license: cc-by-4.0
dataset_info:
features:
- name: image1_path
dtype: string
- name: image2_path
dtype: string
- name: image1s_path
dtype: string
- name: image2s_path
dtype: string
- name: corruption
dtype: string
- name: split
dtype: string
- name: scene_id
dtype: string
- name: frame_leftright
dtype: string
- name: frame_forwardbackward
dtype: string
- name: index
dtype: int32
- name: sample_type
dtype: string
splits:
- name: test
num_bytes: 34406100
num_examples: 158800
download_size: 2757713
dataset_size: 34406100
configs:
- config_name: default
data_files:
- split: test
path: data/test-*
language:
- en
tags:
- computer-vision
- robustness
- image-corruption
- optical-flow
- scene-flow
- stereo
size_categories:
- 100K<n<1M
RobustSpring: Benchmarking Robustness to Image Corruptions for Optical Flow, Scene Flow and Stereo
This dataset provides structured metadata only for the RobustSpring dataset. All image samples are referenced by relative file paths, and must be paired with local image data downloaded separately from the public release site.
- Dataset on the Hub: jeschmalfuss/RobustSpring
- Image Data: RobustSpring
For the related research see
RobustSpring: Benchmarking Robustness to Image Corruptions for Optical Flow, Scene Flow and Stereo
Jenny Schmalfuss*, Victor Oei*, Lukas Mehl, Madlen Bartsch, Shashank Agnihotri, Margret Keuper, Andrés Bruhn
https://doi.org/10.48550/arXiv.2505.09368
RobustSpring is an image-corruption dataset for optical flow, scene flow and stereo, that applies 20 different image corruption to the test split of the Spring dataset. The combined Spring and RobustSpring website is at spring-benchmark.org
Dataset Overview
Each sample in this dataset represents one data sample on which to predict:
- Optical Flow
- Scene Flow
- Stereo Disparity
The dataset contains only file paths to local image files. The raw image data must be downloaded separately.
Download Image Data
Please download the raw image data zips files from:
https://doi.org/10.18419/DARUS-5047
After downloading:
- Extract all contents to a local
data/
folder. - Ensure the folder structure looks like:
/data/
brightness/
test/
scene_0003/
frame_left/
frame_left_0001.png
frame_left_0002.png
...
frame_right/
frame_right_0001.png
frame_right_0002.png
...
scene_0019/
frame_left/
...
frame_right/
...
scene_0028
...
contrast/
test/
scene_0003/
scene_0019/
...
defocus_blur/
test/
scene_0003/
scene_0019/
...
...
Dataset Structure
Each sample in the dataset includes:
Field | Type | Description |
---|---|---|
sample_type |
string |
"optic-flow" , "scene-flow" or "stereo" |
corruption |
string |
Image corruption type |
split |
string |
Dataset split. test for all data. |
scene_id |
string |
Spring's scene ID |
frame_leftright |
string |
If data is centered on left or right stereo frame |
frame_forwardbackward |
string |
For optic- and scene-flow. Forward or backward in time. |
index |
int32 |
Data sample index. Own indices for optical flow, scene flow and stereo. |
image1_path |
string |
Relative path to pivot image |
image2_path |
string |
Relative path to pivot image at next time step (OF & SF only) |
image1s_path |
string |
Relative path to stereo of pivot image (SF and S only) |
image2s_path |
string |
Relative path to stereo of image at next time step (SF only) |
No image content is stored. Paths only.
How to Use
1. Install Dependencies
pip install datasets Pillow
2. Load the Dataset
from datasets import load_dataset
dataset = load_dataset("jeschmalfuss/RobustSpring", split="test") # all samples
3. Filtering by Data Type
You can filter the dataset to only retrieve the type of samples you're interested in: optical flow, scene flow or stereo.
dataset_optic_flow = dataset.filter(lambda x: x["sample_type"] == "optic-flow")
dataset_scene_flow = dataset.filter(lambda x: x["sample_type"] == "scene-flow")
dataset_stereo = dataset.filter(lambda x: x["sample_type"] == "stereo")
4. Set Local Path to Images
import os
from PIL import Image
base_path = "/absolute/path/to/data" # where you extracted the downloaded zip
sample = dataset_optic_flow[0]
img1 = Image.open(os.path.join(base_path, sample["image1_path"]))
img2 = Image.open(os.path.join(base_path, sample["image2_path"]))
License
The RobustSpring dataset is licensed under CC-BY-4.0