python_code
stringlengths
0
4.04M
repo_name
stringlengths
7
58
file_path
stringlengths
5
147
# -*- coding: utf-8 -*- # file: d3mds.py # lab: MIT Lincoln Lab # author(s): sw26425 # description: a rudimentary API for interacting with D3MDataSupply, which mainly consists of a Dataset and a Problem import os, json import pandas as pd import numpy as np import warnings DATASET_SCHEMA_VERSION = '3.0' PROBLEM_SCHEMA_VERSION = '3.0' class D3MDataset: dsHome = None dsDoc = None learningDataFile = None def __init__(self, datasetPath): self.dsHome = datasetPath # read the schema in dsHome _dsDoc = os.path.join(self.dsHome, 'datasetDoc.json') assert os.path.exists(_dsDoc) with open(_dsDoc, 'r') as f: self.dsDoc = json.load(f) # make sure the versions line up if self.get_datasetSchemaVersion() != DATASET_SCHEMA_VERSION: warnings.warn("the datasetSchemaVersions in the API and datasetDoc do not match !!!!!!!") # locate the special learningData file self.learningDataFile = self._get_learning_data_path() def get_datasetID(self): """ Returns the datasetID from datasetDoc """ return self.dsDoc['about']['datasetID'] def get_datasetSchemaVersion(self): """ Returns the dataset schema version that was used to create this dataset """ return self.dsDoc['about']['datasetSchemaVersion'] def get_learning_data(self, view=None, problem=None): """ Returns the contents of learningData.doc as a DataFrame. If view is 'TRAIN' or 'TEST', then the full learningData is filtered to return learningData only for that view. For view-based filtering, the problem object has to be passed because this method used the splitsData from the problem. """ df = pd.read_csv(self.learningDataFile, index_col='d3mIndex') if view is None: return df if view.upper() == 'TRAIN' or view.upper() == 'TEST': if problem is None: raise RuntimeError('asking for learningData for a split, but the problem is not given') splitsdf = problem.get_datasplits(view) df = df.iloc[splitsdf.index] return df def get_learning_data_columns(self): res = self._get_learning_data_resource() return res['columns'] def set_learning_data(self, df): """ Sets the contents of the learningData file to df """ df.to_csv(self.learningDataFile) def delete_column_entries(self, target): """ Deletes all the entries of a particular column of a particular tabular data resource. The deleted entries are set to numpy.NaN """ resID = target['resID'] colIndex = target['colIndex'] colName = target['colName'] for res in self.dsDoc['dataResources']: _resID = res['resID'] if _resID != resID: continue _resPath = res['resPath'] _resPath = os.path.join(self.dsHome, _resPath) _resType = res['resType'] assert _resType == 'table' for col in res['columns']: _colIndex = col['colIndex'] if _colIndex != colIndex: continue _colName = col['colName'] assert _colName == colName df = pd.read_csv(_resPath) df[_colName] = [np.NaN]*len(df[_colName]) df.to_csv(_resPath, index=None) return True raise RuntimeError('could not find the column') raise RuntimeError('could not find the resource') def delete_identifying_fields(self, view): """ Deletes some fields that might contain identifying information. These fields should not be in the train or test view during the blinds evaluation. """ assert view.upper()=='TRAIN' or view.upper()=='TEST' # ensures we perform this only if view is train or test self.dsDoc['about']['datasetName']='redacted' self.dsDoc['about']['redacted'] = True try: del self.dsDoc['about']['description'] except KeyError: pass try: del self.dsDoc['about']['citation'] except KeyError: pass try: del self.dsDoc['about']['source'] except KeyError: pass try: del self.dsDoc['about']['sourceURI'] except KeyError: pass # save datasetDoc.json file with open(os.path.join(self.dsHome, 'datasetDoc.json'), 'w') as fp: json.dump(self.dsDoc, fp, indent=2, sort_keys=False) ############# private methods def _get_learning_data_path(self): """ Returns the path of learningData.csv in a dataset """ for res in self.dsDoc['dataResources']: resID = res['resID'] resPath = res['resPath'] resType = res['resType'] resFormat = res['resFormat'] if resType =='table': if 'learningData.csv' in res['resPath'] : return os.path.join(self.dsHome, resPath) else: raise RuntimeError('non-CSV learningData (not implemented yet ...)') # if the for loop is over and learningDoc is not found, then return None raise RuntimeError('could not find learningData file the dataset') def _get_learning_data_resource(self): """ Returns the path of learningData.csv in a dataset """ for res in self.dsDoc['dataResources']: resID = res['resID'] resPath = res['resPath'] resType = res['resType'] resFormat = res['resFormat'] if resType =='table': if 'learningData.csv' in res['resPath'] : return res else: raise RuntimeError('could not find learningData.csv') # if the for loop is over and learningDoc is not found, then return None raise RuntimeError('could not find learningData resource') class D3MProblem: prHome = None prDoc = None splitsFile = None def __init__(self, problemPath): self.prHome = problemPath # read the schema in prHome _prDoc = os.path.join(self.prHome, 'problemDoc.json') assert os.path.exists(_prDoc) with open(_prDoc, 'r') as f: self.prDoc = json.load(f) # make sure the versions line up if self.get_problemSchemaVersion() != PROBLEM_SCHEMA_VERSION: warnings.warn("the problemSchemaVersions in the API and datasetDoc do not match !!!!!!!") # locate the splitsFile self.splitsFile = self._get_datasplits_file() def get_problemID(self): """ Returns the problemID from problemDoc """ return self.prDoc['about']['problemID'] def get_problemSchemaVersion(self): """ Returns the problem schema version that was used to create this dataset """ return self.prDoc['about']['problemSchemaVersion'] def get_datasetID(self): """ Returns the ID of the dataset referenced in the problem """ return self.prDoc['inputs']['data'][0]['datasetID'] def get_targets(self): """ Looks at the problemDoc and returns the colIndex and colName of the target variable """ return self.prDoc['inputs']['data'][0]['targets'] def get_datasplits(self, view=None): """ Returns the data splits splits in a dataframe """ df = pd.read_csv(self.splitsFile, index_col='d3mIndex') if view is None: return df elif view.upper() == 'TRAIN': df = df[df['type']=='TRAIN'] return df elif view.upper() == 'TEST': df = df[df['type']=='TEST'] return df def set_datasplits(self, df): """ Sets the contents of the dataSplits file to df """ df.to_csv(self.splitsFile) def delete_identifying_fields(self, view): """ Deletes some fields that might contain identifying information. These fields should not be in the train or test view during the blinds evaluation. """ assert view.upper()=='TRAIN' or view.upper()=='TEST' # ensures we perform this only if view is train or test self.prDoc['about']['problemName']='redacted' try: del self.prDoc['about']['problemDescription'] except KeyError: pass # save datasetDoc.json file with open(os.path.join(self.prHome, 'problemDoc.json'), 'w') as fp: json.dump(self.prDoc, fp, indent=2, sort_keys=False) def get_performance_metrics(self): return self.prDoc['inputs']['performanceMetrics'] ############# private methods def _get_datasplits_file(self): splitsFile = self.prDoc['inputs']['dataSplits']['splitsFile'] splitsFile = os.path.join(self.prHome, splitsFile) assert os.path.exists(splitsFile) return splitsFile class D3MDS: dataset = None problem = None def __init__(self, datasetPath, problemPath): self.dataset = D3MDataset(datasetPath) self.problem = D3MProblem(problemPath) # sanity check assert self.dataset.get_datasetID() == self.problem.get_datasetID() def _get_target_columns(self, df): target_cols = [] targets = self.problem.get_targets() for target in targets: colIndex = target['colIndex']-1 # 0th column is d3mIndex colName = df.columns[colIndex] assert colName == target['colName'] target_cols.append(colIndex) return target_cols def get_data_all(self): df = self.dataset.get_learning_data(view=None, problem=None) return df def get_train_data(self): df = self.dataset.get_learning_data(view='train', problem=self.problem) target_cols = self._get_target_columns(df) df.drop(df.columns[target_cols],axis=1,inplace=True) return df def get_train_targets(self): df = self.dataset.get_learning_data(view='train', problem=self.problem) target_cols = self._get_target_columns(df) return np.ravel(df[df.columns[target_cols]]) def get_test_data(self): df = self.dataset.get_learning_data(view='test', problem=self.problem) target_cols = self._get_target_columns(df) df.drop(df.columns[target_cols],axis=1,inplace=True) return df def get_test_targets(self): df = self.dataset.get_learning_data(view='test', problem=self.problem) target_cols = self._get_target_columns(df) return np.ravel(df[df.columns[target_cols]])
d3m-model-search-master
test_data/test_cases_only/534_cps_85_wages/534_cps_85_wages_solution/modules/d3mds.py
import os, sys, json import pandas as pd from sklearn.pipeline import Pipeline from sklearn.linear_model import SGDClassifier from sklearn.metrics import f1_score, mean_squared_error here = os.path.dirname(os.path.abspath(__file__)) from d3mds import D3MDataset, D3MProblem, D3MDS from feature_extraction import * from feature_selection import * from estimation import * if __name__ == '__main__': # get the paths of the dataset and problem try: dspath = (sys.argv[1]) except: dspath = input('Enter the path to the dataset: ') # dspath = os.path.join(here, '..', '..', 'data', '185_baseball_dataset') assert os.path.exists(dspath) try: prpath = (sys.argv[2]) except: prpath = input('Enter the path to the problem: ') # prpath = os.path.join(here, '..', '..', 'data', '185_baseball_problem') assert os.path.exists(prpath) # check the pipeline JSON file pipe_json = os.path.join(here, 'pipeline.json') assert os.path.exists(pipe_json) # read the JSON file with open(pipe_json) as data_file: ps = json.load(data_file) ## TBD: we need to make a check that that JSON aligns with the dataset and problem # initialize the API class d3mds = D3MDS(dspath, prpath) # this checks that the problem and dataset correspond # get the train and test data X_train = d3mds.get_train_data() y_train = d3mds.get_train_targets() X_test = d3mds.get_test_data() y_test = d3mds.get_test_targets() # get columns information cols_info = d3mds.dataset.get_learning_data_columns() ## instantiate feature extractor key, fe = ps['feature_extractors'].popitem() fe_class = fe['feature_extractor'] fe_params = fe['params'] FE = eval(fe_class)(**fe_params) if isinstance(FE, AnnotatedTabularExtractor): FE.set_cols_info(cols_info) ## instantiate feature selector fs = ps['feature_selector'] fs_class = fs['feature_selector'] fs_params = fs['params'] FS = eval(fs_class)(**fs_params) ## instantiate estimator est = ps['estimator'] est_class = est['estimator'] est_params = est['params'] EST = eval(est_class)(**est_params) ## make a pipeline from the above three components pipeline = Pipeline([ ('vect', FE), ('sel', FS), ('clf', EST), ]) ## train the pipeline on train data pipeline.fit(X_train, y_train) ## predict on test data y_pred = pipeline.predict(X_test) targetCols = [col['colName'] for col in d3mds.problem.get_targets()] y_pred_df = pd.DataFrame(index=X_test.index, data=y_pred, columns=targetCols) y_pred_df.to_csv(os.path.join('.','predictions.csv')) ## compute the score on test data metrics = d3mds.problem.get_performance_metrics() scoresdf = pd.DataFrame(columns=['metric','value']) for item in metrics: metric = item['metric'] if metric == 'f1Macro': score = f1_score(y_test, y_pred, average='macro') print('f1Macro', score) scoresdf.loc[len(scoresdf)]=['f1Macro', score] elif metric == 'meanSquaredError': score = mean_squared_error(y_test, y_pred) print('meanSquaredError', score) scoresdf.loc[len(scoresdf)]=['meanSquaredError', score] scoresdf.to_csv(os.path.join('.','scores.csv'))
d3m-model-search-master
test_data/test_cases_only/534_cps_85_wages/534_cps_85_wages_solution/modules/pipeline.py
from abc import ABC, abstractmethod from collections import OrderedDict import numpy as np from numpy import ndarray from scipy.sparse import csr_matrix from pandas import DataFrame from sklearn.base import BaseEstimator, TransformerMixin from sklearn.feature_selection.base import SelectorMixin # https://stackoverflow.com/a/3862957 def get_all_subclasses(cls): return cls.__subclasses__() + [g for s in cls.__subclasses__() for g in get_all_subclasses(s)] def sample_param_distributions(param_distributions): try: return sample_param_distributions_dict(param_distributions) except AttributeError: i = np.random.randint(len(param_distributions)) return sample_param_distributions_dict(param_distributions[i]) def sample_param_distributions_dict(param_distributions_dict): params = {} for k, v in param_distributions_dict.items(): i = np.random.randint(len(v)) params[k] = v[i] return params class AbstractParameterized(ABC): param_distributions = {} @classmethod def get_random_parameters(cls): return sample_param_distributions(cls.param_distributions) class AbstractFeatureExtractor(AbstractParameterized, BaseEstimator): def fit(self, df, variables): self.fit_transform(df, variables) return self @abstractmethod def fit_transform(self, df, variables): """ Fits the feature extractor :param df: :type df: DataFrame :param variables: :type variables: list[D3MVariable] :return: :rtype: csr_matrix """ pass @abstractmethod def transform(self, df): """ Transforms the data :param df: :type df: DataFrame :return: :rtype: csr_matrix """ pass class AbstractFeatureSelector(AbstractParameterized, BaseEstimator, SelectorMixin): pass class AbstractEstimator(AbstractParameterized, BaseEstimator): @abstractmethod def fit(self, X, y): """ :param X: :type X: csr_matrix :param y: :type y: ndarray :return: :rtype: AbstractEstimator """ return self @abstractmethod def predict(self, X): """ :param X: :type X: csr_matrix :return: :rtype: ndarray """ pass
d3m-model-search-master
test_data/test_cases_only/534_cps_85_wages/534_cps_85_wages_solution/modules/base.py
d3m-model-search-master
Stanford-D3M-Full/__init__.py
import sys import logging import time import random import os from concurrent import futures import multiprocessing import os import json import copy import random import grpc import time import json from multiprocessing import pool, context from google.protobuf import json_format import ta3ta2.api.core_pb2 as core_pb2 import ta3ta2.api.value_pb2 as value_pb2 import ta3ta2.api.core_pb2_grpc as core_pb2_grpc import ta3ta2.api.primitive_pb2 as primitive_pb2 import ta3ta2.api.utils as ta3ta2utils import d3m from d3m import index from hashlib import sha256 import threading import datetime import json import os import binascii from multiprocessing import Process, Queue, JoinableQueue from d3m.metadata.pipeline import Pipeline, PrimitiveStep import executors.ExtendedSklearnExecutor import executors.SimpleRandomSklearnExecutor import executors.ScoreFitProduceExecutor import executors.HyperbandExecutor import executors.NistSaverExecutor import executors.Executor import utils.utils import utils.train_utils class CoreServicerImplementation(core_pb2_grpc.CoreServicer): ############################################## # Helpers for managing the ta3ta2 process # Flow diagram: https://gitlab.com/datadrivendiscovery/ta3ta2-api/blob/devel/flow.png def random_id(self): self.rid_lock.acquire() k = None while k is None or k in self.used_ids: k = binascii.hexlify(os.urandom(16)).decode("utf-8") self.used_ids.add(k) self.rid_lock.release() return k def add_to_stage_outputs(self, stage, obj): self.lock.acquire() rid = self.random_id() if stage not in self.stage_outputs: self.stage_outputs[stage] = {} self.stage_outputs[stage][rid] = copy.deepcopy(obj) self.lock.release() return rid def get_from_stage_outputs(self, stage, rid): self.lock.acquire() assert stage in self.stage_outputs sys.stdout.flush() assert rid in self.stage_outputs[stage] self.lock.release() return copy.deepcopy(self.stage_outputs[stage][rid]) def check_if_search_cancelled(self, search_id): sys.stdout.flush() self.cancel_search_lock.acquire() cancelled = search_id in self.cancel_search_ids self.cancel_search_lock.release() return cancelled def cancel_search(self, search_id): sys.stdout.flush() self.cancel_search_lock.acquire() self.cancel_search_ids.add(search_id) self.cancel_search_lock.release() ############################################## def __init__(self, searchers, searchers_inputs_queue, searchers_results_queue): self.searchers = searchers self.searchers_inputs_queue = searchers_inputs_queue self.searchers_results_queue = searchers_results_queue self.lock = threading.Lock() self.rid_lock = threading.Lock() self.stage_outputs = {} self.used_ids = set() self.cancel_search_lock = threading.Lock() self.cancel_search_ids = set() def SearchSolutions(self, request, context): problem, dataset_uri, tlimit = request.problem, request.inputs[0].dataset_uri, request.time_bound # Extract problem doc and dataset for executors problem_doc = utils.utils.convert_problem_doc_proto_to_metadata(problem) dataset = utils.utils.convert_dataset_uri_to_dataset(problem_doc, dataset_uri) # Other useful data allowed_value_types = request.allowed_value_types search_id = self.add_to_stage_outputs("SearchSolutions", {"problem_doc" : problem_doc, "dataset" : dataset, "tlimit" : tlimit, "allowed_value_types" : allowed_value_types}) return core_pb2.SearchSolutionsResponse(search_id=search_id) def GetSearchSolutionsResults(self, request, context): search_id = request.search_id info_dict = self.get_from_stage_outputs("SearchSolutions", search_id) problem_doc, dataset = info_dict["problem_doc"], info_dict["dataset"] allowed_value_types = info_dict["allowed_value_types"] requested_tlimit = info_dict["tlimit"] # Configuration parameters #tlimit = max(60*10, requested_tlimit*60) tlimit = requested_tlimit if tlimit == 0: tlimit = 60*10 tstart = time.time() target_queue_length = 1 # Scorer scorer = executors.ScoreFitProduceExecutor.ScoreFitProduceExecutor(None, None) # Search # todo(maxlam): currently, only a single GetSearchSolutionsResults can be run -- if # multiple are run in parallel, things will mess up. Can fix this by putting a lock on resources (searchers) or # distributing resources. while time.time()-tstart <= tlimit: # Check if search has been cancelled if self.check_if_search_cancelled(search_id): print("Search was cancelled: %s" % search_id) while not self.searchers_inputs_queue.empty(): self.searchers_inputs_queue.get() break if self.searchers_inputs_queue.empty(): for i in range(target_queue_length): self.searchers_inputs_queue.put((problem_doc, dataset)) while not self.searchers_results_queue.empty(): result = self.searchers_results_queue.get(True, executors.Executor.QUEUE_TIMEOUT) # Check if search has been cancelled if self.check_if_search_cancelled(search_id): print("Search was cancelled: %s" % search_id) while not self.searchers_inputs_queue.empty(): self.searchers_inputs_queue.get() break if None not in result: print("Got result!") # Add the result to dict and yield it score, pipeline_json = result solution_id = self.add_to_stage_outputs("GetSearchSolutionsResults", {"score" : score, "pipeline_json" : pipeline_json, "problem_doc" : problem_doc, "dataset" : dataset, "allowed_value_types" : allowed_value_types}) # Todo(maxlam): more descriptive done_ticks all_ticks yield core_pb2.GetSearchSolutionsResultsResponse( progress=core_pb2.Progress(state=core_pb2.RUNNING), done_ticks=float(time.time()-tstart), all_ticks=tlimit, solution_id=solution_id, internal_score=score) time.sleep(executors.Executor.QUEUE_TIMEOUT) """solution_id = self.add_to_stage_outputs("GetSearchSolutionsResults", {"score" : 0, "pipeline_json" : open("/testout/pipelines/999999999999.3291.json").read(), "problem_doc" : problem_doc, "dataset" : dataset, "allowed_value_types" : allowed_value_types}) # Todo(maxlam): more descriptive done_ticks all_ticks yield core_pb2.GetSearchSolutionsResultsResponse( progress=core_pb2.Progress(state=core_pb2.RUNNING), done_ticks=float(time.time()-tstart)/tlimit, all_ticks=float(time.time()-tstart)/tlimit, solution_id=solution_id, internal_score=0)""" # Commented out for nyu """yield core_pb2.GetSearchSolutionsResultsResponse( progress=core_pb2.Progress(state=core_pb2.COMPLETED), done_ticks=1, all_ticks=1, solution_id="", internal_score=0)""" def EndSearchSolutions(self, request, context): search_id = request.search_id self.cancel_search(search_id) return core_pb2.EndSearchSolutionsResponse() def StopSearchSolutions(self, request, context): search_id = request.search_id self.cancel_search(search_id) return core_pb2.StopSearchSolutionsResponse() def DescribeSolution(self, request, context): solution_id = request.solution_id info_dict = self.get_from_stage_outputs("GetSearchSolutionsResults", solution_id) # Serialize the pipeline pipeline_json = info_dict["pipeline_json"] allowed_value_types = info_dict["allowed_value_types"] pipeline = Pipeline.from_json(pipeline_json) pipeline_description = ta3ta2utils.encode_pipeline_description(pipeline, allowed_value_types, "/tmp") return core_pb2.DescribeSolutionResponse(pipeline=pipeline_description) def ScoreSolution(self, request, context): solution_id = request.solution_id uris = [x.dataset_uri for x in request.inputs] metrics = [x for x in request.performance_metrics] info_dict = self.get_from_stage_outputs("GetSearchSolutionsResults", solution_id) info_dict["eval_uris"] = uris info_dict["metrics"] = metrics request_id = self.add_to_stage_outputs("ScoreSolution", info_dict) return core_pb2.ScoreSolutionResponse(request_id=request_id) def GetScoreSolutionResults(self, request, context): request_id = request.request_id info_dict = self.get_from_stage_outputs("ScoreSolution", request_id) score = info_dict["score"] metrics = info_dict["metrics"] problem_doc = info_dict["problem_doc"] pipeline = info_dict["pipeline_json"] dataset_train = info_dict["dataset"] eval_datasets = [utils.utils.convert_dataset_uri_to_dataset(problem_doc, uri, mode="score") for uri in info_dict["eval_uris"]] # Instantiate scorer evaluator scorer = executors.ScoreFitProduceExecutor.ScoreFitProduceExecutor(None, None) # todo(maxlam): actually use metrics for dataset_eval in eval_datasets: eval_scores = [] for metric in metrics: eval_score = scorer.process_item(("score", problem_doc, ta3ta2utils.decode_performance_metric(metric)["metric"], pipeline, dataset_train, dataset_eval)) eval_scores.append(eval_score) eval_score_proto = core_pb2.GetScoreSolutionResultsResponse(scores= [core_pb2.Score(value=value_pb2.Value(raw=value_pb2.ValueRaw(double=escore)), metric=metric) for metric, escore in zip(metrics, eval_scores)], #progress=core_pb2.Progress(state=core_pb2.RUNNING)) progress=core_pb2.Progress(state=core_pb2.COMPLETED)) # For NYU integration yield eval_score_proto # Commented out for NYU yield core_pb2.GetScoreSolutionResultsResponse(progress=core_pb2.Progress(state=core_pb2.COMPLETED)) def FitSolution(self, request, context): solution_id = request.solution_id # Pass the data through info_dict = self.get_from_stage_outputs("GetSearchSolutionsResults", solution_id) problem_doc = info_dict["problem_doc"] info_dict["train_datasets"] = [utils.utils.convert_dataset_uri_to_dataset(problem_doc, x.dataset_uri, mode="train") for x in request.inputs] request_id = self.add_to_stage_outputs("FitSolution", info_dict) return core_pb2.FitSolutionResponse(request_id=request_id) def GetFitSolutionResults(self, request, context): request_id = request.request_id # Pass data through info_dict = self.get_from_stage_outputs("FitSolution", request_id) request_id = self.add_to_stage_outputs("GetFitSolutionResults", info_dict) yield core_pb2.GetFitSolutionResultsResponse(fitted_solution_id=request_id, progress=core_pb2.Progress(state=core_pb2.COMPLETED)) def ProduceSolution(self, request, context): solution_id = request.fitted_solution_id # Pass data through info_dict = self.get_from_stage_outputs("GetFitSolutionResults", solution_id) problem_doc = info_dict["problem_doc"] info_dict["eval_datasets"] = [utils.utils.convert_dataset_uri_to_dataset(problem_doc, x.dataset_uri, mode="test") for x in request.inputs] request_id = self.add_to_stage_outputs("ProduceSolution", info_dict) return core_pb2.ProduceSolutionResponse(request_id=request_id) def GetProduceSolutionResults(self, request, context): request_id = request.request_id info_dict = self.get_from_stage_outputs("ProduceSolution", request_id) problem_doc, pipeline_json, train_datasets, eval_datasets = ( info_dict["problem_doc"], info_dict["pipeline_json"], info_dict["train_datasets"], info_dict["eval_datasets"], ) producer = executors.ScoreFitProduceExecutor.ScoreFitProduceExecutor(None, None) progress = 0 for dataset_train in train_datasets: for dataset_test in eval_datasets: csv_uri = producer.process_item(("fitproduce", problem_doc, pipeline_json, dataset_train, dataset_test)) outputs = { "outputs.0" : value_pb2.Value(csv_uri=csv_uri) } yield core_pb2.GetProduceSolutionResultsResponse(progress=core_pb2.Progress(state=core_pb2.COMPLETED), # For NYU integration exposed_outputs=outputs) progress += 1 # Commented out for NYU yield core_pb2.GetProduceSolutionResultsResponse(progress=core_pb2.Progress(state=core_pb2.COMPLETED), exposed_outputs=None) def SolutionExport(self, request, context): solution_id = request.fitted_solution_id info_dict = self.get_from_stage_outputs("GetFitSolutionResults", solution_id) problem_doc, pipeline, score = info_dict["problem_doc"], info_dict["pipeline_json"], info_dict["score"] exporter = executors.ScoreFitProduceExecutor.ScoreFitProduceExecutor(None, None) exporter.process_item(("export", problem_doc, pipeline, score)) return core_pb2.SolutionExportResponse() def UpdateProblem(self, request, context): search_id = request.search_id return core_pb2.UpdateProblemResponse() def ListPrimitives(self, request, context): ''' List all primitives known to TA2, their IDs, versions, names, and digests. Using this information a TA3 should know which primitives may be put into a pipeline template. To narrow down potential primitives to use a TA3 can also ask a TA2 to do a solution search and then observe which primitives the TA2 is using. If more metadata about primitives is needed, then a TA3 can use the results of this call to map primitives to metadata (from Python code or primitive annotations) on its own. ''' list_primitives = [] source_primitives = [] primitives = index.search() for prim in primitives: try: p = index.get_primitive(prim) source_primitives.append(p) except: 0 for p in source_primitives: meta = p.metadata.to_json_structure() list_primitives.append( primitive_pb2.Primitive( id=meta['id'], version=meta['version'], python_path=meta['python_path'], name=meta['name'], digest=meta['digest'] ) ) return core_pb2.ListPrimitivesResponse(primitives=list_primitives) def Hello(self, request, context): ''' Identify a TA2 and get supported features. This call is also suitable for a ping/pong call to check that the gRPC connection to the TA2 is ready. ''' return core_pb2.HelloResponse( user_agent='stanford_TA2_1.0', # Set to some string identifying the name and version of the TA2 system. version=core_pb2.DESCRIPTOR.GetOptions().Extensions[core_pb2.protocol_version], allowed_value_types=[ 1,2,3 ], # TODO: what value types are supported? supported_extensions=[] # TODO: what API extensions are supported? ) def serve(): # Create searchers # todo(maxlam): modularize nparallel = 4 inputs_queue = JoinableQueue() results_queue = JoinableQueue() executor = executors.ExtendedSklearnExecutor.ExtendedSklearnExecutor #executor = executors.SimpleRandomSklearnExecutor.SimpleRandomSklearnExecutor kwargs = {} searchers = [ executor( inputs_queue, results_queue, **kwargs ) for i in range(nparallel)] # Start searchers for executor in searchers: executor.start() # Create server server = grpc.server(futures.ThreadPoolExecutor(max_workers=100)) core_pb2_grpc.add_CoreServicer_to_server(CoreServicerImplementation(searchers, inputs_queue, results_queue), server) server.add_insecure_port('[::]:45042') server.start() try: while True: time.sleep(1000000) except KeyboardInterrupt: server.stop(0) if __name__=="__main__": serve()
d3m-model-search-master
Stanford-D3M-Full/ta3ta2/server.py
d3m-model-search-master
Stanford-D3M-Full/ta3ta2/__init__.py
import time import sys import json import os from multiprocessing import pool, context from google.protobuf import json_format import grpc import ta3ta2.api.core_pb2_grpc as core_pb2_grpc import ta3ta2.api.core_pb2 as core_pb2 import ta3ta2.test_server_messages as msg import ta3ta2.api.utils as ta3ta2utils from d3m.metadata import base as metadata_base, hyperparams as hyperparams_module, pipeline as pipeline_module, problem here = os.path.realpath(__file__) baseball_path = "file:///Stanford-D3M-Full/test_data/185_baseball/185_baseball_dataset/datasetDoc.json" baseball_score_path = "file:///Stanford-D3M-Full/test_data/185_baseball/SCORE/dataset_TEST/datasetDoc.json" problem_description = problem.parse_problem_description('/Stanford-D3M-Full/test_data/185_baseball/185_baseball_problem/problemDoc.json') parsed_problem_doc = ta3ta2utils.encode_problem_description(problem_description) """baseball_path = "file:///datasets/seed_datasets_transfer/LL0_acled/LL0_acled_dataset/datasetDoc.json" baseball_score_path = "file:////datasets/seed_datasets_transfer/LL0_acled/SCORE/dataset_TEST/datasetDoc.json" problem_description = problem.parse_problem_description('/datasets/seed_datasets_transfer/LL0_acled/LL0_acled_problem/problemDoc.json') parsed_problem_doc = ta3ta2utils.encode_problem_description(problem_description)""" """baseball_path = "file:///datasets/seed_datasets_transfer/uu4_SPECT/uu4_SPECT_dataset/datasetDoc.json" baseball_score_path = "file:////datasets/seed_datasets_transfer/uu4_SPECT/SCORE/dataset_TEST/datasetDoc.json" problem_description = problem.parse_problem_description('/datasets/seed_datasets_transfer/uu4_SPECT/uu4_SPECT_problem/problemDoc.json') parsed_problem_doc = ta3ta2utils.encode_problem_description(problem_description)""" print(parsed_problem_doc) class TA2Client(): def __init__(self): self.ta2_address = "localhost:45042" # Set up gRPC connection self.channel = grpc.insecure_channel(self.ta2_address) self.stub = core_pb2_grpc.CoreStub(self.channel) # temp messages for timeout-able message thread self.messages = [] self.async_message_thread = pool.ThreadPool(processes=1,) # Int of seconds 'GetXResults' calls should last self.timeout = 30 def connect(self): # Try to say howdy to TA2 retries = 12 while retries: try: self.Hello() print("Connected!") return self except Exception as e: print(e) print("No TA2 available at %s - retrying..." % self.ta2_address,) retries -= 1 time.sleep(5) print("No TA2 available at %s - timed out.", self.ta2_address) return False def Hello(self): req = msg.GetHello() resp = self.stub.Hello(req) return resp def SearchSolutions(self, dataset_train_uri, problem_json): # Convert problem json to protobuf problem_pb = problem_json req = msg.GetSearchSolutionsRequest(dataset_train_uri, problem_pb) resp = self.stub.SearchSolutions(req) print("Finished: %s" % resp.search_id) return resp.search_id def GetSearchSolutionsResults(self, search_id): req = msg.GetSearchSolutionsResultsRequest(search_id) messages = self._blockout(req, 'GetSearchSolutionsResults') print("GetSearchSolutionResults finished") return messages def StopSearchSolutions(self, search_id): req = msg.GetStopSearchSolutionsRequest(search_id) resp = self.stub.StopSearchSolutions(req) print("StopSearchSolutions finished") assert resp == msg.GetStopSearchSolutionsResponse() def EndSearchSolutions(self, search_id): req = msg.GetEndSearchSolutionsRequest(search_id) resp = self.stub.EndSearchSolutions(req) print("EndSearchSolutions finished") assert resp == msg.GetEndSearchSolutionsResponse() def ScoreSolution(self, solution_id, eval_dataset_uris, metrics): req = msg.GetScoreSolutionRequest(solution_id, eval_dataset_uris, metrics) resp = self.stub.ScoreSolution(req) print("ScoreSolution finished") return resp.request_id def GetScoreSolutionResults(self, request_id): req = msg.GetScoreSolutionResultsRequest(request_id) messages = self._blockout(req, "GetScoreSolutionResults") return messages def DescribeSolution(self, solution_id): req = msg.GetDescribeSolutionRequest(solution_id) resp = self.stub.DescribeSolution(req) print("DescribeSolution finished") return resp def FitSolution(self, solution_id, dataset_train_uri): req = msg.GetFitSolutionRequest(solution_id, dataset_train_uri) resp = self.stub.FitSolution(req) print("FitSolution finished") return resp.request_id def GetFitSolutionResults(self, fit_request_id): req = msg.GetFitSolutionResultsRequest(fit_request_id) messages = self._blockout(req, 'GetFitSolutionResults') print("GetFitSolutionResults finished") return messages def ProduceSolution(self, fitted_solution_id, dataset_test_uri): req = msg.GetProduceSolutionRequest(fitted_solution_id, dataset_test_uri) resp = self.stub.ProduceSolution(req) print("ProduceSolution finished") return resp.request_id def GetProduceSolutionResults(self, fit_request_id): req = msg.GetFitSolutionResultsRequest(fit_request_id) messages = self._blockout(req, 'GetProduceSolutionResults') print("GetProduceSolutionResults finished") return messages def SolutionExport(self, fit_request_id, rank): req = msg.SolutionExportRequest(fit_request_id, rank) resp = self.stub.SolutionExport(req) #messages = self._blockout(req, 'SolutionExport') print("SolutionExportRequest finished") def _blockout(self, req, func_name): func = getattr(self.stub, func_name) res = [] for resp in func(req): print("BLOCKOUT", func_name) res.append(resp) break return res # This method is super buggy as it interleaves the results of 2 streaming calls. def _timeout(self, req, func_name): """ Wrapper for timing out streaming calls """ def inner(_self, req, func_name): func = getattr(_self.stub, func_name) for resp in func(req): _self.messages.append(resp) proc = self.async_message_thread.apply_async(inner, (self, req, func_name)) try: proc.get(timeout=self.timeout) except context.TimeoutError: pass except Exception as err: print(err) messages = self.messages self.messages = [] return messages def test_connect(): print("Testing connect...") client = TA2Client() client.connect() print("passed!") def test_search_solutions(): print("Testing search solutions") # Connect client = TA2Client() client.connect() search_id = client.SearchSolutions(baseball_path, parsed_problem_doc) # Time limit for test tlimit = 60*4 tcur = time.time() # Search and aggregate results n_solutions = 0 for solution in client.GetSearchSolutionsResults(search_id): if solution.progress.state == core_pb2.COMPLETED: break n_solutions += 1 # Shutdown client.StopSearchSolutions(search_id) assert(n_solutions >= 1) print("passed!") def test_fit_solutions(): print("Testing get score solutions...") # Connect client = TA2Client() client.connect() search_id = client.SearchSolutions(baseball_path, parsed_problem_doc) # Search and aggregate results all_solutions = client.GetSearchSolutionsResults(search_id) print("Client received results", all_solutions) while len(all_solutions) <= 1: all_solutions += client.GetSearchSolutionsResults(search_id) # Shutdown (but don't kill resources) client.StopSearchSolutions(search_id) assert(len(all_solutions) >= 1) # Fit solution and get fit solution results print("Getting results...") selected_solution = all_solutions[-1] print("Selected solution: ", selected_solution) solution_id = selected_solution.solution_id # Fit solution fit_solution_response = client.FitSolution(solution_id, baseball_path) print("Fit solution response") print(fit_solution_response) # Get fit solution results get_fit_solution_response = client.GetFitSolutionResults(fit_solution_response) while len(get_fit_solution_response) <= 0: get_fit_solution_response += client.GetFitSolutionResults(fit_solution_response) assert(len(get_fit_solution_response) > 0) fit_solution_id = get_fit_solution_response[-1].fitted_solution_id print("Getting fit solution id: ", fit_solution_id) # Produce the solution produce_solution_response = client.ProduceSolution(fit_solution_id, baseball_path) print("Produce solution id: ", produce_solution_response) tcur = time.time() all_produced_solutions =[] tlimit = 60 while time.time()-tcur < tlimit: produce_solution_results = client.GetProduceSolutionResults(produce_solution_response) all_produced_solutions += produce_solution_results time.sleep(10) print(all_produced_solutions) assert(len(all_produced_solutions) > 0) # Export solutions to output client.SolutionExport(fit_solution_id, 42.0) # Shutdown and free resources client.EndSearchSolutions(search_id) print("passed!") def test_get_score_solutions(): print("Testing get score solutions...") # Connect client = TA2Client() client.connect() search_id = client.SearchSolutions(baseball_path, parsed_problem_doc) # Search and aggregate results all_solutions = client.GetSearchSolutionsResults(search_id) print("Client received results", all_solutions) # Shutdown (but don't kill resources) client.StopSearchSolutions(search_id) assert(len(all_solutions) >= 1) # Fit solution and get fit solution results print("Getting results...") selected_solution = all_solutions[-1] print("Selected solution: ", selected_solution) solution_id = selected_solution.solution_id # Score solution request_id = client.ScoreSolution(solution_id, [baseball_score_path], [6]) scores = client.GetScoreSolutionResults(request_id) while len(scores) < 1: scores = client.GetScoreSolutionResults(request_id) print("Received scores:", scores) assert(len(scores) >= 1) print("passed! (test_get_score_solutions)") print([type(x) for x in scores]) def test_describe_solution(): print("Testing get score solutions...") # Connect client = TA2Client() client.connect() search_id = client.SearchSolutions(baseball_path, parsed_problem_doc) # Search and aggregate results all_solutions = client.GetSearchSolutionsResults(search_id) print("Client received results", all_solutions) # Shutdown (but don't kill resources) client.StopSearchSolutions(search_id) assert(len(all_solutions) >= 1) # Fit solution and get fit solution results print("Getting results...") selected_solution = all_solutions[-1] print("Selected solution: ", selected_solution) solution_id = selected_solution.solution_id # Describe solution descr = client.DescribeSolution(solution_id) print("Received descr:", descr) print("passed!") if __name__=="__main__": print("Testing TA2 server api...") #test_connect() #test_search_solutions() #test_get_score_solutions() test_fit_solutions() #test_describe_solution() print("Done!")
d3m-model-search-master
Stanford-D3M-Full/ta3ta2/test_server.py
""" Assembles all the protobuf messages needed to fulfill API contracts. """ import ta3ta2.api.core_pb2 as core_pb2 import ta3ta2.api.value_pb2 as value_pb2 import ta3ta2.api.problem_pb2 as problem_pb2 def GetHello(): msg = core_pb2.HelloRequest() return msg def GetProblemDescription(): msg = problem_pb2.ProblemDescription() return msg def GetSearchSolutionsRequest(dataset_uri, problem): value = value_pb2.Value( dataset_uri=dataset_uri) msg = core_pb2.SearchSolutionsRequest( user_agent='FakeTA3TestBot', problem=problem, inputs=[value, value]) return msg def GetSearchSolutionsResultsRequest(search_id): msg = core_pb2.GetSearchSolutionsResultsRequest( search_id=search_id) return msg def GetStopSearchSolutionsRequest(search_id): msg = core_pb2.StopSearchSolutionsRequest( search_id=search_id) return msg def GetStopSearchSolutionsResponse(): msg = core_pb2.StopSearchSolutionsResponse() return msg def GetEndSearchSolutionsRequest(search_id): msg = core_pb2.EndSearchSolutionsRequest( search_id=search_id) return msg def GetEndSearchSolutionsResponse(): msg = core_pb2.EndSearchSolutionsResponse() return msg def GetScoreSolutionRequest(solution_id, eval_datasets, metrics): msg = core_pb2.ScoreSolutionRequest( solution_id=solution_id, inputs=[value_pb2.Value(dataset_uri=x) for x in eval_datasets], performance_metrics=[problem_pb2.ProblemPerformanceMetric(k=0, metric=m) for m in metrics]) return msg def GetScoreSolutionResultsRequest(request_id): msg = core_pb2.GetScoreSolutionResultsRequest(request_id=request_id) return msg def GetDescribeSolutionRequest(solution_id): msg = core_pb2.DescribeSolutionRequest( solution_id=solution_id) return msg def GetFitSolutionRequest(solution_id, dataset_uri): value = value_pb2.Value( dataset_uri=dataset_uri) msg = core_pb2.FitSolutionRequest( solution_id=solution_id, inputs=[value]) return msg def GetFitSolutionResultsRequest(request_id): msg = core_pb2.GetFitSolutionResultsRequest( request_id=request_id) return msg def GetSolutionExportRequest(fitted_solution_id): msg = core_pb2.SolutionExportRequest( fitted_solution_id=fitted_solution_id) return msg def GetSolutionExportResponse(): msg = core_pb2.SolutionExportResponse() return msg def GetProduceSolutionRequest(fitted_solution_id, dataset_uri): value = value_pb2.Value( dataset_uri=dataset_uri) msg = core_pb2.ProduceSolutionRequest( fitted_solution_id=fitted_solution_id, inputs=[value]) return msg def GetCompletedProgress(): msg = core_pb2.Progress( state=core_pb2.COMPLETED) return msg def SolutionExportRequest(fitted_solution_id, rank): msg = core_pb2.SolutionExportRequest( fitted_solution_id=fitted_solution_id, rank=rank ) return msg
d3m-model-search-master
Stanford-D3M-Full/ta3ta2/test_server_messages.py
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT! import grpc
d3m-model-search-master
Stanford-D3M-Full/ta3ta2/api/pipeline_pb2_grpc.py
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT! import grpc
d3m-model-search-master
