name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
MeasureTheory.contDiffOn_convolution_right_with_param
Mathlib/Analysis/Convolution.lean
theorem contDiffOn_convolution_right_with_param {f : G → E} {n : ℕ∞} (L : E →L[𝕜] E' →L[𝕜] F) {g : P → G → E'} {s : Set P} {k : Set G} (hs : IsOpen s) (hk : IsCompact k) (hgs : ∀ p, ∀ x, p ∈ s → x ∉ k → g p x = 0) (hf : LocallyIntegrable f μ) (hg : ContDiffOn 𝕜 n (↿g) (s ×ˢ univ)) : ContDiffOn 𝕜 n (fun q : P × G => (f ⋆[L, μ] g q.1) q.2) (s ×ˢ univ)
𝕜 : Type u𝕜 G : Type uG E : Type uE E' : Type uE' F : Type uF P : Type uP inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedAddCommGroup E' inst✝¹¹ : NormedAddCommGroup F inst✝¹⁰ : RCLike 𝕜 inst✝⁹ : NormedSpace 𝕜 E inst✝⁸ : NormedSpace 𝕜 E' inst✝⁷ : NormedSpace ℝ F inst✝⁶ : NormedSpace 𝕜 F inst✝⁵ : MeasurableSpace G inst✝⁴ : NormedAddCommGroup G inst✝³ : BorelSpace G inst✝² : NormedSpace 𝕜 G inst✝¹ : NormedAddCommGroup P inst✝ : NormedSpace 𝕜 P μ : Measure G f : G → E n : ℕ∞ L : E →L[𝕜] E' →L[𝕜] F g : P → G → E' s : Set P k : Set G hs : IsOpen s hk : IsCompact k hgs : ∀ (p : P) (x : G), p ∈ s → x ∉ k → g p x = 0 hf : LocallyIntegrable f μ hg : ContDiffOn 𝕜 (↑n) (↿g) (s ×ˢ univ) eG : Type (max uG uE' uF uP) := ULift.{max uE' uF uP, uG} G this✝¹ : MeasurableSpace eG := borel eG this✝ : BorelSpace eG eE' : Type (max uE' uG uF uP) := ULift.{max uG uF uP, uE'} E' eF : Type (max uF uG uE' uP) := ULift.{max uG uE' uP, uF} F eP : Type (max uP uG uE' uF) := ULift.{max uG uE' uF, uP} P isoG : eG ≃L[𝕜] G := ContinuousLinearEquiv.ulift isoE' : eE' ≃L[𝕜] E' := ContinuousLinearEquiv.ulift isoF : eF ≃L[𝕜] F := ContinuousLinearEquiv.ulift isoP : eP ≃L[𝕜] P := ContinuousLinearEquiv.ulift ef : eG → E := f ∘ ⇑isoG eμ : Measure eG := Measure.map (⇑isoG.symm) μ eg : eP → eG → eE' := fun ep ex => isoE'.symm (g (isoP ep) (isoG ex)) eL : E →L[𝕜] eE' →L[𝕜] eF := (↑(isoE'.arrowCongr isoF).symm).comp L R : eP × eG → eF := fun q => (ef ⋆[eL, eμ] eg q.1) q.2 R_contdiff : ContDiffOn 𝕜 (↑n) R ((⇑isoP ⁻¹' s) ×ˢ univ) A : ContDiffOn 𝕜 (↑n) (⇑isoF ∘ R ∘ ⇑(isoP.prod isoG).symm) (s ×ˢ univ) ⊢ ⇑isoF ∘ R ∘ ⇑(isoP.prod isoG).symm = fun q => (f ⋆[L, μ] g q.1) q.2
apply funext
case h 𝕜 : Type u𝕜 G : Type uG E : Type uE E' : Type uE' F : Type uF P : Type uP inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedAddCommGroup E' inst✝¹¹ : NormedAddCommGroup F inst✝¹⁰ : RCLike 𝕜 inst✝⁹ : NormedSpace 𝕜 E inst✝⁸ : NormedSpace 𝕜 E' inst✝⁷ : NormedSpace ℝ F inst✝⁶ : NormedSpace 𝕜 F inst✝⁵ : MeasurableSpace G inst✝⁴ : NormedAddCommGroup G inst✝³ : BorelSpace G inst✝² : NormedSpace 𝕜 G inst✝¹ : NormedAddCommGroup P inst✝ : NormedSpace 𝕜 P μ : Measure G f : G → E n : ℕ∞ L : E →L[𝕜] E' →L[𝕜] F g : P → G → E' s : Set P k : Set G hs : IsOpen s hk : IsCompact k hgs : ∀ (p : P) (x : G), p ∈ s → x ∉ k → g p x = 0 hf : LocallyIntegrable f μ hg : ContDiffOn 𝕜 (↑n) (↿g) (s ×ˢ univ) eG : Type (max uG uE' uF uP) := ULift.{max uE' uF uP, uG} G this✝¹ : MeasurableSpace eG := borel eG this✝ : BorelSpace eG eE' : Type (max uE' uG uF uP) := ULift.{max uG uF uP, uE'} E' eF : Type (max uF uG uE' uP) := ULift.{max uG uE' uP, uF} F eP : Type (max uP uG uE' uF) := ULift.{max uG uE' uF, uP} P isoG : eG ≃L[𝕜] G := ContinuousLinearEquiv.ulift isoE' : eE' ≃L[𝕜] E' := ContinuousLinearEquiv.ulift isoF : eF ≃L[𝕜] F := ContinuousLinearEquiv.ulift isoP : eP ≃L[𝕜] P := ContinuousLinearEquiv.ulift ef : eG → E := f ∘ ⇑isoG eμ : Measure eG := Measure.map (⇑isoG.symm) μ eg : eP → eG → eE' := fun ep ex => isoE'.symm (g (isoP ep) (isoG ex)) eL : E →L[𝕜] eE' →L[𝕜] eF := (↑(isoE'.arrowCongr isoF).symm).comp L R : eP × eG → eF := fun q => (ef ⋆[eL, eμ] eg q.1) q.2 R_contdiff : ContDiffOn 𝕜 (↑n) R ((⇑isoP ⁻¹' s) ×ˢ univ) A : ContDiffOn 𝕜 (↑n) (⇑isoF ∘ R ∘ ⇑(isoP.prod isoG).symm) (s ×ˢ univ) ⊢ ∀ (x : P × G), (⇑isoF ∘ R ∘ ⇑(isoP.prod isoG).symm) x = (f ⋆[L, μ] g x.1) x.2
36b6ddfb418542d6
HomologicalComplex.mapBifunctor₁₂.ι_D₃
Mathlib/Algebra/Homology/BifunctorAssociator.lean
@[reassoc (attr := simp)] lemma ι_D₃ : ι F₁₂ G K₁ K₂ K₃ c₁₂ c₄ i₁ i₂ i₃ j h ≫ D₃ F₁₂ G K₁ K₂ K₃ c₁₂ c₄ j j' = d₃ F₁₂ G K₁ K₂ K₃ c₁₂ c₄ i₁ i₂ i₃ j'
case pos C₁ : Type u_1 C₂ : Type u_2 C₁₂ : Type u_3 C₃ : Type u_5 C₄ : Type u_6 inst✝¹⁹ : Category.{u_17, u_1} C₁ inst✝¹⁸ : Category.{u_16, u_2} C₂ inst✝¹⁷ : Category.{u_14, u_5} C₃ inst✝¹⁶ : Category.{u_13, u_6} C₄ inst✝¹⁵ : Category.{u_15, u_3} C₁₂ inst✝¹⁴ : HasZeroMorphisms C₁ inst✝¹³ : HasZeroMorphisms C₂ inst✝¹² : HasZeroMorphisms C₃ inst✝¹¹ : Preadditive C₁₂ inst✝¹⁰ : Preadditive C₄ F₁₂ : C₁ ⥤ C₂ ⥤ C₁₂ G : C₁₂ ⥤ C₃ ⥤ C₄ inst✝⁹ : F₁₂.PreservesZeroMorphisms inst✝⁸ : ∀ (X₁ : C₁), (F₁₂.obj X₁).PreservesZeroMorphisms inst✝⁷ : G.Additive inst✝⁶ : ∀ (X₁₂ : C₁₂), (G.obj X₁₂).PreservesZeroMorphisms ι₁ : Type u_7 ι₂ : Type u_8 ι₃ : Type u_9 ι₁₂ : Type u_10 ι₄ : Type u_12 inst✝⁵ : DecidableEq ι₄ c₁ : ComplexShape ι₁ c₂ : ComplexShape ι₂ c₃ : ComplexShape ι₃ K₁ : HomologicalComplex C₁ c₁ K₂ : HomologicalComplex C₂ c₂ K₃ : HomologicalComplex C₃ c₃ c₁₂ : ComplexShape ι₁₂ c₄ : ComplexShape ι₄ inst✝⁴ : TotalComplexShape c₁ c₂ c₁₂ inst✝³ : TotalComplexShape c₁₂ c₃ c₄ inst✝² : K₁.HasMapBifunctor K₂ F₁₂ c₁₂ inst✝¹ : DecidableEq ι₁₂ inst✝ : (K₁.mapBifunctor K₂ F₁₂ c₁₂).HasMapBifunctor K₃ G c₄ i₁ : ι₁ i₂ : ι₂ i₃ : ι₃ j j' : ι₄ h : c₁.r c₂ c₃ c₁₂ c₄ (i₁, i₂, i₃) = j h₁ : c₃.Rel i₃ (c₃.next i₃) ⊢ (G.map (K₁.ιMapBifunctor K₂ F₁₂ c₁₂ i₁ i₂ (c₁.π c₂ c₁₂ (i₁, i₂)) ⋯)).app (K₃.X i₃) ≫ mapBifunctor.d₂ (K₁.mapBifunctor K₂ F₁₂ c₁₂) K₃ G c₄ (c₁.π c₂ c₁₂ (i₁, i₂)) i₃ j' = d₃ F₁₂ G K₁ K₂ K₃ c₁₂ c₄ i₁ i₂ i₃ j'
rw [d₃_eq _ _ _ _ _ _ _ _ _ h₁]
case pos C₁ : Type u_1 C₂ : Type u_2 C₁₂ : Type u_3 C₃ : Type u_5 C₄ : Type u_6 inst✝¹⁹ : Category.{u_17, u_1} C₁ inst✝¹⁸ : Category.{u_16, u_2} C₂ inst✝¹⁷ : Category.{u_14, u_5} C₃ inst✝¹⁶ : Category.{u_13, u_6} C₄ inst✝¹⁵ : Category.{u_15, u_3} C₁₂ inst✝¹⁴ : HasZeroMorphisms C₁ inst✝¹³ : HasZeroMorphisms C₂ inst✝¹² : HasZeroMorphisms C₃ inst✝¹¹ : Preadditive C₁₂ inst✝¹⁰ : Preadditive C₄ F₁₂ : C₁ ⥤ C₂ ⥤ C₁₂ G : C₁₂ ⥤ C₃ ⥤ C₄ inst✝⁹ : F₁₂.PreservesZeroMorphisms inst✝⁸ : ∀ (X₁ : C₁), (F₁₂.obj X₁).PreservesZeroMorphisms inst✝⁷ : G.Additive inst✝⁶ : ∀ (X₁₂ : C₁₂), (G.obj X₁₂).PreservesZeroMorphisms ι₁ : Type u_7 ι₂ : Type u_8 ι₃ : Type u_9 ι₁₂ : Type u_10 ι₄ : Type u_12 inst✝⁵ : DecidableEq ι₄ c₁ : ComplexShape ι₁ c₂ : ComplexShape ι₂ c₃ : ComplexShape ι₃ K₁ : HomologicalComplex C₁ c₁ K₂ : HomologicalComplex C₂ c₂ K₃ : HomologicalComplex C₃ c₃ c₁₂ : ComplexShape ι₁₂ c₄ : ComplexShape ι₄ inst✝⁴ : TotalComplexShape c₁ c₂ c₁₂ inst✝³ : TotalComplexShape c₁₂ c₃ c₄ inst✝² : K₁.HasMapBifunctor K₂ F₁₂ c₁₂ inst✝¹ : DecidableEq ι₁₂ inst✝ : (K₁.mapBifunctor K₂ F₁₂ c₁₂).HasMapBifunctor K₃ G c₄ i₁ : ι₁ i₂ : ι₂ i₃ : ι₃ j j' : ι₄ h : c₁.r c₂ c₃ c₁₂ c₄ (i₁, i₂, i₃) = j h₁ : c₃.Rel i₃ (c₃.next i₃) ⊢ (G.map (K₁.ιMapBifunctor K₂ F₁₂ c₁₂ i₁ i₂ (c₁.π c₂ c₁₂ (i₁, i₂)) ⋯)).app (K₃.X i₃) ≫ mapBifunctor.d₂ (K₁.mapBifunctor K₂ F₁₂ c₁₂) K₃ G c₄ (c₁.π c₂ c₁₂ (i₁, i₂)) i₃ j' = c₁₂.ε₂ c₃ c₄ (c₁.π c₂ c₁₂ (i₁, i₂), i₃) • (G.obj ((F₁₂.obj (K₁.X i₁)).obj (K₂.X i₂))).map (K₃.d i₃ (c₃.next i₃)) ≫ ιOrZero F₁₂ G K₁ K₂ K₃ c₁₂ c₄ i₁ i₂ (c₃.next i₃) j'
2c6f8763db2c1a24
MeasureTheory.SimpleFunc.mem_image_of_mem_range_restrict
Mathlib/MeasureTheory/Function/SimpleFunc.lean
theorem mem_image_of_mem_range_restrict {r : β} {s : Set α} {f : α →ₛ β} (hr : r ∈ (restrict f s).range) (h0 : r ≠ 0) : r ∈ f '' s := if hs : MeasurableSet s then by simpa [mem_restrict_range hs, h0, -mem_range] using hr else by rw [restrict_of_not_measurable hs] at hr exact (h0 <| eq_zero_of_mem_range_zero hr).elim
α : Type u_1 β : Type u_2 inst✝¹ : MeasurableSpace α inst✝ : Zero β r : β s : Set α f : α →ₛ β hr : r ∈ (f.restrict s).range h0 : r ≠ 0 hs : ¬MeasurableSet s ⊢ r ∈ ⇑f '' s
rw [restrict_of_not_measurable hs] at hr
α : Type u_1 β : Type u_2 inst✝¹ : MeasurableSpace α inst✝ : Zero β r : β s : Set α f : α →ₛ β hr : r ∈ SimpleFunc.range 0 h0 : r ≠ 0 hs : ¬MeasurableSet s ⊢ r ∈ ⇑f '' s
9a16ed464d2ab632
Function.hfunext
Mathlib/Logic/Function/Basic.lean
lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f'
α : Sort u β : α → Sort v f : (a : α) → β a β' : α → Sort v f' : (a : α) → β' a h : ∀ (a a' : α), HEq a a' → HEq (f a) (f' a') this : ∀ (a : α), HEq (f a) (f' a) ⊢ β = β'
funext a
case h α : Sort u β : α → Sort v f : (a : α) → β a β' : α → Sort v f' : (a : α) → β' a h : ∀ (a a' : α), HEq a a' → HEq (f a) (f' a') this : ∀ (a : α), HEq (f a) (f' a) a : α ⊢ β a = β' a
7bf359655506b660
Algebra.norm_eq_prod_embeddings
Mathlib/RingTheory/Norm/Basic.lean
theorem norm_eq_prod_embeddings [FiniteDimensional K L] [Algebra.IsSeparable K L] [IsAlgClosed E] (x : L) : algebraMap K E (norm K x) = ∏ σ : L →ₐ[K] E, σ x
K : Type u_4 L : Type u_5 inst✝⁷ : Field K inst✝⁶ : Field L inst✝⁵ : Algebra K L E : Type u_7 inst✝⁴ : Field E inst✝³ : Algebra K E inst✝² : FiniteDimensional K L inst✝¹ : Algebra.IsSeparable K L inst✝ : IsAlgClosed E x : L ⊢ (algebraMap K E) ((norm K) x) = ∏ σ : L →ₐ[K] E, σ x
have hx := Algebra.IsSeparable.isIntegral K x
K : Type u_4 L : Type u_5 inst✝⁷ : Field K inst✝⁶ : Field L inst✝⁵ : Algebra K L E : Type u_7 inst✝⁴ : Field E inst✝³ : Algebra K E inst✝² : FiniteDimensional K L inst✝¹ : Algebra.IsSeparable K L inst✝ : IsAlgClosed E x : L hx : IsIntegral K x ⊢ (algebraMap K E) ((norm K) x) = ∏ σ : L →ₐ[K] E, σ x
92ee720d9e04e443
CategoryTheory.Limits.Types.binaryCofan_isColimit_iff
Mathlib/CategoryTheory/Limits/Shapes/Types.lean
theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr)
case mp.intro X Y : Type u c : BinaryCofan X Y h : IsColimit c ⊢ Injective (Sum.inl ≫ (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).inv) ∧ Injective (Sum.inr ≫ (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).inv) ∧ IsCompl (Set.range (Sum.inl ≫ (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).inv)) (Set.range (Sum.inr ≫ (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).inv))
refine ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, ?_⟩
case mp.intro X Y : Type u c : BinaryCofan X Y h : IsColimit c ⊢ IsCompl (Set.range (Sum.inl ≫ (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).inv)) (Set.range (Sum.inr ≫ (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).inv))
c9e635615c45e53b
LieSubalgebra.normalizer_eq_self_of_engel_le
Mathlib/Algebra/Lie/EngelSubalgebra.lean
/-- A Lie-subalgebra of an Artinian Lie algebra is self-normalizing if it contains an Engel subalgebra. See `LieSubalgebra.normalizer_engel` for a proof that Engel subalgebras are self-normalizing, avoiding the Artinian condition. -/ lemma normalizer_eq_self_of_engel_le [IsArtinian R L] (H : LieSubalgebra R L) (x : L) (h : engel R x ≤ H) : normalizer H = H
case h R : Type u_1 L : Type u_2 inst✝³ : CommRing R inst✝² : LieRing L inst✝¹ : LieAlgebra R L inst✝ : IsArtinian R L H : LieSubalgebra R L x : L h : engel R x ≤ H N : LieSubalgebra R L := H.normalizer aux₁ : ∀ n ∈ N, ⁅x, n⁆ ∈ H aux₂ : ∀ n ∈ N, ⁅x, n⁆ ∈ N dx : ↥N →ₗ[R] ↥N := LinearMap.restrict ((ad R L) x) aux₂ k : ℕ y : ↥N ⊢ y ∈ LinearMap.ker (dx ^ (k + 1)) → ((ad R L) x ^ (k + 1)) (N.subtype y) = 0
generalize k+1 = k
case h R : Type u_1 L : Type u_2 inst✝³ : CommRing R inst✝² : LieRing L inst✝¹ : LieAlgebra R L inst✝ : IsArtinian R L H : LieSubalgebra R L x : L h : engel R x ≤ H N : LieSubalgebra R L := H.normalizer aux₁ : ∀ n ∈ N, ⁅x, n⁆ ∈ H aux₂ : ∀ n ∈ N, ⁅x, n⁆ ∈ N dx : ↥N →ₗ[R] ↥N := LinearMap.restrict ((ad R L) x) aux₂ k✝ : ℕ y : ↥N k : ℕ ⊢ y ∈ LinearMap.ker (dx ^ k) → ((ad R L) x ^ k) (N.subtype y) = 0
