python_code
stringlengths
0
4.04M
repo_name
stringlengths
7
58
file_path
stringlengths
5
147
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import contextlib import importlib import os import sys import tempfile from collections import namedtuple from dataclasses import fields from typing import Any, Callable, Dict, Generator, List Item = namedtuple("Item", ["constructor", "config"]) # credit: snippet used in ClassyVision (and probably other places) def import_all_modules(root: str, base_module: str) -> List[str]: modules: List[str] = [] for file in os.listdir(root): if file.endswith((".py", ".pyc")) and not file.startswith("_"): module = file[: file.find(".py")] if module not in sys.modules: module_name = ".".join([base_module, module]) importlib.import_module(module_name) modules.append(module_name) return modules def get_registry_decorator( class_registry, name_registry, reference_class, default_config ) -> Callable[[str, Any], Callable[[Any], Any]]: def register_item(name: str, config: Any = default_config): """Registers a subclass. This decorator allows xFormers to instantiate a given subclass from a configuration file, even if the class itself is not part of the xFormers library.""" def register_cls(cls): if name in class_registry: raise ValueError("Cannot register duplicate item ({})".format(name)) if not issubclass(cls, reference_class): raise ValueError( "Item ({}: {}) must extend the base class: {}".format( name, cls.__name__, reference_class.__name__ ) ) if cls.__name__ in name_registry: raise ValueError( "Cannot register item with duplicate class name ({})".format( cls.__name__ ) ) class_registry[name] = Item(constructor=cls, config=config) name_registry.add(cls.__name__) return cls return register_cls return register_item def generate_matching_config(superset: Dict[str, Any], config_class: Any) -> Any: """Given a superset of the inputs and a reference config class, return exactly the needed config""" # Extract the required fields field_names = list(map(lambda x: x.name, fields(config_class))) subset = {k: v for k, v in superset.items() if k in field_names} # The missing fields get Noned for k in field_names: if k not in subset.keys(): subset[k] = None return config_class(**subset) def rmf(filename: str) -> None: """Remove a file like rm -f.""" try: os.remove(filename) except FileNotFoundError: pass @contextlib.contextmanager def temp_files_ctx(num: int) -> Generator: """ A context to get tempfiles and ensure they are cleaned up. """ files = [tempfile.mkstemp()[1] for _ in range(num)] yield tuple(files) # temp files could have been removed, so we use rmf. for name in files: rmf(name)
bart_ls-main
xformers/xformers/utils.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import math from typing import Any, Optional import torch import torch.nn as nn from torch.cuda.amp import custom_bwd, custom_fwd from xformers.components.activations import Activation from xformers.triton.k_activations import ( get_triton_activation_bwd_kernel, get_triton_activation_kernel, ) from xformers.triton.k_fused_matmul_bw import fused_matmul_backward from xformers.triton.k_fused_matmul_fw import fused_matmul class _fused_linear_triton(torch.autograd.Function): @staticmethod @custom_fwd(cast_inputs=torch.float16) def forward( ctx, x, weight, bias, activation, act_grad_kernel, trainable_weight, trainable_bias, save_activation_inputs, ): # Kick the fused Triton kernel, handling bias and activation in one go y, activation_inputs = fused_matmul( x, weight, bias, activation, save_activation_inputs ) ctx.activation_grad_kernel = act_grad_kernel ctx.trainable_weight = trainable_weight ctx.trainable_bias = trainable_bias # Micro-optimization: saving these is not always needed (?) if x.requires_grad or ctx.trainable_weight or ctx.trainable_bias: ctx.save_for_backward(weight, activation_inputs, x) return y @staticmethod @custom_bwd def backward(ctx: Any, grad_out: torch.Tensor) -> Any: # type: ignore """ Compute the derivative with respect to x, other tensors were not trainable inputs. """ (weight, activation_inputs, x) = ctx.saved_tensors grad_input, grad_weight, grad_bias = fused_matmul_backward( grad_out=grad_out, inputs=x, act_in=activation_inputs, weight=weight, trainable_weight=ctx.trainable_weight, trainable_bias=ctx.trainable_bias, activation_grad=ctx.activation_grad_kernel, ) return grad_input, grad_weight, grad_bias, None, None, None, None, None, None class FusedLinear(nn.Module): """ Handle a linear transform, like torch.nn.Linear_, and a given activation, in a single kernel. The whole transform: is :math:`y = activation(xA^T + b)`. This is typically significantly faster than PyTorch while using fp16 and non-sigmoid activations, as of September 2021. .. _torch.nn.Linear: https://pytorch.org/docs/stable/generated/torch.nn.Linear.html """ def __init__( self, in_features: int, out_features: int, bias: bool = False, activation: Optional[Activation] = None, **_, ): super().__init__() self.weight = nn.Parameter( torch.empty(out_features, in_features), requires_grad=True ) self.bias = ( nn.Parameter(torch.empty(out_features), requires_grad=True) if bias else None ) self._activation_kernel = get_triton_activation_kernel(activation) self._activation_grad_kernel = get_triton_activation_bwd_kernel(activation) self.reset_parameters() def reset_parameters(self) -> None: torch.nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5)) if self.bias is not None: fan_in, _ = torch.nn.init._calculate_fan_in_and_fan_out(self.weight) bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0 torch.nn.init.uniform_(self.bias, -bound, bound) def forward(self, x): return _fused_linear_triton.apply( x, self.weight, self.bias, self._activation_kernel, self._activation_grad_kernel, self.weight.requires_grad, self.bias.requires_grad if self.bias is not None else False, self.training and x.requires_grad, )
bart_ls-main
xformers/xformers/triton/fused_linear_layer.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import torch import triton from xformers.triton.k_sum import k_sum_0 def sum_2d_dim_0(x: torch.Tensor): """ Sum a 2D tensor across the first dimension """ out = torch.empty(x.shape[1], device=x.device, dtype=x.dtype) assert ( x.ndim == 2 ), "This is a very specific kernel, only for 2-dim tensors and summing along dim 0" M, N = x.shape # This kernel is not competitive for these sizes if M > 2048 or M < 8: return x.sum(dim=0) assert ( M >= 4 ), "This is a very specific kernel, requires the reduction dimension to be bigger than 4" assert x.stride(1) == 1, ( "We're expecting x to be contiguous along dim 1, and non contiguous along dim 0.\n" " You would probably be better served with torch.sum()" ) BLOCK_M = min(triton.next_power_of_2(M), 2048) BLOCK_N = 32 if BLOCK_M > 256: BLOCK_N = 16 if BLOCK_M > 1024: BLOCK_N = 8 def grid(meta): return (triton.cdiv(N, meta["BLOCK_N"]),) # fmt: off k_sum_0[grid]( out, x, x.stride(0), M, N, x.dtype == torch.float16, BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N, num_stages=4, ) # fmt: on return out
bart_ls-main
xformers/xformers/triton/sum_strided.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import math from typing import Optional import triton import triton.language as tl from xformers.components import Activation _kAlpha = math.sqrt(2.0 / math.pi) def get_triton_activation_kernel(activation: Optional[Activation]): return ( { Activation.ReLU: relu, Activation.LeakyReLU: leaky_relu, Activation.GeLU: gelu, Activation.SquaredReLU: squared_relu, }[activation] if activation else None ) def get_triton_activation_bwd_kernel(activation: Optional[Activation]): return ( { Activation.ReLU: relu_grad, Activation.LeakyReLU: leaky_relu_grad, Activation.GeLU: gelu_grad, Activation.SquaredReLU: squared_relu_grad, }[activation] if activation else None ) @triton.jit def tanh(x): # Tanh is just a scaled sigmoid return 2 * tl.sigmoid(2 * x) - 1 @triton.jit def cosh(x): exp_x = tl.exp(x) return (exp_x + 1.0 / exp_x) * 0.5 # a Triton implementation of the most used activations # See for instance http://arxiv.org/abs/1606.08415 for an overview # ReLU @triton.jit def relu(x): """ ReLU_ activation function .. _ReLU: https://pytorch.org/docs/stable/generated/torch.nn.ReLU.html """ return tl.where(x >= 0, x, 0.0) @triton.jit def relu_grad(x): return tl.where(x >= 0, 1.0, 0.0) @triton.jit def squared_relu(x): """ Squared ReLU activation, as proposed in the Primer_ paper. .. _Primer: https://arxiv.org/abs/2109.08668 """ x_ = relu(x) return x_ * x_ @triton.jit def squared_relu_grad(x): return tl.where(x >= 0, 2.0 * x, 0.0) # Leaky ReLU @triton.jit def leaky_relu(x): """ LeakyReLU_ activation .. _LeakyReLU: https://pytorch.org/docs/stable/generated/torch.nn.LeakyReLU.html """ scale = 0.01 + 0.0 return tl.where(x >= 0, x, scale * x) @triton.jit def leaky_relu_grad(x): return tl.where(x >= 0, 1.0, 0.01) @triton.jit def gelu(x): """ GeLU_ activation - Gaussian error linear unit .. _GeLU: https://arxiv.org/pdf/1606.08415.pdf """ return 0.5 * x * (1 + tanh(_kAlpha * (x + 0.044715 * x * x * x))) @triton.jit def gelu_grad(x): # Normal computation, just try to maximize reuse x_3 = x * x * x _a = 0.0356774 * x_3 + _kAlpha * x # (hoping that a division is cheaper than an exponential..) exp_a = tl.exp(_a) exp_m_a = 1.0 / exp_a _cos_h = exp_a + exp_m_a _tan_h = (exp_a - exp_m_a) / _cos_h _cos_h *= 0.5 return 0.5 + 0.5 * _tan_h + (0.0535161 * x_3 + 0.398942 * x) / (_cos_h * _cos_h)
bart_ls-main
xformers/xformers/triton/activations.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import math from typing import Optional import triton import triton.language as tl from xformers.components import Activation _kAlpha = math.sqrt(2.0 / math.pi) def get_triton_activation_kernel(activation: Optional[Activation]): return ( { Activation.ReLU: relu, Activation.LeakyReLU: leaky_relu, Activation.GeLU: gelu, Activation.SquaredReLU: squared_relu, }[activation] if activation else None ) def get_triton_activation_bwd_kernel(activation: Optional[Activation]): return ( { Activation.ReLU: relu_grad, Activation.LeakyReLU: leaky_relu_grad, Activation.GeLU: gelu_grad, Activation.SquaredReLU: squared_relu_grad, }[activation] if activation else None ) @triton.jit def tanh(x): # Tanh is just a scaled sigmoid return 2 * tl.sigmoid(2 * x) - 1 @triton.jit def cosh(x): exp_x = tl.exp(x) return (exp_x + 1.0 / exp_x) * 0.5 # a Triton implementation of the most used activations # See for instance http://arxiv.org/abs/1606.08415 for an overview # ReLU @triton.jit def relu(x): """ ReLU_ activation function .. _ReLU: https://pytorch.org/docs/stable/generated/torch.nn.ReLU.html """ zero = 0.0 return tl.where(x >= 0, x, zero.to(x.dtype)) @triton.jit def relu_grad(x): # ReLU is different from other activations # in that it does not require the input to retrospectively compute its gradient # here the input is the downstream gradient, and we return the upstream gradient directly zero = 0.0 one = 1.0 return tl.where(x >= 0, one.to(x.dtype), zero.to(x.dtype)) @triton.jit def squared_relu(x): """ Squared ReLU activation, as proposed in the Primer_ paper. .. _Primer: https://arxiv.org/abs/2109.08668 """ x_ = relu(x) return (x_ * x_).to(x.dtype) @triton.jit def squared_relu_grad(x): return tl.where(x >= 0, 2.0 * x, 0.0) # Leaky ReLU @triton.jit def leaky_relu(x): """ LeakyReLU_ activation .. _LeakyReLU: https://pytorch.org/docs/stable/generated/torch.nn.LeakyReLU.html """ scale = 0.01 + 0.0 scale = scale.to(x.dtype) return tl.where(x >= 0, x, scale * x) @triton.jit def leaky_relu_grad(x): min_grad = 0.01 max_grad = 1 min_grad = min_grad.to(x.dtype) max_grad = max_grad.to(x.dtype) return tl.where(x >= 0, max_grad, min_grad) @triton.jit def gelu(x): """ GeLU_ activation - Gaussian error linear unit .. _GeLU: https://arxiv.org/pdf/1606.08415.pdf """ return 0.5 * x * (1 + tanh(_kAlpha * (x + 0.044715 * x * x * x))) @triton.jit def gelu_grad(x): # CREDITS: Fast implementation proposed in # https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/fused_bias_gelu.py#L30 tanh_out = tanh(0.79788456 * x * (1 + 0.044715 * x * x)) return 0.5 * x * ( (1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x) ) + 0.5 * (1 + tanh_out)
bart_ls-main
xformers/xformers/triton/k_activations.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from typing import Optional import torch import triton import triton.language as tl from xformers.triton.configs_matmul import kernel_config # CREDITS: Initially inspired by the Triton tutorial on matrix multiplications # fmt: off @triton.autotune( configs=kernel_config, key=["M", "N", "K"], ) @triton.jit def kernel_fma( # Pointers to matrices D, A, W, C, In, # Matrix dimensions M, N, K, # The stride variables represent how much to increase the ptr by when moving by 1 # element in a particular dimension. E.g. stride_am is how much to increase a_ptr # by to get the element one row down (A has M rows) stride_db, stride_dm, stride_dn, stride_ab, stride_am, stride_ak, stride_wn, stride_wk, stride_ib, stride_im, stride_in, # Meta-parameters **META, ): # fmt: on """ Kernel for computing D = activation(A x W + C) - A has shape (B, M, K) - W has shape (K, N) - C has shape (N,) - D has shape (B, M, N) - In (optional) has shape (B, M, N) 'In' optionally saves the A x W + C intermediate for backward computations """ # extract metaparameters BLOCK_M, GROUP_M = META["BLOCK_ROW"], META["GROUP_M"] BLOCK_N, BLOCK_K = META["BLOCK_COL"], META["BLOCK_K"] # programs are grouped together to improve L2 hit rate pid, batch_id = tl.program_id(axis=0), tl.program_id(axis=1) num_pid_m = tl.cdiv(M, BLOCK_M) # number of program ids along the M axis num_pid_n = tl.cdiv(N, BLOCK_N) # number of programs ids along the N axis num_pid_in_group = GROUP_M * num_pid_n # number of programs in group group_id = pid // num_pid_in_group # id of the group this program is in first_pid_m = group_id * GROUP_M # row-id of the first program in the group GROUP_M = min( num_pid_m - first_pid_m, GROUP_M ) # if `num_pid_m` isn't divisible by `GROUP_M`, the last group is smaller # *within groups*, programs are ordered in a column-major order # row-id of the program in the *launch grid* pid_m = first_pid_m + (pid % GROUP_M) # col-id of the program in the *launch grid* pid_n = (pid % num_pid_in_group) // GROUP_M # rm (resp. rn) denotes a range of indices # for rows (resp. col) of C rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M) rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N) # rk denotes a range of indices for columns # (resp. rows) of A (resp. B) rk = tl.arange(0, BLOCK_K) # the memory addresses of elements in the first block of # A and W can be computed using numpy-style broadcasting D += rm[:, None] * stride_dm + rn[None, :] * stride_dn + batch_id * stride_db A += rm[:, None] * stride_am + rk[None, :] * stride_ak + batch_id * stride_ab W += rk[:, None] * stride_wk + rn[None, :] * stride_wn # initialize and iteratively update accumulator acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=tl.float32) if META["BIAS"]: bias = tl.load(C + rn, mask=rn < N, other=0.0).to(tl.float32) acc += bias[None, :] for _ in range(K, 0, -BLOCK_K): # block level matrix multiplication a = tl.load(A) w = tl.load(W) acc += tl.dot(a, w).to(tl.float32) # increment pointers so that the next blocks of A and B # are loaded during the next iteration A += BLOCK_K * stride_ak W += BLOCK_K * stride_wk # optional: save the activation inputs if META["SAVE_ACT_INPUTS"]: In += rm[:, None] * stride_im + rn[None, :] * stride_in + batch_id * stride_ib tl.store(In, acc, mask=(rm[:, None] < M) & (rn[None, :] < N)) # optional: fused activation (while the data is in shared memory) if META["ACTIVATION"]: acc = META["ACTIVATION"](acc) # write back result tl.store(D, acc, mask=(rm[:, None] < M) & (rn[None, :] < N)) # Activation needs to be a triton kernel def fused_matmul( x: torch.Tensor, weight: torch.Tensor, bias: Optional[torch.Tensor], activation=None, save_inputs: bool = False ): """ Compute e = activation(x @ weight + bias). This wrapper kicks the `kernel_fma` Triton kernel """ if x.ndim == 2: x = x.unsqueeze(0) _should_squeeze = True else: _should_squeeze = False assert ( x.shape[2] == weight.shape[1] ), f"Incompatible dimensions in between inputs and weight, {x.shape} - {weight.shape}" assert bias is None or bias.is_contiguous() assert ( bias is None or bias.shape[0] == weight.shape[0] ), "Incompatible dimensions in between weight and bias" B, M, K = x.shape N, K = weight.shape # FIXME: @lefaudeux assert ( K % 32 == 0 ), "We don't check memory-out-of-bounds with K so K must be divisible by BLOCK_K" outputs = torch.empty((B, M, N), device=x.device, dtype=x.dtype) act_inputs = torch.empty_like(outputs) if save_inputs else outputs # 1D launch kernel where each block gets its own program. def grid(META): return ( triton.cdiv(M, META["BLOCK_ROW"]) * triton.cdiv(N, META["BLOCK_COL"]), B, ) # fmt: off kernel_fma[grid]( # data ptrs outputs, x, weight, bias if bias is not None else x, # auto skip bias if not present act_inputs, # shapes M, N, K, # strides outputs.stride(0), outputs.stride(1), outputs.stride(2), x.stride(0), x.stride(1), x.stride(2), weight.stride(0), weight.stride(1), act_inputs.stride(0), act_inputs.stride(1), act_inputs.stride(2), # optional fused activation ACTIVATION=activation, # optional fused bias BIAS=bias is not None, # speed optimization: group the programs # improve on data reuse in L2 cache GROUP_M=8, BLOCK_K=32, SAVE_ACT_INPUTS=save_inputs ) # fmt: on if _should_squeeze: outputs.squeeze_() return (outputs, act_inputs) if save_inputs else (outputs, None) # fmt: off @triton.autotune( configs=kernel_config, key=["M", "N", "K"], ) @triton.jit def kernel_fma_grad_in( # Pointers to all the tensors GRAD_IN, GRAD_ACT, ACT_IN, GRAD_OUT, W, # Tensor dimensions M, N, K, # strides for all the gradients stride_gib, stride_gim, stride_gik, stride_gab, stride_gam, stride_gan, stride_gob, stride_gom, stride_gon, # strides for the extra data stride_aib, stride_aim, stride_ain, stride_wn, stride_wk, # Meta-parameters **META, ): # fmt: on """ Kernel for computing `grad_out = grad_in * activation_grad(inputs) @ W^T` - grad_out has shape (B, M, N) - W has shape (K, N) - grad_in has shape (B, M, K) - X has shape (B, M, K) """ # extract metaparameters BLOCK_M, GROUP_M = META["BLOCK_ROW"], META["GROUP_M"] BLOCK_N, BLOCK_K = META["BLOCK_N"], META["BLOCK_COL"] # programs are grouped together to improve L2 hit rate pid, batch_id = tl.program_id(axis=0), tl.program_id(axis=1) num_pid_m = tl.cdiv(M, BLOCK_M) # number of program ids along the M axis num_pid_k = tl.cdiv(K, BLOCK_K) # number of programs ids along the N axis num_pid_in_group = GROUP_M * num_pid_k # number of programs in group group_id = pid // num_pid_in_group # id of the group this program is in first_pid_m = group_id * GROUP_M # row-id of the first program in the group GROUP_M = min( num_pid_m - first_pid_m, GROUP_M ) # if `num_pid_m` isn't divisible by `GROUP_M`, the last group is smaller # *within groups*, programs are ordered in a column-major order pid_m = first_pid_m + (pid % GROUP_M) # row-id of the program in the *launch grid* pid_k = ( pid % num_pid_in_group ) // GROUP_M # col-id of the program in the *launch grid* # memory ranges rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M) rk = pid_k * BLOCK_K + tl.arange(0, BLOCK_K) rn = tl.arange(0, BLOCK_N) # memory blocks can be computed using numpy-style broadcasting GRAD_OUT += rm[:, None] * stride_gom + rn[None, :] * stride_gon + batch_id * stride_gob GRAD_ACT += rm[:, None] * stride_gam + rn[None, :] * stride_gan + batch_id * stride_gab ACT_IN += rm[:, None] * stride_aim + rn[None, :] * stride_ain + batch_id * stride_aib GRAD_IN += rm[:, None] * stride_gim + rk[None, :] * stride_gik + batch_id * stride_gib W += rn[:, None] * stride_wn + rk[None, :] * stride_wk # initialize and iteratively update accumulator grad_in = tl.zeros((BLOCK_M, BLOCK_K), dtype=tl.float32) act_grad_fn = META["ACTIVATION_GRAD"] for _ in range(N, 0, -BLOCK_N): grad_out = tl.load(GRAD_OUT) # BLOCK_M x BLOCK_N w = tl.load(W) # BLOCK_N x BLOCK_K # optional fused activation gradient (while the data is in shared memory) if META["ACTIVATION_GRAD"]: if META["ACTIVATION_GRAD_REQ_INPUTS"]: # This activation requires its inputs act_input = tl.load(ACT_IN) grad_act = act_grad_fn(act_input) ACT_IN += BLOCK_N * stride_ain else: # Save some time, we can reuse the outputs to know about the grad grad_act = act_grad_fn(grad_out) grad_out *= grad_act.to(grad_out.dtype) # store grad_act as an intermediate, will be used for grad/weight and grad/bias if META["SAVE_ACT_GRAD"]: tl.store(GRAD_ACT, grad_out) # gradient #1: input with respect to outputs # grad_in is grad_out scaled by the (transposed) weight grad_in += tl.dot(grad_out, w) # increment pointers so that the next blocks of A and B are loaded during the next iteration GRAD_OUT += BLOCK_N * stride_gon GRAD_ACT += BLOCK_N * stride_gan W += BLOCK_N * stride_wn # write back result tl.store(GRAD_IN, grad_in, mask=(rm[:, None] < M) & (rk[None, :] < K)) # type promotion or downgrade is automatic # Activation needs to be a triton kernel def fused_matmul_backward( grad_out: torch.Tensor, inputs: torch.Tensor, weight: torch.Tensor, trainable_weight: bool, trainable_bias: bool, activation_inputs: Optional[torch.Tensor], activation_grad=None, activation_grad_req_inputs: bool = False, ): """ Compute grad_in = activation^-1(grad_out) @ weight.transpose() .. note: The weight buffer is transposed on the fly """ if grad_out.ndim == 2: # Add the batch dimension # This is inelegant and maybe slow, but never really used in the xformers context grad_out = grad_out.unsqueeze(0) _should_squeeze = True else: _should_squeeze = False assert ( grad_out.shape[2] == weight.shape[0] ), "Incompatible dimensions in between grad_out and weight" B, M, N = grad_out.shape N, K = weight.shape grad_in = torch.empty((B, M, K), device=grad_out.device, dtype=grad_out.dtype) grad_act = torch.empty_like(grad_out) # Compute the gradient for the inputs def grid(META): return ( triton.cdiv(M, META["BLOCK_ROW"]) * triton.cdiv(K, META["BLOCK_COL"]), B, ) if activation_inputs is None: # place holder, this will not be used really activation_inputs = grad_out # fmt: off kernel_fma_grad_in[grid]( # data ptrs grad_in, grad_act, activation_inputs, grad_out, weight, # shapes M, N, K, # strides grad_in.stride(0), grad_in.stride(1), grad_in.stride(2), grad_act.stride(0), grad_act.stride(1), grad_act.stride(2), grad_out.stride(0), grad_out.stride(1), grad_out.stride(2), activation_inputs.stride(0), activation_inputs.stride(1), activation_inputs.stride(2), weight.stride(0), weight.stride(1), # optional fused activation ACTIVATION_GRAD=activation_grad, # data reuse optimization GROUP_M=16, BLOCK_N=32, ACTIVATION_GRAD_REQ_INPUTS=activation_grad_req_inputs, SAVE_ACT_GRAD=trainable_weight or trainable_bias ) # fmt: on grad_bias = torch.sum(grad_act, dim=[0, 1]) if trainable_bias else None # Reuse Triton optimized matmul grad_weight = None if trainable_weight: grad_act_ = torch.reshape(grad_act, (grad_act.shape[0]*grad_act.shape[1], grad_act.shape[2])).transpose(1, 0) if inputs.ndim == 2: inputs = inputs.unsqueeze(0) inputs_ = torch.reshape(inputs, (inputs.shape[0]*inputs.shape[1], inputs.shape[2])) grad_weight = triton.ops.matmul(grad_act_, inputs_) if _should_squeeze: grad_in = grad_in.squeeze_() del grad_act return grad_in, grad_weight, grad_bias
bart_ls-main
xformers/xformers/triton/k_fused_matmul.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import torch _triton_available = torch.cuda.is_available() if _triton_available: try: from .dropout import FusedDropoutBias, dropout # noqa from .fused_linear_layer import FusedLinear # noqa from .layer_norm import FusedLayerNorm, layer_norm # noqa from .softmax import log_softmax, softmax # noqa __all__ = [ "dropout", "softmax", "log_softmax", "FusedDropoutBias", "FusedLinear", "FusedLayerNorm", "layer_norm", ] except ImportError: __all__ = []
bart_ls-main
xformers/xformers/triton/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. # CREDITS: This comes almost as-is from the Triton layer norm tutorial # https://github.com/openai/triton/blob/master/python/tutorials/05-layer-norm.py import logging import torch import triton import triton.language as tl from torch.cuda.amp import custom_bwd, custom_fwd _triton_layernorm_fp16_enabled = False # NOTE: PyTorch keeps layernorm as fp32 _triton_registered_warnings = False @triton.jit def _affine(W, B, N, x, META): cols = tl.arange(0, META["BLOCK_SIZE_N"]) w = tl.load(W + cols, mask=cols < N, other=1.0) zero = 0.0 zero = zero.to(w.dtype) # Triton bug workarounds w = tl.where(cols < N, w, zero) b = tl.load(B + cols, mask=cols < N, other=0.0) b = tl.where(cols < N, b, zero) y = x * w + b return y @triton.jit def _store(y, Y, stride, N, META): row = tl.program_id(0) cols = tl.arange(0, META["BLOCK_SIZE_N"]) y_ptrs = Y + row * stride + cols tl.store(y_ptrs, y, mask=cols < N) @triton.jit def _layer_norm_non_affine(X, M, V, stride, N, eps, META): # fmt: on """ Fused layernorm kernel over a 3d tensor. The layer norm is applied over the last dimension. Compute y = (x - E(x))/(sqrt(var(x) + epsilon)) * gamma + beta """ row = tl.program_id(0) cols = tl.arange(0, META["BLOCK_SIZE_N"]) # Move to this row x_ptrs = X + row * stride + cols x = tl.load(x_ptrs, mask=cols < N, other=0.0).to(tl.float32) x = tl.where(cols < N, x, 0.0) # Triton bug workarounds # Compute variance x_mean = tl.sum(x, axis=0) / N x_zm = x - x_mean x_zm = tl.where(cols < N, x_zm, 0.0) # Triton bug workaround x_var = tl.sum(x_zm * x_zm, axis=0) / N x_inv_sigma = 1.0 / tl.sqrt(x_var + eps) # write-back per sample mean/rstd, used in the backward pass tl.store(M + row, x_mean) tl.store(V + row, x_inv_sigma) return x_zm * x_inv_sigma # fmt: off @triton.jit def _layer_norm_non_affine_fw(X, Y, M, V, stride, N, eps, **META): _store(_layer_norm_non_affine(X, M, V, stride, N, eps, META), Y, stride, N, META) # fmt: off @triton.jit def _layer_norm_fw(X, Y, W, B, M, V, stride, N, eps, **META): # fmt: on """ Fused layernorm kernel over a 3d tensor. The layer norm is applied over the last dimension. Compute y = (x - E(x))/(sqrt(var(x) + epsilon)) * gamma + beta """ y = _layer_norm_non_affine(X, M, V, stride, N, eps, META) y = _affine(W, B, N, y, META) _store(y, Y, stride, N, META) # Backward pass (DX + partial DW + partial DB) # fmt: off @triton.jit def _layer_norm_bwd_dx_fused( DX, DY, DW, DB, Y, W, B, V, Lock, stride, N, **META ): # fmt: on GROUP_SIZE_M = META["GROUP_SIZE_M"] BLOCK_SIZE_N = META["BLOCK_SIZE_N"] # position of elements processed by this program row = tl.program_id(0) cols = tl.arange(0, BLOCK_SIZE_N) # offset data pointers to start at the row of interest y_ptrs = Y + row * stride + cols dy_ptrs = DY + row * stride + cols w_ptrs = W + cols b_ptrs = B + cols # offset locks and weight/bias gradient pointer # each kernel instance accumulates partial sums for # DW and DB into one of GROUP_SIZE_M independent buffers # these buffers stay in the L2, which allow this kernel # to be fast lock_id = row % GROUP_SIZE_M Lock += lock_id Count = Lock + GROUP_SIZE_M # load data to SRAM y = tl.load(y_ptrs, mask=cols < N, other=0).to(tl.float32) dy = tl.load(dy_ptrs, mask=cols < N, other=0).to(tl.float32) w = tl.load(w_ptrs, mask=cols < N, other=0).to(tl.float32) b = tl.load(b_ptrs, mask=cols < N, other=0).to(tl.float32) rstd = tl.load(V + row) # compute dx xhat = (y - b) / w wdy = w * dy xhat = tl.where(cols < N, xhat, 0.0) wdy = tl.where(cols < N, wdy, 0.0) mean1 = tl.sum(xhat * wdy, axis=0) / N mean2 = tl.sum(wdy, axis=0) / N dx = (wdy - (xhat * mean1 + mean2)) * rstd # write-back dx _store(dx, DX, stride, N, META) # accumulate partial sums for dw/db partial_dw = (dy * xhat).to(w.dtype) partial_db = dy.to(w.dtype) # - wait for a lock on the accumulated dw/db while tl.atomic_cas(Lock, 0, 1) == 1: pass count = tl.load(Count) # - we got the lock, accumulate this kernel's results with # the stored values. dw_ptrs = DW + lock_id * N + cols db_ptrs = DB + lock_id * N + cols if count == 0: # first store doesn't accumulate tl.atomic_xchg(Count, 1) else: partial_dw += tl.load(dw_ptrs, mask=cols < N, other=0.) partial_db += tl.load(db_ptrs, mask=cols < N, other=0.) tl.store(dw_ptrs, partial_dw, mask=cols < N) tl.store(db_ptrs, partial_db, mask=cols < N) # release lock tl.atomic_xchg(Lock, 0) @triton.jit def _layer_norm_no_affine_bwd( DX, DY, Y, V, stride, N, **META ): # fmt: on # position of elements processed by this program row = tl.program_id(0) cols = tl.arange(0, META["BLOCK_SIZE_N"]) # offset data pointers to start at the row of interest y_ptrs = Y + row * stride + cols dy_ptrs = DY + row * stride + cols # load data to SRAM y = tl.load(y_ptrs, mask=cols < N, other=0).to(tl.float32) dy = tl.load(dy_ptrs, mask=cols < N, other=0).to(tl.float32) rstd = tl.load(V + row) # compute dx xhat = tl.where(cols < N, y, 0.0) wdy = tl.where(cols < N, dy, 0.0) mean1 = tl.sum(xhat * wdy, axis=0) / N mean2 = tl.sum(wdy, axis=0) / N dx = (wdy - (xhat * mean1 + mean2)) * rstd # write-back dx _store(dx, DX, stride, N, META) # Backward pass (total DW + total DB) # fmt: off @triton.jit def _layer_norm_bwd_dwdb(DW, DB, FINAL_DW, FINAL_DB, M, N, **meta): # fmt: on pid = tl.program_id(0) BLOCK_SIZE_M = meta["BLOCK_SIZE_M"] BLOCK_SIZE_N = meta["BLOCK_SIZE_N"] cols = pid * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) dw = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) db = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) for i in range(0, M, BLOCK_SIZE_M): rows = i + tl.arange(0, meta["BLOCK_SIZE_M"]) offs = rows[:, None] * N + cols[None, :] dw += tl.load(DW + offs, mask=(rows[:, None] < M) & (cols[None, :] < N), other=0.0) db += tl.load(DB + offs, mask=(rows[:, None] < M) & (cols[None, :] < N), other=0.0) sum_dw = tl.sum(dw, axis=0) sum_db = tl.sum(db, axis=0) tl.store(FINAL_DW + cols, sum_dw, mask=cols < N) tl.store(FINAL_DB + cols, sum_db, mask=cols < N) # FIXME: @lefaudeux tensor shape changes are not well handled, see shape3 class _LayerNorm(torch.autograd.Function): @staticmethod @custom_fwd(cast_inputs=torch.float16 if _triton_layernorm_fp16_enabled else None) def forward(ctx, x, weight, bias, eps): # allocate output y = torch.empty_like(x) # reshape input data into 2D tensor x_arg = x.reshape(-1, x.shape[-1]) M, N = x_arg.shape # allocate mean and std, they'll be used in the backward pass mean = torch.empty((M,), dtype=torch.float32, device="cuda") rstd = torch.empty((M,), dtype=torch.float32, device="cuda") # Less than 64KB per feature: enqueue fused kernel MAX_FUSED_SIZE = 65536 // x.element_size() BLOCK_SIZE_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N)) if N > BLOCK_SIZE_N: raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.") if not x_arg.is_contiguous() or not y.is_contiguous(): global _triton_registered_warnings if not _triton_registered_warnings: logging.warning("Non-contiguous input tensor found. Making it contiguous," + " but could have perf or trainer implications") _triton_registered_warnings = True x_arg = x_arg.contiguous() y = y.contiguous() # heuristics for number of warps. num_warps = min(max(BLOCK_SIZE_N // 256, 1), 8) # enqueue kernel # fmt: off if weight is None: _layer_norm_non_affine_fw[(M,)]( x_arg, y, mean, rstd, x_arg.stride(0), N, eps, num_warps=num_warps, BLOCK_SIZE_N=BLOCK_SIZE_N ) else: _layer_norm_fw[(M,)]( x_arg, y, weight, bias, mean, rstd, x_arg.stride(0), N, eps, num_warps=num_warps, BLOCK_SIZE_N=BLOCK_SIZE_N ) # fmt: on ctx.save_for_backward(y, rstd, weight, bias) ctx.BLOCK_SIZE_N = BLOCK_SIZE_N ctx.num_warps = num_warps ctx.eps = eps ctx.N = N return y.reshape_as(x) @staticmethod @custom_bwd def backward(ctx, dy): y, var, weight, bias = ctx.saved_tensors # heuristics for amount of parallel reduction stream for DG/DB N = y.size(-1) GROUP_SIZE_M = 64 if N <= 8192: GROUP_SIZE_M = 96 if N <= 4096: GROUP_SIZE_M = 128 if N <= 1024: GROUP_SIZE_M = 256 # flatten the batch dimension, if any. # We're interested in 'samples' x norm_dimension y = y.reshape(-1, y.size(-1)) M, N = y.size() # allocate output locks = torch.zeros(2 * GROUP_SIZE_M, dtype=torch.int32, device="cuda") t_args = {"dtype": y.dtype, "device": y.device} _dw = torch.empty((GROUP_SIZE_M, y.size(-1)), **t_args) _db = torch.empty((GROUP_SIZE_M, y.size(-1)), **t_args) dw = torch.empty((y.size(-1),), **t_args) db = torch.empty((y.size(-1),), **t_args) dy = dy.contiguous() dx = torch.empty_like(dy) # Check the tensor shapes and layouts # we suppose in the kernel that they have the same size and are contiguous assert dx.numel() == y.numel(), \ "Something is wrong in the backward graph, possibly because of an inplace operation after the layernorm" # enqueue kernel using forward pass heuristics # also compute partial sums for DW and DB # fmt: off meta = {"BLOCK_SIZE_N": ctx.BLOCK_SIZE_N, "GROUP_SIZE_M": GROUP_SIZE_M, "num_warps": ctx.num_warps} if weight is None: _layer_norm_no_affine_bwd[(M,)](dx, dy, y, var, y.stride(0), N, **meta) return dx, None, None, None _layer_norm_bwd_dx_fused[(M,)]( dx, dy, _dw, _db, y, weight, bias, var, locks, y.stride(0), N, **meta ) # fmt: on def grid(meta): return [triton.cdiv(N, meta["BLOCK_SIZE_N"])] # accumulate partial sums in separate kernel # fmt: off _layer_norm_bwd_dwdb[grid]( _dw, _db, dw, db, GROUP_SIZE_M, N, BLOCK_SIZE_M=32, BLOCK_SIZE_N=128 ) # fmt: on dx = dx.reshape_as(dy) return dx, dw, db, None
bart_ls-main
xformers/xformers/triton/k_layer_norm.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import triton import triton.language as tl # fmt: off @triton.jit def k_sum_0( Y, X, stride_xm, M, N, is_fp16, **meta, ): # fmt: om """ Sum a 2d tensor over the first (strided) dimension. This extracts some speed through a parallel sum across the second dimension """ BLOCK_M = meta["BLOCK_M"] BLOCK_N = meta["BLOCK_N"] # partial row indices. We'll reduce over this dimension m = tl.arange(0, BLOCK_M) # To get some extra parallelization, we handle several columns in the same thread block rn = tl.program_id(axis=0) * BLOCK_N + tl.arange(0, BLOCK_N) # the memory address of all the elements that we want to load can be computed as follows x_ptrs = X + m[:, None] * stride_xm + rn[None, :] x_sum = tl.zeros((BLOCK_N,), dtype=tl.float32) tiles = M // BLOCK_M if M % BLOCK_M > 0: tiles += 1 col_mask = (rn[None, :] < N) for _ in range(tiles): # load input data; pad out-of-bounds elements with 0 # NOTE: make sure to accumulate in fp32 to prevent a trivial overflow mask = (m[:, None] < M) & col_mask x = tl.load(x_ptrs, mask=mask, other=0.0) x_sum += tl.sum(x, 0) # move the load pointer x_ptrs += BLOCK_M * stride_xm m += BLOCK_M # update the mask check tl.store(Y + rn, x_sum, mask=rn < N)
bart_ls-main
xformers/xformers/triton/k_sum.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import logging from typing import Optional import torch _gpu_is_old: Optional[bool] = None def gpu_capabilities_older_than_70() -> bool: """Return True if the GPU's compute capability is older than SM70.""" global _gpu_is_old if _gpu_is_old is None: for i in range(torch.cuda.device_count()): major, _ = torch.cuda.get_device_capability(f"cuda:{i}") if major < 7: _gpu_is_old = True if _gpu_is_old is None: _gpu_is_old = False return _gpu_is_old SUPPORTED_CUDA_DEVICES = ["V100", "A100", "T4"] def get_current_cuda_device(): current_device = str(torch.cuda.get_device_properties(torch.cuda.current_device())) for device_str in SUPPORTED_CUDA_DEVICES: if current_device.find(device_str) > 0: return device_str logging.warning("Unsupported device, Triton code generation may fail") return "P100" # default to an old GPU def assert_almost_equal(x, y, decimal=2, err_msg=""): import numpy.testing as npt if isinstance(x, torch.Tensor): x = x.cpu().detach().numpy() if isinstance(y, torch.Tensor): y = y.cpu().detach().numpy() npt.assert_array_almost_equal(x, y, err_msg=err_msg, decimal=decimal)
bart_ls-main
xformers/xformers/triton/utils.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import torch import triton from xformers.triton.utils import get_current_cuda_device # CREDITS: Optimized defaults as suggested in the Triton documentation for matrix multiplications # Handle different SM configurations for the older GPUs # fmt: off _configs_P100 = [ triton.Config({'BLOCK_ROW': 64 , 'BLOCK_COL': 32}, num_stages=5, num_warps=2), triton.Config({'BLOCK_ROW': 32 , 'BLOCK_COL': 64}, num_stages=5, num_warps=2) ] _configs_V100 = _configs_P100 + [ triton.Config({'BLOCK_ROW': 128, 'BLOCK_COL': 256}, num_stages=3, num_warps=8), triton.Config({'BLOCK_ROW': 256, 'BLOCK_COL': 128}, num_stages=3, num_warps=8), triton.Config({'BLOCK_ROW': 256, 'BLOCK_COL': 64}, num_stages=4, num_warps=4), triton.Config({'BLOCK_ROW': 64 , 'BLOCK_COL': 256}, num_stages=4, num_warps=4), triton.Config({'BLOCK_ROW': 128, 'BLOCK_COL': 128}, num_stages=4, num_warps=4), triton.Config({'BLOCK_ROW': 128, 'BLOCK_COL': 64}, num_stages=4, num_warps=4), triton.Config({'BLOCK_ROW': 64 , 'BLOCK_COL': 128}, num_stages=4, num_warps=4), triton.Config({'BLOCK_ROW': 128, 'BLOCK_COL': 32}, num_stages=4, num_warps=4), ] # fmt: on # NOTE: Could be that different configs would be better _configs_A100 = _configs_V100 kernel_config = ( {"P100": _configs_P100, "V100": _configs_V100, "A100": _configs_A100}[ get_current_cuda_device() ] if torch.cuda.is_available() else {} )
bart_ls-main
xformers/xformers/triton/configs_matmul.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from typing import Optional import torch import triton import triton.language as tl # CREDITS: Initially inspired by the Triton tutorial on matrix multiplications # fmt: off @triton.autotune( configs=[ triton.Config({"BLOCK_ROW": 16, "BLOCK_COL": 16}, num_stages=5, num_warps=1), triton.Config({"BLOCK_ROW": 32, "BLOCK_COL": 32}, num_stages=5, num_warps=1), triton.Config({"BLOCK_ROW": 64, "BLOCK_COL": 32}, num_stages=5, num_warps=2), triton.Config({"BLOCK_ROW": 32, "BLOCK_COL": 64}, num_stages=5, num_warps=2), triton.Config({"BLOCK_ROW": 128, "BLOCK_COL": 64}, num_stages=4, num_warps=4), triton.Config({"BLOCK_ROW": 64, "BLOCK_COL": 128}, num_stages=4, num_warps=4), triton.Config({"BLOCK_ROW": 128, "BLOCK_COL": 128}, num_stages=4, num_warps=4), # triton.Config({"BLOCK_ROW": 32, "BLOCK_COL": 256}, num_stages=3, num_warps=4), # triton.Config({"BLOCK_ROW": 256, "BLOCK_COL": 32}, num_stages=3, num_warps=4), # triton.Config({"BLOCK_ROW": 64, "BLOCK_COL": 256}, num_stages=3, num_warps=8), # triton.Config({"BLOCK_ROW": 256, "BLOCK_COL": 64}, num_stages=3, num_warps=8), ], key=["M", "N", "K"], ) @triton.jit def kernel_fma( # Pointers to matrices OUT, ACT_INPUTS, INPUT, WEIGHT, BIAS, # Matrix dimensions M, N, K, # The stride variables represent how much to increase the ptr by when moving by 1 # element in a particular dimension. E.g. stride_am is how much to increase a_ptr # by to get the element one row down (A has M rows) stride_om, stride_im, stride_wn, stride_wk, # Meta-parameters **META, ): # fmt: on """ Kernel for computing Out = activation(A x W + C) - Input has shape (M, K) - Weight has shape (K, N) - Bias has shape (N,) - Output has shape (M, N) - ActInputs (optional) has shape (M, N) 'ActInputs' optionally saves the A x W + C intermediate for backward computations This kernel will consolidate over K """ # extract metaparameters BLOCK_M, GROUP_M = META["BLOCK_ROW"], META["GROUP_ROW"] BLOCK_N, BLOCK_K = META["BLOCK_COL"], META["BLOCK_K"] # programs are grouped together to improve L2 hit rate # the logic is that we'll consolidate over K. If the programs were not grouped, # then multiple cols/rows in the result would end up pulling in the same row and lines # from the inputs. By grouping the computation we ensure some data reuse, which the hardware # covers via the L2 cache pid = tl.program_id(axis=0) num_pid_m = tl.cdiv(M, BLOCK_M) # number of program ids along the M axis num_pid_n = tl.cdiv(N, BLOCK_N) # number of programs ids along the N axis num_pid_in_group = GROUP_M * num_pid_n # number of programs in group group_id = pid // num_pid_in_group # id of the group this program is in first_pid_m = group_id * GROUP_M # row-id of the first program in the group GROUP_M = min( num_pid_m - first_pid_m, GROUP_M ) # if `num_pid_m` isn't divisible by `GROUP_M`, the last group is smaller # *within groups*, programs are ordered in a column-major order # row-id /col-id of the program in the *launch grid* pid_m = first_pid_m + (pid % GROUP_M) pid_n = (pid % num_pid_in_group) // GROUP_M # now compute the block that each program will go through # rm (resp. rn) denotes a range of indices # for rows (resp. col) of C rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M) rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N) rk = tl.arange(0, BLOCK_K) # the memory addresses of elements can follow numpy broadcasting input_ptrs = INPUT + rm[:, None] * stride_im + rk[None, :] weight_ptrs = WEIGHT + rk[:, None] * stride_wk + rn[None, :] * stride_wn # initialize and iteratively update accumulator acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=tl.float32) if META["BIAS"]: bias = tl.load(BIAS + rn, mask=rn < N, other=0.0).to(tl.float32) acc += bias[None, :] # block level matrix multiplication. # We fetch a block memory block from both inputs, matmul and accumulate, then repeat for _ in range(K, 0, -BLOCK_K): a = tl.load(input_ptrs, mask=((rk[None, :] < K) & (rm[:, None] < M)), other=0.0) w = tl.load(weight_ptrs, mask=((rk[:, None] < K) & (rn[None, :] < N)), other=0.0) acc += tl.dot(a, w).to(tl.float32) input_ptrs += BLOCK_K weight_ptrs += BLOCK_K * stride_wk # optional: save the activation inputs if META["SAVE_ACT_INPUTS"]: act_in_ptrs = ACT_INPUTS + rm[:, None] * stride_om + rn[None, :] tl.store(act_in_ptrs, acc, mask=(rm[:, None] < M) & (rn[None, :] < N)) # optional: fused activation (while the data is in shared memory) if META["ACTIVATION"]: acc = META["ACTIVATION"](acc) # write back result out_ptrs = OUT + rm[:, None] * stride_om + rn[None, :] tl.store(out_ptrs, acc, mask=(rm[:, None] < M) & (rn[None, :] < N)) # Activation needs to be a triton kernel def fused_matmul( x: torch.Tensor, weight: torch.Tensor, bias: Optional[torch.Tensor], activation=None, save_act_inputs: bool = False ): """ Compute e = activation(x @ weight + bias). This wrapper kicks the `kernel_fma` Triton kernel """ if not x.is_contiguous(): x = x.contiguous() x_ = x if x.ndim == 2 else x.flatten(0, 1) assert ( x_.shape[1] == weight.shape[1] ), f"Incompatible dimensions in between inputs and weight, {x_.shape} - {weight.shape}" assert bias is None or bias.is_contiguous() assert ( bias is None or bias.shape[0] == weight.shape[0] ), "Incompatible dimensions in between weight and bias" M, K = x_.shape N, K = weight.shape outputs = torch.empty((M, N), device=x.device, dtype=x.dtype) act_inputs = torch.empty_like(outputs) if save_act_inputs else x # will not be used in that case # 1D launch kernel where each block gets its own program. def grid(META): return ( triton.cdiv(M, META["BLOCK_ROW"]) * triton.cdiv(N, META["BLOCK_COL"]), ) # fmt: off kernel_fma[grid]( # data ptrs outputs, act_inputs, x_, weight, bias if bias is not None else x, # auto skip bias if not present # shapes M, N, K, # strides outputs.stride(0), x_.stride(0), weight.stride(0), weight.stride(1), # optional fused activation ACTIVATION=activation, # optional fused bias BIAS=bias is not None, # speed optimization: group the programs # improve on data reuse in L2 cache GROUP_ROW=8, BLOCK_K=32, SAVE_ACT_INPUTS=save_act_inputs ) # fmt: on outputs = outputs if x.ndim == 2 else outputs.reshape(x.shape[0], -1, N) return outputs, act_inputs if save_act_inputs else None
bart_ls-main
xformers/xformers/triton/k_fused_matmul_fw.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. # CREDITS: This comes almost as-is from the Triton dropout tutorial # https://raw.githubusercontent.com/openai/triton/master/python/tutorials/04-low-memory-dropout.py from typing import Optional import torch import triton from torch.cuda.amp import custom_bwd, custom_fwd from xformers.components.activations import Activation, build_activation from xformers.triton.k_activations import ( get_triton_activation_bwd_kernel, get_triton_activation_kernel, ) from xformers.triton.k_dropout import k_dropout_bw, k_dropout_fw GROUP_M = 32 BLOCK_M = GROUP_M // 4 BLOCK_N = 128 # Helper to handle the SPMD launch grid and error cases class _dropout(torch.autograd.Function): @staticmethod @custom_fwd(cast_inputs=torch.float16) def forward(ctx, x, p, bias, activation, activation_grad, trainable_bias): # Soft-flatten an hypothetical 3rd dimension x_ = x.reshape(-1, x.shape[-1]).contiguous() y = torch.empty_like(x_) M, N = x_.shape assert bias is None or (bias.dtype == x.dtype and bias.shape[0] == N) def grid(meta): # NOTE: We use Triton Philox random number generator, which optimally generates 4 blocks for # a given seed and offsets. "BLOCK_M" here describes the size of one of these blocks # but we need to take this factor of 4 into account when scheduling all the kernels return ( triton.cdiv(M, meta["BLOCK_M"] * 4), triton.cdiv(N, meta["BLOCK_N"]), ) N_BLOCK_N = triton.cdiv(N, BLOCK_N) # Generate one seed per sample # seed max is int32 max for positive numbers: 2**16 seeds = torch.randint(65536, (N_BLOCK_N,), device=x.device).to(torch.int32) # fmt: off k_dropout_fw[grid]( y, x_, bias if bias is not None else x_, seeds, y.stride(0), M, N, p, x.dtype == torch.float16, USE_BIAS=bias is not None, ACTIVATION=activation, BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N, ) # fmt: on if activation is not None: ctx.save_for_backward(seeds, bias, x) else: ctx.save_for_backward(seeds, bias, None) ctx.trainable_bias = bias is not None and trainable_bias ctx.activation_grad = activation_grad ctx.p = p return y.reshape_as(x) @staticmethod @custom_bwd def backward(ctx, grad_out): (seeds, bias, inputs) = ctx.saved_tensors # Soft-flatten an hypothetical 3rd dimension grad_out_ = grad_out.reshape(-1, grad_out.shape[-1]).contiguous() grad_in = torch.empty_like(grad_out_) M, N = grad_out_.shape # Optional inputs to compute the activation contribution to the gradient assert inputs is not None or ctx.activation_grad is None if inputs is None: inputs = grad_out_ elif inputs.ndim > 2: inputs = inputs.reshape(-1, N) # We split the problem in tiles: # - over M there will be a follow up reduction # - over M, we go by 4 tiles at at time (consequence of the random number generation) # - over N we compromise in between trying to use as much memory paralellism as possible, # (fill in the warps, there are 32 threads per warps, and 4 warps default), and not being too # big because of register spilling N_BLOCKS_M = triton.cdiv(M, GROUP_M) if ctx.trainable_bias: grad_bias = torch.empty( ( N_BLOCKS_M, N, ), device=grad_in.device, dtype=grad_in.dtype, ) else: grad_bias = grad_in # will not be used def grid(meta): # NOTE: We use Triton Philox random number generator, which optimally generates 4 blocks for # a given seed and offsets. "BLOCK_M" here describes the size of one of these blocks # but we need to take this factor of 4 into account when scheduling all the kernels return ( triton.cdiv(M, meta["BLOCK_M"] * 4), triton.cdiv(N, meta["BLOCK_N"]), ) # fmt: off k_dropout_bw[grid]( grad_in, grad_bias, grad_out_, inputs, bias if bias is not None else inputs, seeds, grad_out_.stride(0), inputs.stride(0), M, N, ctx.p, grad_in.dtype == torch.float16, USE_BIAS=bias is not None, ACTIVATION_GRAD=ctx.activation_grad, TRAINABLE_BIAS=ctx.trainable_bias, BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N, ) # fmt: on return ( grad_in.reshape_as(grad_out), None, torch.sum(grad_bias, dim=0) if ctx.trainable_bias else None, None, None, None, ) def dropout( x: torch.Tensor, p: float, bias: Optional[torch.Tensor] = None, activation: Optional[Activation] = None, ): """ Apply dropout on the input tensor. Optionally add a bias, the computation will be fused. """ # Micro optim, skip dropout if p == 0.0 and activation is None: return x + bias if bias is not None else x act_kernel = get_triton_activation_kernel(activation) act_grad_kernel = get_triton_activation_bwd_kernel(activation) return _dropout.apply( x, p, bias, act_kernel, act_grad_kernel, bias is not None and bias.requires_grad, ) class FusedDropoutBias(torch.nn.Module): def __init__( self, p: float, bias_shape: Optional[int], activation: Optional[Activation] = None, ) -> None: super().__init__() self.p = p self.activation_type = activation self.bias = ( torch.zeros(bias_shape, requires_grad=True) if bias_shape is not None else None ) self.activation = get_triton_activation_kernel(activation) self.pytorch_activation = build_activation(self.activation_type) self.activation_grad = get_triton_activation_bwd_kernel(activation) def forward(self, x: torch.Tensor) -> torch.Tensor: # Convenience, catch a possible type or device mismatch if self.bias is not None: # type: ignore self.bias = self.bias.to(dtype=x.dtype, device=x.device) # type: ignore # Train/inference p = self.p if self.training else 0.0 # This kernel is slower than pytorch for small buffers, bypassing it in that case perf_check = x.shape[-1] > 512 # Catch a non-cuda setup, fallback to pytorch if not x.is_cuda or not perf_check: x = x + self.bias if self.bias is not None else x x = self.pytorch_activation(x) return torch.nn.functional.dropout(x, p) # The normal, Triton-backed path return _dropout.apply( x, p, self.bias, self.activation, self.activation_grad, True )
bart_ls-main
xformers/xformers/triton/dropout.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. # CREDITS: This comes almost as-is from the Triton dropout tutorial # https://raw.githubusercontent.com/openai/triton/master/python/tutorials/04-low-memory-dropout.py import triton import triton.language as tl _configs = [ triton.Config({}, num_warps=1), triton.Config({}, num_warps=2), triton.Config({}, num_warps=4), triton.Config({}, num_warps=8), triton.Config({}, num_warps=16), ] @triton.jit def _get_4_bin_masks(seed, rand_offsets, p): seed = tl.load(seed) rand1, rand2, rand3, rand4 = tl.randint4x(seed, rand_offsets) # binarize masks, save registers # NOTE: We keep the random numbers as is there (integers over int32), # and convert the threshold instead, for speed # The initial distribution is -2**31 / 2**31 -1 # and our float threshold is in between [0, 1] # The full computation is: `start_point + full range * p` threshold = (-2147483648.0 + 4294967295.0 * p).to(tl.int32) rand_mask1 = rand1 > threshold rand_mask2 = rand2 > threshold rand_mask3 = rand3 > threshold rand_mask4 = rand4 > threshold return rand_mask1, rand_mask2, rand_mask3, rand_mask4 @triton.jit def _random_prune_and_scale(x, rand_mask, p, p_scale): zero = 0.0 if p > 0.0: # generate all the random numbers for the block at once, then reshape keep = tl.reshape(rand_mask, x.shape) # prune and normalize in one go x = tl.where(keep, (x * p_scale).to(x.dtype), zero.to(x.dtype)) return x # fmt: off @triton.heuristics({"SIZE_RAND_BLOCK": lambda *_, **meta: meta["BLOCK_N"] * meta["BLOCK_M"]}) @triton.autotune( configs=_configs, key=["M", "N", "is_fp16"], ) @triton.jit def k_dropout_fw( Y, X, BIAS, SEEDS, stride, M, N, p, is_fp16, # autotune **meta, ): """ Apply dropout on an input tensor Y : Output (M, N) X : Input (M, N) BIAS (N,) SEEDS (M,) p : dropout probability """ # fmt: on BLOCK_M = meta["BLOCK_M"] BLOCK_N = meta["BLOCK_N"] SIZE_RAND_BLOCK = meta["SIZE_RAND_BLOCK"] row_id = tl.program_id(axis=0) rows = row_id * BLOCK_M * 4 + tl.arange(0, BLOCK_M) col_id = tl.program_id(axis=1) cols = col_id * BLOCK_N + tl.arange(0, BLOCK_N) seed = SEEDS + col_id # pointers starting point x_ptrs = X + rows[:, None] * stride + cols[None, :] y_ptrs = Y + rows[:, None] * stride + cols[None, :] # go over all the tiles, one by one rand_offsets = tl.arange(0, SIZE_RAND_BLOCK) + row_id * BLOCK_M * 4 rand_mask1, rand_mask2, rand_mask3, rand_mask4 = _get_4_bin_masks(seed, rand_offsets, p) col_mask = cols[None, :] < N p_scale = 1 / (1 - p) if p < 1. else 1. if meta["USE_BIAS"]: b_ptrs = BIAS + cols[None, :] bias = tl.load(b_ptrs, mask=cols[None, :] < N, other=0.) for i in range(4): # cycle through the binary masks (workaround / no indexing) if i == 0: rand_mask = rand_mask1 elif i == 1: rand_mask = rand_mask2 elif i == 2: rand_mask = rand_mask3 else: rand_mask = rand_mask4 block_mask = (rows[:, None] < M) & col_mask x = tl.load(x_ptrs, mask=block_mask, other=0.) # optionally apply a fused bias if meta["USE_BIAS"]: x += bias # optional: fused activation (while the data is in shared memory) if meta["ACTIVATION"]: x = meta["ACTIVATION"](x) # randomly prune (and scale) the resulting buffer, possibly a no-op output = _random_prune_and_scale(x, rand_mask, p, p_scale) tl.store(y_ptrs, output, mask=block_mask) # Update the pointers rows += BLOCK_M # needs to be updated for the mask to be correct x_ptrs += BLOCK_M * stride y_ptrs += BLOCK_M * stride # fmt: off @triton.heuristics({"SIZE_RAND_BLOCK": lambda *_, **meta: meta["BLOCK_N"] * meta["BLOCK_M"]}) @triton.autotune( configs=_configs, key=["M", "N", "is_fp16"], ) @triton.jit def k_dropout_bw( GRAD_IN, GRAD_BIAS, GRAD_OUT, INPUTS, BIAS, SEEDS, stride_grad, stride_inputs, M, N, p, is_fp16, # autotune **meta, ): """ Apply dropout on an input tensor GRAD_OUT (M, N) GRAD_BIAS (N,) GRAD_IN (M, N) BIAS (N,) SEEDS (N,) p : dropout probability """ # fmt: on BLOCK_M = meta["BLOCK_M"] BLOCK_N = meta["BLOCK_N"] SIZE_RAND_BLOCK = meta["SIZE_RAND_BLOCK"] TRAINABLE_BIAS = meta["TRAINABLE_BIAS"] rows = tl.arange(0, BLOCK_M) row_id = tl.program_id(axis=0) rows = row_id * BLOCK_M * 4 + tl.arange(0, BLOCK_M) col_id = tl.program_id(axis=1) cols = col_id * BLOCK_N + tl.arange(0, BLOCK_N) seed = SEEDS + col_id # FIXME index the seed properly # pointers starting point grad_out_ptrs = GRAD_OUT + rows[:, None] * stride_grad + cols[None, :] grad_in_ptrs = GRAD_IN + rows[:, None] * stride_grad + cols[None, :] input_ptrs = INPUTS + rows[:, None] * stride_inputs + cols[None, :] # random binary masks, save registers rand_offsets = tl.arange(0, SIZE_RAND_BLOCK) + row_id * BLOCK_M * 4 rand_mask1, rand_mask2, rand_mask3, rand_mask4 = _get_4_bin_masks(seed, rand_offsets, p) # now go over the tiles grad_bias = tl.zeros((BLOCK_N,), dtype=tl.float32) col_mask = cols[None, :] < N p_scale = 1 / (1 - p) if p < 1. else 1. if meta["USE_BIAS"]: b_ptrs = BIAS + cols[None, :] bias = tl.load(b_ptrs, mask=col_mask, other=0.) for i in range(4): # cycle through the binary masks (workaround / no indexing) if i == 0: rand_mask = rand_mask1 elif i == 1: rand_mask = rand_mask2 elif i == 2: rand_mask = rand_mask3 else: rand_mask = rand_mask4 block_mask = (rows[:, None] < M) & col_mask grad_out = tl.load(grad_out_ptrs, mask=block_mask, other=0.) # optional: fused activation (while the data is in shared memory) if meta["ACTIVATION_GRAD"]: inputs = tl.load(input_ptrs, mask=block_mask, other=0.) # optionally apply a fused bias if meta["USE_BIAS"]: inputs += bias act_grad = meta["ACTIVATION_GRAD"](inputs).to(grad_out.dtype) grad_out *= act_grad # randomly prune (and scale) the resulting buffer, possibly a no-op # note that even if we did not save the mask from the FW pass, it is generated # from the same seeds, so the same drop mask is applied here output = _random_prune_and_scale(grad_out, rand_mask, p, p_scale) # write-back tl.store(grad_in_ptrs, output, mask=block_mask) # optionally accumulate the bias gradient if TRAINABLE_BIAS: grad_bias += tl.sum(output, axis=0) # Update the pointers rows += BLOCK_M # needs to be updated for the mask to be correct grad_out_ptrs += BLOCK_M * stride_grad input_ptrs += BLOCK_M * stride_inputs grad_in_ptrs += BLOCK_M * stride_grad if TRAINABLE_BIAS: grad_bias_ptr = GRAD_BIAS + row_id * N + cols tl.store(grad_bias_ptr, grad_bias, mask=cols < N)
