python_code
stringlengths
0
4.04M
repo_name
stringlengths
7
58
file_path
stringlengths
5
147
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import json from collections import OrderedDict from contextlib import contextmanager from metaseq.logging.progress_bar.base_progress_bar import ( BaseProgressBar, logger, format_stat, ) from metaseq.utils import get_precise_epoch @contextmanager def rename_logger(logger, new_name): old_name = logger.name if new_name is not None: logger.name = new_name yield logger logger.name = old_name class JsonProgressBar(BaseProgressBar): """Log output in JSON format.""" def __init__(self, iterable, epoch=None, prefix=None, log_interval=1000): super().__init__(iterable, epoch, prefix) self.log_interval = log_interval self.i = None self.size = None def __iter__(self): self.size = len(self.iterable) for i, obj in enumerate(self.iterable, start=self.n): self.i = i yield obj def log(self, stats, tag=None, step=None): """Log intermediate stats according to log_interval.""" step = step or self.i or 0 if step > 0 and self.log_interval is not None and step % self.log_interval == 0: update = get_precise_epoch(self.epoch, self.i, self.size) stats = self._format_stats(stats, epoch=self.epoch, update=update) with rename_logger(logger, tag): logger.info(json.dumps(stats)) def print(self, stats, tag=None, step=None): """Print end-of-epoch stats.""" self.stats = stats if tag is not None: self.stats = OrderedDict( [(tag + "_" + k, v) for k, v in self.stats.items()] ) stats = self._format_stats(self.stats, epoch=self.epoch) with rename_logger(logger, tag): logger.info(json.dumps(stats)) def _format_stats(self, stats, epoch=None, update=None): postfix = OrderedDict() if epoch is not None: postfix["epoch"] = epoch if update is not None: postfix["update"] = round(update, 3) # Preprocess stats according to datatype for key in stats.keys(): postfix[key] = format_stat(stats[key]) return postfix
flash_metaseq-main
metaseq/logging/progress_bar/json_progress_bar.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from numbers import Number from metaseq.logging.meters import AverageMeter from metaseq.logging.progress_bar.base_progress_bar import ( BaseProgressBar, logger, ) from metaseq.utils import get_precise_epoch wandb = None try: import wandb except ImportError: pass class WandBProgressBarWrapper(BaseProgressBar): """Log to Weights & Biases.""" def __init__(self, wrapped_bar, wandb_project, run_name=None): super().__init__( wrapped_bar, epoch=wrapped_bar.epoch, prefix=wrapped_bar.prefix ) self.wrapped_bar = wrapped_bar if wandb is None: logger.warning("wandb not found, pip install wandb") return # reinit=False to ensure if wandb.init() is called multiple times # within one process it still references the same run wandb.init(project=wandb_project, reinit=False, name=run_name) def __len__(self): return len(self.wrapped_bar) def __iter__(self): self.size = len(self.wrapped_bar) for i, obj in enumerate(self.wrapped_bar, start=self.n): self.i = i yield obj def log(self, stats, tag=None, step=None): """Log intermediate stats to tensorboard.""" self._log_to_wandb(stats, tag, step) self.wrapped_bar.log(stats, tag=tag, step=step) def print(self, stats, tag=None, step=None): """Print end-of-epoch stats.""" self._log_to_wandb(stats, tag, step) self.wrapped_bar.print(stats, tag=tag, step=step) def update_config(self, config): """Log latest configuration.""" if wandb is not None: wandb.config.update(config, allow_val_change=True) self.wrapped_bar.update_config(config) def _log_to_wandb(self, stats, tag=None, step=None): if wandb is None: return if step is None: step = stats["num_updates"] prefix = "" if tag is None else tag + "/" epoch = get_precise_epoch(self.epoch, self.i, self.size) wandb.log({prefix + "epoch": epoch}, step=step) for key in stats.keys() - {"num_updates"}: if isinstance(stats[key], AverageMeter): wandb.log({prefix + key: stats[key].val}, step=step) elif isinstance(stats[key], Number): wandb.log({prefix + key: stats[key]}, step=step)
flash_metaseq-main
metaseq/logging/progress_bar/wandb_progress_bar.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch import torch.nn.functional as F from metaseq import metrics, utils from metaseq.criterions import BaseCriterion, register_criterion def nll_loss(lprobs, target, ignore_index=None, reduction="mean"): """Like torch.nn.functional.nll_loss but works for large inputs.""" if lprobs.numel() < 2e9: return F.nll_loss( lprobs, target, ignore_index=ignore_index, reduction=reduction ) if target.dim() == lprobs.dim() - 1: target = target.unsqueeze(-1) nll_loss = -lprobs.gather(dim=-1, index=target) if ignore_index is not None: pad_mask = target.eq(ignore_index) nll_loss.masked_fill_(pad_mask, 0.0) else: nll_loss = nll_loss.squeeze(-1) if reduction == "mean": nll_loss = nll_loss.mean() elif reduction == "sum": nll_loss = nll_loss.sum() elif reduction == "none": pass else: raise NotImplementedError return nll_loss @register_criterion("cross_entropy") class CrossEntropyCriterion(BaseCriterion): def __init__(self, task): super().__init__(task) def forward(self, model, sample, reduce=True): """Compute the loss for the given sample. Returns a tuple with three elements: 1) the loss 2) the sample size, which is used as the denominator for the gradient 3) logging outputs to display while training """ net_output = model(**sample["net_input"]) loss, _ = self.compute_loss(model, net_output, sample, reduce=reduce) sample_size = sample["ntokens"] logging_output = { "loss": loss.data, "ntokens": sample["ntokens"], "nsentences": sample["target"].size(0), "sample_size": sample_size, } if "src_tokens" in sample["net_input"] and hasattr(self.task, "eod"): logging_output["ndocseps"] = (sample["target"] == self.task.eod).sum() if ( len(net_output) >= 2 and isinstance(net_output[1], dict) and "inner_states" in net_output[1] ): with torch.no_grad(): # yank out the inner states we wish to instrument # see transformer.py TransformerDecoder.extract_features_scriptable emb, *_, actv = net_output[1]["inner_states"] assert isinstance( emb, dict ), "Expecting the first inner state to be a dict of embedding representations" emb["actv"] = actv # throw on final for code brevity for key, value in emb.items(): if value is None: # maybe future proofing relative positional embeddings continue value = emb[key] logging_output[f"{key}_norm"] = value.norm(p=2, dim=-1).sum( dtype=torch.float32 ) return loss, sample_size, logging_output def compute_loss(self, model, net_output, sample, reduce=True): lprobs = model.get_normalized_probs(net_output, log_probs=True) lprobs = lprobs.view(-1, lprobs.size(-1)) target = model.get_targets(sample, net_output).view(-1) loss = nll_loss( lprobs, target, ignore_index=self.padding_idx, reduction="sum" if reduce else "none", ) return loss, loss @staticmethod def reduce_metrics(logging_outputs) -> None: """Aggregate logging outputs from data parallel training.""" loss_sum = sum(log.get("loss", 0) for log in logging_outputs) ntokens = sum(log.get("ntokens", 0) for log in logging_outputs) sample_size = sum(log.get("sample_size", 0) for log in logging_outputs) for type_ in ("actv", "pos", "tok", "emb"): key = f"{type_}_norm" if any(key in log for log in logging_outputs): actv_norm = sum(log.get(key, 0) for log in logging_outputs) metrics.log_scalar(key, actv_norm / ntokens, round=3) # we divide by log(2) to convert the loss from base e to base 2 metrics.log_scalar( "loss", loss_sum / sample_size / math.log(2), sample_size, round=3 ) if sample_size != ntokens: metrics.log_scalar( "nll_loss", loss_sum / ntokens / math.log(2), ntokens, round=3 ) metrics.log_derived( "ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg) ) else: metrics.log_derived( "ppl", lambda meters: utils.get_perplexity(meters["loss"].avg) ) @staticmethod def logging_outputs_can_be_summed() -> bool: """ Whether the logging outputs returned by `forward` can be summed across workers prior to calling `reduce_metrics`. Setting this to True will improves distributed training speed. """ return True
flash_metaseq-main
metaseq/criterions/cross_entropy.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import inspect from typing import Any, Dict, List from torch.nn.modules.loss import _Loss from metaseq import metrics, utils from metaseq.dataclass import MetaseqDataclass from metaseq.dataclass.utils import gen_parser_from_dataclass class BaseCriterion(_Loss): def __init__(self, task): super().__init__() self.task = task if hasattr(task, "target_dictionary"): tgt_dict = task.target_dictionary self.padding_idx = tgt_dict.pad() if tgt_dict is not None else -100 @classmethod def add_args(cls, parser): """Add criterion-specific arguments to the parser.""" dc = getattr(cls, "__dataclass", None) if dc is not None: gen_parser_from_dataclass(parser, dc()) @classmethod def build_criterion(cls, cfg: MetaseqDataclass, task): """Construct a criterion from command-line args.""" # arguments in the __init__. init_args = {} for p in inspect.signature(cls).parameters.values(): if ( p.kind == p.POSITIONAL_ONLY or p.kind == p.VAR_POSITIONAL or p.kind == p.VAR_KEYWORD ): # we haven't implemented inference for these argument types, # but PRs welcome :) raise NotImplementedError("{} not supported".format(p.kind)) assert p.kind in {p.POSITIONAL_OR_KEYWORD, p.KEYWORD_ONLY} if p.name == "task": init_args["task"] = task elif p.name == "cfg": init_args["cfg"] = cfg elif hasattr(cfg, p.name): init_args[p.name] = getattr(cfg, p.name) elif p.default != p.empty: pass # we'll use the default value else: raise NotImplementedError( "Unable to infer Criterion arguments, please implement " "{}.build_criterion".format(cls.__name__) ) return cls(**init_args) def forward(self, model, sample, reduce=True): """Compute the loss for the given sample. Returns a tuple with three elements: 1) the loss 2) the sample size, which is used as the denominator for the gradient 3) logging outputs to display while training """ raise NotImplementedError @staticmethod def aggregate_logging_outputs( logging_outputs: List[Dict[str, Any]] ) -> Dict[str, Any]: """Aggregate logging outputs from data parallel training.""" utils.deprecation_warning( "The aggregate_logging_outputs API is deprecated. " "Please use the reduce_metrics API instead." ) raise NotImplementedError @classmethod def reduce_metrics(cls, logging_outputs: List[Dict[str, Any]]) -> None: """Aggregate logging outputs from data parallel training.""" utils.deprecation_warning( "Criterions should implement the reduce_metrics API. " "Falling back to deprecated aggregate_logging_outputs API." ) agg_logging_outputs = cls.aggregate_logging_outputs(logging_outputs) for k, v in agg_logging_outputs.items(): if k in {"nsentences", "ntokens", "sample_size"}: continue metrics.log_scalar(k, v) @staticmethod def logging_outputs_can_be_summed() -> bool: """ Whether the logging outputs returned by `forward` can be summed across workers prior to calling `reduce_metrics`. Setting this to True will improves distributed training speed. """ return False
flash_metaseq-main
metaseq/criterions/base_criterion.py
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """isort:skip_file""" import importlib import os from metaseq import registry from metaseq.criterions.base_criterion import BaseCriterion from omegaconf import DictConfig ( build_criterion_, register_criterion, CRITERION_REGISTRY, CRITERION_DATACLASS_REGISTRY, ) = registry.setup_registry( "--criterion", base_class=BaseCriterion, default="cross_entropy" ) def build_criterion(cfg: DictConfig, task): return build_criterion_(cfg, task) # automatically import any Python files in the criterions/ directory for file in os.listdir(os.path.dirname(__file__)): if file.endswith(".py") and not file.startswith("_"): file_name = file[: file.find(".py")] importlib.import_module("metaseq.criterions." + file_name)
flash_metaseq-main
metaseq/criterions/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import setuptools setuptools.setup( name="cop3d", version="1.0.0", author="Meta AI", author_email="romansh@meta.com", packages=setuptools.find_packages(), license="LICENSE", description="Common Pets in 3D tools", long_description=open("README.md").read(), install_requires=[ "co3d @ git+ssh://git@github.com/facebookresearch/co3d.git#egg=co3d-2.1.0" ], )
cop3d-main
setup.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os from co3d.dataset.download_dataset_impl import build_arg_parser, download_dataset REPO_ROOT = __file__.rsplit(os.sep, 2)[0] DEFAULT_LINK_LIST_FILE = os.path.join(REPO_ROOT, "links", "links.json") DEFAULT_SHA256S_FILE = os.path.join(REPO_ROOT, "links", "cop3d_sha256.json") if __name__ == "__main__": parser = build_arg_parser("COP3D", DEFAULT_LINK_LIST_FILE, DEFAULT_SHA256S_FILE) args = parser.parse_args() download_dataset( str(args.link_list_file), str(args.download_folder), n_download_workers=int(args.n_download_workers), n_extract_workers=int(args.n_extract_workers), download_categories=args.download_categories, checksum_check=bool(args.checksum_check), single_sequence_subset=False, clear_archives_after_unpacking=bool(args.clear_archives_after_unpacking), sha256s_file=str(args.sha256_file), skip_downloaded_archives=not bool(args.redownload_existing_archives), )
cop3d-main
cop3d/download_dataset.py
import pathlib import numpy as np import matplotlib.pyplot as plt plt.switch_backend('agg') import seaborn as sns sgd_n_epochs = 15 n_trials = 10 def plot_objective_difference(): """Plot objective difference during training """ for model_name in ['kernel', 'lenet']: for transform_name in ['rotation', 'crop', 'blur', 'rotation_crop_blur']: losses = np.array([np.load(f'saved/all_losses_{model_name}_{transform_name}_{seed}.npy') for seed in range(n_trials)]) diff_og = losses[:, 1] - losses[:, 0] diff_1st = losses[:, 2] - losses[:, 0] diff_2nd_no_1st = losses[:, 3] - losses[:, 0] diff_2nd = losses[:, 4] - losses[:, 0] plt.clf() plt.errorbar(range(sgd_n_epochs + 1), diff_og.mean(axis=0), diff_og.std(axis=0), fmt='o-', capsize=5, label='Original image') plt.errorbar(range(sgd_n_epochs + 1), diff_1st.mean(axis=0), diff_1st.std(axis=0), fmt='o-', capsize=5, label='1st-order') plt.errorbar(range(sgd_n_epochs + 1), diff_2nd_no_1st.mean(axis=0), diff_2nd_no_1st.std(axis=0), fmt='o-', capsize=5, label='2nd-order w/o 1st-order') plt.errorbar(range(sgd_n_epochs + 1), diff_2nd.mean(axis=0), diff_2nd.std(axis=0), fmt='o-', capsize=5, label='2nd-order') plt.xlabel('Epoch') plt.ylabel('Difference in objective') plt.legend() plt.axhline(color='k') plt.savefig(f'figs/objective_difference_{model_name}_{transform_name}.pdf', bbox_inches='tight') def plot_agreement_kl(): """Plot training/valid agreements and KL divergence """ for model_name in ['kernel', 'lenet']: for transform_name in ['rotation', 'crop', 'blur', 'rotation_crop_blur']: saved_arrays = [np.load(f'saved/train_valid_agreement_kl_{model_name}_{transform_name}_{seed}.npz') for seed in range(n_trials)] train_agreement = np.array([saved['train_agreement'] for saved in saved_arrays]) valid_agreement = np.array([saved['valid_agreement'] for saved in saved_arrays]) valid_kl = np.array([saved['valid_kl'] for saved in saved_arrays]) valid_acc = np.array([saved['valid_acc'] for saved in saved_arrays]) plt.clf() plt.errorbar(range(1, sgd_n_epochs + 1), train_agreement[:, 1].mean(axis=0), train_agreement[:, 1].std(axis=0), fmt='o-', capsize=5, label='Original image') plt.errorbar(range(1, sgd_n_epochs + 1), train_agreement[:, 2].mean(axis=0), train_agreement[:, 2].std(axis=0), fmt='o-', capsize=5, label='1st-order') plt.errorbar(range(1, sgd_n_epochs + 1), train_agreement[:, 3].mean(axis=0), train_agreement[:, 3].std(axis=0), fmt='o-', capsize=5, label='2nd-order w/o 1st-order') plt.errorbar(range(1, sgd_n_epochs + 1), train_agreement[:, 4].mean(axis=0), train_agreement[:, 4].std(axis=0), fmt='o-', capsize=5, label='2nd-order') plt.xlabel('Epoch') plt.ylabel('Prediction agreement') plt.legend() # plt.axhline(color='k') plt.savefig(f'figs/prediction_agreement_training_{model_name}_{transform_name}.pdf', bbox_inches='tight') plt.clf() plt.errorbar(range(1, sgd_n_epochs + 1), valid_agreement[:, 1].mean(axis=0), valid_agreement[:, 1].std(axis=0), fmt='o-', capsize=5, label='Original image') plt.errorbar(range(1, sgd_n_epochs + 1), valid_agreement[:, 2].mean(axis=0), valid_agreement[:, 2].std(axis=0), fmt='o-', capsize=5, label='1st-order') plt.errorbar(range(1, sgd_n_epochs + 1), valid_agreement[:, 3].mean(axis=0), valid_agreement[:, 3].std(axis=0), fmt='o-', capsize=5, label='2nd-order w/o 1st-order') plt.errorbar(range(1, sgd_n_epochs + 1), valid_agreement[:, 4].mean(axis=0), valid_agreement[:, 4].std(axis=0), fmt='o-', capsize=5, label='2nd-order') plt.xlabel('Epoch') plt.ylabel('Prediction agreement') plt.legend() # plt.axhline(color='k') plt.savefig(f'figs/prediction_agreement_valid_{model_name}_{transform_name}.pdf', bbox_inches='tight') plt.clf() plt.errorbar(range(1, sgd_n_epochs + 1), valid_kl[:, 1].mean(axis=0), valid_kl[:, 1].std(axis=0), fmt='o-', capsize=5, label='Original image') plt.errorbar(range(1, sgd_n_epochs + 1), valid_kl[:, 2].mean(axis=0), valid_kl[:, 2].std(axis=0), fmt='o-', capsize=5, label='1st-order') plt.errorbar(range(1, sgd_n_epochs + 1), valid_kl[:, 3].mean(axis=0), valid_kl[:, 3].std(axis=0), fmt='o-', capsize=5, label='2nd-order w/o 1st-order') plt.errorbar(range(1, sgd_n_epochs + 1), valid_kl[:, 4].mean(axis=0), valid_kl[:, 4].std(axis=0), fmt='o-', capsize=5, label='2nd-order') plt.xlabel('Epoch') plt.ylabel('Prediction KL') plt.legend() plt.axhline(color='k') plt.savefig(f'figs/kl_valid_{model_name}_{transform_name}.pdf', bbox_inches='tight') plt.clf() plt.errorbar(range(1, sgd_n_epochs + 1), valid_acc[:, 1].mean(axis=0), valid_acc[:, 1].std(axis=0), fmt='o-', capsize=5, label='Original image') plt.errorbar(range(1, sgd_n_epochs + 1), valid_acc[:, 2].mean(axis=0), valid_acc[:, 2].std(axis=0), fmt='o-', capsize=5, label='1st-order') plt.errorbar(range(1, sgd_n_epochs + 1), valid_acc[:, 3].mean(axis=0), valid_acc[:, 3].std(axis=0), fmt='o-', capsize=5, label='2nd-order w/o 1st-order') plt.errorbar(range(1, sgd_n_epochs + 1), valid_acc[:, 4].mean(axis=0), valid_acc[:, 4].std(axis=0), fmt='o-', capsize=5, label='2nd-order') plt.errorbar(range(1, sgd_n_epochs + 1), valid_acc[:, 0].mean(axis=0), valid_acc[:, 0].std(axis=0), fmt='o-', capsize=5, label='Exact (augmented images)') plt.xlabel('Epoch') plt.ylabel('Accuracy') plt.legend() # plt.axhline(color='k') plt.savefig(f'figs/accuracy_valid_{model_name}_{transform_name}.pdf', bbox_inches='tight') plt.clf() plt.errorbar(range(1, sgd_n_epochs + 1), (valid_acc[:, 1] - valid_acc[:, 0]).mean(axis=0), (valid_acc[:, 1] - valid_acc[:, 0]).std(axis=0), fmt='o-', capsize=5, label='Original image') plt.errorbar(range(1, sgd_n_epochs + 1), (valid_acc[:, 2] - valid_acc[:, 0]).mean(axis=0), (valid_acc[:, 2] - valid_acc[:, 0]).std(axis=0), fmt='o-', capsize=5, label='1st-order') plt.errorbar(range(1, sgd_n_epochs + 1), (valid_acc[:, 3] - valid_acc[:, 0]).mean(axis=0), (valid_acc[:, 3] - valid_acc[:, 0]).std(axis=0), fmt='o-', capsize=5, label='2nd-order w/o 1st-order') plt.errorbar(range(1, sgd_n_epochs + 1), (valid_acc[:, 4] - valid_acc[:, 0]).mean(axis=0), (valid_acc[:, 4] - valid_acc[:, 0]).std(axis=0), fmt='o-', capsize=5, label='2nd-order') plt.xlabel('Epoch') plt.ylabel('Accuracy difference') plt.legend() plt.axhline(color='k') plt.savefig(f'figs/accuracy_difference_valid_{model_name}_{transform_name}.pdf', bbox_inches='tight') def plot_agreement_kl_avg_at_layers(): """Plot generalization difference when doing feature averaging at different layers """ model_name = 'lenet' transform_name = 'rotation' saved_arrays = [np.load(f'saved/train_valid_agreement_kl_{model_name}_{transform_name}_{seed}.npz') for seed in range(n_trials)] train_agreement = np.array([saved['train_agreement'] for saved in saved_arrays]) valid_agreement = np.array([saved['valid_agreement'] for saved in saved_arrays]) valid_kl = np.array([saved['valid_kl'] for saved in saved_arrays]) valid_acc = np.array([saved['valid_acc'] for saved in saved_arrays]) plt.clf() plt.errorbar(range(1, sgd_n_epochs + 1), train_agreement[:, 1].mean(axis=0), train_agreement[:, 1].std(axis=0), fmt='o-', capsize=5, label='Original image') plt.errorbar(range(1, sgd_n_epochs + 1), train_agreement[:, 4].mean(axis=0), train_agreement[:, 4].std(axis=0), fmt='o-', capsize=5, label='Averaged at 4th layer') plt.errorbar(range(1, sgd_n_epochs + 1), train_agreement[:, 5].mean(axis=0), train_agreement[:, 5].std(axis=0), fmt='o-', capsize=5, label='Averaged at 3rd layer') plt.errorbar(range(1, sgd_n_epochs + 1), train_agreement[:, 6].mean(axis=0), train_agreement[:, 6].std(axis=0), fmt='o-', capsize=5, label='Averaged at 2nd layer') plt.errorbar(range(1, sgd_n_epochs + 1), train_agreement[:, 7].mean(axis=0), train_agreement[:, 7].std(axis=0), fmt='o-', capsize=5, label='Averaged at 1st layer') plt.errorbar(range(1, sgd_n_epochs + 1), train_agreement[:, 8].mean(axis=0), train_agreement[:, 8].std(axis=0), fmt='o-', capsize=5, label='Averaged at 0th layer') plt.xlabel('Epoch') plt.ylabel('Prediction agreement') plt.legend() # plt.axhline(color='k') plt.savefig(f'figs/prediction_agreement_training_{model_name}_{transform_name}_layers.pdf', bbox_inches='tight') plt.clf() plt.errorbar(range(1, sgd_n_epochs + 1), valid_agreement[:, 1].mean(axis=0), valid_agreement[:, 1].std(axis=0), fmt='o-', capsize=5, label='Original image') plt.errorbar(range(1, sgd_n_epochs + 1), valid_agreement[:, 4].mean(axis=0), valid_agreement[:, 4].std(axis=0), fmt='o-', capsize=5, label='Averaged at 4th layer') plt.errorbar(range(1, sgd_n_epochs + 1), valid_agreement[:, 5].mean(axis=0), valid_agreement[:, 5].std(axis=0), fmt='o-', capsize=5, label='Averaged at 3rd layer') plt.errorbar(range(1, sgd_n_epochs + 1), valid_agreement[:, 6].mean(axis=0), valid_agreement[:, 6].std(axis=0), fmt='o-', capsize=5, label='Averaged at 2nd layer') plt.errorbar(range(1, sgd_n_epochs + 1), valid_agreement[:, 7].mean(axis=0), valid_agreement[:, 7].std(axis=0), fmt='o-', capsize=5, label='Averaged at 1st layer') plt.errorbar(range(1, sgd_n_epochs + 1), valid_agreement[:, 8].mean(axis=0), valid_agreement[:, 8].std(axis=0), fmt='o-', capsize=5, label='Averaged at 0th layer') plt.xlabel('Epoch') plt.ylabel('Prediction agreement') plt.legend() # plt.axhline(color='k') plt.savefig(f'figs/prediction_agreement_valid_{model_name}_{transform_name}_layers.pdf', bbox_inches='tight') plt.clf() plt.errorbar(range(1, sgd_n_epochs + 1), valid_kl[:, 1].mean(axis=0), valid_kl[:, 1].std(axis=0), fmt='o-', capsize=5, label='Original image') plt.errorbar(range(1, sgd_n_epochs + 1), valid_kl[:, 4].mean(axis=0), valid_kl[:, 4].std(axis=0), fmt='o-', capsize=5, label='Averaged at 4th layer') plt.errorbar(range(1, sgd_n_epochs + 1), valid_kl[:, 5].mean(axis=0), valid_kl[:, 5].std(axis=0), fmt='o-', capsize=5, label='Averaged at 3rd layer') plt.errorbar(range(1, sgd_n_epochs + 1), valid_kl[:, 6].mean(axis=0), valid_kl[:, 6].std(axis=0), fmt='o-', capsize=5, label='Averaged at 2nd layer') plt.errorbar(range(1, sgd_n_epochs + 1), valid_kl[:, 7].mean(axis=0), valid_kl[:, 7].std(axis=0), fmt='o-', capsize=5, label='Averaged at 1st layer') plt.errorbar(range(1, sgd_n_epochs + 1), valid_kl[:, 8].mean(axis=0), valid_kl[:, 8].std(axis=0), fmt='o-', capsize=5, label='Averaged at 0th layer') plt.xlabel('Epoch') plt.ylabel('Prediction KL') plt.legend() plt.axhline(color='k') plt.savefig(f'figs/kl_valid_{model_name}_{transform_name}_layers.pdf', bbox_inches='tight') plt.clf() plt.errorbar(range(1, sgd_n_epochs + 1), valid_acc[:, 1].mean(axis=0), valid_acc[:, 1].std(axis=0), fmt='o-', capsize=5, label='Original image') plt.errorbar(range(1, sgd_n_epochs + 1), valid_acc[:, 4].mean(axis=0), valid_acc[:, 4].std(axis=0), fmt='o-', capsize=5, label='Averaged at 4th layer') plt.errorbar(range(1, sgd_n_epochs + 1), valid_acc[:, 5].mean(axis=0), valid_acc[:, 5].std(axis=0), fmt='o-', capsize=5, label='Averaged at 3rd layer') plt.errorbar(range(1, sgd_n_epochs + 1), valid_acc[:, 6].mean(axis=0), valid_acc[:, 6].std(axis=0), fmt='o-', capsize=5, label='Averaged at 2nd layer') plt.errorbar(range(1, sgd_n_epochs + 1), valid_acc[:, 7].mean(axis=0), valid_acc[:, 7].std(axis=0), fmt='o-', capsize=5, label='Averaged at 1st layer') plt.errorbar(range(1, sgd_n_epochs + 1), valid_acc[:, 8].mean(axis=0), valid_acc[:, 8].std(axis=0), fmt='o-', capsize=5, label='Averaged at 0th layer') plt.errorbar(range(1, sgd_n_epochs + 1), valid_acc[:, 0].mean(axis=0), valid_acc[:, 0].std(axis=0), fmt='o-', capsize=5, label='Exact (augmented images)') plt.xlabel('Epoch') plt.ylabel('Accuracy') plt.legend() # plt.axhline(color='k') plt.savefig(f'figs/accuracy_valid_{model_name}_{transform_name}_layers.pdf', bbox_inches='tight') plt.clf() plt.errorbar(range(1, sgd_n_epochs + 1), (valid_acc[:, 1] - valid_acc[:, 0]).mean(axis=0), (valid_acc[:, 1] - valid_acc[:, 0]).std(axis=0), fmt='o-', capsize=5, label='Original image') plt.errorbar(range(1, sgd_n_epochs + 1), (valid_acc[:, 4] - valid_acc[:, 0]).mean(axis=0), (valid_acc[:, 4] - valid_acc[:, 0]).std(axis=0), fmt='o-', capsize=5, label='Averaged at 4th layer') plt.errorbar(range(1, sgd_n_epochs + 1), (valid_acc[:, 5] - valid_acc[:, 0]).mean(axis=0), (valid_acc[:, 5] - valid_acc[:, 0]).std(axis=0), fmt='o-', capsize=5, label='Averaged at 3rd layer') plt.errorbar(range(1, sgd_n_epochs + 1), (valid_acc[:, 6] - valid_acc[:, 0]).mean(axis=0), (valid_acc[:, 6] - valid_acc[:, 0]).std(axis=0), fmt='o-', capsize=5, label='Averaged at 2nd layer') plt.errorbar(range(1, sgd_n_epochs + 1), (valid_acc[:, 7] - valid_acc[:, 0]).mean(axis=0), (valid_acc[:, 7] - valid_acc[:, 0]).std(axis=0), fmt='o-', capsize=5, label='Averaged at 1st layer') plt.errorbar(range(1, sgd_n_epochs + 1), (valid_acc[:, 8] - valid_acc[:, 0]).mean(axis=0), (valid_acc[:, 8] - valid_acc[:, 0]).std(axis=0), fmt='o-', capsize=5, label='Averaged at 0th layer') plt.xlabel('Epoch') plt.ylabel('Accuracy difference') plt.legend() plt.axhline(color='k') plt.savefig(f'figs/accuracy_difference_valid_{model_name}_{transform_name}_layers.pdf', bbox_inches='tight') def plot_accuracy_vs_computation(): """Plot computational savings when doing averaging at earlier layers of LeNet """ layers = ['conv1_maxpool1', 'conv2_maxpool2', 'fc1', 'fc2', 'fc3'] # flops = np.array([50 * 24 * 24 * 6 + 4 * 12 * 12 * 6, 24 * 8 * 8 * 16 + 4 * 4 * 4 * 16, 256 * 120 + 120, 120 * 84 + 84, 84 * 10]) # computation_time = np.array([193, 120, 42, 42, 31]) # offset = 3 # computation_time -= offset computation_time = np.array([123, 94, 41, 40, 30]) # Measured with iPython's %timeit ratio = computation_time / computation_time.sum() n_transforms = 16 exact = n_transforms avg = np.empty(6) avg[5] = 1.0 avg[4] = (ratio[:4].sum() * n_transforms + ratio[4:].sum()) / exact avg[3] = (ratio[:3].sum() * n_transforms + ratio[3:].sum()) / exact avg[2] = (ratio[:2].sum() * n_transforms + ratio[2:].sum()) / exact avg[1] = (ratio[:1].sum() * n_transforms + ratio[1:].sum()) / exact avg[0] = (ratio[:0].sum() * n_transforms + ratio[0:].sum()) / exact model_name = 'lenet' transform_name = 'rotation' saved_arrays = [np.load(f'saved/train_valid_agreement_kl_{model_name}_{transform_name}_{seed}.npz') for seed in range(n_trials)] valid_acc = np.array([saved['valid_acc'] for saved in saved_arrays]) plt.clf() plt.errorbar(avg, valid_acc[:, [8, 7, 6, 5, 4, 0], -1].mean(axis=0), valid_acc[:, [8, 7, 6, 5, 4, 0], -1].std(axis=0), fmt='o-', capsize=5) plt.ylabel('Accuracy') plt.xlabel('Computation fraction') plt.savefig(f'figs/accuracy_vs_computation_{model_name}_{transform_name}.pdf', bbox_inches='tight') # Plot relative accuracy gain l, u = valid_acc[:, 8, -1].mean(axis=0), valid_acc[:, 0, -1].mean(axis=0) plt.figure() plt.errorbar(avg, (valid_acc[:, [8, 7, 6, 5, 4, 0], -1].mean(axis=0) - l) / (u - l), valid_acc[:, [8, 7, 6, 5, 4, 0], -1].std(axis=0) / (u - l), fmt='o-', capsize=10, markersize=10, linewidth=2) plt.ylabel('Relative accuracy gain', fontsize=16) plt.xlabel('Computation fraction', fontsize=16) plt.tick_params(axis='both', which='major', labelsize=12) plt.savefig(f'figs/accuracy_vs_computation_relative_{model_name}_{transform_name}.pdf', bbox_inches='tight') plt.close() def plot_accuracy_vs_kernel_alignment(): """Scatter plot of accuracy vs kernel target alignment """ valid_acc = [] for model_name in ['kernel', 'lenet']: valid_acc_per_model = [] # Accuracy on no transform saved_arrays = [np.load(f'saved/train_valid_agreement_kl_{model_name}_blur_{seed}.npz') for seed in range(n_trials)] valid_acc_per_model.append(np.array([saved['valid_acc'] for saved in saved_arrays])[:, 1, -1]) for transform_name in ['rotation', 'crop', 'blur', 'rotation_crop_blur', 'hflip', 'hflip_vflip', 'brightness', 'contrast']: saved_arrays = [np.load(f'saved/train_valid_acc_{model_name}_{transform_name}_{seed}.npz') for seed in range(n_trials)] valid_acc_per_model.append(np.array([saved['valid_acc'] for saved in saved_arrays])[:, -1]) # print(valid_acc.mean(axis=0)[-1], valid_acc.std(axis=0)[-1]) valid_acc.append(valid_acc_per_model) valid_acc = np.array(valid_acc) kernel_alignment = np.load('saved/kernel_alignment.npy') plt.clf() plt.errorbar(kernel_alignment, valid_acc[0].mean(axis=-1), valid_acc[0].std(axis=-1), fmt='o', capsize=5) plt.axhline(valid_acc[0, 0].mean(axis=-1), color='k') plt.axvline(kernel_alignment[0], color='k') plt.errorbar(kernel_alignment[0], valid_acc[0, 0].mean(axis=-1), valid_acc[0, 0].std(axis=-1), fmt='o', capsize=5) plt.ylabel('Accuracy') plt.xlabel('Kernel target alignment') plt.savefig(f'figs/accuracy_vs_alignment_kernel.pdf', bbox_inches='tight') plt.clf() plt.errorbar(kernel_alignment, valid_acc[1].mean(axis=-1), valid_acc[1].std(axis=-1), fmt='o', capsize=5) plt.axhline(valid_acc[1, 0].mean(axis=-1), color='k') plt.axvline(kernel_alignment[0], color='k') plt.errorbar(kernel_alignment[0], valid_acc[1, 0].mean(axis=-1), valid_acc[1, 0].std(axis=-1), fmt='o', capsize=5) plt.ylabel('Accuracy') plt.xlabel('Kernel target alignment') plt.savefig(f'figs/accuracy_vs_alignment_lenet.pdf', bbox_inches='tight') plt.clf() sns.set_style('white') plt.figure(figsize=(10, 5)) ax = plt.subplot(1, 2, 1) ax.errorbar(kernel_alignment[0], valid_acc[0, 0].mean(axis=-1), valid_acc[0, 0].std(axis=-1), fmt='x', color='r', capsize=5) ax.errorbar(kernel_alignment[1], valid_acc[0, 1].mean(axis=-1), valid_acc[0, 1].std(axis=-1), fmt='s', color='b', capsize=5) ax.errorbar(kernel_alignment[2], valid_acc[0, 2].mean(axis=-1), valid_acc[0, 2].std(axis=-1), fmt='s', color='g', capsize=5) ax.errorbar(kernel_alignment[3], valid_acc[0, 3].mean(axis=-1), valid_acc[0, 3].std(axis=-1), fmt='o', color='b', capsize=5) ax.errorbar(kernel_alignment[4], valid_acc[0, 4].mean(axis=-1), valid_acc[0, 4].std(axis=-1), fmt='s', color='tab:orange', capsize=5) ax.errorbar(kernel_alignment[5], valid_acc[0, 5].mean(axis=-1), valid_acc[0, 5].std(axis=-1), fmt='D', color='g', capsize=5) ax.errorbar(kernel_alignment[6], valid_acc[0, 6].mean(axis=-1), valid_acc[0, 6].std(axis=-1), fmt='o', color='g', capsize=5) ax.errorbar(kernel_alignment[7], valid_acc[0, 7].mean(axis=-1), valid_acc[0, 7].std(axis=-1), fmt='D', color='b', capsize=5) ax.errorbar(kernel_alignment[8], valid_acc[0, 8].mean(axis=-1), valid_acc[0, 8].std(axis=-1), fmt='D', color='m', capsize=5) ax.axhline(valid_acc[0, 0].mean(axis=-1), color='k') ax.axvline(kernel_alignment[0], color='k') ax.set_yticks([0.94, 0.96, 0.98]) ax.tick_params(axis='both', which='major', labelsize=12) ax.set_ylabel('Accuracy', fontsize=16) ax.set_title('RBF Kernel', fontsize=16) ax = plt.subplot(1, 2, 2) ax.errorbar(kernel_alignment[0], valid_acc[1, 0].mean(axis=-1), valid_acc[1, 0].std(axis=-1), fmt='x', color='r', capsize=5, label='original') ax.errorbar(kernel_alignment[1], valid_acc[1, 1].mean(axis=-1), valid_acc[1, 1].std(axis=-1), fmt='s', color='b', capsize=5, label='rotation') ax.errorbar(kernel_alignment[2], valid_acc[1, 2].mean(axis=-1), valid_acc[1, 2].std(axis=-1), fmt='s', color='g', capsize=5, label='crop') ax.errorbar(kernel_alignment[3], valid_acc[1, 3].mean(axis=-1), valid_acc[1, 3].std(axis=-1), fmt='o', color='b', capsize=5, label='blur') ax.errorbar(kernel_alignment[4], valid_acc[1, 4].mean(axis=-1), valid_acc[1, 4].std(axis=-1), fmt='s', color='tab:orange', capsize=5, label='rotation, crop, blur') ax.errorbar(kernel_alignment[5], valid_acc[1, 5].mean(axis=-1), valid_acc[1, 5].std(axis=-1), fmt='D', color='g', capsize=5, label='h. flip') ax.errorbar(kernel_alignment[6], valid_acc[1, 6].mean(axis=-1), valid_acc[1, 6].std(axis=-1), fmt='o', color='g', capsize=5, label='h. flip, v. flip') ax.errorbar(kernel_alignment[7], valid_acc[1, 7].mean(axis=-1), valid_acc[1, 7].std(axis=-1), fmt='D', color='b', capsize=5, label='brightness') ax.errorbar(kernel_alignment[8], valid_acc[1, 8].mean(axis=-1), valid_acc[1, 8].std(axis=-1), fmt='D', color='m', capsize=5, label='contrast') ax.axhline(valid_acc[1, 0].mean(axis=-1), color='k') ax.axvline(kernel_alignment[0], color='k') ax.set_yticks([0.97, 0.98, 0.99]) ax.tick_params(axis='both', which='major', labelsize=12) ax.set_ylabel('Accuracy', fontsize=16) ax.set_title('LeNet', fontsize=16) # sns.despine() # labels = ['original', 'rotation', 'crop', 'blur', 'rot., crop, blur', 'h. flip', 'h. flip, v. flip', 'brightness', 'contrast'] # plt.legend(labels, loc='upper center', bbox_transform=plt.gcf().transFigure, bbox_to_anchor=(0,0,1,1), ncol=3, fontsize=14) plt.legend(loc='upper center', bbox_transform=plt.gcf().transFigure, bbox_to_anchor=(0,0.07,1,1), ncol=3, fontsize=16, frameon=True, edgecolor='k') plt.tight_layout() plt.subplots_adjust(wspace=0.4, top=0.75, bottom=0.1) plt.suptitle('Kernel target alignment', x=0.5, y=0.05, fontsize=16) # ax.set_ylabel('Accuracy') # plt.xlabel('Kernel target alignment') plt.savefig(f'figs/accuracy_vs_alignment.pdf', bbox_inches='tight') def main(): pathlib.Path('figs').mkdir(parents=True, exist_ok=True) plot_objective_difference() plot_agreement_kl() plot_agreement_kl_avg_at_layers() plot_accuracy_vs_computation() plot_accuracy_vs_kernel_alignment() if __name__ == '__main__': main()
augmentation_code-master
plot.py
import torch import torch.nn as nn import torch.nn.functional as F from torch import autograd class MultinomialLogisticRegression(nn.Module): """Abstract class for multinomial logistic regression. Subclasses need to implement @features and @output_from_features. """ def features(self, x): raise NotImplementedError() def output_from_features(self, feat): raise NotImplementedError() def forward(self, x): return self.output_from_features(self.features(x)) @staticmethod def loss(output, target, reduce=True): return F.cross_entropy(output, target, reduce=reduce) @staticmethod def predict(output): return output.detach().max(1)[1] class MultinomialLogisticRegressionAug(MultinomialLogisticRegression): """Abstract class for multinomial logistic regression on augmented data. Input has size B x T x ..., where B is batch size and T is the number of transformations. Original i-th data point placed first among the transformed versions, which is input[i, 0]. Output has size B x T. Works exactly like the non-augmented version with default options and normal loader (where input is of size B x ...). """ def __init__(self, approx=True, feature_avg=True, regularization=False): """Parameters: approx: whether to use approximation or train on augmented data points. If False, ignore @feature_avg and @regularization. feature_avg: whether to average features or just use the features of the original data point. regularization: whether to add 2nd order term (variance regularization). """ self.approx = approx self.feature_avg = feature_avg self.regularization = regularization self.regularization_2nd_order_general = self.regularization_2nd_order def forward(self, x): augmented = x.dim() > 4 if augmented: n_transforms = x.size(1) x = combine_transformed_dimension(x) feat = self.features(x) if self.approx and augmented: if not feat.requires_grad: feat.requires_grad = True feat = split_transformed_dimension(feat, n_transforms) if self.feature_avg: self._avg_features = feat.mean(dim=1) else: self._avg_features = feat[:, 0] if self.regularization: # Storing this every time consumes lots of memory self._centered_features = feat - self._avg_features[:, None] feat = self._avg_features output = self.output_from_features(feat) if not self.approx and augmented: output = split_transformed_dimension(output, n_transforms) return output @staticmethod def predict(output): if output.dim() > 2: # Average over transformed versions of the same data point output = output.mean(dim=1) return output.detach().max(1)[1] @classmethod def loss_original(cls, output, target, reduce=True): """Original cross entropy loss. """ return super().loss(output, target, reduce=reduce) @classmethod def loss_on_augmented_data(cls, output, target, reduce=True): """Loss averaged over augmented data points (no approximation). """ # For each data point, replicate the target then compute the cross # entropy loss. Finally stack the result. loss = torch.stack([ cls.loss_original(out, tar.repeat(out.size(0))) for out, tar in zip(output, target) ]) return loss.mean() if reduce else loss def regularization_2nd_order(self, output, reduce=True): """Compute regularization term from output instead of from loss. Fast implementation by evaluating the Jacobian directly instead of relying on 2nd order differentiation. """ p = F.softmax(output, dim=-1) # Using autograd.grad(output[:, i]) is slower since it creates new node in graph. # ones = torch.ones_like(output[:, 0]) # W = torch.stack([autograd.grad(output[:, i], self._avg_features, grad_outputs=ones, create_graph=True)[0] # for i in range(10)], dim=1) eye = torch.eye(output.size(1), device=output.device) eye = eye[None, :].expand(output.size(0), -1, -1) W = torch.stack([autograd.grad(output, self._avg_features, grad_outputs=eye[:, i], create_graph=True)[0] for i in range(10)], dim=1) # t = (W[:, None] * self._centered_features[:, :, None]).view(W.size(0), self._centered_features.size(1), W.size(1), -1).sum(dim=-1) t = (W.view(W.size(0), 1, W.size(1), -1) @ self._centered_features.view(*self._centered_features.shape[:2], -1, 1)).squeeze(-1) term_1 = (t**2 * p[:, None]).sum(dim=-1).mean(dim=-1) # term_1 = (t**2 @ p[:, :, None]).squeeze(2).mean(dim=-1) term_2 = ((t * p[:, None]).sum(dim=-1)**2).mean(dim=-1) # term_2 = ((t @ p[:, :, None]).squeeze(2)**2).mean(dim=-1) reg = (term_1 - term_2) / 2 return reg.mean() if reduce else reg def regularization_2nd_order_linear(self, output, reduce=True): """Variance regularization (2nd order) term when the model is linear. Fastest implementations since it doesn't rely on pytorch's autograd. Equal to E[(W phi - W psi)^T (diag(p) - p p^T) (W phi - W psi)] / 2, where W is the weight matrix, phi is the feature, psi is the average feature, and p is the softmax probability. In this case @output is W phi + bias, but the bias will be subtracted away. """ p = F.softmax(output, dim=-1) unreduced_output = self.output_from_features(self._centered_features + self._avg_features[:, None]) reduced_output = self.output_from_features(self._avg_features) centered_output = unreduced_output - reduced_output[:, None] term_1 = (centered_output**2 * p[:, None]).sum(dim=-1).mean(dim=-1) term_2 = ((centered_output * p[:, None]).sum(dim=-1)**2).mean(dim=-1) reg = (term_1 - term_2) / 2 return reg.mean() if reduce else reg def regularization_2nd_order_slow(self, output, reduce=True): """Compute regularization term from output, but uses pytorch's 2nd order differentiation. Slow implementation, only faster than @regularization_2nd_order_from_loss. """ p = F.softmax(output, dim=-1) g, = autograd.grad(output, self._avg_features, grad_outputs=p, create_graph=True) term_1 = [] for i in range(self._centered_features.size(1)): gg, = autograd.grad(g, p, grad_outputs=self._centered_features[:, i], create_graph=True) term_1.append((gg**2 * p).sum(dim=-1)) term_1 = torch.stack(term_1, dim=-1).mean(dim=-1) term_2 = ((g[:, None] * self._centered_features).view(*self._centered_features.shape[:2], -1).sum(dim=-1)**2).mean(dim=-1) reg = (term_1 - term_2) / 2 return reg.mean() if reduce else reg def regularization_2nd_order_from_loss(self, loss, reduce=True): """Variance regularization (2nd order) term. Computed from loss, using Pytorch's 2nd order differentiation. This is much slower but more likely to be correct. Used to check other implementations. """ g, = autograd.grad(loss * self._avg_features.size(0), self._avg_features, create_graph=True) reg = [] for i in range(self._centered_features.size(1)): gg, = autograd.grad(g, self._avg_features, grad_outputs=self._centered_features[:, i], create_graph=True) reg.append((gg * self._centered_features[:, i]).view(gg.size(0), -1).sum(dim=-1)) reg = torch.stack(reg, dim=-1).mean(dim=-1) / 2 return reg.mean() if reduce else reg def loss(self, output, target, reduce=True): """Cross entropy loss, with optional variance regularization. """ if not self.approx: # No approximation, loss on all augmented data points return self.loss_on_augmented_data(output, target, reduce=reduce) loss = self.loss_original(output, target, reduce=reduce) if self.regularization: return loss + self.regularization_2nd_order(output, reduce=reduce) else: return loss def all_losses(self, x, target, reduce=True): """All losses: true loss on augmented data, loss on original image, approximate loss with feature averaging (1st order), approximate loss with variance regularization and no feature averaging, and approximate loss with feature averaging and variance regularization (2nd order). Used to compare the effects of different approximations. Parameters: x: the input of size B (batch size) x T (no. of transforms) x ... target: target of size B (batch size) """ approx, feature_avg = self.approx, self.feature_avg self.approx, self.feature_avg, self.regularization = True, True, True output = self(x) features = self._centered_features + self._avg_features[:, None] n_transforms = features.size(1) unreduced_output = self.output_from_features(combine_transformed_dimension(features)) unreduced_output = split_transformed_dimension(unreduced_output, n_transforms) true_loss = self.loss_on_augmented_data(unreduced_output, target, reduce=reduce) reduced_output = output loss_original = self.loss_original(unreduced_output[:, 0], target, reduce=reduce) loss_1st_order = self.loss_original(reduced_output, target, reduce=reduce) reg_2nd_order = self.regularization_2nd_order(output, reduce=reduce) loss_2nd_order = loss_1st_order + reg_2nd_order loss_2nd_no_1st = loss_original + reg_2nd_order self.approx, self.feature_avg = approx, feature_avg return true_loss, loss_original, loss_1st_order, loss_2nd_no_1st, loss_2nd_order class LinearLogisticRegression(MultinomialLogisticRegression): """Simple linear logistic regression model. """ def __init__(self, n_features, n_classes): """Parameters: n_features: number of input features. n_classes: number of classes. """ super().__init__() self.fc = nn.Linear(n_features, n_classes) def features(self, x): return x.view(x.size(0), x.size(1), -1) if x.dim() > 4 else x.view(x.size(0), -1) def output_from_features(self, feat): return self.fc(feat) class RBFLogisticRegression(MultinomialLogisticRegression): """Logistic regression with RBF kernel approximation (random Fourier features). Equivalent to neural network with 2 layers: first layer is random projection with sine-cosine nonlinearity, and second trainable linear layer. """ def __init__(self, n_features, n_classes, gamma=1.0, n_components=100): """Parameters: n_features: number of input features. n_classes: number of classes. gamma: hyperparameter of the RBF kernel k(x, y) = exp(-gamma*||x-y||^2) n_components: number of components used to approximate kernel, i.e. number of hidden units. """ super().__init__() n_components //= 2 # Need 2 slots each for sine and cosine self.fc = nn.Linear(n_components * 2, n_classes) self.gamma = nn.Parameter(torch.Tensor([gamma]), requires_grad=False) self.random_directions = nn.Parameter( torch.randn(n_features, n_components), requires_grad=False) def features(self, x): x = x.view(x.size(0), x.size(1), -1) if x.dim() > 4 else x.view(x.size(0), -1) projected_x = torch.sqrt(2 * self.gamma) * (x @ self.random_directions) # Don't normalize by sqrt(self.n_components), it makes the weights too small. return torch.cat((torch.sin(projected_x), torch.cos(projected_x)), -1) def output_from_features(self, feat): return self.fc(feat) class LeNet(MultinomialLogisticRegression): """LeNet for MNIST, with 2 convolution-max pooling layers and 2 fully connected layers. """ def __init__(self, n_channels=1, size=28): super().__init__() self.conv1 = nn.Conv2d(n_channels, 6, 5) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * (size // 4 - 3) * (size // 4 - 3), 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) self.layers = [self.layer_1, self.layer_2, self.layer_3, self.layer_4] def layer_1(self, x): feat = F.relu(self.conv1(x)) return F.max_pool2d(feat, 2) def layer_2(self, x): feat = F.relu(self.conv2(x)) return F.max_pool2d(feat, 2).view(feat.size(0), -1) def layer_3(self, x): return F.relu(self.fc1(x)) def layer_4(self, x): return F.relu(self.fc2(x)) def features(self, x): feat = x for layer in self.layers: feat = layer(feat) return feat def output_from_features(self, feat): return self.fc3(feat) class LinearLogisticRegressionAug(MultinomialLogisticRegressionAug, LinearLogisticRegression): """Linear logistic regression model with augmented data. Input has size B x T x ..., where B is batch size and T is the number of transformations. Original i-th data point placed first among the transformed versions, which is input[i, 0]. Output has size B x T. """ def __init__(self, n_features, n_classes, approx=True, feature_avg=True, regularization=False): """Parameters: n_features: number of input features. n_classes: number of classes. approx: whether to use approximation or train on augmented data points. If False, ignore @feature_avg and @regularization. feature_avg: whether to average features or just use the features of the original data point. regularization: whether to add 2nd order term (variance regularization). """ LinearLogisticRegression.__init__(self, n_features, n_classes) MultinomialLogisticRegressionAug.__init__(self, approx, feature_avg, regularization) self.regularization_2nd_order = self.regularization_2nd_order_linear class RBFLogisticRegressionAug(MultinomialLogisticRegressionAug, RBFLogisticRegression): """Logistic regression model with RBF kernel and augmented data. Input has size B x T x ..., where B is batch size and T is the number of transformations. Original i-th data point placed first among the transformed versions, which is input[i, 0]. Output has size B x T. """ def __init__(self, n_features, n_classes, gamma=1.0, n_components=100, approx=True, feature_avg=True, regularization=False): RBFLogisticRegression.__init__(self, n_features, n_classes, gamma, n_components) MultinomialLogisticRegressionAug.__init__(self, approx, feature_avg, regularization) self.regularization_2nd_order = self.regularization_2nd_order_linear class LeNetAug(MultinomialLogisticRegressionAug, LeNet): """LeNet for MNIST, with 2 convolution-max pooling layers and 2 fully connected layers. """ def __init__(self, n_channels=1, size=28, approx=True, feature_avg=True, regularization=False, layer_to_avg=4): LeNet.__init__(self, n_channels, size) MultinomialLogisticRegressionAug.__init__(self, approx, feature_avg, regularization) error_msg = "[!] layer_to_avg should be in the range [0, ..., 4]." assert (layer_to_avg in range(5)), error_msg self.layer_to_avg = layer_to_avg if layer_to_avg == 4: # Not a linear model unless averaging at 4th layer self.regularization_2nd_order = self.regularization_2nd_order_linear def features(self, x): feat = x for layer in self.layers[:self.layer_to_avg]: feat = layer(feat) return feat def output_from_features(self, feat): for layer in self.layers[self.layer_to_avg:]: feat = layer(feat) return self.fc3(feat) def combine_transformed_dimension(input): """Combine the minibatch and the transformation dimensions. Parameter: input: Tensor of shape B x T x ..., where B is the batch size and T is the number of transformations. Return: output: Same tensor, now of shape (B * T) x .... """ return input.view(-1, *input.shape[2:]) def split_transformed_dimension(input, n_transforms): """Split the minibatch and the transformation dimensions. Parameter: input: Tensor of shape (B * T) x ..., where B is the batch size and T is the number of transformations. Return: output: Same tensor, now of shape B x T x .... """ return input.view(-1, n_transforms, *input.shape[1:])
augmentation_code-master
models.py
import copy from collections import namedtuple import numpy as np import torch from torchvision import transforms from PIL import Image, ImageFilter, ImageEnhance # An augmentation object consists of its name, the transform functions of type # torchvision.transforms, and the resulting augmented dataset of type # torch.utils.data.Dataset. Augmentation = namedtuple('Augmentation', ['name', 'transforms', 'dataset']) def copy_with_new_transform(dataset, transform): """A copy of @dataset with its transform set to @transform. Will work for datasets from torchvision, e.g., MNIST, CIFAR10, etc. Probably won't work for a generic dataset. """ new_dataset = copy.copy(dataset) new_dataset.transform = transform return new_dataset def augment_transforms(augmentations, base_transform, add_id_transform=True): """Construct a new transform that stack all the augmentations. Parameters: augmentations: list of transforms (e.g. image rotations) base_transform: transform to be applied after augmentation (e.g. ToTensor) add_id_transform: whether to include the original image (i.e. identity transform) in the new transform. Return: a new transform that takes in a data point and applies all the augmentations, then stack the result. """ if add_id_transform: fn = lambda x: torch.stack([base_transform(x)] + [base_transform(aug(x)) for aug in augmentations]) else: fn = lambda x: torch.stack([base_transform(aug(x)) for aug in augmentations]) return transforms.Lambda(fn) def rotation(base_dataset, base_transform, angles=range(-15, 16, 2)): """Rotations, e.g. between -15 and 15 degrees """ rotations = [transforms.RandomRotation((angle, angle)) for angle in angles] aug_dataset = copy_with_new_transform(base_dataset, augment_transforms(rotations, base_transform)) return Augmentation('rotation', rotations, aug_dataset) def resized_crop(base_dataset, base_transform, size=28, scale=(0.64, 1.0), n_random_samples=31): """Random crop (with resize) """ random_resized_crops = [transforms.RandomResizedCrop(size, scale=scale) for _ in range(n_random_samples)] aug_dataset = copy_with_new_transform(base_dataset, augment_transforms(random_resized_crops, base_transform)) return Augmentation('crop', random_resized_crops, aug_dataset) def blur(base_dataset, base_transform, radii=np.linspace(0.05, 1.0, 20)): """Random Gaussian blur """ def gaussian_blur_fn(radius): return transforms.Lambda(lambda img: img.filter(ImageFilter.GaussianBlur(radius))) blurs = [gaussian_blur_fn(radius) for radius in radii] aug_dataset = copy_with_new_transform(base_dataset, augment_transforms(blurs, base_transform)) return Augmentation('blur', blurs, aug_dataset) def rotation_crop_blur(base_dataset, base_transform, angles=range(-15, 16, 2), size=28, scale=(0.64, 1.0), n_random_samples=31, radii=np.linspace(0.05, 1.0, 20)): """All 3: rotations, random crops, and blurs """ rotations = rotation(base_dataset, base_transform, angles).transforms random_resized_crops = resized_crop(base_dataset, base_transform, size, scale, n_random_samples).transforms blurs = blur(base_dataset, base_transform, radii).transforms aug_dataset = copy_with_new_transform(base_dataset, augment_transforms(rotations + random_resized_crops + blurs, base_transform)) return Augmentation('rotation_crop_blur', blurs, aug_dataset) def hflip(base_dataset, base_transform): """Horizontal flip """ flip = [transforms.Lambda(lambda img: img.transpose(Image.FLIP_LEFT_RIGHT))] aug_dataset = copy_with_new_transform(base_dataset, augment_transforms(flip, base_transform)) return Augmentation('hflip', flip, aug_dataset) def hflip_vflip(base_dataset, base_transform): """Both horizontal and vertical flips """ allflips = [transforms.Lambda(lambda img: img.transpose(Image.FLIP_LEFT_RIGHT)), transforms.Lambda(lambda img: img.transpose(Image.FLIP_TOP_BOTTOM)), transforms.Lambda(lambda img: img.transpose(Image.FLIP_LEFT_RIGHT).transpose(Image.FLIP_TOP_BOTTOM))] aug_dataset = copy_with_new_transform(base_dataset, augment_transforms(allflips, base_transform)) return Augmentation('hflip_vflip', allflips, aug_dataset) def brightness(base_dataset, base_transform, brightness_factors=np.linspace(1 - 0.25, 1 + 0.25, 11)): """Random brightness adjustment """ def brightness_fn(brightness_factor): return transforms.Lambda(lambda img: ImageEnhance.Brightness(img).enhance(brightness_factor)) brightness_transforms = [brightness_fn(factor) for factor in brightness_factors] aug_dataset = copy_with_new_transform(base_dataset, augment_transforms(brightness_transforms, base_transform)) return Augmentation('brightness', brightness_transforms, aug_dataset) def contrast(base_dataset, base_transform, contrast_factors=np.linspace(1 - 0.35, 1 + 0.35, 11)): """Random contrast adjustment """ def contrast_fn(contrast_factor): return transforms.Lambda(lambda img: ImageEnhance.Contrast(img).enhance(contrast_factor)) contrast_transforms = [contrast_fn(factor) for factor in contrast_factors] aug_dataset = copy_with_new_transform(base_dataset, augment_transforms(contrast_transforms, base_transform)) return Augmentation('contrast', contrast_transforms, aug_dataset)
augmentation_code-master
augmentation.py
import copy import numpy as np import pathlib import torch import torch.optim as optim import torch.nn.functional as F from torchvision import datasets, transforms from models import LinearLogisticRegression, RBFLogisticRegression, LinearLogisticRegressionAug, RBFLogisticRegressionAug, LeNet, LeNetAug, combine_transformed_dimension, split_transformed_dimension from augmentation import copy_with_new_transform, augment_transforms, rotation, resized_crop, blur, rotation_crop_blur, hflip, hflip_vflip, brightness, contrast from utils import get_train_valid_datasets, train, train_all_epochs, accuracy, all_losses, train_models_compute_agreement, agreement_kl_accuracy, kernel_target_alignment, kernel_target_alignment_augmented device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") batch_size = 256 if device.type == 'cuda': loader_args = {'num_workers': 16, 'pin_memory': True} else: loader_args = {'num_workers': 4, 'pin_memory': False} def loader_from_dataset(dataset): return torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True, **loader_args) # Construct loader from MNIST dataset, then construct loaders corresponding to # augmented dataset (wrt to different transformations). mnist_normalize = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307, ), (0.3081, )) ]) mnist_train = datasets.MNIST( '../data', train=True, download=True, transform=mnist_normalize) mnist_test = datasets.MNIST( '../data', train=False, download=True, transform=mnist_normalize) mnist_train, mnist_valid = get_train_valid_datasets(mnist_train) train_loader = loader_from_dataset(mnist_train) valid_loader = loader_from_dataset(mnist_valid) test_loader = loader_from_dataset(mnist_test) augmentations = [rotation(mnist_train, mnist_normalize), resized_crop(mnist_train, mnist_normalize), blur(mnist_train, mnist_normalize), rotation_crop_blur(mnist_train, mnist_normalize), hflip(mnist_train, mnist_normalize), hflip_vflip(mnist_train, mnist_normalize), brightness(mnist_train, mnist_normalize), contrast(mnist_train, mnist_normalize)] n_features = 28 * 28 n_classes = 10 gamma = 0.003 # gamma hyperparam for RBF kernel exp(-gamma ||x - y||^2). Best gamma is around 0.001--0.003 n_components = 10000 sgd_n_epochs = 15 n_trials = 10 model_factories = {'linear': lambda: LinearLogisticRegressionAug(n_features, n_classes, approx=False), 'kernel': lambda: RBFLogisticRegressionAug(n_features, n_classes, gamma=gamma, n_components=n_components, approx=False), 'lenet': lambda: LeNetAug(approx=False)} def sgd_opt_from_model(model, learning_rate=0.01, momentum=0.9, weight_decay=0.001): return optim.SGD((p for p in model.parameters() if p.requires_grad), lr=learning_rate, momentum=momentum, weight_decay=weight_decay) def train_basic_models(train_loader, augmented_loader): """Train a few simple models with data augmentation / approximation, as a sanity check. """ models = [ LinearLogisticRegressionAug(n_features, n_classes), # No augmentation, accuracy around 92.5% RBFLogisticRegressionAug(n_features, n_classes, gamma=gamma, n_components=n_components), # Accuracy around 97.5% LeNetAug(), # Accuracy around 98.7% LinearLogisticRegressionAug(n_features, n_classes, approx=False), # Augmented data, exact objective RBFLogisticRegressionAug(n_features, n_classes, gamma=gamma, n_components=n_components, approx=False), LeNetAug(approx=False), LinearLogisticRegressionAug(n_features, n_classes, regularization=False), # Augmented data, 1st order approx RBFLogisticRegressionAug(n_features, n_classes, gamma=gamma, n_components=n_components, regularization=False), LeNetAug(), LinearLogisticRegressionAug(n_features, n_classes, regularization=True), # Augmented data, 2nd order approx RBFLogisticRegressionAug(n_features, n_classes, gamma=gamma, n_components=n_components, regularization=True), LeNetAug(regularization=True) ] loaders = [train_loader, train_loader, train_loader, augmented_loader, augmented_loader, augmented_loader, augmented_loader, augmented_loader, augmented_loader, augmented_loader, augmented_loader, augmented_loader] for model, loader in zip(models, loaders): model.to(device) optimizer = sgd_opt_from_model(model) train_loss, train_acc, valid_acc = train_all_epochs(loader, valid_loader, model, optimizer, sgd_n_epochs) correct, total = accuracy(test_loader, model) print(f'Test set: Accuracy: {correct}/{total} ({correct/total*100:.4f}%)\n') def objective_difference(augmentations): """Measure the difference in approximate and true objectives as we train on the true objective. """ for model_name in ['kernel', 'lenet']: for augmentation in augmentations: for seed in range(n_trials): print(f'Seed: {seed}') torch.manual_seed(seed) model = model_factories[model_name]().to(device) optimizer = sgd_opt_from_model(model) loader = loader_from_dataset(augmentation.dataset) model.train() losses = [] losses.append(all_losses(loader, model).mean(axis=0)) train_loss, train_acc, valid_acc = [], [], [] for epoch in range(sgd_n_epochs): train_loss_epoch, train_acc_epoch = train(loader, model, optimizer) train_loss += train_loss_epoch train_acc += train_acc_epoch print(f'Train Epoch: {epoch}') correct, total = accuracy(valid_loader, model) valid_acc.append(correct / total) print( f'Validation set: Accuracy: {correct}/{total} ({correct/total*100:.4f}%)' ) losses.append(np.array(all_losses(loader, model)).mean(axis=0)) train_loss, train_acc, valid_acc = np.array(train_loss), np.array(train_acc), np.array(valid_acc) np.savez(f'saved/train_valid_acc_{model_name}_{augmentation.name}_{seed}.npz', train_loss=train_loss, train_acc=train_acc, valid_acc=valid_acc) losses = np.array(losses).T np.save(f'saved/all_losses_{model_name}_{augmentation.name}_{seed}.npy', losses) def accuracy_on_true_objective(augmentations): """Measure the accuracy when trained on true augmented objective. """ for model_name in ['kernel', 'lenet']: for augmentation in augmentations: for seed in range(n_trials): print(f'Seed: {seed}') torch.manual_seed(seed) model = model_factories[model_name]().to(device) optimizer = sgd_opt_from_model(model) loader = loader_from_dataset(augmentation.dataset) train_loss, train_acc, valid_acc = train_all_epochs(loader, valid_loader, model, optimizer, sgd_n_epochs) train_loss, train_acc, valid_acc = np.array(train_loss), np.array(train_acc), np.array(valid_acc) np.savez(f'saved/train_valid_acc_{model_name}_{augmentation.name}_{seed}.npz', train_loss=train_loss, train_acc=train_acc, valid_acc=valid_acc) def exact_to_og_model(model): """Convert model training on exact augmented objective to model training on original data. """ model_og = copy.deepcopy(model) model_og.approx = True model_og.feature_avg = False model_og.regularization = False return model_og def exact_to_1st_order_model(model): """Convert model training on exact augmented objective to model training on 1st order approximation. """ model_1st = copy.deepcopy(model) model_1st.approx = True model_1st.feature_avg = True model_1st.regularization = False return model_1st def exact_to_2nd_order_no_1st_model(model): """Convert model training on exact augmented objective to model training on 2nd order approximation without feature averaging (1st order approx). """ model_2nd_no_1st = copy.deepcopy(model) model_2nd_no_1st.approx = True model_2nd_no_1st.feature_avg = False model_2nd_no_1st.regularization = True return model_2nd_no_1st def exact_to_2nd_order_model(model): """Convert model training on exact augmented objective to model training on 2nd order approximation. """ model_2nd = copy.deepcopy(model) model_2nd.approx = True model_2nd.feature_avg = True model_2nd.regularization = True return model_2nd def exact_to_2nd_order_model_layer_avg(model, layer_to_avg=3): """Convert LeNet model training on exact augmented objective to model training on 2nd order approximation, but approximation is done at different layers. """ model_2nd = copy.deepcopy(model) model_2nd.approx = True model_2nd.feature_avg = True model_2nd.regularization = True model_2nd.layer_to_avg = layer_to_avg # Can't use the regularization function specialized to linear model unless # averaging at layer 4. if layer_to_avg != 4: model.regularization_2nd_order = model.regularization_2nd_order_general return model_2nd def agreement_kl_difference(augmentations): """Measure the agreement and KL divergence between the predictions produced by model trained on exact augmentation objectives vs models trained on approximate objectives. """ model_variants = {'kernel': lambda model: [model, exact_to_og_model(model), exact_to_1st_order_model(model), exact_to_2nd_order_no_1st_model(model), exact_to_2nd_order_model(model)], 'lenet': lambda model: [model, exact_to_og_model(model), exact_to_1st_order_model(model), exact_to_2nd_order_no_1st_model(model)] + [exact_to_2nd_order_model_layer_avg(model, layer_to_avg) for layer_to_avg in [4, 3, 2, 1, 0]]} for model_name in ['kernel', 'lenet']: for augmentation in augmentations: for seed in range(n_trials): print(f'Seed: {seed}') torch.manual_seed(n_trials + seed) loader = loader_from_dataset(augmentation.dataset) model = model_factories[model_name]() models = model_variants[model_name](model) for model in models: model.to(device) optimizers = [sgd_opt_from_model(model) for model in models] for model in models: model.train() train_agreement, valid_agreement, valid_acc, valid_kl = [], [], [], [] for epoch in range(sgd_n_epochs): print(f'Train Epoch: {epoch}') train_agreement_epoch = train_models_compute_agreement(loader, models, optimizers) train_agreement.append(np.array(train_agreement_epoch).mean(axis=0)) # Agreement and KL on validation set valid_agreement_epoch, valid_kl_epoch, valid_acc_epoch = agreement_kl_accuracy(valid_loader, models) valid_agreement.append(np.array(valid_agreement_epoch).mean(axis=0)) valid_acc.append(np.array(valid_acc_epoch).mean(axis=0)) valid_kl.append(np.array(valid_kl_epoch).mean(axis=0)) train_agreement = np.array(train_agreement).T valid_agreement = np.array(valid_agreement).T valid_acc = np.array(valid_acc).T valid_kl = np.array(valid_kl).T np.savez(f'saved/train_valid_agreement_kl_{model_name}_{augmentation.name}_{seed}.npz', train_agreement=train_agreement, valid_agreement=valid_agreement, valid_acc=valid_acc, valid_kl=valid_kl) def find_gamma_by_alignment(train_loader, gamma_vals=(0.03, 0.01, 0.003, 0.001, 0.0003, 0.0001)): """Example use of kernel target alignment: to pick the hyperparameter gamma of the RBF kernel exp(-gamma ||x-y||^2) by computing the kernel target alignment of the random features wrt different values of gamma. The value of gamma giving the highest alignment is likely the best gamma. """ for gamma in gamma_vals: model = RBFLogisticRegressionAug(n_features, n_classes, gamma=gamma, n_components=n_components, approx=False).to(device) print(kernel_target_alignment(train_loader, model)) # Best gamma is 0.003 def alignment_comparison(augmentations): """Compute the kernel target alignment of different augmentations. """ alignment = [] model_name = 'kernel' for augmentation in augmentations: print(augmentation.name) loader = loader_from_dataset(augmentation.dataset) model = model_factories[model_name]().to(device) alignment.append(kernel_target_alignment_augmented(loader, model, n_passes_through_data=10)) alignment = np.array(alignment) alignment_no_transform = alignment[:, 1].mean() np.save('saved/kernel_alignment.npy', np.array([alignment_no_transform] + list(alignment[:, 0]))) def alignment_lenet(augmentations): """Compute the kernel target alignment on LeNet. Since the feature map is initialized to be random and then trained, unlike kernels where feature map is fixed, kernel target alignment doesn't predict the accuracy at all. """ for augmentation in augmentations: print(augmentation.name) model_base = LeNet().to(device) optimizer = sgd_opt_from_model(model_base) # Train LeNet for 1 epoch first _ = train_all_epochs(train_loader, valid_loader, model_base, optimizer, 1) model = LeNetAug().to(device) model.load_state_dict(model_base.state_dict()) loader = loader_from_dataset(augmentation.dataset) print(kernel_target_alignment_augmented(loader, model)) def measure_computation_fraction_lenet(train_loader): """Measure percentage of computation time spent in each layer of LeNet. """ model = LeNet().to(device) loader = train_loader it = iter(loader) data, target = next(it) data, target = data.to(device), target.to(device) # We use iPython's %timeit. Uncomment and copy these to iPython. # %timeit feat1 = model.layer_1(data) # feat1 = model.layer_1(data) # %timeit feat2 = model.layer_2(feat1) # feat2 = model.layer_2(feat1) # %timeit feat3 = model.layer_3(feat2) # feat3 = model.layer_3(feat2) # %timeit feat4 = model.layer_4(feat3) # feat4 = model.layer_4(feat3) # %timeit output = model.output_from_features(feat4) # %timeit output = model(data) def memory_profile(): # Print out the resident Tensors import gc for obj in gc.get_objects(): try: if torch.is_tensor(obj) or (hasattr(obj, 'data') and torch.is_tensor(obj.data)): print(type(obj), obj.size(), obj.type()) except: pass def main(): pathlib.Path('saved').mkdir(parents=True, exist_ok=True) # train_basic_models(train_loader, loader_from_dataset(augmentations[0].dataset)) objective_difference(augmentations[:4]) accuracy_on_true_objective(augmentations[4:]) agreement_kl_difference(augmentations[:4]) # find_gamma_by_alignment(train_loader) alignment_comparison(augmentations) # alignment_lenet(augmentations) if __name__ == '__main__': main()
