name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
tendsto_tsum_div_pow_atTop_integral
Mathlib/Analysis/BoxIntegral/UnitPartition.lean
theorem _root_.tendsto_tsum_div_pow_atTop_integral (hF : Continuous F) (hs₁ : IsBounded s) (hs₂ : MeasurableSet s) (hs₃ : volume (frontier s) = 0) : Tendsto (fun n : ℕ ↦ (∑' x : ↑(s ∩ (n : ℝ)⁻¹ • L), F x) / n ^ card ι) atTop (nhds (∫ x in s, F x))
case intro.intro.intro.intro ι : Type u_1 inst✝ : Fintype ι s : Set (ι → ℝ) F : (ι → ℝ) → ℝ hF : Continuous F hs₁ : Bornology.IsBounded s hs₂ : MeasurableSet s hs₃ : volume (frontier s) = 0 B : Box ι hB : hasIntegralVertices B hs₀ : s ≤ ↑B ε : ℝ hε : ε > 0 h₁ : ∃ C, ∀ x ∈ Box.Icc B, ‖s.indicator F x‖ ≤ C h₂ : ∀ᵐ (x : ι → ℝ), ContinuousAt (s.indicator F) x r : NNReal → (ι → ℝ) → ↑(Set.Ioi 0) hr₁ : ∀ (c : NNReal), IntegrationParams.Riemann.RCond (r c) hr₂ : ∀ (c : NNReal) (π : TaggedPrepartition B), IntegrationParams.Riemann.MemBaseSet B c (r c) π → π.IsPartition → dist (integralSum (s.indicator F) volume.toBoxAdditive.toSMul π) (∫ (x : ι → ℝ) in ↑B, s.indicator F x ∂volume) ≤ ε / 2 ⊢ ∃ N, ∀ n ≥ N, dist ((∑' (x : ↑(s ∩ (↑n)⁻¹ • ↑(span ℤ (Set.range ⇑(Pi.basisFun ℝ ι))))), F ↑x) / ↑n ^ card ι) (∫ (x : ι → ℝ) in s, F x) < ε
refine ⟨⌈(r 0 0 : ℝ)⁻¹⌉₊, fun n hn ↦ lt_of_le_of_lt ?_ (half_lt_self_iff.mpr hε)⟩
case intro.intro.intro.intro ι : Type u_1 inst✝ : Fintype ι s : Set (ι → ℝ) F : (ι → ℝ) → ℝ hF : Continuous F hs₁ : Bornology.IsBounded s hs₂ : MeasurableSet s hs₃ : volume (frontier s) = 0 B : Box ι hB : hasIntegralVertices B hs₀ : s ≤ ↑B ε : ℝ hε : ε > 0 h₁ : ∃ C, ∀ x ∈ Box.Icc B, ‖s.indicator F x‖ ≤ C h₂ : ∀ᵐ (x : ι → ℝ), ContinuousAt (s.indicator F) x r : NNReal → (ι → ℝ) → ↑(Set.Ioi 0) hr₁ : ∀ (c : NNReal), IntegrationParams.Riemann.RCond (r c) hr₂ : ∀ (c : NNReal) (π : TaggedPrepartition B), IntegrationParams.Riemann.MemBaseSet B c (r c) π → π.IsPartition → dist (integralSum (s.indicator F) volume.toBoxAdditive.toSMul π) (∫ (x : ι → ℝ) in ↑B, s.indicator F x ∂volume) ≤ ε / 2 n : ℕ hn : n ≥ ⌈(↑(r 0 0))⁻¹⌉₊ ⊢ dist ((∑' (x : ↑(s ∩ (↑n)⁻¹ • ↑(span ℤ (Set.range ⇑(Pi.basisFun ℝ ι))))), F ↑x) / ↑n ^ card ι) (∫ (x : ι → ℝ) in s, F x) ≤ ε / 2
e99fafdae745475e
List.partition_eq_filter_filter
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Lemmas.lean
theorem partition_eq_filter_filter (p : α → Bool) (l : List α) : partition p l = (filter p l, filter (not ∘ p) l)
α : Type u_1 p : α → Bool l : List α ⊢ partition p l = (filter p l, filter (not ∘ p) l)
simp [partition, aux]
no goals
1b206b7b210bcfe8
Num.ofNat'_eq
Mathlib/Data/Num/Lemmas.lean
theorem ofNat'_eq : ∀ n, Num.ofNat' n = n := Nat.binaryRec (by simp) fun b n IH => by tauto
⊢ ofNat' 0 = ↑0
simp
no goals
a8dda501c3f53f4e
Nat.primeFactors_pow_succ
Mathlib/Data/Nat/PrimeFin.lean
lemma primeFactors_pow_succ (n k : ℕ) : (n ^ (k + 1)).primeFactors = n.primeFactors
n k : ℕ ⊢ (n ^ (k + 1)).primeFactors = n.primeFactors
rcases eq_or_ne n 0 with (rfl | hn)
case inl k : ℕ ⊢ (0 ^ (k + 1)).primeFactors = primeFactors 0 case inr n k : ℕ hn : n ≠ 0 ⊢ (n ^ (k + 1)).primeFactors = n.primeFactors
1853618c5cac81f8
WeierstrassCurve.ΨSq_four
Mathlib/AlgebraicGeometry/EllipticCurve/DivisionPolynomial/Basic.lean
@[simp] lemma ΨSq_four : W.ΨSq 4 = W.preΨ₄ ^ 2 * W.Ψ₂Sq
R : Type r inst✝ : CommRing R W : WeierstrassCurve R ⊢ Even 4
decide
no goals
7ca1b640087f381b
Finset.Colex.trans_aux
Mathlib/Combinatorics/Colex.lean
private lemma trans_aux (hst : toColex s ≤ toColex t) (htu : toColex t ≤ toColex u) (has : a ∈ s) (hat : a ∉ t) : ∃ b, b ∈ u ∧ b ∉ s ∧ a ≤ b
α : Type u_1 inst✝ : PartialOrder α s t u : Finset α a : α hst : { ofColex := s } ≤ { ofColex := t } htu : { ofColex := t } ≤ { ofColex := u } has : a ∈ s hat : a ∉ t s' : Finset α := filter (fun b => b ∉ t ∧ a ≤ b) s b : α hb : b ∈ s ∧ b ∉ t ∧ a ≤ b hbmax : ∀ x ∈ s, x ∉ t → a ≤ x → ¬b < x ⊢ ∃ b ∈ u, b ∉ s ∧ a ≤ b
have ⟨c, hct, hcs, hbc⟩ := hst hb.1 hb.2.1
α : Type u_1 inst✝ : PartialOrder α s t u : Finset α a : α hst : { ofColex := s } ≤ { ofColex := t } htu : { ofColex := t } ≤ { ofColex := u } has : a ∈ s hat : a ∉ t s' : Finset α := filter (fun b => b ∉ t ∧ a ≤ b) s b : α hb : b ∈ s ∧ b ∉ t ∧ a ≤ b hbmax : ∀ x ∈ s, x ∉ t → a ≤ x → ¬b < x c : α hct : c ∈ { ofColex := t }.ofColex hcs : c ∉ { ofColex := s }.ofColex hbc : b ≤ c ⊢ ∃ b ∈ u, b ∉ s ∧ a ≤ b
d44eef7b38eb8d38
Rat.uniformSpace_eq
Mathlib/Topology/UniformSpace/CompareReals.lean
theorem Rat.uniformSpace_eq : (AbsoluteValue.abs : AbsoluteValue ℚ ℚ).uniformSpace = PseudoMetricSpace.toUniformSpace
⊢ AbsoluteValue.abs.uniformSpace = PseudoMetricSpace.toUniformSpace
ext s
case h.h s : Set (ℚ × ℚ) ⊢ s ∈ uniformity ℚ ↔ s ∈ uniformity ℚ
860aee39be103d1d
MeasureTheory.analyticSet_empty
Mathlib/MeasureTheory/Constructions/Polish/Basic.lean
theorem analyticSet_empty : AnalyticSet (∅ : Set α)
α : Type u_1 inst✝ : TopologicalSpace α ⊢ AnalyticSet ∅
rw [AnalyticSet]
α : Type u_1 inst✝ : TopologicalSpace α ⊢ ∅ = ∅ ∨ ∃ f, Continuous f ∧ range f = ∅
96d6590387ca3fc0
TopologicalSpace.IsOpenCover.isOpenMap_iff_restrictPreimage
Mathlib/Topology/LocalAtTarget.lean
theorem isOpenMap_iff_restrictPreimage : IsOpenMap f ↔ ∀ i, IsOpenMap ((U i).1.restrictPreimage f)
α : Type u_1 β : Type u_2 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β f : α → β ι : Type u_3 U : ι → Opens β hU : IsOpenCover U ⊢ IsOpenMap f ↔ ∀ (i : ι), IsOpenMap ((U i).carrier.restrictPreimage f)
refine ⟨fun h i ↦ h.restrictPreimage _, fun H s hs ↦ ?_⟩
α : Type u_1 β : Type u_2 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β f : α → β ι : Type u_3 U : ι → Opens β hU : IsOpenCover U H : ∀ (i : ι), IsOpenMap ((U i).carrier.restrictPreimage f) s : Set α hs : IsOpen s ⊢ IsOpen (f '' s)
344d9e2126901f20
uniformCauchySeqOn_ball_of_fderiv
Mathlib/Analysis/Calculus/UniformLimitsDeriv.lean
theorem uniformCauchySeqOn_ball_of_fderiv {r : ℝ} (hf' : UniformCauchySeqOn f' l (Metric.ball x r)) (hf : ∀ n : ι, ∀ y : E, y ∈ Metric.ball x r → HasFDerivAt (f n) (f' n y) y) (hfg : Cauchy (map (fun n => f n x) l)) : UniformCauchySeqOn f l (Metric.ball x r)
case inr ι : Type u_1 l : Filter ι E : Type u_2 inst✝⁵ : NormedAddCommGroup E 𝕜 : Type u_3 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : IsRCLikeNormedField 𝕜 inst✝² : NormedSpace 𝕜 E G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace 𝕜 G f : ι → E → G f' : ι → E → E →L[𝕜] G x : E r : ℝ hf : ∀ (n : ι), ∀ y ∈ Metric.ball x r, HasFDerivAt (f n) (f' n y) y hfg : Cauchy (map (fun n => f n x) l) this✝¹ : RCLike 𝕜 := IsRCLikeNormedField.rclike 𝕜 hf' : TendstoUniformlyOn (fun n z => f' n.1 z - f' n.2 z) 0 (l ×ˢ l) (Metric.ball x r) this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E this : l.NeBot hr : 0 < r ⊢ TendstoUniformlyOn (fun n z => f n.1 z - f n.2 z - (f n.1 x - f n.2 x)) 0 (l ×ˢ l) (Metric.ball x r) ∧ TendstoUniformlyOn (fun n x_1 => f n.1 x - f n.2 x) 0 (l ×ˢ l) (Metric.ball x r)
constructor
case inr.left ι : Type u_1 l : Filter ι E : Type u_2 inst✝⁵ : NormedAddCommGroup E 𝕜 : Type u_3 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : IsRCLikeNormedField 𝕜 inst✝² : NormedSpace 𝕜 E G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace 𝕜 G f : ι → E → G f' : ι → E → E →L[𝕜] G x : E r : ℝ hf : ∀ (n : ι), ∀ y ∈ Metric.ball x r, HasFDerivAt (f n) (f' n y) y hfg : Cauchy (map (fun n => f n x) l) this✝¹ : RCLike 𝕜 := IsRCLikeNormedField.rclike 𝕜 hf' : TendstoUniformlyOn (fun n z => f' n.1 z - f' n.2 z) 0 (l ×ˢ l) (Metric.ball x r) this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E this : l.NeBot hr : 0 < r ⊢ TendstoUniformlyOn (fun n z => f n.1 z - f n.2 z - (f n.1 x - f n.2 x)) 0 (l ×ˢ l) (Metric.ball x r) case inr.right ι : Type u_1 l : Filter ι E : Type u_2 inst✝⁵ : NormedAddCommGroup E 𝕜 : Type u_3 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : IsRCLikeNormedField 𝕜 inst✝² : NormedSpace 𝕜 E G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace 𝕜 G f : ι → E → G f' : ι → E → E →L[𝕜] G x : E r : ℝ hf : ∀ (n : ι), ∀ y ∈ Metric.ball x r, HasFDerivAt (f n) (f' n y) y hfg : Cauchy (map (fun n => f n x) l) this✝¹ : RCLike 𝕜 := IsRCLikeNormedField.rclike 𝕜 hf' : TendstoUniformlyOn (fun n z => f' n.1 z - f' n.2 z) 0 (l ×ˢ l) (Metric.ball x r) this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E this : l.NeBot hr : 0 < r ⊢ TendstoUniformlyOn (fun n x_1 => f n.1 x - f n.2 x) 0 (l ×ˢ l) (Metric.ball x r)
982ef3c3832b9fcd
MultilinearMap.norm_image_sub_le_of_bound
Mathlib/Analysis/NormedSpace/Multilinear/Basic.lean
theorem norm_image_sub_le_of_bound (f : MultilinearMap 𝕜 E G) {C : ℝ} (hC : 0 ≤ C) (H : ∀ m, ‖f m‖ ≤ C * ∏ i, ‖m i‖) (m₁ m₂ : ∀ i, E i) : ‖f m₁ - f m₂‖ ≤ C * Fintype.card ι * max ‖m₁‖ ‖m₂‖ ^ (Fintype.card ι - 1) * ‖m₁ - m₂‖
case h.h 𝕜 : Type u ι : Type v E : ι → Type wE G : Type wG inst✝⁵ : NontriviallyNormedField 𝕜 inst✝⁴ : (i : ι) → SeminormedAddCommGroup (E i) inst✝³ : (i : ι) → NormedSpace 𝕜 (E i) inst✝² : SeminormedAddCommGroup G inst✝¹ : NormedSpace 𝕜 G inst✝ : Fintype ι f : MultilinearMap 𝕜 E G C : ℝ hC : 0 ≤ C H : ∀ (m : (i : ι) → E i), ‖f m‖ ≤ C * ∏ i : ι, ‖m i‖ m₁ m₂ : (i : ι) → E i A : ∀ (i : ι), (∏ j : ι, if j = i then ‖m₁ i - m₂ i‖ else ‖m₁ j‖ ⊔ ‖m₂ j‖) ≤ ‖m₁ - m₂‖ * (‖m₁‖ ⊔ ‖m₂‖) ^ (Fintype.card ι - 1) i✝ : ι a✝ : i✝ ∈ univ ⊢ (∏ j : ι, if j = i✝ then ‖m₁ i✝ - m₂ i✝‖ else ‖m₁ j‖ ⊔ ‖m₂ j‖) ≤ ‖m₁ - m₂‖ * (‖m₁‖ ⊔ ‖m₂‖) ^ (Fintype.card ι - 1)
apply A
no goals
f3950b21519cddc8
rexp_neg_quadratic_isLittleO_rpow_atTop
Mathlib/Analysis/SpecialFunctions/Gaussian/PoissonSummation.lean
lemma rexp_neg_quadratic_isLittleO_rpow_atTop {a : ℝ} (ha : a < 0) (b s : ℝ) : (fun x ↦ rexp (a * x ^ 2 + b * x)) =o[atTop] (· ^ s)
a : ℝ ha : a < 0 b s : ℝ ⊢ Tendsto (fun x => -x - (a * x ^ 2 + b * x)) atTop atTop
have : (fun x ↦ -x - (a * x ^ 2 + b * x)) = fun x ↦ x * (-a * x - (b + 1)) := by ext1 x; ring_nf
a : ℝ ha : a < 0 b s : ℝ this : (fun x => -x - (a * x ^ 2 + b * x)) = fun x => x * (-a * x - (b + 1)) ⊢ Tendsto (fun x => -x - (a * x ^ 2 + b * x)) atTop atTop
729446a2306c563c
ZetaAsymptotics.term_one
Mathlib/NumberTheory/Harmonic/ZetaAsymp.lean
lemma term_one {n : ℕ} (hn : 0 < n) : term n 1 = (log (n + 1) - log n) - 1 / (n + 1)
