python_code
stringlengths
0
4.04M
repo_name
stringlengths
7
58
file_path
stringlengths
5
147
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from torch import nn class ModuleProxyWrapper(nn.Module): """ Wrap a DistributedDataParallel module and forward requests for missing attributes to the module wrapped by DDP (the twice-wrapped module). Also forward calls to :func:`state_dict` and :func:`load_state_dict`. Usage:: module.xyz = "hello world" wrapped_module = DistributedDataParallel(module, **ddp_args) wrapped_module = ModuleProxyWrapper(wrapped_module) assert wrapped_module.xyz == "hello world" assert wrapped_module.state_dict().keys() == module.state_dict().keys() Args: module (nn.Module): module to wrap """ def __init__(self, module: nn.Module): super().__init__() assert hasattr( module, "module" ), "ModuleProxyWrapper expects input to wrap another module" self.module = module def __getattr__(self, name): """Forward missing attributes to twice-wrapped module.""" try: # defer to nn.Module's logic return super().__getattr__(name) except AttributeError: try: # forward to the once-wrapped module return getattr(self.module, name) except AttributeError: # forward to the twice-wrapped module return getattr(self.module.module, name) def state_dict(self, *args, **kwargs): """Forward to the twice-wrapped module.""" return self.module.module.state_dict(*args, **kwargs) def load_state_dict(self, *args, **kwargs): """Forward to the twice-wrapped module.""" return self.module.module.load_state_dict(*args, **kwargs) def forward(self, *args, **kwargs): return self.module(*args, **kwargs)
flash_metaseq-main
metaseq/distributed/module_proxy_wrapper.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import types import torch def get_fused_adam_class(): """ Look for the FusedAdam optimizer from apex. We first try to load the "contrib" interface, which is a bit faster than the main interface, but is technically deprecated. """ try: # The "deprecated" interface in recent versions of apex is a bit # faster than the main interface, since we don't use the apex # optimizer. This can be installed by passing the # `--deprecated_fused_adam` option when building apex. global fused_adam_cuda import importlib fused_adam_cuda = importlib.import_module("fused_adam_cuda") return FusedAdamV1 except ImportError: try: # fallback to the newer interface from apex.optimizers import FusedAdam as _FusedAdam # noqa from apex.multi_tensor_apply import multi_tensor_applier if multi_tensor_applier.available: return FusedAdamV2 except ImportError: pass return None class FusedAdamV1(torch.optim.Optimizer): """ Implements Adam algorithm. Currently GPU-only. Requires Apex to be installed via ``python setup.py install --cuda_ext --cpp_ext``. It has been proposed in `Adam: A Method for Stochastic Optimization`_. Compared to the original version in Apex, the metaseq version casts grads and params to FP32 internally to support ``--memory-efficient-fp16``. Args: params (iterable): iterable of parameters to optimize or dicts defining parameter groups. lr (float, optional): learning rate. (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square. (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability. (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) amsgrad (boolean, optional): whether to use the AMSGrad variant of this algorithm from the paper `On the Convergence of Adam and Beyond`_ (default: False) NOT SUPPORTED in FusedAdam! eps_inside_sqrt (boolean, optional): in the 'update parameters' step, adds eps to the bias-corrected second moment estimate before evaluating square root instead of adding it to the square root of second moment estimate as in the original paper. (default: False) .. _Adam: A Method for Stochastic Optimization: https://arxiv.org/abs/1412.6980 .. _On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ """ def __init__( self, params, lr=1e-3, bias_correction=True, betas=(0.9, 0.999), eps=1e-8, eps_inside_sqrt=False, weight_decay=0.0, max_grad_norm=0.0, amsgrad=False, use_fp16_stats=False, ): global fused_adam_cuda import importlib fused_adam_cuda = importlib.import_module("fused_adam_cuda") if amsgrad: raise RuntimeError("FusedAdam does not support the AMSGrad variant.") defaults = { "lr": lr, "bias_correction": bias_correction, "betas": betas, "eps": eps, "weight_decay": weight_decay, "max_grad_norm": max_grad_norm, } super().__init__(params, defaults) self.eps_mode = 0 if eps_inside_sqrt else 1 self.use_fp16_stats = use_fp16_stats self.FLOAT16_MAX = 65504.0 @property def supports_memory_efficient_fp16(self): return True @property def supports_flat_params(self): return True @property def supports_step_with_scale(self): return True def step(self, closure=None, grads=None, scale=1.0, grad_norms=None): """Performs a single optimization step. Args: closure (callable, optional): A closure that reevaluates the model and returns the loss. grads (list of tensors, optional): weight gradient to use for the optimizer update. If gradients have type torch.half, parameters are expected to be in type torch.float. (default: None) output params (list of tensors, optional): A reduced precision copy of the updated weights written out in addition to the regular updated weights. Have to be of same type as gradients. (default: None) scale (float, optional): factor to divide gradient tensor values by before applying to weights. (default: 1) """ loss = None if closure is not None: loss = closure() if grads is None: grads_group = [None] * len(self.param_groups) # backward compatibility # assuming a list/generator of parameter means single group elif isinstance(grads, types.GeneratorType): grads_group = [grads] elif type(grads[0]) != list: grads_group = [grads] else: grads_group = grads if grad_norms is None: grad_norms = [None] * len(self.param_groups) for group, grads_this_group, grad_norm in zip( self.param_groups, grads_group, grad_norms ): if grads_this_group is None: grads_this_group = [None] * len(group["params"]) # compute combined scale factor for this group combined_scale = scale if group.get("max_grad_norm", 0) > 0: # norm is in fact norm*scale clip = ((grad_norm / scale) + 1e-6) / group["max_grad_norm"] if clip > 1: combined_scale = clip * scale bias_correction = 1 if group.get("bias_correction", 1) else 0 for p, grad in zip(group["params"], grads_this_group): # note: p.grad should not ever be set for correct # operation of mixed precision optimizer that sometimes # sends None gradients if p.grad is None and grad is None: continue if grad is None: grad = p.grad.data if grad.is_sparse: raise RuntimeError( "FusedAdam does not support sparse gradients, " "please consider SparseAdam instead" ) if p.device.type == "cpu": p_data_fp32 = p.data.cuda(non_blocking=True).float() out_p = torch.tensor([], dtype=torch.float) else: p_data_fp32 = p.data.float() out_p = p.data state = self.state[p] # State initialization dtype = torch.float16 if self.use_fp16_stats else p_data_fp32.dtype if len(state) == 0: state["step"] = 0 # Exponential moving average of gradient values state["exp_avg"] = torch.zeros_like(p_data_fp32, dtype=dtype) # Exponential moving average of squared gradient values state["exp_avg_sq"] = torch.zeros_like(p_data_fp32, dtype=dtype) if self.use_fp16_stats: state["exp_avg_scale"] = 1.0 state["exp_avg_sq_scale"] = 1.0 else: device = p_data_fp32.device state["exp_avg"] = state["exp_avg"].to(device, dtype) state["exp_avg_sq"] = state["exp_avg_sq"].to(device, dtype) exp_avg = state["exp_avg"] exp_avg_sq = state["exp_avg_sq"] if self.use_fp16_stats: assert exp_avg.dtype == torch.float16 exp_avg = exp_avg.float() * state["exp_avg_scale"] exp_avg_sq = exp_avg_sq.float() * state["exp_avg_sq_scale"] beta1, beta2 = group["betas"] state["step"] += 1 with torch.cuda.device(p_data_fp32.device): fused_adam_cuda.adam( p_data_fp32, out_p, exp_avg, exp_avg_sq, grad, group["lr"], beta1, beta2, group["eps"], combined_scale, state["step"], self.eps_mode, bias_correction, group["weight_decay"], ) if p.device.type == "cpu": p.data.copy_(p_data_fp32, non_blocking=True) if self.use_fp16_stats: def inf_norm(t): return torch.norm(t, float("inf")) # from github.com/openai/jukebox/blob/master/jukebox/utils/fp16.py state["exp_avg_scale"], state["exp_avg_sq_scale"] = ( 1e-8 + inf_norm(exp_avg) / self.FLOAT16_MAX, 1e-8 + inf_norm(exp_avg_sq) / self.FLOAT16_MAX, ) state["exp_avg"], state["exp_avg_sq"] = ( (exp_avg / state["exp_avg_scale"]).half(), (exp_avg_sq / state["exp_avg_sq_scale"]).half(), ) return loss try: from apex.optimizers import FusedAdam from apex.multi_tensor_apply import multi_tensor_applier class FusedAdamV2(FusedAdam): """ Compared to the original version in Apex, the metaseq version casts grads and params to FP32 internally to support ``--memory-efficient-fp16``. """ def __init__(self, *args, use_fp16_stats=False, **kwargs): if use_fp16_stats: raise NotImplementedError( "--fp16-adam-stats is only supported with FusedAdamV1" ) super().__init__(*args, **kwargs) if not hasattr(self, "multi_tensor_adam"): raise Exception( "Apex installation is outdated. Please install an updated version of apex." ) @property def supports_memory_efficient_fp16(self): return True @property def supports_flat_params(self): return True def step( self, closure=None, grads=None, output_params=None, scale=None, grad_norms=None, ): """Performs a single optimization step.""" loss = None if closure is not None: loss = closure() for group in self.param_groups: bias_correction = 1 if group["bias_correction"] else 0 beta1, beta2 = group["betas"] # assume same step across group now to simplify things # per parameter step can be easily support by making it tensor, or pass list into kernel if "step" in group: group["step"] += 1 else: group["step"] = 1 # create lists for multi-tensor apply g_16, p_16, orig_p_16, m_16, v_16 = [], [], [], [], [] g_32, p_32, m_32, v_32 = [], [], [], [] for p in group["params"]: if p.grad is None: continue if p.grad.data.is_sparse: raise RuntimeError( "FusedAdam does not support sparse gradients, " "please consider SparseAdam instead" ) state = self.state[p] # State initialization if len(state) == 0: # Exponential moving average of gradient values state["exp_avg"] = torch.zeros_like(p.data, dtype=torch.float) # Exponential moving average of squared gradient values state["exp_avg_sq"] = torch.zeros_like( p.data, dtype=torch.float ) else: state["exp_avg"] = state["exp_avg"].to( device=p.data.device, dtype=torch.float ) state["exp_avg_sq"] = state["exp_avg_sq"].to( device=p.data.device, dtype=torch.float ) if p.dtype == torch.float16: g_16.append(p.grad.data.float()) p_16.append(p.data.float()) orig_p_16.append(p.data) m_16.append(state["exp_avg"]) v_16.append(state["exp_avg_sq"]) elif p.dtype == torch.float32: g_32.append(p.grad.data) p_32.append(p.data) m_32.append(state["exp_avg"]) v_32.append(state["exp_avg_sq"]) else: raise RuntimeError("FusedAdam only support fp16 and fp32.") with torch.cuda.device(p.device): if len(g_16) > 0: multi_tensor_applier( self.multi_tensor_adam, self._dummy_overflow_buf, [g_16, p_16, m_16, v_16], group["lr"], beta1, beta2, group["eps"], group["step"], self.adam_w_mode, bias_correction, group["weight_decay"], ) for orig_p, p in zip(orig_p_16, p_16): orig_p.copy_(p.data) if len(g_32) > 0: multi_tensor_applier( self.multi_tensor_adam, self._dummy_overflow_buf, [g_32, p_32, m_32, v_32], group["lr"], beta1, beta2, group["eps"], group["step"], self.adam_w_mode, bias_correction, group["weight_decay"], ) return loss except ImportError: pass
flash_metaseq-main
metaseq/optim/fused_adam.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging logger = logging.getLogger(__name__) class DynamicLossScaler(object): def __init__( self, init_scale=4.0, scale_factor=2.0, scale_window=256, tolerance=0.0, threshold=None, min_loss_scale=2**-5, ): self.loss_scale = init_scale self.scale_factor = scale_factor self.scale_window = scale_window logger.info( f"*** SCALE_WINDOW: {self.scale_window}, loss scale: {self.loss_scale} ***" ) self.tolerance = tolerance self.threshold = threshold self._iter = 0 self._last_overflow_iter = -1 self._last_rescale_iter = -1 self._overflows_since_rescale = 0 self.min_loss_scale = min_loss_scale def scale(self, outputs): return self.loss_scale * outputs def update(self): if (self._iter - self._last_overflow_iter) % self.scale_window == 0: self.loss_scale *= self.scale_factor self._last_rescale_iter = self._iter # When scaling up loss_scale, also scale up the scale_window. self.scale_window *= self.scale_factor self._iter += 1 def _decrease_loss_scale(self): self.loss_scale /= self.scale_factor # also decrease the scale_window (lower loss scale, smaller window) self.scale_window = max(int(self.scale_window / self.scale_factor), 1) if self.threshold is not None: self.loss_scale = max(self.loss_scale, self.threshold) def check_overflow(self, grad_norm): # detect inf and nan if grad_norm == float("inf") or grad_norm != grad_norm: # overflow has occurred prev_scale = self.loss_scale iter_since_rescale = self._iter - self._last_rescale_iter self._last_overflow_iter = self._iter self._overflows_since_rescale += 1 pct_overflow = self._overflows_since_rescale / float(iter_since_rescale) if pct_overflow >= self.tolerance: self._decrease_loss_scale() self._last_rescale_iter = self._iter self._overflows_since_rescale = 0 if self.loss_scale < self.min_loss_scale: # Don't scale down past min_loss_scale, just continue to skip grad after overflow error is raised. self.loss_scale = prev_scale self._iter += 1 raise OverflowError("setting loss scale to: " + str(self.loss_scale))
flash_metaseq-main
metaseq/optim/dynamic_loss_scaler.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch from metaseq import utils from metaseq.dataclass.utils import gen_parser_from_dataclass class BaseOptimizer(object): def __init__(self, cfg): super().__init__() self.cfg = cfg @classmethod def add_args(cls, parser): """Add optimizer-specific arguments to the parser.""" dc = getattr(cls, "__dataclass", None) if dc is not None: gen_parser_from_dataclass(parser, dc()) @property def optimizer(self): """Return a torch.optim.optimizer.Optimizer instance.""" if not hasattr(self, "_optimizer"): raise NotImplementedError if not isinstance(self._optimizer, torch.optim.Optimizer): raise ValueError("_optimizer must be an instance of torch.optim.Optimizer") return self._optimizer @optimizer.setter def optimizer(self, optimizer): """Reset optimizer instance.""" if not hasattr(self, "_optimizer"): raise NotImplementedError if not isinstance(self._optimizer, torch.optim.Optimizer): raise ValueError("_optimizer must be an instance of torch.optim.Optimizer") self._optimizer = optimizer @property def optimizer_config(self): """ Return a kwarg dictionary that will be used to override optimizer args stored in checkpoints. This allows us to load a checkpoint and resume training using a different set of optimizer args, e.g., with a different learning rate. """ raise NotImplementedError @property def params(self): """Return an iterable of the parameters held by the optimizer.""" for param_group in self.param_groups: for p in param_group["params"]: yield p @property def param_groups(self): return self.optimizer.param_groups def __getstate__(self): return self._optimizer.__getstate__() def get_lr(self): """Return the current learning rate.""" return self.param_groups[0]["lr"] def set_lr(self, lr): """Set the learning rate.""" for param_group in self.param_groups: param_group["lr"] = lr def state_dict(self): """Return the optimizer's state dict.""" return self.optimizer.state_dict() def load_state_dict(self, state_dict, optimizer_overrides=None): """Load an optimizer state dict. In general we should prefer the configuration of the existing optimizer instance (e.g., learning rate) over that found in the state_dict. This allows us to resume training from a checkpoint using a new set of optimizer args. """ self.optimizer.load_state_dict(state_dict) if optimizer_overrides is not None and len(optimizer_overrides) > 0: # override learning rate, momentum, etc. with latest values for group in self.param_groups: group.update(optimizer_overrides) def backward(self, loss): """Computes the sum of gradients of the given tensor w.r.t. graph leaves.""" loss.backward() def all_reduce_grads(self, module): """Manually all-reduce gradients (if required).""" if hasattr(module, "all_reduce_grads"): module.all_reduce_grads() def multiply_grads(self, c): """Multiplies grads by a constant *c*.""" for p in self.params: if p.grad is not None: if torch.is_tensor(c): c = c.to(p.grad.device) p.grad.data.mul_(c) def clip_grad_norm(self, max_norm, norm_type="l2", aggregate_norm_fn=None): """Clips gradient norm.""" return utils.clip_grad_norm_( self.params, max_norm, norm_type, aggregate_norm_fn ) def step(self, closure=None, scale=1.0, groups=None): """Performs a single optimization step.""" if self.supports_step_with_scale: if self.supports_groups: self.optimizer.step(closure, scale=scale, groups=groups) else: self.optimizer.step(closure, scale=scale) else: if scale != 1.0: self.multiply_grads(1.0 / scale) if self.supports_groups: self.optimizer.step(closure, groups=groups) else: self.optimizer.step(closure) def zero_grad(self): """Clears the gradients of all optimized parameters.""" for p in self.params: p.grad = None self.optimizer.zero_grad() @property def supports_memory_efficient_fp16(self): if hasattr(self.optimizer, "supports_memory_efficient_fp16"): return self.optimizer.supports_memory_efficient_fp16 return False @property def supports_step_with_scale(self): if hasattr(self.optimizer, "supports_step_with_scale"): return self.optimizer.supports_step_with_scale return False @property def supports_groups(self): if hasattr(self.optimizer, "supports_groups"): return self.optimizer.supports_groups return False @property def supports_flat_params(self): """ Whether the optimizer supports collapsing of the model parameters/gradients into a single contiguous Tensor. """ if hasattr(self.optimizer, "supports_flat_params"): return self.optimizer.supports_flat_params return False def broadcast_global_state_dict(self, state_dict): """ Broadcasts a global state dict to all ranks. Useful for optimizers that shard state between ranks. """ if hasattr(self.optimizer, "broadcast_global_state_dict"): return self.optimizer.broadcast_global_state_dict(state_dict) else: return state_dict class LegacyOptimizer(BaseOptimizer): def __init__(self, args): self.args = args
flash_metaseq-main
metaseq/optim/base_optimizer.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch from torch.optim.optimizer import Optimizer, required from . import LegacyOptimizer, register_optimizer @register_optimizer("sgd") class MetaseqSGDW(LegacyOptimizer): """ Note that this implements SGDW from this paper: https://arxiv.org/abs/1711.05101 """ def __init__(self, args, params): super().__init__(args) self._optimizer = SGDW(params, **self.optimizer_config) @staticmethod def add_args(parser): """Add optimizer-specific arguments to the parser.""" # fmt: off parser.add_argument('--momentum', default=0.0, type=float, metavar='M', help='momentum factor') parser.add_argument('--weight-decay', '--wd', default=0.0, type=float, metavar='WD', help='weight decay') # fmt: on @property def optimizer_config(self): """ Return a kwarg dictionary that will be used to override optimizer args stored in checkpoints. This allows us to load a checkpoint and resume training using a different set of optimizer args, e.g., with a different learning rate. """ return { "lr": self.args.lr[0], "momentum": self.args.momentum, "weight_decay": self.args.weight_decay, } class SGDW(Optimizer): def __init__( self, params, lr=required, momentum=0, dampening=0, weight_decay=0, nesterov=False, ): if lr is not required and lr < 0.0: raise ValueError("Invalid learning rate: {}".format(lr)) if momentum < 0.0: raise ValueError("Invalid momentum value: {}".format(momentum)) if weight_decay < 0.0: raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) defaults = dict( lr=lr, momentum=momentum, dampening=dampening, weight_decay=weight_decay, nesterov=nesterov, ) if nesterov and (momentum <= 0 or dampening != 0): raise ValueError("Nesterov momentum requires a momentum and zero dampening") super(SGDW, self).__init__(params, defaults) def __setstate__(self, state): super(SGDW, self).__setstate__(state) for group in self.param_groups: group.setdefault("nesterov", False) @torch.no_grad() def step(self, closure=None): """Performs a single optimization step. Args: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: weight_decay = group["weight_decay"] momentum = group["momentum"] dampening = group["dampening"] nesterov = group["nesterov"] for p in group["params"]: if p.grad is None: continue d_p = p.grad if d_p.dtype in {torch.float16, torch.bfloat16}: d_p = d_p.float() p_fp32 = p.data if p.data.dtype in {torch.float16, torch.bfloat16}: p_fp32 = p_fp32.float() if momentum != 0: param_state = self.state[p] if "momentum_buffer" not in param_state: buf = param_state["momentum_buffer"] = torch.clone(d_p).detach() else: buf = param_state["momentum_buffer"] buf.mul_(momentum).add_(d_p, alpha=1 - dampening) if nesterov: d_p = d_p.add(buf, alpha=momentum) else: d_p = buf if weight_decay != 0: p_fp32.add_(p_fp32, alpha=-weight_decay * group["lr"]) p_fp32.add_(d_p, alpha=-group["lr"]) if p.data.dtype in {torch.float16, torch.bfloat16}: p.data.copy_(p_fp32) return loss @property def supports_memory_efficient_fp16(self): return True @property def supports_flat_params(self): return True
flash_metaseq-main
metaseq/optim/sgd.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """isort:skip_file""" import importlib import os from metaseq import registry from metaseq.optim.base_optimizer import ( # noqa BaseOptimizer, LegacyOptimizer, ) from metaseq.optim.fp16_optimizer import FP16Optimizer, MemoryEfficientFP16Optimizer from metaseq.optim.shard import shard_ from omegaconf import DictConfig __all__ = [ "BaseOptimizer", "FP16Optimizer", "MemoryEfficientFP16Optimizer", "shard_", ] ( _build_optimizer, register_optimizer, OPTIMIZER_REGISTRY, OPTIMIZER_DATACLASS_REGISTRY, ) = registry.setup_registry("--optimizer", base_class=BaseOptimizer, required=True) def build_optimizer(cfg: DictConfig, params, *extra_args, **extra_kwargs): if all(isinstance(p, dict) for p in params): params = [t for p in params for t in p.values()] params = list(filter(lambda p: p.requires_grad, params)) return _build_optimizer(cfg, params, *extra_args, **extra_kwargs) # automatically import any Python files in the optim/ directory for file in os.listdir(os.path.dirname(__file__)): if file.endswith(".py") and not file.startswith("_"): file_name = file[: file.find(".py")] importlib.import_module("metaseq.optim." + file_name)
flash_metaseq-main
metaseq/optim/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from collections import defaultdict from itertools import chain import torch from omegaconf import DictConfig from metaseq import optim from .dynamic_loss_scaler import DynamicLossScaler class _FP16OptimizerMixin(object): def __init__(self, *args, **kwargs): # forward __init__ call to the next class in mro(method resolution order) super().__init__(*args, **kwargs) self._multiply_factor = 1.0 @property def has_flat_params(self): return torch.is_tensor(self.fp32_params) or ( isinstance(self.fp32_params, dict) and all(torch.is_tensor(t) for t in self.fp32_params.values()) ) @classmethod def build_fp32_params(cls, args, params, flatten=True): # create FP32 copy of parameters and grads if flatten: total_param_size = sum(p.data.numel() for p in params) devices = [torch.cuda.current_device()] fp32_params = {} for device in devices: device_param_size = total_param_size device_params = params fp32_params[device] = ( device_params[0].new(0).float().new(device_param_size) ) offset = 0 for p in device_params: numel = p.data.numel() fp32_params[device][offset : offset + numel].copy_(p.data.view(-1)) offset += numel fp32_params[device] = torch.nn.Parameter(fp32_params[device]) fp32_params[device].grad = fp32_params[device].data.new( device_param_size ) return fp32_params else: fp32_params = [] for p in params: p32 = torch.nn.Parameter(p.data.float()) p32.grad = torch.zeros_like(p32.data) if hasattr(p, "param_group"): p32.param_group = p.param_group fp32_params.append(p32) return fp32_params def state_dict(self): """Return the optimizer's state dict.""" state_dict = self.fp32_optimizer.state_dict() if self.scaler is not None: state_dict["loss_scale"] = self.scaler.loss_scale return state_dict def load_state_dict(self, state_dict, optimizer_overrides=None): """Load an optimizer state dict. In general we should prefer the configuration of the existing optimizer instance (e.g., learning rate) over that found in the state_dict. This allows us to resume training from a checkpoint using a new set of optimizer args. """ if "loss_scale" in state_dict and self.scaler is not None: self.scaler.loss_scale = state_dict["loss_scale"] self.fp32_optimizer.load_state_dict(state_dict, optimizer_overrides) def backward(self, loss): """Computes the sum of gradients of the given tensor w.r.t. graph leaves. Compared to :func:`metaseq.optim.BaseOptimizer.backward`, this function additionally dynamically scales the loss to avoid gradient underflow. """ if self.scaler is not None: loss = self.scaler.scale(loss) loss.backward() self._needs_sync = True def _sync_fp16_grads_to_fp32(self): if self._needs_sync: # copy FP16 grads to FP32 if self.has_flat_params: devices = list(self.fp32_params.keys()) device_params_dict = defaultdict(list) for p in self.fp16_params: if p.requires_grad: device_params_dict[p.device.index].append(p) for device in devices: device_params = device_params_dict[device] offset = 0 for p in device_params: grad_data = ( p.grad.data if p.grad is not None else p.data.new_zeros(p.data.shape) ) numel = grad_data.numel() self.fp32_params[device].grad.data[ offset : offset + numel ].copy_(grad_data.view(-1)) offset += numel else: for p, p32 in zip(self.fp16_params, self.fp32_params): if not p.requires_grad: continue if p.grad is not None: if p32.grad is None: p32.grad = p.grad.data.float() else: p32.grad.data.copy_(p.grad.data) else: p32.grad = torch.zeros_like(p.data, dtype=torch.float) self._needs_sync = False def _sync_fp32_params_to_fp16(self): # copy FP32 params back into FP16 model if self.has_flat_params: devices = list(self.fp32_params.keys()) device_params_dict = defaultdict(list) for p in self.fp16_params: device_params_dict[p.device.index].append(p) for device in devices: device_params = device_params_dict[device] offset = 0 for p in device_params: numel = p.data.numel() p.data.copy_( self.fp32_params[device] .data[offset : offset + numel] .view_as(p.data) ) offset += numel else: for p, p32 in zip(self.fp16_params, self.fp32_params): if not p.requires_grad: continue p.data.copy_(p32.data) def _unscale_grads(self): self._sync_fp16_grads_to_fp32() if ( # Skip the multiplication if it's a no-op (i.e., if _multiply_factor # is 1.0). At the same time, we want to avoid the device-to-host # transfer by comparing it to 1.0. Since _multiply_factor starts as # a Python float, we roughly assume that if it's a tensor then it's # probably not =1.0 anymore and we do the multiplication. Otherwise # we can safely check the value without a D2H transfer. torch.is_tensor(self._multiply_factor) or self._multiply_factor != 1.0 ): self.fp32_optimizer.multiply_grads(self._multiply_factor) self._multiply_factor = 1.0 def multiply_grads(self, c): """Multiplies grads by a constant ``c``.""" self._multiply_factor *= c def clip_grad_norm( self, max_norm, norm_type="l2", aggregate_norm_fn=None, skip_gradient_update_on_clip_norm=False, ): """Clips gradient norm and updates dynamic loss scaler.""" self._sync_fp16_grads_to_fp32() grad_norm = self._multiply_factor * self.fp32_optimizer.clip_grad_norm( 0, norm_type, aggregate_norm_fn ) if self.scaler is not None: self.scaler.check_overflow(grad_norm) if skip_gradient_update_on_clip_norm: # detect overflow and adjust loss scale self.scaler.check_overflow(grad_norm) if grad_norm > max_norm > 0.0: raise OverflowError( f"Grad norm: {grad_norm:.2f} exceeds threshold: {max_norm:.2f}, rejecting batch." ) else: if grad_norm > max_norm > 0.0: self._multiply_factor *= max_norm / grad_norm # detect overflow and adjust loss scale self.scaler.check_overflow(grad_norm) elif max_norm > 0.0: clip_coef = (max_norm / (grad_norm + 1e-6)).clamp_(max=1) self._multiply_factor *= clip_coef return grad_norm def step(self, closure=None, groups=None): """Performs a single optimization step.""" self._sync_fp16_grads_to_fp32() if getattr(self, "supports_step_with_scale", False): self.fp32_optimizer.step( closure, scale=(1.0 / self._multiply_factor), groups=groups ) else: self._unscale_grads() self.fp32_optimizer.step(closure, groups=groups) if self.scaler is not None: self.scaler.update() self._sync_fp32_params_to_fp16() def zero_grad(self): """Clears the gradients of all optimized parameters.""" for p in self.fp16_params: p.grad = None if self.has_flat_params: if torch.is_tensor(self.fp32_params): self.fp32_params.grad.zero_() elif isinstance(self.fp32_params, dict): for fp32_params in self.fp32_params.values(): fp32_params.grad.zero_() else: raise RuntimeError("self.fp32_params must be a tensor or dict") else: for p32 in self.fp32_params: if p32.grad is not None: p32.grad.zero_() self._needs_sync = False if self.scaler is not None: self._multiply_factor = 1.0 / float(self.scaler.loss_scale) class FP16Optimizer(_FP16OptimizerMixin, optim.BaseOptimizer): """ Wrap an *optimizer* to support FP16 (mixed precision) training. """ def __init__(self, cfg: DictConfig, params, fp32_optimizer, fp32_params, **kwargs): super().__init__(cfg.optimizer) self.fp16_params = params self.fp32_optimizer = fp32_optimizer self.fp32_params = fp32_params # No loss scaler required for training with bf16 self.scaler = ( None if cfg.common.bf16 else DynamicLossScaler( init_scale=cfg.common.fp16_init_scale, scale_window=cfg.common.fp16_scale_window, tolerance=cfg.common.fp16_scale_tolerance, threshold=cfg.common.threshold_loss_scale, min_loss_scale=cfg.common.min_loss_scale, ) ) @classmethod def build_optimizer(cls, cfg: DictConfig, params, **kwargs): """ Args: cfg (omegaconf.DictConfig): metaseq args params (iterable): iterable of parameters to optimize """ flatten = not getattr(cfg.common, "fp16_no_flatten_grads", False) fp32_params = cls.build_fp32_params(cfg.optimizer, params, flatten=flatten) if flatten: fp32_optimizer = optim.build_optimizer(cfg.optimizer, [fp32_params]) else: fp32_optimizer = optim.build_optimizer(cfg.optimizer, fp32_params) if flatten and not fp32_optimizer.supports_flat_params: raise RuntimeError( f"chosen optimizer {fp32_optimizer.__class__.__name__} does not " f"support flat params, please set --fp16-no-flatten-grads" ) return cls(cfg, params, fp32_optimizer, fp32_params, **kwargs) @property def optimizer(self): return self.fp32_optimizer.optimizer @optimizer.setter def optimizer(self, optimizer): self.fp32_optimizer.optimizer = optimizer @property def lr_scheduler(self): return getattr(self.fp32_optimizer, "lr_scheduler", None) @property def optimizer_config(self): return self.fp32_optimizer.optimizer_config def get_lr(self): return self.fp32_optimizer.get_lr() def set_lr(self, lr): self.fp32_optimizer.set_lr(lr) def all_reduce_grads(self, module): self.fp32_optimizer.all_reduce_grads(module) @property def supports_flat_params(self): return self.fp32_optimizer.supports_flat_params class _MemoryEfficientFP16OptimizerMixin(object): def __init__(self, *args, **kwargs): # forward __init__ call to the next class in MRO (method resolution order) super().__init__(*args, **kwargs) self._multiply_factor = 1.0 @property def has_flat_params(self): return False def state_dict(self): """Return the optimizer's state dict.""" state_dict = self.wrapped_optimizer.state_dict() if self.scaler is not None: state_dict["loss_scale"] = self.scaler.loss_scale return state_dict def load_state_dict(self, state_dict, optimizer_overrides=None): """Load an optimizer state dict. In general we should prefer the configuration of the existing optimizer instance (e.g., learning rate) over that found in the state_dict. This allows us to resume training from a checkpoint using a new set of optimizer args. """ if "loss_scale" in state_dict and self.scaler is not None: self.scaler.loss_scale = state_dict["loss_scale"] self.wrapped_optimizer.load_state_dict(state_dict, optimizer_overrides) # Hack: PyTorch automatically casts the optimizer state to match the # type of the current parameters. But with --memory-efficient-fp16 the # params are FP16 while the optimizer state is FP32 and we don't want # to cast. A workaround is to manually copy back the original state # after the optimizer has been loaded. if not getattr(self.optimizer, "disable_mem_eff_fp16_loading_hack", False): groups = self.optimizer.param_groups saved_groups = state_dict["param_groups"] id_map = { old_id: p for old_id, p in zip( chain(*(g["params"] for g in saved_groups)), chain(*(g["params"] for g in groups)), ) } for k, v in state_dict["state"].items(): if k in id_map: param = id_map[k] self.optimizer.state[param] = v def backward(self, loss): """Computes the sum of gradients of the given tensor w.r.t. graph leaves. Compared to :func:`metaseq.optim.BaseOptimizer.backward`, this function additionally dynamically scales the loss to avoid gradient underflow. """ if self.scaler is not None: loss = self.scaler.scale(loss) loss.backward() def _unscale_grads(self): if ( # Skip the multiplication if it's a no-op (i.e., if _multiply_factor # is 1.0). At the same time, we want to avoid the device-to-host # transfer by comparing it to 1.0. Since _multiply_factor starts as # a Python float, we roughly assume that if it's a tensor then it's # probably not =1.0 anymore and we do the multiplication. Otherwise # we can safely check the value without a D2H transfer. torch.is_tensor(self._multiply_factor) or self._multiply_factor != 1.0 ): self.wrapped_optimizer.multiply_grads(self._multiply_factor) self._multiply_factor = 1.0 def multiply_grads(self, c): """Multiplies grads by a constant *c*.""" self._multiply_factor *= c def clip_grad_norm( self, max_norm, norm_type="l2", aggregate_norm_fn=None, skip_gradient_update_on_clip_norm=False, ): """Clips gradient norm and updates dynamic loss scaler.""" max_norm = float(max_norm) grad_norm = self._multiply_factor * self.wrapped_optimizer.clip_grad_norm( 0, norm_type, aggregate_norm_fn ) if self.scaler is not None: grad_norm_cpu = float(grad_norm) # If skip gradient on clip norm threshold then first detect gnorm overflows to update loss scale # then additionally check for clip norm threshold but without updating loss scale. if skip_gradient_update_on_clip_norm: # detect overflow and adjust loss scale self.scaler.check_overflow(grad_norm_cpu) if grad_norm_cpu > max_norm > 0.0: raise OverflowError( f"Grad norm: {grad_norm:.2f} exceeds threshold: {max_norm:.2f}, rejecting batch." ) else: if grad_norm_cpu > max_norm > 0.0: self._multiply_factor *= max_norm / grad_norm_cpu # detect overflow and adjust loss scale self.scaler.check_overflow(grad_norm_cpu) elif max_norm > 0.0: clip_coef = (max_norm / (grad_norm + 1e-6)).clamp_(max=1) self._multiply_factor *= clip_coef return grad_norm def step(self, closure=None, groups=None): """Performs a single optimization step.""" if getattr(self, "supports_step_with_scale", False): # NOTE(msb) optimizer divides by scale factor self.wrapped_optimizer.step( closure, scale=(1.0 / self._multiply_factor), groups=groups ) else: self._unscale_grads() self.wrapped_optimizer.step(closure, groups=groups) if self.scaler is not None: self.scaler.update() def zero_grad(self): """Clears the gradients of all optimized parameters.""" self.wrapped_optimizer.zero_grad() if self.scaler is not None: self._multiply_factor = 1.0 / float(self.scaler.loss_scale) else: self._multiply_factor = 1.0 @property def supports_flat_params(self): return self.wrapped_optimizer.supports_flat_params class MemoryEfficientFP16Optimizer( _MemoryEfficientFP16OptimizerMixin, optim.BaseOptimizer ): """ Wrap an *optimizer* to support FP16 (mixed precision) training. Compared to :class:`metaseq.optim.FP16Optimizer`, this version does not maintain an FP32 copy of the model. We instead expect the optimizer to convert the gradients to FP32 internally and sync the results back to the FP16 model params. This significantly reduces memory usage but slightly increases the time spent in the optimizer. Since this wrapper depends on specific functionality in the wrapped optimizer (i.e., on-the-fly conversion of grads to FP32), only certain optimizers can be wrapped. This is determined by the *supports_memory_efficient_fp16* property. """ def __init__( self, cfg: DictConfig, params, optimizer, allow_unsupported=False, **kwargs ): if not allow_unsupported and not optimizer.supports_memory_efficient_fp16: raise ValueError( "Unsupported optimizer: {}".format(optimizer.__class__.__name__) ) super().__init__(cfg.optimizer) self.wrapped_optimizer = optimizer # No loss scaler required for training with bf16 self.scaler = ( None if cfg.common.bf16 else DynamicLossScaler( init_scale=cfg.common.fp16_init_scale, scale_window=cfg.common.fp16_scale_window, tolerance=cfg.common.fp16_scale_tolerance, threshold=cfg.common.threshold_loss_scale, min_loss_scale=cfg.common.min_loss_scale, ) ) @classmethod def build_optimizer(cls, cfg: DictConfig, params, **kwargs): """ Args: args (argparse.Namespace): metaseq args params (iterable): iterable of parameters to optimize """ fp16_optimizer = optim.build_optimizer(cfg.optimizer, params) return cls(cfg, params, fp16_optimizer, **kwargs) @property def optimizer(self): return self.wrapped_optimizer.optimizer @optimizer.setter def optimizer(self, optimizer): self.wrapped_optimizer.optimizer = optimizer @property def optimizer_config(self): return self.wrapped_optimizer.optimizer_config @property def lr_scheduler(self): return getattr(self.wrapped_optimizer, "lr_scheduler", None) def get_lr(self): return self.wrapped_optimizer.get_lr() def set_lr(self, lr): self.wrapped_optimizer.set_lr(lr) def all_reduce_grads(self, module): self.wrapped_optimizer.all_reduce_grads(module)
flash_metaseq-main
metaseq/optim/fp16_optimizer.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Any, Dict from metaseq.distributed import utils try: from fairscale.optim import OSS _has_fairscale = True except ImportError: _has_fairscale = False def shard_(optimizer, group): if not _has_fairscale: raise ImportError( "\n\nPlease install the fairscale package:" "\n\n pip install fairscale" ) class MetaseqOSS(OSS): @property def disable_mem_eff_fp16_loading_hack(self): return True def __getattr__(self, name): if name.startswith("supports") and hasattr(self.optim, name): return getattr(self.optim, name) raise AttributeError( "'MetaseqOSS' object has no attribute {0!r}".format(name) ) def broadcast_global_state_dict( self, state_dict: Dict[str, Any] ) -> Dict[str, Any]: """ Broadcasts the entire state_dict to all other ranks each rank is responsible to load their own partition of data """ return utils.broadcast_object( state_dict, src_rank=0, group=self.group, ) torch_optimizer = optimizer.optimizer optim_cls = type(torch_optimizer) optimizer.optimizer = MetaseqOSS( torch_optimizer.param_groups, optim_cls, group=group, **optimizer.optimizer_config )
flash_metaseq-main
metaseq/optim/shard.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import math from collections.abc import Collection from dataclasses import dataclass, field from typing import List import torch import torch.optim from omegaconf import II, DictConfig from metaseq.dataclass import MetaseqDataclass from metaseq.optim import BaseOptimizer, register_optimizer from metaseq.optim.fused_adam import get_fused_adam_class logger = logging.getLogger(__name__) @dataclass class MetaseqAdamConfig(MetaseqDataclass): adam_betas: str = field( default="(0.9, 0.999)", metadata={"help": "betas for Adam optimizer"} ) adam_eps: float = field( default=1e-8, metadata={"help": "epsilon for Adam optimizer"} ) weight_decay: float = field(default=0.0, metadata={"help": "weight decay"}) use_old_adam: bool = field( default=False, metadata={"help": "Use metaseq.optim.adam.Adam"} ) fp16_adam_stats: bool = field( default=False, metadata={"help": "use FP16 stats (with automatic scaling)"} ) # TODO common vars below in parent lr: List[float] = II("optimization.lr") block_wise: bool = field( default=False, metadata={"help": "Enables block-wise optimization for 8-bit Adam"}, ) @register_optimizer("adam", dataclass=MetaseqAdamConfig) class MetaseqAdam(BaseOptimizer): """Adam optimizer for metaseq. Important note: this optimizer corresponds to the "AdamW" variant of Adam in its weight decay behavior. As such, it is most closely analogous to torch.optim.AdamW from PyTorch. """ def __init__(self, cfg: DictConfig, params): super().__init__(cfg) fused_adam_cls = get_fused_adam_class() use_fused_adam = ( not getattr(cfg, "use_old_adam", False) and fused_adam_cls is not None and torch.cuda.is_available() ) if use_fused_adam: logger.info("using FusedAdam") self._optimizer = fused_adam_cls( params, use_fp16_stats=self.cfg.fp16_adam_stats, **self.optimizer_config ) else: if self.cfg.fp16_adam_stats: raise NotImplementedError( "--fp16-adam-stats is only supported with FusedAdamV1" ) self._optimizer = Adam(params, **self.optimizer_config) @property def optimizer_config(self): """ Return a kwarg dictionary that will be used to override optimizer args stored in checkpoints. This allows us to load a checkpoint and resume training using a different set of optimizer args, e.g., with a different learning rate. """ return { "lr": self.cfg.lr[0] if isinstance(self.cfg.lr, Collection) else self.cfg.lr, "betas": eval(self.cfg.adam_betas), "eps": self.cfg.adam_eps, "weight_decay": self.cfg.weight_decay, } @register_optimizer("adam8bit", dataclass=MetaseqAdamConfig) class MetaseqAdam8Bit(BaseOptimizer): def __init__(self, cfg: DictConfig, params): super().__init__(cfg) try: import bitsandbytes as bnb except ImportError: raise ImportError( "adam8bit requires bits and bytes: see https://gist.github.com/TimDettmers/c4ffe346f095ee4481aa3d4b4ad2ffe0" ) bnb.optim.GlobalOptimManager.get_instance().register_parameters(params) self._optimizer = bnb.optim.Adam( params, optim_bits=8, **self.optimizer_config ) # equivalent @property def optimizer_config(self): return { "lr": self.cfg.lr[0] if isinstance(self.cfg.lr, Collection) else self.cfg.lr, "betas": eval(self.cfg.adam_betas), "eps": self.cfg.adam_eps, "weight_decay": self.cfg.weight_decay, "block_wise": self.cfg.block_wise, } @property def supports_memory_efficient_fp16(self): return True @property def supports_flat_params(self): return True class Adam(torch.optim.Optimizer): r"""Implements Adam algorithm. This implementation is modified from torch.optim.Adam based on: `Fixed Weight Decay Regularization in Adam` (see https://arxiv.org/abs/1711.05101) It has been proposed in `Adam: A Method for Stochastic Optimization`_. Args: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) amsgrad (boolean, optional): whether to use the AMSGrad variant of this algorithm from the paper `On the Convergence of Adam and Beyond`_ .. _Adam\: A Method for Stochastic Optimization: https://arxiv.org/abs/1412.6980 .. _On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ """ def __init__( self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, ): defaults = dict( lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, amsgrad=amsgrad ) super(Adam, self).__init__(params, defaults) @property def supports_memory_efficient_fp16(self): return True @property def supports_flat_params(self): return True def step(self, closure=None): """Performs a single optimization step. Args: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group["params"]: if p.grad is None: continue grad = p.grad.data if grad.dtype in {torch.float16, torch.bfloat16}: grad = grad.float() if grad.is_sparse: raise RuntimeError( "Adam does not support sparse gradients, please consider SparseAdam instead" ) amsgrad = group.get("amsgrad", False) p_data_fp32 = p.data if p.data.dtype in {torch.float16, torch.bfloat16}: p_data_fp32 = p_data_fp32.float() state = self.state[p] # State initialization if len(state) == 0: state["step"] = 0 # Exponential moving average of gradient values state["exp_avg"] = torch.zeros_like(p_data_fp32) # Exponential moving average of squared gradient values state["exp_avg_sq"] = torch.zeros_like(p_data_fp32) if amsgrad: # Maintains max of all exp. moving avg. of sq. grad. values state["max_exp_avg_sq"] = torch.zeros_like(p_data_fp32) else: state["exp_avg"] = state["exp_avg"].to(p_data_fp32) state["exp_avg_sq"] = state["exp_avg_sq"].to(p_data_fp32) if amsgrad: state["max_exp_avg_sq"] = state["max_exp_avg_sq"].to( p_data_fp32 ) exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"] if amsgrad: max_exp_avg_sq = state["max_exp_avg_sq"] beta1, beta2 = group["betas"] state["step"] += 1 # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) if amsgrad: # Maintains the maximum of all 2nd moment running avg. till now torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) # Use the max. for normalizing running avg. of gradient denom = max_exp_avg_sq.sqrt().add_(group["eps"]) else: denom = exp_avg_sq.sqrt().add_(group["eps"]) bias_correction1 = 1 - beta1 ** state["step"] bias_correction2 = 1 - beta2 ** state["step"] step_size = group["lr"] * math.sqrt(bias_correction2) / bias_correction1 if group["weight_decay"] != 0: p_data_fp32.add_( p_data_fp32, alpha=-group["weight_decay"] * group["lr"] ) p_data_fp32.addcdiv_(exp_avg, denom, value=-step_size) if p.data.dtype in {torch.float16, torch.bfloat16}: p.data.copy_(p_data_fp32) return loss
flash_metaseq-main
metaseq/optim/adam.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """isort:skip_file""" import importlib import os from metaseq import registry from metaseq.optim.lr_scheduler.base_lr_scheduler import BaseLRScheduler from omegaconf import DictConfig ( build_lr_scheduler_, register_lr_scheduler, LR_SCHEDULER_REGISTRY, LR_SCHEDULER_DATACLASS_REGISTRY, ) = registry.setup_registry( "--lr-scheduler", base_class=BaseLRScheduler, default="fixed" ) def build_lr_scheduler(cfg: DictConfig, optimizer): return build_lr_scheduler_(cfg, optimizer) # automatically import any Python files in the optim/lr_scheduler/ directory for file in os.listdir(os.path.dirname(__file__)): if file.endswith(".py") and not file.startswith("_"): file_name = file[: file.find(".py")] importlib.import_module("metaseq.optim.lr_scheduler." + file_name)
flash_metaseq-main
metaseq/optim/lr_scheduler/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass, field from typing import Optional, List from omegaconf import II from metaseq.dataclass import MetaseqDataclass from metaseq.optim.lr_scheduler import BaseLRScheduler, register_lr_scheduler @dataclass class PolynomialDecayLRScheduleConfig(MetaseqDataclass): warmup_updates: int = field( default=0, metadata={"help": "warmup the learning rate linearly for the first N updates"}, ) force_anneal: Optional[int] = field( default=None, metadata={"help": "force annealing at specified epoch"}, ) end_learning_rate: float = field( default=0.0, metadata={"help": "learning rate to decay to"}, ) zero_lr_warmup_steps: int = field( default=0, metadata={ "help": "number of steps to run with lr = 0 in the beginning, before warmup_updates, to update EMAs" }, ) power: float = field( default=1.0, metadata={"help": "decay exponent"}, ) total_num_update: float = field( default=II("optimization.max_update"), metadata={"help": "total number of updates over which to decay learning rate"}, ) lr: List[float] = II("optimization.lr") @register_lr_scheduler("polynomial_decay", dataclass=PolynomialDecayLRScheduleConfig) class PolynomialDecayLRSchedule(BaseLRScheduler): """Decay the LR on a fixed schedule.""" def __init__(self, cfg: PolynomialDecayLRScheduleConfig, optimizer): super().__init__(cfg, optimizer) assert cfg.total_num_update > 0 self.lr = cfg.lr[0] if cfg.warmup_updates > 0: self.warmup_factor = 1.0 / cfg.warmup_updates else: self.warmup_factor = 1 self.end_learning_rate = cfg.end_learning_rate self.zero_lr_warmup_steps = cfg.zero_lr_warmup_steps self.total_num_update = cfg.total_num_update self.power = cfg.power self.optimizer.set_lr(self.warmup_factor * self.lr) def get_next_lr(self, epoch): lrs = self.cfg.lr if self.cfg.force_anneal is None or epoch < self.cfg.force_anneal: # use fixed LR schedule next_lr = lrs[min(epoch, len(lrs) - 1)] else: # annneal based on lr_shrink next_lr = self.optimizer.get_lr() return next_lr def step_begin_epoch(self, epoch): """Update the learning rate at the beginning of the given epoch.""" self.lr = self.get_next_lr(epoch) self.optimizer.set_lr(self.warmup_factor * self.lr) return self.optimizer.get_lr() def step_update(self, num_updates): """Update the learning rate after each update.""" if self.zero_lr_warmup_steps > 0 and num_updates <= self.zero_lr_warmup_steps: lr = 0 elif ( self.cfg.warmup_updates > 0 and num_updates <= self.cfg.warmup_updates + self.zero_lr_warmup_steps ): self.warmup_factor = (num_updates - self.zero_lr_warmup_steps) / float( self.cfg.warmup_updates ) lr = self.warmup_factor * self.lr elif num_updates >= self.total_num_update: lr = self.end_learning_rate else: warmup = self.cfg.warmup_updates + self.zero_lr_warmup_steps lr_range = self.lr - self.end_learning_rate pct_remaining = 1 - (num_updates - warmup) / ( self.total_num_update - warmup ) lr = lr_range * pct_remaining**self.power + self.end_learning_rate self.optimizer.set_lr(lr) return self.optimizer.get_lr()
flash_metaseq-main
metaseq/optim/lr_scheduler/polynomial_decay_schedule.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from collections.abc import Collection from dataclasses import dataclass, field from typing import List from omegaconf import II from metaseq.dataclass import MetaseqDataclass from metaseq.optim.lr_scheduler import BaseLRScheduler, register_lr_scheduler @dataclass class InverseSquareRootLRScheduleConfig(MetaseqDataclass): warmup_updates: int = field( default=4000, metadata={"help": "warmup the learning rate linearly for the first N updates"}, ) warmup_init_lr: float = field( default=-1, metadata={ "help": "initial learning rate during warmup phase; default is cfg.lr" }, ) lr: List[float] = II("optimization.lr") @register_lr_scheduler("inverse_sqrt", dataclass=InverseSquareRootLRScheduleConfig) class InverseSquareRootSchedule(BaseLRScheduler): """Decay the LR based on the inverse square root of the update number. We also support a warmup phase where we linearly increase the learning rate from some initial learning rate (``--warmup-init-lr``) until the configured learning rate (``--lr``). Thereafter we decay proportional to the number of updates, with a decay factor set to align with the configured learning rate. During warmup:: lrs = torch.linspace(cfg.warmup_init_lr, cfg.lr, cfg.warmup_updates) lr = lrs[update_num] After warmup:: decay_factor = cfg.lr * sqrt(cfg.warmup_updates) lr = decay_factor / sqrt(update_num) """ def __init__(self, cfg: InverseSquareRootLRScheduleConfig, optimizer): super().__init__(cfg, optimizer) if isinstance(cfg.lr, Collection) and len(cfg.lr) > 1: raise ValueError( "Cannot use a fixed learning rate schedule with inverse_sqrt." " Consider --lr-scheduler=fixed instead." ) warmup_end_lr = cfg.lr[0] if isinstance(cfg.lr, Collection) else cfg.lr if cfg.warmup_init_lr < 0: cfg.warmup_init_lr = 0 if cfg.warmup_updates > 0 else warmup_end_lr # linearly warmup for the first cfg.warmup_updates self.lr_step = (warmup_end_lr - cfg.warmup_init_lr) / cfg.warmup_updates # then, decay prop. to the inverse square root of the update number self.decay_factor = warmup_end_lr * cfg.warmup_updates**0.5 # initial learning rate self.lr = cfg.warmup_init_lr self.optimizer.set_lr(self.lr) def step(self, epoch, val_loss=None): """Update the learning rate at the end of the given epoch.""" super().step(epoch, val_loss) # we don't change the learning rate at epoch boundaries return self.optimizer.get_lr() def step_update(self, num_updates): """Update the learning rate after each update.""" if num_updates < self.cfg.warmup_updates: self.lr = self.cfg.warmup_init_lr + num_updates * self.lr_step else: self.lr = self.decay_factor * num_updates**-0.5 self.optimizer.set_lr(self.lr) return self.lr
flash_metaseq-main
metaseq/optim/lr_scheduler/inverse_square_root_schedule.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from metaseq.dataclass.utils import gen_parser_from_dataclass from metaseq.optim import BaseOptimizer class BaseLRScheduler(object): def __init__(self, cfg, optimizer): super().__init__() if optimizer is not None and not isinstance(optimizer, BaseOptimizer): raise ValueError("optimizer must be an instance of BaseOptimizer") self.cfg = cfg self.optimizer = optimizer self.best = None @classmethod def add_args(cls, parser): """Add arguments to the parser for this LR scheduler.""" dc = getattr(cls, "__dataclass", None) if dc is not None: gen_parser_from_dataclass(parser, dc()) def state_dict(self): """Return the LR scheduler state dict.""" return {"best": self.best} def load_state_dict(self, state_dict): """Load an LR scheduler state dict.""" self.best = state_dict["best"] def step_begin_epoch(self, epoch): """Update the learning rate at the beginning of the given epoch.""" pass def step(self, epoch, val_loss=None): """Update the learning rate at the end of the given epoch.""" if val_loss is not None: if self.best is None: self.best = val_loss else: self.best = min(self.best, val_loss) def step_update(self, num_updates): """Update the learning rate after each update.""" return self.optimizer.get_lr()
