name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
Nat.bitwise_lt_two_pow
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Nat/Bitwise/Lemmas.lean
theorem bitwise_lt_two_pow (left : x < 2^n) (right : y < 2^n) : (Nat.bitwise f x y) < 2^n
case zero f : Bool → Bool → Bool x y : Nat left : x < 2 ^ 0 right : y < 2 ^ 0 ⊢ bitwise f x y < 2 ^ 0
simp only [eq_0_of_lt] at left right
case zero f : Bool → Bool → Bool x y : Nat left : x = 0 right : y = 0 ⊢ bitwise f x y < 2 ^ 0
b3846a598e8ae70f
MeasureTheory.mul_upcrossingsBefore_le
Mathlib/Probability/Martingale/Upcrossing.lean
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k ∈ Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω
case neg Ω : Type u_1 a b : ℝ f : ℕ → Ω → ℝ N : ℕ ω : Ω hf : a ≤ f N ω hab : a < b hN : ¬N = 0 h₁ : ∀ (k : ℕ), ∑ n ∈ Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω i : ℕ x✝ : i ∈ Finset.range N hi : i ∉ Finset.range (upcrossingsBefore a b f N ω) hi' : ¬i = upcrossingsBefore a b f N ω ⊢ upcrossingsBefore a b f N ω < i
rw [Finset.mem_range, not_lt] at hi
case neg Ω : Type u_1 a b : ℝ f : ℕ → Ω → ℝ N : ℕ ω : Ω hf : a ≤ f N ω hab : a < b hN : ¬N = 0 h₁ : ∀ (k : ℕ), ∑ n ∈ Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω i : ℕ x✝ : i ∈ Finset.range N hi : upcrossingsBefore a b f N ω ≤ i hi' : ¬i = upcrossingsBefore a b f N ω ⊢ upcrossingsBefore a b f N ω < i
fc87e1e3d79bf5b5
HomologicalComplex.extend.rightHomologyData.d_comp_desc_eq_zero_iff'
Mathlib/Algebra/Homology/Embedding/ExtendHomology.lean
lemma d_comp_desc_eq_zero_iff' ⦃W : C⦄ (f' : cocone.pt ⟶ K.X k) (hf' : cocone.π ≫ f' = K.d j k) (f'' : cocone.pt ⟶ (K.extend e).X k') (hf'' : (extendXIso K e hj').hom ≫ cocone.π ≫ f'' = (K.extend e).d j' k') (φ : W ⟶ cocone.pt) : φ ≫ f' = 0 ↔ φ ≫ f'' = 0
case neg ι : Type u_1 ι' : Type u_2 c : ComplexShape ι c' : ComplexShape ι' C : Type u_3 inst✝² : Category.{u_4, u_3} C inst✝¹ : HasZeroMorphisms C inst✝ : HasZeroObject C K : HomologicalComplex C c e : c.Embedding c' i j k : ι j' k' : ι' hj' : e.f j = j' hk : c.next j = k hk' : c'.next j' = k' cocone : CokernelCofork (K.d i j) hcocone : IsColimit cocone W : C f' : cocone.pt ⟶ K.X k hf' : Cofork.π cocone ≫ f' = K.d j k f'' : cocone.pt ⟶ (K.extend e).X k' hf'' : (K.extendXIso e hj').hom ≫ Cofork.π cocone ≫ f'' = (K.extend e).d j' k' φ : W ⟶ cocone.pt hjk : ¬c.Rel j k ⊢ φ ≫ f' = 0 ↔ φ ≫ f'' = 0
have h₁ : f' = 0 := by apply Cofork.IsColimit.hom_ext hcocone simp only [hf', comp_zero, K.shape _ _ hjk]
case neg ι : Type u_1 ι' : Type u_2 c : ComplexShape ι c' : ComplexShape ι' C : Type u_3 inst✝² : Category.{u_4, u_3} C inst✝¹ : HasZeroMorphisms C inst✝ : HasZeroObject C K : HomologicalComplex C c e : c.Embedding c' i j k : ι j' k' : ι' hj' : e.f j = j' hk : c.next j = k hk' : c'.next j' = k' cocone : CokernelCofork (K.d i j) hcocone : IsColimit cocone W : C f' : cocone.pt ⟶ K.X k hf' : Cofork.π cocone ≫ f' = K.d j k f'' : cocone.pt ⟶ (K.extend e).X k' hf'' : (K.extendXIso e hj').hom ≫ Cofork.π cocone ≫ f'' = (K.extend e).d j' k' φ : W ⟶ cocone.pt hjk : ¬c.Rel j k h₁ : f' = 0 ⊢ φ ≫ f' = 0 ↔ φ ≫ f'' = 0
0908a43e60e3dcb1
CategoryTheory.ShortComplex.ShortExact.hasProjectiveDimensionLT_X₃
Mathlib/CategoryTheory/Abelian/Projective/Dimension.lean
lemma hasProjectiveDimensionLT_X₃ (h₁ : HasProjectiveDimensionLT S.X₁ n) (h₂ : HasProjectiveDimensionLT S.X₂ (n + 1)) : HasProjectiveDimensionLT S.X₃ (n + 1)
C : Type u inst✝¹ : Category.{v, u} C inst✝ : Abelian C S : ShortComplex C hS : S.ShortExact n : ℕ h₁ : HasProjectiveDimensionLT S.X₁ n h₂ : HasProjectiveDimensionLT S.X₂ (n + 1) this : HasExt C := HasExt.standard C i : ℕ hi : n + 1 ≤ i + 1 Y : C x₁ : Ext S.X₁ Y i ⊢ n ≤ i
omega
no goals
d12926ed9ced8939
Matrix.PosSemidef.intCast
Mathlib/LinearAlgebra/Matrix/PosDef.lean
theorem intCast [StarOrderedRing R] [DecidableEq n] (d : ℤ) (hd : 0 ≤ d) : PosSemidef (d : Matrix n n R) := ⟨isHermitian_intCast _, fun x => by simp only [intCast_mulVec, dotProduct_smul] rw [Int.cast_smul_eq_zsmul] exact zsmul_nonneg (dotProduct_star_self_nonneg _) hd⟩
n : Type u_2 R : Type u_3 inst✝⁵ : Fintype n inst✝⁴ : CommRing R inst✝³ : PartialOrder R inst✝² : StarRing R inst✝¹ : StarOrderedRing R inst✝ : DecidableEq n d : ℤ hd : 0 ≤ d x : n → R ⊢ 0 ≤ ↑d • (star x ⬝ᵥ x)
rw [Int.cast_smul_eq_zsmul]
n : Type u_2 R : Type u_3 inst✝⁵ : Fintype n inst✝⁴ : CommRing R inst✝³ : PartialOrder R inst✝² : StarRing R inst✝¹ : StarOrderedRing R inst✝ : DecidableEq n d : ℤ hd : 0 ≤ d x : n → R ⊢ 0 ≤ d • (star x ⬝ᵥ x)
ca53ab52753daf24
t1Space_TFAE
Mathlib/Topology/Separation/Basic.lean
theorem t1Space_TFAE (X : Type u) [TopologicalSpace X] : List.TFAE [T1Space X, ∀ x, IsClosed ({ x } : Set X), ∀ x, IsOpen ({ x }ᶜ : Set X), Continuous (@CofiniteTopology.of X), ∀ ⦃x y : X⦄, x ≠ y → {y}ᶜ ∈ 𝓝 x, ∀ ⦃x y : X⦄, x ≠ y → ∃ s ∈ 𝓝 x, y ∉ s, ∀ ⦃x y : X⦄, x ≠ y → ∃ U : Set X, IsOpen U ∧ x ∈ U ∧ y ∉ U, ∀ ⦃x y : X⦄, x ≠ y → Disjoint (𝓝 x) (pure y), ∀ ⦃x y : X⦄, x ≠ y → Disjoint (pure x) (𝓝 y), ∀ ⦃x y : X⦄, x ⤳ y → x = y]
X : Type u inst✝ : TopologicalSpace X tfae_1_iff_2 : T1Space X ↔ ∀ (x : X), IsClosed {x} ⊢ [T1Space X, ∀ (x : X), IsClosed {x}, ∀ (x : X), IsOpen {x}ᶜ, Continuous ⇑CofiniteTopology.of, ∀ ⦃x y : X⦄, x ≠ y → {y}ᶜ ∈ 𝓝 x, ∀ ⦃x y : X⦄, x ≠ y → ∃ s ∈ 𝓝 x, y ∉ s, ∀ ⦃x y : X⦄, x ≠ y → ∃ U, IsOpen U ∧ x ∈ U ∧ y ∉ U, ∀ ⦃x y : X⦄, x ≠ y → Disjoint (𝓝 x) (pure y), ∀ ⦃x y : X⦄, x ≠ y → Disjoint (pure x) (𝓝 y), ∀ ⦃x y : X⦄, x ⤳ y → x = y].TFAE
tfae_have 2 ↔ 3 := by simp only [isOpen_compl_iff]
X : Type u inst✝ : TopologicalSpace X tfae_1_iff_2 : T1Space X ↔ ∀ (x : X), IsClosed {x} tfae_2_iff_3 : (∀ (x : X), IsClosed {x}) ↔ ∀ (x : X), IsOpen {x}ᶜ ⊢ [T1Space X, ∀ (x : X), IsClosed {x}, ∀ (x : X), IsOpen {x}ᶜ, Continuous ⇑CofiniteTopology.of, ∀ ⦃x y : X⦄, x ≠ y → {y}ᶜ ∈ 𝓝 x, ∀ ⦃x y : X⦄, x ≠ y → ∃ s ∈ 𝓝 x, y ∉ s, ∀ ⦃x y : X⦄, x ≠ y → ∃ U, IsOpen U ∧ x ∈ U ∧ y ∉ U, ∀ ⦃x y : X⦄, x ≠ y → Disjoint (𝓝 x) (pure y), ∀ ⦃x y : X⦄, x ≠ y → Disjoint (pure x) (𝓝 y), ∀ ⦃x y : X⦄, x ⤳ y → x = y].TFAE
92ea821073dea3c3
FirstOrder.Language.equiv_between_cg
Mathlib/ModelTheory/PartialEquiv.lean
theorem equiv_between_cg (M_cg : Structure.CG L M) (N_cg : Structure.CG L N) (g : L.FGEquiv M N) (ext_dom : L.IsExtensionPair M N) (ext_cod : L.IsExtensionPair N M) : ∃ f : M ≃[L] N, g ≤ f.toEmbedding.toPartialEquiv
L : Language M : Type w N : Type w' inst✝¹ : L.Structure M inst✝ : L.Structure N g : L.FGEquiv M N ext_dom : L.IsExtensionPair M N ext_cod : L.IsExtensionPair N M X : Set M X_count : X.Countable X_gen : (closure L).toFun X = ⊤ Y : Set N Y_count : Y.Countable Y_gen : (closure L).toFun Y = ⊤ x✝⁵ : Countable ↑X x✝⁴ : Encodable ↑X x✝³ : Countable ↑Y x✝² : Encodable ↑Y D : ↑X ⊕ ↑Y → Order.Cofinal (L.FGEquiv M N) := fun p => Sum.recOn p (fun x => ext_dom.definedAtLeft ↑x) fun y => ext_cod.definedAtRight ↑y S : ℕ →o M ≃ₚ[L] N := { toFun := Subtype.val ∘ Order.sequenceOfCofinals g D, monotone' := ⋯ } F : M ≃ₚ[L] N := partialEquivLimit S x✝¹ : X ⊆ ↑F.dom x✝ : Y ⊆ ↑F.cod ⊢ F.dom = ⊤
rwa [← top_le_iff, ← X_gen, Substructure.closure_le]
no goals
d1b972cd720b6e06
Set.Iio_False
Mathlib/Order/Interval/Set/Basic.lean
@[simp] lemma Iio_False : Iio False = ∅
⊢ Iio False = ∅
aesop
no goals
35705b919cf0ed0c
Nat.choose_succ_right_eq
Mathlib/Data/Nat/Choose/Basic.lean
theorem choose_succ_right_eq (n k : ℕ) : choose n (k + 1) * (k + 1) = choose n k * (n - k)
n k : ℕ ⊢ (n + 1) * n.choose k = n.choose (k + 1) * (k + 1) + n.choose k * (k + 1)
rw [← Nat.add_mul, Nat.add_comm (choose _ _), ← choose_succ_succ, succ_mul_choose_eq]
no goals
14fca551c1aaeff0
SimpleGraph.is3Clique_iff_exists_cycle_length_three
Mathlib/Combinatorics/SimpleGraph/Clique.lean
theorem is3Clique_iff_exists_cycle_length_three : (∃ s : Finset α, G.IsNClique 3 s) ↔ ∃ (u : α) (w : G.Walk u u), w.IsCycle ∧ w.length = 3
α : Type u_1 G : SimpleGraph α ⊢ (∃ s, G.IsNClique 3 s) ↔ ∃ u w, w.IsCycle ∧ w.length = 3
classical simp_rw [is3Clique_iff, isCycle_def] exact ⟨(fun ⟨_, a, _, _, hab, hac, hbc, _⟩ => ⟨a, cons hab (cons hbc (cons hac.symm nil)), by aesop⟩), (fun ⟨_, .cons hab (.cons hbc (.cons hca nil)), _, _⟩ => ⟨_, _, _, _, hab, hca.symm, hbc, rfl⟩)⟩
no goals
f922e3fda39a22ed
Mathlib.Tactic.Ring.pow_one_cast
Mathlib/Tactic/Ring/Basic.lean
theorem pow_one_cast (a : R) : a ^ (nat_lit 1).rawCast = a
R : Type u_1 inst✝ : CommSemiring R a : R ⊢ a ^ Nat.rawCast 1 = a
simp
no goals
bdef837d0eaffab1
isCoprime_of_gcd_eq_one_of_FLT
Mathlib/NumberTheory/FLT/Basic.lean
lemma isCoprime_of_gcd_eq_one_of_FLT {n : ℕ} {a b c : ℤ} (Hgcd : Finset.gcd {a, b, c} id = 1) (HF : a ^ n + b ^ n + c ^ n = 0) : IsCoprime a b
case inr.refine_1 n : ℕ a b c : ℤ Hgcd : {a, b, c}.gcd id = 1 HF : a ^ n + b ^ n + c ^ n = 0 hn : n ≠ 0 ⊢ ¬(a = 0 ∧ b = 0)
rintro ⟨rfl, rfl⟩
case inr.refine_1.intro n : ℕ c : ℤ hn : n ≠ 0 Hgcd : {0, 0, c}.gcd id = 1 HF : 0 ^ n + 0 ^ n + c ^ n = 0 ⊢ False
cb0f80522bad7b59
Pi.isAtom_iff
Mathlib/Order/Atoms.lean
theorem isAtom_iff {f : ∀ i, π i} [∀ i, PartialOrder (π i)] [∀ i, OrderBot (π i)] : IsAtom f ↔ ∃ i, IsAtom (f i) ∧ ∀ j, j ≠ i → f j = ⊥
ι : Type u_4 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) hbot✝ : f ≠ ⊥ h : ∀ b < f, b = ⊥ i : ι hbot : f i ≠ ⊥ ⊢ ∀ b < f i, b = ⊥
intro b hb
ι : Type u_4 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) hbot✝ : f ≠ ⊥ h : ∀ b < f, b = ⊥ i : ι hbot : f i ≠ ⊥ b : π i hb : b < f i ⊢ b = ⊥
116210e72cdaa30b
AbsoluteValue.listSum_le
Mathlib/Algebra/Order/AbsoluteValue/Basic.lean
/-- The triangle inequality for an `AbsoluteValue` applied to a list. -/ lemma listSum_le (l : List R) : abv l.sum ≤ (l.map abv).sum
case nil R : Type u_5 S : Type u_6 inst✝¹ : Semiring R inst✝ : OrderedSemiring S abv : AbsoluteValue R S ⊢ abv [].sum ≤ (List.map ⇑abv []).sum
simp
no goals
228ddf2540343717
Ordnode.Valid'.eraseMax_aux
Mathlib/Data/Ordmap/Ordset.lean
theorem Valid'.eraseMax_aux {s l x r o₁ o₂} (H : Valid' o₁ (.node s l x r) o₂) : Valid' o₁ (@eraseMax α (.node' l x r)) ↑(findMax' x r) ∧ size (.node' l x r) = size (eraseMax (.node' l x r)) + 1