case e_a.e_a n : ℕ hn : 0 < n hv : ∀ x ∈ uIcc (↑n) (↑n + 1), 0 < x x : ℝ hx : x ∈ uIcc (↑n) (↑n + 1) ⊢ 1 / x ^ 2 = x ^ (-2)
rw [rpow_neg, one_div, ← Nat.cast_two (R := ℝ), rpow_natCast]
case e_a.e_a.hx n : ℕ hn : 0 < n hv : ∀ x ∈ uIcc (↑n) (↑n + 1), 0 < x x : ℝ hx : x ∈ uIcc (↑n) (↑n + 1) ⊢ 0 ≤ x
b352dfbb4af79ad9
BitVec.mul_eq_and
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Lemmas.lean
theorem mul_eq_and {a b : BitVec 1} : a * b = a &&& b
a b : BitVec 1 ha : a = 0 ∨ a = 1 hb : b = 0 ∨ b = 1 ⊢ a * b = a &&& b
rcases ha with h | h <;> (rcases hb with h' | h' <;> (simp [h, h']))
no goals
65f931d1a2379105
Set.chainHeight_image
Mathlib/Order/Height.lean
theorem chainHeight_image (f : α → β) (hf : ∀ {x y}, x < y ↔ f x < f y) (s : Set α) : (f '' s).chainHeight = s.chainHeight
case a.cons α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β f : α → β hf : ∀ {x y : α}, x < y ↔ f x < f y s : Set α x : β xs : List β hx : xs ∈ (f '' s).subchain → ∃ l' ∈ s.subchain, map f l' = xs h : x ∈ f '' s ∧ xs ∈ (f '' s).subchain ∧ ∀ b ∈ xs.head?, x < b ⊢ ∃ l' ∈ s.subchain, map f l' = x :: xs
obtain ⟨⟨x, hx', rfl⟩, h₁, h₂⟩ := h
case a.cons.intro.intro.intro.intro α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β f : α → β hf : ∀ {x y : α}, x < y ↔ f x < f y s : Set α xs : List β hx : xs ∈ (f '' s).subchain → ∃ l' ∈ s.subchain, map f l' = xs x : α hx' : x ∈ s h₁ : xs ∈ (f '' s).subchain h₂ : ∀ b ∈ xs.head?, f x < b ⊢ ∃ l' ∈ s.subchain, map f l' = f x :: xs
0c10e60540ca25b5
Real.ceil_logb_natCast
Mathlib/Analysis/SpecialFunctions/Log/Base.lean
theorem ceil_logb_natCast {b : ℕ} {r : ℝ} (hr : 0 ≤ r) : ⌈logb b r⌉ = Int.clog b r
case pos.a b : ℕ r : ℝ hr✝ : 0 ≤ r hr : 0 < r hb : 1 < b hb1' : 1 < ↑b ⊢ ↑b ^ logb (↑b) r ≤ ↑b ^ ↑⌈logb (↑b) r⌉
exact rpow_le_rpow_of_exponent_le hb1'.le (Int.le_ceil _)
no goals
f353f45d6f6f2c29
LieAlgebra.lie_mem_genWeightSpace_of_mem_genWeightSpace
Mathlib/Algebra/Lie/Weights/Cartan.lean
theorem lie_mem_genWeightSpace_of_mem_genWeightSpace {χ₁ χ₂ : H → R} {x : L} {m : M} (hx : x ∈ rootSpace H χ₁) (hm : m ∈ genWeightSpace M χ₂) : ⁅x, m⁆ ∈ genWeightSpace M (χ₁ + χ₂)
R : Type u_1 L : Type u_2 inst✝⁷ : CommRing R inst✝⁶ : LieRing L inst✝⁵ : LieAlgebra R L H : LieSubalgebra R L inst✝⁴ : LieRing.IsNilpotent ↥H M : Type u_3 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M χ₁ χ₂ : ↥H → R x : L m : M y : ↥H hx : x ∈ genWeightSpaceOf L (χ₁ y) y hm : m ∈ genWeightSpaceOf M (χ₂ y) y ⊢ ⁅x, m⁆ ∈ genWeightSpaceOf M ((χ₁ + χ₂) y) y
exact lie_mem_maxGenEigenspace_toEnd hx hm
no goals
4c37ae78eab20823
CoalgebraCat.MonoidalCategoryAux.counit_tensorObj_tensorObj_right
Mathlib/Algebra/Category/CoalgebraCat/ComonEquivalence.lean
theorem counit_tensorObj_tensorObj_right : Coalgebra.counit (R := R) (A := (CoalgebraCat.of R M ⊗ (CoalgebraCat.of R N ⊗ CoalgebraCat.of R P) : CoalgebraCat R)) = Coalgebra.counit (A := M ⊗[R] (N ⊗[R] P))
R : Type u inst✝⁹ : CommRing R M N P : Type u inst✝⁸ : AddCommGroup M inst✝⁷ : AddCommGroup N inst✝⁶ : AddCommGroup P inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Coalgebra R M inst✝¹ : Coalgebra R N inst✝ : Coalgebra R P ⊢ CoalgebraStruct.counit = CoalgebraStruct.counit
ext
case h R : Type u inst✝⁹ : CommRing R M N P : Type u inst✝⁸ : AddCommGroup M inst✝⁷ : AddCommGroup N inst✝⁶ : AddCommGroup P inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Coalgebra R M inst✝¹ : Coalgebra R N inst✝ : Coalgebra R P x✝ : ↑(of R M ⊗ of R N ⊗ of R P).toModuleCat ⊢ CoalgebraStruct.counit x✝ = CoalgebraStruct.counit x✝
0c920a2c3480b08c
Polynomial.derivative_mul
Mathlib/Algebra/Polynomial/Derivative.lean
theorem derivative_mul {f g : R[X]} : derivative (f * g) = derivative f * g + f * derivative g
case h_monomial.h_monomial.succ.succ R : Type u inst✝ : Semiring R a b : R m n : ℕ ⊢ (monomial (m + 1 + n)) (a * (b * ↑(m + 1))) + (monomial (m + 1 + n)) (a * (b * ↑(n + 1))) = (monomial (m + (n + 1))) (a * (b * ↑(m + 1))) + (monomial (m + 1 + n)) (a * (b * ↑(n + 1)))
rw [add_assoc, add_comm n 1]
no goals
a66065c70ef80a14
controlled_prod_of_mem_closure
Mathlib/Analysis/Normed/Group/Continuity.lean
theorem controlled_prod_of_mem_closure {s : Subgroup E} (hg : a ∈ closure (s : Set E)) {b : ℕ → ℝ} (b_pos : ∀ n, 0 < b n) : ∃ v : ℕ → E, Tendsto (fun n => ∏ i ∈ range (n + 1), v i) atTop (𝓝 a) ∧ (∀ n, v n ∈ s) ∧ ‖v 0 / a‖ < b 0 ∧ ∀ n, 0 < n → ‖v n‖ < b n
case intro.intro.intro E : Type u_5 inst✝ : SeminormedCommGroup E a : E s : Subgroup E hg : a ∈ closure ↑s b : ℕ → ℝ b_pos : ∀ (n : ℕ), 0 < b n u : ℕ → E u_in : ∀ (n : ℕ), u n ∈ s lim_u : Tendsto u atTop (𝓝 a) n₀ : ℕ hn₀ : ∀ n ≥ n₀, ‖u n / a‖ < b 0 z : ℕ → E := fun n => u (n + n₀) ⊢ ∃ v, Tendsto (fun n => ∏ i ∈ range (n + 1), v i) atTop (𝓝 a) ∧ (∀ (n : ℕ), v n ∈ s) ∧ ‖v 0 / a‖ < b 0 ∧ ∀ (n : ℕ), 0 < n → ‖v n‖ < b n
have lim_z : Tendsto z atTop (𝓝 a) := lim_u.comp (tendsto_add_atTop_nat n₀)
case intro.intro.intro E : Type u_5 inst✝ : SeminormedCommGroup E a : E s : Subgroup E hg : a ∈ closure ↑s b : ℕ → ℝ b_pos : ∀ (n : ℕ), 0 < b n u : ℕ → E u_in : ∀ (n : ℕ), u n ∈ s lim_u : Tendsto u atTop (𝓝 a) n₀ : ℕ hn₀ : ∀ n ≥ n₀, ‖u n / a‖ < b 0 z : ℕ → E := fun n => u (n + n₀) lim_z : Tendsto z atTop (𝓝 a) ⊢ ∃ v, Tendsto (fun n => ∏ i ∈ range (n + 1), v i) atTop (𝓝 a) ∧ (∀ (n : ℕ), v n ∈ s) ∧ ‖v 0 / a‖ < b 0 ∧ ∀ (n : ℕ), 0 < n → ‖v n‖ < b n
647a783958e68b9a
List.eraseIdx_modify_of_eq
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Nat/Modify.lean
theorem eraseIdx_modify_of_eq (f : α → α) (n) (l : List α) : (modify f n l).eraseIdx n = l.eraseIdx n
case h α : Type u_1 f : α → α n : Nat l : List α ⊢ ∀ (i : Nat) (h₁ : i < ((modify f n l).eraseIdx n).length) (h₂ : i < (l.eraseIdx n).length), ((modify f n l).eraseIdx n)[i] = (l.eraseIdx n)[i]
intro m h₁ h₂
case h α : Type u_1 f : α → α n : Nat l : List α m : Nat h₁ : m < ((modify f n l).eraseIdx n).length h₂ : m < (l.eraseIdx n).length ⊢ ((modify f n l).eraseIdx n)[m] = (l.eraseIdx n)[m]
0e1ed36136351a9f
MeasureTheory.ae_nonneg_of_forall_setIntegral_nonneg
Mathlib/MeasureTheory/Function/AEEqOfIntegral.lean
theorem ae_nonneg_of_forall_setIntegral_nonneg (hf : Integrable f μ) (hf_zero : ∀ s, MeasurableSet s → μ s < ∞ → 0 ≤ ∫ x in s, f x ∂μ) : 0 ≤ᵐ[μ] f
α : Type u_1 m0 : MeasurableSpace α μ : Measure α f : α → ℝ hf : Integrable f μ hf_zero : ∀ (s : Set α), MeasurableSet s → μ s < ⊤ → 0 ≤ ∫ (x : α) in s, f x ∂μ ⊢ 0 ≤ᶠ[ae μ] f
simp_rw [EventuallyLE, Pi.zero_apply]
α : Type u_1 m0 : MeasurableSpace α μ : Measure α f : α → ℝ hf : Integrable f μ hf_zero : ∀ (s : Set α), MeasurableSet s → μ s < ⊤ → 0 ≤ ∫ (x : α) in s, f x ∂μ ⊢ ∀ᵐ (x : α) ∂μ, 0 ≤ f x
d52a385303ec1354
ProbabilityTheory.lintegral_mul_eq_lintegral_mul_lintegral_of_independent_measurableSpace
Mathlib/Probability/Integration.lean
theorem lintegral_mul_eq_lintegral_mul_lintegral_of_independent_measurableSpace {Mf Mg mΩ : MeasurableSpace Ω} {μ : Measure Ω} (hMf : Mf ≤ mΩ) (hMg : Mg ≤ mΩ) (h_ind : Indep Mf Mg μ) (h_meas_f : Measurable[Mf] f) (h_meas_g : Measurable[Mg] g) : ∫⁻ ω, f ω * g ω ∂μ = (∫⁻ ω, f ω ∂μ) * ∫⁻ ω, g ω ∂μ
case h_add Ω : Type u_1 f : Ω → ℝ≥0∞ Mf Mg mΩ : MeasurableSpace Ω μ : Measure Ω hMf : Mf ≤ mΩ hMg : Mg ≤ mΩ h_ind : Indep Mf Mg μ h_meas_f : Measurable f h_measM_f : Measurable f f' g : Ω → ℝ≥0∞ a✝¹ : Disjoint (Function.support f') (Function.support g) h_measMg_f' : Measurable f' a✝ : Measurable g h_ind_f' : ∫⁻ (ω : Ω), f ω * f' ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), f' ω ∂μ h_ind_g' : ∫⁻ (ω : Ω), f ω * g ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), g ω ∂μ h_measM_f' : Measurable f' ⊢ ∫⁻ (ω : Ω), f ω * f' ω + f ω * g ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), f' ω + g ω ∂μ
rw [lintegral_add_left h_measM_f', lintegral_add_left (h_measM_f.mul h_measM_f'), left_distrib, h_ind_f', h_ind_g']
no goals
bad3bf0b684e4cf2
PNat.factorMultiset_le_iff'
Mathlib/Data/PNat/Factors.lean
theorem factorMultiset_le_iff' {m : ℕ+} {v : PrimeMultiset} : factorMultiset m ≤ v ↔ m ∣ v.prod
m : ℕ+ v : PrimeMultiset h : m.factorMultiset ≤ v.prod.factorMultiset ↔ m ∣ v.prod := factorMultiset_le_iff ⊢ m.factorMultiset ≤ v ↔ m ∣ v.prod
rw [v.factorMultiset_prod] at h
m : ℕ+ v : PrimeMultiset h : m.factorMultiset ≤ v ↔ m ∣ v.prod ⊢ m.factorMultiset ≤ v ↔ m ∣ v.prod
38271c385288e7e9
Polynomial.Gal.splits_in_splittingField_of_comp
Mathlib/FieldTheory/PolynomialGaloisGroup.lean
theorem splits_in_splittingField_of_comp (hq : q.natDegree ≠ 0) : p.Splits (algebraMap F (p.comp q).SplittingField)
case neg.intro F : Type u_1 inst✝ : Field F p q : F[X] hq : q.natDegree ≠ 0 P : F[X] → Prop := fun r => Splits (algebraMap F (r.comp q).SplittingField) r r : F[X] hr : Irreducible r hr' : ¬r.natDegree = 0 x : (r.comp q).SplittingField hx : eval₂ (algebraMap F (r.comp q).SplittingField) x (r.comp q) = 0 ⊢ P r
rw [← aeval_def, aeval_comp] at hx
case neg.intro F : Type u_1 inst✝ : Field F p q : F[X] hq : q.natDegree ≠ 0 P : F[X] → Prop := fun r => Splits (algebraMap F (r.comp q).SplittingField) r r : F[X] hr : Irreducible r hr' : ¬r.natDegree = 0 x : (r.comp q).SplittingField hx : (aeval ((aeval x) q)) r = 0 ⊢ P r
781c423315763045
Ordering.isGT_swap
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Ord.lean
theorem isGT_swap {o : Ordering} : o.swap.isGT = o.isLT
o : Ordering ⊢ o.swap.isGT = o.isLT
cases o <;> simp
no goals
46ace378b3355311
List.chain'_of_mem_splitByLoop
Mathlib/Data/List/SplitBy.lean
theorem chain'_of_mem_splitByLoop {r : α → α → Bool} {l : List α} {a : α} {g : List α} (hga : ∀ b ∈ g.head?, r b a) (hg : g.Chain' fun y x ↦ r x y) (h : m ∈ splitBy.loop r l a g []) : m.Chain' fun x y ↦ r x y
case cons.h_2.inl α : Type u_1 r : α → α → Bool b : α l : List α a : α g : List α hga : ∀ (b : α), b ∈ g.head? → r b a = true hg : Chain' (fun y x => r x y = true) g x✝ : Bool heq✝ : r a b = false IH : ∀ {a_1 : α} {g_1 : List α}, (∀ (b : α), b ∈ g_1.head? → r b a_1 = true) → Chain' (fun y x => r x y = true) g_1 → g.reverse ++ [a] ∈ splitBy.loop r l a_1 g_1 [] → Chain' (fun x y => r x y = true) (g.reverse ++ [a]) ⊢ Chain' (fun y x => r x y = true) ([a] ++ g)
exact chain'_cons'.2 ⟨hga, hg⟩
no goals
f1b83979d934bdc8
iteratedFDeriv_comp