flash_metaseq-main
metaseq/optim/lr_scheduler/base_lr_scheduler.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math from collections.abc import Collection from dataclasses import dataclass, field from typing import List from omegaconf import II from metaseq.dataclass import MetaseqDataclass from metaseq.optim.lr_scheduler import BaseLRScheduler, register_lr_scheduler @dataclass class CosineLRScheduleConfig(MetaseqDataclass): warmup_updates: int = field( default=0, metadata={"help": "warmup the learning rate linearly for the first N updates"}, ) warmup_init_lr: float = field( default=-1, metadata={ "help": "initial learning rate during warmup phase; default is cfg.lr" }, ) lr: List[float] = field( default=II("optimization.lr"), metadata={"help": "max learning rate, must be more than cfg.min_lr"}, ) min_lr: float = field(default=0.0, metadata={"help": "min learning rate"}) t_mult: float = field( default=1.0, metadata={"help": "factor to grow the length of each period"} ) lr_period_updates: float = field( default=-1, metadata={"help": "initial number of updates per period"} ) lr_shrink: float = field( default=0.1, metadata={"help": "shrink factor for annealing"} ) # This is not required, but is for convenience in inferring lr_period_updates max_update: int = II("optimization.max_update") @register_lr_scheduler("cosine", dataclass=CosineLRScheduleConfig) class CosineLRSchedule(BaseLRScheduler): """Assign LR based on a cyclical schedule that follows the cosine function. See https://arxiv.org/pdf/1608.03983.pdf for details. We also support a warmup phase where we linearly increase the learning rate from some initial learning rate (``--warmup-init-lr``) until the configured max learning rate (``--lr``). During warmup:: lrs = torch.linspace(cfg.warmup_init_lr, cfg.lr, cfg.warmup_updates) lr = lrs[update_num] After warmup:: lr = cfg.min_lr + 0.5*(cfg.lr - cfg.min_lr)*(1 + cos(t_curr / t_i)) where ``t_curr`` is current percentage of updates within the current period range and ``t_i`` is the current period range, which is scaled by ``t_mul`` after every iteration. """ def __init__(self, cfg: CosineLRScheduleConfig, metaseq_optimizer): super().__init__(cfg, metaseq_optimizer) if isinstance(cfg.lr, Collection) and len(cfg.lr) > 1: raise ValueError( "Cannot use a fixed learning rate schedule with cosine." f" Consider --lr-scheduler=fixed instead. ({cfg.lr})" ) self.max_lr = cfg.lr[0] if isinstance(cfg.lr, Collection) else cfg.lr assert ( self.max_lr > cfg.min_lr ), f"max_lr (={cfg.lr}) must be more than min_lr (={cfg.min_lr})" warmup_end_lr = self.max_lr if cfg.warmup_init_lr < 0: cfg.warmup_init_lr = cfg.min_lr self.t_mult = cfg.t_mult self.period = cfg.lr_period_updates if self.period <= 0: assert ( cfg.max_update > 0 ), "Either --max_update or --lr-period-updates must be set" self.period = cfg.max_update - cfg.warmup_updates if cfg.warmup_updates > 0: # linearly warmup for the first cfg.warmup_updates self.lr_step = (warmup_end_lr - cfg.warmup_init_lr) / cfg.warmup_updates else: self.lr_step = 1 self.warmup_updates = cfg.warmup_updates self.lr_shrink = cfg.lr_shrink # initial learning rate self.lr = cfg.warmup_init_lr self.optimizer.set_lr(self.lr) def step(self, epoch, val_loss=None): """Update the learning rate at the end of the given epoch.""" super().step(epoch, val_loss) # we don't change the learning rate at epoch boundaries return self.optimizer.get_lr() def step_update(self, num_updates): """Update the learning rate after each update.""" if num_updates < self.cfg.warmup_updates: self.lr = self.cfg.warmup_init_lr + num_updates * self.lr_step else: curr_updates = num_updates - self.cfg.warmup_updates if self.t_mult != 1: i = math.floor( math.log( 1 - curr_updates / self.period * (1 - self.t_mult), self.t_mult ) ) t_i = self.t_mult**i * self.period t_curr = ( curr_updates - (1 - self.t_mult**i) / (1 - self.t_mult) * self.period ) else: i = math.floor(curr_updates / self.period) t_i = self.period t_curr = curr_updates - (self.period * i) lr_shrink = self.lr_shrink**i min_lr = self.cfg.min_lr * lr_shrink max_lr = self.max_lr * lr_shrink self.lr = min_lr + 0.5 * (max_lr - min_lr) * ( 1 + math.cos(math.pi * t_curr / t_i) ) self.optimizer.set_lr(self.lr) return self.lr
flash_metaseq-main
metaseq/optim/lr_scheduler/cosine_lr_scheduler.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import List, Optional import torch from torch import Tensor @torch.jit.script def script_skip_tensor_list(x: List[Tensor], mask): res = [xi[mask] if xi.size(0) == mask.size(0) else xi[:, mask] for xi in x] outputs = [] for i, t in enumerate(res): if t.numel() != 0: outputs.append(t) else: outputs.append(x[i]) return outputs @torch.jit.script def script_skip_tensor(x: Tensor, mask): # None case if x.size(0) == 0: return x res = x[mask] if x.size(0) == mask.size(0) else x[:, mask] if res.numel() == 0: return x else: return res @torch.jit.script def expand_2d_or_3d_tensor(x, trg_dim: int, padding_idx: int): """ Expand 2D/3D tensor on dim=1 """ if x is None: return None assert x.dim() == 2 or x.dim() == 3 assert trg_dim >= x.size(1), (trg_dim, x.size()) if trg_dim == x.size(1): return x dims = [x.size(0), trg_dim - x.size(1)] if x.dim() == 3: dims.append(x.size(2)) x = torch.cat([x, torch.zeros(dims).to(x).fill_(padding_idx)], 1) return x @torch.jit.script def coalesce(x: Optional[Tensor], y: Tensor) -> Tensor: return x if x is not None else y @torch.jit.script def fill_tensors( x: Optional[Tensor], mask, y: Optional[Tensor], padding_idx: int ) -> Optional[Tensor]: """ Filling tensor x with y at masked positions (dim=0). """ if x is None or x.size()[0] == 0 or y is None: return x assert x.dim() == y.dim() and mask.size(0) == x.size(0) assert x.dim() == 2 or (x.dim() == 3 and x.size(2) == y.size(2)) n_selected = mask.sum() if n_selected == 0: return x assert n_selected == y.size(0) if n_selected == x.size(0): return y if x.size(1) < y.size(1): x = expand_2d_or_3d_tensor(x, y.size(1), padding_idx) x[mask] = y elif x.size(1) > y.size(1): x[mask] = torch.tensor(padding_idx).type_as(x) if x.dim() == 2: x[mask, : y.size(1)] = y else: x[mask, : y.size(1), :] = y else: x[mask] = y return x
flash_metaseq-main
metaseq/models/model_utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """isort:skip_file""" import argparse import importlib import os from metaseq.dataclass import MetaseqDataclass from metaseq.dataclass.utils import merge_with_parent, populate_dataclass from hydra.core.config_store import ConfigStore from .distributed_model import DistributedModel from .base_decoder import BaseDecoder from .base_encoder import BaseEncoder from .incremental_decoder import IncrementalDecoder from .base_model import ( BaseModel, EncoderDecoderModel, LanguageModel, ) MODEL_REGISTRY = {} MODEL_DATACLASS_REGISTRY = {} ARCH_MODEL_REGISTRY = {} ARCH_MODEL_NAME_REGISTRY = {} ARCH_MODEL_INV_REGISTRY = {} ARCH_CONFIG_REGISTRY = {} __all__ = [ "BaseModel", "DistributedModel", "BaseDecoder", "BaseEncoder", "EncoderDecoderModel", "IncrementalDecoder", "LanguageModel", "register_model", ] def build_model(cfg: MetaseqDataclass, task): model = None model_type = getattr(cfg, "_name", None) or getattr(cfg, "arch", None) if not model_type and len(cfg) == 1: # this is hit if config object is nested in directory that is named after model type model_type = next(iter(cfg)) if model_type in MODEL_DATACLASS_REGISTRY: cfg = cfg[model_type] else: raise Exception( "Could not infer model type from directory. Please add _name field to indicate model type. " "Available models: " + str(MODEL_DATACLASS_REGISTRY.keys()) + " Requested model type: " + model_type ) if model_type in ARCH_MODEL_REGISTRY: # case 1: legacy models model = ARCH_MODEL_REGISTRY[model_type] elif model_type in MODEL_DATACLASS_REGISTRY: # case 2: config-driven models model = MODEL_REGISTRY[model_type] if model_type in MODEL_DATACLASS_REGISTRY: # set defaults from dataclass. note that arch name and model name can be the same dc = MODEL_DATACLASS_REGISTRY[model_type] if isinstance(cfg, argparse.Namespace): cfg = populate_dataclass(dc(), cfg) else: cfg = merge_with_parent(dc(), cfg) assert model is not None, ( f"Could not infer model type from {cfg}. " f"Available models: " + str(MODEL_DATACLASS_REGISTRY.keys()) + " Requested model type: " + model_type ) return model.build_model(cfg, task) def register_model(name, dataclass=None): """ New model types can be added to metaseq with the :func:`register_model` function decorator. For example:: @register_model('lstm') class LSTM(EncoderDecoderModel): (...) .. note:: All models must implement the :class:`BaseModel` interface. Typically you will extend :class:`EncoderDecoderModel` for sequence-to-sequence tasks or :class:`LanguageModel` for language modeling tasks. Args: name (str): the name of the model """ def register_model_cls(cls): if name in MODEL_REGISTRY: raise ValueError("Cannot register duplicate model ({})".format(name)) if not issubclass(cls, BaseModel): raise ValueError( "Model ({}: {}) must extend BaseModel".format(name, cls.__name__) ) MODEL_REGISTRY[name] = cls if dataclass is not None and not issubclass(dataclass, MetaseqDataclass): raise ValueError( "Dataclass {} must extend MetaseqDataclass".format(dataclass) ) cls.__dataclass = dataclass if dataclass is not None: MODEL_DATACLASS_REGISTRY[name] = dataclass cs = ConfigStore.instance() node = dataclass() node._name = name cs.store(name=name, group="model", node=node, provider="metaseq") @register_model_architecture(name, name) def noop(_): pass return cls return register_model_cls def register_model_architecture(model_name, arch_name): """ New model architectures can be added to metaseq with the :func:`register_model_architecture` function decorator. After registration, model architectures can be selected with the ``--arch`` command-line argument. For example:: @register_model_architecture('lstm', 'lstm_luong_wmt_en_de') def lstm_luong_wmt_en_de(cfg): args.encoder_embed_dim = getattr(cfg.model, 'encoder_embed_dim', 1000) (...) The decorated function should take a single argument *cfg*, which is a :class:`omegaconf.DictConfig`. The decorated function should modify these arguments in-place to match the desired architecture. Args: model_name (str): the name of the Model (Model must already be registered) arch_name (str): the name of the model architecture (``--arch``) """ def register_model_arch_fn(fn): if model_name not in MODEL_REGISTRY: raise ValueError( "Cannot register model architecture for unknown model type ({})".format( model_name ) ) if arch_name in ARCH_MODEL_REGISTRY: raise ValueError( "Cannot register duplicate model architecture ({})".format(arch_name) ) if not callable(fn): raise ValueError( "Model architecture must be callable ({})".format(arch_name) ) ARCH_MODEL_REGISTRY[arch_name] = MODEL_REGISTRY[model_name] ARCH_MODEL_NAME_REGISTRY[arch_name] = model_name ARCH_MODEL_INV_REGISTRY.setdefault(model_name, []).append(arch_name) ARCH_CONFIG_REGISTRY[arch_name] = fn return fn return register_model_arch_fn # automatically import any Python files in the models/ directory models_dir = os.path.dirname(__file__) for file in os.listdir(models_dir): path = os.path.join(models_dir, file) if ( not file.startswith("_") and not file.startswith(".") and (file.endswith(".py") or os.path.isdir(path)) ): model_name = file[: file.find(".py")] if file.endswith(".py") else file module = importlib.import_module("metaseq.models." + model_name) # extra `model_parser` for sphinx if model_name in MODEL_REGISTRY: parser = argparse.ArgumentParser(add_help=False) group_archs = parser.add_argument_group("Named architectures") group_archs.add_argument( "--arch", choices=ARCH_MODEL_INV_REGISTRY[model_name] ) group_args = parser.add_argument_group("Additional command-line arguments") MODEL_REGISTRY[model_name].add_args(group_args) globals()[model_name + "_parser"] = parser
flash_metaseq-main
metaseq/models/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Base classes for various metaseq models. """ import logging from argparse import Namespace from typing import Dict, List, Optional, Tuple import torch import torch.nn as nn import torch.nn.functional as F from omegaconf import DictConfig from torch import Tensor from metaseq.dataclass.utils import gen_parser_from_dataclass from metaseq.models import BaseDecoder, BaseEncoder logger = logging.getLogger(__name__) def check_type(module, expected_type): if hasattr(module, "unwrapped_module"): assert isinstance( module.unwrapped_module, expected_type ), f"{type(module.unwrapped_module)} != {expected_type}" else: assert isinstance(module, expected_type), f"{type(module)} != {expected_type}" class BaseModel(nn.Module): """Base class for metaseq models.""" def __init__(self): super().__init__() self._is_generation_fast = False @classmethod def add_args(cls, parser): """Add model-specific arguments to the parser.""" dc = getattr(cls, "__dataclass", None) if dc is not None: # do not set defaults so that settings defaults from various architectures still works gen_parser_from_dataclass(parser, dc(), delete_default=True) @classmethod def build_model(cls, args, task): """Build a new model instance.""" raise NotImplementedError("Model must implement the build_model method") def get_targets(self, sample, net_output): """Get targets from either the sample or the net's output.""" return sample["target"] def get_normalized_probs( self, net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]], log_probs: bool, sample: Optional[Dict[str, Tensor]] = None, ): """Get normalized probabilities (or log probs) from a net's output.""" return self.get_normalized_probs_scriptable(net_output, log_probs, sample) # TorchScript doesn't support super() method so that the scriptable Subclass # can't access the base class model in Torchscript. # Current workaround is to add a helper function with different name and # call the helper function from scriptable Subclass. def get_normalized_probs_scriptable( self, net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]], log_probs: bool, sample: Optional[Dict[str, Tensor]] = None, ): """Scriptable helper function for get_normalized_probs in ~BaseModel""" if hasattr(self, "decoder"): return self.decoder.get_normalized_probs(net_output, log_probs, sample) elif torch.is_tensor(net_output): # syntactic sugar for simple models which don't have a decoder # (e.g., the classification tutorial) logits = net_output.float() if log_probs: return F.log_softmax(logits, dim=-1) else: return F.softmax(logits, dim=-1) raise NotImplementedError def extract_features(self, *args, **kwargs): """Similar to *forward* but only return features.""" return self(*args, **kwargs) def max_positions(self): """Maximum length supported by the model.""" return None def load_state_dict( self, state_dict, strict=True, model_cfg: Optional[DictConfig] = None, args: Optional[Namespace] = None, ): """Copies parameters and buffers from *state_dict* into this module and its descendants. Overrides the method in :class:`nn.Module`. Compared with that method this additionally "upgrades" *state_dicts* from old checkpoints. """ self.upgrade_state_dict(state_dict) return super().load_state_dict(state_dict, strict) def upgrade_state_dict(self, state_dict): """Upgrade old state dicts to work with newer code.""" self.upgrade_state_dict_named(state_dict, "") def upgrade_state_dict_named(self, state_dict, name): """Upgrade old state dicts to work with newer code. Args: state_dict (dict): state dictionary to upgrade, in place name (str): the state dict key corresponding to the current module """ assert state_dict is not None def do_upgrade(m, prefix): if len(prefix) > 0: prefix += "." for n, c in m.named_children(): name = prefix + n if hasattr(c, "upgrade_state_dict_named"): c.upgrade_state_dict_named(state_dict, name) elif hasattr(c, "upgrade_state_dict"): c.upgrade_state_dict(state_dict) do_upgrade(c, name) do_upgrade(self, name) def set_num_updates(self, num_updates): """State from trainer to pass along to model at every update.""" for m in self.modules(): if hasattr(m, "set_num_updates") and m != self: m.set_num_updates(num_updates) def prepare_for_inference_(self, cfg: DictConfig): """Prepare model for inference.""" kwargs = {} kwargs["beamable_mm_beam_size"] = ( None if getattr(cfg.generation, "no_beamable_mm", False) else getattr(cfg.generation, "beam", 5) ) kwargs["need_attn"] = False self.make_generation_fast_(**kwargs) def make_generation_fast_(self, **kwargs): """ Legacy entry point to optimize model for faster generation. Prefer prepare_for_inference_. """ if self._is_generation_fast: return # only apply once self._is_generation_fast = True # remove weight norm from all modules in the network def apply_remove_weight_norm(module): try: nn.utils.remove_weight_norm(module) except (AttributeError, ValueError): # this module didn't have weight norm return self.apply(apply_remove_weight_norm) def apply_make_generation_fast_(module, prefix): if len(prefix) > 0: prefix += "." base_func = BaseModel.make_generation_fast_ for n, m in module.named_modules(): if ( m != self and hasattr(m, "make_generation_fast_") # don't call this implementation again, e.g., if # children modules also inherit from BaseModel and m.make_generation_fast_.__func__ is not base_func ): name = prefix + n m.make_generation_fast_(name=name, **kwargs) apply_make_generation_fast_(self, "") def train(mode=True): if mode: raise RuntimeError("cannot train after make_generation_fast") # this model should no longer be used for training self.eval() self.train = train def prepare_for_onnx_export_(self, **kwargs): """Make model exportable via ONNX trace.""" seen = set() def apply_prepare_for_onnx_export_(module): if ( module != self and hasattr(module, "prepare_for_onnx_export_") and module not in seen ): seen.add(module) module.prepare_for_onnx_export_(**kwargs) self.apply(apply_prepare_for_onnx_export_) @classmethod def from_pretrained( cls, model_name_or_path, checkpoint_file="model.pt", data_name_or_path=".", moe_disable_padding=True, skip_prepare_for_inference=False, **kwargs, ): """ Load from a pre-trained model file. Downloads and caches the pre-trained model file if needed. The base implementation returns a :class:`~metaseq.hub_utils.GeneratorHubInterface`, which can be used to generate translations or sample from language models. Other models may override this to implement custom hub interfaces. Args: model_name_or_path (str): either the name of a pre-trained model to load or a path/URL to a pre-trained model state dict checkpoint_file (str, optional): colon-separated list of checkpoint files in the model archive to ensemble (default: 'model.pt') data_name_or_path (str, optional): point args.data to the archive at the given path/URL. Can start with '.' or './' to reuse the model archive path. """ from metaseq import hub_utils x = hub_utils.from_pretrained( model_name_or_path, checkpoint_file, data_name_or_path, archive_map=cls.hub_models(), **kwargs, ) logger.info(x["args"]) return hub_utils.GeneratorHubInterface( x["args"], x["task"], x["models"], moe_disable_padding=moe_disable_padding, skip_prepare_for_inference=skip_prepare_for_inference, ) @classmethod def hub_models(cls): return {} class EncoderDecoderModel(BaseModel): """Base class for encoder-decoder models. Args: encoder (BaseEncoder): the encoder decoder (BaseDecoder): the decoder """ def __init__(self, encoder, decoder): super().__init__() self.encoder = encoder self.decoder = decoder check_type(self.encoder, BaseEncoder) check_type(self.decoder, BaseDecoder) def forward(self, src_tokens, src_lengths, prev_output_tokens, **kwargs): """ Run the forward pass for an encoder-decoder model. First feed a batch of source tokens through the encoder. Then, feed the encoder output and previous decoder outputs (i.e., teacher forcing) to the decoder to produce the next outputs:: encoder_out = self.encoder(src_tokens, src_lengths) return self.decoder(prev_output_tokens, encoder_out) Args: src_tokens (LongTensor): tokens in the source language of shape `(batch, src_len)` src_lengths (LongTensor): source sentence lengths of shape `(batch)` prev_output_tokens (LongTensor): previous decoder outputs of shape `(batch, tgt_len)`, for teacher forcing Returns: tuple: - the decoder's output of shape `(batch, tgt_len, vocab)` - a dictionary with any model-specific outputs """ encoder_out = self.encoder(src_tokens, src_lengths=src_lengths, **kwargs) decoder_out = self.decoder( prev_output_tokens, encoder_out=encoder_out, **kwargs ) return decoder_out def forward_decoder(self, prev_output_tokens, **kwargs): return self.decoder(prev_output_tokens, **kwargs) def extract_features(self, src_tokens, src_lengths, prev_output_tokens, **kwargs): """ Similar to *forward* but only return features. Returns: tuple: - the decoder's features of shape `(batch, tgt_len, embed_dim)` - a dictionary with any model-specific outputs """ encoder_out = self.encoder(src_tokens, src_lengths=src_lengths, **kwargs) features = self.decoder.extract_features( prev_output_tokens, encoder_out=encoder_out, **kwargs ) return features def output_layer(self, features, **kwargs): """Project features to the default output size (typically vocabulary size).""" return self.decoder.output_layer(features, **kwargs) def max_positions(self): """Maximum length supported by the model.""" return (self.encoder.max_positions(), self.decoder.max_positions()) def max_decoder_positions(self): """Maximum length supported by the decoder.""" return self.decoder.max_positions() class LanguageModel(BaseModel): """Base class for decoder-only models. Args: decoder (BaseDecoder): the decoder """ def __init__(self, decoder): super().__init__() self.decoder = decoder check_type(self.decoder, BaseDecoder) def forward(self, src_tokens, **kwargs): """ Run the forward pass for a decoder-only model. Feeds a batch of tokens through the decoder to predict the next tokens. Args: src_tokens (LongTensor): tokens on which to condition the decoder, of shape `(batch, tgt_len)` src_lengths (LongTensor): source sentence lengths of shape `(batch)` Returns: tuple: - the decoder's output of shape `(batch, seq_len, vocab)` - a dictionary with any model-specific outputs """ return self.decoder(src_tokens, **kwargs) def forward_decoder(self, prev_output_tokens, **kwargs): return self.decoder(prev_output_tokens, **kwargs) def extract_features(self, src_tokens, **kwargs): """ Similar to *forward* but only return features. Returns: tuple: - the decoder's features of shape `(batch, seq_len, embed_dim)` - a dictionary with any model-specific outputs """ return self.decoder.extract_features(src_tokens, **kwargs) def output_layer(self, features, **kwargs): """Project features to the default output size (typically vocabulary size).""" return self.decoder.output_layer(features, **kwargs) def max_positions(self): """Maximum length supported by the model.""" return self.decoder.max_positions() def max_decoder_positions(self): """Maximum length supported by the decoder.""" return self.decoder.max_positions() @property def supported_targets(self): return {"future"}
flash_metaseq-main
metaseq/models/base_model.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Dict, List, Optional, Tuple import torch.nn as nn from torch import Tensor from metaseq import utils class BaseDecoder(nn.Module): """Base class for decoders.""" def __init__(self, dictionary): super().__init__() self.dictionary = dictionary self.onnx_trace = False def forward(self, prev_output_tokens, encoder_out=None, **kwargs): """ Args: prev_output_tokens (LongTensor): shifted output tokens of shape `(batch, tgt_len)`, for teacher forcing encoder_out (dict, optional): output from the encoder, used for encoder-side attention Returns: tuple: - the decoder's output of shape `(batch, tgt_len, vocab)` - a dictionary with any model-specific outputs """ x, extra = self.extract_features( prev_output_tokens, encoder_out=encoder_out, **kwargs ) x = self.output_layer(x) return x, extra def extract_features(self, prev_output_tokens, encoder_out=None, **kwargs): """ Returns: tuple: - the decoder's features of shape `(batch, tgt_len, embed_dim)` - a dictionary with any model-specific outputs """ raise NotImplementedError def output_layer(self, features, **kwargs): """ Project features to the default output size, e.g., vocabulary size. Args: features (Tensor): features returned by *extract_features*. """ raise NotImplementedError def get_normalized_probs( self, net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]], log_probs: bool, sample: Optional[Dict[str, Tensor]] = None, ): """Get normalized probabilities (or log probs) from a net's output.""" return self.get_normalized_probs_scriptable(net_output, log_probs, sample) # TorchScript doesn't support super() method so that the scriptable Subclass # can't access the base class model in Torchscript. # Current workaround is to add a helper function with different name and # call the helper function from scriptable Subclass. def get_normalized_probs_scriptable( self, net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]], log_probs: bool, sample: Optional[Dict[str, Tensor]] = None, ): """Get normalized probabilities (or log probs) from a net's output.""" logits = net_output[0] if log_probs: return utils.log_softmax(logits, dim=-1, onnx_trace=self.onnx_trace) else: return utils.softmax(logits, dim=-1, onnx_trace=self.onnx_trace) def max_positions(self): """Maximum input length supported by the decoder.""" return 1e6 # an arbitrary large number def upgrade_state_dict_named(self, state_dict, name): """Upgrade old state dicts to work with newer code.""" return state_dict def prepare_for_onnx_export_(self): self.onnx_trace = True
flash_metaseq-main
metaseq/models/base_decoder.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import math from typing import Any, Dict, List, Optional import torch import torch.nn as nn from torch import Tensor from metaseq import utils from metaseq.distributed import utils as dist_utils, fsdp_wrap from metaseq.models import BaseEncoder, IncrementalDecoder from metaseq.modules import ( Dropout, LayerNorm, PositionalEmbedding, SinusoidalPositionalEmbedding, TransformerDecoderLayer, TransformerEncoderLayer, ) from metaseq.modules.checkpoint_activations import checkpoint_wrapper logger = logging.getLogger(__name__) DEFAULT_MAX_SOURCE_POSITIONS = 1024 DEFAULT_MAX_TARGET_POSITIONS = 1024 DEFAULT_MIN_PARAMS_TO_WRAP = int(1e8) class TransformerEncoder(BaseEncoder): """ Transformer encoder consisting of *args.encoder_layers* layers. Each layer is a :class:`TransformerEncoderLayer`. Args: args (argparse.Namespace): parsed command-line arguments dictionary (~metaseq.data.Dictionary): encoding dictionary embed_tokens (torch.nn.Embedding): input embedding """ def __init__(self, args, dictionary, embed_tokens): self.args = args super().__init__(dictionary) self.register_buffer("version", torch.Tensor([3])) self.dropout_module = Dropout(args.dropout, module_name=self.__class__.__name__) embed_dim = embed_tokens.embedding_dim self.padding_idx = embed_tokens.padding_idx self.max_source_positions = args.max_source_positions self.embed_tokens = embed_tokens self.embed_scale = 1.0 if args.no_scale_embedding else math.sqrt(embed_dim) self.embed_positions = ( PositionalEmbedding( args.max_source_positions, embed_dim, self.padding_idx, learned=args.encoder_learned_pos, ) if args.encoder_learned_pos else None ) self.layers = nn.ModuleList([]) for i in range(args.encoder_layers): self.layers.append(self.build_encoder_layer(args)) self.num_layers = len(self.layers) if args.encoder_normalize_before: self.layer_norm = LayerNorm(embed_dim) else: self.layer_norm = None def build_encoder_layer(self, args): layer = TransformerEncoderLayer(args) checkpoint = getattr(args, "checkpoint_activations", False) if checkpoint: offload_to_cpu = getattr(args, "offload_activations", False) distribute_checkpointed_activations = getattr( args, "distribute_checkpointed_activations", False ) layer = checkpoint_wrapper( layer, offload_to_cpu=offload_to_cpu, distribute_checkpointed_activations=distribute_checkpointed_activations, ) # if we are checkpointing, enforce that FSDP always wraps the # checkpointed layer, regardless of layer size min_params_to_wrap = ( getattr(args, "min_params_to_wrap", DEFAULT_MIN_PARAMS_TO_WRAP) if not checkpoint else 0 ) layer = fsdp_wrap( layer, min_num_params=min_params_to_wrap, process_group=dist_utils.get_data_parallel_group(), ) return layer def forward_embedding( self, src_tokens, token_embedding: Optional[torch.Tensor] = None ): # embed tokens and positions if token_embedding is None: token_embedding = self.embed_tokens(src_tokens) x = embed = self.embed_scale * token_embedding if self.embed_positions is not None: x = embed + self.embed_positions(src_tokens) x = self.dropout_module(x) return x, embed def forward( self, src_tokens, src_lengths: Optional[torch.Tensor] = None, return_all_hiddens: bool = False, token_embeddings: Optional[torch.Tensor] = None, ): """ Args: src_tokens (LongTensor): tokens in the source language of shape `(batch, src_len)` src_lengths (torch.LongTensor): lengths of each source sentence of shape `(batch)` return_all_hiddens (bool, optional): also return all of the intermediate hidden states (default: False). token_embeddings (torch.Tensor, optional): precomputed embeddings default `None` will recompute embeddings Returns: dict: - **encoder_out** (Tensor): the last encoder layer's output of shape `(src_len, batch, embed_dim)` - **encoder_padding_mask** (ByteTensor): the positions of padding elements of shape `(batch, src_len)` - **encoder_embedding** (Tensor): the (scaled) embedding lookup of shape `(batch, src_len, embed_dim)` - **encoder_states** (List[Tensor]): all intermediate hidden states of shape `(src_len, batch, embed_dim)`. Only populated if *return_all_hiddens* is True. """ return self.forward_scriptable( src_tokens, src_lengths, return_all_hiddens, token_embeddings ) # TorchScript doesn't support super() method so that the scriptable Subclass # can't access the base class model in Torchscript. # Current workaround is to add a helper function with different name and # call the helper function from scriptable Subclass. def forward_scriptable( self, src_tokens, src_lengths: Optional[torch.Tensor] = None, return_all_hiddens: bool = False, token_embeddings: Optional[torch.Tensor] = None, ): """ Args: src_tokens (LongTensor): tokens in the source language of shape `(batch, src_len)` src_lengths (torch.LongTensor): lengths of each source sentence of shape `(batch)` return_all_hiddens (bool, optional): also return all of the intermediate hidden states (default: False). token_embeddings (torch.Tensor, optional): precomputed embeddings default `None` will recompute embeddings Returns: dict: - **encoder_out** (Tensor): the last encoder layer's output of shape `(src_len, batch, embed_dim)` - **encoder_padding_mask** (ByteTensor): the positions of padding elements of shape `(batch, src_len)` - **encoder_embedding** (Tensor): the (scaled) embedding lookup of shape `(batch, src_len, embed_dim)` - **encoder_states** (List[Tensor]): all intermediate hidden states of shape `(src_len, batch, embed_dim)`. Only populated if *return_all_hiddens* is True. """ # compute padding mask encoder_padding_mask = src_tokens.eq(self.padding_idx) has_pads = encoder_padding_mask.any() x, encoder_embedding = self.forward_embedding(src_tokens, token_embeddings) # account for padding while computing the representation if has_pads: x = x * (1 - encoder_padding_mask.unsqueeze(-1).type_as(x)) # B x T x C -> T x B x C x = x.transpose(0, 1) encoder_states = [] if return_all_hiddens: encoder_states.append(x) # encoder layers l_aux = [] for layer in self.layers: x, l_aux_i = layer( x, encoder_padding_mask=encoder_padding_mask if has_pads else None ) if return_all_hiddens: assert encoder_states is not None encoder_states.append(x) l_aux.append(l_aux_i) if self.layer_norm is not None: x = self.layer_norm(x) # The Pytorch Mobile lite interpreter does not supports returning NamedTuple in # `forward` so we use a dictionary instead. # TorchScript does not support mixed values so the values are all lists. # The empty list is equivalent to None. return { "encoder_out": [x], # T x B x C "encoder_padding_mask": [encoder_padding_mask], # B x T "encoder_embedding": [encoder_embedding], # B x T x C "encoder_states": encoder_states, # List[T x B x C] "src_tokens": [], "src_lengths": [], "l_aux": l_aux, } @torch.jit.export def reorder_encoder_out(self, encoder_out: Dict[str, List[Tensor]], new_order): """ Reorder encoder output according to *new_order*. Args: encoder_out: output from the ``forward()`` method new_order (LongTensor): desired order Returns: *encoder_out* rearranged according to *new_order* """ if len(encoder_out["encoder_out"]) == 0: new_encoder_out = [] else: new_encoder_out = [encoder_out["encoder_out"][0].index_select(1, new_order)] if len(encoder_out["encoder_padding_mask"]) == 0: new_encoder_padding_mask = [] else: new_encoder_padding_mask = [ encoder_out["encoder_padding_mask"][0].index_select(0, new_order) ] if len(encoder_out["encoder_embedding"]) == 0: new_encoder_embedding = [] else: new_encoder_embedding = [ encoder_out["encoder_embedding"][0].index_select(0, new_order) ] if len(encoder_out["src_tokens"]) == 0: src_tokens = [] else: src_tokens = [(encoder_out["src_tokens"][0]).index_select(0, new_order)] if len(encoder_out["src_lengths"]) == 0: src_lengths = [] else: src_lengths = [(encoder_out["src_lengths"][0]).index_select(0, new_order)] encoder_states = encoder_out["encoder_states"] if len(encoder_states) > 0: for idx, state in enumerate(encoder_states): encoder_states[idx] = state.index_select(1, new_order) return { "encoder_out": new_encoder_out, # T x B x C "encoder_padding_mask": new_encoder_padding_mask, # B x T "encoder_embedding": new_encoder_embedding, # B x T x C "encoder_states": encoder_states, # List[T x B x C] "src_tokens": src_tokens, # B x T "src_lengths": src_lengths, # B x 1 } def max_positions(self): """Maximum input length supported by the encoder.""" if self.embed_positions is None: return self.max_source_positions return min(self.max_source_positions, self.embed_positions.max_positions) def upgrade_state_dict_named(self, state_dict, name): """Upgrade a (possibly old) state dict for new versions of metaseq.""" if isinstance(self.embed_positions, SinusoidalPositionalEmbedding): weights_key = "{}.embed_positions.weights".format(name) if weights_key in state_dict: print("deleting {0}".format(weights_key)) del state_dict[weights_key] state_dict[ "{}.embed_positions._float_tensor".format(name) ] = torch.FloatTensor(1) for i in range(self.num_layers): # update layer norms self.layers[i].upgrade_state_dict_named( state_dict, "{}.layers.{}".format(name, i) ) version_key = "{}.version".format(name) if utils.item(state_dict.get(version_key, torch.Tensor([1]))[0]) < 2: # earlier checkpoints did not normalize after the stack of layers self.layer_norm = None self.normalize = False state_dict[version_key] = torch.Tensor([1]) return state_dict class TransformerDecoderMultiLayerBlockModule(nn.Module): def __init__(self, layers): super().__init__() self.layers = nn.ModuleList(layers) def forward(self, x, **kwargs): l_aux = [] inner_states = [] for layer in self.layers: x, layer_attn, _, l_aux_i = layer(x, **kwargs) inner_states.append(x) return x, layer_attn, inner_states, l_aux def _log_weight_stats(tensor, name): logger.debug( f"{name}, mean: {tensor.mean():.5f}, std: {tensor.std():.5f}, min: {tensor.min():.5f}, max: {tensor.max():.5f}" ) class TransformerDecoder(IncrementalDecoder): """ Transformer decoder consisting of *args.decoder_layers* layers. Each layer is a :class:`TransformerDecoderLayer`. Args: args (argparse.Namespace): parsed command-line arguments dictionary (~metaseq.data.Dictionary): decoding dictionary embed_tokens (torch.nn.Embedding): output embedding no_encoder_attn (bool, optional): whether to attend to encoder outputs (default: False). """ def __init__(self, args, dictionary, embed_tokens, no_encoder_attn=False): self.args = args super().__init__(dictionary) self.register_buffer("version", torch.Tensor([3])) self._future_mask = torch.empty(0) self.dropout_module = Dropout(args.dropout, module_name=self.__class__.__name__) if getattr(args, "no_emb_dropout", False): self.dropout_module = None self.share_input_output_embed = args.share_decoder_input_output_embed input_embed_dim = embed_tokens.embedding_dim embed_dim = args.decoder_embed_dim self.embed_dim = embed_dim self.output_embed_dim = args.decoder_output_dim self.padding_idx = embed_tokens.padding_idx self.max_target_positions = args.max_target_positions self.embed_tokens = embed_tokens self.embed_scale = 1.0 if args.no_scale_embedding else math.sqrt(embed_dim) self.project_in_dim = ( Linear(input_embed_dim, embed_dim, bias=False) if embed_dim != input_embed_dim else None ) self.use_alibi: bool = getattr(args, "alibi", False) initialize_params_on_gpu = getattr( args, "tensor_parallel_init_model_on_gpu", False ) self.embed_positions = ( PositionalEmbedding( self.max_target_positions, embed_dim, self.padding_idx, learned=args.decoder_learned_pos, learned_sinusoidal=getattr(args, "decoder_learned_sinusoidal", False), full_megatron_init=getattr(args, "full_megatron_init", False), megatron_init_sigma=getattr(args, "megatron_init_sigma", 0.006), ) if args.decoder_learned_pos and not self.use_alibi else None ) if initialize_params_on_gpu and self.embed_positions is not None: self.embed_positions = utils.floating_point_precision_convertor( self.embed_positions.cuda(), fp16=getattr(args, "fp16", False), memory_efficient_fp16=getattr(args, "memory_efficient_fp16", False), bf16=getattr(args, "bf16", False), ) self.cross_self_attention = getattr(args, "cross_self_attention", False) self.layers = nn.ModuleList([]) layers = [] for i in range(args.decoder_layers): layers.append( self.build_decoder_layer( args, no_encoder_attn=no_encoder_attn, ) ) if getattr(self.args, "fsdp_checkpoint_wrap_layer_frequency", 1) > 1: assert ( len(layers) % self.args.fsdp_checkpoint_wrap_layer_frequency == 0 ), "num layers should be divisible by checkpoint wrap frequency" for i in range( 0, len(layers), self.args.fsdp_checkpoint_wrap_layer_frequency ): layer_block = TransformerDecoderMultiLayerBlockModule( layers[i : i + self.args.fsdp_checkpoint_wrap_layer_frequency] ) checkpoint = getattr(args, "checkpoint_activations", False) if checkpoint: offload_to_cpu = getattr(args, "offload_activations", False) distribute_checkpointed_activations = getattr( args, "distribute_checkpointed_activations", False ) layer_block = checkpoint_wrapper( layer_block, offload_to_cpu=offload_to_cpu, distribute_checkpointed_activations=distribute_checkpointed_activations, ) # if we are checkpointing, enforce that FSDP always wraps the # checkpointed layer, regardless of layer size min_params_to_wrap = ( getattr(args, "min_params_to_wrap", DEFAULT_MIN_PARAMS_TO_WRAP) if not checkpoint else 0 ) layer_block = fsdp_wrap( layer_block, min_num_params=min_params_to_wrap, process_group=dist_utils.get_data_parallel_group(), ) self.layers.append(layer_block) else: self.layers = nn.ModuleList(layers) _log_weight_stats(self.embed_tokens.weight, "embed tokens") self.num_layers = len(self.layers) if args.decoder_normalize_before: self.layer_norm = LayerNorm(embed_dim) if initialize_params_on_gpu: self.layer_norm = utils.floating_point_precision_convertor( self.layer_norm.cuda(), fp16=getattr(args, "fp16", False), memory_efficient_fp16=getattr(args, "memory_efficient_fp16", False), bf16=getattr(args, "bf16", False), ) else: self.layer_norm = None self.project_out_dim = ( Linear(embed_dim, self.output_embed_dim, bias=False) if embed_dim != self.output_embed_dim else None ) self.output_projection = None if self.share_input_output_embed: self.output_projection = nn.Linear( self.embed_tokens.weight.shape[1], self.embed_tokens.weight.shape[0], bias=False, ) self.output_projection.weight = self.embed_tokens.weight else: self.output_projection = nn.Linear( self.output_embed_dim, len(dictionary), bias=False ) nn.init.normal_( self.output_projection.weight, mean=0, std=self.output_embed_dim**-0.5 ) if self.use_alibi: self.alibi = self._build_alibi_tensor( self.max_positions(), args.decoder_attention_heads ) @staticmethod def _build_alibi_tensor(max_seq_len: int, n_attention_heads: int): """Returns tensor shaped (n_head, 1, max_seq_len)""" def get_slopes(n): # In the paper, we only train models that have 2^a heads for some a. This function has some good # properties that only occur when the input is a power of 2. To maintain that even when the number of # heads is not a power of 2, we use this workaround. def get_slopes_power_of_2(n): start = 2 ** (-(2 ** -(math.log2(n) - 3))) ratio = start return [start * ratio**i for i in range(n)] if math.log2(n).is_integer(): return get_slopes_power_of_2(n) else: closest_power_of_2 = 2 ** math.floor(math.log2(n)) return ( get_slopes_power_of_2(closest_power_of_2) + get_slopes(2 * closest_power_of_2)[0::2][: n - closest_power_of_2] ) slopes = torch.Tensor(get_slopes(n_attention_heads)) # In the next line, the part after the * is what constructs the diagonal matrix (right matrix in Figure 3 in # the paper). # It doesn't exactly print out the same matrix as we have in Figure 3, but one where all rows are identical. # This works because the softmax operation is invariant to translation, and our bias functions are always # linear. alibi = slopes.unsqueeze(1).unsqueeze(1) * torch.arange(max_seq_len).unsqueeze( 0 ).unsqueeze(0).expand(n_attention_heads, -1, -1) alibi = alibi.view(n_attention_heads, 1, max_seq_len) return alibi def build_base_decoder_layer(self, args, no_encoder_attn=False): return TransformerDecoderLayer(args, no_encoder_attn=no_encoder_attn) def build_decoder_layer(self, args, no_encoder_attn=False): layer = self.build_base_decoder_layer(args, no_encoder_attn) for name, param in layer.named_parameters(): _log_weight_stats(param, name) if getattr(args, "fsdp_checkpoint_wrap_layer_frequency", 1) > 1: return layer checkpoint = getattr(args, "checkpoint_activations", False) if checkpoint: offload_to_cpu = getattr(args, "offload_activations", False) distribute_checkpointed_activations = getattr( args, "distribute_checkpointed_activations", False ) layer = checkpoint_wrapper( layer, offload_to_cpu=offload_to_cpu, distribute_checkpointed_activations=distribute_checkpointed_activations, ) # if we are checkpointing, enforce that FSDP always wraps the # checkpointed layer, regardless of layer size min_params_to_wrap = ( getattr(args, "min_params_to_wrap", DEFAULT_MIN_PARAMS_TO_WRAP) if not checkpoint else 0 ) layer = fsdp_wrap( layer, min_num_params=min_params_to_wrap, process_group=dist_utils.get_data_parallel_group(), ) return layer def forward_embedding( self, tokens, token_embedding: Optional[torch.Tensor] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, ): # embed tokens and positions positions = None if self.embed_positions is not None: positions = self.embed_positions( tokens, incremental_state=incremental_state ) # see IncrementalDecoder for important information about # incremental state if incremental_state: tokens = tokens[:, -1:] if positions is not None: positions = positions[:, -1:] if token_embedding is None: token_embedding = self.embed_tokens(tokens) x = embed = self.embed_scale * token_embedding if self.project_in_dim is not None: x = self.project_in_dim(x) if positions is not None: x += positions if self.dropout_module is not None: x = self.dropout_module(x) return x, embed, positions def forward( self, prev_output_tokens, encoder_out: Optional[Dict[str, List[Tensor]]] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, features_only: bool = False, full_context_alignment: bool = False, alignment_layer: Optional[int] = None, alignment_heads: Optional[int] = None, src_lengths: Optional[Any] = None, return_all_hiddens: bool = False, token_embeddings: Optional[torch.Tensor] = None, self_attn_padding_mask: Optional[Tensor] = None, ): """ Includes several features from "Jointly Learning to Align and Translate with Transformer Models" (Garg et al., EMNLP 2019). Args: prev_output_tokens (LongTensor): previous decoder outputs of shape `(batch, tgt_len)`, for teacher forcing encoder_out (optional): output from the encoder, used for encoder-side attention incremental_state (dict): dictionary used for storing state during :ref:`Incremental decoding` features_only (bool, optional): only return features without applying output layer (default: False). full_context_alignment (bool, optional): don't apply auto-regressive mask to self-attention (default: False). alignment_layer (int, optional): return mean alignment over heads at this layer (default: last layer). alignment_heads (int, optional): only average alignment over this many heads (default: all heads). token_embeddings (torch.Tensor, optional): precomputed embeddings default `None` will recompute embeddings self_attn_padding_mask (torch.Tensor, optional): precomputed padding mask for self-attention (default None will recompute mask) Returns: tuple: - the decoder's output of shape `(batch, tgt_len, vocab)` - a dictionary with any model-specific outputs """ # see IncrementalDecoder for important information about # incremental state x, extra = self.extract_features( prev_output_tokens, encoder_out=encoder_out, incremental_state=incremental_state, full_context_alignment=full_context_alignment, alignment_layer=alignment_layer, alignment_heads=alignment_heads, token_embeddings=token_embeddings, self_attn_padding_mask=self_attn_padding_mask, ) if not features_only: x = self.output_layer(x) return x, extra def extract_features( self, prev_output_tokens, encoder_out: Optional[Dict[str, List[Tensor]]], incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, full_context_alignment: bool = False, alignment_layer: Optional[int] = None, alignment_heads: Optional[int] = None, token_embeddings: Optional[torch.Tensor] = None, self_attn_padding_mask: Optional[Tensor] = None, ): return self.extract_features_scriptable( prev_output_tokens, encoder_out=encoder_out, incremental_state=incremental_state, full_context_alignment=full_context_alignment, alignment_layer=alignment_layer, alignment_heads=alignment_heads, token_embeddings=token_embeddings, self_attn_padding_mask=self_attn_padding_mask, ) def extract_features_scriptable( self, prev_output_tokens, encoder_out: Optional[Dict[str, List[Tensor]]], incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, full_context_alignment: bool = False, alignment_layer: Optional[int] = None, alignment_heads: Optional[int] = None, token_embeddings: Optional[Tensor] = None, self_attn_padding_mask: Optional[Tensor] = None, ): """ A scriptable subclass of this class has an extract_features method and calls super().extract_features, but super() is not supported in torchscript. A copy of this function is made to be used in the subclass instead. """ if alignment_layer is None: alignment_layer = self.num_layers - 1 # compute self-attention padding mask (involves device-to-host transfer, # so put it at the top of the forward) if self_attn_padding_mask is None and ( self.cross_self_attention or prev_output_tokens.eq(self.padding_idx).any() ): self_attn_padding_mask = prev_output_tokens.eq(self.padding_idx) # embed tokens and positions x, tok, pos = self.forward_embedding( prev_output_tokens, token_embeddings, incremental_state ) # see IncrementalDecoder for important information about # incremental state. Note that it may be an empty dictionary. if not incremental_state and not full_context_alignment: self_attn_mask = self.buffered_future_mask(x) else: self_attn_mask = None # B x T x C -> T x B x C x = x.transpose(0, 1) # decoder layers attn: Optional[Tensor] = None # store other representations for instrumentation in VocabParallelCrossEntCrit # Note: we are only storing the embeddings output and output of final transformer block # instead of all inner representations, as thats the only thing being logged and storing # all intermediate representation causes OOM for large models during validation. inner_states: List[Optional[Tensor]] = [{"tok": tok, "pos": pos, "emb": x}] if encoder_out is None: l_aux = [] else: l_aux = encoder_out["l_aux"] if "l_aux" in encoder_out else [] for idx, layer in enumerate(self.layers): x, layer_attn, _, l_aux_i = layer( x, encoder_out=encoder_out["encoder_out"][0] if (encoder_out is not None and len(encoder_out["encoder_out"]) > 0) else None, encoder_padding_mask=encoder_out["encoder_padding_mask"][0] if ( encoder_out is not None and len(encoder_out["encoder_padding_mask"]) > 0 ) else None, incremental_state=incremental_state, self_attn_mask=self_attn_mask, self_attn_padding_mask=self_attn_padding_mask, need_attn=bool((idx == alignment_layer)), need_head_weights=bool((idx == alignment_layer)), ) l_aux.append(l_aux_i) if layer_attn is not None and idx == alignment_layer: attn = layer_attn.float().to(x) inner_states.append(x) if attn is not None: if alignment_heads is not None: attn = attn[:alignment_heads] # average probabilities over heads attn = attn.mean(dim=0) if self.layer_norm is not None: x = self.layer_norm(x) # T x B x C -> B x T x C x = x.transpose(0, 1) if self.project_out_dim is not None: x = self.project_out_dim(x) return x, {"attn": [attn], "inner_states": inner_states, "l_aux": l_aux} def output_layer(self, features): """Project features to the vocabulary size.""" return self.output_projection(features) def max_positions(self): """Maximum output length supported by the decoder.""" if self.embed_positions is None: return self.max_target_positions return min(self.max_target_positions, self.embed_positions.max_positions) def buffered_future_mask(self, tensor): batch_size, cur_seq_len = tensor.size(0), tensor.size(1) max_seq_len = self.max_positions() need_to_make_new_mask = ( self._future_mask.size(0) == 0 or (not self._future_mask.device == tensor.device) or self._future_mask.size(1) < max_seq_len or ( self.use_alibi and self._future_mask.size(0) != (batch_size * self.args.decoder_attention_heads) ) ) # self._future_mask.device != tensor.device is not working in TorchScript. This is a workaround. if need_to_make_new_mask: self._future_mask = torch.triu( utils.fill_with_neg_inf(torch.zeros([max_seq_len, max_seq_len])), 1 ) if self.use_alibi: alibi = self.alibi.repeat(batch_size, 1, 1) # batch_size, 1, 1 self._future_mask = self._future_mask.unsqueeze(0) + alibi self._future_mask = self._future_mask.to(tensor) if self.use_alibi: return self._future_mask[ : batch_size * self.args.decoder_attention_heads, :cur_seq_len, :cur_seq_len, ] else: return self._future_mask[:cur_seq_len, :cur_seq_len] def upgrade_state_dict_named(self, state_dict, name): """Upgrade a (possibly old) state dict for new versions of metaseq.""" if isinstance(self.embed_positions, SinusoidalPositionalEmbedding): weights_key = "{}.embed_positions.weights".format(name) if weights_key in state_dict: del state_dict[weights_key] state_dict[ "{}.embed_positions._float_tensor".format(name) ] = torch.FloatTensor(1) if f"{name}.output_projection.weight" not in state_dict: if self.share_input_output_embed: embed_out_key = f"{name}.embed_tokens.weight" else: embed_out_key = f"{name}.embed_out" if embed_out_key in state_dict: state_dict[f"{name}.output_projection.weight"] = state_dict[ embed_out_key ] if not self.share_input_output_embed: del state_dict[embed_out_key] for i in range(self.num_layers): # update layer norms layer_norm_map = { "0": "self_attn_layer_norm", "1": "encoder_attn_layer_norm", "2": "final_layer_norm", } for old, new in layer_norm_map.items(): for m in ("weight", "bias"): k = "{}.layers.{}.layer_norms.{}.{}".format(name, i, old, m) if k in state_dict: state_dict[ "{}.layers.{}.{}.{}".format(name, i, new, m) ] = state_dict[k] del state_dict[k] version_key = "{}.version".format(name) if utils.item(state_dict.get(version_key, torch.Tensor([1]))[0]) <= 2: # earlier checkpoints did not normalize after the stack of layers self.layer_norm = None self.normalize = False state_dict[version_key] = torch.Tensor([1]) return state_dict def Embedding( num_embeddings, embedding_dim, padding_idx, initialize_params_on_gpu=False ): # Passing weights initialized on GPU. device = torch.cuda.current_device() if initialize_params_on_gpu else None dtype = torch.half if initialize_params_on_gpu else torch.float weight = torch.empty(num_embeddings, embedding_dim, device=device, dtype=dtype) nn.init.normal_(weight, mean=0, std=embedding_dim**-0.5) nn.init.constant_(weight[padding_idx], 0) m = nn.Embedding( num_embeddings, embedding_dim, padding_idx=padding_idx, _weight=weight ) return m def Linear(in_features, out_features, bias=True): m = nn.Linear(in_features, out_features, bias) nn.init.xavier_uniform_(m.weight) if bias: nn.init.constant_(m.bias, 0.0) return m
flash_metaseq-main
