|
--- |
|
license: cc-by-4.0 |
|
dataset_info: |
|
features: |
|
- name: image1_path |
|
dtype: string |
|
- name: image2_path |
|
dtype: string |
|
- name: image1s_path |
|
dtype: string |
|
- name: image2s_path |
|
dtype: string |
|
- name: corruption |
|
dtype: string |
|
- name: split |
|
dtype: string |
|
- name: scene_id |
|
dtype: string |
|
- name: frame_leftright |
|
dtype: string |
|
- name: frame_forwardbackward |
|
dtype: string |
|
- name: index |
|
dtype: int32 |
|
- name: sample_type |
|
dtype: string |
|
splits: |
|
- name: test |
|
num_bytes: 34406100 |
|
num_examples: 158800 |
|
download_size: 2757713 |
|
dataset_size: 34406100 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: test |
|
path: data/test-* |
|
language: |
|
- en |
|
tags: |
|
- computer-vision |
|
- robustness |
|
- image-corruption |
|
- optical-flow |
|
- scene-flow |
|
- stereo |
|
size_categories: |
|
- 100K<n<1M |
|
--- |
|
|
|
# RobustSpring: Benchmarking Robustness to Image Corruptions for Optical Flow, Scene Flow and Stereo |
|
|
|
This dataset provides structured **metadata only** for the [RobustSpring](https://spring-benchmark.org) dataset. All image samples are referenced by relative file paths, and must be paired with local image data downloaded separately from the public release site. |
|
|
|
* **Dataset on the Hub**: [jeschmalfuss/RobustSpring](https://huggingface.co/datasets/jeschmalfuss/RobustSpring) |
|
* **Image Data**: [RobustSpring](https://doi.org/10.18419/DARUS-5047) |
|
|
|
For the related [research](https://www.arxiv.org/abs/2505.09368) see |
|
``` |
|
RobustSpring: Benchmarking Robustness to Image Corruptions for Optical Flow, Scene Flow and Stereo |
|
Jenny Schmalfuss*, Victor Oei*, Lukas Mehl, Madlen Bartsch, Shashank Agnihotri, Margret Keuper, Andrés Bruhn |
|
https://doi.org/10.48550/arXiv.2505.09368 |
|
``` |
|
RobustSpring is an image-corruption dataset for optical flow, scene flow and stereo, that applies 20 different image corruption to the test split of the [Spring](https://spring-benchmark.org) dataset. |
|
The combined Spring and RobustSpring website is at [spring-benchmark.org](https://spring-benchmark.org) |
|
|
|
--- |
|
|
|
## Dataset Overview |
|
|
|
Each sample in this dataset represents one data sample on which to predict: |
|
|
|
- **Optical Flow** |
|
- **Scene Flow** |
|
- **Stereo Disparity** |
|
|
|
The dataset contains only **file paths** to local image files. The raw image data must be downloaded separately. |
|
|
|
--- |
|
|
|
## Download Image Data |
|
|
|
Please download the raw image data zips files from: |
|
|
|
**https://doi.org/10.18419/DARUS-5047** |
|
|
|
After downloading: |
|
1. Extract all contents to a local `data/` folder. |
|
2. Ensure the folder structure looks like: |
|
|
|
``` |
|
/data/ |
|
brightness/ |
|
test/ |
|
scene_0003/ |
|
frame_left/ |
|
frame_left_0001.png |
|
frame_left_0002.png |
|
... |
|
frame_right/ |
|
frame_right_0001.png |
|
frame_right_0002.png |
|
... |
|
scene_0019/ |
|
frame_left/ |
|
... |
|
frame_right/ |
|
... |
|
scene_0028 |
|
... |
|
contrast/ |
|
test/ |
|
scene_0003/ |
|
scene_0019/ |
|
... |
|
defocus_blur/ |
|
test/ |
|
scene_0003/ |
|
scene_0019/ |
|
... |
|
... |
|
``` |
|
|
|
--- |
|
|
|
## Dataset Structure |
|
|
|
Each sample in the dataset includes: |
|
|
|
| Field | Type | Description | |
|
|--------------- |----------|------------------------------------------------- | |
|
| `sample_type` | `string` | `"optic-flow"`, `"scene-flow"` or `"stereo"` | |
|
| `corruption` | `string` | Image corruption type | |
|
| `split` | `string` | Dataset split. `test` for all data. | |
|
| `scene_id` | `string` | Spring's scene ID | |
|
| `frame_leftright` | `string` | If data is centered on left or right stereo frame | |
|
| `frame_forwardbackward` | `string` | For optic- and scene-flow. Forward or backward in time. | |
|
| `index` | `int32` | Data sample index. Own indices for optical flow, scene flow and stereo. | |
|
| `image1_path` | `string` | Relative path to pivot image | |
|
| `image2_path` | `string` | Relative path to pivot image at next time step (OF & SF only) | |
|
| `image1s_path` | `string` | Relative path to stereo of pivot image (SF and S only) | |
|
| `image2s_path` | `string` | Relative path to stereo of image at next time step (SF only) | |
|
|
|
No image content is stored. Paths only. |
|
|
|
--- |
|
|
|
## How to Use |
|
|
|
### 1. Install Dependencies |
|
|
|
```bash |
|
pip install datasets Pillow |
|
``` |
|
|
|
### 2. Load the Dataset |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
dataset = load_dataset("jeschmalfuss/RobustSpring", split="test") # all samples |
|
``` |
|
|
|
## 3. Filtering by Data Type |
|
|
|
You can filter the dataset to only retrieve the type of samples you're interested in: optical flow, scene flow or stereo. |
|
|
|
|
|
```python |
|
dataset_optic_flow = dataset.filter(lambda x: x["sample_type"] == "optic-flow") |
|
dataset_scene_flow = dataset.filter(lambda x: x["sample_type"] == "scene-flow") |
|
dataset_stereo = dataset.filter(lambda x: x["sample_type"] == "stereo") |
|
``` |
|
|
|
### 4. Set Local Path to Images |
|
|
|
```python |
|
import os |
|
from PIL import Image |
|
|
|
base_path = "/absolute/path/to/data" # where you extracted the downloaded zip |
|
|
|
sample = dataset_optic_flow[0] |
|
img1 = Image.open(os.path.join(base_path, sample["image1_path"])) |
|
img2 = Image.open(os.path.join(base_path, sample["image2_path"])) |
|
``` |
|
|
|
|
|
--- |
|
|
|
|
|
## License |
|
|
|
The RobustSpring dataset is licensed under CC-BY-4.0 |
|
|