/Basic.lean
/-- Localizing the localization of `R` at `x` at the image of `y` is the same as localizing `R` at `y * x`. See `IsLocalization.Away.mul'` for the `x * y` version. -/ lemma mul (T : Type*) [CommSemiring T] [Algebra S T] [Algebra R T] [IsScalarTower R S T] (x y : R) [IsLocalization.Away x S] [IsLocalization.Away (algebraMap R S y) T] : IsLocalization.Away (y * x) T
case refine_3 R : Type u_1 inst✝⁸ : CommSemiring R S : Type u_2 inst✝⁷ : CommSemiring S inst✝⁶ : Algebra R S T : Type u_5 inst✝⁵ : CommSemiring T inst✝⁴ : Algebra S T inst✝³ : Algebra R T inst✝² : IsScalarTower R S T x y : R inst✝¹ : Away x S inst✝ : Away ((algebraMap R S) y) T a b : R h : (algebraMap S T) ((algebraMap R S) a) = (algebraMap R T) b ⊢ ∃ n, (y * x) ^ n * a = (y * x) ^ n * b
rw [IsScalarTower.algebraMap_apply R S T] at h
case refine_3 R : Type u_1 inst✝⁸ : CommSemiring R S : Type u_2 inst✝⁷ : CommSemiring S inst✝⁶ : Algebra R S T : Type u_5 inst✝⁵ : CommSemiring T inst✝⁴ : Algebra S T inst✝³ : Algebra R T inst✝² : IsScalarTower R S T x y : R inst✝¹ : Away x S inst✝ : Away ((algebraMap R S) y) T a b : R h : (algebraMap S T) ((algebraMap R S) a) = (algebraMap S T) ((algebraMap R S) b) ⊢ ∃ n, (y * x) ^ n * a = (y * x) ^ n * b
f779f7b45ac969ec
List.mergeSort_cons
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Sort/Lemmas.lean
theorem mergeSort_cons {le : α → α → Bool} (trans : ∀ (a b c : α), le a b → le b c → le a c) (total : ∀ (a b : α), le a b || le b a) (a : α) (l : List α) : ∃ l₁ l₂, mergeSort (a :: l) le = l₁ ++ a :: l₂ ∧ mergeSort l le = l₁ ++ l₂ ∧ ∀ b, b ∈ l₁ → !le a b
case intro.intro α : Type u_1 le : α → α → Bool trans : ∀ (a b c : α), le a b = true → le b c = true → le a c = true total : ∀ (a b : α), (le a b || le b a) = true a : α l : List α nd : (map (fun x => x.snd) (a :: l).zipIdx).Nodup m₁ : (a, 0) ∈ (a :: l).zipIdx.mergeSort (zipIdxLE le) l₁ l₂ : List (α × Nat) h : (a :: l).zipIdx.mergeSort (zipIdxLE le) = l₁ ++ (a, 0) :: l₂ ⊢ ∃ l₁ l₂, map (fun x => x.fst) (((a, 0) :: l.zipIdx (0 + 1)).mergeSort (zipIdxLE le)) = l₁ ++ a :: l₂ ∧ l.mergeSort le = l₁ ++ l₂ ∧ ∀ (b : α), b ∈ l₁ → (!le a b) = true
have s := sorted_mergeSort (zipIdxLE_trans trans) (zipIdxLE_total total) ((a :: l).zipIdx)
case intro.intro α : Type u_1 le : α → α → Bool trans : ∀ (a b c : α), le a b = true → le b c = true → le a c = true total : ∀ (a b : α), (le a b || le b a) = true a : α l : List α nd : (map (fun x => x.snd) (a :: l).zipIdx).Nodup m₁ : (a, 0) ∈ (a :: l).zipIdx.mergeSort (zipIdxLE le) l₁ l₂ : List (α × Nat) h : (a :: l).zipIdx.mergeSort (zipIdxLE le) = l₁ ++ (a, 0) :: l₂ s : Pairwise (fun a b => zipIdxLE le a b = true) ((a :: l).zipIdx.mergeSort (zipIdxLE le)) ⊢ ∃ l₁ l₂, map (fun x => x.fst) (((a, 0) :: l.zipIdx (0 + 1)).mergeSort (zipIdxLE le)) = l₁ ++ a :: l₂ ∧ l.mergeSort le = l₁ ++ l₂ ∧ ∀ (b : α), b ∈ l₁ → (!le a b) = true
eac9e2d7b83f8a69
Matrix.adjugate_diagonal
Mathlib/LinearAlgebra/Matrix/Adjugate.lean
theorem adjugate_diagonal (v : n → α) : adjugate (diagonal v) = diagonal fun i => ∏ j ∈ Finset.univ.erase i, v j
case a.inr n : Type v α : Type w inst✝² : DecidableEq n inst✝¹ : Fintype n inst✝ : CommRing α v : n → α i j : n hij : i ≠ j ⊢ ((diagonal v).updateCol j (Pi.single i 1)).det = diagonal (fun i => ∏ j ∈ univ.erase i, v j) i j
rw [diagonal_apply_ne _ hij]
case a.inr n : Type v α : Type w inst✝² : DecidableEq n inst✝¹ : Fintype n inst✝ : CommRing α v : n → α i j : n hij : i ≠ j ⊢ ((diagonal v).updateCol j (Pi.single i 1)).det = 0
d170811fd1d837fa
Matrix.eval_matrixOfPolynomials_eq_vandermonde_mul_matrixOfPolynomials
Mathlib/LinearAlgebra/Vandermonde.lean
theorem eval_matrixOfPolynomials_eq_vandermonde_mul_matrixOfPolynomials {n : ℕ} (v : Fin n → R) (p : Fin n → R[X]) (h_deg : ∀ i, (p i).natDegree ≤ i) : Matrix.of (fun i j => ((p j).eval (v i))) = (Matrix.vandermonde v) * (Matrix.of (fun (i j : Fin n) => (p j).coeff i))
case a R : Type u_1 inst✝ : CommRing R n : ℕ v : Fin n → R p : Fin n → R[X] h_deg : ∀ (i : Fin n), (p i).natDegree ≤ ↑i i j : Fin n this : (p j).support ⊆ range n ⊢ ∑ i_1 : Fin n, (RingHom.id R) ((p j).coeff ↑i_1) * v i ^ ↑i_1 = ∑ x : Fin n, of (fun i j => v i ^ ↑j) i x * of (fun i j => (p j).coeff ↑i) x j
congr
case a.e_f R : Type u_1 inst✝ : CommRing R n : ℕ v : Fin n → R p : Fin n → R[X] h_deg : ∀ (i : Fin n), (p i).natDegree ≤ ↑i i j : Fin n this : (p j).support ⊆ range n ⊢ (fun i_1 => (RingHom.id R) ((p j).coeff ↑i_1) * v i ^ ↑i_1) = fun x => of (fun i j => v i ^ ↑j) i x * of (fun i j => (p j).coeff ↑i) x j
9ae3c6287bae2d19
Topology.IsConstructible.image_of_isClosedEmbedding
Mathlib/Topology/Constructible.lean
@[stacks 09YG] lemma IsConstructible.image_of_isClosedEmbedding (hf : IsClosedEmbedding f) (hfcomp : IsRetrocompact (range f)ᶜ) (hs : IsConstructible s) : IsConstructible (f '' s)
X : Type u_2 Y : Type u_3 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y f : X → Y s : Set X hf : IsClosedEmbedding f hfcomp : IsRetrocompact (range f)ᶜ U : Set X hUopen : IsOpen U hUcomp : IsRetrocompact U hfU : IsOpen (f '' U ∪ (range f)ᶜ) h : IsRetrocompact (f '' U ∪ (range f)ᶜ) ⊢ IsConstructible (f '' U)
simpa [union_inter_distrib_right, inter_eq_left.2 (image_subset_range ..)] using (h.isConstructible hfU).sdiff (hfcomp.isConstructible hf.isClosed_range.isOpen_compl)
no goals
98bccc08ab186c11
LinearMap.det_pi
Mathlib/LinearAlgebra/Determinant.lean
theorem det_pi [Module.Free R M] [Module.Finite R M] (f : ι → M →ₗ[R] M) : (LinearMap.pi (fun i ↦ (f i).comp (LinearMap.proj i))).det = ∏ i, (f i).det
case a.mk.mk R : Type u_1 inst✝⁵ : CommRing R M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M ι : Type u_4 inst✝² : Fintype ι inst✝¹ : Module.Free R M inst✝ : Module.Finite R M f : ι → M →ₗ[R] M b : Basis (Module.Free.ChooseBasisIndex R M) R M := Module.Free.chooseBasis R M B : Basis (Module.Free.ChooseBasisIndex R M × ι) R (ι → M) := (Pi.basis fun x => b).reindex ((Equiv.sigmaEquivProd ι (Module.Free.ChooseBasisIndex R M)).trans (Equiv.prodComm ι (Module.Free.ChooseBasisIndex R M))) i₁ : Module.Free.ChooseBasisIndex R M i₂ : ι j₁ : Module.Free.ChooseBasisIndex R M j₂ : ι ⊢ (b.repr ((f i₂) (if i₂ = j₂ then b j₁ else 0))) i₁ = if i₂ = j₂ then (b.repr ((f i₂) (b j₁))) i₁ else 0
split_ifs with h
