python_code
stringlengths
0
4.04M
repo_name
stringlengths
7
58
file_path
stringlengths
5
147
from .components import LinearActivation, Activation, Normalization, DropoutNd
hyena-dna-main
src/models/nn/__init__.py
""" Utility wrappers around modules to let them handle Args and extra arguments """ import inspect from functools import wraps import torch from torch import nn def wrap_kwargs(f): """ Given a callable f that can consume some named arguments, wrap it with a kwargs that passes back any unused args EXAMPLES -------- Basic usage: def foo(x, y=None): return x wrap_kwargs(foo)(0, y=1, z=2) == (0, {'z': 2}) -------- The wrapped function can return its own argument dictionary, which gets merged with the new kwargs. def foo(x, y=None): return x, {} wrap_kwargs(foo)(0, y=1, z=2) == (0, {'z': 2}) def foo(x, y=None): return x, {"y": y, "z": None} wrap_kwargs(foo)(0, y=1, z=2) == (0, {'y': 1, 'z': 2}) -------- The wrapped function can have its own kwargs parameter: def foo(x, y=None, **kw_args): return x, {} wrap_kwargs(foo)(0, y=1, z=2) == (0, {}) -------- Partial functions and modules work automatically: class Module: def forward(self, x, y=0): return x, {"y": y+1} m = Module() wrap_kwargs(m.forward)(0, y=1, z=2) == (0, {'y': 2, 'z': 2}) """ sig = inspect.signature(f) # Check if f already has kwargs has_kwargs = any([ param.kind == inspect.Parameter.VAR_KEYWORD for param in sig.parameters.values() ]) if has_kwargs: @wraps(f) def f_kwargs(*args, **kwargs): y = f(*args, **kwargs) if isinstance(y, tuple) and isinstance(y[-1], dict): return y else: return y, {} else: param_kwargs = inspect.Parameter("kwargs", kind=inspect.Parameter.VAR_KEYWORD) sig_kwargs = inspect.Signature(parameters=list(sig.parameters.values())+[param_kwargs]) @wraps(f) def f_kwargs(*args, **kwargs): bound = sig_kwargs.bind(*args, **kwargs) if "kwargs" in bound.arguments: kwargs = bound.arguments.pop("kwargs") else: kwargs = {} y = f(**bound.arguments) if isinstance(y, tuple) and isinstance(y[-1], dict): return *y[:-1], {**y[-1], **kwargs} else: return y, kwargs return f_kwargs def discard_kwargs(f): if f is None: return None f_kwargs = wrap_kwargs(f) @wraps(f) def f_(*args, **kwargs): return f_kwargs(*args, **kwargs)[0] return f_ def PassthroughSequential(*modules): """Special Sequential module that chains kwargs. Semantics are the same as nn.Sequential, with extra convenience features: - Discard None modules - Flatten inner Sequential modules - In case with 0 or 1 Module, rename the class for ease of inspection """ def flatten(module): if isinstance(module, nn.Sequential): return sum([flatten(m) for m in module], []) else: return [module] modules = flatten(nn.Sequential(*modules)) modules = [module for module in modules if module if not None] class Sequential(nn.Sequential): def forward(self, x, **kwargs): for layer in self: x, kwargs = wrap_kwargs(layer.forward)(x, **kwargs) return x, kwargs def step(self, x, **kwargs): for layer in self: fn = getattr(layer, "step", layer.forward) x, kwargs = wrap_kwargs(fn)(x, **kwargs) return x, kwargs if len(modules) == 0: Sequential.__name__ = "Identity" elif len(modules) == 1: Sequential.__name__ = type(modules[0]).__name__ return Sequential(*modules)
hyena-dna-main
src/models/nn/utils.py
""" Defines flexible gating mechanisms based on ideas from LSSL paper and UR-LSTM paper https://arxiv.org/abs/1910.09890 """ import torch import torch.nn as nn class Gate(nn.Module): """ Implements gating mechanisms. TODO update this with more detailed description with reference to LSSL paper when it's on arxiv Mechanisms: N - No gate G - Standard sigmoid gate UR - Uniform refine gates R - Refine gate FS - Forward discretization, Sigmoid activation [equivalent to G] BE - Backward discretization, Exp activation [equivalent to G] BR - Backward discretization, Relu activation TE - Trapezoid discretization, Exp activation TR - Trapezoid discretization, Relu activation TS - Trapezoid discretization, Sigmoid activation (0 to 2) """ def __init__(self, size, preact_ctor, preact_args, mechanism='N'): super().__init__() self.size = size self.mechanism = mechanism if self.mechanism == 'N': pass elif self.mechanism in ['G', 'FS', 'BE', 'BR', 'TE', 'TR', 'TS', 'ZE', 'ZR', 'ZS']: self.W_g = preact_ctor(*preact_args) elif self.mechanism in ['U', 'UT']: self.W_g = preact_ctor(*preact_args) b_g_unif = torch.empty(size) torch.nn.init.uniform_(b_g_unif, 1./self.size, 1.-1./self.size) self.b_g = nn.Parameter(torch.log(1./b_g_unif-1.).detach(), requires_grad=False) elif self.mechanism == 'UR': self.W_g = preact_ctor(*preact_args) self.W_r = preact_ctor(*preact_args) b_g_unif = torch.empty(size) torch.nn.init.uniform_(b_g_unif, 1./self.size, 1.-1./self.size) self.b_g = nn.Parameter(torch.log(1./b_g_unif-1.).detach(), requires_grad=False) elif self.mechanism == 'R': self.W_g = preact_ctor(*preact_args) self.W_r = preact_ctor(*preact_args) elif self.mechanism in ['GT']: self.W_g = preact_ctor(*preact_args) else: assert False, f'Gating type {self.mechanism} is not supported.' def forward(self, *inputs): if self.mechanism == 'N': return 1.0 if self.mechanism == 'G': g_preact = self.W_g(*inputs) g = torch.sigmoid(g_preact) if self.mechanism == 'U': g_preact = self.W_g(*inputs) + self.b_g g = torch.sigmoid(g_preact) elif self.mechanism == 'UR': g_preact = self.W_g(*inputs) + self.b_g g = torch.sigmoid(g_preact) r = torch.sigmoid(self.W_r(*inputs)) g = (1-2*r)*g**2 + 2*r*g elif self.mechanism == 'R': g_preact = self.W_g(*inputs) g = torch.sigmoid(g_preact) r = torch.sigmoid(self.W_r(*inputs)) g = (1-2*r)*g**2 + 2*r*g elif self.mechanism == 'UT': g_preact = self.W_g(*inputs) + self.b_g g = torch.sigmoid(g_preact) r = g g = (1-2*r)*g**2 + 2*r*g elif self.mechanism == 'GT': g_preact = self.W_g(*inputs) g = torch.sigmoid(g_preact) r = g g = (1-2*r)*g**2 + 2*r*g else: g_preact = self.W_g(*inputs) # if self.mechanism[1] == 'S': # g = torch.sigmoid(g_preact) # elif self.mechanism[1] == 'E': # g = torch.exp(g_preact) # elif self.mechanism[1] == 'R': # g = torch.relu(g_preact) if self.mechanism == 'FS': g = torch.sigmoid(g_preact) g = self.forward_diff(g) elif self.mechanism == 'BE': g = torch.exp(g_preact) g = self.backward_diff(g) elif self.mechanism == 'BR': g = torch.relu(g_preact) g = self.backward_diff(g) elif self.mechanism == 'TS': g = 2 * torch.sigmoid(g_preact) g = self.trapezoid(g) elif self.mechanism == 'TE': g = torch.exp(g_preact) g = self.trapezoid(g) elif self.mechanism == 'TR': g = torch.relu(g_preact) g = self.trapezoid(g) elif self.mechanism == 'ZE': g = torch.exp(g_preact) g = self.zoh(g) elif self.mechanism == 'ZR': g = torch.relu(g_preact) g = self.zoh(g) elif self.mechanism == 'ZS': g = torch.sigmoid(g_preact) g = self.zoh(g) return g def forward_diff(self, x): return x def backward_diff(self, x): return x / (1+x) def trapezoid(self, x): return x / (1 + x/2) def zoh(self, x): return 1 - torch.exp(-x)
hyena-dna-main
src/models/nn/gate.py
"""Implementations of several types of Discrete Sin/Cosine Transforms with various reductions to FFT. Currently not used by S4 """ import torch import torch.nn as nn import numpy as np import scipy.fft from einops import rearrange, repeat class DCT(nn.Module): """ Reductions adapted from https://dsp.stackexchange.com/questions/2807/fast-cosine-transform-via-fft """ def __init__(self, N, norm='backward'): super().__init__() self.N = N # Materialize DCT matrix P = scipy.fft.dct(np.eye(N), norm=norm, type=2).T P = torch.tensor(P, dtype=torch.float) self.register_buffer('P', P) # TODO take care of normalization Q = np.exp(-1j * np.pi / (2 * self.N) * np.arange(self.N)) Q = torch.tensor(Q, dtype=torch.cfloat) self.register_buffer('Q', Q) # half shift def forward(self, x, mode=2): if mode == 0: return self.forward_dense(x) elif mode == 1: return self.forward_n(x) elif mode == 2: return self.forward_2n(x) elif mode == 4: return self.forward_4n(x) def forward_dense(self, x): """ Baseline DCT type II - matmul by DCT matrix """ y = (self.P.to(x) @ x.unsqueeze(-1)).squeeze(-1) return y def forward_4n(self, x): """ DCT type II - reduction to FFT size 4N """ assert self.N == x.shape[-1] x = torch.cat([x, x.flip(-1)], dim=-1) z = torch.zeros_like(x) x = torch.stack([z, x], dim=-1) x = x.view(x.shape[:-2] + (-1,)) y = torch.fft.fft(x) y = y[..., :self.N] if torch.is_complex(x): return y else: return torch.real(y) def forward_2n(self, x): """ DCT type II - reduction to FFT size 2N mirrored The reduction from the DSP forum is not quite correct in the complex input case. halfshift(FFT[a, b, c, d, d, c, b, a]) -> [A, B, C, D, 0, -D, -C, -B] In the case of real input, the intermediate step after FFT has form [A, B, C, D, 0, D*, C*, B*] """ assert self.N == x.shape[-1] x = torch.cat([x, x.flip(-1)], dim=-1) y = torch.fft.fft(x)[..., :self.N] y = y * self.Q if torch.is_complex(x): return y else: return torch.real(y) def forward_n(self, x): """ DCT type II - reduction to size N """ assert self.N == x.shape[-1] x = torch.cat([x[..., 0::2], x[..., 1::2].flip(-1)], dim=-1) y = torch.fft.fft(x) y = y * 2 * self.Q if torch.is_complex(x): y = torch.cat([y[..., :1], (y[..., 1:] + 1j * y[..., 1:].flip(-1)) / 2], dim=-1) # TODO in-place sum else: y = torch.real(y) return y class IDCT(nn.Module): def __init__(self, N, norm='backward'): super().__init__() self.N = N # Materialize DCT matrix P = np.linalg.inv(scipy.fft.dct(np.eye(N), norm=norm, type=2).T) P = torch.tensor(P, dtype=torch.float) self.register_buffer('P', P) # TODO take care of normalization Q = np.exp(-1j * np.pi / (2 * self.N) * np.arange(2*self.N)) Q = torch.tensor(Q, dtype=torch.cfloat) self.register_buffer('Q', Q) # half shift def forward(self, x, mode=2): if mode == 0: return self.forward_dense(x) elif mode == 1: return self.forward_n(x) elif mode == 2: return self.forward_2n(x) elif mode == 4: return self.forward_4n(x) def forward_dense(self, x): """ Baseline DCT type II - matmul by DCT matrix """ y = (self.P.to(x) @ x.unsqueeze(-1)).squeeze(-1) return y def forward_4n(self, x): """ DCT type II - reduction to FFT size 4N """ assert self.N == x.shape[-1] z = x.new_zeros(x.shape[:-1] + (1,)) x = torch.cat([x, z, -x.flip(-1), -x[..., 1:], z, x[..., 1:].flip(-1)], dim=-1) y = torch.fft.ifft(x) y = y[..., 1:2*self.N:2] if torch.is_complex(x): return y else: return torch.real(y) def forward_2n(self, x): """ DCT type II - reduction to FFT size 2N mirrored """ assert self.N == x.shape[-1] z = x.new_zeros(x.shape[:-1] + (1,)) x = torch.cat([x, z, -x[..., 1:].flip(-1)], dim=-1) x = x / self.Q y = torch.fft.ifft(x)[..., :self.N] if torch.is_complex(x): return y else: return torch.real(y) def forward_n(self, x): """ DCT type II - reduction to size N """ assert self.N == x.shape[-1] raise NotImplementedError # Straightforward by inverting operations of DCT-II reduction def test_dct_ii(): N = 8 dct = DCT(N) baseline = dct.forward_dense methods = [dct.forward_4n, dct.forward_2n, dct.forward_n] # Real case print("DCT-II Real input") x = torch.randn(1, N) y = baseline(x) print(y) for fn in methods: y_ = fn(x) print("err", torch.norm(y-y_)) # Complex case print("DCT-II Complex input") x = torch.randn(N) + 1j * torch.randn(N) y = baseline(x) print(y) for fn in methods: y_ = fn(x) print("err", torch.norm(y-y_)) def test_dct_iii(): N = 8 dct = IDCT(N) baseline = dct.forward_dense methods = [dct.forward_4n, dct.forward_2n] # Real case print("DCT-III Real input") x = torch.randn(1, N) y = baseline(x) print(y) for fn in methods: y_ = fn(x) print("err", torch.norm(y-y_)) # Complex case print("DCT-III Complex input") # x = torch.randn(N) + 1j * torch.randn(N) x = 1j * torch.ones(N) y = baseline(x) print(y) for fn in methods: y_ = fn(x) print("err", torch.norm(y-y_))
hyena-dna-main
src/models/nn/dxt.py
""" Utility nn components, in particular handling activations, initializations, and normalization layers """ from functools import partial import math from typing import ForwardRef import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange from opt_einsum import contract def stochastic_depth(input: torch.tensor, p: float, mode: str, training: bool = True): """ Implements the Stochastic Depth from `"Deep Networks with Stochastic Depth" <https://arxiv.org/abs/1603.09382>`_ used for randomly dropping residual branches of residual architectures. Args: input (Tensor[N, ...]): The input tensor or arbitrary dimensions with the first one being its batch i.e. a batch with ``N`` rows. p (float): probability of the input to be zeroed. mode (str): ``"batch"`` or ``"row"``. ``"batch"`` randomly zeroes the entire input, ``"row"`` zeroes randomly selected rows from the batch. training: apply stochastic depth if is ``True``. Default: ``True`` Returns: Tensor[N, ...]: The randomly zeroed tensor. """ if p < 0.0 or p > 1.0: raise ValueError("drop probability has to be between 0 and 1, but got {}".format(p)) if mode not in ["batch", "row"]: raise ValueError("mode has to be either 'batch' or 'row', but got {}".format(mode)) if not training or p == 0.0: return input survival_rate = 1.0 - p if mode == "row": size = [input.shape[0]] + [1] * (input.ndim - 1) else: size = [1] * input.ndim noise = torch.empty(size, dtype=input.dtype, device=input.device) noise = noise.bernoulli_(survival_rate).div_(survival_rate) return input * noise class StochasticDepth(nn.Module): """ See :func:`stochastic_depth`. """ def __init__(self, p: float, mode: str) -> None: # TODO(karan): need to upgrade to torchvision==0.11.0 to use StochasticDepth directly # from torchvision.ops import StochasticDepth super().__init__() self.p = p self.mode = mode def forward(self, input): return stochastic_depth(input, self.p, self.mode, self.training) def __repr__(self) -> str: tmpstr = self.__class__.__name__ + '(' tmpstr += 'p=' + str(self.p) tmpstr += ', mode=' + str(self.mode) tmpstr += ')' return tmpstr class DropoutNd(nn.Module): def __init__(self, p: float = 0.5, tie=True, transposed=True): """ tie: tie dropout mask across sequence lengths (Dropout1d/2d/3d) """ super().__init__() if p < 0 or p >= 1: raise ValueError("dropout probability has to be in [0, 1), " "but got {}".format(p)) self.p = p self.tie = tie self.transposed = transposed self.binomial = torch.distributions.binomial.Binomial(probs=1-self.p) def forward(self, X): """ X: (batch, dim, lengths...) """ if self.training: if not self.transposed: X = rearrange(X, 'b d ... -> b ... d') # binomial = torch.distributions.binomial.Binomial(probs=1-self.p) # This is incredibly slow mask_shape = X.shape[:2] + (1,)*(X.ndim-2) if self.tie else X.shape # mask = self.binomial.sample(mask_shape) mask = torch.rand(*mask_shape, device=X.device) < 1.-self.p X = X * mask * (1.0/(1-self.p)) if not self.transposed: X = rearrange(X, 'b ... d -> b d ...') return X return X def Activation(activation=None, size=None, dim=-1): if activation in [ None, 'id', 'identity', 'linear' ]: return nn.Identity() elif activation == 'tanh': return nn.Tanh() elif activation == 'relu': return nn.ReLU() elif activation == 'gelu': return nn.GELU() elif activation in ['swish', 'silu']: return nn.SiLU() elif activation == 'glu': return nn.GLU(dim=dim) elif activation == 'sigmoid': return nn.Sigmoid() elif activation == 'softplus': return nn.Softplus() elif activation in ['sqrelu', 'relu2']: return SquaredReLU() elif activation == 'laplace': return Laplace() elif activation == 'ln': return TransposedLN(dim) else: raise NotImplementedError("hidden activation '{}' is not implemented".format(activation)) def get_initializer(name, activation=None): if activation in [ None, 'id', 'identity', 'linear' ]: nonlinearity = 'linear' elif activation in ['relu', 'tanh', 'sigmoid']: nonlinearity = activation elif activation in ['gelu', 'swish', 'silu']: nonlinearity = 'relu' # Close to ReLU so approximate with ReLU's gain else: raise NotImplementedError(f"get_initializer: activation {activation} not supported") if name == 'uniform': initializer = partial(torch.nn.init.kaiming_uniform_, nonlinearity=nonlinearity) elif name == 'normal': initializer = partial(torch.nn.init.kaiming_normal_, nonlinearity=nonlinearity) elif name == 'xavier': initializer = torch.nn.init.xavier_normal_ elif name == 'zero': initializer = partial(torch.nn.init.constant_, val=0) elif name == 'one': initializer = partial(torch.nn.init.constant_, val=1) else: raise NotImplementedError(f"get_initializer: initializer type {name} not supported") return initializer def LinearActivation( d_input, d_output, bias=True, zero_bias_init=False, transposed=False, initializer=None, activation=None, activate=False, # Apply activation as part of this module weight_norm=False, **kwargs, ): """ Returns a linear nn.Module with control over axes order, initialization, and activation """ # Construct core module # linear_cls = partial(nn.Conv1d, kernel_size=1) if transposed else nn.Linear linear_cls = TransposedLinear if transposed else nn.Linear if activation == 'glu': d_output *= 2 linear = linear_cls(d_input, d_output, bias=bias, **kwargs) # Initialize weight if initializer is not None: get_initializer(initializer, activation)(linear.weight) # Initialize bias if bias and zero_bias_init: nn.init.zeros_(linear.bias) # Weight norm if weight_norm: linear = nn.utils.weight_norm(linear) if activate and activation is not None: activation = Activation(activation, d_output, dim=1 if transposed else -1) linear = nn.Sequential(linear, activation) return linear class SquaredReLU(nn.Module): def forward(self, x): # return F.relu(x)**2 return torch.square(F.relu(x)) # Could this be faster? def laplace(x, mu=0.707107, sigma=0.282095): x = (x - mu).div(sigma * math.sqrt(2.0)) return 0.5 * (1.0 + torch.erf(x)) class Laplace(nn.Module): def __init__(self, mu=0.707107, sigma=0.282095): super().__init__() self.mu = mu self.sigma = sigma def forward(self, x): return laplace(x, mu=self.mu, sigma=self.sigma) class TransposedLinear(nn.Module): """ Linear module on the second-to-last dimension Assumes shape (B, D, L), where L can be 1 or more axis """ def __init__(self, d_input, d_output, bias=True): super().__init__() self.weight = nn.Parameter(torch.empty(d_output, d_input)) nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5)) # nn.Linear default init # nn.init.kaiming_uniform_(self.weight, nonlinearity='linear') # should be equivalent if bias: self.bias = nn.Parameter(torch.empty(d_output)) bound = 1 / math.sqrt(d_input) nn.init.uniform_(self.bias, -bound, bound) setattr(self.bias, "_optim", {"weight_decay": 0.0}) else: self.bias = 0.0 def forward(self, x): num_axis = len(x.shape[2:]) # num_axis in L, for broadcasting bias y = contract('b u ..., v u -> b v ...', x, self.weight) + self.bias.view(-1, *[1]*num_axis) return y class TransposedLN(nn.Module): """ LayerNorm module over second dimension Assumes shape (B, D, L), where L can be 1 or more axis This is slow and a dedicated CUDA/Triton implementation shuld provide substantial end-to-end speedup """ def __init__(self, d, scalar=True): super().__init__() self.scalar = scalar if self.scalar: self.m = nn.Parameter(torch.zeros(1)) self.s = nn.Parameter(torch.ones(1)) setattr(self.m, "_optim", {"weight_decay": 0.0}) setattr(self.s, "_optim", {"weight_decay": 0.0}) else: self.ln = nn.LayerNorm(d) def forward(self, x): if self.scalar: # calc. stats over D dim / channels s, m = torch.std_mean(x, dim=1, unbiased=False, keepdim=True) y = (self.s/s) * (x-m+self.m) else: # move channel to last axis, apply layer_norm, then move channel back to second axis _x = self.ln(rearrange(x, 'b d ... -> b ... d')) y = rearrange(_x, 'b ... d -> b d ...') return y class Normalization(nn.Module): def __init__( self, d, transposed=False, # Length dimension is -1 or -2 _name_='layer', **kwargs ): super().__init__() self.transposed = transposed self._name_ = _name_ if _name_ == 'layer': self.channel = True # Normalize over channel dimension if self.transposed: self.norm = TransposedLN(d, **kwargs) else: self.norm = nn.LayerNorm(d, **kwargs) elif _name_ == 'instance': self.channel = False norm_args = {'affine': False, 'track_running_stats': False} norm_args.update(kwargs) self.norm = nn.InstanceNorm1d(d, **norm_args) # (True, True) performs very poorly elif _name_ == 'batch': self.channel = False norm_args = {'affine': True, 'track_running_stats': True} norm_args.update(kwargs) self.norm = nn.BatchNorm1d(d, **norm_args) elif _name_ == 'group': self.channel = False self.norm = nn.GroupNorm(1, d, *kwargs) elif _name_ == 'none': self.channel = True self.norm = nn.Identity() else: raise NotImplementedError def forward(self, x): # Handle higher dimension logic shape = x.shape if self.transposed: x = rearrange(x, 'b d ... -> b d (...)') else: x = rearrange(x, 'b ... d -> b (...)d ') # The cases of LayerNorm / no normalization are automatically handled in all cases # Instance/Batch Norm work automatically with transposed axes if self.channel or self.transposed: x = self.norm(x) else: x = x.transpose(-1, -2) x = self.norm(x) x = x.transpose(-1, -2) x = x.view(shape) return x def step(self, x, **kwargs): assert self._name_ in ["layer", "none"] if self.transposed: x = x.unsqueeze(-1) x = self.forward(x) if self.transposed: x = x.squeeze(-1) return x class TSNormalization(nn.Module): def __init__(self, method, horizon): super().__init__() self.method = method self.horizon = horizon def forward(self, x): # x must be BLD if self.method == 'mean': self.scale = x.abs()[:, :-self.horizon].mean(dim=1)[:, None, :] return x / self.scale elif self.method == 'last': self.scale = x.abs()[:, -self.horizon-1][:, None, :] return x / self.scale return x class TSInverseNormalization(nn.Module): def __init__(self, method, normalizer): super().__init__() self.method = method self.normalizer = normalizer def forward(self, x): if self.method == 'mean' or self.method == 'last': return x * self.normalizer.scale return x class ReversibleInstanceNorm1dInput(nn.Module): def __init__(self, d, transposed=False): super().__init__() # BLD if transpoed is False, otherwise BDL self.transposed = transposed self.norm = nn.InstanceNorm1d(d, affine=True, track_running_stats=False) def forward(self, x): # Means, stds if not self.transposed: x = x.transpose(-1, -2) self.s, self.m = torch.std_mean(x, dim=-1, unbiased=False, keepdim=True) self.s += 1e-4 x = (x - self.m) / self.s # x = self.norm.weight.unsqueeze(-1) * x + self.norm.bias.unsqueeze(-1) if not self.transposed: return x.transpose(-1, -2) return x class ReversibleInstanceNorm1dOutput(nn.Module): def __init__(self, norm_input): super().__init__() self.transposed = norm_input.transposed self.weight = norm_input.norm.weight self.bias = norm_input.norm.bias self.norm_input = norm_input def forward(self, x): if not self.transposed: x = x.transpose(-1, -2) # x = (x - self.bias.unsqueeze(-1))/self.weight.unsqueeze(-1) x = x * self.norm_input.s + self.norm_input.m if not self.transposed: return x.transpose(-1, -2) return x
hyena-dna-main
src/models/nn/components.py
# Copyright (c) 2023, Tri Dao, Dan Fu. # Simplified, mostly standalone version of LongConvLM for synthetics. import math from functools import partial from collections import namedtuple import torch import torch.nn as nn import torch.nn.functional as F from torchvision.ops import StochasticDepth from einops import rearrange from src.utils import instantiate import src.utils.registry as registry class LinearResidual(nn.Linear): """Wrap nn.Linear to return the residual as well. For compatibility with FusedDense. """ def forward(self, input: torch.Tensor) -> torch.Tensor: return super().forward(input), input class SelfAttention(nn.Module): """Implement the scaled dot product attention with softmax. Arguments --------- softmax_scale: The temperature to use for the softmax attention. (default: 1/sqrt(d_keys) where d_keys is computed at runtime) attention_dropout: The dropout rate to apply to the attention (default: 0.0) """ def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0): super().__init__() self.causal = causal self.softmax_scale = softmax_scale self.dropout_p = attention_dropout def forward(self, qkv, causal=None, key_padding_mask=None): """Implements the multihead softmax attention. Arguments --------- qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) causal: if passed, will override self.causal key_padding_mask: boolean mask to apply to the attention weights. True means to keep, False means to mask out. (B, S) """ batch_size, seqlen = qkv.shape[0], qkv.shape[1] causal = self.causal if causal is None else causal q, k, v = qkv.unbind(dim=2) softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1]) scores = torch.einsum('bthd,bshd->bhts', q, k * softmax_scale) if key_padding_mask is not None: padding_mask = torch.full((batch_size, seqlen), -10000.0, dtype=scores.dtype, device=scores.device) padding_mask.masked_fill_(key_padding_mask, 0.0) # TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess) scores = scores + rearrange(padding_mask, 'b s -> b 1 1 s') if causal: # "triu_tril_cuda_template" not implemented for 'BFloat16' # So we have to construct the mask in float causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1) # TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess) scores = scores + causal_mask.to(dtype=scores.dtype) attention = torch.softmax(scores, dim=-1, dtype=v.dtype) attention_drop = F.dropout(attention, self.dropout_p if self.training else 0.0) output = torch.einsum('bhts,bshd->bthd', attention_drop, v) return output class MHA(nn.Module): """Multi-head self-attention and cross-attention """ def __init__(self, embed_dim, num_heads, bias=True, dropout=0.0, softmax_scale=None, causal=False, layer_idx=None, dwconv=False,return_residual=False,device=None, dtype=None) -> None: """ return_residual: whether to return the input x along with the output. This is for performance reason: for post-norm architecture, returning the input allows us to fuse the backward of nn.Linear with the residual connection. """ factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() self.embed_dim = embed_dim self.causal = causal self.layer_idx = layer_idx self.dwconv = dwconv self.return_residual = return_residual self.num_heads = num_heads assert self.embed_dim % num_heads == 0, "self.kdim must be divisible by num_heads" self.head_dim = self.embed_dim // num_heads linear_cls = nn.Linear linear_resid_cls = LinearResidual inner_attn_cls = SelfAttention if not self.return_residual: self.Wqkv = linear_cls(embed_dim, 3 * embed_dim, bias=bias, **factory_kwargs) else: self.Wqkv = linear_resid_cls(embed_dim, 3 * embed_dim, bias=bias, **factory_kwargs) if self.dwconv: self.dwconv_qkv = nn.Conv1d(3 * embed_dim, 3 * embed_dim, kernel_size=3, padding=2, groups=3 * embed_dim) self.inner_attn = inner_attn_cls(causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout) # output projection always have the bias (for now) self.out_proj = linear_cls(embed_dim, embed_dim, **factory_kwargs) def forward(self, x, key_padding_mask=None, **kwargs): """ Arguments: x: (batch, seqlen, hidden_dim) (where hidden_dim = num heads * head dim) if cu_seqlens is None and max_seqlen is None, else (total, hidden_dim) where total is the is the sum of the sequence lengths in the batch. cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths of the sequences in the batch, used to index into x. Only applicable when using FlashAttention. max_seqlen: int. Maximum sequence length in the batch. key_padding_mask: boolean mask, True means to keep, False means to mask out. (batch, seqlen). Only applicable when not using FlashAttention. mixer_subset: for cross-attention only. If not None, will take a subset of x before applying the query projection. Useful for e.g., ViT where we only care about the CLS token in the last layer. inference_params: for generation. Adapted from Megatron-LM (and Apex) https://github.com/NVIDIA/apex/blob/3ff1a10f72ec07067c4e44759442329804ac5162/apex/transformer/testing/standalone_transformer_lm.py#L470 """ kwargs = ({'key_padding_mask': key_padding_mask, **kwargs}) if not self.return_residual: qkv = self.Wqkv(x) else: qkv, x = self.Wqkv(x) if self.dwconv: qkv = rearrange(self.dwconv_qkv(rearrange(qkv, 'b s d -> b d s'))[..., :-2], 'b d s -> b s d').contiguous() qkv = rearrange(qkv, '... (three h d) -> ... three h d', three=3, d=self.head_dim) context = self.inner_attn(qkv, **kwargs) out = self.out_proj(rearrange(context, '... h d -> ... (h d)')) return out if not self.return_residual else (out, x) class GPT2Embeddings(nn.Module): def __init__(self, embed_dim, vocab_size, max_position_embeddings, padding_idx=None, word_embed_proj_dim=None, device=None, dtype=None): """ If max_position_embeddings <= 0, there's no position embeddings If word_embe_proj_dim is not None (e.g., OPT-350m), we embed to that dimension the project up to embed_dim """ factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() if word_embed_proj_dim is None: self.word_embeddings = nn.Embedding(vocab_size, embed_dim, padding_idx=padding_idx, **factory_kwargs) self.project_in = None else: self.word_embeddings = nn.Embedding(vocab_size, word_embed_proj_dim, padding_idx=padding_idx, **factory_kwargs) self.project_in = nn.Linear(word_embed_proj_dim, embed_dim, bias=False, **factory_kwargs) self.max_position_embeddings = max_position_embeddings if self.max_position_embeddings > 0: self.position_embeddings = nn.Embedding(max_position_embeddings, embed_dim, **factory_kwargs) def forward(self, input_ids, position_ids=None): """ input_ids: (batch, seqlen) position_ids: (batch, seqlen) """ batch_size, seqlen = input_ids.shape embeddings = self.word_embeddings(input_ids) if self.project_in is not None: embeddings = self.project_in(embeddings) if self.max_position_embeddings > 0: if position_ids is None: position_ids = torch.arange(seqlen, dtype=torch.long, device=input_ids.device) position_embeddings = self.position_embeddings(position_ids) embeddings = embeddings + position_embeddings return embeddings class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, activation=F.gelu, return_residual=False, device=None, dtype=None): """ From https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/modules/mlp.py """ factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.return_residual = return_residual self.fc1 = nn.Linear(in_features, hidden_features, **factory_kwargs) self.activation = activation self.fc2 = nn.Linear(hidden_features, out_features, **factory_kwargs) def forward(self, x): y = self.fc1(x) y = self.activation(y) y = self.fc2(y) return y if not self.return_residual else (y, x) class Block(nn.Module): def __init__(self, dim, mixer_cls=None, mlp_cls=None, norm_cls=nn.LayerNorm, dropout_cls=nn.Dropout, prenorm=True, resid_dropout1=0., resid_dropout2=0., drop_path1=0., drop_path2=0., return_residual=False, residual_in_fp32=False): """ From https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/modules/block.py For prenorm=True, this Block has a slightly different structure compared to a regular prenorm Transformer block. The standard block is: LN -> MHA -> Dropout -> Add -> LN -> MLP -> Dropout -> Add. [Ref: https://arxiv.org/abs/2002.04745] Here we have: Dropout -> Add -> LN -> MHA -> Dropout -> Add -> LN -> MLP, returning both the hidden_states (output of the MLP) and the residual. This is for performance reasons, as we can fuse the dropout, add and LayerNorm. The residual needs to be provided (except for the very first block). For prenorm=False, this Block has the same structure as a regular postnorm Transformer block: MHA -> Dropout -> Add -> LN -> MLP -> Dropout -> Add -> LN. return_residual: whether each of the sub-layers (mixer and mlp) will return the residual. This is for performance reason: for post-norm architecture, returning the input allows us to fuse the backward of nn.Linear with the residual connection. """ super().__init__() self.prenorm = prenorm self.return_residual = return_residual self.residual_in_fp32 = residual_in_fp32 if self.residual_in_fp32: assert self.prenorm, 'residual_in_fp32 is only compatible with prenorm=True' if mixer_cls is None: mixer_cls = partial(MHA, num_heads=dim // 64) if mlp_cls is None: mlp_cls = partial(Mlp, hidden_features=4 * dim) self.mixer = mixer_cls(dim) self.dropout1 = dropout_cls(resid_dropout1) self.drop_path1 = StochasticDepth(drop_path1, mode='row') self.norm1 = norm_cls(dim) self.mlp = mlp_cls(dim) if not isinstance(self.mlp, nn.Identity): self.dropout2 = dropout_cls(resid_dropout2) self.drop_path2 = StochasticDepth(drop_path2, mode='row') self.norm2 = norm_cls(dim) def forward(self, hidden_states, residual = None, mixer_subset=None, mixer_kwargs=None): r"""Pass the input through the encoder layer. Args: hidden_states: the sequence to the encoder layer (required). residual: if postnorm, residual=None, If prenorm, hidden_states = Attn/MLP(LN(residual)) mixer_subset: for cross-attention only. If not None, will take a subset of x before applying the query projection. Useful for e.g., ViT where we only care about the CLS token in the last layer. """ if self.prenorm: dropped = self.drop_path1(self.dropout1(hidden_states)) residual = (dropped + residual) if residual is not None else dropped hidden_states = self.norm1(residual.to(dtype=self.norm1.weight.dtype)) if self.residual_in_fp32: residual = residual.to(torch.float32) if mixer_kwargs is None: mixer_kwargs = {} if mixer_subset is not None: mixer_kwargs['mixer_subset'] = mixer_subset hidden_states = self.mixer(hidden_states, **mixer_kwargs) if mixer_subset is not None: residual = residual[:, mixer_subset] if not isinstance(self.mlp, nn.Identity): dropped = self.drop_path2(self.dropout2(hidden_states)) residual = (dropped + residual) if residual is not None else dropped hidden_states = self.norm2(residual.to(dtype=self.norm2.weight.dtype)) if self.residual_in_fp32: residual = residual.to(torch.float32) hidden_states = self.mlp(hidden_states) return hidden_states, residual else: assert residual is None mixer_out = self.mixer( hidden_states, **(mixer_kwargs if mixer_kwargs is not None else {}) ) if self.return_residual: # mixer out is actually a pair here mixer_out, hidden_states = mixer_out hidden_states = self.norm1((self.drop_path1(self.dropout1(mixer_out)) + hidden_states).to(dtype=self.norm1.weight.dtype)) if not isinstance(self.mlp, nn.Identity): mlp_out = self.mlp(hidden_states) if self.return_residual: # mlp out is actually a pair here mlp_out, hidden_states = mlp_out hidden_states = self.norm2((self.drop_path2(self.dropout2(mlp_out)) + hidden_states).to(dtype=self.norm2.weight.dtype)) return hidden_states def create_mixer_cls(layer=None, attn_layer_idx=None, attn_cfg=None, layer_idx=None, device=None, dtype=None): factory_kwargs = {'device': device, 'dtype': dtype} if attn_layer_idx is not None and layer_idx in attn_layer_idx: causal = True if attn_cfg is None else attn_cfg.pop('causal', True) mha_cls = MHA mixer_cls = partial(mha_cls, causal=causal, layer_idx=layer_idx, **(attn_cfg if attn_cfg is not None else {}),**factory_kwargs) else: mixer_cls = instantiate(registry.layer, layer, partial=True, layer_idx=layer_idx, **factory_kwargs) return mixer_cls def create_mlp_cls(d_model, d_inner=None, device=None, dtype=None): factory_kwargs = {'device': device, 'dtype': dtype} inner_dim = d_inner if d_inner is not None else 4 * d_model mlp_cls = partial(Mlp, hidden_features=inner_dim, activation=partial(F.gelu, approximate='tanh'), **factory_kwargs) return mlp_cls def create_block(d_model, d_inner=None, layer=None, attn_layer_idx=None, attn_cfg=None, layer_norm_epsilon=1e-5, resid_dropout1=0.0, resid_dropout2=0.0, residual_in_fp32=False, layer_idx=None, device=None, dtype=None): factory_kwargs = {'device': device, 'dtype': dtype} mixer_cls = create_mixer_cls(layer=layer, attn_layer_idx=attn_layer_idx, attn_cfg=attn_cfg, layer_idx=layer_idx, **factory_kwargs) mlp_cls = create_mlp_cls(d_model, d_inner=d_inner, **factory_kwargs) norm_cls = partial(nn.LayerNorm, eps=layer_norm_epsilon, **factory_kwargs) block = Block(d_model, mixer_cls, mlp_cls, norm_cls=norm_cls, prenorm=True, resid_dropout1=resid_dropout1, resid_dropout2=resid_dropout2,residual_in_fp32=residual_in_fp32) block.layer_idx = layer_idx return block # https://github.com/huggingface/transformers/blob/c28d04e9e252a1a099944e325685f14d242ecdcd/src/transformers/models/gpt2/modeling_gpt2.py#L454 def _init_weights(module, n_layer, initializer_range=0.02, rescale_prenorm_residual=True, glu_act=False): if isinstance(module, nn.Linear): nn.init.normal_(module.weight, std=initializer_range) if module.bias is not None: nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): nn.init.normal_(module.weight, std=initializer_range) if rescale_prenorm_residual: # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme: # > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale # > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers. # > -- GPT-2 :: https://openai.com/blog/better-language-models/ # # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py for name, p in module.named_parameters(): if name in ["out_proj.weight", "fc2.weight"]: # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block nn.init.normal_(p, mean=0.0, std=initializer_range / math.sqrt(2 * n_layer)) # If using GLU activation for now, we scale the std by 2 elif name in ["output_linear.0.weight"]: # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block if not glu_act: nn.init.normal_(p, mean=0.0, std=initializer_range / math.sqrt(2 * n_layer)) else: out_features = p.shape[0] # Multiplying the first half of the matrix by 2 since sigmoid scales it down by 0.5 # on average. nn.init.normal_(p[:out_features // 2], mean=0.0, std=initializer_range / math.sqrt(2 * n_layer) * 2) class LMBackbone(nn.Module): def __init__(self, d_model: int, n_layer: int, d_inner: int, vocab_size: int, process_group=None, layer=None, attn_layer_idx=None, attn_cfg=None, max_position_embeddings=0, resid_dropout: float = 0.0, embed_dropout: float = 0.1, layer_norm_epsilon: float = 1e-5, initializer_cfg=None,residual_in_fp32=False, device=None, dtype=None, **kwargs) -> None: factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() self.process_group = process_group self.residual_in_fp32 = residual_in_fp32 self.embeddings = GPT2Embeddings(d_model, vocab_size, max_position_embeddings, **factory_kwargs) self.layers = nn.ModuleList([create_block( d_model, d_inner=d_inner, layer=layer, attn_layer_idx=attn_layer_idx, attn_cfg=attn_cfg, layer_norm_epsilon=layer_norm_epsilon, resid_dropout1=embed_dropout if i == 0 else resid_dropout, resid_dropout2=resid_dropout, residual_in_fp32=residual_in_fp32,layer_idx=i, **factory_kwargs, ) for i in range(n_layer)]) self.drop_f = nn.Dropout(resid_dropout) self.ln_f = nn.LayerNorm(d_model, eps=layer_norm_epsilon, **factory_kwargs) self.apply(partial(_init_weights, n_layer=n_layer, **(initializer_cfg if initializer_cfg is not None else {}))) def forward(self, input_ids, position_ids=None): hidden_states = self.embeddings(input_ids, position_ids=position_ids,) residual = None for layer in self.layers: hidden_states, residual = layer(hidden_states, residual) dropped = self.drop_f(hidden_states) residual = (dropped + residual) if residual is not None else dropped hidden_states = self.ln_f(residual.to(dtype=self.ln_f.weight.dtype)) return hidden_states class SimpleLMHeadModel(nn.Module): def __init__(self, d_model: int, n_layer: int, d_inner: int, vocab_size: int, layer=None, attn_layer_idx=None, attn_cfg=None, max_position_embeddings=0, resid_dropout: float = 0.0, embed_dropout: float = 0.1, layer_norm_epsilon: float = 1e-5, initializer_cfg=None,residual_in_fp32=False, pad_vocab_size_multiple: int = 1, device=None, dtype=None, **kwargs) -> None: factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() if vocab_size % pad_vocab_size_multiple != 0: vocab_size += pad_vocab_size_multiple - (vocab_size % pad_vocab_size_multiple) self.backbone = LMBackbone( d_model=d_model, n_layer=n_layer, d_inner=d_inner, vocab_size=vocab_size, layer=layer, attn_layer_idx=attn_layer_idx, attn_cfg=attn_cfg, max_position_embeddings=max_position_embeddings, resid_dropout=resid_dropout, embed_dropout=embed_dropout, layer_norm_epsilon=layer_norm_epsilon, initializer_cfg=initializer_cfg, residual_in_fp32=residual_in_fp32, **factory_kwargs, **kwargs ) self.lm_head = nn.Linear(d_model, vocab_size, bias=False, **factory_kwargs) # Initialize weights and apply final processing self.apply(partial(_init_weights, n_layer=n_layer, **(initializer_cfg if initializer_cfg is not None else {}))) self.tie_weights() def tie_weights(self): self.lm_head.weight = self.backbone.embeddings.word_embeddings.weight def forward(self, input_ids, position_ids=None, state=None): # state for the repo interface hidden_states = self.backbone(input_ids, position_ids=position_ids) lm_logits = self.lm_head(hidden_states) CausalLMOutput = namedtuple('CausalLMOutput', ['logits']) return CausalLMOutput(logits=lm_logits), None
hyena-dna-main
src/models/sequence/simple_lm.py
""" Implementation of FFN block in the style of Transformers """ from functools import partial from torch import nn from src.models.sequence.base import SequenceModule from src.models.nn import LinearActivation, DropoutNd class FF(SequenceModule): def __init__(self, d_input, expand=2, d_output=None, transposed=False, activation='gelu', initializer=None, dropout=0.0, tie_dropout=False): super().__init__() self.d_output = d_input if d_output is None else d_output self.transposed = transposed d_inner = expand * d_input linear1 = LinearActivation( d_input, d_inner, transposed=transposed, activation=activation, initializer=initializer, activate=True, ) dropout_cls = partial(DropoutNd, transposed=self.transposed) if tie_dropout else nn.Dropout # dropout_cls = nn.Dropout2d if self.transposed else nn.Dropout drop = dropout_cls(dropout) if dropout > 0.0 else nn.Identity() linear2 = LinearActivation( d_inner, self.d_output, transposed=transposed, activation=None, initializer=initializer, activate=False, ) self.ff = nn.Sequential( linear1, drop, linear2, ) def forward(self, x, *args, **kwargs): return self.ff(x), None def step(self, x, state, **kwargs): # x: [batch, d_input] if self.transposed: # expects: [batch, d_input, seq_len] return self.ff(x.unsqueeze(-1)).squeeze(-1), state else: return self.ff(x), state
hyena-dna-main
src/models/sequence/ff.py
'''PyTorch version of the block FFT convolution as described in the H3 paper.''' import torch from einops import rearrange import math from torch import nn from src.models.nn import Activation from src.utils.train import OptimModule def ref_dft_matrix(N, H=1): """Compute the DFT matrix of size N x N. This is where we could add extra compute for free.""" # n = torch.arange(N) n = torch.arange(N).cuda() k = n.view(-1, 1) M = torch.exp(-2j * torch.pi * n * k / N) return torch.view_as_real(M.repeat(H, 1, 1)) def compute_twiddle_factors(n, m): """Compute the twiddle factors of size n x m""" # n_a = torch.arange(n).view(-1, 1) # m_a = torch.arange(m) n_a = torch.arange(n).cuda().view(-1, 1) m_a = torch.arange(m).cuda() N = n * m M = torch.exp(-2j * torch.pi * n_a * m_a / N) return torch.view_as_real(M) def _cooley_tukey( k, n, m, dft_matrix=ref_dft_matrix, max_m=16, activation=None, ): ''' Compute the FFT using the general Cooley-Tukey algorithm: * Reshape to (m, n) * Do n m-length FFTs along the rows * Transpose to (n, m), multiply by twiddle factors * Do m n-length FFTs along the rows This function assumes that m <= 16 and recurses on n. The base case is n <= 16 (we are simulating tensor cores of 16x16 mm). The dft_matrix function is overwriteable so that we can replace it with learnable parameters in a model. ''' assert m <= max_m if activation is not None: act_fn = Activation(activation) k = rearrange(k, '... (m n) -> ... m n', m=m, n=n) # (m, n) # do n m-length FFTs if activation is None: mat = torch.view_as_complex(dft_matrix(m)) k_f = torch.einsum('... m o, ... o n -> ... m n', mat, k) # (..., m, n) else: mat = torch.view_as_complex(dft_matrix(m)) k_f = torch.view_as_complex(act_fn( torch.view_as_real(torch.einsum('... m o, ... o n -> ... m n', mat, k)) )) # (..., m, n) # multiply by twiddle factors twi = torch.view_as_complex(compute_twiddle_factors(n, m)) # (n, m) k_f = torch.einsum('n m, ... m n -> ... n m', twi, k_f) # (..., n, m) if n <= max_m: # do m n-length FFTs if activation is None: mat = torch.view_as_complex(dft_matrix(n)) k_f = torch.einsum('... n o, ... o m -> ... n m', mat, k_f) # (.., n, m) else: mat = torch.view_as_complex(dft_matrix(n)) k_f = torch.view_as_complex(act_fn( torch.view_as_real(torch.einsum('... n o, ... o m -> ... n m', mat, k_f)) )) # (.., n, m) else: # recurse k_f = rearrange(k_f, '... h n m -> ... m h n') k_f = _cooley_tukey(k_f, n // max_m, max_m, dft_matrix, max_m, activation) k_f = rearrange(k_f, '... m h n -> ... h n m') # reshape for the output k_f = rearrange(k_f, '... n m -> ... (n m)') # (..., n*m) return k_f def block_fft( k, N, dft_matrix=ref_dft_matrix, max_m=16, **kwargs, ): ''' Compute the FFT of size N of the vector k, using _block_fft_recurse. The dft_matrix function is overwriteable so that we can replace it with learnable parameters in a model. ''' if not math.log(N, 2).is_integer(): N = int(2 ** math.ceil(math.log(N, 2))) # pad k with zeros if necessary (e.g. for causality) if k.shape[-1] != N: k = nn.ConstantPad1d((0, N - k.shape[-1]), 0)(k) if N <= max_m: mat = torch.view_as_complex(dft_matrix(m)) return torch.einsum('... n o, ... o -> ... n', mat, k) # (.., n, m) n = N // max_m m = max_m return _cooley_tukey(k, n, m, dft_matrix, max_m, **kwargs) class BlockFFT(OptimModule): ''' Learnable Block FFT module. Args: learn_dft_matrix (bool): If True, learn a different DFT matrix for lengths 2, 4, 8, and 16. If False, this module computes a normal FFT. ''' def __init__(self, learn_dft_matrices=True, H=1, max_m=16, dft_lr=0.001, dropout=0, learn_additive=False, **block_fft_args): super().__init__() self.learn_dft_matrices = learn_dft_matrices self.block_fft_args = block_fft_args self.max_m=max_m self.drop = torch.nn.Dropout(p=dropout) self.learn_additive=learn_additive # get the powers of 2 up to max_m assert math.log(max_m, 2).is_integer(), 'max_m must be a power of 2' self.powers = [ 2 ** (i + 1) for i in range(int(math.log(max_m, 2))) ] if learn_dft_matrices: assert dft_lr>0,"If learn_dft_matrices=True dft_lr must be positive" self.dft_matrices = nn.ParameterList() for n in self.powers: setattr(self,f"mat_{n}",nn.Parameter( 0.01 * torch.randn(H, n, n, 2) if self.learn_additive else ref_dft_matrix(n, H=H), requires_grad=True)) self.register(f"mat_{n}",getattr(self,f"mat_{n}"),dft_lr) self.dft_matrices.append(getattr(self,"mat_{}".format(n))) def compute_dft_matrix(self, n): if not self.learn_dft_matrices: return ref_dft_matrix(n) else: assert n in self.powers if self.learn_additive: mat = ref_dft_matrix(n) return mat + self.drop(self.dft_matrices[int(math.log(n, 2) - 1)]) else: return self.drop(self.dft_matrices[int(math.log(n, 2) - 1)]) def forward(self, x, N,forward=True): '''Compute an FFT (forward=True) or iFFT (forward=False) of length N over x.''' if forward: return block_fft(x, N, dft_matrix=self.compute_dft_matrix, **self.block_fft_args) else: return (1/(N))*torch.conj(block_fft(torch.conj(x), N, dft_matrix=self.compute_dft_matrix, **self.block_fft_args)) if __name__ == "__main__": B = 128 H = 29 N = 8192 n = 2 m = 8 k = torch.randn(B, H, N).to(torch.complex64) print(f'(B, H, N) = ({B}, {H}, {N})') # test FFT k_f = block_fft(k, N) k_f_ref = torch.fft.fft(k, N) print('L-inf error in FFT: ', torch.max(torch.abs(k_f - k_f_ref)).item())
hyena-dna-main
src/models/sequence/block_fft.py
from .base import SequenceModule, TransposedModule from .model import SequenceModel from .ff import FF
hyena-dna-main
src/models/sequence/__init__.py
from functools import partial import torch import torch.nn as nn from flash_attn.utils.generation import GenerationMixin from flash_attn.utils.distributed import sync_shared_params try: from flash_attn.ops.fused_dense import ColumnParallelLinear except ImportError: ColumnParallelLinear = None # grab all functions / modules from long_conv_lm.py from src.models.sequence.long_conv_lm import LMBackbone from src.models.sequence.long_conv_lm import _init_weights class DNAEmbeddingModel(nn.Module, GenerationMixin): """DNA Embedding Model, which is the same as ConvLMHeadModel (in long_conv_lm.py), except no decoder head, we just pass back the hidden states for downstream tasks.""" def __init__(self, d_model: int, n_layer: int, d_inner: int, vocab_size: int, process_group=None, layer=None, attn_layer_idx=None, attn_cfg=None, max_position_embeddings=0, resid_dropout: float = 0.0, embed_dropout: float = 0.1, dropout_cls=nn.Dropout, layer_norm_epsilon: float = 1e-5, initializer_cfg=None, fused_mlp=False, fused_dropout_add_ln=False, residual_in_fp32=False, pad_vocab_size_multiple: int = 1, sequence_parallel=True, device=None, dtype=None, return_hidden_state=False, **kwargs) -> None: factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() self.d_model = d_model # for decoder self.process_group = process_group self.return_hidden_state = return_hidden_state if vocab_size % pad_vocab_size_multiple != 0: vocab_size += pad_vocab_size_multiple - (vocab_size % pad_vocab_size_multiple) self.backbone = LMBackbone( d_model=d_model, n_layer=n_layer, d_inner=d_inner, vocab_size=vocab_size, process_group=process_group, layer=layer, attn_layer_idx=attn_layer_idx, attn_cfg=attn_cfg, max_position_embeddings=max_position_embeddings, resid_dropout=resid_dropout, embed_dropout=embed_dropout, dropout_cls=dropout_cls, layer_norm_epsilon=layer_norm_epsilon, initializer_cfg=initializer_cfg, fused_mlp=fused_mlp, fused_dropout_add_ln=fused_dropout_add_ln, residual_in_fp32=residual_in_fp32, sequence_parallel=sequence_parallel, **factory_kwargs, **kwargs ) if process_group is None: self.lm_head = nn.Linear(d_model, vocab_size, bias=False, **factory_kwargs) else: if ColumnParallelLinear is None: raise ImportError('fused_dense_lib is not installed') self.lm_head = ColumnParallelLinear( d_model, vocab_size, process_group, bias=False, sequence_parallel=sequence_parallel, **factory_kwargs ) # Initialize weights and apply final processing self.apply(partial(_init_weights, n_layer=n_layer, **(initializer_cfg if initializer_cfg is not None else {}))) self.tie_weights() def tie_weights(self): self.lm_head.weight = self.backbone.embeddings.word_embeddings.weight if self.process_group is not None: sync_shared_params(self, self.process_group) def forward(self, input_ids, position_ids=None, inference_params=None, state=None): # state for the repo interface hidden_states = self.backbone(input_ids, position_ids=position_ids, inference_params=inference_params) # we only need the last hidden state for embeddings (decoder head will predict classification task) return hidden_states, None @property def d_output(self): """Model /embedding dimension, used for decoder mapping. """ if getattr(self, "d_model", None) is None: raise NotImplementedError("SequenceModule instantiation must set d_output") return self.d_model def load_backbone(model, state_dict, freeze_backbone=False, ignore_head=True): """ Modifies state dict loading with custom function. This is necessary because the head of a lm outputs logits for vocab, but we just the embeddings for downstream tasks. inputs: model: nn.Module, the from 'scratch' model state_dict: dict, from the pretrained weights ignore_head: bool, whether to inflate weights in the head (or keep scratch weights). If number of classes changes (eg, imagenet to hmdb51), then you need to use this. return: state_dict: dict, update with inflated weights """ # consumes prefix from pretrained model, if necessary torch.nn.modules.utils.consume_prefix_in_state_dict_if_present( state_dict, "model." ) model_new_params_dict = model.state_dict() updated_model_state_dict = {} # loop through scratch model keys (pretrained may have extra stuff) for key in sorted(model_new_params_dict.keys()): loaded_params = state_dict.get(key, None) # make sure key is in the loaded params first, if not, then print it out if loaded_params is None: # This should never happen, it should be there! print("Missing key in pretrained model!", key) raise Exception elif ignore_head and 'head' in key: # ignore head weights print("found head key / parameter, load from scratch", key) # using scratch by default, nothing needed used_params = model_new_params_dict[key] elif "decoder" in key: print("found decoder key / parameter, load from scratch", key) used_params = model_new_params_dict[key] else: print('key: shape MATCH, loading', key) # load matched weights used_params = loaded_params # we need to pass back a state dict with the '.model' prefix!!!!! key_with_prefix = 'model.' + key updated_model_state_dict[key_with_prefix] = used_params if freeze_backbone: print("freezing model backbone params!") # note, decoder not included in backbone for name, param in model.named_parameters(): param.requires_grad = False # we have updated the new model state dict with pretrained now return updated_model_state_dict
hyena-dna-main
src/models/sequence/dna_embedding.py
import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange import opt_einsum as oe optimized = True if optimized: contract = oe.contract else: contract = torch.einsum from src.models.nn import LinearActivation, Activation, DropoutNd from src.models.sequence.block_fft import BlockFFT from src.models.sequence.long_conv_kernel import LongConvKernel class LongConv(nn.Module): def __init__( self, d_model, l_max=1024, channels=1, bidirectional=False, # Arguments for position-wise feedforward components activation='gelu', # activation between conv and FF postact='glu', # activation after FF initializer=None, # initializer on FF weight_norm=False, # weight normalization on FF dropout=0.0, tie_dropout=False, transposed=True, # axis ordering (B, L, D) or (B, D, L) verbose=False, block_fft_conv=False, # replace the FFT conv with Monarch blocks block_fft_conv_args={}, # SSM Kernel arguments **kernel_args, ): """ d_state: the dimension of the state, also denoted by N l_max: the maximum kernel length, also denoted by L channels: can be interpreted as a number of "heads"; the SSM is a map from a 1-dim to C-dim sequence. It's not recommended to change this unless desperate for things to tune; instead, increase d_model for larger models bidirectional: if True, convolution kernel will be two-sided Position-wise feedforward components: -------------------- activation: activation in between SS and FF postact: activation after FF ('id' for no activation, None to remove FF layer) initializer: initializer on FF weight_norm: weight normalization on FF dropout: standard dropout argument. tie_dropout=True ties the dropout mask across the sequence length, emulating nn.Dropout1d Other arguments: -------------------- transposed: choose backbone axis ordering of (B, L, H) (if False) or (B, H, L) (if True) [B=batch size, L=sequence length, H=hidden dimension] """ super().__init__() if verbose: import src.utils.train log = src.utils.train.get_logger(__name__) log.info(f"Constructing Long Conv (H, L) = ({d_model}, {l_max})") self.d_model = d_model self.H = d_model self.L = l_max self.bidirectional = bidirectional self.channels = channels self.transposed = transposed self.block_fft_conv = block_fft_conv self.block_fft_conv_args = block_fft_conv_args self.D = nn.Parameter(torch.randn(channels, self.H)) if self.bidirectional: channels *= 2 # SSM Kernel self.kernel = LongConvKernel(self.H, L=self.L, channels=channels, verbose=verbose, **kernel_args) if self.block_fft_conv: self.block_fft_u = BlockFFT(**self.block_fft_conv_args) self.block_fft_k = BlockFFT(**self.block_fft_conv_args) # Pointwise self.activation = Activation(activation) # dropout_fn = nn.Dropout2d if self.transposed else nn.Dropout # Broken in torch==1.11 dropout_fn = DropoutNd if tie_dropout else nn.Dropout self.dropout = dropout_fn(dropout) if dropout > 0.0 else nn.Identity() # position-wise output transform to mix features if postact is None: self.output_linear = nn.Identity() else: self.output_linear = LinearActivation( self.d_model * self.channels, self.d_model, # self.H*self.channels, # self.d_model*(1 if self.gate is None else self.gate), transposed=self.transposed, initializer=initializer, activation=postact, activate=True, weight_norm=weight_norm, ) def forward(self, u, state=None, rate=1.0, lengths=None, **kwargs): # absorbs return_output and transformer src mask """ u: (B H L) if self.transposed else (B L H) state: (H N) never needed, remnant from state spaces repo Returns: same shape as u """ if not self.transposed: u = u.transpose(-1, -2) L = u.size(-1) # Mask out padding tokens # TODO handle option for mask - instead of lengths, which assumes suffix padding if isinstance(lengths, int): if lengths != L: lengths = torch.tensor(lengths, dtype=torch.long, device=u.device) else: lengths = None if lengths is not None: assert isinstance(lengths, torch.Tensor) and lengths.ndim == 1 and lengths.size(0) in [1, u.size(0)] mask = torch.where(torch.arange(L, device=lengths.device) < lengths[:, None, None], 1., 0.) u = u * mask # Compute SS Kernel L_kernel = L if self.L is None else min(L, round(self.L / rate)) k, _ = self.kernel(L=L_kernel, rate=rate, state=state) # (C H L) (B C H L) # Convolution if self.bidirectional: k0, k1 = rearrange(k, '(s c) h l -> s c h l', s=2) k = F.pad(k0, (0, L)) \ + F.pad(k1.flip(-1), (L, 0)) if self.block_fft_conv: k_f = self.block_fft_k(k.to(torch.complex64), N=L_kernel+L) # (C H L) u_f = self.block_fft_u(u.to(torch.complex64), N=L_kernel+L) # (B H L) y_f = contract('bhl,chl->bchl', u_f, k_f) if self.learn_ifft: y = self.block_fft_u(y_f, N=L_kernel+L,forward=False).real[..., :L] else: y = torch.fft.ifft(y_f, n=L_kernel+L, dim=-1).real[..., :L] # (B C H L) else: k_f = torch.fft.rfft(k, n=L_kernel+L) # (C H L) u_f = torch.fft.rfft(u, n=L_kernel+L) # (B H L) y_f = contract('bhl,chl->bchl', u_f, k_f) y = torch.fft.irfft(y_f, n=L_kernel+L)[..., :L] # (B C H L) # Compute skip connection y = y + contract('bhl,ch->bchl', u, self.D) # Reshape to flatten channels y = rearrange(y, '... c h l -> ... (c h) l') if not self.transposed: y = y.transpose(-1, -2) y = self.activation(y) y = self.dropout(y) y = self.output_linear(y) return y, None @property def d_state(self): return self.H @property def d_output(self): return self.d_model
hyena-dna-main
src/models/sequence/long_conv.py
import copy import math import re from functools import partial from collections import namedtuple, OrderedDict from collections.abc import Sequence import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.checkpoint import checkpoint from transformers.models.gpt2.configuration_gpt2 import GPT2Config from einops import rearrange from flash_attn.modules.mha import MHA, ParallelMHA from flash_attn.modules.mlp import Mlp, FusedMLP, ParallelFusedMLP from flash_attn.modules.block import Block from flash_attn.modules.embedding import GPT2Embeddings, ParallelGPT2Embeddings from flash_attn.utils.generation import GenerationMixin from flash_attn.utils.distributed import sync_shared_params, all_gather_raw try: from flash_attn.ops.fused_dense import ColumnParallelLinear except ImportError: ColumnParallelLinear = None try: from flash_attn.ops.layer_norm import dropout_add_layer_norm except ImportError: dropout_add_layer_norm = None from src.utils import instantiate import src.utils.registry as registry class CheckpointedModule(torch.nn.Module): def __init__(self, layer): super().__init__() self.layer = layer def forward(self, x): return checkpoint(self.layer, x) def create_mixer_cls( layer=None, process_group=None, attn_layer_idx=None, attn_cfg=None, layer_idx=None, sequence_parallel=True, device=None, dtype=None, ): factory_kwargs = {"device": device, "dtype": dtype} parallel_kwargs = ( {"process_group": process_group, "sequence_parallel": sequence_parallel} if process_group is not None else {} ) if attn_layer_idx is not None and layer_idx in attn_layer_idx: causal = True if attn_cfg is None else attn_cfg.pop("causal", True) fused_bias_fc = ( False if attn_cfg is None else attn_cfg.get("fused_bias_fc", False) ) if not fused_bias_fc: assert process_group is None, "TensorParallel MHA requires fused_bias_fc" mha_cls = MHA if process_group is None else ParallelMHA # ParallelMHA doesn't take 'fused_bias_fc', it is assumed that we fuse matmul + bias if process_group is not None: attn_cfg = copy.deepcopy(attn_cfg) # Don't modify the original cfg attn_cfg.pop("fused_bias_fc", None) mixer_cls = partial( mha_cls, causal=causal, layer_idx=layer_idx, **(attn_cfg if attn_cfg is not None else {}), **parallel_kwargs, **factory_kwargs, ) else: fused_bias_fc = False if layer is None else layer.get("fused_bias_fc", False) if process_group is not None: assert fused_bias_fc, "TensorParallel SSM requires fused_bias_fc" mixer_cls = instantiate( registry.layer, layer, partial=True, layer_idx=layer_idx, **factory_kwargs, **parallel_kwargs, ) # mixer_cls = partial(ssm_cls, layer_idx=layer_idx, # **(ssm_cfg if ssm_cfg is not None else {}), # **parallel_kwargs, **factory_kwargs) return mixer_cls def create_mlp_cls( d_model, d_inner=None, process_group=None, fused_mlp=False, sequence_parallel=True, identity_mlp=False, device=None, dtype=None, ): factory_kwargs = {"device": device, "dtype": dtype} inner_dim = d_inner if d_inner is not None else 4 * d_model if process_group is not None: assert fused_mlp, "Tensor Parallel is only implemented for FusedMLP" if not fused_mlp and not identity_mlp: mlp_cls = partial( Mlp, hidden_features=inner_dim, activation=partial(F.gelu, approximate="tanh"), **factory_kwargs, ) elif fused_mlp: mlp_cls = FusedMLP if process_group is None else ParallelFusedMLP parallel_kwargs = ( {"process_group": process_group, "sequence_parallel": sequence_parallel} if process_group is not None else {} ) mlp_cls = partial( mlp_cls, hidden_features=inner_dim, **parallel_kwargs, **factory_kwargs ) else: mlp_cls = nn.Identity return mlp_cls def create_block( d_model, d_inner=None, process_group=None, layer=None, attn_layer_idx=None, attn_cfg=None, layer_norm_epsilon=1e-5, resid_dropout1=0.0, resid_dropout2=0.0, residual_in_fp32=False, fused_mlp=False, identity_mlp=False, fused_dropout_add_ln=False, layer_idx=None, sequence_parallel=True, checkpoint_mlp=False, checkpoint_mixer=False, device=None, dtype=None, ): factory_kwargs = {"device": device, "dtype": dtype} mixer_cls = create_mixer_cls( layer=layer, process_group=process_group, attn_layer_idx=attn_layer_idx, attn_cfg=attn_cfg, layer_idx=layer_idx, sequence_parallel=sequence_parallel, **factory_kwargs, ) mlp_cls = create_mlp_cls( d_model, d_inner=d_inner, process_group=process_group, fused_mlp=fused_mlp, identity_mlp=identity_mlp, sequence_parallel=sequence_parallel, **factory_kwargs, ) norm_cls = partial(nn.LayerNorm, eps=layer_norm_epsilon, **factory_kwargs) block = Block( d_model, mixer_cls, mlp_cls, norm_cls=norm_cls, prenorm=True, resid_dropout1=resid_dropout1, resid_dropout2=resid_dropout2, fused_dropout_add_ln=fused_dropout_add_ln, residual_in_fp32=residual_in_fp32, sequence_parallel=sequence_parallel and process_group is not None, mark_shared_params=process_group is not None, ) block.layer_idx = layer_idx if checkpoint_mlp: block.mlp = CheckpointedModule(block.mlp) if checkpoint_mixer: block.mixer = CheckpointedModule(block.mixer) return block # https://github.com/huggingface/transformers/blob/c28d04e9e252a1a099944e325685f14d242ecdcd/src/transformers/models/gpt2/modeling_gpt2.py#L454 def _init_weights( module, n_layer, initializer_range=0.02, rescale_prenorm_residual=True, glu_act=False, ): if isinstance(module, nn.Linear): nn.init.normal_(module.weight, std=initializer_range) if module.bias is not None: nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): nn.init.normal_(module.weight, std=initializer_range) if rescale_prenorm_residual: # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme: # > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale # > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers. # > -- GPT-2 :: https://openai.com/blog/better-language-models/ # # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py for name, p in module.named_parameters(): if name in ["out_proj.weight", "fc2.weight"]: # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block nn.init.normal_( p, mean=0.0, std=initializer_range / math.sqrt(2 * n_layer) ) # If using GLU activation for now, we scale the std by 2 elif name in ["output_linear.0.weight"]: # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block if not glu_act: nn.init.normal_( p, mean=0.0, std=initializer_range / math.sqrt(2 * n_layer) ) else: out_features = p.shape[0] # Multiplying the first half of the matrix by 2 since sigmoid scales it down by 0.5 # on average. nn.init.normal_( p[: out_features // 2], mean=0.0, std=initializer_range / math.sqrt(2 * n_layer) * 2, ) class LMBackbone(nn.Module): def __init__( self, d_model: int, n_layer: int, d_inner: int, vocab_size: int, process_group=None, layer=None, attn_layer_idx=None, attn_cfg=None, max_position_embeddings=0, resid_dropout: float = 0.0, embed_dropout: float = 0.1, dropout_cls=nn.Dropout, layer_norm_epsilon: float = 1e-5, initializer_cfg=None, fused_mlp=False, identity_mlp=False, fused_dropout_add_ln=False, residual_in_fp32=False, sequence_parallel=True, checkpoint_mlp=False, checkpoint_mixer=False, device=None, dtype=None, **kwargs, ) -> None: factory_kwargs = {"device": device, "dtype": dtype} super().__init__() self.process_group = process_group self.sequence_parallel = sequence_parallel self.residual_in_fp32 = residual_in_fp32 if process_group is None: self.embeddings = GPT2Embeddings( d_model, vocab_size, max_position_embeddings, **factory_kwargs ) else: self.embeddings = ParallelGPT2Embeddings( d_model, vocab_size, max_position_embeddings, process_group=process_group, sequence_parallel=self.sequence_parallel, **factory_kwargs, ) # We change the order of dropout, residual and layer norm: # Instead of LN -> Attn / MLP -> Dropout -> Add, we do: # Dropout -> Add -> LN -> Attn / MLP, returning both the residual branch (output of Add) and # the main branch (output of MLP). The model definition is unchanged, but the mapping of the # nn.Dropout probabilities are changed. # This is for performance reason: we can fuse dropout + add + layer_norm. self.fused_dropout_add_ln = fused_dropout_add_ln if self.fused_dropout_add_ln and dropout_add_layer_norm is None: raise ImportError("dropout_add_layer_norm is not installed") self.layers = nn.ModuleList( [ create_block( d_model, d_inner=d_inner, process_group=process_group, layer=layer, attn_layer_idx=attn_layer_idx, attn_cfg=attn_cfg, layer_norm_epsilon=layer_norm_epsilon, resid_dropout1=embed_dropout if i == 0 else resid_dropout, resid_dropout2=resid_dropout, residual_in_fp32=residual_in_fp32, fused_mlp=fused_mlp, identity_mlp=identity_mlp, fused_dropout_add_ln=fused_dropout_add_ln, layer_idx=i, sequence_parallel=self.sequence_parallel, checkpoint_mlp=checkpoint_mlp, checkpoint_mixer=checkpoint_mixer, **factory_kwargs, ) for i in range(n_layer) ] ) self.drop_f = nn.Dropout(resid_dropout) self.ln_f = nn.LayerNorm(d_model, eps=layer_norm_epsilon, **factory_kwargs) if process_group is not None: for p in self.ln_f.parameters(): # Mark the norm parameters as "shared_params" so that we sync their values at init. p._shared_params = True # Mark the norm params as "sequence_parallel" so we run all-reduce on their grads. if self.sequence_parallel: p._sequence_parallel = True self.apply( partial( _init_weights, n_layer=n_layer, **(initializer_cfg if initializer_cfg is not None else {}), ) ) self.tie_weights() def tie_weights(self): if self.process_group is not None: sync_shared_params(self, self.process_group) def forward(self, input_ids, position_ids=None, inference_params=None): # If using Tensor Parallel with sequence parallel, we combine the batch and the seqlen # dimensions so that we can split on it easily, in case of small batch size. # Only the attention/SSM layers need to know the seqlen. embedding_kwargs = ( {"combine_batch_seqlen_dim": True} if self.process_group is not None and self.sequence_parallel else {} ) hidden_states = self.embeddings( input_ids, position_ids=position_ids, **embedding_kwargs ) residual = None mixer_kwargs = ( {"seqlen": input_ids.shape[1]} if self.process_group is not None and self.sequence_parallel else {} ) if inference_params is not None: mixer_kwargs["inference_params"] = inference_params for layer in self.layers: hidden_states, residual = layer( hidden_states, residual, mixer_kwargs=mixer_kwargs ) if not self.fused_dropout_add_ln: dropped = self.drop_f(hidden_states) residual = (dropped + residual) if residual is not None else dropped hidden_states = self.ln_f(residual.to(dtype=self.ln_f.weight.dtype)) else: # Set prenorm=False here since we don't need the residual hidden_states = dropout_add_layer_norm( hidden_states, residual, self.ln_f.weight, self.ln_f.bias, self.drop_f.p if self.training else 0.0, self.ln_f.eps, prenorm=False, residual_in_fp32=self.residual_in_fp32, ) return hidden_states class ConvLMHeadModel(nn.Module, GenerationMixin): def __init__( self, d_model: int, n_layer: int, d_inner: int, vocab_size: int, process_group=None, layer=None, attn_layer_idx=None, attn_cfg=None, max_position_embeddings=0, resid_dropout: float = 0.0, embed_dropout: float = 0.1, dropout_cls=nn.Dropout, layer_norm_epsilon: float = 1e-5, initializer_cfg=None, fused_mlp=False, fused_dropout_add_ln=False, residual_in_fp32=False, pad_vocab_size_multiple: int = 1, sequence_parallel=True, checkpoint_mlp=False, checkpoint_mixer=False, device=None, dtype=None, **kwargs, ) -> None: factory_kwargs = {"device": device, "dtype": dtype} super().__init__() self.process_group = process_group if vocab_size % pad_vocab_size_multiple != 0: vocab_size += pad_vocab_size_multiple - ( vocab_size % pad_vocab_size_multiple ) self.backbone = LMBackbone( d_model=d_model, n_layer=n_layer, d_inner=d_inner, vocab_size=vocab_size, process_group=process_group, layer=layer, attn_layer_idx=attn_layer_idx, attn_cfg=attn_cfg, max_position_embeddings=max_position_embeddings, resid_dropout=resid_dropout, embed_dropout=embed_dropout, dropout_cls=dropout_cls, layer_norm_epsilon=layer_norm_epsilon, initializer_cfg=initializer_cfg, fused_mlp=fused_mlp, fused_dropout_add_ln=fused_dropout_add_ln, residual_in_fp32=residual_in_fp32, sequence_parallel=sequence_parallel, checkpoint_mlp=checkpoint_mlp, checkpoint_mixer=checkpoint_mixer, **factory_kwargs, **kwargs, ) if process_group is None: self.lm_head = nn.Linear(d_model, vocab_size, bias=False, **factory_kwargs) else: if ColumnParallelLinear is None: raise ImportError("fused_dense_lib is not installed") self.lm_head = ColumnParallelLinear( d_model, vocab_size, process_group, bias=False, sequence_parallel=sequence_parallel, **factory_kwargs, ) # Initialize weights and apply final processing self.apply( partial( _init_weights, n_layer=n_layer, **(initializer_cfg if initializer_cfg is not None else {}), ) ) self.tie_weights() def tie_weights(self): self.lm_head.weight = self.backbone.embeddings.word_embeddings.weight if self.process_group is not None: sync_shared_params(self, self.process_group) def forward( self, input_ids, position_ids=None, inference_params=None, state=None ): # state for the repo interface hidden_states = self.backbone( input_ids, position_ids=position_ids, inference_params=inference_params ) lm_logits = self.lm_head(hidden_states) # During inference, we want the full logit for sampling if ColumnParallelLinear is not None and inference_params is not None: if isinstance(self.lm_head, ColumnParallelLinear): lm_logits, _ = all_gather_raw(lm_logits, self.lm_head.process_group) lm_logits = rearrange( lm_logits, "(n b) s d -> b s (n d)", b=hidden_states.shape[0] ) CausalLMOutput = namedtuple("CausalLMOutput", ["logits"]) return CausalLMOutput(logits=lm_logits), None class DNAEmbeddingModel(nn.Module, GenerationMixin): def __init__(self, d_model: int, n_layer: int, d_inner: int, vocab_size: int, process_group=None, layer=None, attn_layer_idx=None, attn_cfg=None, max_position_embeddings=0, resid_dropout: float = 0.0, embed_dropout: float = 0.1, dropout_cls=nn.Dropout, layer_norm_epsilon: float = 1e-5, initializer_cfg=None, fused_mlp=False, fused_dropout_add_ln=False, residual_in_fp32=False, pad_vocab_size_multiple: int = 1, sequence_parallel=True, device=None, dtype=None, return_hidden_state=False, **kwargs) -> None: factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() self.d_model = d_model # for decoder self.process_group = process_group self.return_hidden_state = return_hidden_state if vocab_size % pad_vocab_size_multiple != 0: vocab_size += pad_vocab_size_multiple - (vocab_size % pad_vocab_size_multiple) self.backbone = LMBackbone( d_model=d_model, n_layer=n_layer, d_inner=d_inner, vocab_size=vocab_size, process_group=process_group, layer=layer, attn_layer_idx=attn_layer_idx, attn_cfg=attn_cfg, max_position_embeddings=max_position_embeddings, resid_dropout=resid_dropout, embed_dropout=embed_dropout, dropout_cls=dropout_cls, layer_norm_epsilon=layer_norm_epsilon, initializer_cfg=initializer_cfg, fused_mlp=fused_mlp, fused_dropout_add_ln=fused_dropout_add_ln, residual_in_fp32=residual_in_fp32, sequence_parallel=sequence_parallel, **factory_kwargs, **kwargs ) if process_group is None: self.lm_head = nn.Linear(d_model, vocab_size, bias=False, **factory_kwargs) else: if ColumnParallelLinear is None: raise ImportError('fused_dense_lib is not installed') self.lm_head = ColumnParallelLinear( d_model, vocab_size, process_group, bias=False, sequence_parallel=sequence_parallel, **factory_kwargs ) # Initialize weights and apply final processing self.apply(partial(_init_weights, n_layer=n_layer, **(initializer_cfg if initializer_cfg is not None else {}))) self.tie_weights() def tie_weights(self): self.lm_head.weight = self.backbone.embeddings.word_embeddings.weight if self.process_group is not None: sync_shared_params(self, self.process_group) def forward(self, input_ids, position_ids=None, inference_params=None, state=None): # state for the repo interface hidden_states = self.backbone(input_ids, position_ids=position_ids, inference_params=inference_params) # we only need the last hidden state for embeddings (decoder head will predict classification task) return hidden_states, None @property def d_output(self): """Model /embedding dimension, used for decoder mapping. """ if getattr(self, "d_model", None) is None: raise NotImplementedError("SequenceModule instantiation must set d_output") return self.d_model def load_backbone(model, state_dict, freeze_backbone=False, ignore_head=True): """ Modifies state dict loading with custom function. Every layer in new model will be inputs: model: nn.Module, the from 'scratch' model state_dict: dict, from the pretrained weights ignore_head: bool, whether to inflate weights in the head (or keep scratch weights). If number of classes changes (eg, imagenet to hmdb51), then you need to use this. return: state_dict: dict, update with inflated weights """ # consumes prefix from pretrained model, if necessary torch.nn.modules.utils.consume_prefix_in_state_dict_if_present( state_dict, "model." ) model_new_params_dict = model.state_dict() updated_model_state_dict = {} # loop through scratch model keys (pretrained may have extra stuff) for key in sorted(model_new_params_dict.keys()): loaded_params = state_dict.get(key, None) # make sure key is in the loaded params first, if not, then print it out if loaded_params is None: # This should never happen, it should be there! print("Missing key in pretrained model!", key) raise Exception elif ignore_head and 'head' in key: # ignore head weights print("found head key / parameter, load from scratch", key) # using scratch by default, nothing needed used_params = model_new_params_dict[key] elif "decoder" in key: print("found decoder key / parameter, load from scratch", key) used_params = model_new_params_dict[key] else: print('key: shape MATCH, loading', key) # load matched weights used_params = loaded_params # we need to pass back a state dict with the '.model' prefix!!!!! key_with_prefix = 'model.' + key updated_model_state_dict[key_with_prefix] = used_params if freeze_backbone: print("freezing model backbone params!") # note, decoder not included in backbone for name, param in model.named_parameters(): param.requires_grad = False # we have updated the new model state dict with pretrained now return updated_model_state_dict def shard_state_dict_tp(state_dict, world_size, rank, pad_vocab_size_multiple=1): """Convert the state_dict of a standard SSM model to the state_dict of a SSM model with tensor parallel. """ layer_idx_match = [ re.search(r"backbone\.layers\.(\d+)\.", k) for k in state_dict.keys() ] num_hidden_layers = len(set(m.group(1) for m in layer_idx_match if m is not None)) vocab_size = state_dict["backbone.embeddings.word_embeddings.weight"].shape[0] inner_dim, hidden_size = state_dict["backbone.layers.0.mlp.fc1.weight"].shape vocab_size = ( math.ceil(vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple ) assert vocab_size % world_size == 0 assert hidden_size % world_size == 0 assert inner_dim % world_size == 0 def shard_dim(state_dict, key, dim=0): x = state_dict[key] dimension = x.shape[dim] // world_size state_dict[key] = x.narrow(dim, rank * dimension, dimension) def shard_qkv_headdim(state_dict, key): x = rearrange(state_dict[key], "(three d) ... -> three d ...", three=3) dim = x.shape[1] // world_size state_dict[key] = rearrange( x[:, rank * dim : (rank + 1) * dim], "three d ... -> (three d) ..." ) shard_dim(state_dict, "backbone.embeddings.word_embeddings.weight", 0) if "lm_head.weight" in state_dict: shard_dim(state_dict, "lm_head.weight", 0) if "backbone.embeddings.position_embeddings.weight" in state_dict: shard_dim(state_dict, "backbone.embeddings.position_embeddings.weight", -1) for i in range(num_hidden_layers): shard_qkv_headdim(state_dict, f"backbone.layers.{i}.mixer.Wqkv.weight") shard_qkv_headdim(state_dict, f"backbone.layers.{i}.mixer.Wqkv.bias") shard_dim(state_dict, f"backbone.layers.{i}.mixer.out_proj.weight", -1) if rank != 0: state_dict.pop(f"backbone.layers.{i}.mixer.out_proj.bias") shard_dim(state_dict, f"backbone.layers.{i}.mlp.fc1.weight", 0) shard_dim(state_dict, f"backbone.layers.{i}.mlp.fc1.bias", 0) shard_dim(state_dict, f"backbone.layers.{i}.mlp.fc2.weight", -1) if rank != 0: state_dict.pop(f"backbone.layers.{i}.mlp.fc2.bias") if f"backbone.layers.{i}.mixer.kernel.kernel.B" in state_dict: for name in [ "D", "ssm_k_D", "kernel.kernel.B", "kernel.kernel.inv_A_real", "kernel.kernel.A_imag", "ssm_k_kernel.kernel.B", "kernel.kernel.log_dt", ]: if f"backbone.layers.{i}.mixer.{name}" in state_dict: shard_dim(state_dict, f"backbone.layers.{i}.mixer.{name}", 0) for name in ["kernel.kernel.C", "ssm_k_kernel.kernel.C"]: if f"backbone.layers.{i}.mixer.{name}" in state_dict: shard_dim(state_dict, f"backbone.layers.{i}.mixer.{name}", 1) return state_dict