Mathlib/Analysis/Calculus/ContDiff/Basic.lean
theorem iteratedFDeriv_comp (hg : ContDiffAt 𝕜 n g (f x)) (hf : ContDiffAt 𝕜 n f x) {i : ℕ} (hi : i ≤ n) : iteratedFDeriv 𝕜 i (g ∘ f) x = (ftaylorSeries 𝕜 g (f x)).taylorComp (ftaylorSeries 𝕜 f x) i
𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type uE inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type uF inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type uG inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace 𝕜 G f : E → F g : F → G x : E n : WithTop ℕ∞ hg : ContDiffAt 𝕜 n g (f x) hf : ContDiffAt 𝕜 n f x i : ℕ hi : ↑i ≤ n ⊢ iteratedFDeriv 𝕜 i (g ∘ f) x = (ftaylorSeries 𝕜 g (f x)).taylorComp (ftaylorSeries 𝕜 f x) i
simp only [← iteratedFDerivWithin_univ, ← ftaylorSeriesWithin_univ]
𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type uE inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type uF inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type uG inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace 𝕜 G f : E → F g : F → G x : E n : WithTop ℕ∞ hg : ContDiffAt 𝕜 n g (f x) hf : ContDiffAt 𝕜 n f x i : ℕ hi : ↑i ≤ n ⊢ iteratedFDerivWithin 𝕜 i (g ∘ f) univ x = (ftaylorSeriesWithin 𝕜 g univ (f x)).taylorComp (ftaylorSeriesWithin 𝕜 f univ x) i
ec1777b9bb089ded
not_summable_of_antitone_of_neg
Mathlib/Analysis/SumOverResidueClass.lean
/-- If `f : ℕ → ℝ` is decreasing and has a negative term, then `f` is not summable. -/ lemma not_summable_of_antitone_of_neg {f : ℕ → ℝ} (hf : Antitone f) {n : ℕ} (hn : f n < 0) : ¬ Summable f
f : ℕ → ℝ hf : Antitone f n : ℕ hn : f n < 0 ⊢ ¬Summable f
intro hs
f : ℕ → ℝ hf : Antitone f n : ℕ hn : f n < 0 hs : Summable f ⊢ False
bd42ef63684ae4ee
Real.Icc_mem_vitaliFamily_at_right
Mathlib/MeasureTheory/Covering/OneDim.lean
theorem Icc_mem_vitaliFamily_at_right {x y : ℝ} (hxy : x < y) : Icc x y ∈ (vitaliFamily (volume : Measure ℝ) 1).setsAt x
x y : ℝ hxy : x < y ⊢ dist x ((x + y) / 2) ≤ 1 * ((y - x) / 2)
rw [dist_comm, Real.dist_eq, abs_of_nonneg] <;> linarith
no goals
f44bb90059fd7aa2
Polynomial.monomial_pow
Mathlib/Algebra/Polynomial/Basic.lean
theorem monomial_pow (n : ℕ) (r : R) (k : ℕ) : monomial n r ^ k = monomial (n * k) (r ^ k)
case zero R : Type u inst✝ : Semiring R n : ℕ r : R ⊢ (monomial n) r ^ 0 = (monomial (n * 0)) (r ^ 0)
simp [pow_zero, monomial_zero_one]
no goals
bbe2b6146920ba11
LawfulFunctor.map_inj_right_of_nonempty
Mathlib/.lake/packages/batteries/Batteries/Control/Monad.lean
theorem _root_.LawfulFunctor.map_inj_right_of_nonempty [Functor f] [LawfulFunctor f] [Nonempty α] {g : α → β} (h : ∀ {x y : α}, g x = g y → x = y) {x y : f α} : g <$> x = g <$> y ↔ x = y
case mpr f : Type u_1 → Type u_2 α β : Type u_1 inst✝² : Functor f inst✝¹ : LawfulFunctor f inst✝ : Nonempty α g : α → β h : ∀ {x y : α}, g x = g y → x = y x y : f α ⊢ x = y → g <$> x = g <$> y
intro h'
case mpr f : Type u_1 → Type u_2 α β : Type u_1 inst✝² : Functor f inst✝¹ : LawfulFunctor f inst✝ : Nonempty α g : α → β h : ∀ {x y : α}, g x = g y → x = y x y : f α h' : x = y ⊢ g <$> x = g <$> y
9ff9346398dc10b4
List.idxOf_mem_indexesOf
Mathlib/.lake/packages/batteries/Batteries/Data/List/Lemmas.lean
theorem idxOf_mem_indexesOf [BEq α] [LawfulBEq α] {xs : List α} (m : x ∈ xs) : xs.idxOf x ∈ xs.indexesOf x
case cons α : Type u_1 x : α inst✝¹ : BEq α inst✝ : LawfulBEq α h : α t : List α ih : x ∈ t → idxOf x t ∈ indexesOf x t m : x ∈ h :: t ⊢ idxOf x (h :: t) ∈ indexesOf x (h :: t)
simp [idxOf_cons, indexesOf_cons, cond_eq_if]
case cons α : Type u_1 x : α inst✝¹ : BEq α inst✝ : LawfulBEq α h : α t : List α ih : x ∈ t → idxOf x t ∈ indexesOf x t m : x ∈ h :: t ⊢ (if (h == x) = true then 0 else idxOf x t + 1) ∈ if (h == x) = true then 0 :: map (fun x => x + 1) (indexesOf x t) else map (fun x => x + 1) (indexesOf x t)
e8cb18c97ac0bdad
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.reduce_postcondition
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/RupAddSound.lean
theorem reduce_postcondition {n : Nat} (c : DefaultClause n) (assignment : Array Assignment) : (reduce c assignment = reducedToEmpty → Incompatible (PosFin n) c assignment) ∧ (∀ l : Literal (PosFin n), reduce c assignment = reducedToUnit l → ∀ (p : (PosFin n) → Bool), p ⊨ assignment → p ⊨ c → p ⊨ l)
case intro.right.intro.inr.intro n : Nat c : DefaultClause n assignment : Array Assignment c_arr : Array (Literal (PosFin n)) := List.toArray c.clause c_clause_rw : c.clause = c_arr.toList motive : Nat → ReduceResult (PosFin n) → Prop := ReducePostconditionInductionMotive c_arr assignment h_base : motive 0 reducedToEmpty h_inductive : ∀ (idx : Fin c_arr.size) (res : ReduceResult (PosFin n)), motive (↑idx) res → motive (↑idx + 1) (reduce_fold_fn assignment res c_arr[idx]) h1 : Array.foldl (reduce_fold_fn assignment) reducedToEmpty c_arr = reducedToEmpty → ∀ (p : PosFin n → Bool), (∀ (i : Fin c_arr.size), ↑i < c_arr.size → ¬(p ⊨ c_arr[i])) ∨ ¬(p ⊨ assignment) h2 : ∀ (l : Literal (PosFin n)), Array.foldl (reduce_fold_fn assignment) reducedToEmpty c_arr = reducedToUnit l → ∀ (p : PosFin n → Bool), p ⊨ assignment → (∃ i, ↑i < c_arr.size ∧ (p ⊨ c_arr[i])) → p ⊨ l l : Literal (PosFin n) hl : Array.foldl (reduce_fold_fn assignment) reducedToEmpty c_arr = reducedToUnit l p : PosFin n → Bool hp : p ⊨ assignment i : PosFin n pc1 : (i, true) ∈ c.clause pc2 : decide (p i = true) = true ⊢ ∃ i, ↑i < c_arr.size ∧ (p ⊨ c_arr[i])
rw [c_clause_rw] at pc1
case intro.right.intro.inr.intro n : Nat c : DefaultClause n assignment : Array Assignment c_arr : Array (Literal (PosFin n)) := List.toArray c.clause c_clause_rw : c.clause = c_arr.toList motive : Nat → ReduceResult (PosFin n) → Prop := ReducePostconditionInductionMotive c_arr assignment h_base : motive 0 reducedToEmpty h_inductive : ∀ (idx : Fin c_arr.size) (res : ReduceResult (PosFin n)), motive (↑idx) res → motive (↑idx + 1) (reduce_fold_fn assignment res c_arr[idx]) h1 : Array.foldl (reduce_fold_fn assignment) reducedToEmpty c_arr = reducedToEmpty → ∀ (p : PosFin n → Bool), (∀ (i : Fin c_arr.size), ↑i < c_arr.size → ¬(p ⊨ c_arr[i])) ∨ ¬(p ⊨ assignment) h2 : ∀ (l : Literal (PosFin n)), Array.foldl (reduce_fold_fn assignment) reducedToEmpty c_arr = reducedToUnit l → ∀ (p : PosFin n → Bool), p ⊨ assignment → (∃ i, ↑i < c_arr.size ∧ (p ⊨ c_arr[i])) → p ⊨ l l : Literal (PosFin n) hl : Array.foldl (reduce_fold_fn assignment) reducedToEmpty c_arr = reducedToUnit l p : PosFin n → Bool hp : p ⊨ assignment i : PosFin n pc1 : (i, true) ∈ c_arr.toList pc2 : decide (p i = true) = true ⊢ ∃ i, ↑i < c_arr.size ∧ (p ⊨ c_arr[i])
bc01533c0ab5cdb8
CategoryTheory.Functor.IsCocartesian.map_self
Mathlib/CategoryTheory/FiberedCategory/Cocartesian.lean
@[simp] lemma map_self : IsCocartesian.map p f φ φ = 𝟙 b
case map 𝒮 : Type u₁ 𝒳 : Type u₂ inst✝² : Category.{v₁, u₁} 𝒮 inst✝¹ : Category.{v₂, u₂} 𝒳 p : 𝒳 ⥤ 𝒮 a✝ b✝ : 𝒳 φ : a✝ ⟶ b✝ R S : 𝒮 a b : 𝒳 inst✝ : p.IsCocartesian (p.map φ) φ ⊢ 𝟙 b✝ = IsCocartesian.map p (p.map φ) φ φ
apply map_uniq
case map.hψ 𝒮 : Type u₁ 𝒳 : Type u₂ inst✝² : Category.{v₁, u₁} 𝒮 inst✝¹ : Category.{v₂, u₂} 𝒳 p : 𝒳 ⥤ 𝒮 a✝ b✝ : 𝒳 φ : a✝ ⟶ b✝ R S : 𝒮 a b : 𝒳 inst✝ : p.IsCocartesian (p.map φ) φ ⊢ φ ≫ 𝟙 b✝ = φ
833ab7024cb503ea
SimpleGraph.chromaticNumber_le_of_forall_imp
Mathlib/Combinatorics/SimpleGraph/Coloring.lean
theorem chromaticNumber_le_of_forall_imp {V' : Type*} {G' : SimpleGraph V'} (h : ∀ n, G'.Colorable n → G.Colorable n) : G.chromaticNumber ≤ G'.chromaticNumber
V : Type u G : SimpleGraph V V' : Type u_3 G' : SimpleGraph V' h : ∀ (n : ℕ), G'.Colorable n → G.Colorable n m : ℕ hc : G'.Colorable m this : G.Colorable m ⊢ ⨅ n, ⨅ (_ : G.Colorable n), ↑n ≤ ↑m
rw [← chromaticNumber_le_iff_colorable] at this
V : Type u G : SimpleGraph V V' : Type u_3 G' : SimpleGraph V' h : ∀ (n : ℕ), G'.Colorable n → G.Colorable n m : ℕ hc : G'.Colorable m this : G.chromaticNumber ≤ ↑m ⊢ ⨅ n, ⨅ (_ : G.Colorable n), ↑n ≤ ↑m
5f4f3f6887a3f266
CategoryTheory.Abelian.Ext.add_hom
Mathlib/Algebra/Homology/DerivedCategory/Ext/Basic.lean
@[simp] lemma add_hom (α β : Ext X Y n) : (α + β).hom = α.hom + β.hom
C : Type u inst✝³ : Category.{v, u} C inst✝² : Abelian C inst✝¹ : HasExt C X Y : C n : ℕ inst✝ : HasDerivedCategory C α β : Ext X Y n α' : Ext (X ⊞ X) Y n := (mk₀ biprod.fst).comp α ⋯ β' : Ext (X ⊞ X) Y n := (mk₀ biprod.snd).comp β ⋯ eq₁ : α + β = (mk₀ (biprod.lift (𝟙 X) (𝟙 X))).comp (α' + β') ⋯ ⊢ α' + β' = homEquiv.symm (α'.hom + β'.hom)
apply biprod_ext
case h₁ C : Type u inst✝³ : Category.{v, u} C inst✝² : Abelian C inst✝¹ : HasExt C X Y : C n : ℕ inst✝ : HasDerivedCategory C α β : Ext X Y n α' : Ext (X ⊞ X) Y n := (mk₀ biprod.fst).comp α ⋯ β' : Ext (X ⊞ X) Y n := (mk₀ biprod.snd).comp β ⋯ eq₁ : α + β = (mk₀ (biprod.lift (𝟙 X) (𝟙 X))).comp (α' + β') ⋯ ⊢ (mk₀ biprod.inl).comp (α' + β') ⋯ = (mk₀ biprod.inl).comp (homEquiv.symm (α'.hom + β'.hom)) ⋯ case h₂ C : Type u inst✝³ : Category.{v, u} C inst✝² : Abelian C inst✝¹ : HasExt C X Y : C n : ℕ inst✝ : HasDerivedCategory C α β : Ext X Y n α' : Ext (X ⊞ X) Y n := (mk₀ biprod.fst).comp α ⋯ β' : Ext (X ⊞ X) Y n := (mk₀ biprod.snd).comp β ⋯ eq₁ : α + β = (mk₀ (biprod.lift (𝟙 X) (𝟙 X))).comp (α' + β') ⋯ ⊢ (mk₀ biprod.inr).comp (α' + β') ⋯ = (mk₀ biprod.inr).comp (homEquiv.symm (α'.hom + β'.hom)) ⋯
df159b910b840aef
List.Vector.get_ofFn
Mathlib/Data/Vector/Basic.lean
theorem get_ofFn {n} (f : Fin n → α) (i) : get (ofFn f) i = f i
α : Type u_1 n : ℕ f : Fin n → α i : Fin n ⊢ (ofFn f).toList.get (Fin.cast ⋯ i) = (List.ofFn f).get ⟨↑i, ⋯⟩
congr <;> simp [Fin.heq_ext_iff]
no goals
0313928d8f9dd4c8
MeasureTheory.tendsto_of_lintegral_tendsto_of_antitone
Mathlib/MeasureTheory/Integral/Lebesgue.lean
/-- If an antitone sequence of functions has a lower bound and the sequence of integrals of these functions tends to the integral of the lower bound, then the sequence of functions converges almost everywhere to the lower bound. -/ lemma tendsto_of_lintegral_tendsto_of_antitone {α : Type*} {mα : MeasurableSpace α} {f : ℕ → α → ℝ≥0∞} {F : α → ℝ≥0∞} {μ : Measure α} (hf_meas : ∀ n, AEMeasurable (f n) μ) (hf_tendsto : Tendsto (fun i ↦ ∫⁻ a, f i a ∂μ) atTop (𝓝 (∫⁻ a, F a ∂μ))) (hf_mono : ∀ᵐ a ∂μ, Antitone (fun i ↦ f i a)) (h_bound : ∀ᵐ a ∂μ, ∀ i, F a ≤ f i a) (h0 : ∫⁻ a, f 0 a ∂μ ≠ ∞) : ∀ᵐ a ∂μ, Tendsto (fun i ↦ f i a) atTop (𝓝 (F a))
