name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
LinearMap.exists_map_addHaar_eq_smul_addHaar'
Mathlib/MeasureTheory/Measure/Haar/Disintegration.lean
theorem LinearMap.exists_map_addHaar_eq_smul_addHaar' (h : Function.Surjective L) : ∃ (c : ℝ≥0∞), 0 < c ∧ c < ∞ ∧ μ.map L = (c * addHaar (univ : Set (LinearMap.ker L))) • ν
case h.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹² : NontriviallyNormedField 𝕜 inst✝¹¹ : CompleteSpace 𝕜 inst✝¹⁰ : NormedAddCommGroup E inst✝⁹ : MeasurableSpace E inst✝⁸ : BorelSpace E inst✝⁷ : NormedSpace 𝕜 E inst✝⁶ : NormedAddCommGroup F inst✝⁵ : MeasurableSpace F inst✝⁴ : BorelSpace F inst✝³ : NormedSpace 𝕜 F L : E →ₗ[𝕜] F μ : Measure E ν : Measure F inst✝² : μ.IsAddHaarMeasure inst✝¹ : ν.IsAddHaarMeasure inst✝ : LocallyCompactSpace E h : Function.Surjective ⇑L this✝¹ : FiniteDimensional 𝕜 E this✝ : ProperSpace F S : Submodule 𝕜 E := ker L T : Submodule 𝕜 E hT : IsCompl S T M : (↥S × ↥T) ≃ₗ[𝕜] E := S.prodEquivOfIsCompl T hT M_cont : Continuous ⇑M.symm P : ↥S × ↥T →ₗ[𝕜] ↥T := snd 𝕜 ↥S ↥T P_cont : Continuous ⇑P I : Function.Bijective ⇑(L.domRestrict T) L' : ↥T ≃ₗ[𝕜] F := LinearEquiv.ofBijective (L.domRestrict T) I L'_cont : Continuous ⇑L' x : E y : ↥S z : ↥T hyz : M.symm x = (y, z) this : x = M (y, z) ⊢ L x = (↑L' ∘ₗ P ∘ₗ ↑M.symm) x
simp [L', P, M, this]
no goals
2e191355893f8fd9
AlgebraicGeometry.HasRingHomProperty.respects_isOpenImmersion_aux
Mathlib/AlgebraicGeometry/Morphisms/RingHomProperties.lean
private lemma respects_isOpenImmersion_aux (hQ : RingHom.StableUnderCompositionWithLocalizationAwaySource Q) {X Y : Scheme.{u}} [IsAffine Y] {U : Y.Opens} (f : X ⟶ U.toScheme) (hf : P f) : P (f ≫ U.ι)
case inr.intro.intro P : MorphismProperty Scheme Q : {R S : Type u} → [inst : CommRing R] → [inst_1 : CommRing S] → (R →+* S) → Prop inst✝¹ : HasRingHomProperty P Q hQ : RingHom.StableUnderCompositionWithLocalizationAwaySource fun {R S} [CommRing R] [CommRing S] => Q X Y : Scheme inst✝ : IsAffine Y U : Y.Opens f : X ⟶ ↑U hf : P f this : ∀ {X Y : Scheme} [inst : IsAffine Y] {U : Y.Opens} (f : X ⟶ ↑U), P f → (∃ a, U = Y.basicOpen a) → P (f ≫ U.ι) hYa : ¬∃ a, U = Y.basicOpen a Us : Set Y.Opens hUs : Us ⊆ Set.range Y.basicOpen heq : U = sSup Us V : ↑Us → X.Opens := fun s => f ⁻¹ᵁ U.ι ⁻¹ᵁ ↑s s : ↑Us f' : ↑(V s) ⟶ ↑(U.ι ⁻¹ᵁ ↑s) := f ∣_ U.ι ⁻¹ᵁ ↑s ⊢ P ((V s).ι ≫ f ≫ U.ι)
have hf' : P f' := IsLocalAtTarget.restrict hf _
case inr.intro.intro P : MorphismProperty Scheme Q : {R S : Type u} → [inst : CommRing R] → [inst_1 : CommRing S] → (R →+* S) → Prop inst✝¹ : HasRingHomProperty P Q hQ : RingHom.StableUnderCompositionWithLocalizationAwaySource fun {R S} [CommRing R] [CommRing S] => Q X Y : Scheme inst✝ : IsAffine Y U : Y.Opens f : X ⟶ ↑U hf : P f this : ∀ {X Y : Scheme} [inst : IsAffine Y] {U : Y.Opens} (f : X ⟶ ↑U), P f → (∃ a, U = Y.basicOpen a) → P (f ≫ U.ι) hYa : ¬∃ a, U = Y.basicOpen a Us : Set Y.Opens hUs : Us ⊆ Set.range Y.basicOpen heq : U = sSup Us V : ↑Us → X.Opens := fun s => f ⁻¹ᵁ U.ι ⁻¹ᵁ ↑s s : ↑Us f' : ↑(V s) ⟶ ↑(U.ι ⁻¹ᵁ ↑s) := f ∣_ U.ι ⁻¹ᵁ ↑s hf' : P f' ⊢ P ((V s).ι ≫ f ≫ U.ι)
f1fbd724d831d61a
StrictConcaveOn.secant_strict_mono
Mathlib/Analysis/Convex/Slope.lean
theorem StrictConcaveOn.secant_strict_mono (hf : StrictConcaveOn 𝕜 s f) {a x y : 𝕜} (ha : a ∈ s) (hx : x ∈ s) (hy : y ∈ s) (hxa : x ≠ a) (hya : y ≠ a) (hxy : x < y) : (f y - f a) / (y - a) < (f x - f a) / (x - a)
𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConcaveOn 𝕜 s f a x y : 𝕜 ha : a ∈ s hx : x ∈ s hy : y ∈ s hxa : x ≠ a hya : y ≠ a hxy : x < y key : (-f x - -f a) / (x - a) < (-f y - -f a) / (y - a) ⊢ (f y - f a) / (y - a) < (f x - f a) / (x - a)
rw [← neg_lt_neg_iff]
𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConcaveOn 𝕜 s f a x y : 𝕜 ha : a ∈ s hx : x ∈ s hy : y ∈ s hxa : x ≠ a hya : y ≠ a hxy : x < y key : (-f x - -f a) / (x - a) < (-f y - -f a) / (y - a) ⊢ -((f x - f a) / (x - a)) < -((f y - f a) / (y - a))
d3eea5b66cf73cfe
DHashMap.Const.mem_ofList
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Lemmas.lean
theorem mem_ofList [EquivBEq α] [LawfulHashable α] {l : List (α × β)} {k : α} : k ∈ ofList l ↔ (l.map Prod.fst).contains k
α : Type u x✝¹ : BEq α x✝ : Hashable α β : Type v inst✝¹ : EquivBEq α inst✝ : LawfulHashable α l : List (α × β) k : α ⊢ k ∈ ofList l ↔ (List.map Prod.fst l).contains k = true
simp [mem_iff_contains]
no goals
a99c067319c7e19f
WeierstrassCurve.Jacobian.nonsingular_of_Z_eq_zero
Mathlib/AlgebraicGeometry/EllipticCurve/Jacobian.lean
lemma nonsingular_of_Z_eq_zero {P : Fin 3 → R} (hPz : P z = 0) : W'.Nonsingular P ↔ W'.Equation P ∧ (3 * P x ^ 2 ≠ 0 ∨ 2 * P y ≠ 0 ∨ W'.a₁ * P x * P y ≠ 0)
R : Type r inst✝ : CommRing R W' : Jacobian R P : Fin 3 → R hPz : P z = 0 ⊢ W'.Nonsingular P ↔ W'.Equation P ∧ (3 * P x ^ 2 ≠ 0 ∨ 2 * P y ≠ 0 ∨ W'.a₁ * P x * P y ≠ 0)
simp only [nonsingular_iff, hPz, add_zero, sub_zero, zero_sub, mul_zero, zero_pow <| OfNat.ofNat_ne_zero _, neg_ne_zero]
no goals
0963b0b75228a6ee
Nat.ne_of_odd_add
Mathlib/Algebra/Ring/Parity.lean
lemma ne_of_odd_add (h : Odd (m + n)) : m ≠ n
m n : ℕ h : Odd (m + n) ⊢ m ≠ n
rintro rfl
m : ℕ h : Odd (m + m) ⊢ False
bc529a2f632ddc82
LinearMap.range_domRestrict_eq_range_iff
Mathlib/LinearAlgebra/Span/Basic.lean
lemma _root_.LinearMap.range_domRestrict_eq_range_iff {f : M →ₛₗ[τ₁₂] M₂} {S : Submodule R M} : LinearMap.range (f.domRestrict S) = LinearMap.range f ↔ S ⊔ (LinearMap.ker f) = ⊤
case refine_2.intro.intro.intro.intro.intro R : Type u_1 R₂ : Type u_2 M : Type u_4 M₂ : Type u_5 inst✝⁶ : Semiring R inst✝⁵ : Semiring R₂ inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : AddCommGroup M₂ inst✝¹ : Module R₂ M₂ τ₁₂ : R →+* R₂ inst✝ : RingHomSurjective τ₁₂ f : M →ₛₗ[τ₁₂] M₂ S : Submodule R M h : S ⊔ LinearMap.ker f = ⊤ s : M hs : s ∈ S t : M ht : t ∈ LinearMap.ker f ⊢ f (s + t) ∈ LinearMap.range (f.domRestrict S)
exact ⟨⟨s, hs⟩, by simp [LinearMap.mem_ker.1 ht]⟩
no goals
38f16d98af2b2b11
PFunctor.M.cases_mk
Mathlib/Data/PFunctor/Univariate/M.lean
theorem cases_mk {r : M F → Sort*} (x : F (M F)) (f : ∀ x : F (M F), r (M.mk x)) : PFunctor.M.cases f (M.mk x) = f x
case mk F : PFunctor.{u} r : F.M → Sort u_2 f : (x : ↑F F.M) → r (M.mk x) fst✝ : F.A snd✝ : F.B fst✝ → F.M ⊢ ⋯.mpr (f ⟨match 0, CofixA.intro ⟨fst✝, snd✝⟩.fst fun i => (⟨fst✝, snd✝⟩.snd i).approx 0 with | x, CofixA.intro i a => i, fun i => children { approx := Approx.sMk ⟨fst✝, snd✝⟩, consistent := ⋯ } i⟩) = f ⟨fst✝, snd✝⟩
dsimp only [Approx.sMk]
case mk F : PFunctor.{u} r : F.M → Sort u_2 f : (x : ↑F F.M) → r (M.mk x) fst✝ : F.A snd✝ : F.B fst✝ → F.M ⊢ ⋯.mpr (f ⟨match 0, CofixA.intro fst✝ fun i => (snd✝ i).approx 0 with | x, CofixA.intro i a => i, fun i => children { approx := Approx.sMk ⟨fst✝, snd✝⟩, consistent := ⋯ } i⟩) = f ⟨fst✝, snd✝⟩
5e467c87f2c13f11
Fin.cons_self_tail
Mathlib/Data/Fin/Tuple/Basic.lean
theorem cons_self_tail : cons (q 0) (tail q) = q
case neg n : ℕ α : Fin (n + 1) → Sort u q : (i : Fin (n + 1)) → α i j : Fin (n + 1) h : ¬j = 0 j' : Fin n := j.pred h this : j'.succ = j ⊢ cons (q 0) (tail q) j = q j
rw [← this]
case neg n : ℕ α : Fin (n + 1) → Sort u q : (i : Fin (n + 1)) → α i j : Fin (n + 1) h : ¬j = 0 j' : Fin n := j.pred h this : j'.succ = j ⊢ cons (q 0) (tail q) j'.succ = q j'.succ
499bb3ffe4d716dd
IsLeftRegular.of_mul
Mathlib/Algebra/Regular/Basic.lean
theorem IsLeftRegular.of_mul (ab : IsLeftRegular (a * b)) : IsLeftRegular b := Function.Injective.of_comp (f := (a * ·)) (by rwa [comp_mul_left a b])
R : Type u_1 inst✝ : Semigroup R a b : R ab : IsLeftRegular (a * b) ⊢ Function.Injective ((fun x => a * x) ∘ fun x => b * x)
rwa [comp_mul_left a b]
no goals
29e15757cfb05cb9
MeasurableEmbedding.gaussianReal_comap_apply
Mathlib/Probability/Distributions/Gaussian.lean
lemma _root_.MeasurableEmbedding.gaussianReal_comap_apply (hv : v ≠ 0) {f : ℝ → ℝ} (hf : MeasurableEmbedding f) {f' : ℝ → ℝ} (h_deriv : ∀ x, HasDerivAt f (f' x) x) {s : Set ℝ} (hs : MeasurableSet s) : (gaussianReal μ v).comap f s = ENNReal.ofReal (∫ x in s, |f' x| * gaussianPDFReal μ v (f x))
μ : ℝ v : ℝ≥0 hv : v ≠ 0 f : ℝ → ℝ hf : MeasurableEmbedding f f' : ℝ → ℝ h_deriv : ∀ (x : ℝ), HasDerivAt f (f' x) x s : Set ℝ hs : MeasurableSet s ⊢ (Measure.comap f (ℙ.withDensity fun x => ENNReal.ofReal (gaussianPDFReal μ v x))) s = ENNReal.ofReal (∫ (x : ℝ) in s, |f' x| * gaussianPDFReal μ v (f x))
exact hf.withDensity_ofReal_comap_apply_eq_integral_abs_deriv_mul' hs h_deriv (ae_of_all _ (gaussianPDFReal_nonneg _ _)) (integrable_gaussianPDFReal _ _)
no goals
c7d2383920c0b30f
MeasureTheory.absolutelyContinuous_map_div_left
Mathlib/MeasureTheory/Group/Prod.lean
theorem absolutelyContinuous_map_div_left (g : G) : μ ≪ map (fun h => g / h) μ
G : Type u_1 inst✝⁵ : MeasurableSpace G inst✝⁴ : Group G inst✝³ : MeasurableMul₂ G μ : Measure G inst✝² : SFinite μ inst✝¹ : MeasurableInv G inst✝ : μ.IsMulLeftInvariant g : G ⊢ μ ≪ map (fun h => g / h) μ
simp_rw [div_eq_mul_inv]
G : Type u_1 inst✝⁵ : MeasurableSpace G inst✝⁴ : Group G inst✝³ : MeasurableMul₂ G μ : Measure G inst✝² : SFinite μ inst✝¹ : MeasurableInv G inst✝ : μ.IsMulLeftInvariant g : G ⊢ μ ≪ map (fun h => g * h⁻¹) μ
681bf9d559c28a3c
geom_sum_alternating_of_le_neg_one
Mathlib/Algebra/GeomSum.lean
theorem geom_sum_alternating_of_le_neg_one [StrictOrderedRing α] (hx : x + 1 ≤ 0) (n : ℕ) : if Even n then (∑ i ∈ range n, x ^ i) ≤ 0 else 1 ≤ ∑ i ∈ range n, x ^ i