253d8e16fa48a5a4
ENNReal.mul_div_cancel
Mathlib/Data/ENNReal/Inv.lean
/-- See `ENNReal.mul_div_cancel'` for a stronger version. -/ protected lemma mul_div_cancel (ha₀ : a ≠ 0) (ha : a ≠ ∞) : a * (b / a) = b := ENNReal.mul_div_cancel' (by simp [ha₀]) (by simp [ha])
a b : ℝ≥0∞ ha₀ : a ≠ 0 ha : a ≠ ⊤ ⊢ a = ⊤ → b = 0
simp [ha]
no goals
92e5070331a0a3d9
List.DecEq_eq
Mathlib/Data/List/Permutation.lean
theorem DecEq_eq [DecidableEq α] : List.instBEq = @instBEqOfDecidableEq (List α) instDecidableEqList := congr_arg BEq.mk <| by funext l₁ l₂ show (l₁ == l₂) = _ rw [Bool.eq_iff_iff, @beq_iff_eq _ (_), decide_eq_true_iff]
case h.h α : Type u_1 inst✝ : DecidableEq α l₁ l₂ : List α ⊢ (l₁ == l₂) = decide (l₁ = l₂)
rw [Bool.eq_iff_iff, @beq_iff_eq _ (_), decide_eq_true_iff]
no goals
93818e51a19b4d80
Module.finrank_tensorProduct
Mathlib/LinearAlgebra/Dimension/Constructions.lean
theorem Module.finrank_tensorProduct : finrank R (M ⊗[S] M') = finrank R M * finrank S M'
R : Type u S : Type u' M : Type v M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : CommSemiring S inst✝¹⁰ : AddCommMonoid M inst✝⁹ : AddCommMonoid M' inst✝⁸ : Module R M inst✝⁷ : StrongRankCondition R inst✝⁶ : StrongRankCondition S inst✝⁵ : Module S M inst✝⁴ : Module S M' inst✝³ : Free S M' inst✝² : Algebra S R inst✝¹ : IsScalarTower S R M inst✝ : Free R M ⊢ finrank R (M ⊗[S] M') = finrank R M * finrank S M'
simp [finrank]
no goals
1ef66bf41e6e4850
Int.subNatNat_eq_coe
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Int/Lemmas.lean
theorem subNatNat_eq_coe {m n : Nat} : subNatNat m n = ↑m - ↑n
case hn m n✝ i n : Nat ⊢ -↑i + -↑1 = ↑n + -↑n + -↑i + -↑1
rw [← @Int.sub_eq_add_neg n, ← ofNat_sub, Nat.sub_self, ofNat_zero, Int.zero_add]
case hn m n✝ i n : Nat ⊢ n ≤ n
6cca7cab87ea9b22
IsPrimitiveRoot.norm_sub_one_two
Mathlib/NumberTheory/Cyclotomic/PrimitiveRoots.lean
theorem norm_sub_one_two {k : ℕ} (hζ : IsPrimitiveRoot ζ (2 ^ k)) (hk : 2 ≤ k) [H : IsCyclotomicExtension {(2 : ℕ+) ^ k} K L] (hirr : Irreducible (cyclotomic (2 ^ k) K)) : norm K (ζ - 1) = 2
K : Type u L : Type v inst✝² : Field L ζ : L inst✝¹ : Field K inst✝ : Algebra K L k : ℕ hζ : IsPrimitiveRoot ζ (2 ^ k) hk : 2 ≤ k H : IsCyclotomicExtension {2 ^ k} K L hirr : Irreducible (cyclotomic (2 ^ k) K) ⊢ ↑(2 ^ 1) < ↑2 ^ k
exact Nat.pow_lt_pow_right one_lt_two (lt_of_lt_of_le one_lt_two hk)
no goals
06a533966d791d57
AlgebraicGeometry.exists_eq_pow_mul_of_isAffineOpen
Mathlib/AlgebraicGeometry/Morphisms/QuasiSeparated.lean
theorem exists_eq_pow_mul_of_isAffineOpen (X : Scheme) (U : X.Opens) (hU : IsAffineOpen U) (f : Γ(X, U)) (x : Γ(X, X.basicOpen f)) : ∃ (n : ℕ) (y : Γ(X, U)), y |_ X.basicOpen f = (f |_ X.basicOpen f) ^ n * x
X : Scheme U : X.Opens hU : IsAffineOpen U f : ↑Γ(X, U) x : ↑Γ(X, X.basicOpen f) ⊢ ∃ n y, (y |_ X.basicOpen f) ⋯ = (f |_ X.basicOpen f) ⋯ ^ n * x
have := (hU.isLocalization_basicOpen f).2
X : Scheme U : X.Opens hU : IsAffineOpen U f : ↑Γ(X, U) x : ↑Γ(X, X.basicOpen f) this : ∀ (z : ↑Γ(X, X.basicOpen f)), ∃ x, z * (algebraMap ↑Γ(X, U) ↑Γ(X, X.basicOpen f)) ↑x.2 = (algebraMap ↑Γ(X, U) ↑Γ(X, X.basicOpen f)) x.1 ⊢ ∃ n y, (y |_ X.basicOpen f) ⋯ = (f |_ X.basicOpen f) ⋯ ^ n * x
3f9284003bd52695
AddCircle.volume_closedBall
Mathlib/MeasureTheory/Integral/Periodic.lean
theorem volume_closedBall {x : AddCircle T} (ε : ℝ) : volume (Metric.closedBall x ε) = ENNReal.ofReal (min T (2 * ε))
case intro T : ℝ hT : Fact (0 < T) x : AddCircle T ε : ℝ hT' : |T| = T I : Set ℝ := Ioc (-(T / 2)) (T / 2) hε : ε < T / 2 y : ℝ hy₁ : -ε ≤ y hy₂ : y ≤ ε ⊢ y ∈ I
constructor <;> linarith
no goals
7eec94214cffe2c7
CategoryTheory.isPullback_of_cofan_isVanKampen
Mathlib/CategoryTheory/Limits/VanKampen.lean
theorem isPullback_of_cofan_isVanKampen [HasInitial C] {ι : Type*} {X : ι → C} {c : Cofan X} (hc : IsVanKampenColimit c) (i j : ι) [DecidableEq ι] : IsPullback (P := (if j = i then X i else ⊥_ C)) (if h : j = i then eqToHom (if_pos h) else eqToHom (if_neg h) ≫ initial.to (X i)) (if h : j = i then eqToHom ((if_pos h).trans (congr_arg X h.symm)) else eqToHom (if_neg h) ≫ initial.to (X j)) (Cofan.inj c i) (Cofan.inj c j)
case refine_2.refine_1 C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasInitial C ι : Type u_3 X : ι → C c : Cofan X hc : IsVanKampenColimit c i j : ι inst✝ : DecidableEq ι ⊢ ∀ (t : Cofan fun k => if k = i then X i else ⊥_ C) (j : ι), (Cofan.mk (X i) fun k => if h : k = i then eqToHom ⋯ else eqToHom ⋯ ≫ initial.to (X i)).inj j ≫ (fun t => eqToHom ⋯ ≫ t.inj i) t = t.inj j
intro t j
case refine_2.refine_1 C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasInitial C ι : Type u_3 X : ι → C c : Cofan X hc : IsVanKampenColimit c i j✝ : ι inst✝ : DecidableEq ι t : Cofan fun k => if k = i then X i else ⊥_ C j : ι ⊢ (Cofan.mk (X i) fun k => if h : k = i then eqToHom ⋯ else eqToHom ⋯ ≫ initial.to (X i)).inj j ≫ (fun t => eqToHom ⋯ ≫ t.inj i) t = t.inj j
23c34aefc3417657
BitVec.getElem_shiftLeftZeroExtend
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Lemmas.lean
theorem getElem_shiftLeftZeroExtend {x : BitVec m} {n : Nat} (h : i < m + n) : (shiftLeftZeroExtend x n)[i] = ((! decide (i < n)) && getLsbD x (i - n))
m i : Nat x : BitVec m n : Nat h : i < m + n ⊢ (x.shiftLeftZeroExtend n)[i] = (!decide (i < n) && x.getLsbD (i - n))
rw [shiftLeftZeroExtend_eq, getLsbD]
m i : Nat x : BitVec m n : Nat h : i < m + n ⊢ (setWidth (m + n) x <<< n)[i] = (!decide (i < n) && x.toNat.testBit (i - n))
2dc2db1c2633db68
MeasureTheory.Measure.measure_toMeasurable_inter_of_cover
Mathlib/MeasureTheory/Measure/Typeclasses.lean
theorem measure_toMeasurable_inter_of_cover {s : Set α} (hs : MeasurableSet s) {t : Set α} {v : ℕ → Set α} (hv : t ⊆ ⋃ n, v n) (h'v : ∀ n, μ (t ∩ v n) ≠ ∞) : μ (toMeasurable μ t ∩ s) = μ (t ∩ s)
α : Type u_1 m0 : MeasurableSpace α μ : Measure α s : Set α hs : MeasurableSet s t : Set α v : ℕ → Set α hv : t ⊆ ⋃ n, v n h'v : ∀ (n : ℕ), μ (t ∩ v n) ≠ ⊤ ⊢ ∃ t' ⊇ t, MeasurableSet t' ∧ ∀ (u : Set α), MeasurableSet u → μ (t' ∩ u) = μ (t ∩ u)
let w n := toMeasurable μ (t ∩ v n)
α : Type u_1 m0 : MeasurableSpace α μ : Measure α s : Set α hs : MeasurableSet s t : Set α v : ℕ → Set α hv : t ⊆ ⋃ n, v n h'v : ∀ (n : ℕ), μ (t ∩ v n) ≠ ⊤ w : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n) ⊢ ∃ t' ⊇ t, MeasurableSet t' ∧ ∀ (u : Set α), MeasurableSet u → μ (t' ∩ u) = μ (t ∩ u)
0be0e6e2d4665783
SimpleGraph.IsIndepSet.nonempty_mem_compl_mem_edge
Mathlib/Combinatorics/SimpleGraph/Clique.lean
/-- If `s` is an independent set, its complement meets every edge of `G`. -/ lemma IsIndepSet.nonempty_mem_compl_mem_edge [Fintype α] [DecidableEq α] {s : Finset α} (indA : G.IsIndepSet s) {e} (he : e ∈ G.edgeSet) : { b ∈ sᶜ | b ∈ e }.Nonempty
case neg α : Type u_1 G : SimpleGraph α inst✝¹ : Fintype α inst✝ : DecidableEq α s : Finset α indA : (↑s).Pairwise fun v w => ¬G.Adj v w e : Sym2 α v w : α he : G.Adj v w c : ∀ ⦃x : α⦄, x ∉ s → ¬x = v ∧ ¬x = w vins : v ∉ s ⊢ False
exact (c vins).left rfl
no goals
68972c8d9751a792
List.cons_sublist_iff
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Sublist.lean
theorem cons_sublist_iff {a : α} {l l'} : a :: l <+ l' ↔ ∃ r₁ r₂, l' = r₁ ++ r₂ ∧ a ∈ r₁ ∧ l <+ r₂
α : Type u_1 a : α l : List α a' : α r₁ r₂ : List α ih : a :: l <+ r₁ ++ r₂ ↔ ∃ r₁_1 r₂_1, r₁ ++ r₂ = r₁_1 ++ r₂_1 ∧ a ∈ r₁_1 ∧ l <+ r₂_1 w : a :: l <+ r₁ ++ r₂ h₁ : a ∈ r₁ h₂ : l <+ r₂ ⊢ a' :: (r₁ ++ r₂) = a' :: r₁ ++ r₂
simp
no goals
ea83f7b99e603a26
CategoryTheory.Limits.biprod.decomp_hom_to
Mathlib/CategoryTheory/Preadditive/Biproducts.lean
lemma biprod.decomp_hom_to (f : Z ⟶ X ⊞ Y) : ∃ f₁ f₂, f = f₁ ≫ biprod.inl + f₂ ≫ biprod.inr := ⟨f ≫ biprod.fst, f ≫ biprod.snd, by aesop⟩
C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preadditive C X Y : C inst✝ : HasBinaryBiproduct X Y Z : C f : Z ⟶ X ⊞ Y ⊢ f = (f ≫ fst) ≫ inl + (f ≫ snd) ≫ inr
aesop
no goals
10ef7a4ce3cfeb98
Std.Tactic.BVDecide.BVPred.mkUlt_denote_eq
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Circuit/Lemmas/Operations/Ult.lean
theorem mkUlt_denote_eq (aig : AIG α) (lhs rhs : BitVec w) (input : BinaryRefVec aig w) (assign : α → Bool) (hleft : ∀ (idx : Nat) (hidx : idx < w), ⟦aig, input.lhs.get idx hidx, assign⟧ = lhs.getLsbD idx) (hright : ∀ (idx : Nat) (hidx : idx < w), ⟦aig, input.rhs.get idx hidx, assign⟧ = rhs.getLsbD idx) : ⟦(mkUlt aig input).aig, (mkUlt aig input).ref, assign⟧ = BitVec.ult lhs rhs
case e_a.hleft.hidx α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat aig : AIG α lhs rhs : BitVec w input : aig.BinaryRefVec w assign : α → Bool hleft : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := input.lhs.get idx hidx }⟧ = lhs.getLsbD idx hright : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := input.rhs.get idx hidx }⟧ = rhs.getLsbD idx idx : Nat hidx : idx < w ⊢ idx < w
assumption
no goals
71c501afc68211e5
List.reduceOption_length_eq
Mathlib/Data/List/ReduceOption.lean
theorem reduceOption_length_eq {l : List (Option α)} : l.reduceOption.length = (l.filter Option.isSome).length
case nil α : Type u_1 ⊢ [].reduceOption.length = (filter Option.isSome []).length
simp_rw [reduceOption_nil, filter_nil, length]
no goals
79e24c01619dd30e
Std.DHashMap.Internal.Raw₀.getKey_insert_self
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Internal/RawLemmas.lean
theorem getKey_insert_self [EquivBEq α] [LawfulHashable α] (h : m.1.WF) {k : α} {v : β k} : (m.insert k v).getKey k (contains_insert_self _ h) = k
α : Type u β : α → Type v m : Raw₀ α β inst✝³ : BEq α inst✝² : Hashable α inst✝¹ : EquivBEq α inst✝ : LawfulHashable α h : m.val.WF k : α v : β k ⊢ (m.insert k v).getKey k ⋯ = k
simp_to_model [insert] using List.getKey_insertEntry_self
no goals
51ba6d008afe0f68
BitVec.iunfoldr_getLsbD'
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Folds.lean
theorem iunfoldr_getLsbD' {f : Fin w → α → α × Bool} (state : Nat → α) (ind : ∀(i : Fin w), (f i (state i.val)).fst = state (i.val+1)) : (∀ i : Fin w, getLsbD (iunfoldr f (state 0)).snd i.val = (f i (state i.val)).snd) ∧ (iunfoldr f (state 0)).fst = state w
w : Nat α : Type u_1 f : Fin w → α → α × Bool state : Nat → α ind : ∀ (i : Fin w), (f i (state ↑i)).fst = state (↑i + 1) ⊢ (∀ (i : Fin w), (Fin.hIterate (fun i => α × BitVec i) (state 0, nil) fun i q => (fun p => (p.fst, cons p.snd q.snd)) (f i q.fst)).snd.getLsbD ↑i = (f i (state ↑i)).snd) ∧ (Fin.hIterate (fun i => α × BitVec i) (state 0, nil) fun i q => (fun p => (p.fst, cons p.snd q.snd)) (f i q.fst)).fst = state w
simp
w : Nat α : Type u_1 f : Fin w → α → α × Bool state : Nat → α ind : ∀ (i : Fin w), (f i (state ↑i)).fst = state (↑i + 1) ⊢ (∀ (i : Fin w), (Fin.hIterate (fun i => α × BitVec i) (state 0, 0#0) fun i q => ((f i q.fst).fst, cons (f i q.fst).snd q.snd)).snd.getLsbD ↑i = (f i (state ↑i)).snd) ∧ (Fin.hIterate (fun i => α × BitVec i) (state 0, 0#0) fun i q => ((f i q.fst).fst, cons (f i q.fst).snd q.snd)).fst = state w
2142a073bff43190
Multiset.Nodup.pi
Mathlib/Data/Multiset/Pi.lean
theorem Nodup.pi {s : Multiset α} {t : ∀ a, Multiset (β a)} : Nodup s → (∀ a ∈ s, Nodup (t a)) → Nodup (pi s t) := Multiset.induction_on s (fun _ _ => nodup_singleton _) (by intro a s ih hs ht have has : a ∉ s
α : Type u_1 inst✝ : DecidableEq α β : α → Type u_2 s✝ : Multiset α t : (a : α) → Multiset (β a) a : α s : Multiset α ih : s.Nodup → (∀ a ∈ s, (t a).Nodup) → (s.pi t).Nodup ht : ∀ a_1 ∈ a ::ₘ s, (t a_1).Nodup has : a ∉ s hs : a ∉ s ∧ s.Nodup ⊢ s.Nodup
