name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
Algebra.isOpen_smoothLocus
Mathlib/RingTheory/Smooth/Locus.lean
lemma isOpen_smoothLocus [FinitePresentation R A] : IsOpen (smoothLocus R A)
case intro.intro.intro.intro.intro.intro R A : Type u inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A inst✝ : FinitePresentation R A x : PrimeSpectrum A hx : x ∈ smoothLocus R A f : A hxf : x ∈ ↑(basicOpen f) hf : Module.Projective (Localization.Away f) (LocalizedModule (Submonoid.powers f) (Ω[A⁄R])) ⊢ ∃ t ⊆ smoothLocus R A, IsOpen t ∧ x ∈ t
let Af := Localization.Away f
case intro.intro.intro.intro.intro.intro R A : Type u inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A inst✝ : FinitePresentation R A x : PrimeSpectrum A hx : x ∈ smoothLocus R A f : A hxf : x ∈ ↑(basicOpen f) hf : Module.Projective (Localization.Away f) (LocalizedModule (Submonoid.powers f) (Ω[A⁄R])) Af : Type u := Localization.Away f ⊢ ∃ t ⊆ smoothLocus R A, IsOpen t ∧ x ∈ t
f811a0293eb7511f
not_irreducible_pow
Mathlib/Algebra/Prime/Lemmas.lean
theorem not_irreducible_pow {M} [Monoid M] {x : M} {n : ℕ} (hn : n ≠ 1) : ¬ Irreducible (x ^ n)
case zero M : Type u_3 inst✝ : Monoid M x : M hn : 0 ≠ 1 ⊢ ¬Irreducible (x ^ 0)
simp
no goals
b9fd06b49708f472
crossProduct_ne_zero_iff_linearIndependent
Mathlib/LinearAlgebra/CrossProduct.lean
lemma crossProduct_ne_zero_iff_linearIndependent {F : Type*} [Field F] {v w : Fin 3 → F} : crossProduct v w ≠ 0 ↔ LinearIndependent F ![v, w]
F : Type u_2 inst✝ : Field F v w : Fin 3 → F hv : ¬v = 0 hv' : v = ![v 0, v 1, v 2] ⊢ w = ![w 0, w 1, w 2]
simp [← List.ofFn_inj]
no goals
7afc9aa3161c3f50
lp.norm_const_smul_le
Mathlib/Analysis/Normed/Lp/lpSpace.lean
theorem norm_const_smul_le (hp : p ≠ 0) (c : 𝕜) (f : lp E p) : ‖c • f‖ ≤ ‖c‖ * ‖f‖
case inr.inr 𝕜 : Type u_1 α : Type u_3 E : α → Type u_4 p : ℝ≥0∞ inst✝³ : (i : α) → NormedAddCommGroup (E i) inst✝² : NormedRing 𝕜 inst✝¹ : (i : α) → Module 𝕜 (E i) inst✝ : ∀ (i : α), BoundedSMul 𝕜 (E i) hp✝ : p ≠ 0 c : 𝕜 f : ↥(lp E p) hp : 0 < p.toReal inst : NNNorm ↥(lp E p) := { nnnorm := fun f => ⟨‖f‖, ⋯⟩ } ⊢ ‖c • f‖ ≤ ‖c‖ * ‖f‖
have coe_nnnorm : ∀ f : lp E p, ↑‖f‖₊ = ‖f‖ := fun _ => rfl
case inr.inr 𝕜 : Type u_1 α : Type u_3 E : α → Type u_4 p : ℝ≥0∞ inst✝³ : (i : α) → NormedAddCommGroup (E i) inst✝² : NormedRing 𝕜 inst✝¹ : (i : α) → Module 𝕜 (E i) inst✝ : ∀ (i : α), BoundedSMul 𝕜 (E i) hp✝ : p ≠ 0 c : 𝕜 f : ↥(lp E p) hp : 0 < p.toReal inst : NNNorm ↥(lp E p) := { nnnorm := fun f => ⟨‖f‖, ⋯⟩ } coe_nnnorm : ∀ (f : ↥(lp E p)), ↑‖f‖₊ = ‖f‖ ⊢ ‖c • f‖ ≤ ‖c‖ * ‖f‖
226c34467852710f
emultiplicity_prime_le_emultiplicity_image_by_factor_orderIso
Mathlib/RingTheory/ChainOfDivisors.lean
theorem emultiplicity_prime_le_emultiplicity_image_by_factor_orderIso {m p : Associates M} {n : Associates N} (hp : p ∈ normalizedFactors m) (d : Set.Iic m ≃o Set.Iic n) : emultiplicity p m ≤ emultiplicity (↑(d ⟨p, dvd_of_mem_normalizedFactors hp⟩)) n
case neg M : Type u_1 inst✝³ : CancelCommMonoidWithZero M N : Type u_2 inst✝² : CancelCommMonoidWithZero N inst✝¹ : UniqueFactorizationMonoid N inst✝ : UniqueFactorizationMonoid M m p : Associates M n : Associates N hp : p ∈ normalizedFactors m d : ↑(Set.Iic m) ≃o ↑(Set.Iic n) hn : ¬n = 0 hm : ¬m = 0 ⊢ ↑(d ⟨p, ⋯⟩) ^ multiplicity p m ∣ n
apply pow_image_of_prime_by_factor_orderIso_dvd hn hp d (pow_multiplicity_dvd ..)
no goals
61c7ac6c10a4255e
BoxIntegral.integrable_of_bounded_and_ae_continuousWithinAt
Mathlib/Analysis/BoxIntegral/Basic.lean
theorem integrable_of_bounded_and_ae_continuousWithinAt [CompleteSpace E] {I : Box ι} {f : ℝⁿ → E} (hb : ∃ C : ℝ, ∀ x ∈ Box.Icc I, ‖f x‖ ≤ C) (μ : Measure ℝⁿ) [IsLocallyFiniteMeasure μ] (hc : ∀ᵐ x ∂(μ.restrict (Box.Icc I)), ContinuousWithinAt f (Box.Icc I) x) : Integrable I l f μ.toBoxAdditive.toSMul
ι : Type u E : Type v inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : Fintype ι l : IntegrationParams inst✝¹ : CompleteSpace E I : Box ι f : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hc : ∀ᵐ (x : ι → ℝ) ∂μ.restrict (Box.Icc I), ContinuousWithinAt f (Box.Icc I) x ε : ℝ ε0 : ε > 0 ε₁ : ℝ ε₁0 : 0 < ε₁ hε₁ : 2 * μ.toBoxAdditive I * ε₁ < ε C : ℝ hC : ∀ x ∈ Box.Icc I, ‖f x‖ ≤ C C0 : 0 ≤ C ε₂ : ℝ ε₂0 : 0 < ε₂ hε₂ : 4 * C * ε₂ < ε ε₂0' : ENNReal.ofReal ε₂ ≠ 0 D : Set (ι → ℝ) := {x | x ∈ Box.Icc I ∧ ¬ContinuousWithinAt f (Box.Icc I) x} μ' : Measure (ι → ℝ) := μ.restrict (Box.Icc I) μ'D : μ' D = 0 U : Set (ι → ℝ) UD : U ⊇ D Uopen : IsOpen U hU : μ' U < ENNReal.ofReal ε₂ comp : IsCompact (Box.Icc I \ U) this✝ : ∀ x ∈ Box.Icc I \ U, oscillationWithin f (Box.Icc I) x < ENNReal.ofReal ε₁ r : ℝ r0 : r > 0 hr : ∀ x ∈ Box.Icc I \ U, EMetric.diam (f '' (EMetric.ball x (ENNReal.ofReal r) ∩ Box.Icc I)) ≤ ENNReal.ofReal ε₁ c₁ c₂ : ℝ≥0 π₁ π₂ : TaggedPrepartition I h₁ : l.MemBaseSet I c₁ ((fun x x => ⟨r / 2, ⋯⟩) c₁) π₁ h₁p : π₁.IsPartition h₂ : l.MemBaseSet I c₂ ((fun x x => ⟨r / 2, ⋯⟩) c₂) π₂ h₂p : π₂.IsPartition μI : μ ↑I < ⊤ t₁ : Box ι → ι → ℝ := fun J => (π₁.infPrepartition π₂.toPrepartition).tag J t₂ : Box ι → ι → ℝ := fun J => (π₂.infPrepartition π₁.toPrepartition).tag J B : Finset (Box ι) := (π₁.toPrepartition ⊓ π₂.toPrepartition).boxes B' : Finset (Box ι) := Finset.filter (fun J => ↑J ⊆ U) B hB' : B' ⊆ B μJ_ne_top : ∀ J ∈ B, μ ↑J ≠ ⊤ un : ∀ S ⊆ B, ⋃ J ∈ S, ↑J ⊆ ↑I this : ∀ J ∈ B \ B', ‖μ.toBoxAdditive J • (f (t₁ J) - f (t₂ J))‖ ≤ μ.toBoxAdditive J * ε₁ ⊢ ∑' (x : { x // x ∈ B \ B' }), μ ↑↑x ≤ μ.measureOf (⋃ J ∈ B \ B', ↑J)
refine le_of_eq (measure_biUnion (countable_toSet _) ?_ (fun J _ ↦ J.measurableSet_coe)).symm
ι : Type u E : Type v inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : Fintype ι l : IntegrationParams inst✝¹ : CompleteSpace E I : Box ι f : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hc : ∀ᵐ (x : ι → ℝ) ∂μ.restrict (Box.Icc I), ContinuousWithinAt f (Box.Icc I) x ε : ℝ ε0 : ε > 0 ε₁ : ℝ ε₁0 : 0 < ε₁ hε₁ : 2 * μ.toBoxAdditive I * ε₁ < ε C : ℝ hC : ∀ x ∈ Box.Icc I, ‖f x‖ ≤ C C0 : 0 ≤ C ε₂ : ℝ ε₂0 : 0 < ε₂ hε₂ : 4 * C * ε₂ < ε ε₂0' : ENNReal.ofReal ε₂ ≠ 0 D : Set (ι → ℝ) := {x | x ∈ Box.Icc I ∧ ¬ContinuousWithinAt f (Box.Icc I) x} μ' : Measure (ι → ℝ) := μ.restrict (Box.Icc I) μ'D : μ' D = 0 U : Set (ι → ℝ) UD : U ⊇ D Uopen : IsOpen U hU : μ' U < ENNReal.ofReal ε₂ comp : IsCompact (Box.Icc I \ U) this✝ : ∀ x ∈ Box.Icc I \ U, oscillationWithin f (Box.Icc I) x < ENNReal.ofReal ε₁ r : ℝ r0 : r > 0 hr : ∀ x ∈ Box.Icc I \ U, EMetric.diam (f '' (EMetric.ball x (ENNReal.ofReal r) ∩ Box.Icc I)) ≤ ENNReal.ofReal ε₁ c₁ c₂ : ℝ≥0 π₁ π₂ : TaggedPrepartition I h₁ : l.MemBaseSet I c₁ ((fun x x => ⟨r / 2, ⋯⟩) c₁) π₁ h₁p : π₁.IsPartition h₂ : l.MemBaseSet I c₂ ((fun x x => ⟨r / 2, ⋯⟩) c₂) π₂ h₂p : π₂.IsPartition μI : μ ↑I < ⊤ t₁ : Box ι → ι → ℝ := fun J => (π₁.infPrepartition π₂.toPrepartition).tag J t₂ : Box ι → ι → ℝ := fun J => (π₂.infPrepartition π₁.toPrepartition).tag J B : Finset (Box ι) := (π₁.toPrepartition ⊓ π₂.toPrepartition).boxes B' : Finset (Box ι) := Finset.filter (fun J => ↑J ⊆ U) B hB' : B' ⊆ B μJ_ne_top : ∀ J ∈ B, μ ↑J ≠ ⊤ un : ∀ S ⊆ B, ⋃ J ∈ S, ↑J ⊆ ↑I this : ∀ J ∈ B \ B', ‖μ.toBoxAdditive J • (f (t₁ J) - f (t₂ J))‖ ≤ μ.toBoxAdditive J * ε₁ ⊢ (↑(B \ B')).PairwiseDisjoint Box.toSet
603a1c16b71ac0cf
Int.sub_eq_zero_of_eq
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Int/Lemmas.lean
theorem sub_eq_zero_of_eq {a b : Int} (h : a = b) : a - b = 0
a b : Int h : a = b ⊢ a - b = 0
rw [h, Int.sub_self]
no goals
f67aa3f6c837d54d
LieModule.trace_toEnd_eq_zero_of_mem_lcs
Mathlib/Algebra/Lie/TraceForm.lean
lemma trace_toEnd_eq_zero_of_mem_lcs {k : ℕ} {x : L} (hk : 1 ≤ k) (hx : x ∈ lowerCentralSeries R L L k) : trace R _ (toEnd R L M x) = 0
R : Type u_1 L : Type u_3 M : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k : ℕ x : L hk : 1 ≤ k hx : x ∈ lowerCentralSeries R L L 1 ⊢ x ∈ Submodule.span R {m | ∃ u v, ⁅u, v⁆ = m}
rw [lowerCentralSeries_succ, ← LieSubmodule.mem_toSubmodule, LieSubmodule.lieIdeal_oper_eq_linear_span'] at hx
R : Type u_1 L : Type u_3 M : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k : ℕ x : L hk : 1 ≤ k hx : x ∈ Submodule.span R {x | ∃ x_1 ∈ ⊤, ∃ n ∈ lowerCentralSeries R L L 0, ⁅x_1, n⁆ = x} ⊢ x ∈ Submodule.span R {m | ∃ u v, ⁅u, v⁆ = m}
93c4c71234cad1df
MeasureTheory.Measure.haar.is_left_invariant_chaar
Mathlib/MeasureTheory/Measure/Haar/Basic.lean
theorem is_left_invariant_chaar {K₀ : PositiveCompacts G} (g : G) (K : Compacts G) : chaar K₀ (K.map _ <| continuous_mul_left g) = chaar K₀ K
G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : IsTopologicalGroup G K₀ : PositiveCompacts G g : G K : Compacts G eval : (Compacts G → ℝ) → ℝ := fun f => f (Compacts.map (fun b => g * b) ⋯ K) - f K this : Continuous eval ⊢ closure (prehaar ↑K₀ '' {U | U ⊆ ↑⊤.toOpens ∧ IsOpen U ∧ 1 ∈ U}) ⊆ eval ⁻¹' {0}
rw [IsClosed.closure_subset_iff]
G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : IsTopologicalGroup G K₀ : PositiveCompacts G g : G K : Compacts G eval : (Compacts G → ℝ) → ℝ := fun f => f (Compacts.map (fun b => g * b) ⋯ K) - f K this : Continuous eval ⊢ prehaar ↑K₀ '' {U | U ⊆ ↑⊤.toOpens ∧ IsOpen U ∧ 1 ∈ U} ⊆ eval ⁻¹' {0} G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : IsTopologicalGroup G K₀ : PositiveCompacts G g : G K : Compacts G eval : (Compacts G → ℝ) → ℝ := fun f => f (Compacts.map (fun b => g * b) ⋯ K) - f K this : Continuous eval ⊢ IsClosed (eval ⁻¹' {0})
6ade7b3c444e172e
Affine.Triangle.dist_orthocenter_reflection_circumcenter
Mathlib/Geometry/Euclidean/MongePoint.lean
theorem dist_orthocenter_reflection_circumcenter (t : Triangle ℝ P) {i₁ i₂ : Fin 3} (h : i₁ ≠ i₂) : dist t.orthocenter (reflection (affineSpan ℝ (t.points '' {i₁, i₂})) t.circumcenter) = t.circumradius
V : Type u_1 P : Type u_2 inst✝³ : NormedAddCommGroup V inst✝² : InnerProductSpace ℝ V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P t : Triangle ℝ P i₁ i₂ : Fin 3 h : i₁ ≠ i₂ ⊢ -(∑ x : Fin (0 + 2 + 1), (∑ x_1 : Fin (0 + 2 + 1), ((↑(0 + 1))⁻¹ - if x = i₁ ∨ x = i₂ then 1 else 0) * ((↑(0 + 1))⁻¹ - if x_1 = i₁ ∨ x_1 = i₂ then 1 else 0) * (dist (pointsWithCircumcenter t (PointsWithCircumcenterIndex.pointIndex x)) (pointsWithCircumcenter t (PointsWithCircumcenterIndex.pointIndex x_1)) * dist (pointsWithCircumcenter t (PointsWithCircumcenterIndex.pointIndex x)) (pointsWithCircumcenter t (PointsWithCircumcenterIndex.pointIndex x_1))) + ((↑(0 + 1))⁻¹ - if x = i₁ ∨ x = i₂ then 1 else 0) * (-2 / ↑(0 + 1) - -1) * (dist (pointsWithCircumcenter t (PointsWithCircumcenterIndex.pointIndex x)) (pointsWithCircumcenter t PointsWithCircumcenterIndex.circumcenterIndex) * dist (pointsWithCircumcenter t (PointsWithCircumcenterIndex.pointIndex x)) (pointsWithCircumcenter t PointsWithCircumcenterIndex.circumcenterIndex))) + (∑ x : Fin (0 + 2 + 1), (-2 / ↑(0 + 1) - -1) * ((↑(0 + 1))⁻¹ - if x = i₁ ∨ x = i₂ then 1 else 0) * (dist (pointsWithCircumcenter t PointsWithCircumcenterIndex.circumcenterIndex) (pointsWithCircumcenter t (PointsWithCircumcenterIndex.pointIndex x)) * dist (pointsWithCircumcenter t PointsWithCircumcenterIndex.circumcenterIndex) (pointsWithCircumcenter t (PointsWithCircumcenterIndex.pointIndex x))) + (-2 / ↑(0 + 1) - -1) * (-2 / ↑(0 + 1) - -1) * (dist (pointsWithCircumcenter t PointsWithCircumcenterIndex.circumcenterIndex) (pointsWithCircumcenter t PointsWithCircumcenterIndex.circumcenterIndex) * dist (pointsWithCircumcenter t PointsWithCircumcenterIndex.circumcenterIndex) (pointsWithCircumcenter t PointsWithCircumcenterIndex.circumcenterIndex)))) / 2 = circumradius t * circumradius t