case pos R : Type u_1 inst✝⁵ : CommRing R M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M ι : Type u_4 inst✝² : Fintype ι inst✝¹ : Module.Free R M inst✝ : Module.Finite R M f : ι → M →ₗ[R] M b : Basis (Module.Free.ChooseBasisIndex R M) R M := Module.Free.chooseBasis R M B : Basis (Module.Free.ChooseBasisIndex R M × ι) R (ι → M) := (Pi.basis fun x => b).reindex ((Equiv.sigmaEquivProd ι (Module.Free.ChooseBasisIndex R M)).trans (Equiv.prodComm ι (Module.Free.ChooseBasisIndex R M))) i₁ : Module.Free.ChooseBasisIndex R M i₂ : ι j₁ : Module.Free.ChooseBasisIndex R M j₂ : ι h : i₂ = j₂ ⊢ (b.repr ((f i₂) (b j₁))) i₁ = (b.repr ((f i₂) (b j₁))) i₁ case neg R : Type u_1 inst✝⁵ : CommRing R M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M ι : Type u_4 inst✝² : Fintype ι inst✝¹ : Module.Free R M inst✝ : Module.Finite R M f : ι → M →ₗ[R] M b : Basis (Module.Free.ChooseBasisIndex R M) R M := Module.Free.chooseBasis R M B : Basis (Module.Free.ChooseBasisIndex R M × ι) R (ι → M) := (Pi.basis fun x => b).reindex ((Equiv.sigmaEquivProd ι (Module.Free.ChooseBasisIndex R M)).trans (Equiv.prodComm ι (Module.Free.ChooseBasisIndex R M))) i₁ : Module.Free.ChooseBasisIndex R M i₂ : ι j₁ : Module.Free.ChooseBasisIndex R M j₂ : ι h : ¬i₂ = j₂ ⊢ (b.repr ((f i₂) 0)) i₁ = 0
7d793b62306d1e2f
Mon_.whiskerLeft_hom
Mathlib/CategoryTheory/Monoidal/Mon_.lean
theorem whiskerLeft_hom {X Y : Mon_ C} (f : X ⟶ Y) (Z : Mon_ C) : (f ▷ Z).hom = f.hom ▷ Z.X
C : Type u₁ inst✝² : Category.{v₁, u₁} C inst✝¹ : MonoidalCategory C inst✝ : BraidedCategory C X Y : Mon_ C f : X ⟶ Y Z : Mon_ C ⊢ (f ▷ Z).hom = f.hom ▷ Z.X
rw [← tensorHom_id]
C : Type u₁ inst✝² : Category.{v₁, u₁} C inst✝¹ : MonoidalCategory C inst✝ : BraidedCategory C X Y : Mon_ C f : X ⟶ Y Z : Mon_ C ⊢ (f ▷ Z).hom = f.hom ⊗ 𝟙 Z.X
e932038810eafaac
cross_anticomm'
Mathlib/LinearAlgebra/CrossProduct.lean
theorem cross_anticomm' (v w : Fin 3 → R) : v ×₃ w + w ×₃ v = 0
R : Type u_1 inst✝ : CommRing R v w : Fin 3 → R ⊢ (crossProduct v) w + (crossProduct w) v = 0
rw [add_eq_zero_iff_eq_neg, cross_anticomm]
no goals
e8c4b0a2397903c5
Finset.card_div_choose_le_card_shadow_div_choose
Mathlib/Combinatorics/SetFamily/LYM.lean
theorem card_div_choose_le_card_shadow_div_choose (hr : r ≠ 0) (h𝒜 : (𝒜 : Set (Finset α)).Sized r) : (#𝒜 : 𝕜) / (Fintype.card α).choose r ≤ #(∂ 𝒜) / (Fintype.card α).choose (r - 1)
case inr 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : DecidableEq α inst✝ : Fintype α 𝒜 : Finset (Finset α) r : ℕ hr : r ≠ 0 hr' : r ≤ Fintype.card α h𝒜 : #𝒜 * r ≤ #(∂ 𝒜) * (Fintype.card α - r + 1) ⊢ ↑(#𝒜) / ↑((Fintype.card α).choose r) ≤ ↑(#(∂ 𝒜)) / ↑((Fintype.card α).choose (r - 1))
rw [div_le_div_iff₀] <;> norm_cast
case inr 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : DecidableEq α inst✝ : Fintype α 𝒜 : Finset (Finset α) r : ℕ hr : r ≠ 0 hr' : r ≤ Fintype.card α h𝒜 : #𝒜 * r ≤ #(∂ 𝒜) * (Fintype.card α - r + 1) ⊢ #𝒜 * (Fintype.card α).choose (r - 1) ≤ #(∂ 𝒜) * (Fintype.card α).choose r case inr.hb 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : DecidableEq α inst✝ : Fintype α 𝒜 : Finset (Finset α) r : ℕ hr : r ≠ 0 hr' : r ≤ Fintype.card α h𝒜 : #𝒜 * r ≤ #(∂ 𝒜) * (Fintype.card α - r + 1) ⊢ 0 < (Fintype.card α).choose r case inr.hd 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : DecidableEq α inst✝ : Fintype α 𝒜 : Finset (Finset α) r : ℕ hr : r ≠ 0 hr' : r ≤ Fintype.card α h𝒜 : #𝒜 * r ≤ #(∂ 𝒜) * (Fintype.card α - r + 1) ⊢ 0 < (Fintype.card α).choose (r - 1)
39fd5f73c0c4b048
DFinsupp.comul_comp_lapply
Mathlib/RingTheory/Coalgebra/Basic.lean
theorem comul_comp_lapply (i : ι) : comul ∘ₗ (lapply i : _ →ₗ[R] A i) = TensorProduct.map (lapply i) (lapply i) ∘ₗ comul
case h.inr R : Type u ι : Type v A : ι → Type w inst✝⁴ : DecidableEq ι inst✝³ : CommSemiring R inst✝² : (i : ι) → AddCommMonoid (A i) inst✝¹ : (i : ι) → Module R (A i) inst✝ : (i : ι) → Coalgebra R (A i) i j : ι hij : i ≠ j ⊢ (comul ∘ₗ lapply i) ∘ₗ lsingle j = TensorProduct.map (lapply i ∘ₗ lsingle j) (lapply i ∘ₗ lsingle j) ∘ₗ comul
rw [comp_assoc, lapply_comp_lsingle_of_ne _ _ hij, comp_zero, TensorProduct.map_zero_left, zero_comp]
no goals
65bcafb1b82fb31c
Real.rpow_add_rpow_le
Mathlib/Analysis/MeanInequalitiesPow.lean
lemma rpow_add_rpow_le {p q : ℝ} {a b : ℝ} (ha : 0 ≤ a) (hb : 0 ≤ b) (hp_pos : 0 < p) (hpq : p ≤ q) : (a ^ q + b ^ q) ^ (1 / q) ≤ (a ^ p + b ^ p) ^ (1 / p)
case intro.intro p q : ℝ hp_pos : 0 < p hpq : p ≤ q a b : ℝ≥0 ⊢ (↑a ^ q + ↑b ^ q) ^ (1 / q) ≤ (↑a ^ p + ↑b ^ p) ^ (1 / p)
exact_mod_cast NNReal.rpow_add_rpow_le a b hp_pos hpq
no goals
078c357d2c7ecf53
Matrix.coeff_charpolyRev_eq_neg_trace
Mathlib/LinearAlgebra/Matrix/Charpoly/Coeff.lean
@[simp] lemma coeff_charpolyRev_eq_neg_trace (M : Matrix n n R) : coeff M.charpolyRev 1 = - trace M
case inl R : Type u inst✝² : CommRing R n : Type v inst✝¹ : DecidableEq n inst✝ : Fintype n M : Matrix n n R a✝ : Nontrivial R h✝ : IsEmpty n ⊢ M.charpolyRev.coeff 1 = -M.trace
simp [charpolyRev, coeff_one]
no goals
d1ce8fd4828bc34f
infinite_sum
Mathlib/Data/Fintype/Sum.lean
theorem infinite_sum : Infinite (α ⊕ β) ↔ Infinite α ∨ Infinite β
α : Type u_1 β : Type u_2 H : ¬Infinite α ∧ ¬Infinite β this✝ : Fintype α this : Fintype β ⊢ ¬Infinite (α ⊕ β)
exact Infinite.false
no goals
f9ba300294526652
AddCircle.continuousAt_equivIoc
Mathlib/Topology/Instances/AddCircle.lean
theorem continuousAt_equivIoc (hx : x ≠ a) : ContinuousAt (equivIoc p a) x
case H 𝕜 : Type u_1 inst✝³ : LinearOrderedAddCommGroup 𝕜 p : 𝕜 hp : Fact (0 < p) a : 𝕜 inst✝² : Archimedean 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 x : AddCircle p z✝ : 𝕜 hx : ↑z✝ ≠ ↑a ⊢ Filter.map (⇑(equivIoc p a) ∘ QuotientAddGroup.mk) (𝓝 z✝) ≤ 𝓝 ((equivIoc p a) ↑z✝)
exact (continuousAt_toIocMod hp.out a hx).codRestrict _
no goals
d8a2df19a895e89d
AddCircle.ae_empty_or_univ_of_forall_vadd_ae_eq_self
Mathlib/Dynamics/Ergodic/AddCircle.lean
theorem ae_empty_or_univ_of_forall_vadd_ae_eq_self {s : Set <| AddCircle T} (hs : NullMeasurableSet s volume) {ι : Type*} {l : Filter ι} [l.NeBot] {u : ι → AddCircle T} (hu₁ : ∀ i, (u i +ᵥ s : Set _) =ᵐ[volume] s) (hu₂ : Tendsto (addOrderOf ∘ u) l atTop) : s =ᵐ[volume] (∅ : Set <| AddCircle T) ∨ s =ᵐ[volume] univ
case inr.h T : ℝ hT : Fact (0 < T) s : Set (AddCircle T) ι : Type u_1 l : Filter ι inst✝ : l.NeBot u : ι → AddCircle T μ : Measure (AddCircle T) := volume hs : NullMeasurableSet s μ hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s n : ι → ℕ := addOrderOf ∘ u hu₂ : Tendsto n l atTop hT₀ : 0 < T hT₁ : ENNReal.ofReal T ≠ 0 h : μ s ≠ 0 ⊢ μ s = ENNReal.ofReal T
obtain ⟨d, -, hd⟩ : ∃ d, d ∈ s ∧ ∀ {ι'} {l : Filter ι'} (w : ι' → AddCircle T) (δ : ι' → ℝ), Tendsto δ l (𝓝[>] 0) → (∀ᶠ j in l, d ∈ closedBall (w j) (1 * δ j)) → Tendsto (fun j => μ (s ∩ closedBall (w j) (δ j)) / μ (closedBall (w j) (δ j))) l (𝓝 1) := exists_mem_of_measure_ne_zero_of_ae h (IsUnifLocDoublingMeasure.ae_tendsto_measure_inter_div μ s 1)