α : Type u_1 inst✝ : Preorder α s : ℕ l : Ordnode α x : α r : Ordnode α o₁ : WithBot α o₂ : WithTop α H : Valid' o₁ (Ordnode.node s l x r) o₂ ⊢ Valid' o₁ (l.node' x r).eraseMax ↑(findMax' x r) ∧ (l.node' x r).size = (l.node' x r).eraseMax.size + 1
have := H.2.eq_node'
α : Type u_1 inst✝ : Preorder α s : ℕ l : Ordnode α x : α r : Ordnode α o₁ : WithBot α o₂ : WithTop α H : Valid' o₁ (Ordnode.node s l x r) o₂ this : Ordnode.node s l x r = l.node' x r ⊢ Valid' o₁ (l.node' x r).eraseMax ↑(findMax' x r) ∧ (l.node' x r).size = (l.node' x r).eraseMax.size + 1
df61be37cf649dc4
Fin.isAddFreimanIso_Iic
Mathlib/Combinatorics/Additive/FreimanHom.lean
/-- **No wrap-around principle**. The first `k + 1` elements of `Fin (n + 1)` are `m`-Freiman isomorphic to the first `k + 1` elements of `ℕ` assuming there is no wrap-around. -/ lemma isAddFreimanIso_Iic (hm : m ≠ 0) (hkmn : m * k ≤ n) : IsAddFreimanIso m (Iic (k : Fin (n + 1))) (Iic k) val where bijOn.left
k m n : ℕ hm : m ≠ 0 hkmn : m * k ≤ n s t : Multiset (Fin (n + 1)) hsA : ∀ ⦃x : Fin (n + 1)⦄, x ∈ s → x ∈ Iic ↑k htA : ∀ ⦃x : Fin (n + 1)⦄, x ∈ t → x ∈ Iic ↑k hs : s.card = m ht : t.card = m this : ∀ (u : Multiset (Fin (n + 1))), (Nat.castRingHom (Fin (n + 1))) (map val u).sum = u.sum ⊢ (map val s).sum = (map val t).sum ↔ (Nat.castRingHom (Fin (n + 1))) (map val s).sum = (Nat.castRingHom (Fin (n + 1))) (map val t).sum
have {u : Multiset (Fin (n + 1))} (huk : ∀ x ∈ u, x ≤ k) (hu : card u = m) : (u.map val).sum < (n + 1) := Nat.lt_succ_iff.2 <| hkmn.trans' <| by rw [← hu, ← card_map] refine sum_le_card_nsmul (u.map val) k ?_ simpa [le_iff_val_le_val, -val_fin_le, Nat.mod_eq_of_lt, aux hm hkmn] using huk
k m n : ℕ hm : m ≠ 0 hkmn : m * k ≤ n s t : Multiset (Fin (n + 1)) hsA : ∀ ⦃x : Fin (n + 1)⦄, x ∈ s → x ∈ Iic ↑k htA : ∀ ⦃x : Fin (n + 1)⦄, x ∈ t → x ∈ Iic ↑k hs : s.card = m ht : t.card = m this✝ : ∀ (u : Multiset (Fin (n + 1))), (Nat.castRingHom (Fin (n + 1))) (map val u).sum = u.sum this : ∀ {u : Multiset (Fin (n + 1))}, (∀ x ∈ u, x ≤ ↑k) → u.card = m → (map val u).sum < n + 1 ⊢ (map val s).sum = (map val t).sum ↔ (Nat.castRingHom (Fin (n + 1))) (map val s).sum = (Nat.castRingHom (Fin (n + 1))) (map val t).sum
d8123ea7c56d3190
LieAlgebra.nilpotent_of_nilpotent_quotient
Mathlib/Algebra/Lie/Nilpotent.lean
theorem LieAlgebra.nilpotent_of_nilpotent_quotient {I : LieIdeal R L} (h₁ : I ≤ center R L) (h₂ : IsNilpotent (L ⧸ I)) : IsNilpotent L
case h R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L I : LieIdeal R L h₁ : I ≤ center R L h₂ : ∃ k, lowerCentralSeries R (L ⧸ I) (L ⧸ I) k = ⊥ k : ℕ hk : lowerCentralSeries R (L ⧸ I) (L ⧸ I) k = ⊥ ⊢ lowerCentralSeries R L (L ⧸ I) k = ⊥
simp [← LieSubmodule.toSubmodule_inj, coe_lowerCentralSeries_ideal_quot_eq, hk]
no goals
93bdd301b98959d0
ValuationRing.isFractionRing_iff
Mathlib/RingTheory/Valuation/ValuationRing.lean
theorem isFractionRing_iff [ValuationRing 𝒪] : IsFractionRing 𝒪 K ↔ (∀ (x : K), ∃ a : 𝒪, x = algebraMap 𝒪 K a ∨ x⁻¹ = algebraMap 𝒪 K a) ∧ Function.Injective (algebraMap 𝒪 K)
case refine_1.inl.intro 𝒪 : Type u K : Type v inst✝⁴ : CommRing 𝒪 inst✝³ : IsDomain 𝒪 inst✝² : Field K inst✝¹ : Algebra 𝒪 K inst✝ : ValuationRing 𝒪 h : IsFractionRing 𝒪 K x : K a : 𝒪 e : (algebraMap 𝒪 K) a = x ⊢ ∃ a, x = (algebraMap 𝒪 K) a ∨ x⁻¹ = (algebraMap 𝒪 K) a case refine_1.inr.intro 𝒪 : Type u K : Type v inst✝⁴ : CommRing 𝒪 inst✝³ : IsDomain 𝒪 inst✝² : Field K inst✝¹ : Algebra 𝒪 K inst✝ : ValuationRing 𝒪 h : IsFractionRing 𝒪 K x : K a : 𝒪 e : (algebraMap 𝒪 K) a = x⁻¹ ⊢ ∃ a, x = (algebraMap 𝒪 K) a ∨ x⁻¹ = (algebraMap 𝒪 K) a
exacts [⟨a, .inl e.symm⟩, ⟨a, .inr e.symm⟩]
no goals
6f74c68f271272bd
MeasureTheory.condExp_nonneg
Mathlib/MeasureTheory/Function/ConditionalExpectation/Basic.lean
lemma condExp_nonneg (hf : 0 ≤ᵐ[μ] f) : 0 ≤ᵐ[μ] μ[f|m]
α : Type u_1 E : Type u_3 m m₀ : MeasurableSpace α μ : Measure α f : α → E inst✝³ : NormedLatticeAddCommGroup E inst✝² : CompleteSpace E inst✝¹ : NormedSpace ℝ E inst✝ : OrderedSMul ℝ E hf : 0 ≤ᶠ[ae μ] f ⊢ 0 ≤ᶠ[ae μ] μ[f|m]
by_cases hfint : Integrable f μ
case pos α : Type u_1 E : Type u_3 m m₀ : MeasurableSpace α μ : Measure α f : α → E inst✝³ : NormedLatticeAddCommGroup E inst✝² : CompleteSpace E inst✝¹ : NormedSpace ℝ E inst✝ : OrderedSMul ℝ E hf : 0 ≤ᶠ[ae μ] f hfint : Integrable f μ ⊢ 0 ≤ᶠ[ae μ] μ[f|m] case neg α : Type u_1 E : Type u_3 m m₀ : MeasurableSpace α μ : Measure α f : α → E inst✝³ : NormedLatticeAddCommGroup E inst✝² : CompleteSpace E inst✝¹ : NormedSpace ℝ E inst✝ : OrderedSMul ℝ E hf : 0 ≤ᶠ[ae μ] f hfint : ¬Integrable f μ ⊢ 0 ≤ᶠ[ae μ] μ[f|m]
513c855a0f76e22e
Mathlib.Tactic.LinearCombination.lt_of_eq
Mathlib/Tactic/LinearCombination/Lemmas.lean
theorem lt_of_eq [OrderedCancelAddCommMonoid α] (p : (a:α) = b) (H : a' + b < b' + a) : a' < b'
α : Type u_1 a a' b b' : α inst✝ : OrderedCancelAddCommMonoid α p : a = b H : a' + b < b' + a ⊢ a' < b'
rwa [p, add_lt_add_iff_right] at H
no goals
90aa093ad49ea228
SzemerediRegularity.edgeDensity_star_not_uniform
Mathlib/Combinatorics/SimpleGraph/Regularity/Chunk.lean
theorem edgeDensity_star_not_uniform [Nonempty α] (hPα : #P.parts * 16 ^ #P.parts ≤ card α) (hPε : ↑100 ≤ ↑4 ^ #P.parts * ε ^ 5) (hε₁ : ε ≤ 1) {hU : U ∈ P.parts} {hV : V ∈ P.parts} (hUVne : U ≠ V) (hUV : ¬G.IsUniform ε U V) : ↑3 / ↑4 * ε ≤ |(∑ ab ∈ (star hP G ε hU V).product (star hP G ε hV U), (G.edgeDensity ab.1 ab.2 : ℝ)) / (#(star hP G ε hU V) * #(star hP G ε hV U)) - (∑ ab ∈ (chunk hP G ε hU).parts.product (chunk hP G ε hV).parts, (G.edgeDensity ab.1 ab.2 : ℝ)) / (16 : ℝ) ^ #P.parts|
α : Type u_1 inst✝³ : Fintype α inst✝² : DecidableEq α P : Finpartition univ hP : P.IsEquipartition G : SimpleGraph α inst✝¹ : DecidableRel G.Adj ε : ℝ U V : Finset α inst✝ : Nonempty α hPα : #P.parts * 16 ^ #P.parts ≤ Fintype.card α hPε : 100 ≤ 4 ^ #P.parts * ε ^ 5 hε₁ : ε ≤ 1 hU : U ∈ P.parts hV : V ∈ P.parts hUVne : U ≠ V hUV : ¬G.IsUniform ε U V p : ℝ := (∑ ab ∈ (star hP G ε hU V).product (star hP G ε hV U), ↑(G.edgeDensity ab.1 ab.2)) / (↑(#(star hP G ε hU V)) * ↑(#(star hP G ε hV U))) q : ℝ := (∑ ab ∈ (chunk hP G ε hU).parts.product (chunk hP G ε hV).parts, ↑(G.edgeDensity ab.1 ab.2)) / (4 ^ #P.parts * 4 ^ #P.parts) r : ℝ := ↑(G.edgeDensity ((star hP G ε hU V).biUnion id) ((star hP G ε hV U).biUnion id)) s : ℝ := ↑(G.edgeDensity (G.nonuniformWitness ε U V) (G.nonuniformWitness ε V U)) t : ℝ := ↑(G.edgeDensity U V) hrs : |r - s| ≤ ε / 5 ⊢ 3 / 4 * ε ≤ |p - q|
have hst : ε ≤ |s - t| := by unfold s t exact mod_cast G.nonuniformWitness_spec hUVne hUV
α : Type u_1 inst✝³ : Fintype α inst✝² : DecidableEq α P : Finpartition univ hP : P.IsEquipartition G : SimpleGraph α inst✝¹ : DecidableRel G.Adj ε : ℝ U V : Finset α inst✝ : Nonempty α hPα : #P.parts * 16 ^ #P.parts ≤ Fintype.card α hPε : 100 ≤ 4 ^ #P.parts * ε ^ 5 hε₁ : ε ≤ 1 hU : U ∈ P.parts hV : V ∈ P.parts hUVne : U ≠ V hUV : ¬G.IsUniform ε U V p : ℝ := (∑ ab ∈ (star hP G ε hU V).product (star hP G ε hV U), ↑(G.edgeDensity ab.1 ab.2)) / (↑(#(star hP G ε hU V)) * ↑(#(star hP G ε hV U))) q : ℝ := (∑ ab ∈ (chunk hP G ε hU).parts.product (chunk hP G ε hV).parts, ↑(G.edgeDensity ab.1 ab.2)) / (4 ^ #P.parts * 4 ^ #P.parts) r : ℝ := ↑(G.edgeDensity ((star hP G ε hU V).biUnion id) ((star hP G ε hV U).biUnion id)) s : ℝ := ↑(G.edgeDensity (G.nonuniformWitness ε U V) (G.nonuniformWitness ε V U)) t : ℝ := ↑(G.edgeDensity U V) hrs : |r - s| ≤ ε / 5 hst : ε ≤ |s - t| ⊢ 3 / 4 * ε ≤ |p - q|
96200eb905ae7b75
Nat.shiftLeft'_false
Mathlib/Data/Nat/Bits.lean
@[simp] lemma shiftLeft'_false : ∀ n, shiftLeft' false m n = m <<< n | 0 => rfl | n + 1 => by have : 2 * (m * 2^n) = 2^(n+1)*m
m n : ℕ ⊢ m * 2 ^ n.succ = 2 ^ (n + 1) * m
simp
no goals
79783b30dc8fc6e9
Cardinal.nat_add_eq
Mathlib/SetTheory/Cardinal/Arithmetic.lean
theorem nat_add_eq {a : Cardinal} (n : ℕ) (ha : ℵ₀ ≤ a) : n + a = a
a : Cardinal.{u_1} n : ℕ ha : ℵ₀ ≤ a ⊢ ↑n + a = a
rw [add_comm, add_nat_eq n ha]
no goals
9933e59bb311e99c
Submodule.span_insert
Mathlib/LinearAlgebra/Span/Defs.lean
theorem span_insert (x) (s : Set M) : span R (insert x s) = (R ∙ x) ⊔ span R s
R : Type u_1 M : Type u_4 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M x : M s : Set M ⊢ span R (insert x s) = span R {x} ⊔ span R s
rw [insert_eq, span_union]
no goals
b1ddb9e984e88013
CategoryTheory.Limits.MonoCoprod.mono_binaryCofanSum_inr'
Mathlib/CategoryTheory/Limits/MonoCoprod.lean
lemma mono_binaryCofanSum_inr' [MonoCoprod C] (inr : c₂.pt ⟶ c.pt) (hinr : ∀ (i₂ : I₂), c₂.inj i₂ ≫ inr = c.inj (Sum.inr i₂)) : Mono inr
C : Type u_1 inst✝¹ : Category.{u_4, u_1} C I₁ : Type u_2 I₂ : Type u_3 X : I₁ ⊕ I₂ → C c : Cofan X c₁ : Cofan (X ∘ Sum.inl) c₂ : Cofan (X ∘ Sum.inr) hc : IsColimit c hc₁ : IsColimit c₁ hc₂ : IsColimit c₂ inst✝ : MonoCoprod C inr : c₂.pt ⟶ c.pt hinr : ∀ (i₂ : I₂), c₂.inj i₂ ≫ inr = c.inj (Sum.inr i₂) ⊢ inr = (binaryCofanSum c c₁ c₂ hc₁ hc₂).inr
exact Cofan.IsColimit.hom_ext hc₂ _ _ (by simpa using hinr)
no goals
fb7a1916ba471baa
Order.pred_eq_iff_covBy
Mathlib/Order/SuccPred/Basic.lean
theorem pred_eq_iff_covBy : pred b = a ↔ a ⋖ b := ⟨by rintro rfl exact pred_covBy _, CovBy.pred_eq⟩
α : Type u_1 inst✝² : PartialOrder α inst✝¹ : PredOrder α a b : α inst✝ : NoMinOrder α ⊢ pred b = a → a ⋖ b
rintro rfl
α : Type u_1 inst✝² : PartialOrder α inst✝¹ : PredOrder α b : α inst✝ : NoMinOrder α ⊢ pred b ⋖ b
a4bb58b00414f956
Stream'.WSeq.mem_rec_on
Mathlib/Data/Seq/WSeq.lean
theorem mem_rec_on {C : WSeq α → Prop} {a s} (M : a ∈ s) (h1 : ∀ b s', a = b ∨ C s' → C (cons b s')) (h2 : ∀ s, C s → C (think s)) : C s
case none α : Type u C : WSeq α → Prop a : α s : WSeq α M : a ∈ s h1 : ∀ (b : α) (s' : WSeq α), a = b ∨ C s' → C (cons b s') h2 : ∀ (s : WSeq α), C s → C s.think s' : Seq (Option α) h : some a = none ∨ C s' ⊢ C (Seq.cons none s')
apply h2
case none.a α : Type u C : WSeq α → Prop a : α s : WSeq α M : a ∈ s h1 : ∀ (b : α) (s' : WSeq α), a = b ∨ C s' → C (cons b s') h2 : ∀ (s : WSeq α), C s → C s.think s' : Seq (Option α) h : some a = none ∨ C s' ⊢ C s'
33df928e7244e2c7
Mathlib.Tactic.Monoidal.evalHorizontalCompAux'_whisker
Mathlib/Tactic/CategoryTheory/Monoidal/Normalize.lean