exact hs.2
no goals
4440b8044ebd270b
contDiffWithinAtProp_id
Mathlib/Geometry/Manifold/ContMDiff/Defs.lean
theorem contDiffWithinAtProp_id (x : H) : ContDiffWithinAtProp I I n id univ x
case refine_2 𝕜 : Type u_1 inst✝³ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E H : Type u_3 inst✝ : TopologicalSpace H I : ModelWithCorners 𝕜 E H n : WithTop ℕ∞ x : H this : ContDiffWithinAt 𝕜 n id (range ↑I) (↑I x) ⊢ (↑I ∘ ↑I.symm) (↑I x) = id (↑I x)
simp only [mfld_simps]
no goals
0f8203e20f594cf8
Polynomial.revAtFun_invol
Mathlib/Algebra/Polynomial/Reverse.lean
theorem revAtFun_invol {N i : ℕ} : revAtFun N (revAtFun N i) = i
case neg N i : ℕ h : ¬i ≤ N ⊢ i = i
rfl
no goals
4fb112ed36f820a3
RingTheory.Sequence.IsWeaklyRegular.isWeaklyRegular_rTensor
Mathlib/RingTheory/Regular/RegularSequence.lean
lemma IsWeaklyRegular.isWeaklyRegular_rTensor [Module.Flat R M₂] {rs : List R} (h : IsWeaklyRegular M rs) : IsWeaklyRegular (M ⊗[R] M₂) rs
case cons R : Type u_1 M : Type u_3 M₂ : Type u_4 inst✝⁷ : CommRing R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M₂ inst✝⁴ : Module R M inst✝³ : Module R M₂ inst✝² : Module.Flat R M₂ rs : List R N : Type u_3 inst✝¹ : AddCommGroup N inst✝ : Module R N r : R rs' : List R h1 : IsSMulRegular N r h2✝ : IsWeaklyRegular (QuotSMulTop r N) rs' ih : IsWeaklyRegular (QuotSMulTop r N ⊗[R] M₂) rs' e : QuotSMulTop r N ⊗[R] M₂ ≃ₗ[R] QuotSMulTop r (N ⊗[R] M₂) := quotSMulTopTensorEquivQuotSMulTop r M₂ N ⊢ IsWeaklyRegular (N ⊗[R] M₂) (r :: rs')
exact ((e.isWeaklyRegular_congr rs').mp ih).cons (h1.rTensor M₂)
no goals
1b6a5a70d5be14c9
List.findIdx?_eq_some_le_of_findIdx?_eq_some
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Nat/Find.lean
theorem findIdx?_eq_some_le_of_findIdx?_eq_some {xs : List α} {p q : α → Bool} (w : ∀ x ∈ xs, p x → q x) {i : Nat} (h : xs.findIdx? p = some i) : ∃ j, j ≤ i ∧ xs.findIdx? q = some j
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 p q : α → Bool h₁ : α b : Nat hb : p h₁ = true l₁' : List α h₃ : ∀ (a : α) (b : Nat), (a, b) ∈ l₁'.zipIdx → p a = false a : α as : List α w : ∀ (x : α), x ∈ l₁' ++ a :: as → p x = true → q x = true h₂ : h₁ = a ∧ b = l₁'.length ⊢ ∃ j, j ≤ b ∧ findIdx? q (l₁' ++ a :: as) = some j
obtain ⟨rfl, rfl⟩ := h₂
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 p q : α → Bool h₁ : α hb : p h₁ = true l₁' : List α h₃ : ∀ (a : α) (b : Nat), (a, b) ∈ l₁'.zipIdx → p a = false as : List α w : ∀ (x : α), x ∈ l₁' ++ h₁ :: as → p x = true → q x = true ⊢ ∃ j, j ≤ l₁'.length ∧ findIdx? q (l₁' ++ h₁ :: as) = some j
ed8a2a2eec4f9e74
Sigma.isConnected_iff
Mathlib/Topology/Connected/Clopen.lean
theorem Sigma.isConnected_iff [∀ i, TopologicalSpace (π i)] {s : Set (Σi, π i)} : IsConnected s ↔ ∃ i t, IsConnected t ∧ s = Sigma.mk i '' t
case refine_1.intro.mk ι : Type u_1 π : ι → Type u_2 inst✝ : (i : ι) → TopologicalSpace (π i) s : Set ((i : ι) × π i) hs : IsConnected s i : ι x : π i hx : ⟨i, x⟩ ∈ s ⊢ ∃ i t, IsConnected t ∧ s = mk i '' t
have : s ⊆ range (Sigma.mk i) := hs.isPreconnected.subset_isClopen isClopen_range_sigmaMk ⟨⟨i, x⟩, hx, x, rfl⟩
case refine_1.intro.mk ι : Type u_1 π : ι → Type u_2 inst✝ : (i : ι) → TopologicalSpace (π i) s : Set ((i : ι) × π i) hs : IsConnected s i : ι x : π i hx : ⟨i, x⟩ ∈ s this : s ⊆ range (mk i) ⊢ ∃ i t, IsConnected t ∧ s = mk i '' t
1455e050525a61d2
LieModule.nontrivial_lowerCentralSeriesLast
Mathlib/Algebra/Lie/Nilpotent.lean
theorem nontrivial_lowerCentralSeriesLast [LieModule R L M] [Nontrivial M] [IsNilpotent L M] : Nontrivial (lowerCentralSeriesLast R L M)
R : Type u L : Type v M : Type w inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : LieRingModule L M inst✝² : LieModule R L M inst✝¹ : Nontrivial M inst✝ : IsNilpotent L M ⊢ Nontrivial ↥(lowerCentralSeriesLast R L M)
rw [LieSubmodule.nontrivial_iff_ne_bot, lowerCentralSeriesLast]
R : Type u L : Type v M : Type w inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : LieRingModule L M inst✝² : LieModule R L M inst✝¹ : Nontrivial M inst✝ : IsNilpotent L M ⊢ (match nilpotencyLength L M with | 0 => ⊥ | k.succ => lowerCentralSeries R L M k) ≠ ⊥
f3cd833338422bff
Mathlib.Tactic.Rify.ratCast_ne
Mathlib/Tactic/Rify.lean
@[rify_simps] lemma ratCast_ne (a b : ℚ) : a ≠ b ↔ (a : ℝ) ≠ (b : ℝ)
a b : ℚ ⊢ a ≠ b ↔ ↑a ≠ ↑b
simp
no goals
c04a13c651c78e44
Multiset.prod_map_add
Mathlib/Algebra/BigOperators/Ring/Multiset.lean
lemma prod_map_add {s : Multiset ι} {f g : ι → α} : prod (s.map fun i ↦ f i + g i) = sum ((antidiagonal s).map fun p ↦ (p.1.map f).prod * (p.2.map g).prod)
ι : Type u_1 α : Type u_2 inst✝ : CommSemiring α s : Multiset ι f g : ι → α ⊢ (map (fun i => f i + g i) s).prod = (map (fun p => (map f p.1).prod * (map g p.2).prod) s.antidiagonal).sum
refine s.induction_on ?_ fun a s ih ↦ ?_
case refine_1 ι : Type u_1 α : Type u_2 inst✝ : CommSemiring α s : Multiset ι f g : ι → α ⊢ (map (fun i => f i + g i) 0).prod = (map (fun p => (map f p.1).prod * (map g p.2).prod) (antidiagonal 0)).sum case refine_2 ι : Type u_1 α : Type u_2 inst✝ : CommSemiring α s✝ : Multiset ι f g : ι → α a : ι s : Multiset ι ih : (map (fun i => f i + g i) s).prod = (map (fun p => (map f p.1).prod * (map g p.2).prod) s.antidiagonal).sum ⊢ (map (fun i => f i + g i) (a ::ₘ s)).prod = (map (fun p => (map f p.1).prod * (map g p.2).prod) (a ::ₘ s).antidiagonal).sum
f0e10135f530bf98
coeSubmodule_differentIdeal
Mathlib/RingTheory/DedekindDomain/Different.lean
lemma coeSubmodule_differentIdeal [NoZeroSMulDivisors A B] : coeSubmodule L (differentIdeal A B) = 1 / Submodule.traceDual A K 1
A : Type u_1 K : Type u_2 L : Type u B : Type u_3 inst✝¹⁹ : CommRing A inst✝¹⁸ : Field K inst✝¹⁷ : CommRing B inst✝¹⁶ : Field L inst✝¹⁵ : Algebra A K inst✝¹⁴ : Algebra B L inst✝¹³ : Algebra A B inst✝¹² : Algebra K L inst✝¹¹ : Algebra A L inst✝¹⁰ : IsScalarTower A K L inst✝⁹ : IsScalarTower A B L inst✝⁸ : IsDomain A inst✝⁷ : IsFractionRing A K inst✝⁶ : FiniteDimensional K L inst✝⁵ : Algebra.IsSeparable K L inst✝⁴ : IsIntegralClosure B A L inst✝³ : IsIntegrallyClosed A inst✝² : IsDedekindDomain B inst✝¹ : IsFractionRing B L inst✝ : NoZeroSMulDivisors A B this : ↑(FractionRing.algEquiv B L).toLinearEquiv ∘ₗ Algebra.linearMap B (FractionRing B) = Algebra.linearMap B L H : (algebraMap (FractionRing A) (FractionRing B)).comp ↑(FractionRing.algEquiv A K).symm.toRingEquiv = (↑(FractionRing.algEquiv B L).symm.toRingEquiv).comp (algebraMap K L) ⊢ Submodule.map (↑(FractionRing.algEquiv B L).toLinearEquiv ∘ₗ Algebra.linearMap B (FractionRing B)) (differentIdeal A B) = 1 / Submodule.traceDual A K 1
have : Algebra.IsSeparable (FractionRing A) (FractionRing B) := Algebra.IsSeparable.of_equiv_equiv _ _ H
A : Type u_1 K : Type u_2 L : Type u B : Type u_3 inst✝¹⁹ : CommRing A inst✝¹⁸ : Field K inst✝¹⁷ : CommRing B inst✝¹⁶ : Field L inst✝¹⁵ : Algebra A K inst✝¹⁴ : Algebra B L inst✝¹³ : Algebra A B inst✝¹² : Algebra K L inst✝¹¹ : Algebra A L inst✝¹⁰ : IsScalarTower A K L inst✝⁹ : IsScalarTower A B L inst✝⁸ : IsDomain A inst✝⁷ : IsFractionRing A K inst✝⁶ : FiniteDimensional K L inst✝⁵ : Algebra.IsSeparable K L inst✝⁴ : IsIntegralClosure B A L inst✝³ : IsIntegrallyClosed A inst✝² : IsDedekindDomain B inst✝¹ : IsFractionRing B L inst✝ : NoZeroSMulDivisors A B this✝ : ↑(FractionRing.algEquiv B L).toLinearEquiv ∘ₗ Algebra.linearMap B (FractionRing B) = Algebra.linearMap B L H : (algebraMap (FractionRing A) (FractionRing B)).comp ↑(FractionRing.algEquiv A K).symm.toRingEquiv = (↑(FractionRing.algEquiv B L).symm.toRingEquiv).comp (algebraMap K L) this : Algebra.IsSeparable (FractionRing A) (FractionRing B) ⊢ Submodule.map (↑(FractionRing.algEquiv B L).toLinearEquiv ∘ₗ Algebra.linearMap B (FractionRing B)) (differentIdeal A B) = 1 / Submodule.traceDual A K 1
de2215dd565ee658
Real.summable_abs_int_rpow
Mathlib/Analysis/PSeries.lean
theorem summable_abs_int_rpow {b : ℝ} (hb : 1 < b) : Summable fun n : ℤ => |(n : ℝ)| ^ (-b)
case hf₁ b : ℝ hb : 1 < b ⊢ Summable fun n => |↑↑n| ^ (-b) case hf₂ b : ℝ hb : 1 < b ⊢ Summable fun n => |↑(-↑n)| ^ (-b)
on_goal 2 => simp_rw [Int.cast_neg, abs_neg]
case hf₁ b : ℝ hb : 1 < b ⊢ Summable fun n => |↑↑n| ^ (-b) case hf₂ b : ℝ hb : 1 < b ⊢ Summable fun n => |↑↑n| ^ (-b)
20eea2c25b52f015
Nat.minFac_has_prop
Mathlib/Data/Nat/Prime/Defs.lean
theorem minFac_has_prop {n : ℕ} (n1 : n ≠ 1) : minFacProp n (minFac n)
n : ℕ ⊢ n ≠ 1 → ¬n = 0 → 2 ≤ n
rcases n with (_ | _ | _) <;> simp [succ_le_succ]
no goals
e3c16eee640cf2e2
Nat.Partrec.Code.hG
Mathlib/Computability/PartrecCode.lean
theorem hG : Primrec G
a : Primrec fun a => ofNat (ℕ × Code) a.length k✝ : Primrec fun a => (ofNat (ℕ × Code) a.1.length).1 n✝ : Primrec Prod.snd k : Primrec fun a => (ofNat (ℕ × Code) a.1.1.length).1 n : Primrec fun a => a.1.2 k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) a.1.1.length).2 ⊢ Primrec fun p => (fun p k' => Code.recOn (ofNat (ℕ × Code) p.1.length).2 (some 0) (some p.2.succ) (some (unpair p.2).1) (some (unpair p.2).2) (fun cf cg x x => do let x ← Nat.Partrec.Code.lup p.1 ((ofNat (ℕ × Code) p.1.length).1, cf) p.2 let y ← Nat.Partrec.Code.lup p.1 ((ofNat (ℕ × Code) p.1.length).1, cg) p.2 some (Nat.pair x y)) (fun cf cg x x => do let x ← Nat.Partrec.Code.lup p.1 ((ofNat (ℕ × Code) p.1.length).1, cg) p.2 Nat.Partrec.Code.lup p.1 ((ofNat (ℕ × Code) p.1.length).1, cf) x) (fun cf cg x x => let z := (unpair p.2).1; Nat.casesOn (unpair p.2).2 (Nat.Partrec.Code.lup p.1 ((ofNat (ℕ × Code) p.1.length).1, cf) z) fun y => do let i ← Nat.Partrec.Code.lup p.1 (k', (ofNat (ℕ × Code) p.1.length).2) (Nat.pair z y) Nat.Partrec.Code.lup p.1 ((ofNat (ℕ × Code) p.1.length).1, cg) (Nat.pair z (Nat.pair y i))) fun cf x => let z := (unpair p.2).1; let m := (unpair p.2).2; do let x ← Nat.Partrec.Code.lup p.1 ((ofNat (ℕ × Code) p.1.length).1, cf) (Nat.pair z m) Nat.casesOn x (some m) fun x => Nat.Partrec.Code.lup p.1 (k', (ofNat (ℕ × Code) p.1.length).2) (Nat.pair z (m + 1))) p.1 p.2
apply Nat.Partrec.Code.rec_prim c (_root_.Primrec.const (some 0)) (Primrec.option_some.comp (_root_.Primrec.succ.comp n)) (Primrec.option_some.comp (Primrec.fst.comp <| Primrec.unpair.comp n)) (Primrec.option_some.comp (Primrec.snd.comp <| Primrec.unpair.comp n))
case hpr a : Primrec fun a => ofNat (ℕ × Code) a.length k✝ : Primrec fun a => (ofNat (ℕ × Code) a.1.length).1 n✝ : Primrec Prod.snd k : Primrec fun a => (ofNat (ℕ × Code) a.1.1.length).1 n : Primrec fun a => a.1.2 k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) a.1.1.length).2 ⊢ Primrec fun a => do let x ← Nat.Partrec.Code.lup a.1.1.1 ((ofNat (ℕ × Code) a.1.1.1.length).1, a.2.1) a.1.1.2 let y ← Nat.Partrec.Code.lup a.1.1.1 ((ofNat (ℕ × Code) a.1.1.1.length).1, a.2.2.1) a.1.1.2 some (Nat.pair x y) case hco a : Primrec fun a => ofNat (ℕ × Code) a.length k✝ : Primrec fun a => (ofNat (ℕ × Code) a.1.length).1 n✝ : Primrec Prod.snd k : Primrec fun a => (ofNat (ℕ × Code) a.1.1.length).1 n : Primrec fun a => a.1.2 k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) a.1.1.length).2 ⊢ Primrec fun a => do let x ← Nat.Partrec.Code.lup a.1.1.1 ((ofNat (ℕ × Code) a.1.1.1.length).1, a.2.2.1) a.1.1.2 Nat.Partrec.Code.lup a.1.1.1 ((ofNat (ℕ × Code) a.1.1.1.length).1, a.2.1) x case hpc a : Primrec fun a => ofNat (ℕ × Code) a.length k✝ : Primrec fun a => (ofNat (ℕ × Code) a.1.length).1 n✝ : Primrec Prod.snd k : Primrec fun a => (ofNat (ℕ × Code) a.1.1.length).1 n : Primrec fun a => a.1.2 k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) a.1.1.length).2 ⊢ Primrec fun a => let z := (unpair a.1.1.2).1; Nat.casesOn (unpair a.1.1.2).2 (Nat.Partrec.Code.lup a.1.1.1 ((ofNat (ℕ × Code) a.1.1.1.length).1, a.2.1) z) fun y => do let i ← Nat.Partrec.Code.lup a.1.1.1 (a.1.2, (ofNat (ℕ × Code) a.1.1.1.length).2) (Nat.pair z y) Nat.Partrec.Code.lup a.1.1.1 ((ofNat (ℕ × Code) a.1.1.1.length).1, a.2.2.1) (Nat.pair z (Nat.pair y i)) case hrf a : Primrec fun a => ofNat (ℕ × Code) a.length k✝ : Primrec fun a => (ofNat (ℕ × Code) a.1.length).1 n✝ : Primrec Prod.snd k : Primrec fun a => (ofNat (ℕ × Code) a.1.1.length).1 n : Primrec fun a => a.1.2 k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) a.1.1.length).2 ⊢ Primrec fun a => let z := (unpair a.1.1.2).1; let m := (unpair a.1.1.2).2; do let x ← Nat.Partrec.Code.lup a.1.1.1 ((ofNat (ℕ × Code) a.1.1.1.length).1, a.2.1) (Nat.pair z m) Nat.casesOn x (some m) fun x => Nat.Partrec.Code.lup a.1.1.1 (a.1.2, (ofNat (ℕ × Code) a.1.1.1.length).2) (Nat.pair z (m + 1))