metaseq/models/transformer.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging from dataclasses import dataclass, field from typing import Optional from omegaconf import II from metaseq import utils from metaseq.dataclass import ChoiceEnum, MetaseqDataclass from metaseq.models import ( LanguageModel, register_model, register_model_architecture, ) from metaseq.models.transformer import ( DEFAULT_MIN_PARAMS_TO_WRAP, Embedding, TransformerDecoder, ) DEFAULT_MAX_TARGET_POSITIONS = 1024 logger = logging.getLogger(__name__) @dataclass class TransformerLanguageModelConfig(MetaseqDataclass): activation_fn: ChoiceEnum(utils.get_available_activation_fns()) = field( default="relu", metadata={"help": "activation function to use"} ) dropout: float = field(default=0.1, metadata={"help": "dropout probability"}) attention_dropout: float = field( default=0.0, metadata={"help": "dropout probability for attention weights"} ) decoder_embed_dim: int = field( default=512, metadata={"help": "decoder embedding dimension"} ) decoder_output_dim: int = field( default=512, metadata={"help": "decoder output dimension"} ) decoder_input_dim: int = field( default=512, metadata={"help": "decoder input dimension"} ) decoder_ffn_embed_dim: int = field( default=2048, metadata={"help": "decoder embedding dimension for FFN"} ) decoder_layers: int = field(default=6, metadata={"help": "num decoder layers"}) decoder_attention_heads: int = field( default=8, metadata={"help": "num decoder attention heads"} ) decoder_normalize_before: bool = field( default=False, metadata={"help": "apply layernorm before each decoder block"} ) share_decoder_input_output_embed: bool = field( default=False, metadata={"help": "share decoder input and output embeddings"} ) decoder_learned_pos: bool = field( default=False, metadata={"help": "use learned positional embeddings in the decoder"}, ) decoder_learned_sinusoidal: bool = field( default=False, metadata={ "help": "use learned positional embeddings init with sinusoidal in the decoder" }, ) no_scale_embedding: bool = field( default=False, metadata={"help": "if True, dont scale embeddings"} ) checkpoint_activations: bool = field( default=False, metadata={"help": "checkpoint activations at each layer"} ) offload_activations: bool = field( default=False, metadata={"help": "move checkpointed activations to CPU after they are used."}, ) # config for Fully Sharded Data Parallel (FSDP) training min_params_to_wrap: int = field( default=DEFAULT_MIN_PARAMS_TO_WRAP, metadata={ "help": ( "minimum number of params for a layer to be wrapped with FSDP() when " "training with --ddp-backend=fully_sharded. Smaller values will " "improve memory efficiency, but may make torch.distributed " "communication less efficient due to smaller input sizes. This option " "is set to 0 (i.e., always wrap) when --checkpoint-activations or " "--offload-activations are passed." ) }, ) use_stable_embedding: Optional[bool] = field( default=False, metadata={ "help": "Use bitsandbytes StableEmbeddingLayer which saves embedding state in fp32", "argparse_alias": "--stable-emb", }, ) # NormFormer scale_fc: Optional[bool] = field( default=False, metadata={ "help": "Insert LayerNorm between fully connected layers", }, ) scale_attn: Optional[bool] = field( default=False, metadata={"help": "Insert LayerNorm after attention"} ) scale_heads: Optional[bool] = field( default=False, metadata={"help": "Learn a scale coefficient for each attention head"}, ) # ALiBi alibi: bool = field( default=False, metadata={ "help": "use the ALiBi position method instead of regular position embeddings" }, ) fsdp_checkpoint_wrap_layer_frequency: int = field( default=1, metadata={ "help": "group transformer blocks and wrap the group in checkpoint and FSDP wrapper together" }, ) distribute_checkpointed_activations: bool = field( default=False, metadata={ "help": "distribute offloaded checkpoints to tensor parallel gpus. " "It adds extra within node all_reduce but reduces checkpointed activations significantly," "so a good way to trade speed for gpu memory." }, ) tensor_parallel_init_model_on_gpu: bool = field( default=False, metadata={ "help": "initialize model directly on gpu and possibly fp16 for tensor parallel, shoudl be faster to init model." }, ) full_megatron_init: bool = field( default=False, metadata={"help": "Exact same init as Megatron"}, ) megatron_init_sigma: float = field( default=0.006, metadata={"help": "Sigma for megatron initialization"}, ) sync_ln_variance: Optional[bool] = field( default=False, metadata={"help": "sync_ln_variance stats", "argparse_alias": "--sync-ln"}, ) no_emb_dropout: Optional[bool] = field( default=False, metadata={"help": "Avoid emb dropout for decoder"} ) # options from other parts of the config add_bos_token: bool = II("task.add_bos_token") tokens_per_sample: int = II("task.tokens_per_sample") max_target_positions: Optional[int] = II("task.max_target_positions") memory_efficient_fp16: bool = II("common.memory_efficient_fp16") fp16: bool = II("common.fp16") fp16_no_flatten_grads: bool = II("common.fp16_no_flatten_grads") ddp_backend: str = II("distributed_training.ddp_backend") world_size: int = II("distributed_training.distributed_world_size") distributed_rank: int = II("distributed_training.distributed_rank") batch_size: Optional[int] = II("dataset.batch_size") batch_size_valid: Optional[int] = II("dataset.batch_size_valid") model_parallel_size: int = II("common.model_parallel_size") @register_model("transformer_lm", dataclass=TransformerLanguageModelConfig) class TransformerLanguageModel(LanguageModel): def __init__(self, decoder): super().__init__(decoder) @classmethod def build_model(cls, args, task): """Build a new model instance.""" if getattr(args, "max_target_positions", None) is None: args.max_target_positions = getattr( args, "tokens_per_sample", DEFAULT_MAX_TARGET_POSITIONS ) embed_tokens = cls.build_embedding( args, task.source_dictionary, args.decoder_input_dim ) decoder = TransformerDecoder( args, task.target_dictionary, embed_tokens, no_encoder_attn=True, ) return cls(decoder) @classmethod def build_embedding(cls, args, dictionary, embed_dim, path=None): if getattr(args, "use_stable_embedding", False): import bitsandbytes as bnb if not args.no_scale_embedding: logger.warning( "It is recommended to pass --no-scale-embedding with --use-stable-embedding" ) return bnb.nn.StableEmbedding(len(dictionary), embed_dim, dictionary.pad()) else: return Embedding( len(dictionary), embed_dim, dictionary.pad(), initialize_params_on_gpu=getattr( args, "tensor_parallel_init_model_on_gpu", False ), ) def base_lm_architecture(args): args.dropout = getattr(args, "dropout", 0.1) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 2048) args.decoder_layers = getattr(args, "decoder_layers", 6) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) args.decoder_learned_sinusoidal = getattr(args, "decoder_learned_sinusoidal", False) args.activation_fn = getattr(args, "activation_fn", "relu") args.add_bos_token = getattr(args, "add_bos_token", False) args.share_decoder_input_output_embed = getattr( args, "share_decoder_input_output_embed", False ) args.decoder_output_dim = getattr( args, "decoder_output_dim", args.decoder_embed_dim ) args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) # Model training is not stable without this args.decoder_normalize_before = True args.no_scale_embedding = getattr(args, "no_scale_embedding", False) args.checkpoint_activations = getattr(args, "checkpoint_activations", False) args.offload_activations = getattr(args, "offload_activations", False) if args.offload_activations: args.checkpoint_activations = True @register_model_architecture("transformer_lm", "transformer_lm_gpt") def transformer_lm_gpt(args): args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 768) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 3072) args.decoder_layers = getattr(args, "decoder_layers", 12) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 12) args.dropout = getattr(args, "dropout", 0.1) args.attention_dropout = getattr(args, "attention_dropout", 0.1) args.activation_fn = getattr(args, "activation_fn", "gelu") base_lm_architecture(args) @register_model_architecture("transformer_lm", "transformer_lm_gpt2_tiny") def transformer_lm_gpt2_tiny(args): args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 64) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 64) args.decoder_layers = getattr(args, "decoder_layers", 2) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 1) args.dropout = getattr(args, "dropout", 0.1) args.attention_dropout = getattr(args, "attention_dropout", 0.1) args.activation_fn = getattr(args, "activation_fn", "gelu") base_lm_architecture(args) @register_model_architecture("transformer_lm", "transformer_lm_gpt2_bigger") def transformer_lm_gpt2_bigger(args): args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 2048) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 8192) args.decoder_layers = getattr(args, "decoder_layers", 48) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 32) args.dropout = getattr(args, "dropout", 0.1) args.attention_dropout = getattr(args, "attention_dropout", 0.1) args.activation_fn = getattr(args, "activation_fn", "gelu") base_lm_architecture(args)
flash_metaseq-main
metaseq/models/transformer_lm.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import torch.nn as nn from torch.nn.parallel import DistributedDataParallel from metaseq.distributed import ( DistributedTimeoutWrapper, ModuleProxyWrapper, ) logger = logging.getLogger(__name__) _GOSSIP_DISABLED = False try: import gossip # noqa: F401 except ImportError: _GOSSIP_DISABLED = True def DistributedModel(args, model, process_group, device): """ Wrap a *model* to support distributed data parallel training. This is similar to the built-in DistributedDataParallel, but allows additional configuration of the DistributedDataParallel class to use, and also provides easier access to the wrapped model by forwarding requests for missing attributes to the wrapped model. Args: args (argparse.Namespace): metaseq args model (BaseModel): model to wrap process_group: the c10d process group to be used for distributed data parallel all-reduction. device: device to move model to """ assert isinstance(model, nn.Module) if args.ddp_backend in {"c10d", "pytorch_ddp"}: wrapped_model = DistributedDataParallel( module=model.to(device), device_ids=[args.device_id], output_device=args.device_id, broadcast_buffers=args.broadcast_buffers, bucket_cap_mb=args.bucket_cap_mb, process_group=process_group, find_unused_parameters=args.find_unused_parameters, ) # forward missing getattr and state_dict/load_state_dict to orig model wrapped_model = ModuleProxyWrapper(wrapped_model) elif args.ddp_backend == "fully_sharded": try: from fairscale.nn.data_parallel import FullyShardedDataParallel as FSDP except ImportError: raise ImportError( "Cannot find FullyShardedDataParallel. " "Please install fairscale with: pip install fairscale" ) assert isinstance(model, FSDP), "expected model to already be wrapped in FSDP" wrapped_model = model if args.memory_efficient_fp16: if args.bf16: wrapped_model = wrapped_model.bfloat16() else: wrapped_model = wrapped_model.half() if not args.cpu_offload: wrapped_model = wrapped_model.to(device=device) else: raise ValueError("Unknown --ddp-backend: " + args.ddp_backend) # kill hung distributed jobs after a timeout if getattr(args, "heartbeat_timeout", -1) > 0: wrapped_model = DistributedTimeoutWrapper( wrapped_model, timeout=getattr(args, "heartbeat_timeout", -1) ) return wrapped_model
flash_metaseq-main
metaseq/models/distributed_model.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging from typing import Dict, Optional from torch import Tensor from metaseq.incremental_decoding_utils import with_incremental_state from metaseq.models import BaseDecoder logger = logging.getLogger(__name__) @with_incremental_state class IncrementalDecoder(BaseDecoder): """Base class for incremental decoders. Incremental decoding is a special mode at inference time where the Model only receives a single timestep of input corresponding to the previous output token (for teacher forcing) and must produce the next output *incrementally*. Thus the model must cache any long-term state that is needed about the sequence, e.g., hidden states, convolutional states, etc. Compared to the standard :class:`BaseDecoder` interface, the incremental decoder interface allows :func:`forward` functions to take an extra keyword argument (*incremental_state*) that can be used to cache state across time-steps. The :class:`IncrementalDecoder` interface also defines the :func:`reorder_incremental_state` method, which is used during beam search to select and reorder the incremental state based on the selection of beams. To learn more about how incremental decoding works, refer to `this blog <http://www.telesens.co/2019/04/21/understanding-incremental-decoding-in-fairseq/>`_. Note that incremental_state will take different values depending on the situation. At train and validation time, incremental_state will be None, indicating that no incremental state is available and does not need to be computed. During generation, incremental_state will begin as an empty dictionary, indicating no incremental_state is available, but SHOULD be computed. This class modifies this dictionary inline via reorder_incremental_state. After that first initial step, incremental_state will be full of model-specific state. """ def __init__(self, dictionary): super().__init__(dictionary) def forward( self, prev_output_tokens, encoder_out=None, incremental_state=None, **kwargs ): """ Args: prev_output_tokens (LongTensor): shifted output tokens of shape `(batch, tgt_len)`, for teacher forcing encoder_out (dict, optional): output from the encoder, used for encoder-side attention incremental_state (dict, optional): dictionary used for storing state during :ref:`Incremental decoding`. Note that this dictionary is modified inline iff incremental_state is not None. Returns: tuple: - the decoder's output of shape `(batch, tgt_len, vocab)` - a dictionary with any model-specific outputs """ raise NotImplementedError def extract_features( self, prev_output_tokens, encoder_out=None, incremental_state=None, **kwargs ): """ Returns: tuple: - the decoder's features of shape `(batch, tgt_len, embed_dim)` - a dictionary with any model-specific outputs """ raise NotImplementedError def reorder_incremental_state( self, incremental_state: Dict[str, Dict[str, Optional[Tensor]]], new_order: Tensor, ): """Reorder incremental state. This will be called when the order of the input has changed from the previous time step. A typical use case is beam search, where the input order changes between time steps based on the selection of beams. """ pass def reorder_incremental_state_scripting( self, incremental_state: Dict[str, Dict[str, Optional[Tensor]]], new_order: Tensor, ): """Main entry point for reordering the incremental state. Due to limitations in TorchScript, we call this function in :class:`metaseq.sequence_generator.SequenceGenerator` instead of calling :func:`reorder_incremental_state` directly. """ for module in self.modules(): if hasattr(module, "reorder_incremental_state"): result = module.reorder_incremental_state(incremental_state, new_order) if result is not None: incremental_state = result def set_beam_size(self, beam_size): """Sets the beam size in the decoder and all children.""" if getattr(self, "_beam_size", -1) != beam_size: seen = set() def apply_set_beam_size(module): if ( module != self and hasattr(module, "set_beam_size") and module not in seen ): seen.add(module) module.set_beam_size(beam_size) self.apply(apply_set_beam_size) self._beam_size = beam_size
flash_metaseq-main
metaseq/models/incremental_decoder.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Dict, List, NamedTuple, Optional import torch import torch.nn as nn from torch import Tensor EncoderOut = NamedTuple( "EncoderOut", [ ("encoder_out", Tensor), # T x B x C ("encoder_padding_mask", Optional[Tensor]), # B x T ("encoder_embedding", Optional[Tensor]), # B x T x C ("encoder_states", Optional[List[Tensor]]), # List[T x B x C] ("src_tokens", Optional[Tensor]), # B x T ("src_lengths", Optional[Tensor]), # B x 1 ], ) class BaseEncoder(nn.Module): """Base class for encoders.""" def __init__(self, dictionary): super().__init__() self.dictionary = dictionary def forward(self, src_tokens, src_lengths=None, **kwargs): """ Args: src_tokens (LongTensor): tokens in the source language of shape `(batch, src_len)` src_lengths (LongTensor): lengths of each source sentence of shape `(batch)` """ raise NotImplementedError def forward_torchscript(self, net_input: Dict[str, Tensor]): """A TorchScript-compatible version of forward. Encoders which use additional arguments may want to override this method for TorchScript compatibility. """ if torch.jit.is_scripting(): return self.forward( src_tokens=net_input["src_tokens"], src_lengths=net_input["src_lengths"], ) else: return self.forward_non_torchscript(net_input) @torch.jit.unused def forward_non_torchscript(self, net_input: Dict[str, Tensor]): encoder_input = { k: v for k, v in net_input.items() if k != "prev_output_tokens" } return self.forward(**encoder_input) def reorder_encoder_out(self, encoder_out, new_order): """ Reorder encoder output according to `new_order`. Args: encoder_out: output from the ``forward()`` method new_order (LongTensor): desired order Returns: `encoder_out` rearranged according to `new_order` """ raise NotImplementedError def max_positions(self): """Maximum input length supported by the encoder.""" return 1e6 # an arbitrary large number def upgrade_state_dict_named(self, state_dict, name): """Upgrade old state dicts to work with newer code.""" return state_dict def set_num_updates(self, num_updates): """State from trainer to pass along to model at every update.""" def _apply(m): if hasattr(m, "set_num_updates") and m != self: m.set_num_updates(num_updates) self.apply(_apply)
flash_metaseq-main
metaseq/models/base_encoder.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Train a network across multiple GPUs. """ import functools import torch.distributed as dist from metaseq.dataclass.configs import MetaseqConfig from metaseq.distributed import utils as distributed_utils from metaseq.trainer import Trainer try: from megatron.mpu import ( get_cuda_rng_tracker, ) has_megatron_submodule = True except (ImportError, ModuleNotFoundError): has_megatron_submodule = False class MegatronTrainer(Trainer): """Main class for model parallel with data parallel training.""" def __init__(self, cfg: MetaseqConfig, task, model, criterion, **kwargs): if not has_megatron_submodule: raise ImportError( "\n\nPlease install megatron using the setup instructions!" ) super().__init__(cfg, task, model, criterion, **kwargs) def clip_grad_norm( self, clip_norm, norm_type="l2", skip_gradient_update_on_clip_norm=False ): def _aggregate_model_parallel_grad_norm(norm_type, total_norm): norm_type2_reduce_op = {"l2": dist.ReduceOp.SUM, "inf": dist.ReduceOp.MAX} reduce_op = norm_type2_reduce_op[norm_type] if norm_type == "l2": total_norm.pow_(2) dist.all_reduce( total_norm, group=distributed_utils.get_model_parallel_group(), op=reduce_op, ) if norm_type == "l2": total_norm.sqrt_() return total_norm return self.optimizer.clip_grad_norm( clip_norm, norm_type, aggregate_norm_fn=functools.partial( _aggregate_model_parallel_grad_norm, norm_type ), skip_gradient_update_on_clip_norm=skip_gradient_update_on_clip_norm, ) def save_checkpoint(self, filename, extra_state, **kwargs): """Save all training state in a checkpoint file.""" extra_state["rng_tracker_states"] = get_cuda_rng_tracker().get_states() super().save_checkpoint(filename, extra_state, **kwargs) def load_checkpoint( self, filename, reset_optimizer=False, reset_lr_scheduler=False, optimizer_overrides=None, reset_meters=False, ): extra_state = super().load_checkpoint( filename, reset_optimizer=reset_optimizer, reset_lr_scheduler=reset_lr_scheduler, optimizer_overrides=optimizer_overrides, reset_meters=reset_meters, ) if extra_state is not None and "rng_tracker_states" in extra_state: get_cuda_rng_tracker().set_states(extra_state["rng_tracker_states"]) return extra_state
flash_metaseq-main
metaseq/model_parallel/megatron_trainer.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from . import criterions, models, modules # noqa
flash_metaseq-main
metaseq/model_parallel/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import importlib import os # automatically import any Python files in the models/ directory models_dir = os.path.dirname(__file__) for file in os.listdir(models_dir): path = os.path.join(models_dir, file) if ( not file.startswith("_") and not file.startswith(".") and (file.endswith(".py") or os.path.isdir(path)) ): model_name = file[: file.find(".py")] if file.endswith(".py") else file module = importlib.import_module("metaseq.model_parallel.models." + model_name)
flash_metaseq-main
metaseq/model_parallel/models/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging from metaseq.model_parallel.modules import ( ModelParallelTransformerDecoderLayer, ModelParallelTransformerEncoderLayer, ) from metaseq.models.transformer import TransformerDecoder, TransformerEncoder try: from megatron.mpu import ( copy_to_tensor_model_parallel_region, gather_from_tensor_model_parallel_region, ) has_megatron_submodule = True except (ImportError, ModuleNotFoundError): has_megatron_submodule = False logger = logging.getLogger(__name__) class ModelParallelTransformerEncoder(TransformerEncoder): """ Model parallel Transformer encoder consisting of *args.encoder_layers* layers. Each layer is a :class:`ModelParallelTransformerEncoderLayer`. """ def __init__(self, args, dictionary, embed_tokens): super().__init__(args, dictionary, embed_tokens) if args.no_final_layer_norm: self.layer_norm = None def build_encoder_layer(self, args): return ModelParallelTransformerEncoderLayer(args) class ModelParallelTransformerDecoder(TransformerDecoder): """ Model Parallel Transformer decoder consisting of *args.decoder_layers* layers. Each layer is a :class:`ModelParallelTransformerDecoderLayer`. """ def build_base_decoder_layer(self, args, no_encoder_attn=False, **kwargs): return ModelParallelTransformerDecoderLayer(args, no_encoder_attn) def output_layer(self, features, **kwargs): """Project features to the vocabulary size.""" if not self.share_input_output_embed: raise NotImplementedError( "Model parallel training currently requires --share-decoder-input-output-embed" ) features = copy_to_tensor_model_parallel_region(features) # project back to size of vocabulary x = self.output_projection(features) # Gather output if model in in inference mode (i.e. evallm or generation) cause both are not yet compatible with # parallel vocab embeddings if getattr(self.args, "criterion") != "vocab_parallel_cross_entropy" or getattr( self, "inference", False ): x = gather_from_tensor_model_parallel_region(x).contiguous() return x # This hook used as proxy for tracking state if model is in eval or generation mode. def make_generation_fast_(self, **unused): self.inference = True
flash_metaseq-main
metaseq/model_parallel/models/transformer.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn from metaseq.model_parallel.models.transformer import ModelParallelTransformerDecoder from metaseq.models import register_model, register_model_architecture from metaseq.models.transformer_lm import TransformerLanguageModel try: from megatron.mpu import VocabParallelEmbedding has_megatron_submodule = True except (ImportError, ModuleNotFoundError): has_megatron_submodule = False DEFAULT_MAX_TARGET_POSITIONS = 1024 @register_model("model_parallel_transformer_lm") class ModelParallelTransformerLanguageModel(TransformerLanguageModel): @classmethod def build_model(cls, args, task): """Build a new model instance.""" if not has_megatron_submodule: raise ImportError( "\n\nPlease install megatron using the setup instructions!" ) # make sure all arguments are present in older models base_lm_architecture(args) task.source_dictionary.pad_to_multiple_(8) task.target_dictionary.pad_to_multiple_(8) # task.source_dictionary.pad_to_multiple_(args.model_parallel_size * 8) # task.target_dictionary.pad_to_multiple_(args.model_parallel_size * 8) if getattr(args, "max_target_positions", None) is None: args.max_target_positions = getattr( args, "tokens_per_sample", DEFAULT_MAX_TARGET_POSITIONS ) embed_tokens = cls.build_embedding( args, task.source_dictionary, args.decoder_input_dim ) assert getattr( args, "use_sharded_state", False ), "Use sharded state must be True for tensor parallel, otherwise model saving and loaded might be broken" decoder = ModelParallelTransformerDecoder( args, task.target_dictionary, embed_tokens, no_encoder_attn=True, ) return cls(decoder) @staticmethod def add_args(parser): TransformerLanguageModel.add_args(parser) @classmethod def build_embedding(cls, args, dictionary, embed_dim, path=None): def _vocab_init(tensor, **kwargs): nn.init.normal_(tensor, mean=0, std=embed_dim**-0.5) nn.init.constant_(tensor[1], 0) def _vocab_init_megatron(tensor, **kwargs): nn.init.normal_( tensor, mean=0, std=getattr(args, "megatron_init_sigma", 0.006) ) nn.init.constant_(tensor[1], 0) if getattr(args, "memory_efficient_fp16", False): dtype = torch.bfloat16 if getattr(args, "bf16", False) else torch.half else: dtype = torch.float32 embed_tokens = VocabParallelEmbedding( len(dictionary), embed_dim, dictionary.pad(), init_method=_vocab_init_megatron if getattr(args, "full_megatron_init", False) else _vocab_init, use_cpu_initialization=not getattr( args, "tensor_parallel_init_model_on_gpu", False ), dtype=dtype, ) return embed_tokens def base_lm_architecture(args): args.activation_fn = getattr(args, "activation_fn", "relu") args.dropout = getattr(args, "dropout", 0.1) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512) args.decoder_output_dim = getattr( args, "decoder_output_dim", args.decoder_embed_dim ) args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 2048) args.decoder_layers = getattr(args, "decoder_layers", 6) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) # Model training is not stable without this args.decoder_normalize_before = True args.share_decoder_input_output_embed = getattr( args, "share_decoder_input_output_embed", False ) args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) args.decoder_learned_sinusoidal = getattr(args, "decoder_learned_sinusoidal", False) args.no_scale_embedding = getattr(args, "no_scale_embedding", False) args.add_bos_token = getattr(args, "add_bos_token", False) @register_model_architecture("model_parallel_transformer_lm", "transformer_lm_megatron") def transformer_lm_megatron(args): args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 3072) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 3072 * 4) args.decoder_layers = getattr(args, "decoder_layers", 72) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 32) args.dropout = getattr(args, "dropout", 0.1) args.attention_dropout = getattr(args, "attention_dropout", 0.1) args.activation_fn = getattr(args, "activation_fn", "gelu") base_lm_architecture(args)
flash_metaseq-main
metaseq/model_parallel/models/transformer_lm.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math from functools import partial from typing import Dict, Optional, Tuple import torch from torch import Tensor, nn from metaseq import utils from metaseq.incremental_decoding_utils import with_incremental_state from metaseq.modules.dropout import Dropout try: from megatron.mpu import ( get_cuda_rng_tracker, get_tensor_model_parallel_world_size, ColumnParallelLinear, RowParallelLinear, split_tensor_along_last_dim, ) from megatron.model.fused_softmax import ScaledUpperTriangMaskedSoftmax from megatron.model import utils as megatron_utils has_megatron_submodule = True except (ImportError, ModuleNotFoundError): has_megatron_submodule = False import logging logger = logging.getLogger(__name__) @with_incremental_state class ModelParallelMultiheadAttention(nn.Module): """Model parallel Multi-headed attention. This performs the Multi-headed attention over multiple gpus. See "Megatron-LM: https://arxiv.org/pdf/1909.08053.pdf" for more details. """ def __init__( self, embed_dim, num_heads, kdim=None, vdim=None, dropout=0.0, bias=True, self_attention=False, encoder_decoder_attention=False, use_cpu_initialization=True, full_megatron_init=False, megatron_init_sigma=None, num_layers=None, dtype=torch.float32, ): super().__init__() if not has_megatron_submodule: raise ImportError( "\n\nPlease install megatron using the setup instructions!" ) self.embed_dim = embed_dim self.kdim = kdim if kdim is not None else embed_dim self.vdim = vdim if vdim is not None else embed_dim self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim self.model_parallel_size = get_tensor_model_parallel_world_size() self.num_heads_partition = num_heads // self.model_parallel_size assert ( self.num_heads_partition * self.model_parallel_size == num_heads ), "Number of heads must be divisible by model parallel size" self.dropout_module = Dropout(dropout, module_name=self.__class__.__name__) self.head_dim = embed_dim // num_heads assert ( self.head_dim * num_heads == self.embed_dim ), "embed_dim must be divisible by num_heads" self.scaling = self.head_dim**-0.5 self.self_attention = self_attention self.encoder_decoder_attention = encoder_decoder_attention assert ( not self.self_attention or self.qkv_same_dim ), "Self-attention requires query, key and value to be of the same size" self.combine_qkv_proj = True if self.combine_qkv_proj: def _init_method_weight_cpu(weight): # Following is required to match gshard weight initialization # because of how megatron splits initialized weights over model # parallel workers. model_parallel_matrix_splits = torch.split( weight, weight.size(0) // get_tensor_model_parallel_world_size(), dim=0, ) k_splits = [] v_splits = [] q_splits = [] for model_parallel_matrix_split in model_parallel_matrix_splits: k_split, v_split, q_split = torch.split( model_parallel_matrix_split, model_parallel_matrix_split.size(0) // 3, dim=0, ) k_splits.append(k_split) v_splits.append(v_split) q_splits.append(q_split) fan_in, fan_out = weight.size(0) // 3, weight.size(1) std = 1 / math.sqrt(float(fan_in + fan_out)) a = ( math.sqrt(3.0) * std ) # Calculate uniform bounds from standard deviation for k in k_splits: nn.init._no_grad_uniform_(k, -a, a) for v in v_splits: nn.init._no_grad_uniform_(v, -a, a) for q in q_splits: nn.init._no_grad_uniform_(q, -a, a) def _init_method_weight_gpu(weight): k, v, q = torch.split(weight, weight.size(0) // 3, dim=0) nn.init.xavier_uniform_(k, gain=1 / math.sqrt(2)) nn.init.xavier_uniform_(v, gain=1 / math.sqrt(2)) nn.init.xavier_uniform_(q, gain=1 / math.sqrt(2)) def _init_method_bias_cpu(fan_in, bias): # Following is required to match gshard weight initialization # because of how megatron splits initialized weights over model # parallel workers. model_parallel_bias_splits = torch.split( bias, bias.size(0) // get_tensor_model_parallel_world_size(), dim=0 ) k_splits = [] v_splits = [] q_splits = [] for model_parallel_bias_split in model_parallel_bias_splits: k_split, v_split, q_split = torch.split( model_parallel_bias_split, model_parallel_bias_split.size(0) // 3, dim=0, ) k_splits.append(k_split) v_splits.append(v_split) q_splits.append(q_split) bound = 1 / math.sqrt(fan_in) for k in k_splits: nn.init.uniform_(k, -bound, bound) for v in v_splits: nn.init.uniform_(v, -bound, bound) for q in q_splits: nn.init.uniform_(q, -bound, bound) def _init_method_bias_gpu(fan_in, bias): k, v, q = split_tensor_along_last_dim(bias, 3) bound = 1 / math.sqrt(fan_in) nn.init.uniform_(k, -bound, bound) nn.init.uniform_(v, -bound, bound) nn.init.uniform_(q, -bound, bound) if full_megatron_init: assert megatron_init_sigma is not None init_method_weights = megatron_utils.init_method_normal( megatron_init_sigma ) init_method_bias = None else: init_method_weights = ( _init_method_weight_cpu if use_cpu_initialization else _init_method_weight_gpu ) if use_cpu_initialization: init_method_bias = partial(_init_method_bias_cpu, self.kdim) else: init_method_bias = partial(_init_method_bias_gpu, self.kdim) self.qkv_proj = ColumnParallelLinear( self.kdim, 3 * embed_dim, bias=bias, gather_output=False, init_method=init_method_weights, init_method_bias=init_method_bias, use_cpu_initialization=use_cpu_initialization, dtype=dtype, ) else: def _init_method_weight(weight): nn.init.xavier_uniform_(weight, gain=1 / math.sqrt(2)) def _init_method_bias(fan_in, bias): bound = 1 / math.sqrt(fan_in) nn.init.uniform_(bias, -bound, bound) self.k_proj = ColumnParallelLinear( self.kdim, embed_dim, bias=bias, gather_output=False, init_method=_init_method_weight, init_method_bias=None if full_megatron_init else partial(_init_method_bias, self.kdim), use_cpu_initialization=use_cpu_initialization, dtype=dtype, ) self.v_proj = ColumnParallelLinear( self.vdim, embed_dim, bias=bias, gather_output=False, init_method=_init_method_weight, init_method_bias=None if full_megatron_init else partial(_init_method_bias, self.vdim), use_cpu_initialization=use_cpu_initialization, dtype=dtype, ) self.q_proj = ColumnParallelLinear( embed_dim, embed_dim, bias=bias, gather_output=False, init_method=_init_method_weight, init_method_bias=None if full_megatron_init else partial(_init_method_bias, embed_dim), use_cpu_initialization=use_cpu_initialization, dtype=dtype, ) def _init_method_weight(weight): nn.init.xavier_uniform_(weight, gain=1) init_method_weights = _init_method_weight if full_megatron_init: assert megatron_init_sigma is not None assert num_layers is not None init_method_weights = megatron_utils.scaled_init_method_normal( megatron_init_sigma, num_layers ) self.out_proj = RowParallelLinear( embed_dim, embed_dim, bias=bias, input_is_parallel=True, init_method=init_method_weights, skip_bias_add=True, use_cpu_initialization=use_cpu_initialization, dtype=dtype, ) def forward( self, query, key: Optional[Tensor], value: Optional[Tensor], key_padding_mask: Optional[Tensor] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, static_kv: bool = False, attn_mask: Optional[Tensor] = None, **unused_kwargs, ) -> Tuple[Tensor, Optional[Tensor]]: """Input shape: Time x Batch x Channel Args: key_padding_mask (ByteTensor, optional): mask to exclude keys that are pads, of shape `(batch, src_len)`, where padding elements are indicated by 1s. attn_mask (ByteTensor, optional): typically used to implement causal attention, where the mask prevents the attention from looking forward in time (default: None). """ tgt_len, bsz, embed_dim = query.size() assert embed_dim == self.embed_dim assert list(query.size()) == [tgt_len, bsz, embed_dim] if key is not None: src_len, key_bsz, _ = key.size() if not torch.jit.is_scripting(): assert key_bsz == bsz assert value is not None assert src_len, bsz == value.shape[:2] if incremental_state is not None: saved_state = self._get_input_buffer(incremental_state) if saved_state is not None and "prev_key" in saved_state: # previous time steps are cached - no need to recompute # key and value if they are static if static_kv: assert self.encoder_decoder_attention and not self.self_attention key = value = None else: saved_state = None # logger.info("query:" + str(query.float().norm().item())) if self.self_attention: if self.combine_qkv_proj: kvq, _ = self.qkv_proj(query) k, v, q = split_tensor_along_last_dim( kvq, 3, contiguous_split_chunks=True ) else: q, _ = self.q_proj(query) k, _ = self.k_proj(query) v, _ = self.v_proj(query) elif self.encoder_decoder_attention: # encoder-decoder attention q, _ = self.q_proj(query) if key is None: assert value is None k = v = None else: k = self.k_proj(key) v = self.v_proj(key) else: assert key is not None and value is not None q, _ = self.q_proj(query) k, _ = self.k_proj(key) v, _ = self.v_proj(value) # Megatron's fused kernel: "ScaledUpperTriangMaskedSoftmax" seems to crash with odd shape across seq_len dimension. # This is okay for training cause training we have all seq_len nice power of 2s but during evaluation and generation, # we have seq_lens not power of 2. CHANGES = not getattr(self, "inference", False) if CHANGES: output_size = ( q.size(1), self.num_heads_partition, q.size(0), k.size(0), ) q = q.view(tgt_len, bsz * self.num_heads_partition, self.head_dim) if k is not None: k = k.view(-1, bsz * self.num_heads_partition, self.head_dim) if v is not None: v = ( v.contiguous() .view(-1, bsz * self.num_heads_partition, self.head_dim) .transpose(0, 1) ) matmul_result = torch.empty( output_size[0] * output_size[1], output_size[2], output_size[3], dtype=q.dtype, device=torch.cuda.current_device(), ) # Scale q,k before matmul for stability see https://tinyurl.com/sudb9s96 for math matmul_result = torch.baddbmm( matmul_result, math.sqrt(self.scaling) * q.transpose(0, 1), # [b * np, sq, hn] math.sqrt(self.scaling) * k.transpose(0, 1).transpose(1, 2), # [b * np, hn, sk] beta=0.0, ) # Replace any non-finite values with finite equivalents, since otherwise # we may get NaN when adding attn_mask or computing softmax. if attn_mask is not None: matmul_result = torch.nan_to_num(matmul_result) # attention_scores = matmul_result.view(*output_size) attn_probs = ScaledUpperTriangMaskedSoftmax.apply(matmul_result, 1.0) # attn_probs = self.scale_mask_softmax(attention_scores, # attn_mask) with get_cuda_rng_tracker().fork(): attn_probs = self.dropout_module(attn_probs) else: q *= self.scaling q = ( q.contiguous() .view(tgt_len, bsz * self.num_heads_partition, self.head_dim) .transpose(0, 1) ) if k is not None: k = ( k.contiguous() .view(-1, bsz * self.num_heads_partition, self.head_dim) .transpose(0, 1) ) if v is not None: v = ( v.contiguous() .view(-1, bsz * self.num_heads_partition, self.head_dim) .transpose(0, 1) ) if saved_state is not None: # saved states are stored with shape (bsz, num_heads_partition, seq_len, head_dim) if "prev_key" in saved_state: _prev_key = saved_state["prev_key"] assert _prev_key is not None prev_key = _prev_key.view( bsz * self.num_heads_partition, -1, self.head_dim ) if static_kv: k = prev_key else: assert k is not None k = torch.cat([prev_key, k], dim=1) src_len = k.size(1) if "prev_value" in saved_state: _prev_value = saved_state["prev_value"] assert _prev_value is not None prev_value = _prev_value.view( bsz * self.num_heads_partition, -1, self.head_dim ) if static_kv: v = prev_value else: assert v is not None v = torch.cat([prev_value, v], dim=1) saved_state["prev_key"] = k.view( bsz, self.num_heads_partition, -1, self.head_dim ) saved_state["prev_value"] = v.view( bsz, self.num_heads_partition, -1, self.head_dim ) saved_state["prev_key_padding_mask"] = key_padding_mask # In this branch incremental_state is never None assert incremental_state is not None incremental_state = self._set_input_buffer( incremental_state, saved_state ) assert k is not None assert k.size(1) == src_len # This is part of a workaround to get around fork/join parallelism # not supporting Optional types. if key_padding_mask is not None and key_padding_mask.dim() == 0: key_padding_mask = None if key_padding_mask is not None: assert key_padding_mask.size(0) == bsz assert key_padding_mask.size(1) == src_len attn_weights = torch.bmm(q, k.transpose(1, 2)) assert list(attn_weights.size()) == [ bsz * self.num_heads_partition, tgt_len, src_len, ] if attn_mask is not None: attn_mask = attn_mask.unsqueeze(0) attn_weights += attn_mask if key_padding_mask is not None: # don't attend to padding symbols attn_weights = attn_weights.view( bsz, self.num_heads_partition, tgt_len, src_len ) attn_weights = attn_weights.masked_fill( key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), float("-inf"), ) attn_weights = attn_weights.view( bsz * self.num_heads_partition, tgt_len, src_len ) attn_weights_float = utils.softmax(attn_weights, dim=-1) attn_weights = attn_weights_float.type_as(attn_weights) with get_cuda_rng_tracker().fork(): attn_probs = self.dropout_module(attn_weights) # logger.info("attn_probs:" + str(attn_probs.float().norm().item())) assert v is not None attn = torch.bmm(attn_probs, v) # logger.info("attn:" + str(attn.float().norm().item())) assert list(attn.size()) == [ bsz * self.num_heads_partition, tgt_len, self.head_dim, ] embed_dim_partition = embed_dim // self.model_parallel_size attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim_partition) attn, attn_bias = self.out_proj(attn) # return attn_weights None to keep the return type same as single gpu multihead attention # This will be deprecated. attn_weights: Optional[Tensor] = None # logger.info("output:" + str(attn.float().norm().item())) return (attn, attn_bias), attn_weights @staticmethod def _append_prev_key_padding_mask( key_padding_mask: Optional[Tensor], prev_key_padding_mask: Optional[Tensor], batch_size: int, src_len: int, static_kv: bool, ) -> Optional[Tensor]: # saved key padding masks have shape (bsz, seq_len) if prev_key_padding_mask is not None and static_kv: new_key_padding_mask = prev_key_padding_mask elif prev_key_padding_mask is not None and key_padding_mask is not None: new_key_padding_mask = torch.cat( [prev_key_padding_mask.float(), key_padding_mask.float()], dim=1 ) # During incremental decoding, as the padding token enters and # leaves the frame, there will be a time when prev or current # is None elif prev_key_padding_mask is not None: filler = torch.zeros(batch_size, src_len - prev_key_padding_mask.size(1)) if prev_key_padding_mask.is_cuda: filler = filler.cuda() new_key_padding_mask = torch.cat( [prev_key_padding_mask.float(), filler.float()], dim=1 ) elif key_padding_mask is not None: filler = torch.zeros(batch_size, src_len - key_padding_mask.size(1)) if key_padding_mask.is_cuda: filler = filler.cuda() new_key_padding_mask = torch.cat( [filler.float(), key_padding_mask.float()], dim=1 ) else: new_key_padding_mask = prev_key_padding_mask return new_key_padding_mask def reorder_incremental_state( self, incremental_state: Dict[str, Dict[str, Optional[Tensor]]], new_order ): """Reorder buffered internal state (for incremental generation).""" input_buffer = self._get_input_buffer(incremental_state) if input_buffer is not None: for k in input_buffer.keys(): if input_buffer[k] is not None: input_buffer[k] = input_buffer[k].index_select(0, new_order) incremental_state = self._set_input_buffer(incremental_state, input_buffer) return incremental_state def _get_input_buffer( self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] ) -> Dict[str, Optional[Tensor]]: result = self.get_incremental_state(incremental_state, "attn_state") if result is not None: return result else: empty_result: Dict[str, Optional[Tensor]] = {} return empty_result def _set_input_buffer( self, incremental_state: Dict[str, Dict[str, Optional[Tensor]]], buffer: Dict[str, Optional[Tensor]], ): return self.set_incremental_state(incremental_state, "attn_state", buffer) # This hook used as proxy for tracking state if model is in eval or generation mode. def make_generation_fast_(self, **unused): self.inference = True
flash_metaseq-main
metaseq/model_parallel/modules/multihead_attention.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """isort:skip_file""" from .multihead_attention import ModelParallelMultiheadAttention from .transformer_layer import ( ModelParallelTransformerEncoderLayer, ModelParallelTransformerDecoderLayer, ) __all__ = [ "ModelParallelMultiheadAttention", "ModelParallelTransformerEncoderLayer", "ModelParallelTransformerDecoderLayer", ]
flash_metaseq-main
metaseq/model_parallel/modules/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch from torch import nn, Tensor from metaseq.model_parallel.modules import ModelParallelMultiheadAttention from metaseq.modules import TransformerDecoderLayer, TransformerEncoderLayer try: from megatron.mpu import ( ColumnParallelLinear, RowParallelLinear, ) from megatron.model import utils as megatron_utils has_megatron_submodule = True except (ImportError, ModuleNotFoundError): has_megatron_submodule = False class ModelParallelTransformerEncoderLayer(TransformerEncoderLayer): """Encoder layer block over multiple gpus. See "Megatron-LM: https://arxiv.org/pdf/1909.08053.pdf" for more details. """ def build_fc1(self, input_dim, output_dim): return ColumnParallelLinear( input_dim, output_dim, gather_output=False, skip_bias_add=True ) def build_fc2(self, input_dim, output_dim): return RowParallelLinear( input_dim, output_dim, input_is_parallel=True, skip_bias_add=True ) def build_self_attention(self, embed_dim, args, **unused_kwargs): return ModelParallelMultiheadAttention( embed_dim, args.encoder_attention_heads, dropout=args.attention_dropout, self_attention=True, ) def _weight_init(weight): return nn.init.kaiming_uniform_(weight, a=math.sqrt(5)) class ModelParallelTransformerDecoderLayer(TransformerDecoderLayer): """Decoder layer block. See "Megatron-LM: https://arxiv.org/pdf/1909.08053.pdf" for more details. """ def build_fc1( self, input_dim, output_dim, initialize_params_on_gpu, full_megatron_init, megatron_init_sigma, dtype, ): def _init_method_bias(bias): fan_in = input_dim bound = 1 / math.sqrt(fan_in) nn.init.uniform_(bias, -bound, bound) if full_megatron_init: # Setting bias init method to None, initializes biases with zero. init_method_weights = megatron_utils.init_method_normal(megatron_init_sigma) init_method_bias = None else: init_method_weights = _weight_init init_method_bias = _init_method_bias return ColumnParallelLinear( input_dim, output_dim, gather_output=False, init_method=init_method_weights, skip_bias_add=self.skip_bias_add, init_method_bias=init_method_bias, use_cpu_initialization=not initialize_params_on_gpu, dtype=dtype, ) def build_fc2( self, input_dim, output_dim, initialize_params_on_gpu, full_megatron_init, megatron_init_sigma, num_layers, dtype, ): skip_bias_add = self.skip_bias_add if full_megatron_init: init_method_weights = megatron_utils.scaled_init_method_normal( megatron_init_sigma, num_layers ) else: init_method_weights = _weight_init fc2 = RowParallelLinear( input_dim, output_dim, input_is_parallel=True, init_method=init_method_weights, skip_bias_add=skip_bias_add, use_cpu_initialization=not initialize_params_on_gpu, dtype=dtype, ) if not full_megatron_init: # Copy nn.linear initialization to get same initialization as of non-model-parallel. # fan_in, _ = nn.init._calculate_fan_in_and_fan_out(fc2.weight) fan_in = input_dim bound = 1 / math.sqrt(fan_in) nn.init.uniform_(fc2.bias, -bound, bound) return fc2 def build_self_attention(self, embed_dim, args, **unused_kwargs): return ModelParallelMultiheadAttention( embed_dim=embed_dim, num_heads=args.decoder_attention_heads, dropout=args.attention_dropout, self_attention=not getattr(args, "cross_self_attention", False), use_cpu_initialization=not getattr( args, "tensor_parallel_init_model_on_gpu", False ), full_megatron_init=getattr(args, "full_megatron_init", False), megatron_init_sigma=getattr(args, "megatron_init_sigma", 0.006), num_layers=args.decoder_layers, dtype=self._get_model_init_dtype(), ) def build_encoder_attention(self, embed_dim, args, **unused_kwargs): return ModelParallelMultiheadAttention( embed_dim=embed_dim, num_heads=args.decoder_attention_heads, kdim=getattr(args, "encoder_embed_dim", None), vdim=getattr(args, "encoder_embed_dim", None), dropout=args.attention_dropout, encoder_decoder_attention=True, full_megatron_init=getattr(args, "full_megatron_init", False), megatron_init_sigma=getattr(args, "megatron_init_sigma", 0.006), num_layers=args.decoder_layers, dtype=self._get_model_init_dtype(), ) def forward_attention( self, query, key, value, residual, key_padding_mask=None, incremental_state=None, need_weights=False, attn_mask=None, ): (attn_output, attn_bias), attn_weights = self.self_attn( query=query, key=key, value=value, key_padding_mask=key_padding_mask, incremental_state=incremental_state, need_weights=need_weights, attn_mask=attn_mask, ) if self.training: bias_dropout_add_func = bias_dropout_add_fused_train else: bias_dropout_add_func = bias_dropout_add_fused_inference if self.c_attn is not None: # NormFormer Head Scaling Logic tgt_len, bsz = attn_output.size(0), attn_output.size(1) attn_output = attn_output.view(tgt_len, bsz, self.nh, self.head_dim) attn_output = torch.einsum("tbhd,h->tbhd", attn_output, self.c_attn) attn_output = attn_output.reshape(tgt_len, bsz, self.embed_dim) if self.attn_ln is None: x = bias_dropout_add_func( attn_output, attn_bias.view(1, 1, -1), residual, self.args.dropout ) else: x = torch.nn.functional.dropout( attn_output + attn_bias.view(1, 1, -1), p=self.args.dropout, training=self.training, ) x = self.attn_ln(x) x = residual + x return x, attn_weights def bias_dropout_add(x, bias, residual, prob, training): # type: (Tensor, Tensor, Tensor, float, bool) -> Tensor out = torch.nn.functional.dropout(x + bias, p=prob, training=training) out = residual + out return out def get_bias_dropout_add(training): def _bias_dropout_add(x, bias, residual, prob): return bias_dropout_add(x, bias, residual, prob, training) return _bias_dropout_add @torch.jit.script def bias_dropout_add_fused_train(x, bias, residual, prob): # type: (Tensor, Tensor, Tensor, float) -> Tensor return bias_dropout_add(x, bias, residual, prob, True) @torch.jit.script def bias_dropout_add_fused_inference(x, bias, residual, prob): # type: (Tensor, Tensor, Tensor, float) -> Tensor return bias_dropout_add(x, bias, residual, prob, False)
flash_metaseq-main
metaseq/model_parallel/modules/transformer_layer.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch from metaseq import metrics, utils from metaseq.criterions import BaseCriterion, register_criterion try: from megatron.mpu.cross_entropy import ( vocab_parallel_cross_entropy, ) has_megatron_submodule = True except (ImportError, ModuleNotFoundError): has_megatron_submodule = False @register_criterion("vocab_parallel_cross_entropy") class VocabParallelCrossEntropyCriterion(BaseCriterion): def __init__(self, task): super().__init__(task) if not has_megatron_submodule: raise ImportError( "\n\nPlease install megatron using the setup instructions!" ) def forward(self, model, sample, reduce=True): """Compute the loss for the given sample. Returns a tuple with three elements: 1) the loss 2) the sample size, which is used as the denominator for the gradient 3) logging outputs to display while training """ target = sample["target"] has_pad = target.eq(self.padding_idx).any().item() net_output = model(**sample["net_input"]) loss = vocab_parallel_cross_entropy(net_output[0].float(), target) if has_pad: loss = loss * (target != self.padding_idx) loss = loss.sum() # When using target loss only, use num tokens in target only as the sample_size # See StreamingSrcTgtDataset sample_size = ( sample["ntokens_target"] if "ntokens_target" in sample else sample["ntokens"] ) logging_output = { "loss": loss.data, "ntokens": sample["ntokens"], "nsentences": sample["target"].size(0), "sample_size": sample_size, } if "src_tokens" in sample["net_input"] and hasattr(self.task, "eod"): logging_output["ndocseps"] = (sample["target"] == self.task.eod).sum() if ( len(net_output) >= 2 and isinstance(net_output[1], dict) and "inner_states" in net_output[1] ): with torch.no_grad(): # yank out the inner states we wish to instrument # see transformer.py TransformerDecoder.extract_features_scriptable emb, *_, actv = net_output[1]["inner_states"] assert isinstance( emb, dict ), "Expecting the first inner state to be a dict of embedding representations" emb["actv"] = actv # throw on final for code brevity for key, value in emb.items(): if value is None: # maybe future proofing relative positional embeddings continue value = emb[key] logging_output[f"{key}_norm"] = value.norm(p=2, dim=-1).sum( dtype=torch.float32 ) return loss, sample_size, logging_output @staticmethod def reduce_metrics(logging_outputs) -> None: """Aggregate logging outputs from data parallel training.""" loss_sum = sum(log.get("loss", 0) for log in logging_outputs) ntokens = sum(log.get("ntokens", 0) for log in logging_outputs) sample_size = sum(log.get("sample_size", 0) for log in logging_outputs) for type_ in ("actv", "pos", "tok", "emb"): key = f"{type_}_norm" if any(key in log for log in logging_outputs): actv_norm = sum(log.get(key, 0) for log in logging_outputs) metrics.log_scalar(key, actv_norm / ntokens, round=3) if any("ndocseps" in log for log in logging_outputs): # nsentences = batch size nsentences = sum(log.get("nsentences", 0) for log in logging_outputs) # ndocseps = number of document separators we found ndocseps = sum(log.get("ndocseps", 0) for log in logging_outputs) # so docs/example = (1 + ndocseps) / example = (ndocseps + nsents) / nsents metrics.log_scalar("docsperex", (ndocseps + nsentences) / nsentences) metrics.log_scalar( "loss", loss_sum / sample_size / math.log(2), sample_size, round=3 ) metrics.log_derived( "ppl", lambda meters: utils.get_perplexity(meters["loss"].avg) ) @staticmethod def logging_outputs_can_be_summed() -> bool: """ Whether the logging outputs returned by `forward` can be summed across workers prior to calling `reduce_metrics`. Setting this to True will improves distributed training speed. """ return True
flash_metaseq-main
metaseq/model_parallel/criterions/vocab_parallel_cross_entropy.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import importlib import os # automatically import any Python files in the criterions/ directory for file in os.listdir(os.path.dirname(__file__)): if file.endswith(".py") and not file.startswith("_"): module = file[: file.find(".py")] importlib.import_module("metaseq.model_parallel.criterions." + module)
flash_metaseq-main
metaseq/model_parallel/criterions/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree.