theorem evalHorizontalCompAux'_whisker {f f' g g' h : C} {η : g ⟶ h} {θ : f' ⟶ g'} {ηθ : g ⊗ f' ⟶ h ⊗ g'} {η₁ : f ⊗ (g ⊗ f') ⟶ f ⊗ (h ⊗ g')} {η₂ : f ⊗ (g ⊗ f') ⟶ (f ⊗ h) ⊗ g'} {η₃ : (f ⊗ g) ⊗ f' ⟶ (f ⊗ h) ⊗ g'} (e_ηθ : η ⊗ θ = ηθ) (e_η₁ : f ◁ ηθ = η₁) (e_η₂ : η₁ ≫ (α_ _ _ _).inv = η₂) (e_η₃ : (α_ _ _ _).hom ≫ η₂ = η₃) : (f ◁ η) ⊗ θ = η₃
C : Type u inst✝¹ : Category.{v, u} C inst✝ : MonoidalCategory C f f' g g' h : C η : g ⟶ h θ : f' ⟶ g' ηθ : g ⊗ f' ⟶ h ⊗ g' η₁ : f ⊗ g ⊗ f' ⟶ f ⊗ h ⊗ g' η₂ : f ⊗ g ⊗ f' ⟶ (f ⊗ h) ⊗ g' η₃ : (f ⊗ g) ⊗ f' ⟶ (f ⊗ h) ⊗ g' e_ηθ : η ⊗ θ = ηθ e_η₁ : f ◁ ηθ = η₁ e_η₂ : η₁ ≫ (α_ f h g').inv = η₂ e_η₃ : (α_ f g f').hom ≫ η₂ = η₃ ⊢ f ◁ η ⊗ θ = (α_ f g f').hom ≫ f ◁ (η ⊗ θ) ≫ (α_ f h g').inv
simp [MonoidalCategory.tensorHom_def]
no goals
ce213c10e1423cfd
t2Space_iff_disjoint_nhds
Mathlib/Topology/Separation/Hausdorff.lean
theorem t2Space_iff_disjoint_nhds : T2Space X ↔ Pairwise fun x y : X => Disjoint (𝓝 x) (𝓝 y)
X : Type u_1 inst✝ : TopologicalSpace X x y : X x✝ : x ≠ y ⊢ (fun x y => ∃ u v, IsOpen u ∧ IsOpen v ∧ x ∈ u ∧ y ∈ v ∧ Disjoint u v) x y ↔ (fun x y => Disjoint (𝓝 x) (𝓝 y)) x y
simp only [(nhds_basis_opens x).disjoint_iff (nhds_basis_opens y), exists_prop, ← exists_and_left, and_assoc, and_comm, and_left_comm]
no goals
0f8dfb3d26d0b4f3
CategoryTheory.Pretriangulated.exists_iso_binaryBiproduct_of_distTriang
Mathlib/CategoryTheory/Triangulated/Pretriangulated.lean
lemma exists_iso_binaryBiproduct_of_distTriang (T : Triangle C) (hT : T ∈ distTriang C) (zero : T.mor₃ = 0) : ∃ (e : T.obj₂ ≅ T.obj₁ ⊞ T.obj₃), T.mor₁ ≫ e.hom = biprod.inl ∧ T.mor₂ = e.hom ≫ biprod.snd
case intro C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : HasZeroObject C inst✝² : HasShift C ℤ inst✝¹ : Preadditive C inst✝ : ∀ (n : ℤ), (shiftFunctor C n).Additive hC : Pretriangulated C T : Triangle C hT : T ∈ distinguishedTriangles zero : T.mor₃ = 0 this✝ : Epi T.mor₂ this : IsSplitEpi T.mor₂ fst : T.obj₂ ⟶ T.obj₁ hfst : 𝟙 T.obj₂ - T.mor₂ ≫ section_ T.mor₂ = fst ≫ T.mor₁ d : BinaryBiproductData T.obj₁ T.obj₃ := binaryBiproductData T hT zero (section_ T.mor₂) ⋯ fst ⋯ ⊢ T.mor₁ ≫ (biprod.uniqueUpToIso T.obj₁ T.obj₃ d.isBilimit).hom = biprod.inl
ext
case intro.h₀ C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : HasZeroObject C inst✝² : HasShift C ℤ inst✝¹ : Preadditive C inst✝ : ∀ (n : ℤ), (shiftFunctor C n).Additive hC : Pretriangulated C T : Triangle C hT : T ∈ distinguishedTriangles zero : T.mor₃ = 0 this✝ : Epi T.mor₂ this : IsSplitEpi T.mor₂ fst : T.obj₂ ⟶ T.obj₁ hfst : 𝟙 T.obj₂ - T.mor₂ ≫ section_ T.mor₂ = fst ≫ T.mor₁ d : BinaryBiproductData T.obj₁ T.obj₃ := binaryBiproductData T hT zero (section_ T.mor₂) ⋯ fst ⋯ ⊢ (T.mor₁ ≫ (biprod.uniqueUpToIso T.obj₁ T.obj₃ d.isBilimit).hom) ≫ biprod.fst = biprod.inl ≫ biprod.fst case intro.h₁ C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : HasZeroObject C inst✝² : HasShift C ℤ inst✝¹ : Preadditive C inst✝ : ∀ (n : ℤ), (shiftFunctor C n).Additive hC : Pretriangulated C T : Triangle C hT : T ∈ distinguishedTriangles zero : T.mor₃ = 0 this✝ : Epi T.mor₂ this : IsSplitEpi T.mor₂ fst : T.obj₂ ⟶ T.obj₁ hfst : 𝟙 T.obj₂ - T.mor₂ ≫ section_ T.mor₂ = fst ≫ T.mor₁ d : BinaryBiproductData T.obj₁ T.obj₃ := binaryBiproductData T hT zero (section_ T.mor₂) ⋯ fst ⋯ ⊢ (T.mor₁ ≫ (biprod.uniqueUpToIso T.obj₁ T.obj₃ d.isBilimit).hom) ≫ biprod.snd = biprod.inl ≫ biprod.snd
fc47a2ec2f16a2ec
NNRat.cast_divNat
Mathlib/Data/Rat/Cast/CharZero.lean
@[simp] lemma cast_divNat (a b : ℕ) : (divNat a b : α) = a / b
case e_a.a α : Type u_3 inst✝¹ : DivisionSemiring α inst✝ : CharZero α a b : ℕ ⊢ ↑(divNat a b) = ↑(↑a / ↑b)
apply Rat.mkRat_eq_div
no goals
3b04fb0e64c29267
ContMDiffWithinAt.mfderivWithin
Mathlib/Geometry/Manifold/ContMDiffMFDeriv.lean
theorem ContMDiffWithinAt.mfderivWithin {x₀ : N} {f : N → M → M'} {g : N → M} {t : Set N} {u : Set M} (hf : ContMDiffWithinAt (J.prod I) I' n (Function.uncurry f) (t ×ˢ u) (x₀, g x₀)) (hg : ContMDiffWithinAt J I m g t x₀) (hx₀ : x₀ ∈ t) (hu : MapsTo g t u) (hmn : m + 1 ≤ n) (h'u : UniqueMDiffOn I u) : haveI : IsManifold I 1 M := .of_le (le_trans le_add_self hmn) haveI : IsManifold I' 1 M' := .of_le (le_trans le_add_self hmn) ContMDiffWithinAt J 𝓘(𝕜, E →L[𝕜] E') m (inTangentCoordinates I I' g (fun x => f x (g x)) (fun x => mfderivWithin I I' (f x) u (g x)) x₀) t x₀
case a.a 𝕜 : Type u_1 inst✝¹⁵ : NontriviallyNormedField 𝕜 m n : WithTop ℕ∞ E : Type u_2 inst✝¹⁴ : NormedAddCommGroup E inst✝¹³ : NormedSpace 𝕜 E H : Type u_3 inst✝¹² : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝¹¹ : TopologicalSpace M inst✝¹⁰ : ChartedSpace H M E' : Type u_5 inst✝⁹ : NormedAddCommGroup E' inst✝⁸ : NormedSpace 𝕜 E' H' : Type u_6 inst✝⁷ : TopologicalSpace H' I' : ModelWithCorners 𝕜 E' H' M' : Type u_7 inst✝⁶ : TopologicalSpace M' inst✝⁵ : ChartedSpace H' M' F : Type u_8 inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace 𝕜 F G : Type u_9 inst✝² : TopologicalSpace G J : ModelWithCorners 𝕜 F G N : Type u_10 inst✝¹ : TopologicalSpace N inst✝ : ChartedSpace G N Js : IsManifold J n N Is : IsManifold I n M I's : IsManifold I' n M' x₀ : N f : N → M → M' g : N → M t : Set N u : Set M hf : ContMDiffWithinAt (J.prod I) I' n (uncurry f) (t ×ˢ u) (x₀, g x₀) hg : ContMDiffWithinAt J I m g t x₀ hx₀ : x₀ ∈ t hu : MapsTo g t u hmn : m + 1 ≤ n h'u : UniqueMDiffOn I u this✝⁴ : IsManifold I 1 M this✝³ : IsManifold I' 1 M' this✝² : IsManifold J 1 N this✝¹ : IsManifold J m N t' : Set N := t ∩ g ⁻¹' (extChartAt I (g x₀)).source ht't : t' ⊆ t hx₀gx₀ : (x₀, g x₀) ∈ t ×ˢ u h4f✝ : ContinuousWithinAt (fun x => f x (g x)) t x₀ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f x₀ (g x₀))).source ∈ 𝓝[t] x₀ h3f : ∀ᶠ (x' : N × M) in 𝓝[t ×ˢ u] (x₀, g x₀), ContMDiffWithinAt (J.prod I) I' 1 (uncurry f) (t ×ˢ u) x' h2f : ∀ᶠ (x₂ : N) in 𝓝[t] x₀, ContMDiffWithinAt I I' 1 (f x₂) u (g x₂) h2g : g ⁻¹' (extChartAt I (g x₀)).source ∈ 𝓝[t] x₀ this✝ : ContDiffWithinAt 𝕜 m (fun x => fderivWithin 𝕜 (↑(extChartAt I' (f x₀ (g x₀))) ∘ f (↑(extChartAt J x₀).symm x) ∘ ↑(extChartAt I (g x₀)).symm) ((extChartAt I (g x₀)).target ∩ ↑(extChartAt I (g x₀)).symm ⁻¹' u) (↑(extChartAt I (g x₀)) (g (↑(extChartAt J x₀).symm x)))) (↑(extChartAt J x₀).symm ⁻¹' t' ∩ range ↑J) (↑(extChartAt J x₀) x₀) this : ContMDiffWithinAt J 𝓘(𝕜, E →L[𝕜] E') m (fun x => fderivWithin 𝕜 (↑(extChartAt I' (f x₀ (g x₀))) ∘ f x ∘ ↑(extChartAt I (g x₀)).symm) ((extChartAt I (g x₀)).target ∩ ↑(extChartAt I (g x₀)).symm ⁻¹' u) (↑(extChartAt I (g x₀)) (g x))) t' x₀ x : N hx : ContMDiffWithinAt I I' 1 (f x) u (g x) h'x : x ∈ (fun x => f x (g x)) ⁻¹' (extChartAt I' (f x₀ (g x₀))).source h2 : x ∈ g ⁻¹' (extChartAt I (g x₀)).source hxt : x ∈ t h1 : g x ∈ u ⊢ ↑(extChartAt I (g x₀)) (g x) ∈ (extChartAt I (g x₀)).target ∩ ↑(extChartAt I (g x₀)).symm ⁻¹' u
refine ⟨PartialEquiv.map_source _ h2, ?_⟩
case a.a 𝕜 : Type u_1 inst✝¹⁵ : NontriviallyNormedField 𝕜 m n : WithTop ℕ∞ E : Type u_2 inst✝¹⁴ : NormedAddCommGroup E inst✝¹³ : NormedSpace 𝕜 E H : Type u_3 inst✝¹² : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝¹¹ : TopologicalSpace M inst✝¹⁰ : ChartedSpace H M E' : Type u_5 inst✝⁹ : NormedAddCommGroup E' inst✝⁸ : NormedSpace 𝕜 E' H' : Type u_6 inst✝⁷ : TopologicalSpace H' I' : ModelWithCorners 𝕜 E' H' M' : Type u_7 inst✝⁶ : TopologicalSpace M' inst✝⁵ : ChartedSpace H' M' F : Type u_8 inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace 𝕜 F G : Type u_9 inst✝² : TopologicalSpace G J : ModelWithCorners 𝕜 F G N : Type u_10 inst✝¹ : TopologicalSpace N inst✝ : ChartedSpace G N Js : IsManifold J n N Is : IsManifold I n M I's : IsManifold I' n M' x₀ : N f : N → M → M' g : N → M t : Set N u : Set M hf : ContMDiffWithinAt (J.prod I) I' n (uncurry f) (t ×ˢ u) (x₀, g x₀) hg : ContMDiffWithinAt J I m g t x₀ hx₀ : x₀ ∈ t hu : MapsTo g t u hmn : m + 1 ≤ n h'u : UniqueMDiffOn I u this✝⁴ : IsManifold I 1 M this✝³ : IsManifold I' 1 M' this✝² : IsManifold J 1 N this✝¹ : IsManifold J m N t' : Set N := t ∩ g ⁻¹' (extChartAt I (g x₀)).source ht't : t' ⊆ t hx₀gx₀ : (x₀, g x₀) ∈ t ×ˢ u h4f✝ : ContinuousWithinAt (fun x => f x (g x)) t x₀ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f x₀ (g x₀))).source ∈ 𝓝[t] x₀ h3f : ∀ᶠ (x' : N × M) in 𝓝[t ×ˢ u] (x₀, g x₀), ContMDiffWithinAt (J.prod I) I' 1 (uncurry f) (t ×ˢ u) x' h2f : ∀ᶠ (x₂ : N) in 𝓝[t] x₀, ContMDiffWithinAt I I' 1 (f x₂) u (g x₂) h2g : g ⁻¹' (extChartAt I (g x₀)).source ∈ 𝓝[t] x₀ this✝ : ContDiffWithinAt 𝕜 m (fun x => fderivWithin 𝕜 (↑(extChartAt I' (f x₀ (g x₀))) ∘ f (↑(extChartAt J x₀).symm x) ∘ ↑(extChartAt I (g x₀)).symm) ((extChartAt I (g x₀)).target ∩ ↑(extChartAt I (g x₀)).symm ⁻¹' u) (↑(extChartAt I (g x₀)) (g (↑(extChartAt J x₀).symm x)))) (↑(extChartAt J x₀).symm ⁻¹' t' ∩ range ↑J) (↑(extChartAt J x₀) x₀) this : ContMDiffWithinAt J 𝓘(𝕜, E →L[𝕜] E') m (fun x => fderivWithin 𝕜 (↑(extChartAt I' (f x₀ (g x₀))) ∘ f x ∘ ↑(extChartAt I (g x₀)).symm) ((extChartAt I (g x₀)).target ∩ ↑(extChartAt I (g x₀)).symm ⁻¹' u) (↑(extChartAt I (g x₀)) (g x))) t' x₀ x : N hx : ContMDiffWithinAt I I' 1 (f x) u (g x) h'x : x ∈ (fun x => f x (g x)) ⁻¹' (extChartAt I' (f x₀ (g x₀))).source h2 : x ∈ g ⁻¹' (extChartAt I (g x₀)).source hxt : x ∈ t h1 : g x ∈ u ⊢ ↑(extChartAt I (g x₀)) (g x) ∈ ↑(extChartAt I (g x₀)).symm ⁻¹' u
b011e1f26afdb375
Finmap.ext_lookup
Mathlib/Data/Finmap.lean
theorem ext_lookup {s₁ s₂ : Finmap β} : (∀ x, s₁.lookup x = s₂.lookup x) → s₁ = s₂ := induction_on₂ s₁ s₂ fun s₁ s₂ h => by simp only [AList.lookup, lookup_toFinmap] at h rw [AList.toFinmap_eq] apply lookup_ext s₁.nodupKeys s₂.nodupKeys intro x y rw [h]
α : Type u β : α → Type v inst✝ : DecidableEq α s₁✝ s₂✝ : Finmap β s₁ s₂ : AList β h : ∀ (x : α), lookup x ⟦s₁⟧ = lookup x ⟦s₂⟧ ⊢ ⟦s₁⟧ = ⟦s₂⟧
simp only [AList.lookup, lookup_toFinmap] at h
α : Type u β : α → Type v inst✝ : DecidableEq α s₁✝ s₂✝ : Finmap β s₁ s₂ : AList β h : ∀ (x : α), dlookup x s₁.entries = dlookup x s₂.entries ⊢ ⟦s₁⟧ = ⟦s₂⟧
85e1fdcd0e824010
Vector.foldrM_filterMap
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Vector/Monadic.lean