bart_ls-main
xformers/xformers/triton/k_dropout.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import logging from enum import Enum from typing import Optional import torch import triton from torch.cuda.amp import custom_bwd, custom_fwd from xformers.triton.k_softmax import _softmax, _softmax_backward # CREDITS: This is adapted from the vanilla Triton example. See https://openai.com/blog/triton/ # and https://triton-lang.org/getting-started/tutorials/02-fused-softmax.html _triton_registered_overflow = False _triton_registered_warnings = False _triton_softmax_fp16_enabled = False # NOTE: PyTorch keeps softmax as fp32 class MaskType(str, Enum): ADD = "add" MUL = "mul" # Helper to handle the SPMD launch grid and error cases class _softmax_triton(torch.autograd.Function): @staticmethod @custom_fwd(cast_inputs=torch.float16 if _triton_softmax_fp16_enabled else None) def forward(ctx, x, mask, log_outputs, causal): """ Fused softmax implementation, using the Triton programming model. This only supports a reduction over the last dimension for now """ # Handle 2D/3D tensors x_ = x.unsqueeze(0) if x.ndim == 2 else x if not x_.is_contiguous(): x_ = x_.contiguous() y = torch.empty_like(x_) assert ( y.stride(2) == 1 and x_.stride(2) == 1 ), f"{x.shape} - {x_.shape} - {x_.stride()}" # SPMD launch grid grid_2d = ( x_.shape[0], x_.shape[1], ) # enqueue GPU kernel use_mask = True if mask is None: # placeholder, will not be used mask = x_ use_mask = False else: # Make sure that the mask is binary assert mask.dtype == x.dtype, "An additive mask is requested" _softmax[grid_2d]( y, x_, mask, y.stride(0), y.stride(1), x_.stride(0), x_.stride(1), mask.stride(0), x_.shape[2], log=log_outputs, use_mask=use_mask, causal=causal, ) ctx.save_for_backward(y) ctx.log_outputs = log_outputs ctx.causal = causal return y.reshape_as(x) @staticmethod @custom_bwd def backward(ctx, grad_out): (out,) = ctx.saved_tensors # Handle 2D/3D tensors grad_out_ = grad_out.unsqueeze(0) if grad_out.ndim == 2 else grad_out # SPMD launch grid grid_2d = ( grad_out_.shape[0], grad_out_.shape[1], ) depth = triton.next_power_of_2(grad_out_.shape[2]) grad_in = torch.empty_like( out ) # torch.zeros is measurably slower, we'll zero out in the kernel # Make sure that the tensor are contiguous grad_in, grad_out, out = map(lambda x: x.contiguous(), [grad_in, grad_out, out]) # fmt: off _softmax_backward[grid_2d]( grad_in, grad_out_, out, grad_in.stride(0), grad_in.stride(1), grad_out_.stride(0), grad_out_.stride(1), out.stride(0), out.stride(1), out.shape[2], depth=depth, log=ctx.log_outputs, causal=ctx.causal ) # fmt: on return grad_in.reshape_as(grad_out), None, None, None def softmax( x: torch.Tensor, mask: Optional[torch.Tensor] = None, causal: bool = False ) -> torch.Tensor: r"""Applies the Softmax function to an 3-dimensional input Tensor rescaling them so that the elements of the n-dimensional output Tensor lie in the range [0,1] and sum to 1. Softmax is defined as: .. math:: \text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)} .. warning: softmax is computed on the last dimension of the input tensor. Args: x: input tensor. mask: optional mask, its application will be fused to the softmax computation if triton is used causal: optional performance optimization, if triton is used and the attention is causal Returns: a Tensor of the same dimension and shape as the input with values in the range [0, 1] and sum to 1 """ return _softmax_dispatch(x, log=False, mask=mask, causal=causal) def log_softmax( x: torch.Tensor, mask: Optional[torch.Tensor] = None, causal: bool = False ) -> torch.Tensor: r"""Applies the :math:`\log(\text{Softmax}(x))` function to an 3-dimensional input Tensor. The LogSoftmax formulation can be simplified as: .. math:: \text{LogSoftmax}(x_{i}) = \log\left(\frac{\exp(x_i) }{ \sum_j \exp(x_j)} \right) Args: x: input tensor. Returns: a Tensor of the same dimension and shape as the input with values in the range [-inf, 0) """ return _softmax_dispatch(x, log=True, mask=mask, causal=causal) def _softmax_dispatch( x: torch.Tensor, log: bool, mask: Optional[torch.Tensor], causal: bool = False ) -> torch.Tensor: # Triton is used if # - CUDA # - there's enough data to make it faster than pytorch. This could change over time, Triton is improving # - there was no previous failure global _triton_registered_overflow global _triton_registered_warnings try: if torch.cuda.is_available() and x.is_cuda and not _triton_registered_overflow: return _softmax_triton.apply(x, mask, log, causal) except (triton.code_gen.OutOfResources, RuntimeError) as e: # Catch cases where the current GPU does not have enough registers to hold a full tensor line # fallback to PyTorch's implementation, which streams the tensor in and out _triton_registered_overflow = True logging.warning( "Triton softmax kernel register spillover or invalid image caught." "Deactivating this kernel, please file an issue int the xFormers repository" ) logging.warning(e) if causal and not _triton_registered_warnings: logging.warning( "Triton softmax could not be used. \ The causal flags is being passed but it does not provide any benefit with PyTorch softmax." ) _triton_registered_warnings = True if mask is not None: x = x + mask if log: return torch.log_softmax(x, dim=-1) else: return torch.softmax(x, dim=-1)
bart_ls-main
xformers/xformers/triton/softmax.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. # CREDITS: the underlying kernel comes straight from the Triton tutorials # see https://github.com/openai/triton/blob/master/python/tutorials/05-layer-norm.py import logging from typing import Optional import torch import torch.nn as nn import triton from xformers.triton.k_layer_norm import _LayerNorm _triton_registered_warnings = False class FusedLayerNorm(nn.Module): """ Handle a layer normalization, like torch.nn.LayerNorm_. This implementation should be measurably faster than the default PyTorch layernorm (as of PyTorch 1.9), both for training and inference worloads. .. NOTE: Computations under Torch AMP are kept as float32 by default, one can change this to be float16 by setting the flag `xformers.triton.k_layer_norm._triton_layernorm_fp16_enabled = True` .. _torch.nn.LayerNorm: https://pytorch.org/docs/stable/generated/torch.nn.LayerNorm.html """ def __init__(self, normalized_shape, affine=True, eps=1e-05): super().__init__() if affine: self.weight = nn.Parameter(torch.ones(normalized_shape)) self.bias = nn.Parameter(torch.zeros(normalized_shape)) else: self.weight = self.bias = None self.epsilon = eps def forward(self, x): return layer_norm(x, self.weight, self.bias, self.epsilon) def layer_norm( x: torch.Tensor, weight: Optional[torch.Tensor] = None, bias: Optional[torch.Tensor] = None, eps: float = 1e-05, ) -> torch.Tensor: global _triton_registered_warnings r"""Applies normalization over a mini batch of inputs""" try: if ( not _triton_registered_warnings and torch.cuda.is_available() and x.is_cuda and weight is not None and bias is not None ): return _LayerNorm.apply(x, weight, bias, eps) except (triton.code_gen.OutOfResources, RuntimeError) as e: # Catch cases where the current GPU does not have enough registers to hold a full tensor line # fallback to PyTorch's implementation, which streams the tensor in and out _triton_registered_warnings = True logging.warning( "Triton layernorm kernel register spillover or invalid image caught. " "Deactivating this kernel, please file an issue int the xFormers repository" ) logging.warning(e) return torch.nn.functional.layer_norm( x, [x.shape[-1]], weight=weight, bias=bias, eps=eps )
bart_ls-main
xformers/xformers/triton/layer_norm.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from typing import Optional import torch import triton import triton.language as tl from xformers.triton.sum_strided import sum_2d_dim_0 # fmt: off @triton.heuristics({ 'EVEN_N': lambda *args, **meta: args[3] % (meta['BLOCK_COL']) == 0, }) @triton.autotune( configs=[ triton.Config({"BLOCK_COL": 32}, num_stages=5, num_warps=2), triton.Config({"BLOCK_COL": 64}, num_stages=5, num_warps=2), triton.Config({"BLOCK_COL": 128}, num_stages=3, num_warps=4), triton.Config({"BLOCK_COL": 256}, num_stages=3, num_warps=8), triton.Config({"BLOCK_COL": 512}, num_stages=3, num_warps=8), triton.Config({"BLOCK_COL": 1024}, num_stages=3, num_warps=16), ], key=["N"], ) @triton.jit def kernel_bw( # Pointers to matrices GRAD_ACT, GRAD_OUT, ACT_INPUTS, # Matrix dimensions N, # The stride variables represent how much to increase the ptr by when moving by 1 # element in a particular dimension. E.g. stride_am is how much to increase a_ptr # by to get the element one row down (A has M rows) stride_gom, stride_aim, # Meta-parameters **META, ): # fmt: on """ Go over all the activation inputs, compute the corresponding gradient """ # extract metaparameters BLOCK_N = META["BLOCK_COL"] # this kernel is relatively simple in terms of scheduling: # - per row (pid_m) # - each program a given chunk on the col axis, # since it's more effective memory and occupancy wise pid_m, pid_n = tl.program_id(axis=0), tl.program_id(axis=1) rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N) # the memory addresses of elements in the first block of # A and W can be computed using numpy-style broadcasting act_input_ptrs = ACT_INPUTS + pid_m * stride_aim + rn # compute the gradient which is related to this activation if META["EVEN_N"]: act_in = tl.load(act_input_ptrs) else: act_in = tl.load(act_input_ptrs, mask=rn < N, other=0.0) grad_act = META["ACTIVATION_GRAD"](act_in) # now read the incoming gradient, the backpropagated one is the multiple of both grad_out_ptrs = GRAD_OUT + pid_m * stride_gom + rn if META["EVEN_N"]: grad_out = tl.load(grad_out_ptrs) else: grad_out = tl.load(grad_out_ptrs, mask=rn < N) grad_act *= grad_out # write back result grad_act_ptrs = GRAD_ACT + pid_m * stride_gom + rn tl.store(grad_act_ptrs, grad_act, mask=rn < N) def fused_matmul_backward( grad_out: torch.Tensor, inputs: torch.Tensor, act_in: Optional[torch.Tensor], weight: torch.Tensor, trainable_weight: bool, trainable_bias: bool, activation_grad=None, ): """ Compute grad_in = activation^-1(grad_out) @ weight.transpose() .. note: The weight buffer is transposed on the fly .. note: Activation gradient needs to be a Triton kernel """ # Make sure that we don't have to handle the stride over cols if not grad_out.is_contiguous(): grad_out = grad_out.contiguous() grad_out_ = grad_out if grad_out.ndim == 2 else grad_out.flatten(0, 1) inputs_ = inputs if inputs.ndim == 2 else inputs.flatten(0, 1) assert grad_out_.shape[1] == weight.shape[0], "Incompatible dimensions in between grad_out and weight" M, N = grad_out_.shape N, _ = weight.shape # Compute the gradient for the activation if activation_grad is not None: grad_act = torch.empty_like(grad_out_) # Some activations do not require their inputs to # know of their grad, the downstream grad is enough if act_in is None: act_in = grad_out_ def grid(META): return ( M, triton.cdiv(N, META["BLOCK_COL"]), ) # fmt: off kernel_bw[grid]( # data ptrs grad_act, grad_out_, act_in, # shapes N, # strides grad_act.stride(0), act_in.stride(0), weight.stride(0), weight.stride(1), # optional fused activation ACTIVATION_GRAD=activation_grad, ) # Backpropagation going up, the reference gradient is now # just before the activation grad_out_ = grad_act # The following ops can also be handled by triton grad_in = grad_out_ @ weight grad_weight = grad_out_.transpose(1, 0) @ inputs_ if trainable_weight else None grad_bias = sum_2d_dim_0(grad_out_) if trainable_bias else None return grad_in.reshape_as(inputs), grad_weight, grad_bias
bart_ls-main
xformers/xformers/triton/k_fused_matmul_bw.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import torch import triton import triton.language as tl # CREDITS: This is adapted from the vanilla Triton example. See https://openai.com/blog/triton/ # and https://triton-lang.org/getting-started/tutorials/02-fused-softmax.html def get_depth(*args, **_): return triton.next_power_of_2(args[-1]) # autotune: Triton will test out these configurations, and automatically pick the fastest one. # heuristic: add arguments to the kernel call automatically given some heuristics. These arguments are passed in "meta" # fmt: off @triton.autotune( configs=[ triton.Config({}, num_warps=1), triton.Config({}, num_warps=2), triton.Config({}, num_warps=4), triton.Config({}, num_warps=8), triton.Config({}, num_warps=16), triton.Config({}, num_warps=32), ], key=["K"], ) @triton.heuristics(values={"depth": get_depth , "is_fp16": lambda *args, **_: args[0].dtype == torch.float16}) @triton.jit def _softmax( Y, X, M, stride_ym, stride_yn, stride_xm, stride_xn, stride_mn, K, **meta, # extra parameters which can be automatically filled in given some heuristics ): # fmt: om """ Fused softmax kernel over a 3d tensor. The softmax is applied over the last dimension, meaning that this is equivalent to torch.softmax(tensor, dim=-1) Note, if the last dimension is large, say 128K elements, the kernel compile time can shot up to many minutes when the kernel is run for the first time. """ m = tl.program_id(0) n = tl.program_id(1) # col indices k = tl.arange(0, meta["depth"]) # the memory address of all the elements that we want to load can be computed as follows x_ptrs = X + m * stride_xm + n * stride_xn + k # load input data; pad out-of-bounds elements with 0 io_mask = k < K # Causal - 1: skip on the loads directly if meta["causal"]: io_mask = io_mask & (k <= n) x = tl.load(x_ptrs, mask=io_mask, other=float("-inf")) # Causal - 2: enforce correctness over a couple of misloaded values if meta["causal"]: off = float("-inf") off = off.to(x.dtype) x = tl.where(k > n, off, x) if meta["use_mask"]: mask_ptrs = M + n * stride_mn + k add_mask = tl.load(mask_ptrs, io_mask, other=float("-inf")) x += add_mask # compute numerically-stable softmax z = x - tl.max(x, axis=0) if meta["is_fp16"]: # tl.exp() crashes on fp16 values # See https://github.com/openai/triton/issues/241 z = z.to(tl.float32) num = tl.exp(z) denom = tl.sum(num, axis=0) if meta["log"]: y = z - tl.log(denom) else: y = num / denom # write back to Y. # we only write once, hence the "fused" softmax naming y_ptrs = Y + m * stride_ym + n * stride_yn + k # technically we could write only the lower triangular matrix in the causal case # but this is deemed to error prone tl.store(y_ptrs, y, mask=k < K) # fmt: off @triton.autotune( configs=[ triton.Config({}, num_warps=1), triton.Config({}, num_warps=2), triton.Config({}, num_warps=4), triton.Config({}, num_warps=8), triton.Config({}, num_warps=16), ], key=["K"], ) @triton.heuristics(values={"is_fp16": lambda *args, **_: args[0].dtype == torch.float16}) @triton.jit def _softmax_backward( GradIn, GradOut, Out, stride_bm, stride_bn, stride_gm, stride_gn, stride_om, stride_on, K, **meta, ): # fmt: on """ Compute the softmax gradients. ..Note: Not autotuning for now because this would lead to broken accumulated gradients """ m = tl.program_id(0) n = tl.program_id(1) # col indices k = tl.arange(0, meta["depth"]) # the memory address of all the elements that we want to load can be computed as follows grad_out_ptrs = GradOut + m * stride_gm + n * stride_gn + k out_ptrs = Out + m * stride_om + n * stride_on + k # load input data; pad out-of-bounds elements with 0 io_mask = k < K # Causal - 1: skip on the loads directly if meta["causal"]: io_mask = io_mask & (k <= n) g = tl.load(grad_out_ptrs, mask=io_mask, other=float(0)) o = tl.load(out_ptrs, mask=io_mask, other=float(0)) # Causal - 2: enforce correctness over a couple of misloaded values if meta["causal"]: zero = float(0) zero = zero.to(g.dtype) g = tl.where(k > n, zero, g) o = tl.where(k > n, zero, o) if meta["log"]: s = tl.sum(g, 0) if meta["is_fp16"]: o = o.to(tl.float32) grad_in = g - tl.exp(o) * s else: # Step 1: Compute the intermediate sum used for the gradient s = tl.sum(g * o, 0) # Step 2: Compute the gradients grad_in = o * (g - s) # write back to the input gradients # technically we could write only the lower triangular matrix in the causal case # but this is deemed to error prone grad_in_ptrs = GradIn + m * stride_bm + n * stride_bn + k tl.store(grad_in_ptrs, grad_in, mask=k < K)
bart_ls-main
xformers/xformers/triton/k_softmax.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass from typing import Optional import torch import torch.nn as nn from xformers.components import Activation, MultiHeadDispatch from xformers.components.attention import LinformerAttention from xformers.components.feedforward import MLP from xformers.models.base import ModelConfig @dataclass class LinformerConfig(ModelConfig): k: int # The dimension of the space on which the key and values are projected class LinformerEncoderLayer(torch.nn.Module): """ An implementation of a Linformer_ encoder layer using the xFormers components .. _Linformer: `Wang, S., Li, B. Z., Khabsa, M., Fang, H., & Ma, H. (2020). Linformer: Self-Attention with Linear Complexity. ArXiv, 2048(2019).` """ def __init__( self, num_heads: int, dim_sequence: int, # FIXME: should not be needed, make this dynamic dim_embedding: int, dim_feedforward: int, activation: Activation, attention_dropout: Optional[float], ff_dropout: Optional[float], final_dropout: Optional[float], k: int, *args, **kwargs, ): super().__init__() if not attention_dropout: attention_dropout = 0.0 if not ff_dropout: ff_dropout = 0.0 if not final_dropout: final_dropout = 0.0 self.attention = LinformerAttention( dropout=attention_dropout, causal=False, seq_len=dim_sequence, k=k ) self.multihead = MultiHeadDispatch( dim_model=dim_embedding, num_heads=num_heads, residual_dropout=attention_dropout, attention=self.attention, ) self.norm1 = torch.nn.LayerNorm(dim_embedding) self.feedforward = MLP( dim_model=dim_feedforward, dropout=ff_dropout, activation=activation, hidden_layer_multiplier=4, ) self.norm2 = torch.nn.LayerNorm(dim_embedding) self.dropout = nn.Dropout(p=final_dropout) def forward(self, tensor: torch.Tensor, mask: torch.Tensor) -> torch.Tensor: # NOTE: this is just an example, pre/post layer norms are possible in practice tensor = self.norm1(tensor + self.multihead(tensor, tensor, tensor)) tensor = self.norm2(tensor + self.feedforward(tensor)) tensor *= mask.unsqueeze(-1).type_as(tensor) return tensor @classmethod def from_config(cls, config: LinformerConfig): # pyre-fixme[16]: `LinformerConfig` has no attribute `as_patchy_dict`. return cls(**config.as_patchy_dict()) class LinformerDecoderLayer(torch.nn.Module): """ An implementation of a Linformer_ decoder layer using the xFormers components .. _Linformer: `Wang, S., Li, B. Z., Khabsa, M., Fang, H., & Ma, H. (2020). Linformer: Self-Attention with Linear Complexity. ArXiv, 2048(2019).` """ def __init__( self, num_heads: int, dim_sequence: int, # NOTE: should not be needed, this could just be dynamic dim_embedding: int, dim_feedforward: int, activation: Activation, attention_dropout: Optional[float], ff_dropout: Optional[float], final_dropout: Optional[float], k: int, *args, **kwargs, ): super().__init__() if not attention_dropout: attention_dropout = 0.0 if not ff_dropout: ff_dropout = 0.0 if not final_dropout: final_dropout = 0.0 self.multihead1 = MultiHeadDispatch( dim_model=dim_embedding, num_heads=num_heads, residual_dropout=attention_dropout, attention=LinformerAttention( dropout=attention_dropout, causal=True, seq_len=dim_sequence, k=k ), ) self.multihead2 = MultiHeadDispatch( dim_model=dim_embedding, num_heads=num_heads, residual_dropout=attention_dropout, attention=LinformerAttention( dropout=attention_dropout, causal=False, seq_len=dim_sequence, k=k ), ) self.feedforward = MLP( dim_model=dim_feedforward, dropout=ff_dropout, activation=activation, hidden_layer_multiplier=4, ) self.norm1 = torch.nn.LayerNorm(dim_embedding) self.norm2 = torch.nn.LayerNorm(dim_embedding) self.norm3 = torch.nn.LayerNorm(dim_embedding) self.dropout = nn.Dropout(p=final_dropout) def forward(self, target: torch.Tensor, memory: torch.Tensor) -> torch.Tensor: # FIXME: Handle automatically different layer norm positions # Masked multi head attention x = self.norm1(target + self.multihead1(target, target, target)) # Include the memory/Encoder results x = self.norm2(x + self.multihead2(key=memory, value=memory, query=x)) # FF x = self.norm3(x + self.feedforward(x)) return x @classmethod def from_config(cls, config: LinformerConfig): # pyre-fixme[16]: `LinformerConfig` has no attribute `as_patchy_dict`. return cls(**config.as_patchy_dict()) class LinFormer(torch.nn.Module): def __init__( self, num_heads: int, dim_sequence: int, # FIXME: should not be needed, make this dynamic dim_embedding: int, dim_feedforward: int, activation: Activation, num_encoder_layers: int, num_decoder_layers: int, attention_dropout: Optional[float], ff_dropout: Optional[float], final_dropout: Optional[float], k: int, ): super().__init__() encoders = [ LinformerEncoderLayer( num_heads, dim_sequence, dim_embedding, dim_feedforward, activation, attention_dropout, ff_dropout, final_dropout, k, ) for _ in range(num_encoder_layers) ] self.encoders = torch.nn.Sequential(*encoders) if encoders else None self.decoders = nn.ModuleList( [ LinformerDecoderLayer( num_heads, dim_sequence, dim_embedding, dim_feedforward, activation, attention_dropout, ff_dropout, final_dropout, k, ) for _ in range(num_decoder_layers) ] ) def forward(self, inputs: torch.Tensor) -> torch.Tensor: # Encode to latent space if encoder is present latent = self.encoders(inputs) if self.encoders else None # If decoder: either use the encoder ouput, or just decode, both options are possible if self.decoders: for decoder in self.decoders: inputs = decoder( target=inputs, memory=latent if latent is not None else inputs ) return inputs # There was no decoder, we're looking for encoded values return latent @classmethod def from_config(cls, config: LinformerConfig): # pyre-fixme[16]: `LinformerConfig` has no attribute `as_patchy_dict`. return cls(**config.as_patchy_dict())
bart_ls-main
xformers/xformers/models/linformer.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass from typing import Optional from xformers.components import Activation @dataclass class ModelConfig: num_heads: int dim_sequence: int dim_embedding: int dim_feedforward: int num_encoder_layers: int num_decoder_layers: int activation: Activation attention_dropout: Optional[float] relu_dropout: Optional[float] dropout: Optional[float]
bart_ls-main
xformers/xformers/models/base.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import math from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from torch.nn.init import ( _calculate_fan_in_and_fan_out, _no_grad_uniform_, constant_, xavier_uniform_, ) def small_init_(tensor: torch.Tensor, gain: float = 1.0) -> torch.Tensor: r"""Fills the input `Tensor` with values according to the method described in `Transformer Without Tears`_, using a uniform distribution. This is a variation of the Xavier init. The resulting tensor will have values sampled from :math:`\mathcal{U}(-a, a)` where .. math:: a = \text{gain} \times \sqrt{\frac{6}{\text{fan\_in} + 4 * \text{fan\_out}}} Also known as Glorot initialization. Args: tensor: an n-dimensional `torch.Tensor` gain: an optional scaling factor .. _`Transformer Without Tears`: https://doi.org/10.5281/zenodo.3525484 """ fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor) std = gain * math.sqrt(2.0 / float(fan_in + 4 * fan_out)) a = math.sqrt(3.0) * std # Calculate uniform bounds from standard deviation return _no_grad_uniform_(tensor, -a, a) @dataclass class InProjParams: in_features: int out_features: int bias: bool small_init: bool = False class InProjContainer(nn.Module): """ Handle all the input projections in one go, opportunistically fuse some operations. CREDITS: Inspired by https://github.com/pytorch/text/blob/master/torchtext/nn/modules/multiheadattention.py and the MultiHeadAttention implementation from PyTorch """ def __init__( self, query_proj_params: InProjParams, key_proj_params: Optional[InProjParams], value_proj_params: Optional[InProjParams], ): super().__init__() assert ( query_proj_params.in_features == query_proj_params.out_features ), "We assume in_features == out_features for queries, please provide your projection if this is not the case" # If nothing is specified for key and value, use the same as query if key_proj_params is None: key_proj_params = query_proj_params if value_proj_params is None: value_proj_params = query_proj_params # Catch a beneficial case, if Q,K,V dimensions are the same self.same_dimensions = ( query_proj_params.in_features == key_proj_params.in_features and value_proj_params.in_features == key_proj_params.in_features ) self.out_features = query_proj_params.out_features self.q_p_params = query_proj_params self.k_p_params = key_proj_params self.v_p_params = value_proj_params # - handle all the weights # save the requested init method if self.same_dimensions: # We can use a single weight and bias buffer, which will speed up self attention self.in_proj_weight = nn.Parameter( torch.empty((3 * self.out_features, self.out_features)) ) self.register_parameter("q_proj_weight", None) self.register_parameter("k_proj_weight", None) self.register_parameter("v_proj_weight", None) else: # The dimensions are different, use seperate buffers self.q_proj_weight = nn.Parameter( torch.empty((self.out_features, query_proj_params.in_features)) ) self.k_proj_weight = nn.Parameter( torch.empty((self.out_features, key_proj_params.in_features)) ) self.v_proj_weight = nn.Parameter( torch.empty((self.out_features, value_proj_params.in_features)) ) self.register_parameter("in_proj_weight", None) # - handle all the inputs if query_proj_params.bias: self.in_proj_bias = nn.Parameter(torch.empty(3 * self.out_features)) else: self.register_parameter("in_proj_bias", None) # - multi-head attention specific init for the weights and biases self._reset_parameters() def _reset_parameters(self): if self.in_proj_weight is not None: # 1/sqrt(2) init is empirically beneficial in that case self.in_proj_weight = self._init_weights( self.q_p_params, self.in_proj_weight, gain=1.0 / math.sqrt(2) ) else: self.q_proj_weight = self._init_weights( self.q_p_params, self.q_proj_weight, gain=1.0 ) self.k_proj_weight = self._init_weights( self.k_p_params, self.k_proj_weight, gain=1.0 ) self.v_proj_weight = self._init_weights( self.v_p_params, self.v_proj_weight, gain=1.0 ) if self.in_proj_bias is not None: constant_(self.in_proj_bias, 0.0) @staticmethod def _init_weights(params: InProjParams, weights: torch.Tensor, gain: float): if params.small_init: return small_init_(weights, gain=gain) else: return xavier_uniform_(weights, gain=gain) def forward( self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: if self.in_proj_weight is not None: if id(query) == id(key): # Self attention, get all the projected values at once # we compute everything transposed, so that q,k,v stay contiguous after splitting qkv = query @ self.in_proj_weight.transpose(-2, -1) if self.in_proj_bias is not None: qkv += self.in_proj_bias q, k, v = map( lambda x: x.contiguous(), qkv.split(self.out_features, dim=-1), ) return q, k, v else: # Not self attention # - bias free projection projections = self.in_proj_weight.split(self.out_features, dim=0) q, k, v = map( lambda x, y: x @ y.transpose(1, 0), [query, key, value], projections ) # - optionally add bias if self.in_proj_bias is not None: biases = self.in_proj_bias.split(self.out_features, dim=0) q, k, v = map(lambda x, y: x + y, [q, k, v], biases) return q, k, v # We have a weight per input, but share a bigger bias buffer assert ( self.q_proj_weight is not None and self.k_proj_weight is not None and self.v_proj_weight is not None ) # - bias free projection q, k, v = map( lambda x, y: x @ y.transpose(1, 0), [query, key, value], [self.q_proj_weight, self.k_proj_weight, self.v_proj_weight], ) # - optionally add bias if self.in_proj_bias is not None: biases = self.in_proj_bias.split(self.out_features, dim=0) q, k, v = map(lambda x, y: x + y, [q, k, v], biases) return q, k, v
bart_ls-main
xformers/xformers/components/in_proj_container.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from enum import Enum from typing import List, Union import torch import torch.nn as nn from xformers import _is_triton_available if _is_triton_available: from xformers.triton.layer_norm import FusedLayerNorm def _to_tensor_list( inputs: Union[torch.Tensor, List[torch.Tensor]] ) -> List[torch.Tensor]: if not isinstance(inputs, list): inputs = [inputs] return inputs class LayerNormStyle(str, Enum): """Support different layer norm styles. See "On Layer Normalization in the Transformer Architecture", Xiong et al., https://arxiv.org/pdf/2002.04745v1.pdf """ Pre = "pre" Post = "post" # CREDITS: the following is inspired by FastAI's Transformer implementation class Residual(nn.Module): """Object-oriented handling of the residual path""" def __init__(self, layer: nn.Module): super().__init__() self.layer = layer def forward(self, inputs: Union[torch.Tensor, List[torch.Tensor]], *args, **kwargs): inputs = _to_tensor_list(inputs) return inputs[0] + self.layer(*inputs, *args, **kwargs) class PreNorm(nn.Module): """Adds LayerNorm before computing attention ..Note: If a list of inputs is passed, all of them get normalized""" def __init__(self, d_model: int, sublayer: nn.Module, use_triton: bool = True): super().__init__() if _is_triton_available and use_triton: self.norm: Union[nn.LayerNorm, FusedLayerNorm] = FusedLayerNorm(d_model) else: self.norm = nn.LayerNorm(d_model) self.sublayer = sublayer def forward(self, inputs: Union[torch.Tensor, List[torch.Tensor]], *args, **kwargs): inputs = _to_tensor_list(inputs) x_norm = [self.norm(x_) for x_ in inputs] return self.sublayer(*x_norm, *args, **kwargs) class PostNorm(nn.Module): """Adds LayerNorm after computing attention""" def __init__(self, d_model: int, sublayer: nn.Module, use_triton: bool = True): super().__init__() if _is_triton_available and use_triton: self.norm: Union[nn.LayerNorm, FusedLayerNorm] = FusedLayerNorm(d_model) else: self.norm = nn.LayerNorm(d_model) self.sublayer = sublayer def forward(self, inputs: Union[torch.Tensor, List[torch.Tensor]], *args, **kwargs): inputs = _to_tensor_list(inputs) x = self.sublayer(*inputs, *args, **kwargs) return self.norm(x)
bart_ls-main
xformers/xformers/components/residual.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from typing import List import torch import torch.nn as nn from torch.autograd.function import Function from torch.utils.checkpoint import get_device_states, set_device_states # CREDITS: Code adapted from # https://github.com/lucidrains/reformer-pytorch/blob/master/reformer_pytorch/reversible.py # https://github.com/RobinBruegger/RevTorch/blob/master/revtorch/revtorch.py, # https://pytorch.org/docs/stable/_modules/torch/utils/checkpoint.html # pyre-fixme[13]: `cpu_state` is not initialized in the constructor. class Deterministic(nn.Module): def __init__(self, net: nn.Module): super().__init__() self.net = net self.cpu_state: torch.Tensor = torch.get_rng_state() self.cuda_in_fwd: bool = False self.gpu_devices: List[int] = [] self.gpu_states: List[torch.Tensor] = [] def record_rng(self, *args): self.cpu_state = torch.get_rng_state() if torch.cuda._initialized: self.cuda_in_fwd = True self.gpu_devices, self.gpu_states = get_device_states(*args) def forward(self, *args, record_rng: bool = False, set_rng: bool = False, **kwargs): if record_rng: self.record_rng(*args) if not set_rng: return self.net(*args, **kwargs) rng_devices: List[int] = [] if self.cuda_in_fwd: rng_devices = self.gpu_devices with torch.random.fork_rng(devices=rng_devices, enabled=True): torch.set_rng_state(self.cpu_state) if self.cuda_in_fwd: set_device_states(self.gpu_devices, self.gpu_states) return self.net(*args, **kwargs) class ReversibleBlock(nn.Module): def __init__(self, f: nn.Module, g: nn.Module, split_dim: int = -1): super().__init__() self.f = Deterministic(f) self.g = Deterministic(g) self.split_dim = split_dim def forward(self, x: torch.Tensor, f_args={}, g_args={}): x1, x2 = torch.chunk(x, 2, dim=-1) y1, y2 = None, None with torch.no_grad(): y1 = x1 + self.f(x2, record_rng=self.training, **f_args) y2 = x2 + self.g(y1, record_rng=self.training, **g_args) return torch.cat([y1, y2], dim=self.split_dim) def backward_pass( self, y: torch.Tensor, dy: torch.Tensor, f_args={}, g_args={} ): # pragma: no cover # this is covered, but called directly from C++ y1, y2 = torch.chunk(y, 2, dim=self.split_dim) del y dy1, dy2 = torch.chunk(dy, 2, dim=self.split_dim) del dy with torch.enable_grad(): y1.requires_grad = True gy1 = self.g(y1, set_rng=True, **g_args) torch.autograd.backward(gy1, dy2) with torch.no_grad(): x2 = y2 - gy1 del y2, gy1 dx1 = dy1 + y1.grad del dy1 y1.grad = None with torch.enable_grad(): x2.requires_grad = True fx2 = self.f(x2, set_rng=True, **f_args) torch.autograd.backward(fx2, dx1) with torch.no_grad(): x1 = y1 - fx2 del y1, fx2 dx2 = dy2 + x2.grad del dy2 x2.grad = None x = torch.cat([x1, x2.detach()], dim=self.split_dim) dx = torch.cat([dx1, dx2], dim=self.split_dim) return x, dx class _ReversibleFunction(Function): @staticmethod def forward(ctx, x, blocks, kwargs): ctx.kwargs = kwargs for block in blocks: x = block(x, **kwargs) ctx.y = x.detach() ctx.blocks = blocks return x @staticmethod def backward( ctx, dy ): # pragma: no cover # this is covered, but called directly from C++ y = ctx.y kwargs = ctx.kwargs for block in ctx.blocks[::-1]: y, dy = block.backward_pass(y, dy, **kwargs) return dy, None, None class ReversibleSequence(nn.Module): def __init__(self, blocks: nn.ModuleList): super().__init__() # pyre-fixme[23]: Unable to unpack `torch.nn.Module` into 2 values. self.blocks = nn.ModuleList([ReversibleBlock(f, g) for f, g in blocks]) def forward(self, x, arg_route=(True, False), **kwargs): f_args, g_args = map(lambda route: kwargs if route else {}, arg_route) block_kwargs = {"f_args": f_args, "g_args": g_args} return _ReversibleFunction.apply(x, self.blocks, block_kwargs)
bart_ls-main
xformers/xformers/components/reversible.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from enum import Enum from typing import Optional import torch from torch import nn class Activation(str, Enum): SquaredReLU = "squared_relu" GeLU = "gelu" LeakyReLU = "leaky_relu" ReLU = "relu" # For unit testing / parity comparisons, probably not the fastest way class SquaredReLU(nn.Module): def __init__(self) -> None: super().__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: x_ = torch.nn.functional.relu(x) return x_ * x_ class Passthrough(nn.Module): def __init__(self) -> None: super().__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: return x def build_activation(activation: Optional[Activation]): if not activation: return Passthrough() return { Activation.ReLU: nn.ReLU, Activation.GeLU: nn.GELU, Activation.LeakyReLU: nn.LeakyReLU, Activation.SquaredReLU: SquaredReLU, }[activation]()
bart_ls-main
xformers/xformers/components/activations.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from dataclasses import asdict, dataclass from typing import Optional import torch import torch.nn as nn from torch.nn.init import constant_ from xformers.components.attention import Attention from xformers.components.in_proj_container import InProjContainer, InProjParams from xformers.components.positional_embedding import RotaryEmbedding @dataclass class MultiHeadDispatchConfig: dim_model: int residual_dropout: float num_heads: int attention: Attention bias: bool dim_key: Optional[int] dim_value: Optional[int] in_proj_container: Optional[InProjContainer] use_separate_proj_weight: Optional[bool] use_rotary_embeddings: Optional[bool] out_proj: Optional[nn.Module] # Move head forward and fold into batch dim. dimensions become (B * nh, S, hs) def _fold_heads(t: torch.Tensor, B: int, S: int, H: int, Hs: int): return t.view(B, S, H, Hs).transpose(1, 2).flatten(start_dim=0, end_dim=1) def _split_heads(t: torch.Tensor, B: int, S: int, H: int, Hs: int): return t.view(B, S, H, Hs).transpose(1, 2) class MultiHeadDispatch(nn.Module): """ A multi-head masked self-attention dispatch mechanism, with a projection at the end, following the architecture proposed in `Attention is all you need`_, Vaswani et al. The actual attention mechanism can vary, as well as the projections. This can be used to wrap the proposed attention mechanisms and make them multi-head aware, but it is optional. .. _`Attention is all you need`: https://arxiv.org/abs/1706.03762v5 """ def __init__( self, dim_model: int, residual_dropout: float, num_heads: int, attention: Attention, bias: bool = True, dim_key: Optional[int] = None, dim_value: Optional[int] = None, in_proj_container: Optional[InProjContainer] = None, use_separate_proj_weight: Optional[bool] = False, use_rotary_embeddings: Optional[bool] = False, out_proj: Optional[nn.Module] = None, *args, **kwargs, ): super().__init__() assert ( dim_model % num_heads == 0 ) # static preset for now, each head works on 1/d the embeddings, could be relaxed assert num_heads > 0 # Popular default is that all latent dimensions are the same dim_key, dim_value = map(lambda x: x if x else dim_model, (dim_key, dim_value)) self.num_heads = num_heads self.dim_k = dim_key // num_heads self.dim_value = dim_value self.dim_model = dim_model self.attention = attention # key, query, value projections for all heads # critical options are # - are we sharing weights ? # - are we adding biases, and if yes are they shared ? if attention.requires_input_projection: self.in_proj_container = ( in_proj_container if in_proj_container is not None else InProjContainer( query_proj_params=InProjParams(dim_model, dim_key, bias=bias), key_proj_params=InProjParams(dim_model, dim_key, bias=bias) if use_separate_proj_weight else None, value_proj_params=InProjParams(dim_model, dim_value, bias=bias) if use_separate_proj_weight else None, ) ) # Optional rotary embeddings self.rotary_embeddings = ( RotaryEmbedding(self.dim_k) if use_rotary_embeddings else None ) # Regularization self.resid_drop = nn.Dropout(residual_dropout, inplace=False) # Output projection self.proj = out_proj if out_proj else nn.Linear(dim_model, dim_model, bias=bias) if isinstance(self.proj, nn.Linear) and self.proj.bias is not None: constant_(self.proj.bias, 0.0) def _check(self, t, name): assert ( t.shape[2] % self.dim_k == 0 ), f"the {name} embeddings need to be divisible by the number of heads" def forward( self, query: torch.Tensor, key: Optional[torch.Tensor] = None, value: Optional[torch.Tensor] = None, att_mask: Optional[torch.Tensor] = None, key_padding_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: """ Expected input dimensions are [batch size, sequence length, embed dim] Output dimensions are [batch size, sequence length, embed dim] """ if key is None: key = query if value is None: value = query # Check the dimensions properly self._check(query, "query") self._check(value, "value") self._check(key, "key") max_batch = max((query.shape[0], key.shape[0], value.shape[0])) query, key, value = map( lambda x: x.expand(max_batch, -1, -1), [query, key, value] ) B, S_Q, _ = query.size() # Batch x Sequence x Embedding (latent) _, S_K, _ = key.size() # K, Q's sequence length could differ # Catch different query and key length but a causal attention if S_Q != S_K: assert ( not self.attention.requires_same_k_q_dimensions ), "This attention mechanism requires query and key to have the same sequence (context) lengths" if hasattr(self.attention, "causal"): assert not self.attention.causal, ( "Causal attention is not supported when key and query have different sequence lengths.\n" + "In that case causality is ill-determined. Please pad your sequences accordingly" ) if self.attention.requires_skip_multi_head: return self.attention( query, key, value, att_mask=att_mask, key_padding_mask=key_padding_mask ) # Calculate query, key, values for all heads in batch if self.attention.requires_input_projection: q, k, v = self.in_proj_container(query=query, key=key, value=value) else: k, q, v = key, query, value # Optional: rotary embedding, add relative positioning information if self.rotary_embeddings: # rotary requires the head dimension q = _split_heads(q, B, S_Q, self.num_heads, self.dim_k) k = _split_heads(k, B, S_K, self.num_heads, self.dim_k) v = _split_heads(v, B, S_K, self.num_heads, self.dim_k) q, k = self.rotary_embeddings(q=q, k=k) if not self.attention.requires_head_dimension: q, k, v = q.flatten(0, 1), k.flatten(0, 1), v.flatten(0, 1) else: # Reshape k/q/v to either expose the heads, or fold the head dimension into the batch reshape_fn = ( _split_heads if self.attention.requires_head_dimension else _fold_heads ) q = reshape_fn(q, B, S_Q, self.num_heads, self.dim_k) k = reshape_fn(k, B, S_K, self.num_heads, self.dim_k) v = reshape_fn(v, B, S_K, self.num_heads, self.dim_k) # Self-attend y = self.attention( q=q, k=k, v=v, att_mask=att_mask, key_padding_mask=key_padding_mask ) # Re-assemble all head outputs side by side y = ( y.view(B, self.num_heads, S_Q, self.dim_k) .transpose(1, 2) .flatten(start_dim=2, end_dim=3) ) # Output projection, dropout and good to go y = self.resid_drop(self.proj(y)) # Return the same sequence size as the input return y @classmethod def from_config(cls, config: MultiHeadDispatchConfig): # Generate the class inputs from the config fields = asdict(config) # Skip all Nones so that default values are used fields = {k: v for k, v in fields.items() if v is not None} return cls(**fields)
bart_ls-main
xformers/xformers/components/multi_head_dispatch.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from dataclasses import fields from pathlib import Path from typing import Any, Dict, Union from xformers.utils import import_all_modules from .activations import Activation, build_activation # noqa from .attention import Attention, build_attention # noqa from .in_proj_container import InProjContainer, InProjParams # noqa from .multi_head_dispatch import MultiHeadDispatch # noqa from .multi_head_dispatch import MultiHeadDispatchConfig from .residual import LayerNormStyle, PostNorm, PreNorm, Residual # noqa # automatically import any Python files in the directory import_all_modules(str(Path(__file__).parent), "xformers.components") def build_multi_head_attention( multi_head_config: Union[MultiHeadDispatchConfig, Dict[str, Any]], ): """Builds a multihead attention from a config. This assumes a 'name' key in the config which is used to determine what attention class to instantiate. For instance, a config `{"name": "my_attention", "foo": "bar"}` will find a class that was registered as "my_attention" (see :func:`register_attention`) and call .from_config on it.""" if not isinstance(multi_head_config, MultiHeadDispatchConfig): # Extract the required fields field_names = list(map(lambda x: x.name, fields(MultiHeadDispatchConfig))) # The missing fields get Noned for k in field_names: if k not in multi_head_config.keys(): multi_head_config[k] = None # Could be that the attention needs to be instantiated if not isinstance(multi_head_config["attention"], Attention): # Convenience: fill in possible missing fields if "num_heads" not in multi_head_config["attention"]: multi_head_config["attention"]["num_heads"] = multi_head_config[ "num_heads" ] if "dim_model" not in multi_head_config["attention"]: multi_head_config["attention"]["dim_model"] = multi_head_config[ "dim_model" ] if ( "dim_features" not in multi_head_config["attention"] or multi_head_config["attention"]["dim_features"] is None ): multi_head_config["attention"]["dim_features"] = ( multi_head_config["dim_model"] // multi_head_config["num_heads"] ) multi_head_config["attention"] = build_attention( multi_head_config["attention"] ) multi_head_config = MultiHeadDispatchConfig(**multi_head_config) return MultiHeadDispatch.from_config(multi_head_config)
bart_ls-main
xformers/xformers/components/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass from typing import Optional import torch import torch.nn as nn from xformers.components.attention import ( Attention, AttentionConfig, AttentionMask, maybe_sparsify, register_attention, sparsify, ) from xformers.components.attention.attention_patterns import ( causal_1d_pattern, global_token_pattern, ) from xformers.components.attention.core import scaled_dot_product_attention @dataclass class GlobalAttentionConfig(AttentionConfig): attention_query_mask: torch.Tensor # Mark the queries which have global attention causal: Optional[bool] force_sparsity: Optional[bool] @register_attention("global", GlobalAttentionConfig) class GlobalAttention(Attention): def __init__( self, dropout: float, attention_query_mask: torch.Tensor, causal: bool = False, force_sparsity: bool = False, *_, **__, ): r""" Global attention, as proposed for instance in BigBird_ or Longformer_. Global means in that case that the queries positively labelled in the ```attention_query_mask``` can attend to all the other queries. The queries negatively labelled in the ```attention_query_mask``` cannot attend to any other query. This implementation is sparse-aware, meaning that the empty attention parts will not be represented in memory. Args: dropout (float): probability of an element to be zeroed attention_mask (torch.Tensor): if true, this query can attend to all the others """ super().__init__() assert attention_query_mask.dtype == torch.bool, "A boolean mask is expected" assert ( attention_query_mask.shape[1] == 1 and attention_query_mask.shape[0] > attention_query_mask.shape[1] ), "A N x 1 query mask is expected" self.attn_drop = nn.Dropout(dropout, inplace=False) self.attention_mask = global_token_pattern(attention_query_mask[:, 0]) self.force_sparsity = force_sparsity if causal: self.attention_mask &= causal_1d_pattern(attention_query_mask.shape[1]) self.attention_mask = ( sparsify(self.attention_mask) if self.force_sparsity else maybe_sparsify(self.attention_mask) ) self.requires_same_k_q_dimensions = True def forward( self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, att_mask: Optional[torch.Tensor] = None, *_, **__, ): # Make sure that the mask is on the right device if self.attention_mask.device != q.device: self.attention_mask = self.attention_mask.to(q.device) # Mask-aware attention if att_mask is not None: if att_mask.dtype == torch.bool and isinstance( self.attention_mask, AttentionMask ): mask = self.attention_mask + AttentionMask.from_bool(att_mask) else: mask = self.attention_mask & att_mask else: mask = self.attention_mask # Handle q/k/v which would not fit the mask seq_len = q.shape[-2] q_, k_, v_ = map(lambda x: self._maybe_pad_sequence(x, mask), (q, k, v)) # Normal attention with the global tokens mask att = scaled_dot_product_attention( q=q_, k=k_, v=v_, att_mask=mask, dropout=self.attn_drop ) att = self.attn_drop(att) # Take into account an hypothetical padding return att[:, :seq_len, :]
bart_ls-main
xformers/xformers/components/attention/global_tokens.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import logging from dataclasses import dataclass from enum import Enum from typing import Optional import torch import torch.autograd.profiler as profiler import torch.nn as nn import torch.nn.functional as Fn from xformers.components.attention import Attention, AttentionConfig, register_attention from xformers.components.attention.core import ( scaled_dot_product_attention, scaled_query_key_softmax, ) class LandmarkSelection(str, Enum): Orthogonal = "orthogonal" KMeans = "kmeans" KMeans_Spherical = "kmeans_spherical" Random = "random" @dataclass class OrthoformerAttentionConfig(AttentionConfig): """ num_landmarks Number of landmarks to use for softmax approximation. subsample_fraction Percentage of q_samples matrix to sample per iteration landmark_selection Landmark selection strategy """ num_landmarks: Optional[int] subsample_fraction: Optional[float] landmark_selection: Optional[LandmarkSelection] @register_attention("orthoformer", OrthoformerAttentionConfig) class OrthoFormerAttention(Attention): def __init__( self, dropout: float, num_landmarks: int = 32, subsample_fraction: float = 1.0, landmark_selection: LandmarkSelection = LandmarkSelection.Orthogonal, *args, **kwargs, ): """ Orthoformer_ attention mechanism. :: "Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers" Patrick, M., Campbell, D., Asano, Y., Misra, I., Metze, F., Feichtenhofer, C., Vedaldi, A., Henriques, J. (2021) Reference codebase: https://github.com/facebookresearch/Motionformer .. _Orthoformer: https://arxiv.org/abs/2106.05392 """ super().__init__() self.num_landmarks = num_landmarks self.attn_drop = nn.Dropout(dropout) self.subsample_fraction = subsample_fraction self.landmark_selection = landmark_selection def forward( self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, att_mask: Optional[torch.Tensor] = None, *args, **kwargs, ): N = k.shape[1] if self.num_landmarks == N: # Default attention x = scaled_dot_product_attention(q, k, v, att_mask) else: with torch.no_grad(), profiler.record_function("select landmarks"): if self.landmark_selection == LandmarkSelection.Orthogonal: landmarks = self._compute_orthogonal_landmarks(q) elif self.landmark_selection == LandmarkSelection.Random: half_L = self.num_landmarks // 2 landmarks_q = q[:, torch.randint(q.size(1), (half_L,)), :] landmarks_k = k[:, torch.randint(k.size(1), (half_L,)), :] landmarks = torch.cat((landmarks_q, landmarks_k), dim=-2) elif self.landmark_selection == LandmarkSelection.KMeans: landmarks = self._cluster_landmarks(q) elif self.landmark_selection == LandmarkSelection.KMeans_Spherical: landmarks = self._cluster_landmarks(q, spherical=True) if att_mask is not None: logging.warning( "Orthoformer: attention mask passed alongside with using landmarks to reduce dimensions. \ The two are typically not compatible" ) # FIXME: Should we still accept a mask in that case ? att_mask = None # pyre-ignore[61]: TODO(T103337542): `landmarks` mistakenly seems # like it could be uninitialized. kernel_1 = scaled_query_key_softmax(q, landmarks, att_mask) # pyre-ignore[61]: TODO(T103337542): `landmarks` mistakenly seems # like it could be uninitialized. kernel_2 = scaled_query_key_softmax(landmarks, k, att_mask) x = torch.matmul(kernel_1, torch.matmul(kernel_2, v)) x = self.attn_drop(x) return x def _cluster_landmarks( self, q: torch.Tensor, spherical: bool = False, num_iters: int = 6, ) -> torch.Tensor: """ Construct set of landmarks by recursively selecting new landmarks that are maximally orthogonal to the existing set. Returns near orthogonal landmarks with shape (B, M, D). """ num_landmarks = min(self.num_landmarks, q.shape[1]) if self.subsample_fraction < 1.0: num_samples = max( int(self.subsample_fraction * q.size(-2)), num_landmarks ) # Need at least M/2 samples of queries and keys q_samples = q[:, torch.randint(q.size(-2), (num_samples,)), :] # (B, N, D) else: q_samples = q # (B, N, D) if spherical: q_samples_normalized = Fn.normalize( q_samples, p=2, dim=-1 ) # may need to change default eps to eps=1e-8 for mixed precision compatibility landmarks = self._kmeans_spherical( q_samples_normalized, num_landmarks, num_iters ) else: landmarks = self._kmeans(q_samples, num_landmarks, num_iters) return landmarks # (B, M, D) def _kmeans(self, x: torch.Tensor, K: int, num_iters: int = 10): """ Arguments: x: (B, N, D) K: number of clusters num_iters: the number of kmeans updates """ B, N, D = x.size() assert K <= N, f"{K} > {N}" c = x[ :, torch.randperm(N, device=x.device)[:K], : ].clone() # initialisation for the centroids with profiler.record_function("kmeans"): x_i = x.view(B, N, 1, D) c_j = c.view(B, 1, K, D) counts = c.new_zeros(B, K) ones = x.new_ones((B, N)) for _ in range(num_iters): # E step: assign points to the nearest cluster D_ij = ((x_i - c_j) ** 2).sum(-1) # (B, N, K) squared distances cl = D_ij.argmin( dim=-1, keepdim=True ).long() # (B, N, 1) index of point to nearest cluster # M step: update the centroids c.zero_() c.scatter_add_(-2, cl.repeat(1, 1, D), x) # sum of points per cluster counts.fill_(1e-6) # avoid div0 counts.scatter_add_( -1, cl.squeeze(-1), ones ) # number of points per cluster c.divide_(counts.unsqueeze(-1)) # compute the average return c def _kmeans_spherical(self, x: torch.Tensor, K: int, num_iters=10): """ Arguments: x: (B, N, D) """ B, N, D = x.size() assert K <= N, f"{K} > {N}" # initialisation for the centroids c = x[:, torch.randperm(N, device=x.device)[:K], :].clone() with profiler.record_function("kmeans_spherical"): counts = c.new_zeros(B, K) ones = x.new_ones((B, N)) for _ in range(num_iters): # E step: assign points to the nearest cluster D_ij = torch.matmul( x, c.transpose(-2, -1) ) # (B, N, K) cosine similarity cl = D_ij.argmax( dim=-1, keepdim=True ).long() # (B, N, 1) index of point to nearest cluster # M step: update the centroids c.zero_() c.scatter_add_(-2, cl.repeat(1, 1, D), x) # sum of points per cluster counts.fill_(1e-6) # avoid div0 counts.scatter_add_( -1, cl.squeeze(-1), ones ) # number of points per cluster c.divide_(counts.unsqueeze(-1)) # compute the average c = Fn.normalize(c, p=2, dim=-1) # renormalise return c def _compute_orthogonal_landmarks(self, q: torch.Tensor) -> torch.Tensor: """ Construct set of landmarks by recursively selecting new landmarks that are maximally orthogonal to the existing set. Returns near orthogonal landmarks with shape (B, M, D). """ if self.subsample_fraction < 1.0: # Need at least M samples of queries num_samples = max( int(self.subsample_fraction * q.size(-2)), self.num_landmarks ) q_samples = q[ :, torch.randint(q.size(-2), (num_samples,), device=q.device), : ] else: # (B, N, D) q_samples = q # may need to change default eps to eps=1e-8 for mixed precision compatibility q_samples_normalized = Fn.normalize(q_samples, p=2, dim=-1) B, N, D = q_samples_normalized.shape selected_mask = torch.zeros((B, N, 1), device=q_samples_normalized.device) landmark_mask = torch.ones( (B, 1, 1), dtype=selected_mask.dtype, device=q_samples_normalized.device ) #  Get initial random landmark random_idx = torch.randint( q_samples_normalized.size(-2), (B, 1, 1), device=q_samples_normalized.device ) selected_mask.scatter_(-2, random_idx, landmark_mask) #  Selected landmarks selected_landmarks = torch.empty( (B, self.num_landmarks, D), device=q_samples_normalized.device, dtype=q_samples_normalized.dtype, ) selected_landmarks[:, 0, :] = q_samples_normalized[ torch.arange(q_samples_normalized.size(0)), random_idx.view(-1), : ].view(B, D) # Store computed cosine similarities cos_sims = torch.empty( (B, N, self.num_landmarks), device=q_samples_normalized.device, dtype=q_samples_normalized.dtype, ) for M in range(1, self.num_landmarks): with profiler.record_function("find new landmark"): #  Calculate absolute cosine similarity between selected and unselected landmarks # (B, N, D) * (B, D) -> (B, N) cos_sims[:, :, M - 1] = torch.einsum( "b n d, b d -> b n", q_samples_normalized, selected_landmarks[:, M - 1, :], ).abs() # (B, N, M) cosine similarities of current set of landmarks wrt all queries and keys cos_sim_set = cos_sims[:, :, :M] #  Get orthogonal landmark: landmark with smallest absolute cosine similarity: # set cosine similarity for already selected landmarks to > 1 cos_sim_set.view(-1, M)[selected_mask.flatten().bool(), :] = 10 # (B,) - want max for non selected_landmark_idx = cos_sim_set.amax(-1).argmin(-1) #  Add most orthogonal landmark to selected landmarks: selected_landmarks[:, M, :] = q_samples_normalized[ torch.arange(q_samples_normalized.size(0)), selected_landmark_idx, : ].view(B, D) #  Removed selected indices from non-selected mask: selected_mask.scatter_( -2, selected_landmark_idx.unsqueeze(-1).unsqueeze(-1), landmark_mask ) # (B, M, D) landmarks = torch.masked_select(q_samples, selected_mask.bool()).reshape( B, -1, D ) return landmarks #  (B, M, D)
