name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
List.getElem_insert
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Lemmas.lean
theorem getElem_insert (l : List α) (a : α) (i : Nat) (h : i < l.length) : (l.insert a)[i]'(Nat.lt_of_lt_of_le h length_le_length_insert) = if a ∈ l then l[i] else if i = 0 then a else l[i-1]'(Nat.lt_of_le_of_lt (Nat.pred_le _) h)
case x α : Type u_1 inst✝¹ : BEq α inst✝ : LawfulBEq α l : List α a : α i : Nat h : i < l.length ⊢ (if a ∈ l then l[i]? else if i = 0 then some a else l[i - 1]?) = some (if a ∈ l then l[i] else if i = 0 then a else l[i - 1])
split
case x.isTrue α : Type u_1 inst✝¹ : BEq α inst✝ : LawfulBEq α l : List α a : α i : Nat h : i < l.length h✝ : a ∈ l ⊢ l[i]? = some l[i] case x.isFalse α : Type u_1 inst✝¹ : BEq α inst✝ : LawfulBEq α l : List α a : α i : Nat h : i < l.length h✝ : ¬a ∈ l ⊢ (if i = 0 then some a else l[i - 1]?) = some (if i = 0 then a else l[i - 1])
5973fbc938ccf630
DFinsupp.lex_lt_of_lt_of_preorder
Mathlib/Data/DFinsupp/Lex.lean
theorem lex_lt_of_lt_of_preorder [∀ i, Preorder (α i)] (r) [IsStrictOrder ι r] {x y : Π₀ i, α i} (hlt : x < y) : ∃ i, (∀ j, r j i → x j ≤ y j ∧ y j ≤ x j) ∧ x i < y i
case intro.intro ι : Type u_1 α : ι → Type u_2 inst✝² : (i : ι) → Zero (α i) inst✝¹ : (i : ι) → Preorder (α i) r : ι → ι → Prop inst✝ : IsStrictOrder ι r x y : Π₀ (i : ι), α i hlt✝ : x < y hle : ⇑x ≤ ⇑y j : ι hlt : x j < y j this : (↑(x.neLocus y)).WellFoundedOn r ⊢ ∃ i, (∀ (j : ι), r j i → x j ≤ y j ∧ y j ≤ x j) ∧ x i < y i
obtain ⟨i, hi, hl⟩ := this.has_min { i | x i < y i } ⟨⟨j, mem_neLocus.2 hlt.ne⟩, hlt⟩
case intro.intro.intro.intro ι : Type u_1 α : ι → Type u_2 inst✝² : (i : ι) → Zero (α i) inst✝¹ : (i : ι) → Preorder (α i) r : ι → ι → Prop inst✝ : IsStrictOrder ι r x y : Π₀ (i : ι), α i hlt✝ : x < y hle : ⇑x ≤ ⇑y j : ι hlt : x j < y j this : (↑(x.neLocus y)).WellFoundedOn r i : ↑↑(x.neLocus y) hi : i ∈ {i | x ↑i < y ↑i} hl : ∀ x_1 ∈ {i | x ↑i < y ↑i}, ¬r ↑x_1 ↑i ⊢ ∃ i, (∀ (j : ι), r j i → x j ≤ y j ∧ y j ≤ x j) ∧ x i < y i
b2be9adf1bae9d88
Real.exists_rat_abs_sub_lt_and_lt_of_irrational
Mathlib/NumberTheory/DiophantineApproximation/Basic.lean
theorem exists_rat_abs_sub_lt_and_lt_of_irrational {ξ : ℝ} (hξ : Irrational ξ) (q : ℚ) : ∃ q' : ℚ, |ξ - q'| < 1 / (q'.den : ℝ) ^ 2 ∧ |ξ - q'| < |ξ - q|
case intro.intro.intro ξ : ℝ hξ : Irrational ξ q : ℚ h : 0 < |ξ - ↑q| m : ℕ hm : 1 / |ξ - ↑q| < ↑m m_pos : 0 < ↑m q' : ℚ hbd : |ξ - ↑q'| ≤ 1 / ((↑m + 1) * ↑q'.den) hden : q'.den ≤ m den_pos : 0 < ↑q'.den md_pos : 0 < (↑m + 1) * ↑q'.den ⊢ ↑q'.den < ↑m + 1
exact lt_add_of_le_of_pos (Nat.cast_le.mpr hden) zero_lt_one
no goals
05e392f3a5eb1af5
NumberField.mixedEmbedding.volume_fundamentalDomain_latticeBasis
Mathlib/NumberTheory/NumberField/Discriminant/Basic.lean
theorem _root_.NumberField.mixedEmbedding.volume_fundamentalDomain_latticeBasis : volume (fundamentalDomain (latticeBasis K)) = (2 : ℝ≥0∞)⁻¹ ^ nrComplexPlaces K * sqrt ‖discr K‖₊
case a K : Type u_1 inst✝¹ : Field K inst✝ : NumberField K f : Free.ChooseBasisIndex ℤ (𝓞 K) ≃ (K →+* ℂ) := (canonicalEmbedding.latticeBasis K).indexEquiv (Pi.basisFun ℂ (K →+* ℂ)) e : index K ≃ Free.ChooseBasisIndex ℤ (𝓞 K) := (indexEquiv K).trans f.symm M : Matrix (index K) (index K) ℝ := (mixedEmbedding.stdBasis K).toMatrix ⇑((latticeBasis K).reindex e.symm) N : Matrix (K →+* ℂ) (K →+* ℂ) ℂ := Algebra.embeddingsMatrixReindex ℚ ℂ (⇑(integralBasis K) ∘ ⇑f.symm) RingHom.equivRatAlgHom i✝ j✝ : index K ⊢ ((mixedEmbedding.stdBasis K).toMatrix ⇑((latticeBasis K).reindex e.symm)).map (⇑ofRealHom) i✝ j✝ = (matrixToStdBasis K * ((reindex (indexEquiv K).symm (indexEquiv K).symm) N)ᵀ) i✝ j✝
rw [Matrix.map_apply, Basis.toMatrix_apply, Basis.coe_reindex, Function.comp_apply, Equiv.symm_symm, latticeBasis_apply, ← commMap_canonical_eq_mixed, Complex.ofRealHom_eq_coe, stdBasis_repr_eq_matrixToStdBasis_mul K _ (fun _ => rfl)]
case a K : Type u_1 inst✝¹ : Field K inst✝ : NumberField K f : Free.ChooseBasisIndex ℤ (𝓞 K) ≃ (K →+* ℂ) := (canonicalEmbedding.latticeBasis K).indexEquiv (Pi.basisFun ℂ (K →+* ℂ)) e : index K ≃ Free.ChooseBasisIndex ℤ (𝓞 K) := (indexEquiv K).trans f.symm M : Matrix (index K) (index K) ℝ := (mixedEmbedding.stdBasis K).toMatrix ⇑((latticeBasis K).reindex e.symm) N : Matrix (K →+* ℂ) (K →+* ℂ) ℂ := Algebra.embeddingsMatrixReindex ℚ ℂ (⇑(integralBasis K) ∘ ⇑f.symm) RingHom.equivRatAlgHom i✝ j✝ : index K ⊢ (matrixToStdBasis K *ᵥ (canonicalEmbedding K) ((integralBasis K) (e j✝)) ∘ ⇑(indexEquiv K)) i✝ = (matrixToStdBasis K * ((reindex (indexEquiv K).symm (indexEquiv K).symm) N)ᵀ) i✝ j✝
0fabcb321045abbb
Polynomial.eval₂_mul_X
Mathlib/Algebra/Polynomial/Eval/Defs.lean
theorem eval₂_mul_X : eval₂ f x (p * X) = eval₂ f x p * x
R : Type u S : Type v inst✝¹ : Semiring R p : R[X] inst✝ : Semiring S f : R →+* S x : S ⊢ eval₂ f x (p * X) = eval₂ f x p * x
refine _root_.trans (eval₂_mul_noncomm _ _ fun k => ?_) (by rw [eval₂_X])
R : Type u S : Type v inst✝¹ : Semiring R p : R[X] inst✝ : Semiring S f : R →+* S x : S k : ℕ ⊢ Commute (f (X.coeff k)) x
1b64714895ac341a
PrimeSpectrum.primeSpectrumProd_symm_inr
Mathlib/RingTheory/Spectrum/Prime/Topology.lean
lemma primeSpectrumProd_symm_inr (x) : (primeSpectrumProd R S).symm (.inr x) = comap (RingHom.snd R S) x
case asIdeal.h R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S x : PrimeSpectrum S x✝ : R × S ⊢ x✝ ∈ ((primeSpectrumProd R S).symm (Sum.inr x)).asIdeal ↔ x✝ ∈ ((comap (RingHom.snd R S)) x).asIdeal
simp [Ideal.prod]
no goals
6e39d62f4f8df19f
ProbabilityTheory.integral_gaussianPDFReal_eq_one
Mathlib/Probability/Distributions/Gaussian.lean
/-- The gaussian distribution pdf integrates to 1 when the variance is not zero. -/ lemma integral_gaussianPDFReal_eq_one (μ : ℝ) {v : ℝ≥0} (hv : v ≠ 0) : ∫ x, gaussianPDFReal μ v x = 1
μ : ℝ v : ℝ≥0 hv : v ≠ 0 h : ENNReal.ofReal (∫ (x : ℝ), gaussianPDFReal μ v x) = ENNReal.ofReal 1 ⊢ ∫ (x : ℝ), gaussianPDFReal μ v x = 1
rwa [← ENNReal.ofReal_eq_ofReal_iff (integral_nonneg (gaussianPDFReal_nonneg _ _)) zero_le_one]
no goals
65e8bfafed911366
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.confirmRupHint_preserves_invariant_helper
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/RupAddResult.lean
theorem confirmRupHint_preserves_invariant_helper {n : Nat} (f : DefaultFormula n) (f_assignments_size : f.assignments.size = n) (acc : Array Assignment × CNF.Clause (PosFin n) × Bool × Bool) (hsize : acc.1.size = n) (l : Literal (PosFin n)) (ih : DerivedLitsInvariant f f_assignments_size acc.1 hsize acc.2.1) (h : ¬hasAssignment l.snd acc.fst[l.fst.val]! = true) : have hsize' : (Array.modify acc.1 l.1.1 (addAssignment l.snd)).size = n
n : Nat f : DefaultFormula n f_assignments_size : f.assignments.size = n acc : Array Assignment × CNF.Clause (PosFin n) × Bool × Bool hsize : acc.fst.size = n l : Literal (PosFin n) ih : f.DerivedLitsInvariant f_assignments_size acc.fst hsize acc.snd.fst h : ¬hasAssignment l.snd acc.fst[l.fst.val]! = true hsize'✝ : (acc.fst.modify l.fst.val (addAssignment l.snd)).size = n := Eq.mpr (id (congrArg (fun _a => _a = n) (Array.size_modify acc.fst l.fst.val (addAssignment l.snd)))) hsize i : Fin n i_in_bounds : ↑i < acc.fst.size l_in_bounds : l.fst.val < acc.fst.size j : Fin (List.length acc.snd.fst) j_eq_i : (List.get acc.snd.fst j).fst.val = ↑i h1 : acc.fst[↑i] = addAssignment (List.get acc.snd.fst j).snd f.assignments[↑i] h2 : ¬hasAssignment (List.get acc.snd.fst j).snd f.assignments[↑i] = true h3 : ∀ (k : Fin (List.length acc.snd.fst)), k ≠ j → (List.get acc.snd.fst k).fst.val ≠ ↑i l' : Literal (PosFin n) := List.get acc.snd.fst j zero_in_bounds : 0 < (l :: acc.snd.fst).length j_succ_in_bounds : ↑j + 1 < (l :: acc.snd.fst).length l_eq_i : l.fst.val = ↑i l_ne_l' : false ≠ l'.snd l_eq_false : l.snd = false l'_eq_true : l'.snd = true k : Fin (List.length acc.snd.fst + 1) k_ne_j_succ : ¬k = ⟨↑j + 1, j_succ_in_bounds⟩ k_ne_zero : ¬k = ⟨0, zero_in_bounds⟩ k' : Nat k'_succ_in_bounds : k' + 1 < (l :: acc.snd.fst).length k_eq_succ : k = ⟨k' + 1, k'_succ_in_bounds⟩ k'_in_bounds : k' < List.length acc.snd.fst ⊢ ⟨k', k'_in_bounds⟩ ≠ j
simp only [k_eq_succ, List.length_cons, Fin.mk.injEq, Nat.succ.injEq] at k_ne_j_succ
n : Nat f : DefaultFormula n f_assignments_size : f.assignments.size = n acc : Array Assignment × CNF.Clause (PosFin n) × Bool × Bool hsize : acc.fst.size = n l : Literal (PosFin n) ih : f.DerivedLitsInvariant f_assignments_size acc.fst hsize acc.snd.fst h : ¬hasAssignment l.snd acc.fst[l.fst.val]! = true hsize'✝ : (acc.fst.modify l.fst.val (addAssignment l.snd)).size = n := Eq.mpr (id (congrArg (fun _a => _a = n) (Array.size_modify acc.fst l.fst.val (addAssignment l.snd)))) hsize i : Fin n i_in_bounds : ↑i < acc.fst.size l_in_bounds : l.fst.val < acc.fst.size j : Fin (List.length acc.snd.fst) j_eq_i : (List.get acc.snd.fst j).fst.val = ↑i h1 : acc.fst[↑i] = addAssignment (List.get acc.snd.fst j).snd f.assignments[↑i] h2 : ¬hasAssignment (List.get acc.snd.fst j).snd f.assignments[↑i] = true h3 : ∀ (k : Fin (List.length acc.snd.fst)), k ≠ j → (List.get acc.snd.fst k).fst.val ≠ ↑i l' : Literal (PosFin n) := List.get acc.snd.fst j zero_in_bounds : 0 < (l :: acc.snd.fst).length j_succ_in_bounds : ↑j + 1 < (l :: acc.snd.fst).length l_eq_i : l.fst.val = ↑i l_ne_l' : false ≠ l'.snd l_eq_false : l.snd = false l'_eq_true : l'.snd = true k : Fin (List.length acc.snd.fst + 1) k_ne_zero : ¬k = ⟨0, zero_in_bounds⟩ k' : Nat k'_succ_in_bounds : k' + 1 < (l :: acc.snd.fst).length k_eq_succ : k = ⟨k' + 1, k'_succ_in_bounds⟩ k'_in_bounds : k' < List.length acc.snd.fst k_ne_j_succ : ¬k' = ↑j ⊢ ⟨k', k'_in_bounds⟩ ≠ j
02ca1706b397b254
SimpleGraph.isAcyclic_of_path_unique
Mathlib/Combinatorics/SimpleGraph/Acyclic.lean
theorem isAcyclic_of_path_unique (h : ∀ (v w : V) (p q : G.Path v w), p = q) : G.IsAcyclic
case cons V : Type u G : SimpleGraph V h : ∀ (v w : V) (p q : G.Path v w), p = q v v✝ : V ha : G.Adj v v✝ c' : G.Walk v✝ v hc : (cons ha c').IsTrail ∧ ¬cons ha c' = nil ∧ (cons ha c').support.tail.Nodup ⊢ False
simp only [Walk.cons_isTrail_iff, Walk.support_cons, List.tail_cons] at hc
case cons V : Type u G : SimpleGraph V h : ∀ (v w : V) (p q : G.Path v w), p = q v v✝ : V ha : G.Adj v v✝ c' : G.Walk v✝ v hc : (c'.IsTrail ∧ s(v, v✝) ∉ c'.edges) ∧ ¬cons ha c' = nil ∧ c'.support.Nodup ⊢ False
0605fe545831c468
intervalIntegral.integral_add_adjacent_intervals_cancel
Mathlib/MeasureTheory/Integral/IntervalIntegral.lean
theorem integral_add_adjacent_intervals_cancel (hab : IntervalIntegrable f μ a b) (hbc : IntervalIntegrable f μ b c) : (((∫ x in a..b, f x ∂μ) + ∫ x in b..c, f x ∂μ) + ∫ x in c..a, f x ∂μ) = 0
E : Type u_3 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E a b c : ℝ f : ℝ → E μ : Measure ℝ hab : IntervalIntegrable f μ a b hbc : IntervalIntegrable f μ b c hac : IntervalIntegrable f μ a c ⊢ ∫ (x : ℝ) in Ioc a b, f x ∂μ + ∫ (x : ℝ) in Ioc b c, f x ∂μ + ∫ (x : ℝ) in Ioc c a, f x ∂μ = ∫ (x : ℝ) in Ioc b a, f x ∂μ + ∫ (x : ℝ) in Ioc c b, f x ∂μ + ∫ (x : ℝ) in Ioc a c, f x ∂μ
iterate 4 rw [← setIntegral_union]