theorem foldrM_filterMap [Monad m] [LawfulMonad m] (f : α → Option β) (g : β → γ → m γ) (l : Vector α n) (init : γ) : (l.filterMap f).foldrM g init = l.foldrM (fun x y => match f x with | some b => g b y | none => pure y) init
case mk m : Type u_1 → Type u_2 α : Type u_3 β : Type u_4 γ : Type u_1 inst✝¹ : Monad m inst✝ : LawfulMonad m f : α → Option β g : β → γ → m γ init : γ l : Array α ⊢ Array.foldrM (fun x y => match f x with | some b => g b y | none => pure y) init l = Array.foldrM (fun x y => match f x with | some b => g b y | none => pure y) init l
rfl
no goals
8712f7f8cb1de212
AlgebraicGeometry.sourceAffineLocally_isLocal
Mathlib/AlgebraicGeometry/Morphisms/RingHomProperties.lean
theorem sourceAffineLocally_isLocal (h₁ : RingHom.RespectsIso P) (h₂ : RingHom.LocalizationAwayPreserves P) (h₃ : RingHom.OfLocalizationSpan P) : (sourceAffineLocally P).IsLocal
case of_basicOpenCover P : {R S : Type u} → [inst : CommRing R] → [inst_1 : CommRing S] → (R →+* S) → Prop h₁ : RingHom.RespectsIso fun {R S} [CommRing R] [CommRing S] => P h₂ : RingHom.LocalizationAwayPreserves fun {R S} [CommRing R] [CommRing S] => P h₃ : RingHom.OfLocalizationSpan fun {R S} [CommRing R] [CommRing S] => P X Y : Scheme inst✝ : IsAffine Y f : X ⟶ Y s : Finset ↑Γ(Y, ⊤) hs : Ideal.span ↑s = ⊤ hs' : ∀ (r : { x // x ∈ s }), sourceAffineLocally (fun {R S} [CommRing R] [CommRing S] => P) (f ∣_ Y.basicOpen ↑r) U : ↑X.affineOpens r : ↑↑s ⊢ P (Localization.awayMap (CommRingCat.Hom.hom (Scheme.Hom.appLE f ⊤ ↑U ⋯)) ↑r)
simp_rw [sourceAffineLocally_morphismRestrict] at hs'
case of_basicOpenCover P : {R S : Type u} → [inst : CommRing R] → [inst_1 : CommRing S] → (R →+* S) → Prop h₁ : RingHom.RespectsIso fun {R S} [CommRing R] [CommRing S] => P h₂ : RingHom.LocalizationAwayPreserves fun {R S} [CommRing R] [CommRing S] => P h₃ : RingHom.OfLocalizationSpan fun {R S} [CommRing R] [CommRing S] => P X Y : Scheme inst✝ : IsAffine Y f : X ⟶ Y s : Finset ↑Γ(Y, ⊤) hs : Ideal.span ↑s = ⊤ U : ↑X.affineOpens r : ↑↑s hs' : ∀ (r : { x // x ∈ s }) (V : ↑X.affineOpens) (e : ↑V ≤ f ⁻¹ᵁ Y.basicOpen ↑r), P (CommRingCat.Hom.hom (Scheme.Hom.appLE f (Y.basicOpen ↑r) (↑V) e)) ⊢ P (Localization.awayMap (CommRingCat.Hom.hom (Scheme.Hom.appLE f ⊤ ↑U ⋯)) ↑r)
222ac1262a013627
Polynomial.coeff_divByMonic_X_sub_C
Mathlib/Algebra/Polynomial/Div.lean
theorem coeff_divByMonic_X_sub_C (p : R[X]) (a : R) (n : ℕ) : (p /ₘ (X - C a)).coeff n = ∑ i ∈ Icc (n + 1) p.natDegree, a ^ (i - (n + 1)) * p.coeff i
case inr.refine_1.e_a.refine_2 R : Type u inst✝ : Ring R p : R[X] a : R n✝ : ℕ this : ∀ (n : ℕ), p.natDegree ≤ n → (p /ₘ (X - C a)).coeff n = ∑ i ∈ Icc (n + 1) p.natDegree, a ^ (i - (n + 1)) * p.coeff i h : ¬p.natDegree ≤ n✝ n : ℕ hn : n < p.natDegree x✝ : n✝ ≤ n ih : (p /ₘ (X - C a)).coeff (n + 1) = ∑ i ∈ Icc (n + 1 + 1) p.natDegree, a ^ (i - (n + 1 + 1)) * p.coeff i i : ℕ hi : i ∈ Icc (n + 1 + 1) p.natDegree ⊢ 1 ≤ i - (n + 1)
apply Nat.le_sub_of_add_le
case inr.refine_1.e_a.refine_2.h R : Type u inst✝ : Ring R p : R[X] a : R n✝ : ℕ this : ∀ (n : ℕ), p.natDegree ≤ n → (p /ₘ (X - C a)).coeff n = ∑ i ∈ Icc (n + 1) p.natDegree, a ^ (i - (n + 1)) * p.coeff i h : ¬p.natDegree ≤ n✝ n : ℕ hn : n < p.natDegree x✝ : n✝ ≤ n ih : (p /ₘ (X - C a)).coeff (n + 1) = ∑ i ∈ Icc (n + 1 + 1) p.natDegree, a ^ (i - (n + 1 + 1)) * p.coeff i i : ℕ hi : i ∈ Icc (n + 1 + 1) p.natDegree ⊢ 1 + (n + 1) ≤ i
b5156308e39e2482
Fin.contractNth_apply_of_eq
Mathlib/Data/Fin/Tuple/Basic.lean
theorem contractNth_apply_of_eq (j : Fin (n + 1)) (op : α → α → α) (g : Fin (n + 1) → α) (k : Fin n) (h : (k : ℕ) = j) : contractNth j op g k = op (g (Fin.castSucc k)) (g k.succ)
n : ℕ α : Sort u_1 j : Fin (n + 1) op : α → α → α g : Fin (n + 1) → α k : Fin n h : ↑k = ↑j ⊢ j.contractNth op g k = op (g k.castSucc) (g k.succ)
have : ¬(k : ℕ) < j := not_lt.2 (le_of_eq h.symm)
n : ℕ α : Sort u_1 j : Fin (n + 1) op : α → α → α g : Fin (n + 1) → α k : Fin n h : ↑k = ↑j this : ¬↑k < ↑j ⊢ j.contractNth op g k = op (g k.castSucc) (g k.succ)
32cad5442fb3a7d6
IsClosed.isClopenable
Mathlib/Topology/MetricSpace/Polish.lean
theorem _root_.IsClosed.isClopenable [TopologicalSpace α] [PolishSpace α] {s : Set α} (hs : IsClosed s) : IsClopenable s
α : Type u_1 inst✝¹ : TopologicalSpace α inst✝ : PolishSpace α s : Set α hs : IsClosed s this : PolishSpace ↑s ⊢ IsClopenable s
let t : Set α := sᶜ
α : Type u_1 inst✝¹ : TopologicalSpace α inst✝ : PolishSpace α s : Set α hs : IsClosed s this : PolishSpace ↑s t : Set α := sᶜ ⊢ IsClopenable s
86268e182c814247
HahnSeries.order_mul
Mathlib/RingTheory/HahnSeries/Multiplication.lean
theorem order_mul {Γ} [LinearOrderedCancelAddCommMonoid Γ] [NonUnitalNonAssocSemiring R] [NoZeroDivisors R] {x y : HahnSeries Γ R} (hx : x ≠ 0) (hy : y ≠ 0) : (x * y).order = x.order + y.order
case a.h R : Type u_3 Γ : Type u_6 inst✝² : LinearOrderedCancelAddCommMonoid Γ inst✝¹ : NonUnitalNonAssocSemiring R inst✝ : NoZeroDivisors R x y : HahnSeries Γ R hx : x ≠ 0 hy : y ≠ 0 ⊢ x.leadingCoeff * y.leadingCoeff ≠ 0
exact mul_ne_zero (leadingCoeff_ne_iff.mpr hx) (leadingCoeff_ne_iff.mpr hy)
no goals
e6cf92b660be132a
Matrix.blockDiagonal_tsum
Mathlib/Topology/Instances/Matrix.lean
theorem Matrix.blockDiagonal_tsum [DecidableEq p] [T2Space R] {f : X → p → Matrix m n R} : blockDiagonal (∑' x, f x) = ∑' x, blockDiagonal (f x)
X : Type u_1 m : Type u_4 n : Type u_5 p : Type u_6 R : Type u_8 inst✝³ : AddCommMonoid R inst✝² : TopologicalSpace R inst✝¹ : DecidableEq p inst✝ : T2Space R f : X → p → Matrix m n R ⊢ blockDiagonal (∑' (x : X), f x) = ∑' (x : X), blockDiagonal (f x)
by_cases hf : Summable f
case pos X : Type u_1 m : Type u_4 n : Type u_5 p : Type u_6 R : Type u_8 inst✝³ : AddCommMonoid R inst✝² : TopologicalSpace R inst✝¹ : DecidableEq p inst✝ : T2Space R f : X → p → Matrix m n R hf : Summable f ⊢ blockDiagonal (∑' (x : X), f x) = ∑' (x : X), blockDiagonal (f x) case neg X : Type u_1 m : Type u_4 n : Type u_5 p : Type u_6 R : Type u_8 inst✝³ : AddCommMonoid R inst✝² : TopologicalSpace R inst✝¹ : DecidableEq p inst✝ : T2Space R f : X → p → Matrix m n R hf : ¬Summable f ⊢ blockDiagonal (∑' (x : X), f x) = ∑' (x : X), blockDiagonal (f x)
baf1709573783a76
Multiset.le_bind
Mathlib/Data/Multiset/Bind.lean
theorem le_bind {α β : Type*} {f : α → Multiset β} (S : Multiset α) {x : α} (hx : x ∈ S) : f x ≤ S.bind f
case intro α : Type u_4 β : Type u_5 f : α → Multiset β S : Multiset α x : α hx : x ∈ S a : β m' : Multiset ℕ hm' : map (fun b => count a (f b)) S = (fun b => count a (f b)) x ::ₘ m' ⊢ count a (f x) ≤ (fun b => count a (f b)) x + m'.sum
exact Nat.le_add_right _ _
no goals
2e61a8e5a411e4b9
OreLocalization.eq_of_num_factor_eq
Mathlib/GroupTheory/OreLocalization/Basic.lean
theorem eq_of_num_factor_eq {r r' r₁ r₂ : R} {s t : S} (h : t * r = t * r') : r₁ * r * r₂ /ₒ s = r₁ * r' * r₂ /ₒ s
R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r r' r₁ r₂ : R s t : ↥S h : ↑t * r = ↑t * r' r₁' : R t' : ↥S hr₁ : ↑t' * r₁ = r₁' * ↑t ⊢ r₁' * (↑t * r') * r₂ = r₁' * ↑t * r' * r₂
simp [← mul_assoc]
no goals
20ac2fecf822d2fd
LieSubmodule.lcs_add_le_iff
Mathlib/Algebra/Lie/Nilpotent.lean
theorem lcs_add_le_iff (l k : ℕ) : N₁.lcs (l + k) ≤ N₂ ↔ N₁.lcs l ≤ N₂.ucs k
case zero R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M N₁ N₂ : LieSubmodule R L M inst✝ : LieModule R L M l : ℕ ⊢ lcs (l + 0) N₁ ≤ N₂ ↔ lcs l N₁ ≤ ucs 0 N₂
simp
no goals
38260d5d543126fc
BitVec.toNat_ushiftRight_lt
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Lemmas.lean
theorem toNat_ushiftRight_lt (x : BitVec w) (n : Nat) (hn : n ≤ w) : (x >>> n).toNat < 2 ^ (w - n)
case h w : Nat x : BitVec w n : Nat hn : n ≤ w ⊢ n ≤ w
apply hn
no goals
e2b3a134eb083317
PrimeSpectrum.isClosed_image_of_stableUnderSpecialization
Mathlib/RingTheory/Spectrum/Prime/Topology.lean
@[stacks 05JL] lemma isClosed_image_of_stableUnderSpecialization (Z : Set (PrimeSpectrum S)) (hZ : IsClosed Z) (hf : StableUnderSpecialization (comap f '' Z)) : IsClosed (comap f '' Z)
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S f : R →+* S Z : Set (PrimeSpectrum S) hZ : IsClosed Z hf : StableUnderSpecialization (⇑(comap f) '' Z) ⊢ IsClosed (⇑(comap f) '' Z)
obtain ⟨I, rfl⟩ := (PrimeSpectrum.isClosed_iff_zeroLocus_ideal Z).mp hZ
case intro R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S f : R →+* S I : Ideal S hZ : IsClosed (zeroLocus ↑I) hf : StableUnderSpecialization (⇑(comap f) '' zeroLocus ↑I) ⊢ IsClosed (⇑(comap f) '' zeroLocus ↑I)
26a6df79a3998cc2
SetTheory.PGame.birthday_add
Mathlib/SetTheory/Game/Birthday.lean
theorem birthday_add : ∀ x y : PGame.{u}, (x + y).birthday = x.birthday ♯ y.birthday | ⟨xl, xr, xL, xR⟩, ⟨yl, yr, yL, yR⟩ => by rw [birthday_def, nadd, lsub_sum, lsub_sum] simp only [mk_add_moveLeft_inl, mk_add_moveLeft_inr, mk_add_moveRight_inl, mk_add_moveRight_inr, moveLeft_mk, moveRight_mk] conv_lhs => left; left; right; intro a; rw [birthday_add (xL a) ⟨yl, yr, yL, yR⟩] conv_lhs => left; right; right; intro b; rw [birthday_add ⟨xl, xr, xL, xR⟩ (yL b)] conv_lhs => right; left; right; intro a; rw [birthday_add (xR a) ⟨yl, yr, yL, yR⟩] conv_lhs => right; right; right; intro b; rw [birthday_add ⟨xl, xr, xL, xR⟩ (yR b)] rw [max_max_max_comm] congr <;> apply le_antisymm any_goals refine max_le_iff.2 ⟨?_, ?_⟩ all_goals refine lsub_le_iff.2 fun i ↦ ?_ rw [← Order.succ_le_iff] refine Ordinal.le_iSup (fun _ : Set.Iio _ ↦ _) ⟨_, ?_⟩ apply_rules [birthday_moveLeft_lt, birthday_moveRight_lt] all_goals rw [Ordinal.iSup_le_iff] rintro ⟨i, hi⟩ obtain ⟨j, hj⟩ | ⟨j, hj⟩ := lt_birthday_iff.1 hi <;> rw [Order.succ_le_iff] · exact lt_max_of_lt_left ((nadd_le_nadd_right hj _).trans_lt (lt_lsub _ _)) · exact lt_max_of_lt_right ((nadd_le_nadd_right hj _).trans_lt (lt_lsub _ _)) · exact lt_max_of_lt_left ((nadd_le_nadd_left hj _).trans_lt (lt_lsub _ _)) · exact lt_max_of_lt_right ((nadd_le_nadd_left hj _).trans_lt (lt_lsub _ _)) termination_by a b => (a, b)
case e_a.a.refine_2 xl xr : Type u xL : xl → PGame xR : xr → PGame yl yr : Type u yL : yl → PGame yR : yr → PGame i : yr ⊢ (yR i).birthday ∈ Set.Iio (mk yl yr yL yR).birthday
apply_rules [birthday_moveLeft_lt, birthday_moveRight_lt]
no goals
33d4fe8b94c4ad64