have hu : ({i₁, i₂} : Finset (Fin 3)) ⊆ univ := subset_univ _
V : Type u_1 P : Type u_2 inst✝³ : NormedAddCommGroup V inst✝² : InnerProductSpace ℝ V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P t : Triangle ℝ P i₁ i₂ : Fin 3 h : i₁ ≠ i₂ hu : {i₁, i₂} ⊆ univ ⊢ -(∑ x : Fin (0 + 2 + 1), (∑ x_1 : Fin (0 + 2 + 1), ((↑(0 + 1))⁻¹ - if x = i₁ ∨ x = i₂ then 1 else 0) * ((↑(0 + 1))⁻¹ - if x_1 = i₁ ∨ x_1 = i₂ then 1 else 0) * (dist (pointsWithCircumcenter t (PointsWithCircumcenterIndex.pointIndex x)) (pointsWithCircumcenter t (PointsWithCircumcenterIndex.pointIndex x_1)) * dist (pointsWithCircumcenter t (PointsWithCircumcenterIndex.pointIndex x)) (pointsWithCircumcenter t (PointsWithCircumcenterIndex.pointIndex x_1))) + ((↑(0 + 1))⁻¹ - if x = i₁ ∨ x = i₂ then 1 else 0) * (-2 / ↑(0 + 1) - -1) * (dist (pointsWithCircumcenter t (PointsWithCircumcenterIndex.pointIndex x)) (pointsWithCircumcenter t PointsWithCircumcenterIndex.circumcenterIndex) * dist (pointsWithCircumcenter t (PointsWithCircumcenterIndex.pointIndex x)) (pointsWithCircumcenter t PointsWithCircumcenterIndex.circumcenterIndex))) + (∑ x : Fin (0 + 2 + 1), (-2 / ↑(0 + 1) - -1) * ((↑(0 + 1))⁻¹ - if x = i₁ ∨ x = i₂ then 1 else 0) * (dist (pointsWithCircumcenter t PointsWithCircumcenterIndex.circumcenterIndex) (pointsWithCircumcenter t (PointsWithCircumcenterIndex.pointIndex x)) * dist (pointsWithCircumcenter t PointsWithCircumcenterIndex.circumcenterIndex) (pointsWithCircumcenter t (PointsWithCircumcenterIndex.pointIndex x))) + (-2 / ↑(0 + 1) - -1) * (-2 / ↑(0 + 1) - -1) * (dist (pointsWithCircumcenter t PointsWithCircumcenterIndex.circumcenterIndex) (pointsWithCircumcenter t PointsWithCircumcenterIndex.circumcenterIndex) * dist (pointsWithCircumcenter t PointsWithCircumcenterIndex.circumcenterIndex) (pointsWithCircumcenter t PointsWithCircumcenterIndex.circumcenterIndex)))) / 2 = circumradius t * circumradius t
cf2667ffc8b63c24
Rel.interedges_mono
Mathlib/Combinatorics/SimpleGraph/Density.lean
theorem interedges_mono (hs : s₂ ⊆ s₁) (ht : t₂ ⊆ t₁) : interedges r s₂ t₂ ⊆ interedges r s₁ t₁ := fun x ↦ by simp_rw [mem_interedges_iff] exact fun h ↦ ⟨hs h.1, ht h.2.1, h.2.2⟩
α : Type u_4 β : Type u_5 r : α → β → Prop inst✝ : (a : α) → DecidablePred (r a) s₁ s₂ : Finset α t₁ t₂ : Finset β hs : s₂ ⊆ s₁ ht : t₂ ⊆ t₁ x : α × β ⊢ x ∈ interedges r s₂ t₂ → x ∈ interedges r s₁ t₁
simp_rw [mem_interedges_iff]
α : Type u_4 β : Type u_5 r : α → β → Prop inst✝ : (a : α) → DecidablePred (r a) s₁ s₂ : Finset α t₁ t₂ : Finset β hs : s₂ ⊆ s₁ ht : t₂ ⊆ t₁ x : α × β ⊢ x.1 ∈ s₂ ∧ x.2 ∈ t₂ ∧ r x.1 x.2 → x.1 ∈ s₁ ∧ x.2 ∈ t₁ ∧ r x.1 x.2
24cb9d9ef47a802b
Pell.IsFundamental.eq_pow_of_nonneg
Mathlib/NumberTheory/Pell.lean
theorem eq_pow_of_nonneg {a₁ : Solution₁ d} (h : IsFundamental a₁) {a : Solution₁ d} (hax : 0 < a.x) (hay : 0 ≤ a.y) : ∃ n : ℕ, a = a₁ ^ n
case intro.h.inl d : ℤ a₁ : Solution₁ d h : IsFundamental a₁ x : ℕ ih : ∀ m < x, ∀ {a : Solution₁ d}, 0 ≤ a.y → ↑m = a.x → 0 < ↑m → ∃ n, a = a₁ ^ n a : Solution₁ d hay : 0 ≤ a.y hax' : ↑x = a.x hax : 0 < ↑x hy : 0 = a.y ⊢ a = a₁ ^ 0
simp only [pow_zero]
case intro.h.inl d : ℤ a₁ : Solution₁ d h : IsFundamental a₁ x : ℕ ih : ∀ m < x, ∀ {a : Solution₁ d}, 0 ≤ a.y → ↑m = a.x → 0 < ↑m → ∃ n, a = a₁ ^ n a : Solution₁ d hay : 0 ≤ a.y hax' : ↑x = a.x hax : 0 < ↑x hy : 0 = a.y ⊢ a = 1
e2cabc4b76df1e43
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.readyForRupAdd_insert
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/Lemmas.lean
theorem readyForRupAdd_insert {n : Nat} (f : DefaultFormula n) (c : DefaultClause n) : ReadyForRupAdd f → ReadyForRupAdd (insert f c)
case pos n : Nat f : DefaultFormula n c : DefaultClause n f_readyForRupAdd : f.ReadyForRupAdd x✝ : Option (Literal (PosFin n)) l : PosFin n hc : c.isUnit = some (l, false) hsize : (f.assignments.modify l.val addNegAssignment).size = n i : PosFin n b : Bool hb : hasAssignment b (f.assignments.modify l.val addNegAssignment)[i.val] = true hf : hasAssignment b f.assignments[i.val] = true → unit (i, b) ∈ f.toList i_in_bounds : i.val < f.assignments.size ib_ne_c : ¬(i, b) = (l, false) l_eq_i : l.val = i.val h✝ : b = true ⊢ b = true
assumption
no goals
c1096ba3fc377c54
Fin.sizeOf
Mathlib/.lake/packages/lean4/src/lean/Init/SizeOfLemmas.lean
theorem Fin.sizeOf (a : Fin n) : sizeOf a = a.val + 1
n : Nat a : Fin n ⊢ sizeOf a = ↑a + 1
cases a
case mk n val✝ : Nat isLt✝ : val✝ < n ⊢ sizeOf ⟨val✝, isLt✝⟩ = ↑⟨val✝, isLt✝⟩ + 1
79ad8ea852aac7e2
LinearMap.toSpanSingleton_homothety
Mathlib/Analysis/Normed/Module/Span.lean
theorem toSpanSingleton_homothety (x : E) (c : 𝕜) : ‖LinearMap.toSpanSingleton 𝕜 E x c‖ = ‖x‖ * ‖c‖
𝕜 : Type u_1 E : Type u_2 inst✝³ : NormedDivisionRing 𝕜 inst✝² : SeminormedAddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : BoundedSMul 𝕜 E x : E c : 𝕜 ⊢ ‖(toSpanSingleton 𝕜 E x) c‖ = ‖x‖ * ‖c‖
rw [mul_comm]
𝕜 : Type u_1 E : Type u_2 inst✝³ : NormedDivisionRing 𝕜 inst✝² : SeminormedAddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : BoundedSMul 𝕜 E x : E c : 𝕜 ⊢ ‖(toSpanSingleton 𝕜 E x) c‖ = ‖c‖ * ‖x‖
ddfe2b87fc17adc4
List.zip_append
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Zip.lean
theorem zip_append : ∀ {l₁ r₁ : List α} {l₂ r₂ : List β} (_h : length l₁ = length l₂), zip (l₁ ++ r₁) (l₂ ++ r₂) = zip l₁ l₂ ++ zip r₁ r₂ | [], r₁, l₂, r₂, h => by simp only [eq_nil_of_length_eq_zero h.symm]; rfl | l₁, r₁, [], r₂, h => by simp only [eq_nil_of_length_eq_zero h]; rfl | a :: l₁, r₁, b :: l₂, r₂, h => by simp only [cons_append, zip_cons_cons, zip_append (Nat.succ.inj h)]
α : Type u_1 β : Type u_2 a : α l₁ r₁ : List α b : β l₂ r₂ : List β h : (a :: l₁).length = (b :: l₂).length ⊢ (a :: l₁ ++ r₁).zip (b :: l₂ ++ r₂) = (a :: l₁).zip (b :: l₂) ++ r₁.zip r₂
simp only [cons_append, zip_cons_cons, zip_append (Nat.succ.inj h)]
no goals
cb39c7e8a1d8f244
Lean.Omega.IntList.mul_distrib_left
Mathlib/.lake/packages/lean4/src/lean/Init/Omega/IntList.lean
theorem mul_distrib_left (xs ys zs : IntList) : (xs + ys) * zs = xs * zs + ys * zs
case cons.cons.nil x : Int xs : List Int ih₁ : ∀ (ys zs : IntList), (xs + ys) * zs = xs * zs + ys * zs head✝ : Int tail✝ : List Int ⊢ (x :: xs + head✝ :: tail✝) * [] = (x :: xs) * [] + (head✝ :: tail✝) * []
simp
no goals
ad435ae640ae9032
Algebra.FormallyUnramified.isSeparable
Mathlib/RingTheory/Unramified/Field.lean
theorem isSeparable : Algebra.IsSeparable K L
K : Type u_1 L : Type u_3 inst✝⁴ : Field K inst✝³ : Field L inst✝² : Algebra K L inst✝¹ : FormallyUnramified K L inst✝ : EssFiniteType K L this✝¹ : Module.Finite K L this✝ : FormallyUnramified (↥(separableClosure K L)) L this : EssFiniteType (↥(separableClosure K L)) L ⊢ separableClosure K L = ⊤
ext
case h K : Type u_1 L : Type u_3 inst✝⁴ : Field K inst✝³ : Field L inst✝² : Algebra K L inst✝¹ : FormallyUnramified K L inst✝ : EssFiniteType K L this✝¹ : Module.Finite K L this✝ : FormallyUnramified (↥(separableClosure K L)) L this : EssFiniteType (↥(separableClosure K L)) L x✝ : L ⊢ x✝ ∈ separableClosure K L ↔ x✝ ∈ ⊤
098767b1d96a2eff
Std.DHashMap.Internal.Raw₀.expand.go_eq
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Internal/WF.lean
theorem expand.go_eq [BEq α] [Hashable α] [PartialEquivBEq α] (source : Array (AssocList α β)) (target : {d : Array (AssocList α β) // 0 < d.size}) : expand.go 0 source target = (toListModel source).foldl (fun acc p => reinsertAux hash acc p.1 p.2) target
α : Type u β : α → Type v inst✝¹ : BEq α inst✝ : Hashable α i : PartialEquivBEq α source : Nat target : Array (AssocList α β) target✝ : { d // 0 < d.size } hi : source < target.size es : AssocList α β := target[source] newSource : Array (AssocList α β) := target.set source AssocList.nil hi newTarget : { d // 0 < d.size } := AssocList.foldl (reinsertAux hash) target✝ es ih : go (source + 1) (target.set source AssocList.nil hi) (AssocList.foldl (reinsertAux hash) target✝ target[source]) = foldl (fun acc p => reinsertAux hash acc p.fst p.snd) (AssocList.foldl (reinsertAux hash) target✝ target[source]) (flatMap AssocList.toList (drop (source + 1) (target.set source AssocList.nil hi).toList)) ⊢ foldl (fun acc p => reinsertAux hash acc p.fst p.snd) (foldl (fun acc p => reinsertAux hash acc p.fst p.snd) target✝ target[source].toList) (flatMap AssocList.toList (drop (source + 1) (target.toList.set source AssocList.nil))) = foldl (fun acc p => reinsertAux hash acc p.fst p.snd) target✝ (flatMap AssocList.toList (drop source target.toList))
rw [List.drop_eq_getElem_cons hi, List.flatMap_cons, List.foldl_append, List.drop_set_of_lt _ _ (by omega), Array.getElem_toList]
no goals
c4dec2d2e93626cd
LightCondensed.isLocallySurjective_iff_locallySurjective_on_lightProfinite
Mathlib/Condensed/Light/Epi.lean
lemma isLocallySurjective_iff_locallySurjective_on_lightProfinite : IsLocallySurjective f ↔ ∀ (S : LightProfinite) (y : ToType (Y.val.obj ⟨S⟩)), (∃ (S' : LightProfinite) (φ : S' ⟶ S) (_ : Function.Surjective φ) (x : ToType (X.val.obj ⟨S'⟩)), f.val.app ⟨S'⟩ x = Y.val.map ⟨φ⟩ y)
A : Type u' inst✝³ : Category.{v', u'} A FA : A → A → Type u_1 CA : A → Type w inst✝² : (X Y : A) → FunLike (FA X Y) (CA X) (CA Y) inst✝¹ : ConcreteCategory A FA inst✝ : PreservesFiniteProducts (CategoryTheory.forget A) X Y : LightCondensed A f : X ⟶ Y ⊢ IsLocallySurjective f ↔ ∀ (S : LightProfinite) (y : ToType (Y.val.obj (Opposite.op S))), ∃ S' φ, ∃ (_ : Function.Surjective ⇑(ConcreteCategory.hom φ)), ∃ x, (ConcreteCategory.hom (f.val.app (Opposite.op S'))) x = (ConcreteCategory.hom (Y.val.map (Opposite.op φ))) y
rw [coherentTopology.isLocallySurjective_iff, regularTopology.isLocallySurjective_iff]
A : Type u' inst✝³ : Category.{v', u'} A FA : A → A → Type u_1 CA : A → Type w inst✝² : (X Y : A) → FunLike (FA X Y) (CA X) (CA Y) inst✝¹ : ConcreteCategory A FA inst✝ : PreservesFiniteProducts (CategoryTheory.forget A) X Y : LightCondensed A f : X ⟶ Y ⊢ (∀ (X_1 : LightProfinite) (y : ToType (Y.val.obj (Opposite.op X_1))), ∃ X' φ, ∃ (_ : EffectiveEpi φ), ∃ x, (ConcreteCategory.hom (f.val.app (Opposite.op X'))) x = (ConcreteCategory.hom (Y.val.map (Opposite.op φ))) y) ↔ ∀ (S : LightProfinite) (y : ToType (Y.val.obj (Opposite.op S))), ∃ S' φ, ∃ (_ : Function.Surjective ⇑(ConcreteCategory.hom φ)), ∃ x, (ConcreteCategory.hom (f.val.app (Opposite.op S'))) x = (ConcreteCategory.hom (Y.val.map (Opposite.op φ))) y
0a92c944fa2c53b6
PowerSeries.invOneSubPow_val_one_eq_invUnitSub_one
Mathlib/RingTheory/PowerSeries/WellKnown.lean
theorem invOneSubPow_val_one_eq_invUnitSub_one : (invOneSubPow S 1).val = invUnitsSub (1 : Sˣ)
S : Type u_1 inst✝ : CommRing S ⊢ ↑(invOneSubPow S 1) = invUnitsSub 1
simp [invOneSubPow, invUnitsSub]
no goals
f51ab1b0b25494bc
Nat.factorization_prod
Mathlib/Data/Nat/Factorization/Defs.lean
theorem factorization_prod {α : Type*} {S : Finset α} {g : α → ℕ} (hS : ∀ x ∈ S, g x ≠ 0) : (S.prod g).factorization = S.sum fun x => (g x).factorization
case h.refine_2 α : Type u_1 S : Finset α g : α → ℕ hS : ∀ x ∈ S, g x ≠ 0 p : ℕ ⊢ ∀ {a : α} {s : Finset α}, a ∈ S → s ⊆ S → a ∉ s → (s.prod g).factorization p = (∑ x ∈ s, (g x).factorization) p → ((insert a s).prod g).factorization p = (∑ x ∈ insert a s, (g x).factorization) p
intro x T hxS hTS hxT IH
case h.refine_2 α : Type u_1 S : Finset α g : α → ℕ hS : ∀ x ∈ S, g x ≠ 0 p : ℕ x : α T : Finset α hxS : x ∈ S hTS : T ⊆ S hxT : x ∉ T IH : (T.prod g).factorization p = (∑ x ∈ T, (g x).factorization) p ⊢ ((insert x T).prod g).factorization p = (∑ x ∈ insert x T, (g x).factorization) p