augmentation_code-master
mnist_experiments.py
import copy import numpy as np import torch import torch.nn.functional as F from sklearn.metrics import roc_auc_score from models import combine_transformed_dimension, split_transformed_dimension device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") def get_train_valid_datasets(dataset, valid_size=0.1, random_seed=None, shuffle=True): """ Utility function for loading and returning train and validation datasets. Parameters: ------ - dataset: the dataset, need to have train_data and train_labels attributes. - valid_size: percentage split of the training set used for the validation set. Should be a float in the range [0, 1]. - random_seed: fix seed for reproducibility. - shuffle: whether to shuffle the train/validation indices. Returns: ------- - train_dataset: training set. - valid_dataset: validation set. """ error_msg = "[!] valid_size should be in the range [0, 1]." assert ((valid_size >= 0) and (valid_size <= 1)), error_msg num_train = len(dataset) indices = list(range(num_train)) if shuffle: np.random.seed(random_seed) np.random.shuffle(indices) split = int(np.floor(valid_size * num_train)) train_idx, valid_idx = indices[split:], indices[:split] train_dataset, valid_dataset = copy.copy(dataset), copy.copy(dataset) train_dataset.train_data = train_dataset.train_data[train_idx] train_dataset.train_labels = train_dataset.train_labels[train_idx] valid_dataset.train_data = valid_dataset.train_data[valid_idx] valid_dataset.train_labels = valid_dataset.train_labels[valid_idx] return train_dataset, valid_dataset def train(data_loader, model, optimizer): model.train() train_loss, train_acc = [], [] for data, target in data_loader: data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) pred = model.predict(output) loss = model.loss(output, target) loss.backward() optimizer.step() acc = (pred == target).sum().item() / target.size(0) train_loss.append(loss.item()) train_acc.append(acc) return train_loss, train_acc def train_models_compute_agreement(data_loader, models, optimizers): train_agreement = [] for model in models: model.train() for data, target in data_loader: data, target = data.to(device), target.to(device) pred, loss = [], [] for model, optimizer in zip(models, optimizers): optimizer.zero_grad() output = model(data) pred.append(model.predict(output)) loss_minibatch = model.loss(output, target) loss_minibatch.backward() optimizer.step() loss.append(loss_minibatch.item()) # To avoid out-of-memory error, as these attributes prevent the memory from being freed if hasattr(model, '_avg_features'): del model._avg_features if hasattr(model, '_centered_features'): del model._centered_features loss = np.array(loss) pred = np.array([p.cpu().numpy() for p in pred]) train_agreement.append((pred == pred[0]).mean(axis=1)) return train_agreement def train_all_epochs(train_loader, valid_loader, model, optimizer, n_epochs, verbose=True): model.train() train_loss, train_acc, valid_acc = [], [], [] for epoch in range(n_epochs): if verbose: print(f'Train Epoch: {epoch}') loss, acc = train(train_loader, model, optimizer) train_loss += loss train_acc += acc correct, total = accuracy(valid_loader, model) valid_acc.append(correct / total) if verbose: print( f'Validation set: Accuracy: {correct}/{total} ({correct/total*100:.4f}%)' ) return train_loss, train_acc, valid_acc def accuracy(data_loader, model): """Accuracy over all mini-batches. """ training = model.training model.eval() correct, total = 0, 0 with torch.no_grad(): for data, target in data_loader: data, target = data.to(device), target.to(device) output = model(data) pred = model.predict(output) correct += (pred == target).sum().item() total += target.size(0) model.train(training) return correct, total def roc_auc(data_loader, model): """Accuracy over all mini-batches. """ training = model.training model.eval() y_true, y_score = [], [] with torch.no_grad(): for data, target in data_loader: data, target = data.to(device), target.to(device) output = model(data) y_true.append(target) y_score.append(torch.nn.Softmax(dim=-1)(output)[:, 1]) model.train(training) y_true = torch.cat(y_true).cpu().numpy() y_score = torch.cat(y_score).cpu().numpy() return roc_auc_score(y_true, y_score) def all_losses(data_loader, model): """All losses over all mini-batches. """ training = model.training model.eval() losses = [] with torch.no_grad(): for data, target in data_loader: data, target = data.to(device), target.to(device) losses.append([l.item() for l in model.all_losses(data, target)]) model.train(training) return np.array(losses) def agreement_kl_accuracy(data_loader, models): training = [model.training for model in models] for model in models: model.eval() valid_agreement, valid_acc, valid_kl = [], [], [] with torch.no_grad(): for data, target in data_loader: data, target = data.to(device), target.to(device) pred, out = [], [] for model in models: output = model(data).detach() out.append(output) pred.append(model.predict(output)) pred = torch.stack(pred) out = torch.stack(out) log_prob = F.log_softmax(out, dim=-1) prob = F.softmax(out[0], dim=-1) valid_kl.append([F.kl_div(lp, prob, size_average=False).item() / prob.size(0) for lp in log_prob]) valid_acc.append((pred == target).float().mean(dim=1).cpu().numpy()) valid_agreement.append((pred == pred[0]).float().mean(dim=1).cpu().numpy()) for model, training_ in zip(models, training): model.train(training_) return valid_agreement, valid_kl, valid_acc def kernel_target_alignment(data_loader, model, n_passes_through_data=10): """Compute kernel target alignment approximately by summing over mini-batches. The number of mini-batches is controlled by @n_passes_through_data. Larger number of passes yields more accurate result, but takes longer. """ inclass_kernel, kernel_fro_norm, inclass_num = [], [], [] with torch.no_grad(): for _ in range(n_passes_through_data): for data, target in data_loader: data, target = data.to(device), target.to(device) features = model.features(data) target = target[:, None] same_labels = target == target.t() K = features @ features.t() inclass_kernel.append(K[same_labels].sum().item()) kernel_fro_norm.append((K * K).sum().item()) inclass_num.append(same_labels.long().sum().item()) inclass_kernel = np.array(inclass_kernel) kernel_fro_norm = np.array(kernel_fro_norm) inclass_num = np.array(inclass_num) return inclass_kernel.mean(axis=0) / np.sqrt(kernel_fro_norm.mean(axis=0) * inclass_num.mean()) def kernel_target_alignment_augmented(data_loader, model, n_passes_through_data=10): """Compute kernel target alignment on augmented dataset, of the original features and averaged features. Alignment is approximately by summing over minibatches. The number of minibatches is controlled by @n_passes_through_data. Larger number of passes yields more accurate result. """ inclass_kernel, kernel_fro_norm, inclass_num = [], [], [] with torch.no_grad(): for _ in range(n_passes_through_data): for data, target in data_loader: data, target = data.to(device), target.to(device) n_transforms = data.size(1) data = combine_transformed_dimension(data) features = model.features(data) features = split_transformed_dimension(features, n_transforms) features_avg = features.mean(dim=1) features_og = features[:, 0] target = target[:, None] same_labels = target == target.t() K_avg = features_avg @ features_avg.t() K_og = features_og @ features_og.t() inclass_kernel.append([K_avg[same_labels].sum().item(), K_og[same_labels].sum().item()]) kernel_fro_norm.append([(K_avg * K_avg).sum().item(), (K_og * K_og).sum().item()]) inclass_num.append(same_labels.long().sum().item()) inclass_kernel = np.array(inclass_kernel) kernel_fro_norm = np.array(kernel_fro_norm) inclass_num = np.array(inclass_num) return tuple(inclass_kernel.mean(axis=0) / np.sqrt(kernel_fro_norm.mean(axis=0) * inclass_num.mean())) def kernel_target_alignment_augmented_no_avg(data_loader, model, n_passes_through_data=10): """Compute kernel target alignment approximately by summing over mini-batches. This is for augmented dataset, and no feature averaging will be done. Thus this is kernel target alignment on the augmented dataset. The number of mini-batches is controlled by @n_passes_through_data. Larger number of passes yields more accurate result, but takes longer. """ inclass_kernel, kernel_fro_norm, inclass_num = [], [], [] with torch.no_grad(): for _ in range(n_passes_through_data): for data, target in data_loader: data, target = data.to(device), target.to(device) # Repeat target for augmented data points target = target[:, None].repeat(1, data.shape[1]).view(-1) data = combine_transformed_dimension(data) features = model.features(data) target = target[:, None] same_labels = target == target.t() K = features @ features.t() inclass_kernel.append(K[same_labels].sum().item()) kernel_fro_norm.append((K * K).sum().item()) inclass_num.append(same_labels.long().sum().item()) inclass_kernel = np.array(inclass_kernel) kernel_fro_norm = np.array(kernel_fro_norm) inclass_num = np.array(inclass_num) return inclass_kernel.mean(axis=0) / np.sqrt(kernel_fro_norm.mean(axis=0) * inclass_num.mean())
augmentation_code-master
utils.py
import copy import numpy as np import pathlib import torch import torch.optim as optim import torch.nn.functional as F from torchvision import datasets, transforms from models import LinearLogisticRegression, RBFLogisticRegression, RBFLogisticRegressionRotated, LinearLogisticRegressionAug, RBFLogisticRegressionAug, LeNet, LeNetAug, combine_transformed_dimension, split_transformed_dimension from augmentation import copy_with_new_transform, augment_transforms, rotation, resized_crop, blur, rotation_crop_blur, hflip, hflip_vflip, brightness, contrast from utils import get_train_valid_datasets, train, train_all_epochs, accuracy, all_losses, train_models_compute_agreement, agreement_kl_accuracy, kernel_target_alignment, kernel_target_alignment_augmented, kernel_target_alignment_augmented_no_avg device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") save_dir = 'saved_cifar10' # save_dir = 'saved_cifar10_rerun_50_epochs' # save_dir = 'saved_cifar10_rerun_100_epochs' # save_dir = 'saved_cifar10_basic_models_3_channels' batch_size = 256 if device.type == 'cuda': loader_args = {'num_workers': 32, 'pin_memory': True} # loader_args = {'num_workers': 16, 'pin_memory': True} else: loader_args = {'num_workers': 4, 'pin_memory': False} def loader_from_dataset(dataset): return torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True, **loader_args) # Construct loader from CIFAR10 dataset, then construct loaders corresponding to # augmented dataset (wrt to different transformations). cifar10_normalize = transforms.Compose([ # transforms.Grayscale(num_output_channels=1), transforms.ToTensor(), transforms.Normalize((0.5, ), (0.5, )) ]) cifar10_train = datasets.CIFAR10( '../data', train=True, download=True, transform=cifar10_normalize) cifar10_test = datasets.CIFAR10( '../data', train=False, download=True, transform=cifar10_normalize) # For some reason the train labels are lists instead of torch.LongTensor cifar10_train.train_labels = torch.LongTensor(cifar10_train.train_labels) cifar10_test.test_labels = torch.LongTensor(cifar10_test.test_labels) cifar10_train, cifar10_valid = get_train_valid_datasets(cifar10_train) train_loader = loader_from_dataset(cifar10_train) valid_loader = loader_from_dataset(cifar10_valid) test_loader = loader_from_dataset(cifar10_test) cifar10_normalize_rotate = transforms.Compose([ # transforms.Grayscale(num_output_channels=1), transforms.RandomRotation((-5, 5)), transforms.ToTensor(), transforms.Normalize((0.5, ), (0.5, )) ]) cifar10_test_rotated = datasets.CIFAR10( '../data', train=False, download=True, transform=cifar10_normalize_rotate) test_loader_rotated = loader_from_dataset(cifar10_test_rotated) augmentations = [rotation(cifar10_train, cifar10_normalize, angles=range(-5, 6, 1)), resized_crop(cifar10_train, cifar10_normalize, size=32), blur(cifar10_train, cifar10_normalize), rotation_crop_blur(cifar10_train, cifar10_normalize, size=32), hflip(cifar10_train, cifar10_normalize), hflip_vflip(cifar10_train, cifar10_normalize), brightness(cifar10_train, cifar10_normalize), contrast(cifar10_train, cifar10_normalize)] n_channels = 3 size = 32 n_features = n_channels * size * size n_classes = 10 gamma = 0.003 # gamma hyperparam for RBF kernel exp(-gamma ||x - y||^2). Best gamma is around 0.001--0.003 n_components = 10000 sgd_n_epochs = 15 n_trials = 10 model_factories = {'linear': lambda: LinearLogisticRegressionAug(n_features, n_classes), 'kernel': lambda: RBFLogisticRegressionAug(n_features, n_classes, gamma=gamma, n_components=n_components, approx=False), 'lenet': lambda: LeNetAug(n_channels=n_channels, size=size, approx=False)} def sgd_opt_from_model(model, learning_rate=0.1, momentum=0.9, weight_decay=0.000): # return optim.SGD((p for p in model.parameters() if p.requires_grad), # lr=learning_rate, momentum=momentum, # weight_decay=weight_decay) return optim.Adam((p for p in model.parameters() if p.requires_grad), weight_decay=weight_decay) def train_basic_models(train_loader, augmented_loader): """Train a few simple models with data augmentation / approximation, as a sanity check. """ test_acc = [] test_acc_rotated = [] for seed in range(n_trials): print(f'Seed: {seed}') torch.manual_seed(seed) models = [ LinearLogisticRegressionAug(n_features, n_classes), # No augmentation, accuracy around 92.5% RBFLogisticRegressionAug(n_features, n_classes, gamma=gamma, n_components=n_components), # Accuracy around 97.5% LeNetAug(n_channels=n_channels, size=size), # Accuracy around 98.7% LinearLogisticRegressionAug(n_features, n_classes, approx=False), # Augmented data, exact objective RBFLogisticRegressionAug(n_features, n_classes, gamma=gamma, n_components=n_components, approx=False), LeNetAug(n_channels=n_channels, size=size, approx=False), LinearLogisticRegressionAug(n_features, n_classes, regularization=False), # Augmented data, 1st order approx RBFLogisticRegressionAug(n_features, n_classes, gamma=gamma, n_components=n_components, regularization=False), LeNetAug(n_channels=n_channels, size=size), LinearLogisticRegressionAug(n_features, n_classes, feature_avg=False, regularization=True), # Augmented data, 2nd order no 1st approx RBFLogisticRegressionAug(n_features, n_classes, gamma=gamma, n_components=n_components, feature_avg=False, regularization=True), LeNetAug(n_channels=n_channels, size=size, feature_avg=False, regularization=True), LinearLogisticRegressionAug(n_features, n_classes, regularization=True), # Augmented data, 2nd order approx RBFLogisticRegressionAug(n_features, n_classes, gamma=gamma, n_components=n_components, regularization=True), LeNetAug(n_channels=n_channels, size=size, regularization=True), RBFLogisticRegressionRotated(n_features, n_classes, gamma=gamma, n_components=n_components, size=size, n_channels=n_channels) ] loaders = [train_loader, train_loader, train_loader, augmented_loader, augmented_loader, augmented_loader, augmented_loader, augmented_loader, augmented_loader, augmented_loader, augmented_loader, augmented_loader, augmented_loader, augmented_loader, augmented_loader, train_loader] test_acc_per_seed = [] test_acc_rotated_per_seed = [] import time for model, loader in zip(models, loaders): start = time.time() # model = RBFLogisticRegressionAug(n_features, n_classes, gamma=gamma, n_components=n_components) model = RBFLogisticRegressionAug(n_features, n_classes, gamma=gamma, n_components=n_components, approx=False) # model = RBFLogisticRegressionRotated(n_features, n_classes, gamma=gamma, n_components=n_components, n_channels=n_channels, size=size) # end = time.time() # print(end - start) model.to(device) optimizer = sgd_opt_from_model(model) # start = time.time() train_loss, train_acc, valid_acc = train_all_epochs(loader, valid_loader, model, optimizer, sgd_n_epochs, verbose=True) end = time.time() print(end - start) correct, total = accuracy(test_loader, model) print(f'Test set: Accuracy: {correct}/{total} ({correct/total*100:.4f}%)') correct_rotated, total_rotated = accuracy(test_loader_rotated, model) print(f'Test set rotated: Accuracy: {correct_rotated}/{total_rotated} ({correct_rotated/total_rotated*100:.4f}%)\n') test_acc_per_seed.append(correct / total) test_acc_rotated_per_seed.append(correct_rotated / total_rotated) np.save(f'{save_dir}/basic_models_cifar10_test_accuracy_last_{seed}.np', np.array(test_acc_per_seed)) np.save(f'{save_dir}/basic_models_cifar10_test_accuracy_rotated_last_{seed}.np', np.array(test_acc_rotated_per_seed)) test_acc.append(np.array(test_acc_per_seed)) test_acc_rotated.append(np.array(test_acc_rotated_per_seed)) test_acc = np.array(test_acc) test_acc_rotated = np.array(test_acc_rotated) np.save(f'{save_dir}/basic_models_cifar10_test_accuracy_last', test_acc) np.save(f'{save_dir}/basic_models_cifar10_test_accuracy_rotated_last', test_acc_rotated) def objective_difference(augmentations): """Measure the difference in approximate and true objectives as we train on the true objective. """ # for model_name in ['kernel', 'lenet']: for model_name in ['lenet']: for augmentation in augmentations: for seed in range(n_trials): print(f'Seed: {seed}') torch.manual_seed(seed) model = model_factories[model_name]().to(device) optimizer = sgd_opt_from_model(model) loader = loader_from_dataset(augmentation.dataset) model.train() losses = [] losses.append(all_losses(loader, model).mean(axis=0)) train_loss, train_acc, valid_acc = [], [], [] for epoch in range(sgd_n_epochs): train_loss_epoch, train_acc_epoch = train(loader, model, optimizer) train_loss += train_loss_epoch train_acc += train_acc_epoch print(f'Train Epoch: {epoch}') correct, total = accuracy(valid_loader, model) valid_acc.append(correct / total) print( f'Validation set: Accuracy: {correct}/{total} ({correct/total*100:.4f}%)' ) losses.append(np.array(all_losses(loader, model)).mean(axis=0)) train_loss, train_acc, valid_acc = np.array(train_loss), np.array(train_acc), np.array(valid_acc) np.savez(f'{save_dir}/train_valid_acc_{model_name}_{augmentation.name}_{seed}.npz', train_loss=train_loss, train_acc=train_acc, valid_acc=valid_acc) losses = np.array(losses).T np.save(f'{save_dir}/all_losses_{model_name}_{augmentation.name}_{seed}.npy', losses) def accuracy_on_true_objective(augmentations): """Measure the accuracy when trained on true augmented objective. """ for model_name in ['kernel', 'lenet']: for augmentation in augmentations: for seed in range(n_trials): print(f'Seed: {seed}') torch.manual_seed(seed) model = model_factories[model_name]().to(device) optimizer = sgd_opt_from_model(model) loader = loader_from_dataset(augmentation.dataset) train_loss, train_acc, valid_acc = train_all_epochs(loader, valid_loader, model, optimizer, sgd_n_epochs) train_loss, train_acc, valid_acc = np.array(train_loss), np.array(train_acc), np.array(valid_acc) np.savez(f'{save_dir}/train_valid_acc_{model_name}_{augmentation.name}_{seed}.npz', train_loss=train_loss, train_acc=train_acc, valid_acc=valid_acc) def exact_to_og_model(model): """Convert model training on exact augmented objective to model training on original data. """ model_og = copy.deepcopy(model) model_og.approx = True model_og.feature_avg = False model_og.regularization = False return model_og def exact_to_1st_order_model(model): """Convert model training on exact augmented objective to model training on 1st order approximation. """ model_1st = copy.deepcopy(model) model_1st.approx = True model_1st.feature_avg = True model_1st.regularization = False return model_1st def exact_to_2nd_order_no_1st_model(model): """Convert model training on exact augmented objective to model training on 2nd order approximation without feature averaging (1st order approx). """ model_2nd_no_1st = copy.deepcopy(model) model_2nd_no_1st.approx = True model_2nd_no_1st.feature_avg = False model_2nd_no_1st.regularization = True return model_2nd_no_1st def exact_to_2nd_order_model(model): """Convert model training on exact augmented objective to model training on 2nd order approximation. """ model_2nd = copy.deepcopy(model) model_2nd.approx = True model_2nd.feature_avg = True model_2nd.regularization = True return model_2nd def exact_to_2nd_order_model_layer_avg(model, layer_to_avg=3): """Convert LeNet model training on exact augmented objective to model training on 2nd order approximation, but approximation is done at different layers. """ model_2nd = copy.deepcopy(model) model_2nd.approx = True model_2nd.feature_avg = True model_2nd.regularization = True model_2nd.layer_to_avg = layer_to_avg # Can't use the regularization function specialized to linear model unless # averaging at layer 4. if layer_to_avg != 4: model.regularization_2nd_order = model.regularization_2nd_order_general return model_2nd def agreement_kl_difference(augmentations): """Measure the agreement and KL divergence between the predictions produced by model trained on exact augmentation objectives vs models trained on approximate objectives. """ model_variants = {'kernel': lambda model: [model, exact_to_og_model(model), exact_to_1st_order_model(model), exact_to_2nd_order_no_1st_model(model), exact_to_2nd_order_model(model)], 'lenet': lambda model: [model, exact_to_og_model(model), exact_to_1st_order_model(model), exact_to_2nd_order_no_1st_model(model)] + [exact_to_2nd_order_model_layer_avg(model, layer_to_avg) for layer_to_avg in [4, 3, 2, 1, 0]]} for model_name in ['kernel', 'lenet']: # for model_name in ['lenet']: for augmentation in augmentations: for seed in range(5, 5 + n_trials): print(f'Seed: {seed}') torch.manual_seed(n_trials + seed) loader = loader_from_dataset(augmentation.dataset) model = model_factories[model_name]() models = model_variants[model_name](model) for model in models: model.to(device) optimizers = [sgd_opt_from_model(model) for model in models] for model in models: model.train() train_agreement, valid_agreement, valid_acc, valid_kl = [], [], [], [] for epoch in range(sgd_n_epochs): print(f'Train Epoch: {epoch}') train_agreement_epoch = train_models_compute_agreement(loader, models, optimizers) train_agreement.append(np.array(train_agreement_epoch).mean(axis=0)) # Agreement and KL on validation set valid_agreement_epoch, valid_kl_epoch, valid_acc_epoch = agreement_kl_accuracy(valid_loader, models) valid_agreement.append(np.array(valid_agreement_epoch).mean(axis=0)) valid_acc.append(np.array(valid_acc_epoch).mean(axis=0)) valid_kl.append(np.array(valid_kl_epoch).mean(axis=0)) train_agreement = np.array(train_agreement).T valid_agreement = np.array(valid_agreement).T valid_acc = np.array(valid_acc).T valid_kl = np.array(valid_kl).T np.savez(f'{save_dir}/train_valid_agreement_kl_{model_name}_{augmentation.name}_{seed}.npz', train_agreement=train_agreement, valid_agreement=valid_agreement, valid_acc=valid_acc, valid_kl=valid_kl) def find_gamma_by_alignment(train_loader, gamma_vals=(0.03, 0.01, 0.003, 0.001, 0.0003, 0.0001)): """Example use of kernel target alignment: to pick the hyperparameter gamma of the RBF kernel exp(-gamma ||x-y||^2) by computing the kernel target alignment of the random features wrt different values of gamma. The value of gamma giving the highest alignment is likely the best gamma. """ for gamma in gamma_vals: model = RBFLogisticRegressionAug(n_features, n_classes, gamma=gamma, n_components=n_components, approx=False).to(device) print(kernel_target_alignment(train_loader, model)) # Best gamma is 0.003 def alignment_comparison(augmentations): """Compute the kernel target alignment of different augmentations. """ alignment = [] model_name = 'kernel' for augmentation in augmentations[:1]: print(augmentation.name) loader = loader_from_dataset(augmentation.dataset) model = model_factories[model_name]().to(device) alignment.append(kernel_target_alignment_augmented(loader, model, n_passes_through_data=50)) print(alignment) alignment = np.array(alignment) alignment_no_transform = alignment[:, 1].mean() np.save(f'{save_dir}/kernel_alignment.npy', np.array([alignment_no_transform] + list(alignment[:, 0]))) alignment_no_avg = [] model_name = 'kernel' for augmentation in augmentations: print(augmentation.name) loader = loader_from_dataset(augmentation.dataset) model = model_factories[model_name]().to(device) alignment_no_avg.append(kernel_target_alignment_augmented_no_avg(loader, model, n_passes_through_data=10)) alignment_no_avg = np.array(alignment_no_avg) np.save(f'{save_dir}/kernel_alignment_no_avg.npy', alignment_no_avg) def measure_computation_fraction_lenet(train_loader): """Measure percentage of computation time spent in each layer of LeNet. """ model = LeNet(n_channels=n_channels, size=32).to(device) loader = train_loader it = iter(loader) data, target = next(it) data, target = data.to(device), target.to(device) # We use iPython's %timeit. Uncomment and copy these to iPython. # %timeit feat1 = model.layer_1(data) # feat1 = model.layer_1(data) # %timeit feat2 = model.layer_2(feat1) # feat2 = model.layer_2(feat1) # %timeit feat3 = model.layer_3(feat2) # feat3 = model.layer_3(feat2) # %timeit feat4 = model.layer_4(feat3) # feat4 = model.layer_4(feat3) # %timeit output = model.output_from_features(feat4) # %timeit output = model(data) def main(): pathlib.Path(f'{save_dir}').mkdir(parents=True, exist_ok=True) # train_basic_models(train_loader, loader_from_dataset(augmentations[0].dataset)) # objective_difference(augmentations[:4]) accuracy_on_true_objective(augmentations[:1]) # agreement_kl_difference(augmentations[:1]) # find_gamma_by_alignment(train_loader) # alignment_comparison(augmentations) # alignment_lenet(augmentations) if __name__ == '__main__': main()
augmentation_code-master
cifar10_experiments.py
# Copyright (c) 2021-present, Facebook, Inc. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import re from distutils.core import setup from setuptools import find_packages def find_version() -> str: with open('bisk/__init__.py', 'r') as f: version_file = f.read() version_match = re.search( r"^__version__ = ['\"]([^'\"]*)['\"]", version_file, re.M ) if version_match: return version_match.group(1) raise RuntimeError("Unable to find version string.") setup( name='bipedal-skills', version=find_version(), author='Meta AI Research', author_email='jgehring@meta.com', url='https://facebookresearch.github.io/hsd3', license='MIT License', description='Bipedal Skills RL Benchmark', python_requires='>=3.7', install_requires=[ 'dm-control>=0.0.32', 'gym>=0.26', 'numpy>=1.9.0', ], packages=find_packages(), package_data={'bisk': ['assets/*.xml', 'assets/*.png']}, long_description=open('README.md').read(), long_description_content_type="text/markdown", )
bipedal-skills-main
setup.py
# Copyright (c) 2021-present, Facebook, Inc. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import gym import pytest import bisk @pytest.fixture def env(): env = gym.make('BiskGoalWall-v1', robot='testcube') obs, _ = env.reset(seed=0) yield env env.close() @pytest.fixture def env2d(): env = gym.make('BiskGoalWall-v1', robot='testcube2d') obs, _ = env.reset(seed=0) yield env env.close() def test_eoe_if_touched_wall(env): upf = (env.p.named.model.body_mass['robot/torso'] * 9.81) / ( env.p.named.model.actuator_gear['robot/z'][0] ) terminated = False step = 0 while not terminated: obs, reward, terminated, truncated, info = env.step([1, 0, upf]) step += 1 assert reward == 0 assert step < 250 def test_reward_goal1(env): env.p.named.data.qvel['ball'][0:3] = [10, -3, 2.5] terminated = False ret = 0 step = 0 while not terminated: obs, reward, terminated, truncated, info = env.step([0, 0, 0]) ret += reward step += 1 assert step < 250 assert ret == 1 def test_reward_goal2(env): env.p.named.data.qvel['ball'][0:3] = [10, 3, 4] terminated = False ret = 0 step = 0 while not terminated: obs, reward, terminated, truncated, info = env.step([0, 0, 0]) ret += reward step += 1 assert step < 250 assert ret == 2 def test_reward_nogoal(env): env.p.named.data.qvel['ball'][0:3] = [10, 0, 2] terminated = False ret = 0 step = 0 while not terminated: obs, reward, terminated, truncated, info = env.step([0, 0, 0]) ret += reward step += 1 assert step < 250 assert ret == 0 def test_no_reward_if_beyond_line(env): upf = (env.p.named.model.body_mass['robot/torso'] * 9.81) / ( env.p.named.model.actuator_gear['robot/z'][0] ) # Move beyond line without touching the ball for _ in range(2): obs, reward, terminated, truncated, info = env.step([0, 1, upf]) assert terminated == False for _ in range(18): obs, reward, terminated, truncated, info = env.step([1, 0, upf]) assert terminated == False env.p.named.data.qvel['ball'][0:3] = [10, 0, 2] terminated = False ret = 0 step = 0 while not terminated: obs, reward, terminated, truncated, info = env.step([0, 0, 0]) ret += reward step += 1 assert step < 250 assert ret == 0 env.p.named.data.qvel['ball'][0:3] = [10, -3, 2.5] terminated = False ret = 0 step = 0 while not terminated: obs, reward, terminated, truncated, info = env.step([0, 0, 0]) ret += reward step += 1 assert step < 250 assert ret == 0 def test_reward_goal2d(env2d): env = env2d env.p.named.data.qvel['ball-x'] = 10 env.p.named.data.qvel['ball-z'] = 4 terminated = False ret = 0 step = 0 while not terminated: obs, reward, terminated, truncated, info = env.step([0, 0]) ret += reward step += 1 assert step < 250 assert ret == 1 def test_reward_nogoal2d_1(env2d): env = env2d env.p.named.data.qvel['ball-x'] = 10 env.p.named.data.qvel['ball-z'] = 0 terminated = False ret = 0 step = 0 while not terminated: obs, reward, terminated, truncated, info = env.step([0, 0]) ret += reward step += 1 assert step < 250 assert ret == 0 def test_reward_nogoal2d_2(env2d): env = env2d env.p.named.data.qvel['ball-x'] = 10 env.p.named.data.qvel['ball-z'] = 10 terminated = False ret = 0 step = 0 while not terminated: obs, reward, terminated, truncated, info = env.step([0, 0]) ret += reward step += 1 assert step < 250 assert ret == 0
bipedal-skills-main
tests/test_goalwall.py
# Copyright (c) 2022-present, Facebook, Inc. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import gym import pytest import numpy as np import bisk @pytest.fixture def env(): env = gym.make('BiskGoToSphere-v1', robot='testcube') obs, _ = env.reset(seed=0) yield env env.close() def test_scripted_policy(env): for i in range(4): obs, reward, terminated, truncated, info = env.step([0, 0, 0]) retrn = 0 while not (terminated or truncated): target = obs['targets'][:2] dir = target / np.linalg.norm(target) dx, dy = 0, 0 if np.abs(target[0]) > np.abs(target[1]): dx = np.sign(target[0]) else: dy = np.sign(target[1]) obs, reward, terminated, truncated, info = env.step([dx, dy, 0]) retrn += reward assert terminated assert not truncated assert retrn == 1
bipedal-skills-main
tests/test_gotosphere.py
# Copyright (c) 2021-present, Facebook, Inc. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import gym import pytest import bisk @pytest.fixture def env(): env = gym.make('BiskHurdles-v1', robot='testcube') obs, _ = env.reset(seed=0) yield env env.close() def test_reward_clear(env): upf = (env.p.named.model.body_mass['robot/torso'] * 9.81) / ( env.p.named.model.actuator_gear['robot/z'][0] ) obs, reward, terminated, truncated, info = env.step([0, 0, 1]) # Cross hurdle for _ in range(64): next_obs, reward, terminated, truncated, info = env.step([1, 0, upf]) if next_obs['next_hurdle'][0] > obs['next_hurdle'][0]: assert reward == 1 break else: assert reward == 0 obs = next_obs # Go back for _ in range(64): obs, reward, terminated, truncated, info = env.step([-1, 0, upf]) if obs['next_hurdle'][2] == 0: break obs, reward, terminated, truncated, info = env.step([-1, 0, upf]) for _ in range(4): obs, reward, terminated, truncated, info = env.step([0, 0, upf]) # Cross hurdle again, receive no reward for _ in range(64): next_obs, reward, terminated, truncated, info = env.step([1, 0, upf]) if next_obs['next_hurdle'][0] > obs['next_hurdle'][0]: assert reward == 0 break else: assert reward == 0 obs = next_obs obs = next_obs # Cross next hurdle, receive reward for _ in range(64): next_obs, reward, terminated, truncated, info = env.step([1, 0, upf]) if next_obs['next_hurdle'][0] > obs['next_hurdle'][0]: assert reward == 1 break else: assert reward == 0 obs = next_obs def test_reward_stuck(env): upf = (env.p.named.model.body_mass['robot/torso'] * 9.81) / ( env.p.named.model.actuator_gear['robot/z'][0] ) # Go forward -- should be stuck at first hurdle for _ in range(64): obs, reward, terminated, truncated, info = env.step([1, 0, upf]) assert reward == 0
bipedal-skills-main
tests/test_hurdles.py
# Copyright (c) 2021-present, Facebook, Inc. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import gym import pytest import bisk # Simple test whether we can instantiate the env with a robot and do a single # step. def _create_helper(env_name: str, robot: str): env = gym.make(env_name, robot='Walker') env.reset(seed=0) env.step(env.action_space.sample()) env.close() env = gym.make(env_name.replace('-v', f'{robot}-v')) env.reset(seed=0) env.step(env.action_space.sample()) env.close() def _envs_helper(robot: str): _create_helper('BiskHurdles-v1', robot) _create_helper('BiskLimbo-v1', robot) _create_helper('BiskHurdlesLimbo-v1', robot) _create_helper('BiskGaps-v1', robot) _create_helper('BiskStairs-v1', robot) _create_helper('BiskGoalWall-v1', robot) _create_helper('BiskGoToTargets-v1', robot) def test_halfcheetah_create(): _envs_helper('HalfCheetah') def test_walker_create(): _envs_helper('Walker') def test_humanoid_create(): _envs_helper('Humanoid') def test_humanoidpc_create(): _envs_helper('HumanoidPC') def test_humanoidamasspc_create(): _envs_helper('HumanoidAMASSPC')
bipedal-skills-main
tests/test_robots.py
# Copyright (c) 2021-present, Facebook, Inc. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import gym import pytest import bisk @pytest.fixture def env(): env = gym.make('BiskPoleBalance-v1', robot='testcube') obs, _ = env.reset(seed=0) yield env env.close() def test_rewards(env): terminated = False while not terminated: obs, reward, terminated, truncated, info = env.step([1, 0, 0]) if terminated: assert reward == 0 else: assert reward == 1
bipedal-skills-main
tests/test_polebalance.py
# Copyright (c) 2022-present, Facebook, Inc. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import gym import pytest import numpy as np import bisk @pytest.fixture def env(): env = gym.make('BiskButterflies-v1', robot='testcube') obs, _ = env.reset(seed=0) yield env env.close() def test_fixed_policy(env): # fmt off policy = [] # Drop to floor for i in range(5): policy.append([0, 0, 0]) # Go in a circle for d in (-1,1): for i in range(15): policy.append([d,0,0]) for i in range(15): policy.append([0,d,0]) # And the other way for d in (1,-1): for i in range(15): policy.append([d,0,0]) for i in range(15): policy.append([0,d,0]) retrn = 0 for action in policy: obs, reward, terminated, truncated, info = env.step(action) assert (not terminated and not truncated) retrn += reward assert retrn == 4
bipedal-skills-main
tests/test_butterflies.py
# Copyright (c) 2022-present, Facebook, Inc. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import gym import pytest import numpy as np import bisk @pytest.fixture def env(): env = gym.make('BiskGoToTargets-v1', robot='testcube') obs, _ = env.reset(seed=0) yield env env.close() def test_scripted_policy(env): for i in range(4): obs, reward, terminated, truncated, info = env.step([0, 0, 0]) retrn = 0 while not (terminated or truncated): target = obs['targets'][:2] dir = target / np.linalg.norm(target) dx, dy = 0, 0 if np.abs(target[0]) > np.abs(target[1]): dx = np.sign(target[0]) else: dy = np.sign(target[1]) obs, reward, terminated, truncated, info = env.step([dx, dy, 0]) retrn += reward assert not terminated assert truncated assert retrn == 20
bipedal-skills-main
tests/test_gototargets.py
# Copyright (c) 2021-present, Facebook, Inc. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import gym import pytest import bisk from bisk.features.joints import JointsFeaturizer from bisk.single_robot import BiskSingleRobotEnv def test_names_walker(): env = BiskSingleRobotEnv('walker') ftzr = JointsFeaturizer(env.p, 'walker', 'robot') assert ftzr.observation_space.shape == (60,) assert ftzr().shape == ftzr.observation_space.shape # fmt off assert ftzr.feature_names() == [ 'rootz:p', 'rootx:p', 'rooty:p', 'right_hip:p', 'right_knee:p', 'right_ankle:p', 'left_hip:p', 'left_knee:p', 'left_ankle:p', 'rootz:v', 'rootx:v', 'rooty:v', 'right_hip:v', 'right_knee:v', 'right_ankle:v', 'left_hip:v', 'left_knee:v', 'left_ankle:v', 'torso:crx', 'torso:cry', 'torso:crz', 'torso:ctx', 'torso:cty', 'torso:ctz', 'right_thigh:crx', 'right_thigh:cry', 'right_thigh:crz', 'right_thigh:ctx', 'right_thigh:cty', 'right_thigh:ctz', 'right_leg:crx', 'right_leg:cry', 'right_leg:crz', 'right_leg:ctx', 'right_leg:cty', 'right_leg:ctz', 'right_foot:crx', 'right_foot:cry', 'right_foot:crz', 'right_foot:ctx', 'right_foot:cty', 'right_foot:ctz', 'left_thigh:crx', 'left_thigh:cry', 'left_thigh:crz', 'left_thigh:ctx', 'left_thigh:cty', 'left_thigh:ctz', 'left_leg:crx', 'left_leg:cry', 'left_leg:crz', 'left_leg:ctx', 'left_leg:cty', 'left_leg:ctz', 'left_foot:crx', 'left_foot:cry', 'left_foot:crz', 'left_foot:ctx', 'left_foot:cty', 'left_foot:ctz', ] # fmt on env.close() def test_exclude_walker(): env = BiskSingleRobotEnv('walker') ftzr = JointsFeaturizer( env.p, 'walker', 'robot', exclude='.*/(left|right)_foot' ) assert ftzr.observation_space.shape == (48,) assert ftzr().shape == ftzr.observation_space.shape # fmt off assert ftzr.feature_names() == [ 'rootz:p', 'rootx:p', 'rooty:p', 'right_hip:p', 'right_knee:p', 'right_ankle:p', 'left_hip:p', 'left_knee:p', 'left_ankle:p', 'rootz:v', 'rootx:v', 'rooty:v', 'right_hip:v', 'right_knee:v', 'right_ankle:v', 'left_hip:v', 'left_knee:v', 'left_ankle:v', 'torso:crx', 'torso:cry', 'torso:crz', 'torso:ctx', 'torso:cty', 'torso:ctz', 'right_thigh:crx', 'right_thigh:cry', 'right_thigh:crz', 'right_thigh:ctx', 'right_thigh:cty', 'right_thigh:ctz', 'right_leg:crx', 'right_leg:cry', 'right_leg:crz', 'right_leg:ctx', 'right_leg:cty', 'right_leg:ctz', 'left_thigh:crx', 'left_thigh:cry', 'left_thigh:crz', 'left_thigh:ctx', 'left_thigh:cty', 'left_thigh:ctz', 'left_leg:crx', 'left_leg:cry', 'left_leg:crz', 'left_leg:ctx', 'left_leg:cty', 'left_leg:ctz', ] # fmt on env.close()
bipedal-skills-main
tests/test_features_joints.py
# Copyright (c) 2021-present, Facebook, Inc. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import gym import pytest import bisk @pytest.fixture def env(): env = gym.make('BiskHurdles-v1', robot='testcube') obs, _ = env.reset(seed=0) yield env env.close() def test_render(env): img = env.render(width=480, height=480) assert img.shape == (480, 480, 3)
bipedal-skills-main
tests/test_render.py
# Copyright (c) 2021-present, Facebook, Inc. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import gym import pytest import bisk @pytest.fixture def env(): env = gym.make('BiskLimbo-v1', robot='testcube') obs, _ = env.reset(seed=0) yield env env.close() def test_reward_clear(env): upf = (env.p.named.model.body_mass['robot/torso'] * 9.81) / ( env.p.named.model.actuator_gear['robot/z'][0] ) obs, _ = env.reset(seed=0) # Cross bar for _ in range(64): next_obs, reward, terminated, truncated, info = env.step([1, 0, 0]) if next_obs['next_bar'][0] > obs['next_bar'][0]: assert reward == 1 break else: assert reward == 0 obs = next_obs # Go back for _ in range(64): obs, reward, terminated, truncated, info = env.step([-1, 0, upf]) if obs['next_bar'][2] == 0: break obs, reward, terminated, truncated, info = env.step([-1, 0, upf]) for _ in range(4): obs, reward, terminated, truncated, info = env.step([0, 0, upf]) # Cross bar again, receive no reward for _ in range(64): next_obs, reward, terminated, truncated, info = env.step([1, 0, upf]) if next_obs['next_bar'][0] > obs['next_bar'][0]: assert reward == 0 break else: assert reward == 0 obs = next_obs obs = next_obs # Cross next bar, receive reward for _ in range(64): next_obs, reward, terminated, truncated, info = env.step([1, 0, upf]) if next_obs['next_bar'][0] > obs['next_bar'][0]: assert reward == 1 break else: assert reward == 0 obs = next_obs def test_reward_stuck(env): upf = (env.p.named.model.body_mass['robot/torso'] * 9.81) / ( env.p.named.model.actuator_gear['robot/z'][0] ) # Go up so that we'll be stuck at the first bar for _ in range(64): obs, reward, terminated, truncated, info = env.step([0, 0, 1]) # Low threshold, remaining momentum will bring us to the right height if obs['observation'][2] - obs['next_bar'][1] >= -0.6: break # Go forward -- should be stuck at first bar for _ in range(64): obs, reward, terminated, truncated, info = env.step([1, 0, upf]) assert reward == 0
bipedal-skills-main
tests/test_limbo.py
# Copyright (c) 2021-present, Facebook, Inc. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import gym import pytest import bisk @pytest.fixture def env(): env = gym.make('BiskStairs-v1', robot='testcube') obs, _ = env.reset(seed=0) yield env env.close() def test_reward_clear(env): upf = (env.p.named.model.body_mass['robot/torso'] * 9.81) / ( env.p.named.model.actuator_gear['robot/z'][0] ) obs, reward, terminated, truncated, info = env.step([0, 0, 1]) # Cross first step for _ in range(64): next_obs, reward, terminated, truncated, info = env.step([1, 0, upf]) if next_obs['next_steps'][0] > obs['next_steps'][0]: assert reward == 1 break else: assert reward == 0 obs = next_obs # Go back for _ in range(64): obs, reward, terminated, truncated, info = env.step([-1, 0, upf]) if obs['next_steps'][2] == 0: break obs, reward, terminated, truncated, info = env.step([-1, 0, upf]) for _ in range(4): obs, reward, terminated, truncated, info = env.step([0, 0, upf]) # Cross step again, receive no reward for _ in range(64): next_obs, reward, terminated, truncated, info = env.step([1, 0, 1]) if next_obs['next_steps'][0] > obs['next_steps'][0]: assert reward == 0 break else: assert reward == 0 obs = next_obs obs = next_obs # Cross next step, receive reward for _ in range(64): next_obs, reward, terminated, truncated, info = env.step([1, 0, 1]) if next_obs['next_steps'][0] > obs['next_steps'][0]: assert reward == 1 break else: assert reward == 0 obs = next_obs def test_reward_full(env): upf = (env.p.named.model.body_mass['robot/torso'] * 9.81) / ( env.p.named.model.actuator_gear['robot/z'][0] ) terminated, truncated = False, False ret = 0 while not (terminated or truncated): obs, reward, terminated, truncated, info = env.step([1, 0, 1]) ret += reward assert ret == 20 def test_reward_stuck(env): upf = (env.p.named.model.body_mass['robot/torso'] * 9.81) / ( env.p.named.model.actuator_gear['robot/z'][0] ) # Go forward -- should be stuck at first step for _ in range(64): obs, reward, terminated, truncated, info = env.step([1, 0, upf]) assert reward == 0
bipedal-skills-main
tests/test_stairs.py
# Copyright (c) 2022-present, Facebook, Inc. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import gym import numpy as np import pytest import bisk def test_walker_fallover(): env = gym.make('BiskGoalWall-v1', robot='walker') env.reset(seed=0) while True: obs, reward, terminated, truncated, info = env.step( np.zeros(env.action_space.shape) ) if terminated or truncated: break assert terminated assert not truncated env.close() def test_walker_continuous(): env = gym.make('BiskGoalWallC-v1', robot='walker') env.reset(seed=0) while True: obs, reward, terminated, truncated, info = env.step( np.zeros(env.action_space.shape) ) if terminated or truncated: break assert truncated assert not terminated env.close() def test_humanoidcmupc_fallover(): env = gym.make('BiskGoalWall-v1', robot='humanoidcmupc') env.reset(seed=0) while True: obs, reward, terminated, truncated, info = env.step( np.zeros(env.action_space.shape) ) if terminated or truncated: break assert terminated assert not truncated env.close() def test_humanoidcmupc_continuous(): env = gym.make('BiskGoalWallC-v1', robot='humanoidcmupc') env.reset(seed=0) while True: obs, reward, terminated, truncated, info = env.step( np.zeros(env.action_space.shape) ) if terminated or truncated: break assert truncated assert not terminated env.close()
bipedal-skills-main
tests/test_fallover.py
# Copyright (c) 2021-present, Facebook, Inc. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import gym import pytest import bisk @pytest.fixture def env(): env = gym.make('BiskHurdlesLimbo-v1', robot='testcube') obs, _ = env.reset(seed=0) yield env env.close() def test_reward_clear(env): upf = (env.p.named.model.body_mass['robot/torso'] * 9.81) / ( env.p.named.model.actuator_gear['robot/z'][0] ) obs, reward, terminated, truncated, info = env.step([0, 0, 1]) assert obs['next_obstacle'][0] == 0 # Cross hurdle for _ in range(64): next_obs, reward, terminated, truncated, info = env.step([1, 0, upf]) if next_obs['next_obstacle'][1] > obs['next_obstacle'][1]: assert reward == 1 break else: assert reward == 0 obs = next_obs obs = next_obs assert obs['next_obstacle'][0] == 1 # Go back for _ in range(64): obs, reward, terminated, truncated, info = env.step([-1, 0, upf]) if obs['next_obstacle'][3] == 0: break obs, reward, terminated, truncated, info = env.step([-1, 0, upf]) for _ in range(4): obs, reward, terminated, truncated, info = env.step([0, 0, upf]) assert obs['next_obstacle'][0] == 0 # Cross hurdle again, receive no reward for _ in range(64): next_obs, reward, terminated, truncated, info = env.step([1, 0, upf]) if next_obs['next_obstacle'][1] > obs['next_obstacle'][1]: assert reward == 0 break else: assert reward == 0 obs = next_obs obs = next_obs assert obs['next_obstacle'][0] == 1 # Go up so that we'll be stuck at the first bar for _ in range(64): obs, reward, terminated, truncated, info = env.step([0, 0, 1]) # Low threshold, remaining momentum will bring us to the right height if obs['observation'][2] - obs['next_obstacle'][1] >= -0.6: break # Cross next bar, receive reward for _ in range(64): next_obs, reward, terminated, truncated, info = env.step([1, 0, upf]) if next_obs['next_obstacle'][1] > obs['next_obstacle'][1]: assert reward == 1 break else: assert reward == 0 obs = next_obs obs = next_obs assert obs['next_obstacle'][0] == 0 # Go back for _ in range(64): obs, reward, terminated, truncated, info = env.step([-1, 0, upf]) if obs['next_obstacle'][3] == 0: break obs, reward, terminated, truncated, info = env.step([-1, 0, upf]) for _ in range(4): obs, reward, terminated, truncated, info = env.step([0, 0, upf]) assert obs['next_obstacle'][0] == 1 # Cross bar again, receive no reward for _ in range(64): next_obs, reward, terminated, truncated, info = env.step([1, 0, upf]) if next_obs['next_obstacle'][1] > obs['next_obstacle'][1]: assert reward == 0 break else: assert reward == 0 obs = next_obs obs = next_obs assert obs['next_obstacle'][0] == 0 def test_reward_stuck1(env): upf = (env.p.named.model.body_mass['robot/torso'] * 9.81) / ( env.p.named.model.actuator_gear['robot/z'][0] ) # Go forward -- should be stuck at first hurdle for _ in range(64): obs, reward, terminated, truncated, info = env.step([1, 0, upf]) assert reward == 0 def test_reward_stuck2(env): upf = (env.p.named.model.body_mass['robot/torso'] * 9.81) / ( env.p.named.model.actuator_gear['robot/z'][0] ) obs, reward, terminated, truncated, info = env.step([0, 0, 1]) # Cross hurdle for _ in range(64): next_obs, reward, terminated, truncated, info = env.step([1, 0, upf]) if next_obs['next_obstacle'][1] > obs['next_obstacle'][1]: assert reward == 1 break else: assert reward == 0 obs = next_obs # Go up so that we'll be stuck at the first bar for _ in range(64): obs, reward, terminated, truncated, info = env.step([0, 0, 1]) # Low threshold, remaining momentum will bring us to the right height if obs['observation'][2] - obs['next_obstacle'][2] >= -0.6: break # Go forward -- should be stuck at first bar for _ in range(64): obs, reward, terminated, truncated, info = env.step([1, 0, upf]) assert reward == 0
bipedal-skills-main
tests/test_hurdleslimbo.py
# Copyright (c) 2021-present, Facebook, Inc. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import gym import pytest import bisk @pytest.fixture def env(): env = gym.make('BiskGaps-v1', robot='testcube') obs, _ = env.reset(seed=0) yield env env.close() def test_reward_cross(env): upf = (env.p.named.model.body_mass['robot/torso'] * 9.81) / ( env.p.named.model.actuator_gear['robot/z'][0] ) obs, reward, terminated, truncated, info = env.step([0, 0, 1]) # Go to platform for _ in range(64): next_obs, reward, terminated, truncated, info = env.step([1, 0, upf]) if next_obs['next_gap_platform'][1] > obs['next_gap_platform'][1]: assert reward == 1 break else: assert reward == 0 obs = next_obs # Go back for _ in range(64): obs, reward, terminated, truncated, info = env.step([-1, 0, upf]) if obs['next_gap_platform'][2] == 0: break obs, reward, terminated, truncated, info = env.step([-1, 0, upf]) for _ in range(4): obs, reward, terminated, truncated, info = env.step([0, 0, upf]) # Go to platform again, receive no reward for _ in range(64): next_obs, reward, terminated, truncated, info = env.step([1, 0, upf]) if next_obs['next_gap_platform'][1] > obs['next_gap_platform'][1]: assert reward == 0 break else: assert reward == 0 obs = next_obs obs = next_obs # Go to next platform, receive reward for _ in range(64): next_obs, reward, terminated, truncated, info = env.step([1, 0, upf]) if next_obs['next_gap_platform'][1] > obs['next_gap_platform'][1]: assert reward == 1 break else: assert reward == 0 obs = next_obs def test_touch_gap(env): upf = (env.p.named.model.body_mass['robot/torso'] * 9.81) / ( env.p.named.model.actuator_gear['robot/z'][0] ) obs, reward, terminated, truncated, info = env.step([0, 0, 1]) # Go to gap for _ in range(64): next_obs, reward, terminated, truncated, info = env.step([1, 0, upf]) if next_obs['next_gap_platform'][0] > obs['next_gap_platform'][0]: break obs = next_obs # Go down into gap for _ in range(8): obs, reward, terminated, truncated, info = env.step([-1, 0, -0.6]) if terminated: break assert reward == -1 assert terminated == True def test_touch_platform(env): upf = (env.p.named.model.body_mass['robot/torso'] * 9.81) / ( env.p.named.model.actuator_gear['robot/z'][0] ) obs, reward, terminated, truncated, info = env.step([0, 0, 1]) # Go to platform for _ in range(64): next_obs, reward, terminated, truncated, info = env.step([1, 0, upf]) if next_obs['next_gap_platform'][1] > obs['next_gap_platform'][1]: break obs = next_obs # Go down on platform for _ in range(8): obs, reward, terminated, truncated, info = env.step([0, 0, -1]) assert reward == 0 assert terminated == False
bipedal-skills-main
tests/test_gaps.py
# Copyright (c) 2021-present, Facebook, Inc. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # __version__ = "2.0" from gym.envs.registration import register from bisk.base import BiskEnv from bisk.single_robot import BiskSingleRobotEnv def register_all(robot, shaped, fallover): fallover_text = 'C' if fallover else '' shaped_text = 'Shaped' if shaped else '' register( id=f'BiskGoToTargets{shaped_text}{fallover_text}{robot}-v1', entry_point=f'bisk.tasks.gototarget:BiskGoToTargetEnv', kwargs={ 'robot': robot, 'features': 'joints', 'allow_fallover': fallover_text, 'shaped': shaped, 'tolerance': 0.5, 'goal_area': 8.0, 'num_targets': 2, 'goal_switch_steps': 1, }, max_episode_steps=1000, ) register( id=f'BiskGoToSphere{shaped_text}{fallover_text}{robot}-v1', entry_point=f'bisk.tasks.gototarget:BiskGoToTargetEnv', kwargs={ 'robot': robot, 'features': 'joints', 'allow_fallover': fallover_text, 'shaped': shaped, 'tolerance': 0.5, 'goal_area': 4.0, 'num_targets': 1, 'single_target': True, 'on_circle': True, }, max_episode_steps=1000, ) register( id=f'BiskHurdles{shaped_text}{fallover_text}{robot}-v1', entry_point=f'bisk.tasks.hurdles:BiskHurdlesEnv', kwargs={ 'robot': robot, 'features': 'joints', 'allow_fallover': fallover_text, 'shaped': shaped, 'max_height': 0.3, 'fixed_height': False, }, max_episode_steps=1000, ) register( id=f'BiskLimbo{shaped_text}{fallover_text}{robot}-v1', entry_point=f'bisk.tasks.limbo:BiskLimboEnv', kwargs={ 'robot': robot, 'features': 'joints', 'allow_fallover': fallover_text, 'shaped': shaped, 'notouch': False, 'min_height': 'auto', 'fixed_height': False, }, max_episode_steps=1000, ) register( id=f'BiskHurdlesLimbo{shaped_text}{fallover_text}{robot}-v1', entry_point=f'bisk.tasks.hurdleslimbo:BiskHurdlesLimboEnv', kwargs={ 'robot': robot, 'features': 'joints', 'allow_fallover': fallover_text, 'shaped': shaped, 'notouch': False, 'min_bar_height': 'auto', 'max_hurdle_height': 0.3, 'fixed_height': False, }, max_episode_steps=1000, ) register( id=f'BiskGaps{shaped_text}{fallover_text}{robot}-v1', entry_point=f'bisk.tasks.gaps:BiskGapsEnv', kwargs={ 'robot': robot, 'features': 'joints', 'allow_fallover': fallover_text, 'shaped': shaped, 'max_size': 2.5, 'min_gap': 0.2, 'max_gap': 0.7, 'fixed_size': False, }, max_episode_steps=1000, ) register( id=f'BiskStairs{shaped_text}{fallover_text}{robot}-v1', entry_point=f'bisk.tasks.stairs:BiskStairsEnv', kwargs={ 'robot': robot, 'features': 'joints', 'allow_fallover': fallover_text, 'shaped': shaped, 'step_height': 0.2, 'step_length_min': 0.5, 'step_length_max': 1.0, 'num_flights': 2, }, max_episode_steps=1000, ) register( id=f'BiskStairsCont{shaped_text}{fallover_text}{robot}-v1', entry_point=f'bisk.tasks.stairs:BiskStairsEnv', kwargs={ 'robot': robot, 'features': 'joints', 'allow_fallover': fallover_text, 'shaped': shaped, 'step_height': 0.2, 'step_length_min': 0.5, 'step_length_max': 1.0, 'num_flights': 10, }, max_episode_steps=1000, ) register( id=f'BiskGoalWall{shaped_text}{fallover_text}{robot}-v1', entry_point=f'bisk.tasks.goalwall:BiskGoalWallEnv', kwargs={ 'robot': robot, 'features': 'joints', 'allow_fallover': fallover_text, 'shaped': shaped, 'init_distance': 2.5, 'touch_ball_reward': 0, }, max_episode_steps=250, ) register( id=f'BiskVelocityControl{shaped_text}{fallover_text}{robot}-v1', entry_point=f'bisk.tasks.velocitycontrol:BiskVelocityControlEnv', kwargs={ 'robot': robot, 'features': 'joints', 'allow_fallover': fallover_text, 'shaped': shaped, }, max_episode_steps=1000, ) if shaped: register( id=f'BiskRunDir{shaped_text}{fallover_text}{robot}-v1', entry_point=f'bisk.tasks.rundir:BiskRunDirEnv', kwargs={ 'robot': robot, 'features': 'joints', 'allow_fallover': fallover_text, 'heading_deg': 0, }, max_episode_steps=1000, ) if not shaped: register( id=f'BiskPoleBalance{shaped_text}{fallover_text}{robot}-v1', entry_point=f'bisk.tasks.polebalance:BiskPoleBalanceEnv', kwargs={ 'robot': robot, 'features': 'joints', 'allow_fallover': fallover_text, 'pole_mass': 0.5, 'pole_length': 0.5, 'n_poles': 1, }, max_episode_steps=1000, ) register( id=f'BiskButterflies{shaped_text}{fallover_text}{robot}-v1', entry_point=f'bisk.tasks.butterflies:BiskButterfliesEnv', kwargs={ 'robot': robot, 'features': 'joints', 'allow_fallover': fallover_text, 'shaped': shaped, 'goal_area': 4, 'n_butterflies': 10, 'zoff': 1.6, }, max_episode_steps=1000, ) for robot in ( '', 'HalfCheetah', 'Walker', 'Humanoid', 'HumanoidPC', 'HumanoidCMUPC', 'HumanoidAMASSPC', ): for shaped in (False, True): for fallover in (False, True): register_all(robot, shaped, fallover)
bipedal-skills-main
bisk/__init__.py
# gym.utils.seeding from gym 0.18.3 # Released under an MIT license # (https://github.com/openai/gym/blob/0.18.3/LICENSE.md) # # This is provided for consistency as seeding changed with gym 0.26. import hashlib import numpy as np import os import random as _random import struct import sys from gym import error def np_random(seed=None): if seed is not None and not (isinstance(seed, int) and 0 <= seed): raise error.Error('Seed must be a non-negative integer or omitted, not {}'.format(seed)) seed = create_seed(seed) rng = np.random.RandomState() rng.seed(_int_list_from_bigint(hash_seed(seed))) return rng, seed def hash_seed(seed=None, max_bytes=8): """Any given evaluation is likely to have many PRNG's active at once. (Most commonly, because the environment is running in multiple processes.) There's literature indicating that having linear correlations between seeds of multiple PRNG's can correlate the outputs: http://blogs.unity3d.com/2015/01/07/a-primer-on-repeatable-random-numbers/ http://stackoverflow.com/questions/1554958/how-different-do-random-seeds-need-to-be http://dl.acm.org/citation.cfm?id=1276928 Thus, for sanity we hash the seeds before using them. (This scheme is likely not crypto-strength, but it should be good enough to get rid of simple correlations.) Args: seed (Optional[int]): None seeds from an operating system specific randomness source. max_bytes: Maximum number of bytes to use in the hashed seed. """ if seed is None: seed = create_seed(max_bytes=max_bytes) hash = hashlib.sha512(str(seed).encode('utf8')).digest() return _bigint_from_bytes(hash[:max_bytes]) def create_seed(a=None, max_bytes=8): """Create a strong random seed. Otherwise, Python 2 would seed using the system time, which might be non-robust especially in the presence of concurrency. Args: a (Optional[int, str]): None seeds from an operating system specific randomness source. max_bytes: Maximum number of bytes to use in the seed. """ # Adapted from https://svn.python.org/projects/python/tags/r32/Lib/random.py if a is None: a = _bigint_from_bytes(os.urandom(max_bytes)) elif isinstance(a, str): a = a.encode('utf8') a += hashlib.sha512(a).digest() a = _bigint_from_bytes(a[:max_bytes]) elif isinstance(a, int): a = a % 2**(8 * max_bytes) else: raise error.Error('Invalid type for seed: {} ({})'.format(type(a), a)) return a # TODO: don't hardcode sizeof_int here def _bigint_from_bytes(bytes): sizeof_int = 4 padding = sizeof_int - len(bytes) % sizeof_int bytes += b'\0' * padding int_count = int(len(bytes) / sizeof_int) unpacked = struct.unpack("{}I".format(int_count), bytes) accum = 0 for i, val in enumerate(unpacked): accum += 2 ** (sizeof_int * 8 * i) * val return accum def _int_list_from_bigint(bigint): # Special case 0 if bigint < 0: raise error.Error('Seed must be non-negative, not {}'.format(bigint)) elif bigint == 0: return [0] ints = [] while bigint > 0: bigint, mod = divmod(bigint, 2 ** 32) ints.append(mod) return ints
bipedal-skills-main
bisk/legacy_seeding.py