case inr.h.intro.intro T : ℝ hT : Fact (0 < T) s : Set (AddCircle T) ι : Type u_1 l : Filter ι inst✝ : l.NeBot u : ι → AddCircle T μ : Measure (AddCircle T) := volume hs : NullMeasurableSet s μ hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s n : ι → ℕ := addOrderOf ∘ u hu₂ : Tendsto n l atTop hT₀ : 0 < T hT₁ : ENNReal.ofReal T ≠ 0 h : μ s ≠ 0 d : AddCircle T hd : ∀ {ι' : Type ?u.6517} {l : Filter ι'} (w : ι' → AddCircle T) (δ : ι' → ℝ), Tendsto δ l (𝓝[>] 0) → (∀ᶠ (j : ι') in l, d ∈ closedBall (w j) (1 * δ j)) → Tendsto (fun j => μ (s ∩ closedBall (w j) (δ j)) / μ (closedBall (w j) (δ j))) l (𝓝 1) ⊢ μ s = ENNReal.ofReal T
caa1d183a972f27c
Submodule.LinearDisjoint.of_basis_right'
Mathlib/LinearAlgebra/LinearDisjoint.lean
theorem of_basis_right' {ι : Type*} (n : Basis ι R N) (H : Function.Injective (mulRightMap M n)) : M.LinearDisjoint N
R : Type u S : Type v inst✝² : CommSemiring R inst✝¹ : Semiring S inst✝ : Algebra R S M N : Submodule R S ι : Type u_1 n : Basis ι R ↥N H : Function.Injective ⇑(M.mulRightMap ⇑n) ⊢ M.LinearDisjoint N
simp_rw [mulRightMap_eq_mulMap_comp, ← Basis.coe_repr_symm, ← LinearEquiv.coe_lTensor, LinearEquiv.comp_coe, LinearMap.coe_comp, LinearEquiv.coe_coe, EquivLike.injective_comp] at H
R : Type u S : Type v inst✝² : CommSemiring R inst✝¹ : Semiring S inst✝ : Algebra R S M N : Submodule R S ι : Type u_1 n : Basis ι R ↥N H : Function.Injective ⇑(M.mulMap N) ⊢ M.LinearDisjoint N
515c1bdb72ddad0c
balancedCoreAux_balanced
Mathlib/Analysis/LocallyConvex/BalancedCoreHull.lean
theorem balancedCoreAux_balanced (h0 : (0 : E) ∈ balancedCoreAux 𝕜 s) : Balanced 𝕜 (balancedCoreAux 𝕜 s)
𝕜 : Type u_1 E : Type u_2 inst✝² : NormedDivisionRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E h0 : 0 ∈ balancedCoreAux 𝕜 s a : 𝕜 ha : ‖a‖ ≤ 1 y : E hy : ∀ (r : 𝕜), 1 ≤ ‖r‖ → y ∈ r • s h : a ≠ 0 r : 𝕜 hr : 1 ≤ ‖r‖ ⊢ 1 ≤ ‖a‖⁻¹ * ‖r‖
exact one_le_mul_of_one_le_of_one_le ((one_le_inv₀ (norm_pos_iff.mpr h)).2 ha) hr
no goals
d8dfb328ccf0ac15
Equiv.Perm.zpow_apply_eq_of_apply_apply_eq_self
Mathlib/GroupTheory/Perm/Support.lean
theorem zpow_apply_eq_of_apply_apply_eq_self {x : α} (hffx : f (f x) = x) : ∀ i : ℤ, (f ^ i) x = x ∨ (f ^ i) x = f x | (n : ℕ) => pow_apply_eq_of_apply_apply_eq_self hffx n | Int.negSucc n => by rw [zpow_negSucc, inv_eq_iff_eq, ← f.injective.eq_iff, ← mul_apply, ← pow_succ', eq_comm, inv_eq_iff_eq, ← mul_apply, ← pow_succ, @eq_comm _ x, or_comm] exact pow_apply_eq_of_apply_apply_eq_self hffx _
α : Type u_1 f : Perm α x : α hffx : f (f x) = x n : ℕ ⊢ (f ^ Int.negSucc n) x = x ∨ (f ^ Int.negSucc n) x = f x
rw [zpow_negSucc, inv_eq_iff_eq, ← f.injective.eq_iff, ← mul_apply, ← pow_succ', eq_comm, inv_eq_iff_eq, ← mul_apply, ← pow_succ, @eq_comm _ x, or_comm]
α : Type u_1 f : Perm α x : α hffx : f (f x) = x n : ℕ ⊢ (f ^ (n + 1 + 1)) x = x ∨ (f ^ (n + 1 + 1)) x = f x
3a8c355114bd8eaa
Batteries.RBNode.balance1_toList
Mathlib/.lake/packages/batteries/Batteries/Data/RBMap/Lemmas.lean
theorem balance1_toList {l : RBNode α} {v r} : (l.balance1 v r).toList = l.toList ++ v :: r.toList
α : Type u_1 l : RBNode α v : α r : RBNode α ⊢ (l.balance1 v r).toList = l.toList ++ v :: r.toList
unfold balance1
α : Type u_1 l : RBNode α v : α r : RBNode α ⊢ (match l, v, r with | node red (node red a x b) y c, z, d => node red (node black a x b) y (node black c z d) | node red a x (node red b y c), z, d => node red (node black a x b) y (node black c z d) | a, x, b => node black a x b).toList = l.toList ++ v :: r.toList
a86912f9c8139c07
Profinite.exists_locallyConstant_finite_aux
Mathlib/Topology/Category/Profinite/CofilteredLimit.lean
theorem exists_locallyConstant_finite_aux {α : Type*} [Finite α] (hC : IsLimit C) (f : LocallyConstant C.pt α) : ∃ (j : J) (g : LocallyConstant (F.obj j) (α → Fin 2)), (f.map fun a b => if a = b then (0 : Fin 2) else 1) = g.comap (C.π.app _).hom
case intro.intro J : Type v inst✝² : SmallCategory J inst✝¹ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝ : Finite α hC : IsLimit C f : LocallyConstant (↑C.pt.toTop) α val✝ : Fintype α ι : α → α → Fin 2 := fun x y => if x = y then 0 else 1 ff : α → LocallyConstant (↑C.pt.toTop) (Fin 2) := (LocallyConstant.map ι f).flip j : α → J g : (a : α) → LocallyConstant (↑(F.obj (j a)).toTop) (Fin 2) h : ∀ (a : α), ff a = LocallyConstant.comap (TopCat.Hom.hom (C.π.app (j a))) (g a) G : Finset J := Finset.image j Finset.univ j0 : J hj0 : ∀ {X : J}, X ∈ G → Nonempty (j0 ⟶ X) ⊢ ∃ j g, LocallyConstant.map (fun a b => if a = b then 0 else 1) f = LocallyConstant.comap (TopCat.Hom.hom (C.π.app j)) g
have hj : ∀ a, j a ∈ (Finset.univ.image j : Finset J) := by intro a simp only [Finset.mem_image, Finset.mem_univ, true_and, exists_apply_eq_apply]
case intro.intro J : Type v inst✝² : SmallCategory J inst✝¹ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝ : Finite α hC : IsLimit C f : LocallyConstant (↑C.pt.toTop) α val✝ : Fintype α ι : α → α → Fin 2 := fun x y => if x = y then 0 else 1 ff : α → LocallyConstant (↑C.pt.toTop) (Fin 2) := (LocallyConstant.map ι f).flip j : α → J g : (a : α) → LocallyConstant (↑(F.obj (j a)).toTop) (Fin 2) h : ∀ (a : α), ff a = LocallyConstant.comap (TopCat.Hom.hom (C.π.app (j a))) (g a) G : Finset J := Finset.image j Finset.univ j0 : J hj0 : ∀ {X : J}, X ∈ G → Nonempty (j0 ⟶ X) hj : ∀ (a : α), j a ∈ Finset.image j Finset.univ ⊢ ∃ j g, LocallyConstant.map (fun a b => if a = b then 0 else 1) f = LocallyConstant.comap (TopCat.Hom.hom (C.π.app j)) g
ad55d9835f0fad2e
MeasureTheory.maximal_ineq
Mathlib/Probability/Martingale/OptionalStopping.lean
theorem maximal_ineq [IsFiniteMeasure μ] (hsub : Submartingale f 𝒢 μ) (hnonneg : 0 ≤ f) {ε : ℝ≥0} (n : ℕ) : ε • μ {ω | (ε : ℝ) ≤ (range (n + 1)).sup' nonempty_range_succ fun k => f k ω} ≤ ENNReal.ofReal (∫ ω in {ω | (ε : ℝ) ≤ (range (n + 1)).sup' nonempty_range_succ fun k => f k ω}, f n ω ∂μ)
Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ hnonneg : 0 ≤ f ε : ℝ≥0 n : ℕ this : ε • μ {ω | ↑ε ≤ (range (n + 1)).sup' ⋯ fun k => f k ω} + ENNReal.ofReal (∫ (ω : Ω) in {ω | ((range (n + 1)).sup' ⋯ fun k => f k ω) < ↑ε}, f n ω ∂μ) ≤ ENNReal.ofReal (∫ (x : Ω), f n x ∂μ) ⊢ ENNReal.ofReal (∫ (ω : Ω), f n ω ∂μ) = ENNReal.ofReal (∫ (x : Ω) in {ω | ↑ε ≤ (range (n + 1)).sup' ⋯ fun k => f k ω} ∪ {ω | ((range (n + 1)).sup' ⋯ fun k => f k ω) < ↑ε}, f n x ∂μ)
rw [← setIntegral_univ]
Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ hnonneg : 0 ≤ f ε : ℝ≥0 n : ℕ this : ε • μ {ω | ↑ε ≤ (range (n + 1)).sup' ⋯ fun k => f k ω} + ENNReal.ofReal (∫ (ω : Ω) in {ω | ((range (n + 1)).sup' ⋯ fun k => f k ω) < ↑ε}, f n ω ∂μ) ≤ ENNReal.ofReal (∫ (x : Ω), f n x ∂μ) ⊢ ENNReal.ofReal (∫ (x : Ω) in Set.univ, f n x ∂μ) = ENNReal.ofReal (∫ (x : Ω) in {ω | ↑ε ≤ (range (n + 1)).sup' ⋯ fun k => f k ω} ∪ {ω | ((range (n + 1)).sup' ⋯ fun k => f k ω) < ↑ε}, f n x ∂μ)