0f85b322fea385d6
Ordnode.Valid'.map_aux
Mathlib/Data/Ordmap/Ordset.lean
theorem Valid'.map_aux {β} [Preorder β] {f : α → β} (f_strict_mono : StrictMono f) {t a₁ a₂} (h : Valid' a₁ t a₂) : Valid' (Option.map f a₁) (map f t) (Option.map f a₂) ∧ (map f t).size = t.size
case node.intro.intro.bal.right.left α : Type u_1 inst✝¹ : Preorder α β : Type u_2 inst✝ : Preorder β f : α → β f_strict_mono : StrictMono f size✝ : ℕ l✝ : Ordnode α x✝ : α r✝ : Ordnode α a₁ : WithBot α a₂ : WithTop α h : Valid' a₁ (Ordnode.node size✝ l✝ x✝ r✝) a₂ t_l_valid : Valid' (Option.map f a₁) (map f l✝) (Option.map f ↑x✝) t_l_size : (map f l✝).size = l✝.size t_r_valid : Valid' (Option.map f ↑x✝) (map f r✝) (Option.map f a₂) t_r_size : (map f r✝).size = r✝.size ⊢ (map f l✝).Balanced
exact t_l_valid.bal
no goals
ff36f5e3d5092df5
CliffordAlgebra.even_induction
Mathlib/LinearAlgebra/CliffordAlgebra/Grading.lean
theorem even_induction {motive : ∀ x, x ∈ evenOdd Q 0 → Prop} (algebraMap : ∀ r : R, motive (algebraMap _ _ r) (SetLike.algebraMap_mem_graded _ _)) (add : ∀ x y hx hy, motive x hx → motive y hy → motive (x + y) (Submodule.add_mem _ hx hy)) (ι_mul_ι_mul : ∀ m₁ m₂ x hx, motive x hx → motive (ι Q m₁ * ι Q m₂ * x) (zero_add (0 : ZMod 2) ▸ SetLike.mul_mem_graded (ι_mul_ι_mem_evenOdd_zero Q m₁ m₂) hx)) (x : CliffordAlgebra Q) (hx : x ∈ evenOdd Q 0) : motive x hx
R : Type u_1 M : Type u_2 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M motive : (x : CliffordAlgebra Q) → x ∈ evenOdd Q 0 → Prop algebraMap : ∀ (r : R), motive ((_root_.algebraMap R (CliffordAlgebra Q)) r) ⋯ add : ∀ (x y : CliffordAlgebra Q) (hx : x ∈ evenOdd Q 0) (hy : y ∈ evenOdd Q 0), motive x hx → motive y hy → motive (x + y) ⋯ ι_mul_ι_mul : ∀ (m₁ m₂ : M) (x : CliffordAlgebra Q) (hx : x ∈ evenOdd Q 0), motive x hx → motive ((ι Q) m₁ * (ι Q) m₂ * x) ⋯ x : CliffordAlgebra Q hx : x ∈ evenOdd Q 0 rx : CliffordAlgebra Q h : rx ∈ LinearMap.range (ι Q) ^ ZMod.val 0 ⊢ motive rx ⋯
obtain ⟨r, rfl⟩ := Submodule.mem_one.mp h
case intro R : Type u_1 M : Type u_2 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M motive : (x : CliffordAlgebra Q) → x ∈ evenOdd Q 0 → Prop algebraMap : ∀ (r : R), motive ((_root_.algebraMap R (CliffordAlgebra Q)) r) ⋯ add : ∀ (x y : CliffordAlgebra Q) (hx : x ∈ evenOdd Q 0) (hy : y ∈ evenOdd Q 0), motive x hx → motive y hy → motive (x + y) ⋯ ι_mul_ι_mul : ∀ (m₁ m₂ : M) (x : CliffordAlgebra Q) (hx : x ∈ evenOdd Q 0), motive x hx → motive ((ι Q) m₁ * (ι Q) m₂ * x) ⋯ x : CliffordAlgebra Q hx : x ∈ evenOdd Q 0 r : R h : (_root_.algebraMap R (CliffordAlgebra Q)) r ∈ LinearMap.range (ι Q) ^ ZMod.val 0 ⊢ motive ((_root_.algebraMap R (CliffordAlgebra Q)) r) ⋯
24e125e8024e9761
Polynomial.Chebyshev.S_add_two
Mathlib/RingTheory/Polynomial/Chebyshev.lean
theorem S_add_two : ∀ n, S R (n + 2) = X * S R (n + 1) - S R n | (k : ℕ) => S.eq_3 R k | -(k + 1 : ℕ) => by linear_combination (norm := (simp [Int.negSucc_eq]; ring_nf)) S.eq_4 R k
R : Type u_1 inst✝ : CommRing R k : ℕ ⊢ S R (-↑(k + 1) + 2) = X * S R (-↑(k + 1) + 1) - S R (-↑(k + 1))
linear_combination (norm := (simp [Int.negSucc_eq]; ring_nf)) S.eq_4 R k
no goals
440be322469157c0
FormalMultilinearSeries.radius_shift
Mathlib/Analysis/Analytic/Basic.lean
theorem radius_shift (p : FormalMultilinearSeries 𝕜 E F) : p.shift.radius = p.radius
case h.h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F p : FormalMultilinearSeries 𝕜 E F r : ℝ≥0 C : ℝ ⊢ (∀ (n : ℕ), ‖p (n + 1)‖ * ↑r ^ n ≤ C) → ∃ (_ : ∀ (n : ℕ), ‖p n‖ * ↑r ^ n ≤ ‖p 0‖ ⊔ C * ↑r), ↑r ≤ ↑r
intro h
case h.h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F p : FormalMultilinearSeries 𝕜 E F r : ℝ≥0 C : ℝ h : ∀ (n : ℕ), ‖p (n + 1)‖ * ↑r ^ n ≤ C ⊢ ∃ (_ : ∀ (n : ℕ), ‖p n‖ * ↑r ^ n ≤ ‖p 0‖ ⊔ C * ↑r), ↑r ≤ ↑r
b15148c409de31ac
String.firstDiffPos_loop_eq
Mathlib/.lake/packages/batteries/Batteries/Data/String/Lemmas.lean
theorem firstDiffPos_loop_eq (l₁ l₂ r₁ r₂ stop p) (hl₁ : p = utf8Len l₁) (hl₂ : p = utf8Len l₂) (hstop : stop = min (utf8Len l₁ + utf8Len r₁) (utf8Len l₂ + utf8Len r₂)) : firstDiffPos.loop ⟨l₁ ++ r₁⟩ ⟨l₂ ++ r₂⟩ ⟨stop⟩ ⟨p⟩ = ⟨p + utf8Len (List.takeWhile₂ (· = ·) r₁ r₂).1⟩
case hnc l₁ l₂ r₁ r₂ : List Char stop p : Nat hl₁ : p = utf8Len l₁ hl₂ : p = utf8Len l₂ hstop : stop = min (utf8Len l₁ + utf8Len r₁) (utf8Len l₂ + utf8Len r₂) x✝¹ x✝ : List Char h : ∀ (a : Char) (as : List Char) (b : Char) (bs : List Char), r₁ = a :: as → r₂ = b :: bs → False ⊢ 0 < utf8Len r₁ → ¬0 < utf8Len r₂
intro h₁ h₂
case hnc l₁ l₂ r₁ r₂ : List Char stop p : Nat hl₁ : p = utf8Len l₁ hl₂ : p = utf8Len l₂ hstop : stop = min (utf8Len l₁ + utf8Len r₁) (utf8Len l₂ + utf8Len r₂) x✝¹ x✝ : List Char h : ∀ (a : Char) (as : List Char) (b : Char) (bs : List Char), r₁ = a :: as → r₂ = b :: bs → False h₁ : 0 < utf8Len r₁ h₂ : 0 < utf8Len r₂ ⊢ False
5881499f2c507cc8
Std.Sat.AIG.mkOrCached_decl_eq
Mathlib/.lake/packages/lean4/src/lean/Std/Sat/AIG/CachedGatesLemmas.lean
theorem mkOrCached_decl_eq idx (aig : AIG α) (input : BinaryInput aig) {h : idx < aig.decls.size} {h2} : (aig.mkOrCached input).aig.decls[idx]'h2 = aig.decls[idx]
α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α idx : Nat aig : AIG α input : aig.BinaryInput h : idx < aig.decls.size h2 : idx < (aig.mkOrCached input).aig.decls.size ⊢ (aig.mkGateCached (input.asGateInput true true)).aig.decls[idx] = aig.decls[idx]
rw [AIG.LawfulOperator.decl_eq (f := mkGateCached)]
case h2 α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α idx : Nat aig : AIG α input : aig.BinaryInput h : idx < aig.decls.size h2 : idx < (aig.mkOrCached input).aig.decls.size ⊢ idx < (aig.mkGateCached (input.asGateInput true true)).aig.decls.size
2825f1c9a489a1bb
Equiv.Perm.signAux_eq_signAux2
Mathlib/GroupTheory/Perm/Sign.lean
theorem signAux_eq_signAux2 {n : ℕ} : ∀ (l : List α) (f : Perm α) (e : α ≃ Fin n) (_h : ∀ x, f x ≠ x → x ∈ l), signAux ((e.symm.trans f).trans e) = signAux2 l f | [], f, e, h => by have : f = 1 := Equiv.ext fun y => Classical.not_not.1 (mt (h y) (List.not_mem_nil _)) rw [this, one_def, Equiv.trans_refl, Equiv.symm_trans_self, ← one_def, signAux_one, signAux2] | x::l, f, e, h => by rw [signAux2] by_cases hfx : x = f x · rw [if_pos hfx] exact signAux_eq_signAux2 l f _ fun y (hy : f y ≠ y) => List.mem_of_ne_of_mem (fun h : y = x => by simp [h, hfx.symm] at hy) (h y hy) · have hy : ∀ y : α, (swap x (f x) * f) y ≠ y → y ∈ l := fun y hy => have : f y ≠ y ∧ y ≠ x := ne_and_ne_of_swap_mul_apply_ne_self hy List.mem_of_ne_of_mem this.2 (h _ this.1) have : (e.symm.trans (swap x (f x) * f)).trans e = swap (e x) (e (f x)) * (e.symm.trans f).trans e
α : Type u inst✝ : DecidableEq α n : ℕ f : Perm α e : α ≃ Fin n h : ∀ (x : α), f x ≠ x → x ∈ [] this : f = 1 ⊢ signAux ((e.symm.trans f).trans e) = signAux2 [] f
rw [this, one_def, Equiv.trans_refl, Equiv.symm_trans_self, ← one_def, signAux_one, signAux2]
no goals
f94966561d754325
Nat.dvd_of_pow_dvd
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Nat/Lemmas.lean
theorem dvd_of_pow_dvd {p k m : Nat} (hk : 1 ≤ k) (hpk : p ^ k ∣ m) : p ∣ m
p k m : Nat hk : 1 ≤ k hpk : p ^ k ∣ m ⊢ p ^ 1 ∣ m
exact pow_dvd_of_le_of_pow_dvd hk hpk
no goals
e8dc4bde1893e501
Function.Periodic.const_smul
Mathlib/Algebra/Ring/Periodic.lean
theorem Periodic.const_smul [AddMonoid α] [Group γ] [DistribMulAction γ α] (h : Periodic f c) (a : γ) : Periodic (fun x => f (a • x)) (a⁻¹ • c) := fun x => by simpa only [smul_add, smul_inv_smul] using h (a • x)
α : Type u_1 β : Type u_2 γ : Type u_3 f : α → β c : α inst✝² : AddMonoid α inst✝¹ : Group γ inst✝ : DistribMulAction γ α h : Periodic f c a : γ x : α ⊢ (fun x => f (a • x)) (x + a⁻¹ • c) = (fun x => f (a • x)) x
simpa only [smul_add, smul_inv_smul] using h (a • x)
no goals
dac44d0f1d21a425
Nat.succ_div
Mathlib/Data/Nat/Init.lean
lemma succ_div : ∀ a b : ℕ, (a + 1) / b = a / b + if b ∣ a + 1 then 1 else 0 | a, 0 => by simp | 0, 1 => by simp | 0, b + 2 => by have hb2 : b + 2 > 1
case pos a b : ℕ hb_eq_a : ¬b = a + 1 hb_le_a1 : b ≤ a + 1 hb_le_a : b ≤ a h₁ : 0 < b + 1 ∧ b + 1 ≤ a + 1 + 1 ⊢ (if 0 < b + 1 ∧ b + 1 ≤ a + 1 + 1 then (a + 1 + 1 - (b + 1)) / (b + 1) + 1 else 0) = (if 0 < b + 1 ∧ b + 1 ≤ a + 1 then (a + 1 - (b + 1)) / (b + 1) + 1 else 0) + if b + 1 ∣ a + 1 + 1 then 1 else 0
have h₂ : 0 < b + 1 ∧ b + 1 ≤ a + 1 := ⟨succ_pos _, Nat.add_le_add_iff_right.2 hb_le_a⟩
case pos a b : ℕ hb_eq_a : ¬b = a + 1 hb_le_a1 : b ≤ a + 1 hb_le_a : b ≤ a h₁ : 0 < b + 1 ∧ b + 1 ≤ a + 1 + 1 h₂ : 0 < b + 1 ∧ b + 1 ≤ a + 1 ⊢ (if 0 < b + 1 ∧ b + 1 ≤ a + 1 + 1 then (a + 1 + 1 - (b + 1)) / (b + 1) + 1 else 0) = (if 0 < b + 1 ∧ b + 1 ≤ a + 1 then (a + 1 - (b + 1)) / (b + 1) + 1 else 0) + if b + 1 ∣ a + 1 + 1 then 1 else 0
77c7480efd928acc
Complex.Gammaℝ_ne_zero_of_re_pos
Mathlib/Analysis/SpecialFunctions/Gamma/Deligne.lean
lemma Gammaℝ_ne_zero_of_re_pos {s : ℂ} (hs : 0 < re s) : Gammaℝ s ≠ 0
s : ℂ hs : 0 < s.re ⊢ s.Gammaℝ ≠ 0
apply mul_ne_zero
case ha s : ℂ hs : 0 < s.re ⊢ ↑π ^ (-s / 2) ≠ 0 case hb s : ℂ hs : 0 < s.re ⊢ Gamma (s / 2) ≠ 0
c9782cf89a013ea8
EReal.continuousAt_add_bot_bot
Mathlib/Topology/Instances/EReal/Lemmas.lean
theorem continuousAt_add_bot_bot : ContinuousAt (fun p : EReal × EReal => p.1 + p.2) (⊥, ⊥)
r : ℝ x✝ : EReal × EReal h : x✝.1 < ↑0 ∧ x✝.2 < ↑r ⊢ x✝.1 + x✝.2 < ↑r
simpa only [coe_zero, zero_add] using add_lt_add h.1 h.2
no goals
025b907b97b97f54
LinearMap.det_conj
Mathlib/LinearAlgebra/Determinant.lean
theorem det_conj {N : Type*} [AddCommGroup N] [Module A N] (f : M →ₗ[A] M) (e : M ≃ₗ[A] N) : LinearMap.det ((e : M →ₗ[A] N) ∘ₗ f ∘ₗ (e.symm : N →ₗ[A] M)) = LinearMap.det f
case neg M : Type u_2 inst✝⁴ : AddCommGroup M A : Type u_5 inst✝³ : CommRing A inst✝² : Module A M N : Type u_7 inst✝¹ : AddCommGroup N inst✝ : Module A N f : M →ₗ[A] M e : M ≃ₗ[A] N H : ¬∃ s, Nonempty (Basis { x // x ∈ s } A M) ⊢ LinearMap.det (↑e ∘ₗ f ∘ₗ ↑e.symm) = LinearMap.det f
have H' : ¬∃ t : Finset N, Nonempty (Basis t A N) := by contrapose! H rcases H with ⟨s, ⟨b⟩⟩ exact ⟨_, ⟨(b.map e.symm).reindexFinsetRange⟩⟩
case neg M : Type u_2 inst✝⁴ : AddCommGroup M A : Type u_5 inst✝³ : CommRing A inst✝² : Module A M N : Type u_7 inst✝¹ : AddCommGroup N inst✝ : Module A N f : M →ₗ[A] M e : M ≃ₗ[A] N H : ¬∃ s, Nonempty (Basis { x // x ∈ s } A M) H' : ¬∃ t, Nonempty (Basis { x // x ∈ t } A N) ⊢ LinearMap.det (↑e ∘ₗ f ∘ₗ ↑e.symm) = LinearMap.det f
97fcc4f0d8a18a2c
CategoryTheory.epi_iff_surjective_up_to_refinements
Mathlib/CategoryTheory/Abelian/Refinements.lean
lemma epi_iff_surjective_up_to_refinements (f : X ⟶ Y) : Epi f ↔ ∀ ⦃A : C⦄ (y : A ⟶ Y), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x : A' ⟶ X), π ≫ y = x ≫ f
case mp C : Type u_2 inst✝¹ : Category.{u_1, u_2} C inst✝ : Abelian C X Y : C f : X ⟶ Y a✝ : Epi f A : C a : A ⟶ Y ⊢ ∃ A' π, ∃ (_ : Epi π), ∃ x, π ≫ a = x ≫ f
exact ⟨pullback a f, pullback.fst a f, inferInstance, pullback.snd a f, pullback.condition⟩
no goals
8dab997ceac1b3da
CategoryTheory.GrothendieckTopology.over_map_compatiblePreserving
Mathlib/CategoryTheory/Sites/Over.lean
lemma over_map_compatiblePreserving {X Y : C} (f : X ⟶ Y) : CompatiblePreserving (J.over Y) (Over.map f) where compatible {F Z _ x hx Y₁ Y₂ W f₁ f₂ g₁ g₂ hg₁ hg₂ h}