α : Type u_5 mα : MeasurableSpace α f : ℕ → α → ℝ≥0∞ F : α → ℝ≥0∞ μ : Measure α hf_meas : ∀ (n : ℕ), AEMeasurable (f n) μ hf_tendsto : Tendsto (fun i => ∫⁻ (a : α), f i a ∂μ) atTop (𝓝 (∫⁻ (a : α), F a ∂μ)) hf_mono : ∀ᵐ (a : α) ∂μ, Antitone fun i => f i a h_bound : ∀ᵐ (a : α) ∂μ, ∀ (i : ℕ), F a ≤ f i a h0 : ∫⁻ (a : α), f 0 a ∂μ ≠ ⊤ h_int_finite : ∫⁻ (a : α), F a ∂μ ≠ ⊤ h_exists : ∀ᵐ (a : α) ∂μ, ∃ l, Tendsto (fun i => f i a) atTop (𝓝 l) F' : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun i => f i a) atTop (𝓝 l) then h.choose else ⊤ hF'_tendsto : ∀ᵐ (a : α) ∂μ, Tendsto (fun i => f i a) atTop (𝓝 (F' a)) ⊢ ∀ᵐ (a : α) ∂μ, Tendsto (fun i => f i a) atTop (𝓝 (F a))
suffices F' =ᵐ[μ] F by filter_upwards [this, hF'_tendsto] with a h_eq h_tendsto using h_eq ▸ h_tendsto
α : Type u_5 mα : MeasurableSpace α f : ℕ → α → ℝ≥0∞ F : α → ℝ≥0∞ μ : Measure α hf_meas : ∀ (n : ℕ), AEMeasurable (f n) μ hf_tendsto : Tendsto (fun i => ∫⁻ (a : α), f i a ∂μ) atTop (𝓝 (∫⁻ (a : α), F a ∂μ)) hf_mono : ∀ᵐ (a : α) ∂μ, Antitone fun i => f i a h_bound : ∀ᵐ (a : α) ∂μ, ∀ (i : ℕ), F a ≤ f i a h0 : ∫⁻ (a : α), f 0 a ∂μ ≠ ⊤ h_int_finite : ∫⁻ (a : α), F a ∂μ ≠ ⊤ h_exists : ∀ᵐ (a : α) ∂μ, ∃ l, Tendsto (fun i => f i a) atTop (𝓝 l) F' : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun i => f i a) atTop (𝓝 l) then h.choose else ⊤ hF'_tendsto : ∀ᵐ (a : α) ∂μ, Tendsto (fun i => f i a) atTop (𝓝 (F' a)) ⊢ F' =ᶠ[ae μ] F
4ccce525cdd179a4
Set.chainHeight_insert_of_forall_gt
Mathlib/Order/Height.lean
theorem chainHeight_insert_of_forall_gt (a : α) (hx : ∀ b ∈ s, a < b) : (insert a s).chainHeight = s.chainHeight + 1
case a.refine_1 α : Type u_1 s : Set α inst✝ : Preorder α a : α hx : ∀ b ∈ s, a < b l : List α hl : l ∈ s.subchain ⊢ Chain' (fun x1 x2 => x1 < x2) (a :: l)
rw [chain'_cons']
case a.refine_1 α : Type u_1 s : Set α inst✝ : Preorder α a : α hx : ∀ b ∈ s, a < b l : List α hl : l ∈ s.subchain ⊢ (∀ y ∈ l.head?, a < y) ∧ Chain' (fun x1 x2 => x1 < x2) l
abd1373dde588775
ModularGroup.det_coe
Mathlib/Analysis/Complex/UpperHalfPlane/Basic.lean
theorem det_coe {g : SL(2, ℤ)} : det (Units.val <| Subtype.val <| coe g) = 1
g : SL(2, ℤ) ⊢ (↑↑↑g).det = 1
simp only [SpecialLinearGroup.coe_GLPos_coe_GL_coe_matrix, SpecialLinearGroup.det_coe, coe]
no goals
c80b6f191a45697d
WeierstrassCurve.exists_variableChange_of_char_two_of_j_ne_zero
Mathlib/AlgebraicGeometry/EllipticCurve/IsomOfJ.lean
private lemma exists_variableChange_of_char_two_of_j_ne_zero [E.IsCharTwoJNeZeroNF] [E'.IsCharTwoJNeZeroNF] (heq : E.a₆ = E'.a₆) : ∃ C : VariableChange F, E.variableChange C = E'
F : Type u_1 inst✝⁴ : Field F inst✝³ : IsSepClosed F E E' : WeierstrassCurve F inst✝² : CharP F 2 inst✝¹ : E.IsCharTwoJNeZeroNF inst✝ : E'.IsCharTwoJNeZeroNF heq : E.a₆ = E'.a₆ ⊢ 2 ∣ 2
norm_num
no goals
515774c34fadda64
HilbertBasis.hasSum_repr_symm
Mathlib/Analysis/InnerProductSpace/l2Space.lean
theorem hasSum_repr_symm (b : HilbertBasis ι 𝕜 E) (f : ℓ²(ι, 𝕜)) : HasSum (fun i => f i • b i) (b.repr.symm f)
case h.a ι : Type u_1 𝕜 : Type u_2 inst✝² : RCLike 𝕜 E : Type u_3 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E b : HilbertBasis ι 𝕜 E f : ↥(lp (fun i => 𝕜) 2) i : ι this✝ : NormedSpace 𝕜 ↥(lp (fun _i => 𝕜) 2) := inferInstance this : lp.single 2 i (↑f i) = ↑f i • lp.single 2 i 1 ⊢ lp.single 2 i (↑f i) = b.repr (b.repr.symm ((fun i => lp.single 2 i (↑f i)) i))
exact (b.repr.apply_symm_apply (lp.single 2 i (f i))).symm
no goals
611317bc4a18ea4f
Nat.testBit_mod_two_pow
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Nat/Bitwise/Lemmas.lean
theorem testBit_mod_two_pow (x j i : Nat) : testBit (x % 2^j) i = (decide (i < j) && testBit x i)
case ind x : Nat hyp : ∀ (m : Nat), m < x → ∀ (j i : Nat), (m % 2 ^ j).testBit i = (decide (i < j) && m.testBit i) j i : Nat ⊢ (x % 2 ^ j).testBit i = (decide (i < j) && x.testBit i)
rw [mod_eq]
case ind x : Nat hyp : ∀ (m : Nat), m < x → ∀ (j i : Nat), (m % 2 ^ j).testBit i = (decide (i < j) && m.testBit i) j i : Nat ⊢ (if 0 < 2 ^ j ∧ 2 ^ j ≤ x then (x - 2 ^ j) % 2 ^ j else x).testBit i = (decide (i < j) && x.testBit i)
f8ba27e4751df3a5
AlgebraicGeometry.Scheme.IdealSheafData.zeroLocus_inter_subset_support
Mathlib/AlgebraicGeometry/IdealSheaf.lean
lemma zeroLocus_inter_subset_support (I : IdealSheafData X) (U : X.affineOpens) : X.zeroLocus (U := U.1) (I.ideal U) ∩ U ⊆ I.support
case intro.intro.intro.intro.intro X : Scheme I : X.IdealSheafData U V : ↑X.affineOpens x : ↑↑X.toPresheafedSpace hxV : x ∈ ↑↑V hxU : x ∈ ↑↑U hx : ∀ f ∈ I.ideal U, x ∉ X.basicOpen f s : ↑Γ(X, ↑V) hfU : s ∈ I.ideal V hxs : x ∈ X.basicOpen s f : ↑Γ(X, ↑U) g : ↑Γ(X, ↑V) hfg : X.basicOpen f = X.basicOpen g hxf : x ∈ X.basicOpen f ⊢ False
have inst := U.2.isLocalization_basicOpen f
case intro.intro.intro.intro.intro X : Scheme I : X.IdealSheafData U V : ↑X.affineOpens x : ↑↑X.toPresheafedSpace hxV : x ∈ ↑↑V hxU : x ∈ ↑↑U hx : ∀ f ∈ I.ideal U, x ∉ X.basicOpen f s : ↑Γ(X, ↑V) hfU : s ∈ I.ideal V hxs : x ∈ X.basicOpen s f : ↑Γ(X, ↑U) g : ↑Γ(X, ↑V) hfg : X.basicOpen f = X.basicOpen g hxf : x ∈ X.basicOpen f inst : IsLocalization.Away f ↑Γ(X, X.basicOpen f) ⊢ False
ac346fd7f1a4fa9f
NormedField.continuousAt_zpow
Mathlib/Analysis/Normed/Field/Lemmas.lean
@[simp] protected lemma continuousAt_zpow : ContinuousAt (fun x ↦ x ^ n) x ↔ x ≠ 0 ∨ 0 ≤ n
𝕜 : Type u_4 inst✝ : NontriviallyNormedField 𝕜 n : ℤ x : 𝕜 ⊢ ContinuousAt (fun x => x ^ n) x ↔ x ≠ 0 ∨ 0 ≤ n
refine ⟨?_, continuousAt_zpow₀ _ _⟩
𝕜 : Type u_4 inst✝ : NontriviallyNormedField 𝕜 n : ℤ x : 𝕜 ⊢ ContinuousAt (fun x => x ^ n) x → x ≠ 0 ∨ 0 ≤ n
25b0e3752eb9042c
LieAlgebra.IsKilling.isSemisimple_ad_of_mem_isCartanSubalgebra
Mathlib/Algebra/Lie/Weights/Killing.lean
lemma isSemisimple_ad_of_mem_isCartanSubalgebra {x : L} (hx : x ∈ H) : (ad K L x).IsSemisimple
case hN K : Type u_2 L : Type u_3 inst✝⁷ : LieRing L inst✝⁶ : Field K inst✝⁵ : LieAlgebra K L inst✝⁴ : FiniteDimensional K L H : LieSubalgebra K L inst✝³ : H.IsCartanSubalgebra inst✝² : IsKilling K L inst✝¹ : IsTriangularizable K (↥H) L inst✝ : PerfectField K x : L hx : x ∈ H N S : End K L hN : _root_.IsNilpotent ((ad K L) x - S) hS : S.IsSemisimple hSN : (ad K L) x = N + S hS₀ : Commute ((ad K L) x) S x' : ↥H := ⟨x, hx⟩ aux : ∀ {α : ↥H → K} {y : L}, y ∈ rootSpace H α → S y = α x' • y h_der : ∀ (y z : L) (α β : ↥H → K), y ∈ rootSpace H α → z ∈ rootSpace H β → S ⁅y, z⁆ = ⁅S y, z⁆ + ⁅y, S z⁆ y✝ z : L hz : z ∈ ⨆ α, rootSpace H α α : ↥H → K y : L hy : y ∈ rootSpace H α ⊢ S ⁅y, z⁆ = ⁅S y, z⁆ + ⁅y, S z⁆
induction hz using LieSubmodule.iSup_induction' with | hN β z hz => exact h_der y z α β hy hz | h0 => simp | hadd _ _ _ _ h h' => simp only [lie_add, map_add, h, h']; abel
no goals
b080016ae19cad5d
MeasureTheory.Measure.haveLebesgueDecomposition_of_finiteMeasure
Mathlib/MeasureTheory/Decomposition/Lebesgue.lean
theorem haveLebesgueDecomposition_of_finiteMeasure [IsFiniteMeasure μ] [IsFiniteMeasure ν] : HaveLebesgueDecomposition μ ν where lebesgue_decomposition
α : Type u_1 m : MeasurableSpace α μ ν : Measure α inst✝¹ : IsFiniteMeasure μ inst✝ : IsFiniteMeasure ν g : ℕ → ℝ≥0∞ h✝ : Monotone g hg₂ : Filter.Tendsto g Filter.atTop (nhds (sSup (measurableLEEval ν μ))) f : ℕ → α → ℝ≥0∞ hf₁ : ∀ (n : ℕ), f n ∈ measurableLE ν μ hf₂ : ∀ (n : ℕ), (fun f => ∫⁻ (x : α), f x ∂ν) (f n) = g n ξ : α → ℝ≥0∞ := ⨆ n, ⨆ k, ⨆ (_ : k ≤ n), f k hξ : ξ = ⨆ n, ⨆ k, ⨆ (_ : k ≤ n), f k hξ₁ : sSup (measurableLEEval ν μ) = ∫⁻ (a : α), ξ a ∂ν hξm : Measurable ξ hξle : ∀ (A : Set α), MeasurableSet A → ∫⁻ (a : α) in A, ξ a ∂ν ≤ μ A hle : ν.withDensity ξ ≤ μ ⊢ IsFiniteMeasure (ν.withDensity ξ)
refine isFiniteMeasure_withDensity ?_
α : Type u_1 m : MeasurableSpace α μ ν : Measure α inst✝¹ : IsFiniteMeasure μ inst✝ : IsFiniteMeasure ν g : ℕ → ℝ≥0∞ h✝ : Monotone g hg₂ : Filter.Tendsto g Filter.atTop (nhds (sSup (measurableLEEval ν μ))) f : ℕ → α → ℝ≥0∞ hf₁ : ∀ (n : ℕ), f n ∈ measurableLE ν μ hf₂ : ∀ (n : ℕ), (fun f => ∫⁻ (x : α), f x ∂ν) (f n) = g n ξ : α → ℝ≥0∞ := ⨆ n, ⨆ k, ⨆ (_ : k ≤ n), f k hξ : ξ = ⨆ n, ⨆ k, ⨆ (_ : k ≤ n), f k hξ₁ : sSup (measurableLEEval ν μ) = ∫⁻ (a : α), ξ a ∂ν hξm : Measurable ξ hξle : ∀ (A : Set α), MeasurableSet A → ∫⁻ (a : α) in A, ξ a ∂ν ≤ μ A hle : ν.withDensity ξ ≤ μ ⊢ ∫⁻ (a : α), ξ a ∂ν ≠ ⊤
0e340e69a0abebdf
bernsteinApproximation_uniform
Mathlib/Analysis/SpecialFunctions/Bernstein.lean
theorem bernsteinApproximation_uniform (f : C(I, ℝ)) : Tendsto (fun n : ℕ => bernsteinApproximation n f) atTop (𝓝 f)
case h.calc_2 f : C(↑I, ℝ) ε : ℝ h : 0 < ε δ : ℝ := bernsteinApproximation.δ f ε h nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0) n : ℕ nh : 2 * ‖f‖ * δ ^ (-2) / ↑n < ε / 2 npos' : 0 < n npos : 0 < ↑n x : ↑I S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x ⊢ ∑ k ∈ Sᶜ, |f k/ₙ - f x| * (bernstein n ↑k) x < ε / 2
calc ∑ k ∈ Sᶜ, |f k/ₙ - f x| * bernstein n k x ≤ ∑ k ∈ Sᶜ, 2 * ‖f‖ * bernstein n k x := by gcongr apply f.dist_le_two_norm _ = 2 * ‖f‖ * ∑ k ∈ Sᶜ, bernstein n k x := by rw [Finset.mul_sum] _ ≤ 2 * ‖f‖ * ∑ k ∈ Sᶜ, δ ^ (-2 : ℤ) * ((x : ℝ) - k/ₙ) ^ 2 * bernstein n k x := by gcongr with _ m conv_lhs => rw [← one_mul (bernstein _ _ _)] gcongr exact le_of_mem_S_compl m _ ≤ 2 * ‖f‖ * ∑ k : Fin (n + 1), δ ^ (-2 : ℤ) * ((x : ℝ) - k/ₙ) ^ 2 * bernstein n k x := by gcongr; exact Sᶜ.subset_univ _ = 2 * ‖f‖ * δ ^ (-2 : ℤ) * ∑ k : Fin (n + 1), ((x : ℝ) - k/ₙ) ^ 2 * bernstein n k x := by conv_rhs => rw [mul_assoc, Finset.mul_sum] simp only [← mul_assoc] _ = 2 * ‖f‖ * δ ^ (-2 : ℤ) * x * (1 - x) / n := by rw [variance npos]; ring _ ≤ 2 * ‖f‖ * δ ^ (-2 : ℤ) * 1 * 1 / n := by gcongr <;> unit_interval _ < ε / 2 := by simp only [mul_one]; exact nh
no goals
404c705b844529e4
LinearMap.re_inner_adjoint_mul_self_nonneg
Mathlib/Analysis/InnerProductSpace/Adjoint.lean
theorem re_inner_adjoint_mul_self_nonneg (T : E →ₗ[𝕜] E) (x : E) : 0 ≤ re ⟪x, (LinearMap.adjoint T * T) x⟫
𝕜 : Type u_1 E : Type u_2 inst✝³ : RCLike 𝕜 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E inst✝ : FiniteDimensional 𝕜 E T : E →ₗ[𝕜] E x : E ⊢ 0 ≤ re ⟪x, (adjoint T * T) x⟫_𝕜