MeasureTheory.Measure.sum_comm
Mathlib/MeasureTheory/Measure/MeasureSpace.lean
theorem sum_comm {ι' : Type*} (μ : ι → ι' → Measure α) : (sum fun n => sum (μ n)) = sum fun m => sum fun n => μ n m
case h α : Type u_1 ι : Type u_5 m0 : MeasurableSpace α ι' : Type u_8 μ : ι → ι' → Measure α s : Set α hs : MeasurableSet s ⊢ ∑' (i : ι) (i_1 : ι'), (μ i i_1) s = ∑' (i : ι') (i_1 : ι), (μ i_1 i) s
rw [ENNReal.tsum_comm]
no goals
0c3b2d99d7a8c1f4
Finpartition.IsEquipartition.card_interedges_sparsePairs_le'
Mathlib/Combinatorics/SimpleGraph/Regularity/Uniform.lean
lemma IsEquipartition.card_interedges_sparsePairs_le' (hP : P.IsEquipartition) (hε : 0 ≤ ε) : #((P.sparsePairs G ε).biUnion fun (U, V) ↦ G.interedges U V) ≤ ε * (#A + #P.parts) ^ 2
case calc_2.calc_1 α : Type u_1 𝕜 : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : DecidableEq α A : Finset α P : Finpartition A G : SimpleGraph α inst✝ : DecidableRel G.Adj ε : 𝕜 hP : P.IsEquipartition hε : 0 ≤ ε ⊢ ∀ (a b : Finset α), a ∈ P.parts → b ∈ P.parts → a ≠ b → #a * #b ≤ (#A / #P.parts + 1) * (#A / #P.parts + 1)
rintro U V hU hV -
case calc_2.calc_1 α : Type u_1 𝕜 : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : DecidableEq α A : Finset α P : Finpartition A G : SimpleGraph α inst✝ : DecidableRel G.Adj ε : 𝕜 hP : P.IsEquipartition hε : 0 ≤ ε U V : Finset α hU : U ∈ P.parts hV : V ∈ P.parts ⊢ #U * #V ≤ (#A / #P.parts + 1) * (#A / #P.parts + 1)
2382db98fe2b8214
comap_map_eq_map_adjoin_of_coprime_conductor
Mathlib/NumberTheory/KummerDedekind.lean
theorem comap_map_eq_map_adjoin_of_coprime_conductor (hx : (conductor R x).comap (algebraMap R S) ⊔ I = ⊤) (h_alg : Function.Injective (algebraMap R<x> S)) : (I.map (algebraMap R S)).comap (algebraMap R<x> S) = I.map (algebraMap R R<x>)
R : Type u_1 S : Type u_2 inst✝² : CommRing R inst✝¹ : CommRing S inst✝ : Algebra R S x : S I : Ideal R hx : comap (algebraMap R S) (conductor R x) ⊔ I = ⊤ h_alg : Function.Injective ⇑(algebraMap (↥(adjoin R {x})) S) z : S hz : z ∈ adjoin R {x} hy : ⟨z, hz⟩ ∈ comap (algebraMap (↥(adjoin R {x})) S) (Ideal.map (algebraMap R S) I) p : R hp : p ∈ comap (algebraMap R S) (conductor R x) q : R hq : q ∈ I hpq : p + q = 1 temp : (algebraMap R S) p * z + (algebraMap R S) q * z = z this : z ∈ ⇑(algebraMap (↥(adjoin R {x})) S) '' ↑(Ideal.map (algebraMap R ↥(adjoin R {x})) I) ↔ ⟨z, hz⟩ ∈ Ideal.map (algebraMap R ↥(adjoin R {x})) I ⊢ (algebraMap R S) p * z + (algebraMap R S) q * z ∈ ⇑(algebraMap (↥(adjoin R {x})) S) '' ↑(Ideal.map (algebraMap R ↥(adjoin R {x})) I)
obtain ⟨a, ha⟩ := (Set.mem_image _ _ _).mp (prod_mem_ideal_map_of_mem_conductor hp (show z ∈ I.map (algebraMap R S) by rwa [Ideal.mem_comap] at hy))
case intro R : Type u_1 S : Type u_2 inst✝² : CommRing R inst✝¹ : CommRing S inst✝ : Algebra R S x : S I : Ideal R hx : comap (algebraMap R S) (conductor R x) ⊔ I = ⊤ h_alg : Function.Injective ⇑(algebraMap (↥(adjoin R {x})) S) z : S hz : z ∈ adjoin R {x} hy : ⟨z, hz⟩ ∈ comap (algebraMap (↥(adjoin R {x})) S) (Ideal.map (algebraMap R S) I) p : R hp : p ∈ comap (algebraMap R S) (conductor R x) q : R hq : q ∈ I hpq : p + q = 1 temp : (algebraMap R S) p * z + (algebraMap R S) q * z = z this : z ∈ ⇑(algebraMap (↥(adjoin R {x})) S) '' ↑(Ideal.map (algebraMap R ↥(adjoin R {x})) I) ↔ ⟨z, hz⟩ ∈ Ideal.map (algebraMap R ↥(adjoin R {x})) I a : ↥(adjoin R {x}) ha : a ∈ ↑(Ideal.map (algebraMap R ↥(adjoin R {x})) I) ∧ (algebraMap (↥(adjoin R {x})) S) a = (algebraMap R S) p * z ⊢ (algebraMap R S) p * z + (algebraMap R S) q * z ∈ ⇑(algebraMap (↥(adjoin R {x})) S) '' ↑(Ideal.map (algebraMap R ↥(adjoin R {x})) I)
1d9a3ec969c1bfed
Matroid.coindep_iff_compl_spanning
Mathlib/Data/Matroid/Closure.lean
lemma coindep_iff_compl_spanning (hI : I ⊆ M.E
α : Type u_2 M : Matroid α I : Set α hI : autoParam (I ⊆ M.E) _auto✝ ⊢ M.Coindep I ↔ M.Spanning (M.E \ I)
rw [coindep_iff_exists, spanning_iff_exists_isBase_subset]
no goals
c54a3a9bf19be3c5
Int.preimage_Ioi
Mathlib/Algebra/Order/Floor.lean
theorem preimage_Ioi : ((↑) : ℤ → α) ⁻¹' Set.Ioi a = Set.Ioi ⌊a⌋
case h α : Type u_2 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α a : α x✝ : ℤ ⊢ x✝ ∈ Int.cast ⁻¹' Ioi a ↔ x✝ ∈ Ioi ⌊a⌋
simp [floor_lt]
no goals
abd1e7e7a65c9c57
fourierCoeff_bernoulli_eq
Mathlib/NumberTheory/ZetaValues.lean
theorem fourierCoeff_bernoulli_eq {k : ℕ} (hk : k ≠ 0) (n : ℤ) : fourierCoeff ((↑) ∘ periodizedBernoulli k : 𝕌 → ℂ) n = -k ! / (2 * π * I * n) ^ k
k : ℕ hk : k ≠ 0 n : ℤ this : ofReal ∘ periodizedBernoulli k = AddCircle.liftIco 1 0 (ofReal ∘ bernoulliFun k) ⊢ fourierCoeffOn ⋯ (ofReal ∘ bernoulliFun k) n = -↑k ! / (2 * ↑π * I * ↑n) ^ k
simpa only [zero_add] using bernoulliFourierCoeff_eq hk n
no goals
b829b68637ea7172
Finset.singleton_product
Mathlib/Data/Finset/Prod.lean
theorem singleton_product {a : α} : ({a} : Finset α) ×ˢ t = t.map ⟨Prod.mk a, Prod.mk.inj_left _⟩
case h.mk α : Type u_1 β : Type u_2 t : Finset β a x : α y : β ⊢ (x, y) ∈ {a} ×ˢ t ↔ (x, y) ∈ map { toFun := Prod.mk a, inj' := ⋯ } t
simp [and_left_comm, eq_comm]
no goals
5a2a921959a1b1aa
FormalMultilinearSeries.changeOriginSeries_sum_eq_partialSum_of_finite
Mathlib/Analysis/Analytic/CPolynomialDef.lean
lemma changeOriginSeries_sum_eq_partialSum_of_finite (p : FormalMultilinearSeries 𝕜 E F) {n : ℕ} (hn : ∀ (m : ℕ), n ≤ m → p m = 0) (k : ℕ) : (p.changeOriginSeries k).sum = (p.changeOriginSeries k).partialSum (n - k)
𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F p : FormalMultilinearSeries 𝕜 E F n : ℕ hn : ∀ (m : ℕ), n ≤ m → p m = 0 k : ℕ ⊢ (p.changeOriginSeries k).sum = (p.changeOriginSeries k).partialSum (n - k)
ext x
case h.H 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F p : FormalMultilinearSeries 𝕜 E F n : ℕ hn : ∀ (m : ℕ), n ≤ m → p m = 0 k : ℕ x : E x✝ : Fin k → E ⊢ ((p.changeOriginSeries k).sum x) x✝ = ((p.changeOriginSeries k).partialSum (n - k) x) x✝
916b6ae2b7c15f41
AddCircle.homeomorphCircle_apply
Mathlib/Analysis/SpecialFunctions/Complex/Circle.lean
theorem homeomorphCircle_apply (hT : T ≠ 0) (x : AddCircle T) : homeomorphCircle hT x = toCircle x
T : ℝ hT : T ≠ 0 x : AddCircle T ⊢ (homeomorphCircle hT) x = x.toCircle
induction' x using QuotientAddGroup.induction_on with x
case H T : ℝ hT : T ≠ 0 x : ℝ ⊢ (homeomorphCircle hT) ↑x = toCircle ↑x
f21d65266bed3e5f
Finset.sum_sym2_filter_not_isDiag
Mathlib/Algebra/BigOperators/Sym.lean
theorem Finset.sum_sym2_filter_not_isDiag {ι α} [LinearOrder ι] [AddCommMonoid α] (s : Finset ι) (p : Sym2 ι → α) : ∑ i ∈ s.sym2 with ¬ i.IsDiag, p i = ∑ i ∈ s.offDiag with i.1 < i.2, p s(i.1, i.2)
case refine_1.mk.mk ι : Type u_1 α : Type u_2 inst✝¹ : LinearOrder ι inst✝ : AddCommMonoid α s : Finset ι p : Sym2 ι → α i₁ j₁ : ι hij₁ : (i₁, j₁).1 ≤ (i₁, j₁).2 ⊢ ⟨(i₁, j₁), hij₁⟩ ∈ Finset.subtype (fun i => i.1 ≤ i.2) s.offDiag ↔ Sym2.sortEquiv.symm ⟨(i₁, j₁), hij₁⟩ ∈ filter (fun i => ¬i.IsDiag) s.sym2
simp [and_assoc]
no goals
ec5378fc923a84da
FreeGroup.Red.inv_of_red_of_ne
Mathlib/GroupTheory/FreeGroup/Basic.lean
theorem inv_of_red_of_ne {x1 b1 x2 b2} (H1 : (x1, b1) ≠ (x2, b2)) (H2 : Red ((x1, b1) :: L₁) ((x2, b2) :: L₂)) : Red L₁ ((x1, not b1) :: (x2, b2) :: L₂)
case intro.cons.intro.intro.intro.refl α : Type u L₂ : List (α × Bool) x1 : α b1 : Bool x2 : α b2 : Bool H1 : (x1, b1) ≠ (x2, b2) L₃ L₄ : List (α × Bool) h₂ : Red L₄ L₂ h₁ : Red ((x1, b1) :: L₃) [(x2, b2)] H2 : Red ((x1, b1) :: L₃.append L₄) ((x2, b2) :: L₂) this : Red ((x1, b1) :: L₃.append L₄) ([(x2, b2)] ++ L₂) ⊢ Red (L₃ ++ L₄) ([(x1, !b1), (x2, b2)] ++ L₂)
apply append_append _ h₂
α : Type u L₂ : List (α × Bool) x1 : α b1 : Bool x2 : α b2 : Bool H1 : (x1, b1) ≠ (x2, b2) L₃ L₄ : List (α × Bool) h₂ : Red L₄ L₂ h₁ : Red ((x1, b1) :: L₃) [(x2, b2)] H2 : Red ((x1, b1) :: L₃.append L₄) ((x2, b2) :: L₂) this : Red ((x1, b1) :: L₃.append L₄) ([(x2, b2)] ++ L₂) ⊢ Red L₃ [(x1, !b1), (x2, b2)]
fbf48e09e0ebe5b0
MonomialOrder.degree_prod
Mathlib/RingTheory/MvPolynomial/MonomialOrder.lean
theorem degree_prod [IsDomain R] {ι : Type*} {P : ι → MvPolynomial σ R} {s : Finset ι} (H : ∀ i ∈ s, P i ≠ 0) : m.degree (∏ i ∈ s, P i) = ∑ i ∈ s, m.degree (P i)
case H.a0 σ : Type u_1 m : MonomialOrder σ R : Type u_2 inst✝¹ : CommSemiring R inst✝ : IsDomain R ι : Type u_3 P : ι → MvPolynomial σ R s : Finset ι H : ∀ i ∈ s, P i ≠ 0 i : ι hi : i ∈ s ⊢ m.leadingCoeff (P i) ≠ 0
rw [leadingCoeff_ne_zero_iff]
case H.a0 σ : Type u_1 m : MonomialOrder σ R : Type u_2 inst✝¹ : CommSemiring R inst✝ : IsDomain R ι : Type u_3 P : ι → MvPolynomial σ R s : Finset ι H : ∀ i ∈ s, P i ≠ 0 i : ι hi : i ∈ s ⊢ P i ≠ 0
3cfd73bd8df87df1
ProbabilityTheory.integrable_preCDF
Mathlib/Probability/Kernel/Disintegration/CondCDF.lean
lemma integrable_preCDF (ρ : Measure (α × ℝ)) [IsFiniteMeasure ρ] (x : ℚ) : Integrable (fun a ↦ (preCDF ρ x a).toReal) ρ.fst
α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℚ ⊢ Integrable (fun a => (preCDF ρ x a).toReal) ρ.fst
refine integrable_of_forall_fin_meas_le _ (measure_lt_top ρ.fst univ) ?_ fun t _ _ ↦ ?_
case refine_1 α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℚ ⊢ AEStronglyMeasurable (fun a => (preCDF ρ x a).toReal) ρ.fst case refine_2 α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℚ t : Set α x✝¹ : MeasurableSet t x✝ : ρ.fst t ≠ ⊤ ⊢ ∫⁻ (x_1 : α) in t, ‖(preCDF ρ x x_1).toReal‖ₑ ∂ρ.fst ≤ ρ.fst univ
4c5dd33b70a92091
Path.range_reparam
Mathlib/Topology/Path.lean
theorem range_reparam (γ : Path x y) {f : I → I} (hfcont : Continuous f) (hf₀ : f 0 = 0) (hf₁ : f 1 = 1) : range (γ.reparam f hfcont hf₀ hf₁) = range γ
X : Type u_1 inst✝ : TopologicalSpace X x y : X γ : Path x y f : ↑I → ↑I hfcont : Continuous f hf₀ : f 0 = 0 hf₁ : f 1 = 1 ⊢ Surjective f
intro t
X : Type u_1 inst✝ : TopologicalSpace X x y : X γ : Path x y f : ↑I → ↑I hfcont : Continuous f hf₀ : f 0 = 0 hf₁ : f 1 = 1 t : ↑I ⊢ ∃ a, f a = t
ce2c5842516e1041
NormedAddGroupHom.SurjectiveOnWith.mono
Mathlib/Analysis/Normed/Group/Hom.lean
theorem SurjectiveOnWith.mono {f : NormedAddGroupHom V₁ V₂} {K : AddSubgroup V₂} {C C' : ℝ} (h : f.SurjectiveOnWith K C) (H : C ≤ C') : f.SurjectiveOnWith K C'