case zero α : Type u x : α inst✝ : StrictOrderedRing α hx : x + 1 ≤ 0 hx0 : x ≤ 0 ⊢ if Even 0 then ∑ i ∈ range 0, x ^ i ≤ 0 else 1 ≤ ∑ i ∈ range 0, x ^ i
simp only [range_zero, sum_empty, le_refl, ite_true, Even.zero]
no goals
5d60d8a56ed4872c
Matrix.transpose_tsum
Mathlib/Topology/Instances/Matrix.lean
theorem Matrix.transpose_tsum [T2Space R] {f : X → Matrix m n R} : (∑' x, f x)ᵀ = ∑' x, (f x)ᵀ
X : Type u_1 m : Type u_4 n : Type u_5 R : Type u_8 inst✝² : AddCommMonoid R inst✝¹ : TopologicalSpace R inst✝ : T2Space R f : X → Matrix m n R ⊢ (∑' (x : X), f x)ᵀ = ∑' (x : X), (f x)ᵀ
by_cases hf : Summable f
case pos X : Type u_1 m : Type u_4 n : Type u_5 R : Type u_8 inst✝² : AddCommMonoid R inst✝¹ : TopologicalSpace R inst✝ : T2Space R f : X → Matrix m n R hf : Summable f ⊢ (∑' (x : X), f x)ᵀ = ∑' (x : X), (f x)ᵀ case neg X : Type u_1 m : Type u_4 n : Type u_5 R : Type u_8 inst✝² : AddCommMonoid R inst✝¹ : TopologicalSpace R inst✝ : T2Space R f : X → Matrix m n R hf : ¬Summable f ⊢ (∑' (x : X), f x)ᵀ = ∑' (x : X), (f x)ᵀ
b68c92dc9e395cb3
VectorBundleCore.localTriv_continuousLinearMapAt
Mathlib/Topology/VectorBundle/Basic.lean
theorem localTriv_continuousLinearMapAt {b : B} (hb : b ∈ Z.baseSet i) : (Z.localTriv i).continuousLinearMapAt R b = Z.coordChange (Z.indexAt b) i b
R : Type u_1 B : Type u_2 F : Type u_3 inst✝³ : NontriviallyNormedField R inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace R F inst✝ : TopologicalSpace B ι : Type u_5 Z : VectorBundleCore R B F ι i : ι b : B hb : b ∈ Z.baseSet i ⊢ Trivialization.continuousLinearMapAt R (Z.localTriv i) b = Z.coordChange (Z.indexAt b) i b
ext1 v
case h R : Type u_1 B : Type u_2 F : Type u_3 inst✝³ : NontriviallyNormedField R inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace R F inst✝ : TopologicalSpace B ι : Type u_5 Z : VectorBundleCore R B F ι i : ι b : B hb : b ∈ Z.baseSet i v : Z.Fiber b ⊢ (Trivialization.continuousLinearMapAt R (Z.localTriv i) b) v = (Z.coordChange (Z.indexAt b) i b) v
da74b8dccd3854a7
Array.push_eq_append_iff
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Lemmas.lean
theorem push_eq_append_iff {a b c : Array α} {x : α} : c.push x = a ++ b ↔ (b = #[] ∧ a = c.push x) ∨ (∃ b', b = b'.push x ∧ c = a ++ b')
α : Type u_1 a b c : Array α x : α ⊢ c.push x = a ++ b ↔ b = #[] ∧ a = c.push x ∨ ∃ b', b = b'.push x ∧ c = a ++ b'
rw [eq_comm, append_eq_push_iff]
no goals
6073837ea6c32a36
Finset.prod_add
Mathlib/Algebra/BigOperators/Ring/Finset.lean
theorem prod_add (f g : ι → α) (s : Finset ι) : ∏ i ∈ s, (f i + g i) = ∑ t ∈ s.powerset, (∏ i ∈ t, f i) * ∏ i ∈ s \ t, g i
ι : Type u_1 α : Type u_3 inst✝¹ : CommSemiring α inst✝ : DecidableEq ι f g : ι → α s : Finset ι ⊢ ∏ i ∈ s, (f i + g i) = ∏ i ∈ s, ∑ p ∈ {True, False}, if p then f i else g i
simp
no goals
bfeb78d0575b25b6
LinearPMap.mem_domain_of_mem_graph
Mathlib/LinearAlgebra/LinearPMap.lean
theorem mem_domain_of_mem_graph {f : E →ₗ.[R] F} {x : E} {y : F} (h : (x, y) ∈ f.graph) : x ∈ f.domain
R : Type u_1 inst✝⁴ : Ring R E : Type u_2 inst✝³ : AddCommGroup E inst✝² : Module R E F : Type u_3 inst✝¹ : AddCommGroup F inst✝ : Module R F f : E →ₗ.[R] F x : E y : F h : (x, y) ∈ f.graph ⊢ x ∈ f.domain
rw [mem_domain_iff]
R : Type u_1 inst✝⁴ : Ring R E : Type u_2 inst✝³ : AddCommGroup E inst✝² : Module R E F : Type u_3 inst✝¹ : AddCommGroup F inst✝ : Module R F f : E →ₗ.[R] F x : E y : F h : (x, y) ∈ f.graph ⊢ ∃ y, (x, y) ∈ f.graph
b2b352d494382d73
mem_normalizedFactors_factor_dvd_iso_of_mem_normalizedFactors
Mathlib/RingTheory/ChainOfDivisors.lean
theorem mem_normalizedFactors_factor_dvd_iso_of_mem_normalizedFactors {m p : M} {n : N} (hm : m ≠ 0) (hn : n ≠ 0) (hp : p ∈ normalizedFactors m) {d : { l : M // l ∣ m } ≃ { l : N // l ∣ n }} (hd : ∀ l l', (d l : N) ∣ d l' ↔ (l : M) ∣ (l' : M)) : ↑(d ⟨p, dvd_of_mem_normalizedFactors hp⟩) ∈ normalizedFactors n
M : Type u_1 inst✝⁵ : CancelCommMonoidWithZero M N : Type u_2 inst✝⁴ : CancelCommMonoidWithZero N inst✝³ : Subsingleton Mˣ inst✝² : Subsingleton Nˣ inst✝¹ : UniqueFactorizationMonoid M inst✝ : UniqueFactorizationMonoid N m p : M n : N hm : m ≠ 0 hn : n ≠ 0 hp : p ∈ normalizedFactors m d : { l // l ∣ m } ≃ { l // l ∣ n } hd : ∀ (l l' : { l // l ∣ m }), ↑(d l) ∣ ↑(d l') ↔ ↑l ∣ ↑l' this : Prime ↑(d ⟨associatesEquivOfUniqueUnits (associatesEquivOfUniqueUnits.symm p), ⋯⟩) ⊢ ↑(d ⟨p, ⋯⟩) ∈ normalizedFactors n
simp only [associatesEquivOfUniqueUnits_apply, out_mk, normalize_eq, associatesEquivOfUniqueUnits_symm_apply] at this
M : Type u_1 inst✝⁵ : CancelCommMonoidWithZero M N : Type u_2 inst✝⁴ : CancelCommMonoidWithZero N inst✝³ : Subsingleton Mˣ inst✝² : Subsingleton Nˣ inst✝¹ : UniqueFactorizationMonoid M inst✝ : UniqueFactorizationMonoid N m p : M n : N hm : m ≠ 0 hn : n ≠ 0 hp : p ∈ normalizedFactors m d : { l // l ∣ m } ≃ { l // l ∣ n } hd : ∀ (l l' : { l // l ∣ m }), ↑(d l) ∣ ↑(d l') ↔ ↑l ∣ ↑l' this : Prime ↑(d ⟨p, ⋯⟩) ⊢ ↑(d ⟨p, ⋯⟩) ∈ normalizedFactors n
f1fd55130dfcc672
Nat.Prime.dvd_add_pow_sub_pow_of_dvd
Mathlib/Algebra/CharP/Lemmas.lean
lemma Nat.Prime.dvd_add_pow_sub_pow_of_dvd (hpri : p.Prime) {r : R} (h₁ : r ∣ x ^ p) (h₂ : r ∣ p * x) : r ∣ (x + y) ^ p - y ^ p
R : Type u_1 inst✝ : CommRing R x y : R p : ℕ hpri : Prime p r : R h₁ : r ∣ x ^ p h₂ : r ∣ ↑p * x ⊢ r ∣ (x + y) ^ p - y ^ p
rw [add_pow_prime_eq hpri, add_right_comm, add_assoc, add_sub_assoc, add_sub_cancel_right]
R : Type u_1 inst✝ : CommRing R x y : R p : ℕ hpri : Prime p r : R h₁ : r ∣ x ^ p h₂ : r ∣ ↑p * x ⊢ r ∣ x ^ p + ↑p * ∑ k ∈ Ioo 0 p, x ^ k * y ^ (p - k) * ↑(p.choose k / p)
9e6d5d4472727e74
SimpleGraph.Walk.edges_map
Mathlib/Combinatorics/SimpleGraph/Walk.lean
theorem edges_map : (p.map f).edges = p.edges.map (Sym2.map f)
case nil V : Type u V' : Type v G : SimpleGraph V G' : SimpleGraph V' f : G →g G' u v : V p : G.Walk u v u✝ : V ⊢ (Walk.map f nil).edges = List.map (Sym2.map ⇑f) nil.edges
rfl
no goals
5eda5b5d896aec59
CategoryTheory.Limits.prod.map_comp_id
Mathlib/CategoryTheory/Limits/Shapes/BinaryProducts.lean
theorem prod.map_comp_id {X Y Z W : C} (f : X ⟶ Y) (g : Y ⟶ Z) [HasBinaryProduct X W] [HasBinaryProduct Z W] [HasBinaryProduct Y W] : prod.map (f ≫ g) (𝟙 W) = prod.map f (𝟙 W) ≫ prod.map g (𝟙 W)
C : Type u inst✝³ : Category.{v, u} C X Y Z W : C f : X ⟶ Y g : Y ⟶ Z inst✝² : HasBinaryProduct X W inst✝¹ : HasBinaryProduct Z W inst✝ : HasBinaryProduct Y W ⊢ map (f ≫ g) (𝟙 W) = map f (𝟙 W) ≫ map g (𝟙 W)
simp
no goals
a3c93faff1cc3605
AlgebraicGeometry.SheafedSpace.IsOpenImmersion.image_preimage_is_empty
Mathlib/Geometry/RingedSpace/OpenImmersion.lean
theorem image_preimage_is_empty (j : Discrete ι) (h : i ≠ j) (U : Opens (F.obj i)) : (Opens.map (colimit.ι (F ⋙ SheafedSpace.forgetToPresheafedSpace) j).base).obj ((Opens.map (preservesColimitIso SheafedSpace.forgetToPresheafedSpace F).inv.base).obj ((sigma_ι_isOpenEmbedding F i).isOpenMap.functor.obj U)) = ⊥
case h.h.h.intro.intro.mk.mk C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasLimits C ι : Type v F : Discrete ι ⥤ SheafedSpace C inst✝ : HasColimit F as✝¹ : ι U : Opens ↑↑(F.obj { as := as✝¹ }).toPresheafedSpace y : ↑↑(F.obj { as := as✝¹ }).toPresheafedSpace hy : y ∈ ↑U as✝ : ι x : ↑↑((F ⋙ forgetToPresheafedSpace).obj { as := as✝ }) h : { as := as✝¹ } ≠ { as := as✝ } eq : (ConcreteCategory.hom (Discrete.natIsoFunctor.hom.app { as := as✝¹ } ≫ TopCat.sigmaι ((F ⋙ forget C).obj ∘ Discrete.mk) as✝¹)) y = (ConcreteCategory.hom (Discrete.natIsoFunctor.hom.app { as := as✝ } ≫ TopCat.sigmaι ((F ⋙ forget C).obj ∘ Discrete.mk) as✝)) x ⊢ False
exact h (congr_arg Discrete.mk (congr_arg Sigma.fst eq))
no goals
cf02ecb43481a17c
MeasureTheory.pdf.IsUniform.pdf_eq_zero_of_measure_eq_zero_or_top
Mathlib/Probability/Distributions/Uniform.lean
theorem pdf_eq_zero_of_measure_eq_zero_or_top {X : Ω → E} {s : Set E} (hu : IsUniform X s ℙ μ) (hμs : μ s = 0 ∨ μ s = ∞) : pdf X ℙ μ =ᵐ[μ] 0
case inr E : Type u_1 inst✝ : MeasurableSpace E μ : Measure E Ω : Type u_2 x✝ : MeasurableSpace Ω ℙ : Measure Ω X : Ω → E s : Set E H : μ s = ⊤ hu : Measure.map X ℙ = 0 ⊢ pdf X ℙ μ =ᶠ[ae μ] 0
simp [pdf, hu]
no goals
0f51d427369dc4b7
Submodule.baseChange_top
Mathlib/LinearAlgebra/TensorProduct/Tower.lean
@[simp] lemma baseChange_top : (⊤ : Submodule R M).baseChange A = ⊤
R : Type u_1 M : Type u_2 A : Type u_3 inst✝⁴ : CommSemiring R inst✝³ : Semiring A inst✝² : Algebra R A inst✝¹ : AddCommMonoid M inst✝ : Module R M x : A ⊗[R] M a : A y : M ⊢ a ⊗ₜ[R] y ∈ span A ↑(LinearMap.range ((TensorProduct.mk R A M) 1))
rw [← mul_one a, ← smul_eq_mul, ← smul_tmul']
R : Type u_1 M : Type u_2 A : Type u_3 inst✝⁴ : CommSemiring R inst✝³ : Semiring A inst✝² : Algebra R A inst✝¹ : AddCommMonoid M inst✝ : Module R M x : A ⊗[R] M a : A y : M ⊢ a • 1 ⊗ₜ[R] y ∈ span A ↑(LinearMap.range ((TensorProduct.mk R A M) 1))
7a47417502811d97
Finset.dens_union_add_dens_inter
Mathlib/Data/Finset/Density.lean
lemma dens_union_add_dens_inter (s t : Finset α) : dens (s ∪ t) + dens (s ∩ t) = dens s + dens t
α : Type u_2 inst✝¹ : Fintype α inst✝ : DecidableEq α s t : Finset α ⊢ (s ∪ t).dens + (s ∩ t).dens = s.dens + t.dens
simp_rw [dens, ← add_div, ← Nat.cast_add, card_union_add_card_inter]
no goals
57042bcf7725b282
MeasureTheory.measure_compl_sigmaFiniteSetWRT
Mathlib/MeasureTheory/Decomposition/Exhaustion.lean
@[simp] lemma measure_compl_sigmaFiniteSetWRT (hμν : μ ≪ ν) [SigmaFinite μ] [SFinite ν] : ν (μ.sigmaFiniteSetWRT ν)ᶜ = 0