# Copyright (c) 2021-present, Facebook, Inc. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import logging from typing import Iterable, List import gym import numpy as np from bisk.base import BiskEnv from bisk.features import make_featurizer from bisk.helpers import (add_ball, add_box, add_capsule, add_fwd_corridor, add_robot, root_with_floor) log = logging.getLogger(__name__) class BiskSingleRobotEnv(BiskEnv): def __init__( self, robot: str, features: str = 'joints', allow_fallover: bool = False ): super().__init__() self.allow_fallover = allow_fallover self.robot = robot.lower() self.world_scale = 1.0 if self.robot.startswith('humanoidcmu') or self.robot.startswith( 'humanoidamass' ): # The CMU/AMASS robots are about 1.3 the size of the default # Humanoid self.world_scale = 1.3 root = root_with_floor() _, robot_pos = add_robot( root, robot, 'robot', init=getattr(self, 'init_robot', None) ) frameskip = 5 fs = root.find('numeric', 'robot/frameskip') if fs is not None: frameskip = int(fs.data[0]) self.init_sim(root, frameskip) if self.robot.startswith('halfcheetah'): # qpos is x_pos, z_pos, y_rot self.init_qpos[0] = robot_pos[0] self.init_qpos[1] = robot_pos[2] elif self.robot.startswith('walker'): # qpos is z_pos, x_pos, y_rot self.init_qpos[0] = robot_pos[2] self.init_qpos[1] = robot_pos[0] elif self.robot.startswith('humanoidcmu') or self.robot.startswith( 'humanoidamass' ): # initialize to upright position self.init_qpos[0:3] = [0.0, 0.0, 1.2] self.init_qpos[3:7] = [0.859, 1.0, 1.0, 0.859] else: # TODO Verify that this actually corresponds to the torso position? self.init_qpos[0:3] = robot_pos self.featurizer = self.make_featurizer(features) self.observation_space = self.featurizer.observation_space @property def is_2d(self): # TODO sth more proper? But it needs to be callable from init_sim, i.e. # before the simulator instance is constructed. return ( self.robot.startswith('halfcheetah') or self.robot.startswith('walker') or self.robot == 'testcube2d' ) @property def robot_pos(self) -> np.ndarray: if self.robot.startswith('humanoidcmu') or self.robot.startswith( 'humanoidamass' ): return self.p.named.data.xpos['robot/lowerneck'] else: return self.p.named.data.xpos['robot/torso'] @property def robot_speed(self) -> np.ndarray: return self.p.named.data.subtree_linvel['robot/torso'] def make_featurizer(self, features: str): return make_featurizer(features, self.p, self.robot, 'robot') def reset_state(self): noise = 0.1 qpos = self.init_qpos + self.np_random.uniform( low=-noise, high=noise, size=self.p.model.nq ) qvel = self.init_qvel + noise * self.np_random.standard_normal(self.p.model.nv) self.p.data.qpos[:] = qpos self.p.data.qvel[:] = qvel self.featurizer.reset() def get_observation(self): return self.featurizer() def fell_over(self) -> bool: if self.robot.startswith('humanoid'): zpos = self.robot_pos[2] return bool(zpos < 0.9) elif self.robot.startswith('halfcheetah'): # Orientation pointing upwards and body almost on the ground up = self.p.named.data.xmat['robot/torso', 'zz'] zpos = self.p.named.data.qpos['robot/rootz'] if up < -0.8 and zpos < 0.12: return True elif self.robot.startswith('walker'): zpos = self.p.named.data.qpos['robot/rootz'] r = self.p.named.data.qpos['robot/rooty'] if zpos < 0.9 or r < -1.4 or r > 1.4: return True return False def step(self, action): obs, reward, terminated, truncated, info = super().step(action) if not self.allow_fallover and self.fell_over(): terminated = True info['fell_over'] = True return obs, reward, terminated, truncated, info def add_box( self, root: 'dm_control.mjcf.RootElement', name: str, size: Iterable[float], rgba: Iterable[float] = None, with_body: bool = False, **kwargs, ) -> 'dm_control.mjcf.Element': size = [s * self.world_scale for s in size] if 'pos' in kwargs: kwargs['pos'] = [p * self.world_scale for p in kwargs['pos']] return add_box(root, name, size, rgba, with_body, **kwargs) def add_capsule( self, root: 'dm_control.mjcf.RootElement', name: str, rgba: Iterable[float] = None, with_body: bool = False, **kwargs, ) -> 'dm_control.mjcf.Element': if 'fromto' in kwargs: kwargs['fromto'] = [p * self.world_scale for p in kwargs['fromto']] if 'size' in kwargs: kwargs['size'] = [p * self.world_scale for p in kwargs['size']] if 'pos' in kwargs: kwargs['pos'] = [p * self.world_scale for p in kwargs['pos']] return add_capsule(root, name, rgba, with_body, **kwargs) def add_fwd_corridor(self, root: 'dm_control.mjcf.RootElement', W=4): return add_fwd_corridor(root, W * self.world_scale) class BiskSingleRobotWithBallEnv(BiskSingleRobotEnv): def __init__( self, robot: str, features: str = 'joints', allow_fallover: bool = False ): super().__init__(robot, features, allow_fallover) self.ball_qpos_idx: List[int] = [] self.ball_qvel_idx: List[int] = [] if self.is_2d: for j in ['ball-x', 'ball-z', 'ball-ry']: qppos = self.p.named.model.jnt_qposadr[j] self.ball_qpos_idx.append(qppos) qvpos = self.p.named.model.jnt_dofadr[j] self.ball_qvel_idx.append(qvpos) else: qppos = self.p.named.model.jnt_qposadr['ball'] for i in range(3): self.ball_qpos_idx.append(qppos + i) qvpos = self.p.named.model.jnt_dofadr['ball'] for i in range(6): self.ball_qvel_idx.append(qvpos + i) obs_base = self.featurizer.observation_space obs_env = gym.spaces.Box( low=-np.inf, high=np.inf, shape=(len(self.ball_qpos_idx) + len(self.ball_qvel_idx),), dtype=np.float32, ) self.observation_space = gym.spaces.Dict( [('ball', obs_env), ('observation', obs_base)] ) def init_sim(self, root: 'mjcf.RootElement', frameskip: int = 5): ball_size = 0.15 * self.world_scale add_ball( root, 'ball', size=ball_size, mass=0.1 * self.world_scale, twod=self.is_2d, ) super().init_sim(root, frameskip) def reset_state(self): super().reset_state() # Small noise for ball noise = 0.01 qpos = self.init_qpos + self.np_random.uniform( low=-noise, high=noise, size=self.p.model.nq ) qvel = self.init_qvel + noise * self.np_random.standard_normal(self.p.model.nv) self.p.data.qpos[self.ball_qpos_idx] = qpos[self.ball_qpos_idx] self.p.data.qvel[self.ball_qvel_idx] = qvel[self.ball_qvel_idx] def get_observation(self): ball_qpos = self.p.data.qpos[self.ball_qpos_idx].ravel().copy() ball_qvel = self.p.data.qvel[self.ball_qvel_idx] # Ball X/Y position is relative to robot's torso ball_qpos[0] -= self.robot_pos[0] if not self.is_2d: ball_qpos[1] -= self.robot_pos[1] else: # Normalize Y rotation to [-pi,pi], as MuJoCo produces large values # occasionally. ball_qpos[2] = np.arctan2( np.sin(ball_qpos[2]), np.cos(ball_qpos[2]) ) return { 'observation': super().get_observation(), 'ball': np.concatenate([ball_qpos, ball_qvel]).astype(np.float32), }
bipedal-skills-main
bisk/single_robot.py
# Copyright (c) 2021-present, Facebook, Inc. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import os from typing import Tuple, Iterable import logging import numpy as np from gym.utils import seeding log = logging.getLogger(__name__) FANCY_SKYBOX = False def root_with_floor() -> 'dm_control.mjcf.RootElement': ''' Constructs a root element with the commonly used checkered floor. ''' from dm_control import mjcf root = mjcf.RootElement() if FANCY_SKYBOX: root.asset.add( 'texture', type='skybox', file=f'{asset_path()}/rainbow.png', gridsize=[3, 4], gridlayout='.U..LFRB.D..', ) else: root.asset.add( 'texture', type='skybox', builtin='gradient', width=800, height=800, rgb1=[0.3, 0.5, 0.7], rgb2=[0, 0, 0], ) root.asset.add( 'texture', name='tex_plane', builtin='checker', width=100, height=100, rgb1=[0.2, 0.3, 0.4], rgb2=[0.1, 0.15, 0.2], type='2d', ) root.asset.add( 'material', name='mat_plane', reflectance=0.5, shininess=1, specular=1, texrepeat=[1, 1], texuniform=True, texture='tex_plane', ) root.worldbody.add( 'geom', name='floor', type='plane', size=[100, 100, 100], rgba=[0.8, 0.9, 0.8, 1.0], conaffinity=1, condim=3, material='mat_plane', pos=[0, 0, 0], ) root.worldbody.add( 'light', cutoff=100, diffuse=[1, 1, 1], dir=[0, 0, -1.3], directional=True, exponent=1, pos=[0, 0, 1.3], specular=[0.1, 0.1, 0.1], ) return root def asset_path() -> str: return os.path.join(os.path.dirname(__file__), 'assets') def add_robot( root: 'dm_control.mjcf.RootElement', kind: str, name: str, xyoff=None, init=None, ) -> Tuple['dm_control.mjcf.Element', np.ndarray]: ''' Add a robot to the root element. Returns the attachement frame the original position of the robot's torso. If the robot requires a fresh freejoint, it returns its original position (so that qpos can be initialized accordingly); otherwise, (0, 0, 0) is returned. ''' from dm_control import mjcf rm = mjcf.from_path(f'{asset_path()}/{kind.lower()}.xml') if init is not None: init(rm, name) rm.model = name torso = rm.find('body', 'torso') if torso is None: torso = rm.find('body', 'root') pos = torso.pos # Use a [0,0,0] torso pos when attaching the frame and rather set # the default qpos manually later. dm_control's attachment frame # logic (apparently?) resets the frame of reference of the freejoint. torso.pos = [0, 0, 0] if pos is None: pos = torso.pos if xyoff is not None: pos[0] += xyoff[0] pos[1] += xyoff[1] root_joint = torso.find('joint', 'root') if root_joint and ( root_joint.tag == 'freejoint' or root_joint.type == 'free' ): root_joint.remove() needs_freejoint = True else: needs_freejoint = False af = root.attach(rm) if needs_freejoint: af.add('freejoint') return af, pos def add_box( root: 'dm_control.mjcf.RootElement', name: str, size: Iterable[float], rgba: Iterable[float] = None, with_body: bool = False, **kwargs, ) -> 'dm_control.mjcf.Element': if rgba is None: rgba = np.array([0.8, 0.9, 0.8, 1]) body = root.worldbody if with_body: body = root.worldbody.add('body', name=name) box = body.add( 'geom', type='box', name=name, condim=3, size=size, rgba=rgba, **kwargs, ) return body if with_body else box def add_capsule( root: 'dm_control.mjcf.RootElement', name: str, rgba: Iterable[float] = None, with_body: bool = False, **kwargs, ) -> 'dm_control.mjcf.Element': if rgba is None: rgba = np.array([0.8, 0.9, 0.8, 1]) body = root.worldbody if with_body: body = root.worldbody.add('body', name=name) box = body.add( 'geom', type='capsule', name=name, condim=3, rgba=rgba, **kwargs, ) return body if with_body else box def add_fwd_corridor(root: 'dm_control.mjcf.RootElement', W=4): WH = 2 wall_alpha = 0.0 # for debugging # Change rendering of floor to fit the intended path floor = root.find('geom', 'floor') floor.size = [100, W, 1] floor.pos = [100 - W, 0, 0] # Add border walls root.worldbody.add( 'geom', type='plane', name='wall_left', xyaxes=[1, 0, 0, 0, 0, 1], size=[100, WH, 1], pos=[100 - W, W, WH], rgba=[0, 0, 0, wall_alpha], ) root.worldbody.add( 'geom', type='plane', name='wall_right', xyaxes=[-1, 0, 0, 0, 0, 1], size=[100, WH, 1], pos=[100 - W, -W, WH], rgba=[0, 0, 0, wall_alpha], ) root.worldbody.add( 'geom', type='plane', name='wall_back', xyaxes=[0, 1, 0, 0, 0, 1], size=[W, WH, 1], pos=[-4, 0, WH], rgba=[0, 0, 0, wall_alpha], ) # The ball element follows the element definitions in quadruped.xml from # dm_control: # https://github.com/deepmind/dm_control/blob/33cea51/dm_control/suite/quadruped.xml def add_ball(root: 'dm_control.mjcf.RootElement', name: str, size: float, mass: float, twod: bool = False, **kwargs) -> 'dm_control.mjcf.Element': root.asset.add('texture', name='ball', builtin='checker', mark='cross', width=151, height=151, rgb1=[0.1, 0.1, 0.1], rgb2=[0.9, 0.9, 0.9], markrgb=[1, 1, 1]) root.asset.add('material', name='ball', texture='ball') ball = root.worldbody.add('body', name=name, pos=[0, 0, 0]) if twod: ball.add('joint', name='ball-x', type='slide', damping=0, axis=[1, 0, 0], pos=[0, 0, 0], range=[-1000, 1000]) ball.add('joint', name='ball-z', type='slide', damping=0, axis=[0, 0, 1], pos=[0, 0, 0], range=[-1000, 1000]) ball.add('joint', name='ball-ry', type='hinge', damping=0, axis=[0, 1, 0], pos=[0, 0, 0], range=[-np.pi, np.pi]) else: ball.add('freejoint', name=name) ball.add('geom', type='sphere', name=name, size=[size], mass=mass, condim=6, friction=[0.7, 0.005, 0.005], solref=[-10000, -30], material='ball', priority=1) return ball
bipedal-skills-main
bisk/helpers.py
# Copyright (c) 2021-present, Facebook, Inc. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import logging from typing import Optional import gym import numpy as np from bisk import legacy_seeding as seeding log = logging.getLogger(__name__) class BiskEnv(gym.Env): metadata = {'render_modes': ['rgb_array']} def __init__(self): # This is a stub; run init_sim() with a root element to set up the # environment. self.metadata = dict(**BiskEnv.metadata) self.p = None self.np_random = seeding.np_random(None) def init_sim(self, root: 'mjcf.RootElement', frameskip: int = 5): from dm_control import mjcf if self.p is not None: raise RuntimeError('Simulation already initialized') self.p = mjcf.Physics.from_mjcf_model(root) self.model = root self.frameskip = frameskip self.post_init() def post_init(self): self.init_qpos = self.p.data.qpos.ravel().copy() self.init_qvel = self.p.data.qvel.ravel().copy() # Expose all actuators self.action_space = gym.spaces.Box( self.p.model.actuator_ctrlrange[:, 0].astype(np.float32), self.p.model.actuator_ctrlrange[:, 1].astype(np.float32), dtype=np.float32, ) # Leave observation space undefined in the base environment self.metadata['render_fps'] = 1 / (self.p.model.opt.timestep * self.frameskip) @property def dt(self): return self.p.model.opt.timestep * self.frameskip def reset_state(self): pass def get_observation(self): raise NotImplementedError() def reset(self, seed: Optional[int] = None, options: Optional[dict] = None): if seed is not None: self.np_random, seed = seeding.np_random(seed) if self.action_space is not None: self.action_space.seed(seed) if self.observation_space is not None: self.observation_space.seed(seed) # Disable contacts during reset to prevent potentially large contact # forces that can be applied during initial positioning of bodies in # reset_state(). with self.p.model.disable('contact'): self.p.reset() self.reset_state() self.step_simulation() return self.get_observation(), {} def render(self, mode='rgb_array', **kwargs): width = kwargs.get('width', 480) height = kwargs.get('height', 480) camera = kwargs.get('camera', 0) flags = kwargs.get('flags', {}) return self.p.render( width=width, height=height, camera_id=camera, render_flag_overrides=flags, ) def apply_action(self, action): self.p.set_control(action) def on_step_single_frame(self): pass def step_simulation(self): from dm_control.mujoco.wrapper.mjbindings import mjlib for _ in range(self.frameskip): self.p.step() self.on_step_single_frame() # Call mj_rnePostConstraint to populate cfrc_ext (not done automatically # in MuJoCo 2.0 unless the model defines the proper sensors) mjlib.mj_rnePostConstraint(self.p.model.ptr, self.p.data.ptr) # Same for subtree_linvel mjlib.mj_subtreeVel(self.p.model.ptr, self.p.data.ptr) def step(self, action): from dm_control.rl.control import PhysicsError self.apply_action(action) try: self.step_simulation() except PhysicsError as e: log.exception(e) return self.get_observation(), -1, True, {'physics_error': True} return self.get_observation(), 0, False, False, {}
bipedal-skills-main
bisk/base.py
# Copyright (c) 2022-present, Facebook, Inc. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import logging import gym import numpy as np from dm_control.utils import rewards from bisk.single_robot import BiskSingleRobotEnv log = logging.getLogger(__name__) class BiskVelocityControlEnv(BiskSingleRobotEnv): ''' Track a randomly changing velocity. From MoCapAct: https://github.com/microsoft/MoCapAct/blob/e11713c/mocapact/tasks/velocity_control.py ''' def __init__( self, robot: str, features: str, allow_fallover: bool, shaped: bool, max_speed: float = 4.5, reward_margin: float = 0.75, direction_exponent: float = 1.0, steps_before_changing_velocity: int = 166, **kwargs ): super().__init__(robot, features, allow_fallover, **kwargs) self.shaped = shaped self.max_speed = max_speed self.reward_margin = reward_margin self.direction_exponent = direction_exponent self.steps_before_changing_velocity = steps_before_changing_velocity obs_base = self.featurizer.observation_space obs_task = gym.spaces.Box( low=-np.inf, high=np.inf, shape=(4,), dtype=np.float32 ) self.observation_space = gym.spaces.Dict( [('target', obs_task), ('observation', obs_base)] ) def sample_move_speed(self): self.move_speed = self.np_random.uniform(high=self.max_speed) if self.is_2d: # Go forward or backward self.move_angle = self.np_random.choice([0, np.pi]) else: self.move_angle = self.np_random.uniform(high=2 * np.pi) self.move_speed_counter = 0 def reset_state(self): super().reset_state() self.sample_move_speed() def get_observation(self): sin, cos = np.sin(self.move_angle), np.cos(self.move_angle) phase = self.move_speed_counter / self.steps_before_changing_velocity return { 'observation': super().get_observation(), 'target': np.array([self.move_speed, sin, cos, phase]), } def step(self, action): obs, reward, terminated, truncated, info = super().step(action) xvel, yvel = self.robot_speed[:2] speed = np.linalg.norm([xvel, yvel]) speed_error = self.move_speed - speed speed_reward = np.exp(-((speed_error / self.reward_margin) ** 2)) if np.isclose(xvel, 0.0) and np.isclose(yvel, 0.0): dot = 0.0 angle_reward = 1.0 else: direction = np.array([xvel, yvel]) direction /= np.linalg.norm(direction) direction_tgt = np.array( [np.cos(self.move_angle), np.sin(self.move_angle)] ) dot = direction_tgt.dot(direction) angle_reward = ((dot + 1) / 2) ** self.direction_exponent speed_match = np.abs(speed_error) < 0.1 angle_match = dot > np.cos(np.deg2rad(15)) score = 1.0 if speed_match and angle_match else 0.0 if self.shaped: reward = speed_reward * angle_reward else: reward = score info['score'] = score self.move_speed_counter += 1 if self.move_speed_counter >= self.steps_before_changing_velocity: self.sample_move_speed() obs = self.get_observation() if info.get('fell_over', False): terminated = True reward = -1 return obs, reward, terminated, truncated, info
bipedal-skills-main
bisk/tasks/velocitycontrol.py
# Copyright (c) 2021-present, Facebook, Inc. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import logging from bisect import bisect_left from typing import Dict, List, Union import gym import numpy as np from dm_control import mjcf from bisk.single_robot import BiskSingleRobotEnv log = logging.getLogger(__name__) class BiskHurdlesLimboEnv(BiskSingleRobotEnv): ''' Alternating hurdles and limbo bars. ''' def __init__( self, robot: str, features: str, allow_fallover: bool, shaped: bool, notouch: bool, min_bar_height: Union[float, str], max_hurdle_height: float, fixed_height: bool, **kwargs, ): super().__init__(robot, features, allow_fallover, **kwargs) self.shaped = shaped self.notouch = notouch self.fixed_height = fixed_height self.max_obstacles_cleared = 0 if min_bar_height == 'auto': if self.robot.startswith('humanoid'): self.min_bar_height = 1.0 elif self.robot.startswith('walker'): self.min_bar_height = 1.2 else: self.min_bar_height = 1.0 else: self.min_bar_height = float(min_bar_height) self.max_hurdle_height = max_hurdle_height self.robot_geoms: List[int] = [] for g in self.p.named.model.body_geomadr.axes.row.names: if g.startswith('robot/'): self.robot_geoms.append(self.p.named.model.body_geomadr[g]) self.bar_geoms: Dict[int, int] = {} for i, g in enumerate(self.p.named.model.geom_bodyid.axes.row.names): if g.startswith('bar-'): self.bar_geoms[i] = int(g.split('-')[1]) self.bar_geom_ids = set(self.bar_geoms.keys()) obs_base = self.featurizer.observation_space obs_env = gym.spaces.Box( low=-np.inf, high=np.inf, shape=(4,), dtype=np.float32 ) self.observation_space = gym.spaces.Dict( [('next_obstacle', obs_env), ('observation', obs_base)] ) def init_sim(self, root: mjcf.RootElement, frameskip: int = 5): W = 8 self.add_fwd_corridor(root, W) # 200 obstacles should be enough for everybody self.n_obstacles = 200 for i in range(self.n_obstacles): if i % 2 == 0: b = self.add_box( root, f'hurdle-{i}', size=[0.05, W, 0.1], pos=[2, 0, 0.2] ) else: b = self.add_capsule( root, f'bar-{i}', fromto=[2.025, -W, 0.1, 2.025, W, 0.1], size=[0.1], ) super().init_sim(root, frameskip) def reset_state(self): super().reset_state() self.max_obstacles_cleared = 0 xpos = 1 intervals = self.np_random.uniform(3, 6, size=(self.n_obstacles,)) * self.world_scale assert self.n_obstacles % 2 == 0 if self.fixed_height: bar_heights = ( np.zeros(self.n_obstacles // 2) + self.min_bar_height * self.world_scale ) hurdle_heights = ( np.zeros(self.n_obstacles // 2) + self.max_hurdle_height * self.world_scale ) else: bar_heights = ( self.np_random.uniform( self.min_bar_height, self.min_bar_height + 0.3, size=(self.n_obstacles // 2,), ) * self.world_scale ) hurdle_heights = ( self.np_random.uniform( 0.1, self.max_hurdle_height, size=(self.n_obstacles // 2,) ) * self.world_scale ) self.obstacle_pos = [] self.obstacle_type = [] nm = self.p.named.model for i in range(self.n_obstacles): xpos += intervals[i] self.obstacle_pos.append(xpos) self.obstacle_type.append(i % 2) if i % 2 == 0: nm.geom_size[f'hurdle-{i}'][2] = hurdle_heights[i // 2] nm.geom_pos[f'hurdle-{i}'][0] = xpos nm.geom_pos[f'hurdle-{i}'][2] = ( hurdle_heights[i // 2] / 2 + 0.01 ) else: nm.geom_pos[f'bar-{i}'][0] = xpos nm.geom_pos[f'bar-{i}'][2] = ( bar_heights[i // 2] + nm.geom_size[f'bar-{i}'][0] ) nm.geom_rgba[f'bar-{i}'] = [0.8, 0.9, 0.8, 1] self.bar_hit = [False] * self.n_obstacles self.new_bars_hit = set() def get_observation(self): no = self.next_obstacle_index() if no < len(self.obstacle_pos): next_obstacle_type = self.obstacle_type[no] xpos = self.robot_pos[0] nm = self.p.named.model if next_obstacle_type == 0: next_obstacle_d = nm.geom_pos[f'hurdle-{no}'][0] - xpos next_obstacle_h = nm.geom_pos[f'hurdle-{no}'][2] * 2 else: next_obstacle_d = nm.geom_pos[f'bar-{no}'][0] - xpos next_obstacle_h = ( nm.geom_pos[f'bar-{no}'][2] + nm.geom_size[f'bar-{no}'][0] ) else: next_obstacle_d = 10.0 next_obstacle_h = 0.1 next_obstacle_cleared = no < self.max_obstacles_cleared return { 'observation': super().get_observation(), 'next_obstacle': np.array( [ next_obstacle_type, next_obstacle_d, next_obstacle_h, not next_obstacle_cleared, ], dtype=np.float32 ), } def next_obstacle_index(self): xpos = self.robot_pos[0] return bisect_left(self.obstacle_pos, xpos) def on_step_single_frame(self): contact = self.p.data.contact for i, c in enumerate(contact.geom1): if contact.dist[i] > 0: continue if c not in self.bar_geom_ids: continue bar = self.bar_geoms[c] self.new_bars_hit.add(bar) for i, c in enumerate(contact.geom2): if contact.dist[i] > 0: continue if c not in self.bar_geom_ids: continue bar = self.bar_geoms[c] self.new_bars_hit.add(bar) def step_simulation(self): super().step_simulation() self.max_obstacles_cleared = max( self.max_obstacles_cleared, self.next_obstacle_index() ) def step(self, action): self.new_bars_hit = set() mobefore = self.max_obstacles_cleared xpos1 = self.robot_pos[0] obs, reward, terminated, truncated, info = super().step(action) xpos2 = self.robot_pos[0] score = 1 if self.max_obstacles_cleared > mobefore else 0 touched = False for hit in self.new_bars_hit: if not self.bar_hit[hit] and self.notouch: touched = True if self.notouch: marked = [0.8, 0.0, 0.0, 1.0] self.p.named.model.geom_rgba[f'bar-{hit}'] = marked score -= 1 self.bar_hit[hit] = True info['score'] = score info['shaped_reward'] = xpos2 - xpos1 reward = info['shaped_reward'] if self.shaped else score if info.get('fell_over', False): reward = -1 terminated = True return obs, reward, terminated, truncated, info
bipedal-skills-main
bisk/tasks/hurdleslimbo.py
# Copyright (c) 2022-present, Facebook, Inc. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import logging from bisect import bisect_left from typing import List import gym import numpy as np from dm_control import mjcf from dm_control.mujoco.wrapper.mjbindings import mjlib from bisk.features import make_featurizer from bisk.helpers import add_capsule, asset_path from bisk.single_robot import BiskSingleRobotEnv log = logging.getLogger(__name__) class BiskButterfliesEnv(BiskSingleRobotEnv): ''' Chasing butterflies. This is similar to more classic food gathering tasks, but in three dimensions. The (humanoid) robot is equipped with a dip net and has to collect as many "butterflies" (spheres floating in the air) as possible within an episode. The butterflies are projected to a sphere around the robot's head, and a fixed-size long/lat grid contains distances to the closest butterflies in that direction. ''' def __init__( self, robot: str, features: str, allow_fallover: bool, goal_area: int, n_butterflies: int, zoff: int, shaped: bool = False, **kwargs, ): self.n_butterflies = n_butterflies super().__init__(robot, features, allow_fallover, **kwargs) self.goal_area = goal_area self.shaped = shaped self.zoff = zoff obs_base = self.featurizer.observation_space obs_env = gym.spaces.Box( low=-np.inf, high=np.inf, shape=(10 * 10,), # 10x10 long/lat grid dtype=np.float32, ) self.observation_space = gym.spaces.Dict( [('butterflies', obs_env), ('observation', obs_base)] ) def make_featurizer(self, features: str): return make_featurizer( features, self.p, self.robot, 'robot', exclude=r'robot/net' ) def init_robot(self, robot: 'mjcf.RootElement', name: str): size = 0.01 * self.world_scale if self.robot in {'humanoid', 'humanoidpc'}: raise NotImplementedError() elif self.robot in {'humanoidcmupc', 'humanoidamasspc'}: hand = robot.find('body', 'lhand') handg = hand.find('geom', 'lhand') zpos = handg.size[0] net = hand.add( 'body', name='net', pos=handg.pos + [0, 0, -zpos / 2], xyaxes=[0, -1, 0, 0, 0, 1], ) dclass = handg.dclass.dclass elif self.robot == 'testcube': torso = robot.find('body', 'torso') torsog = torso.find('geom', 'torso') zpos = torsog.size[2] net = torso.add('body', name='net', pos=[0, 0, zpos]) if torsog.dclass: dclass = torsog.dclass.dclass else: dclass = None else: raise NotImplementedError( 'Humanoid robot required for BiskButterfliesEnv' ) robot.asset.add( 'texture', name='tex_net', type='2d', file=f'{asset_path()}/net.png', ) robot.asset.add( 'material', name='mat_net', reflectance=0.5, shininess=0.2, specular=1, texrepeat=[10, 10], texuniform=False, texture='tex_net', ) net_length = 0.5 * self.world_scale net_mass = 0.01 if self.robot == 'testcube': net_radius = 0.5 * self.world_scale else: net_radius = 0.15 * self.world_scale net.add( 'geom', name='net_handle_geom', type='capsule', fromto=[0, 0, 0, 0, 0, net_length], size=[size], mass=net_mass, dclass=dclass, ) net.add( 'geom', name='net_geom', type='ellipsoid', pos=[0, 0, net_length + net_radius], size=(net_radius, net_radius, 1e-3), xyaxes=[1, 0, 0, 0, 0, 1], mass=net_mass, dclass=dclass, contype=3, # collide with body and butterflies material='mat_net', ) def init_sim(self, root: mjcf.RootElement, frameskip: int = 5): try: from matplotlib import pyplot as plt cmap = plt.get_cmap('rainbow') except: cmap = lambda x: [1, 0, 0, 1] root.asset.add( 'material', name='butterfly', reflectance=0, shininess=0, specular=0, emission=0.5, ) for i in range(self.n_butterflies): root.worldbody.add( 'geom', name=f'butterfly_{i}', type='sphere', pos=(i, 0.0, 1.0), size=(0.1,), rgba=cmap(i / self.n_butterflies), material='butterfly', gap=1.0, # high gap so that there won't be actual contact forces conaffinity=2, # only collide with the net ) super().init_sim(root, frameskip) def get_observation(self): nd = self.p.named.data bf_geoms = [ idx for idx, name in enumerate(nd.geom_xpos.axes.row.names) if name.startswith('butterfly') and not self.butterflies_caught[int(name.split('_')[1])] ] grid = np.zeros((10, 10), dtype=np.float32) if len(bf_geoms) == 0: return { 'observation': super().get_observation(), 'butterflies': grid.flatten(), } try: bf_rpos = np.dot( nd.geom_xpos[bf_geoms] - nd.xpos['robot/head'], nd.xmat['robot/head'].reshape(3, 3), ) except KeyError: bf_rpos = np.dot( nd.geom_xpos[bf_geoms] - nd.xpos['robot/torso'], nd.xmat['robot/torso'].reshape(3, 3), ) bf_dist = np.linalg.norm(bf_rpos, axis=1) bf_npos = np.divide(bf_rpos, bf_dist.reshape(bf_rpos.shape[0], 1)).T lat = np.rad2deg(np.arccos(bf_npos[1])) lon = np.rad2deg(np.arctan2(bf_npos[0], bf_npos[2])) lat10 = np.floor(lat / 18).astype(np.int32) lon10 = np.floor((lon + 180) / 36).astype(np.int32) expdist = np.exp(-bf_dist) for i, (x, y) in enumerate(zip(lat10, lon10)): grid[x][y] = max(grid[x][y], expdist[i]) return { 'observation': super().get_observation(), 'butterflies': grid.flatten(), } def reset_state(self): super().reset_state() poss = self.np_random.uniform(-1.0, 1.0, size=(self.n_butterflies, 3)) scale = ( np.asarray([self.goal_area, self.goal_area, 0.5]) * self.world_scale ) off = np.asarray([0, 0, self.zoff * self.world_scale]) if self.robot == 'testcube': off[2] = 1 for i in range(self.n_butterflies): self.p.named.model.geom_pos[f'butterfly_{i}'] = ( poss[i] * scale + off ) self.p.named.model.geom_rgba[f'butterfly_{i}'][3] = 1 self.butterflies_caught = np.zeros(self.n_butterflies, dtype=np.int32) def on_step_single_frame(self): contact = self.p.data.contact gnames = self.p.named.model.geom_type.axes.row.names for c1, c2 in zip(contact.geom1, contact.geom2): if not ( gnames[c1].startswith('butterfly_') and gnames[c2] == 'robot/net_geom' ): continue id = int(gnames[c1].split('_')[1]) if self.butterflies_caught[id] == 0: log.debug(f'contact: {gnames[c1]} - {gnames[c2]}') self.butterflies_caught[id] = 1 self.p.named.model.geom_rgba[gnames[c1]][3] = 0.1 def step(self, action): bfs_caught_before = self.butterflies_caught.sum() obs, reward, terminated, truncated, info = super().step(action) bfs_caught_after = self.butterflies_caught.sum() score = bfs_caught_after - bfs_caught_before info['score'] = score # TODO: what's a good shaped reward here? # Based on distance to the closest butterfly? info['shaped_reward'] = score reward = info['shaped_reward'] if self.shaped else score if info.get('fell_over', False): terminated = True reward = -1 return obs, reward, terminated, False, info
bipedal-skills-main
bisk/tasks/butterflies.py
# Copyright (c) 2021-present, Facebook, Inc. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import logging from bisect import bisect_left from typing import List import gym import numpy as np from dm_control import mjcf from dm_control.mujoco.wrapper.mjbindings import mjlib from bisk.features import make_featurizer from bisk.helpers import add_capsule from bisk.single_robot import BiskSingleRobotEnv log = logging.getLogger(__name__) class BiskPoleBalanceEnv(BiskSingleRobotEnv): ''' Classic pole balancing, but with robots. The pole is attached to a suitable point (top of the robot's torso or head) with 3 degrees of freedom for rotation. If its angle surpasses a threshold, the episode ends. If n_poles > 1, multiple poles will be stacked on top of each other, and each connection point will be again have 3 degrees of freedom. For 2D robots (HalfCheetah, Walker), the pole has just one degree of freedom (rotation around Y). ''' def __init__( self, robot: str, features: str, allow_fallover: bool, pole_mass: float, pole_length: float, n_poles: int, **kwargs, ): self.pole_mass = pole_mass self.pole_length = pole_length self.n_poles = n_poles super().__init__(robot, features, allow_fallover, **kwargs) self.pole_qpos_idx: List[int] = [] self.pole_qvel_idx: List[int] = [] if self.robot in {'halfcheetah', 'walker'}: for i in range(self.n_poles): qppos = self.p.named.model.jnt_qposadr[f'robot/pole-{i}_rot'] self.pole_qpos_idx.append(qppos) qvpos = self.p.named.model.jnt_dofadr[f'robot/pole-{i}_rot'] self.pole_qvel_idx.append(qvpos) else: for i in range(self.n_poles): for j in range(4): qppos = ( j + self.p.named.model.jnt_qposadr[f'robot/pole-{i}_rot'] ) self.pole_qpos_idx.append(qppos) for j in range(3): qvpos = ( j + self.p.named.model.jnt_dofadr[f'robot/pole-{i}_rot'] ) self.pole_qvel_idx.append(qvpos) obs_base = self.featurizer.observation_space obs_env = gym.spaces.Box( low=-np.inf, high=np.inf, shape=(len(self.pole_qpos_idx) + len(self.pole_qvel_idx),), dtype=np.float32, ) self.observation_space = gym.spaces.Dict( [ ('pole', obs_env), ('observation', obs_base), ] ) def make_featurizer(self, features: str): return make_featurizer( features, self.p, self.robot, 'robot', exclude=r'robot/pole' ) def init_sim(self, root: mjcf.RootElement, frameskip: int = 5): try: from matplotlib import pyplot as plt cmap = plt.get_cmap('rainbow') except: cmap = lambda x: [1, 0, 0, 1] size = 0.05 * self.world_scale if self.robot in {'humanoid', 'humanoidpc'}: size = 0.02 * self.world_scale head = root.find('body', 'robot/head') headg = head.find('geom', 'head') zpos = headg.size[0] pole = head.add('body', name='pole-0', pos=[0, 0, zpos]) elif self.robot in {'humanoidcmupc', 'humanoidamasspc'}: size = 0.02 * self.world_scale head = root.find('body', 'robot/head') headg = head.find('geom', 'head') zpos = headg.size[0] pole = head.add( 'body', name='pole-0', pos=headg.pos + [0, zpos, 0], xyaxes=[1, 0, 0, 0, 0, -1], ) elif self.robot in {'halfcheetah'}: torso = root.find('body', 'robot/torso') pole = torso.add('body', name='pole-0', pos=[0, 0, 0]) elif self.robot in {'walker'}: torso = root.find('body', 'robot/torso') torsog = torso.find('geom', 'torso') pole = torso.add('body', name='pole-0', pos=[0, 0, torsog.size[1]]) else: try: torso = root.find('body', 'robot/torso') zpos = torso.find('geom', 'torso').size[2] pole = torso.add('body', name='pole-0', pos=[0, 0, zpos]) except: raise NotImplementedError( f'Don\'t know how to place poles on a {self.robot} robot' ) if self.robot in {'halfcheetah', 'walker'}: # HalfCheetah model is defined in radians limit = np.pi if self.robot == 'halfcheetah' else 180 pole.add( 'joint', name='pole-0_rot', type='hinge', damping=0.1, stiffness=0, axis='0 1 0', pos=[0, 0, 0], range=[-limit, limit], ) else: pole.add( 'joint', name='pole-0_rot', damping=0.1, type='ball', pos=[0, 0, 0], range=[0, 90], ) pole.add( 'geom', name='pole-0_geom', type='capsule', fromto=[0, 0, 0, 0, 0, self.pole_length * self.world_scale], size=[size], mass=self.pole_mass * self.world_scale, rgba=cmap(0), ) for i in range(1, self.n_poles): pole = pole.add( 'body', name=f'pole-{i}', pos=[0, 0, self.pole_length * self.world_scale] ) if self.robot in {'halfcheetah', 'walker'}: limit = np.pi if self.robot == 'halfcheetah' else 180 pole.add( 'joint', name=f'pole-{i}_rot', type='hinge', damping=0.1, stiffness=0, axis='0 1 0', pos=[0, 0, 0], range=[-limit, limit], ) else: pole.add( 'joint', name=f'pole-{i}_rot', type='ball', damping=0.1, pos=[0, 0, 0], range=[0, 90], ) pole.add( 'geom', name=f'pole-{i}_geom', type='capsule', fromto=[0, 0, 0, 0, 0, self.pole_length * self.world_scale], size=[size], mass=self.pole_mass * self.world_scale, rgba=cmap((i + 1) / self.n_poles), ) super().init_sim(root, frameskip) def get_observation(self): pole_qpos = self.p.data.qpos[self.pole_qpos_idx] pole_qvel = self.p.data.qpos[self.pole_qvel_idx] return { 'observation': super().get_observation(), 'pole': np.concatenate([pole_qpos, pole_qvel]).astype(np.float32), } def reset_state(self): super().reset_state() # Small noise for pole noise = 0.01 qpos = self.init_qpos + self.np_random.uniform( low=-noise, high=noise, size=self.p.model.nq ) qvel = self.init_qvel + noise * self.np_random.standard_normal(self.p.model.nv) self.p.data.qpos[self.pole_qpos_idx] = qpos[self.pole_qpos_idx] self.p.data.qvel[self.pole_qvel_idx] = qvel[self.pole_qvel_idx] def step(self, action): obs, reward, terminated, truncated, info = super().step(action) reward = 1.0 # Failure is defined as the z range of bottom and top of pole tower # falls below 20% of total length. xpos = self.p.named.data.xpos xquat = self.p.named.data.xquat t = np.zeros(3) mjlib.mju_rotVecQuat( t, np.array([0.0, 0.0, -self.pole_length / 2]) * self.world_scale, xquat['robot/pole-0'], ) bottom_z = xpos['robot/pole-0'][2] + t[2] mjlib.mju_rotVecQuat( t, np.array([0.0, 0.0, self.pole_length / 2]) * self.world_scale, xquat[f'robot/pole-{self.n_poles-1}'], ) top_z = xpos[f'robot/pole-{self.n_poles-1}'][2] + t[2] zthresh = 0.8 * self.n_poles * self.pole_length * self.world_scale if top_z - bottom_z < zthresh: terminated = True score = 1 if not terminated else 0 info['score'] = score reward = score if info.get('fell_over', False): terminated = True reward = -1 return obs, reward, terminated, truncated, info
bipedal-skills-main
bisk/tasks/polebalance.py
# Copyright (c) 2021-present, Facebook, Inc. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import logging from bisect import bisect_left from typing import Dict, List, Union import gym import numpy as np from dm_control import mjcf from bisk.single_robot import BiskSingleRobotEnv log = logging.getLogger(__name__) class BiskLimboEnv(BiskSingleRobotEnv): ''' A limbo "dance" environment. There are bunch of geoms along the way which the robot has to crouch under. Proper limbo posture is not enforced. ''' def __init__( self, robot: str, features: str, allow_fallover: bool, shaped: bool, notouch: bool, min_height: Union[float, str], fixed_height: bool, **kwargs, ): super().__init__(robot, features, allow_fallover, **kwargs) self.shaped = shaped self.notouch = notouch self.fixed_height = fixed_height self.max_bars_cleared = 0 if min_height == 'auto': if self.robot.startswith('humanoid'): self.min_height = 1.0 elif self.robot.startswith('walker'): self.min_height = 1.2 else: self.min_height = 1.0 else: self.min_height = float(min_height) self.robot_geoms: List[int] = [] for g in self.p.named.model.body_geomadr.axes.row.names: if g.startswith('robot/'): self.robot_geoms.append(self.p.named.model.body_geomadr[g]) self.bar_geoms: Dict[int, int] = {} for i, g in enumerate(self.p.named.model.geom_bodyid.axes.row.names): if g.startswith('bar-'): self.bar_geoms[i] = int(g.split('-')[1]) self.bar_geom_ids = set(self.bar_geoms.keys()) obs_base = self.featurizer.observation_space obs_env = gym.spaces.Box( low=-np.inf, high=np.inf, shape=(3,), dtype=np.float32 ) self.observation_space = gym.spaces.Dict( [('next_bar', obs_env), ('observation', obs_base)] ) def init_sim(self, root: mjcf.RootElement, frameskip: int = 5): W = 8 self.add_fwd_corridor(root, W) # 200 bars should be enough for everybody self.n_bars = 200 for i in range(self.n_bars): b = self.add_capsule( root, f'bar-{i}', fromto=[2.025, -W, 0.1, 2.025, W, 0.1], size=[0.1], ) super().init_sim(root, frameskip) def reset_state(self): super().reset_state() self.max_bars_cleared = 0 xpos = 1 intervals = ( self.np_random.uniform(3, 6, size=(self.n_bars,)) * self.world_scale ) if self.fixed_height: heights = np.zeros(self.n_bars) + self.min_height * self.world_scale else: heights = ( self.np_random.uniform( self.min_height, self.min_height + 0.3, size=(self.n_bars,) ) * self.world_scale ) self.bar_pos = [] nm = self.p.named.model for i in range(self.n_bars): xpos += intervals[i] self.bar_pos.append(xpos) nm.geom_pos[f'bar-{i}'][0] = xpos nm.geom_pos[f'bar-{i}'][2] = ( heights[i] + nm.geom_size[f'bar-{i}'][0] ) nm.geom_rgba[f'bar-{i}'] = [0.8, 0.9, 0.8, 1] self.bar_hit = [False] * self.n_bars self.new_bars_hit = set() def get_observation(self): nb = self.next_bar_index() if nb < len(self.bar_pos): xpos = self.robot_pos[0] nm = self.p.named.model next_bar_d = nm.geom_pos[f'bar-{nb}'][0] - xpos next_bar_h = ( nm.geom_pos[f'bar-{nb}'][2] + nm.geom_size[f'bar-{nb}'][0] ) else: next_bar_d = 1.0 next_bar_h = 2.0 next_bar_cleared = nb < self.max_bars_cleared return { 'observation': super().get_observation(), 'next_bar': np.array( [next_bar_d, next_bar_h, not next_bar_cleared], dtype=np.float32 ), } def next_bar_index(self): xpos = self.robot_pos[0] return bisect_left(self.bar_pos, xpos) def on_step_single_frame(self): contact = self.p.data.contact for i, c in enumerate(contact.geom1): if contact.dist[i] > 0: continue if c not in self.bar_geom_ids: continue bar = self.bar_geoms[c] self.new_bars_hit.add(bar) for i, c in enumerate(contact.geom2): if contact.dist[i] > 0: continue if c not in self.bar_geom_ids: continue bar = self.bar_geoms[c] self.new_bars_hit.add(bar) def step_simulation(self): super().step_simulation() self.max_bars_cleared = max( self.max_bars_cleared, self.next_bar_index() ) def step(self, action): self.new_bars_hit = set() mbbefore = self.max_bars_cleared xpos1 = self.robot_pos[0] obs, reward, terminated, truncated, info = super().step(action) xpos2 = self.robot_pos[0] score = 1 if self.max_bars_cleared > mbbefore else 0 touched = False for hit in self.new_bars_hit: if not self.bar_hit[hit] and self.notouch: touched = True if self.notouch: marked = [0.8, 0.0, 0.0, 1.0] self.p.named.model.geom_rgba[f'bar-{hit}'] = marked score -= 1 self.bar_hit[hit] = True info['score'] = score info['shaped_reward'] = xpos2 - xpos1 reward = info['shaped_reward'] if self.shaped else score if info.get('fell_over', False): reward = -1 terminated = True return obs, reward, terminated, truncated, info
bipedal-skills-main
bisk/tasks/limbo.py
# Copyright (c) 2021-present, Facebook, Inc. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import logging from bisect import bisect_left import gym import numpy as np from dm_control import mjcf from dm_control.utils import rewards from bisk.single_robot import BiskSingleRobotWithBallEnv log = logging.getLogger(__name__) class BiskGoalWallEnv(BiskSingleRobotWithBallEnv): ''' Goal wall shooting. In the dense-reward setting we allow for falling over since the reward is the negative distance to the closest goal. ''' def __init__( self, robot: str, features: str, allow_fallover: bool, shaped: bool, init_distance: float, touch_ball_reward: float, **kwargs, ): self.init_distance = init_distance super().__init__(robot, features, allow_fallover, **kwargs) self.shaped = shaped self.touch_ball_reward = touch_ball_reward if self.touch_ball_reward > 0: self.observation_space = gym.spaces.Dict( [ ('ball', self.observation_space.spaces['ball']), ( 'touched_ball', gym.spaces.Box( low=0, high=1, shape=(1,), dtype=np.float32 ), ), ( 'observation', self.observation_space.spaces['observation'], ), ] ) self.ball_geom = self.p.named.model.body_geomadr['ball'] self.wall_geom = self.p.named.model.geom_type.axes.row.names.index( 'wall' ) def init_sim(self, root: mjcf.RootElement, frameskip: int = 5): # Add wall W = 3 * self.world_scale WH = 1 * self.world_scale WD = (4 + self.init_distance) * self.world_scale root.asset.add( 'material', name='mat_wall', reflectance=0.5, shininess=1, emission=0.5, specular=1, ) root.worldbody.add( 'geom', type='plane', name='wall', material='mat_wall', xyaxes=[0, -1, 0, 0, 0, 1], size=[W, WH, 1], pos=[WD, 0, WH], rgba=[0, 0.5, 0.1, 1], ) # Add a visual marker root.asset.add( 'texture', name='tex_dnc', builtin='checker', width=50, height=50, rgb1=[0, 0, 0], rgb2=[1, 0.8, 0], type='2d', ) root.asset.add( 'material', name='mat_dnc', reflectance=0.5, shininess=1, specular=1, texrepeat=[1, 10], texuniform=False, texture='tex_dnc', ) root.worldbody.add( 'site', type='box', name='line', size=[0.1, W, 0.01], pos=[1.5 + self.init_distance, 0, 0.02], material='mat_dnc', ) # rgba=[1, 0, 0, 0.3]) # Add goals on wall if self.is_2d: GP = WH root.worldbody.add( 'site', type='ellipsoid', name='goal', material='mat_wall', size=[ 0.01 * self.world_scale, 0.4 * self.world_scale, 0.4 * self.world_scale, ], pos=[WD, 0, GP], rgba=[1, 1, 1, 1], ) root.worldbody.add( 'site', type='ellipsoid', name='goalb', material='mat_wall', size=[ 0.005 * self.world_scale, 0.45 * self.world_scale, 0.45 * self.world_scale, ], pos=[WD, 0, GP], rgba=[1, 0, 0, 1], ) else: root.worldbody.add( 'site', type='ellipsoid', name='goal1', material='mat_wall', size=[ 0.01 * self.world_scale, 0.4 * self.world_scale, 0.4 * self.world_scale, ], pos=[WD, -1, WH - 0.35], rgba=[1, 1, 1, 1], ) root.worldbody.add( 'site', type='ellipsoid', name='goal1b', material='mat_wall', size=[ 0.005 * self.world_scale, 0.45 * self.world_scale, 0.45 * self.world_scale, ], pos=[WD, -1, WH - 0.35], rgba=[1, 0, 0, 1], ) root.worldbody.add( 'site', type='ellipsoid', name='goal2', material='mat_wall', size=[ 0.01 * self.world_scale, 0.4 * self.world_scale, 0.4 * self.world_scale, ], pos=[WD, 1, WH + 0.35], rgba=[1, 1, 1, 1], ) root.worldbody.add( 'site', type='ellipsoid', name='goal2b', material='mat_wall', size=[ 0.005 * self.world_scale, 0.45 * self.world_scale, 0.45 * self.world_scale, ], pos=[WD, 1, WH + 0.35], rgba=[1, 0, 0, 1], ) # This is the camera we'll use by default euler = [80, -5, 0] if root.compiler.angle == 'radian': euler = [np.deg2rad(e) for e in euler] root.worldbody.add( 'camera', name='sideline', mode='fixed', pos=[WD / 3, -9 * self.world_scale, 2 * self.world_scale], euler=euler, ) super().init_sim(root, frameskip) def get_observation(self): obs = super().get_observation() if self.touch_ball_reward > 0: obs['touched_ball'] = np.array([float(self.ball_touched)], dtype=np.float32) return obs def reset_state(self) -> None: super().reset_state() # Place ball ball_size = self.p.named.model.geom_size['ball'][0] if self.is_2d: self.p.named.data.qpos['ball-x'] += self.init_distance self.p.named.data.qpos['ball-z'] += ball_size + 0.1 else: self.p.named.data.qpos['ball'][0] += self.init_distance self.p.named.data.qpos['ball'][2] += ball_size + 0.1 self.ball_yz = None self.ball_touched = False def on_step_single_frame(self): contact = self.p.data.contact ball_wall = np.in1d(contact.geom1, self.wall_geom) & np.in1d( contact.geom2, self.ball_geom ) touching = contact.dist <= 0 if np.any(ball_wall & touching): if self.is_2d: self.ball_yz = [0, self.p.named.data.qpos['ball-z'][0]] else: self.ball_yz = self.p.named.data.qpos['ball'][1:3].copy() if not self.ball_touched: for c in contact: names = self.p.named.model.name_geomadr.axes.row.names if ( names[c.geom1].startswith('ball') and names[c.geom2].startswith('robot') and c.dist < 0 ): self.ball_touched = True def step(self, action): self.ball_yz = None btbefore = self.ball_touched obs, reward, terminated, truncated, info = super().step(action) goal_hit = None goal_dists = [] goal_sizes = [] if self.ball_yz is not None: if self.is_2d: goals = ('goal',) else: goals = ('goal1', 'goal2') for g in goals: d = np.linalg.norm( self.ball_yz - self.p.named.data.site_xpos[g][1:3] ) goal_dists.append(d) goal_sizes.append(self.p.named.model.site_size[g][2]) if d <= self.p.named.model.site_size[g][2]: goal_hit = g break score = 0 if goal_hit == 'goal' or goal_hit == 'goal1': score = 1 elif goal_hit == 'goal2': score = 2 info['score'] = score shaped_reward = 0 for i, (d, s) in enumerate(zip(goal_dists, goal_sizes)): shaped_reward = i * rewards.tolerance(d, (0, s), margin=s) info['shaped_reward'] = shaped_reward reward = info['shaped_reward'] if self.shaped else score if self.touch_ball_reward > 0 and self.ball_touched != btbefore: reward += self.touch_ball_reward # Zero reward if we're beyond the line lpos = self.p.named.data.site_xpos['line', 'x'] if self.robot_pos[0] > lpos: reward = 0 # Once we've hit the wall we're done if self.ball_yz is not None: terminated = True if info.get('fell_over', False): reward = -1 terminated = True return obs, reward, terminated, truncated, info
bipedal-skills-main
bisk/tasks/goalwall.py
# Copyright (c) 2021-present, Facebook, Inc. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import logging from bisect import bisect_left import gym import numpy as np from dm_control import mjcf from bisk.single_robot import BiskSingleRobotEnv log = logging.getLogger(__name__) class BiskHurdlesEnv(BiskSingleRobotEnv): ''' Jump over hurdles to progress in X-direction. ''' def __init__( self, robot: str, features: str, allow_fallover: bool, shaped: bool, max_height: float, fixed_height: bool, **kwargs, ): super().__init__(robot, features, allow_fallover, **kwargs) self.shaped = shaped self.max_height = max_height self.fixed_height = fixed_height self.max_hurdles_cleared = 0 obs_base = self.featurizer.observation_space obs_env = gym.spaces.Box( low=-np.inf, high=np.inf, shape=(3,), dtype=np.float32 ) self.observation_space = gym.spaces.Dict( [('next_hurdle', obs_env), ('observation', obs_base)] ) def init_sim(self, root: mjcf.RootElement, frameskip: int = 5): W = 8 self.add_fwd_corridor(root, W) # 200 hurdles should be enough for everybody self.n_hurdles = 200 for i in range(self.n_hurdles): b = self.add_box( root, f'hurdle-{i}', size=[0.05, W, 0.1], pos=[2, 0, 0.2] ) super().init_sim(root, frameskip) def reset_state(self): super().reset_state() self.max_hurdles_cleared = 0 xpos = 1 intervals = ( self.np_random.uniform(3, 6, size=(self.n_hurdles,)) * self.world_scale ) if self.fixed_height: heights = ( np.zeros(self.n_hurdles) + self.max_height * self.world_scale ) else: heights = ( self.np_random.uniform( 0.1, self.max_height, size=(self.n_hurdles,) ) * self.world_scale ) self.hurdle_pos = [] for i in range(self.n_hurdles): xpos += intervals[i] self.hurdle_pos.append(xpos) self.p.named.model.geom_size[f'hurdle-{i}'][2] = heights[i] self.p.named.model.geom_pos[f'hurdle-{i}'][0] = xpos self.p.named.model.geom_pos[f'hurdle-{i}'][2] = ( heights[i] / 2 + 0.01 ) def get_observation(self): nh = self.next_hurdle_index() if nh < len(self.hurdle_pos): xpos = self.robot_pos[0] nm = self.p.named.model next_hurdle_d = nm.geom_pos[f'hurdle-{nh}'][0] - xpos next_hurdle_h = nm.geom_size[f'hurdle-{nh}'][2] * 2 else: next_hurdle_d = 10.0 next_hurdle_h = 0.1 next_hurdle_cleared = nh < self.max_hurdles_cleared return { 'observation': super().get_observation(), 'next_hurdle': np.array( [next_hurdle_d, next_hurdle_h, not next_hurdle_cleared], dtype=np.float32 ), } def next_hurdle_index(self): xpos = self.robot_pos[0] return bisect_left(self.hurdle_pos, xpos) def step_simulation(self): super().step_simulation() self.max_hurdles_cleared = max( self.max_hurdles_cleared, self.next_hurdle_index() ) def step(self, action): mhbefore = self.max_hurdles_cleared xpos1 = self.robot_pos[0] obs, reward, terminated, truncated, info = super().step(action) xpos2 = self.robot_pos[0] score = 1 if self.max_hurdles_cleared > mhbefore else 0 info['score'] = score info['shaped_reward'] = xpos2 - xpos1 reward = info['shaped_reward'] if self.shaped else score if info.get('fell_over', False): terminated = True reward = -1 return obs, reward, terminated, truncated, info
bipedal-skills-main
bisk/tasks/hurdles.py
# Copyright (c) 2021-present, Facebook, Inc. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import logging from bisect import bisect_left import gym import numpy as np from dm_control import mjcf from bisk.single_robot import BiskSingleRobotEnv log = logging.getLogger(__name__) class BiskStairsEnv(BiskSingleRobotEnv): ''' Go up and down flights of fixed-height, varible-length stairs. ''' def __init__( self, robot: str, features: str, shaped: bool, step_height: float, step_length_min: float, step_length_max: float, num_flights: int, **kwargs, ): self.step_height = step_height self.step_length_min = step_length_min self.step_length_max = step_length_max self.num_flights = num_flights super().__init__(robot, f'{features}-relz', **kwargs) self.shaped = shaped self.max_steps_cleared = 0 obs_base = self.featurizer.observation_space obs_env = gym.spaces.Box( low=-np.inf, high=np.inf, shape=(3,), dtype=np.float32 ) self.observation_space = gym.spaces.Dict( [ ('next_steps', obs_env), ('observation', obs_base), ] ) def init_sim(self, root: mjcf.RootElement, frameskip: int = 5): W = 8 self.add_fwd_corridor(root, W) self.flight_steps = 10 self.n_steps = self.flight_steps * self.num_flights self.start_pos = 3.0 self.top_width = 3.0 color1 = [0.8, 0.9, 0.8, 1.0] color2 = [0.6, 0.6, 0.6, 1.0] length = 0.5 xpos = self.start_pos + length / 2 step = 0 for flight in range(self.num_flights): if flight % 2 == 0: h2 = self.step_height / 2 for i in range(self.flight_steps): self.add_box( root, f'step-{step}', size=[length / 2, W, h2], pos=[xpos, 0, h2], rgba=color1 if i % 2 == 0 else color2, ) step += 1 h2 += self.step_height / 2 xpos += length h2 = self.flight_steps * self.step_height / 2 self.add_box( root, f'top-{step}', size=[self.top_width, W, h2], pos=[xpos + self.top_width - length / 2, 0, h2], rgba=color1, ) xpos += self.top_width * 2 else: for i in range(self.flight_steps): self.add_box( root, f'step-{step}', size=[length / 2, W, h2], pos=[xpos, 0, h2], rgba=color1 if i % 2 == 1 else color2, ) step += 1 h2 -= self.step_height / 2 xpos += length xpos += self.top_width * 4 euler = [80, 0, 0] if root.compiler.angle == 'radian': euler = [np.deg2rad(e) for e in euler] root.worldbody.add( 'camera', name='stairs_side', mode='trackcom', pos=[0, -6, 1], euler=euler, ) super().init_sim(root, frameskip) def reset_state(self): super().reset_state() self.max_steps_cleared = 0 self.step_pos: List[float] = [] lengths = ( self.np_random.uniform( self.step_length_min, self.step_length_max, size=(self.n_steps + 1,), ) * self.world_scale ) nm = self.p.named.model xpos = self.start_pos + lengths[0] / 2 step = 0 for flight in range(self.num_flights): if flight % 2 == 0: for _ in range(self.flight_steps): nm.geom_size[f'step-{step}'][0] = lengths[step] / 2 nm.geom_pos[f'step-{step}'][0] = xpos self.step_pos.append(xpos) xpos += lengths[step] / 2 + lengths[step + 1] / 2 step += 1 nm.geom_pos[f'top-{step}'][0] = ( xpos + self.top_width - lengths[step] / 2 ) xpos += self.top_width * 2 else: for _ in range(self.flight_steps): nm.geom_size[f'step-{step}'][0] = lengths[step] / 2 nm.geom_pos[f'step-{step}'][0] = xpos self.step_pos.append(xpos) xpos += lengths[step] / 2 + lengths[step + 1] / 2 step += 1 xpos += self.top_width * 4 # Custom fall-over detection because we want to use the featurizer's # relative Z position. def fell_over(self) -> bool: if self.robot.startswith('humanoidcmu') or self.robot.startswith( 'humanoidamass' ): # XXX We like the relative position of the lower neck, not the torso # (which is at the center of the robot for this one). abs_zpos = self.p.named.data.xpos['robot/torso', 'z'] zpos = self.featurizer.relz() zdiff = abs_zpos - zpos return bool(self.robot_pos[2] - zdiff < 0.9) elif self.robot.startswith('humanoid'): zpos = self.featurizer.relz() return bool(zpos < 0.9) elif self.robot.startswith('halfcheetah'): # Orientation pointing upwards and body almost on the ground up = self.p.named.data.xmat['robot/torso', 'zz'] zpos = self.featurizer.relz() if up < -0.8 and zpos < 0.12: return True elif self.robot.startswith('walker'): zpos = self.featurizer.relz() r = self.p.named.data.qpos['robot/rooty'] if zpos < 0.9 or r < -1.4 or r > 1.4: return True return False def get_observation(self): ns = self.next_step_index() xpos = self.robot_pos[0] nm = self.p.named.model if ns < len(self.step_pos): next_step_d1 = nm.geom_pos[f'step-{ns}'][0] - xpos if ns + 1 < len(self.step_pos): next_step_d2 = nm.geom_pos[f'step-{(ns+1)}'][0] - xpos else: next_step_d2 = 10.0 else: next_step_d1 = 10.0 next_step_d2 = 20.0 next_step_cleared = ns < self.max_steps_cleared return { 'next_steps': np.array( [next_step_d1, next_step_d2, not next_step_cleared], dtype=np.float32, ), 'observation': super().get_observation(), } def next_step_index(self): xpos = self.robot_pos[0] return bisect_left(self.step_pos, xpos) def step_simulation(self): super().step_simulation() self.max_steps_cleared = max( self.max_steps_cleared, self.next_step_index() ) def step(self, action): msbefore = self.max_steps_cleared xpos1 = self.robot_pos[0] obs, reward, terminated, truncated, info = super().step(action) xpos2 = self.robot_pos[0] score = 1 if self.max_steps_cleared > msbefore else 0 info['score'] = score info['shaped_reward'] = xpos2 - xpos1 reward = info['shaped_reward'] if self.shaped else score if info.get('fell_over', False): reward = -1 terminated = True return obs, reward, terminated, truncated, info
bipedal-skills-main
bisk/tasks/stairs.py
bipedal-skills-main
bisk/tasks/__init__.py
# Copyright (c) 2022-present, Facebook, Inc. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import logging import gym import numpy as np from dm_control import mjcf from dm_control.utils import rewards from bisk.single_robot import BiskSingleRobotEnv log = logging.getLogger(__name__) class BiskGoToTargetEnv(BiskSingleRobotEnv): ''' Simple 1D/2D navigation, a port of dm_control's GoToTarget task. ''' def __init__( self, robot: str, features: str, allow_fallover: bool, shaped: bool, tolerance: float, goal_area: float, num_targets: int = 1, goal_switch_steps: int = 10, single_target: bool = False, on_circle: bool = False, **kwargs, ): self.shaped = shaped self.goal_area = goal_area self.tolerance = tolerance self.goals = np.zeros((num_targets, 2)) self.goal_switch_steps = goal_switch_steps self.on_circle = on_circle self.steps_to_switch = 0 self.single_target = single_target super().__init__(robot, features, allow_fallover, **kwargs) obs_base = self.featurizer.observation_space if self.is_2d: obs_env = gym.spaces.Box( low=-np.inf, high=np.inf, shape=(1 * num_targets,), dtype=np.float32, ) else: obs_env = gym.spaces.Box( low=-np.inf, high=np.inf, shape=(3 * num_targets,), dtype=np.float32, ) self.observation_space = gym.spaces.Dict( [('targets', obs_env), ('observation', obs_base)] ) def init_sim(self, root: mjcf.RootElement, frameskip: int = 5): for i in range(self.goals.shape[0]): root.worldbody.add( 'site', name=f'target_{i}', type='sphere', pos=(0.0, 0.0, 1.0), size=(0.1,), rgba=(0.9, 0.6, 0.6, 1.0 if i == 0 else 0.2), ) root.worldbody.add( 'site', name=f'target_tolerance_{i}', type='ellipsoid', pos=(0.0, 0.0, 1.0), size=(self.tolerance, self.tolerance, 1e-3), rgba=(0.9, 0.6, 0.6, 0.2 if i == 0 else 0.05), ) super().init_sim(root, frameskip) def reset_state(self): super().reset_state() self.sample_goal(all=True) def get_observation(self): if self.is_2d: targets = self.goals[:, 0:1] - self.robot_pos[0:1] else: targets = np.zeros((self.goals.shape[0], 3)) targets[:, :2] = self.goals - self.robot_pos[:2] targets = np.dot( targets, self.p.named.data.xmat['robot/torso'].reshape(3, 3) ) return { 'observation': super().get_observation(), 'targets': targets.flatten().astype(np.float32), } def step(self, action): obs, reward, terminated, truncated, info = super().step(action) dist = np.linalg.norm(self.goals[0] - self.robot_pos[:2]) if dist < self.tolerance: score = 1 self.steps_to_switch -= 1 else: score = 0 info['score'] = score info['distance'] = dist info['shaped_reward'] = -0.1 * ( 1 - rewards.tolerance( dist, (0, 0), margin=self.goal_area / 2, ) ) reward = info['shaped_reward'] if self.shaped else score if self.steps_to_switch <= 0: self.sample_goal() obs = self.get_observation() if info.get('fell_over', False): terminated = True reward = -1 if score == 1 and self.single_target: terminated = True return obs, reward, terminated, truncated, info def sample_goal(self, all: bool = False): if all: if self.on_circle: self.goals = self.np_random.standard_normal(self.goals.shape) self.goals /= np.maximum( np.linalg.norm(self.goals, axis=1).reshape(-1, 1), 1e-5 ) self.goals *= self.goal_area else: self.goals = self.np_random.uniform( -self.goal_area, self.goal_area, size=self.goals.shape ) else: self.goals = np.roll(self.goals, -1, axis=0) if self.on_circle: self.goals[-1] = self.np_random.standard_normal(2) self.goals[-1] /= np.maximum( np.linalg.norm(self.goals[-1]), 1e-5 ) self.goals[-1] *= self.goal_area else: self.goals[-1] = self.np_random.uniform( -self.goal_area, self.goal_area, size=(2,) ) if self.is_2d: self.goals[:, 1] = 0 for i in range(self.goals.shape[0]): self.p.named.model.site_pos[f'target_{i}'][0:2] = self.goals[i] self.p.named.model.site_pos[f'target_{i}'][2] = 0 self.p.named.model.site_pos[f'target_tolerance_{i}'][ 0:2 ] = self.goals[i] self.p.named.model.site_pos[f'target_tolerance_{i}'][2] = 0 self.steps_to_switch = self.goal_switch_steps
bipedal-skills-main
bisk/tasks/gototarget.py
# Copyright (c) 2022-present, Facebook, Inc. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import numpy as np from bisk.single_robot import BiskSingleRobotEnv class BiskRunDirEnv(BiskSingleRobotEnv): ''' Dense-reward task: move at a specific angle. ''' def __init__( self, robot: str, features: str, allow_fallover: bool, heading_deg: float, **kwargs): super().__init__(robot, features, allow_fallover, **kwargs) heading = np.deg2rad(heading_deg) # torso orientation: X/Y are switched self.dir = np.asarray([np.sin(heading), np.cos(heading), 0]) def step(self, action): pos_before = self.robot_pos.copy() obs, reward, terminated, truncated, info = super().step(action) pos_after = self.robot_pos displacement = pos_after - pos_before rdir = np.dot(self.dir, self.p.named.data.xmat['robot/torso'].reshape(3,3)) reward = np.dot(rdir, displacement) if info.get('fell_over', False): terminated = True reward = -1 return obs, reward, terminated, truncated, info
bipedal-skills-main
bisk/tasks/rundir.py
# Copyright (c) 2021-present, Facebook, Inc. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import logging from bisect import bisect_left import gym import numpy as np from dm_control import mjcf from bisk.helpers import asset_path from bisk.single_robot import BiskSingleRobotEnv log = logging.getLogger(__name__) class BiskGapsEnv(BiskSingleRobotEnv): ''' Jump over gaps to progress in X-direction. ''' def __init__( self, robot: str, features: str, allow_fallover: bool, shaped: bool, max_size: float, min_gap: float, max_gap: float, fixed_size: bool, **kwargs, ): super().__init__(robot, features, **kwargs) self.shaped = shaped self.max_size = max(0.5, max_size) self.fixed_size = fixed_size self.min_gap = min_gap self.max_gap = max_gap obs_base = self.featurizer.observation_space obs_env = gym.spaces.Box( low=-np.inf, high=np.inf, shape=(3,), dtype=np.float32 ) self.observation_space = gym.spaces.Dict( [('next_gap_platform', obs_env), ('observation', obs_base)] ) def init_sim(self, root: mjcf.RootElement, frameskip: int = 5): W = 8 self.add_fwd_corridor(root, W) root.find('geom', 'floor').remove() # Base platform H = 0.1 root.asset.add( 'material', name='mat_base', reflectance=0.5, shininess=1, specular=1, texrepeat=[1, 1], texuniform=True, texture='tex_plane', ) root.asset.add( 'texture', name='tex_lava', type='2d', file=f'{asset_path()}/lava.png', ) root.asset.add( 'material', name='mat_gaps', reflectance=0.5, shininess=1, specular=1, texrepeat=[1, 1], texuniform=True, texture='tex_lava', ) self.add_box( root, f'base', size=[(W + 4) / 2, W, H], pos=[(-W + 4) / 2, 0, -H], conaffinity=1, material='mat_base', ) # 200 platforms should be enough for everybody self.n_platforms = 200 root.asset.add( 'material', name='mat_platform', reflectance=0.5, shininess=1, specular=1, ) for i in range(self.n_platforms): o = (i % 2) * 0.1 self.add_box( root, f'platform-{i}', size=[1, W, H], pos=[2, 0, -H], material='mat_platform', rgba=[0.2 + o, 0.3 + o, 0.4 + o, 1.0], ) # Gaps are placed 5cm below g = self.add_box( root, f'gap-{i}', size=[1, W, H], pos=[2, 0, -H - 0.05], material='mat_gaps', ) super().init_sim(root, frameskip) def reset_state(self): super().reset_state() self.max_platforms_reached = 0 xpos = 4 * self.world_scale if self.fixed_size: gaps = np.zeros(self.n_platforms) + self.min_gap * self.world_scale sizes = ( np.zeros(self.n_platforms) + self.max_size * self.world_scale ) else: if self.robot.startswith('quadruped'): gaps = ( self.np_random.uniform(0.8, 1.55, size=(self.n_platforms,)) * self.world_scale ) ms = max(self.max_size * 2, 2.0) sizes = ( self.np_random.uniform(2.0, ms, size=(self.n_platforms,)) * self.world_scale ) elif self.robot.startswith('humanoid'): gaps = ( self.np_random.uniform( self.min_gap, self.max_gap, size=(self.n_platforms,) ) * self.world_scale ) sizes = ( self.np_random.uniform( 1.0, self.max_size, size=(self.n_platforms,) ) * self.world_scale ) else: gaps = ( self.np_random.uniform( self.min_gap, self.max_gap, size=(self.n_platforms,) ) * self.world_scale ) sizes = ( self.np_random.uniform( 0.5, self.max_size, size=(self.n_platforms,) ) * self.world_scale ) self.gap_starts = [] self.platform_starts = [] for i in range(self.n_platforms): self.gap_starts.append(xpos) self.p.named.model.geom_size[f'gap-{i}'][0] = gaps[i] / 2 self.p.named.model.geom_pos[f'gap-{i}'][0] = xpos + gaps[i] / 2 xpos += gaps[i] self.platform_starts.append(xpos) self.p.named.model.geom_size[f'platform-{i}'][0] = sizes[i] / 2 self.p.named.model.geom_pos[f'platform-{i}'][0] = ( xpos + sizes[i] / 2 ) xpos += sizes[i] def next_gap_platform_index(self): xpos = self.robot_pos[0] nxp = bisect_left(self.platform_starts, xpos) nxg = bisect_left(self.gap_starts, xpos) return nxg, nxp def get_observation(self): nxg, nxp = self.next_gap_platform_index() xpos = self.robot_pos[0] if nxg < len(self.gap_starts): next_gap_d = self.gap_starts[nxg] - xpos else: next_gap_d = 1.0 if nxp < len(self.platform_starts): next_platform_d = self.platform_starts[nxp] - xpos else: next_platform_d = 1.0 next_platform_reached = nxp < self.max_platforms_reached return { 'observation': super().get_observation(), 'next_gap_platform': np.array( [next_gap_d, next_platform_d, not next_platform_reached], dtype=np.float32 ), } def on_step_single_frame(self): for c in self.p.data.contact: names = self.p.named.model.name_geomadr.axes.row.names nams = sorted([names[c.geom1], names[c.geom2]]) if nams[0].startswith('gap') and nams[1].startswith('robot/'): self.touched_gap = True break def step_simulation(self): super().step_simulation() self.max_platforms_reached = max( self.max_platforms_reached, self.next_gap_platform_index()[1] ) def step(self, action): mpbefore = self.max_platforms_reached self.touched_gap = False xpos1 = self.robot_pos[0] obs, reward, terminated, truncated, info = super().step(action) xpos2 = self.robot_pos[0] score = 1 if self.max_platforms_reached > mpbefore else 0 info['score'] = score info['shaped_reward'] = xpos2 - xpos1 reward = info['shaped_reward'] if self.shaped else score if info.get('fell_over', False): terminated = True reward = -1 if self.touched_gap: terminated = True reward = -1 info['score'] -= 1 return obs, reward, terminated, truncated, info
bipedal-skills-main