simp only [mul_apply, adjoint_inner_right, inner_self_eq_norm_sq_to_K]
𝕜 : Type u_1 E : Type u_2 inst✝³ : RCLike 𝕜 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E inst✝ : FiniteDimensional 𝕜 E T : E →ₗ[𝕜] E x : E ⊢ 0 ≤ re (↑‖T x‖ ^ 2)
59c20261fe17c950
ProbabilityTheory.Kernel.indepSets_piiUnionInter_of_disjoint
Mathlib/Probability/Independence/Kernel.lean
theorem indepSets_piiUnionInter_of_disjoint {s : ι → Set (Set Ω)} {S T : Set ι} (h_indep : iIndepSets s κ μ) (hST : Disjoint S T) : IndepSets (piiUnionInter s S) (piiUnionInter s T) κ μ
α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : Kernel α Ω μ : Measure α s : ι → Set (Set Ω) S T : Set ι h_indep : iIndepSets s κ μ hST : Disjoint S T t1 t2 : Set Ω p1 : Finset ι hp1 : ↑p1 ⊆ S f1 : ι → Set Ω ht1_m : ∀ x ∈ p1, f1 x ∈ s x ht1_eq : t1 = ⋂ x ∈ p1, f1 x p2 : Finset ι hp2 : ↑p2 ⊆ T f2 : ι → Set Ω ht2_m : ∀ x ∈ p2, f2 x ∈ s x ht2_eq : t2 = ⋂ x ∈ p2, f2 x g : ι → Set Ω := fun i => (if i ∈ p1 then f1 i else univ) ∩ if i ∈ p2 then f2 i else univ ⊢ ∀ i ∈ p1 ∪ p2, g i ∈ s i
intro i hi_mem_union
α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : Kernel α Ω μ : Measure α s : ι → Set (Set Ω) S T : Set ι h_indep : iIndepSets s κ μ hST : Disjoint S T t1 t2 : Set Ω p1 : Finset ι hp1 : ↑p1 ⊆ S f1 : ι → Set Ω ht1_m : ∀ x ∈ p1, f1 x ∈ s x ht1_eq : t1 = ⋂ x ∈ p1, f1 x p2 : Finset ι hp2 : ↑p2 ⊆ T f2 : ι → Set Ω ht2_m : ∀ x ∈ p2, f2 x ∈ s x ht2_eq : t2 = ⋂ x ∈ p2, f2 x g : ι → Set Ω := fun i => (if i ∈ p1 then f1 i else univ) ∩ if i ∈ p2 then f2 i else univ i : ι hi_mem_union : i ∈ p1 ∪ p2 ⊢ g i ∈ s i
139cefbe3a1213c8
LocalizedModule.subsingleton_iff_support_subset
Mathlib/RingTheory/Support.lean
lemma LocalizedModule.subsingleton_iff_support_subset {f : R} : Subsingleton (LocalizedModule (.powers f) M) ↔ Module.support R M ⊆ PrimeSpectrum.zeroLocus {f}
case mpr R : Type u_1 M : Type u_2 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M f : R H : Module.support R M ⊆ PrimeSpectrum.zeroLocus {f} m : M ⊢ ∃ r ∈ Submonoid.powers f, r • m = 0
by_cases h : (Submodule.span R {m}).annihilator = ⊤
case pos R : Type u_1 M : Type u_2 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M f : R H : Module.support R M ⊆ PrimeSpectrum.zeroLocus {f} m : M h : (Submodule.span R {m}).annihilator = ⊤ ⊢ ∃ r ∈ Submonoid.powers f, r • m = 0 case neg R : Type u_1 M : Type u_2 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M f : R H : Module.support R M ⊆ PrimeSpectrum.zeroLocus {f} m : M h : ¬(Submodule.span R {m}).annihilator = ⊤ ⊢ ∃ r ∈ Submonoid.powers f, r • m = 0
75188a38276e1985
CategoryTheory.compatiblePreservingOfFlat
Mathlib/CategoryTheory/Sites/CoverPreserving.lean
theorem compatiblePreservingOfFlat {C : Type u₁} [Category.{v₁} C] {D : Type u₁} [Category.{v₁} D] (K : GrothendieckTopology D) (G : C ⥤ D) [RepresentablyFlat G] : CompatiblePreserving K G
case compatible C : Type u₁ inst✝² : Category.{v₁, u₁} C D : Type u₁ inst✝¹ : Category.{v₁, u₁} D K : GrothendieckTopology D G : C ⥤ D inst✝ : RepresentablyFlat G ℱ : Sheaf K (Type u_1) Z : C T : Presieve Z x : FamilyOfElements (G.op ⋙ ℱ.val) T hx : x.Compatible Y₁ Y₂ : C X : D f₁ : X ⟶ G.obj Y₁ f₂ : X ⟶ G.obj Y₂ g₁ : Y₁ ⟶ Z g₂ : Y₂ ⟶ Z hg₁ : T g₁ hg₂ : T g₂ e : f₁ ≫ G.map g₁ = f₂ ≫ G.map g₂ c : Cone (cospan g₁ g₂ ⋙ G) := (Cones.postcompose (diagramIsoCospan (cospan g₁ g₂ ⋙ G)).inv).obj (PullbackCone.mk f₁ f₂ e) c' : Cone (c.toStructuredArrow ⋙ StructuredArrow.pre c.pt (cospan g₁ g₂) G) := IsCofiltered.cone (c.toStructuredArrow ⋙ StructuredArrow.pre c.pt (cospan g₁ g₂) G) eq₁ : f₁ = (c'.pt.hom ≫ G.map (c'.π.app left).right) ≫ eqToHom ⋯ eq₂ : f₂ = (c'.pt.hom ≫ G.map (c'.π.app right).right) ≫ eqToHom ⋯ ⊢ ℱ.val.map c'.pt.hom.op (ℱ.val.map (G.map (c'.π.app left).right).op (eqToHom ⋯ (x g₁ hg₁))) = ℱ.val.map c'.pt.hom.op (ℱ.val.map (G.map (c'.π.app right).right).op (eqToHom ⋯ (x g₂ hg₂)))
apply congr_arg
case compatible.h C : Type u₁ inst✝² : Category.{v₁, u₁} C D : Type u₁ inst✝¹ : Category.{v₁, u₁} D K : GrothendieckTopology D G : C ⥤ D inst✝ : RepresentablyFlat G ℱ : Sheaf K (Type u_1) Z : C T : Presieve Z x : FamilyOfElements (G.op ⋙ ℱ.val) T hx : x.Compatible Y₁ Y₂ : C X : D f₁ : X ⟶ G.obj Y₁ f₂ : X ⟶ G.obj Y₂ g₁ : Y₁ ⟶ Z g₂ : Y₂ ⟶ Z hg₁ : T g₁ hg₂ : T g₂ e : f₁ ≫ G.map g₁ = f₂ ≫ G.map g₂ c : Cone (cospan g₁ g₂ ⋙ G) := (Cones.postcompose (diagramIsoCospan (cospan g₁ g₂ ⋙ G)).inv).obj (PullbackCone.mk f₁ f₂ e) c' : Cone (c.toStructuredArrow ⋙ StructuredArrow.pre c.pt (cospan g₁ g₂) G) := IsCofiltered.cone (c.toStructuredArrow ⋙ StructuredArrow.pre c.pt (cospan g₁ g₂) G) eq₁ : f₁ = (c'.pt.hom ≫ G.map (c'.π.app left).right) ≫ eqToHom ⋯ eq₂ : f₂ = (c'.pt.hom ≫ G.map (c'.π.app right).right) ≫ eqToHom ⋯ ⊢ ℱ.val.map (G.map (c'.π.app left).right).op (eqToHom ⋯ (x g₁ hg₁)) = ℱ.val.map (G.map (c'.π.app right).right).op (eqToHom ⋯ (x g₂ hg₂))
8ad53d89c26ce87e
ModuleCat.FreeMonoidal.εIso_inv_freeMk
Mathlib/Algebra/Category/ModuleCat/Adjunctions.lean
@[simp] lemma εIso_inv_freeMk (x : PUnit) : (εIso R).inv (freeMk x) = 1
R : Type u inst✝ : CommRing R x : PUnit.{u + 1} ⊢ (Finsupp.single x 1) PUnit.unit = 1
rw [Finsupp.single_eq_same]
no goals
930ba52caeff00d7
LieAlgebra.derivedSeriesOfIdeal_add_le_add
Mathlib/Algebra/Lie/Solvable.lean
theorem derivedSeriesOfIdeal_add_le_add (J : LieIdeal R L) (k l : ℕ) : D (k + l) (I + J) ≤ D k I + D l J
R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L I J : LieIdeal R L k l : ℕ D₁ : LieIdeal R L →o LieIdeal R L := { toFun := fun I => ⁅I, I⁆, monotone' := ⋯ } ⊢ D (k + l) (I + J) ≤ D k I + D l J
have h₁ : ∀ I J : LieIdeal R L, D₁ (I ⊔ J) ≤ D₁ I ⊔ J := by simp [D₁, LieSubmodule.lie_le_right, LieSubmodule.lie_le_left, le_sup_of_le_right]
R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L I J : LieIdeal R L k l : ℕ D₁ : LieIdeal R L →o LieIdeal R L := { toFun := fun I => ⁅I, I⁆, monotone' := ⋯ } h₁ : ∀ (I J : LieIdeal R L), D₁ (I ⊔ J) ≤ D₁ I ⊔ J ⊢ D (k + l) (I + J) ≤ D k I + D l J
c99f5499945f2a44
Submodule.apply_mem_map₂
Mathlib/Algebra/Module/Submodule/Bilinear.lean
theorem apply_mem_map₂ (f : M →ₗ[R] N →ₗ[R] P) {m : M} {n : N} {p : Submodule R M} {q : Submodule R N} (hm : m ∈ p) (hn : n ∈ q) : f m n ∈ map₂ f p q := (le_iSup _ ⟨m, hm⟩ : _ ≤ map₂ f p q) ⟨n, hn, by rfl⟩
R : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 inst✝⁶ : CommSemiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid N inst✝³ : AddCommMonoid P inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R P f : M →ₗ[R] N →ₗ[R] P m : M n : N p : Submodule R M q : Submodule R N hm : m ∈ p hn : n ∈ q ⊢ (f ↑⟨m, hm⟩) n = (f m) n
rfl
no goals
6f9e3c11fa4bc728
MeasureTheory.tendsto_measure_symmDiff_preimage_nhds_zero
Mathlib/MeasureTheory/Measure/ContinuousPreimage.lean
theorem tendsto_measure_symmDiff_preimage_nhds_zero {l : Filter α} {f : α → C(X, Y)} {g : C(X, Y)} {s : Set Y} (hfg : Tendsto f l (𝓝 g)) (hf : ∀ᶠ a in l, MeasurePreserving (f a) μ ν) (hg : MeasurePreserving g μ ν) (hs : NullMeasurableSet s ν) (hνs : ν s ≠ ∞) : Tendsto (fun a ↦ μ ((f a ⁻¹' s) ∆ (g ⁻¹' s))) l (𝓝 0)
α : Type u_1 X : Type u_2 Y : Type u_3 inst✝⁹ : TopologicalSpace X inst✝⁸ : MeasurableSpace X inst✝⁷ : BorelSpace X inst✝⁶ : R1Space X inst✝⁵ : TopologicalSpace Y inst✝⁴ : MeasurableSpace Y inst✝³ : BorelSpace Y inst✝² : R1Space Y μ : Measure X ν : Measure Y inst✝¹ : μ.InnerRegularCompactLTTop inst✝ : IsLocallyFiniteMeasure ν l : Filter α f : α → C(X, Y) g : C(X, Y) s : Set Y hfg : Tendsto f l (𝓝 g) hf : ∀ᶠ (a : α) in l, MeasurePreserving (⇑(f a)) μ ν hg : MeasurePreserving (⇑g) μ ν hs : NullMeasurableSet s ν hνs : ν s ≠ ⊤ this✝ : ν.InnerRegularCompactLTTop ε : ℝ≥0∞ hε : ε > 0 this : ∀ {s : Set Y}, NullMeasurableSet s ν → ν s ≠ ⊤ → ∀ ε > 0, IsOpen s → ∀ᶠ (x : α) in l, μ ((⇑(f x) ⁻¹' s) ∆ (⇑g ⁻¹' s)) ≤ ε hso : ¬IsOpen s H : 0 < ε / 3 U : Set Y hUo : IsOpen U hU : ν U < ⊤ hmU : NullMeasurableSet U ν hUs : ν (U ∆ s) ≤ ε / 3 a : α hfa : MeasurePreserving (⇑(f a)) μ ν ha : μ ((⇑(f a) ⁻¹' U) ∆ (⇑g ⁻¹' U)) ≤ ε / 3 ⊢ μ ((⇑(f a) ⁻¹' s) ∆ (⇑g ⁻¹' s)) ≤ μ ((⇑(f a) ⁻¹' s) ∆ (⇑(f a) ⁻¹' U)) + μ ((⇑(f a) ⁻¹' U) ∆ (⇑g ⁻¹' U)) + μ ((⇑g ⁻¹' U) ∆ (⇑g ⁻¹' s))
refine (measure_symmDiff_le _ (g ⁻¹' U) _).trans ?_
α : Type u_1 X : Type u_2 Y : Type u_3 inst✝⁹ : TopologicalSpace X inst✝⁸ : MeasurableSpace X inst✝⁷ : BorelSpace X inst✝⁶ : R1Space X inst✝⁵ : TopologicalSpace Y inst✝⁴ : MeasurableSpace Y inst✝³ : BorelSpace Y inst✝² : R1Space Y μ : Measure X ν : Measure Y inst✝¹ : μ.InnerRegularCompactLTTop inst✝ : IsLocallyFiniteMeasure ν l : Filter α f : α → C(X, Y) g : C(X, Y) s : Set Y hfg : Tendsto f l (𝓝 g) hf : ∀ᶠ (a : α) in l, MeasurePreserving (⇑(f a)) μ ν hg : MeasurePreserving (⇑g) μ ν hs : NullMeasurableSet s ν hνs : ν s ≠ ⊤ this✝ : ν.InnerRegularCompactLTTop ε : ℝ≥0∞ hε : ε > 0 this : ∀ {s : Set Y}, NullMeasurableSet s ν → ν s ≠ ⊤ → ∀ ε > 0, IsOpen s → ∀ᶠ (x : α) in l, μ ((⇑(f x) ⁻¹' s) ∆ (⇑g ⁻¹' s)) ≤ ε hso : ¬IsOpen s H : 0 < ε / 3 U : Set Y hUo : IsOpen U hU : ν U < ⊤ hmU : NullMeasurableSet U ν hUs : ν (U ∆ s) ≤ ε / 3 a : α hfa : MeasurePreserving (⇑(f a)) μ ν ha : μ ((⇑(f a) ⁻¹' U) ∆ (⇑g ⁻¹' U)) ≤ ε / 3 ⊢ μ ((⇑(f a) ⁻¹' s) ∆ (⇑g ⁻¹' U)) + μ ((⇑g ⁻¹' U) ∆ (⇑g ⁻¹' s)) ≤ μ ((⇑(f a) ⁻¹' s) ∆ (⇑(f a) ⁻¹' U)) + μ ((⇑(f a) ⁻¹' U) ∆ (⇑g ⁻¹' U)) + μ ((⇑g ⁻¹' U) ∆ (⇑g ⁻¹' s))
050b449bb51827ad
exists_mul_right_lt₀
Mathlib/Algebra/Order/Field/Basic.lean
private lemma exists_mul_right_lt₀ {a b c : α} (hc : a * b < c) : ∃ b' > b, a * b' < c
α : Type u_2 inst✝ : LinearOrderedField α a b c : α hc : a * b < c ⊢ ∃ b' > b, a * b' < c
simp_rw [mul_comm a] at hc ⊢
α : Type u_2 inst✝ : LinearOrderedField α a b c : α hc : b * a < c ⊢ ∃ b' > b, b' * a < c
65fa0f9f99da1238
CategoryTheory.LaxMonoidalFunctor.hom_ext
Mathlib/CategoryTheory/Monoidal/NaturalTransformation.lean
@[ext] lemma hom_ext {F G : LaxMonoidalFunctor C D} {α β : F ⟶ G} (h : α.hom = β.hom) : α = β
case mk.mk C : Type u₁ inst✝³ : Category.{v₁, u₁} C inst✝² : MonoidalCategory C D : Type u₂ inst✝¹ : Category.{v₂, u₂} D inst✝ : MonoidalCategory D F G : LaxMonoidalFunctor C D hom✝ : F.toFunctor ⟶ G.toFunctor isMonoidal✝¹ : NatTrans.IsMonoidal hom✝ isMonoidal✝ : NatTrans.IsMonoidal { hom := hom✝, isMonoidal := isMonoidal✝¹ }.hom ⊢ { hom := hom✝, isMonoidal := isMonoidal✝¹ } = { hom := { hom := hom✝, isMonoidal := isMonoidal✝¹ }.hom, isMonoidal := isMonoidal✝ }