case h.e'_3.h.e_a C : Type u inst✝ : Category.{v, u} C J : GrothendieckTopology C X Y : C f : X ⟶ Y F : Sheaf (J.over Y) (Type u_1) Z : Over X x✝ : Presieve Z x : Presieve.FamilyOfElements ((Over.map f).op ⋙ F.val) x✝ hx : x.Compatible Y₁ Y₂ : Over X W : Over Y f₁ : W ⟶ (Over.map f).obj Y₁ f₂ : W ⟶ (Over.map f).obj Y₂ g₁ : Y₁ ⟶ Z g₂ : Y₂ ⟶ Z hg₁ : x✝ g₁ hg₂ : x✝ g₂ h : f₁ ≫ (Over.map f).map g₁ = f₂ ≫ (Over.map f).map g₂ W' : Over X := Over.mk (f₁.left ≫ Y₁.hom) g₁' : W' ⟶ Y₁ := Over.homMk f₁.left ⋯ g₂' : W' ⟶ Y₂ := Over.homMk f₂.left ⋯ e : (Over.map f).obj W' ≅ W := Over.isoMk (Iso.refl ((Over.map f).obj W').left) ⋯ ⊢ f₂.op = ((Over.isoMk (Iso.refl W.left) ⋯).inv ≫ (Over.map f).map (Over.homMk f₂.left ⋯)).op
congr 1
case h.e'_3.h.e_a.e_f C : Type u inst✝ : Category.{v, u} C J : GrothendieckTopology C X Y : C f : X ⟶ Y F : Sheaf (J.over Y) (Type u_1) Z : Over X x✝ : Presieve Z x : Presieve.FamilyOfElements ((Over.map f).op ⋙ F.val) x✝ hx : x.Compatible Y₁ Y₂ : Over X W : Over Y f₁ : W ⟶ (Over.map f).obj Y₁ f₂ : W ⟶ (Over.map f).obj Y₂ g₁ : Y₁ ⟶ Z g₂ : Y₂ ⟶ Z hg₁ : x✝ g₁ hg₂ : x✝ g₂ h : f₁ ≫ (Over.map f).map g₁ = f₂ ≫ (Over.map f).map g₂ W' : Over X := Over.mk (f₁.left ≫ Y₁.hom) g₁' : W' ⟶ Y₁ := Over.homMk f₁.left ⋯ g₂' : W' ⟶ Y₂ := Over.homMk f₂.left ⋯ e : (Over.map f).obj W' ≅ W := Over.isoMk (Iso.refl ((Over.map f).obj W').left) ⋯ ⊢ f₂ = (Over.isoMk (Iso.refl W.left) ⋯).inv ≫ (Over.map f).map (Over.homMk f₂.left ⋯)
b30448b3f4083fa8
Path.delayReflRight_zero
Mathlib/Topology/Homotopy/HSpaces.lean
theorem delayReflRight_zero (γ : Path x y) : delayReflRight 0 γ = γ.trans (Path.refl y)
case pos X : Type u inst✝ : TopologicalSpace X x y : X γ : Path x y t : ↑I h : ↑t ≤ 1 / 2 ⊢ γ (qRight (t, 0)) = γ ⟨2 * ↑t, ⋯⟩
apply congr_arg γ
case pos X : Type u inst✝ : TopologicalSpace X x y : X γ : Path x y t : ↑I h : ↑t ≤ 1 / 2 ⊢ qRight (t, 0) = ⟨2 * ↑t, ⋯⟩
ece5c946a8b6b2c4
LinearPMap.mem_domain_iff
Mathlib/LinearAlgebra/LinearPMap.lean
theorem mem_domain_iff {f : E →ₗ.[R] F} {x : E} : x ∈ f.domain ↔ ∃ y : F, (x, y) ∈ f.graph
R : Type u_1 inst✝⁴ : Ring R E : Type u_2 inst✝³ : AddCommGroup E inst✝² : Module R E F : Type u_3 inst✝¹ : AddCommGroup F inst✝ : Module R F f : E →ₗ.[R] F x : E ⊢ x ∈ f.domain ↔ ∃ y, (x, y) ∈ f.graph
constructor <;> intro h
case mp R : Type u_1 inst✝⁴ : Ring R E : Type u_2 inst✝³ : AddCommGroup E inst✝² : Module R E F : Type u_3 inst✝¹ : AddCommGroup F inst✝ : Module R F f : E →ₗ.[R] F x : E h : x ∈ f.domain ⊢ ∃ y, (x, y) ∈ f.graph case mpr R : Type u_1 inst✝⁴ : Ring R E : Type u_2 inst✝³ : AddCommGroup E inst✝² : Module R E F : Type u_3 inst✝¹ : AddCommGroup F inst✝ : Module R F f : E →ₗ.[R] F x : E h : ∃ y, (x, y) ∈ f.graph ⊢ x ∈ f.domain
8da0e3a2043b5c33
MeasureTheory.eLpNorm_le_eLpNorm_fderiv_of_eq_inner
Mathlib/Analysis/FunctionalSpaces/SobolevInequality.lean
theorem eLpNorm_le_eLpNorm_fderiv_of_eq_inner {u : E → F'} (hu : ContDiff ℝ 1 u) (h2u : HasCompactSupport u) {p p' : ℝ≥0} (hp : 1 ≤ p) (hn : 0 < finrank ℝ E) (hp' : (p' : ℝ)⁻¹ = p⁻¹ - (finrank ℝ E : ℝ)⁻¹) : eLpNorm u p' μ ≤ eLpNormLESNormFDerivOfEqInnerConst μ p * eLpNorm (fderiv ℝ u) p μ
E : Type u_4 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : MeasurableSpace E inst✝⁵ : BorelSpace E inst✝⁴ : FiniteDimensional ℝ E μ : Measure E inst✝³ : μ.IsAddHaarMeasure F' : Type u_5 inst✝² : NormedAddCommGroup F' inst✝¹ : InnerProductSpace ℝ F' inst✝ : CompleteSpace F' u : E → F' hu : ContDiff ℝ 1 u h2u : HasCompactSupport u p p' : ℝ≥0 hp : 1 ≤ p hp'0 : ¬p' = 0 n : ℕ := finrank ℝ E hn : 0 < n hp' : (↑p')⁻¹ = ↑p⁻¹ - (↑n)⁻¹ n' : ℝ≥0 := (↑n).conjExponent this : 0 < ↑p⁻¹ - (↑n)⁻¹ ⊢ ↑p < ↑n
rwa [NNReal.coe_inv, sub_pos, inv_lt_inv₀ _ (zero_lt_one.trans_le (NNReal.coe_le_coe.mpr hp))] at this
E : Type u_4 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : MeasurableSpace E inst✝⁵ : BorelSpace E inst✝⁴ : FiniteDimensional ℝ E μ : Measure E inst✝³ : μ.IsAddHaarMeasure F' : Type u_5 inst✝² : NormedAddCommGroup F' inst✝¹ : InnerProductSpace ℝ F' inst✝ : CompleteSpace F' u : E → F' hu : ContDiff ℝ 1 u h2u : HasCompactSupport u p p' : ℝ≥0 hp : 1 ≤ p hp'0 : ¬p' = 0 n : ℕ := finrank ℝ E hn : 0 < n hp' : (↑p')⁻¹ = ↑p⁻¹ - (↑n)⁻¹ n' : ℝ≥0 := (↑n).conjExponent this : (↑n)⁻¹ < (↑p)⁻¹ ⊢ 0 < ↑n
728bbe5fb5258103
WeakDual.CharacterSpace.ext_ker
Mathlib/Topology/Algebra/Module/CharacterSpace.lean
theorem ext_ker {φ ψ : characterSpace 𝕜 A} (h : RingHom.ker φ = RingHom.ker ψ) : φ = ψ
case h 𝕜 : Type u_1 A : Type u_2 inst✝⁷ : CommRing 𝕜 inst✝⁶ : NoZeroDivisors 𝕜 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : ContinuousAdd 𝕜 inst✝³ : ContinuousConstSMul 𝕜 𝕜 inst✝² : TopologicalSpace A inst✝¹ : Ring A inst✝ : Algebra 𝕜 A φ ψ : ↑(characterSpace 𝕜 A) h : RingHom.ker φ = RingHom.ker ψ x : A ⊢ φ x = ψ x
have : x - algebraMap 𝕜 A (ψ x) ∈ RingHom.ker φ := by simpa only [h, RingHom.mem_ker, map_sub, AlgHomClass.commutes] using sub_self (ψ x)
case h 𝕜 : Type u_1 A : Type u_2 inst✝⁷ : CommRing 𝕜 inst✝⁶ : NoZeroDivisors 𝕜 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : ContinuousAdd 𝕜 inst✝³ : ContinuousConstSMul 𝕜 𝕜 inst✝² : TopologicalSpace A inst✝¹ : Ring A inst✝ : Algebra 𝕜 A φ ψ : ↑(characterSpace 𝕜 A) h : RingHom.ker φ = RingHom.ker ψ x : A this : x - (algebraMap 𝕜 A) (ψ x) ∈ RingHom.ker φ ⊢ φ x = ψ x
536b9d00b0364064
Lean.Omega.Constraint.scale_sat
Mathlib/.lake/packages/lean4/src/lean/Init/Omega/Constraint.lean
theorem scale_sat {c : Constraint} (k) (w : c.sat t) : (scale k c).sat (k * t)
case isFalse.mk.none.some.isFalse t k : Int h✝ : ¬k = 0 u : Int w : t ≤ u h : k ≤ 0 ⊢ k * u ≤ k * t
exact Int.mul_le_mul_of_nonpos_left h w
no goals
498e5968042038b0
DFinsupp.support_update_ne_zero
Mathlib/Data/DFinsupp/Defs.lean
theorem support_update_ne_zero (f : Π₀ i, β i) (i : ι) {b : β i} (h : b ≠ 0) : support (f.update i b) = insert i f.support
case h.inl ι : Type u β : ι → Type v inst✝² : DecidableEq ι inst✝¹ : (i : ι) → Zero (β i) inst✝ : (i : ι) → (x : β i) → Decidable (x ≠ 0) f : Π₀ (i : ι), β i i : ι b : β i h : b ≠ 0 ⊢ i ∈ (f.update i b).support ↔ i ∈ insert i f.support
simp [h]
no goals
c7d5d2c6b8773acd
Nat.getLast_digit_ne_zero
Mathlib/Data/Nat/Digits.lean
theorem getLast_digit_ne_zero (b : ℕ) {m : ℕ} (hm : m ≠ 0) : (digits b m).getLast (digits_ne_nil_iff_ne_zero.mpr hm) ≠ 0
case zero.zero hm : 0 ≠ 0 ⊢ (digits 0 0).getLast ⋯ ≠ 0
cases hm rfl
no goals
f80a47e31809cc02
Subgroup.smul_mem_of_mem_closure_of_mem
Mathlib/Algebra/Group/Subgroup/Pointwise.lean
theorem smul_mem_of_mem_closure_of_mem {X : Type*} [MulAction G X] {s : Set G} {t : Set X} (hs : ∀ g ∈ s, g⁻¹ ∈ s) (hst : ∀ᵉ (g ∈ s) (x ∈ t), g • x ∈ t) {g : G} (hg : g ∈ Subgroup.closure s) {x : X} (hx : x ∈ t) : g • x ∈ t
case inv_mem G : Type u_2 inst✝¹ : Group G X : Type u_5 inst✝ : MulAction G X s : Set G t : Set X hs : ∀ g ∈ s, g⁻¹ ∈ s hst : ∀ g ∈ s, ∀ x ∈ t, g • x ∈ t g g' : G hg' : g' ∈ s x : X hx : x ∈ t ⊢ g'⁻¹ • x ∈ t
exact hst g'⁻¹ (hs g' hg') x hx
no goals
4eab67206dcd6372
orthonormal_fourier
Mathlib/Analysis/Fourier/AddCircle.lean
theorem orthonormal_fourier : Orthonormal ℂ (@fourierLp T _ 2 _)
T : ℝ hT : Fact (0 < T) i j : ℤ h : ¬i = j ⊢ -i + j ≠ 0
rw [add_comm]
T : ℝ hT : Fact (0 < T) i j : ℤ h : ¬i = j ⊢ j + -i ≠ 0
1362cf6350008e93
AlgebraicGeometry.PresheafedSpace.GlueData.snd_invApp_t_app'
Mathlib/Geometry/RingedSpace/PresheafedSpace/Gluing.lean
theorem snd_invApp_t_app' (i j k : D.J) (U : Opens (pullback (D.f i j) (D.f i k)).carrier) : ∃ eq, (π₂⁻¹ i, j, k) U ≫ (D.t k i).c.app _ ≫ (D.V (k, i)).presheaf.map (eqToHom eq) = (D.t' k i j).c.app _ ≫ (π₁⁻¹ k, j, i) (unop _)
case h C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(pullback (D.f i j) (D.f i k)) ⊢ (D.t k i).c.app (op ((opensFunctor (pullback.snd (D.f i j) (D.f i k))).obj U)) ≫ (D.V (k, i)).presheaf.map (eqToHom ⋯) = (((pullback.snd (D.f i j) (D.f i k)).c.app (op ((opensFunctor (pullback.snd (D.f i j) (D.f i k))).obj U)) ≫ (D.t' k i j).c.app (op ((Opens.map (pullback.snd (D.f i j) (D.f i k)).base).obj ((opensFunctor (pullback.snd (D.f i j) (D.f i k))).obj U)))) ≫ (pullback (D.f k i) (D.f k j)).presheaf.map ((Opens.map (D.t' k i j).base).map (eqToHom ⋯).unop).op) ≫ invApp (pullback.fst (D.f k i) (D.f k j)) ((Opens.map (D.t' k i j).base).toPrefunctor.1 U)
rw [← comp_c_app, congr_app (D.t_fac k i j), comp_c_app]
case h C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(pullback (D.f i j) (D.f i k)) ⊢ (D.t k i).c.app (op ((opensFunctor (pullback.snd (D.f i j) (D.f i k))).obj U)) ≫ (D.V (k, i)).presheaf.map (eqToHom ⋯) = ((((D.t k i).c.app (op ((opensFunctor (pullback.snd (D.f i j) (D.f i k))).obj U)) ≫ (pullback.fst (D.f k i) (D.f k j)).c.app (op ((Opens.map (D.t k i).base).obj (unop (op ((opensFunctor (pullback.snd (D.f i j) (D.f i k))).obj U)))))) ≫ (pullback (D.f k i) (D.f k j)).presheaf.map (eqToHom ⋯)) ≫ (pullback (D.f k i) (D.f k j)).presheaf.map ((Opens.map (D.t' k i j).base).map (eqToHom ⋯).unop).op) ≫ invApp (pullback.fst (D.f k i) (D.f k j)) ((Opens.map (D.t' k i j).base).toPrefunctor.1 U)
e08cb0129b520e6d
Equiv.Perm.mem_list_cycles_iff
Mathlib/GroupTheory/Perm/Cycle/Factors.lean
theorem mem_list_cycles_iff {α : Type*} [Finite α] {l : List (Perm α)} (h1 : ∀ σ : Perm α, σ ∈ l → σ.IsCycle) (h2 : l.Pairwise Disjoint) {σ : Perm α} : σ ∈ l ↔ σ.IsCycle ∧ ∀ a, σ a ≠ a → σ a = l.prod a
case h.e'_5 α : Type u_4 inst✝ : Finite α l : List (Perm α) h1 : ∀ σ ∈ l, σ.IsCycle h2 : List.Pairwise Disjoint l σ : Perm α h3 : σ.IsCycle val✝ : Fintype α h : ∀ (a : α), σ a ≠ a → σ a = l.prod a hσl : σ.support ⊆ l.prod.support a : α ha : a ∈ σ.support τ : Perm α hτ : τ ∈ l hτa : a ∈ τ.support hτl : ∀ x ∈ τ.support, τ x = l.prod x key : ∀ x ∈ σ.support ∩ τ.support, σ x = τ x ⊢ σ = τ
refine h3.eq_on_support_inter_nonempty_congr (h1 _ hτ) key ?_ ha
case h.e'_5 α : Type u_4 inst✝ : Finite α l : List (Perm α) h1 : ∀ σ ∈ l, σ.IsCycle h2 : List.Pairwise Disjoint l σ : Perm α h3 : σ.IsCycle val✝ : Fintype α h : ∀ (a : α), σ a ≠ a → σ a = l.prod a hσl : σ.support ⊆ l.prod.support a : α ha : a ∈ σ.support τ : Perm α hτ : τ ∈ l hτa : a ∈ τ.support hτl : ∀ x ∈ τ.support, τ x = l.prod x key : ∀ x ∈ σ.support ∩ τ.support, σ x = τ x ⊢ σ a = τ a
0cc516b4ece5c647
Polynomial.natDegree_mod_lt
Mathlib/Algebra/Polynomial/FieldDivision.lean
lemma natDegree_mod_lt [Field k] (p : k[X]) {q : k[X]} (hq : q.natDegree ≠ 0) : (p % q).natDegree < q.natDegree
k : Type y inst✝ : Field k p q : k[X] hq : q.natDegree ≠ 0 ⊢ (p % q).natDegree < q.natDegree
have hq' : q.leadingCoeff ≠ 0 := by rw [leadingCoeff_ne_zero] contrapose! hq simp [hq]
k : Type y inst✝ : Field k p q : k[X] hq : q.natDegree ≠ 0 hq' : q.leadingCoeff ≠ 0 ⊢ (p % q).natDegree < q.natDegree
c1edaa831c1aaa7d
List.countP_erase
Mathlib/Data/List/Count.lean
lemma countP_erase (p : α → Bool) (l : List α) (a : α) : countP p (l.erase a) = countP p l - if a ∈ l ∧ p a then 1 else 0
α : Type u_1 inst✝ : DecidableEq α p : α → Bool l : List α a : α ⊢ countP p (l.erase a) = countP p l - if a ∈ l ∧ p a = true then 1 else 0
rw [countP_eq_length_filter, countP_eq_length_filter, ← erase_filter, length_erase]
α : Type u_1 inst✝ : DecidableEq α p : α → Bool l : List α a : α ⊢ (if a ∈ filter p l then (filter p l).length - 1 else (filter p l).length) = (filter p l).length - if a ∈ l ∧ p a = true then 1 else 0
3c5560675ae847f4
Submodule.mem_iSup_iff_exists_finsupp
Mathlib/LinearAlgebra/DFinsupp.lean
lemma mem_iSup_iff_exists_finsupp (p : ι → Submodule R N) (x : N) : x ∈ iSup p ↔ ∃ (f : ι →₀ N), (∀ i, f i ∈ p i) ∧ (f.sum fun _i xi ↦ xi) = x
case intro.intro.refine_2 ι : Type u_1 R : Type u_2 N : Type u_5 inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N p : ι → Submodule R N f : ι →₀ N hf : ∀ (i : ι), f i ∈ p i i : ι hi : i ∈ f.support ⊢ (fun x xi => ↑xi) i ((DFinsupp.mk f.support fun i => ⟨f ↑i, ⋯⟩) i) = (fun _i xi => xi) i (f i)