E : Type u_3 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E a b c : ℝ f : ℝ → E μ : Measure ℝ hab : IntervalIntegrable f μ a b hbc : IntervalIntegrable f μ b c hac : IntervalIntegrable f μ a c ⊢ ∫ (x : ℝ) in Ioc a b ∪ Ioc b c ∪ Ioc c a, f x ∂μ = ∫ (x : ℝ) in Ioc b a ∪ Ioc c b ∪ Ioc a c, f x ∂μ case hst E : Type u_3 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E a b c : ℝ f : ℝ → E μ : Measure ℝ hab : IntervalIntegrable f μ a b hbc : IntervalIntegrable f μ b c hac : IntervalIntegrable f μ a c ⊢ Disjoint (Ioc b a ∪ Ioc c b) (Ioc a c) case ht E : Type u_3 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E a b c : ℝ f : ℝ → E μ : Measure ℝ hab : IntervalIntegrable f μ a b hbc : IntervalIntegrable f μ b c hac : IntervalIntegrable f μ a c ⊢ MeasurableSet (Ioc a c) case hfs E : Type u_3 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E a b c : ℝ f : ℝ → E μ : Measure ℝ hab : IntervalIntegrable f μ a b hbc : IntervalIntegrable f μ b c hac : IntervalIntegrable f μ a c ⊢ IntegrableOn f (Ioc b a ∪ Ioc c b) μ case hft E : Type u_3 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E a b c : ℝ f : ℝ → E μ : Measure ℝ hab : IntervalIntegrable f μ a b hbc : IntervalIntegrable f μ b c hac : IntervalIntegrable f μ a c ⊢ IntegrableOn f (Ioc a c) μ case hst E : Type u_3 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E a b c : ℝ f : ℝ → E μ : Measure ℝ hab : IntervalIntegrable f μ a b hbc : IntervalIntegrable f μ b c hac : IntervalIntegrable f μ a c ⊢ Disjoint (Ioc b a) (Ioc c b) case ht E : Type u_3 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E a b c : ℝ f : ℝ → E μ : Measure ℝ hab : IntervalIntegrable f μ a b hbc : IntervalIntegrable f μ b c hac : IntervalIntegrable f μ a c ⊢ MeasurableSet (Ioc c b) case hfs E : Type u_3 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E a b c : ℝ f : ℝ → E μ : Measure ℝ hab : IntervalIntegrable f μ a b hbc : IntervalIntegrable f μ b c hac : IntervalIntegrable f μ a c ⊢ IntegrableOn f (Ioc b a) μ case hft E : Type u_3 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E a b c : ℝ f : ℝ → E μ : Measure ℝ hab : IntervalIntegrable f μ a b hbc : IntervalIntegrable f μ b c hac : IntervalIntegrable f μ a c ⊢ IntegrableOn f (Ioc c b) μ case hst E : Type u_3 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E a b c : ℝ f : ℝ → E μ : Measure ℝ hab : IntervalIntegrable f μ a b hbc : IntervalIntegrable f μ b c hac : IntervalIntegrable f μ a c ⊢ Disjoint (Ioc a b ∪ Ioc b c) (Ioc c a) case ht E : Type u_3 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E a b c : ℝ f : ℝ → E μ : Measure ℝ hab : IntervalIntegrable f μ a b hbc : IntervalIntegrable f μ b c hac : IntervalIntegrable f μ a c ⊢ MeasurableSet (Ioc c a) case hfs E : Type u_3 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E a b c : ℝ f : ℝ → E μ : Measure ℝ hab : IntervalIntegrable f μ a b hbc : IntervalIntegrable f μ b c hac : IntervalIntegrable f μ a c ⊢ IntegrableOn f (Ioc a b ∪ Ioc b c) μ case hft E : Type u_3 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E a b c : ℝ f : ℝ → E μ : Measure ℝ hab : IntervalIntegrable f μ a b hbc : IntervalIntegrable f μ b c hac : IntervalIntegrable f μ a c ⊢ IntegrableOn f (Ioc c a) μ case hst E : Type u_3 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E a b c : ℝ f : ℝ → E μ : Measure ℝ hab : IntervalIntegrable f μ a b hbc : IntervalIntegrable f μ b c hac : IntervalIntegrable f μ a c ⊢ Disjoint (Ioc a b) (Ioc b c) case ht E : Type u_3 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E a b c : ℝ f : ℝ → E μ : Measure ℝ hab : IntervalIntegrable f μ a b hbc : IntervalIntegrable f μ b c hac : IntervalIntegrable f μ a c ⊢ MeasurableSet (Ioc b c) case hfs E : Type u_3 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E a b c : ℝ f : ℝ → E μ : Measure ℝ hab : IntervalIntegrable f μ a b hbc : IntervalIntegrable f μ b c hac : IntervalIntegrable f μ a c ⊢ IntegrableOn f (Ioc a b) μ case hft E : Type u_3 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E a b c : ℝ f : ℝ → E μ : Measure ℝ hab : IntervalIntegrable f μ a b hbc : IntervalIntegrable f μ b c hac : IntervalIntegrable f μ a c ⊢ IntegrableOn f (Ioc b c) μ
7a0784e26ee3c388
FirstOrder.Language.embedding_from_cg
Mathlib/ModelTheory/PartialEquiv.lean
theorem embedding_from_cg (M_cg : Structure.CG L M) (g : L.FGEquiv M N) (H : L.IsExtensionPair M N) : ∃ f : M ↪[L] N, g ≤ f.toPartialEquiv
case mk.intro.intro L : Language M : Type w N : Type w' inst✝¹ : L.Structure M inst✝ : L.Structure N g : L.FGEquiv M N H : L.IsExtensionPair M N X : Set M left✝ : X.Countable X_gen : (closure L).toFun X = ⊤ x✝ : Countable ↑X ⊢ ∃ f, ↑g ≤ f.toPartialEquiv
have _ : Encodable (↑X : Type _) := Encodable.ofCountable _
case mk.intro.intro L : Language M : Type w N : Type w' inst✝¹ : L.Structure M inst✝ : L.Structure N g : L.FGEquiv M N H : L.IsExtensionPair M N X : Set M left✝ : X.Countable X_gen : (closure L).toFun X = ⊤ x✝¹ : Countable ↑X x✝ : Encodable ↑X ⊢ ∃ f, ↑g ≤ f.toPartialEquiv
31c3cb67a548b276
Ordinal.CNF_fst_le_log
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → x.1 ≤ log b o
case refine_2 b o✝ : Ordinal.{u} x : Ordinal.{u} × Ordinal.{u} o : Ordinal.{u} ho : o ≠ 0 H : x ∈ CNF b (o % b ^ log b o) → x.1 ≤ log b (o % b ^ log b o) ⊢ x ∈ CNF b o → x.1 ≤ log b o
rw [CNF_ne_zero ho, mem_cons]
case refine_2 b o✝ : Ordinal.{u} x : Ordinal.{u} × Ordinal.{u} o : Ordinal.{u} ho : o ≠ 0 H : x ∈ CNF b (o % b ^ log b o) → x.1 ≤ log b (o % b ^ log b o) ⊢ x = (log b o, o / b ^ log b o) ∨ x ∈ CNF b (o % b ^ log b o) → x.1 ≤ log b o
bb723149b204c5e1
corners_theorem
Mathlib/Combinatorics/Additive/Corner/Roth.lean
theorem corners_theorem (ε : ℝ) (hε : 0 < ε) (hG : cornersTheoremBound ε ≤ card G) (A : Finset (G × G)) (hAε : ε * card G ^ 2 ≤ #A) : ¬ IsCornerFree (A : Set (G × G))
G : Type u_1 inst✝¹ : AddCommGroup G inst✝ : Fintype G ε : ℝ hε : 0 < ε hG : ⌊(triangleRemovalBound (ε / 9) * 27)⁻¹⌋₊ < Fintype.card G A : Finset (G × G) hAε : ε * ↑(Fintype.card G) ^ 2 ≤ ↑(#A) hA : IsCornerFree ↑A this : ε * ↑(Fintype.card G) ^ 2 ≤ ↑(Fintype.card (G × G)) ⊢ ε ≤ 1
simp only [sq, Nat.cast_mul, Fintype.card_prod, Fintype.card_fin] at this
G : Type u_1 inst✝¹ : AddCommGroup G inst✝ : Fintype G ε : ℝ hε : 0 < ε hG : ⌊(triangleRemovalBound (ε / 9) * 27)⁻¹⌋₊ < Fintype.card G A : Finset (G × G) hAε : ε * ↑(Fintype.card G) ^ 2 ≤ ↑(#A) hA : IsCornerFree ↑A this : ε * (↑(Fintype.card G) * ↑(Fintype.card G)) ≤ ↑(Fintype.card G) * ↑(Fintype.card G) ⊢ ε ≤ 1
76345cb9fe001f2e
YoungDiagram.row_eq_prod
Mathlib/Combinatorics/Young/YoungDiagram.lean
theorem row_eq_prod {μ : YoungDiagram} {i : ℕ} : μ.row i = {i} ×ˢ Finset.range (μ.rowLen i)
case h.mk μ : YoungDiagram a b : ℕ ⊢ b < μ.rowLen a ↔ b < μ.rowLen a
rfl
no goals
abd38ed31320b3ef
CategoryTheory.Sheaf.isLocallySurjective_iff_epi
Mathlib/CategoryTheory/Sites/LocallySurjective.lean
lemma isLocallySurjective_iff_epi {F G : Sheaf J (Type w)} (φ : F ⟶ G) [HasSheafify J (Type w)] : IsLocallySurjective φ ↔ Epi φ
C : Type u inst✝¹ : Category.{v, u} C J : GrothendieckTopology C F G : Sheaf J (Type w) φ : F ⟶ G inst✝ : HasSheafify J (Type w) ⊢ IsLocallySurjective φ ↔ Epi φ
constructor
case mp C : Type u inst✝¹ : Category.{v, u} C J : GrothendieckTopology C F G : Sheaf J (Type w) φ : F ⟶ G inst✝ : HasSheafify J (Type w) ⊢ IsLocallySurjective φ → Epi φ case mpr C : Type u inst✝¹ : Category.{v, u} C J : GrothendieckTopology C F G : Sheaf J (Type w) φ : F ⟶ G inst✝ : HasSheafify J (Type w) ⊢ Epi φ → IsLocallySurjective φ
1d3f917e21094b8e
MeasureTheory.LocallyIntegrableOn.exists_nat_integrableOn
Mathlib/MeasureTheory/Function/LocallyIntegrable.lean
theorem LocallyIntegrableOn.exists_nat_integrableOn [SecondCountableTopology X] (hf : LocallyIntegrableOn f s μ) : ∃ u : ℕ → Set X, (∀ n, IsOpen (u n)) ∧ (s ⊆ ⋃ n, u n) ∧ (∀ n, IntegrableOn f (u n ∩ s) μ)
X : Type u_1 E : Type u_3 inst✝³ : MeasurableSpace X inst✝² : TopologicalSpace X inst✝¹ : NormedAddCommGroup E f : X → E μ : Measure X s : Set X inst✝ : SecondCountableTopology X hf : LocallyIntegrableOn f s μ ⊢ ∃ u, (∀ (n : ℕ), IsOpen (u n)) ∧ s ⊆ ⋃ n, u n ∧ ∀ (n : ℕ), IntegrableOn f (u n ∩ s) μ
rcases hf.exists_countable_integrableOn with ⟨T, T_count, T_open, sT, hT⟩
case intro.intro.intro.intro X : Type u_1 E : Type u_3 inst✝³ : MeasurableSpace X inst✝² : TopologicalSpace X inst✝¹ : NormedAddCommGroup E f : X → E μ : Measure X s : Set X inst✝ : SecondCountableTopology X hf : LocallyIntegrableOn f s μ T : Set (Set X) T_count : T.Countable T_open : ∀ u ∈ T, IsOpen u sT : s ⊆ ⋃ u ∈ T, u hT : ∀ u ∈ T, IntegrableOn f (u ∩ s) μ ⊢ ∃ u, (∀ (n : ℕ), IsOpen (u n)) ∧ s ⊆ ⋃ n, u n ∧ ∀ (n : ℕ), IntegrableOn f (u n ∩ s) μ
7d50e417c306b9b4
Subalgebra.centralizer_coe_iSup
Mathlib/Algebra/Algebra/Subalgebra/Centralizer.lean
lemma centralizer_coe_iSup {ι : Sort*} (S : ι → Subalgebra R A) : centralizer R ((⨆ i, S i : Subalgebra R A) : Set A) = ⨅ i, centralizer R (S i) := eq_of_forall_le_iff fun K ↦ by simp_rw [le_centralizer_iff, iSup_le_iff, le_iInf_iff, K.le_centralizer_iff]
R : Type u_1 inst✝² : CommSemiring R A : Type u_2 inst✝¹ : Semiring A inst✝ : Algebra R A ι : Sort u_3 S : ι → Subalgebra R A K : Subalgebra R A ⊢ K ≤ centralizer R ↑(⨆ i, S i) ↔ K ≤ ⨅ i, centralizer R ↑(S i)
simp_rw [le_centralizer_iff, iSup_le_iff, le_iInf_iff, K.le_centralizer_iff]
no goals
be698f42a1aee23e
MultilinearMap.bound_of_shell
Mathlib/Analysis/NormedSpace/Multilinear/Basic.lean
theorem bound_of_shell (f : MultilinearMap 𝕜 E G) {ε : ι → ℝ} {C : ℝ} {c : ι → 𝕜} (hε : ∀ i, 0 < ε i) (hc : ∀ i, 1 < ‖c i‖) (hf : ∀ m : ∀ i, E i, (∀ i, ε i / ‖c i‖ ≤ ‖m i‖) → (∀ i, ‖m i‖ < ε i) → ‖f m‖ ≤ C * ∏ i, ‖m i‖) (m : ∀ i, E i) : ‖f m‖ ≤ C * ∏ i, ‖m i‖ := bound_of_shell_of_norm_map_coord_zero f (fun h ↦ by rw [map_coord_zero f _ (norm_eq_zero.1 h), norm_zero]) hε hc hf m
𝕜 : Type u ι : Type v E : ι → Type wE G : Type wG inst✝⁵ : Fintype ι inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : (i : ι) → NormedAddCommGroup (E i) inst✝² : (i : ι) → NormedSpace 𝕜 (E i) inst✝¹ : SeminormedAddCommGroup G inst✝ : NormedSpace 𝕜 G f : MultilinearMap 𝕜 E G ε : ι → ℝ C : ℝ c : ι → 𝕜 hε : ∀ (i : ι), 0 < ε i hc : ∀ (i : ι), 1 < ‖c i‖ hf : ∀ (m : (i : ι) → E i), (∀ (i : ι), ε i / ‖c i‖ ≤ ‖m i‖) → (∀ (i : ι), ‖m i‖ < ε i) → ‖f m‖ ≤ C * ∏ i : ι, ‖m i‖ m m✝ : (i : ι) → E i i✝ : ι h : ‖m✝ i✝‖ = 0 ⊢ ‖f m✝‖ = 0
rw [map_coord_zero f _ (norm_eq_zero.1 h), norm_zero]
no goals
8ffee075cd434aaa
MonoidAlgebra.prod_single
Mathlib/Algebra/MonoidAlgebra/Defs.lean
theorem prod_single [CommSemiring k] [CommMonoid G] {s : Finset ι} {a : ι → G} {b : ι → k} : (∏ i ∈ s, single (a i) (b i)) = single (∏ i ∈ s, a i) (∏ i ∈ s, b i) := Finset.cons_induction_on s rfl fun a s has ih => by rw [prod_cons has, ih, single_mul_single, prod_cons has, prod_cons has]
k : Type u₁ G : Type u₂ ι : Type ui inst✝¹ : CommSemiring k inst✝ : CommMonoid G s✝ : Finset ι a✝ : ι → G b : ι → k a : ι s : Finset ι has : a ∉ s ih : ∏ i ∈ s, single (a✝ i) (b i) = single (∏ i ∈ s, a✝ i) (∏ i ∈ s, b i) ⊢ ∏ i ∈ Finset.cons a s has, single (a✝ i) (b i) = single (∏ i ∈ Finset.cons a s has, a✝ i) (∏ i ∈ Finset.cons a s has, b i)
rw [prod_cons has, ih, single_mul_single, prod_cons has, prod_cons has]
no goals
4adb3807e3f96e25
IsFractionRing.num_mul_den_eq_num_iff_eq
Mathlib/RingTheory/Localization/NumDen.lean
theorem num_mul_den_eq_num_iff_eq {x y : K} : x * algebraMap A K (den A y) = algebraMap A K (num A y) ↔ x = y := ⟨fun h => by simpa only [mk'_num_den] using eq_mk'_iff_mul_eq.mpr h, fun h ↦ eq_mk'_iff_mul_eq.mp (by rw [h, mk'_num_den])⟩