hyena-dna-main
src/models/sequence/long_conv_lm.py
""" Isotropic deep sequence model backbone, in the style of ResNets / Transformers. The SequenceModel class implements a generic (batch, length, d_input) -> (batch, length, d_output) transformation """ from functools import partial import torch import torch.nn as nn from einops import rearrange from src.utils.config import to_list, to_dict from src.models.sequence.block import SequenceResidualBlock from src.models.sequence.base import SequenceModule from src.models.nn.components import Normalization, DropoutNd class SequenceModel(SequenceModule): def __init__( self, d_model, # Resize input (useful for deep models with residuals) n_layers=1, # Number of layers transposed=False, # Transpose inputs so each layer receives (batch, dim, length) dropout=0.0, # Dropout parameter applied on every residual and every layer tie_dropout=False, # Tie dropout mask across sequence like nn.Dropout1d/nn.Dropout2d prenorm=True, # Pre-norm vs. post-norm n_repeat=1, # Each layer is repeated n times per stage before applying pooling layer=None, # Layer config, must be specified residual=None, # Residual config norm=None, # Normalization config (e.g. layer vs batch) pool=None, # Config for pooling layer per stage track_norms=True, # Log norms of each layer output dropinp=0.0, # Input dropout ): super().__init__() # Save arguments needed for forward pass self.d_model = d_model self.transposed = transposed self.track_norms = track_norms # Input dropout (not really used) dropout_fn = partial(DropoutNd, transposed=self.transposed) if tie_dropout else nn.Dropout self.drop = dropout_fn(dropinp) if dropinp > 0.0 else nn.Identity() layer = to_list(layer, recursive=False) # Some special arguments are passed into each layer for _layer in layer: # If layers don't specify dropout, add it if _layer.get('dropout', None) is None: _layer['dropout'] = dropout # Ensure all layers are shaped the same way _layer['transposed'] = transposed # Duplicate layers layers = layer * n_layers * n_repeat # Instantiate layers _layers = [] d = d_model for l, layer in enumerate(layers): # Pool at the end of every n_repeat blocks pool_cfg = pool if (l+1) % n_repeat == 0 else None block = SequenceResidualBlock(d, l+1, prenorm=prenorm, dropout=dropout, tie_dropout=tie_dropout, transposed=transposed, layer=layer, residual=residual, norm=norm, pool=pool_cfg) _layers.append(block) d = block.d_output self.d_output = d self.layers = nn.ModuleList(_layers) if prenorm: if norm is None: self.norm = None elif isinstance(norm, str): self.norm = Normalization(self.d_output, transposed=self.transposed, _name_=norm) else: self.norm = Normalization(self.d_output, transposed=self.transposed, **norm) else: self.norm = nn.Identity() def forward(self, inputs, *args, state=None, **kwargs): """ Inputs assumed to be (batch, sequence, dim) """ if self.transposed: inputs = rearrange(inputs, 'b ... d -> b d ...') inputs = self.drop(inputs) # Track norms if self.track_norms: output_norms = [torch.mean(inputs.detach() ** 2)] # Apply layers outputs = inputs prev_states = [None] * len(self.layers) if state is None else state next_states = [] for layer, prev_state in zip(self.layers, prev_states): outputs, state = layer(outputs, *args, state=prev_state, **kwargs) next_states.append(state) if self.track_norms: output_norms.append(torch.mean(outputs.detach() ** 2)) if self.norm is not None: outputs = self.norm(outputs) if self.transposed: outputs = rearrange(outputs, 'b d ... -> b ... d') if self.track_norms: metrics = to_dict(output_norms, recursive=False) self.metrics = {f'norm/{i}': v for i, v in metrics.items()} return outputs, next_states @property def d_state(self): d_states = [layer.d_state for layer in self.layers] return sum([d for d in d_states if d is not None]) @property def state_to_tensor(self): # Slightly hacky way to implement this in a curried manner (so that the function can be extracted from an instance) # Somewhat more sound may be to turn this into a @staticmethod and grab subclasses using hydra.utils.get_class def fn(state): x = [_layer.state_to_tensor(_state) for (_layer, _state) in zip(self.layers, state)] x = [_x for _x in x if _x is not None] return torch.cat( x, dim=-1) return fn def default_state(self, *batch_shape, device=None): return [layer.default_state(*batch_shape, device=device) for layer in self.layers] def step(self, x, state, **kwargs): # Apply layers prev_states = [None] * len(self.layers) if state is None else state next_states = [] for layer, prev_state in zip(self.layers, prev_states): x, state = layer.step(x, state=prev_state, **kwargs) next_states.append(state) x = self.norm(x) return x, next_states
hyena-dna-main
src/models/sequence/model.py
import torch import torch.nn as nn import torch.nn.functional as F from einops import repeat from src.utils.train import OptimModule class LongConvKernel(OptimModule): def __init__( self, H, L, channels=1, learning_rate=None, lam=0.1, causal=True, kernel_dropout=0, weight_init="random", use_ma_smoothing = False, ma_window_len = 7, smooth_freq = False, **kwargs ): super().__init__() self.drop = torch.nn.Dropout(p=kernel_dropout) self.H = H self.weight_init = weight_init self.causal = causal self.L = L*2 if not causal else L self.channels = channels self.lam = lam self.kernel = torch.nn.Parameter(self._parameter_initialization()) #(c,H,L) self.register("kernel", self.kernel, learning_rate) self.use_ma_smoothing=use_ma_smoothing self.smooth_freq = smooth_freq self.ma_window_len = ma_window_len if self.use_ma_smoothing: if smooth_freq: weight = torch.arange(ma_window_len, dtype = self.kernel.dtype) weight = torch.exp(-0.5 * torch.abs(weight - ma_window_len // 2) ** 2) weight = repeat(weight, 'l -> h1 h2 l', h1 = self.H, h2 = 1) weight = weight.type(torch.fft.rfft(self.kernel).dtype) self.smooth_weight = weight else: self.ma_window_len = ma_window_len assert self.ma_window_len%2!=0, "window size must be odd" padding = (self.ma_window_len//2) self.smooth = torch.nn.AvgPool1d(kernel_size=self.ma_window_len,stride=1,padding=padding) def _parameter_initialization(self): if self.weight_init=="random": return torch.randn(self.channels, self.H, self.L) * 0.002 elif self.weight_init=="double_exp": K = torch.randn(self.channels, self.H, self.L,dtype=torch.float32) * 0.02 double_exp = torch.zeros((self.H,self.L),dtype=torch.float32) for i in range(self.H): for j in range(self.L): double_exp[i,j] = torch.exp(-(j/self.L)*torch.pow(torch.tensor(int(self.H/2)),torch.tensor(i/self.H))) K = torch.einsum("c h l, h l -> c h l",K,double_exp) return K else: raise NotImplementedError(f"{self.weight_init} is not valid") def forward(self, **kwargs): k = self.kernel if self.use_ma_smoothing: if self.smooth_freq: k_f = torch.fft.rfft(k, dim=-1) k_f = F.conv1d(k_f, self.smooth_weight.to(k_f.device), padding='same', groups=self.H) k = torch.fft.irfft(k_f, dim=-1) else: k = self.smooth(k) k = F.relu(torch.abs(k)-self.lam)*torch.sign(k) k = self.drop(k) return k, None @property def d_output(self): return self.H
hyena-dna-main
src/models/sequence/long_conv_kernel.py
import math import sys from re import U import torch import torch.nn as nn import torch.nn.functional as F from functools import partial from einops import rearrange, repeat try: from src.ops.fftconv import fftconv_ref, fftconv_func, fftconv_heads_ref except ImportError: fftconv_func = None try: from flash_attn.ops.fused_dense import FusedDense except ImportError: FusedDense = None import src.utils.registry as registry from src.utils.train import OptimModule from src.utils.config import instantiate, auto_assign_attrs from src.models.nn import Activation class FFTConvFuncv2(torch.autograd.Function): @staticmethod def forward(ctx, u, k): seqlen = u.shape[-1] if len(u.shape) > 3: k = k.unsqueeze(1) fft_size = 2 * seqlen k_f = torch.fft.rfft(k, n=fft_size) / fft_size u_f = torch.fft.rfft(u.to(dtype=k.dtype), n=fft_size) y = torch.fft.irfft(u_f * k_f, n=fft_size, norm="forward")[..., :seqlen] ctx.save_for_backward(u_f, k_f) return y @staticmethod def backward(ctx, dout): u_f, k_f = ctx.saved_tensors seqlen = dout.shape[-1] fft_size = 2 * seqlen dout_f = torch.fft.rfft(dout, n=fft_size) du = torch.fft.irfft(dout_f * k_f.conj(), n=fft_size, norm="forward")[ ..., :seqlen ] dk = torch.fft.irfft(dout_f * u_f.conj(), n=fft_size, norm="forward")[ ..., :seqlen ] return du, dk.squeeze() def fftconv_ref(u, k, D, dropout_mask, gelu=True, k_rev=None): seqlen = u.shape[-1] fft_size = 2 * seqlen k_f = torch.fft.rfft(k, n=fft_size) / fft_size if k_rev is not None: k_rev_f = torch.fft.rfft(k_rev, n=fft_size) / fft_size k_f = k_f + k_rev_f.conj() u_f = torch.fft.rfft(u.to(dtype=k.dtype), n=fft_size) if len(u.shape) > 3: k_f = k_f.unsqueeze(1) y = torch.fft.irfft(u_f * k_f, n=fft_size, norm="forward")[..., :seqlen] out = y + u * D.unsqueeze(-1) if gelu: out = F.gelu(out) if dropout_mask is not None: return (out * rearrange(dropout_mask, "b H -> b H 1")).to(dtype=u.dtype) else: return out.to(dtype=u.dtype) @torch.jit.script def mul_sum(q, y): return (q * y).sum(dim=1) class Sin(nn.Module): def __init__(self, dim, w=10, train_freq=True): super().__init__() self.freq = ( nn.Parameter(w * torch.ones(1, dim)) if train_freq else w * torch.ones(1, dim) ) def forward(self, x): return torch.sin(self.freq * x) class PositionalEmbedding(OptimModule): def __init__(self, emb_dim: int, seq_len: int, lr_pos_emb: float = 1e-5, **kwargs): """Complex exponential positional embeddings for Hyena filters.""" super().__init__() self.seq_len = seq_len # The time embedding fed to the filteres is normalized so that t_f = 1 t = torch.linspace(0, 1, self.seq_len)[None, :, None] # 1, L, 1 if emb_dim > 1: bands = (emb_dim - 1) // 2 # To compute the right embeddings we use the "proper" linspace t_rescaled = torch.linspace(0, seq_len - 1, seq_len)[None, :, None] w = 2 * math.pi * t_rescaled / seq_len # 1, L, 1 f = torch.linspace(1e-4, bands - 1, bands)[None, None] z = torch.exp(-1j * f * w) z = torch.cat([t, z.real, z.imag], dim=-1) self.register("z", z, lr=lr_pos_emb) self.register("t", t, lr=0.0) def forward(self, L): return self.z[:, :L], self.t[:, :L] class ExponentialModulation(OptimModule): def __init__( self, d_model, fast_decay_pct=0.3, slow_decay_pct=1.5, target=1e-2, modulation_lr=0.0, shift: float = 0.0, **kwargs, ): super().__init__() self.shift = shift max_decay = math.log(target) / fast_decay_pct min_decay = math.log(target) / slow_decay_pct deltas = torch.linspace(min_decay, max_decay, d_model)[None, None] self.register("deltas", deltas, lr=modulation_lr) def forward(self, t, x): decay = torch.exp(-t * self.deltas.abs()) x = x * (decay + self.shift) return x class HyenaFilter(OptimModule): def __init__( self, d_model, emb_dim=3, # dim of input to MLP, augments with positional encoding order=16, # width of the implicit MLP fused_fft_conv=False, seq_len=1024, lr=1e-3, lr_pos_emb=1e-5, dropout=0.0, w=1, # frequency of periodic activations wd=0, # weight decay of kernel parameters bias=True, num_inner_mlps=2, linear_mixer=False, modulate: bool = True, normalized=False, **kwargs, ): """ Implicit long filter with modulation. Args: d_model: number of channels in the input emb_dim: dimension of the positional encoding (`emb_dim` - 1) // 2 is the number of bands order: width of the FFN num_inner_mlps: number of inner linear layers inside filter MLP Note: filter_dropout is not implemented """ super().__init__() auto_assign_attrs( self, d_model=d_model, emb_dim=emb_dim, seq_len=seq_len, modulate=modulate ) self.use_bias = bias self.fused_fft_conv = fused_fft_conv self.bias = nn.Parameter(torch.randn(self.d_model)) self.dropout = nn.Dropout(dropout) act = Sin(dim=order, w=w) assert ( emb_dim % 2 != 0 and emb_dim >= 3 ), "emb_dim must be odd and greater or equal to 3 (time, sine and cosine)" self.pos_emb = PositionalEmbedding(emb_dim, seq_len, lr_pos_emb) # uses a variable number of inner linear layers if linear_mixer is False: self.implicit_filter = nn.Sequential( nn.Linear(emb_dim, order), act, ) for i in range(num_inner_mlps): self.implicit_filter.append(nn.Linear(order, order)) self.implicit_filter.append(act) # final linear layer self.implicit_filter.append(nn.Linear(order, d_model, bias=False)) else: self.implicit_filter = nn.Sequential( nn.Linear(emb_dim, d_model, bias=False), ) self.modulation = ExponentialModulation(d_model, **kwargs) self.normalized = normalized for c in self.implicit_filter.children(): for name, v in c.state_dict().items(): optim = {"weight_decay": wd, "lr": lr} setattr(getattr(c, name), "_optim", optim) def filter(self, L, *args, **kwargs): z, t = self.pos_emb(L) h = self.implicit_filter(z) if self.modulate: h = self.modulation(t, h) if self.normalized: h = h / torch.norm(h, dim=-1, p=1, keepdim=True) return h def forward(self, x, L, k=None, bias=None, *args, **kwargs): if k is None: k = self.filter(L) # Ensure compatibility with filters that return a tuple k = k[0] if type(k) is tuple else k if bias is None: bias = self.bias bias = bias if self.use_bias else 0 * bias if self.fused_fft_conv: bias = bias.to(dtype=torch.float32) y = fftconv_func( x, k, bias, dropout_mask=None, gelu=False, force_fp16_output=torch.is_autocast_enabled(), ) else: y = fftconv_ref(x, k, bias, dropout_mask=None, gelu=False) # y = ( # FFTConvFuncv2.apply(x, k.to(dtype=torch.float32)) # + bias.unsqueeze(-1) * x # ) return y.to(dtype=x.dtype) class HyenaOperator(nn.Module): def __init__( self, d_model, l_max, order=2, filter_order=64, num_heads=1, inner_factor=1, num_blocks=1, fused_bias_fc=False, outer_mixing=False, dropout=0.0, filter_dropout=0.0, filter_cls="hyena-filter", post_order_ffn=False, jit_filter=False, short_filter_order=3, activation="id", return_state=False, **filter_args, ): r""" Hyena operator described in the paper https://arxiv.org/pdf/2302.10866.pdf Args: d_model (int): Dimension of the input and output embeddings (width of the layer) l_max: (int): Maximum input sequence length. Defaults to None order: (int): Depth of the Hyena recurrence. Defaults to 2 filter_order: (int): Width of the FFN parametrizing the implicit filter. Defaults to 64 num_heads: (int): Number of heads. Defaults to 1 inner_factor: (int): Width multiplier. Defaults to 1 num_blocks: (int): Number of blocks in sequence length. Defaults to 1 fused_bias_fc: (bool): Whether to use fused bias FC. Defaults to False dropout: (float): Dropout probability. Defaults to 0.0 filter_dropout: (float): Dropout probability for the filter. Defaults to 0.0 post_order_ffn: (bool): Apply a dense layer between steps of the recurrence. Defaults to False jit_filter: (bool): Whether JIT the implicit filter function. Defaults to False short_filter_order: (int): Length of the explicit input convolutional filter. Defaults to 3 activation: (str): type of act between kernel output and FF (default identity) return_state: (bool): whether to return a state """ super().__init__() assert ( d_model % num_heads == 0 ), f"Model dimension {d_model} must be divisible by num heads {num_heads}" assert ( l_max % num_blocks == 0 ), f"Maximum signal length {l_max} must be divisible by block dimension {num_blocks}" block_dim = l_max // num_blocks head_dim = d_model // num_heads auto_assign_attrs( self, d_model=d_model, order=order, l_max=l_max, num_heads=num_heads, inner_factor=inner_factor, block_dim=block_dim, head_dim=head_dim, filter_order=filter_order, post_order_ffn=post_order_ffn, short_filter_order=short_filter_order, num_blocks=num_blocks, filter_dropout=filter_dropout, jit_filter=jit_filter, outer_mixing=outer_mixing, activation=activation, return_state=return_state, ) self.activation = Activation(activation) self.dropout = nn.Dropout(dropout) self.setup_projections(fused_bias_fc, inner_factor) self.setup_filters(filter_cls, filter_args) def setup_projections(self, fused_bias_fc, inner_factor): "Initializes input and output projections (over the width dimension)" if fused_bias_fc and FusedDense is None: raise ImportError("fused_dense is not installed") linear_cls = nn.Linear if not fused_bias_fc else FusedDense self.out_proj = linear_cls(self.d_model * inner_factor, self.d_model) self.in_proj = linear_cls(self.d_model, (self.order + 1) * self.d_model) if self.post_order_ffn: self.ord_proj_w = nn.Parameter( torch.randn(self.order, self.num_heads, self.num_heads) / math.sqrt(self.head_dim) ) def setup_filters(self, filter_cls, filter_args): "Initializes the explicit and implicit filters" assert self.order >= 2, f"Order must be at least 2, (got {self.order})" total_width = self.d_model * self.inner_factor * (self.order + 1) self.short_filter = nn.Conv1d( in_channels=total_width, out_channels=total_width, kernel_size=self.short_filter_order, groups=total_width, padding=self.short_filter_order - 1, ) filter_cls = instantiate(registry.layer, filter_cls, partial=True) self.filter_fn = filter_cls( self.head_dim * self.inner_factor * (self.order - 1), order=self.filter_order, seq_len=self.l_max, channels=1, dropout=self.filter_dropout, **filter_args, ) if self.jit_filter: self.filter_fn = torch.jit.script(self.filter_fn, self.L) def recurrence(self, u, state): "Fast inference mode via distilled recurrence" raise NotImplementedError("Working on it!") def forward(self, u, *args, **kwargs): l = u.size(-2) l_filter = min(l, self.l_max) u = self.in_proj(u) u = rearrange(u, "b l d -> b d l") uc = self.short_filter(u)[..., :l_filter] uc = rearrange( uc, "b (ho v) (z l) -> b ho v z l", z=self.num_blocks, ho=self.num_heads, v=self.head_dim * (self.order + 1), ) *x, v = uc.split(self.d_model, dim=2) k = self.filter_fn.filter(l_filter) # `c` is always 1 by default k = rearrange(k, "c l (v o) -> c o v l", v=self.head_dim, o=self.order - 1)[0] bias = rearrange( self.filter_fn.bias, "(v o) -> o v", v=self.head_dim, o=self.order - 1 ) for o, x_i in enumerate(reversed(x[1:])): if self.outer_mixing: v = rearrange(v, "b h v z l -> b h 1 v z l") v = self.dropout(v * rearrange(x_i, "b h v z l -> b h v 1 z l")) v = v.sum(dim=2) else: v = self.dropout(v * x_i) # the bias term is broadcasted. Last dimension (l) is handled by fftconv v = self.filter_fn(v, l_filter, k=k[o], bias=bias[o, None, :, None]) if self.post_order_ffn: w = self.ord_proj_w[o] v = mul_sum( rearrange(w, "h1 h2 -> 1 h1 h2 1 1 1"), rearrange(v, "b h v z l -> b h 1 v z l"), ) y = self.activation( rearrange( v * x[0], "b h v z l -> b (z l) (h v)", z=self.num_blocks, h=self.num_heads, ) ) y = self.out_proj(y) if self.return_state: return y, None return y @property def d_output(self): return self.d_model
hyena-dna-main
src/models/sequence/hyena.py
""" Implements a full residual block around a black box layer Configurable options include: normalization position: prenorm or postnorm normalization type: batchnorm, layernorm etc. subsampling/pooling residual options: feedforward, residual, affine scalars, depth-dependent scaling, etc. """ from torch import nn from functools import partial import src.utils as utils from src.models.nn.components import Normalization, StochasticDepth, DropoutNd from src.models.sequence import SequenceModule from src.models.sequence.pool import registry as pool_registry from src.models.nn.residual import registry as residual_registry import src.utils.registry as registry class SequenceResidualBlock(SequenceModule): def __init__( self, d_input, i_layer=None, # Only needs to be passed into certain residuals like Decay prenorm=True, dropout=0.0, tie_dropout=False, transposed=False, layer=None, # Config for black box module residual=None, # Config for residual function norm=None, # Config for normalization layer pool=None, drop_path=0., ): super().__init__() self.i_layer = i_layer self.d_input = d_input self.layer = utils.instantiate(registry.layer, layer, d_input) self.prenorm = prenorm self.transposed = transposed # Residual # d_residual is the output dimension after residual if residual is None: self.residual = None self.d_residual = self.layer.d_output else: self.residual = utils.instantiate(residual_registry, residual, i_layer, d_input, self.layer.d_output) self.d_residual = self.residual.d_output # Normalization d_norm = d_input if self.prenorm else self.d_residual # We don't use config to directly instantiate since Normalization has some special cases if norm is None: self.norm = None elif isinstance(norm, str): self.norm = Normalization(d_norm, transposed=self.transposed, _name_=norm) else: self.norm = Normalization(d_norm, transposed=self.transposed, **norm) # Pool self.pool = utils.instantiate(pool_registry, pool, self.d_residual, transposed=self.transposed) # Dropout dropout_cls = partial(DropoutNd, transposed=self.transposed) if tie_dropout else nn.Dropout self.drop = dropout_cls(dropout) if dropout > 0.0 else nn.Identity() # Stochastic depth self.drop_path = StochasticDepth(drop_path, mode='row') if drop_path > 0.0 else nn.Identity() @property def d_output(self): return self.pool.d_output if self.pool is not None else self.d_residual @property def d_state(self): return self.layer.d_state @property def state_to_tensor(self): return self.layer.state_to_tensor def default_state(self, *args, **kwargs): return self.layer.default_state(*args, **kwargs) def forward(self, x, state=None, **kwargs): y = x # Pre-norm if self.norm is not None and self.prenorm: y = self.norm(y) # Black box layer y, state = self.layer(y, state=state, **kwargs) # Residual if self.residual is not None: y = self.residual(x, self.drop_path(self.drop(y)), self.transposed) # Post-norm if self.norm is not None and not self.prenorm: y = self.norm(y) # Pool if self.pool is not None: y, _ = self.pool(y) return y, state def step(self, x, state, **kwargs): y = x # Pre-norm if self.norm is not None and self.prenorm: y = self.norm.step(y) # Black box layer y, state = self.layer.step(y, state, **kwargs) # Residual if self.residual is not None: y = self.residual(x, y, transposed=False) # NOTE this would not work with concat residual function (catformer) # Post-norm if self.norm is not None and not self.prenorm: y = self.norm.step(y) # Pool if self.pool is not None: y, _ = self.pool(y) return y, state
hyena-dna-main
src/models/sequence/block.py
"""Implements downsampling and upsampling on sequences.""" import torch from torch import nn import torch.nn.functional as F from einops import rearrange, repeat, reduce from src.models.sequence import SequenceModule from src.models.nn import LinearActivation """ Simple pooling functions that just downsample or repeat stride: Subsample on the layer dimension expand: Repeat on the feature dimension """ class DownSample(SequenceModule): def __init__(self, d_input, stride=1, expand=1, transposed=True): super().__init__() self.d_input = d_input self.stride = stride self.expand = expand self.transposed = transposed def forward(self, x): if x is None: return None if self.stride > 1: assert x.ndim == 3, "Downsampling with higher-dimensional inputs is currently not supported. It is recommended to use average or spectral pooling instead." if self.transposed: x = x[..., 0::self.stride] else: x = x[..., 0::self.stride, :] if self.expand > 1: if self.transposed: x = repeat(x, 'b d ... -> b (d e) ...', e=self.expand) else: x = repeat(x, 'b ... d -> b ... (d e)', e=self.expand) return x, None def step(self, x, state, **kwargs): if self.stride > 1 or self.expand > 1: raise NotImplementedError return x, state @property def d_output(self): return self.d_input * self.expand class DownAvgPool(SequenceModule): def __init__(self, d_input, stride=1, expand=None, transposed=True): super().__init__() self.d_input = d_input self.stride = stride self.expand = expand self.transposed = transposed if self.expand is not None: self.linear = LinearActivation( d_input, d_input * expand, transposed=transposed, ) def forward(self, x): if not self.transposed: x = rearrange(x, 'b ... d -> b d ...') if self.stride > 1: # einops appears slower than F if x.ndim == 3: x = F.avg_pool1d(x, self.stride, self.stride) elif x.ndim == 4: x = F.avg_pool2d(x, self.stride, self.stride) else: # Reduction string e.g. "b d (l1 2) (l2 2) -> b d l1 l2" reduce_str = "b d " + " ".join([f"(l{i} {self.stride})" for i in range(x.ndim-2)]) \ + " -> b d " + " ".join([f"l{i}" for i in range(x.ndim-2)]) x = reduce(x, reduce_str, 'mean') # if self.expand > 1: # x = repeat(x, 'b d ... -> b (d e) ...', e=self.expand) if not self.transposed: x = rearrange(x, 'b d ... -> b ... d') if self.expand is not None: x = self.linear(x) return x, None def step(self, x, state, **kwargs): if self.stride > 1 or self.expand > 1: raise NotImplementedError return x, state @property def d_output(self): if self.expand is None: return self.d_input else: return self.d_input * self.expand class DownSpectralPool(SequenceModule): def __init__(self, d_input, stride=1, expand=1, transposed=True): super().__init__() self.d_input = d_input self.stride = stride self.expand = expand self.transposed = transposed def forward(self, x): """ x: (B, L..., D) """ if not self.transposed: x = rearrange(x, 'b ... d -> b d ...') shape = x.shape[2:] x_f = torch.fft.ifftn(x, s=shape) for axis, l in enumerate(shape): assert l % self.stride == 0, 'input length must be divisible by stride' new_l = l // self.stride idx = torch.cat([torch.arange(0, new_l-new_l//2), l+torch.arange(-new_l//2, 0)]).to(x_f.device) x_f = torch.index_select(x_f, 2+axis, idx) x = torch.fft.ifftn(x_f, s=[l//self.stride for l in shape]) x = x.real if self.expand > 1: x = repeat(x, 'b d ... -> b (d e) ...', e=self.expand) if not self.transposed: x = rearrange(x, 'b d ... -> b ... d') return x, None def step(self, x, state, **kwargs): if self.stride > 1 or self.expand > 1: raise NotImplementedError return x, state @property def d_output(self): return self.d_input * self.expand class UpSample(SequenceModule): def __init__(self, d_input, stride=1, expand=1, transposed=True): super().__init__() self.d_input = d_input self.stride = stride self.expand = expand self.transposed = transposed def forward(self, x): if x is None: return None if self.expand > 1: if self.transposed: x = reduce(x, '... (d e) l -> ... d l', 'mean', e=self.expand) else: x = reduce(x, '... (d e) -> ... d', 'mean', e=self.expand) if self.stride > 1: if self.transposed: x = repeat(x, '... l -> ... (l e)', e=self.stride) else: x = repeat(x, '... l d -> ... (l e) d', e=self.stride) return x, None @property def d_output(self): return self.d_input // self.expand def step(self, x, state, **kwargs): if self.stride > 1 or self.expand > 1: raise NotImplementedError return x, state class UpAvgPool(SequenceModule): def __init__(self, d_input, stride=1, expand=1, causal=False, transposed=True): super().__init__() assert d_input % expand == 0 self.d_input = d_input self.stride = stride self.expand = expand self.causal = causal self.transposed = transposed self.linear = LinearActivation( d_input, d_input // expand, transposed=transposed, ) def forward(self, x): # TODO only works for 1D right now if x is None: return None x = self.linear(x) if self.stride > 1: if self.transposed: if self.causal: x = F.pad(x[..., :-1], (1, 0)) # Shift to ensure causality x = repeat(x, '... l -> ... (l e)', e=self.stride) else: if self.causal: x = F.pad(x[..., :-1, :], (0, 0, 1, 0)) # Shift to ensure causality x = repeat(x, '... l d -> ... (l e) d', e=self.stride) return x, None @property def d_output(self): return self.d_input // self.expand def step(self, x, state, **kwargs): if self.stride > 1 or self.expand > 1: raise NotImplementedError return x, state class DownLinearPool(SequenceModule): def __init__(self, d_model, stride=1, expand=1, causal=False, transposed=True): super().__init__() self.d_model = d_model self.stride = stride self.expand = expand self.transposed = transposed self.linear = LinearActivation( d_model * stride, d_model * expand, transposed=transposed, ) def forward(self, x): if self.transposed: x = rearrange(x, '... h (l s) -> ... (h s) l', s=self.stride) else: x = rearrange(x, '... (l s) h -> ... l (h s)', s=self.stride) x = self.linear(x) return x, None def step(self, x, state, **kwargs): # if self.stride > 1 or self.expand > 1: # raise NotImplementedError # return x, state if x is None: return None, state state.append(x) if len(state) == self.stride: x = rearrange(torch.stack(state, dim=-1), '... h s -> ... (h s)') if self.transposed: x = x.unsqueeze(-1) x = self.linear(x) if self.transposed: x = x.squeeze(-1) return x, [] else: return None, state def default_state(self, *batch_shape, device=None): return [] @property def d_output(self): return self.d_input * self.expand class UpLinearPool(SequenceModule): def __init__(self, d, stride=1, expand=1, causal=False, transposed=True): super().__init__() # self.d_model = d * expand # self.d_output = d assert d % expand == 0 self.d_model = d self.d_output = d // expand # self._d_output = d_output self.stride = stride self.causal = causal self.transposed = transposed self.linear = LinearActivation( self.d_model, self.d_output * stride, transposed=transposed, ) def forward(self, x, skip=None): x = self.linear(x) if self.transposed: if self.causal: x = F.pad(x[..., :-1], (1, 0)) # Shift to ensure causality x = rearrange(x, '... (h s) l -> ... h (l s)', s=self.stride) else: if self.causal: x = F.pad(x[..., :-1, :], (0, 0, 1, 0)) # Shift to ensure causality x = rearrange(x, '... l (h s) -> ... (l s) h', s=self.stride) if skip is not None: x = x + skip return x, None def step(self, x, state, **kwargs): """ x: (..., H) """ assert len(state) > 0 y, state = state[0], state[1:] if len(state) == 0: assert x is not None if self.transposed: x = x.unsqueeze(-1) x = self.linear(x) if self.transposed: x = x.squeeze(-1) x = rearrange(x, '... (h s) -> ... h s', s=self.stride) state = list(torch.unbind(x, dim=-1)) else: assert x is None return y, state def default_state(self, *batch_shape, device=None): state = torch.zeros(batch_shape + (self.d_output, self.stride), device=device) # (batch, h, s) state = list(torch.unbind(state, dim=-1)) # List of (..., H) return state # @property # def d_output(self): return self._d_output """ Pooling functions with trainable parameters """ # TODO make d_output expand instead class DownPool2d(SequenceModule): def __init__(self, d_input, d_output, stride=1, transposed=True, weight_norm=True): super().__init__() self.linear = LinearActivation( d_input, d_output, transposed=transposed, weight_norm=weight_norm, ) self.pool = nn.AvgPool2d(kernel_size=stride, stride=stride), def forward(self, x): if self.transposed: x = self.pool(x) # TODO DownPool/UpPool are currently used by unet/sashimi backbones # DownLinearPool is used by the registry (for isotropic backbone) # DownPool is essentially the same as DownLinearPool. These should be consolidated class DownPool(SequenceModule): def __init__(self, d_input, d_output=None, expand=None, stride=1, transposed=True, weight_norm=True, initializer=None, activation=None): super().__init__() assert (d_output is None) + (expand is None) == 1 if d_output is None: d_output = d_input * expand self.d_output = d_output self.stride = stride self.transposed = transposed self.linear = LinearActivation( d_input * stride, d_output, transposed=transposed, initializer=initializer, weight_norm = weight_norm, activation=activation, activate=True if activation is not None else False, ) def forward(self, x): if self.transposed: x = rearrange(x, '... h (l s) -> ... (h s) l', s=self.stride) else: x = rearrange(x, '... (l s) h -> ... l (h s)', s=self.stride) x = self.linear(x) return x, None def step(self, x, state, **kwargs): """ x: (..., H) """ if x is None: return None, state state.append(x) if len(state) == self.stride: x = rearrange(torch.stack(state, dim=-1), '... h s -> ... (h s)') if self.transposed: x = x.unsqueeze(-1) x = self.linear(x) if self.transposed: x = x.squeeze(-1) return x, [] else: return None, state def default_state(self, *batch_shape, device=None): return [] class UpPool(SequenceModule): def __init__(self, d_input, d_output, stride, transposed=True, weight_norm=True, initializer=None, activation=None): super().__init__() self.d_input = d_input self._d_output = d_output self.stride = stride self.transposed = transposed self.linear = LinearActivation( d_input, d_output * stride, transposed=transposed, initializer=initializer, weight_norm = weight_norm, activation=activation, activate=True if activation is not None else False, ) def forward(self, x, skip=None): x = self.linear(x) if self.transposed: x = F.pad(x[..., :-1], (1, 0)) # Shift to ensure causality x = rearrange(x, '... (h s) l -> ... h (l s)', s=self.stride) else: x = F.pad(x[..., :-1, :], (0, 0, 1, 0)) # Shift to ensure causality x = rearrange(x, '... l (h s) -> ... (l s) h', s=self.stride) if skip is not None: x = x + skip return x, None def step(self, x, state, **kwargs): """ x: (..., H) """ assert len(state) > 0 y, state = state[0], state[1:] if len(state) == 0: assert x is not None if self.transposed: x = x.unsqueeze(-1) x = self.linear(x) if self.transposed: x = x.squeeze(-1) x = rearrange(x, '... (h s) -> ... h s', s=self.stride) state = list(torch.unbind(x, dim=-1)) else: assert x is None return y, state def default_state(self, *batch_shape, device=None): state = torch.zeros(batch_shape + (self.d_output, self.stride), device=device) # (batch, h, s) state = list(torch.unbind(state, dim=-1)) # List of (..., H) return state @property def d_output(self): return self._d_output registry = { 'sample': DownSample, 'pool': DownAvgPool, 'avg': DownAvgPool, 'linear': DownLinearPool, 'spectral': DownSpectralPool, } up_registry = { # 'sample': UpSample, 'pool': UpAvgPool, 'avg': UpAvgPool, 'linear': UpLinearPool, # 'spectral': UpSpectralPool, # Not implemented and no way to make this causal }
hyena-dna-main
src/models/sequence/pool.py
from torch import nn import functools class SequenceModule(nn.Module): """Abstract sequence model class. All models must adhere to this interface A SequenceModule is generally a model that transforms an input of shape (n_batch, l_sequence, d_model) to (n_batch, l_sequence, d_output) REQUIRED methods and attributes forward, d_model, d_output: controls standard forward pass, a sequence-to-sequence transformation __init__ should also satisfy the following interface; see SequenceIdentity for an example def __init__(self, d_model, transposed=False, **kwargs) OPTIONAL methods default_state, step: allows stepping the model recurrently with a hidden state state_to_tensor, d_state: allows decoding from hidden state """ @property def d_model(self): """Model dimension (generally same as input dimension). This attribute is required for all SequenceModule instantiations. It is used by the rest of the pipeline (e.g. model backbone, encoder) to track the internal shapes of the full model. """ if getattr(self, "_d_model", None) is None: raise NotImplementedError("SequenceModule instantiation must set d_model") return self._d_model @d_model.setter def d_model(self, d): self._d_model = d @property def d_output(self): """Output dimension of model. This attribute is required for all SequenceModule instantiations. It is used by the rest of the pipeline (e.g. model backbone, decoder) to track the internal shapes of the full model. """ if getattr(self, "_d_output", None) is None: raise NotImplementedError("SequenceModule instantiation must specify d_output for decoder") return self._d_output @d_output.setter def d_output(self, d): self._d_output = d def forward(self, x, state=None, **kwargs): """Forward pass of sequence model, a sequence-to-sequence transformation with an optional state. Generally, this should map a tensor of shape (batch, length, self.d_model) to (batch, length, self.d_output) Additionally, it returns a "state" which can be any additional information For example, RNN and SSM layers may return their hidden state, while some types of transformer layers (e.g. Transformer-XL) may want to pass a state as well """ return x, None @property def state_to_tensor(self): """Returns a function mapping a state to a single tensor. This method should be implemented if one wants to use the hidden state instead of the output sequence for final prediction. Currently only used with the StateDecoder. """ return lambda _: None @property def d_state(self): """ Returns dimension of output of self.state_to_tensor """ return None def default_state(self, *batch_shape, device=None): """Create initial state for a batch of inputs.""" return None def step(self, x, state=None, **kwargs): """Step the model recurrently for one step of the input sequence. For example, this should correspond to unrolling an RNN for one step. If the forward pass has signature (B, L, H1) -> (B, L, H2), this method should generally have signature (B, H1) -> (B, H2) with an optional recurrent state. """ raise NotImplementedError def TransposedModule(module): """Wrap a SequenceModule class to accept transposed parameter, handle state, absorb kwargs""" # https://stackoverflow.com/a/65470430/1980685 @functools.wraps(module, updated=()) class TransposedModule(module): def __init__(self, *args, transposed=False, **kwargs): super().__init__(*args, **kwargs) self.transposed = transposed def forward(self, x, state=None, **kwargs): if self.transposed: x = x.transpose(-1, -2) x, next_state = super().forward(x, state) # Don't use kwarg because nn.LSTM next_state = None if state is None else next_state if self.transposed: x = x.transpose(-1,-2) return x, next_state # https://stackoverflow.com/questions/5352781/how-to-set-class-names-dynamically # TransposedModule.__name__ = module.__name__ # functools wraps is better solution return TransposedModule @TransposedModule class SequenceIdentity(SequenceModule): """Simple SequenceModule for testing purposes""" def __init__(self, d_model, dropout=0.0, **kwargs): """Default interface for SequenceModule d_model: input dimension (sometimes denoted H for hidden dimension) transposed: if True, inputs have axis ordering (B, H, L) instead of (B, H, L) """ super().__init__() self.d_model = d_model self.d_output = d_model def forward(self, x, state=None): return x, state def default_state(self, *batch_shape, device=None): return None def step(self, x, state=None, **kwargs): return x, state
hyena-dna-main
src/models/sequence/base.py
""" Wrapper around nn.MultiheadAttention to adhere to SequenceModule interface. """ import torch import torch.nn.functional as F from torch import nn import hydra from src.models.sequence.base import SequenceModule, TransposedModule import src.models.nn.utils as U from einops import rearrange @TransposedModule class MultiheadAttention(SequenceModule): """ Simple wrapper for MultiheadAttention """ def __init__(self, d_model, n_heads, *args, causal=True, **kwargs): super().__init__() self.d_model = d_model self.d_output = d_model self.mha = nn.MultiheadAttention(d_model, n_heads, *args, batch_first=True, **kwargs) self.causal = causal def forward(self, src, attn_mask=None, key_padding_mask=None, state=None, **kwargs): """ state should represent a mask and key padding mask """ if self.causal and attn_mask is None: attn_mask = torch.triu(torch.ones(src.size(-2), src.size(-2), dtype=torch.bool, device=src.device), diagonal=1) # attn_mask, key_padding_mask = state # Note that this returns None for the second argument y, _ = self.mha(src, src, src, attn_mask=attn_mask, key_padding_mask=key_padding_mask, need_weights=False) return y, None def step(self, x, state): # TODO proper cached inference # x: (B, D) pass class VitAttention(SequenceModule): """Copied from implementation for ViT: only used for ViT model This attention class makes several simplifying assumptions (commonly satisfied in vision applications): 1. q = k = v 2. No masks: no attention mask, no key padding mask 3. Embed dimension = Input dimension, i.e. projection matrices are square. """ @property def d_output(self): return self.dim def __init__( self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., # proj_drop=0., packed_linear=True, linear_cfg=None, **kwargs, ): """packed_linear: whether to pack all 3 q_proj, k_proj, v_proj into 2 matrix. This option is to be compatible with T2T-ViT pretrained weights, where there's only one projection weight matrix. """ super().__init__() self.dim = dim self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 if linear_cfg is not None: packed_linear = False self.packed_linear = packed_linear if packed_linear: self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) else: if linear_cfg is None: linear_cfg = {'_target_': 'torch.nn.Linear'} self.q_proj = hydra.utils.instantiate(linear_cfg, dim, dim, bias=qkv_bias, _recursive_=False) self.k_proj = hydra.utils.instantiate(linear_cfg, dim, dim, bias=qkv_bias, _recursive_=False) self.v_proj = hydra.utils.instantiate(linear_cfg, dim, dim, bias=qkv_bias, _recursive_=False) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) # Removing this dropout because we do this in SequenceResidualBlock # self.proj_drop = nn.Dropout(proj_drop) def forward(self, x, state=None): B, N, C = x.shape if self.packed_linear: qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) else: q, k, v = self.q_proj(x), self.k_proj(x), self.v_proj(x) q, k, v = [rearrange(x, 'b n (h d) -> b h n d', h=self.num_heads) for x in (q, k, v)] # attn = (q @ k.transpose(-2, -1) * self.scale) # Use `torch.baddbmm` (a bit more efficient w/ alpha param for scaling -- from Megatron-LM) bsz, num_heads, q_seq_len, dk = q.size() _, _, k_seq_len, _ = k.size() q = rearrange(q, 'b h t d -> (b h) t d') k = rearrange(k, 'b h s d -> (b h) d s') # Preallocate attn_weights for `baddbmm` attn = torch.empty(bsz * num_heads, q_seq_len, k_seq_len, dtype=q.dtype, device=q.device) attn = rearrange(torch.baddbmm(attn, q, k, beta=0, alpha=self.scale), '(b h) t s -> b h t s', h = self.num_heads) attn = F.softmax(attn, dim=-1, dtype=v.dtype) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) # x = self.proj_drop(x) return x, None
hyena-dna-main
src/models/sequence/mha.py
import math import torch import torch.nn.functional as F from einops import rearrange from fftconv import fftconv_fwd, fftconv_bwd @torch.jit.script def _mul_sum(y, q): return (y * q).sum(dim=1) # reference convolution with residual connection def fftconv_ref(u, k, D, dropout_mask, gelu=True, k_rev=None): seqlen = u.shape[-1] fft_size = 2 * seqlen k_f = torch.fft.rfft(k, n=fft_size) / fft_size if k_rev is not None: k_rev_f = torch.fft.rfft(k_rev, n=fft_size) / fft_size k_f = k_f + k_rev_f.conj() u_f = torch.fft.rfft(u.to(dtype=k.dtype), n=fft_size) if len(u.shape) > 3: k_f = k_f.unsqueeze(1) y = torch.fft.irfft(u_f * k_f, n=fft_size, norm='forward')[..., :seqlen] out = y + u * D.unsqueeze(-1) if gelu: out = F.gelu(out) if dropout_mask is not None: return (out * rearrange(dropout_mask, 'b H -> b H 1')).to(dtype=u.dtype) else: return out.to(dtype=u.dtype) # reference H3 forward pass def fftconv_h3_ref(k, ssm_kernel, D, q, v, head_dim=1, ssm_kernel_rev=None): seqlen = k.shape[-1] fft_size = 2 * seqlen kv = (rearrange(k, 'b (h d1) l -> b d1 1 h l', d1=head_dim) * rearrange(v, 'b (h d2) l -> b 1 d2 h l', d2=head_dim)) # b d1 d2 h l kv_f = torch.fft.rfft(kv.to(dtype=ssm_kernel.dtype), n=fft_size) / fft_size ssm_kernel_f = torch.fft.rfft(ssm_kernel, n=fft_size) # h L+1 if ssm_kernel_rev is not None: ssm_kernel_rev_f = torch.fft.rfft(ssm_kernel_rev, n=fft_size) # h L+1 ssm_kernel_f = ssm_kernel_f + ssm_kernel_rev_f.conj() y = torch.fft.irfft(kv_f * ssm_kernel_f, n=fft_size, norm='forward')[..., :seqlen] # b d1 d2 h l out = y + kv * D.unsqueeze(-1) # b d1 d2 h l q = rearrange(q, 'b (h d1) l -> b d1 1 h l', d1=head_dim) if head_dim > 1: out = _mul_sum(out, q) return rearrange(out, 'b d2 h l -> b (h d2) l').to(dtype=k.dtype) else: return rearrange(out * q, 'b 1 1 h l -> b h l').to(dtype=k.dtype) class FFTConvFunc(torch.autograd.Function): @staticmethod def forward(ctx, u, k, D, dropout_mask=None, gelu=True, force_fp16_output=False, output_hbl_layout=False, v=None, head_dim=1, q=None, fftfp16=False, k_rev=None): seqlen = u.shape[-1] fft_size = max(2 * 2 ** int(math.ceil(math.log2(seqlen))), 16) k_f = torch.fft.rfft(k, n=fft_size) if k_rev is not None: k_f = k_f + torch.fft.rfft(k_rev, n=fft_size).conj() if u.stride(-1) != 1: u = u.contiguous() k_f = k_f.contiguous() D = D.contiguous() if v is not None and v.stride(-1) != 1: v = v.contiguous() if q is not None and q.stride(-1) != 1: q = q.contiguous() if dropout_mask is not None: dropout_mask = dropout_mask.contiguous() ctx.save_for_backward(u, k_f, D, dropout_mask, v, q) ctx.output_hbl_layout = output_hbl_layout ctx.head_dim = head_dim ctx.gelu = gelu ctx.fftfp16 = fftfp16 ctx.has_k_rev = k_rev is not None out = fftconv_fwd(u, k_f, D, v, head_dim, q, dropout_mask, gelu, False, False, fft_size, force_fp16_output, output_hbl_layout, fftfp16) return out @staticmethod def backward(ctx, dout): if ctx.output_hbl_layout: dout = rearrange(rearrange(dout, 'b h l -> h b l').contiguous(), 'h b l -> b h l') else: dout = dout.contiguous() u, k_f, D, dropout_mask, v, q = ctx.saved_tensors seqlen = u.shape[-1] fft_size = max(2 * 2 ** int(math.ceil(math.log2(seqlen))), 16) du, dk_f, dD, dv, dq = fftconv_bwd(dout, u, k_f, D, v, ctx.head_dim, q, dropout_mask, ctx.gelu, False, False, fft_size, ctx.output_hbl_layout, ctx.fftfp16) dk = torch.fft.irfft(dk_f, n=fft_size, norm='forward')[..., :seqlen] dk_rev = (None if not ctx.has_k_rev else torch.fft.irfft(dk_f.conj(), n=fft_size, norm='forward')[..., :seqlen]) if v is not None: dv = dv.to(dtype=v.dtype) # We do atomicAdd in fp32 so might need to convert to fp16 return du, dk, dD, None, None, None, None, dv if v is not None else None, None, dq if q is not None else None, None, dk_rev def fftconv_func(u, k, D, dropout_mask=None, gelu=True, force_fp16_output=False, output_hbl_layout=False, v=None, head_dim=1, q=None, fftfp16=False, k_rev=None): return FFTConvFunc.apply(u, k, D, dropout_mask, gelu, force_fp16_output, output_hbl_layout, v, head_dim, q, fftfp16, k_rev)
hyena-dna-main
src/ops/fftconv.py
"""pykeops implementations of the Vandermonde matrix multiplication kernel used in the S4D kernel.""" import math import torch from einops import rearrange, repeat from opt_einsum import contract import os try: import pykeops from pykeops.torch import LazyTensor, Genred except: pass try: from cauchy_mult import vand_log_mult_sym_fwd, vand_log_mult_sym_bwd except: vand_log_mult_sym_fwd, vand_log_mult_sym_bwd = None, None _conj = lambda x: torch.cat([x, x.conj()], dim=-1) def _broadcast_dims(*tensors): max_dim = max([len(tensor.shape) for tensor in tensors]) tensors = [tensor.view((1,)*(max_dim-len(tensor.shape))+tensor.shape) for tensor in tensors] return tensors def _c2r(x): return torch.view_as_real(x) def _r2c(x): return torch.view_as_complex(x) def vandermonde_naive(v, x, L, conj=True): """ v: (..., N) x: (..., N) returns: (..., L) \sum v x^l """ if conj: x = _conj(x) v = _conj(v) vandermonde_matrix = x.unsqueeze(-1) ** torch.arange(L).to(x) # (... N L) vandermonde_prod = torch.sum(v.unsqueeze(-1) * vandermonde_matrix, dim=-2) # (... L) return vandermonde_prod def log_vandermonde_naive(v, x, L, conj=True): """ v: (..., N) x: (..., N) returns: (..., L) \sum v x^l """ vandermonde_matrix = torch.exp(x.unsqueeze(-1) * torch.arange(L).to(x)) # (... N L) vandermonde_prod = contract('... n, ... n l -> ... l', v, vandermonde_matrix) # (... L) if conj: return 2*vandermonde_prod.real else: return vandermonde_prod def log_vandermonde_lazy(v, x, L, conj=True): if conj: v = _conj(v) x = _conj(x) l = torch.arange(L).to(x) v, x, l = _broadcast_dims(v, x, l) v_l = LazyTensor(rearrange(v, '... N -> ... N 1 1')) x_l = LazyTensor(rearrange(x, '... N -> ... N 1 1')) l_l = LazyTensor(rearrange(l, '... L -> ... 1 L 1')) # exp vand = (x_l * l_l).exp() s = (v_l*vand).sum(dim=len(v_l.shape)-2) return s.squeeze(-1) def log_vandermonde(v, x, L, conj=True): expr = 'ComplexMult(v, ComplexExp(ComplexMult(x, l)))' vandermonde_mult = Genred( expr, [ 'v = Vj(2)', 'x = Vj(2)', 'l = Vi(2)', ], reduction_op='Sum', axis=1, ) l = torch.arange(L).to(x) v, x, l = _broadcast_dims(v, x, l) v = _c2r(v) x = _c2r(x) l = _c2r(l) r = vandermonde_mult(v, x, l, backend='GPU') if conj: return 2*_r2c(r).real else: return _r2c(r) def log_vandermonde_transpose_naive(u, v, x, L): vandermonde_matrix = torch.exp(x.unsqueeze(-1) * torch.arange(L).to(x)) # (... N L) vandermonde_prod = contract('... l, ... n, ... n l -> ... n', u.to(x), v.to(x), vandermonde_matrix) # (... L) return vandermonde_prod def log_vandermonde_transpose(u, v, x, L): """ u: ... H L v: ... H N x: ... H N Returns: ... H N V = Vandermonde(a, L) : (H N L) contract_L(V * u * v) """ expr = 'ComplexMult(ComplexMult(v, u), ComplexExp(ComplexMult(x, l)))' vandermonde_mult = Genred( expr, [ 'u = Vj(2)', 'v = Vi(2)', 'x = Vi(2)', 'l = Vj(2)', ], reduction_op='Sum', axis=1, ) l = torch.arange(L).to(x) u, v, x, l = _broadcast_dims(u, v, x, l) u = _c2r(u) v = _c2r(v) x = _c2r(x) l = _c2r(l) r = vandermonde_mult(u, v, x, l, backend='GPU') return _r2c(r) def _log_vandermonde_matmul(x, L): vandermonde_matrix = torch.exp(x.unsqueeze(-1) * torch.arange(L).to(x)) # (... N L) return vandermonde_matrix def log_vandermonde_matmul(v, K): prod = contract('...n, ...nl -> ...l', v, K) return 2*prod.real class LogVandMultiplySymmetric(torch.autograd.Function): @staticmethod def forward(ctx, v, x, L): batch, N = v.shape supported_N_values = [1 << log_n for log_n in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]] if not N in supported_N_values: raise NotImplementedError(f'Only support N values in {supported_N_values}') max_L_value = 32 * 1024 * 64 * 1024 if L > max_L_value: raise NotImplementedError(f'Only support L values <= {max_L_value}') if not v.is_cuda and x.is_cuda: raise NotImplementedError(f'Only support CUDA tensors') ctx.save_for_backward(v, x) return vand_log_mult_sym_fwd(v, x, L) @staticmethod def backward(ctx, dout): v, x = ctx.saved_tensors dv, dx = vand_log_mult_sym_bwd(v, x, dout) return dv, dx, None if vand_log_mult_sym_fwd and vand_log_mult_sym_bwd is not None: log_vandermonde_fast = LogVandMultiplySymmetric.apply else: log_vandermonde_fast = None
hyena-dna-main
src/ops/vandermonde.py
""" Old utilities for parallel scan implementation of Linear RNNs. """ # TODO this file could use much cleanup import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import math from src.models.functional.toeplitz import triangular_toeplitz_multiply, triangular_toeplitz_multiply_padded from src.utils.permutations import bitreversal_po2, bitreversal_permutation ### Utilities def shift_up(a, s=None, drop=True, dim=0): assert dim == 0 if s is None: s = torch.zeros_like(a[0, ...]) s = s.unsqueeze(dim) if drop: a = a[:-1, ...] return torch.cat((s, a), dim=dim) def interleave(a, b, uneven=False, dim=0): """ Interleave two tensors of same shape """ # assert(a.shape == b.shape) assert dim == 0 # TODO temporary to make handling uneven case easier if dim < 0: dim = N + dim if uneven: a_ = a[-1:, ...] a = a[:-1, ...] c = torch.stack((a, b), dim+1) out_shape = list(a.shape) out_shape[dim] *= 2 c = c.view(out_shape) if uneven: c = torch.cat((c, a_), dim=dim) return c def batch_mult(A, u, has_batch=None): """ Matrix mult A @ u with special case to save memory if u has additional batch dim The batch dimension is assumed to be the second dimension A : (L, ..., N, N) u : (L, [B], ..., N) has_batch: True, False, or None. If None, determined automatically Output: x : (L, [B], ..., N) A @ u broadcasted appropriately """ if has_batch is None: has_batch = len(u.shape) >= len(A.shape) if has_batch: u = u.permute([0] + list(range(2, len(u.shape))) + [1]) else: u = u.unsqueeze(-1) v = (A @ u) if has_batch: v = v.permute([0] + [len(u.shape)-1] + list(range(1, len(u.shape)-1))) else: v = v[..., 0] return v ### Main unrolling functions def unroll(A, u): """ A : (..., N, N) # TODO I think this can't take batch dimension? u : (L, ..., N) output : x (..., N) # TODO a lot of these shapes are wrong x[i, ...] = A^{i} @ u[0, ...] + ... + A @ u[i-1, ...] + u[i, ...] """ m = u.new_zeros(u.shape[1:]) outputs = [] for u_ in torch.unbind(u, dim=0): m = F.linear(m, A) + u_ outputs.append(m) output = torch.stack(outputs, dim=0) return output def parallel_unroll_recursive(A, u): """ Bottom-up divide-and-conquer version of unroll. """ # Main recursive function def parallel_unroll_recursive_(A, u): if u.shape[0] == 1: return u u_evens = u[0::2, ...] u_odds = u[1::2, ...] # u2 = F.linear(u_evens, A) + u_odds u2 = (A @ u_evens.unsqueeze(-1)).squeeze(-1) + u_odds A2 = A @ A x_odds = parallel_unroll_recursive_(A2, u2) # x_evens = F.linear(shift_up(x_odds), A) + u_evens x_evens = (A @ shift_up(x_odds).unsqueeze(-1)).squeeze(-1) + u_evens x = interleave(x_evens, x_odds, dim=0) return x # Pad u to power of 2 n = u.shape[0] m = int(math.ceil(math.log(n)/math.log(2))) N = 1 << m u = torch.cat((u, u.new_zeros((N-u.shape[0],) + u.shape[1:] )), dim=0) return parallel_unroll_recursive_(A, u)[:n, ...] def parallel_unroll_recursive_br(A, u): """ Same as parallel_unroll_recursive but uses bit reversal for locality. """ # Main recursive function def parallel_unroll_recursive_br_(A, u): n = u.shape[0] if n == 1: return u m = n//2 u_0 = u[:m, ...] u_1 = u[m:, ...] u2 = F.linear(u_0, A) + u_1 A2 = A @ A x_1 = parallel_unroll_recursive_br_(A2, u2) x_0 = F.linear(shift_up(x_1), A) + u_0 # x = torch.cat((x_0, x_1), dim=0) # is there a way to do this with cat? x = interleave(x_0, x_1, dim=0) return x # Pad u to power of 2 n = u.shape[0] m = int(math.ceil(math.log(n)/math.log(2))) N = 1 << m u = torch.cat((u, u.new_zeros((N-u.shape[0],) + u.shape[1:] )), dim=0) # Apply bit reversal br = bitreversal_po2(N) u = u[br, ...] x = parallel_unroll_recursive_br_(A, u) return x[:n, ...] def parallel_unroll_iterative(A, u): """ Bottom-up divide-and-conquer version of unroll, implemented iteratively """ # Pad u to power of 2 n = u.shape[0] m = int(math.ceil(math.log(n)/math.log(2))) N = 1 << m u = torch.cat((u, u.new_zeros((N-u.shape[0],) + u.shape[1:] )), dim=0) # Apply bit reversal br = bitreversal_po2(N) u = u[br, ...] # Main recursive loop, flattened us = [] # stores the u_0 terms in the recursive version N_ = N As = [] # stores the A matrices for l in range(m): N_ = N_ // 2 As.append(A) u_0 = u[:N_, ...] us.append(u_0) u = F.linear(u_0, A) + u[N_:, ...] A = A @ A x_0 = [] x = u # x_1 for l in range(m-1, -1, -1): x_0 = F.linear(shift_up(x), As[l]) + us[l] x = interleave(x_0, x, dim=0) return x[:n, ...] def variable_unroll_sequential(A, u, s=None, variable=True): """ Unroll with variable (in time/length) transitions A. A : ([L], ..., N, N) dimension L should exist iff variable is True u : (L, [B], ..., N) updates s : ([B], ..., N) start state output : x (..., N) x[i, ...] = A[i]..A[0] @ s + A[i..1] @ u[0] + ... + A[i] @ u[i-1] + u[i] """ if s is None: s = torch.zeros_like(u[0]) if not variable: A = A.expand((u.shape[0],) + A.shape) has_batch = len(u.shape) >= len(A.shape) outputs = [] for (A_, u_) in zip(torch.unbind(A, dim=0), torch.unbind(u, dim=0)): # s = F.linear(s, A_) + u_ s = batch_mult(A_.unsqueeze(0), s.unsqueeze(0), has_batch)[0] s = s + u_ outputs.append(s) output = torch.stack(outputs, dim=0) return output def variable_unroll(A, u, s=None, variable=True, recurse_limit=16): """ Bottom-up divide-and-conquer version of variable_unroll. """ if u.shape[0] <= recurse_limit: return variable_unroll_sequential(A, u, s, variable) if s is None: s = torch.zeros_like(u[0]) uneven = u.shape[0] % 2 == 1 has_batch = len(u.shape) >= len(A.shape) u_0 = u[0::2, ...] u_1 = u[1::2, ...] if variable: A_0 = A[0::2, ...] A_1 = A[1::2, ...] else: A_0 = A A_1 = A u_0_ = u_0 A_0_ = A_0 if uneven: u_0_ = u_0[:-1, ...] if variable: A_0_ = A_0[:-1, ...] u_10 = batch_mult(A_1, u_0_, has_batch) u_10 = u_10 + u_1 A_10 = A_1 @ A_0_ # Recursive call x_1 = variable_unroll(A_10, u_10, s, variable, recurse_limit) x_0 = shift_up(x_1, s, drop=not uneven) x_0 = batch_mult(A_0, x_0, has_batch) x_0 = x_0 + u_0 x = interleave(x_0, x_1, uneven, dim=0) # For some reason this interleave is slower than in the (non-multi) unroll_recursive return x def variable_unroll_general_sequential(A, u, s, op, variable=True): """ Unroll with variable (in time/length) transitions A with general associative operation A : ([L], ..., N, N) dimension L should exist iff variable is True u : (L, [B], ..., N) updates s : ([B], ..., N) start state output : x (..., N) x[i, ...] = A[i]..A[0] s + A[i..1] u[0] + ... + A[i] u[i-1] + u[i] """ if not variable: A = A.expand((u.shape[0],) + A.shape) outputs = [] for (A_, u_) in zip(torch.unbind(A, dim=0), torch.unbind(u, dim=0)): s = op(A_, s) s = s + u_ outputs.append(s) output = torch.stack(outputs, dim=0) return output def variable_unroll_matrix_sequential(A, u, s=None, variable=True): if s is None: s = torch.zeros_like(u[0]) if not variable: A = A.expand((u.shape[0],) + A.shape) # has_batch = len(u.shape) >= len(A.shape) # op = lambda x, y: batch_mult(x.unsqueeze(0), y.unsqueeze(0), has_batch)[0] op = lambda x, y: batch_mult(x.unsqueeze(0), y.unsqueeze(0))[0] return variable_unroll_general_sequential(A, u, s, op, variable=True) def variable_unroll_toeplitz_sequential(A, u, s=None, variable=True, pad=False): if s is None: s = torch.zeros_like(u[0]) if not variable: A = A.expand((u.shape[0],) + A.shape) # has_batch = len(u.shape) >= len(A.shape) # op = lambda x, y: batch_mult(x.unsqueeze(0), y.unsqueeze(0), has_batch)[0] # op = lambda x, y: batch_mult(x.unsqueeze(0), y.unsqueeze(0))[0] if pad: n = A.shape[-1] A = F.pad(A, (0, n)) u = F.pad(u, (0, n)) s = F.pad(s, (0, n)) ret = variable_unroll_general_sequential(A, u, s, triangular_toeplitz_multiply_padded, variable=True) ret = ret[..., :n] return ret return variable_unroll_general_sequential(A, u, s, triangular_toeplitz_multiply, variable=True) ### General parallel scan functions with generic binary composition operators def variable_unroll_general(A, u, s, op, compose_op=None, sequential_op=None, variable=True, recurse_limit=16): """ Bottom-up divide-and-conquer version of variable_unroll. compose is an optional function that defines how to compose A without multiplying by a leaf u """ if u.shape[0] <= recurse_limit: if sequential_op is None: sequential_op = op return variable_unroll_general_sequential(A, u, s, sequential_op, variable) if compose_op is None: compose_op = op uneven = u.shape[0] % 2 == 1 # has_batch = len(u.shape) >= len(A.shape) u_0 = u[0::2, ...] u_1 = u[1::2, ...] if variable: A_0 = A[0::2, ...] A_1 = A[1::2, ...] else: A_0 = A A_1 = A u_0_ = u_0 A_0_ = A_0 if uneven: u_0_ = u_0[:-1, ...] if variable: A_0_ = A_0[:-1, ...] u_10 = op(A_1, u_0_) # batch_mult(A_1, u_0_, has_batch) u_10 = u_10 + u_1 A_10 = compose_op(A_1, A_0_) # Recursive call x_1 = variable_unroll_general(A_10, u_10, s, op, compose_op, sequential_op, variable=variable, recurse_limit=recurse_limit) x_0 = shift_up(x_1, s, drop=not uneven) x_0 = op(A_0, x_0) # batch_mult(A_0, x_0, has_batch) x_0 = x_0 + u_0 x = interleave(x_0, x_1, uneven, dim=0) # For some reason this interleave is slower than in the (non-multi) unroll_recursive return x def variable_unroll_matrix(A, u, s=None, variable=True, recurse_limit=16): if s is None: s = torch.zeros_like(u[0]) has_batch = len(u.shape) >= len(A.shape) op = lambda x, y: batch_mult(x, y, has_batch) sequential_op = lambda x, y: batch_mult(x.unsqueeze(0), y.unsqueeze(0), has_batch)[0] matmul = lambda x, y: x @ y return variable_unroll_general(A, u, s, op, compose_op=matmul, sequential_op=sequential_op, variable=variable, recurse_limit=recurse_limit) def variable_unroll_toeplitz(A, u, s=None, variable=True, recurse_limit=8, pad=False): """ Unroll with variable (in time/length) transitions A with general associative operation A : ([L], ..., N) dimension L should exist iff variable is True u : (L, [B], ..., N) updates s : ([B], ..., N) start state output : x (L, [B], ..., N) same shape as u x[i, ...] = A[i]..A[0] s + A[i..1] u[0] + ... + A[i] u[i-1] + u[i] """ # Add the batch dimension to A if necessary A_batch_dims = len(A.shape) - int(variable) u_batch_dims = len(u.shape)-1 if u_batch_dims > A_batch_dims: # assert u_batch_dims == A_batch_dims + 1 if variable: while len(A.shape) < len(u.shape): A = A.unsqueeze(1) # else: # A = A.unsqueeze(0) if s is None: s = torch.zeros_like(u[0]) if pad: n = A.shape[-1] A = F.pad(A, (0, n)) u = F.pad(u, (0, n)) s = F.pad(s, (0, n)) op = triangular_toeplitz_multiply_padded ret = variable_unroll_general(A, u, s, op, compose_op=op, variable=variable, recurse_limit=recurse_limit) ret = ret[..., :n] return ret op = triangular_toeplitz_multiply ret = variable_unroll_general(A, u, s, op, compose_op=op, variable=variable, recurse_limit=recurse_limit) return ret
hyena-dna-main
src/ops/unroll.py
""" Compute a Krylov function efficiently. (S4 renames the Krylov function to a "state space kernel") A : (N, N) b : (N,) c : (N,) Return: [c^T A^i b for i in [L]] """ import torch import torch.nn.functional as F from einops import rearrange, repeat from src.ops.toeplitz import causal_convolution def krylov_sequential(L, A, b, c=None): """ Constant matrix A A : (..., N, N) b : (..., N) c : (..., N) Returns if c: x : (..., L) x[i, l] = c[i] @ A^l @ b[i] else: x : (..., N, L) x[i, l] = A^l @ b[i] """ # Check which of dim b and c is smaller to save memory if c is not None and c.numel() < b.numel(): return krylov_sequential(L, A.transpose(-1, -2), c, b) b_ = b x = [] for _ in range(L): if c is not None: x_ = torch.sum(c*b_, dim=-1) # (...) # could be faster with matmul or einsum? else: x_ = b_ x.append(x_) b_ = (A @ b_.unsqueeze(-1)).squeeze(-1) x = torch.stack(x, dim=-1) return x def krylov(L, A, b, c=None, return_power=False): """ Compute the Krylov matrix (b, Ab, A^2b, ...) using the squaring trick. If return_power=True, return A^{L-1} as well """ # TODO There is an edge case if L=1 where output doesn't get broadcasted, which might be an issue if caller is expecting broadcasting semantics... can deal with it if it arises x = b.unsqueeze(-1) # (..., N, 1) A_ = A AL = None if return_power: AL = torch.eye(A.shape[-1], dtype=A.dtype, device=A.device) _L = L-1 done = L == 1 # loop invariant: _L represents how many indices left to compute while not done: if return_power: if _L % 2 == 1: AL = A_ @ AL _L //= 2 # Save memory on last iteration l = x.shape[-1] if L - l <= l: done = True _x = x[..., :L-l] else: _x = x _x = A_ @ _x x = torch.cat([x, _x], dim=-1) # there might be a more efficient way of ordering axes if not done: A_ = A_ @ A_ assert x.shape[-1] == L if c is not None: x = torch.einsum('...nl, ...n -> ...l', x, c) x = x.contiguous() # WOW!! if return_power: return x, AL else: return x @torch.no_grad() def power(L, A, v=None): """ Compute A^L and the scan sum_i A^i v_i A: (..., N, N) v: (..., N, L) """ I = torch.eye(A.shape[-1]).to(A) # , dtype=A.dtype, device=A.device) powers = [A] l = 1 while True: if L % 2 == 1: I = powers[-1] @ I L //= 2 if L == 0: break l *= 2 if v is None: powers = [powers[-1] @ powers[-1]] else: powers.append(powers[-1] @ powers[-1]) if v is None: return I # Invariants: # powers[-1] := A^l # l := largest po2 at most L # Note that an alternative divide and conquer to compute the reduction is possible and can be embedded into the above loop without caching intermediate powers of A # We do this reverse divide-and-conquer for efficiency reasons: # 1) it involves fewer padding steps for non-po2 L # 2) it involves more contiguous arrays # Take care of edge case for non-po2 arrays # Note that this initial step is a no-op for the case of power of 2 (l == L) k = v.size(-1) - l v_ = powers.pop() @ v[..., l:] v = v[..., :l] v[..., :k] = v[..., :k] + v_ # Handle reduction for power of 2 while v.size(-1) > 1: v = rearrange(v, '... (z l) -> ... z l', z=2) v = v[..., 0, :] + powers.pop() @ v[..., 1, :] return I, v.squeeze(-1) def krylov_toeplitz(L, A, b, c=None): """ Specializes to lower triangular Toeplitz matrix A represented by its diagonals A : (..., N) b : (..., N) c : (..., N) Returns x : (..., N, L) x[i, l] = A^l @ b[i] """ x = b.unsqueeze(0) # (1, ..., N) A_ = A while x.shape[0] < L: xx = causal_convolution(A_, x) x = torch.cat([x, xx], dim=0) # there might be a more efficient way of ordering axes A_ = causal_convolution(A_, A_) x = x[:L, ...] # (L, ..., N) if c is not None: x = torch.einsum('l...n, ...n -> ...l', x, c) else: x = rearrange(x, 'l ... n -> ... n l') x = x.contiguous() return x def krylov_toeplitz_(L, A, b, c=None): """ Padded version of krylov_toeplitz that saves some fft's TODO currently not faster than original version, not sure why """ N = A.shape[-1] x = b.unsqueeze(0) # (1, ..., N) x = F.pad(x, (0, N)) A = F.pad(A, (0, N)) done = L == 1 while not done: l = x.shape[0] # Save memory on last iteration if L - l <= l: done = True _x = x[:L-l] else: _x = x Af = torch.fft.rfft(A, n=2*N, dim=-1) xf = torch.fft.rfft(_x, n=2*N, dim=-1) xf_ = Af * xf x_ = torch.fft.irfft(xf_, n=2*N, dim=-1) x_[..., N:] = 0 x = torch.cat([x, x_], dim=0) # there might be a more efficient way of ordering axes if not done: A = torch.fft.irfft(Af*Af, n=2*N, dim=-1) A[..., N:] = 0 x = x[:L, ..., :N] # (L, ..., N) if c is not None: x = torch.einsum('l...n, ...n -> ...l', x, c) else: x = rearrange(x, 'l ... n -> ... n l') x = x.contiguous() return x
hyena-dna-main
src/ops/krylov.py
""" Utilities for computing convolutions. There are 3 equivalent views: 1. causal convolution 2. multiplication of (lower) triangular Toeplitz matrices 3. polynomial multiplication (mod x^N) """ import torch import torch.nn as nn import torch.nn.functional as F def construct_toeplitz(v, f=0.0): """Explicit construction of Krylov matrix [v A @ v A^2 @ v ... A^{n-1} @ v] where A = Z_f. This uses vectorized indexing and cumprod so it's much faster than using the Krylov function. Parameters: v: the starting vector of size n or (rank, n). f: real number Returns: K: Krylov matrix of size (n, n) or (rank, n, n). """ n = v.shape[-1] a = torch.arange(n, device=v.device) b = -a indices = a[:, None] + b[None] K = v[..., indices] K[..., indices < 0] *= f return K def triangular_toeplitz_multiply_(u, v, sum=None): n = u.shape[-1] u_expand = F.pad(u, (0, n)) v_expand = F.pad(v, (0, n)) u_f = torch.fft.rfft(u_expand, n=2*n, dim=-1) v_f = torch.fft.rfft(v_expand, n=2*n, dim=-1) uv_f = u_f * v_f if sum is not None: uv_f = uv_f.sum(dim=sum) output = torch.fft.irfft(uv_f, n=2*n, dim=-1)[..., :n] return output def triangular_toeplitz_multiply_padded_(u, v): """ Same as triangular_toeplitz_multiply but inputs and output assume to be 0-padded already. """ n = u.shape[-1] assert n % 2 == 0 u_f = torch.fft.rfft(u, n=n, dim=-1) v_f = torch.fft.rfft(v, n=n, dim=-1) uv_f = u_f * v_f output = torch.fft.irfft(uv_f, n=n, dim=-1) output[..., n:] = 0 return output class TriangularToeplitzMult(torch.autograd.Function): @staticmethod def forward(ctx, u, v): ctx.save_for_backward(u, v) return triangular_toeplitz_multiply_(u, v) @staticmethod def backward(ctx, grad): u, v = ctx.saved_tensors d_u = triangular_toeplitz_multiply_(grad.flip(-1), v).flip(-1) d_v = triangular_toeplitz_multiply_(grad.flip(-1), u).flip(-1) return d_u, d_v class TriangularToeplitzMultFast(torch.autograd.Function): @staticmethod def forward(ctx, u, v): n = u.shape[-1] u_expand = F.pad(u, (0, n)) v_expand = F.pad(v, (0, n)) u_f = torch.fft.rfft(u_expand, n=2*n, dim=-1) v_f = torch.fft.rfft(v_expand, n=2*n, dim=-1) ctx.save_for_backward(u_f, v_f) uv_f = u_f * v_f output = torch.fft.irfft(uv_f, n=2*n, dim=-1)[..., :n] return output @staticmethod def backward(ctx, grad): u_f, v_f = ctx.saved_tensors n = grad.shape[-1] g_expand = F.pad(grad.flip(-1), (0, n)) g_f = torch.fft.rfft(g_expand, n=2*n, dim=-1) gu_f = g_f * u_f gv_f = g_f * v_f d_u = torch.fft.irfft(gv_f, n=2*n, dim=-1)[..., :n] d_v = torch.fft.irfft(gu_f, n=2*n, dim=-1)[..., :n] d_u = d_u.flip(-1) d_v = d_v.flip(-1) return d_u, d_v class TriangularToeplitzMultPadded(torch.autograd.Function): @staticmethod def forward(ctx, u, v): ctx.save_for_backward(u, v) output = triangular_toeplitz_multiply_(u, v) return output @staticmethod def backward(ctx, grad): u, v = ctx.saved_tensors d_u = triangular_toeplitz_multiply_padded_(grad.flip(-1), v).flip(-1) d_v = triangular_toeplitz_multiply_padded_(grad.flip(-1), u).flip(-1) return d_u, d_v class TriangularToeplitzMultPaddedFast(torch.autograd.Function): """ Trade off speed (20-25% faster) for more memory (20-25%) """ @staticmethod def forward(ctx, u, v): n = u.shape[-1] u_f = torch.fft.rfft(u, n=n, dim=-1) v_f = torch.fft.rfft(v, n=n, dim=-1) ctx.save_for_backward(u_f, v_f) uv_f = u_f * v_f output = torch.fft.irfft(uv_f, n=n, dim=-1) output[..., n//2:].zero_() return output @staticmethod def backward(ctx, grad): u_f, v_f = ctx.saved_tensors n = grad.shape[-1] g_expand = F.pad(grad[..., :n//2].flip(-1), (0, n//2)) g_f = torch.fft.rfft(g_expand, n=n, dim=-1) gu_f = g_f * u_f gv_f = g_f * v_f d_u = torch.fft.irfft(gv_f, n=n, dim=-1) d_v = torch.fft.irfft(gu_f, n=n, dim=-1) d_u[..., n//2:].zero_() d_v[..., n//2:].zero_() d_u[..., :n//2] = d_u[..., :n//2].flip(-1) # TODO d_v[..., :n//2] = d_v[..., :n//2].flip(-1) # TODO return d_u, d_v # triangular_toeplitz_multiply = triangular_toeplitz_multiply_ triangular_toeplitz_multiply = TriangularToeplitzMult.apply triangular_toeplitz_multiply_fast = TriangularToeplitzMultFast.apply triangular_toeplitz_multiply_padded = TriangularToeplitzMultPadded.apply triangular_toeplitz_multiply_padded_fast = TriangularToeplitzMultPaddedFast.apply def causal_convolution(u, v, fast=True, pad=False): if not pad and not fast: return triangular_toeplitz_multiply(u, v) if not pad and fast: return triangular_toeplitz_multiply_fast(u, v) if pad and not fast: return triangular_toeplitz_multiply_padded(u, v) if pad and fast: return triangular_toeplitz_multiply_padded_fast(u, v)
hyena-dna-main