α : Type u_1 mα : MeasurableSpace α μ ν : Measure α hμν : μ ≪ ν inst✝¹ : SigmaFinite μ inst✝ : SFinite ν h : ν (μ.sigmaFiniteSetWRT ν)ᶜ ≠ 0 → μ (μ.sigmaFiniteSetWRT ν)ᶜ = ⊤ h0 : ¬ν (μ.sigmaFiniteSetWRT ν)ᶜ = 0 ⊢ ⊤ = 0
rw [← h h0, ← Measure.iSup_restrict_spanningSets]
α : Type u_1 mα : MeasurableSpace α μ ν : Measure α hμν : μ ≪ ν inst✝¹ : SigmaFinite μ inst✝ : SFinite ν h : ν (μ.sigmaFiniteSetWRT ν)ᶜ ≠ 0 → μ (μ.sigmaFiniteSetWRT ν)ᶜ = ⊤ h0 : ¬ν (μ.sigmaFiniteSetWRT ν)ᶜ = 0 ⊢ ⨆ i, (μ.restrict (spanningSets μ i)) (μ.sigmaFiniteSetWRT ν)ᶜ = 0
fa62c7cde26ea6e7
SimpleGraph.dist_bot
Mathlib/Combinatorics/SimpleGraph/Metric.lean
@[simp] lemma dist_bot : (⊥ : SimpleGraph V).dist u v = 0
V : Type u_1 u v : V ⊢ ⊥.dist u v = 0
by_cases h : u = v <;> simp [h]
no goals
e35a5b0d6752de9a
Fin.cons_rev
Mathlib/Data/Fin/Tuple/Basic.lean
theorem cons_rev {α n} (a : α) (f : Fin n → α) (i : Fin <| n + 1) : cons (α := fun _ => α) a f i.rev = snoc (α := fun _ => α) (f ∘ Fin.rev : Fin _ → α) a i
α : Sort u_3 n : ℕ a : α f : Fin n → α i : Fin (n + 1) ⊢ cons a f i.rev = snoc (f ∘ rev) a i
simpa using insertNth_rev 0 a f i
no goals
3a6555a1b88a51d8
integral_gaussian_complex_Ioi
Mathlib/Analysis/SpecialFunctions/Gaussian/GaussianIntegral.lean
theorem integral_gaussian_complex_Ioi {b : ℂ} (hb : 0 < re b) : ∫ x : ℝ in Ioi 0, cexp (-b * (x : ℂ) ^ 2) = (π / b) ^ (1 / 2 : ℂ) / 2
b : ℂ hb : 0 < b.re full_integral : ∫ (x : ℝ) in Ioi 0, cexp (-b * ↑x ^ 2) ∂volume + ∫ (x : ℝ) in Iic 0, cexp (-b * ↑x ^ 2) ∂volume = (↑π / b) ^ (1 / 2) this✝ : MeasurableSet (Ioi 0) this : ∀ (c : ℝ), ∫ (x : ℝ) in 0 ..c, cexp (-b * ↑x ^ 2) = ∫ (x : ℝ) in -c..0, cexp (-b * ↑x ^ 2) t1 : Tendsto (fun i => ∫ (x : ℝ) in 0 ..id i, cexp (-b * ↑x ^ 2)) atTop (𝓝 (∫ (x : ℝ) in Ioi 0, cexp (-b * ↑x ^ 2) ∂volume)) t2 : Tendsto (fun c => ∫ (x : ℝ) in 0 ..c, cexp (-b * ↑x ^ 2)) atTop (𝓝 (∫ (x : ℝ) in Iic 0, cexp (-b * ↑x ^ 2))) ⊢ ∫ (x : ℝ) in Iic 0, cexp (-b * ↑x ^ 2) = ∫ (x : ℝ) in Ioi 0, cexp (-b * ↑x ^ 2)
exact tendsto_nhds_unique t2 t1
no goals
eb587a98b8371e1c
CPolynomialOn.contDiffOn
Mathlib/Analysis/Calculus/ContDiff/CPolynomial.lean
theorem CPolynomialOn.contDiffOn (h : CPolynomialOn 𝕜 f s) {n : WithTop ℕ∞} : ContDiffOn 𝕜 n f s
𝕜 : Type u_1 inst✝⁴ : NontriviallyNormedField 𝕜 E : Type u inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E F : Type v inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F f : E → F s : Set E h : CPolynomialOn 𝕜 f s n : WithTop ℕ∞ t : Set E := {x | CPolynomialAt 𝕜 f x} H : CPolynomialOn 𝕜 f t ⊢ AnalyticOnNhd 𝕜 f t
exact H.analyticOnNhd
no goals
817bab7f3a65da8d
mem_convexHull_pi
Mathlib/Analysis/Convex/Combination.lean
lemma mem_convexHull_pi (h : ∀ i ∈ s, x i ∈ convexHull 𝕜 (t i)) : x ∈ convexHull 𝕜 (s.pi t)
case refine_1 𝕜 : Type u_1 ι : Type u_2 E : ι → Type u_3 inst✝³ : Finite ι inst✝² : LinearOrderedField 𝕜 inst✝¹ : (i : ι) → AddCommGroup (E i) inst✝ : (i : ι) → Module 𝕜 (E i) s : Set ι t✝ : (i : ι) → Set (E i) x : (i : ι) → E i val✝ : Fintype ι t : (i : ι) → Set (E i) κ : ι → Type x✝ : (i : ι) → Fintype (κ i) w : (i : ι) → κ i → 𝕜 f : (i : ι) → κ i → E i hw₀ : ∀ (i : ι) (i_1 : κ i), 0 ≤ w i i_1 hw₁ : ∀ (i : ι), ∑ i_1 : κ i, w i i_1 = 1 hft : ∀ (i : ι) (i_1 : κ i), f i i_1 ∈ t i hf : ∀ (i : ι), ∑ i_1 : κ i, w i i_1 • f i i_1 = x i ⊢ ∏ i : ι, ∑ j : κ i, w i j = 1
exact prod_eq_one fun _ _ ↦ hw₁ _
no goals
b925b1769d4b937f
AddCommGroup.equiv_directSum_zmod_of_finite
Mathlib/GroupTheory/FiniteAbelian/Basic.lean
theorem equiv_directSum_zmod_of_finite [Finite G] : ∃ (ι : Type) (_ : Fintype ι) (p : ι → ℕ) (_ : ∀ i, Nat.Prime <| p i) (e : ι → ℕ), Nonempty <| G ≃+ ⨁ i : ι, ZMod (p i ^ e i)
case intro.intro.intro.intro.intro.intro.intro.intro.zero G : Type u inst✝¹ : AddCommGroup G inst✝ : Finite G val✝ : Fintype G ι : Type fι : Fintype ι p : ι → ℕ hp : ∀ (i : ι), Nat.Prime (p i) e : ι → ℕ f : G ≃+ (Fin 0 →₀ ℤ) × ⨁ (i : ι), ZMod (p i ^ e i) this : Unique (Fin Nat.zero →₀ ℤ) ⊢ ∃ ι x p, ∃ (_ : ∀ (i : ι), Nat.Prime (p i)), ∃ e, Nonempty (G ≃+ ⨁ (i : ι), ZMod (p i ^ e i))
exact ⟨ι, fι, p, hp, e, ⟨f.trans AddEquiv.uniqueProd⟩⟩
no goals
3099aff464e43dc1
jacobiSym.ne_zero
Mathlib/NumberTheory/LegendreSymbol/JacobiSymbol.lean
theorem ne_zero {a : ℤ} {b : ℕ} (h : a.gcd b = 1) : J(a | b) ≠ 0
case inl a : ℤ b : ℕ h : a.gcd ↑b = 1 hb : b = 0 ⊢ 1 ≠ 0
exact one_ne_zero
no goals
48b681b264ba030b
Subgroup.exists_isLeast_one_lt
Mathlib/GroupTheory/Archimedean.lean
theorem Subgroup.exists_isLeast_one_lt {H : Subgroup G} (hbot : H ≠ ⊥) {a : G} (h₀ : 1 < a) (hd : Disjoint (H : Set G) (Ioo 1 a)) : ∃ b, IsLeast { g : G | g ∈ H ∧ 1 < g } b
G : Type u_1 inst✝¹ : LinearOrderedCommGroup G inst✝ : MulArchimedean G H : Subgroup G hbot : H ≠ ⊥ a : G h₀ : 1 < a hd : Disjoint (↑H) (Ioo 1 a) g : G hg : g > 1 m : ℤ hm : g ≤ a ^ (m + 1) hm' : a ^ m < g ⊢ 1 < a ^ (m + 1)
exact hg.trans_le hm
no goals
e6f0c6934844ea17
CategoryTheory.Functor.OplaxMonoidal.right_unitality_hom
Mathlib/CategoryTheory/Monoidal/Functor.lean
theorem right_unitality_hom (X : C) : δ F X (𝟙_ C) ≫ F.obj X ◁ η F ≫ (ρ_ (F.obj X)).hom = F.map (ρ_ X).hom
C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C D : Type u₂ inst✝² : Category.{v₂, u₂} D inst✝¹ : MonoidalCategory D F : C ⥤ D inst✝ : F.OplaxMonoidal X : C ⊢ δ F X (𝟙_ C) ≫ F.obj X ◁ η F ≫ (ρ_ (F.obj X)).hom = F.map (ρ_ X).hom
rw [← Category.assoc, ← Iso.eq_comp_inv, right_unitality, ← Category.assoc, ← F.map_comp, Iso.hom_inv_id, F.map_id, id_comp]
no goals
68a32d3d204e7b70
ProbabilityTheory.IndepFun.integrable_right_of_integrable_mul
Mathlib/Probability/Integration.lean
theorem IndepFun.integrable_right_of_integrable_mul {β : Type*} [MeasurableSpace β] {X Y : Ω → β} [NormedDivisionRing β] [BorelSpace β] (hXY : IndepFun X Y μ) (h'XY : Integrable (X * Y) μ) (hX : AEStronglyMeasurable X μ) (hY : AEStronglyMeasurable Y μ) (h'X : ¬X =ᵐ[μ] 0) : Integrable Y μ
Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω β : Type u_2 inst✝² : MeasurableSpace β X Y : Ω → β inst✝¹ : NormedDivisionRing β inst✝ : BorelSpace β hXY : IndepFun X Y μ h'XY : Integrable (X * Y) μ hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ h'X : ¬X =ᶠ[ae μ] 0 H : ∫⁻ (ω : Ω), ‖X ω‖ₑ ∂μ = 0 I : (fun x => ‖X x‖ₑ) =ᶠ[ae μ] 0 ⊢ False
apply h'X
Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω β : Type u_2 inst✝² : MeasurableSpace β X Y : Ω → β inst✝¹ : NormedDivisionRing β inst✝ : BorelSpace β hXY : IndepFun X Y μ h'XY : Integrable (X * Y) μ hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ h'X : ¬X =ᶠ[ae μ] 0 H : ∫⁻ (ω : Ω), ‖X ω‖ₑ ∂μ = 0 I : (fun x => ‖X x‖ₑ) =ᶠ[ae μ] 0 ⊢ X =ᶠ[ae μ] 0
3d8c1ff7f9aa90d7
Finset.offDiag_filter_lt_eq_filter_le
Mathlib/Data/Finset/Prod.lean
theorem offDiag_filter_lt_eq_filter_le {ι} [PartialOrder ι] [DecidableEq ι] [DecidableRel (LE.le (α := ι))] [DecidableRel (LT.lt (α := ι))] (s : Finset ι) : s.offDiag.filter (fun i => i.1 < i.2) = s.offDiag.filter (fun i => i.1 ≤ i.2)
ι : Type u_4 inst✝³ : PartialOrder ι inst✝² : DecidableEq ι inst✝¹ : DecidableRel LE.le inst✝ : DecidableRel LT.lt s : Finset ι ⊢ ∀ ⦃a : ι × ι⦄, a ∈ s.offDiag → (a.1 < a.2 ↔ a.1 ≤ a.2)
rintro ⟨i, j⟩
case mk ι : Type u_4 inst✝³ : PartialOrder ι inst✝² : DecidableEq ι inst✝¹ : DecidableRel LE.le inst✝ : DecidableRel LT.lt s : Finset ι i j : ι ⊢ (i, j) ∈ s.offDiag → ((i, j).1 < (i, j).2 ↔ (i, j).1 ≤ (i, j).2)
3953af221d1a5576
Substring.Valid.extract
Mathlib/.lake/packages/batteries/Batteries/Data/String/Lemmas.lean
theorem extract : ∀ {s}, Valid s → Valid ⟨s.toString, b, e⟩ → Valid (s.extract b e) | _, h₁, h₂ => by let ⟨l, m, r, h₁⟩ := h₁.validFor rw [h₁.toString] at h₂ let ⟨ml, mm, mr, h₂⟩ := h₂.validFor have ⟨l', r', h₃⟩ := h₁.extract h₂ exact h₃.valid
b e : Pos x✝ : Substring h₁✝ : x✝.Valid h₂ : { str := x✝.toString, startPos := b, stopPos := e }.Valid l m r : List Char h₁ : ValidFor l m r x✝ ⊢ (x✝.extract b e).Valid
rw [h₁.toString] at h₂
b e : Pos x✝ : Substring h₁✝ : x✝.Valid l m : List Char h₂ : { str := { data := m }, startPos := b, stopPos := e }.Valid r : List Char h₁ : ValidFor l m r x✝ ⊢ (x✝.extract b e).Valid
74df9f07153861fb
SimpleGraph.isTree_iff_existsUnique_path
Mathlib/Combinatorics/SimpleGraph/Acyclic.lean
theorem isTree_iff_existsUnique_path : G.IsTree ↔ Nonempty V ∧ ∀ v w : V, ∃! p : G.Walk v w, p.IsPath
case mpr.intro.refine_2 V : Type u G : SimpleGraph V hV : Nonempty V h : ∀ (v w : V), ∃! p, p.IsPath ⊢ ∀ ⦃v w : V⦄ (p q : G.Path v w), p = q
rintro v w ⟨p, hp⟩ ⟨q, hq⟩
case mpr.intro.refine_2.mk.mk V : Type u G : SimpleGraph V hV : Nonempty V h : ∀ (v w : V), ∃! p, p.IsPath v w : V p : G.Walk v w hp : p.IsPath q : G.Walk v w hq : q.IsPath ⊢ ⟨p, hp⟩ = ⟨q, hq⟩
6f041d11e3829adf
Array.toList_reverse
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Lemmas.lean
theorem toList_reverse (a : Array α) : a.reverse.toList = a.toList.reverse
α : Type u_1 a as : Array α i j : Nat hj : j < as.size h : i + j + 1 = a.size h₂ : as.size = a.size H : ∀ (k : Nat), as.toList[k]? = if i ≤ k ∧ k ≤ j then a.toList[k]? else a.toList.reverse[k]? k : Nat ⊢ (reverse.loop as i ⟨j, hj⟩).toList[k]? = a.toList.reverse[k]?
rw [reverse.loop]
α : Type u_1 a as : Array α i j : Nat hj : j < as.size h : i + j + 1 = a.size h₂ : as.size = a.size H : ∀ (k : Nat), as.toList[k]? = if i ≤ k ∧ k ≤ j then a.toList[k]? else a.toList.reverse[k]? k : Nat ⊢ (if h : i < ↑⟨j, hj⟩ then let_fun this := ⋯; let as_1 := as.swap i ↑⟨j, hj⟩ ⋯ ⋯; let_fun this := ⋯; reverse.loop as_1 (i + 1) ⟨↑⟨j, hj⟩ - 1, this⟩ else as).toList[k]? = a.toList.reverse[k]?