A : Type u_1 inst✝⁵ : CommRing A inst✝⁴ : IsDomain A inst✝³ : UniqueFactorizationMonoid A K : Type u_2 inst✝² : Field K inst✝¹ : Algebra A K inst✝ : IsFractionRing A K x y : K h : x = y ⊢ x = mk' K (num A y) (den A y)
rw [h, mk'_num_den]
no goals
021c453a6bf35a8a
PiTensorProduct.injectiveSeminorm_le_projectiveSeminorm
Mathlib/Analysis/NormedSpace/PiTensorProduct/InjectiveSeminorm.lean
theorem injectiveSeminorm_le_projectiveSeminorm : injectiveSeminorm (𝕜 := 𝕜) (E := E) ≤ projectiveSeminorm
case refine_1 ι : Type uι inst✝³ : Fintype ι 𝕜 : Type u𝕜 inst✝² : NontriviallyNormedField 𝕜 E : ι → Type uE inst✝¹ : (i : ι) → SeminormedAddCommGroup (E i) inst✝ : (i : ι) → NormedSpace 𝕜 (E i) ⊢ 0 ∈ {p | ∃ G x x_1, p = (normSeminorm 𝕜 (ContinuousMultilinearMap 𝕜 E G →L[𝕜] G)).comp (toDualContinuousMultilinearMap G)}
simp only [Set.mem_setOf_eq]
case refine_1 ι : Type uι inst✝³ : Fintype ι 𝕜 : Type u𝕜 inst✝² : NontriviallyNormedField 𝕜 E : ι → Type uE inst✝¹ : (i : ι) → SeminormedAddCommGroup (E i) inst✝ : (i : ι) → NormedSpace 𝕜 (E i) ⊢ ∃ G x x_1, 0 = (normSeminorm 𝕜 (ContinuousMultilinearMap 𝕜 E G →L[𝕜] G)).comp (toDualContinuousMultilinearMap G)
8de3922266918b06
ConvexBody.zero_mem_of_symmetric
Mathlib/Analysis/Convex/Body.lean
theorem zero_mem_of_symmetric (K : ConvexBody V) (h_symm : ∀ x ∈ K, - x ∈ K) : 0 ∈ K
V : Type u_1 inst✝² : TopologicalSpace V inst✝¹ : AddCommGroup V inst✝ : Module ℝ V K : ConvexBody V h_symm : ∀ x ∈ K, -x ∈ K ⊢ 0 ∈ K
obtain ⟨x, hx⟩ := K.nonempty
case intro V : Type u_1 inst✝² : TopologicalSpace V inst✝¹ : AddCommGroup V inst✝ : Module ℝ V K : ConvexBody V h_symm : ∀ x ∈ K, -x ∈ K x : V hx : x ∈ ↑K ⊢ 0 ∈ K
b2b52a546c22c779
Function.semiconj_of_isLUB
Mathlib/Order/SemiconjSup.lean
theorem semiconj_of_isLUB [PartialOrder α] [Group G] (f₁ f₂ : G →* α ≃o α) {h : α → α} (H : ∀ x, IsLUB (range fun g' => (f₁ g')⁻¹ (f₂ g' x)) (h x)) (g : G) : Function.Semiconj h (f₂ g) (f₁ g)
α : Type u_1 G : Type u_4 inst✝¹ : PartialOrder α inst✝ : Group G f₁ f₂ : G →* α ≃o α h : α → α H : ∀ (x : α), IsLUB (range fun g' => (f₁ g')⁻¹ ((f₂ g') x)) (h x) g : G y : α this : IsLUB (range ((⇑(f₁ g) ∘ fun g' => (f₁ g')⁻¹ ((f₂ g') y)) ∘ ⇑(Equiv.mulRight g))) ((f₁ g) (h y)) ⊢ IsLUB (range fun g' => (f₁ g')⁻¹ ((f₂ g') ((f₂ g) y))) ((f₁ g) (h y))
simpa [comp_def] using this
no goals
e6a3d83bbf194959
AlgebraicGeometry.Scheme.Hom.residueFieldMap_congr
Mathlib/AlgebraicGeometry/ResidueField.lean
lemma Hom.residueFieldMap_congr {f g : X ⟶ Y} (e : f = g) (x : X) : f.residueFieldMap x = (Y.residueFieldCongr (by subst e; rfl)).hom ≫ g.residueFieldMap x
X Y : Scheme f g : X ⟶ Y e : f = g x : ↑↑X.toPresheafedSpace ⊢ residueFieldMap f x = (residueFieldCongr ⋯).hom ≫ residueFieldMap g x
subst e
X Y : Scheme f : X ⟶ Y x : ↑↑X.toPresheafedSpace ⊢ residueFieldMap f x = (residueFieldCongr ⋯).hom ≫ residueFieldMap f x
6910f3d84dfbcdd2
HomologicalComplex.inl_biprodXIso_inv
Mathlib/Algebra/Homology/HomologicalComplexBiprod.lean
@[reassoc (attr := simp)] lemma inl_biprodXIso_inv (i : ι) : biprod.inl ≫ (biprodXIso K L i).inv = (biprod.inl : K ⟶ K ⊞ L).f i
C : Type u_1 ι : Type u_2 inst✝² : Category.{u_3, u_1} C inst✝¹ : Preadditive C c : ComplexShape ι K L : HomologicalComplex C c inst✝ : ∀ (i : ι), HasBinaryBiproduct (K.X i) (L.X i) i : ι ⊢ biprod.inl ≫ (K.biprodXIso L i).inv = biprod.inl.f i
simp [biprodXIso]
no goals
a8f9485fad92a25b
PiNat.apply_eq_of_dist_lt
Mathlib/Topology/MetricSpace/PiNat.lean
theorem apply_eq_of_dist_lt {x y : ∀ n, E n} {n : ℕ} (h : dist x y < (1 / 2) ^ n) {i : ℕ} (hi : i ≤ n) : x i = y i
case inr E : ℕ → Type u_1 x y : (n : ℕ) → E n n : ℕ h : dist x y < (1 / 2) ^ n i : ℕ hi : i ≤ n hne : x ≠ y this : n < firstDiff x y ⊢ x i = y i
exact apply_eq_of_lt_firstDiff (hi.trans_lt this)
no goals
d5560e1fbb39ebfa
hasProd_subtype_iff_of_mulSupport_subset
Mathlib/Topology/Algebra/InfiniteSum/Defs.lean
theorem hasProd_subtype_iff_of_mulSupport_subset {s : Set β} (hf : mulSupport f ⊆ s) : HasProd (f ∘ (↑) : s → α) a ↔ HasProd f a := Subtype.coe_injective.hasProd_iff <| by simpa using mulSupport_subset_iff'.1 hf
α : Type u_1 β : Type u_2 inst✝¹ : CommMonoid α inst✝ : TopologicalSpace α f : β → α a : α s : Set β hf : mulSupport f ⊆ s ⊢ ∀ x ∉ Set.range fun a => ↑a, f x = 1
simpa using mulSupport_subset_iff'.1 hf
no goals
ec00d0e2998a70a3
ContinuousMonoidHom.locallyCompactSpace_of_hasBasis
Mathlib/Topology/Algebra/Group/CompactOpen.lean
theorem locallyCompactSpace_of_hasBasis (V : ℕ → Set Y) (hV : ∀ {n x}, x ∈ V n → x * x ∈ V n → x ∈ V (n + 1)) (hVo : Filter.HasBasis (nhds 1) (fun _ ↦ True) V) : LocallyCompactSpace (ContinuousMonoidHom X Y)
case intro.intro X : Type u_7 Y : Type u_8 inst✝⁸ : TopologicalSpace X inst✝⁷ : Group X inst✝⁶ : IsTopologicalGroup X inst✝⁵ : UniformSpace Y inst✝⁴ : CommGroup Y inst✝³ : UniformGroup Y inst✝² : T0Space Y inst✝¹ : CompactSpace Y inst✝ : LocallyCompactSpace X V : ℕ → Set Y hV : ∀ {n : ℕ} {x : Y}, x ∈ V n → x * x ∈ V n → x ∈ V (n + 1) hVo : (𝓝 1).HasBasis (fun x => True) V U0 : Set X hU0c : IsCompact U0 hU0o : U0 ∈ 𝓝 1 U_aux : ℕ → ↑{S | S ∈ 𝓝 1} := fun t => Nat.rec ⟨U0, hU0o⟩ (fun x S => let h := ⋯; ⟨Classical.choose h, ⋯⟩) t U : ℕ → Set X := fun n => ↑(U_aux n) hU1 : ∀ (n : ℕ), U n ∈ 𝓝 1 hU2 : ∀ (n : ℕ), U (n + 1) * U (n + 1) ⊆ U n hU3 : ∀ (n : ℕ), U (n + 1) ⊆ U n hU4 : ∀ (f : X →* Y), Set.MapsTo (⇑f) (U 0) (V 0) → ∀ (n : ℕ), Set.MapsTo (⇑f) (U n) (V n) ⊢ ∀ (k : ℕ), True → ∀ᶠ (x : X) in 𝓝 1, ∀ (i : ↑{f | Set.MapsTo (⇑f) (U 0) (V 0)}), (↑i 1, ↑i x) ∈ {x | x.2 / x.1 ∈ V k}
refine fun n _ ↦ Filter.eventually_iff_exists_mem.mpr ⟨U n, hU1 n, fun x hx ⟨f, hf⟩ ↦ ?_⟩
case intro.intro X : Type u_7 Y : Type u_8 inst✝⁸ : TopologicalSpace X inst✝⁷ : Group X inst✝⁶ : IsTopologicalGroup X inst✝⁵ : UniformSpace Y inst✝⁴ : CommGroup Y inst✝³ : UniformGroup Y inst✝² : T0Space Y inst✝¹ : CompactSpace Y inst✝ : LocallyCompactSpace X V : ℕ → Set Y hV : ∀ {n : ℕ} {x : Y}, x ∈ V n → x * x ∈ V n → x ∈ V (n + 1) hVo : (𝓝 1).HasBasis (fun x => True) V U0 : Set X hU0c : IsCompact U0 hU0o : U0 ∈ 𝓝 1 U_aux : ℕ → ↑{S | S ∈ 𝓝 1} := fun t => Nat.rec ⟨U0, hU0o⟩ (fun x S => let h := ⋯; ⟨Classical.choose h, ⋯⟩) t U : ℕ → Set X := fun n => ↑(U_aux n) hU1 : ∀ (n : ℕ), U n ∈ 𝓝 1 hU2 : ∀ (n : ℕ), U (n + 1) * U (n + 1) ⊆ U n hU3 : ∀ (n : ℕ), U (n + 1) ⊆ U n hU4 : ∀ (f : X →* Y), Set.MapsTo (⇑f) (U 0) (V 0) → ∀ (n : ℕ), Set.MapsTo (⇑f) (U n) (V n) n : ℕ x✝¹ : True x : X hx : x ∈ U n x✝ : ↑{f | Set.MapsTo (⇑f) (U 0) (V 0)} f : X →* Y hf : f ∈ {f | Set.MapsTo (⇑f) (U 0) (V 0)} ⊢ (↑⟨f, hf⟩ 1, ↑⟨f, hf⟩ x) ∈ {x | x.2 / x.1 ∈ V n}
3c261961af7a0b99
Std.Tactic.BVDecide.Normalize.BitVec.udiv_ofNat_eq_of_lt
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Normalize/BitVec.lean
theorem BitVec.udiv_ofNat_eq_of_lt (w : Nat) (x : BitVec w) (n : Nat) (k : Nat) (hk : 2 ^ k = n) (hlt : k < w) : x / (BitVec.ofNat w n) = x >>> k
w : Nat x : BitVec w n k : Nat hk : 2 ^ k = n hlt : k < w ⊢ x / BitVec.ofNat w n = x >>> k
have : BitVec.ofNat w n = BitVec.twoPow w k := by simp [bv_toNat, hk]
w : Nat x : BitVec w n k : Nat hk : 2 ^ k = n hlt : k < w this : BitVec.ofNat w n = BitVec.twoPow w k ⊢ x / BitVec.ofNat w n = x >>> k
59cd4912b9dd9868
MeasureTheory.OuterMeasure.top_caratheodory
Mathlib/MeasureTheory/OuterMeasure/Caratheodory.lean
theorem top_caratheodory : (⊤ : OuterMeasure α).caratheodory = ⊤ := top_unique fun s _ => (isCaratheodory_iff_le _).2 fun t => t.eq_empty_or_nonempty.elim (fun ht => by simp [ht]) fun ht => by simp only [ht, top_apply, le_top]
α : Type u_1 s : Set α x✝ : MeasurableSet s t : Set α ht : t.Nonempty ⊢ ⊤ (t ∩ s) + ⊤ (t \ s) ≤ ⊤ t
simp only [ht, top_apply, le_top]
no goals
b8a5c7a7a66e5617
Monotone.le_leftLim
Mathlib/Topology/Order/LeftRightLim.lean
theorem le_leftLim (h : x < y) : f x ≤ leftLim f y
α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : ConditionallyCompleteLinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : Monotone f x y : α h : x < y this✝ : TopologicalSpace α := Preorder.topology α this : OrderTopology α ⊢ f x ≤ leftLim f y
rcases eq_or_ne (𝓝[<] y) ⊥ with (h' | h')
case inl α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : ConditionallyCompleteLinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : Monotone f x y : α h : x < y this✝ : TopologicalSpace α := Preorder.topology α this : OrderTopology α h' : 𝓝[<] y = ⊥ ⊢ f x ≤ leftLim f y case inr α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : ConditionallyCompleteLinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : Monotone f x y : α h : x < y this✝ : TopologicalSpace α := Preorder.topology α this : OrderTopology α h' : 𝓝[<] y ≠ ⊥ ⊢ f x ≤ leftLim f y
55e2cef9a9579060
MeasureTheory.compl_mem_measurableCylinders
Mathlib/MeasureTheory/Constructions/Cylinders.lean
theorem compl_mem_measurableCylinders (hs : s ∈ measurableCylinders α) : sᶜ ∈ measurableCylinders α
case intro.intro.intro ι : Type u_1 α : ι → Type u_2 inst✝ : (i : ι) → MeasurableSpace (α i) s : Finset ι S : Set ((i : { x // x ∈ s }) → α ↑i) hS : MeasurableSet S ⊢ (cylinder s S)ᶜ = cylinder s Sᶜ
rw [compl_cylinder]
no goals
e220a0270436ffee
TopologicalSpace.productOfMemOpens_isInducing
Mathlib/Topology/ContinuousMap/T0Sierpinski.lean
theorem productOfMemOpens_isInducing : IsInducing (productOfMemOpens X)
case h.e'_3 X : Type u_1 inst✝ : TopologicalSpace X ⊢ inst✝ = ⨅ i, induced (fun x => x ∈ i) inferInstance
apply eq_induced_by_maps_to_sierpinski
no goals
302b702956e75666
Irreducible.isRelPrime_iff_not_dvd
Mathlib/Algebra/GroupWithZero/Associated.lean
/-- See also `Irreducible.coprime_iff_not_dvd`. -/ lemma Irreducible.isRelPrime_iff_not_dvd [Monoid M] {p n : M} (hp : Irreducible p) : IsRelPrime p n ↔ ¬ p ∣ n
M : Type u_1 inst✝ : Monoid M p n : M hp : Irreducible p d : M hdp : d ∣ p hdn : d ∣ n hpn : ¬IsUnit d ⊢ p ∣ n
suffices Associated p d from this.dvd.trans hdn
M : Type u_1 inst✝ : Monoid M p n : M hp : Irreducible p d : M hdp : d ∣ p hdn : d ∣ n hpn : ¬IsUnit d ⊢ p ~ᵤ d
7649a8e0b6517ae9
Submodule.fg_iff_compact
Mathlib/RingTheory/Finiteness/Basic.lean
theorem fg_iff_compact (s : Submodule R M) : s.FG ↔ CompleteLattice.IsCompactElement s
case mp.intro.h R : Type u_1 M : Type u_2 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M sp : M → Submodule R M := fun a => span R {a} supr_rw : ∀ (t : Finset M), ⨆ x ∈ t, sp x = ⨆ x ∈ ↑t, sp x t : Finset M ⊢ ∀ x ∈ t, CompleteLattice.IsCompactElement (sp x)
exact fun n _ => singleton_span_isCompactElement n
no goals
caae8d7d512db78b
Antitone.tendsto_setIntegral
Mathlib/MeasureTheory/Integral/DominatedConvergence.lean
theorem _root_.Antitone.tendsto_setIntegral (hsm : ∀ i, MeasurableSet (s i)) (h_anti : Antitone s) (hfi : IntegrableOn f (s 0) μ) : Tendsto (fun i => ∫ a in s i, f a ∂μ) atTop (𝓝 (∫ a in ⋂ n, s n, f a ∂μ))
case refine_2 α : Type u_1 E : Type u_2 inst✝² : MeasurableSpace α μ : Measure α inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E s : ℕ → Set α f : α → E hsm : ∀ (i : ℕ), MeasurableSet (s i) h_anti : Antitone s hfi : IntegrableOn f (s 0) μ bound : α → ℝ := (s 0).indicator fun a => ‖f a‖ h_int_eq : (fun i => ∫ (a : α) in s i, f a ∂μ) = fun i => ∫ (a : α), (s i).indicator f a ∂μ ⊢ Integrable bound μ
rw [integrable_indicator_iff (hsm 0)]
case refine_2 α : Type u_1 E : Type u_2 inst✝² : MeasurableSpace α μ : Measure α inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E s : ℕ → Set α f : α → E hsm : ∀ (i : ℕ), MeasurableSet (s i) h_anti : Antitone s hfi : IntegrableOn f (s 0) μ bound : α → ℝ := (s 0).indicator fun a => ‖f a‖ h_int_eq : (fun i => ∫ (a : α) in s i, f a ∂μ) = fun i => ∫ (a : α), (s i).indicator f a ∂μ ⊢ IntegrableOn (fun a => ‖f a‖) (s 0) μ