4867ddf124efd4e0
RootPairing.isCompl_rootSpan_ker_rootForm
Mathlib/LinearAlgebra/RootSystem/Finite/Nondegenerate.lean
lemma isCompl_rootSpan_ker_rootForm : IsCompl P.rootSpan (LinearMap.ker P.RootForm)
ι : Type u_1 R : Type u_2 M : Type u_3 N : Type u_4 inst✝⁶ : Fintype ι inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : Field R inst✝² : Module R M inst✝¹ : Module R N P : RootPairing ι R M N inst✝ : P.IsAnisotropic _iM : IsReflexive R M _iN : IsReflexive R N aux : finrank R M = finrank R ↥P.rootSpan + finrank R ↥P.corootSpan.dualAnnihilator ⊢ finrank R M ≤ finrank R ↥P.rootSpan + finrank R ↥(LinearMap.ker P.RootForm)
rw [aux, add_le_add_iff_left]
ι : Type u_1 R : Type u_2 M : Type u_3 N : Type u_4 inst✝⁶ : Fintype ι inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : Field R inst✝² : Module R M inst✝¹ : Module R N P : RootPairing ι R M N inst✝ : P.IsAnisotropic _iM : IsReflexive R M _iN : IsReflexive R N aux : finrank R M = finrank R ↥P.rootSpan + finrank R ↥P.corootSpan.dualAnnihilator ⊢ finrank R ↥P.corootSpan.dualAnnihilator ≤ finrank R ↥(LinearMap.ker P.RootForm)
cd3d1642fc0b7df4
FreeGroup.injective_lift_of_ping_pong
Mathlib/GroupTheory/CoprodI.lean
theorem _root_.FreeGroup.injective_lift_of_ping_pong : Function.Injective (FreeGroup.lift a)
case hpp ι : Type u_1 inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), (X i).Nonempty hXdisj : Pairwise (Disjoint on X) hYdisj : Pairwise (Disjoint on Y) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i i j : ι hij : i ≠ j ⊢ ∀ (b : ℤ), FreeGroup.freeGroupUnitEquivInt.symm b ≠ 1 → (f i) (FreeGroup.freeGroupUnitEquivInt.symm b) • X' j ⊆ X' i
intro n hne1
case hpp ι : Type u_1 inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), (X i).Nonempty hXdisj : Pairwise (Disjoint on X) hYdisj : Pairwise (Disjoint on Y) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i i j : ι hij : i ≠ j n : ℤ hne1 : FreeGroup.freeGroupUnitEquivInt.symm n ≠ 1 ⊢ (f i) (FreeGroup.freeGroupUnitEquivInt.symm n) • X' j ⊆ X' i
7d73ea3c881ec9f6
CategoryTheory.classifier_isSheaf
Mathlib/CategoryTheory/Sites/Closed.lean
theorem classifier_isSheaf : Presieve.IsSheaf J₁ (Functor.closedSieves J₁)
case refine_1.mk.mk.a.h.mp C : Type u inst✝ : Category.{v, u} C J₁ : GrothendieckTopology C X : C S : Sieve X hS : S ∈ J₁ X x : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows M : Sieve (Opposite.unop (Opposite.op X)) hM : J₁.IsClosed M N : Sieve (Opposite.unop (Opposite.op X)) hN : J₁.IsClosed N hM₂ : x.IsAmalgamation ⟨M, hM⟩ hN₂ : x.IsAmalgamation ⟨N, hN⟩ Y : C f : Y ⟶ X q : ∀ ⦃Z : C⦄ (g : Z ⟶ X), S.arrows g → Sieve.pullback g M = Sieve.pullback g N MSNS : M ⊓ S = N ⊓ S hf : J₁.Covers M f ⊢ Sieve.pullback f N ∈ J₁ Y
apply J₁.superset_covering (Sieve.pullback_monotone f inf_le_left)
case refine_1.mk.mk.a.h.mp C : Type u inst✝ : Category.{v, u} C J₁ : GrothendieckTopology C X : C S : Sieve X hS : S ∈ J₁ X x : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows M : Sieve (Opposite.unop (Opposite.op X)) hM : J₁.IsClosed M N : Sieve (Opposite.unop (Opposite.op X)) hN : J₁.IsClosed N hM₂ : x.IsAmalgamation ⟨M, hM⟩ hN₂ : x.IsAmalgamation ⟨N, hN⟩ Y : C f : Y ⟶ X q : ∀ ⦃Z : C⦄ (g : Z ⟶ X), S.arrows g → Sieve.pullback g M = Sieve.pullback g N MSNS : M ⊓ S = N ⊓ S hf : J₁.Covers M f ⊢ Sieve.pullback f (N ⊓ ?m.12869) ∈ J₁ Y C : Type u inst✝ : Category.{v, u} C J₁ : GrothendieckTopology C X : C S : Sieve X hS : S ∈ J₁ X x : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows M : Sieve (Opposite.unop (Opposite.op X)) hM : J₁.IsClosed M N : Sieve (Opposite.unop (Opposite.op X)) hN : J₁.IsClosed N hM₂ : x.IsAmalgamation ⟨M, hM⟩ hN₂ : x.IsAmalgamation ⟨N, hN⟩ Y : C f : Y ⟶ X q : ∀ ⦃Z : C⦄ (g : Z ⟶ X), S.arrows g → Sieve.pullback g M = Sieve.pullback g N MSNS : M ⊓ S = N ⊓ S hf : J₁.Covers M f ⊢ Sieve X
902347477e841054
ProbabilityTheory.Kernel.indep_iSup_of_directed_le
Mathlib/Probability/Independence/Kernel.lean
theorem indep_iSup_of_directed_le {Ω} {m : ι → MeasurableSpace Ω} {m' m0 : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : Measure α} [IsZeroOrMarkovKernel κ] (h_indep : ∀ i, Indep (m i) m' κ μ) (h_le : ∀ i, m i ≤ m0) (h_le' : m' ≤ m0) (hm : Directed (· ≤ ·) m) : Indep (⨆ i, m i) m' κ μ
α : Type u_1 ι : Type u_3 _mα : MeasurableSpace α Ω : Type u_4 m : ι → MeasurableSpace Ω m' m0 : MeasurableSpace Ω κ : Kernel α Ω μ : Measure α inst✝ : IsZeroOrMarkovKernel κ h_indep : ∀ (i : ι), Indep (m i) m' κ μ h_le : ∀ (i : ι), m i ≤ m0 h_le' : m' ≤ m0 hm : Directed (fun x1 x2 => x1 ≤ x2) m p : ι → Set (Set Ω) := fun n => {t | MeasurableSet t} hp : ∀ (n : ι), IsPiSystem (p n) h_gen_n : ∀ (n : ι), m n = generateFrom (p n) hp_supr_pi : IsPiSystem (⋃ n, p n) p' : Set (Set Ω) := {t | MeasurableSet t} hp'_pi : IsPiSystem p' h_gen' : m' = generateFrom p' ⊢ Indep (⨆ i, m i) m' κ μ
have h_pi_system_indep : IndepSets (⋃ n, p n) p' κ μ := by refine IndepSets.iUnion ?_ conv at h_indep => intro i rw [h_gen_n i, h_gen'] exact fun n => (h_indep n).indepSets
α : Type u_1 ι : Type u_3 _mα : MeasurableSpace α Ω : Type u_4 m : ι → MeasurableSpace Ω m' m0 : MeasurableSpace Ω κ : Kernel α Ω μ : Measure α inst✝ : IsZeroOrMarkovKernel κ h_indep : ∀ (i : ι), Indep (m i) m' κ μ h_le : ∀ (i : ι), m i ≤ m0 h_le' : m' ≤ m0 hm : Directed (fun x1 x2 => x1 ≤ x2) m p : ι → Set (Set Ω) := fun n => {t | MeasurableSet t} hp : ∀ (n : ι), IsPiSystem (p n) h_gen_n : ∀ (n : ι), m n = generateFrom (p n) hp_supr_pi : IsPiSystem (⋃ n, p n) p' : Set (Set Ω) := {t | MeasurableSet t} hp'_pi : IsPiSystem p' h_gen' : m' = generateFrom p' h_pi_system_indep : IndepSets (⋃ n, p n) p' κ μ ⊢ Indep (⨆ i, m i) m' κ μ
d26524d956b58c02
AffineBasis.basisOf_reindex
Mathlib/LinearAlgebra/AffineSpace/Basis.lean
theorem basisOf_reindex (i : ι') : (b.reindex e).basisOf i = (b.basisOf <| e.symm i).reindex (e.subtypeEquiv fun _ => e.eq_symm_apply.not)
case a ι : Type u_1 ι' : Type u_2 k : Type u_5 V : Type u_6 P : Type u_7 inst✝³ : AddCommGroup V inst✝² : AffineSpace V P inst✝¹ : Ring k inst✝ : Module k V b : AffineBasis ι k P e : ι ≃ ι' i : ι' j : { j // j ≠ i } ⊢ ((b.reindex e).basisOf i) j = ((b.basisOf (e.symm i)).reindex (e.subtypeEquiv ⋯)) j
simp
no goals
36ed7e14a20f44da
LieSubmodule.toSubmodule_mk
Mathlib/Algebra/Lie/Submodule.lean
theorem toSubmodule_mk (p : Submodule R M) (h) : (({ p with lie_mem := h } : LieSubmodule R L M) : Submodule R M) = p
case mk R : Type u L : Type v M : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : LieRingModule L M toAddSubmonoid✝ : AddSubmonoid M smul_mem'✝ : ∀ (c : R) {x : M}, x ∈ toAddSubmonoid✝.carrier → c • x ∈ toAddSubmonoid✝.carrier h : ∀ {x : L} {m : M}, m ∈ { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }.carrier → ⁅x, m⁆ ∈ { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }.carrier ⊢ ↑{ toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝, lie_mem := h } = { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }
rfl
no goals
dbdc8c5b0dcce17f
MonomialOrder.div
Mathlib/RingTheory/MvPolynomial/Groebner.lean
theorem div {ι : Type*} {b : ι → MvPolynomial σ R} (hb : ∀ i, IsUnit (m.leadingCoeff (b i))) (f : MvPolynomial σ R) : ∃ (g : ι →₀ (MvPolynomial σ R)) (r : MvPolynomial σ R), f = Finsupp.linearCombination _ b g + r ∧ (∀ i, m.degree (b i * (g i)) ≼[m] m.degree f) ∧ (∀ c ∈ r.support, ∀ i, ¬ (m.degree (b i) ≤ c))
case h.left σ : Type u_1 m : MonomialOrder σ R : Type u_2 inst✝ : CommRing R ι : Type u_3 b : ι → MvPolynomial σ R hb : ∀ (i : ι), IsUnit (m.leadingCoeff (b i)) f : MvPolynomial σ R hb' : ∀ (i : ι), m.degree (b i) ≠ 0 hf0 : ¬f = 0 i : ι hf : m.degree (b i) ≤ m.degree f deg_reduce : m.toSyn (m.degree (m.reduce ⋯ f)) < m.toSyn (m.degree f) g' : ι →₀ MvPolynomial σ R r' : MvPolynomial σ R H' : m.reduce ⋯ f = (Finsupp.linearCombination (MvPolynomial σ R) b) g' + r' ∧ (∀ (i_1 : ι), m.toSyn (m.degree (b i_1 * g' i_1)) ≤ m.toSyn (m.degree (m.reduce ⋯ f))) ∧ ∀ c ∈ r'.support, ∀ (i : ι), ¬m.degree (b i) ≤ c ⊢ f = (Finsupp.linearCombination (MvPolynomial σ R) b) (g' + Finsupp.single i ((monomial (m.degree f - m.degree (b i))) (↑⋯.unit⁻¹ * m.leadingCoeff f))) + r'
rw [map_add, add_assoc, add_comm _ r', ← add_assoc, ← H'.1]
case h.left σ : Type u_1 m : MonomialOrder σ R : Type u_2 inst✝ : CommRing R ι : Type u_3 b : ι → MvPolynomial σ R hb : ∀ (i : ι), IsUnit (m.leadingCoeff (b i)) f : MvPolynomial σ R hb' : ∀ (i : ι), m.degree (b i) ≠ 0 hf0 : ¬f = 0 i : ι hf : m.degree (b i) ≤ m.degree f deg_reduce : m.toSyn (m.degree (m.reduce ⋯ f)) < m.toSyn (m.degree f) g' : ι →₀ MvPolynomial σ R r' : MvPolynomial σ R H' : m.reduce ⋯ f = (Finsupp.linearCombination (MvPolynomial σ R) b) g' + r' ∧ (∀ (i_1 : ι), m.toSyn (m.degree (b i_1 * g' i_1)) ≤ m.toSyn (m.degree (m.reduce ⋯ f))) ∧ ∀ c ∈ r'.support, ∀ (i : ι), ¬m.degree (b i) ≤ c ⊢ f = m.reduce ⋯ f + (Finsupp.linearCombination (MvPolynomial σ R) b) (Finsupp.single i ((monomial (m.degree f - m.degree (b i))) (↑⋯.unit⁻¹ * m.leadingCoeff f)))
f995acdac7645677
eVariationOn.add_point
Mathlib/Topology/EMetricSpace/BoundedVariation.lean
theorem add_point (f : α → E) {s : Set α} {x : α} (hx : x ∈ s) (u : ℕ → α) (hu : Monotone u) (us : ∀ i, u i ∈ s) (n : ℕ) : ∃ (v : ℕ → α) (m : ℕ), Monotone v ∧ (∀ i, v i ∈ s) ∧ x ∈ v '' Iio m ∧ (∑ i ∈ Finset.range n, edist (f (u (i + 1))) (f (u i))) ≤ ∑ j ∈ Finset.range m, edist (f (v (j + 1))) (f (v j))
α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N ≤ n, x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s i : ℕ hi : i + 1 = N A : i < N ⊢ ¬i + 1 < i + 1
exact fun h => h.ne rfl
no goals
760e94573f7a043d
Fin.findSome?_isNone_iff
Mathlib/.lake/packages/batteries/Batteries/Data/Fin/Lemmas.lean
theorem findSome?_isNone_iff {f : Fin n → Option α} : (findSome? f).isNone ↔ ∀ i, (f i).isNone
n : Nat α : Type u_1 f : Fin n → Option α ⊢ (findSome? f).isNone = true ↔ ∀ (i : Fin n), (f i).isNone = true
simp
no goals
ee41793be8df69f6
Polynomial.multiset_prod_X_sub_C_coeff_card_pred
Mathlib/Algebra/Polynomial/BigOperators.lean
theorem multiset_prod_X_sub_C_coeff_card_pred (t : Multiset R) (ht : 0 < Multiset.card t) : (t.map fun x => X - C x).prod.coeff ((Multiset.card t) - 1) = -t.sum
case h.e'_2.hnc R : Type u inst✝ : CommRing R t : Multiset R ht : 0 < t.card a✝ : Nontrivial R ⊢ ¬(Multiset.map (fun x => X - C x) t).prod.natDegree = 0
rw [natDegree_multiset_prod_of_monic]