src/ops/toeplitz.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import sys from setuptools import Extension, find_packages, setup if sys.version_info < (3, 6): sys.exit("Sorry, Python >= 3.6 is required for metaseq.") def write_version_py(): with open(os.path.join("metaseq", "version.txt")) as f: version = f.read().strip() # append latest commit hash to version string try: sha = ( subprocess.check_output(["git", "rev-parse", "HEAD"]) .decode("ascii") .strip() ) version += "+" + sha[:7] except Exception: pass # write version info to metaseq/version.py with open(os.path.join("metaseq", "version.py"), "w") as f: f.write('__version__ = "{}"\n'.format(version)) return version version = write_version_py() with open("README.md") as f: readme = f.read() if sys.platform == "darwin": extra_compile_args = ["-stdlib=libc++", "-O3"] else: extra_compile_args = ["-std=c++11", "-O3"] class NumpyExtension(Extension): """Source: https://stackoverflow.com/a/54128391""" def __init__(self, *args, **kwargs): self.__include_dirs = [] super().__init__(*args, **kwargs) @property def include_dirs(self): import numpy return self.__include_dirs + [numpy.get_include()] @include_dirs.setter def include_dirs(self, dirs): self.__include_dirs = dirs extensions = [ NumpyExtension( "metaseq.data.data_utils_fast", sources=["metaseq/data/data_utils_fast.pyx"], language="c++", extra_compile_args=extra_compile_args, ), NumpyExtension( "metaseq.data.token_block_utils_fast", sources=["metaseq/data/token_block_utils_fast.pyx"], language="c++", extra_compile_args=extra_compile_args, ), ] cmdclass = {} try: # torch is not available when generating docs from torch.utils import cpp_extension cmdclass["build_ext"] = cpp_extension.BuildExtension except ImportError: pass if "READTHEDOCS" in os.environ: # don't build extensions when generating docs extensions = [] if "build_ext" in cmdclass: del cmdclass["build_ext"] # use CPU build of PyTorch dependency_links = [ "https://download.pytorch.org/whl/cpu/torch-1.7.0%2Bcpu-cp36-cp36m-linux_x86_64.whl" ] else: dependency_links = [] if "clean" in sys.argv[1:]: # Source: https://bit.ly/2NLVsgE print("deleting Cython files...") import subprocess subprocess.run( ["rm -f metaseq/*.so metaseq/**/*.so metaseq/*.pyd metaseq/**/*.pyd"], shell=True, ) def do_setup(package_data): setup( name="metaseq", version=version, description="MetaSeq, a framework for large language models, from Meta", url="https://github.com/facebookresearch/metaseq", long_description=readme, long_description_content_type="text/markdown", setup_requires=[ "cython", 'numpy; python_version>="3.7"', "setuptools>=18.0", ], install_requires=[ # protobuf version pinned due to tensorboard not pinning a version. # https://github.com/protocolbuffers/protobuf/issues/10076 "protobuf==3.20.1", "azure-storage-blob", "boto3", "black==22.1.0", "click==8.0.4", "cython", 'dataclasses; python_version<"3.7"', "editdistance", "fire", "flask==2.1.1", # for api "hydra-core>=1.1.0,<1.2", "iopath", "ipdb", "ipython", "Jinja2==3.1.1", # for evals "markupsafe", # for evals "more_itertools", "mypy", "ninja", 'numpy; python_version>="3.7"', "omegaconf<=2.1.1", "pre-commit", "pytest", "regex", "sklearn", # for evals "sacrebleu", # for evals "tensorboard==2.8.0", "timeout-decorator", "tokenizers", "torch", "tqdm", "typing_extensions", ], dependency_links=dependency_links, packages=find_packages( exclude=[ "scripts", "scripts.*", "tests", "tests.*", ] ), extras_require={ "dev": [ "flake8==3.9.2", "black==22.1.0", # test deps "iopath", "transformers", "pyarrow", "boto3", ] }, package_data=package_data, ext_modules=extensions, test_suite="tests", entry_points={ "console_scripts": [ "metaseq-train = metaseq_cli.train:cli_main", "metaseq-validate = metaseq_cli.validate:cli_main", "opt-baselines = metaseq.launcher.opt_baselines:cli_main", "metaseq-api-local = metaseq_cli.interactive_hosted:cli_main", ], }, cmdclass=cmdclass, zip_safe=False, ) def get_files(path, relative_to="metaseq"): all_files = [] for root, _dirs, files in os.walk(path, followlinks=True): root = os.path.relpath(root, relative_to) for file in files: if file.endswith(".pyc"): continue all_files.append(os.path.join(root, file)) return all_files if __name__ == "__main__": package_data = {"metaseq": (get_files(os.path.join("metaseq", "config")))} do_setup(package_data)
flash_metaseq-main
setup.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Utils for gpu_tests. """ import os import unittest def is_this_circleci(): """ Return if we are currently running in CircleCI. """ return bool(os.environ.get("CIRCLECI")) def skipIfCircleCI(testfn, reason="Test disabled in CircleCI"): """ Decorate a test to skip if running on CircleCI. """ return unittest.skipIf(is_this_circleci(), reason)(testfn)
flash_metaseq-main
gpu_tests/utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import copy import logging import unittest import torch from omegaconf import OmegaConf from metaseq.optim.fp16_optimizer import FP16Optimizer, MemoryEfficientFP16Optimizer @unittest.skipIf(not torch.cuda.is_available(), "test requires a GPU") class TestGradientScaling(unittest.TestCase): def setUp(self): self.x = torch.tensor([2.0]).cuda().half() weight = 3.0 bias = 5.0 self.error = 1.0 self.target = torch.tensor([self.x * weight + bias + self.error]).cuda().half() self.loss_fn = torch.nn.L1Loss() self.model = torch.nn.Linear(1, 1) self.model.weight.data = torch.tensor([[weight]]) self.model.bias.data = torch.tensor([bias]) self.model.cuda().half() self.params = list(self.model.parameters()) self.cfg_dls = OmegaConf.create( { "optimization": { "lr": [0.1], }, "optimizer": { "_name": "adam", "lr": [0.1], "adam_betas": "(0.9, 0.999)", "adam_eps": 1e-8, "weight_decay": 0.0, }, "common": { "bf16": False, "fp16_init_scale": 1, "fp16_scale_window": 1, "fp16_scale_tolerance": 1, "threshold_loss_scale": 1, "min_loss_scale": 1e-4, }, } ) logging.disable(logging.CRITICAL) def tearDown(self): logging.disable(logging.NOTSET) def run_iter(self, model, params, optimizer): optimizer.zero_grad() y = model(self.x) loss = self.loss_fn(y, self.target) optimizer.backward(loss) self.assertEqual(loss, torch.tensor(1.0, device="cuda:0", dtype=torch.float16)) grad_norm = optimizer.clip_grad_norm(0) self.assertAlmostEqual(grad_norm.item(), 2.2361, 4) optimizer.step() self.assertEqual( model.weight, torch.tensor( [[3.0996]], device="cuda:0", dtype=torch.float16, requires_grad=True ), ) self.assertEqual( model.bias, torch.tensor( [5.1016], device="cuda:0", dtype=torch.float16, requires_grad=True ), ) self.assertEqual(optimizer.scaler.loss_scale, 2.0) def test_mixed_precision(self): model = copy.deepcopy(self.model) params = list(model.parameters()) optimizer = FP16Optimizer.build_optimizer(self.cfg_dls, params) self.run_iter(model, params, optimizer) self.assertTrue( all( torch.all( fp32_params.eq( torch.tensor( [3.1000, 5.1000], device="cuda:0", requires_grad=True ) ) ) for fp32_params in optimizer.fp32_params.values() ) ) def test_memory_efficient(self): model = copy.deepcopy(self.model) params = list(model.parameters()) optimizer = MemoryEfficientFP16Optimizer.build_optimizer(self.cfg_dls, params) self.run_iter(model, params, optimizer) @unittest.skipIf(not torch.cuda.is_available(), "test requires a GPU") class TestBF16(unittest.TestCase): def setUp(self): self.x = torch.tensor([2.0]).cuda().bfloat16() weight = 3.0 bias = 5.0 self.error = 1.0 self.target = ( torch.tensor([self.x * weight + bias + self.error]).cuda().bfloat16() ) self.loss_fn = torch.nn.L1Loss() self.model = torch.nn.Linear(1, 1) self.model.weight.data = torch.tensor([[weight]]) self.model.bias.data = torch.tensor([bias]) self.model.cuda().bfloat16() self.params = list(self.model.parameters()) self.cfg_dls = OmegaConf.create( { "distributed_training": { "distributed_world_size": 1, }, "optimization": { "lr": [0.1], "update_freq": [1], }, "optimizer": { "_name": "adam", "lr": [0.1], "adam_betas": "(0.9, 0.999)", "adam_eps": 1e-8, "weight_decay": 0.0, }, "common": { "model_parallel_size": 1, "bf16": True, "fp16": True, }, } ) logging.disable(logging.CRITICAL) def tearDown(self): logging.disable(logging.NOTSET) def run_iter(self, model, params, optimizer): optimizer.zero_grad() y = model(self.x) loss = self.loss_fn(y, self.target) optimizer.backward(loss) self.assertEqual(loss, torch.tensor(1.0, device="cuda:0", dtype=torch.bfloat16)) grad_norm = optimizer.clip_grad_norm(0) self.assertAlmostEqual(grad_norm.item(), 2.2361, 4) optimizer.step() self.assertEqual( model.weight, torch.tensor( [[3.0938]], device="cuda:0", dtype=torch.bfloat16, requires_grad=True ), ) self.assertEqual( model.bias, torch.tensor( [5.1016], device="cuda:0", dtype=torch.bfloat16, requires_grad=True ), ) self.assertIsNone(optimizer.scaler) def test_mixed_precision(self): model = copy.deepcopy(self.model) params = list(model.parameters()) optimizer = FP16Optimizer.build_optimizer(self.cfg_dls, params) self.run_iter(model, params, optimizer) self.assertTrue( all( torch.all( fp32_params.eq( torch.tensor( [3.1000, 5.1000], device="cuda:0", requires_grad=True ) ) ) for fp32_params in optimizer.fp32_params.values() ) ) if __name__ == "__main__": unittest.main()
flash_metaseq-main
gpu_tests/test_fp16_optimizer.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import torch import torch.nn as nn from torch.utils.checkpoint import checkpoint from metaseq.modules.checkpoint_activations import checkpoint_wrapper class Model(nn.Module): def __init__( self, use_pytorch_checkpoint=False, use_metaseq_checkpoint=False, **kwargs ): super().__init__() torch.manual_seed(0) self.use_pytorch_checkpoint = use_pytorch_checkpoint self.ffn = nn.Sequential( nn.Linear(32, 128), # add a Dropout layer to test RNG save/restore nn.Dropout(p=0.5), nn.Linear(128, 32), ) if use_metaseq_checkpoint: self.ffn = checkpoint_wrapper(self.ffn, **kwargs) self.out = nn.Linear(32, 1) def forward(self, x): if self.use_pytorch_checkpoint: x = checkpoint(self.ffn, x) else: x = self.ffn(x) return self.out(x) class TestActivationCheckpointing(unittest.TestCase): def _test_checkpoint_wrapper(self, device, log_memory_usage=False): def get_loss_and_gnorm(model): torch.manual_seed(1) input = torch.rand(2, 16, 32).requires_grad_(True).to(device) model.zero_grad() loss = model(input).sum() loss.backward() gnorm = torch.norm( torch.stack([torch.norm(p.grad.detach()) for p in model.parameters()]) ) return {"loss": loss, "gnorm": gnorm} model = Model().to(device) no_cpt = get_loss_and_gnorm(model) model = Model(use_pytorch_checkpoint=True).to(device) pyt_cpt = get_loss_and_gnorm(model) torch.testing.assert_allclose(no_cpt["loss"], pyt_cpt["loss"]) torch.testing.assert_allclose(no_cpt["gnorm"], pyt_cpt["gnorm"]) model = Model(use_metaseq_checkpoint=True).to(device) metaseq_cpt = get_loss_and_gnorm(model) torch.testing.assert_allclose(no_cpt["loss"], metaseq_cpt["loss"]) torch.testing.assert_allclose(no_cpt["gnorm"], metaseq_cpt["gnorm"]) model = Model(use_metaseq_checkpoint=True, offload_to_cpu=True).to(device) metaseq_cpt_offload = get_loss_and_gnorm(model) torch.testing.assert_allclose(no_cpt["loss"], metaseq_cpt_offload["loss"]) torch.testing.assert_allclose(no_cpt["gnorm"], metaseq_cpt_offload["gnorm"]) def test_checkpoint_wrapper_cpu(self): self._test_checkpoint_wrapper(device=torch.device("cpu")) @unittest.skipIf(not torch.cuda.is_available(), "test requires a GPU") def test_checkpoint_wrapper_cuda(self): self._test_checkpoint_wrapper(device=torch.device("cuda")) if __name__ == "__main__": unittest.main()
flash_metaseq-main
gpu_tests/test_activation_checkpointing.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import logging import unittest import torch from omegaconf import OmegaConf from metaseq.optim.adam import MetaseqAdam from metaseq.optim.lr_scheduler.polynomial_decay_schedule import ( PolynomialDecayLRSchedule, ) class TestPolynomialLRScheduler(unittest.TestCase): def setUp(self): self.x = torch.tensor([2.0]) weight = 3.0 bias = 5.0 error = 1.0 self.target = torch.tensor([self.x * weight + bias + error]) self.loss_fn = torch.nn.L1Loss() self.model = torch.nn.Linear(1, 1) self.model.weight.data = torch.tensor([[weight]]) self.model.bias.data = torch.tensor([bias]) self.params = list(self.model.parameters()) logging.disable(logging.CRITICAL) def tearDown(self): logging.disable(logging.NOTSET) def _get_adam(self, starting_lr): return MetaseqAdam( cfg=OmegaConf.create( vars( argparse.Namespace( adam_betas="(0.9, 0.999)", adam_eps=1e-8, weight_decay=0.0, lr=[starting_lr], ) ) ), params=self.params, ) @staticmethod def _get_polynomial_lr_schedule( warmup_updates, power, total_updates, starting_lr, end_lr, zero_lr_warmup_steps, optimizer, ): return PolynomialDecayLRSchedule( cfg=OmegaConf.create( vars( argparse.Namespace( warmup_updates=warmup_updates, end_learning_rate=end_lr, power=power, total_num_update=total_updates, lr=[starting_lr], zero_lr_warmup_steps=zero_lr_warmup_steps, ) ) ), optimizer=optimizer, ) def test_polynomial_decay_no_adam_warmup(self): starting_lr = 0.1 total_updates = 50 warmup_updates = 20 adam_warmup = 0 power = 1 adam_optim = self._get_adam(starting_lr) # Test setting end_lr, adam_warmup = 0 end_lr = starting_lr * 0.1 lr_sched = self._get_polynomial_lr_schedule( warmup_updates, power, total_updates, starting_lr, end_lr, adam_warmup, adam_optim, ) # Init warmup period, halfway mark self.assertAlmostEqual( lr_sched.step_update(warmup_updates // 2), starting_lr * 0.5 ) # Done warming up self.assertAlmostEqual(lr_sched.step_update(warmup_updates), starting_lr) # Linear decay, halfway mark halfway = warmup_updates + (total_updates - warmup_updates) // 2 self.assertAlmostEqual( lr_sched.step_update(halfway), end_lr + (starting_lr - end_lr) * 0.5 ) # End of decay self.assertAlmostEqual(lr_sched.step_update(total_updates), end_lr) # Test power == 2 power = 2 end_lr = 0 lr_sched = self._get_polynomial_lr_schedule( warmup_updates, power, total_updates, starting_lr, end_lr, adam_warmup, adam_optim, ) # Init warmup period, halfway mark self.assertAlmostEqual( lr_sched.step_update(warmup_updates // 2), starting_lr * 0.5 ) # Done warming up self.assertAlmostEqual(lr_sched.step_update(warmup_updates), starting_lr) # Polynomial power == 2 decay, halfway mark self.assertAlmostEqual( lr_sched.step_update(halfway), end_lr + (starting_lr - end_lr) * 0.5**2 ) def test_polynomial_decay_with_adam_warmup(self): starting_lr = 0.1 total_updates = 50 warmup_updates = 20 adam_warmup = 10 power = 1 adam_optim = self._get_adam(starting_lr) end_lr = starting_lr * 0.1 lr_sched = self._get_polynomial_lr_schedule( warmup_updates, power, total_updates, starting_lr, end_lr, adam_warmup, adam_optim, ) # Init warmup period, during adam warmup self.assertEqual(lr_sched.step_update(adam_warmup // 2), 0) # Init warmup period, past adam warmup self.assertAlmostEqual( lr_sched.step_update(warmup_updates // 2 + adam_warmup), starting_lr * 0.5 ) # Done warming up total_warmup = adam_warmup + warmup_updates self.assertAlmostEqual(lr_sched.step_update(total_warmup), starting_lr) # Linear decay, halfway mark halfway = total_warmup + (total_updates - total_warmup) // 2 self.assertAlmostEqual( lr_sched.step_update(halfway), end_lr + (starting_lr - end_lr) * 0.5 ) # End of decay self.assertAlmostEqual(lr_sched.step_update(total_updates), end_lr) if __name__ == "__main__": unittest.main()
flash_metaseq-main
tests/test_polynomial_lr.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import collections import unittest import numpy as np from metaseq.data import ListDataset, ResamplingDataset class TestResamplingDataset(unittest.TestCase): def setUp(self): self.strings = ["ab", "c", "def", "ghij"] self.weights = [4.0, 2.0, 7.0, 1.5] self.size_ratio = 2 self.dataset = ListDataset( self.strings, np.array([len(s) for s in self.strings]) ) def _test_common(self, resampling_dataset, iters): assert len(self.dataset) == len(self.strings) == len(self.weights) assert len(resampling_dataset) == self.size_ratio * len(self.strings) results = {"ordered_by_size": True, "max_distribution_diff": 0.0} totalfreqs = 0 freqs = collections.defaultdict(int) for epoch_num in range(iters): resampling_dataset.set_epoch(epoch_num) indices = resampling_dataset.ordered_indices() assert len(indices) == len(resampling_dataset) prev_size = -1 for i in indices: cur_size = resampling_dataset.size(i) # Make sure indices map to same sequences within an epoch assert resampling_dataset[i] == resampling_dataset[i] # Make sure length of sequence is correct assert cur_size == len(resampling_dataset[i]) freqs[resampling_dataset[i]] += 1 totalfreqs += 1 if prev_size > cur_size: results["ordered_by_size"] = False prev_size = cur_size assert set(freqs.keys()) == set(self.strings) for s, weight in zip(self.strings, self.weights): freq = freqs[s] / totalfreqs expected_freq = weight / sum(self.weights) results["max_distribution_diff"] = max( results["max_distribution_diff"], abs(expected_freq - freq) ) return results def test_resampling_dataset_batch_by_size_false(self): resampling_dataset = ResamplingDataset( self.dataset, self.weights, size_ratio=self.size_ratio, batch_by_size=False, seed=0, ) results = self._test_common(resampling_dataset, iters=1000) # For batch_by_size = False, the batches should be returned in # arbitrary order of size. assert not results["ordered_by_size"] # Allow tolerance in distribution error of 2%. assert results["max_distribution_diff"] < 0.02 def test_resampling_dataset_batch_by_size_true(self): resampling_dataset = ResamplingDataset( self.dataset, self.weights, size_ratio=self.size_ratio, batch_by_size=True, seed=0, ) results = self._test_common(resampling_dataset, iters=1000) # For batch_by_size = True, the batches should be returned in # increasing order of size. assert results["ordered_by_size"] # Allow tolerance in distribution error of 2%. assert results["max_distribution_diff"] < 0.02 if __name__ == "__main__": unittest.main()
flash_metaseq-main
tests/test_resampling_dataset.py
flash_metaseq-main
tests/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import json import os import random import string import tempfile import unittest import torch from tests.utils import train_language_model try: import tokenizers # noqa has_hf_tokenizers = True except ImportError: has_hf_tokenizers = False def write_one_jsonl_(jsonl_path, num_lines=5, text_len_min=5, text_len_max=50): data = [] with open(jsonl_path, "w") as h: for _ in range(num_lines): text_len = random.choice(range(text_len_min, text_len_max)) data.append( {"text": "".join(random.choices(string.ascii_letters, k=text_len))} ) print(json.dumps(data[-1]), file=h) return def write_dummy_jsonl_data_dir_(data_dir, num_lines=500): for subset in ["train", "valid"]: for shard in range(2): shard_dir = os.path.join(data_dir, subset, f"{shard:02}") os.makedirs(shard_dir) for dataset in ["a", "b"]: write_one_jsonl_( os.path.join(shard_dir, f"dataset_{dataset}.jsonl"), num_lines=num_lines, ) def write_dummy_bpe_(data_dir): from tokenizers import ByteLevelBPETokenizer tokenizer = ByteLevelBPETokenizer(add_prefix_space=True) tokenizer.train( [], vocab_size=500, special_tokens=["<s>", "<pad>", "</s>", "<unk>"], show_progress=False, ) vocab, merges = tokenizer.save_model(data_dir) return vocab, merges class TestReproducibility(unittest.TestCase): @unittest.skipIf(not has_hf_tokenizers, "skip test if tokenizers is missing") def _test_reproducibility( self, name, extra_flags=None, delta=0.0001, resume_checkpoint="checkpoint1.pt", max_epoch=3, ): def get_last_log_stats_containing_string(log_records, search_string): for log_record in logs.records[::-1]: if isinstance(log_record.msg, str) and search_string in log_record.msg: return json.loads(log_record.msg) if extra_flags is None: extra_flags = [] with tempfile.TemporaryDirectory(name) as data_dir: write_dummy_jsonl_data_dir_(data_dir) vocab, merges = write_dummy_bpe_(data_dir) # train epochs 1 and 2 together with self.assertLogs() as logs: train_language_model( data_dir=data_dir, arch="transformer_lm_gpt2_tiny", extra_flags=[ "--vocab-filename", vocab, "--merges-filename", merges, "--dropout", "0.0", "--log-format", "json", "--log-interval", "1", "--max-epoch", str(max_epoch), "--batch-size", "2", ] + extra_flags, task="streaming_language_modeling", max_tokens=None, ) train_log = get_last_log_stats_containing_string(logs.records, "train_loss") valid_log = get_last_log_stats_containing_string(logs.records, "valid_loss") # train epoch 2, resuming from previous checkpoint 1 os.rename( os.path.join(data_dir, resume_checkpoint), os.path.join(data_dir, "checkpoint_last.pt"), ) with self.assertLogs() as logs: train_language_model( data_dir=data_dir, arch="transformer_lm_gpt2_tiny", extra_flags=[ "--vocab-filename", vocab, "--merges-filename", merges, "--dropout", "0.0", "--log-format", "json", "--log-interval", "1", "--max-epoch", str(max_epoch), "--batch-size", "2", ] + extra_flags, task="streaming_language_modeling", max_tokens=None, ) train_res_log = get_last_log_stats_containing_string( logs.records, "train_loss" ) valid_res_log = get_last_log_stats_containing_string( logs.records, "valid_loss" ) for k in ["train_loss", "train_ppl", "train_num_updates", "train_gnorm"]: self.assertAlmostEqual( float(train_log[k]), float(train_res_log[k]), delta=delta ) for k in [ "valid_loss", "valid_ppl", "valid_num_updates", "valid_best_loss", ]: self.assertAlmostEqual( float(valid_log[k]), float(valid_res_log[k]), delta=delta ) def test_reproducibility(self): self._test_reproducibility("test_reproducibility") @unittest.skipIf(not torch.cuda.is_available(), "test requires a GPU") def test_reproducibility_fp16(self): self._test_reproducibility( "test_reproducibility_fp16", [ "--fp16", "--fp16-init-scale", "4096", ], delta=0.011, ) @unittest.skipIf(not torch.cuda.is_available(), "test requires a GPU") def test_reproducibility_memory_efficient_fp16(self): self._test_reproducibility( "test_reproducibility_memory_efficient_fp16", [ "--memory-efficient-fp16", "--fp16-init-scale", "4096", ], ) def test_mid_epoch_reproducibility(self): self._test_reproducibility( "test_mid_epoch_reproducibility", ["--save-interval-updates", "3"], resume_checkpoint="checkpoint_1_3.pt", max_epoch=1, ) if __name__ == "__main__": unittest.main()
flash_metaseq-main
tests/test_streaming_language_modeling_task.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import os import random from typing import Optional import numpy as np import torch import torch.nn.functional as F import metaseq.distributed.utils as distributed_utils from metaseq import options, utils from metaseq.data import Dictionary, data_utils from metaseq.dataclass.utils import convert_namespace_to_omegaconf from metaseq.models import ( BaseEncoder, EncoderDecoderModel, IncrementalDecoder, ) from metaseq.models.base_encoder import EncoderOut from metaseq.tasks import LegacyTask from metaseq_cli import train, validate def collate( samples, pad_idx, eos_idx, left_pad_source=True, left_pad_target=False, input_feeding=True, pad_to_length=None, pad_to_multiple=1, ): if len(samples) == 0: return {} def merge(key, left_pad, move_eos_to_beginning=False, pad_to_length=None): return data_utils.collate_tokens( [s[key] for s in samples], pad_idx, eos_idx, left_pad, move_eos_to_beginning, pad_to_length=pad_to_length, pad_to_multiple=pad_to_multiple, ) def check_alignment(alignment, src_len, tgt_len): if alignment is None or len(alignment) == 0: return False if ( alignment[:, 0].max().item() >= src_len - 1 or alignment[:, 1].max().item() >= tgt_len - 1 ): return False return True def compute_alignment_weights(alignments): """ Given a tensor of shape [:, 2] containing the source-target indices corresponding to the alignments, a weight vector containing the inverse frequency of each target index is computed. For e.g. if alignments = [[5, 7], [2, 3], [1, 3], [4, 2]], then a tensor containing [1., 0.5, 0.5, 1] should be returned (since target index 3 is repeated twice) """ align_tgt = alignments[:, 1] _, align_tgt_i, align_tgt_c = torch.unique( align_tgt, return_inverse=True, return_counts=True ) align_weights = align_tgt_c[align_tgt_i[np.arange(len(align_tgt))]] return 1.0 / align_weights.float() id = torch.LongTensor([s["id"] for s in samples]) src_tokens = merge( "source", left_pad=left_pad_source, pad_to_length=pad_to_length["source"] if pad_to_length is not None else None, ) # sort by descending source length src_lengths = torch.LongTensor( [s["source"].ne(pad_idx).long().sum() for s in samples] ) src_lengths, sort_order = src_lengths.sort(descending=True) id = id.index_select(0, sort_order) src_tokens = src_tokens.index_select(0, sort_order) prev_output_tokens = None target = None if samples[0].get("target", None) is not None: target = merge( "target", left_pad=left_pad_target, pad_to_length=pad_to_length["target"] if pad_to_length is not None else None, ) target = target.index_select(0, sort_order) tgt_lengths = torch.LongTensor( [s["target"].ne(pad_idx).long().sum() for s in samples] ).index_select(0, sort_order) ntokens = tgt_lengths.sum().item() if samples[0].get("prev_output_tokens", None) is not None: prev_output_tokens = merge( "prev_output_tokens", left_pad=left_pad_target, pad_to_length=pad_to_length["target"] if pad_to_length is not None else None, ) elif input_feeding: # we create a shifted version of targets for feeding the # previous output token(s) into the next decoder step prev_output_tokens = merge( "target", left_pad=left_pad_target, move_eos_to_beginning=True, pad_to_length=pad_to_length["target"] if pad_to_length is not None else None, ) else: ntokens = src_lengths.sum().item() batch = { "id": id, "nsentences": len(samples), "ntokens": ntokens, "net_input": { "src_tokens": src_tokens, "src_lengths": src_lengths, }, "target": target, } if prev_output_tokens is not None: batch["net_input"]["prev_output_tokens"] = prev_output_tokens.index_select( 0, sort_order ) if samples[0].get("alignment", None) is not None: bsz, tgt_sz = batch["target"].shape src_sz = batch["net_input"]["src_tokens"].shape[1] offsets = torch.zeros((len(sort_order), 2), dtype=torch.long) offsets[:, 1] += torch.arange(len(sort_order), dtype=torch.long) * tgt_sz if left_pad_source: offsets[:, 0] += src_sz - src_lengths if left_pad_target: offsets[:, 1] += tgt_sz - tgt_lengths alignments = [ alignment + offset for align_idx, offset, src_len, tgt_len in zip( sort_order, offsets, src_lengths, tgt_lengths ) for alignment in [samples[align_idx]["alignment"].view(-1, 2)] if check_alignment(alignment, src_len, tgt_len) ] if len(alignments) > 0: alignments = torch.cat(alignments, dim=0) align_weights = compute_alignment_weights(alignments) batch["alignments"] = alignments batch["align_weights"] = align_weights if samples[0].get("constraints", None) is not None: # Collate the packed constraints across the samples, padding to # the length of the longest sample. lens = [sample.get("constraints").size(0) for sample in samples] constraints = torch.zeros((len(samples), max(lens))).long() for i, sample in enumerate(samples): constraints[i, 0 : lens[i]] = samples[i].get("constraints") batch["constraints"] = constraints.index_select(0, sort_order) return batch def dummy_dictionary(vocab_size, prefix="token_"): d = Dictionary() for i in range(vocab_size): token = prefix + str(i) d.add_symbol(token) d.finalize(padding_factor=1) # don't add extra padding symbols return d def dummy_dataloader( samples, padding_idx=1, eos_idx=2, batch_size=None, ): if batch_size is None: batch_size = len(samples) # add any missing data to samples for i, sample in enumerate(samples): if "id" not in sample: sample["id"] = i # create dataloader dataset = TestDataset(samples) dataloader = torch.utils.data.DataLoader( dataset, batch_size=batch_size, collate_fn=(lambda samples: collate(samples, padding_idx, eos_idx)), ) return iter(dataloader) def sequence_generator_setup(): # construct dummy dictionary d = dummy_dictionary(vocab_size=2) eos = d.eos() w1 = 4 w2 = 5 # construct source data src_tokens = torch.LongTensor([[w1, w2, eos], [w1, w2, eos]]) src_lengths = torch.LongTensor([2, 2]) args = argparse.Namespace() unk = 0.0 args.beam_probs = [ # step 0: torch.FloatTensor( [ # eos w1 w2 # sentence 1: [0.0, unk, 0.9, 0.1], # beam 1 [0.0, unk, 0.9, 0.1], # beam 2 # sentence 2: [0.0, unk, 0.7, 0.3], [0.0, unk, 0.7, 0.3], ] ), # step 1: torch.FloatTensor( [ # eos w1 w2 prefix # sentence 1: [1.0, unk, 0.0, 0.0], # w1: 0.9 (emit: w1 <eos>: 0.9*1.0) [0.0, unk, 0.9, 0.1], # w2: 0.1 # sentence 2: [0.25, unk, 0.35, 0.4], # w1: 0.7 (don't emit: w1 <eos>: 0.7*0.25) [0.00, unk, 0.10, 0.9], # w2: 0.3 ] ), # step 2: torch.FloatTensor( [ # eos w1 w2 prefix # sentence 1: [0.0, unk, 0.1, 0.9], # w2 w1: 0.1*0.9 [ 0.6, unk, 0.2, 0.2, ], # w2 w2: 0.1*0.1 (emit: w2 w2 <eos>: 0.1*0.1*0.6) # sentence 2: [ 0.60, unk, 0.4, 0.00, ], # w1 w2: 0.7*0.4 (emit: w1 w2 <eos>: 0.7*0.4*0.6) [0.01, unk, 0.0, 0.99], # w2 w2: 0.3*0.9 ] ), # step 3: torch.FloatTensor( [ # eos w1 w2 prefix # sentence 1: [ 1.0, unk, 0.0, 0.0, ], # w2 w1 w2: 0.1*0.9*0.9 (emit: w2 w1 w2 <eos>: 0.1*0.9*0.9*1.0) [ 1.0, unk, 0.0, 0.0, ], # w2 w1 w1: 0.1*0.9*0.1 (emit: w2 w1 w1 <eos>: 0.1*0.9*0.1*1.0) # sentence 2: [ 0.1, unk, 0.5, 0.4, ], # w2 w2 w2: 0.3*0.9*0.99 (emit: w2 w2 w2 <eos>: 0.3*0.9*0.99*0.1) [ 1.0, unk, 0.0, 0.0, ], # w1 w2 w1: 0.7*0.4*0.4 (emit: w1 w2 w1 <eos>: 0.7*0.4*0.4*1.0) ] ), ] task = TestTranslationTask.setup_task(args, d, d) model = task.build_model(args) tgt_dict = task.target_dictionary return tgt_dict, w1, w2, src_tokens, src_lengths, model def create_dummy_data( data_dir, num_examples=100, maxlen=20, alignment=False, languages=None ): def _create_dummy_data(dir, filename): data = torch.rand(num_examples * maxlen) data = 97 + torch.floor(26 * data).int() with open(os.path.join(dir, filename), "w") as h: offset = 0 for _ in range(num_examples): ex_len = random.randint(1, maxlen) ex_str = " ".join(map(chr, data[offset : offset + ex_len])) print(ex_str, file=h) offset += ex_len def _create_dummy_alignment_data(filename_src, filename_tgt, filename): with open(os.path.join(data_dir, filename_src), "r") as src_f, open( os.path.join(data_dir, filename_tgt), "r" ) as tgt_f, open(os.path.join(data_dir, filename), "w") as h: for src, tgt in zip(src_f, tgt_f): src_len = len(src.split()) tgt_len = len(tgt.split()) avg_len = (src_len + tgt_len) // 2 num_alignments = random.randint(avg_len // 2, 2 * avg_len) src_indices = torch.floor(torch.rand(num_alignments) * src_len).int() tgt_indices = torch.floor(torch.rand(num_alignments) * tgt_len).int() ex_str = " ".join( [ "{}-{}".format(src, tgt) for src, tgt in zip(src_indices, tgt_indices) ] ) print(ex_str, file=h) files_to_write = [ "train.in", "train.out", "valid.in", "valid.out", "test.in", "test.out", ] if languages is None: # En only dummy dataset for f in files_to_write: _create_dummy_data(data_dir, f) else: for lang in languages: lang_dir = os.path.join(data_dir, lang) os.makedirs(lang_dir, exist_ok=True) for f in files_to_write: _create_dummy_data(lang_dir, f) if alignment: _create_dummy_alignment_data("train.in", "train.out", "train.align") _create_dummy_alignment_data("valid.in", "valid.out", "valid.align") _create_dummy_alignment_data("test.in", "test.out", "test.align") class TestDataset(torch.utils.data.Dataset): def __init__(self, data): super().__init__() self.data = data self.sizes = None def __getitem__(self, index): return self.data[index] def __len__(self): return len(self.data) class TestTranslationTask(LegacyTask): def __init__(self, args, src_dict, tgt_dict, model): super().__init__(args) self.src_dict = src_dict self.tgt_dict = tgt_dict self.model = model @classmethod def setup_task(cls, args, src_dict=None, tgt_dict=None, model=None): return cls(args, src_dict, tgt_dict, model) def build_model(self, args): return TestModel.build_model(args, self) @property def source_dictionary(self): return self.src_dict @property def target_dictionary(self): return self.tgt_dict class TestModel(EncoderDecoderModel): def __init__(self, encoder, decoder): super().__init__(encoder, decoder) @classmethod def build_model(cls, args, task): encoder = TestEncoder(args, task.source_dictionary) decoder = TestIncrementalDecoder(args, task.target_dictionary) return cls(encoder, decoder) class TestEncoder(BaseEncoder): def __init__(self, args, dictionary): super().__init__(dictionary) self.args = args def forward(self, src_tokens, src_lengths=None, **kwargs): return EncoderOut( encoder_out=src_tokens, encoder_padding_mask=None, encoder_embedding=None, encoder_states=None, src_tokens=None, src_lengths=None, ) def reorder_encoder_out(self, encoder_out, new_order): return EncoderOut( encoder_out=encoder_out.encoder_out.index_select(0, new_order), encoder_padding_mask=None, encoder_embedding=None, encoder_states=None, src_tokens=None, src_lengths=None, ) class TestIncrementalDecoder(IncrementalDecoder): def __init__(self, args, dictionary): super().__init__(dictionary) assert hasattr(args, "beam_probs") or hasattr(args, "probs") args.max_decoder_positions = getattr(args, "max_decoder_positions", 100) self.args = args def forward(self, prev_output_tokens, encoder_out=None, incremental_state=None): if incremental_state is not None: prev_output_tokens = prev_output_tokens[:, -1:] bbsz = prev_output_tokens.size(0) vocab = len(self.dictionary) src_len = encoder_out.encoder_out.size(1) tgt_len = prev_output_tokens.size(1) # determine number of steps if incremental_state is not None: # cache step number step = utils.get_incremental_state(self, incremental_state, "step") if step is None: step = 0 utils.set_incremental_state(self, incremental_state, "step", step + 1) steps = [step] else: steps = list(range(tgt_len)) # define output in terms of raw probs if hasattr(self.args, "probs"): assert ( self.args.probs.dim() == 3 ), "expected probs to have size bsz*steps*vocab" probs = self.args.probs.index_select(1, torch.LongTensor(steps)) else: probs = torch.FloatTensor(bbsz, len(steps), vocab).zero_() for i, step in enumerate(steps): # args.beam_probs gives the probability for every vocab element, # starting with eos, then unknown, and then the rest of the vocab if step < len(self.args.beam_probs): probs[:, i, self.dictionary.eos() :] = self.args.beam_probs[step] else: probs[:, i, self.dictionary.eos()] = 1.0 # random attention attn = torch.rand(bbsz, tgt_len, src_len) dev = prev_output_tokens.device return probs.to(dev), {"attn": [attn.to(dev)]} def get_normalized_probs(self, net_output, log_probs, _): # the decoder returns probabilities directly probs = net_output[0] if log_probs: return probs.log() else: return probs def max_positions(self): return self.args.max_decoder_positions class TestReshapingEncoder(BaseEncoder): def __init__(self, args, dictionary): super().__init__(dictionary) self.args = args def forward(self, src_tokens, src_lengths=None, **kwargs): b_sz, t_sz = src_tokens.shape padding_needed = t_sz % 2 x = src_tokens if padding_needed > 0: padding_needed = 2 - padding_needed x = F.pad(x, (0, padding_needed)) return EncoderOut( encoder_out=x.view(b_sz, -1, 2), encoder_padding_mask=None, encoder_embedding=None, encoder_states=None, src_tokens=None, src_lengths=None, ) def reorder_encoder_out(self, encoder_out, new_order): return EncoderOut( encoder_out=encoder_out.encoder_out.index_select(0, new_order), encoder_padding_mask=None, encoder_embedding=None, encoder_states=None, src_tokens=None, src_lengths=None, ) class TestReshapingModel(EncoderDecoderModel): def __init__(self, encoder, decoder): super().__init__(encoder, decoder) @classmethod def build_model(cls, args, task): encoder = TestReshapingEncoder(args, task.source_dictionary) decoder = TestIncrementalDecoder(args, task.target_dictionary) return cls(encoder, decoder) class TestAdditionalInputEncoder(BaseEncoder): def __init__(self, args, dictionary): super().__init__(dictionary) self.args = args def forward(self, src_tokens, src_lengths=None, **kwargs): assert "fancy_other_input" in kwargs assert kwargs["fancy_other_input"] is not None return EncoderOut( encoder_out=src_tokens, encoder_padding_mask=None, encoder_embedding=None, encoder_states=None, src_tokens=None, src_lengths=None, ) def reorder_encoder_out(self, encoder_out, new_order): return EncoderOut( encoder_out=encoder_out.encoder_out.index_select(0, new_order), encoder_padding_mask=None, encoder_embedding=None, encoder_states=None, src_tokens=None, src_lengths=None, ) class TestAdditionalInputModel(EncoderDecoderModel): def __init__(self, encoder, decoder): super().__init__(encoder, decoder) @classmethod def build_model(cls, args, task): encoder = TestAdditionalInputEncoder(args, task.source_dictionary) decoder = TestIncrementalDecoder(args, task.target_dictionary) return cls(encoder, decoder) def forward(self, src_tokens, src_lengths, prev_output_tokens, **kwargs): encoder_out = self.encoder(src_tokens, src_lengths=src_lengths, **kwargs) decoder_out = self.decoder( prev_output_tokens, encoder_out=encoder_out, **kwargs ) return decoder_out def train_language_model( data_dir, arch, extra_flags=None, run_validation=False, extra_valid_flags=None, task="language_modeling", world_size=1, max_tokens: Optional[int] = 500, ): train_parser = options.get_training_parser() train_args = options.parse_args_and_arch( train_parser, [ "--task", task, data_dir, "--arch", arch, "--optimizer", "adam", "--lr", "0.0001", "--tokens-per-sample", "500", "--save-dir", data_dir, "--max-epoch", "1", "--distributed-world-size", str(world_size), "--ddp-backend", "no_c10d", "--num-workers", "0", ] + (["--max-tokens", str(max_tokens)] if max_tokens is not None else []) + (extra_flags or []), ) cfg = convert_namespace_to_omegaconf(train_args) distributed_utils.call_main(cfg, train.main) if run_validation: # test validation validate_parser = options.get_validation_parser() validate_args = options.parse_args_and_arch( validate_parser, [ "--task", task, data_dir, "--path", os.path.join(data_dir, "checkpoint_last.pt"), "--valid-subset", "valid", "--max-tokens", "500", "--num-workers", "0", ] + (extra_valid_flags or []), ) validate.main(validate_args)
flash_metaseq-main
tests/utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import logging import unittest import torch from omegaconf import OmegaConf from metaseq.optim.adam import MetaseqAdam from metaseq.optim.fp16_optimizer import MemoryEfficientFP16Optimizer @unittest.skipIf(not torch.cuda.is_available(), "test requires a GPU") class TestMemoryEfficientFP16(unittest.TestCase): def setUp(self): logging.disable(logging.CRITICAL) def tearDown(self): logging.disable(logging.NOTSET) def test_load_state_dict(self): # define simple FP16 model model = torch.nn.Linear(5, 5).cuda().half() params = list(model.parameters()) # initialize memory efficient FP16 optimizer # with pseudo DictConfigs optimizer = MetaseqAdam( cfg=OmegaConf.create( vars( argparse.Namespace( adam_betas="(0.9, 0.999)", adam_eps=1e-8, weight_decay=0.0, lr=[0.00001], ) ) ), params=params, ) me_optimizer = MemoryEfficientFP16Optimizer( cfg=OmegaConf.create( { "common": vars( argparse.Namespace( fp16_init_scale=1, fp16_scale_window=1, fp16_scale_tolerance=1, threshold_loss_scale=1, min_loss_scale=1e-4, ) ) } ), params=params, optimizer=optimizer, ) # optimizer state is created in the first step loss = model(torch.rand(5).cuda().half()).sum() me_optimizer.backward(loss) me_optimizer.step() # reload state state = me_optimizer.state_dict() me_optimizer.load_state_dict(state) for k, v in me_optimizer.optimizer.state.items(): self.assertTrue(k.dtype == torch.float16) for v_i in v.values(): if torch.is_tensor(v_i): self.assertTrue(v_i.dtype == torch.float32) if __name__ == "__main__": unittest.main()
flash_metaseq-main
tests/test_memory_efficient_fp16.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import tempfile import unittest import torch import tests.utils as test_utils from metaseq import search from metaseq.data.dictionary import Dictionary from metaseq.models.transformer_lm import TransformerLanguageModel from metaseq.sequence_generator import SequenceGenerator from metaseq.tasks.base_task import LegacyTask DEFAULT_TEST_VOCAB_SIZE = 100 class DummyTask(LegacyTask): def __init__(self, args): super().__init__(args) self.dictionary = get_dummy_dictionary() if getattr(self.args, "ctc", False): self.dictionary.add_symbol("<ctc_blank>") self.src_dict = self.dictionary self.tgt_dict = self.dictionary @property def source_dictionary(self): return self.src_dict @property def target_dictionary(self): return self.dictionary def get_dummy_dictionary(vocab_size=DEFAULT_TEST_VOCAB_SIZE): dummy_dict = Dictionary() # add dummy symbol to satisfy vocab size for id, _ in enumerate(range(vocab_size)): dummy_dict.add_symbol("{}".format(id), n=1000) return dummy_dict def get_dummy_task_and_parser(): """ to build a fariseq model, we need some dummy parse and task. This function is used to create dummy task and parser to faciliate model/criterion test Note: we use FbSpeechRecognitionTask as the dummy task. You may want to use other task by providing another function """ parser = argparse.ArgumentParser( description="test_dummy_s2s_task", argument_default=argparse.SUPPRESS ) DummyTask.add_args(parser) args = parser.parse_args([]) task = DummyTask.setup_task(args) return task, parser class TestJitSequenceGeneratorBase(unittest.TestCase): def setUp(self): self.task, self.parser = get_dummy_task_and_parser() eos = self.task.tgt_dict.eos() src_tokens = torch.randint(3, 50, (2, 10)).long() src_tokens = torch.cat((src_tokens, torch.LongTensor([[eos], [eos]])), -1) src_lengths = torch.LongTensor([2, 10]) self.sample = { "net_input": {"src_tokens": src_tokens, "src_lengths": src_lengths} } TransformerLanguageModel.add_args(self.parser) args = self.parser.parse_args([]) args.decoder_layers = 1 self.transformer_model = TransformerLanguageModel.build_model(args, self.task) def assertOutputEqual(self, hypo, pos_probs): pos_scores = torch.FloatTensor(pos_probs).log() self.assertTensorSizeEqual(hypo["positional_scores"], pos_scores) self.assertTensorSizeEqual(pos_scores.numel(), hypo["tokens"].numel()) def assertTensorSizeEqual(self, t1, t2): self.assertEqual(t1.size(), t2.size(), "size mismatch") def assertAlmostEqual(self, t1, t2): self.assertEqual(t1.size(), t2.size(), "size mismatch") self.assertLess((t1 - t2).abs().max(), 1e-4) def assertTensorEqual(self, t1, t2): self.assertEqual(t1.size(), t2.size(), "size mismatch") self.assertEqual(t1.ne(t2).long().sum(), 0) def assertHypoEqual(self, h1, h2): "Check two hypos are equal" self.assertTensorEqual(h1["tokens"], h2["tokens"]) self.assertAlmostEqual(h1["positional_scores"], h2["positional_scores"]) self.assertLess(abs(h1["score"] - h2["score"]), 1e-6) self.assertAlmostEqual(h1["attention"], h2["attention"]) def _test_save_and_load(self, scripted_module): with tempfile.NamedTemporaryFile() as f: scripted_module.save(f.name) torch.jit.load(f.name) JIT_MSG = "Targeting OSS scriptability for the 1.6 release" @unittest.skipIf(torch.__version__ < "1.6.0", JIT_MSG) class TestJitSequenceGenerator(TestJitSequenceGeneratorBase): def test_export_transformer(self): model = self.transformer_model torch.jit.script(model) def test_sequence_generator(self): model = self.transformer_model generator = SequenceGenerator( [model], self.task.tgt_dict, beam_size=2, max_len_b=10, ) scripted_model = torch.jit.script(generator) self._test_save_and_load(scripted_model) class TestExportSearch(unittest.TestCase): def setUp(self): task, _ = get_dummy_task_and_parser() self.tgt_dict = task.tgt_dict self.min_top1_prob = 0.4 def test_export_sampling(self): low_sampling_topp = self.min_top1_prob / 2.0 search_strategy = search.Sampling( self.tgt_dict, sampling_topp=low_sampling_topp ) torch.jit.script(search_strategy) class TestSequenceGeneratorBase(unittest.TestCase): def assertHypoTokens(self, hypo, tokens): self.assertTensorEqual(hypo["tokens"], torch.LongTensor(tokens)) def assertHypoScore(self, hypo, pos_probs, normalized=True): pos_scores = torch.FloatTensor(pos_probs).log() self.assertAlmostEqual(hypo["positional_scores"], pos_scores) self.assertEqual(pos_scores.numel(), hypo["tokens"].numel()) score = pos_scores.sum() if normalized: score /= pos_scores.numel() self.assertLess(abs(score - hypo["score"]), 1e-6) def assertAlmostEqual(self, t1, t2): self.assertEqual(t1.size(), t2.size(), "size mismatch") self.assertLess((t1 - t2).abs().max(), 1e-4) def assertTensorEqual(self, t1, t2): self.assertEqual(t1.size(), t2.size(), "size mismatch") self.assertEqual(t1.ne(t2).long().sum(), 0) class TestSequenceGenerator(TestSequenceGeneratorBase): def setUp(self): ( self.tgt_dict, self.w1, self.w2, src_tokens, src_lengths, self.model, ) = test_utils.sequence_generator_setup() self.sample = { "net_input": {"src_tokens": src_tokens, "src_lengths": src_lengths} } def test_with_normalization(self): generator = SequenceGenerator([self.model], self.tgt_dict, beam_size=2) hypos = generator.forward(self.sample) eos, w1, w2 = self.tgt_dict.eos(), self.w1, self.w2 # sentence 1, beam 1 self.assertHypoTokens(hypos[0][0], [w1, eos]) self.assertHypoScore(hypos[0][0], [0.9, 1.0]) # sentence 1, beam 2 self.assertHypoTokens(hypos[0][1], [w2, w1, w2, eos]) self.assertHypoScore(hypos[0][1], [0.1, 0.9, 0.9, 1.0]) # sentence 2, beam 1 self.assertHypoTokens(hypos[1][0], [w1, w2, w1, eos]) self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.4, 1.0]) # sentence 2, beam 2 self.assertHypoTokens(hypos[1][1], [w1, w2, eos]) self.assertHypoScore(hypos[1][1], [0.7, 0.4, 0.6]) def test_without_normalization(self): # Sentence 1: unchanged from the normalized case # Sentence 2: beams swap order generator = SequenceGenerator([self.model], self.tgt_dict, beam_size=2) hypos = generator.forward(self.sample) eos, w1, w2 = self.tgt_dict.eos(), self.w1, self.w2 # sentence 1, beam 1 self.assertHypoTokens(hypos[0][0], [w1, eos]) self.assertHypoScore(hypos[0][0], [0.9, 1.0], normalized=False) # sentence 1, beam 2 self.assertHypoTokens(hypos[0][1], [w2, w1, w2, eos]) self.assertHypoScore(hypos[0][1], [0.1, 0.9, 0.9, 1.0], normalized=False) # sentence 2, beam 1 self.assertHypoTokens(hypos[1][0], [w1, w2, eos]) self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.6], normalized=False) # sentence 2, beam 2 self.assertHypoTokens(hypos[1][1], [w1, w2, w1, eos]) self.assertHypoScore(hypos[1][1], [0.7, 0.4, 0.4, 1.0], normalized=False) def test_maxlen(self): generator = SequenceGenerator( [self.model], self.tgt_dict, beam_size=2, max_len_b=2 ) hypos = generator.forward(self.sample) eos, w1, w2 = self.tgt_dict.eos(), self.w1, self.w2 # sentence 1, beam 1 self.assertHypoTokens(hypos[0][0], [w1, eos]) self.assertHypoScore(hypos[0][0], [0.9, 1.0]) # sentence 1, beam 2 self.assertHypoTokens(hypos[0][1], [w2, w2, eos]) self.assertHypoScore(hypos[0][1], [0.1, 0.1, 0.6]) # sentence 2, beam 1 self.assertHypoTokens(hypos[1][0], [w1, w2, eos]) self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.6]) # sentence 2, beam 2 self.assertHypoTokens(hypos[1][1], [w2, w2, eos]) self.assertHypoScore(hypos[1][1], [0.3, 0.9, 0.01]) class TestTopPSamplingSearch(TestSequenceGeneratorBase): def setUp(self): # construct dummy dictionary d = test_utils.dummy_dictionary(vocab_size=2) self.assertEqual(d.pad(), 1) self.assertEqual(d.eos(), 2) self.assertEqual(d.unk(), 3) self.eos = d.eos() self.w1 = 4 self.w2 = 5 # construct source data self.src_tokens = torch.LongTensor( [ [self.w1, self.w2, self.eos], [self.w1, self.w2, self.eos], ] ) self.src_lengths = torch.LongTensor([2, 2]) args = argparse.Namespace() unk = 0.0 # The minimal probability of top 2 tokens. self.min_top2_prob = 0.75 # The minimal probability of the top 1 token. self.min_top1_prob = 0.4 w1_prob = self.min_top1_prob w2_prob = self.min_top2_prob - self.min_top1_prob eos_prob = 1 - self.min_top2_prob args.beam_probs = [ # step 0: torch.FloatTensor( [ # eos w1 w2 [0.0, unk, 1.0, 0.0], [0.0, unk, 1.0, 0.0], [0.0, unk, 1.0, 0.0], [0.0, unk, 1.0, 0.0], ] ), # step 1: torch.FloatTensor( [ # eos w1 w2 [eos_prob, unk, w1_prob, w2_prob], [eos_prob, unk, w1_prob, w2_prob], [eos_prob, unk, w1_prob, w2_prob], [eos_prob, unk, w1_prob, w2_prob], ] ), # step 2: torch.FloatTensor( [ # eos w1 w2 [1.0, unk, 0.0, 0.0], [1.0, unk, 0.0, 0.0], [1.0, unk, 0.0, 0.0], [1.0, unk, 0.0, 0.0], ] ), ] task = test_utils.TestTranslationTask.setup_task(args, d, d) self.model = task.build_model(args) self.tgt_dict = task.target_dictionary def test_topp_sampling_search_low_prob(self): # Given a prob low enough to top-P sampling, we expect only the top # 1 token to be sampled, which always results in the same output. low_sampling_topp = self.min_top1_prob / 2.0 search_strategy = search.Sampling( self.tgt_dict, sampling_topp=low_sampling_topp ) generator = SequenceGenerator( [self.model], self.tgt_dict, beam_size=2, search_strategy=search_strategy ) sample = { "net_input": { "src_tokens": self.src_tokens, "src_lengths": self.src_lengths, } } hypos = generator.forward(sample) eos, w1 = self.eos, self.w1 # sentence 1, beam 1 self.assertHypoTokens(hypos[0][0], [w1, w1, eos]) self.assertHypoScore(hypos[0][0], [1.0, 0.4, 1.0]) # sentence 1, beam 2 self.assertHypoTokens(hypos[0][1], [w1, w1, eos]) self.assertHypoScore(hypos[0][1], [1.0, 0.4, 1.0]) # sentence 2, beam 1 self.assertHypoTokens(hypos[1][0], [w1, w1, eos]) self.assertHypoScore(hypos[1][0], [1.0, 0.4, 1.0]) # sentence 2, beam 2 self.assertHypoTokens(hypos[1][1], [w1, w1, eos]) self.assertHypoScore(hypos[1][1], [1.0, 0.4, 1.0]) def test_topp_sampling_search_high_prob(self): # Given a prob high enough to top-P sampling, any of the top 2 # tokens could be sampled. This can cause different outputs. high_sampling_topp = (self.min_top1_prob + self.min_top2_prob) / 2.0 search_strategy = search.Sampling( self.tgt_dict, sampling_topp=high_sampling_topp ) generator = SequenceGenerator( [self.model], self.tgt_dict, beam_size=2, search_strategy=search_strategy ) sample = { "net_input": { "src_tokens": self.src_tokens, "src_lengths": self.src_lengths, } } hypos = generator.forward(sample) eos, w1, w2 = self.eos, self.w1, self.w2 # sentence 1, beam 1 self.assertTrue( self.hypoTokens(hypos[0][0], [w1, w1, eos]) or self.hypoTokens(hypos[0][0], [w1, w2, eos]) ) self.assertTrue( self.hypoScore(hypos[0][0], [1.0, 0.4, 1.0]) or self.hypoScore(hypos[0][0], [1.0, 0.35, 1.0]) ) # sentence 1, beam 2 self.assertTrue( self.hypoTokens(hypos[0][1], [w1, w1, eos]) or self.hypoTokens(hypos[0][1], [w1, w2, eos]) ) self.assertTrue( self.hypoScore(hypos[0][1], [1.0, 0.4, 1.0]) or self.hypoScore(hypos[0][1], [1.0, 0.35, 1.0]) ) # sentence 2, beam 1 self.assertTrue( self.hypoTokens(hypos[1][0], [w1, w1, eos]) or self.hypoTokens(hypos[1][0], [w1, w2, eos]) ) self.assertTrue( self.hypoScore(hypos[1][0], [1.0, 0.4, 1.0]) or self.hypoScore(hypos[1][0], [1.0, 0.35, 1.0]) ) # sentence 2, beam 2 self.assertTrue( self.hypoTokens(hypos[1][1], [w1, w1, eos]) or self.hypoTokens(hypos[1][1], [w1, w2, eos]) ) self.assertTrue( self.hypoScore(hypos[1][1], [1.0, 0.4, 1.0]) or self.hypoScore(hypos[1][1], [1.0, 0.35, 1.0]) ) def hypoTokens(self, hypo, tokens): return self.tensorEqual(hypo["tokens"], torch.LongTensor(tokens)) def hypoScore(self, hypo, pos_probs, normalized=True): pos_scores = torch.FloatTensor(pos_probs).log() if not self.almostEqual(hypo["positional_scores"], pos_scores): return False if pos_scores.numel() != hypo["tokens"].numel(): return False score = pos_scores.sum() if normalized: score /= pos_scores.numel() return abs(score - hypo["score"]) < 1e-6 def almostEqual(self, t1, t2): return t1.size() == t2.size() and (t1 - t2).abs().max() < 1e-4 def tensorEqual(self, t1, t2): return t1.size() == t2.size() and t1.ne(t2).long().sum() == 0 if __name__ == "__main__": unittest.main()
flash_metaseq-main
tests/test_sequence_generator.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import unittest try: import boto3 from metaseq.s3_utils import S3PathHandler except ImportError: boto3 = None S3PathHandler = None # Hack to make the test cases ordered. # https://stackoverflow.com/questions/4005695/changing-order-of-unit-tests-in-python unittest.TestLoader.sortTestMethodsUsing = lambda _, x, y: y > x @unittest.skipIf(not boto3, "Requires boto3 install") class TestsS3(unittest.TestCase): s3_auth = False skip_s3_auth_required_tests_message = ( "Provide an s3 project and bucket you are" + "authorised against, then set the s3_auth flag to True" ) ############################################# # Shared ############################################# @classmethod def setUpClass(cls): # NOTE: user can change these locations. cls.s3_bucket = "fairusersglobal" cls.s3_rel_path = os.path.expandvars( "users/$USER/private/home/$USER/.metaseq/test_s3_pathhandler" ) cls.s3_full_path = "s3://" + cls.s3_bucket + "/" + cls.s3_rel_path cls.s3_pathhandler = S3PathHandler() @classmethod def tearDownClass(cls, _s3_auth=s3_auth): if not _s3_auth: return # Recursive deletion is not implemented, # so let's delete each file and directory. # Delete all files cls.s3_pathhandler._rm("/".join([cls.s3_full_path, "dir1", "f1_write_string"])) cls.s3_pathhandler._rm("/".join([cls.s3_full_path, "dir1", "f2_write_bytes"])) cls.s3_pathhandler._rm( "/".join([cls.s3_full_path, "dir2", "f1_write_string_from_local"]) ) cls.s3_pathhandler._rm( "/".join([cls.s3_full_path, "dir2", "f2_write_bytes_from_local"]) ) cls.s3_pathhandler._rm( "/".join([cls.s3_full_path, "dir2", "f3_write_string_from_local"]) ) cls.s3_pathhandler._rm( "/".join([cls.s3_full_path, "dir2", "f4_write_bytes_from_local"]) ) # Delete all directories. cls.s3_pathhandler._rm("/".join([cls.s3_full_path, "dir3", "dir4/"])) for i in (1, 2, 3): cls.s3_pathhandler._rm("/".join([cls.s3_full_path, f"dir{i}/"])) assert cls.s3_pathhandler._ls(cls.s3_full_path) == [] ############################################# # Up here, test class attributes, # and helpers that don't require S3 access. ############################################# def test_00_supported_prefixes(self): supported_prefixes = self.s3_pathhandler._get_supported_prefixes() self.assertEqual(supported_prefixes, ["s3://"]) # # Require S3 Authentication ====> ############################################# # Organization of s3 setup # dir1/ # f1 <- small (via open) # f2 <- large checkpoint file (via open) # dir2/ # f3 <- small (via copy(), from dir1) # f4 <- large checkpoint file (via copy_from_local) # dir3/ # dir4/ ############################################# ############################################# # auth # Just check that client loads properly ############################################# @unittest.skipIf(not s3_auth, skip_s3_auth_required_tests_message) def test_01_add_client_to_handler(self): self.s3_pathhandler._get_client( "/".join([self.s3_full_path, "path", "file.txt"]) ) # self.assertTrue(isinstance(self.s3_pathhandler.client, botocore.client.S3)) # TODO # TODO: make sure that the error message displays properly if authentication is messed up. ############################################# # mkdirs # Set up the dirs # (in BASE) # +dir1 # +dir2 # +dir3 # +dir4 ############################################# @unittest.skipIf(not s3_auth, skip_s3_auth_required_tests_message) def test_02_mkdirs_must_end_with_slash(self): with self.assertRaises(AssertionError): self.s3_pathhandler._mkdirs("/".join([self.s3_full_path, "fail"])) @unittest.skipIf(not s3_auth, skip_s3_auth_required_tests_message) def test_03_mkdirs(self): # dir{1,2,3} in BASE for i in (1, 2, 3): self.s3_pathhandler._mkdirs("/".join([self.s3_full_path, f"dir{i}/"])) # Make a nested directory in dir3 self.s3_pathhandler._mkdirs("/".join([self.s3_full_path, "dir3/dir4/"])) ############################################# # open (w/wb) # +f1 # +f2 ############################################# @unittest.skipIf(not s3_auth, skip_s3_auth_required_tests_message) def test_04_open_write_mode(self): with self.s3_pathhandler._open( "/".join([self.s3_full_path, "dir1", "f1_write_string"]), "w" ) as f: f.write("This is a test of writing a string.") with self.s3_pathhandler._open( "/".join([self.s3_full_path, "dir1", "f2_write_bytes"]), "wb" ) as f: f.write(b"This is a test of writing bytes.") ############################################# # open (r/rb) # read f1 # read f2 ############################################# @unittest.skipIf(not s3_auth, skip_s3_auth_required_tests_message) def test_05_open_read_mode(self): with self.s3_pathhandler._open( "/".join([self.s3_full_path, "dir1", "f1_write_string"]), "r" ) as f: self.assertEqual(f.read(), "This is a test of writing a string.") with self.s3_pathhandler._open( "/".join([self.s3_full_path, "dir1", "f2_write_bytes"]), "rb" ) as f: self.assertEqual(f.read(), b"This is a test of writing bytes.") ############################################# # isdir / isfile / exists # test dir{1,2,3,4} # test f{1,2} # test nonexistants ############################################# @unittest.skipIf(not s3_auth, skip_s3_auth_required_tests_message) def test_06_exists(self): # Path does not exist (if file) self.assertFalse( self.s3_pathhandler._exists("/".join([self.s3_full_path, "dir1", "FAIL"])) ) # Path does not exist (if dir) self.assertFalse( self.s3_pathhandler._exists("/".join([self.s3_full_path, "FAIL/"])) ) # Path exists (is file) self.assertTrue( self.s3_pathhandler._exists( "/".join([self.s3_full_path, "dir1", "f1_write_string"]) ) ) # Path exists (is dir) self.assertTrue( self.s3_pathhandler._exists("/".join([self.s3_full_path, "dir1/"])) ) @unittest.skipIf(not s3_auth, skip_s3_auth_required_tests_message) def test_07_isdir(self): # Path does not exist (if file) self.assertFalse( self.s3_pathhandler._isdir("/".join([self.s3_full_path, "dir1", "FAIL"])) ) # Path does not exist (if dir) self.assertFalse( self.s3_pathhandler._isdir("/".join([self.s3_full_path, "FAIL/"])) ) # Path exists (is file) self.assertFalse( self.s3_pathhandler._isdir( "/".join([self.s3_full_path, "dir1", "f1_write_string"]) ) ) # Path exists (is dir) self.assertTrue( self.s3_pathhandler._isdir("/".join([self.s3_full_path, "dir1/"])) ) @unittest.skipIf(not s3_auth, skip_s3_auth_required_tests_message) def test_08_isfile(self): # Path does not exist (if file) self.assertFalse( self.s3_pathhandler._isfile("/".join([self.s3_full_path, "dir1", "FAIL"])) ) # Path does not exist (if dir) self.assertFalse( self.s3_pathhandler._isfile("/".join([self.s3_full_path, "FAIL/"])) ) # Path exists (is file) self.assertTrue( self.s3_pathhandler._isfile( "/".join([self.s3_full_path, "dir1", "f1_write_string"]) ) ) # Path exists (is dir) self.assertFalse( self.s3_pathhandler._isfile("/".join([self.s3_full_path, "dir1/"])) ) ############################################# # copy # copy f1 -> f3 ############################################# @unittest.skipIf(not s3_auth, skip_s3_auth_required_tests_message) def test_09_copy(self): self.assertTrue( self.s3_pathhandler._copy( "/".join([self.s3_full_path, "dir1", "f1_write_string"]), "/".join([self.s3_full_path, "dir2", "f3_write_string"]), ) ) ############################################# # ls # ls dir{1,2,3,4} ############################################# @unittest.skipIf(not s3_auth, skip_s3_auth_required_tests_message) def test_10_ls(self): # Path does not exist (if file) self.assertEqual( [], self.s3_pathhandler._ls("/".join([self.s3_full_path, "dir1", "FAIL"])) ) # Path does not exist (if dir) self.assertEqual( [], self.s3_pathhandler._ls("/".join([self.s3_full_path, "FAIL/"])) ) # Path exists (is file) self.assertEqual( ["/".join([self.s3_rel_path, "dir1", "f1_write_string"])], self.s3_pathhandler._ls( "/".join([self.s3_full_path, "dir1", "f1_write_string"]) ), ) # Path exists (is dir) self.assertEqual( { "/".join( [self.s3_rel_path, "dir1/"] ), # TODO: should the trailing slash be "/".join([self.s3_rel_path, "dir1", "f1_write_string"]), "/".join([self.s3_rel_path, "dir1", "f2_write_bytes"]), }, set(self.s3_pathhandler._ls("/".join([self.s3_full_path, "dir1/"]))), ) ############################################# # rm # rm f3 ############################################# @unittest.skipIf(not s3_auth, skip_s3_auth_required_tests_message) def test_11_rm(self): path = "/".join([self.s3_full_path, "dir2", "f3_write_string"]) self.assertTrue(self.s3_pathhandler._exists(path)) self.assertTrue(self.s3_pathhandler._isfile(path)) self.assertFalse(self.s3_pathhandler._isdir(path)) self.s3_pathhandler._rm(path) self.assertFalse(self.s3_pathhandler._exists(path)) self.assertFalse(self.s3_pathhandler._isfile(path)) self.assertFalse(self.s3_pathhandler._isdir(path)) ############################################# # get_local_path # Retrieve f{1,2} # Check file contents. ############################################# @unittest.skipIf(not s3_auth, skip_s3_auth_required_tests_message) def test_12_get_local_path(self): s3_path_f1 = "/".join([self.s3_full_path, "dir1", "f1_write_string"]) s3_path_f2 = "/".join([self.s3_full_path, "dir1", "f2_write_bytes"]) local_path_f1 = self.s3_pathhandler._get_local_path(s3_path_f1) local_path_f2 = self.s3_pathhandler._get_local_path(s3_path_f2) with open(local_path_f1, "r") as f: self.assertEqual(f.read(), "This is a test of writing a string.") with open(local_path_f2, "rb") as f: self.assertEqual(f.read(), b"This is a test of writing bytes.") @unittest.skipIf(not s3_auth, skip_s3_auth_required_tests_message) def test_13_get_local_path_idempotent(self): """ Call _get_local_path multiple times. Check that we keep returning the same cached copy instead of redownloading. """ s3_path_f1 = "/".join([self.s3_full_path, "dir1", "f1_write_string"]) REPEATS = 3 local_paths = [ self.s3_pathhandler._get_local_path(s3_path_f1) for _ in range(REPEATS) ] for local_path in local_paths[1:]: self.assertEqual(local_path, local_paths[0]) with open(local_paths[0], "r") as f: self.assertEqual(f.read(), "This is a test of writing a string.") # TODO: make sure it fails if asked for a directory # TODO: make sure that the returned path is appropriately placed. ############################################## # copy_from_local # Upload local copies of f1, f2 -> f3, f4. # Check contents via open(), and via another get_local_path ############################################## @unittest.skipIf(not s3_auth, skip_s3_auth_required_tests_message) def test_14_copy_from_local(self): s3_src_path_f1 = "/".join([self.s3_full_path, "dir1", "f1_write_string"]) s3_src_path_f2 = "/".join([self.s3_full_path, "dir1", "f2_write_bytes"]) local_path_f1 = self.s3_pathhandler._get_local_path(s3_src_path_f1) local_path_f2 = self.s3_pathhandler._get_local_path(s3_src_path_f2) s3_dst_path_f1 = "/".join( [self.s3_full_path, "dir2", "f1_write_string_from_local"] ) s3_dst_path_f2 = "/".join( [self.s3_full_path, "dir2", "f2_write_bytes_from_local"] ) self.assertTrue( self.s3_pathhandler._copy_from_local(local_path_f1, s3_dst_path_f1) ) self.assertTrue( self.s3_pathhandler._copy_from_local(local_path_f2, s3_dst_path_f2) ) ############################################# # symlink # should fail ############################################# @unittest.skipIf(not s3_auth, skip_s3_auth_required_tests_message) def test_15_symlink(self): s3_src_path_f1 = "/".join([self.s3_full_path, "dir1", "f1_write_string"]) s3_dst_path_f1 = "/".join( [self.s3_full_path, "dir2", "f1_write_string_symlink"] ) with self.assertRaises(NotImplementedError): self.s3_pathhandler._symlink(s3_src_path_f1, s3_dst_path_f1)
flash_metaseq-main
tests/test_s3_utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import torch from metaseq.data import MonolingualDataset from metaseq.tasks.language_modeling import LanguageModelingTask, LanguageModelingConfig from tests import utils as test_utils class TestLMContextWindow(unittest.TestCase): def test_eval_dataloader(self): dictionary = test_utils.dummy_dictionary(10) assert len(dictionary) == 14 # 4 extra special symbols assert dictionary.pad() == 1 dataset = test_utils.TestDataset( [ torch.tensor([4, 5, 6, 7], dtype=torch.long), torch.tensor([8, 9, 10, 11], dtype=torch.long), torch.tensor([12, 13], dtype=torch.long), ] ) dataset = MonolingualDataset(dataset, sizes=[4, 4, 2], src_vocab=dictionary) config = LanguageModelingConfig(tokens_per_sample=4) task = LanguageModelingTask(config, dictionary) eval_dataloader = task.eval_lm_dataloader( dataset=dataset, batch_size=1, context_window=2, ) batch = next(eval_dataloader) assert batch["net_input"]["src_tokens"][0].tolist() == [4, 5, 6, 7, 1, 1] assert batch["target"][0].tolist() == [4, 5, 6, 7, 1, 1] batch = next(eval_dataloader) assert batch["net_input"]["src_tokens"][0].tolist() == [6, 7, 8, 9, 10, 11] assert batch["target"][0].tolist() == [1, 1, 8, 9, 10, 11] batch = next(eval_dataloader) assert batch["net_input"]["src_tokens"][0].tolist() == [10, 11, 12, 13] assert batch["target"][0].tolist() == [1, 1, 12, 13] if __name__ == "__main__": unittest.main()
flash_metaseq-main
tests/test_lm_context_window.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import shutil import sys import tempfile import unittest from typing import Optional from unittest.mock import MagicMock class TestFileIO(unittest.TestCase): _tmpdir: Optional[str] = None _tmpfile: Optional[str] = None _tmpfile_contents = "Hello, World" @classmethod def setUpClass(cls) -> None: cls._tmpdir = tempfile.mkdtemp() with open(os.path.join(cls._tmpdir, "test.txt"), "w") as f: cls._tmpfile = f.name f.write(cls._tmpfile_contents) f.flush() @classmethod def tearDownClass(cls) -> None: # Cleanup temp working dir. if cls._tmpdir is not None: shutil.rmtree(cls._tmpdir) # type: ignore def test_file_io(self): from metaseq.file_io import PathManager with PathManager.open(os.path.join(self._tmpdir, "test.txt"), "r") as f: s = f.read() self.assertEqual(s, self._tmpfile_contents) def test_file_io_oss(self): # Mock fvcore to simulate oss environment. sys.modules["fvcore"] = MagicMock() from metaseq.file_io import PathManager with PathManager.open(os.path.join(self._tmpdir, "test.txt"), "r") as f: s = f.read() self.assertEqual(s, self._tmpfile_contents) def test_file_io_async(self): # ioPath `PathManager` is initialized after the first `opena` call. try: from metaseq.file_io import IOPathPathManager, PathManager self.assertIsNone(IOPathPathManager) _asyncfile = os.path.join(self._tmpdir, "async.txt") f = PathManager.opena(_asyncfile, "wb") f.close() from metaseq.file_io import IOPathPathManager self.assertIsNotNone(IOPathPathManager) finally: self.assertTrue(PathManager.async_close())
flash_metaseq-main
tests/test_file_io.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import tempfile import unittest import torch from metaseq.data.dictionary import Dictionary from metaseq.modules import multihead_attention, sinusoidal_positional_embedding from metaseq.tasks.base_task import LegacyTask DEFAULT_TEST_VOCAB_SIZE = 100 class DummyTask(LegacyTask): def __init__(self, args): super().__init__(args) self.dictionary = get_dummy_dictionary() if getattr(self.args, "ctc", False): self.dictionary.add_symbol("<ctc_blank>") self.src_dict = self.dictionary self.tgt_dict = self.dictionary @property def source_dictionary(self): return self.src_dict @property def target_dictionary(self): return self.dictionary def get_dummy_dictionary(vocab_size=DEFAULT_TEST_VOCAB_SIZE): dummy_dict = Dictionary() # add dummy symbol to satisfy vocab size for id, _ in enumerate(range(vocab_size)): dummy_dict.add_symbol("{}".format(id), 1000) return dummy_dict def get_dummy_task_and_parser(): """ Return a dummy task and argument parser, which can be used to create a model/criterion. """ parser = argparse.ArgumentParser( description="test_dummy_s2s_task", argument_default=argparse.SUPPRESS ) DummyTask.add_args(parser) args = parser.parse_args([]) task = DummyTask.setup_task(args) return task, parser def _test_save_and_load(scripted_module): with tempfile.NamedTemporaryFile() as f: scripted_module.save(f.name) torch.jit.load(f.name) class TestExportModels(unittest.TestCase): def test_export_multihead_attention(self): module = multihead_attention.MultiheadAttention(embed_dim=8, num_heads=2) scripted = torch.jit.script(module) _test_save_and_load(scripted) def test_incremental_state_multihead_attention(self): module1 = multihead_attention.MultiheadAttention(embed_dim=8, num_heads=2) module1 = torch.jit.script(module1) module2 = multihead_attention.MultiheadAttention(embed_dim=8, num_heads=2) module2 = torch.jit.script(module2) state = {} state = module1.set_incremental_state(state, "key", {"a": torch.tensor([1])}) state = module2.set_incremental_state(state, "key", {"a": torch.tensor([2])}) v1 = module1.get_incremental_state(state, "key")["a"] v2 = module2.get_incremental_state(state, "key")["a"] self.assertEqual(v1, 1) self.assertEqual(v2, 2) def test_positional_embedding(self): module = sinusoidal_positional_embedding.SinusoidalPositionalEmbedding( embedding_dim=8, padding_idx=1 ) scripted = torch.jit.script(module) _test_save_and_load(scripted) if __name__ == "__main__": unittest.main()
flash_metaseq-main
tests/test_export.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import functools import sys import unittest import torch from metaseq.distributed import utils as dist_utils from .utils import objects_are_equal, spawn_and_init class DistributedTest(unittest.TestCase): def setUp(self): if not torch.cuda.is_available(): raise unittest.SkipTest("CUDA not available, skipping test") if sys.platform == "win32": raise unittest.SkipTest("NCCL doesn't support Windows, skipping test") if torch.cuda.device_count() < 2: raise unittest.SkipTest("distributed tests require 2+ GPUs, skipping") class TestBroadcastObject(DistributedTest): def test_str(self): spawn_and_init( functools.partial( TestBroadcastObject._test_broadcast_object, "hello world" ), world_size=2, ) def test_tensor(self): spawn_and_init( functools.partial( TestBroadcastObject._test_broadcast_object, torch.rand(5), ), world_size=2, ) def test_complex(self): spawn_and_init( functools.partial( TestBroadcastObject._test_broadcast_object, { "a": "1", "b": [2, torch.rand(2, 3), 3], "c": (torch.rand(2, 3), 4), "d": {5, torch.rand(5)}, "e": torch.rand(5), "f": torch.rand(5).int().cuda(), }, ), world_size=2, ) @staticmethod def _test_broadcast_object(ref_obj, rank, group): obj = dist_utils.broadcast_object( ref_obj if rank == 0 else None, src_rank=0, group=group ) assert objects_are_equal(ref_obj, obj) class TestAllGatherList(DistributedTest): def test_str_equality(self): spawn_and_init( functools.partial( TestAllGatherList._test_all_gather_list_equality, "hello world", ), world_size=2, ) def test_tensor_equality(self): spawn_and_init( functools.partial( TestAllGatherList._test_all_gather_list_equality, torch.rand(5), ), world_size=2, ) def test_complex_equality(self): spawn_and_init( functools.partial( TestAllGatherList._test_all_gather_list_equality, { "a": "1", "b": [2, torch.rand(2, 3), 3], "c": (torch.rand(2, 3), 4), "d": {5, torch.rand(5)}, "e": torch.rand(5), "f": torch.rand(5).int(), }, ), world_size=2, ) @staticmethod def _test_all_gather_list_equality(ref_obj, rank, group): objs = dist_utils.all_gather_list(ref_obj, group) for obj in objs: assert objects_are_equal(ref_obj, obj) def test_rank_tensor(self): spawn_and_init( TestAllGatherList._test_all_gather_list_rank_tensor, world_size=2 ) @staticmethod def _test_all_gather_list_rank_tensor(rank, group): obj = torch.tensor([rank]) objs = dist_utils.all_gather_list(obj, group) for i, obj in enumerate(objs): assert obj.item() == i if __name__ == "__main__": unittest.main()
flash_metaseq-main
tests/distributed/test_utils.py
flash_metaseq-main
tests/distributed/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import functools import tempfile import torch def spawn_and_init(fn, world_size, args=None): if args is None: args = () with tempfile.NamedTemporaryFile(delete=False) as tmp_file: torch.multiprocessing.spawn( fn=functools.partial(init_and_run, fn, args), args=( world_size, tmp_file.name, ), nprocs=world_size, join=True, ) def distributed_init(rank, world_size, tmp_file): torch.distributed.init_process_group( backend="nccl", init_method="file://{}".format(tmp_file), world_size=world_size, rank=rank, ) torch.cuda.set_device(rank) def init_and_run(fn, args, rank, world_size, tmp_file): distributed_init(rank, world_size, tmp_file) group = torch.distributed.new_group() fn(rank, group, *args) def objects_are_equal(a, b) -> bool: if type(a) is not type(b): return False if isinstance(a, dict): if set(a.keys()) != set(b.keys()): return False for k in a.keys(): if not objects_are_equal(a[k], b[k]): return False return True elif isinstance(a, (list, tuple, set)): if len(a) != len(b): return False return all(objects_are_equal(x, y) for x, y in zip(a, b)) elif torch.is_tensor(a): return ( a.size() == b.size() and a.dtype == b.dtype and a.device == b.device and torch.all(a == b) ) else: return a == b
flash_metaseq-main
tests/distributed/utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import io import os import string import tempfile import unittest import torch from metaseq import tokenizer from metaseq.data import Dictionary class TestDictionary(unittest.TestCase): def test_finalize(self): txt = [ "A B C D", "B C D", "C D", "D", ] ref_ids1 = list( map( torch.IntTensor, [ [4, 5, 6, 7, 2], [5, 6, 7, 2], [6, 7, 2], [7, 2], ], ) ) ref_ids2 = list( map( torch.IntTensor, [ [7, 6, 5, 4, 2], [6, 5, 4, 2], [5, 4, 2], [4, 2], ], ) ) # build dictionary d = Dictionary() for line in txt: d.encode_line(line, add_if_not_exist=True) def get_ids(dictionary): ids = [] for line in txt: ids.append(dictionary.encode_line(line, add_if_not_exist=False)) return ids def assertMatch(ids, ref_ids): for toks, ref_toks in zip(ids, ref_ids): self.assertEqual(toks.size(), ref_toks.size()) self.assertEqual(0, (toks != ref_toks).sum().item()) ids = get_ids(d) assertMatch(ids, ref_ids1) # check finalized dictionary d.finalize() finalized_ids = get_ids(d) assertMatch(finalized_ids, ref_ids2) # write to disk and reload with tempfile.NamedTemporaryFile(mode="w") as tmp_dict: d.save(tmp_dict.name) d = Dictionary.load(tmp_dict.name) reload_ids = get_ids(d) assertMatch(reload_ids, ref_ids2) assertMatch(finalized_ids, reload_ids) def test_overwrite(self): # for example, Camembert overwrites <unk>, <s> and </s> dict_file = io.StringIO( "<unk> 999 #metaseq:overwrite\n" "<s> 999 #metaseq:overwrite\n" "</s> 999 #metaseq:overwrite\n" ", 999\n" "▁de 999\n" ) d = Dictionary() d.add_from_file(dict_file) self.assertEqual(d.index("<pad>"), 1) self.assertEqual(d.index("foo"), 3) self.assertEqual(d.index("<unk>"), 4) self.assertEqual(d.index("<s>"), 5) self.assertEqual(d.index("</s>"), 6) self.assertEqual(d.index(","), 7) self.assertEqual(d.index("▁de"), 8) def test_no_overwrite(self): # for example, Camembert overwrites <unk>, <s> and </s> dict_file = io.StringIO( "<unk> 999\n" "<s> 999\n" "</s> 999\n" ", 999\n" "▁de 999\n" ) d = Dictionary() with self.assertRaisesRegex(RuntimeError, "Duplicate"): d.add_from_file(dict_file) def test_space(self): # for example, character models treat space as a symbol dict_file = io.StringIO(" 999\n" "a 999\n" "b 999\n") d = Dictionary() d.add_from_file(dict_file) self.assertEqual(d.index(" "), 4) self.assertEqual(d.index("a"), 5) self.assertEqual(d.index("b"), 6) def test_add_file_to_dict(self): counts = {} num_lines = 100 per_line = 10 with tempfile.TemporaryDirectory("test_sampling") as data_dir: filename = os.path.join(data_dir, "dummy.txt") with open(filename, "w", encoding="utf-8") as data: for c in string.ascii_letters: line = f"{c} " * per_line for _ in range(num_lines): data.write(f"{line}\n") counts[c] = per_line * num_lines per_line += 5 dict = Dictionary() Dictionary.add_file_to_dictionary( filename, dict, tokenizer.tokenize_line, 10 ) dict.finalize(threshold=0, nwords=-1, padding_factor=8) for c in string.ascii_letters: count = dict.get_count(dict.index(c)) self.assertEqual( counts[c], count, f"{c} count is {count} but should be {counts[c]}" ) if __name__ == "__main__": unittest.main()
flash_metaseq-main