V₁ : Type u_2 V₂ : Type u_3 inst✝¹ : SeminormedAddCommGroup V₁ inst✝ : SeminormedAddCommGroup V₂ f : NormedAddGroupHom V₁ V₂ K : AddSubgroup V₂ C C' : ℝ h : f.SurjectiveOnWith K C H : C ≤ C' g : V₁ k_in : f g ∈ K hg : ‖g‖ ≤ C * ‖f g‖ Hg : ¬‖f g‖ = 0 ⊢ C * ‖f g‖ ≤ C' * ‖f g‖
gcongr
no goals
0ec223564f13d644
IsCompact.exists_isOpen_closure_subset
Mathlib/Topology/Separation/Regular.lean
theorem IsCompact.exists_isOpen_closure_subset {K U : Set X} (hK : IsCompact K) (hU : U ∈ 𝓝ˢ K) : ∃ V, IsOpen V ∧ K ⊆ V ∧ closure V ⊆ U
case intro.intro.intro.intro.intro.intro X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : RegularSpace X K U : Set X hK : IsCompact K hU : U ∈ 𝓝ˢ K hd : Disjoint (𝓝ˢ K) (𝓝ˢ Uᶜ) V : Set X hVo : IsOpen V hKV : K ⊆ V W : Set X hVW : Disjoint V W hW : IsOpen W hUW : Uᶜ ⊆ W ⊢ closure V ⊆ Wᶜ
exact closure_minimal hVW.subset_compl_right hW.isClosed_compl
no goals
6fe64539d616c336
Filter.countable_biInf_eq_iInf_seq'
Mathlib/Order/Filter/CountablyGenerated.lean
theorem countable_biInf_eq_iInf_seq' [CompleteLattice α] {B : Set ι} (Bcbl : B.Countable) (f : ι → α) {i₀ : ι} (h : f i₀ = ⊤) : ∃ x : ℕ → ι, ⨅ t ∈ B, f t = ⨅ i, f (x i)
α : Type u_1 ι : Type u_4 inst✝ : CompleteLattice α B : Set ι Bcbl : B.Countable f : ι → α i₀ : ι h : f i₀ = ⊤ ⊢ ∃ x, ⨅ t ∈ B, f t = ⨅ i, f (x i)
rcases B.eq_empty_or_nonempty with hB | Bnonempty
case inl α : Type u_1 ι : Type u_4 inst✝ : CompleteLattice α B : Set ι Bcbl : B.Countable f : ι → α i₀ : ι h : f i₀ = ⊤ hB : B = ∅ ⊢ ∃ x, ⨅ t ∈ B, f t = ⨅ i, f (x i) case inr α : Type u_1 ι : Type u_4 inst✝ : CompleteLattice α B : Set ι Bcbl : B.Countable f : ι → α i₀ : ι h : f i₀ = ⊤ Bnonempty : B.Nonempty ⊢ ∃ x, ⨅ t ∈ B, f t = ⨅ i, f (x i)
1109f96365705c26
Nat.lt_size_self
Mathlib/Data/Nat/Size.lean
theorem lt_size_self (n : ℕ) : n < 2 ^ size n
n : ℕ this : ∀ {n : ℕ}, n = 0 → n < 1 <<< n.size ⊢ n < 1 <<< n.size
refine binaryRec ?_ ?_ n
case refine_1 n : ℕ this : ∀ {n : ℕ}, n = 0 → n < 1 <<< n.size ⊢ 0 < 1 <<< size 0 case refine_2 n : ℕ this : ∀ {n : ℕ}, n = 0 → n < 1 <<< n.size ⊢ ∀ (b : Bool) (n : ℕ), n < 1 <<< n.size → bit b n < 1 <<< (bit b n).size
cc1b3f57abedd490
LinearMap.map_eq_top_iff
Mathlib/LinearAlgebra/Span/Basic.lean
theorem map_eq_top_iff {f : F} (hf : range f = ⊤) {p : Submodule R M} : p.map f = ⊤ ↔ p ⊔ LinearMap.ker f = ⊤
R : Type u_1 R₂ : Type u_2 M : Type u_4 M₂ : Type u_5 inst✝⁸ : Semiring R inst✝⁷ : Semiring R₂ inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M₂ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ τ₁₂ : R →+* R₂ inst✝² : RingHomSurjective τ₁₂ F : Type u_8 inst✝¹ : FunLike F M M₂ inst✝ : SemilinearMapClass F τ₁₂ M M₂ f : F hf : range f = ⊤ p : Submodule R M ⊢ map f p = ⊤ ↔ p ⊔ ker f = ⊤
simp_rw [← top_le_iff, ← hf, range_eq_map, LinearMap.map_le_map_iff]
no goals
45dc5dbaa96645dc
Set.iInter_setOf
Mathlib/Data/Set/Lattice.lean
theorem iInter_setOf (P : ι → α → Prop) : ⋂ i, { x : α | P i x } = { x : α | ∀ i, P i x }
case h α : Type u_1 ι : Sort u_5 P : ι → α → Prop x✝ : α ⊢ x✝ ∈ ⋂ i, {x | P i x} ↔ x✝ ∈ {x | ∀ (i : ι), P i x}
exact mem_iInter
no goals
27beddd378adba5f
List.sublist_replicate_iff
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Sublist.lean
theorem sublist_replicate_iff : l <+ replicate m a ↔ ∃ n, n ≤ m ∧ l = replicate n a
α✝ : Type u_1 a : α✝ m n : Nat le : n ≤ m ih : ∀ {m : Nat}, replicate n a <+ replicate m a ↔ ∃ n_1, n_1 ≤ m ∧ replicate n a = replicate n_1 a w : replicate n a <+ replicate m a ⊢ a :: replicate n a = replicate (n + 1) a
simp [replicate_succ]
no goals
b36e6729c3d1c9f6
AlgebraicGeometry.Scheme.Hom.range_subset_ker_support
Mathlib/AlgebraicGeometry/IdealSheaf.lean
lemma Hom.range_subset_ker_support (f : X.Hom Y) : Set.range f.base ⊆ f.ker.support
X Y : Scheme f : X.Hom Y ⊢ Set.range ⇑(ConcreteCategory.hom f.base) ⊆ f.ker.support
rintro _ ⟨x, rfl⟩
case intro X Y : Scheme f : X.Hom Y x : ↑↑X.toPresheafedSpace ⊢ (ConcreteCategory.hom f.base) x ∈ f.ker.support
9d460a55329e679b
continuous_parametric_integral_of_continuous
Mathlib/MeasureTheory/Integral/SetIntegral.lean
theorem continuous_parametric_integral_of_continuous [FirstCountableTopology X] [LocallyCompactSpace X] [SecondCountableTopologyEither Y E] [IsLocallyFiniteMeasure μ] {f : X → Y → E} (hf : Continuous f.uncurry) {s : Set Y} (hs : IsCompact s) : Continuous (∫ y in s, f · y ∂μ)
Y : Type u_2 E : Type u_3 X : Type u_5 inst✝⁹ : TopologicalSpace X inst✝⁸ : TopologicalSpace Y inst✝⁷ : MeasurableSpace Y inst✝⁶ : OpensMeasurableSpace Y μ : Measure Y inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : FirstCountableTopology X inst✝² : LocallyCompactSpace X inst✝¹ : SecondCountableTopologyEither Y E inst✝ : IsLocallyFiniteMeasure μ f : X → Y → E hf : Continuous (uncurry f) s : Set Y hs : IsCompact s ⊢ ∀ (x : X), ContinuousAt (fun x => ∫ (y : Y) in s, f x y ∂μ) x
intro x₀
Y : Type u_2 E : Type u_3 X : Type u_5 inst✝⁹ : TopologicalSpace X inst✝⁸ : TopologicalSpace Y inst✝⁷ : MeasurableSpace Y inst✝⁶ : OpensMeasurableSpace Y μ : Measure Y inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : FirstCountableTopology X inst✝² : LocallyCompactSpace X inst✝¹ : SecondCountableTopologyEither Y E inst✝ : IsLocallyFiniteMeasure μ f : X → Y → E hf : Continuous (uncurry f) s : Set Y hs : IsCompact s x₀ : X ⊢ ContinuousAt (fun x => ∫ (y : Y) in s, f x y ∂μ) x₀
77c93b2e7b9a838f
Equiv.Perm.cycle_is_cycleOf
Mathlib/GroupTheory/Perm/Cycle/Factors.lean
theorem cycle_is_cycleOf {f c : Equiv.Perm α} {a : α} (ha : a ∈ c.support) (hc : c ∈ f.cycleFactorsFinset) : c = f.cycleOf a
α : Type u_2 inst✝¹ : DecidableEq α inst✝ : Fintype α f c : Perm α a : α ha : a ∈ c.support hc : c ∈ f.cycleFactorsFinset hfc : c.Disjoint (f * c⁻¹) := Disjoint.symm (disjoint_mul_inv_of_mem_cycleFactorsFinset hc) hfc2 : Commute c (f * c⁻¹) := Disjoint.commute hfc ⊢ f.cycleOf a = (c * (f * c⁻¹)).cycleOf a
simp only [hfc2.eq, inv_mul_cancel_right]
no goals
51f66f0a14646a04
Matrix.derivative_det_one_add_X_smul_aux
Mathlib/LinearAlgebra/Matrix/Charpoly/Coeff.lean
lemma derivative_det_one_add_X_smul_aux {n} (M : Matrix (Fin n) (Fin n) R) : (derivative <| det (1 + (X : R[X]) • M.map C)).eval 0 = trace M
case succ R : Type u inst✝ : CommRing R n : ℕ IH : ∀ (M : Matrix (Fin n) (Fin n) R), eval 0 (derivative (1 + X • M.map ⇑C).det) = M.trace M : Matrix (Fin (n + 1)) (Fin (n + 1)) R ⊢ eval 0 (derivative (1 + X • M.map ⇑C).det) = M.trace
rw [det_succ_row_zero, map_sum, eval_finset_sum]
case succ R : Type u inst✝ : CommRing R n : ℕ IH : ∀ (M : Matrix (Fin n) (Fin n) R), eval 0 (derivative (1 + X • M.map ⇑C).det) = M.trace M : Matrix (Fin (n + 1)) (Fin (n + 1)) R ⊢ ∑ i : Fin n.succ, eval 0 (derivative ((-1) ^ ↑i * (1 + X • M.map ⇑C) 0 i * ((1 + X • M.map ⇑C).submatrix Fin.succ i.succAbove).det)) = M.trace
a88f93f677573a35
NumberField.mixedEmbedding.logMap_zero
Mathlib/NumberTheory/NumberField/CanonicalEmbedding/FundamentalCone.lean
theorem logMap_zero : logMap (0 : mixedSpace K) = 0
K : Type u_1 inst✝¹ : Field K inst✝ : NumberField K ⊢ logMap 0 = 0
ext
case h K : Type u_1 inst✝¹ : Field K inst✝ : NumberField K x✝ : { w // w ≠ w₀ } ⊢ logMap 0 x✝ = 0 x✝
84b5e372e1e35332
MonoidAlgebra.mapDomainAlgHom_comp
Mathlib/Algebra/MonoidAlgebra/Basic.lean
@[simp] lemma mapDomainAlgHom_comp (k A) {G₁ G₂ G₃} [CommSemiring k] [Semiring A] [Algebra k A] [Monoid G₁] [Monoid G₂] [Monoid G₃] (f : G₁ →* G₂) (g : G₂ →* G₃) : mapDomainAlgHom k A (g.comp f) = (mapDomainAlgHom k A g).comp (mapDomainAlgHom k A f)
k : Type u_4 A : Type u_5 G₁ : Type u_6 G₂ : Type u_7 G₃ : Type u_8 inst✝⁵ : CommSemiring k inst✝⁴ : Semiring A inst✝³ : Algebra k A inst✝² : Monoid G₁ inst✝¹ : Monoid G₂ inst✝ : Monoid G₃ f : G₁ →* G₂ g : G₂ →* G₃ ⊢ mapDomainAlgHom k A (g.comp f) = (mapDomainAlgHom k A g).comp (mapDomainAlgHom k A f)
ext
case H.H k : Type u_4 A : Type u_5 G₁ : Type u_6 G₂ : Type u_7 G₃ : Type u_8 inst✝⁵ : CommSemiring k inst✝⁴ : Semiring A inst✝³ : Algebra k A inst✝² : Monoid G₁ inst✝¹ : Monoid G₂ inst✝ : Monoid G₃ f : G₁ →* G₂ g : G₂ →* G₃ x✝¹ : MonoidAlgebra A G₁ x✝ : G₃ ⊢ ((mapDomainAlgHom k A (g.comp f)) x✝¹) x✝ = (((mapDomainAlgHom k A g).comp (mapDomainAlgHom k A f)) x✝¹) x✝
d66390a8e2edadda
Multiset.measurable_prod
Mathlib/MeasureTheory/Group/Arithmetic.lean
theorem Multiset.measurable_prod (s : Multiset (α → M)) (hs : ∀ f ∈ s, Measurable f) : Measurable fun x => (s.map fun f : α → M => f x).prod
M : Type u_2 α : Type u_4 inst✝² : CommMonoid M inst✝¹ : MeasurableSpace M inst✝ : MeasurableMul₂ M m : MeasurableSpace α s : Multiset (α → M) hs : ∀ f ∈ s, Measurable f ⊢ Measurable fun x => (map (fun f => f x) s).prod
simpa only [← Pi.multiset_prod_apply] using s.measurable_prod' hs
no goals
f42bc86598a100e1
YoungDiagram.exists_not_mem_row
Mathlib/Combinatorics/Young/YoungDiagram.lean
theorem exists_not_mem_row (μ : YoungDiagram) (i : ℕ) : ∃ j, (i, j) ∉ μ
μ : YoungDiagram i : ℕ ⊢ ∃ j, (i, j) ∉ μ
obtain ⟨j, hj⟩ := Infinite.exists_not_mem_finset (μ.cells.preimage (Prod.mk i) fun _ _ _ _ h => by cases h rfl)
case intro μ : YoungDiagram i j : ℕ hj : j ∉ μ.cells.preimage (Prod.mk i) ⋯ ⊢ ∃ j, (i, j) ∉ μ
0d89f12ff14aa88b
EuclideanGeometry.angle_eq_angle_of_dist_eq
Mathlib/Geometry/Euclidean/Triangle.lean
theorem angle_eq_angle_of_dist_eq {p₁ p₂ p₃ : P} (h : dist p₁ p₂ = dist p₁ p₃) : ∠ p₁ p₂ p₃ = ∠ p₁ p₃ p₂
case h.e'_2.h.e'_5 V : Type u_1 P : Type u_2 inst✝³ : NormedAddCommGroup V inst✝² : InnerProductSpace ℝ V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P p₁ p₂ p₃ : P h : ‖p₁ -ᵥ p₂‖ = ‖p₁ -ᵥ p₃‖ ⊢ p₃ -ᵥ p₂ = p₁ -ᵥ p₂ - (p₁ -ᵥ p₃)
exact (vsub_sub_vsub_cancel_left p₃ p₂ p₁).symm
no goals
ef7ff6838bfcad30
Valued.closure_coe_completion_v_lt
Mathlib/Topology/Algebra/Valued/ValuedField.lean
theorem closure_coe_completion_v_lt {γ : Γ₀ˣ} : closure ((↑) '' { x : K | v x < (γ : Γ₀) }) = { x : hat K | extensionValuation x < (γ : Γ₀) }
K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ γ : Γ₀ˣ ⊢ closure (Completion.coe' '' {x | v x < ↑γ}) = {x | extensionValuation x < ↑γ}
ext x
case h K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ γ : Γ₀ˣ x : hat K ⊢ x ∈ closure (Completion.coe' '' {x | v x < ↑γ}) ↔ x ∈ {x | extensionValuation x < ↑γ}