7389c69afd10c321
DiscreteQuotient.map_ofLE
Mathlib/Topology/DiscreteQuotient.lean
theorem map_ofLE (cond : LEComap f A B) (h : A' ≤ A) (c : A') : map f cond (ofLE h c) = map f (cond.mono h le_rfl) c
X : Type u_2 Y : Type u_3 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y f : C(X, Y) A A' : DiscreteQuotient X B : DiscreteQuotient Y cond : LEComap f A B h : A' ≤ A c : Quotient A'.toSetoid ⊢ map f cond (ofLE h c) = map f ⋯ c
rcases c with ⟨⟩
case mk X : Type u_2 Y : Type u_3 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y f : C(X, Y) A A' : DiscreteQuotient X B : DiscreteQuotient Y cond : LEComap f A B h : A' ≤ A c : Quotient A'.toSetoid a✝ : X ⊢ map f cond (ofLE h (Quot.mk (⇑A'.toSetoid) a✝)) = map f ⋯ (Quot.mk (⇑A'.toSetoid) a✝)
639aa028a2f2cc81
Profinite.NobelingProof.GoodProducts.maxTail_isGood
Mathlib/Topology/Category/Profinite/Nobeling.lean
theorem maxTail_isGood (l : MaxProducts C ho) (h₁ : ⊤ ≤ Submodule.span ℤ (Set.range (eval (π C (ord I · < o))))) : l.val.Tail.isGood (C' C ho)
case h I : Type u C : Set (I → Bool) inst✝¹ : LinearOrder I inst✝ : WellFoundedLT I o : Ordinal.{u} hC : IsClosed C hsC : contained C (Order.succ o) ho : o < Ordinal.type fun x1 x2 => x1 < x2 l : ↑(MaxProducts C ho) h₁ : ⊤ ≤ Submodule.span ℤ (Set.range (eval (π C fun x => ord I x < o))) this : Inhabited I m : Products I →₀ ℤ hmmem : ↑m.support ⊆ {m | m < (↑l).Tail} hmsum : (m.sum fun i a => a • Products.eval (C' C ho) i) = (Linear_CC' C hsC ho) (Products.eval C ↑l) q : Products I hq : q ∈ m.support ⊢ m q • Products.eval (C' C ho) q = m q • (Linear_CC' C hsC ho) (List.map (e C) (term I ho :: ↑q)).prod
have hx'' : q < l.val.Tail := hmmem hq
case h I : Type u C : Set (I → Bool) inst✝¹ : LinearOrder I inst✝ : WellFoundedLT I o : Ordinal.{u} hC : IsClosed C hsC : contained C (Order.succ o) ho : o < Ordinal.type fun x1 x2 => x1 < x2 l : ↑(MaxProducts C ho) h₁ : ⊤ ≤ Submodule.span ℤ (Set.range (eval (π C fun x => ord I x < o))) this : Inhabited I m : Products I →₀ ℤ hmmem : ↑m.support ⊆ {m | m < (↑l).Tail} hmsum : (m.sum fun i a => a • Products.eval (C' C ho) i) = (Linear_CC' C hsC ho) (Products.eval C ↑l) q : Products I hq : q ∈ m.support hx'' : q < (↑l).Tail ⊢ m q • Products.eval (C' C ho) q = m q • (Linear_CC' C hsC ho) (List.map (e C) (term I ho :: ↑q)).prod
71fdaf74452759e3
ENNReal.exists_mem_Ico_zpow
Mathlib/Data/ENNReal/Inv.lean
theorem exists_mem_Ico_zpow {x y : ℝ≥0∞} (hx : x ≠ 0) (h'x : x ≠ ∞) (hy : 1 < y) (h'y : y ≠ ⊤) : ∃ n : ℤ, x ∈ Ico (y ^ n) (y ^ (n + 1))
x : ℝ≥0 hx : ↑x ≠ 0 y : ℝ≥0 hy : 1 < ↑y ⊢ y ≠ 0
simpa only [Ne, coe_eq_zero] using (zero_lt_one.trans hy).ne'
no goals
cffdb470f1d2f180
Asymptotics.IsEquivalent.smul
Mathlib/Analysis/Asymptotics/AsymptoticEquivalent.lean
theorem IsEquivalent.smul {α E 𝕜 : Type*} [NormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] {a b : α → 𝕜} {u v : α → E} {l : Filter α} (hab : a ~[l] b) (huv : u ~[l] v) : (fun x ↦ a x • u x) ~[l] fun x ↦ b x • v x
α : Type u_1 E : Type u_2 𝕜 : Type u_3 inst✝² : NormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E a b : α → 𝕜 u v : α → E l : Filter α hab : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x : α) in l, ‖(a - b) x‖ ≤ c * ‖b x‖ φ : α → 𝕜 habφ : a =ᶠ[l] φ * b this : ((fun x => a x • u x) - fun x => b x • v x) =ᶠ[l] fun x => b x • (φ x • u x - v x) C : ℝ hC : C > 0 hCuv : ∀ᶠ (x : α) in l, ‖u x‖ ≤ C * ‖v x‖ c : ℝ hc : 0 < c hφ : ∀ᶠ (x : α) in l, ‖φ x - 1‖ < c / 2 / C huv : ∀ᶠ (x : α) in l, ‖(u - v) x‖ ≤ c / 2 * ‖v x‖ x : α hCuvx : ‖u x‖ ≤ C * ‖v x‖ huvx : ‖(u - v) x‖ ≤ c / 2 * ‖v x‖ hφx : ‖φ x - 1‖ < c / 2 / C ⊢ ‖φ x - 1‖ * ‖u x‖ ≤ c / 2 / C * ‖u x‖
gcongr
no goals
1fc300a902bb7f39
Int.eq_succ_of_zero_lt
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Int/Order.lean
theorem eq_succ_of_zero_lt {a : Int} (h : 0 < a) : ∃ n : Nat, a = n.succ := let ⟨n, (h : ↑(1 + n) = a)⟩ := le.dest h ⟨n, by rw [Nat.add_comm] at h; exact h.symm⟩
a : Int h✝ : 0 < a n : Nat h : ↑(n + 1) = a ⊢ a = ↑n.succ
exact h.symm
no goals
fe9a752e18ea3ab6
IsLindelof.countable_of_discrete
Mathlib/Topology/Compactness/Lindelof.lean
theorem IsLindelof.countable_of_discrete [DiscreteTopology X] (hs : IsLindelof s) : s.Countable
X : Type u inst✝¹ : TopologicalSpace X s : Set X inst✝ : DiscreteTopology X hs : IsLindelof s ⊢ ∀ (x : X), {x} ∈ 𝓝 x
simp [nhds_discrete]
no goals
1f0daf8fd68879c4
ite_iff_ite
Mathlib/.lake/packages/lean4/src/lean/Init/PropLemmas.lean
theorem ite_iff_ite (p : Prop) {h h' : Decidable p} (x y : Prop) : (@ite _ p h x y ↔ @ite _ p h' x y) ↔ True
p : Prop h h' : Decidable p x y : Prop ⊢ ((if p then x else y) ↔ if p then x else y) ↔ True
rw [iff_true]
p : Prop h h' : Decidable p x y : Prop ⊢ (if p then x else y) ↔ if p then x else y
328ab7a364efd5f6
Filter.EventuallyEq.of_mulIndicator
Mathlib/Order/Filter/IndicatorFunction.lean
theorem Filter.EventuallyEq.of_mulIndicator [One β] {l : Filter α} {f : α → β} (hf : ∀ᶠ x in l, f x ≠ 1) {s t : Set α} (h : s.mulIndicator f =ᶠ[l] t.mulIndicator f) : s =ᶠ[l] t
α : Type u_1 β : Type u_2 inst✝ : One β l : Filter α f : α → β hf : ∀ᶠ (x : α) in l, f x ≠ 1 s t : Set α h : s.mulIndicator f =ᶠ[l] t.mulIndicator f ⊢ s =ᶠ[l] t
have : ∀ {s : Set α}, Function.mulSupport (s.mulIndicator f) =ᶠ[l] s := fun {s} ↦ by rw [mulSupport_mulIndicator] exact (hf.mono fun x hx ↦ and_iff_left hx).set_eq
α : Type u_1 β : Type u_2 inst✝ : One β l : Filter α f : α → β hf : ∀ᶠ (x : α) in l, f x ≠ 1 s t : Set α h : s.mulIndicator f =ᶠ[l] t.mulIndicator f this : ∀ {s : Set α}, Function.mulSupport (s.mulIndicator f) =ᶠ[l] s ⊢ s =ᶠ[l] t
2dada3411376bc4f
CategoryTheory.Localization.Construction.morphismProperty_is_top
Mathlib/CategoryTheory/Localization/Construction.lean
theorem morphismProperty_is_top (P : MorphismProperty W.Localization) [P.IsStableUnderComposition] (hP₁ : ∀ ⦃X Y : C⦄ (f : X ⟶ Y), P (W.Q.map f)) (hP₂ : ∀ ⦃X Y : C⦄ (w : X ⟶ Y) (hw : W w), P (wInv w hw)) : P = ⊤
case h.h.h.a.mpr.cons C : Type uC inst✝¹ : Category.{uC', uC} C W : MorphismProperty C P : MorphismProperty W.Localization inst✝ : P.IsStableUnderComposition hP₁ : ∀ ⦃X Y : C⦄ (f : X ⟶ Y), P (W.Q.map f) hP₂ : ∀ ⦃X Y : C⦄ (w : X ⟶ Y) (hw : W w), P (wInv w hw) X Y : W.Localization f : X ⟶ Y a✝ : ⊤ f G : Paths (LocQuiver W) ⥤ W.Localization := Quotient.functor (relations W) this : G.Full X₁ X₂✝ X₂ X₃ : Paths (LocQuiver W) p : Quiver.Path X₁ X₂ g : X₂ ⟶ X₃ hp : P (G.map p) p' : X₁ ⟶ X₂ := p ⊢ P (G.map p' ≫ G.map g.toPath)
refine P.comp_mem _ _ hp ?_