bisk/tasks/gaps.py
# Copyright (c) 2021-present, Facebook, Inc. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # from bisk.features.base import Featurizer _registry = {} def register_featurizer(name, cls): global _registry _registry[name] = cls def make_featurizer( features: str, p: 'dm_control.mujoco.Physics', robot: str, prefix: str = 'robot', *args, **kwargs, ) -> Featurizer: global _registry if features == 'joints': from bisk.features.joints import JointsFeaturizer return JointsFeaturizer(p, robot, prefix, *args, **kwargs) elif features == 'joints-relz': from bisk.features.joints import JointsRelZFeaturizer return JointsRelZFeaturizer(p, robot, prefix, *args, **kwargs) elif features in _registry: return _registry[features](p, robot, prefix, *args, **kwargs) else: raise ValueError(f'Unknown feature set {features}')
bipedal-skills-main
bisk/features/__init__.py
# Copyright (c) 2021-present, Facebook, Inc. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import logging import re from typing import List, Set import gym import numpy as np from bisk.features.base import Featurizer class JointsFeaturizer(Featurizer): ''' Featurizes joint observations (qpos, qvel) as well as contact forces (clipped to [-1,1]). ''' def __init__( self, p: 'dm_control.mujoco.Physics', robot: str, prefix: str, exclude: str = None ): super().__init__(p, robot, prefix, exclude) self.qpos_idx: List[int] = [] self.qvel_idx: List[int] = [] for jn in self.p.named.model.jnt_type.axes.row.names: if not jn.startswith(f'{self.prefix}/'): continue if exclude is not None and re.match(exclude, jn) is not None: continue typ = self.p.named.model.jnt_type[jn] qpos_adr = self.p.named.model.jnt_qposadr[jn] for i in range(self.n_qpos[typ]): self.qpos_idx.append(qpos_adr + i) qvel_adr = self.p.named.model.jnt_dofadr[jn] for i in range(self.n_qvel[typ]): self.qvel_idx.append(qvel_adr + i) self.cfrc_idx = [ r for r, k in enumerate(self.p.named.data.cfrc_ext.axes.row.names) if k.startswith(f'{self.prefix}/') and k != f'{self.prefix}/' and (exclude is None or re.match(exclude, k) is None) ] n_obs = len(self.qpos_idx) + len(self.qvel_idx) + len(self.cfrc_idx) * 6 self.observation_space = gym.spaces.Box( low=-np.inf, high=np.inf, shape=(n_obs,), dtype=np.float32 ) def __call__(self) -> np.ndarray: qpos = self.p.data.qpos[self.qpos_idx] qvel = self.p.data.qvel[self.qvel_idx] cfrc_ext = self.p.data.cfrc_ext[self.cfrc_idx] return np.concatenate( [qpos, qvel, np.clip(cfrc_ext.flat, -1, 1)] ).astype(np.float32) def feature_names(self) -> List[str]: names: List[str] = [] qp = self.qpos_names() names += [qp[i] for i in self.qpos_idx] qv = self.qvel_names() names += [qv[i] for i in self.qvel_idx] cn = self.cfrc_ext_names() for i in self.cfrc_idx: names += cn[i] for i in range(len(names)): names[i] = names[i].replace(f'{self.prefix}/', '') return names class JointsRelZFeaturizer(JointsFeaturizer): ''' JointFeaturizer that reports the robots's Z position as relative to the closest surface underneath it. ''' def __init__( self, p: 'mujoco.Physics', robot: str, prefix: str = 'robot', exclude: str = None, ): super().__init__(p, robot, prefix, exclude) self.robot_geoms: Set[int] = set() for i, p in enumerate(self.p.named.model.geom_bodyid.axes.row.names): if p.startswith(f'{self.prefix}/'): self.robot_geoms.add(i) # XXX Hacky lookup of z feature names = [':pz', 'slidez:p', 'rootz:p', 'root:pz'] for name in names: try: self.zpos_idx = self.feature_names().index(name) break except: continue def relz(self): from dm_control.mujoco.wrapper.mjbindings import mjlib # Find closest non-robot geom from torso downwards pos = self.p.named.data.xpos[f'{self.prefix}/torso'].copy() dir = np.array([0.0, 0.0, -1.0]) excl = self.p.named.model.geom_bodyid[f'{self.prefix}/torso'] id = np.array([0], dtype=np.int32) while True: d = mjlib.mj_ray( self.p.model.ptr, self.p.data.ptr, pos, dir, None, 1, excl, id ) if d < 0.0: # No geom hit break pos += dir * d if id[0] not in self.robot_geoms: break excl = self.p.model.geom_bodyid[id[0]] return self.p.named.data.xpos[f'{self.prefix}/torso', 'z'] - pos[2] def __call__(self) -> np.ndarray: obs = super().__call__() rz = self.relz() obs[self.zpos_idx] = rz return obs
bipedal-skills-main
bisk/features/joints.py
# Copyright (c) 2021-present, Facebook, Inc. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import logging from typing import Dict, List import gym import numpy as np log = logging.getLogger(__name__) class Featurizer: n_qpos: Dict[int, int] = { # qpos entries per joint type 0: 7, # mjenums.mjtJoint.mjJNT_FREE 1: 4, # mjenums.mjtJoint.mjJNT_BALL 2: 1, # mjenums.mjtJoint.mjJNT_SLIDE 3: 1, # mjenums.mjtJoint.mjJNT_HINGE } n_qvel: Dict[int, int] = { # qvel entries per joint type 0: 6, # mjenums.mjtJoint.mjJNT_FREE 1: 3, # mjenums.mjtJoint.mjJNT_BALL 2: 1, # mjenums.mjtJoint.mjJNT_SLIDE 3: 1, # mjenums.mjtJoint.mjJNT_HINGE } def __init__( self, p: 'dm_control.mujoco.Physics', robot: str, prefix: str = 'robot', exclude: str = None, ): self.p = p self.prefix = prefix self.observation_space: gym.spaces.Box = None def reset(self): pass def __call__(self) -> np.ndarray: raise NotImplementedError() def set_frame_of_reference(self): raise NotImplementedError() def feature_names(self) -> List[str]: raise NotImplementedError() def qpos_names(self) -> List[str]: names = ['' for i in range(len(self.p.data.qpos))] for jn in self.p.named.model.jnt_type.axes.row.names: typ = self.p.named.model.jnt_type[jn] adr = self.p.named.model.jnt_qposadr[jn] if typ == 0: names[adr + 0] = f'{jn}:px' names[adr + 1] = f'{jn}:py' names[adr + 2] = f'{jn}:pz' names[adr + 3] = f'{jn}:ow' names[adr + 4] = f'{jn}:ox' names[adr + 5] = f'{jn}:oy' names[adr + 6] = f'{jn}:oz' elif typ == 1: names[adr + 0] = f'{jn}:ow' names[adr + 1] = f'{jn}:ox' names[adr + 2] = f'{jn}:oy' names[adr + 3] = f'{jn}:oz' elif typ == 2 or typ == 3: names[adr] = f'{jn}:p' else: raise ValueError(f'Unknown joint type {typ}') return names def qvel_names(self) -> List[str]: names = ['' for i in range(len(self.p.data.qvel))] for jn in self.p.named.model.jnt_type.axes.row.names: typ = self.p.named.model.jnt_type[jn] adr = self.p.named.model.jnt_dofadr[jn] if typ == 0: names[adr + 0] = f'{jn}:lvx' names[adr + 1] = f'{jn}:lvy' names[adr + 2] = f'{jn}:lvz' names[adr + 3] = f'{jn}:avx' names[adr + 4] = f'{jn}:avy' names[adr + 5] = f'{jn}:avz' elif typ == 1: names[adr + 0] = f'{jn}:avx' names[adr + 1] = f'{jn}:avy' names[adr + 2] = f'{jn}:avz' elif typ == 2 or typ == 3: names[adr] = f'{jn}:v' else: raise ValueError(f'Unknown joint type {typ}') return names def cfrc_ext_names(self) -> List[List[str]]: names: List[List[str]] = [] for cn in self.p.named.data.cfrc_ext.axes.row.names: names.append( [f'{cn}:c{n}' for n in ['rx', 'ry', 'rz', 'tx', 'ty', 'tz']] ) return names def sensor_names(self) -> List[str]: from dm_control.mujoco.wrapper.mjbindings import enums as mjenums names = ['' for i in range(len(self.p.data.sensordata))] for sn in self.p.named.model.sensor_adr.axes.row.names: typ = self.p.named.model.sensor_type[sn] adr = self.p.named.model.sensor_adr[sn] if typ == mjenums.mjtSensor.mjSENS_GYRO: feats = ['avx', 'avy', 'avz'] elif ( typ == mjenums.mjtSensor.mjSENS_VELOCIMETER or typ == mjenums.mjtSensor.mjSENS_SUBTREELINVEL ): feats = ['lvx', 'lvy', 'lvz'] elif typ == mjenums.mjtSensor.mjSENS_ACCELEROMETER: feats = ['lax', 'lay', 'laz'] elif ( typ == mjenums.mjtSensor.mjSENS_FRAMEPOS or typ == mjenums.mjtSensor.mjSENS_SUBTREECOM ): feats = ['px', 'py', 'pz'] elif typ == mjenums.mjtSensor.mjSENS_JOINTPOS: feats = [''] elif typ == mjenums.mjtSensor.mjSENS_JOINTVEL: feats = [''] elif typ == mjenums.mjtSensor.mjSENS_FORCE: feats = ['fx', 'fy', 'fz'] elif typ == mjenums.mjtSensor.mjSENS_TORQUE: feats = ['tx', 'ty', 'tz'] elif typ == mjenums.mjtSensor.mjSENS_RANGEFINDER: feats = ['d'] elif typ == mjenums.mjtSensor.mjSENS_TOUCH: feats = ['f'] else: raise ValueError(f'Unsupported sensor type: {typ}') for i, f in enumerate(feats): names[adr + i] = f'{sn}:{f}' return names
bipedal-skills-main
bisk/features/base.py
# Copyright (c) 2021-present, Facebook, Inc. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import argparse import time import gym from dm_control import _render from dm_control.viewer import gui, renderer, viewer, views import bisk parser = argparse.ArgumentParser() parser.add_argument('task') parser.add_argument('robot') args = parser.parse_args() env_name = { 'hurdles': 'BiskHurdles-v1', 'limbo': 'BiskLimbo-v1', 'hurdleslimbo': 'BiskHurdlesLimbo-v1', 'gaps': 'BiskGaps-v1', 'stairs': 'BiskStairs-v1', 'goalwall': 'BiskGoalWall-v1', 'polebalance': 'BiskPoleBalance-v1', 'gototarget': 'BiskGoToTarget-v1', 'butterflies': 'BiskButterflies-v1', }[args.task.lower()] env = gym.make(env_name, robot=args.robot) print( f'timestep {env.p.model.opt.timestep}s x frameskip {env.frameskip} = dt {env.dt}s' ) width = 480 height = 480 title = f'{args.task} - {args.robot}' render_surface = None _MAX_FRONTBUFFER_SIZE = 2048 render_surface = _render.Renderer( max_width=_MAX_FRONTBUFFER_SIZE, max_height=_MAX_FRONTBUFFER_SIZE ) ren = renderer.OffScreenRenderer(env.p.model, render_surface) viewer_layout = views.ViewportLayout() viewport = renderer.Viewport(width, height) window = gui.RenderWindow(width, height, title) vw = viewer.Viewer(viewport, window.mouse, window.keyboard) ren.components += viewer_layout vw.initialize(env.p, ren, touchpad=False) env.seed(0) step = 0 def tick(): global step global obs if step == 0: obs = env.reset() #env.p.named.data.qvel['ball'][0:3] = [10, 3, 4] a = env.action_space.sample() a *= 0 ''' if step < 1: a[2] = 1 elif step < 100: a[0] = 1 else: a[2] = -1 ''' d = False obs, r, d, i = env.step(a) step += 1 if step > 200 or d: print(r) print(f'reset after {step} steps') step = 0 time.sleep(0.05) vw.render() def _tick(): viewport.set_size(*window.shape) tick() return ren.pixels window.event_loop(tick_func=_tick) window.close()
bipedal-skills-main
exp/testgui.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os import yaml def load_configs(file_path, ws_dir): with open(file_path, 'r') as f: config_dict = yaml.load(f, Loader=yaml.FullLoader) config_dict['log_dir'] = os.path.join(ws_dir, config_dict['log_dir']) config_dict['data']['raw_dataset_dir'] = os.path.join(ws_dir, config_dict['data']['raw_dataset_dir']) config_dict['data']['dataset_dir'] = os.path.join(ws_dir, config_dict['data']['dataset_dir']) config_dict['data']['bin_path'] = os.path.join(ws_dir, config_dict['data']['bin_path']) config_dict['data']['smpl_path'] = os.path.join(ws_dir, config_dict['data']['smpl_path']) config_dict['data']['uv_info'] = os.path.join(ws_dir, config_dict['data']['uv_info']) config_dict['data']['resample_idxs_path'] = os.path.join(ws_dir, config_dict['data']['resample_idxs_path']) config_dict['data']['train_bin_path'] = os.path.join(ws_dir, config_dict['data']['train_bin_path']) config_dict['data']['interp_bin_path'] = os.path.join(ws_dir, config_dict['data']['interp_bin_path']) config_dict['data']['extrap_bin_path'] = os.path.join(ws_dir, config_dict['data']['extrap_bin_path']) if 'type' not in config_dict['data']: config_dict['data']['type'] = 'CAPE' if 'separate_detail' not in config_dict['data']: config_dict['data']['separate_detail'] = True return config_dict
AutoAvatar-main
utils/configs.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import numpy as np import os import torch import pickle from pytorch3d.io import load_ply # Classes ------------------------------------------------------------------------------------------------------- class DFaustJson(): """ DFaust .bin Structure: 'subject' 'seqs' for seq in seqs: 'id' 'seq_name' 'frames' for frame in frames: 'ply_path' 'poses' """ def __init__(self, bin_path=None): self.data = None if bin_path is not None: self.load_bin_file(bin_path) def load_bin_file(self, bin_path): with open(bin_path, 'rb') as f: self.data = pickle.load(f) def dump_bin_file(self, bin_path): with open(bin_path, 'wb') as f: pickle.dump(self.data, f) def append_frames(self, frames, ply_path, poses): frames.append({ 'ply_path': ply_path, 'poses': poses }) return frames def append_seqs(self, seqs, seq_name, frames): seqs.append({ 'id': len(seqs), 'seq_name': seq_name, 'frames': frames }) return seqs def set_data(self, subject, seqs): self.data = { 'subject': subject, 'seqs': seqs } def num_of_seqs(self): return len(self.data['seqs']) def num_of_frames(self): count = 0 for seq in self.data['seqs']: count += len(seq['frames']) return count
AutoAvatar-main
utils/DFaust.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import numpy as np import os import torch import torch.nn as nn import torch.nn.functional as F from pytorch3d.renderer import ( PerspectiveCameras, AmbientLights, RasterizationSettings, MeshRenderer, MeshRasterizer, HardPhongShader, TexturesVertex, rasterize_meshes ) from pytorch3d.structures import Meshes from pytorch3d.io import load_obj from pytorch3d.renderer import rasterize_meshes from numba import jit import copy import open3d as o3d # Functions ----------------------------------------------------------------------------------------------------- def render_mesh(verts, faces, R, t, f, image_size=(512, 512), colors=None, simplify_mesh=False): """ :param verts: (N, 3) :param faces: (F, 3) """ device = verts.device f_th = torch.tensor(f, dtype=torch.float32, device=device)[None] image_size_th = torch.tensor(image_size, dtype=torch.int32, device=device)[None] cameras = PerspectiveCameras(focal_length=f_th, R=R[None], T=t[None], device=device, image_size=image_size_th) raster_settings = RasterizationSettings( image_size=image_size, blur_radius=0.0, faces_per_pixel=1, ) lights = AmbientLights(device=device) renderer = MeshRenderer( rasterizer=MeshRasterizer( cameras=cameras, raster_settings=raster_settings ), shader=HardPhongShader( device=device, cameras=cameras, lights=lights ) ) if not simplify_mesh: if colors is not None: mesh = Meshes(verts=verts[None], faces=faces[None], textures=TexturesVertex(colors[None])) else: mesh = Meshes(verts=verts[None], faces=faces[None]) normals = (mesh.verts_normals_padded() + 1) / 2 mesh = Meshes(verts=verts[None], faces=faces[None], textures=TexturesVertex(normals)) else: if colors is None: mesh = Meshes(verts=verts[None], faces=faces[None]) normals = (mesh.verts_normals_padded() + 1) / 2 colors = normals[0] mesh_o3d = o3d.geometry.TriangleMesh() mesh_o3d.vertices = o3d.utility.Vector3dVector(verts.cpu().numpy()) mesh_o3d.triangles = o3d.utility.Vector3iVector(faces.cpu().numpy()) mesh_o3d.vertex_colors = o3d.utility.Vector3dVector(colors.cpu().numpy()) mesh_o3d = mesh_o3d.simplify_quadric_decimation(int(faces.shape[0] * 0.1)) verts, faces, colors = torch.from_numpy(np.asarray(mesh_o3d.vertices)), torch.from_numpy(np.asarray(mesh_o3d.triangles)), torch.from_numpy(np.asarray(mesh_o3d.vertex_colors)) mesh = Meshes(verts=verts[None].float(), faces=faces[None], textures=TexturesVertex(colors[None].float())).to(device) images = renderer(mesh)[0, ..., :3].clip(min=0, max=1) return images def parse_uv_info(obj_path): verts, faces_tuple, aux_tuple = load_obj(obj_path) faces = faces_tuple.verts_idx.numpy() faces_uv = faces_tuple.textures_idx.numpy() verts_uv = aux_tuple.verts_uvs.numpy() verts_uv = verts_uv * 2 - 1 #(1 - verts_uv) * 2 - 1 N = verts.shape[0] F = faces.shape[0] M = verts_uv.shape[0] assert faces_uv.shape == (F, 3) print(N, F, M) v2uv = np.zeros((N, 10), dtype=np.int32) - 1 v2uv_count = np.zeros((N,), dtype=np.int32) @jit(nopython=True) def func(faces, faces_uv, v2uv, v2uv_count): for i in range(F): for k in range(3): v = faces[i, k] uv = faces_uv[i, k] included = False for j in range(10): if v2uv[v, j] == uv: included = True break if not included: v2uv[v, v2uv_count[v]] = uv v2uv_count[v] += 1 for i in range(N): for k in range(10): if v2uv[i, k] == -1: v2uv[i, k] = v2uv[i, 0] return v2uv, v2uv_count v2uv, v2uv_count = func(faces, faces_uv, v2uv, v2uv_count) print(np.amin(v2uv_count), np.amax(v2uv_count)) v2uv = v2uv[:, :np.amax(v2uv_count)] return verts_uv, faces_uv, v2uv, faces def compute_per_pixel_verts_idx_bary_weights(verts_uv, faces_uv, v2uv, uv_size): # Compute uv2v N, K = v2uv.shape M = verts_uv.shape[0] uv2v = torch.zeros((M,), dtype=torch.long) - 1 for i in range(K): uv2v[v2uv[:, i]] = torch.arange(N) # Rasterization verts_uv = -verts_uv verts_uv_ = torch.cat([verts_uv, torch.ones((M, 1), dtype=torch.float)], dim=-1) meshes = Meshes(verts=verts_uv_[None].cuda(), faces=faces_uv[None].cuda()) pix_to_face, _, barycentric, _ = rasterize_meshes(meshes, uv_size, faces_per_pixel=1) #, blur_radius=0.0001, clip_barycentric_coords=True) assert pix_to_face.shape == (1, uv_size, uv_size, 1) and barycentric.shape == (1, uv_size, uv_size, 1, 3) faces_uv_ = torch.cat([-torch.ones((1, 3), dtype=torch.long), faces_uv], dim=0) # (1 + F, 3) pix_to_uv = faces_uv_[pix_to_face[0, ..., 0] + 1] assert pix_to_uv.shape == (uv_size, uv_size, 3) uv2v_ = torch.cat([-torch.ones((1,), dtype=torch.long), uv2v], dim=0) # (1 + M,) pix_to_v = uv2v_[pix_to_uv + 1] assert pix_to_v.shape == (uv_size, uv_size, 3) return pix_to_v, barycentric[0, ..., 0, :] # Classes ------------------------------------------------------------------------------------------------------- class UVRender(nn.Module): def __init__(self, args, verts_uv, faces_uv, v2uv): super().__init__() self.args = copy.deepcopy(args) self.register_buffer('verts_uv', verts_uv) self.register_buffer('faces_uv', faces_uv) self.register_buffer('v2uv', v2uv) pix_to_v, bary_w = compute_per_pixel_verts_idx_bary_weights(verts_uv, faces_uv, v2uv, args['model']['uv_size']) self.register_buffer('pix_to_v', pix_to_v) self.register_buffer('bary_w', bary_w) def to_uv(self, verts): """ :param verts: (B, N, C) """ B, N, C = verts.shape verts_ = torch.cat([torch.zeros((B, 1, C), dtype=torch.float, device=verts.device), verts], dim=1) # (B, 1 + N, C) pix_verts = verts_[:, self.pix_to_v + 1, :] # (B, H, W, 3, C) verts_uv = (pix_verts * self.bary_w[None, ..., None]).sum(dim=-2) # (B, H, W, C) assert verts_uv.shape == (B, self.args['model']['uv_size'], self.args['model']['uv_size'], C) return verts_uv.permute(0, 3, 1, 2).contiguous() def from_uv(self, verts_uv): """ :param verts_uv: (B, C, H, W) """ B, C, H, W = verts_uv.shape N, K = self.v2uv.shape grid = self.verts_uv[self.v2uv][None].expand(B, N, K, 2).contiguous() verts = F.grid_sample(verts_uv, grid, mode='bilinear', align_corners=False) # (B, C, N, K) assert verts.shape == (B, C, N, K) verts = verts.mean(dim=-1).permute(0, 2, 1).contiguous() return verts
AutoAvatar-main
utils/render.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os import torch def load_components(model, ckpt_dir, ckpt_itr, name): state_dict = model.state_dict() ckpt_state_dict = torch.load(os.path.join(ckpt_dir, 'ckpt', 'dyn_net_%06d.pth' % ckpt_itr), map_location='cpu') ckpt_state_dict = {key: value for key, value in ckpt_state_dict.items() if name in key} state_dict.update(ckpt_state_dict) model.load_state_dict(state_dict)
AutoAvatar-main
utils/io.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import openvdb as vdb import numpy as np import os import torch import torch.nn.functional as F import math from skimage import measure def build_smooth_conv3D(in_channels=1, out_channels=1, kernel_size=3, padding=1): smooth_conv = torch.nn.Conv3d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, padding=padding ) smooth_conv.weight.data = torch.ones( (kernel_size, kernel_size, kernel_size), dtype=torch.float32 ).reshape(in_channels, out_channels, kernel_size, kernel_size, kernel_size) / (kernel_size**3) smooth_conv.bias.data = torch.zeros(out_channels) return smooth_conv def reconstruction(net, cuda, calib_tensor, resolution, b_min, b_max, use_octree=False, num_samples=10000, transform=None, thresh=0.5, texture_net = None, poses=None, shapes=None): ''' Reconstruct meshes from sdf predicted by the network. :param net: a BasePixImpNet object. call image filter beforehead. :param cuda: cuda device :param calib_tensor: calibration tensor :param resolution: resolution of the grid cell :param b_min: bounding box corner [x_min, y_min, z_min] :param b_max: bounding box corner [x_max, y_max, z_max] :param use_octree: whether to use octree acceleration :param num_samples: how many points to query each gpu iteration :return: marching cubes results. ''' # Then we define the lambda function for cell evaluation color_flag = False if texture_net is None else True def eval_func(points): samples = points.t().unsqueeze(0).to(cuda) # pred = net.query(samples, calib_tensor)[0][0] pred = net(samples, poses, shapes)[0] return pred def batch_eval(points, num_samples=num_samples): num_pts = points.shape[1] sdf = [] num_batches = num_pts // num_samples for i in range(num_batches): sdf.append( eval_func(points[:, i * num_samples:i * num_samples + num_samples]) ) if num_pts % num_samples: sdf.append( eval_func(points[:, num_batches * num_samples:]) ) if num_pts == 0: return None sdf = torch.cat(sdf) return sdf # Then we evaluate the grid max_level = int(math.log2(resolution)) sdf = eval_progressive(batch_eval, 4, max_level, cuda, b_min, b_max, thresh) # calculate matrix mat = np.eye(4) length = b_max - b_min mat[0, 0] = length[0] / sdf.shape[0] mat[1, 1] = length[1] / sdf.shape[1] mat[2, 2] = length[2] / sdf.shape[2] mat[0:3, 3] = b_min # Finally we do marching cubes try: verts, faces, normals, values = measure.marching_cubes(sdf, thresh, gradient_direction='ascent') except: print('error cannot marching cubes') return -1 # grid = vdb.FloatGrid(1.0) # grid.copyFromArray(sdf) # verts, quads = grid.convertToQuads() # faces = np.zeros((quads.shape[0] * 2, 3), dtype=np.uint32) # faces[:quads.shape[0], :] = quads[:, [0, 2, 1]] # faces[quads.shape[0]:, :] = quads[:, [0, 3, 2]] # verts = np.zeros((10, 3), dtype=np.float32) # faces = np.zeros((10, 3), dtype=np.int32) # transform verts into world coordinate system verts = np.matmul(mat[:3, :3], verts.T) + mat[:3, 3:4] verts = verts.T if np.linalg.det(mat) > 0: faces = faces[:,[0,2,1]] if color_flag: torch_verts = torch.Tensor(verts).unsqueeze(0).permute(0,2,1).to(cuda) with torch.no_grad(): _, last_layer_feature, point_local_feat = net.query(torch_verts, calib_tensor, return_last_layer_feature=True) vertex_colors = texture_net.query(point_local_feat, last_layer_feature) vertex_colors = vertex_colors.squeeze(0).permute(1,0).detach().cpu().numpy() return verts, faces, vertex_colors #, normals, values, vertex_colors else: return verts, faces #, normals, values def eval_progressive(batch_eval, min_level, max_level, cuda, b_min, b_max, thresh=0.5): steps = [i for i in range(min_level, max_level+1)] b_min = torch.tensor(b_min).to(cuda) b_max = torch.tensor(b_max).to(cuda) # init smooth_conv3x3 = build_smooth_conv3D(in_channels=1, out_channels=1, kernel_size=3, padding=1).to(cuda) arrange = torch.linspace(0, 2**steps[-1], 2**steps[0]+1).long().to(cuda) coords = torch.stack(torch.meshgrid([ arrange, arrange, arrange ])) # [3, 2**step+1, 2**step+1, 2**step+1] coords = coords.view(3, -1).t() # [N, 3] calculated = torch.zeros( (2**steps[-1]+1, 2**steps[-1]+1, 2**steps[-1]+1), dtype=torch.bool ).to(cuda) gird8_offsets = torch.stack(torch.meshgrid([ torch.tensor([-1, 0, 1]), torch.tensor([-1, 0, 1]), torch.tensor([-1, 0, 1]) ])).int().to(cuda).view(3, -1).t() #[27, 3] with torch.no_grad(): for step in steps: resolution = 2**step + 1 stride = 2**(steps[-1]-step) if step == steps[0]: coords2D = coords.float() / (2**steps[-1]+1) * (b_max - b_min) + b_min sdf_all = batch_eval( coords2D.t(), ).view(resolution, resolution, resolution) coords_accum = coords / stride coords_accum = coords_accum.long() calculated[coords[:, 0], coords[:, 1], coords[:, 2]] = True else: valid = F.interpolate( (sdf_all>thresh).view(1, 1, *sdf_all.size()).float(), size=resolution, mode="trilinear", align_corners=True )[0, 0] sdf_all = F.interpolate( sdf_all.view(1, 1, *sdf_all.size()), size=resolution, mode="trilinear", align_corners=True )[0, 0] coords_accum *= 2 is_boundary = (valid > 0.0) & (valid < 1.0) is_boundary = smooth_conv3x3(is_boundary.float().view(1, 1, *is_boundary.size()))[0, 0] > 0 is_boundary[coords_accum[:, 0], coords_accum[:, 1], coords_accum[:, 2]] = False # coords = is_boundary.nonzero() * stride coords = torch.nonzero(is_boundary) * stride coords2D = coords.float() / (2**steps[-1]+1) * (b_max - b_min) + b_min # coords2D = coords.float() / (2**steps[-1]+1) sdf = batch_eval( coords2D.t(), ) #[N] if sdf is None: continue if sdf is not None: sdf_all[is_boundary] = sdf voxels = coords / stride voxels = voxels.long() coords_accum = torch.cat([ voxels, coords_accum ], dim=0).unique(dim=0) calculated[coords[:, 0], coords[:, 1], coords[:, 2]] = True for n_iter in range(14): sdf_valid = valid[voxels[:, 0], voxels[:, 1], voxels[:, 2]] idxs_danger = ((sdf_valid==1) & (sdf<thresh)) | ((sdf_valid==0) & (sdf>thresh)) #[N,] coords_danger = coords[idxs_danger, :] #[N, 3] if coords_danger.size(0) == 0: break coords_arround = coords_danger.int() + gird8_offsets.view(-1, 1, 3) * stride coords_arround = coords_arround.reshape(-1, 3).long() coords_arround = coords_arround.unique(dim=0) coords_arround[:, 0] = coords_arround[:, 0].clamp(0, calculated.size(0)-1) coords_arround[:, 1] = coords_arround[:, 1].clamp(0, calculated.size(1)-1) coords_arround[:, 2] = coords_arround[:, 2].clamp(0, calculated.size(2)-1) coords = coords_arround[ calculated[coords_arround[:, 0], coords_arround[:, 1], coords_arround[:, 2]] == False ] if coords.size(0) == 0: break coords2D = coords.float() / (2**steps[-1]+1) * (b_max - b_min) + b_min # coords2D = coords.float() / (2**steps[-1]+1) sdf = batch_eval( coords2D.t(), ) #[N] voxels = coords / stride voxels = voxels.long() sdf_all[voxels[:, 0], voxels[:, 1], voxels[:, 2]] = sdf coords_accum = torch.cat([ voxels, coords_accum ], dim=0).unique(dim=0) calculated[coords[:, 0], coords[:, 1], coords[:, 2]] = True return sdf_all.data.cpu().numpy()
AutoAvatar-main
utils/implicit.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import numpy as np import pickle import os import torch import torch.nn.functional as F from pytorch3d.ops import norm_laplacian, sample_points_from_meshes, knn_points, knn_gather from pytorch3d.structures import Meshes, Pointclouds, utils as struct_utils from pytorch3d.io import load_ply from pytorch3d import _C from pytorch3d.renderer import TexturesVertex from pytorch3d.transforms import axis_angle_to_quaternion import smplx from smplx.utils import SMPLOutput from smplx.lbs import blend_shapes, vertices2joints, batch_rodrigues, batch_rigid_transform # Functions ----------------------------------------------------------------------------------------------------- def load_smpl(args): if args['data']['type'] == 'CAPE': ply_path = os.path.join(args['data']['raw_dataset_dir'], 'minimal_body_shape', args['data']['subject'], '%s_minimal.ply' % args['data']['subject']) elif args['data']['type'] == 'DFaust': ply_path = os.path.join(args['data']['dataset_dir'], 'smpl_poses', args['data']['subject'], 'v_template.ply') v_template, _ = load_ply(ply_path) smpl_model = MySMPL(args['data']['smpl_path'], v_template=v_template) return smpl_model def taubin_smoothing( meshes: Meshes, lambd: float = 0.53, mu: float = -0.53, num_iter: int = 10 ) -> Meshes: """ Taubin smoothing [1] is an iterative smoothing operator for meshes. At each iteration verts := (1 - λ) * verts + λ * L * verts verts := (1 - μ) * verts + μ * L * verts This function returns a new mesh with smoothed vertices. Args: meshes: Meshes input to be smoothed lambd, mu: float parameters for Taubin smoothing, lambd > 0, mu < 0 num_iter: number of iterations to execute smoothing Returns: mesh: Smoothed input Meshes [1] Curve and Surface Smoothing without Shrinkage, Gabriel Taubin, ICCV 1997 """ verts = meshes.verts_packed() # V x 3 edges = meshes.edges_packed() # E x 3 for _ in range(num_iter): L = norm_laplacian(verts, edges) total_weight = torch.sparse.sum(L, dim=1).to_dense().view(-1, 1) verts = (1 - lambd) * verts + lambd * torch.mm(L, verts) / (total_weight + 1e-10) # pyre-ignore L = norm_laplacian(verts, edges) total_weight = torch.sparse.sum(L, dim=1).to_dense().view(-1, 1) verts = (1 - mu) * verts + mu * torch.mm(L, verts) / (total_weight + 1e-10) verts_list = struct_utils.packed_to_list( verts, meshes.num_verts_per_mesh().tolist() ) mesh = Meshes(verts=list(verts_list), faces=meshes.faces_list()) return mesh def compute_adjacent_matrix(parents, n_rings): """ :param parents: (J,) """ J = parents.shape[0] W = torch.zeros(J, J - 1) for i in range(J - 1): W[i + 1, i] += 1.0 parent = parents[i+1] for j in range(n_rings): W[parent, i] += 1.0 if parent == 0: break parent = parents[parent] # W /= W.sum(0, keepdim=True) + 1e-16 return W def sample_igr_pts(verts, faces, bbmin, bbmax, args): """ :param verts: (B, N, 3) :param faces: (B, F, 3) :param bbmin / bbmax: (B, 3) """ B, N, _ = verts.shape meshes = Meshes(verts=verts, faces=faces) if not args['model']['use_detail']: surf_pts, surf_normals = sample_points_from_meshes(meshes, num_samples=args['train']['n_pts_scan'], return_normals=True) else: normals = meshes.verts_normals_padded() meshes = Meshes(verts=verts, faces=faces, textures=TexturesVertex(normals)) surf_pts, surf_normals = sample_points_from_meshes(meshes, num_samples=args['train']['n_pts_scan'], return_textures=True) surf_normals = F.normalize(surf_normals, p=2, dim=-1) igr_pts = surf_pts[:, :args['train']['n_pts_scan_igr']] + torch.normal(0, args['train']['pts_igr_sigma'], (B, args['train']['n_pts_scan_igr'], 3), device=verts.device) igr_pts = torch.minimum(torch.maximum(igr_pts, bbmin[:, None].expand(B, args['train']['n_pts_scan_igr'], 3)), bbmax[:, None].expand(B, args['train']['n_pts_scan_igr'], 3)) bbox_pts = torch.rand((B, args['train']['n_pts_bbox_igr'], 3), device=verts.device) * (bbmax - bbmin)[:, None] + bbmin[:, None] rand_pts = torch.cat([igr_pts, bbox_pts], dim=1) return surf_pts, surf_normals, igr_pts, bbox_pts, rand_pts def _point_to_edge_distance( point: torch.Tensor, s0, s1 ) -> torch.Tensor: """ Computes the squared euclidean distance of points to edges. Modified from https://github.com/facebookresearch/pytorch3d/issues/613 Args: point: FloatTensor of shape (P, 3) edge: FloatTensor of shape (P, 2, 3) Returns: dist: FloatTensor of shape (P,) x: FloatTensor of shape (P, 3) If a, b are the start and end points of the segments, we parametrize a point p as x(t) = a + t * (b - a) To find t which describes p we minimize (x(t) - p) ^ 2 Note that p does not need to live in the space spanned by (a, b) """ s01 = s1 - s0 norm_s01 = (s01 * s01).sum(dim=-1) same_edge = norm_s01 < 1e-8 t = torch.where(same_edge, torch.ones_like(norm_s01) * 0.5, (s01 * (point - s0)).sum(dim=-1) / norm_s01) t = torch.clamp(t, min=0.0, max=1.0)[..., None] x = s0 + t * s01 dist = ((x - point) * (x - point)).sum(dim=-1).sqrt() return dist, x def _point_to_bary(point: torch.Tensor, a, b, c) -> torch.Tensor: """ Computes the barycentric coordinates of point wrt triangle (tri) Note that point needs to live in the space spanned by tri = (a, b, c), i.e. by taking the projection of an arbitrary point on the space spanned by tri. Modified from https://github.com/facebookresearch/pytorch3d/issues/613 Args: point: FloatTensor of shape (P, 3) tri: FloatTensor of shape (3, 3) Returns: bary: FloatTensor of shape (P, 3) """ assert point.dim() == 2 and point.shape[1] == 3 P, _ = point.shape assert a.shape == (P, 3) and b.shape == (P, 3) and c.shape == (P, 3) v0 = b - a v1 = c - a v2 = point - a d00 = (v0 * v0).sum(dim=-1) d01 = (v0 * v1).sum(dim=-1) d11 = (v1 * v1).sum(dim=-1) d20 = (v2 * v0).sum(dim=-1) d21 = (v2 * v1).sum(dim=-1) denom = d00 * d11 - d01 * d01 + 1e-8 s2 = (d11 * d20 - d01 * d21) / denom s3 = (d00 * d21 - d01 * d20) / denom s1 = 1.0 - s2 - s3 bary = torch.stack([s1, s2, s3], dim=-1) return bary def proj_pts_to_mesh(pts, verts, faces, verts_feat=None, scale=1000, return_idxs=False): """ :param pts: (B, M, 3) :param verts: (B, N, 3) :param faces: (B, F, 3) :param verts_feat: (B, N, C) """ B, M, _ = pts.shape N = verts.shape[1] F = faces.shape[1] pts = pts * scale verts = verts * scale meshes = Meshes(verts=verts, faces=faces) pcls = Pointclouds(pts) assert len(meshes) == B and len(pcls) == B # packed representation for pointclouds points = pcls.points_packed() # (P, 3) points_first_idx = pcls.cloud_to_packed_first_idx() max_points = pcls.num_points_per_cloud().max().item() assert torch.allclose(points, pts.view(-1, 3)) # packed representation for faces verts_packed = meshes.verts_packed() faces_packed = meshes.faces_packed() tris = verts_packed[faces_packed] # (T, 3, 3) tris_first_idx = meshes.mesh_to_faces_packed_first_idx() max_tris = meshes.num_faces_per_mesh().max().item() verts_normals_packed = meshes.verts_normals_packed() faces_normals_packed = meshes.faces_normals_packed() assert torch.allclose(verts_packed, verts.view(-1, 3)) #and torch.allclose(faces_packed, faces.view(-1, 3)) dists, idxs = _C.point_face_dist_forward( points, points_first_idx, tris, tris_first_idx, max_points, 1e-3 ) pts_faces_normals = faces_normals_packed[idxs] # (P, 3) pts_verts_normals = verts_normals_packed[faces_packed][idxs] # (P, 3, 3) pts_tris = tris[idxs] # (P, 3, 3) # Project pts to the plane of its closest triangle v, v0, v1, v2 = points, pts_tris[:, 0], pts_tris[:, 1], pts_tris[:, 2] sd = -((v0 - v) * pts_faces_normals).sum(dim=-1, keepdim=True) v_proj = -sd * pts_faces_normals + v # Check v_proj outside triangle inside = torch.isclose(sd[:, 0].abs(), dists.sqrt(), atol=1e-5) outside = torch.logical_not(inside) # Project pts to triangle edges if outside.sum().item() > 0: e01_dist, e01_v_proj = _point_to_edge_distance(v[outside], v0[outside], v1[outside]) e02_dist, e02_v_proj = _point_to_edge_distance(v[outside], v0[outside], v2[outside]) e12_dist, e12_v_proj = _point_to_edge_distance(v[outside], v1[outside], v2[outside]) e_dist = torch.stack([e01_dist, e02_dist, e12_dist], dim=0) # (3, P_) e_v_proj = torch.stack([e01_v_proj, e02_v_proj, e12_v_proj], dim=0) # (3, P_, 3) e_min_idxs = torch.argmin(e_dist, dim=0) # (P_,) v_proj_out = torch.gather(e_v_proj, dim=0, index=e_min_idxs[None, :, None].expand(1, e_dist.shape[1], 3))[0] v_proj[outside] = v_proj_out # Compute barycentric coordinates bary = _point_to_bary(v_proj, v0, v1, v2) # (P, 3) pts_normals = (pts_verts_normals * bary[..., None]).sum(dim=-2) sd = torch.norm(v - v_proj + 1e-8, dim=-1, p=2) * ((v - v_proj) * pts_normals).sum(dim=-1).sign() # Test if not torch.allclose(sd.abs(), dists.sqrt(), atol=1e-3): print('sd:', (sd.abs() - dists.sqrt()).abs().max(), ((sd.abs() - dists.sqrt()).abs() > 1e-3).sum()) # v_proj_rec = (pts_tris * bary[..., None]).sum(dim=-2) # if not torch.allclose(v_proj, v_proj_rec, atol=1e-3): # print('v_proj:', (v_proj - v_proj_rec).abs().max()) # if sd.isnan().sum().item() > 0: # print(sd.isnan().sum(), '/', sd.shape) if verts_feat is not None: C = verts_feat.shape[-1] assert verts_feat.shape == (B, N, C) verts_feat_packed = verts_feat.view(-1, C) pts_verts_feat = verts_feat_packed[faces_packed][idxs] # (P, 3, C) pts_feat = (pts_verts_feat * bary[..., None]).sum(dim=-2) pts_feat = pts_feat.view(B, M, C) else: pts_feat = None if not return_idxs: return sd.view(B, M) / scale, v_proj.view(B, M, 3) / scale, faces_packed[idxs].reshape(B, M, 3), bary.view(B, M, 3), pts_feat else: return sd.view(B, M) / scale, v_proj.view(B, M, 3) / scale, faces_packed[idxs].reshape(B, M, 3), bary.view(B, M, 3), pts_feat, idxs.view(B, M) def proj_pts_to_mesh_sample(pts, verts, faces, verts_feat=None, n_sample=100000): """ :param pts: (B, M, 3) :param verts: (B, N, 3) :param faces: (B, F, 3) :param verts_feat: (B, N, C) """ B, M, _ = pts.shape F = faces.shape[1] K = n_sample if verts_feat is None: verts_feat = torch.zeros_like(verts) C = verts_feat.shape[-1] meshes = Meshes(verts=verts, faces=faces, textures=TexturesVertex(verts_feat)) pts_v, pts_v_normals, pts_v_feat = sample_points_from_meshes(meshes, num_samples=n_sample, return_normals=True, return_textures=True) assert pts_v.shape == (B, K, 3) and pts_v_normals.shape == (B, K, 3) and pts_v_feat.shape == (B, K, C) # KNN _, idx, nn = knn_points(pts, pts_v, K=1, return_nn=True) assert torch.allclose(nn, knn_gather(pts_v, idx)) and idx.shape == (B, M, 1) nn_normals = knn_gather(pts_v_normals, idx) nn_feat = knn_gather(pts_v_feat, idx) assert nn.shape == (B, M, 1, 3) and nn_normals.shape == (B, M, 1, 3) and nn_feat.shape == (B, M, 1, C) nn, nn_normals, nn_feat = nn[:, :, 0], nn_normals[:, :, 0], nn_feat[:, :, 0] sd = torch.norm(pts - nn + 1e-8, dim=-1, p=2) * ((pts - nn) * nn_normals).sum(dim=-1).sign() return sd, nn, nn_normals, nn_feat def compute_signed_dst(pts, verts, faces, scale=1000): """ :param pts: (B, M, 3) :param verts: (B, N, 3) :param faces: (B, F, 3) """ B, M, _ = pts.shape F = faces.shape[1] pts = pts * scale verts = verts * scale meshes = Meshes(verts=verts, faces=faces) pcls = Pointclouds(pts) assert len(meshes) == B and len(pcls) == B # packed representation for pointclouds points = pcls.points_packed() # (P, 3) points_first_idx = pcls.cloud_to_packed_first_idx() max_points = pcls.num_points_per_cloud().max().item() assert torch.allclose(points, pts.view(-1, 3)) # packed representation for faces verts_packed = meshes.verts_packed() faces_packed = meshes.faces_packed() tris = verts_packed[faces_packed] # (T, 3, 3) tris_first_idx = meshes.mesh_to_faces_packed_first_idx() max_tris = meshes.num_faces_per_mesh().max().item() verts_normals_packed = meshes.verts_normals_packed() faces_normals_packed = meshes.faces_normals_packed() assert torch.allclose(verts_packed, verts.view(-1, 3)) and torch.allclose(faces_packed, faces.view(-1, 3)) dists, idxs = _C.point_face_dist_forward( points, points_first_idx, tris, tris_first_idx, max_points ) pts_faces_normals = faces_normals_packed[idxs] # (P, 3) pts_verts_normals = verts_normals_packed[faces_packed][idxs] # (P, 3, 3) pts_tris = tris[idxs] # (P, 3, 3) verts_normals = meshes.verts_normals_padded() _, nn, _, nn_normals = proj_pts_to_mesh_sample(pts, verts, faces, verts_feat=verts_normals, n_sample=100000) sd = dists.sqrt() * ((pts - nn) * nn_normals).sum(dim=-1).sign() return sd.view(B, M) / scale def scan_to_pred_errors(verts_scan, faces_scan, verts_pred, faces_pred): """ :param verts_scan: (B, N_s, 3) :param faces_scan: (B, F_s, 3) :param verts_pred: (B, N_p, 3) :param faces_pred: (B, F_p, 3) """ B, N_s, _ = verts_scan.shape N_p = verts_pred.shape[1] assert verts_scan.shape == (B, N_s, 3) and verts_pred.shape == (B, N_p, 3) meshes = Meshes(verts=verts_scan, faces=faces_scan) normals_scan = meshes.verts_normals_padded() meshes = Meshes(verts=verts_pred, faces=faces_pred) normals_pred = meshes.verts_normals_padded() assert normals_pred.shape == (B, N_p, 3) sd_err, _, _, _, normals_proj = proj_pts_to_mesh(verts_scan, verts_pred, faces_pred, normals_pred) cos_err = F.cosine_similarity(normals_scan, normals_proj, dim=-1) assert sd_err.shape == (B, N_s) and cos_err.shape == (B, N_s) return sd_err, cos_err def proj_pts_to_uv(pts, verts, faces, verts_uv, faces_uv, uv_feat=None): """ :param pts: (B, M, 3) :param verts: (B, N, 3) :param faces: (B, F, 3) :param verts_uv: (B, N_, 2) :param faces_uv: (B, F, 3) :param uv_feat: (B, C, H, W) """ B, M, _ = pts.shape N = verts.shape[1] F_ = faces.shape[1] N_ = verts_uv.shape[1] assert pts.shape == (B, M, 3) and verts.shape == (B, N, 3) and faces.shape == (B, F_, 3) and verts_uv.shape == (B, N_, 2) and faces_uv.shape == (B, F_, 3) sd, v_proj, _, bary_w, _, pts_faces_idxs = proj_pts_to_mesh(pts, verts, faces, return_idxs=True) pts_faces_idxs_packed = pts_faces_idxs.view(B * M,) # (P,) verts_uv_ = torch.cat([verts_uv, torch.zeros_like(verts_uv[:, :, :1])], dim=-1) # (B, N_, 3) meshes = Meshes(verts=verts_uv_, faces=faces_uv) verts_packed = meshes.verts_packed() faces_packed = meshes.faces_packed() pts_verts_uv = verts_packed[faces_packed][pts_faces_idxs_packed][:, :, :2] # (P, 3, 2) pts_uv = (pts_verts_uv * bary_w.view(B * M, 3, 1)).sum(dim=-2) pts_uv = pts_uv.view(B, M, 1, 2) _, C, H, W = uv_feat.shape assert uv_feat.shape == (B, C, H, W) # pts_feat = F.grid_sample(uv_feat, pts_uv, mode='bilinear', align_corners=False) # (B, C, M, 1) grid_sample = MyGridSample.apply pts_feat = grid_sample(pts_uv, uv_feat) # (B, C, M, 1) assert pts_feat.shape == (B, C, M, 1) pts_feat = pts_feat.permute(0, 2, 1, 3).squeeze(-1).contiguous() assert pts_feat.shape == (B, M, C) return sd, v_proj, pts_feat, pts_uv.view(B, M, 2) def lbs( betas, pose, v_template, shapedirs, posedirs, J_regressor, parents, lbs_weights, pose2rot: bool = True, ): ''' Performs Linear Blend Skinning with the given shape and pose parameters Parameters ---------- betas : torch.tensor BxNB The tensor of shape parameters pose : torch.tensor Bx(J + 1) * 3 The pose parameters in axis-angle format v_template torch.tensor BxVx3 The template mesh that will be deformed shapedirs : torch.tensor 1xNB The tensor of PCA shape displacements posedirs : torch.tensor Px(V * 3) The pose PCA coefficients J_regressor : torch.tensor JxV The regressor array that is used to calculate the joints from the position of the vertices parents: torch.tensor J The array that describes the kinematic tree for the model lbs_weights: torch.tensor N x V x (J + 1) The linear blend skinning weights that represent how much the rotation matrix of each part affects each vertex pose2rot: bool, optional Flag on whether to convert the input pose tensor to rotation matrices. The default value is True. If False, then the pose tensor should already contain rotation matrices and have a size of Bx(J + 1)x9 dtype: torch.dtype, optional Returns ------- verts: torch.tensor BxVx3 The vertices of the mesh after applying the shape and pose displacements. joints: torch.tensor BxJx3 The joints of the model ''' batch_size = max(betas.shape[0], pose.shape[0]) device, dtype = betas.device, betas.dtype # Add shape contribution v_shaped = v_template + blend_shapes(betas, shapedirs) # Get the joints # NxJx3 array J = vertices2joints(J_regressor, v_shaped) # 3. Add pose blend shapes # N x J x 3 x 3 ident = torch.eye(3, dtype=dtype, device=device) if pose2rot: rot_mats = batch_rodrigues(pose.view(-1, 3)).view( [batch_size, -1, 3, 3]) pose_feature = (rot_mats[:, 1:, :, :] - ident).view([batch_size, -1]) # (N x P) x (P, V * 3) -> N x V x 3 pose_offsets = torch.matmul( pose_feature, posedirs).view(batch_size, -1, 3) else: pose_feature = pose[:, 1:].view(batch_size, -1, 3, 3) - ident rot_mats = pose.view(batch_size, -1, 3, 3) pose_offsets = torch.matmul(pose_feature.view(batch_size, -1), posedirs).view(batch_size, -1, 3) v_posed = pose_offsets + v_shaped # 4. Get the global joint location J_transformed, A = batch_rigid_transform(rot_mats, J, parents, dtype=dtype) # 5. Do skinning: # W is N x V x (J + 1) W = lbs_weights.unsqueeze(dim=0).expand([batch_size, -1, -1]) # (N x V x (J + 1)) x (N x (J + 1) x 16) num_joints = J_regressor.shape[0] T = torch.matmul(W, A.view(batch_size, num_joints, 16)) \ .view(batch_size, -1, 4, 4) homogen_coord = torch.ones([batch_size, v_posed.shape[1], 1], dtype=dtype, device=device) v_posed_homo = torch.cat([v_posed, homogen_coord], dim=2) v_homo = torch.matmul(T, torch.unsqueeze(v_posed_homo, dim=-1)) verts = v_homo[:, :, :3, 0] return verts, J_transformed, A # Classes ------------------------------------------------------------------------------------------------------- class CAPEJson(): """ CAPE .bin Structure: 'subject' 'cloth_type' 'seqs' for seq in seqs: 'id' 'seq_name': longlong_athletics_trial1 'frames' for frame in frames: 'npz_path' 'smooth_mesh_path': New field!!! """ def __init__(self, bin_path=None): self.data = None if bin_path is not None: self.load_bin_file(bin_path) def load_bin_file(self, bin_path): with open(bin_path, 'rb') as f: self.data = pickle.load(f) def dump_bin_file(self, bin_path): with open(bin_path, 'wb') as f: pickle.dump(self.data, f) def append_frames(self, frames, npz_path): frames.append({ 'npz_path': npz_path }) return frames def append_seqs(self, seqs, seq_name, frames): seqs.append({ 'id': len(seqs), 'seq_name': seq_name, 'frames': frames }) return seqs def set_data(self, subject, cloth_type, seqs): self.data = { 'subject': subject, 'cloth_type': cloth_type, 'seqs': seqs } def num_of_seqs(self): return len(self.data['seqs']) def num_of_frames(self): count = 0 for seq in self.data['seqs']: count += len(seq['frames']) return count class MySMPL(smplx.SMPLLayer): def __init__( self, model_path: str, kid_template_path: str = '', data_struct = None, create_betas: bool = True, betas = None, num_betas: int = 10, create_global_orient: bool = True, global_orient = None, create_body_pose: bool = True, body_pose = None, create_transl: bool = True, transl = None, dtype=torch.float32, batch_size: int = 1, joint_mapper=None, gender: str = 'neutral', age: str = 'adult', vertex_ids = None, v_template = None, **kwargs ) -> None: super().__init__(model_path=model_path, kid_template_path=kid_template_path, data_struct=data_struct, betas=betas, num_betas=num_betas, global_orient=global_orient, body_pose=body_pose, transl=transl, dtype=dtype, batch_size=batch_size, joint_mapper=joint_mapper, gender=gender, age=age, vertex_ids=vertex_ids, v_template=v_template, **kwargs) self.register_buffer('pose_cano', torch.zeros((1, self.NUM_BODY_JOINTS * 3), dtype=dtype)) self.faces = self.faces_tensor def forward( self, poses, betas = None, body_pose = None, global_orient = None, transl = None, return_verts=True, return_full_pose: bool = False, pose2rot: bool = True, **kwargs ) -> SMPLOutput: ''' Forward pass for the SMPL model Parameters ---------- global_orient: torch.tensor, optional, shape Bx3 If given, ignore the member variable and use it as the global rotation of the body. Useful if someone wishes to predicts this with an external model. (default=None) betas: torch.tensor, optional, shape BxN_b If given, ignore the member variable `betas` and use it instead. For example, it can used if shape parameters `betas` are predicted from some external model. (default=None) body_pose: torch.tensor, optional, shape Bx(J*3) If given, ignore the member variable `body_pose` and use it instead. For example, it can used if someone predicts the pose of the body joints are predicted from some external model. It should be a tensor that contains joint rotations in axis-angle format. (default=None) transl: torch.tensor, optional, shape Bx3 If given, ignore the member variable `transl` and use it instead. For example, it can used if the translation `transl` is predicted from some external model. (default=None) return_verts: bool, optional Return the vertices. (default=True) return_full_pose: bool, optional Returns the full axis-angle pose vector (default=False) Returns ------- ''' transl, global_orient, body_pose = poses[:, :3], poses[:, 3:6], poses[:, 6:] apply_trans = True full_pose = torch.cat([global_orient, body_pose], dim=1) batch_size = poses.shape[0] betas = torch.zeros([batch_size, self.num_betas], dtype=self.dtype, device=poses.device) vertices, joints, A = lbs(betas, full_pose, self.v_template, self.shapedirs, self.posedirs, self.J_regressor, self.parents, self.lbs_weights, pose2rot=pose2rot) joints = self.vertex_joint_selector(vertices, joints) # Map the joints to the current dataset if self.joint_mapper is not None: joints = self.joint_mapper(joints) if apply_trans: joints += transl.unsqueeze(dim=1) vertices += transl.unsqueeze(dim=1) output = SMPLOutput(vertices=vertices if return_verts else None, global_orient=global_orient, body_pose=body_pose, joints=joints, betas=betas, full_pose=full_pose if return_full_pose else None) output.A = A return output @classmethod def compute_poses_quat(cls, poses): """ :param poses: (B, 69) """ B, _ = poses.shape J = cls.NUM_BODY_JOINTS poses = poses.view(B, J, 3) poses_quat = axis_angle_to_quaternion(poses) assert poses_quat.shape == (B, J, 4) return poses_quat SMPL_JOINT_NAMES = [ 'pelvis', 'left_hip', 'right_hip', 'spine1', 'left_knee', 'right_knee', 'spine2', 'left_ankle', 'right_ankle', 'spine3', 'left_foot', 'right_foot', 'neck', 'left_collar', 'right_collar', 'head', 'left_shoulder', 'right_shoulder', 'left_elbow', 'right_elbow', 'left_wrist', 'right_wrist', 'left_hand', 'right_hand' ] def batched_gradient(features): """ Compute gradient of a batch of feature maps :param features: a 3D tensor for a batch of feature maps, dim: (N, C, H, W) :return: gradient maps of input features, dim: (N, 2*C, H, W), the last row and column are padded with zeros (N, 0:C, H, W) = dI/dx, (N, C:2C, H, W) = dI/dy """ H = features.size(-2) W = features.size(-1) C = features.size(1) N = features.size(0) grad_x = (features[:, :, :, 2:] - features[:, :, :, :W - 2]) / 2.0 grad_x = F.pad(grad_x, (1, 1, 0, 0), mode='replicate') grad_y = (features[:, :, 2:, :] - features[:, :, :H - 2, :]) / 2.0 grad_y = F.pad(grad_y, (0, 0, 1, 1), mode='replicate') grad = torch.cat([grad_x.view(N, C, H, W), grad_y.view(N, C, H, W)], dim=1) return grad class MyGridSample(torch.autograd.Function): @staticmethod def forward(ctx, grid, feat): vert_feat = F.grid_sample(feat, grid, mode='bilinear', padding_mode='zeros', align_corners=True).detach() ctx.save_for_backward(feat, grid) return vert_feat @staticmethod def backward(ctx, grad_output): feat, grid = ctx.saved_tensors # Gradient for grid N, C, H, W = feat.shape _, Hg, Wg, _ = grid.shape feat_grad = batched_gradient(feat) # dim: (N, 2*C, H, W) grid_grad = F.grid_sample(feat_grad, grid, mode='bilinear', padding_mode='zeros', align_corners=True) # dim: (N, 2*C, Hg, Wg) grid_grad = grid_grad.view(N, 2, C, Hg, Wg).permute(0, 3, 4, 2, 1).contiguous() # dim: (N, Hg, Wg, C, 2) grad_output_perm = grad_output.permute(0, 2, 3, 1).contiguous() # dim: (N, Hg, Wg, C) grid_grad = torch.bmm(grad_output_perm.view(N * Hg * Wg, 1, C), grid_grad.view(N * Hg * Wg, C, 2)).view(N, Hg, Wg, 2) grid_grad[:, :, :, 0] = grid_grad[:, :, :, 0] * (W - 1) / 2 grid_grad[:, :, :, 1] = grid_grad[:, :, :, 1] * (H - 1) / 2 # Gradient for feat feat_d = feat.detach() feat_d.requires_grad = True grid_d = grid.detach() grid_d.requires_grad = True with torch.enable_grad(): vert_feat = F.grid_sample(feat_d, grid_d, mode='bilinear', padding_mode='zeros', align_corners=True) vert_feat.backward(grad_output.detach()) feat_grad = feat_d.grad return grid_grad, feat_grad
AutoAvatar-main
utils/CAPE.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import numpy as np import os import copy import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.modules import padding from torch.nn.modules.module import Module class Embedder(nn.Module): def __init__(self, nch, n_freq): super().__init__() self.nch = nch self.n_freq = n_freq self.out_ch = nch self.freq_fn = [(1, lambda x: x)] for i in range(n_freq): for fn in [torch.sin, torch.cos]: self.freq_fn.append((2 ** i, fn)) self.out_ch += nch def forward(self, x): out = torch.cat([fn(x * freq) for freq, fn in self.freq_fn], dim=-1) assert out.shape[-1] == self.out_ch return out class MLP(nn.Module): def __init__(self, nchs, skips, act, w_norm, act_last, w_norm_last, init_zero_last=False): super().__init__() self.nchs = copy.deepcopy(nchs) self.skips = copy.deepcopy(skips) self.mlp = nn.ModuleList() for i in range(len(nchs) - 1): in_ch = nchs[i] if i not in skips else nchs[i] + nchs[0] out_ch = nchs[i + 1] if i < len(nchs) - 2: layer = nn.utils.weight_norm(nn.Linear(in_ch, out_ch)) if w_norm else nn.Linear(in_ch, out_ch) else: assert i == len(nchs) - 2 layer = nn.utils.weight_norm(nn.Linear(in_ch, out_ch)) if w_norm_last else nn.Linear(in_ch, out_ch) if init_zero_last: torch.nn.init.zeros_(layer.weight) if hasattr(layer, 'bias') and layer.bias is not None: torch.nn.init.zeros_(layer.bias) self.mlp.append(layer) if act == 'softplus': self.act = nn.Softplus(beta=100, threshold=20) elif act == 'linear': self.act = nn.Identity() else: raise NotImplementedError('Not implement activation type \'%s\'!' % act) if act_last == 'softplus': self.act_last = nn.Softplus(beta=100, threshold=20) elif act_last == 'linear': self.act_last = nn.Identity() else: raise NotImplementedError('Not implement activation type \'%s\'!' % act_last) def forward(self, x): x_ = x for i in range(len(self.mlp)): if i in self.skips: x_ = torch.cat([x_, x], dim=-1) x_ = self.mlp[i](x_) x_ = self.act(x_) if i < len(self.mlp) - 1 else self.act_last(x_) return x_ class Conv2dBias(nn.Conv2d): def __init__(self, in_ch, out_ch, kernel_size, size, stride, padding, use_bias=True, *args, **kwargs): super().__init__(in_ch, out_ch, bias=False, kernel_size=kernel_size, stride=stride, padding=padding, *args, **kwargs) self.use_bias = use_bias if self.use_bias: self.register_parameter('bias', nn.Parameter(torch.zeros(1, out_ch, size, size), requires_grad=True)) def forward(self, x): out = F.conv2d(x, self.weight, bias=None, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups) if self.use_bias: out = out + self.bias return out class ConvDownBlock(nn.Module): def __init__(self, in_ch, out_ch, size, kernel_size=3, padding=1): super().__init__() assert size % 2 == 0 self.conv1 = Conv2dBias(in_ch, in_ch, kernel_size=kernel_size, size=size, stride=1, padding=padding, use_bias=True) self.conv2 = Conv2dBias(in_ch, out_ch, kernel_size=kernel_size, size=size//2, stride=2, padding=padding, use_bias=True) self.lrelu = nn.LeakyReLU(0.2) self.conv_skip = nn.Conv2d(in_ch, out_ch, kernel_size=1, stride=2, padding=0, bias=False) def forward(self, x): x_skip = self.conv_skip(x) x_ = self.conv1(x) x_ = self.lrelu(x_) x_ = self.conv2(x_) x_ = self.lrelu(x_) out = x_ + x_skip return out class ConvUpBlock(nn.Module): def __init__(self, in_ch, out_ch, size, kernel_size=3, padding=1): super().__init__() assert size % 2 == 0 self.upsample = nn.Upsample(scale_factor=2, mode='bilinear') self.conv1 = Conv2dBias(in_ch, out_ch, kernel_size=kernel_size, size=size, stride=1, padding=padding, use_bias=True) self.conv2 = Conv2dBias(out_ch, out_ch, kernel_size=kernel_size, size=size, stride=1, padding=padding, use_bias=True) self.lrelu = nn.LeakyReLU(0.2) self.conv_skip = nn.Conv2d(in_ch, out_ch, kernel_size=1, stride=1, padding=0, bias=False) def forward(self, x): x = self.upsample(x) x_skip = self.conv_skip(x) x_ = self.conv1(x) x_ = self.lrelu(x_) x_ = self.conv2(x_) x_ = self.lrelu(x_) out = x_ + x_skip return out class ConvBlock(nn.Module): def __init__(self, in_ch, out_ch, size, kernel_size=3, padding=1): super().__init__() assert size % 2 == 0 self.conv1 = Conv2dBias(in_ch, in_ch, kernel_size=kernel_size, size=size, stride=1, padding=padding, use_bias=True) self.conv2 = Conv2dBias(in_ch, out_ch, kernel_size=kernel_size, size=size, stride=1, padding=padding, use_bias=True) self.lrelu = nn.LeakyReLU(0.2) self.conv_skip = nn.Conv2d(in_ch, out_ch, kernel_size=1, stride=1, padding=0, bias=False) def forward(self, x): x_skip = self.conv_skip(x) x_ = self.conv1(x) x_ = self.lrelu(x_) x_ = self.conv2(x_) x_ = self.lrelu(x_) out = x_ + x_skip return out class Conv1dBias(nn.Conv1d): def __init__(self, in_ch, out_ch, kernel_size, size, stride, padding, use_bias=True, *args, **kwargs): super().__init__(in_ch, out_ch, bias=False, kernel_size=kernel_size, stride=stride, padding=padding, *args, **kwargs) self.use_bias = use_bias if self.use_bias: self.register_parameter('bias', nn.Parameter(torch.zeros(1, out_ch, size), requires_grad=True)) def forward(self, x): out = F.conv1d(x, self.weight, bias=None, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups) if self.use_bias: out = out + self.bias return out class Conv1dDownBlock(nn.Module): def __init__(self, in_ch, out_ch, size, kernel_size=3, padding=1): super().__init__() # assert size % 2 == 0 size_half = size // 2 if size % 2 == 0 else (size + 1) // 2 self.conv1 = Conv1dBias(in_ch, in_ch, kernel_size=kernel_size, size=size, stride=1, padding=padding, use_bias=True) self.conv2 = Conv1dBias(in_ch, out_ch, kernel_size=kernel_size, size=size_half, stride=2, padding=padding, use_bias=True) self.lrelu = nn.LeakyReLU(0.2) self.conv_skip = nn.Conv1d(in_ch, out_ch, kernel_size=1, stride=2, padding=0, bias=False) def forward(self, x): x_skip = self.conv_skip(x) x_ = self.conv1(x) x_ = self.lrelu(x_) x_ = self.conv2(x_) x_ = self.lrelu(x_) out = x_ + x_skip return out class Conv1dBlock(nn.Module): def __init__(self, in_ch, out_ch, size, kernel_size=3, padding=1): super().__init__() assert size % 2 == 0 self.conv1 = Conv1dBias(in_ch, in_ch, kernel_size=kernel_size, size=size, stride=1, padding=padding, use_bias=True) self.conv2 = Conv1dBias(in_ch, out_ch, kernel_size=kernel_size, size=size, stride=1, padding=padding, use_bias=True) self.lrelu = nn.LeakyReLU(0.2) self.conv_skip = nn.Conv1d(in_ch, out_ch, kernel_size=1, stride=1, padding=0, bias=False) def forward(self, x): x_skip = self.conv_skip(x) x_ = self.conv1(x) x_ = self.lrelu(x_) x_ = self.conv2(x_) x_ = self.lrelu(x_) out = x_ + x_skip return out
AutoAvatar-main