flash_metaseq-main
metaseq/scripts/__init__.py
#!/usr/bin/env python """ Script for backing out of the MP-resharded (reshard.pt) files and getting back a non-flattened state dict. Particularly useful for converting our models to other repositories. Usage: $ ls 125m dict.txt gpt2-merges.txt gpt2-vocab.json reshard-model_part-0.pt reshard-model_part-1.pt $ python -m metaseq.scripts.convert_to_singleton 125m $ ls 125m dict.txt gpt2-merges.txt gpt2-vocab.json reshard-model_part-0.pt reshard-model_part-1.pt restored.pt """ import argparse import glob import logging import os import sys import torch from metaseq import options, tasks, checkpoint_utils, utils from metaseq.dataclass.configs import MetaseqConfig from metaseq.dataclass.utils import convert_namespace_to_omegaconf from metaseq.distributed import utils as dist_utils from metaseq.distributed import fsdp_enable_wrap, fsdp_wrap from metaseq.distributed.stitch_fsdp_ckpt import glue_megatron_parts logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) logger = logging.getLogger("convert_to_singleton") def worker_main(cfg: MetaseqConfig): """ Load up the model on all workers for Model Parallelism, then unflatten, move to cpu, and save to "restored.pt". """ task = tasks.setup_task(cfg.task) def _build_model(cfg, task): # hardcoded to cpu & fp16 model = task.build_model(cfg.model).half().cuda() return fsdp_wrap(model) with fsdp_enable_wrap( cfg.distributed_training, use_sharded_state=cfg.distributed_training.use_sharded_state, ): models, _model_args, _task = checkpoint_utils.load_model_ensemble_and_task( utils.split_paths(cfg.common_eval.path), arg_overrides=None, task=task, suffix=cfg.checkpoint.checkpoint_suffix, strict=True, num_shards=cfg.checkpoint.checkpoint_shard_count, build_model_hook=_build_model, ) model = models[0] # consolidate everything on rank0 mp_size = dist_utils.get_model_parallel_world_size() model_parts = [{} for _ in range(mp_size)] with model.summon_full_params(): for name, p in model.named_parameters(): gathered = [torch.zeros_like(p) for _ in range(mp_size)] torch.distributed.all_gather( gathered, p, group=dist_utils.get_global_group() ) for r, t in enumerate(gathered): model_parts[r][name] = t.cpu() glued = glue_megatron_parts(model_parts) # glued['decoder.output_projection.weight'] = glued['decoder.embed_tokens.weight'] if "decoder.output_projection.weight" in glued: del glued["decoder.output_projection.weight"] output_sd = checkpoint_utils.load_checkpoint_to_cpu( cfg.common_eval.path.replace("reshard.pt", "reshard-model_part-0.pt") ) output_sd["model"] = utils.move_to_cpu(glued) output_sd["cfg"]["model"].arch = "transformer_lm" if dist_utils.get_global_rank() == 0: with open(cfg.task.data + "/restored.pt", "wb") as f: torch.save(output_sd, f) def main(): # parser to be used like docstring shows real_parser = argparse.ArgumentParser() real_parser.add_argument("location") args = real_parser.parse_args() files = glob.glob(f"{args.location}/reshard*.pt") MP = len(files) BPE_MERGES = args.location + "/gpt2-merges.txt" BPE_VOCAB = args.location + "/gpt2-vocab.json" # Skeleton out all the annoying command line args we can infer ARGS = [ "--model-parallel-size", str(MP), "--distributed-world-size", str(MP), "--task", "language_modeling", "--bpe-merges", BPE_MERGES, "--bpe-vocab", BPE_VOCAB, "--bpe", "hf_byte_bpe", "--path", args.location + "/reshard.pt", "--checkpoint-shard-count", "1", "--use-sharded-state", args.location, ] print(ARGS) # build up the config file parser = options.get_generation_parser() # dumb defaults overriding parser.set_defaults(lr_scheduler=None, criterion=None) args = options.parse_args_and_arch(parser, input_args=ARGS) cfg = convert_namespace_to_omegaconf(args) cfg.distributed_training.distributed_world_size = MP dist_utils.call_main(cfg, worker_main) if __name__ == "__main__": main()
flash_metaseq-main
metaseq/scripts/convert_to_singleton.py
#!/usr/bin/env python # Copyright (c) Meta Platforms, Inc. and affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from metaseq.distributed.stitch_fsdp_ckpt import consolidate_fsdp_shards import fire if __name__ == "__main__": # This is expected to be used before evaluation, not during training. fire.Fire(consolidate_fsdp_shards)
flash_metaseq-main
metaseq/scripts/consolidate_fsdp_shards.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import sys from pathlib import Path from typing import List import torch import torch.nn.functional as F from fire import Fire from tqdm import tqdm from metaseq.checkpoint_utils import ( get_paths_to_load, _merge_flat_fsdp_shards, OPT_KEY, is_singleton_tensor, ) from metaseq.file_io import torch_load_cpu logging.basicConfig( format="%(asctime)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S", stream=sys.stdout, ) logger = logging.getLogger("mp_reshard") def reshard_all_parts( save_prefix, save_dir, mpart=16, target_ddp_size=512, no_pad=False ): for i in range(mpart): try: reshard_mp( save_prefix, save_dir, part=i, target_ddp_size=target_ddp_size, no_pad=no_pad, ) except FileNotFoundError: logger.info(f"Resharded {i} model parts") return def _save_shards_to_disk( local_state_dicts, dummy_model_state, state, save_dir, middle, local_opt_states=None, target_ddp_size=512, ): Path(save_dir).mkdir(exist_ok=True) for i, local_state_dict in tqdm( enumerate(local_state_dicts), desc=f"Saving to {save_dir}/reshard-{middle}-shard[i].pt", ): if target_ddp_size == 1: save_path = f"{save_dir}/reshard-{middle}.pt" else: save_path = f"{save_dir}/reshard-{middle}-shard{i}.pt" local_state_dict.update(dummy_model_state) full_state = {"model": local_state_dict} full_state.update(state) if local_opt_states is not None: full_state[OPT_KEY] = local_opt_states[i] torch.save(full_state, save_path) def reshard_mp( save_prefix, save_dir, part=0, target_ddp_size=512, no_pad=False, drop_optimizer_state=False, ): middle = f"model_part-{part}" do_pad = not no_pad if not Path(f"{save_prefix}-{middle}-shard0.pt").exists(): raise FileNotFoundError(f"{save_prefix}-{middle}-shard0.pt") paths_to_load = get_paths_to_load( f"{save_prefix}-{middle}-shard0.pt", suffix="-shard" ) logger.info( f"Loading {len(paths_to_load)} paths for MP part{part}. Will shard into {target_ddp_size} files." ) state = _merge_flat_fsdp_shards([torch_load_cpu(f) for f in paths_to_load]) model_state = state.pop("model") dummy_model_state = {} # for decoder.version and other useless keys local_state_dicts: List[dict] = [{} for _ in range(target_ddp_size)] for k, v in model_state.items(): v = v.half() if "flat_param" not in k: dummy_model_state[k] = v continue chunks = list(torch.flatten(v).chunk(target_ddp_size)) assert len(chunks) == target_ddp_size num_to_pad = chunks[0].numel() - chunks[-1].numel() # Same logic as https://tinyurl.com/fairscale but there is no padding allowed! # Notes on padding: https://github.com/fairinternal/fairseq-py/issues/2894 for rank, param in enumerate(chunks): # This clone is essential. Not sure why. local_state_dicts[rank][k] = param.clone() if num_to_pad > 0 and do_pad: local_state_dicts[-1][k] = F.pad(local_state_dicts[-1][k], [0, num_to_pad]) logger.info(f"Padding {k} with {num_to_pad} zeros") state.pop("shard_metadata") # TODO: update shard metadata to be accurate # DO OPT STATE HERE if drop_optimizer_state and OPT_KEY in state: state.pop(OPT_KEY) if OPT_KEY not in state: _save_shards_to_disk( local_state_dicts, dummy_model_state, state, save_dir, middle ) return merged_opt_state = state.pop(OPT_KEY) local_opt_states: List[dict] = [{"state": {}} for _ in range(target_ddp_size)] for k in merged_opt_state["state"].keys(): # 0,1,2,3... if each layer wrapped, else 0 for k2 in merged_opt_state["state"][k].keys(): for i in range(target_ddp_size): if k not in local_opt_states[i]["state"]: local_opt_states[i]["state"][k] = {} catted = merged_opt_state["state"][k][k2] if not torch.is_tensor(catted) or is_singleton_tensor(catted): for i in range(target_ddp_size): local_opt_states[i]["state"][k][k2] = catted else: chunks = list(torch.flatten(catted).chunk(target_ddp_size)) assert len(chunks) == target_ddp_size num_to_pad = chunks[0].numel() - chunks[-1].numel() for rank, param in enumerate(chunks): # This clone is essential. Not sure why. local_opt_states[rank]["state"][k][k2] = param.clone() if num_to_pad > 0 and do_pad: local_opt_states[-1]["state"][k][k2] = F.pad( local_opt_states[-1]["state"][k][k2], [0, num_to_pad] ) # Update Opt keys that arent state for k in merged_opt_state.keys(): if k == "state": continue for i in range(target_ddp_size): local_opt_states[i][k] = merged_opt_state[k] _save_shards_to_disk( local_state_dicts, dummy_model_state, state, save_dir, middle, local_opt_states=local_opt_states, target_ddp_size=target_ddp_size, ) """ python scripts/reshard_mp.py $model_dir/checkpoint_last 125_mp_reshard --mpart 0 """ if __name__ == "__main__": Fire(reshard_mp)
flash_metaseq-main
metaseq/scripts/reshard_mp.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import sys from dataclasses import _MISSING_TYPE, dataclass, field from typing import Any, List, Optional import torch from omegaconf import II, MISSING from metaseq.dataclass.constants import ( DATASET_IMPL_CHOICES, DDP_BACKEND_CHOICES, LOG_FORMAT_CHOICES, ZERO_SHARDING_CHOICES, CLIP_GRAD_NORM_TYPE_CHOICES, ) @dataclass class MetaseqDataclass: """metaseq base dataclass that supported fetching attributes and metas""" _name: Optional[str] = None @staticmethod def name(): return None def positional_args(self): return ["data"] def _get_all_attributes(self) -> List[str]: return [k for k in self.__dataclass_fields__.keys()] def _get_meta( self, attribute_name: str, meta: str, default: Optional[Any] = None ) -> Any: return self.__dataclass_fields__[attribute_name].metadata.get(meta, default) def _get_name(self, attribute_name: str) -> str: return self.__dataclass_fields__[attribute_name].name def _get_default(self, attribute_name: str) -> Any: if hasattr(self, attribute_name): if str(getattr(self, attribute_name)).startswith("${"): return str(getattr(self, attribute_name)) elif str(self.__dataclass_fields__[attribute_name].default).startswith( "${" ): return str(self.__dataclass_fields__[attribute_name].default) elif ( getattr(self, attribute_name) != self.__dataclass_fields__[attribute_name].default ): return getattr(self, attribute_name) f = self.__dataclass_fields__[attribute_name] if not isinstance(f.default_factory, _MISSING_TYPE): return f.default_factory() return f.default def _get_type(self, attribute_name: str) -> Any: return self.__dataclass_fields__[attribute_name].type def _get_help(self, attribute_name: str) -> Any: return self._get_meta(attribute_name, "help") def _get_argparse_const(self, attribute_name: str) -> Any: return self._get_meta(attribute_name, "argparse_const") def _get_argparse_alias(self, attribute_name: str) -> Any: return self._get_meta(attribute_name, "argparse_alias") def _get_choices(self, attribute_name: str) -> Any: return self._get_meta(attribute_name, "choices") @dataclass class CommonConfig(MetaseqDataclass): # This is the core dataclass including common parameters shared by all # different jobs. Please append your params to other dataclasses if they # were used for a particular purpose or task, such as those dedicated for # `distributed training`, `optimization`, etc. log_interval: int = field( default=100, metadata={ "help": "log progress every N batches (when progress bar is disabled)" }, ) log_format: Optional[LOG_FORMAT_CHOICES] = field( default=None, metadata={"help": "log format to use"} ) log_file: Optional[str] = field( default=None, metadata={"help": "log file to copy metrics to."} ) tensorboard_logdir: Optional[str] = field( default=None, metadata={ "help": "path to save logs for tensorboard, should match --logdir " "of running tensorboard (default: no tensorboard logging)" }, ) wandb_project: Optional[str] = field( default=None, metadata={"help": "Weights and Biases project name to use for logging"}, ) azureml_logging: Optional[bool] = field( default=False, metadata={"help": "Log scalars to AzureML context"}, ) seed: int = field( default=1, metadata={"help": "pseudo random number generator seed"} ) cpu: bool = field(default=False, metadata={"help": "use CPU instead of CUDA"}) fp16: bool = field(default=False, metadata={"help": "use FP16"}) memory_efficient_fp16: bool = field( default=False, metadata={ "help": "use a memory-efficient version of FP16 training; implies --fp16" }, ) bf16: bool = field( default=False, metadata={ "help": "use BF16 format" " Currently --bf16 is an added argument with --fp16 for mixed precision bf16 training" " or with --memory-efficient-fp16 for pure bf16 training." }, ) fp16_no_flatten_grads: bool = field( default=False, metadata={"help": "don't flatten FP16 grads tensor"} ) fp16_init_scale: int = field( default=4, metadata={"help": "default FP16 loss scale"} ) fp16_scale_window: Optional[int] = field( default=256, metadata={"help": "number of updates before increasing loss scale"}, ) fp16_scale_tolerance: float = field( default=0.0, metadata={ "help": "pct of updates that can overflow before decreasing the loss scale" }, ) min_loss_scale: float = field( default=2**-5, metadata={"help": "minimum FP16 loss scale, after which training is stopped"}, ) threshold_loss_scale: Optional[float] = field( default=None, metadata={"help": "threshold FP16 loss scale from below"} ) user_dir: Optional[str] = field( default=None, metadata={ "help": "path to a python module containing custom extensions (tasks and/or architectures)" }, ) empty_cache_freq: int = field( default=0, metadata={"help": "how often to clear the PyTorch CUDA cache (0 to disable)"}, ) all_gather_list_size: int = field( default=16384, metadata={"help": "number of bytes reserved for gathering stats from workers"}, ) model_parallel_size: int = field( default=1, metadata={"help": "total number of GPUs to parallelize model over"} ) profile: bool = field( default=False, metadata={"help": "enable autograd profiler emit_nvtx"} ) use_plasma_view: bool = field( default=False, metadata={"help": "Store indices and sizes in shared memory"} ) plasma_path: Optional[str] = field( default="/tmp/plasma", metadata={ "help": "path to run plasma_store, defaults to /tmp/plasma. Paths outside /tmp tend to fail." }, ) log_nvidia_smi: bool = field( default=False, metadata={"help": "log output from nvidia-smi during training"} ) new_profiler: bool = field( default=False, metadata={"help": "use pytorch profiler (v2)"} ) dont_log_param_and_grad_norm: Optional[bool] = field( default=False, metadata={ "help": "Don't log grad/param norms for each parameter.", "argparse_alias": "--quiet", }, ) @dataclass class DistributedTrainingConfig(MetaseqDataclass): distributed_world_size: int = field( default=max(1, torch.cuda.device_count()), metadata={ "help": "total number of GPUs across all nodes (default: all visible GPUs)" }, ) distributed_rank: Optional[int] = field( default=0, metadata={"help": "rank of the current worker"} ) distributed_backend: str = field( default="nccl", metadata={"help": "distributed backend"} ) distributed_init_method: Optional[str] = field( default=None, metadata={ "help": "typically tcp://hostname:port that will be used to " "establish initial connetion" }, ) distributed_port: int = field( default=-1, metadata={ "help": "port number (not required if using --distributed-init-method)" }, ) device_id: int = field( default=0, metadata={ "help": "which GPU to use (usually configured automatically)", "argparse_alias": "--local_rank", }, ) distributed_no_spawn: bool = field( default=False, metadata={ "help": "do not spawn multiple processes even if multiple GPUs are visible" }, ) ddp_backend: DDP_BACKEND_CHOICES = field( default="pytorch_ddp", metadata={"help": "DistributedDataParallel backend"} ) bucket_cap_mb: int = field( default=25, metadata={"help": "bucket size for reduction"} ) fix_batches_to_gpus: bool = field( default=False, metadata={ "help": "don't shuffle batches between GPUs; this reduces overall " "randomness and may affect precision but avoids the cost of re-reading the data" }, ) find_unused_parameters: bool = field( default=False, metadata={ "help": "disable unused parameter detection (not applicable to " "--ddp-backend=legacy_ddp)" }, ) fast_stat_sync: bool = field( default=False, metadata={"help": "[deprecated] this is now defined per Criterion"}, ) heartbeat_timeout: int = field( default=-1, metadata={ "help": "kill the job if no progress is made in N seconds; " "set to -1 to disable" }, ) broadcast_buffers: bool = field( default=False, metadata={ "help": "Copy non-trainable parameters between GPUs, such as " "batchnorm population statistics" }, ) zero_sharding: ZERO_SHARDING_CHOICES = field( default="none", metadata={"help": "ZeRO sharding"} ) fp16: bool = II("common.fp16") memory_efficient_fp16: bool = II("common.memory_efficient_fp16") bf16: bool = II("common.bf16") # configuration for --ddp-backend=fully_sharded no_reshard_after_forward: bool = field( default=False, metadata={"help": "don't reshard parameters after forward pass"}, ) fp32_reduce_scatter: bool = field( default=False, metadata={"help": "reduce-scatter grads in FP32"}, ) cpu_offload: bool = field( default=False, metadata={"help": "offload FP32 params to CPU"} ) use_sharded_state: Optional[bool] = field( default=False, metadata={"help": "load and save local state dict"} ) gradient_predivide_factor: Optional[float] = field( default=None, metadata={"help": "factor to predivide gradients before reducee scatter"}, ) @dataclass class DatasetConfig(MetaseqDataclass): num_workers: int = field( default=1, metadata={"help": "how many subprocesses to use for data loading"} ) num_workers_valid: int = field( default=0, metadata={ "help": "how many subprocesses to use for data loading during validation" }, ) skip_invalid_size_inputs_valid_test: bool = field( default=False, metadata={"help": "ignore too long or too short lines in valid and test set"}, ) max_tokens: Optional[int] = field( default=None, metadata={"help": "maximum number of tokens in a batch"} ) batch_size: Optional[int] = field( default=None, metadata={ "help": "number of examples in a batch", "argparse_alias": "--max-sentences", }, ) required_batch_size_multiple: int = field( default=8, metadata={"help": "batch size will be a multiplier of this value"} ) dataset_impl: Optional[DATASET_IMPL_CHOICES] = field( default=None, metadata={"help": "output dataset implementation"} ) data_buffer_size: int = field( default=10, metadata={"help": "Number of batches to preload"} ) train_subset: str = field( default="train", metadata={"help": "data subset to use for training (e.g. train, valid, test)"}, ) valid_subset: str = field( default="valid", metadata={ "help": "comma separated list of data subsets to use for validation" " (e.g. train, valid, test)" }, ) combine_valid_subsets: Optional[bool] = field( default=None, metadata={ "help": "comma separated list of data subsets to use for validation" " (e.g. train, valid, test)", "argparse_alias": "--combine-val", }, ) ignore_unused_valid_subsets: Optional[bool] = field( default=False, metadata={"help": "do not raise error if valid subsets are ignored"}, ) validate_interval: int = field( default=1, metadata={"help": "validate every N epochs"} ) validate_interval_updates: int = field( default=0, metadata={"help": "validate every N updates"} ) validate_after_updates: int = field( default=0, metadata={"help": "dont validate until reaching this many updates"} ) fixed_validation_seed: Optional[int] = field( default=None, metadata={"help": "specified random seed for validation"} ) disable_validation: bool = field( default=False, metadata={"help": "disable validation"} ) max_tokens_valid: Optional[int] = field( default=II("dataset.max_tokens"), metadata={ "help": "maximum number of tokens in a validation batch" " (defaults to --max-tokens)" }, ) batch_size_valid: Optional[int] = field( default=II("dataset.batch_size"), metadata={ "help": "batch size of the validation batch (defaults to --batch-size)", "argparse_alias": "--max-sentences-valid", }, ) max_valid_steps: Optional[int] = field( default=None, metadata={"help": "How many batches to evaluate", "argparse_alias": "--nval"}, ) gen_subset: str = field( default="test", metadata={"help": "data subset to generate (train, valid, test)"}, ) num_shards: int = field( default=1, metadata={"help": "shard generation over N shards"} ) shard_id: int = field( default=0, metadata={"help": "id of the shard to generate (id < num_shards)"} ) @dataclass class OptimizationConfig(MetaseqDataclass): max_epoch: int = field( default=0, metadata={"help": "force stop training at specified epoch"} ) max_update: int = field( default=0, metadata={"help": "force stop training at specified update"} ) clip_norm: float = field( default=0.0, metadata={"help": "clip threshold of gradients"} ) clip_norm_type: Optional[CLIP_GRAD_NORM_TYPE_CHOICES] = field( default="l2", metadata={"help": "either 'l2' or 'inf' to clip by l2 norm or max abs grad"}, ) skip_gradient_update_on_clip_norm: bool = field( default=False, metadata={ "help": "Skip gradient update if gnorm is higher than --clip-norm value" }, ) update_freq: List[int] = field( default_factory=lambda: [1], metadata={"help": "update parameters every N_i batches, when in epoch i"}, ) lr: List[float] = field( default_factory=lambda: [0.25], metadata={ "help": "learning rate for the first N epochs; all epochs >N using LR_N" " (note: this may be interpreted differently depending on --lr-scheduler)" }, ) train_with_epoch_remainder_batch: Optional[bool] = field( default=False, metadata={ "help": "if set, include the last (partial) batch of each epoch in training" " (default is to skip it)." }, ) @dataclass class CheckpointConfig(MetaseqDataclass): save_dir: str = field( default="checkpoints", metadata={"help": "path to save checkpoints"} ) restore_file: str = field( default="checkpoint_last.pt", metadata={ "help": "filename from which to load checkpoint " "(default: <save-dir>/checkpoint_last.pt" }, ) finetune_from_model: Optional[str] = field( default=None, metadata={ "help": "finetune from a pretrained model; note that meters and lr scheduler will be reset" }, ) reset_dataloader: bool = field( default=False, metadata={ "help": "if set, does not reload dataloader state from the checkpoint" }, ) reset_lr_scheduler: bool = field( default=False, metadata={ "help": "if set, does not load lr scheduler state from the checkpoint" }, ) reset_meters: bool = field( default=False, metadata={"help": "if set, does not load meters from the checkpoint"}, ) reset_optimizer: bool = field( default=False, metadata={"help": "if set, does not load optimizer state from the checkpoint"}, ) optimizer_overrides: str = field( default="{}", metadata={ "help": "a dictionary used to override optimizer args when loading a checkpoint" }, ) save_interval: int = field( default=1, metadata={"help": "save a checkpoint every N epochs"} ) save_interval_updates: int = field( default=0, metadata={"help": "save a checkpoint (and validate) every N updates"} ) keep_interval_updates: int = field( default=-1, metadata={ "help": "keep the last N checkpoints saved with --save-interval-updates" }, ) keep_last_epochs: int = field( default=-1, metadata={"help": "keep last N epoch checkpoints"} ) keep_best_checkpoints: int = field( default=-1, metadata={"help": "keep best N checkpoints based on scores"} ) no_save: bool = field( default=False, metadata={"help": "don't save models or checkpoints"} ) no_epoch_checkpoints: bool = field( default=False, metadata={"help": "only store last and best checkpoints"} ) no_last_checkpoints: bool = field( default=False, metadata={"help": "don't store last checkpoints"} ) no_best_checkpoints: bool = field( default=False, metadata={"help": "don't store best checkpoints"} ) no_save_optimizer_state: bool = field( default=False, metadata={"help": "don't save optimizer-state as part of checkpoint"}, ) no_save_optimizer_state_on_training_finished: bool = field( default=False, metadata={ "help": "don't save optimizer-state as part of checkpoint when training is done" }, ) best_checkpoint_metric: str = field( default="loss", metadata={"help": 'metric to use for saving "best" checkpoints'} ) maximize_best_checkpoint_metric: bool = field( default=False, metadata={ "help": 'select the largest metric value for saving "best" checkpoints' }, ) patience: int = field( default=-1, metadata={ "help": ( "early stop training if valid performance doesn't " "improve for N consecutive validation runs; note " "that this is influenced by --validate-interval" ) }, ) checkpoint_suffix: str = field( default="", metadata={"help": "suffix to add to the checkpoint file name"} ) checkpoint_shard_count: int = field( default=1, metadata={ "help": "Number of shards containing the checkpoint - " "if the checkpoint is over 300GB, it is preferable " "to split it into shards to prevent OOM on CPU while loading " "the checkpoint" }, ) load_checkpoint_on_all_dp_ranks: bool = field( default=False, metadata={ "help": "load checkpoints on all data parallel devices " "(default: only load on rank 0 and broadcast to other devices)" }, ) write_checkpoints_asynchronously: bool = field( default=False, metadata={ "help": ( "Write checkpoints asynchronously in a separate " "thread. NOTE: This feature is currently being tested." ), "argparse_alias": "--save-async", }, ) cloud_upload_path: Optional[str] = field( default=None, metadata={ "help": ( "Upload checkpoints asynchronously in a separate " "thread to blob store. NOTE: This feature is currently being tested." ), "argparse_alias": "--cloud-dir", }, ) # TODO(susanz): After https://github.com/fairinternal/fairseq-big-internal/issues/22 is tackled, modify this # to use ComputeEnvs constant cluster_env: str = field( default="fair", metadata={"help": "cluster we are running on: azure/aws/fair/rsc"}, ) model_parallel_size: int = II("common.model_parallel_size") @dataclass class GenerationConfig(MetaseqDataclass): beam: int = field( default=5, metadata={"help": "beam size"}, ) nbest: int = field( default=1, metadata={"help": "number of hypotheses to output"}, ) max_len_a: float = field( default=0, metadata={ "help": "generate sequences of maximum length ax + b, where x is the source length" }, ) max_len_b: int = field( default=200, metadata={ "help": "generate sequences of maximum length ax + b, where x is the source length" }, ) min_len: int = field( default=1, metadata={"help": "minimum generation length"}, ) sampling: bool = field( default=False, metadata={"help": "sample hypotheses instead of using beam search"}, ) sampling_topk: int = field( default=-1, metadata={"help": "sample from top K likely next words instead of all words"}, ) sampling_topp: float = field( default=-1.0, metadata={ "help": "sample from the smallest set whose cumulative probability mass exceeds p for next words" }, ) temperature: float = field( default=1.0, metadata={"help": "temperature for generation"}, ) no_seed_provided: bool = field( default=False, metadata={"help": "if set, dont use seed for initializing random generators"}, ) # former interactive args buffer_size: int = field( default=0, metadata={ "help": "read this many sentences into a buffer before processing them" }, ) input: str = field( default="-", metadata={"help": "file to read from; use - for stdin"}, ) @dataclass class CommonEvalConfig(MetaseqDataclass): path: Optional[str] = field( default=None, metadata={"help": "path(s) to model file(s), colon separated"}, ) quiet: bool = field(default=False, metadata={"help": "only print final scores"}) model_overrides: str = field( default="{}", metadata={ "help": "a dictionary used to override model args at generation that were used during model training" }, ) results_path: Optional[str] = field( default=None, metadata={ "help": "path to save eval results (optional)", "argparse_alias": "--sp", }, ) @dataclass class ReshardConfig(MetaseqDataclass): save_dir: Optional[str] = field( default=None, metadata={ "help": "where to save the resharded checkpoints", "argparse_alias": "--dest-dir", }, ) save_prefix: Optional[str] = field( default="reshard", metadata={"help": "save to dest-dir/save-prefix-shard{i}.pt"} ) target_world_size: Optional[int] = field( default=128, metadata={ "help": ( "The maximum number of GPUs you want to use to evaluate. " "AssertionError if any FSDP module's number of parameters is not " "divisible by this." ) }, ) do_pad: Optional[bool] = field( default=False, metadata={ "help": ( "Add padding to make sure that running on target world size " "works. This reduces flexibility for world sizes smaller than " "target world size." ) }, ) @dataclass class EvalLMConfig(MetaseqDataclass): # TODO(anj): Remove this since we want to set this by default when running eval. score_sequences: bool = field( default=False, metadata={"help": "if set, uses the ScoreSequencer class for evaluating."}, ) output_word_probs: bool = field( default=False, metadata={ "help": "if set, outputs words and their predicted log probabilities to standard output" }, ) output_word_stats: bool = field( default=False, metadata={ "help": "if set, outputs word statistics such as word count, average probability, etc" }, ) context_window: int = field( default=0, metadata={ "help": "ensures that every evaluated token has access to a context of at least this size, if possible" }, ) softmax_batch: int = field( default=sys.maxsize, metadata={ "help": ( "if BxT is more than this, will batch the softmax over vocab to " "this amount of tokens, in order to fit into GPU memory" ) }, ) max_valid_steps: Optional[int] = field( default=None, metadata={"help": "How many batches to evaluate", "argparse_alias": "--nval"}, ) @dataclass class MetaseqConfig(MetaseqDataclass): common: CommonConfig = CommonConfig() common_eval: CommonEvalConfig = CommonEvalConfig() distributed_training: DistributedTrainingConfig = DistributedTrainingConfig() dataset: DatasetConfig = DatasetConfig() optimization: OptimizationConfig = OptimizationConfig() checkpoint: CheckpointConfig = CheckpointConfig() generation: GenerationConfig = GenerationConfig() eval_lm: EvalLMConfig = EvalLMConfig() reshard: ReshardConfig = ReshardConfig() model: Any = MISSING task: Any = MISSING criterion: Any = MISSING optimizer: Any = MISSING lr_scheduler: Any = MISSING bpe: Any = MISSING tokenizer: Any = None
flash_metaseq-main
metaseq/dataclass/configs.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """isort:skip_file""" import logging from hydra.core.config_store import ConfigStore from metaseq.dataclass.configs import MetaseqConfig logger = logging.getLogger(__name__) def hydra_init(cfg_name="base_config") -> None: cs = ConfigStore.instance() cs.store(name=cfg_name, node=MetaseqConfig) for k in MetaseqConfig.__dataclass_fields__: v = MetaseqConfig.__dataclass_fields__[k].default try: cs.store(name=k, node=v) except BaseException: logger.error(f"{k} - {v}") raise
flash_metaseq-main
metaseq/dataclass/initialize.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from enum import Enum, EnumMeta from typing import List class StrEnumMeta(EnumMeta): # this is workaround for submitit pickling leading to instance checks failing in hydra for StrEnum, see # https://github.com/facebookresearch/hydra/issues/1156 @classmethod def __instancecheck__(cls, other): return "enum" in str(type(other)) class StrEnum(Enum, metaclass=StrEnumMeta): def __str__(self): return self.value def __eq__(self, other: str): return self.value == other def __repr__(self): return self.value def __hash__(self): return hash(str(self)) def ChoiceEnum(choices: List[str]): """return the Enum class used to enforce list of choices""" return StrEnum("Choices", {k: k for k in choices}) LOG_FORMAT_CHOICES = ChoiceEnum(["json", "none"]) DDP_BACKEND_CHOICES = ChoiceEnum( [ "c10d", # alias for pytorch_ddp "fully_sharded", # FullyShardedDataParallel from fairscale "pytorch_ddp", ] ) DATASET_IMPL_CHOICES = ChoiceEnum(["raw", "lazy", "cached", "mmap", "fasta"]) ZERO_SHARDING_CHOICES = ChoiceEnum(["none", "os"]) CLIP_GRAD_NORM_TYPE_CHOICES = ChoiceEnum(["l2", "inf"])
flash_metaseq-main
metaseq/dataclass/constants.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .configs import MetaseqDataclass from .constants import ChoiceEnum __all__ = [ "MetaseqDataclass", "ChoiceEnum", ]
flash_metaseq-main
metaseq/dataclass/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import ast import inspect import logging import os import re from argparse import ArgumentError, ArgumentParser, Namespace from dataclasses import _MISSING_TYPE, MISSING from enum import Enum from typing import Any, Dict, List, Optional, Tuple, Type from hydra import compose, initialize from hydra.core.global_hydra import GlobalHydra from omegaconf import DictConfig, OmegaConf, open_dict from omegaconf.errors import ConfigKeyError from metaseq.dataclass import MetaseqDataclass from metaseq.dataclass.configs import MetaseqConfig logger = logging.getLogger(__name__) def eval_str_list(x, x_type=float): if x is None: return None if isinstance(x, str): if len(x) == 0: return [] x = ast.literal_eval(x) try: return list(map(x_type, x)) except TypeError: return [x_type(x)] def interpret_dc_type(field_type): if isinstance(field_type, str): raise RuntimeError("field should be a type") if field_type == Any: return str typestring = str(field_type) if re.match( r"(typing.|^)Union\[(.*), NoneType\]$", typestring ) or typestring.startswith("typing.Optional"): return field_type.__args__[0] return field_type def gen_parser_from_dataclass( parser: ArgumentParser, dataclass_instance: MetaseqDataclass, delete_default: bool = False, ) -> None: """convert a dataclass instance to tailing parser arguments""" def argparse_name(name: str): if name in dataclass_instance.positional_args(): return name if name == "_name": # private member, skip return None return "--" + name.replace("_", "-") def get_kwargs_from_dc( dataclass_instance: MetaseqDataclass, k: str ) -> Dict[str, Any]: """k: dataclass attributes""" kwargs = {} field_type = dataclass_instance._get_type(k) inter_type = interpret_dc_type(field_type) field_default = dataclass_instance._get_default(k) if isinstance(inter_type, type) and issubclass(inter_type, Enum): field_choices = [t.value for t in list(inter_type)] else: field_choices = None field_help = dataclass_instance._get_help(k) field_const = dataclass_instance._get_argparse_const(k) if isinstance(field_default, str) and field_default.startswith("${"): kwargs["default"] = field_default else: if field_default is MISSING: kwargs["required"] = True if field_choices is not None: kwargs["choices"] = field_choices if ( isinstance(inter_type, type) and (issubclass(inter_type, List) or issubclass(inter_type, Tuple)) ) or ("List" in str(inter_type) or "Tuple" in str(inter_type)): if "int" in str(inter_type): kwargs["type"] = lambda x: eval_str_list(x, int) elif "float" in str(inter_type): kwargs["type"] = lambda x: eval_str_list(x, float) elif "str" in str(inter_type): kwargs["type"] = lambda x: eval_str_list(x, str) else: raise NotImplementedError( "parsing of type " + str(inter_type) + " is not implemented" ) if field_default is not MISSING: kwargs["default"] = ( ",".join(map(str, field_default)) if field_default is not None else None ) elif ( isinstance(inter_type, type) and issubclass(inter_type, Enum) ) or "Enum" in str(inter_type): kwargs["type"] = str if field_default is not MISSING: if isinstance(field_default, Enum): kwargs["default"] = field_default.value else: kwargs["default"] = field_default elif inter_type is bool: kwargs["action"] = ( "store_false" if field_default is True else "store_true" ) kwargs["default"] = field_default else: kwargs["type"] = inter_type if field_default is not MISSING: kwargs["default"] = field_default kwargs["help"] = field_help if field_const is not None: kwargs["const"] = field_const kwargs["nargs"] = "?" return kwargs for k in dataclass_instance._get_all_attributes(): field_name = argparse_name(dataclass_instance._get_name(k)) field_type = dataclass_instance._get_type(k) if field_name is None: continue elif inspect.isclass(field_type) and issubclass(field_type, MetaseqDataclass): gen_parser_from_dataclass(parser, field_type(), delete_default) continue kwargs = get_kwargs_from_dc(dataclass_instance, k) field_args = [field_name] alias = dataclass_instance._get_argparse_alias(k) if alias is not None: field_args.append(alias) if "default" in kwargs: if isinstance(kwargs["default"], str) and kwargs["default"].startswith( "${" ): if kwargs["help"] is None: # this is a field with a name that will be added elsewhere continue else: del kwargs["default"] if delete_default and "default" in kwargs: del kwargs["default"] try: parser.add_argument(*field_args, **kwargs) except ArgumentError: pass def _set_legacy_defaults(args, cls): """Helper to set default arguments based on *add_args*.""" if not hasattr(cls, "add_args"): return import argparse parser = argparse.ArgumentParser( argument_default=argparse.SUPPRESS, allow_abbrev=False ) cls.add_args(parser) # copied from argparse.py: defaults = argparse.Namespace() for action in parser._actions: if action.dest is not argparse.SUPPRESS: if not hasattr(defaults, action.dest): if action.default is not argparse.SUPPRESS: setattr(defaults, action.dest, action.default) for key, default_value in vars(defaults).items(): if not hasattr(args, key): setattr(args, key, default_value) def _override_attr( sub_node: str, data_class: Type[MetaseqDataclass], args: Namespace ) -> List[str]: overrides = [] if not inspect.isclass(data_class) or not issubclass(data_class, MetaseqDataclass): return overrides def get_default(f): if not isinstance(f.default_factory, _MISSING_TYPE): return f.default_factory() return f.default for k, v in data_class.__dataclass_fields__.items(): if k.startswith("_"): # private member, skip continue val = get_default(v) if not hasattr(args, k) else getattr(args, k) field_type = interpret_dc_type(v.type) if ( isinstance(val, str) and not val.startswith("${") # not interpolation and field_type != str and ( not inspect.isclass(field_type) or not issubclass(field_type, Enum) ) # not choices enum ): # upgrade old models that stored complex parameters as string val = ast.literal_eval(val) if isinstance(val, tuple): val = list(val) v_type = getattr(v.type, "__origin__", None) if ( (v_type is List or v_type is list or v_type is Optional) # skip interpolation and not (isinstance(val, str) and val.startswith("${")) ): # if type is int but val is float, then we will crash later - try to convert here if hasattr(v.type, "__args__"): t_args = v.type.__args__ if len(t_args) == 1 and (t_args[0] is float or t_args[0] is int): val = list(map(t_args[0], val)) elif val is not None and ( field_type is int or field_type is bool or field_type is float ): try: # Future reader, if you experience something other than a ValueError here, # we used to simply ignore all excepts. Add it to the allowlist. val = field_type(val) except ValueError: pass # ignore errors here, they are often from interpolation args if val is None: overrides.append("{}.{}=null".format(sub_node, k)) elif val == "": overrides.append("{}.{}=''".format(sub_node, k)) elif isinstance(val, str): val = val.replace("'", r"\'") overrides.append("{}.{}='{}'".format(sub_node, k, val)) elif isinstance(val, MetaseqDataclass): overrides += _override_attr(f"{sub_node}.{k}", type(val), args) elif isinstance(val, Namespace): sub_overrides, _ = override_module_args(val) for so in sub_overrides: overrides.append(f"{sub_node}.{k}.{so}") else: overrides.append("{}.{}={}".format(sub_node, k, val)) return overrides def migrate_registry( name, value, registry, args, overrides, deletes, use_name_as_val=False ): if value in registry: overrides.append("{}={}".format(name, value)) overrides.append("{}._name={}".format(name, value)) overrides.extend(_override_attr(name, registry[value], args)) elif use_name_as_val and value is not None: overrides.append("{}={}".format(name, value)) else: deletes.append(name) def override_module_args(args: Namespace) -> Tuple[List[str], List[str]]: """use the field in args to overrides those in cfg""" overrides = [] deletes = [] for k in MetaseqConfig.__dataclass_fields__.keys(): overrides.extend( _override_attr(k, MetaseqConfig.__dataclass_fields__[k].type, args) ) if args is not None: if hasattr(args, "task"): from metaseq.tasks import TASK_DATACLASS_REGISTRY migrate_registry( "task", args.task, TASK_DATACLASS_REGISTRY, args, overrides, deletes ) else: deletes.append("task") # these options will be set to "None" if they have not yet been migrated # so we can populate them with the entire flat args CORE_REGISTRIES = {"criterion", "optimizer", "lr_scheduler"} from metaseq.registry import REGISTRIES for k, v in REGISTRIES.items(): if hasattr(args, k): migrate_registry( k, getattr(args, k), v["dataclass_registry"], args, overrides, deletes, use_name_as_val=k not in CORE_REGISTRIES, ) else: deletes.append(k) no_dc = True if hasattr(args, "arch"): from metaseq.models import ARCH_MODEL_REGISTRY, ARCH_MODEL_NAME_REGISTRY if args.arch in ARCH_MODEL_REGISTRY: m_cls = ARCH_MODEL_REGISTRY[args.arch] dc = getattr(m_cls, "__dataclass", None) if dc is not None: m_name = ARCH_MODEL_NAME_REGISTRY[args.arch] overrides.append("model={}".format(m_name)) overrides.append("model._name={}".format(args.arch)) # override model params with those exist in args overrides.extend(_override_attr("model", dc, args)) no_dc = False if no_dc: deletes.append("model") return overrides, deletes def convert_namespace_to_omegaconf(args: Namespace) -> DictConfig: """Convert a flat argparse.Namespace to a structured DictConfig.""" # Here we are using field values provided in args to override counterparts inside config object overrides, deletes = override_module_args(args) # configs will be in metaseq/config after installation config_path = os.path.join("..", "config") GlobalHydra.instance().clear() with initialize(config_path=config_path): try: composed_cfg = compose("config", overrides=overrides) except Exception: logger.error("Error when composing. Overrides: " + str(overrides)) raise for k in deletes: composed_cfg[k] = None cfg = OmegaConf.create( OmegaConf.to_container(composed_cfg, resolve=True, enum_to_str=True) ) # hack to be able to set Namespace in dict config. this should be removed when we update to newer # omegaconf version that supports object flags, or when we migrate all existing models from omegaconf import _utils old_primitive = _utils.is_primitive_type _utils.is_primitive_type = lambda _: True if cfg.task is None and getattr(args, "task", None): cfg.task = Namespace(**vars(args)) from metaseq.tasks import TASK_REGISTRY _set_legacy_defaults(cfg.task, TASK_REGISTRY[args.task]) cfg.task._name = args.task if cfg.model is None and getattr(args, "arch", None): cfg.model = Namespace(**vars(args)) from metaseq.models import ARCH_MODEL_REGISTRY _set_legacy_defaults(cfg.model, ARCH_MODEL_REGISTRY[args.arch]) cfg.model._name = args.arch if cfg.optimizer is None and getattr(args, "optimizer", None): cfg.optimizer = Namespace(**vars(args)) from metaseq.optim import OPTIMIZER_REGISTRY _set_legacy_defaults(cfg.optimizer, OPTIMIZER_REGISTRY[args.optimizer]) cfg.optimizer._name = args.optimizer if cfg.lr_scheduler is None and getattr(args, "lr_scheduler", None): cfg.lr_scheduler = Namespace(**vars(args)) from metaseq.optim.lr_scheduler import LR_SCHEDULER_REGISTRY if args.lr_scheduler == "fixed": # hack since we don't want to call a "fixed" LR scheduler. logger.info("Overriding lr_scheduler config from fixed to inverse_sqrt") args.lr_scheduler = "inverse_sqrt" _set_legacy_defaults(cfg.lr_scheduler, LR_SCHEDULER_REGISTRY[args.lr_scheduler]) cfg.lr_scheduler._name = args.lr_scheduler if cfg.criterion is None and getattr(args, "criterion", None): cfg.criterion = Namespace(**vars(args)) from metaseq.criterions import CRITERION_REGISTRY _set_legacy_defaults(cfg.criterion, CRITERION_REGISTRY[args.criterion]) cfg.criterion._name = args.criterion _utils.is_primitive_type = old_primitive OmegaConf.set_struct(cfg, True) return cfg def populate_dataclass( dataclass: MetaseqDataclass, args: Namespace, ) -> MetaseqDataclass: for k in dataclass.__dataclass_fields__.keys(): if k.startswith("_"): # private member, skip continue if hasattr(args, k): setattr(dataclass, k, getattr(args, k)) return dataclass def overwrite_args_by_name(cfg: DictConfig, overrides: Dict[str, any]): # this will be deprecated when we get rid of argparse and model_overrides logic from metaseq.registry import REGISTRIES with open_dict(cfg): for k in cfg.keys(): # "k in cfg" will return false if its a "mandatory value (e.g. ???)" if k in cfg and isinstance(cfg[k], DictConfig): if k in overrides and isinstance(overrides[k], dict): for ok, ov in overrides[k].items(): if isinstance(ov, dict) and cfg[k][ok] is not None: overwrite_args_by_name(cfg[k][ok], ov) else: cfg[k][ok] = ov else: overwrite_args_by_name(cfg[k], overrides) elif k in cfg and isinstance(cfg[k], Namespace): for override_key, val in overrides.items(): setattr(cfg[k], override_key, val) elif k in overrides: if ( k in REGISTRIES and overrides[k] in REGISTRIES[k]["dataclass_registry"] ): cfg[k] = DictConfig( REGISTRIES[k]["dataclass_registry"][overrides[k]] ) overwrite_args_by_name(cfg[k], overrides) cfg[k]._name = overrides[k] else: cfg[k] = overrides[k] def merge_with_parent(dc: MetaseqDataclass, cfg: MetaseqDataclass): try: merged_cfg = OmegaConf.merge(dc, cfg) except ConfigKeyError: # Workaround for missing keys - reverse the merge direction, then # merge back in to the flipped merge # See https://github.com/fairinternal/fairseq-big-internal/issues/115#issuecomment-1073129691 flipped_merge = OmegaConf.merge(cfg, dc) merged_cfg = OmegaConf.merge(flipped_merge, cfg) # Logic from https://github.com/omry/omegaconf/issues/441#issuecomment-737558869 ? merged_cfg.__dict__["_parent"] = cfg.__dict__["_parent"] OmegaConf.set_struct(merged_cfg, True) return merged_cfg
flash_metaseq-main
metaseq/dataclass/utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import hashlib from queue import PriorityQueue import random class KeyedPriorityQueueCollection: """ Create a collection of priority queues that are ordered by a key. Used for grouping specific types of workers """ def __init__(self): self.queues = {} def put(self, key, item): """ :param key: key of the queue to put the item into :param item: item to add to the queue """ if key not in self.queues: self.queues[key] = PriorityQueue() self.queues[key].put(item) # TODO: this can be a max heap to avoid linear lookup def get_largest_queue_key(self): """ ### Returns the key of the queue with the most jobs """ if len(self.queues): return max(self.queues, key=lambda key: self.queues[key].qsize()) else: return None def get_largest_queue(self): """ ### Returns the queue with the most jobs """ key = self.get_largest_queue_key() if key: return self.queues[key] else: return None class PriorityQueueRingShardKeyable: """ Interface for ensuring that the put method has a method to invoke for getting a queue_key """ def queue_key( self, ) -> str: pass class PriorityQueueRingShard: """ Creates a hashed queue shard, with an added deskewing factor for avoiding hot keys (i.e. default settings on generation). The hashing algorithm uses either a consistent modulo for bucketing, or in the case of deskewing, there is the introduction of a deskew factor which is inconsistent but ensures even distribution. """ @staticmethod def key_from_dictionary(key_dict): """ :param key_dict: dictionary of keys and values to build shard key from """ return ":".join([f"{k}:{key_dict[k]}" for k in sorted(key_dict.keys())]) def __init__(self, num_shards=1, deskew_factor=1): """ :param num_shards: total number of shards to hash (i.e. number of workers) :param deskew_factor: number of virtual keys per shard. Reduces key skewing. """ self.num_shards = num_shards self.deskew_factor = deskew_factor self.deskewing = deskew_factor > 1 self.queue_shards = [ KeyedPriorityQueueCollection() for i in range(self.num_shards) ] def put(self, item: PriorityQueueRingShardKeyable): """ :param key: key of the queue to put the item into :param item: item to add to the queue """ key = item.queue_key() shard_index = self.get_shard_index_for_key(key) self.queue_shards[shard_index].put(key, item) def get_shard_index_for_key(self, key): """ ### hashing is deterministic except when deskewing is enabled. :param key: the key to be sharded. """ if self.deskewing: deskew_offset = random.randint(0, self.deskew_factor * self.num_shards) key = f"{deskew_offset}:{key}" return int(hashlib.sha1(key.encode("utf-8")).hexdigest(), 16) % self.num_shards
flash_metaseq-main
metaseq/service/queue.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import uuid import time from metaseq.service.constants import CHECKPOINT_LOCAL class OAIResponse: def __init__(self, results: list) -> None: self.results = results self.response_id = str(uuid.uuid4()) self.created = int(time.time()) def __dict__(self): return { "id": self.response_id, "object": "text_completion", "created": self.created, "model": CHECKPOINT_LOCAL, "choices": [ { "text": result["text"], "logprobs": { "tokens": result["tokens"], "token_logprobs": result["token_scores"], "text_offset": result["text_offset"], "top_logprobs": result["top_logprobs"], "finish_reason": "length", # TODO: implement this }, } for result in self.results ], }
flash_metaseq-main
metaseq/service/responses.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os MAX_SEQ_LEN = 2048 BATCH_SIZE = 2048 # silly high bc we dynamically batch by MAX_BATCH_TOKENS MAX_BATCH_TOKENS = 3072 DEFAULT_PORT = 6010 MODEL_PARALLEL = 8 TOTAL_WORLD_SIZE = 8 try: from metaseq_internal.constants import LOCAL_SSD, MODEL_SHARED_FOLDER except ModuleNotFoundError: # MODEL_SHARED_FOLDER should point to a shared drive (e.g. NFS) where the # checkpoints from S3 are stored. As an example: # MODEL_SHARED_FOLDER = "/example/175B/reshard_no_os" # $ ls /example/175B/reshard_no_os # reshard-model_part-0.pt # reshard-model_part-1.pt # reshard-model_part-2.pt # reshard-model_part-3.pt # reshard-model_part-4.pt # reshard-model_part-5.pt # reshard-model_part-6.pt # reshard-model_part-7.pt MODEL_SHARED_FOLDER = "" # LOCAL_SSD is optional, but it's assuming you have some sort of local # hard disk where we can cache a copy of the weights for faster loading. LOCAL_SSD = "" if not LOCAL_SSD: # don't use local cache LOCAL_SSD = MODEL_SHARED_FOLDER if not MODEL_SHARED_FOLDER: raise RuntimeError( "You must set the variables in metaseq.service.constants to launch the API." ) # tokenizer files BPE_MERGES = os.path.join(MODEL_SHARED_FOLDER, "gpt2-merges.txt") BPE_VOCAB = os.path.join(MODEL_SHARED_FOLDER, "gpt2-vocab.json") # where to find the raw files on nfs CHECKPOINT_FOLDER = os.path.join(MODEL_SHARED_FOLDER, "175B", "reshard_no_os") # where to store them on SSD for faster loading CHECKPOINT_LOCAL = os.path.join(LOCAL_SSD, "175B", "reshard_no_os", "reshard.pt") LAUNCH_ARGS = [ f"--model-parallel-size {MODEL_PARALLEL}", f"--distributed-world-size {TOTAL_WORLD_SIZE}", "--task language_modeling", f"--bpe-merges {BPE_MERGES}", f"--bpe-vocab {BPE_VOCAB}", "--bpe hf_byte_bpe", f"--merges-filename {BPE_MERGES}", # TODO(susanz): hack for getting interactive_hosted working on public repo f"--vocab-filename {BPE_VOCAB}", # TODO(susanz): hack for getting interactive_hosted working on public repo f"--path {CHECKPOINT_LOCAL}", "--beam 1 --nbest 1", "--distributed-port 13000", "--checkpoint-shard-count 1", "--use-sharded-state", f"--batch-size {BATCH_SIZE}", f"--buffer-size {BATCH_SIZE * MAX_SEQ_LEN}", f"--max-tokens {BATCH_SIZE * MAX_SEQ_LEN}", "/tmp", # required "data" argument. ]
