python_code
stringlengths
0
4.04M
repo_name
stringlengths
7
58
file_path
stringlengths
5
147
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import dataclasses from typing import Dict, List, NamedTuple, Tuple import unittest from co3d.dataset import data_types as types from co3d.dataset.data_types import FrameAnnotation class TestDatasetTypes(unittest.TestCase): def setUp(self): self.entry = FrameAnnotation( frame_number=23, sequence_name="1", frame_timestamp=1.2, image=types.ImageAnnotation(path="/tmp/1.jpg", size=(224, 224)), mask=types.MaskAnnotation(path="/tmp/1.png", mass=42.0), viewpoint=types.ViewpointAnnotation( R=( (1, 0, 0), (1, 0, 0), (1, 0, 0), ), T=(0, 0, 0), principal_point=(100, 100), focal_length=(200, 200), ), ) def test_asdict_rec(self): first = [dataclasses.asdict(self.entry)] second = types._asdict_rec([self.entry]) self.assertEqual(first, second) def test_parsing(self): """Test that we handle collections enclosing dataclasses.""" class NT(NamedTuple): annot: FrameAnnotation dct = dataclasses.asdict(self.entry) parsed = types._dataclass_from_dict(dct, FrameAnnotation) self.assertEqual(parsed, self.entry) # namedtuple parsed = types._dataclass_from_dict(NT(dct), NT) self.assertEqual(parsed.annot, self.entry) # tuple parsed = types._dataclass_from_dict((dct,), Tuple[FrameAnnotation]) self.assertEqual(parsed, (self.entry,)) # list parsed = types._dataclass_from_dict( [ dct, ], List[FrameAnnotation], ) self.assertEqual( parsed, [ self.entry, ], ) # dict parsed = types._dataclass_from_dict({"k": dct}, Dict[str, FrameAnnotation]) self.assertEqual(parsed, {"k": self.entry})
co3d-main
tests/test_types.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import os import unittest import numpy as np import tempfile import torch from pytorch3d.renderer.cameras import look_at_view_transform, PerspectiveCameras from pytorch3d.implicitron.dataset.json_index_dataset import FrameData from pytorch3d.implicitron.evaluation.evaluate_new_view_synthesis import eval_batch from pytorch3d.implicitron.models.base_model import ImplicitronRender from co3d.challenge.io import ( load_mask, store_mask, load_depth, store_depth, load_image, store_image, load_1bit_png_mask, store_1bit_png_mask, store_rgbda_frame, load_rgbda_frame, ) from co3d.challenge.utils import get_result_directory_file_names, evaluate_file_folders from co3d.challenge.metric_utils import eval_one from co3d.challenge.data_types import RGBDAFrame class TestIO(unittest.TestCase): def test_save_load(self): H = 100 W = 200 with tempfile.TemporaryDirectory() as tmpd: for data_type in ["image", "mask", "depth", "depth_mask"]: with self.subTest(data_type): for _ in range(10): C = {"depth_mask": 1, "mask": 1, "depth": 1, "image": 3}[data_type] data = np.random.uniform(size=(C, H, W)) if data_type in ("mask", "depth_mask"): data = (data > 0.5).astype(np.float32) if C == 1: data = data[0] load_fun, store_fun = { "mask": (load_mask, store_mask), "depth": (load_depth, store_depth), "image": (load_image, store_image), "depth_mask": (load_1bit_png_mask, store_1bit_png_mask), }[data_type] fl = os.path.join(tmpd, f"{data_type}.png") store_fun(data, fl) data_ = load_fun(fl) self.assertTrue(np.allclose(data, data_, atol=1 / 255)) class TestMetricUtils(unittest.TestCase): def test_against_eval_batch(self): H = 100 W = 200 for _ in range(20): implicitron_render = _random_implicitron_render(2, H, W, "cpu") for has_depth_mask in [True, False]: frame_data = _random_frame_data(2, H, W, "cpu") if not has_depth_mask: frame_data.depth_mask = None eval_batch_result = eval_batch( frame_data, implicitron_render, ) pred_rgbda = RGBDAFrame( image=implicitron_render.image_render[0].numpy(), mask=implicitron_render.mask_render[0].numpy(), depth=implicitron_render.depth_render[0].numpy(), ) gt_rgbda = RGBDAFrame( image=frame_data.image_rgb[0].numpy(), mask=frame_data.fg_probability[0].numpy(), depth=frame_data.depth_map[0].numpy(), depth_mask=frame_data.depth_mask[0].numpy() if has_depth_mask else None, ) eval_one_result = eval_one( pred=pred_rgbda, target=gt_rgbda, ) # print("eval_batch; eval_one") for k in ["iou", "psnr_fg", "psnr", "depth_abs_fg"]: self.assertTrue( np.allclose(eval_batch_result[k], eval_one_result[k], atol=1e-5) ) # print(f"{k:15s}: {eval_batch_result[k]:1.3e} - {eval_one_result[k]:1.3e}") class TestEvalScript(unittest.TestCase): def test_fake_data(self): N = 30 H = 120 W = 200 with tempfile.TemporaryDirectory() as tmp_pred, tempfile.TemporaryDirectory() as tmp_gt: _generate_random_submission_data(tmp_pred, N, H, W) _generate_random_submission_data(tmp_gt, N, H, W) avg_result, per_example_result = evaluate_file_folders(tmp_pred, tmp_gt) metrics = list(avg_result.keys()) for m in metrics: self.assertTrue( np.allclose( np.mean([r[m] for r in per_example_result]), avg_result[m], ) ) self.assertTrue(len(per_example_result) == N) def test_wrong_fake_data(self): N = 30 H = 120 W = 200 # different number of eval/test examples for N_pred in [N - 2, N + 2]: with tempfile.TemporaryDirectory() as tmp_pred, tempfile.TemporaryDirectory() as tmp_gt: _generate_random_submission_data(tmp_pred, N_pred, H, W) _generate_random_submission_data(tmp_gt, N, H, W) msg = ( "Unexpected submitted evaluation examples" if N_pred > N else "There are missing evaluation examples" ) with self.assertRaisesRegex(ValueError, msg): evaluate_file_folders(tmp_pred, tmp_gt) # some eval examples missing depth/image with tempfile.TemporaryDirectory() as tmp_pred, tempfile.TemporaryDirectory() as tmp_gt: _generate_random_submission_data(tmp_pred, N_pred, H, W) _generate_random_submission_data(tmp_gt, N, H, W) pred_file_names = get_result_directory_file_names(tmp_pred) first_ex = pred_file_names[list(pred_file_names.keys())[0]] for file_type in ["depth", "image"]: os.remove(first_ex + f"_{file_type}.png") with self.assertRaisesRegex( ValueError, "Some evaluation examples are incomplete", ): evaluate_file_folders(tmp_pred, tmp_gt) def _generate_random_submission_data(folder, N, H, W): for example_num in range(N): root_path = os.path.join(folder, f"example_{example_num}") store_rgbda_frame(_random_rgbda_frame(H, W), root_path) def _random_implicitron_render( N: int, H: int, W: int, device: torch.device, ): mask = _random_input_tensor(N, 1, H, W, True, device) return ImplicitronRender( depth_render=_random_input_tensor(N, 1, H, W, False, device), image_render=_random_input_tensor(N, 3, H, W, False, device) * mask, mask_render=mask, ) def _random_rgbda_frame(H: int, W: int): return RGBDAFrame( image=np.random.uniform(size=(3, H, W)).astype(np.float32), mask=(np.random.uniform(size=(1, H, W)) > 0.5).astype(np.float32), depth=np.random.uniform(size=(1, H, W)).astype(np.float32) + 0.1, ) def _random_frame_data( N: int, H: int, W: int, device: torch.device, ): R, T = look_at_view_transform(azim=torch.rand(N) * 360) cameras = PerspectiveCameras(R=R, T=T, device=device) depth_map_common = ( torch.stack( torch.meshgrid( torch.linspace(0.0, 1.0, H), torch.linspace(0.0, 1.0, W), ) ).mean(dim=0) + 0.1 ) depth_map = _random_input_tensor(N, 1, H, W, False, device) + depth_map_common[None] random_args = { "frame_number": torch.arange(N), "frame_timestamp": torch.linspace(0.0, 1.0, N), "sequence_category": ["random"] * N, "camera": cameras, "fg_probability": _random_input_tensor(N, 1, H, W, True, device), "depth_map": depth_map, "mask_crop": torch.ones(N, 1, H, W, device=device), "depth_mask": _random_input_tensor(N, 1, H, W, True, device), "sequence_name": ["sequence"] * N, "image_rgb": _random_input_tensor(N, 3, H, W, False, device), "frame_type": ["test_unseen", *(["test_known"] * (N - 1))], } return FrameData(**random_args) def _random_input_tensor( N: int, C: int, H: int, W: int, is_binary: bool, device: torch.device, ) -> torch.Tensor: T = torch.rand(N, C, H, W, device=device) if is_binary: T = (T > 0.5).float() return T if __name__ == "__main__": unittest.main()
co3d-main
tests/test_challenge_evaluate.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import os import json from joblib import Parallel, delayed from collections import defaultdict from tabulate import tabulate from typing import List from collections import Counter from co3d.dataset.data_types import ( load_dataclass_jgzip, FrameAnnotation, SequenceAnnotation, ) DATASET_ROOT = os.getenv("CO3DV2_DATASET_ROOT") def _count_category(category): fa_file = os.path.join(DATASET_ROOT, category, "frame_annotations.jgz") sa_file = os.path.join(DATASET_ROOT, category, "sequence_annotations.jgz") frame_annos = load_dataclass_jgzip(fa_file, List[FrameAnnotation]) # sequence_annos = load_dataclass_jgzip(sa_file, List[SequenceAnnotation]) seq_to_frame_annos = defaultdict(list) for fa in frame_annos: seq_to_frame_annos[fa.sequence_name].append(fa) seq_to_frame_annos = dict(seq_to_frame_annos) seq_set_cnt = Counter() for _, frame_anno_list in seq_to_frame_annos.items(): seq_set, _ = frame_anno_list[0].meta["frame_type"].split("_") seq_set_cnt.update([seq_set]) seq_set_cnt.update(["all"]) return dict(seq_set_cnt) def main(): # get the category list with open(os.path.join(DATASET_ROOT, "category_to_subset_name_list.json"), "r") as f: category_to_subset_name_list = json.load(f) categories = sorted(list(category_to_subset_name_list.keys())) cat_to_n_per_set = {} counts_per_category = Parallel(n_jobs=20)( delayed(_count_category)(c) for c in categories ) cat_to_n_per_set = dict(zip(categories, counts_per_category)) seq_sets_ = list(cat_to_n_per_set[categories[0]].keys()) tab = [] for category in cat_to_n_per_set: n_per_set = [cat_to_n_per_set[category].get(set_, 0) for set_ in seq_sets_] tab.append([category, *n_per_set]) totals = [sum(t[i] for t in tab) for i in [1, 2, 3, 4]] tab.append(["TOTAL", *totals]) print(tabulate(tab, headers=["category", *seq_sets_])) if __name__=="__main__": main()
co3d-main
examples/print_co3d_stats.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import logging import os import torch import math import sys import json import random from tqdm import tqdm from omegaconf import DictConfig from typing import Tuple from co3d.utils import dbir_utils from pytorch3d.renderer.cameras import CamerasBase, PerspectiveCameras from pytorch3d.renderer.camera_utils import join_cameras_as_batch from pytorch3d.implicitron.dataset.json_index_dataset import JsonIndexDataset from pytorch3d.implicitron.dataset.json_index_dataset_map_provider_v2 import ( JsonIndexDatasetMapProviderV2 ) from pytorch3d.implicitron.tools.config import expand_args_fields from pytorch3d.implicitron.models.visualization.render_flyaround import render_flyaround from pytorch3d.implicitron.dataset.dataset_base import FrameData from pytorch3d.vis.plotly_vis import plot_scene from pytorch3d.implicitron.tools.vis_utils import ( get_visdom_connection, make_depth_image, ) from pytorch3d.implicitron.tools.point_cloud_utils import ( get_rgbd_point_cloud, ) DATASET_ROOT = os.getenv("CO3DV2_DATASET_ROOT") logger = logging.getLogger(__file__) def main( output_dir: str = os.path.join(os.path.dirname(__file__), "show_co3d_dataset_files"), n_show_sequences_per_category: int = 2, visdom_env: str = "show_co3d_dataset", visualize_point_clouds: bool = False, visualize_3d_scene: bool = True, n_frames_show: int = 20, ): """ Visualizes object point clouds from the CO3D dataset. Note that the code iterates over all CO3D categories and (by default) exports 2 videos per a category subset. Hence, the whole loop will run for a long time (3-4 hours). """ # make the script reproducible random.seed(30) # log info messages logging.basicConfig(level=logging.INFO) # make the output dir os.makedirs(output_dir, exist_ok=True) # get the category list if DATASET_ROOT is None: raise ValueError( "Please set the CO3DV2_DATASET_ROOT environment variable to a valid" " CO3Dv2 dataset root folder." ) with open(os.path.join(DATASET_ROOT, "category_to_subset_name_list.json"), "r") as f: category_to_subset_name_list = json.load(f) # get the visdom connection viz = get_visdom_connection() # iterate over the co3d categories categories = sorted(list(category_to_subset_name_list.keys())) for category in tqdm(categories): subset_name_list = category_to_subset_name_list[category] for subset_name in subset_name_list: # obtain the dataset expand_args_fields(JsonIndexDatasetMapProviderV2) dataset_map = JsonIndexDatasetMapProviderV2( category=category, subset_name=subset_name, test_on_train=False, only_test_set=False, load_eval_batches=True, dataset_JsonIndexDataset_args=DictConfig( {"remove_empty_masks": False, "load_point_clouds": True} ), ).get_dataset_map() train_dataset = dataset_map["train"] # select few sequences to visualize sequence_names = list(train_dataset.seq_annots.keys()) # select few sequence names show_sequence_names = random.sample( sequence_names, k=min(n_show_sequences_per_category, len(sequence_names)), ) for sequence_name in show_sequence_names: # load up a bunch of frames show_dataset_idx = [ x[2] for x in list(train_dataset.sequence_frames_in_order(sequence_name)) ] random.shuffle(show_dataset_idx) show_dataset_idx = show_dataset_idx[:n_frames_show] data_to_show = [train_dataset[i] for i in show_dataset_idx] data_to_show_collated = data_to_show[0].collate(data_to_show) # show individual frames all_ims = [] for k in ["image_rgb", "depth_map", "depth_mask", "fg_probability"]: # all_ims_now = torch.stack([d[k] for d in data_to_show]) all_ims_now = getattr(data_to_show_collated, k) if k=="depth_map": all_ims_now = make_depth_image( all_ims_now, torch.ones_like(all_ims_now) ) if k in ["depth_mask", "fg_probability", "depth_map"]: all_ims_now = all_ims_now.repeat(1, 3, 1, 1) all_ims.append(all_ims_now.clamp(0.0, 1.0)) all_ims = torch.cat(all_ims, dim=2) title = f"random_frames" viz.images( all_ims, nrow=all_ims.shape[-1], env=visdom_env, win=title, opts={"title": title}, ) if visualize_3d_scene: # visualize a 3d plotly plot of the scene camera_show = data_to_show_collated.camera pointcloud_show = get_rgbd_point_cloud( data_to_show_collated.camera, data_to_show_collated.image_rgb, data_to_show_collated.depth_map, (data_to_show_collated.fg_probability > 0.5).float(), mask_points=True, ) viz.plotlyplot( plot_scene( { sequence_name: { "camera":camera_show, "point_cloud": pointcloud_show } } ), env=visdom_env, win="3d_scene", ) if not visualize_point_clouds: continue for load_dataset_pointcloud in [True, False]: model = PointcloudRenderingModel( train_dataset, sequence_name, device="cuda:0", load_dataset_pointcloud=load_dataset_pointcloud, ) video_path = os.path.join( output_dir, category, f"{subset_name}_l{load_dataset_pointcloud}", ) os.makedirs(os.path.dirname(video_path), exist_ok=True) logger.info(f"Rendering rotating video {video_path}") render_flyaround( train_dataset, sequence_name, model, video_path, n_flyaround_poses=40, fps=20, trajectory_type="circular_lsq_fit", max_angle=2 * math.pi, trajectory_scale=1.5, scene_center=(0.0, 0.0, 0.0), up=(0.0, -1.0, 0.0), traj_offset=1.0, n_source_views=1, visdom_show_preds=True, visdom_environment=visdom_env, visualize_preds_keys=( "images_render", "masks_render", "depths_render", ), ) class PointcloudRenderingModel(torch.nn.Module): def __init__( self, train_dataset: JsonIndexDataset, sequence_name: str, render_size: Tuple[int, int] = [400, 400], device = None, load_dataset_pointcloud: bool = False, ): super().__init__() self._render_size = render_size self._pointcloud = dbir_utils.get_sequence_pointcloud( train_dataset, sequence_name, load_dataset_pointcloud=load_dataset_pointcloud, ).to(device) def forward( self, camera: CamerasBase, **kwargs, ): render = dbir_utils.render_point_cloud( camera[[0]], self._render_size, self._pointcloud, point_radius=0.01, ) return { "images_render": render.image_render, "masks_render": render.mask_render, "depths_render": render.depth_render, } if __name__=="__main__": main()
co3d-main
examples/show_co3d_dataset.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import logging import os import torch import warnings from tqdm import tqdm from omegaconf import DictConfig from pytorch3d.implicitron.models.generic_model import ImplicitronRender from pytorch3d.implicitron.dataset.dataset_base import FrameData from pytorch3d.implicitron.dataset.dataset_map_provider import DatasetMap from pytorch3d.implicitron.dataset.json_index_dataset_map_provider_v2 import ( JsonIndexDatasetMapProviderV2 ) from pytorch3d.implicitron.tools.config import expand_args_fields from co3d.utils import dbir_utils from co3d.challenge.co3d_submission import CO3DSubmission from co3d.challenge.data_types import CO3DTask, CO3DSequenceSet from co3d.dataset.utils import redact_eval_frame_data, _check_valid_eval_frame_data DATASET_ROOT = os.getenv("CO3DV2_DATASET_ROOT") DATASET_ROOT_HIDDEN = os.getenv("CO3DV2_HIDDEN_DATASET_ROOT") logger = logging.getLogger(__name__) def get_dataset_map( dataset_root: str, category: str, subset_name: str, ) -> DatasetMap: """ Obtain the dataset map that contains the train/val/test dataset objects. """ expand_args_fields(JsonIndexDatasetMapProviderV2) dataset_map_provider = JsonIndexDatasetMapProviderV2( category=category, subset_name=subset_name, dataset_root=dataset_root, test_on_train=False, only_test_set=False, load_eval_batches=True, dataset_JsonIndexDataset_args=DictConfig({"remove_empty_masks": False}), ) return dataset_map_provider.get_dataset_map() @torch.no_grad() def update_dbir_submission_with_category_and_subset_predictions( submission: CO3DSubmission, dataset_root: str, category: str, subset_name: str, num_workers: int = 12, cheat_with_gt_data: bool = True, load_dataset_pointcloud: bool = False, point_radius: float = 0.01, ): """ Updates the CO3DSubmission object `submission` with predictions of a DBIR model extracted for a given category, and a dataset subset. Args: submission: CO3DSubmission object. dataset_root: Path to the root dataset folder containing CO3Dv2. category: A CO3Dv2 category to evaluate. subset_name: The name of the evaluation subset of the category. num_workers: Number of processes to use for evaluation. cheat_with_gt_data: If `True`, bypasses the DBIR stage and only simply uses ground truth test data. This, of course, only works for the development set which is not redacted. load_dataset_pointcloud: If `True`, uses the ground truth dataset pointclouds instead of unprojecting known views. point_radius: The radius of the rendered points. """ logger.info( "Runing depth-based image rendering (DBIR) new view synthesis " f"on category '{category}' subset '{subset_name}'" ) # Get the evaluation device. device = torch.device("cuda") if torch.cuda.is_available() else device("cpu") # Determine the sequence set and the task we are solving sequence_set = submission.sequence_set task = submission.task # Obtain the CO3Dv2 dataset map dataset_map = get_dataset_map(dataset_root, category, subset_name) if task==CO3DTask.MANY_VIEW and not cheat_with_gt_data: # Obtain the point cloud of the corresponding evaluation sequence # by unprojecting depth maps of the known training views in the sequence: train_dataset = dataset_map["train"] sequence_name = train_dataset[0].sequence_name sequence_pointcloud = dbir_utils.get_sequence_pointcloud( train_dataset, sequence_name, load_dataset_pointcloud=load_dataset_pointcloud, ) # Move the pointcloud to the right device sequence_pointcloud = sequence_pointcloud.to(device) # The test dataloader simply iterates over test_dataset.eval_batches # this is done by setting test_dataset.eval_batches as the batch sampler test_dataset = dataset_map["test"] test_dataloader = torch.utils.data.DataLoader( test_dataset, batch_sampler=test_dataset.eval_batches, num_workers=num_workers, collate_fn=FrameData.collate, ) # loop over eval examples logger.info( f"Rendering {len(test_dataloader)} test views for {category}/{subset_name}" ) if sequence_set==CO3DSequenceSet.TEST: # the test set contains images with redacted foreground masks which cause # the test dataloader to spam a warning message, # we suppress this warning with the following line warnings.filterwarnings("ignore", message="Empty masks_for_bbox.*") for eval_index, eval_frame_data in enumerate(tqdm(test_dataloader)): # the first element of eval_frame_data is the actual evaluation image, # the 2nd-to-last elements are the knwon source images used for building # the reconstruction (source images are present only for the few-view task) # move the eval data to the requested device eval_frame_data = eval_frame_data.to(device) # sanity check that the eval frame data has correctly redacted entries _check_valid_eval_frame_data(eval_frame_data, task, sequence_set) if cheat_with_gt_data: # Cheat by taking the ground truth data. This should give in perfect metrics. mask_render = (eval_frame_data.fg_probability[:1] > 0.5).float() render_crop = ImplicitronRender( depth_render = eval_frame_data.depth_map[:1], image_render = eval_frame_data.image_rgb[:1] * mask_render, mask_render = mask_render, ) else: if task==CO3DTask.MANY_VIEW: # we use the sequence pointcloud extracted above scene_pointcloud = sequence_pointcloud elif task==CO3DTask.FEW_VIEW: # we build the pointcloud by unprojecting the depth maps of the known views # which are elements (1:end) of the eval batch scene_pointcloud = dbir_utils.get_eval_frame_data_pointcloud( eval_frame_data, ) else: raise ValueError(task) # Redact the frame data so we are sure we cannot use the data # from the actual unobserved evaluation sample eval_frame_data = redact_eval_frame_data(eval_frame_data) # Obtain the image render. In case dataset_test.box_crop==True, # we need to paste the render back to the original image bounds. render_crop = dbir_utils.render_point_cloud( eval_frame_data.camera[[0]], eval_frame_data.image_rgb.shape[-2:], scene_pointcloud, point_radius=point_radius, ) # cut the valid part of the render and paste into the original image canvas render_full_image = dbir_utils.paste_render_to_original_image( eval_frame_data, render_crop ) # get the image, mask, depth as numpy arrays for the challenge submission image, mask, depth = [ getattr(render_full_image, f"{data_type}_render").cpu().numpy()[0] for data_type in ["image", "mask", "depth"] ] # add the results to the submission object submission.add_result( category=category, subset_name=subset_name, sequence_name=eval_frame_data.sequence_name[0], frame_number=int(eval_frame_data.frame_number[0]), image=image, mask=mask, depth=depth, ) # reset all warnings warnings.simplefilter("always") def make_dbir_submission( dataset_root = DATASET_ROOT, task = CO3DTask.MANY_VIEW, sequence_set = CO3DSequenceSet.DEV, clear_submission_files: bool = False, num_eval_workers: int = 4, cheat_with_gt_data: bool = False, fill_results_from_cache: bool = False, skip_evaluation: bool = False, submit_to_eval_ai: bool = False, ): """ Make a Depth-based-image-rendering (DBIR) submission for the CO3DChallenge. Args: dataset_root: Path to the root dataset folder. task: The co3d task - either CO3DTask.MANY_VIEW or CO3DTask.FEW_VIEW. sequence_set: The sequence set to evaluate on: CO3DSequenceSet.DEV for for the development set CO3DSequenceSet.TEST for for the test set clear_submission_files: Delete all previous intermediate submission files before commencing the current submission run. num_eval_workers: Number of processes that conduct evaluation. cheat_with_gt_data: If `True`, bypasses the DBIR stage and only simply uses ground truth test data. This, of course, only works for the development set which is not redacted. fill_results_from_cache: If `True`, skips running the DBIR model and rather loads the results exported from a previous run. skip_evaluation: If `True`, will not locally evaluate the predictions. submit_to_eval_ai: If `True`, will automatically submit the exported result archive to EvalAI using the CLI interface (needs to be installed with `pip install evalai`). This requires setting the EVAL_AI_PERSONAL_TOKEN environment variable to your personal EVAL_AI token. """ # the folder storing all predictions and results of the submission submission_output_folder = os.path.join( os.path.split(os.path.abspath(__file__))[0], f"dbir_submission_output_{task.value}_{sequence_set.value}", ) if cheat_with_gt_data: # make sure that the cheated results have a cheater stamp in their name submission_output_folder += "_cheating" # create the submission object submission = CO3DSubmission( task=task, sequence_set=sequence_set, output_folder=submission_output_folder, dataset_root=DATASET_ROOT, ) if task==CO3DTask.FEW_VIEW and submission.has_only_single_sequence_subset(): # if only a single-sequence dataset is downloaded, only the many-view task # is available logger.warning( f"Cannot evaluate the few-view task in {sequence_set.value} when only the" " singlesequence subset of CO3D is present." ) return if fill_results_from_cache: # only take existing results submission.fill_results_from_cache() else: # Clear all files generated by potential previous submissions. # Hint: disable this in case you want to resume an evaluation. if clear_submission_files: submission.clear_files() # Get all category names and subset names for the selected task/sequence_set eval_batches_map = submission.get_eval_batches_map() # Iterate over the categories and the corresponding subset lists. for eval_i, (category, subset_name) in enumerate(eval_batches_map.keys()): logger.info( f"Evaluating category {category}; subset {subset_name}" + f" ({eval_i+1} / {len(eval_batches_map)})" ) # Generate new views for all evaluation examples in category/subset_name. update_dbir_submission_with_category_and_subset_predictions( submission=submission, dataset_root=dataset_root, category=category, subset_name=subset_name, cheat_with_gt_data=cheat_with_gt_data, ) # Locally evaluate the submission in case we dont evaluate on the hidden test set. if (not skip_evaluation and sequence_set != CO3DSequenceSet.TEST): submission.evaluate(num_workers=num_eval_workers) # Export the submission predictions for submition to the evaluation server. # This also validates completeness of the produced predictions. submission.export_results(validate_results=True) if submit_to_eval_ai: # submit the results to the EvalAI server. submission.submit_to_eval_ai() # sanity check - reevaluate the archive file and copare results # submission_reeval = CO3DSubmission( # task=task, # sequence_set=sequence_set, # output_folder=os.path.join(submission_output_folder, "_reeval"), # dataset_root=DATASET_ROOT, # on_server=True, # server_data_folder=DATASET_ROOT_HIDDEN, # ) # submission_reeval.evaluate_archive_file( # submission.submission_archive, num_workers=num_eval_workers # ) if __name__ == "__main__": logging.basicConfig(level=logging.INFO) # iterate over all tasks and sequence sets for sequence_set in [CO3DSequenceSet.DEV, CO3DSequenceSet.TEST]: for task in [CO3DTask.MANY_VIEW, CO3DTask.FEW_VIEW]: make_dbir_submission( task=task, sequence_set=sequence_set, cheat_with_gt_data=False, fill_results_from_cache=False, skip_evaluation=False, submit_to_eval_ai=True, )
co3d-main
examples/example_co3d_challenge_submission.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os from dataset.download_dataset_impl import build_arg_parser, download_dataset DEFAULT_LINK_LIST_FILE = os.path.join(os.path.dirname(__file__), "links.json") DEFAULT_SHA256S_FILE = os.path.join(os.path.dirname(__file__), "co3d_sha256.json") if __name__ == "__main__": parser = build_arg_parser("CO3D", DEFAULT_LINK_LIST_FILE, DEFAULT_SHA256S_FILE) parser.add_argument( "--single_sequence_subset", action="store_true", default=False, help="Download the single-sequence subset of the dataset.", ) args = parser.parse_args() download_dataset( str(args.link_list_file), str(args.download_folder), n_download_workers=int(args.n_download_workers), n_extract_workers=int(args.n_extract_workers), download_categories=args.download_categories, checksum_check=bool(args.checksum_check), single_sequence_subset=bool(args.single_sequence_subset), clear_archives_after_unpacking=bool(args.clear_archives_after_unpacking), sha256s_file=str(args.sha256_file), skip_downloaded_archives=not bool(args.redownload_existing_archives), )
co3d-main
co3d/download_dataset.py
co3d-main
co3d/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree.
co3d-main
co3d/dataset/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import sys import dataclasses import gzip import json from dataclasses import dataclass, Field, MISSING from typing import Any, cast, Dict, IO, Optional, Tuple, Type, TypeVar, Union import numpy as np if sys.version_info >= (3, 8, 0): from typing import get_args, get_origin elif sys.version_info >= (3, 7, 0): def get_origin(cls): # pragma: no cover return getattr(cls, "__origin__", None) def get_args(cls): # pragma: no cover return getattr(cls, "__args__", None) else: raise ImportError("This module requires Python 3.7+") _X = TypeVar("_X") TF3 = Tuple[float, float, float] @dataclass class ImageAnnotation: # path to jpg file, relative w.r.t. dataset_root path: str # H x W size: Tuple[int, int] # TODO: rename size_hw? @dataclass class DepthAnnotation: # path to png file, relative w.r.t. dataset_root, storing `depth / scale_adjustment` path: str # a factor to convert png values to actual depth: `depth = png * scale_adjustment` scale_adjustment: float # path to png file, relative w.r.t. dataset_root, storing binary `depth` mask mask_path: Optional[str] @dataclass class MaskAnnotation: # path to png file storing (Prob(fg | pixel) * 255) path: str # (soft) number of pixels in the mask; sum(Prob(fg | pixel)) mass: Optional[float] = None @dataclass class ViewpointAnnotation: # In right-multiply (PyTorch3D) format. X_cam = X_world @ R + T R: Tuple[TF3, TF3, TF3] T: TF3 focal_length: Tuple[float, float] principal_point: Tuple[float, float] intrinsics_format: str = "ndc_norm_image_bounds" # Defines the co-ordinate system where focal_length and principal_point live. # Possible values: ndc_isotropic | ndc_norm_image_bounds (default) # ndc_norm_image_bounds: legacy PyTorch3D NDC format, where image boundaries # correspond to [-1, 1] x [-1, 1], and the scale along x and y may differ # ndc_isotropic: PyTorch3D 0.5+ NDC convention where the shorter side has # the range [-1, 1], and the longer one has the range [-s, s]; s >= 1, # where s is the aspect ratio. The scale is same along x and y. @dataclass class FrameAnnotation: """A dataclass used to load annotations from json.""" # can be used to join with `SequenceAnnotation` sequence_name: str # 0-based, continuous frame number within sequence frame_number: int # timestamp in seconds from the video start frame_timestamp: float image: ImageAnnotation depth: Optional[DepthAnnotation] = None mask: Optional[MaskAnnotation] = None viewpoint: Optional[ViewpointAnnotation] = None meta: Optional[Dict[str, Any]] = None @dataclass class PointCloudAnnotation: # path to ply file with points only, relative w.r.t. dataset_root path: str # the bigger the better quality_score: float n_points: Optional[int] @dataclass class VideoAnnotation: # path to the original video file, relative w.r.t. dataset_root path: str # length of the video in seconds length: float @dataclass class SequenceAnnotation: sequence_name: str category: str video: Optional[VideoAnnotation] = None point_cloud: Optional[PointCloudAnnotation] = None # the bigger the better viewpoint_quality_score: Optional[float] = None def dump_dataclass(obj: Any, f: IO, binary: bool = False) -> None: """ Args: f: Either a path to a file, or a file opened for writing. obj: A @dataclass or collection hierarchy including dataclasses. binary: Set to True if `f` is a file handle, else False. """ if binary: f.write(json.dumps(_asdict_rec(obj)).encode("utf8")) else: json.dump(_asdict_rec(obj), f) def load_dataclass(f: IO, cls: Type[_X], binary: bool = False) -> _X: """ Loads to a @dataclass or collection hierarchy including dataclasses from a json recursively. Call it like load_dataclass(f, typing.List[FrameAnnotationAnnotation]). raises KeyError if json has keys not mapping to the dataclass fields. Args: f: Either a path to a file, or a file opened for writing. cls: The class of the loaded dataclass. binary: Set to True if `f` is a file handle, else False. """ if binary: asdict = json.loads(f.read().decode("utf8")) else: asdict = json.load(f) if isinstance(asdict, list): # in the list case, run a faster "vectorized" version cls = get_args(cls)[0] res = list(_dataclass_list_from_dict_list(asdict, cls)) else: res = _dataclass_from_dict(asdict, cls) return res def _dataclass_list_from_dict_list(dlist, typeannot): """ Vectorised version of `_dataclass_from_dict`. The output should be equivalent to `[_dataclass_from_dict(d, typeannot) for d in dlist]`. Args: dlist: list of objects to convert. typeannot: type of each of those objects. Returns: iterator or list over converted objects of the same length as `dlist`. Raises: ValueError: it assumes the objects have None's in consistent places across objects, otherwise it would ignore some values. This generally holds for auto-generated annotations, but otherwise use `_dataclass_from_dict`. """ cls = get_origin(typeannot) or typeannot if typeannot is Any: return dlist if all(obj is None for obj in dlist): # 1st recursion base: all None nodes return dlist if any(obj is None for obj in dlist): # filter out Nones and recurse on the resulting list idx_notnone = [(i, obj) for i, obj in enumerate(dlist) if obj is not None] idx, notnone = zip(*idx_notnone) converted = _dataclass_list_from_dict_list(notnone, typeannot) res = [None] * len(dlist) for i, obj in zip(idx, converted): res[i] = obj return res is_optional, contained_type = _resolve_optional(typeannot) if is_optional: return _dataclass_list_from_dict_list(dlist, contained_type) # otherwise, we dispatch by the type of the provided annotation to convert to if issubclass(cls, tuple) and hasattr(cls, "_fields"): # namedtuple # For namedtuple, call the function recursively on the lists of corresponding keys types = cls._field_types.values() dlist_T = zip(*dlist) res_T = [ _dataclass_list_from_dict_list(key_list, tp) for key_list, tp in zip(dlist_T, types) ] return [cls(*converted_as_tuple) for converted_as_tuple in zip(*res_T)] elif issubclass(cls, (list, tuple)): # For list/tuple, call the function recursively on the lists of corresponding positions types = get_args(typeannot) if len(types) == 1: # probably List; replicate for all items types = types * len(dlist[0]) dlist_T = zip(*dlist) res_T = ( _dataclass_list_from_dict_list(pos_list, tp) for pos_list, tp in zip(dlist_T, types) ) if issubclass(cls, tuple): return list(zip(*res_T)) else: return [cls(converted_as_tuple) for converted_as_tuple in zip(*res_T)] elif issubclass(cls, dict): # For the dictionary, call the function recursively on concatenated keys and vertices key_t, val_t = get_args(typeannot) all_keys_res = _dataclass_list_from_dict_list( [k for obj in dlist for k in obj.keys()], key_t ) all_vals_res = _dataclass_list_from_dict_list( [k for obj in dlist for k in obj.values()], val_t ) indices = np.cumsum([len(obj) for obj in dlist]) assert indices[-1] == len(all_keys_res) keys = np.split(list(all_keys_res), indices[:-1]) # vals = np.split(all_vals_res, indices[:-1]) all_vals_res_iter = iter(all_vals_res) return [cls(zip(k, all_vals_res_iter)) for k in keys] elif not dataclasses.is_dataclass(typeannot): return dlist # dataclass node: 2nd recursion base; call the function recursively on the lists # of the corresponding fields assert dataclasses.is_dataclass(cls) fieldtypes = { f.name: (_unwrap_type(f.type), _get_dataclass_field_default(f)) for f in dataclasses.fields(typeannot) } # NOTE the default object is shared here key_lists = ( _dataclass_list_from_dict_list([obj.get(k, default) for obj in dlist], type_) for k, (type_, default) in fieldtypes.items() ) transposed = zip(*key_lists) return [cls(*vals_as_tuple) for vals_as_tuple in transposed] def _dataclass_from_dict(d, typeannot): if d is None or typeannot is Any: return d is_optional, contained_type = _resolve_optional(typeannot) if is_optional: # an Optional not set to None, just use the contents of the Optional. return _dataclass_from_dict(d, contained_type) cls = get_origin(typeannot) or typeannot if issubclass(cls, tuple) and hasattr(cls, "_fields"): # namedtuple types = cls._field_types.values() return cls(*[_dataclass_from_dict(v, tp) for v, tp in zip(d, types)]) elif issubclass(cls, (list, tuple)): types = get_args(typeannot) if len(types) == 1: # probably List; replicate for all items types = types * len(d) return cls(_dataclass_from_dict(v, tp) for v, tp in zip(d, types)) elif issubclass(cls, dict): key_t, val_t = get_args(typeannot) return cls( (_dataclass_from_dict(k, key_t), _dataclass_from_dict(v, val_t)) for k, v in d.items() ) elif not dataclasses.is_dataclass(typeannot): return d assert dataclasses.is_dataclass(cls) fieldtypes = {f.name: _unwrap_type(f.type) for f in dataclasses.fields(typeannot)} return cls(**{k: _dataclass_from_dict(v, fieldtypes[k]) for k, v in d.items()}) def _unwrap_type(tp): # strips Optional wrapper, if any if get_origin(tp) is Union: args = get_args(tp) if len(args) == 2 and any(a is type(None) for a in args): # noqa: E721 # this is typing.Optional return args[0] if args[1] is type(None) else args[1] # noqa: E721 return tp def _get_dataclass_field_default(field: Field) -> Any: if field.default_factory is not MISSING: # pyre-fixme[29]: `Union[dataclasses._MISSING_TYPE, # dataclasses._DefaultFactory[typing.Any]]` is not a function. return field.default_factory() elif field.default is not MISSING: return field.default else: return None def _asdict_rec(obj): return dataclasses._asdict_inner(obj, dict) def dump_dataclass_jgzip(outfile: str, obj: Any) -> None: """ Dumps obj to a gzipped json outfile. Args: obj: A @dataclass or collection hiererchy including dataclasses. outfile: The path to the output file. """ with gzip.GzipFile(outfile, "wb") as f: dump_dataclass(obj, cast(IO, f), binary=True) def load_dataclass_jgzip(outfile, cls): """ Loads a dataclass from a gzipped json outfile. Args: outfile: The path to the loaded file. cls: The type annotation of the loaded dataclass. Returns: loaded_dataclass: The loaded dataclass. """ with gzip.GzipFile(outfile, "rb") as f: return load_dataclass(cast(IO, f), cls, binary=True) def _resolve_optional(type_: Any) -> Tuple[bool, Any]: """Check whether `type_` is equivalent to `typing.Optional[T]` for some T.""" if get_origin(type_) is Union: args = get_args(type_) if len(args) == 2 and args[1] == type(None): # noqa E721 return True, args[0] if type_ is Any: return True, Any return False, type_
co3d-main
co3d/dataset/data_types.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import torch import copy from pytorch3d.implicitron.dataset.dataset_base import FrameData from co3d.challenge.data_types import CO3DTask, CO3DSequenceSet def redact_eval_frame_data(fd: FrameData) -> FrameData: """ Redact all information about the test element (1st image) of the evaluation frame data `fd`. This is done by zeroing all elements of the relevant tensors in `fd` followed by removing the sequence_point_cloud field. """ fd_redacted = copy.deepcopy(fd) for redact_field_name in [ "fg_probability", "image_rgb", "depth_map", "mask_crop", ]: # zero-out all elements in the redacted tensor field_val = getattr(fd, redact_field_name) field_val[:1] *= 0 # also remove the point cloud info fd_redacted.sequence_point_cloud_idx = None fd_redacted.sequence_point_cloud = None return fd_redacted def _check_valid_eval_frame_data( fd: FrameData, task: CO3DTask, sequence_set: CO3DSequenceSet, ): """ Check that the evaluation batch `fd` is redacted correctly. """ is_redacted = torch.stack( [ getattr(fd, k).abs().sum((1,2,3)) <= 0 for k in ["image_rgb", "depth_map", "fg_probability"] ] ) if sequence_set==CO3DSequenceSet.TEST: # first image has to be redacted assert is_redacted[:, 0].all() # all depth maps have to be redacted assert is_redacted[1, :].all() # no known views should be redacted assert not is_redacted[:, 1:].all(dim=0).any() elif sequence_set==CO3DSequenceSet.DEV: # nothing should be redacted assert not is_redacted.all(dim=0).any() else: raise ValueError(sequence_set)
co3d-main
co3d/dataset/utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os import shutil import requests import functools import json import warnings from argparse import ArgumentParser from typing import List, Optional from multiprocessing import Pool from tqdm import tqdm from .check_checksum import check_co3d_sha256 def download_dataset( link_list_file: str, download_folder: str, n_download_workers: int = 4, n_extract_workers: int = 4, download_categories: Optional[List[str]] = None, checksum_check: bool = False, single_sequence_subset: bool = False, clear_archives_after_unpacking: bool = False, skip_downloaded_archives: bool = True, sha256s_file: Optional[str] = None, ): """ Downloads and unpacks the dataset in CO3D format. Note: The script will make a folder `<download_folder>/_in_progress`, which stores files whose download is in progress. The folder can be safely deleted the download is finished. Args: link_list_file: A text file with the list of zip file download links. download_folder: A local target folder for downloading the the dataset files. n_download_workers: The number of parallel workers for downloading the dataset files. n_extract_workers: The number of parallel workers for extracting the dataset files. download_categories: A list of categories to download. If `None`, downloads all. checksum_check: Enable validation of the downloaded file's checksum before extraction. single_sequence_subset: Whether the downloaded dataset is the single-sequence subset of the full dataset. clear_archives_after_unpacking: Delete the unnecessary downloaded archive files after unpacking. skip_downloaded_archives: Skip re-downloading already downloaded archives. """ if checksum_check and not sha256s_file: raise ValueError( "checksum_check is requested but ground-truth SHA256 file not provided!" ) if not os.path.isfile(link_list_file): raise ValueError( "Please specify `link_list_file` with a valid path to a json" " with zip file download links." " For CO3Dv2, the file is stored in the co3d github:" " https://github.com/facebookresearch/co3d/blob/main/co3d/links.json" ) if not os.path.isdir(download_folder): raise ValueError( "Please specify `download_folder` with a valid path to a target folder" + " for downloading the dataset." + f" {download_folder} does not exist." ) # read the link file with open(link_list_file, "r") as f: links = json.load(f) # get the full dataset links or the single-sequence subset links links = links["singlesequence"] if single_sequence_subset else links["full"] # split to data links and the links containing json metadata metadata_links = [] data_links = [] for category_name, urls in links.items(): for url in urls: link_name = os.path.split(url)[-1] if single_sequence_subset: link_name = link_name.replace("_singlesequence", "") if category_name.upper() == "METADATA": metadata_links.append((link_name, url)) else: data_links.append((category_name, link_name, url)) if download_categories is not None: co3d_categories = set(l[0] for l in data_links) not_in_co3d = [c for c in download_categories if c not in co3d_categories] if len(not_in_co3d) > 0: raise ValueError( f"download_categories {str(not_in_co3d)} are not valid" + "dataset categories." ) data_links = [(c, ln, l) for c, ln, l in data_links if c in download_categories] with Pool(processes=n_download_workers) as download_pool: print(f"Downloading {len(metadata_links)} dataset metadata files ...") for _ in tqdm( download_pool.imap( functools.partial(_download_metadata_file, download_folder), metadata_links, ), total=len(metadata_links), ): pass print(f"Downloading {len(data_links)} dataset files ...") download_ok = {} for link_name, ok in tqdm( download_pool.imap( functools.partial( _download_category_file, download_folder, checksum_check, single_sequence_subset, sha256s_file, skip_downloaded_archives, ), data_links, ), total=len(data_links), ): download_ok[link_name] = ok if not all(download_ok.values()): not_ok_links = [n for n, ok in download_ok.items() if not ok] not_ok_links_str = "\n".join(not_ok_links) raise AssertionError( "The SHA256 checksums did not match for some of the downloaded files:\n" + not_ok_links_str + "\n" + "This is most likely due to a network failure." + " Please restart the download script." ) metadata_links = [ml for ml in metadata_links if ml[1].endswith(".zip")] print(f"Extracting {len(data_links)} dataset files and {len(metadata_links)} metadata files...") with Pool(processes=n_extract_workers) as extract_pool: for _ in tqdm( extract_pool.imap( functools.partial( _unpack_category_file, download_folder, clear_archives_after_unpacking, ), metadata_links + data_links, ), total=len(metadata_links) + len(data_links), ): pass print("Done") def build_arg_parser( dataset_name: str, default_link_list_file: str, default_sha256_file: str, ) -> ArgumentParser: parser = ArgumentParser(description=f"Download the {dataset_name} dataset.") parser.add_argument( "--download_folder", type=str, required=True, help="A local target folder for downloading the the dataset files.", ) parser.add_argument( "--n_download_workers", type=int, default=4, help="The number of parallel workers for downloading the dataset files.", ) parser.add_argument( "--n_extract_workers", type=int, default=4, help="The number of parallel workers for extracting the dataset files.", ) parser.add_argument( "--download_categories", type=lambda x: [x_.strip() for x_ in x.split(",")], default=None, help=f"A comma-separated list of {dataset_name} categories to download." + " Example: 'orange,car' will download only oranges and cars", ) parser.add_argument( "--link_list_file", type=str, default=default_link_list_file, help=( f"The file with html links to the {dataset_name} dataset files." + " In most cases the default local file `links.json` should be used." ), ) parser.add_argument( "--sha256_file", type=str, default=default_sha256_file, help=( f"The file with SHA256 hashes of {dataset_name} dataset files." + " In most cases the default local file `co3d_sha256.json` should be used." ), ) parser.add_argument( "--checksum_check", action="store_true", default=True, help="Check the SHA256 checksum of each downloaded file before extraction.", ) parser.add_argument( "--no_checksum_check", action="store_false", dest="checksum_check", default=False, help="Does not check the SHA256 checksum of each downloaded file before extraction.", ) parser.set_defaults(checksum_check=True) parser.add_argument( "--clear_archives_after_unpacking", action="store_true", default=False, help="Delete the unnecessary downloaded archive files after unpacking.", ) parser.add_argument( "--redownload_existing_archives", action="store_true", default=False, help="Redownload the already-downloaded archives.", ) return parser def _unpack_category_file( download_folder: str, clear_archive: bool, link: str, ): *_, link_name, url = link local_fl = os.path.join(download_folder, link_name) print(f"Unpacking dataset file {local_fl} ({link_name}) to {download_folder}.") shutil.unpack_archive(local_fl, download_folder) if clear_archive: os.remove(local_fl) def _download_category_file( download_folder: str, checksum_check: bool, single_sequence_subset: bool, sha256s_file: Optional[str], skip_downloaded_files: bool, link: str, ): category, link_name, url = link local_fl_final = os.path.join(download_folder, link_name) if skip_downloaded_files and os.path.isfile(local_fl_final): print(f"Skipping {local_fl_final}, already downloaded!") return link_name, True in_progress_folder = os.path.join(download_folder, "_in_progress") os.makedirs(in_progress_folder, exist_ok=True) local_fl = os.path.join(in_progress_folder, link_name) print(f"Downloading dataset file {link_name} ({url}) to {local_fl}.") _download_with_progress_bar(url, local_fl, link_name) if checksum_check: print(f"Checking SHA256 for {local_fl}.") try: check_co3d_sha256( local_fl, sha256s_file=sha256s_file, single_sequence_subset=single_sequence_subset, ) except AssertionError: warnings.warn( f"Checksums for {local_fl} did not match!" + " This is likely due to a network failure," + " please restart the download script." ) return link_name, False os.rename(local_fl, local_fl_final) return link_name, True def _download_metadata_file(download_folder: str, link: str): local_fl = os.path.join(download_folder, link[0]) # remove the singlesequence postfix in case we are downloading the s.s. subset local_fl = local_fl.replace("_singlesequence", "") print(f"Downloading dataset metadata file {link[1]} ({link[0]}) to {local_fl}.") _download_with_progress_bar(link[1], local_fl, link[0]) def _download_with_progress_bar(url: str, fname: str, filename: str): # taken from https://stackoverflow.com/a/62113293/986477 resp = requests.get(url, stream=True) print(url) total = int(resp.headers.get("content-length", 0)) with open(fname, "wb") as file, tqdm( desc=fname, total=total, unit="iB", unit_scale=True, unit_divisor=1024, ) as bar: for datai, data in enumerate(resp.iter_content(chunk_size=1024)): size = file.write(data) bar.update(size) if datai % max((max(total // 1024, 1) // 20), 1) == 0: print(f"{filename}: Downloaded {100.0*(float(bar.n)/max(total, 1)):3.1f}%.") print(bar)
co3d-main
co3d/dataset/download_dataset_impl.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os import glob import argparse import hashlib import json from typing import Optional from multiprocessing import Pool from tqdm import tqdm DEFAULT_SHA256S_FILE = os.path.join(__file__.rsplit(os.sep, 2)[0], "co3d_sha256.json") BLOCKSIZE = 65536 def main( download_folder: str, sha256s_file: str, dump: bool = False, n_sha256_workers: int = 4, single_sequence_subset: bool = False, ): if not os.path.isfile(sha256s_file): raise ValueError(f"The SHA256 file does not exist ({sha256s_file}).") expected_sha256s = get_expected_sha256s( sha256s_file=sha256s_file, single_sequence_subset=single_sequence_subset, ) zipfiles = sorted(glob.glob(os.path.join(download_folder, "*.zip"))) print(f"Extracting SHA256 hashes for {len(zipfiles)} files in {download_folder}.") extracted_sha256s_list = [] with Pool(processes=n_sha256_workers) as sha_pool: for extracted_hash in tqdm( sha_pool.imap(_sha256_file_and_print, zipfiles), total=len(zipfiles), ): extracted_sha256s_list.append(extracted_hash) pass extracted_sha256s = dict( zip([os.path.split(z)[-1] for z in zipfiles], extracted_sha256s_list) ) if dump: print(extracted_sha256s) with open(sha256s_file, "w") as f: json.dump(extracted_sha256s, f, indent=2) missing_keys, invalid_keys = [], [] for k in expected_sha256s.keys(): if k not in extracted_sha256s: print(f"{k} missing!") missing_keys.append(k) elif expected_sha256s[k] != extracted_sha256s[k]: print( f"'{k}' does not match!" + f" ({expected_sha256s[k]} != {extracted_sha256s[k]})" ) invalid_keys.append(k) if len(invalid_keys) + len(missing_keys) > 0: raise ValueError( f"Checksum checker failed!" + f" Non-matching checksums: {str(invalid_keys)};" + f" missing files: {str(missing_keys)}." ) def get_expected_sha256s( sha256s_file: str, single_sequence_subset: bool = False, ): with open(sha256s_file, "r") as f: expected_sha256s = json.load(f) if single_sequence_subset: return expected_sha256s["singlesequence"] else: return expected_sha256s["full"] def check_co3d_sha256( path: str, sha256s_file: str, expected_sha256s: Optional[dict] = None, single_sequence_subset: bool = False, do_assertion: bool = True, ): zipname = os.path.split(path)[-1] if expected_sha256s is None: expected_sha256s = get_expected_sha256s( sha256s_file=sha256s_file, single_sequence_subset=single_sequence_subset, ) extracted_hash = sha256_file(path) if do_assertion: assert ( extracted_hash == expected_sha256s[zipname] ), f"{zipname}: ({extracted_hash} != {expected_sha256s[zipname]})" else: return extracted_hash == expected_sha256s[zipname] def sha256_file(path: str): sha256_hash = hashlib.sha256() with open(path, "rb") as f: file_buffer = f.read(BLOCKSIZE) while len(file_buffer) > 0: sha256_hash.update(file_buffer) file_buffer = f.read(BLOCKSIZE) digest_ = sha256_hash.hexdigest() # print(f"{digest_} {path}") return digest_ def _sha256_file_and_print(path: str): digest_ = sha256_file(path) print(f"{path}: {digest_}") return digest_ if __name__ == "__main__": parser = argparse.ArgumentParser( description="Check SHA256 hashes of the CO3D dataset." ) parser.add_argument( "--download_folder", type=str, help="A local target folder for downloading the the dataset files.", ) parser.add_argument( "--sha256s_file", type=str, help="A local target folder for downloading the the dataset files.", default=DEFAULT_SHA256S_FILE, ) parser.add_argument( "--num_workers", type=int, default=4, help="The number of sha256 extraction workers.", ) parser.add_argument( "--dump_sha256s", action="store_true", help="Store sha256s hashes.", ) parser.add_argument( "--single_sequence_subset", action="store_true", default=False, help="Check the single-sequence subset of the dataset.", ) args = parser.parse_args() main( str(args.download_folder), dump=bool(args.dump_sha256s), n_sha256_workers=int(args.num_workers), single_sequence_subset=bool(args.single_sequence_subset), sha256s_file=str(args.sha256s_file), )
co3d-main
co3d/dataset/check_checksum.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. """ Evaluation of Implicitron models on CO3Dv2 challenge. """ import logging import os import torch import json import warnings from typing import Optional, Union, Dict, Tuple from tqdm import tqdm from omegaconf import DictConfig, OmegaConf import numpy as np import pytorch3d from pytorch3d.implicitron.models.generic_model import ImplicitronRender, GenericModel from pytorch3d.implicitron.tools.config import get_default_args from pytorch3d.implicitron.dataset.dataset_base import FrameData from pytorch3d.implicitron.dataset.dataset_map_provider import DatasetMap from pytorch3d.implicitron.dataset.json_index_dataset_map_provider_v2 import ( JsonIndexDatasetMapProviderV2 ) from pytorch3d.implicitron.tools.config import expand_args_fields from pytorch3d.implicitron.tools.model_io import ( parse_epoch_from_model_path, find_last_checkpoint, ) from pytorch3d.implicitron.models.renderer.base import ( # BaseRenderer, EvaluationMode, # ImplicitFunctionWrapper, # RendererOutput, # RenderSamplingMode, ) from co3d.utils import dbir_utils from co3d.challenge.co3d_submission import CO3DSubmission from co3d.challenge.data_types import CO3DTask, CO3DSequenceSet from co3d.challenge.utils import ( get_co3d_task_from_subset_name, get_co3d_sequence_set_from_subset_name, ) from co3d.dataset.utils import redact_eval_frame_data, _check_valid_eval_frame_data from co3d.challenge.metric_utils import EVAL_METRIC_NAMES DATASET_ROOT = os.getenv("CO3DV2_DATASET_ROOT") DATASET_ROOT_HIDDEN = os.getenv("CO3DV2_HIDDEN_DATASET_ROOT") # HACK: implicitron_trainer is not part of a package; forcing it in the path _pytorch3d_root = os.path.dirname(os.path.dirname(pytorch3d.__file__)) implicitron_trainer_dir = os.path.join(_pytorch3d_root, "projects", "implicitron_trainer") # sys.path.insert(0, implicitron_trainer_dir) from projects.implicitron_trainer.experiment import Experiment logger = logging.getLogger(__name__) def evaluate_implicitron_exp_dir_map( category_subset_implicitron_exp_dirs: Union[Dict[Tuple[str, str], str], str], task: CO3DTask, sequence_set: CO3DSequenceSet, submission_output_folder: str, num_eval_workers: int = 4, submit_to_eval_ai: bool = False, skip_evaluation: bool = False, fill_results_from_cache: bool = False, implicitron_exp_dir_submission_output_subfolder: Optional[str] = None, ): """ Evalulates and submits to EvalAI either: 1) all Implicitron class-specific models, or 2) a single model trained for all categories. Args: category_subset_implicitron_exp_dirs: Two options: 1) a dict {(category_name, subset_name): implicitron_exp_dir_path} containing a mapping from each CO3Dv2 category and subset to the path of the corresponding implicitron model exp dir. 2) a string containing the path to a single model used for reconstructing all categories. task: The co3d task - either CO3DTask.MANY_VIEW or CO3DTask.FEW_VIEW. sequence_set: The sequence set to evaluate on: CO3DSequenceSet.DEV for for the development set CO3DSequenceSet.TEST for for the test set submission_output_folder: Directory containing the submission output files. num_eval_workers: Number of processes that conduct evaluation. submit_to_eval_ai: If `True`, will automatically submit the exported result archive to EvalAI using the CLI interface (needs to be installed with `pip install evalai`). This requires setting the EVAL_AI_PERSONAL_TOKEN environment variable to your personal EVAL_AI token. skip_evaluation: Skip the local evaluation. implicitron_exp_dir_submission_output_subfolder: If set to a string, loads precomputed results from ``` category_subset_implicitron_exp_dirs[(category, subset)] /implicitron_exp_dir_submission_output_subfolder ``` for each (category, subset). Such precomputed results are typically output by: ``` evaluate_implicitron_exp_dir( category_subset_implicitron_exp_dirs[(category, subset)], ... ) """ submission = CO3DSubmission( task=task, sequence_set=sequence_set, output_folder=submission_output_folder, dataset_root=DATASET_ROOT, ) if fill_results_from_cache: submission.fill_results_from_cache() else: if not isinstance(category_subset_implicitron_exp_dirs, str): # check that we have all models in case the we were given one model per # category/subset_name for category, subset_name in submission.get_eval_batches_map(): if (category, subset_name) not in category_subset_implicitron_exp_dirs: raise ValueError( f"Missing implicitron exp dir for {category}/{subset_name}." ) for category, subset_name in submission.get_eval_batches_map(): if isinstance(category_subset_implicitron_exp_dirs, str): # a single model that does it all current_implicitron_exp_dir = category_subset_implicitron_exp_dirs else: # subset-specific models current_implicitron_exp_dir = category_subset_implicitron_exp_dirs[ (category, subset_name) ] if implicitron_exp_dir_submission_output_subfolder is not None: submission.link_results_from_existing_output_folder( os.path.join( current_implicitron_exp_dir, implicitron_exp_dir_submission_output_subfolder, ) ) else: update_implicitron_submission_with_category_and_subset_predictions( submission=submission, implicitron_exp_dir=current_implicitron_exp_dir, dataset_root=DATASET_ROOT, category=category, subset_name=subset_name, n_known_frames_for_test=9 if task==CO3DTask.MANY_VIEW else 0, ) # Locally evaluate the submission in case we dont evaluate on the hidden test set. if sequence_set != CO3DSequenceSet.TEST and not skip_evaluation: submission.evaluate(num_workers=num_eval_workers) if submit_to_eval_ai: # Export the submission predictions for submition to the evaluation server. # This also validates completeness of the produced predictions. submission.export_results(validate_results=True) # submit the results to the EvalAI server. submission.submit_to_eval_ai() def evaluate_implicitron_exp_dir( implicitron_exp_dir: str, task: Optional[CO3DTask] = None, sequence_set: Optional[CO3DSequenceSet] = None, subset_name: Optional[str] = None, category: Optional[str] = None, result_dump_file: Optional[str] = None, clear_submission_cache_before_evaluation: bool = False, clear_submission_cache_after_evaluation: bool = False, submission_output_folder: Optional[str] = None, num_eval_workers: int = 4, ): """ Run evaluation for an experiment directory of Implicitron. Unless overriden by the user, this function automatically parses the category / subset / task / sequence_set / dataset_root from the implicitron experiment config stored in implicitron_exp_dir. Args: implicitron_exp_dir: The directory of an Implicitron experiment. task: The co3d task - either CO3DTask.MANY_VIEW or CO3DTask.FEW_VIEW. sequence_set: The sequence set to evaluate on: CO3DSequenceSet.DEV for for the development set CO3DSequenceSet.TEST for for the test set subset_name: The name of the CO3Dv2 subset. E.g. "manyview_dev_0", "fewview_dev", ... category: The name of the CO3Dv2 category to evaluate. result_dump_file: Path to the json file with evaluation results. clear_submission_cache_before_evaluation: Delete all previous intermediate submission files before commencing the current evaluation run. clear_submission_cache_after_evaluation: Delete all intermediate submission files after the evaluation run. submission_output_folder: The path to the folder with intermediate submission files. num_eval_workers: Number of processes that conduct evaluation. """ if result_dump_file is None: result_dump_file = os.path.join( implicitron_exp_dir, "results_challenge_eval.json" ) cfg = load_implicitron_config_from_exp_dir(implicitron_exp_dir) # assert few config settings assert ( cfg.data_source_ImplicitronDataSource_args.dataset_map_provider_class_type =="JsonIndexDatasetMapProviderV2" ) # read the category / subset / task / sequence_set / dataset_root from # the implicitron config dataset_provider_args = ( cfg .data_source_ImplicitronDataSource_args .dataset_map_provider_JsonIndexDatasetMapProviderV2_args ) if subset_name is None: subset_name = dataset_provider_args.subset_name if category is None: category = dataset_provider_args.category if task is None: task = get_co3d_task_from_subset_name(subset_name) if sequence_set is None: sequence_set = get_co3d_sequence_set_from_subset_name(subset_name) dataset_root = ( DATASET_ROOT if DATASET_ROOT is not None else dataset_provider_args.dataset_root ) logger.info( f"Evaluating Implicitron model on category {category}; subset {subset_name}" ) # the folder storing all predictions and results of the submission if submission_output_folder is None: submission_output_folder = get_default_implicitron_exp_dir_submission_output_folder( implicitron_exp_dir, task, sequence_set, ) # create the submission object submission = CO3DSubmission( task=task, sequence_set=sequence_set, output_folder=submission_output_folder, dataset_root=DATASET_ROOT, ) if task==CO3DTask.FEW_VIEW and submission.has_only_single_sequence_subset(): # if only a single-sequence dataset is downloaded, only the many-view task # is available raise ValueError( f"Cannot evaluate the few-view task in {sequence_set.value} when only the" " singlesequence subset of CO3D is present." ) if clear_submission_cache_before_evaluation: submission.clear_files() # Generate new views for all evaluation examples in category/subset_name. update_implicitron_submission_with_category_and_subset_predictions( submission=submission, implicitron_exp_dir=implicitron_exp_dir, dataset_root=dataset_root, category=category, subset_name=subset_name, n_known_frames_for_test=9 if task==CO3DTask.MANY_VIEW else 0, ) # Locally evaluate the submission in case we dont evaluate on the hidden test set. if sequence_set == CO3DSequenceSet.TEST: logger.warning("Cannot evaluate on the hidden test set. Skipping evaluation.") category_subset_results = {m: 0.0 for m in EVAL_METRIC_NAMES} else: results = submission.evaluate(num_workers=num_eval_workers) category_subset_results = results[(category, subset_name)][0] # add the eval epoch as well category_subset_results["eval_epoch"] = parse_epoch_from_model_path( find_last_checkpoint(implicitron_exp_dir) ) logger.info("Implicitron model results:") logger.info(f"category={category} / subset_name={subset_name}") print_category_subset_results(category_subset_results) if clear_submission_cache_after_evaluation: submission.clear_files() logger.info(f"Dumping challenge eval results to {result_dump_file}.") with open(result_dump_file, "w") as f: json.dump(category_subset_results, f) return category_subset_results @torch.no_grad() def update_implicitron_submission_with_category_and_subset_predictions( submission: CO3DSubmission, implicitron_exp_dir: str, dataset_root: str, category: str, subset_name: str, num_workers: int = 12, n_known_frames_for_test: int = 0, ): """ Updates the CO3DSubmission object `submission` with predictions of a DBIR model extracted for a given category, and a dataset subset. Args: submission: CO3DSubmission object. implicitron_exp_dir: Implicitron experiment directory to load the model from. dataset_root: Path to the root dataset folder containing CO3Dv2. category: A CO3Dv2 category to evaluate. subset_name: The name of the evaluation subset of the category. num_workers: Number of processes to use for evaluation. n_known_frames_for_test: The number of known frames to append to the test batches. """ logger.info( "Runing depth-based image rendering (DBIR) new view synthesis " f"on category '{category}' subset '{subset_name}'" ) # Get the evaluation device. device = torch.device("cuda") if torch.cuda.is_available() else device("cpu") # load the implicitron model model = load_model_from_implicitron_exp_dir(implicitron_exp_dir) # Determine the sequence set and the task we are solving sequence_set = submission.sequence_set task = submission.task # Obtain the CO3Dv2 dataset map dataset_map = get_dataset_map( dataset_root, category, subset_name, n_known_frames_for_test=n_known_frames_for_test, ) # The test dataloader simply iterates over test_dataset.eval_batches # this is done by setting test_dataset.eval_batches as the batch sampler test_dataset = dataset_map["test"] eval_batches = test_dataset.get_eval_batches() test_dataloader = torch.utils.data.DataLoader( test_dataset, batch_sampler=eval_batches, num_workers=num_workers, collate_fn=FrameData.collate, ) # loop over eval examples logger.info( f"Rendering {len(test_dataloader)} test views for {category}/{subset_name}" ) if sequence_set==CO3DSequenceSet.TEST: # the test set contains images with redacted foreground masks which cause # the test dataloader to spam a warning message, # we suppress this warning with the following line warnings.filterwarnings("ignore", message="Empty masks_for_bbox.*") for eval_index, eval_frame_data in enumerate(tqdm(test_dataloader)): # the first element of eval_frame_data is the actual evaluation image, # the 2nd-to-last elements are the knwon source images used for building # the reconstruction (source images are present only for the few-view task) # move the eval data to the requested device eval_frame_data = eval_frame_data.to(device) # sanity check that the eval frame data has correctly redacted entries _check_valid_eval_frame_data(eval_frame_data, task, sequence_set) # Redact the frame data so we are sure we cannot use the data # from the actual unobserved evaluation sample eval_frame_data = redact_eval_frame_data(eval_frame_data) # Obtain the image render. In case dataset_test.box_crop==True, # we need to paste the render back to the original image bounds. model_preds = model( **eval_frame_data, eval_mode=EvaluationMode.EVALUATION, ) render_crop = model_preds["implicitron_render"] # cut the valid part of the render and paste into the original image canvas render_full_image = dbir_utils.paste_render_to_original_image( eval_frame_data, render_crop ) # get the image, mask, depth as numpy arrays for the challenge submission image, mask, depth = [ getattr(render_full_image, f"{data_type}_render").cpu().numpy()[0] for data_type in ["image", "mask", "depth"] ] # clip the rendered image to [0, 1] range image = image.clip(0.0, 1.0) # add the results to the submission object submission.add_result( category=category, subset_name=subset_name, sequence_name=eval_frame_data.sequence_name[0], frame_number=int(eval_frame_data.frame_number[0]), image=image, mask=mask, depth=depth, ) # reset all warnings warnings.simplefilter("always") def get_default_implicitron_exp_dir_submission_output_folder( implicitron_exp_dir: str, task: CO3DTask, sequence_set: CO3DSequenceSet, ): return os.path.join( implicitron_exp_dir, f"implicitron_submission_output_{task.value}_{sequence_set.value}", ) def parse_co3d_challenge_settings_from_implicitron_exp_dir( implicitron_exp_dir: str ) -> Tuple[CO3DSequenceSet, CO3DTask, str, str]: """ Reads the config of an implicitron experiment stored in `implicitron_exp_dir` and returns the configuration of the corresponding challenge entry. Args: implicitron_exp_dir: The directory of an Implicitron experiment. Returns: sequence_set: CO3D sequence set of the experiment. task: The CO3D task of the experiment. category: The category of the experiment. subset_name: The name of the CO3D subset. """ cfg = load_implicitron_config_from_exp_dir(implicitron_exp_dir) dataset_provider_args = ( cfg .data_source_ImplicitronDataSource_args .dataset_map_provider_JsonIndexDatasetMapProviderV2_args ) subset_name = dataset_provider_args.subset_name category = dataset_provider_args.category task = get_co3d_task_from_subset_name(subset_name) sequence_set = get_co3d_sequence_set_from_subset_name(subset_name) return sequence_set, task, category, subset_name def load_implicitron_config_from_exp_dir(implicitron_exp_dir: str): cfg_filename = os.path.join(implicitron_exp_dir, "expconfig.yaml") cfg_load = OmegaConf.load(cfg_filename) cfg_default = get_default_args(Experiment) cfg = OmegaConf.merge(cfg_default, cfg_load) cfg.exp_dir = implicitron_exp_dir return cfg def load_model_from_implicitron_exp_dir(exp_dir: str) -> GenericModel: cfg = load_implicitron_config_from_exp_dir(exp_dir) experiment = Experiment(**cfg) experiment.model_factory.force_resume = True model = experiment.model_factory(accelerator=None, exp_dir=exp_dir) model.cuda() model.eval() return model def get_dataset_map( dataset_root: str, category: str, subset_name: str, n_known_frames_for_test: int = 0, ) -> DatasetMap: """ Obtain the dataset map that contains the train/val/test dataset objects. """ expand_args_fields(JsonIndexDatasetMapProviderV2) dataset_map_provider = JsonIndexDatasetMapProviderV2( category=category, subset_name=subset_name, dataset_root=dataset_root, test_on_train=False, only_test_set=False, load_eval_batches=True, dataset_JsonIndexDataset_args=DictConfig({"remove_empty_masks": False}), n_known_frames_for_test=n_known_frames_for_test, ) return dataset_map_provider.get_dataset_map() def print_category_subset_results(category_subset_results: Dict[str, float]): for k, v in category_subset_results.items(): print(f"{k:20s}: {v:1.3f}")
co3d-main