28378f6f1986a1f8
Lean.Omega.Fin.not_lt
Mathlib/.lake/packages/lean4/src/lean/Init/Omega/Int.lean
theorem not_lt {i j : Fin n} : ¬ i < j ↔ j ≤ i
case mk.mk n val✝¹ : Nat isLt✝¹ : val✝¹ < n val✝ : Nat isLt✝ : val✝ < n ⊢ ¬⟨val✝¹, isLt✝¹⟩ < ⟨val✝, isLt✝⟩ ↔ ⟨val✝, isLt✝⟩ ≤ ⟨val✝¹, isLt✝¹⟩
exact Nat.not_lt
no goals
f7cc2ed2266fbd31
Std.DHashMap.Internal.Raw₀.Const.getKey?_insertMany_list_of_contains_eq_false
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Internal/RawLemmas.lean
theorem getKey?_insertMany_list_of_contains_eq_false [EquivBEq α] [LawfulHashable α] (h : m.1.WF) {l : List (α × β)} {k : α} (h' : (l.map Prod.fst).contains k = false) : (insertMany m l).1.getKey? k = m.getKey? k
α : Type u inst✝³ : BEq α inst✝² : Hashable α β : Type v m : Raw₀ α fun x => β inst✝¹ : EquivBEq α inst✝ : LawfulHashable α h : m.val.WF l : List (α × β) k : α h' : (List.map Prod.fst l).contains k = false ⊢ (insertMany m l).val.getKey? k = m.getKey? k
simp_to_model [Const.insertMany] using List.getKey?_insertListConst_of_contains_eq_false
no goals
c071507cbbf10f14
UniformConvexOn.add
Mathlib/Analysis/Convex/Strong.lean
lemma UniformConvexOn.add (hf : UniformConvexOn s φ f) (hg : UniformConvexOn s ψ g) : UniformConvexOn s (φ + ψ) (f + g)
E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E φ ψ : ℝ → ℝ s : Set E f g : E → ℝ hf : UniformConvexOn s φ f hg : UniformConvexOn s ψ g x : E hx : x ∈ s y : E hy : y ∈ s a b : ℝ ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ (f + g) (a • x + b • y) ≤ a • (f + g) x + b • (f + g) y - a * b * (φ + ψ) ‖x - y‖
simpa [mul_add, add_add_add_comm, sub_add_sub_comm] using add_le_add (hf.2 hx hy ha hb hab) (hg.2 hx hy ha hb hab)
no goals
bf2ce77815b18108
cfcₙ_tsub
Mathlib/Analysis/CStarAlgebra/ContinuousFunctionalCalculus/Order.lean
theorem cfcₙ_tsub {A : Type*} [TopologicalSpace A] [NonUnitalRing A] [PartialOrder A] [StarRing A] [StarOrderedRing A] [Module ℝ A] [IsScalarTower ℝ A A] [SMulCommClass ℝ A A] [IsTopologicalRing A] [T2Space A] [NonUnitalContinuousFunctionalCalculus ℝ (IsSelfAdjoint : A → Prop)] [NonnegSpectrumClass ℝ A] (f g : ℝ≥0 → ℝ≥0) (a : A) (hfg : ∀ x ∈ σₙ ℝ≥0 a, g x ≤ f x) (ha : 0 ≤ a
A : Type u_1 inst✝¹¹ : TopologicalSpace A inst✝¹⁰ : NonUnitalRing A inst✝⁹ : PartialOrder A inst✝⁸ : StarRing A inst✝⁷ : StarOrderedRing A inst✝⁶ : Module ℝ A inst✝⁵ : IsScalarTower ℝ A A inst✝⁴ : SMulCommClass ℝ A A inst✝³ : IsTopologicalRing A inst✝² : T2Space A inst✝¹ : NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint inst✝ : NonnegSpectrumClass ℝ A f g : ℝ≥0 → ℝ≥0 a : A hfg : ∀ x ∈ σₙ ℝ≥0 a, g x ≤ f x ha : autoParam (0 ≤ a) _auto✝ hf : autoParam (ContinuousOn f (σₙ ℝ≥0 a)) _auto✝ hf0 : autoParam (f 0 = 0) _auto✝ hg : autoParam (ContinuousOn g (σₙ ℝ≥0 a)) _auto✝ hg0 : autoParam (g 0 = 0) _auto✝ ha' : QuasispectrumRestricts a ⇑ContinuousMap.realToNNReal this : Set.EqOn (fun x => ↑(f x.toNNReal - g x.toNNReal)) (fun x => ↑(f x.toNNReal) - ↑(g x.toNNReal)) (σₙ ℝ a) ⊢ ↑(f (Real.toNNReal 0)) = 0
simpa
no goals
886df411d08cec67
AlgebraicGeometry.Scheme.Hom.image_le_image_iff
Mathlib/AlgebraicGeometry/OpenImmersion.lean
lemma image_le_image_iff (f : X ⟶ Y) [IsOpenImmersion f] (U U' : X.Opens) : f ''ᵁ U ≤ f ''ᵁ U' ↔ U ≤ U'
X Y : Scheme f : X ⟶ Y inst✝ : IsOpenImmersion f U U' : X.Opens h : f ''ᵁ U ≤ f ''ᵁ U' ⊢ f ⁻¹ᵁ f ''ᵁ U ≤ f ⁻¹ᵁ f ''ᵁ U'
apply preimage_le_preimage_of_le f h
no goals
de71456d8e8ba2da
CategoryTheory.Limits.biprod.map_eq_map'
Mathlib/CategoryTheory/Limits/Shapes/BinaryBiproducts.lean
theorem biprod.map_eq_map' {W X Y Z : C} [HasBinaryBiproduct W X] [HasBinaryBiproduct Y Z] (f : W ⟶ Y) (g : X ⟶ Z) : biprod.map f g = biprod.map' f g
case h₁.h₁ C : Type uC inst✝³ : Category.{uC', uC} C inst✝² : HasZeroMorphisms C W X Y Z : C inst✝¹ : HasBinaryBiproduct W X inst✝ : HasBinaryBiproduct Y Z f : W ⟶ Y g : X ⟶ Z ⊢ (inr ≫ map f g) ≫ snd = (inr ≫ map' f g) ≫ snd
simp only [mapPair_right, IsColimit.ι_map, IsLimit.map_π, biprod.inr_snd_assoc, Category.assoc, ← BinaryBicone.toCone_π_app_right, ← BinaryBiproduct.bicone_snd, ← BinaryBicone.toCocone_ι_app_right, ← BinaryBiproduct.bicone_inr]
case h₁.h₁ C : Type uC inst✝³ : Category.{uC', uC} C inst✝² : HasZeroMorphisms C W X Y Z : C inst✝¹ : HasBinaryBiproduct W X inst✝ : HasBinaryBiproduct Y Z f : W ⟶ Y g : X ⟶ Z ⊢ (BinaryBiproduct.bicone W X).toCocone.ι.app { as := WalkingPair.right } ≫ (BinaryBiproduct.bicone W X).toCone.π.app { as := WalkingPair.right } ≫ g = g ≫ (BinaryBiproduct.bicone Y Z).toCocone.ι.app { as := WalkingPair.right } ≫ (BinaryBiproduct.bicone Y Z).toCone.π.app { as := WalkingPair.right }
e830a66cbb8ace18
Function.Periodic.map_mod_nat
Mathlib/Data/Nat/Periodic.lean
theorem _root_.Function.Periodic.map_mod_nat {α : Type*} {f : ℕ → α} {a : ℕ} (hf : Periodic f a) : ∀ n, f (n % a) = f n := fun n => by conv_rhs => rw [← Nat.mod_add_div n a, mul_comm, ← Nat.nsmul_eq_mul, hf.nsmul]
α : Type u_1 f : ℕ → α a : ℕ hf : Periodic f a n : ℕ ⊢ f (n % a) = f n
conv_rhs => rw [← Nat.mod_add_div n a, mul_comm, ← Nat.nsmul_eq_mul, hf.nsmul]
no goals
46646ae98dab5a3f
CHSH_inequality_of_comm
Mathlib/Algebra/Star/CHSH.lean
theorem CHSH_inequality_of_comm [OrderedCommRing R] [StarRing R] [StarOrderedRing R] [Algebra ℝ R] [OrderedSMul ℝ R] (A₀ A₁ B₀ B₁ : R) (T : IsCHSHTuple A₀ A₁ B₀ B₁) : A₀ * B₀ + A₀ * B₁ + A₁ * B₀ - A₁ * B₁ ≤ 2
R : Type u inst✝⁴ : OrderedCommRing R inst✝³ : StarRing R inst✝² : StarOrderedRing R inst✝¹ : Algebra ℝ R inst✝ : OrderedSMul ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ P : R := 2 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ idem : P * P = 4 * P idem' : P = (1 / 4) • (P * P) ⊢ star P = P
dsimp [P]
R : Type u inst✝⁴ : OrderedCommRing R inst✝³ : StarRing R inst✝² : StarOrderedRing R inst✝¹ : Algebra ℝ R inst✝ : OrderedSMul ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ P : R := 2 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ idem : P * P = 4 * P idem' : P = (1 / 4) • (P * P) ⊢ star (2 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁) = 2 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁
69323f291cd142bc
AlgebraicGeometry.RingedSpace.basicOpen_res_eq
Mathlib/Geometry/RingedSpace/Basic.lean
theorem basicOpen_res_eq {U V : (Opens X)ᵒᵖ} (i : U ⟶ V) [IsIso i] (f : X.presheaf.obj U) : @basicOpen X (unop V) (X.presheaf.map i f) = @RingedSpace.basicOpen X (unop U) f
case a X : RingedSpace U V : (Opens ↑↑X.toPresheafedSpace)ᵒᵖ i : U ⟶ V inst✝ : IsIso i f : ↑(X.presheaf.obj U) this : X.basicOpen ((ConcreteCategory.hom (X.presheaf.map (inv i))) ((ConcreteCategory.hom (X.presheaf.map i)) f)) = unop U ⊓ X.basicOpen ((ConcreteCategory.hom (X.presheaf.map i)) f) ⊢ X.basicOpen f ≤ X.basicOpen ((ConcreteCategory.hom (X.presheaf.map i)) f)
rw [← CommRingCat.comp_apply, ← X.presheaf.map_comp, IsIso.hom_inv_id, X.presheaf.map_id, CommRingCat.id_apply] at this
case a X : RingedSpace U V : (Opens ↑↑X.toPresheafedSpace)ᵒᵖ i : U ⟶ V inst✝ : IsIso i f : ↑(X.presheaf.obj U) this : X.basicOpen f = unop U ⊓ X.basicOpen ((ConcreteCategory.hom (X.presheaf.map i)) f) ⊢ X.basicOpen f ≤ X.basicOpen ((ConcreteCategory.hom (X.presheaf.map i)) f)
0fa1508b89eed3cf
zpow_induction_right
Mathlib/Algebra/Group/Basic.lean
/-- To show a property of all powers of `g` it suffices to show it is closed under multiplication by `g` and `g⁻¹` on the right. For subgroups generated by more than one element, see `Subgroup.closure_induction_right`. -/ @[to_additive "To show a property of all multiples of `g` it suffices to show it is closed under addition by `g` and `-g` on the right. For additive subgroups generated by more than one element, see `AddSubgroup.closure_induction_right`."] lemma zpow_induction_right {g : G} {P : G → Prop} (h_one : P (1 : G)) (h_mul : ∀ a, P a → P (a * g)) (h_inv : ∀ a, P a → P (a * g⁻¹)) (n : ℤ) : P (g ^ n)
case hn G : Type u_3 inst✝ : Group G g : G P : G → Prop h_one : P 1 h_mul : ∀ (a : G), P a → P (a * g) h_inv : ∀ (a : G), P a → P (a * g⁻¹) n : ℕ ih : P (g ^ (-↑n)) ⊢ P (g ^ (-↑n - 1))
rw [zpow_sub_one]
case hn G : Type u_3 inst✝ : Group G g : G P : G → Prop h_one : P 1 h_mul : ∀ (a : G), P a → P (a * g) h_inv : ∀ (a : G), P a → P (a * g⁻¹) n : ℕ ih : P (g ^ (-↑n)) ⊢ P (g ^ (-↑n) * g⁻¹)
ada9e9579b0aa862
HallMarriageTheorem.hall_hard_inductive_step_B
Mathlib/Combinatorics/Hall/Finite.lean
theorem hall_hard_inductive_step_B {n : ℕ} (hn : Fintype.card ι = n + 1) (ht : ∀ s : Finset ι, #s ≤ #(s.biUnion t)) (ih : ∀ {ι' : Type u} [Fintype ι'] (t' : ι' → Finset α), Fintype.card ι' ≤ n → (∀ s' : Finset ι', #s' ≤ #(s'.biUnion t')) → ∃ f : ι' → α, Function.Injective f ∧ ∀ x, f x ∈ t' x) (s : Finset ι) (hs : s.Nonempty) (hns : s ≠ univ) (hus : #s = #(s.biUnion t)) : ∃ f : ι → α, Function.Injective f ∧ ∀ x, f x ∈ t x
ι : Type u α : Type v inst✝¹ : DecidableEq α t : ι → Finset α inst✝ : Fintype ι n : ℕ hn : Fintype.card ι = n.succ ht : ∀ (s : Finset ι), #s ≤ #(s.biUnion t) ih : ∀ {ι' : Type u} [inst : Fintype ι'] (t' : ι' → Finset α), Fintype.card ι' ≤ n → (∀ (s' : Finset ι'), #s' ≤ #(s'.biUnion t')) → ∃ f, Function.Injective f ∧ ∀ (x : ι'), f x ∈ t' x s : Finset ι hs : s.Nonempty hns : s ≠ univ hus : #s = #(s.biUnion t) this : DecidableEq ι card_ι'_le : Fintype.card { x // x ∈ s } ≤ n t' : { x // x ∈ s } → Finset α := fun x' => t ↑x' f' : { x // x ∈ s } → α hf' : Function.Injective f' hsf' : ∀ (x : { x // x ∈ s }), f' x ∈ t' x ι'' : Set ι := (↑s)ᶜ t'' : ↑ι'' → Finset α := fun a'' => t ↑a'' \ s.biUnion t card_ι''_le : Fintype.card ↑ι'' ≤ n f'' : ↑ι'' → α hf'' : Function.Injective f'' hsf'' : ∀ (x : ↑ι''), f'' x ∈ t'' x f'_mem_biUnion : ∀ (x' : ι) (hx' : x' ∈ s), f' ⟨x', hx'⟩ ∈ s.biUnion t f''_not_mem_biUnion : ∀ (x'' : ι) (hx'' : x'' ∉ s), f'' ⟨x'', hx''⟩ ∉ s.biUnion t x x' : ι hx' : x ∈ s hx'' : x' ∉ s h : f' ⟨x, hx'⟩ = f'' ⟨x', hx''⟩ ⊢ f' ⟨x, hx'⟩ ∈ s.biUnion t
apply f'_mem_biUnion x
no goals
de2e47a85ff6c58c
CochainComplex.isStrictlyGE_of_ge
Mathlib/Algebra/Homology/Embedding/CochainComplex.lean
lemma isStrictlyGE_of_ge (p q : ℤ) (hpq : p ≤ q) [K.IsStrictlyGE q] : K.IsStrictlyGE p
case hi C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasZeroMorphisms C K : CochainComplex C ℤ p q : ℤ hpq : p ≤ q inst✝ : K.IsStrictlyGE q i : ℤ hi : i < p ⊢ i < q
omega
no goals
92c2380a683aaa81
CategoryTheory.Limits.colimitHomIsoLimitYoneda'_hom_comp_π
Mathlib/CategoryTheory/Limits/IndYoneda.lean
@[reassoc (attr := simp)] lemma colimitHomIsoLimitYoneda'_hom_comp_π [HasLimitsOfShape I (Type u₂)] (A : C) (i : I) : (colimitHomIsoLimitYoneda' F A).hom ≫ limit.π (F.rightOp ⋙ yoneda.obj A) i = (coyoneda.map (colimit.ι F ⟨i⟩).op).app A
C : Type u₁ inst✝³ : Category.{u₂, u₁} C I : Type v₁ inst✝² : Category.{v₂, v₁} I F : Iᵒᵖ ⥤ C inst✝¹ : HasColimit F inst✝ : HasLimitsOfShape I (Type u₂) A : C i : I ⊢ (colimitHomIsoLimitYoneda' F A).hom ≫ limit.π (F.rightOp ⋙ yoneda.obj A) i = (coyoneda.map (colimit.ι F (op i)).op).app A
simp only [yoneda_obj_obj, colimitHomIsoLimitYoneda', Iso.trans_hom, Iso.app_hom, Category.assoc]
C : Type u₁ inst✝³ : Category.{u₂, u₁} C I : Type v₁ inst✝² : Category.{v₂, v₁} I F : Iᵒᵖ ⥤ C inst✝¹ : HasColimit F inst✝ : HasLimitsOfShape I (Type u₂) A : C i : I ⊢ (coyonedaOpColimitIsoLimitCoyoneda' F).hom.app A ≫ (limitObjIsoLimitCompEvaluation (F.rightOp ⋙ coyoneda) A).hom ≫ limit.π (F.rightOp ⋙ yoneda.obj A) i = (coyoneda.map (colimit.ι F (op i)).op).app A