flash_metaseq-main
metaseq/service/constants.py
# Copyright (c) Meta, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree.
flash_metaseq-main
metaseq/service/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import socket import logging import sys import os def normalize_newlines(s: str): """ normalizes new lines, i.e. '\r\n' to '\n' """ # note that web browsers send \r\n but our training data uses \n. return s.replace("\r\n", "\n").replace("\r", "\n") def get_my_ip(): """ returns ip / hostname of current host """ return socket.gethostbyname(socket.gethostname()) def encode_fn(generator, x): """ encode a given value to list of bpe tokens """ assert generator.bpe is not None return generator.bpe.bpe.encode(normalize_newlines(x)).ids def build_logger(): logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) logger = logging.getLogger("metaseq_cli.interactive") return logger
flash_metaseq-main
metaseq/service/utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from metaseq.service.queue import PriorityQueueRingShard from dataclasses import dataclass from typing import Any import queue import math @dataclass class WorkItem: """ Sortable entry for the batching PriorityQueue. """ cost: int # lower is serviced first uid: int # unique id to map back to multi-input requests return_queue: queue.Queue data: Any # for sorting / priority queue def __lt__(self, other: "WorkItem"): return (self.cost, self.uid) < (other.cost, other.uid) # for sorting / priority queue def __eq__(self, other: "WorkItem"): return (self.cost, self.uid) == (other.cost, other.uid) def queue_key(self): return PriorityQueueRingShard.key_from_dictionary( { "temperature": self.data["temperature"], "top_p": self.data["top_p"], "n": self.data["n"], } ) @staticmethod def generate_worker(encoded_prompt, batch_queue, **generation_args): request_object = {"input": encoded_prompt, **generation_args} ret_queue = queue.Queue() enc_len = len(encoded_prompt) cost = enc_len + int( math.ceil((enc_len / 10) ** 2) ) # account for the cost of both linear and attention layers batch_queue.put(WorkItem(cost, 0, ret_queue, request_object)) _, result = ret_queue.get() return result
flash_metaseq-main
metaseq/service/workers.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math from typing import Dict, Optional, Tuple import torch import torch.nn.functional as F from torch import Tensor, nn from torch.nn import Parameter from metaseq import utils from metaseq.incremental_decoding_utils import with_incremental_state from metaseq.modules.dropout import Dropout from metaseq.modules.linear import Linear @with_incremental_state class MultiheadAttention(nn.Module): """Multi-headed attention. See "Attention Is All You Need" for more details. """ def __init__( self, embed_dim, num_heads, kdim=None, vdim=None, dropout=0.0, bias=True, add_bias_kv=False, add_zero_attn=False, self_attention=False, encoder_decoder_attention=False, initialize_params_on_gpu=False, ): super().__init__() self.embed_dim = embed_dim self.kdim = kdim if kdim is not None else embed_dim self.vdim = vdim if vdim is not None else embed_dim self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim self.num_heads = num_heads self.dropout_module = Dropout(dropout, module_name=self.__class__.__name__) self.head_dim = embed_dim // num_heads assert ( self.head_dim * num_heads == self.embed_dim ), "embed_dim must be divisible by num_heads" self.scaling = self.head_dim**-0.5 self.self_attention = self_attention self.encoder_decoder_attention = encoder_decoder_attention assert not self.self_attention or self.qkv_same_dim, ( "Self-attention requires query, key and " "value to be of the same size" ) random_state = torch.get_rng_state() # random_state_cuda = torch.cuda.get_rng_state() self.k_proj = Linear( self.kdim, embed_dim, bias=bias, initialize_params_on_gpu=initialize_params_on_gpu, ) self.v_proj = Linear( self.vdim, embed_dim, bias=bias, initialize_params_on_gpu=initialize_params_on_gpu, ) self.q_proj = Linear( embed_dim, embed_dim, bias=bias, initialize_params_on_gpu=initialize_params_on_gpu, ) self.out_proj = Linear( embed_dim, embed_dim, bias=bias, initialize_params_on_gpu=initialize_params_on_gpu, ) torch.set_rng_state(random_state) if add_bias_kv: self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim)) self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim)) else: self.bias_k = self.bias_v = None self.add_zero_attn = add_zero_attn self.reset_parameters() self.onnx_trace = False def prepare_for_onnx_export_(self): self.onnx_trace = True def reset_parameters(self): def _init_method_bias(weight, bias): fan_in, _ = nn.init._calculate_fan_in_and_fan_out(weight) bound = 1 / math.sqrt(fan_in) nn.init.uniform_(bias, -bound, bound) if self.qkv_same_dim: # Empirically observed the convergence to be much better with # the scaled initialization nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2)) nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2)) nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2)) _init_method_bias(self.k_proj.weight, self.k_proj.bias) _init_method_bias(self.v_proj.weight, self.v_proj.bias) _init_method_bias(self.q_proj.weight, self.q_proj.bias) else: nn.init.xavier_uniform_(self.k_proj.weight) nn.init.xavier_uniform_(self.v_proj.weight) nn.init.xavier_uniform_(self.q_proj.weight) nn.init.xavier_uniform_(self.out_proj.weight) if self.out_proj.bias is not None: nn.init.constant_(self.out_proj.bias, 0.0) if self.bias_k is not None: nn.init.xavier_normal_(self.bias_k) if self.bias_v is not None: nn.init.xavier_normal_(self.bias_v) def forward( self, query, key: Optional[Tensor], value: Optional[Tensor], key_padding_mask: Optional[Tensor] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, need_weights: bool = True, static_kv: bool = False, attn_mask: Optional[Tensor] = None, before_softmax: bool = False, need_head_weights: bool = False, ) -> Tuple[Tensor, Optional[Tensor]]: """Input shape: Time x Batch x Channel Args: key_padding_mask (ByteTensor, optional): mask to exclude keys that are pads, of shape `(batch, src_len)`, where padding elements are indicated by 1s. need_weights (bool, optional): return the attention weights, averaged over heads (default: False). attn_mask (ByteTensor, optional): typically used to implement causal attention, where the mask prevents the attention from looking forward in time (default: None). before_softmax (bool, optional): return the raw attention weights and values before the attention softmax. need_head_weights (bool, optional): return the attention weights for each head. Implies *need_weights*. Default: return the average attention weights over all heads. """ if need_head_weights: need_weights = True tgt_len, bsz, embed_dim = query.size() src_len = tgt_len assert embed_dim == self.embed_dim, f"query dim {embed_dim} != {self.embed_dim}" assert list(query.size()) == [tgt_len, bsz, embed_dim] if key is not None: src_len, key_bsz, _ = key.size() if not torch.jit.is_scripting(): assert key_bsz == bsz assert value is not None assert src_len, bsz == value.shape[:2] if ( not self.onnx_trace and incremental_state is None and not static_kv # A workaround for quantization to work. Otherwise JIT compilation # treats bias in linear module as method. and not torch.jit.is_scripting() ): assert key is not None and value is not None return F.multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, torch.empty([0]), torch.cat((self.q_proj.bias, self.k_proj.bias, self.v_proj.bias)), self.bias_k, self.bias_v, self.add_zero_attn, self.dropout_module.p, self.out_proj.weight, self.out_proj.bias, self.training or self.dropout_module.apply_during_inference, key_padding_mask, need_weights, attn_mask, use_separate_proj_weight=True, q_proj_weight=self.q_proj.weight, k_proj_weight=self.k_proj.weight, v_proj_weight=self.v_proj.weight, ) if incremental_state is not None: saved_state = self._get_input_buffer(incremental_state) if saved_state is not None and "prev_key" in saved_state: # previous time steps are cached - no need to recompute # key and value if they are static if static_kv: assert self.encoder_decoder_attention and not self.self_attention key = value = None else: saved_state = None if self.self_attention: q = self.q_proj(query) k = self.k_proj(query) v = self.v_proj(query) elif self.encoder_decoder_attention: # encoder-decoder attention q = self.q_proj(query) if key is None: assert value is None k = v = None else: k = self.k_proj(key) v = self.v_proj(key) else: assert key is not None and value is not None q = self.q_proj(query) k = self.k_proj(key) v = self.v_proj(value) q *= self.scaling if self.bias_k is not None: assert self.bias_v is not None k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)]) v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)]) if attn_mask is not None: attn_mask = torch.cat( [attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1 ) if key_padding_mask is not None: key_padding_mask = torch.cat( [ key_padding_mask, key_padding_mask.new_zeros(key_padding_mask.size(0), 1), ], dim=1, ) q = ( q.contiguous() .view(tgt_len, bsz * self.num_heads, self.head_dim) .transpose(0, 1) ) if k is not None: k = ( k.contiguous() .view(-1, bsz * self.num_heads, self.head_dim) .transpose(0, 1) ) if v is not None: v = ( v.contiguous() .view(-1, bsz * self.num_heads, self.head_dim) .transpose(0, 1) ) if saved_state is not None: # saved states are stored with shape (bsz, num_heads, seq_len, head_dim) if "prev_key" in saved_state: _prev_key = saved_state["prev_key"] assert _prev_key is not None prev_key = _prev_key.view(bsz * self.num_heads, -1, self.head_dim) if static_kv: k = prev_key else: assert k is not None k = torch.cat([prev_key, k], dim=1) src_len = k.size(1) if "prev_value" in saved_state: _prev_value = saved_state["prev_value"] assert _prev_value is not None prev_value = _prev_value.view(bsz * self.num_heads, -1, self.head_dim) if static_kv: v = prev_value else: assert v is not None v = torch.cat([prev_value, v], dim=1) prev_key_padding_mask: Optional[Tensor] = None if "prev_key_padding_mask" in saved_state: prev_key_padding_mask = saved_state["prev_key_padding_mask"] assert k is not None and v is not None key_padding_mask = MultiheadAttention._append_prev_key_padding_mask( key_padding_mask=key_padding_mask, prev_key_padding_mask=prev_key_padding_mask, batch_size=bsz, src_len=k.size(1), static_kv=static_kv, ) saved_state["prev_key"] = k.view(bsz, self.num_heads, -1, self.head_dim) saved_state["prev_value"] = v.view(bsz, self.num_heads, -1, self.head_dim) saved_state["prev_key_padding_mask"] = key_padding_mask # In this branch incremental_state is never None assert incremental_state is not None incremental_state = self._set_input_buffer(incremental_state, saved_state) assert k is not None assert k.size(1) == src_len # This is part of a workaround to get around fork/join parallelism # not supporting Optional types. if key_padding_mask is not None and key_padding_mask.dim() == 0: key_padding_mask = None if key_padding_mask is not None: assert key_padding_mask.size(0) == bsz assert key_padding_mask.size(1) == src_len if self.add_zero_attn: assert v is not None src_len += 1 k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1) v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1) if attn_mask is not None: attn_mask = torch.cat( [attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1 ) if key_padding_mask is not None: key_padding_mask = torch.cat( [ key_padding_mask, torch.zeros(key_padding_mask.size(0), 1).type_as( key_padding_mask ), ], dim=1, ) attn_weights = torch.bmm(q, k.transpose(1, 2)) attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz) assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len] if attn_mask is not None: # Replace any non-finite values with finite equivalents, since otherwise # we may get NaN when adding attn_mask or computing softmax. attn_weights = torch.nan_to_num(attn_weights) attn_mask = attn_mask.unsqueeze(0) if self.onnx_trace: attn_mask = attn_mask.repeat(attn_weights.size(0), 1, 1) attn_weights += attn_mask if key_padding_mask is not None: # don't attend to padding symbols attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.masked_fill( key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), float("-inf"), ) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if before_softmax: return attn_weights, v attn_weights_float = utils.softmax( attn_weights, dim=-1, onnx_trace=self.onnx_trace ) attn_weights = attn_weights_float.type_as(attn_weights) attn_probs = self.dropout_module(attn_weights) assert v is not None attn = torch.bmm(attn_probs, v) assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim] if self.onnx_trace and attn.size(1) == 1: # when ONNX tracing a single decoder step (sequence length == 1) # the transpose is a no-op copy before view, thus unnecessary attn = attn.contiguous().view(tgt_len, bsz, embed_dim) else: attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) attn = self.out_proj(attn) attn_weights: Optional[Tensor] = None if need_weights: attn_weights = attn_weights_float.view( bsz, self.num_heads, tgt_len, src_len ).transpose(1, 0) if not need_head_weights: # average attention weights over heads attn_weights = attn_weights.mean(dim=0) return attn, attn_weights @staticmethod def _append_prev_key_padding_mask( key_padding_mask: Optional[Tensor], prev_key_padding_mask: Optional[Tensor], batch_size: int, src_len: int, static_kv: bool, ) -> Optional[Tensor]: # saved key padding masks have shape (bsz, seq_len) if prev_key_padding_mask is not None and static_kv: new_key_padding_mask = prev_key_padding_mask elif prev_key_padding_mask is not None and key_padding_mask is not None: new_key_padding_mask = torch.cat( [prev_key_padding_mask.float(), key_padding_mask.float()], dim=1 ) # During incremental decoding, as the padding token enters and # leaves the frame, there will be a time when prev or current # is None elif prev_key_padding_mask is not None: if src_len > prev_key_padding_mask.size(1): filler = torch.zeros( (batch_size, src_len - prev_key_padding_mask.size(1)), device=prev_key_padding_mask.device, ) new_key_padding_mask = torch.cat( [prev_key_padding_mask.float(), filler.float()], dim=1 ) else: new_key_padding_mask = prev_key_padding_mask.float() elif key_padding_mask is not None: if src_len > key_padding_mask.size(1): filler = torch.zeros( (batch_size, src_len - key_padding_mask.size(1)), device=key_padding_mask.device, ) new_key_padding_mask = torch.cat( [filler.float(), key_padding_mask.float()], dim=1 ) else: new_key_padding_mask = key_padding_mask.float() else: new_key_padding_mask = prev_key_padding_mask return new_key_padding_mask @torch.jit.export def reorder_incremental_state( self, incremental_state: Dict[str, Dict[str, Optional[Tensor]]], new_order: Tensor, ): """Reorder buffered internal state (for incremental generation).""" input_buffer = self._get_input_buffer(incremental_state) if input_buffer is not None: for k in input_buffer.keys(): input_buffer_k = input_buffer[k] if input_buffer_k is not None: if self.encoder_decoder_attention and input_buffer_k.size( 0 ) == new_order.size(0): break input_buffer[k] = input_buffer_k.index_select(0, new_order) incremental_state = self._set_input_buffer(incremental_state, input_buffer) return incremental_state def _get_input_buffer( self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] ) -> Dict[str, Optional[Tensor]]: result = self.get_incremental_state(incremental_state, "attn_state") if result is not None: return result else: empty_result: Dict[str, Optional[Tensor]] = {} return empty_result def _set_input_buffer( self, incremental_state: Dict[str, Dict[str, Optional[Tensor]]], buffer: Dict[str, Optional[Tensor]], ): return self.set_incremental_state(incremental_state, "attn_state", buffer) def apply_sparse_mask(self, attn_weights, tgt_len: int, src_len: int, bsz: int): return attn_weights def upgrade_state_dict_named(self, state_dict, name): prefix = name + "." if name != "" else "" items_to_add = {} keys_to_remove = [] for k in state_dict.keys(): if k.endswith(prefix + "in_proj_weight"): # in_proj_weight used to be q + k + v with same dimensions dim = int(state_dict[k].shape[0] / 3) items_to_add[prefix + "q_proj.weight"] = state_dict[k][:dim] items_to_add[prefix + "k_proj.weight"] = state_dict[k][dim : 2 * dim] items_to_add[prefix + "v_proj.weight"] = state_dict[k][2 * dim :] keys_to_remove.append(k) k_bias = prefix + "in_proj_bias" if k_bias in state_dict.keys(): dim = int(state_dict[k].shape[0] / 3) items_to_add[prefix + "q_proj.bias"] = state_dict[k_bias][:dim] items_to_add[prefix + "k_proj.bias"] = state_dict[k_bias][ dim : 2 * dim ] items_to_add[prefix + "v_proj.bias"] = state_dict[k_bias][2 * dim :] keys_to_remove.append(prefix + "in_proj_bias") for k in keys_to_remove: del state_dict[k] for key, value in items_to_add.items(): state_dict[key] = value
flash_metaseq-main
metaseq/modules/multihead_attention.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Dict, Optional import torch.nn as nn import torch.nn.functional as F from torch import Tensor from metaseq import utils class LearnedPositionalEmbedding(nn.Embedding): """ This module learns positional embeddings up to a fixed maximum size. Padding ids are ignored by either offsetting based on padding_idx or by setting padding_idx to None and ensuring that the appropriate position ids are passed to the forward function. """ def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int): super().__init__(num_embeddings, embedding_dim, padding_idx) self.onnx_trace = False if self.padding_idx is not None: self.max_positions = self.num_embeddings - self.padding_idx - 1 else: self.max_positions = self.num_embeddings def forward( self, input: Tensor, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, positions: Optional[Tensor] = None, ): """Input is expected to be of size [bsz x seqlen].""" assert (positions is None) or ( self.padding_idx is None ), "If positions is pre-computed then padding_idx should not be set." # we cannot use incremental state here because we must be aware of # padding. if positions is None: positions = utils.make_positions( input, self.padding_idx, onnx_trace=self.onnx_trace ) return F.embedding( positions, self.weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse, )
flash_metaseq-main
metaseq/modules/learned_positional_embedding.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. def checkpoint_wrapper(module, *args, **kwargs): try: from metaseq.modules.checkpoint_activation_wrapper.checkpoint_activations import ( checkpoint_wrapper as _checkpoint_wrapper, ) except ImportError: raise ImportError( "Cannot find fairscale.nn.misc.checkpoint_activations. " "Please install fairscale with: pip install fairscale" ) module = _checkpoint_wrapper(module, *args, **kwargs) if hasattr(module, "extra_repr"): orig_extra_repr = module.extra_repr else: orig_extra_repr = None def extra_repr(): return ( f"[checkpointed] {orig_extra_repr()}" if orig_extra_repr is not None else "" ) module.extra_repr = extra_repr return module
flash_metaseq-main
metaseq/modules/checkpoint_activations.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch from torch import Tensor from torch.nn import Module from torch.nn import functional as F from torch.nn import init from torch.nn.parameter import Parameter class Linear(Module): """ Exact same as pytorch nn.Linear but with option to initialize weight and bias directly on GPU """ __constants__ = ["in_features", "out_features"] in_features: int out_features: int weight: Tensor def __init__( self, in_features: int, out_features: int, bias: bool = True, initialize_params_on_gpu: bool = False, ) -> None: super(Linear, self).__init__() self.in_features = in_features self.out_features = out_features device = torch.cuda.current_device() if initialize_params_on_gpu else None dtype = torch.half if initialize_params_on_gpu else torch.float self.weight = Parameter( torch.empty(out_features, in_features, device=device, dtype=dtype) ) if bias: self.bias = Parameter(torch.empty(out_features, device=device, dtype=dtype)) else: self.register_parameter("bias", None) self.reset_parameters() def reset_parameters(self) -> None: init.kaiming_uniform_(self.weight, a=math.sqrt(5)) if self.bias is not None: fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight) bound = 1 / math.sqrt(fan_in) init.uniform_(self.bias, -bound, bound) def forward(self, input: Tensor) -> Tensor: return F.linear(input, self.weight, self.bias) def extra_repr(self) -> str: return "in_features={}, out_features={}, bias={}".format( self.in_features, self.out_features, self.bias is not None )
flash_metaseq-main
metaseq/modules/linear.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ See "Gaussian Error Linear Units (GELUs)" by Dan Hendrycks and Kevin Gimpel with the corresponding GitHub repo: https://github.com/hendrycks/GELUs """ import math import torch def gelu_accurate(x): if not hasattr(gelu_accurate, "_a"): gelu_accurate._a = math.sqrt(2 / math.pi) return ( 0.5 * x * (1 + torch.tanh(gelu_accurate._a * (x + 0.044715 * torch.pow(x, 3)))) ) def gelu(x: torch.Tensor) -> torch.Tensor: return torch.nn.functional.gelu(x.float()).type_as(x)
flash_metaseq-main
metaseq/modules/gelu.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """isort:skip_file""" from .dropout import Dropout from .gelu import gelu, gelu_accurate from .layer_norm import Fp32LayerNorm, LayerNorm from .learned_positional_embedding import LearnedPositionalEmbedding from .multihead_attention import MultiheadAttention from .positional_embedding import PositionalEmbedding from .sinusoidal_positional_embedding import SinusoidalPositionalEmbedding from .transformer_layer import TransformerDecoderLayer, TransformerEncoderLayer __all__ = [ "Dropout", "Fp32LayerNorm", "gelu", "gelu_accurate", "LayerNorm", "LearnedPositionalEmbedding", "MultiheadAttention", "PositionalEmbedding", "SinusoidalPositionalEmbedding", "TransformerDecoderLayer", "TransformerEncoderLayer", ]
flash_metaseq-main
metaseq/modules/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import os import torch logger = logging.getLogger(__name__) try: from megatron.model.fused_bias_gelu import bias_gelu_impl has_fused_bias_gelu = True except ImportError: has_fused_bias_gelu = False def load_megatron_fused_kernel(): """Compile and load fused kernels from Megatron.""" if getattr(load_megatron_fused_kernel, "has_run", False): return load_megatron_fused_kernel.has_run = True from megatron import fused_kernels from argparse import Namespace if not torch.distributed.is_initialized(): args = Namespace(rank=0, masked_softmax_fusion=True) fused_kernels.load(args) return global_rank = torch.distributed.get_rank() args = Namespace(rank=global_rank, masked_softmax_fusion=True) # Always build on rank zero first. if global_rank == 0: build_dir = os.path.join(os.path.dirname(fused_kernels.__file__), "build") logger.info( "Compiling and loading fused kernels\n\n" "NOTE: If this hangs here, your megatron fused kernels may be corrupted. " "This can happen if a previous job is interrupted during a build. " "In that case, delete the megatron build directory and relaunch training. " f"The megatron build directory is located at: {build_dir}" ) fused_kernels.load(args) torch.distributed.barrier() else: torch.distributed.barrier() fused_kernels.load(args) # Simple barrier to make sure all ranks have passed the # compilation phase successfully before moving on to the # rest of the program. We think this might ensure that # the lock is released. torch.distributed.barrier() logger.info("Done with compiling and loading fused kernels.") def fused_bias_gelu(x, bias): if not has_fused_bias_gelu: raise ImportError( "Cannot find fused Megatron kernels, please install Megatron from: " "github.com/NVIDIA/Megatron-LM" ) load_megatron_fused_kernel() return bias_gelu_impl(x, bias)
flash_metaseq-main
metaseq/modules/fused_bias_gelu.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Dict, List, Optional import torch import torch.nn as nn import torch.nn.functional as F from torch import Tensor from metaseq import distributed_utils as dist_utils, utils from metaseq.modules import gelu, MultiheadAttention from metaseq.modules.dropout import Dropout from metaseq.modules.fused_bias_gelu import ( fused_bias_gelu, has_fused_bias_gelu, load_megatron_fused_kernel, ) from metaseq.modules.layer_norm import LayerNorm, SyncedModelParallelFusedLayerNorm from metaseq.modules.linear import Linear def _linear(x, weight, bias=None): return F.linear(x, weight, bias) def _ffn(x, fc1, activation_fn, fc2, dropout_module, ffn_ln=None): x_shape = x.shape x = x.reshape(-1, x.size(-1)) # apex fused bias gelu is not yet supported with megatron model parallel # TODO [namangoyal]: Find better way to do this model_parallel = not isinstance(fc1, nn.Linear) and not isinstance(fc1, Linear) if model_parallel and activation_fn == gelu and has_fused_bias_gelu: # here, we do the bias computation outside fc1 and fc2 to take advantage of fused_bias_gelu assert fc1.skip_bias_add x, bias_fc1 = fc1(x) x = fused_bias_gelu(x, bias_fc1) if ffn_ln is not None: x = ffn_ln(x) x, bias_fc2 = fc2(x) x = x + bias_fc2 elif model_parallel: # here, we do the bias computation inside fc1 and fc2 AND gather_output x, _ = fc1(x) x = activation_fn(x) if ffn_ln is not None: x = ffn_ln(x) x, _ = fc2(x) elif has_fused_bias_gelu and activation_fn == gelu: x = _linear(x, fc1.weight) x = fused_bias_gelu(x, fc1.bias) if ffn_ln is not None: x = ffn_ln(x) x = _linear(x, fc2.weight, fc2.bias) else: x = fc1(x) x = activation_fn(x) if ffn_ln is not None: x = ffn_ln(x) x = fc2(x) x = x.view(x_shape) x = dropout_module(x) return x class FeedForwardNetwork(nn.Module): """ Feed Forward Network layer in the Transformer model """ def __init__(self, args, embed_dim, ffn_dim, dropout_module=None): super().__init__() self.embed_dim = embed_dim self.activation_fn = utils.get_activation_fn( activation=str(args.activation_fn) if getattr(args, "activation_fn", None) is not None else "relu" ) self.fc1 = Linear(self.embed_dim, ffn_dim) self.fc2 = Linear(ffn_dim, self.embed_dim) self.dropout_module = ( Dropout(args.dropout, module_name=self.__class__.__name__) if not dropout_module else dropout_module ) def forward(self, x): return _ffn( x, fc1=self.fc1, activation_fn=self.activation_fn, fc2=self.fc2, dropout_module=self.dropout_module, ) class TransformerEncoderLayer(nn.Module): """Encoder layer block. In the original paper each operation (multi-head attention or FFN) is postprocessed with: `dropout -> add residual -> layernorm`. In the tensor2tensor code they suggest that learning is more robust when preprocessing each layer with layernorm and postprocessing with: `dropout -> add residual`. We default to the approach in the paper, but the tensor2tensor approach can be enabled by setting *args.encoder_normalize_before* to ``True``. Args: args (argparse.Namespace): parsed command-line arguments """ def __init__(self, args): super().__init__() self.args = args self.embed_dim = args.encoder_embed_dim self.self_attn = self.build_self_attention(self.embed_dim, args) self.self_attn_layer_norm = LayerNorm(self.embed_dim) self.dropout_module = Dropout(args.dropout, module_name=self.__class__.__name__) self.normalize_before = args.encoder_normalize_before ffn_dim = args.encoder_ffn_embed_dim self.attn_ln = ( LayerNorm(self.embed_dim) if getattr(args, "scale_attn", False) else None ) self.activation_fn = utils.get_activation_fn( activation=getattr(args, "activation_fn", "relu") or "relu" ) self.fc1 = Linear(self.embed_dim, ffn_dim) self.fc2 = Linear(ffn_dim, self.embed_dim) self.final_layer_norm = LayerNorm(self.embed_dim) def build_self_attention(self, embed_dim, args): return MultiheadAttention( embed_dim, args.encoder_attention_heads, dropout=args.attention_dropout, self_attention=True, ) def residual_connection(self, x, residual): return residual + x def upgrade_state_dict_named(self, state_dict, name): """ Rename layer norm states from `...layer_norms.0.weight` to `...self_attn_layer_norm.weight` and `...layer_norms.1.weight` to `...final_layer_norm.weight` """ layer_norm_map = {"0": "self_attn_layer_norm", "1": "final_layer_norm"} for old, new in layer_norm_map.items(): for m in ("weight", "bias"): k = "{}.layer_norms.{}.{}".format(name, old, m) if k in state_dict: state_dict["{}.{}.{}".format(name, new, m)] = state_dict[k] del state_dict[k] def forward( self, x, encoder_padding_mask: Optional[Tensor], attn_mask: Optional[Tensor] = None, ): """ Args: x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)` encoder_padding_mask (ByteTensor): binary ByteTensor of shape `(batch, seq_len)` where padding elements are indicated by ``1``. attn_mask (ByteTensor): binary tensor of shape `(tgt_len, src_len)`, where `tgt_len` is the length of output and `src_len` is the length of input, though here both are equal to `seq_len`. `attn_mask[tgt_i, src_j] = 1` means that when calculating the embedding for `tgt_i`, we exclude (mask out) `src_j`. This is useful for strided self-attention. Returns: encoded output of shape `(seq_len, batch, embed_dim)` """ # anything in original attn_mask = 1, becomes -1e8 # anything in original attn_mask = 0, becomes 0 # Note that we cannot use -inf here, because at some edge cases, # the attention weight (before softmax) for some padded element in query # will become -inf, which results in NaN in model parameters if attn_mask is not None: attn_mask = attn_mask.masked_fill(attn_mask.to(torch.bool), -1e8) residual = x if self.normalize_before: x = self.self_attn_layer_norm(x) x, _ = self.self_attn( query=x, key=x, value=x, key_padding_mask=encoder_padding_mask, need_weights=False, attn_mask=attn_mask, ) x = self.dropout_module(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.self_attn_layer_norm(x) residual = x if self.normalize_before: x = self.final_layer_norm(x) x = _ffn( x, self.fc1, self.activation_fn, self.fc2, self.dropout_module, ffn_ln=self.ffn_layernorm, ) l_aux = None x = self.residual_connection(x, residual) if not self.normalize_before: x = self.final_layer_norm(x) return x, l_aux class TransformerDecoderLayer(nn.Module): """Decoder layer block. In the original paper each operation (multi-head attention, encoder attention or FFN) is postprocessed with: `dropout -> add residual -> layernorm`. In the tensor2tensor code they suggest that learning is more robust when preprocessing each layer with layernorm and postprocessing with: `dropout -> add residual`. We default to the approach in the paper, but the tensor2tensor approach can be enabled by setting *args.decoder_normalize_before* to ``True``. Args: args (argparse.Namespace): parsed command-line arguments no_encoder_attn (bool, optional): whether to attend to encoder outputs (default: False). """ def __init__( self, args, no_encoder_attn=False, add_bias_kv=False, add_zero_attn=False, ): super().__init__() load_megatron_fused_kernel() self.args = args self.embed_dim = args.decoder_embed_dim self.dropout_module = Dropout(args.dropout, module_name=self.__class__.__name__) self.cross_self_attention = getattr(args, "cross_self_attention", False) self.attn_ln = ( LayerNorm(self.embed_dim) if getattr(args, "scale_attn", False) else None ) self.self_attn = self.build_self_attention( self.embed_dim, args, add_bias_kv=add_bias_kv, add_zero_attn=add_zero_attn, ) self.normalize_before = args.decoder_normalize_before # use layerNorm rather than FusedLayerNorm for exporting. # char_inputs can be used to determint this. # TODO remove this once we update apex with the fix export = getattr(args, "char_inputs", False) initialize_params_on_gpu = getattr( args, "tensor_parallel_init_model_on_gpu", False ) if initialize_params_on_gpu and self.attn_ln is not None: self.attn_ln = utils.floating_point_precision_convertor( self.attn_ln.cuda(), fp16=getattr(args, "fp16", False), memory_efficient_fp16=getattr(args, "memory_efficient_fp16", False), bf16=getattr(args, "bf16", False), ) self.nh = args.decoder_attention_heads self.head_dim = int(self.embed_dim / self.nh) scale_heads = getattr(args, "scale_heads", False) self.c_attn = None if scale_heads: if initialize_params_on_gpu: self.c_attn = nn.Parameter( torch.ones((self.nh,), dtype=torch.float16).cuda(), requires_grad=True, ) else: self.c_attn = nn.Parameter(torch.ones((self.nh,)), requires_grad=True) self.self_attn_layer_norm = LayerNorm(self.embed_dim, export=export) if initialize_params_on_gpu: self.self_attn_layer_norm = utils.floating_point_precision_convertor( self.self_attn_layer_norm.cuda(), fp16=getattr(args, "fp16", False), memory_efficient_fp16=getattr(args, "memory_efficient_fp16", False), bf16=getattr(args, "bf16", False), ) if no_encoder_attn: self.encoder_attn = None self.encoder_attn_layer_norm = None else: self.encoder_attn = self.build_encoder_attention(self.embed_dim, args) self.encoder_attn_layer_norm = LayerNorm(self.embed_dim, export=export) if initialize_params_on_gpu: self.encoder_attn_layer_norm = utils.floating_point_precision_convertor( self.encoder_attn_layer_norm.cuda(), fp16=getattr(args, "fp16", False), memory_efficient_fp16=getattr(args, "memory_efficient_fp16", False), bf16=getattr(args, "bf16", False), ) ffn_dim = args.decoder_ffn_embed_dim self.activation_fn = utils.get_activation_fn( activation=str(args.activation_fn) if getattr(args, "activation_fn", None) is not None else "relu" ) # separate ffn_ln args.model_parallel_size mp_rank = ( dist_utils.get_model_parallel_rank() if torch.distributed.is_initialized() else None ) self.ffn_layernorm = None if getattr(args, "scale_fc", False): if args.model_parallel_size > 1: if not getattr(args, "sync_ln_variance", False): self.ffn_layernorm = LayerNorm(ffn_dim // args.model_parallel_size) else: self.ffn_layernorm = SyncedModelParallelFusedLayerNorm( ffn_dim, args.model_parallel_size, mp_rank=mp_rank, initialize_params_on_gpu=initialize_params_on_gpu, ) else: self.ffn_layernorm = LayerNorm(ffn_dim) if initialize_params_on_gpu: self.ffn_layernorm = utils.floating_point_precision_convertor( self.ffn_layernorm.cuda(), fp16=getattr(args, "fp16", False), memory_efficient_fp16=getattr( args, "memory_efficient_fp16", False ), bf16=getattr(args, "bf16", False), ) self.skip_bias_add = (self.activation_fn == gelu) and has_fused_bias_gelu self.fc1 = self.build_fc1( self.embed_dim, ffn_dim, initialize_params_on_gpu=initialize_params_on_gpu, full_megatron_init=getattr(args, "full_megatron_init", False), megatron_init_sigma=getattr(args, "megatron_init_sigma", 0.006), dtype=self._get_model_init_dtype(), ) self.fc2 = self.build_fc2( ffn_dim, self.embed_dim, initialize_params_on_gpu=initialize_params_on_gpu, full_megatron_init=getattr(args, "full_megatron_init", False), megatron_init_sigma=getattr(args, "megatron_init_sigma", 0.006), num_layers=args.decoder_layers, dtype=self._get_model_init_dtype(), ) self.final_layer_norm = LayerNorm(self.embed_dim, export=export) if initialize_params_on_gpu: self.final_layer_norm = utils.floating_point_precision_convertor( self.final_layer_norm.cuda(), fp16=getattr(args, "fp16", False), memory_efficient_fp16=getattr(args, "memory_efficient_fp16", False), bf16=getattr(args, "bf16", False), ) self.need_attn = True self.onnx_trace = False self.args = args def _get_model_init_dtype(self): if getattr(self.args, "memory_efficient_fp16", False): return torch.bfloat16 if getattr(self.args, "bf16", False) else torch.half return torch.float32 def build_fc1( self, input_dim, output_dim, initialize_params_on_gpu=False, **unused_args ): return Linear( input_dim, output_dim, initialize_params_on_gpu=initialize_params_on_gpu ) def build_fc2( self, input_dim, output_dim, initialize_params_on_gpu=False, **unused_args ): return Linear( input_dim, output_dim, initialize_params_on_gpu=initialize_params_on_gpu ) def build_self_attention( self, embed_dim, args, add_bias_kv=False, add_zero_attn=False, ): return MultiheadAttention( embed_dim, args.decoder_attention_heads, dropout=args.attention_dropout, add_bias_kv=add_bias_kv, add_zero_attn=add_zero_attn, self_attention=not getattr(args, "cross_self_attention", False), initialize_params_on_gpu=getattr( args, "tensor_parallel_init_model_on_gpu", False ), ) def build_encoder_attention(self, embed_dim, args): return MultiheadAttention( embed_dim, args.decoder_attention_heads, kdim=getattr(args, "encoder_embed_dim", None), vdim=getattr(args, "encoder_embed_dim", None), dropout=args.attention_dropout, encoder_decoder_attention=True, initialize_params_on_gpu=getattr( args, "tensor_parallel_init_model_on_gpu", False ), ) def prepare_for_onnx_export_(self): self.onnx_trace = True def residual_connection(self, x, residual): return residual + x def forward_attention( self, query, key, value, residual, key_padding_mask=None, incremental_state=None, need_weights=False, attn_mask=None, ): x, attn = self.self_attn( query=query, key=key, value=value, key_padding_mask=key_padding_mask, incremental_state=incremental_state, need_weights=need_weights, attn_mask=attn_mask, ) if self.c_attn is not None: tgt_len, bsz = x.size(0), x.size(1) x = x.view(tgt_len, bsz, self.nh, self.head_dim) x = torch.einsum("tbhd,h->tbhd", x, self.c_attn) x = x.reshape(tgt_len, bsz, self.embed_dim) x = self.dropout_module(x) if self.attn_ln is not None: x = self.attn_ln(x) return self.residual_connection(x, residual), attn def forward( self, x, encoder_out: Optional[torch.Tensor] = None, encoder_padding_mask: Optional[torch.Tensor] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, prev_self_attn_state: Optional[List[torch.Tensor]] = None, prev_attn_state: Optional[List[torch.Tensor]] = None, self_attn_mask: Optional[torch.Tensor] = None, self_attn_padding_mask: Optional[torch.Tensor] = None, need_attn: bool = False, need_head_weights: bool = False, ): """ Args: x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)` encoder_padding_mask (ByteTensor, optional): binary ByteTensor of shape `(batch, src_len)` where padding elements are indicated by ``1``. need_attn (bool, optional): return attention weights need_head_weights (bool, optional): return attention weights for each head (default: return average over heads). Returns: encoded output of shape `(seq_len, batch, embed_dim)` """ if need_head_weights: need_attn = True residual = x if self.normalize_before: x = self.self_attn_layer_norm(x) if prev_self_attn_state is not None: prev_key, prev_value = prev_self_attn_state[:2] saved_state: Dict[str, Optional[Tensor]] = { "prev_key": prev_key, "prev_value": prev_value, } if len(prev_self_attn_state) >= 3: saved_state["prev_key_padding_mask"] = prev_self_attn_state[2] assert incremental_state is not None self.self_attn._set_input_buffer(incremental_state, saved_state) _self_attn_input_buffer = self.self_attn._get_input_buffer(incremental_state) if self.cross_self_attention and not ( incremental_state is not None and _self_attn_input_buffer is not None and "prev_key" in _self_attn_input_buffer ): if self_attn_mask is not None: assert encoder_out is not None self_attn_mask = torch.cat( (x.new_zeros(x.size(0), encoder_out.size(0)), self_attn_mask), dim=1 ) if self_attn_padding_mask is not None: if encoder_padding_mask is None: assert encoder_out is not None encoder_padding_mask = self_attn_padding_mask.new_zeros( encoder_out.size(1), encoder_out.size(0) ) self_attn_padding_mask = torch.cat( (encoder_padding_mask, self_attn_padding_mask), dim=1 ) assert encoder_out is not None y = torch.cat((encoder_out, x), dim=0) else: y = x x, attn = self.forward_attention( query=x, key=y, value=y, residual=residual, key_padding_mask=self_attn_padding_mask, incremental_state=incremental_state, need_weights=False, attn_mask=self_attn_mask, ) if not self.normalize_before: x = self.self_attn_layer_norm(x) if self.encoder_attn is not None and encoder_out is not None: residual = x if self.normalize_before: x = self.encoder_attn_layer_norm(x) if prev_attn_state is not None: prev_key, prev_value = prev_attn_state[:2] saved_state: Dict[str, Optional[Tensor]] = { "prev_key": prev_key, "prev_value": prev_value, } if len(prev_attn_state) >= 3: saved_state["prev_key_padding_mask"] = prev_attn_state[2] assert incremental_state is not None self.encoder_attn._set_input_buffer(incremental_state, saved_state) x, attn = self.encoder_attn( query=x, key=encoder_out, value=encoder_out, key_padding_mask=encoder_padding_mask, incremental_state=incremental_state, static_kv=True, need_weights=need_attn or (not self.training and self.need_attn), need_head_weights=need_head_weights, ) x = self.dropout_module(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.encoder_attn_layer_norm(x) residual = x if self.normalize_before: x = self.final_layer_norm(x) x = _ffn( x, fc1=self.fc1, activation_fn=self.activation_fn, ffn_ln=self.ffn_layernorm, fc2=self.fc2, dropout_module=self.dropout_module, ) l_aux = None x = self.residual_connection(x, residual) if not self.normalize_before: x = self.final_layer_norm(x) if self.onnx_trace and incremental_state is not None: saved_state = self.self_attn._get_input_buffer(incremental_state) assert saved_state is not None if self_attn_padding_mask is not None: self_attn_state = [ saved_state["prev_key"], saved_state["prev_value"], saved_state["prev_key_padding_mask"], ] else: self_attn_state = [saved_state["prev_key"], saved_state["prev_value"]] return x, attn, self_attn_state return x, attn, None, l_aux def make_generation_fast_(self, need_attn: bool = False, **kwargs): self.need_attn = need_attn
flash_metaseq-main
metaseq/modules/transformer_layer.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import torch.nn as nn import torch.nn.functional as F logger = logging.getLogger(__name__) class Dropout(nn.Module): def __init__(self, p, module_name=None): super().__init__() self.p = p self.module_name = module_name self.apply_during_inference = False def extra_repr(self) -> str: return "p={}".format(self.p) def forward(self, x, inplace: bool = False): if self.p > 0 and (self.training or self.apply_during_inference): return F.dropout(x, p=self.p, training=True, inplace=inplace) else: return x
flash_metaseq-main
metaseq/modules/dropout.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn from .learned_positional_embedding import LearnedPositionalEmbedding from .sinusoidal_positional_embedding import SinusoidalPositionalEmbedding def PositionalEmbedding( num_embeddings: int, embedding_dim: int, padding_idx: int, learned: bool = False, learned_sinusoidal: bool = False, full_megatron_init=False, megatron_init_sigma=None, ): if learned: # if padding_idx is specified then offset the embedding ids by # this index and adjust num_embeddings appropriately # TODO: The right place for this offset would be inside # LearnedPositionalEmbedding. Move this there for a cleaner implementation. if padding_idx is not None: num_embeddings = num_embeddings + padding_idx + 1 m = LearnedPositionalEmbedding(num_embeddings, embedding_dim, padding_idx) if full_megatron_init: nn.init.normal_(m.weight, mean=0, std=megatron_init_sigma) else: nn.init.normal_(m.weight, mean=0, std=embedding_dim**-0.5) if padding_idx is not None: nn.init.constant_(m.weight[padding_idx], 0) elif learned_sinusoidal: if padding_idx is not None: num_embeddings = num_embeddings + padding_idx + 1 m = LearnedPositionalEmbedding(num_embeddings, embedding_dim, padding_idx) with torch.no_grad(): m.weight.copy_( SinusoidalPositionalEmbedding.get_embedding( num_embeddings, embedding_dim, padding_idx, ) ) else: m = SinusoidalPositionalEmbedding( embedding_dim, padding_idx, init_size=num_embeddings + padding_idx + 1, ) return m
flash_metaseq-main
metaseq/modules/positional_embedding.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math from typing import Any, Optional import torch import torch.onnx.operators from torch import Tensor, nn from metaseq import utils class SinusoidalPositionalEmbedding(nn.Module): """This module produces sinusoidal positional embeddings of any length. Padding symbols are ignored. """ def __init__(self, embedding_dim, padding_idx, init_size=1024): super().__init__() self.embedding_dim = embedding_dim self.padding_idx = padding_idx if padding_idx is not None else 0 self.weights = SinusoidalPositionalEmbedding.get_embedding( init_size, embedding_dim, padding_idx ) self.onnx_trace = False self.register_buffer("_float_tensor", torch.FloatTensor(1)) self.max_positions = int(1e5) def prepare_for_onnx_export_(self): self.onnx_trace = True @staticmethod def get_embedding( num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None ): """Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of "Attention Is All You Need". """ half_dim = embedding_dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb) emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze( 1 ) * emb.unsqueeze(0) emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view( num_embeddings, -1 ) if embedding_dim % 2 == 1: # zero pad emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1) if padding_idx is not None: emb[padding_idx, :] = 0 return emb def forward( self, input, incremental_state: Optional[Any] = None, timestep: Optional[Tensor] = None, positions: Optional[Any] = None, ): """Input is expected to be of size [bsz x seqlen].""" bspair = torch.onnx.operators.shape_as_tensor(input) bsz, seq_len = bspair[0], bspair[1] max_pos = self.padding_idx + 1 + seq_len if self.weights is None or max_pos > self.weights.size(0): # recompute/expand embeddings if needed self.weights = SinusoidalPositionalEmbedding.get_embedding( max_pos, self.embedding_dim, self.padding_idx ) self.weights = self.weights.to(self._float_tensor) if incremental_state is not None: # positions is the same for every token when decoding a single step pos = timestep.view(-1)[0] + 1 if timestep is not None else seq_len if self.onnx_trace: return ( self.weights.index_select(index=self.padding_idx + pos, dim=0) .unsqueeze(1) .repeat(bsz, 1, 1) ) return self.weights[self.padding_idx + pos, :].expand(bsz, 1, -1) positions = utils.make_positions( input, self.padding_idx, onnx_trace=self.onnx_trace ) if self.onnx_trace: flat_embeddings = self.weights.detach().index_select(0, positions.view(-1)) embedding_shape = torch.cat( (bsz.view(1), seq_len.view(1), torch.tensor([-1], dtype=torch.long)) ) embeddings = torch.onnx.operators.reshape_from_tensor_shape( flat_embeddings, embedding_shape ) return embeddings return ( self.weights.index_select(0, positions.view(-1)) .view(bsz, seq_len, -1) .detach() )
flash_metaseq-main
metaseq/modules/sinusoidal_positional_embedding.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn import torch.nn.functional as F from metaseq import distributed_utils as dist_utils from typing import Tuple import torch.distributed as dist try: from apex.normalization import FusedLayerNorm as _FusedLayerNorm has_fused_layernorm = True class FusedLayerNorm(_FusedLayerNorm): @torch.jit.unused def forward(self, x): if not x.is_cuda: return super().forward(x) else: with torch.cuda.device(x.device): return super().forward(x) except ImportError: has_fused_layernorm = False def LayerNorm(normalized_shape, eps=1e-5, elementwise_affine=True, export=False): if torch.jit.is_scripting(): export = True if not export and torch.cuda.is_available() and has_fused_layernorm: return FusedLayerNorm(normalized_shape, eps, elementwise_affine) return torch.nn.LayerNorm(normalized_shape, eps, elementwise_affine) class Fp32LayerNorm(nn.LayerNorm): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def forward(self, input): output = F.layer_norm( input.float(), self.normalized_shape, self.weight.float() if self.weight is not None else None, self.bias.float() if self.bias is not None else None, self.eps, ) return output.type_as(input) class SyncedModelParallelFusedLayerNorm(nn.Module): def __init__( self, hidden_size, mp_size, mp_rank=0, eps=1e-5, initialize_params_on_gpu=False, use_bias=True, mean_center=True, ): super().__init__() assert hidden_size % mp_size == 0 partition_size = hidden_size // mp_size self.use_bias = use_bias self.mean_center = mean_center self.weight = nn.Parameter(torch.ones(partition_size, dtype=torch.float32)) self.bias = ( nn.Parameter(torch.zeros(partition_size, dtype=torch.float32)) if self.use_bias else None ) self.variance_epsilon = eps self.mp_world_size = float(dist_utils.get_model_parallel_world_size()) self.mp_rank = mp_rank if initialize_params_on_gpu: self.weight.cuda().half() if self.bias is not None: self.bias.cuda().half() @staticmethod def get_statistics_from_all_workers(stat, rank, world_size): """Retuns tensor shaped (world_size, *stat_size)""" buffer_size: Tuple[int] = (int(world_size),) + tuple(stat.size()) assert isinstance( buffer_size, tuple ), f"b{buffer_size} {world_size} {stat.size()}" buffer = torch.zeros(buffer_size, dtype=stat.dtype, device=stat.device) buffer[rank] = stat dist.all_reduce(buffer, group=dist_utils.get_model_parallel_group()) return buffer def forward(self, hidden_states): hid_fp32 = hidden_states.float() local_variance = torch.var(hid_fp32, -1, keepdim=True, unbiased=True) local_mean = hid_fp32.mean(-1, keepdim=True) vs = SyncedModelParallelFusedLayerNorm.get_statistics_from_all_workers( local_variance, self.mp_rank, self.mp_world_size ) ms = SyncedModelParallelFusedLayerNorm.get_statistics_from_all_workers( local_mean, self.mp_rank, self.mp_world_size ) variance, mean = variance_formula( ms, vs, self.mp_world_size, hidden_states.size(-1) ) denom = torch.rsqrt(variance + self.variance_epsilon).to(hidden_states.dtype) mean = mean.to(hidden_states.dtype) if self.mean_center: hidden_states = (hidden_states - mean) * denom else: hidden_states = hidden_states * denom if self.use_bias: return (self.weight * hidden_states) + self.bias else: return self.weight * hidden_states def variance_formula(means, vs, g, k) -> Tuple[torch.Tensor]: """This only works with unbiased=False (No Bessel Correction)""" d = g * k var_ej = means.var(0) # Need unbiased True here (at least in toy example) summation = vs.sum(0) inner_coeff: float = (k * (g - 1)) / (k - 1) outer_coeff: float = (k - 1) / (d - 1) out: torch.Tensor = outer_coeff * (summation + (inner_coeff * var_ej)) return out, means.mean(0)
flash_metaseq-main