rfl
no goals
8848a8c64a10a477
MeasureTheory.integral_eq_zero_iff_of_nonneg_ae
Mathlib/MeasureTheory/Integral/Bochner.lean
theorem integral_eq_zero_iff_of_nonneg_ae {f : α → ℝ} (hf : 0 ≤ᵐ[μ] f) (hfi : Integrable f μ) : ∫ x, f x ∂μ = 0 ↔ f =ᵐ[μ] 0
α : Type u_1 m : MeasurableSpace α μ : Measure α f : α → ℝ hf : 0 ≤ᶠ[ae μ] f hfi : Integrable f μ ⊢ AEMeasurable (fun a => ENNReal.ofReal (f a)) μ
exact (ENNReal.measurable_ofReal.comp_aemeasurable hfi.1.aemeasurable)
no goals
3f575e9bc56637ff
Num.succ_ofInt'
Mathlib/Data/Num/Lemmas.lean
theorem succ_ofInt' : ∀ n, ZNum.ofInt' (n + 1) = ZNum.ofInt' n + 1 | (n : ℕ) => by change ZNum.ofInt' (n + 1 : ℕ) = ZNum.ofInt' (n : ℕ) + 1 dsimp only [ZNum.ofInt', ZNum.ofInt'] rw [Num.ofNat'_succ, Num.add_one, toZNum_succ, ZNum.add_one] | -[0+1] => by change ZNum.ofInt' 0 = ZNum.ofInt' (-[0+1]) + 1 dsimp only [ZNum.ofInt', ZNum.ofInt'] rw [ofNat'_succ, ofNat'_zero]; rfl | -[(n + 1)+1] => by change ZNum.ofInt' -[n+1] = ZNum.ofInt' -[(n + 1)+1] + 1 dsimp only [ZNum.ofInt', ZNum.ofInt'] rw [@Num.ofNat'_succ (n + 1), Num.add_one, toZNumNeg_succ, @ofNat'_succ n, Num.add_one, ZNum.add_one, pred_succ]
n : ℕ ⊢ ZNum.ofInt' ↑(n + 1) = ZNum.ofInt' ↑n + 1
dsimp only [ZNum.ofInt', ZNum.ofInt']
n : ℕ ⊢ (ofNat' (n + 1)).toZNum = (ofNat' n).toZNum + 1
ca426ea9d61f4551
Complex.volume_ball
Mathlib/MeasureTheory/Measure/Lebesgue/VolumeOfBalls.lean
theorem Complex.volume_ball (a : ℂ) (r : ℝ) : volume (Metric.ball a r) = .ofReal r ^ 2 * NNReal.pi
a : ℂ r : ℝ ⊢ volume (Metric.ball a r) = ENNReal.ofReal r ^ 2 * ↑NNReal.pi
simp [InnerProductSpace.volume_ball_of_dim_even (k := 1) (by simp) a, ← NNReal.coe_real_pi, ofReal_coe_nnreal]
no goals
08ef1cfdd4ddfd5b
emultiplicity_le_emultiplicity_iff
Mathlib/RingTheory/Multiplicity.lean
theorem emultiplicity_le_emultiplicity_iff {c d : β} : emultiplicity a b ≤ emultiplicity c d ↔ ∀ n : ℕ, a ^ n ∣ b → c ^ n ∣ d
case mpr α : Type u_1 β : Type u_2 inst✝¹ : Monoid α inst✝ : Monoid β a b : α c d : β h : ∀ (n : ℕ), a ^ n ∣ b → c ^ n ∣ d ⊢ emultiplicity a b ≤ emultiplicity c d
unfold emultiplicity
case mpr α : Type u_1 β : Type u_2 inst✝¹ : Monoid α inst✝ : Monoid β a b : α c d : β h : ∀ (n : ℕ), a ^ n ∣ b → c ^ n ∣ d ⊢ (if h : FiniteMultiplicity a b then ↑(Nat.find h) else ⊤) ≤ if h : FiniteMultiplicity c d then ↑(Nat.find h) else ⊤
bab270aee1ba305d
spectrum.isUnit_one_sub_smul_of_lt_inv_radius
Mathlib/Analysis/Normed/Algebra/Spectrum.lean
theorem isUnit_one_sub_smul_of_lt_inv_radius {a : A} {z : 𝕜} (h : ↑‖z‖₊ < (spectralRadius 𝕜 a)⁻¹) : IsUnit (1 - z • a)
case neg 𝕜 : Type u_1 A : Type u_2 inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedRing A inst✝ : NormedAlgebra 𝕜 A a : A z : 𝕜 h : ↑‖z‖₊ < (spectralRadius 𝕜 a)⁻¹ hz : ¬z = 0 u : 𝕜ˣ := Units.mk0 z hz ⊢ IsUnit (1 - z • a)
suffices hu : IsUnit (u⁻¹ • (1 : A) - a) by rwa [IsUnit.smul_sub_iff_sub_inv_smul, inv_inv u] at hu
case neg 𝕜 : Type u_1 A : Type u_2 inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedRing A inst✝ : NormedAlgebra 𝕜 A a : A z : 𝕜 h : ↑‖z‖₊ < (spectralRadius 𝕜 a)⁻¹ hz : ¬z = 0 u : 𝕜ˣ := Units.mk0 z hz ⊢ IsUnit (u⁻¹ • 1 - a)
7c24ad5e48f2ddf5
LieModule.iterate_toEnd_mem_lowerCentralSeries₂
Mathlib/Algebra/Lie/Nilpotent.lean
theorem iterate_toEnd_mem_lowerCentralSeries₂ (x y : L) (m : M) (k : ℕ) : (toEnd R L M x ∘ₗ toEnd R L M y)^[k] m ∈ lowerCentralSeries R L M (2 * k)
R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M x y : L m : M k : ℕ ⊢ (⇑((toEnd R L M) x ∘ₗ (toEnd R L M) y))^[k] m ∈ lowerCentralSeries R L M (2 * k)
induction k with | zero => simp | succ k ih => have hk : 2 * k.succ = (2 * k + 1) + 1 := rfl simp only [lowerCentralSeries_succ, Function.comp_apply, Function.iterate_succ', hk, toEnd_apply_apply, LinearMap.coe_comp, toEnd_apply_apply] refine LieSubmodule.lie_mem_lie (LieSubmodule.mem_top x) ?_ exact LieSubmodule.lie_mem_lie (LieSubmodule.mem_top y) ih
no goals
a700d4de77919e57
Real.log_lt_sub_one_of_pos
Mathlib/Analysis/SpecialFunctions/Log/Basic.lean
theorem log_lt_sub_one_of_pos (hx1 : 0 < x) (hx2 : x ≠ 1) : log x < x - 1
x : ℝ hx1 : 0 < x hx2 : x ≠ 1 ⊢ log x ≠ 0
rwa [← log_one, log_injOn_pos.ne_iff hx1]
x : ℝ hx1 : 0 < x hx2 : x ≠ 1 ⊢ 1 ∈ Ioi 0
9e3a3fb6c52026a5
CategoryTheory.IsDetecting.isIso_iff_of_mono
Mathlib/CategoryTheory/Generator/Basic.lean
lemma IsDetecting.isIso_iff_of_mono {𝒢 : Set C} (h𝒢 : IsDetecting 𝒢) {X Y : C} (f : X ⟶ Y) [Mono f] : IsIso f ↔ ∀ s ∈ 𝒢, Function.Surjective ((coyoneda.obj (op s)).map f)
case mp C : Type u₁ inst✝¹ : Category.{v₁, u₁} C 𝒢 : Set C h𝒢 : IsDetecting 𝒢 X Y : C f : X ⟶ Y inst✝ : Mono f h : IsIso f ⊢ ∀ s ∈ 𝒢, Function.Surjective ((coyoneda.obj (op s)).map f)
rw [isIso_iff_yoneda_map_bijective] at h
case mp C : Type u₁ inst✝¹ : Category.{v₁, u₁} C 𝒢 : Set C h𝒢 : IsDetecting 𝒢 X Y : C f : X ⟶ Y inst✝ : Mono f h : ∀ (T : C), Function.Bijective fun x => x ≫ f ⊢ ∀ s ∈ 𝒢, Function.Surjective ((coyoneda.obj (op s)).map f)
f84bf19dd3722ac1
Finsupp.linearCombination_linear_comp
Mathlib/LinearAlgebra/Finsupp/LinearCombination.lean
theorem linearCombination_linear_comp (f : M →ₗ[R] M') : linearCombination R (f ∘ v) = f ∘ₗ linearCombination R v
α : Type u_1 M : Type u_2 R : Type u_5 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M f : M →ₗ[R] M' ⊢ linearCombination R (⇑f ∘ v) = f ∘ₗ linearCombination R v
ext
case h.h α : Type u_1 M : Type u_2 R : Type u_5 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M f : M →ₗ[R] M' a✝ : α ⊢ (linearCombination R (⇑f ∘ v) ∘ₗ lsingle a✝) 1 = ((f ∘ₗ linearCombination R v) ∘ₗ lsingle a✝) 1
9c925f59b92133d8
ContMDiffOn.contMDiffOn_tangentMapWithin
Mathlib/Geometry/Manifold/ContMDiffMFDeriv.lean
theorem ContMDiffOn.contMDiffOn_tangentMapWithin (hf : ContMDiffOn I I' n f s) (hmn : m + 1 ≤ n) (hs : UniqueMDiffOn I s) : haveI : IsManifold I 1 M := .of_le (le_trans le_add_self hmn) haveI : IsManifold I' 1 M' := .of_le (le_trans le_add_self hmn) ContMDiffOn I.tangent I'.tangent m (tangentMapWithin I I' f s) (π E (TangentSpace I) ⁻¹' s)
𝕜 : Type u_1 inst✝¹⁰ : NontriviallyNormedField 𝕜 m n : WithTop ℕ∞ E : Type u_2 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedSpace 𝕜 E H : Type u_3 inst✝⁷ : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝⁶ : TopologicalSpace M inst✝⁵ : ChartedSpace H M E' : Type u_5 inst✝⁴ : NormedAddCommGroup E' inst✝³ : NormedSpace 𝕜 E' H' : Type u_6 inst✝² : TopologicalSpace H' I' : ModelWithCorners 𝕜 E' H' M' : Type u_7 inst✝¹ : TopologicalSpace M' inst✝ : ChartedSpace H' M' f : M → M' s : Set M Is : IsManifold I n M I's : IsManifold I' n M' hf : ContMDiffOn I I' n f s hmn : m + 1 ≤ n hs : UniqueMDiffOn I s this✝ : IsManifold I 1 M this : IsManifold I' 1 M' x₀ : TangentBundle I M hx₀ : x₀ ∈ TotalSpace.proj ⁻¹' s s' : Set (TangentBundle I M) := TotalSpace.proj ⁻¹' s b₁ : TangentBundle I M → M := fun p => p.proj v : (y : TangentBundle I M) → TangentSpace I (b₁ y) := fun y => y.snd hv : ContMDiffWithinAt I.tangent I.tangent m (fun y => { proj := b₁ y, snd := v y }) s' x₀ b₂ : TangentBundle I M → M' := f ∘ b₁ hb₂ : ContMDiffWithinAt I.tangent I' m b₂ s' x₀ ϕ : (y : TangentBundle I M) → TangentSpace I (b₁ y) →L[𝕜] TangentSpace I' (b₂ y) := fun y => mfderivWithin I I' f s (b₁ y) hϕ : ContMDiffWithinAt I.tangent 𝓘(𝕜, E →L[𝕜] E') m (fun y => ContinuousLinearMap.inCoordinates E (TangentSpace I) E' (TangentSpace I') (b₁ x₀) (b₁ y) (b₂ x₀) (b₂ y) (ϕ y)) s' x₀ ⊢ ContMDiffWithinAt I.tangent I'.tangent m (tangentMapWithin I I' f s) (TotalSpace.proj ⁻¹' s) x₀
exact ContMDiffWithinAt.clm_apply_of_inCoordinates hϕ hv hb₂
no goals
cff72fb4de8037fe
IsRelPrime.prod_left
Mathlib/RingTheory/Coprime/Lemmas.lean
theorem IsRelPrime.prod_left : (∀ i ∈ t, IsRelPrime (s i) x) → IsRelPrime (∏ i ∈ t, s i) x
α : Type u_2 I : Type u_1 inst✝¹ : CommMonoid α inst✝ : DecompositionMonoid α x : α s : I → α t : Finset I ⊢ (∀ i ∈ t, IsRelPrime (s i) x) → IsRelPrime (∏ i ∈ t, s i) x
classical refine Finset.induction_on t (fun _ ↦ isRelPrime_one_left) fun b t hbt ih H ↦ ?_ rw [Finset.prod_insert hbt] rw [Finset.forall_mem_insert] at H exact H.1.mul_left (ih H.2)
no goals
21cdedf24c1fa426
mem_tangentCone_of_openSegment_subset
Mathlib/Analysis/Calculus/TangentCone.lean
theorem mem_tangentCone_of_openSegment_subset {s : Set G} {x y : G} (h : openSegment ℝ x y ⊆ s) : y - x ∈ tangentConeAt ℝ s x
G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G s : Set G x y : G h : openSegment ℝ x y ⊆ s n : ℕ hn : n ≠ 0 ⊢ x + (1 / 2) ^ n • (y - x) ∈ openSegment ℝ x y
rw [openSegment_eq_image]
G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G s : Set G x y : G h : openSegment ℝ x y ⊆ s n : ℕ hn : n ≠ 0 ⊢ x + (1 / 2) ^ n • (y - x) ∈ (fun θ => (1 - θ) • x + θ • y) '' Ioo 0 1
6e94cb4690e67383
LieAlgebra.IsKilling.rootSpace_neg_nsmul_add_chainTop_of_le
Mathlib/Algebra/Lie/Weights/RootSystem.lean
lemma rootSpace_neg_nsmul_add_chainTop_of_le {n : ℕ} (hn : n ≤ chainLength α β) : rootSpace H (- (n • α) + chainTop α β) ≠ ⊥
case neg.intro.intro K : Type u_1 L : Type u_2 inst✝⁷ : Field K inst✝⁶ : CharZero K inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra K L inst✝³ : IsKilling K L inst✝² : FiniteDimensional K L H : LieSubalgebra K L inst✝¹ : H.IsCartanSubalgebra inst✝ : IsTriangularizable K (↥H) L α β : Weight K (↥H) L n : ℕ hn : n ≤ chainLength α β hα : ¬α.IsZero x : L hx : x ∈ genWeightSpace L ⇑(chainTop (⇑α) β) x_ne0 : x ≠ 0 ⊢ rootSpace H (-(n • ⇑α) + ⇑(chainTop (⇑α) β)) ≠ ⊥
obtain ⟨h, e, f, isSl2, he, hf⟩ := exists_isSl2Triple_of_weight_isNonZero hα
case neg.intro.intro.intro.intro.intro.intro.intro K : Type u_1 L : Type u_2 inst✝⁷ : Field K inst✝⁶ : CharZero K inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra K L inst✝³ : IsKilling K L inst✝² : FiniteDimensional K L H : LieSubalgebra K L inst✝¹ : H.IsCartanSubalgebra inst✝ : IsTriangularizable K (↥H) L α β : Weight K (↥H) L n : ℕ hn : n ≤ chainLength α β hα : ¬α.IsZero x : L hx : x ∈ genWeightSpace L ⇑(chainTop (⇑α) β) x_ne0 : x ≠ 0 h e f : L isSl2 : IsSl2Triple h e f he : e ∈ rootSpace H ⇑α hf : f ∈ rootSpace H (-⇑α) ⊢ rootSpace H (-(n • ⇑α) + ⇑(chainTop (⇑α) β)) ≠ ⊥