bart_ls-main
xformers/xformers/components/attention/ortho.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import logging import math from dataclasses import dataclass from typing import Optional import torch from xformers import _is_triton_available from xformers.components.attention import Attention, AttentionConfig, register_attention from xformers.components.attention.utils import bool_mask_to_additive _mask_type_warning = True if _is_triton_available: from triton.ops.blocksparse import matmul as blocksparse_matmul from triton.ops.blocksparse import softmax as blocksparse_softmax from xformers.triton.softmax import MaskType from xformers.triton.utils import gpu_capabilities_older_than_70 # Blocksparse requires Tensor cores if gpu_capabilities_older_than_70(): logging.warning( "Blocksparse is not available: the current GPU does not expose Tensor cores" ) _is_triton_available = False if _is_triton_available: @dataclass class BlockSparseAttentionConfig(AttentionConfig): layout: torch.Tensor # The dimensions of the random features block_size: int dropout: float num_heads: int @register_attention("blocksparse", BlockSparseAttentionConfig) class BlockSparseAttention(Attention): r""" Thin wrap over the Triton blocksparse computations. The sparsity pattern is determined through the layout. .. warning: the layout is assumed to have the dimensions [heads, seq, seq]. If some dimensions are missing, we assume that the same layout is to be used across heads. .. warning: for now, the sequence (context) length has to be a power of two. This constraint could be relaxed in the future. .. note: it is possible to pass a specific per batch mask in the forward call, but this will not lead to any speed up. Any constant sparsity pattern is better passed through the layout parameter. """ def __init__( self, layout: torch.Tensor, block_size: int = 16, dropout: float = 0.0, num_heads: int = 1, # optional, used to adapt the layout if in need *args, **kwargs, ): if layout.dim() == 2: logging.warning( "The layout passed is lacking a head dimension and a batch dimension" ) logging.warning( "Now assuming that the same layout is to be used across all heads" ) layout = layout.unsqueeze(0).expand(num_heads, -1, -1) logging.warning(f"New layout dimensions: {layout.shape}") assert block_size >= 16, "Minimum block size is 16, for now at least" super().__init__() self.attn_drop = torch.nn.Dropout(dropout, inplace=False) # Pure blocksparse data self.layout = layout self.block_size = block_size # blocksparse operators self.sparse_dot_sdd = blocksparse_matmul( self.layout, self.block_size, "sdd", trans_a=False, trans_b=True, ) self.sparse_dot_dsd = blocksparse_matmul( self.layout, self.block_size, "dsd", trans_a=False, trans_b=False, ) self.sparse_softmax = blocksparse_softmax(self.layout, self.block_size) # make sure that the head dimension is not folded down with the batch self.requires_head_dimension = True # key padding mask and attention mask must be passed in separately self.requires_separate_masks = True self.requires_same_k_q_dimensions = True def update_mask_type(self, mask: torch.Tensor): global _mask_type_warning if _mask_type_warning: logging.warning( "Mask has to be additive. Fixing that but this slows things down" ) mask = bool_mask_to_additive(mask) def forward( self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, att_mask: Optional[torch.Tensor] = None, key_padding_mask: Optional[torch.Tensor] = None, scale: float = 1.0, *args, **kwargs, ) -> torch.Tensor: r""" att_mask A 2D attention mask. The dtype must be the same as q. An additive mask is expected, meaning float values using "-inf" to mask values. key_padding_mask A mask with size (batch size x sequence length). The dtype must be the same as q. An additive mask is expected, meaning float values using "-inf" to mask values """ # NOTE: # The attention mask will be taken into account when computing the softmax # meaning that non-masked values which are present in the initial blocksparse layout will be computed. # If blocks are to be constantly masked, better perf would thus be reached by signalling them out in the # initial attention setup if att_mask is not None and att_mask.dtype == torch.bool: self.update_mask_type(att_mask) if key_padding_mask is not None and key_padding_mask.dtype == torch.bool: self.update_mask_type(key_padding_mask) assert ( att_mask is None or att_mask.dim() == 2 ), "The attention mask is constant across heads, expected dimensions are [seq x seq]" assert ( q.shape[-2] == k.shape[-2] ), "Blocksparse requires the same dimensions for K and Q for now" assert ( q.shape[-2] == self.layout.shape[-2] * self.block_size ), "Actual sequence size and layout are inconsistent" assert ( k.shape[-2] == self.layout.shape[-2] * self.block_size ), "Actual sequence size and layout are inconsistent" assert math.log( q.shape[-2], 2 ).is_integer(), ( "For now blocksparse only works on power-of-two sequence lengths" ) # Blocksparse only works on fp16 q_dtype = q.dtype q, k, v = q.half(), k.half(), v.half() if att_mask is not None: att_mask = att_mask.half() if key_padding_mask is not None: key_padding_mask = key_padding_mask.half() # Self-attend: (B, nh, S, hs) x (B, nh, hs, S) -> (B, nh, S, S) # When the computations are block sparse, the matrix types change along the way: # - (sparse) attention matrix = (dense) Kt * (dense) Q q = q / math.sqrt(q.size(-1)) sparse_att_mat = self.sparse_dot_sdd(q, k) # - softmax on the sparse attention matrix sparse_att_mat = self.sparse_softmax( sparse_att_mat, scale=scale, key_padding_mask=key_padding_mask, attn_mask=att_mask, key_padding_mask_mode=MaskType.ADD, attn_mask_mode=MaskType.ADD, ) sparse_att_mat = self.attn_drop(sparse_att_mat) # - then (dense) attention is (sparse) attention matrix * dense (value) a = self.sparse_dot_dsd(sparse_att_mat, v) return a.to(q_dtype)
bart_ls-main
xformers/xformers/components/attention/blocksparse.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass from typing import Optional import torch import torch.nn as nn from xformers.components.attention import ( Attention, AttentionConfig, maybe_sparsify, register_attention, sparsify, ) from xformers.components.attention.attention_patterns import ( causal_1d_pattern, local_1d_pattern, ) from xformers.components.attention.core import scaled_dot_product_attention @dataclass class LocalAttentionConfig(AttentionConfig): causal: Optional[bool] = None window_size: Optional[int] = None force_sparsity: Optional[bool] = None @register_attention("local", LocalAttentionConfig) class LocalAttention(Attention): def __init__( self, dropout: float = 0.0, causal: bool = False, window_size: int = 5, force_sparsity: bool = False, *args, **kwargs, ): r""" An implementation of a sliding window attention, as proposed in RoutingTransformer_, LongFormer_ or BigBird_ Args: dropout (float): the probability of an output to be randomly dropped at training time causal (bool): apply a causal mask, in that the attention cannot be applied to the future window_size (int): the overall window size for local attention. Odd number is expected if the mask is not causal, as the window size will be evenly distributed on both sides of each query .. _RoutingTransformer: https://arxiv.org/pdf/2003.05997.pdf .. _BigBird: https://arxiv.org/pdf/2007.14062.pdf .. _Longformer: https://arxiv.org/pdf/2004.05150.pdf """ super().__init__() self.attn_drop = nn.Dropout(dropout, inplace=False) self.causal = causal self.force_sparsity = force_sparsity if not self.causal: assert ( window_size % 2 == 1 ), "The window size is assumed to be odd (counts self-attention + 2 wings)" self.window_size = window_size self.attention_mask: Optional[torch.Tensor] = None self.requires_same_k_q_dimensions = True def _get_local_mask(self, shape: torch.Size) -> torch.Tensor: window_size = self.window_size * 2 + 1 if self.causal else self.window_size mask = local_1d_pattern(shape[1], window_size) if self.causal: mask &= causal_1d_pattern(shape[1]) mask = sparsify(mask) if self.force_sparsity else maybe_sparsify(mask) return mask def forward( self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, att_mask: Optional[torch.Tensor] = None, *args, **kwargs, ): # Local window attention masking if self.attention_mask is None or self.attention_mask.shape[1] != q.shape[1]: self.attention_mask = self._get_local_mask(q.shape).to(q.device) # Take into account the optional user mask mask = ( self.attention_mask if att_mask is None else self.attention_mask & att_mask ) return scaled_dot_product_attention( q=q, k=k, v=v, att_mask=mask, dropout=self.attn_drop )
bart_ls-main
xformers/xformers/components/attention/local.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. # Credits: this is heavily inspired by the official implementation, present in # https://github.com/sarthmit/Compositional-Attention # Original author: Sarthak Mittal # This is a simplified version, for the sake of clarity, and because some features could be exposed later # via the library directly. # In particular, code paths for TPUs, quantization and gumbel softmax have been removed # We're also following the same dimension ordering as in the rest of the xformers library # which is to say [Batch, Sequence, Embedding] wherever possible import math from dataclasses import dataclass from typing import Optional import torch import torch.nn.functional as F from torch import Tensor, nn from xformers.components.attention import ( Attention, AttentionConfig, AttentionMask, register_attention, ) from xformers.components.attention.core import _softmax from xformers.components.in_proj_container import InProjContainer, InProjParams def _either_or(a: Optional[int], b: int) -> int: return a if a is not None else b @dataclass class CompositionalAttentionConfig(AttentionConfig): dim_model: int num_heads: int dim_attn: Optional[int] = None num_rules: Optional[int] = None dim_key: Optional[int] = None dim_value: Optional[int] = None dim_selection: Optional[int] = None dropout: float qk_rule: bool = False nonlinear: bool = False q_compose: bool = False bias: bool = True causal: Optional[bool] = False in_proj_container: Optional[InProjContainer] = None use_separate_proj_weight: Optional[bool] = False @register_attention("compositional", CompositionalAttentionConfig) class CompositionalAttention(Attention): """Compositional Attention, as proposed in "Compositional Attention: Disentangling search and retrieval"_, S. Mittal et al. A key insight from this proposal is that the attention mechanism can be conceived as two steps: a search and a retrieval operation. When queried, the model can search for the most relevant information (Softmax(QKt)), then retrieve information given the Value. Contrary to the original attention proposal, which does not consider interactions in between heads, the comppositional attention will consider all possible interactions and softmax over that dimension, so that the information retrieved covers the most relevant dimensions. The number of heads and rules to use is thus typically smaller than for a comparable traditional Transformer, and asking for the same number of heads may not fit in memory. Args: dim_model: dimension of the incoming latent space num_heads: number of heads *for the search operation* dim_attn: dimension (embedding) of the attention num_rules: number of rules to consider *for the retrieval operation* dim_selection: dimension of the scoring/selection space for the retrievals dim_key, dim_value: dimensions of K and V, if different from Q dropout: attention dropout probability qk_rule: QK product will drive the retrieval process nonlinear: use a non linear method to score the retrievals bias: use bias in the initial projection step causal: causal computations (attend to the past only) _"Compositional Attention: Disentangling search and retrieval": https://arxiv.org/pdf/2110.09419v1.pdf """ def __init__( self, dim_model: int, num_heads: int, dim_attn: Optional[int] = None, num_rules: Optional[int] = None, dim_selection: Optional[int] = None, dim_key: Optional[int] = None, dim_value: Optional[int] = None, dropout=0.0, qk_rule=False, nonlinear=False, q_compose=False, in_proj_container: Optional[InProjContainer] = None, use_separate_proj_weight: Optional[bool] = False, bias=True, causal=False, *_, **__, ): super().__init__() # Define the inherited flags self.requires_skip_multi_head = ( True # This attention owns the multi-head mechanism ) # Handle defaults / undefined values self.dim_model = dim_model num_rules = _either_or(num_rules, num_heads) dim_selection = _either_or(dim_selection, dim_model // num_heads) # All the initial definition plumbing dim_attn = _either_or(dim_attn, dim_model) dim_key = _either_or(dim_key, dim_model) dim_value = _either_or(dim_value, dim_model) self.in_proj_container = ( in_proj_container if in_proj_container is not None else InProjContainer( query_proj_params=InProjParams(dim_model, dim_key, bias=bias), key_proj_params=InProjParams(dim_model, dim_key, bias=bias) if use_separate_proj_weight else None, value_proj_params=InProjParams(dim_model, dim_value, bias=bias) if use_separate_proj_weight else None, ) ) self.num_heads = num_heads self.num_rules = num_rules self.qk_rule = qk_rule self.dim_selection = dim_selection self.nonlinear = nonlinear self.q_compose = q_compose self.dropout_module = nn.Dropout(dropout) self.dim_head = dim_model // num_heads self.value_dim = dim_attn // num_rules assert ( self.value_dim * num_rules == dim_attn ), "value_dim must be divisible by num_rules" self.scaling = self.dim_head ** -0.5 self.scaling_values = self.dim_selection ** -0.5 self.out_proj = nn.Linear(self.num_heads * self.value_dim, dim_model, bias=bias) if self.qk_rule: self.value_k = nn.Linear(self.value_dim, self.dim_selection, bias=bias) if self.q_compose: self.value_q = nn.Linear(self.dim_head, self.dim_selection, bias=bias) else: self.value_q = nn.Linear( dim_model, self.dim_selection * self.num_heads, bias=bias ) else: if self.q_compose: self.value_q = nn.Linear(self.dim_head, self.dim_selection, bias=bias) else: self.value_q = nn.Linear( dim_model, self.dim_selection * self.num_heads, bias=bias ) if self.nonlinear: self.score_network: nn.Module = nn.Sequential( nn.Linear( self.dim_selection + self.value_dim, self.dim_selection, bias=bias, ), nn.ReLU(), nn.Linear(self.dim_selection, 1, bias=bias), ) else: self.score_network = nn.Linear( self.dim_selection + self.value_dim, 1, bias=bias ) self.causal = causal self._reset_parameters() def _reset_parameters(self): # NOTE: in_proj_container is already initialized if self.qk_rule: nn.init.xavier_uniform_(self.value_k.weight, gain=1 / math.sqrt(2)) nn.init.xavier_uniform_(self.value_q.weight, gain=1 / math.sqrt(2)) else: nn.init.xavier_uniform_(self.value_q.weight) if self.nonlinear: nn.init.xavier_uniform_(self.score_network[0].weight) nn.init.xavier_uniform_(self.score_network[2].weight) else: nn.init.xavier_uniform_(self.score_network.weight) nn.init.xavier_uniform_(self.out_proj.weight) if self.out_proj.bias is not None: nn.init.constant_(self.out_proj.bias, 0.0) def forward( self, q: Tensor, k: Tensor, v: Tensor, att_mask: Optional[Tensor] = None, *args, **kwargs, ) -> Tensor: """ Input shape: Time x Batch x Channel Args: attn_mask (ByteTensor, optional): typically used to implement causal attention, where the mask prevents the attention from looking forward in time (default: None). """ B, Sq, E = q.shape _, Sk, _ = k.shape assert E == self.dim_model # First define projected query/key/values # We keep the projected and original tensors in flight, # depending on the options the original values could be reused q_unprojected = q q, k, v = self.in_proj_container(query=q, key=k, value=v) q *= self.scaling # Init causal mask if needed, now that we know the context length if self.causal and ( self._causal_mask is None or self._causal_mask.shape[0] != Sk ): self._causal_mask = AttentionMask.make_causal(Sq, Sq, device=q.device) # Convenience, create an attention mask if a tensor was passed # This sanitizes different mask types being passed, from now on it's additive if isinstance(att_mask, torch.Tensor): # By default we don't know of the causality, and a check would be expensive att_mask_additive: Optional[AttentionMask] = ( AttentionMask.from_bool(att_mask) if att_mask.dtype == torch.bool else AttentionMask(att_mask, is_causal=False) ) else: att_mask_additive = None # Handle the attention and key padding masks if self._causal_mask is not None: # Optionally add the causal mask if att_mask_additive is not None: att_mask_additive += self._causal_mask else: att_mask_additive = self._causal_mask # Flatten the heads or the rules q = ( q.view(B, Sq, self.num_heads, self.dim_head) .movedim(2, 1) .flatten(0, 1) # [B * num_heads, Sq, dim_head] ) k = ( k.view(B, Sk, self.num_heads, self.dim_head).movedim(2, 1).flatten(0, 1) ) # [B * num_heads, Sk, dim_head] v = v.view(B, -1, self.num_rules, self.value_dim).movedim(2, 1).flatten(0, 1) # Compute the search: Softmax(QKt) attn_weights = torch.bmm(q, k.transpose(1, 2)) # [B * self.num_heads, Sq, Sk] if att_mask_additive is not None: attn_weights += att_mask_additive.values attn_weights = _softmax(attn_weights, causal=self.causal) attn_weights = attn_weights.view(B, self.num_heads, Sq, Sk) attn_probs = self.dropout_module(attn_weights) # Now compute the information retrieval # keep all the heads in flight, we'll score the different possibilities # - compute all the possible retrievals v = v.view(B, 1, self.num_rules, Sk, self.value_dim) attn_probs = attn_probs.unsqueeze(2) attn = torch.matmul(attn_probs, v).view( B, self.num_heads, self.num_rules, Sq, self.value_dim ) attn = attn.movedim(3, 1) # [B, Sq, H, Rules, Values] # - search the most appropriate retrieval among all the values if self.q_compose: v_q = self.value_q(q.transpose(0, 1)).view( B, Sq, self.num_heads, 1, self.dim_selection ) else: v_q = self.value_q(q_unprojected).view( B, Sq, self.num_heads, 1, self.dim_selection ) if self.qk_rule: v_q *= self.scaling_values v_k = ( self.value_k(attn) .view(B, Sq, self.num_heads, self.num_rules, self.dim_selection) .transpose(4, 3) .contiguous() ) v_score = torch.matmul(v_q, v_k).view( B, Sq, self.num_heads, self.num_rules, 1 ) else: v_q = v_q.expand(-1, -1, -1, self.num_rules, -1) v_in = torch.cat([attn, v_q], dim=-1) v_score = self.score_network(v_in).view( B, Sq, self.num_heads, self.num_rules, 1 ) v_score = F.softmax(v_score, dim=3) # - extracted values are the original attention (inc. all the values) weighted by value score attn = (attn * v_score).sum(dim=3).view(B, Sq, self.num_heads * self.value_dim) # Final attention projection, same as other mechanisms attn = self.out_proj(attn) return attn
bart_ls-main
xformers/xformers/components/attention/compositional.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass from typing import Optional from typing import Union from functools import lru_cache import math import torch import torch.nn as nn import torch.nn.functional as F from torch import Tensor from xformers.components.attention import Attention, AttentionConfig, register_attention @dataclass class LongformerConfig(AttentionConfig): block_size: int num_heads: int dim_model: int @register_attention("longformer", LongformerConfig) class LongformerAttention(Attention): def __init__( self, dropout: float, num_heads: int, dim_model: int, block_size: int = 512, *args, **kwargs ): super().__init__() self.drop_attn = nn.Dropout(dropout) self.num_head = num_heads self.head_dim = dim_model // num_heads self.dim = dim_model self.window_size = block_size self.embed_dim = dim_model def forward( self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, att_mask: Optional[torch.Tensor] = None, key_padding_mask: Optional[Tensor] = None, *args, **kwargs ): assert key_padding_mask is not None attention_mask = key_padding_mask.to(q) # attention_mask[:,0] = -1 # input q size (bsz*heads, seq_len, head_dim) def _pad_to_window_size(x, window_size, pad): seq_len = x.size(1) pad_len = (window_size - seq_len % window_size) % window_size assert len(x.shape) <= 3 if len(x.shape) == 3: return F.pad(x, (0,0,0,pad_len), value=pad), pad_len else: return F.pad(x, (0,pad_len), value=pad), pad_len orig_seq_len = q.size(1) q, _ = _pad_to_window_size(q, self.window_size * 2, 0) k, _ = _pad_to_window_size(k, self.window_size * 2, 0) v, _ = _pad_to_window_size(v, self.window_size * 2, 0) attention_mask, _ = _pad_to_window_size(attention_mask, self.window_size * 2, 1) attention_mask = (attention_mask * -1e8).type_as(q) key_padding_mask = attention_mask < 0 extra_attention_mask = attention_mask > 0 remove_from_windowed_attention_mask = attention_mask != 0 # num of global tokens num_extra_indices_per_batch = extra_attention_mask.long().sum(dim=1) max_num_extra_indices_per_batch = num_extra_indices_per_batch.max() if max_num_extra_indices_per_batch <= 0: extra_attention_mask = None else: extra_attention_mask_nonzeros = extra_attention_mask.nonzero(as_tuple=True) zero_to_max_range = torch.arange(0, max_num_extra_indices_per_batch, device=extra_attention_mask.device) # mask indicating which values are actually going to be padding num_extra_indices_per_batch = extra_attention_mask.long().sum(dim=1) selection_padding_mask = zero_to_max_range < num_extra_indices_per_batch.unsqueeze(dim=-1) # 2) location of the non-padding values in the selected global attention selection_padding_mask_nonzeros = selection_padding_mask.nonzero(as_tuple=True) # 3) location of the padding values in the selected global attention selection_padding_mask_zeros = (selection_padding_mask == 0).nonzero(as_tuple=True) seq_len = q.size(1) bsz = q.size(0) // self.num_head q = q.view(bsz, self.num_head, seq_len, self.head_dim).transpose(1,2).mul(1./math.sqrt(self.head_dim)) k = k.view(bsz, self.num_head, seq_len, self.head_dim).transpose(1,2) v = v.view(bsz, self.num_head, seq_len, self.head_dim).transpose(1,2) attn_weights = sliding_chunks_matmul_qk(q, k, self.window_size, padding_value=0) # bsz, seq_len, num_heads, 2 * w + 1 if remove_from_windowed_attention_mask is not None: # This implementation is fast and takes very little memory because num_heads x hidden_size = 1 # from (bsz x seq_len) to (bsz x seq_len x num_heads x hidden_size) remove_from_windowed_attention_mask = remove_from_windowed_attention_mask.unsqueeze(dim=-1).unsqueeze(dim=-1) # cast to float/half then replace 1's with -inf float_mask = remove_from_windowed_attention_mask.type_as(q).masked_fill(remove_from_windowed_attention_mask, -10000.0) # repeat_size = 1 if isinstance(self.attention_dilation, int) else len(self.attention_dilation) repeat_size = 1 float_mask = float_mask.repeat(1, 1, repeat_size, 1) ones = float_mask.new_ones(size=float_mask.size()) # tensor of ones # diagonal mask with zeros everywhere and -inf inplace of padding d_mask = sliding_chunks_matmul_qk(ones, float_mask, self.window_size, padding_value=0) attn_weights += d_mask assert list(attn_weights.size()) == [bsz, seq_len, self.num_head, self.window_size * 2 + 1] # the extra attention if extra_attention_mask is not None: selected_k = k.new_zeros(bsz, max_num_extra_indices_per_batch, self.num_head, self.head_dim) selected_k[selection_padding_mask_nonzeros] = k[extra_attention_mask_nonzeros] # (bsz, seq_len, num_heads, max_num_extra_indices_per_batch) selected_attn_weights = torch.einsum('blhd,bshd->blhs', (q, selected_k)) selected_attn_weights[selection_padding_mask_zeros[0], :, :, selection_padding_mask_zeros[1]] = -10000 # concat to attn_weights # (bsz, seq_len, num_heads, extra attention count + 2*window+1) attn_weights = torch.cat((selected_attn_weights, attn_weights), dim=-1) attn_weights_float = F.softmax(attn_weights, dim=-1, dtype=torch.float32) # use fp32 for numerical stability if key_padding_mask is not None: # softmax sometimes inserts NaN if all positions are masked, replace them with 0 attn_weights_float = torch.masked_fill(attn_weights_float, key_padding_mask.unsqueeze(-1).unsqueeze(-1), 0.0) attn_weights = attn_weights_float.type_as(attn_weights) #attn_probs = F.dropout(attn_weights_float.type_as(attn_weights), p=self.dropout, training=self.training) attn_probs = self.drop_attn(attn_weights) attn = 0 if extra_attention_mask is not None: selected_attn_probs = attn_probs.narrow(-1, 0, max_num_extra_indices_per_batch) selected_v = v.new_zeros(bsz, max_num_extra_indices_per_batch, self.num_head, self.head_dim) selected_v[selection_padding_mask_nonzeros] = v[extra_attention_mask_nonzeros] # use `matmul` because `einsum` crashes sometimes with fp16 # attn = torch.einsum('blhs,bshd->blhd', (selected_attn_probs, selected_v)) attn += torch.matmul(selected_attn_probs.transpose(1, 2), selected_v.transpose(1, 2).type_as(selected_attn_probs)).transpose(1, 2) attn_probs = attn_probs.narrow(-1, max_num_extra_indices_per_batch, attn_probs.size(-1) - max_num_extra_indices_per_batch).contiguous() attn += sliding_chunks_matmul_pv(attn_probs, v, self.window_size) attn = attn.type_as(q) assert list(attn.size()) == [bsz, seq_len, self.num_head, self.head_dim] attn = attn.transpose(0, 1).reshape(seq_len, bsz, self.embed_dim).contiguous() if extra_attention_mask is not None: # global tokens attend all other tokens global_q = q.new_zeros(bsz, max_num_extra_indices_per_batch, self.num_head, self.head_dim) global_q[selection_padding_mask_nonzeros] = q[extra_attention_mask_nonzeros] # k # (bsz, seq_len, self.num_head, self.head_dim) g2all_attn_weights = global_q.transpose(1,2).matmul(k.permute(0, 2, 3, 1)) attn_weights = g2all_attn_weights assert list(attn_weights.size()) == [bsz, self.num_head, max_num_extra_indices_per_batch, seq_len] attn_weights[selection_padding_mask_zeros[0], :, selection_padding_mask_zeros[1], :] = -10000.0 if key_padding_mask is not None: attn_weights = attn_weights.masked_fill( key_padding_mask.unsqueeze(1).unsqueeze(2), -10000.0, ) attn_weights = attn_weights.view(bsz * self.num_head, max_num_extra_indices_per_batch, seq_len) attn_weights_float = F.softmax(attn_weights, dim=-1, dtype=torch.float32) attn_weights = attn_weights_float.type_as(attn_weights) # use fp32 for numerical stability # attn_probs = F.dropout(attn_weights_float.type_as(attn_weights), p=self.dropout, training=self.training) attn_probs = self.drop_attn(attn_weights) v = v.transpose(1,2).view(-1, seq_len, self.head_dim) selected_attn = torch.bmm(attn_probs, v) assert list(selected_attn.size()) == [bsz * self.num_head, max_num_extra_indices_per_batch, self.head_dim] selected_attn_4d = selected_attn.view(bsz, self.num_head, max_num_extra_indices_per_batch, self.head_dim) nonzero_selected_attn = selected_attn_4d[selection_padding_mask_nonzeros[0], :, selection_padding_mask_nonzeros[1]] attn[extra_attention_mask_nonzeros[::-1]] = nonzero_selected_attn.view(len(selection_padding_mask_nonzeros[0]), -1).type_as(q) out = attn[:orig_seq_len, :, :].view(-1, bsz, self.num_head, self.head_dim).permute(1, 2, 0, 3).view(bsz*self.num_head, orig_seq_len, self.head_dim) return out def sliding_chunks_matmul_qk(q: torch.Tensor, k: torch.Tensor, w: int, padding_value: float): '''Matrix multiplicatio of query x key tensors using with a sliding window attention pattern. This implementation splits the input into overlapping chunks of size 2w (e.g. 512 for pretrained Longformer) with an overlap of size w''' bsz, seqlen, num_heads, head_dim = q.size() assert seqlen % (w * 2) == 0 assert q.size() == k.size() chunks_count = seqlen // w - 1 # group bsz and num_heads dimensions into one, then chunk seqlen into chunks of size w * 2 q = q.transpose(1, 2).reshape(bsz * num_heads, seqlen, head_dim) k = k.transpose(1, 2).reshape(bsz * num_heads, seqlen, head_dim) chunk_q = _chunk(q, w) # (B*H, num_of_overlapping_windows, head_dim) chunk_k = _chunk(k, w) # matrix multipication # bcxd: bsz*num_heads x chunks x 2w x head_dim # bcyd: bsz*num_heads x chunks x 2w x head_dim # bcxy: bsz*num_heads x chunks x 2w x 2w chunk_attn = torch.einsum('bcxd,bcyd->bcxy', (chunk_q, chunk_k)) # multiply # convert diagonals into columns diagonal_chunk_attn = _skew(chunk_attn, direction=(0, 0, 0, 1), padding_value=padding_value) # allocate space for the overall attention matrix where the chunks are compined. The last dimension # has (w * 2 + 1) columns. The first (w) columns are the w lower triangles (attention from a word to # w previous words). The following column is attention score from each word to itself, then # followed by w columns for the upper triangle. diagonal_attn = diagonal_chunk_attn.new_empty((bsz * num_heads, chunks_count + 1, w, w * 2 + 1)) # copy parts from diagonal_chunk_attn into the compined matrix of attentions # - copying the main diagonal and the upper triangle diagonal_attn[:, :-1, :, w:] = diagonal_chunk_attn[:, :, :w, :w + 1] diagonal_attn[:, -1, :, w:] = diagonal_chunk_attn[:, -1, w:, :w + 1] # Potential BUG: invalid attn weights # - copying the lower triangle diagonal_attn[:, 1:, :, :w] = diagonal_chunk_attn[:, :, - (w + 1):-1, w + 1:] diagonal_attn[:, 0, 1:w, 1:w] = diagonal_chunk_attn[:, 0, :w - 1, 1 - w:] # separate bsz and num_heads dimensions again diagonal_attn = diagonal_attn.view(bsz, num_heads, seqlen, 2 * w + 1).transpose(2, 1) mask_invalid_locations(diagonal_attn, w, 1, False) return diagonal_attn def sliding_chunks_matmul_pv(prob: torch.Tensor, v: torch.Tensor, w: int): '''Same as sliding_chunks_matmul_qk but for prob and value tensors. It is expecting the same output format from sliding_chunks_matmul_qk''' bsz, seqlen, num_heads, head_dim = v.size() assert seqlen % (w * 2) == 0 assert prob.size()[:3] == v.size()[:3] assert prob.size(3) == 2 * w + 1 chunks_count = seqlen // w - 1 # group bsz and num_heads dimensions into one, then chunk seqlen into chunks of size 2w chunk_prob = prob.transpose(1, 2).reshape(bsz * num_heads, seqlen // w, w, 2 * w + 1) # group bsz and num_heads dimensions into one v = v.transpose(1, 2).reshape(bsz * num_heads, seqlen, head_dim) # pad seqlen with w at the beginning of the sequence and another w at the end padded_v = F.pad(v, (0, 0, w, w), value=-1) # chunk padded_v into chunks of size 3w and an overlap of size w chunk_v_size = (bsz * num_heads, chunks_count + 1, 3 * w, head_dim) chunk_v_stride = padded_v.stride() chunk_v_stride = chunk_v_stride[0], w * chunk_v_stride[1], chunk_v_stride[1], chunk_v_stride[2] chunk_v = padded_v.as_strided(size=chunk_v_size, stride=chunk_v_stride) skewed_prob = _skew2(chunk_prob, padding_value=0) context = torch.einsum('bcwd,bcdh->bcwh', (skewed_prob, chunk_v)) return context.view(bsz, num_heads, seqlen, head_dim).transpose(1, 2) def _chunk(x, w): '''convert into overlapping chunkings. Chunk size = 2w, overlap size = w''' # non-overlapping chunks of size = 2w x = x.view(x.size(0), x.size(1) // (w * 2), w * 2, x.size(2)) # use `as_strided` to make the chunks overlap with an overlap size = w chunk_size = list(x.size()) chunk_size[1] = chunk_size[1] * 2 - 1 chunk_stride = list(x.stride()) # chunk_stride[1]: 512 x dim chunk_stride[1] = chunk_stride[1] // 2 return x.as_strided(size=chunk_size, stride=chunk_stride) def _skew2(x, padding_value): '''shift every row 1 step to right converting columns into diagonals''' # X = B x C x M x L B, C, M, L = x.size() x = F.pad(x, (0, M + 1), value=padding_value) # B x C x M x (L+M+1) x = x.view(B, C, -1) # B x C x ML+MM+M x = x[:, :, :-M] # B x C x ML+MM x = x.view(B, C, M, M + L) # B x C, M x L+M x = x[:, :, :, :-1] return x def mask_invalid_locations(input_tensor: torch.Tensor, w: int, d: Union[torch.Tensor, int], autoregressive: bool) -> torch.Tensor: # d: dilation? affected_seq_len, beginning_mask, ending_mask = _get_invalid_locations_mask(w, d, autoregressive, input_tensor.device) seq_len = input_tensor.size(1) beginning_input = input_tensor[:, :affected_seq_len, :, :w+1] beginning_mask = beginning_mask[:, :seq_len].expand(beginning_input.size()) beginning_input.masked_fill_(beginning_mask, -float('inf')) if not autoregressive: ending_input = input_tensor[:, -affected_seq_len:, :, -(w+1):] ending_mask = ending_mask[:, -seq_len:].expand(ending_input.size()) ending_input.masked_fill_(ending_mask, -float('inf')) def _skew(x, direction, padding_value): '''Convert diagonals into columns (or columns into diagonals depending on `direction`''' x_padded = F.pad(x, direction, value=padding_value) # bsz*num_heads x chunks x (2w+1) x 2w x_padded = x_padded.view(*x_padded.size()[:-2], x_padded.size(-1), x_padded.size(-2)) return x_padded @lru_cache() def _get_invalid_locations_mask(w: int, d: Union[torch.Tensor,int], autoregressive: bool, device: str): if isinstance(d, int): affected_seq_len = w * d mask = _get_invalid_locations_mask_fixed_dilation(affected_seq_len, w, d) mask = mask[None, :, None, :] else: affected_seq_len = w * d.max() head_masks = [] d_list = d.cpu().numpy().tolist() for d in d_list: one_head_mask = _get_invalid_locations_mask_fixed_dilation(affected_seq_len, w, d) head_masks.append(one_head_mask) mask = torch.stack(head_masks, dim=-2) mask = mask[None, :, :, :] ending_mask = None if autoregressive else mask.flip(dims=(1, 3)).bool().to(device) return affected_seq_len, mask.bool().to(device), ending_mask def _get_invalid_locations_mask_fixed_dilation(seq_len: int, w: int, d: int): diagonals_list = [] for j in range(-d * w, d, d): diagonal_mask = torch.zeros(seq_len, device='cpu', dtype=torch.uint8) diagonal_mask[:-j] = 1 diagonals_list.append(diagonal_mask) return torch.stack(diagonals_list, dim=-1)
bart_ls-main
xformers/xformers/components/attention/longformer.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import logging from pathlib import Path from typing import Any, Callable, Dict, Set, Union import torch from xformers.utils import ( generate_matching_config, get_registry_decorator, import_all_modules, ) from ._sputnik_sparse import SparseCS from .attention_mask import AttentionMask from .base import Attention, AttentionConfig # noqa # CREDITS: Classy Vision registry mechanism ATTENTION_REGISTRY: Dict[str, Any] = {} ATTENTION_CLASS_NAMES: Set[str] = set() # Arbitrary threshold for now, # in between dense and sparse matrix algorithms for the attention mechanism _DENSITY_THRESHOLD = 0.30 # noqa # from the sputnik paper, vs. _USE_SPUTNIK = True def build_attention(config: Union[Dict[str, Any], AttentionConfig]): """Builds an attention from a config. This assumes a 'name' key in the config which is used to determine what attention class to instantiate. For instance, a config `{"name": "my_attention", "foo": "bar"}` will find a class that was registered as "my_attention" (see :func:`register_attention`) and call .from_config on it.""" if not isinstance(config, AttentionConfig): try: config_instance = generate_matching_config( config, ATTENTION_REGISTRY[config["name"]].config ) except KeyError as e: name = config["name"] logging.warning(f"{name} not available among {ATTENTION_REGISTRY.keys()}") raise e else: config_instance = config return ATTENTION_REGISTRY[config_instance.name].constructor.from_config( config_instance ) """Registers an Attention subclass. This decorator allows xFormers to instantiate a subclass of Attention from a configuration file, even if the class itself is not part of the xFormers library. To use it, apply this decorator to an Attention subclass, like this: .. code-block:: python @dataclass class MyConfig: ... @register_attention('my_attention', MyConfig) class MyAttention(Attention): ... To instantiate an attention from a configuration file, see :func:`build_attention`.""" register_attention: Callable[[str, Any], Callable[[Any], Any]] = get_registry_decorator( ATTENTION_REGISTRY, ATTENTION_CLASS_NAMES, Attention, AttentionConfig ) def maybe_sparsify(matrix) -> Any: # Sparsify if that makes sense if torch.count_nonzero(matrix).item() / matrix.numel() > _DENSITY_THRESHOLD: # If not sparse, then AttentionMask is the reference type return AttentionMask.from_bool(matrix) return sparsify(matrix) def sparsify(matrix): if _USE_SPUTNIK: return SparseCS(matrix) return matrix.to_sparse() from .favor import FavorAttention # noqa from .global_tokens import GlobalAttention # noqa from .linformer import LinformerAttention # noqa from .local import LocalAttention # noqa from .nystrom import NystromAttention # noqa from .ortho import OrthoFormerAttention # noqa from .random import RandomAttention # noqa from .scaled_dot_product import ScaledDotProduct # noqa from .block_noglobal import BlockNoglobalAttention __all__ = [ "ScaledDotProduct", "LocalAttention", "LinformerAttention", "NystromAttention", "RandomAttention", "OrthoFormerAttention", "GlobalAttention", "FavorAttention", "Attention", "AttentionMask", "build_attention", "register_attention", ] # Optionally expose the BlockSparse attention try: from .blocksparse import BlockSparseAttention # noqa from .blocksparse_local import BlockSparseLocalAttention __all__ += ["BlockSparseAttention"] except ImportError: pass # automatically import any Python files in the directory import_all_modules(str(Path(__file__).parent), "xformers.components.attention")
bart_ls-main
xformers/xformers/components/attention/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass from typing import Optional import torch import torch.nn as nn from functools import partial, reduce from inspect import isfunction import torch.nn.functional as F from xformers.components.attention import Attention, AttentionConfig, register_attention from operator import mul @dataclass class BlockSelfAttentionConfig(AttentionConfig): window_size: int num_heads: int @register_attention("simple_block", BlockSelfAttentionConfig) class SimpleBlockAttention(Attention): def __init__( self, dropout: float, window_size: int, num_heads: int, *args, **kwargs ): """ A straightforward implementation of disjoint block attentions using native pytorch operations and supports CPU inference. The sequence is split into equal-length chunks and the self-attention is calculated separately in each chunk """ super().__init__() self.chunk_size = window_size self.drop_attn = nn.Dropout(dropout) self.num_head = num_heads def forward( self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, att_mask: Optional[torch.Tensor] = None, key_padding_mask: Optional[torch.Tensor] = None, *args, **kwargs ): bh = q.size(0) orig_seq_len = q.size(1) bsz = bh // self.num_head head_dim = q.size(-1) assert key_padding_mask is not None key_padding_mask = key_padding_mask.to(q) # pad the input length to factors of chunk size def _pad_to_window_size(x, window_size): seq_len = x.size(-2) pad_len = (window_size - seq_len % window_size) % window_size return F.pad(x, (0,0,0,pad_len), value=0), pad_len q, _ = _pad_to_window_size(q, self.chunk_size) k, _ = _pad_to_window_size(k, self.chunk_size) v, _ = _pad_to_window_size(v, self.chunk_size) if key_padding_mask.shape[1] % self.chunk_size != 0: pad_len = (self.chunk_size - key_padding_mask.shape[1] % self.chunk_size) % self.chunk_size key_padding_mask = torch.cat([key_padding_mask, key_padding_mask.new_ones(key_padding_mask.size(0), pad_len).to(key_padding_mask)], dim=1) buckets = q.shape[1] // self.chunk_size b_q = bucket(buckets, q) b_k, b_v = map(partial(bucket, buckets), (k, v)) # BH * bct * n_b * D dots = torch.einsum('buie,buje->buij', b_q, b_k) * (head_dim ** -0.5) mask_value = -10000 # The model does use global token markers (-1) q_mask = key_padding_mask != 1 # 1 means not masking kv_mask = q_mask mq, mk = bucket(buckets, q_mask), bucket(buckets, kv_mask) # B * bkt * n_b expand_head_and_merge_into_batch = lambda x: merge_dims(0, 1, expand_dim(x.unsqueeze(1), 1, self.num_head)) mq, mk = map(expand_head_and_merge_into_batch, (mq, mk)) # BH * bkt * n_b mask = mq[:, :, :, None] * mk[:, :, None, :] dots.masked_fill_(~mask, mask_value) del mask all_attn = dots.view(bsz*self.num_head, -1, self.chunk_size) all_attn_probs = all_attn.softmax(dim=-1) all_attn_probs = self.drop_attn(all_attn_probs) block_attn_probs = all_attn_probs[:, :, :all_attn.shape[-1]] block_attn_probs = block_attn_probs.view(bsz*self.num_head, -1, self.chunk_size, self.chunk_size) out = block_attn_probs.matmul(b_v).view(bsz*self.num_head, -1, head_dim) out = out[:,:orig_seq_len] return out def expand_dim(t, dim, k): expand_shape = [-1] * len(t.shape) expand_shape[dim] = k return t.expand(*expand_shape) def merge_dims(ind_from, ind_to, tensor): shape = list(tensor.shape) arr_slice = slice(ind_from, ind_to + 1) shape[arr_slice] = [reduce(mul, shape[arr_slice])] return tensor.reshape(*shape) def bucket(buckets, t, dim=1): shape = list(t.shape) shape[dim:dim+1] = [buckets, -1] return t.reshape(*shape) def unbucket(t, dim=1): shape = list(t.shape) shape[dim:dim+2] = [-1] return t.reshape(*shape)
bart_ls-main
xformers/xformers/components/attention/simple_block.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import torch from xformers.ops import masked_matmul from xformers.sparse import SparseCSRTensor # TODO: this is here for BC from xformers.sparse.utils import _csr_to_coo, _dense_to_sparse # noqa: F401 class SparseCS: def __init__(self, matrix, device=None): if device is None: device = torch.device("cpu") if matrix.ndim == 2: matrix = matrix[None] assert matrix.ndim == 3 self._mat = SparseCSRTensor.from_dense(matrix).to(device) @property def device(self): return self._mat.device @property def ndim(self): return self._mat.ndim @property def dtype(self): return self._mat.dtype @property def is_sparse(self): return True @property def shape(self): return self._mat.shape[1:] @property def values(self): return self._mat._csr_values @property def row_indices(self): return self._mat._csr_row_indices @property def column_indices(self): return self._mat._csr_column_indices @property def row_offsets(self): return self._mat._csr_row_offsets @property def _transp_info(self): return self._mat._csr_transp_info @classmethod def wrap( cls, shape, values, row_indices, row_offsets, column_indices, _transp_info ): matrix = cls.__new__(cls) _shape = (values.shape[0],) + shape csr_matrix = SparseCSRTensor._wrap( _shape, values, row_indices, row_offsets, column_indices, _transp_info ) matrix._mat = csr_matrix return matrix @classmethod def _wrap(cls, csr_matrix): assert isinstance(csr_matrix, SparseCSRTensor) matrix = cls.__new__(cls) matrix._mat = csr_matrix return matrix def __mul__(self, other): assert isinstance(other, (int, float)) return type(self)._wrap(self._mat * other) def __add__(self, other): assert isinstance(other, type(self)) return type(self)._wrap(self._mat + other._mat) def matmul_with_mask(self, a, b): return type(self)._wrap(masked_matmul(a, b, self._mat)) def softmax(self): out = torch.nn.functional.softmax(self._mat, -1) return type(self)._wrap(out) def spmm(self, b): out = torch.bmm(self._mat, b) return out def transpose(self): out = torch.transpose(self._mat, -2, -1) return type(self)._wrap(out) def to(self, device): assert isinstance(device, torch.device) out = self._mat.to(device) return type(self)._wrap(out) def to_dense(self): return self._mat.to_dense() def logical_and(self, other: torch.Tensor): assert not isinstance(other, SparseCS) out = torch.logical_and(self._mat, other) return type(self)._wrap(out) def __and__(self, other): return self.logical_and(other)
bart_ls-main
xformers/xformers/components/attention/_sputnik_sparse.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import math from contextlib import nullcontext from typing import Optional, Union import torch from xformers import _is_sparse_available, _is_triton_available from xformers.components.attention.attention_mask import AttentionMask if _is_sparse_available: from ._sputnik_sparse import SparseCS if _is_triton_available: from xformers.triton.softmax import softmax as triton_softmax def _create_random_sparsity(matrix, sparsity, divisible_by=4): assert matrix.ndim == 3 keep = torch.rand_like(matrix[0], dtype=torch.float32) > sparsity nonzero = torch.nonzero(keep) nnz = nonzero.shape[0] # NOTE: need to make it a multiple of 4 for sputnik nonzero = nonzero[: (nnz - nnz % divisible_by)] i, j = nonzero.unbind(1) output = torch.zeros_like(matrix) bdim = torch.arange(matrix.shape[0], device=matrix.device)[:, None] output[bdim, i, j] = matrix[bdim, i, j] return output def _broadcast_batch(mask, batch_size): if mask.ndim == 3: return mask assert mask.ndim == 2 mask = mask.coalesce() values = mask.values() indices = mask.indices() nnz = len(values) # strategy: repeat the indices and append the extra batch dimension to the indices indices = indices.repeat(1, batch_size) # now create the batch indices batch_indices = torch.arange(batch_size, device=indices.device) batch_indices = batch_indices[:, None].expand(batch_size, nnz).flatten() # put them together indices = torch.cat([batch_indices[None, :], indices], dim=0) # now repeat the values values = values.repeat(batch_size) size = (batch_size,) + mask.shape return torch.sparse_coo_tensor(indices, values, size) def _matmul_with_mask( a: torch.Tensor, b: torch.Tensor, mask: Optional[Union[torch.Tensor, "SparseCS"]] ) -> torch.Tensor: if mask is None: return a @ b if _is_sparse_available and mask.dtype == torch.bool: if isinstance(mask, SparseCS): return mask.matmul_with_mask(a, b) if mask.is_sparse: # perform broadcasting if needed mask = _broadcast_batch(mask, a.shape[0]) # coalesced is not implemented for bool tensors, so need to cast mask = mask.to(dtype=a.dtype) # type: ignore # mypy is missing the catch above return torch.ops.xformers.matmul_with_mask(a, b, mask) # Non optimized codepath assert not isinstance(mask, SparseCS) att = a @ b if mask.dtype == torch.bool: if mask.ndim == 2: mask = mask.unsqueeze(0).expand(att.shape[0], -1, -1) # mask is presumed false == ignore att[~mask] = float("-inf") else: # mask is presumed additive att += mask return att def _softmax(a: torch.Tensor, causal: bool = False) -> torch.Tensor: if _is_sparse_available and isinstance(a, SparseCS): return a.softmax() if a.is_sparse: return torch.sparse.softmax(a, dim=a.ndim - 1) if _is_triton_available: return triton_softmax(a, mask=None, causal=causal) else: return torch.softmax(a, dim=a.ndim - 1) if _is_sparse_available: class SparseBMM(torch.autograd.Function): @staticmethod def forward(ctx, a, b): a = a.coalesce() r = torch.bmm(a, b) ctx.save_for_backward(a, b) return r @staticmethod def backward(ctx, grad): a, b = ctx.saved_tensors # gradients w.r.t. a ga = None if ctx.needs_input_grad[0]: ga = torch.ops.xformers.matmul_with_mask(grad, b.transpose(-2, -1), a) # gradients w.r.t. b gb = None if ctx.needs_input_grad[1]: gb = a.transpose(1, 2).bmm(grad) return ga, gb def _sparse_bmm(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor: """ Batch matrix multiply between a sparse matrix and a dense matrix """ assert a.ndim == b.ndim == 3 assert a.shape[0] == b.shape[0] assert a.shape[2] == b.shape[1] return SparseBMM.apply(a, b) def bmm(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor: if _is_sparse_available: if isinstance(a, SparseCS): return a.spmm(b) if a.is_sparse: return _sparse_bmm(a, b) return a @ b def _apply_dropout(att, dropout): if dropout is None: return att # Dropout chokes on sparse tensors if _is_sparse_available: if isinstance(att, SparseCS): values = att.values.clone() values = dropout(values) att = SparseCS.wrap( att.shape, values, att.row_indices, att.row_offsets, att.column_indices, att._transp_info, ) elif att.is_sparse: att = att.coalesce() values = att.values().clone() # protect against in-place dropout values = dropout(values) att = torch.sparse_coo_tensor(att.indices(), values, att.shape) else: # Simple dense case att = dropout(att) return att # Non optimized vanilla dropout att = dropout(att) return att def scaled_query_key_softmax( q: torch.Tensor, k: torch.Tensor, att_mask: Optional[Union[AttentionMask, "SparseCS", torch.Tensor]], ) -> torch.Tensor: # TODO assume we have (N, S, hs) instead of (B, nh, S, hs), with N = B x nh # this is needed due to limitations in sparse_bmm for now # Self-attend: (N, S, hs) x (N, hs, S) -> (N, S, S) q = q / math.sqrt(k.size(-1)) # Matmul with mask if att_mask is not None and isinstance(att_mask, AttentionMask): # Additive mask mask: Optional[Union[SparseCS, torch.Tensor]] = att_mask.values else: mask = att_mask att = _matmul_with_mask(q, k.transpose(-2, -1), mask) # Softmax to get the attention probabilities is_causal = isinstance(att_mask, AttentionMask) and att_mask.is_causal att = _softmax(att, causal=is_causal) return att def scaled_dot_product_attention( q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, att_mask: Optional[Union[AttentionMask, "SparseCS", torch.Tensor]], dropout: Optional[torch.nn.Module] = None, ) -> torch.Tensor: autocast_disabled = ( _is_sparse_available and isinstance(att_mask, SparseCS) or (att_mask is not None and att_mask.is_sparse) ) with torch.cuda.amp.autocast(enabled=False) if autocast_disabled else nullcontext(): if autocast_disabled: q, k, v = q.float(), k.float(), v.float() att = scaled_query_key_softmax(q, k, att_mask=att_mask) # Optional dropout, could be part of the masking in the future att = _apply_dropout(att, dropout) # Get to the predicted values, for all heads # y = att @ v # (N, S, S) x (N, S, hs) -> (N, S, hs) y = bmm(att, v) return y
bart_ls-main
xformers/xformers/components/attention/core.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass import torch from xformers.components.attention import Attention, AttentionConfig, register_attention def calc_rel_pos(n: int): # Adapted from LucidRains # https://github.com/lucidrains/lambda-networks/blob/main/lambda_networks/lambda_networks.py rel_pos = torch.arange(n)[None, :] - torch.arange(n)[:, None] # [n, n] rel_pos += n - 1 # shift value range from [-n+1, n-1] to [0, 2n-2] return rel_pos @dataclass class LambdaLayerConfig(AttentionConfig): seq_len: int # dimension of the input sequence dim_head: int @register_attention("lambda", LambdaLayerConfig) class LambdaLayer(Attention): def __init__(self, dropout: float, seq_len: int, dim_head: int, *_, **__): """ Attention approximation using Lambda layers, from "Lambda networks: modeling long-range interactions without attention.", Bello, I. (2021). """ super().__init__() # Possible extensions: # - support different dimensions for key and queries # - support varying dimensions in between inputs and outputs # - support u hyperparam self.rel_pos_emb = torch.nn.Parameter( torch.randn(2 * seq_len - 1, int(dim_head)) ) self.rel_pos = calc_rel_pos(seq_len) self.attn_drop = torch.nn.Dropout(dropout, inplace=True) self.requires_same_k_q_dimensions = True def forward( self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, *args, **kwargs ): """..NOTE: We're reusing the einsum notation suggested by the paper, changed in that heads are folded in the batch dimension""" content_lambda = torch.einsum("bnk,bnv->bkv", torch.softmax(k, dim=-1), v) content_output = torch.einsum("bnk,bkv->bnv", q, content_lambda) rel_pos_emb = self.rel_pos_emb[self.rel_pos] # Handle real sequence length being possibly smaller seq_len = q.shape[1] rel_pos_emb = rel_pos_emb[:seq_len, :seq_len, :] # Compute the position lambda for every possible combination in one go, then compute the # position related contribution position_lambdas = torch.einsum( "mnk,bnv->bnkv", rel_pos_emb, v ) # one lambda per position position_output = (q.unsqueeze(2) @ position_lambdas).squeeze() att = content_output + position_output att = self.attn_drop(att) return att
bart_ls-main
xformers/xformers/components/attention/lambda_layer.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass from typing import Optional import torch import torch.nn as nn from xformers.components.attention import ( Attention, AttentionConfig, AttentionMask, maybe_sparsify, register_attention, sparsify, ) from xformers.components.attention.attention_patterns import ( causal_1d_pattern, random_pattern, ) from xformers.components.attention.core import scaled_dot_product_attention @dataclass class RandomAttentionConfig(AttentionConfig): r: Optional[ float ] # the ratio of keys that the query can attend to. 1.0 means dense attention constant_masking: Optional[ bool ] # whether the randomness is per query or defined at construction time force_sparsity: Optional[bool] # use sparsity in any case (potentially slower) @register_attention("random", RandomAttentionConfig) class RandomAttention(Attention): def __init__( self, dropout: float, causal: bool = False, r: float = 0.01, constant_masking: bool = True, force_sparsity: bool = False, *args, **kwargs, ): """ "Random" attention, as proposed for instance in _BigBird. Random means in that case means that each query can attend to a random set of keys. This implementation is sparse-aware, meaning that the empty attention parts will not be represented in memory. Args: r (float): the ratio in [0,1] of keys that the query can attend to constant_masking (bool): if true, keep the same random set for all queries. _BigBird: "Zaheer, M., Guruganesh, G., Dubey, A., Ainslie, J., Alberti, C., Ontanon, S., Pham, P., Ravula, A., Wang, Q., Yang, L., & Ahmed, A. (2020). Big Bird: Transformers for Longer Sequences. ArXiv, NeurIPS." """ super().__init__() self.attn_drop = nn.Dropout(dropout, inplace=False) self.causal = causal self.r = r self.rand_attention_mask: Optional[torch.Tensor] = None self.constant_masking = constant_masking self.force_sparsity = force_sparsity self.requires_same_k_q_dimensions = True def _get_rand_mask(self, shape: torch.Size) -> torch.Tensor: sparsity = 1 - self.r mask = random_pattern(shape[1], sparsity=sparsity) if self.causal: mask &= causal_1d_pattern(shape[1]) mask = sparsify(mask) if self.force_sparsity else maybe_sparsify(mask) return mask def forward( self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, att_mask: Optional[torch.Tensor] = None, *args, **kwargs, ): # Rand masking if not self.constant_masking or self.rand_attention_mask is None: self.rand_attention_mask = self._get_rand_mask(q.shape).to(q.device) # Mask-aware attention if att_mask is not None: if att_mask.dtype == torch.bool and isinstance( self.rand_attention_mask, AttentionMask ): mask = self.rand_attention_mask + AttentionMask.from_bool(att_mask) else: mask = self.rand_attention_mask & att_mask else: mask = self.rand_attention_mask # Handle q/k/v which would not fit the mask seq_len = q.shape[-2] q_, k_, v_ = map(lambda x: self._maybe_pad_sequence(x, mask), (q, k, v)) # Normal attention with the random mask att = scaled_dot_product_attention( q=q_, k=k_, v=v_, att_mask=mask, dropout=self.attn_drop ) # Take into account an hypothetical padding return att[:, :seq_len, :]
bart_ls-main