case h.h.h.a.mpr.cons C : Type uC inst✝¹ : Category.{uC', uC} C W : MorphismProperty C P : MorphismProperty W.Localization inst✝ : P.IsStableUnderComposition hP₁ : ∀ ⦃X Y : C⦄ (f : X ⟶ Y), P (W.Q.map f) hP₂ : ∀ ⦃X Y : C⦄ (w : X ⟶ Y) (hw : W w), P (wInv w hw) X Y : W.Localization f : X ⟶ Y a✝ : ⊤ f G : Paths (LocQuiver W) ⥤ W.Localization := Quotient.functor (relations W) this : G.Full X₁ X₂✝ X₂ X₃ : Paths (LocQuiver W) p : Quiver.Path X₁ X₂ g : X₂ ⟶ X₃ hp : P (G.map p) p' : X₁ ⟶ X₂ := p ⊢ P (G.map g.toPath)
bfd1f03091fbe383
Ordinal.bsup_succ_le_blsub
Mathlib/SetTheory/Ordinal/Arithmetic.lean
theorem bsup_succ_le_blsub {o : Ordinal.{u}} (f : ∀ a < o, Ordinal.{max u v}) : succ (bsup.{_, v} o f) ≤ blsub.{_, v} o f ↔ ∃ i hi, f i hi = bsup.{_, v} o f
case refine_1 o : Ordinal.{u} f : (a : Ordinal.{u}) → a < o → Ordinal.{max u v} h : succ (o.bsup f) ≤ o.blsub f ⊢ ∃ i, ∃ (hi : i < o), f i hi = o.bsup f
by_contra! hf
case refine_1 o : Ordinal.{u} f : (a : Ordinal.{u}) → a < o → Ordinal.{max u v} h : succ (o.bsup f) ≤ o.blsub f hf : ∀ (i : Ordinal.{u}) (hi : i < o), f i hi ≠ o.bsup f ⊢ False
a42b5f68d8abe58d
ContinuousOn.if
Mathlib/Topology/ContinuousOn.lean
theorem ContinuousOn.if {p : α → Prop} [∀ a, Decidable (p a)] (hp : ∀ a ∈ s ∩ frontier { a | p a }, f a = g a) (hf : ContinuousOn f <| s ∩ closure { a | p a }) (hg : ContinuousOn g <| s ∩ closure { a | ¬p a }) : ContinuousOn (fun a => if p a then f a else g a) s
case hpg.intro.intro α : Type u_1 β : Type u_2 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β f g : α → β s : Set α p : α → Prop inst✝ : (a : α) → Decidable (p a) hp : ∀ a ∈ s ∩ frontier {a | p a}, f a = g a hf : ContinuousOn f (s ∩ closure {a | p a}) hg : ContinuousOn g (s ∩ closure {a | ¬p a}) a : α has : a ∈ s left✝ : a ∈ closure {a | p a} ha : a ∉ interior {a | p a} ⊢ Tendsto g (𝓝[s ∩ closure {a | ¬p a}] a) (𝓝 (g a))
rw [← mem_compl_iff, ← closure_compl] at ha
case hpg.intro.intro α : Type u_1 β : Type u_2 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β f g : α → β s : Set α p : α → Prop inst✝ : (a : α) → Decidable (p a) hp : ∀ a ∈ s ∩ frontier {a | p a}, f a = g a hf : ContinuousOn f (s ∩ closure {a | p a}) hg : ContinuousOn g (s ∩ closure {a | ¬p a}) a : α has : a ∈ s left✝ : a ∈ closure {a | p a} ha : a ∈ closure {a | p a}ᶜ ⊢ Tendsto g (𝓝[s ∩ closure {a | ¬p a}] a) (𝓝 (g a))
342fb5057472ed38
Submodule.one_le_finrank_iff
Mathlib/LinearAlgebra/Dimension/Finite.lean
@[simp] lemma Submodule.one_le_finrank_iff [StrongRankCondition R] [NoZeroSMulDivisors R M] {S : Submodule R M} [Module.Finite R S] : 1 ≤ finrank R S ↔ S ≠ ⊥
R : Type u M : Type v inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : StrongRankCondition R inst✝¹ : NoZeroSMulDivisors R M S : Submodule R M inst✝ : Module.Finite R ↥S ⊢ 1 ≤ finrank R ↥S ↔ S ≠ ⊥
simp [← not_iff_not]
no goals
88f93c598a8c1a70
RingHom.locally_iff_isLocalization
Mathlib/RingTheory/RingHom/Locally.lean
/-- In the definition of `Locally` we may replace `Localization.Away` with an arbitrary algebra satisfying `IsLocalization.Away`. -/ lemma locally_iff_isLocalization (hP : RespectsIso P) (f : R →+* S) : Locally P f ↔ ∃ (s : Finset S) (_ : Ideal.span (s : Set S) = ⊤), ∀ t ∈ s, ∀ (Sₜ : Type u) [CommRing Sₜ] [Algebra S Sₜ] [IsLocalization.Away t Sₜ], P ((algebraMap S Sₜ).comp f)
case refine_1 P : {R S : Type u} → [inst : CommRing R] → [inst_1 : CommRing S] → (R →+* S) → Prop R S : Type u inst✝¹ : CommRing R inst✝ : CommRing S hP : RespectsIso fun {R S} [CommRing R] [CommRing S] => P f : R →+* S x✝³ : ∃ s, ∃ (_ : Ideal.span ↑s = ⊤), ∀ t ∈ s, P ((algebraMap S (Localization.Away t)).comp f) s : Finset S hsone : Ideal.span ↑s = ⊤ hs : ∀ t ∈ s, P ((algebraMap S (Localization.Away t)).comp f) t : S ht : t ∈ s Sₜ : Type u x✝² : CommRing Sₜ x✝¹ : Algebra S Sₜ x✝ : IsLocalization.Away t Sₜ e : Localization.Away t ≃+* Sₜ := (IsLocalization.algEquiv (Submonoid.powers t) (Localization.Away t) Sₜ).toRingEquiv this : algebraMap S Sₜ = e.toRingHom.comp (algebraMap S (Localization.Away t)) ⊢ P (e.toRingHom.comp ((algebraMap S (Localization.Away t)).comp f))
exact hP.left _ _ (hs t ht)
no goals
48f562d83319536b
isProperMap_iff_tendsto_cocompact
Mathlib/Topology/Maps/Proper/CompactlyGenerated.lean
/-- Version of `isProperMap_iff_isCompact_preimage` in terms of `cocompact`. There was an older version of this theorem which was changed to this one to make use of the `CompactlyGeneratedSpace` typeclass. (since 2024-11-10) -/ lemma isProperMap_iff_tendsto_cocompact : IsProperMap f ↔ Continuous f ∧ Tendsto f (cocompact X) (cocompact Y)
X : Type u_1 Y : Type u_2 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : T2Space Y inst✝ : CompactlyGeneratedSpace Y f : X → Y f_cont : Continuous f H : ∀ (i : Set Y), IsCompact i → (f ⁻¹' i)ᶜ ∈ cocompact X K : Set Y hK : IsCompact K ⊢ IsCompact (f ⁻¹' K)
rcases mem_cocompact.mp (H K hK) with ⟨K', hK', hK'y⟩
case intro.intro X : Type u_1 Y : Type u_2 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : T2Space Y inst✝ : CompactlyGeneratedSpace Y f : X → Y f_cont : Continuous f H : ∀ (i : Set Y), IsCompact i → (f ⁻¹' i)ᶜ ∈ cocompact X K : Set Y hK : IsCompact K K' : Set X hK' : IsCompact K' hK'y : K'ᶜ ⊆ (f ⁻¹' K)ᶜ ⊢ IsCompact (f ⁻¹' K)
695fdbdec5ba9365
measurableSet_bddAbove_range
Mathlib/MeasureTheory/Constructions/BorelSpace/Order.lean
lemma measurableSet_bddAbove_range {ι} [Countable ι] {f : ι → δ → α} (hf : ∀ i, Measurable (f i)) : MeasurableSet {b | BddAbove (range (fun i ↦ f i b))}
case inr α : Type u_1 δ : Type u_4 inst✝⁵ : TopologicalSpace α mα : MeasurableSpace α inst✝⁴ : BorelSpace α mδ : MeasurableSpace δ inst✝³ : LinearOrder α inst✝² : OrderTopology α inst✝¹ : SecondCountableTopology α ι : Sort u_5 inst✝ : Countable ι f : ι → δ → α hf : ∀ (i : ι), Measurable (f i) hα : Nonempty α A : ∀ (i : ι) (c : α), MeasurableSet {x | f i x ≤ c} B : ∀ (c : α), MeasurableSet {x | ∀ (i : ι), f i x ≤ c} ⊢ MeasurableSet {b | BddAbove (range fun i => f i b)}
obtain ⟨u, hu⟩ : ∃ (u : ℕ → α), Tendsto u atTop atTop := exists_seq_tendsto (atTop : Filter α)
case inr.intro α : Type u_1 δ : Type u_4 inst✝⁵ : TopologicalSpace α mα : MeasurableSpace α inst✝⁴ : BorelSpace α mδ : MeasurableSpace δ inst✝³ : LinearOrder α inst✝² : OrderTopology α inst✝¹ : SecondCountableTopology α ι : Sort u_5 inst✝ : Countable ι f : ι → δ → α hf : ∀ (i : ι), Measurable (f i) hα : Nonempty α A : ∀ (i : ι) (c : α), MeasurableSet {x | f i x ≤ c} B : ∀ (c : α), MeasurableSet {x | ∀ (i : ι), f i x ≤ c} u : ℕ → α hu : Tendsto u atTop atTop ⊢ MeasurableSet {b | BddAbove (range fun i => f i b)}
2ea9408e1624118d
BitVec.append_zero_width
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Lemmas.lean
theorem append_zero_width (x : BitVec w) (y : BitVec 0) : x ++ y = x