simp [Finsupp.mem_support_iff.mp hi]
no goals
1c0c258395c7890b
Int.Cooper.resolve_left_dvd₁
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Int/Cooper.lean
theorem resolve_left_dvd₁ (a c d p x : Int) (h₁ : p ≤ a * x) : a ∣ resolve_left a c d p x + p
a c d p x : Int h₁ : p ≤ a * x k' : Nat w : a * x = p + ↑k' ⊢ ↑k' + p = a * x
rw [w, Int.add_comm]
no goals
4717869eaf119b13
FDRep.average_char_eq_finrank_invariants
Mathlib/RepresentationTheory/Character.lean
theorem average_char_eq_finrank_invariants (V : FDRep k G) : ⅟ (Fintype.card G : k) • ∑ g : G, V.character g = finrank k (invariants V.ρ)
k : Type u inst✝³ : Field k G : Type u inst✝² : Group G inst✝¹ : Fintype G inst✝ : Invertible ↑(Fintype.card G) V : FDRep k G ⊢ ⅟↑(Fintype.card G) • ∑ g : G, V.character g = (trace k ↑V.V) (averageMap V.ρ)
simp [character, GroupAlgebra.average, _root_.map_sum]
no goals
905d0d1df2842315
List.forIn'_congr
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Monadic.lean
theorem forIn'_congr [Monad m] {as bs : List α} (w : as = bs) {b b' : β} (hb : b = b') {f : (a' : α) → a' ∈ as → β → m (ForInStep β)} {g : (a' : α) → a' ∈ bs → β → m (ForInStep β)} (h : ∀ a m b, f a (by simpa [w] using m) b = g a m b) : forIn' as b f = forIn' bs b' g
case cons.cons.intro.e_a.h.yield m : Type u_1 → Type u_2 α : Type u_3 β : Type u_1 inst✝ : Monad m b✝ b' : β hb : b✝ = b' a : α as : List α f : (a' : α) → a' ∈ a :: as → β → m (ForInStep β) ih : ∀ {as_1 : List α} (w : as_1 = as) {b b' : β}, b = b' → ∀ {f : (a' : α) → a' ∈ as_1 → β → m (ForInStep β)} {g : (a' : α) → a' ∈ as → β → m (ForInStep β)}, (∀ (a : α) (m_1 : a ∈ as) (b : β), f a ⋯ b = g a m_1 b) → forIn' as_1 b f = forIn' as b' g g : (a' : α) → a' ∈ a :: as → β → m (ForInStep β) w : a :: as = a :: as h : ∀ (a_1 : α) (m_1 : a_1 ∈ a :: as) (b : β), f a_1 ⋯ b = g a_1 m_1 b b : β ⊢ ∀ (a_1 : α) (m_1 : a_1 ∈ as) (b : β), f a_1 ⋯ b = g a_1 ⋯ b
intro a m b
case cons.cons.intro.e_a.h.yield m✝ : Type u_1 → Type u_2 α : Type u_3 β : Type u_1 inst✝ : Monad m✝ b✝¹ b' : β hb : b✝¹ = b' a✝ : α as : List α f : (a' : α) → a' ∈ a✝ :: as → β → m✝ (ForInStep β) ih : ∀ {as_1 : List α} (w : as_1 = as) {b b' : β}, b = b' → ∀ {f : (a' : α) → a' ∈ as_1 → β → m✝ (ForInStep β)} {g : (a' : α) → a' ∈ as → β → m✝ (ForInStep β)}, (∀ (a : α) (m : a ∈ as) (b : β), f a ⋯ b = g a m b) → forIn' as_1 b f = forIn' as b' g g : (a' : α) → a' ∈ a✝ :: as → β → m✝ (ForInStep β) w : a✝ :: as = a✝ :: as h : ∀ (a : α) (m : a ∈ a✝ :: as) (b : β), f a ⋯ b = g a m b b✝ : β a : α m : a ∈ as b : β ⊢ f a ⋯ b = g a ⋯ b
b21e9d91722268c4
List.head?_zipWith
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Zip.lean
theorem head?_zipWith {f : α → β → γ} : (List.zipWith f as bs).head? = match as.head?, bs.head? with | some a, some b => some (f a b) | _, _ => none
α : Type u_1 β : Type u_2 γ : Type u_3 as : List α bs : List β f : α → β → γ ⊢ (zipWith f as bs).head? = match as.head?, bs.head? with | some a, some b => some (f a b) | x, x_1 => none
simp [head?_eq_getElem?, getElem?_zipWith]
no goals
7f88082bfe80a9fd
CategoryTheory.extensiveTopology.mem_sieves_iff_contains_colimit_cofan
Mathlib/CategoryTheory/Sites/Coherent/ExtensiveTopology.lean
lemma extensiveTopology.mem_sieves_iff_contains_colimit_cofan {X : C} (S : Sieve X) : S ∈ (extensiveTopology C) X ↔ (∃ (α : Type) (_ : Finite α) (Y : α → C) (π : (a : α) → (Y a ⟶ X)), Nonempty (IsColimit (Cofan.mk X π)) ∧ (∀ a : α, (S.arrows) (π a)))
case mpr C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : FinitaryPreExtensive C X : C S : Sieve X ⊢ (∃ α, ∃ (_ : Finite α), ∃ Y π, Nonempty (IsColimit (Cofan.mk X π)) ∧ ∀ (a : α), S.arrows (π a)) → S ∈ (extensiveTopology C) X
intro ⟨α, _, Y, π, h, h'⟩
case mpr C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : FinitaryPreExtensive C X : C S : Sieve X α : Type w✝ : Finite α Y : α → C π : (a : α) → Y a ⟶ X h : Nonempty (IsColimit (Cofan.mk X π)) h' : ∀ (a : α), S.arrows (π a) ⊢ S ∈ (extensiveTopology C) X
3464c4e8e1c1caf4
AffineSubspace.setOf_sSameSide_eq_image2
Mathlib/Analysis/Convex/Side.lean
theorem setOf_sSameSide_eq_image2 {s : AffineSubspace R P} {x p : P} (hx : x ∉ s) (hp : p ∈ s) : { y | s.SSameSide x y } = Set.image2 (fun (t : R) q => t • (x -ᵥ p) +ᵥ q) (Set.Ioi 0) s
case h.mp R : Type u_1 V : Type u_2 P : Type u_4 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P s : AffineSubspace R P x p : P hx : x ∉ s hp : p ∈ s y : P ⊢ s.SSameSide x y → ∃ a, 0 < a ∧ ∃ b ∈ ↑s, a • (x -ᵥ p) +ᵥ b = y
rw [sSameSide_iff_exists_left hp]
case h.mp R : Type u_1 V : Type u_2 P : Type u_4 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P s : AffineSubspace R P x p : P hx : x ∉ s hp : p ∈ s y : P ⊢ (x ∉ s ∧ y ∉ s ∧ ∃ p₂ ∈ s, SameRay R (x -ᵥ p) (y -ᵥ p₂)) → ∃ a, 0 < a ∧ ∃ b ∈ ↑s, a • (x -ᵥ p) +ᵥ b = y
96d8b7db8dee1b03
Ergodic.zero_measure
Mathlib/Dynamics/Ergodic/Ergodic.lean
theorem zero_measure {f : α → α} (hf : Measurable f) : @Ergodic α m f 0 where measurable := hf map_eq
α : Type u_1 m : MeasurableSpace α f : α → α hf : Measurable f ⊢ Measure.map f 0 = 0
simp
no goals
a746010c0e268f32
piiUnionInter_singleton
Mathlib/MeasureTheory/PiSystem.lean
theorem piiUnionInter_singleton (π : ι → Set (Set α)) (i : ι) : piiUnionInter π {i} = π i ∪ {univ}
case pos α : Type u_3 ι : Type u_4 π : ι → Set (Set α) i : ι t : Finset ι f : ι → Set α hfπ : ∀ x ∈ t, f x ∈ π x hti : ∀ y ∈ t, y = i hi : i ∈ t ht_eq_i : t = {i} ⊢ f i ∈ π i ∨ f i ∈ {univ}
exact Or.inl (hfπ i hi)
no goals
d8b76da0d2d10fc7
CategoryTheory.InjectiveResolution.ofCocomplex_exactAt_succ
Mathlib/CategoryTheory/Abelian/Injective/Resolution.lean
lemma ofCocomplex_exactAt_succ (n : ℕ) : (ofCocomplex Z).ExactAt (n + 1)
C : Type u inst✝² : Category.{v, u} C inst✝¹ : Abelian C inst✝ : EnoughInjectives C Z : C n : ℕ ⊢ (ShortComplex.mk (CochainComplex.mkAux (under Z) (syzygies (Injective.ι Z)) (syzygies (d (Injective.ι Z))) (d (Injective.ι Z)) (d (d (Injective.ι Z))) ⋯ (fun S => ⟨syzygies S.g, ⟨d S.g, ⋯⟩⟩) 0).f (CochainComplex.mkAux (under Z) (syzygies (Injective.ι Z)) (syzygies (d (Injective.ι Z))) (d (Injective.ι Z)) (d (d (Injective.ι Z))) ⋯ (fun S => ⟨syzygies S.g, ⟨d S.g, ⋯⟩⟩) (0 + 1)).f ⋯).Exact
apply exact_f_d ((CochainComplex.mkAux _ _ _ (d (Injective.ι Z)) (d (d (Injective.ι Z))) _ _ 0).f)
no goals
7abb2c8c6ef1cb12
dist_integral_mulExpNegMulSq_comp_le
Mathlib/Analysis/SpecialFunctions/MulExpNegMulSqIntegral.lean
theorem dist_integral_mulExpNegMulSq_comp_le (f : E →ᵇ ℝ) {A : Subalgebra ℝ C(E, ℝ)} (hA : A.SeparatesPoints) (hbound : ∀ g ∈ A, ∃ C, ∀ x y : E, dist (g x) (g y) ≤ C) (heq : ∀ g ∈ A, ∫ x, (g : E → ℝ) x ∂P = ∫ x, (g : E → ℝ) x ∂P') (hε : 0 < ε) : |∫ x, mulExpNegMulSq ε (f x) ∂P - ∫ x, mulExpNegMulSq ε (f x) ∂P'| ≤ 6 * sqrt ε
case neg.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro ε : ℝ E : Type u_2 inst✝⁶ : MeasurableSpace E inst✝⁵ : PseudoEMetricSpace E inst✝⁴ : BorelSpace E inst✝³ : CompleteSpace E inst✝² : SecondCountableTopology E P P' : Measure E inst✝¹ : IsFiniteMeasure P inst✝ : IsFiniteMeasure P' f : E →ᵇ ℝ A : Subalgebra ℝ C(E, ℝ) hA : A.SeparatesPoints hbound : ∀ g ∈ A, ∃ C, ∀ (x y : E), dist (g x) (g y) ≤ C heq : ∀ g ∈ A, ∫ (x : E), g x ∂P = ∫ (x : E), g x ∂P' hε : 0 < ε hPP' : ¬(P = 0 ∧ P' = 0) const : ℝ := (P Set.univ).toReal ⊔ (P' Set.univ).toReal pos_of_measure : 0 < const KP : Set E left✝¹ : KP ⊆ Set.univ hKPco : IsCompact KP hKPcl : IsClosed KP KP' : Set E left✝ : KP' ⊆ Set.univ hKP'co : IsCompact KP' hKP'cl : IsClosed KP' K : Set E := KP ∪ KP' hKco : IsCompact (KP ∪ KP') hKcl : IsClosed (KP ∪ KP') hKP : P KPᶜ < ENNReal.ofReal ε hKP' : P' KP'ᶜ < ENNReal.ofReal ε hKPbound : P (KP ∪ KP')ᶜ < ↑ε.toNNReal hKP'bound : P' (KP ∪ KP')ᶜ < ↑ε.toNNReal g : C(E, ℝ) hgA : g ∈ A hgapprox : ∀ x ∈ KP ∪ KP', ‖g x - f.toContinuousMap x‖ < √ε * const⁻¹ line1 : |∫ (x : E), ε.mulExpNegMulSq (f x) ∂P - ∫ (x : E) in K, ε.mulExpNegMulSq (f x) ∂P| < √ε ⊢ |∫ (x : E), ε.mulExpNegMulSq (f x) ∂P - ∫ (x : E), ε.mulExpNegMulSq (f x) ∂P'| ≤ 6 * √ε
have line3 : |∫ x in K, mulExpNegMulSq ε (g x) ∂P - ∫ x, mulExpNegMulSq ε (g x) ∂P| < sqrt ε := by rw [abs_sub_comm] exact (abs_integral_sub_setIntegral_mulExpNegMulSq_comp_lt g (IsClosed.measurableSet hKcl) hε hKPbound)
case neg.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro ε : ℝ E : Type u_2 inst✝⁶ : MeasurableSpace E inst✝⁵ : PseudoEMetricSpace E inst✝⁴ : BorelSpace E inst✝³ : CompleteSpace E inst✝² : SecondCountableTopology E P P' : Measure E inst✝¹ : IsFiniteMeasure P inst✝ : IsFiniteMeasure P' f : E →ᵇ ℝ A : Subalgebra ℝ C(E, ℝ) hA : A.SeparatesPoints hbound : ∀ g ∈ A, ∃ C, ∀ (x y : E), dist (g x) (g y) ≤ C heq : ∀ g ∈ A, ∫ (x : E), g x ∂P = ∫ (x : E), g x ∂P' hε : 0 < ε hPP' : ¬(P = 0 ∧ P' = 0) const : ℝ := (P Set.univ).toReal ⊔ (P' Set.univ).toReal pos_of_measure : 0 < const KP : Set E left✝¹ : KP ⊆ Set.univ hKPco : IsCompact KP hKPcl : IsClosed KP KP' : Set E left✝ : KP' ⊆ Set.univ hKP'co : IsCompact KP' hKP'cl : IsClosed KP' K : Set E := KP ∪ KP' hKco : IsCompact (KP ∪ KP') hKcl : IsClosed (KP ∪ KP') hKP : P KPᶜ < ENNReal.ofReal ε hKP' : P' KP'ᶜ < ENNReal.ofReal ε hKPbound : P (KP ∪ KP')ᶜ < ↑ε.toNNReal hKP'bound : P' (KP ∪ KP')ᶜ < ↑ε.toNNReal g : C(E, ℝ) hgA : g ∈ A hgapprox : ∀ x ∈ KP ∪ KP', ‖g x - f.toContinuousMap x‖ < √ε * const⁻¹ line1 : |∫ (x : E), ε.mulExpNegMulSq (f x) ∂P - ∫ (x : E) in K, ε.mulExpNegMulSq (f x) ∂P| < √ε line3 : |∫ (x : E) in K, ε.mulExpNegMulSq (g x) ∂P - ∫ (x : E), ε.mulExpNegMulSq (g x) ∂P| < √ε ⊢ |∫ (x : E), ε.mulExpNegMulSq (f x) ∂P - ∫ (x : E), ε.mulExpNegMulSq (f x) ∂P'| ≤ 6 * √ε
6c7688b02378f81c
CategoryTheory.Subgroupoid.isNormal_map
Mathlib/CategoryTheory/Groupoid/Subgroupoid.lean
theorem isNormal_map (hφ : Function.Injective φ.obj) (hφ' : im φ hφ = ⊤) (Sn : S.IsNormal) : (map φ hφ S).IsNormal := { wide := fun d => by obtain ⟨c, rfl⟩ := obj_surjective_of_im_eq_top φ hφ hφ' d change Map.Arrows φ hφ S _ _ (𝟙 _); rw [← Functor.map_id] constructor; exact Sn.wide c conj := fun {d d'} g δ hδ => by rw [mem_map_iff] at hδ obtain ⟨c, c', γ, cd, cd', γS, hγ⟩ := hδ; subst_vars; cases hφ cd' have : d' ∈ (im φ hφ).objs
case intro.intro.intro.intro.intro.intro.refl.intro C : Type u inst✝¹ : Groupoid C S : Subgroupoid C D : Type u_1 inst✝ : Groupoid D φ : C ⥤ D hφ : Function.Injective φ.obj hφ' : im φ hφ = ⊤ Sn : S.IsNormal c : C γ : c ⟶ c γS : γ ∈ S.arrows c c cd' : φ.obj c = φ.obj c c' : C g : φ.obj c ⟶ φ.obj c' ⊢ Groupoid.inv g ≫ (eqToHom ⋯ ≫ φ.map γ ≫ eqToHom cd') ≫ g ∈ (map φ hφ S).arrows (φ.obj c') (φ.obj c')
have : g ∈ (im φ hφ).arrows (φ.obj c) (φ.obj c') := by rw [hφ']; trivial
case intro.intro.intro.intro.intro.intro.refl.intro C : Type u inst✝¹ : Groupoid C S : Subgroupoid C D : Type u_1 inst✝ : Groupoid D φ : C ⥤ D hφ : Function.Injective φ.obj hφ' : im φ hφ = ⊤ Sn : S.IsNormal c : C γ : c ⟶ c γS : γ ∈ S.arrows c c cd' : φ.obj c = φ.obj c c' : C g : φ.obj c ⟶ φ.obj c' this : g ∈ (im φ hφ).arrows (φ.obj c) (φ.obj c') ⊢ Groupoid.inv g ≫ (eqToHom ⋯ ≫ φ.map γ ≫ eqToHom cd') ≫ g ∈ (map φ hφ S).arrows (φ.obj c') (φ.obj c')
38dea252c0a3b817
uniformCauchySeqOn_ball_of_deriv
Mathlib/Analysis/Calculus/UniformLimitsDeriv.lean
theorem uniformCauchySeqOn_ball_of_deriv {r : ℝ} (hf' : UniformCauchySeqOn f' l (Metric.ball x r)) (hf : ∀ n : ι, ∀ y : 𝕜, y ∈ Metric.ball x r → HasDerivAt (f n) (f' n y) y) (hfg : Cauchy (map (fun n => f n x) l)) : UniformCauchySeqOn f l (Metric.ball x r)