xformers/xformers/components/attention/random.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass from typing import Optional from functools import partial, reduce from inspect import isfunction from operator import mul import torch import torch.nn as nn import torch.nn.functional as F from torch import Tensor from xformers.components.attention import ATTENTION_REGISTRY, Attention, AttentionConfig, register_attention from transformers.models.reformer.modeling_reformer import LSHSelfAttention, ReformerConfig, ReverseSort """ using implementation from huggingface transformers. Make LSH attention compatible with global tokens """ @dataclass class LSHGlobalSelfAttentionConfig(AttentionConfig): num_hash: int num_heads: int dim_model: int seq_len: int num_buckets: int chunk_length: int @register_attention("lsh_global", LSHGlobalSelfAttentionConfig) class LSHGlobalAttention(Attention): def __init__( self, num_heads: int, dim_model: int, num_hash: int = 4, seq_len: int = 4096, dropout: float = 0.0, chunk_length: int = 16, num_buckets: int = None, *args, **kwargs, ): super().__init__() attn_config = ReformerConfig() attn_config.num_attention_heads = num_heads attn_config.attn_layers = ["lsh"] attn_config.is_decoder = False attn_config.num_hashes = num_hash attn_config.max_position_embeddings = seq_len attn_config.attention_head_size = dim_model // num_heads # attn_config.feed_forward_size = 1 if chunk_length: attn_config.lsh_attn_chunk_length = chunk_length attn_config.num_buckets = num_buckets self.attn = ReformerAttention(attn_config) def forward( self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, att_mask: Optional[torch.Tensor] = None, key_padding_mask: Optional[Tensor] = None, *args, **kwargs ): return self.attn(q, k, v, att_mask, key_padding_mask) class ReformerAttention(LSHSelfAttention): def __init__(self, config): super().__init__(config) # self.query_key = None # self.value = None del self.query_key del self.value self.num_heads = self.num_attention_heads def forward( self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, att_mask: Optional[torch.Tensor] = None, key_padding_mask: Optional[Tensor] = None, *args, **kwargs, ): orig_sequence_length, head_dim = q.shape[1], q.shape[2] # padding to factors of self.chunk_length # needs centain sequence length to make the block wise local attention work def _pad_to_window_size(x, window_size): seq_len = x.size(-2) pad_len = (window_size - seq_len % window_size) % window_size return F.pad(x, (0,0,0,pad_len), value=0), pad_len q, _ = _pad_to_window_size(q, self.chunk_length) v, _ = _pad_to_window_size(v, self.chunk_length) if key_padding_mask.shape[1] % self.chunk_length != 0: pad_len = (self.chunk_length - key_padding_mask.shape[1] % self.chunk_length) % self.chunk_length # key padding mask: 1 means padding tokens key_padding_mask = torch.cat([key_padding_mask, key_padding_mask.new_ones(key_padding_mask.size(0), pad_len).to(key_padding_mask)], dim=1) sequence_length = q.shape[1] batch_size = q.shape[0] // self.num_attention_heads # num hashes can optionally be overwritten by user num_hashes = self.num_hashes # @xwhan reformer needs the key and query vectors to be the same # project hidden_states to query_key and value orig_query = q.view(batch_size, self.num_attention_heads, sequence_length, head_dim) orig_value = v.view(batch_size, self.num_attention_heads, sequence_length, head_dim) do_standard_self_attention = (sequence_length <= self.chunk_length) # xformer format, att_mask: B x seq_len x seq_len #TODO: better solution? assert key_padding_mask is not None key_padding_mask = key_padding_mask.to(q) key_padding_mask[:,0] = -1 # for LSH attention, unmasked tokens are True attention_mask = key_padding_mask == 0 # resolve mask that specify global tokens extra_attention_mask = key_padding_mask < 0 num_extra_indices_per_batch = extra_attention_mask.long().sum(dim=1) max_num_extra_indices_per_batch = num_extra_indices_per_batch.max() if max_num_extra_indices_per_batch <= 0: extra_attention_mask = None else: extra_attention_mask_nonzeros = extra_attention_mask.nonzero(as_tuple=True) zero_to_max_range = torch.arange(0, max_num_extra_indices_per_batch, device=extra_attention_mask.device) # mask indicating which values are actually going to be padding num_extra_indices_per_batch = extra_attention_mask.long().sum(dim=1) selection_padding_mask = zero_to_max_range < num_extra_indices_per_batch.unsqueeze(dim=-1) # 2) location of the non-padding values in the selected global attention selection_padding_mask_nonzeros = selection_padding_mask.nonzero(as_tuple=True) # 3) location of the padding values in the selected global attention selection_padding_mask_zeros = (selection_padding_mask == 0).nonzero(as_tuple=True) # LSH attention only makes sense if chunked attention should be performed if not do_standard_self_attention: # set `num_buckets` on the fly, recommended way to do it if self.num_buckets is None: self._set_num_buckets(sequence_length) # hash query key vectors into buckets buckets = self._hash_vectors(orig_query, num_hashes, attention_mask) assert ( int(buckets.shape[-1]) == num_hashes * sequence_length ), f"last dim of buckets is {buckets.shape[-1]}, but should be {num_hashes * sequence_length}" sorted_bucket_idx, undo_sorted_bucket_idx = self._get_sorted_bucket_idx_and_undo_sorted_bucket_idx( sequence_length, buckets, num_hashes ) # make sure bucket idx is not longer then sequence length sorted_bucket_idx_per_hash = sorted_bucket_idx % sequence_length # query_key_vectors: (B, H, L, D) # sorted_bucket_idx_per_hash: (B. H, L x num_hash) # cluster query key value vectors according to hashed buckets query_key_vectors = self._gather_by_expansion(orig_query, sorted_bucket_idx_per_hash, num_hashes) value_vectors = self._gather_by_expansion(orig_value, sorted_bucket_idx_per_hash, num_hashes) # (B. H, L x num_hash, D) query_key_vectors = self._split_seq_length_dim_to( query_key_vectors, -1, self.chunk_length, self.num_attention_heads, self.attention_head_size, ) value_vectors = self._split_seq_length_dim_to( value_vectors, -1, self.chunk_length, self.num_attention_heads, self.attention_head_size, ) # (B. H, (L x num_hash) // chunk, chunk, D) if self.chunk_length is None: assert ( self.num_chunks_before == 0 and self.num_chunks_after == 0 ), "If `config.chunk_length` is `None`, make sure `config.num_chunks_after` and `config.num_chunks_before` are set to 0." else: # get sequence length indices sorted_bucket_idx_per_hash = torch.arange(sequence_length, device=orig_query.device).repeat( batch_size, self.num_attention_heads, 1 ) query_key_vectors = orig_query value_vectors = orig_value # scale key vectors # why length normalization key_vectors = self._len_and_dim_norm(query_key_vectors) # set query_vectors to query key vectors if LSH self attention query_vectors = query_key_vectors # free memory del query_key_vectors # global tokens' key and value vectors with indexing if extra_attention_mask is not None: selected_k = orig_query.new_zeros(batch_size, max_num_extra_indices_per_batch, self.num_attention_heads, head_dim) orig_query_t = orig_query.transpose(1,2) selected_k[selection_padding_mask_nonzeros] = orig_query_t[extra_attention_mask_nonzeros] selected_k = self._len_and_dim_norm(selected_k) orig_value_t = orig_value.transpose(1,2) selected_v = orig_value.new_zeros(batch_size, max_num_extra_indices_per_batch, self.num_attention_heads, head_dim) selected_v[selection_padding_mask_nonzeros] = orig_value_t[extra_attention_mask_nonzeros] # get attention probs out_vectors, logits, attention_probs = self.attend( query_vectors=query_vectors, key_vectors=key_vectors, value_vectors=value_vectors, sorted_bucket_idx_per_hash=sorted_bucket_idx_per_hash, attention_mask=attention_mask, head_mask=None, do_standard_self_attention=do_standard_self_attention, do_cached_attention=False, global_token_keys=selected_k, global_token_values=selected_v, selection_padding_mask_zeros=selection_padding_mask_zeros ) # free memory del key_vectors, value_vectors # re-order out_vectors and logits if not do_standard_self_attention: # sort clusters back to correct ordering out_vectors, logits = ReverseSort.apply(out_vectors, logits, sorted_bucket_idx, undo_sorted_bucket_idx) if not do_standard_self_attention: # sum up all hash rounds if num_hashes > 1: out_vectors = self._split_seq_length_dim_to( out_vectors, num_hashes, sequence_length, self.num_attention_heads, self.attention_head_size, ) logits = self._split_seq_length_dim_to( logits, num_hashes, sequence_length, self.num_attention_heads, self.attention_head_size, ).unsqueeze(-1) # TODO @xwhan How is logits used here? looks wired as logits is already logsumexp probs_vectors = torch.exp(logits - torch.logsumexp(logits, dim=2, keepdim=True)) out_vectors = torch.sum(out_vectors * probs_vectors, dim=2) # free memory del probs_vectors # free memory del logits # replace the calculation of global tokens attending to all other tokens selected_q = orig_query.new_zeros(batch_size, max_num_extra_indices_per_batch, self.num_attention_heads, head_dim) selected_q[selection_padding_mask_nonzeros] = orig_query_t[extra_attention_mask_nonzeros] # LSH attention, query and keys are the same # need to do some normalization like LSH attention g2all_attn_weights = selected_q.transpose(1,2).matmul(self._len_and_dim_norm(orig_query).transpose(-1, -2)) hard_mask = key_padding_mask == 1 g2all_attn_weights[selection_padding_mask_zeros[0], :, selection_padding_mask_zeros[1], :] = -10000.0 if hard_mask is not None: g2all_attn_weights = g2all_attn_weights.masked_fill( hard_mask.unsqueeze(1).unsqueeze(2), -10000.0, ) # still need to avoid the model attend to itself g2all_attn_weights[extra_attention_mask_nonzeros[0],:,:,extra_attention_mask_nonzeros[1]] = -10000.0 g2all_attn_probs_float = F.softmax(g2all_attn_weights, dim=-1, dtype=torch.float32) g2all_attn_probs = nn.functional.dropout(g2all_attn_probs_float.type_as(g2all_attn_weights), p=self.dropout, training=self.training) g2all_attn = g2all_attn_probs.matmul(orig_value) # (B, H, max_num_extra_indices_per_batch, L) nonzero_global_attn = g2all_attn[selection_padding_mask_nonzeros[0], :, selection_padding_mask_nonzeros[1]].type_as(out_vectors) out_vectors[extra_attention_mask_nonzeros[0], :, extra_attention_mask_nonzeros[1]] = nonzero_global_attn # still need to avoid the model attend to itself assert out_vectors.shape == ( batch_size, self.num_attention_heads, sequence_length, self.attention_head_size, ), "out_vectors have be of shape `[batch_size, config.num_attention_heads, sequence_length, config.attention_head_size]`." return out_vectors.view(-1, sequence_length, head_dim)[:,:orig_sequence_length,:].contiguous() def attend( self, query_vectors, key_vectors, value_vectors, sorted_bucket_idx_per_hash, attention_mask, head_mask, do_standard_self_attention, do_cached_attention, global_token_keys=None, global_token_values=None, selection_padding_mask_zeros=None ): # look at previous and following chunks if chunked attention if not do_standard_self_attention: key_vectors = self._look_adjacent(key_vectors, self.num_chunks_before, self.num_chunks_after) value_vectors = self._look_adjacent(value_vectors, self.num_chunks_before, self.num_chunks_after) query_key_dots = torch.matmul(query_vectors, key_vectors.transpose(-1, -2)) # (B, H, (L x num_hash) // chunk, chunk, 2*chunk) # free memory # del query_vectors, key_vectors # if chunked attention split bucket idxs to query and key if not do_standard_self_attention: query_bucket_idx = self._split_seq_length_dim_to( sorted_bucket_idx_per_hash, -1, self.chunk_length, self.num_attention_heads ) key_value_bucket_idx = self._look_adjacent(query_bucket_idx, self.num_chunks_before, self.num_chunks_after) elif do_cached_attention and query_key_dots.ndim > 4: key_value_bucket_idx = sorted_bucket_idx_per_hash query_bucket_idx = ( key_value_bucket_idx.new_ones(key_value_bucket_idx.shape[:-1] + (1,)) * key_value_bucket_idx.max() ) elif do_cached_attention and query_key_dots.ndim <= 4: query_bucket_idx = (query_key_dots.shape[-1] - 1) * torch.ones_like(query_key_dots)[:, :, :, -1] key_value_bucket_idx = torch.arange( query_key_dots.shape[-1], dtype=torch.long, device=query_key_dots.device )[None, None, :].expand(query_bucket_idx.shape[:2] + (-1,)) else: query_bucket_idx = key_value_bucket_idx = sorted_bucket_idx_per_hash # get correct mask values depending on precision if query_key_dots.dtype == torch.float16: self_mask_value = self.self_mask_value_float16.half() mask_value = self.mask_value_float16.half() else: self_mask_value = self.self_mask_value_float32 mask_value = self.mask_value_float32 if not do_cached_attention: # (B, H, (L x num_hash) // chunk, chunk, 2 x chunk) mask = self._compute_attn_mask( query_bucket_idx, key_value_bucket_idx, attention_mask, query_key_dots.shape, do_standard_self_attention, ) if mask is not None: query_key_dots = torch.where(mask, query_key_dots, mask_value) # free memory del mask # Self mask is ALWAYS applied. # From the reformer paper (https://arxiv.org/pdf/2001.04451.pdf): # " While attention to the future is not allowed, typical implementations of the # Transformer do allow a position to attend to itself. # Such behavior is undesirable in a shared-QK formulation because the dot-product # of a query vector with itself will almost always be greater than the dot product of a # query vector with a vector at another position. We therefore modify the masking # to forbid a token from attending to itself, except in situations # where a token has no other valid attention targets (e.g. the first token in a sequence) " self_mask = torch.ne(query_bucket_idx.unsqueeze(-1), key_value_bucket_idx.unsqueeze(-2)).to( query_bucket_idx.device ) # apply self_mask query_key_dots = torch.where(self_mask, query_key_dots, self_mask_value) if not do_standard_self_attention: # @xwhan trying to attend global tokens here global_token_keys = global_token_keys.transpose(1,2).unsqueeze(2).repeat(1,1,query_vectors.shape[2],1,1) query2global_dots = torch.matmul(query_vectors, global_token_keys.transpose(-1, -2)) query2global_dots[selection_padding_mask_zeros[0],:,:,:,selection_padding_mask_zeros[1]] = self_mask_value query_key_dots = torch.cat([query_key_dots, query2global_dots], dim=-1) global_token_values = global_token_values.transpose(1,2).unsqueeze(2).repeat(1,1,query_vectors.shape[2],1,1) value_vectors = torch.cat([value_vectors, global_token_values], dim=3) # free memory del self_mask logits = torch.logsumexp(query_key_dots, dim=-1, keepdim=True) # dots shape is `[batch_size, num_attn_heads, num_hashes * seq_len // chunk_length, chunk_length, chunk_length * (1 + num_chunks_before + num_chunks_after)]` # attention_probs = torch.exp(query_key_dots - logits) # Is this causing training issues while using fp16? attention_probs = F.softmax(query_key_dots, dim=-1, dtype=torch.float32).type_as(query_key_dots) # free memory del query_key_dots # dropout attention_probs = nn.functional.dropout(attention_probs, p=self.dropout, training=self.training) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask # attend values out_vectors = torch.matmul(attention_probs, value_vectors) # free memory del value_vectors # merge chunk length if out_vectors.ndim > 4: logits = logits.flatten(start_dim=2, end_dim=3).squeeze(-1) out_vectors = out_vectors.flatten(start_dim=2, end_dim=3) return out_vectors, logits, attention_probs
bart_ls-main
xformers/xformers/components/attention/lsh_global.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass from typing import Optional import math import torch from torch import Tensor import torch.nn as nn import torch.nn.functional as F from xformers.components.attention import Attention, AttentionConfig, register_attention @dataclass class LongShortConfig(AttentionConfig): block_size: int num_heads: int dim_model: int num_landmarks: int window_size: int global_tokens: int @register_attention("longshort", LongShortConfig) class LongShortAttention(Attention): def __init__( self, dropout: float, num_heads: int, dim_model: int, num_landmarks: int = 32, window_size: int = 96, global_tokens: int = 1, *args, **kwargs ): """ longshort transformer https://arxiv.org/abs/2107.02192 https://github.com/NVIDIA/transformer-ls #TODO only support encoding only settings """ super().__init__() self.drop_attn = nn.Dropout(dropout) self.num_head = num_heads self.head_dim = dim_model // num_heads self.num_landmarks = num_landmarks self.dim = dim_model self.window_size = window_size self.requires_orig_inputs = True self.global_tokens = global_tokens # default num of global tokens # Sec 3.4 to stablize the attention combination self.dual_ln_s = nn.LayerNorm(self.num_head * self.head_dim) self.dual_ln_l = nn.LayerNorm(self.num_head * self.head_dim) self.dconv_fc = nn.Linear(self.dim, self.num_head * self.num_landmarks) # input-dependent compression #### v2: try to change how the additional layernorm is applied, make it more competible with roberta checkpoint #### when compress the k/v, k/v are NOT normalized def forward( self, x: torch.Tensor, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, att_mask: Optional[torch.Tensor] = None, key_padding_mask: Optional[Tensor] = None, *args, **kwargs ): """ This version enables specify some global tokens, according values in key_padding_mask: {-1: global, 0: local, 1: masked tokens} """ # global_tokens = self.global_tokens batch_size = q.shape[0] // self.num_head sequence_length = q.shape[1] # Always set the first token as global tokens key_padding_mask = key_padding_mask.to(q) key_padding_mask[:,0] = -1 Q = q.view(batch_size, self.num_head, -1, self.head_dim).mul(1./math.sqrt(self.head_dim)) K = k.view(batch_size, self.num_head, -1, self.head_dim).transpose(1,2).reshape(batch_size, -1, self.dim) V = v.view(batch_size, self.num_head, -1, self.head_dim).transpose(1,2).reshape(batch_size, -1, self.dim) # needs centain sequence length to make the block wise local attention work def _pad_to_window_size(x, window_size): seq_len = x.size(-2) pad_len = (window_size - seq_len % window_size) % window_size return F.pad(x, (0,0,0,pad_len), value=0), pad_len x, pad_len = _pad_to_window_size(x, self.window_size) Q, _ = _pad_to_window_size(Q, self.window_size) K, _ = _pad_to_window_size(K, self.window_size) V, _ = _pad_to_window_size(V, self.window_size) if key_padding_mask.shape[1] % self.window_size != 0: pad_len = (self.window_size - key_padding_mask.shape[1] % self.window_size) % self.window_size # key padding mask: 1 means padding tokens key_padding_mask = torch.cat([key_padding_mask, key_padding_mask.new_ones(key_padding_mask.size(0), pad_len).to(key_padding_mask)], dim=1) # normalization is to have the same scale as compressed key/values K_normalized = self.split_heads(self.dual_ln_l(K)) # (B, H, seq_len, head_dim) V_normalized = self.split_heads(self.dual_ln_l(V)) K = self.split_heads(K) V = self.split_heads(V) # 1. check size of x (bsz, seq-1, dim_model); # TODO, 2. the padding mask value # global attention tokens extra_attention_mask = key_padding_mask < 0 num_extra_indices_per_batch = extra_attention_mask.long().sum(dim=1) max_num_extra_indices_per_batch = num_extra_indices_per_batch.max() if max_num_extra_indices_per_batch <= 0: extra_attention_mask = None else: extra_attention_mask_nonzeros = extra_attention_mask.nonzero(as_tuple=True) zero_to_max_range = torch.arange(0, max_num_extra_indices_per_batch, device=extra_attention_mask.device) # mask indicating which values are actually going to be padding num_extra_indices_per_batch = extra_attention_mask.long().sum(dim=1) selection_padding_mask = zero_to_max_range < num_extra_indices_per_batch.unsqueeze(dim=-1) # 2) location of the non-padding values in the selected global attention selection_padding_mask_nonzeros = selection_padding_mask.nonzero(as_tuple=True) # 3) location of the padding values in the selected global attention selection_padding_mask_zeros = (selection_padding_mask == 0).nonzero(as_tuple=True) # keys of global tokens if extra_attention_mask is not None: K_transpose = K_normalized.transpose(1,2) Q_transpose = Q.transpose(1,2) selected_k = K_transpose.new_zeros(batch_size, max_num_extra_indices_per_batch, self.num_head, self.head_dim) selected_k[selection_padding_mask_nonzeros] = K_transpose[extra_attention_mask_nonzeros] # (bsz, seq_len, num_heads, max_num_extra_indices_per_batch) selected_attn_weights = torch.einsum('blhd,bshd->blhs', (Q_transpose, selected_k)) selected_attn_weights[selection_padding_mask_zeros[0], :, :, selection_padding_mask_zeros[1]] = -10000 attn_weights_over_g_tokens = selected_attn_weights.transpose(1,2) V_transpose = V_normalized.transpose(1,2) selected_v = V_transpose.new_zeros(batch_size, max_num_extra_indices_per_batch, self.num_head, self.head_dim) selected_v[selection_padding_mask_nonzeros] = V_transpose[extra_attention_mask_nonzeros] # linear attention mask padding_mask = key_padding_mask != 0 # True means masked position K_compress = V_compress = None if self.num_landmarks > 0: # self.dconv_fc(x): each lanmark of each head attend to each location head_scores = self.dconv_fc(x).masked_fill(padding_mask[:, :, None], -10000) # only try to compress the k/v of those local tokens head_scores = F.softmax(head_scores, dim=1, dtype=torch.float32) #.to(X) # if not self.fp32: head_scores = head_scores.to(x) # bsz x num_head x num_lms x length head_scores = head_scores.view(batch_size, -1, self.num_head, self.num_landmarks).permute(0, 2, 3, 1) # TODO: should we use normalized K/V here? different from paper descriptions K_compress = head_scores.matmul(K) # bsz x num_head x num_lms x head_dim V_compress = head_scores.matmul(V) assert self.num_landmarks > 0 if self.dual_ln_s is not None and K_compress is not None: K_compress = self.dual_ln_s(K_compress.transpose(1, 2).contiguous().view(batch_size, -1, self.dim)) K_compress = self.split_heads(K_compress) V_compress = self.dual_ln_s(V_compress.transpose(1, 2).contiguous().view(batch_size, -1, self.dim)) V_compress = self.split_heads(V_compress) # if self.num_landmarks > 0 or (cls_embed_q is not None): # bsz x num_head x length x num_lms attn_compress = Q.matmul(K_compress.transpose(-1, -2)) win_attn_weights = self.sliding_chunks_matmul_qk_v2(Q, K_normalized, padding_mask) # bsz x num_heads x seqlen x 2winsize # else: # win_attn_weights = None if extra_attention_mask is not None: all_attn_ = torch.cat([attn_compress, win_attn_weights, attn_weights_over_g_tokens], dim=-1) else: all_attn_ = torch.cat([attn_compress, win_attn_weights], dim=-1) all_attn = all_attn_.float().softmax(dim=-1).to(win_attn_weights) hard_mask = key_padding_mask == 1 all_attn = all_attn.masked_fill(hard_mask[:,None,:,None], 0) # if not self.fp32: all_attn = all_attn.to(x) all_attn = self.drop_attn(all_attn) C = 0 if attn_compress is not None: C += all_attn[:,:,:,:K_compress.shape[2]].matmul(V_compress) if win_attn_weights is not None: win_attn_probs = all_attn[:,:,:,K_compress.shape[2]:K_compress.shape[2] + win_attn_weights.shape[-1]] seq_len = win_attn_probs.shape[2] # if self.window_size > 0: win_attn_probs = win_attn_probs.view(batch_size, self.num_head, seq_len // self.window_size, self.window_size,-1) V_tiles = self.get_tiles_v2(V_normalized, transpose=False) C += win_attn_probs.matmul(V_tiles).view(batch_size, self.num_head, seq_len, self.head_dim) # else: # C += win_attn_probs * V if extra_attention_mask is not None: global_attn_probs = all_attn[:,:,:,-attn_weights_over_g_tokens.shape[-1]:] # selected_v shape: (batch_size, max_num_extra_indices_per_batch, self.num_head, self.head_dim) C += global_attn_probs.matmul(selected_v.transpose(1,2)) # global tokens attending to all other tokens. # TODO: Two options are possible here: whether to use normalized key/value selected_q = Q_transpose.new_zeros(batch_size, max_num_extra_indices_per_batch, self.num_head, self.head_dim) selected_q[selection_padding_mask_nonzeros] = Q_transpose[extra_attention_mask_nonzeros] g2all_attn_weights = selected_q.transpose(1,2).matmul(K_normalized.transpose(-1, -2)) # (batch_size, self.num_head, max_num_extra_indices_per_batch, seq_len) g2all_attn_probs_float = F.softmax(g2all_attn_weights, dim=-1, dtype=torch.float32) g2all_attn_probs = self.drop_attn(g2all_attn_probs_float.type_as(g2all_attn_weights)) g2all_attn = g2all_attn_probs.matmul(V_normalized) # (batch_size, self.num_head, max_num_extra_indices_per_batch, head_dim) # replace results in C nonzero_global_attn = g2all_attn[selection_padding_mask_nonzeros[0], :, selection_padding_mask_nonzeros[1]] C[extra_attention_mask_nonzeros[0],:,extra_attention_mask_nonzeros[1]] = nonzero_global_attn C = C[:,:,:sequence_length].view(-1, sequence_length, self.head_dim) return C # #### v1 with added global tokens at the begining # def forward( # self, # x: torch.Tensor, # q: torch.Tensor, # k: torch.Tensor, # v: torch.Tensor, # att_mask: Optional[torch.Tensor] = None, # key_padding_mask: Optional[Tensor] = None, # *args, **kwargs # ): # """ # This version enables specify some global tokens, according values in key_padding_mask: {-1: global, 0: local, 1: masked tokens} # """ # # global_tokens = self.global_tokens # batch_size = q.shape[0] // self.num_head # sequence_length = q.shape[1] # # xformer format, att_mask: B x seq_len x seq_len #TODO: better solution? # # if key_padding_mask is not None: # # mask = key_padding_mask == 0 # # if att_mask is not None: # # assert len(att_mask.shape) == 3 # # att_mask = att_mask.reshape(batch_size, self.num_head, -1, sequence_length)[:,0,:,:] # # mask = att_mask.sum(1) > 0 # # else: # # mask = None # # Always set the first token as global tokens # key_padding_mask = key_padding_mask.to(q) # key_padding_mask[:,0] = -1 # Q = q.view(batch_size, self.num_head, -1, self.head_dim).mul(1./math.sqrt(self.head_dim)) # K = k.view(batch_size, self.num_head, -1, self.head_dim).transpose(1,2).reshape(batch_size, -1, self.dim) # V = v.view(batch_size, self.num_head, -1, self.head_dim).transpose(1,2).reshape(batch_size, -1, self.dim) # # needs centain sequence length to make the block wise local attention work # def _pad_to_window_size(x, window_size): # seq_len = x.size(-2) # pad_len = (window_size - seq_len % window_size) % window_size # return F.pad(x, (0,0,0,pad_len), value=0), pad_len # x, pad_len = _pad_to_window_size(x, self.window_size) # Q, _ = _pad_to_window_size(Q, self.window_size) # K, _ = _pad_to_window_size(K, self.window_size) # V, _ = _pad_to_window_size(V, self.window_size) # if key_padding_mask.shape[1] % self.window_size != 0: # pad_len = (self.window_size - key_padding_mask.shape[1] % self.window_size) % self.window_size # # key padding mask: 1 means padding tokens # key_padding_mask = torch.cat([key_padding_mask, key_padding_mask.new_ones(key_padding_mask.size(0), pad_len).to(key_padding_mask)], dim=1) # # normalization is to have the same scale as compressed key/values # K_normalized = self.split_heads(self.dual_ln_l(K)) # (B, H, seq_len, head_dim) # V_normalized = self.split_heads(self.dual_ln_l(V)) # # 1. check size of x (bsz, seq-1, dim_model); # TODO, 2. the padding mask value # # global attention tokens # extra_attention_mask = key_padding_mask < 0 # num_extra_indices_per_batch = extra_attention_mask.long().sum(dim=1) # max_num_extra_indices_per_batch = num_extra_indices_per_batch.max() # if max_num_extra_indices_per_batch <= 0: # extra_attention_mask = None # else: # extra_attention_mask_nonzeros = extra_attention_mask.nonzero(as_tuple=True) # zero_to_max_range = torch.arange(0, max_num_extra_indices_per_batch, device=extra_attention_mask.device) # # mask indicating which values are actually going to be padding # num_extra_indices_per_batch = extra_attention_mask.long().sum(dim=1) # selection_padding_mask = zero_to_max_range < num_extra_indices_per_batch.unsqueeze(dim=-1) # # 2) location of the non-padding values in the selected global attention # selection_padding_mask_nonzeros = selection_padding_mask.nonzero(as_tuple=True) # # 3) location of the padding values in the selected global attention # selection_padding_mask_zeros = (selection_padding_mask == 0).nonzero(as_tuple=True) # # keys of global tokens # if extra_attention_mask is not None: # K_transpose = K_normalized.transpose(1,2) # Q_transpose = Q.transpose(1,2) # selected_k = K_transpose.new_zeros(batch_size, max_num_extra_indices_per_batch, self.num_head, self.head_dim) # selected_k[selection_padding_mask_nonzeros] = K_transpose[extra_attention_mask_nonzeros] # # (bsz, seq_len, num_heads, max_num_extra_indices_per_batch) # selected_attn_weights = torch.einsum('blhd,bshd->blhs', (Q_transpose, selected_k)) # selected_attn_weights[selection_padding_mask_zeros[0], :, :, selection_padding_mask_zeros[1]] = -10000 # attn_weights_over_g_tokens = selected_attn_weights.transpose(1,2) # V_transpose = V_normalized.transpose(1,2) # selected_v = V_transpose.new_zeros(batch_size, max_num_extra_indices_per_batch, self.num_head, self.head_dim) # selected_v[selection_padding_mask_nonzeros] = V_transpose[extra_attention_mask_nonzeros] # # linear attention mask # padding_mask = key_padding_mask != 0 # True means masked position # K_compress = V_compress = None # if self.num_landmarks > 0: # # self.dconv_fc(x): each lanmark of each head attend to each location # head_scores = self.dconv_fc(x).masked_fill(padding_mask[:, :, None], -10000) # only try to compress the k/v of those local tokens # head_scores = F.softmax(head_scores, dim=1, dtype=torch.float32) #.to(X) # # if not self.fp32: # head_scores = head_scores.to(x) # # bsz x num_head x num_lms x length # head_scores = head_scores.view(batch_size, -1, self.num_head, self.num_landmarks).permute(0, 2, 3, 1) # # TODO: should we use normalized K/V here? different from paper descriptions # K_compress = head_scores.matmul(K_normalized) # bsz x num_head x num_lms x head_dim # V_compress = head_scores.matmul(V_normalized) # assert self.num_landmarks > 0 # if self.dual_ln_s is not None and K_compress is not None: # K_compress = self.dual_ln_s(K_compress.transpose(1, 2).contiguous().view(batch_size, -1, self.dim)) # K_compress = self.split_heads(K_compress) # V_compress = self.dual_ln_s(V_compress.transpose(1, 2).contiguous().view(batch_size, -1, self.dim)) # V_compress = self.split_heads(V_compress) # # if self.num_landmarks > 0 or (cls_embed_q is not None): # # bsz x num_head x length x num_lms # attn_compress = Q.matmul(K_compress.transpose(-1, -2)) # win_attn_weights = self.sliding_chunks_matmul_qk_v2(Q, K_normalized, padding_mask) # bsz x num_heads x seqlen x 2winsize # # else: # # win_attn_weights = None # if extra_attention_mask is not None: # all_attn_ = torch.cat([attn_compress, win_attn_weights, attn_weights_over_g_tokens], dim=-1) # else: # all_attn_ = torch.cat([attn_compress, win_attn_weights], dim=-1) # all_attn = all_attn_.float().softmax(dim=-1).to(win_attn_weights) # hard_mask = key_padding_mask == 1 # all_attn = all_attn.masked_fill(hard_mask[:,None,:,None], 0) # # if not self.fp32: # all_attn = all_attn.to(x) # all_attn = self.drop_attn(all_attn) # C = 0 # if attn_compress is not None: # C += all_attn[:,:,:,:K_compress.shape[2]].matmul(V_compress) # if win_attn_weights is not None: # win_attn_probs = all_attn[:,:,:,K_compress.shape[2]:K_compress.shape[2] + win_attn_weights.shape[-1]] # seq_len = win_attn_probs.shape[2] # # if self.window_size > 0: # win_attn_probs = win_attn_probs.view(batch_size, self.num_head, seq_len // self.window_size, self.window_size,-1) # V_tiles = self.get_tiles_v2(V_normalized, transpose=False) # C += win_attn_probs.matmul(V_tiles).view(batch_size, self.num_head, seq_len, self.head_dim) # # else: # # C += win_attn_probs * V # if extra_attention_mask is not None: # global_attn_probs = all_attn[:,:,:,-attn_weights_over_g_tokens.shape[-1]:] # # selected_v shape: (batch_size, max_num_extra_indices_per_batch, self.num_head, self.head_dim) # C += global_attn_probs.matmul(selected_v.transpose(1,2)) # # global tokens attending to all other tokens. # # TODO: Two options are possible here: whether to use normalized key/value # selected_q = Q_transpose.new_zeros(batch_size, max_num_extra_indices_per_batch, self.num_head, self.head_dim) # selected_q[selection_padding_mask_nonzeros] = Q_transpose[extra_attention_mask_nonzeros] # g2all_attn_weights = selected_q.transpose(1,2).matmul(K_normalized.transpose(-1, -2)) # (batch_size, self.num_head, max_num_extra_indices_per_batch, seq_len) # g2all_attn_probs_float = F.softmax(g2all_attn_weights, dim=-1, dtype=torch.float32) # g2all_attn_probs = self.drop_attn(g2all_attn_probs_float.type_as(g2all_attn_weights)) # g2all_attn = g2all_attn_probs.matmul(V_normalized) # (batch_size, self.num_head, max_num_extra_indices_per_batch, head_dim) # # replace results in C # nonzero_global_attn = g2all_attn[selection_padding_mask_nonzeros[0], :, selection_padding_mask_nonzeros[1]] # C[extra_attention_mask_nonzeros[0],:,extra_attention_mask_nonzeros[1]] = nonzero_global_attn # # get rid of the padding positions # C = C[:,:,:sequence_length].view(-1, sequence_length, self.head_dim) # return C def get_tiles(self, x, transpose=False): # x: bsz x n_heads x seqlen x d_head bsz, n_heads, seqlen, d_h = x.shape out_shape = (bsz, n_heads, seqlen//self.window_size-1, 2 * self.window_size, d_h) in_strides = x.stride() out_strides = (in_strides[0], in_strides[1], in_strides[2]*self.window_size, in_strides[2], 1) x_main = x.as_strided(size=out_shape, stride=out_strides) x_last = x[:, :, None, -2*self.window_size:, :] x = torch.cat([x_main, x_last], dim=2) if transpose: return x.transpose(-1, -2) else: # bsz x n_heads x seqlen//wlen x 2*wlen x d_h return x def get_tiled_mask(self, mask): bsz, seqlen = mask.shape out_shape = (bsz, seqlen//self.window_size-1, 2*self.window_size) in_stride = mask.stride() out_stride = (in_stride[0], in_stride[1]*self.window_size, in_stride[1]) mask_main = mask.as_strided(size=out_shape, stride=out_stride)[:, None, :, :] mask_last = mask[:, None, None, -2*self.window_size:] return torch.cat([mask_main, mask_last], dim=2)[:, :, :, None, :] def sliding_chunks_matmul_qk(self, Q, K, padding_mask): # Q, K: bsz x num_heads x seqlen x d_head # padding_mask: bsz x seqlen bsz, num_heads, seqlen, d_h = Q.shape mask_tiles = self.get_tiled_mask(padding_mask) K_tiles = self.get_tiles(K, transpose=True) Q_tiles = Q.view(bsz, num_heads, seqlen//self.window_size, self.window_size, d_h) # bsz x num_heads x seqlen//winsize x winsize x 2winsize qk_scores = Q_tiles.matmul(K_tiles) qk_scores.masked_fill_(mask_tiles, -10000) return qk_scores.view(bsz, num_heads, seqlen, 2*self.window_size) def get_tiles_v2(self, x, transpose=False): if self.window_size <= 0: return x bsz, n_heads, seqlen, d_h = x.shape n_groups = seqlen // self.window_size ext_len = max(self.window_size//2, 1) x = F.pad(x, (0, 0, ext_len, ext_len), value=0) strides = x.stride() if transpose: out_shape = (bsz, n_heads, n_groups, d_h, 2 * ext_len + self.window_size) out_stride = (strides[0], strides[1], self.window_size * strides[2], strides[3], strides[2]) else: out_shape = (bsz, n_heads, n_groups, 2 * ext_len + self.window_size, d_h) out_stride = (strides[0], strides[1], self.window_size * strides[2], strides[2], strides[3]) return torch.as_strided(x, size=out_shape, stride=out_stride) def get_tiled_mask_v2(self, mask): # only mask along the key dimension bsz, seqlen = mask.shape ext_len = max(self.window_size//2, 1) mask = F.pad(mask, (ext_len, ext_len), value=True) # (bsz, seq_len + 2*ext_len) out_shape = (bsz, seqlen//self.window_size, 2*ext_len + self.window_size) in_stride = mask.stride() out_stride = (in_stride[0], in_stride[1]*self.window_size, in_stride[1]) return mask.as_strided(size=out_shape, stride=out_stride)[:, None, :, None, :] def sliding_chunks_matmul_qk_v2(self, Q, K, padding_mask): bsz, num_heads, seqlen, d_h = Q.shape if self.window_size > 0: # Q, K: bsz x num_heads x seqlen x d_head # padding_mask: bsz x seqlen mask_tiles = self.get_tiled_mask_v2(padding_mask) K_tiles = self.get_tiles_v2(K, transpose=True) Q_tiles = Q.view(bsz, num_heads, seqlen//self.window_size, self.window_size, d_h) # bsz x num_heads x seqlen//winsize x winsize x 2winsize qk_scores = Q_tiles.matmul(K_tiles) qk_scores = qk_scores.masked_fill(mask_tiles, -10000) return qk_scores.view(bsz, num_heads, seqlen, -1) else: qk_scores = torch.sum(Q*K, dim=-1, keepdim=True) return qk_scores def combine_heads(self, X): X = X.transpose(1, 2) X = X.reshape(X.size(0), X.size(1), self.num_head * self.head_dim) return X def split_heads(self, X): X = X.reshape(X.size(0), X.size(1), self.num_head, self.head_dim) X = X.transpose(1, 2) return X # #### v0 the original implementaion # def forward( # self, # x: torch.Tensor, # q: torch.Tensor, # k: torch.Tensor, # v: torch.Tensor, # att_mask: Optional[torch.Tensor] = None, # key_padding_mask: Optional[Tensor] = None, # *args, **kwargs # ): # global_tokens = self.global_tokens # batch_size = q.shape[0] // self.num_head # sequence_length = q.shape[1] # # xformer format, att_mask: B x seq_len x seq_len #TODO: better solution? # # if key_padding_mask is not None: # # mask = key_padding_mask == 0 # if att_mask is not None: # assert len(att_mask.shape) == 3 # att_mask = att_mask.reshape(batch_size, self.num_head, -1, sequence_length)[:,0,:,:] # mask = att_mask.sum(1) > 0 # else: # mask = None # Q = q.view(batch_size, self.num_head, -1, self.head_dim).mul(1./math.sqrt(self.head_dim)) # K = k.view(batch_size, self.num_head, -1, self.head_dim).transpose(1,2).reshape(batch_size, -1, self.dim) # V = v.view(batch_size, self.num_head, -1, self.head_dim).transpose(1,2).reshape(batch_size, -1, self.dim) # if global_tokens > 0: # # cls_embed = x[:,:1].contiguous() # cls_embed_q = Q[:,:,:global_tokens].contiguous() # cls_embed_k = K[:,:global_tokens].contiguous() # cls_embed_v = V[:,:global_tokens].contiguous() # x = x[:,global_tokens:].contiguous() # B x (seq - 1) x dim_model # Q = Q[:,:,global_tokens:].contiguous() # B x heads x (seq - 1) x head_dim # K = K[:,global_tokens:].contiguous() # B x (seq - 1) x dim_model # V = V[:,global_tokens:].contiguous() # mask = mask[:,global_tokens:].contiguous() if mask is not None else None # B x (seq - 1) # def _pad_to_window_size(x, window_size): # seq_len = x.size(-2) # pad_len = (window_size - seq_len % window_size) % window_size # return F.pad(x, (0,0,0,pad_len), value=0), pad_len # x, pad_len = _pad_to_window_size(x, self.window_size) # Q, _ = _pad_to_window_size(Q, self.window_size) # K, _ = _pad_to_window_size(K, self.window_size) # V, _ = _pad_to_window_size(V, self.window_size) # if mask.shape[1] % self.window_size != 0: # pad_len = (self.window_size - mask.shape[1] % self.window_size) % self.window_size # mask = torch.cat([mask, mask.new_zeros(mask.size(0), pad_len).to(mask)], dim=1) # K = self.split_heads(self.dual_ln_l(K)) # V = self.split_heads(self.dual_ln_l(V)) # # 1. check size of x (bsz, seq-1, dim_model); # TODO, 2. the padding mask value # padding_mask = ~mask.bool() # K_compress = V_compress = None # if self.num_landmarks > 0: # head_scores = self.dconv_fc(x).masked_fill(padding_mask[:, :, None], float('-inf')) # head_scores = F.softmax(head_scores, dim=1, dtype=torch.float32) #.to(X) # # if not self.fp32: # head_scores = head_scores.to(x) # # bsz x num_head x num_lms x length # head_scores = head_scores.view(batch_size, -1, self.num_head, self.num_landmarks).permute(0, 2, 3, 1) # K_compress = head_scores.matmul(K) # bsz x num_head x num_lms x head_dim # V_compress = head_scores.matmul(V) # if global_tokens > 0: # Q_cls = cls_embed_q # B x heads x 1 x head_dim # K_cls = self.split_heads(cls_embed_k) # B x heads x 1 x head_dim # V_cls = self.split_heads(cls_embed_v) # if self.num_landmarks > 0: # K_compress = torch.cat([K_cls, K_compress], dim=2) # B x heads x (1 + lms) x head_dim # V_compress = torch.cat([V_cls, V_compress], dim=2) # else: # K_compress = K_cls # V_compress = V_cls # if self.dual_ln_s is not None and K_compress is not None: # K_compress = self.dual_ln_s(K_compress.transpose(1, 2).contiguous().view(batch_size, -1, self.dim)) # K_compress = self.split_heads(K_compress) # V_compress = self.dual_ln_s(V_compress.transpose(1, 2).contiguous().view(batch_size, -1, self.dim)) # V_compress = self.split_heads(V_compress) # if self.num_landmarks > 0 or (cls_embed_q is not None): # # bsz x num_head x length x num_lms # attn_compress = Q.matmul(K_compress.transpose(-1, -2)) # else: # attn_compress = None # if self.window_size > 0 or self.num_landmarks == 0: # # First, compute the compressed part, or the attentions on the landmarks # # First use window attention to attend to the diagonals # # V: bsize, self.seq_len, self.num_head, self.head_dim # # win_attn_weights = self.sliding_chunks_matmul_qk(Q, K, padding_mask) # win_attn_weights = self.sliding_chunks_matmul_qk_v2(Q, K, padding_mask) # else: # win_attn_weights = None # if attn_compress is None: # all_attn_ = win_attn_weights # elif win_attn_weights is None: # all_attn_ = attn_compress # else: # all_attn_ = torch.cat([attn_compress, win_attn_weights], dim=-1) # all_attn = all_attn_.float().softmax(dim=-1).to(win_attn_weights) # all_attn = all_attn.masked_fill(padding_mask[:,None,:,None], 0) # # if not self.fp32: # all_attn = all_attn.to(x) # all_attn = self.drop_attn(all_attn) # C = 0 # if attn_compress is not None: # C += all_attn[:,:,:,:K_compress.shape[2]].matmul(V_compress) # if win_attn_weights is not None: # win_attn_probs = all_attn[:,:,:,-win_attn_weights.shape[-1]:] # seq_len = win_attn_probs.shape[2] # if self.window_size > 0: # win_attn_probs = win_attn_probs.view(batch_size, self.num_head, seq_len // self.window_size, self.window_size,-1) # V_tiles = self.get_tiles_v2(V, transpose=False) # C += win_attn_probs.matmul(V_tiles).view(batch_size, self.num_head, seq_len, self.head_dim) # else: # C += win_attn_probs * V # if cls_embed_q is not None: # # if self.fp32: # # Q_cls, K_cls, V_cls = Q_cls.float(), K_cls.float(), V_cls.float() # # bsz x n_heads x 1 x (1+seqlen) # cls_scores = torch.cat([Q_cls.matmul(K_cls.transpose(-1, -2)), # Q_cls.matmul(C.transpose(-1, -2)).masked_fill(padding_mask[:,None,None,:], float('-inf'))], # dim=-1) # cls_probs = torch.softmax(cls_scores, dim=-1, dtype=torch.float32)#.to(X) # # if not self.fp32: # cls_probs = cls_probs.to(x) # out_cls_embed = cls_probs[:,:,:,:global_tokens].matmul(V_cls) + cls_probs[:,:,:,global_tokens:].matmul(C) # if cls_embed_q is not None: # C = torch.cat([out_cls_embed, C], dim=2) # # get rid of the padding positions # C = C[:,:,:sequence_length].view(-1, sequence_length, self.head_dim) # return C
bart_ls-main
xformers/xformers/components/attention/longshort.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import torch from xformers.components.attention import Attention, AttentionConfig, register_attention @register_attention("fourier_mix", AttentionConfig) class FourierMix(Attention): def __init__(self, dropout: float, *_, **__): """ FFT-based pseudo-attention mechanism, from " "FNet: Mixing Tokens with Fourier Transforms" Lee-Thorp et al., 2021, https://arxiv.org/pdf/2105.03824.pdf """ super().__init__() self.attn_drop = torch.nn.Dropout(dropout, inplace=False) self.requires_input_projection = False def forward(self, q: torch.Tensor, *_, **__): att = torch.fft.fft2(q).real att = self.attn_drop(att) return att
bart_ls-main
xformers/xformers/components/attention/fourier_mix.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import logging from dataclasses import dataclass from typing import Optional, Union import torch from torch import nn from xformers.components.attention import ( Attention, AttentionConfig, AttentionMask, register_attention, ) from xformers.components.attention.core import scaled_dot_product_attention @dataclass class ScaledDotProductConfig(AttentionConfig): causal: Optional[bool] seq_len: Optional[int] to_seq_len: Optional[int] @register_attention("scaled_dot_product", ScaledDotProductConfig) class ScaledDotProduct(Attention): r""" Implementing the Scaled Dot-Product attention proposed in `Attention is all you need`_, Vaswani et al. .. _`Attention is all you need`: https://arxiv.org/abs/1706.03762v5 """ mask: Optional[AttentionMask] def __init__( self, dropout: float = 0.0, causal: bool = False, seq_len: Optional[int] = None, to_seq_len: Optional[int] = None, *args, **kwargs, ): super().__init__() self.attn_drop = nn.Dropout(dropout, inplace=False) self.causal = causal self.seq_len = seq_len if causal and seq_len is not None: self.mask = AttentionMask.make_causal(seq_len, to_seq_len) else: self.mask = None def forward( self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, att_mask: Optional[Union[AttentionMask, torch.Tensor]] = None, *args, **kwargs, ) -> torch.Tensor: r""" att_mask A 2D or 3D mask which ignores attention at certain positions. - If the mask is boolean, a value of True will keep the value, while a value of False will mask the value. Key padding masks (dimension: batch x sequence length) and attention masks (dimension: sequence length x sequence length OR batch x sequence length x sequence length) can be combined and passed in here. Method maybe_merge_masks provided in the utils can be used for that merging. - If the mask has the float type, then an additive mask is expected (masked values are -inf) """ # Convenience, create an attention mask if a tensor was passed if att_mask is not None and isinstance(att_mask, torch.Tensor): # By default we don't know of the causality, and a check would be expensive att_mask = ( AttentionMask.from_bool(att_mask) if att_mask.dtype == torch.bool else AttentionMask(att_mask, is_causal=False) ) # Handle a possibly deferred causal mask handling if self.causal and self.mask is None: self.mask = AttentionMask.make_causal( seq_len=q.shape[-2], to_seq_len=q.shape[-2], device=q.device, dtype=q.dtype, ) # Merge the optional causal mask and the user-provided mask if self.mask is not None: self.mask = self.mask.to(dtype=q.dtype, device=q.device) att_mask = att_mask + self.mask if att_mask is not None else self.mask # Try to handle a case where the sequence is smaller than the mask if ( att_mask is not None and q.shape[-2] == k.shape[-2] and q.shape[-2] < att_mask.shape[1] ): if isinstance(att_mask, AttentionMask): att_mask = att_mask.make_crop(seq_len=q.shape[-2]) else: logging.error( "Mismatching sparse attention mask and sequence length." + " Please pad the inputs or adjust the attention mask" ) raise NotImplementedError # Attend: (B x nh, S, hs) x (B x nh, hs, S) -> (B x nh, S, S) y = scaled_dot_product_attention( q=q, k=k, v=v, att_mask=att_mask, dropout=self.attn_drop ) return y
bart_ls-main
xformers/xformers/components/attention/scaled_dot_product.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from typing import Optional import torch # Reshapes key padding mask from (batch_size, src_len) -> (batch_size * num_heads 1, src_len) def reshape_key_padding_mask( key_padding_mask: torch.Tensor, batched_dim: int ) -> torch.Tensor: assert key_padding_mask.ndim == 2 batch_size, src_len = key_padding_mask.size() num_heads = batched_dim // batch_size return _reshape_key_padding_mask(key_padding_mask, batch_size, src_len, num_heads) def _reshape_key_padding_mask( key_padding_mask: torch.Tensor, batch_size: int, src_len: int, num_heads: int ) -> torch.Tensor: assert key_padding_mask.shape == (batch_size, src_len) key_padding_mask = ( key_padding_mask.view(batch_size, 1, 1, src_len) .expand(-1, num_heads, -1, -1) .reshape(batch_size * num_heads, 1, src_len) ) return key_padding_mask # Combine the attention mask and key padding mask into a single mask # Taken from https://github.com/pytorch/pytorch/blob/master/torch/nn/functional.py # Additive masking not yet supported def maybe_merge_masks( att_mask: Optional[torch.Tensor], key_padding_mask: Optional[torch.Tensor], batch_size: int, src_len: int, num_heads: int, tgt_len: Optional[int] = None, ) -> Optional[torch.Tensor]: if tgt_len is None: tgt_len = src_len if key_padding_mask is not None: assert key_padding_mask.shape == (batch_size, src_len) key_padding_mask = _reshape_key_padding_mask( key_padding_mask, batch_size, src_len, num_heads ) if att_mask is None: # make sure dimensions of key padding mask are the same as those expected for att_mask att_mask = key_padding_mask.expand(-1, tgt_len, -1) # Assumption is that False means to mask. elif att_mask.dtype == torch.bool: att_mask = att_mask.logical_and(key_padding_mask) else: att_mask = att_mask.masked_fill(~key_padding_mask, float("-inf")) return att_mask # Assumes that matrix passed in has had softmax applied to it. def iterative_pinv(softmax_mat: torch.Tensor, n_iter=6, pinverse_original_init=False): """ Computing the Moore-Penrose inverse. Use an iterative method from (Razavi et al. 2014) to approximate the Moore-Penrose inverse via efficient matrix-matrix multiplications. """ i = torch.eye( softmax_mat.size(-1), device=softmax_mat.device, dtype=softmax_mat.dtype ) k = softmax_mat # The entries of K are positive and ||K||_{\infty} = 1 due to softmax if pinverse_original_init: # This original implementation is more conservative to compute coefficient of Z_0. v = 1 / torch.max(torch.sum(k, dim=-2)) * k.transpose(-1, -2) else: # This is the exact coefficient computation, 1 / ||K||_1, of initialization of Z_0, leading to faster # convergence. v = ( 1 / torch.max(torch.sum(k, dim=-2), dim=-1).values[:, None, None] * k.transpose(-1, -2) ) for _ in range(n_iter): kv = torch.matmul(k, v) v = torch.matmul( 0.25 * v, 13 * i - torch.matmul(kv, 15 * i - torch.matmul(kv, 7 * i - kv)), ) return v def bool_mask_to_additive( mask: torch.Tensor, dtype: Optional[torch.dtype] = torch.float32 ) -> torch.Tensor: assert ( mask.dtype == torch.bool ), "This util is meant to convert in between bool masks and additive ones" mask_ = torch.zeros_like(mask, dtype=dtype) mask_[~mask] = float("-inf") return mask_
bart_ls-main
xformers/xformers/components/attention/utils.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from typing import Optional, Type, TypeVar import torch Self = TypeVar("Self", bound="AttentionMask") class AttentionMask: """ Holds an attention mask, along with a couple of helpers and attributes. .. note: this is an additive mask, meaning that coefficients which should be computed hold the '0.' value, and coefficients which should be skipped hold the '-inf' value. Any other value is possible if the purpose is to bias the attention computation for instance .. note: the attention mask dimensions are expected to be `[batch, to_sequence, from_sequence]`, `[to_sequence, from_sequence]`, or anything broadcastable in between """ def __init__(self, additive_mask: torch.Tensor, is_causal: bool = False): assert additive_mask.is_floating_point(), additive_mask.dtype assert not additive_mask.requires_grad if additive_mask.ndim == 2: additive_mask = additive_mask.unsqueeze(0) self.values = additive_mask self.is_causal = is_causal self.seq_len = additive_mask.shape[1] self.to_seq_len = additive_mask.shape[0] def to_bool(self) -> torch.Tensor: """ .. warning: we assume here that True implies that the value should be computed """ return self.values != float("-inf") @classmethod def from_bool(cls: Type[Self], x: torch.Tensor) -> Self: """ Create an AttentionMask given a boolean pattern. .. warning: we assume here that True implies that the value should be computed """ assert x.dtype == torch.bool additive_mask = torch.empty_like(x, dtype=torch.float, device=x.device) additive_mask.masked_fill_(x, 0.0) additive_mask.masked_fill_(~x, float("-inf")) return cls(additive_mask) @classmethod def from_multiplicative(cls: Type[Self], x: torch.Tensor) -> Self: """ Create an AttentionMask given a multiplicative attention mask. """ assert not x.dtype == torch.bool additive_mask = torch.empty_like(x, dtype=torch.float, device=x.device) x = x.bool() additive_mask.masked_fill_(x, 0.0) additive_mask.masked_fill_(~x, float("-inf")) return cls(additive_mask) @classmethod def make_causal( cls: Type[Self], seq_len: int, to_seq_len: Optional[int] = None, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, ) -> Self: if not to_seq_len: to_seq_len = seq_len additive_mask = torch.triu( torch.ones(seq_len, to_seq_len, device=device, dtype=dtype) * float("-inf"), diagonal=1, ) return cls(additive_mask=additive_mask, is_causal=True) def make_crop( self, seq_len: int, to_seq_len: Optional[int] = None ) -> "AttentionMask": """ Return a cropped attention mask, whose underlying tensor is a view of this one """ if not to_seq_len: to_seq_len = seq_len return AttentionMask( self.values[:, :seq_len, :to_seq_len], is_causal=self.is_causal ) def __repr__(self): return f"AttentionMask - causal {self.is_causal} - mask " + str(self.values) @property def device(self): return self.values.device @property def is_sparse(self): return False @property def ndim(self): return len(self.values.shape) @property def dtype(self): return self.values.dtype @property def shape(self): return self.values.shape def __add__(self, other): assert isinstance(other, type(self)) return AttentionMask(self.values + other.values, is_causal=False) def to( self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None ) -> "AttentionMask": assert device is None or isinstance(device, torch.device) assert dtype is None or isinstance(dtype, torch.dtype) assert device is not None or dtype is not None # Noop if we don't need to create another instance if ((device and device == self.device) or not device) and ( (dtype and dtype == self.dtype) or not dtype ): return self return AttentionMask(self.values.to(device=device, dtype=dtype), self.is_causal)
bart_ls-main