e33b9bf1a6922395
MeasureTheory.integrable_const_iff
Mathlib/MeasureTheory/Function/L1Space/Integrable.lean
lemma integrable_const_iff {c : β} : Integrable (fun _ : α => c) μ ↔ c = 0 ∨ IsFiniteMeasure μ
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ : Measure α inst✝ : NormedAddCommGroup β c : β ⊢ Integrable (fun x => c) μ ↔ c = 0 ∨ IsFiniteMeasure μ
have : AEStronglyMeasurable (fun _ : α => c) μ := aestronglyMeasurable_const
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ : Measure α inst✝ : NormedAddCommGroup β c : β this : AEStronglyMeasurable (fun x => c) μ ⊢ Integrable (fun x => c) μ ↔ c = 0 ∨ IsFiniteMeasure μ
63b818cfc587b092
Polynomial.degree_add_div
Mathlib/Algebra/Polynomial/FieldDivision.lean
theorem degree_add_div (hq0 : q ≠ 0) (hpq : degree q ≤ degree p) : degree q + degree (p / q) = degree p
R : Type u inst✝ : Field R p q : R[X] hq0 : q ≠ 0 hpq : q.degree ≤ p.degree this : (p % q).degree < (q * (p / q)).degree ⊢ q.degree + (p / q).degree = p.degree
conv_rhs => rw [← EuclideanDomain.div_add_mod p q, degree_add_eq_left_of_degree_lt this, degree_mul]
no goals
ed2cb4a624153e8f
AlgebraicGeometry.Scheme.Cover.gluedCoverT'_snd_snd
Mathlib/AlgebraicGeometry/Gluing.lean
theorem gluedCoverT'_snd_snd (x y z : 𝒰.J) : gluedCoverT' 𝒰 x y z ≫ pullback.snd _ _ ≫ pullback.snd _ _ = pullback.fst _ _ ≫ pullback.fst _ _
X : Scheme 𝒰 : X.OpenCover x y z : 𝒰.J ⊢ ((pullbackRightPullbackFstIso (𝒰.map x) (𝒰.map z) (pullback.fst (𝒰.map x) (𝒰.map y))).hom ≫ (pullback.map (pullback.fst (𝒰.map x) (𝒰.map y) ≫ 𝒰.map x) (𝒰.map z) (pullback.fst (𝒰.map y) (𝒰.map x) ≫ 𝒰.map y) (𝒰.map z) (pullbackSymmetry (𝒰.map x) (𝒰.map y)).hom (𝟙 (𝒰.obj z)) (𝟙 X) ⋯ ⋯ ≫ (pullbackRightPullbackFstIso (𝒰.map y) (𝒰.map z) (pullback.fst (𝒰.map y) (𝒰.map x))).inv) ≫ (pullbackSymmetry (pullback.fst (𝒰.map y) (𝒰.map x)) (pullback.fst (𝒰.map y) (𝒰.map z))).hom) ≫ pullback.snd (pullback.fst (𝒰.map y) (𝒰.map z)) (pullback.fst (𝒰.map y) (𝒰.map x)) ≫ pullback.snd (𝒰.map y) (𝒰.map x) = pullback.fst (pullback.fst (𝒰.map x) (𝒰.map y)) (pullback.fst (𝒰.map x) (𝒰.map z)) ≫ pullback.fst (𝒰.map x) (𝒰.map y)
simp
no goals
3efc6a49d85b12cb
Filter.filter_injOn_Iic_iff_injOn
Mathlib/Order/Filter/Map.lean
theorem Filter.filter_injOn_Iic_iff_injOn {s : Set α} {m : α → β} : InjOn (map m) (Iic <| 𝓟 s) ↔ InjOn m s
case refine_1 α : Type u_1 β : Type u_2 s : Set α m : α → β hm : InjOn (map m) (Iic (𝓟 s)) x : α hx : x ∈ s y : α hy : y ∈ s hxy : m x = m y ⊢ x = y
rwa [← pure_injective.eq_iff, ← map_pure, ← map_pure, hm.eq_iff, pure_injective.eq_iff] at hxy <;> rwa [mem_Iic, pure_le_principal]
no goals
d6e29efebf50b69f
groupCohomology.twoCocycles_ρ_map_inv_sub_map_inv
Mathlib/RepresentationTheory/GroupCohomology/LowDegree.lean
lemma twoCocycles_ρ_map_inv_sub_map_inv (f : twoCocycles A) (g : G) : A.ρ g (f (g⁻¹, g)) - f (g, g⁻¹) = f (1, 1) - f (g, 1)
k G : Type u inst✝¹ : CommRing k inst✝ : Group G A : Rep k G f : ↥(twoCocycles A) g : G this : f (g * g⁻¹, g) + f (g, g⁻¹) = (A.ρ g) (f (g⁻¹, g)) + f (g, g⁻¹ * g) ⊢ (A.ρ g) (f (g⁻¹, g)) - f (g, g⁻¹) = f (1, 1) - f (g, 1)
simp only [mul_inv_cancel, inv_mul_cancel, twoCocycles_map_one_fst _ g] at this
k G : Type u inst✝¹ : CommRing k inst✝ : Group G A : Rep k G f : ↥(twoCocycles A) g : G this : f (1, 1) + f (g, g⁻¹) = (A.ρ g) (f (g⁻¹, g)) + f (g, 1) ⊢ (A.ρ g) (f (g⁻¹, g)) - f (g, g⁻¹) = f (1, 1) - f (g, 1)
7791ea868eeea9fd
MeasureTheory.Measure.hausdorffMeasure_smul₀
Mathlib/MeasureTheory/Measure/Hausdorff.lean
theorem MeasureTheory.Measure.hausdorffMeasure_smul₀ {𝕜 E : Type*} [NormedAddCommGroup E] [NormedField 𝕜] [NormedSpace 𝕜 E] [MeasurableSpace E] [BorelSpace E] {d : ℝ} (hd : 0 ≤ d) {r : 𝕜} (hr : r ≠ 0) (s : Set E) : μH[d] (r • s) = ‖r‖₊ ^ d • μH[d] s
𝕜 : Type u_4 E : Type u_5 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedField 𝕜 inst✝² : NormedSpace 𝕜 E inst✝¹ : MeasurableSpace E inst✝ : BorelSpace E d : ℝ hd : 0 ≤ d r : 𝕜 hr : r ≠ 0 s : Set E this : ∀ {r : 𝕜} (s : Set E), μH[d] (r • s) ≤ ‖r‖₊ ^ d • μH[d] s ⊢ μH[d] (r • s) = ‖r‖₊ ^ d • μH[d] s
refine le_antisymm (this s) ?_
𝕜 : Type u_4 E : Type u_5 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedField 𝕜 inst✝² : NormedSpace 𝕜 E inst✝¹ : MeasurableSpace E inst✝ : BorelSpace E d : ℝ hd : 0 ≤ d r : 𝕜 hr : r ≠ 0 s : Set E this : ∀ {r : 𝕜} (s : Set E), μH[d] (r • s) ≤ ‖r‖₊ ^ d • μH[d] s ⊢ ‖r‖₊ ^ d • μH[d] s ≤ μH[d] (r • s)
202468cb8a26002e
Real.log_intCast_nonneg
Mathlib/Analysis/SpecialFunctions/Log/Basic.lean
theorem log_intCast_nonneg (n : ℤ) : 0 ≤ log n
case inl n : ℤ hn : 0 < n ⊢ 0 ≤ log ↑n
have : (1 : ℝ) ≤ n := mod_cast hn
case inl n : ℤ hn : 0 < n this : 1 ≤ ↑n ⊢ 0 ≤ log ↑n
0f87919729bc1d5f
AlgHom.IsArithFrobAt.apply_of_pow_eq_one
Mathlib/RingTheory/Frobenius.lean
/-- Suppose `S` is a domain, and `φ : S →ₐ[R] S` is a Frobenius at `Q : Ideal S`. Let `ζ` be a `m`-th root of unity with `Q ∤ m`, then `φ` sends `ζ` to `ζ ^ q`. -/ lemma apply_of_pow_eq_one [IsDomain S] {ζ : S} {m : ℕ} (hζ : ζ ^ m = 1) (hk' : ↑m ∉ Q) : φ ζ = ζ ^ Nat.card (R ⧸ Q.under R)
R : Type u_1 S : Type u_2 inst✝³ : CommRing R inst✝² : CommRing S inst✝¹ : Algebra R S φ : S →ₐ[R] S Q : Ideal S H : φ.IsArithFrobAt Q inst✝ : IsDomain S ζ : S m : ℕ hζ✝ : ζ ^ m = 1 hk'✝ : ↑m ∉ Q q : ℕ := Nat.card (R ⧸ Ideal.under R Q) hm : m ≠ 0 k : ℕ hk : k > 0 hζ : IsPrimitiveRoot ζ k hk' : ↑k ∉ Q this : NeZero k i : ℕ hi : i < k e : ζ ^ i = φ ζ j : ℕ ⊢ 1 - ζ ^ ((q + k - i) * j) ∈ Q
rw [← Ideal.mul_unit_mem_iff_mem _ ((hζ.isUnit k.pos_of_neZero).pow (i * j)), sub_mul, one_mul, ← pow_add, ← add_mul, tsub_add_cancel_of_le (by linarith), add_mul, pow_add, pow_mul _ k, hζ.1, one_pow, mul_one, pow_mul, e, ← map_pow, mul_comm, pow_mul]
R : Type u_1 S : Type u_2 inst✝³ : CommRing R inst✝² : CommRing S inst✝¹ : Algebra R S φ : S →ₐ[R] S Q : Ideal S H : φ.IsArithFrobAt Q inst✝ : IsDomain S ζ : S m : ℕ hζ✝ : ζ ^ m = 1 hk'✝ : ↑m ∉ Q q : ℕ := Nat.card (R ⧸ Ideal.under R Q) hm : m ≠ 0 k : ℕ hk : k > 0 hζ : IsPrimitiveRoot ζ k hk' : ↑k ∉ Q this : NeZero k i : ℕ hi : i < k e : ζ ^ i = φ ζ j : ℕ ⊢ φ (ζ ^ j) - (ζ ^ j) ^ q ∈ Q
0e667ff9ac58a167
Finsupp.finsuppProdLEquiv_symm_apply
Mathlib/LinearAlgebra/Finsupp/Defs.lean
theorem finsuppProdLEquiv_symm_apply {α β R M : Type*} [Semiring R] [AddCommMonoid M] [Module R M] (f : α →₀ β →₀ M) (xy) : (finsuppProdLEquiv R).symm f xy = f xy.1 xy.2
α : Type u_7 β : Type u_8 R : Type u_9 M : Type u_10 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M f : α →₀ β →₀ M xy : α × β ⊢ ((finsuppProdLEquiv R).symm f) xy = (f xy.1) xy.2
conv_rhs => rw [← (finsuppProdLEquiv R).apply_symm_apply f, finsuppProdLEquiv_apply]
no goals
2b4f168736b127b4
Finite.of_finite_mulAction_orbitRel_quotient
Mathlib/GroupTheory/GroupAction/Basic.lean
@[to_additive] lemma _root_.Finite.of_finite_mulAction_orbitRel_quotient [Finite G] [Finite Ω] : Finite α
G : Type u_1 α : Type u_2 inst✝³ : Group G inst✝² : MulAction G α inst✝¹ : Finite G inst✝ : Finite Ω ⊢ ∀ (g : Ω), Finite ↑g.orbit
intro g
G : Type u_1 α : Type u_2 inst✝³ : Group G inst✝² : MulAction G α inst✝¹ : Finite G inst✝ : Finite Ω g : Ω ⊢ Finite ↑g.orbit
e112575a1e169936
EReal.max_neg_neg
Mathlib/Data/Real/EReal.lean
lemma max_neg_neg (x y : EReal) : max (-x) (-y) = -min x y
x y : EReal ⊢ -x ⊔ -y = -(x ⊓ y)
rcases le_total x y with (h | h) <;> simp_all
no goals
88ef835d4361a18d
Matrix.isUnit_det_zpow_iff
Mathlib/LinearAlgebra/Matrix/ZPow.lean
theorem isUnit_det_zpow_iff {A : M} {z : ℤ} : IsUnit (A ^ z).det ↔ IsUnit A.det ∨ z = 0
case hn n' : Type u_1 inst✝² : DecidableEq n' inst✝¹ : Fintype n' R : Type u_2 inst✝ : CommRing R A : M z : ℕ a✝ : IsUnit (A ^ (-↑z)).det ↔ IsUnit A.det ∨ -↑z = 0 ⊢ IsUnit (A ^ (-↑z - 1)).det ↔ IsUnit A.det ∨ -↑z - 1 = 0
rw [← neg_add', ← Int.ofNat_succ, zpow_neg_natCast, isUnit_nonsing_inv_det_iff, det_pow, isUnit_pow_succ_iff, neg_eq_zero, ← Int.ofNat_zero, Int.ofNat_inj]
case hn n' : Type u_1 inst✝² : DecidableEq n' inst✝¹ : Fintype n' R : Type u_2 inst✝ : CommRing R A : M z : ℕ a✝ : IsUnit (A ^ (-↑z)).det ↔ IsUnit A.det ∨ -↑z = 0 ⊢ IsUnit A.det ↔ IsUnit A.det ∨ z.succ = 0
fcc060d122cef82a
CategoryTheory.Presieve.isSheafFor_of_preservesProduct
Mathlib/CategoryTheory/Sites/Preserves.lean
theorem isSheafFor_of_preservesProduct [PreservesLimit (Discrete.functor (fun x ↦ op (X x))) F] : (ofArrows X c.inj).IsSheafFor F
C : Type u inst✝² : Category.{v, u} C F : Cᵒᵖ ⥤ Type w α : Type X : α → C c : Cofan X hc : IsColimit c inst✝¹ : (ofArrows X c.inj).hasPullbacks inst✝ : PreservesLimit (Discrete.functor fun x => op (X x)) F ⊢ IsSheafFor F (ofArrows X c.inj)
rw [Equalizer.Presieve.Arrows.sheaf_condition, Limits.Types.type_equalizer_iff_unique]
C : Type u inst✝² : Category.{v, u} C F : Cᵒᵖ ⥤ Type w α : Type X : α → C c : Cofan X hc : IsColimit c inst✝¹ : (ofArrows X c.inj).hasPullbacks inst✝ : PreservesLimit (Discrete.functor fun x => op (X x)) F ⊢ ∀ (y : Equalizer.Presieve.Arrows.FirstObj F X), Equalizer.Presieve.Arrows.firstMap F X c.inj y = Equalizer.Presieve.Arrows.secondMap F X c.inj y → ∃! x, Equalizer.Presieve.Arrows.forkMap F X c.inj x = y
63b7a789eba5ef5a
ENNReal.isUnit_iff
Mathlib/Data/ENNReal/Inv.lean
lemma isUnit_iff : IsUnit a ↔ a ≠ 0 ∧ a ≠ ∞
case intro u : ℝ≥0∞ˣ hu : ↑u = ⊤ this : ↑u * ↑u⁻¹ = ⊤ * ↑u⁻¹ ⊢ False
norm_cast at this
case intro u : ℝ≥0∞ˣ hu : ↑u = ⊤ this : ↑(u * u⁻¹) = ⊤ * ↑u⁻¹ ⊢ False
186548a2895d5c60
Std.DHashMap.Raw.contains_alter
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/RawLemmas.lean
theorem contains_alter [LawfulBEq α] {k k': α} {f : Option (β k) → Option (β k)} (h : m.WF) : (m.alter k f).contains k' = if k == k' then (f (m.get? k)).isSome else m.contains k'
α : Type u β : α → Type v inst✝² : BEq α inst✝¹ : Hashable α m : Raw α β inst✝ : LawfulBEq α k k' : α f : Option (β k) → Option (β k) h : m.WF ⊢ (m.alter k f).contains k' = if (k == k') = true then (f (m.get? k)).isSome else m.contains k'
simp_to_raw using Raw₀.contains_alter
no goals
a6c0dc32397ab68b
FractionalIdeal.den_mem_inv
Mathlib/RingTheory/DedekindDomain/Ideal.lean
lemma den_mem_inv {I : FractionalIdeal R₁⁰ K} (hI : I ≠ ⊥) : (algebraMap R₁ K) (I.den : R₁) ∈ I⁻¹
K : Type u_3 inst✝⁴ : Field K R₁ : Type u_4 inst✝³ : CommRing R₁ inst✝² : IsDomain R₁ inst✝¹ : Algebra R₁ K inst✝ : IsFractionRing R₁ K I : FractionalIdeal R₁⁰ K hI : I ≠ ⊥ ⊢ (algebraMap R₁ K) ↑I.den ∈ I⁻¹
rw [mem_inv_iff hI]
K : Type u_3 inst✝⁴ : Field K R₁ : Type u_4 inst✝³ : CommRing R₁ inst✝² : IsDomain R₁ inst✝¹ : Algebra R₁ K inst✝ : IsFractionRing R₁ K I : FractionalIdeal R₁⁰ K hI : I ≠ ⊥ ⊢ ∀ y ∈ I, (algebraMap R₁ K) ↑I.den * y ∈ 1
f2255a2916b7b0a4
Real.posLog_add
Mathlib/Analysis/SpecialFunctions/Log/PosLog.lean