cpu_tests/test_dictionary.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import torch from metaseq import utils class TestUtils(unittest.TestCase): def test_make_positions(self): pad = 1 left_pad_input = torch.LongTensor( [ [9, 9, 9, 9, 9], [1, 9, 9, 9, 9], [1, 1, 1, 9, 9], ] ) left_pad_output = torch.LongTensor( [ [2, 3, 4, 5, 6], [1, 2, 3, 4, 5], [1, 1, 1, 2, 3], ] ) right_pad_input = torch.LongTensor( [ [9, 9, 9, 9, 9], [9, 9, 9, 9, 1], [9, 9, 1, 1, 1], ] ) right_pad_output = torch.LongTensor( [ [2, 3, 4, 5, 6], [2, 3, 4, 5, 1], [2, 3, 1, 1, 1], ] ) self.assertAlmostEqual( left_pad_output, utils.make_positions(left_pad_input, pad), ) self.assertAlmostEqual( right_pad_output, utils.make_positions(right_pad_input, pad), ) def test_clip_grad_norm_(self): params = torch.nn.Parameter(torch.zeros(5)).requires_grad_(False) grad_norm = utils.clip_grad_norm_(params, 1.0) self.assertTrue(torch.is_tensor(grad_norm)) self.assertEqual(grad_norm, 0.0) params = [torch.nn.Parameter(torch.zeros(5)) for _ in range(3)] for p in params: p.grad = torch.arange(1.0, 6.0) grad_norm = utils.clip_grad_norm_(params, 1.0, "l2") exp_grad_norm = torch.arange(1.0, 6.0).repeat(3).norm() self.assertTrue(torch.is_tensor(grad_norm)) self.assertAlmostEqual(grad_norm, exp_grad_norm) grad_norm = utils.clip_grad_norm_(params, 1.0, "l2") self.assertAlmostEqual(grad_norm, torch.tensor(1.0)) for p in params: p.grad = torch.arange(1.0, 6.0) grad_norm = utils.clip_grad_norm_(params, 1.0, "inf") exp_grad_norm = torch.arange(1.0, 6.0).max() self.assertEqual(grad_norm, exp_grad_norm) def test_resolve_max_positions_with_tuple(self): resolved = utils.resolve_max_positions(None, (2000, 100, 2000), 12000) self.assertEqual(resolved, (2000, 100, 2000)) def assertAlmostEqual(self, t1, t2): self.assertEqual(t1.size(), t2.size(), "size mismatch") self.assertLess(utils.item((t1 - t2).abs().max()), 1e-4) if __name__ == "__main__": unittest.main()
flash_metaseq-main
cpu_tests/test_utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import uuid from metaseq import metrics class TestMetrics(unittest.TestCase): def test_nesting(self): with metrics.aggregate() as a: metrics.log_scalar("loss", 1) with metrics.aggregate() as b: metrics.log_scalar("loss", 2) self.assertEqual(a.get_smoothed_values()["loss"], 1.5) self.assertEqual(b.get_smoothed_values()["loss"], 2) def test_new_root(self): with metrics.aggregate() as a: metrics.log_scalar("loss", 1) with metrics.aggregate(new_root=True) as b: metrics.log_scalar("loss", 2) self.assertEqual(a.get_smoothed_values()["loss"], 1) self.assertEqual(b.get_smoothed_values()["loss"], 2) def test_nested_new_root(self): with metrics.aggregate() as layer1: metrics.log_scalar("loss", 1) with metrics.aggregate(new_root=True) as layer2: metrics.log_scalar("loss", 2) with metrics.aggregate() as layer3: metrics.log_scalar("loss", 3) with metrics.aggregate(new_root=True) as layer4: metrics.log_scalar("loss", 4) metrics.log_scalar("loss", 1.5) self.assertEqual(layer4.get_smoothed_values()["loss"], 4) self.assertEqual(layer3.get_smoothed_values()["loss"], 3) self.assertEqual(layer2.get_smoothed_values()["loss"], 2.5) self.assertEqual(layer1.get_smoothed_values()["loss"], 1.25) def test_named(self): name = str(uuid.uuid4()) metrics.reset_meters(name) with metrics.aggregate(name): metrics.log_scalar("loss", 1) metrics.log_scalar("loss", 3) with metrics.aggregate(name): metrics.log_scalar("loss", 2) self.assertEqual(metrics.get_smoothed_values(name)["loss"], 1.5) def test_nested_duplicate_names(self): name = str(uuid.uuid4()) metrics.reset_meters(name) with metrics.aggregate(name): metrics.log_scalar("loss", 1) with metrics.aggregate() as other: with metrics.aggregate(name): metrics.log_scalar("loss", 2) metrics.log_scalar("loss", 6) self.assertEqual(metrics.get_smoothed_values(name)["loss"], 3) self.assertEqual(other.get_smoothed_values()["loss"], 2) if __name__ == "__main__": unittest.main()
flash_metaseq-main
cpu_tests/test_metrics.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import unittest import tests.utils as test_utils import torch from metaseq.sequence_scorer import SequenceScorer class TestSequenceScorer(unittest.TestCase): def test_sequence_scorer(self): # construct dummy dictionary d = test_utils.dummy_dictionary(vocab_size=2) self.assertEqual(d.pad(), 1) self.assertEqual(d.eos(), 2) self.assertEqual(d.unk(), 3) eos = d.eos() w1 = 4 w2 = 5 # construct dataloader data = [ { "source": torch.LongTensor([w1, w2, eos]), "target": torch.LongTensor([w1, w2, w1, eos]), }, { "source": torch.LongTensor([w2, eos]), "target": torch.LongTensor([w2, w1, eos]), }, { "source": torch.LongTensor([w2, eos]), "target": torch.LongTensor([w2, eos]), }, ] data_itr = test_utils.dummy_dataloader(data) # specify expected output probabilities args = argparse.Namespace() unk = 0.0 args.beam_probs = [ # step 0: torch.FloatTensor( [ # eos w1 w2 [0.0, unk, 0.6, 0.4], # sentence 1 [0.0, unk, 0.4, 0.6], # sentence 2 [0.0, unk, 0.7, 0.3], # sentence 3 ] ), # step 1: torch.FloatTensor( [ # eos w1 w2 [0.0, unk, 0.2, 0.7], # sentence 1 [0.0, unk, 0.8, 0.2], # sentence 2 [0.7, unk, 0.1, 0.2], # sentence 3 ] ), # step 2: torch.FloatTensor( [ # eos w1 w2 [0.10, unk, 0.50, 0.4], # sentence 1 [0.15, unk, 0.15, 0.7], # sentence 2 [0.00, unk, 0.00, 0.0], # sentence 3 ] ), # step 3: torch.FloatTensor( [ # eos w1 w2 [0.9, unk, 0.05, 0.05], # sentence 1 [0.0, unk, 0.00, 0.0], # sentence 2 [0.0, unk, 0.00, 0.0], # sentence 3 ] ), ] expected_scores = [ [0.6, 0.7, 0.5, 0.9], # sentence 1 [0.6, 0.8, 0.15], # sentence 2 [0.3, 0.7], # sentence 3 ] task = test_utils.TestTranslationTask.setup_task(args, d, d) model = task.build_model(args) scorer = SequenceScorer(task.target_dictionary) for sample in data_itr: hypos = task.inference_step(scorer, [model], sample) for id, hypos_id in zip(sample["id"].tolist(), hypos): self.assertHypoTokens(hypos_id[0], data[id]["target"]) self.assertHypoScore(hypos_id[0], expected_scores[id]) def assertHypoTokens(self, hypo, tokens): self.assertTensorEqual(hypo["tokens"], torch.LongTensor(tokens)) def assertHypoScore(self, hypo, pos_probs, normalized=True): pos_scores = torch.FloatTensor(pos_probs).log() self.assertAlmostEqual(hypo["positional_scores"], pos_scores) self.assertEqual(pos_scores.numel(), hypo["tokens"].numel()) score = pos_scores.sum() if normalized: score /= pos_scores.numel() self.assertLess(abs(score - hypo["score"]), 1e-6) def assertAlmostEqual(self, t1, t2): self.assertEqual(t1.size(), t2.size(), "size mismatch") self.assertLess((t1 - t2).abs().max(), 1e-4) def assertTensorEqual(self, t1, t2): self.assertEqual(t1.size(), t2.size(), "size mismatch") self.assertEqual(t1.ne(t2).long().sum(), 0) if __name__ == "__main__": unittest.main()
flash_metaseq-main
cpu_tests/test_sequence_scorer.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import torch from metaseq.modules.multihead_attention import MultiheadAttention class TestMultiheadAttention(unittest.TestCase): def test_append_prev_key_padding_mask(self): bsz = 1 src_len = 4 cases = [ # no padding mask (None, None, None), # current padding mask only ( torch.tensor([[1]]).bool(), None, torch.tensor([[0, 0, 0, 1]]).bool(), ), # previous padding mask only ( None, torch.tensor([[0, 1, 0]]).bool(), torch.tensor([[0, 1, 0, 0]]).bool(), ), # both padding masks ( torch.tensor([[1]]).bool(), torch.tensor([[0, 1, 0]]).bool(), torch.tensor([[0, 1, 0, 1]]).bool(), ), ] for c in cases: key_padding_mask = MultiheadAttention._append_prev_key_padding_mask( c[0], c[1], batch_size=bsz, src_len=src_len, static_kv=False, ) if key_padding_mask is not None: self.assertTrue( torch.all(torch.eq(key_padding_mask, c[2])), f"Unexpected resultant key padding mask: {key_padding_mask}" f" given current: {c[0]} and previous: {c[1]}", ) self.assertEqual(key_padding_mask.size(0), bsz) self.assertEqual(key_padding_mask.size(1), src_len) else: self.assertIsNone(c[2]) if __name__ == "__main__": unittest.main()
flash_metaseq-main
cpu_tests/test_multihead_attention.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import numpy as np from metaseq.data.data_utils_fast import batch_by_size_fn from metaseq.data.data_utils_fast import batch_by_size_vec class TestBatchBySize(unittest.TestCase): @classmethod def batch_by_size_baseline( cls, indices, num_tokens_vec, max_tokens, max_sentences, bsz_mult, ): """Simple, reliable and slow implementation of batch by size""" batches = [] start = 0 while start < len(indices): for end in range(start + 1, len(indices) + 1): max_val = max(num_tokens_vec[pos] for pos in range(start, end)) sent_count = end - start num_tokens = max_val * sent_count overflow = num_tokens > max_tokens > 0 or sent_count > max_sentences > 0 terminate = overflow or end == len(indices) if overflow: sent_count -= 1 if terminate: if sent_count > bsz_mult: sent_count = sent_count - sent_count % bsz_mult batches.append(indices[start : start + sent_count]) start = start + sent_count break return batches @classmethod def _get_error_message( cls, max_sentences, max_tokens, bsz_mult, num_tokens_vec, validation, results ): return f"""Reference batch_by_size implementation should produce same output as the baseline method. Params: max_sentences={max_sentences}, max_tokens={max_tokens}, bsz_mult={bsz_mult}, num_tokens_vec={num_tokens_vec}, expected_batches={validation}, returned_batches={results}""" def _compare_results( self, indices_len, batch_by_size_impl, max_sentences, max_tokens, bsz_mult, num_tokens_vec, ): indices = np.array(list(range(indices_len))) validation = self.batch_by_size_baseline( indices, num_tokens_vec, max_tokens=max_tokens, max_sentences=max_sentences, bsz_mult=bsz_mult, ) results = batch_by_size_impl( indices, num_tokens_vec, max_tokens=max_tokens, max_sentences=max_sentences, bsz_mult=bsz_mult, ) error_msg = self._get_error_message( max_sentences, max_tokens, bsz_mult, num_tokens_vec, validation, results ) self.assertEqual(len(validation), len(results), error_msg) for first, second in zip(validation, results): self.assertTrue(np.array_equal(first, second), error_msg) def _run_compare_with_baseline_sweep(self, batch_by_size_impl): """Compare reference batch_by_size implementation with batch_by_size_baseline across a dense grid of hyperparam values""" MAX_MAX_TOKENS = 10 NUM_TOKENS_VECS_COUNT = 5 for indices_len in [10, 11]: # try odd and even len of indices for max_sentences in range(0, indices_len + 2): for max_tokens in range(0, MAX_MAX_TOKENS): for bsz_mult in range(1, max(MAX_MAX_TOKENS, indices_len) + 2): for _ in range(NUM_TOKENS_VECS_COUNT): num_tokens_vec = np.random.randint( 0, max_tokens + 1, size=indices_len ) self._compare_results( indices_len, batch_by_size_impl, max_sentences, max_tokens, bsz_mult, num_tokens_vec, ) class TestBatchBySizeVec(TestBatchBySize): def test_compare_with_baseline(self): self._run_compare_with_baseline_sweep(batch_by_size_vec) class TestBatchBySizeFn(TestBatchBySize): def test_compare_with_baseline(self): def batch_by_size_fn_wrapper( indices, num_tokens_vec, max_tokens, max_sentences, bsz_mult, ): def num_tokens_fn(idx): return num_tokens_vec[idx] return batch_by_size_fn( indices, num_tokens_fn, max_tokens, max_sentences, bsz_mult ) self._run_compare_with_baseline_sweep(batch_by_size_fn_wrapper) if __name__ == "__main__": unittest.main()
flash_metaseq-main
cpu_tests/test_data_utils.py
flash_metaseq-main
cpu_tests/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import numpy as np import torch from metaseq.data import StreamingTokenBlockDataset class TensorListDataset(torch.utils.data.Dataset): def __init__(self, tensor_list): self.tensor_list = tensor_list def __getitem__(self, index): return self.tensor_list[index] def __len__(self): return len(self.tensor_list) def get_simple_dataset(): return TensorListDataset( [ torch.LongTensor([0]), torch.LongTensor([1, 2, 3]), torch.LongTensor([4]), torch.LongTensor([5]), torch.LongTensor([6, 7, 8]), torch.LongTensor([9, 10]), ] ) class TestStreamingTokenBlockDataset(unittest.TestCase): def test_drop_last_True(self): self._test_simple(drop_last=True) def test_drop_last_False(self): self._test_simple(drop_last=False) def test_buffer_drop_last_True(self): self._test_buffer(drop_last=True) def test_buffer_drop_last_False(self): self._test_buffer(drop_last=False) def test_very_large_buffer_drop_last_True(self): self._test_very_large_buffer(drop_last=True) def test_very_large_buffer_drop_last_False(self): self._test_very_large_buffer(drop_last=False) def _test_simple(self, drop_last): dataset = get_simple_dataset() token_block_ds = StreamingTokenBlockDataset( dataset, block_size=2, drop_last=drop_last, padding_idx=-1, ) dataloader = iter(token_block_ds) assert next(dataloader)["block"].tolist() == [0, 1] assert next(dataloader)["block"].tolist() == [2, 3] assert next(dataloader)["block"].tolist() == [4, 5] assert next(dataloader)["block"].tolist() == [6, 7] assert next(dataloader)["block"].tolist() == [8, 9] if not drop_last: assert next(dataloader)["block"].tolist() == [10, -1] with self.assertRaises(StopIteration): next(dataloader) def _test_buffer(self, drop_last, seed=42): # maintain shadow rng to ensure iteration order matches expectations shadow_rng = np.random.default_rng(2273 + seed) dataset = get_simple_dataset() token_block_ds = StreamingTokenBlockDataset( dataset, block_size=2, drop_last=drop_last, padding_idx=-1, shuffle_buffer_size=3, seed=seed, ) dataloader = iter(token_block_ds) # we expect token_block_ds to buffer the first three blocks, # then return random blocks and replace them thereafter expected_buffer = [ [0, 1], [2, 3], [4, 5], ] next_idx = shadow_rng.integers(3) assert next(dataloader)["block"].tolist() == expected_buffer[next_idx] expected_buffer[next_idx] = [6, 7] next_idx = shadow_rng.integers(3) assert next(dataloader)["block"].tolist() == expected_buffer[next_idx] expected_buffer[next_idx] = [8, 9] next_idx = shadow_rng.integers(3) assert next(dataloader)["block"].tolist() == expected_buffer[next_idx] if not drop_last: expected_buffer[next_idx] = [10, -1] else: expected_buffer.pop(next_idx) while expected_buffer: next_idx = shadow_rng.integers(len(expected_buffer)) assert next(dataloader)["block"].tolist() == expected_buffer[next_idx] expected_buffer.pop(next_idx) with self.assertRaises(StopIteration): next(dataloader) def _test_very_large_buffer(self, drop_last, seed=42): # maintain shadow rng to ensure iteration order matches expectations shadow_rng = np.random.default_rng(2273 + seed) dataset = get_simple_dataset() token_block_ds = StreamingTokenBlockDataset( dataset, block_size=2, drop_last=drop_last, padding_idx=-1, shuffle_buffer_size=100, # bigger than full dataset seed=seed, ) dataloader = iter(token_block_ds) expected_buffer = [ [0, 1], [2, 3], [4, 5], [6, 7], [8, 9], ] if not drop_last: expected_buffer.append([10, -1]) while expected_buffer: next_idx = shadow_rng.integers(len(expected_buffer)) assert next(dataloader)["block"].tolist() == expected_buffer[next_idx] expected_buffer.pop(next_idx) with self.assertRaises(StopIteration): next(dataloader) def _test_break_mode_eos_pad_8(self): dataset = TensorListDataset( [ torch.LongTensor([0]), torch.LongTensor([1, 2, 3]), torch.LongTensor([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]), ] ) token_block_ds = StreamingTokenBlockDataset( dataset, block_size=10, drop_last=False, padding_idx=-1, break_mode="eos_pad_8", ) expected_buffer = [ [0, -1, -1, -1, -1, -1, -1, -1, -1], [1, 2, 3, -1, -1, -1, -1, -1, -1], [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], ] dataloader = iter(token_block_ds) assert ( next(dataloader)["block"].tolist() == expected_buffer[0] ) # padding to multiple of 8 + 1 assert ( next(dataloader)["block"].tolist() == expected_buffer[1] ) # padding to multiple of 8 + 1 assert ( next(dataloader)["block"].tolist() == expected_buffer[2] ) # padding to block size with self.assertRaises(StopIteration): next(dataloader)
flash_metaseq-main
cpu_tests/test_streaming_token_block_dataset.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import torch from metaseq.data import PartitionedStreamingDataset class TensorListIterableDataset(torch.utils.data.IterableDataset): def __init__(self, tensor_list): self.tensor_list = tensor_list def __iter__(self): for tensor in self.tensor_list: yield tensor def get_simple_dataset(): return TensorListIterableDataset( [ torch.LongTensor([0, 1]), torch.LongTensor([2, 3]), torch.LongTensor([4, 5]), torch.LongTensor([6, 7]), torch.LongTensor([8, 9]), ] ) class TestPartitionedStreamingDataset(unittest.TestCase): def test_drop_last_True_shard_0(self): self._test_simple(drop_last=True, shard_id=0) def test_drop_last_True_shard_1(self): self._test_simple(drop_last=True, shard_id=1) def test_drop_last_False_shard_0(self): self._test_simple(drop_last=False, shard_id=0) def test_drop_last_False_shard_1(self): self._test_simple(drop_last=False, shard_id=1) def _test_simple(self, drop_last, shard_id): dataset = get_simple_dataset() partitioned_ds = PartitionedStreamingDataset( dataset, num_shards=2, shard_id=shard_id, drop_last=drop_last, ) dataloader = iter(partitioned_ds) if shard_id == 0: assert next(dataloader).tolist() == [0, 1] assert next(dataloader).tolist() == [4, 5] if not drop_last: assert next(dataloader).tolist() == [8, 9] else: assert shard_id == 1 assert next(dataloader).tolist() == [2, 3] assert next(dataloader).tolist() == [6, 7] if not drop_last: assert next(dataloader) is None with self.assertRaises(StopIteration): next(dataloader)
flash_metaseq-main
cpu_tests/test_partitioned_streaming_dataset.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import tests.utils as test_utils import torch from metaseq.data import TokenBlockDataset class TestTokenBlockDataset(unittest.TestCase): def _build_dataset(self, data, **kwargs): sizes = [len(x) for x in data] underlying_ds = test_utils.TestDataset(data) return TokenBlockDataset(underlying_ds, sizes, **kwargs) def test_eos_break_mode(self): data = [ torch.tensor([5, 4, 3, 2, 1], dtype=torch.long), torch.tensor([1], dtype=torch.long), torch.tensor([8, 7, 6, 1], dtype=torch.long), ] ds = self._build_dataset(data, block_size=None, pad=0, eos=1, break_mode="eos") self.assertEqual(ds[0].tolist(), [5, 4, 3, 2, 1]) self.assertEqual(ds[1].tolist(), [1]) self.assertEqual(ds[2].tolist(), [8, 7, 6, 1]) data = [ torch.tensor([5, 4, 3, 2, 1], dtype=torch.long), torch.tensor([8, 7, 6, 1], dtype=torch.long), torch.tensor([1], dtype=torch.long), ] ds = self._build_dataset(data, block_size=None, pad=0, eos=1, break_mode="eos") self.assertEqual(ds[0].tolist(), [5, 4, 3, 2, 1]) self.assertEqual(ds[1].tolist(), [8, 7, 6, 1]) self.assertEqual(ds[2].tolist(), [1]) def test_block_break_mode(self): data = [ torch.tensor([5, 4, 3, 2, 1], dtype=torch.long), torch.tensor([8, 7, 6, 1], dtype=torch.long), torch.tensor([9, 1], dtype=torch.long), ] ds = self._build_dataset(data, block_size=3, pad=0, eos=1, break_mode="none") self.assertEqual(ds[0].tolist(), [5, 4, 3]) self.assertEqual(ds[1].tolist(), [2, 1, 8]) self.assertEqual(ds[2].tolist(), [7, 6, 1]) self.assertEqual(ds[3].tolist(), [9, 1]) def test_complete_break_mode(self): data = [ torch.tensor([5, 4, 3, 2, 1], dtype=torch.long), torch.tensor([8, 7, 6, 1], dtype=torch.long), torch.tensor([9, 1], dtype=torch.long), ] ds = self._build_dataset( data, block_size=6, pad=0, eos=1, break_mode="complete" ) self.assertEqual(ds[0].tolist(), [5, 4, 3, 2, 1]) self.assertEqual(ds[1].tolist(), [8, 7, 6, 1, 9, 1]) data = [ torch.tensor([4, 3, 2, 1], dtype=torch.long), torch.tensor([5, 1], dtype=torch.long), torch.tensor([1], dtype=torch.long), torch.tensor([6, 1], dtype=torch.long), ] ds = self._build_dataset( data, block_size=3, pad=0, eos=1, break_mode="complete" ) self.assertEqual(ds[0].tolist(), [4, 3, 2, 1]) self.assertEqual(ds[1].tolist(), [5, 1, 1]) self.assertEqual(ds[2].tolist(), [6, 1]) def test_4billion_tokens(self): """Regression test for numpy type promotion issue https://github.com/numpy/numpy/issues/5745""" data = [torch.tensor(list(range(10000)), dtype=torch.long)] * 430000 ds = self._build_dataset( data, block_size=6, pad=0, eos=1, break_mode="complete" ) ds[-1] # __getitem__ works start, end = ds.slice_indices[-1] assert end > 4294967295 # data must be sufficiently large to overflow uint32 assert not isinstance( end + 1, float ) # this would also raise, since np.uint64(1) + 1 => 2.0 if __name__ == "__main__": unittest.main()
flash_metaseq-main
cpu_tests/test_token_block_dataset.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import shutil import tempfile import unittest from typing import Optional class TestFileChunker(unittest.TestCase): _tmpdir: Optional[str] = None _tmpfile: Optional[str] = None _line_content = "Hello, World\n" _num_bytes = None _num_lines = 200 _num_splits = 20 @classmethod def setUpClass(cls) -> None: cls._num_bytes = len(cls._line_content.encode("utf-8")) cls._tmpdir = tempfile.mkdtemp() with open(os.path.join(cls._tmpdir, "test.txt"), "w") as f: cls._tmpfile = f.name for _i in range(cls._num_lines): f.write(cls._line_content) f.flush() @classmethod def tearDownClass(cls) -> None: # Cleanup temp working dir. if cls._tmpdir is not None: shutil.rmtree(cls._tmpdir) # type: ignore def test_find_offsets(self): from metaseq.file_chunker_utils import find_offsets offsets = find_offsets(self._tmpfile, self._num_splits) self.assertEqual(len(offsets), self._num_splits + 1) (zero, *real_offsets, last) = offsets self.assertEqual(zero, 0) for i, o in enumerate(real_offsets): self.assertEqual( o, self._num_bytes + ((i + 1) * self._num_bytes * self._num_lines / self._num_splits), ) self.assertEqual(last, self._num_bytes * self._num_lines) def test_readchunks(self): from metaseq.file_chunker_utils import Chunker, find_offsets offsets = find_offsets(self._tmpfile, self._num_splits) for start, end in zip(offsets, offsets[1:]): with Chunker(self._tmpfile, start, end) as lines: all_lines = list(lines) num_lines = self._num_lines / self._num_splits self.assertAlmostEqual( len(all_lines), num_lines, delta=1 ) # because we split on the bites, we might end up with one more/less line in a chunk self.assertListEqual( all_lines, [self._line_content for _ in range(len(all_lines))] )
flash_metaseq-main
cpu_tests/test_file_chunker_utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import torch from metaseq.data import StreamingShuffleDataset class TensorListDataset(torch.utils.data.Dataset): def __init__(self, tensor_list): self.tensor_list = tensor_list def __getitem__(self, index): return self.tensor_list[index] def __len__(self): return len(self.tensor_list) def get_simple_dataset(): return TensorListDataset( [ torch.LongTensor([0]), torch.LongTensor([1, 2, 3]), torch.LongTensor([4]), torch.LongTensor([5]), torch.LongTensor([6, 7, 8]), torch.LongTensor([9, 10]), ] ) class TestStreamingShuffleDataset(unittest.TestCase): def test_set_epoch(self): dataset = get_simple_dataset() shuffle_ds = StreamingShuffleDataset(dataset, seed=0) shuffle_ds.set_epoch(1) ref_epoch1 = list(shuffle_ds) shuffle_ds.set_epoch(2) ref_epoch2 = list(shuffle_ds) self.assertTrue( torch.cat(ref_epoch1).tolist() == torch.cat(ref_epoch1).tolist() ) self.assertFalse( torch.cat(ref_epoch1).tolist() == torch.cat(ref_epoch2).tolist() ) shuffle_ds.set_epoch(1) self._compare(ref_epoch1, shuffle_ds) shuffle_ds.set_epoch(2) self._compare(ref_epoch2, shuffle_ds) shuffle_ds.set_epoch(2) self._compare(ref_epoch2, shuffle_ds) shuffle_ds.set_epoch(1) self._compare(ref_epoch1, shuffle_ds) def _compare(self, reference, dataset): ref_itr = iter(reference) ds_itr = iter(dataset) for ref, ds in zip(ref_itr, ds_itr): self.assertEqual(ref.tolist(), ds.tolist()) with self.assertRaises(StopIteration): next(ref_itr) with self.assertRaises(StopIteration): next(ds_itr)
flash_metaseq-main
cpu_tests/test_streaming_shuffle_dataset.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import torch from metaseq.data import iterators class TensorListIterableDataset(torch.utils.data.IterableDataset): def __init__(self, tensor_list): self.tensor_list = tensor_list def __iter__(self): for tensor in self.tensor_list: yield tensor def get_simple_dataset(): return TensorListIterableDataset( [ torch.LongTensor([0, 1]), torch.LongTensor([2, 3]), torch.LongTensor([4, 5]), torch.LongTensor([6, 7]), torch.LongTensor([8, 9]), ] ) class TestStreamingIterators(unittest.TestCase): def test_streaming_counting_iterator(self): ref = list(range(10)) itr = iterators.StreamingCountingIterator(ref) for i, ref_i in enumerate(ref): self.assertTrue(itr.has_next()) self.assertEqual(itr.n, i) self.assertEqual(next(itr), ref_i) self.assertEqual(itr.n, len(ref)) self.assertFalse(itr.has_next()) with self.assertRaises(StopIteration): next(itr) def test_streaming_epoch_batch_iterator_drop_last_True(self): self._test_streaming_epoch_batch_iterator(drop_last=True) def test_streaming_epoch_batch_iterator_drop_last_False(self): self._test_streaming_epoch_batch_iterator(drop_last=False) def test_streaming_epoch_batch_iterator_state_dict(self): def hook_fn(epoch_batch_itr, itr): new_epoch_batch_itr = iterators.StreamingEpochBatchIterator( # recreate the dataset dataset=get_simple_dataset(), batch_size=epoch_batch_itr.batch_size, collate_fn=epoch_batch_itr.collate_fn, drop_last=epoch_batch_itr.drop_last, ) new_epoch_batch_itr.load_state_dict(epoch_batch_itr.state_dict()) return new_epoch_batch_itr, new_epoch_batch_itr.next_epoch_itr() self._test_streaming_epoch_batch_iterator(drop_last=True, hook_fn=hook_fn) self._test_streaming_epoch_batch_iterator(drop_last=False, hook_fn=hook_fn) def _test_streaming_epoch_batch_iterator(self, drop_last, hook_fn=None): dataset = get_simple_dataset() epoch_batch_itr = iterators.StreamingEpochBatchIterator( dataset, batch_size=2, collate_fn=torch.cat, drop_last=drop_last, ) assert epoch_batch_itr.next_epoch_idx == 1 itr = epoch_batch_itr.next_epoch_itr() assert epoch_batch_itr.iterations_in_epoch == 0 assert not epoch_batch_itr.end_of_epoch() if hook_fn is not None: epoch_batch_itr, itr = hook_fn(epoch_batch_itr, itr) assert next(itr).tolist() == [0, 1, 2, 3] assert epoch_batch_itr.iterations_in_epoch == 1 assert not epoch_batch_itr.end_of_epoch() if hook_fn is not None: epoch_batch_itr, itr = hook_fn(epoch_batch_itr, itr) assert next(itr).tolist() == [4, 5, 6, 7] assert epoch_batch_itr.iterations_in_epoch == 2 if not drop_last: if hook_fn is not None: epoch_batch_itr, itr = hook_fn(epoch_batch_itr, itr) assert next(itr).tolist() == [8, 9] assert epoch_batch_itr.iterations_in_epoch == 3 assert epoch_batch_itr.end_of_epoch() with self.assertRaises(StopIteration): next(itr) if __name__ == "__main__": unittest.main()
flash_metaseq-main
cpu_tests/test_streaming_iterators.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import json import os import random import string import tempfile import unittest from unittest.mock import MagicMock from metaseq.data import JsonlDataset def write_one_jsonl_(jsonl_path, num_lines=5, text_len_min=5, text_len_max=50): data = [] with open(jsonl_path, "w") as h: for _ in range(num_lines): text_len = random.choice(range(text_len_min, text_len_max)) data.append( {"text": "".join(random.choices(string.ascii_letters, k=text_len))} ) print(json.dumps(data[-1]), file=h) return data class TestJsonlDataset(unittest.TestCase): def test_one_line(self): self._test_jsonl_dataset(num_lines=1) def test_multiple_lines(self): self._test_jsonl_dataset(num_lines=5) def test_bad_cache(self): with tempfile.NamedTemporaryFile() as jsonl_file: write_one_jsonl_(jsonl_file.name, num_lines=3) dataset = JsonlDataset(jsonl_file.name) assert len(dataset) == 3 write_one_jsonl_(jsonl_file.name, num_lines=5) dataset = JsonlDataset(jsonl_file.name) assert len(dataset) == 3 # it's still 3 because of the cache os.remove(dataset.cache) dataset = JsonlDataset(jsonl_file.name) assert len(dataset) == 5 # it's now 5 because the cache is recreated def test_tokenizer(self, num_lines=5): def tokenizer_fn(jsonl): return list(jsonl["text"]) tokenizer = MagicMock(wraps=tokenizer_fn) with tempfile.NamedTemporaryFile() as jsonl_file: orig_data = write_one_jsonl_(jsonl_file.name, num_lines=num_lines) assert len(orig_data) == num_lines dataset = JsonlDataset(jsonl_file.name, tokenizer=tokenizer) assert tokenizer.call_count == 0 foo = dataset[1] assert foo == list(orig_data[1]["text"]) assert tokenizer.call_count == 1 foo = dataset[1] assert tokenizer.call_count == 2 foo = dataset[4] assert foo == list(orig_data[4]["text"]) assert tokenizer.call_count == 3 def _test_jsonl_dataset(self, num_lines, tokenizer=None): with tempfile.NamedTemporaryFile() as jsonl_file: orig_data = write_one_jsonl_(jsonl_file.name, num_lines=num_lines) assert len(orig_data) == num_lines dataset = JsonlDataset(jsonl_file.name, tokenizer=None) assert len(dataset) == len(orig_data) for orig_json, read_json in zip(orig_data, dataset): assert orig_json.keys() == read_json.keys() for k in orig_json.keys(): assert orig_json[k] == read_json[k]
flash_metaseq-main
cpu_tests/test_jsonl_dataset.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import torch from torch import nn from metaseq.distributed import ModuleProxyWrapper from tests.distributed.utils import objects_are_equal class MockDDPWrapper(nn.Module): """A simple wrapper with an interface similar to DistributedDataParallel.""" def __init__(self, module): super().__init__() self.module = module def forward(self, x): return self.module(x) class Model(nn.Module): def __init__(self): super().__init__() self.linear = nn.Linear(5, 10) self.xyz = "hello" def forward(self, x): return self.linear(x) def get_xyz(self): return self.xyz class TestModuleProxyWrapper(unittest.TestCase): def _get_module(self): module = Model() wrapped_module = MockDDPWrapper(module) wrapped_module = ModuleProxyWrapper(wrapped_module) return wrapped_module, module def test_getattr_forwarding(self): wrapped_module, module = self._get_module() assert module.xyz == "hello" assert module.get_xyz() == "hello" assert wrapped_module.xyz == "hello" wrapped_module.xyz = "world" assert wrapped_module.xyz == "world" assert module.get_xyz() == "hello" def test_state_dict(self): wrapped_module, module = self._get_module() assert objects_are_equal(wrapped_module.state_dict(), module.state_dict()) def test_load_state_dict(self): wrapped_module, module = self._get_module() wrapped_module.load_state_dict(module.state_dict()) input = torch.rand(4, 5) torch.testing.assert_allclose(wrapped_module(input), module(input)) def test_forward(self): wrapped_module, module = self._get_module() input = torch.rand(4, 5) torch.testing.assert_allclose(wrapped_module(input), module(input)) if __name__ == "__main__": unittest.main()
flash_metaseq-main
cpu_tests/distributed/test_module_proxy_wrapper.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import signal import time import unittest import torch from torch import nn from metaseq.distributed import DistributedTimeoutWrapper class ModuleWithDelay(nn.Module): def __init__(self, delay): super().__init__() self.delay = delay def forward(self, x): time.sleep(self.delay) return x class TestDistributedTimeoutWrapper(unittest.TestCase): def setUp(self): logging.disable(logging.CRITICAL) def tearDown(self): logging.disable(logging.NOTSET) def test_no_timeout(self): module = DistributedTimeoutWrapper(ModuleWithDelay(1), 0, signal.SIGINT) module(torch.rand(5)) module.stop_timeout() def test_timeout_safe(self): module = DistributedTimeoutWrapper(ModuleWithDelay(1), 10, signal.SIGINT) module(torch.rand(5)) module.stop_timeout() def test_timeout_killed(self): with self.assertRaises(KeyboardInterrupt): module = DistributedTimeoutWrapper(ModuleWithDelay(5), 1, signal.SIGINT) module(torch.rand(5)) module.stop_timeout() if __name__ == "__main__": unittest.main()
flash_metaseq-main
cpu_tests/distributed/test_distributed_timeout_wrapper.py
flash_metaseq-main
cpu_tests/distributed/__init__.py
#!/usr/bin/env python3 -u # Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Host the demo. Launch with `python -m metaseq_cli.interactive_hosted` to run locally. See docs/api.md for more information. """ import os import queue import pkg_resources import random import shutil import threading import torch from flask import Flask, request from metaseq import options from metaseq.dataclass.configs import MetaseqConfig from metaseq.dataclass.utils import convert_namespace_to_omegaconf from metaseq.distributed import utils as dist_utils from metaseq.hub_utils import GeneratorInterface from metaseq.service.queue import PriorityQueueRingShard from metaseq.service.workers import WorkItem from metaseq.service.constants import ( MAX_SEQ_LEN, MAX_BATCH_TOKENS, DEFAULT_PORT, TOTAL_WORLD_SIZE, CHECKPOINT_LOCAL, CHECKPOINT_FOLDER, LAUNCH_ARGS, ) from metaseq.service.utils import get_my_ip, encode_fn, build_logger from metaseq.service.responses import OAIResponse app = Flask(__name__) # global state (mutable!) cfg = None port = DEFAULT_PORT BATCH_QUEUE = PriorityQueueRingShard() logger = build_logger() def batching_loop(timeout=100, max_tokens=MAX_BATCH_TOKENS): """ batching_loop is an infinite loop responsible for executing generations. GPUs benefit from batching requests, but we expect workloads to come in non-uniformly. This loop groups requests together (via BATCH_QUEUE) and executes them in one batch. In order to keep latency low, unfilled batches are executed within a window of :timeout: milliseconds. batching_loop also performs dynamic batching, in order to minimize the amount of padding by grouping like-sized workloads together. As a result batching loop will provide preferential treatment to smaller workloads. At the current moment, there is no TTL logic to ensure a maximum wait time. For a rough overview of dynamic batching, see https://parl.ai/docs/tutorial_worlds.html#dynamic-batching. :param timeout: The max queue time before a non-full batch is launched. :param max_tokens: the maximum number of tokens that can be processed concurrently. model specific and empirical. """ # TODO(roller): # - group by generation type, topp etc, as we cannot share these # - modify timeout logic to be cumulative global BATCH_QUEUE batch = [] while True: try: # for now, we only have 1 worker, so can always index to shard 0 target_queue = BATCH_QUEUE.queue_shards[0].get_largest_queue() if not target_queue: continue # dynamic batching: group like-sized items to reduce the cost # of padding. See PR#20 for additional context. item = target_queue.get(timeout=timeout / 1000) # accumulate the batch until it gets too big longest = max([item] + batch).cost batch_cost = longest * (len(batch) + 1) if batch and batch_cost > max_tokens: # we're over budget, put it back in the queue target_queue.put(item) raise queue.Empty else: # batch is empty or under budget batch.append(item) except queue.Empty: if batch: request_object = { "inputs": [], "min_tokens": [], "max_tokens": [], } for work_item in batch: ro = work_item.data request_object["inputs"].append(ro["input"]) request_object["min_tokens"].append(ro.get("min_tokens", 0)) request_object["max_tokens"].append( ro.get("max_tokens", MAX_SEQ_LEN) ) # assumption: everyone has the same remaining args for key in [ "temperature", "top_p", "n", "best_of", "echo", "logprobs", "stop", ]: if key in ro: request_object[key] = ro[key] # do the actual generations request_object["seed"] = random.randint(1, 20000) dist_utils.broadcast_object( request_object, src_rank=0, group=dist_utils.get_global_group() ) generations = generator.generate(**request_object) # broadcast them back for work_item, gen in zip(batch, generations): work_item.return_queue.put((work_item.uid, gen)) batch.clear() else: # back to the loop continue def worker_main(cfg1: MetaseqConfig, namespace_args=None): # disable multithreading in tokenizers and torch, as different Flask threads # may then fight for resources. os.environ["TOKENIZERS_PARALLELISM"] = "false" torch.set_num_threads(1) global generator global MODE # make sure generations are stochastic since we have many workers torch.manual_seed(random.randint(1, 20000)) torch.cuda.manual_seed(random.randint(1, 20000)) MODE = "worker" cfg = cfg1 generator = GeneratorInterface(cfg) models = generator.load_model() # noqa: F841 logger.info(f"loaded model {cfg.distributed_training.distributed_rank}") request_object = dist_utils.broadcast_object( None, src_rank=0, group=dist_utils.get_global_group() ) if torch.distributed.get_rank() == 0: logger.info(f"Worker engaged! {get_my_ip()}:{port}") thread = threading.Thread(target=batching_loop, daemon=True) thread.start() app.run(host="0.0.0.0", port=port, threaded=True) else: # useful in FSDP setting logger.info(f"Looping engaged! {get_my_ip()}:{port}") while True: request_object = dist_utils.broadcast_object( None, src_rank=0, group=dist_utils.get_global_group() ) _ = generator.generate(**request_object) @app.route("/completions", methods=["POST"]) @app.route("/v1/engines/<engine>/completions", methods=["POST"]) @app.route("/v2/engines/<engine>/completions", methods=["POST"]) @app.route("/engines/<engine>/completions", methods=["POST"]) def completions(engine=None): # prompt can be 4 types: # - str. Basic case. Return one generation. # - list of ints. Pretokenized. Return one generation # - list of str. Multiple generations, one per prompt # - list of list of ints. Pretokenized multiple generations. # our approach is to turn everything into the last case prompts = request.json["prompt"] del request.json["prompt"] generation_args = request.json if isinstance(prompts, str): # single string. tokenize and turn it to the single pre-tokenized case prompts = [encode_fn(generator, prompts)] assert isinstance(prompts, list) assert len(prompts) > 0 if isinstance(prompts[0], str): # multi string prompts = [encode_fn(generator, p) for p in prompts] elif isinstance(prompts[0], int): # single pre-tokenized prompts = [prompts] assert isinstance(prompts[0], list) # final case: multi pre-tokenized assert len(prompts[0]) > 0 if "min_tokens" in generation_args: generation_args["min_tokens"] = int(generation_args["min_tokens"]) if "max_tokens" in generation_args: generation_args["max_tokens"] = int(generation_args["max_tokens"]) if "stop" in generation_args: stop = generation_args["stop"] if stop is None: pass elif isinstance(stop, str): stop = [encode_fn(generator, stop)[0]] else: stop = [encode_fn(generator, s)[0] for s in stop] generation_args["stop"] = stop if "temperature" in generation_args: generation_args["temperature"] = round(float(generation_args["temperature"]), 1) else: generation_args["temperature"] = 1.0 if "top_p" in generation_args: generation_args["top_p"] = round(float(generation_args["top_p"]), 1) else: generation_args["top_p"] = 1.0 # beam search top n if "n" in generation_args: generation_args["n"] = int(generation_args["n"]) else: generation_args["n"] = 1 ret_queue = queue.Queue() for i, prompt in enumerate(prompts): request_object = {"input": prompt, **generation_args} max_len = generation_args.get("max_tokens", 0) BATCH_QUEUE.put(WorkItem(len(prompt) + max_len, i, ret_queue, request_object)) unordered_results = [] for _ in prompts: unordered_results.append(ret_queue.get()) # resort results by the original ordering # weirdly, openai returns to you a flat list if you gave multiple prompts reordered = sorted(unordered_results, key=lambda x: x[0]) results = [] for prompt, (_, generations) in zip(prompts, reordered): results += generations # transform the result into the openai format return OAIResponse(results).__dict__() @app.route("/") def index(): # TODO(roller): decouple demopage.html fn = pkg_resources.resource_filename("metaseq", "service/index.html") with open(fn) as f: return f.read() def _copy_checkpoint_cache(): if CHECKPOINT_LOCAL == CHECKPOINT_FOLDER: # user didn't have a local SSD return if os.path.exists(os.path.dirname(CHECKPOINT_LOCAL)): logger.info("Local checkpoint copy already exists, skipping copy") else: logger.info( f"Making a local copy of the checkpoint. {CHECKPOINT_FOLDER} -> {CHECKPOINT_LOCAL}" ) shutil.copytree(CHECKPOINT_FOLDER, os.path.dirname(CHECKPOINT_LOCAL)) def cli_main(): """ Hosted version of the web UI for generation. """ _copy_checkpoint_cache() global port, MODE, cfg parser = options.get_generation_parser() # dumb defaults overriding parser.set_defaults(lr_scheduler=None, criterion=None) flat_launch_args = [] for s in LAUNCH_ARGS: flat_launch_args += s.split() args = options.parse_args_and_arch(parser, input_args=flat_launch_args) args.data = os.path.dirname(args.path) # hardcode the data arg port = DEFAULT_PORT cfg = convert_namespace_to_omegaconf(args) cfg.distributed_training.distributed_world_size = TOTAL_WORLD_SIZE dist_utils.call_main(cfg, worker_main, namespace_args=args) if __name__ == "__main__": cli_main()
flash_metaseq-main
metaseq_cli/interactive_hosted.py
flash_metaseq-main
metaseq_cli/__init__.py
#!/usr/bin/env python3 -u # Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import os import sys from argparse import Namespace from itertools import chain import torch from omegaconf import DictConfig from metaseq import checkpoint_utils, distributed_utils, options, utils from metaseq.dataclass.utils import convert_namespace_to_omegaconf from metaseq.logging import metrics, progress_bar logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) logger = logging.getLogger("metaseq_cli.validate") def main(cfg: DictConfig, override_args=None): if isinstance(cfg, Namespace): cfg = convert_namespace_to_omegaconf(cfg) utils.import_user_module(cfg.common) assert ( cfg.dataset.max_tokens is not None or cfg.dataset.batch_size is not None ), "Must specify batch size either with --max-tokens or --batch-size" use_fp16 = cfg.common.fp16 use_cuda = torch.cuda.is_available() and not cfg.common.cpu if use_cuda: torch.cuda.set_device(cfg.distributed_training.device_id) if cfg.distributed_training.distributed_world_size > 1: data_parallel_world_size = distributed_utils.get_data_parallel_world_size() data_parallel_rank = distributed_utils.get_data_parallel_rank() else: data_parallel_world_size = 1 data_parallel_rank = 0 if override_args is not None: overrides = vars(override_args) overrides.update(eval(getattr(override_args, "model_overrides", "{}"))) else: overrides = None # Load ensemble logger.info("loading model(s) from {}".format(cfg.common_eval.path)) models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task( [cfg.common_eval.path], arg_overrides=overrides, suffix=cfg.checkpoint.checkpoint_suffix, ) model = models[0] # Move models to GPU for model in models: if use_fp16: model.half() if use_cuda: model.cuda() # Print args logger.info(saved_cfg) # Build criterion criterion = task.build_criterion(saved_cfg.criterion) criterion.eval() for subset in cfg.dataset.valid_subset.split(","): try: task.load_dataset(subset, combine=False, epoch=1, task_cfg=saved_cfg.task) dataset = task.dataset(subset) except KeyError: raise Exception("Cannot find dataset: " + subset) # Initialize data iterator itr = task.get_batch_iterator( dataset=dataset, max_tokens=cfg.dataset.max_tokens, max_sentences=cfg.dataset.batch_size, max_positions=utils.resolve_max_positions( task.max_positions(), *[m.max_positions() for m in models], ), ignore_invalid_inputs=cfg.dataset.skip_invalid_size_inputs_valid_test, required_batch_size_multiple=cfg.dataset.required_batch_size_multiple, seed=cfg.common.seed, num_shards=data_parallel_world_size, shard_id=data_parallel_rank, num_workers=cfg.dataset.num_workers, data_buffer_size=cfg.dataset.data_buffer_size, ).next_epoch_itr(shuffle=False) progress = progress_bar.get_progress_bar( itr, log_format=cfg.common.log_format, log_interval=cfg.common.log_interval, prefix=f"valid on '{subset}' subset", ) log_outputs = [] for i, sample in enumerate(progress): sample = utils.move_to_cuda(sample) if use_cuda else sample _loss, _sample_size, log_output = task.valid_step(sample, model, criterion) progress.log(log_output, step=i) log_outputs.append(log_output) if data_parallel_world_size > 1: log_outputs = distributed_utils.all_gather_list( log_outputs, max_size=cfg.common.all_gather_list_size, group=distributed_utils.get_data_parallel_group(), ) log_outputs = list(chain.from_iterable(log_outputs)) with metrics.aggregate() as agg: task.reduce_metrics(log_outputs, criterion) log_output = agg.get_smoothed_values() progress.print(log_output, tag=subset, step=i) def cli_main(): parser = options.get_validation_parser() args = options.parse_args_and_arch(parser) # only override args that are explicitly given on the command line override_parser = options.get_validation_parser() override_args = options.parse_args_and_arch(override_parser, suppress_defaults=True) distributed_utils.call_main( convert_namespace_to_omegaconf(args), main, override_args=override_args ) if __name__ == "__main__": cli_main()
flash_metaseq-main
metaseq_cli/validate.py
#!/usr/bin/env python3 -u # Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Train a new model on one or across multiple GPUs. """ import argparse import functools import logging import math import os import subprocess import sys import time from typing import Dict, Optional, Any, List, Tuple, Callable import numpy as np import torch import torch.profiler as profiler from omegaconf import DictConfig, OmegaConf from metaseq import ( checkpoint_utils, options, tasks, utils, ) from metaseq.data import iterators, data_utils from metaseq.data.plasma_utils import PlasmaStore from metaseq.dataclass.utils import convert_namespace_to_omegaconf from metaseq.distributed import fsdp_enable_wrap, fsdp_wrap, utils as distributed_utils from metaseq.file_io import PathManager from metaseq.logging import meters, metrics, progress_bar from metaseq.model_parallel.megatron_trainer import MegatronTrainer from metaseq.trainer import Trainer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) logging.Formatter.converter = time.gmtime # Enforce UTC timestamps logger = logging.getLogger("metaseq_cli.train") def main(cfg: DictConfig) -> None: utils.import_user_module(cfg.common) if ( distributed_utils.is_master(cfg.distributed_training) and "job_logging_cfg" in cfg ): # make hydra logging work with ddp (see # see https://github.com/facebookresearch/hydra/issues/1126) logging.config.dictConfig(OmegaConf.to_container(cfg.job_logging_cfg)) assert ( cfg.dataset.max_tokens is not None or cfg.dataset.batch_size is not None ), "Must specify batch size either with --max-tokens or --batch-size" metrics.reset() if cfg.common.log_file is not None: handler = logging.FileHandler(filename=cfg.common.log_file) logger.addHandler(handler) np.random.seed(cfg.common.seed) utils.set_torch_seed(cfg.common.seed) checkpoint_utils.verify_checkpoint_directory(cfg.checkpoint.save_dir) # Print nvidia smi stats logger.info(metrics.get_nvidia_smi_gpu_memory_stats_str()) # Print args logger.info(cfg) if cfg.checkpoint.write_checkpoints_asynchronously: try: import iopath # noqa: F401 except ImportError: logging.exception( "Asynchronous checkpoint writing is specified but iopath is " "not installed: `pip install iopath`" ) return # Setup task, e.g., translation, language modeling, etc. task = tasks.setup_task(cfg.task) assert cfg.criterion, "Please specify criterion to train a model" # Build model and criterion if cfg.distributed_training.ddp_backend == "fully_sharded": extra = { "use_sharded_state": cfg.distributed_training.use_sharded_state, } with fsdp_enable_wrap(cfg.distributed_training, **extra): model = fsdp_wrap( task.build_model(cfg.model), process_group=distributed_utils.get_data_parallel_group(), ) else: model = task.build_model(cfg.model) criterion = task.build_criterion(cfg.criterion) logger.info(model) logger.info("task: {}".format(task.__class__.__name__)) logger.info("model: {}".format(model.__class__.__name__)) logger.info("criterion: {}".format(criterion.__class__.__name__)) logger.info( "num. model params: {:,} (num. trained: {:,})".format( sum(getattr(p, "_orig_size", p).numel() for p in model.parameters()), sum( getattr(p, "_orig_size", p).numel() for p in model.parameters() if p.requires_grad ), ) ) logger.info(metrics.get_nvidia_smi_gpu_memory_stats_str()) # Load valid dataset (we load training data below, based on the latest checkpoint) # We load the valid dataset AFTER building the model data_utils.raise_if_valid_subsets_unintentionally_ignored(cfg) if cfg.dataset.combine_valid_subsets: task.load_dataset("valid", combine=True, epoch=1) else: for valid_sub_split in cfg.dataset.valid_subset.split(","): task.load_dataset(valid_sub_split, combine=False, epoch=1) # Build trainer if cfg.common.model_parallel_size == 1: trainer = Trainer(cfg, task, model, criterion) else: trainer = MegatronTrainer(cfg, task, model, criterion) logger.info( "training on {} devices (GPUs/TPUs)".format( cfg.distributed_training.distributed_world_size ) ) logger.info( "max tokens per GPU = {} and batch size per GPU = {}".format( cfg.dataset.max_tokens, cfg.dataset.batch_size, ) ) logger.info(metrics.get_nvidia_smi_gpu_memory_stats_str()) # Load the latest checkpoint if one is available and restore the # corresponding train iterator extra_state, epoch_itr = checkpoint_utils.load_checkpoint( cfg.checkpoint, trainer, # don't cache epoch iterators for sharded datasets disable_iterator_cache=True, ) max_epoch = cfg.optimization.max_epoch or math.inf train_meter = meters.StopwatchMeter() train_meter.start() while epoch_itr.next_epoch_idx <= max_epoch: # train for one epoch valid_losses, should_stop = train(cfg, trainer, task, epoch_itr) if should_stop: break # only use first validation loss to update the learning rate trainer.lr_step(epoch_itr.epoch, valid_losses[0]) epoch_itr = trainer.get_train_iterator( epoch_itr.next_epoch_idx, # don't cache epoch iterators for sharded datasets disable_iterator_cache=True, ) train_meter.stop() logger.info("done training in {:.1f} seconds".format(train_meter.sum)) # ioPath implementation to wait for all asynchronous file writes to complete. if cfg.checkpoint.write_checkpoints_asynchronously: logger.info( "ioPath PathManager waiting for all asynchronous checkpoint " "writes to finish." ) PathManager.async_close() logger.info("ioPath PathManager finished waiting.") def should_stop_early(cfg: DictConfig, valid_loss: float) -> bool: # skip check if no validation was done in the current epoch if valid_loss is None: return False if cfg.checkpoint.patience <= 0: return False def is_better(a, b): return a > b if cfg.checkpoint.maximize_best_checkpoint_metric else a < b prev_best = getattr(should_stop_early, "best", None) if prev_best is None or is_better(valid_loss, prev_best): should_stop_early.best = valid_loss should_stop_early.num_runs = 0 return False else: should_stop_early.num_runs += 1 if should_stop_early.num_runs >= cfg.checkpoint.patience: logger.info( "early stop since valid performance hasn't improved for last {} runs".format( cfg.checkpoint.patience ) ) return True else: return False @metrics.aggregate("train") def train( cfg: DictConfig, trainer: Trainer, task: tasks.BaseTask, epoch_itr ) -> Tuple[List[Optional[float]], bool]: """Train the model for one epoch and return validation losses.""" # Initialize data iterator itr = epoch_itr.next_epoch_itr( fix_batches_to_gpus=cfg.distributed_training.fix_batches_to_gpus, shuffle=True, ) update_freq = ( cfg.optimization.update_freq[epoch_itr.epoch - 1] if epoch_itr.epoch <= len(cfg.optimization.update_freq) else cfg.optimization.update_freq[-1] ) if update_freq > 1: itr = iterators.GroupedIterator( itr, update_freq, skip_remainder_batch=( not cfg.optimization.train_with_epoch_remainder_batch ), ) progress = progress_bar.get_progress_bar( itr, log_format=cfg.common.log_format, log_file=cfg.common.log_file, log_interval=cfg.common.log_interval, epoch=epoch_itr.epoch, tensorboard_logdir=( cfg.common.tensorboard_logdir if distributed_utils.is_master(cfg.distributed_training) else None ), wandb_project=( cfg.common.wandb_project if distributed_utils.is_master(cfg.distributed_training) else None ), wandb_run_name=os.environ.get( "WANDB_NAME", os.path.basename(cfg.checkpoint.save_dir) ), ) progress.update_config(_flatten_config(cfg)) trainer.begin_epoch(epoch_itr.epoch) valid_subsets = cfg.dataset.valid_subset.split(",") should_stop = False num_updates = trainer.get_num_updates() logger.info("Start iterating over samples") def train( i, samples, ): with metrics.aggregate("train_inner"), torch.autograd.profiler.record_function( "train_step-%d" % i ): if update_freq == 1: samples = [samples] log_output = trainer.train_step(samples) if log_output is not None: # not OOM, overflow, ... # log mid-epoch stats num_updates = trainer.get_num_updates() if num_updates % cfg.common.log_interval == 0: stats = get_training_stats(metrics.get_smoothed_values("train_inner")) progress.log(stats, tag="train_inner", step=num_updates) # reset mid-epoch stats after each log interval # the end-of-epoch stats will still be preserved metrics.reset_meters("train_inner") end_of_epoch = not itr.has_next() valid_losses, should_stop = validate_and_save( cfg, trainer, task, epoch_itr, valid_subsets, end_of_epoch, log_output is not None, ) return valid_losses, should_stop for i, samples in enumerate(progress): if ( distributed_utils.get_global_rank() == 0 and cfg.common.new_profiler and i == 5 ): logger.info("STARTING PROFILER") with profiler.profile() as prof: valid_losses, should_stop = train(i, samples) torch.cuda.synchronize() prof.export_chrome_trace( os.path.join(cfg.checkpoint.save_dir, "profiler_trace.json") ) else: valid_losses, should_stop = train(i, samples) if should_stop: break # log end-of-epoch stats logger.info("end of epoch {} (average epoch stats below)".format(epoch_itr.epoch)) stats = get_training_stats(metrics.get_smoothed_values("train")) progress.print(stats, tag="train", step=num_updates) # reset epoch-level meters metrics.reset_meters("train") return valid_losses, should_stop def _flatten_config(cfg: DictConfig): config = OmegaConf.to_container(cfg) # remove any legacy Namespaces and replace with a single "args" namespace = None for k, v in list(config.items()): if isinstance(v, argparse.Namespace): namespace = v del config[k] if namespace is not None: config["args"] = vars(namespace) return config def validate_and_save( cfg: DictConfig, trainer: Trainer, task: tasks.BaseTask, epoch_itr, valid_subsets: List[str], end_of_epoch: bool, was_successful_step: bool, ) -> Tuple[List[Optional[float]], bool]: num_updates = trainer.get_num_updates() max_update = cfg.optimization.max_update or math.inf # was_successful_step is necessary since we don't increment step counters # on OOM or overflow. Thus if we get multiple bad steps right after # loading a checkpoint (when step counter is exactly when we would step) # then we will start overwriting! omg! # Stopping conditions (and an additional one based on validation loss later # on) should_stop = False if num_updates >= max_update: should_stop = True logger.info( f"Stopping training due to " f"num_updates: {num_updates} >= max_update: {max_update}" ) do_save = ( (end_of_epoch and epoch_itr.epoch % cfg.checkpoint.save_interval == 0) or should_stop or ( cfg.checkpoint.save_interval_updates > 0 and num_updates > 0 and num_updates % cfg.checkpoint.save_interval_updates == 0 and num_updates >= cfg.dataset.validate_after_updates and was_successful_step ) ) do_validate = ( ( not end_of_epoch and do_save and not cfg.checkpoint.no_best_checkpoints ) # validate during mid-epoch saves or (end_of_epoch and epoch_itr.epoch % cfg.dataset.validate_interval == 0) or should_stop or ( cfg.dataset.validate_interval_updates > 0 and num_updates > 0 and num_updates % cfg.dataset.validate_interval_updates == 0 and was_successful_step ) ) and not cfg.dataset.disable_validation valid_losses = [None] if do_validate: valid_losses = validate(cfg, trainer, task, epoch_itr, valid_subsets) should_stop |= should_stop_early(cfg, valid_losses[0]) # Save checkpoint if do_save or should_stop: checkpoint_utils.save_checkpoint( cfg.checkpoint, trainer, epoch_itr, valid_losses[0], training_finished=should_stop, async_callback_fn=functools.partial(post_checkpoint_callback, cfg) if cfg.checkpoint.cloud_upload_path else None, ) trainer.reset_dummy_batch(epoch_itr.first_batch) return valid_losses, should_stop def post_checkpoint_callback(cfg, filename): if cfg.checkpoint.cloud_upload_path is not None: if "blob.core.windows.net" in cfg.checkpoint.cloud_upload_path: azcopy_logs = filename + "_azcopy_logs" os.environ["AZCOPY_CONCURRENCY_VALUE"] = "10" os.environ["AZCOPY_LOG_LOCATION"] = azcopy_logs os.makedirs(azcopy_logs, exist_ok=True) logger.info( f"preparing to azcopy {filename} to {cfg.checkpoint.cloud_upload_path}; logs in {azcopy_logs}" ) cmd = [ "azcopy", # TODO(susanz): require azcopy to be installed. "copy", "--cap-mbps", "96.0", filename, cfg.checkpoint.cloud_upload_path, ] res = subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) if res.returncode != 0: print("Error: {}, azcopy failed".format(res.returncode)) print("Azcopy stdout = {}".format(res.stdout)) sys.exit(1) # Delete original checkpoint on local storage # TODO make this configurable logger.info( f"Successfully copied {filename} to {cfg.checkpoint.cloud_upload_path}" ) os.remove(filename) else: try: # PathManager only supports writing to S3, but this function call # can be replaced with other APIs for copying checkpoints. PathManager.copy_from_local( filename, os.path.join( cfg.checkpoint.cloud_upload_path, os.path.basename(filename) ), overwrite=True, ) except (FileNotFoundError, AssertionError) as e: logger.info(f"could not upload {filename}: {e}") def get_training_stats(stats: Dict[str, Any]) -> Dict[str, Any]: stats["wall"] = round(metrics.get_meter("default", "wall").elapsed_time, 0) return stats def validate( cfg: DictConfig, trainer: Trainer, task: tasks.BaseTask, epoch_itr, subsets: List[str], ) -> List[Optional[float]]: """Evaluate the model on the validation set(s) and return the losses.""" if cfg.dataset.fixed_validation_seed is not None: # set fixed seed for every validation utils.set_torch_seed(cfg.dataset.fixed_validation_seed) trainer.begin_valid_epoch(epoch_itr.epoch) valid_losses = [] with metrics.aggregate(new_root=True) as combined_agg: for subset in subsets: logger.info( 'begin validation on "{}" subset on rank {}'.format( subset, distributed_utils.get_global_rank() ) ) # Initialize data iterator itr = trainer.get_valid_iterator(subset).next_epoch_itr( shuffle=False, set_dataset_epoch=False # use a fixed valid set ) logger.info( 'got valid iterator on "{}" subset on rank {}'.format( subset, distributed_utils.get_global_rank() ) ) progress = progress_bar.get_progress_bar( itr, log_format=cfg.common.log_format, log_interval=cfg.common.log_interval, epoch=epoch_itr.epoch, prefix=f"valid on '{subset}' subset", tensorboard_logdir=( cfg.common.tensorboard_logdir if distributed_utils.is_master(cfg.distributed_training) else None ), wandb_project=( cfg.common.wandb_project if distributed_utils.is_master(cfg.distributed_training) else None ), wandb_run_name=os.environ.get( "WANDB_NAME", os.path.basename(cfg.checkpoint.save_dir) ), ) logger.info( 'Begin looping over validation "{}" subset with length "{}"'.format( subset, len(progress) ) ) # create a new root metrics aggregator so validation metrics # don't pollute other aggregators (e.g., train meters) with metrics.aggregate() as agg: for i, sample in enumerate(progress): if ( cfg.dataset.max_valid_steps is not None and i > cfg.dataset.max_valid_steps ): break trainer.valid_step(sample) # log validation stats stats = get_valid_stats(cfg, trainer, agg.get_smoothed_values()) progress.print(stats, tag=subset, step=trainer.get_num_updates()) valid_losses.append(stats[cfg.checkpoint.best_checkpoint_metric]) stats = get_valid_stats(cfg, trainer, combined_agg.get_smoothed_values()) progress.print(stats, tag="valid/combined", step=trainer.get_num_updates()) return valid_losses def get_valid_stats( cfg: DictConfig, trainer: Trainer, stats: Dict[str, Any] ) -> Dict[str, Any]: stats["num_updates"] = trainer.get_num_updates() if hasattr(checkpoint_utils.save_checkpoint, "best"): key = "best_{0}".format(cfg.checkpoint.best_checkpoint_metric) best_function = max if cfg.checkpoint.maximize_best_checkpoint_metric else min stats[key] = best_function( checkpoint_utils.save_checkpoint.best, stats[cfg.checkpoint.best_checkpoint_metric], ) return stats def cli_main( modify_parser: Optional[Callable[[argparse.ArgumentParser], None]] = None ) -> None: parser = options.get_training_parser() args = options.parse_args_and_arch(parser, modify_parser=modify_parser) # For training - this is where arg parsing happens. cfg = convert_namespace_to_omegaconf(args) if cfg.common.use_plasma_view: server = PlasmaStore(path=cfg.common.plasma_path) logger.info( f"Started plasma server pid {server.server.pid} {cfg.common.plasma_path}" ) if args.profile: with torch.cuda.profiler.profile(): with torch.autograd.profiler.emit_nvtx(): distributed_utils.call_main(cfg, main) else: distributed_utils.call_main(cfg, main) if __name__ == "__main__": cli_main()
flash_metaseq-main
metaseq_cli/train.py
#!/usr/bin/env python3 -u # Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Host the demo. Launch with `python -m metaseq_cli.interactive_hosted` to run locally. See docs/api.md for more information. """ import os import random import sys import logging import torch from metaseq import options from metaseq.dataclass.configs import MetaseqConfig from metaseq.dataclass.utils import convert_namespace_to_omegaconf from metaseq.distributed import utils as dist_utils from metaseq.hub_utils import GeneratorInterface from metaseq.service.constants import ( TOTAL_WORLD_SIZE, LAUNCH_ARGS, ) from metaseq.service.utils import encode_fn, build_logger logger = build_logger() def input_loop(): inp = [] while True: try: # green display, bold user prompt display = ( "\033[32mPrompt (ctrl-D to end input, ctrl-C to quit):\n\033[0;1m" if not inp else "" ) data = input(display) inp.append(data) except KeyboardInterrupt: # reset the formatting sys.stdout.write("\033[0m") raise except EOFError: break # reset the formatting sys.stdout.write("\033[0m") logger.debug(f"Input: {inp}") return "\n".join(inp) def worker_main(cfg: MetaseqConfig, namespace_args=None): global generator # make sure generations are stochastic since we have many workers torch.manual_seed(random.randint(1, 20000)) torch.cuda.manual_seed(random.randint(1, 20000)) generator = GeneratorInterface(cfg) models = generator.load_model() # noqa: F841 # quiet some of the stuff for visual aspects logging.getLogger("metaseq.hub_utils").setLevel(logging.WARNING) logger.info(f"loaded model {cfg.distributed_training.distributed_rank}") request_object = dist_utils.broadcast_object( None, src_rank=0, group=dist_utils.get_global_group() ) if torch.distributed.get_rank() == 0: while True: prompt = input_loop() tokens = encode_fn(generator, prompt) request_object = { "inputs": [tokens], "max_tokens": [128], } dist_utils.broadcast_object( request_object, src_rank=0, group=dist_utils.get_global_group() ) generations = generator.generate(**request_object) print(generations[0][0]["text"]) else: # useful in FSDP setting while True: request_object = dist_utils.broadcast_object( None, src_rank=0, group=dist_utils.get_global_group() ) _ = generator.generate(**request_object) def cli_main(): """ Command line interactive. """ parser = options.get_generation_parser() # dumb defaults overriding parser.set_defaults(lr_scheduler=None, criterion=None) flat_launch_args = [] for s in LAUNCH_ARGS: flat_launch_args += s.split() args = options.parse_args_and_arch(parser, input_args=flat_launch_args) args.data = os.path.dirname(args.path) # hardcode the data arg cfg = convert_namespace_to_omegaconf(args) cfg.distributed_training.distributed_world_size = TOTAL_WORLD_SIZE dist_utils.call_main(cfg, worker_main, namespace_args=args) if __name__ == "__main__": cli_main()
flash_metaseq-main
metaseq_cli/interactive_cli.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse from typing import Callable, List, Optional import torch from metaseq import utils from metaseq.dataclass.configs import ( CheckpointConfig, CommonConfig, CommonEvalConfig, DatasetConfig, DistributedTrainingConfig, EvalLMConfig, GenerationConfig, OptimizationConfig, ReshardConfig, ) from metaseq.dataclass.utils import gen_parser_from_dataclass def get_training_parser(default_task="translation"): parser = get_parser("Trainer", default_task) add_dataset_args(parser, train=True) add_distributed_training_args(parser) add_model_args(parser) add_optimization_args(parser) add_checkpoint_args(parser) return parser def get_generation_parser(default_task="translation"): parser = get_parser("Generation", default_task) add_dataset_args(parser, gen=True) add_distributed_training_args(parser, default_world_size=1) add_generation_args(parser) add_checkpoint_args(parser) return parser def get_eval_lm_parser(default_task="language_modeling"): parser = get_parser("Evaluate Language Model", default_task) add_dataset_args(parser, gen=True) add_distributed_training_args(parser, default_world_size=1) add_eval_lm_args(parser) return parser def get_reshard_parser(task="language_modeling"): parser = get_eval_lm_parser(default_task=task) add_reshard_args(parser) return parser def add_reshard_args(parser): group = parser.add_argument_group("reshard") gen_parser_from_dataclass(group, ReshardConfig()) return group def get_validation_parser(default_task=None): parser = get_parser("Validation", default_task) add_dataset_args(parser, train=True) add_distributed_training_args(parser, default_world_size=1) group = parser.add_argument_group("Evaluation") gen_parser_from_dataclass(group, CommonEvalConfig()) return parser def parse_args_and_arch( parser: argparse.ArgumentParser, input_args: List[str] = None, parse_known: bool = False, suppress_defaults: bool = False, modify_parser: Optional[Callable[[argparse.ArgumentParser], None]] = None, ): """ Args: parser (ArgumentParser): the parser input_args (List[str]): strings to parse, defaults to sys.argv parse_known (bool): only parse known arguments, similar to `ArgumentParser.parse_known_args` suppress_defaults (bool): parse while ignoring all default values modify_parser (Optional[Callable[[ArgumentParser], None]]): function to modify the parser, e.g., to set default values """ if suppress_defaults: # Parse args without any default values. This requires us to parse # twice, once to identify all the necessary task/model args, and a second # time with all defaults set to None. args = parse_args_and_arch( parser, input_args=input_args, parse_known=parse_known, suppress_defaults=False, ) suppressed_parser = argparse.ArgumentParser(add_help=False, parents=[parser]) suppressed_parser.set_defaults(**{k: None for k, v in vars(args).items()}) args = suppressed_parser.parse_args(input_args) return argparse.Namespace( **{k: v for k, v in vars(args).items() if v is not None} ) from metaseq.models import ARCH_MODEL_REGISTRY, ARCH_CONFIG_REGISTRY, MODEL_REGISTRY # Before creating the true parser, we need to import optional user module # in order to eagerly import custom tasks, optimizers, architectures, etc. usr_parser = argparse.ArgumentParser(add_help=False, allow_abbrev=False) usr_parser.add_argument("--user-dir", default=None) usr_args, _ = usr_parser.parse_known_args(input_args) utils.import_user_module(usr_args) if modify_parser is not None: modify_parser(parser) # The parser doesn't know about model/criterion/optimizer-specific args, so # we parse twice. First we parse the model/criterion/optimizer, then we # parse a second time after adding the *-specific arguments. # If input_args is given, we will parse those args instead of sys.argv. args, _ = parser.parse_known_args(input_args) # Add model-specific args to parser. if hasattr(args, "arch"): model_specific_group = parser.add_argument_group( "Model-specific configuration", # Only include attributes which are explicitly given as command-line # arguments or which have default values. argument_default=argparse.SUPPRESS, ) if args.arch in ARCH_MODEL_REGISTRY: ARCH_MODEL_REGISTRY[args.arch].add_args(model_specific_group) elif args.arch in MODEL_REGISTRY: MODEL_REGISTRY[args.arch].add_args(model_specific_group) else: raise RuntimeError() if hasattr(args, "task"): from metaseq.tasks import TASK_REGISTRY TASK_REGISTRY[args.task].add_args(parser) # Add *-specific args to parser. from metaseq.registry import REGISTRIES for registry_name, REGISTRY in REGISTRIES.items(): choice = getattr(args, registry_name, None) # hack since we don't want to call "fixed" LR scheduler if choice == "fixed": choice = "inverse_sqrt" if choice is not None: cls = REGISTRY["registry"][choice] if hasattr(cls, "add_args"): cls.add_args(parser) elif hasattr(cls, "__dataclass"): gen_parser_from_dataclass(parser, cls.__dataclass()) # Modify the parser a second time, since defaults may have been reset if modify_parser is not None: modify_parser(parser) # Parse a second time. if parse_known: args, extra = parser.parse_known_args(input_args) else: args = parser.parse_args(input_args) extra = None # Post-process args. if ( hasattr(args, "batch_size_valid") and args.batch_size_valid is None ) or not hasattr(args, "batch_size_valid"): args.batch_size_valid = args.batch_size if hasattr(args, "max_tokens_valid") and args.max_tokens_valid is None: args.max_tokens_valid = args.max_tokens if getattr(args, "memory_efficient_fp16", False): args.fp16 = True if getattr(args, "seed", None) is None: args.seed = 1 # default seed for training args.no_seed_provided = True else: args.no_seed_provided = False # Apply architecture configuration. if hasattr(args, "arch") and args.arch in ARCH_CONFIG_REGISTRY: ARCH_CONFIG_REGISTRY[args.arch](args) if parse_known: return args, extra else: return args def get_parser(desc, default_task="translation"): # Before creating the true parser, we need to import optional user module # in order to eagerly import custom tasks, optimizers, architectures, etc. usr_parser = argparse.ArgumentParser(add_help=False, allow_abbrev=False) usr_parser.add_argument("--user-dir", default=None) usr_args, _ = usr_parser.parse_known_args() utils.import_user_module(usr_args) parser = argparse.ArgumentParser(allow_abbrev=False) gen_parser_from_dataclass(parser, CommonConfig()) from metaseq.registry import REGISTRIES for registry_name, REGISTRY in REGISTRIES.items(): parser.add_argument( "--" + registry_name.replace("_", "-"), default=REGISTRY["default"], choices=REGISTRY["registry"].keys(), ) # Task definitions can be found under metaseq/tasks/ from metaseq.tasks import TASK_REGISTRY parser.add_argument( "--task", metavar="TASK", default=default_task, choices=TASK_REGISTRY.keys(), help="task", ) # fmt: on return parser def add_dataset_args(parser, train=False, gen=False): group = parser.add_argument_group("dataset_data_loading") gen_parser_from_dataclass(group, DatasetConfig()) # fmt: on return group def add_distributed_training_args(parser, default_world_size=None): group = parser.add_argument_group("distributed_training") if default_world_size is None: default_world_size = max(1, torch.cuda.device_count()) gen_parser_from_dataclass( group, DistributedTrainingConfig(distributed_world_size=default_world_size) ) return group def add_optimization_args(parser): group = parser.add_argument_group("optimization") # fmt: off gen_parser_from_dataclass(group, OptimizationConfig()) # fmt: on return group def add_checkpoint_args(parser): group = parser.add_argument_group("checkpoint") # fmt: off gen_parser_from_dataclass(group, CheckpointConfig()) # fmt: on return group def add_common_eval_args(group): gen_parser_from_dataclass(group, CommonEvalConfig()) def add_eval_lm_args(parser): group = parser.add_argument_group("LM Evaluation") add_common_eval_args(group) gen_parser_from_dataclass(group, EvalLMConfig()) def add_generation_args(parser): group = parser.add_argument_group("Generation") add_common_eval_args(group) gen_parser_from_dataclass(group, GenerationConfig()) return group def add_model_args(parser): group = parser.add_argument_group("Model configuration") # fmt: off # Model definitions can be found under metaseq/models/ # # The model architecture can be specified in several ways. # In increasing order of priority: # 1) model defaults (lowest priority) # 2) --arch argument # 3) --encoder/decoder-* arguments (highest priority) from metaseq.models import ARCH_MODEL_REGISTRY group.add_argument('--arch', '-a', metavar='ARCH', choices=ARCH_MODEL_REGISTRY.keys(), help='model architecture') # fmt: on return group
flash_metaseq-main
metaseq/options.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import torch logger = logging.getLogger(__name__) class NanDetector: """ Detects the first NaN or Inf in forward and/or backward pass and logs, together with the module name """ def __init__(self, model, forward=True, backward=True): self.bhooks = [] self.fhooks = [] self.forward = forward self.backward = backward self.named_parameters = list(model.named_parameters()) self.reset() for name, mod in model.named_modules(): mod.__module_name = name self.add_hooks(mod) def __enter__(self): return self def __exit__(self, exc_type, exc_value, exc_traceback): # Dump out all model gnorms to enable better debugging norm = {} gradients = {} for name, param in self.named_parameters: if param.grad is not None: grad_norm = torch.norm(param.grad.data, p=2, dtype=torch.float32) norm[name] = grad_norm.item() if torch.isnan(grad_norm).any() or torch.isinf(grad_norm).any(): gradients[name] = param.grad.data if len(gradients) > 0: logger.info("Detected nan/inf grad norm, dumping norms...") logger.info(f"norms: {norm}") logger.info(f"gradients: {gradients}") self.close() def add_hooks(self, module): if self.forward: self.fhooks.append(module.register_forward_hook(self.fhook_fn)) if self.backward: self.bhooks.append(module.register_backward_hook(self.bhook_fn)) def reset(self): self.has_printed_f = False self.has_printed_b = False def _detect(self, tensor, name, backward): err = None if ( torch.is_floating_point(tensor) # single value tensors (like the loss) will not provide much info and tensor.numel() >= 2 ): with torch.no_grad(): if torch.isnan(tensor).any(): err = "NaN" elif torch.isinf(tensor).any(): err = "Inf" if err is not None: err = f"{err} detected in output of {name}, shape: {tensor.shape}, {'backward' if backward else 'forward'}" return err def _apply(self, module, inp, x, backward): if torch.is_tensor(x): if isinstance(inp, tuple) and len(inp) > 0: inp = inp[0] err = self._detect(x, module.__module_name, backward) if err is not None: if torch.is_tensor(inp) and not backward: err += ( f" input max: {inp.max().item()}, input min: {inp.min().item()}" ) has_printed_attr = "has_printed_b" if backward else "has_printed_f" logger.warning(err) setattr(self, has_printed_attr, True) elif isinstance(x, dict): for v in x.values(): self._apply(module, inp, v, backward) elif isinstance(x, list) or isinstance(x, tuple): for v in x: self._apply(module, inp, v, backward) def fhook_fn(self, module, inp, output): if not self.has_printed_f: self._apply(module, inp, output, backward=False) def bhook_fn(self, module, inp, output): if not self.has_printed_b: self._apply(module, inp, output, backward=True) def close(self): for hook in self.fhooks + self.bhooks: hook.remove()