case pred w : Nat x : BitVec w y : BitVec 0 i✝ : Nat a✝ : i✝ < w + 0 ⊢ (if i✝ < 0 then y.getLsbD i✝ else x.getLsbD (i✝ - 0)) = x.getLsbD i✝
simp
no goals
f9b160d56cb6e16e
CategoryTheory.SingleFunctors.shiftIso_zero_hom_app
Mathlib/CategoryTheory/Shift/SingleFunctors.lean
@[simp] lemma shiftIso_zero_hom_app (a : A) (X : C) : (F.shiftIso 0 a a (zero_add a)).hom.app X = (shiftFunctorZero D A).hom.app _
C : Type u_1 D : Type u_2 inst✝³ : Category.{u_7, u_1} C inst✝² : Category.{u_6, u_2} D A : Type u_5 inst✝¹ : AddMonoid A inst✝ : HasShift D A F : SingleFunctors C D A a : A X : C ⊢ (F.shiftIso 0 a a ⋯).hom.app X = (shiftFunctorZero D A).hom.app ((F.functor a).obj X)
rw [shiftIso_zero]
C : Type u_1 D : Type u_2 inst✝³ : Category.{u_7, u_1} C inst✝² : Category.{u_6, u_2} D A : Type u_5 inst✝¹ : AddMonoid A inst✝ : HasShift D A F : SingleFunctors C D A a : A X : C ⊢ (isoWhiskerLeft (F.functor a) (shiftFunctorZero D A)).hom.app X = (shiftFunctorZero D A).hom.app ((F.functor a).obj X)
904568f0628d1381
MeasureTheory.Martingale.condExp_stopping_time_ae_eq_restrict_eq_const_of_le_const
Mathlib/Probability/Martingale/OptionalSampling.lean
theorem condExp_stopping_time_ae_eq_restrict_eq_const_of_le_const (h : Martingale f ℱ μ) (hτ : IsStoppingTime ℱ τ) (hτ_le : ∀ x, τ x ≤ n) [SigmaFinite (μ.trim (hτ.measurableSpace_le_of_le hτ_le))] (i : ι) : μ[f n|hτ.measurableSpace] =ᵐ[μ.restrict {x | τ x = i}] f i
case neg.h Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : CompleteSpace E ι : Type u_3 inst✝⁵ : LinearOrder ι inst✝⁴ : TopologicalSpace ι inst✝³ : OrderTopology ι inst✝² : FirstCountableTopology ι ℱ : Filtration ι m inst✝¹ : SigmaFiniteFiltration μ ℱ τ : Ω → ι f : ι → Ω → E n : ι h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hτ_le : ∀ (x : Ω), τ x ≤ n inst✝ : SigmaFinite (μ.trim ⋯) i : ι hin : ¬i ≤ n x : Ω ⊢ x ∈ {x | τ x = i} ↔ x ∈ ∅
simp only [Set.mem_setOf_eq, Set.mem_empty_iff_false, iff_false]
case neg.h Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : CompleteSpace E ι : Type u_3 inst✝⁵ : LinearOrder ι inst✝⁴ : TopologicalSpace ι inst✝³ : OrderTopology ι inst✝² : FirstCountableTopology ι ℱ : Filtration ι m inst✝¹ : SigmaFiniteFiltration μ ℱ τ : Ω → ι f : ι → Ω → E n : ι h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hτ_le : ∀ (x : Ω), τ x ≤ n inst✝ : SigmaFinite (μ.trim ⋯) i : ι hin : ¬i ≤ n x : Ω ⊢ ¬τ x = i
f56f2f7145da6813
Int.lt_zpow_succ_log_self
Mathlib/Data/Int/Log.lean
theorem lt_zpow_succ_log_self {b : ℕ} (hb : 1 < b) (r : R) : r < (b : R) ^ (log b r + 1)
case inr.inl R : Type u_1 inst✝¹ : LinearOrderedSemifield R inst✝ : FloorSemiring R b : ℕ hb : 1 < b r : R hr : 0 < r hr1 : 1 ≤ r ⊢ r < ↑b ^ (↑(Nat.log b ⌊r⌋₊) + 1)
rw [Int.ofNat_add_one_out, zpow_natCast, ← Nat.cast_pow]
case inr.inl R : Type u_1 inst✝¹ : LinearOrderedSemifield R inst✝ : FloorSemiring R b : ℕ hb : 1 < b r : R hr : 0 < r hr1 : 1 ≤ r ⊢ r < ↑(b ^ (Nat.log b ⌊r⌋₊).succ)
d923e983e06cf99e
MeasureTheory.Submartingale.neg
Mathlib/Probability/Martingale/Basic.lean
theorem neg [Preorder E] [AddLeftMono E] (hf : Submartingale f ℱ μ) : Supermartingale (-f) ℱ μ
case h Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁵ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E f : ι → Ω → E ℱ : Filtration ι m0 inst✝¹ : Preorder E inst✝ : AddLeftMono E hf : Submartingale f ℱ μ i j : ι hij : i ≤ j a✝¹ : Ω a✝ : f i a✝¹ ≤ (μ[f j|↑ℱ i]) a✝¹ ⊢ (-μ[f j|↑ℱ i]) a✝¹ ≤ (-f) i a✝¹
simpa
no goals
f0607f80a235e382
SimpleGraph.Walk.not_nil_of_isCycle_cons
Mathlib/Combinatorics/SimpleGraph/Path.lean
lemma not_nil_of_isCycle_cons {p : G.Walk u v} {h : G.Adj v u} (hc : (Walk.cons h p).IsCycle) : ¬ p.Nil
V : Type u G : SimpleGraph V u v : V p : G.Walk u v h : G.Adj v u hc : (cons h p).IsCycle this : 3 ≤ p.length + 1 ⊢ 0 < p.length
omega
no goals
74acab2b384981d7
List.eraseIdx_insertIdx
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Nat/InsertIdx.lean
theorem eraseIdx_insertIdx (n : Nat) (l : List α) : (l.insertIdx n a).eraseIdx n = l
α : Type u a : α n : Nat l : List α ⊢ (insertIdx n a l).eraseIdx n = l
rw [eraseIdx_eq_modifyTailIdx, insertIdx, modifyTailIdx_modifyTailIdx_self]
α : Type u a : α n : Nat l : List α ⊢ modifyTailIdx (tail ∘ cons a) n l = l
b0bfb81c607a14dd
exists_vector_succ
Mathlib/Data/Vector3.lean
theorem exists_vector_succ (f : Vector3 α (succ n) → Prop) : Exists f ↔ ∃ x v, f (x :: v) := ⟨fun ⟨v, fv⟩ => ⟨_, _, by rw [cons_head_tail v]; exact fv⟩, fun ⟨_, _, fxv⟩ => ⟨_, fxv⟩⟩
α : Type u_1 n : ℕ f : Vector3 α n.succ → Prop x✝ : Exists f v : Vector3 α n.succ fv : f v ⊢ f (?m.22125 x✝ v fv :: ?m.22126 x✝ v fv)
rw [cons_head_tail v]
α : Type u_1 n : ℕ f : Vector3 α n.succ → Prop x✝ : Exists f v : Vector3 α n.succ fv : f v ⊢ f v
25a8351d10864f6e
ENNReal.biSup_add'
Mathlib/Data/ENNReal/Inv.lean
lemma biSup_add' {p : ι → Prop} (h : ∃ i, p i) (f : ι → ℝ≥0∞) : (⨆ i, ⨆ _ : p i, f i) + a = ⨆ i, ⨆ _ : p i, f i + a
ι : Sort u_1 a : ℝ≥0∞ p : ι → Prop h : ∃ i, p i f : ι → ℝ≥0∞ ⊢ (⨆ i, ⨆ (_ : p i), f i) + a = ⨆ i, ⨆ (_ : p i), f i + a
simp only [add_comm, add_biSup' h]
no goals
1898be706f93d49b
SetTheory.PGame.Impartial.forall_leftMoves_fuzzy_iff_equiv_zero
Mathlib/SetTheory/Game/Impartial.lean
theorem forall_leftMoves_fuzzy_iff_equiv_zero : (∀ i, G.moveLeft i ‖ 0) ↔ G ≈ 0
case refine_2 G : PGame inst✝ : G.Impartial hp : G ≈ 0 i : G.LeftMoves ⊢ G.moveLeft i ‖ 0
rw [fuzzy_zero_iff_lf]
case refine_2 G : PGame inst✝ : G.Impartial hp : G ≈ 0 i : G.LeftMoves ⊢ G.moveLeft i ⧏ 0
fc4280f0775ba6f7
ProbabilityTheory.condExp_eq_zero_or_one_of_condIndepSet_self
Mathlib/Probability/Independence/ZeroOne.lean
theorem condExp_eq_zero_or_one_of_condIndepSet_self [StandardBorelSpace Ω] (hm : m ≤ m0) [hμ : IsFiniteMeasure μ] {t : Set Ω} (ht : MeasurableSet t) (h_indep : CondIndepSet m hm t t μ) : ∀ᵐ ω ∂μ, (μ⟦t | m⟧) ω = 0 ∨ (μ⟦t | m⟧) ω = 1
case h.inl Ω : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω inst✝ : StandardBorelSpace Ω hm : m ≤ m0 hμ : IsFiniteMeasure μ t : Set Ω ht : MeasurableSet t h_indep : CondIndepSet m hm t t μ this : ∀ (a : Ω), IsFiniteMeasure ((condExpKernel μ m) a) h✝ : ∀ᵐ (x : Ω) ∂μ, ((condExpKernel μ m) x) t = 0 ∨ ((condExpKernel μ m) x) t = 1 ω : Ω hω_eq : (((condExpKernel μ m) ω) t).toReal = (μ[t.indicator fun ω => 1|m]) ω h : ((condExpKernel μ m) ω) t = 0 ⊢ (((condExpKernel μ m) ω) t = 0 ∨ ((condExpKernel μ m) ω) t = ⊤) ∨ ((condExpKernel μ m) ω) t = 1
exact Or.inl (Or.inl h)
no goals
aecb617e5da492aa
AddMonoidAlgebra.apply_add_of_supDegree_le
Mathlib/Algebra/MonoidAlgebra/Degree.lean
theorem apply_add_of_supDegree_le (hadd : ∀ a1 a2, D (a1 + a2) = D a1 + D a2) [AddLeftStrictMono B] [AddRightStrictMono B] (hD : D.Injective) {ap aq : A} (hp : p.supDegree D ≤ D ap) (hq : q.supDegree D ≤ D aq) : (p * q) (ap + aq) = p ap * q aq