case h.e'_2.hnc R : Type u inst✝ : CommRing R t : Multiset R ht : 0 < t.card a✝ : Nontrivial R ⊢ ¬(Multiset.map natDegree (Multiset.map (fun x => X - C x) t)).sum = 0 case h.e'_2.hnc.h R : Type u inst✝ : CommRing R t : Multiset R ht : 0 < t.card a✝ : Nontrivial R ⊢ ∀ f ∈ Multiset.map (fun x => X - C x) t, f.Monic
19e5692677d27aaa
PythagoreanTriple.isPrimitiveClassified_of_coprime_of_odd_of_pos
Mathlib/NumberTheory/PythagoreanTriples.lean
theorem isPrimitiveClassified_of_coprime_of_odd_of_pos (hc : Int.gcd x y = 1) (hyo : y % 2 = 1) (hzpos : 0 < z) : h.IsPrimitiveClassified
case neg.inl.inl x y z : ℤ h : PythagoreanTriple x y z hc : x.gcd y = 1 hyo : y % 2 = 1 hzpos : 0 < z h0 : ¬x = 0 v : ℚ := ↑x / ↑z w : ℚ := ↑y / ↑z hq : v ^ 2 + w ^ 2 = 1 hvz : v ≠ 0 hw1 : w ≠ -1 hQ : ∀ (x : ℚ), 1 + x ^ 2 ≠ 0 hp : (v, w) ∈ {p | p.1 ^ 2 + p.2 ^ 2 = 1 ∧ p.2 ≠ -1} q : ℚ := (circleEquivGen hQ).symm ⟨(v, w), hp⟩ ht4 : v = 2 * q / (1 + q ^ 2) ∧ w = (1 - q ^ 2) / (1 + q ^ 2) m : ℤ := ↑q.den n : ℤ := q.num hm0 : m ≠ 0 hq2 : q = ↑n / ↑m hm2n2 : 0 < m ^ 2 + n ^ 2 hm2n20 : ↑m ^ 2 + ↑n ^ 2 ≠ 0 hx1 : ∀ {j k : ℚ}, k ≠ 0 → k ^ 2 + j ^ 2 ≠ 0 → (1 - (j / k) ^ 2) / (1 + (j / k) ^ 2) = (k ^ 2 - j ^ 2) / (k ^ 2 + j ^ 2) hw2 : w = (↑m ^ 2 - ↑n ^ 2) / (↑m ^ 2 + ↑n ^ 2) hx2 : ∀ {j k : ℚ}, k ≠ 0 → k ^ 2 + j ^ 2 ≠ 0 → 2 * (j / k) / (1 + (j / k) ^ 2) = 2 * k * j / (k ^ 2 + j ^ 2) hv2 : v = 2 * ↑m * ↑n / (↑m ^ 2 + ↑n ^ 2) hnmcp : n.gcd m = 1 hmncp : m.gcd n = 1 hm2 : m % 2 = 0 hn2 : n % 2 = 0 ⊢ False
have h1 : 2 ∣ (Int.gcd n m : ℤ) := Int.dvd_gcd (Int.dvd_of_emod_eq_zero hn2) (Int.dvd_of_emod_eq_zero hm2)
case neg.inl.inl x y z : ℤ h : PythagoreanTriple x y z hc : x.gcd y = 1 hyo : y % 2 = 1 hzpos : 0 < z h0 : ¬x = 0 v : ℚ := ↑x / ↑z w : ℚ := ↑y / ↑z hq : v ^ 2 + w ^ 2 = 1 hvz : v ≠ 0 hw1 : w ≠ -1 hQ : ∀ (x : ℚ), 1 + x ^ 2 ≠ 0 hp : (v, w) ∈ {p | p.1 ^ 2 + p.2 ^ 2 = 1 ∧ p.2 ≠ -1} q : ℚ := (circleEquivGen hQ).symm ⟨(v, w), hp⟩ ht4 : v = 2 * q / (1 + q ^ 2) ∧ w = (1 - q ^ 2) / (1 + q ^ 2) m : ℤ := ↑q.den n : ℤ := q.num hm0 : m ≠ 0 hq2 : q = ↑n / ↑m hm2n2 : 0 < m ^ 2 + n ^ 2 hm2n20 : ↑m ^ 2 + ↑n ^ 2 ≠ 0 hx1 : ∀ {j k : ℚ}, k ≠ 0 → k ^ 2 + j ^ 2 ≠ 0 → (1 - (j / k) ^ 2) / (1 + (j / k) ^ 2) = (k ^ 2 - j ^ 2) / (k ^ 2 + j ^ 2) hw2 : w = (↑m ^ 2 - ↑n ^ 2) / (↑m ^ 2 + ↑n ^ 2) hx2 : ∀ {j k : ℚ}, k ≠ 0 → k ^ 2 + j ^ 2 ≠ 0 → 2 * (j / k) / (1 + (j / k) ^ 2) = 2 * k * j / (k ^ 2 + j ^ 2) hv2 : v = 2 * ↑m * ↑n / (↑m ^ 2 + ↑n ^ 2) hnmcp : n.gcd m = 1 hmncp : m.gcd n = 1 hm2 : m % 2 = 0 hn2 : n % 2 = 0 h1 : 2 ∣ ↑(n.gcd m) ⊢ False
e128c623fada3541
MeasureTheory.Measure.hausdorffMeasure_zero_or_top
Mathlib/MeasureTheory/Measure/Hausdorff.lean
theorem hausdorffMeasure_zero_or_top {d₁ d₂ : ℝ} (h : d₁ < d₂) (s : Set X) : μH[d₂] s = 0 ∨ μH[d₁] s = ∞
case h.intro.intro.inl X : Type u_2 inst✝² : EMetricSpace X inst✝¹ : MeasurableSpace X inst✝ : BorelSpace X d₁ d₂ : ℝ h : d₁ < d₂ s : Set X H : μH[d₂] s ≠ 0 ∧ μH[d₁] s ≠ ⊤ c : ℝ≥0 hc : c ≠ 0 this : 0 < ↑c ^ (d₂ - d₁)⁻¹ hr₀ : 0 ≤ ↑0 hrc : ↑0 < ↑c ^ (d₂ - d₁)⁻¹ ⊢ ↑0 ^ d₂ / ↑0 ^ d₁ ≤ ↑c
rcases lt_or_le 0 d₂ with (h₂ | h₂)
case h.intro.intro.inl.inl X : Type u_2 inst✝² : EMetricSpace X inst✝¹ : MeasurableSpace X inst✝ : BorelSpace X d₁ d₂ : ℝ h : d₁ < d₂ s : Set X H : μH[d₂] s ≠ 0 ∧ μH[d₁] s ≠ ⊤ c : ℝ≥0 hc : c ≠ 0 this : 0 < ↑c ^ (d₂ - d₁)⁻¹ hr₀ : 0 ≤ ↑0 hrc : ↑0 < ↑c ^ (d₂ - d₁)⁻¹ h₂ : 0 < d₂ ⊢ ↑0 ^ d₂ / ↑0 ^ d₁ ≤ ↑c case h.intro.intro.inl.inr X : Type u_2 inst✝² : EMetricSpace X inst✝¹ : MeasurableSpace X inst✝ : BorelSpace X d₁ d₂ : ℝ h : d₁ < d₂ s : Set X H : μH[d₂] s ≠ 0 ∧ μH[d₁] s ≠ ⊤ c : ℝ≥0 hc : c ≠ 0 this : 0 < ↑c ^ (d₂ - d₁)⁻¹ hr₀ : 0 ≤ ↑0 hrc : ↑0 < ↑c ^ (d₂ - d₁)⁻¹ h₂ : d₂ ≤ 0 ⊢ ↑0 ^ d₂ / ↑0 ^ d₁ ≤ ↑c
b6aef1c477f972ca
IsLocalHomeomorphOn.mk
Mathlib/Topology/IsLocalHomeomorph.lean
theorem mk (h : ∀ x ∈ s, ∃ e : PartialHomeomorph X Y, x ∈ e.source ∧ Set.EqOn f e e.source) : IsLocalHomeomorphOn f s
X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y f : X → Y s : Set X h : ∀ x ∈ s, ∃ e, x ∈ e.source ∧ Set.EqOn f (↑e) e.source x : X hx✝¹ : x ∈ s e : PartialHomeomorph X Y hx✝ : x ∈ e.source he : Set.EqOn f (↑e) e.source _x : X hx : _x ∈ e.source ⊢ e.invFun (f _x) = _x
rw [he hx]
X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y f : X → Y s : Set X h : ∀ x ∈ s, ∃ e, x ∈ e.source ∧ Set.EqOn f (↑e) e.source x : X hx✝¹ : x ∈ s e : PartialHomeomorph X Y hx✝ : x ∈ e.source he : Set.EqOn f (↑e) e.source _x : X hx : _x ∈ e.source ⊢ e.invFun (↑e _x) = _x
56b0f859baebd663
Nat.bitwise_of_ne_zero
Mathlib/Data/Nat/Bitwise.lean
lemma bitwise_of_ne_zero {n m : Nat} (hn : n ≠ 0) (hm : m ≠ 0) : bitwise f n m = bit (f (bodd n) (bodd m)) (bitwise f (n / 2) (m / 2))
f : Bool → Bool → Bool n m : ℕ hn : n ≠ 0 hm : m ≠ 0 mod_two_iff_bod : ∀ (x : ℕ), decide (x % 2 = 1) = x.bodd ⊢ (if n = 0 then if f false true = true then m else 0 else if m = 0 then if f true false = true then n else 0 else let n' := n / 2; let m' := m / 2; let b₁ := n % 2 = 1; let b₂ := m % 2 = 1; let r := bitwise f n' m'; if f (decide b₁) (decide b₂) = true then r + r + 1 else r + r) = bit (f n.bodd m.bodd) (bitwise f (n / 2) (m / 2))
simp only [hn, hm, mod_two_iff_bod, ite_false, bit, two_mul, Bool.cond_eq_ite]
f : Bool → Bool → Bool n m : ℕ hn : n ≠ 0 hm : m ≠ 0 mod_two_iff_bod : ∀ (x : ℕ), decide (x % 2 = 1) = x.bodd ⊢ (if f n.bodd m.bodd = true then bitwise f (n / 2) (m / 2) + bitwise f (n / 2) (m / 2) + 1 else bitwise f (n / 2) (m / 2) + bitwise f (n / 2) (m / 2)) = (if f n.bodd m.bodd = true then fun x => x + x + 1 else fun x => x + x) (bitwise f (n / 2) (m / 2))
a3308a86ed421729
Complex.mul_cpow_ofReal_nonneg
Mathlib/Analysis/SpecialFunctions/Pow/Complex.lean
theorem mul_cpow_ofReal_nonneg {a b : ℝ} (ha : 0 ≤ a) (hb : 0 ≤ b) (r : ℂ) : ((a : ℂ) * (b : ℂ)) ^ r = (a : ℂ) ^ r * (b : ℂ) ^ r
case inl a b : ℝ ha : 0 ≤ a hb : 0 ≤ b ⊢ (↑a * ↑b) ^ 0 = ↑a ^ 0 * ↑b ^ 0
simp only [cpow_zero, mul_one]
no goals
385cc79a0a30c890
mellin_comp_mul_left
Mathlib/Analysis/MellinTransform.lean
theorem mellin_comp_mul_left (f : ℝ → E) (s : ℂ) {a : ℝ} (ha : 0 < a) : mellin (fun t => f (a * t)) s = (a : ℂ) ^ (-s) • mellin f s
E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : ℝ → E s : ℂ a : ℝ ha : 0 < a t : ℝ ht : t ∈ Ioi 0 ⊢ 1 - s = -(s - 1)
ring
no goals
eba6520b29ea7f1f
MeasureTheory.setIntegral_abs_condExp_le
Mathlib/MeasureTheory/Function/ConditionalExpectation/Real.lean
theorem setIntegral_abs_condExp_le {s : Set α} (hs : MeasurableSet[m] s) (f : α → ℝ) : ∫ x in s, |(μ[f|m]) x| ∂μ ≤ ∫ x in s, |f x| ∂μ
case pos α : Type u_1 m m0 : MeasurableSpace α μ : Measure α s : Set α hs : MeasurableSet s f : α → ℝ hnm : m ≤ m0 ⊢ ∫ (x : α) in s, |(μ[f|m]) x| ∂μ ≤ ∫ (x : α) in s, |f x| ∂μ case neg α : Type u_1 m m0 : MeasurableSpace α μ : Measure α s : Set α hs : MeasurableSet s f : α → ℝ hnm : ¬m ≤ m0 ⊢ ∫ (x : α) in s, |(μ[f|m]) x| ∂μ ≤ ∫ (x : α) in s, |f x| ∂μ
swap
case neg α : Type u_1 m m0 : MeasurableSpace α μ : Measure α s : Set α hs : MeasurableSet s f : α → ℝ hnm : ¬m ≤ m0 ⊢ ∫ (x : α) in s, |(μ[f|m]) x| ∂μ ≤ ∫ (x : α) in s, |f x| ∂μ case pos α : Type u_1 m m0 : MeasurableSpace α μ : Measure α s : Set α hs : MeasurableSet s f : α → ℝ hnm : m ≤ m0 ⊢ ∫ (x : α) in s, |(μ[f|m]) x| ∂μ ≤ ∫ (x : α) in s, |f x| ∂μ
f75c894a42ad0f54
Cardinal.ciSup_mul
Mathlib/SetTheory/Cardinal/Arithmetic.lean
theorem ciSup_mul (c : Cardinal.{v}) : (⨆ i, f i) * c = ⨆ i, f i * c
ι : Type u f : ι → Cardinal.{v} c : Cardinal.{v} ⊢ (⨆ i, f i) * c = ⨆ i, f i * c
cases isEmpty_or_nonempty ι
case inl ι : Type u f : ι → Cardinal.{v} c : Cardinal.{v} h✝ : IsEmpty ι ⊢ (⨆ i, f i) * c = ⨆ i, f i * c case inr ι : Type u f : ι → Cardinal.{v} c : Cardinal.{v} h✝ : Nonempty ι ⊢ (⨆ i, f i) * c = ⨆ i, f i * c
079631a7d791f82b
AlgebraicGeometry.Scheme.range_fromSpecStalk
Mathlib/AlgebraicGeometry/Stalk.lean
@[stacks 01J7] lemma range_fromSpecStalk {x : X} : Set.range (X.fromSpecStalk x).base = { y | y ⤳ x }
X : Scheme x : ↑↑X.toPresheafedSpace ⊢ Set.range ⇑(ConcreteCategory.hom (X.fromSpecStalk x).base) = {y | y ⤳ x}
ext y
case h X : Scheme x y : ↑↑X.toPresheafedSpace ⊢ y ∈ Set.range ⇑(ConcreteCategory.hom (X.fromSpecStalk x).base) ↔ y ∈ {y | y ⤳ x}
2c1b30ac23bb0ca4
exists_jacobiSum_eq_neg_one_add
Mathlib/NumberTheory/JacobiSum/Basic.lean
/-- If `χ` and `ψ` are multiplicative characters of order dividing `n` on a finite field `F` with values in an integral domain `R` and `μ` is a primitive `n`th root of unity in `R`, then `J(χ,ψ) = -1 + z*(μ - 1)^2` for some `z ∈ ℤ[μ] ⊆ R`. (We assume that `#F ≡ 1 mod n`.) Note that we do not state this as a divisibility in `R`, as this would give a weaker statement. -/ lemma exists_jacobiSum_eq_neg_one_add {n : ℕ} (hn : 2 < n) {χ ψ : MulChar F R} {μ : R} (hχ : χ ^ n = 1) (hψ : ψ ^ n = 1) (hn' : n ∣ Fintype.card F - 1) (hμ : IsPrimitiveRoot μ n) : ∃ z ∈ Algebra.adjoin ℤ {μ}, jacobiSum χ ψ = -1 + z * (μ - 1) ^ 2
case neg F : Type u_1 R : Type u_2 inst✝³ : Fintype F inst✝² : Field F inst✝¹ : CommRing R inst✝ : IsDomain R n : ℕ hn : 2 < n χ ψ : MulChar F R μ : R hχ : χ ^ n = 1 hψ : ψ ^ n = 1 hμ : IsPrimitiveRoot μ n q : ℕ hq : Fintype.card F = n * q + 1 z₁ : R hz₁ : z₁ ∈ Algebra.adjoin ℤ {μ} Hz₁ : ↑n = z₁ * (μ - 1) ^ 2 hχ₀ : ¬χ = 1 hψ₀ : ¬ψ = 1 this : NeZero n H : ∀ (x : F), ∃ z ∈ Algebra.adjoin ℤ {μ}, (χ x - 1) * (ψ (1 - x) - 1) = z * (μ - 1) ^ 2 ⊢ ∃ z ∈ Algebra.adjoin ℤ {μ}, 0 + 0 - ↑(n * q + 1) + ∑ x ∈ univ \ {0, 1}, (χ x - 1) * (ψ (1 - x) - 1) = -1 + z * (μ - 1) ^ 2
have Hcs x := (H x).choose_spec
case neg F : Type u_1 R : Type u_2 inst✝³ : Fintype F inst✝² : Field F inst✝¹ : CommRing R inst✝ : IsDomain R n : ℕ hn : 2 < n χ ψ : MulChar F R μ : R hχ : χ ^ n = 1 hψ : ψ ^ n = 1 hμ : IsPrimitiveRoot μ n q : ℕ hq : Fintype.card F = n * q + 1 z₁ : R hz₁ : z₁ ∈ Algebra.adjoin ℤ {μ} Hz₁ : ↑n = z₁ * (μ - 1) ^ 2 hχ₀ : ¬χ = 1 hψ₀ : ¬ψ = 1 this : NeZero n H : ∀ (x : F), ∃ z ∈ Algebra.adjoin ℤ {μ}, (χ x - 1) * (ψ (1 - x) - 1) = z * (μ - 1) ^ 2 Hcs : ∀ (x : F), ⋯.choose ∈ Algebra.adjoin ℤ {μ} ∧ (χ x - 1) * (ψ (1 - x) - 1) = ⋯.choose * (μ - 1) ^ 2 ⊢ ∃ z ∈ Algebra.adjoin ℤ {μ}, 0 + 0 - ↑(n * q + 1) + ∑ x ∈ univ \ {0, 1}, (χ x - 1) * (ψ (1 - x) - 1) = -1 + z * (μ - 1) ^ 2
ae2162c182ec889a
MeasureTheory.eLpNorm_le_eLpNorm_fderiv_of_eq_inner
Mathlib/Analysis/FunctionalSpaces/SobolevInequality.lean
theorem eLpNorm_le_eLpNorm_fderiv_of_eq_inner {u : E → F'} (hu : ContDiff ℝ 1 u) (h2u : HasCompactSupport u) {p p' : ℝ≥0} (hp : 1 ≤ p) (hn : 0 < finrank ℝ E) (hp' : (p' : ℝ)⁻¹ = p⁻¹ - (finrank ℝ E : ℝ)⁻¹) : eLpNorm u p' μ ≤ eLpNormLESNormFDerivOfEqInnerConst μ p * eLpNorm (fderiv ℝ u) p μ
E : Type u_4 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : MeasurableSpace E inst✝⁵ : BorelSpace E inst✝⁴ : FiniteDimensional ℝ E μ : Measure E inst✝³ : μ.IsAddHaarMeasure F' : Type u_5 inst✝² : NormedAddCommGroup F' inst✝¹ : InnerProductSpace ℝ F' inst✝ : CompleteSpace F' u : E → F' hu : ContDiff ℝ 1 u h2u : HasCompactSupport u p p' : ℝ≥0 hp✝ : 1 ≤ p hp'0 : ¬p' = 0 n : ℕ := finrank ℝ E hn✝ : 0 < n hp' : (↑p')⁻¹ = ↑p⁻¹ - (↑n)⁻¹ n' : ℝ≥0 := (↑n).conjExponent h2p : ↑p < ↑n h0n : 2 ≤ n hn : (↑n).IsConjExponent n' h1n : 1 ≤ ↑n h2n : 0 < ↑n - 1 hnp : 0 < ↑n - ↑p hp : 1 < p q : ℝ := (↑p).conjExponent hq : (↑p).IsConjExponent q h0p : p ≠ 0 h1p : ↑p ≠ 1 h3p : ↑p - 1 ≠ 0 h0p' : p' ≠ 0 h2q : 1 / ↑n' - 1 / q = 1 / ↑p' γ : ℝ≥0 := ⟨↑p * (↑n - 1) / (↑n - ↑p), ⋯⟩ h0γ : ↑γ = ↑p * (↑n - 1) / (↑n - ↑p) ⊢ 1 < ↑γ
rwa [h0γ, one_lt_div hnp, mul_sub, mul_one, sub_lt_sub_iff_right, lt_mul_iff_one_lt_left]