metaseq/modules/layer_norm.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import functools import threading import weakref from contextlib import contextmanager from typing import Any, Dict, Generator, Optional, Tuple import torch import torch.nn as nn import torch.utils.checkpoint as torch_checkpoint from fairscale.nn.checkpoint.checkpoint_utils import patch_batchnorm from fairscale.utils.containers import ( pack_kwargs, split_non_tensors, unpack_kwargs, unpack_non_tensors, ) from megatron import mpu from torch import Tensor from metaseq.distributed.utils import get_model_parallel_group # https://docs.python.org/3/library/threading.html#thread-local-data # Manage the checkpoint context with thread-local data. class ThreadLocal(threading.local): def __init__(self) -> None: self.is_checkpointing = False self.is_recomputing = False self.is_checkpointing_disabled = False thread_local = ThreadLocal() @contextmanager def disable_checkpointing() -> Generator[None, None, None]: """Makes :func:`is_checkpointing_disabled` return :data:`True` within a context.""" orig = thread_local.is_checkpointing_disabled thread_local.is_checkpointing_disabled = True try: yield finally: thread_local.is_checkpointing_disabled = orig @contextmanager def enable_checkpointing() -> Generator[None, None, None]: """Makes :func:`is_checkpointing` return :data:`True` within a context.""" orig = thread_local.is_checkpointing thread_local.is_checkpointing = True try: yield finally: thread_local.is_checkpointing = orig @contextmanager def enable_recomputing() -> Generator[None, None, None]: """Makes :func:`is_recomputing` return :data:`True` within a context.""" orig = thread_local.is_recomputing thread_local.is_recomputing = True try: yield finally: thread_local.is_recomputing = orig def is_checkpointing() -> bool: """Whether the current forward propagation is under checkpointing. Returns: bool: :data:`True` if it's under checkpointing. """ return thread_local.is_checkpointing def is_recomputing() -> bool: """Whether the current forward propagation is under checkpoint recomputation. Use this to prevent duplicated side-effects at forward propagation:: class Counter(nn.Module): def __init__(self): super().__init__() self.counter = 0 def forward(self, input): if not is_recomputing(): self.counter += 1 return input Returns: bool: :data:`True` if it's under checkpoint recomputation. """ return thread_local.is_recomputing def checkpoint_wrapper( module: nn.Module, offload_to_cpu: bool = False, distribute_checkpointed_activations: bool = False, ) -> nn.Module: """ A friendlier wrapper for performing activation checkpointing. Compared to the PyTorch version, this version: - wraps an nn.Module, so that all subsequent calls will use checkpointing - handles keyword arguments in the forward - handles non-Tensor outputs from the forward - supports offloading activations to CPU Usage:: checkpointed_module = checkpoint_wrapper(my_module, offload_to_cpu=True) a, b = checkpointed_module(x, y=3, z=torch.Tensor([1])) To understand the benefits of checkpointing and the `offload_to_cpu` flag, let's divide activations into 2 types: inner activations and outer activations w.r.t. the checkpointed modules. The inner ones are saved by activation checkpointing, the outer ones are saved by offload_to_cpu. In terms of GPU memory savings: - When inner ones are large in size and outer ones are small, checkpointing helps a lot, offload_to_cpu may help a little. - When inner ones are small and outer ones are large, checkpointing helps little, offload_to_cpu helps a lot. - When both inner and outer are large, both help and the benefit is additive. ..Note:: The first and last layers are not likely to benefit from the `offload_to_cpu` flag because (1) there are typically other references to the first layer's input, so the GPU memory won't be freed; (2) the input to the last layer is immediately used by the backward pass and won't result in memory savings. Args: module (nn.Module): The module to be wrapped offload_to_cpu (bool): Whether to offload activations to CPU. Returns: (nn.Module): Wrapped module """ # Patch the batchnorm layers in case there are any in this module. patch_batchnorm(module) # The use of weakref here is to prevent creating a ref cycle: m -> m.forward -> m. # When such cycle exists, gc won't collect the module when the module is freed. # That causes GPU memory to be leaked. See the unit test for how we catch that. # # We prefer this over a class wrapper since the class wrapper would have to # proxy a lot of fields and methods. module.forward = functools.partial( # type: ignore _checkpointed_forward, type(module).forward, weakref.ref(module), offload_to_cpu, distribute_checkpointed_activations, ) return module def _checkpointed_forward( original_forward: Any, weak_self: Any, offload_to_cpu: bool, distribute_checkpointed_activations: bool, *args: Any, **kwargs: Any ) -> Any: module = weak_self() # If gradients are disabled, just use original `.forward()` method directly. if not torch.is_grad_enabled() or thread_local.is_checkpointing_disabled: return original_forward(module, *args, **kwargs) # Autograd Functions in PyTorch work best with positional args, since # the backward must return gradients (or None) for every input argument. # We can flatten keyword arguments to make this easier. args = (module,) + args kwarg_keys, flat_args = pack_kwargs(*args, **kwargs) parent_ctx_dict: Dict[str, Any] = { "offload": offload_to_cpu, "distribute_checkpointed_activations": distribute_checkpointed_activations, } # Dummy tensor with grad is used to ensure the backward pass is called. This is needed # when original_forward's input are non-tensor (i.e. a tuple). Using this dummy tensor # avoids requiring users to set their input tensors's requires_grad flag. In the case # of tuple type inputs, setting the flag won't even trigger the backward pass. # # One implication of this is that since we always feed in a dummy tensor # needing grad, then the output will always require grad, even if it originally # wouldn't, such as if the module and original input both do not require grad. # We get around this by saving the desired requires_grad value in output and # detaching the output if needed. output = CheckpointFunction.apply( torch.tensor([], requires_grad=True), original_forward, parent_ctx_dict, kwarg_keys, *flat_args ) output_requires_grad = parent_ctx_dict["output_requires_grad"] if not isinstance(output, torch.Tensor): # If output should not require grad, then detach it, since otherwise it will # always have requires_grad = True due to our dummy tensor input above that # requires_grad output = [x.detach() if not output_requires_grad else x for x in output] packed_non_tensor_outputs = parent_ctx_dict["packed_non_tensor_outputs"] if packed_non_tensor_outputs: output = unpack_non_tensors(output, packed_non_tensor_outputs) else: # If output should not require grad, then detach it, since otherwise it will # always have requires_grad = True due to our dummy tensor input above that # requires_grad if not output_requires_grad: output = output.detach() return output def get_rng_state() -> Dict[str, Any]: state = {"torch_rng_state": torch.get_rng_state()} if torch.cuda.is_available(): state["cuda_rng_state"] = torch.cuda.get_rng_state() return state def set_rng_state(state: Dict[str, Any]) -> None: torch.set_rng_state(state["torch_rng_state"]) if torch.cuda.is_available(): torch.cuda.set_rng_state(state["cuda_rng_state"]) def is_autocast_enabled() -> bool: """Similar to torch.is_autocast_enabled, but compatible with torch 1.5.1""" if hasattr(torch, "is_autocast_enabled"): return torch.is_autocast_enabled() return False @contextmanager def autocast(enabled: bool) -> Generator: """Similar to torch.cuda.amp.autocast, but compatible with torch 1.5.1""" if enabled: with torch.cuda.amp.autocast(enabled): yield else: yield class CheckpointFunction(torch.autograd.Function): """Similar to the torch version, but support non-Tensor outputs. The caller is expected to provide a dict (*parent_ctx_dict*) that will hold the non-Tensor outputs. These should be combined with the Tensor *outputs* by calling :func:`unpack_non_tensors`. """ @staticmethod def forward( # type: ignore ctx: Any, dummy_tensor_requires_grad: torch.Tensor, run_function: Any, parent_ctx_dict: Dict[str, Any], kwarg_keys: Tuple[str, ...], *args: Any, **kwargs: Any ) -> Any: torch_checkpoint.check_backward_validity(args) ctx.run_function = run_function ctx.kwarg_keys = kwarg_keys ctx.fwd_rng_state = get_rng_state() ctx.is_model_parallel = get_model_parallel_group() is not None # Megatron's dropout random state if ctx.is_model_parallel: ctx.fwd_cuda_rng_state_tracker = ( mpu.random.get_cuda_rng_tracker().get_states() ) ctx.had_autocast_in_fwd = is_autocast_enabled() tensor_inputs, packed_non_tensor_inputs = split_non_tensors(args) if parent_ctx_dict["offload"]: ctx.fwd_device = tuple(x.device for x in tensor_inputs) ctx.grad_requirements = tuple(x.requires_grad for x in tensor_inputs) tensor_inputs = tuple(x.to("cpu", non_blocking=True) for x in tensor_inputs) else: ctx.fwd_device, ctx.grad_requirements = None, None with torch.no_grad(), enable_checkpointing(): unpacked_args, unpacked_kwargs = unpack_kwargs(kwarg_keys, args) outputs = run_function(*unpacked_args, **unpacked_kwargs) the_module = unpacked_args[0] ctx.distribute_checkpointed_activations = ( parent_ctx_dict["distribute_checkpointed_activations"] and ctx.is_model_parallel ) if ctx.distribute_checkpointed_activations: # HACK [TODO: naman] currently only distributing the first tensor. # second tensor for usual decoder models is just attention mask, which is seq_len * seq_len # and not big enough to distribute over. ctx.tensor_input_0_shape = tensor_inputs[0].data.shape tensor_inputs[0].data = tensor_inputs[0].data.contiguous() tensor_inputs[0].data = mpu.random.split_tensor_into_1d_equal_chunks( tensor_inputs[0].data, new_buffer=True ) ctx.save_for_backward(*tensor_inputs) ctx.packed_non_tensor_inputs = packed_non_tensor_inputs # Because we run with torch.no_grad(), we can't actually access # outputs.requires_grad. Instead, we manually compute it by # checking if either the input or the module needs grads parameters = list(the_module.parameters()) # If the module is wrapped by FlattenParamsWrapper, then the # parameters would have been deleted. If so, we need to access # the views into the flattened parameters. if hasattr(the_module, "_unflattened_param_views"): parameters += the_module._unflattened_param_views output_requires_grad = any(param.requires_grad for param in parameters) or any( x.requires_grad for x in tensor_inputs ) parent_ctx_dict["output_requires_grad"] = output_requires_grad if not isinstance(outputs, torch.Tensor): # Autograd Functions don't like non-Tensor outputs. We can split the # non-Tensor and Tensor outputs, returning the former by reference # through *parent_ctx_dict* and returning the latter directly. outputs, packed_non_tensor_outputs = split_non_tensors(outputs) parent_ctx_dict["packed_non_tensor_outputs"] = packed_non_tensor_outputs return outputs @staticmethod def backward(ctx: Any, *args: Any) -> Tuple[Optional[Tensor], ...]: if not torch.autograd._is_checkpoint_valid(): raise RuntimeError( "Checkpointing is not compatible with .grad(), please use .backward() if possible" ) tensor_inputs: Tuple = ctx.saved_tensors if ctx.distribute_checkpointed_activations: tensor_inputs[0].data = mpu.random.gather_split_1d_tensor( tensor_inputs[0].data ) tensor_inputs[0].data = tensor_inputs[0].data.view(ctx.tensor_input_0_shape) tensor_inputs = torch_checkpoint.detach_variable(tensor_inputs) if ctx.fwd_device is not None: tensor_inputs = tuple( t.to(ctx.fwd_device[i], non_blocking=True) for i, t in enumerate(tensor_inputs) ) for i, need_grad in enumerate(ctx.grad_requirements): tensor_inputs[i].requires_grad = need_grad inputs = unpack_non_tensors(tensor_inputs, ctx.packed_non_tensor_inputs) # Store the current states. bwd_rng_state = get_rng_state() if ctx.is_model_parallel: bwd_cuda_rng_state_tracker = mpu.random.get_cuda_rng_tracker().get_states() mpu.random.get_cuda_rng_tracker().set_states(ctx.fwd_cuda_rng_state_tracker) # Set the states to what it used to be before the forward pass. set_rng_state(ctx.fwd_rng_state) with torch.enable_grad(), enable_recomputing(), autocast( ctx.had_autocast_in_fwd ): unpacked_args, unpacked_kwargs = unpack_kwargs(ctx.kwarg_keys, inputs) outputs = ctx.run_function(*unpacked_args, **unpacked_kwargs) tensor_outputs, _ = split_non_tensors(outputs) # Set the states back to what it was at the start of this function. set_rng_state(bwd_rng_state) if ctx.is_model_parallel: mpu.random.get_cuda_rng_tracker().set_states(bwd_cuda_rng_state_tracker) # Run backward() with only Tensors that require grad outputs_with_grad = [] args_with_grad = [] for i in range(len(tensor_outputs)): if tensor_outputs[i].requires_grad: outputs_with_grad.append(tensor_outputs[i]) args_with_grad.append(args[i]) if len(outputs_with_grad) == 0: raise RuntimeError( "None of the outputs have requires_grad=True, " "this checkpoint() is not necessary" ) torch.autograd.backward(outputs_with_grad, args_with_grad) grads = tuple( inp.grad if isinstance(inp, torch.Tensor) else None for inp in inputs ) return (None, None, None, None) + grads
flash_metaseq-main
metaseq/modules/checkpoint_activation_wrapper/checkpoint_activations.py
flash_metaseq-main
metaseq/modules/checkpoint_activation_wrapper/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from collections import OrderedDict import torch from torch.utils.data.dataloader import default_collate from . import BaseDataset def _flatten(dico, prefix=None): """Flatten a nested dictionary.""" new_dico = OrderedDict() if isinstance(dico, dict): prefix = prefix + "." if prefix is not None else "" for k, v in dico.items(): if v is None: continue new_dico.update(_flatten(v, prefix + k)) elif isinstance(dico, list): for i, v in enumerate(dico): new_dico.update(_flatten(v, prefix + ".[" + str(i) + "]")) else: new_dico = OrderedDict({prefix: dico}) return new_dico def _unflatten(dico): """Unflatten a flattened dictionary into a nested dictionary.""" new_dico = OrderedDict() for full_k, v in dico.items(): full_k = full_k.split(".") node = new_dico for k in full_k[:-1]: if k.startswith("[") and k.endswith("]"): k = int(k[1:-1]) if k not in node: node[k] = OrderedDict() node = node[k] node[full_k[-1]] = v return new_dico class NestedDictionaryDataset(BaseDataset): def __init__(self, defn, sizes=None): super().__init__() self.defn = _flatten(defn) self.sizes = [sizes] if not isinstance(sizes, (list, tuple)) else sizes first = None for v in self.defn.values(): if not isinstance( v, ( BaseDataset, torch.utils.data.Dataset, ), ): raise ValueError("Expected Dataset but found: {}".format(v.__class__)) first = first or v if len(v) > 0: assert len(v) == len(first), "dataset lengths must match" self._len = len(first) def __getitem__(self, index): return OrderedDict((k, ds[index]) for k, ds in self.defn.items()) def __len__(self): return self._len def collater(self, samples): """Merge a list of samples to form a mini-batch. Args: samples (List[dict]): samples to collate Returns: dict: a mini-batch suitable for forwarding with a Model """ if len(samples) == 0: return {} sample = OrderedDict() for k, ds in self.defn.items(): try: sample[k] = ds.collater([s[k] for s in samples]) except NotImplementedError: sample[k] = default_collate([s[k] for s in samples]) return _unflatten(sample) def num_tokens(self, index): """Return the number of tokens in a sample. This value is used to enforce ``--max-tokens`` during batching.""" return max(s[index] for s in self.sizes) def size(self, index): """Return an example's size as a float or tuple. This value is used when filtering a dataset with ``--max-positions``.""" if len(self.sizes) == 1: return self.sizes[0][index] else: return (s[index] for s in self.sizes) @property def supports_prefetch(self): """Whether this dataset supports prefetching.""" return any(ds.supports_prefetch for ds in self.defn.values()) def prefetch(self, indices): """Prefetch the data required for this epoch.""" for ds in self.defn.values(): if getattr(ds, "supports_prefetch", False): ds.prefetch(indices) def set_epoch(self, epoch): # TODO(anj): Identify if we need this functionality for evals. pass
flash_metaseq-main
metaseq/data/nested_dictionary_dataset.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math from typing import Optional import numpy as np import torch class StreamingTokenBlockDataset(torch.utils.data.IterableDataset): """View an IterableDataset of tokens as a 1D tensor and chunk into blocks. This dataset can only be iterated over once. Args: dataset (~torch.utils.data.IterableDataset): dataset to chunk block_size (int): maximum block size break_mode (str, optional): Mode used for breaking tokens. Values can be one of: - 'none': break tokens into equally sized blocks (up to block_size) drop_last (bool, optional): drop the last item (default: False) padding_idx (int, optional): index to use for padding symbols (required if *drop_last* is ``False``) shuffle_buffer_size (int, optional): buffer this many items and shuffle using the provided *seed*; default value is 1, so no shuffling is performed. This can be adjusted dynamically after initialization, but only before iteration has begun. seed (int, optional): seed for shuffling """ def __init__( self, dataset: torch.utils.data.IterableDataset, block_size: int, break_mode: str = "none", drop_last: Optional[bool] = False, padding_idx: Optional[int] = None, shuffle_buffer_size: int = 1, seed: Optional[int] = None, ): super().__init__() self.dataset = dataset self.block_size = block_size self.break_mode = break_mode self.drop_last = drop_last self.padding_idx = padding_idx self.shuffle_buffer_size = shuffle_buffer_size self.seed = seed if break_mode == "none": self.block_iterator = yield_token_blocks elif break_mode == "eos_pad_8": self.block_iterator = yield_single_sentences_pad_8 elif break_mode == "complete": self.block_iterator = yield_doc_blocks else: raise ValueError( f'Invalid value for break_mode = {break_mode}. Available options are "none", "eos_pad_8" or "complete".' ) if not drop_last and padding_idx is None: raise ValueError("padding_idx is required when drop_last is False") assert shuffle_buffer_size >= 1 if shuffle_buffer_size > 1 and seed is None: raise ValueError("seed is required when shuffle_buffer_size > 1") # if break_mode != "none": raise NotImplementedError self._started_iteration = False def set_epoch(self, epoch): if hasattr(self.dataset, "set_epoch"): self.dataset.set_epoch(epoch) def set_shuffle_buffer_size(self, new_shuffle_buffer_size): assert not self._started_iteration self.shuffle_buffer_size = new_shuffle_buffer_size def __iter__(self): assert not self._started_iteration self.started_iteration = True block_itr = self.block_iterator( self.dataset, self.block_size, self.drop_last, self.padding_idx, ) if self.seed is not None: # add a random offset (2273) to the given seed to decouple this RNG # from any other RNG instances elsewhere rng = np.random.default_rng(2273 + self.seed) else: rng = None buffer = [] def get_next_item_and_replace_in_buffer(replacement_item): # return a random item from the buffer and replace with a new item nonlocal rng idx = rng.integers(len(buffer)) if rng is not None else 0 item = buffer[idx] if replacement_item is not None: buffer[idx] = replacement_item else: buffer.pop(idx) return item for block in block_itr: if len(buffer) < self.shuffle_buffer_size: # initially fill the buffer to the requested size buffer.append(block) else: # return random block from the buffer and replace with new block yield get_next_item_and_replace_in_buffer(block) # clear buffer of any remaining items while buffer: yield get_next_item_and_replace_in_buffer(None) def yield_single_sentences_pad_8(iterable, block_size, drop_last, padding_idx): """Mimics sample-break-mode eos i.e. 1 example per sequence without any packing. When multiple examples are packed into a single sequence, example tokens would attend to tokens in neighbouring examples, which may be undesirable. This mode can avoid that. Since there is no packing, this mode is considerably slower. We round up the example length to a multiple of 8, pad to this length and return the example as is, without packing, truncating to block_size in cases of very long examples. """ for idx, item in enumerate(iterable): cur_block = [] cur_block_ids = [] if item.numel() > block_size: # truncate right side # TODO: Enable left side truncation item = item[:block_size] cur_block.append(item) # We round up to a multiple of 8 + 1, because later on # one element is removed for src/target tensor creation # which brings it back to a multiple of 8. block_size is # already passed with + 1 included. cur_block_remain = min(int(math.ceil(item.numel() / 8)) * 8 + 1, block_size) cur_block_remain -= item.numel() padding = cur_block[-1].new_full((cur_block_remain,), padding_idx) cur_block.append(padding) cur_block_ids.append(idx) yield { "ids": torch.LongTensor(cur_block_ids), "block": torch.cat(cur_block), } def yield_doc_blocks(iterable, block_size, drop_last, padding_idx): """Mimics sample-break-mode complete""" cur_block = [] cur_block_ids = [] cur_block_remain = block_size for idx, item in enumerate(iterable): if item.numel() > block_size: # truncate right side item = item[:block_size] if item.numel() > cur_block_remain: padding = cur_block[-1].new_full((cur_block_remain,), padding_idx) cur_block.append(padding) block = torch.cat(cur_block) yield { "ids": torch.LongTensor(cur_block_ids), "block": block, } cur_block = [] cur_block_ids = [] cur_block_remain = block_size cur_block.append(item) cur_block_ids.append(idx) cur_block_remain -= item.numel() assert cur_block_remain >= 0 if not drop_last and len(cur_block) > 0: if cur_block_remain > 0: padding = cur_block[-1].new_full((cur_block_remain,), padding_idx) cur_block.append(padding) block = torch.cat(cur_block) assert block.numel() == block_size yield { "ids": torch.LongTensor(cur_block_ids), "block": block, } def yield_token_blocks(iterable, block_size, drop_last, padding_idx): """Sample break mode = None. (Pre-Training default).""" cur_block = [] cur_block_ids = [] cur_block_remain = block_size for idx, item in enumerate(iterable): cur_block_ids.append(idx) while item.numel() > 0: num_to_take = min(item.numel(), cur_block_remain) cur_block.append(item[:num_to_take]) item = item[num_to_take:] # remainder cur_block_remain -= num_to_take assert cur_block_remain >= 0 if cur_block_remain == 0: block = torch.cat(cur_block) assert block.numel() == block_size yield { "ids": torch.LongTensor(cur_block_ids), "block": block[:block_size], } cur_block = [] cur_block_ids = [] cur_block_remain = block_size if not drop_last and len(cur_block) > 0: if cur_block_remain > 0: padding = cur_block[-1].new_full((cur_block_remain,), padding_idx) cur_block.append(padding) block = torch.cat(cur_block) assert block.numel() == block_size yield { "ids": torch.LongTensor(cur_block_ids), "block": block, }
flash_metaseq-main
metaseq/data/streaming_token_block_dataset.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import numpy as np import torch.utils.data from metaseq.data import data_utils logger = logging.getLogger(__name__) class EpochListening: """Mixin for receiving updates whenever the epoch increments.""" @property def can_reuse_epoch_itr_across_epochs(self): """ Whether we can reuse the :class:`fairseq.data.EpochBatchIterator` for this dataset across epochs. This needs to return ``False`` if the sample sizes can change across epochs, in which case we may need to regenerate batches at each epoch. If your dataset relies in ``set_epoch`` then you should consider setting this to ``False``. """ return True def set_epoch(self, epoch): """Will receive the updated epoch number at the beginning of the epoch.""" pass class BaseDataset(torch.utils.data.Dataset, EpochListening): """A dataset that provides helpers for batching.""" def __getitem__(self, index): raise NotImplementedError def __len__(self): raise NotImplementedError def collater(self, samples): """Merge a list of samples to form a mini-batch. Args: samples (List[dict]): samples to collate Returns: dict: a mini-batch suitable for forwarding with a Model """ raise NotImplementedError def num_tokens(self, index): """Return the number of tokens in a sample. This value is used to enforce ``--max-tokens`` during batching.""" raise NotImplementedError def num_tokens_vec(self, indices): """Return the number of tokens for a set of positions defined by indices. This value is used to enforce ``--max-tokens`` during batching.""" raise NotImplementedError def size(self, index): """Return an example's size as a float or tuple. This value is used when filtering a dataset with ``--max-positions``.""" raise NotImplementedError def ordered_indices(self): """Return an ordered list of indices. Batches will be constructed based on this order.""" return np.arange(len(self), dtype=np.int64) @property def supports_prefetch(self): """Whether this dataset supports prefetching.""" return False def attr(self, attr: str, index: int): return getattr(self, attr, None) def prefetch(self, indices): """Prefetch the data required for this epoch.""" raise NotImplementedError def get_batch_shapes(self): """ Return a list of valid batch shapes, for example:: [(8, 512), (16, 256), (32, 128)] The first dimension of each tuple is the batch size and can be ``None`` to automatically infer the max batch size based on ``--max-tokens``. The second dimension of each tuple is the max supported length as given by :func:`metaseq.data.BaseDataset.num_tokens`. This will be used by :func:`metaseq.data.BaseDataset.batch_by_size` to restrict batch shapes. This is useful on TPUs to avoid too many dynamic shapes (and recompilations). """ return None def batch_by_size( self, indices, max_tokens=None, max_sentences=None, required_batch_size_multiple=1, ): """ Given an ordered set of indices, return batches according to *max_tokens*, *max_sentences* and *required_batch_size_multiple*. """ from metaseq.data import data_utils fixed_shapes = self.get_batch_shapes() if fixed_shapes is not None: def adjust_bsz(bsz, num_tokens): if bsz is None: assert max_tokens is not None, "Must specify --max-tokens" bsz = max_tokens // num_tokens if max_sentences is not None: bsz = min(bsz, max_sentences) elif ( bsz >= required_batch_size_multiple and bsz % required_batch_size_multiple != 0 ): bsz -= bsz % required_batch_size_multiple return bsz fixed_shapes = np.array( [ [adjust_bsz(bsz, num_tokens), num_tokens] for (bsz, num_tokens) in fixed_shapes ] ) try: num_tokens_vec = self.num_tokens_vec(indices).astype("int64") except NotImplementedError: num_tokens_vec = None return data_utils.batch_by_size( indices, num_tokens_fn=self.num_tokens, num_tokens_vec=num_tokens_vec, max_tokens=max_tokens, max_sentences=max_sentences, required_batch_size_multiple=required_batch_size_multiple, fixed_shapes=fixed_shapes, ) def filter_indices_by_size(self, indices, max_sizes): """ Filter a list of sample indices. Remove those that are longer than specified in *max_sizes*. WARNING: don't update, override method in child classes Args: indices (np.array): original array of sample indices max_sizes (int or list[int] or tuple[int]): max sample size, can be defined separately for src and tgt (then list or tuple) Returns: np.array: filtered sample array list: list of removed indices """ if isinstance(max_sizes, float) or isinstance(max_sizes, int): if hasattr(self, "sizes") and isinstance(self.sizes, np.ndarray): ignored = indices[self.sizes[indices] > max_sizes].tolist() indices = indices[self.sizes[indices] <= max_sizes] elif ( hasattr(self, "sizes") and isinstance(self.sizes, list) and len(self.sizes) == 1 ): ignored = indices[self.sizes[0][indices] > max_sizes].tolist() indices = indices[self.sizes[0][indices] <= max_sizes] else: indices, ignored = data_utils._filter_by_size_dynamic( indices, self.size, max_sizes ) else: indices, ignored = data_utils._filter_by_size_dynamic( indices, self.size, max_sizes ) return indices, ignored def ordered_indices_per_dataset(self): """Return a list of ordered indices vectors for each underlying dataset (with parent dataset indices).""" return [self.ordered_indices()] @property def supports_fetch_outside_dataloader(self): """Whether this dataset supports fetching outside the workers of the dataloader.""" return True
flash_metaseq-main
metaseq/data/base_dataset.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import bisect import numpy as np from torch.utils.data.dataloader import default_collate from . import BaseDataset class ConcatDataset(BaseDataset): @staticmethod def cumsum(sequence, sample_ratios): r, s = [], 0 for e, ratio in zip(sequence, sample_ratios): curr_len = int(ratio * len(e)) r.append(curr_len + s) s += curr_len return r def __init__(self, datasets, sample_ratios=1): super(ConcatDataset, self).__init__() assert len(datasets) > 0, "datasets should not be an empty iterable" self.datasets = list(datasets) if isinstance(sample_ratios, int): sample_ratios = [sample_ratios] * len(self.datasets) self.sample_ratios = sample_ratios self.cumulative_sizes = self.cumsum(self.datasets, sample_ratios) self.real_sizes = [len(d) for d in self.datasets] def __len__(self): return self.cumulative_sizes[-1] def __getitem__(self, idx): dataset_idx, sample_idx = self._get_dataset_and_sample_index(idx) return self.datasets[dataset_idx][sample_idx] def _get_dataset_and_sample_index(self, idx: int): dataset_idx = bisect.bisect_right(self.cumulative_sizes, idx) if dataset_idx == 0: sample_idx = idx else: sample_idx = idx - self.cumulative_sizes[dataset_idx - 1] sample_idx = sample_idx % self.real_sizes[dataset_idx] return dataset_idx, sample_idx def collater(self, samples, **extra_args): # For now only supports datasets with same underlying collater implementations if hasattr(self.datasets[0], "collater"): return self.datasets[0].collater(samples, **extra_args) else: return default_collate(samples, **extra_args) def size(self, idx: int): """ Return an example's size as a float or tuple. """ dataset_idx, sample_idx = self._get_dataset_and_sample_index(idx) return self.datasets[dataset_idx].size(sample_idx) def num_tokens(self, index: int): return np.max(self.size(index)) def attr(self, attr: str, index: int): dataset_idx = bisect.bisect_right(self.cumulative_sizes, index) return getattr(self.datasets[dataset_idx], attr, None) @property def sizes(self): _dataset_sizes = [] for ds, sr in zip(self.datasets, self.sample_ratios): if isinstance(ds.sizes, np.ndarray): _dataset_sizes.append(np.tile(ds.sizes, sr)) else: # Only support underlying dataset with single size array. assert isinstance(ds.sizes, list) _dataset_sizes.append(np.tile(ds.sizes[0], sr)) return np.concatenate(_dataset_sizes) @property def supports_prefetch(self): return all(d.supports_prefetch for d in self.datasets) def ordered_indices(self): """ Returns indices sorted by length. So less padding is needed. """ if isinstance(self.sizes, np.ndarray) and len(self.sizes.shape) > 1: # special handling for concatenating lang_pair_datasets indices = np.arange(len(self)) sizes = self.sizes tgt_sizes = ( sizes[:, 1] if len(sizes.shape) > 0 and sizes.shape[1] > 1 else None ) src_sizes = ( sizes[:, 0] if len(sizes.shape) > 0 and sizes.shape[1] > 1 else sizes ) # sort by target length, then source length if tgt_sizes is not None: indices = indices[np.argsort(tgt_sizes[indices], kind="mergesort")] return indices[np.argsort(src_sizes[indices], kind="mergesort")] else: return np.argsort(self.sizes) def prefetch(self, indices): frm = 0 for to, ds in zip(self.cumulative_sizes, self.datasets): real_size = len(ds) if getattr(ds, "supports_prefetch", False): ds.prefetch([(i - frm) % real_size for i in indices if frm <= i < to]) frm = to def set_epoch(self, epoch): super().set_epoch(epoch) for ds in self.datasets: if hasattr(ds, "set_epoch"): ds.set_epoch(epoch) def ordered_indices_per_dataset(self): """Return a list of ordered indices vectors for each underlying dataset (with parent dataset indices).""" ordered_indices_list = [] for i, dataset in enumerate(self.datasets): start = 0 if i == 0 else self.cumulative_sizes[i - 1] subdataset_indices_list = dataset.ordered_indices_per_dataset() for indices in subdataset_indices_list: ordered_indices_list.append(indices + start) return ordered_indices_list
flash_metaseq-main
metaseq/data/concat_dataset.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch class PartitionedStreamingDataset(torch.utils.data.IterableDataset): """Partition an IterableDataset and iterate over a single shard. If **drop_last** is ``False``, then the iterator will yield ``None`` for shards that don't have data. Args: dataset (~torch.utils.data.IterableDataset): dataset to partition num_shards (int): number of ways to partition the dataset shard_id (int): shard index to iterate over drop_last (bool, optional): drop the last item (default: False) """ def __init__( self, dataset: torch.utils.data.IterableDataset, num_shards: int, shard_id: int, drop_last: bool = False, ): super().__init__() self.dataset = dataset self.num_shards = num_shards self.shard_id = shard_id self.drop_last = drop_last assert isinstance(dataset, torch.utils.data.IterableDataset) assert num_shards > 0 assert shard_id >= 0 and shard_id < num_shards def set_epoch(self, epoch): if hasattr(self.dataset, "set_epoch"): self.dataset.set_epoch(epoch) def __iter__(self): chunk = [] for item in self.dataset: chunk.append(item) if len(chunk) == self.num_shards: yield chunk[self.shard_id] chunk = [] if len(chunk) > 0 and not self.drop_last: if self.shard_id < len(chunk): yield chunk[self.shard_id] else: yield None
flash_metaseq-main
metaseq/data/partitioned_streaming_dataset.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch from . import BaseDataset class IdDataset(BaseDataset): def __getitem__(self, index): return index def __len__(self): return 0 def collater(self, samples): return torch.tensor(samples)
flash_metaseq-main
metaseq/data/id_dataset.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Optional import numpy as np import torch import math class StreamingSrcTgtDataset(torch.utils.data.IterableDataset): """View an IterableDataset of tokens as a 1D tensor and chunk into blocks. This dataset can only be iterated over once. Args: dataset (~torch.utils.data.IterableDataset): dataset to chunk block_size (int): maximum block size break_mode (str, optional): Mode used for breaking tokens. Values can be one of: - 'none': break tokens into equally sized blocks (up to block_size) drop_last (bool, optional): drop the last item (default: False) padding_idx (int, optional): index to use for padding symbols (required if *drop_last* is ``False``) shuffle_buffer_size (int, optional): buffer this many items and shuffle using the provided *seed*; default value is 1, so no shuffling is performed. This can be adjusted dynamically after initialization, but only before iteration has begun. seed (int, optional): seed for shuffling """ def __init__( self, dataset: torch.utils.data.IterableDataset, block_size: int, break_mode: str = "none", drop_last: Optional[bool] = False, padding_idx: Optional[int] = None, shuffle_buffer_size: int = 1, seed: Optional[int] = None, ): super().__init__() self.dataset = dataset self.block_size = block_size self.break_mode = break_mode self.drop_last = drop_last self.padding_idx = padding_idx self.shuffle_buffer_size = shuffle_buffer_size self.seed = seed if break_mode == "none" or break_mode == "complete": self.block_iterator = yield_src_tgt_blocks elif break_mode == "eos_pad_8": # Single example per sequence self.block_iterator = yield_src_tgt_single_sentences_pad_8 else: raise NotImplementedError(f"Unknown break mode: {break_mode}") if not drop_last and padding_idx is None: raise ValueError("padding_idx is required when drop_last is False") assert shuffle_buffer_size >= 1 if shuffle_buffer_size > 1 and seed is None: raise ValueError("seed is required when shuffle_buffer_size > 1") self._started_iteration = False def set_epoch(self, epoch): if hasattr(self.dataset, "set_epoch"): self.dataset.set_epoch(epoch) def set_shuffle_buffer_size(self, new_shuffle_buffer_size): assert not self._started_iteration self.shuffle_buffer_size = new_shuffle_buffer_size def __iter__(self): assert not self._started_iteration self.started_iteration = True block_itr = self.block_iterator( self.dataset, self.block_size, self.drop_last, self.padding_idx, ) if self.seed is not None: # add a random offset (2273) to the given seed to decouple this RNG # from any other RNG instances elsewhere self.rng = np.random.default_rng(2273 + self.seed) else: self.rng = None buffer = [] def get_next_item_and_replace_in_buffer(replacement_item): # return a random item from the buffer and replace with a new item idx = self.rng.integers(len(buffer)) if self.rng is not None else 0 item = buffer[idx] if replacement_item is not None: buffer[idx] = replacement_item else: buffer.pop(idx) return item for block in block_itr: if len(buffer) < self.shuffle_buffer_size: # initially fill the buffer to the requested size buffer.append(block) else: # return random block from the buffer and replace with new block yield get_next_item_and_replace_in_buffer(block) # clear buffer of any remaining items while buffer: yield get_next_item_and_replace_in_buffer(None) def yield_src_tgt_blocks(iterable, block_size, drop_last, padding_idx): """Packs multiple examples together in a block""" cur_src_block = [] cur_src_block_ids = [] cur_tgt_block = [] cur_block_remain = block_size for idx, (src, tgt) in enumerate(iterable): if src.numel() > block_size: # truncate right side # TODO: Switch this to left truncate so that the target isnt ever truncated src = src[:block_size] tgt = tgt[:block_size] if src.numel() > cur_block_remain: padding = cur_src_block[-1].new_full((cur_block_remain,), padding_idx) cur_src_block.append(padding) cur_tgt_block.append(padding) src_block = torch.cat(cur_src_block) tgt_block = torch.cat(cur_tgt_block) yield { "ids": torch.LongTensor(cur_src_block_ids), "src_block": src_block, "tgt_block": tgt_block, } cur_src_block = [] cur_src_block_ids = [] cur_tgt_block = [] cur_block_remain = block_size cur_src_block.append(src) cur_src_block_ids.append(idx) cur_tgt_block.append(tgt) cur_block_remain -= src.numel() assert cur_block_remain >= 0 if not drop_last and len(cur_src_block) > 0: if cur_block_remain > 0: padding = cur_src_block[-1].new_full((cur_block_remain,), padding_idx) cur_src_block.append(padding) cur_tgt_block.append(padding) src_block = torch.cat(cur_src_block) tgt_block = torch.cat(cur_tgt_block) assert src_block.numel() == block_size yield { "ids": torch.LongTensor(cur_src_block_ids), "src_block": src_block, "tgt_block": tgt_block, } def yield_src_tgt_single_sentences_pad_8(iterable, block_size, drop_last, padding_idx): """Mimics sample-break-mode eos i.e. 1 example per sequence without any packing. When multiple examples are packed into a single sequence, example tokens would attend to tokens in neighbouring examples, which may be undesirable. This mode can avoid that. Since there is no packing, this mode is considerably slower. We round up the example length to a multiple of 8, pad to this length and return the example as is, without packing, truncating to block_size in cases of very long examples. """ for idx, (src, tgt) in enumerate(iterable): cur_src_block = [] cur_src_block_ids = [] cur_tgt_block = [] if src.numel() > block_size: # truncate right side # TODO: Enable left side truncation src = src[:block_size] tgt = tgt[:block_size] cur_src_block.append(src) cur_src_block_ids.append(idx) cur_tgt_block.append(tgt) # We round up to a multiple of 8 + 1, because later on # one element is removed for src/target tensor creation # which brings it back to a multiple of 8. block_size is # already passed with + 1 included. # cur_block_remain = int(min(math.pow(2, math.ceil(math.log(src.numel(), 2))) + 1, block_size)) cur_block_remain = min(int(math.ceil(src.numel() / 8)) * 8 + 1, block_size) cur_block_remain -= src.numel() padding = cur_src_block[-1].new_full((cur_block_remain,), padding_idx) cur_src_block.append(padding) cur_tgt_block.append(padding) yield { "ids": torch.LongTensor(cur_src_block_ids), "src_block": torch.cat(cur_src_block), "tgt_block": torch.cat(cur_tgt_block), }
flash_metaseq-main
metaseq/data/streaming_src_tgt_dataset.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np from metaseq.data import data_utils from . import BaseWrapperDataset class TruncateDataset(BaseWrapperDataset): """Truncate a sequence by returning the first truncation_length tokens""" def __init__(self, dataset, truncation_length): super().__init__(dataset) assert truncation_length is not None self.truncation_length = truncation_length self.dataset = dataset def __getitem__(self, index): item = self.dataset[index] item_len = item.size(0) if item_len > self.truncation_length: item = item[: self.truncation_length] return item @property def sizes(self): return np.minimum(self.dataset.sizes, self.truncation_length) def __len__(self): return len(self.dataset) class RandomCropDataset(TruncateDataset): """Truncate a sequence by returning a random crop of truncation_length tokens""" def __init__(self, dataset, truncation_length, seed=1): super().__init__(dataset, truncation_length) self.seed = seed self.epoch = 0 def set_epoch(self, epoch, **unused): super().set_epoch(epoch) self.epoch = epoch def __getitem__(self, index): with data_utils.numpy_seed(self.seed, self.epoch, index): item = self.dataset[index] item_len = item.size(0) excess = item_len - self.truncation_length if excess > 0: start_idx = np.random.randint(0, excess) item = item[start_idx : start_idx + self.truncation_length] return item def maybe_shorten_dataset( dataset, split, shorten_data_split_list, shorten_method, tokens_per_sample, seed, ): truncate_split = ( split in shorten_data_split_list.split(",") or len(shorten_data_split_list) == 0 ) if shorten_method == "truncate" and truncate_split: dataset = TruncateDataset(dataset, tokens_per_sample) elif shorten_method == "random_crop" and truncate_split: dataset = RandomCropDataset(dataset, tokens_per_sample, seed) return dataset
flash_metaseq-main
metaseq/data/shorten_dataset.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np from . import BaseWrapperDataset class SortDataset(BaseWrapperDataset): def __init__(self, dataset, sort_order): super().__init__(dataset) if not isinstance(sort_order, (list, tuple)): sort_order = [sort_order] self.sort_order = sort_order assert all(len(so) == len(dataset) for so in sort_order) def ordered_indices(self): return np.lexsort(self.sort_order)
flash_metaseq-main
metaseq/data/sort_dataset.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np import torch from . import BaseDataset, data_utils def collate(samples, pad_idx, eos_idx, fixed_pad_length=None, pad_to_bsz=None): if len(samples) == 0: return {} def merge(key, is_list=False): if is_list: res = [] for i in range(len(samples[0][key])): res.append( data_utils.collate_tokens( [s[key][i] for s in samples], pad_idx, eos_idx, left_pad=False, pad_to_length=fixed_pad_length, pad_to_bsz=pad_to_bsz, ) ) return res else: return data_utils.collate_tokens( [s[key] for s in samples], pad_idx, eos_idx, left_pad=False, pad_to_length=fixed_pad_length, pad_to_bsz=pad_to_bsz, ) src_tokens = merge("source") if samples[0]["target"] is not None: is_target_list = isinstance(samples[0]["target"], list) target = merge("target", is_target_list) else: target = src_tokens return { "id": torch.LongTensor([s["id"] for s in samples]), "nsentences": len(samples), "ntokens": sum(len(s["source"]) for s in samples), "net_input": { "src_tokens": src_tokens, "src_lengths": torch.LongTensor([s["source"].numel() for s in samples]), }, "target": target, } class MonolingualDataset(BaseDataset): """ A wrapper around torch.utils.data.Dataset for monolingual data. """ def __init__( self, dataset, sizes, src_vocab, tgt_vocab=None, add_eos_for_other_targets=False, shuffle=False, add_bos_token=False, fixed_pad_length=None, pad_to_bsz=None, src_lang_idx=None, tgt_lang_idx=None, ): self.dataset = dataset self.sizes = np.array(sizes) self.vocab = src_vocab self.tgt_vocab = tgt_vocab or src_vocab self.add_eos_for_other_targets = add_eos_for_other_targets self.shuffle = shuffle self.add_bos_token = add_bos_token self.fixed_pad_length = fixed_pad_length self.pad_to_bsz = pad_to_bsz self.src_lang_idx = src_lang_idx self.tgt_lang_idx = tgt_lang_idx def __getitem__(self, index): # *future_target* is the original sentence # *source* is shifted right by 1 (maybe left-padded with eos) # # Left-to-right language models should condition on *source* and # predict *future_target*. source, future_target, _ = self.dataset[index] target = self._filter_vocab(future_target) source, target = self._maybe_add_bos(source, target) return {"id": index, "source": source, "target": target} def __len__(self): return len(self.dataset) def _maybe_add_bos(self, source, target): if self.add_bos_token: # src_lang_idx and tgt_lang_idx are passed in for multilingual LM, with the # first token being a lang_id token. bos = self.src_lang_idx or self.vocab.bos() source = torch.cat([source.new([bos]), source]) if target is not None: tgt_bos = self.tgt_lang_idx or self.tgt_vocab.bos() target = torch.cat([target.new([tgt_bos]), target]) return source, target def num_tokens_vec(self, indices): """Return the number of tokens for a set of positions defined by indices. This value is used to enforce ``--max-tokens`` during batching.""" return self.sizes[indices] def _filter_vocab(self, target): if len(self.tgt_vocab) != len(self.vocab): def _filter(target): mask = target.ge(len(self.tgt_vocab)) if mask.any(): target[mask] = self.tgt_vocab.unk() return target if isinstance(target, list): return [_filter(t) for t in target] return _filter(target) return target def collater(self, samples): """Merge a list of samples to form a mini-batch. Args: samples (List[dict]): samples to collate Returns: dict: a mini-batch with the following keys: - `id` (LongTensor): example IDs in the original input order - `ntokens` (int): total number of tokens in the batch - `net_input` (dict): the input to the Model, containing keys: - `src_tokens` (LongTensor): a padded 2D Tensor of tokens in the source sentence of shape `(bsz, src_len)`. Padding will appear on the right. - `target` (LongTensor): a padded 2D Tensor of tokens in the target sentence of shape `(bsz, tgt_len)`. Padding will appear on the right. """ return collate( samples, self.vocab.pad(), self.vocab.eos(), self.fixed_pad_length, self.pad_to_bsz, ) def num_tokens(self, index): """Return the number of tokens in a sample. This value is used to enforce ``--max-tokens`` during batching.""" return self.sizes[index] def size(self, index): """Return an example's size as a float or tuple. This value is used when filtering a dataset with ``--max-positions``.""" return self.sizes[index] def ordered_indices(self): """Return an ordered list of indices. Batches will be constructed based on this order.""" if self.shuffle: order = [np.random.permutation(len(self))] else: order = [np.arange(len(self))] order.append(self.sizes) return np.lexsort(order) @property def supports_prefetch(self): return getattr(self.dataset, "supports_prefetch", False) def prefetch(self, indices): self.dataset.prefetch(indices)
flash_metaseq-main
metaseq/data/monolingual_dataset.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from torch.utils.data.dataloader import default_collate from . import BaseDataset class BaseWrapperDataset(BaseDataset): def __init__(self, dataset): super().__init__() self.dataset = dataset def __getitem__(self, index): return self.dataset[index] def __len__(self): return len(self.dataset) def collater(self, samples): if hasattr(self.dataset, "collater"): return self.dataset.collater(samples) else: return default_collate(samples) @property def sizes(self): return self.dataset.sizes def num_tokens(self, index): return self.dataset.num_tokens(index) def size(self, index): return self.dataset.size(index) def ordered_indices(self): return self.dataset.ordered_indices() @property def supports_prefetch(self): return getattr(self.dataset, "supports_prefetch", False) def attr(self, attr: str, index: int): return self.dataset.attr(attr, index) def prefetch(self, indices): self.dataset.prefetch(indices) def get_batch_shapes(self): return self.dataset.get_batch_shapes() def batch_by_size( self, indices, max_tokens=None, max_sentences=None, required_batch_size_multiple=1, ): return self.dataset.batch_by_size( indices, max_tokens=max_tokens, max_sentences=max_sentences, required_batch_size_multiple=required_batch_size_multiple, ) def filter_indices_by_size(self, indices, max_sizes): return self.dataset.filter_indices_by_size(indices, max_sizes) def set_epoch(self, epoch): super().set_epoch(epoch) if hasattr(self.dataset, "set_epoch"): self.dataset.set_epoch(epoch)
flash_metaseq-main
metaseq/data/base_wrapper_dataset.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np import torch from . import BaseWrapperDataset class NumelDataset(BaseWrapperDataset): def __init__(self, dataset, reduce=False): super().__init__(dataset) self.reduce = reduce def __getitem__(self, index): item = self.dataset[index] if torch.is_tensor(item): return torch.numel(item) else: return np.size(item) def __len__(self): return len(self.dataset) def collater(self, samples): if self.reduce: return sum(samples) else: return torch.tensor(samples)
flash_metaseq-main
metaseq/data/numel_dataset.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """isort:skip_file""" from .dictionary import Dictionary, TruncatedDictionary from .base_dataset import BaseDataset from .base_wrapper_dataset import BaseWrapperDataset from .append_token_dataset import AppendTokenDataset from .concat_dataset import ConcatDataset from .id_dataset import IdDataset from .indexed_dataset import ( IndexedCachedDataset, IndexedDataset, IndexedRawTextDataset, MMapIndexedDataset, ) from .jsonl_dataset import JsonlDataset from .list_dataset import ListDataset from .lm_context_window_dataset import LMContextWindowDataset from .monolingual_dataset import MonolingualDataset from .nested_dictionary_dataset import NestedDictionaryDataset from .numel_dataset import NumelDataset from .pad_dataset import LeftPadDataset, PadDataset, RightPadDataset from .partitioned_streaming_dataset import PartitionedStreamingDataset from .prepend_token_dataset import PrependTokenDataset from .resampling_dataset import ResamplingDataset from .sort_dataset import SortDataset from .streaming_shuffle_dataset import StreamingShuffleDataset from .streaming_token_block_dataset import StreamingTokenBlockDataset from .streaming_src_tgt_dataset import StreamingSrcTgtDataset from .strip_token_dataset import StripTokenDataset from .token_block_dataset import TokenBlockDataset from .pad_dataset import MultiplePadDataset from .shorten_dataset import TruncateDataset from .iterators import ( CountingIterator, EpochBatchIterator, GroupedIterator, ShardedIterator, ) __all__ = [ "AppendTokenDataset", "BaseWrapperDataset", "ConcatDataset", "CountingIterator", "Dictionary", "EpochBatchIterator", "BaseDataset", "GroupedIterator", "IdDataset", "IndexedCachedDataset", "IndexedDataset", "IndexedRawTextDataset", "JsonlDataset", "LeftPadDataset", "ListDataset", "LMContextWindowDataset", "MMapIndexedDataset", "MonolingualDataset", "MultiplePadDataset", "NestedDictionaryDataset", "NumelDataset", "PadDataset", "PartitionedStreamingDataset", "PrependTokenDataset", "ResamplingDataset", "RightPadDataset", "ShardedIterator", "SortDataset", "StreamingShuffleDataset", "StreamingTokenBlockDataset", "StreamingSrcTgtDataset", "StripTokenDataset", "TokenBlockDataset", "TruncateDataset", "TruncatedDictionary", ]
flash_metaseq-main
metaseq/data/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np import torch from metaseq.data import data_utils class StreamingShuffleDataset(torch.utils.data.IterableDataset): """Shuffle a dataset across epochs. Note that :func:`set_epoch` must be called before the first iteration. Args: dataset (~torch.utils.data.Dataset): dataset to shuffle seed (int): iterate over the underlying dataset in random order using this random seed """ def __init__(self, dataset: torch.utils.data.Dataset, seed: int): super().__init__() self.dataset = dataset self.seed = seed assert len(dataset) > 0 self.indices = None def set_epoch(self, epoch): # shuffle the dataset according to the seed argument and epoch seed = int(hash((self.seed, epoch)) % 1e6) with data_utils.numpy_seed(seed): self.indices = np.random.permutation(len(self.dataset)) if hasattr(self.dataset, "set_epoch"): self.dataset.set_epoch(epoch) def __iter__(self): assert ( self.indices is not None ), "must call StreamingShuffleDataset.set_epoch before iteration" worker_info = torch.utils.data.get_worker_info() if worker_info is not None and worker_info.num_workers > 1: chunks = np.array_split(self.indices, worker_info.num_workers) indices = chunks[worker_info.id] else: indices = self.indices for idx in indices: yield self.dataset[idx]
flash_metaseq-main
metaseq/data/streaming_shuffle_dataset.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from . import BaseWrapperDataset class StripTokenDataset(BaseWrapperDataset): def __init__(self, dataset, id_to_strip): super().__init__(dataset) self.id_to_strip = id_to_strip def __getitem__(self, index): item = self.dataset[index] while len(item) > 0 and item[-1] == self.id_to_strip: item = item[:-1] while len(item) > 0 and item[0] == self.id_to_strip: item = item[1:] return item
flash_metaseq-main