flash_metaseq-main
metaseq/nan_detector.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from argparse import Namespace from typing import Union from hydra.core.config_store import ConfigStore from omegaconf import DictConfig from metaseq.dataclass import MetaseqDataclass from metaseq.dataclass.utils import populate_dataclass, merge_with_parent REGISTRIES = {} def setup_registry(registry_name: str, base_class=None, default=None, required=False): assert registry_name.startswith("--") registry_name = registry_name[2:].replace("-", "_") REGISTRY = {} REGISTRY_CLASS_NAMES = set() DATACLASS_REGISTRY = {} # maintain a registry of all registries if registry_name in REGISTRIES: return # registry already exists REGISTRIES[registry_name] = { "registry": REGISTRY, "default": default, "dataclass_registry": DATACLASS_REGISTRY, } def build_x(cfg: Union[DictConfig, str, Namespace], *extra_args, **extra_kwargs): if isinstance(cfg, DictConfig): choice = cfg._name if choice and choice in DATACLASS_REGISTRY: dc = DATACLASS_REGISTRY[choice] cfg = merge_with_parent(dc(), cfg) elif isinstance(cfg, str): choice = cfg if choice in DATACLASS_REGISTRY: cfg = DATACLASS_REGISTRY[choice]() else: choice = getattr(cfg, registry_name, None) if choice in DATACLASS_REGISTRY: cfg = populate_dataclass(DATACLASS_REGISTRY[choice](), cfg) if choice is None: if required: raise ValueError("{} is required!".format(registry_name)) return None cls = REGISTRY[choice] if hasattr(cls, "build_" + registry_name): builder = getattr(cls, "build_" + registry_name) else: builder = cls return builder(cfg, *extra_args, **extra_kwargs) def register_x(name, dataclass=None): def register_x_cls(cls): if name in REGISTRY: raise ValueError( "Cannot register duplicate {} ({})".format(registry_name, name) ) if cls.__name__ in REGISTRY_CLASS_NAMES: raise ValueError( "Cannot register {} with duplicate class name ({})".format( registry_name, cls.__name__ ) ) if base_class is not None and not issubclass(cls, base_class): raise ValueError( "{} must extend {}".format(cls.__name__, base_class.__name__) ) if dataclass is not None and not issubclass(dataclass, MetaseqDataclass): raise ValueError( "Dataclass {} must extend MetaseqDataclass".format(dataclass) ) cls.__dataclass = dataclass if cls.__dataclass is not None: DATACLASS_REGISTRY[name] = cls.__dataclass cs = ConfigStore.instance() node = dataclass() node._name = name cs.store(name=name, group=registry_name, node=node, provider="metaseq") REGISTRY[name] = cls return cls return register_x_cls return build_x, register_x, REGISTRY, DATACLASS_REGISTRY
flash_metaseq-main
metaseq/registry.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import typing as tp def _safe_readline(fd) -> str: pos = fd.tell() while True: try: return fd.readline() except UnicodeDecodeError: pos -= 1 fd.seek(pos) # search where this character begins def find_offsets(filename: str, num_chunks: int) -> tp.List[int]: """ given a file and a number of chuncks, find the offsets in the file to be able to chunk around full lines. """ with open(filename, "r", encoding="utf-8") as f: size = os.fstat(f.fileno()).st_size chunk_size = size // num_chunks offsets = [0 for _ in range(num_chunks + 1)] for i in range(1, num_chunks): f.seek(chunk_size * i) _safe_readline(f) offsets[i] = f.tell() offsets[-1] = size return offsets class ChunkLineIterator: """ Iterator to properly iterate over lines of a file chunck. """ def __init__(self, fd, start_offset: int, end_offset: int): self._fd = fd self._start_offset = start_offset self._end_offset = end_offset def __iter__(self) -> tp.Iterable[str]: self._fd.seek(self._start_offset) # next(f) breaks f.tell(), hence readline() must be used line = _safe_readline(self._fd) while line: pos = self._fd.tell() # f.tell() does not always give the byte position in the file # sometimes it skips to a very large number # it is unlikely that through a normal read we go from # end bytes to end + 2**32 bytes (4 GB) and this makes it unlikely # that the procedure breaks by the undeterministic behavior of # f.tell() if ( self._end_offset > 0 and pos > self._end_offset and pos < self._end_offset + 2**32 ): break yield line line = self._fd.readline() class Chunker: """ contextmanager to read a chunck of a file line by line. """ def __init__(self, path: str, start_offset: int, end_offset: int): self.path = path self.start_offset = start_offset self.end_offset = end_offset def __enter__(self) -> ChunkLineIterator: self.fd = open(self.path, "r", encoding="utf-8") return ChunkLineIterator(self.fd, self.start_offset, self.end_offset) def __exit__(self, exc_type, exc_val, exc_tb) -> None: self.fd.close()
flash_metaseq-main
metaseq/file_chunker_utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """isort:skip_file""" import os import sys try: from .version import __version__ # noqa except ImportError: version_txt = os.path.join(os.path.dirname(__file__), "version.txt") with open(version_txt) as f: __version__ = f.read().strip() __all__ = ["pdb"] # backwards compatibility to support `from metaseq.X import Y` from metaseq.distributed import utils as distributed_utils from metaseq.logging import meters, metrics # noqa sys.modules["metaseq.distributed_utils"] = distributed_utils sys.modules["metaseq.meters"] = meters sys.modules["metaseq.metrics"] = metrics # initialize hydra from metaseq.dataclass.initialize import hydra_init # noqa: E402 hydra_init() import metaseq.criterions # noqa import metaseq.distributed # noqa import metaseq.models # noqa import metaseq.modules # noqa import metaseq.optim # noqa import metaseq.optim.lr_scheduler # noqa import metaseq.pdb # noqa import metaseq.tasks # noqa import metaseq.benchmark # noqa import metaseq.model_parallel # noqa
flash_metaseq-main
metaseq/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import math from typing import Dict, List, Optional import torch import torch.nn as nn from torch import Tensor from metaseq import search logger = logging.getLogger(__name__) class SequenceGenerator(nn.Module): def __init__( self, models, tgt_dict, beam_size: int = 1, max_len_a: int = 0, max_len_b: int = 200, min_len: int = 1, temperature: float = 1.0, search_strategy=None, need_logprobs: bool = False, stop: Optional[List[int]] = None, profile=False, ): """Generates translations of a given source sentence. Args: models: ensemble of models beam_size (int, optional): beam width (default: 1) max_len_a/b (int, optional): generate sequences of maximum length ax + b, where x is the source length min_len (int, optional): the minimum length of the generated output (not including end-of-sentence) temperature (float, optional): temperature, where values >1.0 produce more uniform samples and values <1.0 produce sharper samples (default: 1.0) stop: An optional list of other tokens that can cause early termination. need_logprobs (bool): Return additional log-prob distributions for every timestep of the search. """ super().__init__() self.model = models[0] self.tgt_dict = tgt_dict self.pad = tgt_dict.pad() self.unk = tgt_dict.unk() self.eos = tgt_dict.eos() self.vocab_size = len(tgt_dict) self.beam_size = beam_size # the max beam size is the dictionary size - 1, since we never select pad self.beam_size = min(beam_size, self.vocab_size - 1) self.max_len_a = max_len_a self.max_len_b = max_len_b self.min_len = min_len self.need_logprobs = need_logprobs self.stop = stop if stop is not None else [] self.temperature = temperature assert temperature > 0, "--temperature must be greater than 0" self.search = ( search.BeamSearch(tgt_dict) if search_strategy is None else search_strategy ) self.model.eval() self.profile = profile def cuda(self): self.model.cuda() return self @torch.no_grad() def forward( self, sample: Dict[str, Dict[str, Tensor]], prefix_tokens: Optional[Tensor] = None, bos_token: Optional[int] = None, ): """Generate a batch of translations.""" return self._generate(sample, prefix_tokens, bos_token=bos_token) @torch.no_grad() def generate(self, models, sample: Dict[str, Dict[str, Tensor]], **kwargs): """Generate translations. Match the api of other metaseq generators.""" return self._generate(sample, **kwargs) def _generate( self, sample: Dict[str, Dict[str, Tensor]], prefix_tokens: Optional[Tensor] = None, bos_token: Optional[int] = None, ): """ Args: sample (dict): batch prefix_tokens (torch.LongTensor, optional): force decoder to begin with these tokens bos_token (int, optional): beginning of sentence token (default: self.eos) """ incremental_states = torch.jit.annotate( Dict[str, Dict[str, Optional[Tensor]]], {} ) net_input = sample["net_input"] if "src_tokens" in net_input: src_tokens = net_input["src_tokens"] # length of the source text being the character length except EndOfSentence and pad src_lengths = ( (src_tokens.ne(self.eos) & src_tokens.ne(self.pad)).long().sum(dim=1) ) elif "source" in net_input: src_tokens = net_input["source"] src_lengths = ( net_input["padding_mask"].size(-1) - net_input["padding_mask"].sum(-1) if net_input["padding_mask"] is not None else torch.tensor(src_tokens.size(-1)).to(src_tokens) ) else: raise Exception("expected src_tokens or source in net input") # bsz: total number of sentences in beam # Note that src_tokens may have more than 2 dimensions (i.e. audio features) bsz, src_len = src_tokens.size()[:2] beam_size = self.beam_size max_len = min(self.model.max_decoder_positions() - 1, self.max_len_b or 1e99) min_len = min(max_len - 1, self.min_len or 0) assert ( min_len <= max_len ), "min_len cannot be larger than max_len, please adjust these!" # placeholder of indices for bsz * beam_size to hold tokens and accumulative scores new_order = torch.arange(bsz).view(-1, 1).repeat(1, beam_size).view(-1) new_order = new_order.to(src_tokens.device).long() # initialize buffers scores = ( torch.zeros(bsz * beam_size, max_len + 1).to(src_tokens).float() ) # +1 for eos; pad is never chosen for scoring tokens = ( torch.zeros(bsz * beam_size, max_len + 2) .to(src_tokens) .long() .fill_(self.pad) ) # +2 for eos and pad tokens[:, 0] = self.eos if bos_token is None else bos_token # A list that indicates candidates that should be ignored. # For example, suppose we're sampling and have already finalized 2/5 # samples. Then cands_to_ignore would mark 2 positions as being ignored, # so that we only finalize the remaining 3 samples. cands_to_ignore = ( torch.zeros(bsz, beam_size).to(src_tokens).eq(-1) ) # forward and backward-compatible False mask # list of completed sentences finalized = torch.jit.annotate( List[List[Dict[str, Tensor]]], [torch.jit.annotate(List[Dict[str, Tensor]], []) for i in range(bsz)], ) # contains lists of dictionaries of infomation about the hypothesis being finalized at each step finished = [ False for i in range(bsz) ] # a boolean array indicating if the sentence at the index is finished or not num_remaining_sent = bsz # number of sentences remaining # number of candidate hypos per step cand_size = 2 * beam_size # 2 x beam size in case half are EOS # offset arrays for converting between different indexing schemes bbsz_offsets = ( (torch.arange(0, bsz) * beam_size) .unsqueeze(1) .type_as(tokens) .to(src_tokens.device) ) cand_offsets = torch.arange(0, cand_size).type_as(tokens).to(src_tokens.device) reorder_state: Optional[Tensor] = None batch_idxs: Optional[Tensor] = None original_batch_idxs: Optional[Tensor] = None if "id" in sample and isinstance(sample["id"], Tensor): original_batch_idxs = sample["id"] else: original_batch_idxs = torch.arange(0, bsz).type_as(tokens) # notes: # - scores \in FloatTensor(bsz * beam_size, max_len + 1) # - tokens \in LongTensor(bsz * beam_size, max_len + 2) # - src_tokens \in LongTensor(bsz, prompt_len) # - all_lprobs \in FloatTensor(bsz * beam_size, max_len + 1, vocab_size) # is the next word distribution at every timestep if self.need_logprobs: # lprobs are costly for memory, so only compute them if we have to all_lprobs = ( torch.zeros(bsz * beam_size, max_len + 1, self.vocab_size) .to(src_tokens) .float() ) # first forward through all the fixed tokens with forced decoding we'll # need to handle normalization and prep for bookkeeping of incremental # decoding start_step = src_tokens.shape[1] # set all the forced tokens tokens[:, :start_step] = src_tokens # compute the model predictions model_out = self.model.decoder( tokens[:, :start_step], incremental_state=incremental_states, ) # normalize model_out[0].div_(self.temperature, rounding_mode="trunc") # lprobs is the log probability of each possible token in every position # lprobs \in FloatTensor(bsz * beam_size, prompt_len, vocab_size) lprobs = self.model.get_normalized_probs(model_out, log_probs=True, sample=None) # don't allow generation of eos/pad model_out[0][:, :, self.eos] = -math.inf model_out[0][:, :, self.pad] = -math.inf for stop_token in self.stop: model_out[0][:, :, stop_token] = -math.inf if self.need_logprobs: all_lprobs[:, :start_step] = lprobs.type_as(all_lprobs) else: all_lprobs = None # find and store the logprobs of each prompt token, cutting out the # rest of the vocab. Note the shift of 1 here b/c autoregressive. prompt_tokens = tokens[:, 1:start_step].unsqueeze(-1) # look up a specific vocab logprob, and broadcast it into scores toscores = torch.gather(lprobs, -1, prompt_tokens).squeeze(-1) scores[:, : start_step - 1] = toscores.type_as(scores) # reset scores after the last point of forced decoding and gather the # probabilities of the most recent token prediction, as search # decisions are only over the most recent token. lprobs_cut = [] for i in range(src_tokens.shape[0]): prompt_len = src_lengths[i] scores[i * beam_size : (i + 1) * beam_size, prompt_len:] = 0.0 # reset lprobs_cut.append(lprobs[i * beam_size : (i + 1) * beam_size, prompt_len]) lprobs = torch.cat(lprobs_cut, dim=0) # finally, scores is actually stored as the cumulative NLL, but we have # individual NLL scores right now scores = scores.cumsum(dim=1) # start from previous timestep because we still have to do beam search # bookkeeping (i.e. finalize the hypothesis if it's the final token) for step in range(start_step - 1, max_len + 1): # reorder decoder internal states based on the prev choice of beams if reorder_state is not None: if batch_idxs is not None: # update beam indices to take into account removed sentences corr = batch_idxs - torch.arange(batch_idxs.numel()).type_as( batch_idxs ) reorder_state.view(-1, beam_size).add_( corr.unsqueeze(-1) * beam_size ) original_batch_idxs = original_batch_idxs[batch_idxs] # note we may be decreasing the size of the incremental state or # all_lprobs here, as beams hit EOS. self.model.decoder.reorder_incremental_state_scripting( incremental_states, reorder_state ) if self.need_logprobs: all_lprobs = all_lprobs.index_select(0, reorder_state) # the first step is already computed via forced decoding above, but # we still need to do the beam search aspects, so only compute the # forward pass if we're past the prompt tokens if step != start_step - 1: model_out = self.model.decoder( tokens[:, : step + 1], incremental_state=incremental_states, ) model_out[0].div_(self.temperature) lprobs = self.model.get_normalized_probs( model_out, log_probs=True, sample=None ) # search decisions are only over the most recent token lprobs = lprobs[:, -1, :] if self.need_logprobs: all_lprobs[:, step] = lprobs if step < min_len: # minimum length constraint (does not apply if using prefix_tokens) lprobs[:, self.eos] = -math.inf for stop_token in self.stop: lprobs[:, stop_token] = -math.inf lprobs[lprobs != lprobs] = torch.tensor(-math.inf).to(lprobs) lprobs[:, self.pad] = -math.inf # never select pad # handle max length constraint if step >= max_len: lprobs[:, : self.eos] = -math.inf lprobs[:, self.eos + 1 :] = -math.inf # Shape: (batch, cand_size) cand_scores, cand_indices, cand_beams = self.search.step( # underlying search indexes from first token being generated, # so we need to account for the size of the prompt. step - start_step + 1, lprobs.view(bsz, -1, self.vocab_size), scores[:, start_step - 1 : step].view(bsz, beam_size, -1), tokens[:, start_step - 1 : step + 1], original_batch_idxs, ) # cand_bbsz_idx contains beam indices for the top candidate # hypotheses, with a range of values: [0, bsz*beam_size), # and dimensions: [bsz, cand_size] cand_bbsz_idx = cand_beams.add(bbsz_offsets) # finalize hypotheses that end in eos # Shape of eos_mask: (batch size, beam size) eos_mask = cand_indices.eq(self.eos) for stop_token in self.stop: # if there are other early stopping tokens, allow those to trigger stop eos_mask = eos_mask | cand_indices.eq(stop_token) eos_mask = eos_mask & cand_scores.ne(-math.inf) eos_mask[:, :beam_size][cands_to_ignore] = torch.tensor(0).to(eos_mask) # only consider eos when it's among the top beam_size indices # Now we know what beam item(s) to finish # Shape: 1d list of absolute-numbered eos_bbsz_idx = torch.masked_select( cand_bbsz_idx[:, :beam_size], mask=eos_mask[:, :beam_size] ) finalized_sents: List[int] = [] if eos_bbsz_idx.numel() > 0: eos_scores = torch.masked_select( cand_scores[:, :beam_size], mask=eos_mask[:, :beam_size] ) finalized_sents = self.finalize_hypos( step, eos_bbsz_idx, eos_scores, tokens, scores, finalized, finished, beam_size, max_len, all_lprobs, ) num_remaining_sent -= len(finalized_sents) assert num_remaining_sent >= 0 if num_remaining_sent == 0: break if self.search.stop_on_max_len and step >= max_len: break assert step < max_len, f"{step} < {max_len}" # Remove finalized sentences (ones for which {beam_size} # finished hypotheses have been generated) from the batch. if len(finalized_sents) > 0: new_bsz = bsz - len(finalized_sents) # construct batch_idxs which holds indices of batches to keep for the next pass batch_mask = torch.ones( bsz, dtype=torch.bool, device=cand_indices.device ) batch_mask[finalized_sents] = False # TODO replace `nonzero(as_tuple=False)` after TorchScript supports it batch_idxs = torch.arange( bsz, device=cand_indices.device ).masked_select(batch_mask) # Choose the subset of the hypothesized constraints that will continue self.search.prune_sentences(batch_idxs) eos_mask = eos_mask[batch_idxs] cand_beams = cand_beams[batch_idxs] bbsz_offsets.resize_(new_bsz, 1) cand_bbsz_idx = cand_beams.add(bbsz_offsets) cand_scores = cand_scores[batch_idxs] cand_indices = cand_indices[batch_idxs] if prefix_tokens is not None: prefix_tokens = prefix_tokens[batch_idxs] src_lengths = src_lengths[batch_idxs] cands_to_ignore = cands_to_ignore[batch_idxs] scores = scores.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1) tokens = tokens.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1) bsz = new_bsz else: batch_idxs = None # Set active_mask so that values > cand_size indicate eos hypos # and values < cand_size indicate candidate active hypos. # After, the min values per row are the top candidate active hypos # Rewrite the operator since the element wise or is not supported in torchscript. eos_mask[:, :beam_size] = ~((~cands_to_ignore) & (~eos_mask[:, :beam_size])) active_mask = torch.add( eos_mask.type_as(cand_offsets) * cand_size, cand_offsets[: eos_mask.size(1)], ) # get the top beam_size active hypotheses, which are just # the hypos with the smallest values in active_mask. # {active_hypos} indicates which {beam_size} hypotheses # from the list of {2 * beam_size} candidates were # selected. Shapes: (batch size, beam size) new_cands_to_ignore, active_hypos = torch.topk( active_mask, k=beam_size, dim=1, largest=False ) # update cands_to_ignore to ignore any finalized hypos. cands_to_ignore = new_cands_to_ignore.ge(cand_size)[:, :beam_size] # Make sure there is at least one active item for each sentence in the batch. assert (~cands_to_ignore).any(dim=1).all() # update cands_to_ignore to ignore any finalized hypos # {active_bbsz_idx} denotes which beam number is continued for each new hypothesis (a beam # can be selected more than once). active_bbsz_idx = torch.gather(cand_bbsz_idx, dim=1, index=active_hypos) active_scores = torch.gather(cand_scores, dim=1, index=active_hypos) active_bbsz_idx = active_bbsz_idx.view(-1) active_scores = active_scores.view(-1) # copy tokens and scores for active hypotheses. note that we cut off # the prompt tokens here for ease of bookkeeping. # Set the tokens for each beam (can select the same row more than once) tokens[:, start_step : step + 1] = torch.index_select( tokens[:, start_step : step + 1], dim=0, index=active_bbsz_idx ) # Select the next token for each of them tokens.view(bsz, beam_size, -1)[:, :, step + 1] = torch.gather( cand_indices, dim=1, index=active_hypos ) if step > start_step: scores[:, start_step:step] = torch.index_select( scores[:, start_step:step], dim=0, index=active_bbsz_idx ) scores.view(bsz, beam_size, -1)[:, :, step] = torch.gather( cand_scores, dim=1, index=active_hypos ) # reorder incremental state in decoder reorder_state = active_bbsz_idx # sort by score descending for sent in range(len(finalized)): scores = torch.tensor( [float(elem["score"].item()) for elem in finalized[sent]] ) _, sorted_scores_indices = torch.sort(scores, descending=True) finalized[sent] = [finalized[sent][ssi] for ssi in sorted_scores_indices] finalized[sent] = torch.jit.annotate( List[Dict[str, Tensor]], finalized[sent] ) return finalized def finalize_hypos( self, step: int, bbsz_idx, eos_scores, tokens, scores, finalized: List[List[Dict[str, Tensor]]], finished: List[bool], beam_size: int, max_len: int, all_lprobs: Optional[Tensor], ): """ Finalize hypothesis, store finalized information in `finalized`, and change `finished` accordingly. A sentence is finalized when {beam_size} finished items have been collected for it. Returns number of sentences (not beam items) being finalized. These will be removed from the batch and not processed further. """ assert bbsz_idx.numel() == eos_scores.numel() # clone relevant token and attention tensors. # tokens is (batch * beam, max_len). So the index_select # gets the newly EOS rows, then selects cols 1..{step + 2} tokens_clone = tokens.index_select(0, bbsz_idx)[ :, 1 : step + 2 ] # skip the first index, which is EOS tokens_clone[:, step] = self.eos # compute scores per token position pos_scores = scores.index_select(0, bbsz_idx)[:, : step + 1] pos_scores[:, step] = eos_scores # convert from cumulative to per-position scores pos_scores[:, 1:] = pos_scores[:, 1:] - pos_scores[:, :-1] # cum_unfin records which sentences in the batch are finished. # It helps match indexing between (a) the original sentences # in the batch and (b) the current, possibly-reduced set of # sentences. cum_unfin: List[int] = [] prev = 0 for f in finished: if f: prev += 1 else: cum_unfin.append(prev) # The keys here are of the form "{sent}_{unfin_idx}", where # "unfin_idx" is the index in the current (possibly reduced) # list of sentences, and "sent" is the index in the original, # unreduced batch # set() is not supported in script export sents_seen: Dict[str, Optional[Tensor]] = {} # For every finished beam item for i in range(bbsz_idx.size()[0]): idx = bbsz_idx[i] score = eos_scores[i] # sentence index in the current (possibly reduced) batch unfin_idx = torch.div(idx, beam_size, rounding_mode="trunc") # sentence index in the original (unreduced) batch sent = unfin_idx + cum_unfin[unfin_idx] # Cannot create dict for key type '(int, int)' in torchscript. # The workaround is to cast int to string seen = str(sent.item()) + "_" + str(unfin_idx.item()) if seen not in sents_seen: sents_seen[seen] = None # An input sentence (among those in a batch) is finished when # beam_size hypotheses have been collected for it if len(finalized[sent]) < beam_size: fin = { "tokens": tokens_clone[i], "score": score, "alignment": torch.empty(0), "positional_scores": pos_scores[i], } if all_lprobs is not None: fin["distributions"] = all_lprobs[i] finalized[sent].append(fin) newly_finished: List[int] = [] for seen in sents_seen.keys(): # check termination conditions for this sentence sent: int = int(float(seen.split("_")[0])) unfin_idx: int = int(float(seen.split("_")[1])) if not finished[sent] and self.is_finished( step, max_len, len(finalized[sent]), beam_size ): finished[sent] = True newly_finished.append(unfin_idx) return newly_finished def is_finished( self, step: int, max_len: int, finalized_sent_len: int, beam_size: int, ): """ Check whether decoding for a sentence is finished, which occurs when the list of finalized sentences has reached the beam size, or when we reach the maximum length. """ assert finalized_sent_len <= beam_size if finalized_sent_len == beam_size or step == max_len: return True return False
flash_metaseq-main
metaseq/sequence_generator.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import multiprocessing import os import pdb import sys __all__ = ["set_trace"] _stdin = [None] _stdin_lock = multiprocessing.Lock() try: _stdin_fd = sys.stdin.fileno() except Exception: _stdin_fd = None class MultiprocessingPdb(pdb.Pdb): """A Pdb wrapper that works in a multiprocessing environment. Usage: `from metaseq import pdb; pdb.set_trace()` """ def __init__(self): pdb.Pdb.__init__(self, nosigint=True) def _cmdloop(self): stdin_bak = sys.stdin with _stdin_lock: try: if _stdin_fd is not None: if not _stdin[0]: _stdin[0] = os.fdopen(_stdin_fd) sys.stdin = _stdin[0] self.cmdloop() finally: sys.stdin = stdin_bak def set_trace(): pdb = MultiprocessingPdb() pdb.set_trace(sys._getframe().f_back) def set_trace_rank0(): import metaseq.distributed.utils as dist_utils if dist_utils.get_global_rank() == 0: set_trace() else: while True: pass
flash_metaseq-main
metaseq/pdb.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import datetime as dt import io import logging import os import shutil import types from functools import partial from typing import Any, Dict, IO, List, Optional, Tuple, Union import boto3 import botocore from boto3.s3.transfer import TransferConfig from iopath.common.file_io import file_lock, get_cache_dir, PathHandler logger = logging.getLogger(__name__) # Override for close() on files to write to Amazon S3 def s3_close_and_upload(self, client, bucket, s3_path, transfer_config): # Seek to start, for use by upload_fileobj. self.seek(0) # Reinstall the proper close. self.close = self._close # upload_fileobj needs bytes # NOTE: This a very undesirable hack. if isinstance(self, io.StringIO): self = io.BytesIO(self.getvalue().encode("utf-8")) # Upload try: client.upload_fileobj( self, bucket, s3_path, Config=transfer_config, ) except botocore.exceptions.ClientError as e: raise OSError(f"Error in file upload - {e}" f"{type(e).__name__}: {e}") from e class S3PathHandler(PathHandler): """ Support for Amazon Simple Storage Service (S3) PathHanlder methods, at a glance: File --torch.load-> In --open(..., 'w')-> Amazon <- _exists,_isfile,_isdir,_ls,_rm ... System <-torch.save-- Mem. <-open(..., 'r')-- S3 <----------------_copy_from_local----------------- ----------------_get_local_path -----------------> Mem usage, for processing N bytes: open(..., mode) mode=='w': 2N, due to fully buffering user input, *and doing naive conversion from StringIO -> BytesIO*, before writing to S3 ^ Potential for optimization. mode=='wb': N, due to fully buffering user input, before writing to S3. mode=='r': N, due to fully buffering file in memory mode=='rb': N, due to fully buffering file in memory _copy_from_local: ≈0. boto3 streams from file system directly to s3 _get_local_path: ≈0. boto3 streams from s3 directly from s3 to file system """ # Disable failures if not all args are specified. _strict_kwargs_check = False S3_PREFIX = "s3://" CACHE_SUBDIR_NAME = "s3_cache" def __init__( self, cache_dir: Optional[str] = None, transfer_config_kwargs: Optional[Dict] = None, ): """ Args: cache_dir (str): Local filesystem directory to use for caching. If None, uses default from `file_io.get_cache_dir()`. transfer_config_kwargs (dict): Settings for boto3.s3.transfer.TransferConfig. Used to specify settings for multipart transfers. See https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3.html for details. """ self.cache_dir = cache_dir self.transfer_config = TransferConfig( **(transfer_config_kwargs if transfer_config_kwargs else {}) ) def _get_supported_prefixes(self) -> List[str]: """ Returns: List[str]: the list of URI prefixes this PathHandler can support """ return [self.S3_PREFIX] def _parse_uri(self, uri: str) -> Tuple[str, str]: """ Parses a "s3://bucket/path" URI into `bucket` and `path` strings. Args: uri (str): A s3:// URI. Returns: bucket (str): the s3 bucket. path (str): the path on the s3 system. """ splits = uri.replace(self.S3_PREFIX, "").split("/") bucket = splits[0] path = "/".join(splits[1:]) return bucket, path def _get_client(self, bucket: str): # TODO: Consider pid-based cache: https://fburl.com/code/xsz3wrv6 if not hasattr(self, "client"): try: session = boto3.Session() self.client = session.client("s3") except botocore.exceptions.NoCredentialsError as e: logger.error( " See https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html " " for method of using environment variable to point to aws credentials, and the " " order in which boto will search for said credentials. " ) logger.error( "Boto3 searches via the order below. If on FAIR Cluster, method 4 may be most convenient." "" "The order in which Boto3 searches for credentials is:" "1) [UNUSED] Passing credentials as parameters in the boto.client() method" "2) [UNUSED] Passing credentials as parameters when creating a Session object" "3) Environment variables" " AWS_ACCESS_KEY_ID - The access key for your AWS account." " AWS_SECRET_ACCESS_KEY - The secret key for your AWS account." " AWS_SESSION_TOKEN - The session key for your AWS account." " This is only needed when you are using temporary credentials. " "4) Shared credential file (~/.aws/credentials)" " default: ~/.aws/credentials" " changed via: AWS_SHARED_CREDENTIALS_FILE" " *for FAIR cluster usage: `export AWS_SHARED_CREDENTIALS_FILE=~/.fairusers_aws/credentials`" "5) AWS config file (~/.aws/config)" " default: ~/.aws/config" " changed via: AWS_CONFIG_FILE" "6) Assume Role provider" "7) Boto2 config file (/etc/boto.cfg and ~/.boto)" "8) Instance metadata service on an Amazon EC2 instance that has an IAM role configured." ) raise OSError( f"Error in making s3 client for bucket {bucket}" f"{type(e).__name__}: {e}" ) from e return self.client def _local_cache_path( self, path: str, ): """ Helper that returns a local cache path for a given uri. Args: path (str): A URI supported by this PathHandler. Returns: local_cache_path (str): a file path which exists on the local file system, in a cache directory. """ bucket, file_path = self._parse_uri(path) return os.path.join( get_cache_dir(self.cache_dir), self.CACHE_SUBDIR_NAME, file_path ) def _get_local_path(self, path: str, **kwargs: Any) -> str: """ Get a filepath which is compatible with native Python I/O such as `open` and `os.path`. If URI points to a remote resource, this function may download and cache the resource to local disk. In this case, the cache stays on filesystem (under `file_io.get_cache_dir()`) and will be used by a different run. Therefore this function is meant to be used with read-only resources. Args: path (str): A URI supported by this PathHandler Returns: local_path (str): a file path which exists on the local file system """ self._check_kwargs(kwargs) # Cheap check first. if path.endswith("/"): raise NotImplementedError( "S3PathHandler does not currently support downloading directories" ) assert self._isfile(path) local_path = self._local_cache_path(path) with file_lock(local_path): if os.path.exists(local_path): # If local object's last modified time is *after* remote object's last modified # time, do not use the cache. Instead, redownload. response = self._head_object(path) if response is not None: remote_dt = response["LastModified"] local_dt = dt.datetime.fromtimestamp( os.path.getmtime(local_path) ).astimezone() # NOTE: may consider still avoid cache if times are close, to avoid a race condition. # Currently, a lengthy download of a very recent but stale file would have a late # local last modified timestamp, and would be improperly used. # Better fix: set last modified time via the remote object's last modified time, # in download_file(). if (local_dt - remote_dt) > dt.timedelta(minutes=0): logger.info( "URL {} was already cached in {}".format(path, local_path) ) return local_path logger.info("Caching {} ...".format(path)) tmp = local_path + ".tmp" # clean-up tmp if found, because if tmp exists, it must be a dirty # result of a previously process that didn't cleanup itself. if os.path.isfile(tmp): os.unlink(tmp) bucket, s3_path = self._parse_uri(path) client = self._get_client(bucket) try: response = client.download_file( bucket, s3_path, tmp, Config=self.transfer_config ) # First download to tmp, then move it, because move is # (almost?) atomic when src and dst are in the same file # system. This will avoid partial cache state if the # process is killed. shutil.move(tmp, local_path) finally: try: os.unlink(tmp) except Exception: pass logger.info("URL {} cached in {}".format(path, local_path)) return local_path def _copy_from_local( self, local_path: str, dst_path: str, overwrite: bool = False, **kwargs: Any ) -> bool: """ Copies a local file to the specified URI. If the URI is another local path, this should be functionally identical to copy. Args: local_path (str): a file path which exists on the local file system dst_path (str): A URI supported by this PathHandler overwrite (bool): Bool flag for forcing overwrite of existing URI Returns: status (bool): True on success """ self._check_kwargs(kwargs) # Just checking this to avoid expensive API calls in self._isdir(). if local_path.endswith("/") or dst_path.endswith("/"): raise NotImplementedError( "S3PathHandler does not currently support uploading directories" ) bucket, s3_path = self._parse_uri(dst_path) client = self._get_client(bucket) try: client.upload_file(local_path, bucket, s3_path, Config=self.transfer_config) return True except botocore.exceptions.ClientError as e: logger.error("Error in file upload - {}".format(str(e))) return False def _decorate_buf_with_s3_methods( self, buffer: Union[IO[str], IO[bytes]], client: Any, bucket: str, s3_path: str, transfer_config: Any, ): # Save old close method. buffer._close = buffer.close # Add in our new close method. fn = partial( s3_close_and_upload, client=client, bucket=bucket, s3_path=s3_path, transfer_config=transfer_config, ) buffer.close = types.MethodType(fn, buffer) def _open( self, path: str, mode: str = "r", buffering: int = -1, # The following three arguments are unused, # But are included to avoid triggering WARNING # messages from _check_kargs. encoding: Optional[str] = None, errors: Optional[str] = None, newline: Optional[str] = None, **kwargs: Any, ) -> Union[IO[str], IO[bytes]]: """ Open a stream to a URI, similar to the built-in `open`. Args: path (str): A URI supported by this PathHandler mode (str): Specifies the mode in which the file is opened. It defaults to 'r'. buffering (int): An optional integer used to set the buffering policy. Pass 0 to switch buffering off and an integer >= 1 to indicate the size in bytes of a fixed-size chunk buffer. When no buffering argument is given, the default buffering policy depends on the underlying I/O implementation. Returns: file: a file-like object. """ self._check_kwargs(kwargs) bucket, s3_path = self._parse_uri(path) client = self._get_client(bucket) # AWS methods download_fileobj() and upload_fileobj() # both expect binary file-like objects. if "r" in mode: # 1. Download into io.BytesIO. # (binary format is required by download_fileobj.) buffer = io.BytesIO() try: # NOTE: Will download entire file! Further optimization to # only read a portion of the file could be implemented here. # NOTE: We download into an in-memory buffer. If downloading to # filesystem is desirable, use _get_local_path(). client.download_fileobj( bucket, s3_path, buffer, Config=self.transfer_config ) except botocore.exceptions.ClientError as e: raise OSError( f"Error in making s3 client for bucekt {bucket}" f"{type(e).__name__}: {e}" ) from e # 2. Set file-pointer to beginning of file. buffer.seek(0) # 3. Use convenient wrapper to make object look like StringIO, # if user wants non-binary. if "b" not in mode: buffer = io.TextIOWrapper(buffer, encoding="utf-8") return buffer elif "w" in mode: # 1. For writing, we give the user io.BytesIO or io.StringIO. if "b" in mode: buffer = io.BytesIO() else: buffer = io.StringIO() # 2. Decorate buffer so that we upload when it's closed by user. # If StringIO, decorator does a simple+expensive conversion # to bytesIO before uploading. # (because upload_fileobj requires binary) self._decorate_buf_with_s3_methods( buffer, client, bucket, s3_path, self.transfer_config ) return buffer else: raise OSError(f"Unsupported open mode {mode}") def _copy( self, src_path: str, dst_path: str, overwrite: bool = False, **kwargs: Any ) -> bool: """ Copies a source path to a destination path. Args: src_path (str): A URI supported by this PathHandler dst_path (str): A URI supported by this PathHandler overwrite (bool): Bool flag for forcing overwrite of existing file Returns: status (bool): True on success """ self._check_kwargs(kwargs) src_bucket, src_s3_path = self._parse_uri(src_path) dst_bucket, dst_s3_path = self._parse_uri(dst_path) assert src_bucket == dst_bucket, "For now, can only _copy() within a bucket." client = self._get_client(src_bucket) try: client.copy( { "Bucket": src_bucket, "Key": src_s3_path, }, dst_bucket, dst_s3_path, Config=self.transfer_config, ) return True except botocore.exceptions.ClientError as e: logger.error("Error in file copy - {}".format(str(e))) return False def _head_object(self, path: str) -> Optional[Dict]: bucket, s3_path = self._parse_uri(path) client = self._get_client(bucket) try: # Raises exception if not exists, else it exists. response = client.head_object(Bucket=bucket, Key=s3_path) return response except botocore.exceptions.ClientError as e: if e.response["Error"]["Message"] == "Bad Request": raise OSError( f"Error in checking s3 path {path} - " f"{type(e).__name__}: {e}" ) from e return None def _exists(self, path: str, **kwargs: Any) -> bool: """ Checks if there is a resource at the given URI. Args: path (str): A URI supported by this PathHandler Returns: bool: true if the path exists """ self._check_kwargs(kwargs) return self._head_object(path) is not None def _isfile(self, path: str, **kwargs: Any) -> bool: """ Checks if the resource at the given URI is a file. Args: path (str): A URI supported by this PathHandler Returns: bool: true if the path is a file """ self._check_kwargs(kwargs) # NOTE: this incurs an API call. return not path.endswith("/") and self._exists(path, **kwargs) def _isdir(self, path: str, **kwargs: Any) -> bool: """ Checks if the resource at the given URI is a directory. Args: path (str): A URI supported by this PathHandler Returns: bool: true if the path is a directory """ self._check_kwargs(kwargs) # NOTE: this incurs an API call. return path.endswith("/") and self._exists(path, **kwargs) def _ls(self, path: str, **kwargs: Any) -> List[str]: """ List the contents of the directory at the provided URI. Args: path (str): A URI supported by this PathHandler Returns: List[str]: list of contents in given path """ self._check_kwargs(kwargs) bucket, s3_path = self._parse_uri(path) client = self._get_client(bucket) try: # Pagination needed if >1000 entries. paginator = client.get_paginator("list_objects_v2") pages = paginator.paginate( Bucket=bucket, Prefix=s3_path, ) return [obj["Key"] for page in pages for obj in page.get("Contents", [])] except botocore.exceptions.ClientError as e: raise OSError( f"Error in ls path {path} - " f"{type(e).__name__}: {e}" ) from e def _mkdirs(self, path: str, **kwargs: Any) -> None: """ Recursive directory creation function. Like mkdir(), but makes all intermediate-level directories needed to contain the leaf directory. Similar to the native `os.makedirs`. Args: path (str): A URI supported by this PathHandler """ self._check_kwargs(kwargs) assert path.endswith("/"), path bucket, s3_path = self._parse_uri(path) client = self._get_client(bucket) try: client.put_object(Bucket=bucket, Key=s3_path) except botocore.exceptions.ClientError as e: raise OSError( f"Error in mkdirs path {path} - " f"{type(e).__name__}: {e}" ) from e def _rm(self, path: str, **kwargs: Any) -> None: """ Remove the file (not directory) at the provided URI. Args: path (str): A URI supported by this PathHandler """ self._check_kwargs(kwargs) bucket, s3_path = self._parse_uri(path) client = self._get_client(bucket) try: client.delete_object(Bucket=bucket, Key=s3_path) except botocore.exceptions.ClientError as e: raise OSError( f"Error in rm path {path} - " f"{type(e).__name__}: {e}" ) from e
flash_metaseq-main
metaseq/s3_utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import re SPACE_NORMALIZER = re.compile(r"\s+") def tokenize_line(line): line = SPACE_NORMALIZER.sub(" ", line) line = line.strip() return line.split()
flash_metaseq-main
metaseq/tokenizer.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import ast import copy import logging import os import time from argparse import Namespace from typing import Any, Dict, Iterator, List, Optional import numpy as np import torch from omegaconf import open_dict from torch import nn from metaseq import checkpoint_utils, tasks from metaseq import utils from metaseq.data import encoders from metaseq.dataclass.configs import MetaseqConfig from metaseq.dataclass.utils import convert_namespace_to_omegaconf from metaseq.distributed import fsdp_enable_wrap, fsdp_wrap from metaseq.distributed.utils import ( get_data_parallel_rank, get_data_parallel_world_size, ) logger = logging.getLogger(__name__) def from_pretrained( model_name_or_path, checkpoint_file="model.pt", data_name_or_path=".", archive_map=None, **kwargs, ): post_build_model_hook = kwargs.get("post_build_model_hook", None) from metaseq import checkpoint_utils, file_utils if archive_map is not None: if model_name_or_path in archive_map: model_name_or_path = archive_map[model_name_or_path] if data_name_or_path is not None and data_name_or_path in archive_map: data_name_or_path = archive_map[data_name_or_path] # allow archive_map to set default arg_overrides (e.g., tokenizer, bpe) # for each model if isinstance(model_name_or_path, dict): for k, v in model_name_or_path.items(): if k == "checkpoint_file": checkpoint_file = v elif ( k != "path" # only set kwargs that don't already have overrides and k not in kwargs ): kwargs[k] = v model_name_or_path = model_name_or_path["path"] model_path = file_utils.load_archive_file(model_name_or_path) # convenience hack for loading data and BPE codes from model archive if data_name_or_path.startswith("."): kwargs["data"] = os.path.abspath(os.path.join(model_path, data_name_or_path)) else: kwargs["data"] = file_utils.load_archive_file(data_name_or_path) for file, arg in { "code": "bpe_codes", "bpecodes": "bpe_codes", "sentencepiece.bpe.model": "sentencepiece_model", "merges.txt": "bpe_merges", "vocab.json": "bpe_vocab", }.items(): path = os.path.join(model_path, file) if os.path.exists(path): kwargs[arg] = path if "user_dir" in kwargs: utils.import_user_module(argparse.Namespace(user_dir=kwargs["user_dir"])) def _build_fn(train_cfg, task): if post_build_model_hook: return post_build_model_hook(task.build_model(train_cfg.model), task) else: return task.build_model(train_cfg.model) models, args, task = checkpoint_utils.load_model_ensemble_and_task( [os.path.join(model_path, cpt) for cpt in checkpoint_file.split(os.pathsep)], arg_overrides=kwargs, suffix=kwargs.get("suffix", ""), build_model_hook=lambda cfg, task: _build_fn(cfg, task), ) return { "args": args, "task": task, "models": models, } class GeneratorHubInterface(nn.Module): """ PyTorch Hub interface for generating sequences from a pre-trained translation or language model. """ lang_tokens = {} langs = None add_lang_bos_token = False def to_lang_token(self, lang): return f"<{lang}>" def setup_task(self): self.src_dict = self.task.source_dictionary self.tgt_dict = self.task.target_dictionary if "langs" in self.cfg.task: self.langs = self.cfg.task.langs lang_tokens = [ self.to_lang_token(x.strip()) for x in self.cfg.task.langs.split(",") ] # for debug purpose for lang_token in lang_tokens: if lang_token not in self.src_dict: self.src_dict.add_symbol(lang_token) if lang_token not in self.tgt_dict: self.tgt_dict.add_symbol(lang_token) self.lang_tokens = set(lang_tokens) if "add_bos_token" in self.cfg.task: # self.add_lang_bos_token = True self.add_lang_bos_token = self.cfg.task.add_bos_token def __init__( self, cfg, task, models, moe_disable_padding=True, skip_prepare_for_inference=False, ): super().__init__() self.cfg = cfg self.task = task self.setup_task() self.models = nn.ModuleList(models) # optimize model for generation if not skip_prepare_for_inference: for model in self.models: # For moe models and eval_lm model.prepare_for_inference_(cfg) # Load alignment dictionary for unknown word replacement # (None if no unknown word replacement, empty if no path to align dictionary) self.align_dict = utils.load_align_dict( getattr(cfg.generation, "replace_unk", None) ) self.tokenizer = encoders.build_tokenizer(cfg.tokenizer) self.bpe = encoders.build_bpe(cfg.bpe) self.max_positions = utils.resolve_max_positions( self.task.max_positions(), *[model.max_positions() for model in models] ) # this is useful for determining the device self.register_buffer("_float_tensor", torch.tensor([0], dtype=torch.float)) @property def device(self): return self._float_tensor.device def translate( self, sentences: List[str], beam: int = 5, verbose: bool = False, **kwargs ) -> List[str]: return self.sample(sentences, beam, verbose, **kwargs) def sample( self, sentences: List[str], beam: int = 1, verbose: bool = False, **kwargs ) -> List[str]: if isinstance(sentences, str): return self.sample([sentences], beam=beam, verbose=verbose, **kwargs)[0] tokenized_sentences = [self.encode(sentence) for sentence in sentences] batched_hypos = self.generate(tokenized_sentences, beam, verbose, **kwargs) return [self.decode(hypos[0]["tokens"]) for hypos in batched_hypos] def score(self, sentences: List[str], **kwargs): if isinstance(sentences, str): return self.score([sentences], **kwargs)[0] # NOTE: this doesn't support translation tasks currently tokenized_sentences = [self.encode(sentence) for sentence in sentences] return [ hypos[0] for hypos in self.generate( tokenized_sentences, score_reference=True, **kwargs ) ] def generate( self, tokenized_sentences: List[torch.LongTensor], beam: int = 5, verbose: bool = False, skip_invalid_size_inputs=False, inference_step_args=None, batch_size=None, **kwargs, ) -> List[List[Dict[str, torch.Tensor]]]: if torch.is_tensor(tokenized_sentences) and tokenized_sentences.dim() == 1: return self.generate( tokenized_sentences.unsqueeze(0), beam=beam, verbose=verbose, batch_size=batch_size, **kwargs, )[0] # build generator using current args as well as any kwargs gen_args = copy.deepcopy(self.cfg.generation) with open_dict(gen_args): gen_args.beam = beam for k, v in kwargs.items(): setattr(gen_args, k, v) generator = self.task.build_generator(self.models, gen_args) inference_step_args = inference_step_args or {} results = [] rank, world_size = get_data_parallel_rank(), get_data_parallel_world_size() batches = self._build_batches( tokenized_sentences, skip_invalid_size_inputs, rank=rank, world_size=world_size, batch_size=batch_size, ) # To ensure even batch count across workers, some batches might be dummy batches. We shouldn't score these. first_batch = None for batch in batches: is_dummy_batch = False if not first_batch and "net_input" in batch: first_batch = batch if "net_input" not in batch: if first_batch is not None: batch = first_batch is_dummy_batch = True else: continue batch = utils.apply_to_sample(lambda t: t.to(self.device), batch) translations = self.task.inference_step( generator, self.models, batch, **inference_step_args ) if is_dummy_batch: # Don't score it or add it to hypotheses continue for id, hypos in zip(batch["id"].tolist(), translations): results.append((id, hypos)) # sort output to match input order outputs = [hypos for _, hypos in sorted(results, key=lambda x: x[0])] if verbose: def getarg(name, default): return getattr(gen_args, name, getattr(self.cfg, name, default)) for source_tokens, target_hypotheses in zip(tokenized_sentences, outputs): src_str_with_unk = self.string(source_tokens) logger.info("S\t{}".format(src_str_with_unk)) for hypo in target_hypotheses: hypo_str = self.decode(hypo["tokens"]) logger.info("H\t{}\t{}".format(hypo["score"], hypo_str)) logger.info( "P\t{}".format( " ".join( map( lambda x: "{:.4f}".format(x), hypo["positional_scores"].tolist(), ) ) ) ) if hypo["alignment"] is not None and getarg( "print_alignment", False ): logger.info( "A\t{}".format( " ".join( [ "{}-{}".format(src_idx, tgt_idx) for src_idx, tgt_idx in hypo["alignment"] ] ) ) ) return outputs def get_sentence_and_language(self, sentence: str): """ If sentence is prefixed with the language, it is striped and both are replaced. input: '<lang>en-EN</lang>Some sentence here' output: en-EN, 'Some sentence here' """ lang_begin = "<lang>" lang_end = "</lang>" lang = None if sentence.startswith(lang_begin): idx = sentence.find(lang_end) if idx > 0: lang = sentence[: idx + len(lang_end)] lang = lang.replace(lang_begin, "").replace(lang_end, "") sentence = sentence[idx + len(lang_end) :] return lang, sentence def add_language_to_sentence(self, sentence: str, lang_token): lang_begin = "<lang>" lang_end = "</lang>" lang_prefix = lang_begin + lang_token + lang_end sentence = lang_prefix + sentence return sentence def encode(self, sentence: str) -> torch.LongTensor: lang, sentence = self.get_sentence_and_language(sentence) sentence = self.tokenize(sentence) sentence = self.apply_bpe(sentence) if lang is not None: sentence = f"{lang} {sentence}" return self.binarize(sentence) def decode(self, tokens: torch.LongTensor) -> str: sentence = self.string(tokens) # Remove the lang token sent_split = sentence.split(" ", 1) lang_token = None if sent_split[0] in self.lang_tokens: lang_token = sent_split[0] sentence = sent_split[1] sentence = self.remove_bpe(sentence) sentence = self.detokenize(sentence) if lang_token is not None: sentence = self.add_language_to_sentence(sentence, lang_token) return sentence def tokenize(self, sentence: str) -> str: if self.tokenizer is not None: sentence = self.tokenizer.encode(sentence) return sentence def detokenize(self, sentence: str) -> str: if self.tokenizer is not None: sentence = self.tokenizer.decode(sentence) return sentence def apply_bpe(self, sentence: str) -> str: if self.bpe is not None: sentence = self.bpe.encode(sentence) return sentence def remove_bpe(self, sentence: str) -> str: if self.bpe is not None: sentence = self.bpe.decode(sentence) return sentence def binarize(self, sentence: str) -> torch.LongTensor: return self.src_dict.encode_line(sentence, add_if_not_exist=False).long() def string(self, tokens: torch.LongTensor) -> str: return self.tgt_dict.string(tokens) def _build_batches( self, tokens: List[torch.LongTensor], skip_invalid_size_inputs: bool, world_size=None, rank=None, batch_size=None, ) -> Iterator[Dict[str, Any]]: lengths = torch.LongTensor([t.numel() for t in tokens]) if batch_size is None: batch_size = self.cfg.dataset.batch_size batch_iterator = self.task.get_batch_iterator( dataset=self.task.build_dataset_for_inference(tokens, lengths), max_tokens=self.cfg.dataset.max_tokens, max_sentences=batch_size, max_positions=self.max_positions, ignore_invalid_inputs=skip_invalid_size_inputs, disable_iterator_cache=True, num_shards=world_size, shard_id=rank, ).next_epoch_itr(shuffle=False) return batch_iterator class BPEHubInterface(object): """PyTorch Hub interface for Byte-Pair Encoding (BPE).""" def __init__(self, bpe, **kwargs): super().__init__() args = argparse.Namespace(bpe=bpe, **kwargs) self.bpe = encoders.build_bpe(args) assert self.bpe is not None def encode(self, sentence: str) -> str: return self.bpe.encode(sentence) def decode(self, sentence: str) -> str: return self.bpe.decode(sentence) class TokenizerHubInterface(object): """PyTorch Hub interface for tokenization.""" def __init__(self, tokenizer, **kwargs): super().__init__() args = argparse.Namespace(tokenizer=tokenizer, **kwargs) self.tokenizer = encoders.build_tokenizer(args) assert self.tokenizer is not None def encode(self, sentence: str) -> str: return self.tokenizer.encode(sentence) def decode(self, sentence: str) -> str: return self.tokenizer.decode(sentence) class GeneratorInterface: """ PyTorch Hub interface for generating sequences from a pre-trained translation or language model. """ def __init__(self, cfg: MetaseqConfig): self.cfg = cfg if isinstance(self.cfg, Namespace): self.cfg = convert_namespace_to_omegaconf(self.cfg) def load_model(self): utils.import_user_module(self.cfg.common) # Fix seed for stochastic decoding if ( self.cfg.common.seed is not None and not self.cfg.generation.no_seed_provided ): np.random.seed(self.cfg.common.seed) utils.set_torch_seed(self.cfg.common.seed) # Setup task, e.g., translation task = tasks.setup_task(self.cfg.task) def _build_model(cfg, task): model = task.build_model(cfg.model).half().cuda() model.make_generation_fast_() return fsdp_wrap(model) # Load the model overrides = ast.literal_eval(self.cfg.common_eval.model_overrides) logger.info("loading model(s) from {}".format(self.cfg.common_eval.path)) with fsdp_enable_wrap( self.cfg.distributed_training, use_sharded_state=self.cfg.distributed_training.use_sharded_state, ): models, _model_args, _task = checkpoint_utils.load_model_ensemble_and_task( utils.split_paths(self.cfg.common_eval.path), arg_overrides=overrides, task=task, suffix=self.cfg.checkpoint.checkpoint_suffix, strict=(self.cfg.checkpoint.checkpoint_shard_count == 1), num_shards=self.cfg.checkpoint.checkpoint_shard_count, build_model_hook=_build_model, ) # Set dictionaries src_dict = task.source_dictionary tgt_dict = task.target_dictionary # Handle tokenization and BPE bpe = task.build_bpe(self.cfg.bpe) # Set state self.bpe = bpe self.task = task self.models = models self.src_dict = src_dict self.tgt_dict = tgt_dict return models def generate( self, inputs: List[List[int]], min_tokens: List[int] = None, max_tokens: List[int] = None, temperature: float = 1.0, top_p: float = -1.0, logprobs: int = 0, n: int = 1, best_of: Optional[int] = None, echo: bool = False, stop: Optional[List[int]] = None, seed: Optional[int] = None, use_cuda: bool = True, ): """ Generate from sequences. Parameters match those of the OpenAI API. https://beta.openai.com/docs/api-reference/completions/create inputs: a list of pre-tokenized prompts min_tokens: blocks EOS until at least this many tokens is provided max_tokens: forces EOS after this many tokens temperature: softmax temperature top_p: nucleus probability log_probs: return this cutoff of the probability distribution n: beam size best_of: number of beams to return. must be <= n echo: if true, returned text/tokens/scores includes the prompt. This is useful for getting PPL evaluations. stop: a list of terminating tokens seed: an integer if desired use_cuda: should we use GPUs. """ if seed: utils.set_torch_seed(seed) start_time = time.time() total_generation_time = 0 # Initialize generator if not best_of: best_of = n assert best_of >= n self.cfg.generation.sampling_topp = top_p if top_p > 0 else -1 self.cfg.generation.sampling = top_p > 0.0 self.cfg.generation.beam = best_of if temperature > 0: self.cfg.generation.temperature = temperature else: self.cfg.generation.temperature = 1.0 MAX_SEQ_LEN = utils.resolve_max_positions( self.task.max_positions(), *[model.max_positions() for model in self.models] ) # TODO(roller): simplify retval = [] tokens = [torch.LongTensor(t) for t in inputs] lengths = [len(t) for t in inputs] batches = self.task.get_batch_iterator( dataset=self.task.build_dataset_for_inference(tokens, lengths), max_tokens=None, max_sentences=None, max_positions=None, ignore_invalid_inputs=False, ).next_epoch_itr(shuffle=False) for batch in batches: src_tokens = batch["net_input"]["src_tokens"] src_lengths = batch["net_input"]["src_lengths"] batchsize = src_tokens.size(0) # set generation args # prevent us from ever generating past our max sequence length if max_tokens is None: max_tokens = [MAX_SEQ_LEN] * batchsize if min_tokens is None: min_tokens = [0] * batchsize total_max_tokens = min( MAX_SEQ_LEN, max(max_tokens) + src_lengths.max().item() ) total_min_tokens = max(min_tokens) + src_lengths.max().item() self.cfg.generation.min_len = total_min_tokens self.cfg.generation.max_len_b = total_max_tokens self.cfg.generation.max_len_a = 0 logger.info(f"Preparing generator with settings {self.cfg.generation}") generator = self.task.build_generator( self.models, self.cfg.generation, extra_gen_cls_kwargs={"stop": stop} ) # okay actually generate logger.info(f"Executing generation on input tensor size {src_tokens.shape}") if use_cuda: batch = utils.move_to_cuda(batch) translate_start_time = time.time() translations = self.task.inference_step(generator, self.models, batch) translate_time = time.time() - translate_start_time total_generation_time += translate_time # possibly cut off any bsz padding we did translations = translations[: len(inputs)] # actually turn everything into strings for i in range(len(translations)): decoding = translations[i] beams = [] for beam in decoding: # first beam is always the highest scoring tokens = beam["tokens"].tolist() # implicit move to cpu scores = beam["positional_scores"].tolist() if logprobs > 0: distributions = beam["distributions"].cpu() else: distributions = None tokens, scores, distributions = GeneratorInterface._filter_special( tokens, scores, distributions ) prompt_len = src_lengths[i] if echo: # don't cut off prompt tokens = tokens[: prompt_len + max_tokens[i] - 1] scores = scores[: prompt_len + max_tokens[i] - 1] if logprobs > 0: distributions = distributions[ : prompt_len + max_tokens[i] - 1 ] else: # cut off prompt tokens = tokens[prompt_len - 1 :][: max_tokens[i]] scores = scores[prompt_len - 1 :][: max_tokens[i]] if logprobs > 0: distributions = distributions[prompt_len - 1 :][ : max_tokens[i] ] # turn it into a string text = self.bpe.bpe.decode(tokens) # re-encode it so we get offsets token_offsets = [s for s, e in self.bpe.bpe.encode(text).offsets] result = { "text": self.bpe.bpe.decode(tokens), "tokens": [self.bpe.bpe.decode([t]) for t in tokens], # text offset is useful for cutting off prompts or prefixes # or evaluating PPL on just a subset of tokens "text_offset": token_offsets, "token_scores": scores, } if logprobs > 0: # final result is a List[Dict[str, float]] # where each item in the list corresponds to a token in the # sequence, and the dict provides the probabilities of the # top-k tokens at that timestep. out_logprobs = [] all_top_toks, all_top_scores = distributions.topk( k=logprobs, dim=-1 ) for top_scores, top_toks in zip(all_top_toks, all_top_scores): lp = { self.bpe.bpe.decode([t.item()]): s.item() for t, s in zip(top_toks, top_scores) } out_logprobs.append(lp) result["top_logprobs"] = out_logprobs else: result["top_logprobs"] = None beams.append(result) retval.append(beams) logger.info( "Total time: {:.3f} seconds; generation time: {:.3f}".format( time.time() - start_time, total_generation_time ) ) return retval @staticmethod def _filter_special( tokens: List[int], scores: List[float], distributions, pad_token: int = 1, ): """ Cut off tokens after finding a special tokens. """ # tokens is a 1D list of token IDs of length seqlen # scores is a 1D list of log-probability scores for those tokens (length seqlen) # distributions (optional) is a seqlen x vocab_size tensor corresponding to # the full distribution of predictions at each timestep output = [] mask = [] for t, s in zip(tokens, scores): if t == pad_token: # simply skip pads mask.append(False) continue if t <= 3: # and other special tokens should end things break mask.append(True) output.append((t, s)) new_tokens, new_scores = zip(*output) # cut off at stop and drop pads if distributions is not None: distributions = distributions[: len(mask)][mask] distributions = distributions[: len(output)] return new_tokens, new_scores, distributions
flash_metaseq-main
metaseq/hub_utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import sys import torch from metaseq import utils class SequenceScorer(object): """Scores the target for a given source sentence.""" def __init__( self, tgt_dict, softmax_batch=None, eos=None, compute_vocab_dist=False, ): self.pad = tgt_dict.pad() self.eos = tgt_dict.eos() if eos is None else eos self.softmax_batch = softmax_batch or sys.maxsize assert self.softmax_batch > 0 self.compute_vocab_dist = compute_vocab_dist @torch.no_grad() def generate(self, models, sample, **kwargs): """Score a batch of translations.""" net_input = sample["net_input"] def batch_for_softmax(dec_out, target): # assumes decoder_out[0] is the only thing needed (may not be correct for future models!) first, rest = dec_out[0], dec_out[1:] bsz, tsz, dim = first.shape if bsz * tsz < self.softmax_batch: yield dec_out, target, True else: flat = first.contiguous().view(1, -1, dim) flat_tgt = target.contiguous().view(flat.shape[:-1]) s = 0 while s < flat.size(1): e = s + self.softmax_batch yield (flat[:, s:e],) + rest, flat_tgt[:, s:e], False s = e def gather_target_probs(probs, target): probs = probs.gather( dim=2, index=target.unsqueeze(-1), ) return probs orig_target = sample["target"] # compute scores for each model in the ensemble avg_probs = None avg_attn = None avg_vocab_dist = None for model in models: model.eval() decoder_out = model(**net_input) attn = decoder_out[1] if len(decoder_out) > 1 else None if type(attn) is dict: attn = attn.get("attn", None) batched = batch_for_softmax(decoder_out, orig_target) probs, idx = None, 0 vocab_dist = [] for bd, tgt, is_single in batched: sample["target"] = tgt curr_prob = model.get_normalized_probs( bd, log_probs=len(models) == 1, sample=sample ).data if is_single: probs = gather_target_probs(curr_prob, orig_target) if self.compute_vocab_dist: vocab_dist = curr_prob else: if probs is None: probs = curr_prob.new(orig_target.numel()) step = curr_prob.size(0) * curr_prob.size(1) end = step + idx tgt_probs = gather_target_probs( curr_prob.view(tgt.shape + (curr_prob.size(-1),)), tgt ) probs[idx:end] = tgt_probs.view(-1) idx = end if self.compute_vocab_dist: vocab_dist.append(curr_prob.view(step, -1)) sample["target"] = orig_target if self.compute_vocab_dist and type(vocab_dist) is list: vocab_dist = torch.cat(vocab_dist, dim=0) # (bsz x tsz, vocab_size) vocab_dist = vocab_dist.contiguous().view( sample["target"].size(0), sample["target"].size(1), -1 ) probs = probs.view(sample["target"].shape) if avg_probs is None: avg_probs = probs else: avg_probs.add_(probs) if self.compute_vocab_dist: if avg_vocab_dist is None: avg_vocab_dist = vocab_dist else: avg_vocab_dist.add_(vocab_dist) if attn is not None: if torch.is_tensor(attn): attn = attn.data else: attn = attn[0] if avg_attn is None: avg_attn = attn else: avg_attn.add_(attn) if len(models) > 1: avg_probs.div_(len(models)) avg_probs.log_() if avg_vocab_dist is not None: avg_vocab_dist.div_(len(models)) avg_vocab_dist.log_() if avg_attn is not None: avg_attn.div_(len(models)) bsz = avg_probs.size(0) hypos = [] start_idxs = sample["start_indices"] if "start_indices" in sample else [0] * bsz for i in range(bsz): # remove padding from ref ref = ( utils.strip_pad(sample["target"][i, start_idxs[i] :], self.pad) if sample["target"] is not None else None ) tgt_len = ref.numel() avg_probs_i = avg_probs[i][start_idxs[i] : start_idxs[i] + tgt_len] score_i = avg_probs_i.sum() / tgt_len if avg_vocab_dist is not None: avg_vocab_dist_i = avg_vocab_dist[i][ start_idxs[i] : start_idxs[i] + tgt_len, : ].cpu() # off load else: avg_vocab_dist_i = None id_i = sample["id"][i] if "id" in sample else None if avg_attn is not None: avg_attn_i = avg_attn[i] else: avg_attn_i = None hypos.append( [ { "tokens": ref, "score": score_i, "attention": avg_attn_i, "alignment": None, "positional_scores": avg_probs_i, "id": id_i, "vocab_dist": avg_vocab_dist_i, } ] ) return hypos
flash_metaseq-main
metaseq/sequence_scorer.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import uuid from typing import Dict, Optional from torch import Tensor from typing_extensions import Protocol class HasIncrementalState(Protocol): def get_incremental_state( self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]], key: str, ) -> Optional[Dict[str, Optional[Tensor]]]: """Helper for getting incremental state for an nn.Module.""" def set_incremental_state( self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]], key: str, value: Dict[str, Optional[Tensor]], ) -> Optional[Dict[str, Dict[str, Optional[Tensor]]]]: """Helper for setting incremental state for an nn.Module.""" class IncrementalState(object): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.init_incremental_state() def init_incremental_state(self): self._incremental_state_id = str(uuid.uuid4()) def _get_full_incremental_state_key(self, key: str) -> str: return "{}.{}".format(self._incremental_state_id, key) def get_incremental_state( self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]], key: str, ) -> Optional[Dict[str, Optional[Tensor]]]: """Helper for getting incremental state for an nn.Module.""" full_key = self._get_full_incremental_state_key(key) if incremental_state is None or full_key not in incremental_state: return None return incremental_state[full_key] def set_incremental_state( self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]], key: str, value: Dict[str, Optional[Tensor]], ) -> Optional[Dict[str, Dict[str, Optional[Tensor]]]]: """Helper for setting incremental state for an nn.Module.""" if incremental_state is not None: full_key = self._get_full_incremental_state_key(key) incremental_state[full_key] = value return incremental_state def with_incremental_state(cls): cls.__bases__ = (IncrementalState,) + tuple( b for b in cls.__bases__ if b != IncrementalState ) return cls
flash_metaseq-main
metaseq/incremental_decoding_utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import copy import importlib import logging import os import random import sys import warnings from typing import Callable, Dict, List, Optional import numpy as np import torch import torch.distributed as dist import torch.nn.functional as F from torch import Tensor from metaseq.distributed import utils as distributed_utils from metaseq.incremental_decoding_utils import HasIncrementalState try: from amp_C import multi_tensor_l2norm multi_tensor_l2norm_available = True except ImportError: multi_tensor_l2norm_available = False logger = logging.getLogger(__name__) MANIFOLD_PATH_SEP = "|" class FileContentsAction(argparse.Action): def __init__(self, option_strings, dest, nargs=None, **kwargs): if nargs is not None: raise ValueError("nargs not allowed") super(FileContentsAction, self).__init__(option_strings, dest, **kwargs) def __call__(self, parser, namespace, values, option_string=None): from metaseq.file_io import PathManager if PathManager.isfile(values): with PathManager.open(values) as f: argument = f.read().strip() else: argument = values setattr(namespace, self.dest, argument) def split_paths(paths: str) -> List[str]: return ( paths.split(os.pathsep) if "://" not in paths else paths.split(MANIFOLD_PATH_SEP) ) def apply_to_sample(f, sample): if hasattr(sample, "__len__") and len(sample) == 0: return {} def _apply(x): if torch.is_tensor(x): return f(x) elif isinstance(x, dict): return {key: _apply(value) for key, value in x.items()} elif isinstance(x, list): return [_apply(x) for x in x] elif isinstance(x, tuple): return tuple(_apply(x) for x in x) elif isinstance(x, set): return {_apply(x) for x in x} else: return x return _apply(sample) def move_to_cuda(sample, device=None): device = device or torch.cuda.current_device() def _move_to_cuda(tensor): # non_blocking is ignored if tensor is not pinned, so we can always set # to True (see github.com/PyTorchLightning/pytorch-lightning/issues/620) return tensor.to(device=device, non_blocking=True) return apply_to_sample(_move_to_cuda, sample) def move_to_cpu(sample, cast_to_fp32=True): def _move_to_cpu(tensor): # PyTorch has poor support for half tensors (float16) on CPU. # Move any such tensors to float32. if cast_to_fp32 and tensor.dtype in {torch.bfloat16, torch.float16}: tensor = tensor.to(dtype=torch.float32) return tensor.cpu() return apply_to_sample(_move_to_cpu, sample) def get_incremental_state( module: HasIncrementalState, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]], key: str, ) -> Optional[Dict[str, Optional[Tensor]]]: """Helper for getting incremental state for an nn.Module.""" return module.get_incremental_state(incremental_state, key) def set_incremental_state( module: HasIncrementalState, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]], key: str, value: Dict[str, Optional[Tensor]], ) -> Optional[Dict[str, Dict[str, Optional[Tensor]]]]: """Helper for setting incremental state for an nn.Module.""" if incremental_state is not None: result = module.set_incremental_state(incremental_state, key, value) if result is not None: incremental_state = result return incremental_state def load_align_dict(replace_unk): if replace_unk is None: align_dict = None elif isinstance(replace_unk, str) and len(replace_unk) > 0: # Load alignment dictionary for unknown word replacement if it was passed as an argument. align_dict = {} with open(replace_unk, "r") as f: for line in f: cols = line.split() align_dict[cols[0]] = cols[1] else: # No alignment dictionary provided but we still want to perform unknown word replacement by copying the # original source word. align_dict = {} return align_dict def parse_embedding(embed_path): """Parse embedding text file into a dictionary of word and embedding tensors. The first line can have vocabulary size and dimension. The following lines should contain word and embedding separated by spaces. Example: 2 5 the -0.0230 -0.0264 0.0287 0.0171 0.1403 at -0.0395 -0.1286 0.0275 0.0254 -0.0932 """ embed_dict = {} with open(embed_path) as f_embed: next(f_embed) # skip header for line in f_embed: pieces = line.rstrip().split(" ") embed_dict[pieces[0]] = torch.Tensor( [float(weight) for weight in pieces[1:]] ) return embed_dict norm_type2_reduce_op = {"l2": dist.ReduceOp.SUM, "inf": dist.ReduceOp.MAX} def load_embedding(embed_dict, vocab, embedding): for idx in range(len(vocab)): token = vocab[idx] if token in embed_dict: embedding.weight.data[idx] = embed_dict[token] return embedding def post_process_prediction( hypo_tokens, alignment, tgt_dict, remove_bpe=None, extra_symbols_to_ignore=None, ): hypo_str = tgt_dict.string( hypo_tokens, remove_bpe, extra_symbols_to_ignore=extra_symbols_to_ignore ) if remove_bpe is not None: # Convert back to tokens for evaluating without BPE # Note that the dictionary can be modified inside the method. hypo_tokens = tgt_dict.encode_line(hypo_str, add_if_not_exist=True) return hypo_tokens, hypo_str, alignment def make_positions(tensor, padding_idx: int, onnx_trace: bool = False): """Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. """ # The series of casts and type-conversions here are carefully # balanced to both work with ONNX export and XLA. In particular XLA # prefers ints, cumsum defaults to output longs, and ONNX doesn't know # how to handle the dtype kwarg in cumsum. mask = tensor.ne(padding_idx).int() return (torch.cumsum(mask, dim=1).type_as(mask) * mask).long() + padding_idx def strip_pad(tensor, pad): return tensor[tensor.ne(pad)] def item(tensor): if hasattr(tensor, "item"): return tensor.item() if hasattr(tensor, "__getitem__"): return tensor[0] return tensor def multi_tensor_l2_total_norm(grads, chunk_size=2048 * 32) -> torch.Tensor: per_device_grads = {} norms = [] for grad in grads: device = grad.device cur_device_grads = per_device_grads.get(device) if cur_device_grads is None: cur_device_grads = [] per_device_grads[device] = cur_device_grads cur_device_grads.append(grad) for device in per_device_grads.keys(): cur_device_grads = per_device_grads[device] if device.type == "cuda": # TODO(msb) return has_inf has_inf = torch.zeros((1, 1), dtype=torch.int, device=device) with torch.cuda.device(device): norm = multi_tensor_l2norm( chunk_size, has_inf, [cur_device_grads], False ) norms.append(norm[0].to(torch.cuda.current_device())) else: norms += [torch.norm(g, p=2, dtype=torch.float32) for g in cur_device_grads] total_norm = torch.norm(torch.stack(norms)) return total_norm @torch.no_grad() def clip_grad_norm_( params, max_norm, norm_type="l2", aggregate_norm_fn=None, device=None ) -> torch.Tensor: def grad_exists(p): return p is not None and getattr(p, "grad", None) is not None if isinstance(params, torch.Tensor): params = [params] params = list(params) params = list(filter(grad_exists, params)) grads, sharded_grads = [], [] if device is None: if torch.cuda.is_available(): # param/grads could be on CPU if using CPU offloading, but we want # everything on GPU if possible device = torch.device("cuda:{}".format(torch.cuda.current_device())) elif len(params) > 0: device = params[0].device # could be "xla" else: device = torch.device("cpu") def norm(t, n_type): if n_type == "l2": return torch.norm(t, p=2, dtype=torch.float32) elif n_type == "inf": return torch.norm(t, p=float("inf"), dtype=torch.float32) else: raise ValueError( f"Invalid clip_norm_type: {n_type}! Please pass either 'l2' or 'inf'!" ) for p in params: if hasattr(p, "_is_sharded"): sharded_grads.append(p.grad.detach()) else: grads.append(p.grad.detach()) if len(grads) == 0: total_norm = torch.tensor(0.0, dtype=torch.float32, device=device) elif len(grads) == 1: total_norm = norm(grads[0], norm_type) else: if ( multi_tensor_l2norm_available and norm_type == "l2" and grads[0].dtype != torch.bfloat16 ): total_norm = multi_tensor_l2_total_norm(grads) else: if ( torch.cuda.is_available() and norm_type == "l2" and grads[0].dtype != torch.bfloat16 ): warnings.warn( "amp_C fused kernels unavailable, disabling multi_tensor_l2norm; " "you may get better performance by installing NVIDIA's apex library" ) total_norm = norm( torch.stack([norm(g, norm_type) for g in grads]), norm_type ) # calculate split_norm and all_reduce with other workers norms = [total_norm] for split_grads in [sharded_grads]: if len(split_grads) == 0: continue split_norm = norm( torch.stack([norm(g, norm_type) for g in split_grads]), norm_type ) if dist.is_initialized(): reduce_op = norm_type2_reduce_op[norm_type] if norm_type == "l2": split_norm.pow_(2) dist.all_reduce( split_norm, group=distributed_utils.get_data_parallel_group(), op=reduce_op, ) if norm_type == "l2": split_norm.sqrt_() norms.append(split_norm) if len(norms) > 1: total_norm = norm(torch.stack(norms), norm_type) if aggregate_norm_fn is not None: total_norm = aggregate_norm_fn(total_norm) if max_norm > 0: max_norm = float(max_norm) clip_coef = (max_norm / (total_norm + 1e-6)).clamp_(max=1) for g in grads + sharded_grads: g.mul_(clip_coef) return total_norm def fill_with_neg_inf(t): """FP16-compatible function that fills a tensor with -inf.""" return t.float().fill_(float("-inf")).type_as(t) def _match_types(arg1, arg2): """Convert the numerical argument to the same type as the other argument""" def upgrade(arg_number, arg_structure): if isinstance(arg_structure, tuple): return tuple([arg_number] * len(arg_structure)) elif isinstance(arg_structure, dict): arg = copy.deepcopy(arg_structure) for k in arg: arg[k] = upgrade(arg_number, arg_structure[k]) return arg else: return arg_number if isinstance(arg1, float) or isinstance(arg1, int): return upgrade(arg1, arg2), arg2 elif isinstance(arg2, float) or isinstance(arg2, int): return arg1, upgrade(arg2, arg1) return arg1, arg2 def resolve_max_positions(*args): """Resolve max position constraints from multiple sources.""" def map_value_update(d1, d2): updated_value = copy.deepcopy(d1) for key in d2: if key not in updated_value: updated_value[key] = d2[key] else: updated_value[key] = min(d1[key], d2[key]) return updated_value def nullsafe_min(l): minim = None for item in l: if minim is None: minim = item elif item is not None and item < minim: minim = item return minim max_positions = None for arg in args: if max_positions is None: max_positions = arg elif arg is not None: max_positions, arg = _match_types(max_positions, arg) if isinstance(arg, float) or isinstance(arg, int): max_positions = min(max_positions, arg) elif isinstance(arg, dict): max_positions = map_value_update(max_positions, arg) else: max_positions = tuple(map(nullsafe_min, zip(max_positions, arg))) return max_positions def import_user_module(args): module_path = getattr(args, "user_dir", None) if module_path is not None: module_path = os.path.abspath(args.user_dir) if not os.path.exists(module_path) and not os.path.isfile( os.path.dirname(module_path) ): metaseq_rel_path = os.path.join(os.path.dirname(__file__), args.user_dir) if os.path.exists(metaseq_rel_path): module_path = metaseq_rel_path else: metaseq_rel_path = os.path.join( os.path.dirname(__file__), "..", args.user_dir ) if os.path.exists(metaseq_rel_path): module_path = metaseq_rel_path else: raise FileNotFoundError(module_path) # ensure that user modules are only imported once import_user_module.memo = getattr(import_user_module, "memo", set()) if module_path not in import_user_module.memo: import_user_module.memo.add(module_path) module_parent, module_name = os.path.split(module_path) if module_name not in sys.modules: sys.path.insert(0, module_parent) importlib.import_module(module_name) else: raise ImportError( "Failed to import --user-dir={} because the corresponding module name " "({}) is not globally unique. Please rename the directory to " "something unique and try again.".format(module_path, module_name) ) def softmax(x, dim: int, onnx_trace: bool = False): if onnx_trace: return F.softmax(x.float(), dim=dim) else: return F.softmax(x, dim=dim, dtype=torch.float32) def log_softmax(x, dim: int, onnx_trace: bool = False): if onnx_trace: return F.log_softmax(x.float(), dim=dim) else: return F.log_softmax(x, dim=dim, dtype=torch.float32) def get_perplexity(loss, round=2, base=2): from metaseq.logging.meters import safe_round if loss is None: return 0.0 try: return safe_round(base**loss, round) except OverflowError: return float("inf") def deprecation_warning(message, stacklevel=3): # don't use DeprecationWarning, since it's ignored by default warnings.warn(message, stacklevel=stacklevel) def relu_squared(x: torch.Tensor): return F.relu(x).pow(2) def get_activation_fn(activation: str) -> Callable: """Returns the activation function corresponding to `activation`""" from metaseq.modules import gelu, gelu_accurate if activation == "relu": return F.relu elif activation == "relu_squared": return relu_squared elif activation == "gelu": return gelu elif activation == "gelu_accurate": return gelu_accurate elif activation == "tanh": return torch.tanh elif activation == "linear": return lambda x: x else: raise RuntimeError("--activation-fn {} not supported".format(activation)) def get_available_activation_fns() -> List: return [ "relu", "relu_squared", "gelu", "gelu_accurate", "tanh", "linear", ] def has_parameters(module): try: next(module.parameters()) return True except StopIteration: return False def get_rng_state(): state = {"torch_rng_state": torch.get_rng_state()} if torch.cuda.is_available(): state["cuda_rng_state"] = torch.cuda.get_rng_state() return state def set_rng_state(state): torch.set_rng_state(state["torch_rng_state"]) if torch.cuda.is_available(): torch.cuda.set_rng_state(state["cuda_rng_state"]) class set_torch_seed(object): def __init__(self, seed): assert isinstance(seed, int) self.rng_state = get_rng_state() torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed(seed) def __enter__(self): return self def __exit__(self, *exc): set_rng_state(self.rng_state) class CudaEnvironment(object): def __init__(self): cur_device = torch.cuda.current_device() prop = torch.cuda.get_device_properties("cuda:{}".format(cur_device)) self.name = prop.name self.major = prop.major self.minor = prop.minor self.total_memory_in_GB = prop.total_memory / 1024 / 1024 / 1024 @staticmethod def pretty_print_cuda_env_list(cuda_env_list): """ Given a list of CudaEnviorments, pretty print them """ num_workers = len(cuda_env_list) center = "CUDA enviroments for all {} workers".format(num_workers) banner_len = 40 - len(center) // 2 first_line = "*" * banner_len + center + "*" * banner_len logger.info(first_line) for r, env in enumerate(cuda_env_list): logger.info( "rank {:3d}: ".format(r) + "capabilities = {:2d}.{:<2d} ; ".format(env.major, env.minor) + "total memory = {:.3f} GB ; ".format(env.total_memory_in_GB) + "name = {:40s}".format(env.name) ) logger.info(first_line) def eval_str_list(x, type=float): if x is None: return None if isinstance(x, str): x = eval(x) try: return list(map(type, x)) except TypeError: return [type(x)] def round_safe(x): if torch.is_tensor(x): return float(np.round(x.cpu().numpy(), 4)) else: try: return round(x, 4) except Exception: return x def remove_prefix(text: str, prefix: str): if text.startswith(prefix): return text[len(prefix) :] return text def print_r0(x, file=None): if not torch.distributed.is_initialized() or torch.distributed.get_rank() == 0: print(x, file=file, flush=True) def get_random_port(): old_state = random.getstate() random.seed() port = random.randint(10000, 20000) random.setstate(old_state) return port def floating_point_precision_convertor( x, fp16: bool, memory_efficient_fp16: bool, bf16: bool ): """ Convert a tensor x into the desired dtype. Also sanity checks combinations of options. """ if memory_efficient_fp16: assert not bf16, "Do not combined bf16 with memory_efficient_fp16." if bf16: assert fp16, "Setting --bf16 requires also setting --fp16 for legacy reasons." if not fp16 and not bf16: return x if not memory_efficient_fp16: # original parameters stay in fp32 and are converted by fairscale return x elif bf16: return x.bfloat16() else: return x.half() def get_precise_epoch(epoch: Optional[int], count: int, iterator_size: int) -> float: return ( epoch - 1 + (count + 1) / float(iterator_size) if epoch is not None and iterator_size > 0 else None )