theorem posLog_add {a b : ℝ} : log⁺ (a + b) ≤ log 2 + log⁺ a + log⁺ b
a b : ℝ ⊢ log⁺ (a + b) ≤ log 2 + log⁺ a + log⁺ b
convert posLog_sum Finset.univ ![a, b] using 1 <;> simp [add_assoc]
no goals
c119f070e18b5fee
Polynomial.nodup_roots_iff_of_splits
Mathlib/FieldTheory/Separable.lean
theorem nodup_roots_iff_of_splits {f : F[X]} (hf : f ≠ 0) (h : f.Splits (RingHom.id F)) : f.roots.Nodup ↔ f.Separable
F : Type u inst✝ : Field F f : F[X] hf : f ≠ 0 h : Splits (RingHom.id F) f hnsep : ¬f.Separable ⊢ ¬f.roots.Nodup
rw [Separable, ← gcd_isUnit_iff, isUnit_iff_degree_eq_zero] at hnsep
F : Type u inst✝ : Field F f : F[X] hf : f ≠ 0 h : Splits (RingHom.id F) f hnsep : ¬(GCDMonoid.gcd f (derivative f)).degree = 0 ⊢ ¬f.roots.Nodup
d1a347c40a79ce42
Algebra.Presentation.span_range_relation_eq_ker_baseChange
Mathlib/RingTheory/Presentation.lean
private lemma span_range_relation_eq_ker_baseChange : Ideal.span (Set.range fun i ↦ (MvPolynomial.map (algebraMap R T)) (P.relation i)) = RingHom.ker (aeval (R := T) (S₁ := T ⊗[R] S) P.baseChange.val)
case a R : Type u S : Type v inst✝⁴ : CommRing R inst✝³ : CommRing S inst✝² : Algebra R S T : Type u_1 inst✝¹ : CommRing T inst✝ : Algebra R T P : Presentation R S x : MvPolynomial P.vars T y : P.rels hy : (fun i => (MvPolynomial.map (algebraMap R T)) (P.relation i)) y = x Z : (aeval P.val) (P.relation y) = 0 ⊢ x ∈ ↑(RingHom.ker (aeval P.baseChange.val))
apply_fun TensorProduct.includeRight (R := R) (A := T) at Z
case a R : Type u S : Type v inst✝⁴ : CommRing R inst✝³ : CommRing S inst✝² : Algebra R S T : Type u_1 inst✝¹ : CommRing T inst✝ : Algebra R T P : Presentation R S x : MvPolynomial P.vars T y : P.rels hy : (fun i => (MvPolynomial.map (algebraMap R T)) (P.relation i)) y = x Z : TensorProduct.includeRight ((aeval P.val) (P.relation y)) = TensorProduct.includeRight 0 ⊢ x ∈ ↑(RingHom.ker (aeval P.baseChange.val))
30b8d1d266b74361
ProbabilityTheory.Kernel.indepFun_zero_left
Mathlib/Probability/Independence/Kernel.lean
@[simp] lemma indepFun_zero_left {β γ} [MeasurableSpace β] [MeasurableSpace γ] {f : Ω → β} {g : Ω → γ} : IndepFun f g (0 : Kernel α Ω) μ
α : Type u_1 Ω : Type u_2 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω μ : Measure α β : Type u_5 γ : Type u_6 inst✝¹ : MeasurableSpace β inst✝ : MeasurableSpace γ f : Ω → β g : Ω → γ ⊢ IndepFun f g 0 μ
simp [IndepFun]
no goals
fb96b886289d6844
Ordinal.nmul_nadd_le
Mathlib/SetTheory/Ordinal/NaturalOps.lean
theorem nmul_nadd_le {a' b' : Ordinal} (ha : a' ≤ a) (hb : b' ≤ b) : a' ⨳ b ♯ a ⨳ b' ≤ a ⨳ b ♯ a' ⨳ b'
a b a' b' : Ordinal.{u} ha : a' ≤ a hb : b' ≤ b ⊢ a' ⨳ b ♯ a ⨳ b' ≤ a ⨳ b ♯ a' ⨳ b'
rcases lt_or_eq_of_le ha with (ha | rfl)
case inl a b a' b' : Ordinal.{u} ha✝ : a' ≤ a hb : b' ≤ b ha : a' < a ⊢ a' ⨳ b ♯ a ⨳ b' ≤ a ⨳ b ♯ a' ⨳ b' case inr b a' b' : Ordinal.{u} hb : b' ≤ b ha : a' ≤ a' ⊢ a' ⨳ b ♯ a' ⨳ b' ≤ a' ⨳ b ♯ a' ⨳ b'
1f70486e82091620
ne_zero_pow
Mathlib/Algebra/GroupWithZero/Basic.lean
lemma ne_zero_pow (hn : n ≠ 0) (ha : a ^ n ≠ 0) : a ≠ 0
M₀ : Type u_1 inst✝ : MonoidWithZero M₀ a : M₀ n : ℕ hn : n ≠ 0 ha : a ^ n ≠ 0 ⊢ a ≠ 0
rintro rfl
M₀ : Type u_1 inst✝ : MonoidWithZero M₀ n : ℕ hn : n ≠ 0 ha : 0 ^ n ≠ 0 ⊢ False
b027e4bd16aacf7e
Matrix.StdBasisMatrix.mul_same
Mathlib/Data/Matrix/Basis.lean
theorem mul_same (i : l) (j : m) (k : n) (d : α) : stdBasisMatrix i j c * stdBasisMatrix j k d = stdBasisMatrix i k (c * d)
case a l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_5 inst✝⁴ : DecidableEq l inst✝³ : DecidableEq m inst✝² : DecidableEq n inst✝¹ : Fintype m inst✝ : NonUnitalNonAssocSemiring α c : α i : l j : m k : n d : α a : l b : n ⊢ ∑ j_1 : m, of (fun i' j' => if i = i' ∧ j = j' then c else 0) a j_1 * of (fun i' j' => if j = i' ∧ k = j' then d else 0) j_1 b = of (fun i' j' => if i = i' ∧ k = j' then c * d else 0) a b
by_cases h₁ : i = a <;> by_cases h₂ : k = b <;> simp [h₁, h₂]
no goals
dddd2530084bee6b
pow_le_pow_left'
Mathlib/Algebra/Order/Monoid/Unbundled/Pow.lean
theorem pow_le_pow_left' {a b : M} (hab : a ≤ b) : ∀ i : ℕ, a ^ i ≤ b ^ i | 0 => by simp | k + 1 => by rw [pow_succ, pow_succ] exact mul_le_mul' (pow_le_pow_left' hab k) hab
M : Type u_3 inst✝³ : Monoid M inst✝² : Preorder M inst✝¹ : MulLeftMono M inst✝ : MulRightMono M a b : M hab : a ≤ b ⊢ a ^ 0 ≤ b ^ 0
simp
no goals
7a2619605266e9bf
CochainComplex.isStrictlyGE_of_ge
Mathlib/Algebra/Homology/Embedding/CochainComplex.lean
lemma isStrictlyGE_of_ge (p q : ℤ) (hpq : p ≤ q) [K.IsStrictlyGE q] : K.IsStrictlyGE p
C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasZeroMorphisms C K : CochainComplex C ℤ p q : ℤ hpq : p ≤ q inst✝ : K.IsStrictlyGE q i : ℤ hi : i < p ⊢ IsZero (K.X i)
apply K.isZero_of_isStrictlyGE q
case hi C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasZeroMorphisms C K : CochainComplex C ℤ p q : ℤ hpq : p ≤ q inst✝ : K.IsStrictlyGE q i : ℤ hi : i < p ⊢ i < q
92c2380a683aaa81
Nat.testBit_two_pow
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Nat/Bitwise/Lemmas.lean
theorem testBit_two_pow {n m : Nat} : testBit (2 ^ n) m = decide (n = m)
n m : Nat h : ¬n = m h✝ : n < m ⊢ 1 < 2
omega
no goals
bbc66499b4dfb877
Orientation.tan_oangle_sub_right_mul_norm_of_oangle_eq_pi_div_two
Mathlib/Geometry/Euclidean/Angle/Oriented/RightAngle.lean
theorem tan_oangle_sub_right_mul_norm_of_oangle_eq_pi_div_two {x y : V} (h : o.oangle x y = ↑(π / 2)) : Real.Angle.tan (o.oangle y (y - x)) * ‖y‖ = ‖x‖
V : Type u_1 inst✝¹ : NormedAddCommGroup V inst✝ : InnerProductSpace ℝ V hd2 : Fact (finrank ℝ V = 2) o : Orientation ℝ V (Fin 2) x y : V h : o.oangle x y = ↑(π / 2) ⊢ (o.oangle y (y - x)).sign = 1
rw [oangle_sign_sub_right_swap, h, Real.Angle.sign_coe_pi_div_two]
no goals
3acfb8b14d338dc2
SetTheory.PGame.quot_mul_assoc
Mathlib/SetTheory/Game/Basic.lean
theorem quot_mul_assoc (x y z : PGame) : (⟦x * y * z⟧ : Game) = ⟦x * (y * z)⟧ := match x, y, z with | mk xl xr xL xR, mk yl yr yL yR, mk zl zr zL zR => by let x := mk xl xr xL xR let y := mk yl yr yL yR let z := mk zl zr zL zR refine quot_eq_of_mk'_quot_eq ?_ ?_ ?_ ?_ · fconstructor · rintro (⟨⟨_, _⟩ | ⟨_, _⟩, _⟩ | ⟨⟨_, _⟩ | ⟨_, _⟩, _⟩) <;> -- Porting note: as above, increased the `maxDepth` here by 1. solve_by_elim (config := { maxDepth := 8 }) [Sum.inl, Sum.inr, Prod.mk] · rintro (⟨_, ⟨_, _⟩ | ⟨_, _⟩⟩ | ⟨_, ⟨_, _⟩ | ⟨_, _⟩⟩) <;> solve_by_elim (config := { maxDepth := 8 }) [Sum.inl, Sum.inr, Prod.mk] · rintro (⟨⟨_, _⟩ | ⟨_, _⟩, _⟩ | ⟨⟨_, _⟩ | ⟨_, _⟩, _⟩) <;> rfl · rintro (⟨_, ⟨_, _⟩ | ⟨_, _⟩⟩ | ⟨_, ⟨_, _⟩ | ⟨_, _⟩⟩) <;> rfl · fconstructor · rintro (⟨⟨_, _⟩ | ⟨_, _⟩, _⟩ | ⟨⟨_, _⟩ | ⟨_, _⟩, _⟩) <;> solve_by_elim (config := { maxDepth := 8 }) [Sum.inl, Sum.inr, Prod.mk] · rintro (⟨_, ⟨_, _⟩ | ⟨_, _⟩⟩ | ⟨_, ⟨_, _⟩ | ⟨_, _⟩⟩) <;> solve_by_elim (config := { maxDepth := 8 }) [Sum.inl, Sum.inr, Prod.mk] · rintro (⟨⟨_, _⟩ | ⟨_, _⟩, _⟩ | ⟨⟨_, _⟩ | ⟨_, _⟩, _⟩) <;> rfl · rintro (⟨_, ⟨_, _⟩ | ⟨_, _⟩⟩ | ⟨_, ⟨_, _⟩ | ⟨_, _⟩⟩) <;> rfl -- Porting note: explicitly wrote out arguments to each recursive -- quot_mul_assoc reference below, because otherwise the decreasing_by block -- failed. Each branch previously ended with: `simp [quot_mul_assoc]; abel` -- See https://github.com/leanprover/lean4/issues/2288 · rintro (⟨⟨i, j⟩ | ⟨i, j⟩, k⟩ | ⟨⟨i, j⟩ | ⟨i, j⟩, k⟩) · change ⟦(xL i * y + x * yL j - xL i * yL j) * z + x * y * zL k - (xL i * y + x * yL j - xL i * yL j) * zL k⟧ = ⟦xL i * (y * z) + x * (yL j * z + y * zL k - yL j * zL k) - xL i * (yL j * z + y * zL k - yL j * zL k)⟧ simp only [quot_sub, quot_add, quot_right_distrib_sub, quot_right_distrib, quot_left_distrib_sub, quot_left_distrib] rw [quot_mul_assoc (xL i) (mk yl yr yL yR) (mk zl zr zL zR)] rw [quot_mul_assoc (mk xl xr xL xR) (yL j) (mk zl zr zL zR)] rw [quot_mul_assoc (xL i) (yL j) (mk zl zr zL zR)] rw [quot_mul_assoc (mk xl xr xL xR) (mk yl yr yL yR) (zL k)] rw [quot_mul_assoc (xL i) (mk yl yr yL yR) (zL k)] rw [quot_mul_assoc (mk xl xr xL xR) (yL j) (zL k)] rw [quot_mul_assoc (xL i) (yL j) (zL k)] abel · change ⟦(xR i * y + x * yR j - xR i * yR j) * z + x * y * zL k - (xR i * y + x * yR j - xR i * yR j) * zL k⟧ = ⟦xR i * (y * z) + x * (yR j * z + y * zL k - yR j * zL k) - xR i * (yR j * z + y * zL k - yR j * zL k)⟧ simp only [quot_sub, quot_add, quot_right_distrib_sub, quot_right_distrib, quot_left_distrib_sub, quot_left_distrib] rw [quot_mul_assoc (xR i) (mk yl yr yL yR) (mk zl zr zL zR)] rw [quot_mul_assoc (mk xl xr xL xR) (yR j) (mk zl zr zL zR)] rw [quot_mul_assoc (xR i) (yR j) (mk zl zr zL zR)] rw [quot_mul_assoc (mk xl xr xL xR) (mk yl yr yL yR) (zL k)] rw [quot_mul_assoc (xR i) (mk yl yr yL yR) (zL k)] rw [quot_mul_assoc (mk xl xr xL xR) (yR j) (zL k)] rw [quot_mul_assoc (xR i) (yR j) (zL k)] abel · change ⟦(xL i * y + x * yR j - xL i * yR j) * z + x * y * zR k - (xL i * y + x * yR j - xL i * yR j) * zR k⟧ = ⟦xL i * (y * z) + x * (yR j * z + y * zR k - yR j * zR k) - xL i * (yR j * z + y * zR k - yR j * zR k)⟧ simp only [quot_sub, quot_add, quot_right_distrib_sub, quot_right_distrib, quot_left_distrib_sub, quot_left_distrib] rw [quot_mul_assoc (xL i) (mk yl yr yL yR) (mk zl zr zL zR)] rw [quot_mul_assoc (mk xl xr xL xR) (yR j) (mk zl zr zL zR)] rw [quot_mul_assoc (xL i) (yR j) (mk zl zr zL zR)] rw [quot_mul_assoc (mk xl xr xL xR) (mk yl yr yL yR) (zR k)] rw [quot_mul_assoc (xL i) (mk yl yr yL yR) (zR k)] rw [quot_mul_assoc (mk xl xr xL xR) (yR j) (zR k)] rw [quot_mul_assoc (xL i) (yR j) (zR k)] abel · change ⟦(xR i * y + x * yL j - xR i * yL j) * z + x * y * zR k - (xR i * y + x * yL j - xR i * yL j) * zR k⟧ = ⟦xR i * (y * z) + x * (yL j * z + y * zR k - yL j * zR k) - xR i * (yL j * z + y * zR k - yL j * zR k)⟧ simp only [quot_sub, quot_add, quot_right_distrib_sub, quot_right_distrib, quot_left_distrib_sub, quot_left_distrib] rw [quot_mul_assoc (xR i) (mk yl yr yL yR) (mk zl zr zL zR)] rw [quot_mul_assoc (mk xl xr xL xR) (yL j) (mk zl zr zL zR)] rw [quot_mul_assoc (xR i) (yL j) (mk zl zr zL zR)] rw [quot_mul_assoc (mk xl xr xL xR) (mk yl yr yL yR) (zR k)] rw [quot_mul_assoc (xR i) (mk yl yr yL yR) (zR k)] rw [quot_mul_assoc (mk xl xr xL xR) (yL j) (zR k)] rw [quot_mul_assoc (xR i) (yL j) (zR k)] abel · rintro (⟨⟨i, j⟩ | ⟨i, j⟩, k⟩ | ⟨⟨i, j⟩ | ⟨i, j⟩, k⟩) · change ⟦(xL i * y + x * yL j - xL i * yL j) * z + x * y * zR k - (xL i * y + x * yL j - xL i * yL j) * zR k⟧ = ⟦xL i * (y * z) + x * (yL j * z + y * zR k - yL j * zR k) - xL i * (yL j * z + y * zR k - yL j * zR k)⟧ simp only [quot_sub, quot_add, quot_right_distrib_sub, quot_right_distrib, quot_left_distrib_sub, quot_left_distrib] rw [quot_mul_assoc (xL i) (mk yl yr yL yR) (mk zl zr zL zR)] rw [quot_mul_assoc (mk xl xr xL xR) (yL j) (mk zl zr zL zR)] rw [quot_mul_assoc (xL i) (yL j) (mk zl zr zL zR)] rw [quot_mul_assoc (mk xl xr xL xR) (mk yl yr yL yR) (zR k)] rw [quot_mul_assoc (xL i) (mk yl yr yL yR) (zR k)] rw [quot_mul_assoc (mk xl xr xL xR) (yL j) (zR k)] rw [quot_mul_assoc (xL i) (yL j) (zR k)] abel · change ⟦(xR i * y + x * yR j - xR i * yR j) * z + x * y * zR k - (xR i * y + x * yR j - xR i * yR j) * zR k⟧ = ⟦xR i * (y * z) + x * (yR j * z + y * zR k - yR j * zR k) - xR i * (yR j * z + y * zR k - yR j * zR k)⟧ simp only [quot_sub, quot_add, quot_right_distrib_sub, quot_right_distrib, quot_left_distrib_sub, quot_left_distrib] rw [quot_mul_assoc (xR i) (mk yl yr yL yR) (mk zl zr zL zR)] rw [quot_mul_assoc (mk xl xr xL xR) (yR j) (mk zl zr zL zR)] rw [quot_mul_assoc (xR i) (yR j) (mk zl zr zL zR)] rw [quot_mul_assoc (mk xl xr xL xR) (mk yl yr yL yR) (zR k)] rw [quot_mul_assoc (xR i) (mk yl yr yL yR) (zR k)] rw [quot_mul_assoc (mk xl xr xL xR) (yR j) (zR k)] rw [quot_mul_assoc (xR i) (yR j) (zR k)] abel · change ⟦(xL i * y + x * yR j - xL i * yR j) * z + x * y * zL k - (xL i * y + x * yR j - xL i * yR j) * zL k⟧ = ⟦xL i * (y * z) + x * (yR j * z + y * zL k - yR j * zL k) - xL i * (yR j * z + y * zL k - yR j * zL k)⟧ simp only [quot_sub, quot_add, quot_right_distrib_sub, quot_right_distrib, quot_left_distrib_sub, quot_left_distrib] rw [quot_mul_assoc (xL i) (mk yl yr yL yR) (mk zl zr zL zR)] rw [quot_mul_assoc (mk xl xr xL xR) (yR j) (mk zl zr zL zR)] rw [quot_mul_assoc (xL i) (yR j) (mk zl zr zL zR)] rw [quot_mul_assoc (mk xl xr xL xR) (mk yl yr yL yR) (zL k)] rw [quot_mul_assoc (xL i) (mk yl yr yL yR) (zL k)] rw [quot_mul_assoc (mk xl xr xL xR) (yR j) (zL k)] rw [quot_mul_assoc (xL i) (yR j) (zL k)] abel · change ⟦(xR i * y + x * yL j - xR i * yL j) * z + x * y * zL k - (xR i * y + x * yL j - xR i * yL j) * zL k⟧ = ⟦xR i * (y * z) + x * (yL j * z + y * zL k - yL j * zL k) - xR i * (yL j * z + y * zL k - yL j * zL k)⟧ simp only [quot_sub, quot_add, quot_right_distrib_sub, quot_right_distrib, quot_left_distrib_sub, quot_left_distrib] rw [quot_mul_assoc (xR i) (mk yl yr yL yR) (mk zl zr zL zR)] rw [quot_mul_assoc (mk xl xr xL xR) (yL j) (mk zl zr zL zR)] rw [quot_mul_assoc (xR i) (yL j) (mk zl zr zL zR)] rw [quot_mul_assoc (mk xl xr xL xR) (mk yl yr yL yR) (zL k)] rw [quot_mul_assoc (xR i) (mk yl yr yL yR) (zL k)] rw [quot_mul_assoc (mk xl xr xL xR) (yL j) (zL k)] rw [quot_mul_assoc (xR i) (yL j) (zL k)] abel termination_by (x, y, z)
case refine_4.inr.mk.inl.mk x✝ y✝ z✝ : PGame xl xr : Type u_1 xL : xl → PGame xR : xr → PGame yl yr : Type u_1 yL : yl → PGame yR : yr → PGame zl zr : Type u_1 zL : zl → PGame zR : zr → PGame x : PGame := mk xl xr xL xR y : PGame := mk yl yr yL yR z : PGame := mk zl zr zL zR k : zl i : xl j : yr ⊢ ⟦xL i * (mk yl yr yL yR * mk zl zr zL zR)⟧ + ⟦mk xl xr xL xR * (yR j * mk zl zr zL zR)⟧ - ⟦xL i * (yR j * mk zl zr zL zR)⟧ + ⟦x * y * zL k⟧ - (⟦xL i * y * zL k⟧ + ⟦x * yR j * zL k⟧ - ⟦xL i * yR j * zL k⟧) = ⟦xL i * (y * z)⟧ + (⟦x * (yR j * z)⟧ + ⟦x * (y * zL k)⟧ - ⟦x * (yR j * zL k)⟧) - (⟦xL i * (yR j * z)⟧ + ⟦xL i * (y * zL k)⟧ - ⟦xL i * (yR j * zL k)⟧)
rw [quot_mul_assoc (mk xl xr xL xR) (mk yl yr yL yR) (zL k)]
case refine_4.inr.mk.inl.mk x✝ y✝ z✝ : PGame xl xr : Type u_1 xL : xl → PGame xR : xr → PGame yl yr : Type u_1 yL : yl → PGame yR : yr → PGame zl zr : Type u_1 zL : zl → PGame zR : zr → PGame x : PGame := mk xl xr xL xR y : PGame := mk yl yr yL yR z : PGame := mk zl zr zL zR k : zl i : xl j : yr ⊢ ⟦xL i * (mk yl yr yL yR * mk zl zr zL zR)⟧ + ⟦mk xl xr xL xR * (yR j * mk zl zr zL zR)⟧ - ⟦xL i * (yR j * mk zl zr zL zR)⟧ + ⟦mk xl xr xL xR * (mk yl yr yL yR * zL k)⟧ - (⟦xL i * y * zL k⟧ + ⟦x * yR j * zL k⟧ - ⟦xL i * yR j * zL k⟧) = ⟦xL i * (y * z)⟧ + (⟦x * (yR j * z)⟧ + ⟦x * (y * zL k)⟧ - ⟦x * (yR j * zL k)⟧) - (⟦xL i * (yR j * z)⟧ + ⟦xL i * (y * zL k)⟧ - ⟦xL i * (yR j * zL k)⟧)
07a86410cd457eaf
AddChar.inv_apply'
Mathlib/Algebra/Group/AddChar.lean
lemma inv_apply' (ψ : AddChar A M) (a : A) : ψ⁻¹ a = (ψ a)⁻¹
A : Type u_1 M : Type u_2 inst✝¹ : AddCommGroup A inst✝ : DivisionCommMonoid M ψ : AddChar A M a : A ⊢ ψ⁻¹ a = (ψ a)⁻¹
rw [inv_apply, map_neg_eq_inv]
no goals
11bf170bb1be7bc8
List.prod_concat
Mathlib/Algebra/BigOperators/Group/List/Basic.lean
theorem prod_concat : (l.concat a).prod = l.prod * a
M : Type u_4 inst✝ : Monoid M l : List M a : M ⊢ (l.concat a).prod = l.prod * a
rw [concat_eq_append, prod_append, prod_singleton]
no goals
4bed235831a8aa18
Real.fourierCoeff_tsum_comp_add
Mathlib/Analysis/Fourier/PoissonSummation.lean
theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, ℂ)} (hf : ∀ K : Compacts ℝ, Summable fun n : ℤ => ‖(f.comp (ContinuousMap.addRight n)).restrict K‖) (m : ℤ) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m
case h.e'_5 f : C(ℝ, ℂ) hf : ∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (f.comp (ContinuousMap.addRight ↑n))‖ m : ℤ e : C(ℝ, ℂ) := (fourier (-m)).comp { toFun := QuotientAddGroup.mk, continuous_toFun := ⋯ } neK : ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖ eadd : ∀ (n : ℤ), e.comp (ContinuousMap.addRight ↑n) = e ⊢ (fun n => ‖ContinuousMap.restrict (Icc 0 1) (e * f.comp (ContinuousMap.addRight ↑n))‖) = fun n => ‖ContinuousMap.restrict (↑{ carrier := Icc 0 1, isCompact' := ⋯ }) (f.comp (ContinuousMap.addRight ↑n))‖
exact funext fun n => neK ⟨Icc 0 1, isCompact_Icc⟩ _
no goals
ec2dd51bd198a0fb
properlyDiscontinuousSMul_iff_properSMul
Mathlib/Topology/Algebra/ProperAction/ProperlyDiscontinuous.lean
theorem properlyDiscontinuousSMul_iff_properSMul [T2Space X] [DiscreteTopology G] [ContinuousConstSMul G X] [CompactlyGeneratedSpace (X × X)] : ProperlyDiscontinuousSMul G X ↔ ProperSMul G X
G : Type u_1 X : Type u_2 inst✝⁷ : Group G inst✝⁶ : MulAction G X inst✝⁵ : TopologicalSpace G inst✝⁴ : TopologicalSpace X inst✝³ : T2Space X inst✝² : DiscreteTopology G inst✝¹ : ContinuousConstSMul G X inst✝ : CompactlyGeneratedSpace (X × X) h : ProperlyDiscontinuousSMul G X K : Set (X × X) hK : IsCompact K K' : Set X := fst '' K ∪ snd '' K hK' : IsCompact K' E : Set G := {g | ((fun x => g • x) '' K' ∩ K').Nonempty} ⊢ {g | (fun x => g • x) '' K' ∩ K' ≠ ∅}.Finite
exact h.finite_disjoint_inter_image hK' hK'
no goals
e455cea448594c52
BitVec.eq_of_getLsbD_eq
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Lemmas.lean
theorem eq_of_getLsbD_eq {x y : BitVec w} (pred : ∀ i, i < w → x.getLsbD i = y.getLsbD i) : x = y
w : Nat x y : BitVec w pred : ∀ (i : Nat), i < w → x.getLsbD i = y.getLsbD i i : Nat i_lt : i < w ⊢ x.toNat.testBit i = y.toNat.testBit i
exact pred i i_lt
no goals
c491b21788cdd007
locallyConnectedSpace_iff_subsets_isOpen_isConnected
Mathlib/Topology/Connected/LocallyConnected.lean
theorem locallyConnectedSpace_iff_subsets_isOpen_isConnected : LocallyConnectedSpace α ↔ ∀ x, ∀ U ∈ 𝓝 x, ∃ V : Set α, V ⊆ U ∧ IsOpen V ∧ x ∈ V ∧ IsConnected V
case mpr α : Type u inst✝ : TopologicalSpace α x✝ : α ⊢ (∀ U ∈ 𝓝 x✝, ∃ V ⊆ U, IsOpen V ∧ x✝ ∈ V ∧ IsConnected V) → (𝓝 x✝).HasBasis (fun s => IsOpen s ∧ x✝ ∈ s ∧ IsConnected s) id
exact fun h => ⟨fun U => ⟨fun hU => let ⟨V, hVU, hV⟩ := h U hU ⟨V, hV, hVU⟩, fun ⟨V, ⟨hV, hxV, _⟩, hVU⟩ => mem_nhds_iff.mpr ⟨V, hVU, hV, hxV⟩⟩⟩
no goals
a1a80a89e26b6406
Finset.prod_one_add
Mathlib/Algebra/BigOperators/Ring/Finset.lean
theorem prod_one_add {f : ι → α} (s : Finset ι) : ∏ i ∈ s, (1 + f i) = ∑ t ∈ s.powerset, ∏ i ∈ t, f i
ι : Type u_1 α : Type u_3 inst✝ : CommSemiring α f : ι → α s : Finset ι ⊢ ∏ i ∈ s, (1 + f i) = ∑ t ∈ s.powerset, ∏ i ∈ t, f i
classical simp only [add_comm (1 : α), prod_add, prod_const_one, mul_one]
no goals
2bc8e910046429f6
contractLeft_assoc_coevaluation'
Mathlib/LinearAlgebra/Coevaluation.lean
theorem contractLeft_assoc_coevaluation' : (contractLeft K V).lTensor _ ∘ₗ (TensorProduct.assoc K _ _ _).toLinearMap ∘ₗ (coevaluation K V).rTensor V = (TensorProduct.rid K _).symm.toLinearMap ∘ₗ (TensorProduct.lid K _).toLinearMap
case H.h K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) ⊢ ((TensorProduct.mk K K V).compr₂ (LinearMap.lTensor V (contractLeft K V) ∘ₗ ↑(TensorProduct.assoc K V (Dual K V) V) ∘ₗ LinearMap.rTensor V (coevaluation K V))) 1 = ((TensorProduct.mk K K V).compr₂ (↑(TensorProduct.rid K V).symm ∘ₗ ↑(TensorProduct.lid K V))) 1
apply (Basis.ofVectorSpace K V).ext
case H.h K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) ⊢ ∀ (i : ↑(Basis.ofVectorSpaceIndex K V)), (((TensorProduct.mk K K V).compr₂ (LinearMap.lTensor V (contractLeft K V) ∘ₗ ↑(TensorProduct.assoc K V (Dual K V) V) ∘ₗ LinearMap.rTensor V (coevaluation K V))) 1) ((Basis.ofVectorSpace K V) i) = (((TensorProduct.mk K K V).compr₂ (↑(TensorProduct.rid K V).symm ∘ₗ ↑(TensorProduct.lid K V))) 1) ((Basis.ofVectorSpace K V) i)
fa558da7fb2ef0c7
Language.mem_kstar_iff_exists_nonempty
Mathlib/Computability/Language.lean
lemma mem_kstar_iff_exists_nonempty {x : List α} : x ∈ l∗ ↔ ∃ S : List (List α), x = S.flatten ∧ ∀ y ∈ S, y ∈ l ∧ y ≠ []
case mpr α : Type u_1 l : Language α x : List α ⊢ (∃ S, x = S.flatten ∧ ∀ y ∈ S, y ∈ l ∧ y ≠ []) → x ∈ l∗
rintro ⟨S, hx, h⟩
case mpr.intro.intro α : Type u_1 l : Language α x : List α S : List (List α) hx : x = S.flatten h : ∀ y ∈ S, y ∈ l ∧ y ≠ [] ⊢ x ∈ l∗
976aeea620c10223
FirstOrder.Language.BoundedFormula.realize_relabelEquiv
Mathlib/ModelTheory/Semantics.lean
theorem realize_relabelEquiv {g : α ≃ β} {k} {φ : L.BoundedFormula α k} {v : β → M} {xs : Fin k → M} : (relabelEquiv g φ).Realize v xs ↔ φ.Realize (v ∘ g) xs
L : Language M : Type w inst✝ : L.Structure M α : Type u' β : Type v' g : α ≃ β k : ℕ φ : L.BoundedFormula α k v : β → M xs : Fin k → M ⊢ ((relabelEquiv g) φ).Realize v xs ↔ φ.Realize (v ∘ ⇑g) xs
simp only [relabelEquiv, mapTermRelEquiv_apply, Equiv.coe_refl]
L : Language M : Type w inst✝ : L.Structure M α : Type u' β : Type v' g : α ≃ β k : ℕ φ : L.BoundedFormula α k v : β → M xs : Fin k → M ⊢ (mapTermRel (fun n => ⇑(Term.relabelEquiv (g.sumCongr (_root_.Equiv.refl (Fin n))))) (fun n => id) (fun x => id) φ).Realize v xs ↔ φ.Realize (v ∘ ⇑g) xs
ae9fa7341489438e
map_sub_le_max
Mathlib/Analysis/Normed/Group/Seminorm.lean
theorem map_sub_le_max : f (x - y) ≤ max (f x) (f y)
E : Type u_3 F : Type u_4 inst✝² : AddGroup E inst✝¹ : FunLike F E ℝ inst✝ : NonarchAddGroupSeminormClass F E f : F x y : E ⊢ f (x + -y) ≤ f x ⊔ f (-y)
exact map_add_le_max _ _ _
no goals
a9d6b956926a25a3
Nat.psp_from_prime_psp
Mathlib/NumberTheory/FermatPsp.lean
theorem psp_from_prime_psp {b : ℕ} (b_ge_two : 2 ≤ b) {p : ℕ} (p_prime : p.Prime) (p_gt_two : 2 < p) (not_dvd : ¬p ∣ b * (b ^ 2 - 1)) : FermatPsp (psp_from_prime b p) b