bc20a037735ef6ac
Submonoid.LocalizationWithZeroMap.leftCancelMulZero_of_le_isLeftRegular
Mathlib/GroupTheory/MonoidLocalization/MonoidWithZero.lean
theorem leftCancelMulZero_of_le_isLeftRegular (f : LocalizationWithZeroMap S N) [IsLeftCancelMulZero M] (h : ∀ ⦃x⦄, x ∈ S → IsLeftRegular x) : IsLeftCancelMulZero N
M : Type u_1 inst✝² : CommMonoidWithZero M S : Submonoid M N : Type u_2 inst✝¹ : CommMonoidWithZero N f : S.LocalizationWithZeroMap N inst✝ : IsLeftCancelMulZero M h : ∀ ⦃x : M⦄, x ∈ S → IsLeftRegular x fl : S.LocalizationMap N := f.toLocalizationMap g : M →* N := f.toMap a z w : N ha : a ≠ 0 hazw : a * z = a * w b : M × ↥S hb : a * fl.toMap ↑b.2 = fl.toMap b.1 x : M × ↥S hx : z * fl.toMap ↑x.2 = fl.toMap x.1 y : M × ↥S hy : w * fl.toMap ↑y.2 = fl.toMap y.1 b1ne0 : b.1 ≠ 0 ⊢ g b.1 * g (↑y.2 * x.1) = g (b.1 * (↑y.2 * x.1))
rw [← map_mul g]
no goals
395e8d90995bfe86
PartitionOfUnity.finsupport_subset_fintsupport
Mathlib/Topology/PartitionOfUnity.lean
theorem finsupport_subset_fintsupport : ρ.finsupport x₀ ⊆ ρ.fintsupport x₀ := fun i hi ↦ by rw [ρ.mem_fintsupport_iff] apply subset_closure exact (ρ.mem_finsupport x₀).mp hi
case a ι : Type u X : Type v inst✝ : TopologicalSpace X s : Set X ρ : PartitionOfUnity ι X s x₀ : X i : ι hi : i ∈ ρ.finsupport x₀ ⊢ x₀ ∈ support ⇑(ρ i)
exact (ρ.mem_finsupport x₀).mp hi
no goals
9ecb2bf735262740
Complex.norm_log_one_add_half_le_self
Mathlib/Analysis/SpecialFunctions/Complex/LogBounds.lean
/-- For `‖z‖ ≤ 1/2`, the complex logarithm is bounded by `(3/2) * ‖z‖`. -/ lemma norm_log_one_add_half_le_self {z : ℂ} (hz : ‖z‖ ≤ 1/2) : ‖(log (1 + z))‖ ≤ (3/2) * ‖z‖
case hab.c0 z : ℂ hz : ‖z‖ ≤ 1 / 2 hz3 : (1 - ‖z‖)⁻¹ ≤ 2 ⊢ 0 ≤ 1 - ‖z‖
linarith
no goals
f3a688a3bed721f7
Ordinal.natCast_add_omega0
Mathlib/SetTheory/Ordinal/Arithmetic.lean
theorem natCast_add_omega0 (n : ℕ) : n + ω = ω
case intro.intro.intro n : ℕ a : Ordinal.{u_1} ha : a < ↑n + ω m : ℕ hb' : ↑m < ω hb : a ≤ ↑n + ↑m ⊢ ↑n + ↑m < ω
exact_mod_cast nat_lt_omega0 (n + m)
no goals
f552f4cf7a04b7d2
Valued.continuous_extension
Mathlib/Topology/Algebra/Valued/ValuedField.lean
theorem continuous_extension : Continuous (Valued.extension : hat K → Γ₀)
case inr.intro.intro.intro.intro.intro K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ⇑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑x ∈ V → v x = 1 V' : Set (hat K) V'_in : V' ∈ 𝓝 1 zeroV' : 0 ∉ V' hV' : ∀ x ∈ V', ∀ y ∈ V', x * y⁻¹ ∈ V nhds_right : (fun x => x * x₀) '' V' ∈ 𝓝 x₀ ⊢ ∃ c, Tendsto (⇑v) (Filter.comap Completion.coe' (𝓝 x₀)) (𝓝 c)
have : ∃ z₀ : K, ∃ y₀ ∈ V', ↑z₀ = y₀ * x₀ ∧ z₀ ≠ 0 := by rcases Completion.denseRange_coe.mem_nhds nhds_right with ⟨z₀, y₀, y₀_in, H : y₀ * x₀ = z₀⟩ refine ⟨z₀, y₀, y₀_in, ⟨H.symm, ?_⟩⟩ rintro rfl exact mul_ne_zero (ne_of_mem_of_not_mem y₀_in zeroV') h H
case inr.intro.intro.intro.intro.intro K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ⇑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑x ∈ V → v x = 1 V' : Set (hat K) V'_in : V' ∈ 𝓝 1 zeroV' : 0 ∉ V' hV' : ∀ x ∈ V', ∀ y ∈ V', x * y⁻¹ ∈ V nhds_right : (fun x => x * x₀) '' V' ∈ 𝓝 x₀ this : ∃ z₀, ∃ y₀ ∈ V', ↑z₀ = y₀ * x₀ ∧ z₀ ≠ 0 ⊢ ∃ c, Tendsto (⇑v) (Filter.comap Completion.coe' (𝓝 x₀)) (𝓝 c)
af62a79ad478b7b6
PMF.apply_eq_one_iff
Mathlib/Probability/ProbabilityMassFunction/Basic.lean
theorem apply_eq_one_iff (p : PMF α) (a : α) : p a = 1 ↔ p.support = {a}
α : Type u_1 p : PMF α a : α h : p a = 1 a' : α ha' : a' ∈ p.support ha : a' ∉ {a} this : 0 < ∑' (b : α), if b = a then 0 else p b ⊢ (p a + ∑' (b : α), if b = a then 0 else p b) = (if a = a then p a else 0) + ∑' (b : α), if b = a then 0 else p b
rw [eq_self_iff_true, if_true]
no goals
ccbc613819a4be0f
Real.smul_map_diagonal_volume_pi
Mathlib/MeasureTheory/Measure/Lebesgue/Basic.lean
theorem smul_map_diagonal_volume_pi [DecidableEq ι] {D : ι → ℝ} (h : det (diagonal D) ≠ 0) : ENNReal.ofReal (abs (det (diagonal D))) • Measure.map (toLin' (diagonal D)) volume = volume
ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι D : ι → ℝ h : (Matrix.diagonal D).det ≠ 0 s : ι → Set ℝ hs : ∀ (i : ι), MeasurableSet (s i) this : (⇑(toLin' (Matrix.diagonal D)) ⁻¹' univ.pi fun i => s i) = univ.pi fun i => (fun x => D i * x) ⁻¹' s i ⊢ ∀ (i : ι), ofReal |D i| * volume ((fun x => D i * x) ⁻¹' s i) = volume (s i)
intro i
ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι D : ι → ℝ h : (Matrix.diagonal D).det ≠ 0 s : ι → Set ℝ hs : ∀ (i : ι), MeasurableSet (s i) this : (⇑(toLin' (Matrix.diagonal D)) ⁻¹' univ.pi fun i => s i) = univ.pi fun i => (fun x => D i * x) ⁻¹' s i i : ι ⊢ ofReal |D i| * volume ((fun x => D i * x) ⁻¹' s i) = volume (s i)
f356868f3a872858
Zsqrtd.nonneg_smul
Mathlib/NumberTheory/Zsqrtd/Basic.lean
theorem nonneg_smul {a : ℤ√d} {n : ℕ} (ha : Nonneg a) : Nonneg ((n : ℤ√d) * a)
d : ℕ a : ℤ√↑d n : ℕ ha✝ : a.Nonneg x y : ℕ ha : { re := -↑x, im := ↑y }.Nonneg ⊢ { re := ↑n * -↑x, im := ↑n * ↑y }.Nonneg
simpa using nonnegg_neg_pos.2 (sqLe_smul n <| nonnegg_neg_pos.1 ha)
no goals
ed3c83933b42a1bd
LieModule.Weight.hasEigenvalueAt
Mathlib/Algebra/Lie/Weights/Basic.lean
lemma hasEigenvalueAt (χ : Weight R L M) (x : L) : (toEnd R L M x).HasEigenvalue (χ x)
R : Type u_2 L : Type u_3 M : Type u_4 inst✝⁷ : CommRing R inst✝⁶ : LieRing L inst✝⁵ : LieAlgebra R L inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : LieRingModule L M inst✝¹ : LieModule R L M inst✝ : LieRing.IsNilpotent L χ : Weight R L M x : L ⊢ ?m.173842
simpa [genWeightSpaceOf, ← Module.End.iSup_genEigenspace_eq] using χ.genWeightSpaceOf_ne_bot x
no goals
e7ad90acf37962a9
Std.Sat.AIG.RefVec.ite.go_decl_eq
Mathlib/.lake/packages/lean4/src/lean/Std/Sat/AIG/If.lean
theorem go_decl_eq (aig : AIG α) (curr : Nat) (hcurr : curr ≤ w) (discr : Ref aig) (lhs rhs : RefVec aig w) (s : RefVec aig curr) : ∀ (idx : Nat) (h1) (h2), (go aig curr hcurr discr lhs rhs s).aig.decls[idx]'h2 = aig.decls[idx]'h1
α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat aig : AIG α curr : Nat hcurr : curr ≤ w discr : aig.Ref lhs rhs : aig.RefVec w s : aig.RefVec curr res : RefVecEntry α w hgo : (if hcurr : curr < w then let input := { discr := discr, lhs := lhs.get curr hcurr, rhs := rhs.get curr hcurr }; let res := aig.mkIfCached input; let aig_1 := res.aig; let ref := res.ref; let_fun this := ⋯; let discr_1 := discr.cast this; let lhs_1 := lhs.cast this; let rhs_1 := rhs.cast this; let s := s.cast this; let s := s.push ref; go aig_1 (curr + 1) ⋯ discr_1 lhs_1 rhs_1 s else let_fun this := ⋯; { aig := aig, vec := this ▸ s }) = res ⊢ ∀ (idx : Nat) (h1 : idx < aig.decls.size) (h2 : idx < res.aig.decls.size), res.aig.decls[idx] = aig.decls[idx]
dsimp only at hgo
α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat aig : AIG α curr : Nat hcurr : curr ≤ w discr : aig.Ref lhs rhs : aig.RefVec w s : aig.RefVec curr res : RefVecEntry α w hgo : (if hcurr : curr < w then go (aig.mkIfCached { discr := discr, lhs := lhs.get curr hcurr, rhs := rhs.get curr hcurr }).aig (curr + 1) ⋯ (discr.cast ⋯) (lhs.cast ⋯) (rhs.cast ⋯) ((s.cast ⋯).push (aig.mkIfCached { discr := discr, lhs := lhs.get curr hcurr, rhs := rhs.get curr hcurr }).ref) else { aig := aig, vec := ⋯ ▸ s }) = res ⊢ ∀ (idx : Nat) (h1 : idx < aig.decls.size) (h2 : idx < res.aig.decls.size), res.aig.decls[idx] = aig.decls[idx]
adac79f2da711b55
MeasureTheory.Measure.dirac_apply
Mathlib/MeasureTheory/Measure/Dirac.lean
theorem dirac_apply [MeasurableSingletonClass α] (a : α) (s : Set α) : dirac a s = s.indicator 1 a
α : Type u_1 inst✝¹ : MeasurableSpace α inst✝ : MeasurableSingletonClass α a : α s : Set α h : a ∉ s ⊢ (dirac a) {a}ᶜ = 0
simp [dirac_apply' _ (measurableSet_singleton _).compl]
no goals
ffeb750d32ef2676
Finset.pow_ssubset_pow_succ_of_pow_ne_closure
Mathlib/Geometry/Group/Growth/LinearLowerBound.lean
@[to_additive] lemma pow_ssubset_pow_succ_of_pow_ne_closure (hX₁ : (1 : G) ∈ X) (hX : X.Nontrivial) (hXclosure : (X ^ n : Set G) ≠ closure (X : Set G)) : X ^ n ⊂ X ^ (n + 1)
G : Type u_1 inst✝¹ : Group G inst✝ : DecidableEq G X : Finset G n : ℕ hX₁ : 1 ∈ X hX : X.Nontrivial hXclosure : ↑X ^ n ≠ ↑(closure ↑X) ⊢ X ^ n ⊂ X ^ (n + 1)
obtain rfl | hn := eq_or_ne n 0
case inl G : Type u_1 inst✝¹ : Group G inst✝ : DecidableEq G X : Finset G hX₁ : 1 ∈ X hX : X.Nontrivial hXclosure : ↑X ^ 0 ≠ ↑(closure ↑X) ⊢ X ^ 0 ⊂ X ^ (0 + 1) case inr G : Type u_1 inst✝¹ : Group G inst✝ : DecidableEq G X : Finset G n : ℕ hX₁ : 1 ∈ X hX : X.Nontrivial hXclosure : ↑X ^ n ≠ ↑(closure ↑X) hn : n ≠ 0 ⊢ X ^ n ⊂ X ^ (n + 1)
baf8f0ea21c560bf
WeierstrassCurve.Jacobian.nonsingular_iff_of_Z_ne_zero
Mathlib/AlgebraicGeometry/EllipticCurve/Jacobian.lean
lemma nonsingular_iff_of_Z_ne_zero {P : Fin 3 → F} (hPz : P z ≠ 0) : W.Nonsingular P ↔ W.Equation P ∧ (eval P W.polynomialX ≠ 0 ∨ eval P W.polynomialY ≠ 0)
F : Type u inst✝ : Field F W : Jacobian F P : Fin 3 → F hPz : P z ≠ 0 ⊢ W.Nonsingular P ↔ W.Equation P ∧ ((eval P) W.polynomialX ≠ 0 ∨ (eval P) W.polynomialY ≠ 0)
rw [nonsingular_of_Z_ne_zero hPz, Affine.Nonsingular, ← equation_of_Z_ne_zero hPz, ← eval_polynomialX_of_Z_ne_zero hPz, div_ne_zero_iff, and_iff_left <| pow_ne_zero 4 hPz, ← eval_polynomialY_of_Z_ne_zero hPz, div_ne_zero_iff, and_iff_left <| pow_ne_zero 3 hPz]
no goals
36d824e29353fb1b
CategoryTheory.Abelian.IsGrothendieckAbelian.OppositeModuleEmbedding.exists_epi
Mathlib/CategoryTheory/Abelian/GrothendieckCategory/ModuleEmbedding/Opposite.lean
theorem exists_epi (X : D) : ∃ f : generator F ⟶ F.obj X, Epi f
C : Type u inst✝³ : Category.{v, u} C D : Type v inst✝² : SmallCategory D F : D ⥤ Cᵒᵖ inst✝¹ : Abelian C inst✝ : IsGrothendieckAbelian.{v, v, u} C X : D ⊢ ∃ f, Epi f
refine ⟨Sigma.desc (Pi.single X (𝟙 _)) ≫ Sigma.desc (fun f => f), ?_⟩
C : Type u inst✝³ : Category.{v, u} C D : Type v inst✝² : SmallCategory D F : D ⥤ Cᵒᵖ inst✝¹ : Abelian C inst✝ : IsGrothendieckAbelian.{v, v, u} C X : D ⊢ Epi (Sigma.desc (Pi.single X (𝟙 (∐ fun x => CategoryTheory.Abelian.IsGrothendieckAbelian.OppositeModuleEmbedding.projectiveSeparator C))) ≫ Sigma.desc fun f => f)
ba1692fa24a3cffa
Euclidean.closedBall_eq_image