xformers/xformers/components/attention/attention_mask.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import logging import math from dataclasses import dataclass from typing import Optional from functools import partial import torch from xformers import _is_triton_available from xformers.components.attention import Attention, AttentionConfig, register_attention from xformers.components.attention.utils import bool_mask_to_additive import torch.nn.functional as F from triton.ops.blocksparse import matmul as blocksparse_matmul from triton.ops.blocksparse import softmax as blocksparse_softmax from xformers.triton.softmax import MaskType from xformers.triton.utils import gpu_capabilities_older_than_70 # Blocksparse requires Tensor cores if gpu_capabilities_older_than_70(): logging.warning( "Blocksparse is not available: the current GPU does not expose Tensor cores" ) _is_triton_available = False def _split_heads(num_heads: int, x: torch.Tensor): shape = list(x.shape) shape[:1] = [-1, num_heads] return x.reshape(*shape) if _is_triton_available: @dataclass class BlockSparseLocalAttentionConfig(AttentionConfig): # layout: torch.Tensor # The dimensions of the random features max_seq_len: int block_size: int dropout: float num_heads: int global_blocks: int @register_attention("bs_local", BlockSparseLocalAttentionConfig) class BlockSparseLocalAttention(Attention): r""" Thin wrap over the Triton blocksparse computations. The sparsity pattern is determined through the layout. .. warning: the layout is assumed to have the dimensions [heads, seq, seq]. If some dimensions are missing, we assume that the same layout is to be used across heads. .. warning: for now, the sequence (context) length has to be a power of two. This constraint could be relaxed in the future. .. note: it is possible to pass a specific per batch mask in the forward call, but this will not lead to any speed up. Any constant sparsity pattern is better passed through the layout parameter. """ def __init__( self, max_seq_len: int = 16384, block_size: int = 1024, dropout: float = 0.0, block_unit: int = 16, num_heads: int = 1, # optional, used to adapt the layout if in need global_blocks: int = 0, *args, **kwargs, ): super().__init__() self.max_seq_len = max_seq_len self.num_heads = num_heads self.global_blocks = global_blocks self.attn_drop = torch.nn.Dropout(dropout, inplace=False) self.block_size = block_size self.block_unit = block_unit # make sure that the head dimension is not folded down with the batch self.requires_head_dimension = False # key padding mask and attention mask must be passed in separately self.requires_separate_masks = True self.requires_same_k_q_dimensions = True self.layout = self._generate_layout() self.ops = {} # layout for different sequence lengths def _generate_layout(self): num_blocks = self.max_seq_len // self.block_unit local_mask = torch.zeros((self.num_heads, num_blocks, num_blocks), dtype=torch.int64) num_local_blocks = self.block_size // self.block_unit for block_start in range(0, num_blocks, num_local_blocks): # setup local patterns local_mask[:, block_start:block_start+num_local_blocks, block_start:block_start+num_local_blocks] = 1 # global patterns if self.global_blocks > 0: assert self.global_blocks < num_local_blocks local_mask[:, block_start:block_start + self.global_blocks, :] = 1 local_mask[:, :, block_start:block_start + self.global_blocks] = 1 return local_mask def _trim_layout(self, seq_len): assert seq_len % self.block_unit == 0 num_blocks = seq_len // self.block_unit return self.layout[:, :num_blocks, :num_blocks].cpu() def _build_operators(self, seq_len): assert seq_len % self.block_unit == 0 if seq_len not in self.ops: layout = self._trim_layout(seq_len) # blocksparse operators sparse_dot_sdd = blocksparse_matmul( layout, self.block_unit, "sdd", trans_a=False, trans_b=True, ) sparse_dot_dsd = blocksparse_matmul( layout, self.block_unit, "dsd", trans_a=False, trans_b=False, ) sparse_softmax = blocksparse_softmax(layout, self.block_unit) self.ops[seq_len] = (sparse_dot_sdd, sparse_dot_dsd, sparse_softmax) return self.ops[seq_len] def update_mask_type(self, mask: torch.Tensor): global _mask_type_warning if _mask_type_warning: logging.warning( "Mask has to be additive. Fixing that but this slows things down" ) mask = bool_mask_to_additive(mask) # blocksparse requires fixed size input def _pad_to_seq_size(self, x): seq_len = x.size(-2) pad_len = self.seq_len - seq_len if pad_len == 0: return x, pad_len return F.pad(x, (0,0,0,pad_len), value=0), pad_len def forward( self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, att_mask: Optional[torch.Tensor] = None, key_padding_mask: Optional[torch.Tensor] = None, scale: float = 1.0, attn_bias: Optional[torch.Tensor] = None, *args, **kwargs, ) -> torch.Tensor: r""" att_mask A 2D attention mask. The dtype must be the same as q. An additive mask is expected, meaning float values using "-inf" to mask values. key_padding_mask A mask with size (batch size x sequence length). The dtype must be the same as q. An additive mask is expected, meaning float values using "-inf" to mask values """ # NOTE: # The attention mask will be taken into account when computing the softmax # meaning that non-masked values which are present in the initial blocksparse layout will be computed. # If blocks are to be constantly masked, better perf would thus be reached by signalling them out in the # initial attention setup bh = q.size(0) orig_seq_len = q.size(1) head_dim = q.size(-1) if key_padding_mask is None: key_padding_mask = torch.zeros(int(q.shape[0]/self.num_heads), q.size(-2)) att_mask = None # HACK # pad the input length to factors of bucket size def _pad_to_window_size(x, window_size): """ sequence length here should be power of 2 """ seq_len = x.size(-2) while window_size < seq_len: window_size *= 2 pad_len = window_size - seq_len return F.pad(x, (0,0,0,pad_len), value=0), pad_len q, pad_len = _pad_to_window_size(q, self.block_size) k, pad_len = _pad_to_window_size(k, self.block_size) v, pad_len = _pad_to_window_size(v, self.block_size) key_padding_mask = torch.cat([key_padding_mask, key_padding_mask.new_ones(key_padding_mask.size(0), pad_len).to(key_padding_mask)], dim=1) key_padding_mask[key_padding_mask == 1] = float('-inf') key_padding_mask = key_padding_mask.to(q) q, k, v = map(partial(_split_heads, self.num_heads), (q, k, v)) if att_mask is not None and att_mask.dtype == torch.bool: self.update_mask_type(att_mask) if key_padding_mask is not None and key_padding_mask.dtype == torch.bool: self.update_mask_type(key_padding_mask) assert ( att_mask is None or att_mask.dim() == 2 ), "The attention mask is constant across heads, expected dimensions are [seq x seq]" assert ( q.shape[-2] == k.shape[-2] ), "Blocksparse requires the same dimensions for K and Q for now" assert math.log( q.shape[-2], 2 ).is_integer(), ( "For now blocksparse only works on power-of-two sequence lengths", q.shape ) # Blocksparse only works on fp16 q_dtype = q.dtype if q_dtype != torch.float16: q, k, v = q.half(), k.half(), v.half() if att_mask is not None: att_mask = att_mask.half() if key_padding_mask is not None: key_padding_mask = key_padding_mask.half() # Self-attend: (B, nh, S, hs) x (B, nh, hs, S) -> (B, nh, S, S) # When the computations are block sparse, the matrix types change along the way: # - (sparse) attention matrix = (dense) Kt * (dense) Q q = q / math.sqrt(q.size(-1)) sparse_dot_sdd, sparse_dot_dsd, sparse_softmax = self._build_operators(q.size(-2)) sparse_att_mat = sparse_dot_sdd(q, k) if attn_bias is not None: block_attn_bias = self.extract_block_bias(attn_bias, k.shape[-2]) block_attn_bias = block_attn_bias.view(1, self.num_heads, -1, self.block_size // self.block_unit, self.block_unit, self.block_size // self.block_unit, self.block_unit).transpose(-2,-3) block_attn_bias = block_attn_bias.reshape(1, -1, self.block_unit, self.block_unit) sparse_att_mat += block_attn_bias # - softmax on the sparse attention matrix sparse_att_mat = sparse_softmax( sparse_att_mat, scale=scale, key_padding_mask=key_padding_mask, attn_mask=att_mask, key_padding_mask_mode=MaskType.ADD, attn_mask_mode=MaskType.ADD, ) sparse_att_mat = self.attn_drop(sparse_att_mat) # - then (dense) attention is (sparse) attention matrix * dense (value) a = sparse_dot_dsd(sparse_att_mat, v) out = a.view(bh, -1, head_dim)[:,:orig_seq_len] if q_dtype != torch.float16: return out.to(q_dtype) return out def extract_block_bias(self, attn_bias, seq_len): attn_bias = attn_bias[:,:,:seq_len,:seq_len] block_bias = [] for b_idx in range(seq_len // self.block_size): block_bias.append(attn_bias[:,:, b_idx*self.block_size: b_idx*self.block_size+self.block_size, b_idx*self.block_size: b_idx*self.block_size+self.block_size].unsqueeze(2)) return torch.cat(block_bias, dim=2)
bart_ls-main
xformers/xformers/components/attention/blocksparse_local.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. """ Simple non-ovelapping local block attention. To test how strong are the locality inductive bias in these tasks """ from dataclasses import dataclass from typing import Optional import torch from torch import nn from torch import Tensor import torch.nn.functional as F from functools import partial from xformers.components.attention import Attention, AttentionConfig, register_attention @dataclass class BlockNoglobalAttentionConfig(AttentionConfig): block_size: int num_heads: int require_key_mask: bool @register_attention("block_noglobal", BlockNoglobalAttentionConfig) class BlockNoglobalAttention(Attention): def __init__( self, dropout: float, num_heads: int, block_size: int = 1024, *args, **kwargs ): super().__init__() self.block_size = block_size self.drop_attn = nn.Dropout(dropout) self.num_head = num_heads def forward( self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, att_mask: Optional[torch.Tensor] = None, key_padding_mask: Optional[Tensor] = None, attn_bias: Optional[torch.Tensor] = None, *args, **kwargs ): # Notation: batch size: B, sequence length: L, number of blocks: nb, number of heads: nh # q, k, v: (B * nh, L, head_dim) bh = q.size(0) bsz = bh // self.num_head head_dim = q.size(-1) sequence_length = q.shape[1] if key_padding_mask is None: key_padding_mask = torch.zeros(int(q.shape[0]/self.num_head), q.size(-2)) key_padding_mask = key_padding_mask.to(q) # # pad the input length to factors of bucket size # def _pad_to_window_size(x, window_size): # seq_len = x.size(-2) # pad_len = (window_size - seq_len % window_size) % window_size # return F.pad(x, (0,0,0,pad_len), value=0), pad_len # q, _ = _pad_to_window_size(q, self.block_size) # k, _ = _pad_to_window_size(k, self.block_size) # v, _ = _pad_to_window_size(v, self.block_size) # if key_padding_mask.shape[1] % self.block_size != 0: # pad_len = (self.block_size - key_padding_mask.shape[1] % self.block_size) % self.block_size # key_padding_mask = torch.cat([key_padding_mask, key_padding_mask.new_ones(key_padding_mask.size(0), pad_len).to(key_padding_mask)], dim=1) assert q.shape[1] % self.block_size == 0, q.shape num_blocks = q.shape[1] // self.block_size b_q = blockify(num_blocks, q) b_k, b_v = map(partial(blockify, num_blocks), (k, v)) # (B * nh, nb, L // nb, head_dim) dots = torch.einsum('buie,buje->buij', b_q, b_k) * (head_dim ** -0.5) # (B * nh, nb, L // nb, L // nb) mask_value = -10000 # this model does use global token markers (-1) q_mask = key_padding_mask != 1 # 1 means not masking kv_mask = q_mask mq, mk = map(partial(blockify, num_blocks), (q_mask, kv_mask)) # (B, nb, L // nb) mask = mq[:, :, :, None] * mk[:, :, None, :] # (B, nb, L // nb, L // nb) dots = dots.view(bsz, self.num_head, num_blocks, self.block_size, self.block_size) dots = dots.float().masked_fill_(~mask.unsqueeze(1), mask_value).to(q) # add relational bias seq_len = q.size(1) if attn_bias is not None: dots += self.extract_block_bias(attn_bias, seq_len) block_attn_weights = dots.view(bsz*self.num_head, -1, self.block_size) all_attn_probs = block_attn_weights.softmax(dim=-1) all_attn_probs = self.drop_attn(all_attn_probs) # calculate block attention block_attn_probs = all_attn_probs[:, :, :block_attn_weights.shape[-1]] block_attn_probs = block_attn_probs.view(bsz*self.num_head, -1, self.block_size, self.block_size) out = block_attn_probs.matmul(b_v).view(bsz*self.num_head, -1, head_dim) out = out[:, :sequence_length, :] return out def extract_block_bias(self, attn_bias, seq_len): attn_bias = attn_bias[:,:,:seq_len,:seq_len] block_bias = [] for b_idx in range(seq_len // self.block_size): block_bias.append(attn_bias[:,:, b_idx*self.block_size: b_idx*self.block_size+self.block_size, b_idx*self.block_size: b_idx*self.block_size+self.block_size].unsqueeze(2)) return torch.cat(block_bias, dim=2) def blockify(num_blocks, t, dim=1): shape = list(t.shape) shape[dim:dim+1] = [num_blocks, -1] return t.reshape(*shape)
bart_ls-main
xformers/xformers/components/attention/block_noglobal.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass from typing import Optional from torch import Tensor import torch.nn.functional as F import torch import torch.nn as nn from xformers.components.attention import Attention, AttentionConfig, register_attention from xformers.components.attention.core import scaled_dot_product_attention @dataclass class LinformerSelfAttentionConfig(AttentionConfig): seq_len: int # dimension of the input sequence k: Optional[int] # dimension of the internal space @register_attention("linformer", LinformerSelfAttentionConfig) class LinformerAttention(Attention): def __init__( self, dropout: float, num_heads: int, max_seq_len: int = 4096, compress: int = 8, *args, **kwargs ): """ Linformer attention mechanism, from `Linformer: Self-Attention with Linear Complexity`_, Wang et al (2020). The original notation is kept as is. .. _`Linformer: Self-Attention with Linear Complexity` : https://arxiv.org/abs/2006.04768v2 """ super().__init__() k = max_seq_len // compress self.num_heads = num_heads self.E = nn.Linear(max_seq_len, k, bias=False) self.F = nn.Linear(max_seq_len, k, bias=False) self.attn_drop = nn.Dropout(dropout, inplace=False) def forward( self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, key_padding_mask: Optional[Tensor] = None, *args, **kwargs ): bsz = q.shape[0] // self.num_heads mask = ~key_padding_mask.eq(1) mask = mask.to(q) tgt_len = k.shape[1] k_projected = F.linear(k.transpose(-2, -1), self.E.weight[:, 0:tgt_len]).transpose(-2, -1) v_projected = F.linear(v.transpose(-2, -1), self.F.weight[:, 0:tgt_len]).transpose(-2, -1) y = scaled_dot_product_attention( q=q, k=k_projected, v=v_projected, att_mask=None, dropout=self.attn_drop ) y = y.view(bsz, self.num_heads, y.shape[1], y.shape[2]) y = (y * mask[:,None,:,None]).view(bsz*self.num_heads, tgt_len, -1) return y
bart_ls-main
xformers/xformers/components/attention/linformer.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import math from typing import List import numpy as np import torch # generic nd cases def _generate_nd_grid(*sizes): coords = [torch.arange(s) for s in sizes] return torch.meshgrid(*coords) def local_nd_distance(*sizes, p=2.0, weights=None): if weights is None: weights = (1,) * len(sizes) assert len(sizes) == len(weights) grid = _generate_nd_grid(*sizes) grid = [i.flatten() * w for i, w in zip(grid, weights)] grid = torch.stack(grid, dim=1).float() d = torch.cdist(grid, grid, p=p) return d def local_nd_gaussian_distribution(*sizes, sigma=1): d = local_nd_distance(*sizes, p=2.0) ** 2 d = torch.exp(-0.5 * sigma ** (-2.0) * d) return d def local_nd_pattern(*sizes, distance, p=2.0): d = local_nd_distance(*sizes, p=p) return d < distance def axial_nd_pattern(*sizes): # axial is a special case with p=0 and distance=2 d = local_nd_distance(*sizes, p=0) return d < 2 def random_pattern_from_probability_matrix(dist_matrix, nnz): att = torch.zeros_like(dist_matrix, dtype=torch.bool) # PyTorch multinomial wrongly doesn't support sampling when number of categories # is > 2^24, arguing that it's because it's the max representable consecutive element # in fp32 and that the kernels use float32. This is actually not true, and the kernels # should work fine if double tensor is passed on CPU. This is a bug that was introduced # in https://github.com/pytorch/pytorch/commit/bf04c2ca2f591d98ce57816f0ef0cd20a21bbf66 # when unifying the checks between CPU and CUDA. For now, just fall-back to numpy if dist_matrix.numel() > 2 ** 24: dist_matrix = dist_matrix.double() dist_matrix /= dist_matrix.sum() idxs = np.random.choice( dist_matrix.numel(), nnz, p=dist_matrix.flatten(), replace=False ) idxs = torch.as_tensor(idxs) else: idxs = torch.multinomial(dist_matrix.flatten(), nnz, replacement=False) att.view(-1)[idxs] = True return att def global_token_pattern(attention_query_mask: torch.Tensor) -> torch.Tensor: assert attention_query_mask.ndim == 1 assert attention_query_mask.dtype == torch.bool attention_query_mask = attention_query_mask[None, :] mask = attention_query_mask | attention_query_mask.transpose(1, 0) return mask def random_pattern(attn_size: int, sparsity: float) -> torch.Tensor: assert 0 < sparsity < 1 mask = torch.rand(attn_size, attn_size) > sparsity return mask # 1d-specific cases def local_1d_pattern(attn_size: int, window_size: int) -> torch.Tensor: assert ( window_size % 2 == 1 ), "The window size is assumed to be odd (counts self-attention + 2 wings)" h_win_size = window_size // 2 + 1 return local_nd_pattern(attn_size, distance=h_win_size, p=1.0) def causal_1d_pattern(attn_size: int) -> torch.Tensor: mask = torch.tril(torch.ones(attn_size, attn_size, dtype=torch.bool)) return mask # 2d-specific cases def horizontal_axial_2d_distance(H, W, p=2.0): d = local_nd_distance(H, W, p=p, weights=(1, 0)) return d def vertical_axial_2d_distance(H, W, p=2.0): d = local_nd_distance(H, W, p=p, weights=(0, 1)) return d def local_2d_distance(H, W, p=2.0): return local_nd_distance(H, W, p=p) def local_2d_gausian_distribution(H, W, sigma=1): return local_nd_gaussian_distribution(H, W, sigma=sigma) def local_2d_pattern(H, W, distance, p=2.0): return local_nd_pattern(H, W, distance=distance, p=p) def axial_2d_pattern(H, W): return axial_nd_pattern(H, W) def swin_attention_pattern(H, W, window_size, shift_size=0): assert H % window_size == 0 assert W % window_size == 0 assert 0 <= shift_size < window_size, "shift_size must in 0-window_size" # input grid i, j = _generate_nd_grid(H, W) i, j = i + 0.5, j + 0.5 # anchors grid # if shift is present, add extra element to the grid # to account for the uneven partitioning extra = int(shift_size % window_size != 0) grid_h = H // window_size + extra grid_w = W // window_size + extra ii, jj = _generate_nd_grid(grid_h, grid_w) # convert shift to be compatible with the paper representation s = (-shift_size) % window_size offset = window_size / 2 - s ii = ii * window_size + offset jj = jj * window_size + offset input_coords = torch.stack([i.flatten(), j.flatten()], 1).float() anchors_coords = torch.stack([ii.flatten(), jj.flatten()], 1).float() anchor_id = torch.cdist(input_coords, anchors_coords, p=2).argmin(1) mask = anchor_id[:, None] == anchor_id[None, :] return mask def dilated_2d_pattern(H, W, k=2): """ Returns a 2d pattern that samples 1 every k elements in the attention mask. Can be seen as a form of downsampling, where every pixel attends to a downsampled version of the input. """ d_h = local_nd_distance(H, W, p=1, weights=(1, 0)) d_w = local_nd_distance(H, W, p=1, weights=(0, 1)) d = (d_h.floor() % k == 0) & (d_w.floor() % k == 0) return d # Block sparse utils def block_sparsify_tensor(x, mask, block_size): """ Block sparsify a tensor, given a mask and block size """ ret = torch.empty( (x.size(0), mask.sum(), block_size, block_size), dtype=x.dtype, device=x.device ) for idx, (h, i, j) in enumerate(zip(*mask.nonzero(as_tuple=True))): ret[:, idx, :, :] = x[ :, h, i * block_size : (i + 1) * block_size, j * block_size : (j + 1) * block_size, ] return ret def pattern_to_layout(mask: torch.Tensor, block_size: int) -> torch.Tensor: r""" Given a mask pattern and blocksize, return the corresponding layout which makes sure that all the positives in the mask are covered """ assert mask.ndim >= 2, "We're expecting [Heads, Seq, Seq] or [Seq, Seq]" _should_squeeze = False if mask.ndim == 2: mask = mask.unsqueeze(0) _should_squeeze = True assert ( mask.shape[1] % block_size == 0 and mask.shape[2] % block_size == 0 ), "We're only handling masks divisible by block_size" # Now mark the mask layout = torch.nn.functional.max_pool2d( mask.to(torch.float), kernel_size=block_size, stride=block_size ) layout = layout.to(torch.long) if _should_squeeze: layout.squeeze_(0) return layout def alibi_pattern(threshold: float, mask_shape: torch.Size) -> torch.Tensor: r""" Use the additive bias computation from ALiBi_ to generate a mask. Note that this mask can in turn be used to generate a blocksparse attention computation layout .. note: mask_shape is expected to hold the [heads, seq, seq] dimensions .. _ALiBi: https://arxiv.org/pdf/2108.12409.pdf """ # CREDITS: code snippet from Ofir Press, one of the authors def get_slopes(n: int): def get_slopes_power_of_2(n: int) -> List[float]: start = 2 ** (-(2 ** -(math.log2(n) - 3))) ratio = start return [start * ratio ** i for i in range(n)] # In the paper, we only train models that have 2^a heads for some a. This function has # some good properties that only occur when the input is a power of 2. To maintain that even # when the number of heads is not a power of 2, we use this workaround. if math.log2(n).is_integer(): return get_slopes_power_of_2(n) else: closest_power_of_2 = 2 ** math.floor(math.log2(n)) return ( get_slopes_power_of_2(closest_power_of_2) + get_slopes(2 * closest_power_of_2)[0::2][: n - closest_power_of_2] ) maxpos = mask_shape[1] attn_heads = mask_shape[0] slopes = torch.Tensor(get_slopes(attn_heads)) # In the next line, the part after the * is what constructs the diagonal matrix # (right matrix in Figure 3 in the paper). # If you run it you'll see that it doesn't exactly print out the same matrix as we have in Figure 3, # but one where all rows are identical. # This works because the softmax operation is invariant to translation, # and our bias functions are always linear. alibi = slopes.unsqueeze(1).unsqueeze(1) * torch.arange(maxpos).unsqueeze( 0 ).unsqueeze(0).expand(attn_heads, -1, -1) alibi = alibi.view(attn_heads, 1, maxpos) # Now threshold arbitrarily, report the mask return alibi < threshold
bart_ls-main
xformers/xformers/components/attention/attention_patterns.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import logging from dataclasses import dataclass from typing import Optional import torch import torch.nn as nn from xformers.components.attention import Attention, AttentionConfig, register_attention from xformers.components.attention.core import ( scaled_dot_product_attention, scaled_query_key_softmax, ) from xformers.components.attention.utils import ( bool_mask_to_additive, iterative_pinv, reshape_key_padding_mask, ) @dataclass class NystromSelfAttentionConfig(AttentionConfig): """ num_heads Number of heads. num_landmarks Number of landmarks to use for softmax approximation. 64 often sufficient for a good approximation according to https://arxiv.org/pdf/2102.03902.pdf. causal Apply a causal mask, in that the attention cannot be applied to the future. use_razavi_pinverse If true, use iterative method from (Razavi et al. 2014) to approximate the Moore-Penrose inverse, otherwise use standard torch inverse. pinverse_original_init True if using original initialization when calculating Moore-Penrose pseudo inverse using method from (Razavi et al. 2014). False if using exact coefficient computation (leads to faster convergence). inv_iterations Number of iterations for calculating the Moore-Penrose pseudo inverse. v_skip_connection A module that will take V as input and will be added as a skip connection to the softmax approximation. A skip connection is added in the paper to help with training. conv_kernel_size Kernel size for convolution optionally added to help in training. If v_skip_connection is not specified, this will be used to define the default depth wise convolution used as a skip connection. If both conv_kernel_size and v_skip_connection are None, no skip connection will be added. landmark_pooling Which module to use when computing landmarks. Default is AdaptiveAvgPool2d. """ num_heads: int num_landmarks: Optional[int] landmark_pooling: Optional[nn.Module] causal: Optional[bool] pinverse_original_init: Optional[bool] inv_iterations: Optional[int] v_skip_connection: Optional[nn.Module] conv_kernel_size: Optional[int] use_razavi_pinverse: Optional[bool] def get_avg_pool(n: int): def avg_pool(x: torch.Tensor): # Average independently for every segment in the sequence dimension seq_len = x.shape[1] head_dim = x.shape[2] segments = seq_len // n # Dimensions are a match if seq_len % n == 0: return x.reshape( -1, n, segments, head_dim, ).mean(dim=-2) # Handle the last segment boundary being off n_round = n - seq_len % n x_avg_round = ( x[:, : n_round * segments, :] .reshape(-1, n_round, segments, head_dim) .mean(dim=-2) ) x_avg_off = ( x[:, n_round * segments :, :] .reshape(-1, n - n_round, segments + 1, head_dim) .mean(dim=-2) ) return torch.cat((x_avg_round, x_avg_off), dim=-2) return avg_pool @register_attention("nystrom", NystromSelfAttentionConfig) class NystromAttention(Attention): # TODO: update defaults for use_razavi_pinverse and inv_iterations def __init__( self, dropout: float, num_heads: int, num_landmarks: int = 256, landmark_pooling: Optional[nn.Module] = None, causal: bool = False, use_razavi_pinverse: bool = True, pinverse_original_init: bool = False, inv_iterations: int = 6, # recommended default in paper was 6. conv_kernel_size: int = 35, v_skip_connection: Optional[nn.Module] = None, *args, **kwargs, ): """ Nystrom attention mechanism, from Nystromformer_. :: "A Nystrom-based Algorithm for Approximating Self-Attention." Xiong, Y., Zeng, Z., Chakraborty, R., Tan, M., Fung, G., Li, Y., Singh, V. (2021) Reference codebase: https://github.com/mlpen/Nystromformer .. _Nystromformer: https://arxiv.org/pdf/2102.03902.pdf """ super().__init__() # merged key padding mask and attention mask is not accepted self.requires_separate_masks = True self.num_landmarks = num_landmarks # TODO: should be able to not have to pass in num_heads self.num_heads = num_heads self.use_razavi_pinverse = use_razavi_pinverse self.pinverse_original_init = pinverse_original_init self.inv_iterations = inv_iterations self.attn_drop = nn.Dropout(dropout) self.skip_connection = v_skip_connection self.causal = causal if self.skip_connection is None and conv_kernel_size is not None: self.skip_connection = nn.Conv2d( in_channels=self.num_heads, out_channels=self.num_heads, kernel_size=(conv_kernel_size, 1), padding=(conv_kernel_size // 2, 0), bias=False, groups=self.num_heads, ) if landmark_pooling is not None: self.landmark_pooling = landmark_pooling else: self.landmark_pooling = get_avg_pool(self.num_landmarks) # Optional lower triangular masks for causal attention self.causal_mask_1: Optional[torch.Tensor] = None self.causal_mask_2: Optional[torch.Tensor] = None self.causal_mask_3: Optional[torch.Tensor] = None def forward( self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, key_padding_mask: Optional[torch.Tensor] = None, *args, **kwargs, ): r""" key_padding_mask Only a key padding mask is accepted here. The size must be (batch size, sequence length) or (batch size * num_heads, 1, sequence length). If dimensions are not correct, the mask will be ignored. An additive mask is expected, meaning float values using "-inf" to mask values """ batched_dim = k.size(0) seq_len = k.size(-2) tt = {"dtype": q.dtype, "device": q.device} if key_padding_mask is not None: if key_padding_mask.dtype == torch.bool: logging.warning( "Bool mask found, but an additive mask is expected. Converting but this is slow" ) key_padding_mask = bool_mask_to_additive(key_padding_mask) if key_padding_mask.ndim == 2: key_padding_mask = reshape_key_padding_mask( key_padding_mask, batched_dim ) assert key_padding_mask.size() == (batched_dim, 1, seq_len), ( f"key_padding_mask has invalid dimensions {key_padding_mask.size()}." f" Must have dimensions {batched_dim, 1, seq_len} or (batch_size, {seq_len})." ) if self.num_landmarks >= seq_len: mask: Optional[torch.Tensor] = None if self.causal: mask = self._triu_mask(batched_dim, seq_len, seq_len, **tt) if key_padding_mask is not None: mask = key_padding_mask if mask is None else mask + key_padding_mask x = scaled_dot_product_attention(q=q, k=k, v=v, att_mask=mask) else: q_landmarks = self.landmark_pooling(q) k_landmarks = self.landmark_pooling(k) if self.causal and ( self.causal_mask_1 is None or (batched_dim, seq_len, self.num_landmarks) != self.causal_mask_1.size() ): self.causal_mask_1 = self._triu_mask( batched_dim, seq_len, self.num_landmarks, **tt ) self.causal_mask_2 = self._triu_mask( batched_dim, self.num_landmarks, self.num_landmarks, **tt ) self.causal_mask_3 = self._triu_mask( batched_dim, self.num_landmarks, seq_len, **tt ) mask_1: Optional[torch.Tensor] = self.causal_mask_1 mask_2: Optional[torch.Tensor] = self.causal_mask_2 mask_3: Optional[torch.Tensor] = self.causal_mask_3 if key_padding_mask is not None: mask_1 = ( key_padding_mask.transpose(-2, -1) if mask_1 is None else mask_1 + key_padding_mask.transpose(-2, -1) ) mask_3 = ( key_padding_mask if mask_3 is None else mask_3 + key_padding_mask ) kernel_1 = scaled_query_key_softmax(q=q, k=k_landmarks, att_mask=mask_1) kernel_2 = scaled_query_key_softmax( q=q_landmarks, k=k_landmarks, att_mask=mask_2 ) # merge key_padding_mask and causal mask if self.causal_mask_3 is None: merged_mask = mask.to(torch.bool) else: merged_mask = self.causal_mask_3.logical_and(mask) kernel_3 = scaled_dot_product_attention( q=q_landmarks, k=k, v=v, att_mask=merged_mask ) kernel_2_inv = ( iterative_pinv( kernel_2, self.inv_iterations, self.pinverse_original_init ) if self.use_razavi_pinverse else torch.linalg.pinv(kernel_2) ) x = torch.matmul( torch.matmul( kernel_1, kernel_2_inv, ), kernel_3, ) if self.skip_connection: # Assumption here is that v is 3D. v_conv = self.skip_connection( v.reshape(-1, self.num_heads, v.size(-2), v.size(-1)) ) x += v_conv.reshape(-1, v_conv.size(-2), v_conv.size(-1)) x = self.attn_drop(x) return x def _triu_mask(self, dim_1: int, dim_2: int, dim_3: int, **kwargs) -> torch.Tensor: device = kwargs["device"] dtype = kwargs["dtype"] return torch.triu( torch.ones(dim_2, dim_3, dtype=dtype, device=device) * float("-inf"), diagonal=1, ).expand( dim_1, -1, -1 ) # micro optim, save memory on the batch dimension
bart_ls-main
xformers/xformers/components/attention/nystrom.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass from typing import Optional import torch import torch.nn as nn import torch.nn.functional as F from torch import Tensor from xformers.components.attention import ATTENTION_REGISTRY, Attention, AttentionConfig, register_attention from transformers.models.reformer.modeling_reformer import LSHSelfAttention, ReformerConfig, ReverseSort @dataclass class LSHSelfAttentionConfig(AttentionConfig): num_hash: int num_heads: int dim_model: int seq_len: int num_buckets: int chunk_length: int @register_attention("lsh_reformer", LSHSelfAttentionConfig) class LSHAttention(Attention): """ Using implementation from huggingface transformers LSH attention mechanism, from " Reformer: The Efficient Transformer Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya (2020) " ArXiv: https://arxiv.org/abs/2001.04451 Reference repository: https://huggingface.co/transformers/model_doc/reformer.html """ def __init__( self, num_heads: int, dim_model: int, num_hash: int = 4, seq_len: int = 4096, dropout: float = 0.0, num_buckets: int = None, chunk_length: int = None, *args, **kwargs, ): super().__init__() attn_config = ReformerConfig() attn_config.num_attention_heads = num_heads attn_config.attn_layers = ["lsh"] attn_config.is_decoder = False attn_config.num_hashes = num_hash attn_config.max_position_embeddings = seq_len attn_config.attention_head_size = dim_model // num_heads # attn_config.feed_forward_size = 1 if chunk_length: attn_config.lsh_attn_chunk_length = chunk_length attn_config.num_buckets = num_buckets self.attn = ReformerAttention(attn_config) def forward( self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, att_mask: Optional[torch.Tensor] = None, key_padding_mask: Optional[Tensor] = None, *args, **kwargs ): return self.attn(q, k, v, att_mask, key_padding_mask) class ReformerAttention(LSHSelfAttention): def __init__(self, config): super().__init__(config) # self.query_key = None # self.value = None del self.query_key del self.value self.num_heads = self.num_attention_heads def forward( self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, att_mask: Optional[torch.Tensor] = None, key_padding_mask: Optional[Tensor] = None, # attention_mask=None, # head_mask=None, # num_hashes=None, # buckets=None, # past_buckets_states=None, # use_cache=False, # output_attentions=False, *args, **kwargs, ): orig_sequence_length, head_dim = q.shape[1], q.shape[2] # padding to factors of self.chunk_length # needs centain sequence length to make the block wise local attention work def _pad_to_window_size(x, window_size): seq_len = x.size(-2) pad_len = (window_size - seq_len % window_size) % window_size return F.pad(x, (0,0,0,pad_len), value=0), pad_len q, _ = _pad_to_window_size(q, self.chunk_length) v, _ = _pad_to_window_size(v, self.chunk_length) key_padding_mask = key_padding_mask.to(q) if key_padding_mask.shape[1] % self.chunk_length != 0: pad_len = (self.chunk_length - key_padding_mask.shape[1] % self.chunk_length) % self.chunk_length # key padding mask: 1 means padding tokens key_padding_mask = torch.cat([key_padding_mask, key_padding_mask.new_ones(key_padding_mask.size(0), pad_len).to(key_padding_mask)], dim=1) sequence_length = q.shape[1] batch_size = q.shape[0] // self.num_attention_heads # num hashes can optionally be overwritten by user num_hashes = self.num_hashes # @xwhan reformer needs the key and query vectors to be the same # project hidden_states to query_key and value query_key_vectors = q.view(batch_size, self.num_attention_heads, sequence_length, head_dim) value_vectors = v.view(batch_size, self.num_attention_heads, sequence_length, head_dim) do_standard_self_attention = (sequence_length <= self.chunk_length) # xformer format, att_mask: B x seq_len x seq_len #TODO: better solution? if key_padding_mask is not None: attention_mask = key_padding_mask != 1 elif att_mask is not None: assert len(att_mask.shape) == 3 att_mask = att_mask.reshape(batch_size, self.num_heads, -1, sequence_length)[:,0,:,:] attention_mask = att_mask.sum(1) > 0 else: attention_mask = None # LSH attention only makes sense if chunked attention should be performed if not do_standard_self_attention: # set `num_buckets` on the fly, recommended way to do it if self.num_buckets is None: self._set_num_buckets(sequence_length.item()) # hash query key vectors into buckets buckets = self._hash_vectors(query_key_vectors, num_hashes, attention_mask) assert ( int(buckets.shape[-1]) == num_hashes * sequence_length ), f"last dim of buckets is {buckets.shape[-1]}, but should be {num_hashes * sequence_length}" sorted_bucket_idx, undo_sorted_bucket_idx = self._get_sorted_bucket_idx_and_undo_sorted_bucket_idx( sequence_length, buckets, num_hashes ) # make sure bucket idx is not longer then sequence length sorted_bucket_idx_per_hash = sorted_bucket_idx % sequence_length # cluster query key value vectors according to hashed buckets query_key_vectors = self._gather_by_expansion(query_key_vectors, sorted_bucket_idx_per_hash, num_hashes) value_vectors = self._gather_by_expansion(value_vectors, sorted_bucket_idx_per_hash, num_hashes) query_key_vectors = self._split_seq_length_dim_to( query_key_vectors, -1, self.chunk_length, self.num_attention_heads, self.attention_head_size, ) value_vectors = self._split_seq_length_dim_to( value_vectors, -1, self.chunk_length, self.num_attention_heads, self.attention_head_size, ) if self.chunk_length is None: assert ( self.num_chunks_before == 0 and self.num_chunks_after == 0 ), "If `config.chunk_length` is `None`, make sure `config.num_chunks_after` and `config.num_chunks_before` are set to 0." else: # get sequence length indices sorted_bucket_idx_per_hash = torch.arange(sequence_length, device=query_key_vectors.device).repeat( batch_size, self.num_attention_heads, 1 ) # scale key vectors key_vectors = self._len_and_dim_norm(query_key_vectors) # set query_vectors to query key vectors if LSH self attention query_vectors = query_key_vectors # free memory del query_key_vectors # get attention probs out_vectors, logits, attention_probs = self._attend( query_vectors=query_vectors, key_vectors=key_vectors, value_vectors=value_vectors, sorted_bucket_idx_per_hash=sorted_bucket_idx_per_hash, attention_mask=attention_mask, head_mask=None, do_standard_self_attention=do_standard_self_attention, do_cached_attention=False ) # free memory del key_vectors, value_vectors # re-order out_vectors and logits if not do_standard_self_attention: # sort clusters back to correct ordering out_vectors, logits = ReverseSort.apply(out_vectors, logits, sorted_bucket_idx, undo_sorted_bucket_idx) if not do_standard_self_attention: # sum up all hash rounds if num_hashes > 1: out_vectors = self._split_seq_length_dim_to( out_vectors, num_hashes, sequence_length, self.num_attention_heads, self.attention_head_size, ) logits = self._split_seq_length_dim_to( logits, num_hashes, sequence_length, self.num_attention_heads, self.attention_head_size, ).unsqueeze(-1) probs_vectors = torch.exp(logits - torch.logsumexp(logits, dim=2, keepdim=True)) out_vectors = torch.sum(out_vectors * probs_vectors, dim=2) # free memory del probs_vectors # free memory del logits assert out_vectors.shape == ( batch_size, self.num_attention_heads, sequence_length, self.attention_head_size, ), "out_vectors have be of shape `[batch_size, config.num_attention_heads, sequence_length, config.attention_head_size]`." # print(out_vectors.view(-1, sequence_length, head_dim).size()) # import pdb;pdb.set_trace() # out_vectors = self._merge_hidden_size_dims(out_vectors, self.num_attention_heads, self.attention_head_size) return out_vectors.view(-1, sequence_length, head_dim)[:,:orig_sequence_length,:].contiguous() # return LSHSelfAttentionOutput(hidden_states=out_vectors, attention_probs=attention_probs, buckets=buckets)
bart_ls-main
xformers/xformers/components/attention/lsh_reformer.py
""" Simple non-ovelapping local block attention. To test how strong are the locality inductive bias in these tasks """ # Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass from typing import Optional import torch from torch import nn from torch import Tensor import torch.nn.functional as F from functools import partial, reduce from inspect import isfunction from operator import mul from xformers.components.attention import Attention, AttentionConfig, register_attention @dataclass class BlockAttentionConfig(AttentionConfig): block_size: int num_heads: int require_key_mask: bool num_global_tokens: int # global tokens per block @register_attention("block", BlockAttentionConfig) class BlockAttention(Attention): def __init__( self, dropout: float, num_heads: int, block_size: int = 1024, # num_global_tokens: int = 64, *args, **kwargs ): super().__init__() self.bucket_size = block_size self.drop_attn = nn.Dropout(dropout) self.num_head = num_heads self.num_global_tokens = num_global_tokens def forward( self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, att_mask: Optional[torch.Tensor] = None, key_padding_mask: Optional[Tensor] = None, *args, **kwargs ): # q, k, v: (B * nh, S, hs) bh = q.size(0) orig_seq_len = q.size(1) bsz = bh // self.num_head head_dim = q.size(-1) assert key_padding_mask is not None key_padding_mask = key_padding_mask.to(q) # adding global token masks if self.num_global_tokens > 0: for block_idx in range(key_padding_mask.shape[1] // self.bucket_size): block_start = block_idx * self.bucket_size key_padding_mask[:,block_start:block_start + self.num_global_tokens] = -1 # global attention tokens extra_attention_mask = key_padding_mask < 0 num_extra_indices_per_batch = extra_attention_mask.long().sum(dim=1) max_num_extra_indices_per_batch = num_extra_indices_per_batch.max() hard_mask = key_padding_mask == 1 if max_num_extra_indices_per_batch <= 0: extra_attention_mask = None else: extra_attention_mask_nonzeros = extra_attention_mask.nonzero(as_tuple=True) zero_to_max_range = torch.arange(0, max_num_extra_indices_per_batch, device=extra_attention_mask.device) # mask indicating which values are actually going to be padding num_extra_indices_per_batch = extra_attention_mask.long().sum(dim=1) selection_padding_mask = zero_to_max_range < num_extra_indices_per_batch.unsqueeze(dim=-1) # 2) location of the non-padding values in the selected global attention selection_padding_mask_nonzeros = selection_padding_mask.nonzero(as_tuple=True) # 3) location of the padding values in the selected global attention selection_padding_mask_zeros = (selection_padding_mask == 0).nonzero(as_tuple=True) # every token attend to global tokens if extra_attention_mask is not None: selected_k = k.new_zeros(bsz, max_num_extra_indices_per_batch, self.num_head, head_dim) k_splited = k.view(bsz, self.num_head, -1, head_dim).transpose(1,2) q_splited = q.view(bsz, self.num_head, -1, head_dim).transpose(1,2) v_splited = v.view(bsz, self.num_head, -1, head_dim).transpose(1,2) selected_k[selection_padding_mask_nonzeros] = k_splited[extra_attention_mask_nonzeros] # (bsz, seq_len, num_heads, max_num_extra_indices_per_batch) selected_attn_weights = torch.einsum('blhd,bshd->blhs', (q_splited, selected_k)) * (head_dim ** -0.5) selected_attn_weights[selection_padding_mask_zeros[0], :, :, selection_padding_mask_zeros[1]] = -10000 attn_weights_over_g_tokens = selected_attn_weights.transpose(1,2) selected_v = v.new_zeros(bsz, max_num_extra_indices_per_batch, self.num_head, head_dim) selected_v[selection_padding_mask_nonzeros] = v_splited[extra_attention_mask_nonzeros] selected_v = selected_v.transpose(1,2).contiguous().view(bsz*self.num_head, max_num_extra_indices_per_batch, head_dim) tgt_len = k.size(1) buckets = q.shape[1] // self.bucket_size b_q = bucket(buckets, q) b_k, b_v = map(partial(bucket, buckets), (k, v)) # BH * bct * n_b * D dots = torch.einsum('buie,buje->buij', b_q, b_k) * (head_dim ** -0.5) mask_value = -10000 # # mask # if key_padding_mask is not None: q_mask = default(key_padding_mask.eq(0), lambda: torch.ones((bsz, tgt_len), device=q.device).bool()) # 1 means not masking kv_mask = q_mask mq, mk = bucket(buckets, q_mask), bucket(buckets, kv_mask) # B * bkt * n_b expand_head_and_merge_into_batch = lambda x: merge_dims(0, 1, expand_dim(x.unsqueeze(1), 1, self.num_head)) mq, mk = map(expand_head_and_merge_into_batch, (mq, mk)) # BH * bkt * n_b mask = mq[:, :, :, None] * mk[:, :, None, :] dots.masked_fill_(~mask, mask_value) block_attn_weights = dots.view(bsz*self.num_head, -1, self.bucket_size) if extra_attention_mask is not None: attn_weights_over_g_tokens = attn_weights_over_g_tokens.view(bsz*self.num_head, -1, max_num_extra_indices_per_batch) all_attn = torch.cat([block_attn_weights, attn_weights_over_g_tokens], dim=-1) else: all_attn = block_attn_weights all_attn_probs = F.softmax(all_attn, dim=-1) all_attn_probs = self.drop_attn(all_attn_probs) C = 0 # calculate block attention block_attn_probs = all_attn_probs[:, :, :block_attn_weights.shape[-1]] block_attn_probs = block_attn_probs.view(bsz*self.num_head, -1, self.bucket_size, self.bucket_size) C += block_attn_probs.matmul(b_v).view(bsz*self.num_head, -1, head_dim) if extra_attention_mask is not None: attn_probs_over_g_tokens = all_attn_probs[:,:,-attn_weights_over_g_tokens.shape[-1]:] C += attn_probs_over_g_tokens.matmul(selected_v) # global tokens to attend all other tokens selected_q = q_splited.new_zeros(bsz, max_num_extra_indices_per_batch, self.num_head, head_dim) selected_q[selection_padding_mask_nonzeros] = q_splited[extra_attention_mask_nonzeros] g2all_attn_weights = selected_q.transpose(1,2).matmul(k_splited.permute(0,2,3,1)) * (head_dim ** -0.5) g2all_attn_weights[selection_padding_mask_zeros[0], :, selection_padding_mask_zeros[1], :] = -10000 if hard_mask is not None: g2all_attn_weights = g2all_attn_weights.masked_fill( hard_mask.unsqueeze(1).unsqueeze(2), -10000, ) g2all_attn_probs_float = F.softmax(g2all_attn_weights, dim=-1, dtype=torch.float32) g2all_attn_probs = self.drop_attn(g2all_attn_probs_float.type_as(g2all_attn_weights)) g2all_attn = g2all_attn_probs.matmul(v.view(bsz, self.num_head, -1, head_dim)) # (batch_size, self.num_head, max_num_extra_indices_per_batch, head_dim) nonzero_global_attn = g2all_attn[selection_padding_mask_nonzeros[0], :, selection_padding_mask_nonzeros[1]] C = C.view(bsz, self.num_head, -1, head_dim) C[extra_attention_mask_nonzeros[0],:,extra_attention_mask_nonzeros[1]] = nonzero_global_attn C = C.view(bsz*self.num_head, -1, head_dim) C = C[:,:orig_seq_len] return C def expand_dim(t, dim, k): expand_shape = [-1] * len(t.shape) expand_shape[dim] = k return t.expand(*expand_shape) def merge_dims(ind_from, ind_to, tensor): shape = list(tensor.shape) arr_slice = slice(ind_from, ind_to + 1) shape[arr_slice] = [reduce(mul, shape[arr_slice])] return tensor.reshape(*shape) def default(x, d): if x is None: return d if not isfunction(d) else d() return x def bucket(buckets, t, dim=1): shape = list(t.shape) shape[dim:dim+1] = [buckets, -1] return t.reshape(*shape) def unbucket(t, dim=1): shape = list(t.shape) shape[dim:dim+2] = [-1] return t.reshape(*shape)
bart_ls-main
xformers/xformers/components/attention/block.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import logging import math from dataclasses import dataclass from typing import Optional, Tuple import torch import torch.nn as nn from torch.cuda.amp import autocast from xformers.components.attention import Attention, AttentionConfig, register_attention from xformers.components.attention.feature_maps import ( FeatureMap, FeatureMapType, SMHyperbolic, SMOrf, SMReg, ) @dataclass class FavorAttentionConfig(AttentionConfig): causal: Optional[bool] dim_features: Optional[int] = None # The dimensions of the random features dim_head: Optional[ int ] = None # The embedding dimension of the inputs. Only useful to get a dim_features estimate iter_before_redraw: Optional[ int ] = None # The number of iterations before the random features are re-drawn from scratch feature_map: Optional[FeatureMapType] = None @register_attention("favor", FavorAttentionConfig) class FavorAttention(Attention): def __init__( self, causal: bool = False, dropout: float = 0.0, dim_features: int = 256, dim_head: Optional[int] = None, iter_before_redraw: Optional[int] = None, feature_map_type: FeatureMapType = FeatureMapType.SMReg, normalize_inputs: bool = False, *_, **__, ): r""" Kernelized attention, as proposed in Performers_ ("Rethinking attention with performers." K. Choromanski et al. (2020).). FAVOR stands for "Fast Attention Via positive Orthogonal Random features" Args: dropout (float): the probability of an output to be randomly dropped at training time dim_features (int): the dimension of the random features space iter_before_redraw (int): the number of steps (forward calls) before a redraw of the features feature_map_type (FeatureMapType): the type of feature map being used, for instance orthogonal random features. .. _Performers: https://arxiv.org/pdf/2009.14794v1.pdf """ super().__init__() self.causal = causal self.iter_before_redraw = ( (2 * iter_before_redraw) if iter_before_redraw is not None else iter_before_redraw ) # This will be used for both key and query self.normalize_inputs = normalize_inputs self.feature_map_type = feature_map_type self.attn_drop = nn.Dropout(dropout, inplace=True) # Setup dimension-dependent variables # Reasonable dimension default if dim_features is None: assert dim_head is not None, "dim_features or dim_head needs to be passed" self.dim_features = math.ceil(dim_head * (1 + math.log2(dim_head))) self.dim_features = 2 * ( self.dim_features // 2 ) # needs to be even for some variants logging.info( f"FAVOR: Automatically setting the random mapping dimension to {self.dim_features} from {dim_head}" ) else: self.dim_features = dim_features feature_map_constructor = { FeatureMapType.SMHyp: SMHyperbolic, FeatureMapType.SMReg: SMReg, FeatureMapType.SMOrf: SMOrf, }[self.feature_map_type] feature_settings = { "dim_features": self.dim_features, "iter_before_redraw": self.iter_before_redraw, "normalize_inputs": self.normalize_inputs, } self.feature_map: FeatureMap = feature_map_constructor(**feature_settings) # type: ignore @staticmethod def _maybe_promote(x: torch.Tensor) -> torch.Tensor: # Only promote fp16 buffers, bfloat16 would be fine for instance return x.float() if x.dtype == torch.float16 else x @staticmethod def _causal_attention( k_prime: torch.Tensor, q_prime: torch.Tensor, v: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: # Algorithm 1 in the paper ref_v = torch.ones_like(v.unsqueeze(2)) # BATCH x SEQ x 1 x EMB Gps = k_prime.unsqueeze(3) * v.unsqueeze(2) Grenorm = k_prime.unsqueeze(3) * ref_v # Consolidate against the feature dimension att_raw = torch.einsum("bcfe,bcf->bce", Gps, q_prime) att_norm = torch.einsum("bcfe,bcf->bce", Grenorm, q_prime) # Cumulative sum over the sequence att_raw = att_raw.cumsum(2) att_norm = att_norm.cumsum(2) return att_raw, att_norm def forward( self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, *_, **__, ): # Project key and queries onto the feature map space k_prime = self.feature_map(k) q_prime = self.feature_map(q) with autocast(enabled=False): # The softmax kernel approximation for Favor will easily overflow # Force the computations here to stay in fp32 for numerical stability # Note that the dimensions are vastly reduced when compared to scaled_dot_product k_prime = self._maybe_promote(k_prime) q_prime = self._maybe_promote(q_prime) v = self._maybe_promote(v) if not self.causal: att_normalization = q_prime @ ( k_prime.transpose(-2, -1) @ torch.ones_like(v) ) att_raw = q_prime @ (k_prime.transpose(-2, -1) @ v) else: # Actually compute attention att_raw, att_normalization = self._causal_attention(k_prime, q_prime, v) # Normalize att = att_raw / att_normalization if self.attn_drop is not None: att = self.attn_drop(att) return att
bart_ls-main
xformers/xformers/components/attention/favor.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass from typing import Optional from functools import partial, reduce from inspect import isfunction from operator import mul import torch import torch.nn as nn import torch.nn.functional as F from torch import Tensor from xformers.components.attention import Attention, AttentionConfig, register_attention @dataclass class SinkhornSelfAttentionConfig(AttentionConfig): block_size: int temperature: float sinkhorm_iter: int num_heads: int require_key_mask: bool @register_attention("sinkhorn", SinkhornSelfAttentionConfig) class SinkhornAttention(Attention): def __init__( self, dropout: float, num_heads: int, block_size: int = 128, temperature: float = 0.7, sinkhorm_iter: int = 7, *args, **kwargs ): """ Sparse Sinkhorn Attention https://arxiv.org/abs/2002.11296 Code largely based on https://github.com/lucidrains/sinkhorn-transformer The paper's notation are kept wherever possible #TODO only support encoding only settings """ super().__init__() self.bucket_size = block_size self.sinkhorn_iter = sinkhorm_iter self.temperature = temperature self.drop_attn = nn.Dropout(dropout) self.num_head = num_heads self.sort_net = AttentionSortNet(block_size, temperature, sinkhorm_iter) def forward( self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, att_mask: Optional[torch.Tensor] = None, key_padding_mask: Optional[Tensor] = None, *args, **kwargs ): # q, k, v: (B * nh, S, hs) bh = q.size(0) orig_seq_len = q.size(1) bsz = bh // self.num_head head_dim = q.size(-1) assert key_padding_mask is not None key_padding_mask = key_padding_mask.to(q) key_padding_mask[:,0] = -1 # pad the input length to factors of bucket size def _pad_to_window_size(x, window_size): seq_len = x.size(-2) pad_len = (window_size - seq_len % window_size) % window_size return F.pad(x, (0,0,0,pad_len), value=0), pad_len q, _ = _pad_to_window_size(q, self.bucket_size) k, _ = _pad_to_window_size(k, self.bucket_size) v, _ = _pad_to_window_size(v, self.bucket_size) if key_padding_mask.shape[1] % self.bucket_size != 0: pad_len = (self.bucket_size - key_padding_mask.shape[1] % self.bucket_size) % self.bucket_size # key padding mask: 1 means padding tokens key_padding_mask = torch.cat([key_padding_mask, key_padding_mask.new_ones(key_padding_mask.size(0), pad_len).to(key_padding_mask)], dim=1) # global attention tokens extra_attention_mask = key_padding_mask < 0 num_extra_indices_per_batch = extra_attention_mask.long().sum(dim=1) max_num_extra_indices_per_batch = num_extra_indices_per_batch.max() hard_mask = key_padding_mask == 1 if max_num_extra_indices_per_batch <= 0: extra_attention_mask = None else: extra_attention_mask_nonzeros = extra_attention_mask.nonzero(as_tuple=True) zero_to_max_range = torch.arange(0, max_num_extra_indices_per_batch, device=extra_attention_mask.device) # mask indicating which values are actually going to be padding num_extra_indices_per_batch = extra_attention_mask.long().sum(dim=1) selection_padding_mask = zero_to_max_range < num_extra_indices_per_batch.unsqueeze(dim=-1) # 2) location of the non-padding values in the selected global attention selection_padding_mask_nonzeros = selection_padding_mask.nonzero(as_tuple=True) # 3) location of the padding values in the selected global attention selection_padding_mask_zeros = (selection_padding_mask == 0).nonzero(as_tuple=True) # every token attend to global tokens if extra_attention_mask is not None: selected_k = k.new_zeros(bsz, max_num_extra_indices_per_batch, self.num_head, head_dim) k_splited = k.view(bsz, self.num_head, -1, head_dim).transpose(1,2) q_splited = q.view(bsz, self.num_head, -1, head_dim).transpose(1,2) v_splited = v.view(bsz, self.num_head, -1, head_dim).transpose(1,2) selected_k[selection_padding_mask_nonzeros] = k_splited[extra_attention_mask_nonzeros] # (bsz, seq_len, num_heads, max_num_extra_indices_per_batch) selected_attn_weights = torch.einsum('blhd,bshd->blhs', (q_splited, selected_k)) * (head_dim ** -0.5) selected_attn_weights[selection_padding_mask_zeros[0], :, :, selection_padding_mask_zeros[1]] = -10000 attn_weights_over_g_tokens = selected_attn_weights.transpose(1,2) selected_v = v.new_zeros(bsz, max_num_extra_indices_per_batch, self.num_head, head_dim) selected_v[selection_padding_mask_nonzeros] = v_splited[extra_attention_mask_nonzeros] selected_v = selected_v.transpose(1,2).contiguous().view(bsz*self.num_head, max_num_extra_indices_per_batch, head_dim) tgt_len = k.size(1) buckets = q.shape[1] // self.bucket_size b_q = bucket(buckets, q) b_k, b_v = map(partial(bucket, buckets), (k, v)) # BH * bct * n_b * D R = self.sort_net(q, k) R = R.type_as(q).to(q) b_k_r = reorder_buckets(b_k, R).reshape(bh, buckets, -1, head_dim) b_v_r = reorder_buckets(b_v, R).reshape(bh, buckets, -1, head_dim) b_k = torch.cat((b_k_r, b_k), dim=2) b_v = torch.cat((b_v_r, b_v), dim=2) dots = torch.einsum('buie,buje->buij', b_q, b_k) * (head_dim ** -0.5) mask_value = -10000 # # mask # if key_padding_mask is not None: q_mask = default(key_padding_mask.eq(0), lambda: torch.ones((bsz, tgt_len), device=q.device).bool()) # 1 means not masking kv_mask = q_mask mq, mk = bucket(buckets, q_mask), bucket(buckets, kv_mask) # B * bkt * n_b expand_head_and_merge_into_batch = lambda x: merge_dims(0, 1, expand_dim(x.unsqueeze(1), 1, self.num_head)) mq, mk = map(expand_head_and_merge_into_batch, (mq, mk)) # BH * bkt * n_b mk_r = batched_index_select(mk, R.abs().argmax(dim=-1)) mk_r = mk_r.reshape(bh, buckets, -1) mk = torch.cat((mk_r, mk), dim=2) mask = mq[:, :, :, None] * mk[:, :, None, :] dots.masked_fill_(~mask, mask_value) del mask sinkhorn_attn_weights = dots.view(bsz*self.num_head, -1, self.bucket_size*2) attn_weights_over_g_tokens = attn_weights_over_g_tokens.view(bsz*self.num_head, -1, max_num_extra_indices_per_batch) all_attn = torch.cat([sinkhorn_attn_weights, attn_weights_over_g_tokens], dim=-1) all_attn_probs = all_attn.softmax(dim=-1) all_attn_probs = self.drop_attn(all_attn_probs) C = 0 # calculate block attention block_attn_probs = all_attn_probs[:, :, :sinkhorn_attn_weights.shape[-1]] block_attn_probs = block_attn_probs.view(bsz*self.num_head, -1, self.bucket_size, 2*self.bucket_size) C += block_attn_probs.matmul(b_v).view(bsz*self.num_head, -1, head_dim) if extra_attention_mask is not None: attn_probs_over_g_tokens = all_attn_probs[:,:,-attn_weights_over_g_tokens.shape[-1]:] C += attn_probs_over_g_tokens.matmul(selected_v) # global tokens to attend all other tokens selected_q = q_splited.new_zeros(bsz, max_num_extra_indices_per_batch, self.num_head, head_dim) selected_q[selection_padding_mask_nonzeros] = q_splited[extra_attention_mask_nonzeros] g2all_attn_weights = selected_q.transpose(1,2).matmul(k_splited.permute(0,2,3,1)) * (head_dim ** -0.5) g2all_attn_weights[selection_padding_mask_zeros[0], :, selection_padding_mask_zeros[1], :] = -10000.0 if hard_mask is not None: g2all_attn_weights = g2all_attn_weights.masked_fill( hard_mask.unsqueeze(1).unsqueeze(2), -10000.0, ) g2all_attn_probs_float = F.softmax(g2all_attn_weights, dim=-1, dtype=torch.float32) g2all_attn_probs = self.drop_attn(g2all_attn_probs_float.type_as(g2all_attn_weights)) g2all_attn = g2all_attn_probs.matmul(v.view(bsz, self.num_head, -1, head_dim)) # (batch_size, self.num_head, max_num_extra_indices_per_batch, head_dim) nonzero_global_attn = g2all_attn[selection_padding_mask_nonzeros[0], :, selection_padding_mask_nonzeros[1]] C = C.view(bsz, self.num_head, -1, head_dim) C[extra_attention_mask_nonzeros[0],:,extra_attention_mask_nonzeros[1]] = nonzero_global_attn C = C.view(bsz*self.num_head, -1, head_dim) C = C[:,:orig_seq_len] return C def batched_index_select(values, indices): last_dim = values.shape[-1] return values.gather(1, indices[:, :, None].expand(-1, -1, last_dim)) def expand_dim(t, dim, k): expand_shape = [-1] * len(t.shape) expand_shape[dim] = k return t.expand(*expand_shape) def merge_dims(ind_from, ind_to, tensor): shape = list(tensor.shape) arr_slice = slice(ind_from, ind_to + 1) shape[arr_slice] = [reduce(mul, shape[arr_slice])] return tensor.reshape(*shape) def default(x, d): if x is None: return d if not isfunction(d) else d() return x def bucket(buckets, t, dim=1): shape = list(t.shape) shape[dim:dim+1] = [buckets, -1] return t.reshape(*shape) def reorder_buckets(t, r): return torch.einsum('buv,bvtd->butd', r, t) def unbucket(t, dim=1): shape = list(t.shape) shape[dim:dim+2] = [-1] return t.reshape(*shape) class AttentionSortNet(nn.Module): def __init__(self, bucket_size, temperature, sinkhorn_iter): super().__init__() self.bucket_size = bucket_size self.temperature = temperature self.sinkhorn_iter = sinkhorn_iter def forward(self, q, k, topk=1): dim = q.size(-1) buckets = q.shape[1] // self.bucket_size kv_buckets = k.shape[1] // self.bucket_size b_q = bucket(buckets, q) b_k = bucket(kv_buckets, k) sq = b_q.mean(dim=2) # TODO original paper uses sum sk = b_k.mean(dim=2) R = torch.einsum('bie,bje->bij', sq, sk).to(q) * (dim ** -0.5) return gumbel_sinkhorn(F.relu(R), self.sinkhorn_iter, self.temperature) def log(t, eps = 1e-6): return torch.log(t + eps) def gumbel_sinkhorn(r, n_iters=8, temperature=0.7): r = log(r) gumbel = sample_gumbel(r.shape, r.device, r.dtype) r = (r + gumbel) / temperature return sinkhorn_sorting_operator(r, n_iters) def sample_gumbel(shape, device, dtype, eps=1e-6): u = torch.empty(shape, device=device, dtype=dtype).uniform_(0, 1) return -log(-log(u, eps), eps) def sinkhorn_sorting_operator(r, n_iters=8): n = r.shape[1] for _ in range(n_iters): r = r - torch.logsumexp(r, dim=2, keepdim=True) r = r - torch.logsumexp(r, dim=1, keepdim=True) return torch.exp(r)