543e7e76040e703b
List.Sublist.of_sublist_append_left
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Sublist.lean
theorem Sublist.of_sublist_append_left (w : ∀ a, a ∈ l → a ∉ l₂) (h : l <+ l₁ ++ l₂) : l <+ l₁
α✝ : Type u_1 l l₂ l₁ : List α✝ w : ∀ (a : α✝), a ∈ l → ¬a ∈ l₂ h : l <+ l₁ ++ l₂ ⊢ l <+ l₁
rw [sublist_append_iff] at h
α✝ : Type u_1 l l₂ l₁ : List α✝ w : ∀ (a : α✝), a ∈ l → ¬a ∈ l₂ h : ∃ l₁_1 l₂_1, l = l₁_1 ++ l₂_1 ∧ l₁_1 <+ l₁ ∧ l₂_1 <+ l₂ ⊢ l <+ l₁
6d7cd8226795f0b9
List.Vector.mapAccumr₂_unused_input_right
Mathlib/Data/Vector/MapLemmas.lean
theorem mapAccumr₂_unused_input_right [Inhabited β] (f : α → β → σ → σ × γ) (h : ∀ a b s, f a default s = f a b s) : mapAccumr₂ f xs ys s = mapAccumr (fun a s => f a default s) xs s
case snoc α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_5 n : ℕ inst✝ : Inhabited β f : α → β → σ → σ × γ h : ∀ (a : α) (b : β) (s : σ), f a default s = f a b s n✝ : ℕ xs : Vector α n✝ ys : Vector β n✝ x : α y : β ih : ∀ {s : σ}, mapAccumr₂ f xs ys s = mapAccumr (fun a s => f a default s) xs s s : σ ⊢ mapAccumr₂ f (xs.snoc x) (ys.snoc y) s = mapAccumr (fun a s => f a default s) (xs.snoc x) s
simp [h x y s, ih]
no goals
67a351372db5a81c
CochainComplex.HomComplex.δ_comp_zero_cocycle
Mathlib/Algebra/Homology/HomotopyCategory/HomComplex.lean
@[simp] lemma δ_comp_zero_cocycle {n : ℤ} (z₁ : Cochain F G n) (z₂ : Cocycle G K 0) (m : ℤ) : δ n m (z₁.comp z₂.1 (add_zero n)) = (δ n m z₁).comp z₂.1 (add_zero m)
C : Type u inst✝¹ : Category.{v, u} C inst✝ : Preadditive C F G K : CochainComplex C ℤ n : ℤ z₁ : Cochain F G n z₂ : Cocycle G K 0 m : ℤ ⊢ δ n m (z₁.comp ↑z₂ ⋯) = (δ n m z₁).comp ↑z₂ ⋯
by_cases hnm : n + 1 = m
case pos C : Type u inst✝¹ : Category.{v, u} C inst✝ : Preadditive C F G K : CochainComplex C ℤ n : ℤ z₁ : Cochain F G n z₂ : Cocycle G K 0 m : ℤ hnm : n + 1 = m ⊢ δ n m (z₁.comp ↑z₂ ⋯) = (δ n m z₁).comp ↑z₂ ⋯ case neg C : Type u inst✝¹ : Category.{v, u} C inst✝ : Preadditive C F G K : CochainComplex C ℤ n : ℤ z₁ : Cochain F G n z₂ : Cocycle G K 0 m : ℤ hnm : ¬n + 1 = m ⊢ δ n m (z₁.comp ↑z₂ ⋯) = (δ n m z₁).comp ↑z₂ ⋯
51f9ff0fa213941d
MeasureTheory.Measure.MeasureDense.of_generateFrom_isSetAlgebra_sigmaFinite
Mathlib/MeasureTheory/Measure/SeparableMeasure.lean
theorem Measure.MeasureDense.of_generateFrom_isSetAlgebra_sigmaFinite (h𝒜 : IsSetAlgebra 𝒜) (S : μ.FiniteSpanningSetsIn 𝒜) (hgen : m = MeasurableSpace.generateFrom 𝒜) : μ.MeasureDense 𝒜 where measurable s hs := hgen ▸ measurableSet_generateFrom hs approx s ms hμs ε ε_pos
X : Type u_1 m : MeasurableSpace X μ : Measure X 𝒜 : Set (Set X) h𝒜 : IsSetAlgebra 𝒜 S : μ.FiniteSpanningSetsIn 𝒜 hgen : m = MeasurableSpace.generateFrom 𝒜 s : Set X ms : MeasurableSet s hμs : μ s ≠ ⊤ ε : ℝ ε_pos : 0 < ε T : ℕ → Set X := Accumulate S.set T_mem : ∀ (n : ℕ), T n ∈ 𝒜 T_finite : ∀ (n : ℕ), μ (T n) < ⊤ T_spanning : ⋃ n, T n = univ ⊢ ∃ t ∈ 𝒜, μ (s ∆ t) < ENNReal.ofReal ε
have mono : Monotone (fun n ↦ (T n) ∩ s) := fun m n hmn ↦ inter_subset_inter_left s (biUnion_subset_biUnion_left fun k hkm ↦ Nat.le_trans hkm hmn)
X : Type u_1 m : MeasurableSpace X μ : Measure X 𝒜 : Set (Set X) h𝒜 : IsSetAlgebra 𝒜 S : μ.FiniteSpanningSetsIn 𝒜 hgen : m = MeasurableSpace.generateFrom 𝒜 s : Set X ms : MeasurableSet s hμs : μ s ≠ ⊤ ε : ℝ ε_pos : 0 < ε T : ℕ → Set X := Accumulate S.set T_mem : ∀ (n : ℕ), T n ∈ 𝒜 T_finite : ∀ (n : ℕ), μ (T n) < ⊤ T_spanning : ⋃ n, T n = univ mono : Monotone fun n => T n ∩ s ⊢ ∃ t ∈ 𝒜, μ (s ∆ t) < ENNReal.ofReal ε
9296ab2335ceb925
AlgebraicGeometry.Spec.basicOpen_hom_ext
Mathlib/AlgebraicGeometry/Spec.lean
theorem Spec.basicOpen_hom_ext {X : RingedSpace.{u}} {R : CommRingCat.{u}} {α β : X ⟶ Spec.sheafedSpaceObj R} (w : α.base = β.base) (h : ∀ r : R, let U := PrimeSpectrum.basicOpen r (toOpen R U ≫ α.c.app (op U)) ≫ X.presheaf.map (eqToHom (by rw [w])) = toOpen R U ≫ β.c.app (op U)) : α = β
case h X : RingedSpace R : CommRingCat α β : X ⟶ sheafedSpaceObj R w : α.base = β.base h : ∀ (r : ↑R), let U := PrimeSpectrum.basicOpen r; (toOpen (↑R) U ≫ α.c.app (op U)) ≫ X.presheaf.map (eqToHom ⋯) = toOpen (↑R) U ≫ β.c.app (op U) r : ↑R ⊢ (α.c ≫ whiskerRight (eqToHom ⋯) X.presheaf).app (op (PrimeSpectrum.basicOpen r)) = β.c.app (op (PrimeSpectrum.basicOpen r))
apply (StructureSheaf.to_basicOpen_epi R r).1
case h.a X : RingedSpace R : CommRingCat α β : X ⟶ sheafedSpaceObj R w : α.base = β.base h : ∀ (r : ↑R), let U := PrimeSpectrum.basicOpen r; (toOpen (↑R) U ≫ α.c.app (op U)) ≫ X.presheaf.map (eqToHom ⋯) = toOpen (↑R) U ≫ β.c.app (op U) r : ↑R ⊢ toOpen (↑R) (PrimeSpectrum.basicOpen r) ≫ (α.c ≫ whiskerRight (eqToHom ⋯) X.presheaf).app (op (PrimeSpectrum.basicOpen r)) = toOpen (↑R) (PrimeSpectrum.basicOpen r) ≫ β.c.app (op (PrimeSpectrum.basicOpen r))
2f8e4e9bbb1515d3
List.dropSlice_eq_dropSliceTR
Mathlib/.lake/packages/batteries/Batteries/Data/List/Basic.lean
theorem dropSlice_eq_dropSliceTR : @dropSlice = @dropSliceTR
case h.h.h.h.h_1 α : Type u_1 n : Nat l : List α m✝ : Nat ⊢ dropSlice n 0 l = l case h.h.h.h.h_2 α : Type u_1 n : Nat l : List α m✝¹ m✝ : Nat ⊢ dropSlice n m✝.succ l = dropSliceTR.go l m✝ l n #[]
{ rw [dropSlice_zero₂] }
case h.h.h.h.h_2 α : Type u_1 n : Nat l : List α m✝¹ m✝ : Nat ⊢ dropSlice n m✝.succ l = dropSliceTR.go l m✝ l n #[]
f858ea09a79c5819
lowerSemicontinuousOn_iff_le_liminf
Mathlib/Topology/Semicontinuous.lean
theorem lowerSemicontinuousOn_iff_le_liminf {f : α → γ} : LowerSemicontinuousOn f s ↔ ∀ x ∈ s, f x ≤ liminf f (𝓝[s] x)
α : Type u_1 inst✝² : TopologicalSpace α s : Set α γ : Type u_3 inst✝¹ : CompleteLinearOrder γ inst✝ : DenselyOrdered γ f : α → γ ⊢ LowerSemicontinuousOn f s ↔ ∀ x ∈ s, f x ≤ liminf f (𝓝[s] x)
simp only [← lowerSemicontinuousWithinAt_iff_le_liminf, LowerSemicontinuousOn]
no goals
edac2a2a6372dc13
AffineSubspace.wOppSide_iff_exists_right
Mathlib/Analysis/Convex/Side.lean
theorem wOppSide_iff_exists_right {s : AffineSubspace R P} {x y p₂ : P} (h : p₂ ∈ s) : s.WOppSide x y ↔ y ∈ s ∨ ∃ p₁ ∈ s, SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)
case mpr.inr.intro.intro R : Type u_1 V : Type u_2 P : Type u_4 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P s : AffineSubspace R P x y p₂ : P h : p₂ ∈ s p : P hp : p ∈ s hr : SameRay R (x -ᵥ p) (p₂ -ᵥ y) ⊢ SameRay R (y -ᵥ p₂) (p -ᵥ x)
rwa [SameRay.sameRay_comm, ← sameRay_neg_iff, neg_vsub_eq_vsub_rev, neg_vsub_eq_vsub_rev]
no goals
0339b77a1fbe19db
hasSum_mellin_pi_mul
Mathlib/NumberTheory/LSeries/MellinEqDirichlet.lean
/-- Shortcut version for the commonly arising special case when `p i = π * q i` for some other sequence `q`. -/ lemma hasSum_mellin_pi_mul {a : ι → ℂ} {q : ι → ℝ} {F : ℝ → ℂ} {s : ℂ} (hq : ∀ i, a i = 0 ∨ 0 < q i) (hs : 0 < s.re) (hF : ∀ t ∈ Ioi 0, HasSum (fun i ↦ a i * rexp (-π * q i * t)) (F t)) (h_sum : Summable fun i ↦ ‖a i‖ / (q i) ^ s.re) : HasSum (fun i ↦ π ^ (-s) * Gamma s * a i / q i ^ s) (mellin F s)
case inr ι : Type u_1 inst✝ : Countable ι a : ι → ℂ q : ι → ℝ F : ℝ → ℂ s : ℂ hq : ∀ (i : ι), a i = 0 ∨ 0 < q i hs : 0 < s.re hF : ∀ t ∈ Ioi 0, HasSum (fun i => a i * ↑(rexp (-π * q i * t))) (F t) h_sum : Summable fun i => ‖a i‖ / q i ^ s.re hp : ∀ (i : ι), a i = 0 ∨ 0 < π * q i i : ι h : 0 < q i ⊢ ‖a i‖ / (π * q i) ^ s.re = π ^ (-s.re) * ‖a i‖ / q i ^ s.re
rw [mul_rpow pi_pos.le h.le, ← div_div, rpow_neg pi_pos.le, ← div_eq_inv_mul]
no goals
29b92a7c6424e7e6
Cardinal.mul_eq_left_iff
Mathlib/SetTheory/Cardinal/Arithmetic.lean
theorem mul_eq_left_iff {a b : Cardinal} : a * b = a ↔ max ℵ₀ b ≤ a ∧ b ≠ 0 ∨ b = 1 ∨ a = 0
a b : Cardinal.{u_1} ⊢ a * b = a ↔ ℵ₀ ⊔ b ≤ a ∧ b ≠ 0 ∨ b = 1 ∨ a = 0
rw [max_le_iff]
a b : Cardinal.{u_1} ⊢ a * b = a ↔ (ℵ₀ ≤ a ∧ b ≤ a) ∧ b ≠ 0 ∨ b = 1 ∨ a = 0
ce26cd2fc398ff3e
SimpleGraph.good_vertices_triangle_card
Mathlib/Combinatorics/SimpleGraph/Triangle/Counting.lean
private lemma good_vertices_triangle_card [DecidableEq α] (dst : 2 * ε ≤ G.edgeDensity s t) (dsu : 2 * ε ≤ G.edgeDensity s u) (dtu : 2 * ε ≤ G.edgeDensity t u) (utu : G.IsUniform ε t u) (x : α) (hx : x ∈ s \ (badVertices G ε s t ∪ badVertices G ε s u)) : ε ^ 3 * #t * #u ≤ #((({y ∈ t | G.Adj x y} ×ˢ {y ∈ u | G.Adj x y}).filter fun (y, z) ↦ G.Adj y z).image (x, ·))
α : Type u_1 G : SimpleGraph α inst✝¹ : DecidableRel G.Adj ε : ℝ s t u : Finset α inst✝ : DecidableEq α dst : 2 * ε ≤ ↑(G.edgeDensity s t) dsu : 2 * ε ≤ ↑(G.edgeDensity s u) dtu : 2 * ε ≤ ↑(G.edgeDensity t u) utu : G.IsUniform ε t u x : α hx : x ∈ s ∧ ↑(#t) * (↑(G.edgeDensity s t) - ε) ≤ ↑(#(filter (fun y => G.Adj x y) t)) ∧ ↑(#u) * (↑(G.edgeDensity s u) - ε) ≤ ↑(#(filter (fun y => G.Adj x y) u)) ⊢ ε ^ 3 * ↑(#t) * ↑(#u) ≤ ↑(#(image (fun x_1 => (x, x_1)) (filter (fun x => match x with | (y, z) => G.Adj y z) (filter (fun y => G.Adj x y) t ×ˢ filter (fun y => G.Adj x y) u))))
obtain ⟨-, hxY, hsu⟩ := hx
case intro.intro α : Type u_1 G : SimpleGraph α inst✝¹ : DecidableRel G.Adj ε : ℝ s t u : Finset α inst✝ : DecidableEq α dst : 2 * ε ≤ ↑(G.edgeDensity s t) dsu : 2 * ε ≤ ↑(G.edgeDensity s u) dtu : 2 * ε ≤ ↑(G.edgeDensity t u) utu : G.IsUniform ε t u x : α hxY : ↑(#t) * (↑(G.edgeDensity s t) - ε) ≤ ↑(#(filter (fun y => G.Adj x y) t)) hsu : ↑(#u) * (↑(G.edgeDensity s u) - ε) ≤ ↑(#(filter (fun y => G.Adj x y) u)) ⊢ ε ^ 3 * ↑(#t) * ↑(#u) ≤ ↑(#(image (fun x_1 => (x, x_1)) (filter (fun x => match x with | (y, z) => G.Adj y z) (filter (fun y => G.Adj x y) t ×ˢ filter (fun y => G.Adj x y) u))))
abd3ebe3cd7fa6c4
IsFractionRing.num_zero
Mathlib/RingTheory/Localization/NumDen.lean
@[simp] lemma num_zero : IsFractionRing.num A (0 : K) = 0
A : Type u_1 inst✝⁵ : CommRing A inst✝⁴ : IsDomain A inst✝³ : UniqueFactorizationMonoid A K : Type u_2 inst✝² : Field K inst✝¹ : Algebra A K inst✝ : IsFractionRing A K ⊢ num A 0 = 0
have := mk'_num_den' A (0 : K)
A : Type u_1 inst✝⁵ : CommRing A inst✝⁴ : IsDomain A inst✝³ : UniqueFactorizationMonoid A K : Type u_2 inst✝² : Field K inst✝¹ : Algebra A K inst✝ : IsFractionRing A K this : (algebraMap A K) (num A 0) / (algebraMap A K) ↑(den A 0) = 0 ⊢ num A 0 = 0
7d57af980224f592
nnnorm_cfcₙ_nnreal_le