co3d/utils/evaluate_implicitron_model.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import dataclasses import torch from typing import Tuple from pytorch3d.renderer.cameras import CamerasBase from pytorch3d.implicitron.dataset.json_index_dataset import JsonIndexDataset from pytorch3d.implicitron.dataset.dataset_base import FrameData from pytorch3d.structures import Pointclouds from pytorch3d.implicitron.dataset.json_index_dataset import _get_clamp_bbox from pytorch3d.implicitron.models.base_model import ImplicitronRender from pytorch3d.implicitron.dataset.visualize import get_implicitron_sequence_pointcloud from pytorch3d.implicitron.tools.point_cloud_utils import ( render_point_cloud_pytorch3d, get_rgbd_point_cloud, ) def render_point_cloud( camera: CamerasBase, render_size: Tuple[int, int], pointcloud: Pointclouds, point_radius: float = 0.03, ) -> ImplicitronRender: """ Render the point cloud `pointcloud` to the camera `camera` using the PyTorch3D point cloud renderer. Args: camera: Rendering camera. render_size: 2-tuple of integers denoting the render size (HxW) pointcloud: The point cloud to render. point_radius: Radius of the rendered points. """ # render the sequence point cloud to each evaluation view data_rendered, render_mask, depth_rendered = render_point_cloud_pytorch3d( camera, pointcloud, render_size=render_size, point_radius=point_radius, topk=10, eps=1e-2, bin_size=0, ) # cast to the implicitron render return ImplicitronRender( depth_render=depth_rendered, image_render=data_rendered, mask_render=render_mask, ) def paste_render_to_original_image( frame_data: FrameData, render: ImplicitronRender, ) -> ImplicitronRender: """ Paste a rendering result `render` into the original image coordinate frame. Args: frame_data: The `FrameData` object as returned by the `JsonIndexDataset`. render: A render to be pasted into the original image coordinates. """ # size of the render render_size = render.image_render.shape[2:] # estimate render scale w.r.t. the frame_data images render_scale_factors = [ sr / s for sr, s in zip(render_size, frame_data.image_rgb.shape[2:]) ] assert abs(render_scale_factors[0]-render_scale_factors[1]) <= 1e-2, ( "non-isotropic render rescale" ) # original image size orig_size = frame_data.image_size_hw[0].tolist() # bounding box of the crop in the original image if frame_data.crop_bbox_xywh is not None: bbox_xywh = frame_data.crop_bbox_xywh[0] else: bbox_xywh = torch.LongTensor([0, 0, orig_size[1], orig_size[0]]) # get the valid part of the render render_bounds_wh = [None, None] for axis in [0, 1]: # resize the mask crop to the size of the render if render_size != frame_data.mask_crop.shape[2:]: mask_crop_render_size = torch.nn.functional.interpolate( frame_data.mask_crop, size=render_size, mode="nearest" ) else: mask_crop_render_size = frame_data.mask_crop # get the bounds of the mask_crop along dimemsion = 1-axis valid_dim_pix = mask_crop_render_size[0, 0].sum(dim=axis).reshape(-1).nonzero() assert valid_dim_pix.min()==0 render_bounds_wh[axis] = valid_dim_pix.max().item() + 1 render_out = {} for render_type, render_val in dataclasses.asdict(render).items(): if render_val is None: continue # get the valid part of the render render_valid_ = render_val[..., :render_bounds_wh[1], :render_bounds_wh[0]] # resize the valid part to the original size render_resize_ = torch.nn.functional.interpolate( render_valid_, size=tuple(reversed(bbox_xywh[2:].tolist())), mode="bilinear" if render_type=="image_render" else "nearest", align_corners=False if render_type=="image_render" else None, ) # paste the original-sized crop to the original image render_pasted_ = render_resize_.new_zeros(1, render_resize_.shape[1], *orig_size) render_pasted_[ ..., bbox_xywh[1]:(bbox_xywh[1]+render_resize_.shape[2]), bbox_xywh[0]:(bbox_xywh[0]+render_resize_.shape[3]), ] = render_resize_ render_out[render_type] = render_pasted_ # if True: # # debug visualize # from visdom import Visdom # viz = Visdom() # visdom_env = "debug_paste_render_to_original_image" # viz.image( # render.image_render[0], # env=visdom_env, # win="original", # ) # viz.image( # render_out["image_render"][0], # env=visdom_env, # win="pasted", # ) # import pdb; pdb.set_trace() # pass return ImplicitronRender(**render_out) def get_sequence_pointcloud( dataset: JsonIndexDataset, sequence_name: str, num_workers: int = 12, max_loaded_frames: int = 50, max_n_points: int = int(1e5), seed: int = 42, load_dataset_pointcloud: bool = False, ) -> Pointclouds: """ Given a `dataset` object and the name of a sequence in it (`sequence_name`), generate a 3D pointcloud containing the main foreground object of the scene. Args: dataset: A dataset of containing sequence annotations. sequence_name: The name of the sequence to reconstruct. num_workers: Number of cores to use for loading the sequence data. max_n_points: Maximum number of points to keep in the point cloud. seed: Random seed for reproducibility. load_dataset_pointcloud: If `True` uses the CO3D ground truth dataset point cloud, otherwise generates the point cloud by unprojecting the depth maps of known frames. """ with torch.random.fork_rng(): # fork rng for reproducibility torch.manual_seed(seed) sequence_pointcloud, _ = get_implicitron_sequence_pointcloud( dataset, sequence_name, mask_points=True, max_frames=max_loaded_frames, num_workers=num_workers, load_dataset_point_cloud=load_dataset_pointcloud, ) sequence_pointcloud = _subsample_pointcloud(sequence_pointcloud, max_n_points) return sequence_pointcloud def get_eval_frame_data_pointcloud( eval_frame_data: FrameData, max_n_points: int = int(3e4), ): """ Generate a pointcloud by unprojecting the known depth maps of a `FrameData` object `eval_frame_data`. Args: eval_frame_data: `FrameData` to unproject. max_n_points: Maximum number of points to keep in the point cloud. """ batch_size = eval_frame_data.image_rgb.shape[0] pointcloud = get_rgbd_point_cloud( eval_frame_data.camera[list(range(1, batch_size))], eval_frame_data.image_rgb[1:], eval_frame_data.depth_map[1:], (eval_frame_data.fg_probability[1:] > 0.5).float(), mask_points=True, ) return _subsample_pointcloud(pointcloud, max_n_points) def _subsample_pointcloud(p: Pointclouds, n: int): n_points = p.num_points_per_cloud().item() if n_points > n: # subsample the point cloud in case it is bigger than max_n_points subsample_idx = torch.randperm( n_points, device=p.points_padded().device, )[:n] p = Pointclouds( points=p.points_padded()[:, subsample_idx], features=p.features_padded()[:, subsample_idx], ) return p
co3d-main
co3d/utils/dbir_utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import os import shutil import logging import errno import pickle import glob import hashlib import time from tabulate import tabulate from typing import Optional, Tuple, List from dataclasses import dataclass import numpy as np import csv from co3d.challenge.metric_utils import EVAL_METRIC_NAMES, EVAL_METRIC_MISSING_VALUE from .blank_predictions_results import BLANK_PREDICTION_RESULTS from .utils import evaluate_file_folders, get_result_directory_file_names from .data_types import RGBDAFrame, CO3DTask, CO3DSequenceSet from .io import ( load_all_eval_batches, store_rgbda_frame, export_result_file_dict_to_hdf5, make_hdf5_file_links, link_file_to_db_file, link_rgbda_frame_files, ) CO3D_CHALLENGE_ID = 1819 CO3D_PHASE_ID = { (CO3DTask.MANY_VIEW, CO3DSequenceSet.DEV): 3541, (CO3DTask.MANY_VIEW, CO3DSequenceSet.TEST): 3542, (CO3DTask.FEW_VIEW, CO3DSequenceSet.DEV): 3543, (CO3DTask.FEW_VIEW, CO3DSequenceSet.TEST): 3544, } EVAL_AI_PERSONAL_TOKEN = os.getenv("EVAL_AI_PERSONAL_TOKEN") MAX_EXPORT_ARCHIVE_SIZE_GB = 2.0 logger = logging.getLogger(__file__) @dataclass class CO3DSubmissionRender: """ Contains information about a single predicted image. category: The name of the category of the prediction. subset_name: The dataset subset of the prediction. frame_number: The number of the corresponding ground truth frame. rgbda_frame: The actual render. """ category: str subset_name: str sequence_name: str frame_number: int rgbda_frame: Optional[RGBDAFrame] = None def get_image_path(self, root_dir: str): return os.path.join( CO3DSubmission.get_submission_cache_image_dir( root_dir, self.category, self.subset_name, ), self.get_image_name(), ) def get_hash(self): return (self.category, self.subset_name, self.sequence_name, self.frame_number) def get_image_name(self): return get_submission_image_name( self.category, self.sequence_name, self.frame_number ) class CO3DSubmission: """ Maintains all data needed for a sucessful submission to the CO3D Challenge evaluation server. The class can also locally evaluate predictions if a local copy of the CO3Dv2 dataset is present. See https://eval.ai/web/challenges/challenge-page/1819/overview for more details about the challenge. In order to create a CO3Dv2 submission, evaluate and submit the results, please follow these steps: 1) Start by importing the `CO3DSubmission` class and instantiate a submission run. For example, the following code: ```python from co3d.challenge.co3d_submission import CO3DSubmission output_folder = "./co3d_submission_files" task = CO3DTask.MANY_VIEW sequence_set = CO3DSequenceSet.TEST submission = CO3DSubmission( task=task sequence_set=sequence_set, output_folder=output_folder, dataset_root=dataset_root, ) ``` will instantiate a CO3D submission object `submission` that stores (and optionally evaluates) results of the `manyview` task on the `test` set. All results will be stored in the `output_folder`. Note that a user has to also specify the local root folder of the CO3D dataset in `dataset_root`. 2) Obtain the dictionary of evaluation examples `eval_batches_map` from `submission`. ```python eval_batches_map = submission.get_eval_batches_map() ``` here, `eval_batches_map` is a dictionary of the following form: ``` {(category: str, subset_name: str): eval_batches} # eval_batches_map ``` where `eval_batches` look as follows: ```python [ [ (sequence_name_0: str, frame_number_0: int), (sequence_name_0: str, frame_number_1: int), ... (sequence_name_0: str, frame_number_M_0: int), ], ... [ (sequence_name_N: str, frame_number_0: int), (sequence_name_N: str, frame_number_1: int), ... (sequence_name_N: str, frame_number_M_N: int), ] ] # eval_batches ``` Containing a list of `N` evaluation examples, each consisting of a tuple of `M_i` frames with numbers `frame_number_j` from a given sequence name `sequence_name_i`. Note that the mapping between `frame_number` and `sequence_name` to the CO3D data is stored in the respective `frame_annotations.jgz` and `sequence_annotation.jgz` files in `<dataset_root>/<sequence_category>`. For the <b>Many-view task</b> (`CO3DTask.MANYVIEW`), each evaluation batch has a single (`M_i=1`) frame, which is the target evaluation frame. For the <b>Few-view task</b> (`CO3DTask.FEWVIEW`), each batch has several frames (`M_i>1`), where the first frame is the target frame which should be predicted given the knowledge of the source frames that correspondond oto the 2nd-to-last elements of each batch. 3) Next we iterate over eval_batches, predict new views, and store our predictions with the `submission` object. ```python # iterate over evaluation subsets and categories for (category, subset_name), eval_batches in eval_batches_map.items(): # iterate over all evaluation examples of a given category and subset for eval_batch in eval_batches: # parse the evaluation sequence name and target frame number from eval_batch sequence_name, frame_number = eval_batch[0][:2] # `predict_new_view` is a user-defined function which generates # the test view (corresponding to the first element of the eval batch) image, depth, mask = predict_new_view(eval_batch, ...) # add the render to the submission submission.add_result( category=category, subset_name=subset_name, sequence_name=sequence_name, frame_number=frame_number, image=image, mask=mask, depth=depth, ) ``` 4) Export the submission object to a hdf5 file that can be uploaded to the EvalAI server: ``` submission.export_results() ``` 5) Submit the submission to the EvalAI server: ``` submission.submit_to_eval_ai() ``` """ def __init__( self, task: CO3DTask, sequence_set: CO3DSequenceSet, output_folder: str, dataset_root: Optional[str] = None, eval_ai_personal_token: Optional[str] = EVAL_AI_PERSONAL_TOKEN, export_format: str = "hdf5", # ---- the following are only for internal use, do not modify ---- on_server: bool = False, server_data_folder: Optional[str] = None, max_processing_time: int = -1, ): """ Initialize the CO3DSubmission object. task: The CO3D task=track: `CO3DTask.manyview` for the "Many-view" task. `CO3DTask.fewview` for the "Few-view" task. sequence_set: The challenge sequence set. `CO3DSequenceSet.dev` for the development set. `CO3DSequenceSet.test` for the test set. output_folder: The folder containing all outputs needed for the challenge submission. dataset_root: The path to the root folder of a local copy of the CO3Dv2 dataset. eval_ai_personal_token: A personal eval_ai token. Required for the cli submission with `self.submit_to_eval_ai`. export_format: The format of the exported archive. Currently only "hdf5" is supported. server_data_folder: (Internal-use-only) on_server: (Internal-use-only) max_processing_time: (Internal-use-only) """ self.task = task self.sequence_set = sequence_set self.output_folder = output_folder self.dataset_root = dataset_root self.server_data_folder = server_data_folder self.on_server = on_server self.export_format = export_format self.eval_ai_personal_token = eval_ai_personal_token self.max_processing_time = max_processing_time submission_archive_ext = self.export_format self.submission_archive = os.path.join( output_folder, f"submission_{task.value}_{sequence_set.value}.{submission_archive_ext}" ) self.evaluate_exceptions_file = os.path.join(output_folder, "eval_exceptions.pkl") self.submission_cache = os.path.join(output_folder, "submission_cache") os.makedirs(self.submission_cache, exist_ok=True) self._result_list: List[CO3DSubmissionRender] = [] self._eval_batches_map = None @staticmethod def get_submission_cache_image_dir( output_folder: str, category: str, subset_name: str, ): """ Get the cache folder containing all predictions of a given category frame set. Args: output_folder: The root submission folder. category: CO3D category name (e.g. "apple", "orange") subset_name: CO3D subset name (e.g. "manyview_dev_0", "manyview_test_0") """ return os.path.join(output_folder, category, subset_name) def has_only_single_sequence_subset(self): """ Returns: has_only_single_sequence: Returns `True` if the present version of the CO3Dv2 dataset contains only single-sequence data. Otherwise returns `False`. """ if self.dataset_root is None: raise ValueError("dataset_root has to be specified.") eval_batches_map = load_all_eval_batches(self.dataset_root) if any( "fewview_" in subset_name for category, subset_name in eval_batches_map.keys() ): return False else: return True def add_result( self, category: str, subset_name: str, sequence_name: str, frame_number: int, image: np.ndarray, mask: np.ndarray, depth: np.ndarray, ) -> None: """ Adds a single user-predicted image to the current submission. Args: category: The CO3D category of the image (e.g. "apple", "car"). subset_name: The name of the subset which the image comes from (e.g. "manyview_dev_0", "manyview_test_0"). sequence_name: The name of the sequence which the image comes from. frame_number: The number of the corresponding ground truth frame. image: 3xHxW numpy.ndarray containing the RGB image. The color range is [0-1] and `image` should be of the same size as the corresponding ground truth image. mask: `1xHxW numpy.ndarray containing the binary foreground mask of the rendered object. The values should be in {0, 1} and `mask` should be of the same size as the corresponding ground truth image. depth: `1xHxW numpy.ndarray containing the rendered depth map of the predicted image. The depth map should be of the same size as the corresponding ground truth image. """ res = self._add_result_metadata( category, subset_name, sequence_name, frame_number, ) res_file = res.get_image_path(self.submission_cache) os.makedirs(os.path.dirname(res_file), exist_ok=True) logger.debug(f"Storing submission files {res_file}.") store_rgbda_frame( RGBDAFrame(image=image, mask=mask, depth=depth), res_file, ) def _link_existing_render( self, render_submission_cache: str, render: CO3DSubmissionRender, ) -> None: """ Link a single stored existing render to the current submission. Args: render_submission_cache: The path to the submission cache of the render. render: The linked render. """ res = self._add_result_metadata( render.category, render.subset_name, render.sequence_name, render.frame_number, ) rgbda_file_link_src = res.get_image_path(self.submission_cache) rgbda_file_existing = render.get_image_path(render_submission_cache) os.makedirs(os.path.dirname(rgbda_file_link_src), exist_ok=True) logger.debug( f"Linking submission file {rgbda_file_link_src} to {rgbda_file_existing}." ) link_rgbda_frame_files(rgbda_file_existing, rgbda_file_link_src) def _add_result_metadata( self, category: str, subset_name: str, sequence_name: str, frame_number: int, ) -> CO3DSubmissionRender: res = CO3DSubmissionRender( category=category, subset_name=subset_name, sequence_name=sequence_name, frame_number=frame_number, rgbda_frame=None, ) self._result_list.append(res) # if res.get_hash() in [r.get_hash() for r in self._result_list]: # logger.warning( # f"{str(res.get_hash())} already in the result list! Skipping." # ) # else: # self._result_list.append(res) return res def _get_result_frame_index(self): return {(res.sequence_name, res.frame_number): res for res in self._result_list} def get_eval_batches_map(self, only_target_frame: bool = False): """ Returns a dictionary of evaluation examples of the following form: ``` {(category: str, subset_name: str): eval_batches} # eval_batches_map ``` where `eval_batches` look as follows: ``` [ [ (sequence_name_0: str, frame_number_0: int), (sequence_name_0: str, frame_number_1: int), ... (sequence_name_0: str, frame_number_M: int), ], ... [ (sequence_name_N: str, frame_number_0: int), (sequence_name_N: str, frame_number_1: int), ... (sequence_name_N: str, frame_number_M: int), ] ] # eval_batches ``` Here, `eval_batches' containing a list of `N` evaluation examples, each consisting of a tuple of frames with numbers `frame_number_j` from a given sequence name `sequence_name_i`. Note that the mapping between `frame_number` and `sequence_name` to the CO3D data is stored in the respective `frame_annotations.jgz` and `sequence_annotation.jgz` files in `<dataset_root>/<category>`. Args: only_target_frame: Returns only the first (target evaluation) frame for each eval batch. Returns: eval_batches_map: A dictionary of evaluation examples for each category. """ if self._eval_batches_map is None: self._eval_batches_map = load_all_eval_batches( self.dataset_root, self.task, self.sequence_set, remove_frame_paths=False, only_target_frame=False, ) if only_target_frame: # take only the first (target evaluation) frame for each eval batch eval_batches_map = {} for (category, subset_name), eval_batches in self._eval_batches_map.items(): eval_batches_map[(category, subset_name)] = [ b[0] for b in eval_batches ] else: eval_batches_map = self._eval_batches_map return eval_batches_map def clear_files(self): """ Remove all generated submission files. """ if os.path.isdir(self.output_folder): shutil.rmtree(self.output_folder) if os.path.isdir(self.submission_cache): shutil.rmtree(self.submission_cache) if os.path.isfile(self.submission_archive): os.remove(self.submission_archive) def validate_export_results(self): """ Validate the submission by checking whether all required prediction files are present. """ if self.dataset_root is None or not os.path.isdir(self.dataset_root): raise ValueError( "For validating the results, dataset_root has to be defined" + " and has to point to a valid root folder of the CO3D dataset." ) eval_batches_map = self.get_eval_batches_map(only_target_frame=True) result_frame_index = self._get_result_frame_index() valid = True for (category, subset_name), eval_batches in eval_batches_map.items(): eval_batches_2tuple = [tuple(b[:2]) for b in eval_batches] missing_preds = [ b for b in eval_batches_2tuple if b not in result_frame_index ] if len(missing_preds) > 0: valid = False logger.info( f"{category}/{subset_name} is missing predictions." ) logger.debug(str(missing_preds)) additional_results = [ idx for idx, res in result_frame_index.items() if ( idx not in eval_batches_2tuple and res.category==category and res.subset_name==subset_name ) ] if len(additional_results) > 0: valid = False logger.info( f"{category}/{subset_name} has additional results." ) logger.debug(str(additional_results)) return valid def submit_to_eval_ai( self, challenge_id: int = CO3D_CHALLENGE_ID, ): """ Submit the exported results to the EvalAI server. """ logger.info(f"Submitting {self.submission_archive} to EvalAI.") if not os.path.isfile(self.submission_archive): raise ValueError( f"Submission archive {self.submission_archive} does not exist." " Please run submission.export_results() first." ) try: import evalai except ModuleNotFoundError: raise ValueError( "Cannot find EvalAI cli package." " Please install it with pip: `pip install evalai`" ) if self.eval_ai_personal_token is None or len(self.eval_ai_personal_token)==0: raise ValueError( "For EvalAI submission, the personal token" +" self.eval_ai_personal_token has to be set!" +" Please obtain it from you EvalAI profile page https://eval.ai/web/profile" +" by clicking on 'Get your Auth Token' button." ) # run the evalai imports from click.testing import CliRunner from evalai.challenges import challenge from evalai.add_token import set_token runner = CliRunner() # set the eval ai auth token result = runner.invoke(set_token, [self.eval_ai_personal_token]) if result.exit_code!=0: raise ValueError("Could not set the eval_ai personal token.") # get the challenge phase ID phase_id = CO3D_PHASE_ID[(self.task, self.sequence_set)] # run the submission script os.system( f"evalai challenge {challenge_id} phase {phase_id}" + f" submit --file {self.submission_archive} --large" ) # the following, unfortunately, does not accept keyboard input # result = runner.invoke( # challenge, [ # str(challenge_id), # "phase", str(phase_id), # "submit", # "--file", self.submission_archive, # "--large", # ], # input="/n", # ) # if result.output != 0: # raise ValueError( # "Submission failed:" # + result.output # ) def export_results(self, validate_results: bool = True): """ Export the generated evaluation images for a submission to the EvalAI server. Args: validate_results: If `True`, checks whether the added results are valid before submission. This requires setting `self.dataset_root` to a directory containing a local copy of the CO3D dataset. """ if validate_results: # optionally check that all results are correct valid_results = self.validate_export_results() if not valid_results: logger.warning( "The submission results are invalid." " The evaluation will be incomplete." ) # zip the directory logger.info(f"Archiving {self.submission_cache} to {self.submission_archive}.") if self.export_format=="zip": raise ValueError( f"Please export the data using the 'hdf5' format." f"'zip' is no longer supported." ) # First we need to remove all links to the ground truth directories # that were potentially created during a call to self.evaluate(). self._clear_gt_links() shutil.make_archive( base_name=self.submission_archive.replace(".zip", ""), format="zip", root_dir=self.submission_cache, base_dir=".", ) elif self.export_format=="hdf5": self._export_results_to_hdf5() else: raise ValueError(f"Unknown export format {self.export_format}.") exported_file_size = os.path.getsize(self.submission_archive) / 1e9 if exported_file_size > MAX_EXPORT_ARCHIVE_SIZE_GB: logger.warning( f"The exported result file {self.submission_archive} is bigger" f" than {exported_file_size} GB! Please ensure that your submission file" f" is smaller to prevent submission upload failures." ) # finally export the result logger.warning( f"Exported result file ({exported_file_size:.2f} GB):" f"\n\n ===> {self.submission_archive} <===" f"\n\nYou can now submit the file to the EvalAI server:" f" In order to do so, run submission.submit_to_eval_ai() to directly" f" submit the results file using EvalAI-cli (command line interface)." f" For the latter, make sure to `pip install evalai` and to set" f" the EVAL_AI_PERSONAL_TOKEN env. variable to your EvalAI Auth token." f"\n\nAlternativelly, you can submit the file using the submission webpage:" f" https://eval.ai/web/challenges/challenge-page/{CO3D_CHALLENGE_ID}/submission" f" ('{self.task.value}-{self.sequence_set.value}' track)\n" f"Please note a submission using the 'Upload file' option will fail" f" due the large size of the file. Use the 'File URL' option instead." ) def _clear_gt_links(self): gt_folders = glob.glob(os.path.join(self.submission_cache, "*", "GT_*")) for gt_folder in gt_folders: logger.debug(f"Clearing GT link directory {gt_folder}.") shutil.rmtree(gt_folder) def _export_results_to_hdf5(self): # get all fls in the submission cache all_fls = sorted(glob.glob(os.path.join(self.submission_cache, "*", "*", "*.png"))) result_dict = { os.path.join(*(os.path.normpath(f).split(os.path.sep)[-3:])): f for f in all_fls if not os.path.split(os.path.dirname(f))[-1].startswith("GT_") } export_result_file_dict_to_hdf5(self.submission_archive, result_dict) def link_results_from_existing_output_folder(self, output_folder: str) -> None: """ Link all results stored in a different output folder to the current submission object. Args: output_folder: The output folder containing all results that will be linked to the current submission object. """ other = CO3DSubmission( task=self.task, sequence_set=self.sequence_set, output_folder=output_folder, ) other.fill_results_from_cache() for other_res in other._result_list: self._link_existing_render( os.path.join(output_folder, "submission_cache"), other_res, ) def fill_results_from_cache(self): """ Analyze the results already stored in self.submission_cache and register them with the submission object. """ if not os.path.isdir(self.submission_cache): logger.info(f"{self.submission_cache} folder does not exist.") return categories = os.listdir(self.submission_cache) for category in categories: cat_dir = os.path.join(self.submission_cache, category) if not os.path.isdir(cat_dir): continue subset_names = os.listdir(cat_dir) for subset_name in subset_names: if subset_name.startswith("GT_"): continue submission_dir = os.path.join(cat_dir, subset_name) submission_files = get_result_directory_file_names(submission_dir) logger.info( f"Adding {len(submission_files)} cached results" f" from {category}/{subset_name}" ) for submission_file in submission_files: category_, sequence_name, frame_number = ( _submision_file_to_category_sequence_name_frame_number( submission_file ) ) assert category_==category self._add_result_metadata( category, subset_name, sequence_name, frame_number, ) def _fill_cache_from_hdf5(self, archive_path: str): make_hdf5_file_links(archive_path, self.submission_cache) def _is_timed_out(self): if self.max_processing_time > 0: return (time.time() - self._eval_start_time) > self.max_processing_time else: return False def _get_remaining_submission_time(self): if self.max_processing_time > 0: return self.max_processing_time - (time.time() - self._eval_start_time) else: return float("Inf") def evaluate_archive_file( self, archive_path: str, num_workers: int = 0, print_per_example_results: bool = False, ): """ Extract a file with exported results `archive_path` and evaluate. Args: archive_path: A path to the archive file cantaining exported results. Such archive file can be exported using `self.export_results`. """ os.makedirs(self.submission_cache, exist_ok=True) logger.info(f"Extracting {archive_path} into {self.submission_cache}.") if self.export_format=="zip": shutil.unpack_archive(archive_path, self.submission_cache, "zip") elif self.export_format=="hdf5": self._fill_cache_from_hdf5(archive_path) else: raise ValueError(f"Unknown export format {self.export_format}") logger.info(f"Filling results from cache {self.submission_cache}.") self.fill_results_from_cache() return self.evaluate( num_workers=num_workers, print_per_example_results=print_per_example_results, ) def evaluate( self, num_workers: int = 0, print_per_example_results: bool = False, ): """ Locally evaluate the submission. Please not that this is possible only on the unredacted development set. """ if not self.on_server: if not os.path.isdir(self.dataset_root): raise ValueError("For evaluation dataset_root has to be specified.") if self.sequence_set == CO3DSequenceSet.TEST: raise ValueError("Cannot evaluate on the hidden test set!") else: # server-side evaluation, do not use if ( self.server_data_folder is not None and os.path.isfile(self.server_data_folder) and self.server_data_folder.endswith(".hdf5") ): # this is ok, we allow hdf5 files here logger.info(f"Server folder {self.server_data_folder} is a HDF5 file!") # with open(self.server_data_folder,'rb') as f: # md5hash = hashlib.md5(f.read()).hexdigest() # logger.info(f"HDF5 file hash = {md5hash}") elif ( self.server_data_folder is not None and self.server_data_folder.endswith(".dbm") ): logger.info(f"Server folder {self.server_data_folder} is a DBM file!") for pfix in [".dat", ".dir"]: if not os.path.isfile(self.server_data_folder + pfix): raise ValueError( f"The DBM {pfix} file for {self.server_data_folder} is missing!" ) # ok again dbm is good pass elif ( self.server_data_folder is None or not os.path.isdir(self.server_data_folder) ): raise ValueError( "For evaluation on the server server_data_folder has to be specified." ) self._eval_start_time = time.time() eval_batches_map = self.get_eval_batches_map(only_target_frame=True) # buffers for results and exceptions eval_exceptions = {} eval_results = {} for subset_i, ((category, subset_name), eval_batches) in enumerate( eval_batches_map.items() ): subset_eval_start = time.time() logger.info( f"Evaluating {category}/{subset_name} ({subset_i}/{len(eval_batches_map)})." ) if self.max_processing_time > 0: logger.info( f"Remaining submission time: {self._get_remaining_submission_time():1.2f}." ) pred_category_subset_dir = CO3DSubmission.get_submission_cache_image_dir( self.submission_cache, category, subset_name, ) # The case with no predicted results, or timed-out eval if ( (not os.path.isdir(pred_category_subset_dir)) or (len(os.listdir(pred_category_subset_dir))==0) or self._is_timed_out() ): if self._is_timed_out(): logger.warning(f"Evaluation timed-out for {category}/{subset_name}!") else: logger.info(f"No evaluation predictions for {category}/{subset_name}") eval_results[(category, subset_name)] = (None, None) eval_exceptions[(category, subset_name)] = None continue # Make a temporary GT folder with symlinks to GT data based on eval batches gt_category_subset_dir = CO3DSubmission.get_submission_cache_image_dir( self.submission_cache, category, "GT_" + subset_name, ) for b in eval_batches: if self.on_server: _link_eval_batch_data_from_server_db_to_gt_tempdir( self.server_data_folder, gt_category_subset_dir, category, b, ) else: _link_eval_batch_data_from_dataset_root_to_gt_tempdir( self.dataset_root, gt_category_subset_dir, category, b, ) # Evaluate and catch any exceptions. try: eval_results[(category, subset_name)] = evaluate_file_folders( pred_category_subset_dir, gt_category_subset_dir, num_workers=num_workers, remaining_time=self._get_remaining_submission_time(), print_per_example_results=print_per_example_results, ) except Exception as exc: logger.warning(f"Evaluation of {category}/{subset_name} failed!", exc_info=True) eval_results[(category, subset_name)] = (None, None) eval_exceptions[(category, subset_name)] = exc if eval_results[(category, subset_name)][0] is not None: # Print the current subset result eval_result_string = " ".join([ f"{k}={v:.3f}" for k, v in eval_results[(category, subset_name)][0].items() ]) logger.info(f"{category}/{subset_name} result: {eval_result_string}") subset_eval_time = time.time() - subset_eval_start logger.info(f"Evaluated {category}/{subset_name} in {subset_eval_time:.1f} sec") # fill in missing eval results with blank prediction results for (category, subset_name), (eval_result, _) in eval_results.items(): if eval_result is None: logger.info( f"Replacing metrics in {category}/{subset_name}" +" with a blank prediction result." ) eval_result_ = {} for m in EVAL_METRIC_NAMES: blank_render_metric_val = BLANK_PREDICTION_RESULTS[ (self.task, self.sequence_set) ][(category, subset_name)][m] # eval_result_[m] = _get_missing_metric_val(m) eval_result_[m] = blank_render_metric_val eval_results[(category, subset_name)] = eval_result_, None # Get the average results. average_results = {} for m in EVAL_METRIC_NAMES: average_results[m] = sum( eval_result[m] for eval_result, _ in eval_results.values() ) / len(eval_results) eval_results[("MEAN", "-")] = average_results, None # Generate a nice table and print. tab_rows = [] for (category, subset_name), (eval_result, _) in eval_results.items(): tab_row = [category, subset_name] tab_row.extend([eval_result[k] for k in EVAL_METRIC_NAMES]) tab_rows.append(tab_row) table_str = tabulate( tab_rows, headers=["Category", "Subset name", *EVAL_METRIC_NAMES] ) logger.info("\n"+table_str) # Store the human-readable table table_txt_file = os.path.join(self.output_folder, "results.csv") logger.info(f"Dumping the results table to {table_txt_file}.") header=["Category", "Subset name", *EVAL_METRIC_NAMES] with open(table_txt_file, 'w', encoding='UTF8', newline='') as f: writer = csv.writer(f) writer.writerow(header) writer.writerows(tab_rows) # Store the recorded exceptions in the submissions folder. with open(self.evaluate_exceptions_file, "wb") as f: pickle.dump(eval_exceptions, f) return eval_results def _get_missing_metric_val(m: str): return EVAL_METRIC_MISSING_VALUE[m] def get_submission_image_name(category: str, sequence_name: str, frame_number: str): return f"{category}_{sequence_name}_{frame_number}" def _link_eval_batch_data_from_dataset_root_to_gt_tempdir( dataset_root: str, temp_dir: str, category: str, frame_index: Tuple[str, int, str], ): sequence_name, frame_number, gt_image_path = frame_index image_name = get_submission_image_name(category, sequence_name, frame_number) os.makedirs(temp_dir, exist_ok=True) for data_type in ["image", "depth", "mask", "depth_mask"]: gt_data_path = gt_image_path.replace("/images/", f"/{data_type}s/") if data_type=="depth": gt_data_path = gt_data_path.replace(".jpg", ".jpg.geometric.png") elif data_type in ("mask", "depth_mask"): gt_data_path = gt_data_path.replace(".jpg", ".png") tgt_image_name = f"{image_name}_{data_type}.png" src = os.path.join(dataset_root, gt_data_path) dst = os.path.join(temp_dir, tgt_image_name) logger.debug(f"{src} <--- {dst}") _symlink_force(src, dst) def _link_eval_batch_data_from_server_db_to_gt_tempdir( server_folder: str, temp_dir: str, category: str, frame_index: Tuple[str, int, str], ): sequence_name, frame_number, _ = frame_index image_name = get_submission_image_name(category, sequence_name, frame_number) os.makedirs(temp_dir, exist_ok=True) for data_type in ["image", "depth", "mask", "depth_mask"]: image_name_postfixed = image_name + f"_{data_type}.png" dst = os.path.join(temp_dir, image_name_postfixed) if server_folder.endswith(".hdf5") or server_folder.endswith(".dbm"): # the folder is in fact an hdf5/dbm file # so we just make a symlink pointing from the `dst` file # to the hdf5/dbm database db_file = server_folder logger.debug(f"{dst}<---HDF5/DBM file path: {server_folder}") link_file_to_db_file(db_file, dst) else: src = os.path.join(server_folder, image_name_postfixed) logger.debug(f"{src}<---{dst}") _symlink_force(src, dst) def _submision_file_to_category_sequence_name_frame_number(file: str): toks = os.path.split(file)[-1].split("_") category = toks[0] frame_number = int(toks[-1]) sequence_name = "_".join(toks[1:-1]) return category, sequence_name, frame_number def _symlink_force(target, link_name): try: os.symlink(target, link_name) except OSError as e: if e.errno == errno.EEXIST: os.remove(link_name) os.symlink(target, link_name) else: raise e
co3d-main
co3d/challenge/co3d_submission.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import os import json import logging import numpy as np import dbm import functools import h5py from io import BytesIO from PIL import Image from typing import Optional, Callable, Dict, Union from tqdm import tqdm from .data_types import CO3DSequenceSet, CO3DTask, RGBDAFrame logger = logging.getLogger(__file__) def store_rgbda_frame(rgbda_frame: RGBDAFrame, fl: str): assert np.isfinite(rgbda_frame.depth).all() store_mask(rgbda_frame.mask[0], fl + "_mask.png") store_depth(rgbda_frame.depth[0], fl + "_depth.png") store_image(rgbda_frame.image, fl + "_image.png") if rgbda_frame.depth_mask is not None: store_1bit_png_mask(rgbda_frame.depth_mask[0], fl + "depth_mask.png") def link_rgbda_frame_files(fl_existing: str, fl_src_link: str): for pfix in ["_mask.png", "_depth.png", "_image.png", "_depth_mask.png"]: link_tgt = fl_existing+pfix link_src = fl_src_link+pfix if os.path.islink(link_src): os.remove(link_src) elif os.path.isfile(link_src): raise ValueError(f"Link source {link_src} is an actual file (not a link).") if not os.path.isfile(link_tgt): if pfix=="_depth_mask.png": pass else: raise ValueError(f"Target file {link_tgt} does not exist!") else: if os.path.islink(link_src): os.remove(link_src) os.symlink(link_tgt, link_src) def load_rgbda_frame(fl: str, check_for_depth_mask: bool = False) -> RGBDAFrame: f = RGBDAFrame( mask=load_mask(fl + "_mask.png")[None], depth=load_depth(fl + "_depth.png")[None], image=load_image(fl + "_image.png"), ) if not np.isfinite(f.depth).all(): f.depth[~np.isfinite(f.depth)] = 0.0 # chuck the infs in depth if check_for_depth_mask: depth_mask_path = fl + "_depth_mask.png" if os.path.isfile(depth_mask_path): f.depth_mask = load_1bit_png_mask(depth_mask_path)[None] return f def store_1bit_png_mask(mask: np.ndarray, fl: str): """ mask: HxW """ Image.fromarray((mask*255).astype('u1'), mode='L').convert('1').save(fl, "PNG") def load_1bit_png_mask(file: str) -> np.ndarray: with Image.open(_handle_db_file(file)) as pil_im: mask = (np.array(pil_im.convert("L")) > 0.0).astype(np.float32) return mask def load_mask(fl: str): return np.array(Image.open(_handle_db_file(fl))).astype(np.float32) / 255.0 def store_mask(mask: np.ndarray, fl: str, mode: str = "L"): """ mask: HxW """ assert mask.ndim == 2 if mode == "L": mpil = Image.fromarray((mask * 255.0).astype(np.uint8), mode="L").convert("L") elif mode == "I;16": mpil = Image.fromarray((mask * 255.0).astype(np.uint8), mode="I;16").convert( "I;16" ) else: raise ValueError(mode) mpil.save(fl, "PNG") def load_depth(fl: str): depth_pil = Image.open(_handle_db_file(fl)) depth = ( np.frombuffer(np.array(depth_pil, dtype=np.uint16), dtype=np.float16) .astype(np.float32) .reshape((depth_pil.size[1], depth_pil.size[0])) ) assert depth.ndim == 2 return depth def store_depth(depth: np.ndarray, fl: str): assert depth.ndim == 2 depth_uint16 = np.frombuffer(depth.astype(np.float16), dtype=np.uint16).reshape( depth.shape ) Image.fromarray(depth_uint16).save(fl) def load_image(fl: str): return np.array(Image.open(_handle_db_file(fl))).astype(np.float32).transpose(2, 0, 1) / 255.0 def store_image(image: np.ndarray, fl: str): assert image.ndim == 3 Image.fromarray((image.transpose(1, 2, 0) * 255.0).astype(np.uint8)).save(fl) def _handle_db_file(fl_or_db_link: str): """ In case `fl_or_db_link` is a symlink pointing at an .hdf5 or .dbm database file, this function returns a BytesIO object yielding the underlying file's binary data. Otherwise, the function simply returns `fl_or_db_link`. """ fl_or_bytes_io = fl_or_db_link for db_format, data_load_fun in ( (".hdf5", _get_image_data_from_h5), (".dbm", _get_image_data_from_dbm), ): fl_or_bytes_io = _maybe_get_db_image_data_bytes_io_from_file( fl_or_db_link, db_format, data_load_fun, ) if not isinstance(fl_or_bytes_io, str): # logger.info(f"{fl} is {db_format}!") break return fl_or_bytes_io def _maybe_get_db_image_data_bytes_io_from_file( fl_or_db_link: str, db_format: str, data_load_fun: Callable, ) -> Union[str, BytesIO]: """ In case `fl_or_db_link` is a symlink pointing at a database file `db_path` with of type `db_format`, this function calls `data_load_fun(fl_or_db_link, db_path)` to retrieve a BytesIO object yielding the `fl`s binary data. Otherwise, the function simply returns `fl_or_db_link`. """ if os.path.islink(fl_or_db_link): realpath = os.readlink(fl_or_db_link) if not realpath.endswith(db_format): return fl_or_db_link db_path = fl_or_db_link else: return fl_or_db_link return data_load_fun(realpath, db_path) @functools.lru_cache(maxsize=1) def _cached_dbm_open_for_read(dbmpath: str): db = dbm.open(dbmpath, "r") return db def _get_image_data_from_dbm(dbmpath: str, fl: str): flname = os.path.split(fl)[-1] db = _cached_dbm_open_for_read(dbmpath) # with dbm.open(dbmpath, "r") as db: bin_data = db[flname] return BytesIO(bin_data) def _get_image_data_from_h5(h5path: str, fl: str): with h5py.File(h5path, "r") as f: flname = os.path.split(fl)[-1] file_index = f["binary_data"].attrs if flname not in file_index: raise IndexError(f"{flname} not in {h5path}!") idx = file_index[flname] bin_data = f["binary_data"][idx] return BytesIO(bin_data) def get_category_to_subset_name_list( dataset_root: str, task: Optional[CO3DTask] = None, sequence_set: Optional[CO3DSequenceSet] = None, ): """ Get the mapping from categories to existing subset names. Args: dataset_root: The dataset root folder. task: CO3D Challenge task. sequence_set: CO3D Challenge sequence_set. Returns: category_to_subset_name_list: A dict of the following form: { category: [subset_name_0, subset_name_1, ...], ... } """ json_file = os.path.join(dataset_root, "category_to_subset_name_list.json") with open(json_file, "r") as f: category_to_subset_name_list = json.load(f) # filter per-category subset lists by the selected task if task is not None: category_to_subset_name_list = { category: [ subset_name for subset_name in subset_name_list if subset_name.startswith(task.value) ] for category, subset_name_list in category_to_subset_name_list.items() } # filter per-category subset lists by the selected sequence set if sequence_set is not None: category_to_subset_name_list = { category: [ subset_name for subset_name in subset_name_list if f"_{sequence_set.value}" in subset_name ] for category, subset_name_list in category_to_subset_name_list.items() } # remove the categories with completely empty subset_name_lists category_to_subset_name_list = { c: l for c, l in category_to_subset_name_list.items() if len(l) > 0 } # sort by category category_to_subset_name_list = dict(sorted(category_to_subset_name_list.items())) return category_to_subset_name_list def load_all_eval_batches( dataset_root: str, task: Optional[CO3DTask] = None, sequence_set: Optional[CO3DSequenceSet] = None, remove_frame_paths: bool = False, only_target_frame: bool = True, ): """ Load eval batches files stored in dataset_root into a dictionary: { (category, subset_name): eval_batches_index, ... } Args: dataset_root: The root of the CO3DV2 dataset. task: CO3D challenge task. sequence_set: CO3D challenge sequence set. remove_frame_paths: If `True`, removes the paths to frames from the loaded dataset index. only_target_frame: Loads only the first (evaluation) frame from each eval batch. Returns: eval_batches_dict: Output dictionary. """ category_to_subset_name_list = get_category_to_subset_name_list( dataset_root, task=task, sequence_set=sequence_set, ) eval_batches_dict = {} for category, subset_name_list in category_to_subset_name_list.items(): for subset_name in subset_name_list: # load the subset eval batches eval_batches_dict[(category, subset_name)] = _load_eval_batches_file( dataset_root, category, subset_name, remove_frame_paths=remove_frame_paths, only_target_frame=only_target_frame, ) return eval_batches_dict def _load_eval_batches_file( dataset_root: str, category: str, subset_name: str, remove_frame_paths: bool = True, only_target_frame: bool = True, ): eval_batches_fl = os.path.join( dataset_root, category, "eval_batches", f"eval_batches_{subset_name}.json", ) with open(eval_batches_fl, "r") as f: eval_batches = json.load(f) if only_target_frame: eval_batches = [ b[0] for b in eval_batches ] # take only the first (target evaluation) frame if remove_frame_paths: eval_batches = [b[:2] for b in eval_batches] return eval_batches def export_result_file_dict_to_hdf5(h5path: str, filedict: Dict[str, str]): """ Export the result files to an hdf5 file that will be sent to the EvalAI server: Args: h5path: Target hdf5 file path. filedict: Dict in form {relative_file_path: absolute_file_path} """ logger.info(f"Exporting {len(filedict)} files to HDF5 file {h5path}.") if len(filedict)==0: raise ValueError("No data to export!") assert h5path.endswith(".hdf5") if os.path.isfile(h5path): os.remove(h5path) os.makedirs(os.path.dirname(h5path), exist_ok=True) with h5py.File(h5path, "w", libver='latest') as fh5: dt = h5py.special_dtype(vlen=np.dtype('uint8')) max_path_len = max(len(p) for p in filedict.keys()) dset = fh5.create_dataset( 'binary_data', (len(filedict), ), dtype=dt, compression="gzip" ) filepath_dset = fh5.create_dataset( 'filepaths', (len(filedict), ), dtype=h5py.string_dtype('utf-8', max_path_len), # dtype=np.dtype(f'U{max_path_len}'), compression="gzip" ) index = {} for idx, (rel_path, store_file) in enumerate(tqdm(filedict.items(), total=len(filedict))): _store_binary_file_data_to_hd5_dataset(dset, store_file, idx) flname = os.path.split(rel_path)[-1] assert flname not in index, "Duplicate filenames!" index[flname] = idx filepath_dset[idx] = rel_path logger.info(f"Updating index of {h5path}.") dset.attrs.update(index) def make_hdf5_file_links(h5path: str, root: str): """ Link all files whose binary data are stored in an HDF5 file `h5path` to files under the root folder. Args: h5path: HDF5 file. root: The root folder for exporting symlinks. """ logger.info(f"Making file links in {root} to DB data in {h5path}.") assert h5path.endswith(".hdf5") with h5py.File(h5path, "r") as fh5: filepaths = [f.decode("UTF-8") for f in np.array(fh5["filepaths"])] file_name_to_tgt_file = { os.path.split(p)[-1]: os.path.join(root, p) for p in filepaths } dset = fh5["binary_data"] index = dset.attrs all_dirs = set(os.path.dirname(p) for p in file_name_to_tgt_file.values()) for dir_ in all_dirs: os.makedirs(dir_, exist_ok=True) for flname, _ in tqdm(index.items(), total=len(index)): tgt_file = file_name_to_tgt_file[flname] link_file_to_db_file(h5path, tgt_file) def link_file_to_db_file(db_file: str, file: str, overwrite: bool = True): """ Make a symlink file->db_file """ if db_file.endswith(".hdf5"): token = "__HDF5__:" elif db_file.endswith(".dbm"): token = "__DBM__:" else: raise ValueError(db_file) if overwrite and (os.path.isfile(file) or os.path.islink(file)): os.remove(file) os.symlink(db_file, file) # symlinks are cleaner ... do not use this anymore: # with open(file, "w") as f: # f.write(token+os.path.normpath(os.path.abspath(db_file))) def _store_binary_file_data_to_hd5_dataset(dset, fl: str, idx: int): with open(fl, "rb") as fin: binary_data = fin.read() dset[idx] = np.fromstring(binary_data, dtype='uint8')
co3d-main
co3d/challenge/io.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree.
co3d-main
co3d/challenge/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import math import numpy as np import logging import time from typing import Optional from typing import Tuple from .data_types import RGBDAFrame EVAL_METRIC_NAMES = ["psnr_masked", "psnr_fg", "psnr_full_image", "depth_abs_fg", "iou"] EVAL_METRIC_MISSING_VALUE = { "psnr_masked": 0.0, "psnr_fg": 0.0, "psnr_full_image": 0.0, "depth_abs_fg": 100000.0, "iou": 0.0, } logger = logging.getLogger(__file__) def eval_one( pred: RGBDAFrame, target: RGBDAFrame, ): return eval_one_rgbda( pred.image, pred.depth, pred.mask, target.image, target.depth, target.mask, gt_depth_mask=target.depth_mask, ) def eval_one_rgbda( image_rgb: np.ndarray, depth_map: np.ndarray, fg_mask: np.ndarray, gt_image_rgb: np.ndarray, gt_depth_map: np.ndarray, gt_fg_mask: np.ndarray, gt_depth_mask: Optional[np.ndarray] = None, crop_around_fg_mask: bool = False, gt_fg_mask_threshold: Optional[float] = 0.5, ): """ Args: image_rgb: 3xHxW, black background depth_map: 1xHxW fg_mask: 1xHxW in {0, 1} gt_image_rgb: 3xHxW, black background gt_depth_map: 1xHxW gt_fg_mask: 1xHxW in {0, 1} gt_depth_mask: 1xHxW in {0, 1} Returns: eval_result: a dictionary {metric_name: str: metric_value: float} """ # with Timer("start"): for xn, x in zip( ("image_rgb", "fg_mask", "depth_map"), (image_rgb, fg_mask, depth_map), ): if not np.isfinite(x).all(): raise ValueError(f"Non-finite element in {xn}") if gt_fg_mask_threshold is not None: # threshold the gt mask if note done before gt_fg_mask = (gt_fg_mask > gt_fg_mask_threshold).astype(np.float32) # chuck non-finite depth gt_depth_map[~np.isfinite(gt_depth_map)] = 0 if gt_depth_mask is not None: gt_depth_map = gt_depth_map * gt_depth_mask if crop_around_fg_mask: raise NotImplementedError("") fg_mask_box_xxyy = _get_bbox_from_mask(gt_fg_mask[0]) [ image_rgb, depth_map, fg_mask, gt_image_rgb, gt_depth_map, gt_fg_mask, gt_depth_mask, ] = [ x[ :, fg_mask_box_xxyy[2]:fg_mask_box_xxyy[3], fg_mask_box_xxyy[0]:fg_mask_box_xxyy[1], ] for x in [ image_rgb, depth_map, fg_mask, gt_image_rgb, gt_depth_map, gt_fg_mask, gt_depth_mask, ] ] gt_image_rgb_masked = gt_image_rgb * gt_fg_mask # with Timer("psnrs"): psnr_masked = calc_psnr(image_rgb, gt_image_rgb_masked) psnr_full_image = calc_psnr(image_rgb, gt_image_rgb) psnr_fg = calc_psnr(image_rgb, gt_image_rgb_masked, mask=gt_fg_mask) # with Timer("depth"): mse_depth, abs_depth, aux_depth = calc_mse_abs_depth( depth_map, gt_depth_map, gt_fg_mask, crop=5, ) # with Timer("iou"): iou = calc_iou(fg_mask, gt_fg_mask) return { "psnr_masked": psnr_masked, "psnr_fg": psnr_fg, "psnr_full_image": psnr_full_image, "depth_abs_fg": abs_depth, "iou": iou, } def calc_psnr( x: np.ndarray, y: np.ndarray, mask: Optional[np.ndarray] = None, ) -> np.float32: """ Calculates the Peak-signal-to-noise ratio between tensors `x` and `y`. """ mse = calc_mse(x, y, mask=mask) psnr = np.log10(np.clip(mse, 1e-10, None)) * (-10.0) return psnr def calc_mse( x: np.ndarray, y: np.ndarray, mask: Optional[np.ndarray] = None, ) -> np.float32: """ Calculates the mean square error between tensors `x` and `y`. """ if mask is None: return np.mean((x - y) ** 2) else: mask_expand = np.broadcast_to(mask, x.shape) return (((x - y) ** 2) * mask_expand).sum() / np.clip( mask_expand.sum(), 1e-5, None ) def rgb_l1( pred: np.ndarray, target: np.ndarray, mask: Optional[np.ndarray] = None ) -> np.float32: """ Calculates the mean absolute error between the predicted colors `pred` and ground truth colors `target`. """ if mask is None: mask = np.ones_like(pred[:1]) return (np.abs(pred - target) * mask).sum() / np.clip(mask.sum(), 1, None) def calc_mse_abs_depth( pred: np.ndarray, target: np.ndarray, mask: np.ndarray, crop: int, get_best_scale: bool = True, best_scale_clamp_thr: float = 1e-4, ) -> np.float32: # crop if crop > 0: target = target[:, crop:-crop, crop:-crop] pred = pred[:, crop:-crop, crop:-crop] mask = mask[:, crop:-crop, crop:-crop] target = target * mask dmask = (target > 0.0).astype(np.float32) dmask_mass = np.clip(dmask.sum(), 1e-4, None) scale_l1 = scale_l2 = None for l_norm in ["l1", "l2"]: if get_best_scale: # mult preds by a scalar "scale_best" # s.t. we get best possible mse error _optimal_scale = { "l1": _optimal_l1_scale, "l2": _optimal_l2_scale, }[l_norm] scale_best = _optimal_scale( pred * dmask, target * dmask, best_scale_clamp_thr ) pred_scaled = pred * scale_best if l_norm=="l1": scale_l1 = scale_best elif l_norm=="l2": scale_l2 = scale_best else: raise ValueError(l_norm) else: pred_scaled = pred df = target - pred_scaled if l_norm=="l1": abs_depth = (dmask * np.abs(df)).sum() / dmask_mass elif l_norm=="l2": mse_depth = (dmask * (df ** 2)).sum() / dmask_mass else: raise ValueError(l_norm) return mse_depth, abs_depth, {"scale_l1": scale_l1, "scale_l2": scale_l2} def _optimal_l2_scale(pred, gt, clamp_thr): """ Return the scale s that minimizes ||gt - s pred||^2. The inverse scale is clamped to [eps, Inf] """ xy = pred * gt xx = pred * pred scale_best = xy.mean() / np.clip(xx.mean(), clamp_thr, None) return scale_best def _optimal_l1_scale(pred, gt, clamp_thr): """ Return the scale s that minimizes |gt - s pred|_1. The scale is clamped in [-max_scale, max_scale]. This function operates along the specified axis. """ max_scale = 1 / clamp_thr x, y = pred.reshape(-1), gt.reshape(-1) pivots = y / np.clip(x, 1e-10, None) perm = np.argsort(pivots) pivots = pivots[perm] x_sorted = x[perm] score = -np.abs(x).sum() + 2 * np.cumsum(np.abs(x_sorted)) # find the index of first positive score i = (score <= 0).astype(np.float32).sum().astype(np.int64) # i = torch.unsqueeze(i, dim) if i >= len(pivots.reshape(-1)): # logger.warning("Scale outside of bounds!") return 1.0 else: scale = pivots[i] scale = np.clip(scale, -max_scale, max_scale) # scale = torch.take_along_dim(pivots, i, dim=dim) # scale = torch.clip(scale, min=-max_scale, max=max_scale) # outshape = [s for si, s in enumerate(y.shape) if si != dim] # scale = scale.view(outshape) return float(scale) def calc_iou( predict: np.ndarray, target: np.ndarray, mask: Optional[np.ndarray] = None, threshold: Optional[float] = 0.5, ) -> np.float32: """ This is a great loss because it emphasizes on the active regions of the predict and targets """ if threshold is not None: predict = (predict >= threshold).astype(np.float32) target = (target >= threshold).astype(np.float32) if mask is not None: predict = predict * mask target = target * mask intersect = (predict * target).sum() union = (predict + target - predict * target).sum() + 1e-4 return intersect / union def _get_bbox_from_mask( mask: np.ndarray, box_crop_context: float = 0.1, thr: float = 0.5, decrease_quant: float = 0.05, ) -> Tuple[int, int, int, int]: # bbox in xywh masks_for_box = np.zeros_like(mask) while masks_for_box.sum() <= 1.0: masks_for_box = (mask > thr).astype(np.float32) thr -= decrease_quant assert thr > 0.0 x0, x1 = _get_1d_bounds(masks_for_box.sum(axis=-2)) y0, y1 = _get_1d_bounds(masks_for_box.sum(axis=-1)) h, w = y1 - y0 + 1, x1 - x0 + 1 if box_crop_context > 0.0: c = box_crop_context x0 -= w * c / 2 y0 -= h * c / 2 h += h * c w += w * c x1 = x0 + w y1 = y0 + h x0, x1 = [np.clip(x_, 0, mask.shape[1]) for x_ in [x0, x1]] y0, y1 = [np.clip(y_, 0, mask.shape[0]) for y_ in [y0, y1]] return np.round(np.array(x0, x1, y0, y1)).astype(int).tolist() def _get_1d_bounds(arr: np.ndarray) -> Tuple[int, int]: nz = np.flatnonzero(arr) return nz[0], nz[-1] class Timer: def __init__(self, name=None): self.name = name if name is not None else "timer" def __enter__(self): self.start = time.time() def __exit__(self, exc_type, exc_value, traceback): logger.info(f"{self.name} - {time.time() - self.start:.3e} sec")
co3d-main
co3d/challenge/metric_utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from enum import Enum import numpy as np from dataclasses import dataclass from typing import Optional @dataclass class RGBDAFrame: image: np.ndarray mask: np.ndarray depth: np.ndarray depth_mask: Optional[np.ndarray] = None class CO3DTask(Enum): MANY_VIEW = "manyview" FEW_VIEW = "fewview" class CO3DSequenceSet(Enum): TRAIN = "train" DEV = "dev" TEST = "test"
co3d-main
co3d/challenge/data_types.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import os import zipfile import glob import logging import multiprocessing import numpy as np import time from tqdm import tqdm from collections import defaultdict from typing import List, Dict, Tuple from .data_types import CO3DSequenceSet, CO3DTask, RGBDAFrame from .metric_utils import eval_one, EVAL_METRIC_NAMES, Timer from .io import load_rgbda_frame logger = logging.getLogger(__file__) def get_co3d_task_from_subset_name(subset_name: str) -> CO3DTask: if subset_name.startswith("manyview"): return CO3DTask.MANY_VIEW elif subset_name.startswith("fewview"): return CO3DTask.FEW_VIEW else: raise ValueError(f"Invalid subset name {subset_name}!") def get_co3d_sequence_set_from_subset_name(subset_name: str) -> CO3DSequenceSet: return CO3DSequenceSet(subset_name.split("_")[1]) def unzip(file_path: str, output_dir: str): with zipfile.ZipFile(file_path, "r") as zip_ref: zip_ref.extractall(output_dir) def check_user_submission_file_paths( ground_truth_files: Dict[str, str], user_submission_files: Dict[str, str], ): missing_gt_examples = [ gt_example_name for gt_example_name in ground_truth_files if gt_example_name not in user_submission_files ] if len(missing_gt_examples) > 0: raise ValueError( f"There are missing evaluation examples: {str(missing_gt_examples)}" ) additional_user_examples = [ user_example for user_example in user_submission_files if user_example not in ground_truth_files ] if len(additional_user_examples) > 0: raise ValueError( f"Unexpected submitted evaluation examples {str(additional_user_examples)}" ) def get_data_type_postfix(data_type: str): assert data_type in ["image", "mask", "depth", "depth_mask"] return f"_{data_type}.png" def get_result_directory_file_names( result_dir: str, has_depth_masks: bool = False, ) -> Dict[str, str]: """ Result directory structure: <test_example_name>-image.png <test_example_name>-mask.png <test_example_name>-depth.png ... Returns: result_files: dict {test_example_name_i: root_path_i} """ result_type_files = {} for result_type in ("image", "mask", "depth"): postfix = get_data_type_postfix(result_type) matching_files = sorted(glob.glob(os.path.join(result_dir, f"*{postfix}"))) if has_depth_masks and result_type=="mask": matching_files = [ f for f in matching_files if not f.endswith(get_data_type_postfix("depth_mask")) ] result_type_files[result_type] = { os.path.split(f)[-1][: -len(postfix)]: f for f in matching_files } example_names = sorted( list( set( [ n for t in ("image", "mask", "depth") for n in result_type_files[t].keys() ] ) ) ) missing_examples = defaultdict(list) for example_name in example_names: for result_type in ("image", "mask", "depth"): if example_name not in result_type_files[result_type]: missing_examples[example_name].append(result_type) if len(missing_examples) > 0: msg = "\n".join( [f" {k} missing {str(v)}" for k, v in missing_examples.items()] ) raise ValueError( f"Some evaluation examples in {result_dir} are incomplete:\n" + msg ) result_files = { example_name: result_type_files["image"][example_name][: -len("_image.png")] for example_name in example_names } return result_files def _evaluate_pred_gt_pair(args: Tuple[str, str, str, float, bool]): gt_example, gt_file, pred_file, max_time, print_status = args cur_time = time.time() if cur_time > max_time: raise ValueError( " @@@@@@@@@@@@@@@@@@@@@\n" " Evaluation timed out!\n" " @@@@@@@@@@@@@@@@@@@@@" ) # with Timer("io"): gt_rgbda = load_rgbda_frame(gt_file, check_for_depth_mask=True) pred_rgbda = load_rgbda_frame(pred_file) # with Timer("check"): check_same_rgbda_sizes(gt_rgbda, pred_rgbda, gt_example) # with Timer("eval"): eval_result_one = eval_one(pred_rgbda, gt_rgbda) for k, v in eval_result_one.items(): if not np.isfinite(v): raise ValueError(f"{gt_example} - {k} is does not have a finite value.") if print_status: msg = "; ".join([f"{k}={v:.3f}" for k, v in eval_result_one.items()]) sz = str(list(gt_rgbda.image.shape[-2:])).replace(" ", "") logger.info( f"eval_one({gt_example}-[{sz}]): {msg}; {max_time-cur_time:.1f} sec left" ) return eval_result_one def evaluate_file_folders( pred_folder: str, gt_folder: str, num_workers: int = 0, remaining_time: float = float("Inf"), print_per_example_results: bool = True, ): # determine how much time do we have for the evaluation max_time = time.time() + remaining_time user_submission_files = get_result_directory_file_names(pred_folder) ground_truth_files = get_result_directory_file_names(gt_folder, has_depth_masks=True) logger.info(f"Evaluating folders: prediction={pred_folder}; gt={gt_folder}") check_user_submission_file_paths( ground_truth_files, user_submission_files, ) # At this point we are sure that ground_truth_files contain the same # examples as user_submission_files. if num_workers <= 0: # Iterate over the gt examples: per_example_results = [ _evaluate_pred_gt_pair( ( gt_example, ground_truth_files[gt_example], user_submission_files[gt_example], max_time, print_per_example_results, ) ) for gt_example in tqdm(list(ground_truth_files)) ] # gt_rgbda = load_rgbda_frame(ground_truth_files[gt_example], check_for_depth_mask=True) # pred_rgbda = load_rgbda_frame(user_submission_files[gt_example]) # check_same_rgbda_sizes(gt_rgbda, pred_rgbda, gt_example) # per_example_results.append(eval_one(pred_rgbda, gt_rgbda)) else: # parallel processing arg_list = [ ( gt_example, ground_truth_files[gt_example], user_submission_files[gt_example], max_time, print_per_example_results, ) for gt_example in list(ground_truth_files) ] pool = multiprocessing.Pool(num_workers) per_example_results = [ result for result in tqdm( pool.imap(_evaluate_pred_gt_pair, arg_list), total=len(arg_list), ) ] pool.terminate() result = { metric: (sum(r[metric] for r in per_example_results) / len(per_example_results)) for metric in EVAL_METRIC_NAMES } return result, per_example_results def check_same_rgbda_sizes(gt: RGBDAFrame, pred: RGBDAFrame, example_name: str): for data_type in ("image", "mask", "depth"): gt_size, pred_size = [getattr(x, data_type).shape for x in [gt, pred]] if gt_size != pred_size: raise ValueError( f"{example_name}'s size does not match the ground truth." f"{data_type} size: {str(gt_size)} != {str(pred_size)}" " (ground-truth vs. prediction)." ) return True def get_annotations_folder(phase_codename: str): assert phase_codename in {"dev", "test"} return os.path.join("annotations", phase_codename)
co3d-main
co3d/challenge/utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from io import StringIO import os import csv from typing import List, Any from .data_types import CO3DTask, CO3DSequenceSet BLANK_PREDICTION_RESULTS = {} def _read_result_csv(s: str): # with open(fl, "r") as f: f = StringIO(s) csvreader = csv.reader(f) rows = [row for row in csvreader] rows = rows[1:] header = rows[0] data = rows[1:-1] def _getcol(col_name: str, row: List[Any]) -> Any: c = row[header.index(col_name)] try: return float(c) except: return c parsed = { (_getcol("Category", r), _getcol("Subset name", r)): { k: _getcol(k, r) for k in header } for r in data } return parsed CSVs = { "fewview_dev": """ Category,Subset name,psnr_masked,psnr_fg,psnr_full_image,depth_abs_fg,iou apple,fewview_dev,18.40938866633708,6.884780900276403,5.732459292886711,0.48950375965076004,0.0 backpack,fewview_dev,18.375179837644755,11.884768822089297,5.492699127831022,0.580444590643848,0.0 ball,fewview_dev,15.65596825167019,5.697924649467918,5.391241119316918,0.43991856992712286,0.0 banana,fewview_dev,18.461971791362227,6.118058719441003,5.8697287026999625,0.5312080518960041,0.0 baseballbat,fewview_dev,20.451565072548348,6.7702838462526325,6.133595679990426,0.787964382936369,0.0 baseballglove,fewview_dev,15.899123723379235,8.491206359449485,5.952075366998026,0.5044438522210485,0.0 bench,fewview_dev,13.835660454286623,6.1021708060060185,5.338972434739994,0.8728473659927769,0.0 bicycle,fewview_dev,14.85079899106894,7.178515383648441,5.4468849723020165,0.7596495667817377,0.0 book,fewview_dev,13.526778301589218,5.929520397898452,6.1038428839075625,0.7119168557685552,0.0 bottle,fewview_dev,17.756936987543572,7.695879675777415,5.792669536453962,1.1126274259151023,0.0 bowl,fewview_dev,12.117324340446702,3.522034136500667,6.132690804727037,0.548212652825193,0.0 broccoli,fewview_dev,17.60270342882336,8.135587140185267,5.636059385848195,0.48109570750702163,0.0 cake,fewview_dev,14.831394456777907,6.641730746137352,5.778288244687103,0.4713467452914664,0.0 car,fewview_dev,12.199833440326447,6.2695458065545955,5.7147062915561,0.6731242096715442,0.0 carrot,fewview_dev,18.42032666772822,6.336027619876071,5.2655157144357,0.7425826445279987,0.0 cellphone,fewview_dev,18.54815997270957,9.132949039155196,5.920507132031587,0.7256476083461838,0.0 chair,fewview_dev,14.254104990224922,6.8885175096457525,5.42230365019509,0.8701949198272996,0.0 couch,fewview_dev,12.096141908081652,8.498063614467037,6.839693292778098,0.6672055849897333,0.0 cup,fewview_dev,16.30300593190912,6.263725950094426,5.419278138684526,1.109737605178693,0.0 donut,fewview_dev,17.760249549810045,7.19401090262162,5.406775287613137,0.5831024075924244,0.0 frisbee,fewview_dev,13.006974807290442,5.348851057119092,6.081314892526941,0.6282357528069842,0.0 hairdryer,fewview_dev,18.307693246477385,7.653327373043194,5.796698293526376,0.5692578716769887,0.0 handbag,fewview_dev,16.863888776603684,9.668777191048893,5.885582988575421,0.6140305534695657,0.0 hotdog,fewview_dev,16.576000201780598,6.7813353163227275,6.479828364566311,0.5515738226619902,0.0 hydrant,fewview_dev,14.35863704229326,5.557106534568748,5.486735221682155,0.7370800150837736,0.0 keyboard,fewview_dev,18.319239151881423,10.9398173290579,5.471888028766401,0.591969625411462,0.0 kite,fewview_dev,13.759580600059902,6.095096560743659,5.5797533716568335,0.3686704352187232,0.0 laptop,fewview_dev,17.958107529829775,10.58932076091378,5.9870485037655365,0.6760399403943799,0.0 microwave,fewview_dev,12.641232654595555,7.5579894876019935,5.7736075695959785,0.7816656712123962,0.0 motorcycle,fewview_dev,13.902730964332383,7.837737363341203,5.6993349939287,0.8026270041676278,0.0 mouse,fewview_dev,22.139654039699753,11.380540045528843,5.26534717648027,0.6258851366555073,0.0 orange,fewview_dev,16.965398815565717,5.392140191707388,5.868309801114943,0.45518186645635506,0.0 parkingmeter,fewview_dev,17.969579417828633,8.303453741571293,5.550653705252322,2.7703986799279625,0.0 pizza,fewview_dev,14.044388259713267,6.467125499434811,6.349638051827558,0.5445261030741094,0.0 plant,fewview_dev,15.912698636112678,8.209728015160032,5.41847542705161,0.9729385734872266,0.0 remote,fewview_dev,18.901389746835065,8.809855001539868,5.6508358729724995,0.5809070430213752,0.0 sandwich,fewview_dev,14.961081916655587,5.359419050654777,6.486182655727676,0.5273259918746086,0.0 skateboard,fewview_dev,15.12940600031295,6.633805444460857,6.075841409914119,0.5708218125938797,0.0 stopsign,fewview_dev,18.52676122564753,6.61671306856769,5.412139613407474,6.290707304470178,0.0 suitcase,fewview_dev,16.493029339685542,10.757954804495968,6.232275999259873,0.5967537541074001,0.0 teddybear,fewview_dev,12.49373038673622,5.562061567728542,5.8834174182726855,0.6012993745910462,0.0 toaster,fewview_dev,15.590308176317933,8.571510283192422,5.8223530170835565,0.7087675899756055,0.0 toilet,fewview_dev,11.053325723237059,3.745954412389449,5.831752233322646,0.7324808735388084,0.0 toybus,fewview_dev,15.74397288343334,5.87386919966778,5.694742423634763,0.644572040998336,0.0 toyplane,fewview_dev,15.271423476084475,4.920347774565625,5.603913746917713,0.5686183372913356,0.0 toytrain,fewview_dev,19.250492955217194,8.365187557837626,5.5957012947860445,0.6429103676877059,0.0 toytruck,fewview_dev,15.813126824200825,7.367196186168707,5.59287438907558,0.5748745851615271,0.0 tv,fewview_dev,18.455985344741848,11.821412211957313,5.87636504861574,0.6193668766022515,0.0 umbrella,fewview_dev,13.388214509185625,6.669691460242465,5.398996667950242,0.5547154568934756,0.0 vase,fewview_dev,17.385895374160103,7.695607020715037,5.667400967410725,1.0544596567185702,0.0 wineglass,fewview_dev,14.92593215613611,5.489494483032894,5.883318241506832,2.09036588666451,0.0 MEAN,-,16.028754842096472,7.3270142749005025,5.768476753918801,0.8374863237526772,0.0 """, "fewview_test": """ Category,Subset name,psnr_masked,psnr_fg,psnr_full_image,depth_abs_fg,iou apple,fewview_test,18.51983235506069,6.710896207691665,5.622396257710374,0.45868530307683764,0.0 backpack,fewview_test,15.329616295156082,9.704246779430184,6.021398266902823,0.5274631579925675,0.0 ball,fewview_test,16.999140797902346,6.393148333684946,6.167099298585788,0.42074640466733093,0.0 banana,fewview_test,17.20449002482513,6.2347690237546765,5.337301584435467,0.5906480660508107,0.0 baseballbat,fewview_test,20.598735999896142,6.724621984421882,5.929346230877072,0.46383516633969724,0.0 baseballglove,fewview_test,16.250018316676424,8.485414452103313,5.35050821728197,0.5755057054113818,0.0 bench,fewview_test,13.380691505741307,6.217615311139159,5.389882231932645,0.8591881917970259,0.0 bicycle,fewview_test,15.804150486121728,8.539006404409536,7.293404052140095,0.7740858337090635,0.0 book,fewview_test,14.350489743207989,5.356299926470255,5.138131270946916,0.6249600811612394,0.0 bottle,fewview_test,17.257503711230473,7.332068784914889,5.825424785199224,1.0062512850600411,0.0 bowl,fewview_test,12.7586871865527,5.952472495887487,7.350451995400975,0.7734948803009338,0.0 broccoli,fewview_test,17.69069033947863,8.250871950138103,5.718669980890903,0.5437043438960382,0.0 cake,fewview_test,14.809462963950144,6.142164342026519,6.145654847812541,0.45489466623242036,0.0 car,fewview_test,11.914391205648087,6.5335541836879925,5.90360267479956,0.9021454444786102,0.0 carrot,fewview_test,20.060924545297425,6.219697054467009,5.261149123525815,0.7081597814658059,0.0 cellphone,fewview_test,21.520117285013956,10.847631110964242,5.41747877060995,1.0517241006106035,0.0 chair,fewview_test,14.691657730804202,8.959579180137167,6.878377818012938,0.8045192519054911,0.0 couch,fewview_test,11.545670382508696,8.419983656626247,6.902446179473004,0.6761085327114593,0.0 cup,fewview_test,17.79448614165711,6.495705819546957,5.5050360165654855,0.8834131631626546,0.0 donut,fewview_test,18.596152225400257,6.892531195772306,6.240000810567556,0.5443665622620474,0.0 frisbee,fewview_test,14.370690470903668,6.048295011020775,6.136056575421687,0.4830201400666513,0.0 hairdryer,fewview_test,18.47390481689051,7.494774772300304,5.743646634555602,0.5239972887128962,0.0 handbag,fewview_test,13.87987101022776,8.280409779606966,6.572322491579377,0.6866448922525301,0.0 hotdog,fewview_test,18.436410464732152,7.713564800659037,5.859372904290447,0.5873852722036716,0.0 hydrant,fewview_test,14.768617799865435,5.67036284794227,5.71565321761019,0.9328092564314482,0.0 keyboard,fewview_test,18.875163364703024,10.97846088231997,5.392007807994692,0.42114457863505195,0.0 kite,fewview_test,12.882975207164943,6.079375329369365,5.243720977367847,0.571440938913041,0.0 laptop,fewview_test,16.68965246676936,9.765618650745138,6.127183977142236,0.8968296529628422,0.0 microwave,fewview_test,13.859058432153368,8.649172226048128,6.809269971869398,0.8740670698190732,0.0 motorcycle,fewview_test,12.922201328542098,7.659321482648036,5.3469570020173816,0.7923491167407205,0.0 mouse,fewview_test,25.03083236821661,10.870194079196883,5.61381320415904,0.5803283306516662,0.0 orange,fewview_test,17.906264108511905,5.863058031859002,5.902648030774557,0.4927651700044394,0.0 parkingmeter,fewview_test,24.486359595107576,10.777998512312754,4.875545759481984,3.9189161735406275,0.0 pizza,fewview_test,15.25053153218815,6.195657831341678,5.888809317232928,0.5366542850357786,0.0 plant,fewview_test,14.533347345876026,8.213483475587314,5.9657101837783895,0.8745105580745663,0.0 remote,fewview_test,18.685696193857062,9.167126712684974,5.283444994288521,0.5784209284648094,0.0 sandwich,fewview_test,14.954638830523134,5.489779040424508,6.203690658497073,0.582476274688696,0.0 skateboard,fewview_test,18.921604245076754,8.111335322871586,4.540996792864179,0.8144729054641098,0.0 stopsign,fewview_test,20.83021952727707,7.7066182145576425,5.596606825038416,6.195708155269956,0.0 suitcase,fewview_test,14.568523293458965,8.872585021337093,5.526936386940414,0.5437482494754128,0.0 teddybear,fewview_test,13.184137897313038,5.667378086474551,5.638538121962938,0.6289599526865502,0.0 toaster,fewview_test,15.398766247640951,8.138341096517484,6.073562974743127,0.7335666912630792,0.0 toilet,fewview_test,10.138714105703048,3.8756171226863025,5.85450160774978,0.7892172212095283,0.0 toybus,fewview_test,15.925097991923954,6.517829456639026,5.691133527297476,0.6022958688384993,0.0 toyplane,fewview_test,16.703705769834098,5.323541429433026,5.46165954412417,0.5639341931778066,0.0 toytrain,fewview_test,17.859279914562713,7.8933999002371715,5.604032948369101,0.6932112812874591,0.0 toytruck,fewview_test,16.971557700694344,7.745719186191729,5.794916102483104,0.564653671235697,0.0 tv,fewview_test,18.037750946556894,13.741247943038163,8.747561838523023,0.5162819237405952,0.0 umbrella,fewview_test,13.092407842058238,6.756963662911218,5.447907114523638,0.534506784839016,0.0 vase,fewview_test,18.54297573271471,8.090029952142554,5.668374190385807,0.84122947818443,0.0 wineglass,fewview_test,16.386668940524114,5.5524702294978345,5.735686759902533,1.4353355366647544,0.0 MEAN,-,16.463618328111792,7.555333495840728,5.871765271698825,0.8516623875064206,0.0 """, "manyview_dev": """ Category,Subset name,psnr_masked,psnr_fg,psnr_full_image,depth_abs_fg,iou apple,manyview_dev_0,18.264030492114536,8.350223131127144,4.366539721003419,0.4195637484678012,0.0 apple,manyview_dev_1,14.137138507072345,6.6045994842301345,6.240087240624211,0.43567804409070654,0.0 ball,manyview_dev_0,14.673712693605873,6.091306495279248,5.217217027846326,0.35927968102112323,0.0 ball,manyview_dev_1,11.090845071075146,4.64095367064294,2.463653189968876,0.30228020972164427,0.0 bench,manyview_dev_0,13.333540945296608,4.137188797564715,3.844656341335867,0.8008696769825814,0.0 bench,manyview_dev_1,11.474174975542255,3.892151505117967,4.14563643434561,0.8577265682977291,0.0 book,manyview_dev_0,13.964168705937992,5.302433873449493,5.950633752149304,0.668803861808978,0.0 book,manyview_dev_1,12.398406799192342,4.119572830245314,6.039375672561894,0.8608240982086351,0.0 bowl,manyview_dev_0,16.958798002755774,4.9461020198227335,5.578702964374623,0.6690737351712432,0.0 bowl,manyview_dev_1,12.420483353954074,5.756645234213993,6.069489156010504,0.5819949787763078,0.0 broccoli,manyview_dev_0,19.630737300870244,9.406282525085935,6.402535226376115,0.7907156923061898,0.0 broccoli,manyview_dev_1,18.781287064441447,8.09672300742875,4.67134680549106,0.4626196557341922,0.0 cake,manyview_dev_0,14.799043006158593,5.867235047104056,5.7329760554862945,0.5205964759006821,0.0 cake,manyview_dev_1,17.84162321617,9.41822453353167,3.7158681607815254,0.3612821873000541,0.0 donut,manyview_dev_0,19.315033141413654,9.455566547834058,3.910254156226572,0.5413953368124613,0.0 donut,manyview_dev_1,22.26734997183049,10.174649831308487,4.199195894665875,0.5521516658527057,0.0 hydrant,manyview_dev_0,14.599159376924849,5.655154414726878,5.289620369144585,0.9737327772204973,0.0 hydrant,manyview_dev_1,14.544431000855953,5.876377992594626,4.506377178812374,1.0210153410111495,0.0 mouse,manyview_dev_0,22.553107676356586,12.793445604091437,5.927286492328659,0.5816200334131308,0.0 mouse,manyview_dev_1,17.89414321396086,8.956320087603723,7.097351162295129,0.5222896946353802,0.0 orange,manyview_dev_0,13.732343455171254,5.052956697685929,5.679024711561304,0.40213060027513875,0.0 orange,manyview_dev_1,14.71190574360874,4.956667990371484,5.836996460679712,0.43328379232231895,0.0 plant,manyview_dev_0,17.56722473025224,10.851111767732277,6.940102616941581,0.9601928359930311,0.0 plant,manyview_dev_1,18.62091024389777,11.114146143571679,8.919832772445316,0.845715675126882,0.0 remote,manyview_dev_0,12.004470911615606,2.3372367853347664,5.928692360063941,0.6355222400483482,0.0 remote,manyview_dev_1,13.035720177392095,4.368321832863184,3.7645273565115303,0.6257342864206513,0.0 skateboard,manyview_dev_0,14.087374862144243,6.183930758291541,7.7026533167035085,0.7381270587952287,0.0 skateboard,manyview_dev_1,15.24606555170737,6.935641480347134,6.728247832458047,0.6846367731825937,0.0 suitcase,manyview_dev_0,13.819257223346327,5.727869083939035,5.9663188950446795,0.42728104332046707,0.0 suitcase,manyview_dev_1,23.33527836247522,12.70130752964975,5.440617175698944,0.7376517524662343,0.0 teddybear,manyview_dev_0,15.310590723595963,7.5183318102880765,5.187722505560557,0.6132311702409632,0.0 teddybear,manyview_dev_1,19.00287693135702,11.380410989980264,5.372428296399181,0.655451568067443,0.0 toaster,manyview_dev_0,16.09490094737935,7.357336873218335,5.733018822009381,0.6335824697011363,0.0 toaster,manyview_dev_1,13.391233953784758,6.32606222531527,6.035255066975607,0.7543408733149064,0.0 toytrain,manyview_dev_0,14.60365232137707,8.252354438191217,7.28055045581793,0.5177963318470418,0.0 toytrain,manyview_dev_1,20.508004149463403,10.310151926704073,8.745624247957407,0.4164560185628414,0.0 toytruck,manyview_dev_0,18.495843812347488,9.077851138541167,4.742593752879244,0.8234759152694971,0.0 toytruck,manyview_dev_1,12.550467820571148,5.368998580430165,6.689171662380995,0.581289871598415,0.0 vase,manyview_dev_0,18.188943183563104,9.441252383753767,3.3505357321672142,0.7542355580664746,0.0 vase,manyview_dev_1,18.434184156563,9.303826519080554,6.071437833814365,0.9019223769623579,0.0 MEAN,-,16.092061594428568,7.352673089707325,5.58710387189748,0.635639291857879,0.0 """, "manyview_test": """ Category,Subset name,psnr_masked,psnr_fg,psnr_full_image,depth_abs_fg,iou apple,manyview_test_0,16.22478731544839,6.660985912339718,8.662890866941595,0.5735152991789598,0.0 backpack,manyview_test_0,18.664239087697137,12.092836660079621,3.9911394799946835,0.7187691122198704,0.0 ball,manyview_test_0,17.053273275949497,11.47813547143793,5.494760070704971,0.24760313752451854,0.0 banana,manyview_test_0,19.09250116156104,5.624412642679121,4.915562631182255,0.6388887597635459,0.0 baseballbat,manyview_test_0,17.662719299079523,3.56448996833759,6.856655466723437,0.5858372717711078,0.0 baseballglove,manyview_test_0,15.822024491958919,9.008496845518556,4.958078518403922,0.517665349356982,0.0 bench,manyview_test_0,16.177405149477067,5.64144135201049,6.639758049666188,0.9396015318702626,0.0 bicycle,manyview_test_0,18.929300038845177,8.384269505927424,4.978158575183426,0.7192708133061682,0.0 book,manyview_test_0,14.243260388807064,6.680398318324483,5.9082871869853735,0.9097958583065434,0.0 bottle,manyview_test_0,14.627587579689477,5.485474059329347,5.806882899714011,1.2365226740951725,0.0 bowl,manyview_test_0,12.58297015755071,4.721445807873399,6.174942733659999,0.5651215302382757,0.0 broccoli,manyview_test_0,15.348378477682894,9.138928269423888,6.406522886996562,0.46622630548488525,0.0 cake,manyview_test_0,12.406031259153915,9.13497199802905,6.954300602123617,0.7135451548332193,0.0 car,manyview_test_0,10.536444455719398,6.3033794761422826,5.589254154468083,0.6075981188742273,0.0 carrot,manyview_test_0,15.052122330808963,5.001683408210913,6.975324034802911,0.6913476205193215,0.0 cellphone,manyview_test_0,18.548592045129272,5.477199696294225,5.405821575968376,0.8925134146832333,0.0 chair,manyview_test_0,9.288750627933801,5.559044610507649,5.063084903423689,0.5832447059416495,0.0 couch,manyview_test_0,15.542901771081734,10.090205474555033,7.091879909602398,0.530379736402723,0.0 cup,manyview_test_0,14.565042555686277,4.3989084024686305,5.8416712646107225,0.9809843195171222,0.0 donut,manyview_test_0,15.455254561260311,7.186638190791148,6.08943365801032,0.42916104004956795,0.0 frisbee,manyview_test_0,16.030436839496698,8.25580372425949,3.6125508386557295,0.7820506512812717,0.0 hairdryer,manyview_test_0,22.640570140053246,11.702523731191262,4.159711019086314,0.616971255937149,0.0 handbag,manyview_test_0,24.14781075331437,15.091930028917984,5.223221264801334,0.562664145074455,0.0 hotdog,manyview_test_0,12.244917262623947,4.72460505473762,6.9914703226785,0.5147290560374835,0.0 hydrant,manyview_test_0,16.892200853920816,6.5057584631969645,6.307555495359107,0.8690763104982895,0.0 keyboard,manyview_test_0,14.937059706035933,10.816605585432766,4.857196169187754,0.5188802050007122,0.0 kite,manyview_test_0,15.068337896849323,6.205118297721433,5.276287557112783,0.7494832801627337,0.0 laptop,manyview_test_0,14.59345603707514,7.090074167371421,6.2162237610589814,0.7413216109605885,0.0 motorcycle,manyview_test_0,14.442903913583953,8.56222345535462,6.50899995433291,0.7010114811016933,0.0 mouse,manyview_test_0,29.8885518296015,14.145685466149715,5.406173914859613,0.5942925002348606,0.0 orange,manyview_test_0,11.525661011646141,5.745001890928845,5.983235030110308,0.327592487953461,0.0 parkingmeter,manyview_test_0,18.046203929985666,6.461002560728408,5.027716754597319,1.5829406195750064,0.0 pizza,manyview_test_0,15.152783189315754,6.578112135320982,7.482842326935612,0.7078538179251567,0.0 plant,manyview_test_0,20.369369422864448,11.73336728848978,5.490938199184393,0.5563616188902266,0.0 remote,manyview_test_0,21.93996425442841,9.915599775483262,3.2277628694594647,0.8952884887902877,0.0 sandwich,manyview_test_0,14.156122339232516,4.782614236412581,5.172885855269289,0.4726663784145917,0.0 skateboard,manyview_test_0,17.199716318802558,9.3986630162228,6.582697215433262,0.7526901207787688,0.0 suitcase,manyview_test_0,20.5543872349586,15.449636313939182,6.392103915747007,0.5623042520735794,0.0 teddybear,manyview_test_0,15.056483227336162,6.023824258666201,2.385989674021068,0.6859612539860361,0.0 toaster,manyview_test_0,17.538889427176077,10.389092700641873,7.350896986214959,0.6917412312874205,0.0 toilet,manyview_test_0,8.581683038527455,4.304701570881858,5.715072710684154,0.5228074506396895,0.0 toybus,manyview_test_0,13.421701717928093,5.104459961535013,7.832131890256459,0.5177220835646305,0.0 toyplane,manyview_test_0,25.939823270757692,11.015747754038403,5.005751206904976,0.5705696772343116,0.0 toytrain,manyview_test_0,17.831418296523193,7.494011795501741,4.629191510823262,0.6318052729776739,0.0 toytruck,manyview_test_0,20.369297725379987,9.285414438061778,4.844672681479939,0.48828556766453685,0.0 umbrella,manyview_test_0,12.752391495654509,6.657169727823324,2.556125460617257,0.428359657679186,0.0 vase,manyview_test_0,20.277671704818363,6.07655429478755,4.941408622390838,0.8391219139438616,0.0 wineglass,manyview_test_0,19.455250191811363,7.197566433072046,6.442702595780869,3.173690609010777,0.0 MEAN,-,16.64330518875463,7.882212795773946,5.6547484431710435,0.7209548906794958,0.0 """ } for task in [CO3DTask.FEW_VIEW, CO3DTask.MANY_VIEW]: for seq_set in [CO3DSequenceSet.DEV, CO3DSequenceSet.TEST]: BLANK_PREDICTION_RESULTS[(task, seq_set)] = _read_result_csv( CSVs[f"{task.value}_{seq_set.value}"] )