models/nets.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import pickle import numpy as np import os import copy import shutil, inspect import torch import torch.nn.functional as F import torch.optim as optim import pytorch_lightning as pl from pytorch3d.io import save_ply import utils.CAPE as cape_utils from utils.implicit import reconstruction from models.std.nets import DynNet import models.std.visual as visual class Implicit_Trainbox(pl.LightningModule): def __init__(self, args, log_dir, resolution, recurrent=True, eval_frames=None): super().__init__() self.args = copy.deepcopy(args) self.log_dir = log_dir self.resolution = resolution self.recurrent = recurrent self.eval_frames = eval_frames if not os.path.exists(log_dir): os.mkdir(log_dir) if not os.path.exists(os.path.join(log_dir, 'ckpt')): os.mkdir(os.path.join(log_dir, 'ckpt')) if not os.path.exists(os.path.join(log_dir, 'net_def')): os.mkdir(os.path.join(log_dir, 'net_def')) if not os.path.exists(os.path.join(log_dir, 'mesh')): os.mkdir(os.path.join(log_dir, 'mesh')) shutil.copy(os.path.realpath(__file__), os.path.join(log_dir, 'net_def')) shutil.copy(inspect.getfile(DynNet), os.path.join(log_dir, 'net_def')) self.dyn_net = DynNet(args) self.itr = 0 def save_ckpt(self): torch.save(self.dyn_net.state_dict(), os.path.join(self.log_dir, 'ckpt', 'dyn_net_%06d.pth' % self.itr)) def load_ckpt(self, itr, log_dir): self.dyn_net.load_state_dict(torch.load(os.path.join(log_dir, 'ckpt', 'dyn_net_%06d.pth' % itr), map_location='cpu')) def preprocess(self, batch): verts_detail, faces_detail, verts_smt, faces_smt, poses = batch['verts_detail'], batch['faces_detail'], batch['verts_smt'], batch['faces_smt'], batch['poses'] B, T, _ = poses.shape N = self.dyn_net.smpl_model.v_template.shape[0] verts_smpl = self.dyn_net.smpl_model(poses.view(B * T, 75)).vertices.view(B, T, N, 3) return verts_detail, faces_detail, verts_smt, faces_smt, poses, verts_smpl def train_or_valid_step(self, batch, batch_idx, is_train): verts_detail_all, faces_detail_all, verts_smt_all, faces_smt_all, poses_all, verts_smpl_all = self.preprocess(batch) T = self.args['model']['n_batch_frames'] T_hist = self.args['model']['n_hist_frames'] T_next = T - T_hist K = self.args['model']['ob_vals'][-1] assert T_next == 1 sd_errs = [] cos_errs = [] obsdf_rollout = None loss_surf_sdf = 0 loss_surf_grad = 0 loss_igr = 0 loss_o = 0 end_idx = self.args['train']['n_rollout'] if self.eval_frames is not None and batch_idx + T_hist == self.eval_frames[0]: end_idx = poses_all.shape[1] - T + 1 for i in range(end_idx): verts_detail = verts_detail_all[i:i+T] faces_detail = faces_detail_all[i:i+T] verts_smt = verts_smt_all[i:i+T] faces_smt = faces_smt_all[i:i+T] poses = poses_all[:, i:i+T] verts_smpl = verts_smpl_all[:, i:i+T] N = verts_smpl.shape[2] B = poses.shape[0] if poses.shape[1] < T: break verts = verts_smt faces = faces_smt verts_gt = verts_smt if not self.args['model']['use_detail'] else verts_detail faces_gt = faces_smt if not self.args['model']['use_detail'] else faces_detail bbmin = verts_smpl.min(dim=2)[0] - 0.1 bbmax = verts_smpl.max(dim=2)[0] + 0.1 surf_pts, surf_normals, igr_pts, bbox_pts, rand_pts = cape_utils.sample_igr_pts(verts_gt[-1], faces_gt[-1], bbmin[:, -1], bbmax[:, -1], self.args) if self.args['model']['stage'] == 'shape_enc_dec': obsdf, _ = self.dyn_net.shapes_to_obsdf(verts[-1], poses[:, -1], mode='meshes', faces=faces[-1]) assert obsdf.shape == (B, N, K) obsdf = obsdf[:, None] if self.args['model']['stage'] == 'auto_regr': if obsdf_rollout is None: obsdf = [self.dyn_net.shapes_to_obsdf(verts[j], poses[:, j], mode='meshes', faces=faces[j])[0] for j in range(T_hist)] obsdf = torch.stack(obsdf, dim=1) assert obsdf.shape == (B, T_hist, N, K) else: obsdf = obsdf_rollout.detach() shapes = self.dyn_net(obsdf, poses) if i + 1 < end_idx and self.recurrent: with torch.no_grad(): obsdf_new, _ = self.dyn_net.shapes_to_obsdf(shapes, poses[:, -1], mode='nets') obsdf_rollout = torch.cat([obsdf[:, 1:], obsdf_new[:, None]], dim=1).detach() assert obsdf_rollout.shape == (B, T_hist, N, K) if self.eval_frames is None: # Losses surf_sdf, surf_sdf_grad = self.dyn_net.query_sdf_with_grad(surf_pts, poses[:, -1], shapes) rand_sdf, rand_sdf_grad = self.dyn_net.query_sdf_with_grad(rand_pts, poses[:, -1], shapes) bbox_sdf = rand_sdf[:, self.args['train']['n_pts_scan_igr']:] assert bbox_sdf.shape == (B, self.args['train']['n_pts_bbox_igr']) loss_surf_sdf += surf_sdf.abs().mean() / self.args['train']['n_rollout'] loss_surf_grad += torch.norm(surf_sdf_grad - surf_normals, p=2, dim=-1).mean() / self.args['train']['n_rollout'] loss_igr += (torch.norm(rand_sdf_grad, p=2, dim=-1) - 1).pow(2).mean() / self.args['train']['n_rollout'] loss_o += torch.exp(-50.0 * torch.abs(bbox_sdf)).mean() / self.args['train']['n_rollout'] else: out_dir = os.path.join(self.log_dir, 'mesh', 'batch_%06d' % batch_idx) if not os.path.exists(out_dir): os.mkdir(out_dir) if not os.path.exists(os.path.join(out_dir, 'gt')): os.mkdir(os.path.join(out_dir, 'gt')) if not os.path.exists(os.path.join(out_dir, 'pred')): os.mkdir(os.path.join(out_dir, 'pred')) if i == 0: for j in range(T_hist): save_ply(os.path.join(out_dir, 'gt', 'gt_%06d.ply' % j), verts_gt[j][0], faces_gt[j][0]) save_ply(os.path.join(out_dir, 'gt', 'gt_%06d.ply' % (i + T_hist)), verts_gt[-1][0], faces_gt[-1][0]) out = reconstruction(self.dyn_net.query_sdf_nets, poses.device, None, self.resolution, bbmin[0, -1].cpu().numpy(), bbmax[0, -1].cpu().numpy(), use_octree=False, num_samples=4096, transform=None, thresh=0, texture_net = None, poses=poses[:1, -1], shapes=shapes[:1]) verts_out, faces_out = out verts_out, faces_out = torch.from_numpy(verts_out).float().to(poses.device), torch.from_numpy(faces_out.astype(np.int32)).long().to(poses.device) save_ply(os.path.join(out_dir, 'pred', 'pred_%06d.ply' % (i + T_hist)), verts_out, faces_out) sd_err, cos_err = cape_utils.scan_to_pred_errors(verts_gt[-1], faces_gt[-1], verts_out[None], faces_out[None]) sd_errs.append(sd_err.cpu()) cos_errs.append(cos_err.cpu()) if self.eval_frames is not None: with open(os.path.join(out_dir, 'errs.bin'), 'wb') as f: pickle.dump({'sd_errs': sd_errs, 'cos_errs': cos_errs}, f) visual.render_meshes(out_dir, start_i=T_hist) os.system('bash models/std/videos.sh %s %s' % (out_dir, str(T_hist))) loss = loss_surf_sdf + loss_surf_grad + loss_igr * self.args['train']['lambda_igr'] + loss_o * self.args['train']['lambda_o'] res_dict = { 'verts': verts, 'faces': faces, 'verts_gt': verts_gt, 'faces_gt': faces_gt, 'verts_smpl': verts_smpl, 'poses': poses, 'shapes': shapes, 'bbmin': bbmin, 'bbmax': bbmax, 'loss_surf_sdf': loss_surf_sdf, 'loss_surf_grad': loss_surf_grad, 'loss_igr': loss_igr, 'loss_o': loss_o, 'loss': loss } return res_dict def training_step(self, batch, batch_idx): res_dict = self.train_or_valid_step(batch, batch_idx, True) # log prefix = 'Train' self.log('%s/loss' % prefix, res_dict['loss']) self.log('%s/loss_surf_sdf' % prefix, res_dict['loss_surf_sdf']) self.log('%s/loss_surf_grad' % prefix, res_dict['loss_surf_grad']) self.log('%s/loss_igr' % prefix, res_dict['loss_igr']) self.log('%s/loss_o' % prefix, res_dict['loss_o']) # checkpoint self.itr += 1 if self.itr % self.args['train']['ckpt_step'] == 0: self.save_ckpt() return res_dict['loss'] def validation_step(self, batch, batch_idx): if self.eval_frames is not None and batch_idx + self.args['model']['n_hist_frames'] not in self.eval_frames: return res_dict = self.train_or_valid_step(batch, batch_idx, False) # log prefix = 'Valid' self.log('%s/loss' % prefix, res_dict['loss']) self.log('%s/loss_surf_sdf' % prefix, res_dict['loss_surf_sdf']) self.log('%s/loss_surf_grad' % prefix, res_dict['loss_surf_grad']) self.log('%s/loss_igr' % prefix, res_dict['loss_igr']) self.log('%s/loss_o' % prefix, res_dict['loss_o']) if self.eval_frames is None: self.compute_meshes(res_dict, batch, batch_idx) def configure_optimizers(self): if self.args['model']['stage'] == 'shape_enc_dec': optimizer = optim.Adam(self.dyn_net.parameters(), lr=self.args['train']['lr']) elif self.args['model']['stage'] == 'auto_regr': optimizer = optim.Adam(self.dyn_net.parameters(), lr=self.args['train']['lr']) return optimizer def compute_meshes(self, res_dict, batch, batch_idx): verts, faces, verts_gt, faces_gt, verts_smpl, poses, shapes, bbmin, bbmax = res_dict['verts'], res_dict['faces'], res_dict['verts_gt'], res_dict['faces_gt'], \ res_dict['verts_smpl'], res_dict['poses'], res_dict['shapes'], res_dict['bbmin'], res_dict['bbmax'] T = self.args['model']['n_batch_frames'] T_hist = self.args['model']['n_hist_frames'] T_next = T - T_hist if not os.path.exists(os.path.join(self.log_dir, 'mesh', 'itr_%06d' % self.itr)): os.mkdir(os.path.join(self.log_dir, 'mesh', 'itr_%06d' % self.itr)) out_dir = os.path.join(self.log_dir, 'mesh', 'itr_%06d' % self.itr, 'batch_%06d' % batch_idx) if not os.path.exists(out_dir): os.mkdir(out_dir) for i in range(T_hist): save_ply(os.path.join(out_dir, 'hist_%d.ply' % i), verts[i][0], faces[i][0]) save_ply(os.path.join(out_dir, 'gt.ply'), verts_gt[-1][0], faces_gt[-1][0]) out = reconstruction(self.dyn_net.query_sdf_nets, poses.device, None, self.resolution, bbmin[0, -1].cpu().numpy(), bbmax[0, -1].cpu().numpy(), use_octree=False, num_samples=4096, transform=None, thresh=0, texture_net = None, poses=poses[:1, -1], shapes=shapes[:1]) if out != -1: verts_out, faces_out = out save_ply(os.path.join(out_dir, 'pred.ply'), torch.from_numpy(verts_out).float().contiguous(), torch.from_numpy(faces_out.astype(np.int32)).contiguous().long()) def test_step(self, batch, batch_idx): self.validation_step(batch, batch_idx)
AutoAvatar-main
models/std/trainbox.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import pickle import numpy as np import os import matplotlib.pyplot as plt import torch import torch.nn as nn import torch.nn.functional as F from pytorch3d.io import load_ply from pytorch3d.renderer import look_at_view_transform from utils.render import render_mesh def render_meshes(data_dir, start_i=3, gpu_id=0, simplify_mesh=True): if not os.path.exists(os.path.join(data_dir, 'gt_imgs')): os.mkdir(os.path.join(data_dir, 'gt_imgs')) if not os.path.exists(os.path.join(data_dir, 'pred_imgs')): os.mkdir(os.path.join(data_dir, 'pred_imgs')) # if not os.path.exists(os.path.join(data_dir, 'pred_cano_imgs')): # os.mkdir(os.path.join(data_dir, 'pred_cano_imgs')) if not os.path.exists(os.path.join(data_dir, 'errs_imgs')): os.mkdir(os.path.join(data_dir, 'errs_imgs')) # pred_names = sorted(os.listdir(os.path.join(data_dir, 'pred_cano'))) # for i, pred_name in enumerate(pred_names): # verts, faces = load_ply(os.path.join(data_dir, 'pred_cano', pred_name)) # if i == 0: # center = verts.median(dim=0)[0] # t = center.clone() # t[2] += 9 # R, t = look_at_view_transform(eye=t[None], at=center[None]) # image = render_mesh(verts.cuda(gpu_id), faces.cuda(gpu_id), R[0].cuda(gpu_id), t[0].cuda(gpu_id), 9, simplify_mesh=simplify_mesh) # plt.imsave(os.path.join(data_dir, 'pred_cano_imgs', '%06d.jpg' % (i + start_i)), image.cpu().numpy()) pred_names = sorted(os.listdir(os.path.join(data_dir, 'pred'))) for i, pred_name in enumerate(pred_names): verts, faces = load_ply(os.path.join(data_dir, 'pred', pred_name)) if i == 0: center = verts.median(dim=0)[0] t = center.clone() t[2] += 9 R, t = look_at_view_transform(eye=t[None], at=center[None]) image = render_mesh(verts.cuda(gpu_id), faces.cuda(gpu_id), R[0].cuda(gpu_id), t[0].cuda(gpu_id), 9, simplify_mesh=simplify_mesh) plt.imsave(os.path.join(data_dir, 'pred_imgs', '%06d.jpg' % (i + start_i)), image.cpu().numpy()) gt_names = sorted(os.listdir(os.path.join(data_dir, 'gt'))) with open(os.path.join(data_dir, 'errs.bin'), 'rb') as f: data = pickle.load(f) sd_errs, cos_errs = data['sd_errs'], data['cos_errs'] for i, gt_name in enumerate(gt_names): verts, faces = load_ply(os.path.join(data_dir, 'gt', gt_name)) image = render_mesh(verts.cuda(gpu_id), faces.cuda(gpu_id), R[0].cuda(gpu_id), t[0].cuda(gpu_id), 9) plt.imsave(os.path.join(data_dir, 'gt_imgs', '%06d.jpg' % i), image.cpu().numpy()) if i < start_i: continue sd_err = sd_errs[i - start_i][0] assert sd_err.shape == (verts.shape[0],) max_dst = 0.1 sd_err_nc = (sd_err / max_dst).clip(min=-1, max=1) colors = torch.zeros((verts.shape[0], 3)) colors[sd_err_nc < 0] = (1 - sd_err_nc[sd_err_nc < 0].abs())[:, None] * torch.tensor([1, 1, 1])[None] + \ sd_err_nc[sd_err_nc < 0].abs()[:, None] * torch.tensor([1, 0, 0])[None] colors[sd_err_nc >= 0] = (1 - sd_err_nc[sd_err_nc >= 0])[:, None] * torch.tensor([1, 1, 1])[None] + \ sd_err_nc[sd_err_nc >= 0][:, None] * torch.tensor([0, 1, 1])[None] image = render_mesh(verts.cuda(gpu_id), faces.cuda(gpu_id), R[0].cuda(gpu_id), t[0].cuda(gpu_id), 9, colors=colors.cuda(gpu_id)) plt.imsave(os.path.join(data_dir, 'errs_imgs', '%06d.jpg' % i), image.cpu().numpy())
AutoAvatar-main
models/std/visual.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import numpy as np import os import copy import torch import torch.nn as nn import torch.nn.functional as F import torch.autograd as autograd from pytorch3d.ops import knn_points, knn_gather from pytorch3d.transforms import axis_angle_to_matrix from pytorch3d.transforms.rotation_conversions import matrix_to_axis_angle import utils.CAPE as cape_utils from utils.render import * from models.nets import * class DynNet(nn.Module): def __init__(self, args): super().__init__() self.args = copy.deepcopy(args) self.smpl_model = cape_utils.load_smpl(args) self.register_buffer('v_template', self.smpl_model.v_template, persistent=False) self.register_buffer('faces', self.smpl_model.faces, persistent=False) mask_ids = ['left_wrist', 'right_wrist', 'left_hand', 'right_hand', 'left_ankle', 'right_ankle', 'left_foot', 'right_foot', 'head'] mask_ids = [cape_utils.SMPL_JOINT_NAMES.index(e) for e in mask_ids] head_hands_feet_mask = self.smpl_model.lbs_weights[:, mask_ids].sum(dim=-1) # (N,) head_hands_feet_mask[head_hands_feet_mask < 2e-2] = 0 head_hands_feet_mask = (head_hands_feet_mask * 10).clip(max=1) self.register_buffer('head_hands_feet_mask', head_hands_feet_mask, persistent=False) W = cape_utils.compute_adjacent_matrix(self.smpl_model.parents, 4) self.register_buffer('W', W, persistent=False) # (J + 1, J) data = np.load(args['data']['uv_info']) verts_uv, faces_uv, v2uv = torch.from_numpy(data['verts_uv']), torch.from_numpy(data['faces_uv']).long(), torch.from_numpy(data['v2uv']).long() self.geo_fn = UVRender(args, verts_uv, faces_uv, v2uv) self.register_buffer('head_hands_feet_mask_uv', self.geo_fn.to_uv(head_hands_feet_mask[None, :, None].cuda()), persistent=False) data = np.load(args['data']['resample_idxs_path']) self.resample_idxs = data['idxs'] self.shape_enc_dec = ShapeEncDec(args) if args['model']['stage'] == 'auto_regr': self.dynamics_net = DynamicsNet(args) def compute_poses_feat(self, poses): """ :param poses: (B, 69) """ B = poses.shape[0] J = self.smpl_model.NUM_BODY_JOINTS N = self.smpl_model.get_num_verts() assert poses.shape == (B, 69) poses_quat = self.smpl_model.compute_poses_quat(poses) # (B, J, 4) assert poses_quat.shape == (B, J, 4) lbs_w = self.smpl_model.lbs_weights[None].expand(B, N, J + 1) lbs_w = torch.einsum('bvj,jl->bvl', lbs_w, self.W) assert lbs_w.shape == (B, N, J) poses_feat = poses_quat[:, None] * lbs_w[..., None] assert poses_feat.shape == (B, N, J, 4) return poses_feat def normalize_sd_delta(self, sd_delta): sd_delta_nc = torch.sign(sd_delta) * (sd_delta.abs() * 1000 + 1).log() * 0.25 return sd_delta_nc def normalize_globalRt(self, pts, poses): """ :param pts: (B, M, 3) :param poses: (B, 75) """ B, M, _ = pts.shape assert poses.shape == (B, 75) smpl_out = self.smpl_model(poses) root_T_inv = torch.linalg.inv(smpl_out.A[:, 0]) # (B, 4, 4) pts_nc = pts - poses[:, None, :3] pts_nc_homo = torch.ones((B, M, 1), dtype=torch.float, device=pts.device) pts_nc_homo = torch.cat([pts_nc, pts_nc_homo], dim=-1) pts_nc = torch.bmm(root_T_inv, pts_nc_homo.transpose(-2, -1)).transpose(-2, -1)[..., :3].contiguous() assert pts_nc.shape == (B, M, 3) return pts_nc def query_sdf_nets(self, pts, poses, shapes, force_coarse=False): """ :param pts: (B, M, 3) :param poses: (B, 75) :param shapes: (B, N, C) """ B, M, _ = pts.shape _, N, C = shapes.shape assert poses.shape == (B, 75) and shapes.shape == (B, N, C) and N == self.smpl_model.get_num_verts() verts = self.smpl_model(poses).vertices assert verts.shape == (B, N, 3) # Normalize global Rt verts = self.normalize_globalRt(verts, poses) pts = self.normalize_globalRt(pts, poses) # MLP decode # SMPL resample meshes = Meshes(verts=verts, faces=self.faces[None].expand(B, -1, -1)) normals = meshes.verts_normals_padded() assert normals.shape == (B, N, 3) verts_ori = verts.clone() shapes_ori = shapes.clone() verts = verts[:, self.resample_idxs] normals = normals[:, self.resample_idxs] shapes = shapes[:, self.resample_idxs] N_ = verts.shape[1] assert verts.shape == (B, N_, 3) and normals.shape == (B, N_, 3) and shapes.shape == (B, N_, C) # KNN K = 20 C_s = 64 C_ = 128 _, idx, pts_nn = knn_points(pts, verts, K=K, return_nn=True) assert torch.allclose(pts_nn, knn_gather(verts, idx)) normals_nn = knn_gather(normals, idx) shapes_nn = knn_gather(shapes, idx) assert pts_nn.shape == (B, M, K, 3) and normals_nn.shape == (B, M, K, 3) and shapes_nn.shape == (B, M, K, C) pts_nn = pts_nn - pts[:, :, None] # Proj pts to mesh _, pts_proj, _, _, shapes_proj = cape_utils.proj_pts_to_mesh(pts, verts_ori, self.faces[None].expand(B, -1, -1).contiguous(), shapes_ori) assert pts_proj.shape == (B, M, 3) and shapes_proj.shape == (B, M, C) pts_proj = pts_proj - pts # Aggregate feat_nn = self.shape_enc_dec.pts_mlp( torch.cat([ self.shape_enc_dec.pts_emb(pts_nn.view(B * M * K, 3)), self.shape_enc_dec.pts_emb(normals_nn.view(B * M * K, 3)), shapes_nn.view(B * M * K, C)[:, :C_s] ], dim=-1) ).view(B, M, K, C_) feat_proj = self.shape_enc_dec.proj_pts_mlp( torch.cat([ self.shape_enc_dec.pts_emb(pts_proj.view(B * M, 3)), shapes_proj.view(B * M, C)[:, :C_s] ], dim=-1) ).view(B, M, 1, C_) feat = torch.cat([feat_nn, feat_proj], dim=-2) assert feat.shape == (B, M, K + 1, C_) w = self.shape_enc_dec.weights_fc(feat.view(B * M * (K + 1), C_)).view(B, M, K + 1, 1) w = torch.softmax(w, dim=-2) feat = (feat * w).sum(dim=-2) assert feat.shape == (B, M, C_) sdf = self.shape_enc_dec.sdf_mlp(feat.view(B * M, C_)).view(B, M) return sdf def compute_obpts(self, poses): """ :param poses: (B, 75) """ B = poses.shape[0] N = self.smpl_model.get_num_verts() K = self.args['model']['ob_vals'][-1] verts_smpl = self.smpl_model(poses).vertices meshes = Meshes(verts=verts_smpl, faces=self.faces[None].expand(B, -1, -1)) normals_smpl = meshes.verts_normals_padded() # (B, N, 3) offset = torch.linspace(*self.args['model']['ob_vals'], device=poses.device)[None, None, :, None] * normals_smpl[:, :, None, :] # (B, N, K, 3) obpts = offset + verts_smpl[:, :, None] return obpts def shapes_to_obsdf(self, shapes, poses, mode='nets', faces=None): """ :param shapes: (B, N, C) :param poses: (B, 75) """ B = poses.shape[0] N = self.smpl_model.get_num_verts() K = self.args['model']['ob_vals'][-1] C = shapes.shape[-1] assert poses.shape == (B, 75) and shapes.shape[0] == B # Compute observer pts obpts = self.compute_obpts(poses) assert obpts.shape == (B, N, K, 3) # Query sdf if mode == 'meshes': assert C == 3 and faces is not None sdf, _, _, _, _ = cape_utils.proj_pts_to_mesh(obpts.view(B, N * K, 3), shapes, faces) sdf = sdf.view(B, N, K) elif mode == 'nets': assert shapes.shape == (B, N, C) sdf = self.query_sdf_nets(obpts.view(B, N * K, 3), poses, shapes, force_coarse=True) sdf = sdf.view(B, N, K) return sdf, obpts def query_sdf_with_grad(self, pts, poses, shapes): B, M, _ = pts.shape C = shapes.shape[-1] N = self.smpl_model.get_num_verts() assert pts.shape == (B, M, 3) and poses.shape == (B, 75) and shapes.shape == (B, N, C) with torch.enable_grad(): pts.requires_grad_(True) sdf = self.query_sdf_nets(pts, poses, shapes) assert sdf.shape == (B, M) sdf_grad = autograd.grad([sdf.sum()], [pts], retain_graph=True, create_graph=True)[0] assert sdf_grad.shape == (B, M, 3) return sdf, sdf_grad def enc_shapes_to_sdf(self, obsdf, poses): """ :param obsdf: (B, T, N, K) :param poses: (B, T, 75) """ B, T, _ = poses.shape N = self.smpl_model.get_num_verts() K = self.args['model']['ob_vals'][-1] H = W = self.args['model']['uv_size'] assert obsdf.shape == (B, T, N, K) and poses.shape == (B, T, 75) # Compute obpts_uv obpts = self.compute_obpts(poses.view(B * T, 75)) assert obpts.shape == (B * T, N, K, 3) obpts = self.normalize_globalRt(obpts.view(B * T, N * K, 3), poses.view(B * T, 75)) obpts_uv = self.geo_fn.to_uv(obpts.view(B * T, N, K * 3)) assert obpts_uv.shape == (B * T, K * 3, H, W) # Compute obsdf_uv obsdf_uv = self.geo_fn.to_uv(obsdf.view(B * T, N, K)) assert obsdf_uv.shape == (B * T, K, H, W) # Net forward in_feat = torch.cat([obpts_uv, obsdf_uv * 20], dim=1) shapes_uv = self.shape_enc_dec.shape_enc(in_feat) C = shapes_uv.shape[1] feat_uv_ = shapes_uv * (1 - self.head_hands_feet_mask_uv) + self.shape_enc_dec.uv_bias * self.head_hands_feet_mask_uv shapes = self.geo_fn.from_uv(feat_uv_) assert shapes.shape == (B * T, N, C) and shapes_uv.shape == (B * T, C, H, W) shapes = shapes.view(B, T, N, C) shapes_uv = shapes_uv.view(B, T, C, H, W) return shapes, shapes_uv def forward(self, obsdf, poses): """ :param obsdf: (B, T, N, K) :param poses: (B, T_, 75) """ N = self.smpl_model.get_num_verts() K = self.args['model']['ob_vals'][-1] H = W = self.args['model']['uv_size'] if self.args['model']['stage'] == 'shape_enc_dec': B, T, _ = poses.shape assert obsdf.shape == (B, T, N, K) and poses.shape == (B, T, 75) and T == 1 shapes, shapes_uv = self.enc_shapes_to_sdf(obsdf, poses) shapes = shapes.squeeze(1) C = shapes.shape[-1] assert shapes.shape == (B, N, C) elif self.args['model']['stage'] == 'auto_regr': B, T_, _ = poses.shape T = obsdf.shape[1] J_ = self.smpl_model.NUM_BODY_JOINTS + 1 J = self.smpl_model.NUM_BODY_JOINTS assert obsdf.shape == (B, T, N, K) and poses.shape == (B, T_, 75) and T_ - T == 1 and T == self.args['model']['n_hist_frames'] poses_ref = poses[:, -1:].expand(B, T_, 75).contiguous() # Compute obpts_uv obpts = self.compute_obpts(poses.view(B * T_, 75)) assert obpts.shape == (B * T_, N, K, 3) obpts = self.normalize_globalRt(obpts.view(B * T_, N * K, 3), poses_ref.view(B * T_, 75)) obpts_uv = self.geo_fn.to_uv(obpts.view(B * T_, N, K * 3)) assert obpts_uv.shape == (B * T_, K * 3, H, W) obpts_uv = obpts_uv.view(B, T_ * K * 3, H, W) # Compute poses velocity poses_prev = poses[:, :-1].clone() poses_last = poses[:, 1:].clone() poses_vel = torch.zeros_like(poses_last) assert poses_prev.shape == (B, T, 75) and poses_last.shape == (B, T, 75) and poses_vel.shape == (B, T, 75) poses_vel[..., :3] = poses_last[..., :3] - poses_prev[..., :3] rot_prev = axis_angle_to_matrix(poses_prev[..., 3:].reshape(B * T * J_, 3)) rot_last = axis_angle_to_matrix(poses_last[..., 3:].reshape(B * T * J_, 3)) rot_vel = torch.bmm(rot_last, torch.linalg.inv(rot_prev)) assert rot_vel.shape == (B * T * J_, 3, 3) poses_vel[..., 3:] = matrix_to_axis_angle(rot_vel).view(B, T, J_ * 3) poses_vel_feat = self.compute_poses_feat(poses_vel[..., 6:].reshape(B * T, 69)) assert poses_vel_feat.shape == (B * T, N, J, 4) poses_vel_feat = torch.cat([poses_vel_feat.view(B * T, N, J * 4), poses_vel[..., :6].reshape(B * T, 1, 6).expand(B * T, N, 6)], dim=-1) assert poses_vel_feat.shape == (B * T, N, J * 4 + 6) poses_vel_feat_uv = self.geo_fn.to_uv(poses_vel_feat) assert poses_vel_feat_uv.shape == (B * T, J * 4 + 6, H, W) poses_vel_feat_uv = self.dynamics_net.local_poses_vel_conv_block(poses_vel_feat_uv).view(B, T * 32, H, W) poses_vel_feat_uv = self.dynamics_net.temp_poses_vel_conv_block(poses_vel_feat_uv) assert poses_vel_feat_uv.shape == (B, 32, H, W) # Compute pose_feat pose_feat = self.compute_poses_feat(poses[:, -1, 6:].clone()) assert pose_feat.shape == (B, N, J, 4) pose_feat_uv = self.geo_fn.to_uv(pose_feat.view(B, N, J * 4)) assert pose_feat_uv.shape == (B, J * 4, H, W) pose_feat_uv = self.dynamics_net.local_pose_conv_block(pose_feat_uv) assert pose_feat_uv.shape == (B, 32, H, W) # Compute obsdf_feat_uv obsdf_delta = obsdf[:, 1:] - obsdf[:, :-1] assert obsdf_delta.shape == (B, T - 1, N, K) obsdf_delta = self.normalize_sd_delta(obsdf_delta) obsdf_delta = obsdf_delta.permute(0, 2, 1, 3).contiguous() assert obsdf_delta.shape == (B, N, T - 1, K) obsdf_feat = torch.cat([obsdf_delta.view(B, N, (T - 1) * K), obsdf[:, -1] * 20], dim=-1) assert obsdf_feat.shape == (B, N, T * K) obsdf_feat_uv = self.geo_fn.to_uv(obsdf_feat) assert obsdf_feat_uv.shape == (B, T * K, H, W) # Unet forward feat_uv = torch.cat([obpts_uv, poses_vel_feat_uv, pose_feat_uv, obsdf_feat_uv], dim=1) shapes_uv_delta = self.dynamics_net.unet(feat_uv) _, shapes_uv_prev = self.enc_shapes_to_sdf(obsdf[:, -1:], poses[:, -2:-1]) shapes_uv = shapes_uv_prev[:, 0] + shapes_uv_delta C = shapes_uv.shape[1] feat_uv_ = shapes_uv * (1 - self.head_hands_feet_mask_uv) + self.shape_enc_dec.uv_bias * self.head_hands_feet_mask_uv shapes = self.geo_fn.from_uv(feat_uv_) assert shapes.shape == (B, N, C) return shapes class ShapeEncDec(nn.Module): def __init__(self, args): super().__init__() self.args = copy.deepcopy(args) self.sdf_mlp = MLP([128, 128, 1], [-1], 'softplus', True, 'linear', False) self.pts_emb = Embedder(3, 4) self.proj_pts_mlp = MLP([64 + self.pts_emb.out_ch, 128, 128], [-1], 'softplus', True, 'softplus', True) self.pts_mlp = MLP([64 + self.pts_emb.out_ch * 2, 128, 128], [-1], 'softplus', True, 'softplus', True) self.weights_fc = nn.Linear(128, 1) self.shape_enc = ShapeEnc(args) self.register_parameter('uv_bias', nn.Parameter(torch.normal(0, 0.01, (1, 64, 256, 256), dtype=torch.float), requires_grad=True)) class DynamicsNet(nn.Module): def __init__(self, args): super().__init__() self.args = copy.deepcopy(args) self.local_pose_conv_block = ConvBlock(92, 32, args['model']['uv_size'], kernel_size=1, padding=0) self.local_poses_vel_conv_block = ConvBlock(98, 32, args['model']['uv_size'], kernel_size=1, padding=0) self.temp_poses_vel_conv_block = ConvBlock(32 * args['model']['n_hist_frames'], 32, args['model']['uv_size'], kernel_size=1, padding=0) self.unet = Unet(args) class ShapeEnc(nn.Module): def __init__(self, args): super().__init__() self.args = copy.deepcopy(args) self.conv_in = ConvBlock(args['model']['ob_vals'][-1] * 4, 64, 256) self.conv0 = ConvDownBlock(64, 64, 256) self.conv1 = ConvDownBlock(64, 64, 128) self.conv2 = ConvUpBlock(64, 64, 128) self.conv3 = ConvUpBlock(64, 64, 256) self.conv_out = nn.Sequential( nn.Conv2d(64, 64, kernel_size=1, padding=0), nn.Tanh() ) def forward(self, x): x = self.conv_in(x) x0 = self.conv0(x) x1 = self.conv1(x0) x2 = self.conv2(x1) + x0 x3 = self.conv3(x2) + x out = self.conv_out(x3) return out class Unet(nn.Module): def __init__(self, args): super().__init__() self.args = copy.deepcopy(args) self.conv_in = ConvBlock((args['model']['n_hist_frames'] + args['model']['n_batch_frames'] * 3) * args['model']['ob_vals'][-1] + 64, 64, 256) self.conv_down0 = ConvDownBlock(64, 128, 256) self.conv_down1 = ConvDownBlock(128, 256, 128) self.conv_down2 = ConvDownBlock(256, 256, 64) self.conv_down3 = ConvDownBlock(256, 256, 32) self.conv_up3 = ConvUpBlock(256, 256, 32) self.conv_up2 = ConvUpBlock(256, 256, 64) self.conv_up1 = ConvUpBlock(256, 128, 128) self.conv_up0 = ConvUpBlock(128, 64, 256) self.conv_out = nn.Sequential( nn.Conv2d(64, 64, kernel_size=1, padding=0), nn.Tanh() ) torch.nn.init.zeros_(self.conv_out[0].weight) if hasattr(self.conv_out[0], 'bias') and self.conv_out[0].bias is not None: torch.nn.init.zeros_(self.conv_out[0].bias) def forward(self, x): x = self.conv_in(x) x0 = self.conv_down0(x) x1 = self.conv_down1(x0) x2 = self.conv_down2(x1) x3 = self.conv_down3(x2) y3 = self.conv_up3(x3) + x2 y2 = self.conv_up2(y3) + x1 y1 = self.conv_up1(y2) + x0 y0 = self.conv_up0(y1) + x out = self.conv_out(y0) return out
AutoAvatar-main
models/std/nets.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import pickle import numpy as np import os import copy import shutil, inspect import torch import torch.nn.functional as F import torch.optim as optim import pytorch_lightning as pl from pytorch3d.io import save_ply import time import utils.CAPE as cape_utils from utils.implicit import reconstruction from models.PosedDecKNN_dPoses_dHs.nets import DynNet import models.std.visual as visual class Implicit_Trainbox(pl.LightningModule): def __init__(self, args, log_dir, resolution, recurrent=True, eval_frames=None, pose_model=None): super().__init__() self.args = copy.deepcopy(args) self.log_dir = log_dir self.resolution = resolution self.recurrent = recurrent self.eval_frames = eval_frames self.pose_model = pose_model if not os.path.exists(log_dir): os.makedirs(log_dir) if not os.path.exists(os.path.join(log_dir, 'ckpt')): os.mkdir(os.path.join(log_dir, 'ckpt')) if not os.path.exists(os.path.join(log_dir, 'net_def')): os.mkdir(os.path.join(log_dir, 'net_def')) if not os.path.exists(os.path.join(log_dir, 'mesh')): os.mkdir(os.path.join(log_dir, 'mesh')) shutil.copy(os.path.realpath(__file__), os.path.join(log_dir, 'net_def')) shutil.copy(inspect.getfile(DynNet), os.path.join(log_dir, 'net_def')) self.dyn_net = DynNet(args, eval_frames) self.itr = 0 def save_ckpt(self): torch.save(self.dyn_net.state_dict(), os.path.join(self.log_dir, 'ckpt', 'dyn_net_%06d.pth' % self.itr)) def load_ckpt(self, itr, log_dir): self.dyn_net.load_state_dict(torch.load(os.path.join(log_dir, 'ckpt', 'dyn_net_%06d.pth' % itr), map_location='cpu')) def preprocess(self, batch): verts_detail, faces_detail, verts_smt, faces_smt, poses = batch['verts_detail'], batch['faces_detail'], batch['verts_smt'], batch['faces_smt'], batch['poses'] B, T, _ = poses.shape N = self.dyn_net.smpl_model.v_template.shape[0] verts_smpl = self.dyn_net.smpl_model(poses.view(B * T, 75)).vertices.view(B, T, N, 3) if len(verts_detail) == 0: verts_detail = [verts_smpl[:, i].contiguous() for i in range(T)] faces_detail = [self.dyn_net.smpl_model.faces.to(verts_smpl.device)[None].expand(B, -1, -1).contiguous() for i in range(T)] verts_smt = verts_detail faces_smt = faces_detail if not self.args['data']['separate_detail']: verts_smt = verts_detail faces_smt = faces_detail return verts_detail, faces_detail, verts_smt, faces_smt, poses, verts_smpl def train_or_valid_step(self, batch, batch_idx, is_train): verts_detail_all, faces_detail_all, verts_smt_all, faces_smt_all, poses_all, verts_smpl_all = self.preprocess(batch) T = self.args['model']['n_batch_frames'] T_hist = self.args['model']['n_hist_frames'] T_next = T - T_hist K = self.args['model']['ob_vals'][-1] assert T_next == 1 iter_times = [] sd_errs = [] cos_errs = [] obsdf_rollout = None shapes_uv_init = None loss_surf_sdf = 0 loss_surf_grad = 0 loss_igr = 0 loss_o = 0 end_idx = self.args['train']['n_rollout'] if self.eval_frames is not None and batch_idx + T_hist == self.eval_frames[0]: end_idx = poses_all.shape[1] - T + 1 for i in range(end_idx): verts_detail = verts_detail_all[i:i+T] faces_detail = faces_detail_all[i:i+T] verts_smt = verts_smt_all[i:i+T] faces_smt = faces_smt_all[i:i+T] poses = poses_all[:, i:i+T] verts_smpl = verts_smpl_all[:, i:i+T] N = verts_smpl.shape[2] B = poses.shape[0] if poses.shape[1] < T: break verts = verts_smt faces = faces_smt verts_gt = verts_smt if not self.args['model']['use_detail'] else verts_detail faces_gt = faces_smt if not self.args['model']['use_detail'] else faces_detail bbmin = verts_smpl.min(dim=2)[0] - 0.1 bbmax = verts_smpl.max(dim=2)[0] + 0.1 surf_pts, surf_normals, igr_pts, bbox_pts, rand_pts = cape_utils.sample_igr_pts(verts_gt[-1], faces_gt[-1], bbmin[:, -1], bbmax[:, -1], self.args) # start_time = time.time() if self.args['model']['stage'] == 'shape_enc_dec': obsdf, _ = self.dyn_net.shapes_to_obsdf(verts[-1], poses[:, -1], mode='meshes', faces=faces[-1]) assert obsdf.shape == (B, N, 1) obsdf = obsdf[:, None] if self.args['model']['stage'] == 'auto_regr': if obsdf_rollout is None: if 'verts_init' not in batch: obsdf = [self.dyn_net.shapes_to_obsdf(verts[j], poses[:, j], mode='meshes', faces=faces[j])[0] for j in range(T_hist)] obsdf = torch.stack(obsdf, dim=1) assert obsdf.shape == (B, T_hist, N, 1) else: _, shapes_uv_pose = self.pose_model(None, poses[:, :-1].reshape(B * T_hist, 1, 75)) obsdf, _ = self.pose_model.shapes_to_obsdf(torch.zeros((B * T_hist, 0, 0), device=poses.device), poses[:, :-1].reshape(B * T_hist, 75), mode='nets', shapes_uv=shapes_uv_pose) assert obsdf.shape == (B * T_hist, N, 1) obsdf = obsdf.view(B, T_hist, N, 1).contiguous() # obsdf = self.dyn_net.shapes_to_obsdf(batch['verts_init'], batch['poses_init'], mode='meshes', faces=batch['faces_init'])[0] # assert obsdf.shape == (B, N, 1) # obsdf = obsdf[:, None].expand(B, T_hist, N, 1).contiguous() else: obsdf = obsdf_rollout.detach() shapes, shapes_uv = self.dyn_net(obsdf, poses) if self.eval_frames is not None: if shapes_uv_init is None: shapes_uv_init = shapes_uv else: shapes_uv = shapes_uv * (1 - self.dyn_net.head_hands_feet_mask_uv) + shapes_uv_init * self.dyn_net.head_hands_feet_mask_uv if i + 1 < end_idx and self.recurrent: with torch.no_grad(): obsdf_new, _ = self.dyn_net.shapes_to_obsdf(shapes, poses[:, -1], mode='nets', shapes_uv=shapes_uv) obsdf_rollout = torch.cat([obsdf[:, 1:], obsdf_new[:, None]], dim=1).detach() assert obsdf_rollout.shape == (B, T_hist, N, 1) if self.eval_frames is None: # Losses surf_sdf, surf_sdf_grad = self.dyn_net.query_sdf_with_grad(surf_pts, poses[:, -1], shapes_uv) rand_sdf, rand_sdf_grad = self.dyn_net.query_sdf_with_grad(rand_pts, poses[:, -1], shapes_uv) bbox_sdf = rand_sdf[:, self.args['train']['n_pts_scan_igr']:] assert bbox_sdf.shape == (B, self.args['train']['n_pts_bbox_igr']) loss_surf_sdf += surf_sdf.abs().mean() / self.args['train']['n_rollout'] loss_surf_grad += torch.norm(surf_sdf_grad - surf_normals, p=2, dim=-1).mean() / self.args['train']['n_rollout'] loss_igr += (torch.norm(rand_sdf_grad, p=2, dim=-1) - 1).pow(2).mean() / self.args['train']['n_rollout'] loss_o += torch.exp(-50.0 * torch.abs(bbox_sdf)).mean() / self.args['train']['n_rollout'] else: out_dir = os.path.join(self.log_dir, 'mesh', 'batch_%06d' % batch_idx) if not os.path.exists(out_dir): os.mkdir(out_dir) if not os.path.exists(os.path.join(out_dir, 'gt')): os.mkdir(os.path.join(out_dir, 'gt')) if not os.path.exists(os.path.join(out_dir, 'pred')): os.mkdir(os.path.join(out_dir, 'pred')) if not os.path.exists(os.path.join(out_dir, 'poses')): os.mkdir(os.path.join(out_dir, 'poses')) with open(os.path.join(out_dir, 'poses', 'poses_%06d.bin' % (i + T_hist)), 'wb') as f: pickle.dump({'poses': poses.cpu()}, f) if i == 0: for j in range(T_hist): save_ply(os.path.join(out_dir, 'gt', 'gt_%06d.ply' % j), verts_gt[j][0], faces_gt[j][0]) save_ply(os.path.join(out_dir, 'gt', 'gt_%06d.ply' % (i + T_hist)), verts_gt[-1][0], faces_gt[-1][0]) out = reconstruction(self.dyn_net.query_sdf_nets, poses.device, None, self.resolution, bbmin[0, -1].cpu().numpy(), bbmax[0, -1].cpu().numpy(), use_octree=False, num_samples=4096, transform=None, thresh=0, texture_net = None, poses=poses[:1, -1], shapes=shapes_uv[:1]) verts_out, faces_out = out verts_out, faces_out = torch.from_numpy(verts_out).float().to(poses.device), torch.from_numpy(faces_out.astype(np.int32)).long().to(poses.device) save_ply(os.path.join(out_dir, 'pred', 'pred_%06d.ply' % (i + T_hist)), verts_out, faces_out) sd_err, cos_err = cape_utils.scan_to_pred_errors(verts_gt[-1], faces_gt[-1], verts_out[None], faces_out[None]) sd_errs.append(sd_err.cpu()) cos_errs.append(cos_err.cpu()) # iter_time = time.time() - start_time # iter_times.append(iter_time) # print('time:', iter_time) # print('mean time:', np.array(iter_times[1:-1]).mean()) # input('pause') if self.eval_frames is not None: with open(os.path.join(out_dir, 'errs.bin'), 'wb') as f: pickle.dump({'sd_errs': sd_errs, 'cos_errs': cos_errs}, f) visual.render_meshes(out_dir, start_i=T_hist, simplify_mesh=False) os.system('bash models/std/videos.sh %s %s' % (out_dir, str(T_hist))) loss = loss_surf_sdf + loss_surf_grad + loss_igr * self.args['train']['lambda_igr'] + loss_o * self.args['train']['lambda_o'] res_dict = { 'verts': verts, 'faces': faces, 'verts_gt': verts_gt, 'faces_gt': faces_gt, 'verts_smpl': verts_smpl, 'poses': poses, 'shapes': shapes_uv, 'bbmin': bbmin, 'bbmax': bbmax, 'loss_surf_sdf': loss_surf_sdf, 'loss_surf_grad': loss_surf_grad, 'loss_igr': loss_igr, 'loss_o': loss_o, 'loss': loss } return res_dict def training_step(self, batch, batch_idx): res_dict = self.train_or_valid_step(batch, batch_idx, True) # log prefix = 'Train' self.log('%s/loss' % prefix, res_dict['loss']) self.log('%s/loss_surf_sdf' % prefix, res_dict['loss_surf_sdf']) self.log('%s/loss_surf_grad' % prefix, res_dict['loss_surf_grad']) self.log('%s/loss_igr' % prefix, res_dict['loss_igr']) self.log('%s/loss_o' % prefix, res_dict['loss_o']) # checkpoint self.itr += 1 if self.itr % self.args['train']['ckpt_step'] == 0: self.save_ckpt() return res_dict['loss'] def validation_step(self, batch, batch_idx): if self.eval_frames is not None and batch_idx + self.args['model']['n_hist_frames'] not in self.eval_frames: return res_dict = self.train_or_valid_step(batch, batch_idx, False) # log prefix = 'Valid' self.log('%s/loss' % prefix, res_dict['loss']) self.log('%s/loss_surf_sdf' % prefix, res_dict['loss_surf_sdf']) self.log('%s/loss_surf_grad' % prefix, res_dict['loss_surf_grad']) self.log('%s/loss_igr' % prefix, res_dict['loss_igr']) self.log('%s/loss_o' % prefix, res_dict['loss_o']) if self.eval_frames is None: self.compute_meshes(res_dict, batch, batch_idx) def configure_optimizers(self): if self.args['model']['stage'] == 'shape_enc_dec': optimizer = optim.Adam(self.dyn_net.parameters(), lr=self.args['train']['lr']) elif self.args['model']['stage'] == 'auto_regr':# and not self.args['model']['use_detail']: optimizer = optim.Adam(self.dyn_net.parameters(), lr=self.args['train']['lr']) # elif self.args['model']['use_detail']: # optimizer = optim.Adam(self.dyn_net.detail_dec.parameters(), lr=self.args['train']['lr']) return optimizer def compute_meshes(self, res_dict, batch, batch_idx): verts, faces, verts_gt, faces_gt, verts_smpl, poses, shapes, bbmin, bbmax = res_dict['verts'], res_dict['faces'], res_dict['verts_gt'], res_dict['faces_gt'], \ res_dict['verts_smpl'], res_dict['poses'], res_dict['shapes'], res_dict['bbmin'], res_dict['bbmax'] T = self.args['model']['n_batch_frames'] T_hist = self.args['model']['n_hist_frames'] T_next = T - T_hist if not os.path.exists(os.path.join(self.log_dir, 'mesh', 'itr_%06d' % self.itr)): os.mkdir(os.path.join(self.log_dir, 'mesh', 'itr_%06d' % self.itr)) out_dir = os.path.join(self.log_dir, 'mesh', 'itr_%06d' % self.itr, 'batch_%06d' % batch_idx) if not os.path.exists(out_dir): os.mkdir(out_dir) for i in range(T_hist): save_ply(os.path.join(out_dir, 'hist_%d.ply' % i), verts[i][0], faces[i][0]) save_ply(os.path.join(out_dir, 'gt.ply'), verts_gt[-1][0], faces_gt[-1][0]) out = reconstruction(self.dyn_net.query_sdf_nets, poses.device, None, self.resolution, bbmin[0, -1].cpu().numpy(), bbmax[0, -1].cpu().numpy(), use_octree=False, num_samples=4096, transform=None, thresh=0, texture_net = None, poses=poses[:1, -1], shapes=shapes[:1]) if out != -1: verts_out, faces_out = out save_ply(os.path.join(out_dir, 'pred.ply'), torch.from_numpy(verts_out).float().contiguous(), torch.from_numpy(faces_out.astype(np.int32)).contiguous().long()) def test_step(self, batch, batch_idx): self.validation_step(batch, batch_idx)
AutoAvatar-main
models/PosedDecKNN_dPoses_dHs/trainbox.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import numpy as np import os import copy import matplotlib.pyplot as plt import torch import torch.nn as nn import torch.nn.functional as F import torch.autograd as autograd from pytorch3d.ops import knn_points, knn_gather from pytorch3d.transforms import axis_angle_to_matrix from pytorch3d.transforms.rotation_conversions import matrix_to_axis_angle import utils.CAPE as cape_utils from utils.render import * from models.nets import * class DynNet(nn.Module): def __init__(self, args, eval_frames): super().__init__() self.args = copy.deepcopy(args) self.eval_frames = eval_frames self.smpl_model = cape_utils.load_smpl(args) self.register_buffer('v_template', self.smpl_model.v_template, persistent=False) self.register_buffer('faces', self.smpl_model.faces, persistent=False) mask_ids = ['left_wrist', 'right_wrist', 'left_hand', 'right_hand', 'left_ankle', 'right_ankle', 'left_foot', 'right_foot', 'head'] mask_ids = [cape_utils.SMPL_JOINT_NAMES.index(e) for e in mask_ids] head_hands_feet_mask = self.smpl_model.lbs_weights[:, mask_ids].sum(dim=-1) # (N,) head_hands_feet_mask[head_hands_feet_mask < 2e-2] = 0 head_hands_feet_mask = (head_hands_feet_mask * 10).clip(max=1) self.register_buffer('head_hands_feet_mask', head_hands_feet_mask, persistent=False) mask_ids = ['left_ankle', 'right_ankle', 'left_foot', 'right_foot'] mask_ids = [cape_utils.SMPL_JOINT_NAMES.index(e) for e in mask_ids] feet_mask = self.smpl_model.lbs_weights[:, mask_ids].sum(dim=-1) # (N,) self.register_buffer('feet_mask', feet_mask, persistent=False) W = cape_utils.compute_adjacent_matrix(self.smpl_model.parents, 1) self.register_buffer('W', W, persistent=False) # (J + 1, J) data = np.load(args['data']['uv_info']) verts_uv, faces_uv, v2uv = torch.from_numpy(data['verts_uv']), torch.from_numpy(data['faces_uv']).long(), torch.from_numpy(data['v2uv']).long() self.geo_fn = UVRender(args, verts_uv, faces_uv, v2uv) self.register_buffer('head_hands_feet_mask_uv', self.geo_fn.to_uv(head_hands_feet_mask[None, :, None].cuda()), persistent=False) data = np.load(args['data']['resample_idxs_path']) self.resample_idxs = data['idxs'] self.shape_enc_dec = ShapeEncDec(args) if args['model']['stage'] == 'auto_regr': self.dynamics_net = DynamicsNet(args) # if args['model']['use_detail']: # self.detail_dec = DetailDec(args) def compute_poses_feat(self, poses): """ :param poses: (B, 69) """ B = poses.shape[0] J = self.smpl_model.NUM_BODY_JOINTS N = self.smpl_model.get_num_verts() assert poses.shape == (B, 69) poses_quat = self.smpl_model.compute_poses_quat(poses) # (B, J, 4) assert poses_quat.shape == (B, J, 4) lbs_w = self.smpl_model.lbs_weights[None].expand(B, N, J + 1) lbs_w = torch.einsum('bvj,jl->bvl', lbs_w, self.W) assert lbs_w.shape == (B, N, J) poses_feat = poses_quat[:, None] * lbs_w[..., None] assert poses_feat.shape == (B, N, J, 4) return poses_feat def normalize_sd_delta(self, sd_delta): sd_delta_nc = torch.sign(sd_delta) * (sd_delta.abs() * 1000 + 1).log() * 0.25 return sd_delta_nc def normalize_globalRt(self, pts, poses): """ :param pts: (B, M, 3) :param poses: (B, 75) """ B, M, _ = pts.shape assert poses.shape == (B, 75) smpl_out = self.smpl_model(poses) root_T_inv = torch.linalg.inv(smpl_out.A[:, 0]) # (B, 4, 4) pts_nc = pts - poses[:, None, :3] pts_nc_homo = torch.ones((B, M, 1), dtype=torch.float, device=pts.device) pts_nc_homo = torch.cat([pts_nc, pts_nc_homo], dim=-1) pts_nc = torch.bmm(root_T_inv, pts_nc_homo.transpose(-2, -1)).transpose(-2, -1)[..., :3].contiguous() assert pts_nc.shape == (B, M, 3) return pts_nc def query_sdf_nets(self, pts, poses, shapes, force_coarse=False): """ :param pts: (B, M, 3) :param poses: (B, 75) :param shapes: (B, C, H, W) """ B, M, _ = pts.shape # _, N, C = shapes.shape C = shapes.shape[1] N = self.smpl_model.get_num_verts() H = W = self.args['model']['uv_size'] # assert poses.shape == (B, 75) and shapes.shape == (B, N, C) and N == self.smpl_model.get_num_verts() assert poses.shape == (B, 75) and shapes.shape == (B, C, H, W) verts = self.smpl_model(poses).vertices assert verts.shape == (B, N, 3) shapes = self.geo_fn.from_uv(shapes) # shapes_bias = self.geo_fn.from_uv(self.shape_enc_dec.uv_bias) # shapes = shapes * (1 - self.head_hands_feet_mask[None, :, None]) + shapes_bias * self.head_hands_feet_mask[None, :, None] assert shapes.shape == (B, N, C) # Normalize global Rt verts = self.normalize_globalRt(verts, poses) pts = self.normalize_globalRt(pts, poses) # MLP decode # SMPL resample meshes = Meshes(verts=verts, faces=self.faces[None].expand(B, -1, -1)) normals = meshes.verts_normals_padded() assert normals.shape == (B, N, 3) verts_ori = verts.clone() shapes_ori = shapes.clone() verts = verts[:, self.resample_idxs] normals = normals[:, self.resample_idxs] shapes = shapes[:, self.resample_idxs] N_ = verts.shape[1] assert verts.shape == (B, N_, 3) and normals.shape == (B, N_, 3) and shapes.shape == (B, N_, C) # KNN K = 20 C_s = 64 C_ = 128 _, idx, pts_nn = knn_points(pts, verts, K=K, return_nn=True) assert torch.allclose(pts_nn, knn_gather(verts, idx)) normals_nn = knn_gather(normals, idx) shapes_nn = knn_gather(shapes, idx) assert pts_nn.shape == (B, M, K, 3) and normals_nn.shape == (B, M, K, 3) and shapes_nn.shape == (B, M, K, C) pts_nn = pts[:, :, None] - pts_nn cos_nn = torch.cosine_similarity(pts_nn, normals_nn, dim=-1) len_nn = torch.norm(pts_nn, p=2, dim=-1) assert cos_nn.shape == (B, M, K) and len_nn.shape == (B, M, K) x = torch.cat([cos_nn[..., None], len_nn[..., None]], dim=-1) assert x.shape == (B, M, K, 2) # Proj pts to mesh # sd, pts_proj, shapes_proj, pts_uv = cape_utils.proj_pts_to_uv(pts, verts_ori, self.faces[None].expand(B, -1, -1).contiguous(), # self.geo_fn.verts_uv[None].expand(B, -1, -1), # self.geo_fn.faces_uv[None].expand(B, -1, -1), shapes_ori) # assert sd.shape == (B, M) and pts_proj.shape == (B, M, 3) and shapes_proj.shape == (B, M, C) and pts_uv.shape == (B, M, 2) # x = torch.cat([sd[..., None], pts_uv], dim=-1) # assert x.shape == (B, M, 3) # pts_proj = pts_proj - pts # Aggregate feat_nn = self.shape_enc_dec.pts_mlp( torch.cat([ # self.shape_enc_dec.pts_emb(pts_nn.view(B * M * K, 3)), # self.shape_enc_dec.pts_emb(normals_nn.view(B * M * K, 3)), self.shape_enc_dec.pts_emb(x.view(B * M * K, 2)), shapes_nn.view(B * M * K, C)[:, :C_s] ], dim=-1) ).view(B, M, K, C_) # feat_proj = self.shape_enc_dec.proj_pts_mlp( # torch.cat([ # self.shape_enc_dec.pts_emb(x.view(B * M, 3)), # shapes_proj.view(B * M, C)[:, :C_s] # ], dim=-1) # ).view(B, M, 1, C_) feat = feat_nn #torch.cat([feat_nn, feat_proj], dim=-2) assert feat.shape == (B, M, K, C_) #(B, M, K + 1, C_) w = self.shape_enc_dec.weights_fc(feat.view(B * M * K, C_)).view(B, M, K, 1) #.view(B * M * (K + 1), C_)).view(B, M, K + 1, 1) w = torch.softmax(w, dim=-2) feat = (feat * w).sum(dim=-2) assert feat.shape == (B, M, C_) sdf = self.shape_enc_dec.sdf_mlp(feat.view(B * M, C_)).view(B, M) # # Check weights # print(x[0, 0]) # print(w[0, 0]) # input('pause') # sdf = self.shape_enc_dec.sdf_mlp(feat_proj).view(B, M) # mask feet if self.eval_frames is not None: pts_feet_mask = knn_gather(self.feet_mask[None, self.resample_idxs, None].expand(B, -1, -1), idx)[:, :, 0, 0] assert pts_feet_mask.shape == (B, M) abs_mask = (cos_nn[..., 0] > 0).long() * (len_nn[..., :4].mean(dim=-1) > 0.04) sdf_abs = sdf.clone() sdf_abs = sdf_abs.abs() * abs_mask + sdf_abs * (1 - abs_mask) sdf = sdf * (1 - pts_feet_mask) + sdf_abs * pts_feet_mask # if self.args['model']['use_detail'] and not force_coarse: # # Aggregate # feat_nn = self.detail_dec.pts_mlp( # torch.cat([ # self.detail_dec.pts_emb(pts_nn.view(B * M * K, 3)), # self.detail_dec.pts_emb(normals_nn.view(B * M * K, 3)), # shapes_nn.view(B * M * K, C)[:, C_s:] # ], dim=-1) # ).view(B, M, K, C_) # feat_proj = self.detail_dec.proj_pts_mlp( # torch.cat([ # self.detail_dec.pts_emb(pts_proj.view(B * M, 3)), # shapes_proj.view(B * M, C)[:, C_s:] # ], dim=-1) # ).view(B, M, 1, C_) # feat = torch.cat([feat_nn, feat_proj], dim=-2) # assert feat.shape == (B, M, K + 1, C_) # w = self.detail_dec.weights_fc(feat.view(B * M * (K + 1), C_)).view(B, M, K + 1, 1) # w = torch.softmax(w, dim=-2) # feat = (feat * w).sum(dim=-2) # assert feat.shape == (B, M, C_) # sdf_delta = self.detail_dec.sdf_mlp(feat.view(B * M, C_)).view(B, M) # sdf = sdf + sdf_delta return sdf def compute_obpts(self, poses): """ :param poses: (B, 75) """ B = poses.shape[0] N = self.smpl_model.get_num_verts() K = self.args['model']['ob_vals'][-1] verts_smpl = self.smpl_model(poses).vertices meshes = Meshes(verts=verts_smpl, faces=self.faces[None].expand(B, -1, -1)) normals_smpl = meshes.verts_normals_padded() # (B, N, 3) offset = torch.linspace(*self.args['model']['ob_vals'], device=poses.device)[None, None, :, None] * normals_smpl[:, :, None, :] # (B, N, K, 3) obpts = offset + verts_smpl[:, :, None] return obpts def shapes_to_obsdf(self, shapes, poses, mode='nets', faces=None, shapes_uv=None): """ :param shapes: (B, N, C) :param poses: (B, 75) """ B = poses.shape[0] N = self.smpl_model.get_num_verts() K = self.args['model']['ob_vals'][-1] C = shapes.shape[-1] assert poses.shape == (B, 75) and shapes.shape[0] == B # Compute observer pts obpts = self.compute_obpts(poses) assert obpts.shape == (B, N, K, 3) # Query sdf def query(obpts, clip): B, N, K, _ = obpts.shape if mode == 'meshes': assert C == 3 and faces is not None sdf, _, _, _, _ = cape_utils.proj_pts_to_mesh(obpts.view(B, N * K, 3), shapes, faces) sdf = sdf.view(B, N, K) elif mode == 'nets': assert shapes_uv is not None sdf = self.query_sdf_nets(obpts.view(B, N * K, 3), poses, shapes_uv, force_coarse=True) sdf = sdf.view(B, N, K) if clip: thres = (self.args['model']['ob_vals'][1] - self.args['model']['ob_vals'][0]) / (K - 1) assert thres > 0 sdf = sdf.clip(min=-thres, max=thres) return sdf sdf = query(obpts, False) verts_smpl = self.smpl_model(poses).vertices meshes = Meshes(verts=verts_smpl, faces=self.faces[None].expand(B, -1, -1)) normals_smpl = meshes.verts_normals_padded() # (B, N, 3) offsets = torch.linspace(*self.args['model']['ob_vals'], device=poses.device)[None, None, :].expand(B, N, K).contiguous() idxs = torch.arange(0, K, 1, device=poses.device).long()[None, None, :].expand(B, N, K).contiguous() idxs[sdf < 0] += 777 idxs_pos = torch.min(idxs, dim=-1)[0].clip(max=K-1) idxs_neg = (idxs_pos - 1).clip(min=0) offsets_pos = torch.gather(offsets, -1, idxs_pos[..., None]) offsets_neg = torch.gather(offsets, -1, idxs_neg[..., None]) assert offsets_pos.shape == (B, N, 1) and offsets_neg.shape == (B, N, 1) sdf_pos = torch.gather(sdf, -1, idxs_pos[..., None]) sdf_neg = torch.gather(sdf, -1, idxs_neg[..., None]) assert sdf_pos.shape == (B, N, 1) and sdf_neg.shape == (B, N, 1) # binary search for i in range(2): offsets_mid = (offsets_neg + offsets_pos) / 2 obpts_mid = offsets_mid[..., None] * normals_smpl[:, :, None, :] + verts_smpl[:, :, None] sdf_mid = query(obpts_mid, False) assert sdf_mid.shape == (B, N, 1) offsets_neg_new = offsets_neg.clone() offsets_pos_new = offsets_pos.clone() offsets_neg_new[sdf_mid <= 0] = offsets_mid[sdf_mid <= 0] offsets_pos_new[sdf_mid > 0] = offsets_mid[sdf_mid > 0] offsets_neg = offsets_neg_new.contiguous() offsets_pos = offsets_pos_new.contiguous() sdf_neg_new = sdf_neg.clone() sdf_pos_new = sdf_pos.clone() sdf_neg_new[sdf_mid <= 0] = sdf_mid[sdf_mid <= 0] sdf_pos_new[sdf_mid > 0] = sdf_mid[sdf_mid > 0] sdf_neg = sdf_neg_new.contiguous() sdf_pos = sdf_pos_new.contiguous() # offsets_surf = (offsets_neg + offsets_pos) / 2 # Interpolation zero_mask = idxs_neg != idxs_pos w = sdf_neg.abs() + sdf_pos.abs() zero_mask = (zero_mask.long() * (w.squeeze(-1) > 1e-10).long()).bool() w_neg = torch.zeros_like(sdf_neg) + 0.5 w_neg[zero_mask] = sdf_pos[zero_mask].abs() / w[zero_mask] w_pos = torch.zeros_like(sdf_pos) + 0.5 w_pos[zero_mask] = sdf_neg[zero_mask].abs() / w[zero_mask] offsets_surf = w_neg * offsets_neg + w_pos * offsets_pos return offsets_surf, obpts def query_sdf_with_grad(self, pts, poses, shapes): B, M, _ = pts.shape C = shapes.shape[1] N = self.smpl_model.get_num_verts() H = W = self.args['model']['uv_size'] assert pts.shape == (B, M, 3) and poses.shape == (B, 75) and shapes.shape == (B, C, H, W) with torch.enable_grad(): pts.requires_grad_(True) sdf = self.query_sdf_nets(pts, poses, shapes) assert sdf.shape == (B, M) sdf_grad = autograd.grad([sdf.sum()], [pts], retain_graph=True, create_graph=True)[0] assert sdf_grad.shape == (B, M, 3) return sdf, sdf_grad def enc_shapes_to_sdf(self, obsdf, poses): """ :param obsdf: (B, T, N, K) :param poses: (B, T, 75) """ B, T, _ = poses.shape N = self.smpl_model.get_num_verts() K = self.args['model']['ob_vals'][-1] H = W = self.args['model']['uv_size'] assert obsdf.shape == (B, T, N, 1) and poses.shape == (B, T, 75) # Compute obpts_uv verts_smpl = self.smpl_model(poses.view(B * T, 75)).vertices assert verts_smpl.shape == (B * T, N, 3) verts_smpl = self.normalize_globalRt(verts_smpl, poses.view(B * T, 75)) meshes = Meshes(verts=verts_smpl, faces=self.faces[None].expand(B * T, -1, -1)) normals_smpl = meshes.verts_normals_padded() # (B * T, N, 3) obpts = torch.cat([verts_smpl, normals_smpl], dim=-1) assert obpts.shape == (B * T, N, 6) obpts_uv = self.geo_fn.to_uv(obpts) assert obpts_uv.shape == (B * T, 6, H, W) # Compute obsdf_uv obsdf_uv = self.geo_fn.to_uv(obsdf.view(B * T, N, 1)) assert obsdf_uv.shape == (B * T, 1, H, W) # Net forward in_feat = torch.cat([obpts_uv, obsdf_uv * 20], dim=1) shapes_uv = self.shape_enc_dec.shape_enc(in_feat) C = shapes_uv.shape[1] feat_uv_ = shapes_uv * (1 - self.head_hands_feet_mask_uv) + self.shape_enc_dec.uv_bias * self.head_hands_feet_mask_uv shapes = self.geo_fn.from_uv(feat_uv_) assert shapes.shape == (B * T, N, C) and shapes_uv.shape == (B * T, C, H, W) shapes = shapes.view(B, T, N, C) shapes_uv = shapes_uv.view(B, T, C, H, W) return shapes, shapes_uv def pose_temp_deri(self, poses): """ :param poses: (B, T_, 75) """ B, T_, _ = poses.shape T = T_ - 1 J_ = self.smpl_model.NUM_BODY_JOINTS + 1 poses_prev = poses[:, :-1].clone() poses_last = poses[:, 1:].clone() poses_vel = torch.zeros_like(poses_last) assert poses_prev.shape == (B, T, 75) and poses_last.shape == (B, T, 75) and poses_vel.shape == (B, T, 75) poses_vel[..., :3] = poses_last[..., :3] - poses_prev[..., :3] rot_prev = axis_angle_to_matrix(poses_prev[..., 3:].reshape(B * T * J_, 3)) rot_last = axis_angle_to_matrix(poses_last[..., 3:].reshape(B * T * J_, 3)) rot_vel = torch.bmm(rot_last, torch.linalg.inv(rot_prev)) assert rot_vel.shape == (B * T * J_, 3, 3) poses_vel[..., 3:] = matrix_to_axis_angle(rot_vel).view(B, T, J_ * 3) return poses_vel def forward(self, obsdf, poses): """ :param obsdf: (B, T, N, K) :param poses: (B, T_, 75) """ N = self.smpl_model.get_num_verts() K = self.args['model']['ob_vals'][-1] H = W = self.args['model']['uv_size'] if self.args['model']['stage'] == 'shape_enc_dec': B, T, _ = poses.shape assert obsdf.shape == (B, T, N, 1) and poses.shape == (B, T, 75) and T == 1 shapes, shapes_uv = self.enc_shapes_to_sdf(obsdf, poses) shapes = shapes.squeeze(1) C = shapes.shape[-1] assert shapes.shape == (B, N, C) elif self.args['model']['stage'] == 'auto_regr': B, T_, _ = poses.shape T = obsdf.shape[1] n_H = self.args['model']['n_H'] J_ = self.smpl_model.NUM_BODY_JOINTS + 1 J = self.smpl_model.NUM_BODY_JOINTS assert obsdf.shape == (B, T, N, 1) and poses.shape == (B, T_, 75) and T_ - T == 1 and T == self.args['model']['n_hist_frames'] poses_ref = poses[:, -1:].expand(B, T_, 75).contiguous() # # Compute obpts_uv # verts_smpl = self.smpl_model(poses.view(B * T_, 75)).vertices # assert verts_smpl.shape == (B * T_, N, 3) # verts_smpl = self.normalize_globalRt(verts_smpl, poses_ref.view(B * T_, 75)) # meshes = Meshes(verts=verts_smpl, faces=self.faces[None].expand(B * T_, -1, -1)) # normals_smpl = meshes.verts_normals_padded() # (B * T_, N, 3) # obpts = torch.cat([verts_smpl, normals_smpl], dim=-1) # assert obpts.shape == (B * T_, N, 6) # obpts_uv = self.geo_fn.to_uv(obpts) # assert obpts_uv.shape == (B * T_, 6, H, W) # obpts_uv = obpts_uv.view(B, T_ * 6, H, W) # Compute poses velocity # poses_prev = poses[:, :-1].clone() # poses_last = poses[:, 1:].clone() # poses_vel = torch.zeros_like(poses_last) # assert poses_prev.shape == (B, T, 75) and poses_last.shape == (B, T, 75) and poses_vel.shape == (B, T, 75) # poses_vel[..., :3] = poses_last[..., :3] - poses_prev[..., :3] # rot_prev = axis_angle_to_matrix(poses_prev[..., 3:].reshape(B * T * J_, 3)) # rot_last = axis_angle_to_matrix(poses_last[..., 3:].reshape(B * T * J_, 3)) # rot_vel = torch.bmm(rot_last, torch.linalg.inv(rot_prev)) # assert rot_vel.shape == (B * T * J_, 3, 3) # poses_vel[..., 3:] = matrix_to_axis_angle(rot_vel).view(B, T, J_ * 3) # poses_vel_feat = self.compute_poses_feat(poses_vel[..., 6:].reshape(B * T, 69)) # assert poses_vel_feat.shape == (B * T, N, J, 4) # poses_vel_feat = torch.cat([poses_vel_feat.view(B * T, N, J * 4), poses_vel[..., :6].reshape(B * T, 1, 6).expand(B * T, N, 6)], dim=-1) # assert poses_vel_feat.shape == (B * T, N, J * 4 + 6) # poses_vel_feat_uv = self.geo_fn.to_uv(poses_vel_feat) # assert poses_vel_feat_uv.shape == (B * T, J * 4 + 6, H, W) # poses_vel_feat_uv = self.dynamics_net.local_poses_vel_conv_block(poses_vel_feat_uv).view(B, T * 32, H, W) # poses_vel_feat_uv = self.dynamics_net.temp_poses_vel_conv_block(poses_vel_feat_uv) # assert poses_vel_feat_uv.shape == (B, 32, H, W) pose_vel = self.pose_temp_deri(poses) assert pose_vel.shape == (B, T, 75) pose_vel = pose_vel.view(B * T, 75) # pose_acc = self.pose_temp_deri(pose_vel) # pose_vel = pose_vel[:, -1] # pose_acc = pose_acc[:, -1] # pose_vel pose_vel_feat = self.compute_poses_feat(pose_vel[:, 6:].clone()) assert pose_vel_feat.shape == (B * T, N, J, 4) pose_vel_feat = torch.cat([pose_vel_feat.view(B * T, N, J * 4), pose_vel[:, None, :6].expand(B * T, N, 6)], dim=-1) assert pose_vel_feat.shape == (B * T, N, J * 4 + 6) pose_vel_feat_uv = self.geo_fn.to_uv(pose_vel_feat) assert pose_vel_feat_uv.shape == (B * T, J * 4 + 6, H, W) pose_vel_feat_uv = self.dynamics_net.local_pose_vel_conv_block(pose_vel_feat_uv) assert pose_vel_feat_uv.shape == (B * T, 32, H, W) pose_vel_feat_uv = pose_vel_feat_uv.view(B, T * 32, H, W) # # pose_acc # pose_acc_feat = self.compute_poses_feat(pose_acc[:, 6:].clone()) # assert pose_acc_feat.shape == (B, N, J, 4) # pose_acc_feat = torch.cat([pose_acc_feat.view(B, N, J * 4), pose_acc[:, None, :6].expand(B, N, 6)], dim=-1) # assert pose_acc_feat.shape == (B, N, J * 4 + 6) # pose_acc_feat_uv = self.geo_fn.to_uv(pose_acc_feat) # assert pose_acc_feat_uv.shape == (B, J * 4 + 6, H, W) # pose_acc_feat_uv = self.dynamics_net.local_pose_acc_conv_block(pose_acc_feat_uv) # assert pose_acc_feat_uv.shape == (B, 32, H, W) # Compute pose_feat pose_feat = self.compute_poses_feat(poses[:, -1, 6:].clone()) assert pose_feat.shape == (B, N, J, 4) pose_feat_uv = self.geo_fn.to_uv(pose_feat.view(B, N, J * 4)) assert pose_feat_uv.shape == (B, J * 4, H, W) pose_feat_uv = self.dynamics_net.local_pose_conv_block(pose_feat_uv) assert pose_feat_uv.shape == (B, 32, H, W) # Compute obsdf_feat_uv obsdf_delta = obsdf[:, 1:] - obsdf[:, :-1] assert obsdf_delta.shape == (B, T - 1, N, 1) # np.save('/mnt/ImpDyn_ws/logs/tmp/obsdf0.npy', obsdf.detach().cpu().numpy()) # print(obsdf_delta.min(), obsdf_delta.max()) # plt.hist(obsdf_delta.detach().view(-1).cpu().numpy()) # plt.savefig('/mnt/ImpDyn_ws/logs/tmp/obsdf_delta.jpg') obsdf_delta = self.normalize_sd_delta(obsdf_delta) # print(obsdf_delta.min(), obsdf_delta.max()) # plt.hist(obsdf_delta.detach().view(-1).cpu().numpy()) # plt.savefig('/mnt/ImpDyn_ws/logs/tmp/obsdf_delta_nc.jpg') # input('pause') obsdf_delta = obsdf_delta.permute(0, 2, 1, 3).contiguous() assert obsdf_delta.shape == (B, N, T - 1, 1) obsdf_feat = torch.cat([obsdf_delta.view(B, N, T - 1), obsdf[:, -1] * 20], dim=-1) assert obsdf_feat.shape == (B, N, T) obsdf_feat_uv = self.geo_fn.to_uv(obsdf_feat) assert obsdf_feat_uv.shape == (B, T, H, W) # obsdf_feat = obsdf.permute(0, 2, 1, 3).contiguous() * 20 # assert obsdf_feat.shape == (B, N, T, 1) # obsdf_feat_uv = self.geo_fn.to_uv(obsdf_feat.view(B, N, T)[:, :, -n_H:].contiguous()) # assert obsdf_feat_uv.shape == (B, n_H, H, W) # Unet forward feat_uv = torch.cat([pose_vel_feat_uv, pose_feat_uv, obsdf_feat_uv], dim=1) # shapes_uv_delta = self.dynamics_net.unet(feat_uv) # _, shapes_uv_prev = self.enc_shapes_to_sdf(obsdf[:, -1:], poses[:, -2:-1]) # shapes_uv = shapes_uv_prev[:, 0] + shapes_uv_delta shapes_uv = self.dynamics_net.unet(feat_uv) C = shapes_uv.shape[1] # feat_uv_ = shapes_uv * (1 - self.head_hands_feet_mask_uv) + self.shape_enc_dec.uv_bias * self.head_hands_feet_mask_uv # if self.args['model']['use_detail']: # feat = self.detail_dec.unet(feat_uv_) # feat_uv_ = torch.cat([feat_uv_, feat], dim=1) # C = feat_uv_.shape[1] shapes = self.geo_fn.from_uv(shapes_uv) assert shapes.shape == (B, N, C) return shapes, shapes_uv class ShapeEncDec(nn.Module): def __init__(self, args): super().__init__() self.args = copy.deepcopy(args) self.sdf_mlp = MLP([128, 128, 1], [-1], 'softplus', True, 'linear', False) self.pts_emb = Embedder(2, 4) # self.proj_pts_mlp = MLP([64 + self.pts_emb.out_ch, 128, 128], [-1], 'softplus', True, 'softplus', True) self.pts_mlp = MLP([64 + self.pts_emb.out_ch, 128, 128], [-1], 'softplus', True, 'softplus', True) self.weights_fc = nn.Linear(128, 1) # self.shape_enc = ShapeEnc(args) # self.register_parameter('uv_bias', nn.Parameter(torch.normal(0, 0.01, (1, 64, 256, 256), dtype=torch.float), requires_grad=True)) class DynamicsNet(nn.Module): def __init__(self, args): super().__init__() self.args = copy.deepcopy(args) self.local_pose_conv_block = ConvBlock(92, 32, args['model']['uv_size'], kernel_size=1, padding=0) # self.local_poses_vel_conv_block = ConvBlock(98, 32, args['model']['uv_size'], kernel_size=1, padding=0) # self.temp_poses_vel_conv_block = ConvBlock(32 * args['model']['n_hist_frames'], 32, args['model']['uv_size'], kernel_size=1, padding=0) self.local_pose_vel_conv_block = ConvBlock(98, 32, args['model']['uv_size'], kernel_size=1, padding=0) # self.local_pose_acc_conv_block = ConvBlock(98, 32, args['model']['uv_size'], kernel_size=1, padding=0) self.unet = Unet(args) class DetailDec(nn.Module): def __init__(self, args): super().__init__() self.args = copy.deepcopy(args) self.sdf_mlp = MLP([128, 128, 1], [-1], 'softplus', True, 'linear', False, init_zero_last=True) self.pts_emb = Embedder(3, 6) self.proj_pts_mlp = MLP([64 + self.pts_emb.out_ch, 128, 128], [-1], 'softplus', True, 'softplus', True) self.pts_mlp = MLP([64 + self.pts_emb.out_ch * 2, 128, 128], [-1], 'softplus', True, 'softplus', True) self.weights_fc = nn.Linear(128, 1) self.unet = DetailUnet(args) class ShapeEnc(nn.Module): def __init__(self, args): super().__init__() self.args = copy.deepcopy(args) self.conv_in = ConvBlock(7, 64, 256) self.conv0 = ConvDownBlock(64, 64, 256) self.conv1 = ConvDownBlock(64, 64, 128) self.conv2 = ConvUpBlock(64, 64, 128) self.conv3 = ConvUpBlock(64, 64, 256) self.conv_out = nn.Sequential( nn.Conv2d(64, 64, kernel_size=1, padding=0), nn.Tanh() ) def forward(self, x): x = self.conv_in(x) x0 = self.conv0(x) x1 = self.conv1(x0) x2 = self.conv2(x1) + x0 x3 = self.conv3(x2) + x out = self.conv_out(x3) return out class Unet(nn.Module): def __init__(self, args): super().__init__() self.args = copy.deepcopy(args) # self.conv_in = ConvBlock(args['model']['n_hist_frames'] + 64, 64, 256) self.conv_in = ConvBlock(args['model']['n_hist_frames'] + 32 * args['model']['n_batch_frames'], 64, 256) self.conv_down0 = ConvDownBlock(64, 128, 256) self.conv_down1 = ConvDownBlock(128, 256, 128) self.conv_down2 = ConvDownBlock(256, 256, 64) self.conv_down3 = ConvDownBlock(256, 256, 32) self.conv_up3 = ConvUpBlock(256, 256, 32) self.conv_up2 = ConvUpBlock(256, 256, 64) self.conv_up1 = ConvUpBlock(256, 128, 128) self.conv_up0 = ConvUpBlock(128, 64, 256) self.conv_out = nn.Sequential( nn.Conv2d(64, 64, kernel_size=1, padding=0), nn.Tanh() ) torch.nn.init.zeros_(self.conv_out[0].weight) if hasattr(self.conv_out[0], 'bias') and self.conv_out[0].bias is not None: torch.nn.init.zeros_(self.conv_out[0].bias) def forward(self, x): x = self.conv_in(x) x0 = self.conv_down0(x) x1 = self.conv_down1(x0) x2 = self.conv_down2(x1) x3 = self.conv_down3(x2) y3 = self.conv_up3(x3) + x2 y2 = self.conv_up2(y3) + x1 y1 = self.conv_up1(y2) + x0 y0 = self.conv_up0(y1) + x out = self.conv_out(y0) return out class DetailUnet(nn.Module): def __init__(self, args): super().__init__() self.args = copy.deepcopy(args) self.conv0 = ConvDownBlock(64, 64, 256) self.conv1 = ConvDownBlock(64, 64, 128) self.conv2 = ConvUpBlock(64, 64, 128) self.conv3 = ConvUpBlock(64, 64, 256) def forward(self, x): x0 = self.conv0(x) x1 = self.conv1(x0) x2 = self.conv2(x1) + x0 x3 = self.conv3(x2) + x return x3
AutoAvatar-main
models/PosedDecKNN_dPoses_dHs/nets.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import numpy as np import os import torch from torch.utils.data import DataLoader import pickle import datetime import shutil import glob import random from pytorch_lightning import Trainer from pytorch_lightning.loggers import TensorBoardLogger from utils.configs import * from utils.io import * import utils.CAPE as cape_utils import utils.DFaust as dfaust_utils from data.DFaust_dataset import DFaustDataset from models.PosedDecKNN_dPoses_dHs.trainbox import Implicit_Trainbox np.random.rand(777) torch.random.manual_seed(777) torch.cuda.manual_seed_all(777) random.seed(777) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False torch.use_deterministic_algorithms(True) from argparse import ArgumentParser parser = ArgumentParser(description='Test AutoAvatar.') parser.add_argument('--ws_dir', required=True, help='path of work space directory') parser.add_argument('--ckpt_dir', required=True, help='path of checkpoint directory') parser.add_argument('--ckpt_itr', default=7500, type=int) parser.add_argument('--gpu_id', default=0, type=int) parser.add_argument('--resolution', default=256, type=int, help='marching cube resolution') parser.add_argument('--data_mode', default='extrap', type=str, help='test which type of data. choose from ["extrap", "interp"]') cmd_args = parser.parse_args() gpu_id = cmd_args.gpu_id resolution = cmd_args.resolution data_mode = cmd_args.data_mode eval_frames = [3] #list(range(3, 99999, 20)) # ckpt_dir = cmd_args.ckpt_dir #'/mnt/ImpDyn_ws/logs/Feb27_00-22-01_04s_50002_v2_PosedDecKNN_dPoses_dHs_AutoRegr_Rollout2' #'/mnt/ImpDyn_ws/logs/May26_20-56-44_04s_50002_v2_PosedDecKNN_dPoses_dHs_HalfSub_AutoRegr_Rollout2' #'/mnt/ImpDyn_ws/logs/Mar03_10-44-09_04s_50004_v2_PosedDecKNN_dPoses_dHs_AutoRegr_Rollout8' #'/mnt/ImpDyn_ws/logs/Mar03_10-42-05_04s_50002_v2_PosedDecKNN_dPoses_dHs_AutoRegr_Rollout8' #'/mnt/ImpDyn_ws/logs/Feb27_20-50-42_04s_50004_v2_PosedDecKNN_dPoses_dHs_AutoRegr_Rollout2' #'/mnt/ImpDyn_ws/logs/Feb27_09-57-21_04s_50004_v2_PosedDecKNN_dPoses_dHs_AutoRegr'#Feb27_20-50-42_04s_50004_v2_PosedDecKNN_dPoses_dHs_AutoRegr_Rollout2' #'/mnt/ImpDyn_ws/logs/Feb23_12-43-09_04s_50002_v2_PosedDecKNN_Dyna_dHs_AutoRegr_Rollout2' #'/mnt/ImpDyn_ws/logs/Feb19_01-26-38_04s_50002_NA_PosedDecKNN_Dyna_Hs_AutoRegr' ckpt_itr = cmd_args.ckpt_itr #90000#7500 #105000 configs_path = glob.glob(os.path.join(ckpt_dir, 'net_def', '*.yaml'))[0] args = load_configs(configs_path, cmd_args.ws_dir) dev_tag = '72s' subject_tag = args['data']['subject'] + '_' + args['data']['cloth_type'] current_time = datetime.datetime.now().strftime('%b%d_%H-%M-%S') log_name = current_time + '_' + dev_tag + '_' + subject_tag + '_' + args['name'] + '_' + args['version'] + '_' + data_mode args['log_dir'] = os.path.join(cmd_args.ws_dir, 'logs_test') args['train']['n_rollout'] = 32 with open(args['data']['interp_bin_path'], 'rb') as f: interp_list = pickle.load(f) with open(args['data']['extrap_bin_path'], 'rb') as f: extrap_list = pickle.load(f) if data_mode == 'extrap': seqs_list = extrap_list elif data_mode == 'interp': seqs_list = interp_list elif data_mode == 'train': seqs_list = [4] if not os.path.exists(os.path.join(args['log_dir'], log_name)): os.makedirs(os.path.join(args['log_dir'], log_name)) for seq_idx in seqs_list: log_dir = os.path.join(args['log_dir'], log_name, 'seq_%03d' % seq_idx) if not os.path.exists(log_dir): os.mkdir(log_dir) dfaust_json = dfaust_utils.DFaustJson(args['data']['bin_path']) validset = DFaustDataset(args, dfaust_json, [seq_idx], eval_frames=eval_frames) valid_loader = DataLoader(validset, batch_size=1, shuffle=False, num_workers=4) logger = TensorBoardLogger(log_dir, name='') trainbox = Implicit_Trainbox(args, log_dir, resolution, eval_frames=eval_frames) if ckpt_dir is not None: trainbox.load_ckpt(ckpt_itr, ckpt_dir) shutil.copy(os.path.realpath(__file__), os.path.join(log_dir, 'net_def')) shutil.copy(configs_path, os.path.join(log_dir, 'net_def')) train_params = { 'max_steps': 10, 'gpus': [gpu_id], 'logger': logger, 'max_epochs': 200000, 'log_every_n_steps': 50, } if 'check_val_every_n_epoch' in args['train']: train_params['check_val_every_n_epoch'] = args['train']['check_val_every_n_epoch'] else: train_params['val_check_interval'] = args['train']['ckpt_step'] trainer = Trainer(**train_params) trainer.test(trainbox, valid_loader)