case h₀ R : Type u_1 A : Type u_3 B : Type u_5 inst✝⁶ : Semiring R inst✝⁵ : SemilatticeSup B inst✝⁴ : OrderBot B D : A → B inst✝³ : AddZeroClass A p q : R[A] inst✝² : Add B hadd : ∀ (a1 a2 : A), D (a1 + a2) = D a1 + D a2 inst✝¹ : AddLeftStrictMono B inst✝ : AddRightStrictMono B hD : Function.Injective D ap aq : A hp : supDegree D p ≤ D ap hq : supDegree D q ≤ D aq a : A ha : a ∈ q.support hne : a ≠ aq he : D (ap + a) = D (ap + aq) ⊢ False
simp_rw [hadd] at he
case h₀ R : Type u_1 A : Type u_3 B : Type u_5 inst✝⁶ : Semiring R inst✝⁵ : SemilatticeSup B inst✝⁴ : OrderBot B D : A → B inst✝³ : AddZeroClass A p q : R[A] inst✝² : Add B hadd : ∀ (a1 a2 : A), D (a1 + a2) = D a1 + D a2 inst✝¹ : AddLeftStrictMono B inst✝ : AddRightStrictMono B hD : Function.Injective D ap aq : A hp : supDegree D p ≤ D ap hq : supDegree D q ≤ D aq a : A ha : a ∈ q.support hne : a ≠ aq he : D ap + D a = D ap + D aq ⊢ False
dca14f257dfac70d
LinearMap.iterateMapComap_eq_succ
Mathlib/Algebra/Module/Submodule/IterateMapComap.lean
theorem iterateMapComap_eq_succ (K : Submodule R N) (m : ℕ) (heq : f.iterateMapComap i m K = f.iterateMapComap i (m + 1) K) (hf : Surjective f) (hi : Injective i) (n : ℕ) : f.iterateMapComap i n K = f.iterateMapComap i (n + 1) K
case zero.succ R : Type u_1 N : Type u_2 M : Type u_3 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid M inst✝ : Module R M f i : N →ₗ[R] M K : Submodule R N hf : Surjective ⇑f hi : Injective ⇑i heq : f.iterateMapComap i 0 K ≠ f.iterateMapComap i (0 + 1) K m : ℕ ih : f.iterateMapComap i m K ≠ f.iterateMapComap i (m + 1) K ⊢ ((fun K => comap f (map i K)) ∘ (fun K => comap f (map i K))^[m]) K ≠ ((fun K => comap f (map i K)) ∘ (fun K => comap f (map i K))^[m + 1]) K
exact fun H ↦ ih (map_injective_of_injective hi (comap_injective_of_surjective hf H))
no goals
aefaed022eb94959
coe_setBasisOfLinearIndependentOfCardEqFinrank
Mathlib/LinearAlgebra/FiniteDimensional.lean
theorem coe_setBasisOfLinearIndependentOfCardEqFinrank {s : Set V} [Nonempty s] [Fintype s] (lin_ind : LinearIndependent K ((↑) : s → V)) (card_eq : s.toFinset.card = finrank K V) : ⇑(setBasisOfLinearIndependentOfCardEqFinrank lin_ind card_eq) = ((↑) : s → V)
K : Type u V : Type v inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : Module K V s : Set V inst✝¹ : Nonempty ↑s inst✝ : Fintype ↑s lin_ind : LinearIndependent K Subtype.val card_eq : s.toFinset.card = finrank K V ⊢ ⇑(basisOfLinearIndependentOfCardEqFinrank lin_ind ⋯) = Subtype.val
exact Basis.coe_mk _ _
no goals
c8ff7cf4a9065a35
frontier_Ioo
Mathlib/Topology/Order/DenselyOrdered.lean
theorem frontier_Ioo {a b : α} (h : a < b) : frontier (Ioo a b) = {a, b}
α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a b : α h : a < b ⊢ frontier (Ioo a b) = {a, b}
rw [frontier, closure_Ioo h.ne, interior_Ioo, Icc_diff_Ioo_same h.le]
no goals
d4762eec44141e63
Int.lt_of_add_lt_add_left
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Int/Order.lean
theorem lt_of_add_lt_add_left {a b c : Int} (h : a + b < a + c) : b < c
a b c : Int h : a + b < a + c ⊢ b < c
have : -a + (a + b) < -a + (a + c) := Int.add_lt_add_left h _
a b c : Int h : a + b < a + c this : -a + (a + b) < -a + (a + c) ⊢ b < c
a415f2d257d47c22
Complex.hasSum_taylorSeries_neg_log
Mathlib/Analysis/SpecialFunctions/Complex/LogBounds.lean
/-- The series `∑ z^n/n` converges to `-log (1-z)` on the open unit disk. -/ lemma hasSum_taylorSeries_neg_log {z : ℂ} (hz : ‖z‖ < 1) : HasSum (fun n : ℕ ↦ z ^ n / n) (-log (1 - z))
case h.e'_5.h.inr.hb z : ℂ hz : ‖z‖ < 1 n : ℕ hn : n > 0 ⊢ ↑n ≠ 0 case h.e'_5.h.inr.hd z : ℂ hz : ‖z‖ < 1 n : ℕ hn : n > 0 ⊢ ↑n ≠ 0
all_goals {norm_cast; exact hn.ne'}
no goals
e0a75ab7c4c4ee6b
MvPowerSeries.constantCoeff_invOfUnit
Mathlib/RingTheory/MvPowerSeries/Inverse.lean
theorem constantCoeff_invOfUnit (φ : MvPowerSeries σ R) (u : Rˣ) : constantCoeff σ R (invOfUnit φ u) = ↑u⁻¹
σ : Type u_1 R : Type u_2 inst✝ : Ring R φ : MvPowerSeries σ R u : Rˣ ⊢ (constantCoeff σ R) (φ.invOfUnit u) = ↑u⁻¹
rw [← coeff_zero_eq_constantCoeff_apply, coeff_invOfUnit, if_pos rfl]
no goals
c9d098c27bb1f219
CategoryTheory.InjectiveResolution.toRightDerivedZero_eq
Mathlib/CategoryTheory/Abelian/RightDerived.lean
lemma InjectiveResolution.toRightDerivedZero_eq {X : C} (I : InjectiveResolution X) (F : C ⥤ D) [F.Additive] : F.toRightDerivedZero.app X = I.toRightDerivedZero' F ≫ (CochainComplex.isoHomologyπ₀ _).hom ≫ (I.isoRightDerivedObj F 0).inv
C : Type u inst✝⁵ : Category.{v, u} C D : Type u_1 inst✝⁴ : Category.{u_2, u_1} D inst✝³ : Abelian C inst✝² : HasInjectiveResolutions C inst✝¹ : Abelian D X : C I : InjectiveResolution X F : C ⥤ D inst✝ : F.Additive ⊢ F.toRightDerivedZero.app X = I.toRightDerivedZero' F ≫ (CochainComplex.isoHomologyπ₀ ((F.mapHomologicalComplex (ComplexShape.up ℕ)).obj I.cocomplex)).hom ≫ (I.isoRightDerivedObj F 0).inv
dsimp [Functor.toRightDerivedZero, isoRightDerivedObj]
C : Type u inst✝⁵ : Category.{v, u} C D : Type u_1 inst✝⁴ : Category.{u_2, u_1} D inst✝³ : Abelian C inst✝² : HasInjectiveResolutions C inst✝¹ : Abelian D X : C I : InjectiveResolution X F : C ⥤ D inst✝ : F.Additive ⊢ (injectiveResolution X).toRightDerivedZero' F ≫ ((F.mapHomologicalComplex (ComplexShape.up ℕ)).obj (injectiveResolution X).cocomplex).homologyπ 0 ≫ (HomotopyCategory.homologyFunctorFactors D (ComplexShape.up ℕ) 0).inv.app ((F.mapHomologicalComplex (ComplexShape.up ℕ)).obj (injectiveResolution X).cocomplex) = I.toRightDerivedZero' F ≫ ((F.mapHomologicalComplex (ComplexShape.up ℕ)).obj I.cocomplex).homologyπ 0 ≫ (HomotopyCategory.homologyFunctorFactors D (ComplexShape.up ℕ) 0).inv.app ((F.mapHomologicalComplex (ComplexShape.up ℕ)).obj I.cocomplex) ≫ (HomotopyCategory.homologyFunctor D (ComplexShape.up ℕ) 0).map (I.isoRightDerivedToHomotopyCategoryObj F).inv
5b33edafb83a6e1a
MvPolynomial.IsHomogeneous.C_mul
Mathlib/RingTheory/MvPolynomial/Homogeneous.lean
lemma C_mul (hφ : φ.IsHomogeneous m) (r : R) : (C r * φ).IsHomogeneous m
σ : Type u_1 R : Type u_3 inst✝ : CommSemiring R φ : MvPolynomial σ R m : ℕ hφ : φ.IsHomogeneous m r : R ⊢ (C r * φ).IsHomogeneous m
simpa only [zero_add] using (isHomogeneous_C _ _).mul hφ
no goals
fab9c664e294e76f
Ordnode.balance_eq_balance'
Mathlib/Data/Ordmap/Ordset.lean
theorem balance_eq_balance' {l x r} (hl : Balanced l) (hr : Balanced r) (sl : Sized l) (sr : Sized r) : @balance α l x r = balance' l x r