flash_metaseq-main
metaseq/utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import ast import collections import functools import logging import os import re import traceback from glob import glob from typing import Any, Dict, List, Optional import torch from omegaconf import OmegaConf from metaseq.dataclass.configs import CheckpointConfig from metaseq.dataclass.utils import overwrite_args_by_name from metaseq.distributed import utils as dist_utils from metaseq.file_io import PathManager, torch_load_cpu from metaseq.launcher.opt_job_constants import ComputeEnvs logger = logging.getLogger(__name__) OPT_KEY = "last_optimizer_state" def save_checkpoint( cfg: CheckpointConfig, trainer, epoch_itr, val_loss, training_finished=False, async_callback_fn=None, ): from metaseq import meters # only one worker should attempt to create the required dir if trainer.data_parallel_rank == 0: os.makedirs(cfg.save_dir, exist_ok=True) prev_best = getattr(save_checkpoint, "best", val_loss) if val_loss is not None: best_function = max if cfg.maximize_best_checkpoint_metric else min save_checkpoint.best = best_function(val_loss, prev_best) if cfg.no_save: return trainer.consolidate_optimizer() # TODO(SS): we dont need if no_save_optimizer_state if not trainer.should_save_checkpoint_on_current_rank: return write_timer = meters.StopwatchMeter() write_timer.start() epoch = epoch_itr.epoch end_of_epoch = epoch_itr.end_of_epoch() updates = trainer.get_num_updates() logger.info(f"Preparing to save checkpoint for epoch {epoch} @ {updates} updates") def is_better(a, b): return a >= b if cfg.maximize_best_checkpoint_metric else a <= b suffix = trainer.checkpoint_suffix checkpoint_conds = collections.OrderedDict() checkpoint_conds["checkpoint{}{}.pt".format(epoch, suffix)] = ( end_of_epoch and not cfg.no_epoch_checkpoints and epoch % cfg.save_interval == 0 ) checkpoint_conds["checkpoint_{}_{}{}.pt".format(epoch, updates, suffix)] = ( not end_of_epoch and cfg.save_interval_updates > 0 and updates % cfg.save_interval_updates == 0 ) checkpoint_conds["checkpoint_best{}.pt".format(suffix)] = ( val_loss is not None and ( not hasattr(save_checkpoint, "best") or is_better(val_loss, save_checkpoint.best) ) and not cfg.no_best_checkpoints ) if ( val_loss is not None and cfg.keep_best_checkpoints > 0 and not cfg.no_best_checkpoints ): checkpoint_conds[ "checkpoint.best_{}_{:.2f}.pt".format(cfg.best_checkpoint_metric, val_loss) ] = not hasattr(save_checkpoint, "best") or is_better( val_loss, save_checkpoint.best ) checkpoint_conds[ "checkpoint_last{}.pt".format(suffix) ] = not cfg.no_last_checkpoints extra_state = {"train_iterator": epoch_itr.state_dict(), "val_loss": val_loss} if hasattr(save_checkpoint, "best"): extra_state.update({"best": save_checkpoint.best}) checkpoints = [ os.path.join(cfg.save_dir, fn) for fn, cond in checkpoint_conds.items() if cond ] if len(checkpoints) > 0: if PathManager.islink(checkpoints[0]): PathManager.rm(checkpoints[0]) trainer.save_checkpoint( checkpoints[0], extra_state, training_finished=training_finished, async_callback_fn=async_callback_fn, ) def _copy_if_not_async(src, dest): if cfg.write_checkpoints_asynchronously: pass # TODO[ioPath]: Need to implement a delayed asynchronous file copying/moving feature. else: assert PathManager.copy( src, dest, overwrite=True ), f"Failed to copy {src} to {dest}" for cp in checkpoints[1:]: _copy_if_not_async(src=checkpoints[0], dest=cp) write_timer.stop() logger.info( "Saved checkpoint {} (epoch {} @ {} updates, score {}) (writing took {} seconds)".format( checkpoints[0], epoch, updates, val_loss, write_timer.sum ) ) _delete_old_checkpoint_files( cfg, end_of_epoch, suffix, ) def _delete_old_checkpoint_files( cfg: CheckpointConfig, end_of_epoch: bool, suffix: str ): if not end_of_epoch and cfg.keep_interval_updates > 0: suffixes = [suffix] # remove old checkpoints; checkpoints are sorted in descending order for one_suffix in suffixes: checkpoints = _checkpoint_paths( cfg.save_dir, pattern=r"checkpoint_\d+_(\d+){}\.pt".format(one_suffix) ) for old_chk in checkpoints[cfg.keep_interval_updates :]: if os.path.lexists(old_chk): os.remove(old_chk) if cfg.keep_last_epochs > 0: # remove old epoch checkpoints; checkpoints are sorted in descending order checkpoints = _checkpoint_paths( cfg.save_dir, pattern=r"checkpoint(\d+){}\.pt".format(suffix) ) for old_chk in checkpoints[cfg.keep_last_epochs :]: if os.path.lexists(old_chk): os.remove(old_chk) if cfg.keep_best_checkpoints > 0: # only keep the best N checkpoints according to validation metric checkpoints = _checkpoint_paths( cfg.save_dir, pattern=r"checkpoint\.best_{}_(\d+\.?\d*){}\.pt".format( cfg.best_checkpoint_metric, suffix ), ) if not cfg.maximize_best_checkpoint_metric: checkpoints = checkpoints[::-1] for old_chk in checkpoints[cfg.keep_best_checkpoints :]: if os.path.lexists(old_chk): os.remove(old_chk) def load_checkpoint(cfg: CheckpointConfig, trainer, **passthrough_args): """ Load a checkpoint and restore the training iterator. *passthrough_args* will be passed through to ``trainer.get_train_iterator``. """ reset_optimizer = cfg.reset_optimizer reset_lr_scheduler = cfg.reset_lr_scheduler optimizer_overrides = ast.literal_eval(cfg.optimizer_overrides) reset_meters = cfg.reset_meters reset_dataloader = cfg.reset_dataloader if cfg.finetune_from_model is not None and ( reset_optimizer or reset_lr_scheduler or reset_meters or reset_dataloader ): raise ValueError( "--finetune-from-model can not be set together with either --reset-optimizer" " or reset_lr_scheduler or reset_meters or reset_dataloader" ) suffix = trainer.checkpoint_suffix default_restore_file = "checkpoint_last.pt" # default to loading from restore file. if cfg.restore_file == default_restore_file: checkpoint_path_to_load = os.path.join( cfg.save_dir, "checkpoint_last{}.pt".format(suffix) ) first_launch = not PathManager.exists(checkpoint_path_to_load) if cfg.finetune_from_model is not None and first_launch: # if there is no last checkpoint to restore, start the finetune from pretrained model # else just use usual logic to load checkpoint, e.g. restart from last checkpoint and etc. reset_optimizer = True reset_lr_scheduler = True reset_meters = True reset_dataloader = True checkpoint_path_to_load = None if PathManager.exists(cfg.finetune_from_model): checkpoint_path_to_load = cfg.finetune_from_model elif suffix is not None: # check for sharded version sharded_path = cfg.finetune_from_model.replace(".pt", suffix + ".pt") if PathManager.exists(sharded_path): checkpoint_path_to_load = sharded_path if checkpoint_path_to_load is None: raise ValueError( f"--finetune-from-model {cfg.finetune_from_model} does not exist either as is or sharded" ) logger.info( f"loading pretrained model from {checkpoint_path_to_load}: " "optimizer, lr scheduler, meters, dataloader will be reset" ) elif suffix is not None: checkpoint_path_to_load = cfg.restore_file.replace(".pt", suffix + ".pt") else: checkpoint_path_to_load = cfg.restore_file if cfg.restore_file != default_restore_file and cfg.finetune_from_model: raise ValueError( "--finetune-from-model and --restore-file (non-default value) " "can not be specified together: " + str(cfg) ) # Azure logic try: from metaseq_internal import azure_utils has_metaseq_internal = True except ImportError: has_metaseq_internal = False logger.warning( "Proceeding without metaseq-internal installed! Please check if you need this!" ) # TODO(susanz): fix all of this spagetti, split out logic by env if ( cfg.cloud_upload_path and cfg.cluster_env == ComputeEnvs.AZURE.value and has_metaseq_internal ): if ( # --restore-file was not passed, always download latest checkpoint ( cfg.restore_file == default_restore_file and cfg.finetune_from_model is None ) # --restore-file was passed, but we requeued, so download latest checkpoint or int(os.environ.get("SLURM_RESTART_COUNT", 0)) > 0 ): # download checkpoint into local save_dir checkpoint_path_to_load = os.path.join( cfg.save_dir, "checkpoint_last{}.pt".format(suffix) ) azure_utils.download_recent_ckpt( cfg.cloud_upload_path, checkpoint_path_to_load, suffix + ".pt" ) elif ( # --restore-file was passed and is a blob URL, download that checkpoint cfg.restore_file != default_restore_file and "windows.net" in cfg.restore_file ): blob_url = cfg.restore_file.replace(".pt", suffix + ".pt") # download checkpoint into local save_dir checkpoint_path_to_load = os.path.join( cfg.save_dir, "checkpoint_last{}.pt".format(suffix) ) azure_utils.download_specific_ckpt(blob_url, checkpoint_path_to_load) else: logger.info( f"Using checkpoint {checkpoint_path_to_load} even while on Azure" ) # RSC logic: --restore-file was passed, and we requeued elif ( cfg.restore_file != default_restore_file and int(os.environ.get("SLURM_RESTART_COUNT", 0)) > 0 ): # point checkpoint_path to the current checkpoint directory for loading, if it exists. save_dir_last = os.path.join( cfg.save_dir, "checkpoint_last{}.pt".format(suffix) ) if PathManager.isfile(save_dir_last): checkpoint_path_to_load = save_dir_last logger.info(f"attempting to load checkpoint from: {checkpoint_path_to_load}") extra_state = trainer.load_checkpoint( checkpoint_path_to_load, reset_optimizer, reset_lr_scheduler, optimizer_overrides, reset_meters=reset_meters, ) if ( extra_state is not None and "best" in extra_state and not reset_optimizer and not reset_meters ): save_checkpoint.best = extra_state["best"] if extra_state is not None and not reset_dataloader: # restore iterator from checkpoint itr_state = extra_state["train_iterator"] epoch_itr = trainer.get_train_iterator( epoch=itr_state["epoch"], **passthrough_args ) epoch_itr.load_state_dict(itr_state) else: epoch_itr = trainer.get_train_iterator(epoch=1, **passthrough_args) trainer.lr_step(epoch_itr.epoch) return extra_state, epoch_itr def _is_checkpoint_sharded(checkpoint_files) -> bool: """Infer if state is sharded based on whether largest file is more than 10% larger than smallest.""" sizes = [os.path.getsize(p) for p in checkpoint_files] size_ratio = max(sizes) / min(sizes) if size_ratio >= 1.1: return False else: return True def get_paths_to_load(local_path, suffix="rank-"): checkpoint_files = glob(re.sub(f"{suffix}[0-9]+", f"{suffix}*", local_path)) if not _is_checkpoint_sharded(checkpoint_files): return [local_path] checkpoint_files_count = len(checkpoint_files) world_size = dist_utils.get_data_parallel_world_size() fnames = [] if world_size >= checkpoint_files_count: return [local_path] assert checkpoint_files_count % world_size == 0 n_local_files = int(checkpoint_files_count / world_size) rank = dist_utils.get_data_parallel_rank() start_rank = n_local_files * rank # for rank_to_load in range(start_rank, start_rank + n_local_files): fname = re.sub( f"{suffix}[0-9]+", f"{suffix}{rank_to_load}", local_path, ) fnames.append(fname) logger.info( f"Loading {checkpoint_files_count} on {world_size} DDP workers: {n_local_files} files per worker. " ) return fnames def load_checkpoint_to_cpu(path, arg_overrides=None, load_on_all_ranks=False) -> dict: """Loads a checkpoint to CPU (with upgrading for backward compatibility). If doing single-GPU training or if the checkpoint is only being loaded by at most one process on each node (current default behavior is for only rank 0 to read the checkpoint from disk), load_on_all_ranks should be False to avoid errors from torch.distributed not having been initialized or torch.distributed.barrier() hanging. If all processes on each node may be loading the checkpoint simultaneously, load_on_all_ranks should be set to True to avoid I/O conflicts. There's currently no support for > 1 but < all processes loading the checkpoint on each node. """ local_path = PathManager.get_local_path(path) # The locally cached file returned by get_local_path() may be stale for # remote files that are periodically updated/overwritten (ex: # checkpoint_last.pt) - so we remove the local copy, sync across processes # (if needed), and then download a fresh copy. if local_path != path and PathManager.path_requires_pathmanager(path): try: os.remove(local_path) except FileNotFoundError: # With potentially multiple processes removing the same file, the # file being missing is benign (missing_ok isn't available until # Python 3.8). pass if load_on_all_ranks: torch.distributed.barrier() local_path = PathManager.get_local_path(path) # path to checkpoint...-shared.pt paths_to_load = get_paths_to_load(local_path, suffix="shard") try: if len(paths_to_load) > 1: state = _merge_flat_fsdp_shards([torch_load_cpu(f) for f in paths_to_load]) else: state = torch_load_cpu(local_path) except Exception: print( "got exception while trying to load", path, "with paths to load", paths_to_load, ) logger.info("Done reading from disk") if "cfg" in state and state["cfg"] is not None: # hack to be able to set Namespace in dict config. this should be removed when we update to newer # omegaconf version that supports object flags, or when we migrate all existing models from omegaconf import _utils old_primitive = _utils.is_primitive_type _utils.is_primitive_type = lambda _: True state["cfg"] = OmegaConf.create(state["cfg"]) _utils.is_primitive_type = old_primitive OmegaConf.set_struct(state["cfg"], True) if arg_overrides is not None: overwrite_args_by_name(state["cfg"], arg_overrides) state = _upgrade_state_dict(state) return state def load_model_ensemble_and_task( filenames, arg_overrides: Optional[Dict[str, Any]] = None, task=None, strict=True, suffix="", num_shards=1, state=None, build_model_hook=None, ): assert state is None or len(filenames) == 1 from metaseq import tasks assert not ( strict and num_shards > 1 ), "Cannot load state dict with strict=True and checkpoint shards > 1" ensemble = [] cfg = None for filename in filenames: orig_filename = filename assert num_shards > 0 for shard_idx in range(num_shards): if num_shards == 1: filename = filename.replace(".pt", suffix + ".pt") else: filename = orig_filename[:-3] + f"_part{shard_idx}.pt" if state is None: state = load_checkpoint_to_cpu(filename, arg_overrides) if "cfg" in state and state["cfg"] is not None: cfg = state["cfg"] else: raise RuntimeError( f"!!! cfg does not exist in state keys = {state.keys()} !!!" ) # Load 175B model trained on megatron (model parallel) branch # "cfg.common.model_parallel_size == 1" checks if model parallel is # enabled at load time. If it's not, fall back to non-MP # transformer code path. if ( getattr(cfg.model, "arch", None) == "transformer_lm_megatron" and cfg.common.model_parallel_size == 1 ): cfg.model.arch = "transformer_lm_gpt" cfg.model._name = "transformer_lm_gpt" oproj_key = "decoder.output_projection.weight" emb_key = "decoder.embed_tokens.weight" if emb_key in state["model"] and oproj_key not in state["model"]: state["model"][oproj_key] = state["model"][emb_key] if task is None: task = tasks.setup_task(cfg.task) if "task_state" in state: task.load_state_dict(state["task_state"]) if build_model_hook is not None: model = build_model_hook(cfg, task) else: # build model for ensemble model = task.build_model(cfg.model) model.load_state_dict(state["model"], strict=strict, model_cfg=cfg.model) logger.info("Done loading state dict") # reset state so it gets loaded for the next model in ensemble state = None ensemble.append(model) return ensemble, cfg, task def _checkpoint_paths(path, pattern=r"checkpoint(\d+)\.pt"): """Retrieves all checkpoints found in `path` directory. Checkpoints are identified by matching filename to the specified pattern. If the pattern contains groups, the result will be sorted by the first group in descending order. """ pt_regexp = re.compile(pattern) files = os.listdir(path) entries = [] for i, f in enumerate(files): m = pt_regexp.fullmatch(f) if m is not None: idx = float(m.group(1)) if len(m.groups()) > 0 else i entries.append((idx, m.group(0))) return [os.path.join(path, x[1]) for x in sorted(entries, reverse=True)] def torch_persistent_save( obj, filename: str, async_write: bool = False, async_callback_fn=None ): assert ( async_callback_fn is None or async_write ), "async_callback_fn requires async_write=True (--save-async)" if async_write and async_callback_fn is not None: callback = functools.partial(async_callback_fn, filename) else: callback = None if async_write: with PathManager.opena(filename, "wb", callback_after_file_close=callback) as f: _torch_persistent_save(obj, f) else: if PathManager.supports_rename(filename): # do atomic save with PathManager.open(filename + ".tmp", "wb") as f: _torch_persistent_save(obj, f) PathManager.rename(filename + ".tmp", filename) else: # fallback to non-atomic save with PathManager.open(filename, "wb") as f: _torch_persistent_save(obj, f) def _torch_persistent_save(obj, f, num_retries=3): if isinstance(f, str): with PathManager.open(f, "wb") as h: torch_persistent_save(obj, h) return for i in range(num_retries): try: return torch.save(obj, f) except Exception: if i == num_retries - 1: logger.error(traceback.format_exc()) def _upgrade_state_dict(state): """Helper for upgrading old model checkpoints.""" # add optimizer_history if "optimizer_history" not in state: state["optimizer_history"] = [ {"criterion_name": "CrossEntropyCriterion", "best_loss": state["best_loss"]} ] state["last_optimizer_state"] = state["optimizer"] del state["optimizer"] del state["best_loss"] # move extra_state into sub-dictionary if "epoch" in state and "extra_state" not in state: state["extra_state"] = { "epoch": state["epoch"], "batch_offset": state["batch_offset"], "val_loss": state["val_loss"], } del state["epoch"] del state["batch_offset"] del state["val_loss"] # reduce optimizer history's memory usage (only keep the last state) if "optimizer" in state["optimizer_history"][-1]: state["last_optimizer_state"] = state["optimizer_history"][-1]["optimizer"] for optim_hist in state["optimizer_history"]: del optim_hist["optimizer"] # move best_loss into lr_scheduler_state if "lr_scheduler_state" not in state["optimizer_history"][-1]: state["optimizer_history"][-1]["lr_scheduler_state"] = { "best": state["optimizer_history"][-1]["best_loss"] } del state["optimizer_history"][-1]["best_loss"] # keep track of number of updates if "num_updates" not in state["optimizer_history"][-1]: state["optimizer_history"][-1]["num_updates"] = 0 # use stateful training data iterator if "train_iterator" not in state["extra_state"]: state["extra_state"]["train_iterator"] = { "epoch": state["extra_state"]["epoch"], "iterations_in_epoch": state["extra_state"].get("batch_offset", 0), } return state def verify_checkpoint_directory(save_dir: str) -> None: if not os.path.exists(save_dir): os.makedirs(save_dir, exist_ok=True) rank = dist_utils.get_global_rank() temp_file_path = os.path.join(save_dir, f"dummy{rank}") try: with open(temp_file_path, "w"): pass except OSError as e: logger.warning( "Unable to access checkpoint save directory: {}".format(save_dir) ) raise e else: try: os.remove(temp_file_path) except FileNotFoundError: pass def _merge_flat_fsdp_shards(shards_to_load: List[Dict], unpad=False) -> Dict: """ Concatenate tensor entries in a list of local_state_dicts into one local_state_dict to allow resumption on a different world size. """ merged_state = {} world_size = dist_utils.get_data_parallel_world_size() for key in shards_to_load[0].keys(): merged_state[key] = shards_to_load[0][key] pad_info = _get_pad_info(shards_to_load[-1]) dtype = torch.float16 for k in shards_to_load[0]["model"]: dtype = shards_to_load[0]["model"][k].dtype if "flat_param" in k: pad_info_k = pad_info[k] catted = torch.cat([x["model"][k] for x in shards_to_load]) if world_size == 1 and pad_info_k > 0: catted = catted[:-pad_info_k] elif world_size > 1 and pad_info_k > 0 and not unpad: raise NotImplementedError( f"Param {k} padded with {pad_info_k} extra elements. You must use the reshard_mp script." ) merged_state["model"][k] = catted if "decoder.version" not in merged_state["model"]: merged_state["model"]["decoder.version"] = torch.tensor([3.0], dtype=dtype) if OPT_KEY in merged_state: merged_state[OPT_KEY] = _merge_flat_fsdp_opt_state(shards_to_load) return merged_state def _merge_flat_fsdp_opt_state(shards_to_load: List[Dict]) -> Dict: """Logic described here: https://tinyurl.com/2p86zffr""" result = shards_to_load[0][OPT_KEY] pad_info = _get_pad_info(shards_to_load[-1]) world_size = dist_utils.get_data_parallel_world_size() os2model_key = dict( zip(shards_to_load[0][OPT_KEY]["state"].keys(), pad_info.keys()) ) for k in shards_to_load[0][OPT_KEY]["state"].keys(): # 0,1,2,3... if each layer wrapped, else 0 for k2 in shards_to_load[0][OPT_KEY]["state"][k].keys(): # exp_avg, exp_avg_sq, step (for adam32 bit) states = [x[OPT_KEY]["state"][k][k2] for x in shards_to_load] if not torch.is_tensor(states[0]) or is_singleton_tensor(states[0]): result["state"][k][k2] = states[0] else: catted = torch.cat(states) if k in os2model_key: opt_state_key = os2model_key[k] pad_info_k = pad_info[opt_state_key] if world_size == 1 and pad_info_k > 0: # unpad catted = catted[:-pad_info_k] result["state"][k][k2] = catted return result def is_singleton_tensor(x: Any) -> bool: """Is x a dimensionless tensor?""" return torch.is_tensor(x) and x.dim() == 0 def _get_pad_info(state_dict: Dict) -> Dict[str, int]: if "shard_metadata" not in state_dict: # Note: comment this out if you have sharded checkpoints that you think can be loaded return collections.defaultdict(lambda: 0) res = {} for m in state_dict["shard_metadata"]["param_metadata"]: fsdp_path = m["fsdp_path"] for k, v in m["params"].items(): full_key = f"{fsdp_path}.{k}" if fsdp_path else k assert full_key not in res, f"collision: {full_key} already in {res}" res[full_key] = v["padding"] return res
flash_metaseq-main
metaseq/checkpoint_utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Utilities for working with the local dataset cache. This file is adapted from `AllenNLP <https://github.com/allenai/allennlp>`_. and `huggingface <https://github.com/huggingface>`_. """ import fnmatch import json import logging import os import shutil import tarfile import tempfile from functools import partial, wraps from hashlib import sha256 from io import open try: from torch.hub import _get_torch_home torch_cache_home = _get_torch_home() except ImportError: torch_cache_home = os.path.expanduser( os.getenv( "TORCH_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "torch") ) ) default_cache_path = os.path.join(torch_cache_home, "pytorch_fairseq") try: from urllib.parse import urlparse except ImportError: from urlparse import urlparse try: from pathlib import Path PYTORCH_FAIRSEQ_CACHE = Path(os.getenv("PYTORCH_FAIRSEQ_CACHE", default_cache_path)) except (AttributeError, ImportError): PYTORCH_FAIRSEQ_CACHE = os.getenv("PYTORCH_FAIRSEQ_CACHE", default_cache_path) CONFIG_NAME = "config.json" WEIGHTS_NAME = "pytorch_model.bin" logger = logging.getLogger(__name__) # pylint: disable=invalid-name def load_archive_file(archive_file): # redirect to the cache, if necessary try: resolved_archive_file = cached_path(archive_file, cache_dir=None) except EnvironmentError: logger.info( "Archive name '{}' was not found in archive name list. " "We assumed '{}' was a path or URL but couldn't find any file " "associated to this path or URL.".format( archive_file, archive_file, ) ) return None if resolved_archive_file == archive_file: logger.info("loading archive file {}".format(archive_file)) else: logger.info( "loading archive file {} from cache at {}".format( archive_file, resolved_archive_file ) ) # Extract archive to temp dir and replace .tar.bz2 if necessary tempdir = None if not os.path.isdir(resolved_archive_file): tempdir = tempfile.mkdtemp() logger.info( "extracting archive file {} to temp dir {}".format( resolved_archive_file, tempdir ) ) ext = os.path.splitext(archive_file)[1][1:] with tarfile.open(resolved_archive_file, "r:" + ext) as archive: top_dir = os.path.commonprefix(archive.getnames()) archive.extractall(tempdir) os.remove(resolved_archive_file) shutil.move(os.path.join(tempdir, top_dir), resolved_archive_file) shutil.rmtree(tempdir) return resolved_archive_file def url_to_filename(url, etag=None): """ Convert `url` into a hashed filename in a repeatable way. If `etag` is specified, append its hash to the URL's, delimited by a period. """ url_bytes = url.encode("utf-8") url_hash = sha256(url_bytes) filename = url_hash.hexdigest() if etag: etag_bytes = etag.encode("utf-8") etag_hash = sha256(etag_bytes) filename += "." + etag_hash.hexdigest() return filename def filename_to_url(filename, cache_dir=None): """ Return the url and etag (which may be ``None``) stored for `filename`. Raise ``EnvironmentError`` if `filename` or its stored metadata do not exist. """ if cache_dir is None: cache_dir = PYTORCH_FAIRSEQ_CACHE if isinstance(cache_dir, Path): cache_dir = str(cache_dir) cache_path = os.path.join(cache_dir, filename) if not os.path.exists(cache_path): raise EnvironmentError("file {} not found".format(cache_path)) meta_path = cache_path + ".json" if not os.path.exists(meta_path): raise EnvironmentError("file {} not found".format(meta_path)) with open(meta_path, encoding="utf-8") as meta_file: metadata = json.load(meta_file) url = metadata["url"] etag = metadata["etag"] return url, etag def cached_path(url_or_filename, cache_dir=None): """ Given something that might be a URL (or might be a local path), determine which. If it's a URL, download the file and cache it, and return the path to the cached file. If it's already a local path, make sure the file exists and then return the path. """ if cache_dir is None: cache_dir = PYTORCH_FAIRSEQ_CACHE if isinstance(url_or_filename, Path): url_or_filename = str(url_or_filename) if isinstance(cache_dir, Path): cache_dir = str(cache_dir) parsed = urlparse(url_or_filename) if parsed.scheme in ("http", "https", "s3"): # URL, so get it from the cache (downloading if necessary) return get_from_cache(url_or_filename, cache_dir) elif os.path.exists(url_or_filename): # File, and it exists. return url_or_filename elif parsed.scheme == "": # File, but it doesn't exist. raise EnvironmentError("file {} not found".format(url_or_filename)) else: # Something unknown raise ValueError( "unable to parse {} as a URL or as a local path".format(url_or_filename) ) def split_s3_path(url): """Split a full s3 path into the bucket name and path.""" parsed = urlparse(url) if not parsed.netloc or not parsed.path: raise ValueError("bad s3 path {}".format(url)) bucket_name = parsed.netloc s3_path = parsed.path # Remove '/' at beginning of path. if s3_path.startswith("/"): s3_path = s3_path[1:] return bucket_name, s3_path def s3_request(func): """ Wrapper function for s3 requests in order to create more helpful error messages. """ @wraps(func) def wrapper(url, *args, **kwargs): from botocore.exceptions import ClientError try: return func(url, *args, **kwargs) except ClientError as exc: if int(exc.response["Error"]["Code"]) == 404: raise EnvironmentError("file {} not found".format(url)) else: raise return wrapper @s3_request def s3_etag(url): """Check ETag on S3 object.""" import boto3 s3_resource = boto3.resource("s3") bucket_name, s3_path = split_s3_path(url) s3_object = s3_resource.Object(bucket_name, s3_path) return s3_object.e_tag @s3_request def s3_get(url, temp_file): """Pull a file directly from S3.""" import boto3 s3_resource = boto3.resource("s3") bucket_name, s3_path = split_s3_path(url) s3_resource.Bucket(bucket_name).download_fileobj(s3_path, temp_file) def request_wrap_timeout(func, url): import requests for attempt, timeout in enumerate([10, 20, 40, 60, 60]): try: return func(timeout=timeout) except requests.exceptions.Timeout as e: logger.warning( "Request for %s timed-out (attempt %d). Retrying with a timeout of %d secs", url, attempt, timeout, exc_info=e, ) continue raise RuntimeError(f"Unable to fetch file {url}") def http_get(url, temp_file): import requests from tqdm import tqdm req = request_wrap_timeout(partial(requests.get, url, stream=True), url) content_length = req.headers.get("Content-Length") total = int(content_length) if content_length is not None else None progress = tqdm(unit="B", total=total) for chunk in req.iter_content(chunk_size=1024): if chunk: # filter out keep-alive new chunks progress.update(len(chunk)) temp_file.write(chunk) progress.close() def get_from_cache(url, cache_dir=None): """ Given a URL, look for the corresponding dataset in the local cache. If it's not there, download it. Then return the path to the cached file. """ if cache_dir is None: cache_dir = PYTORCH_FAIRSEQ_CACHE if isinstance(cache_dir, Path): cache_dir = str(cache_dir) if not os.path.exists(cache_dir): os.makedirs(cache_dir) # Get eTag to add to filename, if it exists. if url.startswith("s3://"): etag = s3_etag(url) else: try: import requests response = request_wrap_timeout( partial(requests.head, url, allow_redirects=True), url ) if response.status_code != 200: etag = None else: etag = response.headers.get("ETag") except RuntimeError: etag = None filename = url_to_filename(url, etag) # get cache path to put the file cache_path = os.path.join(cache_dir, filename) # If we don't have a connection (etag is None) and can't identify the file # try to get the last downloaded one if not os.path.exists(cache_path) and etag is None: matching_files = fnmatch.filter(os.listdir(cache_dir), filename + ".*") matching_files = list(filter(lambda s: not s.endswith(".json"), matching_files)) if matching_files: cache_path = os.path.join(cache_dir, matching_files[-1]) if not os.path.exists(cache_path): # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with tempfile.NamedTemporaryFile() as temp_file: logger.info("%s not found in cache, downloading to %s", url, temp_file.name) # GET file object if url.startswith("s3://"): s3_get(url, temp_file) else: http_get(url, temp_file) # we are copying the file before closing it, so flush to avoid truncation temp_file.flush() # shutil.copyfileobj() starts at the current position, so go to the start temp_file.seek(0) logger.info("copying %s to cache at %s", temp_file.name, cache_path) with open(cache_path, "wb") as cache_file: shutil.copyfileobj(temp_file, cache_file) logger.info("creating metadata file for %s", cache_path) meta = {"url": url, "etag": etag} meta_path = cache_path + ".json" with open(meta_path, "w") as meta_file: output_string = json.dumps(meta) meta_file.write(output_string) logger.info("removing temp file %s", temp_file.name) return cache_path def read_set_from_file(filename): """ Extract a de-duped collection (set) of text from a file. Expected file format is one item per line. """ collection = set() with open(filename, "r", encoding="utf-8") as file_: for line in file_: collection.add(line.rstrip()) return collection def get_file_extension(path, dot=True, lower=True): ext = os.path.splitext(path)[1] ext = ext if dot else ext[1:] return ext.lower() if lower else ext
flash_metaseq-main
metaseq/file_utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Optional import torch import torch.nn as nn from torch import Tensor class Search(nn.Module): def __init__(self, tgt_dict): super().__init__() self.pad = tgt_dict.pad() self.unk = tgt_dict.unk() self.eos = tgt_dict.eos() self.vocab_size = len(tgt_dict) self.src_lengths = torch.tensor(-1) self.supports_constraints = False self.stop_on_max_len = False def step( self, step, lprobs, scores, prev_output_tokens=None, original_batch_idxs=None ): """Take a single search step. Args: step: the current search step, starting at 0 lprobs: (bsz x input_beam_size x vocab_size) the model's log-probabilities over the vocabulary at the current step scores: (bsz x input_beam_size x step) the historical model scores of each hypothesis up to this point prev_output_tokens: (bsz x step) the previously generated output tokens original_batch_idxs: (bsz) the tensor with the batch indices, in the range [0, bsz) this is useful in case there has been applied a re-ordering and we need to know the orignal indices Return: A tuple of (scores, indices, beams) where: scores: (bsz x output_beam_size) the scores of the chosen elements; output_beam_size can be larger than input_beam_size, e.g., we may return 2*input_beam_size to account for EOS indices: (bsz x output_beam_size) the indices of the chosen elements beams: (bsz x output_beam_size) the hypothesis ids of the chosen elements, in the range [0, input_beam_size) """ raise NotImplementedError @torch.jit.export def set_src_lengths(self, src_lengths): self.src_lengths = src_lengths @torch.jit.export def init_constraints(self, batch_constraints: Optional[Tensor], beam_size: int): """Initialize constraint states for constrained decoding (if supported). Args: batch_constraints: (torch.Tensor, optional) the list of constraints, in packed form beam_size: (int) the beam size Returns: *encoder_out* rearranged according to *new_order* """ pass def prune_sentences(self, batch_idxs: Tensor): """ Removes constraint states for completed sentences (if supported). This is called from sequence_generator._generate() when sentences are deleted from the batch. Args: batch_idxs: Indices of *sentences* whose constraint state should be *kept*. """ pass def update_constraints(self, active_hypos: Tensor): """ Updates the constraint states by selecting the beam items that are retained. This is called at each time step of sequence_generator._generate() when the set of 2 * {beam_size} candidate hypotheses are reduced to the beam size. Args: active_hypos: (batch size, beam size) list of integers denoting, for each sentence, which beam candidate items should be kept. """ pass class BeamSearch(Search): def __init__(self, tgt_dict): super().__init__(tgt_dict) self.constraint_states = None @torch.jit.export def step( self, step: int, lprobs, scores: Optional[Tensor], prev_output_tokens: Optional[Tensor] = None, original_batch_idxs: Optional[Tensor] = None, ): bsz, beam_size, vocab_size = lprobs.size() if step == 0: # at the first step all hypotheses are equally likely, so use # only the first beam lprobs = lprobs[:, ::beam_size, :].contiguous() else: # make probs contain cumulative scores for each hypothesis assert scores is not None lprobs = lprobs + scores[:, :, step - 1].unsqueeze(-1) top_prediction = torch.topk( lprobs.view(bsz, -1), k=min( # Take the best 2 x beam_size predictions. We'll choose the first # beam_size of these which don't predict eos to continue with. beam_size * 2, lprobs.view(bsz, -1).size(1) - 1, # -1 so we never select pad ), ) scores_buf = top_prediction[0] indices_buf = top_prediction[1] # Project back into relative indices and beams beams_buf = torch.div(indices_buf, vocab_size, rounding_mode="trunc") indices_buf = indices_buf.fmod(vocab_size) # At this point, beams_buf and indices_buf are single-dim and contain relative indices return scores_buf, indices_buf, beams_buf class Sampling(Search): sampling_topk: int sampling_topp: float def __init__(self, tgt_dict, sampling_topk=-1, sampling_topp=-1.0): super().__init__(tgt_dict) self.sampling_topk = sampling_topk self.sampling_topp = sampling_topp def _sample_topp(self, lprobs): """Sample among the smallest set of elements whose cumulative probability mass exceeds p. See `"The Curious Case of Neural Text Degeneration" (Holtzman et al., 2019) <https://arxiv.org/abs/1904.09751>`_. Args: lprobs: (bsz x input_beam_size x vocab_size) the model's log-probabilities over the vocabulary at the current step Return: A tuple of (trimed_probs, truncated_indices) where: trimed_probs: (bsz x input_beam_size x ?) the model's probabilities over the elements selected to sample from. The width of the third dimension is determined by top-P. truncated_indices: (bsz x input_beam_size x ?) the indices of the chosen elements. """ probs = lprobs.exp_() # sort the last dimension (vocab dimension) in descending order sorted_probs, sorted_indices = probs.sort(descending=True) # compute a mask to indicate the words to be included in the top-P set. cumsum_probs = sorted_probs.cumsum(dim=2) mask = cumsum_probs.lt(self.sampling_topp) # note that mask was computed by 'lt'. One more word needs to be included # so that the cumulative probability mass can exceed p. cumsum_mask = mask.cumsum(dim=2) last_included = cumsum_mask[:, :, -1:] last_included.clamp_(0, mask.size()[2] - 1) mask = mask.scatter_(2, last_included, 1) # truncate unnecessary dims. max_dim = last_included.max() truncated_mask = mask[:, :, : max_dim + 1] truncated_probs = sorted_probs[:, :, : max_dim + 1] truncated_indices = sorted_indices[:, :, : max_dim + 1] # trim the words that are not in top-P by setting their probabilities # to 0, so that they would not be sampled later. trim_mask = ~truncated_mask trimed_probs = truncated_probs.masked_fill_(trim_mask, 0) return trimed_probs, truncated_indices @torch.jit.export def step( self, step: int, lprobs, scores, prev_output_tokens: Optional[Tensor] = None, original_batch_idxs: Optional[Tensor] = None, ): bsz, beam_size, vocab_size = lprobs.size() if step == 0: # at the first step all hypotheses are equally likely, so use # only the first beam lprobs = lprobs[:, ::beam_size, :].contiguous() if self.sampling_topp > 0: # only sample from the smallest set of words whose cumulative probability mass exceeds p probs, top_indices = self._sample_topp(lprobs) elif self.sampling_topk > 0: # only sample from top-k candidates lprobs, top_indices = lprobs.topk(self.sampling_topk) probs = lprobs.exp_() else: probs = lprobs.exp_() # dummy data to be consistent with true branch for type check top_indices = torch.empty(0).to(probs) # sample if step == 0: indices_buf = torch.multinomial( probs.view(bsz, -1), beam_size, replacement=True, ).view(bsz, beam_size) else: indices_buf = torch.multinomial( probs.view(bsz * beam_size, -1), 1, replacement=True, ).view(bsz, beam_size) if step == 0: # expand to beam size probs = probs.expand(bsz, beam_size, -1) # gather scores scores_buf = torch.gather(probs, dim=2, index=indices_buf.unsqueeze(-1)) scores_buf = scores_buf.log_().view(bsz, -1) # remap indices if using top-k or top-P sampling if self.sampling_topk > 0 or self.sampling_topp > 0: indices_buf = torch.gather( top_indices.expand(bsz, beam_size, -1), dim=2, index=indices_buf.unsqueeze(-1), ).squeeze(2) if step == 0: beams_buf = indices_buf.new_zeros(bsz, beam_size) else: beams_buf = torch.arange(0, beam_size).to(indices_buf).repeat(bsz, 1) # make scores cumulative scores_buf.add_( torch.gather(scores[:, :, step - 1], dim=1, index=beams_buf) ) return scores_buf, indices_buf, beams_buf
flash_metaseq-main
metaseq/search.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import json import logging import os import shutil from typing import List, Optional import torch from omegaconf.dictconfig import DictConfig logger = logging.getLogger(__file__) from .s3_utils import S3PathHandler # noqa: E402 try: from iopath.common.file_io import PathManager IOPathPathManager = PathManager() except ImportError: IOPathPathManager = None try: IOPathPathManager.register_handler(S3PathHandler()) except KeyError: pass except Exception: logging.exception("Failed to register S3 Path Handler. Try pip install boto3") class PathManager: """ Wrapper for insulating OSS I/O (using Python builtin operations) from fvcore's PathManager abstraction (for transparently handling various internal backends). """ @staticmethod def open( path: str, mode: str = "r", buffering: int = -1, encoding: Optional[str] = None, errors: Optional[str] = None, newline: Optional[str] = None, ): if IOPathPathManager: return IOPathPathManager.open( path=path, mode=mode, buffering=buffering, encoding=encoding, errors=errors, newline=newline, ) return open( path, mode=mode, buffering=buffering, encoding=encoding, errors=errors, newline=newline, ) @staticmethod def copy(src_path: str, dst_path: str, overwrite: bool = False) -> bool: if IOPathPathManager: return IOPathPathManager.copy( src_path=src_path, dst_path=dst_path, overwrite=overwrite ) return shutil.copyfile(src_path, dst_path) @staticmethod def get_local_path(path: str, **kwargs) -> str: if IOPathPathManager: return IOPathPathManager.get_local_path(path, **kwargs) return path @staticmethod def exists(path: str) -> bool: if IOPathPathManager: return IOPathPathManager.exists(path) return os.path.exists(path) @staticmethod def isfile(path: str) -> bool: if IOPathPathManager: return IOPathPathManager.isfile(path) return os.path.isfile(path) @staticmethod def islink(path: str) -> Optional[bool]: if not PathManager.path_requires_pathmanager(path): return os.path.islink(path) return None @staticmethod def ls(path: str) -> List[str]: if IOPathPathManager: return IOPathPathManager.ls(path) return os.listdir(path) @staticmethod def mkdirs(path: str) -> None: if IOPathPathManager: return IOPathPathManager.mkdirs(path) os.makedirs(path, exist_ok=True) @staticmethod def rm(path: str) -> None: if IOPathPathManager: return IOPathPathManager.rm(path) os.remove(path) assert not os.path.exists(path) @staticmethod def chmod(path: str, mode: int) -> None: if not PathManager.path_requires_pathmanager(path): os.chmod(path, mode) @staticmethod def register_handler(handler) -> None: if IOPathPathManager: return IOPathPathManager.register_handler(handler=handler) @staticmethod def copy_from_local( local_path: str, dst_path: str, overwrite: bool = False, **kwargs ) -> None: if IOPathPathManager: return IOPathPathManager.copy_from_local( local_path=local_path, dst_path=dst_path, overwrite=overwrite, **kwargs ) return shutil.copyfile(local_path, dst_path) @staticmethod def path_requires_pathmanager(path: str) -> bool: """Do we require PathManager to access given path?""" if IOPathPathManager: for p in IOPathPathManager._path_handlers.keys(): if path.startswith(p): return True return False @staticmethod def supports_rename(path: str) -> bool: # PathManager doesn't yet support renames return not PathManager.path_requires_pathmanager(path) @staticmethod def rename(src: str, dst: str): os.rename(src, dst) """ ioPath async PathManager methods: """ @staticmethod def opena( path: str, mode: str = "r", buffering: int = -1, encoding: Optional[str] = None, errors: Optional[str] = None, newline: Optional[str] = None, callback_after_file_close=None, ): """ Return file descriptor with asynchronous write operations. """ global IOPathPathManager return IOPathPathManager.opena( path=path, mode=mode, buffering=buffering, encoding=encoding, errors=errors, newline=newline, callback_after_file_close=callback_after_file_close, ) @staticmethod def async_close() -> bool: """ Wait for files to be written and clean up asynchronous PathManager. NOTE: `PathManager.async_close()` must be called at the end of any script that uses `PathManager.opena(...)`. """ global IOPathPathManager if IOPathPathManager: return IOPathPathManager.async_close() return False def recursively_cast_dictconfigs(cfg): if isinstance(cfg, DictConfig): cfg = eval(str(cfg)) assert not isinstance(cfg, DictConfig) if isinstance(cfg, dict): return {k2: recursively_cast_dictconfigs(v2) for k2, v2 in cfg.items()} else: # Easy to support List, Tuple if needed return cfg def torch_load_cpu(path): state = torch.load(path, map_location=torch.device("cpu")) # If model was trained with fp16, model from loaded state_dict can be moved to fp16 if not isinstance(state, dict): return state if "cfg" in state: state["cfg"] = recursively_cast_dictconfigs(state["cfg"]) if ( state["cfg"]["common"]["fp16"] or state["cfg"]["common"]["memory_efficient_fp16"] ): state["model"] = {k: v.half() for k, v in state["model"].items()} return state def save_json(content, path, indent=4): with open(path, "w") as f: json.dump(content, f, indent=indent) def load_json(p): return json.load(open(p)) def load_jsonl(path): with open(path).read() as jsonl_content: result = [json.loads(jline) for jline in jsonl_content.splitlines()] return result def load_and_pop_last_optimizer_state(pth): st = torch_load_cpu(pth) st.pop("last_optimizer_state", None) return st
flash_metaseq-main
metaseq/file_io.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Train a network across multiple GPUs. """ import contextlib import logging import re import sys import time from itertools import chain from typing import Any, Dict, List import torch from omegaconf import OmegaConf from metaseq import checkpoint_utils, models, optim, utils from metaseq.distributed import utils as distributed_utils from metaseq.file_io import PathManager from metaseq.logging import meters, metrics from metaseq.nan_detector import NanDetector from metaseq.optim import lr_scheduler logger = logging.getLogger(__name__) class Trainer(object): """Main class for data parallel training. This class supports synchronous distributed data parallel training, where multiple workers each have a full model replica and gradients are accumulated across workers before each update. We use :class:`~torch.nn.parallel.DistributedDataParallel` to handle communication of the gradients across workers. """ def __init__(self, cfg, task, model, criterion): self.cfg = cfg self.task = task # catalog shared parameters shared_params = _catalog_shared_params(model) self.cuda = torch.cuda.is_available() and not cfg.common.cpu self.dont_log_param_and_grad_norm = getattr( cfg.common, "dont_log_param_and_grad_norm", False ) if self.cuda: self.device = torch.device("cuda") else: self.device = torch.device("cpu") if self.is_fsdp: import fairscale if self.cfg.distributed_training.zero_sharding != "none": raise ValueError( "FullyShardedDataParallel is not compatible with --zero-sharding " "option (it's already built in)" ) if ( max(self.cfg.optimization.update_freq) > 1 and fairscale.__version__ < "0.4.0" ): raise RuntimeError( "Please update to fairscale 0.4.0 or newer when combining " "--update-freq with FullyShardedDataParallel" ) if self.cfg.optimizer == "adam8bit": assert ( self.use_sharded_state ), "adam8bit + FSDP requires --use-sharded-state" if self.use_sharded_state: import fairscale assert ( fairscale.__version__ >= "0.3.9" ), "--use-sharded-state requires newer fairscale. pip install -U fairscale" else: if self.cfg.distributed_training.cpu_offload: raise ValueError("--cpu-offload requires --ddp-backend=fully_sharded") # copy model and criterion to current device/dtype self._criterion = criterion self._model = model if not self.is_fsdp: if cfg.common.fp16: self._criterion = self._criterion.half() self._model = self._model.half() if ( # the DistributedModel wrapper will handle moving to device, # so only handle cases which don't use the wrapper not self.use_distributed_wrapper ): self._criterion = self._criterion.to(device=self.device) self._model = self._model.to(device=self.device) # check that shared parameters are preserved after device transfer for shared_param in shared_params: ref = _get_module_by_path(self._model, shared_param[0]) for path in shared_param[1:]: logger.info( "detected shared parameter: {} <- {}".format(shared_param[0], path) ) _set_module_by_path(self._model, path, ref) logger.info(metrics.get_nvidia_smi_gpu_memory_stats_str()) self._dummy_batch = None # indicates we don't have a dummy batch at first self._lr_scheduler = None self._num_updates = 0 self._optim_history = None self._optimizer = None self._warn_once = set() self._wrapped_criterion = None self._wrapped_model = None # TODO(myleott): support tpu if self.cuda and self.data_parallel_world_size > 1: self._grad_norm_buf = torch.cuda.DoubleTensor(self.data_parallel_world_size) else: self._grad_norm_buf = None # get detailed cuda environment if self.cuda: self.cuda_env = utils.CudaEnvironment() if self.data_parallel_world_size > 1: self.cuda_env_arr = distributed_utils.all_gather_list( self.cuda_env, group=distributed_utils.get_global_group() ) else: self.cuda_env_arr = [self.cuda_env] if self.data_parallel_rank == 0: utils.CudaEnvironment.pretty_print_cuda_env_list(self.cuda_env_arr) else: self.cuda_env = None self.cuda_env_arr = None metrics.log_start_time("wall", priority=790, round=0) self._start_time = time.time() self._previous_training_time = 0 self._cumulative_training_time = None def reinitialize(self): """Reinitialize the Trainer, typically after model params change.""" self._lr_scheduler = None self._optimizer = None self._wrapped_criterion = None self._wrapped_model = None @property def data_parallel_world_size(self): if self.cfg.distributed_training.distributed_world_size == 1: return 1 return distributed_utils.get_data_parallel_world_size() @property def data_parallel_process_group(self): return distributed_utils.get_data_parallel_group() @property def data_parallel_rank(self): if self.cfg.distributed_training.distributed_world_size == 1: return 0 return distributed_utils.get_data_parallel_rank() @property def is_data_parallel_master(self): # NOTE: this returns true for all model parallel replicas with data # parallel rank 0 return self.data_parallel_rank == 0 @property def use_distributed_wrapper(self) -> bool: return (self.data_parallel_world_size > 1) or ( self.is_fsdp and self.cfg.distributed_training.cpu_offload ) @property def should_save_checkpoint_on_current_rank(self) -> bool: """Indicates whether to save checkpoints on the current DDP rank.""" if self.is_fsdp: return True else: return self.is_data_parallel_master @property def checkpoint_suffix(self) -> str: """Suffix to add to the checkpoint file name.""" if not self.use_sharded_state: return self.cfg.checkpoint.checkpoint_suffix elif self.is_fsdp: return self.cfg.checkpoint.checkpoint_suffix + "-shard{0}".format( self.data_parallel_rank ) else: return self.cfg.checkpoint.checkpoint_suffix or "" @property def criterion(self): if self._wrapped_criterion is None: if utils.has_parameters(self._criterion) and self.use_distributed_wrapper: self._wrapped_criterion = models.DistributedModel( self.cfg.distributed_training, self._criterion, process_group=self.data_parallel_process_group, device=self.device, ) else: self._wrapped_criterion = self._criterion return self._wrapped_criterion @property def model(self): if self._wrapped_model is None: if self.use_distributed_wrapper or self.is_fsdp: self._wrapped_model = models.DistributedModel( self.cfg.distributed_training, self._model, process_group=self.data_parallel_process_group, device=self.device, ) else: self._wrapped_model = self._model return self._wrapped_model @property def optimizer(self): if self._optimizer is None: self._build_optimizer() return self._optimizer @property def lr_scheduler(self): if self._lr_scheduler is None: self._build_optimizer() # this will initialize self._lr_scheduler return self._lr_scheduler def _build_optimizer(self): params = list( filter( lambda p: p.requires_grad, chain(self.model.parameters(), self.criterion.parameters()), ) ) if self.is_fsdp and self.cfg.common.fp16: # FullyShardedDataParallel always uses MemoryEfficientFP16 wrapper, # mostly for the grad scaling. But if we don't have the # --memory-efficient-fp16 flag set, then we're effectively doing # regular --fp16 and can allow the use of optimizers that would # otherwise be unsupported by MemoryEfficientFP16Optimizer. allow_unsupported = not self.cfg.common.memory_efficient_fp16 self._optimizer = optim.MemoryEfficientFP16Optimizer.build_optimizer( self.cfg, params, allow_unsupported=allow_unsupported ) elif self.cfg.common.fp16: if self.cuda and torch.cuda.get_device_capability(0)[0] < 7: logger.info( "NOTE: your device does NOT support faster training with --fp16, " "please switch to FP32 which is likely to be faster" ) if self.cfg.common.memory_efficient_fp16: self._optimizer = optim.MemoryEfficientFP16Optimizer.build_optimizer( self.cfg, params ) else: self._optimizer = optim.FP16Optimizer.build_optimizer(self.cfg, params) else: if self.cuda and torch.cuda.get_device_capability(0)[0] >= 7: logger.info("NOTE: your device may support faster training with --fp16") self._optimizer = optim.build_optimizer(self.cfg.optimizer, params) if self.is_fsdp: assert self._optimizer.supports_flat_params, ( "--ddp-backend=fully_sharded is only compatible with pointwise " "optimizers (e.g., Adam, AdamW, Adadelta, Adamax, SGD, etc.). " "However, the sharding will result in slightly different results when " "using non-pointwise optimizers (e.g., Adagrad, Adafactor, LAMB)" ) if self.cfg.distributed_training.zero_sharding == "os": if ( self.cfg.common.fp16 and not self.cfg.common.memory_efficient_fp16 and not self.cfg.common.fp16_no_flatten_grads ): raise ValueError( "ZeRO is incompatible with fp16 and flattened grads. " "Please use --fp16-no-flatten-grads" ) else: optim.shard_(self._optimizer, self.data_parallel_process_group) # We should initialize the learning rate scheduler immediately after # building the optimizer, so that the initial learning rate is set. self._lr_scheduler = lr_scheduler.build_lr_scheduler( self.cfg.lr_scheduler, self.optimizer, ) self._lr_scheduler.step_update(0) @property def is_fsdp(self): return self.cfg.distributed_training.ddp_backend == "fully_sharded" @property def use_sharded_state(self): return self.cfg.distributed_training.use_sharded_state def consolidate_optimizer(self): """For OSS, we need to consolidate the state dict.""" self._gathered_optim_state = None if self.cfg.checkpoint.no_save_optimizer_state: return if hasattr(self.optimizer.optimizer, "consolidate_state_dict"): self.optimizer.optimizer.consolidate_state_dict() elif self.is_fsdp and not self.use_sharded_state: st = self.model.gather_full_optim_state_dict( self.optimizer ) # only returns on rank 0 if st is None: st = -1 # sentinel so that workers do not save optimizer.state_dict() self._gathered_optim_state = st assert self._gathered_optim_state is not None def state_dict(self, filename, training_finished=False) -> Dict[str, Dict]: model_state_dict = self.model.state_dict() optim_state = None if not self.cfg.checkpoint.no_save_optimizer_state: optim_state = self._gathered_optim_state or self.optimizer.state_dict() model_save_list = [ ( filename, model_state_dict, optim_state, ) ] state_dicts = {} # This is what gets saved to checkpoints. for filename, model_state_dict, optimizer_state_dict in model_save_list: state_dict = { "cfg": OmegaConf.to_container(self.cfg) if OmegaConf.is_config(self.cfg) else self.cfg, "model": model_state_dict, "criterion": ( self.criterion.state_dict() if utils.has_parameters(self.criterion) else None ), "optimizer_history": (self._optim_history or []) + [ { "criterion_name": self.get_criterion().__class__.__name__, "optimizer_name": self.optimizer.__class__.__name__, "lr_scheduler_state": self.lr_scheduler.state_dict(), "num_updates": self.get_num_updates(), } ], "task_state": self.task.state_dict() if self.task is not None else {}, "extra_state": { "metrics": metrics.state_dict(), "previous_training_time": self.cumulative_training_time(), }, } if not self.cfg.checkpoint.no_save_optimizer_state or ( self.cfg.checkpoint.no_save_optimizer_state_on_training_finished and training_finished ): state_dict["last_optimizer_state"] = optimizer_state_dict if self.is_fsdp and self.use_sharded_state: state_dict[ "shard_metadata" ] = ( self.model.local_metadata_dict() ) # save FSDP flattening and padding info state_dicts[filename] = state_dict return state_dicts def save_checkpoint( self, filename, extra_state, training_finished=False, async_callback_fn=None ): """Save all training state in a checkpoint file.""" # call state_dict on all ranks in case it needs internal communication state_dicts = self.state_dict(filename, training_finished) for filename, state_dict in state_dicts.items(): logger.info(f"Saving checkpoint to {filename}") state_dict = utils.move_to_cpu( state_dict, # keep params in FP16 when training with --memory-efficient-fp16 cast_to_fp32=not self.cfg.common.memory_efficient_fp16, ) state_dict["extra_state"].update(extra_state) if self.should_save_checkpoint_on_current_rank: checkpoint_utils.torch_persistent_save( state_dict, filename, async_write=self.cfg.checkpoint.write_checkpoints_asynchronously, async_callback_fn=async_callback_fn, ) logger.info(f"Finished saving checkpoint to {filename}") def load_checkpoint( self, filename, reset_optimizer=False, reset_lr_scheduler=False, optimizer_overrides=None, reset_meters=False, ): """ Load all training state from a checkpoint file. rank = 0 will load the checkpoint, and then broadcast it to all other ranks. """ extra_state, self._optim_history, last_optim_state = None, [], None is_distributed = self.data_parallel_world_size > 1 bexists = PathManager.isfile(filename) if bexists: logger.info(f"Preparing to load checkpoint {filename}") load_on_all_ranks = ( self.cfg.checkpoint.load_checkpoint_on_all_dp_ranks # FSDP requires loading checkpoint shards on all ranks or self.is_fsdp ) if load_on_all_ranks or self.is_data_parallel_master: state = checkpoint_utils.load_checkpoint_to_cpu( filename, load_on_all_ranks=load_on_all_ranks, ) last_optim_state = state.get("last_optimizer_state", None) if last_optim_state == -1: master_path = re.sub("shard[0-9]+", "shard0", filename) last_optim_state = torch.load(master_path, map_location="cpu")[ "last_optimizer_state" ] logger.info(f"Loaded state for {filename}") # If doing zero_sharding, do not broadcast global optimizer # state. Later we will broadcast sharded states to each rank # to avoid memory exploding. if ( not load_on_all_ranks and self.cfg.distributed_training.zero_sharding == "os" and "last_optimizer_state" in state and is_distributed ): state["last_optimizer_state"] = "SHARDED" else: last_optim_state = None state = None if self.data_parallel_world_size > 1 and not load_on_all_ranks: state = distributed_utils.broadcast_object( state, src_rank=0, group=self.data_parallel_process_group, dist_device=self.device, ) if self.data_parallel_rank > 0: last_optim_state = state.get("last_optimizer_state", None) # load model parameters try: self.model.load_state_dict( state["model"], strict=True, model_cfg=self.cfg.model ) # save memory for later steps del state["model"] if utils.has_parameters(self.get_criterion()): self.get_criterion().load_state_dict( state["criterion"], strict=True ) del state["criterion"] except Exception: raise Exception( "Cannot load model parameters from checkpoint {}; " "please ensure that the architectures match.".format(filename) ) extra_state = state["extra_state"] self._optim_history = state["optimizer_history"] if last_optim_state is not None and not reset_optimizer: # rebuild optimizer after loading model, since params may have changed self._build_optimizer() # only reload optimizer and lr_scheduler if they match last_optim = self._optim_history[-1] assert ( last_optim["criterion_name"] == self.get_criterion().__class__.__name__ ), ( f"Criterion does not match; please reset the optimizer " f"(--reset-optimizer). {last_optim['criterion_name']} vs " f"{self.get_criterion().__class__.__name__}" ) assert last_optim["optimizer_name"] == self.optimizer.__class__.__name__, ( f"Optimizer does not match; please reset the optimizer " f"(--reset-optimizer). {last_optim['optimizer_name']} vs " f"{self.optimizer.__class__.__name__}" ) if not reset_lr_scheduler: self.lr_scheduler.load_state_dict(last_optim["lr_scheduler_state"]) if not load_on_all_ranks and is_distributed: last_optim_state = self.optimizer.broadcast_global_state_dict( last_optim_state ) elif self.is_fsdp and not self.use_sharded_state: last_optim_state = self.model.get_shard_from_optim_state_dict( last_optim_state ) logger.info(f"FSDP got shard from optim_state for {filename}") self.optimizer.load_state_dict(last_optim_state, optimizer_overrides) logger.info(f"Loaded optim_state for {filename}") self.set_num_updates(last_optim["num_updates"]) if extra_state is not None: itr_state = extra_state["train_iterator"] epoch = itr_state["epoch"] if "previous_training_time" in extra_state: self._previous_training_time = extra_state["previous_training_time"] self._start_time = time.time() self.lr_step(epoch) if ( itr_state.get("version", 1) >= 2 and itr_state["iterations_in_epoch"] == 0 ): # reset meters at start of epoch reset_meters = True if "metrics" in extra_state and not reset_meters: metrics.load_state_dict(extra_state["metrics"]) # reset TimeMeters, since their start times don't make sense anymore for meter in metrics.get_meters("default"): if isinstance(meter, meters.TimeMeter): meter.reset() logger.info( f"Loaded checkpoint {filename} (epoch {epoch} @ {self.get_num_updates()} updates)" ) else: logger.info("No existing checkpoint found {}".format(filename)) return extra_state def get_train_iterator( self, epoch, combine=True, data_selector=None, shard_batch_itr=True, disable_iterator_cache=False, ): """Return an EpochBatchIterator over the training set for a given epoch.""" logger.info("loading train data for epoch {}".format(epoch)) self.task.load_dataset( self.cfg.dataset.train_subset, epoch=epoch, combine=combine, data_selector=data_selector, ) batch_iterator = self.task.get_batch_iterator( dataset=self.task.dataset(self.cfg.dataset.train_subset), max_tokens=self.cfg.dataset.max_tokens, max_sentences=self.cfg.dataset.batch_size, max_positions=utils.resolve_max_positions( self.task.max_positions(), self.model.max_positions(), self.cfg.dataset.max_tokens, ), ignore_invalid_inputs=True, required_batch_size_multiple=self.cfg.dataset.required_batch_size_multiple, seed=self.cfg.common.seed, num_shards=self.data_parallel_world_size if shard_batch_itr else 1, shard_id=self.data_parallel_rank if shard_batch_itr else 0, num_workers=self.cfg.dataset.num_workers, epoch=epoch, data_buffer_size=self.cfg.dataset.data_buffer_size, disable_iterator_cache=disable_iterator_cache, skip_remainder_batch=( not self.cfg.optimization.train_with_epoch_remainder_batch ), ) self.reset_dummy_batch(batch_iterator.first_batch) return batch_iterator def get_valid_iterator( self, subset, disable_iterator_cache=False, ): """Return an EpochBatchIterator over given validation subset for a given epoch.""" batch_iterator = self.task.get_batch_iterator( dataset=self.task.dataset(subset), max_tokens=self.cfg.dataset.max_tokens_valid, max_sentences=self.cfg.dataset.batch_size_valid, max_positions=utils.resolve_max_positions( self.task.max_positions(), self.model.max_positions(), ), ignore_invalid_inputs=self.cfg.dataset.skip_invalid_size_inputs_valid_test, required_batch_size_multiple=self.cfg.dataset.required_batch_size_multiple, seed=self.cfg.common.seed, num_shards=self.data_parallel_world_size, shard_id=self.data_parallel_rank, num_workers=self.cfg.dataset.num_workers_valid, # always pass a fixed "epoch" to keep validation data consistent # across training epochs epoch=1, data_buffer_size=self.cfg.dataset.data_buffer_size, disable_iterator_cache=disable_iterator_cache, skip_remainder_batch=False, ) self.reset_dummy_batch(batch_iterator.first_batch) return batch_iterator def begin_epoch(self, epoch): """Called at the beginning of each epoch.""" logger.info("begin training epoch {}".format(epoch)) self.lr_step_begin_epoch(epoch) # task specific setup per epoch self.task.begin_epoch(epoch, self.get_model()) def begin_valid_epoch(self, epoch): """Called at the beginning of each validation epoch.""" # task specific setup per validation epoch self.task.begin_valid_epoch(epoch, self.get_model()) def reset_dummy_batch(self, batch): self._dummy_batch = batch @metrics.aggregate("train") def train_step(self, samples, raise_oom=False): """Do forward, backward and parameter update.""" self._set_seed() self.model.train() self.criterion.train() self.zero_grad() metrics.log_start_time("train_wall", priority=800, round=0) # forward and backward pass logging_outputs, sample_size, ooms = [], 0, 0 for i, sample in enumerate(samples): # delayed update loop sample, is_dummy_batch = self._prepare_sample(sample) def maybe_no_sync(): """ Whenever *samples* contains more than one mini-batch, we want to accumulate gradients locally and only call all-reduce in the last backwards pass. """ if ( self.data_parallel_world_size > 1 and hasattr(self.model, "no_sync") and i < len(samples) - 1 # The no_sync context manager results in increased memory # usage with FSDP, since full-size gradients will be # accumulated on each GPU. It's typically a better tradeoff # to do the extra communication with FSDP. and not self.is_fsdp ): return self.model.no_sync() else: return contextlib.ExitStack() # dummy contextmanager try: with maybe_no_sync(): # forward and backward loss, sample_size_i, logging_output = self.task.train_step( sample=sample, model=self.model, criterion=self.criterion, optimizer=self.optimizer, update_num=self.get_num_updates(), ignore_grad=is_dummy_batch, ) del loss logging_outputs.append(logging_output) sample_size += sample_size_i # emptying the CUDA cache after the first step can # reduce the chance of OOM if self.cuda and self.get_num_updates() == 0: torch.cuda.empty_cache() except RuntimeError as e: if "out of memory" in str(e): self._log_oom(e) if raise_oom: raise e logger.warning( "attempting to recover from OOM in forward/backward pass" ) ooms += 1 self.zero_grad() if self.cuda: torch.cuda.empty_cache() if self.cfg.distributed_training.distributed_world_size == 1: return None else: raise e if is_dummy_batch: if torch.is_tensor(sample_size): sample_size.zero_() else: sample_size *= 0.0 if torch.is_tensor(sample_size): sample_size = sample_size.float() else: sample_size = float(sample_size) # gather logging outputs from all replicas if self._sync_stats(): train_time = self._local_cumulative_training_time() logging_outputs, ( sample_size, ooms, total_train_time, ) = self._aggregate_logging_outputs( logging_outputs, sample_size, ooms, train_time, ignore=is_dummy_batch ) self._cumulative_training_time = ( total_train_time / self.data_parallel_world_size ) overflow = False logger.debug(f"[{self.get_num_updates()}] done with fwd, bwd") try: with torch.autograd.profiler.record_function("reduce-grads"): # reduce gradients across workers self.optimizer.all_reduce_grads(self.model) if utils.has_parameters(self.criterion): self.optimizer.all_reduce_grads(self.criterion) with torch.autograd.profiler.record_function("multiply-grads"): # multiply gradients by (data_parallel_size / sample_size) since # DDP normalizes by the number of data parallel workers for # improved fp16 precision. # Thus we get (sum_of_gradients / sample_size) at the end. # In case of fp16, this step also undoes loss scaling. # (Debugging note: Some optimizers perform this scaling on the # fly, so inspecting model.parameters() or optimizer.params may # still show the original, unscaled gradients.) numer = self.data_parallel_world_size if self._sync_stats() else 1 self.optimizer.multiply_grads(numer / (sample_size or 1.0)) # Note: (sample_size or 1.0) handles the case of a zero gradient, in a # way that avoids CPU/device transfers in case sample_size is a GPU or # TPU object. The assumption is that the gradient itself is also 0. with torch.autograd.profiler.record_function("clip-grads"): # clip grads grad_norm = self.clip_grad_norm( self.cfg.optimization.clip_norm, self.cfg.optimization.clip_norm_type, self.cfg.optimization.skip_gradient_update_on_clip_norm, ) # check that grad norms are consistent across workers self._check_grad_norms(grad_norm) if not torch.isfinite(grad_norm).all(): # check local gradnorm single GPU case, trigger NanDetector raise FloatingPointError("gradients are Nan/Inf") with torch.autograd.profiler.record_function("optimizer"): # take an optimization step self.task.optimizer_step( self.optimizer, model=self.model, update_num=self.get_num_updates() ) logger.debug(f"[{self.get_num_updates()}] done with optimizer step") except FloatingPointError: # re-run the forward and backward pass with hooks attached to print # out where it fails self.zero_grad() with NanDetector(self.get_model()): for _, sample in enumerate(samples): sample, _ = self._prepare_sample(sample) self.task.train_step( sample, self.model, self.criterion, self.optimizer, self.get_num_updates(), ignore_grad=False, ) raise except OverflowError as e: overflow = True logger.info( f"NOTE: gradient overflow detected, ignoring gradient, {str(e)}" ) grad_norm = torch.tensor(0.0).cuda() self.zero_grad() except RuntimeError as e: if "out of memory" in str(e): self._log_oom(e) logger.error("OOM during optimization, irrecoverable") raise e logging_output = None if not overflow: self.set_num_updates(self.get_num_updates() + 1) if self.cuda and self.cuda_env is not None: # log minimum free memory over the iteration self._log_gpu_mem_stats() # log stats logging_output = self._reduce_and_log_stats( logging_outputs, sample_size, grad_norm ) # clear CUDA cache to reduce memory fragmentation if ( self.cuda and self.cfg.common.empty_cache_freq > 0 and ( (self.get_num_updates() + self.cfg.common.empty_cache_freq - 1) % self.cfg.common.empty_cache_freq ) == 0 ): torch.cuda.empty_cache() if self.cfg.common.fp16 and not self.cfg.common.bf16: metrics.log_scalar( "loss_scale", self.optimizer.scaler.loss_scale, priority=700, round=4, weight=0, ) metrics.log_scalar( "scale_window", self.optimizer.scaler.scale_window, priority=700, round=4, weight=0, ) metrics.log_stop_time("train_wall") return logging_output @metrics.aggregate("valid") def valid_step(self, sample, raise_oom=False): """Do forward pass in evaluation mode.""" with torch.no_grad(): self.model.eval() self.criterion.eval() self.zero_grad() sample, is_dummy_batch = self._prepare_sample(sample) try: _loss, sample_size, logging_output = self.task.valid_step( sample, self.model, self.criterion ) except RuntimeError as e: if "out of memory" in str(e): self._log_oom(e) if not raise_oom: logger.warning( "ran out of memory in validation step, retrying batch" ) for p in self.model.parameters(): if p.grad is not None: p.grad = None # free some memory if self.cuda: torch.cuda.empty_cache() return self.valid_step(sample, raise_oom=True) raise e logging_outputs = [logging_output] if is_dummy_batch: if torch.is_tensor(sample_size): sample_size.zero_() else: sample_size *= 0.0 # gather logging outputs from all replicas if self.data_parallel_world_size > 1: logging_outputs, (sample_size,) = self._aggregate_logging_outputs( logging_outputs, sample_size, ignore=is_dummy_batch, ) # log validation stats logging_output = self._reduce_and_log_stats(logging_outputs, sample_size) return logging_output def zero_grad(self): self.optimizer.zero_grad() def lr_step_begin_epoch(self, epoch): """Adjust the learning rate at the beginning of the epoch.""" self.lr_scheduler.step_begin_epoch(epoch) # prefer updating the LR based on the number of steps return self.lr_step_update() def lr_step(self, epoch, val_loss=None): """Adjust the learning rate at the end of the epoch.""" self.lr_scheduler.step(epoch, val_loss) # prefer updating the LR based on the number of steps return self.lr_step_update() def lr_step_update(self): """Update the learning rate after each update.""" new_lr = self.lr_scheduler.step_update(self.get_num_updates()) if isinstance(new_lr, dict): for k, v in new_lr.items(): metrics.log_scalar(f"lr_{k}", v, weight=0, priority=300) new_lr = new_lr.get("default", next(iter(new_lr.values()))) else: metrics.log_scalar("lr", new_lr, weight=0, priority=300) return new_lr def get_lr(self): """Get the current learning rate.""" return self.optimizer.get_lr() def get_model(self): """Get the (non-wrapped) model instance.""" return self._model def get_criterion(self): """Get the (non-wrapped) criterion instance.""" return self._criterion def get_meter(self, name): """[deprecated] Get a specific meter by name.""" from metaseq import meters if "get_meter" not in self._warn_once: self._warn_once.add("get_meter") utils.deprecation_warning( "Trainer.get_meter is deprecated. Please use metaseq.metrics instead." ) train_meters = metrics.get_meters("train") if train_meters is None: train_meters = {} if name == "train_loss" and "loss" in train_meters: return train_meters["loss"] elif name == "train_nll_loss": # support for legacy train.py, which assumed this meter is # always initialized m = train_meters.get("nll_loss", None) return m or meters.AverageMeter() elif name == "wall": # support for legacy train.py, which assumed this meter is # always initialized m = metrics.get_meter("default", "wall") return m or meters.TimeMeter() elif name == "wps": m = metrics.get_meter("train", "wps") return m or meters.TimeMeter() elif name in {"valid_loss", "valid_nll_loss"}: # support for legacy train.py, which assumed these meters # are always initialized k = name[len("valid_") :] m = metrics.get_meter("valid", k) return m or meters.AverageMeter() elif name == "oom": return meters.AverageMeter() elif name in train_meters: return train_meters[name] return None def get_num_updates(self): """Get the number of parameters updates.""" return self._num_updates def set_num_updates(self, num_updates): """Set the number of parameters updates.""" self._num_updates = num_updates self.lr_step_update() metrics.log_scalar("num_updates", self._num_updates, weight=0, priority=200) def clip_grad_norm( self, clip_norm, clip_norm_type="l2", skip_gradient_update_on_clip_norm=False ): return self.optimizer.clip_grad_norm( clip_norm, clip_norm_type, aggregate_norm_fn=None, skip_gradient_update_on_clip_norm=skip_gradient_update_on_clip_norm, ) def cumulative_training_time(self): if self._cumulative_training_time is None: # single GPU return self._local_cumulative_training_time() else: return self._cumulative_training_time def _local_cumulative_training_time(self): """Aggregate training time in seconds.""" return time.time() - self._start_time + self._previous_training_time def _prepare_sample(self, sample, is_dummy=False): if sample == "DUMMY": raise Exception( "Trying to use an uninitialized 'dummy' batch. This usually indicates " "that the total number of batches is smaller than the number of " "participating GPUs. Try reducing the batch size or using fewer GPUs." ) if sample is None or len(sample) == 0: assert ( self._dummy_batch is not None and len(self._dummy_batch) > 0 ), "Invalid dummy batch: {}".format(self._dummy_batch) sample, _ = self._prepare_sample(self._dummy_batch, is_dummy=True) return sample, True if self.cuda: sample = utils.move_to_cuda(sample) def lower_precision(t): """Converts a tensor to the desired dtype based on our cfg.""" if t.dtype is torch.float32: if self.cfg.bf16: return t.bfloat16() return t.half() return t if self.cfg.common.fp16: sample = utils.apply_to_sample(lower_precision, sample) if self._dummy_batch == "DUMMY": self._dummy_batch = sample return sample, False def _set_seed(self): # Set seed based on args.seed and the update number so that we get # reproducible results when resuming from checkpoints seed = self.cfg.common.seed + self.get_num_updates() utils.set_torch_seed(seed) def _sync_stats(self): # Return True if it's using multiple GPUs and DDP if self.data_parallel_world_size == 1: return False else: return True def _log_oom(self, exc): msg = "OOM: Ran out of memory with exception: {}".format(exc) logger.warning(msg) if torch.cuda.is_available() and hasattr(torch.cuda, "memory_summary"): for device_idx in range(torch.cuda.device_count()): logger.warning(torch.cuda.memory_summary(device=device_idx)) sys.stderr.flush() def _aggregate_logging_outputs( self, logging_outputs: List[Dict[str, Any]], *extra_stats_to_sum, ignore=False, ): if self.task.