ι : Type u_1 l : Filter ι 𝕜 : Type u_2 inst✝³ : NontriviallyNormedField 𝕜 G : Type u_3 inst✝² : NormedAddCommGroup G inst✝¹ : NormedSpace 𝕜 G f f' : ι → 𝕜 → G x : 𝕜 inst✝ : IsRCLikeNormedField 𝕜 r : ℝ hf'✝ : UniformCauchySeqOnFilter f' l (𝓟 (Metric.ball x r)) hfg : Cauchy (map (fun n => f n x) l) hf : ∀ (n : ι), ∀ y ∈ Metric.ball x r, HasFDerivAt (f n) (ContinuousLinearMap.smulRight 1 (f' n y)) y hf' : UniformCauchySeqOn (fun n z => ContinuousLinearMap.smulRight 1 (f' n z)) l (Metric.ball x r) ⊢ UniformCauchySeqOn f l (Metric.ball x r)
exact uniformCauchySeqOn_ball_of_fderiv hf' hf hfg
no goals
38780b170b1d275d
Complex.mul_cpow_ofReal_nonneg
Mathlib/Analysis/SpecialFunctions/Pow/Complex.lean
theorem mul_cpow_ofReal_nonneg {a b : ℝ} (ha : 0 ≤ a) (hb : 0 ≤ b) (r : ℂ) : ((a : ℂ) * (b : ℂ)) ^ r = (a : ℂ) ^ r * (b : ℂ) ^ r
case inr.inr.inr a b : ℝ ha : 0 ≤ a hb : 0 ≤ b r : ℂ hr : r ≠ 0 ha' : 0 < a hb' : 0 < b ⊢ (↑a * ↑b) ^ r = ↑a ^ r * ↑b ^ r
have ha'' : (a : ℂ) ≠ 0 := ofReal_ne_zero.mpr ha'.ne'
case inr.inr.inr a b : ℝ ha : 0 ≤ a hb : 0 ≤ b r : ℂ hr : r ≠ 0 ha' : 0 < a hb' : 0 < b ha'' : ↑a ≠ 0 ⊢ (↑a * ↑b) ^ r = ↑a ^ r * ↑b ^ r
385cc79a0a30c890
SatisfiesM_EStateM_eq
Mathlib/.lake/packages/batteries/Batteries/Classes/SatisfiesM.lean
theorem SatisfiesM_EStateM_eq : SatisfiesM (m := EStateM ε σ) p x ↔ ∀ s a s', x.run s = .ok a s' → p a
case mpr.refine_2.h ε σ α✝ : Type u_1 p : α✝ → Prop x : EStateM ε σ α✝ w : ∀ (s : σ) (a : α✝) (s' : σ), x.run s = EStateM.Result.ok a s' → p a s : σ ⊢ (Subtype.val <$> fun s => match q : x.run s with | EStateM.Result.ok a s' => EStateM.Result.ok ⟨a, ⋯⟩ s' | EStateM.Result.error e s' => EStateM.Result.error e s').run s = x.run s
rw [EStateM.run_map, EStateM.run]
case mpr.refine_2.h ε σ α✝ : Type u_1 p : α✝ → Prop x : EStateM ε σ α✝ w : ∀ (s : σ) (a : α✝) (s' : σ), x.run s = EStateM.Result.ok a s' → p a s : σ ⊢ EStateM.Result.map Subtype.val (match q : x.run s with | EStateM.Result.ok a s' => EStateM.Result.ok ⟨a, ⋯⟩ s' | EStateM.Result.error e s' => EStateM.Result.error e s') = x.run s
6fb1fa46dc09b1a6
MeasureTheory.SignedMeasure.toSignedMeasure_toJordanDecomposition
Mathlib/MeasureTheory/Decomposition/Jordan.lean
theorem toSignedMeasure_toJordanDecomposition (s : SignedMeasure α) : s.toJordanDecomposition.toSignedMeasure = s
case intro.intro.intro.intro.intro α : Type u_1 inst✝ : MeasurableSpace α s : SignedMeasure α i : Set α hi₁ : MeasurableSet i hi₂ : 0 ≤[i] s hi₃ : s ≤[iᶜ] 0 hμ : s.toJordanDecomposition.posPart = s.toMeasureOfZeroLE i hi₁ hi₂ hν : s.toJordanDecomposition.negPart = s.toMeasureOfLEZero iᶜ ⋯ hi₃ ⊢ s.toJordanDecomposition.toSignedMeasure = s
simp only [JordanDecomposition.toSignedMeasure, hμ, hν]
case intro.intro.intro.intro.intro α : Type u_1 inst✝ : MeasurableSpace α s : SignedMeasure α i : Set α hi₁ : MeasurableSet i hi₂ : 0 ≤[i] s hi₃ : s ≤[iᶜ] 0 hμ : s.toJordanDecomposition.posPart = s.toMeasureOfZeroLE i hi₁ hi₂ hν : s.toJordanDecomposition.negPart = s.toMeasureOfLEZero iᶜ ⋯ hi₃ ⊢ (s.toMeasureOfZeroLE i hi₁ hi₂).toSignedMeasure - (s.toMeasureOfLEZero iᶜ ⋯ hi₃).toSignedMeasure = s
eb0fd2c3a693cf1a
Subgroup.leftCoset_cover_filter_FiniteIndex_aux
Mathlib/GroupTheory/CosetCover.lean
theorem leftCoset_cover_filter_FiniteIndex_aux [DecidablePred (FiniteIndex : Subgroup G → Prop)] : (⋃ k ∈ s.filter (fun i => (H i).FiniteIndex), g k • (H k : Set G) = Set.univ) ∧ (1 ≤ ∑ i ∈ s, ((H i).index : ℚ)⁻¹) ∧ (∑ i ∈ s, ((H i).index : ℚ)⁻¹ = 1 → Set.PairwiseDisjoint (s.filter (fun i => (H i).FiniteIndex)) (fun i ↦ g i • (H i : Set G)))
case refine_2 G : Type u_1 inst✝¹ : Group G ι : Type u_2 H : ι → Subgroup G g : ι → G s : Finset ι hcovers : ⋃ i ∈ s, g i • ↑(H i) = Set.univ inst✝ : DecidablePred FiniteIndex D : Subgroup G := ⨅ k ∈ Finset.filter (fun i => (H i).FiniteIndex) s, H k hD : D.FiniteIndex hD_le : ∀ {i : ι}, i ∈ s → (H i).FiniteIndex → D ≤ H i t : (i : ι) → i ∈ s → (H i).FiniteIndex → Finset ↥(H i) ht : ∀ (i : ι) (hi : i ∈ s) (hfi : (H i).FiniteIndex), IsComplement ↑(t i hi hfi) ↑(D.subgroupOf (H i)) ∧ ⋃ g ∈ t i hi hfi, ↑g • ↑D = ↑(H i) κ : Type (max u_2 u_1) := (i : { x // x ∈ s }) × { x // x ∈ if h : (H ↑i).FiniteIndex then t ↑i ⋯ h else {1} } f : κ → G := fun k => g ↑k.fst * ↑↑k.snd K : κ → Subgroup G := fun k => if (H ↑k.fst).FiniteIndex then D else H ↑k.fst k : κ hkfi : (H ↑k.fst).FiniteIndex hk : K k = D hcovers' : ⋃ i ∈ Finset.filter (fun x => K x = D) Finset.univ, f i • ↑D = Set.univ hHD : ∀ (i : ι), ¬(H i).FiniteIndex → H i ≠ D hdensity : ∑ i ∈ s, (↑(H i).index)⁻¹ = ↑(Finset.filter (fun x => K x = D) Finset.univ).card * (↑D.index)⁻¹ ⊢ 1 * ↑D.index ≤ ↑(Finset.filter (fun x => K x = D) Finset.univ).card * (↑D.index)⁻¹ * ↑D.index
rw [one_mul, mul_assoc, inv_mul_cancel₀ (Nat.cast_ne_zero.mpr hD.finiteIndex), mul_one, Nat.cast_le]
case refine_2 G : Type u_1 inst✝¹ : Group G ι : Type u_2 H : ι → Subgroup G g : ι → G s : Finset ι hcovers : ⋃ i ∈ s, g i • ↑(H i) = Set.univ inst✝ : DecidablePred FiniteIndex D : Subgroup G := ⨅ k ∈ Finset.filter (fun i => (H i).FiniteIndex) s, H k hD : D.FiniteIndex hD_le : ∀ {i : ι}, i ∈ s → (H i).FiniteIndex → D ≤ H i t : (i : ι) → i ∈ s → (H i).FiniteIndex → Finset ↥(H i) ht : ∀ (i : ι) (hi : i ∈ s) (hfi : (H i).FiniteIndex), IsComplement ↑(t i hi hfi) ↑(D.subgroupOf (H i)) ∧ ⋃ g ∈ t i hi hfi, ↑g • ↑D = ↑(H i) κ : Type (max u_2 u_1) := (i : { x // x ∈ s }) × { x // x ∈ if h : (H ↑i).FiniteIndex then t ↑i ⋯ h else {1} } f : κ → G := fun k => g ↑k.fst * ↑↑k.snd K : κ → Subgroup G := fun k => if (H ↑k.fst).FiniteIndex then D else H ↑k.fst k : κ hkfi : (H ↑k.fst).FiniteIndex hk : K k = D hcovers' : ⋃ i ∈ Finset.filter (fun x => K x = D) Finset.univ, f i • ↑D = Set.univ hHD : ∀ (i : ι), ¬(H i).FiniteIndex → H i ≠ D hdensity : ∑ i ∈ s, (↑(H i).index)⁻¹ = ↑(Finset.filter (fun x => K x = D) Finset.univ).card * (↑D.index)⁻¹ ⊢ D.index ≤ (Finset.filter (fun x => K x = D) Finset.univ).card
6c7a447596ed19f6
Finset.prod_add_prod_le'
Mathlib/Algebra/Order/BigOperators/Ring/Finset.lean
/-- If `g, h ≤ f` and `g i + h i ≤ f i`, then the product of `f` over `s` is at least the sum of the products of `g` and `h`. This is the version for `CanonicallyOrderedAdd`. -/ lemma prod_add_prod_le' (hi : i ∈ s) (h2i : g i + h i ≤ f i) (hgf : ∀ j ∈ s, j ≠ i → g j ≤ f j) (hhf : ∀ j ∈ s, j ≠ i → h j ≤ f j) : ((∏ i ∈ s, g i) + ∏ i ∈ s, h i) ≤ ∏ i ∈ s, f i
ι : Type u_1 R : Type u_2 inst✝² : CommSemiring R inst✝¹ : PartialOrder R inst✝ : CanonicallyOrderedAdd R f g h : ι → R s : Finset ι i : ι hi : i ∈ s h2i : g i + h i ≤ f i hgf : ∀ j ∈ s, j ≠ i → g j ≤ f j hhf : ∀ j ∈ s, j ≠ i → h j ≤ f j ⊢ g i * ∏ i ∈ s \ {i}, g i + h i * ∏ i ∈ s \ {i}, h i ≤ g i * ∏ i ∈ s \ {i}, f i + h i * ∏ i ∈ s \ {i}, f i
gcongr with j hj j hj <;> simp_all
no goals
b1ae00d51a4733f1
EuclideanGeometry.mul_dist_le_mul_dist_add_mul_dist
Mathlib/Geometry/Euclidean/Inversion/Basic.lean
theorem mul_dist_le_mul_dist_add_mul_dist (a b c d : P) : dist a c * dist b d ≤ dist a b * dist c d + dist b c * dist a d
case inr.inr V : Type u_1 P : Type u_2 inst✝³ : NormedAddCommGroup V inst✝² : InnerProductSpace ℝ V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P a b c d : P hb : b ≠ a hc : c ≠ a ⊢ dist a c * dist b d ≤ dist a b * dist c d + dist b c * dist a d
rcases eq_or_ne d a with (rfl | hd)
case inr.inr.inl V : Type u_1 P : Type u_2 inst✝³ : NormedAddCommGroup V inst✝² : InnerProductSpace ℝ V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P b c d : P hb : b ≠ d hc : c ≠ d ⊢ dist d c * dist b d ≤ dist d b * dist c d + dist b c * dist d d case inr.inr.inr V : Type u_1 P : Type u_2 inst✝³ : NormedAddCommGroup V inst✝² : InnerProductSpace ℝ V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P a b c d : P hb : b ≠ a hc : c ≠ a hd : d ≠ a ⊢ dist a c * dist b d ≤ dist a b * dist c d + dist b c * dist a d
d7abc1e0712fcb18
Batteries.TransCmp.compareOfLessAndEq
Mathlib/.lake/packages/batteries/Batteries/Classes/Order.lean
theorem TransCmp.compareOfLessAndEq [LT α] [DecidableRel (LT.lt (α := α))] [DecidableEq α] (lt_irrefl : ∀ x : α, ¬x < x) (lt_trans : ∀ {x y z : α}, x < y → y < z → x < z) (lt_antisymm : ∀ {x y : α}, ¬x < y → ¬y < x → x = y) : TransCmp (α := α) (compareOfLessAndEq · ·)
case isFalse.isTrue α : Type u_1 inst✝² : LT α inst✝¹ : DecidableRel LT.lt inst✝ : DecidableEq α lt_irrefl : ∀ (x : α), ¬x < x lt_trans : ∀ {x y z : α}, x < y → y < z → x < z lt_antisymm : ∀ {x y : α}, ¬x < y → ¬y < x → x = y x : α h✝ : ¬x < x ⊢ Ordering.eq.swap = if x < x then Ordering.lt else if x = x then Ordering.eq else Ordering.gt
rw [if_neg ‹_›, if_pos rfl]
case isFalse.isTrue α : Type u_1 inst✝² : LT α inst✝¹ : DecidableRel LT.lt inst✝ : DecidableEq α lt_irrefl : ∀ (x : α), ¬x < x lt_trans : ∀ {x y z : α}, x < y → y < z → x < z lt_antisymm : ∀ {x y : α}, ¬x < y → ¬y < x → x = y x : α h✝ : ¬x < x ⊢ Ordering.eq.swap = Ordering.eq
265051c307a250c5
Std.DHashMap.Raw.getD_insert
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/RawLemmas.lean
theorem getD_insert [LawfulBEq α] (h : m.WF) {k a : α} {fallback : β a} {v : β k} : (m.insert k v).getD a fallback = if h : k == a then cast (congrArg β (eq_of_beq h)) v else m.getD a fallback
α : Type u β : α → Type v m : Raw α β inst✝² : BEq α inst✝¹ : Hashable α inst✝ : LawfulBEq α h : m.WF k a : α fallback : β a v : β k ⊢ (m.insert k v).getD a fallback = if h : (k == a) = true then cast ⋯ v else m.getD a fallback
simp_to_raw using Raw₀.getD_insert
no goals
3fd9207edc078058
Set.uIcc_injective_right
Mathlib/Order/Interval/Set/UnorderedInterval.lean
lemma uIcc_injective_right (a : α) : Injective fun b => uIcc b a := fun b c h => by rw [Set.ext_iff] at h exact eq_of_mem_uIcc_of_mem_uIcc ((h _).1 left_mem_uIcc) ((h _).2 left_mem_uIcc)
α : Type u_1 inst✝ : DistribLattice α a b c : α h : (fun b => [[b, a]]) b = (fun b => [[b, a]]) c ⊢ b = c
rw [Set.ext_iff] at h
α : Type u_1 inst✝ : DistribLattice α a b c : α h : ∀ (x : α), x ∈ (fun b => [[b, a]]) b ↔ x ∈ (fun b => [[b, a]]) c ⊢ b = c
e3501e8407613320
Nat.testBit_bitwise
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Nat/Bitwise/Lemmas.lean
theorem testBit_bitwise (of_false_false : f false false = false) (x y i : Nat) : (bitwise f x y).testBit i = f (x.testBit i) (y.testBit i)
f : Bool → Bool → Bool of_false_false : f false false = false i : Nat hyp : ∀ (m : Nat), m < i → ∀ (x y : Nat), (bitwise f x y).testBit m = f (x.testBit m) (y.testBit m) x y : Nat x_zero : x = 0 ⊢ (if x = 0 then if f false true = true then y else 0 else if y = 0 then if f true false = true then x else 0 else let n' := x / 2; let m' := y / 2; let b₁ := x % 2 = 1; let b₂ := y % 2 = 1; let r := bitwise f n' m'; if f (decide b₁) (decide b₂) = true then r + r + 1 else r + r).testBit i = f (x.testBit i) (y.testBit i)
cases p : f false true <;> cases yi : testBit y i <;> simp [x_zero, p, yi, of_false_false]
no goals
19fb8270ffef0c8a
ShrinkingLemma.PartialRefinement.exists_gt
Mathlib/Topology/ShrinkingLemma.lean
theorem exists_gt [NormalSpace X] (v : PartialRefinement u s ⊤) (hs : IsClosed s) (i : ι) (hi : i ∉ v.carrier) : ∃ v' : PartialRefinement u s ⊤, v < v'
ι : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X u : ι → Set X s : Set X inst✝ : NormalSpace X v : PartialRefinement u s ⊤ hs : IsClosed s i : ι hi : i ∉ v.carrier ⊢ s ∩ ⋂ j, ⋂ (_ : j ≠ i), (v.toFun j)ᶜ ⊆ v.toFun i
simp only [subset_def, mem_inter_iff, mem_iInter, and_imp]