bart_ls-main
xformers/xformers/components/attention/sinkhorn.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from abc import ABCMeta, abstractmethod from dataclasses import asdict, dataclass from typing import Optional, Type, TypeVar import torch import torch.nn as nn from xformers.components.attention import AttentionMask @dataclass class AttentionConfig: """Parameters required for all Attentions. Can accept and store extra parameters. """ name: str # the registered name for this attention mechanism dropout: float # dropout probability Self = TypeVar("Self", bound="Attention") # Define the common interface, every attention block needs to derive from it class Attention(nn.Module, metaclass=ABCMeta): r"""The base Attention mechanism, which is typically a sub-part of the multi-head attention""" _causal_mask: Optional[AttentionMask] = None @abstractmethod def __init__(self, dropout: Optional[float] = None, *args, **kwargs): super().__init__() # Requires the inputs to be projected self.requires_input_projection = True # Whether the head dimension needs to be present (if not it can be folded into the batch dimension) self.requires_head_dimension = False # key padding mask and attention mask must be passed in as separate arguments instead of a merged attention mask self.requires_separate_masks = False # Requires that K and Q have the same sequence length self.requires_same_k_q_dimensions = False # Whether the attention owns the single head/multihead mechanism # so that the MHA wrapper should skip it self.requires_skip_multi_head = False @classmethod def from_config(cls: Type[Self], config: AttentionConfig) -> Self: # Generate the class inputs from the config fields = asdict(config) # Skip all Nones so that default values are used fields = {k: v for k, v in fields.items() if v is not None} return cls(**fields) @abstractmethod def forward( self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, *args, **kwargs ) -> torch.Tensor: raise NotImplementedError @staticmethod def _maybe_pad_sequence(x: torch.Tensor, mask: torch.Tensor): """ If the sequence is shorter than the mask, return a padded view """ if x.shape[-2] != mask.shape[-1]: assert x.shape[-2] < mask.shape[-1], ( "Sequence is bigger than the provided mask, cannot infer what to do with it." " Please update your attention mask" ) pad_size = (0, 0, 0, mask.shape[-1] - x.shape[-2], 0, 0) return torch.nn.functional.pad(x, pad_size, mode="constant", value=0.0) return x
bart_ls-main
xformers/xformers/components/attention/base.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from enum import Enum from .base import FeatureMap, FeatureMapConfig from .softmax import NormDistribution, SMHyperbolic, SMOrf, SMReg class FeatureMapType(str, Enum): SMOrf = "sm_orf" SMHyp = "sm_hyp" SMReg = "sm_reg" # regularized softmax kernel __all__ = [ "SMOrf", "SMReg", "SMHyperbolic", "NormDistribution", "FeatureMapConfig", "FeatureMap", ]
bart_ls-main
xformers/xformers/components/attention/feature_maps/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import math from enum import Enum, auto from typing import Optional import torch from torch.autograd.profiler import record_function from .base import FeatureMap """ A set of feature maps which approximate the softmax kernel, as per the Performers_ paper. _Performers: "Rethinking attention with performers." K. Choromanski et al. (2020). https://arxiv.org/pdf/2009.14794v1.pdf """ class NormDistribution(Enum): Xi = auto() Uniform = auto() class SoftMaxPositiveEstimators(FeatureMap): def __init__( self, dim_features: int, iter_before_redraw: Optional[int], normalize_inputs: bool = False, epsilon: float = 1e-6, softmax_temp: float = -1, ): super().__init__(dim_features, iter_before_redraw, normalize_inputs, epsilon) self.softmax_temp = softmax_temp self.offset = -1.0 # Handle the scaling from all kernels by √m. # This normalizes for all the feature maps involved self.h_scale = math.log(math.sqrt(self.dim_features)) def pre_scale(self, x: torch.Tensor) -> torch.Tensor: with record_function("feature_map::pre_scale"): # Re-draw counting logic if ( ( self.iter_before_redraw is not None and self._iter_counter > self.iter_before_redraw ) or self.features is None or self.features.device != x.device ): # The feature map is actually using half the dimension, we'll concatenate + and - features self._iter_counter = 1 self.features = self._get_feature_map( x.shape[-1], self.dim_feature_map, x.device ) assert self.features is not None if self.features.dtype != x.dtype: self.features = self.features.to(x.dtype) self._iter_counter += 1 # Normalization / softmax if self.softmax_temp < 0: # A = exp(QK.t/√d), so each input will be scaled by √√d self.softmax_temp = x.shape[-1] ** -0.25 x_scaled = x * self.softmax_temp # Compute the scaling factors in logspace, applied from within the exponential # - dimnish possible exponential overflow # - remove a multiply across the batch, replace by an addition norm_x_2 = torch.einsum("...d,...d->...", x_scaled, x_scaled).unsqueeze(-1) self.offset = -0.5 * norm_x_2 - self.h_scale + self.epsilon if self.normalize_inputs: # L0 normalize the exponential term, can be useful for numerical stability # This ensures that features +- offset is below 1 self.offset -= norm_x_2.max(1, keepdim=True)[0] # Return the scaled inputs, the rest depends on the kernel being used return x_scaled @staticmethod @torch.no_grad() def _get_random_ortho_matrix( blocks: int, dim: int, device: torch.device, norm_distribution: NormDistribution = NormDistribution.Uniform, ) -> torch.Tensor: r""" Generate a random matrix whose rows are exactly orthonormal "How to generate random matrices from the classical compact groups", Mezzadri, 2007 https://arxiv.org/pdf/math-ph/0609050v2.pdf .. note: the typical qr decomposition does not give uniform results, qr decomposition is not unique and the qr decomposition routines are biased towards numerical stability. See the above paper for more information. .. note: this does not follow the original implementation from the Performers authors. see docs/assets/kde plots to visualize the impact of using the R signs to correct Q """ H = torch.randn((blocks, dim, dim), device=device, requires_grad=False) # Randomly scale the norms of the features, Xi distributed if norm_distribution == NormDistribution.Xi: # NOTE: This averages to sqrt(d) norms = torch.sqrt(torch.einsum("...d,...d->...", H, H)) Q, R = torch.linalg.qr(H) Q = torch.diag_embed(torch.sign(torch.diagonal(R, dim1=1, dim2=2))) @ Q # Normalize if need be. Uniform NormDistribution does nothing, Q is already orthonormal if norm_distribution == NormDistribution.Xi: return torch.diag_embed(norms) @ Q return Q class SMOrf(SoftMaxPositiveEstimators): """ "Positive random orthogonal features" softmax estimator, SM_ort^m+, as proposed in the Performers_ paper, Lemma 1. _Performers: "Rethinking attention with performers." K. Choromanski et al. (2020). https://arxiv.org/pdf/2009.14794v1.pdf """ @torch.no_grad() def _get_feature_map(self, dim_input: int, dim_features: int, device: torch.device): """ Generate the projection matrix onto the random features .. note: The heads dimension needs to be taken into account, hence the per-block random matrix and not uniformally random. """ # Get per block random unitary matrices. # We need enough of them to project the whole input dimension, regardless of the # requested dimension of the features features = self._get_random_ortho_matrix( math.ceil(dim_input / dim_features), dim_features, norm_distribution=NormDistribution.Xi, device=device, ) return features.flatten(0, 1)[:dim_input] def forward(self, x: torch.Tensor) -> torch.Tensor: # Softmax-dimension related scaling, shared for all kernels x_scaled = super().pre_scale(x) assert self.features is not None # Project onto the random feature map. x_scaled = x_scaled @ self.features return torch.exp(x_scaled + self.offset) class SMHyperbolic(SoftMaxPositiveEstimators): """ "Positive random features hyperbolic" estimator, SMHyp+, as proposed in the Performers_ paper, Lemma 1. _Performers: "Rethinking attention with performers." K. Choromanski et al. (2020). https://arxiv.org/pdf/2009.14794v1.pdf """ def __init__( self, dim_features: int, iter_before_redraw: Optional[int], normalize_inputs: bool = False, epsilon: float = 1e-6, softmax_temp: float = -1, ): super().__init__( dim_features, iter_before_redraw, normalize_inputs, epsilon, softmax_temp ) assert ( dim_features % 2 == 0 ), "The feature dimension needs to be even with this kernel" self.dim_feature_map = self.dim_features // 2 @torch.no_grad() def _get_feature_map(self, dim_input: int, dim_features: int, device: torch.device): """ Generate the projection matrix onto the random features .. note: The heads dimension needs to be taken into account, hence the per-block random matrix and not uniformally random. """ # Get per block random unitary matrices. # We need enough of them to project the whole input dimension, regardless of the # requested dimension of the features features = self._get_random_ortho_matrix( math.ceil(dim_input / dim_features), dim_features, norm_distribution=NormDistribution.Xi, device=device, ) return features.flatten(0, 1)[:dim_input] def forward(self, x: torch.Tensor) -> torch.Tensor: # Softmax-dimension related scaling, shared for all kernels x_scaled = super().pre_scale(x) # Project onto the random feature map, concatenate both + and - results # This follows Lemma 1 in the original Performers Paper to best approximate a # softmax kernel (cosh representation) x_scaled = x_scaled @ self.features return torch.cat( [torch.exp(x_scaled + self.offset), torch.exp(-x_scaled + self.offset)], dim=-1, ) class SMReg(SoftMaxPositiveEstimators): """ "Regularized softmax kernel" estimator, SMREG+, as proposed in the Performers_ paper. _Performers: "Rethinking attention with performers." K. Choromanski et al. (2020). https://arxiv.org/pdf/2009.14794v1.pdf """ def __init__( self, dim_features: int, iter_before_redraw: Optional[int], normalize_inputs: bool = False, epsilon: float = 1e-6, softmax_temp: float = -1, ): super().__init__( dim_features, iter_before_redraw, normalize_inputs, epsilon, softmax_temp ) assert ( dim_features % 2 == 0 ), "The feature dimension needs to be even with this kernel" self.dim_feature_map = self.dim_features // 2 @torch.no_grad() def _get_feature_map(self, dim_input: int, dim_features: int, device: torch.device): """ Generate the projection matrix onto the random features .. note: The heads dimension needs to be taken into account, hence the per-block random matrix and not uniformally random. """ # Get per block random unitary matrices. # We need enough of them to project the whole input dimension, regardless of the # requested dimension of the features features = self._get_random_ortho_matrix( math.ceil(dim_input / dim_features), dim_features, norm_distribution=NormDistribution.Uniform, device=device, ).flatten(0, 1) norms = math.sqrt(dim_input) * torch.ones(features.shape[0], device=device) return (torch.diag(norms) @ features)[:dim_input] def forward(self, x: torch.Tensor) -> torch.Tensor: # Softmax-dimension related scaling, shared for all kernels x_scaled = super().pre_scale(x) # Project onto the random feature map, concatenate both + and - results # This follows Lemma 1 in the original Performers Paper to best approximate a # softmax kernel (cosh representation + sample regularization) x_scaled = x_scaled @ self.features return torch.cat( [torch.exp(x_scaled + self.offset), torch.exp(-x_scaled + self.offset)], dim=-1, )
bart_ls-main
xformers/xformers/components/attention/feature_maps/softmax.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from abc import abstractmethod from dataclasses import asdict, dataclass from typing import Optional, Type, TypeVar import torch """ Feature maps allow for a given query or key to be encoded in a different space. """ Self = TypeVar("Self", bound="FeatureMap") @dataclass class FeatureMapConfig: name: str dim_features: int iter_before_redraw: Optional[int] normalize_inputs: Optional[bool] epsilon: Optional[float] class FeatureMap(torch.nn.Module): def __init__( self, dim_features: int, iter_before_redraw: Optional[int] = None, normalize_inputs: bool = False, epsilon: float = 1e-6, ): super().__init__() self.dim_features = dim_features self.dim_feature_map = dim_features self.iter_before_redraw = iter_before_redraw self.features: Optional[torch.Tensor] = None self.epsilon = epsilon self.normalize_inputs = normalize_inputs self._iter_counter = 0 @abstractmethod def _get_feature_map(self, dim_input: int, dim_features: int, device: torch.device): raise NotImplementedError() @classmethod def from_config(cls: Type[Self], config: FeatureMapConfig) -> Self: # Generate the class inputs from the config fields = asdict(config) # Skip all Nones so that default values are used fields = {k: v for k, v in fields.items() if v is not None} return cls(**fields)
bart_ls-main
xformers/xformers/components/attention/feature_maps/base.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from pathlib import Path from typing import Any, Callable, Dict, Set, Union from xformers.utils import ( generate_matching_config, get_registry_decorator, import_all_modules, ) from .base import Feedforward, FeedforwardConfig # noqa # CREDITS: Classy Vision registry mechanism FEEDFORWARD_REGISTRY: Dict[str, Any] = {} FEEDFORWARD_CLASS_NAMES: Set[str] = set() def build_feedforward(config: Union[Dict[str, Any], FeedforwardConfig]): """Builds a feedforward from a config. This assumes a 'name' key in the config which is used to determine what attention class to instantiate. For instance, a config `{"name": "my_feedforward", "foo": "bar"}` will find a class that was registered as "my_feedforward" (see :func:`register_feedforward`) and call .from_config on it.""" if not isinstance(config, FeedforwardConfig): config_instance = generate_matching_config( config, FEEDFORWARD_REGISTRY[config["name"]].config ) else: config_instance = config return FEEDFORWARD_REGISTRY[config_instance.name].constructor.from_config( config_instance ) """Registers a Feedforward subclass. This decorator allows xFormers to instantiate a subclass of Feedforward from a configuration file, even if the class itself is not part of the xFormers framework. To use it, apply this decorator to a Feedforward subclass, like this: .. code-block:: python @dataclass class MyConfig: ... @register_feedforward('my_ff', MyConfig) class MyFeedforward(Feedforward): ... To instantiate a feedforward from a configuration file, see :func:`build_feedforward`.""" register_feedforward: Callable[ [str, Any], Callable[[Any], Any] ] = get_registry_decorator( FEEDFORWARD_REGISTRY, FEEDFORWARD_CLASS_NAMES, Feedforward, FeedforwardConfig ) try: from .fused_mlp import FusedMLP # noqa _fused_mlp_available = True except ImportError: _fused_mlp_available = False from .mlp import MLP # noqa __all__ = [ "MLP", "Feedforward", "build_feedforward", "register_feedforward", ] if _fused_mlp_available: __all__ += ["FusedMLP"] # automatically import any Python files in the directory import_all_modules(str(Path(__file__).parent), "xformers.components.feedforward")
bart_ls-main
xformers/xformers/components/feedforward/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import logging from dataclasses import dataclass from enum import Enum from typing import Any, Callable, Optional, Union import torch from xformers.components import Activation from xformers.components.feedforward import ( Feedforward, FeedforwardConfig, register_feedforward, ) _is_fairscale_available = True try: import torch.distributed as dist from fairscale.nn import MOELayer, Top2Gate from xformers.components.feedforward import MLP except ImportError: logging.warning( "Either FairScale or torch distributed is not available, MixtureOfExperts will not be exposed." " Please install them if you would like to use MoE" ) _is_fairscale_available = False if _is_fairscale_available: # Credits: initially implemented in FairScale for sanity checking class RoundRobinGate(torch.nn.Module): def __init__(self, model_dim, num_experts): super().__init__() self.model_dim = model_dim self.num_experts = num_experts def forward(self, input): s = input.shape[0] assert s % self.num_experts == 0, f"{s} % {self.num_experts} != 0" capacity = 2 * s // self.num_experts output = torch.zeros( s, self.num_experts, capacity, dtype=input.dtype, device=input.device ) for i in range(s): output[i, i % self.num_experts, i // self.num_experts] = 1.0 return 0.0, output, output.bool() class GateConfig(str, Enum): RoundRobin = "round_robin" Top2 = "top_2" # Other gating techniques could be exposed here @dataclass class MoEConfig(FeedforwardConfig): number_of_experts: int gate: GateConfig number_of_local_experts: Optional[int] = None expert_constructor: Optional[Any] = None hidden_layer_multiplier: Optional[int] = None group: Optional[Any] = None @register_feedforward("MixtureOfExperts", MoEConfig) class MixtureOfExperts(Feedforward): """ A MLP variant which uses the "Mixture of Experts" paradigm, as described in Gshard_. xFormers uses the FairScale_ implementation under the hood. .. warning: Please note that most of the benefits of MoE are present in a distributed training environmentt .. _Gshard: https://arxiv.org/pdf/2006.16668.pdf .. _FairScale: https://github.com/facebookresearch/fairscale/ """ def __init__( self, dim_model: int, dropout: float, activation: Activation, number_of_experts: int, gate: Union[GateConfig, torch.nn.Module], number_of_local_experts: Optional[int] = None, expert_constructor: Optional[Callable[[], torch.nn.Module]] = None, hidden_layer_multiplier: Optional[int] = None, group: Optional[Any] = None, *_, **__, ): super().__init__() # Handle a possibly uninitialized process group assert ( dist.is_initialized() ), "Mixture of Experts require torch distributed to be initialized" if number_of_local_experts is not None: assert number_of_experts >= number_of_local_experts else: if dist.get_world_size() == 1: logging.warning("Local experts no specified but world size of 1") logging.warning("Assuming that all experts are local") number_of_local_experts = number_of_experts else: number_of_local_experts = 1 # Programatically handle the gating technique if not isinstance(gate, torch.nn.Module): gate_constructor = { GateConfig.RoundRobin: RoundRobinGate, GateConfig.Top2: Top2Gate, }[gate] self.gate = gate_constructor(dim_model, number_of_experts) else: self.gate = gate # Programatically handle the experts if expert_constructor is None: multiplier = ( hidden_layer_multiplier if hidden_layer_multiplier is not None else 4 ) def expert_constructor() -> torch.nn.Module: return MLP(dim_model, dropout, activation, multiplier) assert expert_constructor is not None local_experts = torch.nn.ModuleList( [expert_constructor() for _ in range(number_of_local_experts)] ) self.moe = MOELayer(gate=self.gate, experts=local_experts, group=group) self.requires_cuda = True def forward(self, inputs: torch.Tensor) -> torch.Tensor: # FairScale MoE assumes that the dimensions are [S, B, E] # xFormers assumes [B, S, E] return self.moe(inputs.movedim(0, 1)).movedim(0, 1)
bart_ls-main
xformers/xformers/components/feedforward/mixture_of_experts.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass import torch import torch.nn as nn from xformers.components import Activation, build_activation from xformers.components.feedforward import Feedforward, FeedforwardConfig from . import register_feedforward @dataclass class MlpConfig(FeedforwardConfig): hidden_layer_multiplier: int @register_feedforward("MLP", MlpConfig) class MLP(Feedforward): def __init__( self, dim_model: int, dropout: float, activation: Activation, hidden_layer_multiplier: int, *args, **kwargs ): super().__init__() self.mlp = nn.Sequential( nn.Linear(dim_model, hidden_layer_multiplier * dim_model), build_activation(activation), nn.Dropout(dropout), nn.Linear(hidden_layer_multiplier * dim_model, dim_model), nn.Dropout(dropout), ) def forward(self, inputs: torch.Tensor) -> torch.Tensor: return self.mlp(inputs)
bart_ls-main
xformers/xformers/components/feedforward/mlp.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import logging from dataclasses import dataclass import torch import torch.nn as nn from xformers.components import Activation from xformers.components.feedforward import ( Feedforward, FeedforwardConfig, register_feedforward, ) if torch.cuda.is_available(): try: from xformers.triton import FusedDropoutBias @dataclass class FusedMlpConfig(FeedforwardConfig): hidden_layer_multiplier: int @register_feedforward("FusedMLP", FusedMlpConfig) class FusedMLP(Feedforward): """ A MLP using fused linear layers. """ def __init__( self, dim_model: int, dropout: float, activation: Activation, hidden_layer_multiplier: int, *args, **kwargs, ): super().__init__() dim_mlp = hidden_layer_multiplier * dim_model self.mlp = nn.Sequential( nn.Linear(in_features=dim_model, out_features=dim_mlp, bias=False), # pyre-ignore[16]: TODO(T101400990): Pyre did not recognize # the `FusedLinear` import. FusedDropoutBias( p=dropout, bias_shape=dim_mlp, activation=activation ), nn.Linear(in_features=dim_mlp, out_features=dim_model, bias=False), # pyre-ignore[16]: TODO(T101400990): Pyre did not recognize # the `FusedLinear` import. FusedDropoutBias(p=dropout, bias_shape=dim_model, activation=None), ) self.requires_cuda = True def forward(self, inputs: torch.Tensor) -> torch.Tensor: return self.mlp(inputs) except ImportError: logging.warning("Triton is not available, FusedMLP will not be enabled.")
bart_ls-main
xformers/xformers/components/feedforward/fused_mlp.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from abc import ABCMeta, abstractmethod from dataclasses import asdict, dataclass from typing import Optional, Type, TypeVar import torch.nn as nn from xformers.components import Activation Self = TypeVar("Self", bound="Feedforward") @dataclass class FeedforwardConfig: name: str dim_model: int dropout: float activation: Activation # Define the common interface, every feedforward block needs to derive from it class Feedforward(nn.Module, metaclass=ABCMeta): @abstractmethod def __init__( self, dim_model: Optional[int] = None, dropout: Optional[float] = None, activation: Optional[Activation] = None, *args, **kwargs, ): super().__init__() self.requires_cuda = False @classmethod def from_config(cls: Type[Self], config: FeedforwardConfig) -> Self: # Generate the class inputs from the config fields = asdict(config) # Skip all Nones so that default values are used fields = {k: v for k, v in fields.items() if v is not None} return cls(**fields)
bart_ls-main
xformers/xformers/components/feedforward/base.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass from typing import Optional import torch import torch.nn as nn from xformers.components.positional_embedding import ( PositionEmbedding, PositionEmbeddingConfig, register_positional_embedding, ) @dataclass class VocabEmbeddingConfig(PositionEmbeddingConfig): vocab_size: int dropout: float @register_positional_embedding("vocab", VocabEmbeddingConfig) class VocabEmbedding(PositionEmbedding): def __init__( self, dim_model: int, seq_len: int, vocab_size: int, dropout: float = 0.0, *args, **kwargs ): super().__init__() self.vocab_size = vocab_size self.dim_model = dim_model self.dropout = torch.nn.Dropout(p=dropout) self.position_embeddings = nn.Embedding(seq_len, self.dim_model) torch.nn.init.normal_(self.position_embeddings.weight, std=0.02) self.position_ids: Optional[torch.Tensor] = None self.word_embeddings = nn.Embedding(self.vocab_size, self.dim_model) torch.nn.init.normal_(self.word_embeddings.weight, std=0.02) def forward(self, x: torch.Tensor): position_ids = torch.arange(x.shape[1], dtype=torch.long, device=x.device)[ None, : ].repeat(x.shape[0], 1) X_token = self.word_embeddings(x) X_pos = self.position_embeddings(position_ids) X = X_token + X_pos X = self.dropout(X) return X
bart_ls-main
xformers/xformers/components/positional_embedding/vocab.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from pathlib import Path from typing import Any, Callable, Dict, Set, Union from xformers.utils import ( generate_matching_config, get_registry_decorator, import_all_modules, ) from .base import PositionEmbedding, PositionEmbeddingConfig # noqa # CREDITS: Classy Vision registry mechanism POSITION_EMBEDDING_REGISTRY: Dict[str, Any] = {} POSITION_EMBEDDING_CLASS_NAMES: Set[str] = set() def build_positional_embedding(config: Union[Dict[str, Any], PositionEmbeddingConfig]): """Builds a position encoding from a config. This assumes a 'name' key in the config which is used to determine what attention class to instantiate. For instance, a config `{"name": "my_position_encoding", "foo": "bar"}` will find a class that was registered as "my_position_encoding" (see :func:`register_positional_embedding`) and call .from_config on it.""" if not isinstance(config, PositionEmbeddingConfig): config_instance = generate_matching_config( config, POSITION_EMBEDDING_REGISTRY[config["name"]].config ) else: config_instance = config return POSITION_EMBEDDING_REGISTRY[config_instance.name].constructor.from_config( config_instance ) """Registers a PositionEncoding subclass. This decorator allows xFormers to instantiate a subclass of PositionEncoding from a configuration file, even if the class itself is not part of the xFormers framework. To use it, apply this decorator to a `PositionEncoding` subclass, like this: .. code-block:: python @dataclass class MyConfig: ... @register_positional_embedding('my_encoding', MyConfig) class MyEncoding(PositionEncoding): ... To instantiate a position encoding from a configuration file, see :func:`build_positional_embedding`.""" register_positional_embedding: Callable[ [str, Any], Callable[[Any], Any] ] = get_registry_decorator( POSITION_EMBEDDING_REGISTRY, POSITION_EMBEDDING_CLASS_NAMES, PositionEmbedding, PositionEmbeddingConfig, ) from .rotary import RotaryEmbedding # noqa from .sine import SinePositionalEmbedding # type: ignore # noqa from .vocab import VocabEmbedding # noqa __all__ = [ "RotaryEmbedding", "SinePositionalEmbedding", "VocabEmbedding", "build_positional_embedding", "register_positional_embedding", ] # automatically import any Python files in the directory import_all_modules( str(Path(__file__).parent), "xformers.components.positional_embedding" )
bart_ls-main
xformers/xformers/components/positional_embedding/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. # Silence Mypy errors in this file. # type: ignore from __future__ import annotations import math from typing import TypeVar import torch from pyre_extensions import Generic from typing_extensions import Literal as L from xformers.components.positional_embedding import ( PositionEmbedding, PositionEmbeddingConfig, register_positional_embedding, ) N = TypeVar("N", bound=int) DimModel = TypeVar("DimModel", bound=int) @register_positional_embedding("sine", PositionEmbeddingConfig) class SinePositionalEmbedding(PositionEmbedding, Generic[DimModel]): def __init__(self, dim_model: DimModel, *args, **kwargs): super().__init__() self.dim_model: DimModel = dim_model def forward( self, x: torch.Tensor[torch.float, N, N] ) -> torch.Tensor[torch.float, N, N, DimModel]: seq_len = x.shape[1] pos = ( torch.arange(0, seq_len, device=x.device, dtype=torch.float32) .unsqueeze(1) .repeat(1, self.dim_model) ) dim = ( torch.arange(0, self.dim_model, device=x.device, dtype=torch.float32) .unsqueeze(0) .repeat(seq_len, 1) ) div = torch.exp(-math.log(10000) * (2 * (dim // 2) / self.dim_model)) pos *= div pos[:, 0::2] = torch.sin(pos[:, 0::2]) pos[:, 1::2] = torch.cos(pos[:, 1::2]) # pyre-ignore[9]: x was declared as N x N but is expected as N * N * 1. # Handle a non-existing embedding dimension output: torch.Tensor[torch.float32, N, N, L[1]] = ( x.unsqueeze(-1) if x.ndim == 2 else x ) return output + pos.unsqueeze(0)
bart_ls-main
xformers/xformers/components/positional_embedding/sine.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. # CREDITS: This implementation is inspired by GPT-NeoX https://github.com/EleutherAI/gpt-neox # NOTE: Almost the same right now, moving parts to Triton is the next step from typing import Tuple import torch def rotate_half(x): x1, x2 = x.chunk(2, dim=-1) return torch.cat((-x2, x1), dim=-1) @torch.jit.script def apply_rotary_pos_emb(x, cos, sin): # NOTE: This could probably be moved to Triton # Handle a possible sequence length mismatch in between q and k cos = cos[:, :, : x.shape[-2], :] sin = sin[:, :, : x.shape[-2], :] return (x * cos) + (rotate_half(x) * sin) class RotaryEmbedding(torch.nn.Module): """ The rotary position embeddings from RoFormer_ (Su et. al). A crucial insight from the method is that the query and keys are transformed by rotation matrices which depend on the relative positions. Other implementations are available in the Rotary Transformer repo_ and in GPT-NeoX_, GPT-NeoX was an inspiration .. _RoFormer: https://arxiv.org/abs/2104.09864 .. _repo: https://github.com/ZhuiyiTechnology/roformer .. _GPT-NeoX: https://github.com/EleutherAI/gpt-neox .. warning: Please note that this embedding is not registered on purpose, as it is transformative (it does not create the embedding dimension) and will likely be picked up (imported) on a ad-hoc basis """ def __init__(self, dim_model: int, *_, **__): super().__init__() # Generate and save the inverse frequency buffer (non trainable) inv_freq = 1.0 / (10000 ** (torch.arange(0, dim_model, 2).float() / dim_model)) self.register_buffer("inv_freq", inv_freq) self._seq_len_cached = None self._cos_cached = None self._sin_cached = None def _update_cos_sin_tables(self, x, seq_dimension=1): seq_len = x.shape[seq_dimension] # Reset the tables if the sequence length has changed, # or if we're on a new device (possibly due to tracing for instance) if seq_len != self._seq_len_cached or self._cos_cached.device != x.device: self._seq_len_cached = seq_len t = torch.arange(x.shape[seq_dimension], device=x.device).type_as( self.inv_freq ) freqs = torch.einsum("i,j->ij", t, self.inv_freq) emb = torch.cat((freqs, freqs), dim=-1).to(x.device) self._cos_cached = emb.cos()[None, None, :, :] self._sin_cached = emb.sin()[None, None, :, :] return self._cos_cached, self._sin_cached def forward( self, q: torch.Tensor, k: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: self._cos_cached, self._sin_cached = self._update_cos_sin_tables( k, seq_dimension=-2 ) return ( apply_rotary_pos_emb(q, self._cos_cached, self._sin_cached), apply_rotary_pos_emb(k, self._cos_cached, self._sin_cached), )
bart_ls-main
xformers/xformers/components/positional_embedding/rotary.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from abc import ABCMeta, abstractmethod from dataclasses import asdict, dataclass from typing import Type, TypeVar import torch.nn as nn Self = TypeVar("Self", bound="PositionEmbedding") @dataclass class PositionEmbeddingConfig: name: str dim_model: int seq_len: int class PositionEmbedding(nn.Module, metaclass=ABCMeta): @abstractmethod def __init__(self, *args, **kwargs) -> None: super().__init__() @classmethod def from_config(cls: Type[Self], config: PositionEmbeddingConfig) -> Self: # Generate the class inputs from the config fields = asdict(config) # Skip all Nones so that default values are used fields = {k: v for k, v in fields.items() if v is not None} return cls(**fields)
bart_ls-main
xformers/xformers/components/positional_embedding/base.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import torch from .utils import _csr_to_coo, _transpose_with_info def _should_use_coo(a, sparsity): if not a.is_cuda: return False B, M, K = a.shape # amortize overhead of converting from csr to coo if B < 32 and M < 4096: return False if sparsity > 0.995: return False if sparsity < 0.9: return False if K > 64: return False # let's be overly cautious here for now return sparsity > 0.97 def _should_use_csr_ge(a, sparsity): if not a.is_cuda: return False return sparsity > 0.99 def _sddmm_func(a, b, row_indices, row_offsets, column_indices): sparsity = 1 - column_indices.shape[0] / (a.shape[1] * b.shape[1]) if _should_use_coo(a, sparsity): m = a.shape[-2] n = b.shape[-2] # converting from csr to coo has a constant overhead of ~150us # so only dispatch to it for reasonably large problem sizes ro, ci = _csr_to_coo(m, n, row_offsets, column_indices) return torch.ops.xformers.coo_sddmm(a, b, row_indices, ro, ci) elif _should_use_csr_ge(a, sparsity): return torch.ops.xformers.csr_sddmm( a, b, row_indices, row_offsets, column_indices ) return torch.ops.xformers.sddmm_sputnik( a, b, row_indices, row_offsets, column_indices ) class _SparseSoftmax(torch.autograd.Function): @staticmethod def forward(ctx, m, n, row_indices, values, row_offsets, column_indices): out = torch.ops.xformers.sparse_softmax_sputnik( m, n, row_indices, values, row_offsets, column_indices ) # note: save out and not values, as an optimization step ctx.save_for_backward(row_indices, out, row_offsets, column_indices) ctx.size = (m, n) return out @staticmethod def backward(ctx, grad): row_indices, out, row_offsets, column_indices = ctx.saved_tensors m, n = ctx.size # gradients w.r.t. values grad = grad.contiguous() ga = torch.ops.xformers.sparse_softmax_backward_sputnik( m, n, row_indices, out, grad, row_offsets, column_indices ) return None, None, None, ga, None, None class _sddmm(torch.autograd.Function): @staticmethod def forward(ctx, a, b, row_indices, row_offsets, column_indices, _transp_info): out = _sddmm_func(a, b, row_indices, row_offsets, column_indices) ctx.save_for_backward( a, b, row_indices, row_offsets, column_indices, *_transp_info ) return out @staticmethod def backward(ctx, grad): ( a, b, row_indices, row_offsets, column_indices, *_transp_info, ) = ctx.saved_tensors m, n = a.shape[1], b.shape[1] # gradients w.r.t. values grad = grad.contiguous() a = a.contiguous() b = b.contiguous() a_grad = torch.ops.xformers.spmm_sputnik( b, row_indices, grad, row_offsets, column_indices, m ) ( row_indices_t, grad_t, row_offsets_t, column_indices_t, ) = _transpose_with_info(grad, _transp_info) b_grad = torch.ops.xformers.spmm_sputnik( a, row_indices_t, grad_t, row_offsets_t, column_indices_t, n ) return a_grad, b_grad, None, None, None, None class _spmm(torch.autograd.Function): @staticmethod def forward( ctx, b, row_indices, values, row_offsets, column_indices, m, _transp_info ): out = torch.ops.xformers.spmm_sputnik( b, row_indices, values, row_offsets, column_indices, m ) ctx.save_for_backward( b, row_indices, values, row_offsets, column_indices, *_transp_info ) return out @staticmethod def backward(ctx, grad): ( b, row_indices, values, row_offsets, column_indices, *_transp_info, ) = ctx.saved_tensors k = b.shape[1] # gradients w.r.t. values grad = grad.contiguous() grad_sparse = _sddmm_func(grad, b, row_indices, row_offsets, column_indices) ( row_indices_t, values_t, row_offsets_t, column_indices_t, ) = _transpose_with_info(values, _transp_info) grad_dense = torch.ops.xformers.spmm_sputnik( grad, row_indices_t, values_t, row_offsets_t, column_indices_t, k ) return grad_dense, None, grad_sparse, None, None, None, None
bart_ls-main
xformers/xformers/sparse/_csr_ops.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from .csr_tensor import SparseCSRTensor # noqa: F401
bart_ls-main
xformers/xformers/sparse/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import torch def _coo_to_csr(m, n, row_indices, column_indices): # assumes coalesced coo row_offsets = row_indices.bincount(minlength=n).cumsum(0, dtype=row_indices.dtype) row_offsets = torch.nn.functional.pad(row_offsets, (1, 0)) return row_offsets, column_indices def _csr_to_coo(m, n, row_offsets, column_indices): # convert from compressed rows to uncompressed indices = torch.arange(m, dtype=row_offsets.dtype, device=row_offsets.device) row_sizes = torch.diff(row_offsets) row_coo = torch.repeat_interleave(indices, row_sizes.long()) return row_coo, column_indices def _diffsort(a): return torch.argsort(torch.diff(a), dim=0, descending=True) def _get_transpose_info(m, n, row_indices, row_offsets, column_indices): # strategy: # - uncompress the rows to have data in COO format # - get permutation for stable sort of the columns to get the rows for the transposed matrix # - compress the new rows and return the permutation to be applied on the values # convert from compressed rows to uncompressed row_coo, _ = _csr_to_coo(m, n, row_offsets, column_indices) # get the permutation for the stable sort # unfortunately PyTorch sort is not stable, so we need to # do it in two steps row_offsets_t, perm1 = column_indices.sort(0) new_columns = row_coo[perm1] # workaround the lack of stable sorting in PyTorch perm2 = torch.argsort(new_columns + row_offsets_t * m) column_indices_t = new_columns[perm2] # find the final permutation corresponding to the indices of the stable sort perm = perm1[perm2] row_offsets_t, _ = _coo_to_csr(m, n, row_offsets_t, column_indices) row_indices_t = _diffsort(row_offsets_t).int() return row_indices_t, row_offsets_t, column_indices_t, perm def _transpose_with_info(values, _transpose_info): row_indices_t, row_offsets_t, column_indices_t, perm = _transpose_info values_t = values[:, perm] return row_indices_t, values_t, row_offsets_t, column_indices_t def _transpose(m, n, row_indices, values, row_offsets, column_indices): _transpose_info = _get_transpose_info( m, n, row_indices, row_offsets, column_indices ) return _transpose_with_info(values, _transpose_info) def _nonzero_mask_to_sparse_csr_indices(mask, device): """Converts dense 2d matrix to a csr sparse matrix.""" assert len(mask.shape) == 2 index_dtype = torch.int32 # Calculate the offset of each row. row_offsets = mask.sum(dim=-1, dtype=index_dtype).cumsum(dim=-1, dtype=index_dtype) row_offsets = torch.nn.functional.pad(row_offsets, (1, 0)) # Create the row indices and sort them. row_indices = _diffsort(row_offsets).to(index_dtype) # Extract the column indices for the nonzero values. column_indices = torch.where(mask)[1].to(index_dtype).contiguous() row_indices = row_indices.to(device) row_offsets = row_offsets.to(device) column_indices = column_indices.to(device) return row_indices, row_offsets, column_indices def _dense_to_sparse(matrix, device): """Converts dense 2d matrix to a csr sparse matrix.""" assert len(matrix.shape) == 2 value_dtype = torch.float32 # Extract the nonzero values. mask = matrix != 0 values = matrix[mask].to(dtype=value_dtype, device=device) row_indices, row_offsets, column_indices = _nonzero_mask_to_sparse_csr_indices( mask, device ) return values, row_indices, row_offsets, column_indices def _round_nnz(mask, divisible_by=4): nonzero = torch.where(mask) nnz = nonzero[0].shape[0] nonzero = tuple(n[: (nnz - nnz % divisible_by)] for n in nonzero) nm = torch.zeros_like(mask) nm[nonzero] = True return nm def _dense3d_to_sparse(matrix, device): assert len(matrix.shape) == 3 mask = matrix != 0 if not torch.all(mask == mask[0]): raise ValueError("Expected the same sparsity pattern over the batch dimension") # for now, our kernels assume that we have the number of # nnz to be divisible by 4 mask = _round_nnz(mask[0], divisible_by=4) mask = mask[None].expand(matrix.shape) values = matrix[mask].reshape(matrix.shape[0], -1).to(device) row_indices, row_offsets, column_indices = _nonzero_mask_to_sparse_csr_indices( mask[0], device ) return values, row_indices, row_offsets, column_indices
bart_ls-main
xformers/xformers/sparse/utils.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import torch from xformers.ops import masked_matmul from xformers.sparse import _csr_ops from xformers.sparse.utils import ( _csr_to_coo, _dense3d_to_sparse, _diffsort, _get_transpose_info, _transpose_with_info, ) class SparseCSRTensor(torch.Tensor): @staticmethod def __new__(cls, row_offsets, column_indices, values, shape): kwargs = {} kwargs["device"] = values.device kwargs["dtype"] = values.dtype kwargs["layout"] = values.layout kwargs["requires_grad"] = values.requires_grad assert len(shape) == 3 assert torch.__version__ > (1, 10), "SparseCSRTensor requires PyTorch 1.11+" return torch.Tensor._make_wrapper_subclass(cls, shape, **kwargs) def __init__(self, row_offsets, column_indices, values, shape): assert row_offsets.ndim == 1 assert column_indices.ndim == 1 assert values.ndim == 2 self.__row_offsets = row_offsets.contiguous() self.__row_indices = _diffsort(row_offsets).to(row_offsets.dtype) self.__column_indices = column_indices.contiguous() self.__values = values.contiguous() self.__transp_info = _get_transpose_info( self.shape[1], self.shape[2], self.__row_indices, self.__row_offsets, self.__column_indices, ) def __repr__(self): return f"sparse_csr_tensor(shape={self.shape}, values={self.__values})" @classmethod def from_dense(cls, matrix): values, row_indices, row_offsets, column_indices = _dense3d_to_sparse( matrix, matrix.device ) return cls(row_offsets, column_indices, values, matrix.shape) @classmethod def from_sparse_coo(cls, arg0): """ assert arg0.is_sparse x = arg0.coalesce() rows, cols = x.indices().unbind(0) vals = x.values() _coo_to_csr() """ pass @classmethod def _wrap( cls, shape, values, row_indices, row_offsets, column_indices, _transp_info ): matrix = cls.__new__(cls, row_offsets, column_indices, values, shape) matrix.__values = values matrix.__row_indices = row_indices matrix.__row_offsets = row_offsets matrix.__column_indices = column_indices matrix.__transp_info = _transp_info return matrix @property def _csr_values(self): return self.__values @property def _csr_row_indices(self): return self.__row_indices @property def _csr_row_offsets(self): return self.__row_offsets @property def _csr_column_indices(self): return self.__column_indices @property def _csr_transp_info(self): return self.__transp_info @classmethod def _bmm(cls, arg0, arg1): if not (isinstance(arg0, cls) and type(arg1) == torch.Tensor): return NotImplemented assert arg0.ndim == 3 assert arg1.ndim == 3 self = arg0 b = arg1 _, m, n = self.shape row_indices = self.__row_indices values = self.__values row_offsets = self.__row_offsets column_indices = self.__column_indices out = _csr_ops._spmm.apply( b, row_indices, values, row_offsets, column_indices, m, self.__transp_info ) return out @classmethod def _softmax(cls, arg0, dim): if not (dim == -1 or dim == 2): return NotImplemented self = arg0 _, m, n = self.shape row_indices = self.__row_indices values = self.__values row_offsets = self.__row_offsets column_indices = self.__column_indices out = _csr_ops._SparseSoftmax.apply( m, n, row_indices, values, row_offsets, column_indices ) return cls._wrap( self.shape, out, row_indices, row_offsets, column_indices, self.__transp_info, ) @classmethod def _transpose(cls, arg0, dim0, dim1): # TODO: check if need to return this or not if not (dim0 == 1 or dim0 == -2): return NotImplemented if not (dim1 == 2 or dim1 == -1): return NotImplemented B, m, n = arg0.shape values = arg0.__values ( output_row_indices, output_values, output_row_offsets, output_column_indices, ) = _transpose_with_info(values, arg0.__transp_info) new_transp_info = _get_transpose_info( n, m, output_row_indices, output_row_offsets, output_column_indices ) return cls._wrap( (B, n, m), output_values, output_row_indices, output_row_offsets, output_column_indices, new_transp_info, ) @classmethod def _masked_matmul(cls, a, b, mask): if not (type(a) == torch.Tensor and type(b) == torch.Tensor): return NotImplemented assert mask.shape[1] == a.shape[1] assert mask.shape[2] == b.shape[2] row_indices = mask.__row_indices row_offsets = mask.__row_offsets column_indices = mask.__column_indices out = _csr_ops._sddmm.apply( a, b.transpose(-2, -1), row_indices, row_offsets, column_indices, mask.__transp_info, ) # TODO add bias here return cls._wrap( mask.shape, out, row_indices, row_offsets, column_indices, mask.__transp_info, ) @classmethod def _to(cls, arg0, device): if isinstance(device, str): device = torch.device(device) assert isinstance(device, torch.device) return cls._wrap( arg0.shape, arg0.__values.to(device=device), arg0.__row_indices.to(device=device), arg0.__row_offsets.to(device=device), arg0.__column_indices.to(device=device), tuple(t.to(device=device) for t in arg0.__transp_info), ) @classmethod def _copy(cls, arg0, arg1): if not (isinstance(arg0, cls) and isinstance(arg1, cls)): return NotImplemented assert arg0.shape == arg1.shape av0, av1 = arg0.__values, arg1.__values av0.resize_as_(av1).copy_(av1) av0, av1 = arg0.__row_indices, arg1.__row_indices av0.resize_as_(av1).copy_(av1) av0, av1 = arg0.__row_offsets, arg1.__row_offsets av0.resize_as_(av1).copy_(av1) av0, av1 = arg0.__column_indices, arg1.__column_indices av0.resize_as_(av1).copy_(av1) for v0, v1 in zip(arg0.__transp_info, arg1.__transp_info): v0.resize_as_(v1).copy_(v1) return arg0 @classmethod def _equal(cls, arg0, arg1): if not (isinstance(arg0, cls) and isinstance(arg1, cls)): return NotImplemented if arg0.shape != arg1.shape: return False if not torch.equal(arg0.__values, arg1.__values): return False if not torch.equal(arg0.__row_offsets, arg1.__row_offsets): return False if not torch.equal(arg0.__column_indices, arg1.__column_indices): return False return True @classmethod def _to_dense(cls, arg0): _, m, n = arg0.shape shape = arg0.shape matrix = torch.zeros(shape, dtype=arg0.dtype, device=arg0.device) row_offsets = arg0.__row_offsets.long() column_indices = arg0.__column_indices.long() row_coo, _ = _csr_to_coo(m, n, row_offsets, column_indices) b_idxs = torch.arange(len(arg0.__values), device=arg0.device)[:, None] matrix[b_idxs, row_coo, column_indices] = arg0.__values return matrix @classmethod def _binary_op(cls, func, arg0, arg1): if not ( isinstance(arg0, (cls, int, float)) and isinstance(arg1, (cls, int, float)) ): return NotImplemented v0, v1 = arg0, arg1 if isinstance(arg0, cls): v0 = arg0.__values if isinstance(arg1, cls): v1 = arg1.__values # assert arg0.shape == arg1.shape if isinstance(arg0, cls) and isinstance(arg1, cls): msg = f"arg0 and arg1 need to have the same sparsity pattern in {func} (for now)" if not arg0.__row_offsets.shape == arg1.__row_offsets.shape: raise NotImplementedError(msg) if not arg0.__column_indices.shape == arg1.__column_indices.shape: raise NotImplementedError(msg) if not arg0.__values.shape == arg1.__values.shape: raise NotImplementedError(msg) # TODO this is not always true, but is a fast approximation for now if arg0.__row_offsets is not arg1.__row_offsets: raise NotImplementedError(msg) if arg0.__column_indices is not arg1.__column_indices: raise NotImplementedError(msg) out = func(v0, v1) return cls._wrap( arg0.shape, out, arg0.__row_indices, arg0.__row_offsets, arg0.__column_indices, arg0.__transp_info, ) @classmethod def _binary_op_slow(cls, func, arg0, arg1): # assert arg0.shape == arg1.shape v0, v1 = arg0, arg1 if isinstance(arg0, cls): v0 = arg0.to_dense() if isinstance(arg1, cls): v1 = arg1.to_dense() out = func(v0, v1) return cls.from_dense(out) @classmethod def __torch_function__(cls, func, types, args=(), kwargs=None): if kwargs is None: kwargs = {} if func in [ torch.Tensor.bmm, torch.bmm, torch.Tensor.__matmul__, torch.matmul, torch.Tensor.matmul, ]: assert len(args) == 2 return cls._bmm(args[0], args[1]) if func in [torch.Tensor.softmax, torch.nn.functional.softmax, torch.softmax]: return cls._softmax(args[0], kwargs["dim"]) if func in [torch.Tensor.transpose, torch.transpose]: assert len(kwargs) == 0 return cls._transpose(args[0], args[1], args[2]) if func == masked_matmul: assert len(args) == 3 return cls._masked_matmul(args[0], args[1], args[2]) if func in [ torch.Tensor.add, torch.add, torch.Tensor.__add__, ]: assert len(args) == 2 if not (isinstance(args[0], cls) and isinstance(args[1], cls)): raise NotImplementedError( f"{func} with {type(args[0])} and {type(args[1])} not implemented" ) return cls._binary_op(func, args[0], args[1]) if func in [ torch.Tensor.mul, torch.mul, torch.Tensor.__mul__, ]: assert len(args) == 2 return cls._binary_op(func, args[0], args[1]) if func in [torch.Tensor.logical_and, torch.logical_and, torch.Tensor.__and__]: assert len(args) == 2 return cls._binary_op_slow(func, args[0], args[1]) if func in [torch.nn.functional.dropout, torch.dropout, torch.dropout_]: x = args[0] values = x.__values.clone() values = func(values, *args[1:], **kwargs) return cls._wrap( x.shape, values, x.__row_indices, x.__row_offsets, x.__column_indices, x.__transp_info, ) if func == torch.Tensor.to: # print(args, kwargs) assert len(args) >= 2 return cls._to(args[0], args[1]) # return cls._to(args[0], kwargs["device"]) if func in [torch.Tensor.copy_]: assert len(args) == 2 return cls._copy(args[0], args[1]) if func in [torch.Tensor.equal, torch.equal]: assert len(args) == 2 return cls._equal(args[0], args[1]) if func == torch.Tensor.to_dense: assert len(args) == 1 return cls._to_dense(args[0]) if func == torch.Tensor.detach: x = args[0] return cls._wrap( x.shape, x.__values.detach(), x.__row_indices, x.__row_offsets, x.__column_indices, x.__transp_info, ) if func == torch.Tensor.__deepcopy__: x = args[0] memo = args[1] return cls._wrap( x.shape, x.__values.__deepcopy__(memo), x.__row_indices.__deepcopy__(memo), x.__row_offsets.__deepcopy__(memo), x.__column_indices.__deepcopy__(memo), tuple(v.__deepcopy__(memo) for v in x.__transp_info), ) if func in [torch.Tensor.grad.__get__, torch.Tensor._grad.__get__]: assert len(args) == 1 assert len(kwargs) == 0 x = args[0] return cls._wrap( x.shape, x.__values.grad, x.__row_indices, x.__row_offsets, x.__column_indices, x.__transp_info, ) if func == torch.Tensor.requires_grad_: func(args[0].__values) with torch._C.DisableTorchFunction(): ret = func(*args, **kwargs) # TODO: check this if func in torch.overrides.get_default_nowrap_functions(): return ret return torch._tensor._convert(ret, cls) return NotImplemented @classmethod def __torch_dispatch__(cls, func, types, args, kwargs): return NotImplemented
bart_ls-main
xformers/xformers/sparse/csr_tensor.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import tempfile import torch def init_torch_distributed_local(): if torch.distributed.is_initialized(): return init_url = "file://" + tempfile.mkstemp()[1] backend = ( torch.distributed.Backend.NCCL if torch.cuda.is_available() else torch.distributed.Backend.GLOO ) torch.distributed.init_process_group( backend=backend, rank=0, world_size=1, init_method=init_url, )
bart_ls-main
xformers/xformers/helpers/test_utils.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from .timm_sparse_attention import TimmSparseAttention # noqa
bart_ls-main
xformers/xformers/helpers/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import torch from xformers.components.attention.core import scaled_dot_product_attention class TimmSparseAttention(torch.nn.Module): """ Almost drop-in replacement for timm attention but using the sparsity-aware scaled_dot_product_attention from xformers """ def __init__( self, dim, num_heads=8, qkv_bias=False, attn_drop=0.0, proj_drop=0.0, attn_mask=None, ): super().__init__() self.num_heads = num_heads self.qkv = torch.nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = torch.nn.Dropout(attn_drop) self.proj = torch.nn.Linear(dim, dim) self.proj_drop = torch.nn.Dropout(proj_drop) self.attn_mask = attn_mask def forward(self, x): B, N, C = x.shape qkv = ( self.qkv(x) .reshape(B, N, 3, self.num_heads, C // self.num_heads) .permute(2, 0, 3, 1, 4) ) qkv = qkv.flatten(1, 2) q, k, v = qkv.unbind() x = scaled_dot_product_attention( q, k, v, self.attn_mask, dropout=self.attn_drop ) x = x.reshape(B, self.num_heads, N, C // self.num_heads) x = x.transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x
bart_ls-main
xformers/xformers/helpers/timm_sparse_attention.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from xformers.components import MultiHeadDispatchConfig # noqa from xformers.components.attention import AttentionConfig # noqa from xformers.components.feedforward import FeedforwardConfig # noqa from xformers.components.positional_embedding import PositionEmbeddingConfig # noqa from .block_factory import xFormerDecoderBlock # noqa from .block_factory import xFormerDecoderConfig # noqa from .block_factory import xFormerEncoderBlock # noqa from .block_factory import xFormerEncoderConfig # noqa from .model_factory import xFormer, xFormerConfig # noqa
bart_ls-main
xformers/xformers/factory/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. # register components configs into Hydra ConfigStore # component config classes could be used to validate configs import logging from hydra.core.config_store import ConfigStore from omegaconf.errors import ValidationError from xformers.components.attention import ATTENTION_REGISTRY from xformers.components.feedforward import FEEDFORWARD_REGISTRY from xformers.components.positional_embedding import POSITION_EMBEDDING_REGISTRY log = logging.getLogger(__name__) def import_xformer_config_schema(): """ Best effort - OmegaConf supports limited typing, so we may fail to import certain config classes. For example, pytorch typing are not supported. """ cs = ConfigStore.instance() for k, v in { "ff": FEEDFORWARD_REGISTRY, "pe": POSITION_EMBEDDING_REGISTRY, "attention": ATTENTION_REGISTRY, }.items(): for kk in v.keys(): try: cs.store(name=f"{kk}_schema", node=v[kk].config, group=f"xformers/{k}") except ValidationError as e: log.debug(f"Error registering {kk}_schema, error: {e}")
bart_ls-main