co3d-main
co3d/challenge/blank_predictions_results.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from pathlib import Path from setuptools import setup # type: ignore setup( name="cc_net", version="1.0.0", packages=["cc_net"], # metadata to display on PyPI author="Guillaume Wenzek", author_email="guw@fb.com", description="Tools to download and clean Common Crawl", keywords="common crawl dataset", url="https://github.com/facebookresearch/cc_net", license="CC-BY-NC-4.0", long_description=Path("README.md").read_text(), long_description_content_type="text/markdown", project_urls={ "Bug Tracker": "https://github.com/facebookresearch/cc_net/issues", "Source Code": "https://github.com/facebookresearch/cc_net", }, classifiers=[ "Development Status :: 4 - Beta", "Programming Language :: Python :: 3.7", ], python_requires=">=3.7", install_requires=[ "beautifulsoup4>=4.7.1", "pandas>=0.23.4", "requests>=2.22.0", "fasttext>=0.9.1", "sentencepiece>=0.1.82", "kenlm @ git+https://github.com/kpu/kenlm.git@master", "func_argparse>=1.1.1", "psutil>=5.6.3", "sacremoses", "submitit>=1.0.0", "typing_extensions", ], extras_require={ "dev": ["mypy==0.790", "pytest", "black==19.3b0", "isort==5.6.4"], # To use scripts inside cc_net/tools "tools": ["lxml", "sentence_splitter"], # Memory-efficient hashset. # This fork only compiles the kind of dict used by cc_net. # Full version is at https://github.com/atom-moyer/getpy "getpy": ["getpy @ git+https://github.com/gwenzek/getpy.git@v0.9.10-subset"], }, package_data={"cc_net": ["data/*"]}, )
cc_net-main
setup.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # """ Main script to download a CC dump, remove duplicates, split by language and filter the documents. The pipeline parameters are described in the `Config` class. """ import hashlib import json import time import warnings from argparse import ArgumentParser from collections import defaultdict from itertools import repeat from pathlib import Path from typing import Any, Dict, Iterable, List, NamedTuple, Optional, Sequence, Tuple import func_argparse # Local scripts from cc_net import dedup, execution, jsonql, minify, perplexity, process_wet_file from cc_net import regroup as regroup_module from cc_net import split_by_lang from cc_net.execution import Executor # Constant FILE_DIR = Path(__file__).parent CUTOFF_CSV = FILE_DIR / "data" / "cutoff.csv" DEFAULT_PIPELINE = [ "dedup", "lid", "keep_lang", "sp", "lm", "pp_bucket", "drop", "split_by_lang", ] class Config(NamedTuple): """ Mine Common Crawl with the given settings. config_name dump: CC dump id output_dir: working directory mined_dir: name of the destination folder, full path will be {ouput_dir}/{mined_dir}/{dump_id} execution: chose how to parallelize the execution num_shards: number of shards to split the dump num_segments_per_shard: allow to download a small portion of CC (eg for tests) min_len: remove documents shorter than this (in chars) hashes_in_mem: number of shards hashes to use for dedup lang_whitelist: only treat those languages lang_blacklist: ignore those languages lang_threshold: remove docs whose top language score is lower than this keep_bucket: keep only those perplexity bucket chose from (head, middle, tail, all) lm_dir: folder containing LMs lm_languages: only use LMs for the following languages cutoff: cutoff file to use for split in head/middle/tail mine_num_processes: number of processes to use for mining target_size: size of finals files produce during `regroup` stage cleanup_after_regroup: delete intermediary files after regroup task_parallelism: max number of task to run in parallel pipeline: restricts the mining pipeline to the given steps. Order is important ! experiments: (HACK) enable specific experiments in the code """ config_name: str = "base" dump: str = "2017-51" output_dir: Path = Path("data") mined_dir: str = "mined" execution: str = "auto" num_shards: int = 1600 num_segments_per_shard: int = -1 metadata: Optional[str] = None min_len: int = 300 hash_in_mem: int = 50 lang_whitelist: Sequence[str] = [] lang_blacklist: Sequence[str] = [] lang_threshold: float = 0.5 keep_bucket: Sequence[str] = [] lm_dir: Path = Path("data/lm_sp") cutoff: Path = CUTOFF_CSV lm_languages: Optional[Sequence[str]] = None mine_num_processes: int = 16 target_size: str = "4G" cleanup_after_regroup: bool = True task_parallelism: int = -1 pipeline: Sequence[str] = DEFAULT_PIPELINE experiments: Sequence[str] = [] cache_dir: Optional[Path] = None def get_executor( self, name: str, timeout_hour: int = 1, mem_gb: int = 1, cpus: int = 1 ) -> Executor: name = "_".join((name, self.config_name, *self.experiments)) return execution.get_executor( name, self.output_dir / "logs", self.execution, timeout_hour=timeout_hour, mem_gb=mem_gb, cpus=cpus, task_parallelism=self.task_parallelism, ) def get_cc_shard(self, shard: int) -> process_wet_file.CCShardReader: dump_cache: Optional[Path] = None if self.cache_dir: self.cache_dir.mkdir(exist_ok=True) dump_cache = self.cache_dir / self.dump dump_cache.mkdir(exist_ok=True) return process_wet_file.CCShardReader( self.dump, shard=shard, num_shards=self.num_shards, num_segments_per_shard=self.num_segments_per_shard, min_len=self.min_len, cache_dir=dump_cache, ) @classmethod def from_json(cls, json_file: Path) -> "Config": raw_lines = json_file.read_text().splitlines() raw_lines = [l for l in raw_lines if not l.strip().startswith("//")] json_config = json.loads("".join(raw_lines)) path_keys = ["cache_dir", "lm_dir", "output_dir"] for key in path_keys: if key in json_config: json_config[key] = Path(json_config[key]) return Config(**json_config) @property def will_split(self) -> bool: return "split_by_lang" in self.pipeline or "split_by_segment" in self.pipeline def get_lm_languages(self) -> Sequence[str]: if self.lm_languages is not None: return self.lm_languages if self.lang_whitelist: return self.lang_whitelist languages = [m.name.split(".")[0] for m in self.lm_dir.glob("*.arpa.bin")] if self.lang_blacklist: languages = [l for l in languages if l not in self.lang_blacklist] return languages def get_mined_dir(self, regroup: bool = False) -> Path: if self.will_split and not regroup: return self.output_dir / f"{self.mined_dir}_split" / self.dump return self.output_dir / self.mined_dir / self.dump BASE_CONFIG = Config() BYLANG_CONFIG = Config( config_name="by_lang", mined_dir="mined_by_lang", pipeline=list(BASE_CONFIG.pipeline[:-1]) + ["split_by_lang"], ) REPRODUCE_CONFIG = Config( config_name="reproduce", dump="2019-09", mined_dir="reproduce", pipeline=["fetch_metadata", "keep_lang", "keep_bucket", "split_by_lang"], metadata="https://dl.fbaipublicfiles.com/cc_net/1.0.0", # Optional filtering: # It won't change much the execution speed, but decreases the disk requirement. # Restrict languages lang_whitelist=["fr"], # Restrict perplexity buckets # Top languages have been split in perplexity buckets according # to a Wikipedia trained LM. # The buckets from low perplexity (good) to high (bad) are: # ["head", "middle", "tail"] # Languages without a LM have only one bucket "all". # It won't change much the execution speed, but decreases the disk requirement. keep_bucket=["head", "all"], mine_num_processes=1, ) TEST_CONFIG = BASE_CONFIG._replace( config_name="test", dump="2019-09", output_dir=Path("test_data"), execution="local", num_shards=4, num_segments_per_shard=1, hash_in_mem=2, mine_num_processes=2, lang_whitelist=["de", "it", "fr"], target_size="32M", cleanup_after_regroup=False, cache_dir=Path("test_data/wet_cache"), ) PREDEF_CONFIGS = { "base": BASE_CONFIG, "by_lang": BYLANG_CONFIG, "test": TEST_CONFIG, "test_slurm": TEST_CONFIG._replace(execution="slurm,partition=dev"), "debug": TEST_CONFIG._replace(config_name="debug", mine_num_processes=0), "reproduce": REPRODUCE_CONFIG, "augment": BASE_CONFIG._replace( config_name="augment", dump="2019-13", lang_blacklist=["en"] ), } def tmp(output: Path) -> Path: return output.parent / (output.stem + ".tmp" + output.suffix) def finalize(tmp_output: Path, output: Path) -> None: if not tmp_output.exists(): warnings.warn(f"Targeted tmp output {tmp_output} doesn't exists.") return tmp_index = tmp_output.parent / (tmp_output.name + ".index") tmp_output.rename(output) if tmp_index.exists(): tmp_index.rename(output.parent / (output.name + ".index")) def _transpose(iterable: Sequence[Tuple[Any, ...]], n=-1) -> Tuple[List, ...]: if n < 0: n = len(iterable[0]) columns: tuple = tuple([] for _ in range(n)) for row in iterable: assert len(row) == n, f"Found tuple of len({len(row)}, expected {n}: {row}" for i in range(n): columns[i].append(row[i]) return columns def hashes(conf: Config) -> List[Path]: """Computes hashes for each shard.""" hashes_dir = conf.output_dir / "hashes" / conf.dump outputs = [hashes_dir / f"{shard:04d}.bin" for shard in range(conf.num_shards)] missing_outputs = [(shard, o) for shard, o in enumerate(outputs) if not o.exists()] if not missing_outputs: return outputs hashes_dir.mkdir(parents=True, exist_ok=True) # With FlatHashSet we need ~2Gb of RAM / shard, but we need to account for # overhead due to how the dynamic allocation works. ex = conf.get_executor(f"hashes_{conf.dump}", mem_gb=4, timeout_hour=6, cpus=2) ex(_hashes_shard, repeat(conf), *_transpose(missing_outputs)) # Wait a bit so that files appears on the disk. time.sleep(20) assert all(o.exists() for o in outputs) return outputs def _hashes_shard(conf: Config, shard: int, output: Path): tmp_output = tmp(output) jsonql.run_pipes( dedup.HashesCollector(field="raw_content", output=tmp_output), inputs=conf.get_cc_shard(shard), ) finalize(tmp_output, output) return f"Hashed {output}" HASHES_IN_MEM = [0, 1, 2, 5, 10, 20, 50, 100, 200, 400] def mine(conf: Config) -> List[Path]: """Remove dups, run LID and LMs, and split by lang and quality.""" mined_dir = conf.get_mined_dir() if conf.will_split: # Give a directories when splitting outputs = [mined_dir / f"{shard:04d}" for shard in range(conf.num_shards)] else: # Files otherwise outputs = [ mined_dir / f"{shard:04d}.json.gz" for shard in range(conf.num_shards) ] if "mini_again" in conf.experiments: mined_dir = conf.output_dir / "mini_again" / conf.dump outputs = [mined_dir / f"{shard:04d}" for shard in range(conf.num_shards)] # TODO: try to reduce this / make it a function of "hash_in_mem" / num_langs mem_gb = 60 + 1 * conf.hash_in_mem timeout_hour = 5 if "hashes" in conf.experiments: # HACK: used for generating paper figures outputs = [ conf.output_dir / f"hashes_exp/{conf.dump}_0000_dedup{h:03d}.json.gz" for h in HASHES_IN_MEM ] mem_gb = int(max(HASHES_IN_MEM) * 1.2) timeout_hour = 8 missing_outputs = [(shard, o) for shard, o in enumerate(outputs) if not o.exists()] if "mini_again" in conf.experiments: missing_outputs = [ (shard, o) for shard, o in enumerate(outputs) if shard in [5, 139] and not o.exists() ] if not missing_outputs: return outputs mined_dir.mkdir(parents=True, exist_ok=True) ex = conf.get_executor( f"mine_{conf.dump}", mem_gb=mem_gb, timeout_hour=timeout_hour, cpus=conf.mine_num_processes + 1, ) # Compute hashes firsts. if "dedup" in conf.pipeline: hashes_groups = list(jsonql.grouper(hashes(conf), conf.hash_in_mem)) hashes_files: Iterable[List[Path]] = [ hashes_groups[shard // conf.hash_in_mem] for shard, o in missing_outputs ] else: hashes_files = repeat([]) ex(_mine_shard, repeat(conf), hashes_files, *_transpose(missing_outputs)) assert all(o.exists() for o in outputs) return outputs def _get_segment(tmp_output: Path, doc: dict) -> str: segment: str = doc["cc_segment"].split("/")[-1] return str(tmp_output / segment.replace(".warc.wet.gz", ".json.gz")) def _mine_shard(conf: Config, hashes: List[Path], shard: int, output: Path) -> str: assert conf.pipeline tmp_output = tmp(output) if "hashes" in conf.experiments: # HACK: used for generating paper figures hashes_in_mem = shard hashes = hashes[: HASHES_IN_MEM[hashes_in_mem]] shard = 0 cc_shard = conf.get_cc_shard(shard) steps: Dict[str, Optional[jsonql.Transformer]] = {} lang_id = Path("bin") / "lid.bin" steps["lid_before_dedup"] = split_by_lang.Classifier( model=lang_id, field="raw_content", out_field="lid_before_dedup", top=5 ) steps["dedup"] = dedup.DuplicatesRemover(field="raw_content", hashes_files=hashes) steps["lid"] = split_by_lang.Classifier( model=lang_id, field="raw_content", out_field="language", top=1, threshold=conf.lang_threshold, ) steps["lid_after_dedup"] = split_by_lang.Classifier( model=lang_id, field="raw_content", out_field="lid_after_dedup", top=5 ) if conf.lang_blacklist: steps["keep_lang"] = jsonql.where( [lambda doc: doc.get("language") not in set(conf.lang_blacklist)] ) elif conf.lang_whitelist: steps["keep_lang"] = jsonql.where( [lambda doc: doc.get("language") in set(conf.lang_whitelist)] ) else: steps["keep_lang"] = None tok_field = "tokenized" steps["sp"] = perplexity.MultiSentencePiece( {l: conf.lm_dir / f"{l}.sp.model" for l in conf.get_lm_languages()}, field="raw_content", output_field=tok_field, normalize=True, ) steps["lm"] = perplexity.DocLM( {l: conf.lm_dir / f"{l}.arpa.bin" for l in conf.get_lm_languages()}, field=tok_field, output_field="perplexity", normalize=False, # Normalization is done before SentencePiece # load_method=kenlm.LoadMethod.PARALLEL_READ, ) steps["pp_bucket"] = perplexity.PerplexityBucket(CUTOFF_CSV) steps["drop"] = perplexity.DropKeys(tok_field) steps["keep_bucket"] = None if conf.keep_bucket: steps["keep_bucket"] = jsonql.where( [lambda doc: doc.get("bucket", "all") in conf.keep_bucket] ) if "fetch_metadata" in conf.pipeline: # TODO: better default assert conf.metadata is not None steps["fetch_metadata"] = minify.MetadataFetcher( f"{conf.metadata}/{conf.dump}/" ) steps["minify"] = minify.Minifier() pattern = str(tmp_output / "{language}_{bucket}.json.gz") steps["split_by_lang"] = jsonql.split(pattern=str(pattern), mkdir=True) steps["split_by_segment"] = jsonql.split( split_fn=lambda doc: _get_segment(tmp_output, doc), mkdir=True ) pipeline = filter(None, (steps[s] for s in conf.pipeline)) jsonql.run_pipes( *pipeline, inputs=cc_shard, processes=conf.mine_num_processes, chunksize=100, # The splitter takes care of writing to files. output=tmp_output if not conf.will_split else None, ) finalize(tmp_output, output) return f"Mined {output}" def regroup(conf: Config, all_dirs: List[Path]) -> Path: """Reshards each language/quality after 'mine'.""" regroup_dir = conf.get_mined_dir(regroup=True) assert all_dirs all_files = [f for d in all_dirs for f in d.glob("*.json.gz")] if not all_files: print(f"No .json.gz file found in {all_dirs[0]}") splits: Dict[str, List[Path]] = defaultdict(list) for f in all_files: split = f.name.split(".")[0] splits[split].append(f) print(f"Identified {len(all_files)} files to regroup from {len(splits)} splits.") inputs: List[List[Path]] = [] outputs: List[Path] = [] target_size = jsonql.parse_size(conf.target_size) for split, files in splits.items(): cuts = list(regroup_module.determine_groups(files, target_size=target_size)) if not cuts: continue pattern = f"{split}_????.json.gz" existing_outputs = sorted(regroup_dir.glob(pattern)) if not conf.cleanup_after_regroup: # We still have all the inputs so it is safe to overwrite existing outputs. assert len(existing_outputs) <= len(cuts) existing_outputs = [] if len(existing_outputs) > 0 and len(cuts) == 1: # append to existing file if size allows it. new_size = ( sum(f.stat().st_size for f in cuts[0]) + existing_outputs[-1].stat().st_size ) if new_size < target_size: print(f"Will append {cuts[0]} to {existing_outputs[-1]}") cuts[0].insert(0, existing_outputs.pop(-1)) n_existing = len(existing_outputs) for i, cut in enumerate(cuts): # avoid overwriting existing files. j = i + n_existing output = regroup_dir / f"{split}_{j:04}.json.gz" inputs.append(cut) outputs.append(output) print( str(regroup_dir / pattern), "->", len(cuts), f"shards ({n_existing} already there).", ) ex = conf.get_executor(f"regroup_{conf.dump}", mem_gb=1, timeout_hour=12, cpus=2) ex(_regroup, repeat(conf), inputs, outputs) return regroup_dir def _regroup(conf: Config, inputs: List[Path], output: Path) -> str: output.parent.mkdir(parents=True, exist_ok=True) regroup_module.fast_reshard( inputs, output, tmp=tmp(output), rm_original=conf.cleanup_after_regroup ) return f"Regrouped {output}" def move_segments(conf: Config, all_dirs: Sequence[Path]) -> Path: """Reshards each language/quality after 'mine'.""" # check that mining is over. regroup_dir = conf.get_mined_dir(regroup=True) assert all_dirs, "Received no dirs to move" assert all( d.is_dir() for d in all_dirs ), f"move_segments was expecting dirs received files: {all_dirs[:10]}..." regroup_dir.parent.mkdir(exist_ok=True) regroup_dir.mkdir(exist_ok=True) ex = conf.get_executor(f"moveseg_{conf.dump}", mem_gb=1, timeout_hour=1, cpus=2) def _move_segments(subdir: Path, regroup_dir: Path) -> str: n = 0 for f in subdir.iterdir(): if not f.is_file() or f.is_symlink(): continue n += f.name.endswith(".json.gz") new_name = regroup_dir / f.name target = new_name.resolve() assert f.resolve() != target # this make the job idempotent. f.rename(new_name) f.symlink_to(target) if n == 0: return "" return f"Moved {n} .json.gz files from {subdir} to {regroup_dir}" ex(_move_segments, all_dirs, repeat(regroup_dir)) print(f"Results are in {regroup_dir}") return regroup_dir def _validate_test(conf: Config, output_dir: Path, generate: bool = False): stats: Dict[str, dict] = {} for file in sorted(output_dir.glob("*.json.gz")): fname = "/".join((file.parent.name, file.name)) # The order of documents is not guaranteed inside a shard, lines = sorted(jsonql.open_read(file)) content = "\n".join(lines) size = len(content) checksum = hashlib.sha1(bytes(content, encoding="utf-8")).hexdigest() # first_document = json.loads(lines[0]) stats[fname] = {"size": size, "checksum": checksum} def dump(x): return json.dumps(x, indent=2, ensure_ascii=False) print("*** Stats ***") stats_raw = dump(stats) stats_file = FILE_DIR / "data" / "test_stats.json" if generate: print("Saving stats to", stats_file) stats_file.write_text(stats_raw) return expected_stats: Dict[str, dict] = {} if stats_file.exists(): expected_stats = json.loads(stats_file.read_text()) if expected_stats == stats: print("Everything looks good !") return stats_file.with_suffix(".actual.json").write_text(stats_raw) print("*** Expected Stats ***") print(dump(expected_stats)) print("*** Diff ***") for fname in sorted(expected_stats.keys()): print(fname) assert fname in expected_stats, "missing file " + fname if expected_stats[fname]["size"] != stats[fname]["size"]: print( " - Expected size", expected_stats[fname]["size"], ", size", stats[fname]["size"], ) if expected_stats[fname]["checksum"] != stats[fname]["checksum"]: print( " - Expected checksum", expected_stats[fname]["checksum"], ", checksum", stats[fname]["checksum"], ) def get_main_parser() -> ArgumentParser: # Generates the 'main' parser by patching a 'Config' parser p = func_argparse.func_argparser(Config) # Override defaults value to None, so we know what was set by the user. # Note that it will keep the original default values in the help message. p.set_defaults(**{f: None for f in Config._fields}) p.add_argument("--config", type=str, default="base") p.set_defaults(__command=main) return p def main(config: str = "base", **config_as_dict: Any) -> None: # Use the given 'config' as default value. config_base = config if config_base in PREDEF_CONFIGS: conf = PREDEF_CONFIGS[config_base] elif Path(config_base).exists(): conf = Config.from_json(Path(config_base)) else: raise ValueError( f"Invalid value {config_base} for --config. " f"Choose from ({', '.join(PREDEF_CONFIGS)}) or give an existing .json file." ) conf = conf._replace(**{k: v for (k, v) in config_as_dict.items() if v is not None}) print(f"Will run cc_net.mine.main with the following config:", conf) all_files = mine(conf) if conf.will_split: assert all_files assert all(d.is_dir() for d in all_files) all_dirs = all_files if "split_by_lang" in conf.pipeline: # Only try regrouping if we split the shards. regroup(conf, all_dirs) elif "split_by_segment" in conf.pipeline: # If we split by segment then regrouping is trivial, since segments appear in only one shard. move_segments(conf, all_dirs) if conf.config_name == "test": _validate_test(conf, conf.get_mined_dir(regroup=True)) if __name__ == "__main__": func_argparse.parse_and_call(get_main_parser())
cc_net-main
cc_net/mine.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # """ Creates mono-lingual corpus from Wikipedia. """ import functools import re import subprocess import urllib.request from pathlib import Path from typing import Dict import func_argparse from bs4 import BeautifulSoup # type: ignore from cc_net import jsonql, text_normalizer CIRRUS_URL = "https://dumps.wikimedia.org/other/cirrussearch" CIRRUS_DUMP_RE = re.compile(r"^(.*)wiki-\d+-cirrussearch-content\.json\.gz") def tmp(file: Path) -> Path: return file.parent / ("tmp." + file.name) def opening(file: Path, output: Path = None, n_docs: int = 1_000_000): """Will dump the tokenized opening text of the given Wikipedia. Args: - file: File containing the Wikipedia dump. - output: Output file. - n_docs: How many docs to parse - tokenize: whether to tokenize the text - lang: Language code used to chose the tokenizer """ assert file.exists() return jsonql.run_pipes( functools.partial(extract_opening_text, n_docs=n_docs), file=file, output=tmp(output) if output else None, ) if output: tmp(output).replace(output) def extract_opening_text(source, n_docs: int = 10_000): i = 0 for doc in jsonql.read_jsons(source): if not doc: continue text = doc.get("opening_text") if not text: continue yield text_normalizer.normalize(text) i += 1 if i >= n_docs: break def dl(lang: str, output_dir: Path, date: str = None): """Download the cirrus extract for the given lang. See https://dumps.wikimedia.org/other/cirrussearch for the full list of files. Args: - lang: The Wikipedia code for the language. - output_dir: Output directory. File will be `{lang}.json.gz` - date: Date of a specific Cirrus dump. """ urls = get_cirrus_urls(date) assert ( lang in urls ), f"--lang {lang} not found. Available languages are: {urls.keys()}" assert output_dir, "--output_dir folder needed." output_dir.mkdir(exist_ok=True) output = output_dir / (lang + ".json.gz") print(f"Downloading {lang} wiki from {urls[lang]} to {output}") wget(urls[lang], output) def get_cirrus_urls(date: str = None) -> Dict[str, str]: if date is None: cirrus_page = BeautifulSoup( urllib.request.urlopen(CIRRUS_URL), features="html.parser" ) dumps = [a.get("href").strip("/") for a in cirrus_page.findAll("a")] dumps.remove("..") dumps.remove("current") # We take the oldest dump since the most recent might be incomplete. # The page only link to the N latest dumps so the dump won't be too old. date = min(dumps) cirrus_url = "/".join((CIRRUS_URL, date)) print("Will use the Wikipedia dump from:", date, cirrus_url) cirrus_page = BeautifulSoup( urllib.request.urlopen(cirrus_url), features="html.parser" ) urls = {} for link in cirrus_page.findAll("a"): match = CIRRUS_DUMP_RE.match(link.get("href")) if not match: continue urls[match.group(1)] = "/".join([cirrus_url, link.get("href")]) assert urls, f"No valid download urls found at {cirrus_url}" return urls def wget(url: str, output: Path): subprocess.run(["wget", url, "-O", tmp(output), "-q"], check=True) tmp(output).replace(output) assert ( output.stat().st_size > 10_000 ), f"File {output} downloaded from {url} looks too small" if __name__ == "__main__": func_argparse.main(dl, opening)
cc_net-main
cc_net/get_wiki_cirrus.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # """ Manipulate files containing one json per line. """ import argparse import collections import contextlib import functools import glob import gzip import importlib import inspect import io import itertools import json import logging import multiprocessing import os import re import sys import tempfile import time import typing as tp import warnings import zlib from pathlib import Path from typing import ( Callable, Dict, Iterable, Iterator, List, Optional, Sequence, TextIO, Tuple, Union, ) import numpy as np import psutil # type: ignore import requests from typing_extensions import Protocol logging.basicConfig( level=logging.INFO, format="%(asctime)s %(levelname)s %(process)d:%(name)s - %(message)s", datefmt="%Y-%m-%d %H:%M", ) NEWLINE = " N3WL1N3 " FilterFn = Callable[[dict], bool] FileDescriptor = Union[Path, List[Path], str] WritableFileLike = Union[FileDescriptor, TextIO, "SimpleIO", None] ReadableFileLike = Union[Iterable[str], FileDescriptor, None] def io_parser(): """Parser shared by all commands to get input/output files.""" parser = argparse.ArgumentParser(add_help=False) file_help = """File to read from. Can be specified several times for several files. Be careful that bash will expand glob patterns **before** sending the args to python. To use globs put it inside single quotes: jsonql where --file 'data/perplexity/*.json' '{length} > 100' | head -1 jsonql --file 'data/perplexity/*.json' where '{length} > 100' | head -1 [Invalid] jsonql where '{length} > 100' --file data/perplexity/*.json | head -1 [Invalid] jsonql where --file data/perplexity/*.json '{length} > 100' | head -1 """ parser.add_argument("-f", "--file", type=Path, action="append", help=file_help) parser.add_argument("-o", "--output", type=Path, default="-") parser.add_argument("--processes", type=int, default=1) return parser def get_parser(): parser = argparse.ArgumentParser( description="Read a set of json files and allow to query them" ) subparsers = parser.add_subparsers() def add_subparser(function, arguments): doc = function.__doc__.split("\n")[0] p = subparsers.add_parser(function.__name__, help=doc, parents=[io_parser()]) p.set_defaults(command=function) for k, v in arguments.items(): p.add_argument(k, **v) add_subparser( select, { "columns": dict(nargs="+", help="Extract the value of the given fields"), "--skip_empty": dict( action="store_true", help="Skip lines without the requested fields" ), "--separator": dict( default="\t", help="Separator to use between the different columns" ), "--newline": dict( default=NEWLINE, help="Replace newlines found in the text by the given string", ), }, ) add_subparser( where, { "clauses": dict(nargs="+", help=""), "--requires": dict( action="append", help="Python module required by the clauses code." ), }, ) add_subparser( merge, { "columns": dict(nargs="+", help=""), "--separator": dict( default="\t", help="Separator to use between the different columns" ), "--newline": dict( default=NEWLINE, help="Replace the given string by actual newlines" ), }, ) add_subparser( describe, { "columns": dict(nargs="*", help=""), "--bins": dict( default="auto", help="Number of bins for computing the histograms" ), "--cumulative": dict( action="store_true", help="Compute cumulative histograms" ), "--weights": dict(type=str, help="Column used to weight histograms"), }, ) add_subparser(split, {"--pattern": dict(type=str)}) add_subparser(shard, {}) return parser def _split_array(array, sep): last = 0 for i, x in enumerate(array): if x != sep: continue yield array[last:i] last = i + 1 if last != len(array): yield array[last:] def main(raw_args): parser = get_parser() pipeline = [] file = "-" output = "-" processes = 1 for args_group in _split_array(raw_args, "--"): args = vars(parser.parse_args(args_group)) command = args.pop("command") file = args.pop("file") or file output = args.pop("output") or output processes = args.pop("processes") or processes pipeline.append(as_pipe(command, args)) if not pipeline: parser.print_help() return run_pipes(*pipeline, file=Path(file), output=Path(output), processes=processes) class Transformer: """ Wrapper around functions transforming documents. This allows `run_pipes` to automatically parallelize the pipeline. Provides: * Automatic logging. Logging can be changed with the `summary` method. Loggin frequency with _log_freq (in second) or $JSONQL_LOG_FREQ env variable. * Automatic parallelization without pickling. The transformers are shared across processes, and the object is usually not pickled. * Basic pickling / unpickling in case it's still needed. By default will only pickle the arguments passed to the constructor. * Delayed initialization. Internal state which is not pickable should be set inside the `_prepare` function. """ parallelisable: bool = True expect_json: bool = False warn_when_pickling: bool = False ready: bool = False def __init_subclass__(cls, expect_json: bool = None): """Detects if the subclass expects json as input.""" spec = inspect.getfullargspec(cls.do) if expect_json is None: expect_json = spec.annotations.get(spec.args[1], None) == dict cls.expect_json = expect_json def __new__(cls, *args, **kwargs): """Creates the transformer and save the arguments passed to the constructor.""" t = super().__new__(cls) Transformer.__init__(t, args, kwargs) return t def __init__(self, state_args: tuple = None, state_kwargs: dict = None): """ Init the transformer counters. If state_args/state_kwargs are set they will override whatever was originally passed to the subclass constructor. """ if state_args is not None: self.__args = state_args if state_kwargs is not None: self.__kwargs = state_kwargs self.start_time = time.time() self.__last_log = self.start_time self.processed = 0 # Log every 5 min unless specified other wise. self._log_freq = int(os.environ.get("JSONQL_LOG_FREQ", 5 * 60)) self.__cls = type(self) self._logger = logging.getLogger(self.__cls.__name__) def __call__(self, x): assert self.ready, f"{self} is not ready." if x is None: return y = self.do(x) self.processed += 1 if time.time() - self.__last_log > self._log_freq: self.log_summary() return y def do(self, x): raise NotImplementedError(f"'do' not implemented in {type(self)}") def summary(self) -> List[str]: return [self.speed_summary()] def speed_summary(self) -> str: delay = time.time() - self.start_time h = delay / 3600 s = self.processed / delay return f"Processed {self.processed:_} documents in {h:.2}h ({s:5.1f} doc/s)." def log(self, message): self._logger.info(message) def log_summary(self) -> None: if not self.ready: self.log("Not ready.") return summ = self.summary() or [] for line in summ: self.log(line) self.__last_log = time.time() def map(self, source: Iterable) -> Iterator: if self.ready: for x in source: yield self(x) # since we have been prepared by caller, # caller is also responsible for calling `close`. return else: with self: for x in source: yield self(x) def __getstate__(self) -> Tuple[tuple, dict, bool]: return (self.__args, self.__kwargs, self.expect_json) def __setstate__(self, state: Tuple[tuple, dict, bool]): if self.warn_when_pickling: warnings.warn(f"Unpickling transformer: {type(self)}. This can be slow.") (args, kwargs, expect_json) = state # When unpickling `__new__` isn't called so we have to doit ourselves. Transformer.__init__(self, state_args=args, state_kwargs=kwargs) type(self).__init__(self, *args, **kwargs) assert self.expect_json == expect_json # __setstate__ is called by multiprocessing right before calling # the object so we need to initialize everything. self.__enter__() def _prepare(self) -> None: pass def __enter__(self) -> "Transformer": # In multiprocessing __enter__ is always called twice, so we are idempotent. # Because we call __enter__ when deserializing this transformer and # also when the parent transformer is deserialized. self.start_time = time.time() if self.ready: return self self._prepare() self.ready = True return self def __exit__(self, *args) -> None: self.close() self.log_summary() def close(self) -> None: pass def as_pipe(transformer, kwargs): if isinstance(transformer, type): return transformer(**kwargs) return lambda source: transformer(source, **kwargs) def compose(fns: List[Transformer]) -> Transformer: if len(fns) == 1: return fns[0] return MultiTransformer(fns) class MultiTransformer(Transformer): def __init__(self, transformers: List[Transformer]): super().__init__() self.transformers = transformers def __repr__(self) -> str: pipeline = " | ".join(type(t).__name__ for t in self.transformers) return f"<{pipeline}>" def do(self, x): for t in self.transformers: x = t(x) return x def _prepare(self): for t in self.transformers: t.__enter__() return self def __exit__(self, *args): for t in self.transformers: t.__exit__(*args) def summary(self): return itertools.chain(*(t.summary() for t in self.transformers)) class Mapper(Transformer): def __init__(self, fn): super().__init__() self.fn = fn def do(self, x): return self.fn(x) def run_pipe( command, kwargs: dict = None, file: ReadableFileLike = None, output: WritableFileLike = None, ): kwargs = kwargs or {} if isinstance(kwargs, argparse.ArgumentParser): kwargs = vars(kwargs.parse_args()) file = file or Path(kwargs.pop("file", "-")) output = output or Path(kwargs.pop("output", "-")) return run_pipes(as_pipe(command, kwargs), file=file, output=output) def run_pipes( *fns: Union[Transformer, Callable[[Iterable], Iterable]], inputs: Iterable[dict] = None, file: ReadableFileLike = None, output: WritableFileLike = None, processes: int = 1, chunksize: int = 10_000, ): """ Run full document processing pipeline. - fns: list of functions to run over the documents. Can be: * `Iterable -> Iterable` function * jsonql.Transformer instance Using transformers allow the pipeline to process documents in parallel. - inputs: iterable to read the documents from - file: if inputs is not given, will read documents from this file. - output: writable file like. - processes: number of processes to use. -1 means all CPU available. - chunksize: chunksize for multiprocessing.Pool.imap_unordered """ expect_json = len(fns) and isinstance(fns[0], Transformer) and fns[0].expect_json if expect_json and inputs is None: fns = (JsonReader(),) + fns transformers = [] for t in fns: if not isinstance(t, Transformer): break if not t.parallelisable: break transformers.append(t) pipes = fns[len(transformers) :] log = logging.getLogger(__name__).info if inputs is None: data: Iterable = open_read(file) else: data = inputs if processes == -1: processes = os.cpu_count() or 0 with contextlib.suppress(BrokenPipeError), contextlib.ExitStack() as stack: if transformers: log(f"preparing {transformers}") transform = stack.enter_context(compose(transformers)) if processes <= 1: data = transform.map(data) else: p = multiprocessing.current_process() log(f"Will start {processes} processes from {p.name}, Pid: {p.pid}") pool = stack.enter_context( multiprocessing.Pool( processes=processes, initializer=_set_global_transformer, initargs=(transform,), ) ) data = pool.imap_unordered( _global_transformer, data, chunksize=chunksize ) for fn in pipes: if isinstance(fn, Transformer): data = fn.map(data) else: data = fn(data) write_jsons(data, output) # Allows to share transformer acroos subprocess. # Used by `run_pipes` _GLOBAL_TRANSFORMER: Optional[Transformer] = None def _set_global_transformer(transformer: Transformer): global _GLOBAL_TRANSFORMER p = multiprocessing.current_process() logging.info( f"Started subprocess {p.name}:{p.pid} from {os.getppid()} for {transformer}" ) assert transformer.ready, f"{transformer} isn't ready" _GLOBAL_TRANSFORMER = transformer def _global_transformer(document: str) -> Optional[dict]: assert _GLOBAL_TRANSFORMER is not None return _GLOBAL_TRANSFORMER(document) def lines(file: ReadableFileLike) -> Iterator[str]: return (line.strip("\n") for line in open_read(file)) def read_jsons(file: ReadableFileLike, strict=False) -> Iterator[dict]: reader = JsonReader(strict=strict) lines = open_read(file) for line in lines: if line is None: continue yield reader(line) reader.log_summary() def write_jsons(source: Iterable[dict], file: WritableFileLike) -> None: eol = os.linesep with open_write(file) as o: for res in source: if res is None: continue if isinstance(res, dict): json.dump(res, o, ensure_ascii=False) o.write(eol) continue if isinstance(res, str): res = res.rstrip("\n") print(res, file=o) class JsonReader(Transformer): def __init__(self, strict: bool = False): super().__init__() self.ready = True self.strict = strict self.num_errors = 0 def do(self, line: str) -> Optional[dict]: if line is None: return None if isinstance(line, dict): return line line = line.rstrip("\n") if not line: return None try: return json.loads(line) except json.decoder.JSONDecodeError as e: self.log_error(e) if self.strict: raise return None def log_error(self, e: json.decoder.JSONDecodeError): self.num_errors += 1 if self.num_errors > 10: return MAX_LEN = 80 snippet, snippet_len = e.doc, len(e.doc) col = e.pos if snippet_len > MAX_LEN: if col < MAX_LEN: start = 0 elif snippet_len - col < MAX_LEN: start = snippet_len - MAX_LEN else: start = col - MAX_LEN // 2 snippet = e.doc[start : start + MAX_LEN] col = col - start logging.warning( "\n".join( [ f"Invalid json (length={len(e.doc)}) {e}", snippet, " " * (col - 1) + "^", ] ) ) def summary(self): summ = super().summary() if self.num_errors > 0: summ.append(f"Skipped {self.num_errors} invalid json.") return summ def compile_column(column, newline): if callable(column): return column if column == "*": return json.dumps if re.match(r"[_a-z][_a-z0-9]*", column): def extract_col(doc): v = doc.get(column, "") if isinstance(v, str) and newline != "\n": v = v.rstrip("\n").replace("\n", newline) return v return extract_col return compile_expr(column) def select(lines, columns, skip_empty=False, separator="\t", newline="\n"): """Yields the content of the requested columns.""" column_parsers = [compile_column(c, newline) for c in columns] for doc in read_jsons(lines): values = [] empty = True for parse_col in column_parsers: v = parse_col(doc) values.append(str(v) or "") empty = empty and v is None if skip_empty and empty: continue yield separator.join(values) def compile_expr(clause: Union[str, FilterFn], requires: List[str] = None): if not isinstance(clause, str): return clause args_re = r"(?i:\{([_a-z][_a-z0-9]*)\})" args_list = list(re.findall(args_re, clause)) if not args_list: # This is only a warning because you may want to have eg random sampling # that doesn't depend on the document. logging.warn( f"Warning: No variable found in expression: <{clause}>\n" "Variables should be written inside braces, eg: {language}=='en'" ) python_like = re.sub(args_re, r"doc.get('\1', None)", clause) requires = requires or [] modules = {r: importlib.import_module(r) for r in requires} return eval(f"lambda doc: {python_like}", modules) class where(Transformer): """Filters the data using python code. Ex: `jsonql where 'len({text}) > 100'` """ def __init__( self, clauses: Sequence[Union[str, FilterFn]], requires: List[str] = [] ): super().__init__() self.raw_clauses = clauses self.requires = requires self.n_selected = 0 self.clauses: List[FilterFn] = [] def _prepare(self): self.clauses = [compile_expr(c, self.requires) for c in self.raw_clauses] def do(self, doc: dict) -> Optional[dict]: assert self.clauses if not doc or not all((c(doc) for c in self.clauses)): return None self.n_selected += 1 return doc def summary(self): n_selected, n_docs = self.n_selected, self.processed selectivity = n_selected / n_docs if n_docs else 0 return [f"Selected {n_selected} documents out of {n_docs} ({selectivity:5.1%})"] def merge(lines, columns, separator="\t", newline=NEWLINE): """Reads tab separated columns and output a json using the given headers. Headers are of form {key}[%{type}] {type} can be one of {"f": float, "i": int, "b": bool, "s": string}. Default type is string. A special header "_" means interpret this column as json, and append all other columns to it. Must appear only once and on last position. Ex: `echo '1\thello' | jsonql merge n t` --> `{"n": "1", "t": "hello"}` `echo '1\thello" | jsonql merge n%i t` --> `{"n": 1, "t": "hello"}` `echo '1\thello\t{"f": "bar"}' | jsonql merge n%i t _` --> `{"n": 1, "t": "hello", "f": "bar"}` """ handle_newlines = lambda s: s.replace(newline, "\n") type_mapping: Dict[str, Callable] = { "f": float, "i": int, "b": bool, "s": handle_newlines, } type_parsing = [ type_mapping.get(f.split("%")[-1], handle_newlines) for f in columns ] columns = [f.split("%")[0] for f in columns] doc_index = columns.index("_") if "_" in columns else -1 read_json = JsonReader() def parse(line): parts = line.split(separator, len(columns) - 1) doc: Dict[str, tp.Any] = {} for i, value in enumerate(parts): if columns[i] == "_": doc.update(read_json(parts[doc_index])) else: try: doc[columns[i]] = type_parsing[i](value) except ValueError: logging.error( f"Error when parsing column {i} of line: {line[:100]}..." ) return doc for line in lines: yield json.dumps(parse(line)) class split(Transformer): """Split a files in several smaller files based on the value of a field.""" # Not parallelisable since we are writing to files. parallelisable = False def __init__( self, pattern: Union[Path, str] = None, split_fn: Callable[[dict], str] = None, mkdir: bool = False, ): super().__init__() assert not ( pattern and split_fn ), "split can't have both a pattern and a split_fn" if split_fn is not None: self.split_fn = split_fn else: assert pattern, "split need either a pattern or a split_fn" self.split_fn = self.make_split_fn(str(pattern)) self.mkdir = mkdir self.o: dict = {} def make_split_fn(self, pattern: str) -> Callable[[dict], str]: candidates = list(re.findall(r"(?i:\{([_a-z][_a-z0-9]*)\})", pattern)) return lambda doc: pattern.format(**{c: doc[c] for c in candidates}) def do(self, doc): filename = self.split_fn(doc) if not filename: return o = self.o.get(filename, None) if o is None: if self.mkdir: Path(filename).parent.mkdir(parents=True, exist_ok=True) self.o[filename] = open_write(filename) print(json.dumps(doc, ensure_ascii=False), file=self.o[filename], flush=True) def summary(self): summ = super().summary() summ.append(f"Found {len(self.o)} splits.") return summ def close(self): for file in self.o.values(): file.close() def histogram(values, bins, weights): hist, bins = np.histogram(values, bins=bins) # n_bins = len(hist) if weights is not None: # Bins can't be auto-determined if weights is supplied. # So we first compute the bins without the weights then recompute # the histogram with the weights. hist, bins = np.histogram(values, bins=bins, weights=weights) # cumsum = np.cumsum(hist) # total = cumsum[-1] # for i in range(n_bins - 1): # if cumsum[i] / total > 0.9: # useful_range = np.linspace(bins[0], bins[i + 1], n_bins) # new_bins = np.append(useful_range, [bins[-1]]) # return np.histogram(values, bins=new_bins, weights=weights) return hist, bins def _parse_bins(bins): try: if isinstance(bins, str): if "," in bins: bins = [int(b) for b in bins.split(",")] else: bins = int(bins) except ValueError: pass return bins ALL_DOCUMENTS = "<ALL_DOCUMENTS>" MAX_LABEL_LEN = 100 def bar_chart(hist, bins): n = sum(hist) max_h = max(hist) out = [] for i, h in enumerate(hist): h_size = 80 * h // max_h dh_size = 80 * (h - hist[i - 1]) // max_h if h_size == 0 or dh_size == 0: continue bar = "█" * h_size out.append(f"{bins[i]:8.3f} {bar:80} ({h:5d}, {h / n:5.1%}) {bins[i+1]:8.3f}") out.append(f"{bins[-1]:8.3f}") return out def display_stats(stats, key, weights=None, bins="auto", cumulative=False): out = [] documents = stats[ALL_DOCUMENTS] count = stats.get(key, 0) r = count / documents if documents else 0 out.append(f"Field {key} saw {count} times ({r:5.1%})") length = stats.get(key + ".length", None) avg_length = length // count if length else 0 if length is not None: out[-1] += f", average length is {length // count}" values = stats.get(key + ".val", None) if values: out[-1] += f", histogram is: (bins={bins})" if weights: if weights not in stats: logging.warn(f"Warning: weights column {weights} not found.") if weights + ".val" not in stats: logging.warn( f"Warning: weights column {weights} is not a numeric column." ) weights = stats.get(weights + ".val") hist, bins = histogram(values, _parse_bins(bins), weights) if cumulative: hist = np.cumsum(hist) out += bar_chart(hist, bins) cnt = stats.get(key + ".cnt", None) if avg_length < MAX_LABEL_LEN and cnt and max(cnt.values()) > 1: cnt = sorted(cnt.items(), key=lambda kv: kv[1], reverse=True) out[-1] += ", top 100 labels:" for label, n in cnt[:100]: if n < 5: continue out.append(f"{label:25}: {n:6} ({n / count:5.1%})") return out def describe(source, columns=None, weights=None, **kwargs): """Compute some statistics about a dataset. Stats can be restricted to a subset of columns.""" MAX_HIST_SIZE = 100_000_000 MAX_CNT_SIZE = 1000 stats = {ALL_DOCUMENTS: 0} needed = columns + [weights] if columns else None for doc in read_jsons(source): stats[ALL_DOCUMENTS] += 1 for k, v in doc.items(): if needed and k not in needed: continue stats[k] = get_or_set(stats, k, 0) + 1 if isinstance(v, str): stats[k + ".length"] = get_or_set(stats, k + ".length", 0) + len(v) if len(v) > MAX_LABEL_LEN: # Don't treat too long string as labels continue cnt = get_or_set(stats, k + ".cnt", collections.defaultdict(int)) if v in cnt or len(cnt) < MAX_CNT_SIZE: cnt[v] += 1 elif type(v) in (int, float): values = get_or_set(stats, k + ".val", []) if len(values) < MAX_HIST_SIZE: values.append(v) elif type(v) is list and len(v) and type(v[0]) in (int, float): values = get_or_set(stats, k + ".val", []) if len(values) < MAX_HIST_SIZE: values += v elif type(v) is dict: cnt = get_or_set(stats, k + ".cnt", collections.defaultdict(int)) for label in v: if label in cnt or len(cnt) < MAX_CNT_SIZE: cnt[label] += 1 documents = stats[ALL_DOCUMENTS] yield f"Stats computed on {documents} documents:" for k in stats: if columns and k not in columns: continue if "." in k or k == ALL_DOCUMENTS: continue for line in display_stats(stats, k, weights=weights, **kwargs): yield line def shard(lines): """Shard a file in several smaller ones.""" # The creation of the shard is handle in a generic way. Do we need this ? return lines # *** Utils *** def get_or_set(dictionary, key, default): if key not in dictionary: dictionary[key] = default return dictionary[key] class SimpleIO(Protocol): """A subset of methods from TextIO.""" def close(self) -> None: ... def write(self, line: str) -> int: ... def __enter__(self) -> "SimpleIO": ... def __exit__(self, exc_type, exc_value, traceback): ... def open_read(filename: ReadableFileLike) -> Iterable[str]: """Open the given file, list of files or files matching the given glob and read lines. `filename` is None or "-" -> reads from stdin `filename` is a Path / str -> interprets filename as a glob and open files matching it `filename` is a list -> opens sequentially all files from the list using `open_read` `filename` is something else -> returns the object wrapped in a `nullcontext` This allows to pass already openened files or iterables. `open_read` will decompress gzip files, given they have ".gz" suffix. """ if filename is None: return sys.stdin if isinstance(filename, list): assert isinstance(filename[0], Path) if len(filename) == 0: return [] if len(filename) > 1: return _yield_from(filename) filename = tp.cast(Path, filename[0]) if isinstance(filename, str): if filename.startswith("http://") or filename.startswith("https://"): return open_remote_file(filename) filename = Path(filename) if not isinstance(filename, Path): # we might have received an iterable, return it unmodified. return filename # type: ignore # Expand glob patterns only when reading files = [Path(f) for f in sorted(glob.glob(str(filename)))] if len(files) > 1: return _yield_from(files) if len(files) == 1: filename = files[0] assert isinstance(filename, Path) if filename.name.endswith("]"): return block_reader(filename) logging.getLogger(__name__).info(f"Opening {filename} with mode 'rt'") if filename.suffix == ".gz": file: TextIO = gzip.open(filename, "rt") # type: ignore else: file = open(filename, "rt") return _close_when_exhausted(file) def _close_when_exhausted(file: TextIO) -> Iterable[str]: with file: yield from file def _yield_from(files: list) -> Iterable[str]: for file in files: yield from open_read(file) def open_write( filename: WritableFileLike, max_size: str = "4G" ) -> tp.ContextManager[TextIO]: """Open the given file, list of files or files matching the given glob. The return value is a ContextManager meant to be used inside a `with` block: ``` with open_write("foo.txt") as o: ... Write mode: replaces "?" from filename by numbers ranging from 0 to 9, generatings files of size `max_size`. If filename ends with ".gz", creates a blocked gzip file with random access. """ if filename is None: return contextlib.nullcontext(sys.stdout) if isinstance(filename, list): if len(filename) > 1: return MultiFile(filename, "w", max_size) else: filename = tp.cast(Path, filename[0]) if isinstance(filename, str): filename = Path(filename) if not isinstance(filename, Path): assert hasattr(filename, "write"), f"{filename} doesn't have a .write method." # We return a 'TextIO' even though we only check for `.write` method, # this works better with eg `print`. return contextlib.nullcontext(tp.cast(TextIO, filename)) mode = "wt" if "?" in filename.name: return sharded_file(filename, mode, max_size) logging.getLogger(__name__).info(f"Opening {filename} with mode {mode}") # TODO: should we use another format ? if filename.suffix == ".gz": return BlockedGzipWriter(Path(filename), mode, block_size="64M") return open(filename, "wt") def parse_size(size): unit_map = {"B": 1, "K": 1024, "M": 1024 ** 2, "G": 1024 ** 3} unit = size[-1].upper() assert ( unit in unit_map ), f"Unsupported size unit for {size}. Use one of: {unit_map.keys()}." return int(size[:-1]) * unit_map[unit] class MultiFile(SimpleIO): def __init__(self, files: Iterable[Path], mode="w", max_size="4G"): self.name = str(files) self.mode = mode self.files = iter(files) self.max_size = parse_size(max_size) self.current_handle: Optional[TextIO] = None self.current_block_size = 0 self._open_next_handle() # Opening 1st handle allows to write directly. def write(self, content) -> int: # Avoid splitting newlines to a new file. # use current_block_size since it's faster than `tell()` if content != "\n" and self.current_block_size >= self.max_size: self._open_next_handle() if self.current_handle is None: raise Exception("No more files to write to...") written = self.current_handle.write(content) self.current_block_size += written return written def _open_next_handle(self) -> bool: self.close() file = next(self.files, None) if file is None: return False self.current_handle = open_write(file).__enter__() self.current_block_size = 0 return True def __enter__(self): return self def __exit__(self, *exc_info): self.close() @property def closed(self): return self.current_handle is None def close(self): if self.current_handle is None: return # log("Closing", self.current_handle.name, "with mode", self.current_handle.mode) self.current_handle.__exit__(None, None, None) self.current_handle = None # not sure it helps since connections are reseted anyway. _session = functools.lru_cache()(requests.Session) def request_get_content(url: str, n_retry: int = 3) -> bytes: """Retrieve the binary content at url. Retry on connection errors. """ t0 = time.time() logging.info(f"Starting download of {url}") for i in range(1, n_retry + 1): try: r = _session().get(url) r.raise_for_status() break except requests.exceptions.RequestException as e: # Sleep and try again on error, unless it's a 404. message = e.args[0] if isinstance(e.args[0], str) else "" if i == n_retry or "Client Error" in message: raise e warnings.warn( f"Swallowed error {e} while downloading {url} ({i} out of {n_retry})" ) time.sleep(10 * 2 ** i) dl_time = time.time() - t0 dl_speed = len(r.content) / dl_time / 1024 logging.info( f"Downloaded {url} [{r.status_code}] took {dl_time:.0f}s ({dl_speed:.1f}kB/s)" ) return r.content def open_remote_file(url: str, cache: Path = None) -> Iterable[str]: """Download the files at the given url to memory and opens it as a file. Assumes that the file is small, and fetch it when this function is called. """ if cache and cache.exists(): return open_read(cache) # TODO: open the remote file in streaming mode. # The hard part is that we need to write the content on disk at the same time, # to implement disk caching. raw_bytes = request_get_content(url) content = io.BytesIO(raw_bytes) if url.endswith(".gz"): f: TextIO = gzip.open(content, mode="rt") # type: ignore else: f = io.TextIOWrapper(content) if cache and not cache.exists(): # The file might have been created while downloading/writing. tmp_cache = _tmp(cache) tmp_cache.write_bytes(raw_bytes) if not cache.exists(): tmp_cache.replace(cache) else: tmp_cache.unlink() return _close_when_exhausted(f) def sharded_file(file_pattern: Path, mode: str, max_size: str = "4G") -> MultiFile: folder, name = file_pattern.parent, file_pattern.name assert "?" in name, f"Can't expand give file_pattern: {file_pattern}" n = name.count("?") assert 0 < n < 8 assert "?" * n in name, f"The '?' need to be adjacents in {file_pattern}" assert "r" not in mode files = (folder / name.replace("?" * n, f"%0{n}d" % i) for i in range(10 ** n)) return MultiFile(files, mode, max_size) class SplitFile: def __init__(self, filename: Path, chunk: int, n_chunks: int, mode: str = "r"): assert mode == "r" size = os.path.getsize(filename) self.handle = open(filename, mode) start = chunk * size // n_chunks self.end: int = (chunk + 1) * size // n_chunks if start > 0: self.handle.seek(start - 1) # Skip incomplete line. This avoid crashing when reading eg the middle # of a unicode char. `self.handle.buffer` is a binary file reader. self.handle.buffer.readline() # type: ignore def __enter__(self): return self def __iter__(self): while True: line = self.handle.readline() if not line: return yield line if self.handle.tell() >= self.end: return def readlines(self): return list(self.__iter__()) def close(self): self.handle.close() def __exit__(self, *args): self.close() def get_block_readers(filename: Path, n_readers, mode="t"): index_filename = filename.parent / (filename.name + ".index") if not index_filename.exists(): return [gzip.open(filename, "r" + mode)] index: List[int] = np.load(index_filename) n_chunks = len(index) chunk_per_reader = int(np.ceil(n_chunks / n_readers)) n_readers = int(np.ceil(n_chunks / chunk_per_reader)) start = 0 readers = [] for i in range(n_readers): end = index[min((i + 1) * chunk_per_reader - 1, n_chunks - 1)] r = _blocked_gzip_reader(filename, start, end, mode) readers.append(r) start = end return readers def block_reader(filename: Path) -> Iterable[str]: root, pattern = str(filename)[:-1].split("[", 1) assert root.endswith(".gz"), "Can only read block of a .gz file for now." ii, nn = pattern.strip().split("/") i, n_readers = int(ii), int(nn) index_filename = root + ".index" assert os.path.exists( index_filename ), f"Index {index_filename} not found for {filename}" index: List[int] = np.load(index_filename) n_chunks = len(index) chunk_per_reader = int(np.ceil(n_chunks / n_readers)) n_readers = int(np.ceil(n_chunks / chunk_per_reader)) # I'm not sure how to handle the case where there is less reader than expected. # Currently we return empty readers. start = 0 if i > 0: start = index[min((i - 1) * chunk_per_reader, n_chunks - 1)] end = index[min(i * chunk_per_reader, n_chunks - 1)] return _blocked_gzip_reader(root, start, end, mode="t") def _blocked_gzip_reader(filename, start, end, mode="t") -> Iterable[str]: handle = gzip.open(filename, "r" + mode) handle.seek(start) try: while handle.tell() < end: line = handle.readline() if not line: break yield line finally: handle.close() class BlockedGzipWriter(MultiFile): """Writes a Gzip files which can be read by block. Decreasing the block size may hurt compression, but provides more split points. """ def __init__(self, filename: Path, mode: str, block_size: str = "256M"): assert "w" in mode self.filename = Path(filename) self.index: List[int] = [] self.zipfile: Optional[gzip.GzipFile] = None super().__init__([], mode, block_size) def _open_next_handle(self) -> bool: """Here we never actually close/open handles, we just write the end of block sequence.""" if not self.current_handle: mode = self.mode + "t" self.current_handle = tp.cast(TextIO, gzip.open(self.filename, mode)) assert isinstance(self.current_handle.buffer, gzip.GzipFile) self.zipfile = self.current_handle.buffer return True # Use Z_FULL_FLUSH to allow random access: # https://github.com/madler/zlib/blob/cacf7f1d4e3d44d871b605da3b647f07d718623f/zlib.h#L313 self.current_handle.buffer.flush(zlib_mode=zlib.Z_FULL_FLUSH) # type: ignore self.index.append(self.current_handle.tell()) self.current_block_size = 0 return True def flush(self): assert self.current_handle is not None self.current_handle.flush() def close(self): if self.current_handle is None: return self.current_handle.flush() self.index.append(self.current_handle.tell()) self.current_handle.close() self.current_handle = None index = np.array(self.index, dtype=np.uint64) with open(str(self.filename) + ".index", "wb") as o: np.save(o, index) def grouper(iterable, n): group = [] for x in iterable: group.append(x) if len(group) == n: yield group group = [] if group: yield group PROCESS = psutil.Process() def mem_footprint_gb(pid=None): rss = PROCESS.memory_info().rss return rss / 1_000_000_000 def _tmp(output: Path) -> Path: suffix = "".join(output.suffixes) suffix = ".tmp" + suffix prefix = output.name[: -len(suffix)] _, tmp_path = tempfile.mkstemp(dir=output.parent, prefix=prefix, suffix=suffix) return Path(tmp_path) @functools.lru_cache() def _tmp_dir() -> Path: job_id = os.environ.get("SLURM_JOB_ID") if job_id: return Path("/scratch/slurm_tmpdir") / job_id checkpoint = Path("/checkpoint") / os.environ.get("USER", "") if checkpoint.exists(): tmp = checkpoint / "tmp" tmp.mkdir(exist_ok=True) return tmp return Path("/tmp") if __name__ == "__main__": multiprocessing.set_start_method("fork") main(sys.argv[1:])
cc_net-main
cc_net/jsonql.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import functools import itertools import logging import os import sys import time import warnings from pathlib import Path from typing import Callable, Dict, Iterable, List, Optional, Sequence, Sized import submitit from typing_extensions import Protocol class Executor(Protocol): def __call__(self, function: Callable[..., str], *args: Iterable) -> None: ... class SubmititRetryOnTimeout(submitit.helpers.Checkpointable): def __init__(self, fn: Callable): self.fn = fn self.__name__ = fn.__name__ def __call__(self, *args, **kwargs): return self.fn(*args, **kwargs) def get_executor( name: str, log_dir: Path, execution: str, timeout_hour: float = 1.0, mem_gb: int = 1, cpus: int = 1, task_parallelism: int = -1, options: dict = {}, ) -> Executor: execution_mode = execution.split(",")[0] options.update( {kv.split("=", 1)[0]: kv.split("=", 1)[1] for kv in execution.split(",")[1:]} ) if execution_mode == "mp": warnings.warn("Execution mode 'mp' is deprecated, use 'local'.") execution_mode = "local" cluster = None if execution_mode == "auto" else execution_mode # use submitit to detect which executor is available ex = submitit.AutoExecutor(log_dir, cluster=cluster) if ex.cluster == "local": # LocalExecutor doesn't respect task_parallelism return functools.partial(custom_map_array, ex, task_parallelism) if ex.cluster == "debug": return debug_executor # We are on slurm if task_parallelism == -1: task_parallelism = 500 ex.update_parameters( name=name, timeout_min=int(timeout_hour * 60), mem_gb=mem_gb, cpus_per_task=cpus, slurm_array_parallelism=task_parallelism, **options, ) return functools.partial(map_array_and_wait, ex) def map_array_and_wait( ex: submitit.AutoExecutor, function: Callable[..., str], *args: Iterable ): f_name = function.__name__ assert len(args) > 0, f"No arguments passed to {f_name}" approx_length = _approx_length(*args) print(f"Submitting {f_name} in a job array ({approx_length} jobs)") jobs = ex.map_array(function, *args) if not jobs: return failed_jobs = [] done = 0 total = len(jobs) job_array_id = jobs[0].job_id.split("_")[0] print(f"Started {f_name} in job array {job_array_id} ({len(jobs)} jobs).") for job in submitit.helpers.as_completed(jobs): done += 1 e = job.exception() if not e: print(f"Finished job {job.job_id} ({done} / {total}).", job.result()) continue print(f"Failed job {job.job_id} ({done} / {total}):", e) failed_jobs.append(job) if failed_jobs: n_failures = 10 message = f"{len(failed_jobs)} / {done} jobs failed while running {f_name}" print(message) for job in failed_jobs[:n_failures]: print(f"Failed {job.job_id} -> {job.paths.stderr}") if len(failed_jobs) > n_failures: print(f"... ({len(failed_jobs) - n_failures} failed job skipped)") raise Exception(message) def debug_executor(function: Callable[..., Optional[str]], *args: Iterable) -> None: logging.getLogger().setLevel(logging.DEBUG) approx_length = _approx_length(*args) for i, x in enumerate(zip(*args)): try: message = function(*x) except Exception: try: import ipdb as pdb # type: ignore except ImportError: import pdb # type: ignore import traceback traceback.print_exc() print("") pdb.post_mortem() sys.exit(1) if message is not None: print(message, f"({i + 1} / {approx_length})") def _approx_length(*args: Iterable): for a in args: if isinstance(a, Sized): return len(a) return -1 def custom_map_array( ex: submitit.AutoExecutor, parallelism: int, function: Callable[..., Optional[str]], *args: Iterable, ) -> None: f_name = function.__name__ assert len(args) > 0, f"No arguments passed to {f_name}" jobs_args = list(zip(*args)) total = len(jobs_args) if parallelism < 0: parallelism = os.cpu_count() or 0 assert parallelism >= 0, f"Can't run any jobs with task_parallelism={parallelism}" print(f"Submitting {total} jobs for {f_name}, with task_parallelism={parallelism}") enqueued = 0 done = 0 running_jobs: List[submitit.Job] = [] failed_jobs: List[submitit.Job] = [] while done < len(jobs_args): # Try to queue more job if we have some bandwidth. if enqueued < total and len(running_jobs) < parallelism: running_jobs.append(ex.submit(function, *jobs_args[enqueued])) enqueued += 1 continue # Else wait for some job to finish if not running_jobs: warnings.warn( f"No more running jobs, yet we submitted only {enqueued} / {total} and finished {done} / {total}" ) break job = get_next_job(running_jobs) running_jobs.remove(job) done += 1 e = job.exception() if not e: print(f"Finished job {job.job_id} ({done} / {total}).", job.result()) continue print(f"Failed job {job.job_id} ({done} / {total}):", e) failed_jobs.append(job) if failed_jobs: n_failures = 10 message = f"{len(failed_jobs)} / {done} jobs failed while running {f_name}" print(message) for job in failed_jobs[:n_failures]: print(f"Failed {job.job_id} -> {job.paths.stderr}") if len(failed_jobs) > n_failures: print(f"... ({len(failed_jobs) - n_failures} failed job skipped)") raise Exception(message) def get_next_job( jobs: Sequence[submitit.Job], poll_frequency: float = 10 ) -> submitit.Job: """ Waits for any of the job to finish and returns it. jobs: list of jobs poll_frequency: frequency in second at which we check job status """ start = time.time() waiting = False while True: for job in jobs: if job.done(): return job if not waiting: job_ids = [j.job_id for j in jobs[:4]] suffix = "..." if len(jobs) > 4 else "" print( f"Waiting on {len(jobs)} running jobs. Job ids: {','.join(job_ids)}{suffix}" ) waiting = True time.sleep(poll_frequency)
cc_net-main