Mathlib/Analysis/InnerProductSpace/EuclideanDist.lean
theorem closedBall_eq_image (x : E) (r : ℝ) : closedBall x r = toEuclidean.symm '' Metric.closedBall (toEuclidean x) r
E : Type u_1 inst✝⁶ : AddCommGroup E inst✝⁵ : TopologicalSpace E inst✝⁴ : IsTopologicalAddGroup E inst✝³ : T2Space E inst✝² : Module ℝ E inst✝¹ : ContinuousSMul ℝ E inst✝ : FiniteDimensional ℝ E x : E r : ℝ ⊢ closedBall x r = ⇑toEuclidean.symm '' Metric.closedBall (toEuclidean x) r
rw [toEuclidean.image_symm_eq_preimage, closedBall_eq_preimage]
no goals
0001a621089f0d20
rotation_ne_conjLIE
Mathlib/Analysis/Complex/Isometry.lean
theorem rotation_ne_conjLIE (a : Circle) : rotation a ≠ conjLIE
a : Circle ⊢ rotation a ≠ conjLIE
intro h
a : Circle h : rotation a = conjLIE ⊢ False
a62cbc42ea7f34f8
Nat.Linear.Certificate.of_combineHyps
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Nat/Linear.lean
theorem Certificate.of_combineHyps (ctx : Context) (c : PolyCnstr) (cs : Certificate) (h : (combineHyps c cs).denote ctx → False) : c.denote ctx → cs.denote ctx
ctx : Context c : PolyCnstr cs✝ : Certificate k : Nat c' : ExprCnstr cs : List (Nat × ExprCnstr) h : PolyCnstr.denote ctx (combineHyps c ((k, c') :: cs)) → False ⊢ PolyCnstr.denote ctx c → denote ctx ((k, c') :: cs)
intro h₁ h₂
ctx : Context c : PolyCnstr cs✝ : Certificate k : Nat c' : ExprCnstr cs : List (Nat × ExprCnstr) h : PolyCnstr.denote ctx (combineHyps c ((k, c') :: cs)) → False h₁ : PolyCnstr.denote ctx c h₂ : ExprCnstr.denote ctx c' ⊢ denote ctx cs
31feb49d52d674e6
DirichletCharacter.LSeriesSummable_iff
Mathlib/NumberTheory/LSeries/Dirichlet.lean
/-- The L-series of a Dirichlet character mod `N > 0` converges absolutely at `s` if and only if `re s > 1`. -/ lemma LSeriesSummable_iff {N : ℕ} (hN : N ≠ 0) (χ : DirichletCharacter ℂ N) {s : ℂ} : LSeriesSummable ↗χ s ↔ 1 < s.re
N : ℕ hN : N ≠ 0 χ : DirichletCharacter ℂ N s : ℂ ⊢ LSeriesSummable (fun n => χ ↑n) s ↔ 1 < s.re
refine ⟨fun H ↦ ?_, LSeriesSummable_of_one_lt_re χ⟩
N : ℕ hN : N ≠ 0 χ : DirichletCharacter ℂ N s : ℂ H : LSeriesSummable (fun n => χ ↑n) s ⊢ 1 < s.re
def54cbe0d797bc5
Set.inter_indicator_mul
Mathlib/Algebra/GroupWithZero/Indicator.lean
lemma inter_indicator_mul (f g : ι → M₀) (i : ι) : (s ∩ t).indicator (fun j ↦ f j * g j) i = s.indicator f i * t.indicator g i
ι : Type u_1 M₀ : Type u_4 inst✝ : MulZeroClass M₀ s t : Set ι f g : ι → M₀ i : ι ⊢ (s ∩ t).indicator (fun j => f j * g j) i = s.indicator f i * t.indicator g i
rw [← Set.indicator_indicator]
ι : Type u_1 M₀ : Type u_4 inst✝ : MulZeroClass M₀ s t : Set ι f g : ι → M₀ i : ι ⊢ s.indicator (t.indicator fun j => f j * g j) i = s.indicator f i * t.indicator g i
f1bcb382e3797e03
Multiset.sum_map_mul_right
Mathlib/Algebra/BigOperators/Ring/Multiset.lean
lemma sum_map_mul_right : sum (s.map fun i ↦ f i * a) = sum (s.map f) * a := Multiset.induction_on s (by simp) fun a s ih => by simp [ih, add_mul]
ι : Type u_1 α : Type u_2 inst✝ : NonUnitalNonAssocSemiring α a✝ : α s✝ : Multiset ι f : ι → α a : ι s : Multiset ι ih : (map (fun i => f i * a✝) s).sum = (map f s).sum * a✝ ⊢ (map (fun i => f i * a✝) (a ::ₘ s)).sum = (map f (a ::ₘ s)).sum * a✝
simp [ih, add_mul]
no goals
025acb62f462b207
SimpleGraph.IsTuranMaximal.nonempty_iso_turanGraph
Mathlib/Combinatorics/SimpleGraph/Turan.lean
theorem nonempty_iso_turanGraph : Nonempty (G ≃g turanGraph (Fintype.card V) r)
case intro V : Type u_1 inst✝¹ : Fintype V G : SimpleGraph V inst✝ : DecidableRel G.Adj r : ℕ h : G.IsTuranMaximal r zm : { x // x ∈ univ } ≃ Fin #univ zp : ∀ (a b : { x // x ∈ univ }), h.finpartition.part ↑a = h.finpartition.part ↑b ↔ ↑(zm a) % #h.finpartition.parts = ↑(zm b) % #h.finpartition.parts ⊢ Nonempty (G ≃g turanGraph (Fintype.card V) r)
use (Equiv.subtypeUnivEquiv mem_univ).symm.trans zm
case map_rel_iff' V : Type u_1 inst✝¹ : Fintype V G : SimpleGraph V inst✝ : DecidableRel G.Adj r : ℕ h : G.IsTuranMaximal r zm : { x // x ∈ univ } ≃ Fin #univ zp : ∀ (a b : { x // x ∈ univ }), h.finpartition.part ↑a = h.finpartition.part ↑b ↔ ↑(zm a) % #h.finpartition.parts = ↑(zm b) % #h.finpartition.parts ⊢ ∀ {a b : V}, (turanGraph (Fintype.card V) r).Adj (((Equiv.subtypeUnivEquiv ⋯).symm.trans zm) a) (((Equiv.subtypeUnivEquiv ⋯).symm.trans zm) b) ↔ G.Adj a b
a368d21921cbec7c
MeasureTheory.StronglyMeasurable.mono
Mathlib/MeasureTheory/Function/StronglyMeasurable/Basic.lean
theorem mono {m m' : MeasurableSpace α} [TopologicalSpace β] (hf : StronglyMeasurable[m'] f) (h_mono : m' ≤ m) : StronglyMeasurable[m] f
α : Type u_1 β : Type u_2 f : α → β m m' : MeasurableSpace α inst✝ : TopologicalSpace β hf : StronglyMeasurable f h_mono : m' ≤ m ⊢ StronglyMeasurable f
let f_approx : ℕ → @SimpleFunc α m β := fun n => @SimpleFunc.mk α m β (hf.approx n) (fun x => h_mono _ (SimpleFunc.measurableSet_fiber' _ x)) (SimpleFunc.finite_range (hf.approx n))
α : Type u_1 β : Type u_2 f : α → β m m' : MeasurableSpace α inst✝ : TopologicalSpace β hf : StronglyMeasurable f h_mono : m' ≤ m f_approx : ℕ → α →ₛ β := fun n => { toFun := ⇑(hf.approx n), measurableSet_fiber' := ⋯, finite_range' := ⋯ } ⊢ StronglyMeasurable f
9ffa2b32d9636e7e
Ordinal.mul_add_div_mul
Mathlib/SetTheory/Ordinal/Arithmetic.lean
theorem mul_add_div_mul {a c : Ordinal} (hc : c < a) (b d : Ordinal) : (a * b + c) / (a * d) = b / d
case inr a c : Ordinal.{u_4} hc : c < a b d : Ordinal.{u_4} ha : a ≠ 0 hd : d ≠ 0 H : a * d ≠ 0 ⊢ (a * b + c) / (a * d) = b / d
apply le_antisymm
case inr.a a c : Ordinal.{u_4} hc : c < a b d : Ordinal.{u_4} ha : a ≠ 0 hd : d ≠ 0 H : a * d ≠ 0 ⊢ (a * b + c) / (a * d) ≤ b / d case inr.a a c : Ordinal.{u_4} hc : c < a b d : Ordinal.{u_4} ha : a ≠ 0 hd : d ≠ 0 H : a * d ≠ 0 ⊢ b / d ≤ (a * b + c) / (a * d)
a58e67332447199e
Sym2.GameAdd.fix_eq
Mathlib/Order/GameAdd.lean
theorem GameAdd.fix_eq {C : α → α → Sort*} (hr : WellFounded rα) (IH : ∀ a₁ b₁, (∀ a₂ b₂, Sym2.GameAdd rα s(a₂, b₂) s(a₁, b₁) → C a₂ b₂) → C a₁ b₁) (a b : α) : GameAdd.fix hr IH a b = IH a b fun a' b' _ => GameAdd.fix hr IH a' b'
α : Type u_1 rα : α → α → Prop C : α → α → Sort u_3 hr : WellFounded rα IH : (a₁ b₁ : α) → ((a₂ b₂ : α) → GameAdd rα s(a₂, b₂) s(a₁, b₁) → C a₂ b₂) → C a₁ b₁ a b : α ⊢ fix hr IH a b = IH a b fun a' b' x => fix hr IH a' b'
dsimp [GameAdd.fix]
α : Type u_1 rα : α → α → Prop C : α → α → Sort u_3 hr : WellFounded rα IH : (a₁ b₁ : α) → ((a₂ b₂ : α) → GameAdd rα s(a₂, b₂) s(a₁, b₁) → C a₂ b₂) → C a₁ b₁ a b : α ⊢ ⋯.fix (fun x IH' => IH x.1 x.2 fun a' b' => IH' (a', b')) (a, b) = IH a b fun a' b' x => ⋯.fix (fun x IH' => IH x.1 x.2 fun a' b' => IH' (a', b')) (a', b')
0a1156822e7dedaa
hasCardinalLT_option_iff
Mathlib/SetTheory/Cardinal/HasCardinalLT.lean
lemma hasCardinalLT_option_iff (X : Type u) (κ : Cardinal.{w}) (hκ : Cardinal.aleph0 ≤ κ) : HasCardinalLT (Option X) κ ↔ HasCardinalLT X κ
X : Type u κ : Cardinal.{w} hκ : Cardinal.aleph0 ≤ κ x✝ : HasCardinalLT X κ ⊢ HasCardinalLT PUnit.{1} Cardinal.aleph0
rw [hasCardinalLT_aleph0_iff]
X : Type u κ : Cardinal.{w} hκ : Cardinal.aleph0 ≤ κ x✝ : HasCardinalLT X κ ⊢ Finite PUnit.{1}
db42753f48328993
Int.add_assoc
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Int/Lemmas.lean
theorem add_assoc : ∀ a b c : Int, a + b + c = a + (b + c) | (m:Nat), (n:Nat), _ => aux1 .. | Nat.cast m, b, Nat.cast k => by rw [Int.add_comm, ← aux1, Int.add_comm k, aux1, Int.add_comm b] | a, (n:Nat), (k:Nat) => by rw [Int.add_comm, Int.add_comm a, ← aux1, Int.add_comm a, Int.add_comm k] | -[_+1], -[_+1], (k:Nat) => aux2 .. | -[m+1], (n:Nat), -[k+1] => by rw [Int.add_comm, ← aux2, Int.add_comm n, ← aux2, Int.add_comm -[m+1]] | (m:Nat), -[n+1], -[k+1] => by rw [Int.add_comm, Int.add_comm m, Int.add_comm m, ← aux2, Int.add_comm -[k+1]] | -[m+1], -[n+1], -[k+1] => by simp [Nat.add_comm, Nat.add_left_comm, Nat.add_assoc] where aux1 (m n : Nat) : ∀ c : Int, m + n + c = m + (n + c) | (k:Nat) => by simp [Nat.add_assoc] | -[k+1] => by simp [subNatNat_add] aux2 (m n k : Nat) : -[m+1] + -[n+1] + k = -[m+1] + (-[n+1] + k)
m n k : Nat ⊢ -[m+1] + -[n+1] + -[k+1] = -[m+1] + (-[n+1] + -[k+1])
simp [Nat.add_comm, Nat.add_left_comm, Nat.add_assoc]
no goals
3685d74f433bd852
fermatLastTheoremWith'_polynomial
Mathlib/NumberTheory/FLT/Polynomial.lean
theorem fermatLastTheoremWith'_polynomial {n : ℕ} (hn : 3 ≤ n) (chn : (n : k) ≠ 0) : FermatLastTheoremWith' k[X] n
case intro.intro.intro k : Type u_1 inst✝ : Field k n : ℕ hn : 3 ≤ n chn : ↑n ≠ 0 a b c a' b' : k[X] d : k[X] := gcd a b hb : d ≠ 0 ∧ b' ≠ 0 ha : d ≠ 0 ∧ a' ≠ 0 eq_a : a = a' * d eq_b : b = b' * d hd : d ≠ 0 c' : k[X] heq : a' ^ n + b' ^ n = c' ^ n hc : d ≠ 0 ∧ c' ≠ 0 eq_c : c = c' * d ⊢ IsUnit a' ∧ IsUnit b' ∧ IsUnit c'
suffices goal : a'.natDegree = 0 ∧ b'.natDegree = 0 ∧ c'.natDegree = 0 by simp [natDegree_eq_zero] at goal obtain ⟨⟨ca', ha'⟩, ⟨cb', hb'⟩, ⟨cc', hc'⟩⟩ := goal rw [← ha', ← hb', ← hc'] rw [← ha', C_ne_zero] at ha rw [← hb', C_ne_zero] at hb rw [← hc', C_ne_zero] at hc exact ⟨ha.right.isUnit_C, hb.right.isUnit_C, hc.right.isUnit_C⟩
case intro.intro.intro k : Type u_1 inst✝ : Field k n : ℕ hn : 3 ≤ n chn : ↑n ≠ 0 a b c a' b' : k[X] d : k[X] := gcd a b hb : d ≠ 0 ∧ b' ≠ 0 ha : d ≠ 0 ∧ a' ≠ 0 eq_a : a = a' * d eq_b : b = b' * d hd : d ≠ 0 c' : k[X] heq : a' ^ n + b' ^ n = c' ^ n hc : d ≠ 0 ∧ c' ≠ 0 eq_c : c = c' * d ⊢ a'.natDegree = 0 ∧ b'.natDegree = 0 ∧ c'.natDegree = 0
0b2f8f9d4d152b49
CategoryTheory.PreGaloisCategory.exists_hom_from_galois_of_fiber_nonempty
Mathlib/CategoryTheory/Galois/Decomposition.lean
/-- Any object with non-empty fiber admits a hom from a Galois object. -/ lemma exists_hom_from_galois_of_fiber_nonempty (X : C) (h : Nonempty (F.obj X)) : ∃ (A : C) (_ : A ⟶ X), IsGalois A
case intro C : Type u₁ inst✝² : Category.{u₂, u₁} C inst✝¹ : GaloisCategory C F : C ⥤ FintypeCat inst✝ : FiberFunctor F X : C x : (F.obj X).carrier ⊢ ∃ A x, IsGalois A
obtain ⟨A, f, a, h1, _⟩ := exists_hom_from_galois_of_fiber F X x
case intro.intro.intro.intro.intro C : Type u₁ inst✝² : Category.{u₂, u₁} C inst✝¹ : GaloisCategory C F : C ⥤ FintypeCat inst✝ : FiberFunctor F X : C x : (F.obj X).carrier A : C f : A ⟶ X a : (F.obj A).carrier h1 : IsGalois A right✝ : F.map f a = x ⊢ ∃ A x, IsGalois A
c1e1ad914efa42c5