xformers/xformers/factory/hydra_helper.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from dataclasses import asdict, dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import torch import torch.nn as nn from xformers.components import ( LayerNormStyle, PostNorm, PreNorm, Residual, build_multi_head_attention, ) from xformers.components.feedforward import ( FEEDFORWARD_REGISTRY, FeedforwardConfig, build_feedforward, ) from xformers.components.positional_embedding import ( POSITION_EMBEDDING_REGISTRY, PositionEmbeddingConfig, build_positional_embedding, ) from xformers.utils import generate_matching_config class LayerPositionBitmask(int, Enum): First = 0b01 Last = 0b10 Default = 0b11 class LayerPosition: """ Bitmask to mark this layer as first, last, nothing or both""" def __init__(self): self.bitmask = LayerPositionBitmask.Default def is_first(self): return bool(self.bitmask & LayerPositionBitmask.First) def is_last(self): return bool(self.bitmask & LayerPositionBitmask.Last) def mark_not_first(self): self.bitmask &= ~LayerPositionBitmask.First def mark_not_last(self): self.bitmask &= ~LayerPositionBitmask.Last class BlockType(str, Enum): Encoder = "encoder" Decoder = "decoder" def _get_ln_factory( d_model: int, layer_norm_style: Optional[LayerNormStyle], residual: bool = True, use_triton: bool = True, ): def get_layer_wrapper( d_model: int, sublayer: nn.Module, layer_norm_style: Optional[LayerNormStyle], residual: bool = True, ): if residual: return ( Residual(PreNorm(d_model, sublayer, use_triton)) if layer_norm_style == LayerNormStyle.Pre else PostNorm(d_model, Residual(sublayer), use_triton) ) return ( PreNorm(d_model, sublayer, use_triton) if layer_norm_style == LayerNormStyle.Pre else PostNorm(d_model, sublayer, use_triton) ) def ln_factory(sublayer: nn.Module): return get_layer_wrapper(d_model, sublayer, layer_norm_style, residual) return ln_factory @dataclass(init=False) # handle constructors explicitly to force type changes class xFormerBlockConfig: """ The configuration structure to define a Transformer block. This base class is applicable to both encoder and decoder definitions. This completely defines each of the blocks, for instance in terms of dimensions, position encoding, pre or post layer norms or reversibility. """ dim_model: int feedforward_config: FeedforwardConfig position_encoding_config: Optional[PositionEmbeddingConfig] block_type: BlockType layer_norm_style: LayerNormStyle layer_position: LayerPosition use_triton: bool reversible: bool num_layers: int def __init__( self, dim_model: int, feedforward_config: Dict[str, Any], position_encoding_config: Optional[Dict[str, Any]], block_type: BlockType, layer_norm_style: LayerNormStyle = LayerNormStyle("post"), reversible: bool = False, num_layers: int = 1, layer_position: Optional[LayerPosition] = None, ): self.dim_model = dim_model self.block_type = block_type self.layer_norm_style = layer_norm_style self.reversible = reversible self.num_layers = num_layers # Fill in possible gaps in the config for subparts of the block self.feedforward_config = generate_matching_config( feedforward_config, FEEDFORWARD_REGISTRY[feedforward_config["name"]].config, ) self.position_encoding_config = ( generate_matching_config( position_encoding_config, POSITION_EMBEDDING_REGISTRY[position_encoding_config["name"]].config, ) if position_encoding_config is not None else None ) # Default is that this layer is the only one, so both first and last if layer_position: self.layer_position = layer_position else: self.layer_position = LayerPosition() @dataclass(init=False) class xFormerEncoderConfig(xFormerBlockConfig): """ The configuration structure for an encoder block """ multi_head_config: Dict[str, Any] use_triton: bool def __init__( self, dim_model: int, feedforward_config: Dict[str, Any], multi_head_config: Dict[str, Any], position_encoding_config: Optional[Dict[str, Any]] = None, layer_norm_style: str = "post", use_triton: bool = True, **kwargs, ): # Convenience, fill in duplicated field try: if "dim_model" not in multi_head_config.keys(): multi_head_config["dim_model"] = dim_model if "dim_model" not in feedforward_config.keys(): feedforward_config["dim_model"] = dim_model if ( position_encoding_config is not None and "dim_model" not in position_encoding_config.keys() ): position_encoding_config["dim_model"] = dim_model except AttributeError: # A config instance was passed in, this is fine pass if "block_type" in kwargs: assert kwargs["block_type"] == "encoder" kwargs["block_type"] = BlockType("encoder") super().__init__( dim_model=dim_model, feedforward_config=feedforward_config, position_encoding_config=position_encoding_config, layer_norm_style=LayerNormStyle(layer_norm_style), **kwargs, ) self.multi_head_config = multi_head_config self.use_triton = use_triton @dataclass(init=False) class xFormerDecoderConfig(xFormerBlockConfig): """ The configuration structure for a decoder block. This specifically defines the masked and cross attention mechanisms, on top of the settings defining all blocks. """ multi_head_config_masked: Dict[str, Any] # prior to encoder output multi_head_config_cross: Dict[str, Any] # cross attention, takes encoder output def __init__( self, dim_model: int, feedforward_config: Dict[str, Any], multi_head_config_masked: Dict[str, Any], multi_head_config_cross: Dict[str, Any], position_encoding_config: Optional[Dict[str, Any]] = None, layer_norm_style: str = "post", use_triton: bool = True, **kwargs, ): # Convenience, fill in duplicated field try: if "dim_model" not in multi_head_config_masked.keys(): multi_head_config_masked["dim_model"] = dim_model if "dim_model" not in multi_head_config_cross.keys(): multi_head_config_cross["dim_model"] = dim_model if "dim_model" not in feedforward_config.keys(): feedforward_config["dim_model"] = dim_model if ( position_encoding_config is not None and "dim_model" not in position_encoding_config.keys() ): position_encoding_config["dim_model"] = dim_model except AttributeError: # A config instance was passed in, this is fine pass if "block_type" in kwargs.keys(): assert kwargs["block_type"] == "decoder" kwargs["block_type"] = BlockType("decoder") super().__init__( dim_model=dim_model, feedforward_config=feedforward_config, position_encoding_config=position_encoding_config, layer_norm_style=LayerNormStyle(layer_norm_style), **kwargs, ) self.multi_head_config_masked = multi_head_config_masked self.multi_head_config_cross = multi_head_config_cross self.use_triton = use_triton class xFormerEncoderBlock(torch.nn.Module): r""" A vanilla Transformer Encoder block """ def __init__(self, config: xFormerEncoderConfig, **kwargs): super().__init__() self.reversible_f = None self.reversible_g = None self.layer_norm_style = config.layer_norm_style self.dim_model = config.dim_model # If this layer is the first one, and a pose encoding has been requested self.pose_encoding = ( build_positional_embedding(asdict(config.position_encoding_config)) if config.position_encoding_config and config.layer_position.is_first() else None ) # mini helper, builds a LayerNorm with the right Pre/Post config, residuals, and the right dimensions ln_factory = _get_ln_factory( config.dim_model, config.layer_norm_style, use_triton=config.use_triton ) self.mha = build_multi_head_attention(config.multi_head_config) self.feedforward = build_feedforward(asdict(config.feedforward_config)) # Wrappers handle the different layer norm styles (pre- and post-) and the residual path self.wrap_att = ln_factory(self.mha) self.wrap_ff: Union[Residual, PostNorm] = ln_factory(self.feedforward) if ( config.layer_norm_style == LayerNormStyle.Pre and config.layer_position.is_last() ): self.wrap_ff = PostNorm(config.dim_model, self.wrap_ff) @classmethod def from_config(cls, config: xFormerEncoderConfig): return cls(config) @staticmethod def get_reversible_layer(config) -> Tuple[nn.Module, nn.Module]: ln_factory = _get_ln_factory( config.dim_model, config.layer_norm_style, residual=False, use_triton=config.use_triton, ) mha = build_multi_head_attention(config.multi_head_config) feedforward = build_feedforward(asdict(config.feedforward_config)) reversible_f = ln_factory(mha) reversible_g = ln_factory(feedforward) return reversible_f, reversible_g def forward( self, x: torch.Tensor, att_mask: Optional[torch.Tensor] = None, input_mask: Optional[torch.Tensor] = None, ): if self.pose_encoding: x = self.pose_encoding(x) # Handle the optional input masking, differs on Q, K, V if input_mask is not None: q = x k = x * input_mask.unsqueeze(-1) v = k else: q, k, v = x, x, x bsz, src_len, num_heads = q.size(0), k.size(1), self.mha.num_heads att_mask = maybe_merge_masks(att_mask, input_mask, bsz, src_len, num_heads) # Pre/Post norms and residual paths are already handled x = self.wrap_att(q, k, v, att_mask=att_mask, key_padding_mask=~input_mask.bool()) x = self.wrap_ff(x) return x class xFormerDecoderBlock(torch.nn.Module): r"""A vanilla Transformer Decoder block ... note: this implementation is not (yet ?) reversible""" def __init__(self, config: xFormerDecoderConfig, **kwargs): super().__init__() # If this layer is the first one, and a pose encoding as been requested self.pose_encoding = ( build_positional_embedding(config.position_encoding_config) if config.position_encoding_config and config.layer_position.is_first() else None ) # mini helper, builds a LayerNorm with the right Pre/Post config and the right dimensions ln_factory = _get_ln_factory( config.dim_model, config.layer_norm_style, use_triton=config.use_triton ) self.mha = build_multi_head_attention(config.multi_head_config_masked) self.cross_mha = build_multi_head_attention(config.multi_head_config_cross) self.feedforward = build_feedforward(config.feedforward_config) self.wrap_att = ln_factory(self.mha) self.wrap_cross = ln_factory(self.cross_mha) self.wrap_ff: Union[Residual, PostNorm] = ln_factory(self.feedforward) if ( config.layer_norm_style == LayerNormStyle.Pre and config.layer_position.is_last() ): self.wrap_ff = PostNorm(config.dim_model, self.wrap_ff) @classmethod def from_config(cls, config: xFormerDecoderConfig): return cls(config) def forward( self, target: torch.Tensor, memory: torch.Tensor, encoder_att_mask: Optional[torch.Tensor] = None, decoder_att_mask: Optional[torch.Tensor] = None, input_mask: Optional[torch.Tensor] = None, ): if self.pose_encoding: target = self.pose_encoding(target) # Handle the optional input masking, differs on Q, K, V if input_mask is not None: target_q = target target_k = target * input_mask.unsqueeze(-1) target_v = target_k else: target_q, target_k, target_v = target, target, target x = self.wrap_att([target_q, target_k, target_v], att_mask=decoder_att_mask) x = self.wrap_cross([x, memory, memory], att_mask=encoder_att_mask) x = self.wrap_ff(x) return x
bart_ls-main
xformers/xformers/factory/block_factory.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import logging from dataclasses import dataclass from typing import Any, Dict, List, Optional, Union import torch from xformers.components import reversible as rv from xformers.factory.block_factory import ( xFormerBlockConfig, xFormerDecoderBlock, xFormerDecoderConfig, xFormerEncoderBlock, xFormerEncoderConfig, ) @dataclass(init=False) class xFormerConfig: """ The configuration structure to define a full Transformer. This can include a stack of encoder layers, and a stack of decoder layers. It is optionally possible to share the embedding weights in between the encoder and decoder positional encoding, as proposed for instance by `Using the Output Embedding to Improve Language Models`, Press et al. A full config example is for instance as follows: :: xformer_config = [ { "reversible": False, # Turn on to test the effect of using reversible layers "block_type": "encoder", "num_layers": LAYERS, "dim_model": EMB, "layer_norm_style": "pre", "position_encoding_config": { "name": "vocab", "seq_len": CONTEXT, "vocab_size": VOCAB_SIZE, }, "multi_head_config": { "num_heads": NUM_HEADS, "residual_dropout": RES_DROP, "use_rotary_embeddings": True, "attention": { "name": ATTENTION_MECHANISM_STR, "dropout": ATTN_DROP, "causal": True, "seq_len": CONTEXT, }, }, "feedforward_config": { "name": "FusedMLP", # Use MLP if Triton is not available "dropout": MLP_DROP, "activation": "gelu", "hidden_layer_multiplier": MLP_MULTIPLIER, }, } ] .. _`Using the Output Embedding to Improve Language Models`: https://arxiv.org/pdf/1608.05859.pdf """ stack_configs: Union[List[xFormerBlockConfig], Dict[str, xFormerBlockConfig]] tie_embedding_weights: bool = False def __init__( self, stack_configs: Union[List[Dict[str, Any]], Dict[str, Dict[str, Any]]], tie_embedding_weights: bool = False, ): # Type all the configurations. Possible typos are caught here if isinstance(stack_configs, dict): self.stack_configs = {} for k, config in stack_configs.items(): if config["block_type"] == "encoder": self.stack_configs[k] = xFormerEncoderConfig(**config) else: self.stack_configs[k] = xFormerDecoderConfig(**config) else: self.stack_configs = [] for config in stack_configs: if config["block_type"] == "encoder": self.stack_configs.append(xFormerEncoderConfig(**config)) else: self.stack_configs.append(xFormerDecoderConfig(**config)) self.tie_embedding_weights = tie_embedding_weights class xFormer(torch.nn.Module): def __init__( self, stack_configs: Union[ xFormerBlockConfig, List[xFormerBlockConfig], Dict[str, xFormerBlockConfig] ], tie_embedding_weights: bool = False, ): """ Given a serialized configuration, generate the corresponding model. This is only a helper and can easily be bypassed """ super().__init__() if isinstance(stack_configs, Dict): stack_configs = list(stack_configs.values()) # Convenience, users can pass either a list of configs or a single one if not isinstance(stack_configs, List): stack_configs = [stack_configs] self._verify_reversible(stack_configs) encoders: List[torch.nn.Module] = [] decoders: List[torch.nn.Module] = [] self.reversible_encoder = False self.rev_enc_pose_encoding = None # Unroll the configs and build the model for config in stack_configs: # Handle either Encoder or Decoder stacks builder = ( xFormerEncoderBlock.from_config if isinstance(config, xFormerEncoderConfig) else xFormerDecoderBlock.from_config ) recipient = ( encoders if isinstance(config, xFormerEncoderConfig) else decoders ) # Build up the stack for i in range(config.num_layers): # Label where this layer is in the stack # (for instance useful for the positional encoding, or late layer norm) if i > 0: config.layer_position.mark_not_first() if i < config.num_layers - 1: config.layer_position.mark_not_last() block = builder(config) # type: ignore # If reversible: extract the reversible sub-parts, else append the block as-is if config.reversible: # WARNING: only one pose encoding is saved here (not Focal Transformer compatible for instance) assert isinstance(config, xFormerEncoderConfig) if block.pose_encoding is not None: self.rev_enc_pose_encoding = block.pose_encoding self.reversible_encoder = True f, g = xFormerEncoderBlock.get_reversible_layer(config) recipient.append(torch.nn.ModuleList([f, g])) else: recipient.append(block) # type: ignore # Tie embedding weights, if requested and possible assert ( not tie_embedding_weights or not self.reversible_encoder ), "Reversible layers and tied embeddings is not supported for now" if ( tie_embedding_weights and encoders and encoders[0].pose_encoding and decoders and decoders[0].pose_encoding and not config.reversible ): logging.info("Tying encoder and decoder embeddings, as requested") encoders[0].pose_encoding = decoders[0].pose_encoding self.encoders: torch.nn.Module = ( rv.ReversibleSequence(torch.nn.ModuleList(encoders)) if self.reversible_encoder else torch.nn.ModuleList(encoders) ) self.decoders = torch.nn.ModuleList(decoders) if len(self.decoders) > 0: # Use Xavier init for encoding/decoding tasks self._reset_parameters() @classmethod def from_config(cls, config: xFormerConfig): return cls(config.stack_configs, config.tie_embedding_weights) def _reset_parameters(self): r"""Initiate parameters in the transformer model following the Xavier distribution.""" for p in self.parameters(): if p.dim() > 1: torch.nn.init.xavier_uniform_(p) def _verify_reversible(self, stack_configs: List[xFormerBlockConfig]): reversible = [ c.reversible for c in filter(lambda x: x.block_type == "encoder", stack_configs) ] non_reversible = [not rev for rev in reversible] assert all(reversible) or all(non_reversible), ( "All layers need to have the same reversibility setting. " + f"Currently {reversible}" ) def forward( self, src: torch.Tensor, tgt: Optional[torch.Tensor] = None, encoder_input_mask: Optional[torch.Tensor] = None, decoder_input_mask: Optional[torch.Tensor] = None, ) -> Optional[torch.Tensor]: # Encode to latent space if encoder is present if len(list(self.encoders.parameters())) > 0: encoders = self.encoders memory = src.clone() if isinstance(encoders, torch.nn.ModuleList): for encoder in encoders: memory = encoder(memory, input_mask=encoder_input_mask) else: if self.rev_enc_pose_encoding: memory = self.rev_enc_pose_encoding(src) # Reversible Encoder x = torch.cat([memory, memory], dim=-1) # TODO: pass in key and value independently. kwargs = {"att_mask": encoder_input_mask} x = encoders(x, **kwargs) memory = torch.stack(x.chunk(2, dim=-1)).mean(dim=0) if not self.decoders: return memory # If decoder: either use the encoder ouput, or just decode, both options are possible if len(self.decoders) > 0: tgt = src.clone() if tgt is None else tgt for decoder in self.decoders: tgt = decoder( target=tgt, # pyre-fixme[61]: `memory` is not always initialized here. memory=memory, input_mask=decoder_input_mask, ) return tgt return None
bart_ls-main
xformers/xformers/factory/model_factory.py
#!/usr/bin/env python3 # Copyright 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import sys import os import argparse import json import random import shutil import torch torch.backends.cudnn.enabled = True from torch.autograd import Variable import torch.nn.functional as F import numpy as np import h5py import iep.utils as utils import iep.preprocess from iep.data import ClevrDataset, ClevrDataLoader from iep.models import ModuleNet, Seq2Seq, LstmModel, CnnLstmModel, CnnLstmSaModel parser = argparse.ArgumentParser() # Input data parser.add_argument('--train_question_h5', default='data/train_questions.h5') parser.add_argument('--train_features_h5', default='data/train_features.h5') parser.add_argument('--val_question_h5', default='data/val_questions.h5') parser.add_argument('--val_features_h5', default='data/val_features.h5') parser.add_argument('--feature_dim', default='1024,14,14') parser.add_argument('--vocab_json', default='data/vocab.json') parser.add_argument('--loader_num_workers', type=int, default=1) parser.add_argument('--use_local_copies', default=0, type=int) parser.add_argument('--cleanup_local_copies', default=1, type=int) parser.add_argument('--family_split_file', default=None) parser.add_argument('--num_train_samples', default=None, type=int) parser.add_argument('--num_val_samples', default=10000, type=int) parser.add_argument('--shuffle_train_data', default=1, type=int) # What type of model to use and which parts to train parser.add_argument('--model_type', default='PG', choices=['PG', 'EE', 'PG+EE', 'LSTM', 'CNN+LSTM', 'CNN+LSTM+SA']) parser.add_argument('--train_program_generator', default=1, type=int) parser.add_argument('--train_execution_engine', default=1, type=int) parser.add_argument('--baseline_train_only_rnn', default=0, type=int) # Start from an existing checkpoint parser.add_argument('--program_generator_start_from', default=None) parser.add_argument('--execution_engine_start_from', default=None) parser.add_argument('--baseline_start_from', default=None) # RNN options parser.add_argument('--rnn_wordvec_dim', default=300, type=int) parser.add_argument('--rnn_hidden_dim', default=256, type=int) parser.add_argument('--rnn_num_layers', default=2, type=int) parser.add_argument('--rnn_dropout', default=0, type=float) # Module net options parser.add_argument('--module_stem_num_layers', default=2, type=int) parser.add_argument('--module_stem_batchnorm', default=0, type=int) parser.add_argument('--module_dim', default=128, type=int) parser.add_argument('--module_residual', default=1, type=int) parser.add_argument('--module_batchnorm', default=0, type=int) # CNN options (for baselines) parser.add_argument('--cnn_res_block_dim', default=128, type=int) parser.add_argument('--cnn_num_res_blocks', default=0, type=int) parser.add_argument('--cnn_proj_dim', default=512, type=int) parser.add_argument('--cnn_pooling', default='maxpool2', choices=['none', 'maxpool2']) # Stacked-Attention options parser.add_argument('--stacked_attn_dim', default=512, type=int) parser.add_argument('--num_stacked_attn', default=2, type=int) # Classifier options parser.add_argument('--classifier_proj_dim', default=512, type=int) parser.add_argument('--classifier_downsample', default='maxpool2', choices=['maxpool2', 'maxpool4', 'none']) parser.add_argument('--classifier_fc_dims', default='1024') parser.add_argument('--classifier_batchnorm', default=0, type=int) parser.add_argument('--classifier_dropout', default=0, type=float) # Optimization options parser.add_argument('--batch_size', default=64, type=int) parser.add_argument('--num_iterations', default=100000, type=int) parser.add_argument('--learning_rate', default=5e-4, type=float) parser.add_argument('--reward_decay', default=0.9, type=float) # Output options parser.add_argument('--checkpoint_path', default='data/checkpoint.pt') parser.add_argument('--randomize_checkpoint_path', type=int, default=0) parser.add_argument('--record_loss_every', type=int, default=1) parser.add_argument('--checkpoint_every', default=10000, type=int) def main(args): if args.randomize_checkpoint_path == 1: name, ext = os.path.splitext(args.checkpoint_path) num = random.randint(1, 1000000) args.checkpoint_path = '%s_%06d%s' % (name, num, ext) vocab = utils.load_vocab(args.vocab_json) if args.use_local_copies == 1: shutil.copy(args.train_question_h5, '/tmp/train_questions.h5') shutil.copy(args.train_features_h5, '/tmp/train_features.h5') shutil.copy(args.val_question_h5, '/tmp/val_questions.h5') shutil.copy(args.val_features_h5, '/tmp/val_features.h5') args.train_question_h5 = '/tmp/train_questions.h5' args.train_features_h5 = '/tmp/train_features.h5' args.val_question_h5 = '/tmp/val_questions.h5' args.val_features_h5 = '/tmp/val_features.h5' question_families = None if args.family_split_file is not None: with open(args.family_split_file, 'r') as f: question_families = json.load(f) train_loader_kwargs = { 'question_h5': args.train_question_h5, 'feature_h5': args.train_features_h5, 'vocab': vocab, 'batch_size': args.batch_size, 'shuffle': args.shuffle_train_data == 1, 'question_families': question_families, 'max_samples': args.num_train_samples, 'num_workers': args.loader_num_workers, } val_loader_kwargs = { 'question_h5': args.val_question_h5, 'feature_h5': args.val_features_h5, 'vocab': vocab, 'batch_size': args.batch_size, 'question_families': question_families, 'max_samples': args.num_val_samples, 'num_workers': args.loader_num_workers, } with ClevrDataLoader(**train_loader_kwargs) as train_loader, \ ClevrDataLoader(**val_loader_kwargs) as val_loader: train_loop(args, train_loader, val_loader) if args.use_local_copies == 1 and args.cleanup_local_copies == 1: os.remove('/tmp/train_questions.h5') os.remove('/tmp/train_features.h5') os.remove('/tmp/val_questions.h5') os.remove('/tmp/val_features.h5') def train_loop(args, train_loader, val_loader): vocab = utils.load_vocab(args.vocab_json) program_generator, pg_kwargs, pg_optimizer = None, None, None execution_engine, ee_kwargs, ee_optimizer = None, None, None baseline_model, baseline_kwargs, baseline_optimizer = None, None, None baseline_type = None pg_best_state, ee_best_state, baseline_best_state = None, None, None # Set up model if args.model_type == 'PG' or args.model_type == 'PG+EE': program_generator, pg_kwargs = get_program_generator(args) pg_optimizer = torch.optim.Adam(program_generator.parameters(), lr=args.learning_rate) print('Here is the program generator:') print(program_generator) if args.model_type == 'EE' or args.model_type == 'PG+EE': execution_engine, ee_kwargs = get_execution_engine(args) ee_optimizer = torch.optim.Adam(execution_engine.parameters(), lr=args.learning_rate) print('Here is the execution engine:') print(execution_engine) if args.model_type in ['LSTM', 'CNN+LSTM', 'CNN+LSTM+SA']: baseline_model, baseline_kwargs = get_baseline_model(args) params = baseline_model.parameters() if args.baseline_train_only_rnn == 1: params = baseline_model.rnn.parameters() baseline_optimizer = torch.optim.Adam(params, lr=args.learning_rate) print('Here is the baseline model') print(baseline_model) baseline_type = args.model_type loss_fn = torch.nn.CrossEntropyLoss().cuda() stats = { 'train_losses': [], 'train_rewards': [], 'train_losses_ts': [], 'train_accs': [], 'val_accs': [], 'val_accs_ts': [], 'best_val_acc': -1, 'model_t': 0, } t, epoch, reward_moving_average = 0, 0, 0 set_mode('train', [program_generator, execution_engine, baseline_model]) print('train_loader has %d samples' % len(train_loader.dataset)) print('val_loader has %d samples' % len(val_loader.dataset)) while t < args.num_iterations: epoch += 1 print('Starting epoch %d' % epoch) for batch in train_loader: t += 1 questions, _, feats, answers, programs, _ = batch questions_var = Variable(questions.cuda()) feats_var = Variable(feats.cuda()) answers_var = Variable(answers.cuda()) if programs[0] is not None: programs_var = Variable(programs.cuda()) reward = None if args.model_type == 'PG': # Train program generator with ground-truth programs pg_optimizer.zero_grad() loss = program_generator(questions_var, programs_var) loss.backward() pg_optimizer.step() elif args.model_type == 'EE': # Train execution engine with ground-truth programs ee_optimizer.zero_grad() scores = execution_engine(feats_var, programs_var) loss = loss_fn(scores, answers_var) loss.backward() ee_optimizer.step() elif args.model_type in ['LSTM', 'CNN+LSTM', 'CNN+LSTM+SA']: baseline_optimizer.zero_grad() baseline_model.zero_grad() scores = baseline_model(questions_var, feats_var) loss = loss_fn(scores, answers_var) loss.backward() baseline_optimizer.step() elif args.model_type == 'PG+EE': programs_pred = program_generator.reinforce_sample(questions_var) scores = execution_engine(feats_var, programs_pred) loss = loss_fn(scores, answers_var) _, preds = scores.data.cpu().max(1) raw_reward = (preds == answers).float() reward_moving_average *= args.reward_decay reward_moving_average += (1.0 - args.reward_decay) * raw_reward.mean() centered_reward = raw_reward - reward_moving_average if args.train_execution_engine == 1: ee_optimizer.zero_grad() loss.backward() ee_optimizer.step() if args.train_program_generator == 1: pg_optimizer.zero_grad() program_generator.reinforce_backward(centered_reward.cuda()) pg_optimizer.step() if t % args.record_loss_every == 0: print(t, loss.data[0]) stats['train_losses'].append(loss.data[0]) stats['train_losses_ts'].append(t) if reward is not None: stats['train_rewards'].append(reward) if t % args.checkpoint_every == 0: print('Checking training accuracy ... ') train_acc = check_accuracy(args, program_generator, execution_engine, baseline_model, train_loader) print('train accuracy is', train_acc) print('Checking validation accuracy ...') val_acc = check_accuracy(args, program_generator, execution_engine, baseline_model, val_loader) print('val accuracy is ', val_acc) stats['train_accs'].append(train_acc) stats['val_accs'].append(val_acc) stats['val_accs_ts'].append(t) if val_acc > stats['best_val_acc']: stats['best_val_acc'] = val_acc stats['model_t'] = t best_pg_state = get_state(program_generator) best_ee_state = get_state(execution_engine) best_baseline_state = get_state(baseline_model) checkpoint = { 'args': args.__dict__, 'program_generator_kwargs': pg_kwargs, 'program_generator_state': best_pg_state, 'execution_engine_kwargs': ee_kwargs, 'execution_engine_state': best_ee_state, 'baseline_kwargs': baseline_kwargs, 'baseline_state': best_baseline_state, 'baseline_type': baseline_type, 'vocab': vocab } for k, v in stats.items(): checkpoint[k] = v print('Saving checkpoint to %s' % args.checkpoint_path) torch.save(checkpoint, args.checkpoint_path) del checkpoint['program_generator_state'] del checkpoint['execution_engine_state'] del checkpoint['baseline_state'] with open(args.checkpoint_path + '.json', 'w') as f: json.dump(checkpoint, f) if t == args.num_iterations: break def parse_int_list(s): return tuple(int(n) for n in s.split(',')) def get_state(m): if m is None: return None state = {} for k, v in m.state_dict().items(): state[k] = v.clone() return state def get_program_generator(args): vocab = utils.load_vocab(args.vocab_json) if args.program_generator_start_from is not None: pg, kwargs = utils.load_program_generator(args.program_generator_start_from) cur_vocab_size = pg.encoder_embed.weight.size(0) if cur_vocab_size != len(vocab['question_token_to_idx']): print('Expanding vocabulary of program generator') pg.expand_encoder_vocab(vocab['question_token_to_idx']) kwargs['encoder_vocab_size'] = len(vocab['question_token_to_idx']) else: kwargs = { 'encoder_vocab_size': len(vocab['question_token_to_idx']), 'decoder_vocab_size': len(vocab['program_token_to_idx']), 'wordvec_dim': args.rnn_wordvec_dim, 'hidden_dim': args.rnn_hidden_dim, 'rnn_num_layers': args.rnn_num_layers, 'rnn_dropout': args.rnn_dropout, } pg = Seq2Seq(**kwargs) pg.cuda() pg.train() return pg, kwargs def get_execution_engine(args): vocab = utils.load_vocab(args.vocab_json) if args.execution_engine_start_from is not None: ee, kwargs = utils.load_execution_engine(args.execution_engine_start_from) # TODO: Adjust vocab? else: kwargs = { 'vocab': vocab, 'feature_dim': parse_int_list(args.feature_dim), 'stem_batchnorm': args.module_stem_batchnorm == 1, 'stem_num_layers': args.module_stem_num_layers, 'module_dim': args.module_dim, 'module_residual': args.module_residual == 1, 'module_batchnorm': args.module_batchnorm == 1, 'classifier_proj_dim': args.classifier_proj_dim, 'classifier_downsample': args.classifier_downsample, 'classifier_fc_layers': parse_int_list(args.classifier_fc_dims), 'classifier_batchnorm': args.classifier_batchnorm == 1, 'classifier_dropout': args.classifier_dropout, } ee = ModuleNet(**kwargs) ee.cuda() ee.train() return ee, kwargs def get_baseline_model(args): vocab = utils.load_vocab(args.vocab_json) if args.baseline_start_from is not None: model, kwargs = utils.load_baseline(args.baseline_start_from) elif args.model_type == 'LSTM': kwargs = { 'vocab': vocab, 'rnn_wordvec_dim': args.rnn_wordvec_dim, 'rnn_dim': args.rnn_hidden_dim, 'rnn_num_layers': args.rnn_num_layers, 'rnn_dropout': args.rnn_dropout, 'fc_dims': parse_int_list(args.classifier_fc_dims), 'fc_use_batchnorm': args.classifier_batchnorm == 1, 'fc_dropout': args.classifier_dropout, } model = LstmModel(**kwargs) elif args.model_type == 'CNN+LSTM': kwargs = { 'vocab': vocab, 'rnn_wordvec_dim': args.rnn_wordvec_dim, 'rnn_dim': args.rnn_hidden_dim, 'rnn_num_layers': args.rnn_num_layers, 'rnn_dropout': args.rnn_dropout, 'cnn_feat_dim': parse_int_list(args.feature_dim), 'cnn_num_res_blocks': args.cnn_num_res_blocks, 'cnn_res_block_dim': args.cnn_res_block_dim, 'cnn_proj_dim': args.cnn_proj_dim, 'cnn_pooling': args.cnn_pooling, 'fc_dims': parse_int_list(args.classifier_fc_dims), 'fc_use_batchnorm': args.classifier_batchnorm == 1, 'fc_dropout': args.classifier_dropout, } model = CnnLstmModel(**kwargs) elif args.model_type == 'CNN+LSTM+SA': kwargs = { 'vocab': vocab, 'rnn_wordvec_dim': args.rnn_wordvec_dim, 'rnn_dim': args.rnn_hidden_dim, 'rnn_num_layers': args.rnn_num_layers, 'rnn_dropout': args.rnn_dropout, 'cnn_feat_dim': parse_int_list(args.feature_dim), 'stacked_attn_dim': args.stacked_attn_dim, 'num_stacked_attn': args.num_stacked_attn, 'fc_dims': parse_int_list(args.classifier_fc_dims), 'fc_use_batchnorm': args.classifier_batchnorm == 1, 'fc_dropout': args.classifier_dropout, } model = CnnLstmSaModel(**kwargs) if model.rnn.token_to_idx != vocab['question_token_to_idx']: # Make sure new vocab is superset of old for k, v in model.rnn.token_to_idx.items(): assert k in vocab['question_token_to_idx'] assert vocab['question_token_to_idx'][k] == v for token, idx in vocab['question_token_to_idx'].items(): model.rnn.token_to_idx[token] = idx kwargs['vocab'] = vocab model.rnn.expand_vocab(vocab['question_token_to_idx']) model.cuda() model.train() return model, kwargs def set_mode(mode, models): assert mode in ['train', 'eval'] for m in models: if m is None: continue if mode == 'train': m.train() if mode == 'eval': m.eval() def check_accuracy(args, program_generator, execution_engine, baseline_model, loader): set_mode('eval', [program_generator, execution_engine, baseline_model]) num_correct, num_samples = 0, 0 for batch in loader: questions, _, feats, answers, programs, _ = batch questions_var = Variable(questions.cuda(), volatile=True) feats_var = Variable(feats.cuda(), volatile=True) answers_var = Variable(feats.cuda(), volatile=True) if programs[0] is not None: programs_var = Variable(programs.cuda(), volatile=True) scores = None # Use this for everything but PG if args.model_type == 'PG': vocab = utils.load_vocab(args.vocab_json) for i in range(questions.size(0)): program_pred = program_generator.sample(Variable(questions[i:i+1].cuda(), volatile=True)) program_pred_str = iep.preprocess.decode(program_pred, vocab['program_idx_to_token']) program_str = iep.preprocess.decode(programs[i], vocab['program_idx_to_token']) if program_pred_str == program_str: num_correct += 1 num_samples += 1 elif args.model_type == 'EE': scores = execution_engine(feats_var, programs_var) elif args.model_type == 'PG+EE': programs_pred = program_generator.reinforce_sample( questions_var, argmax=True) scores = execution_engine(feats_var, programs_pred) elif args.model_type in ['LSTM', 'CNN+LSTM', 'CNN+LSTM+SA']: scores = baseline_model(questions_var, feats_var) if scores is not None: _, preds = scores.data.cpu().max(1) num_correct += (preds == answers).sum() num_samples += preds.size(0) if num_samples >= args.num_val_samples: break set_mode('train', [program_generator, execution_engine, baseline_model]) acc = float(num_correct) / num_samples return acc if __name__ == '__main__': args = parser.parse_args() main(args)
clevr-iep-main
scripts/train_model.py
#!/usr/bin/env python3 # Copyright 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import sys import os sys.path.insert(0, os.path.abspath('.')) import argparse import json import os import h5py import numpy as np import iep.programs from iep.preprocess import tokenize, encode, build_vocab """ Preprocessing script for CLEVR question files. """ parser = argparse.ArgumentParser() parser.add_argument('--mode', default='prefix', choices=['chain', 'prefix', 'postfix']) parser.add_argument('--input_questions_json', required=True) parser.add_argument('--input_vocab_json', default='') parser.add_argument('--expand_vocab', default=0, type=int) parser.add_argument('--unk_threshold', default=1, type=int) parser.add_argument('--encode_unk', default=0, type=int) parser.add_argument('--output_h5_file', required=True) parser.add_argument('--output_vocab_json', default='') def program_to_str(program, mode): if mode == 'chain': if not iep.programs.is_chain(program): return None return iep.programs.list_to_str(program) elif mode == 'prefix': program_prefix = iep.programs.list_to_prefix(program) return iep.programs.list_to_str(program_prefix) elif mode == 'postfix': program_postfix = iep.programs.list_to_postfix(program) return iep.programs.list_to_str(program_postfix) return None def main(args): if (args.input_vocab_json == '') and (args.output_vocab_json == ''): print('Must give one of --input_vocab_json or --output_vocab_json') return print('Loading data') with open(args.input_questions_json, 'r') as f: questions = json.load(f)['questions'] # Either create the vocab or load it from disk if args.input_vocab_json == '' or args.expand_vocab == 1: print('Building vocab') if 'answer' in questions[0]: answer_token_to_idx = build_vocab( (q['answer'] for q in questions) ) question_token_to_idx = build_vocab( (q['question'] for q in questions), min_token_count=args.unk_threshold, punct_to_keep=[';', ','], punct_to_remove=['?', '.'] ) all_program_strs = [] for q in questions: if 'program' not in q: continue program_str = program_to_str(q['program'], args.mode) if program_str is not None: all_program_strs.append(program_str) program_token_to_idx = build_vocab(all_program_strs) vocab = { 'question_token_to_idx': question_token_to_idx, 'program_token_to_idx': program_token_to_idx, 'answer_token_to_idx': answer_token_to_idx, } if args.input_vocab_json != '': print('Loading vocab') if args.expand_vocab == 1: new_vocab = vocab with open(args.input_vocab_json, 'r') as f: vocab = json.load(f) if args.expand_vocab == 1: num_new_words = 0 for word in new_vocab['question_token_to_idx']: if word not in vocab['question_token_to_idx']: print('Found new word %s' % word) idx = len(vocab['question_token_to_idx']) vocab['question_token_to_idx'][word] = idx num_new_words += 1 print('Found %d new words' % num_new_words) if args.output_vocab_json != '': with open(args.output_vocab_json, 'w') as f: json.dump(vocab, f) # Encode all questions and programs print('Encoding data') questions_encoded = [] programs_encoded = [] question_families = [] orig_idxs = [] image_idxs = [] answers = [] for orig_idx, q in enumerate(questions): question = q['question'] orig_idxs.append(orig_idx) image_idxs.append(q['image_index']) if 'question_family_index' in q: question_families.append(q['question_family_index']) question_tokens = tokenize(question, punct_to_keep=[';', ','], punct_to_remove=['?', '.']) question_encoded = encode(question_tokens, vocab['question_token_to_idx'], allow_unk=args.encode_unk == 1) questions_encoded.append(question_encoded) if 'program' in q: program = q['program'] program_str = program_to_str(program, args.mode) program_tokens = tokenize(program_str) program_encoded = encode(program_tokens, vocab['program_token_to_idx']) programs_encoded.append(program_encoded) if 'answer' in q: answers.append(vocab['answer_token_to_idx'][q['answer']]) # Pad encoded questions and programs max_question_length = max(len(x) for x in questions_encoded) for qe in questions_encoded: while len(qe) < max_question_length: qe.append(vocab['question_token_to_idx']['<NULL>']) if len(programs_encoded) > 0: max_program_length = max(len(x) for x in programs_encoded) for pe in programs_encoded: while len(pe) < max_program_length: pe.append(vocab['program_token_to_idx']['<NULL>']) # Create h5 file print('Writing output') questions_encoded = np.asarray(questions_encoded, dtype=np.int32) programs_encoded = np.asarray(programs_encoded, dtype=np.int32) print(questions_encoded.shape) print(programs_encoded.shape) with h5py.File(args.output_h5_file, 'w') as f: f.create_dataset('questions', data=questions_encoded) f.create_dataset('image_idxs', data=np.asarray(image_idxs)) f.create_dataset('orig_idxs', data=np.asarray(orig_idxs)) if len(programs_encoded) > 0: f.create_dataset('programs', data=programs_encoded) if len(question_families) > 0: f.create_dataset('question_families', data=np.asarray(question_families)) if len(answers) > 0: f.create_dataset('answers', data=np.asarray(answers)) if __name__ == '__main__': args = parser.parse_args() main(args)
clevr-iep-main
scripts/preprocess_questions.py
# Copyright 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse, os, json import h5py import numpy as np from scipy.misc import imread, imresize import torch import torchvision parser = argparse.ArgumentParser() parser.add_argument('--input_image_dir', required=True) parser.add_argument('--max_images', default=None, type=int) parser.add_argument('--output_h5_file', required=True) parser.add_argument('--image_height', default=224, type=int) parser.add_argument('--image_width', default=224, type=int) parser.add_argument('--model', default='resnet101') parser.add_argument('--model_stage', default=3, type=int) parser.add_argument('--batch_size', default=128, type=int) def build_model(args): if not hasattr(torchvision.models, args.model): raise ValueError('Invalid model "%s"' % args.model) if not 'resnet' in args.model: raise ValueError('Feature extraction only supports ResNets') cnn = getattr(torchvision.models, args.model)(pretrained=True) layers = [ cnn.conv1, cnn.bn1, cnn.relu, cnn.maxpool, ] for i in range(args.model_stage): name = 'layer%d' % (i + 1) layers.append(getattr(cnn, name)) model = torch.nn.Sequential(*layers) model.cuda() model.eval() return model def run_batch(cur_batch, model): mean = np.array([0.485, 0.456, 0.406]).reshape(1, 3, 1, 1) std = np.array([0.229, 0.224, 0.224]).reshape(1, 3, 1, 1) image_batch = np.concatenate(cur_batch, 0).astype(np.float32) image_batch = (image_batch / 255.0 - mean) / std image_batch = torch.FloatTensor(image_batch).cuda() image_batch = torch.autograd.Variable(image_batch, volatile=True) feats = model(image_batch) feats = feats.data.cpu().clone().numpy() return feats def main(args): input_paths = [] idx_set = set() for fn in os.listdir(args.input_image_dir): if not fn.endswith('.png'): continue idx = int(os.path.splitext(fn)[0].split('_')[-1]) input_paths.append((os.path.join(args.input_image_dir, fn), idx)) idx_set.add(idx) input_paths.sort(key=lambda x: x[1]) assert len(idx_set) == len(input_paths) assert min(idx_set) == 0 and max(idx_set) == len(idx_set) - 1 if args.max_images is not None: input_paths = input_paths[:args.max_images] print(input_paths[0]) print(input_paths[-1]) model = build_model(args) img_size = (args.image_height, args.image_width) with h5py.File(args.output_h5_file, 'w') as f: feat_dset = None i0 = 0 cur_batch = [] for i, (path, idx) in enumerate(input_paths): img = imread(path, mode='RGB') img = imresize(img, img_size, interp='bicubic') img = img.transpose(2, 0, 1)[None] cur_batch.append(img) if len(cur_batch) == args.batch_size: feats = run_batch(cur_batch, model) if feat_dset is None: N = len(input_paths) _, C, H, W = feats.shape feat_dset = f.create_dataset('features', (N, C, H, W), dtype=np.float32) i1 = i0 + len(cur_batch) feat_dset[i0:i1] = feats i0 = i1 print('Processed %d / %d images' % (i1, len(input_paths))) cur_batch = [] if len(cur_batch) > 0: feats = run_batch(cur_batch, model) i1 = i0 + len(cur_batch) feat_dset[i0:i1] = feats print('Processed %d / %d images' % (i1, len(input_paths))) if __name__ == '__main__': args = parser.parse_args() main(args)
clevr-iep-main
scripts/extract_features.py
# Copyright 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse import json import random import shutil import sys import os import torch from torch.autograd import Variable import torch.nn.functional as F import torchvision import numpy as np import h5py from scipy.misc import imread, imresize import iep.utils as utils import iep.programs from iep.data import ClevrDataset, ClevrDataLoader from iep.preprocess import tokenize, encode parser = argparse.ArgumentParser() parser.add_argument('--program_generator', default=None) parser.add_argument('--execution_engine', default=None) parser.add_argument('--baseline_model', default=None) parser.add_argument('--use_gpu', default=1, type=int) # For running on a preprocessed dataset parser.add_argument('--input_question_h5', default='data/val_questions.h5') parser.add_argument('--input_features_h5', default='data-ssd/val_features.h5') parser.add_argument('--use_gt_programs', default=0, type=int) # This will override the vocab stored in the checkpoint; # we need this to run CLEVR models on human data parser.add_argument('--vocab_json', default=None) # For running on a single example parser.add_argument('--question', default=None) parser.add_argument('--image', default=None) parser.add_argument('--cnn_model', default='resnet101') parser.add_argument('--cnn_model_stage', default=3, type=int) parser.add_argument('--image_width', default=224, type=int) parser.add_argument('--image_height', default=224, type=int) parser.add_argument('--batch_size', default=64, type=int) parser.add_argument('--num_samples', default=None, type=int) parser.add_argument('--family_split_file', default=None) parser.add_argument('--sample_argmax', type=int, default=1) parser.add_argument('--temperature', default=1.0, type=float) # If this is passed, then save all predictions to this file parser.add_argument('--output_h5', default=None) def main(args): print() model = None if args.baseline_model is not None: print('Loading baseline model from ', args.baseline_model) model, _ = utils.load_baseline(args.baseline_model) if args.vocab_json is not None: new_vocab = utils.load_vocab(args.vocab_json) model.rnn.expand_vocab(new_vocab['question_token_to_idx']) elif args.program_generator is not None and args.execution_engine is not None: print('Loading program generator from ', args.program_generator) program_generator, _ = utils.load_program_generator(args.program_generator) print('Loading execution engine from ', args.execution_engine) execution_engine, _ = utils.load_execution_engine(args.execution_engine, verbose=False) if args.vocab_json is not None: new_vocab = utils.load_vocab(args.vocab_json) program_generator.expand_encoder_vocab(new_vocab['question_token_to_idx']) model = (program_generator, execution_engine) else: print('Must give either --baseline_model or --program_generator and --execution_engine') return if args.question is not None and args.image is not None: run_single_example(args, model) else: vocab = load_vocab(args) loader_kwargs = { 'question_h5': args.input_question_h5, 'feature_h5': args.input_features_h5, 'vocab': vocab, 'batch_size': args.batch_size, } if args.num_samples is not None and args.num_samples > 0: loader_kwargs['max_samples'] = args.num_samples if args.family_split_file is not None: with open(args.family_split_file, 'r') as f: loader_kwargs['question_families'] = json.load(f) with ClevrDataLoader(**loader_kwargs) as loader: run_batch(args, model, loader) def load_vocab(args): path = None if args.baseline_model is not None: path = args.baseline_model elif args.program_generator is not None: path = args.program_generator elif args.execution_engine is not None: path = args.execution_engine return utils.load_cpu(path)['vocab'] def run_single_example(args, model): dtype = torch.FloatTensor if args.use_gpu == 1: dtype = torch.cuda.FloatTensor # Build the CNN to use for feature extraction print('Loading CNN for feature extraction') cnn = build_cnn(args, dtype) # Load and preprocess the image img_size = (args.image_height, args.image_width) img = imread(args.image, mode='RGB') img = imresize(img, img_size, interp='bicubic') img = img.transpose(2, 0, 1)[None] mean = np.array([0.485, 0.456, 0.406]).reshape(1, 3, 1, 1) std = np.array([0.229, 0.224, 0.224]).reshape(1, 3, 1, 1) img = (img.astype(np.float32) / 255.0 - mean) / std # Use CNN to extract features for the image img_var = Variable(torch.FloatTensor(img).type(dtype), volatile=True) feats_var = cnn(img_var) # Tokenize the question vocab = load_vocab(args) question_tokens = tokenize(args.question, punct_to_keep=[';', ','], punct_to_remove=['?', '.']) question_encoded = encode(question_tokens, vocab['question_token_to_idx'], allow_unk=True) question_encoded = torch.LongTensor(question_encoded).view(1, -1) question_encoded = question_encoded.type(dtype).long() question_var = Variable(question_encoded, volatile=True) # Run the model print('Running the model\n') scores = None predicted_program = None if type(model) is tuple: program_generator, execution_engine = model program_generator.type(dtype) execution_engine.type(dtype) predicted_program = program_generator.reinforce_sample( question_var, temperature=args.temperature, argmax=(args.sample_argmax == 1)) scores = execution_engine(feats_var, predicted_program) else: model.type(dtype) scores = model(question_var, feats_var) # Print results _, predicted_answer_idx = scores.data.cpu()[0].max(dim=0) predicted_answer = vocab['answer_idx_to_token'][predicted_answer_idx[0]] print('Question: "%s"' % args.question) print('Predicted answer: ', predicted_answer) if predicted_program is not None: print() print('Predicted program:') program = predicted_program.data.cpu()[0] num_inputs = 1 for fn_idx in program: fn_str = vocab['program_idx_to_token'][fn_idx] num_inputs += iep.programs.get_num_inputs(fn_str) - 1 print(fn_str) if num_inputs == 0: break def build_cnn(args, dtype): if not hasattr(torchvision.models, args.cnn_model): raise ValueError('Invalid model "%s"' % args.cnn_model) if not 'resnet' in args.cnn_model: raise ValueError('Feature extraction only supports ResNets') whole_cnn = getattr(torchvision.models, args.cnn_model)(pretrained=True) layers = [ whole_cnn.conv1, whole_cnn.bn1, whole_cnn.relu, whole_cnn.maxpool, ] for i in range(args.cnn_model_stage): name = 'layer%d' % (i + 1) layers.append(getattr(whole_cnn, name)) cnn = torch.nn.Sequential(*layers) cnn.type(dtype) cnn.eval() return cnn def run_batch(args, model, loader): dtype = torch.FloatTensor if args.use_gpu == 1: dtype = torch.cuda.FloatTensor if type(model) is tuple: program_generator, execution_engine = model run_our_model_batch(args, program_generator, execution_engine, loader, dtype) else: run_baseline_batch(args, model, loader, dtype) def run_baseline_batch(args, model, loader, dtype): model.type(dtype) model.eval() all_scores, all_probs = [], [] num_correct, num_samples = 0, 0 for batch in loader: questions, images, feats, answers, programs, program_lists = batch questions_var = Variable(questions.type(dtype).long(), volatile=True) feats_var = Variable(feats.type(dtype), volatile=True) scores = model(questions_var, feats_var) probs = F.softmax(scores) _, preds = scores.data.cpu().max(1) all_scores.append(scores.data.cpu().clone()) all_probs.append(probs.data.cpu().clone()) num_correct += (preds == answers).sum() num_samples += preds.size(0) print('Ran %d samples' % num_samples) acc = float(num_correct) / num_samples print('Got %d / %d = %.2f correct' % (num_correct, num_samples, 100 * acc)) all_scores = torch.cat(all_scores, 0) all_probs = torch.cat(all_probs, 0) if args.output_h5 is not None: print('Writing output to %s' % args.output_h5) with h5py.File(args.output_h5, 'w') as fout: fout.create_dataset('scores', data=all_scores.numpy()) fout.create_dataset('probs', data=all_probs.numpy()) def run_our_model_batch(args, program_generator, execution_engine, loader, dtype): program_generator.type(dtype) program_generator.eval() execution_engine.type(dtype) execution_engine.eval() all_scores, all_programs = [], [] all_probs = [] num_correct, num_samples = 0, 0 for batch in loader: questions, images, feats, answers, programs, program_lists = batch questions_var = Variable(questions.type(dtype).long(), volatile=True) feats_var = Variable(feats.type(dtype), volatile=True) programs_pred = program_generator.reinforce_sample( questions_var, temperature=args.temperature, argmax=(args.sample_argmax == 1)) if args.use_gt_programs == 1: scores = execution_engine(feats_var, program_lists) else: scores = execution_engine(feats_var, programs_pred) probs = F.softmax(scores) _, preds = scores.data.cpu().max(1) all_programs.append(programs_pred.data.cpu().clone()) all_scores.append(scores.data.cpu().clone()) all_probs.append(probs.data.cpu().clone()) num_correct += (preds == answers).sum() num_samples += preds.size(0) print('Ran %d samples' % num_samples) acc = float(num_correct) / num_samples print('Got %d / %d = %.2f correct' % (num_correct, num_samples, 100 * acc)) all_scores = torch.cat(all_scores, 0) all_probs = torch.cat(all_probs, 0) all_programs = torch.cat(all_programs, 0) if args.output_h5 is not None: print('Writing output to "%s"' % args.output_h5) with h5py.File(args.output_h5, 'w') as fout: fout.create_dataset('scores', data=all_scores.numpy()) fout.create_dataset('probs', data=all_probs.numpy()) fout.create_dataset('predicted_programs', data=all_programs.numpy()) if __name__ == '__main__': args = parser.parse_args() main(args)
clevr-iep-main
scripts/run_model.py
#!/usr/bin/env python3 # Copyright 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. """ Utilities for preprocessing sequence data. Special tokens that are in all dictionaries: <NULL>: Extra parts of the sequence that we should ignore <START>: Goes at the start of a sequence <END>: Goes at the end of a sequence, before <NULL> tokens <UNK>: Out-of-vocabulary words """ SPECIAL_TOKENS = { '<NULL>': 0, '<START>': 1, '<END>': 2, '<UNK>': 3, } def tokenize(s, delim=' ', add_start_token=True, add_end_token=True, punct_to_keep=None, punct_to_remove=None): """ Tokenize a sequence, converting a string s into a list of (string) tokens by splitting on the specified delimiter. Optionally keep or remove certain punctuation marks and add start and end tokens. """ if punct_to_keep is not None: for p in punct_to_keep: s = s.replace(p, '%s%s' % (delim, p)) if punct_to_remove is not None: for p in punct_to_remove: s = s.replace(p, '') tokens = s.split(delim) if add_start_token: tokens.insert(0, '<START>') if add_end_token: tokens.append('<END>') return tokens def build_vocab(sequences, min_token_count=1, delim=' ', punct_to_keep=None, punct_to_remove=None): token_to_count = {} tokenize_kwargs = { 'delim': delim, 'punct_to_keep': punct_to_keep, 'punct_to_remove': punct_to_remove, } for seq in sequences: seq_tokens = tokenize(seq, **tokenize_kwargs, add_start_token=False, add_end_token=False) for token in seq_tokens: if token not in token_to_count: token_to_count[token] = 0 token_to_count[token] += 1 token_to_idx = {} for token, idx in SPECIAL_TOKENS.items(): token_to_idx[token] = idx for token, count in sorted(token_to_count.items()): if count >= min_token_count: token_to_idx[token] = len(token_to_idx) return token_to_idx def encode(seq_tokens, token_to_idx, allow_unk=False): seq_idx = [] for token in seq_tokens: if token not in token_to_idx: if allow_unk: token = '<UNK>' else: raise KeyError('Token "%s" not in vocab' % token) seq_idx.append(token_to_idx[token]) return seq_idx def decode(seq_idx, idx_to_token, delim=None, stop_at_end=True): tokens = [] for idx in seq_idx: tokens.append(idx_to_token[idx]) if stop_at_end and tokens[-1] == '<END>': break if delim is None: return tokens else: return delim.join(tokens)
clevr-iep-main
iep/preprocess.py
# Copyright 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. """ Utilities for dealing with embeddings. """ def convert_pretrained_wordvecs(vocab, word2vec): N = len(vocab['question_idx_to_token']) D = word2vec['vecs'].size(1) embed = torch.nn.Embedding(N, D) print(type(embed.weight)) word2vec_word_to_idx = {w: i for i, w in enumerate(word2vec['words'])} print(type(word2vec['vecs'])) for idx, word in vocab['question_idx_to_token'].items(): word2vec_idx = word2vec_word_to_idx.get(word, None) if word2vec_idx is not None: embed.weight.data[idx] = word2vec['vecs'][word2vec_idx] return embed def expand_embedding_vocab(embed, token_to_idx, word2vec=None, std=0.01): old_weight = embed.weight.data old_N, D = old_weight.size() new_N = 1 + max(idx for idx in token_to_idx.values()) new_weight = old_weight.new(new_N, D).normal_().mul_(std) new_weight[:old_N].copy_(old_weight) if word2vec is not None: num_found = 0 assert D == word2vec['vecs'].size(1), 'Word vector dimension mismatch' word2vec_token_to_idx = {w: i for i, w in enumerate(word2vec['words'])} for token, idx in token_to_idx.items(): word2vec_idx = word2vec_token_to_idx.get(token, None) if idx >= old_N and word2vec_idx is not None: vec = word2vec['vecs'][word2vec_idx] new_weight[idx].copy_(vec) num_found += 1 embed.num_embeddings = new_N embed.weight.data = new_weight return embed