12f261e51b49fa46
Turing.TM1to1.tr_supports
Mathlib/Computability/PostTuringMachine.lean
theorem tr_supports [Inhabited Λ] {S : Finset Λ} (ss : Supports M S) : Supports (tr enc dec M) (trSupp M S) := ⟨Finset.mem_biUnion.2 ⟨_, ss.1, Finset.mem_insert_self _ _⟩, fun q h ↦ by suffices ∀ q, SupportsStmt S q → (∀ q' ∈ writes q, q' ∈ trSupp M S) → SupportsStmt (trSupp M S) (trNormal dec q) ∧ ∀ q' ∈ writes q, SupportsStmt (trSupp M S) (tr enc dec M q') by rcases Finset.mem_biUnion.1 h with ⟨l, hl, h⟩ have := this _ (ss.2 _ hl) fun q' hq ↦ Finset.mem_biUnion.2 ⟨_, hl, Finset.mem_insert_of_mem hq⟩ rcases Finset.mem_insert.1 h with (rfl | h) exacts [this.1, this.2 _ h] intro q hs hw induction q with | move d q IH => unfold writes at hw ⊢ replace IH := IH hs hw; refine ⟨?_, IH.2⟩ cases d <;> simp only [trNormal, iterate, supportsStmt_move, IH] | write f q IH => unfold writes at hw ⊢ simp only [Finset.mem_image, Finset.mem_union, Finset.mem_univ, exists_prop, true_and] at hw ⊢ replace IH := IH hs fun q hq ↦ hw q (Or.inr hq) refine ⟨supportsStmt_read _ fun a _ s ↦ hw _ (Or.inl ⟨_, rfl⟩), fun q' hq ↦ ?_⟩ rcases hq with (⟨a, q₂, rfl⟩ | hq) · simp only [tr, supportsStmt_write, supportsStmt_move, IH.1] · exact IH.2 _ hq | load a q IH => unfold writes at hw ⊢ replace IH := IH hs hw exact ⟨supportsStmt_read _ fun _ ↦ IH.1, IH.2⟩ | branch p q₁ q₂ IH₁ IH₂ => unfold writes at hw ⊢ simp only [Finset.mem_union] at hw ⊢ replace IH₁ := IH₁ hs.1 fun q hq ↦ hw q (Or.inl hq) replace IH₂ := IH₂ hs.2 fun q hq ↦ hw q (Or.inr hq) exact ⟨supportsStmt_read _ fun _ ↦ ⟨IH₁.1, IH₂.1⟩, fun q ↦ Or.rec (IH₁.2 _) (IH₂.2 _)⟩ | goto l => simp only [writes, Finset.not_mem_empty]; refine ⟨?_, fun _ ↦ False.elim⟩ refine supportsStmt_read _ fun a _ s ↦ ?_ exact Finset.mem_biUnion.2 ⟨_, hs _ _, Finset.mem_insert_self _ _⟩ | halt => simp only [writes, Finset.not_mem_empty]; refine ⟨?_, fun _ ↦ False.elim⟩ simp only [SupportsStmt, supportsStmt_move, trNormal]⟩
case branch Γ : Type u_1 Λ : Type u_2 σ : Type u_3 n : ℕ enc : Γ → List.Vector Bool n dec : List.Vector Bool n → Γ M : Λ → Stmt Γ Λ σ inst✝¹ : Fintype Γ inst✝ : Inhabited Λ S : Finset Λ ss : Supports M S q : Λ' Γ Λ σ h : q ∈ trSupp M S p : Γ → σ → Bool q₁ q₂ : Stmt Γ Λ σ IH₁ : SupportsStmt S q₁ → (∀ q' ∈ writes q₁, q' ∈ trSupp M S) → SupportsStmt (trSupp M S) (trNormal dec q₁) ∧ ∀ q' ∈ writes q₁, SupportsStmt (trSupp M S) (tr enc dec M q') IH₂ : SupportsStmt S q₂ → (∀ q' ∈ writes q₂, q' ∈ trSupp M S) → SupportsStmt (trSupp M S) (trNormal dec q₂) ∧ ∀ q' ∈ writes q₂, SupportsStmt (trSupp M S) (tr enc dec M q') hs : SupportsStmt S (Stmt.branch p q₁ q₂) hw : ∀ (q' : Λ' Γ Λ σ), q' ∈ writes q₁ ∨ q' ∈ writes q₂ → q' ∈ trSupp M S ⊢ SupportsStmt (trSupp M S) (trNormal dec (Stmt.branch p q₁ q₂)) ∧ ∀ (q' : Λ' Γ Λ σ), q' ∈ writes q₁ ∨ q' ∈ writes q₂ → SupportsStmt (trSupp M S) (tr enc dec M q')
replace IH₁ := IH₁ hs.1 fun q hq ↦ hw q (Or.inl hq)
case branch Γ : Type u_1 Λ : Type u_2 σ : Type u_3 n : ℕ enc : Γ → List.Vector Bool n dec : List.Vector Bool n → Γ M : Λ → Stmt Γ Λ σ inst✝¹ : Fintype Γ inst✝ : Inhabited Λ S : Finset Λ ss : Supports M S q : Λ' Γ Λ σ h : q ∈ trSupp M S p : Γ → σ → Bool q₁ q₂ : Stmt Γ Λ σ IH₂ : SupportsStmt S q₂ → (∀ q' ∈ writes q₂, q' ∈ trSupp M S) → SupportsStmt (trSupp M S) (trNormal dec q₂) ∧ ∀ q' ∈ writes q₂, SupportsStmt (trSupp M S) (tr enc dec M q') hs : SupportsStmt S (Stmt.branch p q₁ q₂) hw : ∀ (q' : Λ' Γ Λ σ), q' ∈ writes q₁ ∨ q' ∈ writes q₂ → q' ∈ trSupp M S IH₁ : SupportsStmt (trSupp M S) (trNormal dec q₁) ∧ ∀ q' ∈ writes q₁, SupportsStmt (trSupp M S) (tr enc dec M q') ⊢ SupportsStmt (trSupp M S) (trNormal dec (Stmt.branch p q₁ q₂)) ∧ ∀ (q' : Λ' Γ Λ σ), q' ∈ writes q₁ ∨ q' ∈ writes q₂ → SupportsStmt (trSupp M S) (tr enc dec M q')
bea148d15df2302d
rel_sup_mul
Mathlib/Topology/Algebra/InfiniteSum/NatInt.lean
theorem rel_sup_mul [CompleteLattice α] (m : α → M) (m0 : m ⊥ = 1) (R : M → M → Prop) (m_iSup : ∀ s : ℕ → α, R (m (⨆ i, s i)) (∏' i, m (s i))) (s₁ s₂ : α) : R (m (s₁ ⊔ s₂)) (m s₁ * m s₂)
case h.e'_2 M : Type u_1 inst✝² : CommMonoid M inst✝¹ : TopologicalSpace M α : Type u_3 inst✝ : CompleteLattice α m : α → M m0 : m ⊥ = 1 R : M → M → Prop m_iSup : ∀ (s : ℕ → α), R (m (⨆ i, s i)) (∏' (i : ℕ), m (s i)) s₁ s₂ : α ⊢ m s₁ * m s₂ = ∏' (b : Bool), m (bif b then s₁ else s₂)
rw [tprod_fintype, Fintype.prod_bool, cond, cond]
no goals
f084f100f9af625d
Matrix.isAddUnit_detp_smul_mul_adjp
Mathlib/LinearAlgebra/Matrix/SemiringInverse.lean
theorem isAddUnit_detp_smul_mul_adjp (hAB : A * B = 1) : IsAddUnit (detp 1 A • (B * adjp (-1) B) + detp (-1) A • (B * adjp 1 B))
n : Type u_1 R : Type u_3 inst✝² : Fintype n inst✝¹ : DecidableEq n inst✝ : CommSemiring R A B : Matrix n n R hAB : A * B = 1 s t : ℤˣ h : s ≠ t i j k : n hk : k ∈ univ σ : Perm n hσ : σ ∈ filter (fun x => x j = k) (ofSign t) τ : Perm n hτ : τ ∈ ofSign s ⊢ IsAddUnit ((∏ k : n, A k (τ k)) * (B i k * ∏ k ∈ {j}ᶜ, B k (σ k)))
rw [mem_filter] at hσ
n : Type u_1 R : Type u_3 inst✝² : Fintype n inst✝¹ : DecidableEq n inst✝ : CommSemiring R A B : Matrix n n R hAB : A * B = 1 s t : ℤˣ h : s ≠ t i j k : n hk : k ∈ univ σ : Perm n hσ : σ ∈ ofSign t ∧ σ j = k τ : Perm n hτ : τ ∈ ofSign s ⊢ IsAddUnit ((∏ k : n, A k (τ k)) * (B i k * ∏ k ∈ {j}ᶜ, B k (σ k)))
cfc0571f345e1ba6
Subalgebra.toSubsemiring_injective
Mathlib/Algebra/Algebra/Subalgebra/Basic.lean
theorem toSubsemiring_injective : Function.Injective (toSubsemiring : Subalgebra R A → Subsemiring A) := fun S T h => ext fun x => by rw [← mem_toSubsemiring, ← mem_toSubsemiring, h]
R : Type u A : Type v inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A S T : Subalgebra R A h : S.toSubsemiring = T.toSubsemiring x : A ⊢ x ∈ S ↔ x ∈ T
rw [← mem_toSubsemiring, ← mem_toSubsemiring, h]
no goals
ac9dadd49afb1dfc
HasFPowerSeriesAt.isBigO_sub_partialSum_pow
Mathlib/Analysis/Analytic/Basic.lean
theorem HasFPowerSeriesAt.isBigO_sub_partialSum_pow (hf : HasFPowerSeriesAt f p x) (n : ℕ) : (fun y : E => f (x + y) - p.partialSum n y) =O[𝓝 0] fun y => ‖y‖ ^ n
𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F f : E → F p : FormalMultilinearSeries 𝕜 E F x : E hf : HasFPowerSeriesAt f p x n : ℕ ⊢ (fun y => f (x + y) - p.partialSum n y) =O[𝓝 0] fun y => ‖y‖ ^ n
rw [← hasFPowerSeriesWithinAt_univ] at hf
𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F f : E → F p : FormalMultilinearSeries 𝕜 E F x : E hf : HasFPowerSeriesWithinAt f p univ x n : ℕ ⊢ (fun y => f (x + y) - p.partialSum n y) =O[𝓝 0] fun y => ‖y‖ ^ n
515dadc5b5c5ce3c
Algebra.FormallyUnramified.of_comp
Mathlib/RingTheory/Unramified/Basic.lean
theorem of_comp [FormallyUnramified R B] : FormallyUnramified A B
R : Type u_1 inst✝⁹ : CommRing R A : Type u_2 inst✝⁸ : CommRing A inst✝⁷ : Algebra R A B : Type u_3 inst✝⁶ : CommRing B inst✝⁵ : Algebra R B inst✝⁴ : Algebra A B inst✝³ : IsScalarTower R A B inst✝² : FormallyUnramified R B Q : Type u_3 inst✝¹ : CommRing Q inst✝ : Algebra A Q I : Ideal Q e : I ^ 2 = ⊥ f₁ f₂ : B →ₐ[A] Q e' : (Ideal.Quotient.mkₐ A I).comp f₁ = (Ideal.Quotient.mkₐ A I).comp f₂ ⊢ f₁ = f₂
letI := ((algebraMap A Q).comp (algebraMap R A)).toAlgebra
R : Type u_1 inst✝⁹ : CommRing R A : Type u_2 inst✝⁸ : CommRing A inst✝⁷ : Algebra R A B : Type u_3 inst✝⁶ : CommRing B inst✝⁵ : Algebra R B inst✝⁴ : Algebra A B inst✝³ : IsScalarTower R A B inst✝² : FormallyUnramified R B Q : Type u_3 inst✝¹ : CommRing Q inst✝ : Algebra A Q I : Ideal Q e : I ^ 2 = ⊥ f₁ f₂ : B →ₐ[A] Q e' : (Ideal.Quotient.mkₐ A I).comp f₁ = (Ideal.Quotient.mkₐ A I).comp f₂ this : Algebra R Q := ((algebraMap A Q).comp (algebraMap R A)).toAlgebra ⊢ f₁ = f₂
9d134edf4c888af2
List.dropLast_append_getLast
Mathlib/Data/List/Basic.lean
theorem dropLast_append_getLast : ∀ {l : List α} (h : l ≠ []), dropLast l ++ [getLast l h] = l | [], h => absurd rfl h | [_], _ => rfl | a :: b :: l, h => by rw [dropLast_cons₂, cons_append, getLast_cons (cons_ne_nil _ _)] congr exact dropLast_append_getLast (cons_ne_nil b l)
case e_tail α : Type u a b : α l : List α h : a :: b :: l ≠ [] ⊢ (b :: l).dropLast ++ [(b :: l).getLast ⋯] = b :: l
exact dropLast_append_getLast (cons_ne_nil b l)
no goals
205445815c6fa96b
Sym2.out_fst_mem
Mathlib/Data/Sym/Sym2.lean
theorem out_fst_mem (e : Sym2 α) : e.out.1 ∈ e := ⟨e.out.2, by rw [Sym2.mk, e.out_eq]⟩
α : Type u_1 e : Sym2 α ⊢ e = s((Quot.out e).1, (Quot.out e).2)
rw [Sym2.mk, e.out_eq]
no goals
78e1aa11a1a1940a
CategoryTheory.Center.whiskerRight_comm
Mathlib/CategoryTheory/Monoidal/Center.lean
theorem whiskerRight_comm {X₁ X₂ : Center C} (f : X₁ ⟶ X₂) (Y : Center C) (U : C) : f.f ▷ Y.1 ▷ U ≫ ((tensorObj X₂ Y).2.β U).hom = ((tensorObj X₁ Y).2.β U).hom ≫ U ◁ f.f ▷ Y.1
C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : MonoidalCategory C X₁ X₂ : Center C f : X₁ ⟶ X₂ Y : Center C U : C ⊢ 𝟙 ((X₁.fst ⊗ Y.fst) ⊗ U) ⊗≫ X₁.fst ◁ (Y.snd.β U).hom ⊗≫ ((X₁.snd.β U).hom ≫ U ◁ f.f) ▷ Y.fst ⊗≫ 𝟙 (U ⊗ X₂.fst ⊗ Y.fst) = ((α_ X₁.fst Y.fst U).hom ≫ X₁.fst ◁ (Y.snd.β U).hom ≫ (α_ X₁.fst U Y.fst).inv ≫ (X₁.snd.β U).hom ▷ Y.fst ≫ (α_ U X₁.fst Y.fst).hom) ≫ U ◁ f.f ▷ Y.fst
monoidal
no goals
16840298f1f65760
ArithmeticFunction.moebius_ne_zero_iff_squarefree
Mathlib/NumberTheory/ArithmeticFunction.lean
theorem moebius_ne_zero_iff_squarefree {n : ℕ} : μ n ≠ 0 ↔ Squarefree n
case mp n : ℕ h : ¬Squarefree n ⊢ μ n = 0
simp [h]
no goals
b72155ce994a85f1
Complex.arg_lt_pi_div_two_iff
Mathlib/Analysis/SpecialFunctions/Complex/Arg.lean
lemma arg_lt_pi_div_two_iff {z : ℂ} : arg z < π / 2 ↔ 0 < re z ∨ im z < 0 ∨ z = 0
case inr.inl z : ℂ hre : z.re = 0 ⊢ (0 ≤ z.re ∨ z.im < 0) ∧ ¬(z.re = 0 ∧ 0 < z.im) ↔ 0 < z.re ∨ z.im < 0 ∨ z = 0
have : z = 0 ↔ z.im = 0 := by simp [Complex.ext_iff, hre]
case inr.inl z : ℂ hre : z.re = 0 this : z = 0 ↔ z.im = 0 ⊢ (0 ≤ z.re ∨ z.im < 0) ∧ ¬(z.re = 0 ∧ 0 < z.im) ↔ 0 < z.re ∨ z.im < 0 ∨ z = 0
93df07ab0a2d15fa
tangentMap_prod_snd
Mathlib/Geometry/Manifold/MFDeriv/SpecificFunctions.lean
theorem tangentMap_prod_snd {p : TangentBundle (I.prod I') (M × M')} : tangentMap (I.prod I') I' Prod.snd p = ⟨p.proj.2, p.2.2⟩
𝕜 : Type u_1 inst✝¹⁰ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedSpace 𝕜 E H : Type u_3 inst✝⁷ : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝⁶ : TopologicalSpace M inst✝⁵ : ChartedSpace H M E' : Type u_5 inst✝⁴ : NormedAddCommGroup E' inst✝³ : NormedSpace 𝕜 E' H' : Type u_6 inst✝² : TopologicalSpace H' I' : ModelWithCorners 𝕜 E' H' M' : Type u_7 inst✝¹ : TopologicalSpace M' inst✝ : ChartedSpace H' M' p : TangentBundle (I.prod I') (M × M') ⊢ tangentMap (I.prod I') I' Prod.snd p = { proj := p.proj.2, snd := p.snd.2 }
simp [tangentMap]
𝕜 : Type u_1 inst✝¹⁰ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedSpace 𝕜 E H : Type u_3 inst✝⁷ : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝⁶ : TopologicalSpace M inst✝⁵ : ChartedSpace H M E' : Type u_5 inst✝⁴ : NormedAddCommGroup E' inst✝³ : NormedSpace 𝕜 E' H' : Type u_6 inst✝² : TopologicalSpace H' I' : ModelWithCorners 𝕜 E' H' M' : Type u_7 inst✝¹ : TopologicalSpace M' inst✝ : ChartedSpace H' M' p : TangentBundle (I.prod I') (M × M') ⊢ (ContinuousLinearMap.snd 𝕜 (TangentSpace I p.proj.1) (TangentSpace I' p.proj.2)) p.snd = p.snd.2
f6a3eb949f78663b
AffineIndependent.existsUnique_dist_eq