AutoAvatar-main
exps/PosedDecKNN_dPoses_dHs/implicit_eval_dfaust.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import numpy as np import os import torch from torch.utils.data import DataLoader import pickle import datetime import shutil from pytorch_lightning import Trainer from pytorch_lightning.loggers import TensorBoardLogger from utils.configs import * from utils.io import * import utils.CAPE as cape_utils import utils.DFaust as dfaust_utils from data.DFaust_dataset import DFaustDataset from models.PosedDecKNN_dPoses_dHs.trainbox import Implicit_Trainbox np.random.rand(777) torch.random.manual_seed(777) def train(configs_path, args, log_name, gpu_id, resolution, max_steps, ckpt_dir, ckpt_itr, ShapeEncDec_ckpt_dir, ShapeEncDec_ckpt_itr, coarse_ckpt_dir=None, coarse_ckpt_itr=None): dfaust_json = dfaust_utils.DFaustJson(args['data']['bin_path']) with open(args['data']['train_bin_path'], 'rb') as f: train_list = pickle.load(f) with open(args['data']['interp_bin_path'], 'rb') as f: interp_list = pickle.load(f) with open(args['data']['extrap_bin_path'], 'rb') as f: extrap_list = pickle.load(f) trainset = DFaustDataset(args, dfaust_json, train_list) validset = DFaustDataset(args, dfaust_json, extrap_list + interp_list, gap=10) train_loader = DataLoader(trainset, batch_size=1, shuffle=True, num_workers=8) valid_loader = DataLoader(validset, batch_size=1, shuffle=False, num_workers=4) logger = TensorBoardLogger(args['log_dir'], name=log_name) log_dir = os.path.join(args['log_dir'], log_name) trainbox = Implicit_Trainbox(args, log_dir, resolution) if ckpt_dir is not None: trainbox.load_ckpt(ckpt_itr, ckpt_dir) if ShapeEncDec_ckpt_dir is not None: load_components(trainbox.dyn_net, ShapeEncDec_ckpt_dir, ShapeEncDec_ckpt_itr, 'shape_enc_dec') if coarse_ckpt_dir is not None: load_components(trainbox.dyn_net, coarse_ckpt_dir, coarse_ckpt_itr, 'shape_enc_dec') load_components(trainbox.dyn_net, coarse_ckpt_dir, coarse_ckpt_itr, 'dynamics_net') shutil.copy(os.path.realpath(__file__), os.path.join(log_dir, 'net_def')) shutil.copy(configs_path, os.path.join(log_dir, 'net_def')) train_params = { 'max_steps': max_steps, 'gpus': [gpu_id], 'logger': logger, 'max_epochs': 200000, 'log_every_n_steps': 50, } if 'check_val_every_n_epoch' in args['train']: train_params['check_val_every_n_epoch'] = args['train']['check_val_every_n_epoch'] else: train_params['val_check_interval'] = args['train']['ckpt_step'] trainer = Trainer(**train_params) trainer.fit(trainbox, train_loader, valid_loader) from argparse import ArgumentParser parser = ArgumentParser(description='Train AutoAvatar.') parser.add_argument('--ws_dir', required=True, help='path of work space directory') parser.add_argument('--configs_path', required=True, help='path of configs file') parser.add_argument('--configs_path_rollout', required=True, help='path of configs file') parser.add_argument('--gpu_id', default=0, type=int) parser.add_argument('--resolution', default=128, type=int, help='marching cube resolution') parser.add_argument('--max_steps', default=90000, type=int, help='max training steps') parser.add_argument('--max_steps_rollout', default=7500, type=int, help='max training steps') cmd_args = parser.parse_args() ShapeEncDec_ckpt_dir = None ShapeEncDec_ckpt_itr = None gpu_id = cmd_args.gpu_id resolution = cmd_args.resolution max_steps = cmd_args.max_steps configs_path = cmd_args.configs_path args = load_configs(configs_path, cmd_args.ws_dir) dev_tag = '04s' subject_tag = args['data']['subject'] + '_' + args['data']['cloth_type'] current_time = datetime.datetime.now().strftime('%b%d_%H-%M-%S') log_name = current_time + '_' + dev_tag + '_' + subject_tag + '_' + args['name'] + '_' + args['version'] log_dir = os.path.join(args['log_dir'], log_name) train(configs_path, args, log_name, gpu_id, resolution, max_steps + 5, None, None, ShapeEncDec_ckpt_dir, ShapeEncDec_ckpt_itr) ckpt_dir = log_dir ckpt_itr = max_steps gpu_id = cmd_args.gpu_id resolution = cmd_args.resolution max_steps = cmd_args.max_steps_rollout configs_path = cmd_args.configs_path_rollout args = load_configs(configs_path, cmd_args.ws_dir) dev_tag = '04s' subject_tag = args['data']['subject'] + '_' + args['data']['cloth_type'] current_time = datetime.datetime.now().strftime('%b%d_%H-%M-%S') log_name = current_time + '_' + dev_tag + '_' + subject_tag + '_' + args['name'] + '_' + args['version'] log_dir = os.path.join(args['log_dir'], log_name) train(configs_path, args, log_name, gpu_id, resolution, max_steps + 5, ckpt_dir, ckpt_itr, None, None)
AutoAvatar-main
exps/PosedDecKNN_dPoses_dHs/implicit_train_dfaust.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import numpy as np import os import copy import torch from torch.utils.data import Dataset from pytorch3d.io import load_ply import utils.CAPE as cape_utils class CAPEDataset(Dataset): def __init__(self, args, cape_json, seq_list, skip=1, gap=1, eval_frames=None) -> None: super().__init__() self.args = copy.deepcopy(args) self.cape_json = cape_json self.seq_list = seq_list self.skip = skip self.gap = gap self.eval_frames = eval_frames self.n_frames = args['model']['n_batch_frames'] self.n_rollout = args['train']['n_rollout'] self.raw_dataset_dir = args['data']['raw_dataset_dir'] self.dataset_dir = args['data']['dataset_dir'] self.smooth_tag = args['data']['smooth_tag'] self.faces = torch.from_numpy(np.load(os.path.join(args['data']['raw_dataset_dir'], 'misc', 'smpl_tris.npy')).astype(np.int32)).long() self.samples = [[], []] for seq_idx in seq_list: seq = cape_json.data['seqs'][seq_idx] seq_len = len(seq['frames']) if eval_frames is None: frame_idxs = list(range(0, seq_len - (self.n_frames - 2 + self.n_rollout) * skip, gap)) else: frame_idxs = list(range(0, seq_len - self.n_frames + 1, 1)) self.samples[0] += [seq_idx] * len(frame_idxs) self.samples[1] += frame_idxs assert len(self.samples[0]) == len(self.samples[1]) def __len__(self): return len(self.samples[0]) def __getitem__(self, index): seq_idx, frame_idx = self.samples[0][index], self.samples[1][index] end_idx = frame_idx + (self.n_frames + self.n_rollout - 1) * self.skip if self.eval_frames is not None: if frame_idx + self.args['model']['n_hist_frames'] == self.eval_frames[0]: end_idx = len(self.cape_json.data['seqs'][seq_idx]['frames']) else: end_idx = min(end_idx, len(self.cape_json.data['seqs'][seq_idx]['frames'])) verts_list = [] faces_list = [] poses_list = [] verts_smt_list = [] faces_smt_list = [] for i in range(frame_idx, end_idx, self.skip): frame = self.cape_json.data['seqs'][seq_idx]['frames'][i] npz_path = os.path.join(self.raw_dataset_dir, frame['npz_path']) data = np.load(npz_path) verts, rot, transl = data['v_posed'], data['pose'], data['transl'] poses = np.concatenate([transl, rot], axis=0) assert poses.shape == (75,) ply_path = os.path.join(self.dataset_dir, self.smooth_tag, self.cape_json.data['subject'], self.cape_json.data['seqs'][seq_idx]['seq_name'], npz_path.split('/')[-1][:-4] + '_smt.ply') verts_smt, faces_smt = load_ply(ply_path) verts_list.append(torch.from_numpy(verts).float()) faces_list.append(self.faces.clone()) poses_list.append(torch.from_numpy(poses).float()) verts_smt_list.append(verts_smt) faces_smt_list.append(faces_smt) poses_list = torch.stack(poses_list, dim=0) return {'verts_detail': verts_list, 'faces_detail': faces_list, 'verts_smt': verts_smt_list, 'faces_smt': faces_smt_list, 'poses': poses_list}
AutoAvatar-main
data/CAPE_dataset.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch import numpy as np import h5py import sys import os import copy import pickle import yaml import smplx import open3d as o3d from tqdm import tqdm from pytorch3d.io import save_ply, load_obj, load_ply from pytorch3d.transforms import axis_angle_to_matrix from pytorch3d.transforms.rotation_conversions import matrix_to_axis_angle from pytorch3d.ops import knn_points from human_body_prior.tools.omni_tools import copy2cpu as c2c from human_body_prior.body_model.body_model import BodyModel import utils.DFaust as dfaust_utils import utils.CAPE as cape_utils from utils.configs import * def generate_DFaust_SMPLH(data_dir, smpl_dir, out_dir, subject, subject_gender, gpu_id=0): if not os.path.exists(out_dir): os.mkdir(out_dir) if not os.path.exists(os.path.join(out_dir, subject)): os.mkdir(os.path.join(out_dir, subject)) bm_fname = os.path.join(smpl_dir, 'smplh/%s/model.npz' % subject_gender) dmpl_fname = os.path.join(smpl_dir, 'dmpls/%s/model.npz' % subject_gender) num_betas = 16 # number of body parameters num_dmpls = 8 # number of DMPL parameters bm = BodyModel(bm_fname=bm_fname, num_betas=num_betas, num_dmpls=num_dmpls, dmpl_fname=dmpl_fname)#.cuda(gpu_id) faces = c2c(bm.f) npz_files = sorted(os.listdir(os.path.join(data_dir, 'DFaust_67', subject))) for npz_file in npz_files: if '_poses' not in npz_file: continue if not os.path.exists(os.path.join(out_dir, subject, npz_file[:-4])): os.mkdir(os.path.join(out_dir, subject, npz_file[:-4])) bdata = np.load(os.path.join(data_dir, 'DFaust_67', subject, npz_file)) time_length = len(bdata['trans']) body_parms = { 'root_orient': torch.Tensor(bdata['poses'][:, :3]),#.cuda(gpu_id), # controls the global root orientation 'pose_body': torch.Tensor(bdata['poses'][:, 3:66]),#.cuda(gpu_id), # controls the body 'pose_hand': torch.Tensor(bdata['poses'][:, 66:]),#.cuda(gpu_id), # controls the finger articulation 'trans': torch.Tensor(bdata['trans']),#.cuda(gpu_id), # controls the global body position 'betas': torch.Tensor(np.repeat(bdata['betas'][:num_betas][np.newaxis], repeats=time_length, axis=0)),#.cuda(gpu_id), # controls the body shape. Body shape is static 'dmpls': torch.Tensor(bdata['dmpls'][:, :num_dmpls]),#.cuda(gpu_id) # controls soft tissue dynamics } body_pose_beta = bm(**{k:v for k,v in body_parms.items() if k in ['pose_body', 'betas', 'root_orient', 'trans']}) for i in tqdm(range(time_length)): verts = c2c(body_pose_beta.v[i]) verts = torch.from_numpy(verts) verts_ = verts.clone() verts[:, 1] = verts_[:, 2] verts[:, 2] = -verts_[:, 1] save_ply(os.path.join(out_dir, subject, npz_file[:-4], '%06d.ply' % i), verts, torch.from_numpy(faces)) def smplh_to_smpl(data_dir, subject, smpl_model_path, gpu_id=0): if not os.path.exists(os.path.join(data_dir, 'smpl_poses')): os.mkdir(os.path.join(data_dir, 'smpl_poses')) if not os.path.exists(os.path.join(data_dir, 'smpl_poses', subject)): os.mkdir(os.path.join(data_dir, 'smpl_poses', subject)) with open('data/smplh2smpl.yaml', 'r') as f: default_configs = yaml.load(f, Loader=yaml.FullLoader) seqs = sorted(os.listdir(os.path.join(data_dir, 'smplh_meshes', subject))) for seq in seqs: if not os.path.exists(os.path.join(data_dir, 'smpl_poses', subject, seq)): os.mkdir(os.path.join(data_dir, 'smpl_poses', subject, seq)) configs = copy.deepcopy(default_configs) configs['body_model']['folder'] = smpl_model_path configs['datasets']['mesh_folder']['data_folder'] = os.path.join(data_dir, 'smplh_meshes', subject, seq) configs['output_folder'] = os.path.join(data_dir, 'smpl_poses', subject, seq) with open('tmp/configs.yaml', 'w') as f: yaml.dump(configs, f) os.system('cd external/smplx | python -m transfer_model --exp-cfg tmp/configs.yaml') def DFaust_smplh_to_smpl(dataset_dir, smpl_dir, out_dir, subject, subject_gender, gpu_id=0): if not os.path.exists(out_dir): os.mkdir(out_dir) if not os.path.exists(os.path.join(out_dir, subject)): os.mkdir(os.path.join(out_dir, subject)) bm_fname = os.path.join(smpl_dir, 'smplh/%s/model.npz' % subject_gender) dmpl_fname = os.path.join(smpl_dir, 'dmpls/%s/model.npz' % subject_gender) num_betas = 10 # number of body parameters num_dmpls = 8 # number of DMPL parameters bm = BodyModel(bm_fname=bm_fname, num_betas=num_betas, num_dmpls=num_dmpls, dmpl_fname=dmpl_fname)#.cuda(gpu_id) faces = c2c(bm.f) npz_files = sorted(os.listdir(os.path.join(dataset_dir, 'DFaust_67', subject))) for npz_file in npz_files: if '_poses' not in npz_file: continue bdata = np.load(os.path.join(dataset_dir, 'DFaust_67', subject, npz_file)) time_length = len(bdata['trans']) body_parms = { 'root_orient': torch.Tensor(bdata['poses'][:, :3]),#.cuda(gpu_id), # controls the global root orientation 'pose_body': torch.Tensor(bdata['poses'][:, 3:66]),#.cuda(gpu_id), # controls the body 'pose_hand': torch.Tensor(bdata['poses'][:, 66:]),#.cuda(gpu_id), # controls the finger articulation 'trans': torch.Tensor(bdata['trans']),#.cuda(gpu_id), # controls the global body position 'betas': torch.Tensor(np.repeat(bdata['betas'][:num_betas][np.newaxis], repeats=time_length, axis=0)),#.cuda(gpu_id), # controls the body shape. Body shape is static 'dmpls': torch.Tensor(bdata['dmpls'][:, :num_dmpls]),#.cuda(gpu_id) # controls soft tissue dynamics } body_pose_beta = bm(**{k:v for k,v in body_parms.items() if k in ['pose_body', 'betas', 'root_orient', 'trans']}) root_joints = body_pose_beta.Jtr[:, 0] smpl_poses = torch.Tensor(bdata['poses'][:, 3:72]) global_orient = torch.Tensor(bdata['poses'][:, :3]) transls = torch.Tensor(bdata['trans']) flip_yz_mat = torch.tensor([[1, 0, 0], [0, 0, 1], [0, -1, 0]]).float()[None].expand(time_length, 3, 3) global_rotmat = axis_angle_to_matrix(global_orient) global_rotmat = torch.bmm(flip_yz_mat, global_rotmat) global_orient = matrix_to_axis_angle(global_rotmat) root_joints_yup = torch.bmm(flip_yz_mat, root_joints[..., None])[..., 0] root_joints_notransl = root_joints - transls transls = root_joints_yup - root_joints_notransl poses = torch.cat([transls, global_orient, smpl_poses], dim=-1) assert poses.shape == (time_length, 75) np.savez_compressed(os.path.join(out_dir, subject, npz_file), poses=poses.numpy()) # Save template shape_data = np.load(os.path.join(dataset_dir, 'DFaust_67', subject, 'shape.npz')) betas = torch.Tensor(shape_data['betas'][:10]).unsqueeze(0) body_pose_beta = bm(betas=betas) verts = c2c(body_pose_beta.v[0]) verts = torch.from_numpy(verts) # verts_ = verts.clone() # verts[:, 1] = verts_[:, 2] # verts[:, 2] = -verts_[:, 1] save_ply(os.path.join(out_dir, subject, 'v_template.ply'), verts, torch.from_numpy(faces)) def DFaust_parse_raw(dataset_dir, subject): dfaust_json = dfaust_utils.DFaustJson() seq_names = sorted(os.listdir(os.path.join(dataset_dir, 'scans', subject))) seqs = [] for seq_name in seq_names: ply_names = sorted(os.listdir(os.path.join(dataset_dir, 'scans', subject, seq_name))) poses = np.load(os.path.join(dataset_dir, 'smpl_poses', subject, '%s_%s_poses.npz' % (subject, seq_name)))['poses'] pre_idx = None frames = [] for i, ply_name in enumerate(ply_names): idx = int(ply_name.split('.')[-2]) if pre_idx is not None and idx != pre_idx + 1: seqs = dfaust_json.append_seqs(seqs, seq_name, frames) frames = [] frames = dfaust_json.append_frames(frames, os.path.join('scans', subject, seq_name, ply_name), poses[i]) pre_idx = idx seqs = dfaust_json.append_seqs(seqs, seq_name, frames) dfaust_json.set_data(subject, seqs) dfaust_json.dump_bin_file(os.path.join(dataset_dir, '%s_raw.bin' % subject)) print(dfaust_json.num_of_seqs()) print(dfaust_json.num_of_frames()) for seq in dfaust_json.data['seqs']: print(seq['id'], seq['seq_name']) def split_train_test(dataset_dir, tag, bin_path, subject, interp_acts, extrap_acts): dfaust_json = dfaust_utils.DFaustJson(bin_path) dfaust_json_new = dfaust_utils.DFaustJson() seqs_new = [] train_list = [] interp_list = [] extrap_list = [] for seq in dfaust_json.data['seqs']: if seq['id'] in extrap_acts[0]: assert seq['seq_name'] in extrap_acts[1] seqs_new = dfaust_json_new.append_seqs(seqs_new, seq['seq_name'], copy.deepcopy(seq['frames'])) extrap_list.append(seqs_new[-1]['id']) elif seq['id'] in interp_acts[0]: assert seq['seq_name'] in interp_acts[1] half_len = len(seq['frames']) // 2 seqs_new = dfaust_json_new.append_seqs(seqs_new, seq['seq_name'], copy.deepcopy(seq['frames'][:half_len])) train_list.append(seqs_new[-1]['id']) seqs_new = dfaust_json_new.append_seqs(seqs_new, seq['seq_name'], copy.deepcopy(seq['frames'][half_len:])) interp_list.append(seqs_new[-1]['id']) else: seqs_new = dfaust_json_new.append_seqs(seqs_new, seq['seq_name'], copy.deepcopy(seq['frames'])) train_list.append(seqs_new[-1]['id']) dfaust_json_new.set_data(subject, seqs_new) dfaust_json_new.dump_bin_file(os.path.join(dataset_dir, '%s_%s.bin' % (subject, tag))) print(dfaust_json_new.num_of_seqs()) print(dfaust_json_new.num_of_frames()) with open(os.path.join(dataset_dir, '%s_%s_train.bin' % (subject, tag)), 'wb') as f: pickle.dump(train_list, f) with open(os.path.join(dataset_dir, '%s_%s_interp.bin' % (subject, tag)), 'wb') as f: pickle.dump(interp_list, f) with open(os.path.join(dataset_dir, '%s_%s_extrap.bin' % (subject, tag)), 'wb') as f: pickle.dump(extrap_list, f) print(train_list) print(interp_list) print(extrap_list) def add_transl(dataset_dir, bin_path, subject, smpl_path): smpl_model = smplx.SMPLLayer(model_path=smpl_path) dfaust_json = dfaust_utils.DFaustJson(bin_path) betas = [] for seq in tqdm(dfaust_json.data['seqs']): bdata = np.load(os.path.join(dataset_dir, 'DFaust_67', subject, '%s_%s_poses.npz' % (subject, seq['seq_name']))) for i in range(len(seq['frames'])): frame = seq['frames'][i] idx = int(frame['pose_path'].split('/')[-1][:-4]) with open(os.path.join(dataset_dir, frame['pose_path']), 'rb') as f: data = pickle.load(f) verts_smpl_ref, _, _ = load_obj(os.path.join(dataset_dir, frame['pose_path'][:-4] + '.obj')) body_pose = data['full_pose'][0].detach().cpu()[None, 1:] global_orient = data['full_pose'][0].detach().cpu()[None, 0] verts_smpl = smpl_model(betas=data['betas'].detach().cpu(), body_pose=body_pose, global_orient=global_orient).vertices[0] transl = (verts_smpl_ref - verts_smpl).mean(dim=0) rot = matrix_to_axis_angle(data['full_pose'][0].detach().cpu()) assert rot.shape == (24, 3) poses = np.concatenate([transl, rot.view(72).numpy()], axis=0) assert poses.shape == (75,) frame['poses'] = poses betas.append(data['betas'].detach().cpu()) betas = torch.cat(betas, dim=0).mean(dim=0)[None] v_template = smpl_model(betas=betas).vertices[0] save_ply(os.path.join(dataset_dir, 'smpl_poses', subject, 'v_template.ply'), v_template, smpl_model.faces_tensor) dfaust_json.dump_bin_file(bin_path) def simplify_scans(ws_dir, dataset_dir, bin_path, config_path): dfaust_json = dfaust_utils.DFaustJson(bin_path) smpl_model = cape_utils.load_smpl(load_configs(config_path, ws_dir)).cuda() if not os.path.exists(os.path.join(dataset_dir, 'scans_simple')): os.mkdir(os.path.join(dataset_dir, 'scans_simple')) if not os.path.exists(os.path.join(dataset_dir, 'scans_simple', dfaust_json.data['subject'])): os.mkdir(os.path.join(dataset_dir, 'scans_simple', dfaust_json.data['subject'])) for seq in tqdm(dfaust_json.data['seqs']): mesh_dir = os.path.join(dataset_dir, 'scans_simple', dfaust_json.data['subject'], seq['seq_name']) if not os.path.exists(mesh_dir): os.mkdir(mesh_dir) for i in tqdm(range(len(seq['frames']))): frame = seq['frames'][i] ply_path = os.path.join(dataset_dir, frame['ply_path']) verts, faces = load_ply(ply_path) verts, faces = verts.cuda(), faces.cuda() poses = torch.from_numpy(frame['poses']).float().cuda()[None] verts_smpl = smpl_model(poses).vertices[0] bbmin = verts_smpl.min(dim=0)[0][None] - 0.1 bbmax = verts_smpl.max(dim=0)[0][None] + 0.1 mask_min = (verts > bbmin).long().cumprod(dim=-1)[:, -1] mask_max = (verts < bbmax).long().cumprod(dim=-1)[:, -1] verts_mask = mask_min * mask_max faces_mask = verts_mask[faces[:, 0]] * verts_mask[faces[:, 1]] * verts_mask[faces[:, 2]] faces_val = faces[faces_mask.bool()] verts_idxs_new2old = torch.arange(0, verts.shape[0]).long()[verts_mask.bool()] verts_idxs_old2new = torch.zeros_like(verts_mask) - 1 verts_idxs_old2new[verts_idxs_new2old] = torch.arange(0, verts_idxs_new2old.shape[0]).long().cuda() faces = verts_idxs_old2new[faces_val] verts = verts[verts_idxs_new2old] mesh_o3d = o3d.geometry.TriangleMesh() mesh_o3d.vertices = o3d.utility.Vector3dVector(verts.cpu().numpy()) mesh_o3d.triangles = o3d.utility.Vector3iVector(faces.cpu().numpy()) mesh_o3d = mesh_o3d.simplify_quadric_decimation(int(faces.shape[0] * 0.075 * 0.67)) verts, faces = torch.from_numpy(np.asarray(mesh_o3d.vertices)), torch.from_numpy(np.asarray(mesh_o3d.triangles)) save_ply(os.path.join(mesh_dir, ply_path.split('/')[-1]), verts, faces) def simplify_scans_2nd(dataset_dir, bin_path): dfaust_json = dfaust_utils.DFaustJson(bin_path) if not os.path.exists(os.path.join(dataset_dir, 'scans_simple_2nd')): os.mkdir(os.path.join(dataset_dir, 'scans_simple_2nd')) if not os.path.exists(os.path.join(dataset_dir, 'scans_simple_2nd', dfaust_json.data['subject'])): os.mkdir(os.path.join(dataset_dir, 'scans_simple_2nd', dfaust_json.data['subject'])) for seq in tqdm(dfaust_json.data['seqs']): mesh_dir = os.path.join(dataset_dir, 'scans_simple_2nd', dfaust_json.data['subject'], seq['seq_name']) if not os.path.exists(mesh_dir): os.mkdir(mesh_dir) for i in tqdm(range(len(seq['frames']))): frame = seq['frames'][i] ply_path = os.path.join(dataset_dir, 'scans_simple', dfaust_json.data['subject'], seq['seq_name'], frame['ply_path'].split('/')[-1]) verts, faces = load_ply(ply_path) mesh_o3d = o3d.geometry.TriangleMesh() mesh_o3d.vertices = o3d.utility.Vector3dVector(verts.cpu().numpy()) mesh_o3d.triangles = o3d.utility.Vector3iVector(faces.cpu().numpy()) mesh_o3d = mesh_o3d.simplify_quadric_decimation(int(faces.shape[0] * 0.5)) verts, faces = torch.from_numpy(np.asarray(mesh_o3d.vertices)), torch.from_numpy(np.asarray(mesh_o3d.triangles)) save_ply(os.path.join(mesh_dir, ply_path.split('/')[-1]), verts, faces) def filter_outlier_verts(ws_dir, dataset_dir, bin_path, config_path): dfaust_json = dfaust_utils.DFaustJson(bin_path) smpl_model = cape_utils.load_smpl(load_configs(config_path, ws_dir)).cuda() if not os.path.exists(os.path.join(dataset_dir, 'scans_simple')): os.mkdir(os.path.join(dataset_dir, 'scans_simple')) if not os.path.exists(os.path.join(dataset_dir, 'scans_simple', dfaust_json.data['subject'])): os.mkdir(os.path.join(dataset_dir, 'scans_simple', dfaust_json.data['subject'])) for seq in tqdm(dfaust_json.data['seqs']): mesh_dir = os.path.join(dataset_dir, 'scans_simple', dfaust_json.data['subject'], seq['seq_name']) if not os.path.exists(mesh_dir): os.mkdir(mesh_dir) for i in tqdm(range(len(seq['frames']))): frame = seq['frames'][i] ply_path = os.path.join(dataset_dir, 'scans_simple', dfaust_json.data['subject'], seq['seq_name'], frame['ply_path'].split('/')[-1]) verts, faces = load_ply(ply_path) verts, faces = verts.cuda(), faces.cuda() poses = torch.from_numpy(frame['poses']).float().cuda()[None] verts_smpl = smpl_model(poses).vertices[0] dst, _, _ = knn_points(verts[None], verts_smpl[None], K=1, return_nn=True) verts_mask = (dst.sqrt() < 0.1)[0, ..., 0] if (~verts_mask).sum().item() > 0: verts_mask = verts_mask.long() faces_mask = verts_mask[faces[:, 0]] * verts_mask[faces[:, 1]] * verts_mask[faces[:, 2]] faces_val = faces[faces_mask.bool()] verts_idxs_new2old = torch.arange(0, verts.shape[0]).long()[verts_mask.bool()] verts_idxs_old2new = torch.zeros_like(verts_mask) - 1 verts_idxs_old2new[verts_idxs_new2old] = torch.arange(0, verts_idxs_new2old.shape[0]).long().cuda() faces = verts_idxs_old2new[faces_val] verts = verts[verts_idxs_new2old] save_ply(os.path.join(mesh_dir, ply_path.split('/')[-1]), verts, faces) def save_registered_mesh(dataset_dir, subject, h5py_path): if not os.path.exists(os.path.join(dataset_dir, 'reg_meshes')): os.mkdir(os.path.join(dataset_dir, 'reg_meshes')) if not os.path.exists(os.path.join(dataset_dir, 'reg_meshes', subject)): os.mkdir(os.path.join(dataset_dir, 'reg_meshes', subject)) seq_names = sorted(os.listdir(os.path.join(dataset_dir, 'scans', subject))) for seq_name in tqdm(seq_names): ply_names = sorted(os.listdir(os.path.join(dataset_dir, 'scans', subject, seq_name))) mesh_dir = os.path.join(dataset_dir, 'reg_meshes', subject, seq_name) if not os.path.exists(mesh_dir): os.mkdir(mesh_dir) sidseq = subject + '_' + seq_name with h5py.File(h5py_path, 'r') as f: if sidseq not in f: print('Sequence %s from subject %s not in %s' % (seq_name, subject, h5py_path)) f.close() sys.exit(1) verts_seq = np.array(f[sidseq]).astype(np.float32).transpose([2, 0, 1]) faces = np.array(f['faces']).astype(np.float32) for i, ply_name in tqdm(enumerate(ply_names)): verts = verts_seq[i] save_ply(os.path.join(mesh_dir, ply_name), torch.from_numpy(verts), torch.from_numpy(faces)) def add_idx(bin_path): dfaust_json = dfaust_utils.DFaustJson(bin_path) count = 0 for seq in tqdm(dfaust_json.data['seqs']): for i in tqdm(range(len(seq['frames']))): frame = seq['frames'][i] frame['z_id'] = count count += 1 dfaust_json.dump_bin_file(bin_path) print(count) if __name__ == '__main__': # """ # generate_DFaust_SMPLH('/mnt/ImpDyn_ws/DFaust', # '/mnt/ImpDyn_ws/SMPL', # '/mnt/ImpDyn_ws/DFaust/smplh_meshes', # '50002', 'male', gpu_id=0) # """ # """ # smplh_to_smpl('/mnt/ImpDyn_ws/DFaust', # '50002', # '/mnt/ImpDyn_ws/SMPL/basicmodel_m_lbs_10_207_0_v1.0.0.pkl') # """ # """ # DFaust_parse_raw('/mnt/ImpDyn_ws/DFaust', '50002') # """ # """ # # 50002: interp (1st half train): seq_000_chicken_wings, seq_014_running_on_spot; extrap: seq_004_jumping_jacks, seq_015_shake_arms # split_train_test('/mnt/ImpDyn_ws/DFaust', 'v1', '/mnt/ImpDyn_ws/DFaust/50002_raw.bin', '50002', # ([0, 14], ['chicken_wings', 'running_on_spot']), ([4, 15], ['jumping_jacks', 'shake_arms'])) # """ # """ # add_transl('/mnt/ImpDyn_ws/DFaust', '/mnt/ImpDyn_ws/DFaust/50002_v1.bin', '50002', # '/mnt/ImpDyn_ws/SMPL/basicmodel_m_lbs_10_207_0_v1.0.0.pkl') # """ # """ # simplify_scans('/mnt/ImpDyn_ws/DFaust', '/mnt/ImpDyn_ws/DFaust/50002_v1.bin', 'configs/DispInput/DFaust_50002/AutoRegr.yaml') # simplify_scans_2nd('/mnt/ImpDyn_ws/DFaust', '/mnt/ImpDyn_ws/DFaust/50002_v1.bin') # """ # """ # filter_outlier_verts('/mnt/ImpDyn_ws/DFaust', '/mnt/ImpDyn_ws/DFaust/50002_v1.bin', 'configs/DispInput/DFaust_50002/AutoRegr.yaml') # """ # """ # save_registered_mesh('/mnt/ImpDyn_ws/DFaust', '50002', '/mnt/ImpDyn_ws/DFaust/registrations_m.hdf5') # """ # """ # add_idx('/mnt/ImpDyn_ws/DFaust/50002_v1.bin') # """ # # New process --------------------- # DFaust_smplh_to_smpl('/mnt/ImpDyn_ws/DFaust', '/mnt/ImpDyn_ws/SMPL', '/mnt/ImpDyn_ws/DFaust/smpl_poses', '50002', 'male', gpu_id=0) # DFaust_parse_raw('/mnt/ImpDyn_ws/DFaust', '50002') # # 50002: interp (1st half train): seq_000_chicken_wings, seq_014_running_on_spot; extrap: seq_009_one_leg_jump, seq_010_one_leg_jump # split_train_test('/mnt/ImpDyn_ws/DFaust', 'v2', '/mnt/ImpDyn_ws/DFaust/50002_raw.bin', '50002', # ([0, 14], ['chicken_wings', 'running_on_spot']), ([9, 10], ['one_leg_jump', 'one_leg_jump'])) # """ # simplify_scans('/mnt/ImpDyn_ws/DFaust', '/mnt/ImpDyn_ws/DFaust/50002_v1.bin', 'configs/DispInput/DFaust_50002/AutoRegr.yaml') # simplify_scans_2nd('/mnt/ImpDyn_ws/DFaust', '/mnt/ImpDyn_ws/DFaust/50002_v1.bin') # filter_outlier_verts('/mnt/ImpDyn_ws/DFaust', '/mnt/ImpDyn_ws/DFaust/50002_v1.bin', 'configs/DispInput/DFaust_50002/AutoRegr.yaml') # save_registered_mesh('/mnt/ImpDyn_ws/DFaust', '50002', '/mnt/ImpDyn_ws/DFaust/registrations_m.hdf5') # """ # add_idx('/mnt/ImpDyn_ws/DFaust/50002_v2.bin') # # --------------------------------- # """ # generate_DFaust_SMPLH('/mnt/ImpDyn_ws/DFaust', # '/mnt/ImpDyn_ws/SMPL', # '/mnt/ImpDyn_ws/DFaust/smplh_meshes', # '50004', 'female', gpu_id=0) # """ # """ # smplh_to_smpl('/mnt/ImpDyn_ws/DFaust', # '50004', # '/mnt/ImpDyn_ws/SMPL/basicModel_f_lbs_10_207_0_v1.0.0.pkl') # """ # """ # DFaust_parse_raw('/mnt/ImpDyn_ws/DFaust', '50004') # """ # """ # # 50004: interp (2nd half train): seq_000_chicken_wings, seq_014_running_on_spot; extrap: seq_004_jumping_jacks, seq_015_shake_arms # split_train_test('/mnt/ImpDyn_ws/DFaust', 'v1', '/mnt/ImpDyn_ws/DFaust/50004_raw.bin', '50004', # ([0, 18], ['chicken_wings', 'running_on_spot']), ([3, 19], ['jumping_jacks', 'shake_arms'])) # """ # """ # add_transl('/mnt/ImpDyn_ws/DFaust', '/mnt/ImpDyn_ws/DFaust/50004_v1.bin', '50004', # '/mnt/ImpDyn_ws/SMPL/basicModel_f_lbs_10_207_0_v1.0.0.pkl') # """ # """ # simplify_scans('/mnt/ImpDyn_ws/DFaust', '/mnt/ImpDyn_ws/DFaust/50004_v1.bin', 'configs/DispInput/DFaust_50004/AutoRegr.yaml') # # simplify_scans_2nd('/mnt/ImpDyn_ws/DFaust', '/mnt/ImpDyn_ws/DFaust/50002_v1.bin') # """ # # New process --------------------- # DFaust_smplh_to_smpl('/mnt/ImpDyn_ws/DFaust', '/mnt/ImpDyn_ws/SMPL', '/mnt/ImpDyn_ws/DFaust/smpl_poses', '50004', 'female', gpu_id=0) # DFaust_parse_raw('/mnt/ImpDyn_ws/DFaust', '50004') # # 50004: interp (1st half train): seq_000_chicken_wings, seq_018_running_on_spot; extrap: seq_016_one_leg_loose # split_train_test('/mnt/ImpDyn_ws/DFaust', 'v2', '/mnt/ImpDyn_ws/DFaust/50004_raw.bin', '50004', # ([0, 18], ['chicken_wings', 'running_on_spot']), ([16], ['one_leg_loose'])) # """ # simplify_scans('/mnt/ImpDyn_ws/DFaust', '/mnt/ImpDyn_ws/DFaust/50002_v1.bin', 'configs/DispInput/DFaust_50002/AutoRegr.yaml') # simplify_scans_2nd('/mnt/ImpDyn_ws/DFaust', '/mnt/ImpDyn_ws/DFaust/50002_v1.bin') # """ # filter_outlier_verts('/mnt/ImpDyn_ws/DFaust', '/mnt/ImpDyn_ws/DFaust/50004_v2.bin', 'configs/DispInput/DFaust_50004/AutoRegr.yaml') # """ # save_registered_mesh('/mnt/ImpDyn_ws/DFaust', '50004', '/mnt/ImpDyn_ws/DFaust/registrations_f.hdf5') # """ # add_idx('/mnt/ImpDyn_ws/DFaust/50004_v2.bin') from argparse import ArgumentParser parser = ArgumentParser(description='Process DFaust data.') parser.add_argument('--ws_dir', required=True, help='path of work space directory') args = parser.parse_args() # New process --------------------- DFaust_smplh_to_smpl( os.path.join(args.ws_dir, 'DFaust'), os.path.join(args.ws_dir, 'SMPL'), os.path.join(args.ws_dir, 'DFaust', 'smpl_poses'), '50002', 'male', gpu_id=0 ) DFaust_parse_raw(os.path.join(args.ws_dir, 'DFaust'), '50002') # 50002: interp (1st half train): seq_000_chicken_wings, seq_014_running_on_spot; extrap: seq_009_one_leg_jump, seq_010_one_leg_jump split_train_test( os.path.join(args.ws_dir, 'DFaust'), 'v2', os.path.join(args.ws_dir, 'DFaust', '50002_raw.bin'), '50002', ([0, 14], ['chicken_wings', 'running_on_spot']), ([9, 10], ['one_leg_jump', 'one_leg_jump']) ) simplify_scans( args.ws_dir, os.path.join(args.ws_dir, 'DFaust'), os.path.join(args.ws_dir, 'DFaust', '50002_v2.bin'), 'configs/PosedDecKNN_dPoses_dHs/AutoRegr.yaml' ) filter_outlier_verts( args.ws_dir, os.path.join(args.ws_dir, 'DFaust'), os.path.join(args.ws_dir, 'DFaust', '50002_v2.bin'), 'configs/PosedDecKNN_dPoses_dHs/AutoRegr.yaml' ) # save_registered_mesh('/mnt/ImpDyn_ws/DFaust', '50002', '/mnt/ImpDyn_ws/DFaust/registrations_m.hdf5') add_idx(os.path.join(args.ws_dir, 'DFaust', '50002_v2.bin')) # ---------------------------------
AutoAvatar-main
data/DFaust_generate.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import numpy as np import os import copy import pickle import torch from torch.utils.data import Dataset from pytorch3d.io import load_ply import utils.CAPE as cape_utils class DFaustDataset(Dataset): def __init__(self, args, dfaust_json, seq_list, skip=1, gap=1, eval_frames=None, no_mesh=False) -> None: super().__init__() self.args = copy.deepcopy(args) self.dfaust_json = dfaust_json self.seq_list = seq_list self.skip = skip self.gap = gap self.eval_frames = eval_frames self.no_mesh = no_mesh self.n_frames = args['model']['n_batch_frames'] self.n_rollout = args['train']['n_rollout'] self.raw_dataset_dir = args['data']['raw_dataset_dir'] self.dataset_dir = args['data']['dataset_dir'] self.smooth_tag = args['data']['smooth_tag'] # self.faces = torch.from_numpy(np.load(os.path.join(args['data']['raw_dataset_dir'], 'misc', 'smpl_tris.npy')).astype(np.int32)).long() self.samples = [[], []] for seq_idx in seq_list: seq = dfaust_json.data['seqs'][seq_idx] seq_len = len(seq['frames']) if eval_frames is None: frame_idxs = list(range(0, seq_len - (self.n_frames - 2 + self.n_rollout) * skip, gap)) else: frame_idxs = list(range(0, seq_len - self.n_frames + 1, 1)) self.samples[0] += [seq_idx] * len(frame_idxs) self.samples[1] += frame_idxs assert len(self.samples[0]) == len(self.samples[1]) def __len__(self): return len(self.samples[0]) def __getitem__(self, index): seq_idx, frame_idx = self.samples[0][index], self.samples[1][index] end_idx = frame_idx + (self.n_frames + self.n_rollout - 1) * self.skip if self.eval_frames is not None: if frame_idx + self.args['model']['n_hist_frames'] == self.eval_frames[0]: end_idx = len(self.dfaust_json.data['seqs'][seq_idx]['frames']) else: end_idx = min(end_idx, len(self.dfaust_json.data['seqs'][seq_idx]['frames'])) verts_list = [] faces_list = [] poses_list = [] verts_smt_list = [] faces_smt_list = [] z_ids_list = [] for i in range(frame_idx, end_idx, self.skip): frame = self.dfaust_json.data['seqs'][seq_idx]['frames'][i] ply_path = os.path.join(self.raw_dataset_dir, frame['ply_path']) ply_path_ = os.path.join(self.dataset_dir, 'scans_simple', self.dfaust_json.data['subject'], self.dfaust_json.data['seqs'][seq_idx]['seq_name'], ply_path.split('/')[-1]) if not self.no_mesh: verts, faces = load_ply(ply_path_) else: verts, faces = torch.zeros((0, 3), dtype=torch.float32), torch.zeros((0, 3), dtype=torch.long) poses = frame['poses'] assert poses.shape == (75,) if not self.args['data']['separate_detail']: verts_smt, faces_smt = verts.clone(), faces.clone() else: ply_path_ = os.path.join(self.dataset_dir, self.smooth_tag, self.dfaust_json.data['subject'], self.dfaust_json.data['seqs'][seq_idx]['seq_name'], ply_path.split('/')[-1][:-4] + '_smt.ply') verts_smt, faces_smt = load_ply(ply_path_) z_ids_list.append(torch.tensor(frame['z_id']).long()) verts_list.append(verts) faces_list.append(faces) poses_list.append(torch.from_numpy(poses).float()) verts_smt_list.append(verts_smt) faces_smt_list.append(faces_smt) z_ids_list = torch.stack(z_ids_list, dim=0) poses_list = torch.stack(poses_list, dim=0) return {'verts_detail': verts_list, 'faces_detail': faces_list, 'verts_smt': verts_smt_list, 'faces_smt': faces_smt_list, 'poses': poses_list, 'z_ids': z_ids_list}
AutoAvatar-main
data/DFaust_dataset.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os import numpy as np import pickle import utils.CAPE as cape_utils def CAPE_parse_raw(raw_dataset_dir, out_dir, subject, cloth_type): if not os.path.exists(out_dir): os.mkdir(out_dir) cape_json = cape_utils.CAPEJson() seqs = [] txt_path = os.path.join(raw_dataset_dir, 'seq_lists', 'seq_list_%s.txt' % subject) with open(txt_path, 'r') as f: for line in f: if cloth_type not in line: continue seq_name = line.strip().split()[0] seq_dir = os.path.join(raw_dataset_dir, 'sequences', subject, seq_name) npz_files = sorted(os.listdir(seq_dir)) pre_idx = None frames = [] for i, npz_file in enumerate(npz_files): idx = int(npz_file.strip().split('.')[1]) if pre_idx is not None and idx != pre_idx + 1: seqs = cape_json.append_seqs(seqs, seq_name, frames) frames = [] frames = cape_json.append_frames(frames, os.path.join('sequences', subject, seq_name, npz_file)) pre_idx = idx seqs = cape_json.append_seqs(seqs, seq_name, frames) cape_json.set_data(subject, cloth_type, seqs) cape_json.dump_bin_file(os.path.join(out_dir, '%s_%s.bin' % (subject, cloth_type))) print(cape_json.num_of_seqs()) print(cape_json.num_of_frames()) def split_train_test(out_dir, tag, bin_path, interp_acts, extrap_acts, test_trial): def act_in_acts(query_act, acts): for act in acts: if act in query_act: return True return False cape_json = cape_utils.CAPEJson(bin_path) train_list = [] interp_list = [] extrap_list = [] for seq in cape_json.data['seqs']: if act_in_acts(seq['seq_name'], extrap_acts): extrap_list.append(seq['id']) elif act_in_acts(seq['seq_name'], interp_acts): if test_trial in seq['seq_name']: interp_list.append(seq['id']) else: train_list.append(seq['id']) else: train_list.append(seq['id']) with open(os.path.join(out_dir, '%s_train.bin' % tag), 'wb') as f: pickle.dump(train_list, f) with open(os.path.join(out_dir, '%s_interp.bin' % tag), 'wb') as f: pickle.dump(interp_list, f) with open(os.path.join(out_dir, '%s_extrap.bin' % tag), 'wb') as f: pickle.dump(extrap_list, f) print(train_list) print(interp_list) print(extrap_list) if __name__ == '__main__': # CAPE_parse_raw('/mnt/Datasets/CAPE/cape_release', '/mnt/Datasets/CAPE', '03375', 'longlong') # split_train_test('/mnt/Datasets/CAPE/', '03375_longlong', '/mnt/Datasets/CAPE/03375_longlong.bin', # ['box', 'swim', 'twist_tilt'], ['athletics', 'frisbee', 'volleyball'], 'trial1') CAPE_parse_raw('/mnt/Datasets/CAPE/cape_release', '/mnt/Datasets/CAPE', '00134', 'shortlong')
AutoAvatar-main
data/CAPE_generate.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import numpy as np import os import copy import pickle import torch from torch.utils.data import Dataset from pytorch3d.io import load_ply import utils.CAPE as cape_utils class AistDataset(Dataset): def __init__(self, args, dfaust_json, seq_dir, skip=1, gap=1, eval_frames=None) -> None: super().__init__() self.args = copy.deepcopy(args) self.dfaust_json = dfaust_json self.seq_dir = seq_dir self.skip = skip self.gap = gap self.eval_frames = eval_frames self.n_frames = args['model']['n_batch_frames'] self.n_rollout = args['train']['n_rollout'] self.raw_dataset_dir = args['data']['raw_dataset_dir'] self.dataset_dir = args['data']['dataset_dir'] self.smooth_tag = args['data']['smooth_tag'] # self.faces = torch.from_numpy(np.load(os.path.join(args['data']['raw_dataset_dir'], 'misc', 'smpl_tris.npy')).astype(np.int32)).long() self.frame_list = sorted(os.listdir(seq_dir)) def __len__(self): return 1 def __getitem__(self, index): verts_list = [] faces_list = [] poses_list = [] verts_smt_list = [] faces_smt_list = [] for i in range(index, len(self.frame_list), self.skip): data = np.load(os.path.join(self.seq_dir, self.frame_list[i])) rot, transl = data['pose'], data['transl'] poses = np.concatenate([transl, rot], axis=0) assert poses.shape == (75,) poses_list.append(torch.from_numpy(poses).float()) poses_list = torch.stack(poses_list, dim=0) frame = self.dfaust_json.data['seqs'][0]['frames'][0] ply_path = os.path.join(self.raw_dataset_dir, frame['ply_path']) ply_path_ = os.path.join(self.dataset_dir, 'scans_simple_2nd', self.dfaust_json.data['subject'], self.dfaust_json.data['seqs'][0]['seq_name'], ply_path.split('/')[-1]) verts_init, faces_init = load_ply(ply_path_) poses_init = torch.from_numpy(frame['poses']).float() assert poses_init.shape == (75,) z_ids_list = torch.zeros(poses_list.shape[0]).long() return {'verts_detail': verts_list, 'faces_detail': faces_list, 'verts_smt': verts_smt_list, 'faces_smt': faces_smt_list, 'poses': poses_list, 'verts_init': verts_init, 'faces_init': faces_init, 'poses_init': poses_init, 'z_ids': z_ids_list}
AutoAvatar-main
data/Aist_dataset.py
from setuptools import setup if __name__ == "__main__": setup(name='flyingsquid', version='0.0.0a0', description='Weak supervision with triplet methods', url='https://github.com/HazyResearch/flyingsquid', author='Dan Fu', author_email='danfu@cs.stanford.edu', license='Apache 2.0', packages=['flyingsquid'])
flyingsquid-master
setup.py
from pgmpy.models import MarkovModel from pgmpy.factors.discrete import JointProbabilityDistribution, DiscreteFactor from itertools import combinations from flyingsquid.helpers import * from flyingsquid import _triplets from flyingsquid import _graphs from flyingsquid import _observables from flyingsquid import _lm_parameters import numpy as np import math from tqdm import tqdm import sys import random class LabelModel(_triplets.Mixin, _graphs.Mixin, _observables.Mixin, _lm_parameters.Mixin): def __init__(self, m, v=1, y_edges=[], lambda_y_edges=[], lambda_edges=[], allow_abstentions=True, triplets=None, triplet_seed=0): '''Initialize the LabelModel with a graph G. m: number of LF's v: number of Y tasks y_edges: edges between the tasks. (i, j) in y_edges means that there is an edge between y_i and y_j. lambda_y_edges: edges between LF's and tasks. (i, j) in lambda_y_edges means that there is an edge between lambda_i and y_j. If this list is empty, assume that all labeling functions are connected to Y_0. lambda_edges: edges between LF's. (i, j) in lambda_edges means that there is an edge between lambda_i and lambda_j. allow_abstentions: if True, allow abstentions in L_train. triplets: if specified, use these triplets triplet_seed: if triplets not specified, randomly shuffle the nodes with this seed when generating triplets ''' if lambda_y_edges == []: lambda_y_edges = [(i, 0) for i in range(m)] G = MarkovModel() # Add LF nodes G.add_nodes_from([ 'lambda_{}'.format(i) for i in range(m) ]) G.add_nodes_from([ 'Y_{}'.format(i) for i in range(v) ]) # Add edges G.add_edges_from([ ('Y_{}'.format(start), 'Y_{}'.format(end)) for start, end in y_edges ]) G.add_edges_from([ ('lambda_{}'.format(start), 'Y_{}'.format(end)) for start, end in lambda_y_edges ]) G.add_edges_from([ ('lambda_{}'.format(start), 'lambda_{}'.format(end)) for start, end in lambda_edges ]) self.fully_independent_case = lambda_edges == [] self.m = m if m < 3: raise NotImplementedError("Triplet method needs at least three LF's to run.") self.v = v self.G = G self.junction_tree = self.G.to_junction_tree() self.nodes = sorted(list(self.G.nodes)) self.triplet_seed = triplet_seed if triplet_seed is not None: random.seed(triplet_seed) random.shuffle(self.nodes) self.separator_sets = set([ tuple(sorted(list((set(clique1).intersection(set(clique2)))))) for clique1, clique2 in self.junction_tree.edges ]) self.allow_abstentions = allow_abstentions self.triplets = triplets if not self._check(): raise NotImplementedError('Cannot run triplet method for specified graph.') # Make this Picklable def save(obj): return (obj.__class__, obj.__dict__) def load(cls, attributes): obj = cls.__new__(cls) obj.__dict__.update(attributes) return obj def enumerate_ys(self): # order to output probabilities vals = { Y: (-1, 1) for Y in range(self.v) } Y_vecs = sorted([ [ vec_dict[Y] for Y in range(self.v) ] for vec_dict in dict_product(vals) ]) return Y_vecs def _lambda_pass(self, L_train, lambda_marginals, lambda_moment_vals, lambda_equals_one, lambda_zeros, abstention_probabilities, verbose = False): ''' Make the pass over L_train. In this pass, we need to: * Compute all the joint marginal distributions over multiple lambda's (lambda_marginals) * Compute the probabilities that some set of lambda's are all equal to zero (lambda_zeros) * Compute all the lambda moments, including conditional moments (lambda_moment_vals) * Compute the probability that the product of some lambdas is zero (abstention_probabilities) ''' # do the fast cases first easy_marginals = { marginal: None for marginal in lambda_marginals if len(marginal) == 1 } easy_moments = { moment: None for moment in lambda_moment_vals if type(moment[0]) != type(()) and len(moment) <= 2 } easy_equals_one = { factor: None for factor in lambda_equals_one if type(factor[0]) != type(()) and len(factor) == 1 } easy_zeros = { condition: None for condition in lambda_zeros if len(condition) == 1 } easy_abstention_probs = { factor: None for factor in abstention_probabilities if len(factor) == 1 } means = np.einsum('ij->j', L_train)/L_train.shape[0] covariance = np.einsum('ij,ik->jk', L_train, L_train)/L_train.shape[0] lf_cardinality = 3 if self.allow_abstentions else 2 lf_values = (-1, 0, 1) if self.allow_abstentions else (-1, 1) for marginal in easy_marginals: idx = marginal[0] counts = [ np.sum(L_train[:,idx] == val) / L_train.shape[0] for val in lf_values ] easy_marginals[marginal] = JointProbabilityDistribution( [ 'lambda_{}'.format(idx) ], [ lf_cardinality ], counts ) if marginal in easy_equals_one: easy_equals_one[marginal] = counts[-1] if marginal in easy_zeros: easy_zeros[marginal] = counts[1] if marginal in easy_abstention_probs: easy_abstention_probs[marginal] = counts[1] for moment in easy_moments: if len(moment) == 1: easy_moments[moment] = means[moment[0]] else: easy_moments[moment] = covariance[moment[0]][moment[1]] for factor in easy_equals_one: if easy_equals_one[factor] is None: easy_equals_one[factor] = np.sum(L_train[:,factor[0]] == 1) / L_train.shape[0] for condition in easy_zeros: if easy_zeros[condition] is None: idx = condition[0] easy_zeros[condition] = np.sum(L_train[:,idx] == 0) / L_train.shape[0] for factor in easy_abstention_probs: if easy_abstention_probs[factor] is None: idx = factor[0] easy_abstention_probs[factor] = np.sum(L_train[:,idx] == 0) / L_train.shape[0] # time for the remaining cases lambda_marginals = { key: lambda_marginals[key] for key in lambda_marginals if key not in easy_marginals } lambda_moment_vals = { key: lambda_moment_vals[key] for key in lambda_moment_vals if key not in easy_moments } lambda_equals_one = { key: lambda_equals_one[key] for key in lambda_equals_one if key not in easy_equals_one } lambda_zeros = { key: lambda_zeros[key] for key in lambda_zeros if key not in easy_zeros } abstention_probabilities = { key: abstention_probabilities[key] for key in abstention_probabilities if key not in easy_abstention_probs } # for the rest, loop through L_train if (len(lambda_marginals) > 0 or len(lambda_moment_vals) > 0 or len(lambda_equals_one) > 0 or len(lambda_zeros) > 0 or len(abstention_probabilities) > 0): # figure out which lambda states we need to keep track of lambda_marginal_counts = {} lambda_marginal_vecs = {} lf_values = (-1, 0, 1) if self.allow_abstentions else (-1, 1) for lambda_marginal in lambda_marginals: nodes = [ 'lambda_{}'.format(idx) for idx in lambda_marginal ] vals = { lf: lf_values for lf in nodes } lf_vecs = sorted([ [ vec_dict[lf] for lf in nodes ] for vec_dict in dict_product(vals) ]) counts = { tuple(lf_vec): 0 for lf_vec in lf_vecs } lambda_marginal_vecs[lambda_marginal] = lf_vecs lambda_marginal_counts[lambda_marginal] = counts lambda_moment_counts = { moment: 0 for moment in lambda_moment_vals } lambda_moment_basis = { moment: 0 for moment in lambda_moment_vals } lambda_equals_one_counts = { factor: 0 for factor in lambda_equals_one } lambda_equals_one_basis = { factor: 0 for factor in lambda_equals_one } lambda_zero_counts = { condition: 0 for condition in lambda_zeros } abstention_probability_counts = { factor: 0 for factor in abstention_probabilities } for data_point in tqdm(L_train) if verbose else L_train: for marginal in lambda_marginals: mask = [ data_point[idx] for idx in marginal ] lambda_marginal_counts[marginal][tuple(mask)] += 1 for moment in lambda_moment_vals: if type(moment[0]) == type(()): pos_mask = [ data_point[idx] for idx in moment[0] ] zero_mask = [ data_point[idx] for idx in moment[1] ] if np.count_nonzero(zero_mask) == 0: lambda_moment_basis[moment] += 1 lambda_moment_counts[moment] += np.prod(pos_mask) else: mask = [ data_point[idx] for idx in moment ] lambda_moment_counts[moment] += np.prod(mask) lambda_moment_basis[moment] += 1 for factor in lambda_equals_one: if type(factor[0]) == type(()): pos_mask = [ data_point[idx] for idx in factor[0] ] zero_mask = [ data_point[idx] for idx in factor[1] ] if np.count_nonzero(zero_mask) == 0: lambda_equals_one_basis[factor] += 1 if np.prod(pos_mask) == 1: lambda_equals_one_counts[factor] += 1 else: mask = [ data_point[idx] for idx in factor ] if np.prod(mask) == 1: lambda_equals_one_counts[factor] += 1 lambda_equals_one_basis[factor] += 1 for zero_condition in lambda_zeros: zero_mask = [ data_point[idx] for idx in zero_condition ] if np.count_nonzero(zero_mask) == 0: lambda_zero_counts[zero_condition] += 1 for factor in abstention_probability_counts: zero_mask = [ data_point[idx] for idx in factor ] if np.prod(zero_mask) == 0: abstention_probability_counts[factor] += 1 lf_cardinality = 3 if self.allow_abstentions else 2 for marginal in lambda_marginals: nodes = [ 'lambda_{}'.format(idx) for idx in marginal ] lf_vecs = lambda_marginal_vecs[marginal] counts = lambda_marginal_counts[marginal] lambda_marginals[marginal] = JointProbabilityDistribution( nodes, [ lf_cardinality for node in nodes ], [ float(counts[tuple(lf_vec)]) / len(L_train) for lf_vec in lf_vecs ] ) for moment in lambda_moment_vals: if lambda_moment_basis[moment] == 0: moment_val = 0 else: moment_val = lambda_moment_counts[moment] / lambda_moment_basis[moment] lambda_moment_vals[moment] = moment_val for factor in lambda_equals_one: if lambda_equals_one_basis[factor] == 0: prob = 0 else: prob = lambda_equals_one_counts[factor] / lambda_equals_one_basis[factor] lambda_equals_one[factor] = prob for zero_condition in lambda_zeros: lambda_zeros[zero_condition] = lambda_zero_counts[zero_condition] / len(L_train) for factor in abstention_probabilities: abstention_probabilities[factor] = abstention_probability_counts[factor] / len(L_train) # update with the easy values lambda_marginals.update(easy_marginals) lambda_moment_vals.update(easy_moments) lambda_equals_one.update(easy_equals_one) lambda_zeros.update(easy_zeros) abstention_probabilities.update(easy_abstention_probs) return lambda_marginals, lambda_moment_vals, lambda_equals_one, lambda_zeros, abstention_probabilities def fit(self, L_train, class_balance=None, Y_dev=None, flip_negative=True, clamp=True, solve_method='triplet_mean', sign_recovery='all_positive', verbose = False): '''Compute the marginal probabilities of each clique and separator set in the junction tree. L_train: an m x n matrix of LF outputs. L_train[k][i] is the value of \lambda_i on item k. 1 means positive, -1 means negative, 0 means abstain. class_balance: a 2^v vector of the probabilities of each combination of Y values. Sorted in lexicographical order (entry zero is for Y_0 = -1, ..., Y_{v-1} = -1, entry one is for Y_0 = -1, ..., Y_{v-1} = 1, last entry is for Y_0 = 1, ..., Y_{v-1} = 1). Y_dev: a v x |Y_dev| matrix of ground truth examples. If class_balance is not specified, this is used to find out the class balance. Otherwise not used. If this is not specified, and class_balance is not specified, then class balance is uniform. 1 means positive, -1 means negative. flip_negative: if True, flip sign of negative probabilities clamp: if True and flip_negative is not True, set negative probabilities to 0 solve_method: one of ['triplet_mean', 'triplet_median', 'triplet', 'independencies'] If triplet, use the method below and the independencies we write down there. If independencies, use the following facts: * For any lambda_i: lambda_i * Y and Y are independent for any i, so E[lambda_i Y] = E[lambda_i] / E[Y] * For any lambda_i, lambda_j: E[lambda_i * lambda_j * Y] = E[lambda_i * lambda_j] * E[Y] * For an odd number of lambda's, the first property holds; for an even number, the second property holds Only triplet implemented right now. sign_recovery: one of ['all_positive', 'fully_independent'] If all_positive, assume that all accuracies that we compute are positive. If fully_independent, assume that the accuracy of lambda_0 on Y_0 is positive, and that for any lambda_i and lambda_{i+1}, sign(lambda_i lambda_{i+1}) = sign(M_{i,i+1}) where M_{i, i+1} is the second moment between lambda_0 and lambda_i. If solve_method is independencies, we don't need to do this. Only all_positive implemented right now. verbose: if True, print out messages to stderr as we make progress How we go about solving these probabilities (for Triplet method): * We assume that we have the joint distribution/class balance of our Y's (or can infer it from the dev set). * We observe agreements and disagreements between LF's, so we can compute values like P(\lambda_i \lambda_j = 1). * The only thing we need to estimate now are correlations between LF's and (unseen) Y's - values like P(\lambda_i Y_j = 1). * Luckily, we have P(\lambda_i Y_j = 1) = 1/2(1 + E[\lambda_i Y_j]). We refer to E[\lambda_i Y_j] as the accuracy of \lambda_i on Y_j. * And because of the format of our exponential model, we have: E[\lambda_i Y_j]E[\lambda_k Y_j] = E[\lambda_i Y_j \lambda_k Y_j] = E[\lambda_i \lambda_k] For any \lambda_i, \lambda_k that are conditionally independent given Y_j. This translates to Y_j being a separator of \lambda_i and \lambda_k in our graphical model. And we can observe E[\lambda_i \lambda_k] (the second moment) from L_train! * The algorithm proceeds to estimate the marginal probabilities by picking out triplets of conditionally-independent subsets of LF's, and estimating the accuracies of LF's on Y's. * Then, to recover the joint probabilities, we can solve a linear system B e = r (written out in latex): $$\begin{align*} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 &1 \end{bmatrix} \begin{bmatrix} p_{\lambda_i, Y_j}(+1, +1)\\ p_{\lambda_i, Y_j}(-1, +1) \\ p_{\lambda_i, Y_j}(+1, -1) \\ p_{\lambda_i, Y_j}(-1, -1) \end{bmatrix} = \begin{bmatrix} 1 \\ P(\lambda_{i} = 1) \\ P(Y_j = 1) \\ \rho_{i, j} \end{bmatrix} . \end{align*}$$ The values on the left of the equality are an invertible matrix, and values like P(\lambda_i = 1, Y_j = 1), P(\lambda_i = -1, Y_j = 1), etc for the full marginal probability. The values on the left of the equality are [1, P(\lambda_i = 1), P(Y_j = 1), P(\lambda_i = Y_j)]^T. We can observe or solve for all the values on the right, to solve for the values in the marginal probability! This can also be extended to multiple dimensions. Outputs: None. ''' # if abstentions not allowed, check for zero's if not self.allow_abstentions: if np.count_nonzero(L_train) < L_train.shape[0] * L_train.shape[1]: print('Abstentions not allowed!') return # Y marginals to compute Y_marginals = {} # lambda marginals to compute lambda_marginals = {} # marginals will eventually be returned here marginals = [ (clique, None) for clique in sorted(list(self.junction_tree.nodes)) + sorted(list(self.separator_sets)) ] def num_Ys(nodes): if nodes == tuple([1]) or nodes == tuple([0]): return 0 return len([ node for node in nodes if 'Y' in node ]) def num_lambdas(nodes): if nodes == tuple([1]) or nodes == tuple([0]): return 0 return len([ node for node in nodes if 'lambda' in node ]) observable_cliques = [] non_observable_cliques = [] for i, (clique, _) in enumerate(marginals): if num_Ys(clique) == 0 or num_lambdas(clique) == 0: observable_cliques.append(i) else: non_observable_cliques.append(i) # write down everything we need for the observable cliques for idx in observable_cliques: clique = marginals[idx][0] indices = tuple(sorted([ int(node.split('_')[1]) for node in clique ])) if 'Y' in clique[0]: if indices not in Y_marginals: Y_marginals[indices] = None else: if indices not in lambda_marginals: lambda_marginals[indices] = None if verbose: print('Marginals written down', file=sys.stderr) # for each marginal we need to estimate, write down the r vector that we need r_vecs = {} # mapping from clique index to the r vector r_vals = {} # mapping from a value name (like Y_1 or tuple(lambda_1, Y_1)) to its value for idx in non_observable_cliques: clique = list(reversed(sorted(marginals[idx][0]))) r_vec = self._generate_r_vector(clique) r_vecs[idx] = r_vec for r_val in r_vec: if r_val not in r_vals: r_vals[r_val] = None if verbose: print('R vector written down', file=sys.stderr) # write down all the sets of zero conditions lambda_zeros = {} # write down the moment values that we need to keep track of when we walk through the L matrix Y_equals_one = {} lambda_equals_one = {} # write down which expectations we need to solve using the triplet method expectations_to_estimate = set() for r_val in r_vals: if not self.allow_abstentions or r_val[1] == tuple(['0']): equals_one_tup = r_val if not self.allow_abstentions else r_val[0] if equals_one_tup[0] == '1': # If the value is 1, the probability is just 1 r_vals[r_val] = 1 elif num_Ys(equals_one_tup) != 0 and num_lambdas(equals_one_tup) != 0: # If this contains lambdas and Y's, we can't observe it expectations_to_estimate.add(r_val) elif num_Ys(equals_one_tup) != 0: # We need to cache this moment indices = tuple(sorted([ int(node.split('_')[1]) for node in equals_one_tup ])) if indices not in Y_equals_one: Y_equals_one[indices] = None elif num_lambdas(equals_one_tup) != 0: # If it contains just lambdas, go through L_train indices = tuple(sorted([ int(node.split('_')[1]) for node in equals_one_tup ])) if indices not in lambda_equals_one: lambda_equals_one[indices] = None else: # we allow abstentions, and there are clauses that are equal to zero equals_one_tup = r_val[0] equals_zero_tup = r_val[1] if num_lambdas(equals_one_tup) > 0 and num_Ys(equals_one_tup) > 0: # we can't observe this expectations_to_estimate.add(r_val) elif num_lambdas(equals_one_tup) > 0: # compute probability some lambda's multiply to one, subject to some zeros pos_indices = tuple(sorted([ int(node.split('_')[1]) for node in equals_one_tup ])) zero_indices = tuple(sorted([ int(node.split('_')[1]) for node in equals_zero_tup ])) tup = (pos_indices, zero_indices) if tup not in lambda_equals_one: lambda_equals_one[tup] = None if zero_indices not in lambda_zeros: lambda_zeros[zero_indices] = None else: # compute a Y equals one probability, and multiply it by probability of zeros if equals_one_tup[0] != '1': pos_indices = tuple(sorted([ int(node.split('_')[1]) for node in equals_one_tup ])) if pos_indices not in Y_equals_one: Y_equals_one[pos_indices] = None zero_indices = tuple(sorted([ int(node.split('_')[1]) for node in equals_zero_tup ])) if zero_indices not in lambda_zeros: lambda_zeros[zero_indices] = None if verbose: print('Expectations to estimate written down', file=sys.stderr) if solve_method[:len('triplet')] == 'triplet': triplets, new_moment_vals, abstention_probabilities = self._triplet_method_preprocess( expectations_to_estimate, solve_method) self.triplets = triplets elif solve_method == 'independencies': print('Independencies not implemented yet!') return if verbose: print('Triplets constructed', file=sys.stderr) lambda_moment_vals = {} for moment in new_moment_vals: if moment not in lambda_moment_vals: lambda_moment_vals[moment] = None # now time to compute all the Y marginals self.cb = self._compute_class_balance(class_balance, Y_dev) Y_marginals = self._compute_Y_marginals(Y_marginals) if verbose: print('Y marginals computed', file=sys.stderr) Y_equals_one = self._compute_Y_equals_one(Y_equals_one) if verbose: print('Y equals one computed', file=sys.stderr) self.Y_marginals = Y_marginals self.Y_equals_one = Y_equals_one # now time to compute the lambda moments, marginals, zero conditions, and abstention probs lambda_marginals, lambda_moment_vals, lambda_equals_one, lambda_zeros, abstention_probabilities = self._lambda_pass( L_train, lambda_marginals, lambda_moment_vals, lambda_equals_one, lambda_zeros, abstention_probabilities, verbose = verbose) if verbose: print('lambda marginals, moments, conditions computed', file=sys.stderr) self.lambda_marginals = lambda_marginals self.lambda_moment_vals = lambda_moment_vals self.lambda_equals_one = lambda_equals_one self.lambda_zeros = lambda_zeros self.abstention_probabilities = abstention_probabilities # put observable cliques in the right place for idx in observable_cliques: clique = marginals[idx][0] indices = tuple(sorted([ int(node.split('_')[1]) for node in clique ])) if 'Y' in clique[0]: marginal = Y_marginals[indices] else: marginal = lambda_marginals[indices] marginals[idx] = (clique, marginal) # get unobserved probabilities if solve_method[:len('triplet')] == 'triplet': probability_values, expectation_values = self._triplet_method_probabilities( triplets, lambda_moment_vals, lambda_zeros, abstention_probabilities, sign_recovery, solve_method) elif solve_method == 'independencies': print('Independencies not implemented yet!') return self.probability_values = probability_values self.expectation_values = expectation_values if verbose: print('Unobserved probabilities computed', file=sys.stderr) # put values into the R vectors for r_val in r_vals: if not self.allow_abstentions or r_val[1] == tuple(['0']): equals_one_tup = r_val if not self.allow_abstentions else r_val[0] if equals_one_tup[0] == '1': # If the value is 1, the probability is just 1 pass elif num_Ys(equals_one_tup) != 0 and num_lambdas(equals_one_tup) != 0: # If this contains lambdas and Y's, we can't observe it r_vals[r_val] = probability_values[r_val] elif num_Ys(equals_one_tup) != 0: # We need to cache this moment indices = tuple(sorted([ int(node.split('_')[1]) for node in equals_one_tup ])) r_vals[r_val] = Y_equals_one[indices] elif num_lambdas(equals_one_tup) != 0: indices = tuple(sorted([ int(node.split('_')[1]) for node in equals_one_tup ])) r_vals[r_val] = lambda_equals_one[indices] else: # we allow abstentions, and there are clauses that are equal to zero equals_one_tup = r_val[0] equals_zero_tup = r_val[1] if num_lambdas(equals_one_tup) > 0 and num_Ys(equals_one_tup) > 0: # we can't observe this r_vals[r_val] = probability_values[r_val] elif num_lambdas(equals_one_tup) > 0: # compute lambda moment, subject to some zeros pos_indices = tuple(sorted([ int(node.split('_')[1]) for node in equals_one_tup ])) zero_indices = tuple(sorted([ int(node.split('_')[1]) for node in equals_zero_tup ])) tup = (pos_indices, zero_indices) r_vals[r_val] = lambda_equals_one[tup] else: # compute a Y moment, and multiply it by probability of zeros if equals_one_tup[0] != '1': pos_indices = tuple(sorted([ int(node.split('_')[1]) for node in equals_one_tup ])) pos_prob = Y_equals_one[pos_indices] else: pos_prob = 1. zero_indices = tuple(sorted([ int(node.split('_')[1]) for node in