ι : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X u : ι → Set X s : Set X inst✝ : NormalSpace X v : PartialRefinement u s ⊤ hs : IsClosed s i : ι hi : i ∉ v.carrier ⊢ ∀ x ∈ s, (∀ (i_1 : ι), i_1 ≠ i → x ∈ (v.toFun i_1)ᶜ) → x ∈ v.toFun i
f07fb14ff2f0d64d
CompleteLattice.isCompactElement_iff_le_of_directed_sSup_le
Mathlib/Order/CompactlyGenerated/Basic.lean
theorem isCompactElement_iff_le_of_directed_sSup_le (k : α) : IsCompactElement k ↔ ∀ s : Set α, s.Nonempty → DirectedOn (· ≤ ·) s → k ≤ sSup s → ∃ x : α, x ∈ s ∧ k ≤ x
case h.left α : Type u_2 inst✝ : CompleteLattice α k : α hk : ∀ (s : Set α), s.Nonempty → DirectedOn (fun x1 x2 => x1 ≤ x2) s → k ≤ sSup s → ∃ x ∈ s, k ≤ x s : Set α hsup : k ≤ sSup s S : Set α := {x | ∃ t, ↑t ⊆ s ∧ x = t.sup id} x : α c : Finset α hc : ↑c ⊆ s ∧ x = c.sup id y : α d : Finset α hd : ↑d ⊆ s ∧ y = d.sup id ⊢ ↑(c ∪ d) ⊆ s
simp only [hc.left, hd.left, Set.union_subset_iff, Finset.coe_union, and_self_iff]
no goals
445bf3d7fb93c3e6
HasFPowerSeriesOnBall.tendstoUniformlyOn
Mathlib/Analysis/Analytic/Basic.lean
theorem HasFPowerSeriesOnBall.tendstoUniformlyOn {r' : ℝ≥0} (hf : HasFPowerSeriesOnBall f p x r) (h : (r' : ℝ≥0∞) < r) : TendstoUniformlyOn (fun n y => p.partialSum n y) (fun y => f (x + y)) atTop (Metric.ball (0 : E) r')
𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F f : E → F p : FormalMultilinearSeries 𝕜 E F x : E r : ℝ≥0∞ r' : ℝ≥0 hf : HasFPowerSeriesOnBall f p x r h : ↑r' < r ⊢ TendstoUniformlyOn (fun n y => p.partialSum n y) (fun y => f (x + y)) atTop (Metric.ball 0 ↑r')
rw [← hasFPowerSeriesWithinOnBall_univ] at hf
𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F f : E → F p : FormalMultilinearSeries 𝕜 E F x : E r : ℝ≥0∞ r' : ℝ≥0 hf : HasFPowerSeriesWithinOnBall f p univ x r h : ↑r' < r ⊢ TendstoUniformlyOn (fun n y => p.partialSum n y) (fun y => f (x + y)) atTop (Metric.ball 0 ↑r')
903b769ac55d34fe
DFinsupp.lex_fibration
Mathlib/Data/DFinsupp/WellFounded.lean
theorem lex_fibration [∀ (i) (s : Set ι), Decidable (i ∈ s)] : Fibration (InvImage (GameAdd (DFinsupp.Lex r s) (DFinsupp.Lex r s)) snd) (DFinsupp.Lex r s) fun x => piecewise x.2.1 x.2.2 x.1
case neg ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s) p : Set ι x₁ x₂ x : Π₀ (i : ι), α i i : ι hr : ∀ (j : ι), r j i → x j = if j ∈ p then x₁ j else x₂ j hp : i ∉ p hs : s i (x i) (x₂ i) hi : ¬r i i ⊢ s i (x i) (x₂ i)
assumption
no goals
ce70f659976abe0e
MeasureTheory.MemLp.induction
Mathlib/MeasureTheory/Function/SimpleFuncDenseLp.lean
theorem MemLp.induction [_i : Fact (1 ≤ p)] (hp_ne_top : p ≠ ∞) (P : (α → E) → Prop) (h_ind : ∀ (c : E) ⦃s⦄, MeasurableSet s → μ s < ∞ → P (s.indicator fun _ => c)) (h_add : ∀ ⦃f g : α → E⦄, Disjoint (support f) (support g) → MemLp f p μ → MemLp g p μ → P f → P g → P (f + g)) (h_closed : IsClosed { f : Lp E p μ | P f }) (h_ae : ∀ ⦃f g⦄, f =ᵐ[μ] g → MemLp f p μ → P f → P g) : ∀ ⦃f : α → E⦄, MemLp f p μ → P f
case h.e'_1.h α : Type u_1 E : Type u_4 inst✝¹ : MeasurableSpace α inst✝ : NormedAddCommGroup E p : ℝ≥0∞ μ : Measure α _i : Fact (1 ≤ p) hp_ne_top : p ≠ ⊤ P : (α → E) → Prop h_ind : ∀ (c : E) ⦃s : Set α⦄, MeasurableSet s → μ s < ⊤ → P (s.indicator fun x => c) h_add : ∀ ⦃f g : α → E⦄, Disjoint (support f) (support g) → MemLp f p μ → MemLp g p μ → P f → P g → P (f + g) h_closed : IsClosed {f | P ↑↑f} h_ae : ∀ ⦃f g : α → E⦄, f =ᶠ[ae μ] g → MemLp f p μ → P f → P g s : Set α hs : MeasurableSet s h : MemLp (⇑(SimpleFunc.piecewise s hs (SimpleFunc.const α 0) (SimpleFunc.const α 0))) p μ x✝ : α ⊢ (SimpleFunc.piecewise s hs (SimpleFunc.const α 0) (SimpleFunc.const α 0)) x✝ = ∅.indicator (fun x => 0) x✝
simp [const]
no goals
bf4a6fb28ab310ad
BumpCovering.exists_isSubordinate
Mathlib/Topology/PartitionOfUnity.lean
theorem exists_isSubordinate [NormalSpace X] [ParacompactSpace X] (hs : IsClosed s) (U : ι → Set X) (ho : ∀ i, IsOpen (U i)) (hU : s ⊆ ⋃ i, U i) : ∃ f : BumpCovering ι X s, f.IsSubordinate U
case intro.intro.intro.intro ι : Type u X : Type v inst✝² : TopologicalSpace X s : Set X inst✝¹ : NormalSpace X inst✝ : ParacompactSpace X hs : IsClosed s U : ι → Set X ho : ∀ (i : ι), IsOpen (U i) hU : s ⊆ ⋃ i, U i V : ι → Set X hVo : ∀ (i : ι), IsOpen (V i) hsV : s ⊆ ⋃ i, V i hVf : LocallyFinite V hVU : ∀ (i : ι), V i ⊆ U i ⊢ ∃ f, f.IsSubordinate U
rcases exists_isSubordinate_of_locallyFinite hs V hVo hVf hsV with ⟨f, hf⟩
case intro.intro.intro.intro.intro ι : Type u X : Type v inst✝² : TopologicalSpace X s : Set X inst✝¹ : NormalSpace X inst✝ : ParacompactSpace X hs : IsClosed s U : ι → Set X ho : ∀ (i : ι), IsOpen (U i) hU : s ⊆ ⋃ i, U i V : ι → Set X hVo : ∀ (i : ι), IsOpen (V i) hsV : s ⊆ ⋃ i, V i hVf : LocallyFinite V hVU : ∀ (i : ι), V i ⊆ U i f : BumpCovering ι X s hf : f.IsSubordinate V ⊢ ∃ f, f.IsSubordinate U
2201cd5e2b224650
isPurelyInseparable_of_finSepDegree_eq_one
Mathlib/FieldTheory/PurelyInseparable/Basic.lean
theorem isPurelyInseparable_of_finSepDegree_eq_one (hdeg : finSepDegree F E = 1) : IsPurelyInseparable F E
case pos F : Type u E : Type v inst✝² : Field F inst✝¹ : Field E inst✝ : Algebra F E hdeg : finSepDegree F E = 1 H : Algebra.IsAlgebraic F E x : E hsep : IsSeparable F x this✝ : Algebra.IsAlgebraic (↥F⟮x⟯) E this : F⟮x⟯ = ⊥ ∧ finSepDegree (↥F⟮x⟯) E = 1 ⊢ x ∈ (algebraMap F E).range
simpa only [this.1] using mem_adjoin_simple_self F x
no goals
3a40061a1043c350
WfDvdMonoid.of_setOf_isPrincipal_wellFoundedOn_gt
Mathlib/RingTheory/UniqueFactorizationDomain/Ideal.lean
/-- The ascending chain condition on principal ideals in a domain is sufficient to prove that the domain is `WfDvdMonoid`. -/ lemma WfDvdMonoid.of_setOf_isPrincipal_wellFoundedOn_gt [CommSemiring α] [IsDomain α] (h : {I : Ideal α | I.IsPrincipal}.WellFoundedOn (· > ·)) : WfDvdMonoid α
case wf α : Type u_1 inst✝¹ : CommSemiring α inst✝ : IsDomain α h : {I | Submodule.IsPrincipal I}.WellFoundedOn fun x1 x2 => x1 > x2 this : WellFounded fun x1 x2 => x1 > x2 ⊢ WellFounded DvdNotUnit
convert InvImage.wf (fun a => ⟨Ideal.span ({a} : Set α), _, rfl⟩) this
case h.e'_2 α : Type u_1 inst✝¹ : CommSemiring α inst✝ : IsDomain α h : {I | Submodule.IsPrincipal I}.WellFoundedOn fun x1 x2 => x1 > x2 this : WellFounded fun x1 x2 => x1 > x2 ⊢ DvdNotUnit = InvImage (fun x1 x2 => x1 > x2) fun a => ⟨Ideal.span {a}, ⋯⟩
1d2e74032df7b812
UV.compress_idem
Mathlib/Combinatorics/SetFamily/Compression/UV.lean
theorem compress_idem (u v a : α) : compress u v (compress u v a) = compress u v a
α : Type u_1 inst✝² : GeneralizedBooleanAlgebra α inst✝¹ : DecidableRel Disjoint inst✝ : DecidableRel fun x1 x2 => x1 ≤ x2 u v a : α ⊢ compress u v (compress u v a) = compress u v a
unfold compress
α : Type u_1 inst✝² : GeneralizedBooleanAlgebra α inst✝¹ : DecidableRel Disjoint inst✝ : DecidableRel fun x1 x2 => x1 ≤ x2 u v a : α ⊢ (if Disjoint u (if Disjoint u a ∧ v ≤ a then (a ⊔ u) \ v else a) ∧ v ≤ if Disjoint u a ∧ v ≤ a then (a ⊔ u) \ v else a then ((if Disjoint u a ∧ v ≤ a then (a ⊔ u) \ v else a) ⊔ u) \ v else if Disjoint u a ∧ v ≤ a then (a ⊔ u) \ v else a) = if Disjoint u a ∧ v ≤ a then (a ⊔ u) \ v else a
8839cd8a05af7046
IsNonarchimedean.finset_image_add_of_nonempty
Mathlib/Data/Real/IsNonarchimedean.lean
theorem finset_image_add_of_nonempty {F α β : Type*} [AddCommGroup α] [FunLike F α ℝ] [AddGroupSeminormClass F α ℝ] [Nonempty β] {f : F} (hna : IsNonarchimedean f) (g : β → α) {t : Finset β} (ht : t.Nonempty) : ∃ b : β, (b ∈ t) ∧ f (t.sum g) ≤ f (g b)
case intro.intro F : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : AddCommGroup α inst✝² : FunLike F α ℝ inst✝¹ : AddGroupSeminormClass F α ℝ inst✝ : Nonempty β f : F hna : IsNonarchimedean ⇑f g : β → α t : Finset β ht : t.Nonempty b : β hbt : t.Nonempty → b ∈ t hbf : f (t.sum g) ≤ f (g b) ⊢ ∃ b ∈ t, f (t.sum g) ≤ f (g b)
exact ⟨b, hbt ht, hbf⟩
no goals
c760e0a9e25a1e82
Set.Iio_subset_Iio_iff
Mathlib/Order/Interval/Set/Basic.lean
theorem Iio_subset_Iio_iff : Iio a ⊆ Iio b ↔ a ≤ b
α : Type u_1 inst✝ : LinearOrder α a b : α ⊢ Iio a ⊆ Iio b ↔ a ≤ b
refine ⟨fun h => ?_, fun h => Iio_subset_Iio h⟩
α : Type u_1 inst✝ : LinearOrder α a b : α h : Iio a ⊆ Iio b ⊢ a ≤ b
3af4c0dba423e29b
Turing.PartrecToTM2.head_stack_ok
Mathlib/Computability/TMToPartrec.lean
theorem head_stack_ok {q s L₁ L₂ L₃} : Reaches₁ (TM2.step tr) ⟨some (head stack q), s, K'.elim (trList L₁) [] [] (trList L₂ ++ Γ'.consₗ :: L₃)⟩ ⟨some q, none, K'.elim (trList (L₂.headI :: L₁)) [] [] L₃⟩
case cons q : Λ' s : Option Γ' L₁ : List ℕ L₃ : List Γ' a : ℕ L₂ : List ℕ ⊢ Reaches₁ (TM2.step tr) { l := some (head stack q), var := s, stk := elim (trList L₁) [] [] (trList (a :: L₂) ++ Γ'.consₗ :: L₃) } { l := some q, var := none, stk := elim (trList ((a :: L₂).headI :: L₁)) [] [] L₃ }
refine TransGen.trans (move_ok (by decide) (splitAtPred_eq _ _ (trNat a) (some Γ'.cons) (trList L₂ ++ Γ'.consₗ :: L₃) (trNat_natEnd _) ⟨rfl, by simp⟩)) (TransGen.head rfl (TransGen.head rfl ?_))
case cons q : Λ' s : Option Γ' L₁ : List ℕ L₃ : List Γ' a : ℕ L₂ : List ℕ ⊢ TransGen (fun a b => b ∈ TM2.step tr a) (TM2.stepAux (tr ((fun x => Λ'.read fun s => (if s = some Γ'.consₗ then id else Λ'.clear (fun x => decide (x = Γ'.consₗ)) stack) (unrev q)) (some Γ'.cons))) (some Γ'.cons) (update (update (update (elim (trList L₁) [] [] (trList (a :: L₂) ++ Γ'.consₗ :: L₃)) stack (trList L₂ ++ Γ'.consₗ :: L₃)) rev ((trNat a).reverseAux (elim (trList L₁) [] [] (trList (a :: L₂) ++ Γ'.consₗ :: L₃) rev))) rev ((fun s => ((fun x => some Γ'.cons) s).iget) (some Γ'.cons) :: update (update (elim (trList L₁) [] [] (trList (a :: L₂) ++ Γ'.consₗ :: L₃)) stack (trList L₂ ++ Γ'.consₗ :: L₃)) rev ((trNat a).reverseAux (elim (trList L₁) [] [] (trList (a :: L₂) ++ Γ'.consₗ :: L₃) rev)) rev))) { l := some q, var := none, stk := elim (trList ((a :: L₂).headI :: L₁)) [] [] L₃ }
5cadd8176b1827d5
TopCat.GlueData.ι_eq_iff_rel
Mathlib/Topology/Gluing.lean
theorem ι_eq_iff_rel (i j : D.J) (x : D.U i) (y : D.U j) : 𝖣.ι i x = 𝖣.ι j y ↔ D.Rel ⟨i, x⟩ ⟨j, y⟩
case mp D : GlueData i j : D.J x : ↑(D.U i) y : ↑(D.U j) h : (ConcreteCategory.hom (Sigma.ι D.diagram.right i ≫ Multicoequalizer.sigmaπ D.diagram)) x = (ConcreteCategory.hom (Sigma.ι D.diagram.right j ≫ Multicoequalizer.sigmaπ D.diagram)) y ⊢ D.Rel (((sigmaIsoSigma D.U).inv ≫ (sigmaIsoSigma D.U).hom) ⟨i, x⟩) ⟨j, y⟩
rw [← show _ = Sigma.mk j y from ConcreteCategory.congr_hom (sigmaIsoSigma.{_, u} D.U).inv_hom_id _]
case mp D : GlueData i j : D.J x : ↑(D.U i) y : ↑(D.U j) h : (ConcreteCategory.hom (Sigma.ι D.diagram.right i ≫ Multicoequalizer.sigmaπ D.diagram)) x = (ConcreteCategory.hom (Sigma.ι D.diagram.right j ≫ Multicoequalizer.sigmaπ D.diagram)) y ⊢ D.Rel (((sigmaIsoSigma D.U).inv ≫ (sigmaIsoSigma D.U).hom) ⟨i, x⟩) (((sigmaIsoSigma D.U).inv ≫ (sigmaIsoSigma D.U).hom) ⟨j, y⟩)
e0a110dda282edcf
Filter.HasBasis.sup'
Mathlib/Order/Filter/Bases.lean
theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩
α : Type u_1 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α p' : ι' → Prop s' : ι' → Set α hl : l.HasBasis p s hl' : l'.HasBasis p' s' t : Set α ⊢ (∃ x x_1, (p x ∧ s x ⊆ t) ∧ p' x_1 ∧ s' x_1 ⊆ t) ↔ ∃ a b, (p a ∧ p' b) ∧ s a ⊆ t ∧ s' b ⊆ t
simp only [and_assoc, and_left_comm]
no goals
00fa2602b09511a8
Cardinal.mk_Ioi_real
Mathlib/Data/Real/Cardinality.lean
theorem mk_Ioi_real (a : ℝ) : #(Ioi a) = 𝔠
a : ℝ h : #↑(Ioi a) < 𝔠 ⊢ #↑Set.univ < 𝔠
have hu : Iio a ∪ {a} ∪ Ioi a = Set.univ := by convert @Iic_union_Ioi ℝ _ _ exact Iio_union_right
a : ℝ h : #↑(Ioi a) < 𝔠 hu : Iio a ∪ {a} ∪ Ioi a = Set.univ ⊢ #↑Set.univ < 𝔠
564ae2d1d94f837f
Std.DHashMap.Raw.getKey?_eq_some_getKey!