Mathlib/Geometry/Euclidean/Circumcenter.lean
theorem _root_.AffineIndependent.existsUnique_dist_eq {ι : Type*} [hne : Nonempty ι] [Finite ι] {p : ι → P} (ha : AffineIndependent ℝ p) : ∃! cs : Sphere P, cs.center ∈ affineSpan ℝ (Set.range p) ∧ Set.range p ⊆ (cs : Set P)
case h.left V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : InnerProductSpace ℝ V inst✝² : MetricSpace P inst✝¹ : NormedAddTorsor V P ι : Type u_3 hne : Nonempty ι inst✝ : Finite ι p : ι → P ha : AffineIndependent ℝ p val✝ : Fintype ι hm : ∀ {ι : Type u_3} [hne : Nonempty ι] [inst : Finite ι] {p : ι → P}, AffineIndependent ℝ p → ∀ (val : Fintype ι), Fintype.card ι = 0 → ∃! cs, cs.center ∈ affineSpan ℝ (Set.range p) ∧ Set.range p ⊆ Metric.sphere cs.center cs.radius i : ι hi : ∀ (y : ι), y = i this : Unique ι ⊢ p i = p default ∧ {p default} ⊆ Metric.sphere (p i) 0
simp_rw [hi default, Set.singleton_subset_iff]
case h.left V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : InnerProductSpace ℝ V inst✝² : MetricSpace P inst✝¹ : NormedAddTorsor V P ι : Type u_3 hne : Nonempty ι inst✝ : Finite ι p : ι → P ha : AffineIndependent ℝ p val✝ : Fintype ι hm : ∀ {ι : Type u_3} [hne : Nonempty ι] [inst : Finite ι] {p : ι → P}, AffineIndependent ℝ p → ∀ (val : Fintype ι), Fintype.card ι = 0 → ∃! cs, cs.center ∈ affineSpan ℝ (Set.range p) ∧ Set.range p ⊆ Metric.sphere cs.center cs.radius i : ι hi : ∀ (y : ι), y = i this : Unique ι ⊢ True ∧ p i ∈ Metric.sphere (p i) 0
c2eb4c938c177320
isOpen_pi_iff
Mathlib/Topology/Constructions.lean
theorem isOpen_pi_iff {s : Set (∀ a, π a)} : IsOpen s ↔ ∀ f, f ∈ s → ∃ (I : Finset ι) (u : ∀ a, Set (π a)), (∀ a, a ∈ I → IsOpen (u a) ∧ f a ∈ u a) ∧ (I : Set ι).pi u ⊆ s
case refine_1 ι : Type u_5 π : ι → Type u_6 T : (i : ι) → TopologicalSpace (π i) s : Set ((a : ι) → π a) a : (a : ι) → π a x✝ : a ∈ s ⊢ (∃ I t, (∀ (i : ι), ∃ t_1 ⊆ t i, IsOpen t_1 ∧ a i ∈ t_1) ∧ (↑I).pi t ⊆ s) → ∃ I u, (∀ a_2 ∈ I, IsOpen (u a_2) ∧ a a_2 ∈ u a_2) ∧ (↑I).pi u ⊆ s
rintro ⟨I, t, ⟨h1, h2⟩⟩
case refine_1.intro.intro.intro ι : Type u_5 π : ι → Type u_6 T : (i : ι) → TopologicalSpace (π i) s : Set ((a : ι) → π a) a : (a : ι) → π a x✝ : a ∈ s I : Finset ι t : (i : ι) → Set (π i) h1 : ∀ (i : ι), ∃ t_1 ⊆ t i, IsOpen t_1 ∧ a i ∈ t_1 h2 : (↑I).pi t ⊆ s ⊢ ∃ I u, (∀ a_1 ∈ I, IsOpen (u a_1) ∧ a a_1 ∈ u a_1) ∧ (↑I).pi u ⊆ s
aadda838155adaf1
Finset.prod_subtype_map_embedding
Mathlib/Algebra/BigOperators/Group/Finset/Basic.lean
theorem prod_subtype_map_embedding {p : α → Prop} {s : Finset { x // p x }} {f : { x // p x } → β} {g : α → β} (h : ∀ x : { x // p x }, x ∈ s → g x = f x) : (∏ x ∈ s.map (Function.Embedding.subtype _), g x) = ∏ x ∈ s, f x
α : Type u_3 β : Type u_4 inst✝ : CommMonoid β p : α → Prop s : Finset { x // p x } f : { x // p x } → β g : α → β h : ∀ x ∈ s, g ↑x = f x ⊢ ∏ x ∈ s, g ((Embedding.subtype fun x => p x) x) = ∏ x ∈ s, f x
exact Finset.prod_congr rfl h
no goals
43a3f39759200391
Nat.multinomial_empty
Mathlib/Data/Nat/Choose/Multinomial.lean
@[simp] lemma multinomial_empty : multinomial ∅ f = 1
α : Type u_1 f : α → ℕ ⊢ multinomial ∅ f = 1
simp [multinomial]
no goals
6d7d216b864da1a5
ENNReal.HolderConjugate.sub_one_mul_inv
Mathlib/Data/ENNReal/Holder.lean
lemma sub_one_mul_inv (hp : p ≠ ⊤) : (p - 1) * p⁻¹ = q⁻¹
p q : ℝ≥0∞ inst✝ : p.HolderConjugate q hp : p ≠ ⊤ this : p ≠ 0 ⊢ p ≠ ⊤
aesop
no goals
66d815affc70c838
IsLocalization.OverPrime.mem_normalizedFactors_of_isPrime
Mathlib/RingTheory/DedekindDomain/PID.lean
theorem IsLocalization.OverPrime.mem_normalizedFactors_of_isPrime [IsDomain S] {P : Ideal Sₚ} (hP : IsPrime P) (hP0 : P ≠ ⊥) : P ∈ normalizedFactors (Ideal.map (algebraMap R Sₚ) p)
case intro.intro.intro.intro R : Type u_1 inst✝¹³ : CommRing R inst✝¹² : IsDedekindDomain R S : Type u_2 inst✝¹¹ : CommRing S inst✝¹⁰ : Algebra R S inst✝⁹ : NoZeroSMulDivisors R S inst✝⁸ : Module.Finite R S p : Ideal R hp0 : p ≠ ⊥ inst✝⁷ : p.IsPrime Sₚ : Type u_3 inst✝⁶ : CommRing Sₚ inst✝⁵ : Algebra S Sₚ inst✝⁴ : IsLocalization (Algebra.algebraMapSubmonoid S p.primeCompl) Sₚ inst✝³ : Algebra R Sₚ inst✝² : IsScalarTower R S Sₚ inst✝¹ : IsDedekindDomain Sₚ inst✝ : IsDomain S P : Ideal Sₚ hP : P.IsPrime hP0 : P ≠ ⊥ non_zero_div : Algebra.algebraMapSubmonoid S p.primeCompl ≤ S⁰ this✝ : Algebra (Localization.AtPrime p) Sₚ := localizationAlgebra p.primeCompl S this : IsScalarTower R (Localization.AtPrime p) Sₚ pid : IsPrincipalIdealRing (Localization.AtPrime p) p' : Ideal (Localization.AtPrime p) hpu : ∀ (y : Ideal (Localization.AtPrime p)), (fun P => P ≠ ⊥ ∧ P.IsPrime) y → y = p' hp'0 : p' ≠ ⊥ hp'p : p'.IsPrime ⊢ P ∈ normalizedFactors (Ideal.map (algebraMap R Sₚ) p)
have : IsLocalRing.maximalIdeal (Localization.AtPrime p) ≠ ⊥ := by rw [Submodule.ne_bot_iff] at hp0 ⊢ obtain ⟨x, x_mem, x_ne⟩ := hp0 exact ⟨algebraMap _ _ x, (IsLocalization.AtPrime.to_map_mem_maximal_iff _ _ _).mpr x_mem, IsLocalization.to_map_ne_zero_of_mem_nonZeroDivisors _ p.primeCompl_le_nonZeroDivisors (mem_nonZeroDivisors_of_ne_zero x_ne)⟩
case intro.intro.intro.intro R : Type u_1 inst✝¹³ : CommRing R inst✝¹² : IsDedekindDomain R S : Type u_2 inst✝¹¹ : CommRing S inst✝¹⁰ : Algebra R S inst✝⁹ : NoZeroSMulDivisors R S inst✝⁸ : Module.Finite R S p : Ideal R hp0 : p ≠ ⊥ inst✝⁷ : p.IsPrime Sₚ : Type u_3 inst✝⁶ : CommRing Sₚ inst✝⁵ : Algebra S Sₚ inst✝⁴ : IsLocalization (Algebra.algebraMapSubmonoid S p.primeCompl) Sₚ inst✝³ : Algebra R Sₚ inst✝² : IsScalarTower R S Sₚ inst✝¹ : IsDedekindDomain Sₚ inst✝ : IsDomain S P : Ideal Sₚ hP : P.IsPrime hP0 : P ≠ ⊥ non_zero_div : Algebra.algebraMapSubmonoid S p.primeCompl ≤ S⁰ this✝¹ : Algebra (Localization.AtPrime p) Sₚ := localizationAlgebra p.primeCompl S this✝ : IsScalarTower R (Localization.AtPrime p) Sₚ pid : IsPrincipalIdealRing (Localization.AtPrime p) p' : Ideal (Localization.AtPrime p) hpu : ∀ (y : Ideal (Localization.AtPrime p)), (fun P => P ≠ ⊥ ∧ P.IsPrime) y → y = p' hp'0 : p' ≠ ⊥ hp'p : p'.IsPrime this : IsLocalRing.maximalIdeal (Localization.AtPrime p) ≠ ⊥ ⊢ P ∈ normalizedFactors (Ideal.map (algebraMap R Sₚ) p)
57d1628e40ba8911
Set.exists_chain_of_le_chainHeight
Mathlib/Order/Height.lean
theorem exists_chain_of_le_chainHeight {n : ℕ} (hn : ↑n ≤ s.chainHeight) : ∃ l ∈ s.subchain, length l = n
case inl.intro.intro.intro.mk.intro α : Type u_1 inst✝ : LT α s : Set α n : ℕ hn : ↑n ≤ s.chainHeight ha : ⨆ l, ↑(↑l).length = ⊤ l : List α h₁ : Chain' (fun x1 x2 => x1 < x2) l h₂ : ∀ i ∈ l, i ∈ s h₃ : ¬(fun x => (↑x).length) ⟨l, ⋯⟩ ≤ n ⊢ ∃ l ∈ s.subchain, l.length = n
exact ⟨l.take n, ⟨h₁.take _, fun x h ↦ h₂ _ <| take_subset _ _ h⟩, (l.length_take n).trans <| min_eq_left <| le_of_not_ge h₃⟩
no goals
3760f2ef9d2f3ddc
ENNReal.HolderTriple.inv_sub_inv_eq_inv'
Mathlib/Data/ENNReal/Holder.lean
/-- assumes `q ≠ 0` instead of `r ≠ 0`. -/ lemma inv_sub_inv_eq_inv' (hq : q ≠ 0) : r⁻¹ - q⁻¹ = p⁻¹
p q : ℝ≥0∞ hq : q ≠ 0 inst✝ : p.HolderTriple q 0 hp : p ≠ 0 ⊢ ⊤ + ⊤ = ⊤
simp
no goals
41de0a2858038f73
MeasureTheory.mem_generateSetAlgebra_elim
Mathlib/MeasureTheory/SetAlgebra.lean
theorem mem_generateSetAlgebra_elim (s_mem : s ∈ generateSetAlgebra 𝒜) : ∃ A : Set (Set (Set α)), A.Finite ∧ (∀ a ∈ A, a.Finite) ∧ (∀ᵉ (a ∈ A) (t ∈ a), t ∈ 𝒜 ∨ tᶜ ∈ 𝒜) ∧ s = ⋃ a ∈ A, ⋂ t ∈ a, t
case compl.intro.intro.intro.intro α : Type u_1 𝒜 : Set (Set α) s u : Set α hs✝ : generateSetAlgebra 𝒜 u A : Set (Set (Set α)) A_fin : A.Finite mem_A : ∀ a ∈ A, a.Finite hA : ∀ a ∈ A, ∀ t ∈ a, t ∈ 𝒜 ∨ tᶜ ∈ 𝒜 u_eq : u = ⋃ a ∈ A, ⋂ t ∈ a, t ⊢ ∃ A, A.Finite ∧ (∀ a ∈ A, a.Finite) ∧ (∀ a ∈ A, ∀ t ∈ a, t ∈ 𝒜 ∨ tᶜ ∈ 𝒜) ∧ uᶜ = ⋃ a ∈ A, ⋂ t ∈ a, t
have := finite_coe_iff.2 A_fin
case compl.intro.intro.intro.intro α : Type u_1 𝒜 : Set (Set α) s u : Set α hs✝ : generateSetAlgebra 𝒜 u A : Set (Set (Set α)) A_fin : A.Finite mem_A : ∀ a ∈ A, a.Finite hA : ∀ a ∈ A, ∀ t ∈ a, t ∈ 𝒜 ∨ tᶜ ∈ 𝒜 u_eq : u = ⋃ a ∈ A, ⋂ t ∈ a, t this : Finite ↑A ⊢ ∃ A, A.Finite ∧ (∀ a ∈ A, a.Finite) ∧ (∀ a ∈ A, ∀ t ∈ a, t ∈ 𝒜 ∨ tᶜ ∈ 𝒜) ∧ uᶜ = ⋃ a ∈ A, ⋂ t ∈ a, t
06f0f1876d6d12a0
Std.DHashMap.Internal.Raw.Const.get_eq
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Internal/Raw.lean
theorem Const.get_eq [BEq α] [Hashable α] {m : Raw α (fun _ => β)} {a : α} {h : a ∈ m} : Raw.Const.get m a h = Raw₀.Const.get ⟨m, by change dite .. = true at h; split at h <;> simp_all⟩ a (by change dite .. = true at h; split at h <;> simp_all) := rfl
α : Type u β✝ : α → Type v γ : Type w δ : α → Type w β : Type v inst✝¹ : BEq α inst✝ : Hashable α m : Raw α fun x => β a : α h : a ∈ m ⊢ 0 < m.buckets.size
change dite .. = true at h
α : Type u β✝ : α → Type v γ : Type w δ : α → Type w β : Type v inst✝¹ : BEq α inst✝ : Hashable α m : Raw α fun x => β a : α h : (if h : 0 < m.buckets.size then Raw₀.contains ⟨m, h⟩ a else false) = true ⊢ 0 < m.buckets.size
aae82082bc678c71
lowerSemicontinuous_iff_isClosed_preimage
Mathlib/Topology/Semicontinuous.lean
theorem lowerSemicontinuous_iff_isClosed_preimage {f : α → γ} : LowerSemicontinuous f ↔ ∀ y, IsClosed (f ⁻¹' Iic y)
α : Type u_1 inst✝¹ : TopologicalSpace α γ : Type u_3 inst✝ : LinearOrder γ f : α → γ ⊢ (∀ (y : γ), IsOpen (f ⁻¹' Ioi y)) ↔ ∀ (y : γ), IsClosed (f ⁻¹' Iic y)
simp only [← isOpen_compl_iff, ← preimage_compl, compl_Iic]
no goals
9af45dca5cfccec4
MulAction.automorphize_smul_left
Mathlib/Topology/Algebra/InfiniteSum/Module.lean
/-- Automorphization of a function into an `R`-`Module` distributes, that is, commutes with the `R`-scalar multiplication. -/ lemma MulAction.automorphize_smul_left [Group α] [MulAction α β] (f : β → M) (g : Quotient (MulAction.orbitRel α β) → R) : MulAction.automorphize ((g ∘ (@Quotient.mk' _ (_))) • f) = g • (MulAction.automorphize f : Quotient (MulAction.orbitRel α β) → M)
α : Type u_1 β : Type u_2 M : Type u_11 inst✝⁷ : TopologicalSpace M inst✝⁶ : AddCommMonoid M inst✝⁵ : T2Space M R : Type u_12 inst✝⁴ : DivisionRing R inst✝³ : Module R M inst✝² : ContinuousConstSMul R M inst✝¹ : Group α inst✝ : MulAction α β f : β → M g : Quotient (orbitRel α β) → R x : Quotient (orbitRel α β) b : β π : β → Quotient (orbitRel α β) := Quotient.mk (orbitRel α β) H₁ : ∀ (a : α), π (a • b) = π b ⊢ Quotient.lift (fun b => ∑' (a : α), g (Quotient.mk' (a • b)) • f (a • b)) ⋯ (Quotient.mk'' b) = g (Quotient.mk'' b) • Quotient.lift (fun b => ∑' (a : α), f (a • b)) ⋯ (Quotient.mk'' b)
change ∑' a : α, g (π (a • b)) • f (a • b) = g (π b) • ∑' a : α, f (a • b)
α : Type u_1 β : Type u_2 M : Type u_11 inst✝⁷ : TopologicalSpace M inst✝⁶ : AddCommMonoid M inst✝⁵ : T2Space M R : Type u_12 inst✝⁴ : DivisionRing R inst✝³ : Module R M inst✝² : ContinuousConstSMul R M inst✝¹ : Group α inst✝ : MulAction α β f : β → M g : Quotient (orbitRel α β) → R x : Quotient (orbitRel α β) b : β π : β → Quotient (orbitRel α β) := Quotient.mk (orbitRel α β) H₁ : ∀ (a : α), π (a • b) = π b ⊢ ∑' (a : α), g (π (a • b)) • f (a • b) = g (π b) • ∑' (a : α), f (a • b)
45d0295fcade3edf
NonUnitalRingHom.map_srange
Mathlib/RingTheory/NonUnitalSubsemiring/Basic.lean
theorem map_srange (g : S →ₙ+* T) (f : R →ₙ+* S) : map g (srange f) = srange (g.comp f)
R : Type u S : Type v T : Type w inst✝² : NonUnitalNonAssocSemiring R inst✝¹ : NonUnitalNonAssocSemiring S inst✝ : NonUnitalNonAssocSemiring T g : S →ₙ+* T f : R →ₙ+* S ⊢ map g (srange f) = srange (g.comp f)
simpa only [srange_eq_map] using (⊤ : NonUnitalSubsemiring R).map_map g f
no goals
b7b8044bc367fe61
ContMDiffFiberwiseLinear.locality_aux₁
Mathlib/Geometry/Manifold/VectorBundle/FiberwiseLinear.lean