case h b : ℕ b_ge_two : 2 ≤ b p : ℕ p_prime : Prime p p_gt_two : 2 < p not_dvd : ¬p ∣ b * (b ^ 2 - 1) A : ℕ := (b ^ p - 1) / (b - 1) B : ℕ := (b ^ p + 1) / (b + 1) hi_A : 1 < A hi_B : 1 < B hi_AB : 1 < A * B hi_b : 0 < b hi_p : 1 ≤ p hi_bsquared : 0 < b ^ 2 - 1 hi_bpowtwop : 1 ≤ b ^ (2 * p) hi_bpowpsubone : 1 ≤ b ^ (p - 1) p_odd : Odd p AB_not_prime : ¬Prime (A * B) AB_id : A * B = (b ^ (2 * p) - 1) / (b ^ 2 - 1) hd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1 ha₁ : (b ^ 2 - 1) * (A * B - 1) = b * (b ^ (p - 1) - 1) * (b ^ p + b) ha₂ : 2 ∣ b ^ p + b ha₃ : p ∣ b ^ (p - 1) - 1 ha₄ : b ^ 2 - 1 ∣ b ^ (p - 1) - 1 ha₅ : 2 * p * (b ^ 2 - 1) ∣ (b ^ 2 - 1) * (A * B - 1) ha₆ : 2 * p ∣ A * B - 1 ⊢ b ^ (2 * p) - 1 = A * B * (b ^ 2 - 1)
have : A * B * (b ^ 2 - 1) = (b ^ (2 * p) - 1) / (b ^ 2 - 1) * (b ^ 2 - 1) := congr_arg (fun x : ℕ => x * (b ^ 2 - 1)) AB_id
case h b : ℕ b_ge_two : 2 ≤ b p : ℕ p_prime : Prime p p_gt_two : 2 < p not_dvd : ¬p ∣ b * (b ^ 2 - 1) A : ℕ := (b ^ p - 1) / (b - 1) B : ℕ := (b ^ p + 1) / (b + 1) hi_A : 1 < A hi_B : 1 < B hi_AB : 1 < A * B hi_b : 0 < b hi_p : 1 ≤ p hi_bsquared : 0 < b ^ 2 - 1 hi_bpowtwop : 1 ≤ b ^ (2 * p) hi_bpowpsubone : 1 ≤ b ^ (p - 1) p_odd : Odd p AB_not_prime : ¬Prime (A * B) AB_id : A * B = (b ^ (2 * p) - 1) / (b ^ 2 - 1) hd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1 ha₁ : (b ^ 2 - 1) * (A * B - 1) = b * (b ^ (p - 1) - 1) * (b ^ p + b) ha₂ : 2 ∣ b ^ p + b ha₃ : p ∣ b ^ (p - 1) - 1 ha₄ : b ^ 2 - 1 ∣ b ^ (p - 1) - 1 ha₅ : 2 * p * (b ^ 2 - 1) ∣ (b ^ 2 - 1) * (A * B - 1) ha₆ : 2 * p ∣ A * B - 1 this : A * B * (b ^ 2 - 1) = (b ^ (2 * p) - 1) / (b ^ 2 - 1) * (b ^ 2 - 1) ⊢ b ^ (2 * p) - 1 = A * B * (b ^ 2 - 1)
6f5ab4acf8539f9d
SSet.StrictSegal.isPointwiseRightKanExtensionAt.fac_aux₂
Mathlib/AlgebraicTopology/SimplicialSet/Coskeletal.lean
lemma fac_aux₂ {n : ℕ} (s : Cone (proj (op ⦋n⦌) (Truncated.inclusion 2).op ⋙ (Truncated.inclusion 2).op ⋙ X)) (x : s.pt) (i j : ℕ) (hij : i ≤ j) (hj : j ≤ n) : X.map (mkOfLe ⟨i, by omega⟩ ⟨j, by omega⟩ hij).op (lift s x) = s.π.app (strArrowMk₂ (mkOfLe ⟨i, by omega⟩ ⟨j, by omega⟩ hij)) x
case intro.zero X : SSet inst✝ : X.StrictSegal n : ℕ s : Cone (proj (op ⦋n⦌) (Truncated.inclusion 2).op ⋙ (Truncated.inclusion 2).op ⋙ X) x : s.pt i : ℕ hij : i ≤ i hj : i ≤ n this : mkOfLe ⟨i, ⋯⟩ ⟨i, ⋯⟩ ⋯ = ⦋1⦌.const ⦋0⦌ 0 ≫ ⦋0⦌.const ⦋n⦌ ⟨i, ⋯⟩ α : strArrowMk₂ (⦋0⦌.const ⦋n⦌ ⟨i, ⋯⟩) ⋯ ⟶ strArrowMk₂ (⦋1⦌.const ⦋0⦌ 0 ≫ ⦋0⦌.const ⦋n⦌ ⟨i, ⋯⟩) ⋯ := homMk (⦋1⦌.const ⦋0⦌ 0).op ⋯ ⊢ X.map (⦋1⦌.const ⦋0⦌ 0 ≫ ⦋0⦌.const ⦋n⦌ ⟨i, ⋯⟩).op (lift s x) = s.π.app (strArrowMk₂ (⦋1⦌.const ⦋0⦌ 0 ≫ ⦋0⦌.const ⦋n⦌ ⟨i, ⋯⟩) ⋯) x
have nat := congr_fun (s.π.naturality α) x
case intro.zero X : SSet inst✝ : X.StrictSegal n : ℕ s : Cone (proj (op ⦋n⦌) (Truncated.inclusion 2).op ⋙ (Truncated.inclusion 2).op ⋙ X) x : s.pt i : ℕ hij : i ≤ i hj : i ≤ n this : mkOfLe ⟨i, ⋯⟩ ⟨i, ⋯⟩ ⋯ = ⦋1⦌.const ⦋0⦌ 0 ≫ ⦋0⦌.const ⦋n⦌ ⟨i, ⋯⟩ α : strArrowMk₂ (⦋0⦌.const ⦋n⦌ ⟨i, ⋯⟩) ⋯ ⟶ strArrowMk₂ (⦋1⦌.const ⦋0⦌ 0 ≫ ⦋0⦌.const ⦋n⦌ ⟨i, ⋯⟩) ⋯ := homMk (⦋1⦌.const ⦋0⦌ 0).op ⋯ nat : (((Functor.const (StructuredArrow (op ⦋n⦌) (Truncated.inclusion 2).op)).obj s.pt).map α ≫ s.π.app (strArrowMk₂ (⦋1⦌.const ⦋0⦌ 0 ≫ ⦋0⦌.const ⦋n⦌ ⟨i, ⋯⟩) ⋯)) x = (s.π.app (strArrowMk₂ (⦋0⦌.const ⦋n⦌ ⟨i, ⋯⟩) ⋯) ≫ (proj (op ⦋n⦌) (Truncated.inclusion 2).op ⋙ (Truncated.inclusion 2).op ⋙ X).map α) x ⊢ X.map (⦋1⦌.const ⦋0⦌ 0 ≫ ⦋0⦌.const ⦋n⦌ ⟨i, ⋯⟩).op (lift s x) = s.π.app (strArrowMk₂ (⦋1⦌.const ⦋0⦌ 0 ≫ ⦋0⦌.const ⦋n⦌ ⟨i, ⋯⟩) ⋯) x
764b0c7acb432811
MeasureTheory.stoppedProcess_eq'
Mathlib/Probability/Process/Stopping.lean
theorem stoppedProcess_eq' (n : ℕ) : stoppedProcess u τ n = Set.indicator {a | n + 1 ≤ τ a} (u n) + ∑ i ∈ Finset.range (n + 1), Set.indicator {a | τ a = i} (u i)
Ω : Type u_1 β : Type u_2 u : ℕ → Ω → β τ : Ω → ℕ inst✝ : AddCommMonoid β n : ℕ ⊢ {a | n ≤ τ a}.indicator (u n) = {a | n + 1 ≤ τ a}.indicator (u n) + {a | τ a = n}.indicator (u n)
ext x
case h Ω : Type u_1 β : Type u_2 u : ℕ → Ω → β τ : Ω → ℕ inst✝ : AddCommMonoid β n : ℕ x : Ω ⊢ {a | n ≤ τ a}.indicator (u n) x = ({a | n + 1 ≤ τ a}.indicator (u n) + {a | τ a = n}.indicator (u n)) x
30510ef3c36e238e
SzemerediRegularity.energy_increment
Mathlib/Combinatorics/SimpleGraph/Regularity/Increment.lean
theorem energy_increment (hP : P.IsEquipartition) (hP₇ : 7 ≤ #P.parts) (hPε : 100 ≤ 4 ^ #P.parts * ε ^ 5) (hPα : #P.parts * 16 ^ #P.parts ≤ card α) (hPG : ¬P.IsUniform G ε) (hε₀ : 0 ≤ ε) (hε₁ : ε ≤ 1) : ↑(P.energy G) + ε ^ 5 / 4 ≤ (increment hP G ε).energy G
case h₂ α : Type u_1 inst✝³ : Fintype α inst✝² : DecidableEq α P : Finpartition univ G : SimpleGraph α inst✝¹ : DecidableRel G.Adj ε : ℝ inst✝ : Nonempty α hP : P.IsEquipartition hP₇ : 7 ≤ #P.parts hPε : 100 ≤ 4 ^ #P.parts * ε ^ 5 hPα : #P.parts * 16 ^ #P.parts ≤ Fintype.card α hPG : ↑(#P.parts.offDiag) * ε < ↑(#(P.nonUniforms G ε)) hε₀ : 0 ≤ ε hε₁ : ε ≤ 1 ⊢ 7 / 24 ≤ 22 / 75
norm_num
no goals
f9eb9daa7cfa4b0b
Prod.counit_comp_inl
Mathlib/RingTheory/Coalgebra/Basic.lean
theorem counit_comp_inl : counit ∘ₗ inl R A B = counit
case h R : Type u A : Type v B : Type w inst✝⁶ : CommSemiring R inst✝⁵ : AddCommMonoid A inst✝⁴ : AddCommMonoid B inst✝³ : Module R A inst✝² : Module R B inst✝¹ : Coalgebra R A inst✝ : Coalgebra R B x✝ : A ⊢ (counit ∘ₗ inl R A B) x✝ = counit x✝
simp
no goals
9e586911bcbb8889
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.assignmentsInvariant_insertRatUnits
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/RatAddSound.lean
theorem assignmentsInvariant_insertRatUnits {n : Nat} (f : DefaultFormula n) (hf : f.ratUnits = #[] ∧ AssignmentsInvariant f) (units : CNF.Clause (PosFin n)) : AssignmentsInvariant (insertRatUnits f units).1
case neg.h.left n : Nat f : DefaultFormula n hf : f.ratUnits = #[] ∧ f.AssignmentsInvariant units : CNF.Clause (PosFin n) h : let assignments := (f.insertRatUnits units).fst.assignments; let_fun hsize := ⋯; let ratUnits := (f.insertRatUnits units).fst.ratUnits; InsertUnitInvariant f.assignments ⋯ ratUnits assignments hsize hsize : (f.insertRatUnits units).fst.assignments.size = n i : PosFin n b : Bool p : PosFin n → Bool hp : ∀ (x : DefaultClause n), (some x ∈ (f.insertRatUnits units).fst.clauses.toList ∨ (∃ a, (a, false) ∈ (f.insertRatUnits units).fst.rupUnits.toList ∧ unit (a, false) = x ∨ (a, true) ∈ (f.insertRatUnits units).fst.rupUnits.toList ∧ unit (a, true) = x) ∨ ∃ a, (a, false) ∈ (f.insertRatUnits units).fst.ratUnits.toList ∧ unit (a, false) = x ∨ (a, true) ∈ (f.insertRatUnits units).fst.ratUnits.toList ∧ unit (a, true) = x) → ∃ a, (a, false) ∈ Clause.toList x ∧ decide (p a = false) = true ∨ (a, true) ∈ Clause.toList x ∧ p a = true pf : p ⊨ f j : Fin (f.insertRatUnits units).fst.ratUnits.size b' : Bool hb : hasAssignment b (addAssignment b' f.assignments[↑⟨i.val, ⋯⟩]) = true i_gt_zero : ↑⟨i.val, ⋯⟩ > 0 h1✝ : (f.insertRatUnits units).fst.ratUnits[j] = (⟨↑⟨i.val, ⋯⟩, ⋯⟩, b') h2 : (f.insertRatUnits units).fst.assignments[↑⟨i.val, ⋯⟩] = addAssignment b' f.assignments[↑⟨i.val, ⋯⟩] h3 : ¬hasAssignment b' f.assignments[↑⟨i.val, ⋯⟩] = true h4 : ∀ (k : Fin (f.insertRatUnits units).fst.ratUnits.size), k ≠ j → (f.insertRatUnits units).fst.ratUnits[k].fst.val ≠ ↑⟨i.val, ⋯⟩ b_eq_b' : b = b' j_unit : DefaultClause n := unit (f.insertRatUnits units).fst.ratUnits[j] j_unit_def : j_unit = unit (f.insertRatUnits units).fst.ratUnits[j] hb' : b' = false h1 : (f.insertRatUnits units).fst.ratUnits[j] = (i, false) ⊢ (i, false) ∈ (f.insertRatUnits units).fst.ratUnits.toList
rw [← h1]
case neg.h.left n : Nat f : DefaultFormula n hf : f.ratUnits = #[] ∧ f.AssignmentsInvariant units : CNF.Clause (PosFin n) h : let assignments := (f.insertRatUnits units).fst.assignments; let_fun hsize := ⋯; let ratUnits := (f.insertRatUnits units).fst.ratUnits; InsertUnitInvariant f.assignments ⋯ ratUnits assignments hsize hsize : (f.insertRatUnits units).fst.assignments.size = n i : PosFin n b : Bool p : PosFin n → Bool hp : ∀ (x : DefaultClause n), (some x ∈ (f.insertRatUnits units).fst.clauses.toList ∨ (∃ a, (a, false) ∈ (f.insertRatUnits units).fst.rupUnits.toList ∧ unit (a, false) = x ∨ (a, true) ∈ (f.insertRatUnits units).fst.rupUnits.toList ∧ unit (a, true) = x) ∨ ∃ a, (a, false) ∈ (f.insertRatUnits units).fst.ratUnits.toList ∧ unit (a, false) = x ∨ (a, true) ∈ (f.insertRatUnits units).fst.ratUnits.toList ∧ unit (a, true) = x) → ∃ a, (a, false) ∈ Clause.toList x ∧ decide (p a = false) = true ∨ (a, true) ∈ Clause.toList x ∧ p a = true pf : p ⊨ f j : Fin (f.insertRatUnits units).fst.ratUnits.size b' : Bool hb : hasAssignment b (addAssignment b' f.assignments[↑⟨i.val, ⋯⟩]) = true i_gt_zero : ↑⟨i.val, ⋯⟩ > 0 h1✝ : (f.insertRatUnits units).fst.ratUnits[j] = (⟨↑⟨i.val, ⋯⟩, ⋯⟩, b') h2 : (f.insertRatUnits units).fst.assignments[↑⟨i.val, ⋯⟩] = addAssignment b' f.assignments[↑⟨i.val, ⋯⟩] h3 : ¬hasAssignment b' f.assignments[↑⟨i.val, ⋯⟩] = true h4 : ∀ (k : Fin (f.insertRatUnits units).fst.ratUnits.size), k ≠ j → (f.insertRatUnits units).fst.ratUnits[k].fst.val ≠ ↑⟨i.val, ⋯⟩ b_eq_b' : b = b' j_unit : DefaultClause n := unit (f.insertRatUnits units).fst.ratUnits[j] j_unit_def : j_unit = unit (f.insertRatUnits units).fst.ratUnits[j] hb' : b' = false h1 : (f.insertRatUnits units).fst.ratUnits[j] = (i, false) ⊢ (f.insertRatUnits units).fst.ratUnits[j] ∈ (f.insertRatUnits units).fst.ratUnits.toList
b6d274376b14ee0b
le_total_of_codirected
Mathlib/Order/SuccPred/Archimedean.lean
lemma le_total_of_codirected {r v₁ v₂ : α} (h₁ : r ≤ v₁) (h₂ : r ≤ v₂) : v₁ ≤ v₂ ∨ v₂ ≤ v₁
case h.intro α✝ : Type u_1 inst✝³ : Preorder α✝ α : Type u_1 inst✝² : Preorder α inst✝¹ : SuccOrder α inst✝ : IsSuccArchimedean α r : α n k : ℕ h : n ≤ n + k ⊢ succ^[n] r ≤ succ^[k] (succ^[n] r)
apply Order.le_succ_iterate
no goals
18362a3552f3bbdf
LieModule.trace_toEnd_genWeightSpace
Mathlib/Algebra/Lie/Weights/Basic.lean
@[simp] lemma trace_toEnd_genWeightSpace [IsDomain R] [IsPrincipalIdealRing R] [Module.Free R M] [Module.Finite R M] (χ : L → R) (x : L) : trace R _ (toEnd R L (genWeightSpace M χ) x) = finrank R (genWeightSpace M χ) • χ x
R : Type u_2 L : Type u_3 M : Type u_4 inst✝¹¹ : CommRing R inst✝¹⁰ : LieRing L inst✝⁹ : LieAlgebra R L inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M inst✝⁶ : LieRingModule L M inst✝⁵ : LieModule R L M inst✝⁴ : LieRing.IsNilpotent L inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : Free R M inst✝ : Module.Finite R M χ : L → R x : L ⊢ _root_.IsNilpotent ((toEnd R L ↥(genWeightSpace M χ)) x - (algebraMap R (End R ↥(genWeightSpace M χ))) (χ x))
exact isNilpotent_toEnd_sub_algebraMap M χ x
no goals
2105e30533b87f10
ProbabilityTheory.iIndepFun.integrable_exp_mul_sum
Mathlib/Probability/Moments/Basic.lean