Mathlib/Analysis/CStarAlgebra/ContinuousFunctionalCalculus/Isometric.lean
lemma nnnorm_cfcₙ_nnreal_le {f : ℝ≥0 → ℝ≥0} {a : A} {c : ℝ≥0} (h : ∀ x ∈ σₙ ℝ≥0 a, f x ≤ c) : ‖cfcₙ f a‖₊ ≤ c
A : Type u_1 inst✝⁸ : NonUnitalNormedRing A inst✝⁷ : StarRing A inst✝⁶ : NormedSpace ℝ A inst✝⁵ : IsScalarTower ℝ A A inst✝⁴ : SMulCommClass ℝ A A inst✝³ : PartialOrder A inst✝² : StarOrderedRing A inst✝¹ : NonUnitalIsometricContinuousFunctionalCalculus ℝ A IsSelfAdjoint inst✝ : NonnegSpectrumClass ℝ A f : ℝ≥0 → ℝ≥0 a : A c : ℝ≥0 h : ∀ x ∈ σₙ ℝ≥0 a, f x ≤ c hf : ContinuousOn f (σₙ ℝ≥0 a) hf0 : { toFun := (σₙ ℝ≥0 a).restrict f, continuous_toFun := ⋯ } 0 = 0 ha : 0 ≤ a ⊢ (fun x => ‖x‖₊ ≤ c) ((cfcₙHom ha) { toFun := (σₙ ℝ≥0 a).restrict f, continuous_toFun := ⋯, map_zero' := hf0 })
simp only [← cfcₙ_apply f a, isLUB_le_iff (IsGreatest.nnnorm_cfcₙ_nnreal f a hf hf0 ha |>.isLUB)]
A : Type u_1 inst✝⁸ : NonUnitalNormedRing A inst✝⁷ : StarRing A inst✝⁶ : NormedSpace ℝ A inst✝⁵ : IsScalarTower ℝ A A inst✝⁴ : SMulCommClass ℝ A A inst✝³ : PartialOrder A inst✝² : StarOrderedRing A inst✝¹ : NonUnitalIsometricContinuousFunctionalCalculus ℝ A IsSelfAdjoint inst✝ : NonnegSpectrumClass ℝ A f : ℝ≥0 → ℝ≥0 a : A c : ℝ≥0 h : ∀ x ∈ σₙ ℝ≥0 a, f x ≤ c hf : ContinuousOn f (σₙ ℝ≥0 a) hf0 : { toFun := (σₙ ℝ≥0 a).restrict f, continuous_toFun := ⋯ } 0 = 0 ha : 0 ≤ a ⊢ c ∈ upperBounds (f '' σₙ ℝ≥0 a)
3c2311247b002212
Nat.toDigitsCore_lens_eq
Mathlib/Data/Nat/Digits.lean
lemma toDigitsCore_lens_eq (b f : Nat) : ∀ (n : Nat) (c : Char) (tl : List Char), (Nat.toDigitsCore b f n (c :: tl)).length = (Nat.toDigitsCore b f n tl).length + 1
b f n : ℕ c : Char tl : List Char hnb : ¬n / b = 0 x : Char hx : (n % b).digitChar = x ih : (b.toDigitsCore f (n / b) (c :: x :: tl)).length = (b.toDigitsCore f (n / b) (x :: tl)).length + 1 lens_eq : (x :: c :: tl).length = (c :: x :: tl).length ⊢ (b.toDigitsCore f (n / b) (x :: c :: tl)).length = (b.toDigitsCore f (n / b) (c :: x :: tl)).length
apply toDigitsCore_lens_eq_aux
case a b f n : ℕ c : Char tl : List Char hnb : ¬n / b = 0 x : Char hx : (n % b).digitChar = x ih : (b.toDigitsCore f (n / b) (c :: x :: tl)).length = (b.toDigitsCore f (n / b) (x :: tl)).length + 1 lens_eq : (x :: c :: tl).length = (c :: x :: tl).length ⊢ (x :: c :: tl).length = (c :: x :: tl).length
4f5c924780b41cd4
splits_X_pow_sub_one_of_X_pow_sub_C
Mathlib/FieldTheory/AbelRuffini.lean
theorem splits_X_pow_sub_one_of_X_pow_sub_C {F : Type*} [Field F] {E : Type*} [Field E] (i : F →+* E) (n : ℕ) {a : F} (ha : a ≠ 0) (h : (X ^ n - C a).Splits i) : (X ^ n - 1 : F[X]).Splits i
case neg.intro F : Type u_3 inst✝¹ : Field F E : Type u_4 inst✝ : Field E i : F →+* E n : ℕ a : F ha : a ≠ 0 h : Splits i (X ^ n - C a) ha' : i a ≠ 0 hn : ¬n = 0 hn' : 0 < n hn'' : (X ^ n - C a).degree ≠ 0 b : E hb : b ^ n = i a hb' : b ≠ 0 s : Multiset E := (Polynomial.map i (X ^ n - C a)).roots hs : Polynomial.map i (X ^ n - C a) = (Multiset.map (fun a => X - C a) s).prod hs' : s.card = n ⊢ Polynomial.map i (X ^ n - 1) = C (i (X ^ n - 1).leadingCoeff) * (Multiset.map (fun a => X - C a) (Multiset.map (fun c => c / b) s)).prod
rw [leadingCoeff_X_pow_sub_one hn', RingHom.map_one, C_1, one_mul, Multiset.map_map]
case neg.intro F : Type u_3 inst✝¹ : Field F E : Type u_4 inst✝ : Field E i : F →+* E n : ℕ a : F ha : a ≠ 0 h : Splits i (X ^ n - C a) ha' : i a ≠ 0 hn : ¬n = 0 hn' : 0 < n hn'' : (X ^ n - C a).degree ≠ 0 b : E hb : b ^ n = i a hb' : b ≠ 0 s : Multiset E := (Polynomial.map i (X ^ n - C a)).roots hs : Polynomial.map i (X ^ n - C a) = (Multiset.map (fun a => X - C a) s).prod hs' : s.card = n ⊢ Polynomial.map i (X ^ n - 1) = (Multiset.map ((fun a => X - C a) ∘ fun c => c / b) s).prod
3246ca7f177f02a2
AffineSubspace.wOppSide_smul_vsub_vadd_left
Mathlib/Analysis/Convex/Side.lean
theorem wOppSide_smul_vsub_vadd_left {s : AffineSubspace R P} {p₁ p₂ : P} (x : P) (hp₁ : p₁ ∈ s) (hp₂ : p₂ ∈ s) {t : R} (ht : t ≤ 0) : s.WOppSide (t • (x -ᵥ p₁) +ᵥ p₂) x
R : Type u_1 V : Type u_2 P : Type u_4 inst✝³ : StrictOrderedCommRing R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P s : AffineSubspace R P p₁ p₂ x : P hp₁ : p₁ ∈ s hp₂ : p₂ ∈ s t : R ht : t ≤ 0 ⊢ s.WOppSide (t • (x -ᵥ p₁) +ᵥ p₂) x
refine ⟨p₂, hp₂, p₁, hp₁, ?_⟩
R : Type u_1 V : Type u_2 P : Type u_4 inst✝³ : StrictOrderedCommRing R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P s : AffineSubspace R P p₁ p₂ x : P hp₁ : p₁ ∈ s hp₂ : p₂ ∈ s t : R ht : t ≤ 0 ⊢ SameRay R ((t • (x -ᵥ p₁) +ᵥ p₂) -ᵥ p₂) (p₁ -ᵥ x)
b0da55667c351b77
MeasureTheory.SimpleFunc.setToSimpleFunc_sub
Mathlib/MeasureTheory/Integral/SetToL1.lean
theorem setToSimpleFunc_sub (T : Set α → E →L[ℝ] F) (h_add : FinMeasAdditive μ T) {f g : α →ₛ E} (hf : Integrable f μ) (hg : Integrable g μ) : setToSimpleFunc T (f - g) = setToSimpleFunc T f - setToSimpleFunc T g
α : Type u_1 E : Type u_2 F : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace ℝ F m : MeasurableSpace α μ : Measure α T : Set α → E →L[ℝ] F h_add : FinMeasAdditive μ T f g : α →ₛ E hf : Integrable (⇑f) μ hg : ∀ (y : E), y ≠ 0 → μ (⇑g ⁻¹' {y}) < ⊤ x : E hx_ne : x ≠ 0 ⊢ μ (⇑g ⁻¹' {-x}) < ⊤
refine hg (-x) ?_
α : Type u_1 E : Type u_2 F : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace ℝ F m : MeasurableSpace α μ : Measure α T : Set α → E →L[ℝ] F h_add : FinMeasAdditive μ T f g : α →ₛ E hf : Integrable (⇑f) μ hg : ∀ (y : E), y ≠ 0 → μ (⇑g ⁻¹' {y}) < ⊤ x : E hx_ne : x ≠ 0 ⊢ -x ≠ 0
640edecad994037c
LinearMap.rank_diagonal
Mathlib/LinearAlgebra/Matrix/Diagonal.lean
theorem rank_diagonal [DecidableEq m] [DecidableEq K] (w : m → K) : LinearMap.rank (toLin' (diagonal w)) = Fintype.card { i // w i ≠ 0 }
m : Type u_1 inst✝³ : Fintype m K : Type u inst✝² : Field K inst✝¹ : DecidableEq m inst✝ : DecidableEq K w : m → K hu : univ ⊆ {i | w i = 0}ᶜ ∪ {i | w i = 0} hd : Disjoint {i | w i ≠ 0} {i | w i = 0} ⊢ (toLin' (Matrix.diagonal w)).rank = ↑(Fintype.card { i // w i ≠ 0 })
have B₁ := iSup_range_single_eq_iInf_ker_proj K (fun _ : m => K) hd hu (Set.toFinite _)
m : Type u_1 inst✝³ : Fintype m K : Type u inst✝² : Field K inst✝¹ : DecidableEq m inst✝ : DecidableEq K w : m → K hu : univ ⊆ {i | w i = 0}ᶜ ∪ {i | w i = 0} hd : Disjoint {i | w i ≠ 0} {i | w i = 0} B₁ : ⨆ i ∈ {i | w i ≠ 0}, range (single K (fun x => K) i) = ⨅ i ∈ {i | w i = 0}, ker (proj i) ⊢ (toLin' (Matrix.diagonal w)).rank = ↑(Fintype.card { i // w i ≠ 0 })
7528f6e5f9343b3c
Finpartition.IsEquipartition.exists_partsEquiv
Mathlib/Order/Partition/Equipartition.lean
theorem IsEquipartition.exists_partsEquiv (hP : P.IsEquipartition) : ∃ f : P.parts ≃ Fin #P.parts, ∀ t, #t.1 = #s / #P.parts + 1 ↔ f t < #s % #P.parts
α : Type u_1 inst✝ : DecidableEq α s : Finset α P : Finpartition s hP : P.IsEquipartition el : { x // x ∈ P.parts ∧ #x = #s / #P.parts + 1 } ≃ Fin (#s % #P.parts) es : { x // x ∈ P.parts ∧ #x = #s / #P.parts } ≃ Fin (#P.parts - #s % #P.parts) x✝ : Finset α ha : x✝ ∈ P.parts ⊢ ¬#x✝ = #s / #P.parts + 1 ↔ #x✝ = #s / #P.parts
rw [hP.card_part_eq_average_iff ha, ne_eq]
no goals
21d39a55d89e227d
CategoryTheory.Iso.inv_eq_inv
Mathlib/CategoryTheory/Iso.lean
theorem inv_eq_inv (f g : X ≅ Y) : f.inv = g.inv ↔ f.hom = g.hom := have : ∀ {X Y : C} (f g : X ≅ Y), f.hom = g.hom → f.inv = g.inv := fun f g h => by rw [ext h] ⟨this f.symm g.symm, this f g⟩
C : Type u inst✝ : Category.{v, u} C X Y : C f✝ g✝ : X ≅ Y X✝ Y✝ : C f g : X✝ ≅ Y✝ h : f.hom = g.hom ⊢ f.inv = g.inv
rw [ext h]
no goals
e2234ec76460ed0e
MeasureTheory.SignedMeasure.exists_subset_restrict_nonpos'
Mathlib/MeasureTheory/Decomposition/SignedHahn.lean
theorem exists_subset_restrict_nonpos' (hi₁ : MeasurableSet i) (hi₂ : s i < 0) (hn : ¬∀ n : ℕ, ¬s ≤[i \ ⋃ l < n, restrictNonposSeq s i l] 0) : ∃ j : Set α, MeasurableSet j ∧ j ⊆ i ∧ s ≤[j] 0 ∧ s j < 0
case h.e'_4.h.e'_7.h α : Type u_1 inst✝ : MeasurableSpace α s : SignedMeasure α i : Set α hi₁ : MeasurableSet i hi₂ : ↑s i < 0 h✝ : ¬s ≤[i] 0 hn : ∃ n, s ≤[i \ ⋃ l, ⋃ (_ : l < n), MeasureTheory.SignedMeasure.restrictNonposSeq s i l] 0 k : ℕ := Nat.find hn hk₂ : s ≤[i \ ⋃ l, ⋃ (_ : l < k), MeasureTheory.SignedMeasure.restrictNonposSeq s i l] 0 hmeas : MeasurableSet (⋃ l, ⋃ (_ : l < k), MeasureTheory.SignedMeasure.restrictNonposSeq s i l) h₁ : ∀ l < k, 0 ≤ ↑s (MeasureTheory.SignedMeasure.restrictNonposSeq s i l) l : ℕ h : ¬l < k x✝ : α ⊢ l < k → x✝ ∉ MeasureTheory.SignedMeasure.restrictNonposSeq s i l
exact fun h' => False.elim (h h')
no goals
37ca223bdee11c33
CategoryTheory.Functor.relativelyRepresentable.lift_snd
Mathlib/CategoryTheory/MorphismProperty/Representable.lean
@[reassoc (attr := simp)] lemma lift_snd [Full F] [Faithful F] : hf.lift i h hi ≫ hf.snd g = h := F.map_injective <| by simpa [lift] using PullbackCone.IsLimit.lift_snd _ _ _ _
C : Type u₁ inst✝³ : Category.{v₁, u₁} C D : Type u₂ inst✝² : Category.{v₂, u₂} D F : C ⥤ D X Y : D f : X ⟶ Y hf : F.relativelyRepresentable f a : C g : F.obj a ⟶ Y c : C i : F.obj c ⟶ X h : c ⟶ a hi : i ≫ f = F.map h ≫ g inst✝¹ : F.Full inst✝ : F.Faithful ⊢ F.map (hf.lift i h hi ≫ hf.snd g) = F.map h
simpa [lift] using PullbackCone.IsLimit.lift_snd _ _ _ _
no goals
00155b860d7f41af
HomologicalComplex₂.ι_totalShift₁Iso_hom_f
Mathlib/Algebra/Homology/TotalComplexShift.lean
@[reassoc] lemma ι_totalShift₁Iso_hom_f (a b n : ℤ) (h : a + b = n) (a' : ℤ) (ha' : a' = a + x) (n' : ℤ) (hn' : n' = n + x) : ((shiftFunctor₁ C x).obj K).ιTotal (up ℤ) a b n h ≫ (K.totalShift₁Iso x).hom.f n = (K.shiftFunctor₁XXIso a x a' ha' b).hom ≫ K.ιTotal (up ℤ) a' b n' (by dsimp; omega) ≫ (CochainComplex.shiftFunctorObjXIso (K.total (up ℤ)) x n n' hn').inv
C : Type u_1 inst✝² : Category.{?u.83805, u_1} C inst✝¹ : Preadditive C K L : HomologicalComplex₂ C (up ℤ) (up ℤ) f : K ⟶ L x y : ℤ inst✝ : K.HasTotal (up ℤ) a b n : ℤ h : a + b = n a' : ℤ ha' : a' = a + x n' : ℤ hn' : n' = n + x ⊢ (up ℤ).π (up ℤ) (up ℤ) (a', b) = n'
dsimp
C : Type u_1 inst✝² : Category.{?u.83805, u_1} C inst✝¹ : Preadditive C K L : HomologicalComplex₂ C (up ℤ) (up ℤ) f : K ⟶ L x y : ℤ inst✝ : K.HasTotal (up ℤ) a b n : ℤ h : a + b = n a' : ℤ ha' : a' = a + x n' : ℤ hn' : n' = n + x ⊢ a' + b = n'
94ce43fcd0071317