cc_net/execution.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import sys import time import warnings from typing import Iterable, Iterator, Sequence, Sized, Tuple, Type import numpy as np HASH_TYPE: Type[np.uint64] = np.uint64 GETPY_WARNING = False class AbstractDedupHashSet(Sized, Iterable[np.uint64]): """A dict-like that returns `True` for keys that have been added more than once. The API is batched and expect np.array as input. This batching grants better perf when using the C++ implementation. """ dtype: Type[np.uint64] = HASH_TYPE def __repr__(self): implementation = type(self).__name__ return f"[{implementation}, len: {len(self)}" def __len__(self) -> int: ... def __contains__(self, values: Sequence[np.uint64]) -> np.ndarray: ... def __getitem__(self, values) -> np.ndarray: ... def __setitem__(self, keys, values) -> None: ... def items(self) -> Iterable[Tuple[np.uint64, np.uint8]]: ... def keys(self) -> Iterable[np.uint64]: ... def __iter__(self) -> Iterator[np.uint64]: return iter(self.keys()) def add(self, h, contains=None): """Add the given keys. First time a key is added the value is set to 0, then it's set to one.""" if not isinstance(h, np.ndarray): h = np.array(h, dtype=HASH_TYPE) if contains is None: contains = self.__contains__(h) self.__setitem__(h, contains) return contains def merge(self, keys, values): contains = self.__contains__(keys) self.__setitem__(keys, contains | values) def dump(self, filename): return self.dump_np(filename) def load(self, filename): return self.load_np(filename) def dump_np(self, filename): kv_type = np.dtype([("k", HASH_TYPE), ("v", np.uint8)]) items = np.fromiter(self.items(), dtype=kv_type, count=len(self)) with open(filename, "wb") as f: np.save(f, items) def load_np(self, filename): items = np.load(str(filename)) keys = items["k"].copy() values = items["v"].copy() self.merge(keys, values) def dump_np2(self, filename): keys = np.fromiter( (k for (k, v) in self.items()), dtype=HASH_TYPE, count=len(self) ) with open(filename, "wb") as f: np.save(f, keys) values = np.fromiter( (v for (k, v) in self.items()), dtype=np.uint8, count=len(self) ) with open(str(filename) + ".val", "wb") as f: np.save(f, values) def load_np2(self, filename): keys = np.load(filename) values = np.load(str(filename) + ".val") self.merge(keys, values) class NaiveHashSet(dict, AbstractDedupHashSet): """Pure python implementation of AbstractDedupHashSet. This implementation is quite fast, since Python dict are heavily optimized. """ def __init__(self, iterable=None): super().__init__() global GETPY_WARNING if GETPY_WARNING: warnings.warn( "Module 'getpy' not found. Deduplication will take more RAM." " Try `pip install cc_net[getpy]" ) GETPY_WARNING = False def __contains__(self, values): """Returns `True` if the object has been added at list once.""" contains_point = super().__contains__ return np.fromiter( map(contains_point, values), count=len(values), dtype=np.uint8 ) def __getitem__(self, values): """Returns `True` if the object has been added at list twice.""" get_point = super().get return np.fromiter( map(lambda x: get_point(x, False), values), count=len(values), dtype=np.uint8, ) def __setitem__(self, keys, values): assert len(keys) == len(values) for k, v in zip(keys, values): dict.__setitem__(self, k, v) try: import getpy as gp # type: ignore class _FlatHashSet(gp.Dict, AbstractDedupHashSet): """C++ backed implementation of AbstractDedupHashSet. This implementation is slightly slower than the Python one but uses 3x less RAM. See https://github.com/atom-moyer/getpy. """ def __init__(self): super().__init__(HASH_TYPE, np.uint8, default_value=False) def __contains__(self, h): """Returns `True` if the object has been added at list once.""" if not isinstance(h, np.ndarray): h = np.array(h, dtype=HASH_TYPE) c = gp.Dict.__contains__(self, h) c.dtype = np.uint8 return c def dump(self, filename): return self.dump_gp(filename) def load(self, filename): return self.load_gp(filename) def dump_gp(self, filename): return gp.Dict.dump(self, str(filename)) def load_gp(self, filename): """Override gp.Dict.load, to correctly merge values instead of overwriting.""" other = gp.Dict(HASH_TYPE, np.uint8, default_value=False) other.load(str(filename)) n = len(other) keys = np.fromiter( (k for (k, v) in other.items()), dtype=HASH_TYPE, count=n ) values = np.fromiter( (v for (k, v) in other.items()), dtype=np.uint8, count=n ) self.merge(keys, values) FlatHashSet: Type[AbstractDedupHashSet] = _FlatHashSet except ImportError: GETPY_WARNING = True FlatHashSet = NaiveHashSet def timeit(message, function, *args): start = time.time() function(*args) end = time.time() print(message, f"took {end - start:.0f}s") def compare_load(*filenames): assert filenames, "No file given" def load_list(): hashes = [] for f in filenames: h = FlatHashSet() h.load(f) print(f"Loaded {h} from {f}.") hashes.append(h) return hashes def load_all(load, ext): hashes = FlatHashSet() for f in filenames: load(hashes, f + ext) def dump_all(hashes, dump, ext): for h, f in zip(hashes, filenames): dump(h, f + ext) hashes = load_list() dump_gp = getattr(FlatHashSet, "dump_gp") if dump_gp is not None: timeit("Dumping using gp.dump", dump_all, hashes, dump_gp, ".gp.test") timeit("Dumping using dump_np", dump_all, hashes, FlatHashSet.dump_np, ".npy.test") timeit( "Dumping using dump_np2", dump_all, hashes, FlatHashSet.dump_np2, ".npy2.test" ) load_gp = getattr(FlatHashSet, "load_gp") if load_gp is not None: timeit("Loading using gp.load", load_all, load_gp, ".gp.test") timeit("Loading using load_np", load_all, FlatHashSet.load_np, ".npy.test") timeit("Loading using load_np2", load_all, FlatHashSet.load_np2, ".npy2.test") # Loading 10 shards: # [dedup] Dumping using gp.dump took 52s # [dedup] Dumping using dump_np took 270s # [dedup] Dumping using dump_np2 took 483s # # [dedup] Loading using gp.load took 654s # [dedup] Loading using load_np took 82s # [dedup] Loading using load_np2 took 76s if __name__ == "__main__": compare_load(*sys.argv[1:])
cc_net-main
cc_net/flat_hash_set.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import base64 import hashlib import itertools import urllib.parse from pathlib import Path from typing import Dict, Iterable, List, Optional, Sequence, Set, Union import numpy as np from cc_net import jsonql from cc_net.execution import get_executor from cc_net.jsonql import mem_footprint_gb HASH_SIZE = 4 HASH_TYPE = np.uint32 PUBLIC_FIELDS = ["url", "digest"] COMPUTED_FIELDS = ["cc_segment", "language", "language_score", "bucket", "perplexity"] DATA = Path(__file__).parent.parent / "data" # This is similar to dedup methods but with use 32 bits hashes. def _b2i(b: bytes) -> int: return np.frombuffer(b[:HASH_SIZE], dtype=HASH_TYPE, count=1, offset=0).item(0) def _str_hash(s: str) -> int: h = hashlib.sha1(bytes(s, encoding="utf-8")) return _b2i(h.digest()) def get_hashes(lines: Iterable[str]) -> List[bytes]: h = HASH_SIZE return [hashlib.sha1(bytes(l, encoding="utf-8")).digest()[:h] for l in lines] def encode_hashes(hashes: Iterable[bytes]) -> str: return base64.b64encode(b"".join(hashes)).decode("ascii") def encode_as_hashes(lines: Iterable[str]) -> str: return encode_hashes(get_hashes(lines)) def decode_hashes(compact: str) -> List[bytes]: all_hashes = base64.b64decode(compact) res = [] assert len(all_hashes) % HASH_SIZE == 0 for i in range(len(all_hashes) // HASH_SIZE): chunk = all_hashes[i * HASH_SIZE : (i + 1) * HASH_SIZE] res.append(chunk) return res def encode_line_ids(line_ids: Sequence[int]) -> str: arr = np.array(line_ids, dtype="<u2") return base64.b64encode(arr.tobytes()).decode("ascii") def decode_line_ids(compact: str) -> List[int]: ids_bytes = bytearray(base64.b64decode(compact)) return np.ndarray(len(ids_bytes) // 2, dtype="<i2", buffer=ids_bytes) def get_doc_key(digest: str) -> int: assert digest.startswith("sha1:") h = base64.b32decode(digest[5:]) return _b2i(h[:HASH_SIZE]) class Minifier(jsonql.Transformer): ready = True def __init__(self): self.fields = frozenset(COMPUTED_FIELDS + PUBLIC_FIELDS) def do(self, doc: dict) -> Optional[dict]: line_ids: List[int] = doc.pop("line_ids") fields = self.fields keys = list(doc.keys()) for k in keys: if k not in fields: doc.pop(k, None) p = doc.get("perplexity", 0) doc["line_ids"] = encode_line_ids(line_ids) if p: doc["perplexity"] = round(p, 1) s = doc.get("language_score", 0) if s: doc["language_score"] = round(s, 2) return doc class MetadataFetcher(jsonql.Transformer): """Reads documents from CC snapshot and join precomputed metadata. CC snapshots are split in segments. Each segment is 64Mb long. The metadata must also be stored in segments of the same size and names. """ def __init__(self, folder: Union[Path, str]): self.ready = True self.metadata: Dict[int, dict] = {} self._segments: Set[str] = set() self.read_doc = 0 self.missed_doc = 0 self.missed_par = 0 self.processed_par = 0 if isinstance(folder, str): # detect path passed as string if urllib.parse.urlparse(folder).scheme == "": folder = Path(folder) assert folder.exists(), f"Metadata folder not found: {folder}" self.folder = folder self.segment: str = "" self.segments_read_twice = 0 def meta_file(self, segment: str) -> str: file_name = segment.split("/")[-1] assert file_name.endswith(".warc.wet.gz") or file_name.endswith(".warc.wet") if isinstance(self.folder, str): return urllib.parse.urljoin( self.folder, file_name.replace(".warc.wet", ".json") ) meta_file = self.folder / file_name.replace(".warc.wet", ".json") assert ( meta_file.exists() ), f"Couldn't find metadata file for segment {segment} at {meta_file}" return str(meta_file) def fetch_metadata(self, segment: str) -> None: meta_file = self.meta_file(segment) k = get_doc_key self.metadata = {} collision = 0 for m in jsonql.read_jsons(meta_file): key = k(m["digest"]) if key in self.metadata: collision += 1 self.metadata[key] = m self.log(f"Loaded {len(self.metadata)} metadatas from {meta_file}") if collision > 0: self._logger.warning(f"Found {collision} collisions !") self.segment = segment if segment in self._segments: self.log("Cache miss") self.segments_read_twice += 1 self._segments.add(segment) def do(self, doc: dict) -> Optional[dict]: if self.segment != doc["cc_segment"]: self.fetch_metadata(doc["cc_segment"]) digest = doc["digest"] key = get_doc_key(digest) if key not in self.metadata: return None metadata = self.metadata.pop(key) return self.clean(metadata, doc) def clean(self, metadata: dict, full_doc: dict) -> Optional[dict]: line_ids = decode_line_ids(metadata.pop("line_ids")) lines = full_doc["raw_content"].split("\n") cleaned = [] for l in line_ids: if l >= len(lines) or l < 0: self.missed_par += 1 continue cleaned.append(lines[l]) self.processed_par += len(line_ids) if not cleaned: self.missed_doc += 1 return None full_doc["raw_content"] = "\n".join(cleaned) full_doc["original_nlines"] = full_doc["nlines"] full_doc["original_length"] = full_doc["length"] full_doc["nlines"] = len(cleaned) full_doc["length"] = len(full_doc["raw_content"]) for key, value in metadata.items(): full_doc[key] = value return full_doc def summary(self) -> List[str]: summ = super().summary() mem = mem_footprint_gb() len_cache = len(self.metadata) summ.append( f"Read {self.read_doc:_}, stocking {len_cache:_} doc in {mem:.1f}g." ) if self.missed_doc: r = self.missed_doc / self.processed summ.append(f"! Missed {self.missed_doc} documents ({r:.1%}) !") if self.missed_par: r = self.missed_par / self.processed summ.append(f"! Missed {self.missed_par} paragraphs ({r:.1%}) !") return summ def _expand_files(files: List[Path]) -> List[Path]: if len(files) == 1 and files[0].is_dir(): folder = files[0] files = sorted(folder.glob("*.json.gz")) print(f"Found {len(files)} files under {folder}/*.json.gz") assert files, "No files found" return files def minify_file(file: Path, output: Path) -> str: """Minify the given file.""" jsonql.run_pipes(Minifier(), file=file, output=output) return f"Minified {output}" def minify( files: List[Path], output_dir: Path, execution: str = "mp", parallelism: int = -1 ): """Minify all the files in the given folder.""" files = _expand_files(files) output_dir.mkdir(exist_ok=True) with open(output_dir / "files.txt", "w") as o: for f in files: print(f.name, file=o) outputs = [output_dir / f.name for f in files] ex = get_executor( "minify", output_dir / "logs", execution, timeout_hour=2, cpus=1, task_parallelism=parallelism, ) ex(minify_file, files, outputs) def fetch_metadata_file( file: Union[Path, str], metadata_dir: Union[Path, str], output: Path, cache_dir: Path = None, ): unminifier = MetadataFetcher(metadata_dir) tmp = output.with_name("tmp." + output.name) jsonql.run_pipes(unminifier, file=file, output=tmp) tmp.rename(output) return f"Fetched metadata for {file}. Results at {output}." def fetch_metadata( files: List[str], metadata_dir: Union[Path, str], output_dir: Path, execution: str = "mp", parallelism: int = -1, cache_dir: Path = None, ): if len(files) == 1 and Path(files[0]).is_dir(): folder = Path(files[0]) files = [str(f) for f in sorted(folder.glob("*.json.gz"))] print(f"Found {len(files)} files under {folder}/*.json.gz") assert len(files) > 0, "No files given." output_dir.mkdir(exist_ok=True) outputs = [output_dir / str(f).split("/")[-1] for f in files] if cache_dir is None: cache_dir = output_dir / "wet_cache" cache_dir.mkdir(exist_ok=True) if str(cache_dir) == "none": cache_dir = None files = [f for f, o in zip(files, outputs) if not o.exists()] outputs = [o for o in outputs if not o.exists()] if not files: return ex = get_executor( "unminify", output_dir / "logs", execution, timeout_hour=8, cpus=1, task_parallelism=parallelism, mem_gb=32, ) ex(fetch_metadata_file, files, outputs, itertools.repeat(cache_dir)) if __name__ == "__main__": import func_argparse func_argparse.main(minify_file, minify, fetch_metadata, fetch_metadata_file)
cc_net-main
cc_net/minify.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import re import unicodedata UNICODE_PUNCT = { ",": ",", "。": ".", "、": ",", "„": '"', "”": '"', "“": '"', "«": '"', "»": '"', "1": '"', "」": '"', "「": '"', "《": '"', "》": '"', "´": "'", "∶": ":", ":": ":", "?": "?", "!": "!", "(": "(", ")": ")", ";": ";", "–": "-", "—": " - ", ".": ". ", "~": "~", "’": "'", "…": "...", "━": "-", "〈": "<", "〉": ">", "【": "[", "】": "]", "%": "%", "►": "-", } UNICODE_PUNCT_RE = re.compile(f"[{''.join(UNICODE_PUNCT.keys())}]") def replace_unicode_punct(text: str) -> str: return "".join((UNICODE_PUNCT.get(c, c) for c in text)) def remove_unicode_punct(text: str) -> str: """More aggressive version of replace_unicode_punct but also faster.""" return UNICODE_PUNCT_RE.sub("", text) def strip_accents(line: str) -> str: """Strips accents from a piece of text.""" nfd = unicodedata.normalize("NFD", line) output = [c for c in nfd if unicodedata.category(c) != "Mn"] if len(output) == line: return line return "".join(output) # Build a regex matching all control characters. NON_PRINTING_CHARS_RE = re.compile( f"[{''.join(map(chr, list(range(0,32)) + list(range(127,160))))}]" ) DIGIT_RE = re.compile(r"\d") PUNCT_OR_NON_PRINTING_CHARS_RE = re.compile( (UNICODE_PUNCT_RE.pattern + NON_PRINTING_CHARS_RE.pattern).replace("][", "") ) def remove_non_printing_char(text: str) -> str: return NON_PRINTING_CHARS_RE.sub("", text) def normalize_spacing_for_tok(text: str, language: str = "en") -> str: res = ( text.replace("\r", "") # remove extra spaces .replace("(", " (") .replace(")", ") ") .replace(" +", " ") ) res = re.sub(r"\) ([\.\!\:\?\;\,])", r"\)\1", res) res = res.replace("( ", "(").replace(" )", ")") res = re.sub(r"(\d) \%", r"\1\%", res) res = res.replace(" :", ":").replace(" ;", ";") res = res.replace("`", "'").replace("''", ' " ') res = ( res.replace("„", '"') .replace("“", '"') .replace("”", '"') .replace("–", "-") .replace("—", " - ") .replace(" +", " ") .replace("´", "'") .replace("([a-z])‘([a-z])", r"\1'\2/") .replace("([a-z])’([a-z])", r"\1'\2/") .replace("‘", '"') .replace("‚", '"') .replace("’", '"') .replace("''", '"') .replace("´´", '"') .replace("…", "...") # French quotes .replace(" « ", ' "') .replace("« ", '"') .replace("«", '"') .replace(" » ", '" ') .replace(" »", '"') .replace("»", '"') # handle pseudo-spaces .replace(" %", "%") .replace("nº ", "nº ") .replace(" :", ":") .replace(" ºC", " ºC") .replace(" cm", " cm") .replace(" ?", "?") .replace(" !", "!") .replace(" ;", ";") .replace(", ", ", ") .replace(" +", " ") .replace(".", ". ") ) # English "quotation," followed by comma, style if language == "en": res = re.sub(r"\"([,\.]+)", r"\1\"", res) # Czech is confused elif language == "cs" or language == "cz": pass # German/Spanish/French "quotation", followed by comma, style else: res = res.replace(',"', '",') res = re.sub( r"(\.+)\"(\s*[^<])", r"\"\1\2", res ) # don't fix period at end of sentence if ( language == "de" or language == "es" or language == "cz" or language == "cs" or language == "fr" ): res = re.sub(r"(\d) (\d)", r"\1,\2", res) else: res = re.sub(r"(\d) (\d)", r"\1.\2", res) return res def normalize(line: str, accent=True, case=True, numbers=True, punct=1) -> str: line = line.strip() if not line: return line if case: line = line.lower() if accent: line = strip_accents(line) if numbers: line = DIGIT_RE.sub("0", line) if punct == 1: line = replace_unicode_punct(line) elif punct == 2: line = remove_unicode_punct(line) line = remove_non_printing_char(line) return line def slow_normalize_for_dedup(line: str) -> str: return normalize(line, accent=False, case=True, numbers=True, punct=2) def normalize_for_dedup(line: str) -> str: line = line.strip() if not line: return line # case line = line.lower() # numbers line = DIGIT_RE.sub("0", line) line = PUNCT_OR_NON_PRINTING_CHARS_RE.sub("", line) return line
cc_net-main
cc_net/text_normalizer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import logging import subprocess from pathlib import Path from typing import List import func_argparse import numpy as np from cc_net import jsonql def get_index(file: Path) -> Path: return file.parent / (file.name + ".index") def _get_tmp(output: Path) -> Path: return output.parent / (output.stem + ".tmp" + output.suffix) def reshard( inputs: List[Path], output: Path, tmp: Path = None, free_original: bool = False, rm_original: bool = False, ) -> Path: """Read the given files and concatenate them to the output file. Can remove original files on completion, or just write dummy content into them to free disk. """ if tmp is None: tmp = _get_tmp(output) logging.info(f"Resharding {inputs} to {tmp}, will move later to {output}") jsonql.run_pipes(file=inputs, output=tmp) tmp.replace(output) tmp_index = get_index(tmp) if tmp_index.exists(): tmp_index.replace(get_index(output)) if not (free_original or rm_original): return output for _input in inputs: if rm_original: _input.unlink() elif free_original: # Overwrite the previous file. # This frees up disk space and allows doit to properly track the success. _input.write_text(f"Resharded into {output}") if get_index(_input).is_file(): get_index(_input).unlink() return output def fast_reshard( inputs: List[Path], output: Path, tmp: Path = None, free_original: bool = False, rm_original: bool = False, ) -> Path: """Same as reshard but don't re-compress the output. This will lead to a bigger output file, especially if the shards are very small. """ if tmp is None: tmp = _get_tmp(output) with open(tmp, "wb") as o: subprocess.run(["cat"] + [str(f) for f in inputs], stdout=o) tmp.replace(output) indexes_files = [get_index(i) for i in inputs] existing_indexes = sum(i.exists() for i in indexes_files) assert ( existing_indexes == len(indexes_files) or existing_indexes == 0 ), "some indexes don't exist." if existing_indexes > 0: indexes = [np.load(idx) for idx in indexes_files] for i in range(len(indexes) - 1): indexes[i + 1] += indexes[i][-1] with open(str(output) + ".index", "wb") as o: np.save(o, np.concatenate(indexes)) if not (free_original or rm_original): return output for _input in inputs: if rm_original: _input.unlink() elif free_original: # Overwrite the previous file. # This frees up disk space and allows doit to properly track the success. _input.write_text(f"Resharded into {output}") if get_index(_input).is_file(): get_index(_input).unlink() return output def determine_groups( inputs: List[Path], target_size: int = 4 * 1024 ** 3 ) -> List[List[Path]]: if len(inputs) == 0: return [] sample = inputs[:10] typical_size = sum(s.stat().st_size for s in sample) / len(sample) group_size = min(target_size // typical_size, len(inputs)) group_size = max(group_size, 1) return jsonql.grouper(inputs, group_size) if __name__ == "__main__": func_argparse.single_main(reshard)
cc_net-main
cc_net/regroup.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import argparse import time from pathlib import Path from typing import Dict, List, Optional, Sequence, Tuple, Union import kenlm # type: ignore import numpy as np # type: ignore import pandas as pd # type: ignore import sentencepiece # type: ignore from cc_net import jsonql, text_normalizer LMDescriptor = Union[Dict[str, Path], Union[Path, str]] def get_args(): parser = argparse.ArgumentParser( description="Compute the score of each sentences of a document", parents=[jsonql.io_parser()], ) parser.add_argument("--models", type=str) parser.add_argument("--sentences", action="store_true", default=False) parser.add_argument( "--languages", type=str, help="Ignore doc with another language" ) parser.add_argument("--field", type=str, default=None) parser.add_argument("--newline", type=str, default="\n") return vars(parser.parse_args()) def pp(log_score, length): return 10.0 ** (-log_score / length) class SentencePiece(jsonql.Transformer): # Sentence Pieces model have to be read back from disk. warning_when_pickling = True def __init__( self, model: Path, field: str, output_field: str = "tokenized", normalize: bool = False, ): super().__init__() self.model = model self.field = field self.output_field = output_field self.normalize = normalize self.sp: sentencepiece.SentencePieceProcessor = None def _prepare(self): if self.sp is not None: return self.sp = sentencepiece.SentencePieceProcessor() self.sp.load(str(self.model)) return self def do(self, document: dict) -> dict: text = document[self.field] if self.normalize: text = text_normalizer.normalize(text) tokenized = self.sp.encode_as_pieces(text) document[self.output_field] = " ".join(tokenized) return document class MultiSentencePiece(jsonql.Transformer): warning_when_pickling = True def __init__( self, models: Union[Path, Dict[str, Path]], field: str, output_field: str = "tokenized", normalize: bool = False, ): super().__init__() self.field = field self.output_field = output_field self.normalize = normalize self._prefetch: Sequence[str] = [] if isinstance(models, Path): self.models = { m.name.split(".")[0]: m for m in models.parent.glob(models.name) } else: self.models = models self._prefetch = list(models.keys()) self.sp: Dict[str, sentencepiece.SentencePieceProcessor] = {} def _prepare(self) -> None: for lang in self._prefetch: assert ( self.get_sp(lang) is not None ), f"No model found for {lang} at {self.models.get(lang)}." def get_sp(self, lang) -> Optional[sentencepiece.SentencePieceProcessor]: sp = self.sp.get(lang) if sp is not None: return sp if lang not in self.models: return None start_load = time.time() self.log(f"Loading {self.models[lang]}...") sp = sentencepiece.SentencePieceProcessor() sp.load(str(self.models[lang])) self.sp[lang] = sp load_time = time.time() - start_load self.log(f"Loaded {self.models[lang]} (took {load_time / 60:.1f}min)") return sp def do(self, document: dict) -> Optional[dict]: text = document[self.field] if self.normalize: text = text_normalizer.normalize(text) sp = self.get_sp(document.get("language")) if sp is None: return document tokenized = sp.encode_as_pieces(text) document[self.output_field] = " ".join(tokenized) return document class DocLM(jsonql.Transformer): def __init__( self, models: Union[Path, Dict[str, Path]], field: str, output_field: str = "perplexity", newline: str = "\n", normalize: bool = True, load_method: int = 2, ): super().__init__() self.field = field self.output_field = output_field self.newline = newline self.normalize = normalize self._prefetch: Sequence[str] = [] self.lm_config = kenlm.Config() # This is the default settings # POPULATE will mmap the models and populate the pages. # Maybe that's not the best way when the models are on a network disk. # TODO: try copying models file, try READ or PARALLEL_READ self.lm_config.load_method = load_method if isinstance(models, Path): self.models = { m.name.split(".")[0]: m for m in models.parent.glob(models.name) } else: self.models = models self._prefetch = list(models.keys()) self.lm: Dict[str, kenlm.Model] = {} self.n_lines = 0 def _prepare(self) -> None: for lang in self._prefetch: assert ( self.get_lm(lang) is not None ), f"No model found for {lang} at {self.models.get(lang)}." def get_lines(self, document: dict) -> List[str]: lang = document.get("language") if not lang: return [] if lang not in self.models: return [] content = document.get(self.field) if not content: return [] lines = content.split(self.newline) self.n_lines += len(lines) return lines def get_lm(self, lang: Optional[str]) -> Optional[kenlm.Model]: if lang is None: return None lm = self.lm.get(lang) if lm is not None: return lm model = self.models.get(lang) if model is None: return None start_load = time.time() self.log(f"Loading {self.models[lang]}...") lm = kenlm.Model(str(model), self.lm_config) self.lm[lang] = lm load_time = time.time() - start_load self.log(f"Loaded {self.models[lang]} (took {load_time / 60:.1f}min)") return lm def do(self, document: dict) -> dict: lines = self.get_lines(document) model = self.get_lm(document.get("language")) if not lines or not model: return document doc_log_score, doc_length = 0, 0 for line in lines: if self.normalize: line = text_normalizer.normalize(line) log_score = model.score(line) length = len(line.split()) + 1 doc_log_score += log_score doc_length += length document[self.output_field] = round(pp(doc_log_score, doc_length), 1) return document def summary(self): delay = time.time() - self.start_time h = delay / 3600 s = self.n_lines / delay summ = super().summary() summ.append(f"Processed {self.n_lines:_} lines in {h:.2}h ({s:.1} lines/s).") return summ class SentencesLM(DocLM): """Returns the score of each individual paragraph.""" def do(self, document: dict) -> Optional[str]: # type: ignore lines = self.get_lines(document) model = self.get_lm(document.get("language")) if not lines or not model: return None sentences = [] for line in lines: if self.normalize: line = text_normalizer.normalize(line) log_score = model.score(line) length = len(line.split()) + 1 sentences.append(f"{pp(log_score, length)}\t{line}") return "\n".join(sentences) class PerplexityBucket(jsonql.Transformer): def __init__( self, cutoff_csv: Path, percentile_head: int = 30, percentile_tail: int = 60 ): super().__init__() self.cutoff_csv = cutoff_csv self.percentile_head = percentile_head self.percentile_tail = percentile_tail self.cutoffs: Dict[str, Tuple[float, float]] = {} def _prepare(self) -> None: cutoffs = pd.read_csv(self.cutoff_csv, index_col=0) self.cutoffs = { l: (cutoffs[l][self.percentile_head], cutoffs[l][self.percentile_tail]) for l in cutoffs.columns } def get_bucket(self, doc: dict) -> str: perplexity = doc.get("perplexity", -1) lang = doc.get("language") if lang not in self.cutoffs or perplexity < 0: return "all" pp_head, pp_tail = self.cutoffs[lang] if perplexity < pp_head: return "head" if perplexity < pp_tail: return "middle" return "tail" def do(self, doc: dict) -> dict: doc["bucket"] = self.get_bucket(doc) return doc class DropKeys(jsonql.Transformer): def __init__(self, *keys): super().__init__() self.keys = keys def do(self, document: dict) -> Optional[dict]: if not document: return None for key in self.keys: document.pop(key, None) return document class RemoveSmall(jsonql.Transformer): def __init__(self, field, min_len): super().__init__() self.field = field self.min_len = min_len self.removed = 0 def do(self, document: dict) -> Optional[dict]: if not document: return None content = document.get(self.field) if not content or len(content) < self.min_len: self.removed += 1 return None return document def summary(self): r, n = self.removed, self.processed ratio = r / n if n else 0 return [f"Removed {r} small documents out of {n} ({ratio:.1%})"] def perplexity_to_bin(file: Path, output: Path, models, tok_field: str): pp_field = "perplexity" lm = DocLM(models, tok_field, output_field=pp_field) stats: List[float] = [] max_stats = 1_000_000 batch_size = 100_000 i = 0 batch = [] with open(output, "wb") as o: for doc in jsonql.read_jsons(file): i += 1 pp = lm(doc)[pp_field] if len(stats) < max_stats: stats.append(pp) batch.append(pp) if len(batch) >= batch_size: np.array(batch, dtype=np.float32).tofile(o) batch = [] if len(batch) > 0: np.array(batch, dtype=np.float32).tofile(o) if __name__ == "__main__": args = get_args() output = Path(args["output"]) if output.suffix == ".bin": perplexity_to_bin(args["file"], output, args["models"], args["field"]) else: jsonql.run_pipe(DocLM, args)
cc_net-main
cc_net/perplexity.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. #
cc_net-main
cc_net/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import time from typing import Dict, Optional import sacremoses # type: ignore from cc_net import jsonql, text_normalizer class RobustTokenizer(jsonql.Transformer): """Moses tokenizer with the expected preprocessing.""" LANG_WITHOUT_ACCENT = {"en", "my"} def __init__(self, lang: str): super().__init__() self.lang = lang self.moses = sacremoses.MosesTokenizer(lang) self.rm_accent = lang in self.LANG_WITHOUT_ACCENT self.ready = True def do(self, text: str): text = text_normalizer.normalize( text, accent=self.rm_accent, case=False, numbers=False, punct=True ) text = text_normalizer.normalize_spacing_for_tok(text, language=self.lang) return self.moses.tokenize(text, return_str=True, escape=False) class DocTokenizer(jsonql.Transformer): """Tokenize the text found in `output_field and store the result in `output_field`.""" def __init__( self, field: str, output_field: str = "tokenized", language_field: str = "language", ): super().__init__() self.field = field self.output_field = output_field self.language_field = language_field self.n_docs = 0 self.tokenizers: Dict[str, RobustTokenizer] = {} def get_tokenizer(self, lang: str) -> Optional[RobustTokenizer]: cache = self.tokenizers if lang in cache: return cache[lang] if lang in ("th", "zh", "ja"): # TODO find a tokenizer for those languages return None cache[lang] = RobustTokenizer(lang) return cache[lang] def do(self, document): lang = document[self.language_field] tok = self.get_tokenizer(lang) if not tok: return document self.n_docs += 1 lines = document[self.field].split("\n") tokenized = "\n".join(tok(l) for l in lines) document[self.output_field] = tokenized return document def summary(self): delay = (time.time() - self.start_time) / 3600 speed = self.n_docs / delay return [ f"Tokenized {self.n_docs:_} documents in {delay:.2}h ({speed:.1} doc/s)." ]
cc_net-main
cc_net/tokenizer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # """ Tools to remove duplicate paragraphs across one or several shards. """ import argparse import gc import hashlib import logging import multiprocessing import os import tempfile import time from pathlib import Path from typing import Iterable, List, Optional, Set, Union import numpy as np from cc_net import jsonql from cc_net.flat_hash_set import HASH_TYPE, AbstractDedupHashSet, FlatHashSet from cc_net.jsonql import mem_footprint_gb from cc_net.text_normalizer import normalize_for_dedup BYTE_ORDER = "little" HASH_SIZE = HASH_TYPE(0).nbytes DISABLE_MULTI_PROCESSING = False FilesOrDir = Union[List[Path], Path] def get_args(): parser = argparse.ArgumentParser( description="Read a set of json files and allow to query them", parents=[jsonql.io_parser()], ) parser.add_argument("--field", type=str, default="raw_content") parser.add_argument("--output_hashes", type=str) parser.add_argument("--no_finalize", action="store_false", dest="finalize") # parser.add_argument("--mem_gb", type=int) parser.add_argument("--hashes", type=str) return vars(parser.parse_args()) def _b2i(b: bytes) -> int: return np.frombuffer(b[:HASH_SIZE], dtype=HASH_TYPE, count=1, offset=0).item(0) def str_hash(s: str) -> int: h = hashlib.sha1(bytes(s, encoding="utf-8")) return _b2i(h.digest()) log = logging.getLogger(__name__).info def run_par(processes): # This is different from multiprocessing.map since it allows for kwargs. processes = list(processes) if len(processes) == 1 or DISABLE_MULTI_PROCESSING: for f, args, kwargs in processes: f(*args, **kwargs) return log(f"Starting {len(processes)} subprocess") processes = [ multiprocessing.Process(target=f, args=a, kwargs=kw) for (f, a, kw) in processes ] for p in processes: p.start() for p in processes: p.join() failed = 0 for p in processes: if p.exitcode != 0: log(f"Process failed with code {p.exitcode}: {p}") failed += 1 assert failed == 0, f"{failed} processes failed..." def split_file(file, n_splits): for i in range(n_splits): yield jsonql.SplitFile(file, i, n_splits) def merge(hashes_1, hashes_2, output): if isinstance(hashes_1, str): h1 = FlatHashSet() h1.load(hashes_1) else: h1 = hashes_1 if isinstance(hashes_2, str): h2 = FlatHashSet() h2.load(hashes_2) else: h2 = hashes_2 h2_np = np.fromiter(h2.keys(), dtype=FlatHashSet.dtype, count=len(h2)) dup = h1.__contains__(h2_np) # Dups between h1 and h2 will be set to 1, keys unique to h2 are copied to # h1 with their value. h1[h2_np] = dup if output: h1.dump(output) return h1 def merge_shard(hash_files, output): h = FlatHashSet() h.load(hash_files[0]) for hash_file in hash_files[1:]: h = merge(h, hash_file, output=None) print(f"Merged {hash_file}. We now have {len(h)} hashes.") h.dump(output) print(f"Saved {len(h)} hashes to {output}.") def _dump_sentence_hashes(source: Path, output: Path, field: str): treated = 0 started = time.time() with open(output, "wb") as o: for doc in jsonql.read_jsons(source): content = doc.get(field) if not content: continue h = compute_hashes(content) if h is None: continue h.tofile(o) treated += 1 if treated % 100_000 == 0: delay = time.time() - started log( f"Computed {treated} documents hashes in {delay / 3600:.2f}h ({treated / delay} doc / s)" ) def _remove_duplicate_hashes(duplicates, source, output): batch_size = 100_000 n_lines, n_lines_kept = 0, 0 with open(source, "rb") as f, open(output, "wb") as o: log(f"Opening {source} with mode rb") log(f"Opening {output} with mode wb") while True: hashes = np.fromfile(f, dtype=HASH_TYPE, count=batch_size) if hashes.size == 0: break keep = duplicates[hashes] < 1 kept = keep.sum() hashes *= keep hashes.tofile(o) n_lines += hashes.size n_lines_kept += kept removed = n_lines - n_lines_kept selectivity = n_lines_kept / n_lines if n_lines else 0 log(f"Removed {removed} duplicate hashes with selectivity: {selectivity:3.1%}") def remove_duplicates_sharded( files: List[Path], outputs: List[Path], hashes_dir: FilesOrDir, field: str, group_hashes: int = 1, tmp_dir: Path = None, min_len: int = 0, ): """Remove duplicates in several passes, when all hashes don't fit in RAM. Note: The current implementation is not doing a 'perfect' deduplication. If a hash appear exactly once in each shard of hashes it won't be detected as a duplicate. This can be fixed if hashes are fully dedup beforehand. """ assert len(files) == len(outputs) if isinstance(hashes_dir, list): hashes_files = hashes_dir else: hashes_files = sorted( h for h in Path(hashes_dir).iterdir() if h.suffix == ".bin" ) assert len(hashes_files) > 0, f"no hashes files found in: {hashes_dir}" if len(hashes_files) <= group_hashes: log(f"All hashes can be done in one pass, using DuplicatesRemover on {files}") rm_dups = DuplicatesRemover(field, hashes_files) rm_dups._prepare() run_par( (jsonql.run_pipes, (rm_dups,), dict(file=f, output=o)) for f, o in zip(files, outputs) ) return log(f"Starting deduplicate_sharded on {files}.") tmp_directory = tempfile.TemporaryDirectory(dir=str(tmp_dir) if tmp_dir else None) def tmp_files(i): return [ Path(tmp_directory.name) / (f.name.split(".")[0] + f".{i}.bin") for f in files ] last = tmp_files(0) run_par((_dump_sentence_hashes, (f, tmp, field), {}) for f, tmp in zip(files, last)) if isinstance(hashes_dir, list): hashes_files = hashes_dir else: hashes_files = sorted( h for h in Path(hashes_dir).iterdir() if h.suffix == ".bin" ) for i, group in enumerate(jsonql.grouper(hashes_files, group_hashes)): hashes = FlatHashSet() for h in group: hashes.load(h) log(f"Loaded {h}, up to {len(hashes)} hashes ({mem_footprint_gb()}GB)") intermediates = tmp_files(i + 1) # Remove hashes in parallel. Since modern OS have "copy-on-write" and # `hashes` is read-only, we will only have one version of it in RAM. run_par( (_remove_duplicate_hashes, (hashes, f, tmp), {}) for f, tmp in zip(last, intermediates) ) # Force hashes to be freed, before we start allocating a new one. del hashes gc.collect() for tmp in last: os.remove(tmp) last = intermediates def finalize(source, dedup_hashes, min_len): n_chars, n_chars_kept = 0, 0 with open(dedup_hashes, "rb") as hashes: for doc in jsonql.read_jsons(source): content = doc.get(field) if not content or len(content) < min_len: continue sentences = content.split("\n") doc_hashes = np.fromfile(hashes, dtype=HASH_TYPE, count=len(sentences)) chars, kept_chars = finalize_doc(doc, field, doc_hashes) n_chars += chars n_chars_kept += kept_chars yield doc selectivity = n_chars_kept / n_chars if n_chars else 0 log(f"Kept {n_chars_kept} chars out of {n_chars} ({selectivity:.1%}).") dedup_hashes = last run_par( [ ( jsonql.run_pipe, (finalize,), dict(kwargs=dict(dedup_hashes=h, min_len=min_len), file=f, output=o), ) for h, f, o in zip(dedup_hashes, files, outputs) ] ) tmp_directory.cleanup() def compute_hashes(content) -> Optional[np.ndarray]: if not content: return None lines = content.split("\n") # save hashes as bytes but reinterpret them as uint64. hashes = np.fromiter( ( hashlib.sha1(bytes(normalize_for_dedup(l), encoding="utf-8")).digest()[ :HASH_SIZE ] for l in lines ), dtype=np.dtype((bytes, HASH_SIZE)), count=len(lines), ) return np.ndarray(dtype=HASH_TYPE, buffer=hashes.data, shape=hashes.shape) def finalize_doc(doc, field, hashes=None): content = doc.get(field) lines = content.split("\n") n_chars = len(content) if "original_nlines" not in doc: doc["original_nlines"] = doc.get("nlines", len(lines)) if "original_length" not in doc: doc["original_length"] = doc.get("length", n_chars) if hashes is None: hashes = doc.pop(field + "_hash") # Remove duplicates inside doc seen: Set[int] = set() original_line_ids = doc.get("line_ids", range(len(hashes))) line_ids = [] new_lines = [] for l, line, h in zip(original_line_ids, lines, hashes): if h not in seen and h != 0: line_ids.append(l) new_lines.append(line) seen.add(h) doc[field] = "\n".join(new_lines) doc["nlines"] = len(line_ids) n_chars_kept = len(doc[field]) doc["length"] = n_chars_kept doc["line_ids"] = line_ids return n_chars, n_chars_kept class HashesCollector(jsonql.Transformer): """ Collect all hashes found of lines found in the `field` of the source documents. """ parallelisable = False def __init__( self, field: str, output: Path = None, hashes: AbstractDedupHashSet = None ): super().__init__() self.n_lines = 0 self.field = field self.output = output self.hashes = FlatHashSet() if hashes is None else hashes self.num_hashes_end = 0 self.num_hashes_start = len(self.hashes) def summary(self) -> List[str]: summ = super().summary() h = self.num_hashes_end if self.hashes is None else len(self.hashes) h = (h - self.num_hashes_start) // 1000 max_mem = mem_footprint_gb() n = self.n_lines // 1000 summ.append( f"Found {h:_}k unique hashes over {n:_}k lines. Using {max_mem:.1f}GB of RAM." ) return summ def do(self, doc: dict) -> None: doc_hashes = compute_hashes(doc.get(self.field)) if doc_hashes is None: return self.hashes.add(doc_hashes) self.n_lines += doc_hashes.size def close(self): if self.output and self.hashes: self.hashes.dump(self.output) self.log(f"Saved {len(self.hashes)} hashes to {self.output}") # Save the number of hashes. self.num_hashes_end = len(self.hashes) # Free up mem even if the transformer is kept somewhere else. self.hashes = None # type: ignore class DuplicatesRemover(jsonql.Transformer): """DuplicatesRemover""" # The hashes can't be pickled so they will have to be read back from disk. warn_when_pickling = True def __init__(self, field: str, hashes_files: List[Path], collect: bool = False): """ Remove duplicates """ super().__init__() self.field = field self.collect = collect self.hashes_files = hashes_files self.duplicates: Optional[AbstractDedupHashSet] = None self.n_lines, self.n_lines_kept = 0, 0 self.n_chars, self.n_chars_kept = 0, 0 def _prepare(self): if self.duplicates is not None: return self.duplicates = FlatHashSet() start = time.time() for h in self.hashes_files: shard_start = time.time() self.duplicates.load(str(h)) delay = time.time() - shard_start self.log( f"Loaded hashes from {h} ({mem_footprint_gb():.3f}GB total, took {delay / 60:.1}m)" ) delay = time.time() - start self.log( f"Loaded {len(self.duplicates):_d} hashes from {len(self.hashes_files)} files. ({mem_footprint_gb():.1f}GB total, took {delay / 60:.1}m)" ) def do(self, doc: dict) -> Optional[dict]: content = doc.get(self.field) if not content: return None doc_hashes = compute_hashes(content) assert self.duplicates is not None seen = ( self.duplicates.add(doc_hashes) if self.collect else self.duplicates[doc_hashes] ) keep = seen < True kept = keep.sum() if kept == 0: return None doc_hashes = doc_hashes * keep self.n_lines += keep.size self.n_lines_kept += kept chars, kept_chars = finalize_doc(doc, self.field, hashes=doc_hashes) self.n_chars += chars self.n_chars_kept += kept_chars return doc def summary(self) -> List[str]: summ = super().summary() end_time = time.time() n_lines_kept, n_lines, n_docs = self.n_lines_kept, self.n_lines, self.processed speed = n_docs / (end_time - self.start_time) summ.append( f"Processed {self.n_lines} lines in {n_docs} docs. [{speed:.1f} doc/s]" ) selectivity = self.n_lines_kept / self.n_lines if n_lines else 0 summ.append(f"Kept {n_lines_kept} lines out of {n_lines} ({selectivity:.1%}).") n_chars_kept, n_chars = self.n_chars_kept, self.n_chars selectivity = n_chars_kept / n_chars if n_chars else 0 summ.append(f"Kept {n_chars_kept} chars out of {n_chars} ({selectivity:.1%}).") return summ def deduplicate( file: jsonql.ReadableFileLike, field: str = "raw_content" ) -> Iterable[dict]: """Remove duplicates of the given file (but keep the first occurence).""" dup_remover = DuplicatesRemover(field, [], collect=True) return dup_remover.map(jsonql.read_jsons(file)) def deduplicate_two_pass( file: jsonql.FileDescriptor, field: str = "raw_content" ) -> Iterable[dict]: """Remove duplicates of the given file (even removing the first occurence). This is what is done in the paper, and in mine.py """ try: if isinstance(file, Path): hash_file: Path = file.with_suffix(".bin") else: hash_file = jsonql._tmp(Path("hashes.bin")) jsonql.run_pipes( jsonql.JsonReader(), HashesCollector(field, output=hash_file), file=file ) dup_remover = DuplicatesRemover(field, [hash_file]) return dup_remover.map(jsonql.read_jsons(file)) finally: if hash_file.exists(): hash_file.unlink()
cc_net-main
cc_net/dedup.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import contextlib import functools import logging import re import tempfile import time import urllib.request from pathlib import Path from typing import ContextManager, Iterable, Iterator, List, Optional, Sequence from urllib.parse import urlparse import func_argparse from bs4 import BeautifulSoup # type: ignore from cc_net import jsonql WET_URL_ROOT = "https://commoncrawl.s3.amazonaws.com" logger = logging.getLogger(__name__) def cc_wet_paths_url(dump_id: str) -> str: return "/".join([WET_URL_ROOT, "crawl-data", "CC-MAIN-" + dump_id, "wet.paths.gz"]) @functools.lru_cache() def cc_segments(dump_id: str, cache_dir: Path = None) -> List[str]: wet_paths = cc_wet_paths_url(dump_id) cache_dir = cache_dir or jsonql._tmp_dir() wet_paths_cache = cache_dir / f"wet_{dump_id}.paths.gz" f = jsonql.open_remote_file(wet_paths, cache=wet_paths_cache) return [segment.strip() for segment in f] def list_dumps() -> List[str]: home_page = BeautifulSoup( urllib.request.urlopen("http://index.commoncrawl.org/"), features="html.parser" ) dumps = [a.get("href").strip("/") for a in home_page.findAll("a")] dumps = [a[8:] for a in dumps if re.match(r"^CC-MAIN-\d\d\d\d-\d\d$", a)] return sorted(dumps) def ls(): for dump in list_dumps(): print(dump, "->", cc_wet_paths_url(dump)) def parse_doc(headers: List[str], doc: List[str]) -> Optional[dict]: """Headers format is: WARC/1.0 WARC-Type: conversion WARC-Target-URI: [url] WARC-Date: [crawldate: 2019-02-15T19:15:59Z] WARC-Record-ID: <urn:uuid:8865156e-d5f1-4734-9c68-4b46eaf2bb7e> WARC-Refers-To: <urn:uuid:340152e2-65cf-4143-b522-8ce4e2d069d7> WARC-Block-Digest: sha1:S3DTWCONT2L6ORTGCY2KXEZ37LNBB7V2 Content-Type: text/plain Content-Length: 7743 """ if not headers or not doc: return None try: warc_type = headers[1].split()[1] if warc_type != "conversion": return None url = headers[2].split()[1] date = headers[3].split()[1] digest = headers[6].split()[1] length = int(headers[8].split()[1]) except Exception as e: logger.warning("Can't parse header:", e, headers, doc) return None # Docs are separated by two empty lines. last = None if not doc[-1] and not doc[-2]: last = -2 title, doc = doc[0], doc[1:last] return { "url": url, "date_download": date, "digest": digest, "length": length, "nlines": len(doc), "source_domain": urlparse(url).netloc, "title": title, "raw_content": "\n".join(doc), } def group_by_docs(warc_lines: Iterable[str]) -> Iterable[dict]: doc: List[str] = [] headers, read_headers = [], True for warc in warc_lines: warc = warc.strip() if read_headers: headers.append(warc) read_headers = warc != "" continue if warc == "WARC/1.0": # We reached the beginning of the new doc. parsed = parse_doc(headers, doc) if parsed is not None: yield parsed headers, doc, read_headers = [warc], [], True continue doc.append(warc) # Return the last document if doc: parsed = parse_doc(headers, doc) if parsed is not None: yield parsed def parse_warc_file(lines: Iterable[str], min_len: int = 1) -> Iterator[dict]: n_doc = 0 n_ok = 0 for doc in group_by_docs(lines): n_doc += 1 if not doc or len(doc["raw_content"]) < min_len: continue n_ok += 1 yield doc if n_doc > 0: logger.info(f"Kept {n_ok:_d} documents over {n_doc:_d} ({n_ok / n_doc:.1%}).") else: logger.info(f"Found no documents") def dl( dump: str, shard: int, num_shards: int, output: Path = None, num_segments_per_shard: int = 0, ): """Download a shard of the common crawl, and export it to json. Arguments: output: filename of the output file dump: CC dump id shard: id of the shard num_shards: total number of shards num_segments_per_shard: manual control of the number of segment per shard. """ reader = CCShardReader(dump, shard, num_shards, num_segments_per_shard) jsonql.run_pipes(inputs=reader, output=output) logger.info(f"Done. {output} is ready.") class CCSegmentsReader(Iterable[dict]): def __init__( self, segments: Sequence[str], min_len: int = 0, cache_dir: Path = None ): self._segments = segments self.min_len = min_len if cache_dir is not None: cache_dir = Path(cache_dir) cache_dir.mkdir(exist_ok=True) self.cache_dir = cache_dir self.retrieved_segments = 0 def segment_url(self, segment: str): return "/".join((WET_URL_ROOT, segment)) @property def segments(self) -> Sequence[str]: return self._segments def open_segment(self, segment: str) -> Iterable[str]: url = self.segment_url(segment) file: Optional[Path] = None if self.cache_dir: file = self.cache_dir / segment.split("/")[-1] if not file or not file.exists(): self.retrieved_segments += 1 return jsonql.open_remote_file(url, cache=file) def __iter__(self) -> Iterator[dict]: n = len(self.segments) for i, segment in enumerate(self.segments): start = time.time() # TODO: start downloading the next segment in the background for doc in parse_warc_file(self.open_segment(segment), self.min_len): doc["cc_segment"] = segment yield doc if i + 1 >= n: continue end = time.time() delay = (end - start) / 3600 * (n - 1 - i) logger.info( f"Parsed {i + 1} / {n} files. Estimated remaining time: {delay:.1f}h" ) class CCShardReader(CCSegmentsReader): def __init__( self, dump: str, shard: int, num_shards: int = -1, num_segments_per_shard: int = 40, min_len: int = 300, cache_dir: Path = None, ): """Downloads a shard of Common Crawl, and yields dict. Arguments: dump: CC dump id shard: id of the shard num_shards: total number of shards num_segments_per_shard: if set will limit the number of files by shard. Useful for testing. """ super().__init__([], min_len=min_len, cache_dir=cache_dir) self.dump = dump self.shard = shard assert num_shards > 0 or num_segments_per_shard > 0 self.num_shards = num_shards self.num_segments_per_shard = num_segments_per_shard @property def segments(self) -> Sequence[str]: # Delaying the initialization allows to delay the looking up of the WET files if self._segments: return self._segments segments = cc_segments(self.dump, self.cache_dir) n = len(segments) if self.num_shards < 0: self.num_shards = n // self.num_segments_per_shard i_min = (self.shard * n) // self.num_shards i_max = ((self.shard + 1) * n) // self.num_shards if self.num_segments_per_shard > 0: i_max = min(i_max, i_min + self.num_segments_per_shard) self._segments = segments[i_min:i_max] return self._segments def _tmp(prefix: str = None, suffix: str = None, dir: Path = None) -> Path: _, tmp_path = tempfile.mkstemp(prefix=prefix, suffix=suffix, dir=dir) return Path(tmp_path) @contextlib.contextmanager def timer(name: str = "-"): start = time.time() yield None delay = time.time() - start print(f"{name} took {delay:.1f}s") def benchmark(tmp_path: Path): segments = [ "crawl-data/CC-MAIN-2019-09/segments/1550249406966.99/wet/CC-MAIN-20190222220601-20190223002601-00441.warc.wet.gz" ] seg_file = tmp_path / "CC-MAIN-20190222220601-20190223002601-00441.warc.wet.gz" with timer("from network"): list(CCSegmentsReader(segments)) with timer("from network, with caching"): list(CCSegmentsReader(segments, cache_dir=tmp_path)) assert seg_file.exists() with timer("from disk"): CCSegmentsReader(segments, cache_dir=tmp_path) seg_file.unlink() if __name__ == "__main__": func_argparse.main(ls, dl)
cc_net-main
cc_net/process_wet_file.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import func_argparse import cc_net.mine def main(): func_argparse.parse_and_call(cc_net.mine.get_main_parser()) if __name__ == "__main__": main()
cc_net-main
cc_net/__main__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse import collections from pathlib import Path from typing import Dict, Optional import fasttext # type: ignore from cc_net import jsonql def get_args(): parser = argparse.ArgumentParser( description="Read a list of json files and split them ", parents=[jsonql.io_parser()], ) parser.add_argument("--pattern", type=str) parser.add_argument("--field", type=str, default="raw_content") parser.add_argument("--threshold", type=float, default=0) parser.add_argument("--model", type=str, required=True) parser.add_argument("--out_field", type=str, default="language") parser.add_argument("--top", type=int, default=1) return vars(parser.parse_args()) def predict(model, text: str, k: int = 1): labels, scores = model.predict(text, k=k) labels = [l.replace("__label__", "") for l in labels] return labels, scores def avg_predict(model, text): # Overall gives the same results than predict(model, text.replace("\n", "")) text = text.split("\n") text_len = sum(len(line) for line in text) if text_len == 0: return None, 0 scores = [predict(model, line) for line in text] scores_by_label: Dict[str, float] = collections.defaultdict(float) for (label, score), line in zip(scores, text): scores_by_label[label] += score * len(line) label, score = max(scores_by_label.items(), key=lambda kv: kv[1]) return label, score / text_len class Classifier(jsonql.Transformer): def __init__( self, model: Path, field: str, out_field: str, threshold: float = 0, top: int = 1, language: str = None, rounding: int = 2, ): super().__init__() self.model = model assert model.exists(), f"Model {model} doesn't exist." self.field = field self.out_field = out_field self.threshold = threshold self.top = top self.language = language self.rounding = rounding # Fasttext model is a C object and can't be pickled self.fasttext_model: fasttext._FastText = None self.n_doc, self.n_accepted, self.n_ignored, self.n_disagreement = 0, 0, 0, 0 self.cnt: Dict[str, int] = {} def _prepare(self): self.log(f"Loading {self.model}") self.fasttext_model = fasttext.load_model(str(self.model)) def predict(self, text): return predict(self.fasttext_model, text.replace("\n", ""), k=self.top) def do(self, doc: dict) -> Optional[dict]: text = doc.get(self.field, None) if not text: return None if self.language and doc.get("language") != self.language: self.n_ignored += 1 return doc self.n_doc += 1 labels, scores = self.predict(text) scores.round(self.rounding, out=scores) for l in labels: self.cnt[l] = self.cnt.get(l, 0) + 1 if self.top == 1: existing_label = doc.get(self.out_field, None) if existing_label and labels[0] != existing_label: self.n_disagreement += 1 if all(s < self.threshold for s in scores): return None self.n_accepted += 1 if self.top == 1: doc[self.out_field] = labels[0] doc[self.out_field + "_score"] = scores[0] else: doc[self.out_field] = {l: s for l, s in zip(labels, scores)} return doc def summary(self): n_doc, n_accepted, n_disagreement, cnt, out_field = ( self.n_doc, self.n_accepted, self.n_disagreement, self.cnt, self.out_field, ) summ = super().summary() if self.threshold > 0: ratio = n_accepted / n_doc if n_doc else 0 summ.append(f"Kept {n_accepted} docs over {n_doc} ({ratio :.1%})") summ.append(f"Found {len(cnt)} {out_field} labels: {cnt}") disagreement = n_disagreement / n_doc if n_doc else 0 if disagreement: summ.append(f"{out_field} disagreement is at {disagreement:.1%}.") return summ def __repr__(self): return f"Classifier({self.model})" def classify_and_split(file, output, pattern, **kwargs): classifier = Classifier(**kwargs) splitter = jsonql.split(pattern) jsonql.run_pipes(classifier, splitter, file=file, output=output) if __name__ == "__main__": args = get_args() pattern = args.get("pattern") if pattern: classify_and_split(**args) else: args.pop("pattern") jsonql.run_pipe(Classifier, args)
cc_net-main
cc_net/split_by_lang.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import contextlib import functools import gzip import logging import multiprocessing from collections import defaultdict from pathlib import Path from typing import Callable, Dict, Iterator, List, NamedTuple, Optional, Tuple import cc_net from cc_net import jsonql from cc_net.process_wet_file import CCSegmentsReader # Set this to a directory to use as cache for intermediary files. # This helps for debugging. WET_CACHE = None # WET_CACHE = Path("wet_cache") S3_BUCKET = "https://dl.fbaipublicfiles.com/cc100" VERSION = "1.0.0" CC_100_SNAPSHOTS = [ "2018-05", "2018-09", "2018-13", "2018-17", "2018-22", "2018-26", "2018-30", "2018-34", "2018-39", "2018-43", "2018-47", "2018-51", ] BIG_LANGUAGES = { "es_XX", "fr_XX", "de_DE", "ja_XX", "ru_RU", "zh_CN", "en_XX", "it_IT", "ar_AR", "nl_XX", "pl_PL", "pt_XX", "tr_TR", "zh_TW", } class Paragraph(NamedTuple): lang: str text: str lm_score: float def _dl_shard(snapshot: str, shard: int) -> Iterator[Paragraph]: """ Download metadata from a shards. Sample metadata: { "cc_segment": "crawl-data/CC-MAIN-2018-51/segments/1544376823009.19/wet/CC-MAIN-20181209185547-20181209211547-00000.warc.wet.gz", "digest": "sha1:222LWNHN5FM26XGS7WJSMI6IISTVWBKJ", "url": "http://personals.gearplay.com/ads/DRJONES.htm", "line_ids": [10], "languages": ["en_XX"], "lm_scores": [-2.658], } """ snapshot = snapshot.replace("-", "_") name = f"snap_{snapshot}_batch_{shard}.json.gz" url = "/".join([S3_BUCKET, VERSION, name]) shard_metadata: Dict[str, Dict[str, dict]] = defaultdict(dict) try: cache_file: Optional[Path] = None if WET_CACHE is not None: cache_file = WET_CACHE / name metadata_file = jsonql.open_remote_file(url, cache_file) except: logging.warning(f"Couldn't open {url}") return for meta in jsonql.read_jsons(metadata_file): shard_metadata[meta["cc_segment"]][meta["digest"]] = meta found_pars, missed_pars = 0, 0 for seg, segment_metadata in shard_metadata.items(): for doc in CCSegmentsReader([seg], cache_dir=WET_CACHE): if doc["digest"] not in segment_metadata: continue meta = segment_metadata[doc["digest"]] full_pars = [doc["title"]] + doc["raw_content"].split("\n") assert len(meta["line_ids"]) == len(meta["languages"]) assert len(meta["line_ids"]) == len(meta["lm_scores"]) for i, lang, score in zip( meta["line_ids"], meta["languages"], meta["lm_scores"] ): if snapshot != "2018-51" and lang in BIG_LANGUAGES: # Big languages only come from "2018-51" snapshot continue if i >= len(full_pars): # This is because CC100 was created by saving only urls. # Some urls appears in different snapshot with slightly different # versions, but we don't know which one is correct. # Here we read both versions, but some index may end up # being incorrect. # This impact ~3% documents. missed_pars += 1 continue yield Paragraph(lang, full_pars[i], score) found_pars += 1 if missed_pars > 0: logging.warning( f"Missed {missed_pars} ({missed_pars / found_pars:%}) paragraphes." ) def _split_by_par( paragraphes: Iterator[Paragraph], snapshot: str, shard: int, outdir: Path ) -> int: outdir.mkdir(exist_ok=True) outfiles = {} num_pars = 0 try: for par in paragraphes: # MODIFY ME: filter paragraph if needed (languages, score, ...) if par.lang not in outfiles: (outdir / par.lang).mkdir(exist_ok=True) outfile = outdir / par.lang / f"snap_{snapshot}_batch_{shard}.gz" outfiles[par.lang] = gzip.open(outfile, "wt") print(par.text, file=outfiles[par.lang]) num_pars += 1 finally: for o in outfiles.values(): o.close() logging.info(f"Extracted {num_pars:_d} paragraphs from shard {snapshot}_{shard}") return num_pars def dl_shard(snapshot: str, shard: int, outdir: Path) -> int: return _split_by_par(_dl_shard(snapshot, shard), snapshot, shard, outdir) @contextlib.contextmanager def unordered_map(processes: int): if processes == 0: yield map return with multiprocessing.Pool(processes) as pool: yield pool.imap_unordered def dl_snapshot(snapshot: str, outdir: Path, processes: int = 1) -> None: _dl_shard = functools.partial(dl_shard, snapshot, outdir=outdir) with unordered_map(processes) as umap: num_pars = sum(umap(_dl_shard, range(500))) logging.info(f"Extracted {num_pars:_d} paragraphs from snapshot {snapshot}.") def dl( snapshot: str = None, outdir: Path = Path("data_cc100"), processes: int = 1 ) -> None: """ Download CC100 corpus. Will create one text file per language and CC snapshot. - snapshot: restrict to one snapshot. Useful for parallelization. - outdir: output directory - processes: number of processes to use """ if snapshot is None: snapshots = CC_100_SNAPSHOTS else: snapshots = snapshot.split(",") invalids = [s for s in snapshots if s not in CC_100_SNAPSHOTS] assert not invalids, f"Invalid snapshots {invalids}, chose from {CC_100_SNAPSHOTS}" for snapshot in snapshots: dl_snapshot(snapshot, outdir, processes) if __name__ == "__main__": import func_argparse func_argparse.single_main(dl)
cc_net-main
cc_net/tools/dl_cc_100.py
cc_net-main
cc_net/tools/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # """ This code is used to train a fastText classifier to label document with DMOZ categories. The data, distributed under the cc-by 3.0 license (https://web.archive.org/web/20140605215533/http://www.dmoz.org/license.html), can be downloaded from https://web.archive.org/web/20140617145301/http://rdf.dmoz.org/rdf/content.rdf.u8.gz. """ import urllib.request from io import StringIO from pathlib import Path from typing import Dict, Set from urllib.parse import urlparse import func_argparse from lxml import etree # type: ignore from cc_net import jsonql TaggedUrls = Dict[str, Set[str]] DMOZ_TAGS_URL = "https://web.archive.org/web/20140617145301/http://rdf.dmoz.org/rdf/content.rdf.u8.gz" def add_tags(url: str, tags: Set[str], url2tags: TaggedUrls): if url in url2tags: url2tags[url] &= tags else: url2tags[url] = tags def load_tags(filename: Path = None) -> TaggedUrls: if filename is None: with StringIO("".join(jsonql.open_remote_file(DMOZ_TAGS_URL))) as dmoz: tree = etree.parse(dmoz) else: tree = etree.parse(str(filename)) root = tree.getroot() url2tags: Dict[str, Set[str]] = {} for external_page in root.iterfind("{http://dmoz.org/rdf/}ExternalPage"): url = external_page.get("about") domain = urlparse(url).netloc for topic in external_page.iterfind("{http://dmoz.org/rdf/}topic"): # print(url, topic.text) # Tags looks like Top/Arts/Animation/Anime/Collectibles tags = set(topic.text.split("/")[1:]) add_tags(url, tags, url2tags) add_tags(domain, tags, url2tags) return url2tags def dl(output: Path) -> None: urllib.request.urlretrieve(DMOZ_TAGS_URL, output) def make_corpus(file: Path, tags_file: Path = None, output: Path = None) -> None: """ Loads a tags file and create a training dataset using the given webpages. Arguments: - file: CC shard file - tags_file: dmoz tagging file, (like the one produced by `dl`) - output: "" """ url2tags = load_tags(tags_file) with jsonql.open_write(output) as o: for document in jsonql.read_jsons(file): if not document: continue url = document["url"] domain = document["source_domain"] if url in url2tags: tags = url2tags[url] elif domain in url2tags: tags = url2tags[domain] else: continue if len(tags) == 0: continue fasttext_tags = ["__label__" + tag for tag in tags] content = document["tokenized"].replace("\n", " ").lower() if len(content) > 200: print(" ".join(fasttext_tags), content, file=o) # type: ignore if __name__ == "__main__": func_argparse.single_main(make_corpus)
cc_net-main
cc_net/tools/make_dmoz_corpus.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # """ Tools to search sentences in CC similar to sentences in another corpus. """ import functools import logging import math import subprocess from collections import Counter from pathlib import Path from typing import Iterable, List, Optional, Set, Tuple import func_argparse import submitit from kenlm import Model as KenlmModel # type: ignore from sentence_splitter import SentenceSplitter # type: ignore from sentencepiece import SentencePieceProcessor # type: ignore from cc_net import dedup, jsonql, perplexity, text_normalizer KENLM = Path("./bin/lmplz") KENLM_BUILD = Path("./bin/build_binary") VOCAB_SIZE = 2 ** 16 - 10 PROCESSES = 16 def normalize(corpus: Path, output_dir: Path) -> Path: normalized = output_dir / (corpus.stem + ".normalized") if normalized.exists(): return normalized print("Will normalize", corpus, "to", normalized) jsonql.run_pipes( jsonql.Mapper(text_normalizer.normalize), file=corpus, output=normalized, processes=PROCESSES, ) return normalized # TODO use classic files directory. def sp_model(lang: str) -> Path: return Path(f"/checkpoint/guw/cc_clean/lm_sp/{lang}.sp.model") def _dataset(dataset: Optional[Path], lang: str) -> Path: return ( dataset or Path("/datasets01_101/common_crawl/020919") / f"{lang}_head_*.json.gz" ) class SentencePiece(jsonql.Transformer): def __init__(self, model: Path): super().__init__() self.model = model self.sp: SentencePieceProcessor = None # type: ignore def _prepare(self): self.sp = SentencePieceProcessor() self.sp.load(str(self.model)) def do(self, line: str) -> str: return " ".join(self.sp.encode_as_pieces(line)) class ExtractSentences(jsonql.Transformer): def __init__( self, sp_model: Path, lm_model: Path, field: str = "raw_content", threshold: float = float("+inf"), ): super().__init__() self.sp_model = sp_model self.lm_model = lm_model self.field = field self.threshold = threshold self.sp: SentencePieceProcessor = None self.lm: KenlmModel = None self.splitter: SentenceSplitter = None self.hashes: Set[int] = set() def _prepare(self): self.sp = SentencePieceProcessor() self.sp.load(str(self.sp_model)) self.splitter = SentenceSplitter("en") self.lm = KenlmModel(str(self.lm_model)) def do(self, document: dict) -> Optional[str]: content: Optional[str] = document.get(self.field) if not content: return None all_sentences = [ s for l in content.split("\n") if l for s in self.splitter.split(text=l) ] unique_sentences = [] for s in all_sentences: if not s: continue h = dedup.str_hash(s) if h in self.hashes: continue self.hashes.add(h) unique_sentences.append(s) scores = [] for sentence in unique_sentences: normalized = text_normalizer.normalize(sentence) pieces = self.sp.encode_as_pieces(normalized) log_score = self.lm.score(" ".join(pieces)) pp = -1 if len(pieces): pp = perplexity.pp(log_score, len(pieces)) scores.append(pp) res = filter( lambda pp_s: self.threshold > pp_s[0] > 0, zip(scores, unique_sentences) ) return "\n".join(f"{pp}\t{s}" for (pp, s) in res) or None def tokenize(corpus: Path, output_dir: Path, lang: str) -> Path: tokenized = output_dir / (corpus.stem + ".tokenized") if tokenized.exists(): return tokenized print("Will SentencePiece", corpus, "to", tokenized) jsonql.run_pipes( SentencePiece(sp_model(lang)), file=normalize(corpus, output_dir), output=tokenized, processes=PROCESSES, ) return tokenized def train_lm( corpus: Path, output_dir: Path, lang: str = "en", vocab_size: int = VOCAB_SIZE, ngrams: int = 5, ): lm_text_file = output_dir / (corpus.stem + ".arpa") lm_bin_file = output_dir / (corpus.stem + ".arpa.bin") if lm_bin_file.exists(): return lm_bin_file assert KENLM.exists(), f"{KENLM} binary to train kenlm model not found." normalized = normalize(corpus, output_dir) tokenized = tokenize(normalized, output_dir, lang) print("Will train LM", lm_text_file, "on", tokenized) kenlm_cmd = [ str(KENLM), f"--order={ngrams}", "--memory=8G", f"--temp_prefix={jsonql._tmp_dir()}", f"--text={tokenized}", f"--arpa={lm_text_file}", f"--vocab_estimate={vocab_size}", "--discount_fallback", ] subprocess.run(kenlm_cmd, check=True) print("Will create binary model", lm_bin_file, "from", lm_text_file) subprocess.run([str(KENLM_BUILD), str(lm_text_file), str(lm_bin_file)], check=True) return lm_bin_file def uniform_sampling_wrt_perplexity( paragraphes: Iterable[str], rounding: float = 100.0, cut: float = 1000.0, samples: int = 20, ) -> Iterable[str]: max_samples = math.floor(cut / rounding * samples) n = 0 buckets = Counter([0.0]) logging.info(f"Will sample {max_samples} sentences.") for lines in paragraphes: for line in lines.split("\n"): if not line: continue pp = float(line[: line.find("\t")]) pp = math.floor(pp / rounding) * rounding if pp > cut: continue if buckets[pp] > samples: continue yield line buckets[pp] += 1 if buckets[pp] > samples: logging.info(f"Bucket {pp} is full ({samples} samples, {n} total)") n += 1 if n > max_samples: return def sample( corpus: Path, output_dir: Path, dataset: Path = None, n: int = 10_000, lang: str = "en", ) -> Path: sample_file = output_dir / (corpus.stem + ".pp_sample.tsv") if sample_file.exists(): return sample_file dataset = _dataset(dataset, lang) extractor = ExtractSentences( sp_model(lang), train_lm(corpus, output_dir), field="raw_content" ) sampling = functools.partial( uniform_sampling_wrt_perplexity, rounding=100.0, cut=1000.0, samples=n // 10 ) print(f"Will sample data from {dataset} to {sample_file}") try: jsonql.run_pipes( extractor, sampling, file=dataset, output=sample_file, processes=PROCESSES ) except Exception: sample_file.unlink() raise subprocess.run(["sort", "-n", "-o", sample_file, sample_file], check=True) subprocess.run(["head", sample_file], check=True) return sample_file def mine( corpus: Path, output_dir: Path, threshold: float, dataset: Path = None, lang: str = "en", ) -> List[Path]: """Search sentences in CC similar to the one in the given corpus. Args: - corpus: corpus to train the LM one. Assumes one sentence per line. - output_dir: where to store the results - threshold: maximum perplexity to have - dataset: glob pattern matching CC shards. - lang: search in the files of this language """ dataset = _dataset(dataset, lang) files = list(dataset.parent.glob(dataset.name)) outputs = [output_dir / (f.stem + ".tsv") for f in files] if all(o.exists() for o in outputs): return outputs n = len(outputs) sp = [sp_model(lang)] * n lm = [train_lm(corpus, output_dir)] * n thresholds = [threshold] * n ex = submitit.AutoExecutor(output_dir / "mining_logs") ex.update_parameters( name="mine", cpus_per_task=PROCESSES, timeout_min=60 * 24 // PROCESSES, mem_gb=10, ) jobs = ex.map_array(_mine, files, outputs, sp, lm, thresholds) print("Submited job array:", jobs[0]) for j in submitit.helpers.as_completed(jobs): (i, o) = j.result() print("Mined sentences from", i, "to", o) return outputs def _mine( file: Path, output: Path, sp: Path, lm: Path, threshold: float ) -> Tuple[Path, Path]: extractor = ExtractSentences(sp, lm, field="raw_content", threshold=threshold) jsonql.run_pipes(extractor, file=file, output=output, processes=PROCESSES) return (file, output) if __name__ == "__main__": func_argparse.main(sample, mine)
cc_net-main
cc_net/tools/expand_corpus.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import json from pathlib import Path from typing import Iterable, Sequence from cc_net import dedup, jsonql from cc_net.dedup import str_hash from cc_net.flat_hash_set import FlatHashSet def text(*args: str) -> str: return "\n".join(args) def write_docs(file: Path, docs: Iterable[Sequence[str]]): file.parent.mkdir(exist_ok=True) with open(file, "w") as f: for sentences in docs: doc = dict(text=text(*sentences)) print(json.dumps(doc), file=f) def as_dict(hash_set): if not isinstance(hash_set, dict): hash_set = {k: v for (k, v) in hash_set.items()} return hash_set def load_hashes(file): results = dedup.FlatHashSet() results.load(file) return as_dict(results) LENGTHS = ["original_length", "length"] def assert_documents_equal(expected, actual, ignoring={}): expected = [{k: doc[k] for k in doc if k not in ignoring} for doc in expected] actual = [{k: doc[k] for k in doc if k not in ignoring} for doc in expected] assert expected == actual def test_simple_dedup(tmp_path: Path) -> None: write_docs( tmp_path / "docs.json", [ ["_Hello", "_World", "I'm so original"], ["_world", "I'm originaler", "_Hello"], ], ) results = list(dedup.deduplicate(tmp_path / "docs.json", field="text")) expected = [ # First document is untouched dict( text=text("_Hello", "_World", "I'm so original"), original_nlines=3, nlines=3, line_ids=[0, 1, 2], ), # Second documents loses several lines dict(text="I'm originaler", original_nlines=3, nlines=1, line_ids=[1]), ] assert_documents_equal(expected, results, ignoring=LENGTHS) def test_dedup_with_dump(tmp_path: Path): hashes = tmp_path / "hashes.bin" documents = [ dict(text=text("_Hello", "_World", "I'm so original")), dict(text=text("_world", "I'm originaler", "_Hello")), ] collector = dedup.HashesCollector(field="text", output=hashes) list(collector.map(documents)) results = load_hashes(hashes) expected = { str_hash(l): l.startswith("_") for l in ["_hello", "_world", "i'm so original", "i'm originaler"] } assert expected == results def test_dedup_with_np_dump(tmp_path: Path): hashes = tmp_path / "hashes.bin" documents = [ dict(text=text("_Hello", "_World", "I'm so original")), dict(text=text("_world", "I'm originaler", "_Hello")), ] with dedup.HashesCollector(field="text", output=hashes) as d: list(d.map(documents)) results = FlatHashSet() results.load_np(hashes) expected = set( str_hash(l) for l in ["_hello", "_world", "i'm so original", "i'm originaler"] ) assert expected == set(results.keys()) def test_dedup_from_hashes(tmp_path: Path): documents = [ dict(text=text("_Hello", "World", "I'm so original")), dict(text=text("Good morning", "World", "I'm originaler")), ] seen = ["_hello", "i'm originaler", "world"] hashes = [str_hash(h) for h in seen] h = dedup.FlatHashSet() h.add(hashes) # Note: 'world' appears only once and won't be treated as a duplicate. h.add(hashes[:-1]) h.dump(tmp_path / "hashes.bin") results = list( dedup.DuplicatesRemover("text", [tmp_path / "hashes.bin"]).map(documents) ) expected = [ dict( text=text("World", "I'm so original"), original_nlines=3, nlines=2, line_ids=[1, 2], ), dict( text=text("Good morning", "World"), original_nlines=3, nlines=2, line_ids=[0, 1], ), ] assert_documents_equal(expected, results, ignoring=LENGTHS) def test_dedup_fast(tmp_path: Path): data = tmp_path / "data" part_0 = [["Hello", "_World", "I'm so original"]] write_docs(data / "part_0.json", part_0) part_1 = [["Good morning", "_World", "I'm originaler"]] write_docs(data / "part_1.json", part_1) parts = [data / "part_0.json", data / "part_1.json"] res = tmp_path / "res" res.mkdir() h = tmp_path / "hashes.bin" field = "text" jsonql.run_pipes(dedup.HashesCollector(field, output=h), file=parts) for part in parts: jsonql.run_pipes( dedup.DuplicatesRemover(field, [h]), file=part, output=res / part.name ) jsonql.run_pipes( dedup.DuplicatesRemover(field, [h]), file=part, output=res / part.name ) results_0 = list(jsonql.read_jsons(res / "part_0.json")) expected_0 = [ dict( text=text("Hello", "I'm so original"), original_nlines=3, nlines=2, line_ids=[0, 2], ) ] assert_documents_equal(expected_0, results_0, ignoring=LENGTHS) results_1 = list(jsonql.read_jsons(res / "part_1.json")) expected_1 = [ dict( text=text("Good morning", "I'm originaler"), original_nlines=3, nlines=2, line_ids=[0, 2], ) ] assert_documents_equal(expected_1, results_1, ignoring=LENGTHS) words = [w for part in [part_0, part_1] for doc in part for w in doc] expected = {str_hash(s.lower()): s.startswith("_") for s in words} assert expected == load_hashes(h) def test_remove_duplicates_sharded(tmp_path: Path): data = tmp_path / "data" part_0 = [["Hello", "_World", "I'm so original"]] write_docs(data / "part_0.json", part_0) part_1 = [["_Good morning", "_World", "I'm originaler"]] write_docs(data / "part_1.json", part_1) h = tmp_path / "hashes" h.mkdir() h0 = FlatHashSet() h0.add([str_hash(s.lower()) for doc in part_0 for s in doc]) h0.add([str_hash("_world")]) h0.dump(h / "part_0.bin") assert { str_hash("hello"): False, str_hash("_world"): True, str_hash("i'm so original"): False, } == as_dict(h0) h1 = FlatHashSet() h1.add([str_hash(s.lower()) for doc in part_1 for s in doc]) h1.add([str_hash("_good morning")]) h1.dump(h / "part_1.bin") assert { str_hash("_good morning"): True, str_hash("_world"): False, str_hash("i'm originaler"): False, } == as_dict(h1) res = tmp_path / "res" res.mkdir() # dedup.DISABLE_MULTI_PROCESSING = True # Simplifies debugging dedup.remove_duplicates_sharded( files=[data / "part_0.json", data / "part_1.json"], outputs=[res / "part_0.json", res / "part_1.json"], field="text", hashes_dir=h, ) results_0 = list(jsonql.read_jsons(res / "part_0.json")) expected_0 = [ dict( text=text("Hello", "I'm so original"), original_nlines=3, nlines=2, line_ids=[0, 2], ) ] assert_documents_equal(expected_0, results_0, ignoring=LENGTHS) # First pass removes "_world", second "_good morning". results_1 = list(jsonql.read_jsons(res / "part_1.json")) expected_1 = [ dict(text=text("I'm originaler"), original_nlines=3, nlines=1, line_ids=[2]) ] assert_documents_equal(expected_1, results_1, ignoring=LENGTHS)