__class__.logging_outputs_can_be_summed(self.get_criterion()): return self._fast_stat_sync_sum( logging_outputs, *extra_stats_to_sum, ignore=ignore ) else: return self._all_gather_list_sync( logging_outputs, *extra_stats_to_sum, ignore=ignore ) def _all_gather_list_sync( self, logging_outputs: List[Dict[str, Any]], *extra_stats_to_sum, ignore=False, ): """ Sync logging outputs across workers. all_gather_list_sync is suitable when logging outputs are complex types. """ if ignore: logging_outputs = [] results = list( zip( *distributed_utils.all_gather_list( [logging_outputs] + list(extra_stats_to_sum), max_size=getattr(self.cfg.common, "all_gather_list_size", 16384), group=self.data_parallel_process_group, ) ) ) logging_outputs, extra_stats_to_sum = results[0], results[1:] logging_outputs = list(chain.from_iterable(logging_outputs)) extra_stats_to_sum = [sum(s) for s in extra_stats_to_sum] return logging_outputs, extra_stats_to_sum def _fast_stat_sync_sum( self, logging_outputs: List[Dict[str, Any]], *extra_stats_to_sum, ignore=False, ): """ Sync logging outputs across workers. fast_stat_sync_sum is faster than all_gather_list_sync, but is only suitable when logging outputs are scalars and can be summed. Note that *logging_outputs* cannot contain any nested dicts/lists. """ data = {} for i, stat in enumerate(extra_stats_to_sum): data["extra_stats_" + str(i)] = stat if len(logging_outputs) > 0: log_keys = list(logging_outputs[0].keys()) for k in log_keys: if not ignore: v = sum(log[k] for log in logging_outputs if k in log) else: v = logging_outputs[0][k] v = torch.zeros_like(v) if torch.is_tensor(v) else 0 data["logging_outputs_" + k] = v else: log_keys = None data = distributed_utils.all_reduce_dict( data, device=self.device, group=self.data_parallel_process_group ) extra_stats_to_sum = [ data["extra_stats_" + str(i)] for i in range(len(extra_stats_to_sum)) ] if log_keys is not None: logging_outputs = [{k: data["logging_outputs_" + k] for k in log_keys}] else: logging_outputs = [] return logging_outputs, extra_stats_to_sum def _check_grad_norms(self, grad_norm): """Check that grad norms are consistent across workers.""" if self._grad_norm_buf is not None: self._grad_norm_buf.zero_() self._grad_norm_buf[self.data_parallel_rank] = grad_norm distributed_utils.all_reduce( self._grad_norm_buf, group=self.data_parallel_process_group ) def is_consistent(tensor): max_abs_diff = torch.max(torch.abs(tensor - tensor[0])) return ( torch.isfinite(tensor).all() and (max_abs_diff / (tensor[0] + 1e-6) < 1e-6).all() ) if not is_consistent(self._grad_norm_buf): pretty_detail = "\n".join( "rank {:3d} = {:.8f}".format(r, n) for r, n in enumerate(self._grad_norm_buf.tolist()) ) error_detail = "grad_norm across the workers:\n{}\n".format( pretty_detail ) # use FloatingPointError to trigger NanDetector raise FloatingPointError( "Fatal error: gradients are inconsistent between workers. " "Try --ddp-backend=legacy_ddp. " "Or are you mixing up different generation of GPUs in training?" + "\n" + "-" * 80 + "\n{}\n".format(error_detail) + "-" * 80 ) def _reduce_and_log_stats(self, logging_outputs, sample_size, grad_norm=None): # perform a bunch of arch-specific gradient metrics for name, param in self.model.named_parameters(): if (not self.is_fsdp) or self.dont_log_param_and_grad_norm: break if param.grad is None: continue nice_name = name.replace("module._fsdp_wrapped_module._fpw_module.", "") nice_name = nice_name.replace("_fsdp_wrapped_module._fpw_module.", "") nice_name = nice_name.replace("._fsdp_wrapped_module.flat_param_0", "") nice_name = nice_name.replace("decoder.layers.", "layer") # threshold for near zeros threshold = torch.finfo(param.grad.dtype).tiny * 2 with torch.no_grad(): g = param.grad if hasattr(self.optimizer, "_multiply_factor"): g = self.optimizer._multiply_factor * g norm = g.norm(p=2, dim=-1, dtype=torch.float32) max_ = g.max() nz = ((g > -threshold) & (g < threshold)).sum() / g.numel() # priorities for printing order metrics.log_scalar(f"gnorm_{nice_name}", norm, priority=10) metrics.log_scalar(f"gmax_{nice_name}", max_, priority=11) metrics.log_scalar(f"gzero_{nice_name}", nz, priority=12) with torch.no_grad(): norm = param.norm(p=2, dim=-1, dtype=torch.float32) max_ = param.max() nz = ((param > -threshold) & (param < threshold)).sum() / param.numel() # priorities for printing order metrics.log_scalar(f"pnorm_{nice_name}", norm, priority=13) metrics.log_scalar(f"pmax_{nice_name}", max_, priority=14) metrics.log_scalar(f"pzero_{nice_name}", nz, priority=15) # standard code if grad_norm is not None and ( not torch.is_tensor(grad_norm) or torch.isfinite(grad_norm) ): metrics.log_speed("ups", 1.0, priority=100, round=2) metrics.log_scalar("gnorm", grad_norm, priority=400, round=3) if self.cfg.optimization.clip_norm > 0: metrics.log_scalar( "clip", torch.where( grad_norm > self.cfg.optimization.clip_norm, grad_norm.new_tensor(100), grad_norm.new_tensor(0), ), priority=500, round=1, ) with metrics.aggregate() as agg: if logging_outputs is not None: self.task.reduce_metrics(logging_outputs, self.get_criterion()) del logging_outputs # extra warning for criterions that don't properly log a loss value if "loss" not in agg: if "loss" not in self._warn_once: self._warn_once.add("loss") logger.warning( "Criterion.reduce_metrics did not log a 'loss' value, " "which may break some functionality" ) metrics.log_scalar("loss", -1) # support legacy interface logging_output = agg.get_smoothed_values() logging_output["sample_size"] = sample_size for key_to_delete in ["ppl", "wps", "wpb", "bsz"]: if key_to_delete in logging_output: del logging_output[key_to_delete] return logging_output def _log_gpu_mem_stats(self): # log minimum free memory over the iteration cuda_gb_allocated = torch.cuda.max_memory_allocated() / 1024 / 1024 / 1024 cuda_gb_reserved = torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024 torch.cuda.reset_peak_memory_stats() cuda_gb_free = self.cuda_env.total_memory_in_GB - cuda_gb_allocated metrics.log_scalar( "cuda_gb_allocated", cuda_gb_allocated, priority=1500, round=1, weight=0 ) metrics.log_scalar( "cuda_gb_reserved", cuda_gb_reserved, priority=1500, round=1, weight=0 ) metrics.log_scalar( "cuda_gb_free", cuda_gb_free, priority=1500, round=1, weight=0 ) # log nvidia smi stats if self.cfg.common.log_nvidia_smi: nvidia_smi_stats = metrics.nvidia_smi_gpu_memory_stats() for key, val in nvidia_smi_stats.items(): metrics.log_scalar(key, val, priority=1500, round=1, weight=0) def _catalog_shared_params(module, memo=None, prefix=""): if memo is None: first_call = True memo = {} else: first_call = False for name, param in module._parameters.items(): param_prefix = prefix + ("." if prefix else "") + name if param not in memo: memo[param] = [] memo[param].append(param_prefix) for name, m in module._modules.items(): if m is None: continue submodule_prefix = prefix + ("." if prefix else "") + name _catalog_shared_params(m, memo, submodule_prefix) if first_call: return [x for x in memo.values() if len(x) > 1] def _get_module_by_path(module, path): path = path.split(".") for name in path: module = getattr(module, name) return module def _set_module_by_path(module, path, value): path = path.split(".") for name in path[:-1]: module = getattr(module, name) setattr(module, path[-1], value)
flash_metaseq-main
metaseq/trainer.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from omegaconf import II from metaseq.data import Dictionary, BaseDataset from metaseq.dataclass import MetaseqDataclass from metaseq.tasks import BaseTask, register_task logger = logging.getLogger(__name__) @dataclass class DummyLMConfig(MetaseqDataclass): dict_size: int = 49996 dataset_size: int = 100000 tokens_per_sample: int = field( default=512, metadata={"help": "max sequence length"} ) add_bos_token: bool = False batch_size: Optional[int] = II("dataset.batch_size") max_tokens: Optional[int] = II("dataset.max_tokens") max_target_positions: int = II("task.tokens_per_sample") @register_task("dummy_lm", dataclass=DummyLMConfig) class DummyLMTask(BaseTask): def __init__(self, cfg: DummyLMConfig): super().__init__(cfg) # load dictionary self.dictionary = Dictionary() for i in range(cfg.dict_size): self.dictionary.add_symbol("word{}".format(i)) self.dictionary.pad_to_multiple_(8) # often faster if divisible by 8 logger.info("dictionary: {} types".format(len(self.dictionary))) seq = torch.arange(cfg.tokens_per_sample + 1) + self.dictionary.pad() + 1 self.dummy_src = seq[:-1] self.dummy_tgt = seq[1:] def load_dataset(self, split, epoch=1, combine=False, **kwargs): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ if self.cfg.batch_size is not None: bsz = self.cfg.batch_size else: bsz = max(1, self.cfg.max_tokens // self.cfg.tokens_per_sample) self.datasets[split] = DummyDataset( { "id": 1, "net_input": { "src_tokens": torch.stack([self.dummy_src for _ in range(bsz)]), "src_lengths": torch.full( (bsz,), self.cfg.tokens_per_sample, dtype=torch.long ), }, "target": torch.stack([self.dummy_tgt for _ in range(bsz)]), "nsentences": bsz, "ntokens": bsz * self.cfg.tokens_per_sample, }, num_items=self.cfg.dataset_size, item_size=self.cfg.tokens_per_sample, ) @property def source_dictionary(self): return self.dictionary @property def target_dictionary(self): return self.dictionary class DummyDataset(BaseDataset): def __init__(self, batch, num_items, item_size): super().__init__() self.batch = batch self.num_items = num_items self.item_size = item_size def __getitem__(self, index): return index def __len__(self): return self.num_items def collater(self, samples): return self.batch @property def sizes(self): return np.array([self.item_size] * self.num_items) def num_tokens(self, index): return self.item_size def size(self, index): return self.item_size def ordered_indices(self): return np.arange(self.num_items) @property def supports_prefetch(self): return False def set_epoch(self, epoch): pass
flash_metaseq-main
metaseq/benchmark/dummy_lm.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from . import dummy_lm # noqa
flash_metaseq-main
metaseq/benchmark/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass from enum import Enum @dataclass class Size: n_layers: int emb_size: int n_heads: int d_head: int batch_size: int lr: float model_parallel: int @property def ffn_size(self): return 4 * self.emb_size # from appendix b of https://arxiv.org/pdf/2005.14165.pdf # see table 2.1 in https://arxiv.org/pdf/2005.14165.pdf # assert all sizes make sense TOTAL_TRAIN_TOKENS = 300e9 TOTAL_WARMUP_TOKENS = 375e6 M = 1024 * 1024 # 1 million MODEL_SIZES = { "8m": Size(4, 128, 2, 64, int(0.5 * M), 1.0e-3, 2), # tiny "125m": Size(12, 768, 12, 64, int(0.5 * M), 6.0e-4, 2), # small "350m": Size(24, 1024, 16, 64, int(0.5 * M), 3.0e-4, 2), # medium "760m": Size(24, 1536, 16, 96, int(0.5 * M), 2.5e-4, 2), # large "1.3b": Size(24, 2048, 32, 64, int(1.0 * M), 2.0e-4, 2), # xl "2.7b": Size(32, 2560, 32, 80, int(1.0 * M), 1.6e-4, 4), "6.7b": Size(32, 4096, 32, 128, int(2.0 * M), 1.2e-4, 2), "13b": Size(40, 5120, 40, 128, int(4.0 * M), 1.0e-4, 2), "30b": Size(48, 7168, 56, 128, int(4.0 * M), 1.0e-4, 2), "66b": Size(64, 9216, 72, 128, int(2.0 * M), 8e-5, 8), "175b": Size(96, 12288, 96, 128, int(0.25 * M), 3e-5, 8), } # from appendix b of https://arxiv.org/pdf/2005.14165.pdf # see table 2.1 in https://arxiv.org/pdf/2005.14165.pdf for name, size in MODEL_SIZES.items(): assert size.n_heads * size.d_head == size.emb_size, name class ComputeEnvs(Enum): AWS = "aws" AZURE = "azure" FAIR = "fair" DATA_LOCATIONS = { ComputeEnvs.AZURE: "/data/opt", } VALID_SUBSETS = [ "BookCorpusFair", "CommonCrawl", "DM_Mathematics", "Gutenberg_PG-19", "HackerNews", "OpenSubtitles", "OpenWebText2", "USPTO", "Wikipedia_en", "redditflattened", "stories", ]
flash_metaseq-main
metaseq/launcher/opt_job_constants.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import datetime import fnmatch import hashlib import itertools import os import random import shlex import shutil import subprocess import textwrap from collections import OrderedDict from pathlib import Path import metaseq from metaseq.launcher.sweep import get_env_from_args from metaseq.utils import get_random_port def main(get_grid, postprocess_hyperparams, args): def dry_run(msg): if args.dry_run: print(f"| dry-run: {msg}") return args.dry_run if args.local: args.num_nodes = 1 # compute all possible hyperparameter configurations grid = get_grid(args) grid_product = list(itertools.product(*[hp.values for hp in grid])) # randomly shuffle configurations random.seed(args.seed) random.shuffle(grid_product) launch_train(args, grid, grid_product, dry_run, postprocess_hyperparams) def copy_all_python_files( source, snapshot_main_dir, code_snapshot_hash, recurse_dirs="metaseq,metaseq_cli,scripts", ): """ Copies following files from source to destination: a) all *.py files at direct source location. b) all metaseq/*.py recursively (default); recurse through comma-separated recurse_dirs """ def include_patterns(*patterns): """Factory function that can be used with copytree() ignore parameter. Arguments define a sequence of glob-style patterns that are used to specify what files to NOT ignore. Creates and returns a function that determines this for each directory in the file hierarchy rooted at the source directory when used with shutil.copytree(). from: https://stackoverflow.com/questions/52071642/python-copying-the-files-with-include-pattern """ def _ignore_patterns(path, names): keep = set( name for pattern in patterns for name in fnmatch.filter(names, pattern) ) ignore = set( name for name in names if name not in keep and not os.path.isdir(os.path.join(path, name)) ) return ignore return _ignore_patterns def pys_but_no_dirs(path, names): pys = set(fnmatch.filter(names, "*.py")) return [name for name in names if name not in pys] destination = os.path.join(snapshot_main_dir, code_snapshot_hash) # copy root files: shutil.copytree(source, destination, ignore=pys_but_no_dirs) # copy folders for d in recurse_dirs.split(","): shutil.copytree( os.path.join(source, d), os.path.join(destination, d), ignore=include_patterns("*.py", "*.so", "*.yaml"), ) return destination def run_setup(args, config, dry_run): # compute save_dir save_dir_key = ".".join( filter( lambda save_dir_key: save_dir_key is not None and len(save_dir_key) > 0, [hp.get_save_dir_key() for hp in config.values()], ) ) save_dir_key = save_dir_key.replace(",", "_") num_total_gpus = args.num_nodes * args.num_gpus save_dir = os.path.join( args.checkpoints_dir, f"{args.prefix}.{save_dir_key}.ngpu{num_total_gpus}" ) # create save directory if it doesn't exist if not os.path.exists(save_dir): if not dry_run(f"create directory: {save_dir}"): os.makedirs(save_dir) return save_dir_key, save_dir def is_job_valid(args, save_dir, dry_run): if has_finished(save_dir): return False elif has_failed(save_dir): if args.resume_failed: dry_run(f"resume failed run: {save_dir}") else: print(f"skip failed run (override with --resume-failed): {save_dir}") return False elif has_started(save_dir): print(f"skip in progress run: {save_dir}") return False return True DEFAULT_NCCL_DEBUG = os.getenv("NCCL_DEBUG", "INFO") DEFAULT_NCCL_DEBUG_LOCAL = os.getenv("NCCL_DEBUG", "") def set_env(args, env, dry_run): if "OMP_NUM_THREADS" not in env: env["OMP_NUM_THREADS"] = "2" if args.local: if not dry_run("start training locally"): if "CUDA_VISIBLE_DEVICES" not in env: env["CUDA_VISIBLE_DEVICES"] = ",".join(map(str, range(args.num_gpus))) env["NCCL_DEBUG"] = DEFAULT_NCCL_DEBUG_LOCAL else: if args.num_nodes > 1: env["NCCL_SOCKET_IFNAME"] = "^docker0,lo" env["NCCL_DEBUG"] = DEFAULT_NCCL_DEBUG def gen_train_command(args, env, config, oss_destination, save_dir, save_dir_key): # generate train command train_cmd = [args.python, os.path.join(oss_destination, args.script)] train_cmd.extend(["--distributed-world-size", str(args.num_nodes * args.num_gpus)]) if args.num_nodes > 1 or (args.num_gpus > 1 and not args.local): train_cmd.extend( [ "--distributed-port", str(get_random_port()), ] ) if args.data is not None: train_cmd.extend([args.data]) if args.local_checkpoints_dir is None: train_cmd.extend(["--save-dir", save_dir]) else: num_total_gpus = args.num_nodes * args.num_gpus local_save_dir = os.path.join( args.local_checkpoints_dir, f"{args.prefix}.{save_dir_key}.ngpu{num_total_gpus}", ) train_cmd.extend(["--save-dir", local_save_dir]) if getattr(args, "full_azure_upload_path", None) is not None: if args.azure_folder_auto_name: from urllib.parse import urlparse o = urlparse(args.full_azure_upload_path) o = o._replace( path=os.path.join( o.path, f"{args.prefix}.{save_dir_key}.ngpu{num_total_gpus}" ) + "/" ) train_cmd.extend(["--save-async", "--cloud-upload-path", o.geturl()]) else: train_cmd.extend( ["--save-async", "--cloud-upload-path", args.full_azure_upload_path] ) if not args.no_wandb: try: import wandb except ImportError: wandb = None if wandb or ("WANDB_API_KEY" in env and "WANDB_BASE_URL" in env): if "--wandb-project" not in config: project = f"{args.prefix}.{save_dir_key}" train_cmd.extend(["--wandb-project", project]) if "WANDB_RUN_GROUP" not in env: env["WANDB_RUN_GROUP"] = args.prefix if "WANDB_RUN_ID" not in env: env["WANDB_RUN_ID"] = hashlib.md5(save_dir.encode("utf-8")).hexdigest() if "WANDB_RESUME" not in env: env["WANDB_RESUME"] = "allow" if not args.no_tensorboard: if args.tensorboard_logdir is None: tensorboard_logdir = os.path.join(save_dir, "tb") else: tensorboard_logdir = os.path.join( args.tensorboard_logdir, f"{args.prefix}.{save_dir_key}.ngpu{str(args.num_nodes * args.num_gpus)}", ) train_cmd.extend(["--tensorboard-logdir", tensorboard_logdir]) cluster_env = get_env_from_args(args) train_cmd.extend(["--cluster-env", cluster_env.value]) for hp in config.values(): train_cmd.extend(map(str, hp.get_cli_args())) return train_cmd def gen_srun_command_and_str(args, save_dir_key, train_log, train_stderr, train_cmd): base_srun_cmd = [ "srun", "--job-name", f"{args.prefix}.{save_dir_key}", "--output", train_log, "--error", train_stderr, "--open-mode", "append", "--unbuffered", ] if args.cpu_bind: base_srun_cmd += [f"--cpu-bind={args.cpu_bind}"] if args.salloc: excluded_hosts = os.environ.get("EXCLUDED_HOSTS", None) included_hosts = os.environ.get("INCLUDED_HOSTS", None) base_srun_cmd += [ "--nodes", str(args.num_nodes), "--ntasks-per-node", str(args.num_gpus), "--ntasks", str(args.num_gpus * args.num_nodes), "--cpus-per-task", args.cpus_per_task, ] base_srun_cmd += ["-x", excluded_hosts] if excluded_hosts is not None else [] base_srun_cmd += ["-w", included_hosts] if included_hosts is not None else [] srun_cmd = base_srun_cmd + train_cmd srun_cmd_str = " ".join(map(shlex.quote, srun_cmd)) if getattr(args, "requeue_on_fail", False): # sometimes we want the job to just be requeued magically if it exit codes # i.e. in the case of very very large models with long runtimes. srun_cmd_str = f"( {srun_cmd_str} || scontrol requeue $SLURM_JOB_ID )" return srun_cmd, srun_cmd_str def gen_sbatch_command_and_str( args, job_name, train_log, train_stderr, oss_destination, srun_cmd_str ): excluded_hosts = os.environ.get("EXCLUDED_HOSTS", None) included_hosts = os.environ.get("INCLUDED_HOSTS", None) sbatch_cmd = [ "sbatch", "--job-name", job_name, "--gpus-per-node", str(args.num_gpus), "--nodes", str(args.num_nodes), "--ntasks-per-node", str(args.num_gpus), "--cpus-per-task", args.cpus_per_task, "--output", train_log, "--error", train_stderr, "--open-mode", "append", # '--no-requeue', "--signal", "B:USR1@180", ] if args.constraint: sbatch_cmd += ["--constraint", args.constraint] if args.partition: sbatch_cmd += ["--partition", args.partition] if args.reservation: sbatch_cmd += ["--reservation", args.reservation] if args.exclusive: sbatch_cmd += ["--exclusive"] comment = "" if args.comment: comment = args.comment if args.snapshot_code: comment += ( f", OSS Code Location: {oss_destination}" if comment else f"OSS Code Location: {oss_destination}" ) sbatch_cmd += ["--comment", comment] if args.time is not None: sbatch_cmd.extend(["--time", args.time]) if args.mem is not None: sbatch_cmd += ["--mem", args.mem] else: sbatch_cmd += ["--mem", "0"] sbatch_cmd += ["-x", excluded_hosts] if excluded_hosts is not None else [] sbatch_cmd += ["-w", included_hosts] if included_hosts is not None else [] wrapped_cmd = requeue_support() if args.azure: wrapped_cmd += "\n" + azure_support() wrapped_cmd += "\n" + srun_cmd_str + " \n wait $! \n sleep 610 & \n wait $!" sbatch_cmd += ["--wrap", wrapped_cmd] sbatch_cmd_str = " ".join(map(shlex.quote, sbatch_cmd)) return sbatch_cmd, sbatch_cmd_str def local_run(args, env, train_cmd, dry_run): assert args.num_nodes == 1, "distributed training cannot be combined with --local" if not dry_run("start training locally"): if "CUDA_VISIBLE_DEVICES" not in env: env["CUDA_VISIBLE_DEVICES"] = ",".join(map(str, range(args.num_gpus))) env["NCCL_DEBUG"] = DEFAULT_NCCL_DEBUG_LOCAL train_proc = subprocess.Popen(train_cmd, env=env) train_proc.wait() def run_batch(env, sbatch_cmd_str, sbatch_cmd): print(f"running command: {sbatch_cmd_str}\n") with subprocess.Popen(sbatch_cmd, stdout=subprocess.PIPE, env=env) as train_proc: stdout = train_proc.stdout.read().decode("utf-8") try: job_id = int(stdout.rstrip().split()[-1]) print(f"Launched job {job_id}") except IndexError: job_id = None return job_id, stdout def write_git_commit(train_log): with open(train_log, "a") as train_log_h: # log most recent git commit git_commit = subprocess.check_output( "git log | head -n 1", shell=True, encoding="utf-8" ) print(git_commit.rstrip(), file=train_log_h) def dry_run_batch(env, train_log, train_stderr, sbatch_cmd_str, sbatch_cmd, dry_run): dry_run("start remote training") dry_run(f"- log stdout to: {train_log}") dry_run(f"- log stderr to: {train_stderr}") dry_run(f"- run command: {sbatch_cmd_str}") sbatch_cmd += ["--test-only"] with subprocess.Popen(sbatch_cmd, stdout=subprocess.PIPE, env=env) as train_proc: stdout = train_proc.stdout.read().decode("utf-8") print(stdout) def launch_train(args, grid, grid_product, dry_run, postprocess_hyperparams): oss_destination = "" if args.snapshot_code: # Currently hash is just the current time in ISO format. # Remove colons since they cannot be escaped in POSIX PATH env vars. code_snapshot_hash = datetime.datetime.now().isoformat().replace(":", "_") # Copy metaseq OSS code metaseq_oss_path = str(Path(metaseq.__file__).parents[1]) oss_destination = copy_all_python_files( metaseq_oss_path, os.path.join(args.snapshot_root, "slurm_snapshot_code_oss"), code_snapshot_hash, args.snapshot_recurse_dirs_oss, ) os.environ["PYTHONPATH"] = ( oss_destination + ":" + os.environ.get("PYTHONPATH", "") ) # set environment base_env = os.environ.copy() set_env(args, base_env, dry_run) # start training for i, hp_values in enumerate(grid_product): if i == args.num_trials: break config = OrderedDict() for hp, value in zip(grid, hp_values): config[hp.name] = hp config[hp.name].current_value = value # postprocess hyperparams postprocess_hyperparams(args, config) save_dir_key, save_dir = run_setup(args, config, dry_run) # check if job failed, exists, finished if not is_job_valid(args, save_dir, dry_run): continue # clone base env and update for this job, e.g., we set WANDB_RUN_ID # based on the save_dir, which is based on the current hyperparam values env = base_env.copy() # generate train command train_cmd = gen_train_command( args, env, config, oss_destination, save_dir, save_dir_key ) train_log = os.path.join(save_dir, "train.log") train_stderr = os.path.join(save_dir, "train.stderr.%j") # %j = slurm job id srun_cmd, srun_cmd_str = gen_srun_command_and_str( args, save_dir_key, train_log, train_stderr, train_cmd ) job_id = None if args.dry_run: train_cmd_str = " ".join(train_cmd) dry_run(f"train command: {train_cmd_str}") if args.local: local_run(args, env, train_cmd, dry_run) else: srun_cmd_str = srun_cmd_str + " &" # build command if not args.salloc: job_name = f"{args.prefix}.{save_dir_key}" sbatch_cmd, sbatch_cmd_str = gen_sbatch_command_and_str( args, job_name, train_log, train_stderr, oss_destination, srun_cmd_str, ) else: sbatch_cmd = srun_cmd sbatch_cmd_str = srun_cmd_str if args.dry_run: dry_run_batch( env, train_log, train_stderr, sbatch_cmd_str, sbatch_cmd, dry_run ) else: write_git_commit(train_log) with open(train_log, "a") as train_log_h: job_id, stdout = run_batch(env, sbatch_cmd_str, sbatch_cmd) print(stdout, file=train_log_h) if job_id is not None: print("Launched {}".format(job_id)) def has_finished(save_dir): train_log = os.path.join(save_dir, "train.log") if not os.path.exists(train_log): return False with open(train_log, "r") as h: lines = h.readlines() if len(lines) == 0: return False if "done training" in lines[-1]: return True return False def has_failed(save_dir): if not os.path.exists(save_dir): return False # find max job id job_ids = [] for fn in os.listdir(save_dir): if fn.startswith("train.stderr."): job_ids.append(int(fn.split(".")[-1])) if len(job_ids) == 0: return False max_job_id = max(job_ids) def _has_failed(stderr_fn): with open(stderr_fn, "r") as h: for line in h: if len(line.strip()) > 0: # assume that any output in stderr indicates an error return True return False return _has_failed(os.path.join(save_dir, f"train.stderr.{max_job_id}")) def has_started(save_dir): train_log = os.path.join(save_dir, "train.log") if not os.path.exists(train_log): return False return True def requeue_support(): return textwrap.dedent( """ trap_handler () { echo "Caught signal: " $1 # SIGTERM must be bypassed if [ "$1" = "TERM" ]; then echo "bypass sigterm" else # Submit a new job to the queue echo "Requeuing " $SLURM_JOB_ID scontrol requeue $SLURM_JOB_ID fi } # Install signal handler trap 'trap_handler USR1' USR1 trap 'trap_handler TERM' TERM """ ) def azure_support(): return textwrap.dedent( """ export NCCL_TOPO_FILE=/opt/microsoft/ndv4-topo.xml export NCCL_IB_PCI_RELAXED_ORDERING=1 export UCX_IB_PCI_RELAXED_ORDERING=on export NCCL_SOCKET_IFNAME=eth0 export UCX_NET_DEVICES=eth0 export CUDA_DEVICE_ORDER=PCI_BUS_ID export OMPI_MCA_COLL_HCOLL_ENABLE=0 if [ -e "/etc/profile.d/modules.sh" ]; then . /etc/profile.d/modules.sh module load mpi/hpcx fi """ )
flash_metaseq-main
metaseq/launcher/slurm.py
flash_metaseq-main
metaseq/launcher/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import datetime import os import subprocess from typing import Optional, List, Callable, MutableMapping from urllib.parse import urlparse from metaseq.launcher.opt_job_constants import ComputeEnvs class hyperparam(object): """Base class for defining hyperparameters.""" def __init__( self, name, values=None, binary_flag=False, save_dir_key=None, positional_arg=False, ): """ Arguments: - name : the name of the hyperparameter (e.g., `--dropout`) - values : the set of values to sweep over (e.g., `[0.0, 0.1, 0.2]`) - binary_flag : whether the hyperparameter uses a boolean flag (e.g., `--no-save`) - save_dir_key : function that takes the hyperparameter value and returns the "key" to be appended to the output directory name - positional_arg : whether the hyperparameter is a positional argument """ self.name = name if values is None: # syntactic sugar for binary flags self.values = [True] self.binary_flag = True else: self.values = values if isinstance(values, list) else [values] self.binary_flag = binary_flag self.save_dir_key = save_dir_key self.positional_arg = positional_arg self.current_value = None if positional_arg and name.startswith("-"): raise ValueError( f"positional arguments must not start with a dash ({name})" ) if len(self.values) > 1 and self.save_dir_key is None: raise ValueError( f"{name} has more than one value but is missing a save_dir_key!" ) def get_cli_args(self): if self.binary_flag: return [self.name] if self.current_value else [] elif self.positional_arg: return [self.current_value] else: return [self.name, self.current_value] def get_save_dir_key(self): if self.save_dir_key is None: return None if self.binary_flag: return self.save_dir_key(1) if self.current_value else None return self.save_dir_key(self.current_value) def get_env_from_args(args): # Returns a ComputeEnvs enum. if args.azure: return ComputeEnvs.AZURE elif args.aws: return ComputeEnvs.AWS elif args.fair: return ComputeEnvs.FAIR else: raise NotImplementedError( "Env not passed in! Please pass in one of: --azure, --aws, --fair" ) def _get_args(add_extra_options_func=None, input_args: Optional[List[str]] = None): """ input_args (List[str]): strings to parse, defaults to sys.argv """ parser = argparse.ArgumentParser("Script for launching hyperparameter sweeps ") parser.add_argument("--grid", help="grid function we used", default=None) parser.add_argument("-d", "--data", help="path to data directory") parser.add_argument( "-p", "--prefix", required=True, help="save checkpoints and logs in <checkpoints-dir>/<prefix>.<save_dir_key>", ) parser.add_argument( "-t", "--num-trials", default=-1, type=int, help="number of random hyperparam configurations to try (-1 for grid search)", ) parser.add_argument( "-g", "--num-gpus", type=int, required=True, help="number of GPUs per node" ) parser.add_argument( "-n", "--num-nodes", type=int, default=1, help="number of nodes for distributed training", ) parser.add_argument( "--update-freq", type=int, default=0, help="update freq", ) parser.add_argument("--seed", type=int, default=1234) parser.add_argument( "--resume-failed", action="store_true", help="resume any runs that failed", ) parser.add_argument( "--dry-run", action="store_true", help="output only a list of actions to perform without performing them", ) parser.add_argument("--local", action="store_true", help="run job locally") parser.add_argument("--debug", action="store_true", help="debug") parser.add_argument( "--script", default="metaseq_cli/train.py", help="script to launch" ) parser.add_argument( "--python", default="python", help="path to nonstandard python binary" ) # Slurm params parser.add_argument( "--salloc", action="store_true", help="run agaist current allocation" ) parser.add_argument("--reservation", help="reservation to run on") parser.add_argument( "--exclusive", action="store_true", help="if set, get exclusive host" ) parser.add_argument( "--time", default="4320", help="expected job duration in minutes" ) parser.add_argument("--mem", "--mem", help="memory to request") parser.add_argument( "--constraint", metavar="CONSTRAINT", help='gpu constraint, if any. e.g. "volta"', ) parser.add_argument("--comment", help="comment string") parser.add_argument( "--snapshot-code", action="store_true", default=False, help="Flag for creating a snapshot of training code while creating slurm job," ' path is "./slurm_snapshot_code/<TIME_ISO_FORMAT/>:", ' "can find time from comment of slurm job.", ) parser.add_argument( "--snapshot-root", type=str, default=".", help="root path for saving the snapshot code.", ) parser.add_argument( "--snapshot-recurse-dirs-oss", default="metaseq,metaseq_cli", help="comma-separated directories from where to recursively copy *.py, *.so and *.yaml files", ) parser.add_argument( "--no-tensorboard", action="store_true", help="disable tensorboard logging" ) parser.add_argument("--no-wandb", action="store_true", help="disable WandB logging") # Env flags parser.add_argument("--azure", action="store_true", help="running on azure") parser.add_argument("--aws", action="store_true", help="running on aws") parser.add_argument("--fair", action="store_true", help="running on fair") # Azure specific flag parser.add_argument( "--full-azure-upload-path", default=None, help="Azure blob storage SAS URL", ) parser.add_argument( "--azure-folder-auto-name", action="store_true", help="Automatically name azure folder", ) # Following args have env specific defaults. parser.add_argument( "--partition", help="slurm partition to run on", ) parser.add_argument( "--checkpoints-dir", help="save checkpoints and logs in <checkpoints-dir>/<prefix>.<save_dir_key>", ) parser.add_argument("--cpus-per-task", type=str) parser.add_argument( "--cpu-bind", help="configured to improve all-to-all perf, especially on A100s" ) parser.add_argument( "--local-checkpoints-dir", help="node-local directory for saving checkpoints", ) parser.add_argument( "--tensorboard-logdir", default=None, # None will default to save_dir/tb help="save tensorboard logs in <tensorboard-logdir>/<prefix>.<save_dir_key>", ) if add_extra_options_func is not None: # mutates parser add_extra_options_func(parser) args = parser.parse_args(input_args) # Env check assert ( sum([args.azure, args.aws, args.fair]) == 1 ), "Must pass an env, and only one env (--azure, --aws, --fair)!" # Set defaults based on env env = get_env_from_args(args) _modify_arg_defaults_based_on_env(env, args) return args def _modify_arg_defaults_based_on_env(env, args): # TODO(susan): move all this default logic into separate config file default_partition = None if env == ComputeEnvs.FAIR: default_partition = "learnfair" default_prefix = "" if env == ComputeEnvs.AZURE: default_prefix = "/shared/home" elif env == ComputeEnvs.AWS: default_prefix = "/checkpoints" elif env == ComputeEnvs.FAIR: default_prefix = "/checkpoint" if env == ComputeEnvs.FAIR: default_checkpoint_dir = os.path.join( default_prefix, os.environ["USER"], str(datetime.date.today()) ) else: default_checkpoint_dir = os.path.join( default_prefix, os.environ["USER"], "checkpoints", str(datetime.date.today()), ) default_cpu_per_task = None if env == ComputeEnvs.AZURE or env == ComputeEnvs.AWS: default_cpu_per_task = 12 elif env == ComputeEnvs.FAIR: default_cpu_per_task = 10 default_cpu_bind = "none" if env == ComputeEnvs.AZURE: default_cpu_bind = ( "mask_cpu:ffffff000000,ffffff000000,ffffff,ffffff," "ffffff000000000000000000,ffffff000000000000000000," "ffffff000000000000,ffffff000000000000" ) elif env == ComputeEnvs.AWS: default_cpu_bind = ( "mask_cpu:000000ffffff000000ffffff,000000ffffff000000ffffff," "000000ffffff000000ffffff,000000ffffff000000ffffff," "ffffff000000ffffff000000,ffffff000000ffffff000000," "ffffff000000ffffff000000,ffffff000000ffffff000000" ) elif env == ComputeEnvs.FAIR: default_cpu_bind = "map_ldom:0,0,0,0,1,1,1,1" default_local_checkpoints_dir = None if env == ComputeEnvs.AZURE: azure_upload_path = os.environ.get("AZURE_BLOB_SAS_URL", "") if azure_upload_path != "": # write checkpoints to local scratch storage on each node default_local_checkpoints_dir = os.path.join( "/mnt/scratch", os.environ["USER"], "checkpoints", str(datetime.date.today()), ) # then copy them to Azure blob storage o = urlparse(azure_upload_path) o = o._replace( path=os.path.join( o.path, os.environ["USER"], str(datetime.date.today()) ) ) azure_upload_path = o.geturl() # set upload path if not specified if args.full_azure_upload_path is None: args.full_azure_upload_path = azure_upload_path # if needed, create a container for this user on the Azure blob account cmd = [ "azcopy", # TODO(susanz): requires azcopy to be installed. "make", o._replace(path=os.path.dirname(o.path)).geturl(), ] subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) # assign default slurm partition if args.partition is None: args.partition = default_partition # assign default checkpoint directory if args.checkpoints_dir is None: args.checkpoints_dir = default_checkpoint_dir # assign default # cpus per task if args.cpus_per_task is None: args.cpus_per_task = str(default_cpu_per_task) # assign default cpu bind if args.cpu_bind is None: args.cpu_bind = default_cpu_bind # assign default local checkpoint dir if args.local_checkpoints_dir is None: args.local_checkpoints_dir = default_local_checkpoints_dir def main( get_grid: Callable[[argparse.Namespace], List[hyperparam]], postprocess_hyperparams: Callable[ [argparse.Namespace, MutableMapping[str, hyperparam]], None ], add_extra_options_func: Optional[Callable[[argparse.ArgumentParser], None]] = None, scheduler_args: Optional[List[str]] = None, ) -> None: """Do a grid search. Parameters: get_grid: A unary callable which returns the grid to search over. The callable is passed the parsed sweep arguments including the extra arguments defined by `add_extra_options_func`. See also `get_args`. The returned list represents the dimensions of the grid. That is, a list of length n represents a grid of dimension n. Let v_i denote the number of possible values for dimension i. Then the total number of configurations is given by v_1 * ... * v_n. postprocess_hyperparams: A 2-ary callable to post-process hyperparameter configurations before running the job. The first argument is the parsed sweep arguments including the extra arguments defined by `add_extra_options_func`. The second argument is a realized hyperparameter configuration as a mutable mapping of hyperparameter name to `hyperparam` instance with a `current_value` set. add_extra_options_func: A unary callable which adds extra arguments to the sweep CLI. It is passed the parser used to define the sweep script's CLI. scheduler_args: A list of unprocessed arguments to parse. If None, then `sys.argv[1:]`. """ args = _get_args(add_extra_options_func, scheduler_args) from .slurm import main as backend_main get_grid = get_grid[args.grid] if args.grid is not None else get_grid backend_main(get_grid, postprocess_hyperparams, args)
flash_metaseq-main
metaseq/launcher/sweep.py
#!/usr/bin/env python3 -u # Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ This sweep script takes some additional optional arguments. See add_extra_options_func for more details. """ import os from metaseq.launcher.opt_job_constants import ( TOTAL_TRAIN_TOKENS, TOTAL_WARMUP_TOKENS, MODEL_SIZES, DATA_LOCATIONS, VALID_SUBSETS, ) from metaseq.launcher.sweep import ( hyperparam, get_env_from_args, main as sweep_main, ) # have to do this at the module level, unfortunately; unable to use args.<env> for _cluster, _folder in DATA_LOCATIONS.items(): if os.path.exists(_folder): try: import metaseq_internal # noqa: F401 from metaseq_internal.fb_sweep.dependency_checks import * # noqa except ImportError: print("\n\nmetaseq_internal not installed! Proceeding...") pass break def add_extra_options_func(parser): # NOTE we shouldn't add new options here... track changes via git instead parser.add_argument( "--restore-file", help="load an existing checkpoint for continuing training" ) parser.add_argument( "--reset-dataloader", action="store_true", help="reset the dataloader to epoch 1", ) parser.add_argument("--model-size", choices=MODEL_SIZES.keys(), required=True) parser.add_argument( "--no-save-dir", action="store_true", help="avoid saving with hparams" ) # Args related to benchmarking and profiling parser.add_argument( "--benchmark", action="store_true", help="use synthetic data and only train for 50 steps (for benchmarking)", ) parser.add_argument( "--profile", default=False, action="store_true", ) parser.add_argument("--max-update", "--mu", type=int, default=None) def get_grid(args): # Infer data path if not given DATA_ROOT = "" if args.data is None and not args.benchmark: cluster_env = get_env_from_args(args) args.data = os.path.join( DATA_LOCATIONS[cluster_env], "corpus_dedup_10_10_1_0.05_exp29" ) if os.path.exists(args.data): DATA_ROOT = DATA_LOCATIONS[cluster_env] else: raise RuntimeError("Where are you running this?! Check DATA_LOCATIONS.") SEQ_LEN = 2048 size = MODEL_SIZES[args.model_size] # updates = 300B tokens / 2048 seq_len / 1024 batchsize total_gpus = args.num_gpus * args.num_nodes # TODO: fix training to run with 1 gpu (see Enable sweep scripts to run with a single GPU #176) if args.num_gpus < 2: raise ValueError("Need at least two gpus to run model parallel code") if total_gpus < size.model_parallel: raise ValueError( "Total gpus (num_gpus * num_nodes) must be great than model parallel factor" ) if total_gpus % size.model_parallel != 0: raise ValueError( "Total gpus (num_gpus * num_nodes) must be divisible by model parallel factor" ) total_gpus = (args.num_gpus * args.num_nodes) // size.model_parallel ddp_bsz = (size.batch_size // total_gpus) // SEQ_LEN total_updates = args.max_update if total_updates is None: total_updates = int(TOTAL_TRAIN_TOKENS) // size.batch_size warmup_updates = int(TOTAL_WARMUP_TOKENS) // size.batch_size log_interval = 1 grid = [] # default streaming_lm task config task_config = [ hyperparam("--task", "streaming_language_modeling"), hyperparam( "--sample-break-mode", "none", save_dir_key=lambda val: f"bm_{val}" if not no_save_params else "", ), hyperparam( "--vocab-filename", os.path.join(DATA_ROOT, "tokenizers/gpt2-vocab.json"), save_dir_key=lambda _: "gpt2" if not no_save_params else "", ), hyperparam( "--merges-filename", os.path.join(DATA_ROOT, "tokenizers/gpt2-merges.txt") ), ] # separate task config for dummy_lm if args.benchmark: # Overrides for speed benchmarking args.data = None task_config = [ hyperparam("--task", "dummy_lm", save_dir_key=lambda val: val), hyperparam( "--dict-size", 51200 - 4 ), # TODO(susan): what is this -4 sorcery? relic of more nmt things? ] total_updates = 50 warmup_updates = 50 log_interval = 5 grid += task_config if args.profile: grid += [hyperparam("--new-profiler")] no_save_params = args.no_save_dir args.snapshot_code = True grid += [ hyperparam("--train-subset", "train"), hyperparam("--valid-subset", ",".join(f"valid/{ss}" for ss in VALID_SUBSETS)), hyperparam("--ignore-unused-valid-subsets"), hyperparam("--num-workers", 8), hyperparam("--num-workers-valid", 1), hyperparam("--validate-interval-updates", 2000), hyperparam("--save-interval-updates", 2000), hyperparam( "--no-epoch-checkpoints" ), # only save checkpoints based on num steps hyperparam("--no-best-checkpoints"), # don't save checkpoint_best.pt hyperparam( "--memory-efficient-fp16", save_dir_key=lambda val: "me_fp16" if not no_save_params else "", ), hyperparam("--fp16-init-scale", 4), # we set this for the main run but it's probably nt needed here # hyperparam("--threshold-loss-scale", 0.25, save_dir_key=lambda val: f"minscale{val}"), hyperparam( "--ddp-backend", "fully_sharded", save_dir_key=lambda val: "fsdp" if not no_save_params else "", ), hyperparam("--no-reshard-after-forward", save_dir_key=lambda _: "zero2"), hyperparam("--use-sharded-state"), hyperparam("--checkpoint-activations"), hyperparam("--model-parallel-size", size.model_parallel), hyperparam("--criterion", "vocab_parallel_cross_entropy"), hyperparam("--distribute-checkpointed-activations"), hyperparam("--tensor-parallel-init-model-on-gpu"), # Flags to match exact same initialization of Megatron code for exp 12.00 hyperparam("--full-megatron-init"), hyperparam("--megatron-init-sigma", 0.006), hyperparam( "--activation-fn", "relu", save_dir_key=lambda x: x if not no_save_params else "", ), hyperparam( "--arch", "transformer_lm_megatron", save_dir_key=lambda val: val if not no_save_params else "", ), hyperparam("--share-decoder-input-output-embed"), hyperparam( "--decoder-layers", size.n_layers, save_dir_key=lambda val: f"nlay{val}" if not no_save_params else "", ), hyperparam( "--decoder-embed-dim", size.emb_size, save_dir_key=lambda val: f"emb{val}" if not no_save_params else "", ), hyperparam("--decoder-ffn-embed-dim", size.ffn_size), hyperparam("--decoder-attention-heads", size.n_heads), # Switch to learned position embeddings for exp 12.00, without scaling hyperparam( "--decoder-learned-pos", save_dir_key=lambda _: "lrnpos" if not no_save_params else "", ), hyperparam( "--no-scale-embedding", save_dir_key=lambda _: "0emb_scale" if not no_save_params else "", ), hyperparam( "--tokens-per-sample", SEQ_LEN, save_dir_key=lambda val: f"tps{val}" if not no_save_params else "", ), hyperparam("--optimizer", "adam", save_dir_key=lambda val: val), # GPT-3 uses "(0.9, 0.95)" hyperparam( "--adam-betas", f"(0.9, 0.95)", save_dir_key=lambda val: "b2_{}".format(eval(val)[1]) if not no_save_params else "", ), # Sometimes lowering --adam-eps to 1e-6 can stabilize training hyperparam( "--adam-eps", 1e-8, save_dir_key=lambda val: f"eps{val}" if not no_save_params else "", ), # GPT-3 used --clip-norm=1.0 hyperparam( "--clip-norm", 1.0, save_dir_key=lambda val: f"cl{val}" if not no_save_params else "", ), hyperparam("--clip-norm-type", "l2"), hyperparam("--lr-scheduler", "polynomial_decay"), hyperparam( "--lr", size.lr, save_dir_key=lambda val: f"lr{val:.3g}" if not no_save_params else "", ), hyperparam( "--end-learning-rate", size.lr * 0.1, save_dir_key=lambda val: f"endlr{val:.3g}" if not no_save_params else "", ), hyperparam( "--warmup-updates", warmup_updates, save_dir_key=lambda val: f"wu{val}" if not no_save_params else "", ), hyperparam("--total-num-update", total_updates), hyperparam( "--dropout", 0.1, save_dir_key=lambda val: f"dr{val}" if not no_save_params else "", ), hyperparam( "--attention-dropout", 0.1, save_dir_key=lambda val: f"atdr{val}" if not no_save_params else "", ), hyperparam( "--no-emb-dropout", save_dir_key=lambda _: "0emb_dr" if not no_save_params else "", ), hyperparam( "--weight-decay", 0.1, save_dir_key=lambda val: f"wd{val}" if not no_save_params else "", ), hyperparam( "--batch-size", ddp_bsz, save_dir_key=lambda val: f"ms{val}" if not no_save_params else "", ), hyperparam( "--update-freq", 1, save_dir_key=lambda val: f"uf{val}" if not no_save_params else "", ), hyperparam( "--max-update", total_updates, save_dir_key=lambda val: f"mu{val}" if not no_save_params else "", ), hyperparam( "--seed", 1, save_dir_key=lambda val: f"s{val}" if not no_save_params else "", ), hyperparam("--log-format", "json"), hyperparam("--log-interval", log_interval), hyperparam("--required-batch-size-multiple", 1), ] if args.restore_file: grid += [hyperparam("--restore-file", args.restore_file)] if args.reset_dataloader: grid += [hyperparam("--reset-dataloader")] return grid def postprocess_hyperparams(args, config): pass def cli_main(): sweep_main( get_grid, postprocess_hyperparams, add_extra_options_func=add_extra_options_func ) if __name__ == "__main__": cli_main()
flash_metaseq-main
metaseq/launcher/opt_baselines.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Streaming Language Modeling task that loads corpora in src-tgt format and performs on-the-fly tokenization. """ import logging import os from typing import Any, Dict, List import torch from metaseq.data import ( JsonlDataset, StreamingShuffleDataset, StreamingSrcTgtDataset, data_utils, ) from metaseq.tasks.streaming_language_modeling import ( StreamingLanguageModelingTask, StreamingLanguageModelingConfig, ) from metaseq.tasks import register_task logger = logging.getLogger(__name__) @register_task( "streaming_finetune_language_modeling", dataclass=StreamingLanguageModelingConfig ) class StreamingFinetuneLanguageModelingTask(StreamingLanguageModelingTask): def _tokenize_src_tgt_json(self, json): src = json["src"].rstrip(" ") tgt = json["tgt"].rstrip() full_tokens = torch.LongTensor( self.tokenizer.encode(" ".join([src, tgt])).ids + [self.eod] ) src_tokens_len = len(self.tokenizer.encode(src).ids) tgt_tokens = torch.clone(full_tokens) tgt_tokens[:src_tokens_len] = self.dictionary.pad_index return (full_tokens, tgt_tokens) def load_dataset(self, split: str, epoch=1, combine=False, **kwargs): """Load a given dataset split. The folder structure is assumed to look like: /path/to/data/train/00/foo.jsonl /path/to/data/train/00/bar.jsonl /path/to/data/train/01/foo.jsonl /path/to/data/train/01/bar.jsonl /path/to/data/valid/00/foo.jsonl /path/to/data/valid/00/bar.jsonl In this example, we have two "shards" of training data, which will be iterated over in epochs 1 and 2, respectively. Subsequent epochs will cycle back over the same data. We also have two different data sources in each shard (foo and bar), which will be combined and shuffled. Each jsonl entry is a dict with "src" and "tgt" keys. Loss is computed only on the tgt tokens. Args: split (str): name of the split (e.g., train, valid, valid1, test) """ # This function reads a bunch of jsonl files, concats them together, # shuffles them, then chunks them into blocks of tokens (e.g., 2048). # determine number of shards for this split shards = {} cur_shard_str = self.get_shard_str(epoch, split) # concatenate any jsonl files that are part of the shard datasets, corpora = [], [] for file in sorted( os.listdir(os.path.join(self.args.data, split, cur_shard_str)) ): if not file.endswith(".jsonl"): continue datasets.append( JsonlDataset( path=os.path.join(self.args.data, split, cur_shard_str, file), tokenizer=self._tokenize_src_tgt_json, ) ) corpora.append(os.path.splitext(file)[0]) assert len(datasets) > 0 if ( self.args.multicorpus_sampling_alpha != 1 or self.args.multicorpus_sampling_maximum > 0 ): datasets = self._alpha_sampling(datasets, corpora, epoch) dataset = torch.utils.data.ConcatDataset(datasets) # shuffle order across epochs dataset = StreamingShuffleDataset(dataset, seed=self.args.seed) self.datasets[split] = StreamingSrcTgtDataset( dataset, # We generate blocks with one extra token, so that we have a target # for the final input token. This results in slight data loss. block_size=self.args.tokens_per_sample + 1, break_mode=self.args.sample_break_mode, # we drop the remainder block during training drop_last=(split == "train"), padding_idx=self.source_dictionary.pad(), # 1284 is a randomly-generated offset to decouple the seed used here # from the seed used above in StreamingShuffleDataset # TODO: Track this seed to avoid collisions. See issue #65 seed=1284 + self.args.seed, ) def _collate_fn(self, items: List[Dict[str, Any]]): # StreamingTokenBlockDataset returns None as filler if len([x for x in items if x is not None]) == 0: return {} src_tokens = data_utils.collate_tokens( [x["src_block"] for x in items if x is not None], pad_idx=self.source_dictionary.pad(), pad_to_bsz=self.args.batch_size, ) tgt_tokens = data_utils.collate_tokens( [x["tgt_block"] for x in items if x is not None], pad_idx=self.source_dictionary.pad(), pad_to_bsz=self.args.batch_size, ) # generate inputs and targets input = src_tokens[:, :-1].contiguous() target = tgt_tokens[:, 1:].contiguous() ids = torch.cat([x["ids"] for x in items if x is not None]) if ids.numel() != torch.unique(ids).numel(): n_duplicate = ids.numel() - torch.unique(ids).numel() logger.error( f"found {n_duplicate}/{ids.numel()} duplicate document IDs in the same batch!" ) # metaseq expects batches to have the following structure return { "id": ids, "net_input": { "src_tokens": input, }, "target": target, "nsentences": input.size(0), "ntokens": input.ne(self.dictionary.pad()).sum(), "ntokens_target": target.ne(self.dictionary.pad()).sum(), }
flash_metaseq-main
metaseq/tasks/streaming_finetune_language_modeling.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import os from dataclasses import dataclass, field from typing import Optional, List import numpy as np import torch from omegaconf import II from metaseq import utils from metaseq.data import ( AppendTokenDataset, Dictionary, IdDataset, LMContextWindowDataset, MonolingualDataset, NestedDictionaryDataset, NumelDataset, PrependTokenDataset, StripTokenDataset, TokenBlockDataset, MultiplePadDataset, data_utils, ) from metaseq.data.indexed_dataset import get_available_dataset_impl from metaseq.data.shorten_dataset import maybe_shorten_dataset from metaseq.dataclass import ChoiceEnum, MetaseqDataclass from metaseq.tasks import LegacyTask, register_task SAMPLE_BREAK_MODE_CHOICES = ChoiceEnum(["none", "complete", "complete_doc", "eos"]) SHORTEN_METHOD_CHOICES = ChoiceEnum(["none", "truncate", "random_crop"]) logger = logging.getLogger(__name__) try: from tokenizers import ByteLevelBPETokenizer has_hf_tokenizers = True except ImportError: has_hf_tokenizers = False @dataclass class LanguageModelingInferenceForModelsTrainedWithStreamingConfig(MetaseqDataclass): data: Optional[str] = field( default=None, metadata={"help": "path to data directory"} ) vocab_filename: Optional[str] = field( default="", metadata={"help": "path to bpe-vocab.json"} ) merges_filename: Optional[str] = field( default="", metadata={"help": "path to bpe-merges.json"} ) end_of_document_symbol: Optional[str] = field( default="</s>", metadata={"help": "symbol indicating an end-of-document"} ) sample_break_mode: SAMPLE_BREAK_MODE_CHOICES = field( default="none", metadata={ "help": 'If omitted or "none", fills each sample with tokens-per-sample ' 'tokens. If set to "complete", splits samples only at the end ' "of sentence, but may include multiple sentences per sample. " '"complete_doc" is similar but respects doc boundaries. ' 'If set to "eos", includes only one sentence per sample.' }, ) tokens_per_sample: int = field( default=1024, metadata={"help": "max number of tokens per sample for LM dataset"}, ) output_dictionary_size: int = field( default=-1, metadata={"help": "limit the size of output dictionary"} ) self_target: bool = field(default=False, metadata={"help": "include self target"}) future_target: bool = field( default=False, metadata={"help": "include future target"} ) past_target: bool = field(default=False, metadata={"help": "include past target"}) add_bos_token: bool = field( default=False, metadata={"help": "prepend beginning of sentence token (<s>)"} ) max_source_positions: Optional[int] = field( default=None, metadata={"help": "max number of tokens in the source sequence"} ) max_target_positions: Optional[int] = field( default=None, metadata={"help": "max number of tokens in the target sequence"} ) shorten_method: SHORTEN_METHOD_CHOICES = field( default="none", metadata={ "help": "if not none, shorten sequences that exceed --tokens-per-sample" }, ) shorten_data_split_list: str = field( default="", metadata={ "help": "comma-separated list of dataset splits to apply shortening to, " 'e.g., "train,valid" (default: all dataset splits)' }, ) pad_to_fixed_length: Optional[bool] = field( default=False, metadata={"help": "pad to fixed length"}, ) pad_to_fixed_bsz: Optional[bool] = field( default=False, metadata={"help": "boolean to pad to fixed batch size"}, ) # TODO common vars below add to parent seed: int = II("common.seed") batch_size: Optional[int] = II("dataset.batch_size") batch_size_valid: Optional[int] = II("dataset.batch_size_valid") dataset_impl: Optional[ChoiceEnum(get_available_dataset_impl())] = II( "dataset.dataset_impl" ) data_buffer_size: int = II("dataset.data_buffer_size") tpu: bool = II("common.tpu") use_plasma_view: bool = II("common.use_plasma_view") plasma_path: str = II("common.plasma_path") update_freq: List[int] = II("optimization.update_freq") @register_task( "language_modeling_inference_for_models_trained_with_streaming", dataclass=LanguageModelingInferenceForModelsTrainedWithStreamingConfig, ) class LanguageModelingInferenceForModelsTrainedWithStreamingTask(LegacyTask): """ This class is specially developed for inference of models trained with the new StreamingLanguageModeling but follows closely the language_modeling implementation. """ def __init__(self, args): super().__init__(args) if not has_hf_tokenizers: raise ImportError("Please install tokenizers with: pip install tokenizers") self.tokenizer = ByteLevelBPETokenizer.from_file( args.vocab_filename, args.merges_filename ) self.eod = self.tokenizer.token_to_id(args.end_of_document_symbol) if self.eod is None: # fix for 7B_punctsplit_bpe_relu2_229k # TODO(susanz): Figure out why this is different from StreamingLanguageModelingTask self.eod = self.tokenizer.token_to_id("<endoftext|>") assert ( self.eod is not None ), "Cannot find end-of-document symbol ({}) in tokenizer".format( args.end_of_document_symbol ) # construct a dummy metaseq Dictionary corresponding to the given tokenizer self.dictionary = Dictionary() for id in range(self.dictionary.nspecial, self.tokenizer.get_vocab_size()): # This aims at producing a dict with first symbols being special # (<s> <pad>) and the rest '4', '5' to be backward compatible with # the current few_shot eval logic. See # examples/few_shot/predictor.py if id <= max(self.eod, 3): self.dictionary.add_symbol(self.tokenizer.id_to_token(id)) else: self.dictionary.add_symbol(str(id)) # confirm that metaseq dictionary and BPE have matching special symbols assert self.dictionary.bos_index == 0 assert self.tokenizer.id_to_token(0) in {"<BOS>", "<s>"} assert self.dictionary.pad_index == 1 assert self.tokenizer.id_to_token(1) in {"<PAD>", "<pad>"} assert self.dictionary.eos_index == 2 assert self.tokenizer.id_to_token(2) in {"<EOS>", "</s>"} assert self.dictionary.unk_index == 3 assert self.tokenizer.id_to_token(3) in {"<UNK>", "<unk>"} self.dictionary.pad_to_multiple_(8) self.output_dictionary = self.dictionary @classmethod def setup_task(cls, args, **kwargs): # upgrade old checkpoints if getattr(args, "exclude_self_target", False): args.self_target = False return cls(args) def load_dataset( self, split: str, epoch=1, combine=False, **kwargs ) -> MonolingualDataset: """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, valid1, test) """ paths = utils.split_paths(self.args.data) assert len(paths) > 0 data_path = paths[(epoch - 1) % len(paths)] split_path = os.path.join(data_path, split) # each process has its own copy of the raw data (likely to be an np.memmap) dataset = data_utils.load_indexed_dataset( split_path, self.dictionary, self.args.dataset_impl, combine=combine ) if dataset is None: raise FileNotFoundError(f"Dataset not found: {split} ({split_path})") dataset = maybe_shorten_dataset( dataset, split, self.args.shorten_data_split_list, self.args.shorten_method, self.args.tokens_per_sample, self.args.seed, ) dataset = TokenBlockDataset( dataset, dataset.sizes, self.args.tokens_per_sample, pad=self.dictionary.pad(), eos=self.dictionary.eos(), break_mode=self.args.sample_break_mode, include_targets=True, use_plasma_view=self.args.use_plasma_view, split_path=split_path, plasma_path=self.args.plasma_path, ) add_eos_for_other_targets = ( self.args.sample_break_mode is not None and self.args.sample_break_mode != "none" ) fixed_pad_length = None if self.args.pad_to_fixed_length: fixed_pad_length = self.args.tokens_per_sample pad_to_bsz = None if self.args.pad_to_fixed_bsz: pad_to_bsz = ( self.args.batch_size_valid if "valid" in split else self.args.batch_size ) self.datasets[split] = MonolingualDataset( dataset=dataset, sizes=dataset.sizes, src_vocab=self.dictionary, tgt_vocab=self.output_dictionary, add_eos_for_other_targets=add_eos_for_other_targets, shuffle=True, add_bos_token=self.args.add_bos_token, fixed_pad_length=fixed_pad_length, pad_to_bsz=pad_to_bsz, ) def build_dataset_for_inference(self, src_tokens, src_lengths, **kwargs): """ Generate batches for inference. We prepend an eos token to src_tokens (or bos if `--add-bos-token` is set) and we append a <pad> to target. This is convenient both for generation with a prefix and LM scoring. """ dataset = StripTokenDataset( TokenBlockDataset( src_tokens, src_lengths, block_size=None, # ignored for "eos" break mode pad=self.source_dictionary.pad(), eos=self.source_dictionary.eos(), break_mode="eos", ), # remove eos from (end of) target sequence self.source_dictionary.eos(), ) src_dataset = PrependTokenDataset( dataset, token=( self.source_dictionary.bos() if getattr(self.args, "add_bos_token", False) else self.eod # In some models we accidently replaced this with <endoftext/> # (id:4) but it seems they work with eos as well so we will # keep this way in this experimental task until figure a better # flexible soluton. ), ) src_dataset = MultiplePadDataset( src_dataset, pad_idx=self.source_dictionary.pad(), multiple=8 ) tgt_dataset = AppendTokenDataset(dataset, token=self.source_dictionary.pad()) return NestedDictionaryDataset( { "id": IdDataset(), "net_input": { "src_tokens": src_dataset, "src_lengths": NumelDataset(src_dataset, reduce=False), }, "target": MultiplePadDataset( tgt_dataset, pad_idx=self.source_dictionary.pad(), multiple=8 ), }, sizes=[np.array(src_lengths)], ) def inference_step( self, generator, models, sample, prefix_tokens=None, constraints=None ): with torch.no_grad(): # Generation will always be conditioned on bos_token if getattr(self.args, "add_bos_token", False): bos_token = self.source_dictionary.bos() else: bos_token = self.source_dictionary.eos() if constraints is not None: raise NotImplementedError( "Constrained decoding with the language_modeling task is not supported" ) # SequenceGenerator doesn't use src_tokens directly, we need to # pass the `prefix_tokens` argument instead if prefix_tokens is None and sample["net_input"]["src_tokens"].nelement(): prefix_tokens = sample["net_input"]["src_tokens"] if prefix_tokens[:, 0].eq(bos_token).all(): prefix_tokens = prefix_tokens[:, 1:] return generator.generate( models, sample, prefix_tokens=prefix_tokens, bos_token=bos_token ) def eval_lm_dataloader( self, dataset, max_tokens: Optional[int] = 36000, batch_size: Optional[int] = None, max_positions: Optional[int] = None, num_shards: int = 1, shard_id: int = 0, num_workers: int = 1, data_buffer_size: int = 10, # ensures that every evaluated token has access to a context of at least # this size, if possible context_window: int = 0, ): if context_window > 0: dataset = LMContextWindowDataset( dataset=dataset, tokens_per_sample=self.args.tokens_per_sample, context_window=context_window, pad_idx=self.source_dictionary.pad(), ) return self.get_batch_iterator( dataset=dataset, max_tokens=max_tokens, max_sentences=batch_size, max_positions=max_positions, ignore_invalid_inputs=True, num_shards=num_shards, shard_id=shard_id, num_workers=num_workers, data_buffer_size=data_buffer_size, ) @property def source_dictionary(self): """Return the :class:`~metaseq.data.Dictionary` for the language model.""" return self.dictionary @property def target_dictionary(self): """Return the :class:`~metaseq.data.Dictionary` for the language model.""" return self.output_dictionary
flash_metaseq-main
metaseq/tasks/language_modeling_inference_for_models_trained_with_streaming.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import os from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from omegaconf import II from metaseq import utils from metaseq.data import ( AppendTokenDataset, Dictionary, IdDataset, LMContextWindowDataset, MonolingualDataset, NestedDictionaryDataset, NumelDataset, PadDataset, PrependTokenDataset, StripTokenDataset, SortDataset, TokenBlockDataset, data_utils, ) from metaseq.data.indexed_dataset import get_available_dataset_impl from metaseq.data.shorten_dataset import maybe_shorten_dataset from metaseq.dataclass import ChoiceEnum, MetaseqDataclass from metaseq.tasks import LegacyTask, register_task try: from tokenizers import ByteLevelBPETokenizer has_hf_tokenizers = True except ImportError: has_hf_tokenizers = False SAMPLE_BREAK_MODE_CHOICES = ChoiceEnum(["none", "complete", "complete_doc", "eos"]) SHORTEN_METHOD_CHOICES = ChoiceEnum(["none", "truncate", "random_crop"]) logger = logging.getLogger(__name__) @dataclass class LanguageModelingConfig(MetaseqDataclass): data: Optional[str] = field( default=None, metadata={"help": "path to data directory"} ) # Begin args from StreamingLanguageModelingConfig vocab_filename: Optional[str] = field( default="", metadata={"help": "path to bpe-vocab.json"} ) merges_filename: Optional[str] = field( default="", metadata={"help": "path to bpe-merges.txt"} ) end_of_document_symbol: Optional[str] = field( default="</s>", metadata={"help": "symbol indicating an end-of-document"} ) final_vocab_size: Optional[int] = field( default=None, metadata={"help": "force vocab size to this"} ) # End of args from StreamingLanguageModelingConfig sample_break_mode: SAMPLE_BREAK_MODE_CHOICES = field( default="none", metadata={ "help": 'If omitted or "none", fills each sample with tokens-per-sample ' 'tokens. If set to "complete", splits samples only at the end ' "of sentence, but may include multiple sentences per sample. " '"complete_doc" is similar but respects doc boundaries. ' 'If set to "eos", includes only one sentence per sample.' }, ) tokens_per_sample: int = field( default=1024, metadata={"help": "max number of tokens per sample for LM dataset"}, ) add_bos_token: bool = field( default=False, metadata={"help": "prepend beginning of sentence token (<s>)"} ) max_source_positions: Optional[int] = field( default=None, metadata={"help": "max number of tokens in the source sequence"} ) max_target_positions: Optional[int] = field( default=None, metadata={"help": "max number of tokens in the target sequence"} ) shorten_method: SHORTEN_METHOD_CHOICES = field( default="none", metadata={ "help": "if not none, shorten sequences that exceed --tokens-per-sample" }, ) shorten_data_split_list: str = field( default="", metadata={ "help": "comma-separated list of dataset splits to apply shortening to, " 'e.g., "train,valid" (default: all dataset splits)' }, ) pad_to_fixed_length: Optional[bool] = field( default=False, metadata={"help": "pad to fixed length"}, ) pad_to_fixed_bsz: Optional[bool] = field( default=False, metadata={"help": "boolean to pad to fixed batch size"}, ) shuffle_docs: bool = field( default=False, metadata={ "help": "Only for sample break mode EOS, first shuffle docs and then create blocks" }, ) # TODO common vars below add to parent seed: int = II("common.seed") batch_size: Optional[int] = II("dataset.batch_size") batch_size_valid: Optional[int] = II("dataset.batch_size_valid") dataset_impl: Optional[ChoiceEnum(get_available_dataset_impl())] = II( "dataset.dataset_impl" ) data_buffer_size: int = II("dataset.data_buffer_size") use_plasma_view: bool = II("common.use_plasma_view") plasma_path: str = II("common.plasma_path") # TODO(susanz): Deprecate this task. This pre-date StreamingLanguageModelingTask, # when tokenization happened offline. @register_task("language_modeling", dataclass=LanguageModelingConfig) class LanguageModelingTask(LegacyTask): """ Train a language model. To be deprecated. """ def __init__(self, args): super().__init__(args) if not has_hf_tokenizers: raise ImportError("Please install tokenizers with: pip install tokenizers") self.tokenizer = ByteLevelBPETokenizer.from_file( args.vocab_filename, args.merges_filename ) self.eod = self.tokenizer.token_to_id(args.end_of_document_symbol) if self.eod is None: # This will be executed for old models that do not have the args.end_of_document_symbol explicitly set # and do not use <s/> (the default) but <EOS> self.eod = self.tokenizer.token_to_id("<EOS>") assert ( self.eod is not None ), "Cannot find end-of-document symbol ({}) in tokenizer".format( args.end_of_document_symbol ) # construct a dummy metaseq Dictionary corresponding to the given tokenizer self.dictionary = Dictionary() tok_vocab_size = self.tokenizer.get_vocab_size() for id in range(self.dictionary.nspecial, tok_vocab_size): self.dictionary.add_symbol(self.tokenizer.id_to_token(id)) final_vocab_size = args.final_vocab_size # final_vocab_size = 51200 for roberta dictionary if final_vocab_size is not None: if final_vocab_size < tok_vocab_size: raise ValueError( f"incompatible: {final_vocab_size}, tok_vocab_size: {tok_vocab_size}" ) self.dictionary.pad_to_multiple_(final_vocab_size) else: self.dictionary.pad_to_multiple_(8) # confirm that metaseq dictionary and BPE have matching special symbols assert self.dictionary.bos_index == 0 assert self.tokenizer.id_to_token(0) in {"<BOS>", "<s>"} assert self.dictionary.pad_index == 1 assert self.tokenizer.id_to_token(1) in {"<PAD>", "<pad>"} assert self.dictionary.eos_index == 2 assert self.tokenizer.id_to_token(2) in {"<EOS>", "</s>"} assert self.dictionary.unk_index == 3 assert self.tokenizer.id_to_token(3) in {"<UNK>", "<unk>"} @classmethod def setup_task(cls, args, **kwargs): return cls(args) def load_dataset(self, split: str, epoch=1, combine=False, **kwargs): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, valid1, test) """ paths = utils.split_paths(self.args.data) assert len(paths) > 0 data_path = paths[(epoch - 1) % len(paths)] split_path = os.path.join(data_path, split) # each process has its own copy of the raw data (likely to be an np.memmap) dataset = data_utils.load_indexed_dataset( split_path, self.dictionary, self.args.dataset_impl, combine=combine ) if dataset is None: raise FileNotFoundError(f"Dataset not found: {split} ({split_path})") dataset = maybe_shorten_dataset( dataset, split, self.args.shorten_data_split_list, self.args.shorten_method, self.args.tokens_per_sample, self.args.seed, ) if self.args.shuffle_docs: assert ( self.args.sample_break_mode == "none" ), "shuffle docs is only for sample break mode none" dataset = TokenBlockDataset( dataset, dataset.sizes, self.args.tokens_per_sample, pad=self.dictionary.pad(), eos=self.dictionary.eos(), break_mode="complete_doc", include_targets=False, use_plasma_view=self.args.use_plasma_view, split_path=split_path, plasma_path=self.args.plasma_path, ) with data_utils.numpy_seed(self.args.seed + epoch): shuffle = np.random.permutation(len(dataset)) dataset = SortDataset( dataset, sort_order=[ shuffle, dataset.sizes, ], ) dataset = TokenBlockDataset( dataset, dataset.sizes, self.args.tokens_per_sample, pad=self.dictionary.pad(), eos=self.dictionary.eos(), break_mode=self.args.sample_break_mode, include_targets=True, use_plasma_view=self.args.use_plasma_view, split_path=split_path, plasma_path=self.args.plasma_path, ) add_eos_for_other_targets = ( self.args.sample_break_mode is not None and self.args.sample_break_mode != "none" ) fixed_pad_length = None if self.args.pad_to_fixed_length: fixed_pad_length = self.args.tokens_per_sample pad_to_bsz = None if self.args.pad_to_fixed_bsz: pad_to_bsz = ( self.args.batch_size_valid if "valid" in split else self.args.batch_size ) self.datasets[split] = MonolingualDataset( dataset=dataset, sizes=dataset.sizes, src_vocab=self.dictionary, tgt_vocab=self.dictionary, add_eos_for_other_targets=add_eos_for_other_targets, shuffle=True, add_bos_token=self.args.add_bos_token, fixed_pad_length=fixed_pad_length, pad_to_bsz=pad_to_bsz, ) def build_dataset_for_inference(self, src_tokens, src_lengths, **kwargs): """ Generate batches for inference. We prepend an eos token to src_tokens (or bos if `--add-bos-token` is set) and we append a <pad> to target. This is convenient both for generation with a prefix and LM scoring. """ dataset = StripTokenDataset( TokenBlockDataset( src_tokens, src_lengths, block_size=None, # ignored for "eos" break mode pad=self.source_dictionary.pad(), eos=self.source_dictionary.eos(), break_mode="eos", ), # remove eos from (end of) target sequence self.source_dictionary.eos(), ) src_dataset = PrependTokenDataset( dataset, token=( self.source_dictionary.bos() if getattr(self.args, "add_bos_token", False) else self.source_dictionary.eos() ), ) tgt_dataset = AppendTokenDataset(dataset, token=self.source_dictionary.pad()) return NestedDictionaryDataset( { "id": IdDataset(), "net_input": { "src_tokens": PadDataset( src_dataset, pad_idx=self.source_dictionary.pad(), left_pad=False, ), "src_lengths": NumelDataset(src_dataset, reduce=False), }, "target": PadDataset( tgt_dataset, pad_idx=self.source_dictionary.pad(), left_pad=False ), }, sizes=[np.array(src_lengths)], ) def inference_step(self, generator, models, sample, prefix_tokens=None, **kwargs): with torch.no_grad(): # Generation will always be conditioned on bos_token if getattr(self.args, "add_bos_token", False): bos_token = self.source_dictionary.bos() else: bos_token = self.source_dictionary.eos() # SequenceGenerator doesn't use src_tokens directly, we need to # pass the `prefix_tokens` argument instead if prefix_tokens is None and sample["net_input"]["src_tokens"].nelement(): prefix_tokens = sample["net_input"]["src_tokens"] if prefix_tokens[:, 0].eq(bos_token).all(): prefix_tokens = prefix_tokens[:, 1:] return generator.generate( models, sample, prefix_tokens=prefix_tokens, bos_token=bos_token, **kwargs, ) def eval_lm_dataloader( self, dataset, max_tokens: Optional[int] = 36000, batch_size: Optional[int] = None, max_positions: Optional[int] = None, num_shards: int = 1, shard_id: int = 0, num_workers: int = 1, data_buffer_size: int = 10, # ensures that every evaluated token has access to a context of at least # this size, if possible context_window: int = 0, ): if context_window > 0: dataset = LMContextWindowDataset( dataset=dataset, tokens_per_sample=self.args.tokens_per_sample, context_window=context_window, pad_idx=self.source_dictionary.pad(), ) return self.get_batch_iterator( dataset=dataset, max_tokens=max_tokens, max_sentences=batch_size, max_positions=max_positions, ignore_invalid_inputs=True, num_shards=num_shards, shard_id=shard_id, num_workers=num_workers, data_buffer_size=data_buffer_size, ) @property def source_dictionary(self): return self.dictionary @property def target_dictionary(self): return self.dictionary