Stanford-D3M-Full/ta3ta2/api/problem_pb2_grpc.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: pipeline.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf.internal import enum_type_wrapper from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.protobuf import descriptor_pb2 as google_dot_protobuf_dot_descriptor__pb2 from google.protobuf import timestamp_pb2 as google_dot_protobuf_dot_timestamp__pb2 import ta3ta2.api.primitive_pb2 as primitive__pb2 import ta3ta2.api.value_pb2 as value__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='pipeline.proto', package='', syntax='proto3', serialized_pb=_b('\n\x0epipeline.proto\x1a google/protobuf/descriptor.proto\x1a\x1fgoogle/protobuf/timestamp.proto\x1a\x0fprimitive.proto\x1a\x0bvalue.proto\"!\n\x11\x43ontainerArgument\x12\x0c\n\x04\x64\x61ta\x18\x01 \x01(\t\"\x1c\n\x0c\x44\x61taArgument\x12\x0c\n\x04\x64\x61ta\x18\x01 \x01(\t\"\x1d\n\rDataArguments\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\t\"!\n\x11PrimitiveArgument\x12\x0c\n\x04\x64\x61ta\x18\x01 \x01(\x05\"\"\n\x12PrimitiveArguments\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x05\"%\n\rValueArgument\x12\x14\n\x04\x64\x61ta\x18\x01 \x01(\x0b\x32\x06.Value\"k\n\x15PrimitiveStepArgument\x12\'\n\tcontainer\x18\x01 \x01(\x0b\x32\x12.ContainerArgumentH\x00\x12\x1d\n\x04\x64\x61ta\x18\x02 \x01(\x0b\x32\r.DataArgumentH\x00\x42\n\n\x08\x61rgument\"\x8e\x02\n\x1bPrimitiveStepHyperparameter\x12\'\n\tcontainer\x18\x01 \x01(\x0b\x32\x12.ContainerArgumentH\x00\x12\x1d\n\x04\x64\x61ta\x18\x02 \x01(\x0b\x32\r.DataArgumentH\x00\x12\'\n\tprimitive\x18\x03 \x01(\x0b\x32\x12.PrimitiveArgumentH\x00\x12\x1f\n\x05value\x18\x04 \x01(\x0b\x32\x0e.ValueArgumentH\x00\x12\"\n\x08\x64\x61ta_set\x18\x05 \x01(\x0b\x32\x0e.DataArgumentsH\x00\x12-\n\x0eprimitives_set\x18\x06 \x01(\x0b\x32\x13.PrimitiveArgumentsH\x00\x42\n\n\x08\x61rgument\"\x19\n\tStepInput\x12\x0c\n\x04\x64\x61ta\x18\x01 \x01(\t\"\x18\n\nStepOutput\x12\n\n\x02id\x18\x01 \x01(\t\"B\n\x0ePipelineSource\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x0f\n\x07\x63ontact\x18\x02 \x01(\t\x12\x11\n\tpipelines\x18\x03 \x03(\t\"H\n\x17PipelineDescriptionUser\x12\n\n\x02id\x18\x01 \x01(\t\x12\x0e\n\x06reason\x18\x02 \x01(\t\x12\x11\n\trationale\x18\x03 \x01(\t\"(\n\x18PipelineDescriptionInput\x12\x0c\n\x04name\x18\x01 \x01(\t\"7\n\x19PipelineDescriptionOutput\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x0c\n\x04\x64\x61ta\x18\x02 \x01(\t\"\xb2\x03\n PrimitivePipelineDescriptionStep\x12\x1d\n\tprimitive\x18\x01 \x01(\x0b\x32\n.Primitive\x12\x43\n\targuments\x18\x02 \x03(\x0b\x32\x30.PrimitivePipelineDescriptionStep.ArgumentsEntry\x12\x1c\n\x07outputs\x18\x03 \x03(\x0b\x32\x0b.StepOutput\x12G\n\x0bhyperparams\x18\x04 \x03(\x0b\x32\x32.PrimitivePipelineDescriptionStep.HyperparamsEntry\x12\'\n\x05users\x18\x05 \x03(\x0b\x32\x18.PipelineDescriptionUser\x1aH\n\x0e\x41rgumentsEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12%\n\x05value\x18\x02 \x01(\x0b\x32\x16.PrimitiveStepArgument:\x02\x38\x01\x1aP\n\x10HyperparamsEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12+\n\x05value\x18\x02 \x01(\x0b\x32\x1c.PrimitiveStepHyperparameter:\x02\x38\x01\"\x86\x01\n\"SubpipelinePipelineDescriptionStep\x12&\n\x08pipeline\x18\x01 \x01(\x0b\x32\x14.PipelineDescription\x12\x1a\n\x06inputs\x18\x02 \x03(\x0b\x32\n.StepInput\x12\x1c\n\x07outputs\x18\x03 \x03(\x0b\x32\x0b.StepOutput\"^\n\"PlaceholderPipelineDescriptionStep\x12\x1a\n\x06inputs\x18\x01 \x03(\x0b\x32\n.StepInput\x12\x1c\n\x07outputs\x18\x02 \x03(\x0b\x32\x0b.StepOutput\"\xce\x01\n\x17PipelineDescriptionStep\x12\x36\n\tprimitive\x18\x01 \x01(\x0b\x32!.PrimitivePipelineDescriptionStepH\x00\x12\x37\n\x08pipeline\x18\x02 \x01(\x0b\x32#.SubpipelinePipelineDescriptionStepH\x00\x12:\n\x0bplaceholder\x18\x03 \x01(\x0b\x32#.PlaceholderPipelineDescriptionStepH\x00\x42\x06\n\x04step\"\xdf\x02\n\x13PipelineDescription\x12\n\n\x02id\x18\x01 \x01(\t\x12\x1f\n\x06source\x18\x02 \x01(\x0b\x32\x0f.PipelineSource\x12+\n\x07\x63reated\x18\x03 \x01(\x0b\x32\x1a.google.protobuf.Timestamp\x12!\n\x07\x63ontext\x18\x04 \x01(\x0e\x32\x10.PipelineContext\x12\x0c\n\x04name\x18\x05 \x01(\t\x12\x13\n\x0b\x64\x65scription\x18\x06 \x01(\t\x12\'\n\x05users\x18\x07 \x03(\x0b\x32\x18.PipelineDescriptionUser\x12)\n\x06inputs\x18\x08 \x03(\x0b\x32\x19.PipelineDescriptionInput\x12+\n\x07outputs\x18\t \x03(\x0b\x32\x1a.PipelineDescriptionOutput\x12\'\n\x05steps\x18\n \x03(\x0b\x32\x18.PipelineDescriptionStep*m\n\x0fPipelineContext\x12\x1c\n\x18PIPELINE_CONTEXT_UNKNOWN\x10\x00\x12\x0f\n\x0bPRETRAINING\x10\x01\x12\x0b\n\x07TESTING\x10\x02\x12\x0e\n\nEVALUATION\x10\x03\x12\x0e\n\nPRODUCTION\x10\x04\x42\nZ\x08pipelineb\x06proto3') , dependencies=[google_dot_protobuf_dot_descriptor__pb2.DESCRIPTOR,google_dot_protobuf_dot_timestamp__pb2.DESCRIPTOR,primitive__pb2.DESCRIPTOR,value__pb2.DESCRIPTOR,]) _PIPELINECONTEXT = _descriptor.EnumDescriptor( name='PipelineContext', full_name='PipelineContext', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='PIPELINE_CONTEXT_UNKNOWN', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='PRETRAINING', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='TESTING', index=2, number=2, options=None, type=None), _descriptor.EnumValueDescriptor( name='EVALUATION', index=3, number=3, options=None, type=None), _descriptor.EnumValueDescriptor( name='PRODUCTION', index=4, number=4, options=None, type=None), ], containing_type=None, options=None, serialized_start=2230, serialized_end=2339, ) _sym_db.RegisterEnumDescriptor(_PIPELINECONTEXT) PipelineContext = enum_type_wrapper.EnumTypeWrapper(_PIPELINECONTEXT) PIPELINE_CONTEXT_UNKNOWN = 0 PRETRAINING = 1 TESTING = 2 EVALUATION = 3 PRODUCTION = 4 _CONTAINERARGUMENT = _descriptor.Descriptor( name='ContainerArgument', full_name='ContainerArgument', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='data', full_name='ContainerArgument.data', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=115, serialized_end=148, ) _DATAARGUMENT = _descriptor.Descriptor( name='DataArgument', full_name='DataArgument', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='data', full_name='DataArgument.data', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=150, serialized_end=178, ) _DATAARGUMENTS = _descriptor.Descriptor( name='DataArguments', full_name='DataArguments', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='data', full_name='DataArguments.data', index=0, number=1, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=180, serialized_end=209, ) _PRIMITIVEARGUMENT = _descriptor.Descriptor( name='PrimitiveArgument', full_name='PrimitiveArgument', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='data', full_name='PrimitiveArgument.data', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=211, serialized_end=244, ) _PRIMITIVEARGUMENTS = _descriptor.Descriptor( name='PrimitiveArguments', full_name='PrimitiveArguments', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='data', full_name='PrimitiveArguments.data', index=0, number=1, type=5, cpp_type=1, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=246, serialized_end=280, ) _VALUEARGUMENT = _descriptor.Descriptor( name='ValueArgument', full_name='ValueArgument', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='data', full_name='ValueArgument.data', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=282, serialized_end=319, ) _PRIMITIVESTEPARGUMENT = _descriptor.Descriptor( name='PrimitiveStepArgument', full_name='PrimitiveStepArgument', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='container', full_name='PrimitiveStepArgument.container', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='data', full_name='PrimitiveStepArgument.data', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name='argument', full_name='PrimitiveStepArgument.argument', index=0, containing_type=None, fields=[]), ], serialized_start=321, serialized_end=428, ) _PRIMITIVESTEPHYPERPARAMETER = _descriptor.Descriptor( name='PrimitiveStepHyperparameter', full_name='PrimitiveStepHyperparameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='container', full_name='PrimitiveStepHyperparameter.container', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='data', full_name='PrimitiveStepHyperparameter.data', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='primitive', full_name='PrimitiveStepHyperparameter.primitive', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='value', full_name='PrimitiveStepHyperparameter.value', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='data_set', full_name='PrimitiveStepHyperparameter.data_set', index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='primitives_set', full_name='PrimitiveStepHyperparameter.primitives_set', index=5, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name='argument', full_name='PrimitiveStepHyperparameter.argument', index=0, containing_type=None, fields=[]), ], serialized_start=431, serialized_end=701, ) _STEPINPUT = _descriptor.Descriptor( name='StepInput', full_name='StepInput', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='data', full_name='StepInput.data', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=703, serialized_end=728, ) _STEPOUTPUT = _descriptor.Descriptor( name='StepOutput', full_name='StepOutput', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='id', full_name='StepOutput.id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=730, serialized_end=754, ) _PIPELINESOURCE = _descriptor.Descriptor( name='PipelineSource', full_name='PipelineSource', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='name', full_name='PipelineSource.name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='contact', full_name='PipelineSource.contact', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='pipelines', full_name='PipelineSource.pipelines', index=2, number=3, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=756, serialized_end=822, ) _PIPELINEDESCRIPTIONUSER = _descriptor.Descriptor( name='PipelineDescriptionUser', full_name='PipelineDescriptionUser', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='id', full_name='PipelineDescriptionUser.id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='reason', full_name='PipelineDescriptionUser.reason', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='rationale', full_name='PipelineDescriptionUser.rationale', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=824, serialized_end=896, ) _PIPELINEDESCRIPTIONINPUT = _descriptor.Descriptor( name='PipelineDescriptionInput', full_name='PipelineDescriptionInput', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='name', full_name='PipelineDescriptionInput.name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=898, serialized_end=938, ) _PIPELINEDESCRIPTIONOUTPUT = _descriptor.Descriptor( name='PipelineDescriptionOutput', full_name='PipelineDescriptionOutput', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='name', full_name='PipelineDescriptionOutput.name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='data', full_name='PipelineDescriptionOutput.data', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=940, serialized_end=995, ) _PRIMITIVEPIPELINEDESCRIPTIONSTEP_ARGUMENTSENTRY = _descriptor.Descriptor( name='ArgumentsEntry', full_name='PrimitivePipelineDescriptionStep.ArgumentsEntry', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='PrimitivePipelineDescriptionStep.ArgumentsEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='value', full_name='PrimitivePipelineDescriptionStep.ArgumentsEntry.value', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=_descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b('8\001')), is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1278, serialized_end=1350, ) _PRIMITIVEPIPELINEDESCRIPTIONSTEP_HYPERPARAMSENTRY = _descriptor.Descriptor( name='HyperparamsEntry', full_name='PrimitivePipelineDescriptionStep.HyperparamsEntry', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='PrimitivePipelineDescriptionStep.HyperparamsEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='value', full_name='PrimitivePipelineDescriptionStep.HyperparamsEntry.value', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=_descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b('8\001')), is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1352, serialized_end=1432, ) _PRIMITIVEPIPELINEDESCRIPTIONSTEP = _descriptor.Descriptor( name='PrimitivePipelineDescriptionStep', full_name='PrimitivePipelineDescriptionStep', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='primitive', full_name='PrimitivePipelineDescriptionStep.primitive', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='arguments', full_name='PrimitivePipelineDescriptionStep.arguments', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='outputs', full_name='PrimitivePipelineDescriptionStep.outputs', index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='hyperparams', full_name='PrimitivePipelineDescriptionStep.hyperparams', index=3, number=4, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='users', full_name='PrimitivePipelineDescriptionStep.users', index=4, number=5, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_PRIMITIVEPIPELINEDESCRIPTIONSTEP_ARGUMENTSENTRY, _PRIMITIVEPIPELINEDESCRIPTIONSTEP_HYPERPARAMSENTRY, ], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=998, serialized_end=1432, ) _SUBPIPELINEPIPELINEDESCRIPTIONSTEP = _descriptor.Descriptor( name='SubpipelinePipelineDescriptionStep', full_name='SubpipelinePipelineDescriptionStep', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='pipeline', full_name='SubpipelinePipelineDescriptionStep.pipeline', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='inputs', full_name='SubpipelinePipelineDescriptionStep.inputs', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='outputs', full_name='SubpipelinePipelineDescriptionStep.outputs', index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1435, serialized_end=1569, ) _PLACEHOLDERPIPELINEDESCRIPTIONSTEP = _descriptor.Descriptor( name='PlaceholderPipelineDescriptionStep', full_name='PlaceholderPipelineDescriptionStep', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='inputs', full_name='PlaceholderPipelineDescriptionStep.inputs', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='outputs', full_name='PlaceholderPipelineDescriptionStep.outputs', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1571, serialized_end=1665, ) _PIPELINEDESCRIPTIONSTEP = _descriptor.Descriptor( name='PipelineDescriptionStep', full_name='PipelineDescriptionStep', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='primitive', full_name='PipelineDescriptionStep.primitive', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='pipeline', full_name='PipelineDescriptionStep.pipeline', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='placeholder', full_name='PipelineDescriptionStep.placeholder', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name='step', full_name='PipelineDescriptionStep.step', index=0, containing_type=None, fields=[]), ], serialized_start=1668, serialized_end=1874, ) _PIPELINEDESCRIPTION = _descriptor.Descriptor( name='PipelineDescription', full_name='PipelineDescription', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='id', full_name='PipelineDescription.id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='source', full_name='PipelineDescription.source', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='created', full_name='PipelineDescription.created', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='context', full_name='PipelineDescription.context', index=3, number=4, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='name', full_name='PipelineDescription.name', index=4, number=5, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='description', full_name='PipelineDescription.description', index=5, number=6, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='users', full_name='PipelineDescription.users', index=6, number=7, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='inputs', full_name='PipelineDescription.inputs', index=7, number=8, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='outputs', full_name='PipelineDescription.outputs', index=8, number=9, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='steps', full_name='PipelineDescription.steps', index=9, number=10, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1877, serialized_end=2228, ) _VALUEARGUMENT.fields_by_name['data'].message_type = value__pb2._VALUE _PRIMITIVESTEPARGUMENT.fields_by_name['container'].message_type = _CONTAINERARGUMENT _PRIMITIVESTEPARGUMENT.fields_by_name['data'].message_type = _DATAARGUMENT _PRIMITIVESTEPARGUMENT.oneofs_by_name['argument'].fields.append( _PRIMITIVESTEPARGUMENT.fields_by_name['container']) _PRIMITIVESTEPARGUMENT.fields_by_name['container'].containing_oneof = _PRIMITIVESTEPARGUMENT.oneofs_by_name['argument'] _PRIMITIVESTEPARGUMENT.oneofs_by_name['argument'].fields.append( _PRIMITIVESTEPARGUMENT.fields_by_name['data']) _PRIMITIVESTEPARGUMENT.fields_by_name['data'].containing_oneof = _PRIMITIVESTEPARGUMENT.oneofs_by_name['argument'] _PRIMITIVESTEPHYPERPARAMETER.fields_by_name['container'].message_type = _CONTAINERARGUMENT _PRIMITIVESTEPHYPERPARAMETER.fields_by_name['data'].message_type = _DATAARGUMENT _PRIMITIVESTEPHYPERPARAMETER.fields_by_name['primitive'].message_type = _PRIMITIVEARGUMENT _PRIMITIVESTEPHYPERPARAMETER.fields_by_name['value'].message_type = _VALUEARGUMENT _PRIMITIVESTEPHYPERPARAMETER.fields_by_name['data_set'].message_type = _DATAARGUMENTS _PRIMITIVESTEPHYPERPARAMETER.fields_by_name['primitives_set'].message_type = _PRIMITIVEARGUMENTS _PRIMITIVESTEPHYPERPARAMETER.oneofs_by_name['argument'].fields.append( _PRIMITIVESTEPHYPERPARAMETER.fields_by_name['container']) _PRIMITIVESTEPHYPERPARAMETER.fields_by_name['container'].containing_oneof = _PRIMITIVESTEPHYPERPARAMETER.oneofs_by_name['argument'] _PRIMITIVESTEPHYPERPARAMETER.oneofs_by_name['argument'].fields.append( _PRIMITIVESTEPHYPERPARAMETER.fields_by_name['data']) _PRIMITIVESTEPHYPERPARAMETER.fields_by_name['data'].containing_oneof = _PRIMITIVESTEPHYPERPARAMETER.oneofs_by_name['argument'] _PRIMITIVESTEPHYPERPARAMETER.oneofs_by_name['argument'].fields.append( _PRIMITIVESTEPHYPERPARAMETER.fields_by_name['primitive']) _PRIMITIVESTEPHYPERPARAMETER.fields_by_name['primitive'].containing_oneof = _PRIMITIVESTEPHYPERPARAMETER.oneofs_by_name['argument'] _PRIMITIVESTEPHYPERPARAMETER.oneofs_by_name['argument'].fields.append( _PRIMITIVESTEPHYPERPARAMETER.fields_by_name['value']) _PRIMITIVESTEPHYPERPARAMETER.fields_by_name['value'].containing_oneof = _PRIMITIVESTEPHYPERPARAMETER.oneofs_by_name['argument'] _PRIMITIVESTEPHYPERPARAMETER.oneofs_by_name['argument'].fields.append( _PRIMITIVESTEPHYPERPARAMETER.fields_by_name['data_set']) _PRIMITIVESTEPHYPERPARAMETER.fields_by_name['data_set'].containing_oneof = _PRIMITIVESTEPHYPERPARAMETER.oneofs_by_name['argument'] _PRIMITIVESTEPHYPERPARAMETER.oneofs_by_name['argument'].fields.append( _PRIMITIVESTEPHYPERPARAMETER.fields_by_name['primitives_set']) _PRIMITIVESTEPHYPERPARAMETER.fields_by_name['primitives_set'].containing_oneof = _PRIMITIVESTEPHYPERPARAMETER.oneofs_by_name['argument'] _PRIMITIVEPIPELINEDESCRIPTIONSTEP_ARGUMENTSENTRY.fields_by_name['value'].message_type = _PRIMITIVESTEPARGUMENT _PRIMITIVEPIPELINEDESCRIPTIONSTEP_ARGUMENTSENTRY.containing_type = _PRIMITIVEPIPELINEDESCRIPTIONSTEP _PRIMITIVEPIPELINEDESCRIPTIONSTEP_HYPERPARAMSENTRY.fields_by_name['value'].message_type = _PRIMITIVESTEPHYPERPARAMETER _PRIMITIVEPIPELINEDESCRIPTIONSTEP_HYPERPARAMSENTRY.containing_type = _PRIMITIVEPIPELINEDESCRIPTIONSTEP _PRIMITIVEPIPELINEDESCRIPTIONSTEP.fields_by_name['primitive'].message_type = primitive__pb2._PRIMITIVE _PRIMITIVEPIPELINEDESCRIPTIONSTEP.fields_by_name['arguments'].message_type = _PRIMITIVEPIPELINEDESCRIPTIONSTEP_ARGUMENTSENTRY _PRIMITIVEPIPELINEDESCRIPTIONSTEP.fields_by_name['outputs'].message_type = _STEPOUTPUT _PRIMITIVEPIPELINEDESCRIPTIONSTEP.fields_by_name['hyperparams'].message_type = _PRIMITIVEPIPELINEDESCRIPTIONSTEP_HYPERPARAMSENTRY _PRIMITIVEPIPELINEDESCRIPTIONSTEP.fields_by_name['users'].message_type = _PIPELINEDESCRIPTIONUSER _SUBPIPELINEPIPELINEDESCRIPTIONSTEP.fields_by_name['pipeline'].message_type = _PIPELINEDESCRIPTION _SUBPIPELINEPIPELINEDESCRIPTIONSTEP.fields_by_name['inputs'].message_type = _STEPINPUT _SUBPIPELINEPIPELINEDESCRIPTIONSTEP.fields_by_name['outputs'].message_type = _STEPOUTPUT _PLACEHOLDERPIPELINEDESCRIPTIONSTEP.fields_by_name['inputs'].message_type = _STEPINPUT _PLACEHOLDERPIPELINEDESCRIPTIONSTEP.fields_by_name['outputs'].message_type = _STEPOUTPUT _PIPELINEDESCRIPTIONSTEP.fields_by_name['primitive'].message_type = _PRIMITIVEPIPELINEDESCRIPTIONSTEP _PIPELINEDESCRIPTIONSTEP.fields_by_name['pipeline'].message_type = _SUBPIPELINEPIPELINEDESCRIPTIONSTEP _PIPELINEDESCRIPTIONSTEP.fields_by_name['placeholder'].message_type = _PLACEHOLDERPIPELINEDESCRIPTIONSTEP _PIPELINEDESCRIPTIONSTEP.oneofs_by_name['step'].fields.append( _PIPELINEDESCRIPTIONSTEP.fields_by_name['primitive']) _PIPELINEDESCRIPTIONSTEP.fields_by_name['primitive'].containing_oneof = _PIPELINEDESCRIPTIONSTEP.oneofs_by_name['step'] _PIPELINEDESCRIPTIONSTEP.oneofs_by_name['step'].fields.append( _PIPELINEDESCRIPTIONSTEP.fields_by_name['pipeline']) _PIPELINEDESCRIPTIONSTEP.fields_by_name['pipeline'].containing_oneof = _PIPELINEDESCRIPTIONSTEP.oneofs_by_name['step'] _PIPELINEDESCRIPTIONSTEP.oneofs_by_name['step'].fields.append( _PIPELINEDESCRIPTIONSTEP.fields_by_name['placeholder']) _PIPELINEDESCRIPTIONSTEP.fields_by_name['placeholder'].containing_oneof = _PIPELINEDESCRIPTIONSTEP.oneofs_by_name['step'] _PIPELINEDESCRIPTION.fields_by_name['source'].message_type = _PIPELINESOURCE _PIPELINEDESCRIPTION.fields_by_name['created'].message_type = google_dot_protobuf_dot_timestamp__pb2._TIMESTAMP _PIPELINEDESCRIPTION.fields_by_name['context'].enum_type = _PIPELINECONTEXT _PIPELINEDESCRIPTION.fields_by_name['users'].message_type = _PIPELINEDESCRIPTIONUSER _PIPELINEDESCRIPTION.fields_by_name['inputs'].message_type = _PIPELINEDESCRIPTIONINPUT _PIPELINEDESCRIPTION.fields_by_name['outputs'].message_type = _PIPELINEDESCRIPTIONOUTPUT _PIPELINEDESCRIPTION.fields_by_name['steps'].message_type = _PIPELINEDESCRIPTIONSTEP DESCRIPTOR.message_types_by_name['ContainerArgument'] = _CONTAINERARGUMENT DESCRIPTOR.message_types_by_name['DataArgument'] = _DATAARGUMENT DESCRIPTOR.message_types_by_name['DataArguments'] = _DATAARGUMENTS DESCRIPTOR.message_types_by_name['PrimitiveArgument'] = _PRIMITIVEARGUMENT DESCRIPTOR.message_types_by_name['PrimitiveArguments'] = _PRIMITIVEARGUMENTS DESCRIPTOR.message_types_by_name['ValueArgument'] = _VALUEARGUMENT DESCRIPTOR.message_types_by_name['PrimitiveStepArgument'] = _PRIMITIVESTEPARGUMENT DESCRIPTOR.message_types_by_name['PrimitiveStepHyperparameter'] = _PRIMITIVESTEPHYPERPARAMETER DESCRIPTOR.message_types_by_name['StepInput'] = _STEPINPUT DESCRIPTOR.message_types_by_name['StepOutput'] = _STEPOUTPUT DESCRIPTOR.message_types_by_name['PipelineSource'] = _PIPELINESOURCE DESCRIPTOR.message_types_by_name['PipelineDescriptionUser'] = _PIPELINEDESCRIPTIONUSER