metaseq/data/strip_token_dataset.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. try: from collections.abc import Iterable except ImportError: from collections import Iterable import contextlib import itertools import logging import os import re import warnings from typing import Optional, Tuple import numpy as np import torch from metaseq import utils from metaseq.file_io import PathManager logger = logging.getLogger(__name__) def infer_language_pair(path): """Infer language pair from filename: <split>.<lang1>-<lang2>.(...).idx""" src, dst = None, None for filename in PathManager.ls(path): parts = filename.split(".") if len(parts) >= 3 and len(parts[1].split("-")) == 2: return parts[1].split("-") return src, dst def collate_tokens( values, pad_idx, eos_idx=None, left_pad=False, move_eos_to_beginning=False, pad_to_length=None, pad_to_multiple=1, pad_to_bsz=None, ): """Convert a list of 1d tensors into a padded 2d tensor.""" size = max(v.size(0) for v in values) size = size if pad_to_length is None else max(size, pad_to_length) if pad_to_multiple != 1 and size % pad_to_multiple != 0: size = int(((size - 0.1) // pad_to_multiple + 1) * pad_to_multiple) batch_size = len(values) if pad_to_bsz is None else max(len(values), pad_to_bsz) res = values[0].new(batch_size, size).fill_(pad_idx) def copy_tensor(src, dst): assert dst.numel() == src.numel() if move_eos_to_beginning: if eos_idx is None: # if no eos_idx is specified, then use the last token in src dst[0] = src[-1] else: dst[0] = eos_idx dst[1:] = src[:-1] else: dst.copy_(src) for i, v in enumerate(values): copy_tensor(v, res[i][size - len(v) :] if left_pad else res[i][: len(v)]) return res def load_indexed_dataset( path, dictionary=None, dataset_impl=None, combine=False, default="cached" ): """A helper function for loading indexed datasets. Args: path (str): path to indexed dataset (e.g., 'data-bin/train') dictionary (~metaseq.data.Dictionary): data dictionary dataset_impl (str, optional): which dataset implementation to use. If not provided, it will be inferred automatically. For legacy indexed data we use the 'cached' implementation by default. combine (bool, optional): automatically load and combine multiple datasets. For example, if *path* is 'data-bin/train', then we will combine 'data-bin/train', 'data-bin/train1', ... and return a single ConcatDataset instance. """ import metaseq.data.indexed_dataset as indexed_dataset from metaseq.data.concat_dataset import ConcatDataset datasets = [] for k in itertools.count(): path_k = path + (str(k) if k > 0 else "") path_k = indexed_dataset.get_indexed_dataset_to_local(path_k) dataset_impl_k = dataset_impl if dataset_impl_k is None: dataset_impl_k = indexed_dataset.infer_dataset_impl(path_k) dataset = indexed_dataset.make_dataset( path_k, impl=dataset_impl_k or default, fix_lua_indexing=True, dictionary=dictionary, ) if dataset is None: break logger.info("loaded {:,} examples from: {}".format(len(dataset), path_k)) datasets.append(dataset) if not combine: break if len(datasets) == 0: return None elif len(datasets) == 1: return datasets[0] else: return ConcatDataset(datasets) @contextlib.contextmanager def numpy_seed(seed, *addl_seeds): """Context manager which seeds the NumPy PRNG with the specified seed and restores the state afterward""" if seed is None: yield return if len(addl_seeds) > 0: seed = int(hash((seed, *addl_seeds)) % 1e6) state = np.random.get_state() np.random.seed(seed) try: yield finally: np.random.set_state(state) def collect_filtered(function, iterable, filtered): """ Similar to :func:`filter` but collects filtered elements in ``filtered``. Args: function (callable): function that returns ``False`` for elements that should be filtered iterable (iterable): iterable to filter filtered (list): list to store filtered elements """ for el in iterable: if function(el): yield el else: filtered.append(el) def _filter_by_size_dynamic(indices, size_fn, max_positions, raise_exception=False): def compare_leq(a, b): return a <= b if not isinstance(a, tuple) else max(a) <= b def check_size(idx): if isinstance(max_positions, float) or isinstance(max_positions, int): return size_fn(idx) <= max_positions elif isinstance(max_positions, dict): idx_size = size_fn(idx) assert isinstance(idx_size, dict) intersect_keys = set(max_positions.keys()) & set(idx_size.keys()) return all( all( a is None or b is None or a <= b for a, b in zip(idx_size[key], max_positions[key]) ) for key in intersect_keys ) else: # For MultiCorpusSampledDataset, will generalize it later if not isinstance(size_fn(idx), Iterable): return all(size_fn(idx) <= b for b in max_positions) return all( a is None or b is None or a <= b for a, b in zip(size_fn(idx), max_positions) ) ignored = [] itr = collect_filtered(check_size, indices, ignored) indices = np.fromiter(itr, dtype=np.int64, count=-1) return indices, ignored def filter_by_size(indices, dataset, max_positions, raise_exception=False): """ [deprecated] Filter indices based on their size. Use `BaseDataset::filter_indices_by_size` instead. Args: indices (List[int]): ordered list of dataset indices dataset (BaseDataset): metaseq dataset instance max_positions (tuple): filter elements larger than this size. Comparisons are done component-wise. raise_exception (bool, optional): if ``True``, raise an exception if any elements are filtered (default: False). """ warnings.warn( "data_utils.filter_by_size is deprecated. " "Use `BaseDataset::filter_indices_by_size` instead.", stacklevel=2, ) if isinstance(max_positions, float) or isinstance(max_positions, int): if hasattr(dataset, "sizes") and isinstance(dataset.sizes, np.ndarray): ignored = indices[dataset.sizes[indices] > max_positions].tolist() indices = indices[dataset.sizes[indices] <= max_positions] elif ( hasattr(dataset, "sizes") and isinstance(dataset.sizes, list) and len(dataset.sizes) == 1 ): ignored = indices[dataset.sizes[0][indices] > max_positions].tolist() indices = indices[dataset.sizes[0][indices] <= max_positions] else: indices, ignored = _filter_by_size_dynamic( indices, dataset.size, max_positions ) else: indices, ignored = _filter_by_size_dynamic(indices, dataset.size, max_positions) if len(ignored) > 0 and raise_exception: raise Exception( ( "Size of sample #{} is invalid (={}) since max_positions={}, " "skip this example with --skip-invalid-size-inputs-valid-test" ).format(ignored[0], dataset.size(ignored[0]), max_positions) ) if len(ignored) > 0: logger.warning( ( "{} samples have invalid sizes and will be skipped, " "max_positions={}, first few sample ids={}" ).format(len(ignored), max_positions, ignored[:10]) ) return indices def filter_paired_dataset_indices_by_size(src_sizes, tgt_sizes, indices, max_sizes): """Filter a list of sample indices. Remove those that are longer than specified in max_sizes. Args: indices (np.array): original array of sample indices max_sizes (int or list[int] or tuple[int]): max sample size, can be defined separately for src and tgt (then list or tuple) Returns: np.array: filtered sample array list: list of removed indices """ if max_sizes is None: return indices, [] if type(max_sizes) in (int, float): max_src_size, max_tgt_size = max_sizes, max_sizes else: max_src_size, max_tgt_size = max_sizes if tgt_sizes is None: ignored = indices[src_sizes[indices] > max_src_size] else: ignored = indices[ (src_sizes[indices] > max_src_size) | (tgt_sizes[indices] > max_tgt_size) ] if len(ignored) > 0: if tgt_sizes is None: indices = indices[src_sizes[indices] <= max_src_size] else: indices = indices[ (src_sizes[indices] <= max_src_size) & (tgt_sizes[indices] <= max_tgt_size) ] return indices, ignored.tolist() def batch_by_size( indices, num_tokens_fn, num_tokens_vec=None, max_tokens=None, max_sentences=None, required_batch_size_multiple=1, fixed_shapes=None, ): """ Yield mini-batches of indices bucketed by size. Batches may contain sequences of different lengths. Args: indices (List[int]): ordered list of dataset indices num_tokens_fn (callable): function that returns the number of tokens at a given index num_tokens_vec (List[int], optional): precomputed vector of the number of tokens for each index in indices (to enable faster batch generation) max_tokens (int, optional): max number of tokens in each batch (default: None). max_sentences (int, optional): max number of sentences in each batch (default: None). required_batch_size_multiple (int, optional): require batch size to be less than N or a multiple of N (default: 1). fixed_shapes (List[Tuple[int, int]], optional): if given, batches will only be created with the given shapes. *max_sentences* and *required_batch_size_multiple* will be ignored (default: None). """ try: from metaseq.data.data_utils_fast import ( batch_by_size_fn, batch_by_size_vec, batch_fixed_shapes_fast, ) except ImportError: raise ImportError( "Please build Cython components with: `pip install --editable .` " "or `python setup.py build_ext --inplace`" ) except ValueError: raise ValueError( "Please build (or rebuild) Cython components with: `pip install " " --editable .` or `python setup.py build_ext --inplace`." ) # added int() to avoid TypeError: an integer is required max_tokens = int(max_tokens) if max_tokens is not None else -1 max_sentences = max_sentences if max_sentences is not None else -1 bsz_mult = required_batch_size_multiple if not isinstance(indices, np.ndarray): indices = np.fromiter(indices, dtype=np.int64, count=-1) if num_tokens_vec is not None and not isinstance(num_tokens_vec, np.ndarray): num_tokens_vec = np.fromiter(num_tokens_vec, dtype=np.int64, count=-1) if fixed_shapes is None: if num_tokens_vec is None: return batch_by_size_fn( indices, num_tokens_fn, max_tokens, max_sentences, bsz_mult, ) else: return batch_by_size_vec( indices, num_tokens_vec, max_tokens, max_sentences, bsz_mult, ) else: fixed_shapes = np.array(fixed_shapes, dtype=np.int64) sort_order = np.lexsort( [ fixed_shapes[:, 1].argsort(), # length fixed_shapes[:, 0].argsort(), # bsz ] ) fixed_shapes_sorted = fixed_shapes[sort_order] return batch_fixed_shapes_fast(indices, num_tokens_fn, fixed_shapes_sorted) def post_process(sentence: str, symbol: str): if symbol == "sentencepiece": sentence = sentence.replace(" ", "").replace("\u2581", " ").strip() elif symbol == "wordpiece": sentence = sentence.replace(" ", "").replace("_", " ").strip() elif symbol == "letter": sentence = sentence.replace(" ", "").replace("|", " ").strip() elif symbol == "_EOW": sentence = sentence.replace(" ", "").replace("_EOW", " ").strip() elif symbol == "none": pass elif symbol is not None: raise NotImplementedError(f"Unknown post_process option: {symbol}") return sentence def compute_mask_indices( shape: Tuple[int, int], padding_mask: Optional[torch.Tensor], mask_prob: float, mask_length: int, mask_type: str = "static", mask_other: float = 0.0, min_masks: int = 0, no_overlap: bool = False, min_space: int = 0, ) -> np.ndarray: """ Computes random mask spans for a given shape Args: shape: the the shape for which to compute masks. should be of size 2 where first element is batch size and 2nd is timesteps padding_mask: optional padding mask of the same size as shape, which will prevent masking padded elements mask_prob: probability for each token to be chosen as start of the span to be masked. this will be multiplied by number of timesteps divided by length of mask span to mask approximately this percentage of all elements. however due to overlaps, the actual number will be smaller (unless no_overlap is True) mask_type: how to compute mask lengths static = fixed size uniform = sample from uniform distribution [mask_other, mask_length*2] normal = sample from normal distribution with mean mask_length and stdev mask_other. mask is min 1 element poisson = sample from possion distribution with lambda = mask length min_masks: minimum number of masked spans no_overlap: if false, will switch to an alternative recursive algorithm that prevents spans from overlapping min_space: only used if no_overlap is True, this is how many elements to keep unmasked between spans """ bsz, all_sz = shape mask = np.full((bsz, all_sz), False) all_num_mask = int( # add a random number for probabilistic rounding mask_prob * all_sz / float(mask_length) + np.random.rand() ) all_num_mask = max(min_masks, all_num_mask) mask_idcs = [] for i in range(bsz): if padding_mask is not None: sz = all_sz - padding_mask[i].long().sum().item() num_mask = int( # add a random number for probabilistic rounding mask_prob * sz / float(mask_length) + np.random.rand() ) num_mask = max(min_masks, num_mask) else: sz = all_sz num_mask = all_num_mask if mask_type == "static": lengths = np.full(num_mask, mask_length) elif mask_type == "uniform": lengths = np.random.randint(mask_other, mask_length * 2 + 1, size=num_mask) elif mask_type == "normal": lengths = np.random.normal(mask_length, mask_other, size=num_mask) lengths = [max(1, int(round(x))) for x in lengths] elif mask_type == "poisson": lengths = np.random.poisson(mask_length, size=num_mask) lengths = [int(round(x)) for x in lengths] else: raise Exception("unknown mask selection " + mask_type) if sum(lengths) == 0: lengths[0] = min(mask_length, sz - 1) if no_overlap: mask_idc = [] def arrange(s, e, length, keep_length): span_start = np.random.randint(s, e - length) mask_idc.extend(span_start + i for i in range(length)) new_parts = [] if span_start - s - min_space >= keep_length: new_parts.append((s, span_start - min_space + 1)) if e - span_start - keep_length - min_space > keep_length: new_parts.append((span_start + length + min_space, e)) return new_parts parts = [(0, sz)] min_length = min(lengths) for length in sorted(lengths, reverse=True): lens = np.fromiter( (e - s if e - s >= length + min_space else 0 for s, e in parts), np.int, ) l_sum = np.sum(lens) if l_sum == 0: break probs = lens / np.sum(lens) c = np.random.choice(len(parts), p=probs) s, e = parts.pop(c) parts.extend(arrange(s, e, length, min_length)) mask_idc = np.asarray(mask_idc) else: min_len = min(lengths) if sz - min_len <= num_mask: min_len = sz - num_mask - 1 mask_idc = np.random.choice(sz - min_len, num_mask, replace=False) mask_idc = np.asarray( [ mask_idc[j] + offset for j in range(len(mask_idc)) for offset in range(lengths[j]) ] ) mask_idcs.append(np.unique(mask_idc[mask_idc < sz])) min_len = min([len(m) for m in mask_idcs]) for i, mask_idc in enumerate(mask_idcs): if len(mask_idc) > min_len: mask_idc = np.random.choice(mask_idc, min_len, replace=False) mask[i, mask_idc] = True return mask def get_mem_usage(): try: import psutil mb = 1024 * 1024 return f"used={psutil.virtual_memory().used / mb}Mb; avail={psutil.virtual_memory().available / mb}Mb" except ImportError: return "N/A" def lengths_to_padding_mask(lens: torch.LongTensor) -> torch.BoolTensor: bsz, max_lens = lens.size(0), torch.max(lens).item() mask = torch.arange(max_lens).to(lens.device).view(1, max_lens) mask = mask.expand(bsz, -1) >= lens.view(bsz, 1).expand(-1, max_lens) return mask def lengths_to_mask(lens: torch.LongTensor) -> torch.BoolTensor: return ~lengths_to_padding_mask(lens) def _find_extra_valid_paths(dataset_path: str) -> set: paths = utils.split_paths(dataset_path) all_valid_paths = set() for sub_dir in paths: contents = PathManager.ls(sub_dir) valid_paths = [c for c in contents if re.match("valid*[0-9].*", c) is not None] all_valid_paths |= {os.path.basename(p) for p in valid_paths} # Remove .bin, .idx etc roots = {os.path.splitext(p)[0] for p in all_valid_paths} return roots def raise_if_valid_subsets_unintentionally_ignored(train_cfg) -> None: """Raises if there are paths matching 'valid*[0-9].*' which are not combined or ignored.""" if ( train_cfg.dataset.ignore_unused_valid_subsets or train_cfg.dataset.combine_valid_subsets or train_cfg.dataset.disable_validation or getattr(train_cfg.task, "data", None) is None ): return other_paths = _find_extra_valid_paths(train_cfg.task.data) specified_subsets = train_cfg.dataset.valid_subset.split(",") ignored_paths = [p for p in other_paths if p not in specified_subsets] if ignored_paths: advice = "Set --combine-val to combine them or --ignore-unused-valid-subsets to ignore them." msg = f"Valid paths {ignored_paths} will be ignored. {advice}" raise ValueError(msg)
flash_metaseq-main
metaseq/data/data_utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np import torch from . import BaseWrapperDataset class PrependTokenDataset(BaseWrapperDataset): def __init__(self, dataset, token=None): super().__init__(dataset) self.token = token if token is not None: self._sizes = np.array(dataset.sizes) + 1 else: self._sizes = dataset.sizes def __getitem__(self, idx): item = self.dataset[idx] if self.token is not None: item = torch.cat([item.new([self.token]), item]) return item @property def sizes(self): return self._sizes def num_tokens(self, index): n = self.dataset.num_tokens(index) if self.token is not None: n += 1 return n def size(self, index): n = self.dataset.size(index) if self.token is not None: n += 1 return n
flash_metaseq-main
metaseq/data/prepend_token_dataset.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from . import BaseWrapperDataset class ListDataset(BaseWrapperDataset): def __init__(self, dataset, sizes=None): super().__init__(dataset) self._sizes = sizes def __iter__(self): for x in self.dataset: yield x def collater(self, samples): return samples @property def sizes(self): return self._sizes def num_tokens(self, index): return self.sizes[index] def size(self, index): return self.sizes[index] def set_epoch(self, epoch): pass
flash_metaseq-main
metaseq/data/list_dataset.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import itertools import logging import math import operator import os import queue import time from threading import Thread from typing import Callable, Optional import numpy as np import torch from metaseq.data import data_utils logger = logging.getLogger(__name__) # Object used by _background_consumer to signal the source is exhausted # to the main thread. _sentinel = object() class CountingIterator(object): """Wrapper around an iterable that maintains the iteration count. Args: iterable (iterable): iterable to wrap start (int): starting iteration count. Note that this doesn't actually advance the iterator. total (int): override the iterator length returned by ``__len__``. This can be used to truncate *iterator*. Attributes: n (int): number of elements consumed from this iterator """ def __init__(self, iterable, start=None, total=None): self.iterable = iterable self.itr = iter(self) if start is None: self.n = getattr(iterable, "n", 0) else: self.n = start if total is None: self.total = self.n + len(iterable) else: self.total = total def __len__(self): return self.total def __iter__(self): for x in self.iterable: if self.n >= self.total: raise RuntimeError( "Mismatch between actual and expected iterable length. " "This may be caused by resuming training from a checkpoint using " "a different number of GPUs, in which case you can try the " "--reset-dataloader option. Alternatively you may have a train or " "validation set that is smaller than the number of GPUs. If none " "of these apply, please report this to the metaseq developers." ) self.n += 1 yield x def __next__(self): return next(self.itr) def has_next(self): """Whether the iterator has been exhausted.""" return self.n < len(self) def skip(self, num_to_skip): """Fast-forward the iterator by skipping *num_to_skip* elements.""" next(itertools.islice(self.itr, num_to_skip, num_to_skip), None) return self def take(self, n): """ Truncates the iterator to n elements at most. """ self.total = min(self.total, n) # Propagate this change to the underlying iterator # Only take after what we have already consumed (i.e. after restarting # from checkpoint mid epoch, we have to subtract self.n which is the # starting point) # # This to maintain the invariant self.total = self.n + len(iterable), # before calling __next__ or __iter__ propagated_take = max(n - self.n, 0) if hasattr(self.iterable, "take"): self.iterable.take(propagated_take) else: self.iterable = itertools.islice(self.iterable, propagated_take) class StreamingCountingIterator(object): """Wrapper around an iterable that maintains the iteration count. Args: iterable (iterable): iterable to wrap Attributes: n (int): number of elements consumed from this iterator """ def __init__(self, iterable): try: import more_itertools except ImportError: raise ImportError( "more_itertools is required for streaming iterators; " "please install with: pip install more_itertools" ) self._peekable_itr = more_itertools.peekable(iterable) self._countable_itr = more_itertools.countable(self._peekable_itr) def __iter__(self): return self def __next__(self): return next(self._countable_itr) def __len__(self): return 0 def has_next(self): return bool(self._peekable_itr) # whether peekable has items @property def n(self): return self._countable_itr.items_seen class EpochBatchIterating(object): def __len__(self) -> int: raise NotImplementedError @property def next_epoch_idx(self): raise NotImplementedError def next_epoch_itr( self, shuffle=True, fix_batches_to_gpus=False, set_dataset_epoch=True ): """Return a new iterator over the dataset. Args: shuffle (bool, optional): shuffle batches before returning the iterator (default: True). fix_batches_to_gpus (bool, optional): ensure that batches are always allocated to the same shards across epochs. Requires that :attr:`dataset` supports prefetching (default: False). set_dataset_epoch (bool, optional): update the wrapped Dataset with the new epoch number (default: True). """ raise NotImplementedError def end_of_epoch(self) -> bool: """Returns whether the most recent epoch iterator has been exhausted""" raise NotImplementedError @property def iterations_in_epoch(self) -> int: """The number of consumed batches in the current epoch.""" raise NotImplementedError def state_dict(self): """Returns a dictionary containing a whole state of the iterator.""" raise NotImplementedError def load_state_dict(self, state_dict): """Copies the state of the iterator from the given *state_dict*.""" raise NotImplementedError @property def first_batch(self): return "DUMMY" class StreamingEpochBatchIterator(EpochBatchIterating): """A steaming-style iterator over a :class:`torch.utils.data.IterableDataset`. Args: dataset (~torch.utils.data.Dataset): dataset from which to load the data batch_size (int): number of items in each batch collate_fn (callable): merges a list of samples to form a mini-batch drop_last (bool): whether to skip the last batch, in cases where it would be incomplete (i.e., have fewer than *batch_size* items) num_workers (int, optional): how many subprocesses to use for data loading. 0 means the data will be loaded in the main process (default: 0). epoch (int, optional): the epoch to start the iterator from (default: 1). """ def __init__( self, dataset: torch.utils.data.IterableDataset, batch_size: int, collate_fn: Callable, drop_last: bool, num_workers: int = 0, epoch: int = 1, ): super().__init__() self.dataset = dataset self.batch_size = batch_size self.collate_fn = collate_fn self.drop_last = drop_last self.num_workers = num_workers self.epoch = max(epoch, 1) # we use 1-based indexing for epochs assert isinstance(dataset, torch.utils.data.IterableDataset) self._itr: Optional[StreamingCountingIterator] = None @property def next_epoch_idx(self): """Return the epoch index after *next_epoch_itr* is called.""" if self._itr is not None and self.end_of_epoch(): return self.epoch + 1 else: return self.epoch def next_epoch_itr(self, **kwargs): """ Return a new iterator over the dataset. In case :func:`load_state_dict` has been called recently, this will return the loaded iterator. """ self.epoch = self.next_epoch_idx if hasattr(self.dataset, "set_epoch"): self.dataset.set_epoch(self.epoch) if self._itr is None or self.end_of_epoch(): self._itr = self._get_iterator_for_epoch(self.epoch) return self._itr def end_of_epoch(self) -> bool: """Returns whether the most recent epoch iterator has been exhausted""" return not self._itr.has_next() @property def iterations_in_epoch(self) -> int: """The number of consumed batches in the current epoch.""" return self._itr.n def state_dict(self): """Returns a dictionary containing a whole state of the iterator.""" if self.end_of_epoch(): # small optimization: we advance the epoch before saving, so that # when loading later we don't end up fast-forwarding the iterator epoch = self.epoch + 1 iter_in_epoch = 0 else: epoch = self.epoch iter_in_epoch = self.iterations_in_epoch return { "epoch": epoch, "iterations_in_epoch": iter_in_epoch, } def load_state_dict(self, state_dict): """Copies the state of the iterator from the given *state_dict*.""" self.epoch = state_dict["epoch"] if hasattr(self.dataset, "set_epoch"): self.dataset.set_epoch(self.epoch) self._itr = self._get_iterator_for_epoch(self.epoch) itr_pos = state_dict.get("iterations_in_epoch", 0) if itr_pos > 0: # fast-forward epoch iterator logger.warning(f"Fast-forwarding dataloader by {itr_pos} batches...") t0 = time.time() next(itertools.islice(self._itr, itr_pos, itr_pos), None) logger.warning( f"done fast-forwarding dataloader in {time.time() - t0:.1f} seconds" ) def _get_iterator_for_epoch(self, epoch, offset=0): if self.num_workers > 0: os.environ["PYTHONWARNINGS"] = "ignore:semaphore_tracker:UserWarning" itr = torch.utils.data.DataLoader( dataset=self.dataset, batch_size=self.batch_size, num_workers=self.num_workers, collate_fn=self.collate_fn, pin_memory=True, drop_last=self.drop_last, worker_init_fn=getattr(self.dataset, "worker_init_fn", None), ) itr = StreamingCountingIterator(itr) return itr class EpochBatchIterator(EpochBatchIterating): """A multi-epoch iterator over a :class:`torch.utils.data.Dataset`. Compared to :class:`torch.utils.data.DataLoader`, this iterator: - can be reused across multiple epochs with the :func:`next_epoch_itr` method (optionally shuffled between epochs) - can be serialized/deserialized with the :func:`state_dict` and :func:`load_state_dict` methods - supports sharding with the *num_shards* and *shard_id* arguments Args: dataset (~torch.utils.data.Dataset): dataset from which to load the data collate_fn (callable): merges a list of samples to form a mini-batch batch_sampler (~torch.utils.data.Sampler or a callable): an iterator over batches of indices, or a callable to create such an iterator (~torch.utils.data.Sampler). A callable batch_sampler will be called for each epoch to enable per epoch dynamic batch iterators defined by this callable batch_sampler. seed (int, optional): seed for random number generator for reproducibility (default: 1). num_shards (int, optional): shard the data iterator into N shards (default: 1). shard_id (int, optional): which shard of the data iterator to return (default: 0). num_workers (int, optional): how many subprocesses to use for data loading. 0 means the data will be loaded in the main process (default: 0). epoch (int, optional): the epoch to start the iterator from (default: 1). buffer_size (int, optional): the number of batches to keep ready in the queue. Helps speeding up dataloading. When buffer_size is zero, the default torch.utils.data.DataLoader preloading is used. timeout (int, optional): if positive, the timeout value for collecting a batch from workers. Should always be non-negative (default: ``0``). disable_shuffling (bool, optional): force disable shuffling (default: ``False``). skip_remainder_batch (bool, optional): if set, discard the last batch in an epoch for the sake of training stability, as the last batch is usually smaller than local_batch_size * distributed_word_size (default: ``False``). """ def __init__( self, dataset, collate_fn, batch_sampler, seed=1, num_shards=1, shard_id=0, num_workers=0, epoch=1, buffer_size=0, timeout=0, disable_shuffling=False, skip_remainder_batch=False, ): assert isinstance(dataset, torch.utils.data.Dataset) self.dataset = dataset self.collate_fn = collate_fn self.batch_sampler = batch_sampler self._frozen_batches = ( tuple(batch_sampler) if not callable(batch_sampler) else None ) self.seed = seed self.num_shards = num_shards self.shard_id = shard_id self.num_workers = num_workers # This upper limit here is to prevent people from abusing this feature # in a shared computing environment. self.buffer_size = min(buffer_size, 20) self.timeout = timeout self.disable_shuffling = disable_shuffling self.skip_remainder_batch = skip_remainder_batch self.epoch = max(epoch, 1) # we use 1-based indexing for epochs self.shuffle = not disable_shuffling self._cur_epoch_itr = None self._next_epoch_itr = None self._supports_prefetch = getattr(dataset, "supports_prefetch", False) @property def frozen_batches(self): if self._frozen_batches is None: self._frozen_batches = tuple(self.batch_sampler(self.dataset, self.epoch)) return self._frozen_batches @property def first_batch(self): if len(self.frozen_batches) == 0: raise Exception( "The dataset is empty. This could indicate " "that all elements in the dataset have been skipped. " "Try increasing the max number of allowed tokens or using " "a larger dataset." ) if getattr(self.dataset, "supports_fetch_outside_dataloader", True): return self.collate_fn([self.dataset[i] for i in self.frozen_batches[0]]) else: return "DUMMY" def __len__(self): return int(math.ceil(len(self.frozen_batches) / float(self.num_shards))) @property def n(self): return self.iterations_in_epoch @property def next_epoch_idx(self): """Return the epoch index after *next_epoch_itr* is called.""" if self._next_epoch_itr is not None: return self.epoch elif self._cur_epoch_itr is not None and self.end_of_epoch(): return self.epoch + 1 else: return self.epoch def next_epoch_itr( self, shuffle=True, fix_batches_to_gpus=False, set_dataset_epoch=True ): """Return a new iterator over the dataset. Args: shuffle (bool, optional): shuffle batches before returning the iterator (default: True). fix_batches_to_gpus (bool, optional): ensure that batches are always allocated to the same shards across epochs. Requires that :attr:`dataset` supports prefetching (default: False). set_dataset_epoch (bool, optional): update the wrapped Dataset with the new epoch number (default: True). """ if self.disable_shuffling: shuffle = False self.epoch = self.next_epoch_idx if set_dataset_epoch and hasattr(self.dataset, "set_epoch"): self.dataset.set_epoch(self.epoch) if self._next_epoch_itr is not None: self._cur_epoch_itr = self._next_epoch_itr self._next_epoch_itr = None else: if callable(self.batch_sampler): # reset _frozen_batches to refresh the next epoch self._frozen_batches = None self._cur_epoch_itr = self._get_iterator_for_epoch( self.epoch, shuffle, fix_batches_to_gpus=fix_batches_to_gpus, ) self.shuffle = shuffle return self._cur_epoch_itr def end_of_epoch(self) -> bool: """Returns whether the most recent epoch iterator has been exhausted""" return not self._cur_epoch_itr.has_next() @property def iterations_in_epoch(self): """The number of consumed batches in the current epoch.""" if self._cur_epoch_itr is not None: return self._cur_epoch_itr.n elif self._next_epoch_itr is not None: return self._next_epoch_itr.n return 0 def state_dict(self): """Returns a dictionary containing a whole state of the iterator.""" if self.end_of_epoch(): epoch = self.epoch + 1 iter_in_epoch = 0 else: epoch = self.epoch iter_in_epoch = self.iterations_in_epoch return { "version": 2, "epoch": epoch, "iterations_in_epoch": iter_in_epoch, "shuffle": self.shuffle, } def load_state_dict(self, state_dict): """Copies the state of the iterator from the given *state_dict*.""" self.epoch = state_dict["epoch"] itr_pos = state_dict.get("iterations_in_epoch", 0) version = state_dict.get("version", 1) if itr_pos > 0: # fast-forward epoch iterator self._next_epoch_itr = self._get_iterator_for_epoch( self.epoch, shuffle=state_dict.get("shuffle", True), offset=itr_pos, ) if self._next_epoch_itr is None: if version == 1: # legacy behavior: we finished the epoch, increment epoch counter self.epoch += 1 else: raise RuntimeError( "Cannot resume training due to dataloader mismatch, please " "report this to the metaseq developers. You can relaunch " "training with `--reset-dataloader` and it should work." ) else: self._next_epoch_itr = None def _get_iterator_for_epoch( self, epoch, shuffle, fix_batches_to_gpus=False, offset=0 ): def shuffle_batches(batches, seed): with data_utils.numpy_seed(seed): np.random.shuffle(batches) return batches if self._supports_prefetch: batches = self.frozen_batches if shuffle and not fix_batches_to_gpus: batches = shuffle_batches(list(batches), self.seed + epoch) batches = list( ShardedIterator(batches, self.num_shards, self.shard_id, fill_value=[]) ) self.dataset.prefetch([i for s in batches for i in s]) if shuffle and fix_batches_to_gpus: batches = shuffle_batches(batches, self.seed + epoch + self.shard_id) else: if shuffle: batches = shuffle_batches(list(self.frozen_batches), self.seed + epoch) else: batches = self.frozen_batches batches = list( ShardedIterator(batches, self.num_shards, self.shard_id, fill_value=[]) ) if offset > 0 and offset >= len(batches): return None if self.num_workers > 0: os.environ["PYTHONWARNINGS"] = "ignore:semaphore_tracker:UserWarning" # Create data loader itr = torch.utils.data.DataLoader( self.dataset, collate_fn=self.collate_fn, batch_sampler=batches[offset:], num_workers=self.num_workers, timeout=self.timeout, ) # Wrap with a BufferedIterator if needed if self.buffer_size > 0: itr = BufferedIterator(self.buffer_size, itr) # Wrap with CountingIterator itr = CountingIterator(itr, start=offset) if self.skip_remainder_batch: # TODO: Below is a lazy implementation which discard the final batch regardless # of whether it is a full batch or not. total_num_itrs = len(batches) - 1 itr.take(total_num_itrs) logger.info(f"skip final residual batch, total_num_itrs = {total_num_itrs}") return itr class GroupedIterator(CountingIterator): """Wrapper around an iterable that returns groups (chunks) of items. Args: iterable (iterable): iterable to wrap chunk_size (int): size of each chunk skip_remainder_batch (bool, optional): if set, discard the last grouped batch in each training epoch, as the last grouped batch is usually smaller than local_batch_size * distributed_word_size * chunk_size (default: ``False``). Attributes: n (int): number of elements consumed from this iterator """ def __init__(self, iterable, chunk_size, skip_remainder_batch=False): if skip_remainder_batch: total_num_itrs = int(math.floor(len(iterable) / float(chunk_size))) logger.info( f"skip final residual batch, grouped total_num_itrs = {total_num_itrs}" ) else: total_num_itrs = int(math.ceil(len(iterable) / float(chunk_size))) logger.info(f"grouped total_num_itrs = {total_num_itrs}") itr = _chunk_iterator(iterable, chunk_size, skip_remainder_batch) super().__init__( itr, start=int(math.ceil(getattr(iterable, "n", 0) / float(chunk_size))), total=total_num_itrs, ) self.chunk_size = chunk_size if skip_remainder_batch: self.take(total_num_itrs) # TODO: [Hack] Here the grouped iterator modifies the base iterator size so that # training can move into the next epoch once the grouped iterator is exhausted. # Double-check this implementation in case unexpected behavior occurs. iterable.take(total_num_itrs * chunk_size) def _chunk_iterator(itr, chunk_size, skip_remainder_batch=False): chunk = [] for x in itr: chunk.append(x) if len(chunk) == chunk_size: yield chunk chunk = [] if not skip_remainder_batch and len(chunk) > 0: yield chunk class ShardedIterator(CountingIterator): """A sharded wrapper around an iterable, padded to length. Args: iterable (iterable): iterable to wrap num_shards (int): number of shards to split the iterable into shard_id (int): which shard to iterator over fill_value (Any, optional): padding value when the iterable doesn't evenly divide *num_shards* (default: None). Attributes: n (int): number of elements consumed from this iterator """ def __init__(self, iterable, num_shards, shard_id, fill_value=None): if shard_id < 0 or shard_id >= num_shards: raise ValueError("shard_id must be between 0 and num_shards") sharded_len = int(math.ceil(len(iterable) / float(num_shards))) itr = map( operator.itemgetter(1), itertools.zip_longest( range(sharded_len), itertools.islice(iterable, shard_id, len(iterable), num_shards), fillvalue=fill_value, ), ) super().__init__( itr, start=int(math.ceil(getattr(iterable, "n", 0) / float(num_shards))), total=sharded_len, ) class BackgroundConsumer(Thread): def __init__(self, queue, source, max_len): Thread.__init__(self) self._queue = queue self._source = source self._max_len = max_len self.count = 0 def run(self): try: for item in self._source: self._queue.put(item) # Stop if we reached the maximum length self.count += 1 if self._max_len is not None and self.count >= self._max_len: break # Signal the consumer we are done. self._queue.put(_sentinel) except Exception as e: self._queue.put(e) class BufferedIterator(object): def __init__(self, size, iterable): self._queue = queue.Queue(size) self._iterable = iterable self._consumer = None self.start_time = time.time() self.warning_time = None self.total = len(iterable) def _create_consumer(self): self._consumer = BackgroundConsumer( self._queue, self._iterable, self.total, ) self._consumer.daemon = True self._consumer.start() def __iter__(self): return self def __len__(self): return self.total def take(self, n): self.total = min(self.total, n) # Propagate this change to the underlying iterator if hasattr(self._iterable, "take"): self._iterable.take(n) def __next__(self): # Create consumer if not created yet if self._consumer is None: self._create_consumer() # Notify the user if there is a data loading bottleneck if self._queue.qsize() < min(2, max(1, self._queue.maxsize // 2)): if time.time() - self.start_time > 5 * 60: if ( self.warning_time is None or time.time() - self.warning_time > 15 * 60 ): logger.debug( "Data loading buffer is empty or nearly empty. This may " "indicate a data loading bottleneck, and increasing the " "number of workers (--num-workers) may help." ) self.warning_time = time.time() # Get next example item = self._queue.get(True) if isinstance(item, Exception): raise item if item is _sentinel: raise StopIteration() return item
flash_metaseq-main
metaseq/data/iterators.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import hashlib import json import subprocess import tempfile from typing import Hashable try: import pyarrow.plasma as plasma PYARROW_AVAILABLE = True except ImportError: plasma = None PYARROW_AVAILABLE = False class PlasmaArray: """ Wrapper around numpy arrays that automatically moves the data to shared memory upon serialization. This is particularly helpful when passing numpy arrays through multiprocessing, so that data is not unnecessarily duplicated or pickled. """ def __init__(self, array): super().__init__() self.array = array self.disable = array.nbytes < 134217728 # disable for arrays <128MB self.object_id = None self.path = None # variables with underscores shouldn't be pickled self._client = None self._server = None self._server_tmp = None self._plasma = None @property def plasma(self): if self._plasma is None and not self.disable: self._plasma = plasma return self._plasma def start_server(self): if self.plasma is None or self._server is not None: return assert self.object_id is None assert self.path is None self._server_tmp = tempfile.NamedTemporaryFile() self.path = self._server_tmp.name self._server = subprocess.Popen( ["plasma_store", "-m", str(int(1.05 * self.array.nbytes)), "-s", self.path] ) @property def client(self): if self._client is None: assert self.path is not None self._client = self.plasma.connect(self.path, num_retries=200) return self._client def __getstate__(self): """Called on pickle load""" if self.plasma is None: return self.__dict__ if self.object_id is None: self.start_server() self.object_id = self.client.put(self.array) state = self.__dict__.copy() del state["array"] state["_client"] = None state["_server"] = None state["_server_tmp"] = None state["_plasma"] = None return state def __setstate__(self, state): """Called on pickle save""" self.__dict__.update(state) if self.plasma is None: return self.array = self.client.get(self.object_id) def __del__(self): if self._server is not None: self._server.kill() self._server = None self._server_tmp.close() self._server_tmp = None DEFAULT_PLASMA_PATH = "/tmp/plasma" class PlasmaView: """Interface to write and read from shared memory. Whereas PlasmaArray writes to plasma on serialization, PlasmaView writes to shared memory on instantiation.""" def __init__(self, array, split_path: str, hash_data: Hashable, plasma_path=None): """ Args: array: numpy array to store. This can be read with ``PlasmaView().array`` split_path: the path whence the data was read, used for hashing hash_data: other metadata about the array that can be used to create a unique key. as of writing, the 3 callers in ``TokenBlockDataset`` use:: hash_data = ((block_size, document_sep_len, str(break_mode), len(dataset)), 0|1|2) """ assert PYARROW_AVAILABLE assert split_path is not None if plasma_path is None: plasma_path = DEFAULT_PLASMA_PATH self.path = plasma_path self.split_path = split_path self._client = None # Initialize lazily for pickle. plasma clients should not be deep copied or serialized. self._n = None self.object_id = self.get_object_id(self.split_path, hash_data) try: self.client.put(array, object_id=self.object_id) except plasma.PlasmaObjectExists: pass @property def client(self): if self._client is None: self._client = plasma.connect(self.path, num_retries=200) return self._client @property def array(self): """Fetch a read only view of an np.array, stored in plasma.""" ret = self.client.get(self.object_id) return ret @staticmethod def get_object_id(split_path: str, hash_data: Hashable): """Returns plasma.ObjectID from hashing split_path and object_num.""" hash = hashlib.blake2b(bytes(split_path, "utf-8"), digest_size=20) harg = json.dumps(hash_data).encode("utf-8") hash.update(harg) return plasma.ObjectID(hash.digest()) def __getstate__(self): """Called on pickle save""" self.disconnect() state = self.__dict__.copy() assert state["_client"] is None assert "object_id" in state return state def __setstate__(self, state): """Called on pickle load""" self.__dict__.update(state) def __del__(self): self.disconnect() def disconnect(self): if self._client is not None: self._client.disconnect() self._client = None def __len__(self): """Save reads by caching len""" if self._n is None: self._n = len(self.array) return self._n GB100 = (1024**3) * 100 class PlasmaStore: def __init__(self, path=DEFAULT_PLASMA_PATH, nbytes: int = GB100): self.server = self.start(path, nbytes) def __del__(self): self.server.kill() @staticmethod def start(path=DEFAULT_PLASMA_PATH, nbytes: int = GB100) -> subprocess.Popen: if not PYARROW_AVAILABLE: raise ImportError("please run pip install pyarrow to use --use_plasma_view") # best practice is to allocate more space than we need. The limitation seems to be the size of /dev/shm _server = subprocess.Popen(["plasma_store", "-m", str(nbytes), "-s", path]) plasma.connect(path, num_retries=200) # If we can't connect we fail immediately return _server
flash_metaseq-main
metaseq/data/plasma_utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import numpy as np from metaseq.data import BaseWrapperDataset, plasma_utils logger = logging.getLogger(__name__) class ResamplingDataset(BaseWrapperDataset): """Randomly samples from a given dataset at each epoch. Sampling is done with or without replacement, depending on the "replace" parameter. Optionally, the epoch size can be rescaled. This is potentially desirable to increase per-epoch coverage of the base dataset (since sampling with replacement means that many items in the dataset will be left out). In the case of sampling without replacement, size_ratio should be strictly less than 1. Args: dataset (~torch.utils.data.Dataset): dataset on which to sample. weights (List[float]): list of probability weights (default: None, which corresponds to uniform sampling). replace (bool): sampling mode; True for "with replacement", or False for "without replacement" (default: True) size_ratio (float): the ratio to subsample to; must be positive (default: 1.0). batch_by_size (bool): whether or not to batch by sequence length (default: True). seed (int): RNG seed to use (default: 0). epoch (int): starting epoch number (default: 1). """ def __init__( self, dataset, weights=None, replace=True, size_ratio=1.0, batch_by_size=True, seed=0, epoch=1, ): super().__init__(dataset) if weights is None: self.weights = None else: assert len(weights) == len(dataset) weights_arr = np.array(weights, dtype=np.float64) weights_arr /= weights_arr.sum() self.weights = plasma_utils.PlasmaArray(weights_arr) self.replace = replace assert size_ratio > 0.0 if not self.replace: assert size_ratio <= 1.0 logger.info(f"size ratio = {size_ratio}; replace = {self.replace}") self.size_ratio = float(size_ratio) self.actual_size = np.ceil(len(dataset) * self.size_ratio).astype(int) self.batch_by_size = batch_by_size self.seed = seed self._cur_epoch = None self._cur_indices = None self.set_epoch(epoch) def __getitem__(self, index): return self.dataset[self._cur_indices.array[index]] def __len__(self): return self.actual_size @property def sizes(self): if isinstance(self.dataset.sizes, list): return [s[self._cur_indices.array] for s in self.dataset.sizes] return self.dataset.sizes[self._cur_indices.array] def num_tokens(self, index): return self.dataset.num_tokens(self._cur_indices.array[index]) def size(self, index): return self.dataset.size(self._cur_indices.array[index]) def ordered_indices(self): if self.batch_by_size: order = [ np.arange(len(self)), self.sizes, ] # No need to handle `self.shuffle == True` return np.lexsort(order) else: return np.arange(len(self)) def prefetch(self, indices): self.dataset.prefetch(self._cur_indices.array[indices]) @property def can_reuse_epoch_itr_across_epochs(self): return False def set_epoch(self, epoch): logger.debug("ResamplingDataset.set_epoch: {}".format(epoch)) super().set_epoch(epoch) if epoch == self._cur_epoch: return self._cur_epoch = epoch # Generate a weighted sample of indices as a function of the # random seed and the current epoch. rng = np.random.RandomState( [ 42, # magic number self.seed % (2**32), # global seed self._cur_epoch, # epoch index ] ) self._cur_indices = plasma_utils.PlasmaArray( rng.choice( len(self.dataset), self.actual_size, replace=self.replace, p=(None if self.weights is None else self.weights.array), ) )
flash_metaseq-main
metaseq/data/resampling_dataset.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np import torch from . import BaseWrapperDataset class AppendTokenDataset(BaseWrapperDataset): def __init__(self, dataset, token=None): super().__init__(dataset) self.token = token if token is not None: self._sizes = np.array(dataset.sizes) + 1 else: self._sizes = dataset.sizes def __getitem__(self, idx): item = self.dataset[idx] if self.token is not None: item = torch.cat([item, item.new([self.token])]) return item @property def sizes(self): return self._sizes def num_tokens(self, index): n = self.dataset.num_tokens(index) if self.token is not None: n += 1 return n def size(self, index): n = self.dataset.size(index) if self.token is not None: n += 1 return n
flash_metaseq-main
metaseq/data/append_token_dataset.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch from metaseq.data import data_utils from . import BaseWrapperDataset class PadDataset(BaseWrapperDataset): def __init__(self, dataset, pad_idx, left_pad, pad_length=None): super().__init__(dataset) self.pad_idx = pad_idx self.left_pad = left_pad self.pad_length = pad_length def collater(self, samples): return data_utils.collate_tokens( samples, self.pad_idx, left_pad=self.left_pad, pad_to_length=self.pad_length ) class LeftPadDataset(PadDataset): def __init__(self, dataset, pad_idx, pad_length=None): super().__init__(dataset, pad_idx, left_pad=True, pad_length=pad_length) class RightPadDataset(PadDataset): def __init__(self, dataset, pad_idx, pad_length=None): super().__init__(dataset, pad_idx, left_pad=False, pad_length=pad_length) class MultiplePadDataset(BaseWrapperDataset): """ This class pads the given dataset to ensure that the padded size is a multiple of the given `multiple`. For instance, MultiplePadDataset( tgt_dataset, pad_idx=self.source_dictionary.pad(), multiple=8 ) would pad the tgt_dataset in multiples of 8. """ def __init__(self, dataset, pad_idx, multiple): super().__init__(dataset) self.pad_idx = pad_idx self.multiple = multiple def collater(self, samples): max_len = max([s.size(0) for s in samples]) max_len_multiple = int(math.ceil(max_len / self.multiple)) * self.multiple return data_utils.collate_tokens( samples, self.pad_idx, left_pad=False, pad_to_length=max_len_multiple ) def __getitem__(self, index): l = len(self.dataset[index]) cur_block = [] cur_block.append(self.dataset[index]) cur_block_remain = int(math.ceil(l / self.multiple) * self.multiple) cur_block_remain -= self.dataset[index].numel() padding = cur_block[-1].new_full((cur_block_remain,), self.pad_idx) cur_block.append(padding) return torch.cat(cur_block)
flash_metaseq-main
metaseq/data/pad_dataset.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import shutil import struct from functools import lru_cache from typing import Union import numpy as np import torch from metaseq.dataclass.constants import DATASET_IMPL_CHOICES from metaseq.file_io import PathManager from . import BaseDataset def best_fitting_int_dtype( max_int_to_represent, ) -> Union[np.uint16, np.uint32, np.int64]: if max_int_to_represent is None: return np.uint32 # Safe guess elif max_int_to_represent < 65500: return np.uint16 elif max_int_to_represent < 4294967295: return np.uint32 else: return np.int64 # we avoid np.uint64 because it doesn't save space and its type promotion behaves unexpectedly # https://github.com/numpy/numpy/issues/5745 def get_available_dataset_impl(): return list(map(str, DATASET_IMPL_CHOICES)) def infer_dataset_impl(path): if IndexedRawTextDataset.exists(path): return "raw" elif IndexedDataset.exists(path): with open(index_file_path(path), "rb") as f: magic = f.read(8) if magic == IndexedDataset._HDR_MAGIC: return "cached" elif magic == MMapIndexedDataset.Index._HDR_MAGIC[:8]: return "mmap" else: return None else: return None def make_builder(out_file, impl, vocab_size=None): if impl == "mmap": return MMapIndexedDatasetBuilder( out_file, dtype=best_fitting_int_dtype(vocab_size) ) elif impl == "fasta": raise NotImplementedError elif impl == "huffman": raise ValueError( "Use HuffmanCodeBuilder directly as it has a different interface." ) else: return IndexedDatasetBuilder(out_file) def make_dataset(path, impl, fix_lua_indexing=False, dictionary=None): if impl == "raw" and IndexedRawTextDataset.exists(path): assert dictionary is not None return IndexedRawTextDataset(path, dictionary) elif impl == "lazy" and IndexedDataset.exists(path): return IndexedDataset(path, fix_lua_indexing=fix_lua_indexing) elif impl == "cached" and IndexedDataset.exists(path): return IndexedCachedDataset(path, fix_lua_indexing=fix_lua_indexing) elif impl == "mmap" and MMapIndexedDataset.exists(path): return MMapIndexedDataset(path) return None def dataset_exists(path, impl): if impl == "raw": return IndexedRawTextDataset.exists(path) elif impl == "mmap": return MMapIndexedDataset.exists(path) else: return IndexedDataset.exists(path) def read_longs(f, n): a = np.empty(n, dtype=np.int64) f.readinto(a) return a def write_longs(f, a): f.write(np.array(a, dtype=np.int64)) _code_to_dtype = { 1: np.uint8, 2: np.int8, 3: np.int16, 4: np.int32, 5: np.int64, 6: np.float, 7: np.double, 8: np.uint16, 9: np.uint32, 10: np.uint64, } def _dtype_header_code(dtype) -> int: for k in _code_to_dtype.keys(): if _code_to_dtype[k] == dtype: return k raise ValueError(dtype) def index_file_path(prefix_path): return prefix_path + ".idx" def data_file_path(prefix_path): return prefix_path + ".bin" class IndexedDataset(BaseDataset): """Loader for TorchNet IndexedDataset""" _HDR_MAGIC = b"TNTIDX\x00\x00" def __init__(self, path, fix_lua_indexing=False): super().__init__() self.path = path self.fix_lua_indexing = fix_lua_indexing self.data_file = None self.read_index(path) def read_index(self, path): with open(index_file_path(path), "rb") as f: magic = f.read(8) assert magic == self._HDR_MAGIC, ( "Index file doesn't match expected format. " "Make sure that --dataset-impl is configured properly." ) version = f.read(8) assert struct.unpack("<Q", version) == (1,) code, self.element_size = struct.unpack("<QQ", f.read(16)) self.dtype = _code_to_dtype[code] self._len, self.s = struct.unpack("<QQ", f.read(16)) self.dim_offsets = read_longs(f, self._len + 1) self.data_offsets = read_longs(f, self._len + 1) self.sizes = read_longs(f, self.s) def read_data(self, path): self.data_file = open(data_file_path(path), "rb", buffering=0) def check_index(self, i): if i < 0 or i >= self._len: raise IndexError("index out of range") def __del__(self): if self.data_file: self.data_file.close() @lru_cache(maxsize=8) def __getitem__(self, i) -> torch.Tensor: if not self.data_file: self.read_data(self.path) self.check_index(i) tensor_size = self.sizes[self.dim_offsets[i] : self.dim_offsets[i + 1]] a = np.empty(tensor_size, dtype=self.dtype) self.data_file.seek(self.data_offsets[i] * self.element_size) self.data_file.readinto(a) item = torch.from_numpy(a).long() if self.fix_lua_indexing: item -= 1 # subtract 1 for 0-based indexing return item def __len__(self): return self._len def num_tokens(self, index): return self.sizes[index] def size(self, index): return self.sizes[index] @staticmethod def exists(path): return PathManager.exists(index_file_path(path)) and PathManager.exists( data_file_path(path) ) @property def supports_prefetch(self): return False # avoid prefetching to save memory class IndexedCachedDataset(IndexedDataset): def __init__(self, path, fix_lua_indexing=False): super().__init__(path, fix_lua_indexing=fix_lua_indexing) self.cache = None self.cache_index = {} @property def supports_prefetch(self): return True def prefetch(self, indices): if all(i in self.cache_index for i in indices): return if not self.data_file: self.read_data(self.path) indices = sorted(set(indices)) total_size = 0 for i in indices: total_size += self.data_offsets[i + 1] - self.data_offsets[i] self.cache = np.empty(total_size, dtype=self.dtype) ptx = 0 self.cache_index.clear() for i in indices: self.cache_index[i] = ptx size = self.data_offsets[i + 1] - self.data_offsets[i] a = self.cache[ptx : ptx + size] self.data_file.seek(self.data_offsets[i] * self.element_size) self.data_file.readinto(a) ptx += size if self.data_file: # close and delete data file after prefetch so we can pickle self.data_file.close() self.data_file = None @lru_cache(maxsize=8) def __getitem__(self, i): self.check_index(i) tensor_size = self.sizes[self.dim_offsets[i] : self.dim_offsets[i + 1]] a = np.empty(tensor_size, dtype=self.dtype) ptx = self.cache_index[i] np.copyto(a, self.cache[ptx : ptx + a.size]) item = torch.from_numpy(a).long() if self.fix_lua_indexing: item -= 1 # subtract 1 for 0-based indexing return item class IndexedRawTextDataset(BaseDataset): """Takes a text file as input and binarizes it in memory at instantiation. Original lines are also kept in memory""" def __init__(self, path, dictionary, append_eos=True, reverse_order=False): self.tokens_list = [] self.lines = [] self.sizes = [] self.append_eos = append_eos self.reverse_order = reverse_order self.read_data(path, dictionary) self.size = len(self.tokens_list) def read_data(self, path, dictionary): with open(path, "r", encoding="utf-8") as f: for line in f: self.lines.append(line.strip("\n")) tokens = dictionary.encode_line( line, add_if_not_exist=False, append_eos=self.append_eos, reverse_order=self.reverse_order, ).long() self.tokens_list.append(tokens) self.sizes.append(len(tokens)) self.sizes = np.array(self.sizes) def check_index(self, i): if i < 0 or i >= self.size: raise IndexError("index out of range") @lru_cache(maxsize=8) def __getitem__(self, i): self.check_index(i) return self.tokens_list[i] def get_original_text(self, i): self.check_index(i) return self.lines[i] def __del__(self): pass def __len__(self): return self.size def num_tokens(self, index): return self.sizes[index] def size(self, index): return self.sizes[index] @staticmethod def exists(path): return PathManager.exists(path) class IndexedDatasetBuilder: element_sizes = { np.uint8: 1, np.int8: 1, np.int16: 2, np.int32: 4, np.int64: 8, np.float: 4, np.double: 8, } def __init__(self, out_file, dtype=np.int32): self.out_file = open(out_file, "wb") self.dtype = dtype self.data_offsets = [0] self.dim_offsets = [0] self.sizes = [] self.element_size = self.element_sizes[self.dtype] def add_item(self, tensor): # +1 for Lua compatibility bytes = self.out_file.write(np.array(tensor.numpy() + 1, dtype=self.dtype)) self.data_offsets.append(self.data_offsets[-1] + bytes / self.element_size) for s in tensor.size(): self.sizes.append(s) self.dim_offsets.append(self.dim_offsets[-1] + len(tensor.size())) def merge_file_(self, another_file): index = IndexedDataset(another_file) assert index.dtype == self.dtype begin = self.data_offsets[-1] for offset in index.data_offsets[1:]: self.data_offsets.append(begin + offset) self.sizes.extend(index.sizes) begin = self.dim_offsets[-1] for dim_offset in index.dim_offsets[1:]: self.dim_offsets.append(begin + dim_offset) with open(data_file_path(another_file), "rb") as f: while True: data = f.read(1024) if data: self.out_file.write(data) else: break def finalize(self, index_file): self.out_file.close() index = open(index_file, "wb") index.write(b"TNTIDX\x00\x00") index.write(struct.pack("<Q", 1)) index.write( struct.pack("<QQ", _dtype_header_code(self.dtype), self.element_size) ) index.write(struct.pack("<QQ", len(self.data_offsets) - 1, len(self.sizes))) write_longs(index, self.dim_offsets) write_longs(index, self.data_offsets) write_longs(index, self.sizes) index.close() def _warmup_mmap_file(path): with open(path, "rb") as stream: while stream.read(100 * 1024 * 1024): pass class MMapIndexedDataset(torch.utils.data.Dataset): class Index: _HDR_MAGIC = b"MMIDIDX\x00\x00" @classmethod def writer(cls, path, dtype): class _Writer: def __enter__(self): self._file = open(path, "wb") self._file.write(cls._HDR_MAGIC) self._file.write(struct.pack("<Q", 1)) self._file.write(struct.pack("<B", _dtype_header_code(dtype))) return self @staticmethod def _get_pointers(sizes): dtype_size = dtype().itemsize address = 0 pointers = [] for size in sizes: pointers.append(address) address += size * dtype_size return pointers def write(self, sizes): pointers = self._get_pointers(sizes) self._file.write(struct.pack("<Q", len(sizes))) sizes = np.array(sizes, dtype=np.int32) self._file.write(sizes.tobytes(order="C")) del sizes pointers = np.array(pointers, dtype=np.int64) self._file.write(pointers.tobytes(order="C")) del pointers def __exit__(self, exc_type, exc_val, exc_tb): self._file.close() return _Writer() def __init__(self, path): with open(path, "rb") as stream: magic_test = stream.read(9) assert self._HDR_MAGIC == magic_test, ( "Index file doesn't match expected format. " "Make sure that --dataset-impl is configured properly." ) version = struct.unpack("<Q", stream.read(8)) assert (1,) == version (dtype_code,) = struct.unpack("<B", stream.read(1)) self._dtype = _code_to_dtype[dtype_code] self._dtype_size = self._dtype().itemsize self._len = struct.unpack("<Q", stream.read(8))[0] offset = stream.tell() _warmup_mmap_file(path) self._bin_buffer_mmap = np.memmap(path, mode="r", order="C") self._bin_buffer = memoryview(self._bin_buffer_mmap) self._sizes = np.frombuffer( self._bin_buffer, dtype=np.int32, count=self._len, offset=offset ) self._pointers = np.frombuffer( self._bin_buffer, dtype=np.int64, count=self._len, offset=offset + self._sizes.nbytes, ) def __del__(self): self._bin_buffer_mmap._mmap.close() del self._bin_buffer_mmap @property def dtype(self): return self._dtype @property def sizes(self): return self._sizes @lru_cache(maxsize=8) def __getitem__(self, i): return self._pointers[i], self._sizes[i] def __len__(self): return self._len def __init__(self, path): super().__init__() self._path = None self._index = None self._bin_buffer = None self._do_init(path) def __getstate__(self): return self._path def __setstate__(self, state): self._do_init(state) def _do_init(self, path): self._path = path self._index = self.Index(index_file_path(self._path)) _warmup_mmap_file(data_file_path(self._path)) self._bin_buffer_mmap = np.memmap( data_file_path(self._path), mode="r", order="C" ) self._bin_buffer = memoryview(self._bin_buffer_mmap) def __del__(self): self._bin_buffer_mmap._mmap.close() del self._bin_buffer_mmap del self._index def __len__(self): return len(self._index) @lru_cache(maxsize=8) def __getitem__(self, i): ptr, size = self._index[i] np_array = np.frombuffer( self._bin_buffer, dtype=self._index.dtype, count=size, offset=ptr ) if self._index.dtype != np.int64: np_array = np_array.astype(np.int64) return torch.from_numpy(np_array) @property def sizes(self): return self._index.sizes @property def supports_prefetch(self): return False @staticmethod def exists(path): return PathManager.exists(index_file_path(path)) and PathManager.exists( data_file_path(path) ) def get_indexed_dataset_to_local(path) -> str: local_index_path = PathManager.get_local_path(index_file_path(path)) local_data_path = PathManager.get_local_path(data_file_path(path)) assert local_index_path.endswith(".idx") and local_data_path.endswith(".bin"), ( "PathManager.get_local_path does not return files with expected patterns: " f"{local_index_path} and {local_data_path}" ) local_path = local_data_path[:-4] # stripping surfix ".bin" assert local_path == local_index_path[:-4] # stripping surfix ".idx" return local_path class MMapIndexedDatasetBuilder: def __init__(self, out_file, dtype=np.int64): self._data_file = open(out_file, "wb") self._dtype = dtype self._sizes = [] def add_item(self, tensor): np_array = np.array(tensor.numpy(), dtype=self._dtype) self._data_file.write(np_array.tobytes(order="C")) self._sizes.append(np_array.size) def merge_file_(self, another_file): # Concatenate index index = MMapIndexedDataset.Index(index_file_path(another_file)) assert index.dtype == self._dtype for size in index.sizes: self._sizes.append(size) # Concatenate data with open(data_file_path(another_file), "rb") as f: shutil.copyfileobj(f, self._data_file) def finalize(self, index_file): self._data_file.close() with MMapIndexedDataset.Index.writer(index_file, self._dtype) as index: index.write(self._sizes)