cc_net-main
tests/test_dedup.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import cc_net.text_normalizer as txt def test_unicode_punct(): weird = ",。、„”“«»1」「《》´∶:?!();–—.~’…━〈〉【】%" replaced = ',.,""""""""""\'::?!();- - . ~\'...-<>[]%' assert txt.replace_unicode_punct(weird) == replaced assert txt.remove_unicode_punct(weird) == "" def test_numbers(): weird = "023456789 | 0123456789" normalized = "000000000 | 0000000000" assert txt.normalize(weird, numbers=True) == normalized assert txt.normalize(weird, numbers=False) == weird def test_normalize_for_dedup(): weird = "023´∶:\x10 | ;012 hèllo" normalized = "000 | ;000 hèllo" assert normalized == txt.slow_normalize_for_dedup(weird) assert normalized == txt.normalize_for_dedup(weird)
cc_net-main
tests/test_normalizer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # from pathlib import Path from cc_net import process_wet_file def test_parsing(): sample = Path(__file__).parent / "data" / "sample.warc.txt" with open(sample) as f: documents = list(process_wet_file.parse_warc_file(f)) expected_urls = [ "http://sample_english.com", "http://sample_chinese.zh", "http://sample_russian.ru", ] assert expected_urls == [d["url"] for d in documents] expected_domains = ["sample_english.com", "sample_chinese.zh", "sample_russian.ru"] assert expected_domains == [d["source_domain"] for d in documents] expected_date = [ "2019-03-18T00:00:00Z", "2019-03-18T00:00:01Z", "2019-03-18T00:00:02Z", ] assert expected_date == [d["date_download"] for d in documents] expected_title = [ "Famous Mark Twain Quotes", "馬克·吐溫名言", "Цитаты знаменитого Марка Твена", ] assert expected_title == [d["title"] for d in documents] expected_quotes = """Don't part with your illusions. When they are gone you may still exist, but you have ceased to live. Education: that which reveals to the wise, and conceals from the stupid, the vast limits of their knowledge. Facts are stubborn things, but statistics are more pliable. Fiction is obliged to stick to possibilities. Truth isn't. """ assert expected_quotes == documents[0]["raw_content"]
cc_net-main
tests/test_parse_wet_file.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import numpy as np import pytest from cc_net.flat_hash_set import HASH_TYPE, FlatHashSet, NaiveHashSet def as_dict(flat_hash_set) -> dict: return {k: v for (k, v) in flat_hash_set.items()} need_getpy = pytest.mark.skipif( FlatHashSet == NaiveHashSet, reason="getpy isn't installed" ) def same_behavior(test_case): def run_case(): naive = as_dict(test_case(FlatHashSet)) flat = as_dict(test_case(NaiveHashSet)) assert naive == flat return need_getpy(run_case) @same_behavior def test_setitem(hash_set_cls): h = hash_set_cls() h[np.arange(10, dtype=h.dtype)] = np.zeros(10, dtype=np.uint8) h[np.arange(5, dtype=h.dtype)] = np.ones(5, dtype=np.uint8) return h @same_behavior def test_add_dup(hash_set_cls): h = hash_set_cls() h.add(np.arange(10, dtype=h.dtype)) h.add(np.arange(5, dtype=h.dtype)) expected = {i: i < 5 for i in range(10)} assert expected == as_dict(h), f"add_dup with {hash_set_cls.__name__}" return h @need_getpy def test_gp_dict(): import getpy as gp # type: ignore h = gp.Dict(HASH_TYPE, np.uint8) h[np.arange(10, dtype=HASH_TYPE)] = np.zeros(10, dtype=np.uint8) h[np.arange(5, dtype=HASH_TYPE)] = np.ones(5, dtype=np.uint8) expected = {i: i < 5 for i in range(10)} assert expected == as_dict(h) def check_reload(h, dump, load, tmp_path): dump_path = tmp_path / dump.__name__ dump(h, dump_path) h2 = type(h)() load(h2, dump_path) assert as_dict(h) == as_dict(h2) @pytest.mark.parametrize("hash_set_cls", [FlatHashSet, NaiveHashSet]) def test_loading(tmp_path, hash_set_cls): h = hash_set_cls() x = np.random.randint(0, 2 ** 32, (100,), dtype=h.dtype) h.add(x) check_reload(h, hash_set_cls.dump, hash_set_cls.load, tmp_path) check_reload(h, hash_set_cls.dump_np, hash_set_cls.load_np, tmp_path) if hasattr(hash_set_cls, "dump_gp"): check_reload(h, hash_set_cls.dump_gp, hash_set_cls.load_gp, tmp_path)
cc_net-main
tests/test_flat_hash_set.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import pytest def _request_is_disabled(self, *args, **kwargs): raise Exception( f"Your code tried to call 'request' with: {args}, {kwargs}. Unit test aren't allowed to reach internet." ) @pytest.fixture(autouse=True) def no_requests(monkeypatch): """Remove requests.sessions.Session.request for all tests.""" monkeypatch.setattr("requests.sessions.Session.request", _request_is_disabled)
cc_net-main
tests/conftest.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # #
cc_net-main
tests/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import time from cc_net import jsonql, regroup def check_regroup(tmp_path, regroup_fn, check_blocks_boundaries=False): n_shards = 4 n_docs = 20 shards = [ [dict(id=i, shard=s, raw_content="hello world") for i in range(n_docs)] for s in range(n_shards) ] shards_files = [tmp_path / f"{s:04d}.json.gz" for s in range(n_shards)] for shard, shard_file in zip(shards, shards_files): jsonql.run_pipes(inputs=shard, output=shard_file) regroup_file = tmp_path / "regroup.json.gz" start = time.time() regroup_fn(shards_files, regroup_file) duration = time.time() - start print(f"{regroup_fn.__module__}.{regroup_fn.__name__} took {duration}s") regrouped = list(jsonql.read_jsons(regroup_file)) assert [doc for shard in shards for doc in shard] == regrouped readers = jsonql.get_block_readers(regroup_file, n_shards) if not check_blocks_boundaries: assert [doc for shard in shards for doc in shard] == [ doc for reader in readers for doc in jsonql.read_jsons(reader) ] return for shard, reader in zip(shards, readers): block = [doc for doc in jsonql.read_jsons(reader)] assert shard == block def test_regroup(tmp_path): # With regroup boundaries will be every 256Mb. check_regroup(tmp_path, regroup.reshard, check_blocks_boundaries=False) def test_fast_regroup(tmp_path): # With fast regroup boundaries should match the shards. check_regroup(tmp_path, regroup.fast_reshard, check_blocks_boundaries=True)
cc_net-main
tests/test_regroup.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import io from pathlib import Path from typing import Sequence import numpy as np import pytest from cc_net import jsonql def bar(small_bar: str) -> str: return small_bar.replace(" ", " " * 10).replace("█", "█" * 10) def get_output(transformer, data, **kwargs): with io.StringIO() as output: # Convert data to a generator so that it's not interpreted as a file list. jsonql.run_pipe(transformer, kwargs, file=(x for x in data), output=output) return output.getvalue() def test_split(tmp_path: Path): data = [ dict(text="Hello world", lang="en"), dict(text="Boujour les amis", lang="fr"), dict(text="Rock your boat", lang="en"), ] with jsonql.split(tmp_path / "{lang}.json") as split: list(split.map(data)) summary = split.summary() assert "Found 2 splits." in summary en_docs = list(jsonql.read_jsons(tmp_path / "en.json")) assert [data[0], data[2]] == en_docs fr_docs = list(jsonql.read_jsons(tmp_path / "fr.json")) assert [data[1]] == fr_docs def test_split_bad_pattern(tmp_path: Path): data = [dict(text="Hello world", lang="en")] with pytest.raises(KeyError): with jsonql.split(tmp_path / "{language}.json") as split: list(split.map(data)) def test_histogram(): data = [0.1, 0.1, 0.1, 0.1, 0.4, 0.4, 0.9, 0.9] hist, bins = jsonql.histogram(data, bins=8, weights=None) np.testing.assert_almost_equal(bins, [0.1 * x for x in range(1, 10)]) np.testing.assert_almost_equal(hist, [4, 0, 0, 2, 0, 0, 0, 2]) data = [0, 0.1, 0.1, 0.1, 0.1, 0.4, 0.4, 0.8, 0.8, 1] hist, bins = jsonql.histogram(data, bins=10, weights=None) np.testing.assert_almost_equal(bins, [0.1 * x for x in range(11)]) np.testing.assert_almost_equal(hist, [1, 4, 0, 0, 2, 0, 0, 0, 2, 1]) def test_display_stats(): stats = { jsonql.ALL_DOCUMENTS: 100, "title": 80, "title.length": 80 * 50, "text": 100, "text.length": 100 * 1000, "popularity": 8, "popularity.val": [0.1, 0.1, 0.1, 0.1, 0.4, 0.4, 0.9, 0.9], } (title,) = jsonql.display_stats(stats, "title") assert "title" in title assert "saw 80 times" in title assert "average length is" in title assert "\n" not in title (text,) = jsonql.display_stats(stats, "text") assert "text" in text assert "saw 100 times" in text assert "average length is" in text assert "\n" not in text histogram = jsonql.display_stats( stats, "popularity", bins=[x / 10 for x in range(1, 10)] ) assert "popularity" in histogram[0] assert "saw 8 times" in histogram[0] assert "histogram is" in histogram[0] assert "0.100 " + bar("████████") in histogram[1] assert "0.400 " + bar("████ ") in histogram[2] assert "0.800 " + bar("████ ") in histogram[3] cum_histogram = jsonql.display_stats(stats, "popularity", bins=8, cumulative=True) assert "popularity" in cum_histogram[0] assert "saw 8 times" in cum_histogram[0] assert "histogram is" in cum_histogram[0] assert "0.100 " + bar("████ ") in cum_histogram[1] assert "0.400 " + bar("██████ ") in cum_histogram[2] assert "0.800 " + bar("████████") in cum_histogram[3] def test_describe(): def sample(pop): return dict(title="Lorem", text="Lorem ipsum dolor sit amet.", popularity=pop) data = [sample(pop) for pop in [0.1, 0.1, 0.1, 0.1, 0.4, 0.4, 0.9, 0.9]] desc = get_output( jsonql.describe, data, columns=None, bins=[x / 10 for x in range(1, 10)] ) assert "Field title saw 8 times (100.0%), average length is 5" in desc assert "Field text saw 8 times (100.0%), average length is 27" in desc assert "Field popularity saw 8 times (100.0%), histogram is" in desc assert "0.100 " + bar("████████") in desc assert "0.400 " + bar("████ ") in desc assert "0.800 " + bar("████ ") in desc desc = get_output(jsonql.describe, data, columns=["text"]) assert "Field title saw 8 times (100.0%), average length is 5" not in desc assert "Field text saw 8 times (100.0%), average length is 27" in desc assert "Field popularity, histogram is:" not in desc def test_custom_pipe(): def transformer(source, sep=" "): for i, line in enumerate(source): res = f"{i}{sep}{line}" yield res data = ["hello", "world"] assert get_output(transformer, data) == "0 hello\n1 world\n" assert get_output(transformer, data, sep="_") == "0_hello\n1_world\n" def test_open_read_write(tmp_path: Path): def _lines(filename: Path) -> Sequence[str]: # jsonql.lines calls open_read return list(jsonql.lines(filename)) tmp = tmp_path with jsonql.open_write(tmp / "a.txt") as o: print("a", file=o) assert _lines(tmp / "a.txt") == ["a"] jsonql.write_jsons([{"a": 1}], tmp / "a.txt") assert _lines(tmp / "a.txt") == ['{"a": 1}'] with jsonql.open_write(tmp / "a.gz") as o: print("a", file=o) assert _lines(tmp / "a.gz") == ["a"] with jsonql.open_write([tmp / "a0.txt", tmp / "a1.txt"]) as o: print("a", file=o) assert _lines(tmp / "a0.txt") == ["a"] assert not (tmp / "a1.txt").is_file() with jsonql.open_write([tmp / "b0.txt", tmp / "b1.txt"], max_size="1k") as o: print("0" * 2000, file=o) print("1" * 2000, file=o) assert _lines(tmp / "b0.txt") == ["0" * 2000] assert _lines(tmp / "b1.txt") == ["1" * 2000] with jsonql.open_write(tmp / "a_????.json") as o: print("a", file=o) assert _lines(tmp / "a_0000.json") == ["a"] assert not (tmp / "a_0001.json").is_file() assert _lines(tmp / "a_*.json") == ["a"] with jsonql.open_write(tmp / "b_??.json", max_size="1k") as o: print("0" * 2000, file=o) print("1" * 2000, file=o) assert _lines(tmp / "b_00.json") == ["0" * 2000] assert _lines(tmp / "b_01.json") == ["1" * 2000] assert _lines(tmp / "b_*.json") == ["0" * 2000, "1" * 2000] def test_split_file(tmp_path: Path): file = tmp_path / "test.txt" content = "Hello\nWorld\n" with open(file, "w") as o: o.write(content) with jsonql.SplitFile(file, chunk=0, n_chunks=2) as f: assert f.readlines() == ["Hello\n"] with jsonql.SplitFile(file, chunk=1, n_chunks=2) as f: assert f.readlines() == ["World\n"] def test_split_file_middle_of_line(tmp_path: Path): file = tmp_path / "test.txt" content = "Hello _|_\nWorld\n" # split is here ^ with open(file, "w") as o: o.write(content) with jsonql.SplitFile(file, chunk=0, n_chunks=2) as f: assert f.readlines() == ["Hello _|_\n"] with jsonql.SplitFile(file, chunk=1, n_chunks=2) as f: assert f.readlines() == ["World\n"] def test_split_file_middle_of_char(tmp_path: Path): file = tmp_path / "test.txt" content = "Hello\U0001F40D\nWorld\n" # split is here ^^ with open(file, "w") as o: o.write(content) with jsonql.SplitFile(file, chunk=0, n_chunks=2) as f: assert f.readlines() == ["Hello🐍\n"] with jsonql.SplitFile(file, chunk=1, n_chunks=2) as f: assert f.readlines() == ["World\n"] def test_blocked_gzip(tmp_path: Path): file = tmp_path / "test.gz" f = str(file) # Each object is 10/11 bytes long. We have 2 of them by block. content = ['{"xx": %d}' % i for i in range(80)] with jsonql.BlockedGzipWriter(file, "wt", block_size="20B") as o: for line in content: print(line, file=o) jr = jsonql.JsonReader(strict=True) expected = list(jr.map(content)) # read as one file assert expected == list(jsonql.read_jsons(file)) # read first block assert expected[:2] == list(jsonql.read_jsons(f + "[0/40]")) # read last block assert expected[-2:] == list(jsonql.read_jsons(f + "[39/40]")) readers = jsonql.get_block_readers(file, 9) read_as_several_files = [list(jsonql.read_jsons(r)) for r in readers] # 40 splits of 2 docs, 9 readers -> 5 splits, 10 docs per reader assert list(jsonql.grouper(expected, 10)) == read_as_several_files def test_enter_exit(capsys): class MyTransformer(jsonql.Transformer): def __enter__(self): print("trans: started") self.ready = True return self def __exit__(self, *args): print("trans: done") def do(self, x): return (x, x) def acc(values): print("acc: started") res = 0 for (x, _) in values: res += int(x) print("acc: done") yield f"acc: result={res}" t = MyTransformer() data = (str(x) for x in range(10)) print("pipeline: started") # Print to stdout. jsonql.run_pipes(t, acc, file=data) print("pipeline: done") out = capsys.readouterr().out assert ( "\n".join( [ "pipeline: started", "trans: started", "acc: started", "acc: done", f"acc: result=45", # Transformers are closed at the very end. "trans: done", "pipeline: done\n", ] ) == out ) def test_write_to_stdout(capsys): lines = [str(x) for x in range(10)] jsonql.run_pipes(file=iter(lines)) out = capsys.readouterr().out assert out == "\n".join(lines) + "\n" def test_write_to_stdout_handle_newlines(capsys): lines = [str(x) + "\n" for x in range(10)] jsonql.run_pipes(file=iter(lines)) out = capsys.readouterr().out assert out == "".join(lines) def test_multiprocess(capsys): mult = jsonql.Mapper(lambda x: f"2x = {2 * int(x)}") jsonql.run_pipes(mult, processes=2, file=(str(x) for x in range(10))) out = set(capsys.readouterr().out.strip("\n").split("\n")) assert set(f"2x = {2 * x}" for x in range(10)) == out
cc_net-main
tests/test_jsonql.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import json from pathlib import Path import pytest import cc_net import cc_net.minify as minify from cc_net import jsonql, process_wet_file from cc_net.minify import ( HASH_SIZE, decode_hashes, encode_hashes, encode_line_ids, get_hashes, ) def test_encode_decode(): sentences = ["Hello world !", "Is everyone happy in here ?"] hashes = get_hashes(sentences) assert all([len(h) == HASH_SIZE for h in hashes]) hashes_int = [minify._b2i(h) for h in hashes] encoded = encode_hashes(hashes) decoded = decode_hashes(encoded) assert all([len(d) == HASH_SIZE for d in decoded]) decoded_int = [minify._b2i(d) for d in decoded] assert hashes_int == decoded_int assert hashes == decoded def test_minify(): doc = { "raw_content": "Hello world !\nIs everyone happy in here ?", "language": "en", "perplexity": 120.0, "line_ids": [0, 4], } expected = {"line_ids": "AAAEAA==", "language": "en", "perplexity": 120.0} minifier = minify.Minifier() assert expected == minifier(doc) @pytest.fixture def http_from_disk(monkeypatch): def read_sample_file(url: str, n_retry: int = 3) -> bytes: expected_url = process_wet_file.WET_URL_ROOT + "/crawl-data/sample.warc.wet" assert expected_url == url file = Path(__file__).parent / "data" / "sample.warc.txt" return file.read_bytes() monkeypatch.setattr(cc_net.jsonql, "request_get_content", read_sample_file) def test_minify_and_fetch(http_from_disk, tmp_path: Path): full_quotes = """Don't part with your illusions. When they are gone you may still exist, but you have ceased to live. Education: that which reveals to the wise, and conceals from the stupid, the vast limits of their knowledge. Facts are stubborn things, but statistics are more pliable. Fiction is obliged to stick to possibilities. Truth isn't.""" # We don't need no education. chosen_quotes = "\n".join( l for l in full_quotes.splitlines() if "Education" not in l ) cc_doc = { "url": "http://sample_english.com", "date_download": "2019-03-18T00:00:00Z", "digest": "sha1:XQZHW7QWIG54HVAV3KPRW6MK5ILDNCER", "source_domain": "sample_english.com", "title": "Famous Mark Twain Quotes", "raw_content": full_quotes, "cc_segment": "crawl-data/sample.warc.wet", "nlines": 4, "length": 353, } ccnet_metadata = { "language": "en", "language_score": 0.99, "perplexity": 151.5, "bucket": "head", "raw_content": chosen_quotes, "nlines": 3, "length": len(chosen_quotes), "original_nlines": 4, "original_length": 353, "line_ids": [0, 2, 3], } ccnet_doc = dict(cc_doc, **ccnet_metadata) mini = minify.Minifier()(ccnet_doc.copy()) assert mini is not ccnet_doc important_fields = [ "url", "digest", "cc_segment", "language", "language_score", "perplexity", "bucket", "line_ids", ] expected = {k: ccnet_doc[k] for k in important_fields} expected["line_ids"] = encode_line_ids(expected["line_ids"]) # type: ignore assert expected == mini with jsonql.open_write(tmp_path / "sample.json") as o: print(json.dumps(mini), file=o) fetcher = minify.MetadataFetcher(tmp_path) # line_ids is removed when unminifying ccnet_doc.pop("line_ids") assert ccnet_doc == fetcher(cc_doc) def test_fetch(http_from_disk, tmp_path: Path): mini_docs = [ { "url": "http://sample_chinese.com", "digest": "sha1:Y4E6URVYGIAFNVRTPZ5S3J64RTZTP6HJ", "cc_segment": "crawl-data/sample.warc.wet", "line_ids": encode_line_ids([2]), "bucket": "not_that_great", }, { "url": "http://sample_english.com", "digest": "sha1:XQZHW7QWIG54HVAV3KPRW6MK5ILDNCER", "cc_segment": "crawl-data/sample.warc.wet", "line_ids": encode_line_ids([3]), "bucket": "top_notch", }, ] with jsonql.open_write(tmp_path / "sample.json") as o: for mini in mini_docs: print(json.dumps(mini), file=o) fetcher = minify.MetadataFetcher(tmp_path) cc = process_wet_file.CCSegmentsReader(["crawl-data/sample.warc.wet"]) docs = [d for d in fetcher.map(cc) if d is not None] assert cc.retrieved_segments == 1 # Note: documents are retrieved as they are ordered in the .warc.wet file assert [ "Facts are stubborn things, but statistics are more pliable.", "事實是固執的東西,但統計數字卻比較柔和。", ] == [d["raw_content"] for d in docs] assert ["top_notch", "not_that_great"] == [d["bucket"] for d in docs]
cc_net-main
tests/test_minify.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import inspect import pickle from pathlib import Path import pytest from cc_net import dedup, jsonql, perplexity, split_by_lang, tokenizer def get_transformers(module): return [ v for v in vars(module).values() if type(v) is type and issubclass(v, jsonql.Transformer) and v != jsonql.Transformer ] ALL_TRANSFORMERS = ( get_transformers(jsonql) + get_transformers(dedup) + get_transformers(perplexity) + get_transformers(tokenizer) + get_transformers(split_by_lang) ) def check_transformer_is_calling_super_init(cls: type): assert issubclass(cls, jsonql.Transformer) # accessing __init__ is generally an error, but here we do want to inspect # the __init__method. code = inspect.getsource(cls.__init__) # type: ignore code = code.replace(" ", "") # Check that super().__init__ is called. assert "super().__init__()" in code def test_bad_transformers_are_caught(): class BadTransformer(jsonql.Transformer): def __init__(self, arg): # We aren't calling super /!\ self.arg = arg with pytest.raises(AssertionError): check_transformer_is_calling_super_init(BadTransformer) @pytest.mark.parametrize("transformer", ALL_TRANSFORMERS) def test_transformer_is_correctly_implemented(transformer): check_transformer_is_calling_super_init(transformer) @pytest.mark.skipif( not Path("bin/lid.bin").exists(), reason="bin/lid.bin not found, run `make install`" ) def test_can_pickle_transformer(tmp_path): model = Path("bin/lid.bin") if not model.exists(): return classifier = split_by_lang.Classifier(model, "text", "lang") classifier.__enter__() doc = dict(text="Hello world ! This is English btw.") original_results = classifier(doc) with open(tmp_path / "transformer.pkl", "wb") as o: pickle.dump(classifier, o) with open(tmp_path / "transformer.pkl", "rb") as f: classifier = pickle.load(f) assert original_results == classifier(doc) # Do it again with the unpickled object. with open(tmp_path / "transformer.pkl", "wb") as o: pickle.dump(classifier, o) with open(tmp_path / "transformer.pkl", "rb") as f: classifier = pickle.load(f) assert original_results == classifier(doc)
cc_net-main
tests/test_transformer.py
# Adapted from https://github.com/NVIDIA/apex/blob/master/setup.py import torch from torch.utils.cpp_extension import BuildExtension, CppExtension, CUDAExtension, CUDA_HOME from setuptools import setup, find_packages import subprocess import sys import warnings import os # ninja build does not work unless include_dirs are abs path this_dir = os.path.dirname(os.path.abspath(__file__)) def get_cuda_bare_metal_version(cuda_dir): raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True) output = raw_output.split() release_idx = output.index("release") + 1 release = output[release_idx].split(".") bare_metal_major = release[0] bare_metal_minor = release[1][0] return raw_output, bare_metal_major, bare_metal_minor def check_cuda_torch_binary_vs_bare_metal(cuda_dir): raw_output, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(cuda_dir) torch_binary_major = torch.version.cuda.split(".")[0] torch_binary_minor = torch.version.cuda.split(".")[1] print("\nCompiling cuda extensions with") print(raw_output + "from " + cuda_dir + "/bin\n") if (bare_metal_major != torch_binary_major) or (bare_metal_minor != torch_binary_minor): raise RuntimeError( "Cuda extensions are being compiled with a version of Cuda that does " "not match the version used to compile Pytorch binaries. " "Pytorch binaries were compiled with Cuda {}.\n".format(torch.version.cuda) + "In some cases, a minor-version mismatch will not cause later errors: " "https://github.com/NVIDIA/apex/pull/323#discussion_r287021798. " "You can try commenting out this check (at your own risk)." ) def raise_if_cuda_home_none(global_option: str) -> None: if CUDA_HOME is not None: return raise RuntimeError( f"{global_option} was requested, but nvcc was not found. Are you sure your environment has nvcc available? " "If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, " "only images whose names contain 'devel' will provide nvcc." ) def append_nvcc_threads(nvcc_extra_args): _, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(CUDA_HOME) if int(bare_metal_major) >= 11 and int(bare_metal_minor) >= 2: return nvcc_extra_args + ["--threads", "4"] return nvcc_extra_args if not torch.cuda.is_available(): # https://github.com/NVIDIA/apex/issues/486 # Extension builds after https://github.com/pytorch/pytorch/pull/23408 attempt to query torch.cuda.get_device_capability(), # which will fail if you are compiling in an environment without visible GPUs (e.g. during an nvidia-docker build command). print( "\nWarning: Torch did not find available GPUs on this system.\n", "If your intention is to cross-compile, this is not an error.\n" "By default, Apex will cross-compile for Pascal (compute capabilities 6.0, 6.1, 6.2),\n" "Volta (compute capability 7.0), Turing (compute capability 7.5),\n" "and, if the CUDA version is >= 11.0, Ampere (compute capability 8.0).\n" "If you wish to cross-compile for a single specific architecture,\n" 'export TORCH_CUDA_ARCH_LIST="compute capability" before running setup.py.\n', ) if os.environ.get("TORCH_CUDA_ARCH_LIST", None) is None: _, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(CUDA_HOME) if int(bare_metal_major) == 11: os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0" if int(bare_metal_minor) > 0: os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0;8.6" else: os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5" print("\n\ntorch.__version__ = {}\n\n".format(torch.__version__)) TORCH_MAJOR = int(torch.__version__.split(".")[0]) TORCH_MINOR = int(torch.__version__.split(".")[1]) cmdclass = {} ext_modules = [] raise_if_cuda_home_none("flashmm") # Check, if CUDA11 is installed for compute capability 8.0 cc_flag = [] # cc_flag.append("-gencode") # cc_flag.append("arch=compute_70,code=sm_70") cc_flag.append("-gencode") cc_flag.append("arch=compute_80,code=sm_80") ext_modules.append( CUDAExtension( 'flashmm', [ 'flash_mm.cpp', 'mm_block_fwd_cuda.cu', 'hyena_filter_cuda.cu', ], extra_compile_args={'cxx': ['-g', '-march=native', '-funroll-loops'], 'nvcc': ['-O3', '--threads', '4', '-lineinfo', '--use_fast_math', '-std=c++17', '-arch=compute_70'] # extra_compile_args={'cxx': ['-O3'], # 'nvcc': append_nvcc_threads(['-O3', '-lineinfo', '--use_fast_math', '-std=c++17'] + cc_flag) }, include_dirs=[os.path.join(this_dir, 'mathdx/22.02/include')], ) ) torch.utils.cpp_extension.COMMON_NVCC_FLAGS.remove('-D__CUDA_NO_HALF2_OPERATORS__') setup( name="flashmm", version="0.1", description="Fast modules for Monarch Mixer block", ext_modules=ext_modules, cmdclass={"build_ext": BuildExtension} if ext_modules else {}, )
m2-main
csrc/flashmm/setup.py
import torch import torch.nn.functional as F from einops import rearrange import math torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True from flashmm import mm_block_fwd, hyena_filter_fwd, exp_mod_in_place_fwd def ref_mm_block( u, linear, out_linear, x1_s, x2_s, v_s, x1_s_bias, x2_s_bias, v_s_bias, k, k_resid, D, Du, dropout_mask, gelu, fft_size ): x1x2v = linear(u) H = x1x2v.shape[-1] // 3 seqlen = x1x2v.shape[-2] x1x2v = x1x2v.transpose(-1, -2) x1x2v_c = torch.nn.functional.conv1d( x1x2v, torch.flip(torch.cat([x1_s, x2_s, v_s], dim=0), dims=(-1,)).unsqueeze(1), # torch.flip to match our short conv bias=torch.cat([x1_s_bias, x2_s_bias, v_s_bias], dim=0), padding=x1_s.shape[-1] - 1, groups=x1x2v.shape[1] )[..., :seqlen] x1 = x1x2v_c[:, :H, :] x2 = x1x2v_c[:, H:2*H, :] v = x1x2v_c[:, 2*H:, :] x1 = x1 * v k_f = torch.fft.rfft(k, n=fft_size) / fft_size x1_f = torch.fft.rfft(x1.to(dtype=k.dtype), n=fft_size) y = torch.fft.irfft(x1_f * k_f, n=fft_size, norm="forward")[..., :seqlen] # y.shape: B H L out = y + x1 * D[None, :, None] if gelu: out = F.gelu(out) if dropout_mask is not None: out = (out * rearrange(dropout_mask, "b H -> b H 1")).to(dtype=x1.dtype) else: out = out.to(dtype=x1.dtype) out = out * x2 u = u.transpose(-1, -2) u_f = torch.fft.rfft(u, n=fft_size) k_resid_f = torch.fft.rfft(k_resid, n=fft_size) / fft_size out = out + torch.fft.irfft(u_f * k_resid_f, n=fft_size, norm="forward")[..., :seqlen] + Du[None, :, None] * u out = out.transpose(-1, -2) return out_linear(out) def ref_hyena_filter( z, sin_freq, eo_mat, eo_bias, oo1_mat, oo1_bias, oo2_mat, oo2_bias, oh_mat, t, deltas, shift ): out = torch.bmm(z, eo_mat) + eo_bias.unsqueeze(1) out = torch.sin(out * sin_freq) out = torch.bmm(out, oo1_mat) + oo1_bias.unsqueeze(1) out = torch.sin(out * sin_freq) out = torch.bmm(out, oo2_mat) + oo2_bias.unsqueeze(1) out = torch.sin(out * sin_freq) out = torch.bmm(out, oh_mat) out = out * torch.exp(-t * deltas.abs()) + shift return out def fast_mm_block( u, linear, out_linear, x1_s, x2_s, v_s, x1_s_bias, x2_s_bias, v_s_bias, k, k_resid, D, Du, dropout_mask, gelu, fft_size ): x1x2v = linear(u) H = x1x2v.shape[-1] // 3 x1, x2, v = x1x2v.split(H, dim=-1) x1 = x1.transpose(1, 2).contiguous() x2 = x2.transpose(1, 2).contiguous() v = v.transpose(1, 2).contiguous() u = u.transpose(1, 2).contiguous() k_f = torch.fft.rfft(k, n=fft_size) k_residual_f = torch.fft.rfft(k_resid, n=fft_size) out = mm_block_fwd( x1, x2, v, x1_s, x2_s, v_s, x1_s_bias, x2_s_bias, v_s_bias, k_f, None, u, k_residual_f, Du, D, dropout_mask, gelu, fft_size, False, False ) out = out.transpose(1, 2) return out_linear(out) def fast_hyena_filter( z, sin_freq, eo_mat, eo_bias, oo1_mat, oo1_bias, oo2_mat, oo2_bias, oh_mat, min_delay, max_delay, shift, reverse_vec ): k = hyena_filter_fwd( z, sin_freq, eo_mat, eo_bias, oo1_mat, oo1_bias, oo2_mat, oo2_bias, reverse_vec, None ) k = torch.bmm(k, oh_mat) return exp_mod_in_place_fwd(k, reverse_vec, min_delay, max_delay, shift) B = 64 H = 768 L = 128 fftsize = 2 * L device = 'cuda' repeats = 30 short_conv_width = 4 gelu = True torch.manual_seed(19) u = torch.randn(B, L, H, device=device) in_linear = torch.nn.Linear(H, 3 * H).to(device=device) out_linear = torch.nn.Linear(H, H).to(device=device) short_filter = torch.nn.Conv1d(3 * H, 3 * H, kernel_size=short_conv_width, padding=short_conv_width - 1, groups=3 * H, device=device) x1_s = short_filter.weight[:H, 0, :] x2_s = short_filter.weight[H:2*H, 0, :] v_s = short_filter.weight[2*H:3*H, 0, :] x1_s_bias = torch.zeros(short_filter.bias[:H].shape).to(device=device) x2_s_bias = torch.zeros(short_filter.bias[H:2*H].shape).to(device=device) v_s_bias = torch.zeros(short_filter.bias[2*H:3*H].shape).to(device=device) k = torch.randn(H, L, device=device) k_resid = torch.randn(H, L, device=device) D = torch.randn(H, device=device) Du = torch.randn(H, device=device) out_ref = ref_mm_block(u, in_linear, out_linear, x1_s, x2_s, v_s, x1_s_bias, x2_s_bias, v_s_bias, k, k_resid, D, Du, None, gelu, fftsize) out = fast_mm_block(u, in_linear, out_linear, x1_s, x2_s, v_s, x1_s_bias, x2_s_bias, v_s_bias, k, k_resid, D, Du, None, gelu, fftsize) diff = (out_ref - out).abs().flatten() argmax_diff = diff.argmax() print("max diff for mm block:", diff[argmax_diff]) print("average diff for mm block:", diff.mean()) order = 128 emb_dim = 5 min_delay = math.log(1e-2) / 1.5 max_delay = math.log(1e-2) / 0.3 shift = 0. z = torch.randn(1, L, emb_dim, device=device) * .02 sin_freq = torch.randn(1, order, device=device) * .02 eo_mat = torch.randn(1, emb_dim, order, device=device) * .02 eo_bias = torch.randn(1, order, device=device) * .02 oo1_mat = torch.randn(1, order, order, device=device) * .02 oo1_bias = torch.randn(1, order, device=device) * .02 oo2_mat = torch.randn(1, order, order, device=device) * .02 oo2_bias = torch.randn(1, order, device=device) * .02 oh_mat = torch.randn(1, order, H, device=device) * .02 reverse_vec = torch.zeros(1, device=device, dtype=torch.int32) deltas = torch.linspace(min_delay, max_delay, H, device=device)[None, None] t = torch.linspace(0, 1, L, device=device)[None, :, None] out_ref = ref_hyena_filter( z, sin_freq, eo_mat, eo_bias, oo1_mat, oo1_bias, oo2_mat, oo2_bias, oh_mat, t, deltas, shift) out = fast_hyena_filter( z, sin_freq, eo_mat, eo_bias, oo1_mat, oo1_bias, oo2_mat, oo2_bias, oh_mat, min_delay, max_delay, shift, reverse_vec) diff = (out_ref - out).abs().flatten() argmax_diff = diff.argmax() print("max diff:", diff[argmax_diff]) print("avg diff:", diff.mean())
m2-main
csrc/flashmm/test_flash_mm.py
import math import re import numpy as np # N = 8192 N = 16384 # The case of 0 / N is special, we want to simplify it to 0 / 2 instead of 0 / 1 numerator = np.arange(1, N // 8 + 1) gcd = np.gcd(numerator, N) num = numerator // gcd denom = N // gcd lut_vals = ['T_2_0'] + [f'T_{d}_{n}' for n, d in zip(num, denom)] lut_string = f"static const __device__ float2 lut_mine_sp_8_{N}[{N // 8 + 1}] = {{\n {','.join(lut_vals)}\n}};" print(lut_string) # Only define new values if it's not already in the cuFFTDx lookup table cufftdx_lut_filename = 'mathdx/22.02/include/cufftdx/include/database/lut_defines_0.hpp.inc' matches = set() reg = re.compile(f'^#define T_{N}_([0-9]+) ') with open(cufftdx_lut_filename, 'r') as f: for line in f: if (match := reg.match(line)) is not None: matches.add(int(match[1])) numerator = np.arange(1, N // 8 + 1, 2) angle = -2 * math.pi * numerator.astype(np.float64) / N cos, sin = np.cos(angle), np.sin(angle) defs = [f'#define T_{N}_{n} {{{c:.40f},{s:.40f}}}' for n, c, s in zip(numerator, cos, sin) if n not in matches] def_string = '\n'.join(defs) print(def_string)
m2-main
csrc/flashmm/lut_code_gen.py
# Copyright 2022 MosaicML Examples authors # SPDX-License-Identifier: Apache-2.0 import os import sys from typing import Optional, cast # Add folder root to path to allow us to use relative imports regardless of what directory the script is run from sys.path.append(os.path.dirname(os.path.realpath(__file__))) import src.hf_bert as hf_bert_module import src.create_bert as bert_module from omegaconf import DictConfig from omegaconf import OmegaConf as om import torch from src.benchmark.benchmark import benchmark_forward def build_model(cfg: DictConfig): if cfg.name == 'hf_bert': return hf_bert_module.create_hf_bert_mlm( pretrained_model_name=cfg.pretrained_model_name, use_pretrained=cfg.get('use_pretrained', None), model_config=cfg.get('model_config', None), tokenizer_name=cfg.get('tokenizer_name', None), gradient_checkpointing=cfg.get('gradient_checkpointing', None)) elif cfg.name == 'bert': return bert_module.create_bert_mlm( pretrained_model_name=cfg.pretrained_model_name, pretrained_checkpoint=cfg.get('pretrained_checkpoint', None), model_config=cfg.get('model_config', None), tokenizer_name=cfg.get('tokenizer_name', None), gradient_checkpointing=cfg.get('gradient_checkpointing', None)) else: raise ValueError(f'Not sure how to build model with name={cfg.name}') def run_bert(model, u, attn_mask): encoder_outputs = model.model.bert.encoder(u, attn_mask) output = model.model.cls(encoder_outputs[0]) return output def main(cfg: DictConfig, return_trainer: bool = False, do_train: bool = True): print('Using config: ') print(om.to_yaml(cfg)) # Build Model print('Initializing model...') model = build_model(cfg.model).cuda() B = cfg.device_train_microbatch_size # B = 32 L = cfg.max_seq_len print('Batch size: ', B) print('max seq len: ', L) if 'hidden_size' not in cfg.model.model_config: H = 768 else: H = cfg.model.model_config.hidden_size u = torch.randn(B, L, H).cuda() if cfg.model.name == 'bert': attention_mask = torch.ones(B, L, dtype=torch.int64).cuda() else: attention_mask = torch.ones(L, L, dtype=torch.int64).cuda() # model.model.bert.encoder(u, attention_mask) # breakpoint() run_bert(model, u, attention_mask) repeats = 30 # Run forward pass print('Running forward pass...') with torch.autocast(device_type='cuda', dtype=torch.bfloat16, enabled=True): _, ret = benchmark_forward(run_bert, model, u, attention_mask, repeats=repeats, verbose=True, amp_dtype=torch.bfloat16, amp=True) time = ret._mean print('Time: ', time) print('Tokens/ms: ', B*L/time/1000) if __name__ == '__main__': yaml_path, args_list = sys.argv[1], sys.argv[2:] with open(yaml_path) as f: yaml_cfg = om.load(f) cli_cfg = om.from_cli(args_list) cfg = om.merge(yaml_cfg, cli_cfg) cfg = cast(DictConfig, cfg) # for type checking main(cfg)
m2-main
bert/benchmark_fwd.py
# Copyright 2022 MosaicML Examples authors # SPDX-License-Identifier: Apache-2.0 import os import sys # Add folder root to path to allow us to use relative imports regardless of what directory the script is run from sys.path.append(os.path.dirname(os.path.realpath(__file__))) try: import torch # yapf: disable from src.bert_layers import (BertEmbeddings, BertEncoder, BertForMaskedLM, BertForSequenceClassification, BertGatedLinearUnitMLP, BertLayer, BertLMPredictionHead, BertModel, BertOnlyMLMHead, BertOnlyNSPHead, BertPooler, BertPredictionHeadTransform, BertSelfOutput, BertUnpadAttention, BertUnpadSelfAttention) # yapf: enable from src.bert_padding import (IndexFirstAxis, IndexPutFirstAxis, index_first_axis, index_put_first_axis, pad_input, unpad_input, unpad_input_only) if torch.cuda.is_available(): from src.flash_attn_triton import \ flash_attn_func as flash_attn_func_bert # type: ignore from src.flash_attn_triton import \ flash_attn_qkvpacked_func as flash_attn_qkvpacked_func_bert # type: ignore from src.hf_bert import create_hf_bert_classification, create_hf_bert_mlm from src.mosaic_bert import (create_mosaic_bert_classification, create_mosaic_bert_mlm) except ImportError as e: try: is_cuda_available = torch.cuda.is_available() # type: ignore except: is_cuda_available = False reqs_file = 'requirements.txt' if is_cuda_available else 'requirements-cpu.txt' raise ImportError( f'Please make sure to pip install -r {reqs_file} to get the requirements for the BERT benchmark.' ) from e __all__ = [ 'BertEmbeddings', 'BertEncoder', 'BertForMaskedLM', 'BertForSequenceClassification', 'BertGatedLinearUnitMLP', 'BertLayer', 'BertLMPredictionHead', 'BertModel', 'BertOnlyMLMHead', 'BertOnlyNSPHead', 'BertPooler', 'BertPredictionHeadTransform', 'BertSelfOutput', 'BertUnpadAttention', 'BertUnpadSelfAttention', 'IndexFirstAxis', 'IndexPutFirstAxis', 'index_first_axis', 'index_put_first_axis', 'pad_input', 'unpad_input', 'unpad_input_only', 'create_hf_bert_classification', 'create_hf_bert_mlm', 'create_mosaic_bert_classification', 'create_mosaic_bert_mlm', # These are commented out because they only exist if CUDA is available # 'flash_attn_func_bert', # 'flash_attn_qkvpacked_func_bert' ]
m2-main
bert/__init__.py
# Copyright 2022 MosaicML Examples authors # SPDX-License-Identifier: Apache-2.0 import copy import gc import multiprocessing as mp import os import sys import time from collections import defaultdict from concurrent.futures import ProcessPoolExecutor as Pool from multiprocessing.managers import DictProxy, SyncManager from typing import Any, Dict, List, Optional, Sequence, Set, Tuple from urllib.parse import urlparse # Add folder root to path to allow us to use relative imports regardless of what directory the script is run from sys.path.append(os.path.dirname(os.path.realpath(__file__))) import numpy as np import omegaconf as om import src.glue.finetuning_jobs as finetuning_jobs_module import src.create_bert as bert_module import src.hf_bert as hf_bert_module import torch from composer import algorithms from composer.callbacks import (HealthChecker, LRMonitor, MemoryMonitor, OptimizerMonitor, RuntimeEstimator, SpeedMonitor) from composer.loggers import WandBLogger from composer.optim.scheduler import (ConstantWithWarmupScheduler, CosineAnnealingWithWarmupScheduler, LinearWithWarmupScheduler) from composer.utils import reproducibility from composer.utils.file_helpers import get_file from composer.utils.object_store import S3ObjectStore from omegaconf import DictConfig TASK_NAME_TO_CLASS = { 'mnli': finetuning_jobs_module.MNLIJob, 'rte': finetuning_jobs_module.RTEJob, 'mrpc': finetuning_jobs_module.MRPCJob, 'qnli': finetuning_jobs_module.QNLIJob, 'qqp': finetuning_jobs_module.QQPJob, 'sst2': finetuning_jobs_module.SST2Job, 'stsb': finetuning_jobs_module.STSBJob, 'cola': finetuning_jobs_module.COLAJob, } def build_algorithm(name, kwargs): if name == 'gradient_clipping': return algorithms.GradientClipping(**kwargs) elif name == 'alibi': return algorithms.Alibi(**kwargs) elif name == 'fused_layernorm': return algorithms.FusedLayerNorm(**kwargs) elif name == 'gated_linear_units': return algorithms.GatedLinearUnits(**kwargs) elif name == 'low_precision_layernorm': return algorithms.LowPrecisionLayerNorm(**kwargs) else: raise ValueError(f'Not sure how to build algorithm: {name}') def build_callback(name, kwargs): if name == 'lr_monitor': return LRMonitor() elif name == 'memory_monitor': return MemoryMonitor() elif name == 'speed_monitor': return SpeedMonitor(window_size=kwargs.get('window_size', 1), gpu_flops_available=kwargs.get( 'gpu_flops_available', None)) elif name == 'runtime_estimator': return RuntimeEstimator() elif name == 'optimizer_monitor': return OptimizerMonitor(log_optimizer_metrics=kwargs.get( 'log_optimizer_metrics', True),) elif name == 'health_checker': return HealthChecker(**kwargs) else: raise ValueError(f'Not sure how to build callback: {name}') def build_logger(name, kwargs): if name == 'wandb': return WandBLogger(**kwargs) else: raise ValueError(f'Not sure how to build logger: {name}') def build_scheduler(cfg): if cfg.name == 'constant_with_warmup': return ConstantWithWarmupScheduler(t_warmup=cfg.t_warmup) elif cfg.name == 'cosine_with_warmup': return CosineAnnealingWithWarmupScheduler(t_warmup=cfg.t_warmup, alpha_f=cfg.alpha_f) elif cfg.name == 'linear_decay_with_warmup': return LinearWithWarmupScheduler(t_warmup=cfg.t_warmup, alpha_f=cfg.alpha_f) else: raise ValueError(f'Not sure how to build scheduler: {cfg.name}') def build_model(cfg: DictConfig, num_labels: int): if cfg.name == 'hf_bert': return hf_bert_module.create_hf_bert_classification( num_labels=num_labels, pretrained_model_name=cfg.pretrained_model_name, use_pretrained=cfg.get('use_pretrained', False), model_config=cfg.get('model_config', None), tokenizer_name=cfg.get('tokenizer_name', None), gradient_checkpointing=cfg.get('gradient_checkpointing', None)) elif cfg.name == 'bert': return bert_module.create_bert_classification( num_labels=num_labels, pretrained_model_name=cfg.pretrained_model_name, pretrained_checkpoint=cfg.get('pretrained_checkpoint', None), model_config=cfg.get('model_config', None), tokenizer_name=cfg.get('tokenizer_name', None), gradient_checkpointing=cfg.get('gradient_checkpointing', None)) else: raise ValueError(f'Not sure how to build model with name={cfg.name}') def get_values_from_path(path: str, separator: str = '/') -> Dict[str, str]: """Parses out information from a path/string that looks like. ...<separator>key=value<separator... """ dict_output = {} underscore_split = path.split(separator) for item in underscore_split: if '=' not in item: continue key, value = item.split('=') dict_output[key] = value return dict_output def get_checkpoint_name_from_path(path: str) -> str: """To go from checkpoint name to path, replace | with /""" return path.lstrip('/').replace('/', '|') def download_starting_checkpoint(starting_checkpoint_load_path: str, local_pretrain_checkpoints_folder: str) -> str: """Downloads the pretrained checkpoints to start from. Currently only supports S3 and URLs """ load_object_store = None parsed_path = urlparse(starting_checkpoint_load_path) if parsed_path.scheme == 's3': load_object_store = S3ObjectStore(bucket=parsed_path.netloc) download_path = parsed_path.path if parsed_path.scheme == 's3' else starting_checkpoint_load_path os.makedirs(local_pretrain_checkpoints_folder, exist_ok=True) local_path = os.path.join(local_pretrain_checkpoints_folder, get_checkpoint_name_from_path(parsed_path.path)) if not os.path.exists(local_path): get_file(destination=local_path, path=download_path, #.lstrip('/'), object_store=load_object_store, progress_bar=True) return local_path def _setup_gpu_queue(num_gpus: int, manager: SyncManager): """Returns a queue with [0, 1, .. num_gpus]. """ gpu_queue = manager.Queue(num_gpus) for gpu_id in range(num_gpus): gpu_queue.put(gpu_id) return gpu_queue def create_job_configs(main_config: om.DictConfig, tasks_to_run: Set[str], pretrained_checkpoint_path: Optional[str]): configs = [] for task_name, task_config in main_config.tasks.items(): copy_main_config = copy.deepcopy(main_config) if 'pool_all' in task_config['trainer_kwargs'].keys(): copy_main_config.model['model_config']['pool_all'] = task_config['trainer_kwargs']['pool_all'] # delete from trainer_config del task_config['trainer_kwargs']['pool_all'] else: copy_main_config = main_config main_config = copy.deepcopy(copy_main_config) if main_config.get('base_run_name') is None: main_config.base_run_name = os.environ.get('COMPOSER_RUN_NAME', 'glue') if task_name not in tasks_to_run: continue for task_seed in task_config.get('seeds', [main_config.default_seed]): run_name = f'{main_config.base_run_name}_task={task_name}_seed={str(task_seed)}' logger_configs = copy.deepcopy(main_config.get('loggers', {})) for logger_name, logger_config in logger_configs.items(): if logger_name == 'wandb': # allow user set groups, otherwise set group to run name if 'group' not in logger_config: logger_config['group'] = main_config.base_run_name logger_config['name'] = run_name task_seed_config = om.OmegaConf.create({ 'task': task_name, 'job_name': run_name, 'seed': task_seed, 'model': main_config.model, 'tokenizer_name': main_config.tokenizer_name, 'scheduler': main_config.scheduler, 'load_path': pretrained_checkpoint_path, 'save_folder': os.path.join(main_config.save_finetune_checkpoint_folder, f'task={task_name}', f'seed={task_seed}'), 'loggers': logger_configs, 'callbacks': main_config.get('callbacks', {}), 'algorithms': main_config.get('algorithms', {}), 'precision': main_config.get('precision', None), 'trainer_kwargs': task_config.trainer_kwargs, }) configs.append(task_seed_config) return configs def run_job_worker(config: om.DictConfig, gpu_queue: Optional[mp.Queue] = None, process_to_gpu: Optional[DictProxy] = None) -> Any: """Instantiates the job object and runs it.""" # need to set seed before model initialization for determinism reproducibility.seed_all(config.seed) model = build_model( config.model, finetuning_jobs_module.TASK_NAME_TO_NUM_LABELS[config.task]) n_params = sum(p.numel() for p in model.parameters()) print(f'{n_params=:.4e}') instantiated_job = TASK_NAME_TO_CLASS[config.task]( job_name=config.job_name, seed=config.seed, model=model, tokenizer_name=config.tokenizer_name, scheduler=build_scheduler(config.scheduler), load_path=config.load_path, save_folder=config.save_folder, loggers=[ build_logger(name, logger_config) for name, logger_config in config.get('loggers', {}).items() ], callbacks=[ build_callback(name, callback_config) for name, callback_config in config.get('callbacks', {}).items() ], algorithms=[ build_algorithm(name, algorithm_config) for name, algorithm_config in config.get('algorithms', {}).items() ], precision=config.precision, **config.trainer_kwargs, ) results = instantiated_job.run(gpu_queue, process_to_gpu) # delete the job so that the optimizer and anything else on the gpu gets deleted del instantiated_job torch.cuda.empty_cache() gc.collect() return results def run_jobs_parallel(configs: Sequence[om.DictConfig]) -> Dict[str, Any]: """Runs a list of jobs (passed in as Hydra configs) across GPUs. Returns a dictionary mapping job name to the result and original config Each job's results is a dict of: * 'checkpoints': list of saved_checkpoints, if any, * 'metrics': nested dict of results, accessed by dataset and metric name, e.g. ``metrics['glue_mnli']['MulticlassAccuracy']``. * 'job_name': The job name, helpful for keeping track of results during multiprocessing """ num_gpus = torch.cuda.device_count() results = [] with mp.Manager() as manager: # workers get gpu ids from this queue # to set the GPU to run on gpu_queue = _setup_gpu_queue(num_gpus, manager) process_to_gpu = manager.dict() ctx = mp.get_context('spawn') with Pool(max_workers=min(num_gpus, len(configs)), mp_context=ctx) as pool: results = pool.map(run_job_worker, [config for config in configs], [gpu_queue for _ in configs], [process_to_gpu for _ in configs]) job_name_to_config = {config.job_name: config for config in configs} finished_results = {} for result in results: job_name = result['job_name'] finished_results[job_name] = { 'result': result, 'config': job_name_to_config[job_name] } return finished_results def run_jobs_serial(configs) -> Dict[str, Any]: """Runs the jobs serially, rather than in parallel. Useful for debugging """ results = {} for config in configs: result = run_job_worker(config) results[config.job_name] = {'result': result, 'config': config} return results def format_job_name(job_name: str) -> str: """Formats the job name for pretty printing.""" dict_output = get_values_from_path(job_name, separator='_') return f'{dict_output["task"].upper()}(seed={dict_output["seed"]})' def _print_table(results: Dict[str, Dict[str, Any]]): """Pretty prints a table given a results dictionary.""" header = '{job_name:50}| {eval_task:25}| {name:27}|' hyphen_count = 50 + 25 + 27 + 11 row_format = header + ' {value:.2f}' print('\nCollected Job Results: \n') print('-' * hyphen_count) print(header.format(job_name='Job', eval_task='Dataset', name='Metric')) print('-' * hyphen_count) for job_name, result in results.items(): for eval_task, eval_results in result['result']['metrics'].items(): for name, metric in eval_results.items(): print( row_format.format( job_name=format_job_name(job_name), eval_task=eval_task, name=name, value=metric * 100, )) print('-' * hyphen_count) print('\n') def _print_averaged_glue_results(glue_results: List[Tuple[str, float]]) -> None: """Pretty prints a table of glue results averaged across seeds.""" header = '{job_name:50}|' hyphen_count = 50 + 11 row_format = header + ' {value:.2f}' print('\nCollected Job Results: \n') print('-' * hyphen_count) print(header.format(job_name='Task')) print('-' * hyphen_count) for task_name, result in glue_results: print(row_format.format( job_name=f'{task_name.upper()}', value=result, )) print('-' * hyphen_count) print('\n') def train(config: om.DictConfig) -> None: """Main training logic. Args: config (DictConfig): Configuration composed by OmegaConf """ start_time = time.time() # Initial default seed reproducibility.seed_all(config.default_seed) # Quiet down WandB os.environ['WANDB_SILENT'] = 'true' # Set tokenizer parallelism os.environ['TOKENIZERS_PARALLELISM'] = 'false' # Confirm GPUs if parallel=True if config.parallel: assert torch.cuda.device_count( ) > 0, 'Can only use parallel mode if GPUs are available. Please set parallel=False.' # Downloads the starting checkpoint ahead of time so that # the different tasks don't all try to download it at the same time if config.get('starting_checkpoint_load_path', None): local_pretrain_checkpoint_path = download_starting_checkpoint( config.starting_checkpoint_load_path, config.local_pretrain_checkpoint_folder) else: local_pretrain_checkpoint_path = None # Builds round 1 configs and runs them if 'mnli' in config.starting_checkpoint_load_path: round_1_task_names = {'rte', 'mrpc', 'stsb'} print(f"Starting from MNLI checkpoint, only running round 1 tasks: {round_1_task_names}") else: round_1_task_names = {'cola', 'sst2', 'qqp', 'qnli', 'mnli', 'rte', 'mrpc', 'stsb'} round_1_job_configs = create_job_configs(config, round_1_task_names, local_pretrain_checkpoint_path) round_1_results = {} if len(round_1_job_configs) > 0: if config.parallel: round_1_results = run_jobs_parallel(round_1_job_configs) else: round_1_results = run_jobs_serial(round_1_job_configs) end_time = time.time() print('-' * 30) print(f'Training completed in {(end_time-start_time):.2f} seconds') print('-' * 30) # Join the results and pretty print them all_results = {} all_results.update(round_1_results) # all_results.update(round_2_results) _print_table(all_results) # Average the GLUE results across seeds and pretty print them glue_results: Dict[str, List[float]] = defaultdict(list) for job_name, result in all_results.items(): job_values = get_values_from_path(job_name, separator='_') for _, eval_results in result['result']['metrics'].items(): for _, metric in eval_results.items(): glue_results[job_values['task']].append(metric * 100) glue_results_mean: Dict[str, float] = { key: float(np.mean(values)) for key, values in glue_results.items() } overall_glue = [] for _, average_metric in glue_results_mean.items(): overall_glue.append(average_metric) glue_results_mean['glue'] = float(np.mean(overall_glue)) _print_averaged_glue_results([ (key, value) for key, value in glue_results_mean.items() ]) if __name__ == '__main__': yaml_path, args_list = sys.argv[1], sys.argv[2:] with open(yaml_path) as f: yaml_cfg = om.OmegaConf.load(f) cli_cfg = om.OmegaConf.from_cli(args_list) cfg = om.OmegaConf.merge(yaml_cfg, cli_cfg) assert isinstance(cfg, om.DictConfig) train(cfg)
m2-main
bert/glue.py
# Copyright 2022 MosaicML Examples authors # SPDX-License-Identifier: Apache-2.0 import os import sys from typing import Optional, cast # Add folder root to path to allow us to use relative imports regardless of what directory the script is run from sys.path.append(os.path.dirname(os.path.realpath(__file__))) import src.hf_bert as hf_bert_module import src.create_bert as bert_module import src.text_data as text_data_module from src.optim.create_param_groups import create_param_groups from composer import Trainer, algorithms from composer.callbacks import (HealthChecker, LRMonitor, MemoryMonitor, OptimizerMonitor, RuntimeEstimator, SpeedMonitor) from composer.loggers import WandBLogger from composer.optim import DecoupledAdamW from composer.optim.scheduler import (ConstantWithWarmupScheduler, CosineAnnealingWithWarmupScheduler, LinearWithWarmupScheduler) from composer.utils import dist, reproducibility from omegaconf import DictConfig from omegaconf import OmegaConf as om def update_batch_size_info(cfg: DictConfig): global_batch_size, device_microbatch_size = cfg.global_train_batch_size, cfg.device_train_microbatch_size if global_batch_size % dist.get_world_size() != 0: raise ValueError( f'Global batch size {global_batch_size} is not divisible by {dist.get_world_size()} ' 'as a result, the batch size would be truncated, please adjust `global_batch_size` ' f'to be divisible by world size, {dist.get_world_size()}.') device_train_batch_size = global_batch_size // dist.get_world_size() if isinstance(device_microbatch_size, int): if device_microbatch_size > device_train_batch_size: print( f'WARNING: device_train_microbatch_size > device_train_batch_size, ' f'will be reduced from {device_microbatch_size} -> {device_train_batch_size}.' ) device_microbatch_size = device_train_batch_size cfg.n_gpus = dist.get_world_size() cfg.device_train_batch_size = device_train_batch_size cfg.device_train_microbatch_size = device_microbatch_size # Safely set `device_eval_batch_size` if not provided by user if 'device_eval_batch_size' not in cfg: if cfg.device_train_microbatch_size == 'auto': cfg.device_eval_batch_size = 1 else: cfg.device_eval_batch_size = cfg.device_train_microbatch_size return cfg def log_config(cfg: DictConfig): print(om.to_yaml(cfg)) if 'wandb' in cfg.get('loggers', {}): try: import wandb except ImportError as e: raise e if wandb.run: wandb.config.update(om.to_container(cfg, resolve=True)) def build_algorithm(name, kwargs): if name == 'gradient_clipping': return algorithms.GradientClipping(**kwargs) elif name == 'alibi': return algorithms.Alibi(**kwargs) elif name == 'fused_layernorm': return algorithms.FusedLayerNorm(**kwargs) elif name == 'gated_linear_units': return algorithms.GatedLinearUnits(**kwargs) elif name == 'low_precision_layernorm': return algorithms.LowPrecisionLayerNorm(**kwargs) else: raise ValueError(f'Not sure how to build algorithm: {name}') def build_callback(name, kwargs): if name == 'lr_monitor': return LRMonitor() elif name == 'memory_monitor': return MemoryMonitor() elif name == 'speed_monitor': return SpeedMonitor(window_size=kwargs.get('window_size', 1), gpu_flops_available=kwargs.get( 'gpu_flops_available', None)) elif name == 'runtime_estimator': return RuntimeEstimator() elif name == 'optimizer_monitor': return OptimizerMonitor(log_optimizer_metrics=kwargs.get( 'log_optimizer_metrics', True),) elif name == 'health_checker': return HealthChecker(**kwargs) else: raise ValueError(f'Not sure how to build callback: {name}') def build_logger(name, kwargs): if name == 'wandb': return WandBLogger(**kwargs) else: raise ValueError(f'Not sure how to build logger: {name}') def build_scheduler(cfg): if cfg.name == 'constant_with_warmup': return ConstantWithWarmupScheduler(t_warmup=cfg.t_warmup) elif cfg.name == 'cosine_with_warmup': return CosineAnnealingWithWarmupScheduler(t_warmup=cfg.t_warmup, alpha_f=cfg.alpha_f) elif cfg.name == 'linear_decay_with_warmup': return LinearWithWarmupScheduler(t_warmup=cfg.t_warmup, alpha_f=cfg.alpha_f) else: raise ValueError(f'Not sure how to build scheduler: {cfg.name}') def build_optimizer(cfg, model): if cfg.name == 'decoupled_adamw': return DecoupledAdamW(create_param_groups(cfg, model), lr=cfg.lr, betas=cfg.betas, eps=cfg.eps, weight_decay=cfg.weight_decay) elif cfg.name == 'adamw': from torch.optim import AdamW return AdamW(create_param_groups(None, model), lr=cfg.lr, betas=cfg.betas, eps=cfg.eps, weight_decay=cfg.weight_decay) else: raise ValueError(f'Not sure how to build optimizer: {cfg.name}') def build_dataloader(cfg, tokenizer, device_batch_size): if cfg.name == 'text': return text_data_module.build_text_dataloader(cfg, tokenizer, device_batch_size) else: raise ValueError(f'Not sure how to build dataloader with config: {cfg}') def build_model(cfg: DictConfig): if cfg.name == 'hf_bert': return hf_bert_module.create_hf_bert_mlm( pretrained_model_name=cfg.pretrained_model_name, use_pretrained=cfg.get('use_pretrained', None), model_config=cfg.get('model_config', None), tokenizer_name=cfg.get('tokenizer_name', None), gradient_checkpointing=cfg.get('gradient_checkpointing', None)) elif cfg.name == 'bert': return bert_module.create_bert_mlm( pretrained_model_name=cfg.pretrained_model_name, pretrained_checkpoint=cfg.get('pretrained_checkpoint', None), model_config=cfg.get('model_config', None), tokenizer_name=cfg.get('tokenizer_name', None), gradient_checkpointing=cfg.get('gradient_checkpointing', None)) else: raise ValueError(f'Not sure how to build model with name={cfg.name}') def main(cfg: DictConfig, return_trainer: bool = False, do_train: bool = True) -> Optional[Trainer]: print('Training using config: ') print(om.to_yaml(cfg)) reproducibility.seed_all(cfg.seed) # Get batch size info cfg = update_batch_size_info(cfg) # Build Model print('Initializing model...') model = build_model(cfg.model) n_params = sum(p.numel() for p in model.parameters()) print(f'{n_params=:.4e}') # Dataloaders print('Building train loader...') train_loader = build_dataloader( cfg.train_loader, model.tokenizer, cfg.global_train_batch_size // dist.get_world_size(), ) print('Building eval loader...') global_eval_batch_size = cfg.get('global_eval_batch_size', cfg.global_train_batch_size) eval_loader = build_dataloader( cfg.eval_loader, model.tokenizer, global_eval_batch_size // dist.get_world_size(), ) # Optimizer optimizer = build_optimizer(cfg.optimizer, model) # Scheduler scheduler = build_scheduler(cfg.scheduler) # Loggers loggers = [ build_logger(name, logger_cfg) for name, logger_cfg in cfg.get('loggers', {}).items() ] # Callbacks callbacks = [ build_callback(name, callback_cfg) for name, callback_cfg in cfg.get('callbacks', {}).items() ] # Algorithms algorithms = [ build_algorithm(name, algorithm_cfg) for name, algorithm_cfg in cfg.get('algorithms', {}).items() ] if cfg.get('run_name') is None: cfg.run_name = os.environ.get('COMPOSER_RUN_NAME', 'bert') # Build the Trainer trainer = Trainer( run_name=cfg.run_name, seed=cfg.seed, model=model, algorithms=algorithms, train_dataloader=train_loader, eval_dataloader=eval_loader, train_subset_num_batches=cfg.get('train_subset_num_batches', -1), eval_subset_num_batches=cfg.get('eval_subset_num_batches', -1), optimizers=optimizer, schedulers=scheduler, max_duration=cfg.max_duration, eval_interval=cfg.eval_interval, progress_bar=cfg.progress_bar, log_to_console=cfg.log_to_console, console_log_interval=cfg.console_log_interval, loggers=loggers, callbacks=callbacks, precision=cfg.precision, device=cfg.get('device', None), device_train_microbatch_size=cfg.get('device_train_microbatch_size', 'auto'), save_folder=cfg.get('save_folder', None), save_interval=cfg.get('save_interval', '1000ba'), save_num_checkpoints_to_keep=cfg.get('save_num_checkpoints_to_keep', -1), save_overwrite=cfg.get('save_overwrite', False), load_path=cfg.get('load_path', None), load_weights_only=cfg.get('load_weights_only', False), python_log_level=cfg.get('python_log_level', None), autoresume=True, ) print('Logging config...') log_config(cfg) if do_train: print('Starting training...') trainer.fit() if return_trainer: return trainer if __name__ == '__main__': yaml_path, args_list = sys.argv[1], sys.argv[2:] with open(yaml_path) as f: yaml_cfg = om.load(f) cli_cfg = om.from_cli(args_list) cfg = om.merge(yaml_cfg, cli_cfg) cfg = cast(DictConfig, cfg) # for type checking main(cfg)
m2-main
bert/main.py
from transformers import BertConfig class BertConfig(BertConfig): def __init__( self, alibi_starting_size: int = 512, attention_probs_dropout_prob: float = 0.0, # mlp use_glu_mlp: bool = True, use_monarch_mlp: bool = False, monarch_mlp_nblocks: int = 4, # position use_positional_encodings: bool = False, max_position_embeddings: int = 512, # architecture selection monarch_mixer_sequence_mixing: bool = False, residual_long_conv: bool = False, # hyena and long conv hyperparameters bidirectional: bool = True, hyena_w_mod: int = 1, hyena_filter_dropout: float = 0.2, hyena_filter_order: int = 64, hyena_training_additions: bool = False, # efficiency use_flash_mm: bool = False, # average pooling instead of CLS token pool_all: bool = False, **kwargs, ): """Configuration class for MosaicBert. Args: alibi_starting_size (int): Use `alibi_starting_size` to determine how large of an alibi tensor to create when initializing the model. You should be able to ignore this parameter in most cases. Defaults to 512. attention_probs_dropout_prob (float): By default, turn off attention dropout in Mosaic BERT (otherwise, Flash Attention will be off by default). Defaults to 0.0. """ super().__init__( attention_probs_dropout_prob=attention_probs_dropout_prob, **kwargs) self.alibi_starting_size = alibi_starting_size # mlp self.use_glu_mlp = use_glu_mlp self.use_monarch_mlp = use_monarch_mlp self.monarch_mlp_nblocks = monarch_mlp_nblocks # positional encodings self.use_positional_encodings = use_positional_encodings self.max_position_embeddings = max_position_embeddings # architecture self.monarch_mixer_sequence_mixing = monarch_mixer_sequence_mixing self.residual_long_conv = residual_long_conv # hyena and long conv hyperparameters self.bidirectional = bidirectional self.hyena_w_mod = hyena_w_mod self.hyena_filter_dropout = hyena_filter_dropout self.hyena_filter_order = hyena_filter_order self.hyena_training_additions = hyena_training_additions # efficiency self.use_flash_mm = use_flash_mm # average pooling instead of CLS token self.pool_all = pool_all
m2-main
bert/src/configuration_bert.py