DESCRIPTOR.message_types_by_name['PipelineDescriptionInput'] = _PIPELINEDESCRIPTIONINPUT DESCRIPTOR.message_types_by_name['PipelineDescriptionOutput'] = _PIPELINEDESCRIPTIONOUTPUT DESCRIPTOR.message_types_by_name['PrimitivePipelineDescriptionStep'] = _PRIMITIVEPIPELINEDESCRIPTIONSTEP DESCRIPTOR.message_types_by_name['SubpipelinePipelineDescriptionStep'] = _SUBPIPELINEPIPELINEDESCRIPTIONSTEP DESCRIPTOR.message_types_by_name['PlaceholderPipelineDescriptionStep'] = _PLACEHOLDERPIPELINEDESCRIPTIONSTEP DESCRIPTOR.message_types_by_name['PipelineDescriptionStep'] = _PIPELINEDESCRIPTIONSTEP DESCRIPTOR.message_types_by_name['PipelineDescription'] = _PIPELINEDESCRIPTION DESCRIPTOR.enum_types_by_name['PipelineContext'] = _PIPELINECONTEXT _sym_db.RegisterFileDescriptor(DESCRIPTOR) ContainerArgument = _reflection.GeneratedProtocolMessageType('ContainerArgument', (_message.Message,), dict( DESCRIPTOR = _CONTAINERARGUMENT, __module__ = 'pipeline_pb2' # @@protoc_insertion_point(class_scope:ContainerArgument) )) _sym_db.RegisterMessage(ContainerArgument) DataArgument = _reflection.GeneratedProtocolMessageType('DataArgument', (_message.Message,), dict( DESCRIPTOR = _DATAARGUMENT, __module__ = 'pipeline_pb2' # @@protoc_insertion_point(class_scope:DataArgument) )) _sym_db.RegisterMessage(DataArgument) DataArguments = _reflection.GeneratedProtocolMessageType('DataArguments', (_message.Message,), dict( DESCRIPTOR = _DATAARGUMENTS, __module__ = 'pipeline_pb2' # @@protoc_insertion_point(class_scope:DataArguments) )) _sym_db.RegisterMessage(DataArguments) PrimitiveArgument = _reflection.GeneratedProtocolMessageType('PrimitiveArgument', (_message.Message,), dict( DESCRIPTOR = _PRIMITIVEARGUMENT, __module__ = 'pipeline_pb2' # @@protoc_insertion_point(class_scope:PrimitiveArgument) )) _sym_db.RegisterMessage(PrimitiveArgument) PrimitiveArguments = _reflection.GeneratedProtocolMessageType('PrimitiveArguments', (_message.Message,), dict( DESCRIPTOR = _PRIMITIVEARGUMENTS, __module__ = 'pipeline_pb2' # @@protoc_insertion_point(class_scope:PrimitiveArguments) )) _sym_db.RegisterMessage(PrimitiveArguments) ValueArgument = _reflection.GeneratedProtocolMessageType('ValueArgument', (_message.Message,), dict( DESCRIPTOR = _VALUEARGUMENT, __module__ = 'pipeline_pb2' # @@protoc_insertion_point(class_scope:ValueArgument) )) _sym_db.RegisterMessage(ValueArgument) PrimitiveStepArgument = _reflection.GeneratedProtocolMessageType('PrimitiveStepArgument', (_message.Message,), dict( DESCRIPTOR = _PRIMITIVESTEPARGUMENT, __module__ = 'pipeline_pb2' # @@protoc_insertion_point(class_scope:PrimitiveStepArgument) )) _sym_db.RegisterMessage(PrimitiveStepArgument) PrimitiveStepHyperparameter = _reflection.GeneratedProtocolMessageType('PrimitiveStepHyperparameter', (_message.Message,), dict( DESCRIPTOR = _PRIMITIVESTEPHYPERPARAMETER, __module__ = 'pipeline_pb2' # @@protoc_insertion_point(class_scope:PrimitiveStepHyperparameter) )) _sym_db.RegisterMessage(PrimitiveStepHyperparameter) StepInput = _reflection.GeneratedProtocolMessageType('StepInput', (_message.Message,), dict( DESCRIPTOR = _STEPINPUT, __module__ = 'pipeline_pb2' # @@protoc_insertion_point(class_scope:StepInput) )) _sym_db.RegisterMessage(StepInput) StepOutput = _reflection.GeneratedProtocolMessageType('StepOutput', (_message.Message,), dict( DESCRIPTOR = _STEPOUTPUT, __module__ = 'pipeline_pb2' # @@protoc_insertion_point(class_scope:StepOutput) )) _sym_db.RegisterMessage(StepOutput) PipelineSource = _reflection.GeneratedProtocolMessageType('PipelineSource', (_message.Message,), dict( DESCRIPTOR = _PIPELINESOURCE, __module__ = 'pipeline_pb2' # @@protoc_insertion_point(class_scope:PipelineSource) )) _sym_db.RegisterMessage(PipelineSource) PipelineDescriptionUser = _reflection.GeneratedProtocolMessageType('PipelineDescriptionUser', (_message.Message,), dict( DESCRIPTOR = _PIPELINEDESCRIPTIONUSER, __module__ = 'pipeline_pb2' # @@protoc_insertion_point(class_scope:PipelineDescriptionUser) )) _sym_db.RegisterMessage(PipelineDescriptionUser) PipelineDescriptionInput = _reflection.GeneratedProtocolMessageType('PipelineDescriptionInput', (_message.Message,), dict( DESCRIPTOR = _PIPELINEDESCRIPTIONINPUT, __module__ = 'pipeline_pb2' # @@protoc_insertion_point(class_scope:PipelineDescriptionInput) )) _sym_db.RegisterMessage(PipelineDescriptionInput) PipelineDescriptionOutput = _reflection.GeneratedProtocolMessageType('PipelineDescriptionOutput', (_message.Message,), dict( DESCRIPTOR = _PIPELINEDESCRIPTIONOUTPUT, __module__ = 'pipeline_pb2' # @@protoc_insertion_point(class_scope:PipelineDescriptionOutput) )) _sym_db.RegisterMessage(PipelineDescriptionOutput) PrimitivePipelineDescriptionStep = _reflection.GeneratedProtocolMessageType('PrimitivePipelineDescriptionStep', (_message.Message,), dict( ArgumentsEntry = _reflection.GeneratedProtocolMessageType('ArgumentsEntry', (_message.Message,), dict( DESCRIPTOR = _PRIMITIVEPIPELINEDESCRIPTIONSTEP_ARGUMENTSENTRY, __module__ = 'pipeline_pb2' # @@protoc_insertion_point(class_scope:PrimitivePipelineDescriptionStep.ArgumentsEntry) )) , HyperparamsEntry = _reflection.GeneratedProtocolMessageType('HyperparamsEntry', (_message.Message,), dict( DESCRIPTOR = _PRIMITIVEPIPELINEDESCRIPTIONSTEP_HYPERPARAMSENTRY, __module__ = 'pipeline_pb2' # @@protoc_insertion_point(class_scope:PrimitivePipelineDescriptionStep.HyperparamsEntry) )) , DESCRIPTOR = _PRIMITIVEPIPELINEDESCRIPTIONSTEP, __module__ = 'pipeline_pb2' # @@protoc_insertion_point(class_scope:PrimitivePipelineDescriptionStep) )) _sym_db.RegisterMessage(PrimitivePipelineDescriptionStep) _sym_db.RegisterMessage(PrimitivePipelineDescriptionStep.ArgumentsEntry) _sym_db.RegisterMessage(PrimitivePipelineDescriptionStep.HyperparamsEntry) SubpipelinePipelineDescriptionStep = _reflection.GeneratedProtocolMessageType('SubpipelinePipelineDescriptionStep', (_message.Message,), dict( DESCRIPTOR = _SUBPIPELINEPIPELINEDESCRIPTIONSTEP, __module__ = 'pipeline_pb2' # @@protoc_insertion_point(class_scope:SubpipelinePipelineDescriptionStep) )) _sym_db.RegisterMessage(SubpipelinePipelineDescriptionStep) PlaceholderPipelineDescriptionStep = _reflection.GeneratedProtocolMessageType('PlaceholderPipelineDescriptionStep', (_message.Message,), dict( DESCRIPTOR = _PLACEHOLDERPIPELINEDESCRIPTIONSTEP, __module__ = 'pipeline_pb2' # @@protoc_insertion_point(class_scope:PlaceholderPipelineDescriptionStep) )) _sym_db.RegisterMessage(PlaceholderPipelineDescriptionStep) PipelineDescriptionStep = _reflection.GeneratedProtocolMessageType('PipelineDescriptionStep', (_message.Message,), dict( DESCRIPTOR = _PIPELINEDESCRIPTIONSTEP, __module__ = 'pipeline_pb2' # @@protoc_insertion_point(class_scope:PipelineDescriptionStep) )) _sym_db.RegisterMessage(PipelineDescriptionStep) PipelineDescription = _reflection.GeneratedProtocolMessageType('PipelineDescription', (_message.Message,), dict( DESCRIPTOR = _PIPELINEDESCRIPTION, __module__ = 'pipeline_pb2' # @@protoc_insertion_point(class_scope:PipelineDescription) )) _sym_db.RegisterMessage(PipelineDescription) DESCRIPTOR.has_options = True DESCRIPTOR._options = _descriptor._ParseOptions(descriptor_pb2.FileOptions(), _b('Z\010pipeline')) _PRIMITIVEPIPELINEDESCRIPTIONSTEP_ARGUMENTSENTRY.has_options = True _PRIMITIVEPIPELINEDESCRIPTIONSTEP_ARGUMENTSENTRY._options = _descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b('8\001')) _PRIMITIVEPIPELINEDESCRIPTIONSTEP_HYPERPARAMSENTRY.has_options = True _PRIMITIVEPIPELINEDESCRIPTIONSTEP_HYPERPARAMSENTRY._options = _descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b('8\001')) # @@protoc_insertion_point(module_scope)
d3m-model-search-master
Stanford-D3M-Full/ta3ta2/api/pipeline_pb2.py
d3m-model-search-master
Stanford-D3M-Full/ta3ta2/api/__init__.py
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT! import grpc import ta3ta2.api.core_pb2 as core__pb2 class CoreStub(object): """See each message's comments for information about each particular call. """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.SearchSolutions = channel.unary_unary( '/Core/SearchSolutions', request_serializer=core__pb2.SearchSolutionsRequest.SerializeToString, response_deserializer=core__pb2.SearchSolutionsResponse.FromString, ) self.GetSearchSolutionsResults = channel.unary_stream( '/Core/GetSearchSolutionsResults', request_serializer=core__pb2.GetSearchSolutionsResultsRequest.SerializeToString, response_deserializer=core__pb2.GetSearchSolutionsResultsResponse.FromString, ) self.EndSearchSolutions = channel.unary_unary( '/Core/EndSearchSolutions', request_serializer=core__pb2.EndSearchSolutionsRequest.SerializeToString, response_deserializer=core__pb2.EndSearchSolutionsResponse.FromString, ) self.StopSearchSolutions = channel.unary_unary( '/Core/StopSearchSolutions', request_serializer=core__pb2.StopSearchSolutionsRequest.SerializeToString, response_deserializer=core__pb2.StopSearchSolutionsResponse.FromString, ) self.DescribeSolution = channel.unary_unary( '/Core/DescribeSolution', request_serializer=core__pb2.DescribeSolutionRequest.SerializeToString, response_deserializer=core__pb2.DescribeSolutionResponse.FromString, ) self.ScoreSolution = channel.unary_unary( '/Core/ScoreSolution', request_serializer=core__pb2.ScoreSolutionRequest.SerializeToString, response_deserializer=core__pb2.ScoreSolutionResponse.FromString, ) self.GetScoreSolutionResults = channel.unary_stream( '/Core/GetScoreSolutionResults', request_serializer=core__pb2.GetScoreSolutionResultsRequest.SerializeToString, response_deserializer=core__pb2.GetScoreSolutionResultsResponse.FromString, ) self.FitSolution = channel.unary_unary( '/Core/FitSolution', request_serializer=core__pb2.FitSolutionRequest.SerializeToString, response_deserializer=core__pb2.FitSolutionResponse.FromString, ) self.GetFitSolutionResults = channel.unary_stream( '/Core/GetFitSolutionResults', request_serializer=core__pb2.GetFitSolutionResultsRequest.SerializeToString, response_deserializer=core__pb2.GetFitSolutionResultsResponse.FromString, ) self.ProduceSolution = channel.unary_unary( '/Core/ProduceSolution', request_serializer=core__pb2.ProduceSolutionRequest.SerializeToString, response_deserializer=core__pb2.ProduceSolutionResponse.FromString, ) self.GetProduceSolutionResults = channel.unary_stream( '/Core/GetProduceSolutionResults', request_serializer=core__pb2.GetProduceSolutionResultsRequest.SerializeToString, response_deserializer=core__pb2.GetProduceSolutionResultsResponse.FromString, ) self.SolutionExport = channel.unary_unary( '/Core/SolutionExport', request_serializer=core__pb2.SolutionExportRequest.SerializeToString, response_deserializer=core__pb2.SolutionExportResponse.FromString, ) self.UpdateProblem = channel.unary_unary( '/Core/UpdateProblem', request_serializer=core__pb2.UpdateProblemRequest.SerializeToString, response_deserializer=core__pb2.UpdateProblemResponse.FromString, ) self.ListPrimitives = channel.unary_unary( '/Core/ListPrimitives', request_serializer=core__pb2.ListPrimitivesRequest.SerializeToString, response_deserializer=core__pb2.ListPrimitivesResponse.FromString, ) self.Hello = channel.unary_unary( '/Core/Hello', request_serializer=core__pb2.HelloRequest.SerializeToString, response_deserializer=core__pb2.HelloResponse.FromString, ) class CoreServicer(object): """See each message's comments for information about each particular call. """ def SearchSolutions(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetSearchSolutionsResults(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def EndSearchSolutions(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def StopSearchSolutions(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def DescribeSolution(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def ScoreSolution(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetScoreSolutionResults(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def FitSolution(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetFitSolutionResults(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def ProduceSolution(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetProduceSolutionResults(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def SolutionExport(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def UpdateProblem(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def ListPrimitives(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def Hello(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_CoreServicer_to_server(servicer, server): rpc_method_handlers = { 'SearchSolutions': grpc.unary_unary_rpc_method_handler( servicer.SearchSolutions, request_deserializer=core__pb2.SearchSolutionsRequest.FromString, response_serializer=core__pb2.SearchSolutionsResponse.SerializeToString, ), 'GetSearchSolutionsResults': grpc.unary_stream_rpc_method_handler( servicer.GetSearchSolutionsResults, request_deserializer=core__pb2.GetSearchSolutionsResultsRequest.FromString, response_serializer=core__pb2.GetSearchSolutionsResultsResponse.SerializeToString, ), 'EndSearchSolutions': grpc.unary_unary_rpc_method_handler( servicer.EndSearchSolutions, request_deserializer=core__pb2.EndSearchSolutionsRequest.FromString, response_serializer=core__pb2.EndSearchSolutionsResponse.SerializeToString, ), 'StopSearchSolutions': grpc.unary_unary_rpc_method_handler( servicer.StopSearchSolutions, request_deserializer=core__pb2.StopSearchSolutionsRequest.FromString, response_serializer=core__pb2.StopSearchSolutionsResponse.SerializeToString, ), 'DescribeSolution': grpc.unary_unary_rpc_method_handler( servicer.DescribeSolution, request_deserializer=core__pb2.DescribeSolutionRequest.FromString, response_serializer=core__pb2.DescribeSolutionResponse.SerializeToString, ), 'ScoreSolution': grpc.unary_unary_rpc_method_handler( servicer.ScoreSolution, request_deserializer=core__pb2.ScoreSolutionRequest.FromString, response_serializer=core__pb2.ScoreSolutionResponse.SerializeToString, ), 'GetScoreSolutionResults': grpc.unary_stream_rpc_method_handler( servicer.GetScoreSolutionResults, request_deserializer=core__pb2.GetScoreSolutionResultsRequest.FromString, response_serializer=core__pb2.GetScoreSolutionResultsResponse.SerializeToString, ), 'FitSolution': grpc.unary_unary_rpc_method_handler( servicer.FitSolution, request_deserializer=core__pb2.FitSolutionRequest.FromString, response_serializer=core__pb2.FitSolutionResponse.SerializeToString, ), 'GetFitSolutionResults': grpc.unary_stream_rpc_method_handler( servicer.GetFitSolutionResults, request_deserializer=core__pb2.GetFitSolutionResultsRequest.FromString, response_serializer=core__pb2.GetFitSolutionResultsResponse.SerializeToString, ), 'ProduceSolution': grpc.unary_unary_rpc_method_handler( servicer.ProduceSolution, request_deserializer=core__pb2.ProduceSolutionRequest.FromString, response_serializer=core__pb2.ProduceSolutionResponse.SerializeToString, ), 'GetProduceSolutionResults': grpc.unary_stream_rpc_method_handler( servicer.GetProduceSolutionResults, request_deserializer=core__pb2.GetProduceSolutionResultsRequest.FromString, response_serializer=core__pb2.GetProduceSolutionResultsResponse.SerializeToString, ), 'SolutionExport': grpc.unary_unary_rpc_method_handler( servicer.SolutionExport, request_deserializer=core__pb2.SolutionExportRequest.FromString, response_serializer=core__pb2.SolutionExportResponse.SerializeToString, ), 'UpdateProblem': grpc.unary_unary_rpc_method_handler( servicer.UpdateProblem, request_deserializer=core__pb2.UpdateProblemRequest.FromString, response_serializer=core__pb2.UpdateProblemResponse.SerializeToString, ), 'ListPrimitives': grpc.unary_unary_rpc_method_handler( servicer.ListPrimitives, request_deserializer=core__pb2.ListPrimitivesRequest.FromString, response_serializer=core__pb2.ListPrimitivesResponse.SerializeToString, ), 'Hello': grpc.unary_unary_rpc_method_handler( servicer.Hello, request_deserializer=core__pb2.HelloRequest.FromString, response_serializer=core__pb2.HelloResponse.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'Core', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,))
d3m-model-search-master
Stanford-D3M-Full/ta3ta2/api/core_pb2_grpc.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: primitive.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.protobuf import descriptor_pb2 as google_dot_protobuf_dot_descriptor__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='primitive.proto', package='', syntax='proto3', serialized_pb=_b('\n\x0fprimitive.proto\x1a google/protobuf/descriptor.proto\"[\n\tPrimitive\x12\n\n\x02id\x18\x01 \x01(\t\x12\x0f\n\x07version\x18\x02 \x01(\t\x12\x13\n\x0bpython_path\x18\x03 \x01(\t\x12\x0c\n\x04name\x18\x04 \x01(\t\x12\x0e\n\x06\x64igest\x18\x05 \x01(\tB\nZ\x08pipelineb\x06proto3') , dependencies=[google_dot_protobuf_dot_descriptor__pb2.DESCRIPTOR,]) _PRIMITIVE = _descriptor.Descriptor( name='Primitive', full_name='Primitive', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='id', full_name='Primitive.id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='version', full_name='Primitive.version', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='python_path', full_name='Primitive.python_path', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='name', full_name='Primitive.name', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='digest', full_name='Primitive.digest', index=4, number=5, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=53, serialized_end=144, ) DESCRIPTOR.message_types_by_name['Primitive'] = _PRIMITIVE _sym_db.RegisterFileDescriptor(DESCRIPTOR) Primitive = _reflection.GeneratedProtocolMessageType('Primitive', (_message.Message,), dict( DESCRIPTOR = _PRIMITIVE, __module__ = 'primitive_pb2' # @@protoc_insertion_point(class_scope:Primitive) )) _sym_db.RegisterMessage(Primitive) DESCRIPTOR.has_options = True DESCRIPTOR._options = _descriptor._ParseOptions(descriptor_pb2.FileOptions(), _b('Z\010pipeline')) # @@protoc_insertion_point(module_scope)
d3m-model-search-master
Stanford-D3M-Full/ta3ta2/api/primitive_pb2.py
""" We represent values in this module at three levels: * A GRPC ``Value`` message. * An *intermediate level* with a dict with ``type`` and ``value`` fields where ``type`` can be one of the ``object``, ``dataset_uri``, ``csv_uri``, ``pickle_uri``, ``plasma_id``, ``error``. All values except for ``object`` type are strings. Values for ``object`` type are raw Python values. * A raw Python value. One can use `decode_value` to convert from a GRPC ``Value`` message to the value at the *intermediate level*. And `encode_value` to convert from a value at the *intermediate level* to the GRPC ``Value`` message. One can use `load_value` to convert from a value at the *intermediate level* to the raw Python value. And `save_value` to convert from a ray Python value to the value at the *intermediate level*. The reason for three levels is that sometimes you want to pass a value around Python codebase without loading the whole value into the memory. So conversion from and to GRPC API can be done at the different place than loading and saving raw Python values. """ import binascii import datetime import os.path import pickle import shutil import sys import tempfile import typing import uuid from urllib import parse as url_parse import frozendict import pandas from google.protobuf import timestamp_pb2 from d3m import container, exceptions, runtime as runtime_module, utils as d3m_utils from d3m.metadata import base as metadata_base, pipeline as pipeline_module, problem as problem_module from d3m.metadata.base import ArgumentType, Context from . import core_pb2 from . import pipeline_pb2 from . import primitive_pb2 from . import problem_pb2 from . import value_pb2 MAX_WIRE_OBJECT_SIZE = 64 * 1024 # bytes def _hex_to_binary(hex_identifier): return binascii.unhexlify(hex_identifier) def _binary_to_hex(identifier): hex_identifier = binascii.hexlify(identifier) return hex_identifier.decode() class ValueType(d3m_utils.Enum): """ Enumeration of possible value types. Values are kept in sync with TA2-TA3 API's ``ValueType`` enumeration. """ RAW = 1 DATASET_URI = 2 CSV_URI = 3 PICKLE_URI = 4 PICKLE_BLOB = 5 PLASMA_ID = 6 def _can_encode_raw(value): """ Can the value be encoded as raw GRPC value for TA2-TA3 API? Parameters ---------- value : Any Value to try to encode as raw GRPC value. Returns ------- bool ``True`` if the value can be encoded as raw GRPC value. """ try: encode_raw_value(value) return True except Exception: return False def _can_pickle(value): """ Can the value be pickled? Parameters ---------- value : Any Value to try to pickle. Returns ------- bool ``True`` if the value can be pickled. """ try: pickle.dumps(value) return True except Exception: return False def _fix_uri(uri): """ Make a real URI from an absolute path. Some clients do not use proper URIs. Parameters ---------- uri : str An input URI. Returns ------- str A fixed URI. """ if not uri.startswith('file://') and uri.startswith('/'): uri = 'file://{uri}'.format(uri=uri) return uri def _open_file_uri(uri, mode='r', encoding=None, validate_uri=None): """ Opens a file URI and returns a file object. Parameters ---------- uri : str A file URI to the file. mode : str Mode to open a file with. encoding : str Encoding to use. Returns ------- File A file object. """ if validate_uri is not None: validate_uri(uri) parsed_uri = url_parse.urlparse(uri) return open(parsed_uri.path, mode=mode, encoding=encoding) def _fix_file_uri_host(uri): """ If ``uri`` is a file URI, make sure that it has a host set to ``localhost``. Parameters ---------- uri : str URI to fix. Returns ------- str Fixed URI. """ parsed_uri = url_parse.urlparse(uri) if parsed_uri.scheme == 'file' and parsed_uri.netloc == '': parsed_uri = parsed_uri._replace(netloc='localhost') uri = url_parse.urlunparse(parsed_uri) return uri def encode_primitive(primitive): """ Encodes a primitive into a GRPC message. Parameters ---------- primitive : Type[PrimitiveBase] A primitive class. Returns ------- Primitive A GRPC message. """ metadata = primitive.metadata.query() return primitive_pb2.Primitive( id=metadata['id'], version=metadata['version'], python_path=metadata['python_path'], name=metadata['name'], digest=metadata.get('digest', None), ) def encode_primitive_description(primitive_description): """ Encodes a primitive description into a GRPC message. Parameters ---------- primitive_description : Dict A primitive description. Returns ------- Primitive A GRPC message. """ return primitive_pb2.Primitive( id=primitive_description['id'], version=primitive_description['version'], python_path=primitive_description['python_path'], name=primitive_description['name'], digest=primitive_description.get('digest', None), ) def decode_primitive(primitive): """ Decodes a GRPC message into a primitive description. Parameters ---------- primitive : Primitive A GRPC message. Returns ------- Dict A primitive description. """ primitive_dict = { 'id': primitive.id, 'version': primitive.version, 'python_path': primitive.python_path, 'name': primitive.name, } if primitive.digest: primitive_dict['digest'] = primitive.digest return primitive_dict def encode_problem_description(problem_description): """ Encodes a problem description into a GRPC message. Parameters ---------- problem_description : Dict A problem description. Returns ------- ProblemDescription A GRPC message. """ performance_metrics = [] for performance_metric in problem_description['problem'].get('performance_metrics', []): performance_metrics.append(encode_performance_metric(performance_metric)) problem = problem_pb2.Problem( id=problem_description['problem'].get('id', None), version=problem_description['problem'].get('version', None), name=problem_description['problem'].get('name', None), description=problem_description['problem'].get('description', None), task_type=problem_description['problem']['task_type'].value, task_subtype=problem_description['problem']['task_subtype'].value, performance_metrics=performance_metrics, ) inputs = [] for problem_input in problem_description.get('inputs', []): targets = [] for target in problem_input.get('targets', []): targets.append( problem_pb2.ProblemTarget( target_index=target['target_index'], resource_id=target['resource_id'], column_index=target['column_index'], column_name=target['column_name'], clusters_number=target.get('clusters_number', None), ), ) inputs.append( problem_pb2.ProblemInput(dataset_id=problem_input['dataset_id'], targets=targets), ) return problem_pb2.ProblemDescription( problem=problem, inputs=inputs, ) def decode_problem_description(problem_description): """ Decodes a GRPC message into a problem description. Parameters ---------- problem_description : ProblemDescription A GRPC message. Returns ------- Union[Dict, None] A problem description, or ``None`` if problem is not defined. """ if problem_description.problem.task_type == problem_pb2.TaskType.Value('TASK_TYPE_UNDEFINED') and problem_description.problem.task_subtype == problem_pb2.TaskSubtype.Value('TASK_SUBTYPE_UNDEFINED'): return None description = { 'schema': problem_module.PROBLEM_SCHEMA_VERSION, 'problem': { 'id': problem_description.problem.id, 'version': problem_description.problem.version, 'name': problem_description.problem.name, 'task_type': problem_module.TaskType(problem_description.problem.task_type), 'task_subtype': problem_module.TaskSubtype(problem_description.problem.task_subtype), }, } if problem_description.problem.description: description['problem']['description'] = problem_description.problem.description performance_metrics = [] for performance_metric in problem_description.problem.performance_metrics: performance_metrics.append(decode_performance_metric(performance_metric)) if performance_metrics: description['problem']['performance_metrics'] = performance_metrics inputs = [] for problem_input in problem_description.inputs: targets = [] for target in problem_input.targets: targets.append( { 'target_index': target.target_index, 'resource_id': target.resource_id, 'column_index': target.column_index, 'column_name': target.column_name, }, ) if target.clusters_number: targets[-1]['clusters_number'] = target.clusters_number problem_input = { 'dataset_id': problem_input.dataset_id, } if targets: problem_input['targets'] = targets inputs.append(problem_input) if inputs: description['inputs'] = inputs problem_module.PROBLEM_SCHEMA_VALIDATOR.validate(description) return description def encode_pipeline_description(pipeline, allowed_value_types, scratch_dir, *, plasma_put=None, validate_uri=None): """ Encodes a pipeline into a GRPC message. Parameters ---------- pipeline : Pipeline A pipeline instance. Primitives do not have to be resolved. Sub-pipelines should be nested. allowed_value_types : Sequence[ValueType] A list of allowed value types to encode this value as. This list is tried in order until encoding succeeds. scratch_dir : str Path to a directory to store any temporary files needed during execution. plasma_put : Callable A function to store a value into a Plasma store. The function takes a value to store into Plasma store and should return stored object's ID as bytes. validate_uri : Callable A function which can validate that URI is a valid and supported file URI. The function takes an URI as a string and should throw an exception if URI is invalid. Returns ------- PipelineDescription A GRPC message. """ if pipeline.source is not None: source = pipeline_pb2.PipelineSource( name=pipeline.source.get('name', None), contact=pipeline.source.get('contact', None), pipelines=[p['id'] for p in pipeline.source.get('from', {}).get('pipelines', []) if pipeline.source.get('from', {}).get('type', None) == 'PIPELINE'], ) else: source = None steps = [] for step in pipeline.steps: if isinstance(step, pipeline_module.PrimitiveStep): arguments = {} for name, argument in step.arguments.items(): if argument['type'] == ArgumentType.CONTAINER: arguments[name] = pipeline_pb2.PrimitiveStepArgument( container=pipeline_pb2.ContainerArgument( data=argument['data'], ), ) elif argument['type'] == ArgumentType.DATA: assert not isinstance(argument['data'], typing.Sequence), type(argument['data']) arguments[name] = pipeline_pb2.PrimitiveStepArgument( data=pipeline_pb2.DataArgument( data=argument['data'], ), ) else: raise exceptions.UnexpectedValueError("Unknown argument type: {argument_type}".format(argument_type=argument['type'])) hyperparams = {} for name, hyperparameter in step.hyperparams.items(): if hyperparameter['type'] == ArgumentType.CONTAINER: hyperparams[name] = pipeline_pb2.PrimitiveStepHyperparameter( container=pipeline_pb2.ContainerArgument( data=hyperparameter['data'], ), ) elif hyperparameter['type'] == ArgumentType.DATA: if isinstance(hyperparameter['data'], typing.Sequence): hyperparams[name] = pipeline_pb2.PrimitiveStepHyperparameter( data_set=pipeline_pb2.DataArguments( data=hyperparameter['data'], ), ) else: hyperparams[name] = pipeline_pb2.PrimitiveStepHyperparameter( data=pipeline_pb2.DataArgument( data=hyperparameter['data'], ), ) elif hyperparameter['type'] == ArgumentType.PRIMITIVE: if isinstance(hyperparameter['data'], typing.Sequence): hyperparams[name] = pipeline_pb2.PrimitiveStepHyperparameter( primitives_set=pipeline_pb2.PrimitiveArguments( data=hyperparameter['data'], ), ) else: hyperparams[name] = pipeline_pb2.PrimitiveStepHyperparameter( primitive=pipeline_pb2.PrimitiveArgument( data=hyperparameter['data'], ), ) elif hyperparameter['type'] == ArgumentType.VALUE: hyperparams[name] = pipeline_pb2.PrimitiveStepHyperparameter( value=pipeline_pb2.ValueArgument( data=encode_value({'type': 'object', 'value': hyperparameter['data']}, allowed_value_types, scratch_dir, plasma_put=plasma_put, validate_uri=validate_uri), ), ) else: raise exceptions.UnexpectedValueError("Unknown hyperparameter type: {hyperparameter_type}".format(hyperparameter_type=hyperparameter['type'])) # If the primitive is not resolved. if step.primitive is None: primitive = encode_primitive_description(step.primitive_description) else: primitive = encode_primitive(step.primitive) steps.append( pipeline_pb2.PipelineDescriptionStep( primitive=pipeline_pb2.PrimitivePipelineDescriptionStep( primitive=primitive, arguments=arguments, outputs=[pipeline_pb2.StepOutput(id=output_id) for output_id in step.outputs], hyperparams=hyperparams, users=[pipeline_pb2.PipelineDescriptionUser(id=user['id'], reason=user.get('reason', None), rationale=user.get('rationale', None)) for user in step.users], ), ), ) elif isinstance(step, pipeline_module.SubpipelineStep): steps.append( pipeline_pb2.PipelineDescriptionStep( pipeline=pipeline_pb2.SubpipelinePipelineDescriptionStep( pipeline=encode_pipeline_description(step.pipeline, allowed_value_types, scratch_dir, plasma_put=plasma_put, validate_uri=validate_uri), inputs=[pipeline_pb2.StepInput(data=input_data) for input_data in step.inputs], outputs=[pipeline_pb2.StepOutput(id=output_id) for output_id in step.outputs], ), ), ) elif isinstance(step, pipeline_module.PlaceholderStep): steps.append( pipeline_pb2.PipelineDescriptionStep( placeholder=pipeline_pb2.PlaceholderPipelineDescriptionStep( inputs=[pipeline_pb2.StepInput(data=input_data) for input_data in step.inputs], outputs=[pipeline_pb2.StepOutput(id=output_id) for output_id in step.outputs], ), ), ) else: raise exceptions.UnexpectedValueError("Unknown step type: {step_type}".format(step_type=type(step))) return pipeline_pb2.PipelineDescription( id=pipeline.id, source=source, created=encode_timestamp(pipeline.created), context=pipeline.context.value, name=pipeline.name, description=pipeline.description, users=[pipeline_pb2.PipelineDescriptionUser(id=user['id'], reason=user.get('reason', None), rationale=user.get('rationale', None)) for user in pipeline.users], inputs=[pipeline_pb2.PipelineDescriptionInput(name=input.get('name', None)) for input in pipeline.inputs], outputs=[pipeline_pb2.PipelineDescriptionOutput(name=output.get('name', None), data=output['data']) for output in pipeline.outputs], steps=steps, ) def _decode_user_description(user_description): user_description_dict = {'id': user_description.id} if user_description.reason: user_description_dict['reason'] = user_description.reason if user_description.rationale: user_description_dict['rationale'] = user_description.rationale return user_description_dict def decode_pipeline_description(pipeline_description, resolver, *, pipeline_class=None, plasma_get=None, validate_uri=None): """ Decodes a GRPC message into a pipeline. Parameters ---------- pipeline_description : PipelineDescription A GRPC message. resolver : Resolver An instance of primitive and pipeline resolver to use. pipeline_class : Type[Pipeline] A pipeline class to use for instances of a pipeline. By default `d3m.metadata.pipeline.Pipeline`. plasma_get : Callable A function to load a value from a Plasma store. The function takes object's ID as bytes and should return stored the value from a Plasma store. validate_uri : Callable A function which can validate that URI is a valid and supported file URI. The function takes an URI as a string and should throw an exception if URI is invalid. Returns ------- Union[Pipeline, None] A pipeline instance, or ``None`` if pipeline is not defined. """ if pipeline_description.context == pipeline_pb2.PipelineContext.Value('PIPELINE_CONTEXT_UNKNOWN') and not pipeline_description.steps: return None if pipeline_class is None: pipeline_class = pipeline_module.Pipeline source = {} if pipeline_description.source.name: source['name'] = pipeline_description.source.name if pipeline_description.source.contact: source['contact'] = pipeline_description.source.contact if pipeline_description.source.pipelines: source['from'] = { 'type': 'PIPELINE', 'pipelines': [{'id': pipeline_id} for pipeline_id in pipeline_description.source.pipelines], } if not source: source = None pipeline = pipeline_class( pipeline_id=pipeline_description.id, context=pipeline_module.PipelineContext(pipeline_description.context), created=decode_timestamp(pipeline_description.created), source=source, name=(pipeline_description.name or None), description=(pipeline_description.description or None), ) for input_description in pipeline_description.inputs: pipeline.add_input(input_description.name or None) for step_description in pipeline_description.steps: step_type = step_description.WhichOneof('step') if step_type == 'primitive': step = pipeline._get_step_class(pipeline_module.PipelineStep.PRIMITIVE)(primitive_description=decode_primitive(step_description.primitive.primitive), resolver=resolver) for argument_name, argument_description in step_description.primitive.arguments.items(): argument_type = argument_description.WhichOneof('argument') if argument_type == 'container': step.add_argument(argument_name, ArgumentType.CONTAINER, argument_description.container.data) elif argument_type == 'data': step.add_argument(argument_name, ArgumentType.DATA, argument_description.data.data) else: raise exceptions.UnexpectedValueError("Unknown argument type: {argument_type}".format(argument_type=argument_type)) for output_description in step_description.primitive.outputs: step.add_output(output_description.id) for hyperparameter_name, hyperparameter_description in step_description.primitive.hyperparams.items(): argument_type = hyperparameter_description.WhichOneof('argument') if argument_type == 'container': step.add_hyperparameter(hyperparameter_name, ArgumentType.CONTAINER, hyperparameter_description.container.data) elif argument_type == 'data': step.add_hyperparameter(hyperparameter_name, ArgumentType.DATA, hyperparameter_description.data.data) elif argument_type == 'primitive': step.add_hyperparameter(hyperparameter_name, ArgumentType.PRIMITIVE, hyperparameter_description.primitive.data) elif argument_type == 'value': value = decode_value(hyperparameter_description.value.data, validate_uri=validate_uri) step.add_hyperparameter(hyperparameter_name, ArgumentType.VALUE, load_value(value, plasma_get=plasma_get, validate_uri=validate_uri)) elif argument_type == 'data_set': step.add_hyperparameter(hyperparameter_name, ArgumentType.DATA, hyperparameter_description.data_set.data) elif argument_type == 'primitives_set': step.add_hyperparameter(hyperparameter_name, ArgumentType.PRIMITIVE, hyperparameter_description.primitives_set.data) else: raise exceptions.UnexpectedValueError("Unknown argument type: {argument_type}".format(argument_type=argument_type)) for user_description in step_description.primitive.users: step.add_user(_decode_user_description(user_description)) elif step_type == 'pipeline': subpipeline = decode_pipeline_description(step_description.pipeline.pipeline, resolver, pipeline_class=pipeline_class, plasma_get=plasma_get, validate_uri=validate_uri) step = pipeline._get_step_class(pipeline_module.PipelineStep.SUBPIPELINE)(pipeline_id=step_description.pipeline.pipeline.id, pipeline=subpipeline, resolver=resolver) for pipeline_input in step_description.pipeline.inputs: step.add_input(pipeline_input.data) for pipeline_output in step_description.pipeline.outputs: step.add_output(pipeline_output.id or None) elif step_type == 'placeholder': step = pipeline._get_step_class(pipeline_module.PipelineStep.PLACEHOLDER)(resolver=resolver) for placeholder_input in step_description.placeholder.inputs: step.add_input(placeholder_input.data) for placeholder_output in step_description.placeholder.outputs: step.add_output(placeholder_output.id) else: raise exceptions.InvalidArgumentValueError("Invalid step type '{step_type}'.".format(step_type=step_type)) pipeline.add_step(step) for output_description in pipeline_description.outputs: pipeline.add_output(output_description.data, output_description.name or None) for user_description in pipeline_description.users: pipeline.add_user(_decode_user_description(user_description)) # Generating JSON also checks it against the pipeline schema. # This requires all sub-pipelines to be resolved, but this is true in our case. pipeline.to_json_structure(nest_subpipelines=True) return pipeline def encode_performance_metric(metric): """ Encodes a dict describing a performance metric into a GRPC message. Parameters ---------- metric : Dict A dict with fields ``metric`` and ``params``, where ``metric`` is a ``PerformanceMetric`` enumeration value. Returns ------- ProblemPerformanceMetric A GRPC message. """ return problem_pb2.ProblemPerformanceMetric( metric=metric['metric'].value, k=metric.get('params', {}).get('k', None), pos_label=metric.get('params', {}).get('pos_label', None), ) def decode_performance_metric(metric): """ Decodes a GRPC message into a dict describing a performance metric. Parameters ---------- metric : ProblemPerformanceMetric A GRPC message. Returns ------- Dict A dict with fields ``metric`` and ``params``, where ``metric`` is a ``PerformanceMetric`` enumeration value. """ params = {} if metric.k: params['k'] = metric.k if metric.pos_label: params['pos_label'] = metric.pos_label return { # TODO: Support additional metrics like "LOSS". 'metric': problem_module.PerformanceMetric(metric.metric), 'params': params, } def encode_score(score, allowed_value_types, scratch_dir, *, plasma_put=None, validate_uri=None): """ Encodes a score description into a GRPC message. Parameters ---------- score : Dict A score description is a dict with fields: ``metric`` ``fold``, ``targets``, ``value``. allowed_value_types : Sequence[ValueType] A list of allowed value types to encode this value as. This list is tried in order until encoding succeeds. scratch_dir : str Path to a directory to store any temporary files needed during execution. plasma_put : Callable A function to store a value into a Plasma store. The function takes a value to store into Plasma store and should return stored object's ID as bytes. validate_uri : Callable A function which can validate that URI is a valid and supported file URI. The function takes an URI as a string and should throw an exception if URI is invalid. Returns ------- Score A GRPC message. """ return core_pb2.Score( metric=encode_performance_metric(score['metric']), fold=score['fold'], targets=[problem_pb2.ProblemTarget(target_index=target['target_index'], resource_id=target['resource_id'], column_index=target['column_index'], column_name=target['column_name']) for target in score['targets']], value=encode_value({'type': 'object', 'value': score['value']}, allowed_value_types, scratch_dir, plasma_put=plasma_put, validate_uri=validate_uri), ) def encode_raw_value(value): """ Encodes a simple Python value into a GRPC message. Parameters ---------- value : Any A simple Python value. Returns ------- ValueRaw A GRPC message. """ if value is None: return value_pb2.ValueRaw(null=value_pb2.NullValue.Value('NULL_VALUE')) elif isinstance(value, bool): return value_pb2.ValueRaw(bool=value) elif d3m_utils.is_float(type(value)): return value_pb2.ValueRaw(double=float(value)) elif d3m_utils.is_int(type(value)): return value_pb2.ValueRaw(int64=int(value)) elif isinstance(value, str): return value_pb2.ValueRaw(string=value) elif isinstance(value, bytes): return value_pb2.ValueRaw(bytes=value) elif isinstance(value, (dict, frozendict.frozendict)): return value_pb2.ValueRaw(dict=value_pb2.ValueDict(items={key: encode_raw_value(val) for key, val in value.items()})) # We do not want to encode container type "List" as raw value to not lose metadata. elif isinstance(value, (list, tuple)) and not isinstance(value, container.List): return value_pb2.ValueRaw(list=value_pb2.ValueList(items=[encode_raw_value(item) for item in value])) else: raise exceptions.InvalidArgumentTypeError("Unsupported type '{value_type}' for raw value.".format(value_type=type(value))) def decode_raw_value(value): """ Decodes a GRPC message into a simple Python value. Parameters ---------- value : ValueRaw A GRPC message. Returns ------- Any A simple Python value. """ value_type = value.WhichOneof('raw') if value_type == 'null': return None elif value_type in ['double', 'int64', 'bool', 'string', 'bytes']: return getattr(value, value_type) elif value_type == 'list': return [decode_raw_value(item) for item in value.list.items] elif value_type == 'dict': return {key: decode_raw_value(val) for key, val in value.dict.items.items()} else: raise exceptions.InvalidArgumentTypeError("Unsupported raw value type '{value_type}'.".format(value_type=value_type)) def encode_timestamp(value): """ Encodes a Python's ``datetime`` into a GRPC message. Parameters ---------- value : datetime A ``datetime`` instance. Returns ------- Timestamp A GRPC message. """ if value is None: return None if value.tzinfo is None or value.tzinfo.utcoffset(value) is None: raise exceptions.InvalidArgumentValueError("Value is missing timezone information.") else: # Convert to UTC timezone and set "tzinfo" to "datetime.timezone.utc". # Then we remove timezone information before converting it to GRPC because # GRPC does not support conversion from timezone aware datetime objects. # See: https://github.com/google/protobuf/issues/5003 value = value.astimezone(datetime.timezone.utc).replace(tzinfo=None) timestamp = timestamp_pb2.Timestamp() timestamp.FromDatetime(value) return timestamp def decode_timestamp(value): """ Decodes a GRPC message into a Python's ``datetime``. Parameters ---------- value : Timestamp A GRPC message. Returns ------- datetime A ``datetime`` instance. """ if value is None: return