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/RawLemmas.lean
theorem getKey?_eq_some_getKey! [EquivBEq α] [LawfulHashable α] [Inhabited α] (h : m.WF) {a : α} : a ∈ m → m.getKey? a = some (m.getKey! a)
α : Type u β : α → Type v m : Raw α β inst✝⁴ : BEq α inst✝³ : Hashable α inst✝² : EquivBEq α inst✝¹ : LawfulHashable α inst✝ : Inhabited α h : m.WF a : α ⊢ a ∈ m → m.getKey? a = some (m.getKey! a)
simpa [mem_iff_contains] using getKey?_eq_some_getKey!_of_contains h
no goals
986b5940dcf7795b
Multiset.Icc_eq_zero_iff
Mathlib/Order/Interval/Multiset.lean
theorem Icc_eq_zero_iff : Icc a b = 0 ↔ ¬a ≤ b
α : Type u_1 inst✝¹ : Preorder α inst✝ : LocallyFiniteOrder α a b : α ⊢ Icc a b = 0 ↔ ¬a ≤ b
rw [Icc, Finset.val_eq_zero, Finset.Icc_eq_empty_iff]
no goals
f7346d2b96938a0d
writtenInExtChartAt_comp
Mathlib/Geometry/Manifold/MFDeriv/Basic.lean
theorem writtenInExtChartAt_comp (h : ContinuousWithinAt f s x) : {y | writtenInExtChartAt I I'' x (g ∘ f) y = (writtenInExtChartAt I' I'' (f x) g ∘ writtenInExtChartAt I I' x f) y} ∈ 𝓝[(extChartAt I x).symm ⁻¹' s ∩ range I] (extChartAt I x) x
𝕜 : Type u_1 inst✝¹⁵ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝¹⁴ : NormedAddCommGroup E inst✝¹³ : NormedSpace 𝕜 E H : Type u_3 inst✝¹² : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝¹¹ : TopologicalSpace M inst✝¹⁰ : ChartedSpace H M E' : Type u_5 inst✝⁹ : NormedAddCommGroup E' inst✝⁸ : NormedSpace 𝕜 E' H' : Type u_6 inst✝⁷ : TopologicalSpace H' I' : ModelWithCorners 𝕜 E' H' M' : Type u_7 inst✝⁶ : TopologicalSpace M' inst✝⁵ : ChartedSpace H' M' E'' : Type u_8 inst✝⁴ : NormedAddCommGroup E'' inst✝³ : NormedSpace 𝕜 E'' H'' : Type u_9 inst✝² : TopologicalSpace H'' I'' : ModelWithCorners 𝕜 E'' H'' M'' : Type u_10 inst✝¹ : TopologicalSpace M'' inst✝ : ChartedSpace H'' M'' f : M → M' x : M s : Set M g : M' → M'' h : ContinuousWithinAt f s x ⊢ {y | writtenInExtChartAt I I'' x (g ∘ f) y = (writtenInExtChartAt I' I'' (f x) g ∘ writtenInExtChartAt I I' x f) y} ∈ 𝓝[↑(extChartAt I x).symm ⁻¹' s ∩ range ↑I] ↑(extChartAt I x) x
apply @Filter.mem_of_superset _ _ (f ∘ (extChartAt I x).symm ⁻¹' (extChartAt I' (f x)).source) _ (extChartAt_preimage_mem_nhdsWithin (h.preimage_mem_nhdsWithin (extChartAt_source_mem_nhds _)))
𝕜 : Type u_1 inst✝¹⁵ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝¹⁴ : NormedAddCommGroup E inst✝¹³ : NormedSpace 𝕜 E H : Type u_3 inst✝¹² : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝¹¹ : TopologicalSpace M inst✝¹⁰ : ChartedSpace H M E' : Type u_5 inst✝⁹ : NormedAddCommGroup E' inst✝⁸ : NormedSpace 𝕜 E' H' : Type u_6 inst✝⁷ : TopologicalSpace H' I' : ModelWithCorners 𝕜 E' H' M' : Type u_7 inst✝⁶ : TopologicalSpace M' inst✝⁵ : ChartedSpace H' M' E'' : Type u_8 inst✝⁴ : NormedAddCommGroup E'' inst✝³ : NormedSpace 𝕜 E'' H'' : Type u_9 inst✝² : TopologicalSpace H'' I'' : ModelWithCorners 𝕜 E'' H'' M'' : Type u_10 inst✝¹ : TopologicalSpace M'' inst✝ : ChartedSpace H'' M'' f : M → M' x : M s : Set M g : M' → M'' h : ContinuousWithinAt f s x ⊢ f ∘ ↑(extChartAt I x).symm ⁻¹' (extChartAt I' (f x)).source ⊆ {y | writtenInExtChartAt I I'' x (g ∘ f) y = (writtenInExtChartAt I' I'' (f x) g ∘ writtenInExtChartAt I I' x f) y}
4e42d7572fbdc0d2
List.replace_eq_replaceTR
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Impl.lean
theorem replace_eq_replaceTR : @List.replace = @replaceTR
⊢ @replace = @replaceTR
funext α _ l b c
case h.h.h.h.h α : Type u_1 x✝ : BEq α l : List α b c : α ⊢ l.replace b c = l.replaceTR b c
a82f1469e1b7fcc8
BddAbove.continuous_convolution_right_of_integrable
Mathlib/Analysis/Convolution.lean
theorem _root_.BddAbove.continuous_convolution_right_of_integrable [FirstCountableTopology G] [SecondCountableTopologyEither G E'] (hbg : BddAbove (range fun x => ‖g x‖)) (hf : Integrable f μ) (hg : Continuous g) : Continuous (f ⋆[L, μ] g)
case h 𝕜 : Type u𝕜 G : Type uG E : Type uE E' : Type uE' F : Type uF inst✝¹⁴ : NormedAddCommGroup E inst✝¹³ : NormedAddCommGroup E' inst✝¹² : NormedAddCommGroup F f : G → E g : G → E' inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NormedSpace 𝕜 E inst✝⁹ : NormedSpace 𝕜 E' inst✝⁸ : NormedSpace 𝕜 F L : E →L[𝕜] E' →L[𝕜] F inst✝⁷ : MeasurableSpace G μ : Measure G inst✝⁶ : NormedSpace ℝ F inst✝⁵ : AddGroup G inst✝⁴ : TopologicalSpace G inst✝³ : IsTopologicalAddGroup G inst✝² : BorelSpace G inst✝¹ : FirstCountableTopology G inst✝ : SecondCountableTopologyEither G E' hbg : BddAbove (range fun x => ‖g x‖) hf : Integrable f μ hg : Continuous g x₀ x : G ⊢ ∀ᵐ (t : G) ∂μ, ‖(L (f t)) (g (x - t))‖ ≤ ‖L‖ * ‖f t‖ * ⨆ i, ‖g i‖
filter_upwards with t
case h.h 𝕜 : Type u𝕜 G : Type uG E : Type uE E' : Type uE' F : Type uF inst✝¹⁴ : NormedAddCommGroup E inst✝¹³ : NormedAddCommGroup E' inst✝¹² : NormedAddCommGroup F f : G → E g : G → E' inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NormedSpace 𝕜 E inst✝⁹ : NormedSpace 𝕜 E' inst✝⁸ : NormedSpace 𝕜 F L : E →L[𝕜] E' →L[𝕜] F inst✝⁷ : MeasurableSpace G μ : Measure G inst✝⁶ : NormedSpace ℝ F inst✝⁵ : AddGroup G inst✝⁴ : TopologicalSpace G inst✝³ : IsTopologicalAddGroup G inst✝² : BorelSpace G inst✝¹ : FirstCountableTopology G inst✝ : SecondCountableTopologyEither G E' hbg : BddAbove (range fun x => ‖g x‖) hf : Integrable f μ hg : Continuous g x₀ x t : G ⊢ ‖(L (f t)) (g (x - t))‖ ≤ ‖L‖ * ‖f t‖ * ⨆ i, ‖g i‖
7cef45832d5d6aeb
SetTheory.PGame.numeric_def
Mathlib/SetTheory/Surreal/Basic.lean
theorem numeric_def {x : PGame} : Numeric x ↔ (∀ i j, x.moveLeft i < x.moveRight j) ∧ (∀ i, Numeric (x.moveLeft i)) ∧ ∀ j, Numeric (x.moveRight j)
case mk α✝ β✝ : Type u_1 a✝¹ : α✝ → PGame a✝ : β✝ → PGame ⊢ (mk α✝ β✝ a✝¹ a✝).Numeric ↔ (∀ (i : (mk α✝ β✝ a✝¹ a✝).LeftMoves) (j : (mk α✝ β✝ a✝¹ a✝).RightMoves), (mk α✝ β✝ a✝¹ a✝).moveLeft i < (mk α✝ β✝ a✝¹ a✝).moveRight j) ∧ (∀ (i : (mk α✝ β✝ a✝¹ a✝).LeftMoves), ((mk α✝ β✝ a✝¹ a✝).moveLeft i).Numeric) ∧ ∀ (j : (mk α✝ β✝ a✝¹ a✝).RightMoves), ((mk α✝ β✝ a✝¹ a✝).moveRight j).Numeric
rfl
no goals
d26425902c048a37
ProbabilityTheory.IndepFun.integral_mul_of_integrable
Mathlib/Probability/Integration.lean
theorem IndepFun.integral_mul_of_integrable (hXY : IndepFun X Y μ) (hX : Integrable X μ) (hY : Integrable Y μ) : integral μ (X * Y) = integral μ X * integral μ Y
Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω X Y : Ω → ℝ hXY : IndepFun X Y μ hX : Integrable X μ hY : Integrable Y μ pos : ℝ → ℝ := fun x => x ⊔ 0 neg : ℝ → ℝ := fun x => -x ⊔ 0 posm : Measurable pos negm : Measurable neg Xp : Ω → ℝ := pos ∘ X Xm : Ω → ℝ := neg ∘ X Yp : Ω → ℝ := pos ∘ Y Ym : Ω → ℝ := neg ∘ Y hXpm : X = Xp - Xm hYpm : Y = Yp - Ym hp1 : 0 ≤ Xm hp2 : 0 ≤ Xp hp3 : 0 ≤ Ym hp4 : 0 ≤ Yp hm1 : AEMeasurable Xm μ hm2 : AEMeasurable Xp μ ⊢ integral μ (X * Y) = integral μ X * integral μ Y
have hm3 : AEMeasurable Ym μ := hY.1.aemeasurable.neg.max aemeasurable_const
Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω X Y : Ω → ℝ hXY : IndepFun X Y μ hX : Integrable X μ hY : Integrable Y μ pos : ℝ → ℝ := fun x => x ⊔ 0 neg : ℝ → ℝ := fun x => -x ⊔ 0 posm : Measurable pos negm : Measurable neg Xp : Ω → ℝ := pos ∘ X Xm : Ω → ℝ := neg ∘ X Yp : Ω → ℝ := pos ∘ Y Ym : Ω → ℝ := neg ∘ Y hXpm : X = Xp - Xm hYpm : Y = Yp - Ym hp1 : 0 ≤ Xm hp2 : 0 ≤ Xp hp3 : 0 ≤ Ym hp4 : 0 ≤ Yp hm1 : AEMeasurable Xm μ hm2 : AEMeasurable Xp μ hm3 : AEMeasurable Ym μ ⊢ integral μ (X * Y) = integral μ X * integral μ Y
1836e7e522e593a2
Finsupp.single_of_single_apply
Mathlib/Data/Finsupp/Single.lean
theorem single_of_single_apply (a a' : α) (b : M) : single a ((single a' b) a) = single a' (single a' b) a
case neg α : Type u_1 M : Type u_5 inst✝ : Zero M a a' : α b : M a✝ : α h : ¬a' = a ⊢ (single a 0) a✝ = 0 a✝
rw [zero_apply, single_apply, ite_self]
no goals
33af47e1a4958c4f
Nat.Primrec'.sqrt
Mathlib/Computability/Primrec.lean
theorem sqrt : @Primrec' 1 fun v => v.head.sqrt
H : ∀ (n : ℕ), n.sqrt = Nat.rec 0 (fun x y => if x.succ < y.succ * y.succ then y else y.succ) n v : List.Vector ℕ (1 + 2) x : ℕ ⊢ ℕ
have y := v.tail.head
H : ∀ (n : ℕ), n.sqrt = Nat.rec 0 (fun x y => if x.succ < y.succ * y.succ then y else y.succ) n v : List.Vector ℕ (1 + 2) x y : ℕ ⊢ ℕ
99d6f1beec25882a
CategoryTheory.finrank_hom_simple_simple_eq_zero_iff
Mathlib/CategoryTheory/Preadditive/Schur.lean
theorem finrank_hom_simple_simple_eq_zero_iff (X Y : C) [FiniteDimensional 𝕜 (X ⟶ X)] [FiniteDimensional 𝕜 (X ⟶ Y)] [Simple X] [Simple Y] : finrank 𝕜 (X ⟶ Y) = 0 ↔ IsEmpty (X ≅ Y)
C : Type u_1 inst✝⁹ : Category.{u_3, u_1} C inst✝⁸ : Preadditive C 𝕜 : Type u_2 inst✝⁷ : Field 𝕜 inst✝⁶ : IsAlgClosed 𝕜 inst✝⁵ : Linear 𝕜 C inst✝⁴ : HasKernels C X Y : C inst✝³ : FiniteDimensional 𝕜 (X ⟶ X) inst✝² : FiniteDimensional 𝕜 (X ⟶ Y) inst✝¹ : Simple X inst✝ : Simple Y ⊢ finrank 𝕜 (X ⟶ Y) = 0 ↔ IsEmpty (X ≅ Y)
rw [← not_nonempty_iff, ← not_congr (finrank_hom_simple_simple_eq_one_iff 𝕜 X Y)]
C : Type u_1 inst✝⁹ : Category.{u_3, u_1} C inst✝⁸ : Preadditive C 𝕜 : Type u_2 inst✝⁷ : Field 𝕜 inst✝⁶ : IsAlgClosed 𝕜 inst✝⁵ : Linear 𝕜 C inst✝⁴ : HasKernels C X Y : C inst✝³ : FiniteDimensional 𝕜 (X ⟶ X) inst✝² : FiniteDimensional 𝕜 (X ⟶ Y) inst✝¹ : Simple X inst✝ : Simple Y ⊢ finrank 𝕜 (X ⟶ Y) = 0 ↔ ¬finrank 𝕜 (X ⟶ Y) = 1
36d01ca65cae1c3e
Besicovitch.exist_disjoint_covering_families
Mathlib/MeasureTheory/Covering/Besicovitch.lean
theorem exist_disjoint_covering_families {N : ℕ} {τ : ℝ} (hτ : 1 < τ) (hN : IsEmpty (SatelliteConfig α N τ)) (q : BallPackage β α) : ∃ s : Fin N → Set β, (∀ i : Fin N, (s i).PairwiseDisjoint fun j => closedBall (q.c j) (q.r j)) ∧ range q.c ⊆ ⋃ i : Fin N, ⋃ j ∈ s i, ball (q.c j) (q.r j)
case hs α : Type u_1 inst✝ : MetricSpace α β : Type u N : ℕ τ : ℝ hτ : 1 < τ hN : IsEmpty (SatelliteConfig α N τ) q : BallPackage β α h✝ : Nonempty β p : TauPackage β α := { toBallPackage := q, τ := τ, one_lt_tau := hτ } s : Fin N → Set β := fun i => ⋃ k, ⋃ (_ : k < p.lastStep), ⋃ (_ : p.color k = ↑i), {p.index k} i : Fin N jx : Ordinal.{u} jx_lt : jx < p.lastStep jxi : p.color jx = ↑i hx : p.index jx ∈ s i jy : Ordinal.{u} jy_lt : jy < p.lastStep jyi : p.color jy = ↑i hy : p.index jy ∈ s i x_ne_y : p.index jx ≠ p.index jy jxy : jx < jy A : Set ℕ := ⋃ j, ⋃ (_ : (closedBall (p.c (p.index ↑j)) (p.r (p.index ↑j)) ∩ closedBall (p.c (p.index jy)) (p.r (p.index jy))).Nonempty), {p.color ↑j} color_j : p.color jy = sInf (univ \ A) k : Ordinal.{u} hk : k < jy a✝ : (closedBall (p.c (p.index k)) (p.r (p.index k)) ∩ closedBall (p.c (p.index jy)) (p.r (p.index jy))).Nonempty ⊢ ¬N = p.color k
exact (p.color_lt (hk.trans jy_lt) hN).ne'
no goals
416e48a035cdf3d5
MulAction.smul_bijective_of_is_unit
Mathlib/GroupTheory/GroupAction/Pointwise.lean
theorem MulAction.smul_bijective_of_is_unit {M : Type*} [Monoid M] {α : Type*} [MulAction M α] {m : M} (hm : IsUnit m) : Function.Bijective (fun (a : α) ↦ m • a)
case h.left M : Type u_1 inst✝¹ : Monoid M α : Type u_2 inst✝ : MulAction M α m : Mˣ x : α ⊢ (fun a => m⁻¹ • a) ((fun a => ↑m • a) x) = x
simp [← Units.smul_def]
no goals
91b4009f7a529152