E : Type u_4 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : MeasurableSpace E inst✝⁵ : BorelSpace E inst✝⁴ : FiniteDimensional ℝ E μ : Measure E inst✝³ : μ.IsAddHaarMeasure F' : Type u_5 inst✝² : NormedAddCommGroup F' inst✝¹ : InnerProductSpace ℝ F' inst✝ : CompleteSpace F' u : E → F' hu : ContDiff ℝ 1 u h2u : HasCompactSupport u p p' : ℝ≥0 hp✝ : 1 ≤ p hp'0 : ¬p' = 0 n : ℕ := finrank ℝ E hn✝ : 0 < n hp' : (↑p')⁻¹ = ↑p⁻¹ - (↑n)⁻¹ n' : ℝ≥0 := (↑n).conjExponent h2p : ↑p < ↑n h0n : 2 ≤ n hn : (↑n).IsConjExponent n' h1n : 1 ≤ ↑n h2n : 0 < ↑n - 1 hnp : 0 < ↑n - ↑p hp : 1 < p q : ℝ := (↑p).conjExponent hq : (↑p).IsConjExponent q h0p : p ≠ 0 h1p : ↑p ≠ 1 h3p : ↑p - 1 ≠ 0 h0p' : p' ≠ 0 h2q : 1 / ↑n' - 1 / q = 1 / ↑p' γ : ℝ≥0 := ⟨↑p * (↑n - 1) / (↑n - ↑p), ⋯⟩ h0γ : ↑γ = ↑p * (↑n - 1) / (↑n - ↑p) ⊢ 0 < ↑n
728bbe5fb5258103
Equiv.Perm.fin_5_not_solvable
Mathlib/GroupTheory/Solvable.lean
theorem Equiv.Perm.fin_5_not_solvable : ¬IsSolvable (Equiv.Perm (Fin 5))
x : Perm (Fin 5) := { toFun := ![1, 2, 0, 3, 4], invFun := ![2, 0, 1, 3, 4], left_inv := ⋯, right_inv := ⋯ } y : Perm (Fin 5) := { toFun := ![3, 4, 2, 0, 1], invFun := ![3, 4, 2, 0, 1], left_inv := ⋯, right_inv := ⋯ } z : Perm (Fin 5) := { toFun := ![0, 3, 2, 1, 4], invFun := ![0, 3, 2, 1, 4], left_inv := ⋯, right_inv := ⋯ } ⊢ x = z * ⁅x, y * x * y⁻¹⁆ * z⁻¹
unfold x y z
x : Perm (Fin 5) := { toFun := ![1, 2, 0, 3, 4], invFun := ![2, 0, 1, 3, 4], left_inv := ⋯, right_inv := ⋯ } y : Perm (Fin 5) := { toFun := ![3, 4, 2, 0, 1], invFun := ![3, 4, 2, 0, 1], left_inv := ⋯, right_inv := ⋯ } z : Perm (Fin 5) := { toFun := ![0, 3, 2, 1, 4], invFun := ![0, 3, 2, 1, 4], left_inv := ⋯, right_inv := ⋯ } ⊢ { toFun := ![1, 2, 0, 3, 4], invFun := ![2, 0, 1, 3, 4], left_inv := ⋯, right_inv := ⋯ } = { toFun := ![0, 3, 2, 1, 4], invFun := ![0, 3, 2, 1, 4], left_inv := ⋯, right_inv := ⋯ } * ⁅{ toFun := ![1, 2, 0, 3, 4], invFun := ![2, 0, 1, 3, 4], left_inv := ⋯, right_inv := ⋯ }, { toFun := ![3, 4, 2, 0, 1], invFun := ![3, 4, 2, 0, 1], left_inv := ⋯, right_inv := ⋯ } * { toFun := ![1, 2, 0, 3, 4], invFun := ![2, 0, 1, 3, 4], left_inv := ⋯, right_inv := ⋯ } * { toFun := ![3, 4, 2, 0, 1], invFun := ![3, 4, 2, 0, 1], left_inv := ⋯, right_inv := ⋯ }⁻¹⁆ * { toFun := ![0, 3, 2, 1, 4], invFun := ![0, 3, 2, 1, 4], left_inv := ⋯, right_inv := ⋯ }⁻¹
2cf02f2116026673
CategoryTheory.IsPushout.inl_snd'
Mathlib/CategoryTheory/Limits/Shapes/Pullback/CommSq.lean
theorem inl_snd' {b : BinaryBicone X Y} (h : b.IsBilimit) : IsPushout b.inl (0 : X ⟶ 0) b.snd (0 : 0 ⟶ Y)
case h C : Type u₁ inst✝² : Category.{v₁, u₁} C X Y : C inst✝¹ : HasZeroObject C inst✝ : HasZeroMorphisms C b : BinaryBicone X Y h : b.IsBilimit ⊢ IsPushout (0 ≫ 0) 0 0 (b.inr ≫ b.snd)
simp
no goals
1ea37e8a4cd6e9ec
Std.Tactic.BVDecide.Reflect.unsat_of_verifyBVExpr_eq_true
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Reflect.lean
theorem unsat_of_verifyBVExpr_eq_true (bv : BVLogicalExpr) (c : String) (h : verifyBVExpr bv c = true) : bv.Unsat
case a.a bv : BVLogicalExpr c : String h✝ : verifyBVExpr bv c = true h : verifyCert (AIG.toCNF bv.bitblast.relabelNat) c = true ⊢ verifyCert (AIG.toCNF bv.bitblast.relabelNat) ?a.cert✝ = true case a.cert bv : BVLogicalExpr c : String h : verifyBVExpr bv c = true ⊢ String
assumption
no goals
b70561da56bd753e
singleton_span_mem_normalizedFactors_of_mem_normalizedFactors
Mathlib/RingTheory/DedekindDomain/Ideal.lean
theorem singleton_span_mem_normalizedFactors_of_mem_normalizedFactors [NormalizationMonoid R] {a b : R} (ha : a ∈ normalizedFactors b) : Ideal.span ({a} : Set R) ∈ normalizedFactors (Ideal.span ({b} : Set R))
case intro.intro R : Type u_1 inst✝³ : CommRing R inst✝² : IsDomain R inst✝¹ : IsPrincipalIdealRing R inst✝ : NormalizationMonoid R a b : R ha : a ∈ normalizedFactors b hb : ¬b = 0 this : Prime (span {a}) c : Ideal R hc : c ∈ normalizedFactors (span {b}) hc' : Associated (span {a}) c ⊢ span {a} ∈ normalizedFactors (span {b})
rwa [associated_iff_eq.mp hc']
no goals
c68751871b882c67
Associates.exists_prime_dvd_of_not_inf_one
Mathlib/RingTheory/UniqueFactorizationDomain/FactorSet.lean
theorem exists_prime_dvd_of_not_inf_one {a b : α} (ha : a ≠ 0) (hb : b ≠ 0) (h : Associates.mk a ⊓ Associates.mk b ≠ 1) : ∃ p : α, Prime p ∧ p ∣ a ∧ p ∣ b
α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : UniqueFactorizationMonoid α a b : α ha : a ≠ 0 hb : b ≠ 0 h : Associates.mk a ⊓ Associates.mk b ≠ 1 hz : ↑(factors' a ⊓ factors' b) ≠ 0 p : α p0_irr : Irreducible (Associates.mk p) p0_mem : ⟨Associates.mk p, p0_irr⟩ ∈ factors' a ∩ factors' b ⊢ b ≠ 0
apply hb
no goals
4b4dfcc04fa14351
Real.summable_log_one_add_of_summable
Mathlib/Analysis/SpecialFunctions/Log/Summable.lean
lemma Real.summable_log_one_add_of_summable {f : ι → ℝ} (hf : Summable f) : Summable (fun i : ι => log (1 + |f i|))
ι : Type u_1 f : ι → ℝ hf : Summable f this : Summable fun n => ofRealCLM (log (1 + |f n|)) ⊢ Summable fun i => log (1 + |f i|)
convert Complex.reCLM.summable this
no goals
4db2ca3d7bda0ab0
unitary.star_mem
Mathlib/Algebra/Star/Unitary.lean
theorem star_mem {U : R} (hU : U ∈ unitary R) : star U ∈ unitary R := ⟨by rw [star_star, mul_star_self_of_mem hU], by rw [star_star, star_mul_self_of_mem hU]⟩
R : Type u_1 inst✝¹ : Monoid R inst✝ : StarMul R U : R hU : U ∈ unitary R ⊢ star (star U) * star U = 1
rw [star_star, mul_star_self_of_mem hU]
no goals
0304e8c706770550
BitVec.toFin_not
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Lemmas.lean
theorem toFin_not (x : BitVec w) : (~~~x).toFin = x.toFin.rev
w : Nat x : BitVec w ⊢ ↑(~~~x).toFin = ↑x.toFin.rev
simp only [val_toFin, toNat_not, Fin.val_rev]
w : Nat x : BitVec w ⊢ 2 ^ w - 1 - x.toNat = 2 ^ w - (x.toNat + 1)
0ef361a5f5be1853
LaurentSeries.powerSeries_ext_subring
Mathlib/RingTheory/LaurentSeries.lean
theorem powerSeries_ext_subring : Subring.map (LaurentSeriesRingEquiv K).toRingHom (powerSeries_as_subring K) = ((idealX K).adicCompletionIntegers (RatFunc K)).toSubring
K : Type u_2 inst✝ : Field K ⊢ Subring.map (LaurentSeriesRingEquiv K).toRingHom (powerSeries_as_subring K) = (adicCompletionIntegers (RatFunc K) (idealX K)).toSubring
ext x
case h K : Type u_2 inst✝ : Field K x : RatFuncAdicCompl K ⊢ x ∈ Subring.map (LaurentSeriesRingEquiv K).toRingHom (powerSeries_as_subring K) ↔ x ∈ (adicCompletionIntegers (RatFunc K) (idealX K)).toSubring
db804111fcd80f5d
EquicontinuousAt.tendsto_of_mem_closure
Mathlib/Topology/UniformSpace/Equicontinuity.lean
theorem EquicontinuousAt.tendsto_of_mem_closure {l : Filter ι} {F : ι → X → α} {f : X → α} {s : Set X} {x : X} {z : α} (hF : EquicontinuousAt F x) (hf : Tendsto f (𝓝[s] x) (𝓝 z)) (hs : ∀ y ∈ s, Tendsto (F · y) l (𝓝 (f y))) (hx : x ∈ closure s) : Tendsto (F · x) l (𝓝 z)
ι : Type u_1 X : Type u_3 α : Type u_6 tX : TopologicalSpace X uα : UniformSpace α l : Filter ι F : ι → X → α f : X → α s : Set X x : X z : α hF : EquicontinuousAt F x hf : ∀ i ∈ 𝓤 α, ∀ᶠ (x : X) in 𝓝[s] x, f x ∈ {y | (y, z) ∈ id i} hs : ∀ y ∈ s, Tendsto (fun x => F x y) l (𝓝 (f y)) hx : x ∈ closure s ⊢ ∀ i ∈ 𝓤 α, ∀ᶠ (x_1 : ι) in l, F x_1 x ∈ {y | (y, z) ∈ id i}
intro U hU
ι : Type u_1 X : Type u_3 α : Type u_6 tX : TopologicalSpace X uα : UniformSpace α l : Filter ι F : ι → X → α f : X → α s : Set X x : X z : α hF : EquicontinuousAt F x hf : ∀ i ∈ 𝓤 α, ∀ᶠ (x : X) in 𝓝[s] x, f x ∈ {y | (y, z) ∈ id i} hs : ∀ y ∈ s, Tendsto (fun x => F x y) l (𝓝 (f y)) hx : x ∈ closure s U : Set (α × α) hU : U ∈ 𝓤 α ⊢ ∀ᶠ (x_1 : ι) in l, F x_1 x ∈ {y | (y, z) ∈ id U}
b75bfbc553aec3e3
MeasureTheory.integral_integral_swap_of_hasCompactSupport
Mathlib/MeasureTheory/Integral/Prod.lean
/-- A version of *Fubini theorem* for continuous functions with compact support: one may swap the order of integration with respect to locally finite measures. One does not assume that the measures are σ-finite, contrary to the usual Fubini theorem. -/ lemma integral_integral_swap_of_hasCompactSupport {f : X → Y → E} (hf : Continuous f.uncurry) (h'f : HasCompactSupport f.uncurry) {μ : Measure X} {ν : Measure Y} [IsFiniteMeasureOnCompacts μ] [IsFiniteMeasureOnCompacts ν] : ∫ x, (∫ y, f x y ∂ν) ∂μ = ∫ y, (∫ x, f x y ∂μ) ∂ν
E : Type u_3 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedSpace ℝ E X : Type u_5 Y : Type u_6 inst✝⁷ : TopologicalSpace X inst✝⁶ : TopologicalSpace Y inst✝⁵ : MeasurableSpace X inst✝⁴ : MeasurableSpace Y inst✝³ : OpensMeasurableSpace X inst✝² : OpensMeasurableSpace Y f : X → Y → E hf : Continuous (uncurry f) h'f : HasCompactSupport (uncurry f) μ : Measure X ν : Measure Y inst✝¹ : IsFiniteMeasureOnCompacts μ inst✝ : IsFiniteMeasureOnCompacts ν U : Set X := Prod.fst '' tsupport (uncurry f) this✝ : Fact (μ U < ⊤) V : Set Y := Prod.snd '' tsupport (uncurry f) this : Fact (ν V < ⊤) y : Y x : X hy : f x y ≠ 0 ⊢ y ∈ V
have : (x, y) ∈ Function.support f.uncurry := hy
E : Type u_3 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedSpace ℝ E X : Type u_5 Y : Type u_6 inst✝⁷ : TopologicalSpace X inst✝⁶ : TopologicalSpace Y inst✝⁵ : MeasurableSpace X inst✝⁴ : MeasurableSpace Y inst✝³ : OpensMeasurableSpace X inst✝² : OpensMeasurableSpace Y f : X → Y → E hf : Continuous (uncurry f) h'f : HasCompactSupport (uncurry f) μ : Measure X ν : Measure Y inst✝¹ : IsFiniteMeasureOnCompacts μ inst✝ : IsFiniteMeasureOnCompacts ν U : Set X := Prod.fst '' tsupport (uncurry f) this✝¹ : Fact (μ U < ⊤) V : Set Y := Prod.snd '' tsupport (uncurry f) this✝ : Fact (ν V < ⊤) y : Y x : X hy : f x y ≠ 0 this : (x, y) ∈ support (uncurry f) ⊢ y ∈ V
ab5aab42565633fa
IsLocalizedModule.subsingleton_iff_ker_eq_top
Mathlib/Algebra/Module/LocalizedModule/Basic.lean
lemma subsingleton_iff_ker_eq_top (S : Submonoid R) (g : M →ₗ[R] M') [IsLocalizedModule S g] : Subsingleton M' ↔ LinearMap.ker g = ⊤
R : Type u_1 inst✝⁵ : CommSemiring R M : Type u_2 M' : Type u_3 inst✝⁴ : AddCommMonoid M inst✝³ : AddCommMonoid M' inst✝² : Module R M inst✝¹ : Module R M' S : Submonoid R g : M →ₗ[R] M' inst✝ : IsLocalizedModule S g H : ⊤ ≤ LinearMap.ker g x : M' ⊢ x = 0
obtain ⟨⟨x, s⟩, rfl⟩ := IsLocalizedModule.mk'_surjective S g x
case intro.mk R : Type u_1 inst✝⁵ : CommSemiring R M : Type u_2 M' : Type u_3 inst✝⁴ : AddCommMonoid M inst✝³ : AddCommMonoid M' inst✝² : Module R M inst✝¹ : Module R M' S : Submonoid R g : M →ₗ[R] M' inst✝ : IsLocalizedModule S g H : ⊤ ≤ LinearMap.ker g x : M s : ↥S ⊢ Function.uncurry (mk' g) (x, s) = 0
f664477d3de20596
LinearIndependent.not_mem_span_image
Mathlib/LinearAlgebra/LinearIndependent/Basic.lean
theorem LinearIndependent.not_mem_span_image [Nontrivial R] (hv : LinearIndependent R v) {s : Set ι} {x : ι} (h : x ∉ s) : v x ∉ Submodule.span R (v '' s)
ι : Type u' R : Type u_2 M : Type u_4 v : ι → M inst✝³ : Semiring R inst✝² : AddCommMonoid M inst✝¹ : Module R M inst✝ : Nontrivial R hv : LinearIndependent R v s : Set ι x : ι h : x ∉ s ⊢ v x ∈ span R {v x}
exact mem_span_singleton_self (v x)
no goals
340d08fc4e0e9f77
Zsqrtd.nonnegg_neg_pos
Mathlib/NumberTheory/Zsqrtd/Basic.lean
theorem nonnegg_neg_pos {c d} : ∀ {a b : ℕ}, Nonnegg c d (-a) b ↔ SqLe a d b c | 0, b => ⟨by simp [SqLe, Nat.zero_le], fun _ => trivial⟩ | a + 1, b => by rw [← Int.negSucc_coe]; rfl
c d a b : ℕ ⊢ Nonnegg c d (-↑(a + 1)) ↑b ↔ SqLe (a + 1) d b c
rw [← Int.negSucc_coe]
c d a b : ℕ ⊢ Nonnegg c d (Int.negSucc a) ↑b ↔ SqLe (a + 1) d b c
3c378fb918c4dd58
MeasureTheory.Lp.cauchy_tendsto_of_tendsto
Mathlib/MeasureTheory/Function/LpSpace/Basic.lean