case pos.node.nil α : Type u_1 x : α ls : ℕ lx : α rs : ℕ rl : Ordnode α rx : α rr : Ordnode α hr : (node rs rl rx rr).Balanced sr : (node rs rl rx rr).Sized h : ¬delta * ls < rs h_1 : delta * rs < ls lls : ℕ lll : Ordnode α llx : α llr : Ordnode α hl : (node ls (node lls lll llx llr) lx nil).Balanced sl : (node ls (node lls lll llx llr) lx nil).Sized ld : delta ≤ (node lls lll llx llr).size + nil.size ⊢ (node ls (node lls lll llx llr) lx nil).rotateR x (node rs rl rx rr) = rec nil (fun size l x_1 r l_ih r_ih => rec nil (fun size_1 l x_2 r l_ih r_ih => if size_1 < ratio * size then node (ls + rs + 1) (node lls lll llx llr) lx (node (size_1 + rs + 1) nil x (node rs rl rx rr)) else node (ls + rs + 1) (node (size + l.size + 1) (node lls lll llx llr) lx l) x_2 (node (r.size + rs + 1) r x (node rs rl rx rr))) nil) (node lls lll llx llr)
exact absurd (le_trans ld (balancedSz_zero.1 hl.1)) (by decide)
no goals
23a52200299a6569
StieltjesFunction.measure_singleton
Mathlib/MeasureTheory/Measure/Stieltjes.lean
theorem measure_singleton (a : ℝ) : f.measure {a} = ofReal (f a - leftLim f a)
f : StieltjesFunction a : ℝ u : ℕ → ℝ u_mono : StrictMono u u_lt_a : ∀ (n : ℕ), u n < a u_lim : Tendsto u atTop (𝓝 a) ⊢ {a} = ⋂ n, Ioc (u n) a
refine Subset.antisymm (fun x hx => by simp [mem_singleton_iff.1 hx, u_lt_a]) fun x hx => ?_
f : StieltjesFunction a : ℝ u : ℕ → ℝ u_mono : StrictMono u u_lt_a : ∀ (n : ℕ), u n < a u_lim : Tendsto u atTop (𝓝 a) x : ℝ hx : x ∈ ⋂ n, Ioc (u n) a ⊢ x ∈ {a}
852c2535f58a09d3
CategoryTheory.Limits.colimitLimitToLimitColimit_injective
Mathlib/CategoryTheory/Limits/FilteredColimitCommutesFiniteLimit.lean
theorem colimitLimitToLimitColimit_injective : Function.Injective (colimitLimitToLimitColimit F)
case intro.intro.intro.intro.intro.intro.intro.w J : Type u₁ K : Type u₂ inst✝⁴ : Category.{v₁, u₁} J inst✝³ : Category.{v₂, u₂} K inst✝² : Small.{v, u₂} K F : J × K ⥤ Type v inst✝¹ : IsFiltered K inst✝ : Finite J val✝ : Fintype J kx : K x : limit ((curry.obj (swap K J ⋙ F)).obj kx) ky : K y : limit ((curry.obj (swap K J ⋙ F)).obj ky) h : ∀ (j : J), ∃ k f g, F.map (𝟙 j, f) (limit.π ((curry.obj (swap K J ⋙ F)).obj kx) j x) = F.map (𝟙 j, g) (limit.π ((curry.obj (swap K J ⋙ F)).obj ky) j y) k : J → K := fun j => ⋯.choose f : (j : J) → kx ⟶ k j := fun j => ⋯.choose g : (j : J) → ky ⟶ k j := fun j => ⋯.choose w : ∀ (j : J), F.map (𝟙 j, f j) (limit.π ((curry.obj (swap K J ⋙ F)).obj kx) j x) = F.map (𝟙 j, g j) (limit.π ((curry.obj (swap K J ⋙ F)).obj ky) j y) O : Finset K := Finset.image k Finset.univ ∪ {kx, ky} kxO : kx ∈ O kyO : ky ∈ O kjO : ∀ (j : J), k j ∈ O H : Finset ((X : K) ×' (Y : K) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y)) := Finset.image (fun j => ⟨kx, ⟨k j, ⟨kxO, ⟨⋯, f j⟩⟩⟩⟩) Finset.univ ∪ Finset.image (fun j => ⟨ky, ⟨k j, ⟨kyO, ⟨⋯, g j⟩⟩⟩⟩) Finset.univ S : K T : {X : K} → X ∈ O → (X ⟶ S) W : ∀ {X Y : K} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y}, ⟨X, ⟨Y, ⟨mX, ⟨mY, f⟩⟩⟩⟩ ∈ H → f ≫ T mY = T mX fH : ∀ (j : J), ⟨kx, ⟨k j, ⟨kxO, ⟨⋯, f j⟩⟩⟩⟩ ∈ H gH : ∀ (j : J), ⟨ky, ⟨k j, ⟨kyO, ⟨⋯, g j⟩⟩⟩⟩ ∈ H j : J ⊢ limit.π ((curry.obj (swap K J ⋙ F)).obj S) j ((curry.obj (swap K J ⋙ F) ⋙ lim).map (T kxO) x) = limit.π ((curry.obj (swap K J ⋙ F)).obj S) j ((curry.obj (swap K J ⋙ F) ⋙ lim).map (T kyO) y)
simp only [Functor.comp_map, Limit.map_π_apply, curry_obj_map_app, swap_map]
case intro.intro.intro.intro.intro.intro.intro.w J : Type u₁ K : Type u₂ inst✝⁴ : Category.{v₁, u₁} J inst✝³ : Category.{v₂, u₂} K inst✝² : Small.{v, u₂} K F : J × K ⥤ Type v inst✝¹ : IsFiltered K inst✝ : Finite J val✝ : Fintype J kx : K x : limit ((curry.obj (swap K J ⋙ F)).obj kx) ky : K y : limit ((curry.obj (swap K J ⋙ F)).obj ky) h : ∀ (j : J), ∃ k f g, F.map (𝟙 j, f) (limit.π ((curry.obj (swap K J ⋙ F)).obj kx) j x) = F.map (𝟙 j, g) (limit.π ((curry.obj (swap K J ⋙ F)).obj ky) j y) k : J → K := fun j => ⋯.choose f : (j : J) → kx ⟶ k j := fun j => ⋯.choose g : (j : J) → ky ⟶ k j := fun j => ⋯.choose w : ∀ (j : J), F.map (𝟙 j, f j) (limit.π ((curry.obj (swap K J ⋙ F)).obj kx) j x) = F.map (𝟙 j, g j) (limit.π ((curry.obj (swap K J ⋙ F)).obj ky) j y) O : Finset K := Finset.image k Finset.univ ∪ {kx, ky} kxO : kx ∈ O kyO : ky ∈ O kjO : ∀ (j : J), k j ∈ O H : Finset ((X : K) ×' (Y : K) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y)) := Finset.image (fun j => ⟨kx, ⟨k j, ⟨kxO, ⟨⋯, f j⟩⟩⟩⟩) Finset.univ ∪ Finset.image (fun j => ⟨ky, ⟨k j, ⟨kyO, ⟨⋯, g j⟩⟩⟩⟩) Finset.univ S : K T : {X : K} → X ∈ O → (X ⟶ S) W : ∀ {X Y : K} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y}, ⟨X, ⟨Y, ⟨mX, ⟨mY, f⟩⟩⟩⟩ ∈ H → f ≫ T mY = T mX fH : ∀ (j : J), ⟨kx, ⟨k j, ⟨kxO, ⟨⋯, f j⟩⟩⟩⟩ ∈ H gH : ∀ (j : J), ⟨ky, ⟨k j, ⟨kyO, ⟨⋯, g j⟩⟩⟩⟩ ∈ H j : J ⊢ limit.π ((curry.obj (swap K J ⋙ F)).obj S) j (lim.map ((curry.obj (swap K J ⋙ F)).map (T kxO)) x) = limit.π ((curry.obj (swap K J ⋙ F)).obj S) j (lim.map ((curry.obj (swap K J ⋙ F)).map (T kyO)) y)
dd8ec51392784757
FirstOrder.Language.BoundedFormula.relabel_sumInl
Mathlib/ModelTheory/Syntax.lean
theorem relabel_sumInl (φ : L.BoundedFormula α n) : (φ.relabel Sum.inl : L.BoundedFormula α (0 + n)) = φ.castLE (ge_of_eq (zero_add n))
case imp L : Language α : Type u' n n✝ : ℕ f₁✝ f₂✝ : L.BoundedFormula α n✝ ih1 : mapTermRel (fun x t => Term.relabel (Sum.map id (natAdd 0)) t) (fun x => id) (fun x => castLE ⋯) f₁✝ = castLE ⋯ f₁✝ ih2 : mapTermRel (fun x t => Term.relabel (Sum.map id (natAdd 0)) t) (fun x => id) (fun x => castLE ⋯) f₂✝ = castLE ⋯ f₂✝ ⊢ mapTermRel (fun x t => Term.relabel (Sum.map id (natAdd 0)) t) (fun x => id) (fun x => castLE ⋯) (f₁✝.imp f₂✝) = castLE ⋯ (f₁✝.imp f₂✝)
simp_all [mapTermRel]
no goals
958a4bc95e5e8f6e
cbiSup_eq_of_not_forall
Mathlib/Order/ConditionallyCompleteLattice/Indexed.lean
theorem cbiSup_eq_of_not_forall {p : ι → Prop} {f : Subtype p → α} (hp : ¬ (∀ i, p i)) : ⨆ (i) (h : p i), f ⟨i, h⟩ = iSup f ⊔ sSup ∅
case intro.intro α : Type u_1 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrder α p : ι → Prop f : Subtype p → α hp : ¬∀ (i : ι), p i i₀ : ι hi₀ : ¬p i₀ this : Nonempty ι c : α hc : c ∈ upperBounds (range f) i : ι ⊢ (fun i => if h : p i then f ⟨i, h⟩ else sSup ∅) i ≤ c ⊔ sSup ∅
by_cases hi : p i
case pos α : Type u_1 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrder α p : ι → Prop f : Subtype p → α hp : ¬∀ (i : ι), p i i₀ : ι hi₀ : ¬p i₀ this : Nonempty ι c : α hc : c ∈ upperBounds (range f) i : ι hi : p i ⊢ (fun i => if h : p i then f ⟨i, h⟩ else sSup ∅) i ≤ c ⊔ sSup ∅ case neg α : Type u_1 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrder α p : ι → Prop f : Subtype p → α hp : ¬∀ (i : ι), p i i₀ : ι hi₀ : ¬p i₀ this : Nonempty ι c : α hc : c ∈ upperBounds (range f) i : ι hi : ¬p i ⊢ (fun i => if h : p i then f ⟨i, h⟩ else sSup ∅) i ≤ c ⊔ sSup ∅
f8e2dff97f22af64