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved. # Copyright (c) 2022, Tri Dao. # Copyright (c) 2023, MosaicML. # Copyright (c) 2023, Dan Fu and Simran Arora. import copy import logging import math import os import sys import warnings from typing import List, Optional, Tuple, Union from functools import partial # Add folder root to path to allow us to use relative imports regardless of what directory the script is run from sys.path.append(os.path.dirname(os.path.realpath(__file__))) import bert_padding as bert_padding_module import torch import torch.nn as nn from einops import rearrange from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present from transformers.activations import ACT2FN from transformers.modeling_outputs import (MaskedLMOutput, SequenceClassifierOutput) from transformers.models.bert.modeling_bert import BertPreTrainedModel try: import flash_attn_triton as flash_attn_triton flash_attn_qkvpacked_func = flash_attn_triton.flash_attn_qkvpacked_func except ImportError as e: flash_attn_qkvpacked_func = None from src.mm.blockdiag_linear import BlockdiagLinear from src.mm.monarch_mixer_sequence_mixer import MonarchMixerSequenceMixing logger = logging.getLogger(__name__) torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True class BertEmbeddings(nn.Module): """Construct the embeddings for words, ignoring position. There are no positional embeddings since we use ALiBi and token_type embeddings. This module is modeled after the Hugging Face BERT's :class:`~transformers.model.bert.modeling_bert.BertEmbeddings`, but is modified as part of Mosaic BERT's ALiBi implementation. The key change is that position embeddings are removed. Position information instead comes from attention biases that scale linearly with the position distance between query and key tokens. This module ignores the `position_ids` input to the `forward` method. """ def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) # ALiBi doesn't use position embeddings if config.use_positional_encodings: self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.use_positional_encodings = config.use_positional_encodings self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model # variable name and be able to load any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) if config.use_positional_encodings: self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))) self.register_buffer('token_type_ids', torch.zeros(config.max_position_embeddings, dtype=torch.long), persistent=False) def forward( self, input_ids: Optional[torch.LongTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, past_key_values_length: int = 0, return_position_encodings: bool = False, ) -> torch.Tensor: if (input_ids is not None) == (inputs_embeds is not None): raise ValueError('Must specify either input_ids or input_embeds!') if input_ids is not None: input_shape = input_ids.size() else: assert inputs_embeds is not None # just for type checking input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: if self.use_positional_encodings: position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length] # Setting the token_type_ids to the registered buffer in constructor # where it is all zeros, which usually occurs when it's auto-generated; # registered buffer helps users when tracing the model without passing # token_type_ids, solves issue #5664 if token_type_ids is None: if hasattr(self, 'token_type_ids'): assert isinstance(self.token_type_ids, torch.LongTensor) buffered_token_type_ids = self.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand( input_shape[0], seq_length) token_type_ids = buffered_token_type_ids_expanded # type: ignore else: token_type_ids = torch.zeros(input_shape, # type: ignore dtype=torch.long, device=self.word_embeddings.device) # type: ignore # yapf: disable if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings if self.use_positional_encodings: position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) if return_position_encodings: return embeddings, position_embeddings else: return embeddings class BertUnpadSelfAttention(nn.Module): """Performs multi-headed self attention on a batch of unpadded sequences. If Triton is installed, this module uses Flash Attention to greatly improve throughput. The Flash Attention implementation used is an adaptation from Mosaic, which supports arbitrary attention biases ( used to implement ALiBi), but does not support attention dropout. If either Triton is not installed or `config.attention_probs_dropout_prob > 0`, the implementation will default to a math-equivalent pytorch version, which is much slower. See `forward` method for additional detail. """ def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr( config, 'embedding_size'): raise ValueError( f'The hidden size ({config.hidden_size}) is not a multiple of the number of attention ' f'heads ({config.num_attention_heads})') self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.p_dropout = config.attention_probs_dropout_prob self.Wqkv = nn.Linear(self.all_head_size, 3 * config.hidden_size) # Warn if defaulting to pytorch because of import issues if flash_attn_qkvpacked_func is None: warnings.warn( 'Unable to import Triton; defaulting attention implementation to pytorch (this will reduce throughput when using this model).' ) def forward(self, hidden_states: torch.Tensor, cu_seqlens: torch.Tensor, max_seqlen_in_batch: int, indices: torch.Tensor, attn_mask: torch.Tensor, bias: torch.Tensor) -> torch.Tensor: """Perform self-attention. If dropout is zero, then we can use the Triton kernel, so we do that. However, if not, we send through a standard PyTorch implementation of self-attention. The arguments are unpadded, and our implementations of attention require padded arguments, so we first call `pad_input`. Once we compute attention, we re-unpad our outputs for the other layers. The pad/unpad operations add overhead, but not sending pad tokens through ffs saves compute. It is possible to write an unpadded implementation of attention (in Triton and PyTorch), which we will eventually do. Args: hidden_states: (total_nnz, dim) cu_seqlens: (batch + 1,) max_seqlen_in_batch: int indices: (total_nnz,) attn_mask: (batch, max_seqlen_in_batch) bias: (batch, heads, max_seqlen_in_batch, max_seqlen_in_batch) Returns: attention: (total_nnz, dim) """ qkv = self.Wqkv(hidden_states) qkv = bert_padding_module.pad_input( qkv, indices, cu_seqlens.shape[0] - 1, max_seqlen_in_batch) # batch, max_seqlen_in_batch, thd qkv = rearrange(qkv, 'b s (t h d) -> b s t h d', t=3, h=self.num_attention_heads) if self.p_dropout or flash_attn_qkvpacked_func is None: # if we have nonzero attention dropout (e.g. during fine-tuning) or no Triton, compute attention in PyTorch q = qkv[:, :, 0, :, :].permute(0, 2, 1, 3) # b h s d k = qkv[:, :, 1, :, :].permute(0, 2, 3, 1) # b h d s v = qkv[:, :, 2, :, :].permute(0, 2, 1, 3) # b h s d attention_scores = torch.matmul(q, k) / math.sqrt( self.attention_head_size) attention_scores = attention_scores + bias attention_probs = nn.functional.softmax(attention_scores, dim=-1) attention_probs = self.dropout(attention_probs) attention = torch.matmul(attention_probs, v).permute(0, 2, 1, 3) # b s h d else: # Triton implementation only supports 0 attention dropout convert_dtype = qkv.dtype not in [torch.float16, torch.bfloat16] if convert_dtype: # Triton implementation only supports fp16 and bf16 orig_dtype = qkv.dtype qkv = qkv.to(torch.float16) bias_dtype = bias.dtype bias = bias.to(torch.float16) attention = flash_attn_qkvpacked_func(qkv, bias) attention = attention.to(orig_dtype) bias = bias.to(bias_dtype) else: attention = flash_attn_qkvpacked_func(qkv, bias) # attn_mask is 1 for attend and 0 for don't attention = bert_padding_module.unpad_input_only( attention, torch.squeeze(attn_mask) == 1) return rearrange(attention, 'nnz h d -> nnz (h d)') class BertSelfOutput(nn.Module): """Computes the output of the attention layer.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BertUnpadAttention(nn.Module): """Chains attention, Dropout, and LayerNorm for BERT.""" def __init__(self, config): super().__init__() self.self = BertUnpadSelfAttention(config) self.output = BertSelfOutput(config) def forward( self, input_tensor: torch.Tensor, cu_seqlens: torch.Tensor, max_s: int, subset_idx: Optional[torch.Tensor] = None, indices: Optional[torch.Tensor] = None, attn_mask: Optional[torch.Tensor] = None, bias: Optional[torch.Tensor] = None, ) -> torch.Tensor: """Forward pass for scaled self-attention without padding. Arguments: input_tensor: (total_nnz, dim) cu_seqlens: (batch + 1,) max_s: int subset_idx: () set of indices whose values we care about at the end of the layer (e.g., the masked tokens, if this is the final layer). indices: None or (total_nnz,) attn_mask: None or (batch, max_seqlen_in_batch) bias: None or (batch, heads, max_seqlen_in_batch, max_seqlen_in_batch) """ self_output = self.self(input_tensor, cu_seqlens, max_s, indices, attn_mask, bias) if subset_idx is not None: return self.output( bert_padding_module.index_first_axis(self_output, subset_idx), bert_padding_module.index_first_axis(input_tensor, subset_idx)) else: return self.output(self_output, input_tensor) class BertMLP(nn.Module): """Applies the FFN at the end of each BERT layer.""" def __init__(self, config): super().__init__() self.config = config if self.config.use_monarch_mlp: linear_cls = partial(BlockdiagLinear, nblocks=self.config.monarch_mlp_nblocks) else: linear_cls = nn.Linear self.gated_layers = linear_cls(config.hidden_size, config.intermediate_size, bias=False) self.act = nn.GELU(approximate='none') self.wo = linear_cls(config.intermediate_size, config.hidden_size) self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: """Compute new hidden states from current hidden states. Args: hidden_states (torch.Tensor): The (unpadded) hidden states from the attention layer [nnz, dim]. """ residual_connection = hidden_states hidden_states = self.gated_layers(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.wo(hidden_states) hidden_states = self.layernorm(hidden_states + residual_connection) return hidden_states class BertGatedLinearUnitMLP(nn.Module): """Applies the FFN at the end of each BERT layer with a Gated Linear Unit""" def __init__(self, config): super().__init__() self.config = config self.is_padded = config.monarch_mixer_sequence_mixing if self.config.use_monarch_mlp: linear_cls = partial(BlockdiagLinear, nblocks=self.config.monarch_mlp_nblocks) else: linear_cls = nn.Linear self.gated_layers = linear_cls( config.hidden_size, config.intermediate_size * 2, bias=False ) self.act = nn.GELU(approximate='none') self.wo = linear_cls(config.intermediate_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: """Compute new hidden states from current hidden states. Args: hidden_states (torch.Tensor): The (unpadded) hidden states from the attention layer [nnz, dim]. """ residual_connection = hidden_states # compute the activation hidden_states = self.gated_layers(hidden_states) if self.is_padded: gated = hidden_states[:, :, :self.config.intermediate_size] non_gated = hidden_states[:, :, self.config.intermediate_size:] else: gated = hidden_states[:, :self.config.intermediate_size] non_gated = hidden_states[:, self.config.intermediate_size:] hidden_states = self.act(gated) * non_gated hidden_states = self.dropout(hidden_states) # multiply by the second matrix hidden_states = self.wo(hidden_states) # add the residual connection and post-LN hidden_states = self.layernorm(hidden_states + residual_connection) return hidden_states class BertLayer(nn.Module): """BERT layer, which includes Sequence Mixing (e.g. Attention or Hyena) and State Mixing (e.g. MLP).""" def __init__(self, config): super(BertLayer, self).__init__() self.monarch_mixer_sequence_mixing = config.monarch_mixer_sequence_mixing print(f"Using Monarch Mixer for Sequence Mixing: {config.monarch_mixer_sequence_mixing}") if config.monarch_mixer_sequence_mixing: if config.use_flash_mm: from src.mm.flash_mm import FlashMMSequenceMixing mm_cls = FlashMMSequenceMixing else: mm_cls = MonarchMixerSequenceMixing self.attention = mm_cls( config.hidden_size, l_max=config.long_conv_l_max, hyena_kernel_lr=config.long_conv_kernel_learning_rate, bidirectional=config.bidirectional, hyena_lr_pos_emb=config.hyena_lr_pos_emb, hyena_w=config.hyena_w, hyena_w_mod=config.hyena_w_mod, hyena_wd=config.hyena_wd, hyena_emb_dim=config.hyena_emb_dim, hyena_filter_dropout=config.hyena_filter_dropout, hyena_filter_order=config.hyena_filter_order, residual_long_conv=config.residual_long_conv, hyena_training_additions=config.hyena_training_additions, ) else: self.attention = BertUnpadAttention(config) if config.use_glu_mlp: self.mlp = BertGatedLinearUnitMLP(config) else: self.mlp = BertMLP(config) def forward( self, hidden_states: torch.Tensor, cu_seqlens: torch.Tensor, seqlen: int, subset_idx: Optional[torch.Tensor] = None, indices: Optional[torch.Tensor] = None, attn_mask: Optional[torch.Tensor] = None, bias: Optional[torch.Tensor] = None, ) -> torch.Tensor: """Forward pass for a BERT layer, including both attention and MLP. Args: hidden_states: (total_nnz, dim) cu_seqlens: (batch + 1,) seqlen: int subset_idx: () set of indices whose values we care about at the end of the layer (e.g., the masked tokens, if this is the final layer). indices: None or (total_nnz,) attn_mask: None or (batch, max_seqlen_in_batch) bias: None or (batch, heads, max_seqlen_in_batch, max_seqlen_in_batch) """ if self.monarch_mixer_sequence_mixing: attention_output = self.attention(hidden_states) if type(attention_output) == tuple: attention_output, _ = attention_output else: attention_output = self.attention(hidden_states, cu_seqlens, seqlen, subset_idx, indices, attn_mask, bias) layer_output = self.mlp(attention_output) return layer_output class BertEncoder(nn.Module): """A stack of BERT layers providing the backbone of BERT. Compared to the analogous Hugging Face BERT module, this module handles unpadding to reduce unnecessary computation at padded tokens, and pre-computes attention biases to implement ALiBi. """ def __init__(self, config): super().__init__() layer = BertLayer(config) self.layer = nn.ModuleList( [copy.deepcopy(layer) for _ in range(config.num_hidden_layers)]) self.monarch_mixer_sequence_mixing = config.monarch_mixer_sequence_mixing self.num_attention_heads = config.num_attention_heads if not self.monarch_mixer_sequence_mixing: # The alibi mask will be dynamically expanded if it is too small for # the input the model receives. But it generally helps to initialize it # to a reasonably large size to help pre-allocate CUDA memory. # The default `alibi_starting_size` is 512. self._current_alibi_size = int(config.alibi_starting_size) self.alibi = torch.zeros( (1, self.num_attention_heads, self._current_alibi_size, self._current_alibi_size)) self.rebuild_alibi_tensor(size=config.alibi_starting_size) def rebuild_alibi_tensor(self, size: int, device: Optional[Union[torch.device, str]] = None): # Alibi # Following https://github.com/ofirpress/attention_with_linear_biases/issues/5 (Implementation 1) # In the causal case, you can exploit the fact that softmax is invariant to a uniform translation # of the logits, which makes the math work out *after* applying causal masking. If no causal masking # will be applied, it is necessary to construct the diagonal mask. n_heads = self.num_attention_heads def _get_alibi_head_slopes(n_heads: int) -> List[float]: def get_slopes_power_of_2(n_heads: int) -> List[float]: start = (2**(-2**-(math.log2(n_heads) - 3))) ratio = start return [start * ratio**i for i in range(n_heads)] # In the paper, they only train models that have 2^a heads for some a. This function # has some good properties that only occur when the input is a power of 2. To # maintain that even when the number of heads is not a power of 2, we use a # workaround. if math.log2(n_heads).is_integer(): return get_slopes_power_of_2(n_heads) closest_power_of_2 = 2**math.floor(math.log2(n_heads)) slopes_a = get_slopes_power_of_2(closest_power_of_2) slopes_b = _get_alibi_head_slopes(2 * closest_power_of_2) slopes_b = slopes_b[0::2][:n_heads - closest_power_of_2] return slopes_a + slopes_b context_position = torch.arange(size, device=device)[:, None] memory_position = torch.arange(size, device=device)[None, :] relative_position = torch.abs(memory_position - context_position) # [n_heads, max_token_length, max_token_length] relative_position = relative_position.unsqueeze(0).expand( n_heads, -1, -1) slopes = torch.Tensor(_get_alibi_head_slopes(n_heads)).to(device) alibi = slopes.unsqueeze(1).unsqueeze(1) * -relative_position # [1, n_heads, max_token_length, max_token_length] alibi = alibi.unsqueeze(0) assert alibi.shape == torch.Size([1, n_heads, size, size]) self._current_alibi_size = size self.alibi = alibi def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, output_all_encoded_layers: Optional[bool] = True, subset_mask: Optional[torch.Tensor] = None, position_encodings: Optional[torch.Tensor] = None, ) -> List[torch.Tensor]: extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) extended_attention_mask = extended_attention_mask.to( dtype=next(self.parameters()).dtype) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 attention_mask_bool = attention_mask.bool() batch, seqlen = hidden_states.shape[:2] # Unpad inputs and mask. It will remove tokens that are padded. # Assume ntokens is total number of tokens (padded and non-padded) # and ntokens_unpad is total number of non-padded tokens. # Then unpadding performs the following compression of the inputs: # hidden_states[ntokens,hidden] -> hidden_states[ntokens_unpad,hidden] if not self.monarch_mixer_sequence_mixing: hidden_states, indices, cu_seqlens, _ = bert_padding_module.unpad_input( hidden_states, attention_mask_bool) else: cu_seqlens = None indices = None # Add alibi matrix to extended_attention_mask if not self.monarch_mixer_sequence_mixing: if self._current_alibi_size < seqlen: # Rebuild the alibi tensor when needed warnings.warn( f'Increasing alibi size from {self._current_alibi_size} to {seqlen}' ) self.rebuild_alibi_tensor(size=seqlen, device=hidden_states.device) elif self.alibi.device != hidden_states.device: # Device catch-up self.alibi = self.alibi.to(hidden_states.device) alibi_bias = self.alibi[:, :, :seqlen, :seqlen] attn_bias = extended_attention_mask[:, :, :seqlen, :seqlen] alibi_attn_mask = attn_bias + alibi_bias else: alibi_attn_mask = None all_encoder_layers = [] if self.monarch_mixer_sequence_mixing: for layer_module in self.layer: hidden_states = layer_module(hidden_states, cu_seqlens, seqlen, None, indices, attn_mask=attention_mask, bias=alibi_attn_mask ) if position_encodings is not None: hidden_states = hidden_states + position_encodings if output_all_encoded_layers: all_encoder_layers.append(hidden_states) if subset_mask is not None: hidden_states = hidden_states[subset_mask] else: if subset_mask is None: for layer_module in self.layer: hidden_states = layer_module(hidden_states, cu_seqlens, seqlen, None, indices, attn_mask=attention_mask, bias=alibi_attn_mask ) if output_all_encoded_layers: all_encoder_layers.append(hidden_states) # Pad inputs and mask. It will insert back zero-padded tokens. # Assume ntokens is total number of tokens (padded and non-padded) # and ntokens_unpad is total number of non-padded tokens. # Then padding performs the following de-compression: # hidden_states[ntokens_unpad,hidden] -> hidden_states[ntokens,hidden] hidden_states = bert_padding_module.pad_input( hidden_states, indices, batch, seqlen ) else: for i in range(len(self.layer) - 1): layer_module = self.layer[i] hidden_states = layer_module(hidden_states, cu_seqlens, seqlen, None, indices, attn_mask=attention_mask, bias=alibi_attn_mask) if output_all_encoded_layers: all_encoder_layers.append(hidden_states) subset_idx = torch.nonzero(subset_mask[attention_mask_bool], as_tuple=False).flatten() hidden_states = self.layer[-1](hidden_states, cu_seqlens, seqlen, subset_idx=subset_idx, indices=indices, attn_mask=attention_mask, bias=alibi_attn_mask) if not output_all_encoded_layers: all_encoder_layers.append(hidden_states) return all_encoder_layers class BertPooler(nn.Module): def __init__(self, config): super(BertPooler, self).__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() self.pool_all = config.pool_all def forward(self, hidden_states: torch.Tensor, pool: Optional[bool] = True, mask= None) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. if not self.pool_all: first_token_tensor = hidden_states[:, 0] if pool else hidden_states pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) else: # mean pool everything that isn't masked out denom = torch.sum(mask, dim=1, keepdim=True) mean_tensor = torch.sum((hidden_states) * mask.unsqueeze(-1), dim = 1) / denom pooled_output = self.dense(mean_tensor) pooled_output = self.activation(pooled_output) return pooled_output class BertPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = torch.nn.LayerNorm(config.hidden_size, eps=1e-12) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class BertModel(BertPreTrainedModel): """Overall BERT model. Args: config: a BertConfig class instance with the configuration to build a new model Inputs: `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts `extract_features.py`, `run_classifier.py` and `run_squad.py`) `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to a `sentence B` token (see BERT paper for more details). `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max input sequence length in the current batch. It's the mask that we typically use for attention when a batch has varying length sentences. `output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`. Outputs: Tuple of (encoded_layers, pooled_output) `encoded_layers`: controlled by `output_all_encoded_layers` argument: - `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end of each attention block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), each encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size], - `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding to the last attention block of shape [batch_size, sequence_length, hidden_size], `pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a classifier pretrained on top of the hidden state associated to the first character of the input (`CLS`) to train on the Next-Sentence task (see BERT's paper). Example usage: ```python # Already been converted into WordPiece token ids input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]]) input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]]) token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]]) config = modeling.BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072) model = BertModel(config=config) all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask) ``` """ def __init__(self, config, add_pooling_layer=True): super(BertModel, self).__init__(config) self.embeddings = BertEmbeddings(config) self.encoder = BertEncoder(config) self.pooler = BertPooler(config) if add_pooling_layer else None self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def forward( self, input_ids: torch.Tensor, token_type_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_all_encoded_layers: Optional[bool] = False, masked_tokens_mask: Optional[torch.Tensor] = None, **kwargs ) -> Tuple[Union[List[torch.Tensor], torch.Tensor], Optional[torch.Tensor]]: if attention_mask is None: attention_mask = torch.ones_like(input_ids) if token_type_ids is None: token_type_ids = torch.zeros_like(input_ids) embedding_output = self.embeddings( input_ids, token_type_ids, position_ids ) position_encodings = None subset_mask = [] first_col_mask = [] if masked_tokens_mask is None: subset_mask = None else: first_col_mask = torch.zeros_like(masked_tokens_mask) first_col_mask[:, 0] = True subset_mask = masked_tokens_mask | first_col_mask encoder_outputs = self.encoder( embedding_output, attention_mask, output_all_encoded_layers=output_all_encoded_layers, subset_mask=subset_mask, position_encodings=position_encodings) if masked_tokens_mask is None: sequence_output = encoder_outputs[-1] pooled_output = self.pooler( sequence_output, mask = attention_mask) if self.pooler is not None else None else: # TD [2022-03-01]: the indexing here is very tricky. attention_mask_bool = attention_mask.bool() subset_idx = subset_mask[attention_mask_bool] # type: ignore sequence_output = encoder_outputs[-1][ masked_tokens_mask[attention_mask_bool][subset_idx]] if self.pooler is not None: pool_input = encoder_outputs[-1][ first_col_mask[attention_mask_bool][subset_idx]] pooled_output = self.pooler(pool_input, pool=False, mask = attention_mask) else: pooled_output = None if not output_all_encoded_layers: encoder_outputs = sequence_output if self.pooler is not None: return encoder_outputs, pooled_output return encoder_outputs, None ################### # Bert Heads ################### class BertLMPredictionHead(nn.Module): def __init__(self, config, bert_model_embedding_weights): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(bert_model_embedding_weights.size(1), bert_model_embedding_weights.size(0)) self.decoder.weight = bert_model_embedding_weights def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states class BertOnlyMLMHead(nn.Module): def __init__(self, config, bert_model_embedding_weights): super().__init__() self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights) def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: prediction_scores = self.predictions(sequence_output) return prediction_scores class BertOnlyNSPHead(nn.Module): def __init__(self, config): super().__init__() self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, pooled_output: torch.Tensor) -> torch.Tensor: seq_relationship_score = self.seq_relationship(pooled_output) return seq_relationship_score ####################### # Construct Bert model ####################### class BertForMaskedLM(BertPreTrainedModel): def __init__(self, config): super().__init__(config) if config.is_decoder: warnings.warn( 'If you want to use `BertForMaskedLM` make sure `config.is_decoder=False` for ' 'bi-directional self-attention.') self.bert = BertModel(config, add_pooling_layer=False) self.cls = BertOnlyMLMHead(config, self.bert.embeddings.word_embeddings.weight) # Initialize weights and apply final processing self.post_init() @classmethod def from_composer(cls, pretrained_checkpoint, state_dict=None, cache_dir=None, from_tf=False, config=None, *inputs, **kwargs): """Load from pre-trained.""" model = cls(config, *inputs, **kwargs) if from_tf: raise ValueError( 'TensorFlow is not supported.') state_dict = torch.load(pretrained_checkpoint) # If the state_dict was saved after wrapping with `composer.HuggingFaceModel`, it takes on the `model` prefix consume_prefix_in_state_dict_if_present(state_dict, prefix='model.') missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False) if len(missing_keys) > 0: logger.warning( f"Found these missing keys in the checkpoint: {', '.join(missing_keys)}" ) if len(unexpected_keys) > 0: logger.warning( f"Found these unexpected keys in the checkpoint: {', '.join(unexpected_keys)}" ) return model def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]: # labels should be a `torch.LongTensor` of shape # `(batch_size, sequence_length)`. These are used for computing the # masked language modeling loss. # # Indices should be in `[-100, 0, ..., config.vocab_size]` (see # `input_ids` docstring) Tokens with indices set to `-100` are ignored # (masked), the loss is only computed for the tokens with labels in `[0, # ..., config.vocab_size]` # # Prediction scores are only computed for masked tokens and the (bs, # seqlen) dimensions are flattened if (input_ids is not None) == (inputs_embeds is not None): raise ValueError('Must specify either input_ids or input_embeds!') if labels is None: masked_tokens_mask = None else: masked_tokens_mask = labels > 0 return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, masked_tokens_mask=masked_tokens_mask, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) loss = None if labels is not None: # Compute loss loss_fct = nn.CrossEntropyLoss() masked_token_idx = torch.nonzero(labels.flatten() > 0, as_tuple=False).flatten() loss = loss_fct(prediction_scores, labels.flatten()[masked_token_idx]) assert input_ids is not None, 'Coding error; please open an issue' batch, seqlen = input_ids.shape[:2] prediction_scores = rearrange( bert_padding_module.index_put_first_axis( prediction_scores, masked_token_idx, batch * seqlen), '(b s) d -> b s d', b=batch) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MaskedLMOutput( loss=loss, logits=prediction_scores, hidden_states=None, attentions=None, ) def prepare_inputs_for_generation(self, input_ids: torch.Tensor, attention_mask: torch.Tensor, **model_kwargs): input_shape = input_ids.shape effective_batch_size = input_shape[0] # add a dummy token if self.config.pad_token_id is None: raise ValueError('The PAD token should be defined for generation') attention_mask = torch.cat([ attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1)) ], dim=-1) dummy_token = torch.full((effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device) input_ids = torch.cat([input_ids, dummy_token], dim=1) return {'input_ids': input_ids, 'attention_mask': attention_mask} class BertForSequenceClassification(BertPreTrainedModel): """Bert Model transformer with a sequence classification/regression head. This head is just a linear layer on top of the pooled output. Used for, e.g., GLUE tasks. """ def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.bert = BertModel(config) classifier_dropout = (config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @classmethod def from_composer(cls, pretrained_checkpoint, state_dict=None, cache_dir=None, from_tf=False, config=None, *inputs, **kwargs): """Load from pre-trained.""" model = cls(config, *inputs, **kwargs) if from_tf: raise ValueError( 'TensorFlow is not supported.') state_dict = torch.load(pretrained_checkpoint) # If the state_dict was saved after wrapping with `composer.HuggingFaceModel`, it takes on the `model` prefix consume_prefix_in_state_dict_if_present(state_dict, prefix='model.') missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False) if len(missing_keys) > 0: logger.warning( f"Found these missing keys in the checkpoint: {', '.join(missing_keys)}" ) if len(unexpected_keys) > 0: logger.warning( f"Found these unexpected keys in the checkpoint: {', '.join(unexpected_keys)}" ) return model def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: # labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): # Labels for computing the sequence classification/regression loss. # Indices should be in `[0, ..., config.num_labels - 1]`. # If `config.num_labels == 1` a regression loss is computed # (mean-square loss). If `config.num_labels > 1` a classification loss # is computed (cross-entropy). return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) loss = None if labels is not None: # Compute loss if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = 'single_label_classification' else: self.config.problem_type = 'multi_label_classification' if self.config.problem_type == 'regression': loss_fct = nn.MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == 'single_label_classification': loss_fct = nn.CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == 'multi_label_classification': loss_fct = nn.BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=None, attentions=None, )
m2-main
bert/src/bert_layers.py
# Adapted from https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/bert_padding.py # Adapted from https://github.com/mlcommons/training_results_v1.1/blob/main/NVIDIA/benchmarks/bert/implementations/pytorch/padding.py """ Functions for FlashAttention padding and unpadding """ from typing import Tuple, cast import torch import torch.nn.functional as F from einops import rearrange, repeat class IndexFirstAxis(torch.autograd.Function): @staticmethod def forward(ctx, input: torch.Tensor, indices: torch.Tensor) -> torch.Tensor: """Get just the values of `input` which are at `indices`. Arguments: ctx: the autograd context object input: (b, ...) 2+ dimensional tensor indices: (num_idx) 1D tensor """ ctx.save_for_backward(indices) assert input.ndim >= 2 ctx.first_axis_dim, other_shape = input.shape[0], input.shape[ 1:] second_dim = other_shape.numel( ) # product of sizes of all but first dimension # TD [2022-03-04] For some reason torch.gather is a bit faster than indexing. return torch.gather( rearrange(input, 'b ... -> b (...)'), # (b, ...) -> (b, second_dim) 0, repeat(indices, 'z -> z d', d=second_dim) # (indices,) -> (indices, second_dim) ).reshape(-1, *other_shape) # (num_idx, ...) @staticmethod def backward(ctx, grad_output: torch.Tensor) -> Tuple[torch.Tensor, None]: indices, = ctx.saved_tensors assert grad_output.ndim >= 2 other_shape = grad_output.shape[1:] grad_output = rearrange(grad_output, 'b ... -> b (...)') grad_input = torch.zeros([ctx.first_axis_dim, grad_output.shape[1]], device=grad_output.device, dtype=grad_output.dtype) # TD [2022-03-04] For some reason torch.scatter is a bit faster than indexing. # grad_input[indices] = grad_output grad_input.scatter_(0, repeat(indices, 'z -> z d', d=grad_output.shape[1]), grad_output) return grad_input.reshape(ctx.first_axis_dim, *other_shape), None index_first_axis = IndexFirstAxis.apply class IndexPutFirstAxis(torch.autograd.Function): @staticmethod def forward(ctx, values: torch.Tensor, indices: torch.Tensor, first_axis_dim) -> torch.Tensor: ctx.save_for_backward(indices) assert indices.ndim == 1 assert values.ndim >= 2 output = torch.zeros(first_axis_dim, *values.shape[1:], device=values.device, dtype=values.dtype) output[indices] = values return output @staticmethod def backward(ctx, grad_output: torch.Tensor) -> Tuple[torch.Tensor, None, None]: indices, = ctx.saved_tensors grad_values = grad_output[indices] return grad_values, None, None index_put_first_axis = IndexPutFirstAxis.apply def unpad_input( hidden_states: torch.Tensor, attention_mask: torch.Tensor, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int]: """Remove padding from input sequences. Arguments: hidden_states: (batch, seqlen, ...) attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid. Returns: hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask. cu_seqlens: (batch + 1), the cumulative sequence lengths, used to index into hidden_states. max_seqlen_in_batch: int """ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() max_seqlen_in_batch = int(seqlens_in_batch.max().item()) cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) # TD [2022-03-04] We don't want to index with a bool mask, because Pytorch will expand the # bool mask, then call nonzero to get the indices, then index with those. The indices is @dim # times larger than it needs to be, wasting memory. It's faster and more memory-efficient to # index with integer indices. Moreover, torch's index is a bit slower than it needs to be, # so we write custom forward and backward to make it a bit faster. hidden_states = cast( torch.Tensor, index_first_axis(rearrange(hidden_states, 'b s ... -> (b s) ...'), indices)) return hidden_states, indices, cu_seqlens, max_seqlen_in_batch def unpad_input_only( hidden_states: torch.Tensor, attention_mask: torch.Tensor, ) -> torch.Tensor: """Like unpad_input, but only return the unpadded first tensor. Save a small amount of overhead. Arguments: hidden_states: (batch, seqlen, ...) attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid. Returns: hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask. """ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() rearranged = rearrange(hidden_states, 'b s ... -> (b s) ...') return index_first_axis(rearranged, indices) # type: ignore def pad_input(hidden_states: torch.Tensor, indices: torch.Tensor, batch: int, seqlen: int) -> torch.Tensor: """Add padding to sequences. Arguments: hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask. indices: (total_nnz) Returns: hidden_states: (batch, seqlen, ...) """ output = index_put_first_axis(hidden_states, indices, batch * seqlen) return rearrange(output, '(b s) ... -> b s ...', b=batch) # type: ignore
m2-main
bert/src/bert_padding.py
# Copyright 2022 MosaicML Examples authors # SPDX-License-Identifier: Apache-2.0 """Implements a Hugging Face BERT wrapped inside a :class:`.ComposerModel`.""" from __future__ import annotations from typing import Optional from composer.metrics.nlp import (BinaryF1Score, LanguageCrossEntropy, MaskedAccuracy) from composer.models.huggingface import HuggingFaceModel from composer.utils.import_helpers import MissingConditionalImportError from torchmetrics import MeanSquaredError from torchmetrics.classification.accuracy import MulticlassAccuracy from torchmetrics.classification.matthews_corrcoef import MatthewsCorrCoef from torchmetrics.regression.spearman import SpearmanCorrCoef __all__ = ['create_hf_bert_mlm', 'create_hf_bert_classification'] def create_hf_bert_mlm(pretrained_model_name: str = 'bert-base-uncased', use_pretrained: Optional[bool] = False, model_config: Optional[dict] = None, tokenizer_name: Optional[str] = None, gradient_checkpointing: Optional[bool] = False): """BERT model based on |:hugging_face:| Transformers. For more information, see `Transformers <https://huggingface.co/transformers/>`_. Args: pretrained_model_name (str): Name of the Hugging Face model to instantiate. Default: ``'bert-base-uncased'``. use_pretrained (bool, optional): Whether to initialize the model with the pretrained weights. Default: ``False``. model_config (dict): The settings used to create a Hugging Face BertConfig. BertConfig is used to specify the architecture of a Hugging Face model. tokenizer_name (str, optional): Tokenizer name used to preprocess the dataset and validate the models inputs. gradient_checkpointing (bool, optional): Use gradient checkpointing. Default: ``False``. .. code-block:: { "_name_or_path": "bert-base-uncased", "architectures": ["BertForMaskedLM"], "attention_probs_dropout_prob": 0.1, "classifier_dropout": null, "gradient_checkpointing": false, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 768, "initializer_range": 0.02, "intermediate_size": 3072, "layer_norm_eps": 1e-12, "max_position_embeddings": 512, "model_type": "bert", "num_attention_heads": 12, "num_hidden_layers": 12, "pad_token_id": 0, "position_embedding_type": "absolute", "transformers_version": "4.16.0", "type_vocab_size": 2, "use_cache": true, "vocab_size": 30522 } To create a |:hugging_face:| BERT model for Masked Language Model pretraining: .. testcode:: from src.hf_bert import create_hf_bert_mlm model = create_hf_bert_mlm() """ try: import transformers except ImportError as e: raise MissingConditionalImportError(extra_deps_group='nlp', conda_package='transformers') from e if not model_config: model_config = {} if not pretrained_model_name: pretrained_model_name = 'bert-base-uncased' if use_pretrained: assert transformers.AutoModelForMaskedLM.from_pretrained is not None, 'AutoModelForMaskedLM has from_pretrained method' model = transformers.AutoModelForMaskedLM.from_pretrained( pretrained_model_name_or_path=pretrained_model_name, **model_config) else: config = transformers.AutoConfig.from_pretrained( pretrained_model_name, **model_config) assert transformers.AutoModelForMaskedLM.from_config is not None, 'AutoModelForMaskedLM has from_config method' model = transformers.AutoModelForMaskedLM.from_config(config) if gradient_checkpointing: model.gradient_checkpointing_enable() # type: ignore # setup the tokenizer if tokenizer_name: tokenizer = transformers.AutoTokenizer.from_pretrained(tokenizer_name) else: tokenizer = None metrics = [ LanguageCrossEntropy(ignore_index=-100, vocab_size=model.config.vocab_size), MaskedAccuracy(ignore_index=-100) ] return HuggingFaceModel(model=model, tokenizer=tokenizer, use_logits=True, metrics=metrics) def create_hf_bert_classification( num_labels: int, pretrained_model_name: str = 'bert-base-uncased', use_pretrained: Optional[bool] = False, model_config: Optional[dict] = None, tokenizer_name: Optional[str] = None, gradient_checkpointing: Optional[bool] = False): """BERT model based on |:hugging_face:| Transformers. For more information, see `Transformers <https://huggingface.co/transformers/>`_. Args: num_labels (int): The number of classes in the task (``1`` indicates regression). Default: ``2``. pretrained_model_name (str): Name of the Hugging Face model to instantiate. Default: ``'bert-base-uncased'``. use_pretrained (bool, optional): Whether to initialize the model with the pretrained weights. Default: ``False``. model_config (dict, optional): The settings used to create a Hugging Face BertConfig. BertConfig is used to specify the architecture of a Hugging Face model. tokenizer_name (str, optional): Tokenizer name used to preprocess the dataset and validate the models inputs. gradient_checkpointing (bool, optional): Use gradient checkpointing. Default: ``False``. .. code-block:: { "_name_or_path": "bert-base-uncased", "architectures": [ "BertForSequenceClassification ], "attention_probs_dropout_prob": 0.1, "classifier_dropout": null, "gradient_checkpointing": false, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 768, "id2label": { "0": "LABEL_0", "1": "LABEL_1", "2": "LABEL_2" }, "initializer_range": 0.02, "intermediate_size": 3072, "label2id": { "LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2 }, "layer_norm_eps": 1e-12, "max_position_embeddings": 512, "model_type": "bert", "num_attention_heads": 12, "num_hidden_layers": 12, "pad_token_id": 0, "position_embedding_type": "absolute", "transformers_version": "4.16.0", "type_vocab_size": 2, "use_cache": true, "vocab_size": 30522 } Note: This function can be used to construct a BERT model for regression by setting ``num_labels == 1``. This will have two noteworthy effects. First, it will switch the training loss to :class:`~torch.nn.MSELoss`. Second, the returned :class:`.ComposerModel`'s train/validation metrics will be :class:`~torchmetrics.MeanSquaredError` and :class:`~torchmetrics.SpearmanCorrCoef`. For the classifcation case (when ``num_labels > 1``), the training loss is :class:`~torch.nn.CrossEntropyLoss`, and the train/validation metrics are :class:`~torchmetrics.MulticlassAccuracy` and :class:`~torchmetrics.MatthewsCorrCoef`, as well as :class:`.BinaryF1Score` if ``num_labels == 2``. """ try: import transformers except ImportError as e: raise MissingConditionalImportError(extra_deps_group='nlp', conda_package='transformers') from e if not model_config: model_config = {} model_config['num_labels'] = num_labels if not pretrained_model_name: pretrained_model_name = 'bert-base-uncased' if use_pretrained: assert transformers.AutoModelForSequenceClassification.from_pretrained is not None, 'AutoModelForSequenceClassification has from_pretrained method' model = transformers.AutoModelForSequenceClassification.from_pretrained( pretrained_model_name_or_path=pretrained_model_name, **model_config) else: config = transformers.AutoConfig.from_pretrained( pretrained_model_name, **model_config) assert transformers.AutoModelForSequenceClassification.from_config is not None, 'AutoModelForSequenceClassification has from_config method' model = transformers.AutoModelForSequenceClassification.from_config( config) if gradient_checkpointing: model.gradient_checkpointing_enable() # setup the tokenizer if tokenizer_name: tokenizer = transformers.AutoTokenizer.from_pretrained(tokenizer_name) else: tokenizer = None if num_labels == 1: # Metrics for a regression model metrics = [MeanSquaredError(), SpearmanCorrCoef()] else: # Metrics for a classification model metrics = [ MulticlassAccuracy(num_classes=num_labels, average='micro'), MatthewsCorrCoef(task='multiclass', num_classes=model.config.num_labels) ] if num_labels == 2: metrics.append(BinaryF1Score()) return HuggingFaceModel(model=model, tokenizer=tokenizer, use_logits=True, metrics=metrics)
m2-main
bert/src/hf_bert.py
# Copyright 2022 MosaicML Examples authors # SPDX-License-Identifier: Apache-2.0 import os import sys import torch # Add src folder root to path to allow us to use relative imports regardless of what directory the script is run from sys.path.append(os.path.dirname(os.path.realpath(__file__))) # yapf: disable from bert_layers import (BertEmbeddings, BertEncoder, BertForMaskedLM, BertForSequenceClassification, BertGatedLinearUnitMLP, BertLayer, BertLMPredictionHead, BertModel, BertOnlyMLMHead, BertOnlyNSPHead, BertPooler, BertPredictionHeadTransform, BertSelfOutput, BertUnpadAttention, BertUnpadSelfAttention) # yapf: enable from bert_padding import (IndexFirstAxis, IndexPutFirstAxis, index_first_axis, index_put_first_axis, pad_input, unpad_input, unpad_input_only) from configuration_bert import BertConfig if torch.cuda.is_available(): from flash_attn_triton import \ flash_attn_func as flash_attn_func_bert # type: ignore from flash_attn_triton import \ flash_attn_qkvpacked_func as flash_attn_qkvpacked_func_bert # type: ignore from create_bert import (create_bert_classification, create_bert_mlm) __all__ = [ 'BertConfig', 'BertEmbeddings', 'BertEncoder', 'BertForMaskedLM', 'BertForSequenceClassification', 'BertGatedLinearUnitMLP', 'BertLayer', 'BertLMPredictionHead', 'BertModel', 'BertOnlyMLMHead', 'BertOnlyNSPHead', 'BertPooler', 'BertPredictionHeadTransform', 'BertSelfOutput', 'BertUnpadAttention', 'BertUnpadSelfAttention', 'IndexFirstAxis', 'IndexPutFirstAxis', 'index_first_axis', 'index_put_first_axis', 'pad_input', 'unpad_input', 'unpad_input_only', 'create_bert_classification', 'create_bert_mlm', 'create_hf_bert_mlm', 'create_hf_bert_classification', # These are commented out because they only exist if CUDA is available # 'flash_attn_func_bert', # 'flash_attn_qkvpacked_func_bert' ]
m2-main
bert/src/__init__.py
# Copyright 2022 MosaicML Examples authors # SPDX-License-Identifier: Apache-2.0 """Triton implementation of Flash Attention. # Copyright (c) 2022, Tri Dao. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. *Experimental* implementation of FlashAttention in Triton. We use the FlashAttention implementation from Phil Tillet a starting point. https://github.com/openai/triton/blob/master/python/tutorials/06-fused-attention.py Changes: - Implement both causal and non-causal attention. - Implement both self-attention and cross-attention. - Support arbitrary seqlens (not just multiples of 128), for both forward and backward. - Support all head dimensions up to 128 (not just 16, 32, 64, 128), for both forward and backward. - Support attention bias. - Speed up the forward pass a bit, and only store the LSE instead of m and l. - Make the backward for d=128 much faster by reducing register spilling. - Optionally parallelize the backward pass across seqlen_k, to deal with the case of small batch size * nheads. Caution: - If you plan to use headdim other than 64 and 128, you should test for race conditions (due to the Triton compiler), as done in tests/test_flash_attn.py "test_flash_attn_triton_race_condition". I've tested and fixed many race conditions for different head dimensions (40, 48, 64, 128, 80, 88, 96), but I'm still not 100% confident that there are none left for other head dimensions. Differences between this Triton version and the CUDA version: - Triton version doesn't support dropout. - Triton forward is generally faster than CUDA forward. - Triton backward is faster than CUDA backward when batch * nheads is small, and when headdim=64. It is slightly slower when headdim=128 and batch * nheads is large. - Triton version doesn't yet support different sequence lengths in a batch (i.e., RaggedTensor/NestedTensor). """ import math import torch import triton # type: ignore (reportMissingImports) import triton.language as tl # type: ignore (reportMissingImports) from einops import repeat @triton.autotune( configs=[ triton.Config({ 'BLOCK_M': 128, 'BLOCK_N': 128 }, num_warps=8, num_stages=1), # This config has a race condition when EVEN_M == False, disabling it for now. # triton.Config({"BLOCK_M": 64, "BLOCK_N": 64}, num_warps=4, num_stages=1), ], key=[ 'CACHE_KEY_SEQLEN_Q', 'CACHE_KEY_SEQLEN_K', 'BIAS_TYPE', 'IS_CAUSAL', 'BLOCK_HEADDIM' ]) @triton.heuristics({ 'EVEN_M': lambda args: args['seqlen_q'] % args['BLOCK_M'] == 0, 'EVEN_N': lambda args: args['seqlen_k'] % args['BLOCK_N'] == 0, 'EVEN_HEADDIM': lambda args: args['headdim'] == args['BLOCK_HEADDIM'], }) @triton.jit def _fwd_kernel( Q, K, V, Bias, Out, Lse, TMP, # NOTE: TMP is a scratchpad buffer to workaround a compiler bug softmax_scale, stride_qb, stride_qh, stride_qm, stride_kb, stride_kh, stride_kn, stride_vb, stride_vh, stride_vn, stride_bb, stride_bh, stride_bm, stride_ob, stride_oh, stride_om, nheads, seqlen_q, seqlen_k, seqlen_q_rounded, headdim, CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K, BIAS_TYPE: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, ): start_m = tl.program_id(0) off_hb = tl.program_id(1) off_b = off_hb // nheads off_h = off_hb % nheads # off_b = tl.program_id(1) # off_h = tl.program_id(2) # off_hb = off_b * nheads + off_h # initialize offsets offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_n = tl.arange(0, BLOCK_N) offs_d = tl.arange(0, BLOCK_HEADDIM) # Initialize pointers to Q, K, V # Adding parenthesis around indexing might use int32 math instead of int64 math? # https://github.com/openai/triton/issues/741 # I'm seeing a tiny bit of difference (5-7us) q_ptrs = Q + off_b * stride_qb + off_h * stride_qh + ( offs_m[:, None] * stride_qm + offs_d[None, :]) k_ptrs = K + off_b * stride_kb + off_h * stride_kh + ( offs_n[:, None] * stride_kn + offs_d[None, :]) v_ptrs = V + off_b * stride_vb + off_h * stride_vh + ( offs_n[:, None] * stride_vn + offs_d[None, :]) if BIAS_TYPE == 'vector': b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + offs_n elif BIAS_TYPE == 'matrix': b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + ( offs_m[:, None] * stride_bm + offs_n[None, :]) else: raise ValueError("BIAS_TYPE must be one of {'vector', 'matrix'}") # initialize pointer to m and l t_ptrs = TMP + off_hb * seqlen_q_rounded + offs_m lse_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf') m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf') acc_o = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32) # load q: it will stay in SRAM throughout # [2022-10-30] TD: Triton bug - in the case of EVEN_M=True and EVEN_N=False, if we just call # tl.load(q_ptrs), we get the wrong output! if EVEN_M & EVEN_N: if EVEN_HEADDIM: q = tl.load(q_ptrs) else: q = tl.load(q_ptrs, mask=offs_d[None, :] < headdim, other=0.0) else: if EVEN_HEADDIM: q = tl.load(q_ptrs, mask=offs_m[:, None] < seqlen_q, other=0.0) else: q = tl.load(q_ptrs, mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0) # loop over k, v and update accumulator end_n = seqlen_k if not IS_CAUSAL else tl.minimum( (start_m + 1) * BLOCK_M, seqlen_k) for start_n in range(0, end_n, BLOCK_N): start_n = tl.multiple_of(start_n, BLOCK_N) # -- compute qk ---- if EVEN_N & EVEN_M: # If we just do "if EVEN_N", there seems to be some race condition if EVEN_HEADDIM: k = tl.load(k_ptrs + start_n * stride_kn) else: k = tl.load(k_ptrs + start_n * stride_kn, mask=offs_d[None, :] < headdim, other=0.0) else: if EVEN_HEADDIM: k = tl.load(k_ptrs + start_n * stride_kn, mask=(start_n + offs_n)[:, None] < seqlen_k, other=0.0) else: k = tl.load(k_ptrs + start_n * stride_kn, mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0) qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) qk += tl.dot(q, k, trans_b=True) # Trying to combine the two masks seem to make the result wrong if not EVEN_N: # Need to mask out otherwise the softmax is wrong qk += tl.where((start_n + offs_n)[None, :] < seqlen_k, 0, float('-inf')) if IS_CAUSAL: qk += tl.where(offs_m[:, None] >= (start_n + offs_n)[None, :], 0, float('-inf')) if BIAS_TYPE != 'none': if BIAS_TYPE == 'vector': if EVEN_N: bias = tl.load(b_ptrs + start_n).to(tl.float32) else: bias = tl.load(b_ptrs + start_n, mask=(start_n + offs_n) < seqlen_k, other=0.0).to(tl.float32) bias = bias[None, :] elif BIAS_TYPE == 'matrix': if EVEN_M & EVEN_N: bias = tl.load(b_ptrs + start_n).to(tl.float32) else: bias = tl.load(b_ptrs + start_n, mask=(offs_m[:, None] < seqlen_q) & ((start_n + offs_n)[None, :] < seqlen_k), other=0.0).to(tl.float32) else: raise ValueError( "BIAS_TYPE must be one of {'vector', 'matrix'}") # Slightly faster to multiply the softmax_scale in the tl.exp below since the compiler # can then fuse the mult and add into an fma instruction. But if we have bias we need to # to multiply with softmax_scale here. qk = qk * softmax_scale + bias m_ij = tl.maximum(tl.max(qk, 1), lse_i) p = tl.exp(qk - m_ij[:, None]) else: m_ij = tl.maximum(tl.max(qk, 1) * softmax_scale, lse_i) p = tl.exp(qk * softmax_scale - m_ij[:, None]) l_ij = tl.sum(p, 1) # scale acc_o acc_o_scale = tl.exp(m_i - m_ij) # # -- update output accumulator -- # BUG: have to store and immediately load tl.store(t_ptrs, acc_o_scale) acc_o_scale = tl.load(t_ptrs) acc_o = acc_o * acc_o_scale[:, None] # update acc_o if EVEN_N & EVEN_M: # If we just do "if EVEN_N", there seems to be some race condition if EVEN_HEADDIM: v = tl.load(v_ptrs + start_n * stride_vn) else: v = tl.load(v_ptrs + start_n * stride_vn, mask=offs_d[None, :] < headdim, other=0.0) else: if EVEN_HEADDIM: v = tl.load(v_ptrs + start_n * stride_vn, mask=(start_n + offs_n)[:, None] < seqlen_k, other=0.0) else: v = tl.load(v_ptrs + start_n * stride_vn, mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0) p = p.to(v.dtype) acc_o += tl.dot(p, v) # -- update statistics m_i = m_ij l_i_new = tl.exp(lse_i - m_ij) + l_ij lse_i = m_ij + tl.log(l_i_new) o_scale = tl.exp(m_i - lse_i) # BUG: have to store and immediately load tl.store(t_ptrs, o_scale) o_scale = tl.load(t_ptrs) acc_o = acc_o * o_scale[:, None] # rematerialize offsets to save registers start_m = tl.program_id(0) offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) # write back l and m lse_ptrs = Lse + off_hb * seqlen_q_rounded + offs_m tl.store(lse_ptrs, lse_i) # initialize pointers to output offs_n = tl.arange(0, BLOCK_HEADDIM) out_ptrs = Out + off_b * stride_ob + off_h * stride_oh + ( offs_m[:, None] * stride_om + offs_n[None, :]) if EVEN_M: if EVEN_HEADDIM: tl.store(out_ptrs, acc_o) else: tl.store(out_ptrs, acc_o, mask=offs_d[None, :] < headdim) else: if EVEN_HEADDIM: tl.store(out_ptrs, acc_o, mask=offs_m[:, None] < seqlen_q) else: tl.store(out_ptrs, acc_o, mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim)) @triton.jit def _bwd_preprocess_do_o_dot( Out, DO, Delta, stride_ob, stride_oh, stride_om, stride_dob, stride_doh, stride_dom, nheads, seqlen_q, seqlen_q_rounded, headdim, BLOCK_M: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, ): start_m = tl.program_id(0) off_hb = tl.program_id(1) off_b = off_hb // nheads off_h = off_hb % nheads # initialize offsets offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_d = tl.arange(0, BLOCK_HEADDIM) # load o = tl.load(Out + off_b * stride_ob + off_h * stride_oh + offs_m[:, None] * stride_om + offs_d[None, :], mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0).to(tl.float32) do = tl.load(DO + off_b * stride_dob + off_h * stride_doh + offs_m[:, None] * stride_dom + offs_d[None, :], mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0).to(tl.float32) delta = tl.sum(o * do, axis=1) # write-back tl.store(Delta + off_hb * seqlen_q_rounded + offs_m, delta) @triton.jit def _bwd_kernel_one_col_block( start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qm, stride_kn, stride_vn, stride_bm, stride_dom, stride_dqm, stride_dkn, stride_dvn, seqlen_q, seqlen_k, headdim, ATOMIC_ADD: tl.constexpr, BIAS_TYPE: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, ): # We need to make sure begin_m is a multiple of BLOCK_M (not BLOCK_N) begin_m = 0 if not IS_CAUSAL else ((start_n * BLOCK_N) // BLOCK_M) * BLOCK_M # initialize row/col offsets offs_qm = begin_m + tl.arange(0, BLOCK_M) offs_n = start_n * BLOCK_N + tl.arange(0, BLOCK_N) offs_m = tl.arange(0, BLOCK_M) offs_d = tl.arange(0, BLOCK_HEADDIM) # initialize pointers to value-like data q_ptrs = Q + (offs_qm[:, None] * stride_qm + offs_d[None, :]) k_ptrs = K + (offs_n[:, None] * stride_kn + offs_d[None, :]) v_ptrs = V + (offs_n[:, None] * stride_vn + offs_d[None, :]) do_ptrs = DO + (offs_qm[:, None] * stride_dom + offs_d[None, :]) dq_ptrs = DQ + (offs_qm[:, None] * stride_dqm + offs_d[None, :]) if BIAS_TYPE == 'vector': b_ptrs = Bias + offs_n elif BIAS_TYPE == 'matrix': b_ptrs = Bias + (offs_qm[:, None] * stride_bm + offs_n[None, :]) else: raise ValueError("BIAS_TYPE must be one of {'vector', 'matrix'}") # initialize dv and dk dv = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32) dk = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32) # k and v stay in SRAM throughout # [2022-10-30] TD: Same bug as the fwd. In the case of EVEN_N=True and EVEN_M=False, # if we just call tl.load(k_ptrs), we get the wrong output! if EVEN_N & EVEN_M: if EVEN_HEADDIM: k = tl.load(k_ptrs) v = tl.load(v_ptrs) else: k = tl.load(k_ptrs, mask=offs_d[None, :] < headdim, other=0.0) v = tl.load(v_ptrs, mask=offs_d[None, :] < headdim, other=0.0) else: if EVEN_HEADDIM: k = tl.load(k_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0) v = tl.load(v_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0) else: k = tl.load(k_ptrs, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0) v = tl.load(v_ptrs, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0) # loop over rows num_block_m = tl.cdiv(seqlen_q, BLOCK_M) for start_m in range(begin_m, num_block_m * BLOCK_M, BLOCK_M): start_m = tl.multiple_of(start_m, BLOCK_M) offs_m_curr = start_m + offs_m # load q, k, v, do on-chip # Same bug as below. Otherwise gives wrong result for headdim=40, seqlen=(128, 117) if EVEN_M & EVEN_HEADDIM: q = tl.load(q_ptrs) else: if EVEN_HEADDIM: q = tl.load(q_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0) else: q = tl.load(q_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0) # recompute p = softmax(qk, dim=-1).T qk = tl.dot(q, k, trans_b=True) # Trying to combine the two masks seem to make the result wrong if not EVEN_N: # Need to mask out otherwise the softmax is wrong qk = tl.where(offs_n[None, :] < seqlen_k, qk, float('-inf')) if IS_CAUSAL: qk = tl.where(offs_m_curr[:, None] >= (offs_n[None, :]), qk, float('-inf')) if BIAS_TYPE != 'none': if BIAS_TYPE == 'vector': if EVEN_N: bias = tl.load(b_ptrs).to(tl.float32) else: bias = tl.load(b_ptrs, mask=offs_n < seqlen_k, other=0.0).to(tl.float32) bias = bias[None, :] elif BIAS_TYPE == 'matrix': if EVEN_M & EVEN_N: bias = tl.load(b_ptrs).to(tl.float32) else: bias = tl.load(b_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_n[None, :] < seqlen_k), other=0.0).to(tl.float32) else: raise ValueError( "BIAS_TYPE must be one of {'vector', 'matrix'}") qk = qk * softmax_scale + bias # There seems to be a race condition when headdim=48/96, and dq, dk, dv are wrong. # Also wrong for headdim=64. if not (EVEN_M & EVEN_HEADDIM): tl.debug_barrier() lse_i = tl.load(LSE + offs_m_curr) if BIAS_TYPE == 'none': p = tl.exp(qk * softmax_scale - lse_i[:, None]) else: p = tl.exp(qk - lse_i[:, None]) # compute dv # [2022-10-30] TD: A Triton bug: if EVEN_M=True and EVEN_HEADDIM=False, if we call # do = tl.load(do_ptrs, mask=offs_d[None, :] < headdim, other=0.0), we get wrong outputs # in the case of headdim=48/96, seqlen_q & seqlen_k >= 512. If headdim=40 or seqlen < 512, # the output is correct. if EVEN_M & EVEN_HEADDIM: do = tl.load(do_ptrs) else: # [2022-11-01] TD: Triton bug, there's a race condition if we just use m_mask and not d_mask. do = tl.load(do_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0) # if EVEN_M: # if EVEN_HEADDIM: # do = tl.load(do_ptrs) # else: # do = tl.load(do_ptrs, mask=offs_d[None, :] < headdim, other=0.0) # else: # if EVEN_HEADDIM: # do = tl.load(do_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0) # else: # do = tl.load(do_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) # & (offs_d[None, :] < headdim), other=0.0) dv += tl.dot(p.to(do.dtype), do, trans_a=True) # compute dp = dot(v, do) # There seems to be a race condition when headdim=48/96, and dq, dk are wrong. # Also wrong for headdim=128, seqlen=(108, 256), and ATOMIC_ADD=True # Also wrong for headdim=64, seqlen=(1023, 1024), and ATOMIC_ADD=False if not (EVEN_M & EVEN_HEADDIM): tl.debug_barrier() dp = tl.dot(do, v, trans_b=True) # There's a race condition for headdim=48 if not EVEN_HEADDIM: tl.debug_barrier() # compute ds = p * (dp - delta[:, None]) # Putting the subtraction after the dp matmul (instead of before) is slightly faster Di = tl.load(D + offs_m_curr) # Converting ds to q.dtype here reduces register pressure and makes it much faster # for BLOCK_HEADDIM=128 ds = (p * (dp - Di[:, None]) * softmax_scale).to(q.dtype) # compute dk = dot(ds.T, q) dk += tl.dot(ds, q, trans_a=True) # compute dq if not ATOMIC_ADD: if EVEN_M & EVEN_HEADDIM: # Race condition if we just do EVEN_M dq = tl.load(dq_ptrs, eviction_policy='evict_last') dq += tl.dot(ds, k) tl.store(dq_ptrs, dq, eviction_policy='evict_last') else: if EVEN_HEADDIM: dq = tl.load(dq_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0, eviction_policy='evict_last') dq += tl.dot(ds, k) tl.store(dq_ptrs, dq, mask=offs_m_curr[:, None] < seqlen_q, eviction_policy='evict_last') else: dq = tl.load(dq_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0, eviction_policy='evict_last') dq += tl.dot(ds, k) tl.store(dq_ptrs, dq, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), eviction_policy='evict_last') else: # If we're parallelizing across the seqlen_k dimension dq = tl.dot(ds, k) if EVEN_M & EVEN_HEADDIM: # Race condition if we just do EVEN_M tl.atomic_add(dq_ptrs, dq) else: if EVEN_HEADDIM: tl.atomic_add(dq_ptrs, dq, mask=offs_m_curr[:, None] < seqlen_q) else: tl.atomic_add(dq_ptrs, dq, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim)) # increment pointers dq_ptrs += BLOCK_M * stride_dqm q_ptrs += BLOCK_M * stride_qm do_ptrs += BLOCK_M * stride_dom if BIAS_TYPE == 'matrix': b_ptrs += BLOCK_M * stride_bm # write-back dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :]) dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :]) # [2022-11-01] TD: Same bug. In the case of EVEN_N=True and EVEN_M=False, # if we just call tl.store(dv_ptrs), there's a race condition if EVEN_N & EVEN_M: if EVEN_HEADDIM: tl.store(dv_ptrs, dv) tl.store(dk_ptrs, dk) else: tl.store(dv_ptrs, dv, mask=offs_d[None, :] < headdim) tl.store(dk_ptrs, dk, mask=offs_d[None, :] < headdim) else: if EVEN_HEADDIM: tl.store(dv_ptrs, dv, mask=offs_n[:, None] < seqlen_k) tl.store(dk_ptrs, dk, mask=offs_n[:, None] < seqlen_k) else: tl.store(dv_ptrs, dv, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim)) tl.store(dk_ptrs, dk, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim)) def init_to_zero(name): return lambda nargs: nargs[name].zero_() @triton.autotune( configs=[ triton.Config( { 'BLOCK_M': 128, 'BLOCK_N': 128, 'SEQUENCE_PARALLEL': False }, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')), triton.Config( { 'BLOCK_M': 128, 'BLOCK_N': 128, 'SEQUENCE_PARALLEL': True }, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')), # Other configs seem to give wrong results when seqlen_q % 128 != 0, disabling them for now # # Kernel is buggy (give wrong result) if we set BLOCK_m=128, BLOCK_n=64, num_warps=*4* # triton.Config({"BLOCK_M": 128, "BLOCK_N": 64, "SEQUENCE_PARALLEL": False}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')), # triton.Config({"BLOCK_M": 128, "BLOCK_N": 64, "SEQUENCE_PARALLEL": True}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')), # triton.Config({"BLOCK_M": 64, "BLOCK_N": 64, "SEQUENCE_PARALLEL": False}, num_warps=4, num_stages=1, pre_hook=init_to_zero('DQ')), # triton.Config({"BLOCK_M": 64, "BLOCK_N": 64, "SEQUENCE_PARALLEL": True}, num_warps=4, num_stages=1, pre_hook=init_to_zero('DQ')), ], key=[ 'CACHE_KEY_SEQLEN_Q', 'CACHE_KEY_SEQLEN_K', 'BIAS_TYPE', 'IS_CAUSAL', 'BLOCK_HEADDIM' ], ) @triton.heuristics({ 'EVEN_M': lambda args: args['seqlen_q'] % args['BLOCK_M'] == 0, 'EVEN_N': lambda args: args['seqlen_k'] % args['BLOCK_N'] == 0, 'EVEN_HEADDIM': lambda args: args['headdim'] == args['BLOCK_HEADDIM'], }) @triton.jit def _bwd_kernel( Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qb, stride_qh, stride_qm, stride_kb, stride_kh, stride_kn, stride_vb, stride_vh, stride_vn, stride_bb, stride_bh, stride_bm, stride_dob, stride_doh, stride_dom, stride_dqb, stride_dqh, stride_dqm, stride_dkb, stride_dkh, stride_dkn, stride_dvb, stride_dvh, stride_dvn, nheads, seqlen_q, seqlen_k, seqlen_q_rounded, headdim, CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K, BIAS_TYPE: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, SEQUENCE_PARALLEL: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, ): off_hb = tl.program_id(1) off_b = off_hb // nheads off_h = off_hb % nheads # offset pointers for batch/head Q += off_b * stride_qb + off_h * stride_qh K += off_b * stride_kb + off_h * stride_kh V += off_b * stride_vb + off_h * stride_vh DO += off_b * stride_dob + off_h * stride_doh DQ += off_b * stride_dqb + off_h * stride_dqh DK += off_b * stride_dkb + off_h * stride_dkh DV += off_b * stride_dvb + off_h * stride_dvh if BIAS_TYPE != 'none': Bias += off_b * stride_bb + off_h * stride_bh # pointer to row-wise quantities in value-like data D += off_hb * seqlen_q_rounded LSE += off_hb * seqlen_q_rounded if not SEQUENCE_PARALLEL: num_block_n = tl.cdiv(seqlen_k, BLOCK_N) for start_n in range(0, num_block_n): _bwd_kernel_one_col_block(start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qm, stride_kn, stride_vn, stride_bm, stride_dom, stride_dqm, stride_dkn, stride_dvn, seqlen_q, seqlen_k, headdim, ATOMIC_ADD=False, BIAS_TYPE=BIAS_TYPE, IS_CAUSAL=IS_CAUSAL, BLOCK_HEADDIM=BLOCK_HEADDIM, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM, BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N) else: start_n = tl.program_id(0) _bwd_kernel_one_col_block(start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qm, stride_kn, stride_vn, stride_bm, stride_dom, stride_dqm, stride_dkn, stride_dvn, seqlen_q, seqlen_k, headdim, ATOMIC_ADD=True, BIAS_TYPE=BIAS_TYPE, IS_CAUSAL=IS_CAUSAL, BLOCK_HEADDIM=BLOCK_HEADDIM, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM, BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N) def _flash_attn_forward(q, k, v, bias=None, causal=False, softmax_scale=None): # shape constraints batch, seqlen_q, nheads, d = q.shape _, seqlen_k, _, _ = k.shape assert k.shape == (batch, seqlen_k, nheads, d) assert v.shape == (batch, seqlen_k, nheads, d) assert d <= 128, 'FlashAttention only support head dimensions up to 128' assert q.dtype == k.dtype == v.dtype, 'All tensors must have the same type' assert q.dtype in [torch.float16, torch.bfloat16], 'Only support fp16 and bf16' assert q.is_cuda and k.is_cuda and v.is_cuda softmax_scale = softmax_scale or 1.0 / math.sqrt(d) has_bias = bias is not None bias_type = 'none' if has_bias: assert bias.dtype in [q.dtype, torch.float] assert bias.is_cuda assert bias.dim() == 4 if bias.stride(-1) != 1: bias = bias.contiguous() if bias.shape[2:] == (1, seqlen_k): bias_type = 'vector' elif bias.shape[2:] == (seqlen_q, seqlen_k): bias_type = 'matrix' else: raise RuntimeError('Last 2 dimensions of bias must be (1, seqlen_k)' ' or (seqlen_q, seqlen_k)') if bias.shape[:2] == (1, nheads): bias = repeat(bias, '1 h ... -> b h ...', b=batch) elif bias.shape[:2] == (batch, 1): bias = repeat(bias, 'b 1 ... -> b h ...', h=nheads) elif bias.shape[:2] == (1, 1): bias = repeat(bias, '1 h ... -> b h ...', b=batch) bias = repeat(bias, 'b 1 ... -> b h ...', h=nheads) assert bias.shape[:2] == ( batch, nheads ), f'First 2 dimensions of bias must be broadcastible to (batch, nheads) = ({batch, nheads}). Bias has shape: {bias.shape}' assert bias is not None # for type checking bias_strides = (bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0) seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128 lse = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32) tmp = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32) o = torch.empty_like(q) BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16) # BLOCK = 128 # num_warps = 4 if d <= 64 else 8 grid = lambda META: (triton.cdiv(seqlen_q, META['BLOCK_M']), batch * nheads) _fwd_kernel[grid]( # type: ignore q, k, v, bias, o, lse, tmp, softmax_scale, q.stride(0), q.stride(2), q.stride(1), k.stride(0), k.stride(2), k.stride(1), v.stride(0), v.stride(2), v.stride(1), *bias_strides, o.stride(0), o.stride(2), o.stride(1), nheads, seqlen_q, seqlen_k, seqlen_q_rounded, d, seqlen_q // 32, seqlen_k // 32, # key for triton cache (limit number of compilations) # Can't use kwargs here because triton autotune expects key to be args, not kwargs # IS_CAUSAL=causal, BLOCK_HEADDIM=d, bias_type, causal, BLOCK_HEADDIM, # BLOCK_M=BLOCK, BLOCK_N=BLOCK, # num_warps=num_warps, # num_stages=1, ) return o, lse, softmax_scale # softmax_scale could have been updated def _flash_attn_backward(do, q, k, v, o, lse, dq, dk, dv, bias=None, causal=False, softmax_scale=None): # Make sure that the last dimension is contiguous if do.stride(-1) != 1: do = do.contiguous() batch, seqlen_q, nheads, d = q.shape _, seqlen_k, _, _ = k.shape # assert d in {16, 32, 64, 128} assert d <= 128 seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128 assert lse.shape == (batch, nheads, seqlen_q_rounded) assert q.stride(-1) == k.stride(-1) == v.stride(-1) == o.stride(-1) == 1 assert dq.stride(-1) == dk.stride(-1) == dv.stride(-1) == 1 softmax_scale = softmax_scale or 1.0 / math.sqrt(d) # dq_accum = torch.zeros_like(q, dtype=torch.float32) dq_accum = torch.empty_like(q, dtype=torch.float32) delta = torch.empty_like(lse) # delta = torch.zeros_like(lse) BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16) grid = lambda META: (triton.cdiv(seqlen_q, META['BLOCK_M']), batch * nheads) _bwd_preprocess_do_o_dot[grid]( # type: ignore o, do, delta, o.stride(0), o.stride(2), o.stride(1), do.stride(0), do.stride(2), do.stride(1), nheads, seqlen_q, seqlen_q_rounded, d, BLOCK_M=128, BLOCK_HEADDIM=BLOCK_HEADDIM, ) has_bias = bias is not None bias_type = 'none' if has_bias: assert bias.dtype in [q.dtype, torch.float] assert bias.is_cuda assert bias.dim() == 4 assert bias.stride(-1) == 1 if bias.shape[2:] == (1, seqlen_k): bias_type = 'vector' elif bias.shape[2:] == (seqlen_q, seqlen_k): bias_type = 'matrix' else: raise RuntimeError('Last 2 dimensions of bias must be (1, seqlen_k)' ' or (seqlen_q, seqlen_k)') if bias.shape[:2] == (1, nheads): bias = repeat(bias, '1 h ... -> b h ...', b=batch) elif bias.shape[:2] == (batch, 1): bias = repeat(bias, 'b 1 ... -> b h ...', h=nheads) elif bias.shape[:2] == (1, 1): bias = repeat(bias, '1 h ... -> b h ...', b=batch) bias = repeat(bias, 'b 1 ... -> b h ...', h=nheads) assert bias.shape[:2] == ( batch, nheads ), f'First 2 dimensions of bias must be broadcastible to (batch, nheads) = ({batch, nheads}). Bias has shape: {bias.shape}' assert bias is not None # type checking bias_strides = (bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0) # BLOCK_M = 128 # BLOCK_N = 64 # num_warps = 4 grid = lambda META: (triton.cdiv(seqlen_k, META['BLOCK_N']) if META['SEQUENCE_PARALLEL'] else 1, batch * nheads) _bwd_kernel[grid]( # type: ignore q, k, v, bias, do, dq_accum, dk, dv, lse, delta, softmax_scale, q.stride(0), q.stride(2), q.stride(1), k.stride(0), k.stride(2), k.stride(1), v.stride(0), v.stride(2), v.stride(1), *bias_strides, do.stride(0), do.stride(2), do.stride(1), dq_accum.stride(0), dq_accum.stride(2), dq_accum.stride(1), dk.stride(0), dk.stride(2), dk.stride(1), dv.stride(0), dv.stride(2), dv.stride(1), nheads, seqlen_q, seqlen_k, seqlen_q_rounded, d, seqlen_q // 32, seqlen_k // 32, # key for triton cache (limit number of compilations) # Can't use kwargs here because triton autotune expects key to be args, not kwargs # IS_CAUSAL=causal, BLOCK_HEADDIM=d, bias_type, causal, BLOCK_HEADDIM, # SEQUENCE_PARALLEL=False, # BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N, # num_warps=num_warps, # num_stages=1, ) dq.copy_(dq_accum) class _FlashAttnQKVPackedFunc(torch.autograd.Function): @staticmethod def forward(ctx, qkv, bias=None, causal=False, softmax_scale=None): """Forward pass for packed FlashAttention. Args: ctx: autograd context qkv: (batch, seqlen, 3, nheads, headdim) bias: optional, shape broadcastible to (batch, nheads, seqlen, seqlen). For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen). ALiBi mask for non-causal would have shape (1, nheads, seqlen, seqlen) causal (bool): whether to incorporate causal attention masking softmax_scale (float, optional): scale factor for softmax """ # Make sure that the last dimension is contiguous if qkv.stride(-1) != 1: qkv = qkv.contiguous() o, lse, ctx.softmax_scale = _flash_attn_forward( qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], bias=bias, causal=causal, softmax_scale=softmax_scale) ctx.save_for_backward(qkv, o, lse, bias) ctx.causal = causal return o @staticmethod def backward(ctx, do): qkv, o, lse, bias = ctx.saved_tensors assert not ctx.needs_input_grad[ 1], 'FlashAttention does not support bias gradient yet' # Triton's autotune causes the Tensor._version to change, and so Pytorch autograd # does a memcpy. To avoid this we run in inference_mode, which doesn't track the version. with torch.inference_mode(): dqkv = torch.empty_like(qkv) _flash_attn_backward(do, qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], o, lse, dqkv[:, :, 0], dqkv[:, :, 1], dqkv[:, :, 2], bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale) return dqkv, None, None, None flash_attn_qkvpacked_func = _FlashAttnQKVPackedFunc.apply class _FlashAttnFunc(torch.autograd.Function): @staticmethod def forward(ctx, q, k, v, bias=None, causal=False, softmax_scale=None): """Forward pass for FlashAttention. Args: ctx: autograd context q: (batch_size, seqlen_q, nheads, headdim) k: (batch_size, seqlen_k, nheads, headdim) v: (batch_size, seqlen_k, nheads, headdim) bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k). For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k). ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k) causal (bool): whether to incorporate causal attention masking softmax_scale (float, optional): scale factor for softmax """ # Make sure that the last dimension is contiguous q, k, v = [ x if x.stride(-1) == 1 else x.contiguous() for x in [q, k, v] ] o, lse, ctx.softmax_scale = _flash_attn_forward( q, k, v, bias=bias, causal=causal, softmax_scale=softmax_scale) ctx.save_for_backward(q, k, v, o, lse, bias) ctx.causal = causal return o @staticmethod def backward(ctx, do): q, k, v, o, lse, bias = ctx.saved_tensors assert not ctx.needs_input_grad[ 3], 'FlashAttention does not support bias gradient yet' # Triton's autotune causes the Tensor._version to change, and so Pytorch autograd # does a memcpy. To avoid this we run in inference_mode, which doesn't track the version. with torch.inference_mode(): dq = torch.empty_like(q) dk = torch.empty_like(k) dv = torch.empty_like(v) _flash_attn_backward(do, q, k, v, o, lse, dq, dk, dv, bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale) return dq, dk, dv, None, None, None flash_attn_func = _FlashAttnFunc.apply
m2-main
bert/src/flash_attn_triton.py
# Copyright 2022 MosaicML Examples authors # SPDX-License-Identifier: Apache-2.0 from __future__ import annotations import os import sys from typing import Optional # Add src folder root to path to allow us to use relative imports regardless of what directory the script is run from sys.path.append(os.path.dirname(os.path.realpath(__file__))) import bert_layers as bert_layers_module import configuration_bert as configuration_bert_module import transformers from composer.metrics.nlp import (BinaryF1Score, LanguageCrossEntropy, MaskedAccuracy) from composer.models.huggingface import HuggingFaceModel from torchmetrics import MeanSquaredError from torchmetrics.classification.accuracy import MulticlassAccuracy from torchmetrics.classification.matthews_corrcoef import MatthewsCorrCoef from torchmetrics.regression.spearman import SpearmanCorrCoef all = ['create_bert_mlm', 'create_bert_classification'] def create_bert_mlm(pretrained_model_name: str = 'bert-base-uncased', model_config: Optional[dict] = None, tokenizer_name: Optional[str] = None, gradient_checkpointing: Optional[bool] = False, pretrained_checkpoint: Optional[str] = None): """BERT masked language model based on |:hugging_face:| Transformers. For more information, see `Transformers. <https://huggingface.co/transformers/>`_ and Mosaic's BERT repo <https://github.com/mosaicml/examples/tree/main/examples/benchmarks/bert> Args: pretrained_model_name (str): Name of the Hugging Face model to instantiate. This will determine the default model configuration. Default: ``bert-base-uncased``. model_config (dict): A dictionary of user-specified configurations to update/add to the default model configuration. tokenizer_name (str, optional): Tokenizer name used to preprocess the dataset and validate the models inputs. gradient_checkpointing (bool, optional): Use gradient checkpointing. Default: ``False``. pretrained_checkpoint (str, optional): The pretrained checkpoint to initialize the model weights. If provided, the state dictionary stored at `pretrained_checkpoint` will be loaded into the model after initialization. Default: ``None``. .. code-block:: { "_name_or_path": "bert-base-uncased", "alibi_starting_size": 512, "architectures": ["BertForMaskedLM"], "attention_probs_dropout_prob": 0.0, "classifier_dropout": null, "gradient_checkpointing": false, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 768, "initializer_range": 0.02, "intermediate_size": 3072, "layer_norm_eps": 1e-12, "max_position_embeddings": 512, "model_type": "bert", "num_attention_heads": 12, "num_hidden_layers": 12, "pad_token_id": 0, "position_embedding_type": "absolute", "transformers_version": "4.16.0", "type_vocab_size": 2, "use_cache": true, "vocab_size": 30522 } """ if not model_config: model_config = {} if not pretrained_model_name: pretrained_model_name = 'bert-base-uncased' config = configuration_bert_module.BertConfig.from_pretrained( pretrained_model_name, **model_config) for key, value in model_config.items(): config.update({f'{key}': value}) # Padding for divisibility by 8 if config.vocab_size % 8 != 0: config.vocab_size += 8 - (config.vocab_size % 8) if pretrained_checkpoint is not None: model = bert_layers_module.BertForMaskedLM.from_composer( pretrained_checkpoint=pretrained_checkpoint, config=config) else: model = bert_layers_module.BertForMaskedLM(config) if gradient_checkpointing: model.gradient_checkpointing_enable() # type: ignore # setup the tokenizer if tokenizer_name: tokenizer = transformers.AutoTokenizer.from_pretrained(tokenizer_name) else: tokenizer = transformers.AutoTokenizer.from_pretrained( pretrained_model_name) metrics = [ LanguageCrossEntropy(ignore_index=-100, vocab_size=model.config.vocab_size), MaskedAccuracy(ignore_index=-100) ] hf_model = HuggingFaceModel(model=model, tokenizer=tokenizer, use_logits=True, metrics=metrics) # Padding for divisibility by 8 # We have to do it again here because wrapping by HuggingFaceModel changes it if config.vocab_size % 8 != 0: config.vocab_size += 8 - (config.vocab_size % 8) hf_model.model.resize_token_embeddings(config.vocab_size) return hf_model def create_bert_classification( num_labels: int, pretrained_model_name: str = 'bert-base-uncased', model_config: Optional[dict] = None, tokenizer_name: Optional[str] = None, gradient_checkpointing: Optional[bool] = False, pretrained_checkpoint: Optional[str] = None): """BERT classification model based on |:hugging_face:| Transformers. For more information, see `Transformers. <https://huggingface.co/transformers/>`_ and Mosaic's BERT repo <https://github.com/mosaicml/examples/tree/main/examples/benchmarks/bert> Args: num_labels (int): The number of classes in the classification task. pretrained_model_name (str): Name of the Hugging Face model to instantiate. This will determine the default model configuration. Default: ``bert-base-uncased``. model_config (dict): A dictionary of user-specified configurations to update/add to the default model configuration. tokenizer_name (str, optional): Tokenizer name used to preprocess the dataset and validate the models inputs. gradient_checkpointing (bool, optional): Use gradient checkpointing. Default: ``False``. pretrained_checkpoint (str, optional): The pretrained checkpoint to initialize the model weights. If provided, the state dictionary stored at `pretrained_checkpoint` will be loaded into the model after initialization. Default: ``None``. .. code-block:: { "_name_or_path": "bert-base-uncased", "alibi_starting_size": 512, "architectures": [ "BertForSequenceClassification ], "attention_probs_dropout_prob": 0.0, "classifier_dropout": null, "gradient_checkpointing": false, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 768, "id2label": { "0": "LABEL_0", "1": "LABEL_1", "2": "LABEL_2" }, "initializer_range": 0.02, "intermediate_size": 3072, "label2id": { "LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2 }, "layer_norm_eps": 1e-12, "max_position_embeddings": 512, "model_type": "bert", "num_attention_heads": 12, "num_hidden_layers": 12, "pad_token_id": 0, "position_embedding_type": "absolute", "transformers_version": "4.16.0", "type_vocab_size": 2, "use_cache": true, "vocab_size": 30522 } To create a BERT model for classification: .. testcode:: from create_bert import create_bert_classification model = create_bert_classification(num_labels=3) # if the task has three classes. Note: This function can be used to construct a BERT model for regression by setting ``num_labels == 1``. This will have two noteworthy effects. First, it will switch the training loss to :class:`~torch.nn.MSELoss`. Second, the returned :class:`.ComposerModel`'s train/validation metrics will be :class:`~torchmetrics.MeanSquaredError` and :class:`~torchmetrics.SpearmanCorrCoef`. For the classifcation case (when ``num_labels > 1``), the training loss is :class:`~torch.nn.CrossEntropyLoss`, and the train/validation metrics are :class:`~torchmetrics.MulticlassAccuracy` and :class:`~torchmetrics.MatthewsCorrCoef`, as well as :class:`.BinaryF1Score` if ``num_labels == 2``. """ if not model_config: model_config = {} # By default, turn off attention dropout for the Transformer baseline # otherwise, Flash Attention will be off by default if 'attention_probs_dropout_prob' not in model_config: model_config['attention_probs_dropout_prob'] = 0.0 # Use `alibi_starting_size` to determine how large of an alibi tensor to # create when initializing the model. You should be able to ignore # this parameter in most cases. if 'alibi_starting_size' not in model_config: model_config['alibi_starting_size'] = 512 model_config['num_labels'] = num_labels if not pretrained_model_name: pretrained_model_name = 'bert-base-uncased' config, unused_kwargs = configuration_bert_module.BertConfig.from_pretrained( pretrained_model_name, return_unused_kwargs=True, **model_config) # This lets us use non-standard config fields (e.g. `starting_alibi_size`) for key, value in model_config.items(): config.update({f'{key}': value}) config.update(unused_kwargs) # Padding for divisibility by 8 if config.vocab_size % 8 != 0: config.vocab_size += 8 - (config.vocab_size % 8) if pretrained_checkpoint is not None: model = bert_layers_module.BertForSequenceClassification.from_composer( pretrained_checkpoint=pretrained_checkpoint, config=config) else: model = bert_layers_module.BertForSequenceClassification(config) if gradient_checkpointing: model.gradient_checkpointing_enable() # type: ignore # setup the tokenizer if tokenizer_name: tokenizer = transformers.AutoTokenizer.from_pretrained(tokenizer_name) else: tokenizer = transformers.AutoTokenizer.from_pretrained( pretrained_model_name) if num_labels == 1: # Metrics for a regression model metrics = [MeanSquaredError(), SpearmanCorrCoef()] else: # Metrics for a classification model metrics = [ MulticlassAccuracy(num_classes=num_labels, average='micro'), MatthewsCorrCoef(task='multiclass', num_classes=model.config.num_labels) ] if num_labels == 2: metrics.append(BinaryF1Score()) hf_model = HuggingFaceModel(model=model, tokenizer=tokenizer, use_logits=True, metrics=metrics) # Padding for divisibility by 8 # We have to do it again here because wrapping by HuggingFaceModel changes it if config.vocab_size % 8 != 0: config.vocab_size += 8 - (config.vocab_size % 8) hf_model.model.resize_token_embeddings(config.vocab_size) return hf_model
m2-main