theorem ContMDiffFiberwiseLinear.locality_aux₁ (n : WithTop ℕ∞) (e : PartialHomeomorph (B × F) (B × F)) (h : ∀ p ∈ e.source, ∃ s : Set (B × F), IsOpen s ∧ p ∈ s ∧ ∃ (φ : B → F ≃L[𝕜] F) (u : Set B) (hu : IsOpen u) (hφ : ContMDiffOn IB 𝓘(𝕜, F →L[𝕜] F) n (fun x => (φ x : F →L[𝕜] F)) u) (h2φ : ContMDiffOn IB 𝓘(𝕜, F →L[𝕜] F) n (fun x => ((φ x).symm : F →L[𝕜] F)) u), (e.restr s).EqOnSource (FiberwiseLinear.partialHomeomorph φ hu hφ.continuousOn h2φ.continuousOn)) : ∃ U : Set B, e.source = U ×ˢ univ ∧ ∀ x ∈ U, ∃ (φ : B → F ≃L[𝕜] F) (u : Set B) (hu : IsOpen u) (_huU : u ⊆ U) (_hux : x ∈ u), ∃ (hφ : ContMDiffOn IB 𝓘(𝕜, F →L[𝕜] F) n (fun x => (φ x : F →L[𝕜] F)) u) (h2φ : ContMDiffOn IB 𝓘(𝕜, F →L[𝕜] F) n (fun x => ((φ x).symm : F →L[𝕜] F)) u), (e.restr (u ×ˢ univ)).EqOnSource (FiberwiseLinear.partialHomeomorph φ hu hφ.continuousOn h2φ.continuousOn)
𝕜 : Type u_1 B : Type u_2 F : Type u_3 inst✝⁷ : TopologicalSpace B inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F EB : Type u_4 inst✝³ : NormedAddCommGroup EB inst✝² : NormedSpace 𝕜 EB HB : Type u_5 inst✝¹ : TopologicalSpace HB inst✝ : ChartedSpace HB B IB : ModelWithCorners 𝕜 EB HB n : WithTop ℕ∞ e : PartialHomeomorph (B × F) (B × F) s : ↑e.source → Set (B × F) hs : ∀ (x : ↑e.source), IsOpen (s x) hsp : ∀ (x : ↑e.source), ↑x ∈ s x φ : ↑e.source → B → F ≃L[𝕜] F u : ↑e.source → Set B hu : ∀ (x : ↑e.source), IsOpen (u x) hφ : ∀ (x : ↑e.source), ContMDiffOn IB 𝓘(𝕜, F →L[𝕜] F) n (fun x_1 => ↑(φ x x_1)) (u x) h2φ : ∀ (x : ↑e.source), ContMDiffOn IB 𝓘(𝕜, F →L[𝕜] F) n (fun x_1 => ↑(φ x x_1).symm) (u x) heφ : ∀ (x : ↑e.source), (e.restr (s x)).EqOnSource (FiberwiseLinear.partialHomeomorph (φ x) ⋯ ⋯ ⋯) hesu : ∀ (p : ↑e.source), e.source ∩ s p = u p ×ˢ univ hu' : ∀ (p : ↑e.source), (↑p).1 ∈ u p heu : ∀ (p : ↑e.source) (q : B × F), q.1 ∈ u p → q ∈ e.source he : e.source = (Prod.fst '' e.source) ×ˢ univ ⊢ ∃ U, e.source = U ×ˢ univ ∧ ∀ x ∈ U, ∃ φ u, ∃ (hu : IsOpen u) (_ : u ⊆ U) (_ : x ∈ u) (hφ : ContMDiffOn IB 𝓘(𝕜, F →L[𝕜] F) n (fun x => ↑(φ x)) u) (h2φ : ContMDiffOn IB 𝓘(𝕜, F →L[𝕜] F) n (fun x => ↑(φ x).symm) u), (e.restr (u ×ˢ univ)).EqOnSource (FiberwiseLinear.partialHomeomorph φ hu ⋯ ⋯)
refine ⟨Prod.fst '' e.source, he, ?_⟩
𝕜 : Type u_1 B : Type u_2 F : Type u_3 inst✝⁷ : TopologicalSpace B inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F EB : Type u_4 inst✝³ : NormedAddCommGroup EB inst✝² : NormedSpace 𝕜 EB HB : Type u_5 inst✝¹ : TopologicalSpace HB inst✝ : ChartedSpace HB B IB : ModelWithCorners 𝕜 EB HB n : WithTop ℕ∞ e : PartialHomeomorph (B × F) (B × F) s : ↑e.source → Set (B × F) hs : ∀ (x : ↑e.source), IsOpen (s x) hsp : ∀ (x : ↑e.source), ↑x ∈ s x φ : ↑e.source → B → F ≃L[𝕜] F u : ↑e.source → Set B hu : ∀ (x : ↑e.source), IsOpen (u x) hφ : ∀ (x : ↑e.source), ContMDiffOn IB 𝓘(𝕜, F →L[𝕜] F) n (fun x_1 => ↑(φ x x_1)) (u x) h2φ : ∀ (x : ↑e.source), ContMDiffOn IB 𝓘(𝕜, F →L[𝕜] F) n (fun x_1 => ↑(φ x x_1).symm) (u x) heφ : ∀ (x : ↑e.source), (e.restr (s x)).EqOnSource (FiberwiseLinear.partialHomeomorph (φ x) ⋯ ⋯ ⋯) hesu : ∀ (p : ↑e.source), e.source ∩ s p = u p ×ˢ univ hu' : ∀ (p : ↑e.source), (↑p).1 ∈ u p heu : ∀ (p : ↑e.source) (q : B × F), q.1 ∈ u p → q ∈ e.source he : e.source = (Prod.fst '' e.source) ×ˢ univ ⊢ ∀ x ∈ Prod.fst '' e.source, ∃ φ u, ∃ (hu : IsOpen u) (_ : u ⊆ Prod.fst '' e.source) (_ : x ∈ u) (hφ : ContMDiffOn IB 𝓘(𝕜, F →L[𝕜] F) n (fun x => ↑(φ x)) u) (h2φ : ContMDiffOn IB 𝓘(𝕜, F →L[𝕜] F) n (fun x => ↑(φ x).symm) u), (e.restr (u ×ˢ univ)).EqOnSource (FiberwiseLinear.partialHomeomorph φ hu ⋯ ⋯)
70cae96477ef715a
RingHom.IsStandardSmoothOfRelativeDimension.comp
Mathlib/RingTheory/RingHom/StandardSmooth.lean
lemma IsStandardSmoothOfRelativeDimension.comp {g : S →+* T} {f : R →+* S} (hg : IsStandardSmoothOfRelativeDimension.{t', w'} n g) (hf : IsStandardSmoothOfRelativeDimension.{t, w} m f) : IsStandardSmoothOfRelativeDimension.{max t t', max w w'} (n + m) (g.comp f)
n m : ℕ R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S T : Type u_1 inst✝ : CommRing T g : S →+* T f : R →+* S hg : IsStandardSmoothOfRelativeDimension n g hf : IsStandardSmoothOfRelativeDimension m f algInst✝² : Algebra R S := f.toAlgebra algInst✝¹ : Algebra S T := g.toAlgebra algInst✝ : Algebra R T := (g.comp f).toAlgebra scalarTowerInst✝ : IsScalarTower R S T := IsScalarTower.of_algebraMap_eq' (Eq.refl (algebraMap R T)) algebraizeInst✝¹ : Algebra.IsStandardSmoothOfRelativeDimension n S T algebraizeInst✝ : Algebra.IsStandardSmoothOfRelativeDimension m R S ⊢ Algebra.IsStandardSmoothOfRelativeDimension (n + m) R T
exact Algebra.IsStandardSmoothOfRelativeDimension.trans m n R S T
no goals
dfb7a4e9f1e77569
Complex.cosh_mul_I
Mathlib/Data/Complex/Trigonometric.lean
theorem cosh_mul_I : cosh (x * I) = cos x
x : ℂ ⊢ cosh (x * I) = cos x
rw [← mul_right_inj' (two_ne_zero' ℂ), two_cosh, two_cos, neg_mul_eq_neg_mul]
no goals
e4ca26df349dd293
norm_jacobiTheta₂'_term_le
Mathlib/NumberTheory/ModularForms/JacobiTheta/TwoVariable.lean
/-- A uniform upper bound for `jacobiTheta₂'_term` on compact subsets. -/ lemma norm_jacobiTheta₂'_term_le {S T : ℝ} (hT : 0 < T) {z τ : ℂ} (hz : |im z| ≤ S) (hτ : T ≤ im τ) (n : ℤ) : ‖jacobiTheta₂'_term n z τ‖ ≤ 2 * π * |n| * rexp (-π * (T * n ^ 2 - 2 * S * |n|))
S T : ℝ hT : 0 < T z τ : ℂ hz : |z.im| ≤ S hτ : T ≤ τ.im n : ℤ ⊢ ‖2 * ↑π * I * ↑n‖ * ‖jacobiTheta₂_term n z τ‖ ≤ 2 * π * ↑|n| * rexp (-π * (T * ↑n ^ 2 - 2 * S * ↑|n|))
refine mul_le_mul (le_of_eq ?_) (norm_jacobiTheta₂_term_le hT hz hτ n) (norm_nonneg _) (by positivity)
S T : ℝ hT : 0 < T z τ : ℂ hz : |z.im| ≤ S hτ : T ≤ τ.im n : ℤ ⊢ ‖2 * ↑π * I * ↑n‖ = 2 * π * ↑|n|
2632210bfa95d22f
ConvexOn.continuousOn_tfae
Mathlib/Analysis/Convex/Continuous.lean
lemma ConvexOn.continuousOn_tfae (hC : IsOpen C) (hC' : C.Nonempty) (hf : ConvexOn ℝ C f) : TFAE [ LocallyLipschitzOn C f, ContinuousOn f C, ∃ x₀ ∈ C, ContinuousAt f x₀, ∃ x₀ ∈ C, (𝓝 x₀).IsBoundedUnder (· ≤ ·) f, ∀ ⦃x₀⦄, x₀ ∈ C → (𝓝 x₀).IsBoundedUnder (· ≤ ·) f, ∀ ⦃x₀⦄, x₀ ∈ C → (𝓝 x₀).IsBoundedUnder (· ≤ ·) |f|]
case intro.intro.intro E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E C : Set E f : E → ℝ hC : IsOpen C hC' : C.Nonempty hf : ConvexOn ℝ C f tfae_1_to_2 : LocallyLipschitzOn C f → ContinuousOn f C tfae_2_to_3 : ContinuousOn f C → ∃ x₀ ∈ C, ContinuousAt f x₀ tfae_3_to_4 : (∃ x₀ ∈ C, ContinuousAt f x₀) → ∃ x₀ ∈ C, Filter.IsBoundedUnder (fun x1 x2 => x1 ≤ x2) (𝓝 x₀) f x₀ : E hx₀ : x₀ ∈ C r : ℝ hr : ∀ᶠ (x : ℝ) in Filter.map f (𝓝 x₀), (fun x1 x2 => x1 ≤ x2) x r x : E hx : x ∈ C this : ∀ᶠ (δ : ℝ) in 𝓝 0, (1 - δ)⁻¹ • x - (δ / (1 - δ)) • x₀ ∈ C δ : ℝ hδ₀ : δ > 0 hδ₁ : δ < 1 y : E := (1 - δ)⁻¹ • x - (δ / (1 - δ)) • x₀ hy : y ∈ C ⊢ ∀ᶠ (x : ℝ) in Filter.map f (𝓝 x), (fun x1 x2 => x1 ≤ x2) x (r ⊔ f y)
simp only [Filter.eventually_map, Pi.abs_apply] at hr ⊢
case intro.intro.intro E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E C : Set E f : E → ℝ hC : IsOpen C hC' : C.Nonempty hf : ConvexOn ℝ C f tfae_1_to_2 : LocallyLipschitzOn C f → ContinuousOn f C tfae_2_to_3 : ContinuousOn f C → ∃ x₀ ∈ C, ContinuousAt f x₀ tfae_3_to_4 : (∃ x₀ ∈ C, ContinuousAt f x₀) → ∃ x₀ ∈ C, Filter.IsBoundedUnder (fun x1 x2 => x1 ≤ x2) (𝓝 x₀) f x₀ : E hx₀ : x₀ ∈ C r : ℝ x : E hx : x ∈ C this : ∀ᶠ (δ : ℝ) in 𝓝 0, (1 - δ)⁻¹ • x - (δ / (1 - δ)) • x₀ ∈ C δ : ℝ hδ₀ : δ > 0 hδ₁ : δ < 1 y : E := (1 - δ)⁻¹ • x - (δ / (1 - δ)) • x₀ hy : y ∈ C hr : ∀ᶠ (a : E) in 𝓝 x₀, f a ≤ r ⊢ ∀ᶠ (a : E) in 𝓝 x, f a ≤ r ⊔ f y
d7a82928a7cc2bf5
Polynomial.Monic.natDegree_pow
Mathlib/Algebra/Polynomial/Monic.lean
theorem natDegree_pow (hp : p.Monic) (n : ℕ) : (p ^ n).natDegree = n * p.natDegree
R : Type u inst✝ : Semiring R p : R[X] hp : p.Monic n : ℕ ⊢ (p ^ n).natDegree = n * p.natDegree
induction n with | zero => simp | succ n hn => rw [pow_succ, (hp.pow n).natDegree_mul hp, hn, Nat.succ_mul, add_comm]
no goals
bdded36dd8fa5c98
Std.Tactic.BVDecide.BVExpr.bitblast.blastConst.go_decl_eq
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Circuit/Impl/Const.lean
theorem blastConst.go_decl_eq {aig : AIG α} (i : Nat) (s : AIG.RefVec aig i) (val : BitVec w) (hi : i ≤ w) : ∀ (curr : Nat) (h1) (h2), (go aig val i s hi).aig.decls[curr]'h2 = aig.decls[curr]'h1
case isFalse α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat aig : AIG α i : Nat s : aig.RefVec i val : BitVec w hi : i ≤ w res : AIG.RefVecEntry α w h✝ : ¬i < w hgo : { aig := aig, vec := ⋯ ▸ s } = res ⊢ ∀ (curr : Nat) (h1 : curr < aig.decls.size) (h2 : curr < res.aig.decls.size), res.aig.decls[curr] = aig.decls[curr]
rw [← hgo]
case isFalse α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat aig : AIG α i : Nat s : aig.RefVec i val : BitVec w hi : i ≤ w res : AIG.RefVecEntry α w h✝ : ¬i < w hgo : { aig := aig, vec := ⋯ ▸ s } = res ⊢ ∀ (curr : Nat) (h1 : curr < aig.decls.size) (h2 : curr < { aig := aig, vec := ⋯ ▸ s }.aig.decls.size), { aig := aig, vec := ⋯ ▸ s }.aig.decls[curr] = aig.decls[curr]
a8695d661d5b3e87
MeasureTheory.Measure.exists_measure_inter_spanningSets_pos
Mathlib/MeasureTheory/Measure/Typeclasses.lean
theorem exists_measure_inter_spanningSets_pos [MeasurableSpace α] {μ : Measure α} [SigmaFinite μ] (s : Set α) : (∃ n, 0 < μ (s ∩ spanningSets μ n)) ↔ 0 < μ s
α : Type u_1 inst✝¹ : MeasurableSpace α μ : Measure α inst✝ : SigmaFinite μ s : Set α ⊢ (¬∃ n, 0 < μ (s ∩ spanningSets μ n)) ↔ ¬0 < μ s
simp only [not_exists, not_lt, nonpos_iff_eq_zero]
α : Type u_1 inst✝¹ : MeasurableSpace α μ : Measure α inst✝ : SigmaFinite μ s : Set α ⊢ (∀ (x : ℕ), μ (s ∩ spanningSets μ x) = 0) ↔ μ s = 0
3135169d69515cc1
RatFunc.intDegree_add_le
Mathlib/FieldTheory/RatFunc/Degree.lean
theorem intDegree_add_le {x y : RatFunc K} (hy : y ≠ 0) (hxy : x + y ≠ 0) : intDegree (x + y) ≤ max (intDegree x) (intDegree y)
case neg K : Type u inst✝ : Field K x y : RatFunc K hy : y ≠ 0 hxy : x + y ≠ 0 hx : ¬x = 0 ⊢ (x + y).intDegree ≤ x.intDegree ⊔ y.intDegree
rw [intDegree_add hxy, ← natDegree_num_mul_right_sub_natDegree_denom_mul_left_eq_intDegree hx y.denom_ne_zero, mul_comm y.denom, ← natDegree_num_mul_right_sub_natDegree_denom_mul_left_eq_intDegree hy x.denom_ne_zero, le_max_iff, sub_le_sub_iff_right, Int.ofNat_le, sub_le_sub_iff_right, Int.ofNat_le, ← le_max_iff, mul_comm y.num]
case neg K : Type u inst✝ : Field K x y : RatFunc K hy : y ≠ 0 hxy : x + y ≠ 0 hx : ¬x = 0 ⊢ (x.num * y.denom + x.denom * y.num).natDegree ≤ (x.num * y.denom).natDegree ⊔ (x.denom * y.num).natDegree
df522905dbc696e6
MeasureTheory.dist_convolution_le'
Mathlib/Analysis/Convolution.lean
theorem dist_convolution_le' {x₀ : G} {R ε : ℝ} {z₀ : E'} (hε : 0 ≤ ε) (hif : Integrable f μ) (hf : support f ⊆ ball (0 : G) R) (hmg : AEStronglyMeasurable g μ) (hg : ∀ x ∈ ball x₀ R, dist (g x) z₀ ≤ ε) : dist ((f ⋆[L, μ] g : G → F) x₀) (∫ t, L (f t) z₀ ∂μ) ≤ (‖L‖ * ∫ x, ‖f x‖ ∂μ) * ε
𝕜 : Type u𝕜 G : Type uG E : Type uE E' : Type uE' F : Type uF inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedAddCommGroup E' inst✝¹¹ : NormedAddCommGroup F f : G → E g : G → E' inst✝¹⁰ : NontriviallyNormedField 𝕜 inst✝⁹ : NormedSpace 𝕜 E inst✝⁸ : NormedSpace 𝕜 E' inst✝⁷ : NormedSpace 𝕜 F L : E →L[𝕜] E' →L[𝕜] F inst✝⁶ : MeasurableSpace G μ : Measure G inst✝⁵ : NormedSpace ℝ F inst✝⁴ : SeminormedAddCommGroup G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G inst✝¹ : μ.IsAddLeftInvariant inst✝ : SFinite μ x₀ : G R ε : ℝ z₀ : E' hε : 0 ≤ ε hif : Integrable f μ hf : support f ⊆ ball 0 R hmg : AEStronglyMeasurable g μ hg : ∀ x ∈ ball x₀ R, dist (g x) z₀ ≤ ε hfg : ConvolutionExistsAt f g x₀ L μ ⊢ ∀ (t : G), dist ((L (f t)) (g (x₀ - t))) ((L (f t)) z₀) ≤ ‖L (f t)‖ * ε