flash_metaseq-main
metaseq/data/indexed_dataset.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os from collections import Counter from multiprocessing import Pool import torch from metaseq import utils from metaseq.data import data_utils from metaseq.file_chunker_utils import Chunker, find_offsets from metaseq.file_io import PathManager from metaseq.tokenizer import tokenize_line class Dictionary: """A mapping from symbols to consecutive integers""" def __init__( self, *, # begin keyword-only arguments bos="<s>", pad="<pad>", eos="</s>", unk="<unk>", extra_special_symbols=None, ): self.bos_word, self.unk_word, self.pad_word, self.eos_word = bos, unk, pad, eos self.symbols = [] self.count = [] self.indices = {} self.bos_index = self.add_symbol(bos) self.pad_index = self.add_symbol(pad) self.eos_index = self.add_symbol(eos) self.unk_index = self.add_symbol(unk) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(s) self.nspecial = len(self.symbols) def __eq__(self, other): return self.indices == other.indices def __getitem__(self, idx): if idx < len(self.symbols): return self.symbols[idx] return self.unk_word def get_count(self, idx): return self.count[idx] def __len__(self): """Returns the number of symbols in the dictionary""" return len(self.symbols) def __contains__(self, sym): return sym in self.indices def index(self, sym): """Returns the index of the specified symbol""" assert isinstance(sym, str) if sym in self.indices: return self.indices[sym] return self.unk_index def string( self, tensor, bpe_symbol=None, escape_unk=False, extra_symbols_to_ignore=None, unk_string=None, include_eos=False, ): """Helper for converting a tensor of token indices to a string. Can optionally remove BPE symbols or escape <unk> words. """ if torch.is_tensor(tensor) and tensor.dim() == 2: return "\n".join( self.string( t, bpe_symbol, escape_unk, extra_symbols_to_ignore, include_eos=include_eos, ) for t in tensor ) extra_symbols_to_ignore = set(extra_symbols_to_ignore or []) extra_symbols_to_ignore.add(self.eos()) def token_string(i): if i == self.unk(): if unk_string is not None: return unk_string else: return self.unk_string(escape_unk) else: return self[i] if hasattr(self, "bos_index"): extra_symbols_to_ignore.add(self.bos()) sent = " ".join( token_string(i) for i in tensor if utils.item(i) not in extra_symbols_to_ignore ) return data_utils.post_process(sent, bpe_symbol) def unk_string(self, escape=False): """Return unknown string, optionally escaped as: <<unk>>""" if escape: return "<{}>".format(self.unk_word) else: return self.unk_word def add_symbol(self, word, n=1, overwrite=False): """Adds a word to the dictionary""" if word in self.indices and not overwrite: idx = self.indices[word] self.count[idx] = self.count[idx] + n return idx else: idx = len(self.symbols) self.indices[word] = idx self.symbols.append(word) self.count.append(n) return idx def update(self, new_dict): """Updates counts from new dictionary.""" for word in new_dict.symbols: idx2 = new_dict.indices[word] if word in self.indices: idx = self.indices[word] self.count[idx] = self.count[idx] + new_dict.count[idx2] else: idx = len(self.symbols) self.indices[word] = idx self.symbols.append(word) self.count.append(new_dict.count[idx2]) def finalize(self, threshold=-1, nwords=-1, padding_factor=8): """Sort symbols by frequency in descending order, ignoring special ones. Args: - threshold defines the minimum word count - nwords defines the total number of words in the final dictionary, including special symbols - padding_factor can be used to pad the dictionary size to be a multiple of 8, which is important on some hardware (e.g., Nvidia Tensor Cores). """ if nwords <= 0: nwords = len(self) new_indices = dict(zip(self.symbols[: self.nspecial], range(self.nspecial))) new_symbols = self.symbols[: self.nspecial] new_count = self.count[: self.nspecial] c = Counter( dict( sorted(zip(self.symbols[self.nspecial :], self.count[self.nspecial :])) ) ) for symbol, count in c.most_common(nwords - self.nspecial): if count >= threshold: new_indices[symbol] = len(new_symbols) new_symbols.append(symbol) new_count.append(count) else: break assert len(new_symbols) == len(new_indices) self.count = list(new_count) self.symbols = list(new_symbols) self.indices = new_indices self.pad_to_multiple_(padding_factor) def pad_to_multiple_(self, padding_factor): """Pad Dictionary size to be a multiple of *padding_factor*.""" if padding_factor > 1: i = 0 while len(self) % padding_factor != 0: symbol = "madeupword{:04d}".format(i) self.add_symbol(symbol, n=0) i += 1 def bos(self): """Helper to get index of beginning-of-sentence symbol""" return self.bos_index def pad(self): """Helper to get index of pad symbol""" return self.pad_index def eos(self): """Helper to get index of end-of-sentence symbol""" return self.eos_index def unk(self): """Helper to get index of unk symbol""" return self.unk_index @classmethod def load(cls, f): """Loads the dictionary from a text file with the format: ``` <symbol0> <count0> <symbol1> <count1> ... ``` """ d = cls() d.add_from_file(f) return d def add_from_file(self, f): """ Loads a pre-existing dictionary from a text file and adds its symbols to this instance. """ if isinstance(f, str): try: with open(PathManager.get_local_path(f), "r", encoding="utf-8") as fd: self.add_from_file(fd) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception( "Incorrect encoding detected in {}, please " "rebuild the dataset".format(f) ) return lines = f.readlines() indices_start_line = self._load_meta(lines) for line in lines[indices_start_line:]: try: line, field = line.rstrip().rsplit(" ", 1) if field == "#metaseq:overwrite": overwrite = True line, field = line.rsplit(" ", 1) else: overwrite = False count = int(field) word = line if word in self and not overwrite: raise RuntimeError( "Duplicate word found when loading Dictionary: '{}'. " "Duplicate words can overwrite earlier ones by adding the " "#metaseq:overwrite flag at the end of the corresponding row " "in the dictionary file. If using the Camembert model, please " "download an updated copy of the model file.".format(word) ) self.add_symbol(word, n=count, overwrite=overwrite) except ValueError: raise ValueError( f"Incorrect dictionary format, expected '<token> <cnt> [flags]': \"{line}\"" ) def _save(self, f, kv_iterator): if isinstance(f, str): PathManager.mkdirs(os.path.dirname(f)) with PathManager.open(f, "w", encoding="utf-8") as fd: return self.save(fd) for k, v in kv_iterator: print("{} {}".format(k, v), file=f) def _get_meta(self): return [], [] def _load_meta(self, lines): return 0 def save(self, f): """Stores dictionary into a text file""" ex_keys, ex_vals = self._get_meta() self._save( f, zip( ex_keys + self.symbols[self.nspecial :], ex_vals + self.count[self.nspecial :], ), ) def dummy_sentence(self, length): t = torch.Tensor(length).uniform_(self.nspecial + 1, len(self)).long() t[-1] = self.eos() return t def encode_line( self, line, line_tokenizer=tokenize_line, add_if_not_exist=True, consumer=None, append_eos=True, reverse_order=False, ) -> torch.IntTensor: words = line_tokenizer(line) if reverse_order: words = list(reversed(words)) ids = [] for word in words: if add_if_not_exist: idx = self.add_symbol(word) else: idx = self.index(word) if consumer is not None: consumer(word, idx) ids.append(idx) if append_eos: ids.append(self.eos_index) return torch.tensor(ids, dtype=torch.int32) @staticmethod def _add_file_to_dictionary_single_worker( filename, tokenize, eos_word, start_offset, end_offset, ): counter = Counter() with Chunker(filename, start_offset, end_offset) as line_iterator: for line in line_iterator: for word in tokenize(line): counter.update([word]) counter.update([eos_word]) return counter @staticmethod def add_file_to_dictionary(filename, dict, tokenize, num_workers): def merge_result(counter): for w, c in sorted(counter.items()): dict.add_symbol(w, c) local_file = PathManager.get_local_path(filename) offsets = find_offsets(local_file, num_workers) if num_workers > 1: chunks = zip(offsets, offsets[1:]) pool = Pool(processes=num_workers) results = [] for (start_offset, end_offset) in chunks: results.append( pool.apply_async( Dictionary._add_file_to_dictionary_single_worker, ( local_file, tokenize, dict.eos_word, start_offset, end_offset, ), ) ) pool.close() pool.join() for r in results: merge_result(r.get()) else: merge_result( Dictionary._add_file_to_dictionary_single_worker( local_file, tokenize, dict.eos_word, offsets[0], offsets[1] ) ) class TruncatedDictionary(object): def __init__(self, wrapped_dict, length): self.__class__ = type( wrapped_dict.__class__.__name__, (self.__class__, wrapped_dict.__class__), {}, ) self.__dict__ = wrapped_dict.__dict__ self.wrapped_dict = wrapped_dict self.length = min(len(self.wrapped_dict), length) def __len__(self): return self.length def __getitem__(self, i): if i < self.length: return self.wrapped_dict[i] return self.wrapped_dict.unk()
flash_metaseq-main
metaseq/data/dictionary.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import json import logging import mmap import os import sys import threading from pathlib import Path from typing import Callable, Optional import numpy as np import torch logger = logging.getLogger(__name__) class JsonlDataset(torch.utils.data.Dataset): """ For loading JSONL data and encoding on-the-fly with a given tokenizer. JSONL format is expected to roughly follow that of The Pile. One-line-per-document of the form: ``` { "text": "text goes here, with newlines", "meta": {"pile_set_name": "name of corpus", "other": "metadata"} } ``` Note that only the "text" key is used. """ def __init__(self, path: str, tokenizer: Optional[Callable] = None, recache=False): self.path = path self.tokenizer = tokenizer self.threadlocal = threading.local() # TODO(susan): Fix this fairseq reference. _build_index fails otherwise. self.cache = Path(f"{path}.fairseq.idx.npy") if self.cache.exists() and not recache: self.offsets = np.load(self.cache) else: self.offsets = self._build_index(path) np.save(self.cache, self.offsets) # print(f'n offsets: {len(self.offsets)}') def _get_mmap(self): if not hasattr(self.threadlocal, "handles"): f = open(self.path, "rb") mm = mmap.mmap(f.fileno(), 0, access=mmap.ACCESS_READ) self.threadlocal.handles = [f, mm] if ( self.path.endswith(".gz") or self.path.endswith(".bz") or self.path.endswith(".bz2") ): raise NotImplementedError( "Compressed files are not supported because .seek() would require " "rereading the entire file, making performance too slow." ) return self.threadlocal.handles[-1] def __getitem__(self, idx): if idx < 0 or idx >= len(self): raise IndexError f = self._get_mmap() f.seek(self.offsets[idx]) item = f.readline().decode("utf-8") item = json.loads(item) if self.tokenizer is not None: item = self.tokenizer(item) return item def __len__(self): return len(self.offsets) def _build_index(self, path: str): """Build index of start positions of each line.""" logger.info(f"Building index for file: {path}") f = self._get_mmap() f.seek(0) offsets = [] cur = 0 while True: line = f.readline() if line == b"": break offsets.append(cur) cur += len(line) return offsets def __setstate__(self, state): self.__dict__ = state self.threadlocal = threading.local() def __getstate__(self): d = {} for i, v in self.__dict__.items(): if i != "threadlocal": d[i] = v return d def __del__(self): if hasattr(self.threadlocal, "handles"): # cleanup files we opened on initialization while self.threadlocal.handles: self.threadlocal.handles.pop().close() @staticmethod def exists(path): return os.path.exists(path) if __name__ == "__main__": """Usage: python metaseq/data/jsonl_dataset.py "flan_streaming/valid/00/*.jsonl" """ parser = argparse.ArgumentParser( description="Precompute index file from JSONL files" ) parser.add_argument( "pattern", help="glob to jsonl files, e.g. flan_streaming/valid/00/*.jsonl" ) args = parser.parse_args() logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) from glob import glob from tqdm import tqdm for f in tqdm(list(glob(args.pattern))): JsonlDataset(f, recache=True)
flash_metaseq-main
metaseq/data/jsonl_dataset.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Dict import numpy as np import torch from metaseq.data.monolingual_dataset import MonolingualDataset from . import BaseDataset class LMContextWindowDataset(BaseDataset): """ Wraps a MonolingualDataset and provides more context for evaluation. Each item in the new dataset will have a maximum size of ``tokens_per_sample + context_window``. Args: dataset: dataset to wrap tokens_per_sample (int): the max number of tokens in each dataset item context_window (int): the number of accumulated tokens to add to each dataset item pad_idx (int): padding symbol """ def __init__( self, dataset: MonolingualDataset, tokens_per_sample: int, context_window: int, pad_idx: int, ): assert context_window > 0 self.dataset = dataset self.tokens_per_sample = tokens_per_sample self.context_window = context_window self.pad_idx = pad_idx self.prev_tokens = np.empty([0]) def __getitem__(self, index): return self.dataset[index] def __len__(self): return len(self.dataset) def collater(self, samples) -> Dict: sample = self.dataset.collater(samples) pad = self.pad_idx max_sample_len = self.tokens_per_sample + self.context_window bsz, tsz = sample["net_input"]["src_tokens"].shape start_idxs = [0] * bsz toks = sample["net_input"]["src_tokens"] lengths = sample["net_input"]["src_lengths"] tgt = sample["target"] new_toks = np.empty([bsz, tsz + self.context_window], dtype=np.int64) new_tgt = np.full([bsz, tsz + self.context_window], pad, dtype=np.int64) sample_lens = toks.ne(pad).long().sum(dim=1).cpu() for i in range(bsz): sample_len = sample_lens[i] extra = len(self.prev_tokens) + sample_len - max_sample_len if extra > 0: self.prev_tokens = self.prev_tokens[extra:] pads = np.full(self.context_window - len(self.prev_tokens), pad) new_toks[i] = np.concatenate([self.prev_tokens, toks[i].numpy(), pads]) new_tgt[ i, len(self.prev_tokens) : len(self.prev_tokens) + len(tgt[i]) ] = tgt[i] start_idxs[i] = len(self.prev_tokens) lengths[i] += len(self.prev_tokens) self.prev_tokens = new_toks[i][new_toks[i] != pad][-self.context_window :] sample["net_input"]["src_tokens"] = torch.from_numpy(new_toks) sample["target"] = torch.from_numpy(new_tgt) sample["start_indices"] = start_idxs return sample def num_tokens(self, index): return self.dataset.num_tokens(index) def size(self, index): return self.dataset.size(index) def ordered_indices(self): # NOTE we don't shuffle the data to retain access to the previous dataset elements return np.arange(len(self.dataset)) @property def supports_prefetch(self): return getattr(self.dataset, "supports_prefetch", False) def prefetch(self, indices): return self.dataset.prefetch(indices)
flash_metaseq-main
metaseq/data/lm_context_window_dataset.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Tuple import numpy as np import torch from metaseq.data import BaseDataset, plasma_utils from metaseq.data.indexed_dataset import best_fitting_int_dtype class TokenBlockDataset(BaseDataset): """Break a Dataset of tokens into blocks. Args: dataset (~torch.utils.data.Dataset): dataset to break into blocks sizes (List[int]): sentence lengths (required for 'complete' and 'eos') block_size (int, optional): maximum block size (ignored in 'eos' break mode) break_mode (str, optional): Mode used for breaking tokens. Values can be one of: - 'none': break tokens into equally sized blocks (up to block_size) - 'complete': break tokens into blocks (up to block_size) such that blocks contains complete sentences, although block_size may be exceeded if some sentences exceed block_size - 'complete_doc': similar to 'complete' mode, but do not cross document boundaries - 'eos': each block contains one sentence (block_size is ignored) include_targets (bool, optional): return next tokens as targets (default: False). document_sep_len (int, optional): document separator size (required for 'complete_doc' break mode). Typically 1 if the sentences have eos and 0 otherwise. """ def __init__( self, dataset, sizes, block_size, pad, eos, break_mode=None, include_targets=False, document_sep_len=1, use_plasma_view=False, split_path=None, plasma_path=None, ): super().__init__() self.dataset = dataset self.pad = pad self.eos = eos self.include_targets = include_targets assert len(dataset) > 0 assert len(dataset) == len(sizes) _sizes, block_to_dataset_index, slice_indices = self._build_slice_indices( sizes, break_mode, document_sep_len, block_size ) if use_plasma_view: plasma_id = (block_size, document_sep_len, str(break_mode), len(dataset)) self._slice_indices = plasma_utils.PlasmaView( slice_indices, split_path, (plasma_id, 0), plasma_path=plasma_path ) self._sizes = plasma_utils.PlasmaView( _sizes, split_path, (plasma_id, 1), plasma_path=plasma_path ) self._block_to_dataset_index = plasma_utils.PlasmaView( block_to_dataset_index, split_path, (plasma_id, 2), plasma_path=plasma_path, ) else: self._slice_indices = plasma_utils.PlasmaArray(slice_indices) self._sizes = plasma_utils.PlasmaArray(_sizes) self._block_to_dataset_index = plasma_utils.PlasmaArray( block_to_dataset_index ) @staticmethod def _build_slice_indices( sizes, break_mode, document_sep_len, block_size ) -> Tuple[np.ndarray]: """Use token_block_utils_fast to build arrays for indexing into self.dataset""" try: from metaseq.data.token_block_utils_fast import ( _get_slice_indices_fast, _get_block_to_dataset_index_fast, ) except ImportError: raise ImportError( "Please build Cython components with: `pip install --editable .` " "or `python setup.py build_ext --inplace`" ) if isinstance(sizes, list): sizes = np.array(sizes, dtype=np.int64) else: if torch.is_tensor(sizes): sizes = sizes.numpy() sizes = sizes.astype(np.int64) break_mode = break_mode if break_mode is not None else "none" # For "eos" break-mode, block_size is not required parameters. if break_mode == "eos" and block_size is None: block_size = 0 slice_indices = _get_slice_indices_fast( sizes, str(break_mode), block_size, document_sep_len ) _sizes = slice_indices[:, 1] - slice_indices[:, 0] # build index mapping block indices to the underlying dataset indices if break_mode == "eos": # much faster version for eos break mode block_to_dataset_index = np.stack( [ np.arange(len(sizes)), # starting index in dataset np.zeros( len(sizes), dtype=np.compat.long ), # starting offset within starting index np.arange(len(sizes)), # ending index in dataset ], 1, ) else: block_to_dataset_index = _get_block_to_dataset_index_fast( sizes, slice_indices, ) size_dtype = np.uint16 if block_size < 65535 else np.uint32 num_tokens = slice_indices[-1].max() slice_indices_dtype = best_fitting_int_dtype(num_tokens) slice_indices = slice_indices.astype(slice_indices_dtype) _sizes = _sizes.astype(size_dtype) block_to_dataset_index = block_to_dataset_index.astype(slice_indices_dtype) return _sizes, block_to_dataset_index, slice_indices @property def slice_indices(self): return self._slice_indices.array @property def sizes(self): return self._sizes.array @property def block_to_dataset_index(self): return self._block_to_dataset_index.array def attr(self, attr: str, index: int): start_ds_idx, _, _ = self.block_to_dataset_index[index] return self.dataset.attr(attr, start_ds_idx) def __getitem__(self, index): start_ds_idx, start_offset, end_ds_idx = self.block_to_dataset_index[index] buffer = torch.cat( [self.dataset[idx] for idx in range(start_ds_idx, end_ds_idx + 1)] ) slice_s, slice_e = self.slice_indices[index] length = slice_e - slice_s s, e = start_offset, start_offset + length item = buffer[s:e] if self.include_targets: # *target* is the original sentence (=item) # *source* is shifted right by 1 (maybe left-padded with eos) # *past_target* is shifted right by 2 (left-padded as needed) if s == 0: source = torch.cat([item.new([self.eos]), buffer[0 : e - 1]]) past_target = torch.cat( [item.new([self.pad, self.eos]), buffer[0 : e - 2]] ) else: source = buffer[s - 1 : e - 1] if s == 1: past_target = torch.cat([item.new([self.eos]), buffer[0 : e - 2]]) else: past_target = buffer[s - 2 : e - 2] return source, item, past_target return item def __len__(self): return len(self.slice_indices) @property def supports_prefetch(self): return getattr(self.dataset, "supports_prefetch", False) def prefetch(self, indices): self.dataset.prefetch( { ds_idx for index in indices for start_ds_idx, _, end_ds_idx in [self.block_to_dataset_index[index]] for ds_idx in range(start_ds_idx, end_ds_idx + 1) } )
flash_metaseq-main
metaseq/data/token_block_dataset.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass, field from metaseq import file_utils from metaseq.data.encoders import register_bpe from metaseq.dataclass import MetaseqDataclass from .gpt2_bpe_utils import get_encoder DEFAULT_ENCODER_JSON = "https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/encoder.json" DEFAULT_VOCAB_BPE = "https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/vocab.bpe" @dataclass class GPT2BPEConfig(MetaseqDataclass): gpt2_encoder_json: str = field( default=DEFAULT_ENCODER_JSON, metadata={"help": "path to encoder.json"} ) gpt2_vocab_bpe: str = field( default=DEFAULT_VOCAB_BPE, metadata={"help": "path to vocab.bpe"} ) @register_bpe("gpt2", dataclass=GPT2BPEConfig) class GPT2BPE(object): def __init__(self, cfg): encoder_json = file_utils.cached_path(cfg.gpt2_encoder_json) vocab_bpe = file_utils.cached_path(cfg.gpt2_vocab_bpe) self.bpe = get_encoder(encoder_json, vocab_bpe) def encode(self, x: str) -> str: return " ".join(map(str, self.bpe.encode(x))) def decode(self, x: str) -> str: return self.bpe.decode( [int(tok) if tok not in {"<unk>", "<mask>"} else tok for tok in x.split()] ) def is_beginning_of_word(self, x: str) -> bool: return self.decode(x).startswith(" ")
flash_metaseq-main
metaseq/data/encoders/gpt2_bpe.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass, field from metaseq import file_utils from metaseq.data.encoders import register_bpe from metaseq.dataclass import MetaseqDataclass @dataclass class HuggingFaceByteLevelBPEConfig(MetaseqDataclass): bpe_merges: str = field(default="???", metadata={"help": "path to merges.txt"}) bpe_vocab: str = field(default="???", metadata={"help": "path to vocab.json"}) bpe_add_prefix_space: bool = field( default=False, metadata={"help": "add prefix space before encoding"} ) @register_bpe("hf_byte_bpe", dataclass=HuggingFaceByteLevelBPEConfig) class HuggingFaceByteLevelBPE(object): def __init__(self, cfg): try: from tokenizers import ByteLevelBPETokenizer except ImportError: raise ImportError( "Please install huggingface/tokenizers with: " "pip install tokenizers" ) bpe_vocab = file_utils.cached_path(cfg.bpe_vocab) bpe_merges = file_utils.cached_path(cfg.bpe_merges) self.bpe = ByteLevelBPETokenizer( bpe_vocab, bpe_merges, add_prefix_space=cfg.bpe_add_prefix_space, ) def encode(self, x: str) -> str: return " ".join(map(str, self.bpe.encode(x).ids)) def decode(self, x: str) -> str: return self.bpe.decode( [int(tok) if tok not in {"<unk>", "<mask>"} else tok for tok in x.split()] ) def is_beginning_of_word(self, x: str) -> bool: return self.decode(x).startswith(" ")
flash_metaseq-main
metaseq/data/encoders/hf_byte_bpe.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import importlib import os from metaseq import registry build_tokenizer, register_tokenizer, TOKENIZER_REGISTRY, _ = registry.setup_registry( "--tokenizer", default=None, ) build_bpe, register_bpe, BPE_REGISTRY, _ = registry.setup_registry( "--bpe", default=None, ) # automatically import any Python files in the encoders/ directory for file in os.listdir(os.path.dirname(__file__)): if file.endswith(".py") and not file.startswith("_"): module = file[: file.find(".py")] importlib.import_module("metaseq.data.encoders." + module)
flash_metaseq-main
metaseq/data/encoders/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Byte pair encoding utilities from GPT-2. Original source: https://github.com/openai/gpt-2/blob/master/src/encoder.py Original license: MIT """ import json from functools import lru_cache @lru_cache() def bytes_to_unicode(): """ Returns list of utf-8 byte and a corresponding list of unicode strings. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a signficant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. And avoids mapping to whitespace/control characters the bpe code barfs on. """ bs = ( list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) ) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8 + n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) def get_pairs(word): """Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs class Encoder: def __init__(self, encoder, bpe_merges, errors="replace"): self.encoder = encoder self.decoder = {v: k for k, v in self.encoder.items()} self.errors = errors # how to handle errors in decoding self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) self.cache = {} try: import regex as re self.re = re except ImportError: raise ImportError("Please install regex with: pip install regex") # Should haved added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions self.pat = self.re.compile( r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token) pairs = get_pairs(word) if not pairs: return token while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) new_word.extend(word[i:j]) i = j except ValueError: new_word.extend(word[i:]) break if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = " ".join(word) self.cache[token] = word return word def encode(self, text): bpe_tokens = [] for token in self.re.findall(self.pat, text): token = "".join(self.byte_encoder[b] for b in token.encode("utf-8")) bpe_tokens.extend( self.encoder[bpe_token] for bpe_token in self.bpe(token).split(" ") ) return bpe_tokens def decode(self, tokens): text = "".join([self.decoder.get(token, token) for token in tokens]) text = bytearray([self.byte_decoder[c] for c in text]).decode( "utf-8", errors=self.errors ) return text def get_encoder(encoder_json_path, vocab_bpe_path): with open(encoder_json_path, "r") as f: encoder = json.load(f) with open(vocab_bpe_path, "r", encoding="utf-8") as f: bpe_data = f.read() bpe_merges = [tuple(merge_str.split()) for merge_str in bpe_data.split("\n")[1:-1]] return Encoder( encoder=encoder, bpe_merges=bpe_merges, )
flash_metaseq-main
metaseq/data/encoders/gpt2_bpe_utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ A standalone module for aggregating metrics. Metrics can be logged from anywhere using the `log_*` functions defined in this module. The logged values will be aggregated dynamically based on the aggregation context in which the logging occurs. See the :func:`aggregate` context manager for more details. """ import contextlib import logging import subprocess import uuid from collections import defaultdict from typing import Callable, List, Optional, Dict from .meters import ( OrderedDict, MetersDict, AverageMeter, TimeMeter, StopwatchMeter, Meter, ) # Aggregation contexts are considered "active" when inside the scope # created by the :func:`aggregate` context manager. _aggregators = OrderedDict() _active_aggregators = OrderedDict() _active_aggregators_cnt = defaultdict(lambda: 0) def reset() -> None: """Reset all metrics aggregators.""" _aggregators.clear() _active_aggregators.clear() _active_aggregators_cnt.clear() # The "default" aggregator observes all logged values. _aggregators["default"] = MetersDict() _active_aggregators["default"] = _aggregators["default"] _active_aggregators_cnt["default"] = 1 reset() @contextlib.contextmanager def aggregate(name: Optional[str] = None, new_root: bool = False): """Context manager to aggregate metrics under a given name. Aggregations can be nested. If *new_root* is ``False``, then logged metrics will be recorded along the entire stack of nested aggregators, including a global "default" aggregator. If *new_root* is ``True``, then this aggregator will be the root of a new aggregation stack, thus bypassing any parent aggregators. Note that aggregation contexts are uniquely identified by their *name* (e.g., train, valid). Creating a context with an existing name will reuse the corresponding :class:`MetersDict` instance. If no name is given, then a temporary aggregator will be created. Usage:: with metrics.aggregate("train"): for step, batch in enumerate(epoch): with metrics.aggregate("train_inner") as agg: metrics.log_scalar("loss", get_loss(batch)) if step % log_interval == 0: print(agg.get_smoothed_value("loss")) agg.reset() print(metrics.get_smoothed_values("train")["loss"]) Args: name (str): name of the aggregation. Defaults to a random/temporary name if not given explicitly. new_root (bool): make this aggregation the root of a new aggregation stack. """ if name is None: # generate a temporary name name = str(uuid.uuid4()) assert name not in _aggregators agg = MetersDict() else: assert name != "default" agg = _aggregators.setdefault(name, MetersDict()) if new_root: backup_aggregators = _active_aggregators.copy() _active_aggregators.clear() backup_aggregators_cnt = _active_aggregators_cnt.copy() _active_aggregators_cnt.clear() _active_aggregators[name] = agg _active_aggregators_cnt[name] += 1 yield agg _active_aggregators_cnt[name] -= 1 if _active_aggregators_cnt[name] == 0 and name in _active_aggregators: del _active_aggregators[name] if new_root: _active_aggregators.clear() _active_aggregators.update(backup_aggregators) _active_aggregators_cnt.clear() _active_aggregators_cnt.update(backup_aggregators_cnt) def get_active_aggregators() -> List[MetersDict]: return list(_active_aggregators.values()) def log_scalar( key: str, value: float, weight: float = 1, priority: int = 10, round: Optional[int] = None, ): """Log a scalar value. Args: key (str): name of the field to log value (float): value to log weight (float): weight that this value contributes to the average. A weight of 0 will always log the latest value. priority (int): smaller values are logged earlier in the output round (Optional[int]): number of digits to round to when displaying """ for agg in get_active_aggregators(): if key not in agg: agg.add_meter(key, AverageMeter(round=round), priority) agg[key].update(value, weight) def log_derived(key: str, fn: Callable[[MetersDict], float], priority: int = 20): """Log a scalar value derived from other meters. Args: key (str): name of the field to log fn (Callable[[MetersDict], float]): function that takes a single argument *meters* and returns the derived value priority (int): smaller values are logged earlier in the output """ for agg in get_active_aggregators(): if key not in agg: agg.add_meter(key, MetersDict._DerivedMeter(fn), priority) def log_speed( key: str, value: float, priority: int = 30, round: Optional[int] = None, ): """Log the rate of some quantity per second. Args: key (str): name of the field to log value (float): value to log priority (int): smaller values are logged earlier in the output round (Optional[int]): number of digits to round to when displaying """ for agg in get_active_aggregators(): if key not in agg: agg.add_meter(key, TimeMeter(round=round), priority) agg[key].reset() # reset meter on the first call else: agg[key].update(value) def log_start_time(key: str, priority: int = 40, round: Optional[int] = None): """Log the duration of some event in seconds. The duration will be computed once :func:`log_stop_time` is called. Args: key (str): name of the field to log priority (int): smaller values are logged earlier in the output round (Optional[int]): number of digits to round to when displaying """ for agg in get_active_aggregators(): if key not in agg: agg.add_meter(key, StopwatchMeter(round=round), priority) agg[key].start() def log_stop_time(key: str, weight: float = 0.0, prehook=None): """Log the duration of some event in seconds. The duration will be computed since :func:`log_start_time` was called. Set weight > 0 to report the average time instead of the sum. Args: key (str): name of the field to log weight (float): weight that this time contributes to the average prehook (function, no arguments): will be called before the timer is stopped. For example, use prehook=torch.cuda.synchronize to make sure all gpu operations are done before timer is stopped. """ for agg in get_active_aggregators(): if key in agg: agg[key].stop(weight, prehook) def log_custom( new_meter_fn: Callable[[], Meter], key: str, *args, priority: int = 50, **kwargs, ): """Log using a custom Meter. Any extra *args* or *kwargs* will be passed through to the Meter's *update* method. Args: new_meter_fn (Callable[[], Meter]): function that returns a new Meter instance key (str): name of the field to log priority (int): smaller values are logged earlier in the output """ for agg in get_active_aggregators(): if key not in agg: agg.add_meter(key, new_meter_fn(), priority) agg[key].update(*args, **kwargs) def reset_meter(name: str, key: str) -> None: """Reset Meter instance aggregated under a given *name* and *key*.""" meter = get_meter(name, key) if meter is not None: meter.reset() def reset_meters(name: str) -> None: """Reset Meter instances aggregated under a given *name*.""" meters = get_meters(name) if meters is not None: meters.reset() def get_meter(name: str, key: str) -> Meter: """Get a single Meter instance aggregated under *name* and *key*. Returns: Meter or None if no metrics have been logged under *name* and *key*. """ if name not in _aggregators: return None return _aggregators[name].get(key, None) def get_meters(name: str) -> MetersDict: """Get Meter instances aggregated under a given *name*. Returns: MetersDict or None if no metrics have been logged under *name*. """ return _aggregators.get(name, None) def get_smoothed_value(name: str, key: str) -> float: """Get a single smoothed value. Raises: KeyError: if no metrics have been logged under *name* and *key*. """ return _aggregators[name].get_smoothed_value(key) def get_smoothed_values(name: str) -> Dict[str, float]: """Get smoothed values aggregated under a given *name*. Raises: KeyError: if no metrics have been logged under *name*. """ return _aggregators[name].get_smoothed_values() def state_dict(): return OrderedDict([(name, agg.state_dict()) for name, agg in _aggregators.items()]) def load_state_dict(state_dict): for name, agg_state in state_dict.items(): _aggregators[name] = MetersDict() _aggregators[name].load_state_dict(agg_state) def nvidia_smi_gpu_memory_stats(): """ Parse the nvidia-smi output and extract the memory used stats. """ out_dict = {} try: sp = subprocess.Popen( ["nvidia-smi", "--query-gpu=index,memory.used", "--format=csv,noheader"], stdout=subprocess.PIPE, stderr=subprocess.PIPE, close_fds=True, ) out_str = sp.communicate() out_list = out_str[0].decode("utf-8").split("\n") out_dict = {} for item in out_list: if " MiB" in item: gpu_idx, mem_used = item.split(",") gpu_key = f"gpu_{gpu_idx}_mem_used_gb" out_dict[gpu_key] = int(mem_used.strip().split(" ")[0]) / 1024 except FileNotFoundError: logging.error( "Failed to find the 'nvidia-smi' executable for printing GPU stats" ) except subprocess.CalledProcessError as e: logging.error(f"nvidia-smi returned non zero error code: {e.returncode}") return out_dict def get_nvidia_smi_gpu_memory_stats_str(): return "nvidia-smi stats: {}".format(nvidia_smi_gpu_memory_stats())
flash_metaseq-main
metaseq/logging/metrics.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import bisect import time from collections import OrderedDict from typing import Dict, Optional try: import torch def type_as(a, b): if torch.is_tensor(a) and torch.is_tensor(b): return a.to(b) else: return a except ImportError: torch = None def type_as(a, b): return a try: import numpy as np except ImportError: np = None class Meter(object): """Base class for Meters.""" def __init__(self): pass def state_dict(self): return {} def load_state_dict(self, state_dict): pass def reset(self): raise NotImplementedError @property def smoothed_value(self) -> float: """Smoothed value used for logging.""" raise NotImplementedError def safe_round(number, ndigits): if hasattr(number, "__round__"): return round(number, ndigits) elif torch is not None and torch.is_tensor(number) and number.numel() == 1: return safe_round(number.item(), ndigits) elif np is not None and np.ndim(number) == 0 and hasattr(number, "item"): return safe_round(number.item(), ndigits) else: return number class AverageMeter(Meter): """Computes and stores the average and current value""" def __init__(self, round: Optional[int] = None): self.round = round self.reset() def reset(self): self.val = None # most recent update self.sum = 0 # sum from all updates self.count = 0 # total n from all updates def update(self, val, n=1): if val is not None: self.val = val if n > 0: self.sum = type_as(self.sum, val) + (val * n) self.count = type_as(self.count, n) + n def state_dict(self): return { "val": self.val, "sum": self.sum, "count": self.count, "round": self.round, } def load_state_dict(self, state_dict): self.val = state_dict["val"] self.sum = state_dict["sum"] self.count = state_dict["count"] self.round = state_dict.get("round", None) @property def avg(self): return self.sum / self.count if self.count > 0 else self.val @property def smoothed_value(self) -> float: val = self.avg if self.round is not None and val is not None: val = safe_round(val, self.round) return val class TimeMeter(Meter): """Computes the average occurrence of some event per second""" def __init__( self, init: int = 0, n: int = 0, round: Optional[int] = None, ): self.round = round self.reset(init, n) def reset(self, init=0, n=0): self.init = init self.start = time.perf_counter() self.n = n self.i = 0 def update(self, val=1): self.n = type_as(self.n, val) + val self.i += 1 def state_dict(self): return { "init": self.elapsed_time, "n": self.n, "round": self.round, } def load_state_dict(self, state_dict): if "start" in state_dict: # backwards compatibility for old state_dicts self.reset(init=state_dict["init"]) else: self.reset(init=state_dict["init"], n=state_dict["n"]) self.round = state_dict.get("round", None) @property def avg(self): return self.n / self.elapsed_time @property def elapsed_time(self): return self.init + (time.perf_counter() - self.start) @property def smoothed_value(self) -> float: val = self.avg if self.round is not None and val is not None: val = safe_round(val, self.round) return val class StopwatchMeter(Meter): """Computes the sum/avg duration of some event in seconds""" def __init__(self, round: Optional[int] = None): self.round = round self.sum = 0 self.n = 0 self.start_time = None def start(self): self.start_time = time.perf_counter() def stop(self, n=1, prehook=None): if self.start_time is not None: if prehook is not None: prehook() delta = time.perf_counter() - self.start_time self.sum = self.sum + delta self.n = type_as(self.n, n) + n def reset(self): self.sum = 0 # cumulative time during which stopwatch was active self.n = 0 # total n across all start/stop self.start() def state_dict(self): return { "sum": self.sum, "n": self.n, "round": self.round, } def load_state_dict(self, state_dict): self.sum = state_dict["sum"] self.n = state_dict["n"] self.start_time = None self.round = state_dict.get("round", None) @property def avg(self): return self.sum / self.n if self.n > 0 else self.sum @property def elapsed_time(self): if self.start_time is None: return 0.0 return time.perf_counter() - self.start_time @property def smoothed_value(self) -> float: val = self.avg if self.sum > 0 else self.elapsed_time if self.round is not None and val is not None: val = safe_round(val, self.round) return val class MetersDict(OrderedDict): """A sorted dictionary of :class:`Meters`. Meters are sorted according to a priority that is given when the meter is first added to the dictionary. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.priorities = [] def __setitem__(self, key, value): assert key not in self, "MetersDict doesn't support reassignment" priority, value = value bisect.insort(self.priorities, (priority, len(self.priorities), key)) super().__setitem__(key, value) for _, _, key in self.priorities: # reorder dict to match priorities self.move_to_end(key) def add_meter(self, key, meter, priority): self.__setitem__(key, (priority, meter)) def state_dict(self): return [ (pri, key, self[key].__class__.__name__, self[key].state_dict()) for pri, _, key in self.priorities # can't serialize DerivedMeter instances if not isinstance(self[key], MetersDict._DerivedMeter) ] def load_state_dict(self, state_dict): self.clear() self.priorities.clear() for pri, key, meter_cls, meter_state in state_dict: meter = globals()[meter_cls]() meter.load_state_dict(meter_state) self.add_meter(key, meter, pri) def get_smoothed_value(self, key: str) -> float: """Get a single smoothed value.""" meter = self[key] if isinstance(meter, MetersDict._DerivedMeter): return meter.fn(self) else: return meter.smoothed_value def get_smoothed_values(self) -> Dict[str, float]: """Get all smoothed values.""" return OrderedDict( [ (key, self.get_smoothed_value(key)) for key in self.keys() if not key.startswith("_") ] ) def reset(self): """Reset Meter instances.""" for meter in self.values(): if isinstance(meter, MetersDict._DerivedMeter): continue meter.reset() class _DerivedMeter(Meter): """A Meter whose values are derived from other Meters.""" def __init__(self, fn): self.fn = fn def reset(self): pass
flash_metaseq-main
metaseq/logging/meters.py
flash_metaseq-main
metaseq/logging/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Wrapper around various loggers and progress bars (e.g., json). """ import logging from collections import OrderedDict from numbers import Number import torch from metaseq.logging.meters import AverageMeter, TimeMeter, StopwatchMeter logger = logging.getLogger(__name__) class BaseProgressBar(object): """Abstract class for progress bars.""" def __init__(self, iterable, epoch=None, prefix=None): self.iterable = iterable self.n = getattr(iterable, "n", 0) self.epoch = epoch self.prefix = "" if epoch is not None: self.prefix += "epoch {:03d}".format(epoch) if prefix is not None: self.prefix += (" | " if self.prefix != "" else "") + prefix def __len__(self): return len(self.iterable) def __enter__(self): return self def __exit__(self, *exc): return False def __iter__(self): raise NotImplementedError def log(self, stats, tag=None, step=None): """Log intermediate stats according to log_interval.""" raise NotImplementedError def print(self, stats, tag=None, step=None): """Print end-of-epoch stats.""" raise NotImplementedError def update_config(self, config): """Log latest configuration.""" pass def _str_commas(self, stats): return ", ".join(key + "=" + stats[key].strip() for key in stats.keys()) def _str_pipes(self, stats): return " | ".join(key + " " + stats[key].strip() for key in stats.keys()) def _format_stats(self, stats): postfix = OrderedDict(stats) # Preprocess stats according to datatype for key in postfix.keys(): postfix[key] = str(format_stat(postfix[key])) return postfix def format_stat(stat): if isinstance(stat, Number): stat = "{:g}".format(stat) elif isinstance(stat, AverageMeter): stat = "{:.3f}".format(stat.avg) elif isinstance(stat, TimeMeter): stat = "{:g}".format(round(stat.avg)) elif isinstance(stat, StopwatchMeter): stat = "{:g}".format(round(stat.sum)) elif torch.is_tensor(stat): stat = stat.tolist() if isinstance(stat, float): stat = f'{float(f"{stat:.3g}"):g}' # 3 significant figures return stat
flash_metaseq-main
metaseq/logging/progress_bar/base_progress_bar.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging from typing import Optional from metaseq.logging.progress_bar.base_progress_bar import logger from metaseq.logging.progress_bar.json_progress_bar import JsonProgressBar from metaseq.logging.progress_bar.tensorboard_progress_bar import ( TensorboardProgressBarWrapper, ) from metaseq.logging.progress_bar.wandb_progress_bar import WandBProgressBarWrapper def get_progress_bar( iterator, log_format: str = "json", log_interval: int = 100, log_file: Optional[str] = None, epoch: Optional[int] = None, prefix: Optional[str] = None, tensorboard_logdir: Optional[str] = None, wandb_project: Optional[str] = None, wandb_run_name: Optional[str] = None, ): if log_file is not None: handler = logging.FileHandler(filename=log_file) logger.addHandler(handler) if log_format == "json": bar = JsonProgressBar(iterator, epoch, prefix, log_interval) else: raise ValueError("Unknown log format: {}".format(log_format)) if tensorboard_logdir: bar = TensorboardProgressBarWrapper(bar, tensorboard_logdir) if wandb_project: bar = WandBProgressBarWrapper(bar, wandb_project, run_name=wandb_run_name) return bar
flash_metaseq-main
metaseq/logging/progress_bar/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import string import sys from numbers import Number import atexit import torch from metaseq.logging.meters import AverageMeter from metaseq.logging.progress_bar.base_progress_bar import BaseProgressBar, logger _tensorboard_writers = {} SummaryWriter = None try: from torch.utils.tensorboard import SummaryWriter except ImportError: try: from tensorboardX import SummaryWriter except ImportError: pass def _close_writers(): for w in _tensorboard_writers.values(): w.close() atexit.register(_close_writers) class TensorboardProgressBarWrapper(BaseProgressBar): """Log to tensorboard.""" def __init__(self, wrapped_bar, tensorboard_logdir): self.wrapped_bar = wrapped_bar self.tensorboard_logdir = tensorboard_logdir if SummaryWriter is None: logger.warning( "tensorboard not found, please install with: pip install tensorboard" ) def _writer(self, key): if SummaryWriter is None: return None _writers = _tensorboard_writers if key not in _writers: # tensorboard doesn't play well when we clobber it with reruns # find an acceptable suffix for suffix in [""] + list(string.ascii_uppercase): logdir = os.path.join(self.tensorboard_logdir + suffix, key) if not os.path.exists(logdir): logger.info(f"Setting tensorboard directory to {logdir}") break else: # wow we have cycled through a lot of these raise RuntimeError( f"Tensorboard logdir {logdir} already exists. " "Ran out of possible suffixes." ) _writers[key] = SummaryWriter(logdir) _writers[key].add_text("sys.argv", " ".join(sys.argv)) return _writers[key] def __len__(self): return len(self.wrapped_bar) def __iter__(self): return iter(self.wrapped_bar) def log(self, stats, tag=None, step=None): """Log intermediate stats to tensorboard.""" self._log_to_tensorboard(stats, tag, step) self.wrapped_bar.log(stats, tag=tag, step=step) def print(self, stats, tag=None, step=None): """Print end-of-epoch stats.""" self._log_to_tensorboard(stats, tag, step) self.wrapped_bar.print(stats, tag=tag, step=step) def update_config(self, config): """Log latest configuration.""" # TODO add hparams to Tensorboard self.wrapped_bar.update_config(config) def _log_to_tensorboard(self, stats, tag=None, step=None): writer = self._writer(tag or "") if writer is None: return if step is None: step = stats["num_updates"] for key in stats.keys() - {"num_updates"}: if isinstance(stats[key], AverageMeter): writer.add_scalar(key, stats[key].val, step) elif isinstance(stats[key], Number): writer.add_scalar(key, stats[key], step) elif torch.is_tensor(stats[key]) and stats[key].numel() == 1: writer.add_scalar(key, stats[key].item(), step) writer.flush()
flash_metaseq-main
metaseq/logging/progress_bar/tensorboard_progress_bar.py