theorem iIndepFun.integrable_exp_mul_sum [IsFiniteMeasure μ] {X : ι → Ω → ℝ} (h_indep : iIndepFun (fun _ => inferInstance) X μ) (h_meas : ∀ i, Measurable (X i)) {s : Finset ι} (h_int : ∀ i ∈ s, Integrable (fun ω => exp (t * X i ω)) μ) : Integrable (fun ω => exp (t * (∑ i ∈ s, X i) ω)) μ
case insert Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ X : ι → Ω → ℝ h_indep : iIndepFun (fun x => inferInstance) X μ h_meas : ∀ (i : ι), Measurable (X i) i : ι s : Finset ι hi_notin_s : i ∉ s h_rec : (∀ i ∈ s, Integrable (fun ω => rexp (t * X i ω)) μ) → Integrable (fun ω => rexp (t * (∑ i ∈ s, X i) ω)) μ h_int : ∀ i_1 ∈ insert i s, Integrable (fun ω => rexp (t * X i_1 ω)) μ ⊢ Integrable (fun ω => rexp (t * (∑ i ∈ insert i s, X i) ω)) μ
have : ∀ i : ι, i ∈ s → Integrable (fun ω : Ω => exp (t * X i ω)) μ := fun i hi => h_int i (mem_insert_of_mem hi)
case insert Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ X : ι → Ω → ℝ h_indep : iIndepFun (fun x => inferInstance) X μ h_meas : ∀ (i : ι), Measurable (X i) i : ι s : Finset ι hi_notin_s : i ∉ s h_rec : (∀ i ∈ s, Integrable (fun ω => rexp (t * X i ω)) μ) → Integrable (fun ω => rexp (t * (∑ i ∈ s, X i) ω)) μ h_int : ∀ i_1 ∈ insert i s, Integrable (fun ω => rexp (t * X i_1 ω)) μ this : ∀ i ∈ s, Integrable (fun ω => rexp (t * X i ω)) μ ⊢ Integrable (fun ω => rexp (t * (∑ i ∈ insert i s, X i) ω)) μ
97e890d858de8868
Matrix.mulVec_zero
Mathlib/Data/Matrix/Mul.lean
theorem mulVec_zero [Fintype n] (A : Matrix m n α) : A *ᵥ 0 = 0
case h m : Type u_2 n : Type u_3 α : Type v inst✝¹ : NonUnitalNonAssocSemiring α inst✝ : Fintype n A : Matrix m n α x✝ : m ⊢ (A *ᵥ 0) x✝ = 0 x✝
simp [mulVec]
no goals
faa1a119c9269cdc
IsLocalization.Away.sec_spec
Mathlib/RingTheory/Localization/Away/Basic.lean
lemma sec_spec (s : S) : s * (algebraMap R S) (x ^ (IsLocalization.Away.sec x s).2) = algebraMap R S (IsLocalization.Away.sec x s).1
case e_a.h.e_6.h R : Type u_1 inst✝³ : CommSemiring R S : Type u_2 inst✝² : CommSemiring S inst✝¹ : Algebra R S x : R inst✝ : Away x S s : S ⊢ x ^ Exists.choose ⋯ = ↑(IsLocalization.sec (Submonoid.powers x) s).2
exact (IsLocalization.sec (Submonoid.powers x) s).2.property.choose_spec
no goals
ca7b7b572824d46a
Std.DHashMap.Internal.List.length_insertListIfNewUnit
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Internal/List/Associative.lean
theorem length_insertListIfNewUnit [BEq α] [EquivBEq α] {l : List ((_ : α) × Unit)} {toInsert : List α} (distinct_l : DistinctKeys l) (distinct_toInsert : toInsert.Pairwise (fun a b => (a == b) = false)) (distinct_both : ∀ (a : α), containsKey a l → toInsert.contains a = false) : (insertListIfNewUnit l toInsert).length = l.length + toInsert.length
case cons.distinct_both.inl α : Type u inst✝¹ : BEq α inst✝ : EquivBEq α hd : α tl : List α ih : ∀ {l : List ((_ : α) × Unit)}, DistinctKeys l → List.Pairwise (fun a b => (a == b) = false) tl → (∀ (a : α), containsKey a l = true → tl.contains a = false) → (insertListIfNewUnit l tl).length = l.length + tl.length l : List ((_ : α) × Unit) distinct_l : DistinctKeys l a : α distinct_both : ∀ (a : α), containsKey a l = true → (a == hd || tl.contains a) = false h : (hd == a) = true distinct_toInsert : (∀ (a' : α), a' ∈ tl → (hd == a') = false) ∧ List.Pairwise (fun a b => (a == b) = false) tl x : α x_mem : x ∈ tl ⊢ (a == x) = false
rcases distinct_toInsert with ⟨left,_⟩
case cons.distinct_both.inl.intro α : Type u inst✝¹ : BEq α inst✝ : EquivBEq α hd : α tl : List α ih : ∀ {l : List ((_ : α) × Unit)}, DistinctKeys l → List.Pairwise (fun a b => (a == b) = false) tl → (∀ (a : α), containsKey a l = true → tl.contains a = false) → (insertListIfNewUnit l tl).length = l.length + tl.length l : List ((_ : α) × Unit) distinct_l : DistinctKeys l a : α distinct_both : ∀ (a : α), containsKey a l = true → (a == hd || tl.contains a) = false h : (hd == a) = true x : α x_mem : x ∈ tl left : ∀ (a' : α), a' ∈ tl → (hd == a') = false right✝ : List.Pairwise (fun a b => (a == b) = false) tl ⊢ (a == x) = false
952b24aae26e67fe
Finset.ruzsa_covering_mul
Mathlib/Combinatorics/Additive/RuzsaCovering.lean
theorem ruzsa_covering_mul (hB : B.Nonempty) (hK : #(A * B) ≤ K * #B) : ∃ F ⊆ A, #F ≤ K ∧ A ⊆ F * (B / B)
case pos G : Type u_1 inst✝¹ : Group G K : ℝ inst✝ : DecidableEq G A B : Finset G hB : B.Nonempty hK : ↑(#(A * B)) ≤ K * ↑(#B) this : (F : Set G) → Decidable (F.PairwiseDisjoint fun x => x • B) C : Finset (Finset G) := filter (fun F => (↑F).PairwiseDisjoint fun x => x • B) A.powerset F : Finset G hFmax : ∀ x ∈ C, ¬F < x hFA : F ⊆ A hF : (↑F).PairwiseDisjoint fun x => x • B a : G ha : a ∈ A hau : a ∉ F H : ∀ b ∈ F, Disjoint (a • B) (b • B) ⊢ (a ∈ A ∧ F ⊆ A) ∧ (insert a ↑F).PairwiseDisjoint fun x => x • B
exact ⟨⟨ha, hFA⟩, hF.insert fun _ hb _ ↦ H _ hb⟩
no goals
1d2e80669ecdd8c8
LieIdeal.map_comap_incl
Mathlib/Algebra/Lie/IdealOperations.lean
theorem map_comap_incl {I₁ I₂ : LieIdeal R L} : map I₁.incl (comap I₁.incl I₂) = I₁ ⊓ I₂
R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L I₁ I₂ : LieIdeal R L ⊢ map I₁.incl (comap I₁.incl I₂) = I₁ ⊓ I₂
conv_rhs => rw [← I₁.incl_idealRange]
R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L I₁ I₂ : LieIdeal R L ⊢ map I₁.incl (comap I₁.incl I₂) = I₁.incl.idealRange ⊓ I₂
f0fa7ad5ecbe808a
Polynomial.mem_aroots'
Mathlib/Algebra/Polynomial/Roots.lean
theorem mem_aroots' [CommRing S] [IsDomain S] [Algebra T S] {p : T[X]} {a : S} : a ∈ p.aroots S ↔ p.map (algebraMap T S) ≠ 0 ∧ aeval a p = 0
S : Type v T : Type w inst✝³ : CommRing T inst✝² : CommRing S inst✝¹ : IsDomain S inst✝ : Algebra T S p : T[X] a : S ⊢ a ∈ p.aroots S ↔ map (algebraMap T S) p ≠ 0 ∧ (aeval a) p = 0
rw [mem_roots', IsRoot.def, ← eval₂_eq_eval_map, aeval_def]
no goals
1964c592030336af
InnerProductGeometry.norm_add_eq_add_norm_iff_angle_eq_zero
Mathlib/Geometry/Euclidean/Angle/Unoriented/Basic.lean
theorem norm_add_eq_add_norm_iff_angle_eq_zero {x y : V} (hx : x ≠ 0) (hy : y ≠ 0) : ‖x + y‖ = ‖x‖ + ‖y‖ ↔ angle x y = 0
V : Type u_1 inst✝¹ : NormedAddCommGroup V inst✝ : InnerProductSpace ℝ V x y : V hx : x ≠ 0 hy : y ≠ 0 h : ‖x‖ ^ 2 + 2 * inner x y + ‖y‖ ^ 2 = (‖x‖ + ‖y‖) ^ 2 hxy₁ : 0 ≤ ‖x + y‖ hxy₂ : 0 ≤ ‖x‖ + ‖y‖ ⊢ inner x y = ((‖x‖ + ‖y‖) ^ 2 - ‖x‖ ^ 2 - ‖y‖ ^ 2) / 2
linarith
no goals
12c701cfc4191e1e
Turing.ToPartrec.cont_eval_fix
Mathlib/Computability/TMConfig.lean
theorem cont_eval_fix {f k v} (fok : Code.Ok f) : Turing.eval step (stepNormal f (Cont.fix f k) v) = f.fix.eval v >>= fun v => Turing.eval step (Cfg.ret k v)
case intro.intro.intro.intro f : Code k : Cont v : List ℕ fok : f.Ok x : Cfg this : ∀ (c : Cfg), x ∈ eval step c → ∀ (v : List ℕ) (c' : Cfg), c = c'.then (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁ ∈ f.eval v, ∃ v₂ ∈ if v₁.headI = 0 then pure v₁.tail else f.fix.eval v₁.tail, x ∈ eval step (Cfg.ret k v₂) h : x ∈ eval step (stepNormal f (Cont.fix f k) v) v₁ : List ℕ hv₁ : v₁ ∈ f.eval v v₂ : List ℕ hv₂ : v₂ ∈ if v₁.headI = 0 then pure v₁.tail else f.fix.eval v₁.tail h₃ : x ∈ eval step (Cfg.ret k v₂) ⊢ Sum.inl v₂ ∈ Part.some (if v₁.headI = 0 then Sum.inl v₁.tail else Sum.inr v₁.tail) ∨ ∃ a', Sum.inr a' ∈ Part.some (if v₁.headI = 0 then Sum.inl v₁.tail else Sum.inr v₁.tail) ∧ v₂ ∈ PFun.fix (fun v => Part.map (fun v => if v.headI = 0 then Sum.inl v.tail else Sum.inr v.tail) (f.eval v)) a'
split_ifs at hv₂ ⊢
case pos f : Code k : Cont v : List ℕ fok : f.Ok x : Cfg this : ∀ (c : Cfg), x ∈ eval step c → ∀ (v : List ℕ) (c' : Cfg), c = c'.then (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁ ∈ f.eval v, ∃ v₂ ∈ if v₁.headI = 0 then pure v₁.tail else f.fix.eval v₁.tail, x ∈ eval step (Cfg.ret k v₂) h : x ∈ eval step (stepNormal f (Cont.fix f k) v) v₁ : List ℕ hv₁ : v₁ ∈ f.eval v v₂ : List ℕ h₃ : x ∈ eval step (Cfg.ret k v₂) h✝ : v₁.headI = 0 hv₂ : v₂ ∈ pure v₁.tail ⊢ Sum.inl v₂ ∈ Part.some (Sum.inl v₁.tail) ∨ ∃ a', Sum.inr a' ∈ Part.some (Sum.inl v₁.tail) ∧ v₂ ∈ PFun.fix (fun v => Part.map (fun v => if v.headI = 0 then Sum.inl v.tail else Sum.inr v.tail) (f.eval v)) a' case neg f : Code k : Cont v : List ℕ fok : f.Ok x : Cfg this : ∀ (c : Cfg), x ∈ eval step c → ∀ (v : List ℕ) (c' : Cfg), c = c'.then (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁ ∈ f.eval v, ∃ v₂ ∈ if v₁.headI = 0 then pure v₁.tail else f.fix.eval v₁.tail, x ∈ eval step (Cfg.ret k v₂) h : x ∈ eval step (stepNormal f (Cont.fix f k) v) v₁ : List ℕ hv₁ : v₁ ∈ f.eval v v₂ : List ℕ h₃ : x ∈ eval step (Cfg.ret k v₂) h✝ : ¬v₁.headI = 0 hv₂ : v₂ ∈ f.fix.eval v₁.tail ⊢ Sum.inl v₂ ∈ Part.some (Sum.inr v₁.tail) ∨ ∃ a', Sum.inr a' ∈ Part.some (Sum.inr v₁.tail) ∧ v₂ ∈ PFun.fix (fun v => Part.map (fun v => if v.headI = 0 then Sum.inl v.tail else Sum.inr v.tail) (f.eval v)) a'
4a2318a05b9f1866
Nat.Squarefree.ext_iff
Mathlib/Data/Nat/Squarefree.lean
theorem Squarefree.ext_iff {n m : ℕ} (hn : Squarefree n) (hm : Squarefree m) : n = m ↔ ∀ p, Prime p → (p ∣ n ↔ p ∣ m)
n m : ℕ hn : Squarefree n hm : Squarefree m ⊢ n = m ↔ ∀ (p : ℕ), Prime p → (p ∣ n ↔ p ∣ m)
refine ⟨by rintro rfl; simp, fun h => eq_of_factorization_eq hn.ne_zero hm.ne_zero fun p => ?_⟩
n m : ℕ hn : Squarefree n hm : Squarefree m h : ∀ (p : ℕ), Prime p → (p ∣ n ↔ p ∣ m) p : ℕ ⊢ n.factorization p = m.factorization p
85f7936cc1cdd615
ProbabilityTheory.Kernel.IsFiniteKernel.integrable
Mathlib/Probability/Kernel/Integral.lean
lemma IsFiniteKernel.integrable (μ : Measure α) [IsFiniteMeasure μ] (κ : Kernel α β) [IsFiniteKernel κ] {s : Set β} (hs : MeasurableSet s) : Integrable (fun x ↦ (κ x s).toReal) μ
α : Type u_1 β : Type u_2 mα : MeasurableSpace α mβ : MeasurableSpace β μ : Measure α inst✝¹ : IsFiniteMeasure μ κ : Kernel α β inst✝ : IsFiniteKernel κ s : Set β hs : MeasurableSet s x : α ⊢ ‖((κ x) s).toReal‖ ≤ (IsFiniteKernel.bound κ).toReal
rw [Real.norm_eq_abs, abs_of_nonneg ENNReal.toReal_nonneg]
α : Type u_1 β : Type u_2 mα : MeasurableSpace α mβ : MeasurableSpace β μ : Measure α inst✝¹ : IsFiniteMeasure μ κ : Kernel α β inst✝ : IsFiniteKernel κ s : Set β hs : MeasurableSet s x : α ⊢ ((κ x) s).toReal ≤ (IsFiniteKernel.bound κ).toReal
21b577f54532daa9
HasCompactSupport.integral_Ioi_deriv_eq
Mathlib/MeasureTheory/Integral/IntegralEqImproper.lean
theorem _root_.HasCompactSupport.integral_Ioi_deriv_eq (hf : ContDiff ℝ 1 f) (h2f : HasCompactSupport f) (b : ℝ) : ∫ x in Ioi b, deriv f x = - f b
E : Type u_1 f : ℝ → E inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E hf : ContDiff ℝ 1 f h2f : HasCompactSupport f b : ℝ ⊢ ∫ (x : ℝ) in Ioi b, deriv f x = -f b
have := fun x (_ : x ∈ Ioi b) ↦ hf.differentiable le_rfl x |>.hasDerivAt
E : Type u_1 f : ℝ → E inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E hf : ContDiff ℝ 1 f h2f : HasCompactSupport f b : ℝ this : ∀ x ∈ Ioi b, HasDerivAt f (deriv f x) x ⊢ ∫ (x : ℝ) in Ioi b, deriv f x = -f b
94ee06e2341b0c23