equals_zero_tup ])) zero_probs = lambda_zeros[zero_indices] r_vals[r_val] = pos_prob * zero_probs self.r_vals = r_vals if verbose: print('R values computed', file=sys.stderr) # solve for marginal values for idx in non_observable_cliques: clique = list(reversed(sorted(marginals[idx][0]))) r_vec = r_vecs[idx] r_vec_vals = np.array([ r_vals[exp] for exp in r_vec ]) # e_vec is the vector of marginal values e_vec = self._generate_e_vector(clique) b_matrix = self._generate_b_matrix(clique) e_vec_vals = np.linalg.inv(b_matrix) @ r_vec_vals e_vec_val_index = { tup: i for i, tup in enumerate(e_vec) } marginal_vals = np.array([ e_vec_vals[e_vec_val_index[tup]] for tup in sorted(e_vec) ]) if flip_negative: marginal_vals[marginal_vals < 0] = marginal_vals[marginal_vals < 0] * -1 marginal_vals /= sum(marginal_vals) elif clamp: marginal_vals[marginal_vals < 0] = 1e-8 marginal_vals /= sum(marginal_vals) indices = [ int(node.split('_')[1]) for node in clique ] lf_indices = sorted(indices[:-1]) Y_idx = indices[-1] variables = [ 'lambda_{}'.format(i) for i in lf_indices ] + [ 'Y_{}'.format(Y_idx) ] # cardinality 3 for lambda variables if you allow abstentions, 2 for Y's cardinalities = [ 3 if self.allow_abstentions else 2 for i in range(len(lf_indices)) ] + [2] marginal = DiscreteFactor(variables, cardinalities, marginal_vals).normalize(inplace = False) marginals[idx] = (clique, marginal) self.clique_marginals = marginals[:len(self.junction_tree.nodes)] self.separator_marginals = marginals[len(self.junction_tree.nodes):] separator_degrees = { sep: 0 for sep in self.separator_sets } for clique1, clique2 in self.junction_tree.edges: separator_degrees[tuple(sorted(list((set(clique1).intersection(set(clique2))))))] += 1 self.separator_degrees = separator_degrees def reduce_marginal(self, marginal, data_point): lf_vals = [-1, 0, 1] if self.allow_abstentions else [-1, 1] params = [ (var, lf_vals.index(data_point[int(var.split('_')[1])])) for var in marginal.variables if 'lambda' in var ] return marginal.reduce(params, inplace=False) if len(params) > 0 else marginal def predict_proba(self, L_matrix, verbose=True): '''Predict the probabilities of the Y's given the outputs of the LF's. L_matrix: a m x |Y| matrix of of LF outputs. L_matrix[k][i] is the value of \lambda_i on item k. 1 means positive, -1 means negative, 0 means abstain. Let C be the set of all cliques in the graphical model, and S the set of all separator sets. Let d(s) for s \in S be the number of maximal cliques that s separates. Then, we have the following formula for the joint probability: P(\lambda_1, ..., \lambda_m, Y_1, ..., Y_v) = \prod_{c \in C} \mu_c(c) / \prod_{s \in S} [\mu_s(s)]^(d(s) - 1) Where \mu_c and \mu_s are the marginal probabilities of a clique c or a separator s, respectively. We solved for these marginals during the fit function, so now we use them for inference! Outputs: a 2^v x |Y| matrix of probabilities. The probabilities for the combinations are sorted lexicographically. ''' def num_lambdas(nodes): return len([ node for node in nodes if 'lambda' in node ]) L_matrix = np.array(L_matrix) Y_vecs = self.enumerate_ys() numerator_vals_by_lambda_count = [] max_lambda_count = max([ num_lambdas(clique) for clique, marginal in self.clique_marginals ]) # Compute all marginals that have lambda_count lambdas for lambda_count in range(1, max_lambda_count + 1): correct_lambda_cliques = [ (clique, marginal) for clique, marginal in self.clique_marginals if num_lambdas(clique) == lambda_count ] if len(correct_lambda_cliques) == 0: continue lambda_options = (-1, 0, 1) if self.allow_abstentions else (-1, 1) lambda_vals = { i: lambda_options for i in range(lambda_count) } lambda_vecs = sorted([ [ vec_dict[i] for i in range(lambda_count) ] for vec_dict in dict_product(lambda_vals) ]) # index by Y_vec, clique, and lambda value A_lambda = np.zeros((len(Y_vecs), len(correct_lambda_cliques), len(lambda_vecs))) for i, Y_vec in enumerate(Y_vecs): for j, (clique, marginal) in enumerate(correct_lambda_cliques): lambda_marginal = marginal.reduce( [ ('Y_{}'.format(Y_idx), y_val if y_val == 1 else 0) for Y_idx, y_val in enumerate(Y_vec) if 'Y_{}'.format(Y_idx) in clique ], inplace = False ) for k, lambda_vec in enumerate(lambda_vecs): A_lambda[i, j, k] = lambda_marginal.reduce( [ ( clique_node, lambda_options.index(lambda_val) ) for clique_node, lambda_val in zip(clique, lambda_vec) ], inplace=False).values indexes = np.array([ [ np.sum([ ((lambda_options.index(data_point[int(node.split('_')[1])])) * ((len(lambda_options)) ** (lambda_count - i - 1))) for i, node in enumerate(clique[:-1]) ]) for clique, marginal in correct_lambda_cliques ] for data_point in L_matrix ]).astype('int') clique_values = A_lambda[:, np.arange(indexes.shape[1]), indexes] numerator_values = np.prod(clique_values, axis=2) numerator_vals_by_lambda_count.append(numerator_values) # Compute all marginals that have zero lambdas zero_lambda_cliques = [ (clique, marginal) for clique, marginal in self.clique_marginals if num_lambdas(clique) == 0 ] if len(zero_lambda_cliques) > 0: A_y = np.zeros((len(Y_vecs), len(zero_lambda_cliques))) for i, Y_vec in enumerate(Y_vecs): for j, (clique, marginal) in enumerate(zero_lambda_cliques): Y_marginal = marginal.reduce( [ ('Y_{}'.format(Y_idx), y_val if y_val == 1 else 0) for Y_idx, y_val in enumerate(Y_vec) if 'Y_{}'.format(Y_idx) in clique ], inplace = False ) A_y[i, j] = Y_marginal.values y_probs = np.prod(A_y, axis=1) numerator_ys = np.array([y_probs,] * L_matrix.shape[0]).T # Compute all separator marginals zero_lambda_separators = [ (clique, marginal) for clique, marginal in self.separator_marginals if num_lambdas(clique) == 0 ] A_y_sep = np.zeros((len(Y_vecs), len(zero_lambda_separators))) for i, Y_vec in enumerate(Y_vecs): for j, (clique, marginal) in enumerate(zero_lambda_separators): Y_marginal = marginal.reduce( [ ('Y_{}'.format(Y_idx), y_val if y_val == 1 else 0) for Y_idx, y_val in enumerate(Y_vec) if 'Y_{}'.format(Y_idx) in clique ], inplace = False ) A_y_sep[i, j] = Y_marginal.values ** (self.separator_degrees[clique] - 1) y_probs_sep = np.prod(A_y_sep, axis=1) denominator_ys = np.array([y_probs_sep,] * L_matrix.shape[0]).T predictions = numerator_vals_by_lambda_count[0] for lambda_numerator in numerator_vals_by_lambda_count[1:]: predictions = predictions * lambda_numerator if len(zero_lambda_cliques) > 0: predictions = predictions * numerator_ys predictions = (predictions / denominator_ys).T # in the case of zero-sum predictions predictions[predictions.sum(axis = 1) == 0] += .001 normalized_preds = predictions / np.array(([predictions.sum(axis = 1),] * len(Y_vecs))).T return normalized_preds def predict(self, L_matrix, verbose=True): '''Predict the value of the Y's that best fits the outputs of the LF's. L_matrix: a m x |Y| matrix of LF outputs. L_matrix[k][i] is the value of \lambda_i on item k. 1 means positive, -1 means negative, 0 means abstain. Let C be the set of all cliques in the graphical model, and S the set of all separator sets. Let d(s) for s \in S be the number of maximal cliques that s separates. Then, we have the following formula for the joint probability: P(\lambda_1, ..., \lambda_m, Y_1, ..., Y_v) = \prod_{c \in C} \mu_c(c) / \prod_{s \in S} [\mu_s(s)]^(d(s) - 1) Where \mu_c and \mu_s are the marginal probabilities of a clique c or a separator s, respectively. We solved for these marginals during the fit function, so now we use them for inference! Outputs: a v x |Y| matrix of predicted outputs. ''' Y_vecs = self.enumerate_ys() combination_probs = self.predict_proba(L_matrix, verbose=verbose) most_likely = np.argmax(combination_probs, axis=1) preds = np.array(Y_vecs)[most_likely] return preds def predict_proba_marginalized(self, L_matrix, verbose=False): '''Predict the probabilities of the Y's given the outputs of the LF's, marginalizing out all the Y values every time (return a separate probability for +1/-1 for each Y). L_matrix: a m x |Y| matrix of of LF outputs. L_matrix[k][i] is the value of \lambda_i on item k. 1 means positive, -1 means negative, 0 means abstain. Let C be the set of all cliques in the graphical model, and S the set of all separator sets. Let d(s) for s \in S be the number of maximal cliques that s separates. Then, we have the following formula for the joint probability: P(\lambda_1, ..., \lambda_m, Y_1, ..., Y_v) = \prod_{c \in C} \mu_c(c) / \prod_{s \in S} [\mu_s(s)]^(d(s) - 1) Where \mu_c and \mu_s are the marginal probabilities of a clique c or a separator s, respectively. We solved for these marginals during the fit function, so now we use them for inference! Outputs: a v x |Y| matrix of marginalized probabilities (one probability for each task, for each data point). ''' combination_probs = self.predict_proba(L_matrix, verbose=verbose) # construct indices for each task Y_vecs = self.enumerate_ys() task_indices = [ [ idx for idx, y_vec in enumerate(Y_vecs) if y_vec[i] == 1 ] for i in range(self.v) ] return np.sum(combination_probs[:, task_indices], axis=2).reshape(len(combination_probs) * self.v) def estimated_accuracies(self): '''Get the estimated accuracies of each LF. Assumes that each LF is connected to exactly one Y node. Let Y(i) denote the node that LF i is connected to. This function returns an array of values P(lambda_i = Y(i)), for each LF i. Outputs: a m-sized array of estimated LF accuracies. ''' if not self.probability_values: print('You need to train the label model first!') return accuracies = [] for i in range(self.m): lambda_node = 'lambda_{}'.format(i) Y_node = [ e2 for e1, e2 in self.G.edges if e1 == lambda_node and 'Y' in e2 ][0] if self.allow_abstentions: prob_key = ( (lambda_node, Y_node), ('0', ) ) if self.allow_abstentions else (lambda_node, Y_node) accuracies.append(self.probability_values[prob_key]) return accuracies
flyingsquid-master
flyingsquid/label_model.py
from pgmpy.models import MarkovModel from pgmpy.factors.discrete import JointProbabilityDistribution, DiscreteFactor from itertools import combinations from flyingsquid.helpers import * import numpy as np import math from tqdm import tqdm import sys import random class Mixin: ''' Triplet algorithms as a Mixin. These algorithms recover the mean parameters of the graphical model. ''' def _triplet_method_single_seed(self, expectations_to_estimate): # create triplets for what we need, and return which moments we'll need to compute exp_to_estimate_list = sorted(list(expectations_to_estimate)) if self.triplet_seed is not None: random.shuffle(exp_to_estimate_list) if self.triplets is None: expectations_in_triplets = set() triplets = [] for expectation in exp_to_estimate_list: # if we're already computing it, don't need to add to a new triplet if expectation in expectations_in_triplets: continue if not self.allow_abstentions: Y_node = expectation[-1] else: Y_node = expectation[0][-1] def check_triplet(triplet): return (self._is_separator(triplet[0][:-1], triplet[1][:-1], Y_node) and self._is_separator(triplet[0][:-1], triplet[2][:-1], Y_node) and self._is_separator(triplet[1][:-1], triplet[2][:-1], Y_node)) triplet = [expectation] found = False # first try looking at the other expectations that we need to estimate for first_node in exp_to_estimate_list: if self.allow_abstentions: # need to check if conditionals are the same if (first_node in triplet or # skip if it's already in the triplet first_node[0][-1] != Y_node or # skip if the Y values aren't the same first_node[1] != expectation[1] or # skip if conditions are different (len(first_node[0]) > 2 and len(expectation[0]) > 2) or # at most one item in the triplet can have length > 2 first_node in expectations_in_triplets or # we're already computing this not self._is_separator(expectation[0][:-1], first_node[0][:-1], Y_node)): # not separated continue else: if (first_node in triplet or # skip if it's already in the triplet first_node[-1] != Y_node or # skip if the Y values aren't the same (len(first_node) > 2 and len(expectation) > 2) or # at most one item in the triplet can have length > 2 first_node in expectations_in_triplets or # we're already computing this not self._is_separator(expectation[:-1], first_node[:-1], Y_node)): # not separated continue triplet = [expectation, first_node] # first try looking at the other expectations that we need to estimate for second_node in exp_to_estimate_list: if self.allow_abstentions: if (second_node in triplet or # skip if it's already in the triplet second_node[0][-1] != Y_node or # skip if the Y values aren't the same second_node[1] != expectation[1] or # skip if conditions are different (len(second_node[0]) > 2 and any(len(exp[0]) > 2 for exp in triplet)) or # at most one item in the triplet can have length > 2 second_node in expectations_in_triplets or # we're already computing this not all(self._is_separator(exp[0][:-1], second_node[0][:-1], Y_node) for exp in triplet)): # not separated continue else: if (second_node in triplet or # skip if it's already in the triplet second_node[-1] != Y_node or # skip if the Y values aren't the same (len(second_node) > 2 and any(len(exp) > 2 for exp in triplet)) or # at most one item in the triplet can have length > 2 second_node in expectations_in_triplets or # we're already computing this not all(self._is_separator(exp[:-1], second_node[:-1], Y_node) for exp in triplet)): # not separated continue # we found a triplet! triplet = [expectation, first_node, second_node] found = True break if found: break # otherwise, try everything for second_node in [ ((node, Y_node), expectation[1]) if self.allow_abstentions else (node, Y_node) for node in self.nodes ]: if self.allow_abstentions: if (second_node in triplet or # skip if it's already in the triplet second_node[1] != expectation[1] or # skip if conditions are different not all(self._is_separator(exp[0][:-1], second_node[0][:-1], Y_node) for exp in triplet)): # not separated continue else: if (second_node in triplet or # skip if it's already in the triplet not all(self._is_separator(exp[:-1], second_node[:-1], Y_node) for exp in triplet)): # not separated continue # we found a triplet! triplet = [expectation, first_node, second_node] found = True break if found: break if not found: # try everything for first_node in [ ((node, Y_node), expectation[1]) if self.allow_abstentions else (node, Y_node) for node in self.nodes if 'Y' not in node ]: if self.allow_abstentions: if (first_node in triplet or # skip if it's already in the triplet first_node[0][0] in expectation[1] or # skip if the node is part of the condition not self._is_separator(expectation[0][:-1], first_node[0][:-1], Y_node)): # not separated continue else: if (first_node in triplet or # skip if it's already in the triplet not self._is_separator(expectation[:-1], first_node[:-1], Y_node)): # not separated continue triplet = [expectation, first_node] if found: break for second_node in [ ((node, Y_node), expectation[1]) if self.allow_abstentions else (node, Y_node) for node in self.nodes if 'Y' not in node ]: if self.allow_abstentions: if (second_node in triplet or # skip if it's already in the triplet second_node[0][0] in expectation[1] or # skip if the node is part of the condition not all(self._is_separator(exp[0][:-1], second_node[0][:-1], Y_node) for exp in triplet)): # not separated continue else: if (second_node in triplet or # skip if it's already in the triplet not all(self._is_separator(exp[:-1], second_node[:-1], Y_node) for exp in triplet)): # not separated continue # we found a triplet! triplet = [expectation, first_node, second_node] found = True break if found: break if found: triplets.append(triplet) for expectation in triplet: expectations_in_triplets.add(expectation) else: triplets = self.triplets all_moments = set() abstention_probabilities = {} for exp1, exp2, exp3 in triplets: if self.allow_abstentions: condition = exp1[1] moments = [ tuple(sorted(exp1[0][:-1] + exp2[0][:-1])), tuple(sorted(exp1[0][:-1] + exp3[0][:-1])), tuple(sorted(exp2[0][:-1] + exp3[0][:-1])) ] indices1 = tuple(sorted([ int(node.split('_')[1]) for node in exp1[0][:-1] ])) indices2 = tuple(sorted([ int(node.split('_')[1]) for node in exp2[0][:-1] ])) indices3 = tuple(sorted([ int(node.split('_')[1]) for node in exp3[0][:-1] ])) if indices1 not in abstention_probabilities: abstention_probabilities[indices1] = 0 if indices2 not in abstention_probabilities: abstention_probabilities[indices2] = 0 if indices3 not in abstention_probabilities: abstention_probabilities[indices3] = 0 else: # first, figure out which moments we need to compute moments = [ tuple(sorted(exp1[:-1] + exp2[:-1])), tuple(sorted(exp1[:-1] + exp3[:-1])), tuple(sorted(exp2[:-1] + exp3[:-1])) ] for moment in moments: indices = tuple(sorted([ int(node.split('_')[1]) for node in moment ])) if indices not in all_moments: all_moments.add(indices) return triplets, all_moments, abstention_probabilities def _triplet_method_mean_median(self, expectations_to_estimate, solve_method): exp_to_estimate_list = sorted(list(expectations_to_estimate)) triplets = [] if self.triplets is None: if self.fully_independent_case: Y_node = 'Y' all_nodes = [ ((node, Y_node), '0') if self.allow_abstentions else (node, Y_node) for node in self.nodes if 'Y' not in node ] triplets = [ [i, j, k] for i in all_nodes for j in all_nodes if i != j for k in all_nodes if i != k and k != j ] + [ [expectation, -1, -1] for expectation in exp_to_estimate_list ] else: for expectation in exp_to_estimate_list: if not self.allow_abstentions: Y_node = expectation[-1] else: Y_node = expectation[0][-1] triplet = [expectation] # try everything for first_node in [ ((node, Y_node), expectation[1]) if self.allow_abstentions else (node, Y_node) for node in self.nodes if 'Y' not in node ]: if self.allow_abstentions: if (first_node in triplet or # skip if it's already in the triplet first_node[0][0] in expectation[1] or # skip if the node is part of the condition not self._is_separator(expectation[0][:-1], first_node[0][:-1], Y_node)): # not separated continue else: if (first_node in triplet or # skip if it's already in the triplet not self._is_separator(expectation[:-1], first_node[:-1], Y_node)): # not separated continue triplet = [expectation, first_node] for second_node in [ ((node, Y_node), expectation[1]) if self.allow_abstentions else (node, Y_node) for node in self.nodes if 'Y' not in node ]: if self.allow_abstentions: if (second_node in triplet or # skip if it's already in the triplet second_node[0][0] in expectation[1] or # skip if the node is part of the condition not all(self._is_separator(exp[0][:-1], second_node[0][:-1], Y_node) for exp in triplet)): # not separated continue else: if (second_node in triplet or # skip if it's already in the triplet not all(self._is_separator(exp[:-1], second_node[:-1], Y_node) for exp in triplet)): # not separated continue if tuple([expectation, second_node, first_node]) in triplets: continue # we found a triplet! triplet = [expectation, first_node, second_node] triplets.append(tuple(triplet)) triplet = [expectation, first_node] triplet = [expectation] else: triplets = self.triplets all_moments = set() abstention_probabilities = {} if self.fully_independent_case: all_nodes = list(range(self.m)) all_moments = set([ (i, j) for i in all_nodes for j in all_nodes if i != j ]) if self.allow_abstentions: for node in all_nodes: abstention_probabilities[tuple([node])] = 0 else: for exp1, exp2, exp3 in triplets: if self.allow_abstentions: condition = exp1[1] moments = [ tuple(sorted(exp1[0][:-1] + exp2[0][:-1])), tuple(sorted(exp1[0][:-1] + exp3[0][:-1])), tuple(sorted(exp2[0][:-1] + exp3[0][:-1])) ] indices1 = tuple(sorted([ int(node.split('_')[1]) for node in exp1[0][:-1] ])) indices2 = tuple(sorted([ int(node.split('_')[1]) for node in exp2[0][:-1] ])) indices3 = tuple(sorted([ int(node.split('_')[1]) for node in exp3[0][:-1] ])) if indices1 not in abstention_probabilities: abstention_probabilities[indices1] = 0 if indices2 not in abstention_probabilities: abstention_probabilities[indices2] = 0 if indices3 not in abstention_probabilities: abstention_probabilities[indices3] = 0 else: # first, figure out which moments we need to compute moments = [ tuple(sorted(exp1[:-1] + exp2[:-1])), tuple(sorted(exp1[:-1] + exp3[:-1])), tuple(sorted(exp2[:-1] + exp3[:-1])) ] for moment in moments: indices = tuple(sorted([ int(node.split('_')[1]) for node in moment ])) if indices not in all_moments: all_moments.add(indices) return triplets, all_moments, abstention_probabilities def _triplet_method_preprocess(self, expectations_to_estimate, solve_method): if solve_method == 'triplet': return self._triplet_method_single_seed(expectations_to_estimate) elif solve_method in [ 'triplet_mean', 'triplet_median' ]: return self._triplet_method_mean_median(expectations_to_estimate, solve_method) else: raise NotImplemented('Unknown solve method {}'.format(solve_method)) def _triplet_method_probabilities(self, triplets, lambda_moment_vals, lambda_zeros, abstention_probabilities, sign_recovery, solve_method): expectation_values = {} if solve_method == 'triplet': pass else: # each triplet is constructed for the first value in the expectation # get all the triplets with the same first value, and take the mean or median expectation_value_candidates = {} if self.fully_independent_case and solve_method in ['triplet_mean', 'triplet_median']: second_moment = np.zeros((self.m, self.m)) for key in lambda_moment_vals: i, j = key second_moment[i][j] = lambda_moment_vals[(i, j)] def all_triplet_vals(idx): triplet_vals = [] for i in range(self.m): if i == idx: continue for j in range(i): if j == idx: continue val = math.sqrt(abs( (second_moment[idx, i] * second_moment[idx, j] / second_moment[i, j]) if second_moment[i, j] != 0 else 0 )) triplet_vals.append(val) return triplet_vals all_vals = [all_triplet_vals(idx) for idx in range(self.m)] expectations_to_estimate = [ expectation for expectation, a, b in triplets if a == -1 and b == -1 ] for expectation in expectations_to_estimate: if self.allow_abstentions: idx = int(expectation[0][0].split('_')[1]) else: idx = int(expectation[0].split('_')[1]) expectation_value_candidates[expectation] = all_vals[idx] else: for exp1, exp2, exp3 in triplets: if self.allow_abstentions: moments = [ tuple(sorted(exp1[0][:-1] + exp2[0][:-1])), tuple(sorted(exp1[0][:-1] + exp3[0][:-1])), tuple(sorted(exp2[0][:-1] + exp3[0][:-1])) ] else: # first, figure out which moments we need to compute moments = [ tuple(sorted(exp1[:-1] + exp2[:-1])), tuple(sorted(exp1[:-1] + exp3[:-1])), tuple(sorted(exp2[:-1] + exp3[:-1])) ] moment_vals = [ lambda_moment_vals[ tuple(sorted([ int(node.split('_')[1]) for node in moment ])) ] for moment in moments ] if solve_method == 'triplet': expectation_values[exp1] = ( math.sqrt(abs(moment_vals[0] * moment_vals[1] / moment_vals[2])) if moment_vals[2] != 0 else 0) expectation_values[exp2] = ( math.sqrt(abs(moment_vals[0] * moment_vals[2] / moment_vals[1])) if moment_vals[1] != 0 else 0) expectation_values[exp3] = ( math.sqrt(abs(moment_vals[1] * moment_vals[2] / moment_vals[0])) if moment_vals[0] != 0 else 0) else: if exp1 not in expectation_value_candidates: expectation_value_candidates[exp1] = [] exp_value = ( math.sqrt(abs(moment_vals[0] * moment_vals[1] / moment_vals[2])) if moment_vals[2] != 0 else 0) expectation_value_candidates[exp1].append(exp_value) if solve_method in ['triplet_mean', 'triplet_median']: for exp in expectation_value_candidates: if solve_method == 'triplet_mean': agg_function = np.mean if solve_method == 'triplet_median': agg_function = np.median expectation_values[exp] = agg_function(expectation_value_candidates[exp]) self.expectation_value_candidates = expectation_value_candidates if sign_recovery == 'all_positive': # all signs are already positive pass else: print('{} sign recovery not implemented'.format(sign_recovery)) return if self.allow_abstentions: # probability is 0.5 * (1 + expectation - P(lambda part of factor is zero)) * P(conditional) # P(conditional) is 1 if there is no conditional probabilities = {} for expectation in sorted(list(expectation_values.keys())): exp_value = expectation_values[expectation] if expectation[1][0] == '0': condition_prob = 1 else: zero_condition = tuple(sorted([ int(node.split('_')[1]) for node in expectation[1] ])) condition_prob = lambda_zeros[zero_condition] lambda_factor = tuple(sorted([ int(node.split('_')[1]) for node in expectation[0][:-1] ])) abstention_prob = abstention_probabilities[lambda_factor] probabilities[expectation] = 0.5 * (1 + exp_value - abstention_prob) * condition_prob else: probabilities = { expectation: 0.5 * (1 + expectation_values[expectation]) for expectation in sorted(list(expectation_values.keys())) } return probabilities, expectation_values
flyingsquid-master
flyingsquid/_triplets.py
from pgmpy.models import MarkovModel from pgmpy.factors.discrete import JointProbabilityDistribution, DiscreteFactor from itertools import combinations from flyingsquid.helpers import * import numpy as np import math from tqdm import tqdm import sys import random class Mixin: ''' Functions to check whether we can solve this graph structure. ''' def _is_separator(self, srcSet, dstSet, separatorSet): '''Check if separatorSet separates srcSet from dstSet. Tries to find a path from some node in srcSet to some node in dstSet that doesn't pass through separatorSet. If successful, return False. Otherwise, return True. ''' def neighbors(node): neighbor_set = set() for edge in self.G.edges: if edge[0] == node: neighbor_set.add(edge[1]) if edge[1] == node: neighbor_set.add(edge[0]) return list(neighbor_set) visited = set() for srcNode in srcSet: if srcNode in dstSet: return False queue = [srcNode] curNode = srcNode while len(queue) > 0: curNode = queue.pop() if curNode not in visited: visited.add(curNode) else: continue for neighbor in neighbors(curNode): if neighbor == srcNode: continue if neighbor in dstSet: return False if neighbor in separatorSet: continue if neighbor not in visited: queue.append(neighbor) return True def _check(self): '''Check to make sure we can solve this. Checks: * For each node or separator set in the junction tree: There is either only one Y node in the clique, or the clique is made up entirely of Y nodes, since we can only estimate marginals where there is at most one Y, unless the entire marginal is made up of Y's) * For each node or separator set in the junction tree that contains at least one lambda node and exactly one Y node: The Y node separates the lambda's from at least two other lambda nodes, that are themselves separated by Y. To estimate the marginal mu(lambda_i, ..., lambda_j, Y_k), we need to find lambda_a, lambda_b such that lambda_a, lambda_b, and the joint (lambda_i, ..., lambda_j) are independent conditioned on Y_k. This amounts to Y_k separating lambda_a, lambda_b, and (lambda_i, ..., lambda_j). Note that lambda_i, ..., lambda_j do not have to be separated by Y_k. Outputs: True if we can solve this, False otherwise. ''' def num_Ys(nodes): return len([ node for node in nodes if 'Y' in node ]) def num_lambdas(nodes): return len([ node for node in nodes if 'lambda' in node ]) def estimatable_clique(clique): y_count = num_Ys(clique) lambda_count = num_lambdas(clique) return y_count <= 1 or lambda_count == 0 for clique in self.junction_tree.nodes: if not estimatable_clique(clique): return False, "We can't estimate {}!".format(clique) for separator_set in self.separator_sets: if not estimatable_clique(clique): return False, "We can't estimate {}!".format(separator_set) # for each marginal we need to estimate, check if there is a valid triplet marginals = sorted(list(self.junction_tree.nodes) + list(self.separator_sets)) for marginal in marginals: y_count = num_Ys(marginal) lambda_count = num_lambdas(marginal) if y_count != 1: continue if lambda_count == 0: continue separator_y = [node for node in marginal if 'Y' in node] lambdas = [node for node in marginal if 'lambda' in node] found = False for first_node in self.nodes: if 'Y' in first_node or first_node in lambdas: continue for second_node in self.nodes: if 'Y' in second_node or second_node in lambdas: continue if (self._is_separator(lambdas, [first_node], separator_y) and self._is_separator(lambdas, [second_node], separator_y) and self._is_separator([first_node], [second_node], separator_y)): found = True break if found: break if not found: print('Could not find triplet for {}!'.format(marginal)) return False return True
flyingsquid-master
flyingsquid/_graphs.py
from flyingsquid.label_model import LabelModel import torch import torch.nn as nn class FSLoss(nn.Module): ''' Expose FlyingSquid as a loss function. The loss function takes sequences: one sequence of outputs of your end model, and another sequence of LF votes. Let `v` be the length of the sequence. We will compute BCEWithLogitsLoss, averaged over every element of the sequence (and over every sequence in the batch). Let `m` be the number of labeling functions. Let `batch_size` be the size of your batch during training. The loss function will take two arguments: `outputs` and `weak_labels`. * The shape of `outputs` will be `batch_size * v` * The shape of `weak_labels` will be `batch_size * v * m` ``` # outputs will be batch_size * v # weak_labels will be batch_size * v * m loss(outputs, weak_labels) ``` The loss function will keep a buffer of N sequences of previous weak labels that it's seen. Each step, the loss function does the following: * For each sequence in the batch (zip over everything in outputs and weak_labels): * Add the sequence from `weak_labels` to the buffer (kicking out the oldest items in the buffer) * Use the triplet method over everything in the buffer (buffer needs to be on the CPU) to get probabilistic labels, a tensor of shape `T` (put the tensor onto device) * For each element in the sequence, compute `BCEWithLogitsLoss` between the output and the probabilistic label * Return the average over losses in the sequence When the dataloader isn't shuffling data, this amounts to "streaming" Args: m: number of LF's v: number of Y tasks task_deps: edges between the tasks. (i, j) in y_edges means that there is an edge between y_i and y_j. lf_task_deps: edges between LF's and tasks. (i, j) in lambda_y_edges means that there is an edge between lambda_i and y_j. lf_deps: edges between LF's. (i, j) in lambda_edges means that there is an edge between lambda_i and lambda_j. cb: the class balance allow_abstentions: if True, all abstentions in LF votes device: which device to store the loss/gradients buffer_capacity: how many sequences of LF's to cache update_frequency: how often to retrain the label model clamp_vals: if True, clamp the probabilities out of FlyingSquid to 0. or 1. triplets: if specified, use this set of triplets for the triplet method pos_weight: if specified, set the weight of the positive class to this in BCEWithLogitsLoss Example:: T = ... # length of a sequence m = m_per_task * T # m_per_task LF's per frame # this creates a new triplet label model under the hood criterion = FSLoss( m, T, [(i, i + 1) for i in range(T - 1)], # chain dependencies for tasks [(i + m_per_task * j, j) # LF's have dependencies to the frames they vote on for i in range(m_per_task) for j in range(v)], [], # no dependencies between LF's cb = ... # pass in class balance if you need to ) model = ... # end model frame_sequence = [...] # sequence of T frames lf_votes = [...] # (T, m) vector of LF votes model_outputs = [ # run the model on each frame model(frame) for frame in frame_sequence ] # This caches the votes in lf_votes, retrains the label model if necessary, and # generates probabilistic labels for each frame from the LF votes. # Then, `BCEWithLogitsLoss` on the model outputs and probabilistic labels is used # to generate the loss value that can be backpropped. loss = criterion( torch.tensor([model_outputs]), torch.tensor([lf_votes]) ) loss.backward() ''' def __init__(self, m, v=1, task_deps=[], lf_task_deps=[], lf_deps=[], Y_dev=None, cb=None, allow_abstentions = True, device='cpu', buffer_capacity=100, update_frequency=10, clamp_vals=False, triplets=None, pos_weight=None): super(WSLoss, self).__init__() self.m = m self.v = v self.task_deps = task_deps self.lf_task_deps = lf_task_deps if self.lf_task_deps == []: self.lf_task_deps = [(i, 0) for i in range(m)] self.lf_deps = lf_deps self.Y_dev = Y_dev self.cb = cb self.device = device self.clamp_vals = clamp_vals self.lm = LabelModel(m, v=v, y_edges=task_deps, lambda_y_edges=lf_task_deps, lambda_edges=lf_deps, allow_abstentions = allow_abstentions, triplets=triplets) self.criterion = nn.BCEWithLogitsLoss() if pos_weight is None else nn.BCEWithLogitsLoss(pos_weight = pos_weight) self.buffer_capacity = buffer_capacity self.update_frequency = update_frequency # register buffer for LF outputs self.register_buffer('lf_buffer', torch.zeros((buffer_capacity, m), dtype=torch.long)) # register buffer to keep track of how many items self.register_buffer('buffer_size', torch.zeros(1, dtype=torch.long)) # reigster buffer to keep track of where you are self.register_buffer('buffer_index', torch.zeros(1, dtype=torch.long)) def forward(self, predictions, weak_labels, update_frequency = None): ''' Generate probabilistic labels from the weak labels, and use `BCEWithLogitsLoss` to get the actual loss value for end model training. Also caches the LF votes, and re-trains the label model if necessary (depending on update_frequency). Args: predictions: A (batch_size, v)-sized tensor of model outputs. For sequences, v is usually the length of the sequence. weak_labels: A (batch_size, m)-sized tensor of weak labels. Returns: Computes BCEWithLogitsLoss on every item in the batch (for each item, computes it between the v model outputs and the v probabilistic labels), and returns the average. ''' update_frequency = update_frequency if update_frequency else self.update_frequency output = torch.tensor(0., requires_grad=True, device=self.device) for i, (prediction, label_vector) in enumerate(zip(predictions, weak_labels)): self.lf_buffer[self.buffer_index] = label_vector if self.buffer_size < self.buffer_capacity: self.buffer_size += 1 if (self.buffer_index % update_frequency) == 0: L_train = self.lf_buffer.cpu().numpy()[:self.buffer_size] self.lm.fit( L_train, Y_dev = self.Y_dev, class_balance = self.cb ) self.buffer_index += 1 if self.buffer_index == self.buffer_capacity: self.buffer_index = torch.tensor(0) labels = self.lm.predict_proba_marginalized( [label_vector.cpu().numpy()], verbose=False) if self.clamp_vals: labels[0] = [1. if pred >= 0.5 else 0. for pred in labels[0]] label_tensor = torch.tensor(labels[0], requires_grad=True, device=self.device).view(prediction.shape) output = output + self.criterion( prediction, label_tensor) return output / predictions.shape[0] class MajorityVoteLoss(nn.Module): ''' Expose majority vote as a loss function (for baselines). Let `m` be the number of labeling functions. Let `batch_size` be the size of your batch during training. The loss function will take two arguments: `outputs` and `weak_labels`. * The shape of `outputs` will be `batch_size` * The shape of `weak_labels` will be `batch_size * m` ``` # outputs will be batch_size # weak_labels will be batch_size * m loss(outputs, weak_labels) ``` The loss function will keep a buffer of N sequences of previous weak labels that it's seen. Each step, the loss function does the following: * For each sequence in the batch (zip over everything in outputs and weak_labels): * Add the sequence from `weak_labels` to the buffer (kicking out the oldest items in the buffer) * Use the triplet method over everything in the buffer (buffer needs to be on the CPU) to get probabilistic labels, a tensor of shape `T` (put the tensor onto device) * For each element in the sequence, compute `BCEWithLogitsLoss` between the output and the probabilistic label * Return the average over losses in the sequence When the dataloader isn't shuffling data, this amounts to "streaming" Args: device: which device to store the loss/gradients Example:: m = ... # number of LF's # this creates a new triplet label model under the hood criterion = MajorityVoteLoss( device = ... ) model = ... # end model frame_sequence = [...] # sequence of T frames lf_votes = [...] # (T, m) vector of LF votes model_outputs = [ # run the model on each frame model(frame) for frame in frame_sequence ] # This caches the votes in lf_votes, retrains the label model if necessary, and # generates probabilistic labels for each frame from the LF votes. # Then, `BCEWithLogitsLoss` on the model outputs and probabilistic labels is used # to generate the loss value that can be backpropped. loss = criterion( torch.tensor(model_outputs), torch.tensor(lf_votes) ) loss.backward() ''' def __init__(self, device='cpu', pos_weight=None): super(MajorityVoteLoss, self).__init__() self.criterion = nn.BCEWithLogitsLoss() if pos_weight is None else nn.BCEWithLogitsLoss(pos_weight = pos_weight) self.device = device def forward(self, predictions, weak_labels, update_frequency = None): ''' Generate probabilistic labels from the weak labels, and use `BCEWithLogitsLoss` to get the actual loss value for end model training. Also caches the LF votes, and re-trains the label model if necessary (depending on update_frequency). Args: predictions: A (batch_size)-sized tensor of model outputs. weak_labels: A (batch_size, m)-sized tensor of weak labels. Returns: Computes BCEWithLogitsLoss on every item in the batch (for each item, computes it between the v model outputs and the v probabilistic labels), and returns the average. ''' output = torch.tensor(0., requires_grad=True, device=self.device) for i, (prediction, label_vector) in enumerate(zip(predictions, weak_labels)): label = (np.sum(label_vector.cpu().numpy()) > 0).astype(float) label_tensor = torch.tensor(label, requires_grad=True, device=self.device).view(prediction.shape) output = output + self.criterion( prediction, label_tensor) return output / predictions.shape[0]
flyingsquid-master
flyingsquid/pytorch_loss.py
flyingsquid-master
flyingsquid/__init__.py
from pgmpy.models import MarkovModel from pgmpy.factors.discrete import JointProbabilityDistribution, DiscreteFactor from itertools import combinations from flyingsquid.helpers import * import numpy as np import math from tqdm import tqdm import sys import random class Mixin: ''' Functions to compute label model parameters from mean parameters. ''' def _generate_e_vector(self, clique): ''' The e vector is a vector of assignments for a particular marginal. For example, in a marginal with one LF and one Y variable, and no abstentions, the e vector entries are: [ (1, 1), (1, -1), (-1, 1), (-1, -1) ] The first entry of each tuple is the value of the LF, the second entry is the value of the Y variagble. In a marginal with two LFs and one Y variable and no abstentions, the entries are: [ (1, 1, 1), (1, 1, -1), (1, -1, 1), (1, -1, -1), (-1, 1, 1), (-1, 1, -1), (-1, -1, 1), (-1, -1, -1) ] In a marginal with one Lf, one Y variable, and abstentions: [ (1, 1), (0, 1), (-1, 1), (1, -1), (0, -1), (-1, -1) ] Two LFs, one Y variable, and abstentions: [ (1, 1, 1), (0, 1, 1), (-1, 1, 1), (1, 0, 1), (0, 0, 1), (-1, 0, 1), (1, -1, 1), (0, -1, 1), (-1, -1, 1), (1, 1, -1), (0, 1, -1), (-1, 1, -1), (1, 0, -1), (0, 0, -1), (-1, 0, -1), (1, -1, -1), (0, -1, -1), (-1, -1, -1) ] ''' lambda_values = [1, 0, -1] if self.allow_abstentions else [1, -1] e_vec = [[1], [-1]] for i in range(len(clique) - 1): new_e_vec = [] if not self.allow_abstentions: for new_val in lambda_values: for e_val in e_vec: new_e_vec.append(e_val + [new_val]) else: for e_val in e_vec: for new_val in lambda_values: new_e_vec.append([new_val] + e_val) e_vec = new_e_vec e_vec = [ tuple(e_val) for e_val in e_vec ] return e_vec def _generate_r_vector(self, clique): ''' The r vector is the vector of probability values that needs to be on the RHS of the B_matrix * e_vector = r_vector to make e_vector have the right values. When there are abstentions, the mapping works as follows: * Each probability is some combination of P(A * B * ... * C = 1, D = 0, E = 0, ..., F = 0) * The A, B, ..., C can include any LF, and the Y variable. * The D, E, ..., F can include any LF * Let the A, B, ..., C set be called the "equals one set" * Let the D, E, ..., F set be called the "equals zero set" * Then, for each entry in the e vector: * If there is a -1 in an LF spot, add the LF to the "equals zero set" * If there is a 0 in the LF spot, add the LF to the "equals one set" * If there is a -1 in the Y variable spot, add it to the "equals one set" When there are no abstentions, each probability is just defined by the "equals one set" (i.e., P(A * B * ... * C = 1)). * For each entry in the e vector: * If there is a -1 in any spot (LF spot or Y variable), add it to the "equals one set" ''' indices = [ int(node.split('_')[1]) for node in clique ] lf_indices = sorted(indices[:-1]) Y_idx = indices[-1] Y_val = 'Y_{}'.format(Y_idx) e_vec = self._generate_e_vector(clique) r_vec = [] for e_vec_tup in e_vec: # P(a * b * ... * c = 1) for everything in this array r_vec_entry_equal_one = [] # P(a = 0, b = 0, ..., c = 0) for everything in this array r_vec_entry_equal_zero = [] for e_vec_entry, lf_idx in zip(e_vec_tup, lf_indices): # if you have abstentions, -1 means add to equal zero, 0 means add to equal one if self.allow_abstentions: if e_vec_entry == -1: r_vec_entry_equal_zero.append('lambda_{}'.format(lf_idx)) if e_vec_entry == 0: r_vec_entry_equal_one.append('lambda_{}'.format(lf_idx)) # otherwise, -1 means add to equal one else: if e_vec_entry == -1: r_vec_entry_equal_one.append('lambda_{}'.format(lf_idx)) if e_vec_tup[-1] == -1: r_vec_entry_equal_one.append(Y_val) entries_equal_one = ( tuple(['1']) if len(r_vec_entry_equal_one) == 0 else tuple(r_vec_entry_equal_one)) entries_equal_zero = ( tuple(['0']) if len(r_vec_entry_equal_zero) == 0 else tuple(r_vec_entry_equal_zero)) if self.allow_abstentions: r_vec.append(( entries_equal_one, entries_equal_zero )) else: if len(r_vec_entry_equal_zero) > 0: print('No abstentions allowed!') exit(1) r_vec.append(entries_equal_one) return r_vec def _generate_b_matrix(self, clique): if not self.allow_abstentions: b_matrix_orig = np.array([[1, 1], [1, -1]]) b_matrix = b_matrix_orig for i in range(len(clique) - 1): b_matrix = np.kron(b_matrix, b_matrix_orig) b_matrix[b_matrix < 0] = 0 return b_matrix else: a_zero = np.array([ [1, 1], [1, 0] ]) b_zero = np.array([ [0, 0], [0, 1] ]) c_matrix = np.array([ [1, 1, 1], [1, 0, 0], [0, 1, 0] ]) d_matrix = np.array([ [0, 0, 0], [0, 0, 1], [0, 0, 0] ]) a_i = a_zero b_i = b_zero for i in range(len(clique) - 1): a_prev = a_i b_prev = b_i a_i = np.kron(a_prev, c_matrix) + np.kron(b_prev, d_matrix) b_i = np.kron(a_prev, d_matrix) + np.kron(b_prev, c_matrix) return a_i
flyingsquid-master
flyingsquid/_lm_parameters.py
from itertools import product def dict_product(d): keys = d.keys() for element in product(*d.values()): yield dict(zip(keys, element))
flyingsquid-master
flyingsquid/helpers.py
from pgmpy.models import MarkovModel from pgmpy.factors.discrete import JointProbabilityDistribution, DiscreteFactor from itertools import combinations from flyingsquid.helpers import * import numpy as np import math from tqdm import tqdm import sys import random class Mixin: ''' Functions to compute observable properties. ''' def _compute_class_balance(self, class_balance=None, Y_dev=None): # generate class balance of Ys Ys_ordered = [ 'Y_{}'.format(i) for i in range(self.v) ] cardinalities = [ 2 for i in range(self.v) ] if class_balance is not None: class_balance = class_balance / sum(class_balance) cb = JointProbabilityDistribution( Ys_ordered, cardinalities, class_balance ) elif Y_dev is not None: Ys_ordered = [ 'Y_{}'.format(i) for i in range(self.v) ] vals = { Y: (-1, 1) for Y in Ys_ordered } Y_vecs = sorted([ [ vec_dict[Y] for Y in Ys_ordered ] for vec_dict in dict_product(vals) ]) counts = { tuple(Y_vec): 0 for Y_vec in Y_vecs } for data_point in Y_dev: counts[tuple(data_point)] += 1 cb = JointProbabilityDistribution( Ys_ordered, cardinalities, [ float(counts[tuple(Y_vec)]) / len(Y_dev) for Y_vec in Y_vecs ]) else: num_combinations = 2 ** self.v cb = JointProbabilityDistribution( Ys_ordered, cardinalities, [ 1. / num_combinations for i in range(num_combinations) ]) return cb def _compute_Y_marginals(self, Y_marginals): for marginal in Y_marginals: nodes = [ 'Y_{}'.format(idx) for idx in marginal ] Y_marginals[marginal] = self.cb.marginal_distribution( nodes, inplace=False ) return Y_marginals def _compute_Y_equals_one(self, Y_equals_one): # compute from class balance for factor in Y_equals_one: nodes = [ 'Y_{}'.format(idx) for idx in factor ] Y_marginal = self.cb.marginal_distribution( nodes, inplace=False ) vals = { Y: (-1, 1) for Y in nodes } Y_vecs = sorted([ [ vec_dict[Y] for Y in nodes ] for vec_dict in dict_product(vals) ]) # add up the probabilities of all the vectors whose values multiply to +1 total_prob = 0 for Y_vec in Y_vecs: if np.prod(Y_vec) == 1: vector_prob = Y_marginal.reduce( [ (Y_i, Y_val if Y_val == 1 else 0) for Y_i, Y_val in zip(nodes, Y_vec) ], inplace=False ).values total_prob += vector_prob Y_equals_one[factor] = total_prob return Y_equals_one
flyingsquid-master
flyingsquid/_observables.py
''' This example code shows how to use the PyTorch integration for online training (example data loaders and training loop). This code is only provided as a reference. In a real application, you would need to load in actual image paths to train over. ''' from flyingsquid.label_model import LabelModel from flyingsquid.pytorch_loss import FSLoss import numpy as np import torch import torch.nn as nn import torch.optim as optim from torch.optim import lr_scheduler import numpy as np import torchvision from torchvision import datasets, models, transforms from torch.utils.data import Dataset, DataLoader # Load in the L matrices L_train = np.load('tutorials/L_train_video.npy') L_dev = np.load('tutorials/L_dev_video.npy') Y_dev = np.load('tutorials/Y_dev_video.npy') # This is where you would load in the images corresponding to the rows X_paths_train = np.load('....') X_paths_dev = np.load('....') # Example dataloader for FSLoss class ImageFSDataset(Dataset): def __init__(self, paths, weak_labels, T, gt_labels=None, transform=None): self.T = T self.paths = self.paths[:len(self.paths) - (len(self.paths) % T)] self.weak_labels = self.weak_labels[:self.weak_labels.shape[0] - (self.weak_labels.shape[0] % T)] m_per_task = self.weak_labels.shape[1] self.transform = transform n_frames = self.weak_labels.shape[0] n_seqs = n_frames // T v = T m = m_per_task * T self.data_temporal = { 'paths': np.reshape(self.paths, (n_seqs, v)), 'weak_labels': np.reshape(self.weak_labels, (n_seqs, m)) } self.gt_labels = gt_labels if gt_labels is not None: self.gt_labels = self.gt_labels[:len(self.gt_labels) - (len(self.gt_labels) % T)] self.data_temporal['gt_labels'] = np.reshape(self.gt_labels, (n_seqs, v)) def __len__(self): return self.data_temporal['paths'].shape[0] def __getitem__(self, idx): paths_seq = self.data_temporal['paths'][idx] img_tensors = [ torch.unsqueeze( self.transform(Image.open(path).convert('RGB')), dim = 0) for path in paths_seq ] weak_labels = self.data_temporal['weak_labels'][idx] if self.gt_labels is not None: return (torch.cat(img_tensors), torch.unsqueeze(torch.tensor(weak_labels), dim=0), torch.unsqueeze(torch.tensor(self.data_temporal['gt_labels'][idx]), dim = 0)) else: return torch.cat(img_tensors), torch.unsqueeze(torch.tensor(weak_labels), dim = 0) # Example training loop def train_model_online(model, T, criterion, optimizer, dataset): model.train() dataset_size = len(dataset) * T for item in dataset: image_tensor = item[0] weak_labels = item[1] labels = None if dataset.gt_labels is None else item[2] # zero the parameter gradients optimizer.zero_grad() # forward with torch.set_grad_enabled(True): outputs = model(inputs) loss = criterion(torch.unsqueeze(outputs, dim = 0), weak_labels) # backward + optimize loss.backward() optimizer.step() return model # Model three frames at a time v = 3 # Set up the dataset train_dataset = ImageFSDataset(X_paths_train, L_train, v) # Set up the loss function fs_criterion = FSLoss( m, v = v, y_edges = [ (i, i + 1) for i in range(v - 1) ], lambda_y_edges = [ (i, i // m_per_frame) for i in range(m) ] ) # Train up a model online model = models.resnet50(pretrained=True) num_ftrs = model_online.fc.in_features model.fc = nn.Linear(num_ftrs, 1) optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9) model = train_model_online(model, v, fs_criterion, optimizer, dataset)
flyingsquid-master
examples/03_pytorch_integration.py
''' This example code shows how to train a FlyingSquid label model for video data. It loads some labeling functions to detect Tennis Rallies from the tutorials folder, and trains up a label model. You can run this file from the examples folder. ''' from flyingsquid.label_model import LabelModel import numpy as np L_train = np.load('tutorials/L_train_video.npy') L_dev = np.load('tutorials/L_dev_video.npy') Y_dev = np.load('tutorials/Y_dev_video.npy') # Model three frames at a time v = 3 # Six labeling functions per frame m_per_frame = 6 # Total number of labeling functions is m_per_frame * v m = m_per_frame * v # Figure out how many sequences we're going to have n_frames_train = L_train.shape[0] n_frames_dev = L_dev.shape[0] n_seqs_train = n_frames_train // v n_seqs_dev = n_frames_dev // v # Resize and reshape matrices L_train_seqs = L_train[:n_seqs_train * v].reshape((n_seqs_train, m)) L_dev_seqs = L_dev[:n_seqs_dev * v].reshape((n_seqs_dev, m)) Y_dev_seqs = Y_dev[:n_seqs_dev * v].reshape((n_seqs_dev, v)) # Create the label model with temporal dependencies label_model = LabelModel( m, v = v, y_edges = [ (i, i + 1) for i in range(v - 1) ], lambda_y_edges = [ (i, i // m_per_frame) for i in range(m) ] ) label_model.fit(L_train_seqs) probabilistic_labels = label_model.predict_proba_marginalized(L_dev_seqs) preds = [ 1. if prob > 0.5 else -1. for prob in probabilistic_labels ] accuracy = np.sum(preds == Y_dev[:n_seqs_dev * v]) / (n_seqs_dev * v) print('Label model accuracy: {}%'.format(int(100 * accuracy)))
flyingsquid-master
examples/02_video.py
''' This example code shows a bare-minimum example of how to get FlyingSquid up and running. It generates synthetic data from the tutorials folder, and trains up a label model. You can run this file from the examples folder. ''' from flyingsquid.label_model import LabelModel from tutorials.tutorial_helpers import * L_train, L_dev, Y_dev = synthetic_data_basics() m = L_train.shape[1] label_model = LabelModel(m) label_model.fit(L_train) preds = label_model.predict(L_dev).reshape(Y_dev.shape) accuracy = np.sum(preds == Y_dev) / Y_dev.shape[0] print('Label model accuracy: {}%'.format(int(100 * accuracy)))
flyingsquid-master
examples/01_basics.py
flyingsquid-master
examples/tutorials/__init__.py
import numpy as np from numpy.random import seed, rand import itertools def exponential_family (lam, y, theta, theta_y): # without normalization return np.exp(theta_y * y + y * np.dot(theta, lam)) # create vector describing cumulative distribution of lambda_1, ... lambda_m, Y def make_pdf(m, v, theta, theta_y, lst): p = np.zeros(len(lst)) for i in range(len(lst)): labels = lst[i] p[i] = exponential_family(labels[0:m], labels[v-1], theta, theta_y) return p/sum(p) def make_cdf(pdf): return np.cumsum(pdf) # draw a set of lambda_1, ... lambda_m, Y based on the distribution def sample(lst, cdf): r = np.random.random_sample() smaller = np.where(cdf < r)[0] if len(smaller) == 0: i = 0 else: i = smaller.max() + 1 return lst[i] def generate_data(n, theta, m, theta_y=0): v = m+1 lst = list(map(list, itertools.product([-1, 1], repeat=v))) pdf = make_pdf(m, v, theta, theta_y, lst) cdf = make_cdf(pdf) sample_matrix = np.zeros((n,v)) for i in range(n): sample_matrix[i,:] = sample(lst,cdf) return sample_matrix def synthetic_data_basics(): seed(0) n_train = 10000 n_dev = 500 m = 5 theta = [1.5,.5,.2,.2,.05] abstain_rate = [.8, .88, .28, .38, .45] train_data = generate_data(n_train, theta, m) dev_data = generate_data(n_dev, theta, m) L_train = train_data[:,:-1] L_dev = dev_data[:,:-1] Y_dev = dev_data[:,-1] train_values = rand(n_train * m).reshape(L_train.shape) dev_values = rand(n_dev * m).reshape(L_dev.shape) L_train[train_values < (abstain_rate,) * n_train] = 0 L_dev[dev_values < (abstain_rate,) * n_dev] = 0 return L_train, L_dev, Y_dev def print_statistics(L_dev, Y_dev): m = L_dev.shape[1] for i in range(m): acc = np.sum(L_dev[:,i] == Y_dev)/np.sum(L_dev[:,i] != 0) abstains = np.sum(L_dev[:,i] == 0)/Y_dev.shape[0] print('LF {}: Accuracy {}%, Abstain rate {}%'.format( i, int(acc * 100), int((abstains) * 100)))
flyingsquid-master
examples/tutorials/tutorial_helpers.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import argparse import builtins import math import os import random import shutil import time import warnings import sys import operator from datetime import date import torch import torch.nn as nn #from torch.utils.tensorboard import SummaryWriter import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.distributed as dist import torch.optim import torch.multiprocessing as mp import torch.utils.data import torch.utils.data.distributed from data.data_loader import build_data_loader from utils.config import setup import utils.saver as saver from utils.progress import AverageMeter, ProgressMeter, accuracy import utils.comm as comm import utils.logging as logging from evaluate import attentive_nas_eval as attentive_nas_eval from sampler.attentive_nas_sampler import ArchSampler as ArchSampler from solver import build_optimizer, build_lr_scheduler import utils.loss_ops as loss_ops import models from copy import deepcopy import numpy as np import joblib from sklearn.ensemble import RandomForestRegressor parser = argparse.ArgumentParser(description='AttentiveNAS Training') parser.add_argument('--config-file', default=None, type=str, help='training configuration') parser.add_argument('--machine-rank', default=0, type=int, help='machine rank, distributed setting') parser.add_argument('--num-machines', default=1, type=int, help='number of nodes, distributed setting') parser.add_argument('--dist-url', default="tcp://127.0.0.1:10001", type=str, help='init method, distributed setting') logger = logging.get_logger(__name__) def build_args_and_env(run_args): assert run_args.config_file and os.path.isfile(run_args.config_file), 'cannot locate config file' args = setup(run_args.config_file) args.config_file = run_args.config_file #load config assert args.distributed and args.multiprocessing_distributed, 'only support DDP training' args.distributed = True args.machine_rank = run_args.machine_rank args.num_nodes = run_args.num_machines args.dist_url = run_args.dist_url args.models_save_dir = os.path.join(args.models_save_dir, args.exp_name) if not os.path.exists(args.models_save_dir): os.makedirs(args.models_save_dir) #backup config file saver.copy_file(args.config_file, '{}/{}'.format(args.models_save_dir, os.path.basename(args.config_file))) args.checkpoint_save_path = os.path.join( args.models_save_dir, 'attentive_nas.pth.tar' ) args.logging_save_path = os.path.join( args.models_save_dir, f'stdout.log' ) return args def main(): run_args = parser.parse_args() args = build_args_and_env(run_args) random.seed(args.seed) torch.manual_seed(args.seed) #cudnn.deterministic = True #warnings.warn('You have chosen to seed training. ' # 'This will turn on the CUDNN deterministic setting, ' # 'which can slow down your training considerably! ' # 'You may see unexpected behavior when restarting ' # 'from checkpoints.') ngpus_per_node = torch.cuda.device_count() if args.multiprocessing_distributed: # Since we have ngpus_per_node processes per node, the total world_size # needs to be adjusted accordingly args.world_size = ngpus_per_node * args.num_nodes # Use torch.multiprocessing.spawn to launch distributed processes: the # main_worker process function mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args)) else: raise NotImplementedError assert args.world_size > 1, 'only support ddp training' def main_worker(gpu, ngpus_per_node, args): args.gpu = gpu # local rank, local machine cuda id args.local_rank = args.gpu args.batch_size = args.batch_size_per_gpu args.batch_size_total = args.batch_size * args.world_size #rescale base lr args.lr_scheduler.base_lr = args.lr_scheduler.base_lr * (max(1, args.batch_size_total // 256)) # set random seed, make sure all random subgraph generated would be the same random.seed(args.seed) torch.manual_seed(args.seed) if args.gpu: torch.cuda.manual_seed(args.seed) global_rank = args.gpu + args.machine_rank * ngpus_per_node dist.init_process_group( backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=global_rank ) # Setup logging format. logging.setup_logging(args.logging_save_path, 'w') logger.info(f"Use GPU: {args.gpu}, machine rank {args.machine_rank}, num_nodes {args.num_nodes}, \ gpu per node {ngpus_per_node}, world size {args.world_size}") # synchronize is needed here to prevent a possible timeout after calling # init_process_group # See: https://github.com/facebookresearch/maskrcnn-benchmark/issues/172 comm.synchronize() args.rank = comm.get_rank() # global rank args.local_rank = args.gpu torch.cuda.set_device(args.gpu) # build model logger.info("=> creating model '{}'".format(args.arch)) model = models.model_factory.create_model(args) model.cuda(args.gpu) #build arch sampler arch_sampler = None if getattr(args, 'sampler', None): arch_sampler = ArchSampler( args.sampler.arch_to_flops_map_file_path, args.sampler.discretize_step, model, None ) # use sync batchnorm if getattr(args, 'sync_bn', False): model.apply( lambda m: setattr(m, 'need_sync', True)) model = comm.get_parallel_model(model, args.gpu) #local rank logger.info(model) criterion = loss_ops.CrossEntropyLossSmooth(args.label_smoothing).cuda(args.gpu) soft_criterion = loss_ops.KLLossSoft().cuda(args.gpu) if not getattr(args, 'inplace_distill', True): soft_criterion = None ## load dataset, train_sampler: distributed train_loader, val_loader, train_sampler = build_data_loader(args) args.n_iters_per_epoch = len(train_loader) logger.info( f'building optimizer and lr scheduler, \ local rank {args.gpu}, global rank {args.rank}, world_size {args.world_size}') optimizer = build_optimizer(args, model) lr_scheduler = build_lr_scheduler(args, optimizer) # optionally resume from a checkpoint if args.resume: saver.load_checkpoints(args, model, optimizer, lr_scheduler, logger) logger.info(args) for epoch in range(args.start_epoch, args.epochs): if args.distributed: train_sampler.set_epoch(epoch) args.curr_epoch = epoch logger.info('Training lr {}'.format(lr_scheduler.get_lr()[0])) # train for one epoch acc1, acc5 = train_epoch(epoch, model, train_loader, optimizer, criterion, args, \ arch_sampler=arch_sampler, soft_criterion=soft_criterion, lr_scheduler=lr_scheduler) if comm.is_master_process() or args.distributed: # validate supernet model validate( train_loader, val_loader, model, criterion, args ) if comm.is_master_process(): # save checkpoints saver.save_checkpoint( args.checkpoint_save_path, model, optimizer, lr_scheduler, args, epoch, ) def train_epoch( epoch, model, train_loader, optimizer, criterion, args, arch_sampler=None, soft_criterion=None, lr_scheduler=None, ): batch_time = AverageMeter('Time', ':6.3f') data_time = AverageMeter('Data', ':6.3f') losses = AverageMeter('Loss', ':.4e') top1 = AverageMeter('Acc@1', ':6.2f') top5 = AverageMeter('Acc@5', ':6.2f') progress = ProgressMeter( len(train_loader), [batch_time, data_time, losses, top1, top5], prefix="Epoch: [{}]".format(epoch)) model.train() end = time.time() num_updates = epoch * len(train_loader) for batch_idx, (images, target) in enumerate(train_loader): # measure data loading time data_time.update(time.time() - end) images = images.cuda(args.gpu, non_blocking=True) target = target.cuda(args.gpu, non_blocking=True) # total subnets to be sampled num_subnet_training = max(2, getattr(args, 'num_arch_training', 2)) optimizer.zero_grad() ### compute gradients using sandwich rule ### # step 1 sample the largest network, apply regularization to only the largest network drop_connect_only_last_two_stages = getattr(args, 'drop_connect_only_last_two_stages', True) model.module.sample_max_subnet() model.module.set_dropout_rate(args.dropout, args.drop_connect, drop_connect_only_last_two_stages) #dropout for supernet output = model(images) loss = criterion(output, target) loss.backward() with torch.no_grad(): soft_logits = output.clone().detach() #step 2. sample the smallest network and several random networks sandwich_rule = getattr(args, 'sandwich_rule', True) model.module.set_dropout_rate(0, 0, drop_connect_only_last_two_stages) #reset dropout rate for arch_id in range(1, num_subnet_training): if arch_id == num_subnet_training-1 and sandwich_rule: model.module.sample_min_subnet() else: # attentive sampling with training loss as the surrogate performance metric if arch_sampler is not None: sampling_method = args.sampler.method if sampling_method in ['bestup', 'worstup']: target_flops = arch_sampler.sample_one_target_flops() candidate_archs = arch_sampler.sample_archs_according_to_flops( target_flops, n_samples=args.sampler.num_trials ) my_pred_accs = [] for arch in candidate_archs: model.module.set_active_subnet(**arch) with torch.no_grad(): my_pred_accs.append(-1.0 * criterion(model(images), target)) if sampling_method == 'bestup': idx, _ = max(enumerate(my_pred_accs), key=operator.itemgetter(1)) else: idx, _ = min(enumerate(my_pred_accs), key=operator.itemgetter(1)) model.module.set_active_subnet(**candidate_archs[idx]) #reset else: raise NotImplementedError else: model.module.sample_active_subnet() # calcualting loss output = model(images) if soft_criterion: loss = soft_criterion(output, soft_logits) else: assert not args.inplace_distill loss = criterion(output, target) loss.backward() #clip gradients if specfied if getattr(args, 'grad_clip_value', None): torch.nn.utils.clip_grad_value_(model.parameters(), args.grad_clip_value) optimizer.step() #accuracy measured on the local batch acc1, acc5 = accuracy(output, target, topk=(1, 5)) if args.distributed: corr1, corr5, loss = acc1*args.batch_size, acc5*args.batch_size, loss.item()*args.batch_size #just in case the batch size is different on different nodes stats = torch.tensor([corr1, corr5, loss, args.batch_size], device=args.gpu) dist.barrier() # synchronizes all processes dist.all_reduce(stats, op=torch.distributed.ReduceOp.SUM) corr1, corr5, loss, batch_size = stats.tolist() acc1, acc5, loss = corr1/batch_size, corr5/batch_size, loss/batch_size losses.update(loss, batch_size) top1.update(acc1, batch_size) top5.update(acc5, batch_size) else: losses.update(loss.item(), images.size(0)) top1.update(acc1, images.size(0)) top5.update(acc5, images.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() num_updates += 1 if lr_scheduler is not None: lr_scheduler.step() if batch_idx % args.print_freq == 0: progress.display(batch_idx, logger) return top1.avg, top5.avg def validate( train_loader, val_loader, model, criterion, args, distributed = True, ): subnets_to_be_evaluated = { 'attentive_nas_min_net': {}, 'attentive_nas_max_net': {}, } acc1_list, acc5_list = attentive_nas_eval.validate( subnets_to_be_evaluated, train_loader, val_loader, model, criterion, args, logger, bn_calibration = True, ) if __name__ == '__main__': main()