theorem cauchy_tendsto_of_tendsto {f : ℕ → α → E} (hf : ∀ n, AEStronglyMeasurable (f n) μ) (f_lim : α → E) {B : ℕ → ℝ≥0∞} (hB : ∑' i, B i ≠ ∞) (h_cau : ∀ N n m : ℕ, N ≤ n → N ≤ m → eLpNorm (f n - f m) p μ < B N) (h_lim : ∀ᵐ x : α ∂μ, Tendsto (fun n => f n x) atTop (𝓝 (f_lim x))) : atTop.Tendsto (fun n => eLpNorm (f n - f_lim) p μ) (𝓝 0)
α : Type u_1 E : Type u_4 m0 : MeasurableSpace α p : ℝ≥0∞ μ : Measure α inst✝ : NormedAddCommGroup E f : ℕ → α → E hf : ∀ (n : ℕ), AEStronglyMeasurable (f n) μ f_lim : α → E B : ℕ → ℝ≥0∞ hB : ∑' (i : ℕ), B i ≠ ⊤ h_cau : ∀ (N n m : ℕ), N ≤ n → N ≤ m → eLpNorm (f n - f m) p μ < B N h_lim : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => f n x) atTop (𝓝 (f_lim x)) ⊢ ∀ ε > 0, ∃ N, ∀ n ≥ N, eLpNorm (f n - f_lim) p μ ≤ ε
intro ε hε
α : Type u_1 E : Type u_4 m0 : MeasurableSpace α p : ℝ≥0∞ μ : Measure α inst✝ : NormedAddCommGroup E f : ℕ → α → E hf : ∀ (n : ℕ), AEStronglyMeasurable (f n) μ f_lim : α → E B : ℕ → ℝ≥0∞ hB : ∑' (i : ℕ), B i ≠ ⊤ h_cau : ∀ (N n m : ℕ), N ≤ n → N ≤ m → eLpNorm (f n - f m) p μ < B N h_lim : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => f n x) atTop (𝓝 (f_lim x)) ε : ℝ≥0∞ hε : ε > 0 ⊢ ∃ N, ∀ n ≥ N, eLpNorm (f n - f_lim) p μ ≤ ε
4d90eb848aa97c8b
HasDerivAt.lhopital_zero_atTop_on_Ioi
Mathlib/Analysis/Calculus/LHopital.lean
theorem lhopital_zero_atTop_on_Ioi (hff' : ∀ x ∈ Ioi a, HasDerivAt f (f' x) x) (hgg' : ∀ x ∈ Ioi a, HasDerivAt g (g' x) x) (hg' : ∀ x ∈ Ioi a, g' x ≠ 0) (hftop : Tendsto f atTop (𝓝 0)) (hgtop : Tendsto g atTop (𝓝 0)) (hdiv : Tendsto (fun x => f' x / g' x) atTop l) : Tendsto (fun x => f x / g x) atTop l
case intro.intro a : ℝ l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ x ∈ Ioi a, HasDerivAt f (f' x) x hgg' : ∀ x ∈ Ioi a, HasDerivAt g (g' x) x hg' : ∀ x ∈ Ioi a, g' x ≠ 0 hftop : Tendsto f atTop (𝓝 0) hgtop : Tendsto g atTop (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atTop l a' : ℝ haa' : a < a' ha' : 0 < a' fact1 : ∀ x ∈ Ioo 0 a'⁻¹, x ≠ 0 ⊢ Tendsto (fun x => f x / g x) atTop l
have fact2 (x) (hx : x ∈ Ioo 0 a'⁻¹) : a < x⁻¹ := lt_trans haa' ((lt_inv_comm₀ ha' hx.1).mpr hx.2)
case intro.intro a : ℝ l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ x ∈ Ioi a, HasDerivAt f (f' x) x hgg' : ∀ x ∈ Ioi a, HasDerivAt g (g' x) x hg' : ∀ x ∈ Ioi a, g' x ≠ 0 hftop : Tendsto f atTop (𝓝 0) hgtop : Tendsto g atTop (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atTop l a' : ℝ haa' : a < a' ha' : 0 < a' fact1 : ∀ x ∈ Ioo 0 a'⁻¹, x ≠ 0 fact2 : ∀ x ∈ Ioo 0 a'⁻¹, a < x⁻¹ ⊢ Tendsto (fun x => f x / g x) atTop l
fe483e021246704d
Real.lipschitzWith_toNNReal
Mathlib/Topology/MetricSpace/Lipschitz.lean
lemma _root_.Real.lipschitzWith_toNNReal : LipschitzWith 1 Real.toNNReal
⊢ LipschitzWith 1 Real.toNNReal
refine lipschitzWith_iff_dist_le_mul.mpr (fun x y ↦ ?_)
x y : ℝ ⊢ dist x.toNNReal y.toNNReal ≤ ↑1 * dist x y
b68dc70022d0a9e5
Finset.dens_lt_dens
Mathlib/Data/Finset/Density.lean
lemma dens_lt_dens (h : s ⊂ t) : dens s < dens t := div_lt_div_of_pos_right (mod_cast card_strictMono h) <| by cases isEmpty_or_nonempty α · simp [Subsingleton.elim s t, ssubset_irrfl] at h · exact mod_cast Fintype.card_pos
case inl α : Type u_2 inst✝ : Fintype α s t : Finset α h : s ⊂ t h✝ : IsEmpty α ⊢ 0 < ↑(Fintype.card α)
simp [Subsingleton.elim s t, ssubset_irrfl] at h
no goals
0a359651e498d6b7
HurwitzZeta.hurwitzZeta_neg_nat
Mathlib/NumberTheory/LSeries/HurwitzZetaValues.lean
theorem hurwitzZeta_neg_nat (hk : k ≠ 0) (hx : x ∈ Icc (0 : ℝ) 1) : hurwitzZeta x (-k) = -1 / (k + 1) * ((Polynomial.bernoulli (k + 1)).map (algebraMap ℚ ℂ)).eval (x : ℂ)
case intro.inr x : ℝ hx : x ∈ Icc 0 1 n : ℕ hk : 2 * n + 1 ≠ 0 ⊢ hurwitzZeta (↑x) (-↑(2 * n + 1)) = -1 / (↑(2 * n + 1) + 1) * Polynomial.eval (↑x) (Polynomial.map (algebraMap ℚ ℂ) (Polynomial.bernoulli (2 * n + 1 + 1)))
exact_mod_cast hurwitzZeta_one_sub_two_mul_nat (by omega : n + 1 ≠ 0) hx
no goals
fe75c9bfe836a847
MvQPF.wEquiv.abs'
Mathlib/Data/QPF/Multivariate/Constructions/Fix.lean
theorem wEquiv.abs' {α : TypeVec n} (x y : q.P.W α) (h : MvQPF.abs (q.P.wDest' x) = MvQPF.abs (q.P.wDest' y)) : WEquiv x y
n : ℕ F : TypeVec.{u} (n + 1) → Type u q : MvQPF F α : TypeVec.{u} n x y : (P F).W α a₀ : (P F).A f'₀ : (P F).drop.B a₀ ⟹ α f₀ : (P F).last.B a₀ → (P F).W α ⊢ ∀ (a : (P F).A) (f' : (P F).drop.B a ⟹ α) (f : (P F).last.B a → (P F).W α), abs ((P F).wDest' ((P F).wMk a₀ f'₀ f₀)) = abs ((P F).wDest' ((P F).wMk a f' f)) → WEquiv ((P F).wMk a₀ f'₀ f₀) ((P F).wMk a f' f)
intro a₁ f'₁ f₁
n : ℕ F : TypeVec.{u} (n + 1) → Type u q : MvQPF F α : TypeVec.{u} n x y : (P F).W α a₀ : (P F).A f'₀ : (P F).drop.B a₀ ⟹ α f₀ : (P F).last.B a₀ → (P F).W α a₁ : (P F).A f'₁ : (P F).drop.B a₁ ⟹ α f₁ : (P F).last.B a₁ → (P F).W α ⊢ abs ((P F).wDest' ((P F).wMk a₀ f'₀ f₀)) = abs ((P F).wDest' ((P F).wMk a₁ f'₁ f₁)) → WEquiv ((P F).wMk a₀ f'₀ f₀) ((P F).wMk a₁ f'₁ f₁)
83e1f4ec524846bd
SimpleGraph.Walk.support_tail_of_not_nil
Mathlib/Combinatorics/SimpleGraph/Walk.lean
lemma support_tail_of_not_nil (p : G.Walk u v) (hnp : ¬p.Nil) : p.tail.support = p.support.tail
V : Type u G : SimpleGraph V u v : V p : G.Walk u v hnp : ¬nil.Nil ⊢ nil.tail.support = nil.support.tail
simp only [nil_nil, not_true_eq_false] at hnp
no goals
048835719ff55772
PiNat.exists_lipschitz_retraction_of_isClosed
Mathlib/Topology/MetricSpace/PiNat.lean
theorem exists_lipschitz_retraction_of_isClosed {s : Set (∀ n, E n)} (hs : IsClosed s) (hne : s.Nonempty) : ∃ f : (∀ n, E n) → ∀ n, E n, (∀ x ∈ s, f x = x) ∧ range f = s ∧ LipschitzWith 1 f
E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : s.Nonempty f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else ⋯.some ⊢ ∃ f, (∀ x ∈ s, f x = x) ∧ range f = s ∧ LipschitzWith 1 f
have fs : ∀ x ∈ s, f x = x := fun x xs => by simp [f, xs]
E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : s.Nonempty f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else ⋯.some fs : ∀ x ∈ s, f x = x ⊢ ∃ f, (∀ x ∈ s, f x = x) ∧ range f = s ∧ LipschitzWith 1 f
bd92edd65dec8c2a
Ordinal.iSup_iterate_eq_nfp
Mathlib/SetTheory/Ordinal/FixedPoint.lean
theorem iSup_iterate_eq_nfp (f : Ordinal.{u} → Ordinal.{u}) (a : Ordinal.{u}) : ⨆ n : ℕ, f^[n] a = nfp f a
case a.a f : Ordinal.{u} → Ordinal.{u} a : Ordinal.{u} l : List Unit ⊢ f^[l.length] a ≤ ⨆ n, f^[n] a
exact Ordinal.le_iSup _ _
no goals
c976a13d93c931d3
Ideal.iUnion_minimalPrimes
Mathlib/RingTheory/Ideal/MinimalPrime/Localization.lean
theorem Ideal.iUnion_minimalPrimes : ⋃ p ∈ I.minimalPrimes, p = { x | ∃ y ∉ I.radical, x * y ∈ I.radical }
case h R : Type u_1 inst✝ : CommSemiring R I : Ideal R x : R ⊢ (∃ i ∈ I.minimalPrimes, x ∈ i) ↔ ∃ y ∉ I.radical, x * y ∈ I.radical
constructor
case h.mp R : Type u_1 inst✝ : CommSemiring R I : Ideal R x : R ⊢ (∃ i ∈ I.minimalPrimes, x ∈ i) → ∃ y ∉ I.radical, x * y ∈ I.radical case h.mpr R : Type u_1 inst✝ : CommSemiring R I : Ideal R x : R ⊢ (∃ y ∉ I.radical, x * y ∈ I.radical) → ∃ i ∈ I.minimalPrimes, x ∈ i
c2bb79363c5fb210
List.idxOf_lt_length
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Find.lean
theorem idxOf_lt_length [BEq α] [LawfulBEq α] {l : List α} (h : a ∈ l) : l.idxOf a < l.length
case cons.inr α : Type u_1 a : α inst✝¹ : BEq α inst✝ : LawfulBEq α x : α xs : List α ih : a ∈ xs → idxOf a xs < xs.length h : a ∈ xs ⊢ idxOf a (x :: xs) < (x :: xs).length
simp only [idxOf_cons, cond_eq_if, beq_iff_eq, length_cons]
case cons.inr α : Type u_1 a : α inst✝¹ : BEq α inst✝ : LawfulBEq α x : α xs : List α ih : a ∈ xs → idxOf a xs < xs.length h : a ∈ xs ⊢ (if (x == a) = true then 0 else idxOf a xs + 1) < xs.length + 1
c1e63f121277a338
Turing.mem_eval
Mathlib/Computability/PostTuringMachine.lean
theorem mem_eval {σ} {f : σ → Option σ} {a b} : b ∈ eval f a ↔ Reaches f a b ∧ f b = none
case refine_2.refine_1 σ : Type u_1 f : σ → Option σ a b : σ x✝ : Reaches f a b ∧ f b = none h₁ : Reaches f a b h₂ : f b = none ⊢ Sum.inl b ∈ Part.some (none.elim (Sum.inl b) Sum.inr)
apply Part.mem_some
no goals
f40442f1b60c5272
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.nodup_insertRatUnits
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/RatAddResult.lean
theorem nodup_insertRatUnits {n : Nat} (f : DefaultFormula n) (hf : f.ratUnits = #[] ∧ f.assignments.size = n) (units : CNF.Clause (PosFin n)) : ∀ i : Fin (f.insertRatUnits units).1.ratUnits.size, ∀ j : Fin (f.insertRatUnits units).1.ratUnits.size, i ≠ j → (f.insertRatUnits units).1.ratUnits[i] ≠ (f.insertRatUnits units).1.ratUnits[j]
n : Nat f : DefaultFormula n hf : f.ratUnits = #[] ∧ f.assignments.size = n units : CNF.Clause (PosFin n) i j : Fin (f.insertRatUnits units).fst.ratUnits.size i_ne_j : i ≠ j ⊢ (f.insertRatUnits units).fst.ratUnits[i] ≠ (f.insertRatUnits units).fst.ratUnits[j]
rcases hi : (insertRatUnits f units).fst.ratUnits[i] with ⟨li, bi⟩
case mk n : Nat f : DefaultFormula n hf : f.ratUnits = #[] ∧ f.assignments.size = n units : CNF.Clause (PosFin n) i j : Fin (f.insertRatUnits units).fst.ratUnits.size i_ne_j : i ≠ j li : PosFin n bi : Bool hi : (f.insertRatUnits units).fst.ratUnits[i] = (li, bi) ⊢ (li, bi) ≠ (f.insertRatUnits units).fst.ratUnits[j]
17810904ccd7a629
UniformSpace.Completion.coe_inv
Mathlib/Topology/Algebra/UniformField.lean
theorem coe_inv (x : K) : (x : hat K)⁻¹ = ((x⁻¹ : K) : hat K)
case pos K : Type u_1 inst✝³ : Field K inst✝² : UniformSpace K inst✝¹ : TopologicalDivisionRing K inst✝ : CompletableTopField K x : K h : x = 0 ⊢ (if ↑0 = 0 then 0 else (↑0).hatInv) = ↑0
norm_cast
case pos K : Type u_1 inst✝³ : Field K inst✝² : UniformSpace K inst✝¹ : TopologicalDivisionRing K inst✝ : CompletableTopField K x : K h : x = 0 ⊢ (if 0 = 0 then 0 else hatInv 0) = 0
5b9fafd0a1cb698a
Representation.asModuleEquiv_symm_map_smul
Mathlib/RepresentationTheory/Basic.lean
theorem asModuleEquiv_symm_map_smul (r : k) (x : V) : ρ.asModuleEquiv.symm (r • x) = algebraMap k (MonoidAlgebra k G) r • ρ.asModuleEquiv.symm x
k : Type u_1 G : Type u_2 V : Type u_3 inst✝³ : CommSemiring k inst✝² : Monoid G inst✝¹ : AddCommMonoid V inst✝ : Module k V ρ : Representation k G V r : k x : V ⊢ ρ.asModuleEquiv.symm (r • x) = (algebraMap k (MonoidAlgebra k G)) r • ρ.asModuleEquiv.symm x
apply_fun ρ.asModuleEquiv
k : Type u_1 G : Type u_2 V : Type u_3 inst✝³ : CommSemiring k inst✝² : Monoid G inst✝¹ : AddCommMonoid V inst✝ : Module k V ρ : Representation k G V r : k x : V ⊢ ρ.asModuleEquiv (ρ.asModuleEquiv.symm (r • x)) = ρ.asModuleEquiv ((algebraMap k (MonoidAlgebra k G)) r • ρ.asModuleEquiv.symm x)
a6bfa9f1544d58ca
LightCondensed.hom_ext
Mathlib/Condensed/Light/Basic.lean
@[ext] lemma hom_ext {X Y : LightCondensed.{u} C} (f g : X ⟶ Y) (h : ∀ S, f.val.app S = g.val.app S) : f = g
case h C : Type w inst✝ : Category.{v, w} C X Y : LightCondensed C f g : X ⟶ Y h : ∀ (S : LightProfiniteᵒᵖ), f.val.app S = g.val.app S ⊢ f.val = g.val
ext
case h.w.h C : Type w inst✝ : Category.{v, w} C X Y : LightCondensed C f g : X ⟶ Y h : ∀ (S : LightProfiniteᵒᵖ), f.val.app S = g.val.app S x✝ : LightProfiniteᵒᵖ ⊢ f.val.app x✝ = g.val.app x✝
e7235b0140c3a65c
bdd_le_mul_tendsto_zero
Mathlib/Topology/Algebra/Order/Field.lean
theorem bdd_le_mul_tendsto_zero {f g : α → 𝕜} {b B : 𝕜} (hb : ∀ᶠ x in l, b ≤ f x) (hB : ∀ᶠ x in l, f x ≤ B) (hg : Tendsto g l (𝓝 0)) : Tendsto (fun x ↦ f x * g x) l (𝓝 0)
𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 b B : 𝕜 hb : ∀ᶠ (x : α) in l, b ≤ f x hB : ∀ᶠ (x : α) in l, f x ≤ B hg : Tendsto g l (𝓝 0) C : 𝕜 := |b| ⊔ |B| hbC : -C ≤ b ⊢ Tendsto (fun x => f x * g x) l (𝓝 0)