bert/src/create_bert.py
# Copyright 2022 MosaicML Examples authors # SPDX-License-Identifier: Apache-2.0 """Build a StreamingTextDataset dataset and dataloader for training.""" import os from itertools import islice from typing import Any, Callable, Dict, List, Optional, Sequence, Union import numpy as np import torch import transformers from omegaconf import DictConfig from omegaconf import OmegaConf as om from streaming import Stream, StreamingDataset from torch.utils.data import DataLoader from transformers import (AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast) Tokenizer = Union[PreTrainedTokenizer, PreTrainedTokenizerFast] def build_tokenizer(om_tokenizer_config: DictConfig,) -> Tokenizer: os.environ['TRANSFORMERS_NO_ADVISORY_WARNINGS'] = '1' os.environ['TOKENIZERS_PARALLELISM'] = 'false' resolved_om_tokenizer_config = om.to_container(om_tokenizer_config, resolve=True) tokenizer_kwargs = resolved_om_tokenizer_config.get( # type: ignore 'kwargs', {}) tokenizer_name = resolved_om_tokenizer_config['name'] # type: ignore tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, **tokenizer_kwargs) # HuggingFace does not respect the model_max_length kwarg, and overrides it with # min(kwargs['model_max_length'], original_config['model_max_length']), so we # explicitly set it here tokenizer.model_max_length = tokenizer_kwargs.get( 'model_max_length', int(1e30), ) return tokenizer class StreamingTextDataset(StreamingDataset): """Generic text dataset using MosaicML's StreamingDataset. Args: tokenizer (Tokenizer): HuggingFace tokenizer to tokenize samples. max_seq_len (int): The max sequence length of each sample. streams (Sequence[Stream], optional): One or more Streams to stream/cache samples from, which may be upsampled or downsampled. StreamingDataset uses either ``streams`` or ``remote``/``local``. Defaults to ``None``. remote (str, optional): Remote path or directory to download the dataset from. If ``None``, its data must exist locally. StreamingDataset uses either ``streams`` or ``remote``/``local``. Defaults to ``None``. local (str, optional): Local working directory to download shards to. This is where shards are cached while they are being used. Uses a temp directory if not set. StreamingDataset uses either ``streams`` or ``remote``/``local``. Defaults to ``None``. split (str, optional): Which dataset split to use, if any. If provided, we stream from/to the ``split`` subdirs of ``remote`` and ``local``. Defaults to ``None``. download_retry (int): Number of download re-attempts before giving up. Defaults to ``2``. download_timeout (float): Number of seconds to wait for a shard to download before raising an exception. Defaults to ``60``. validate_hash (str, optional): Optional hash or checksum algorithm to use to validate shards. Defaults to ``None``. keep_zip (bool): Whether to keep or delete the compressed form when decompressing downloaded shards. If ``False``, keep iff remote is local or no remote. Defaults to `False``. keep_raw (bool): Whether to keep or delete the decompressed form (or only form) of shards after all their samples have been yielded this epoch. If ``False``, keep iff remote is local or no remote and no compression. Defaults to ``True``. samples_per_epoch (int, optional): Provide this field iff you are weighting sub-datasets proportionally. Defaults to ``None``. predownload (int, optional): Target number of samples ahead to download the shards of while iterating. Defaults to ``100_000``. partition_algo (str): Which partitioning algorithm to use. Defaults to ``orig``. num_canonical_nodes (int, optional): Canonical number of nodes for shuffling with resumption. Defaults to ``None``, which is interpreted as the number of nodes of the initial run. batch_size (int, optional): Batch size of its DataLoader, which affects how the dataset is partitioned over the workers. Defaults to ``None``. shuffle (bool): Whether to iterate over the samples in randomized order. Defaults to ``False``. shuffle_algo (str): Which shuffling algorithm to use. Defaults to ``py1s``. shuffle_seed (int): Seed for Deterministic data shuffling. Defaults to ``9176``. """ def __init__(self, tokenizer: Tokenizer, max_seq_len: int, streams: Optional[Sequence[Stream]] = None, remote: Optional[str] = None, local: Optional[str] = None, split: Optional[str] = None, download_retry: int = 2, download_timeout: float = 60, validate_hash: Optional[str] = None, keep_zip: bool = False, keep_raw: bool = True, samples_per_epoch: Optional[int] = None, predownload: int = 100_000, partition_algo: str = 'orig', num_canonical_nodes: Optional[int] = None, batch_size: Optional[int] = None, shuffle: bool = False, shuffle_algo: str = 'py1s', shuffle_seed: int = 9176, **kwargs: Dict[str, Any]): group_method = kwargs.pop('group_method', None) if group_method is not None: raise NotImplementedError( 'group_method is deprecated and has been removed.\nTo ' + 'concatenate, use the --concat_tokens ' + 'argument when creating your MDS dataset with concat_c4.py') if kwargs is not None and len(kwargs) > 0: raise ValueError( f'StreamingTextDataset() got an unexpected keyword argument: {kwargs}' ) if local is not None and (remote is None or (local == remote)): if os.path.isdir(local): contents = set(os.listdir(local)) if split not in contents: raise ValueError( f'local directory {local} does not contain split {split}' ) # Build Dataset super().__init__( streams=streams, remote=remote, local=local, split=split, download_retry=download_retry, download_timeout=download_timeout, validate_hash=validate_hash, keep_zip=keep_zip, keep_raw=keep_raw, samples_per_epoch=samples_per_epoch, predownload=predownload, partition_algo=partition_algo, num_canonical_nodes=num_canonical_nodes, batch_size=batch_size, shuffle=shuffle, shuffle_algo=shuffle_algo, shuffle_seed=shuffle_seed, ) self.tokenizer = tokenizer self.max_seq_len = max_seq_len # How to tokenize a text sample to a token sample def _tokenize(self, text_sample): if self.tokenizer._pad_token is None: # Some tokenizers (e.g. GPT2 tokenizer) have no padding token which causes bugs raise RuntimeError( 'If tokenizing on-the-fly, tokenizer must have a pad_token_id') return self.tokenizer(text_sample['text'], truncation=True, padding='max_length', max_length=self.max_seq_len) def _read_binary_tokenized_sample(self, sample): return torch.from_numpy( np.frombuffer(sample['tokens'], dtype=np.int64)[:self.max_seq_len].copy()) # How to process a sample def __getitem__(self, idx: int) -> Union[Dict[str, Any], torch.Tensor]: sample = super().__getitem__(idx) if 'text' in sample: token_sample = self._tokenize(sample) elif 'tokens' in sample: token_sample = self._read_binary_tokenized_sample(sample) else: raise RuntimeError( 'StreamingTextDataset needs samples to have a `text` or `tokens` column' ) return token_sample class ConcatenatedSequenceCollatorWrapper: """Collator wrapper to add sequence_id to batch.""" def __init__(self, base_collator: Callable, eos_token_id: Optional[int] = None, bos_token_id: Optional[int] = None): self.base_collator = base_collator if (eos_token_id is None) and (bos_token_id is None): raise ValueError( 'Must supply a value for either eos_token_id or bos_token_id, but got None for both.' ) if (eos_token_id is not None) and (bos_token_id is not None): raise ValueError( 'Cannot use *both* EOS and BOS tokens for detecting sequence boundaries. ' +\ 'Please supply `eos_token_id` if sequences end with an EOS token, or use ' +\ '`bos_token_id` if sequences start with a BOS token.' ) if eos_token_id is None: self.split_token_id = bos_token_id self.bos_mode = True else: self.split_token_id = eos_token_id self.bos_mode = False def __call__(self, examples: List[Any]) -> Dict[str, torch.Tensor]: batch = self.base_collator(examples) batch['sequence_id'] = self.get_sequence_id_from_batch(batch) return batch def get_sequence_id_from_batch( self, batch: Dict[str, torch.Tensor]) -> torch.Tensor: assert self.split_token_id is not None is_separator = torch.eq(batch['input_ids'], self.split_token_id) cumulative_sep = torch.cumsum(is_separator, dim=1).to(batch['input_ids'].dtype) # If separator token is bos, we're already done if self.bos_mode: return cumulative_sep # If separator token is eos, right shift 1 space left_zeros = cumulative_sep.new_zeros((cumulative_sep.shape[0], 1)) return torch.cat([left_zeros, cumulative_sep[:, :-1]], dim=1) def build_text_dataloader( cfg: DictConfig, tokenizer: Tokenizer, device_batch_size: int, ): assert cfg.name == 'text', f'Tried to build text dataloader with cfg.name={cfg.name}' if cfg.dataset.get('group_method', None) is not None: raise NotImplementedError( 'group_method is deprecated and has been removed.\nTo ' + 'concatenate, use the --concat_tokens ' + 'argument when creating your MDS dataset with convert_dataset.py') # build streams streams_dict = cfg.dataset.get('streams', None) streams = None if streams_dict is not None: streams = [] for _, stream in streams_dict.items(): streams.append( Stream( remote=stream.get('remote', None) or cfg.dataset.get('remote', None), local=stream.get('local', None) or cfg.dataset.get('local', None), split=stream.get('split', None) or cfg.dataset.get('split', None), proportion=stream.get('proportion', None), repeat=stream.get('repeat', None), samples=stream.get('samples', None), download_retry=stream.get('download_retry', None) or cfg.dataset.get('download_retry', 2), download_timeout=stream.get('download_timeout', None) or cfg.dataset.get('download_timeout', 60), validate_hash=stream.get('validate_hash', None) or cfg.dataset.get('validate_hash', None), keep_zip=stream.get('keep_zip', None) or cfg.dataset.get('keep_zip', False), keep_raw=stream.get('keep_raw', None) or cfg.dataset.get('keep_raw', True), )) # build dataset potentially with streams dataset = StreamingTextDataset( tokenizer=tokenizer, max_seq_len=cfg.dataset.max_seq_len, streams=streams, remote=cfg.dataset.get('remote', None), local=cfg.dataset.get('local', None), split=cfg.dataset.get('split', None), download_retry=cfg.dataset.get('download_retry', 2), download_timeout=cfg.dataset.get('download_timeout', 60), validate_hash=cfg.dataset.get('validate_hash', None), keep_zip=cfg.dataset.get('keep_zip', False), keep_raw=cfg.dataset.get('keep_raw', True), samples_per_epoch=cfg.dataset.get('samples_per_epoch', None), predownload=cfg.dataset.get('predownload', 100_000), partition_algo=cfg.dataset.get('partition_algo', 'orig'), num_canonical_nodes=cfg.dataset.get('num_canonical_nodes', 128), batch_size=device_batch_size, shuffle=cfg.dataset.get('shuffle', False), shuffle_algo=cfg.dataset.get('shuffle_algo', 'py1s'), shuffle_seed=cfg.dataset.get('shuffle_seed', 9176), ) mlm_probability = cfg.dataset.get('mlm_probability', None) collate_fn = transformers.DataCollatorForLanguageModeling( tokenizer=dataset.tokenizer, mlm=mlm_probability is not None, mlm_probability=mlm_probability) eos_token_id = cfg.dataset.get('eos_token_id') bos_token_id = cfg.dataset.get('bos_token_id') if (eos_token_id is not None) or (bos_token_id is not None): # Note: Will raise an error if both are non-None collate_fn = ConcatenatedSequenceCollatorWrapper( base_collator=collate_fn, eos_token_id=eos_token_id, bos_token_id=bos_token_id) return DataLoader( dataset, collate_fn=collate_fn, batch_size=device_batch_size, drop_last=cfg.drop_last, num_workers=cfg.num_workers, pin_memory=cfg.get('pin_memory', True), prefetch_factor=cfg.get('prefetch_factor', 2), persistent_workers=cfg.get('persistent_workers', True), timeout=cfg.get('timeout', 0), ) def build_synthetic_dataloader( cfg: DictConfig, device_batch_size: int, ): assert cfg.name == 'synthetic', f'Tried to build synthetic dataloader with cfg.name={cfg.name}' # build dataset potentially with streams from src.synthetics.two_sentence import TwoSentenceDataset dataset = TwoSentenceDataset( max_seq_len=cfg.dataset.max_seq_len, vocab_size = cfg.dataset.num_vocab, num_samples = cfg.dataset.num_examples, ) mlm_probability = cfg.dataset.get('mlm_probability', None) collate_fn = transformers.DataCollatorForLanguageModeling( tokenizer=dataset.tokenizer, mlm=mlm_probability is not None, mlm_probability=mlm_probability) eos_token_id = cfg.dataset.get('eos_token_id') bos_token_id = cfg.dataset.get('bos_token_id') if (eos_token_id is not None) or (bos_token_id is not None): # Note: Will raise an error if both are non-None collate_fn = ConcatenatedSequenceCollatorWrapper( base_collator=collate_fn, eos_token_id=eos_token_id, bos_token_id=bos_token_id) return DataLoader( dataset, collate_fn=collate_fn, batch_size=device_batch_size, drop_last=True, # num_workers=cfg.num_workers, pin_memory=cfg.get('pin_memory', True), prefetch_factor=cfg.get('prefetch_factor', 2), # persistent_workers=cfg.get('persistent_workers', True), timeout=cfg.get('timeout', 0), ) # Helpful to test if your dataloader is working locally # Run `python data.py --local_path [local] [--remote_path remote, optional]` and verify that batches are printed out if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('--tokenizer', type=str, default='gpt2', help='the name of the tokenizer to use') parser.add_argument('--local_path', type=str, required=True, help='the path to the local copy of the dataset') parser.add_argument( '--remote_path', type=str, default=None, help='the path to the remote copy to stream from (optional)') parser.add_argument('--split', type=str, default='val', help='which split of the dataset to use') parser.add_argument('--max_seq_len', type=int, default=32, help='max sequence length to test') args = parser.parse_args() if args.remote_path is not None: print( f'Reading {args.split} split from {args.local_path} <- streamed from <- {args.remote_path}' ) else: print(f'Reading {args.split} split from {args.local_path}') cfg = { 'name': 'text', 'dataset': { 'local': args.local_path, 'remote': args.remote_path, 'split': args.split, 'shuffle': False, 'max_seq_len': args.max_seq_len, 'keep_zip': True, # in case we need compressed files after testing }, 'drop_last': False, 'num_workers': 4, } cfg = om.create(cfg) device_batch_size = 2 tokenizer_cfg = {'name': args.tokenizer, 'kwargs': {}} tokenizer_cfg['kwargs'] = {'model_max_length': args.max_seq_len} tokenizer_cfg = om.create(tokenizer_cfg) tokenizer = build_tokenizer(tokenizer_cfg) loader = build_text_dataloader(cfg, tokenizer, device_batch_size) tokenizer = loader.dataset.tokenizer # type: ignore for batch_ix, batch in enumerate(islice(loader, 5)): print('\n') print('#' * 20, f'Batch {batch_ix}', '#' * 20) for k, v in batch.items(): print(k, v.shape, v.dtype) for sample_ix, token_sample in enumerate(batch['input_ids']): print('-' * 20, f' Sample {sample_ix} ', '-' * 20) print(tokenizer.decode(token_sample))
m2-main
bert/src/text_data.py
# Copyright 2022 MosaicML Examples authors # SPDX-License-Identifier: Apache-2.0 """Streaming dataset conversion scripts for C4 and The Pile.""" import os import platform import warnings from argparse import ArgumentParser, Namespace from dataclasses import dataclass from enum import Enum from typing import Dict, Iterable, Optional, Union import datasets as hf_datasets import numpy as np from streaming import MDSWriter from torch.utils.data import DataLoader, IterableDataset from tqdm import tqdm from transformers import AutoTokenizer, PreTrainedTokenizerBase class ConcatMode(Enum): NO_CONCAT = 'NO_CONCAT' CONCAT_TOKENS = 'CONCAT_TOKENS' def parse_args() -> Namespace: """Parse commandline arguments.""" parser = ArgumentParser( description= 'Convert dataset into MDS format, optionally concatenating and tokenizing' ) parser.add_argument('--dataset', type=str, required=True) parser.add_argument('--data_subset', type=str, default=None, help='E.g. "all" or "en"') parser.add_argument('--splits', nargs='+', default=['train', 'train_small', 'val']) parser.add_argument('--out_root', type=str, required=True) parser.add_argument('--compression', type=str, default=None) group = parser.add_mutually_exclusive_group(required=False) group.add_argument( '--concat_tokens', type=int, help='Convert text to tokens and concatenate up to this many tokens') parser.add_argument('--tokenizer', type=str, required=False, default=None) parser.add_argument('--bos_text', type=str, required=False, default=None) parser.add_argument('--eos_text', type=str, required=False, default=None) parser.add_argument('--no_wrap', default=False, action='store_true') parsed = parser.parse_args() if os.path.isdir(parsed.out_root) and len( set(os.listdir(parsed.out_root)).intersection(set( parsed.splits))) > 0: raise ValueError( f'--out_root={parsed.out_root} contains {os.listdir(parsed.out_root)} which cannot overlap with the requested splits {parsed.splits}.' ) # Make sure we have needed concat options if (parsed.concat_tokens is not None and isinstance(parsed.concat_tokens, int) and parsed.tokenizer is None): parser.error( 'When setting --concat_tokens, you must specify a --tokenizer') # now that we have validated them, change BOS/EOS to strings if parsed.bos_text is None: parsed.bos_text = '' if parsed.eos_text is None: parsed.eos_text = '' return parsed @dataclass class DataSplitConstants: hf_split: str folder_split: str raw_samples: int truncated_samples: Union[int, None] @dataclass class DatasetConstants: chars_per_sample: int chars_per_token: int splits = {} def __iter__(self): for _, v in self.splits.items(): yield v class TrainSmallConstants(DataSplitConstants): def __init__(self, hf_split: str = 'train', folder_split: str = 'train_small', raw_samples: int = 1000000, truncated_samples: int = 100000): super().__init__(hf_split, folder_split, raw_samples, truncated_samples) class ValSmallConstants(DataSplitConstants): def __init__(self, hf_split: str = 'validation', folder_split: str = 'val_small', raw_samples: int = 10000, truncated_samples: int = 10000): super().__init__(hf_split, folder_split, raw_samples, truncated_samples) pileconstants = DatasetConstants( chars_per_sample=6212, # Computed over validation set chars_per_token=4 # OpenAI estimate ) pileconstants.splits['train'] = DataSplitConstants(hf_split='train', folder_split='train', raw_samples=210607728, truncated_samples=None) pileconstants.splits['train_small'] = DataSplitConstants( hf_split='train', folder_split='train_small', raw_samples=1000000, truncated_samples=100000) pileconstants.splits['val'] = DataSplitConstants(hf_split='validation', folder_split='val', raw_samples=214670, truncated_samples=None) pileconstants.splits['val_small'] = DataSplitConstants(hf_split='validation', folder_split='val_small', raw_samples=10000, truncated_samples=10000) c4constants = DatasetConstants( chars_per_sample=2163, # Computed over validation set chars_per_token=4 # OpenAI estimate ) c4constants.splits['train'] = DataSplitConstants(hf_split='train', folder_split='train', raw_samples=364868892, truncated_samples=None) c4constants.splits['train_small'] = DataSplitConstants( hf_split='train', folder_split='train_small', raw_samples=1000000, truncated_samples=100000) c4constants.splits['val'] = DataSplitConstants(hf_split='validation', folder_split='val', raw_samples=364608, truncated_samples=None) c4constants.splits['val_small'] = DataSplitConstants(hf_split='validation', folder_split='val_small', raw_samples=10000, truncated_samples=10000) redpajamaconstants = DatasetConstants( chars_per_sample=505927, # GPT-NeoX tokenized size * 4 over book subset chars_per_token=4 # OpenAI estimate ) redpajamaconstants.splits['train'] = DataSplitConstants( hf_split='train', folder_split='train', raw_samples=205744, truncated_samples=None ) wikiconstants = DatasetConstants( chars_per_sample=2163, # Computed over validation set chars_per_token=4 # OpenAI estimate ) wikiconstants.splits['train'] = DataSplitConstants(hf_split='train', folder_split='train', raw_samples=6452100, truncated_samples=None) wikiconstants.splits['val'] = DataSplitConstants(hf_split='validation', folder_split='val', raw_samples=6570, truncated_samples=None) booksconstants = DatasetConstants( chars_per_sample=2163, # Computed over validation set chars_per_token=4 # OpenAI estimate ) booksconstants.splits['train'] = DataSplitConstants(hf_split='train', folder_split='train', raw_samples=6452100, truncated_samples=None) booksconstants.splits['val'] = DataSplitConstants(hf_split='validation', folder_split='val', raw_samples=6570, truncated_samples=None) CONSTS = { 'c4': c4constants, 'the_pile': pileconstants, 'togethercomputer/RedPajama-Data-1T': redpajamaconstants, 'wikipedia': wikiconstants, 'bookcorpus': booksconstants } class NoConcatDataset(IterableDataset): """An IterableDataset that returns text samples for MDSWriter. Returns dicts of {'text': bytes} """ def __init__(self, dataset_name: str, data_subset: Union[str, None], split: str): self.hf_dataset = hf_datasets.load_dataset(path=dataset_name, name=data_subset, split=split, streaming=True) def __iter__(self) -> Iterable[Dict[str, bytes]]: for sample in self.hf_dataset: # convert to bytes to store in MDS binary format yield {'text': sample['text'][:4000].encode('utf-8')} class ConcatTokensDataset(IterableDataset): """An IterableDataset that returns token samples for MDSWriter. Returns dicts of {'tokens': bytes} To use data created by this class and written to MDS format: ```python import torch from streaming.base import StreamingDataset from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained('your/tokenizer') ds = StreamingDataset(local='mds-data-folder', split='val') # note, you need to copy the numpy array because the original is non-writeable # and torch does not support non-writeable tensors, so you get a scary warning and # if you do try to write to the tensor you get undefined behavior tokens = torch.from_numpy(np.frombuffer(ds[0]['tokens'], dtype=np.int64).copy()) print(tokenizer.decode(tokens)) ``` """ def __init__(self, dataset_name: str, split: str, tokenizer: PreTrainedTokenizerBase, max_length: int, bos_text: str, eos_text: str, no_wrap: bool, data_subset: Union[str, None] = None): self.tokenizer = tokenizer os.environ['TOKENIZERS_PARALLELISM'] = 'false' self.max_length = max_length self.bos_text = bos_text self.eos_text = eos_text self.should_wrap = not no_wrap self.hf_dataset = hf_datasets.load_dataset(path=dataset_name, name=data_subset, split=split, streaming=True) self.bos_tokens = self.tokenizer(self.bos_text, truncation=False, padding=False, add_special_tokens=False)['input_ids'] if len(self.bos_tokens) > 1: warnings.warn( f'You specified --concat_tokens with --bos_text, but your BOS text is not tokenizing to one token\ , instead we got {self.bos_tokens}. Quit if this was in error.') self.eos_tokens = self.tokenizer(self.eos_text, truncation=False, padding=False, add_special_tokens=False)['input_ids'] if len(self.eos_tokens) > 1: warnings.warn( f'You specified --concat_tokens with --eos_text, but your EOS text is not tokenizing to one token\ , instead we got {self.eos_tokens}. Quit if this was in error.') eos_text_provided = self.eos_text != '' bos_text_provided = self.bos_text != '' test_text = self.tokenizer('') if len(test_text['input_ids']) > 0 and (eos_text_provided or bos_text_provided): message = 'both eos and bos' if eos_text_provided and bos_text_provided else ( 'eos_text' if eos_text_provided else 'bos_text') warnings.warn( f'The provided tokenizer adds special tokens, but you also specified {message}. This may result ' 'in duplicated special tokens. Please be sure this is what you intend.' ) def __iter__(self) -> Iterable[Dict[str, bytes]]: buffer = [] for sample in self.hf_dataset: encoded = self.tokenizer(sample['text'][:8000], truncation=False, padding=False, add_special_tokens=False ) iids = encoded['input_ids'] buffer = buffer + iids while len(buffer) >= self.max_length: use_for_sample = self.max_length-2 # -2 for bos and eos concat_sample = buffer[:use_for_sample] concat_sample = self.bos_tokens + concat_sample + self.eos_tokens buffer = buffer[use_for_sample:] if self.should_wrap else [] yield { # convert to bytes to store in MDS binary format 'tokens': np.asarray(concat_sample).tobytes() } def build_hf_dataset(dataset_name: str, split: str, mode: ConcatMode, max_length: int, bos_text: Optional[str], eos_text: Optional[str], no_wrap: bool, tokenizer: Optional[PreTrainedTokenizerBase], data_subset: Union[str, None] = None) -> IterableDataset: """Build an IterableDataset over the HF C4 or pile source data. Args: dataset_name (str): Dataset name split (str): Split name. mode (ConcatMode): NO_CONCAT, or CONCAT_TOKENS bos_text (str): text to insert at the beginning of each sequence eos_text (str): text to insert at the end of each sequence no_wrap (bool): if concatenating, whether to wrap text across `max_length` boundaries tokenizer (PreTrainedTokenizerBase): if mode is CONCAT_TOKENS, the tokenizer to use data_subset (str): Referred to as "name" in HuggingFace datasets.load_dataset. Typically "all" (The Pile) or "en" (c4). Returns: An IterableDataset. """ if mode == ConcatMode.NO_CONCAT: dataset = NoConcatDataset(dataset_name=dataset_name, data_subset=data_subset, split=split) else: assert bos_text is not None assert eos_text is not None assert tokenizer is not None if bos_text + eos_text == '': test_tokens = tokenizer('test') if test_tokens['input_ids'][ 0] != tokenizer.bos_token_id and test_tokens['input_ids'][ -1] != tokenizer.eos_token_id: tok_error_msg = 'This tokenizer does not insert an EOS nor BOS token. ' tok_error_msg += 'Concatenating with this tokenizer will result in sequences being ' tok_error_msg += 'attached without a separating token. Please use another tokenizer, ' tok_error_msg += 'such as facebook/opt-125m, or specify EOS/BOS text with e.g. ' tok_error_msg += '--bos_text=<|endoftext|>.' raise ValueError(tok_error_msg) dataset = ConcatTokensDataset(dataset_name=dataset_name, data_subset=data_subset, split=split, tokenizer=tokenizer, max_length=max_length, bos_text=bos_text, eos_text=eos_text, no_wrap=no_wrap) return dataset def _est_progress_denominator(total_samples: int, chars_per_sample: int, chars_per_token: int, mode: ConcatMode, max_length: int): est_tokens_per_sample = chars_per_sample // chars_per_token if mode == ConcatMode.NO_CONCAT: return total_samples elif mode == ConcatMode.CONCAT_TOKENS: return total_samples * est_tokens_per_sample // max_length def build_dataloader(dataset, batch_size) -> DataLoader: # Multiple workers is only supported on linux machines if 'linux' in platform.platform().lower(): num_workers = min(64, dataset.hf_dataset.n_shards) # type: ignore else: num_workers = 0 # If using multiple workers, configure each worker to prefetch as many samples as it can, up to # the aggregate device batch size # If not using workers, the torch DataLoader expects the default value for prefetch_factor, # which non-intuitively must be 2. prefetch_factor = max(1, 2 * batch_size // num_workers) if num_workers > 0 else 2 return DataLoader( dataset=dataset, sampler=None, batch_size=batch_size, num_workers=num_workers, prefetch_factor=prefetch_factor, ) def generate_samples( loader: DataLoader, truncate_num_samples: Optional[int] = None ) -> Iterable[Dict[str, bytes]]: """Generator over samples of a dataloader. Args: loader (DataLoader): A dataloader emitting batches like {key: [sample0_bytes, sample1_bytes, sample2_bytes, ...]} truncate_num_samples (Optional[int]): An optional # of samples to stop at. Yields: Sample dicts. """ n_samples = 0 for batch in loader: keys = list(batch.keys()) current_bs = len(batch[keys[0]]) for idx in range(current_bs): if truncate_num_samples is not None and n_samples == truncate_num_samples: return n_samples += 1 yield {k: v[idx] for k, v in batch.items()} def main(args: Namespace) -> None: """Main: create C4/pile streaming dataset. Args: args (Namespace): Commandline arguments. """ try: dataset_constants = CONSTS[args.dataset] except KeyError: raise ValueError( f'Constants for dataset "{args.dataset}" not found. Currently only "the_pile" and "c4" are supported.' ) if args.concat_tokens is not None: mode = ConcatMode.CONCAT_TOKENS tokenizer = AutoTokenizer.from_pretrained(args.tokenizer) # we will enforce length, so suppress warnings about sequences too long for the model tokenizer.model_max_length = int(1e30) columns = {'tokens': 'bytes'} else: mode = ConcatMode.NO_CONCAT tokenizer = None columns = {'text': 'str'} for split_name in args.splits: try: split = dataset_constants.splits[split_name] except KeyError: raise KeyError(f'Constants not defined for split {split_name}.') hf_split = split.hf_split folder_split = split.folder_split expected_num_samples = split.raw_samples truncate_num_samples = split.truncated_samples # Only generate the splits requested if folder_split not in args.splits: continue # Get samples dataset = build_hf_dataset(dataset_name=args.dataset, data_subset=args.data_subset, split=hf_split, mode=mode, max_length=args.concat_tokens, bos_text=args.bos_text, eos_text=args.eos_text, no_wrap=args.no_wrap, tokenizer=tokenizer) loader = build_dataloader(dataset=dataset, batch_size=512) if 'wiki' in args.dataset or 'bookcorpus': truncate_num_samples = None samples = generate_samples(loader, truncate_num_samples=truncate_num_samples) if expected_num_samples is not None: if 'wiki' in args.dataset or 'bookcorpus' in args.dataset: denominator = expected_num_samples denominator = truncate_num_samples if truncate_num_samples is not None else _est_progress_denominator( total_samples=expected_num_samples, chars_per_sample=dataset_constants.chars_per_sample, chars_per_token=dataset_constants.chars_per_token, mode=mode, max_length=args.concat_tokens, ) else: denominator = None # Write samples print(f'Converting {folder_split} to MDS format...') with MDSWriter(columns=columns, out=os.path.join(args.out_root, folder_split), compression=args.compression) as out: if denominator is not None: for sample in tqdm(samples, desc=folder_split, total=denominator): out.write(sample) else: for sample in tqdm(samples, desc=folder_split): out.write(sample) if __name__ == '__main__': main(parse_args())
m2-main
bert/src/convert_dataset.py
# Adapted from https://github.com/HazyResearch/hippo/blob/datasets/benchmark/utils.py """ Useful functions for writing test code. """ import torch import torch.utils.benchmark as benchmark def benchmark_forward(fn, *inputs, repeats = 10, desc='', verbose=True, amp=False, amp_dtype=torch.float16, **kwinputs): """ Use Pytorch Benchmark on the forward pass of an arbitrary function. """ if verbose: print(desc, '- Forward pass') def amp_wrapper(*inputs, **kwinputs): with torch.autocast(device_type='cuda', dtype=amp_dtype, enabled=amp): fn(*inputs, **kwinputs) t = benchmark.Timer( stmt='fn_amp(*inputs, **kwinputs)', globals={'fn_amp': amp_wrapper, 'inputs': inputs, 'kwinputs': kwinputs}, num_threads=torch.get_num_threads(), ) m = t.timeit(repeats) if verbose: print(m) return t, m def benchmark_backward(fn, *inputs, grad=None, repeats=10, desc='', verbose=True, amp=False, amp_dtype=torch.float16, **kwinputs): """ Use Pytorch Benchmark on the backward pass of an arbitrary function. """ if verbose: print(desc, '- Backward pass') with torch.autocast(device_type='cuda', dtype=amp_dtype, enabled=amp): y = fn(*inputs, **kwinputs) if type(y) is tuple: y = y[0] if grad is None: grad = torch.randn_like(y) else: if grad.shape != y.shape: raise RuntimeError('Grad shape does not match output shape') t = benchmark.Timer( stmt='y.backward(grad, retain_graph=True)', globals={'y': y, 'grad': grad}, num_threads=torch.get_num_threads(), ) m = t.timeit(repeats) if verbose: print(m) return t, m def benchmark_combined(fn, *inputs, grad=None, repeats=10, desc='', verbose=True, amp=False, amp_dtype=torch.float16, **kwinputs): """ Use Pytorch Benchmark on the forward+backward pass of an arbitrary function. """ if verbose: print(desc, '- Forward + Backward pass') # y = fn(*inputs, **kwinputs) # if grad is None: # grad = torch.randn_like(y) # else: # if grad.shape != y.shape: # raise RuntimeError('Grad shape does not match output shape') # del y def f(grad, *inputs, **kwinputs): with torch.autocast(device_type='cuda', dtype=amp_dtype, enabled=amp): y = fn(*inputs, **kwinputs) if type(y) is tuple: y = y[0] if grad is None: grad = torch.randn_like(y) else: if grad.shape != y.shape: raise RuntimeError('Grad shape does not match output shape') y.backward(grad, retain_graph=True) t = benchmark.Timer( stmt='f(grad, *inputs, **kwinputs)', globals={'f': f, 'fn': fn, 'inputs': inputs, 'grad': grad, 'kwinputs': kwinputs}, num_threads=torch.get_num_threads(), ) m = t.timeit(repeats) if verbose: print(m) return t, m def benchmark_all(fn, *inputs, grad=None, repeats=10, desc='', verbose=True, amp=False, amp_dtype=torch.float16, **kwinputs): """ Use Pytorch Benchmark on the forward+backward pass of an arbitrary function. """ return ( benchmark_forward(fn, *inputs, repeats=repeats, desc=desc, verbose=verbose, amp=amp, amp_dtype=amp_dtype, **kwinputs), benchmark_backward(fn, *inputs, grad=grad, repeats=repeats, desc=desc, verbose=verbose, amp=amp, amp_dtype=amp_dtype, **kwinputs), benchmark_combined(fn, *inputs, grad=grad, repeats=repeats, desc=desc, verbose=verbose, amp=amp, amp_dtype=amp_dtype, **kwinputs), ) def pytorch_profiler(fn, *inputs, trace_filename=None, backward=False, amp=False, amp_dtype=torch.float16, cpu=False, verbose=True, **kwinputs): """ Wrap benchmark functions in Pytorch profiler to see CUDA information. """ if backward: with torch.autocast(device_type='cuda', dtype=amp_dtype, enabled=amp): g = torch.randn_like(fn(*inputs, **kwinputs)) for _ in range(30): # Warm up with torch.autocast(device_type='cuda', dtype=amp_dtype, enabled=amp): if backward: for x in inputs: if isinstance(x, torch.Tensor): x.grad = None # fn(*inputs, **kwinputs) if not backward else fn(*inputs, **kwinputs).backward(g) out = fn(*inputs, **kwinputs) # Backward should be done outside autocast if backward: out.backward(g) activities = ([torch.profiler.ProfilerActivity.CPU] if cpu else []) + [torch.profiler.ProfilerActivity.CUDA] with torch.profiler.profile( activities=activities, record_shapes=True, # profile_memory=True, with_stack=True, ) as prof: with torch.autocast(device_type='cuda', dtype=amp_dtype, enabled=amp): if backward: for x in inputs: if isinstance(x, torch.Tensor): x.grad = None out = fn(*inputs, **kwinputs) if backward: out.backward(g) if verbose: # print(prof.key_averages().table(sort_by="self_cuda_time_total", row_limit=50)) print(prof.key_averages().table(row_limit=50)) if trace_filename is not None: prof.export_chrome_trace(trace_filename) def benchmark_memory(fn, *inputs, desc='', verbose=True, **kwinputs): torch.cuda.empty_cache() torch.cuda.reset_peak_memory_stats() torch.cuda.synchronize() fn(*inputs, **kwinputs) torch.cuda.synchronize() mem = torch.cuda.max_memory_allocated() / ((2 ** 20) * 1000) if verbose: print(f'{desc} max memory: {mem}GB') torch.cuda.empty_cache() return mem
m2-main
bert/src/benchmark/benchmark.py
m2-main
bert/src/benchmark/__init__.py
# Copyright 2022 MosaicML Examples authors # SPDX-License-Identifier: Apache-2.0 # """Contains GLUE job objects for the simple_glue_trainer.""" import atexit import copy import gc import multiprocessing as mp import os import sys from multiprocessing import managers from typing import Any, Dict, List, Optional, Union, cast # Add glue folder root to path to allow us to use relative imports regardless of what directory the script is run from sys.path.append(os.path.dirname(os.path.realpath(__file__))) print(sys.path) import torch from composer import ComposerModel from composer.core import Callback from composer.core.evaluator import Evaluator from composer.core.types import Dataset from composer.devices import Device, DeviceGPU from composer.loggers import LoggerDestination from composer.optim import ComposerScheduler, DecoupledAdamW from src.optim.create_param_groups import create_param_groups from composer.trainer.trainer import Trainer from composer.utils import dist, reproducibility from data import create_glue_dataset from torch.utils.data import DataLoader def _build_dataloader(dataset, **kwargs): import transformers dataset = cast(Dataset, dataset) return DataLoader( dataset=dataset, sampler=dist.get_sampler(dataset, drop_last=False, shuffle=False), collate_fn=transformers.default_data_collator, **kwargs, ) Metrics = Dict[str, Dict[str, Any]] TASK_NAME_TO_NUM_LABELS = { 'mnli': 3, 'rte': 2, 'mrpc': 2, 'qnli': 2, 'qqp': 2, 'sst2': 2, 'stsb': 1, 'cola': 2, } def reset_trainer(trainer: Trainer, garbage_collect: bool = False): """Cleans up memory usage left by trainer.""" trainer.close() # Unregister engine from atexit to remove ref atexit.unregister(trainer.engine._close) # Close potentially persistent dataloader workers loader = trainer.state.train_dataloader if loader and loader._iterator is not None: # type: ignore loader._iterator._shutdown_workers() # type: ignore # Explicitly delete attributes of state as otherwise gc.collect() doesn't free memory for key in list(trainer.state.__dict__.keys()): delattr(trainer.state, key) # Delete the rest of trainer attributes for key in list(trainer.__dict__.keys()): delattr(trainer, key) if garbage_collect: gc.collect() torch.cuda.empty_cache() class FineTuneJob: """Encapsulates a fine-tuning job. Tasks should subclass FineTuneJob and implement the get_trainer() method. Args: name (str, optional): job name. Defaults to the class name. load_path (str, optional): path to load checkpoints. Default: None save_folder (str, optional): path to save checkpoints. Default: None kwargs (dict, optional): additional arguments passed available to the Trainer. """ def __init__( self, job_name: Optional[str] = None, load_path: Optional[str] = None, save_folder: Optional[str] = None, seed: int = 42, **kwargs, ): reproducibility.seed_all(seed) self._job_name = job_name self.seed = seed self.load_path = load_path self.save_folder = save_folder self.kwargs = kwargs def get_trainer(self, device: Optional[Union[str, Device]]) -> Trainer: """Returns the trainer for the job.""" raise NotImplementedError def print_metrics(self, metrics: Metrics): """Prints fine-tuning results.""" job_name = self.job_name print(f'Results for {job_name}:') print('-' * (12 + len(job_name))) for eval, metric in metrics.items(): for metric_name, value in metric.items(): print(f'{eval}: {metric_name}, {value*100:.2f}') print('-' * (12 + len(job_name))) @property def job_name(self) -> str: """Job name, defaults to class name.""" if self._job_name is not None: return self._job_name return self.__class__.__name__ def run(self, gpu_queue: Optional[mp.Queue] = None, process_to_gpu: Optional[managers.DictProxy] = None ) -> Dict[str, Any]: """Trains the model, optionally pulling a GPU id from the queue. Returns: A dict with keys: * 'checkpoints': list of saved_checkpoints, if any, * 'metrics': nested dict of results, accessed by dataset and metric name, e.g. ``metrics['glue_mnli']['MulticlassAccuracy']``. """ if gpu_queue is None: if torch.cuda.device_count() > 0: gpu_id = 0 device = DeviceGPU(gpu_id) else: gpu_id = None device = 'cpu' else: current_pid = os.getpid() assert process_to_gpu is not None if current_pid in process_to_gpu: gpu_id = process_to_gpu[current_pid] else: gpu_id = gpu_queue.get() process_to_gpu[current_pid] = gpu_id device = DeviceGPU(gpu_id) print(f'Running {self.job_name} on GPU {gpu_id}') trainer = self.get_trainer(device=device) trainer.fit() collected_metrics: Dict[str, Dict[str, Any]] = {} for eval_name, metrics in trainer.state.eval_metrics.items(): collected_metrics[eval_name] = { name: metric.compute().cpu().numpy() for name, metric in metrics.items() } saved_checkpoints = copy.copy(trainer.saved_checkpoints) reset_trainer(trainer, garbage_collect=True) self.print_metrics(collected_metrics) output = { 'checkpoints': saved_checkpoints, 'metrics': collected_metrics, 'job_name': self.job_name } return output class GlueClassificationJob(FineTuneJob): def __init__( self, model: ComposerModel, tokenizer_name: str, job_name: Optional[str] = None, seed: int = 42, task_name: Optional[str] = None, num_labels: Optional[int] = -1, eval_interval: str = '1000ba', scheduler: Optional[ComposerScheduler] = None, max_sequence_length: Optional[int] = 256, max_duration: Optional[str] = '3ep', batch_size: Optional[int] = 32, load_path: Optional[str] = None, save_folder: Optional[str] = None, loggers: Optional[List[LoggerDestination]] = None, callbacks: Optional[List[Callback]] = None, precision: Optional[str] = None, **kwargs, ): if task_name is None: raise ValueError( 'GlueClassificationJob should not be instantiated directly. Please instantiate a specific glue job type instead (e.g. MNLIJob).' ) super().__init__(job_name, load_path, save_folder, seed, **kwargs) self.task_name = task_name self.num_labels = num_labels self.eval_interval = eval_interval self.tokenizer_name = tokenizer_name self.model = model self.scheduler = scheduler print('Max sequence length', max_sequence_length) self.max_sequence_length = max_sequence_length self.max_duration = max_duration self.batch_size = batch_size self.loggers = loggers self.callbacks = callbacks self.precision = precision # These will be set by the subclasses for specific GLUE tasks self.train_dataloader = None self.evaluators = None self.optimizer = None def get_trainer(self, device: Optional[Union[Device, str]] = None): return Trainer(model=self.model, optimizers=self.optimizer, schedulers=self.scheduler, train_dataloader=self.train_dataloader, eval_dataloader=self.evaluators, eval_interval=self.eval_interval, load_path=self.load_path, save_folder=self.save_folder, max_duration=self.max_duration, seed=self.seed, device_train_microbatch_size='auto' if torch.cuda.device_count() > 0 else None, load_weights_only=True, load_strict_model_weights=False, loggers=self.loggers, callbacks=self.callbacks, python_log_level='ERROR', run_name=self.job_name, load_ignore_keys=['state/model/model.classifier*'], precision=self.precision, device=device, progress_bar=True, log_to_console=False, **self.kwargs) class MNLIJob(GlueClassificationJob): """MNLI.""" def __init__( self, model: ComposerModel, tokenizer_name: str, job_name: Optional[str] = None, seed: int = 42, eval_interval: str = '2300ba', scheduler: Optional[ComposerScheduler] = None, max_sequence_length: Optional[int] = 256, max_duration: Optional[str] = '3ep', batch_size: Optional[int] = 48, load_path: Optional[str] = None, save_folder: Optional[str] = None, loggers: Optional[List[LoggerDestination]] = None, callbacks: Optional[List[Callback]] = None, precision: Optional[str] = None, lr: Optional[float] = 5.0e-05, wd: Optional[float] = 5.0e-06, optim_name: Optional[str] = 'DecoupledAdamW', **kwargs, ): super().__init__(model=model, tokenizer_name=tokenizer_name, job_name=job_name, seed=seed, task_name='mnli', num_labels=3, eval_interval=eval_interval, scheduler=scheduler, max_sequence_length=max_sequence_length, max_duration=max_duration, batch_size=batch_size, load_path=load_path, save_folder=save_folder, loggers=loggers, callbacks=callbacks, precision=precision, **kwargs) print(f"\nGLUE task {self.task_name} Details:") print('-- lr:', lr) print('-- wd:', wd) print(f"-- seed: {seed}") if optim_name == 'DecoupledAdamW': print(f"-- using DecoupledAdamW optimizer") self.optimizer = DecoupledAdamW(create_param_groups(None, self.model), lr=lr, betas=(0.9, 0.98), eps=1.0e-06, weight_decay=wd) else: from torch.optim import AdamW print(f"-- using AdamW optimizer") self.optimizer = AdamW(create_param_groups(None, self.model), lr=lr, betas=(0.9, 0.98), eps=1.0e-06, weight_decay=wd) dataset_kwargs = { 'task': self.task_name, 'tokenizer_name': self.tokenizer_name, 'max_seq_length': self.max_sequence_length, } print('Max sequence length in MNLI', max_sequence_length, self.max_sequence_length) dataloader_kwargs = { 'batch_size': self.batch_size, 'num_workers': 0, 'shuffle': False, 'drop_last': False, } train_dataset = create_glue_dataset(split='train', **dataset_kwargs) self.train_dataloader = _build_dataloader(train_dataset, **dataloader_kwargs) mnli_eval_dataset = create_glue_dataset(split='validation_matched', **dataset_kwargs) mnli_eval_mismatched_dataset = create_glue_dataset( split='validation_mismatched', **dataset_kwargs) mnli_evaluator = Evaluator(label='glue_mnli', dataloader=_build_dataloader( mnli_eval_dataset, **dataloader_kwargs), metric_names=['MulticlassAccuracy']) mnli_evaluator_mismatched = Evaluator( label='glue_mnli_mismatched', dataloader=_build_dataloader(mnli_eval_mismatched_dataset, **dataloader_kwargs), metric_names=['MulticlassAccuracy']) self.evaluators = [mnli_evaluator, mnli_evaluator_mismatched] class RTEJob(GlueClassificationJob): """RTE.""" def __init__( self, model: ComposerModel, tokenizer_name: str, job_name: Optional[str] = None, seed: int = 42, eval_interval: str = '100ba', scheduler: Optional[ComposerScheduler] = None, max_sequence_length: Optional[int] = 256, max_duration: Optional[str] = '3ep', batch_size: Optional[int] = 16, load_path: Optional[str] = None, save_folder: Optional[str] = None, loggers: Optional[List[LoggerDestination]] = None, callbacks: Optional[List[Callback]] = None, precision: Optional[str] = None, lr: Optional[float] = 1.0e-5, wd: Optional[float] = 1.0e-6, optim_name: Optional[str] = 'DecoupledAdamW', **kwargs, ): super().__init__(model=model, tokenizer_name=tokenizer_name, job_name=job_name, seed=seed, task_name='rte', num_labels=2, eval_interval=eval_interval, scheduler=scheduler, max_sequence_length=max_sequence_length, max_duration=max_duration, batch_size=batch_size, load_path=load_path, save_folder=save_folder, loggers=loggers, callbacks=callbacks, precision=precision, **kwargs) if optim_name == 'DecoupledAdamW': self.optimizer = DecoupledAdamW(create_param_groups(None, self.model), lr=lr, betas=(0.9, 0.98), eps=1.0e-06, weight_decay=wd) else: from torch.optim import AdamW self.optimizer = AdamW(create_param_groups(None, self.model), lr=lr, betas=(0.9, 0.98), eps=1.0e-06, weight_decay=wd) dataset_kwargs = { 'task': self.task_name, 'tokenizer_name': self.tokenizer_name, 'max_seq_length': self.max_sequence_length, } dataloader_kwargs = { 'batch_size': self.batch_size, 'num_workers': 0, 'shuffle': False, 'drop_last': False, } train_dataset = create_glue_dataset(split='train', **dataset_kwargs) self.train_dataloader = _build_dataloader(train_dataset, **dataloader_kwargs) rte_eval_dataset = create_glue_dataset(split='validation', **dataset_kwargs) rte_evaluator = Evaluator(label='glue_rte', dataloader=_build_dataloader( rte_eval_dataset, **dataloader_kwargs), metric_names=['MulticlassAccuracy']) self.evaluators = [rte_evaluator] class QQPJob(GlueClassificationJob): """QQP.""" def __init__( self, model: ComposerModel, tokenizer_name: str, job_name: Optional[str] = None, seed: int = 42, eval_interval: str = '2000ba', scheduler: Optional[ComposerScheduler] = None, max_sequence_length: Optional[int] = 256, max_duration: Optional[str] = '5ep', batch_size: Optional[int] = 16, load_path: Optional[str] = None, save_folder: Optional[str] = None, loggers: Optional[List[LoggerDestination]] = None, callbacks: Optional[List[Callback]] = None, precision: Optional[str] = None, lr: Optional[float] = 3.0e-5, wd: Optional[float] = 3.0e-6, optim_name: Optional[str] = 'DecoupledAdamW', **kwargs, ): super().__init__(model=model, tokenizer_name=tokenizer_name, job_name=job_name, seed=seed, task_name='qqp', num_labels=2, eval_interval=eval_interval, scheduler=scheduler, max_sequence_length=max_sequence_length, max_duration=max_duration, batch_size=batch_size, load_path=load_path, save_folder=save_folder, loggers=loggers, callbacks=callbacks, precision=precision, **kwargs) print(f"QNLI:") print('-- lr:', lr) print('-- wd:', wd) print(f"-- optim_name: {optim_name}") if optim_name == 'DecoupledAdamW': self.optimizer = DecoupledAdamW(create_param_groups(None, self.model), lr=lr, betas=(0.9, 0.98), eps=1.0e-06, weight_decay=wd) else: from torch.optim import AdamW self.optimizer = AdamW(create_param_groups(None, self.model), lr=lr, betas=(0.9, 0.98), eps=1.0e-06, weight_decay=wd) dataset_kwargs = { 'task': self.task_name, 'tokenizer_name': self.tokenizer_name, 'max_seq_length': self.max_sequence_length, } dataloader_kwargs = { 'batch_size': self.batch_size, 'num_workers': 0, 'shuffle': False, 'drop_last': False, } train_dataset = create_glue_dataset(split='train', **dataset_kwargs) self.train_dataloader = _build_dataloader(train_dataset, **dataloader_kwargs) qqp_eval_dataset = create_glue_dataset(split='validation', **dataset_kwargs) qqp_evaluator = Evaluator( label='glue_qqp', dataloader=_build_dataloader(qqp_eval_dataset, **dataloader_kwargs), metric_names=['MulticlassAccuracy', 'BinaryF1Score']) self.evaluators = [qqp_evaluator] class COLAJob(GlueClassificationJob): """COLA.""" def __init__( self, model: ComposerModel, tokenizer_name: str, job_name: Optional[str] = None, seed: int = 42, eval_interval: str = '250ba', scheduler: Optional[ComposerScheduler] = None, max_sequence_length: Optional[int] = 256, max_duration: Optional[str] = '10ep', batch_size: Optional[int] = 32, load_path: Optional[str] = None, save_folder: Optional[str] = None, loggers: Optional[List[LoggerDestination]] = None, callbacks: Optional[List[Callback]] = None, precision: Optional[str] = None, lr: Optional[float] = 5.0e-5, wd: Optional[float] = 5.0e-6, optim_name: Optional[str] = 'DecoupledAdamW', **kwargs, ): super().__init__(model=model, tokenizer_name=tokenizer_name, job_name=job_name, seed=seed, task_name='cola', num_labels=2, eval_interval=eval_interval, scheduler=scheduler, max_sequence_length=max_sequence_length, max_duration=max_duration, batch_size=batch_size, load_path=load_path, save_folder=save_folder, loggers=loggers, callbacks=callbacks, precision=precision, **kwargs) print('COLA LR', lr) print('COLA WD', wd) if optim_name == 'DecoupledAdamW': self.optimizer = DecoupledAdamW(create_param_groups(None, self.model), lr=lr, betas=(0.9, 0.98), eps=1.0e-06, weight_decay=wd) else: from torch.optim import AdamW self.optimizer = AdamW(create_param_groups(None, self.model), lr=lr, betas=(0.9, 0.98), eps=1.0e-06, weight_decay=wd) dataset_kwargs = { 'task': self.task_name, 'tokenizer_name': self.tokenizer_name, 'max_seq_length': self.max_sequence_length, } dataloader_kwargs = { 'batch_size': self.batch_size, 'num_workers': 0, 'shuffle': False, 'drop_last': False, } train_dataset = create_glue_dataset(split='train', **dataset_kwargs) self.train_dataloader = _build_dataloader(train_dataset, **dataloader_kwargs) cola_eval_dataset = create_glue_dataset(split='validation', **dataset_kwargs) cola_evaluator = Evaluator(label='glue_cola', dataloader=_build_dataloader( cola_eval_dataset, **dataloader_kwargs), # metric_names=['MatthewsCorrCoef', 'MulticlassAccuracy', 'BinaryF1Score'] metric_names=['MatthewsCorrCoef'] ) self.evaluators = [cola_evaluator] class MRPCJob(GlueClassificationJob): """MRPC.""" def __init__( self, model: ComposerModel, tokenizer_name: str, job_name: Optional[str] = None, seed: int = 42, eval_interval: str = '100ba', scheduler: Optional[ComposerScheduler] = None, max_sequence_length: Optional[int] = 256, max_duration: Optional[str] = '10ep', batch_size: Optional[int] = 32, load_path: Optional[str] = None, save_folder: Optional[str] = None, loggers: Optional[List[LoggerDestination]] = None, callbacks: Optional[List[Callback]] = None, precision: Optional[str] = None, lr: Optional[float] = 8.0e-5, wd: Optional[float] = 8.0e-6, optim_name: Optional[str] = 'DecoupledAdamW', **kwargs, ): super().__init__(model=model, tokenizer_name=tokenizer_name, job_name=job_name, seed=seed, task_name='mrpc', num_labels=2, eval_interval=eval_interval, scheduler=scheduler, max_sequence_length=max_sequence_length, max_duration=max_duration, batch_size=batch_size, load_path=load_path, save_folder=save_folder, loggers=loggers, callbacks=callbacks, precision=precision, **kwargs) if optim_name == 'DecoupledAdamW': self.optimizer = DecoupledAdamW(create_param_groups(None, self.model), lr=lr, betas=(0.9, 0.98), eps=1.0e-06, weight_decay=wd) else: from torch.optim import AdamW self.optimizer = AdamW(create_param_groups(None, self.model), lr=lr, betas=(0.9, 0.98), eps=1.0e-06, weight_decay=wd) dataset_kwargs = { 'task': self.task_name, 'tokenizer_name': self.tokenizer_name, 'max_seq_length': self.max_sequence_length, } dataloader_kwargs = { 'batch_size': self.batch_size, 'num_workers': 0, 'shuffle': False, 'drop_last': False, } train_dataset = create_glue_dataset(split='train', **dataset_kwargs) self.train_dataloader = _build_dataloader(train_dataset, **dataloader_kwargs) mrpc_eval_dataset = create_glue_dataset(split='validation', **dataset_kwargs) mrpc_evaluator = Evaluator( label='glue_mrpc', dataloader=_build_dataloader(mrpc_eval_dataset, **dataloader_kwargs), # metric_names=['MulticlassAccuracy', 'BinaryF1Score'] metric_names=['BinaryF1Score'] ) self.evaluators = [mrpc_evaluator] class QNLIJob(GlueClassificationJob): """QNLI.""" def __init__( self, model: ComposerModel, tokenizer_name: str, job_name: Optional[str] = None, seed: int = 42, eval_interval: str = '1000ba', scheduler: Optional[ComposerScheduler] = None, max_sequence_length: Optional[int] = 256, max_duration: Optional[str] = '10ep', batch_size: Optional[int] = 16, load_path: Optional[str] = None, save_folder: Optional[str] = None, loggers: Optional[List[LoggerDestination]] = None, callbacks: Optional[List[Callback]] = None, precision: Optional[str] = None, lr: Optional[float] = 1.0e-5, wd: Optional[float] = 1.0e-6, optim_name: Optional[str] = 'DecoupledAdamW', **kwargs, ): super().__init__(model=model, tokenizer_name=tokenizer_name, job_name=job_name, seed=seed, task_name='qnli', num_labels=2, eval_interval=eval_interval, scheduler=scheduler, max_sequence_length=max_sequence_length, max_duration=max_duration, batch_size=batch_size, load_path=load_path, save_folder=save_folder, loggers=loggers, callbacks=callbacks, precision=precision, **kwargs) print(f"\nGLUE task {self.task_name} Details:") print('-- lr:', lr) print('-- wd:', wd) print(f"-- seed: {seed}") if optim_name == 'DecoupledAdamW': print(f"-- using DecoupledAdamW optimizer") self.optimizer = DecoupledAdamW(create_param_groups(None, self.model), lr=lr, betas=(0.9, 0.98), eps=1.0e-06, weight_decay=wd) else: from torch.optim import AdamW print(f"-- using AdamW optimizer") self.optimizer = AdamW(create_param_groups(None, self.model), lr=lr, betas=(0.9, 0.98), eps=1.0e-06, weight_decay=wd) dataset_kwargs = { 'task': self.task_name, 'tokenizer_name': self.tokenizer_name, 'max_seq_length': self.max_sequence_length, } dataloader_kwargs = { 'batch_size': self.batch_size, 'num_workers': 0, 'shuffle': False, 'drop_last': False, } train_dataset = create_glue_dataset(split='train', **dataset_kwargs) self.train_dataloader = _build_dataloader(train_dataset, **dataloader_kwargs) qnli_eval_dataset = create_glue_dataset(split='validation', **dataset_kwargs) qnli_evaluator = Evaluator(label='glue_qnli', dataloader=_build_dataloader( qnli_eval_dataset, **dataloader_kwargs), metric_names=['MulticlassAccuracy']) self.evaluators = [qnli_evaluator] class SST2Job(GlueClassificationJob): """SST2.""" def __init__( self, model: ComposerModel, tokenizer_name: str, job_name: Optional[str] = None, seed: int = 42, eval_interval: str = '500ba', scheduler: Optional[ComposerScheduler] = None, max_sequence_length: Optional[int] = 256, max_duration: Optional[str] = '3ep', batch_size: Optional[int] = 16, load_path: Optional[str] = None, save_folder: Optional[str] = None, loggers: Optional[List[LoggerDestination]] = None, callbacks: Optional[List[Callback]] = None, precision: Optional[str] = None, lr: Optional[float] = 3.0e-5, wd: Optional[float] = 3.0e-6, optim_name: Optional[str] = 'DecoupledAdamW', **kwargs, ): super().__init__(model=model, tokenizer_name=tokenizer_name, job_name=job_name, seed=seed, task_name='sst2', num_labels=2, eval_interval=eval_interval, scheduler=scheduler, max_sequence_length=max_sequence_length, max_duration=max_duration, batch_size=batch_size, load_path=load_path, save_folder=save_folder, loggers=loggers, callbacks=callbacks, precision=precision, **kwargs) print('SST LR', lr) print('SST WD', wd) if optim_name == 'DecoupledAdamW': print(f"-- using DecoupledAdamW optimizer") self.optimizer = DecoupledAdamW(create_param_groups(None, self.model), lr=lr, betas=(0.9, 0.98), eps=1.0e-06, weight_decay=wd) else: from torch.optim import AdamW print(f"-- using AdamW optimizer") self.optimizer = AdamW(create_param_groups(None, self.model), lr=lr, betas=(0.9, 0.98), eps=1.0e-06, weight_decay=wd) dataset_kwargs = { 'task': self.task_name, 'tokenizer_name': self.tokenizer_name, 'max_seq_length': self.max_sequence_length, } dataloader_kwargs = { 'batch_size': self.batch_size, 'num_workers': 0, 'shuffle': False, 'drop_last': False, } train_dataset = create_glue_dataset(split='train', **dataset_kwargs) self.train_dataloader = _build_dataloader(train_dataset, **dataloader_kwargs) sst2_eval_dataset = create_glue_dataset(split='validation', **dataset_kwargs) sst2_evaluator = Evaluator(label='glue_sst2', dataloader=_build_dataloader( sst2_eval_dataset, **dataloader_kwargs), metric_names=['MulticlassAccuracy']) self.evaluators = [sst2_evaluator] class STSBJob(GlueClassificationJob): """STSB.""" def __init__( self, model: ComposerModel, tokenizer_name: str, job_name: Optional[str] = None, seed: int = 42, eval_interval: str = '200ba', scheduler: Optional[ComposerScheduler] = None, max_sequence_length: Optional[int] = 256, max_duration: Optional[str] = '10ep', batch_size: Optional[int] = 32, load_path: Optional[str] = None, save_folder: Optional[str] = None, loggers: Optional[List[LoggerDestination]] = None, callbacks: Optional[List[Callback]] = None, precision: Optional[str] = None, lr: Optional[float] = 3.0e-5, wd: Optional[float] = 3.0e-6, optim_name: Optional[str] = 'DecoupledAdamW', **kwargs, ): super().__init__(model=model, tokenizer_name=tokenizer_name, job_name=job_name, seed=seed, task_name='stsb', num_labels=1, eval_interval=eval_interval, scheduler=scheduler, max_sequence_length=max_sequence_length, max_duration=max_duration, batch_size=batch_size, load_path=load_path, save_folder=save_folder, loggers=loggers, callbacks=callbacks, precision=precision, **kwargs) if optim_name == 'DecoupledAdamW': self.optimizer = DecoupledAdamW(create_param_groups(None, self.model), lr=lr, betas=(0.9, 0.98), eps=1.0e-06, weight_decay=wd) else: from torch.optim import AdamW self.optimizer = AdamW(create_param_groups(None, self.model), lr=lr, betas=(0.9, 0.98), eps=1.0e-06, weight_decay=wd) dataset_kwargs = { 'task': self.task_name, 'tokenizer_name': self.tokenizer_name, 'max_seq_length': self.max_sequence_length, } dataloader_kwargs = { 'batch_size': self.batch_size, 'num_workers': 0, 'shuffle': False, 'drop_last': False, } train_dataset = create_glue_dataset(split='train', **dataset_kwargs) self.train_dataloader = _build_dataloader(train_dataset, **dataloader_kwargs) stsb_eval_dataset = create_glue_dataset(split='validation', **dataset_kwargs) stsb_evaluator = Evaluator(label='glue_stsb', dataloader=_build_dataloader( stsb_eval_dataset, **dataloader_kwargs), metric_names=['SpearmanCorrCoef']) self.evaluators = [stsb_evaluator] # Hardcoded for STSB due to a bug (Can be removed once torchmetrics fixes https://github.com/Lightning-AI/metrics/issues/1294) self.precision = 'fp32'
m2-main
bert/src/glue/finetuning_jobs.py
# Copyright 2022 MosaicML Examples authors # SPDX-License-Identifier: Apache-2.0
m2-main
bert/src/glue/__init__.py
# Copyright 2022 MosaicML Examples authors # SPDX-License-Identifier: Apache-2.0 import logging from composer.utils import MissingConditionalImportError, dist _task_column_names = { 'cola': ('sentence', None), 'mnli': ('premise', 'hypothesis'), 'mrpc': ('sentence1', 'sentence2'), 'qnli': ('question', 'sentence'), 'qqp': ('question1', 'question2'), 'rte': ('sentence1', 'sentence2'), 'sst2': ('sentence', None), 'stsb': ('sentence1', 'sentence2'), } log = logging.getLogger(__name__) def create_glue_dataset( task: str, tokenizer_name: str, split: str, max_seq_length: int = 256, max_retries: int = 10, num_workers: int = 0, **kwargs, ): print(f"Max sequence length: {max_seq_length}") try: import datasets import transformers except ImportError as e: raise MissingConditionalImportError(extra_deps_group='nlp', conda_package='transformers') from e if task not in _task_column_names: raise ValueError( f'task ({task}) must be one of {_task_column_names.keys()}') if (max_seq_length % 8) != 0: log.warning( 'For performance, a max_seq_length as a multiple of 8 is recommended.' ) tokenizer = transformers.AutoTokenizer.from_pretrained(tokenizer_name) log.info(f'Loading {task.upper()} on rank {dist.get_global_rank()}') download_config = datasets.DownloadConfig(max_retries=max_retries) dataset = datasets.load_dataset( 'glue', task, split=split, download_config=download_config, ) log.info( f'Starting tokenization by preprocessing over {num_workers} threads!') text_column_names = _task_column_names[task] def tokenize_function(inp): # truncates sentences to max_length or pads them to max_length first_half = inp[text_column_names[0]] second_half = inp[ text_column_names[1]] if text_column_names[1] in inp else None return tokenizer( text=first_half, text_pair=second_half, padding='max_length', max_length=max_seq_length, truncation=True, ) columns_to_remove = ['idx' ] + [i for i in text_column_names if i is not None] assert isinstance(dataset, datasets.Dataset) safe_name = tokenizer_name.replace('/', ',') dataset = dataset.map( tokenize_function, batched=True, num_proc=None if num_workers == 0 else num_workers, batch_size=1000, remove_columns=columns_to_remove, new_fingerprint=f'{task}-{safe_name}-tok-4-{split}-{max_seq_length}', load_from_cache_file=True, ) return dataset
m2-main
bert/src/glue/data.py
def create_param_groups(cfg, model): '''Create sets of parameter groups based on whether parameter has `_optim` attribute.''' if not any(hasattr(p, '_optim') for p in model.parameters()): return model.parameters() special_params = set() other_params = set() param_dict = {pn: p for pn, p in model.named_parameters() if p.requires_grad} for mn, m in model.named_modules(): for pn, p in m.named_parameters(): fpn = '%s.%s' % (mn, pn) if mn else pn # full param name # In case of parameter sharing, some parameters show up here but are not in # param_dict.keys() if not p.requires_grad or fpn not in param_dict: continue # frozen weights if hasattr(p, '_optim'): special_params.add(fpn) else: other_params.add(fpn) param_groups = [ {"params": [param_dict[pn] for pn in other_params]} ] # Add parameters with special hyperparameters # Unique dicts hps = [ dict(s) for s in set(frozenset(param_dict[pn]._optim.items()) for pn in special_params) ] for hp in hps: params = [ param_dict[pn] for pn in sorted(list(special_params)) if param_dict[pn]._optim == hp ] param_groups.append({"params": params, **hp}) return param_groups
m2-main
bert/src/optim/create_param_groups.py
m2-main
bert/src/optim/__init__.py
import json import math from tqdm import tqdm from collections import defaultdict directory = # Enter path to your data directory here new_directory = # Enter output path here val_pct = 0.0005 # Percentage of data to use for validation index = f"{directory}/train/index.json" with open(index, "r") as f: index = json.load(f) train_index = {} val_index = {} # Version train_index["version"] = index["version"] val_index["version"] = index["version"] # Shards num_shards = len(index["shards"]) num_train_shards = math.floor((1 - val_pct) * num_shards) train_index['shards'] = [] val_index['shards'] = [] train_basenames = [] val_basenames = [] print(f"Splitting into {num_train_shards} train shards and {num_shards - num_train_shards} val shards") for item in tqdm(index['shards'], desc="Splitting shards"): shard_basename = item['raw_data']['basename'] shard = shard_basename.split('.')[1] shard = int(shard) if shard < num_train_shards: train_index['shards'].append(item) train_basenames.append(shard_basename) else: val_index['shards'].append(item) val_basenames.append(shard_basename) # Save down the new indices import os train_directory = f"{new_directory}/train/" val_directory = f"{new_directory}/val/" os.makedirs(train_directory, exist_ok=True) os.makedirs(val_directory, exist_ok=True) with open(f"{train_directory}/index.json", "w") as f: json.dump(train_index, f) with open(f"{val_directory}/index.json", "w") as f: json.dump(val_index, f) # Copy the shards from the old directory to the new directories import shutil for basename in tqdm(train_basenames, desc="Copying train shards"): shutil.copy(f"{directory}/train/{basename}", f"{train_directory}/{basename}") for basename in tqdm(val_basenames, desc="Copying val shards"): shutil.copy(f"{directory}/train/{basename}", f"{val_directory}/{basename}")
m2-main
bert/src/utils/create_val_split.py
m2-main
bert/src/utils/__init__.py
""" Utils for the training loop. Copied from https://github.com/HazyResearch/transformers/blob/master/src/utils/utils.py """ import torch.nn as nn class OptimModule(nn.Module): """ Interface for Module that allows registering buffers/parameters with configurable optimizer hyperparameters """ def register(self, name, tensor, lr=None, wd=0.0): """Register a tensor with a configurable learning rate and 0 weight decay""" if lr == 0.0: self.register_buffer(name, tensor) else: self.register_parameter(name, nn.Parameter(tensor)) optim = {} if lr is not None: optim["lr"] = lr if wd is not None: optim["weight_decay"] = wd setattr(getattr(self, name), "_optim", optim)
m2-main
bert/src/utils/train.py
# Adapted from https://github.com/HazyResearch/fly/tree/master/src/models/layers import math import torch import torch.nn as nn from einops import rearrange from src.mm.structured_linear import StructuredLinear from src.mm.blockdiag_multiply import blockdiag_multiply class BlockdiagLinear(StructuredLinear): def __init__(self, *args, nblocks=4, shuffle=False, **kwargs): """shuffle: apply channel_shuffle operation before the matmul as in ShuffleNet """ super().__init__(*args, **kwargs) in_blksz = int(math.ceil(self.in_features / nblocks)) out_blksz = int(math.ceil(self.out_features / nblocks)) self.in_features_extended = in_blksz * nblocks self.out_features_extended = out_blksz * nblocks self.shuffle = shuffle self.weight = nn.Parameter(torch.empty(nblocks, out_blksz, in_blksz)) self.reset_parameters() def set_weights_from_dense_init(self, dense_init_fn_): dense_weight = torch.empty(self.out_features_extended, self.in_features_extended, device=self.weight.device, dtype=self.weight.dtype) dense_init_fn_(dense_weight) # Scale by sqrt because the weight is sparse scaling = math.sqrt(dense_weight.numel() / self.weight.numel()) dense_weight *= scaling with torch.no_grad(): nblocks = self.weight.shape[0] self.weight.copy_(rearrange(dense_weight, '(b o) (b1 i) -> b b1 o i', b=nblocks, b1=nblocks)[0]) @property def saving(self): return self.weight.numel() / (self.in_features * self.out_features) def forward_matmul(self, x): x = self.preprocess(x) if self.shuffle: x = rearrange(x, '... (group c_per_group) -> ... (c_per_group group)', group=self.weight.shape[0]) # group=nblocks output = blockdiag_multiply(x, self.weight) return self.postprocess(output) class BlockdiagSparsityConfig: def __init__(self, nblocks, block=32, global_size=0): """shuffle: apply channel_shuffle operation before the matmul as in ShuffleNet """ self.nblocks = nblocks self.block = block self.global_size = global_size def make_layout(self, out_features, in_features): assert out_features % self.block == 0 and in_features % self.block == 0 assert out_features % self.nblocks == 0 and in_features % self.nblocks == 0 layout = torch.block_diag(*[torch.ones(out_features // self.nblocks, in_features // self.nblocks, dtype=torch.int32)] * self.nblocks) if self.global_size > 0: layout[:self.global_size] = 1 layout[:, :self.global_size] = 1 # Convert from (out_features, in_features) mask to # (out_features // block, in_features // block) mask layout = rearrange(layout, '(p blksz) (r blksz1) -> p r (blksz blksz1)', blksz=self.block, blksz1=self.block) return (layout > 0).any(dim=-1).int()
m2-main
bert/src/mm/blockdiag_linear.py