AttentiveNAS-main
train_attentive_nas.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import argparse import builtins import math import os import random import shutil import time import warnings import sys from datetime import date import torch import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.distributed as dist import torch.optim import torch.multiprocessing as mp import torch.utils.data import torch.utils.data.distributed import models from utils.config import setup from utils.flops_counter import count_net_flops_and_params import utils.comm as comm import utils.saver as saver from data.data_loader import build_data_loader from utils.progress import AverageMeter, ProgressMeter, accuracy import argparse parser = argparse.ArgumentParser(description='Test AttentiveNas Models') parser.add_argument('--config-file', default='./configs/eval_attentive_nas_models.yml') parser.add_argument('--model', default='a0', type=str, choices=['a0', 'a1', 'a2', 'a3', 'a4', 'a5', 'a6']) parser.add_argument('--gpu', default=0, type=int, help='gpu id') run_args = parser.parse_args() if __name__ == '__main__': args = setup(run_args.config_file) args.model = run_args.model args.gpu = run_args.gpu random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) args.__dict__['active_subnet'] = args.__dict__['pareto_models'][args.model] print(args.active_subnet) train_loader, val_loader, train_sampler = build_data_loader(args) ## init static attentivenas model with weights inherited from the supernet model = models.model_factory.create_model(args) model.to(args.gpu) model.eval() # bn running stats calibration following Slimmable (https://arxiv.org/abs/1903.05134) # please consider trying a different random seed if you see a small accuracy drop with torch.no_grad(): model.reset_running_stats_for_calibration() for batch_idx, (images, _) in enumerate(train_loader): if batch_idx >= args.post_bn_calibration_batch_num: break images = images.cuda(args.gpu, non_blocking=True) model(images) #forward only model.eval() with torch.no_grad(): criterion = nn.CrossEntropyLoss().cuda() from evaluate.imagenet_eval import validate_one_subnet acc1, acc5, loss, flops, params = validate_one_subnet(val_loader, model, criterion, args) print(acc1, acc5, flops, params)
AttentiveNAS-main
test_attentive_nas.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # Implementation adapted from Slimmable - https://github.com/JiahuiYu/slimmable_networks import torch class CrossEntropyLossSoft(torch.nn.modules.loss._Loss): """ inplace distillation for image classification """ def forward(self, output, target): output_log_prob = torch.nn.functional.log_softmax(output, dim=1) target = target.unsqueeze(1) output_log_prob = output_log_prob.unsqueeze(2) cross_entropy_loss = -torch.bmm(target, output_log_prob) return cross_entropy_loss.mean() class KLLossSoft(torch.nn.modules.loss._Loss): """ inplace distillation for image classification output: output logits of the student network target: output logits of the teacher network T: temperature KL(p||q) = Ep \log p - \Ep log q """ def forward(self, output, soft_logits, target=None, temperature=1., alpha=0.9): output, soft_logits = output / temperature, soft_logits / temperature soft_target_prob = torch.nn.functional.softmax(soft_logits, dim=1) output_log_prob = torch.nn.functional.log_softmax(output, dim=1) kd_loss = -torch.sum(soft_target_prob * output_log_prob, dim=1) if target is not None: n_class = output.size(1) target = torch.zeros_like(output).scatter(1, target.view(-1, 1), 1) target = target.unsqueeze(1) output_log_prob = output_log_prob.unsqueeze(2) ce_loss = -torch.bmm(target, output_log_prob).squeeze() loss = alpha*temperature* temperature*kd_loss + (1.0-alpha)*ce_loss else: loss = kd_loss if self.reduction == 'mean': return loss.mean() elif self.reduction == 'sum': return loss.sum() return loss class CrossEntropyLossSmooth(torch.nn.modules.loss._Loss): def __init__(self, label_smoothing=0.1): super(CrossEntropyLossSmooth, self).__init__() self.eps = label_smoothing """ label smooth """ def forward(self, output, target): n_class = output.size(1) one_hot = torch.zeros_like(output).scatter(1, target.view(-1, 1), 1) target = one_hot * (1 - self.eps) + self.eps / n_class output_log_prob = torch.nn.functional.log_softmax(output, dim=1) target = target.unsqueeze(1) output_log_prob = output_log_prob.unsqueeze(2) loss = -torch.bmm(target, output_log_prob) if self.reduction == 'mean': return loss.mean() elif self.reduction == 'sum': return loss.sum() return loss
AttentiveNAS-main
utils/loss_ops.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import atexit import builtins import decimal import functools import logging import os import sys from .comm import is_master_process as is_master_proc def _suppress_print(): """ Suppresses printing from the current process. """ def print_pass(*objects, sep=" ", end="\n", file=sys.stdout, flush=False): pass builtins.print = print_pass def setup_logging(save_path, mode='a'): """ Sets up the logging for multiple processes. Only enable the logging for the master process, and suppress logging for the non-master processes. """ if is_master_proc(): # Enable logging for the master process. logging.root.handlers = [] else: # Suppress logging for non-master processes. _suppress_print() logger = logging.getLogger() logger.setLevel(logging.DEBUG) logger.propagate = False print_plain_formatter = logging.Formatter( "[%(asctime)s]: %(message)s", datefmt="%m/%d %H:%M:%S", ) fh_plain_formatter = logging.Formatter("%(message)s") if is_master_proc(): ch = logging.StreamHandler(stream=sys.stdout) ch.setLevel(logging.DEBUG) ch.setFormatter(print_plain_formatter) logger.addHandler(ch) if save_path is not None and is_master_proc(): fh = logging.FileHandler(save_path, mode=mode) fh.setLevel(logging.DEBUG) fh.setFormatter(fh_plain_formatter) logger.addHandler(fh) def get_logger(name): """ Retrieve the logger with the specified name or, if name is None, return a logger which is the root logger of the hierarchy. Args: name (string): name of the logger. """ return logging.getLogger(name)
AttentiveNAS-main
utils/logging.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # implementation adapted from Slimmable: https://github.com/JiahuiYu/slimmable_networks """config utilities for yml file.""" import os import sys import yaml class LoaderMeta(type): """Constructor for supporting `!include`. """ def __new__(mcs, __name__, __bases__, __dict__): """Add include constructer to class.""" # register the include constructor on the class cls = super().__new__(mcs, __name__, __bases__, __dict__) cls.add_constructor('!include', cls.construct_include) return cls class Loader(yaml.SafeLoader, metaclass=LoaderMeta): """YAML Loader with `!include` constructor. """ def __init__(self, stream): try: self._root = os.path.split(stream.name)[0] except AttributeError: self._root = os.path.curdir super().__init__(stream) def construct_include(self, node): """Include file referenced at node.""" filename = os.path.abspath( os.path.join(self._root, self.construct_scalar(node))) extension = os.path.splitext(filename)[1].lstrip('.') with open(filename, 'r') as f: if extension in ('yaml', 'yml'): return yaml.load(f, Loader) else: return ''.join(f.readlines()) class AttrDict(dict): """Dict as attribute trick. """ def __init__(self, *args, **kwargs): super(AttrDict, self).__init__(*args, **kwargs) self.__dict__ = self for key in self.__dict__: value = self.__dict__[key] if isinstance(value, dict): self.__dict__[key] = AttrDict(value) elif isinstance(value, list): if isinstance(value[0], dict): self.__dict__[key] = [AttrDict(item) for item in value] else: self.__dict__[key] = value def yaml(self): """Convert object to yaml dict and return. """ yaml_dict = {} for key in self.__dict__: value = self.__dict__[key] if isinstance(value, AttrDict): yaml_dict[key] = value.yaml() elif isinstance(value, list): if isinstance(value[0], AttrDict): new_l = [] for item in value: new_l.append(item.yaml()) yaml_dict[key] = new_l else: yaml_dict[key] = value else: yaml_dict[key] = value return yaml_dict def __repr__(self): """Print all variables. """ ret_str = [] for key in self.__dict__: value = self.__dict__[key] if isinstance(value, AttrDict): ret_str.append('{}:'.format(key)) child_ret_str = value.__repr__().split('\n') for item in child_ret_str: ret_str.append(' ' + item) elif isinstance(value, list): if isinstance(value[0], AttrDict): ret_str.append('{}:'.format(key)) for item in value: # treat as AttrDict above child_ret_str = item.__repr__().split('\n') for item in child_ret_str: ret_str.append(' ' + item) else: ret_str.append('{}: {}'.format(key, value)) else: ret_str.append('{}: {}'.format(key, value)) return '\n'.join(ret_str) class Config(AttrDict): def __init__(self, filename=None): with open(filename, 'r') as f: cfg_dict = yaml.load(f, Loader) super(Config, self).__init__(cfg_dict) def setup(config_file): assert os.path.isfile(config_file), 'cannot locate {}'.format(config_file) return Config(config_file)
AttentiveNAS-main
utils/config.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import functools import logging import pickle import torch import torch.distributed as dist def get_world_size(): if not dist.is_available(): return 1 if not dist.is_initialized(): return 1 return dist.get_world_size() def get_rank(): if not dist.is_available(): return 0 if not dist.is_initialized(): return 0 return dist.get_rank() def get_my_model(model): if isinstance(model, nn.DataParallel): return model.module return model def is_master_process(): return get_rank() == 0 def synchronize(): """ Helper function to synchronize (barrier) among all processes when using distributed training """ if not dist.is_available(): return if not dist.is_initialized(): return world_size = dist.get_world_size() if world_size == 1: return dist.barrier() def get_parallel_model(model, device): if get_world_size() >= 1: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[device], find_unused_parameters=True ) else: raise NotImplementedError return model def reduce_eval_results(summary, gpu): summary = summary + "".join([" "] * (2000-len(summary))) #send summary to rank 0 summary = torch.tensor([ord(c) for c in summary]).cuda(gpu) summary_list = [torch.zeros_like(summary) for _ in range(dist.get_world_size())] dist.all_gather(summary_list, summary) group = [] for _i in range(dist.get_world_size()): s = "".join([chr(c) for c in summary_list[_i]]) group.append(eval(s)) return group
AttentiveNAS-main
utils/comm.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from copy import deepcopy import torch import os import shutil import joblib def copy_file(source_path, target_path): shutil.copyfile(source_path, target_path) def save_acc_predictor(args, acc_predictor): args.curr_acc_predictor_path = os.path.join(args.models_save_dir, f'acc_predictor_{args.curr_epoch}.joblib') with open(args.curr_acc_predictor_path, 'wb') as fp: joblib.dump(acc_predictor, fp) def load_acc_predictor(args, predictor_saved_path=None): if predictor_saved_path is None: predictor_saved_path = args.curr_acc_predictor_path with open(predictor_saved_path, 'rb') as fp: acc_predictor = joblib.load(fp) return acc_predictor def save_checkpoint(save_path, model, optimizer, lr_scheduler, args, epoch, is_best=False): save_state = { 'epoch': epoch + 1, 'args': args, 'state_dict': model.state_dict(), 'optimizer': optimizer.state_dict(), 'lr_scheduler': lr_scheduler.state_dict() } best_model_path = os.path.join( os.path.dirname(save_path), 'best_{}'.format(os.path.basename(save_path)) ) with open(save_path, 'wb') as f: torch.save(save_state, f, _use_new_zipfile_serialization=False) if is_best: copy_file(save_path, best_model_path) def load_checkpoints(args, model, optimizer=None, lr_scheduler=None, logger=None): resume_path = args.resume assert os.path.isfile(resume_path), "=> no checkpoint found at '{}'".format(resume_path) with open(resume_path, 'rb') as f: checkpoint = torch.load(f, map_location=torch.device('cpu')) if logger: logger.info("=> loading checkpoint '{}'".format(resume_path)) args.start_epoch = checkpoint['epoch'] model.load_state_dict(checkpoint['state_dict']) resume_with_a_different_optimizer = getattr(args, 'resume_with_a_different_optimizer', False) resume_with_a_different_lr_scheduler = getattr(args, 'resume_with_a_different_lr_scheduler', False) if optimizer and not resume_with_a_different_optimizer: optimizer.load_state_dict(checkpoint['optimizer']) if lr_scheduler and not resume_with_a_different_optimizer and not resume_with_a_different_lr_scheduler: # use lr_scheduler settings defined in args skip_keys = list(args.lr_scheduler.__dict__.keys()) + ['clamp_lr'] for k in skip_keys: if k in checkpoint['lr_scheduler']: checkpoint['lr_scheduler'].pop(k) lr_scheduler.load_state_dict(checkpoint['lr_scheduler']) elif lr_scheduler is not None: # reset lr_scheduler start epoch only lr_scheduler.step(checkpoint['lr_scheduler']['last_epoch']) if logger: logger.info("=> loaded checkpoint '{}' (epoch {})" .format(resume_path, checkpoint['epoch'])) del checkpoint
AttentiveNAS-main
utils/saver.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # Implementation adapted from OFA - https://github.com/mit-han-lab/once-for-all import torch import torch.nn as nn import copy multiply_adds = 1 def count_convNd(m, _, y): cin = m.in_channels kernel_ops = m.weight.size()[2] * m.weight.size()[3] ops_per_element = kernel_ops output_elements = y.nelement() # cout x oW x oH total_ops = cin * output_elements * ops_per_element // m.groups m.total_ops = torch.Tensor([int(total_ops)]) def count_linear(m, _, __): total_ops = m.in_features * m.out_features m.total_ops = torch.Tensor([int(total_ops)]) register_hooks = { nn.Conv1d: count_convNd, nn.Conv2d: count_convNd, nn.Conv3d: count_convNd, ###################################### nn.Linear: count_linear, ###################################### nn.Dropout: None, nn.Dropout2d: None, nn.Dropout3d: None, nn.BatchNorm2d: None, } def profile(model, input_size=(1, 3, 224, 224), custom_ops=None): handler_collection = [] custom_ops = {} if custom_ops is None else custom_ops def add_hooks(m_): if len(list(m_.children())) > 0: return m_.register_buffer('total_ops', torch.zeros(1)) m_.register_buffer('total_params', torch.zeros(1)) for p in m_.parameters(): m_.total_params += torch.Tensor([p.numel()]) m_type = type(m_) fn = None if m_type in custom_ops: fn = custom_ops[m_type] elif m_type in register_hooks: fn = register_hooks[m_type] else: # print("Not implemented for ", m_) pass if fn is not None: # print("Register FLOP counter for module %s" % str(m_)) _handler = m_.register_forward_hook(fn) handler_collection.append(_handler) original_device = model.parameters().__next__().device training = model.training model.eval() model.apply(add_hooks) x = torch.zeros(input_size).to(original_device) with torch.no_grad(): model(x) total_ops = 0 total_params = 0 for m in model.modules(): if len(list(m.children())) > 0: # skip for non-leaf module continue total_ops += m.total_ops total_params += m.total_params total_ops = total_ops.item() total_params = total_params.item() model.train(training) model.to(original_device) for handler in handler_collection: handler.remove() return total_ops, total_params def count_net_flops_and_params(net, data_shape=(1, 3, 224, 224)): if isinstance(net, nn.DataParallel): net = net.module net = copy.deepcopy(net) flop, nparams = profile(net, data_shape) return flop /1e6, nparams /1e6
AttentiveNAS-main
utils/flops_counter.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import sys import torch import torch.nn as nn class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self, name, fmt=':f'): self.name = name self.fmt = fmt self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def __str__(self): fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})' return fmtstr.format(**self.__dict__) class ProgressMeter(object): def __init__(self, num_batches, meters, prefix=""): self.batch_fmtstr = self._get_batch_fmtstr(num_batches) self.meters = meters self.prefix = prefix def display(self, batch, logger=None): entries = [self.prefix + self.batch_fmtstr.format(batch)] entries += [str(meter) for meter in self.meters] if logger is None: print('\t'.join(entries)) else: logger.info('\t'.join(entries)) def _get_batch_fmtstr(self, num_batches): num_digits = len(str(num_batches // 1)) fmt = '{:' + str(num_digits) + 'd}' return '[' + fmt + '/' + fmt.format(num_batches) + ']' def accuracy(output, target, topk=(1,)): """Computes the accuracy over the k top predictions for the specified values of k""" with torch.no_grad(): maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].reshape(-1).float().sum() #sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return res
AttentiveNAS-main
utils/progress.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # Implementation adapted from OFA: https://github.com/mit-han-lab/once-for-all import copy import random import collections import math import torch import torch.nn as nn from .modules.dynamic_layers import DynamicMBConvLayer, DynamicConvBnActLayer, DynamicLinearLayer, DynamicShortcutLayer from .modules.static_layers import MobileInvertedResidualBlock from .modules.nn_utils import make_divisible, int2list from .modules.nn_base import MyNetwork from .attentive_nas_static_model import AttentiveNasStaticModel class AttentiveNasDynamicModel(MyNetwork): def __init__(self, supernet, n_classes=1000, bn_param=(0., 1e-5)): super(AttentiveNasDynamicModel, self).__init__() self.supernet = supernet self.n_classes = n_classes self.use_v3_head = getattr(self.supernet, 'use_v3_head', False) self.stage_names = ['first_conv', 'mb1', 'mb2', 'mb3', 'mb4', 'mb5', 'mb6', 'mb7', 'last_conv'] self.width_list, self.depth_list, self.ks_list, self.expand_ratio_list = [], [], [], [] for name in self.stage_names: block_cfg = getattr(self.supernet, name) self.width_list.append(block_cfg.c) if name.startswith('mb'): self.depth_list.append(block_cfg.d) self.ks_list.append(block_cfg.k) self.expand_ratio_list.append(block_cfg.t) self.resolution_list = self.supernet.resolutions self.cfg_candidates = { 'resolution': self.resolution_list , 'width': self.width_list, 'depth': self.depth_list, 'kernel_size': self.ks_list, 'expand_ratio': self.expand_ratio_list } #first conv layer, including conv, bn, act out_channel_list, act_func, stride = \ self.supernet.first_conv.c, self.supernet.first_conv.act_func, self.supernet.first_conv.s self.first_conv = DynamicConvBnActLayer( in_channel_list=int2list(3), out_channel_list=out_channel_list, kernel_size=3, stride=stride, act_func=act_func, ) # inverted residual blocks self.block_group_info = [] blocks = [] _block_index = 0 feature_dim = out_channel_list for stage_id, key in enumerate(self.stage_names[1:-1]): block_cfg = getattr(self.supernet, key) width = block_cfg.c n_block = max(block_cfg.d) act_func = block_cfg.act_func ks = block_cfg.k expand_ratio_list = block_cfg.t use_se = block_cfg.se self.block_group_info.append([_block_index + i for i in range(n_block)]) _block_index += n_block output_channel = width for i in range(n_block): stride = block_cfg.s if i == 0 else 1 if min(expand_ratio_list) >= 4: expand_ratio_list = [_s for _s in expand_ratio_list if _s >= 4] if i == 0 else expand_ratio_list mobile_inverted_conv = DynamicMBConvLayer( in_channel_list=feature_dim, out_channel_list=output_channel, kernel_size_list=ks, expand_ratio_list=expand_ratio_list, stride=stride, act_func=act_func, use_se=use_se, channels_per_group=getattr(self.supernet, 'channels_per_group', 1) ) shortcut = DynamicShortcutLayer(feature_dim, output_channel, reduction=stride) blocks.append(MobileInvertedResidualBlock(mobile_inverted_conv, shortcut)) feature_dim = output_channel self.blocks = nn.ModuleList(blocks) last_channel, act_func = self.supernet.last_conv.c, self.supernet.last_conv.act_func if not self.use_v3_head: self.last_conv = DynamicConvBnActLayer( in_channel_list=feature_dim, out_channel_list=last_channel, kernel_size=1, act_func=act_func, ) else: expand_feature_dim = [f_dim * 6 for f_dim in feature_dim] self.last_conv = nn.Sequential(collections.OrderedDict([ ('final_expand_layer', DynamicConvBnActLayer( feature_dim, expand_feature_dim, kernel_size=1, use_bn=True, act_func=act_func) ), ('pool', nn.AdaptiveAvgPool2d((1,1))), ('feature_mix_layer', DynamicConvBnActLayer( in_channel_list=expand_feature_dim, out_channel_list=last_channel, kernel_size=1, act_func=act_func, use_bn=False,) ), ])) #final conv layer self.classifier = DynamicLinearLayer( in_features_list=last_channel, out_features=n_classes, bias=True ) # set bn param self.set_bn_param(momentum=bn_param[0], eps=bn_param[1]) # runtime_depth self.runtime_depth = [len(block_idx) for block_idx in self.block_group_info] self.zero_residual_block_bn_weights() self.active_dropout_rate = 0 self.active_drop_connect_rate = 0 self.active_resolution = 224 def zero_residual_block_bn_weights(self): with torch.no_grad(): for m in self.modules(): if isinstance(m, MobileInvertedResidualBlock): if isinstance(m.mobile_inverted_conv, DynamicMBConvLayer) and m.shortcut is not None: m.mobile_inverted_conv.point_linear.bn.bn.weight.zero_() @staticmethod def name(): return 'AttentiveNasModel' def forward(self, x): # resize input to target resolution first if x.size(-1) != self.active_resolution: x = torch.nn.functional.interpolate(x, size=self.active_resolution, mode='bicubic') # first conv x = self.first_conv(x) # blocks for stage_id, block_idx in enumerate(self.block_group_info): depth = self.runtime_depth[stage_id] active_idx = block_idx[:depth] for idx in active_idx: x = self.blocks[idx](x) x = self.last_conv(x) x = x.mean(3, keepdim=True).mean(2, keepdim=True) # global average pooling x = torch.squeeze(x) if self.active_dropout_rate > 0 and self.training: x = torch.nn.functional.dropout(x, p = self.active_dropout_rate) x = self.classifier(x) return x @property def module_str(self): _str = self.first_conv.module_str + '\n' _str += self.blocks[0].module_str + '\n' for stage_id, block_idx in enumerate(self.block_group_info): depth = self.runtime_depth[stage_id] active_idx = block_idx[:depth] for idx in active_idx: _str += self.blocks[idx].module_str + '\n' if not self.use_v3_head: _str += self.last_conv.module_str + '\n' else: _str += self.last_conv.final_expand_layer.module_str + '\n' _str += self.last_conv.feature_mix_layer.module_str + '\n' _str += self.classifier.module_str + '\n' return _str @property def config(self): return { 'name': AttentiveNasDynamicModel.__name__, 'bn': self.get_bn_param(), 'first_conv': self.first_conv.config, 'blocks': [ block.config for block in self.blocks ], 'last_conv': self.last_conv.config if not self.use_v3_head else None, 'final_expand_layer': self.last_conv.final_expand_layer if self.use_v3_head else None, 'feature_mix_layer': self.last_conv.feature_mix_layer if self.use_v3_head else None, 'classifier': self.classifier.config, 'resolution': self.active_resolution } @staticmethod def build_from_config(config): raise ValueError('do not support this function') """ set, sample and get active sub-networks """ def set_active_subnet(self, resolution=224, width=None, depth=None, kernel_size=None, expand_ratio=None, **kwargs): assert len(depth) == len(kernel_size) == len(expand_ratio) == len(width) - 2 #set resolution self.active_resolution = resolution # first conv self.first_conv.active_out_channel = width[0] for stage_id, (c, k, e, d) in enumerate(zip(width[1:-1], kernel_size, expand_ratio, depth)): start_idx, end_idx = min(self.block_group_info[stage_id]), max(self.block_group_info[stage_id]) for block_id in range(start_idx, start_idx+d): block = self.blocks[block_id] #block output channels block.mobile_inverted_conv.active_out_channel = c if block.shortcut is not None: block.shortcut.active_out_channel = c #dw kernel size block.mobile_inverted_conv.active_kernel_size = k #dw expansion ration block.mobile_inverted_conv.active_expand_ratio = e #IRBlocks repated times for i, d in enumerate(depth): self.runtime_depth[i] = min(len(self.block_group_info[i]), d) #last conv if not self.use_v3_head: self.last_conv.active_out_channel = width[-1] else: # default expansion ratio: 6 self.last_conv.final_expand_layer.active_out_channel = width[-2] * 6 self.last_conv.feature_mix_layer.active_out_channel = width[-1] def get_active_subnet_settings(self): r = self.active_resolution width, depth, kernel_size, expand_ratio= [], [], [], [] #first conv width.append(self.first_conv.active_out_channel) for stage_id in range(len(self.block_group_info)): start_idx = min(self.block_group_info[stage_id]) block = self.blocks[start_idx] #first block width.append(block.mobile_inverted_conv.active_out_channel) kernel_size.append(block.mobile_inverted_conv.active_kernel_size) expand_ratio.append(block.mobile_inverted_conv.active_expand_ratio) depth.append(self.runtime_depth[stage_id]) if not self.use_v3_head: width.append(self.last_conv.active_out_channel) else: width.append(self.last_conv.feature_mix_layer.active_out_channel) return { 'resolution': r, 'width': width, 'kernel_size': kernel_size, 'expand_ratio': expand_ratio, 'depth': depth, } def set_dropout_rate(self, dropout=0, drop_connect=0, drop_connect_only_last_two_stages=True): self.active_dropout_rate = dropout for idx, block in enumerate(self.blocks): if drop_connect_only_last_two_stages: if idx not in self.block_group_info[-1] + self.block_group_info[-2]: continue this_drop_connect_rate = drop_connect * float(idx) / len(self.blocks) block.drop_connect_rate = this_drop_connect_rate def sample_min_subnet(self): return self._sample_active_subnet(min_net=True) def sample_max_subnet(self): return self._sample_active_subnet(max_net=True) def sample_active_subnet(self, compute_flops=False): cfg = self._sample_active_subnet( False, False ) if compute_flops: cfg['flops'] = self.compute_active_subnet_flops() return cfg def sample_active_subnet_within_range(self, targeted_min_flops, targeted_max_flops): while True: cfg = self._sample_active_subnet() cfg['flops'] = self.compute_active_subnet_flops() if cfg['flops'] >= targeted_min_flops and cfg['flops'] <= targeted_max_flops: return cfg def _sample_active_subnet(self, min_net=False, max_net=False): sample_cfg = lambda candidates, sample_min, sample_max: \ min(candidates) if sample_min else (max(candidates) if sample_max else random.choice(candidates)) cfg = {} # sample a resolution cfg['resolution'] = sample_cfg(self.cfg_candidates['resolution'], min_net, max_net) for k in ['width', 'depth', 'kernel_size', 'expand_ratio']: cfg[k] = [] for vv in self.cfg_candidates[k]: cfg[k].append(sample_cfg(int2list(vv), min_net, max_net)) self.set_active_subnet( cfg['resolution'], cfg['width'], cfg['depth'], cfg['kernel_size'], cfg['expand_ratio'] ) return cfg def mutate_and_reset(self, cfg, prob=0.1, keep_resolution=False): cfg = copy.deepcopy(cfg) pick_another = lambda x, candidates: x if len(candidates) == 1 else random.choice([v for v in candidates if v != x]) # sample a resolution r = random.random() if r < prob and not keep_resolution: cfg['resolution'] = pick_another(cfg['resolution'], self.cfg_candidates['resolution']) # sample channels, depth, kernel_size, expand_ratio for k in ['width', 'depth', 'kernel_size', 'expand_ratio']: for _i, _v in enumerate(cfg[k]): r = random.random() if r < prob: cfg[k][_i] = pick_another(cfg[k][_i], int2list(self.cfg_candidates[k][_i])) self.set_active_subnet( cfg['resolution'], cfg['width'], cfg['depth'], cfg['kernel_size'], cfg['expand_ratio'] ) return cfg def crossover_and_reset(self, cfg1, cfg2, p=0.5): def _cross_helper(g1, g2, prob): assert type(g1) == type(g2) if isinstance(g1, int): return g1 if random.random() < prob else g2 elif isinstance(g1, list): return [v1 if random.random() < prob else v2 for v1, v2 in zip(g1, g2)] else: raise NotImplementedError cfg = {} cfg['resolution'] = cfg1['resolution'] if random.random() < p else cfg2['resolution'] for k in ['width', 'depth', 'kernel_size', 'expand_ratio']: cfg[k] = _cross_helper(cfg1[k], cfg2[k], p) self.set_active_subnet( cfg['resolution'], cfg['width'], cfg['depth'], cfg['kernel_size'], cfg['expand_ratio'] ) return cfg def get_active_subnet(self, preserve_weight=True): with torch.no_grad(): first_conv = self.first_conv.get_active_subnet(3, preserve_weight) blocks = [] input_channel = first_conv.out_channels # blocks for stage_id, block_idx in enumerate(self.block_group_info): depth = self.runtime_depth[stage_id] active_idx = block_idx[:depth] stage_blocks = [] for idx in active_idx: stage_blocks.append(MobileInvertedResidualBlock( self.blocks[idx].mobile_inverted_conv.get_active_subnet(input_channel, preserve_weight), self.blocks[idx].shortcut.get_active_subnet(input_channel, preserve_weight) if self.blocks[idx].shortcut is not None else None )) input_channel = stage_blocks[-1].mobile_inverted_conv.out_channels blocks += stage_blocks if not self.use_v3_head: last_conv = self.last_conv.get_active_subnet(input_channel, preserve_weight) in_features = last_conv.out_channels else: final_expand_layer = self.last_conv.final_expand_layer.get_active_subnet(input_channel, preserve_weight) feature_mix_layer = self.last_conv.feature_mix_layer.get_active_subnet(input_channel*6, preserve_weight) in_features = feature_mix_layer.out_channels last_conv = nn.Sequential( final_expand_layer, nn.AdaptiveAvgPool2d((1,1)), feature_mix_layer ) classifier = self.classifier.get_active_subnet(in_features, preserve_weight) _subnet = AttentiveNasStaticModel( first_conv, blocks, last_conv, classifier, self.active_resolution, use_v3_head=self.use_v3_head ) _subnet.set_bn_param(**self.get_bn_param()) return _subnet def get_active_net_config(self): raise NotImplementedError def compute_active_subnet_flops(self): def count_conv(c_in, c_out, size_out, groups, k): kernel_ops = k**2 output_elements = c_out * size_out**2 ops = c_in * output_elements * kernel_ops / groups return ops def count_linear(c_in, c_out): return c_in * c_out total_ops = 0 c_in = 3 size_out = self.active_resolution // self.first_conv.stride c_out = self.first_conv.active_out_channel total_ops += count_conv(c_in, c_out, size_out, 1, 3) c_in = c_out # mb blocks for stage_id, block_idx in enumerate(self.block_group_info): depth = self.runtime_depth[stage_id] active_idx = block_idx[:depth] for idx in active_idx: block = self.blocks[idx] c_middle = make_divisible(round(c_in * block.mobile_inverted_conv.active_expand_ratio), 8) # 1*1 conv if block.mobile_inverted_conv.inverted_bottleneck is not None: total_ops += count_conv(c_in, c_middle, size_out, 1, 1) # dw conv stride = 1 if idx > active_idx[0] else block.mobile_inverted_conv.stride if size_out % stride == 0: size_out = size_out // stride else: size_out = (size_out +1) // stride total_ops += count_conv(c_middle, c_middle, size_out, c_middle, block.mobile_inverted_conv.active_kernel_size) # 1*1 conv c_out = block.mobile_inverted_conv.active_out_channel total_ops += count_conv(c_middle, c_out, size_out, 1, 1) #se if block.mobile_inverted_conv.use_se: num_mid = make_divisible(c_middle // block.mobile_inverted_conv.depth_conv.se.reduction, divisor=8) total_ops += count_conv(c_middle, num_mid, 1, 1, 1) * 2 if block.shortcut and c_in != c_out: total_ops += count_conv(c_in, c_out, size_out, 1, 1) c_in = c_out if not self.use_v3_head: c_out = self.last_conv.active_out_channel total_ops += count_conv(c_in, c_out, size_out, 1, 1) else: c_expand = self.last_conv.final_expand_layer.active_out_channel c_out = self.last_conv.feature_mix_layer.active_out_channel total_ops += count_conv(c_in, c_expand, size_out, 1, 1) total_ops += count_conv(c_expand, c_out, 1, 1, 1) # n_classes total_ops += count_linear(c_out, self.n_classes) return total_ops / 1e6 def load_weights_from_pretrained_models(self, checkpoint_path): with open(checkpoint_path, 'rb') as f: checkpoint = torch.load(f, map_location='cpu') assert isinstance(checkpoint, dict) pretrained_state_dicts = checkpoint['state_dict'] for k, v in self.state_dict().items(): name = 'module.' + k if not k.startswith('module') else k v.copy_(pretrained_state_dicts[name])
AttentiveNAS-main
models/attentive_nas_dynamic_model.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from .model_factory import *
AttentiveNAS-main
models/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # adapted from OFA: https://github.com/mit-han-lab/once-for-all import torch import torch.nn as nn from torch.autograd import Variable import torch.nn.functional as F import math from .modules.static_layers import set_layer_from_config, MBInvertedConvLayer, ConvBnActLayer, ShortcutLayer, LinearLayer, MobileInvertedResidualBlock, IdentityLayer from .modules.nn_utils import make_divisible from .modules.nn_base import MyNetwork class AttentiveNasStaticModel(MyNetwork): def __init__(self, first_conv, blocks, last_conv, classifier, resolution, use_v3_head=True): super(AttentiveNasStaticModel, self).__init__() self.first_conv = first_conv self.blocks = nn.ModuleList(blocks) self.last_conv = last_conv self.classifier = classifier self.resolution = resolution #input size self.use_v3_head = use_v3_head def forward(self, x): # resize input to target resolution first if x.size(-1) != self.resolution: x = torch.nn.functional.interpolate(x, size=self.resolution, mode='bicubic') x = self.first_conv(x) for block in self.blocks: x = block(x) x = self.last_conv(x) if not self.use_v3_head: x = x.mean(3, keepdim=True).mean(2, keepdim=True) # global average pooling x = torch.squeeze(x) x = self.classifier(x) return x @property def module_str(self): _str = self.first_conv.module_str + '\n' for block in self.blocks: _str += block.module_str + '\n' #_str += self.last_conv.module_str + '\n' _str += self.classifier.module_str return _str @property def config(self): return { 'name': AttentiveNasStaticModel.__name__, 'bn': self.get_bn_param(), 'first_conv': self.first_conv.config, 'blocks': [ block.config for block in self.blocks ], #'last_conv': self.last_conv.config, 'classifier': self.classifier.config, 'resolution': self.resolution } def weight_initialization(self): # weight initialization for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.ones_(m.weight) nn.init.zeros_(m.bias) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.zeros_(m.bias) @staticmethod def build_from_config(config): raise NotImplementedError def reset_running_stats_for_calibration(self): for m in self.modules(): if isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d) or isinstance(m, nn.SyncBatchNorm): m.training = True m.momentum = None # cumulative moving average m.reset_running_stats()
AttentiveNAS-main
models/attentive_nas_static_model.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from .attentive_nas_dynamic_model import AttentiveNasDynamicModel def create_model(args, arch=None): n_classes = int(getattr(args, 'n_classes', 1000)) bn_momentum = getattr(args, 'bn_momentum', 0.1) bn_eps = getattr(args, 'bn_eps', 1e-5) dropout = getattr(args, 'dropout', 0) drop_connect = getattr(args, 'drop_connect', 0) if arch is None: arch = args.arch if arch == 'attentive_nas_dynamic_model': model = AttentiveNasDynamicModel( args.supernet_config, n_classes = n_classes, bn_param = (bn_momentum, bn_eps), ) elif arch == 'attentive_nas_static_model': supernet = AttentiveNasDynamicModel( args.supernet_config, n_classes = n_classes, bn_param = (bn_momentum, bn_eps), ) # load from pretrained models supernet.load_weights_from_pretrained_models(args.pareto_models.supernet_checkpoint_path) # subsample a static model with weights inherited from the supernet dynamic model supernet.set_active_subnet( resolution=args.active_subnet.resolution, width = args.active_subnet.width, depth = args.active_subnet.depth, kernel_size = args.active_subnet.kernel_size, expand_ratio = args.active_subnet.expand_ratio ) model = supernet.get_active_subnet() # house-keeping stuff model.set_bn_param(momentum=bn_momentum, eps=bn_eps) del supernet else: raise ValueError(arch) return model
AttentiveNAS-main
models/model_factory.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # adapted from OFA: https://github.com/mit-han-lab/once-for-all from collections import OrderedDict import torch.nn as nn from .nn_utils import get_same_padding, build_activation, make_divisible, drop_connect from .nn_base import MyModule from .activations import * def set_layer_from_config(layer_config): if layer_config is None: return None name2layer = { ConvBnActLayer.__name__: ConvBnActLayer, IdentityLayer.__name__: IdentityLayer, LinearLayer.__name__: LinearLayer, MBInvertedConvLayer.__name__: MBInvertedConvLayer, } layer_name = layer_config.pop('name') layer = name2layer[layer_name] return layer.build_from_config(layer_config) class SELayer(nn.Module): REDUCTION = 4 def __init__(self, channel): super(SELayer, self).__init__() self.channel = channel self.reduction = SELayer.REDUCTION num_mid = make_divisible(self.channel // self.reduction, divisor=8) self.fc = nn.Sequential(OrderedDict([ ('reduce', nn.Conv2d(self.channel, num_mid, 1, 1, 0, bias=True)), ('relu', nn.ReLU(inplace=True)), ('expand', nn.Conv2d(num_mid, self.channel, 1, 1, 0, bias=True)), ('h_sigmoid', Hsigmoid(inplace=True)), ])) def forward(self, x): #x: N, C, H, W y = x.mean(3, keepdim=True).mean(2, keepdim=True) # N, C, 1, 1 y = self.fc(y) return x * y class ConvBnActLayer(MyModule): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, dilation=1, groups=1, bias=False, use_bn=True, act_func='relu'): super(ConvBnActLayer, self).__init__() # default normal 3x3_Conv with bn and relu self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.stride = stride self.dilation = dilation self.groups = groups self.bias = bias self.use_bn = use_bn self.act_func = act_func pad = get_same_padding(self.kernel_size) self.conv = nn.Conv2d(in_channels, out_channels, self.kernel_size, stride, pad, dilation=dilation, groups=groups, bias=bias ) if self.use_bn: self.bn = nn.BatchNorm2d(out_channels) self.act = build_activation(self.act_func, inplace=True) def forward(self, x): x = self.conv(x) if self.use_bn: x = self.bn(x) if self.act: x = self.act(x) return x @property def module_str(self): if isinstance(self.kernel_size, int): kernel_size = (self.kernel_size, self.kernel_size) else: kernel_size = self.kernel_size if self.groups == 1: if self.dilation > 1: conv_str = '%dx%d_DilatedConv' % (kernel_size[0], kernel_size[1]) else: conv_str = '%dx%d_Conv' % (kernel_size[0], kernel_size[1]) else: if self.dilation > 1: conv_str = '%dx%d_DilatedGroupConv' % (kernel_size[0], kernel_size[1]) else: conv_str = '%dx%d_GroupConv' % (kernel_size[0], kernel_size[1]) conv_str += '_O%d' % self.out_channels return conv_str @property def config(self): return { 'name': ConvBnActLayer.__name__, 'in_channels': self.in_channels, 'out_channels': self.out_channels, 'kernel_size': self.kernel_size, 'stride': self.stride, 'dilation': self.dilation, 'groups': self.groups, 'bias': self.bias, 'use_bn': self.use_bn, 'act_func': self.act_func, } @staticmethod def build_from_config(config): return ConvBnActLayer(**config) class IdentityLayer(MyModule): def __init__(self, ): super(IdentityLayer, self).__init__() def forward(self, x): return x @property def module_str(self): return 'Identity' @property def config(self): return { 'name': IdentityLayer.__name__, } @staticmethod def build_from_config(config): return IdentityLayer(**config) class LinearLayer(MyModule): def __init__(self, in_features, out_features, bias=True): super(LinearLayer, self).__init__() self.in_features = in_features self.out_features = out_features self.bias = bias #self.dropout_rate = dropout_rate #if self.dropout_rate > 0: # self.dropout = nn.Dropout(self.dropout_rate, inplace=True) #else: # self.dropout = None self.linear = nn.Linear(in_features, out_features, bias) def forward(self, x): #if dropout is not None: # x = self.dropout(x) return self.linear(x) @property def module_str(self): return '%dx%d_Linear' % (self.in_features, self.out_features) @property def config(self): return { 'name': LinearLayer.__name__, 'in_features': self.in_features, 'out_features': self.out_features, 'bias': self.bias, #'dropout_rate': self.dropout_rate, } @staticmethod def build_from_config(config): return LinearLayer(**config) class ShortcutLayer(MyModule): def __init__(self, in_channels, out_channels, reduction=1): super(ShortcutLayer, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.reduction = reduction self.conv = nn.Conv2d(in_channels, out_channels, 1, 1, 0, bias=False) def forward(self, x): if self.reduction > 1: padding = 0 if x.size(-1) % 2 == 0 else 1 x = F.avg_pool2d(x, self.reduction, padding=padding) if self.in_channels != self.out_channels: x = self.conv(x) return x @property def module_str(self): if self.in_channels == self.out_channels and self.reduction == 1: conv_str = 'IdentityShortcut' else: if self.reduction == 1: conv_str = '%d-%d_Shortcut' % (self.in_channels, self.out_channels) else: conv_str = '%d-%d_R%d_Shortcut' % (self.in_channels, self.out_channels, self.reduction) return conv_str @property def config(self): return { 'name': ShortcutLayer.__name__, 'in_channels': self.in_channels, 'out_channels': self.out_channels, 'reduction': self.reduction, } @staticmethod def build_from_config(config): return ShortcutLayer(**config) class MBInvertedConvLayer(MyModule): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, expand_ratio=6, mid_channels=None, act_func='relu6', use_se=False, channels_per_group=1): super(MBInvertedConvLayer, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.stride = stride self.expand_ratio = expand_ratio self.mid_channels = mid_channels self.act_func = act_func self.use_se = use_se self.channels_per_group = channels_per_group if self.mid_channels is None: feature_dim = round(self.in_channels * self.expand_ratio) else: feature_dim = self.mid_channels if self.expand_ratio == 1: self.inverted_bottleneck = None else: self.inverted_bottleneck = nn.Sequential(OrderedDict([ ('conv', nn.Conv2d(self.in_channels, feature_dim, 1, 1, 0, bias=False)), ('bn', nn.BatchNorm2d(feature_dim)), ('act', build_activation(self.act_func, inplace=True)), ])) assert feature_dim % self.channels_per_group == 0 active_groups = feature_dim // self.channels_per_group pad = get_same_padding(self.kernel_size) depth_conv_modules = [ ('conv', nn.Conv2d(feature_dim, feature_dim, kernel_size, stride, pad, groups=active_groups, bias=False)), ('bn', nn.BatchNorm2d(feature_dim)), ('act', build_activation(self.act_func, inplace=True)) ] if self.use_se: depth_conv_modules.append(('se', SELayer(feature_dim))) self.depth_conv = nn.Sequential(OrderedDict(depth_conv_modules)) self.point_linear = nn.Sequential(OrderedDict([ ('conv', nn.Conv2d(feature_dim, out_channels, 1, 1, 0, bias=False)), ('bn', nn.BatchNorm2d(out_channels)), ])) def forward(self, x): if self.inverted_bottleneck: x = self.inverted_bottleneck(x) x = self.depth_conv(x) x = self.point_linear(x) return x @property def module_str(self): if self.mid_channels is None: expand_ratio = self.expand_ratio else: expand_ratio = self.mid_channels // self.in_channels layer_str = '%dx%d_MBConv%d_%s' % (self.kernel_size, self.kernel_size, expand_ratio, self.act_func.upper()) if self.use_se: layer_str = 'SE_' + layer_str layer_str += '_O%d' % self.out_channels return layer_str @property def config(self): return { 'name': MBInvertedConvLayer.__name__, 'in_channels': self.in_channels, 'out_channels': self.out_channels, 'kernel_size': self.kernel_size, 'stride': self.stride, 'expand_ratio': self.expand_ratio, 'mid_channels': self.mid_channels, 'act_func': self.act_func, 'use_se': self.use_se, 'channels_per_group': self.channels_per_group, } @staticmethod def build_from_config(config): return MBInvertedConvLayer(**config) class MobileInvertedResidualBlock(MyModule): def __init__(self, mobile_inverted_conv, shortcut, drop_connect_rate=0): super(MobileInvertedResidualBlock, self).__init__() self.mobile_inverted_conv = mobile_inverted_conv self.shortcut = shortcut self.drop_connect_rate = drop_connect_rate def forward(self, x): in_channel = x.size(1) if self.mobile_inverted_conv is None: # or isinstance(self.mobile_inverted_conv, ZeroLayer): res = x elif self.shortcut is None: # or isinstance(self.shortcut, ZeroLayer): res = self.mobile_inverted_conv(x) else: im = self.shortcut(x) x = self.mobile_inverted_conv(x) if self.drop_connect_rate > 0 and in_channel == im.size(1) and self.shortcut.reduction == 1: x = drop_connect(x, p=self.drop_connect_rate, training=self.training) res = x + im return res @property def module_str(self): return '(%s, %s)' % ( self.mobile_inverted_conv.module_str if self.mobile_inverted_conv is not None else None, self.shortcut.module_str if self.shortcut is not None else None ) @property def config(self): return { 'name': MobileInvertedResidualBlock.__name__, 'mobile_inverted_conv': self.mobile_inverted_conv.config if self.mobile_inverted_conv is not None else None, 'shortcut': self.shortcut.config if self.shortcut is not None else None, } @staticmethod def build_from_config(config): mobile_inverted_conv = set_layer_from_config(config['mobile_inverted_conv']) shortcut = set_layer_from_config(config['shortcut']) return MobileInvertedResidualBlock(mobile_inverted_conv, shortcut)
AttentiveNAS-main
models/modules/static_layers.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # adapted from OFA: https://github.com/mit-han-lab/once-for-all import math import torch import torch.nn as nn try: from fvcore.common.file_io import PathManager except: pass class MyModule(nn.Module): def forward(self, x): raise NotImplementedError @property def module_str(self): raise NotImplementedError @property def config(self): raise NotImplementedError @staticmethod def build_from_config(config): raise NotImplementedError class MyNetwork(MyModule): def forward(self, x): raise NotImplementedError @property def module_str(self): raise NotImplementedError @property def config(self): raise NotImplementedError @staticmethod def build_from_config(config): raise NotImplementedError def zero_last_gamma(self): raise NotImplementedError """ implemented methods """ def set_bn_param(self, momentum, eps): for m in self.modules(): if isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d) or isinstance(m, nn.SyncBatchNorm): if momentum is not None: m.momentum = float(momentum) else: m.momentum = None m.eps = float(eps) return def get_bn_param(self): for m in self.modules(): if isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d) or isinstance(m, nn.SyncBatchNorm): return { 'momentum': m.momentum, 'eps': m.eps, } return None def init_model(self, model_init): """ Conv2d, BatchNorm2d, BatchNorm1d, Linear, """ for m in self.modules(): if isinstance(m, nn.Conv2d): if model_init == 'he_fout': n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif model_init == 'he_fin': n = m.kernel_size[0] * m.kernel_size[1] * m.in_channels m.weight.data.normal_(0, math.sqrt(2. / n)) else: raise NotImplementedError if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.Linear): stdv = 1. / math.sqrt(m.weight.size(1)) m.weight.data.uniform_(-stdv, stdv) if m.bias is not None: m.bias.data.zero_() def get_parameters(self, keys=None, mode='include', exclude_set=None): if exclude_set is None: exclude_set = {} if keys is None: for name, param in self.named_parameters(): if name not in exclude_set: yield param elif mode == 'include': for name, param in self.named_parameters(): flag = False for key in keys: if key in name: flag = True break if flag and name not in exclude_set: yield param elif mode == 'exclude': for name, param in self.named_parameters(): flag = True for key in keys: if key in name: flag = False break if flag and name not in exclude_set: yield param else: raise ValueError('do not support: %s' % mode) def weight_parameters(self, exclude_set=None): return self.get_parameters(exclude_set=exclude_set) def load_weights_from_pretrained_models(self, checkpoint_path, load_from_ema=False): try: with PathManager.open(checkpoint_path, 'rb') as f: checkpoint = torch.load(f, map_location='cpu') except: with open(checkpoint_path, 'rb') as f: checkpoint = torch.load(f, map_location='cpu') assert isinstance(checkpoint, dict) pretrained_state_dicts = checkpoint['state_dict'] if load_from_ema and 'state_dict_ema' in checkpoint: pretrained_state_dicts = checkpoint['state_dict_ema'] for k, v in self.state_dict().items(): name = k if not load_from_ema: name = 'module.' + k if not k.startswith('module') else k v.copy_(pretrained_state_dicts[name])
AttentiveNAS-main
models/modules/nn_base.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # adapted from OFA: https://github.com/mit-han-lab/once-for-all import torch import torch.nn as nn import torch.nn.functional as F # A memory-efficient implementation of Swish function class SwishImplementation(torch.autograd.Function): @staticmethod def forward(ctx, i): result = i * torch.sigmoid(i) ctx.save_for_backward(i) return result @staticmethod def backward(ctx, grad_output): i = ctx.saved_tensors[0] sigmoid_i = torch.sigmoid(i) return grad_output * (sigmoid_i * (1 + i * (1 - sigmoid_i))) class MemoryEfficientSwish(nn.Module): def forward(self, x): return SwishImplementation.apply(x) class Hswish(nn.Module): def __init__(self, inplace=True): super(Hswish, self).__init__() self.inplace = inplace def forward(self, x): return x * F.relu6(x + 3., inplace=self.inplace) / 6. #class Swish(nn.Module): # def __init__(self, inplace=True): # super(Swish, self).__init__() # self.inplace = inplace # # def forward(self, x): # return x * torch.sigmoid(x) class Hsigmoid(nn.Module): def __init__(self, inplace=True): super(Hsigmoid, self).__init__() self.inplace = inplace def forward(self, x): return F.relu6(x + 3., inplace=self.inplace) / 6.
AttentiveNAS-main
models/modules/activations.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # adapted from OFA: https://github.com/mit-han-lab/once-for-all from collections import OrderedDict import copy import torch import torch.nn as nn import torch.nn.functional as F from .static_layers import MBInvertedConvLayer, ConvBnActLayer, LinearLayer, SELayer, ShortcutLayer from .dynamic_ops import DynamicSeparableConv2d, DynamicPointConv2d, DynamicBatchNorm2d, DynamicLinear, DynamicSE from .nn_utils import int2list, get_net_device, copy_bn, build_activation, make_divisible from .nn_base import MyModule, MyNetwork class DynamicMBConvLayer(MyModule): def __init__(self, in_channel_list, out_channel_list, kernel_size_list=3, expand_ratio_list=6, stride=1, act_func='relu6', use_se=False, channels_per_group=1): super(DynamicMBConvLayer, self).__init__() self.in_channel_list = int2list(in_channel_list) self.out_channel_list = int2list(out_channel_list) self.kernel_size_list = int2list(kernel_size_list, 1) self.expand_ratio_list = int2list(expand_ratio_list, 1) self.stride = stride self.act_func = act_func self.use_se = use_se self.channels_per_group = channels_per_group # build modules max_middle_channel = round(max(self.in_channel_list) * max(self.expand_ratio_list)) if max(self.expand_ratio_list) == 1: self.inverted_bottleneck = None else: self.inverted_bottleneck = nn.Sequential(OrderedDict([ ('conv', DynamicPointConv2d(max(self.in_channel_list), max_middle_channel)), ('bn', DynamicBatchNorm2d(max_middle_channel)), ('act', build_activation(self.act_func, inplace=True)), ])) self.depth_conv = nn.Sequential(OrderedDict([ ('conv', DynamicSeparableConv2d(max_middle_channel, self.kernel_size_list, stride=self.stride, channels_per_group=self.channels_per_group)), ('bn', DynamicBatchNorm2d(max_middle_channel)), ('act', build_activation(self.act_func, inplace=True)) ])) if self.use_se: self.depth_conv.add_module('se', DynamicSE(max_middle_channel)) self.point_linear = nn.Sequential(OrderedDict([ ('conv', DynamicPointConv2d(max_middle_channel, max(self.out_channel_list))), ('bn', DynamicBatchNorm2d(max(self.out_channel_list))), ])) self.active_kernel_size = max(self.kernel_size_list) self.active_expand_ratio = max(self.expand_ratio_list) self.active_out_channel = max(self.out_channel_list) def forward(self, x): in_channel = x.size(1) if self.inverted_bottleneck is not None: self.inverted_bottleneck.conv.active_out_channel = \ make_divisible(round(in_channel * self.active_expand_ratio), 8) self.depth_conv.conv.active_kernel_size = self.active_kernel_size self.point_linear.conv.active_out_channel = self.active_out_channel if self.inverted_bottleneck is not None: x = self.inverted_bottleneck(x) x = self.depth_conv(x) x = self.point_linear(x) return x @property def module_str(self): if self.use_se: return 'SE(O%d, E%.1f, K%d)' % (self.active_out_channel, self.active_expand_ratio, self.active_kernel_size) else: return '(O%d, E%.1f, K%d)' % (self.active_out_channel, self.active_expand_ratio, self.active_kernel_size) @property def config(self): return { 'name': DynamicMBConvLayer.__name__, 'in_channel_list': self.in_channel_list, 'out_channel_list': self.out_channel_list, 'kernel_size_list': self.kernel_size_list, 'expand_ratio_list': self.expand_ratio_list, 'stride': self.stride, 'act_func': self.act_func, 'use_se': self.use_se, 'channels_per_group': self.channels_per_group, } @staticmethod def build_from_config(config): return DynamicMBConvLayer(**config) ############################################################################################ def get_active_subnet(self, in_channel, preserve_weight=True): middle_channel = make_divisible(round(in_channel * self.active_expand_ratio), 8) channels_per_group = self.depth_conv.conv.channels_per_group # build the new layer sub_layer = MBInvertedConvLayer( in_channel, self.active_out_channel, self.active_kernel_size, self.stride, self.active_expand_ratio, act_func=self.act_func, mid_channels=middle_channel, use_se=self.use_se, channels_per_group=channels_per_group ) sub_layer = sub_layer.to(get_net_device(self)) if not preserve_weight: return sub_layer # copy weight from current layer if sub_layer.inverted_bottleneck is not None: sub_layer.inverted_bottleneck.conv.weight.data.copy_( self.inverted_bottleneck.conv.conv.weight.data[:middle_channel, :in_channel, :, :] ) copy_bn(sub_layer.inverted_bottleneck.bn, self.inverted_bottleneck.bn.bn) sub_layer.depth_conv.conv.weight.data.copy_( self.depth_conv.conv.get_active_filter(middle_channel, self.active_kernel_size).data ) copy_bn(sub_layer.depth_conv.bn, self.depth_conv.bn.bn) if self.use_se: se_mid = make_divisible(middle_channel // SELayer.REDUCTION, divisor=8) sub_layer.depth_conv.se.fc.reduce.weight.data.copy_( self.depth_conv.se.fc.reduce.weight.data[:se_mid, :middle_channel, :, :] ) sub_layer.depth_conv.se.fc.reduce.bias.data.copy_(self.depth_conv.se.fc.reduce.bias.data[:se_mid]) sub_layer.depth_conv.se.fc.expand.weight.data.copy_( self.depth_conv.se.fc.expand.weight.data[:middle_channel, :se_mid, :, :] ) sub_layer.depth_conv.se.fc.expand.bias.data.copy_(self.depth_conv.se.fc.expand.bias.data[:middle_channel]) sub_layer.point_linear.conv.weight.data.copy_( self.point_linear.conv.conv.weight.data[:self.active_out_channel, :middle_channel, :, :] ) copy_bn(sub_layer.point_linear.bn, self.point_linear.bn.bn) return sub_layer def re_organize_middle_weights(self, expand_ratio_stage=0): raise NotImplementedError #importance = torch.sum(torch.abs(self.point_linear.conv.conv.weight.data), dim=(0, 2, 3)) #if expand_ratio_stage > 0: # sorted_expand_list = copy.deepcopy(self.expand_ratio_list) # sorted_expand_list.sort(reverse=True) # target_width = sorted_expand_list[expand_ratio_stage] # target_width = round(max(self.in_channel_list) * target_width) # importance[target_width:] = torch.arange(0, target_width - importance.size(0), -1) # #sorted_importance, sorted_idx = torch.sort(importance, dim=0, descending=True) #self.point_linear.conv.conv.weight.data = torch.index_select( # self.point_linear.conv.conv.weight.data, 1, sorted_idx #) # #adjust_bn_according_to_idx(self.depth_conv.bn.bn, sorted_idx) #self.depth_conv.conv.conv.weight.data = torch.index_select( # self.depth_conv.conv.conv.weight.data, 0, sorted_idx #) #if self.use_se: # # se expand: output dim 0 reorganize # se_expand = self.depth_conv.se.fc.expand # se_expand.weight.data = torch.index_select(se_expand.weight.data, 0, sorted_idx) # se_expand.bias.data = torch.index_select(se_expand.bias.data, 0, sorted_idx) # # se reduce: input dim 1 reorganize # se_reduce = self.depth_conv.se.fc.reduce # se_reduce.weight.data = torch.index_select(se_reduce.weight.data, 1, sorted_idx) # # middle weight reorganize # se_importance = torch.sum(torch.abs(se_expand.weight.data), dim=(0, 2, 3)) # se_importance, se_idx = torch.sort(se_importance, dim=0, descending=True) # se_expand.weight.data = torch.index_select(se_expand.weight.data, 1, se_idx) # se_reduce.weight.data = torch.index_select(se_reduce.weight.data, 0, se_idx) # se_reduce.bias.data = torch.index_select(se_reduce.bias.data, 0, se_idx) # ## TODO if inverted_bottleneck is None, the previous layer should be reorganized accordingly #if self.inverted_bottleneck is not None: # adjust_bn_according_to_idx(self.inverted_bottleneck.bn.bn, sorted_idx) # self.inverted_bottleneck.conv.conv.weight.data = torch.index_select( # self.inverted_bottleneck.conv.conv.weight.data, 0, sorted_idx # ) # return None #else: # return sorted_idx class DynamicConvBnActLayer(MyModule): def __init__(self, in_channel_list, out_channel_list, kernel_size=3, stride=1, dilation=1, use_bn=True, act_func='relu6'): super(DynamicConvBnActLayer, self).__init__() self.in_channel_list = int2list(in_channel_list) self.out_channel_list = int2list(out_channel_list) self.kernel_size = kernel_size self.stride = stride self.dilation = dilation self.use_bn = use_bn self.act_func = act_func self.conv = DynamicPointConv2d( max_in_channels=max(self.in_channel_list), max_out_channels=max(self.out_channel_list), kernel_size=self.kernel_size, stride=self.stride, dilation=self.dilation, ) if self.use_bn: self.bn = DynamicBatchNorm2d(max(self.out_channel_list)) if self.act_func is not None: self.act = build_activation(self.act_func, inplace=True) self.active_out_channel = max(self.out_channel_list) def forward(self, x): self.conv.active_out_channel = self.active_out_channel x = self.conv(x) if self.use_bn: x = self.bn(x) if self.act_func is not None: x = self.act(x) return x @property def module_str(self): return 'DyConv(O%d, K%d, S%d)' % (self.active_out_channel, self.kernel_size, self.stride) @property def config(self): return { 'name': DynamicConvBnActLayer.__name__, 'in_channel_list': self.in_channel_list, 'out_channel_list': self.out_channel_list, 'kernel_size': self.kernel_size, 'stride': self.stride, 'dilation': self.dilation, 'use_bn': self.use_bn, 'act_func': self.act_func, } @staticmethod def build_from_config(config): return DynamicConvBnActLayer(**config) def get_active_subnet(self, in_channel, preserve_weight=True): sub_layer = ConvBnActLayer( in_channel, self.active_out_channel, self.kernel_size, self.stride, self.dilation, use_bn=self.use_bn, act_func=self.act_func ) sub_layer = sub_layer.to(get_net_device(self)) if not preserve_weight: return sub_layer sub_layer.conv.weight.data.copy_(self.conv.conv.weight.data[:self.active_out_channel, :in_channel, :, :]) if self.use_bn: copy_bn(sub_layer.bn, self.bn.bn) return sub_layer class DynamicLinearLayer(MyModule): def __init__(self, in_features_list, out_features, bias=True): super(DynamicLinearLayer, self).__init__() self.in_features_list = int2list(in_features_list) self.out_features = out_features self.bias = bias #self.dropout_rate = dropout_rate # #if self.dropout_rate > 0: # self.dropout = nn.Dropout(self.dropout_rate, inplace=True) #else: # self.dropout = None self.linear = DynamicLinear( max_in_features=max(self.in_features_list), max_out_features=self.out_features, bias=self.bias ) def forward(self, x): #if self.dropout is not None: # x = self.dropout(x) return self.linear(x) @property def module_str(self): return 'DyLinear(%d)' % self.out_features @property def config(self): return { 'name': DynamicLinear.__name__, 'in_features_list': self.in_features_list, 'out_features': self.out_features, 'bias': self.bias } @staticmethod def build_from_config(config): return DynamicLinearLayer(**config) def get_active_subnet(self, in_features, preserve_weight=True): #sub_layer = LinearLayer(in_features, self.out_features, self.bias, dropout_rate=self.dropout_rate) sub_layer = LinearLayer(in_features, self.out_features, self.bias) sub_layer = sub_layer.to(get_net_device(self)) if not preserve_weight: return sub_layer sub_layer.linear.weight.data.copy_(self.linear.linear.weight.data[:self.out_features, :in_features]) if self.bias: sub_layer.linear.bias.data.copy_(self.linear.linear.bias.data[:self.out_features]) return sub_layer class DynamicShortcutLayer(MyModule): def __init__(self, in_channel_list, out_channel_list, reduction=1): super(DynamicShortcutLayer, self).__init__() self.in_channel_list = int2list(in_channel_list) self.out_channel_list = int2list(out_channel_list) self.reduction = reduction self.conv = DynamicPointConv2d( max_in_channels=max(self.in_channel_list), max_out_channels=max(self.out_channel_list), kernel_size=1, stride=1, ) self.active_out_channel = max(self.out_channel_list) def forward(self, x): in_channel = x.size(1) #identity mapping if in_channel == self.active_out_channel and self.reduction == 1: return x #average pooling, if size doesn't match if self.reduction > 1: padding = 0 if x.size(-1) % 2 == 0 else 1 x = F.avg_pool2d(x, self.reduction, padding=padding) #1*1 conv, if #channels doesn't match if in_channel != self.active_out_channel: self.conv.active_out_channel = self.active_out_channel x = self.conv(x) return x @property def module_str(self): return 'DyShortcut(O%d, R%d)' % (self.active_out_channel, self.reduction) @property def config(self): return { 'name': DynamicShortcutLayer.__name__, 'in_channel_list': self.in_channel_list, 'out_channel_list': self.out_channel_list, 'reduction': self.reduction, } @staticmethod def build_from_config(config): return DynamicShortcutLayer(**config) def get_active_subnet(self, in_channel, preserve_weight=True): sub_layer = ShortcutLayer( in_channel, self.active_out_channel, self.reduction ) sub_layer = sub_layer.to(get_net_device(self)) if not preserve_weight: return sub_layer sub_layer.conv.weight.data.copy_(self.conv.conv.weight.data[:self.active_out_channel, :in_channel, :, :]) return sub_layer
AttentiveNAS-main
models/modules/dynamic_layers.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
AttentiveNAS-main
models/modules/__init__.py