clevr-iep-main
iep/embedding.py
# Copyright 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree.
clevr-iep-main
iep/__init__.py
#!/usr/bin/env python3 # Copyright 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. """ Utilities for working with and converting between the various data structures used to represent programs. """ def is_chain(program_list): visited = [False for fn in program_list] cur_idx = len(program_list) - 1 while True: visited[cur_idx] = True inputs = program_list[cur_idx]['inputs'] if len(inputs) == 0: break elif len(inputs) == 1: cur_idx = inputs[0] elif len(inputs) > 1: return False return all(visited) def list_to_tree(program_list): def build_subtree(cur): return { 'function': cur['function'], 'value_inputs': [x for x in cur['value_inputs']], 'inputs': [build_subtree(program_list[i]) for i in cur['inputs']], } return build_subtree(program_list[-1]) def tree_to_prefix(program_tree): output = [] def helper(cur): output.append({ 'function': cur['function'], 'value_inputs': [x for x in cur['value_inputs']], }) for node in cur['inputs']: helper(node) helper(program_tree) return output def list_to_prefix(program_list): return tree_to_prefix(list_to_tree(program_list)) def tree_to_postfix(program_tree): output = [] def helper(cur): for node in cur['inputs']: helper(node) output.append({ 'function': cur['function'], 'value_inputs': [x for x in cur['value_inputs']], }) helper(program_tree) return output def tree_to_list(program_tree): # First count nodes def count_nodes(cur): return 1 + sum(count_nodes(x) for x in cur['inputs']) num_nodes = count_nodes(program_tree) output = [None] * num_nodes def helper(cur, idx): output[idx] = { 'function': cur['function'], 'value_inputs': [x for x in cur['value_inputs']], 'inputs': [], } next_idx = idx - 1 for node in reversed(cur['inputs']): output[idx]['inputs'].insert(0, next_idx) next_idx = helper(node, next_idx) return next_idx helper(program_tree, num_nodes - 1) return output def prefix_to_tree(program_prefix): program_prefix = [x for x in program_prefix] def helper(): cur = program_prefix.pop(0) return { 'function': cur['function'], 'value_inputs': [x for x in cur['value_inputs']], 'inputs': [helper() for _ in range(get_num_inputs(cur))], } return helper() def prefix_to_list(program_prefix): return tree_to_list(prefix_to_tree(program_prefix)) def list_to_postfix(program_list): return tree_to_postfix(list_to_tree(program_list)) def postfix_to_tree(program_postfix): program_postfix = [x for x in program_postfix] def helper(): cur = program_postfix.pop() return { 'function': cur['function'], 'value_inputs': [x for x in cur['value_inputs']], 'inputs': [helper() for _ in range(get_num_inputs(cur))][::-1], } return helper() def postfix_to_list(program_postfix): return tree_to_list(postfix_to_tree(program_postfix)) def function_to_str(f): value_str = '' if f['value_inputs']: value_str = '[%s]' % ','.join(f['value_inputs']) return '%s%s' % (f['function'], value_str) def str_to_function(s): if '[' not in s: return { 'function': s, 'value_inputs': [], } name, value_str = s.replace(']', '').split('[') return { 'function': name, 'value_inputs': value_str.split(','), } def list_to_str(program_list): return ' '.join(function_to_str(f) for f in program_list) def get_num_inputs(f): # This is a litle hacky; it would be better to look up from metadata.json if type(f) is str: f = str_to_function(f) name = f['function'] if name == 'scene': return 0 if 'equal' in name or name in ['union', 'intersect', 'less_than', 'greater_than']: return 2 return 1
clevr-iep-main
iep/programs.py
#!/usr/bin/env python3 # Copyright 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import json import torch from iep.models import ModuleNet, Seq2Seq, LstmModel, CnnLstmModel, CnnLstmSaModel def invert_dict(d): return {v: k for k, v in d.items()} def load_vocab(path): with open(path, 'r') as f: vocab = json.load(f) vocab['question_idx_to_token'] = invert_dict(vocab['question_token_to_idx']) vocab['program_idx_to_token'] = invert_dict(vocab['program_token_to_idx']) vocab['answer_idx_to_token'] = invert_dict(vocab['answer_token_to_idx']) # Sanity check: make sure <NULL>, <START>, and <END> are consistent assert vocab['question_token_to_idx']['<NULL>'] == 0 assert vocab['question_token_to_idx']['<START>'] == 1 assert vocab['question_token_to_idx']['<END>'] == 2 assert vocab['program_token_to_idx']['<NULL>'] == 0 assert vocab['program_token_to_idx']['<START>'] == 1 assert vocab['program_token_to_idx']['<END>'] == 2 return vocab def load_cpu(path): """ Loads a torch checkpoint, remapping all Tensors to CPU """ return torch.load(path, map_location=lambda storage, loc: storage) def load_program_generator(path): checkpoint = load_cpu(path) kwargs = checkpoint['program_generator_kwargs'] state = checkpoint['program_generator_state'] model = Seq2Seq(**kwargs) model.load_state_dict(state) return model, kwargs def load_execution_engine(path, verbose=True): checkpoint = load_cpu(path) kwargs = checkpoint['execution_engine_kwargs'] state = checkpoint['execution_engine_state'] kwargs['verbose'] = verbose model = ModuleNet(**kwargs) cur_state = model.state_dict() model.load_state_dict(state) return model, kwargs def load_baseline(path): model_cls_dict = { 'LSTM': LstmModel, 'CNN+LSTM': CnnLstmModel, 'CNN+LSTM+SA': CnnLstmSaModel, } checkpoint = load_cpu(path) baseline_type = checkpoint['baseline_type'] kwargs = checkpoint['baseline_kwargs'] state = checkpoint['baseline_state'] model = model_cls_dict[baseline_type](**kwargs) model.load_state_dict(state) return model, kwargs
clevr-iep-main
iep/utils.py
#!/usr/bin/env python3 # Copyright 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import numpy as np import h5py import torch from torch.utils.data import Dataset, DataLoader from torch.utils.data.dataloader import default_collate import iep.programs def _dataset_to_tensor(dset, mask=None): arr = np.asarray(dset, dtype=np.int64) if mask is not None: arr = arr[mask] tensor = torch.LongTensor(arr) return tensor class ClevrDataset(Dataset): def __init__(self, question_h5, feature_h5, vocab, mode='prefix', image_h5=None, max_samples=None, question_families=None, image_idx_start_from=None): mode_choices = ['prefix', 'postfix'] if mode not in mode_choices: raise ValueError('Invalid mode "%s"' % mode) self.image_h5 = image_h5 self.vocab = vocab self.feature_h5 = feature_h5 self.mode = mode self.max_samples = max_samples mask = None if question_families is not None: # Use only the specified families all_families = np.asarray(question_h5['question_families']) N = all_families.shape[0] print(question_families) target_families = np.asarray(question_families)[:, None] mask = (all_families == target_families).any(axis=0) if image_idx_start_from is not None: all_image_idxs = np.asarray(question_h5['image_idxs']) mask = all_image_idxs >= image_idx_start_from # Data from the question file is small, so read it all into memory print('Reading question data into memory') self.all_questions = _dataset_to_tensor(question_h5['questions'], mask) self.all_image_idxs = _dataset_to_tensor(question_h5['image_idxs'], mask) self.all_programs = None if 'programs' in question_h5: self.all_programs = _dataset_to_tensor(question_h5['programs'], mask) self.all_answers = _dataset_to_tensor(question_h5['answers'], mask) def __getitem__(self, index): question = self.all_questions[index] image_idx = self.all_image_idxs[index] answer = self.all_answers[index] program_seq = None if self.all_programs is not None: program_seq = self.all_programs[index] image = None if self.image_h5 is not None: image = self.image_h5['images'][image_idx] image = torch.FloatTensor(np.asarray(image, dtype=np.float32)) feats = self.feature_h5['features'][image_idx] feats = torch.FloatTensor(np.asarray(feats, dtype=np.float32)) program_json = None if program_seq is not None: program_json_seq = [] for fn_idx in program_seq: fn_str = self.vocab['program_idx_to_token'][fn_idx] if fn_str == '<START>' or fn_str == '<END>': continue fn = iep.programs.str_to_function(fn_str) program_json_seq.append(fn) if self.mode == 'prefix': program_json = iep.programs.prefix_to_list(program_json_seq) elif self.mode == 'postfix': program_json = iep.programs.postfix_to_list(program_json_seq) return (question, image, feats, answer, program_seq, program_json) def __len__(self): if self.max_samples is None: return self.all_questions.size(0) else: return min(self.max_samples, self.all_questions.size(0)) class ClevrDataLoader(DataLoader): def __init__(self, **kwargs): if 'question_h5' not in kwargs: raise ValueError('Must give question_h5') if 'feature_h5' not in kwargs: raise ValueError('Must give feature_h5') if 'vocab' not in kwargs: raise ValueError('Must give vocab') feature_h5_path = kwargs.pop('feature_h5') print('Reading features from ', feature_h5_path) self.feature_h5 = h5py.File(feature_h5_path, 'r') self.image_h5 = None if 'image_h5' in kwargs: image_h5_path = kwargs.pop('image_h5') print('Reading images from ', image_h5_path) self.image_h5 = h5py.File(image_h5_path, 'r') vocab = kwargs.pop('vocab') mode = kwargs.pop('mode', 'prefix') question_families = kwargs.pop('question_families', None) max_samples = kwargs.pop('max_samples', None) question_h5_path = kwargs.pop('question_h5') image_idx_start_from = kwargs.pop('image_idx_start_from', None) print('Reading questions from ', question_h5_path) with h5py.File(question_h5_path, 'r') as question_h5: self.dataset = ClevrDataset(question_h5, self.feature_h5, vocab, mode, image_h5=self.image_h5, max_samples=max_samples, question_families=question_families, image_idx_start_from=image_idx_start_from) kwargs['collate_fn'] = clevr_collate super(ClevrDataLoader, self).__init__(self.dataset, **kwargs) def close(self): if self.image_h5 is not None: self.image_h5.close() if self.feature_h5 is not None: self.feature_h5.close() def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def clevr_collate(batch): transposed = list(zip(*batch)) question_batch = default_collate(transposed[0]) image_batch = transposed[1] if any(img is not None for img in image_batch): image_batch = default_collate(image_batch) feat_batch = transposed[2] if any(f is not None for f in feat_batch): feat_batch = default_collate(feat_batch) answer_batch = default_collate(transposed[3]) program_seq_batch = transposed[4] if transposed[4][0] is not None: program_seq_batch = default_collate(transposed[4]) program_struct_batch = transposed[5] return [question_batch, image_batch, feat_batch, answer_batch, program_seq_batch, program_struct_batch]
clevr-iep-main
iep/data.py
#!/usr/bin/env python3 # Copyright 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable from iep.models.layers import ResidualBlock from iep.embedding import expand_embedding_vocab class StackedAttention(nn.Module): def __init__(self, input_dim, hidden_dim): super(StackedAttention, self).__init__() self.Wv = nn.Conv2d(input_dim, hidden_dim, kernel_size=1, padding=0) self.Wu = nn.Linear(input_dim, hidden_dim) self.Wp = nn.Conv2d(hidden_dim, 1, kernel_size=1, padding=0) self.hidden_dim = hidden_dim self.attention_maps = None def forward(self, v, u): """ Input: - v: N x D x H x W - u: N x D Returns: - next_u: N x D """ N, K = v.size(0), self.hidden_dim D, H, W = v.size(1), v.size(2), v.size(3) v_proj = self.Wv(v) # N x K x H x W u_proj = self.Wu(u) # N x K u_proj_expand = u_proj.view(N, K, 1, 1).expand(N, K, H, W) h = F.tanh(v_proj + u_proj_expand) p = F.softmax(self.Wp(h).view(N, H * W)).view(N, 1, H, W) self.attention_maps = p.data.clone() v_tilde = (p.expand_as(v) * v).sum(2).sum(3).view(N, D) next_u = u + v_tilde return next_u class LstmEncoder(nn.Module): def __init__(self, token_to_idx, wordvec_dim=300, rnn_dim=256, rnn_num_layers=2, rnn_dropout=0): super(LstmEncoder, self).__init__() self.token_to_idx = token_to_idx self.NULL = token_to_idx['<NULL>'] self.START = token_to_idx['<START>'] self.END = token_to_idx['<END>'] self.embed = nn.Embedding(len(token_to_idx), wordvec_dim) self.rnn = nn.LSTM(wordvec_dim, rnn_dim, rnn_num_layers, dropout=rnn_dropout, batch_first=True) def expand_vocab(self, token_to_idx, word2vec=None, std=0.01): expand_embedding_vocab(self.embed, token_to_idx, word2vec=word2vec, std=std) def forward(self, x): N, T = x.size() idx = torch.LongTensor(N).fill_(T - 1) # Find the last non-null element in each sequence x_cpu = x.data.cpu() for i in range(N): for t in range(T - 1): if x_cpu[i, t] != self.NULL and x_cpu[i, t + 1] == self.NULL: idx[i] = t break idx = idx.type_as(x.data).long() idx = Variable(idx, requires_grad=False) hs, _ = self.rnn(self.embed(x)) idx = idx.view(N, 1, 1).expand(N, 1, hs.size(2)) H = hs.size(2) return hs.gather(1, idx).view(N, H) def build_cnn(feat_dim=(1024, 14, 14), res_block_dim=128, num_res_blocks=0, proj_dim=512, pooling='maxpool2'): C, H, W = feat_dim layers = [] if num_res_blocks > 0: layers.append(nn.Conv2d(C, res_block_dim, kernel_size=3, padding=1)) layers.append(nn.ReLU(inplace=True)) C = res_block_dim for _ in range(num_res_blocks): layers.append(ResidualBlock(C)) if proj_dim > 0: layers.append(nn.Conv2d(C, proj_dim, kernel_size=1, padding=0)) layers.append(nn.ReLU(inplace=True)) C = proj_dim if pooling == 'maxpool2': layers.append(nn.MaxPool2d(kernel_size=2, stride=2)) H, W = H // 2, W // 2 return nn.Sequential(*layers), (C, H, W) def build_mlp(input_dim, hidden_dims, output_dim, use_batchnorm=False, dropout=0): layers = [] D = input_dim if dropout > 0: layers.append(nn.Dropout(p=dropout)) if use_batchnorm: layers.append(nn.BatchNorm1d(input_dim)) for dim in hidden_dims: layers.append(nn.Linear(D, dim)) if use_batchnorm: layers.append(nn.BatchNorm1d(dim)) if dropout > 0: layers.append(nn.Dropout(p=dropout)) layers.append(nn.ReLU(inplace=True)) D = dim layers.append(nn.Linear(D, output_dim)) return nn.Sequential(*layers) class LstmModel(nn.Module): def __init__(self, vocab, rnn_wordvec_dim=300, rnn_dim=256, rnn_num_layers=2, rnn_dropout=0, fc_use_batchnorm=False, fc_dropout=0, fc_dims=(1024,)): super(LstmModel, self).__init__() rnn_kwargs = { 'token_to_idx': vocab['question_token_to_idx'], 'wordvec_dim': rnn_wordvec_dim, 'rnn_dim': rnn_dim, 'rnn_num_layers': rnn_num_layers, 'rnn_dropout': rnn_dropout, } self.rnn = LstmEncoder(**rnn_kwargs) classifier_kwargs = { 'input_dim': rnn_dim, 'hidden_dims': fc_dims, 'output_dim': len(vocab['answer_token_to_idx']), 'use_batchnorm': fc_use_batchnorm, 'dropout': fc_dropout, } self.classifier = build_mlp(**classifier_kwargs) def forward(self, questions, feats): q_feats = self.rnn(questions) scores = self.classifier(q_feats) return scores class CnnLstmModel(nn.Module): def __init__(self, vocab, rnn_wordvec_dim=300, rnn_dim=256, rnn_num_layers=2, rnn_dropout=0, cnn_feat_dim=(1024,14,14), cnn_res_block_dim=128, cnn_num_res_blocks=0, cnn_proj_dim=512, cnn_pooling='maxpool2', fc_dims=(1024,), fc_use_batchnorm=False, fc_dropout=0): super(CnnLstmModel, self).__init__() rnn_kwargs = { 'token_to_idx': vocab['question_token_to_idx'], 'wordvec_dim': rnn_wordvec_dim, 'rnn_dim': rnn_dim, 'rnn_num_layers': rnn_num_layers, 'rnn_dropout': rnn_dropout, } self.rnn = LstmEncoder(**rnn_kwargs) cnn_kwargs = { 'feat_dim': cnn_feat_dim, 'res_block_dim': cnn_res_block_dim, 'num_res_blocks': cnn_num_res_blocks, 'proj_dim': cnn_proj_dim, 'pooling': cnn_pooling, } self.cnn, (C, H, W) = build_cnn(**cnn_kwargs) classifier_kwargs = { 'input_dim': C * H * W + rnn_dim, 'hidden_dims': fc_dims, 'output_dim': len(vocab['answer_token_to_idx']), 'use_batchnorm': fc_use_batchnorm, 'dropout': fc_dropout, } self.classifier = build_mlp(**classifier_kwargs) def forward(self, questions, feats): N = questions.size(0) assert N == feats.size(0) q_feats = self.rnn(questions) img_feats = self.cnn(feats) cat_feats = torch.cat([q_feats, img_feats.view(N, -1)], 1) scores = self.classifier(cat_feats) return scores class CnnLstmSaModel(nn.Module): def __init__(self, vocab, rnn_wordvec_dim=300, rnn_dim=256, rnn_num_layers=2, rnn_dropout=0, cnn_feat_dim=(1024,14,14), stacked_attn_dim=512, num_stacked_attn=2, fc_use_batchnorm=False, fc_dropout=0, fc_dims=(1024,)): super(CnnLstmSaModel, self).__init__() rnn_kwargs = { 'token_to_idx': vocab['question_token_to_idx'], 'wordvec_dim': rnn_wordvec_dim, 'rnn_dim': rnn_dim, 'rnn_num_layers': rnn_num_layers, 'rnn_dropout': rnn_dropout, } self.rnn = LstmEncoder(**rnn_kwargs) C, H, W = cnn_feat_dim self.image_proj = nn.Conv2d(C, rnn_dim, kernel_size=1, padding=0) self.stacked_attns = [] for i in range(num_stacked_attn): sa = StackedAttention(rnn_dim, stacked_attn_dim) self.stacked_attns.append(sa) self.add_module('stacked-attn-%d' % i, sa) classifier_args = { 'input_dim': rnn_dim, 'hidden_dims': fc_dims, 'output_dim': len(vocab['answer_token_to_idx']), 'use_batchnorm': fc_use_batchnorm, 'dropout': fc_dropout, } self.classifier = build_mlp(**classifier_args) def forward(self, questions, feats): u = self.rnn(questions) v = self.image_proj(feats) for sa in self.stacked_attns: u = sa(v, u) scores = self.classifier(u) return scores
clevr-iep-main
iep/models/baselines.py
#!/usr/bin/env python3 # Copyright 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import math import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable import torchvision.models from iep.models.layers import ResidualBlock, GlobalAveragePool, Flatten import iep.programs class ConcatBlock(nn.Module): def __init__(self, dim, with_residual=True, with_batchnorm=True): super(ConcatBlock, self).__init__() self.proj = nn.Conv2d(2 * dim, dim, kernel_size=1, padding=0) self.res_block = ResidualBlock(dim, with_residual=with_residual, with_batchnorm=with_batchnorm) def forward(self, x, y): out = torch.cat([x, y], 1) # Concatentate along depth out = F.relu(self.proj(out)) out = self.res_block(out) return out def build_stem(feature_dim, module_dim, num_layers=2, with_batchnorm=True): layers = [] prev_dim = feature_dim for i in range(num_layers): layers.append(nn.Conv2d(prev_dim, module_dim, kernel_size=3, padding=1)) if with_batchnorm: layers.append(nn.BatchNorm2d(module_dim)) layers.append(nn.ReLU(inplace=True)) prev_dim = module_dim return nn.Sequential(*layers) def build_classifier(module_C, module_H, module_W, num_answers, fc_dims=[], proj_dim=None, downsample='maxpool2', with_batchnorm=True, dropout=0): layers = [] prev_dim = module_C * module_H * module_W if proj_dim is not None and proj_dim > 0: layers.append(nn.Conv2d(module_C, proj_dim, kernel_size=1)) if with_batchnorm: layers.append(nn.BatchNorm2d(proj_dim)) layers.append(nn.ReLU(inplace=True)) prev_dim = proj_dim * module_H * module_W if downsample == 'maxpool2': layers.append(nn.MaxPool2d(kernel_size=2, stride=2)) prev_dim //= 4 elif downsample == 'maxpool4': layers.append(nn.MaxPool2d(kernel_size=4, stride=4)) prev_dim //= 16 layers.append(Flatten()) for next_dim in fc_dims: layers.append(nn.Linear(prev_dim, next_dim)) if with_batchnorm: layers.append(nn.BatchNorm1d(next_dim)) layers.append(nn.ReLU(inplace=True)) if dropout > 0: layers.append(nn.Dropout(p=dropout)) prev_dim = next_dim layers.append(nn.Linear(prev_dim, num_answers)) return nn.Sequential(*layers) class ModuleNet(nn.Module): def __init__(self, vocab, feature_dim=(1024, 14, 14), stem_num_layers=2, stem_batchnorm=False, module_dim=128, module_residual=True, module_batchnorm=False, classifier_proj_dim=512, classifier_downsample='maxpool2', classifier_fc_layers=(1024,), classifier_batchnorm=False, classifier_dropout=0, verbose=True): super(ModuleNet, self).__init__() self.stem = build_stem(feature_dim[0], module_dim, num_layers=stem_num_layers, with_batchnorm=stem_batchnorm) if verbose: print('Here is my stem:') print(self.stem) num_answers = len(vocab['answer_idx_to_token']) module_H, module_W = feature_dim[1], feature_dim[2] self.classifier = build_classifier(module_dim, module_H, module_W, num_answers, classifier_fc_layers, classifier_proj_dim, classifier_downsample, with_batchnorm=classifier_batchnorm, dropout=classifier_dropout) if verbose: print('Here is my classifier:') print(self.classifier) self.stem_times = [] self.module_times = [] self.classifier_times = [] self.timing = False self.function_modules = {} self.function_modules_num_inputs = {} self.vocab = vocab for fn_str in vocab['program_token_to_idx']: num_inputs = iep.programs.get_num_inputs(fn_str) self.function_modules_num_inputs[fn_str] = num_inputs if fn_str == 'scene' or num_inputs == 1: mod = ResidualBlock(module_dim, with_residual=module_residual, with_batchnorm=module_batchnorm) elif num_inputs == 2: mod = ConcatBlock(module_dim, with_residual=module_residual, with_batchnorm=module_batchnorm) self.add_module(fn_str, mod) self.function_modules[fn_str] = mod self.save_module_outputs = False def expand_answer_vocab(self, answer_to_idx, std=0.01, init_b=-50): # TODO: This is really gross, dipping into private internals of Sequential final_linear_key = str(len(self.classifier._modules) - 1) final_linear = self.classifier._modules[final_linear_key] old_weight = final_linear.weight.data old_bias = final_linear.bias.data old_N, D = old_weight.size() new_N = 1 + max(answer_to_idx.values()) new_weight = old_weight.new(new_N, D).normal_().mul_(std) new_bias = old_bias.new(new_N).fill_(init_b) new_weight[:old_N].copy_(old_weight) new_bias[:old_N].copy_(old_bias) final_linear.weight.data = new_weight final_linear.bias.data = new_bias def _forward_modules_json(self, feats, program): def gen_hook(i, j): def hook(grad): self.all_module_grad_outputs[i][j] = grad.data.cpu().clone() return hook self.all_module_outputs = [] self.all_module_grad_outputs = [] # We can't easily handle minibatching of modules, so just do a loop N = feats.size(0) final_module_outputs = [] for i in range(N): if self.save_module_outputs: self.all_module_outputs.append([]) self.all_module_grad_outputs.append([None] * len(program[i])) module_outputs = [] for j, f in enumerate(program[i]): f_str = iep.programs.function_to_str(f) module = self.function_modules[f_str] if f_str == 'scene': module_inputs = [feats[i:i+1]] else: module_inputs = [module_outputs[j] for j in f['inputs']] module_outputs.append(module(*module_inputs)) if self.save_module_outputs: self.all_module_outputs[-1].append(module_outputs[-1].data.cpu().clone()) module_outputs[-1].register_hook(gen_hook(i, j)) final_module_outputs.append(module_outputs[-1]) final_module_outputs = torch.cat(final_module_outputs, 0) return final_module_outputs def _forward_modules_ints_helper(self, feats, program, i, j): used_fn_j = True if j < program.size(1): fn_idx = program.data[i, j] fn_str = self.vocab['program_idx_to_token'][fn_idx] else: used_fn_j = False fn_str = 'scene' if fn_str == '<NULL>': used_fn_j = False fn_str = 'scene' elif fn_str == '<START>': used_fn_j = False return self._forward_modules_ints_helper(feats, program, i, j + 1) if used_fn_j: self.used_fns[i, j] = 1 j += 1 module = self.function_modules[fn_str] if fn_str == 'scene': module_inputs = [feats[i:i+1]] else: num_inputs = self.function_modules_num_inputs[fn_str] module_inputs = [] while len(module_inputs) < num_inputs: cur_input, j = self._forward_modules_ints_helper(feats, program, i, j) module_inputs.append(cur_input) module_output = module(*module_inputs) return module_output, j def _forward_modules_ints(self, feats, program): """ feats: FloatTensor of shape (N, C, H, W) giving features for each image program: LongTensor of shape (N, L) giving a prefix-encoded program for each image. """ N = feats.size(0) final_module_outputs = [] self.used_fns = torch.Tensor(program.size()).fill_(0) for i in range(N): cur_output, _ = self._forward_modules_ints_helper(feats, program, i, 0) final_module_outputs.append(cur_output) self.used_fns = self.used_fns.type_as(program.data).float() final_module_outputs = torch.cat(final_module_outputs, 0) return final_module_outputs def forward(self, x, program): N = x.size(0) assert N == len(program) feats = self.stem(x) if type(program) is list or type(program) is tuple: final_module_outputs = self._forward_modules_json(feats, program) elif type(program) is Variable and program.dim() == 2: final_module_outputs = self._forward_modules_ints(feats, program) else: raise ValueError('Unrecognized program format') # After running modules for each input, concatenat the outputs from the # final module and run the classifier. out = self.classifier(final_module_outputs) return out
clevr-iep-main
iep/models/module_net.py
#!/usr/bin/env python3 # Copyright 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from iep.models.module_net import ModuleNet from iep.models.seq2seq import Seq2Seq from iep.models.baselines import LstmModel, CnnLstmModel, CnnLstmSaModel
clevr-iep-main
iep/models/__init__.py
#!/usr/bin/env python3 # Copyright 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn import torch.nn.functional as F class ResidualBlock(nn.Module): def __init__(self, in_dim, out_dim=None, with_residual=True, with_batchnorm=True): if out_dim is None: out_dim = in_dim super(ResidualBlock, self).__init__() self.conv1 = nn.Conv2d(in_dim, out_dim, kernel_size=3, padding=1) self.conv2 = nn.Conv2d(out_dim, out_dim, kernel_size=3, padding=1) self.with_batchnorm = with_batchnorm if with_batchnorm: self.bn1 = nn.BatchNorm2d(out_dim) self.bn2 = nn.BatchNorm2d(out_dim) self.with_residual = with_residual if in_dim == out_dim or not with_residual: self.proj = None else: self.proj = nn.Conv2d(in_dim, out_dim, kernel_size=1) def forward(self, x): if self.with_batchnorm: out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) else: out = self.conv2(F.relu(self.conv1(x))) res = x if self.proj is None else self.proj(x) if self.with_residual: out = F.relu(res + out) else: out = F.relu(out) return out class GlobalAveragePool(nn.Module): def forward(self, x): N, C = x.size(0), x.size(1) return x.view(N, C, -1).mean(2).squeeze(2) class Flatten(nn.Module): def forward(self, x): return x.view(x.size(0), -1)
clevr-iep-main
iep/models/layers.py
#!/usr/bin/env python3 # Copyright 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch import torch.cuda import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable from iep.embedding import expand_embedding_vocab class Seq2Seq(nn.Module): def __init__(self, encoder_vocab_size=100, decoder_vocab_size=100, wordvec_dim=300, hidden_dim=256, rnn_num_layers=2, rnn_dropout=0, null_token=0, start_token=1, end_token=2, encoder_embed=None ): super(Seq2Seq, self).__init__() self.encoder_embed = nn.Embedding(encoder_vocab_size, wordvec_dim) self.encoder_rnn = nn.LSTM(wordvec_dim, hidden_dim, rnn_num_layers, dropout=rnn_dropout, batch_first=True) self.decoder_embed = nn.Embedding(decoder_vocab_size, wordvec_dim) self.decoder_rnn = nn.LSTM(wordvec_dim + hidden_dim, hidden_dim, rnn_num_layers, dropout=rnn_dropout, batch_first=True) self.decoder_linear = nn.Linear(hidden_dim, decoder_vocab_size) self.NULL = null_token self.START = start_token self.END = end_token self.multinomial_outputs = None def expand_encoder_vocab(self, token_to_idx, word2vec=None, std=0.01): expand_embedding_vocab(self.encoder_embed, token_to_idx, word2vec=word2vec, std=std) def get_dims(self, x=None, y=None): V_in = self.encoder_embed.num_embeddings V_out = self.decoder_embed.num_embeddings D = self.encoder_embed.embedding_dim H = self.encoder_rnn.hidden_size L = self.encoder_rnn.num_layers N = x.size(0) if x is not None else None N = y.size(0) if N is None and y is not None else N T_in = x.size(1) if x is not None else None T_out = y.size(1) if y is not None else None return V_in, V_out, D, H, L, N, T_in, T_out def before_rnn(self, x, replace=0): # TODO: Use PackedSequence instead of manually plucking out the last # non-NULL entry of each sequence; it is cleaner and more efficient. N, T = x.size() idx = torch.LongTensor(N).fill_(T - 1) # Find the last non-null element in each sequence. Is there a clean # way to do this? x_cpu = x.cpu() for i in range(N): for t in range(T - 1): if x_cpu.data[i, t] != self.NULL and x_cpu.data[i, t + 1] == self.NULL: idx[i] = t break idx = idx.type_as(x.data) x[x.data == self.NULL] = replace return x, Variable(idx) def encoder(self, x): V_in, V_out, D, H, L, N, T_in, T_out = self.get_dims(x=x) x, idx = self.before_rnn(x) embed = self.encoder_embed(x) h0 = Variable(torch.zeros(L, N, H).type_as(embed.data)) c0 = Variable(torch.zeros(L, N, H).type_as(embed.data)) out, _ = self.encoder_rnn(embed, (h0, c0)) # Pull out the hidden state for the last non-null value in each input idx = idx.view(N, 1, 1).expand(N, 1, H) return out.gather(1, idx).view(N, H) def decoder(self, encoded, y, h0=None, c0=None): V_in, V_out, D, H, L, N, T_in, T_out = self.get_dims(y=y) if T_out > 1: y, _ = self.before_rnn(y) y_embed = self.decoder_embed(y) encoded_repeat = encoded.view(N, 1, H).expand(N, T_out, H) rnn_input = torch.cat([encoded_repeat, y_embed], 2) if h0 is None: h0 = Variable(torch.zeros(L, N, H).type_as(encoded.data)) if c0 is None: c0 = Variable(torch.zeros(L, N, H).type_as(encoded.data)) rnn_output, (ht, ct) = self.decoder_rnn(rnn_input, (h0, c0)) rnn_output_2d = rnn_output.contiguous().view(N * T_out, H) output_logprobs = self.decoder_linear(rnn_output_2d).view(N, T_out, V_out) return output_logprobs, ht, ct def compute_loss(self, output_logprobs, y): """ Compute loss. We assume that the first element of the output sequence y is a start token, and that each element of y is left-aligned and right-padded with self.NULL out to T_out. We want the output_logprobs to predict the sequence y, shifted by one timestep so that y[0] is fed to the network and then y[1] is predicted. We also don't want to compute loss for padded timesteps. Inputs: - output_logprobs: Variable of shape (N, T_out, V_out) - y: LongTensor Variable of shape (N, T_out) """ self.multinomial_outputs = None V_in, V_out, D, H, L, N, T_in, T_out = self.get_dims(y=y) mask = y.data != self.NULL y_mask = Variable(torch.Tensor(N, T_out).fill_(0).type_as(mask)) y_mask[:, 1:] = mask[:, 1:] y_masked = y[y_mask] out_mask = Variable(torch.Tensor(N, T_out).fill_(0).type_as(mask)) out_mask[:, :-1] = mask[:, 1:] out_mask = out_mask.view(N, T_out, 1).expand(N, T_out, V_out) out_masked = output_logprobs[out_mask].view(-1, V_out) loss = F.cross_entropy(out_masked, y_masked) return loss def forward(self, x, y): encoded = self.encoder(x) output_logprobs, _, _ = self.decoder(encoded, y) loss = self.compute_loss(output_logprobs, y) return loss def sample(self, x, max_length=50): # TODO: Handle sampling for minibatch inputs # TODO: Beam search? self.multinomial_outputs = None assert x.size(0) == 1, "Sampling minibatches not implemented" encoded = self.encoder(x) y = [self.START] h0, c0 = None, None while True: cur_y = Variable(torch.LongTensor([y[-1]]).type_as(x.data).view(1, 1)) logprobs, h0, c0 = self.decoder(encoded, cur_y, h0=h0, c0=c0) _, next_y = logprobs.data.max(2) y.append(next_y[0, 0, 0]) if len(y) >= max_length or y[-1] == self.END: break return y def reinforce_sample(self, x, max_length=30, temperature=1.0, argmax=False): N, T = x.size(0), max_length encoded = self.encoder(x) y = torch.LongTensor(N, T).fill_(self.NULL) done = torch.ByteTensor(N).fill_(0) cur_input = Variable(x.data.new(N, 1).fill_(self.START)) h, c = None, None self.multinomial_outputs = [] self.multinomial_probs = [] for t in range(T): # logprobs is N x 1 x V logprobs, h, c = self.decoder(encoded, cur_input, h0=h, c0=c) logprobs = logprobs / temperature probs = F.softmax(logprobs.view(N, -1)) # Now N x V if argmax: _, cur_output = probs.max(1) else: cur_output = probs.multinomial() # Now N x 1 self.multinomial_outputs.append(cur_output) self.multinomial_probs.append(probs) cur_output_data = cur_output.data.cpu() not_done = logical_not(done) y[:, t][not_done] = cur_output_data[not_done] done = logical_or(done, cur_output_data.cpu() == self.END) cur_input = cur_output if done.sum() == N: break return Variable(y.type_as(x.data)) def reinforce_backward(self, reward, output_mask=None): """ If output_mask is not None, then it should be a FloatTensor of shape (N, T) giving a multiplier to the output. """ assert self.multinomial_outputs is not None, 'Must call reinforce_sample first' grad_output = [] def gen_hook(mask): def hook(grad): return grad * mask.contiguous().view(-1, 1).expand_as(grad) return hook if output_mask is not None: for t, probs in enumerate(self.multinomial_probs): mask = Variable(output_mask[:, t]) probs.register_hook(gen_hook(mask)) for sampled_output in self.multinomial_outputs: sampled_output.reinforce(reward) grad_output.append(None) torch.autograd.backward(self.multinomial_outputs, grad_output, retain_variables=True) def logical_and(x, y): return x * y def logical_or(x, y): return (x + y).clamp_(0, 1) def logical_not(x): return x == 0
clevr-iep-main
iep/models/seq2seq.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # This source code is licensed under the CC-BY-NC license found in the # LICENSE file in the root directory of this source tree. import numpy as np class Battery: capacity = 0 # Max MWh storage capacity current_load = 0 # Current load in the battery, in MWh def __init__(self, capacity, current_load=0): self.capacity = capacity self.current_load = current_load # charge the battery based on an hourly load # returns the total load after charging with input_load def charge(self, input_load): self.current_load = self.current_load + input_load if(self.current_load > self.capacity): self.current_load = self.capacity return self.current_load # returns how much energy is discharged when # output_load is drawn from the battery in an hour def discharge(self, output_load): self.current_load = self.current_load - output_load if(self.current_load < 0): # not enough battery load lacking_amount = self.current_load self.current_load = 0 return output_load + lacking_amount return output_load def is_full(self): return (self.capacity == self.current_load) # calculate the minimum battery capacity required # to be able to charge it with input_load # amount of energy within an hour and # expand the existing capacity with that amount def find_and_init_capacity(self, input_load): self.capacity = self.capacity + input_load # Battery model that includes efficiency and # linear charging/discharging rate limits with respect to battery capacity # refer to C/L/C model in following reference for details: # "Tractable lithium-ion storage models for optimizing energy systems." # Energy Informatics 2.1 (2019): 1-22. class Battery2: capacity = 0 # Max MWh storage capacity current_load = 0 # Current load in the battery, in MWh # charging and discharging efficiency, including DC-AC inverter loss eff_c = 1 eff_d = 1 c_lim = 3 d_lim = 3 # Maximum charging energy in one time step # is limited by (u * applied power) + v upper_lim_u = 0 upper_lim_v = 1 # Maximum discharged energy in one time step # is limited by (u * applied power) + v lower_lim_u = 0 lower_lim_v = 0 # NMC: eff_c = 0.98, eff_d = 1.05, # c_lim = 3, d_lim = 3, # upper_u = -0.125, upper_v = 1, # lower_u = 0.05, lower_v = 0 # defaults for lithium NMC cell def __init__(self, capacity, current_load=0, eff_c = 0.97, eff_d = 1.04, c_lim = 3, d_lim = 3, upper_u = -0.04, upper_v = 1, lower_u = 0.01, lower_v = 0): self.capacity = capacity self.current_load = current_load self.eff_c = eff_c self.eff_d = eff_d self.c_lim = c_lim self.d_lim = d_lim self.upper_lim_u = upper_u self.upper_lim_v = upper_v self.lower_lim_u = lower_u self.lower_lim_v = lower_v def calc_max_charge(self, T_u): # energy content in current (next) time step: b_k (b_{k+1}, which is just b_k + p_k*eff_c) # charging power in current time step: p_k # b_{k+1} <= u * p_k + v is equivalent to # p_k <= (v - b_k) / (eff_c - u) max_charge = min((self.capacity/self.eff_c) * self.c_lim, (self.upper_lim_v*self.capacity - self.current_load)/((self.eff_c*T_u) - self.upper_lim_u)) return max_charge def calc_max_discharge(self, T_u): # energy content in current (next) time step: b_k (b_{k+1}, which is just b_k - p_k*eff_d) # charging power in current time step: p_k # b_{k+1} <= u * p_k + v is equivalent to # p_k <= (b_k - v) / (u + eff_d) max_discharge = min((self.capacity/self.eff_d) * self.d_lim, (self.current_load - self.lower_lim_v*self.capacity)/(self.lower_lim_u + (self.eff_d*T_u))) return max_discharge # charge the battery based on an hourly load # returns the total load after charging with input_load def charge(self, input_load, T_u): max_charge = self.calc_max_charge(T_u) self.current_load = self.current_load + (min(max_charge, input_load) * self.eff_c * T_u) return self.current_load # returns how much energy is discharged when # output_load is drawn from the battery over T_u hours (default T_u is 1/60) def discharge(self, output_load, T_u): max_discharge = self.calc_max_discharge(T_u) self.current_load = self.current_load - (min(max_discharge, output_load) * self.eff_d * T_u) if(max_discharge < output_load): # not enough battery load return max_discharge*T_u return output_load*T_u def is_full(self): return (self.capacity == self.current_load) # calculate the minimum battery capacity required # to be able to charge it with input_load # amount of energy within an hour and # expand the existing capacity with that amount def find_and_init_capacity(self, input_load): self.capacity = self.capacity + input_load*self.eff_d # increase the capacity until we can discharge input_load # TODO: find analytical value for this new_capacity = input_load*self.eff_d while True: power_lim = (new_capacity - self.lower_lim_v*self.capacity)/(self.lower_lim_u + self.eff_d) if power_lim < input_load: self.capacity += 0.1 new_capacity += 0.1 else: break # return True if battery can meet all demand, False otherwise def sim_battery_247(df_ren, df_dc_pow, b): points_per_hour = 60 for i in range(df_dc_pow.shape[0]): ren_mw = df_ren[i] df_dc = df_dc_pow["avg_dc_power_mw"][i] net_load = ren_mw - df_dc actual_discharge = 0 # Apply the net power points_per_hour times for j in range(points_per_hour): # surplus, charge if net_load > 0: b.charge(net_load, 1/points_per_hour) else: # deficit, discharge actual_discharge += b.discharge(-net_load, 1/points_per_hour) # if we couldnt discharge enough, exit # check if actual dicharge was sufficient to meet net load (with some tolerance for imprecision) if net_load < 0 and actual_discharge < -net_load - 0.0001: return False return True # binary search for smallest battery size that meets all demand def calculate_247_battery_capacity_b2_sim(df_ren, df_dc_pow, max_bsize): # first check special case, no battery: if sim_battery_247(df_ren, df_dc_pow, Battery2(0,0)): return 0 l = 0 u = max_bsize while u - l > 0.1: med = (u + l) / 2 if sim_battery_247(df_ren, df_dc_pow, Battery2(med,med)): u = med else: l = med # check if max size was too small if u == max_bsize: return np.nan return med # binary search for smallest battery size that meets all demand def calculate_247_battery_capacity_b1_sim(df_ren, df_dc_pow, max_bsize): # first check special case, no battery: if sim_battery_247(df_ren, df_dc_pow, Battery(0,0)): return 0 l = 0 u = max_bsize while u - l > 0.1: med = (u + l) / 2 if sim_battery_247(df_ren, df_dc_pow, Battery(med,med)): u = med else: l = med # check if max size was too small if u == max_bsize: return np.nan return med # Takes renewable supply and dc power as input dataframes # returns how much battery capacity is needed to make # dc operate on renewables 24/7 def calculate_247_battery_capacity(df_ren, df_dc_pow): battery_cap = 0 # return value stored here, capacity needed b = Battery(0) # start with an empty battery for i in range(df_dc_pow.shape[0]): ren_mw = df_ren[i] df_dc = df_dc_pow["avg_dc_power_mw"][i] if df_dc > ren_mw: # if there's not enough renewable supply, need to discharge if(b.capacity == 0): b.find_and_init_capacity(df_dc - ren_mw) # find how much battery cap needs to be else: load_before = b.current_load if(load_before == 0): b.find_and_init_capacity(df_dc - ren_mw) else: drawn_amount = b.discharge(df_dc - ren_mw) if(drawn_amount < (df_dc - ren_mw)): b.find_and_init_capacity((df_dc - ren_mw) - drawn_amount) else: # there's excess renewable supply, charge batteries if b.capacity > 0: b.charge(ren_mw-df_dc) elif b.is_full(): b = Battery(0) if b.capacity > 0 and battery_cap != np.nan: battery_cap = max(battery_cap, b.capacity) return battery_cap # Takes battery capacity, renewable supply and dc power as input dataframes # and calculates how much battery can increase renewable coverage # returns the non renewable amount that battery cannot cover def apply_battery(battery_capacity, df_ren, df_dc_pow): b = Battery2(battery_capacity, battery_capacity) tot_non_ren_mw = 0 # store the mw amount battery cannot supply here points_per_hour = 60 for i in range(df_dc_pow.shape[0]): ren_mw = df_ren[i] df_dc = df_dc_pow["avg_dc_power_mw"][i] gap = df_dc - ren_mw discharged_amount = 0 for j in range(points_per_hour): # lack or excess renewable supply if gap > 0: #discharging from battery discharged_amount += b.discharge(gap, 1/points_per_hour) else: # charging the battery b.charge(-gap, 1/points_per_hour) df_ren[i] += gap * (1 / points_per_hour) # decrease the available renewable energy if gap > 0: tot_non_ren_mw = tot_non_ren_mw + gap - discharged_amount df_ren[i] += discharged_amount # increase the renewables available by the discharged return tot_non_ren_mw, df_ren
CarbonExplorer-main
src/battery.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # This source code is licensed under the CC-BY-NC license found in the # LICENSE file in the root directory of this source tree. # Function that calculates pareto frontier given a set of points def pareto_frontier(Xs, Ys, maxX=True, maxY= True): # Sort the list in descending order of X tmp_list = sorted([[Xs[i], Ys[i]] for i in range(len(Xs))], reverse=maxX) # Start with the first value in the sorted list front_point = [tmp_list[0]] for pair in tmp_list[1:]: if maxY is True: if pair[1] >= front_point[-1][1]: front_point.append(pair) else: if pair[1] <= front_point[-1][1]: front_point.append(pair) frontX = [pair[0] for pair in front_point] frontY = [pair[1] for pair in front_point] return frontX, frontY # Given renewable and dc power dataframes, # calculate renewable coverage percentage (%) def calculate_coverage(df_ren, df_dc): non_ren_mw = 0 for i in range(df_ren.shape[0]): if df_dc[i] > df_ren[i]: non_ren_mw = non_ren_mw + df_dc[i] - df_ren[i] sum_dc = df_dc.sum() coverage = (sum_dc - non_ren_mw) / sum_dc * 100 # print("Renewable coverage ratio: ", coverage, "%") return coverage
CarbonExplorer-main
src/utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # This source code is licensed under the CC-BY-NC license found in the # LICENSE file in the root directory of this source tree. import pandas as pd # Carbon Aware Scheduling Algorithm, to optimize for 24/7 # takes a dataframe that contains renewable and dc power, dc_all # applies cas within the flexible_workload_ratio, and max_capacity constraints # returns the carbon balanced version of the input dataframe, balanced_df def cas(df_all, flexible_workload_ratio, max_capacity): # work on 24 hour basis # sort the df in terms of ascending renewable en # take flexible_workload_ratio from the highest carbon intensity hours # to lowest ones if there is not enough renewables until max_capacity is hit balanced_df = [] for i in range(0, df_all.shape[0], 24): sorted_df = df_all[i : i + 24].sort_values( by=["tot_renewable", "avg_dc_power_mw"] ) start = 0 end = 23 if sorted_df.shape[0] < 23: break work_to_move = 0 while start < end: renewable_surplus = ( sorted_df["tot_renewable"].iloc[end] - sorted_df["avg_dc_power_mw"].iloc[end] ) renewable_gap = ( sorted_df["avg_dc_power_mw"].iloc[start] - sorted_df["tot_renewable"].iloc[start] ) available_space = min( renewable_surplus, (max_capacity - sorted_df["avg_dc_power_mw"].iloc[end]), ) if renewable_surplus <= 0: end = end - 1 continue if renewable_gap <= 0: start = start + 1 continue if work_to_move <= 0 and renewable_gap > 0: work_to_move = min( renewable_gap, ( flexible_workload_ratio / 100 * sorted_df["avg_dc_power_mw"].iloc[start] ), ) if available_space > work_to_move: sorted_df["avg_dc_power_mw"].iloc[end] = ( sorted_df["avg_dc_power_mw"].iloc[end] + work_to_move ) sorted_df["avg_dc_power_mw"].iloc[start] = ( sorted_df["avg_dc_power_mw"].iloc[start] - work_to_move ) start = start + 1 work_to_move = 0 else: sorted_df["avg_dc_power_mw"].iloc[end] = ( sorted_df["avg_dc_power_mw"].iloc[end] + available_space ) sorted_df["avg_dc_power_mw"].iloc[start] = ( sorted_df["avg_dc_power_mw"].iloc[start] - available_space ) work_to_move = work_to_move - available_space end = end - 1 balanced_df.append(sorted_df) final_balanced_df = pd.concat(balanced_df).sort_values(by=["index"]) return final_balanced_df # Carbon Aware Scheduling Algorithm, to optimize for Grid Carbon Mix def cas_grid_mix(df_all, flexible_workload_ratio, max_capacity): # work on 24 hour basis # work on 24 hour basis # sort the df in terms of ascending carbon # take flexible_workload_ratio from the highest carbon intensity hours # to lowest ones until max_capacity is hit # until avg carbon is hit or shifting does not reduce balanced_df = [] for i in range(0, df_all.shape[0], 24): sorted_df = df_all[i : i + 24].sort_values(by=["carbon_intensity", "avg_dc_power_mw"]) start = 0 end = 23 if sorted_df.shape[0] < 23: break work_to_move = 0 while start < end: available_space = max_capacity - sorted_df["avg_dc_power_mw"].iloc[start] if work_to_move <= 0: work_to_move = flexible_workload_ratio / 100 * sorted_df["avg_dc_power_mw"].iloc[end] if available_space > work_to_move: sorted_df["avg_dc_power_mw"].iloc[start] = ( sorted_df["avg_dc_power_mw"].iloc[start] + work_to_move ) sorted_df["avg_dc_power_mw"].iloc[end] = sorted_df["avg_dc_power_mw"].iloc[end] - work_to_move end = end - 1 work_to_move = 0 else: sorted_df["avg_dc_power_mw"].iloc[start] = max_capacity sorted_df["avg_dc_power_mw"].iloc[end] = ( sorted_df["avg_dc_power_mw"].iloc[end] - available_space ) work_to_move = work_to_move - available_space start = start + 1 balanced_df.append(sorted_df) final_balanced_df = pd.concat(balanced_df).sort_values(by=["index"]) return final_balanced_df
CarbonExplorer-main
src/cas.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # This source code is licensed under the CC-BY-NC license found in the # LICENSE file in the root directory of this source tree. import wget import zipfile import pandas as pd import math import re import numpy as np # Download EIA's U.S. Electric System Operating Data def downloadAndExtract(path): url = "https://api.eia.gov/bulk/EBA.zip" wget.download(url) # extract the data with zipfile.ZipFile("EBA.zip","r") as zip_ref: zip_ref.extractall(path) # Split json into multiple csv's for manual analysis, view # def writeCSV(eba_json): numRecords = eba_json.shape[0] recordsPerFile = 100 numFiles = math.ceil(numRecords / recordsPerFile) for i in range(numFiles): if i == numFiles - 1: r = range(recordsPerFile * i + 1, numRecords) else: r = range(recordsPerFile * i + 1, recordsPerFile * (i + 1)) print("Writing csv records in {0}".format(r)) df = eba_json.iloc[r, :] df.to_csv("{0}/EBA_sub_{1}.csv".format(EIA_bulk_data_dir,i)) eba_json = None ba_list = [] ts_list = [] def prepareEIAData(EIA_data_path): global eba_json global ba_list global ts_list # EBA.txt includes time series for power generation from # each balancing authority in json format. # eba_json = pd.read_json("{0}/EBA.txt".format(EIA_data_path), lines=True) #writeCSV(eba_json) # Construct list of BAs (ba_list) # Construct list of time series (ts_list) using CISO as reference # series_id_unique = list(eba_json.series_id.unique()) series_id_unique = list(filter(lambda x: type(x) == str, series_id_unique)) ba_num = 0 for sid in series_id_unique: m = re.search("EBA.(.+?)-", str(sid)) ba_this = m.group(1) if ba_this not in ba_list: ba_list.append(ba_this) ba_num = ba_num + 1 if ba_this == "CISO": m = re.search("EBA.CISO-([A-Z\-]+\.)([A-Z\.\-]*)", str(sid)) ts_list.append(m.group(2)) print("EIA data prep done!") return eba_json, ba_list, ts_list # Energy types ng_list = [ "WND", # wind "SUN", # solar "WAT", # hydro "OIL", # oil "NG", # natural gas "COL", # coal "NUC", # nuclear "OTH", # other ] # Renewable energy types rn_list = ["WND", "SUN", "WAT"] # Carbon intensity of the energy types, gCO2eq/kWh carbon_intensity = { "WND": 11, "SUN": 41, "WAT": 24, "OIL": 650, "NG": 490, "COL": 820, "NUC": 12, "OTH": 230, } # Construct dataframe from json # Target specific balancing authority and day def extractBARange(ba_idx, start_day, end_day): global eba_json start_idx = pd.Timestamp('{0}T00Z'.format(start_day), tz='UTC') end_idx = pd.Timestamp('{0}T00Z'.format(end_day), tz='UTC') idx = pd.date_range(start_day, end_day, freq = "H", tz='UTC') # Loop over generating assets and append data to ba_list # ba_list = [] for ng_idx in ng_list: # Target json for specific balancing authority. # Note .H series means timestamps are in GMT / UTC # series_idx = 'EBA.{0}-ALL.NG.{1}.H'.format(ba_idx, ng_idx) this_json = eba_json[eba_json['series_id'] == series_idx] this_json = this_json.reset_index(drop=True) if this_json.empty: #print('Dataset does not include {0} data'.format(ng_idx)) ba_list.append([0]*(idx.shape[0])) # append a list with zeros continue # Check start/end dates for BA's json include target day # start_dat = pd.Timestamp(this_json['start'].reset_index(drop=True)[0]) end_dat = pd.Timestamp(this_json['end'].reset_index(drop=True)[0]) if (start_idx < start_dat): print('Indexed start ({0}) precedes {1} dataset range ({2})'.format(start_idx, ng_idx, start_dat)) #continue if (end_idx > end_dat): print('Indexed end ({0}) beyond {1} dataset range ({2})'.format(end_idx, ng_idx, end_dat)) #continue # Extract data tuples for target day # this_json['data'][0] is a list of items x = [date, MWh] tuples # tuple_list = this_json['data'][0] tuple_filtered = list(filter(\ lambda x: (pd.Timestamp(x[0]) >= start_idx) & (pd.Timestamp(x[0]) <= end_idx), \ tuple_list)) df = pd.DataFrame(tuple_filtered, columns =['timestamp', 'power']) df['timestamp'] = pd.to_datetime(df['timestamp']) df = df.sort_values(by=['timestamp'], ascending=(True)) df.set_index(pd.DatetimeIndex(df['timestamp']), inplace=True) df.drop(columns=['timestamp'], inplace=True) df = df.reindex(index=idx, fill_value=0).reset_index() ba_list.append(df['power'].tolist()) dfa = pd.DataFrame(np.array(ba_list).transpose(), columns=ng_list) dfa = dfa.set_index(idx) return dfa # Calculate carbon intensity of the grid (kg CO2/MWh) # Takes a dataframe of energy generation as input (i.e. output of extractBARange) # Returns a time series of carbon intensity dataframe def calculateAVGCarbonIntensity(db): tot_carbon = None db[db < 0] = 0 sum_db = db.sum(axis=1) for c in carbon_intensity: if tot_carbon is None: tot_carbon = carbon_intensity[c]*db[c] else: tot_carbon = tot_carbon + carbon_intensity[c]*db[c] tot_carbon = tot_carbon.div(sum_db).to_frame() tot_carbon.rename(columns={tot_carbon.columns[0]: "carbon_intensity"}, inplace=True) return tot_carbon
CarbonExplorer-main
src/download_and_process.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import setuptools setuptools.setup( name="co3d", version="2.1.0", author="FAIR", author_email="dnovotny@fb.com", packages=setuptools.find_packages(exclude=["tests", "examples"]), license="LICENSE", description="Common Objects in 3D codebase", long_description=open("README.md").read(), install_requires=[ "numpy", "Pillow", "requests", "tqdm", "plyfile", ], )
co3d-main
setup.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree.
co3d-main
tests/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os import unittest import torch import torchvision from visdom import Visdom _CO3DV2_DATASET_ROOT: str = os.getenv("CO3DV2_DATASET_ROOT", "") from pytorch3d.implicitron.tools.point_cloud_utils import render_point_cloud_pytorch3d from pytorch3d.implicitron.tools.config import expand_args_fields from pytorch3d.implicitron.dataset.visualize import get_implicitron_sequence_pointcloud from pytorch3d.implicitron.dataset.json_index_dataset import JsonIndexDataset from pytorch3d.vis.plotly_vis import plot_scene class TestDatasetVisualize(unittest.TestCase): def setUp(self): torch.manual_seed(42) category = "skateboard" dataset_root = _CO3DV2_DATASET_ROOT frame_file = os.path.join(dataset_root, category, "frame_annotations.jgz") sequence_file = os.path.join(dataset_root, category, "sequence_annotations.jgz") self.image_size = 256 expand_args_fields(JsonIndexDataset) self.datasets = { "simple": JsonIndexDataset( frame_annotations_file=frame_file, sequence_annotations_file=sequence_file, dataset_root=dataset_root, image_height=self.image_size, image_width=self.image_size, box_crop=True, load_point_clouds=True, ), "nonsquare": JsonIndexDataset( frame_annotations_file=frame_file, sequence_annotations_file=sequence_file, dataset_root=dataset_root, image_height=self.image_size, image_width=self.image_size // 2, box_crop=True, load_point_clouds=True, ), "nocrop": JsonIndexDataset( frame_annotations_file=frame_file, sequence_annotations_file=sequence_file, dataset_root=dataset_root, image_height=self.image_size, image_width=self.image_size // 2, box_crop=False, load_point_clouds=True, ), "nocrop2": JsonIndexDataset( frame_annotations_file=frame_file, sequence_annotations_file=sequence_file, dataset_root=dataset_root, image_height=self.image_size // 2, image_width=self.image_size, box_crop=False, load_point_clouds=True, ), } self.visdom = Visdom() if not self.visdom.check_connection(): print("Visdom server not running! Disabling visdom visualisations.") self.visdom = None def _render_one_pointcloud(self, point_cloud, cameras, render_size): (_image_render, _, _) = render_point_cloud_pytorch3d( cameras, point_cloud, render_size=render_size, point_radius=2e-2, topk=10, bg_color=0.0, bin_size=0, ) return _image_render.clamp(0.0, 1.0) def test_one(self): """Test dataset visualisation.""" point_clouds = {} for max_frames in (16,): for load_dataset_point_cloud in (True, False): for dataset_key in self.datasets: point_cloud, cameras = self._gen_and_render_pointcloud( max_frames, load_dataset_point_cloud, dataset_key ) test_name = f"{max_frames}_{load_dataset_point_cloud}_{dataset_key}" point_clouds[test_name] = point_cloud if self.visdom is not None: plotlyplot = plot_scene( { "point_clouds": { "cameras": cameras, **point_clouds, } }, camera_scale=1.0, pointcloud_max_points=10000, pointcloud_marker_size=1.0, ) self.visdom.plotlyplot( plotlyplot, env="test_dataset_visualize", win=f"pcl", ) def _gen_and_render_pointcloud( self, max_frames, load_dataset_point_cloud, dataset_key ): dataset = self.datasets[dataset_key] # load the point cloud of the first sequence sequence_show = list(dataset.seq_annots.keys())[0] device = torch.device("cuda:0") point_cloud, sequence_frame_data = get_implicitron_sequence_pointcloud( dataset, sequence_name=sequence_show, mask_points=True, max_frames=max_frames, num_workers=10, load_dataset_point_cloud=load_dataset_point_cloud, ) # render on gpu point_cloud = point_cloud.to(device) cameras = sequence_frame_data.camera.to(device) # render the point_cloud from the viewpoint of loaded cameras images_render = torch.cat( [ self._render_one_pointcloud( point_cloud, cameras[frame_i], ( dataset.image_height, dataset.image_width, ), ) for frame_i in range(len(cameras)) ] ).cpu() images_gt_and_render = torch.cat( [ sequence_frame_data.image_rgb, images_render, (sequence_frame_data.image_rgb-images_render).abs(), ], dim=3 ) imfile = os.path.join( os.path.split(os.path.abspath(__file__))[0], f"test_dataset_visualize" + f"_max_frames={max_frames}" + f"_load_pcl={load_dataset_point_cloud}" + f"_dataset_key={dataset_key}.png", ) print(f"Exporting image {imfile}.") torchvision.utils.save_image(images_gt_and_render, imfile, nrow=2) if self.visdom is not None: test_name = f"{max_frames}_{load_dataset_point_cloud}_{dataset_key}" self.visdom.images( images_gt_and_render, env="test_dataset_visualize", win=f"pcl_renders_{test_name}", opts={"title": f"pcl_renders_{test_name}"}, ) return point_cloud, cameras if __name__ == "__main__": unittest.main()
co3d-main
tests/test_dataset_visualize.py