# Copyright (c) 2023, Dan Fu and Simran Arora. # Adapted from https://github.com/HazyResearch/safari/blob/main/src/models/sequence/hyena.py import math import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange import opt_einsum as oe contract = oe.contract from src.utils.train import OptimModule def fftconv_ref(u, k, D, dropout_mask, gelu=True, k_rev=None): # u.shape: B H L seqlen = u.shape[-1] fft_size = 2 * seqlen k_f = torch.fft.rfft(k, n=fft_size) / fft_size if k_rev is not None: k_rev_f = torch.fft.rfft(k_rev, n=fft_size) / fft_size k_f = k_f + k_rev_f.conj() u_f = torch.fft.rfft(u.to(dtype=k.dtype), n=fft_size) if len(u.shape) > 3: k_f = k_f.unsqueeze(1) y = torch.fft.irfft(u_f * k_f, n=fft_size, norm="forward")[..., :seqlen] out = y + u * D if gelu: out = F.gelu(out) if dropout_mask is not None: return (out * rearrange(dropout_mask, "b H -> b H 1")).to(dtype=u.dtype) else: return out.to(dtype=u.dtype) @torch.jit.script def mul_sum(q, y): return (q * y).sum(dim=1) class Sin(nn.Module): def __init__(self, dim, w=10, w_mod=1, train_freq=True): super().__init__() init_tensor = torch.ones(1, dim) self.freq = ( nn.Parameter(w * init_tensor) if train_freq else w * torch.ones(1, dim) ) self.w_mod = w_mod def forward(self, x): return torch.sin(self.w_mod * self.freq * x) class PositionalEmbedding(OptimModule): def __init__(self, emb_dim: int, seq_len: int, lr_pos_emb: float = 1e-5, **kwargs): """Complex exponential positional embeddings for Hyena filters.""" super().__init__() self.seq_len = seq_len # The time embedding fed to the filteres is normalized so that t_f = 1 t = torch.linspace(0, 1, self.seq_len)[None, :, None] # 1, L, 1 if emb_dim > 1: bands = (emb_dim - 1) // 2 # To compute the right embeddings we use the "proper" linspace t_rescaled = torch.linspace(0, seq_len - 1, seq_len)[None, :, None] w = 2 * math.pi * t_rescaled / seq_len # 1, L, 1 f = torch.linspace(1e-4, bands - 1, bands)[None, None] z = torch.exp(-1j * f * w) z = torch.cat([t, z.real, z.imag], dim=-1) self.register("z", z, lr=lr_pos_emb) self.register("t", t, lr=0.0) def forward(self, L): return self.z[:, :L], self.t[:, :L] class ExponentialModulation(OptimModule): def __init__( self, d_model, fast_decay_pct=0.3, slow_decay_pct=1.5, target=1e-2, modulation_lr=0.0, shift: float = 0.0, **kwargs, ): super().__init__() self.shift = shift max_decay = math.log(target) / fast_decay_pct min_decay = math.log(target) / slow_decay_pct deltas = torch.linspace(min_decay, max_decay, d_model)[None, None] self.register("deltas", deltas, lr=modulation_lr) def forward(self, t, x): decay = torch.exp(-t * self.deltas.abs()) x = x * (decay + self.shift) return x class HyenaFilter(OptimModule): def __init__( self, d_model, emb_dim=3, # dim of input to MLP, augments with positional encoding order=16, # width of the implicit MLP seq_len=1024, lr=1e-3, lr_pos_emb=1e-5, dropout=0.0, w=1, # frequency of periodic activations w_mod=1, # non-learnable modification of w wd=0, # weight decay of kernel parameters bias=True, num_inner_mlps=2, linear_mixer=False, modulate: bool = True, normalized=False, bidirectional=False, **kwargs, ): """ Implicit long filter with modulation. Args: d_model: number of channels in the input emb_dim: dimension of the positional encoding (`emb_dim` - 1) // 2 is the number of bands order: width of the FFN num_inner_mlps: number of inner linear layers inside filter MLP Note: filter_dropout is not implemented """ super().__init__() self.d_model=d_model self.emb_dim=emb_dim self.seq_len=seq_len self.modulate=modulate self.use_bias = bias self.bidirectional = bidirectional self.bias = nn.Parameter(torch.randn(self.d_model)) self.dropout = nn.Dropout(dropout) act = Sin(dim=order, w=w, w_mod=w_mod) assert ( emb_dim % 2 != 0 and emb_dim >= 3 ), "emb_dim must be odd and greater or equal to 3 (time, sine and cosine)" self.pos_emb = PositionalEmbedding(emb_dim, seq_len, lr_pos_emb) # uses a variable number of inner linear layers if linear_mixer is False: self.implicit_filter = nn.Sequential( nn.Linear(emb_dim, order), act, ) for i in range(num_inner_mlps): self.implicit_filter.append(nn.Linear(order, order)) self.implicit_filter.append(act) self.implicit_filter.append(nn.Linear(order, d_model, bias=False)) else: self.implicit_filter = nn.Sequential( nn.Linear(emb_dim, d_model, bias=False), ) if self.bidirectional: self.implicit_filter_rev = nn.Sequential( nn.Linear(emb_dim, order), act, ) for i in range(num_inner_mlps): self.implicit_filter_rev.append(nn.Linear(order, order)) self.implicit_filter_rev.append(act) self.implicit_filter_rev.append(nn.Linear(order, d_model, bias=False)) self.modulation = ExponentialModulation(d_model, **kwargs) self.normalized = normalized for c in self.implicit_filter.children(): for name, v in c.state_dict().items(): optim = {"weight_decay": wd, "lr": lr} setattr(getattr(c, name), "_optim", optim) def filter(self, L, *args, **kwargs): z, t = self.pos_emb(L) h = self.implicit_filter(z) if self.modulate: h = self.modulation(t, h) if self.normalized: h = h / torch.norm(h, dim=-1, p=1, keepdim=True) return h def filter_rev(self, L, *args, **kwargs): z, t = self.pos_emb(L) h = self.implicit_filter_rev(z) if self.modulate: h = self.modulation(t, h) if self.normalized: h = h / torch.norm(h, dim=-1, p=1, keepdim=True) return h def forward(self, x, L, k_fwd=None, k_rev=None, bias=None, *args, **kwargs): if k_fwd is None: k_fwd = self.filter(L) if self.bidirectional and k_rev is None: k_rev = self.filter_rev(L) # Ensure compatibility with filters that return a tuple k_fwd = k_fwd[0] if type(k_fwd) is tuple else k_fwd if bias is None: bias = self.bias bias = bias if self.use_bias else 0 * bias if self.bidirectional: k_rev = k_rev[0] if type(k_rev) is tuple else k_rev k = F.pad(k_fwd, (0, L)) \ + F.pad(k_rev.flip(-1), (L, 0)) else: k = k_fwd y = fftconv_ref( x, k, bias, dropout_mask=None, gelu=False, ) return y.to(dtype=x.dtype)
m2-main
bert/src/mm/hyena_utils.py
# Adapted from https://github.com/HazyResearch/fly/tree/master/src/models/layers import math import numpy as np import torch from torch.nn import functional as F from einops import rearrange def blockdiag_butterfly_multiply_reference(x, w1_bfly, w2_bfly, version=2): """ This implementation is slow but more likely to be correct. There are 3 implementations, which should all yield the same answer Arguments: x: (batch, n) w1_bfly: (k, q, p), where k = n / p w2_bfly: (l, s, r), where l = k * q / r = n * q / (p * r) Outputs: out: (batch, m), where m = l * s = n * s * q / (p * r) """ if version not in [1, 2, 3]: raise NotImplementedError('version must be either 1, 2, or 3') batch, n = x.shape k, q, p = w1_bfly.shape l, s, r = w2_bfly.shape assert k * p == n assert l * r == k * q x_reshaped = rearrange(x, 'b (k p) -> b k p', k=k) if version == 1: # Implementation 1 (only works for when k = q = p = l = s = r = sqrt(n)) assert k == q == p == l == s == r == int(math.sqrt(n)) return torch.einsum('bkp,kqp,qlk->blq', x_reshaped, w1_bfly, w2_bfly).reshape(batch, n) elif version == 2: # Implementation 2 out1 = torch.einsum('kqp,bkp->bkq', w1_bfly, x_reshaped) out1 = rearrange(rearrange(out1, 'b k q -> b (k q)'), 'b (r l) -> b l r', l=l) return torch.einsum('lsr,blr->bsl', w2_bfly, out1).reshape(batch, s * l) # Implementation 3: most likely to be correct, but it's the slowest elif version == 3: w1_dense = torch.block_diag(*torch.unbind(w1_bfly, dim=0)) out1 = F.linear(x, w1_dense) out1 = rearrange(out1, 'b (r l) -> b (l r)', l=l) w2_dense = torch.block_diag(*torch.unbind(w2_bfly, dim=0)) out2 = F.linear(out1, w2_dense) out2 = rearrange(out2, 'b (l s) -> b (s l)', l=l) return out2 class BlockdiagButterflyMultiply(torch.autograd.Function): """This is a faster implementation, with careful memory copies for the fastest bmm performance. The backward pass is also written manually with careful memory copies. Arguments: x: (batch, n) w1_bfly: (k, q, p), where k = n / p w2_bfly: (l, s, r), where l = k * q / r = n * q / (p * r) Outputs: out: (batch, m), where m = l * s = n * s * q / (p * r) """ @staticmethod @torch.cuda.amp.custom_fwd(cast_inputs=torch.bfloat16) def forward(ctx, x, w1_bfly, w2_bfly): batch_shape, n = x.shape[:-1], x.shape[-1] batch_dim = np.prod(batch_shape) k, q, p = w1_bfly.shape l, s, r = w2_bfly.shape assert k * p == n assert l * r == k * q x_reshaped = x.reshape(batch_dim, k, p).transpose(0, 1) out1 = torch.empty(batch_dim, k, q, device=x.device, dtype=x.dtype).transpose(0, 1) out1 = torch.bmm(x_reshaped, w1_bfly.transpose(-1, -2), out=out1) out1 = out1.transpose(0, 1).reshape(batch_dim, r, l).transpose(-1, -2).contiguous().transpose(0, 1) out2 = torch.empty(batch_dim, l, s, device=x.device, dtype=x.dtype).transpose(0, 1) out2 = torch.bmm(out1, w2_bfly.transpose(-1, -2), out=out2) out2 = out2.permute(1, 2, 0).reshape(*batch_shape, s * l) ctx.save_for_backward(x, w1_bfly, w2_bfly, out1) return out2 @staticmethod @torch.cuda.amp.custom_bwd def backward(ctx, dout): x, w1_bfly, w2_bfly, out1 = ctx.saved_tensors batch_shape, n = x.shape[:-1], x.shape[-1] batch_dim = np.prod(batch_shape) k, q, p = w1_bfly.shape l, s, r = w2_bfly.shape # assert k * p == n # assert l * r == k * q dx, dw1_bfly, dw2_bfly = None, None, None # dout_reshaped = dout.reshape(batch_dim, sqrtn, sqrtn).permute(2, 1, 0).contiguous() dout_reshaped = dout.reshape(batch_dim, s, l).transpose(-1, -2).contiguous() dout_reshaped = dout_reshaped.transpose(0, 1) if ctx.needs_input_grad[2]: # dw2_bfly = torch.empty(l, s, r, device=w2_bfly.device, dtype=w2_bfly.dtype) # dw2_bfly = torch.bmm(dout_reshaped.transpose(-1, -2), out1, out=dw2_bfly) dw2_bfly = torch.bmm(dout_reshaped.transpose(-1, -2), out1.conj()) if ctx.needs_input_grad[1] or ctx.needs_input_grad[0]: dout1 = torch.empty(batch_dim, l, r, device=x.device, dtype=x.dtype).transpose(0, 1) dout1 = torch.bmm(dout_reshaped, w2_bfly.conj(), out=dout1) dout1 = dout1.transpose(0, 1).transpose(-1, -2).contiguous().reshape(batch_dim, k, q).transpose(0, 1) # dout1 = dout1.permute(1, 2, 0).contiguous().transpose(0, 1) if ctx.needs_input_grad[0]: dx = torch.empty(batch_dim, k, p, device=x.device, dtype=x.dtype) dx = torch.bmm(dout1, w1_bfly.conj(), out=dx.transpose(0, 1)).transpose(0, 1).reshape(*batch_shape, n) if ctx.needs_input_grad[1]: x_reshaped = x.reshape(batch_dim, k, p).transpose(0, 1) dw1_bfly = torch.bmm(dout1.transpose(-1, -2), x_reshaped.conj()) return dx, dw1_bfly, dw2_bfly blockdiag_butterfly_multiply = BlockdiagButterflyMultiply.apply
m2-main
bert/src/mm/blockdiag_butterfly_multiply.py
# Copyright (c) 2023, Dan Fu and Simran Arora. # Adapted from https://github.com/HazyResearch/safari/blob/main/src/models/sequence/hyena.py import torch.nn as nn from einops import rearrange import opt_einsum as oe contract = oe.contract from src.mm.hyena_utils import HyenaFilter class MonarchMixerSequenceMixing(nn.Module): def __init__( self, d_model, l_max=128, dropout=0.0, hyena_kernel_lr=None, bidirectional=False, hyena_lr_pos_emb=1e-5, hyena_w=10, hyena_w_mod=1, hyena_wd=0.1, hyena_emb_dim=3, hyena_filter_dropout=0.0, hyena_filter_order=16, residual_long_conv=False, hyena_training_additions=False, ): super().__init__() self.d_model = d_model self.l_max = l_max self.kernel_lr = hyena_kernel_lr self.channels = 1 self.bidirectional = bidirectional self.residual_long_conv = residual_long_conv self.NUM_PROJECTIONS = 3 print('-- Bidirectional:', self.bidirectional) print("-- Using Long Conv Residual:", self.residual_long_conv) print('-- Hyena w:', hyena_w) print('-- Hyena w mod:', hyena_w_mod) print(f"-- Hyena filter order: {hyena_filter_order}") print(f"-- Hyena filter dropout: {hyena_filter_dropout}") print(f"-- Hyena filter wd: {hyena_wd}") print(f"-- Hyena filter emb dim: {hyena_emb_dim}") print(f"-- Hyena filter lr: {hyena_kernel_lr}") print(f"-- Hyena filter lr pos emb: {hyena_lr_pos_emb}") self.filter_fn = HyenaFilter( self.d_model, order=hyena_filter_order, seq_len=self.l_max, dropout=hyena_filter_dropout, bidirectional=self.bidirectional, lr=hyena_kernel_lr, lr_pos_emb=hyena_lr_pos_emb, w=hyena_w, # frequency of periodic activations w_mod=hyena_w_mod, wd=hyena_wd, # weight decay of kernel parameters emb_dim=hyena_emb_dim, ) if self.residual_long_conv: self.filter_fn2 = HyenaFilter( self.d_model, order=hyena_filter_order, seq_len=self.l_max, dropout=hyena_filter_dropout, bidirectional=self.bidirectional, lr=hyena_kernel_lr, lr_pos_emb=hyena_lr_pos_emb, w=hyena_w, # frequency of periodic activations w_mod=hyena_w_mod, wd=hyena_wd, # weight decay of kernel parameters emb_dim=hyena_emb_dim, ) # setup projections self.in_linear = nn.Linear(d_model, 3 * d_model) self.out_linear = nn.Linear(d_model, d_model) self.hyena_training_additions = hyena_training_additions if self.hyena_training_additions: self.act = nn.Identity() self.drop = nn.Dropout(dropout) self.layernorm = nn.LayerNorm(d_model) # setup short conv total_width = self.d_model * self.NUM_PROJECTIONS self.short_filter = nn.Conv1d( in_channels=total_width, out_channels=total_width, kernel_size=3, groups=total_width, padding=2, ) def forward(self, u, **kwargs): # u is B L H if self.hyena_training_additions: u = self.layernorm(u) L = u.size(-2) # in projection u_orig = u u = self.in_linear(u) u = rearrange(u, "b l d -> b d l") # short filter uc = self.short_filter(u)[..., :L] x1, x2, v = uc.split(self.d_model, dim=1) v = v * x1 if self.hyena_training_additions: v = self.drop(v) k = self.filter_fn.filter(L, device=u.device) k = rearrange(k, "c l d -> c d l")[0] # `c` is always 1 by default if self.bidirectional: k_rev = self.filter_fn.filter_rev(L, device=u.device) k_rev = rearrange(k_rev, "c l d -> c d l")[0] # `c` is always 1 by default else: k_rev = None y = self.filter_fn(v, L, k_fwd=k, k_rev=k_rev, bias= self.filter_fn.bias[None, :, None]) if self.residual_long_conv: k2 = self.filter_fn2.filter(L, device=u.device) k2 = rearrange(k2, "c l d -> c d l")[0] if self.bidirectional: k2_rev = self.filter_fn2.filter_rev(L, device=u.device) k2_rev = rearrange(k2_rev, "c l d -> c d l")[0] # `c` is always 1 by default else: k2_rev = None yu = self.filter_fn2(u_orig.transpose(-1, -2), L, k_fwd=k2, k_rev=k2_rev, bias= self.filter_fn2.bias[None, :, None]) # post gating y = y * x2 if self.residual_long_conv: y = y + yu y = y.transpose(-1, -2) if self.hyena_training_additions: y = self.drop(self.act(y)) y = self.out_linear(y) return y, None
m2-main
bert/src/mm/monarch_mixer_sequence_mixer.py
# Adapted from https://github.com/HazyResearch/fly/tree/master/src/models/layers import numpy as np import torch from torch.nn import functional as F from einops import rearrange def blockdiag_weight_to_dense_weight(weight): """ Argumments: weight: (nblocks, out / nblocks, in / blocks) Return: dense_weight: (out / in) """ return torch.block_diag(*torch.unbind(weight, dim=0)) def blockdiag_multiply_reference(x, weight): """ This implementation is slow but more likely to be correct. Arguments: x: (..., n) weight: (nblocks, q, n / nblocks) Outputs: out: (..., nblocks * q) """ n = x.shape[-1] nblocks, q, p = weight.shape assert nblocks * p == n x_reshaped = rearrange(x, '... (nblocks p) -> ... nblocks p', nblocks=nblocks) return rearrange(torch.einsum('...kp, kqp -> ...kq', x_reshaped, weight), '... nblocks q -> ... (nblocks q)') class BlockdiagMultiply(torch.autograd.Function): """This is a faster implementation, with careful memory copies for the fastest bmm performance. The backward pass is also written manually with careful memory copies. Arguments: x: (..., n) weight: (nblocks, q, n / nblocks) Outputs: out: (..., nblocks * q) """ @staticmethod @torch.cuda.amp.custom_fwd(cast_inputs=torch.bfloat16) def forward(ctx, x, weight): ctx.save_for_backward(x, weight) batch_shape, n = x.shape[:-1], x.shape[-1] batch_dim = np.prod(batch_shape) nblocks, q, p = weight.shape assert nblocks * p == n x_reshaped = x.reshape(batch_dim, nblocks, p).transpose(0, 1) out = torch.empty(batch_dim, nblocks, q, device=x.device, dtype=x.dtype).transpose(0, 1) out = torch.bmm(x_reshaped, weight.transpose(-1, -2), out=out).transpose(0, 1) return out.reshape(*batch_shape, nblocks * q) @staticmethod @torch.cuda.amp.custom_bwd def backward(ctx, dout): x, weight = ctx.saved_tensors batch_shape, n = x.shape[:-1], x.shape[-1] batch_dim = np.prod(batch_shape) nblocks, q, p = weight.shape assert nblocks * p == n dx, dweight = None, None dout_reshaped = dout.reshape(batch_dim, nblocks, q).transpose(0, 1) if ctx.needs_input_grad[0]: dx = torch.empty(batch_dim, nblocks, p, device=x.device, dtype=x.dtype) dx = torch.bmm(dout_reshaped, weight.conj(), out=dx.transpose(0, 1)).transpose(0, 1).reshape(*batch_shape, n) if ctx.needs_input_grad[1]: x_reshaped = x.reshape(batch_dim, nblocks, p).transpose(0, 1) dweight = torch.bmm(dout_reshaped.transpose(-1, -2), x_reshaped.conj()) return dx, dweight blockdiag_multiply = BlockdiagMultiply.apply
m2-main
bert/src/mm/blockdiag_multiply.py
m2-main
bert/src/mm/__init__.py
# Adapted from https://github.com/HazyResearch/fly/tree/master/src/models/layers import math from functools import partial import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import init class StructuredLinear(nn.Module): def __init__(self, in_features, out_features, bias=True, device=None, dtype=None): """Subclasses should call reset_parameters """ factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() self.in_features = in_features self.out_features = out_features # Subclasses may override {in,out}_features_extended if not hasattr(self, 'in_features_extended'): self.in_features_extended = in_features if not hasattr(self, 'out_features_extended'): self.out_features_extended = out_features if bias: self.bias = nn.Parameter(torch.zeros(out_features, **factory_kwargs)) else: self.register_parameter('bias', None) def reset_parameters(self) -> None: self.set_weights_from_dense_init(dense_init_fn_=partial(init.kaiming_uniform_, a=math.sqrt(5))) self.reset_parameters_bias() def set_weights_from_dense_init(self, dense_init_fn_): raise NotImplementedError def reset_parameters_bias(self): if self.bias is not None: fan_in = self.bias.shape[-1] bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0 init.uniform_(self.bias, -bound, bound) @property def saving(self): raise NotImplementedError def convert_to_dense_weight(self): factory_kwargs = {'device': self.weight.device, 'dtype': self.weight.dtype} dense_weight = self.forward_matmul(torch.eye(self.in_features, **factory_kwargs)).T return dense_weight def preprocess(self, x): in_features = x.shape[-1] if in_features < self.in_features_extended: x = F.pad(x, (0, self.in_features_extended - in_features)) return x def postprocess(self, output): out_features_extended = output.shape[-1] if out_features_extended > self.out_features: output = output[..., :self.out_features] return output def forward_matmul(self, x): raise NotImplementedError def forward(self, x): output = self.forward_matmul(x) # Convert bias to output.dtype in case of AMP, otherwise bias and activation will be in FP32 return (output + self.bias.to(dtype=output.dtype)) if self.bias is not None else output
m2-main
bert/src/mm/structured_linear.py
# Copyright (c) 2023, Dan Fu and Simran Arora. import torch import torch.nn as nn import math from einops import rearrange import opt_einsum as oe contract = oe.contract from flashmm import mm_block_fwd, hyena_filter_fwd, exp_mod_in_place_fwd from src.utils.train import OptimModule def fast_mm_block( u, linear, out_linear, x1_s, x2_s, v_s, x1_s_bias, x2_s_bias, v_s_bias, k, k_resid, D, Du, dropout_mask, gelu, fft_size ): # u.shape: B L H x1x2v = linear(u) H = x1x2v.shape[-1] // 3 x1, x2, v = x1x2v.split(H, dim=-1) x1 = x1.transpose(1, 2).contiguous() x2 = x2.transpose(1, 2).contiguous() v = v.transpose(1, 2).contiguous() k_f = torch.fft.rfft(k.to(torch.float32), n=fft_size) k_residual_f = torch.fft.rfft(k_resid.to(torch.float32), n=fft_size) out = mm_block_fwd( x1, x2, v, x1_s, x2_s, v_s, x1_s_bias, x2_s_bias, v_s_bias, k_f, None, u.transpose(1, 2).to(x1.dtype).contiguous(), k_residual_f, Du, D, dropout_mask, gelu, fft_size, False, False ) out = out.transpose(-1, -2) return out_linear(out) def pos_emb_init(seq_len, emb_dim): t = torch.linspace(0, 1, seq_len)[None, :, None] # 1, L, 1 if emb_dim > 1: bands = (emb_dim - 1) // 2 # To compute the right embeddings we use the "proper" linspace t_rescaled = torch.linspace(0, seq_len - 1, seq_len)[None, :, None] w = 2 * math.pi * t_rescaled / seq_len # 1, L, 1 f = torch.linspace(1e-4, bands - 1, bands)[None, None] z = torch.exp(-1j * f * w) z = torch.cat([t, z.real, z.imag], dim=-1) return z class FastFilter(OptimModule): def __init__( self, d_model, channels, bidirectional=True, order=16, seq_len=128, lr=1e-3, lr_pos_emb=1e-5, w=1, # frequency of periodic activations wd=0, # weight decay of kernel parameters emb_dim=5, ): # create positional embeddings super().__init__() self.bidirectional = bidirectional if self.bidirectional: channels *= 2 self.channels = channels z = pos_emb_init(seq_len, emb_dim).repeat(self.channels, 1, 1) sin_freq = w * torch.ones(self.channels, order) # create parameters for eo_mat, eo_bias eo_linears = [ nn.Linear(emb_dim, order) for _ in range(self.channels) ] eo_mat = torch.stack([l.weight for l in eo_linears], dim=0).transpose(-1, -2).contiguous() eo_bias = torch.stack([l.bias for l in eo_linears], dim=0) # create parameters for oo1_mat, oo1_bias oo1_linears = [ nn.Linear(order, order) for _ in range(self.channels) ] oo1_mat = torch.stack([l.weight for l in oo1_linears], dim=0).transpose(-1, -2).contiguous() oo1_bias = torch.stack([l.bias for l in oo1_linears], dim=0) # create parameters for oo2_mat, oo2_bias oo2_linears = [ nn.Linear(order, order) for _ in range(self.channels) ] oo2_mat = torch.stack([l.weight for l in oo2_linears], dim=0).transpose(-1, -2).contiguous() oo2_bias = torch.stack([l.bias for l in oo2_linears], dim=0) # create parameters for oh_mat oh_linears = [ nn.Linear(order, d_model, bias=False) for _ in range(self.channels) ] oh_mat = torch.stack([l.weight for l in oh_linears], dim=0).transpose(-1, -2) # create reverse parameter if self.bidirectional: reverse = torch.Tensor([ [0, 1] for _ in range(self.channels // 2) ]).flatten().int() else: reverse = torch.Tensor([0 for _ in range(self.channels)]).int() self.register("z", z, lr=lr_pos_emb) self.register('sin_freq', sin_freq, lr=lr, wd=wd) self.register('eo_mat', eo_mat, lr=lr, wd=wd) self.register('eo_bias', eo_bias, lr=lr, wd=wd) self.register('oo1_mat', oo1_mat, lr=lr, wd=wd) self.register('oo1_bias', oo1_bias, lr=lr, wd=wd) self.register('oo2_mat', oo2_mat, lr=lr, wd=wd) self.register('oo2_bias', oo2_bias, lr=lr, wd=wd) self.register('oh_mat', oh_mat, lr=lr, wd=wd) self.register('reverse', reverse, lr=0) target=1e-2 fast_decay_pct=0.3 slow_decay_pct=1.5 self.min_decay = math.log(target) / slow_decay_pct self.max_decay = math.log(target) / fast_decay_pct self.shift = 0. def forward(self): k = hyena_filter_fwd( self.z, self.sin_freq, self.eo_mat, self.eo_bias, self.oo1_mat, self.oo1_bias, self.oo2_mat, self.oo2_bias, self.reverse, None ) k = torch.bmm(k, self.oh_mat) k = exp_mod_in_place_fwd(k, self.reverse, self.min_decay, self.max_decay, self.shift) return k class FlashMMSequenceMixing(nn.Module): def __init__( self, d_model, l_max=128, hyena_kernel_lr=None, bidirectional=False, hyena_lr_pos_emb=1e-5, hyena_w=10, hyena_w_mod=1, hyena_wd=0.1, hyena_emb_dim=5, hyena_filter_order=128, residual_long_conv=False, **kwargs, ): super().__init__() self.d_model = d_model self.l_max = l_max self.kernel_lr = hyena_kernel_lr self.channels = 1 self.bidirectional = bidirectional self.residual_long_conv = residual_long_conv print('Using Flash MM Sequence Mixing (no bwd pass!)') print('-- Bidirectional:', self.bidirectional) print("-- Using Long Conv Residual:", self.residual_long_conv) print('-- Hyena w:', hyena_w) print('-- Hyena w mod:', hyena_w_mod) channels = 1 if self.residual_long_conv: channels *= 2 self.fast_filter = FastFilter( self.d_model, channels=channels, bidirectional=self.bidirectional, order=hyena_filter_order, seq_len=self.l_max, lr=hyena_kernel_lr, lr_pos_emb=hyena_lr_pos_emb, w=hyena_w, # frequency of periodic activations wd=hyena_wd, # weight decay of kernel parameters emb_dim=hyena_emb_dim, ) # setup projections self.in_linear = nn.Linear(d_model, 3 * d_model) self.out_linear = nn.Linear(d_model, d_model) # to use inits from Conv1d short_filter = nn.Conv1d( in_channels=3 * d_model, out_channels=3 * d_model, kernel_size=4, groups=3 * d_model, padding=3 ) self.x1_s = nn.Parameter(short_filter.weight[:d_model, 0, :].clone()) self.x2_s = nn.Parameter(short_filter.weight[d_model:2 * d_model, 0, :].clone()) self.v_s = nn.Parameter(short_filter.weight[2 * d_model:, 0, :].clone()) self.x1_s_bias = nn.Parameter(short_filter.bias[:d_model].clone()) self.x2_s_bias = nn.Parameter(short_filter.bias[d_model:2 * d_model].clone()) self.v_s_bias = nn.Parameter(short_filter.bias[2 * d_model:].clone()) self.bias = nn.Parameter(torch.randn(self.d_model)) if self.residual_long_conv: self.residual_bias = nn.Parameter(torch.randn(self.d_model)) else: self.residual_bias = None def forward(self, u, **kwargs): fft_size = 2 * self.l_max all_kernels = self.fast_filter() # C L H C, L, H = all_kernels.shape if self.residual_long_conv: k = all_kernels[:C // 2].reshape((C // 2) * L, H).transpose(0, 1).contiguous() k_resid = all_kernels[C // 2:].reshape((C // 2) * L, H).transpose(0, 1).contiguous() else: k = all_kernels.reshape(C * L, H).transpose(0, 1).contiguous() k_resid = None return fast_mm_block( u, self.in_linear, self.out_linear, self.x1_s, self.x2_s, self.v_s, self.x1_s_bias, self.x2_s_bias, self.v_s_bias, k, k_resid, self.bias, self.residual_bias, None, False, fft_size ), None
m2-main
bert/src/mm/flash_mm.py
import torch from einops import rearrange def low_rank_project(M, rank): """Supports batches of matrices as well. """ U, S, Vt = torch.linalg.svd(M) S_sqrt = S[..., :rank].sqrt() U = U[..., :rank] * rearrange(S_sqrt, '... rank -> ... 1 rank') Vt = rearrange(S_sqrt, '... rank -> ... rank 1') * Vt[..., :rank, :] return U, Vt
m2-main
bert/src/ops/low_rank.py
import math import torch from einops import rearrange def butterfly_factor_to_matrix(twiddle: torch.Tensor, factor_index: int) -> torch.Tensor: """ Let b be the base (most commonly 2). Parameters: twiddle: (n // b, b, b) factor_index: an int from 0 to log_b(n) - 1 """ n_div_b, b, _ = twiddle.shape n = b * n_div_b log_b_n = int(math.log(n) / math.log(b)) assert n == b ** log_b_n, f'n must be a power of {b}' assert twiddle.shape == (n // b, b, b) assert 0 <= factor_index <= log_b_n stride = b ** factor_index x = rearrange(torch.eye(n), 'bs (diagblk j stride) -> bs diagblk j stride', stride=stride, j=b) t = rearrange(twiddle, '(diagblk stride) i j -> diagblk stride i j', stride=stride) out = torch.einsum('d s i j, b d j s -> b d i s', t, x) out = rearrange(out, 'b diagblk i stride -> b (diagblk i stride)') return out.t() # Transpose because we assume the 1st dimension of x is the batch dimension if __name__ == '__main__': b = 2 log_b_n = 3 n = b ** log_b_n twiddle = torch.arange(1, n * b + 1, dtype=torch.float).reshape(n // b, b, b) for factor_index in range(log_b_n): print(butterfly_factor_to_matrix(twiddle, factor_index)) b = 3 log_b_n = 2 n = b ** log_b_n twiddle = torch.arange(1, n * b + 1, dtype=torch.float).reshape(n // b, b, b) for factor_index in range(log_b_n): print(butterfly_factor_to_matrix(twiddle, factor_index))
m2-main
bert/src/ops/butterfly_factor.py
import torch import torch.nn as nn import torch.nn.functional as F import flash_attn_cuda def _get_block_size(device, head_dim, is_dropout): assert head_dim % 8 == 0 and head_dim <= 128 return 256 if head_dim <= 64 else 128 def _flash_attn_forward(q, k, v, out, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale, causal, return_softmax, num_splits=0, generator=None): """ num_splits: how much to parallelize over the seqlen_q dimension. num_splits=0 means it will be set by an internal heuristic. We're exposing num_splits mostly for benchmarking. Don't change it unless you know what you're doing. """ softmax_lse, rng_state, *rest = flash_attn_cuda.fwd( q, k, v, out, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale, False, causal, return_softmax, num_splits, generator ) # if out.isnan().any() or softmax_lse.isnan().any(): # breakpoint() S_dmask = rest[0] if return_softmax else None return out, softmax_lse, rng_state, S_dmask def _flash_attn_backward(dout, q, k, v, out, softmax_lse, dq, dk, dv, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale, causal, rng_state=None, num_splits=0, generator=None): """ num_splits: whether to parallelize over the seqlen_k dimension (num_splits > 1) or not (num_splits = 1). num_splits=0 means it will be set by an internal heuristic. Any value above 1 will call the same kernel (i.e. num_splits=2 would call the same kernel as num_splits=3), so effectively the choices are 0, 1, and 2. This hyperparameter can be tuned for performance, but default value (heuristic) should work fine. """ dout = dout.contiguous() # CUDA code assumes that dout is contiguous _, _, _, softmax_d = flash_attn_cuda.bwd( dout, q, k, v, out, softmax_lse, dq, dk, dv, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale, False, causal, num_splits, generator, rng_state) # if dk.isnan().any() or dk.isnan().any() or dv.isnan().any() or softmax_d.isnan().any(): # breakpoint() return dq, dk, dv, softmax_d class FlashAttnQKVPackedFunc(torch.autograd.Function): @staticmethod def forward(ctx, qkv, cu_seqlens, max_seqlen, dropout_p, softmax_scale, causal, return_softmax, deterministic): if softmax_scale is None: softmax_scale = qkv.shape[-1] ** (-0.5) out, softmax_lse, rng_state, S_dmask = _flash_attn_forward( qkv[:, 0], qkv[:, 1], qkv[:, 2], torch.empty_like(qkv[:, 0]), cu_seqlens, cu_seqlens, max_seqlen, max_seqlen, dropout_p, softmax_scale, causal=causal, return_softmax=return_softmax ) ctx.save_for_backward(qkv, out, softmax_lse, cu_seqlens, rng_state) ctx.dropout_p = dropout_p ctx.max_seqlen = max_seqlen ctx.softmax_scale = softmax_scale ctx.causal = causal ctx.deterministic = deterministic return out if not return_softmax else (out, softmax_lse, S_dmask) @staticmethod def backward(ctx, dout, *args): qkv, out, softmax_lse, cu_seqlens, rng_state = ctx.saved_tensors dqkv = torch.empty_like(qkv) _flash_attn_backward( dout, qkv[:, 0], qkv[:, 1], qkv[:, 2], out, softmax_lse, dqkv[:, 0], dqkv[:, 1], dqkv[:, 2], cu_seqlens, cu_seqlens, ctx.max_seqlen, ctx.max_seqlen, ctx.dropout_p, ctx.softmax_scale, ctx.causal, rng_state=rng_state, num_splits=1 if ctx.deterministic else 0, ) return dqkv, None, None, None, None, None, None, None class FlashAttnKVPackedFunc(torch.autograd.Function): @staticmethod def forward(ctx, q, kv, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale, causal, return_softmax, deterministic): if softmax_scale is None: softmax_scale = q.shape[-1] ** (-0.5) out, softmax_lse, rng_state, S_dmask = _flash_attn_forward( q, kv[:, 0], kv[:, 1], torch.empty_like(q), cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale, causal=causal, return_softmax=return_softmax ) ctx.save_for_backward(q, kv, out, softmax_lse, cu_seqlens_q, cu_seqlens_k, rng_state) ctx.dropout_p = dropout_p ctx.max_seqlen_q = max_seqlen_q ctx.max_seqlen_k = max_seqlen_k ctx.softmax_scale = softmax_scale ctx.causal = causal ctx.deterministic = deterministic return out if not return_softmax else (out, softmax_lse, S_dmask) @staticmethod def backward(ctx, dout, *args): q, kv, out, softmax_lse, cu_seqlens_q, cu_seqlens_k, rng_state = ctx.saved_tensors dq = torch.empty_like(q) dkv = torch.empty_like(kv) _flash_attn_backward( dout, q, kv[:, 0], kv[:, 1], out, softmax_lse, dq, dkv[:, 0], dkv[:, 1], cu_seqlens_q, cu_seqlens_k, ctx.max_seqlen_q, ctx.max_seqlen_k, ctx.dropout_p, ctx.softmax_scale, ctx.causal, rng_state=rng_state, num_splits=1 if ctx.deterministic else 0, ) return dq, dkv, None, None, None, None, None, None, None, None, None class FlashAttnFunc(torch.autograd.Function): @staticmethod def forward(ctx, q, k, v, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale, causal, return_softmax, deterministic): if softmax_scale is None: softmax_scale = q.shape[-1] ** (-0.5) out, softmax_lse, rng_state, S_dmask = _flash_attn_forward( q, k, v, torch.empty_like(q), cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale, causal=causal, return_softmax=return_softmax ) ctx.save_for_backward(q, k, v, out, softmax_lse, cu_seqlens_q, cu_seqlens_k, rng_state) ctx.dropout_p = dropout_p ctx.max_seqlen_q = max_seqlen_q ctx.max_seqlen_k = max_seqlen_k ctx.softmax_scale = softmax_scale ctx.causal = causal ctx.deterministic = deterministic return out if not return_softmax else (out, softmax_lse, S_dmask) @staticmethod def backward(ctx, dout, *args): q, k, v, out, softmax_lse, cu_seqlens_q, cu_seqlens_k, rng_state = ctx.saved_tensors dq, dk, dv = torch.empty_like(q), torch.empty_like(k), torch.empty_like(v) _flash_attn_backward( dout, q, k, v, out, softmax_lse, dq, dk, dv, cu_seqlens_q, cu_seqlens_k, ctx.max_seqlen_q, ctx.max_seqlen_k, ctx.dropout_p, ctx.softmax_scale, ctx.causal, rng_state=rng_state, num_splits=1 if ctx.deterministic else 0, ) return dq, dk, dv, None, None, None, None, None, None, None, None, None class FlashAttnQKVPackedSplitFunc(torch.autograd.Function): @staticmethod def forward(ctx, qkv, cu_seqlens, max_seqlen0, max_seqlen1, batch_size0, dropout_p, softmax_scale, causal, return_softmax, deterministic): # Save rng_state because the backward pass will regenerate the dropout mask if dropout_p > 0: rng_state0 = torch.cuda.get_rng_state() generator1 = torch.Generator(device='cuda') rng_state1 = generator1.get_state() else: rng_state0, generator1, rng_state1 = None, None, None if softmax_scale is None: softmax_scale = qkv.shape[-1] ** (-0.5) out = torch.empty_like(qkv[:, 0]) _, softmax_lse0, S_dmask0 = _flash_attn_forward( qkv[:, 0], qkv[:, 1], qkv[:, 2], out, cu_seqlens[:batch_size0 + 1], cu_seqlens[:batch_size0 + 1], max_seqlen0, max_seqlen0, dropout_p, softmax_scale, causal=causal, return_softmax=return_softmax ) s = torch.cuda.Stream() with torch.cuda.stream(s): _, softmax_lse1, S_dmask1 = _flash_attn_forward( qkv[:, 0], qkv[:, 1], qkv[:, 2], out, cu_seqlens[batch_size0:], cu_seqlens[batch_size0:], max_seqlen1, max_seqlen1, dropout_p, softmax_scale, causal=causal, return_softmax=return_softmax, generator=generator1 ) torch.cuda.current_stream().wait_stream(s) ctx.save_for_backward(qkv, out, softmax_lse0, softmax_lse1, cu_seqlens, rng_state0, rng_state1) ctx.dropout_p = dropout_p ctx.max_seqlen0 = max_seqlen0 ctx.max_seqlen1 = max_seqlen1 ctx.batch_size0 = batch_size0 ctx.softmax_scale = softmax_scale ctx.causal = causal ctx.deterministic = deterministic if not return_softmax: return out else: max_seqlen_q = max(softmax_lse0.shape[2], softmax_lse1.shape[2]) max_seqlen_k = max(S_dmask0.shape[3], S_dmask1.shape[3]) softmax_lse = torch.cat([F.pad(softmax_lse0, (0, max_seqlen_q - softmax_lse0.shape[2])), F.pad(softmax_lse1, (0, max_seqlen_q - softmax_lse1.shape[2]))], dim=0) return out, softmax_lse, S_dmask0, S_dmask1 @staticmethod def backward(ctx, dout, *args): qkv, out, softmax_lse0, softmax_lse1, cu_seqlens, rng_state0, rng_state1 = ctx.saved_tensors batch_size0 = ctx.batch_size0 if rng_state0 is not None: cur_rng_state = torch.cuda.get_rng_state() torch.cuda.set_rng_state(rng_state0) if rng_state1 is not None: generator1 = torch.Generator(device='cuda') generator1.set_state(rng_state1) else: generator1 = None dqkv = torch.empty_like(qkv) _flash_attn_backward( dout, qkv[:, 0], qkv[:, 1], qkv[:, 2], out, softmax_lse0, dqkv[:, 0], dqkv[:, 1], dqkv[:, 2], cu_seqlens[:batch_size0 + 1], cu_seqlens[:batch_size0 + 1], ctx.max_seqlen0, ctx.max_seqlen0, ctx.dropout_p, ctx.softmax_scale, ctx.causal, num_splits=1 if ctx.deterministic else 0, ) s = torch.cuda.Stream() with torch.cuda.stream(s): _flash_attn_backward( dout, qkv[:, 0], qkv[:, 1], qkv[:, 2], out, softmax_lse1, dqkv[:, 0], dqkv[:, 1], dqkv[:, 2], cu_seqlens[batch_size0:], cu_seqlens[batch_size0:], ctx.max_seqlen1, ctx.max_seqlen1, ctx.dropout_p, ctx.softmax_scale, ctx.causal, generator=generator1, num_splits=1 if ctx.deterministic else 0, ) torch.cuda.current_stream().wait_stream(s) if rng_state0 is not None: torch.cuda.set_rng_state(cur_rng_state) return dqkv, None, None, None, None, None, None, None, None, None def flash_attn_unpadded_qkvpacked_func(qkv, cu_seqlens, max_seqlen, dropout_p, softmax_scale=None, causal=False, return_attn_probs=False, deterministic=False): """dropout_p should be set to 0.0 during evaluation Arguments: qkv: (total, 3, nheads, headdim), where total = total number of tokens in the batch. cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths of the sequences in the batch, used to index into qkv. max_seqlen: int. Maximum sequence length in the batch. dropout_p: float. Dropout probability. softmax_scale: float. The scaling of QK^T before applying softmax. Default to 1 / sqrt(headdim). causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling). return_attn_probs: bool. Whether to return the attention probabilities. This option is for testing only. The returned probabilities are not guaranteed to be correct (they might not have the right scaling). deterministic: bool. Whether or not to ensure deterministic execution. Return: out: (total, nheads, headdim). softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax normalization factor). S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen). The output of softmax (possibly with different scaling). It also encodes the dropout pattern (negative means that location was dropped, nonnegative means it was kept). """ return FlashAttnQKVPackedFunc.apply(qkv, cu_seqlens, max_seqlen, dropout_p, softmax_scale, causal, return_attn_probs, deterministic) def flash_attn_unpadded_kvpacked_func(q, kv, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale=None, causal=False, return_attn_probs=False, deterministic=False): """dropout_p should be set to 0.0 during evaluation Arguments: q: (total_q, nheads, headdim), where total_q = total number of query tokens in the batch. kv: (total_k, 2, nheads, headdim), where total_k = total number of key tokens in the batch. cu_seqlens_q: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths of the sequences in the batch, used to index into q. cu_seqlens_k: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths of the sequences in the batch, used to index into kv. max_seqlen_q: int. Maximum query sequence length in the batch. max_seqlen_k: int. Maximum key sequence length in the batch. dropout_p: float. Dropout probability. softmax_scale: float. The scaling of QK^T before applying softmax. Default to 1 / sqrt(headdim). causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling). return_attn_probs: bool. Whether to return the attention probabilities. This option is for testing only. The returned probabilities are not guaranteed to be correct (they might not have the right scaling). deterministic: bool. Whether or not to ensure deterministic execution. Return: out: (total, nheads, headdim). softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax normalization factor). S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen). The output of softmax (possibly with different scaling). It also encodes the dropout pattern (negative means that location was dropped, nonnegative means it was kept). """ return FlashAttnKVPackedFunc.apply(q, kv, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale, causal, return_attn_probs, deterministic) def flash_attn_unpadded_func(q, k, v, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale=None, causal=False, return_attn_probs=False, deterministic=False): """dropout_p should be set to 0.0 during evaluation Arguments: q: (total_q, nheads, headdim), where total_q = total number of query tokens in the batch. k: (total_k, nheads, headdim), where total_k = total number of key tokens in the batch. v: (total_k, nheads, headdim), where total_k = total number of key tokens in the batch. cu_seqlens_q: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths of the sequences in the batch, used to index into q. cu_seqlens_k: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths of the sequences in the batch, used to index into kv. max_seqlen_q: int. Maximum query sequence length in the batch. max_seqlen_k: int. Maximum key sequence length in the batch. dropout_p: float. Dropout probability. softmax_scale: float. The scaling of QK^T before applying softmax. Default to 1 / sqrt(headdim). causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling). return_attn_probs: bool. Whether to return the attention probabilities. This option is for testing only. The returned probabilities are not guaranteed to be correct (they might not have the right scaling). deterministic: bool. Whether or not to ensure deterministic execution. Return: out: (total, nheads, headdim). softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax normalization factor). S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen). The output of softmax (possibly with different scaling). It also encodes the dropout pattern (negative means that location was dropped, nonnegative means it was kept). """ return FlashAttnFunc.apply(q, k, v, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale, causal, return_attn_probs, deterministic) def flash_attn_unpadded_qkvpacked_split_func( qkv, cu_seqlens, max_seqlen0, max_seqlen1, batch_size0, dropout_p, softmax_scale=None, causal=False, return_attn_probs=False, deterministic=False): """ Split attention into 2 kernels running on 2 separate streams for performance reason: e.g., if the batch has some sequences of length <= 128 and some > 128, it might be faster to have one kernel dealing with seqlen <= 128 and one kernel for seqlen > 128. dropout_p should be set to 0.0 during evaluation. Arguments: qkv: (total, 3, nheads, headdim), where total = total number of tokens in the batch. cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths of the sequences in the batch, used to index into qkv. max_seqlen0: int. Maximum sequence length in 1st part of the batch. max_seqlen1: int. Maximum sequence length in 2nd part of the batch. batch_size0: int. Number of sequences in the 1st part of the batch. dropout_p: float. Dropout probability. softmax_scale: float. The scaling of QK^T before applying softmax. Default to 1 / sqrt(headdim). causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling). return_attn_probs: bool. Whether to return the attention probabilities. This option is for testing only. The returned probabilities are not guaranteed to be correct (they might not have the right scaling). deterministic: bool. Whether or not to ensure deterministic execution. Return: out: (total, nheads, headdim). softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax normalization factor). S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen). The output of softmax (possibly with different scaling). It also encodes the dropout pattern (negative means that location was dropped, nonnegative means it was kept). """ return FlashAttnQKVPackedSplitFunc.apply(qkv, cu_seqlens, max_seqlen0, max_seqlen1, batch_size0, dropout_p, softmax_scale, causal, return_attn_probs, deterministic) def flash_attn_func(qkv, cu_seqlens, dropout_p, max_s, softmax_scale=None, causal=False, return_attn_probs=False): """For backward-compatibility only, will remove soon. dropout_p should be set to 0.0 during evaluation """ return flash_attn_unpadded_qkvpacked_func(qkv, cu_seqlens, max_s, dropout_p, softmax_scale, causal, return_attn_probs)
m2-main
bert/src/ops/bert_flashattention.py
# Adapted from https://github.com/mlcommons/training_results_v1.1/blob/main/NVIDIA/benchmarks/bert/implementations/pytorch/padding.py import torch import torch.nn.functional as F from einops import rearrange, repeat class IndexFirstAxis(torch.autograd.Function): @staticmethod def forward(ctx, input, indices): ctx.save_for_backward(indices) ctx.first_axis_dim = input.shape[0] assert input.ndim == 2 # TD [2022-03-04] For some reason torch.gather is a bit faster than indexing. # return input[indices] return torch.gather(input, 0, repeat(indices, 'z -> z d', d=input.shape[1])) @staticmethod def backward(ctx, grad_output): indices, = ctx.saved_tensors grad_input = torch.zeros([ctx.first_axis_dim, *grad_output.shape[1:]], device=grad_output.device, dtype=grad_output.dtype) # TD [2022-03-04] For some reason torch.scatter is a bit faster than indexing. # grad_input[indices] = grad_output grad_input.scatter_(0, repeat(indices, 'z -> z d', d=grad_output.shape[1]), grad_output) return grad_input, None index_first_axis = IndexFirstAxis.apply index_first_axis_residual = IndexFirstAxis.apply class IndexPutFirstAxis(torch.autograd.Function): @staticmethod def forward(ctx, values, indices, first_axis_dim): ctx.save_for_backward(indices) assert indices.ndim == 1 assert values.ndim == 2 output = torch.zeros(first_axis_dim, values.shape[1], device=values.device, dtype=values.dtype) # TD [2022-03-04] For some reason torch.scatter is a bit faster than indexing. output[indices] = values # output.scatter_(0, repeat(indices, 'z -> z d', d=values.shape[1]), values) return output @staticmethod def backward(ctx, grad_output): indices, = ctx.saved_tensors # TD [2022-03-04] For some reason torch.gather is a bit faster than indexing. grad_values = grad_output[indices] # grad_values = torch.gather(grad_output, 0, repeat(indices, 'z -> z d', d=grad_output.shape[1])) return grad_values, None, None index_put_first_axis = IndexPutFirstAxis.apply def unpad_input(hidden_states, attention_mask): """ Arguments: hidden_states: (batch, seqlen, dim) attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid. Return: hidden_states: (total_nnz, dim), where total_nnz = number of tokens in selected in attention_mask. cu_seqlens: (batch + 1), the cumulative sequence lengths, used to index into hidden_states. max_seqlen_in_batch: int """ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() max_seqlen_in_batch = seqlens_in_batch.max().item() cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)) # TD [2022-03-04] We don't want to index with a bool mask, because Pytorch will expand the # bool mask, then call nonzero to get the indices, then index with those. The indices is @dim # times large than it needs to be, wasting memory. It's faster and more memory-efficient to # index with integer indices. Moreover, torch's index is a bit slower than it needs to be, # so we write custom forward and backward to make it a bit faster. return (index_first_axis(rearrange(hidden_states, 'b s d -> (b s) d'), indices), indices, cu_seqlens, max_seqlen_in_batch) def pad_input(hidden_states, indices, batch, seqlen): """ Arguments: hidden_states: (total_nnz, dim), where total_nnz = number of tokens in selected in attention_mask. indices: (total_nnz) Return: hidden_states: (batch, seqlen, dim) """ dim = hidden_states.shape[-1] # output = torch.zeros((batch * seqlen), dim, device=hidden_states.device, dtype=hidden_states.dtype) # output[indices] = hidden_states output = index_put_first_axis(hidden_states, indices, batch * seqlen) return rearrange(output, '(b s) d -> b s d', b=batch)
m2-main
bert/src/ops/bert_padding.py
import numpy as np import torch from torch.nn import functional as F from einops import rearrange from src.ops.low_rank import low_rank_project def blockdiag_weight_to_dense_weight(weight): """ Argumments: weight: (nblocks, out / nblocks, in / blocks) Return: dense_weight: (out / in) """ return torch.block_diag(*torch.unbind(weight, dim=0)) def blockdiag_multiply_reference(x, weight): """ This implementation is slow but more likely to be correct. Arguments: x: (..., n) weight: (nblocks, q, n / nblocks) Outputs: out: (..., nblocks * q) """ n = x.shape[-1] nblocks, q, p = weight.shape assert nblocks * p == n x_reshaped = rearrange(x, '... (nblocks p) -> ... nblocks p', nblocks=nblocks) return rearrange(torch.einsum('...kp, kqp -> ...kq', x_reshaped, weight), '... nblocks q -> ... (nblocks q)') class BlockdiagMultiply(torch.autograd.Function): """This is a faster implementation, with careful memory copies for the fastest bmm performance. The backward pass is also written manually with careful memory copies. Arguments: x: (..., n) weight: (nblocks, q, n / nblocks) Outputs: out: (..., nblocks * q) """ @staticmethod @torch.cuda.amp.custom_fwd(cast_inputs=torch.float16) def forward(ctx, x, weight): ctx.save_for_backward(x, weight) batch_shape, n = x.shape[:-1], x.shape[-1] batch_dim = np.prod(batch_shape) nblocks, q, p = weight.shape assert nblocks * p == n x_reshaped = x.reshape(batch_dim, nblocks, p).transpose(0, 1) out = torch.empty(batch_dim, nblocks, q, device=x.device, dtype=x.dtype).transpose(0, 1) out = torch.bmm(x_reshaped, weight.transpose(-1, -2), out=out).transpose(0, 1) return out.reshape(*batch_shape, nblocks * q) @staticmethod @torch.cuda.amp.custom_bwd def backward(ctx, dout): x, weight = ctx.saved_tensors batch_shape, n = x.shape[:-1], x.shape[-1] batch_dim = np.prod(batch_shape) nblocks, q, p = weight.shape assert nblocks * p == n dx, dweight = None, None dout_reshaped = dout.reshape(batch_dim, nblocks, q).transpose(0, 1) if ctx.needs_input_grad[0]: dx = torch.empty(batch_dim, nblocks, p, device=x.device, dtype=x.dtype) dx = torch.bmm(dout_reshaped, weight.conj(), out=dx.transpose(0, 1)).transpose(0, 1).reshape(*batch_shape, n) if ctx.needs_input_grad[1]: x_reshaped = x.reshape(batch_dim, nblocks, p).transpose(0, 1) dweight = torch.bmm(dout_reshaped.transpose(-1, -2), x_reshaped.conj()) return dx, dweight blockdiag_multiply = BlockdiagMultiply.apply
m2-main
bert/src/ops/blockdiag_multiply.py
import math import torch import torch.nn as nn from einops import rearrange from src.models.layers.blockdiag_butterfly_multiply import blockdiag_butterfly_multiply # from src.ops.low_rank import low_rank_project # Copied here so it's more self-contained def low_rank_project(M, rank): """Supports batches of matrices as well. """ U, S, Vt = torch.linalg.svd(M) S_sqrt = S[..., :rank].sqrt() U = U[..., :rank] * rearrange(S_sqrt, '... rank -> ... 1 rank') Vt = rearrange(S_sqrt, '... rank -> ... rank 1') * Vt[..., :rank, :] return U, Vt def factors(n): return [(i, n // i) for i in range(1, math.floor(math.sqrt(n)) + 1) if n % i == 0] def blockdiag_butterfly_project(M, sizes=None): """Only works for square matrices for now """ m, n = M.shape if m != n: raise NotImplementedError('Only support square matrices') if sizes is None: # Find the factors that are closest to sqrt(n) sizes = factors(n)[-1] # Larger factor first is probably more efficient, idk sizes = (sizes[1], sizes[0]) assert n == sizes[0] * sizes[1] M_permuted_batched = rearrange(M, '(p k) (r s) -> k r p s', k=sizes[1], r=sizes[0]) U, Vt = low_rank_project(M_permuted_batched, rank=1) w1_bfly = rearrange(Vt, 'k r 1 s -> r k s') w2_bfly = rearrange(U, 'k r s 1 -> k s r') return w1_bfly, w2_bfly class ButterflyFFT(nn.Module): def __init__(self, n, direction='fft', norm='ortho', sizes=None): super().__init__() eye = torch.eye(n, dtype=torch.complex128) assert direction in ['fft', 'ifft'] transform = torch.fft.fft if direction == 'fft' else torch.fft.ifft dft = transform(eye, norm=norm).t() # Find the factors that are closest to sqrt(n) sizes = factors(n)[-1] # Larger factor first is probably more efficient, idk sizes = (sizes[1], sizes[0]) self.register_buffer('perm', rearrange(torch.arange(n), '(i j) -> (j i)', j=sizes[0])) w1, w2 = blockdiag_butterfly_project(dft[:, self.perm], sizes=sizes) # Store parameters as real instead of complex to avoid issues with Adam / AdamW self.w1_bfly = nn.Parameter(torch.view_as_real(w1.cfloat())) self.w2_bfly = nn.Parameter(torch.view_as_real(w2.cfloat())) def forward(self, x): w1_bfly, w2_bfly = torch.view_as_complex(self.w1_bfly), torch.view_as_complex(self.w2_bfly) return blockdiag_butterfly_multiply(rearrange(x[..., self.perm], '... n -> (...) n'), w1_bfly, w2_bfly).reshape_as(x) class ButterflyFFT2(nn.Module): def __init__(self, n1, n2, direction='fft', norm='ortho'): """Input will have shape (..., n1, n2) """ super().__init__() self.fft1 = ButterflyFFT(n1, direction=direction, norm=norm) self.fft2 = ButterflyFFT(n2, direction=direction, norm=norm) def forward(self, x): out = rearrange(self.fft1(rearrange(x, '... n1 n2 -> ... n2 n1')), '... n2 n1 -> ... n1 n2') return self.fft2(out)
m2-main
bert/src/ops/blockdiag_butterfly_projection.py
import torch @torch.jit.script def jit_dropout_add(x, residual, prob): # type: (Tensor, Tensor, float) -> Tensor return torch.nn.functional.dropout(x, p=prob, training=True) + residual def fused_dropout_add(x, residual, prob, is_training) : # type: (Tensor, Tensor, float, bool) -> Tensor if is_training: out = jit_dropout_add(x, residual, prob) else: out = torch.nn.functional.dropout(x, p=prob, training=is_training) + residual return out @torch.jit.script def jit_bias_dropout_add(x, bias, residual, prob) : # type: (Tensor, Tensor, Tensor, float) -> Tensor return torch.nn.functional.dropout(x + bias, p=prob, training=True) + residual def fused_bias_dropout_add(x, bias, residual, prob, is_training) : # type: (Tensor, Tensor, Tensor, float, bool) -> Tensor if is_training: out = jit_bias_dropout_add(x, bias, residual, prob) else: out = torch.nn.functional.dropout(x + bias, p=prob, training=is_training) + residual return out
m2-main
bert/src/ops/fused_dropout_add.py
# Adapted from https://github.com/NVIDIA/apex/blob/master/apex/fused_dense/fused_dense.py # On the backward pass, we don't use the fused kernel from cublasLt since that's a bit slower. # Instead we use the regular backward from F.linear. # We also make it work with pytorch amp. # TD [2022-02-27] The fused backward is also less accurate, and it might silently fail to compute # grad_bias (when it takes the cublas gemm code path instead of the cublasLt code path) import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.cuda.amp import custom_bwd, custom_fwd import fused_dense_cuda # from apex # import fused_dense_lib as fused_dense_cuda # implements fused GEMM+bias in forward pass using mlp_cuda from apex class FusedDenseFuncMine(torch.autograd.Function): @staticmethod @custom_fwd(cast_inputs=torch.float16) def forward(ctx, x, weight, bias): ctx.save_for_backward(x, weight) batch_shape, n = x.shape[:-1], x.shape[-1] batch_dim = np.prod(batch_shape) output = fused_dense_cuda.linear_bias_forward(x.reshape(batch_dim, n), weight, bias) return output.reshape(*batch_shape, output.shape[-1]) @staticmethod @custom_bwd def backward(ctx, grad_output): x, weight = ctx.saved_tensors batch_shape, n = x.shape[:-1], x.shape[-1] batch_dim = np.prod(batch_shape) grad_input, grad_weight, grad_bias = fused_dense_cuda.linear_bias_backward( x.reshape(batch_dim, n), weight, grad_output.reshape(batch_dim, grad_output.shape[-1]) ) # print((grad_bias - grad_output.view(-1, grad_output.shape[-1]).sum(dim=0)).abs().max()) return grad_input.reshape_as(x), grad_weight, grad_bias # grad_input, grad_weight = None, None # grad_output_reshaped = grad_output.reshape(batch_dim, grad_output.shape[-1]) # if ctx.needs_input_grad[0]: # grad_input = (grad_output_reshaped @ weight.conj()).reshape(*batch_shape, n) # if ctx.needs_input_grad[1]: # grad_weight = grad_output_reshaped.t() @ x.conj().reshape(batch_dim, n) # # We don't need to compute grad_bias explicitly, when we return grad_out Pytorch # # will sum over the batch dimension to get grad_bias. # return grad_input, grad_weight, grad_output fused_dense_function_mine = FusedDenseFuncMine.apply class FusedDenseMine(nn.Linear): def forward(self, x): if x.is_cuda and self.bias is not None: return fused_dense_function_mine(x, self.weight, self.bias) else: return F.linear(x, self.weight, self.bias)
m2-main
bert/src/ops/fused_dense.py
import torch from einops import rearrange from src.ops.low_rank import low_rank_project def blockdiag_butterfly_multiply_einsum_simple(x, w1_bfly, w2_bfly): """ Arguments: x: (batch, n) w1_bfly: (k, j, i), where k = n / i w2_bfly: (j, l, k) Outputs: out: (batch, m), where m = l * j """ batch, n = x.shape k, j, i = w1_bfly.shape j1, l, k1 = w2_bfly.shape assert j1 == j assert k1 == k assert k * i == n x_reshaped = rearrange(x, 'b (k i) -> b k i', k=k) out = torch.einsum('b k i, k j i, j l k -> b l j', x_reshaped, w1_bfly, w2_bfly) return rearrange(out, 'b l j -> b (l j)') def blockdiag_butterfly_project_einsum_simple(M, nblocks1, nblocks2): """ Arguments: M: (m, n) Outputs: w1_bfly: (nblocks1, nblocks2, i) w2_bfly: (nblocks2, l, nblocks1) """ m, n = M.shape k, j = nblocks1, nblocks2 M_permuted_batched = rearrange(M, '(l j) (k i) -> k j l i', k=nblocks1, j=nblocks2) U, Vt = low_rank_project(M_permuted_batched, rank=1) w1_bfly = rearrange(Vt, 'k j 1 i -> k j i') w2_bfly = rearrange(U, 'k j l 1 -> j l k') return w1_bfly, w2_bfly def blockdiag_butterfly_multiply_einsum(x, w1_bfly, w2_bfly, b2): """ Arguments: x: (batch, n) w1_bfly: (k, (j * b1), i), where k = n / i w2_bfly: (j, (l * b2), (k b1)) Outputs: out: (batch, m), where m = l * j * b2 """ batch, n = x.shape k, jb1, i = w1_bfly.shape j, lb2, kb1 = w2_bfly.shape b1 = jb1 // j assert jb1 == j * b1 assert kb1 == k * b1 assert k * i == n x_reshaped = rearrange(x, 'b (k i) -> b k i', k=k) w1_bfly = rearrange(w1_bfly, 'k (j b1) i -> k j b1 i', b1=b1) w2_bfly = rearrange(w2_bfly, 'j (l b2) (k b1) -> j l b2 k b1', b1=b1, b2=b2) # torch.einsum doesn't support indices named b1 or b2, so we map b1 -> y, b2 -> z out = torch.einsum('b k i, k j y i, j l z k y -> b l j z', x_reshaped, w1_bfly, w2_bfly) return rearrange(out, 'b l j b2 -> b (l j b2)') def blockdiag_butterfly_project_einsum(M, nblocks1, nblocks2, b1, b2): """ Arguments: M: (m, n) Outputs: w1_bfly: (nblocks1, nblocks2, i) w2_bfly: (nblocks2, l, nblocks1) """ m, n = M.shape k, j = nblocks1, nblocks2 M_permuted_batched = rearrange(M, '(l j b2) (k i) -> k j (l b2) i', k=nblocks1, j=nblocks2, b2=b2) U, Vt = low_rank_project(M_permuted_batched, rank=b1) w1_bfly = rearrange(Vt, 'k j b1 i -> k (j b1) i') w2_bfly = rearrange(U, 'k j lb2 b1 -> j lb2 (k b1)') return w1_bfly, w2_bfly def blockdiag_butterfly_multiply_einsum_rank(x, w1_bfly, w2_bfly): """ Arguments: x: (batch, n) w1_bfly: (k, (r * j), i), where k = n / i w2_bfly: (j, l, (k r)) Outputs: out: (batch, m), where m = l * j """ batch, n = x.shape k, jb1, i = w1_bfly.shape j, l, kb1 = w2_bfly.shape r = jb1 // j assert jb1 == j * r assert kb1 == k * r assert k * i == n x_reshaped = rearrange(x, 'b (k i) -> b k i', k=k) w1_bfly = rearrange(w1_bfly, 'k (r j) i -> k r j i', r=r) w2_bfly = rearrange(w2_bfly, 'j l (k r) -> j l k r', r=r) out = torch.einsum('b k i, k r j i, j l k r -> b l j', x_reshaped, w1_bfly, w2_bfly) return rearrange(out, 'b l j -> b (l j)') def blockdiag_butterfly_project_einsum_rank(M, nblocks1, nblocks2, rank): """ Arguments: M: (m, n) Outputs: w1_bfly: (nblocks1, r * nblocks2, i) w2_bfly: (nblocks2, l, nblocks1 * r) """ m, n = M.shape k, j = nblocks1, nblocks2 M_permuted_batched = rearrange(M, '(l j) (k i) -> k j l i', k=nblocks1, j=nblocks2) U, Vt = low_rank_project(M_permuted_batched, rank=rank) w1_bfly = rearrange(Vt, 'k j r i -> k (r j) i') w2_bfly = rearrange(U, 'k j l r -> j l (k r)') return w1_bfly, w2_bfly
m2-main
bert/src/ops/blockdiag_butterfly_einsum.py
import torch from softmaxlib import additive_masked_softmax_dropout_forward from softmaxlib import masked_scale_softmax_backward_recompute from src.ops.triton.softmax_dropout import softmax_dropout class _fused_softmax_dropout(torch.autograd.Function): @staticmethod def forward(ctx, x, p, mask, return_dropout_mask=False): """ x: (batch_size, nheads, q_seqlen, k_seqlen) p: float mask: (batch_size, 1, 1, k_seqlen) """ assert x.dtype == torch.float16 assert x.ndim == 4 assert mask is not None x = x.contiguous() dropout_results, dropout_mask = additive_masked_softmax_dropout_forward(x, mask, p) ctx.save_for_backward(x, mask, dropout_mask) ctx.dropout_prob = p return dropout_results, (None if not return_dropout_mask else dropout_mask) @staticmethod def backward(ctx, grad_out, grad_dropout_mask): x, mask, dropout_mask = ctx.saved_tensors p = ctx.dropout_prob grad_in = masked_scale_softmax_backward_recompute(grad_out, x, mask, dropout_mask, p) return grad_in, None, None, None def fused_softmax_dropout(x, p, mask): if x.is_cuda and x.dtype == torch.float16 and mask is not None and p != 0.0: return _fused_softmax_dropout.apply(x, p, mask)[0] else: return softmax_dropout(x, p, mask, mask_type='bk')
m2-main
bert/src/ops/fused_softmax_dropout.py
from PIL import Image, ImageEnhance, ImageOps import numpy as np from torchvision import transforms import random norm_stats = { "imagenet": ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), "clevr": ([0.47097, 0.46812, 0.46185, 0], [0.08974, 0.08686, 0.09197, 1]), "cxr": ([0.48865], [0.24621]), "poet": ([0.46649, 0.4467, 0.41329], [0.26, 0.25853, 0.27346]), } num_channels_dict = { "cxr": 1, "cxr2": 1, "mets": 1, } def get_data_transforms(dataset_name, normalization_type="none"): """Get data transforms based on dataset name""" num_channels = num_channels_dict[dataset_name] if normalization_type == "none": mean, std = [0] * num_channels, [1] * num_channels elif normalization_type == "imagenet": if num_channels != 3: raise ValueError("Cannot use imagenet statistics with ≠3 channels") mean, std = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225] elif normalization_type == "train_images": if dataset_name in norm_stats: mean, std = norm_stats[dataset_name] else: mean, std = [0] * num_channels, [1] * num_channels else: raise ValueError(f"Unknown normalization type {normalization_type}") eval_transform = transforms.Compose( [ transforms.Resize([224, 224]), # 384 for ViT transforms.ToTensor(), transforms.Normalize(mean, std), ] ) train_transform = eval_transform data_transforms = { "train": train_transform, "eval": eval_transform, } data_transforms["val"] = eval_transform data_transforms["test"] = eval_transform return data_transforms
observational-main
transforms.py
import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torchvision import models import json import os import pickle from emmental.scorer import Scorer from emmental.task import EmmentalTask from emmental.data import EmmentalDataLoader from emmental.utils.utils import pred_to_prob, move_to_device from end_model.dataset import ( ObservationalDataset, num_classes_dict, ) from end_model.soft_cross_entropy import SoftCrossEntropyLoss from transforms import get_data_transforms from tqdm import tqdm from functools import partial import pdb gaze_norm_stats = { "cxr": ( torch.Tensor([0.3585, 0.5312, 1.2828]), torch.Tensor([0.2142, 0.2206, 0.5644]), ) } helper_output_dim_dict = {"loc": 9, "time": 2, "diffusivity": 2} def ce_loss(task_name, num_classes, immediate_output_dict, Y, active): if num_classes > 2: if len(Y.shape) < 2: # i.e. if Y not already in pred form Y_ = torch.Tensor(pred_to_prob(Y, num_classes)) Y_ = move_to_device(Y_, 0) else: Y_ = Y else: Y_ = torch.stack((1 - Y, Y), axis=1) # active = Y != -1 ce_loss = SoftCrossEntropyLoss().forward( immediate_output_dict[f"classification_module_{task_name}"][0][active], Y_[active], ) loss = ce_loss return loss def ce_loss_reweight(task_name, num_classes, immediate_output_dict, Y, active): if num_classes > 2: Y_ = torch.Tensor(pred_to_prob(Y, num_classes)) Y_ = move_to_device(Y_, 0) else: Y_ = torch.stack((1 - Y, Y), axis=1) loss_outputs = SoftCrossEntropyLoss(reduction="none").forward( immediate_output_dict[f"classification_module_{task_name}"][0][active], Y_[active], ) confidence_weights = torch.Tensor( immediate_output_dict["_input_"]["confidence"] ).cuda() return confidence_weights.dot(loss_outputs) / confidence_weights.sum() def output(task_name, immediate_output_dict): return F.softmax( immediate_output_dict[f"classification_module_{task_name}"][0], dim=1 ) # Two functions below for MSE gaze feature learning def mse_loss(task_name, immediate_output_dict, Y, active): prediction = immediate_output_dict[f"classification_module_{task_name}"][0] return F.mse_loss(prediction[active], Y[active]) def mse_output(task_name, immediate_ouput_dict): return immediate_ouput_dict[f"classification_module_{task_name}"][0] # this squeeze module was necessary to connect resnet encoder in emmental class SqueezeModule(nn.Module): """A default identity input module that simply passes the squeezed input through.""" def __init__(self): super().__init__() def reset_parameters(self): pass def forward(self, x): return x.squeeze() # helper def save_dict_to_json(d, json_path): """Saves dict of floats in json file Args: d: (dict) of float-castable values (np.float, int, float, etc.) json_path: (string) path to json file """ with open(json_path, "w") as f: # We need to convert the values to float for json (it doesn't accept np.array, np.float, ) d = {k: float(v) for k, v in d.items()} json.dump(d, f, indent=4) def str2list(v, dim=","): return [t.strip() for t in v.split(dim)] def write_to_file(path, file_name, value): if not isinstance(value, str): value = str(value) fout = open(os.path.join(path, file_name), "w") fout.write(value + "\n") fout.close() def fetch_dataloaders( task_type, gaze_mtl_task, source, data_dir, train_scale, val_scale, seed, batch_size, ): helper_tasks = gaze_mtl_task.split("_") num_helper_tasks = len(helper_tasks) datasets = {} transforms = get_data_transforms(source, normalization_type="train_images") for split in ["train", "val", "test"]: datasets[split] = ObservationalDataset( source=source, task=task_type, gaze_mtl_task=gaze_mtl_task, data_dir=data_dir, split_type=split, transform=transforms[split], train_scale=train_scale, val_scale=val_scale, seed=seed, ) task_to_label_dict = {"target": "target"} if task_type == "gaze_mtl": for i in range(num_helper_tasks): task_to_label_dict["helper_task_" + str(i)] = "helper_task_" + str(i) elif task_type == "weak_gaze": task_to_label_dict = {"target": "weak"} dataloaders = [] for split in ["train", "val", "test"]: dataloaders.append( EmmentalDataLoader( task_to_label_dict=task_to_label_dict, dataset=datasets[split], split=split, shuffle=split == "train", batch_size=batch_size, num_workers=8, ) ) return dataloaders def create_tasks( task_type, gaze_mtl_task, source, pretrained, task_weights, load_path=None, ): helper_tasks = gaze_mtl_task.split("_") num_helper_tasks = len(helper_tasks) helper_output_dims = [helper_output_dim_dict[task] for task in helper_tasks] num_classes = num_classes_dict[source] input_module = models.resnet50(pretrained=pretrained) num_features = 2048 # remove last FC layer modules = list(input_module.children())[:-1] modules.append(SqueezeModule()) cnn_module = nn.Sequential(*modules) if load_path is not None: print(f"Loading from {load_path}...") loaded = torch.load(load_path) cnn_module.load_state_dict(loaded["model"]["module_pool"]["cnn"]) task_names = ["target"] weights = [1] num_classes_task = {"target": num_classes} if task_type in ["gaze_mtl", "gaze_mtl_ws"]: for i in range(num_helper_tasks): task_names.append("helper_task_" + str(i)) num_classes_task["helper_task_" + str(i)] = helper_output_dims[i] weights.append(task_weights[i]) loss_fnc = ce_loss tasks = [ EmmentalTask( name=task_name, module_pool=nn.ModuleDict( { "cnn": cnn_module, f"classification_module_{task_name}": nn.Linear( num_features, num_classes_task[task_name] ), } ), task_flow=[ {"name": "cnn", "module": "cnn", "inputs": [("_input_", "image")]}, { "name": f"classification_module_{task_name}", "module": f"classification_module_{task_name}", "inputs": [("cnn", 0)], }, ], loss_func=partial(loss_fnc, task_name, num_classes_task[task_name]), output_func=partial(output, task_name), scorer=Scorer(metrics=["accuracy", "roc_auc", "precision", "recall", "f1"]), weight=weights[t_ndx], ) for t_ndx, task_name in enumerate(task_names) ] return tasks def save_features(save_pth, model, dataloader, task): model.eval() features_dict = {} encoder = model.module_pool.cnn for x_dict_b, y_dict_b in tqdm(dataloader, total=len(dataloader)): if task in ["unsup_gaze", "gaze_lstm"]: input_b = x_dict_b["gaze_seq"] img_pth_b = x_dict_b["id"] else: input_b = x_dict_b["image"] img_pth_b = x_dict_b["img_id"] feature_b = encoder(input_b.cuda()).squeeze() for i in range(feature_b.shape[0]): features_dict[img_pth_b[i]] = feature_b[i, :].detach().cpu().numpy() with open(os.path.join(save_pth, "train_features_dict.pkl"), "wb") as pkl_f: pickle.dump(features_dict, pkl_f) def save_predictions(save_pth, emm_model, dataloaders, task): emm_model.eval() encoder = emm_model.module_pool.cnn target_head = emm_model.module_pool.classification_module_target model = nn.Sequential(encoder, target_head) if task == "gaze_mtl": helper_head = emm_model.module_pool.classification_module_helper_task_0 helper_model = nn.Sequential(encoder, helper_head) for ndx, dataloader in enumerate(dataloaders): predictions_dict = {} for x_dict_b, y_dict_b in tqdm(dataloader, total=len(dataloader)): input_b = x_dict_b["image"] img_pth_b = x_dict_b["img_id"] true_labels_b = y_dict_b["target"] logits = model(input_b) predictions_b = F.softmax(logits, dim=1)[:, 1].detach().cpu().numpy() if task == "gaze_mtl": helper_true_labels_b = y_dict_b["helper_task_0"] logits = helper_model(input_b) helper_predictions_b = F.softmax(logits, dim=1).detach().cpu().numpy() for i in range(predictions_b.shape[0]): if task == "gaze_mtl": predictions_dict[img_pth_b[i]] = ( predictions_b[i], true_labels_b[i], helper_predictions_b[i], helper_true_labels_b[i], ) else: predictions_dict[img_pth_b[i]] = ( predictions_b[i], true_labels_b[i], ) if ndx == 0: file_name = "train_predictions_dict.pkl" elif ndx == 1: file_name = "val_predictions_dict.pkl" elif ndx == 2: file_name = "test_predictions_dict.pkl" with open(os.path.join(save_pth, file_name), "wb") as pkl_f: pickle.dump(predictions_dict, pkl_f)
observational-main
emmental_utils.py
import logging import os, sys import argparse import emmental from emmental import Meta from emmental.learner import EmmentalLearner from emmental.model import EmmentalModel from emmental.utils.parse_args import parse_args, parse_args_to_config from emmental_utils import ( fetch_dataloaders, create_tasks, write_to_file, save_predictions, ) from utils import add_application_args logger = logging.getLogger(__name__) def get_parser(): # Parse cmdline args and setup environment parser = argparse.ArgumentParser( "Observational Runner", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser = parse_args(parser=parser) add_application_args(parser) return parser def main(args): # Ensure that global state is fresh Meta.reset() # Initialize Emmental config = parse_args_to_config(args) emmental.init( config["meta_config"]["log_path"], config=config, use_exact_log_path=config["meta_config"]["use_exact_log_path"], ) # Save command line argument into file cmd_msg = " ".join(sys.argv) logger.info(f"COMMAND: {cmd_msg}") write_to_file(Meta.log_path, "cmd.txt", cmd_msg) # Save Emmental config into file logger.info(f"Config: {Meta.config}") write_to_file(Meta.log_path, "config.txt", Meta.config) # fetch dataloaders dataloaders = fetch_dataloaders( args.task, args.gaze_mtl_task, args.source, args.data_dir, args.train_scale, args.val_scale, args.seed, args.batch_size, ) # create emmental tasks tasks = create_tasks( args.task, args.gaze_mtl_task, args.source, args.pretrained, args.task_weights, load_path=args.load_cnn, ) # create emmental model model = EmmentalModel(name="Observational", tasks=tasks) logger.info(f"Total parameters: {sum(p.numel() for p in model.parameters())}") logger.info(f"Model task weights: {model.weights}") if not (args.evaluate): # run learner emmental_learner = EmmentalLearner() if args.transfer_learning: model.weights = {"target": 1.0, "helper_task_0": 0} emmental_learner.learn(model, dataloaders) if args.transfer_learning: model.weights = {"target": 0.0, "helper_task_0": 1.0} # Freeze CNN encoder cnn_encoder = model.module_pool.cnn for param in cnn_encoder.parameters(): param.requires_grad = False Meta.config["learner_config"]["n_epochs"] = 15 emmental_learner.learn(model, dataloaders) if args.load_cnn: cnn_encoder = model.module_pool.cnn for param in cnn_encoder.parameters(): param.requires_grad = False scores = model.score(dataloaders) # Save metrics into file write_to_file(Meta.log_path, "metrics.txt", scores) save_predictions(Meta.log_path, model, dataloaders, args.task) # Save best metrics into file write_to_file( Meta.log_path, "best_metrics.txt", emmental_learner.logging_manager.checkpointer.best_metric_dict, ) # save_features(Meta.config["meta_config"]["log_path"],model,dataloaders) else: best_model_pth = os.path.join( Meta.config["meta_config"]["log_path"], "best_model_target_" + args.source + "_val_accuracy.pth", ) model.load(best_model_pth) # Save metrics into file # write_to_file(Meta.log_path, "metrics.txt", scores) save_predictions(Meta.log_path, model, dataloaders, args.task) # save_features(Meta.config["meta_config"]["log_path"],model,dataloaders) if __name__ == "__main__": parser = get_parser() args = parser.parse_args() main(args)
observational-main
train_emmental.py
observational-main
__init__.py
import matplotlib.pyplot as plt import matplotlib.pyplot as plt import cv2 import pydicom def plot_heatmap(source, img_pth, heatmap): figure, axs = plt.subplots(nrows=1, ncols=2) if source == "cxr": ds = pydicom.dcmread(img_pth) img = ds.pixel_array else: img = plt.imread(img_pth) img_h, img_w = img.shape[0], img.shape[1] axs[0].imshow(img, cmap="gray", vmin=0, vmax=255) axs[1].imshow(img, cmap="gray", vmin=0, vmax=255) hm2 = cv2.resize(heatmap, (img_h, img_w)) axs[1].imshow(hm2.T, alpha=0.4) axs[0].axis("off") axs[1].axis("off") figure.tight_layout() plt.show() def plot_saccade(img_pth, gaze_seq, source): if source == "cxr": ds = pydicom.dcmread(img_pth) img = ds.pixel_array else: img = plt.imread(img_pth) img_h, img_w = img.shape[0], img.shape[1] s = 100 gaze_x_list = [] gaze_y_list = [] size_list = [] for i, gaze_pt in enumerate(gaze_seq): time_spent = gaze_pt[2] gaze_x, gaze_y = img_w * gaze_pt[0], img_h * gaze_pt[1] gaze_x_list.append(gaze_x) gaze_y_list.append(gaze_y) size_list.append(s * time_spent) if source == "cxr": plt.imshow(img, cmap="gray", vmin=0, vmax=255) else: plt.imshow(img) plt.axis("OFF") plt.scatter(gaze_x_list, gaze_y_list, s=size_list, alpha=0.7) for i in range(len(gaze_x_list)): plt.annotate(str(i + 1), (gaze_x_list[i], gaze_y_list[i])) plt.show()
observational-main
viz_utils.py