have hBC : B ≤ C := le_max_of_le_right (le_abs_self B)
𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 b B : 𝕜 hb : ∀ᶠ (x : α) in l, b ≤ f x hB : ∀ᶠ (x : α) in l, f x ≤ B hg : Tendsto g l (𝓝 0) C : 𝕜 := |b| ⊔ |B| hbC : -C ≤ b hBC : B ≤ C ⊢ Tendsto (fun x => f x * g x) l (𝓝 0)
bf00d207f0c8be3d
Subalgebra.induction_on_adjoin
Mathlib/RingTheory/Adjoin/FG.lean
theorem induction_on_adjoin [IsNoetherian R A] (P : Subalgebra R A → Prop) (base : P ⊥) (ih : ∀ (S : Subalgebra R A) (x : A), P S → P (Algebra.adjoin R (insert x S))) (S : Subalgebra R A) : P S
case intro.refine_2 R : Type u A : Type v inst✝³ : CommSemiring R inst✝² : Semiring A inst✝¹ : Algebra R A inst✝ : IsNoetherian R A P : Subalgebra R A → Prop base : P ⊥ ih : ∀ (S : Subalgebra R A) (x : A), P S → P (Algebra.adjoin R (insert x ↑S)) t✝ : Finset A x : A t : Finset A a✝ : x ∉ t h : P (Algebra.adjoin R ↑t) ⊢ P (Algebra.adjoin R (insert x ↑t))
simpa only [Algebra.adjoin_insert_adjoin] using ih _ x h
no goals
4474d702e34f7b7b
nndist_div_left
Mathlib/Topology/MetricSpace/IsometricSMul.lean
theorem nndist_div_left [Group G] [PseudoMetricSpace G] [IsometricSMul G G] [IsometricSMul Gᵐᵒᵖ G] (a b c : G) : nndist (a / b) (a / c) = nndist b c
G : Type v inst✝³ : Group G inst✝² : PseudoMetricSpace G inst✝¹ : IsometricSMul G G inst✝ : IsometricSMul Gᵐᵒᵖ G a b c : G ⊢ nndist (a / b) (a / c) = nndist b c
simp [div_eq_mul_inv]
no goals
dc1791f46d7fd205
MeasureTheory.mul_le_addHaar_image_of_lt_det
Mathlib/MeasureTheory/Function/Jacobian.lean
theorem mul_le_addHaar_image_of_lt_det (A : E →L[ℝ] E) {m : ℝ≥0} (hm : (m : ℝ≥0∞) < ENNReal.ofReal |A.det|) : ∀ᶠ δ in 𝓝[>] (0 : ℝ≥0), ∀ (s : Set E) (f : E → E), ApproximatesLinearOn f A s δ → (m : ℝ≥0∞) * μ s ≤ μ (f '' s)
case neg.h E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : FiniteDimensional ℝ E inst✝² : MeasurableSpace E inst✝¹ : BorelSpace E μ : Measure E inst✝ : μ.IsAddHaarMeasure A : E →L[ℝ] E m : ℝ≥0 hm : ↑m < ENNReal.ofReal |A.det| mpos : 0 < m hA : A.det ≠ 0 B : E ≃L[ℝ] E := A.toContinuousLinearEquivOfDetNeZero hA I : ENNReal.ofReal |(↑B.symm).det| < ↑m⁻¹ δ₀ : ℝ≥0 δ₀pos : 0 < δ₀ hδ₀ : ∀ (t : Set E) (g : E → E), ApproximatesLinearOn g (↑B.symm) t δ₀ → μ (g '' t) ≤ ↑m⁻¹ * μ t h : ¬Subsingleton E ⊢ 0 < ‖↑B.symm‖₊⁻¹
simpa only [h, false_or, inv_pos] using B.subsingleton_or_nnnorm_symm_pos
no goals
22f8afc7492fca52
Behrend.ceil_lt_mul
Mathlib/Combinatorics/Additive/AP/Three/Behrend.lean
theorem ceil_lt_mul {x : ℝ} (hx : 50 / 19 ≤ x) : (⌈x⌉₊ : ℝ) < 1.38 * x
x : ℝ hx : 50 / 19 ≤ x this : 1.38 = 69 / 50 ⊢ 0 < 50 / 19
norm_num1
no goals
8877374224ca2a05
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.unsat_of_encounteredBoth
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/RupAddSound.lean
theorem unsat_of_encounteredBoth {n : Nat} (c : DefaultClause n) (assignment : Array Assignment) : reduce c assignment = encounteredBoth → Unsatisfiable (PosFin n) assignment
case h_3 n : Nat c : DefaultClause n assignment : Array Assignment hb : reducedToEmpty = encounteredBoth → Unsatisfiable (PosFin n) assignment l : Literal (PosFin n) x✝ : l ∈ c.clause acc✝ : ReduceResult (PosFin n) l'✝ : Literal (PosFin n) ih : reducedToUnit l'✝ = encounteredBoth → Unsatisfiable (PosFin n) assignment h : (match assignment[l.fst.val]! with | pos => if l.snd = true then reducedToNonunit else reducedToUnit l'✝ | neg => if (!l.snd) = true then reducedToNonunit else reducedToUnit l'✝ | both => encounteredBoth | unassigned => reducedToNonunit) = encounteredBoth ⊢ Unsatisfiable (PosFin n) assignment
split at h
case h_3.h_1 n : Nat c : DefaultClause n assignment : Array Assignment hb : reducedToEmpty = encounteredBoth → Unsatisfiable (PosFin n) assignment l : Literal (PosFin n) x✝¹ : l ∈ c.clause acc✝ : ReduceResult (PosFin n) l'✝ : Literal (PosFin n) ih : reducedToUnit l'✝ = encounteredBoth → Unsatisfiable (PosFin n) assignment x✝ : Assignment heq✝ : assignment[l.fst.val]! = pos h : (if l.snd = true then reducedToNonunit else reducedToUnit l'✝) = encounteredBoth ⊢ Unsatisfiable (PosFin n) assignment case h_3.h_2 n : Nat c : DefaultClause n assignment : Array Assignment hb : reducedToEmpty = encounteredBoth → Unsatisfiable (PosFin n) assignment l : Literal (PosFin n) x✝¹ : l ∈ c.clause acc✝ : ReduceResult (PosFin n) l'✝ : Literal (PosFin n) ih : reducedToUnit l'✝ = encounteredBoth → Unsatisfiable (PosFin n) assignment x✝ : Assignment heq✝ : assignment[l.fst.val]! = neg h : (if (!l.snd) = true then reducedToNonunit else reducedToUnit l'✝) = encounteredBoth ⊢ Unsatisfiable (PosFin n) assignment case h_3.h_3 n : Nat c : DefaultClause n assignment : Array Assignment hb : reducedToEmpty = encounteredBoth → Unsatisfiable (PosFin n) assignment l : Literal (PosFin n) x✝¹ : l ∈ c.clause acc✝ : ReduceResult (PosFin n) l'✝ : Literal (PosFin n) ih : reducedToUnit l'✝ = encounteredBoth → Unsatisfiable (PosFin n) assignment x✝ : Assignment heq✝ : assignment[l.fst.val]! = both h : encounteredBoth = encounteredBoth ⊢ Unsatisfiable (PosFin n) assignment case h_3.h_4 n : Nat c : DefaultClause n assignment : Array Assignment hb : reducedToEmpty = encounteredBoth → Unsatisfiable (PosFin n) assignment l : Literal (PosFin n) x✝¹ : l ∈ c.clause acc✝ : ReduceResult (PosFin n) l'✝ : Literal (PosFin n) ih : reducedToUnit l'✝ = encounteredBoth → Unsatisfiable (PosFin n) assignment x✝ : Assignment heq✝ : assignment[l.fst.val]! = unassigned h : reducedToNonunit = encounteredBoth ⊢ Unsatisfiable (PosFin n) assignment
a1d564233a90b7cf
ProbabilityTheory.Kernel.iIndepFun.indepFun_finset
Mathlib/Probability/Independence/Kernel.lean
theorem iIndepFun.indepFun_finset (S T : Finset ι) (hST : Disjoint S T) (hf_Indep : iIndepFun m f κ μ) (hf_meas : ∀ i, Measurable (f i)) : IndepFun (fun a (i : S) => f i a) (fun a (i : T) => f i a) κ μ
case inr.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : Kernel α Ω μ : Measure α β : ι → Type u_8 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ μ hf_meas : ∀ (i : ι), Measurable (f i) hμ : μ ≠ 0 η : Kernel α Ω η_eq : ⇑κ =ᶠ[ae μ] ⇑η hη : IsMarkovKernel η πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := univ.pi '' univ.pi fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t ∈ πSβ, (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) MeasurableSpace.pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := univ.pi '' univ.pi fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t ∈ πTβ, (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) MeasurableSpace.pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : univ.pi sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : univ.pi sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) ⊢ ∀ᵐ (a : α) ∂μ, (η a) ((fun a i => f (↑i) a) ⁻¹' univ.pi sets_s ∩ (fun a i => f (↑i) a) ⁻¹' univ.pi sets_t) = (η a) ((fun a i => f (↑i) a) ⁻¹' univ.pi sets_s) * (η a) ((fun a i => f (↑i) a) ⁻¹' univ.pi sets_t)
let sets_s' : ∀ i : ι, Set (β i) := fun i => dite (i ∈ S) (fun hi => sets_s ⟨i, hi⟩) fun _ => Set.univ
case inr.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : Kernel α Ω μ : Measure α β : ι → Type u_8 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ μ hf_meas : ∀ (i : ι), Measurable (f i) hμ : μ ≠ 0 η : Kernel α Ω η_eq : ⇑κ =ᶠ[ae μ] ⇑η hη : IsMarkovKernel η πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := univ.pi '' univ.pi fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t ∈ πSβ, (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) MeasurableSpace.pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := univ.pi '' univ.pi fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t ∈ πTβ, (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) MeasurableSpace.pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : univ.pi sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : univ.pi sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s ⟨i, hi⟩ else univ ⊢ ∀ᵐ (a : α) ∂μ, (η a) ((fun a i => f (↑i) a) ⁻¹' univ.pi sets_s ∩ (fun a i => f (↑i) a) ⁻¹' univ.pi sets_t) = (η a) ((fun a i => f (↑i) a) ⁻¹' univ.pi sets_s) * (η a) ((fun a i => f (↑i) a) ⁻¹' univ.pi sets_t)
0da746b38698ee90
MeasureTheory.integrableOn_Ioi_deriv_of_nonneg
Mathlib/MeasureTheory/Integral/IntegralEqImproper.lean
theorem integrableOn_Ioi_deriv_of_nonneg (hcont : ContinuousWithinAt g (Ici a) a) (hderiv : ∀ x ∈ Ioi a, HasDerivAt g (g' x) x) (g'pos : ∀ x ∈ Ioi a, 0 ≤ g' x) (hg : Tendsto g atTop (𝓝 l)) : IntegrableOn g' (Ioi a)
g g' : ℝ → ℝ a l : ℝ hcont✝ : ContinuousWithinAt g (Ici a) a hderiv : ∀ x ∈ Ioi a, HasDerivAt g (g' x) x g'pos : ∀ x ∈ Ioi a, 0 ≤ g' x hg : Tendsto g atTop (𝓝 l) hcont : ContinuousOn g (Ici a) x : ℝ hx : x ∈ Ioi a h'x : a ≤ id x ⊢ g x - g a = ∫ (y : ℝ) in a..id x, g' y
symm
g g' : ℝ → ℝ a l : ℝ hcont✝ : ContinuousWithinAt g (Ici a) a hderiv : ∀ x ∈ Ioi a, HasDerivAt g (g' x) x g'pos : ∀ x ∈ Ioi a, 0 ≤ g' x hg : Tendsto g atTop (𝓝 l) hcont : ContinuousOn g (Ici a) x : ℝ hx : x ∈ Ioi a h'x : a ≤ id x ⊢ ∫ (y : ℝ) in a..id x, g' y = g x - g a
1f10c323da5db2cd
Finset.mem_disjUnion
Mathlib/Data/Finset/Disjoint.lean
theorem mem_disjUnion {α s t h a} : a ∈ @disjUnion α s t h ↔ a ∈ s ∨ a ∈ t
α : Type u_4 s t : Finset α h : Disjoint s t a : α ⊢ a ∈ s.disjUnion t h ↔ a ∈ s ∨ a ∈ t
rcases s with ⟨⟨s⟩⟩
case mk.mk α : Type u_4 t : Finset α a : α val✝ : Multiset α s : List α nodup✝ : Nodup (Quot.mk (⇑(List.isSetoid α)) s) h : Disjoint { val := Quot.mk (⇑(List.isSetoid α)) s, nodup := nodup✝ } t ⊢ a ∈ { val := Quot.mk (⇑(List.isSetoid α)) s, nodup := nodup✝ }.disjUnion t h ↔ a ∈ { val := Quot.mk (⇑(List.isSetoid α)) s, nodup := nodup✝ } ∨ a ∈ t
fc34f1adb93d2bd5
List.Sorted.rel_of_mem_take_of_mem_drop
Mathlib/Data/List/Sort.lean
theorem Sorted.rel_of_mem_take_of_mem_drop {l : List α} (h : List.Sorted r l) {k : ℕ} {x y : α} (hx : x ∈ List.take k l) (hy : y ∈ List.drop k l) : r x y
α : Type u r : α → α → Prop l : List α h : Sorted r l k : ℕ x y : α hx : x ∈ take k l hy : y ∈ drop k l ⊢ r x y
obtain ⟨iy, hiy, rfl⟩ := getElem_of_mem hy
case intro.intro α : Type u r : α → α → Prop l : List α h : Sorted r l k : ℕ x : α hx : x ∈ take k l iy : ℕ hiy : iy < (drop k l).length hy : (drop k l)[iy] ∈ drop k l ⊢ r x (drop k l)[iy]
4811c6bb66aed68d
AkraBazziRecurrence.eventually_atTop_sumTransform_ge
Mathlib/Computability/AkraBazzi/AkraBazzi.lean
lemma eventually_atTop_sumTransform_ge : ∃ c > 0, ∀ᶠ (n : ℕ) in atTop, ∀ i, c * g n ≤ sumTransform (p a b) g (r i n) n
α : Type u_1 inst✝¹ : Fintype α T : ℕ → ℝ g : ℝ → ℝ a b : α → ℝ r : α → ℕ → ℕ inst✝ : Nonempty α R : AkraBazziRecurrence T g a b r ⊢ ∃ c > 0, ∀ᶠ (n : ℕ) in atTop, ∀ (i : α), c * g ↑n ≤ sumTransform (p a b) g (r i n) n
obtain ⟨c₁, hc₁_mem, hc₁⟩ := R.exists_eventually_const_mul_le_r
case intro.intro α : Type u_1 inst✝¹ : Fintype α T : ℕ → ℝ g : ℝ → ℝ a b : α → ℝ r : α → ℕ → ℕ inst✝ : Nonempty α R : AkraBazziRecurrence T g a b r c₁ : ℝ hc₁_mem : c₁ ∈ Set.Ioo 0 1 hc₁ : ∀ᶠ (n : ℕ) in atTop, ∀ (i : α), c₁ * ↑n ≤ ↑(r i n) ⊢ ∃ c > 0, ∀ᶠ (n : ℕ) in atTop, ∀ (i : α), c * g ↑n ≤ sumTransform (p a b) g (r i n) n
aff66f2e59f80837
Grp.SurjectiveOfEpiAuxs.agree
Mathlib/Algebra/Category/Grp/EpiMono.lean
theorem agree : f.hom.range = { x | h x = g x }
case refine_1 A B : Grp f : A ⟶ B b : ↑B ⊢ b ∈ ↑(Hom.hom f).range → b ∈ {x | h x = g x}
rintro ⟨a, rfl⟩
case refine_1.intro A B : Grp f : A ⟶ B a : ↑A ⊢ (Hom.hom f) a ∈ {x | h x = g x}
7120fb23e969ffac