intro t
𝕜 : Type u𝕜 G : Type uG E : Type uE E' : Type uE' F : Type uF inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedAddCommGroup E' inst✝¹¹ : NormedAddCommGroup F f : G → E g : G → E' inst✝¹⁰ : NontriviallyNormedField 𝕜 inst✝⁹ : NormedSpace 𝕜 E inst✝⁸ : NormedSpace 𝕜 E' inst✝⁷ : NormedSpace 𝕜 F L : E →L[𝕜] E' →L[𝕜] F inst✝⁶ : MeasurableSpace G μ : Measure G inst✝⁵ : NormedSpace ℝ F inst✝⁴ : SeminormedAddCommGroup G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G inst✝¹ : μ.IsAddLeftInvariant inst✝ : SFinite μ x₀ : G R ε : ℝ z₀ : E' hε : 0 ≤ ε hif : Integrable f μ hf : support f ⊆ ball 0 R hmg : AEStronglyMeasurable g μ hg : ∀ x ∈ ball x₀ R, dist (g x) z₀ ≤ ε hfg : ConvolutionExistsAt f g x₀ L μ t : G ⊢ dist ((L (f t)) (g (x₀ - t))) ((L (f t)) z₀) ≤ ‖L (f t)‖ * ε
fddd5e43ba4662a2
LightCondensed.lanPresheafExt_inv
Mathlib/Condensed/Discrete/Colimit.lean
@[simp] lemma lanPresheafExt_inv {F G : LightProfinite.{u}ᵒᵖ ⥤ Type u} (S : LightProfinite.{u}ᵒᵖ) (i : toLightProfinite.op ⋙ F ≅ toLightProfinite.op ⋙ G) : (lanPresheafExt i).inv.app S = colimMap (whiskerLeft (CostructuredArrow.proj toLightProfinite.op S) i.inv)
case w F G : LightProfiniteᵒᵖ ⥤ Type u S : LightProfiniteᵒᵖ i : toLightProfinite.op ⋙ F ≅ toLightProfinite.op ⋙ G ⊢ ∀ (j : CostructuredArrow toLightProfinite.op S), colimit.ι (CostructuredArrow.proj toLightProfinite.op S ⋙ toLightProfinite.op ⋙ G) j ≫ colimit.desc (CostructuredArrow.proj toLightProfinite.op S ⋙ toLightProfinite.op ⋙ G) (toLightProfinite.op.costructuredArrowMapCocone (toLightProfinite.op ⋙ G) (toLightProfinite.op.pointwiseLeftKanExtension (toLightProfinite.op ⋙ F)) (i.inv ≫ toLightProfinite.op.pointwiseLeftKanExtensionUnit (toLightProfinite.op ⋙ F)) S) = colimit.ι (CostructuredArrow.proj toLightProfinite.op S ⋙ toLightProfinite.op ⋙ G) j ≫ colimMap (whiskerLeft (CostructuredArrow.proj toLightProfinite.op S) i.inv)
aesop
no goals
29ff65135ebe0cf2
ModularGroup.abs_c_le_one
Mathlib/NumberTheory/Modular.lean
theorem abs_c_le_one (hz : z ∈ 𝒟ᵒ) (hg : g • z ∈ 𝒟ᵒ) : |g 1 0| ≤ 1
g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ c' : ℤ := ↑g 1 0 c : ℝ := ↑c' hc : c ≠ 0 h₁ : 3 * 3 * c ^ 4 < 4 * (g • z).im ^ 2 * (4 * z.im ^ 2) * c ^ 4 h₂ : (c * z.im) ^ 4 / normSq (denom (↑g) z) ^ 2 ≤ 1 nsq : ℝ := normSq (denom (↑g) z) ⊢ 9 * c ^ 4 < c ^ 4 * z.im ^ 2 * (g • z).im ^ 2 * 16
linarith
no goals
63ab86d6ad3b518f
Set.isUnit_iff_singleton
Mathlib/Algebra/Group/Pointwise/Set/Basic.lean
theorem isUnit_iff_singleton : IsUnit s ↔ ∃ a, s = {a}
α : Type u_2 inst✝ : Group α s : Set α ⊢ IsUnit s ↔ ∃ a, s = {a}
simp only [isUnit_iff, Group.isUnit, and_true]
no goals
3e1f5745bae36986
SetTheory.PGame.le_grundyValue_of_Iio_subset_moveRight
Mathlib/SetTheory/Game/Nim.lean
theorem le_grundyValue_of_Iio_subset_moveRight {G : PGame} [G.Impartial] {o : Nimber} (h : Set.Iio o ⊆ Set.range (grundyValue ∘ G.moveRight)) : o ≤ grundyValue G
case intro G : PGame inst✝ : G.Impartial o : Nimber h : Set.Iio o ⊆ Set.range (grundyValue ∘ G.moveRight) ho : G.grundyValue < o i : G.RightMoves hi : (grundyValue ∘ G.moveRight) i = G.grundyValue ⊢ False
exact grundyValue_ne_moveRight i hi
no goals
d64e2ffaaf3ff491
VitaliFamily.exists_measurable_supersets_limRatio
Mathlib/MeasureTheory/Covering/Differentiation.lean
theorem exists_measurable_supersets_limRatio {p q : ℝ≥0} (hpq : p < q) : ∃ a b, MeasurableSet a ∧ MeasurableSet b ∧ {x | v.limRatio ρ x < p} ⊆ a ∧ {x | (q : ℝ≥0∞) < v.limRatio ρ x} ⊆ b ∧ μ (a ∩ b) = 0
α : Type u_1 inst✝⁴ : PseudoMetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ρ a / μ a) (v.filterAt x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | v.limRatio ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < v.limRatio ρ x} ∩ o n m n : ℕ I : (ρ + μ) (u m) ≠ ⊤ J : (ρ + μ) (w n) ≠ ⊤ x : α hx : x ∈ u m ∩ toMeasurable (ρ + μ) (w n) ⊢ ∃ᶠ (a : Set α) in v.filterAt x, ρ a ≤ (p • μ) a
have L : Tendsto (fun a : Set α => ρ a / μ a) (v.filterAt x) (𝓝 (v.limRatio ρ x)) := tendsto_nhds_limUnder hx.1.1.1
α : Type u_1 inst✝⁴ : PseudoMetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ρ a / μ a) (v.filterAt x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | v.limRatio ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < v.limRatio ρ x} ∩ o n m n : ℕ I : (ρ + μ) (u m) ≠ ⊤ J : (ρ + μ) (w n) ≠ ⊤ x : α hx : x ∈ u m ∩ toMeasurable (ρ + μ) (w n) L : Tendsto (fun a => ρ a / μ a) (v.filterAt x) (𝓝 (v.limRatio ρ x)) ⊢ ∃ᶠ (a : Set α) in v.filterAt x, ρ a ≤ (p • μ) a
f2acb3dc8c3a0a55
MeasureTheory.Measure.prod_prod
Mathlib/MeasureTheory/Measure/Prod.lean
theorem prod_prod (s : Set α) (t : Set β) : μ.prod ν (s ×ˢ t) = μ s * ν t
case a α : Type u_1 β : Type u_2 inst✝² : MeasurableSpace α inst✝¹ : MeasurableSpace β μ : Measure α ν : Measure β inst✝ : SFinite ν s : Set α t : Set β ST : Set (α × β) := toMeasurable (μ.prod ν) (s ×ˢ t) ⊢ μ s * ν t ≤ (μ.prod ν) (s ×ˢ t)
have hSTm : MeasurableSet ST := measurableSet_toMeasurable _ _
case a α : Type u_1 β : Type u_2 inst✝² : MeasurableSpace α inst✝¹ : MeasurableSpace β μ : Measure α ν : Measure β inst✝ : SFinite ν s : Set α t : Set β ST : Set (α × β) := toMeasurable (μ.prod ν) (s ×ˢ t) hSTm : MeasurableSet ST ⊢ μ s * ν t ≤ (μ.prod ν) (s ×ˢ t)
3a4325941a637749
circleIntegral.integral_eq_zero_of_hasDerivWithinAt'
Mathlib/MeasureTheory/Integral/CircleIntegral.lean
theorem integral_eq_zero_of_hasDerivWithinAt' [CompleteSpace E] {f f' : ℂ → E} {c : ℂ} {R : ℝ} (h : ∀ z ∈ sphere c |R|, HasDerivWithinAt f (f' z) (sphere c |R|) z) : (∮ z in C(c, R), f' z) = 0
E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f f' : ℂ → E c : ℂ R : ℝ h : ∀ z ∈ sphere c |R|, HasDerivWithinAt f (f' z) (sphere c |R|) z ⊢ (∮ (z : ℂ) in C(c, R), f' z) = 0
by_cases hi : CircleIntegrable f' c R
case pos E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f f' : ℂ → E c : ℂ R : ℝ h : ∀ z ∈ sphere c |R|, HasDerivWithinAt f (f' z) (sphere c |R|) z hi : CircleIntegrable f' c R ⊢ (∮ (z : ℂ) in C(c, R), f' z) = 0 case neg E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f f' : ℂ → E c : ℂ R : ℝ h : ∀ z ∈ sphere c |R|, HasDerivWithinAt f (f' z) (sphere c |R|) z hi : ¬CircleIntegrable f' c R ⊢ (∮ (z : ℂ) in C(c, R), f' z) = 0
cf51c2c4528e6df9
List.get?_range
Mathlib/.lake/packages/batteries/Batteries/Data/List/Lemmas.lean
theorem get?_range {m n : Nat} (h : m < n) : get? (range n) m = some m
m n : Nat h : m < n ⊢ (range n).get? m = some m
simp [getElem?_range, h]
no goals
f507b93a830daef9
HurwitzZeta.isBigO_atTop_cosKernel_sub
Mathlib/NumberTheory/LSeries/HurwitzZetaEven.lean
/-- The function `cosKernel a - 1` has exponential decay at `+∞`, for any `a`. -/ lemma isBigO_atTop_cosKernel_sub (a : UnitAddCircle) : ∃ p, 0 < p ∧ IsBigO atTop (cosKernel a · - 1) (fun x ↦ Real.exp (-p * x))
case H.intro.intro a p : ℝ hp : 0 < p hp' : (fun t => HurwitzKernelBounds.F_nat 0 1 t - if 1 = 0 then 1 else 0) =O[atTop] fun t => rexp (-p * t) ⊢ ∀ᶠ (x : ℝ) in atTop, ‖cosKernel (↑a) x - 1‖ ≤ 2 * (HurwitzKernelBounds.F_nat 0 1 x - if 1 = 0 then 1 else 0)
filter_upwards [eventually_gt_atTop 0] with t ht
case h a p : ℝ hp : 0 < p hp' : (fun t => HurwitzKernelBounds.F_nat 0 1 t - if 1 = 0 then 1 else 0) =O[atTop] fun t => rexp (-p * t) t : ℝ ht : 0 < t ⊢ ‖cosKernel (↑a) t - 1‖ ≤ 2 * (HurwitzKernelBounds.F_nat 0 1 t - if 1 = 0 then 1 else 0)
58d473e972d0ef4b
DirectSum.linearEquivFunOnFintype_symm_single
Mathlib/Algebra/DirectSum/Module.lean
theorem linearEquivFunOnFintype_symm_single [Fintype ι] (i : ι) (m : M i) : (linearEquivFunOnFintype R ι M).symm (Pi.single i m) = lof R ι M i m
R : Type u inst✝⁴ : Semiring R ι : Type v M : ι → Type w inst✝³ : (i : ι) → AddCommMonoid (M i) inst✝² : (i : ι) → Module R (M i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι i : ι m : M i ⊢ DFinsupp.equivFunOnFintype.symm (Pi.single i m) = (lof R ι M i) m
rw [DFinsupp.equivFunOnFintype_symm_single i m]
R : Type u inst✝⁴ : Semiring R ι : Type v M : ι → Type w inst✝³ : (i : ι) → AddCommMonoid (M i) inst✝² : (i : ι) → Module R (M i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι i : ι m : M i ⊢ DFinsupp.single i m = (lof R ι M i) m
5f436913eabe37d9
Subgroup.isComplement_univ_left
Mathlib/GroupTheory/Complement.lean
theorem isComplement_univ_left : IsComplement univ S ↔ ∃ g : G, S = {g}
case refine_3.intro G : Type u_1 inst✝ : Group G g : G ⊢ IsComplement univ {g}
exact isComplement_univ_singleton
no goals
c88f532257310c2f
NormedSpace.isBounded_iff_subset_smul_closedBall
Mathlib/Analysis/LocallyConvex/Bounded.lean
theorem isBounded_iff_subset_smul_closedBall {s : Set E} : Bornology.IsBounded s ↔ ∃ a : 𝕜, s ⊆ a • Metric.closedBall (0 : E) 1
case mpr 𝕜 : Type u_1 E : Type u_3 inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace 𝕜 E s : Set E ⊢ (∃ a, s ⊆ a • Metric.closedBall 0 1) → Bornology.IsVonNBounded 𝕜 s
rintro ⟨a, ha⟩
case mpr.intro 𝕜 : Type u_1 E : Type u_3 inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace 𝕜 E s : Set E a : 𝕜 ha : s ⊆ a • Metric.closedBall 0 1 ⊢ Bornology.IsVonNBounded 𝕜 s
e27d56235c432417
SlashInvariantFormClass.periodic_comp_ofComplex
Mathlib/NumberTheory/ModularForms/QExpansion.lean
theorem periodic_comp_ofComplex [SlashInvariantFormClass F Γ(n) k] : Periodic (f ∘ ofComplex) n
case neg k : ℤ F : Type u_1 inst✝¹ : FunLike F ℍ ℂ n : ℕ f : F inst✝ : SlashInvariantFormClass F Γ(n) k w : ℂ hw : ¬0 < w.im this : (w + ↑n).im ≤ 0 ⊢ (⇑f ∘ ↑ofComplex) (w + ↑n) = (⇑f ∘ ↑ofComplex) w
simp only [comp_apply, ofComplex_apply_of_im_nonpos this, ofComplex_apply_of_im_nonpos (not_lt.mp hw)]
no goals
83c0aedb6c75ba2f
CategoryTheory.MorphismProperty.TransfiniteCompositionOfShape.isIso
Mathlib/CategoryTheory/MorphismProperty/TransfiniteComposition.lean
/-- A transfinite composition of isomorphisms is an isomorphism. -/ lemma isIso : IsIso f
C : Type u inst✝⁴ : Category.{v, u} C J : Type w inst✝³ : LinearOrder J inst✝² : SuccOrder J inst✝¹ : OrderBot J inst✝ : WellFoundedLT J X Y : C f : X ⟶ Y h : (isomorphisms C).TransfiniteCompositionOfShape J f ⊢ IsIso (h.isoBot.inv ≫ h.incl.app ⊥)
infer_instance
no goals
d72a75bb37d7ce00
Matrix.kroneckerMap_diagonal_left
Mathlib/Data/Matrix/Kronecker.lean
theorem kroneckerMap_diagonal_left [Zero α] [Zero γ] [DecidableEq l] (f : α → β → γ) (hf : ∀ b, f 0 b = 0) (a : l → α) (B : Matrix m n β) : kroneckerMap f (diagonal a) B = Matrix.reindex (Equiv.prodComm _ _) (Equiv.prodComm _ _) (blockDiagonal fun i => B.map fun b => f (a i) b)
case a.mk.mk α : Type u_2 β : Type u_4 γ : Type u_6 l : Type u_8 m : Type u_9 n : Type u_10 inst✝² : Zero α inst✝¹ : Zero γ inst✝ : DecidableEq l f : α → β → γ hf : ∀ (b : β), f 0 b = 0 a : l → α B : Matrix m n β i₁ : l i₂ : m j₁ : l j₂ : n ⊢ kroneckerMap f (diagonal a) B (i₁, i₂) (j₁, j₂) = (reindex (Equiv.prodComm m l) (Equiv.prodComm n l)) (blockDiagonal fun i => B.map fun b => f (a i) b) (i₁, i₂) (j₁, j₂)
simp [diagonal, blockDiagonal, apply_ite f, ite_apply, hf]
no goals
17bda97819d8cef6
Equiv.cast_eq_iff_heq
Mathlib/Logic/Equiv/Defs.lean
theorem cast_eq_iff_heq {α β} (h : α = β) {a : α} {b : β} : Equiv.cast h a = b ↔ HEq a b
α : Sort u_1 a b : α ⊢ (Equiv.cast ⋯) a = b ↔ HEq a b
simp [coe_refl]
no goals
ebab05b59f7f50c3