flash_metaseq-main
metaseq/tasks/language_modeling.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import warnings from argparse import Namespace from typing import Any, Callable, Dict, List import torch from omegaconf import DictConfig from metaseq import metrics, search, tokenizer, utils from metaseq.data import Dictionary, BaseDataset, data_utils, encoders, iterators from metaseq.dataclass import MetaseqDataclass from metaseq.dataclass.utils import gen_parser_from_dataclass logger = logging.getLogger(__name__) class StatefulContainer(object): _state: Dict[str, Any] = dict() _factories: Dict[str, Callable[[], Any]] = dict() def add_factory(self, name, factory: Callable[[], Any]): self._factories[name] = factory def merge_state_dict(self, state_dict: Dict[str, Any]): self._state.update(state_dict) @property def state_dict(self) -> Dict[str, Any]: return self._state def __getattr__(self, name): if name not in self._state and name in self._factories: self._state[name] = self._factories[name]() if name in self._state: return self._state[name] raise AttributeError(f"Task state has no factory for attribute {name}") class BaseTask(object): """ Tasks store dictionaries and provide helpers for loading/iterating over Datasets, initializing the Model/Criterion and calculating the loss. Tasks have limited statefulness. In particular, state that needs to be saved to/loaded from checkpoints needs to be stored in the `self.state` :class:`StatefulContainer` object. For example:: self.state.add_factory("dictionary", self.load_dictionary) print(self.state.dictionary) # calls self.load_dictionary() This is necessary so that when loading checkpoints, we can properly recreate the task state after initializing the task instance. """ @classmethod def add_args(cls, parser): """Add task-specific arguments to the parser.""" dc = getattr(cls, "__dataclass", None) if dc is not None: gen_parser_from_dataclass(parser, dc()) @staticmethod def logging_outputs_can_be_summed(criterion) -> bool: """ Whether the logging outputs returned by `train_step` and `valid_step` can be summed across workers prior to calling `aggregate_logging_outputs`. Setting this to True will improves distributed training speed. """ return criterion.logging_outputs_can_be_summed() cfg: MetaseqDataclass datasets: Dict[str, BaseDataset] dataset_to_epoch_iter: Dict[BaseDataset, Any] state: StatefulContainer = None def __init__(self, cfg: MetaseqDataclass, **kwargs): self.cfg = cfg self.datasets = dict() self.dataset_to_epoch_iter = dict() self.state = StatefulContainer() @classmethod def load_dictionary(cls, filename): """Load the dictionary from the filename Args: filename (str): the filename """ return Dictionary.load(filename) @classmethod def build_dictionary( cls, filenames, workers=1, threshold=-1, nwords=-1, padding_factor=8 ): """Build the dictionary Args: filenames (list): list of filenames workers (int): number of concurrent workers threshold (int): defines the minimum word count nwords (int): defines the total number of words in the final dictionary, including special symbols padding_factor (int): can be used to pad the dictionary size to be a multiple of 8, which is important on some hardware (e.g., Nvidia Tensor Cores). """ d = Dictionary() for filename in filenames: Dictionary.add_file_to_dictionary( filename, d, tokenizer.tokenize_line, workers ) d.finalize(threshold=threshold, nwords=nwords, padding_factor=padding_factor) return d @classmethod def setup_task(cls, cfg: DictConfig, **kwargs): """Setup the task (e.g., load dictionaries). Args: cfg (omegaconf.DictConfig): parsed command-line arguments """ return cls(cfg, **kwargs) def load_dataset( self, split: str, combine: bool = False, task_cfg: MetaseqDataclass = None, **kwargs, ): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) combine (bool): combines a split segmented into pieces into one dataset task_cfg (MetaseqDataclass): optional task configuration stored in the checkpoint that can be used to load datasets """ raise NotImplementedError def dataset(self, split): """ Return a loaded dataset split. Args: split (str): name of the split (e.g., train, valid, test) Returns: a :class:`~metaseq.data.BaseDataset` corresponding to *split* """ from metaseq.data import BaseDataset if split not in self.datasets: raise KeyError("Dataset not loaded: " + split) if not isinstance(self.datasets[split], BaseDataset): raise TypeError("Datasets are expected to be of type BaseDataset") return self.datasets[split] def filter_indices_by_size( self, indices, dataset, max_positions=None, ignore_invalid_inputs=False ): """ Filter examples that are too large Args: indices (np.array): original array of sample indices dataset (~metaseq.data.BaseDataset): dataset to batch max_positions (optional): max sentence length supported by the model (default: None). ignore_invalid_inputs (bool, optional): don't raise Exception for sentences that are too long (default: False). Returns: np.array: array of filtered sample indices """ indices, ignored = dataset.filter_indices_by_size(indices, max_positions) if len(ignored) > 0: if not ignore_invalid_inputs: raise Exception( ( "Size of sample #{} is invalid (={}) since max_positions={}, " "skip this example with --skip-invalid-size-inputs-valid-test" ).format(ignored[0], dataset.size(ignored[0]), max_positions) ) logger.warning( ( "{:,} samples have invalid sizes and will be skipped, " "max_positions={}, first few sample ids={}" ).format(len(ignored), max_positions, ignored[:10]) ) return indices def get_batch_iterator( self, dataset: BaseDataset, max_tokens=None, max_sentences=None, max_positions=None, ignore_invalid_inputs=False, required_batch_size_multiple=1, seed=1, num_shards=1, shard_id=0, num_workers=0, epoch=1, data_buffer_size=0, disable_iterator_cache=False, batch_by_size=True, skip_remainder_batch=False, ): """ Get an iterator that yields batches of data from the given dataset. Args: dataset (~metaseq.data.BaseDataset): dataset to batch max_tokens (int, optional): max number of tokens in each batch (default: None). max_sentences (int, optional): max number of sentences in each batch (default: None). max_positions (optional): max sentence length supported by the model (default: None). ignore_invalid_inputs (bool, optional): don't raise Exception for sentences that are too long (default: False). required_batch_size_multiple (int, optional): require batch size to be a multiple of N (default: 1). seed (int, optional): seed for random number generator for reproducibility (default: 1). num_shards (int, optional): shard the data iterator into N shards (default: 1). shard_id (int, optional): which shard of the data iterator to return (default: 0). num_workers (int, optional): how many subprocesses to use for data loading. 0 means the data will be loaded in the main process (default: 0). epoch (int, optional): the epoch to start the iterator from (default: 1). data_buffer_size (int, optional): number of batches to preload (default: 0). disable_iterator_cache (bool, optional): don't cache the EpochBatchIterator (default: False). batch_by_size (bool, optional): batch sequences of similar length together to reduce padding. If false, each batch will be of size max_sentences. skip_remainder_batch (bool, optional): if set, discard the last batch in each training epoch, as the last batch is often smaller than local_batch_size * distributed_word_size (default: ``True``). Returns: ~metaseq.iterators.EpochBatchIterator: a batched iterator over the given dataset split """ if not disable_iterator_cache and dataset in self.dataset_to_epoch_iter: logger.debug("reusing EpochBatchIterator for epoch {}".format(epoch)) return self.dataset_to_epoch_iter[dataset] assert isinstance(dataset, BaseDataset) # initialize the dataset with the correct starting epoch dataset.set_epoch(epoch) # get indices ordered by example size with data_utils.numpy_seed(seed): indices = dataset.ordered_indices() # filter examples that are too large if max_positions is not None: indices = self.filter_indices_by_size( indices, dataset, max_positions, ignore_invalid_inputs ) if batch_by_size: # create mini-batches with given size constraints batch_sampler = dataset.batch_by_size( indices, max_tokens=max_tokens, max_sentences=max_sentences, required_batch_size_multiple=required_batch_size_multiple, ) else: assert ( max_sentences is not None ), "If batch_by_size=False, max_sentences must be passed. Got None" starts = indices[::max_sentences] batch_sampler = [indices[s : s + max_sentences] for s in starts] # return a reusable, sharded iterator epoch_iter = iterators.EpochBatchIterator( dataset=dataset, collate_fn=dataset.collater, batch_sampler=batch_sampler, seed=seed, num_shards=num_shards, shard_id=shard_id, num_workers=num_workers, epoch=epoch, buffer_size=data_buffer_size, skip_remainder_batch=skip_remainder_batch, ) self.dataset_to_epoch_iter[dataset] = epoch_iter return epoch_iter def build_model(self, cfg: MetaseqDataclass): """ Build the :class:`~metaseq.models.BaseModel` instance for this task. Args: cfg (MetaseqDataclass): configuration object Returns: a :class:`~metaseq.models.BaseModel` instance """ from metaseq import models model = models.build_model(cfg, self) return model def build_criterion(self, cfg: DictConfig): """ Build the :class:`~metaseq.criterions.BaseCriterion` instance for this task. Args: cfg (omegaconf.DictConfig): configration object Returns: a :class:`~metaseq.criterions.BaseCriterion` instance """ from metaseq import criterions return criterions.build_criterion(cfg, self) def build_generator( self, models, args, seq_gen_cls=None, extra_gen_cls_kwargs=None ): if getattr(args, "score_reference", False): from metaseq.sequence_scorer import SequenceScorer return SequenceScorer( self.target_dictionary, compute_vocab_dist=getattr(args, "compute_vocab_dist", False), ) from metaseq.sequence_generator import SequenceGenerator # Choose search strategy. sampling = getattr(args, "sampling", False) sampling_topk = getattr(args, "sampling_topk", -1) sampling_topp = getattr(args, "sampling_topp", -1.0) assert sampling_topk < 0 or sampling, "--sampling-topk requires --sampling" assert sampling_topp < 0 or sampling, "--sampling-topp requires --sampling" if sampling: search_strategy = search.Sampling( self.target_dictionary, sampling_topk, sampling_topp ) else: search_strategy = search.BeamSearch(self.target_dictionary) extra_gen_cls_kwargs = extra_gen_cls_kwargs or {} if seq_gen_cls is None: seq_gen_cls = SequenceGenerator return seq_gen_cls( models, self.target_dictionary, beam_size=getattr(args, "beam", 5), max_len_a=getattr(args, "max_len_a", 0), max_len_b=getattr(args, "max_len_b", 200), min_len=getattr(args, "min_len", 1), temperature=getattr(args, "temperature", 1.0), search_strategy=search_strategy, **extra_gen_cls_kwargs, ) def train_step( self, sample, model, criterion, optimizer, update_num, ignore_grad=False ): """ Do forward and backward, and return the loss as computed by *criterion* for the given *model* and *sample*. Args: sample (dict): the mini-batch. The format is defined by the :class:`~metaseq.data.BaseDataset`. model (~metaseq.models.BaseModel): the model criterion (~metaseq.criterions.BaseCriterion): the criterion optimizer (~metaseq.optim.BaseOptimizer): the optimizer update_num (int): the current update ignore_grad (bool): multiply loss by 0 if this is set to True Returns: tuple: - the loss - the sample size, which is used as the denominator for the gradient - logging outputs to display while training """ model.train() model.set_num_updates(update_num) with torch.autograd.profiler.record_function("forward"): loss, sample_size, logging_output = criterion(model, sample) if ignore_grad: loss *= 0 with torch.autograd.profiler.record_function("backward"): optimizer.backward(loss) return loss, sample_size, logging_output def valid_step(self, sample, model, criterion): model.eval() with torch.no_grad(): loss, sample_size, logging_output = criterion(model, sample) return loss, sample_size, logging_output def optimizer_step(self, optimizer, model, update_num): optimizer.step() def build_dataset_for_inference( self, src_tokens: List[torch.Tensor], src_lengths: List[int], **kwargs ) -> torch.utils.data.Dataset: raise NotImplementedError def inference_step(self, generator, models, sample, prefix_tokens=None): with torch.no_grad(): return generator.generate(models, sample, prefix_tokens=prefix_tokens) def begin_epoch(self, epoch, model): """Hook function called before the start of each epoch.""" pass def begin_valid_epoch(self, epoch, model): """Hook function called before the start of each validation epoch.""" pass def aggregate_logging_outputs(self, logging_outputs, criterion): """[deprecated] Aggregate logging outputs from data parallel training.""" utils.deprecation_warning( "The aggregate_logging_outputs API is deprecated. " "Please use the reduce_metrics API instead." ) with metrics.aggregate() as agg: self.reduce_metrics(logging_outputs, criterion) return agg.get_smoothed_values() def reduce_metrics(self, logging_outputs, criterion): """Aggregate logging outputs from data parallel training.""" # backward compatibility for tasks that override aggregate_logging_outputs base_func = BaseTask.aggregate_logging_outputs self_func = getattr(self, "aggregate_logging_outputs").__func__ if self_func is not base_func: utils.deprecation_warning( "Tasks should implement the reduce_metrics API. " "Falling back to deprecated aggregate_logging_outputs API." ) agg_logging_outputs = self.aggregate_logging_outputs( logging_outputs, criterion ) for k, v in agg_logging_outputs.items(): metrics.log_scalar(k, v) return if not any("ntokens" in log for log in logging_outputs): warnings.warn( "ntokens not found in Criterion logging outputs, cannot log wpb or wps" ) else: ntokens = sum(log.get("ntokens", 0) for log in logging_outputs) metrics.log_scalar("wpb", ntokens, priority=180, round=1) metrics.log_speed("wps", ntokens, priority=90, round=1) if not any("nsentences" in log for log in logging_outputs): warnings.warn( "nsentences not found in Criterion logging outputs, cannot log bsz" ) else: nsentences = sum(log.get("nsentences", 0) for log in logging_outputs) metrics.log_scalar("bsz", nsentences, priority=190, round=1) criterion.__class__.reduce_metrics(logging_outputs) def state_dict(self): if self.state is not None: return self.state.state_dict return {} def load_state_dict(self, state_dict: Dict[str, Any]): if self.state is not None: self.state.merge_state_dict(state_dict) def max_positions(self): """Return the max input length allowed by the task.""" return None @property def source_dictionary(self): """Return the source :class:`~metaseq.data.Dictionary` (if applicable for this task).""" raise NotImplementedError @property def target_dictionary(self): """Return the target :class:`~metaseq.data.Dictionary` (if applicable for this task).""" raise NotImplementedError def build_tokenizer(self, args): """Build the pre-tokenizer for this task.""" return encoders.build_tokenizer(args) def build_bpe(self, args): """Build the tokenizer for this task.""" return encoders.build_bpe(args) def get_interactive_tokens_and_lengths(self, lines, encode_fn): tokens = [ self.source_dictionary.encode_line( encode_fn(src_str), add_if_not_exist=False ).long() for src_str in lines ] lengths = [t.numel() for t in tokens] return tokens, lengths class LegacyTask(BaseTask): def __init__(self, args: Namespace): self.args = args self.datasets = {} self.dataset_to_epoch_iter = {} @classmethod def setup_task(cls, args: Namespace, **kwargs): """Setup the task (e.g., load dictionaries). Args: args (argparse.Namespace): parsed command-line arguments """ return cls(args, **kwargs) def build_model(self, args: Namespace): """ Build the :class:`~metaseq.models.BaseModel` instance for this task. Args: args (argparse.Namespace): parsed command-line arguments Returns: a :class:`~metaseq.models.BaseModel` instance """ from metaseq import models model = models.build_model(args, self) return model def build_criterion(self, args: Namespace): """ Build the :class:`~metaseq.criterions.BaseCriterion` instance for this task. Args: args (argparse.Namespace): parsed command-line arguments Returns: a :class:`~metaseq.criterions.BaseCriterion` instance """ from metaseq import criterions return criterions.build_criterion(args, self)
flash_metaseq-main
metaseq/tasks/base_task.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Streaming Language Modeling task that loads corpora in plaintext and performs on-the-fly tokenization. """ import logging import os from dataclasses import dataclass, field from typing import Any, Dict, List, Optional import numpy as np import torch from omegaconf import II from metaseq.data import ( Dictionary, JsonlDataset, PartitionedStreamingDataset, ResamplingDataset, StreamingShuffleDataset, StreamingTokenBlockDataset, StreamingSrcTgtDataset, data_utils, iterators, ) from metaseq.dataclass import MetaseqDataclass from metaseq.tasks import LegacyTask, register_task try: from tokenizers import ByteLevelBPETokenizer has_hf_tokenizers = True except ImportError: has_hf_tokenizers = False logger = logging.getLogger(__name__) DEFAULT_MULTICORPUS_MAX = -1 @dataclass class StreamingLanguageModelingConfig(MetaseqDataclass): data: Optional[str] = field( default=None, metadata={"help": "path to data directory with JSONL files"} ) vocab_filename: Optional[str] = field( default="", metadata={"help": "path to bpe-vocab.json"} ) merges_filename: Optional[str] = field( default="", metadata={"help": "path to bpe-merges.txt"} ) end_of_document_symbol: Optional[str] = field( default="</s>", metadata={"help": "symbol indicating an end-of-document"} ) sample_break_mode: Optional[str] = field( default="none", metadata={ "help": 'If omitted or "none", fills each sample with tokens-per-sample ' 'tokens. If set to "complete", splits samples only at the end ' "of sentence, but may include multiple sentences per sample. " '"complete_doc" is similar but respects doc boundaries. ' 'If set to "eos", includes only one sentence per sample.' }, ) tokens_per_sample: int = field( default=1024, metadata={"help": "max number of tokens per sample for LM dataset"}, ) max_source_positions: Optional[int] = field( default=None, metadata={"help": "max number of tokens in the source sequence"} ) max_target_positions: Optional[int] = field( default=None, metadata={"help": "max number of tokens in the target sequence"} ) final_vocab_size: Optional[int] = field( default=None, metadata={"help": "force vocab size to this"} ) multicorpus_sampling_alpha: Optional[float] = field( default=1.0, metadata={ "help": "smoothing alpha for sample rations across multiple datasets" }, ) multicorpus_sampling_maximum: Optional[float] = field( default=DEFAULT_MULTICORPUS_MAX, metadata={"help": "Maximum size for example proportional sampling"}, ) # TODO common vars below add to parent seed: int = II("common.seed") batch_size: Optional[int] = II("dataset.batch_size") batch_size_valid: Optional[int] = II("dataset.batch_size_valid") data_buffer_size: int = II("dataset.data_buffer_size") update_freq: List[int] = II("optimization.update_freq") @register_task("streaming_language_modeling", dataclass=StreamingLanguageModelingConfig) class StreamingLanguageModelingTask(LegacyTask): """ Train a language model on a stream of data. Currently we assume the stream is in JSONL format and we tokenize inputs on-the-fly. Note that we append an end-of-document symbol to the end of each document. Args: tokenizer (tokenizers.ByteLevelBPETokenizer): the BPE tokenizer to use """ def __init__(self, args): super().__init__(args) if not has_hf_tokenizers: raise ImportError("Please install tokenizers with: pip install tokenizers") self.tokenizer = ByteLevelBPETokenizer.from_file( args.vocab_filename, args.merges_filename ) if max(args.update_freq) > 1: raise NotImplementedError( "--update-freq is not compatible with StreamingLanguageModelingTask" ) self.eod = self.tokenizer.token_to_id(args.end_of_document_symbol) if self.eod is None: # This will be executed for old models that do not have the args.end_of_document_symbol explicitly set # and do not use <s/> (the default) but <EOS> self.eod = self.tokenizer.token_to_id("<EOS>") assert ( self.eod is not None ), "Cannot find end-of-document symbol ({}) in tokenizer".format( args.end_of_document_symbol ) # construct a dummy metaseq Dictionary corresponding to the given tokenizer self.dictionary = Dictionary() tok_vocab_size = self.tokenizer.get_vocab_size() for id in range(self.dictionary.nspecial, tok_vocab_size): self.dictionary.add_symbol(self.tokenizer.id_to_token(id)) final_vocab_size = args.final_vocab_size # final_vocab_size = 51200 for roberta dictionary if final_vocab_size is not None: if final_vocab_size < tok_vocab_size: raise ValueError( f"incompatible: {final_vocab_size}, tok_vocab_size: {tok_vocab_size}" ) self.dictionary.pad_to_multiple_(final_vocab_size) else: self.dictionary.pad_to_multiple_(8) # confirm that metaseq dictionary and BPE have matching special symbols assert self.dictionary.bos_index == 0 assert self.tokenizer.id_to_token(0) in {"<BOS>", "<s>"} assert self.dictionary.pad_index == 1 assert self.tokenizer.id_to_token(1) in {"<PAD>", "<pad>"} assert self.dictionary.eos_index == 2 assert self.tokenizer.id_to_token(2) in {"<EOS>", "</s>"} assert self.dictionary.unk_index == 3 assert self.tokenizer.id_to_token(3) in {"<UNK>", "<unk>"} @classmethod def setup_task(cls, args, **kwargs): return cls(args) def _tokenize_one_json(self, json): text = json["text"] return torch.LongTensor( # append an end-of-document symbol after each document self.tokenizer.encode(text.rstrip()).ids + [self.eod] ) def _get_sample_prob(self, dataset_lens): """ Get smoothed sampling porbability by corpus. This helps small corpus by upsampling them. """ if self.args.multicorpus_sampling_maximum == DEFAULT_MULTICORPUS_MAX: prob = dataset_lens / dataset_lens.sum() smoothed_prob = prob**self.args.multicorpus_sampling_alpha smoothed_prob = smoothed_prob / smoothed_prob.sum() else: dataset_lens = [ min(l, self.args.multicorpus_sampling_maximum) for l in dataset_lens ] smoothed_prob = dataset_lens / sum(dataset_lens) return smoothed_prob def _alpha_sampling(self, datasets, corpora, epoch=1): """ Up or down sample corpora with alpha sampling. """ dataset_lengths = np.array( [len(d) for d in datasets], dtype=float, ) logger.info(f"loaded total {dataset_lengths.sum()} blocks for all corpora") sample_probs = self._get_sample_prob(dataset_lengths) logger.info( "Sample probability by corpus: %s", { corpus: "{0:.4f}".format(sample_probs[id]) for id, corpus in enumerate(corpora) }, ) size_ratio = (sample_probs * dataset_lengths.sum()) / dataset_lengths # TODO: add an option for shrinking all size ratios to below 1 # if self.args.multicorpus_sampling_alpha != 1: # size_ratio /= size_ratio.max() # Fix numeric errors in size ratio computation # 0.999999999999999999 -> 1 # 1.000000000000000002 -> 1 for i in range(len(size_ratio)): size_ratio[i] = round(size_ratio[i], 8) logger.info( "Up/Down Sampling ratio by corpus: %s", { corpus: "{0:.2f}".format(size_ratio[id]) for id, corpus in enumerate(corpora) }, ) logger.info( "Actual dataset size by corpus: %s", { corpus: "{0:.2f}".format(len(datasets[id])) for id, corpus in enumerate(corpora) }, ) resampled_datasets = [ ResamplingDataset( datasets[i], size_ratio=size_ratio[i], seed=self.args.seed, epoch=epoch, replace=size_ratio[i] > 1.0, ) for i, d in enumerate(datasets) ] # TODO: estimate the actual steps or tokens seen in training before launching experiments. logger.info( "Resampled dataset size by corpus: %s", { corpus: "{0:.2f}".format(len(resampled_datasets[id])) for id, corpus in enumerate(corpora) }, ) return resampled_datasets def get_shard_str(self, epoch, split): shards = {} for shard_id in os.listdir(os.path.join(self.args.data, split)): assert ( int(shard_id) not in shards ), f"shard id: {shard_id} not in shards: {shards}" shards[int(shard_id)] = shard_id assert min(shards.keys()) == 0 assert max(shards.keys()) == len(shards) - 1 cur_shard_str = shards[(epoch - 1) % len(shards)] return cur_shard_str def load_dataset(self, split: str, epoch=1, combine=False, **kwargs): """Load a given dataset split. The folder structure is assumed to look like: /path/to/data/train/00/foo.jsonl /path/to/data/train/00/bar.jsonl /path/to/data/train/01/foo.jsonl /path/to/data/train/01/bar.jsonl /path/to/data/valid/00/foo.jsonl /path/to/data/valid/00/bar.jsonl In this example, we have two "shards" of training data, which will be iterated over in epochs 1 and 2, respectively. Subsequent epochs will cycle back over the same data. We also have two different data sources in each shard (foo and bar), which will be combined and shuffled. Args: split (str): name of the split (e.g., train, valid, valid1, test) """ # This function reads a bunch of jsonl files, concats them together, # shuffles them, then chunks them into blocks of tokens (e.g., 2048). # determine number of shards for this split cur_shard_str = self.get_shard_str(epoch, split) # concatenate any jsonl files that are part of the shard datasets, corpora = [], [] for file in sorted( os.listdir(os.path.join(self.args.data, split, cur_shard_str)) ): if not file.endswith(".jsonl"): continue datasets.append( JsonlDataset( path=os.path.join(self.args.data, split, cur_shard_str, file), tokenizer=self._tokenize_one_json, ) ) corpora.append(os.path.splitext(file)[0]) assert len(datasets) > 0 if self.args.multicorpus_sampling_alpha != 1: datasets = self._alpha_sampling(datasets, corpora, epoch) dataset = torch.utils.data.ConcatDataset(datasets) # shuffle order across epochs dataset = StreamingShuffleDataset(dataset, seed=self.args.seed) # chunk into blocks of tokens self.datasets[split] = StreamingTokenBlockDataset( dataset, # We generate blocks with one extra token, so that we have a target # for the final input token. This results in slight data loss. block_size=self.args.tokens_per_sample + 1, break_mode=self.args.sample_break_mode, # we drop the remainder block during training drop_last=(split == "train"), padding_idx=self.source_dictionary.pad(), # 1284 is a randomly-generated offset to decouple the seed used here # from the seed used above in StreamingShuffleDataset seed=1284 + self.args.seed, ) def _collate_fn(self, items: List[Dict[str, Any]]): # StreamingTokenBlockDataset returns None as filler if len([x for x in items if x is not None]) == 0: return {} tokens = data_utils.collate_tokens( [x["block"] for x in items if x is not None], pad_idx=self.source_dictionary.pad(), pad_to_bsz=self.args.batch_size, ) # generate inputs and targets input = tokens[:, :-1].contiguous() target = tokens[:, 1:].contiguous() ids = torch.cat([x["ids"] for x in items if x is not None]) if ids.numel() != torch.unique(ids).numel(): n_duplicate = ids.numel() - torch.unique(ids).numel() logger.error( f"found {n_duplicate}/{ids.numel()} duplicate document IDs in the same batch!" ) # metaseq expects batches to have the following structure return { "id": ids, "net_input": { "src_tokens": input, }, "target": target, "nsentences": input.size(0), "ntokens": input.ne(self.dictionary.pad()).sum(), } def dataset(self, split): return self.datasets[split] def get_batch_iterator( self, dataset, max_tokens=None, max_sentences=None, max_positions=None, ignore_invalid_inputs=False, required_batch_size_multiple=1, seed=1, num_shards=1, shard_id=0, num_workers=0, epoch=1, data_buffer_size=0, disable_iterator_cache=False, batch_by_size=True, skip_remainder_batch=False, ): """ Get an iterator that yields batches of data from the given dataset. Args: dataset (torch.utils.data.Dataset): dataset to batch max_sentences (int, optional): max number of sentences in each batch (default: None). num_shards (int, optional): shard the data iterator into N shards (default: 1). shard_id (int, optional): which shard of the data iterator to return (default: 0). num_workers (int, optional): how many subprocesses to use for data loading. 0 means the data will be loaded in the main process (default: 0). epoch (int, optional): the epoch to start the iterator from (default: 1). data_buffer_size (int, optional): number of batches to preload (default: 0). disable_iterator_cache (bool, optional): don't cache the EpochBatchIterator (default: False). batch_by_size (bool, optional): batch sequences of similar length together to reduce padding. If false, each batch will be of size max_sentences. skip_remainder_batch (bool, optional): if set, discard the last batch in each training epoch, as the last batch is often smaller than local_batch_size * distributed_word_size (default: ``True``). Returns: ~metaseq.iterators.EpochBatchIterator: a batched iterator over the given dataset split """ assert max_tokens is None # Up to this point, we have shuffled documents, flattened them into a 1D # tensor, then chunked into token blocks. But if documents are long, then # adjacent blocks may be from a single document, and naively distributed # sequential blocks to GPUs may cause entire updates to be dominated by a # handful of unique documents. Instead we have a readahead buffer that # reads in 10 full batches of data and shuffles sequences across them, # thus increasing randomness. This assumes that no single document spans # 10 full batches, which is reasonable when batch sizes are in the # millions and documents are on average much smaller. assert isinstance(dataset, StreamingTokenBlockDataset) or isinstance( dataset, StreamingSrcTgtDataset ) shuffle_buffer_size = 10 * max_sentences * num_shards logger.info(f"setting shuffle buffer size to {shuffle_buffer_size}") dataset.set_shuffle_buffer_size(shuffle_buffer_size) # partition dataset across data parallel workers dataset = PartitionedStreamingDataset( dataset, num_shards=num_shards, shard_id=shard_id, drop_last=skip_remainder_batch, ) # create a stateful/checkpointable iterator for the current data # parallel worker return iterators.StreamingEpochBatchIterator( dataset=dataset, batch_size=max_sentences, collate_fn=self._collate_fn, drop_last=skip_remainder_batch, num_workers=num_workers, epoch=epoch, ) @property def source_dictionary(self): return self.dictionary @property def target_dictionary(self): return self.dictionary
flash_metaseq-main
metaseq/tasks/streaming_language_modeling.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """isort:skip_file""" import argparse import importlib import os from metaseq.dataclass import MetaseqDataclass from metaseq.dataclass.utils import merge_with_parent, populate_dataclass from hydra.core.config_store import ConfigStore from .base_task import BaseTask, LegacyTask # noqa # register dataclass TASK_DATACLASS_REGISTRY = {} TASK_REGISTRY = {} TASK_CLASS_NAMES = set() def setup_task(cfg: MetaseqDataclass, **kwargs): task = None task_name = getattr(cfg, "task", None) if isinstance(task_name, str): # legacy tasks task = TASK_REGISTRY[task_name] if task_name in TASK_DATACLASS_REGISTRY: dc = TASK_DATACLASS_REGISTRY[task_name] cfg = populate_dataclass(dc(), cfg) else: task_name = getattr(cfg, "_name", None) if task_name and task_name in TASK_DATACLASS_REGISTRY: dc = TASK_DATACLASS_REGISTRY[task_name] cfg = merge_with_parent(dc(), cfg) task = TASK_REGISTRY[task_name] assert ( task is not None ), f"Could not infer task type from {cfg}. Available tasks: {TASK_REGISTRY.keys()}" return task.setup_task(cfg, **kwargs) def register_task(name, dataclass=None): """ New tasks can be added to metaseq with the :func:`~metaseq.tasks.register_task` function decorator. For example:: @register_task('classification') class ClassificationTask(BaseTask): (...) .. note:: All Tasks must implement the :class:`~metaseq.tasks.BaseTask` interface. Args: name (str): the name of the task """ def register_task_cls(cls): if name in TASK_REGISTRY: raise ValueError("Cannot register duplicate task ({})".format(name)) if not issubclass(cls, BaseTask): raise ValueError( "Task ({}: {}) must extend BaseTask".format(name, cls.__name__) ) if cls.__name__ in TASK_CLASS_NAMES: raise ValueError( "Cannot register task with duplicate class name ({})".format( cls.__name__ ) ) TASK_REGISTRY[name] = cls TASK_CLASS_NAMES.add(cls.__name__) if dataclass is not None and not issubclass(dataclass, MetaseqDataclass): raise ValueError( "Dataclass {} must extend MetaseqDataclass".format(dataclass) ) cls.__dataclass = dataclass if dataclass is not None: TASK_DATACLASS_REGISTRY[name] = dataclass cs = ConfigStore.instance() node = dataclass() node._name = name cs.store(name=name, group="task", node=node, provider="metaseq") return cls return register_task_cls def get_task(name): return TASK_REGISTRY[name] # automatically import any Python files in the tasks/ directory tasks_dir = os.path.dirname(__file__) for file in os.listdir(tasks_dir): path = os.path.join(tasks_dir, file) if ( not file.startswith("_") and not file.startswith(".") and (file.endswith(".py") or os.path.isdir(path)) ): task_name = file[: file.find(".py")] if file.endswith(".py") else file module = importlib.import_module("metaseq.tasks." + task_name) # expose `task_parser` for sphinx if task_name in TASK_REGISTRY: parser = argparse.ArgumentParser(add_help=False) group_task = parser.add_argument_group("Task name") # fmt: off group_task.add_argument('--task', metavar=task_name, help='Enable this task with: ``--task=' + task_name + '``') # fmt: on group_args = parser.add_argument_group("Additional command-line arguments") TASK_REGISTRY[task_name].add_args(group_args) globals()[task_name + "_parser"] = parser
flash_metaseq-main
metaseq/tasks/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import os import signal import threading from torch import nn logger = logging.getLogger(__name__) class DistributedTimeoutWrapper(nn.Module): """ A wrapper that kills the process if no progress is made within a given *timeout*. The timer is reset every time :func:`forward` is called. Usage:: module = DistributedTimeoutWrapper(module, timeout=30) x = module(input) time.sleep(20) # safe x = module(input) time.sleep(45) # job will be killed before this returns Args: module (nn.Module): module to wrap timeout (int): number of seconds before killing the process (set to a value <= 0 to disable the timeout) signal (Optional): signal to send once timeout is triggered """ def __init__(self, module: nn.Module, timeout: int, signal=signal.SIGINT): super().__init__() self.module = module self.timeout = timeout self.signal = signal if timeout > 0: self._heartbeat = threading.Event() self._heartbeat_thread = threading.Thread( target=self._check_heartbeat, args=(os.getpid(),), daemon=True, ) self._heartbeat_thread.start() self._terminated = False else: self._heartbeat = None self._heartbeat_thread = None def __del__(self): self.stop_timeout() def __getattr__(self, name): """Forward missing attributes to wrapped module.""" try: return super().__getattr__(name) # defer to nn.Module's logic except AttributeError: return getattr(self.module, name) def stop_timeout(self): if self._heartbeat_thread is not None: self._terminated = True self._heartbeat_thread.join() def state_dict(self, *args, **kwargs): return self.module.state_dict(*args, **kwargs) def load_state_dict(self, *args, **kwargs): return self.module.load_state_dict(*args, **kwargs) def forward(self, *args, **kwargs): if self._heartbeat is not None: self._heartbeat.set() return self.module(*args, **kwargs) def _check_heartbeat(self, parent_pid): self._heartbeat.wait() # wait for the first forward pass while True: self._heartbeat.clear() success = self._heartbeat.wait(timeout=self.timeout) if self._terminated: break elif not success: logger.error( ( "Killing job for not making progress in {} seconds. " "Set --heartbeat-timeout=-1 to disable this timeout." ).format(int(self.timeout)) ) os.kill(parent_pid, self.signal) return
flash_metaseq-main
metaseq/distributed/distributed_timeout_wrapper.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import contextlib import logging import os from typing import Optional import torch from metaseq.dataclass.configs import DistributedTrainingConfig from metaseq.distributed import utils as dist_utils logger = logging.getLogger(__name__) try: from fairscale.nn.data_parallel import FullyShardedDataParallel as FSDP from fairscale.utils.testing import DummyProcessGroup has_FSDP = True except ImportError: FSDP = torch.nn.Module has_FSDP = False class FullyShardedDataParallel(FSDP): """ A small wrapper around fairscale's FullyShardedDataParallel (FSDP) with some metaseq-specific checkpoint saving/loading logic. Args: use_sharded_state (bool): if True, then ``state_dict`` will return ``FSDP.local_state_dict`` and ``load_state_dict`` will call ``FSDP.load_local_state_dict``. Otherwise, ``state_dict`` will return the full model weights on data parallel rank 0 (empty on other ranks) and ``load_state_dict`` will broadcast model weights from rank 0 to other ranks. """ def __init__(self, *args, use_sharded_state: bool = False, **kwargs): if not has_FSDP: raise ImportError( "Cannot find FullyShardedDataParallel. " "Please install fairscale with: pip install fairscale" ) super().__init__(*args, **kwargs) self.use_sharded_state = use_sharded_state @property def unwrapped_module(self) -> torch.nn.Module: if self.flatten_parameters: return self.module.module else: return self.module def state_dict(self, destination=None, prefix="", keep_vars=False): if self.use_sharded_state: return super().local_state_dict( destination=destination, prefix=prefix, keep_vars=keep_vars ) else: if self.rank == 0: return super().state_dict( destination=destination, prefix=prefix, keep_vars=keep_vars ) else: # We must call state_dict() due to use of communication # primitives. But we don't use the result. super().state_dict() return destination or {} def load_state_dict(self, state_dict, strict=True, model_cfg=None): if self.use_sharded_state: return super().load_local_state_dict(state_dict, strict=strict) else: if not isinstance(self.process_group, DummyProcessGroup): state_dict = dist_utils.broadcast_object( state_dict, src_rank=0, group=self.process_group ) return super().load_state_dict(state_dict, strict=strict) @contextlib.contextmanager def fsdp_enable_wrap( cfg: DistributedTrainingConfig, use_sharded_state: bool = False, **kwargs ): try: from fairscale.nn import enable_wrap except ImportError: raise ImportError( "Cannot find FullyShardedDataParallel. " "Please install fairscale with: pip install fairscale" ) if cfg.memory_efficient_fp16: assert cfg.fp16 # memory_efficient_fp16 should imply fp16 group = dist_utils.get_data_parallel_group() if group is None and cfg.distributed_world_size == 1: group = DummyProcessGroup(rank=0, size=1) if cfg.fp16: compute_dtype = torch.bfloat16 if cfg.bf16 else torch.float16 else: compute_dtype = torch.float32 fsdp_config = { "process_group": group, "reshard_after_forward": not cfg.no_reshard_after_forward, "mixed_precision": cfg.fp16 and not cfg.memory_efficient_fp16, "fp32_reduce_scatter": cfg.fp32_reduce_scatter, "flatten_parameters": True, "cpu_offload": cfg.cpu_offload and not cfg.memory_efficient_fp16, "compute_dtype": compute_dtype, "bucket_cap_mb": cfg.bucket_cap_mb, "state_dict_device": torch.device("cpu"), "gradient_predivide_factor": cfg.gradient_predivide_factor, **kwargs, } with enable_wrap( wrapper_cls=FullyShardedDataParallel, use_sharded_state=use_sharded_state, **fsdp_config, ): yield def fsdp_wrap(module, min_num_params: Optional[int] = None, **kwargs): """ Helper to wrap layers/modules in FSDP. This falls back to a no-op if fairscale is not available. Args: module (nn.Module): module to (maybe) wrap min_num_params (int, Optional): minimum number of layer params to wrap """ try: from fairscale.nn import wrap if os.environ.get("RESHARD_OVERRIDE_PROCESS_GROUP", "False") == "True": logger.info("Process group was None, overriding to DummyProcessGroup") kwargs["process_group"] = DummyProcessGroup(rank=0, size=1) if min_num_params is not None: num_params = sum(p.numel() for p in module.parameters()) if num_params >= min_num_params: return wrap(module, **kwargs) else: return module else: return wrap(module, **kwargs) except ImportError: return module
flash_metaseq-main
metaseq/distributed/fully_sharded_data_parallel.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .distributed_timeout_wrapper import DistributedTimeoutWrapper from .fully_sharded_data_parallel import ( fsdp_enable_wrap, fsdp_wrap, FullyShardedDataParallel, ) from .module_proxy_wrapper import ModuleProxyWrapper __all__ = [ "DistributedTimeoutWrapper", "fsdp_enable_wrap", "fsdp_wrap", "FullyShardedDataParallel", "ModuleProxyWrapper", ]
flash_metaseq-main
metaseq/distributed/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import io import logging import os import pickle import random import signal import socket import struct import subprocess import warnings from argparse import Namespace from collections import OrderedDict from dataclasses import dataclass from typing import Any, Dict, List, Mapping, Optional import torch import torch.distributed as dist from omegaconf import open_dict from metaseq.dataclass.configs import DistributedTrainingConfig, MetaseqConfig # Flag to indicate if we're using Megatron # NOTE: this is a temporary hack until we move away from Megatron's model parallel init _USE_MEGATRON = False logger = logging.getLogger(__name__) def is_master(cfg: DistributedTrainingConfig): return cfg.distributed_rank == 0 def infer_init_method(cfg: DistributedTrainingConfig, force_distributed=False): if cfg.distributed_init_method is not None: return if cfg.distributed_port > 0: # we can determine the init method automatically for Slurm _infer_slurm_init(cfg) elif all( key in os.environ for key in ["MASTER_ADDR", "MASTER_PORT", "WORLD_SIZE", "RANK"] ): # support torch.distributed.launch _infer_torch_distributed_launch_init(cfg) elif cfg.distributed_world_size > 1 or force_distributed: # fallback for single node with multiple GPUs _infer_single_node_init(cfg) if not cfg.distributed_no_spawn: with open_dict(cfg): cfg.distributed_num_procs = min( torch.cuda.device_count(), cfg.distributed_world_size ) def _infer_torch_distributed_launch_init(cfg: DistributedTrainingConfig): cfg.distributed_init_method = "env://" cfg.distributed_world_size = int(os.environ["WORLD_SIZE"]) cfg.distributed_rank = int(os.environ["RANK"]) # processes are created by torch.distributed.launch cfg.distributed_no_spawn = True def _infer_slurm_init(cfg: DistributedTrainingConfig): node_list = os.environ.get("SLURM_STEP_NODELIST") if node_list is None: node_list = os.environ.get("SLURM_JOB_NODELIST") if node_list is not None: try: hostnames = subprocess.check_output( ["scontrol", "show", "hostnames", node_list] ) host = hostnames.split()[0].decode("utf-8") except subprocess.CalledProcessError as e: # scontrol failed raise e except FileNotFoundError: # Slurm is not installed # if we're in a container, then maybe MASTER_ADDR is set host = os.environ.get("MASTER_ADDR", None) if host is None: return cfg.distributed_init_method = "tcp://{host}:{port}".format( host=host, port=cfg.distributed_port ) nnodes = int(os.environ.get("SLURM_NNODES")) ntasks_per_node = os.environ.get("SLURM_NTASKS_PER_NODE") if ntasks_per_node is not None: ntasks_per_node = int(ntasks_per_node) else: ntasks = int(os.environ.get("SLURM_NTASKS")) nnodes = int(os.environ.get("SLURM_NNODES")) assert ntasks % nnodes == 0 ntasks_per_node = int(ntasks / nnodes) if ntasks_per_node == 1: gpus_per_node = torch.cuda.device_count() node_id = int(os.environ.get("SLURM_NODEID")) cfg.distributed_rank = node_id * gpus_per_node cfg.distributed_world_size = nnodes * gpus_per_node else: assert ntasks_per_node == torch.cuda.device_count() cfg.distributed_world_size = ntasks_per_node * nnodes cfg.distributed_no_spawn = True cfg.distributed_rank = int(os.environ.get("SLURM_PROCID")) cfg.device_id = int(os.environ.get("SLURM_LOCALID")) def _infer_single_node_init(cfg: DistributedTrainingConfig): assert ( cfg.distributed_world_size <= torch.cuda.device_count() ), f"world size is {cfg.distributed_world_size} but have {torch.cuda.device_count()} available devices" port = random.randint(10000, 20000) cfg.distributed_init_method = "tcp://localhost:{port}".format(port=port) def distributed_init(cfg: MetaseqConfig): if isinstance(cfg, Namespace): from metaseq.dataclass.utils import convert_namespace_to_omegaconf cfg = convert_namespace_to_omegaconf(cfg) if torch.distributed.is_available() and torch.distributed.is_initialized(): warnings.warn("Distributed is already initialized, cannot initialize twice!") else: logger.info( "distributed init (rank {}): {}".format( cfg.distributed_training.distributed_rank, cfg.distributed_training.distributed_init_method, ) ) dist.init_process_group( backend=cfg.distributed_training.distributed_backend, init_method=cfg.distributed_training.distributed_init_method, world_size=cfg.distributed_training.distributed_world_size, rank=cfg.distributed_training.distributed_rank, ) logger.info( "initialized host {} as rank {}".format( socket.gethostname(), cfg.distributed_training.distributed_rank, ) ) # perform a dummy all-reduce to initialize the NCCL communicator if torch.cuda.is_available(): dist.all_reduce(torch.zeros(1).cuda()) cfg.distributed_training.distributed_rank = torch.distributed.get_rank() if is_master(cfg.distributed_training): logging.getLogger().setLevel(logging.INFO) else: logging.getLogger().setLevel(logging.WARNING) if cfg.common.model_parallel_size > 1: try: from megatron.mpu import ( initialize_model_parallel, model_parallel_cuda_manual_seed, ) except ImportError: raise ImportError( "\n\nPlease install megatron using the setup instructions!" ) global _USE_MEGATRON _USE_MEGATRON = True initialize_model_parallel(cfg.common.model_parallel_size) if torch.cuda.is_available(): dist.all_reduce(torch.zeros(1).cuda(), group=get_model_parallel_group()) model_parallel_cuda_manual_seed(cfg.common.seed) model_part_number = get_model_parallel_rank() cfg.checkpoint.checkpoint_suffix += "-model_part-{0}".format(model_part_number) return cfg.distributed_training.distributed_rank def distributed_main(i, main, cfg: MetaseqConfig, kwargs): if not cfg.distributed_training.distributed_no_spawn: # if in local spawning, i is offset by -1 since torch.multiprocessing.spawn # always starts at rank 0 i = i + 1 cfg.distributed_training.device_id = i if torch.cuda.is_available() and not cfg.common.cpu: torch.cuda.set_device(cfg.distributed_training.device_id) # This is temporary way of making microsoft Tutel happy, as it reads the local rank from # the env. To make it work in cleaner way, we might need to change their interfaces to be # able to pass local rank. os.environ["LOCAL_RANK"] = str(cfg.distributed_training.device_id) if cfg.distributed_training.distributed_rank is None: # start_rank is the rank of gpu 0 on this machine. cfg.distributed_training.distributed_rank = kwargs.pop("start_rank", 0) + i cfg.distributed_training.distributed_rank = distributed_init(cfg) after_distributed_init_fn = kwargs.pop("after_distributed_init_fn", None) if after_distributed_init_fn: cfg = after_distributed_init_fn(cfg) main(cfg, **kwargs) if torch.distributed.is_initialized(): torch.distributed.barrier(get_global_group()) def _spawn_helper(main, cfg, kwargs): """ Perform a fork() to many processes. Intentionally runs the rank0 in the main process so that signals can be more easily caught and we can cleanup processes. """ # Launch multiple subprocesses spawncontext = torch.multiprocessing.start_processes( distributed_main, # need to give rank offset as 1 to cover the fact that the main # process is rank 0, but that spawn() doesn't let you control rank: # it always starts at 0 (main, cfg, kwargs), nprocs=min( torch.cuda.device_count(), cfg.distributed_training.distributed_world_size - 1, ), join=False, start_method="spawn", ) try: # -1 because we offset by +1 inside distributed_main when using # spawn_helper retval = distributed_main(-1, main, cfg, kwargs) spawncontext.join() return retval except (KeyboardInterrupt, Exception): # weirdly KeyboardInterrupt is not an Exception # propagate exceptions on the main node by killing workers for p in spawncontext.processes: if p.is_alive(): os.kill(p.pid, signal.SIGTERM) raise def call_main(cfg: MetaseqConfig, main, **kwargs): if cfg.distributed_training.distributed_init_method is None: infer_init_method(cfg.distributed_training) if cfg.distributed_training.distributed_init_method is not None: # distributed training if not cfg.distributed_training.distributed_no_spawn: start_rank = cfg.distributed_training.distributed_rank cfg.distributed_training.distributed_rank = None # assign automatically kwargs["start_rank"] = start_rank return _spawn_helper(main, cfg, kwargs) else: return distributed_main( cfg.distributed_training.device_id, main, cfg, kwargs ) else: # single GPU main return main(cfg, **kwargs) def new_groups(grouped_ranks: List[List[int]]): groups = [dist.new_group(g) for g in grouped_ranks] my_group_idx = _find_my_group_index(grouped_ranks) return groups[my_group_idx] def _find_my_group_index(grouped_ranks): my_rank = get_global_rank() for i, group in enumerate(grouped_ranks): if my_rank in group: return i raise RuntimeError def _find_my_group(grouped_ranks): index = _find_my_group_index(grouped_ranks) return grouped_ranks[index] def get_rank(group): return dist.get_rank(group=group) def get_world_size(group): if torch.distributed.is_initialized(): return dist.get_world_size(group=group) else: return 1 def get_global_group(): if torch.distributed.is_initialized(): if not hasattr(get_global_group, "_global_group"): # ideally we could use torch.distributed.group.WORLD, but it seems # to cause random NCCL hangs in some cases get_global_group._global_group = dist.new_group() return get_global_group._global_group else: return None def get_global_rank(): if torch.distributed.is_initialized(): return torch.distributed.get_rank() else: return 0 def get_global_world_size(): if torch.distributed.is_initialized(): return torch.distributed.get_world_size() else: return 1 def get_data_parallel_group(): """Get the data parallel group the caller rank belongs to.""" global _USE_MEGATRON if _USE_MEGATRON: from megatron import mpu return mpu.get_data_parallel_group() else: return get_global_group() def get_data_parallel_rank(): """Return my rank for the data parallel group.""" dp_group = get_data_parallel_group() if dp_group is not None: return get_rank(dp_group) else: return get_global_rank() def get_data_parallel_world_size(): """Return world size for the data parallel group.""" dp_group = get_data_parallel_group() if dp_group is not None: return get_world_size(dp_group) else: return get_global_world_size() def get_model_parallel_group(): global _USE_MEGATRON if _USE_MEGATRON: from megatron import mpu return mpu.get_tensor_model_parallel_group() else: return None def get_model_parallel_rank(): """Return my rank for the model parallel group.""" return get_rank(get_model_parallel_group()) def get_model_parallel_world_size(): """Return world size for the model parallel group.""" return get_world_size(get_model_parallel_group()) def all_reduce(tensor, group, op="sum"): if op == "sum": op = dist.ReduceOp.SUM elif op == "max": op = dist.ReduceOp.MAX else: raise NotImplementedError dist.all_reduce(tensor, op=op, group=group) return tensor def broadcast(tensor, src, group): dist.broadcast(tensor, src=src, group=group) def all_to_all(tensor, group): """Perform an all-to-all operation on a 1D Tensor.""" assert tensor.dim() == 1 split_count = get_world_size(group=group) assert tensor.numel() % split_count == 0 output = torch.zeros_like(tensor) dist.all_to_all_single(output, tensor, group=group) return output def all_gather(tensor, group, return_tensor=False): """Perform an all-gather operation.""" world_size = get_world_size(group=group) rank = get_rank(group=group) tensor_list = [ tensor if i == rank else torch.empty_like(tensor) for i in range(world_size) ] dist.all_gather(tensor_list, tensor, group=group) if return_tensor: return torch.stack(tensor_list, dim=0) else: return tensor_list def all_gather_list(data, group=None, max_size=16384): """Gathers arbitrary data from all nodes into a list. Similar to :func:`~torch.distributed.all_gather` but for arbitrary Python data. Note that *data* must be picklable and any CUDA tensors will be moved to CPU and returned on CPU as well. Args: data (Any): data from the local worker to be gathered on other workers group: group of the collective max_size (int, optional): maximum size of the data to be gathered across workers """ from metaseq import utils if group is None: group = get_global_group() rank = get_rank(group=group) world_size = get_world_size(group=group) buffer_size = max_size * world_size if ( not hasattr(all_gather_list, "_buffer") or all_gather_list._buffer.numel() < buffer_size ): all_gather_list._buffer = torch.cuda.ByteTensor(buffer_size) all_gather_list._cpu_buffer = torch.ByteTensor(max_size).pin_memory() buffer = all_gather_list._buffer buffer.zero_() cpu_buffer = all_gather_list._cpu_buffer data = utils.move_to_cpu(data) enc = pickle.dumps(data) enc_size = len(enc) header_size = 4 # size of header that contains the length of the encoded data size = header_size + enc_size if size > max_size: raise ValueError( "encoded data size ({}) exceeds max_size ({})".format(size, max_size) ) header = struct.pack(">I", enc_size) cpu_buffer[:size] = torch.ByteTensor(list(header + enc)) start = rank * max_size buffer[start : start + size].copy_(cpu_buffer[:size]) all_reduce(buffer, group=group) buffer = buffer.cpu() try: result = [] for i in range(world_size): out_buffer = buffer[i * max_size : (i + 1) * max_size] (enc_size,) = struct.unpack(">I", bytes(out_buffer[:header_size].tolist())) if enc_size > 0: result.append( pickle.loads( bytes(out_buffer[header_size : header_size + enc_size].tolist()) ) ) return result except pickle.UnpicklingError: raise Exception( "Unable to unpickle data from other workers. all_gather_list requires all " "workers to enter the function together, so this error usually indicates " "that the workers have fallen out of sync somehow. Workers can fall out of " "sync if one of them runs out of memory, or if there are other conditions " "in your training script that can cause one worker to finish an epoch " "while other workers are still iterating over their portions of the data. " "Try rerunning with --ddp-backend=legacy_ddp and see if that helps." ) def all_reduce_dict(data: Mapping[str, Any], device, group) -> Dict[str, Any]: """ AllReduce a dictionary of values across workers. We separately reduce items that are already on the device and items on CPU for better performance. Args: data (Mapping[str, Any]): dictionary of data to all-reduce, but cannot be a nested dictionary device (torch.device): device for the reduction group: group of the collective """ data_keys = list(data.keys()) # We want to separately reduce items that are already on the # device and items on CPU for performance reasons. cpu_data = OrderedDict() device_data = OrderedDict() for k in data_keys: t = data[k] if not torch.is_tensor(t): cpu_data[k] = torch.tensor(t, dtype=torch.double) elif t.device.type != device.type: cpu_data[k] = t.to(dtype=torch.double) else: device_data[k] = t.to(dtype=torch.double) def _all_reduce_dict(data: OrderedDict): if len(data) == 0: return data buf = torch.cat([t.view(-1) for t in data.values()]).to(device=device) all_reduce(buf, group=group) split_buf = torch.split(buf, [t.numel() for t in data.values()]) reduced_data = [t.view_as(orig) for t, orig in zip(split_buf, data.values())] return OrderedDict(zip(data.keys(), reduced_data)) cpu_data = _all_reduce_dict(cpu_data) device_data = _all_reduce_dict(device_data) def get_from_stack(key): if key in cpu_data: return cpu_data[key] elif key in device_data: return device_data[key] raise KeyError return OrderedDict([(key, get_from_stack(key)) for key in data_keys]) def broadcast_tensors( tensors: Optional[List[torch.Tensor]], src_rank: int, group: object, dist_device: Optional[torch.device] = None, ) -> List[torch.Tensor]: """ Broadcasts a list of tensors without other (non-src) ranks needing to know the dtypes/shapes of the tensors. """ if dist_device is None: if torch.distributed.get_backend(group) == "nccl": dist_device = torch.device("cuda") else: dist_device = torch.device("cpu") # share metadata first to simplify transfer is_src_rank = get_rank(group) == src_rank if is_src_rank: # We only want to communicate device type ie (cpu vs cuda) and not the index of cuda. metadata = [ {"size": t.size(), "dtype": t.dtype, "device": torch.device(t.device.type)} for t in tensors ] metadata = _broadcast_object_slow(metadata, src_rank, group, dist_device) else: metadata = _broadcast_object_slow(None, src_rank, group, dist_device) out_tensors = [] for i, meta in enumerate(metadata): if is_src_rank: tensor = tensors[i] broadcast(tensors[i].to(dist_device), src=src_rank, group=group) else: tensor = torch.zeros( [meta["size"].numel()], dtype=meta["dtype"], device=dist_device ) broadcast(tensor, src=src_rank, group=group) tensor = tensor.view(meta["size"]).to(meta["device"]) out_tensors.append(tensor) return out_tensors def broadcast_object( obj: Any, src_rank: int, group: object, dist_device: Optional[torch.device] = None, ) -> Any: """Broadcast an arbitrary Python object to other workers.""" if dist_device is None: if torch.distributed.get_backend(group) == "nccl": dist_device = torch.device("cuda") else: dist_device = torch.device("cpu") if get_rank(group) == src_rank: # split the tensors from the non-tensors so we can broadcast them # directly, avoiding unnecessary serialization/deserialization tensors = [] obj = _split_tensors_from_obj(obj, tensors) obj = _broadcast_object_slow(obj, src_rank, group, dist_device) tensors = broadcast_tensors(tensors, src_rank, group, dist_device) else: obj = _broadcast_object_slow(None, src_rank, group, dist_device) tensors = broadcast_tensors(None, src_rank, group, dist_device) return _put_tensors_in_obj(obj, tensors) def _broadcast_object_slow( obj: Any, src_rank: int, group: object, dist_device: torch.device, ) -> Any: if get_rank(group) == src_rank: # Emit data buffer = io.BytesIO() torch.save(obj, buffer) buffer = torch.ByteTensor(buffer.getbuffer()).to(dist_device) length = torch.LongTensor([len(buffer)]).to(dist_device) broadcast(length, src=src_rank, group=group) broadcast(buffer, src=src_rank, group=group) else: # Fetch from the source length = torch.LongTensor([0]).to(dist_device) broadcast(length, src=src_rank, group=group) buffer = torch.ByteTensor(int(length.item())).to(dist_device) broadcast(buffer, src=src_rank, group=group) buffer = io.BytesIO(buffer.cpu().numpy()) obj = torch.load(buffer, map_location="cpu") return obj @dataclass(frozen=True) class _TensorPlaceholder: index: int def _split_tensors_from_obj(obj: Any, tensors: List[torch.Tensor]) -> Any: if torch.is_tensor(obj): placeholder = _TensorPlaceholder(index=len(tensors)) tensors.append(obj) return placeholder elif isinstance(obj, dict): return {k: _split_tensors_from_obj(v, tensors) for k, v in obj.items()} elif isinstance(obj, list): return [_split_tensors_from_obj(v, tensors) for v in obj] elif isinstance(obj, tuple): return tuple(_split_tensors_from_obj(v, tensors) for v in obj) elif isinstance(obj, set): return {_split_tensors_from_obj(v, tensors) for v in obj} else: return obj def _put_tensors_in_obj(obj: Any, tensors: List[torch.Tensor]) -> Any: if isinstance(obj, _TensorPlaceholder): return tensors[obj.index] elif isinstance(obj, dict): return {k: _put_tensors_in_obj(v, tensors) for k, v in obj.items()} elif isinstance(obj, list): return [_put_tensors_in_obj(v, tensors) for v in obj] elif isinstance(obj, tuple): return tuple(_put_tensors_in_obj(v, tensors) for v in obj) elif isinstance(obj, set): return {_put_tensors_in_obj(v, tensors) for v in obj} else: return obj
flash_metaseq-main
metaseq/distributed/utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import gc import logging import os import re import time from collections import defaultdict, OrderedDict from glob import glob from pathlib import Path import torch from tqdm import tqdm from metaseq.distributed.fully_sharded_data_parallel import FSDP as FSDP from metaseq.file_io import load_and_pop_last_optimizer_state logger = logging.getLogger(__name__) def _get_shard_number(x) -> int: match = re.search(r"shard(\d+).pt", x) if match is None: raise AssertionError(f"{x} did not match shard(\\d+).pt") else: return int(match.groups()[0]) def consolidate_fsdp_shards( pth_prefix: str, save_prefix=None, strict=False, new_arch_name=None, no_stitch_megatron=False, megatron_part=None, ) -> str: if pth_prefix.endswith(".pt"): pth_prefix = pth_prefix[:-3] if save_prefix is None: save_prefix = pth_prefix + "_consolidated" # .pt' all_ckpt_files = list( sorted(glob(f"{pth_prefix}*shard*.pt"), key=_get_shard_number) ) if megatron_part is not None: no_stitch_megatron = True all_ckpt_files = [ x for x in all_ckpt_files if f"model_part-{megatron_part}" in x ] assert all_ckpt_files, f"no paths matched {pth_prefix}*shard*.pt" weights = [] metadata = [] expert_paths = [] expert_dest_paths = [] expert_ranks = [] names = [] dense = True t0 = time.time() for p in tqdm(all_ckpt_files): names.append(Path(p).name) if re.search(r"rank-(\d+)", os.path.basename(p)): # expert checkpoint expert_paths.append(p) r = re.search(r"rank-(\d+)", os.path.basename(p)).groups()[0] assert r not in expert_ranks expert_ranks.append(r) expert_dest_paths.append(f"{save_prefix}-rank-{r}.pt") else: ckpt = load_and_pop_last_optimizer_state(p) weights.append(ckpt["model"]) metadata.append(ckpt["shard_metadata"]) assert weights, f"all files were considered experts: {all_ckpt_files}" do_consolidate = True if "decoder.embed_tokens.weight" in weights[0].keys(): shape = weights[0]["decoder.embed_tokens.weight"].shape logger.info( f"This ckpt does not seem sharded. I see unflat params! like " f"decoder.embed_tokens.weight shaped {shape}. Will just copy files " f"and remove optim_state." ) do_consolidate = False if do_consolidate: num_parts = find_num_parts(names) if num_parts: logger.info("consolidate_model_parallel") consolidated_weights = consolidate_model_parallel( metadata, names, strict, weights, parts=num_parts, no_stitch_megatron=no_stitch_megatron, ) else: logger.info("FSDP.consolidate_shard_weights") consolidated_weights = FSDP.consolidate_shard_weights( shard_weights=weights, shard_metadata=metadata, strict=strict ) del weights, metadata gc.collect() done_consolidate = time.time() logger.info(f"Done consolidating after {done_consolidate-t0//60} minutes") else: consolidated_weights = weights[0] if new_arch_name is not None: ckpt["cfg"]["model"]._name = new_arch_name if dense: logger.info("dense") def save_checkpoint(weights_to_save, prefix): ckpt_consolidated = dict( model=weights_to_save, cfg=ckpt["cfg"], extra_state=ckpt["extra_state"], optimizer_history=ckpt["optimizer_history"], args=ckpt.get("args"), ) save_path = f"{prefix}.pt" logger.info(f"Saving to {save_path} ...") torch.save(ckpt_consolidated, save_path) logger.info(f"Done after {time.time()-t0//60} minutes") return save_path if no_stitch_megatron: saved_paths = [] for part_id, part_consolidated_weights in consolidated_weights.items(): saved_paths.append( save_checkpoint( part_consolidated_weights, f"{save_prefix}-model_part-{part_id}" ) ) return saved_paths return save_checkpoint(consolidated_weights, save_prefix) ckpt_shared = dict( model=consolidated_weights, cfg=ckpt["cfg"], extra_state=ckpt["extra_state"], optimizer_history=ckpt["optimizer_history"], args=ckpt["args"], ) logger.info("saving..") torch.save(ckpt_shared, f"{save_prefix}-shared.pt") logger.info(f"Done saving. Total time: {time.time()-t0//60} minutes, ") # Process experts for src, dst in tqdm( list(zip(expert_paths, expert_dest_paths)), desc="expert files" ): ckpt = load_and_pop_last_optimizer_state(src) if do_consolidate: expert_wt = FSDP.consolidate_shard_weights( shard_weights=[ckpt["model"]], shard_metadata=[ckpt["shard_metadata"]], strict=False, ) ckpt = dict( model=expert_wt, cfg=ckpt["cfg"], extra_state=ckpt["extra_state"], optimizer_history=ckpt["optimizer_history"], args=ckpt["args"], ) torch.save(ckpt, dst) logger.info(f"saved consolidated MoE with prefix {save_prefix}.pt") return f"{save_prefix}.pt" def consolidate_model_parallel( metadata, names, strict, weights, parts=2, no_stitch_megatron=False ): model_parts = defaultdict(list) metadata_parts = defaultdict(list) for i, n in enumerate(names): for p in range(parts): if f"part-{p}" in n: model_parts[p].append(weights[i]) metadata_parts[p].append(metadata[i]) all_parts_consolidated = defaultdict(list) for k, v in model_parts.items(): part_weights = FSDP.consolidate_shard_weights( shard_weights=v, shard_metadata=metadata_parts[k], strict=strict ) all_parts_consolidated[k] = part_weights if no_stitch_megatron: return all_parts_consolidated model = glue_megatron_parts(all_parts_consolidated) return model def handle_qkv_proj(model_parts, key): parts = [model_parts[part_id][key] for part_id in range(len(model_parts))] ks, vs, qs = [], [], [] for p in parts: k, v, q = torch.split(p, p.shape[0] // 3) ks.append(k) vs.append(v) qs.append(q) return torch.cat(ks, dim=0), torch.cat(vs, dim=0), torch.cat(qs, dim=0) def _handle_one(parts, is_weight): """Make it look like a normal LayerNorm""" n_parts = len(parts) err_msg = f"Redundant ModelParallelFusedLayerNorm params have been updated." if is_weight: init = 1.0 assert not torch.logical_and(parts[0].ne(1), parts[1].ne(1)).any(), err_msg else: init = 0.0 assert not torch.logical_and(parts[0].ne(0), parts[1].ne(0)).any(), err_msg ret_val = torch.cat([p.unsqueeze(-1) for p in parts], dim=1).sum(1) - ( init * (n_parts - 1) ) return ret_val def handle_legacy_ln_(glued_model, n_parts): """Consolidate ffn_layernorm.lns.weight.{part_id} -> ffn_layernorm.weight""" if "decoder.layers.0.ffn_layernorm.lns.0.weight" not in glued_model: return n_layers = get_n_layers(glued_model) for i in range(n_layers): layer_weights = [ glued_model.pop(f"decoder.layers.{i}.ffn_layernorm.lns.{p}.weight") for p in range(n_parts) ] layer_biases = [ glued_model.pop(f"decoder.layers.{i}.ffn_layernorm.lns.{p}.bias") for p in range(n_parts) ] glued_model[f"decoder.layers.{i}.ffn_layernorm.weight"] = _handle_one( layer_weights, True ) glued_model[f"decoder.layers.{i}.ffn_layernorm.bias"] = _handle_one( layer_biases, False ) def get_n_layers(glued_model): n_layers = 0 while True: if f"decoder.layers.{n_layers}.fc1.weight" in glued_model: n_layers += 1 else: assert ( n_layers > 0 ), f"found 0 layers bc no keys matching decoder.layers.0.fc1.weight" return n_layers def glue_megatron_parts(model_parts): glued_model = OrderedDict() def assert_all_close(key): for part_id in range(len(model_parts)): if not torch.allclose(model_parts[part_id][key], model_parts[0][key]): err = ( (model_parts[part_id][key] - model_parts[0][key]) .float() .abs() .max() .item() ) logger.info(f"max discrepancy {key}: {err}") for key in model_parts[0]: if "qkv" in key: # Bias of CP gets concatenated if key.endswith("bias"): k, v, q = handle_qkv_proj(model_parts, key) else: assert key.endswith("weight") k, v, q = handle_qkv_proj(model_parts, key) glued_model[key.replace("qkv", "k")] = k glued_model[key.replace("qkv", "v")] = v glued_model[key.replace("qkv", "q")] = q elif "ffn_layernorm" in key: glued_model[key] = torch.cat( [model_parts[part_id][key] for part_id in range(len(model_parts))] ) elif "layer_norm" in key: assert_all_close(key) glued_model[key] = model_parts[0][key] elif "fc1" in key or "k_proj" in key or "q_proj" in key or "v_proj" in key: # Bias of CP gets concatenated if key.endswith("bias"): glued_bias = torch.cat( [model_parts[part_id][key] for part_id in range(len(model_parts))] ) glued_model[key] = glued_bias # weights of CP gets concatenated along dim 0 else: assert key.endswith("weight") glued_weight = torch.cat( [model_parts[part_id][key] for part_id in range(len(model_parts))], dim=0, ) glued_model[key] = glued_weight # FC1 is CP # FC2 is RP elif "fc2" in key or "out_proj" in key: # Bias of RP gets replicated if key.endswith("bias"): assert_all_close(key) glued_model[key] = model_parts[0][key] # weights of RP gets concatenated along dim 1 else: assert key.endswith("weight") glued_weight = torch.cat( [model_parts[part_id][key] for part_id in range(len(model_parts))], dim=1, ) glued_model[key] = glued_weight elif "embed_tokens.weight" in key: glued_weight = torch.cat( [model_parts[part_id][key] for part_id in range(len(model_parts))], dim=0, ) glued_model[key] = glued_weight elif "embed_positions" in key: if "_float_tensor" in key: # Assume embed positions are non learned ie.e sinusoidal glued_model[key] = torch.zeros([1]) else: assert_all_close(key) glued_model[key] = model_parts[0][key] elif "version" in key: glued_model[key] = model_parts[0][key] else: assert_all_close(key) glued_model[key] = model_parts[0][key] assert len(glued_model.keys()) >= len(model_parts[0].keys()) # Consolidate ffn_layernorm.lns.weight.{part_id} -> ffn_layernorm.weight handle_legacy_ln_(glued_model, len(model_parts)) assert "decoder.layers.0.ffn_layernorm.lns.0.weight" not in glued_model return glued_model def find_num_parts(names) -> int: parts = [] for n in names: part = re.search(r"part-(\d+)-", n) if part is not None: parts.append(int(part.groups()[0])) if parts: return max(parts) + 1 else: return 0
flash_metaseq-main
metaseq/distributed/stitch_fsdp_ckpt.py