None # Default value. if value == timestamp_pb2.Timestamp(): return None # Timestamp is in UTC> value = value.ToDatetime().replace(tzinfo=datetime.timezone.utc) return value def save_value(value, allowed_value_types, scratch_dir, *, plasma_put=None, raise_error=False): """ Saves a raw Python value and returns a dict representing the value at the *intermediate level*. It tries to save it based on allowed value types, potentially saving it to a disk and providing an URI to the location. It uses Python `tempfile` module to generate the location. Parameters ---------- value : Any A value to save. allowed_value_types : Sequence[ValueType] A list of allowed value types to save this value as. This list is tried in order until encoding succeeds. scratch_dir : str Path to a directory to store any temporary files needed during run. plasma_put : Callable A function to store a value into a Plasma store. The function takes a value to store into Plasma store and should return stored object's ID as bytes. raise_error : bool If value cannot be encoded, should an exception be raised or should it be returned as value type ``error``? Returns ------- Dict A dict with ``type`` and ``value`` fields. ``type`` can be one of ``object``, ``dataset_uri``, ``csv_uri``, ``pickle_uri``, ``plasma_id``, ``error``. ``value`` is then a corresponding value for a given type. ``error`` value type is possible only if ``raise_error`` is ``False``. """ last_error = None for allowed_value_type in allowed_value_types: try: if allowed_value_type == ValueType.RAW: if sys.getsizeof(value) <= MAX_WIRE_OBJECT_SIZE and _can_encode_raw(value): return { 'type': 'object', 'value': value, } elif allowed_value_type == ValueType.DATASET_URI: if isinstance(value, container.Dataset): dataset_id = str(uuid.uuid4()) # We change dataset ID to a new value to assure it is unique. value = value.copy() value.metadata = value.metadata.update((), {'id': dataset_id}) dataset_dir = tempfile.mkdtemp(prefix=dataset_id, dir=scratch_dir) try: os.chmod(dataset_dir, 0o755) uri = _fix_uri(os.path.abspath(os.path.join(dataset_dir, 'datasetDoc.json'))) value.save(uri) return { 'type': 'dataset_uri', 'value': uri, } except Exception as error: # Clean-up the directory, it will not be used. try: shutil.rmtree(dataset_dir, ignore_errors=True) except Exception: pass raise error elif allowed_value_type == ValueType.CSV_URI: dataframe_value = None if isinstance(value, container.List): dataframe_value = container.DataFrame(value) elif isinstance(value, container.ndarray): metadata = value.metadata.query((metadata_base.ALL_ELEMENTS,)) if 'dimension' in metadata: # Extract the column names so we can add them to the created dataframe, or set it to index string. num_cols = value.metadata.query((metadata_base.ALL_ELEMENTS,))['dimension']['length'] col_names = [value.metadata.query((metadata_base.ALL_ELEMENTS, i)).get('name', str(i)) for i in range(num_cols)] else: col_names = None dataframe_value = container.DataFrame(value, columns=col_names) elif isinstance(value, container.DataFrame): dataframe_value = value if dataframe_value is not None: csv_file_descriptor, csv_path = tempfile.mkstemp(suffix='.csv', dir=scratch_dir) try: os.chmod(csv_path, 0o644) with open(csv_file_descriptor, 'w') as csv_file: runtime_module.export_dataframe(dataframe_value, csv_file) uri = _fix_uri(os.path.abspath(csv_path)) return { 'type': 'csv_uri', 'value': uri, } except Exception as error: # Clean-up the file, it will not be used. try: os.close(csv_file_descriptor) except Exception: pass try: os.remove(csv_path) except Exception: pass raise error elif allowed_value_type == ValueType.PICKLE_URI: value_file_descriptor, value_path = tempfile.mkstemp(suffix='.pickle', dir=scratch_dir) try: os.chmod(value_path, 0o644) with open(value_file_descriptor, 'wb') as value_file: pickle.dump(value, value_file) uri = _fix_uri(os.path.abspath(value_path)) return { 'type': 'pickle_uri', 'value': uri, } except Exception as error: # Clean-up the file, it will not be used. try: os.close(value_file_descriptor) except Exception: pass try: os.remove(value_path) except Exception: pass raise error elif allowed_value_type == ValueType.PICKLE_BLOB: if sys.getsizeof(value) <= MAX_WIRE_OBJECT_SIZE and _can_pickle(value): return { 'type': 'object', 'value': value, } elif plasma_put is not None and allowed_value_type == ValueType.PLASMA_ID: object_id = plasma_put(value) return { 'type': 'plasma_id', 'value': _binary_to_hex(object_id), } else: raise exceptions.UnexpectedValueError("Unknown allowed value type: {allowed_value_type}".format(allowed_value_type=allowed_value_type)) except Exception as error: last_error = error # TODO: Add a second pass to try the conversion between "DATASET_URI" and "CSV_URI". if last_error is not None: if raise_error: raise last_error else: return { 'type': 'error', 'value': str(last_error), } error_message = "None of the allowed value types could encode the value of type '{value_type}'.".format(value_type=type(value)) if raise_error: raise ValueError(error_message) else: return { 'type': 'error', 'value': error_message, } def load_value(value, *, plasma_get=None, validate_uri=None): """ Loads and returns a raw Python value from a dict representing a value at the *intermediate level*. Parameters ---------- value : Dict A dict with ``type`` and ``value`` fields. ``type`` can be one of ``object``, ``dataset_uri``, ``csv_uri``, ``pickle_uri``, ``plasma_id``, ``error``. ``value`` is then a corresponding value for a given type. plasma_get : Callable A function to load a value from a Plasma store. The function takes object's ID as bytes and should return stored the value from a Plasma store. validate_uri : Callable A function which can validate that URI is a valid and supported file URI. The function takes an URI as a string and should throw an exception if URI is invalid. Returns ------- Any Loaded raw Python value. """ if value['type'] == 'object': return value['value'] elif value['type'] == 'dataset_uri': uri = _fix_uri(value['value']) return container.Dataset.load(uri) elif value['type'] == 'csv_uri': uri = _fix_uri(value['value']) # Pandas requires a host for "file" URIs. uri = _fix_file_uri_host(uri) data = pandas.read_csv( uri, # We do not want to do any conversion of values at this point. # This should be done by primitives later on. dtype=str, # We always expect one row header. header=0, # We want empty strings and not NaNs. na_filter=False, encoding='utf8', low_memory=False, ) return container.DataFrame(data) elif value['type'] == 'pickle_uri': uri = _fix_uri(value['value']) with _open_file_uri(uri, 'rb', validate_uri=validate_uri) as file: # TODO: Limit the types of values being able to load to prevent arbitrary code execution by a malicious pickle. return pickle.load(file) elif plasma_get is not None and value['type'] == 'plasma_id': return plasma_get(_hex_to_binary(value['value'])) elif value['type'] == 'error': raise ValueError("Error in value: {message}".format(message=value['value'])) else: raise exceptions.UnexpectedValueError("Unknown value type: {value_type}".format(value_type=value['type'])) def encode_value(value, allowed_value_types, scratch_dir, *, plasma_put=None, validate_uri=None): """ Encodes a value into a GRPC message. The input is a dict representation of the value at the *intermediate level*. Parameters ---------- value : Dict A dict with ``type`` and ``value`` fields. ``type`` can be one of ``object``, ``dataset_uri``, ``csv_uri``, ``pickle_uri``, ``plasma_id``, ``error``. ``value`` is then a corresponding value for a given type. allowed_value_types : Sequence[ValueType] A list of allowed value types to encode this value as. This list is tried in order until encoding succeeds. scratch_dir : str Path to a directory to store any temporary files needed during execution. plasma_put : Callable A function to store a value into a Plasma store. The function takes a value to store into Plasma store and should return stored object's ID as bytes. validate_uri : Callable A function which can validate that URI is a valid and supported file URI. The function takes an URI as a string and should throw an exception if URI is invalid. Returns ------- Value A GRPC message. """ if validate_uri is None: def validate_uri(uri): return uri assert value['type'] in ['object', 'dataset_uri', 'csv_uri', 'pickle_uri', 'plasma_id', 'error'] if value['type'] == 'error': return value_pb2.Value( error=value_pb2.ValueError(message=value['value']), ) last_error = None # The first pass is without any conversion and tries to match existing value type to allowed value type. for allowed_value_type in allowed_value_types: try: if allowed_value_type == ValueType.RAW: if value['type'] == 'object' and sys.getsizeof(value['value']) <= MAX_WIRE_OBJECT_SIZE: return value_pb2.Value( raw=encode_raw_value(value['value']), ) elif allowed_value_type == ValueType.DATASET_URI: if value['type'] == 'dataset_uri': uri = _fix_uri(value['value']) validate_uri(uri) return value_pb2.Value( dataset_uri=uri, ) elif allowed_value_type == ValueType.CSV_URI: if value['type'] == 'csv_uri': uri = _fix_uri(value['value']) validate_uri(uri) return value_pb2.Value( csv_uri=uri, ) elif allowed_value_type == ValueType.PICKLE_URI: if value['type'] == 'pickle_uri': uri = _fix_uri(value['value']) validate_uri(uri) return value_pb2.Value( pickle_uri=uri, ) elif allowed_value_type == ValueType.PICKLE_BLOB: if value['type'] == 'object' and sys.getsizeof(value['value']) <= MAX_WIRE_OBJECT_SIZE: return value_pb2.Value( pickle_blob=pickle.dumps(value['value']), ) elif allowed_value_type == ValueType.PLASMA_ID: if value['type'] == 'plasma_id': return value_pb2.Value( plasma_id=_hex_to_binary(value['value']), ) else: raise exceptions.UnexpectedValueError("Unknown allowed value type: {allowed_value_type}".format(allowed_value_type=allowed_value_type)) except Exception as error: last_error = error # The second pass tries to convert between value types to match an allowed value type. # TODO: Support also conversion between "DATASET_URI" and "CSV_URI". for allowed_value_type in allowed_value_types: try: if allowed_value_type == ValueType.PICKLE_URI and value['type'] == 'object': value_file_descriptor, value_path = tempfile.mkstemp(suffix='.pickle', dir=scratch_dir) try: os.chmod(value_path, 0o644) with open(value_file_descriptor, 'wb') as value_file: pickle.dump(value['value'], value_file) uri = _fix_uri(os.path.abspath(value_path)) validate_uri(uri) return value_pb2.Value( pickle_uri=uri, ) except Exception as error: # Clean-up the file, it will not be used. try: os.close(value_file_descriptor) except Exception: pass try: os.remove(value_path) except Exception: pass raise error elif plasma_put is not None and allowed_value_type == ValueType.PLASMA_ID and value['type'] == 'object': object_id = plasma_put(value['value']) return value_pb2.Value( plasma_id=object_id, ) except Exception as error: last_error = error if last_error is not None: return value_pb2.Value( error=value_pb2.ValueError(message=str(last_error)), ) return value_pb2.Value( error=value_pb2.ValueError(message="None of the allowed value types could encode the value of type '{value_type}'.".format(value_type=type(value))), ) def decode_value(value, *, validate_uri=None, raise_error=True): """ Decodes a GRPC message. The output is a dict representation of the value at the *intermediate level*. Parameters ---------- value : Value A GRPC message to decode. validate_uri : Callable A function which can validate that URI is a valid and supported file URI. The function takes an URI as a string and should throw an exception if URI is invalid. raise_error : bool If value is representing an error, should an exception be raised or should it be returned as value type ``error``? Returns ------- Dict A dict with ``type`` and ``value`` fields. ``type`` can be one of ``object``, ``dataset_uri``, ``csv_uri``, ``pickle_uri``, ``plasma_id``, ``error``. ``value`` is then a corresponding value for a given type. ``error`` value type is possible only if ``raise_error`` is ``False``. """ if validate_uri is None: def validate_uri(uri): return uri value_type = value.WhichOneof('value') if value_type == 'error': if raise_error: raise ValueError("Error in value: {message}".format(message=value.error.message)) else: return { 'type': 'error', 'value': value.error.message, } elif value_type == 'raw': value = decode_raw_value(value.raw) return { 'type': 'object', 'value': value, } elif value_type in ['dataset_uri', 'csv_uri', 'pickle_uri']: uri = getattr(value, value_type) uri = _fix_uri(uri) validate_uri(uri) return { 'type': value_type, 'value': uri, } elif value_type == 'pickle_blob': # TODO: Limit the types of values being able to load to prevent arbitrary code execution by a malicious pickle. value = pickle.loads(value.pickle_blob) return { 'type': 'object', 'value': value, } elif value_type == 'plasma_id': return { 'type': 'plasma_id', 'value': _binary_to_hex(value.plasma_id), } else: raise exceptions.InvalidArgumentValueError("Unsupported value type '{value_type}'.".format(value_type=value_type))
d3m-model-search-master
Stanford-D3M-Full/ta3ta2/api/utils.py
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT! import grpc
d3m-model-search-master
Stanford-D3M-Full/ta3ta2/api/primitive_pb2_grpc.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: core.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf.internal import enum_type_wrapper from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.protobuf import descriptor_pb2 as google_dot_protobuf_dot_descriptor__pb2 from google.protobuf import timestamp_pb2 as google_dot_protobuf_dot_timestamp__pb2 import ta3ta2.api.pipeline_pb2 as pipeline__pb2 import ta3ta2.api.primitive_pb2 as primitive__pb2 import ta3ta2.api.problem_pb2 as problem__pb2 import ta3ta2.api.value_pb2 as value__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='core.proto', package='', syntax='proto3', serialized_pb=_b('\n\ncore.proto\x1a google/protobuf/descriptor.proto\x1a\x1fgoogle/protobuf/timestamp.proto\x1a\x0epipeline.proto\x1a\x0fprimitive.proto\x1a\rproblem.proto\x1a\x0bvalue.proto\"\x9c\x01\n\x14ScoringConfiguration\x12!\n\x06method\x18\x01 \x01(\x0e\x32\x11.EvaluationMethod\x12\r\n\x05\x66olds\x18\x02 \x01(\x05\x12\x18\n\x10train_test_ratio\x18\x03 \x01(\x01\x12\x0f\n\x07shuffle\x18\x04 \x01(\x08\x12\x13\n\x0brandom_seed\x18\x05 \x01(\x05\x12\x12\n\nstratified\x18\x06 \x01(\x08\"x\n\x05Score\x12)\n\x06metric\x18\x01 \x01(\x0b\x32\x19.ProblemPerformanceMetric\x12\x0c\n\x04\x66old\x18\x02 \x01(\x05\x12\x1f\n\x07targets\x18\x03 \x03(\x0b\x32\x0e.ProblemTarget\x12\x15\n\x05value\x18\x04 \x01(\x0b\x32\x06.Value\"\x8d\x01\n\x08Progress\x12\x1d\n\x05state\x18\x01 \x01(\x0e\x32\x0e.ProgressState\x12\x0e\n\x06status\x18\x02 \x01(\t\x12)\n\x05start\x18\x03 \x01(\x0b\x32\x1a.google.protobuf.Timestamp\x12\'\n\x03\x65nd\x18\x04 \x01(\x0b\x32\x1a.google.protobuf.Timestamp\"O\n\x14UpdateProblemRequest\x12\x11\n\tsearch_id\x18\x01 \x01(\t\x12$\n\x07problem\x18\x02 \x01(\x0b\x32\x13.ProblemDescription\"\x17\n\x15UpdateProblemResponse\"\xf2\x01\n\x16SearchSolutionsRequest\x12\x12\n\nuser_agent\x18\x01 \x01(\t\x12\x0f\n\x07version\x18\x02 \x01(\t\x12\x12\n\ntime_bound\x18\x03 \x01(\x01\x12\x10\n\x08priority\x18\x04 \x01(\x01\x12\'\n\x13\x61llowed_value_types\x18\x05 \x03(\x0e\x32\n.ValueType\x12$\n\x07problem\x18\x06 \x01(\x0b\x32\x13.ProblemDescription\x12&\n\x08template\x18\x07 \x01(\x0b\x32\x14.PipelineDescription\x12\x16\n\x06inputs\x18\x08 \x03(\x0b\x32\x06.Value\",\n\x17SearchSolutionsResponse\x12\x11\n\tsearch_id\x18\x01 \x01(\t\".\n\x19\x45ndSearchSolutionsRequest\x12\x11\n\tsearch_id\x18\x01 \x01(\t\"\x1c\n\x1a\x45ndSearchSolutionsResponse\"/\n\x1aStopSearchSolutionsRequest\x12\x11\n\tsearch_id\x18\x01 \x01(\t\"\x1d\n\x1bStopSearchSolutionsResponse\"c\n\x13SolutionSearchScore\x12\x34\n\x15scoring_configuration\x18\x01 \x01(\x0b\x32\x15.ScoringConfiguration\x12\x16\n\x06scores\x18\x02 \x03(\x0b\x32\x06.Score\"5\n GetSearchSolutionsResultsRequest\x12\x11\n\tsearch_id\x18\x01 \x01(\t\"\xba\x01\n!GetSearchSolutionsResultsResponse\x12\x1b\n\x08progress\x18\x01 \x01(\x0b\x32\t.Progress\x12\x12\n\ndone_ticks\x18\x02 \x01(\x01\x12\x11\n\tall_ticks\x18\x03 \x01(\x01\x12\x13\n\x0bsolution_id\x18\x04 \x01(\t\x12\x16\n\x0einternal_score\x18\x05 \x01(\x01\x12$\n\x06scores\x18\x06 \x03(\x0b\x32\x14.SolutionSearchScore\".\n\x17\x44\x65scribeSolutionRequest\x12\x13\n\x0bsolution_id\x18\x01 \x01(\t\"\x97\x01\n\x18PrimitiveStepDescription\x12?\n\x0bhyperparams\x18\x01 \x03(\x0b\x32*.PrimitiveStepDescription.HyperparamsEntry\x1a:\n\x10HyperparamsEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\x15\n\x05value\x18\x02 \x01(\x0b\x32\x06.Value:\x02\x38\x01\"=\n\x1aSubpipelineStepDescription\x12\x1f\n\x05steps\x18\x01 \x03(\x0b\x32\x10.StepDescription\"z\n\x0fStepDescription\x12.\n\tprimitive\x18\x01 \x01(\x0b\x32\x19.PrimitiveStepDescriptionH\x00\x12/\n\x08pipeline\x18\x02 \x01(\x0b\x32\x1b.SubpipelineStepDescriptionH\x00\x42\x06\n\x04step\"c\n\x18\x44\x65scribeSolutionResponse\x12&\n\x08pipeline\x18\x01 \x01(\x0b\x32\x14.PipelineDescription\x12\x1f\n\x05steps\x18\x02 \x03(\x0b\x32\x10.StepDescription\"I\n\x0cStepProgress\x12\x1b\n\x08progress\x18\x01 \x01(\x0b\x32\t.Progress\x12\x1c\n\x05steps\x18\x02 \x03(\x0b\x32\r.StepProgress\">\n\x0fSolutionRunUser\x12\n\n\x02id\x18\x01 \x01(\t\x12\x0f\n\x07\x63hoosen\x18\x02 \x01(\x08\x12\x0e\n\x06reason\x18\x03 \x01(\t\"\xca\x01\n\x14ScoreSolutionRequest\x12\x13\n\x0bsolution_id\x18\x01 \x01(\t\x12\x16\n\x06inputs\x18\x02 \x03(\x0b\x32\x06.Value\x12\x36\n\x13performance_metrics\x18\x03 \x03(\x0b\x32\x19.ProblemPerformanceMetric\x12\x1f\n\x05users\x18\x04 \x03(\x0b\x32\x10.SolutionRunUser\x12,\n\rconfiguration\x18\x05 \x01(\x0b\x32\x15.ScoringConfiguration\"+\n\x15ScoreSolutionResponse\x12\x12\n\nrequest_id\x18\x01 \x01(\t\"4\n\x1eGetScoreSolutionResultsRequest\x12\x12\n\nrequest_id\x18\x01 \x01(\t\"V\n\x1fGetScoreSolutionResultsResponse\x12\x1b\n\x08progress\x18\x01 \x01(\x0b\x32\t.Progress\x12\x16\n\x06scores\x18\x02 \x03(\x0b\x32\x06.Score\"\xa2\x01\n\x12\x46itSolutionRequest\x12\x13\n\x0bsolution_id\x18\x01 \x01(\t\x12\x16\n\x06inputs\x18\x02 \x03(\x0b\x32\x06.Value\x12\x16\n\x0e\x65xpose_outputs\x18\x03 \x03(\t\x12&\n\x12\x65xpose_value_types\x18\x04 \x03(\x0e\x32\n.ValueType\x12\x1f\n\x05users\x18\x05 \x03(\x0b\x32\x10.SolutionRunUser\")\n\x13\x46itSolutionResponse\x12\x12\n\nrequest_id\x18\x01 \x01(\t\"2\n\x1cGetFitSolutionResultsRequest\x12\x12\n\nrequest_id\x18\x01 \x01(\t\"\x82\x02\n\x1dGetFitSolutionResultsResponse\x12\x1b\n\x08progress\x18\x01 \x01(\x0b\x32\t.Progress\x12\x1c\n\x05steps\x18\x02 \x03(\x0b\x32\r.StepProgress\x12K\n\x0f\x65xposed_outputs\x18\x03 \x03(\x0b\x32\x32.GetFitSolutionResultsResponse.ExposedOutputsEntry\x12\x1a\n\x12\x66itted_solution_id\x18\x04 \x01(\t\x1a=\n\x13\x45xposedOutputsEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\x15\n\x05value\x18\x02 \x01(\x0b\x32\x06.Value:\x02\x38\x01\"\xad\x01\n\x16ProduceSolutionRequest\x12\x1a\n\x12\x66itted_solution_id\x18\x01 \x01(\t\x12\x16\n\x06inputs\x18\x02 \x03(\x0b\x32\x06.Value\x12\x16\n\x0e\x65xpose_outputs\x18\x03 \x03(\t\x12&\n\x12\x65xpose_value_types\x18\x04 \x03(\x0e\x32\n.ValueType\x12\x1f\n\x05users\x18\x05 \x03(\x0b\x32\x10.SolutionRunUser\"-\n\x17ProduceSolutionResponse\x12\x12\n\nrequest_id\x18\x01 \x01(\t\"6\n GetProduceSolutionResultsRequest\x12\x12\n\nrequest_id\x18\x01 \x01(\t\"\xee\x01\n!GetProduceSolutionResultsResponse\x12\x1b\n\x08progress\x18\x01 \x01(\x0b\x32\t.Progress\x12\x1c\n\x05steps\x18\x02 \x03(\x0b\x32\r.StepProgress\x12O\n\x0f\x65xposed_outputs\x18\x03 \x03(\x0b\x32\x36.GetProduceSolutionResultsResponse.ExposedOutputsEntry\x1a=\n\x13\x45xposedOutputsEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\x15\n\x05value\x18\x02 \x01(\x0b\x32\x06.Value:\x02\x38\x01\"A\n\x15SolutionExportRequest\x12\x1a\n\x12\x66itted_solution_id\x18\x01 \x01(\t\x12\x0c\n\x04rank\x18\x02 \x01(\x01\"\x18\n\x16SolutionExportResponse\"\x17\n\x15ListPrimitivesRequest\"8\n\x16ListPrimitivesResponse\x12\x1e\n\nprimitives\x18\x01 \x03(\x0b\x32\n.Primitive\"\x0e\n\x0cHelloRequest\"{\n\rHelloResponse\x12\x12\n\nuser_agent\x18\x01 \x01(\t\x12\x0f\n\x07version\x18\x02 \x01(\t\x12\'\n\x13\x61llowed_value_types\x18\x03 \x03(\x0e\x32\n.ValueType\x12\x1c\n\x14supported_extensions\x18\x04 \x03(\t*\x82\x01\n\x10\x45valuationMethod\x12\x1f\n\x1b\x45VALUATION_METHOD_UNDEFINED\x10\x00\x12\x0b\n\x07HOLDOUT\x10\x01\x12\n\n\x06K_FOLD\x10\x02\x12\x11\n\rLEAVE_ONE_OUT\x10\x64\x12\x0e\n\nPREDICTION\x10\x65\x12\x11\n\rTRAINING_DATA\x10\x66*[\n\rProgressState\x12\x14\n\x10PROGRESS_UNKNOWN\x10\x00\x12\x0b\n\x07PENDING\x10\x01\x12\x0b\n\x07RUNNING\x10\x02\x12\r\n\tCOMPLETED\x10\x03\x12\x0b\n\x07\x45RRORED\x10\x04\x32\x88\t\n\x04\x43ore\x12\x46\n\x0fSearchSolutions\x12\x17.SearchSolutionsRequest\x1a\x18.SearchSolutionsResponse\"\x00\x12\x66\n\x19GetSearchSolutionsResults\x12!.GetSearchSolutionsResultsRequest\x1a\".GetSearchSolutionsResultsResponse\"\x00\x30\x01\x12O\n\x12\x45ndSearchSolutions\x12\x1a.EndSearchSolutionsRequest\x1a\x1b.EndSearchSolutionsResponse\"\x00\x12R\n\x13StopSearchSolutions\x12\x1b.StopSearchSolutionsRequest\x1a\x1c.StopSearchSolutionsResponse\"\x00\x12I\n\x10\x44\x65scribeSolution\x12\x18.DescribeSolutionRequest\x1a\x19.DescribeSolutionResponse\"\x00\x12@\n\rScoreSolution\x12\x15.ScoreSolutionRequest\x1a\x16.ScoreSolutionResponse\"\x00\x12`\n\x17GetScoreSolutionResults\x12\x1f.GetScoreSolutionResultsRequest\x1a .GetScoreSolutionResultsResponse\"\x00\x30\x01\x12:\n\x0b\x46itSolution\x12\x13.FitSolutionRequest\x1a\x14.FitSolutionResponse\"\x00\x12Z\n\x15GetFitSolutionResults\x12\x1d.GetFitSolutionResultsRequest\x1a\x1e.GetFitSolutionResultsResponse\"\x00\x30\x01\x12\x46\n\x0fProduceSolution\x12\x17.ProduceSolutionRequest\x1a\x18.ProduceSolutionResponse\"\x00\x12\x66\n\x19GetProduceSolutionResults\x12!.GetProduceSolutionResultsRequest\x1a\".GetProduceSolutionResultsResponse\"\x00\x30\x01\x12\x43\n\x0eSolutionExport\x12\x16.SolutionExportRequest\x1a\x17.SolutionExportResponse\"\x00\x12@\n\rUpdateProblem\x12\x15.UpdateProblemRequest\x1a\x16.UpdateProblemResponse\"\x00\x12\x43\n\x0eListPrimitives\x12\x16.ListPrimitivesRequest\x1a\x17.ListPrimitivesResponse\"\x00\x12(\n\x05Hello\x12\r.HelloRequest\x1a\x0e.HelloResponse\"\x00:8\n\x10protocol_version\x12\x1c.google.protobuf.FileOptions\x18\xd4\xa6\x03 \x01(\tB\x16Z\x08pipeline\xa2\xb5\x1a\x08\x32\x30\x31\x38.7.7b\x06proto3') , dependencies=[google_dot_protobuf_dot_descriptor__pb2.DESCRIPTOR,google_dot_protobuf_dot_timestamp__pb2.DESCRIPTOR,pipeline__pb2.DESCRIPTOR,primitive__pb2.DESCRIPTOR,problem__pb2.DESCRIPTOR,value__pb2.DESCRIPTOR,]) _EVALUATIONMETHOD = _descriptor.EnumDescriptor( name='EvaluationMethod', full_name='EvaluationMethod', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='EVALUATION_METHOD_UNDEFINED', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='HOLDOUT', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='K_FOLD', index=2, number=2, options=None, type=None), _descriptor.EnumValueDescriptor( name='LEAVE_ONE_OUT', index=3, number=100, options=None, type=None), _descriptor.EnumValueDescriptor( name='PREDICTION', index=4, number=101, options=None, type=None), _descriptor.EnumValueDescriptor( name='TRAINING_DATA', index=5, number=102, options=None, type=None), ], containing_type=None, options=None, serialized_start=3847, serialized_end=3977, ) _sym_db.RegisterEnumDescriptor(_EVALUATIONMETHOD) EvaluationMethod = enum_type_wrapper.EnumTypeWrapper(_EVALUATIONMETHOD) _PROGRESSSTATE = _descriptor.EnumDescriptor( name='ProgressState', full_name='ProgressState', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='PROGRESS_UNKNOWN', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='PENDING', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='RUNNING', index=2, number=2, options=None, type=None), _descriptor.EnumValueDescriptor( name='COMPLETED', index=3, number=3, options=None, type=None), _descriptor.EnumValueDescriptor( name='ERRORED', index=4, number=4, options=None, type=None), ], containing_type=None, options=None, serialized_start=3979, serialized_end=4070, ) _sym_db.RegisterEnumDescriptor(_PROGRESSSTATE) ProgressState = enum_type_wrapper.EnumTypeWrapper(_PROGRESSSTATE) EVALUATION_METHOD_UNDEFINED = 0 HOLDOUT = 1 K_FOLD = 2 LEAVE_ONE_OUT = 100 PREDICTION = 101 TRAINING_DATA = 102 PROGRESS_UNKNOWN = 0 PENDING = 1 RUNNING = 2 COMPLETED = 3 ERRORED = 4 PROTOCOL_VERSION_FIELD_NUMBER = 54100 protocol_version = _descriptor.FieldDescriptor( name='protocol_version', full_name='protocol_version', index=0, number=54100, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, options=None, file=DESCRIPTOR) _SCORINGCONFIGURATION = _descriptor.Descriptor( name='ScoringConfiguration', full_name='ScoringConfiguration', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='method', full_name='ScoringConfiguration.method', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='folds', full_name='ScoringConfiguration.folds', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='train_test_ratio', full_name='ScoringConfiguration.train_test_ratio', index=2, number=3, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='shuffle', full_name='ScoringConfiguration.shuffle', index=3, number=4, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='random_seed', full_name='ScoringConfiguration.random_seed', index=4, number=5, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='stratified', full_name='ScoringConfiguration.stratified', index=5, number=6, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=143, serialized_end=299, ) _SCORE = _descriptor.Descriptor( name='Score', full_name='Score', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='metric', full_name='Score.metric', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='fold', full_name='Score.fold', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='targets', full_name='Score.targets', index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='value', full_name='Score.value', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=301, serialized_end=421, ) _PROGRESS = _descriptor.Descriptor( name='Progress', full_name='Progress', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='state', full_name='Progress.state', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='status', full_name='Progress.status', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='start', full_name='Progress.start', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='end', full_name='Progress.end', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=424, serialized_end=565, ) _UPDATEPROBLEMREQUEST = _descriptor.Descriptor( name='UpdateProblemRequest', full_name='UpdateProblemRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='search_id', full_name='UpdateProblemRequest.search_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='problem', full_name='UpdateProblemRequest.problem', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=567, serialized_end=646, ) _UPDATEPROBLEMRESPONSE = _descriptor.Descriptor( name='UpdateProblemResponse', full_name='UpdateProblemResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=648, serialized_end=671, ) _SEARCHSOLUTIONSREQUEST = _descriptor.Descriptor( name='SearchSolutionsRequest', full_name='SearchSolutionsRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='user_agent', full_name='SearchSolutionsRequest.user_agent', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='version', full_name='SearchSolutionsRequest.version', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='time_bound', full_name='SearchSolutionsRequest.time_bound', index=2, number=3, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='priority', full_name='SearchSolutionsRequest.priority', index=3, number=4, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='allowed_value_types', full_name='SearchSolutionsRequest.allowed_value_types', index=4, number=5, type=14, cpp_type=8, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='problem', full_name='SearchSolutionsRequest.problem', index=5, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='template', full_name='SearchSolutionsRequest.template', index=6, number=7, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='inputs', full_name='SearchSolutionsRequest.inputs', index=7, number=8, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=674, serialized_end=916, ) _SEARCHSOLUTIONSRESPONSE = _descriptor.Descriptor( name='SearchSolutionsResponse', full_name='SearchSolutionsResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='search_id', full_name='SearchSolutionsResponse.search_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=918, serialized_end=962, ) _ENDSEARCHSOLUTIONSREQUEST = _descriptor.Descriptor( name='EndSearchSolutionsRequest', full_name='EndSearchSolutionsRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='search_id', full_name='EndSearchSolutionsRequest.search_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=964, serialized_end=1010, ) _ENDSEARCHSOLUTIONSRESPONSE = _descriptor.Descriptor( name='EndSearchSolutionsResponse', full_name='EndSearchSolutionsResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1012, serialized_end=1040, ) _STOPSEARCHSOLUTIONSREQUEST = _descriptor.Descriptor( name='StopSearchSolutionsRequest', full_name='StopSearchSolutionsRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='search_id', full_name='StopSearchSolutionsRequest.search_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1042, serialized_end=1089, ) _STOPSEARCHSOLUTIONSRESPONSE = _descriptor.Descriptor( name='StopSearchSolutionsResponse', full_name='StopSearchSolutionsResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1091, serialized_end=1120, ) _SOLUTIONSEARCHSCORE = _descriptor.Descriptor( name='SolutionSearchScore', full_name='SolutionSearchScore', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='scoring_configuration', full_name='SolutionSearchScore.scoring_configuration', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='scores', full_name='SolutionSearchScore.scores', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1122, serialized_end=1221, ) _GETSEARCHSOLUTIONSRESULTSREQUEST = _descriptor.Descriptor( name='GetSearchSolutionsResultsRequest', full_name='GetSearchSolutionsResultsRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='search_id', full_name='GetSearchSolutionsResultsRequest.search_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1223, serialized_end=1276, ) _GETSEARCHSOLUTIONSRESULTSRESPONSE = _descriptor.Descriptor( name='GetSearchSolutionsResultsResponse', full_name='GetSearchSolutionsResultsResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='progress', full_name='GetSearchSolutionsResultsResponse.progress', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='done_ticks', full_name='GetSearchSolutionsResultsResponse.done_ticks', index=1, number=2, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='all_ticks', full_name='GetSearchSolutionsResultsResponse.all_ticks', index=2, number=3, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='solution_id', full_name='GetSearchSolutionsResultsResponse.solution_id', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='internal_score', full_name='GetSearchSolutionsResultsResponse.internal_score', index=4, number=5, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='scores', full_name='GetSearchSolutionsResultsResponse.scores', index=5, number=6, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1279, serialized_end=1465, ) _DESCRIBESOLUTIONREQUEST = _descriptor.Descriptor( name='DescribeSolutionRequest', full_name='DescribeSolutionRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='solution_id', full_name='DescribeSolutionRequest.solution_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1467, serialized_end=1513, ) _PRIMITIVESTEPDESCRIPTION_HYPERPARAMSENTRY = _descriptor.Descriptor( name='HyperparamsEntry', full_name='PrimitiveStepDescription.HyperparamsEntry', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='PrimitiveStepDescription.HyperparamsEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='value', full_name='PrimitiveStepDescription.HyperparamsEntry.value', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=_descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b('8\001')), is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1609, serialized_end=1667, ) _PRIMITIVESTEPDESCRIPTION = _descriptor.Descriptor( name='PrimitiveStepDescription', full_name='PrimitiveStepDescription', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='hyperparams', full_name='PrimitiveStepDescription.hyperparams', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_PRIMITIVESTEPDESCRIPTION_HYPERPARAMSENTRY, ], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1516, serialized_end=1667, ) _SUBPIPELINESTEPDESCRIPTION = _descriptor.Descriptor( name='SubpipelineStepDescription', full_name='SubpipelineStepDescription', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='steps', full_name='SubpipelineStepDescription.steps', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1669, serialized_end=1730, ) _STEPDESCRIPTION = _descriptor.Descriptor( name='StepDescription', full_name='StepDescription', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='primitive', full_name='StepDescription.primitive', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='pipeline', full_name='StepDescription.pipeline', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name='step', full_name='StepDescription.step', index=0, containing_type=None, fields=[]), ], serialized_start=1732, serialized_end=1854, ) _DESCRIBESOLUTIONRESPONSE = _descriptor.Descriptor( name='DescribeSolutionResponse', full_name='DescribeSolutionResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='pipeline', full_name='DescribeSolutionResponse.pipeline', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='steps', full_name='DescribeSolutionResponse.steps', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1856, serialized_end=1955, ) _STEPPROGRESS = _descriptor.Descriptor( name='StepProgress', full_name='StepProgress', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='progress', full_name='StepProgress.progress', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='steps', full_name='StepProgress.steps', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1957, serialized_end=2030, ) _SOLUTIONRUNUSER = _descriptor.Descriptor( name='SolutionRunUser', full_name='SolutionRunUser', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='id', full_name='SolutionRunUser.id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='choosen', full_name='SolutionRunUser.choosen', index=1, number=2, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='reason', full_name='SolutionRunUser.reason', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2032, serialized_end=2094, ) _SCORESOLUTIONREQUEST = _descriptor.Descriptor( name='ScoreSolutionRequest', full_name='ScoreSolutionRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='solution_id', full_name='ScoreSolutionRequest.solution_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='inputs', full_name='ScoreSolutionRequest.inputs', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='performance_metrics', full_name='ScoreSolutionRequest.performance_metrics', index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='users', full_name='ScoreSolutionRequest.users', index=3, number=4, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='configuration', full_name='ScoreSolutionRequest.configuration', index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2097, serialized_end=2299, ) _SCORESOLUTIONRESPONSE = _descriptor.Descriptor( name='ScoreSolutionResponse', full_name='ScoreSolutionResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='request_id', full_name='ScoreSolutionResponse.request_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2301, serialized_end=2344, ) _GETSCORESOLUTIONRESULTSREQUEST = _descriptor.Descriptor( name='GetScoreSolutionResultsRequest', full_name='GetScoreSolutionResultsRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='request_id', full_name='GetScoreSolutionResultsRequest.request_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2346, serialized_end=2398, ) _GETSCORESOLUTIONRESULTSRESPONSE = _descriptor.Descriptor( name='GetScoreSolutionResultsResponse', full_name='GetScoreSolutionResultsResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='progress', full_name='GetScoreSolutionResultsResponse.progress', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='scores', full_name='GetScoreSolutionResultsResponse.scores', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2400, serialized_end=2486, ) _FITSOLUTIONREQUEST = _descriptor.Descriptor( name='FitSolutionRequest', full_name='FitSolutionRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='solution_id', full_name='FitSolutionRequest.solution_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='inputs', full_name='FitSolutionRequest.inputs', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='expose_outputs', full_name='FitSolutionRequest.expose_outputs', index=2, number=3, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='expose_value_types', full_name='FitSolutionRequest.expose_value_types', index=3, number=4, type=14, cpp_type=8, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='users', full_name='FitSolutionRequest.users', index=4, number=5, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2489, serialized_end=2651, ) _FITSOLUTIONRESPONSE = _descriptor.Descriptor( name='FitSolutionResponse', full_name='FitSolutionResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='request_id', full_name='FitSolutionResponse.request_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2653, serialized_end=2694, ) _GETFITSOLUTIONRESULTSREQUEST = _descriptor.Descriptor( name='GetFitSolutionResultsRequest', full_name='GetFitSolutionResultsRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='request_id', full_name='GetFitSolutionResultsRequest.request_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2696, serialized_end=2746, ) _GETFITSOLUTIONRESULTSRESPONSE_EXPOSEDOUTPUTSENTRY = _descriptor.Descriptor( name='ExposedOutputsEntry', full_name='GetFitSolutionResultsResponse.ExposedOutputsEntry', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='GetFitSolutionResultsResponse.ExposedOutputsEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='value', full_name='GetFitSolutionResultsResponse.ExposedOutputsEntry.value', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=_descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b('8\001')), is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2946, serialized_end=3007, ) _GETFITSOLUTIONRESULTSRESPONSE = _descriptor.Descriptor( name='GetFitSolutionResultsResponse', full_name='GetFitSolutionResultsResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='progress', full_name='GetFitSolutionResultsResponse.progress', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='steps', full_name='GetFitSolutionResultsResponse.steps', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='exposed_outputs', full_name='GetFitSolutionResultsResponse.exposed_outputs', index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='fitted_solution_id', full_name='GetFitSolutionResultsResponse.fitted_solution_id', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_GETFITSOLUTIONRESULTSRESPONSE_EXPOSEDOUTPUTSENTRY, ], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2749, serialized_end=3007, ) _PRODUCESOLUTIONREQUEST = _descriptor.Descriptor( name='ProduceSolutionRequest', full_name='ProduceSolutionRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='fitted_solution_id', full_name='ProduceSolutionRequest.fitted_solution_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='inputs', full_name='ProduceSolutionRequest.inputs', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='expose_outputs', full_name='ProduceSolutionRequest.expose_outputs', index=2, number=3, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='expose_value_types', full_name='ProduceSolutionRequest.expose_value_types', index=3, number=4, type=14, cpp_type=8, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='users', full_name='ProduceSolutionRequest.users', index=4, number=5, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=3010, serialized_end=3183, ) _PRODUCESOLUTIONRESPONSE = _descriptor.Descriptor( name='ProduceSolutionResponse', full_name='ProduceSolutionResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='request_id', full_name='ProduceSolutionResponse.request_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=3185, serialized_end=3230, ) _GETPRODUCESOLUTIONRESULTSREQUEST = _descriptor.Descriptor( name='GetProduceSolutionResultsRequest', full_name='GetProduceSolutionResultsRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='request_id', full_name='GetProduceSolutionResultsRequest.request_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=3232, serialized_end=3286, ) _GETPRODUCESOLUTIONRESULTSRESPONSE_EXPOSEDOUTPUTSENTRY = _descriptor.Descriptor( name='ExposedOutputsEntry', full_name='GetProduceSolutionResultsResponse.ExposedOutputsEntry', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='GetProduceSolutionResultsResponse.ExposedOutputsEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='value', full_name='GetProduceSolutionResultsResponse.ExposedOutputsEntry.value', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=_descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b('8\001')), is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2946, serialized_end=3007, ) _GETPRODUCESOLUTIONRESULTSRESPONSE = _descriptor.Descriptor( name='GetProduceSolutionResultsResponse', full_name='GetProduceSolutionResultsResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='progress', full_name='GetProduceSolutionResultsResponse.progress', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='steps', full_name='GetProduceSolutionResultsResponse.steps', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='exposed_outputs', full_name='GetProduceSolutionResultsResponse.exposed_outputs', index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_GETPRODUCESOLUTIONRESULTSRESPONSE_EXPOSEDOUTPUTSENTRY, ], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=3289, serialized_end=3527, ) _SOLUTIONEXPORTREQUEST = _descriptor.Descriptor( name='SolutionExportRequest', full_name='SolutionExportRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='fitted_solution_id', full_name='SolutionExportRequest.fitted_solution_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='rank', full_name='SolutionExportRequest.rank', index=1, number=2, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=3529, serialized_end=3594, ) _SOLUTIONEXPORTRESPONSE = _descriptor.Descriptor( name='SolutionExportResponse', full_name='SolutionExportResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=3596, serialized_end=3620, ) _LISTPRIMITIVESREQUEST = _descriptor.Descriptor( name='ListPrimitivesRequest', full_name='ListPrimitivesRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=3622, serialized_end=3645, ) _LISTPRIMITIVESRESPONSE = _descriptor.Descriptor( name='ListPrimitivesResponse', full_name='ListPrimitivesResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='primitives', full_name='ListPrimitivesResponse.primitives', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=3647, serialized_end=3703, ) _HELLOREQUEST = _descriptor.Descriptor( name='HelloRequest', full_name='HelloRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=3705, serialized_end=3719, ) _HELLORESPONSE = _descriptor.Descriptor( name='HelloResponse', full_name='HelloResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='user_agent', full_name='HelloResponse.user_agent', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='version', full_name='HelloResponse.version', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='allowed_value_types', full_name='HelloResponse.allowed_value_types', index=2, number=3, type=14, cpp_type=8, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='supported_extensions', full_name='HelloResponse.supported_extensions', index=3, number=4, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=3721, serialized_end=3844, ) _SCORINGCONFIGURATION.fields_by_name['method'].enum_type = _EVALUATIONMETHOD _SCORE.fields_by_name['metric'].message_type = problem__pb2._PROBLEMPERFORMANCEMETRIC _SCORE.fields_by_name['targets'].message_type = problem__pb2._PROBLEMTARGET _SCORE.fields_by_name['value'].message_type = value__pb2._VALUE _PROGRESS.fields_by_name['state'].enum_type = _PROGRESSSTATE _PROGRESS.fields_by_name['start'].message_type = google_dot_protobuf_dot_timestamp__pb2._TIMESTAMP _PROGRESS.fields_by_name['end'].message_type = google_dot_protobuf_dot_timestamp__pb2._TIMESTAMP _UPDATEPROBLEMREQUEST.fields_by_name['problem'].message_type = problem__pb2._PROBLEMDESCRIPTION _SEARCHSOLUTIONSREQUEST.fields_by_name['allowed_value_types'].enum_type = value__pb2._VALUETYPE _SEARCHSOLUTIONSREQUEST.fields_by_name['problem'].message_type = problem__pb2._PROBLEMDESCRIPTION _SEARCHSOLUTIONSREQUEST.fields_by_name['template'].message_type = pipeline__pb2._PIPELINEDESCRIPTION _SEARCHSOLUTIONSREQUEST.fields_by_name['inputs'].message_type = value__pb2._VALUE _SOLUTIONSEARCHSCORE.fields_by_name['scoring_configuration'].message_type = _SCORINGCONFIGURATION _SOLUTIONSEARCHSCORE.fields_by_name['scores'].message_type = _SCORE _GETSEARCHSOLUTIONSRESULTSRESPONSE.fields_by_name['progress'].message_type = _PROGRESS _GETSEARCHSOLUTIONSRESULTSRESPONSE.fields_by_name['scores'].message_type = _SOLUTIONSEARCHSCORE _PRIMITIVESTEPDESCRIPTION_HYPERPARAMSENTRY.fields_by_name['value'].message_type = value__pb2._VALUE _PRIMITIVESTEPDESCRIPTION_HYPERPARAMSENTRY.containing_type = _PRIMITIVESTEPDESCRIPTION _PRIMITIVESTEPDESCRIPTION.fields_by_name['hyperparams'].message_type = _PRIMITIVESTEPDESCRIPTION_HYPERPARAMSENTRY _SUBPIPELINESTEPDESCRIPTION.fields_by_name['steps'].message_type = _STEPDESCRIPTION _STEPDESCRIPTION.fields_by_name['primitive'].message_type = _PRIMITIVESTEPDESCRIPTION _STEPDESCRIPTION.fields_by_name['pipeline'].message_type = _SUBPIPELINESTEPDESCRIPTION _STEPDESCRIPTION.oneofs_by_name['step'].fields.append( _STEPDESCRIPTION.fields_by_name['primitive']) _STEPDESCRIPTION.fields_by_name['primitive'].containing_oneof = _STEPDESCRIPTION.oneofs_by_name['step'] _STEPDESCRIPTION.oneofs_by_name['step'].fields.append( _STEPDESCRIPTION.fields_by_name['pipeline']) _STEPDESCRIPTION.fields_by_name['pipeline'].containing_oneof = _STEPDESCRIPTION.oneofs_by_name['step'] _DESCRIBESOLUTIONRESPONSE.fields_by_name['pipeline'].message_type = pipeline__pb2._PIPELINEDESCRIPTION _DESCRIBESOLUTIONRESPONSE.fields_by_name['steps'].message_type = _STEPDESCRIPTION _STEPPROGRESS.fields_by_name['progress'].message_type = _PROGRESS _STEPPROGRESS.fields_by_name['steps'].message_type = _STEPPROGRESS _SCORESOLUTIONREQUEST.fields_by_name['inputs'].message_type = value__pb2._VALUE _SCORESOLUTIONREQUEST.fields_by_name['performance_metrics'].message_type = problem__pb2._PROBLEMPERFORMANCEMETRIC _SCORESOLUTIONREQUEST.fields_by_name['users'].message_type = _SOLUTIONRUNUSER _SCORESOLUTIONREQUEST.fields_by_name['configuration'].message_type = _SCORINGCONFIGURATION _GETSCORESOLUTIONRESULTSRESPONSE.fields_by_name['progress'].message_type = _PROGRESS _GETSCORESOLUTIONRESULTSRESPONSE.fields_by_name['scores'].message_type = _SCORE _FITSOLUTIONREQUEST.fields_by_name['inputs'].message_type = value__pb2._VALUE _FITSOLUTIONREQUEST.fields_by_name['expose_value_types'].enum_type = value__pb2._VALUETYPE _FITSOLUTIONREQUEST.fields_by_name['users'].message_type = _SOLUTIONRUNUSER _GETFITSOLUTIONRESULTSRESPONSE_EXPOSEDOUTPUTSENTRY.fields_by_name['value'].message_type = value__pb2._VALUE _GETFITSOLUTIONRESULTSRESPONSE_EXPOSEDOUTPUTSENTRY.containing_type = _GETFITSOLUTIONRESULTSRESPONSE _GETFITSOLUTIONRESULTSRESPONSE.fields_by_name['progress'].message_type = _PROGRESS _GETFITSOLUTIONRESULTSRESPONSE.fields_by_name['steps'].message_type = _STEPPROGRESS _GETFITSOLUTIONRESULTSRESPONSE.fields_by_name['exposed_outputs'].message_type = _GETFITSOLUTIONRESULTSRESPONSE_EXPOSEDOUTPUTSENTRY _PRODUCESOLUTIONREQUEST.fields_by_name['inputs'].message_type = value__pb2._VALUE _PRODUCESOLUTIONREQUEST.fields_by_name['expose_value_types'].enum_type = value__pb2._VALUETYPE _PRODUCESOLUTIONREQUEST.fields_by_name['users'].message_type = _SOLUTIONRUNUSER _GETPRODUCESOLUTIONRESULTSRESPONSE_EXPOSEDOUTPUTSENTRY.fields_by_name['value'].message_type = value__pb2._VALUE _GETPRODUCESOLUTIONRESULTSRESPONSE_EXPOSEDOUTPUTSENTRY.containing_type = _GETPRODUCESOLUTIONRESULTSRESPONSE _GETPRODUCESOLUTIONRESULTSRESPONSE.fields_by_name['progress'].message_type = _PROGRESS _GETPRODUCESOLUTIONRESULTSRESPONSE.fields_by_name['steps'].message_type = _STEPPROGRESS _GETPRODUCESOLUTIONRESULTSRESPONSE.fields_by_name['exposed_outputs'].message_type = _GETPRODUCESOLUTIONRESULTSRESPONSE_EXPOSEDOUTPUTSENTRY _LISTPRIMITIVESRESPONSE.fields_by_name['primitives'].message_type = primitive__pb2._PRIMITIVE _HELLORESPONSE.fields_by_name['allowed_value_types'].enum_type = value__pb2._VALUETYPE DESCRIPTOR.message_types_by_name['ScoringConfiguration'] = _SCORINGCONFIGURATION DESCRIPTOR.message_types_by_name['Score'] = _SCORE DESCRIPTOR.message_types_by_name['Progress'] = _PROGRESS DESCRIPTOR.message_types_by_name['UpdateProblemRequest'] = _UPDATEPROBLEMREQUEST DESCRIPTOR.message_types_by_name['UpdateProblemResponse'] = _UPDATEPROBLEMRESPONSE DESCRIPTOR.message_types_by_name['SearchSolutionsRequest'] = _SEARCHSOLUTIONSREQUEST DESCRIPTOR.message_types_by_name['SearchSolutionsResponse'] = _SEARCHSOLUTIONSRESPONSE DESCRIPTOR.message_types_by_name['EndSearchSolutionsRequest'] = _ENDSEARCHSOLUTIONSREQUEST DESCRIPTOR.message_types_by_name['EndSearchSolutionsResponse'] = _ENDSEARCHSOLUTIONSRESPONSE DESCRIPTOR.message_types_by_name['StopSearchSolutionsRequest'] = _STOPSEARCHSOLUTIONSREQUEST DESCRIPTOR.message_types_by_name['StopSearchSolutionsResponse'] = _STOPSEARCHSOLUTIONSRESPONSE DESCRIPTOR.message_types_by_name['SolutionSearchScore'] = _SOLUTIONSEARCHSCORE DESCRIPTOR.message_types_by_name['GetSearchSolutionsResultsRequest'] = _GETSEARCHSOLUTIONSRESULTSREQUEST DESCRIPTOR.message_types_by_name['GetSearchSolutionsResultsResponse'] = _GETSEARCHSOLUTIONSRESULTSRESPONSE DESCRIPTOR.message_types_by_name['DescribeSolutionRequest'] = _DESCRIBESOLUTIONREQUEST DESCRIPTOR.message_types_by_name['PrimitiveStepDescription'] = _PRIMITIVESTEPDESCRIPTION DESCRIPTOR.message_types_by_name['SubpipelineStepDescription'] = _SUBPIPELINESTEPDESCRIPTION DESCRIPTOR.message_types_by_name['StepDescription'] = _STEPDESCRIPTION DESCRIPTOR.message_types_by_name['DescribeSolutionResponse'] = _DESCRIBESOLUTIONRESPONSE DESCRIPTOR.message_types_by_name['StepProgress'] = _STEPPROGRESS DESCRIPTOR.message_types_by_name['SolutionRunUser'] = _SOLUTIONRUNUSER DESCRIPTOR.message_types_by_name['ScoreSolutionRequest'] = _SCORESOLUTIONREQUEST DESCRIPTOR.message_types_by_name['ScoreSolutionResponse'] = _SCORESOLUTIONRESPONSE DESCRIPTOR.message_types_by_name['GetScoreSolutionResultsRequest'] = _GETSCORESOLUTIONRESULTSREQUEST DESCRIPTOR.message_types_by_name['GetScoreSolutionResultsResponse'] = _GETSCORESOLUTIONRESULTSRESPONSE DESCRIPTOR.message_types_by_name['FitSolutionRequest'] = _FITSOLUTIONREQUEST DESCRIPTOR.message_types_by_name['FitSolutionResponse'] = _FITSOLUTIONRESPONSE DESCRIPTOR.message_types_by_name['GetFitSolutionResultsRequest'] = _GETFITSOLUTIONRESULTSREQUEST DESCRIPTOR.message_types_by_name['GetFitSolutionResultsResponse'] = _GETFITSOLUTIONRESULTSRESPONSE DESCRIPTOR.message_types_by_name['ProduceSolutionRequest'] = _PRODUCESOLUTIONREQUEST DESCRIPTOR.message_types_by_name['ProduceSolutionResponse'] = _PRODUCESOLUTIONRESPONSE DESCRIPTOR.message_types_by_name['GetProduceSolutionResultsRequest'] = _GETPRODUCESOLUTIONRESULTSREQUEST DESCRIPTOR.message_types_by_name['GetProduceSolutionResultsResponse'] = _GETPRODUCESOLUTIONRESULTSRESPONSE DESCRIPTOR.message_types_by_name['SolutionExportRequest'] = _SOLUTIONEXPORTREQUEST DESCRIPTOR.message_types_by_name['SolutionExportResponse'] = _SOLUTIONEXPORTRESPONSE DESCRIPTOR.message_types_by_name['ListPrimitivesRequest'] = _LISTPRIMITIVESREQUEST DESCRIPTOR.message_types_by_name['ListPrimitivesResponse'] = _LISTPRIMITIVESRESPONSE DESCRIPTOR.message_types_by_name['HelloRequest'] = _HELLOREQUEST DESCRIPTOR.message_types_by_name['HelloResponse'] = _HELLORESPONSE DESCRIPTOR.enum_types_by_name['EvaluationMethod'] = _EVALUATIONMETHOD DESCRIPTOR.enum_types_by_name['ProgressState'] = _PROGRESSSTATE DESCRIPTOR.extensions_by_name['protocol_version'] = protocol_version _sym_db.RegisterFileDescriptor(DESCRIPTOR) ScoringConfiguration = _reflection.GeneratedProtocolMessageType('ScoringConfiguration', (_message.Message,), dict( DESCRIPTOR = _SCORINGCONFIGURATION, __module__ = 'core_pb2' # @@protoc_insertion_point(class_scope:ScoringConfiguration) )) _sym_db.RegisterMessage(ScoringConfiguration) Score = _reflection.GeneratedProtocolMessageType('Score', (_message.Message,), dict( DESCRIPTOR = _SCORE, __module__ = 'core_pb2' # @@protoc_insertion_point(class_scope:Score) )) _sym_db.RegisterMessage(Score) Progress = _reflection.GeneratedProtocolMessageType('Progress', (_message.Message,), dict( DESCRIPTOR = _PROGRESS, __module__ = 'core_pb2' # @@protoc_insertion_point(class_scope:Progress) )) _sym_db.RegisterMessage(Progress) UpdateProblemRequest = _reflection.GeneratedProtocolMessageType('UpdateProblemRequest', (_message.Message,), dict( DESCRIPTOR = _UPDATEPROBLEMREQUEST, __module__ = 'core_pb2' # @@protoc_insertion_point(class_scope:UpdateProblemRequest) )) _sym_db.RegisterMessage(UpdateProblemRequest) UpdateProblemResponse = _reflection.GeneratedProtocolMessageType('UpdateProblemResponse', (_message.Message,), dict( DESCRIPTOR = _UPDATEPROBLEMRESPONSE, __module__ = 'core_pb2' # @@protoc_insertion_point(class_scope:UpdateProblemResponse) )) _sym_db.RegisterMessage(UpdateProblemResponse) SearchSolutionsRequest = _reflection.GeneratedProtocolMessageType('SearchSolutionsRequest', (_message.Message,), dict( DESCRIPTOR = _SEARCHSOLUTIONSREQUEST, __module__ = 'core_pb2' # @@protoc_insertion_point(class_scope:SearchSolutionsRequest) )) _sym_db.RegisterMessage(SearchSolutionsRequest) SearchSolutionsResponse = _reflection.GeneratedProtocolMessageType('SearchSolutionsResponse', (_message.Message,), dict( DESCRIPTOR = _SEARCHSOLUTIONSRESPONSE, __module__ = 'core_pb2' # @@protoc_insertion_point(class_scope:SearchSolutionsResponse) )) _sym_db.RegisterMessage(SearchSolutionsResponse) EndSearchSolutionsRequest = _reflection.GeneratedProtocolMessageType('EndSearchSolutionsRequest', (_message.Message,), dict( DESCRIPTOR = _ENDSEARCHSOLUTIONSREQUEST, __module__ = 'core_pb2' # @@protoc_insertion_point(class_scope:EndSearchSolutionsRequest) )) _sym_db.RegisterMessage(EndSearchSolutionsRequest) EndSearchSolutionsResponse = _reflection.GeneratedProtocolMessageType('EndSearchSolutionsResponse', (_message.Message,), dict( DESCRIPTOR = _ENDSEARCHSOLUTIONSRESPONSE, __module__ = 'core_pb2' # @@protoc_insertion_point(class_scope:EndSearchSolutionsResponse) )) _sym_db.RegisterMessage(EndSearchSolutionsResponse) StopSearchSolutionsRequest = _reflection.GeneratedProtocolMessageType('StopSearchSolutionsRequest', (_message.Message,), dict( DESCRIPTOR = _STOPSEARCHSOLUTIONSREQUEST, __module__ = 'core_pb2' # @@protoc_insertion_point(class_scope:StopSearchSolutionsRequest) )) _sym_db.RegisterMessage(StopSearchSolutionsRequest) StopSearchSolutionsResponse = _reflection.GeneratedProtocolMessageType('StopSearchSolutionsResponse', (_message.Message,), dict( DESCRIPTOR = _STOPSEARCHSOLUTIONSRESPONSE, __module__ = 'core_pb2' # @@protoc_insertion_point(class_scope:StopSearchSolutionsResponse) )) _sym_db.RegisterMessage(StopSearchSolutionsResponse) SolutionSearchScore = _reflection.GeneratedProtocolMessageType('SolutionSearchScore', (_message.Message,), dict( DESCRIPTOR = _SOLUTIONSEARCHSCORE, __module__ = 'core_pb2' # @@protoc_insertion_point(class_scope:SolutionSearchScore) )) _sym_db.RegisterMessage(SolutionSearchScore) GetSearchSolutionsResultsRequest = _reflection.GeneratedProtocolMessageType('GetSearchSolutionsResultsRequest', (_message.Message,), dict( DESCRIPTOR = _GETSEARCHSOLUTIONSRESULTSREQUEST, __module__ = 'core_pb2' # @@protoc_insertion_point(class_scope:GetSearchSolutionsResultsRequest) )) _sym_db.RegisterMessage(GetSearchSolutionsResultsRequest) GetSearchSolutionsResultsResponse = _reflection.GeneratedProtocolMessageType('GetSearchSolutionsResultsResponse', (_message.Message,), dict( DESCRIPTOR = _GETSEARCHSOLUTIONSRESULTSRESPONSE, __module__ = 'core_pb2' # @@protoc_insertion_point(class_scope:GetSearchSolutionsResultsResponse) )) _sym_db.RegisterMessage(GetSearchSolutionsResultsResponse) DescribeSolutionRequest = _reflection.GeneratedProtocolMessageType('DescribeSolutionRequest', (_message.Message,), dict( DESCRIPTOR = _DESCRIBESOLUTIONREQUEST, __module__ = 'core_pb2' # @@protoc_insertion_point(class_scope:DescribeSolutionRequest) )) _sym_db.RegisterMessage(DescribeSolutionRequest) PrimitiveStepDescription = _reflection.GeneratedProtocolMessageType('PrimitiveStepDescription', (_message.Message,), dict( HyperparamsEntry = _reflection.GeneratedProtocolMessageType('HyperparamsEntry', (_message.Message,), dict( DESCRIPTOR = _PRIMITIVESTEPDESCRIPTION_HYPERPARAMSENTRY, __module__ = 'core_pb2' # @@protoc_insertion_point(class_scope:PrimitiveStepDescription.HyperparamsEntry) )) , DESCRIPTOR = _PRIMITIVESTEPDESCRIPTION, __module__ = 'core_pb2' # @@protoc_insertion_point(class_scope:PrimitiveStepDescription) )) _sym_db.RegisterMessage(PrimitiveStepDescription) _sym_db.RegisterMessage(PrimitiveStepDescription.HyperparamsEntry) SubpipelineStepDescription = _reflection.GeneratedProtocolMessageType('SubpipelineStepDescription', (_message.Message,), dict( DESCRIPTOR = _SUBPIPELINESTEPDESCRIPTION, __module__ = 'core_pb2' # @@protoc_insertion_point(class_scope:SubpipelineStepDescription) )) _sym_db.RegisterMessage(SubpipelineStepDescription) StepDescription = _reflection.GeneratedProtocolMessageType('StepDescription', (_message.Message,), dict( DESCRIPTOR = _STEPDESCRIPTION, __module__ = 'core_pb2' # @@protoc_insertion_point(class_scope:StepDescription) )) _sym_db.RegisterMessage(StepDescription) DescribeSolutionResponse = _reflection.GeneratedProtocolMessageType('DescribeSolutionResponse', (_message.Message,), dict( DESCRIPTOR = _DESCRIBESOLUTIONRESPONSE, __module__ = 'core_pb2' # @@protoc_insertion_point(class_scope:DescribeSolutionResponse) )) _sym_db.RegisterMessage(DescribeSolutionResponse) StepProgress = _reflection.GeneratedProtocolMessageType('StepProgress', (_message.Message,), dict( DESCRIPTOR = _STEPPROGRESS, __module__ = 'core_pb2' # @@protoc_insertion_point(class_scope:StepProgress) )) _sym_db.RegisterMessage(StepProgress) SolutionRunUser = _reflection.GeneratedProtocolMessageType('SolutionRunUser', (_message.Message,), dict( DESCRIPTOR = _SOLUTIONRUNUSER, __module__ = 'core_pb2' # @@protoc_insertion_point(class_scope:SolutionRunUser) )) _sym_db.RegisterMessage(SolutionRunUser) ScoreSolutionRequest = _reflection.GeneratedProtocolMessageType('ScoreSolutionRequest', (_message.Message,), dict( DESCRIPTOR = _SCORESOLUTIONREQUEST, __module__ = 'core_pb2' # @@protoc_insertion_point(class_scope:ScoreSolutionRequest) )) _sym_db.RegisterMessage(ScoreSolutionRequest) ScoreSolutionResponse = _reflection.GeneratedProtocolMessageType('ScoreSolutionResponse', (_message.Message,), dict( DESCRIPTOR = _SCORESOLUTIONRESPONSE, __module__ = 'core_pb2' # @@protoc_insertion_point(class_scope:ScoreSolutionResponse) )) _sym_db.RegisterMessage(ScoreSolutionResponse) GetScoreSolutionResultsRequest = _reflection.GeneratedProtocolMessageType('GetScoreSolutionResultsRequest', (_message.Message,), dict( DESCRIPTOR = _GETSCORESOLUTIONRESULTSREQUEST, __module__ = 'core_pb2' # @@protoc_insertion_point(class_scope:GetScoreSolutionResultsRequest) )) _sym_db.RegisterMessage(GetScoreSolutionResultsRequest) GetScoreSolutionResultsResponse = _reflection.GeneratedProtocolMessageType('GetScoreSolutionResultsResponse', (_message.Message,), dict( DESCRIPTOR = _GETSCORESOLUTIONRESULTSRESPONSE, __module__ = 'core_pb2' # @@protoc_insertion_point(class_scope:GetScoreSolutionResultsResponse) )) _sym_db.RegisterMessage(GetScoreSolutionResultsResponse) FitSolutionRequest = _reflection.GeneratedProtocolMessageType('FitSolutionRequest', (_message.Message,), dict( DESCRIPTOR = _FITSOLUTIONREQUEST, __module__ = 'core_pb2' # @@protoc_insertion_point(class_scope:FitSolutionRequest) )) _sym_db.RegisterMessage(FitSolutionRequest) FitSolutionResponse = _reflection.GeneratedProtocolMessageType('FitSolutionResponse', (_message.Message,), dict( DESCRIPTOR = _FITSOLUTIONRESPONSE, __module__ = 'core_pb2' # @@protoc_insertion_point(class_scope:FitSolutionResponse) )) _sym_db.RegisterMessage(FitSolutionResponse) GetFitSolutionResultsRequest = _reflection.GeneratedProtocolMessageType('GetFitSolutionResultsRequest', (_message.Message,), dict( DESCRIPTOR = _GETFITSOLUTIONRESULTSREQUEST, __module__ = 'core_pb2' # @@protoc_insertion_point(class_scope:GetFitSolutionResultsRequest) )) _sym_db.RegisterMessage(GetFitSolutionResultsRequest) GetFitSolutionResultsResponse = _reflection.GeneratedProtocolMessageType('GetFitSolutionResultsResponse', (_message.Message,), dict( ExposedOutputsEntry = _reflection.GeneratedProtocolMessageType('ExposedOutputsEntry', (_message.Message,), dict( DESCRIPTOR = _GETFITSOLUTIONRESULTSRESPONSE_EXPOSEDOUTPUTSENTRY, __module__ = 'core_pb2' # @@protoc_insertion_point(class_scope:GetFitSolutionResultsResponse.ExposedOutputsEntry) )) , DESCRIPTOR = _GETFITSOLUTIONRESULTSRESPONSE, __module__ = 'core_pb2' # @@protoc_insertion_point(class_scope:GetFitSolutionResultsResponse) )) _sym_db.RegisterMessage(GetFitSolutionResultsResponse) _sym_db.RegisterMessage(GetFitSolutionResultsResponse.ExposedOutputsEntry) ProduceSolutionRequest = _reflection.GeneratedProtocolMessageType('ProduceSolutionRequest', (_message.Message,), dict( DESCRIPTOR = _PRODUCESOLUTIONREQUEST, __module__ = 'core_pb2' # @@protoc_insertion_point(class_scope:ProduceSolutionRequest) )) _sym_db.RegisterMessage(ProduceSolutionRequest) ProduceSolutionResponse = _reflection.GeneratedProtocolMessageType('ProduceSolutionResponse', (_message.Message,), dict( DESCRIPTOR = _PRODUCESOLUTIONRESPONSE, __module__ = 'core_pb2' # @@protoc_insertion_point(class_scope:ProduceSolutionResponse) )) _sym_db.RegisterMessage(ProduceSolutionResponse) GetProduceSolutionResultsRequest = _reflection.GeneratedProtocolMessageType('GetProduceSolutionResultsRequest', (_message.Message,), dict( DESCRIPTOR = _GETPRODUCESOLUTIONRESULTSREQUEST, __module__ = 'core_pb2' # @@protoc_insertion_point(class_scope:GetProduceSolutionResultsRequest) )) _sym_db.RegisterMessage(GetProduceSolutionResultsRequest) GetProduceSolutionResultsResponse = _reflection.GeneratedProtocolMessageType('GetProduceSolutionResultsResponse', (_message.Message,), dict( ExposedOutputsEntry = _reflection.GeneratedProtocolMessageType('ExposedOutputsEntry', (_message.Message,), dict( DESCRIPTOR = _GETPRODUCESOLUTIONRESULTSRESPONSE_EXPOSEDOUTPUTSENTRY, __module__ = 'core_pb2' # @@protoc_insertion_point(class_scope:GetProduceSolutionResultsResponse.ExposedOutputsEntry) )) , DESCRIPTOR = _GETPRODUCESOLUTIONRESULTSRESPONSE, __module__ = 'core_pb2' # @@protoc_insertion_point(class_scope:GetProduceSolutionResultsResponse) )) _sym_db.RegisterMessage(GetProduceSolutionResultsResponse) _sym_db.RegisterMessage(GetProduceSolutionResultsResponse.ExposedOutputsEntry) SolutionExportRequest = _reflection.GeneratedProtocolMessageType('SolutionExportRequest', (_message.Message,), dict( DESCRIPTOR = _SOLUTIONEXPORTREQUEST, __module__ = 'core_pb2' # @@protoc_insertion_point(class_scope:SolutionExportRequest) )) _sym_db.RegisterMessage(SolutionExportRequest) SolutionExportResponse = _reflection.GeneratedProtocolMessageType('SolutionExportResponse', (_message.Message,), dict( DESCRIPTOR = _SOLUTIONEXPORTRESPONSE, __module__ = 'core_pb2' # @@protoc_insertion_point(class_scope:SolutionExportResponse) )) _sym_db.RegisterMessage(SolutionExportResponse) ListPrimitivesRequest = _reflection.GeneratedProtocolMessageType('ListPrimitivesRequest', (_message.Message,), dict( DESCRIPTOR = _LISTPRIMITIVESREQUEST, __module__ = 'core_pb2' # @@protoc_insertion_point(class_scope:ListPrimitivesRequest) )) _sym_db.RegisterMessage(ListPrimitivesRequest) ListPrimitivesResponse = _reflection.GeneratedProtocolMessageType('ListPrimitivesResponse', (_message.Message,), dict( DESCRIPTOR = _LISTPRIMITIVESRESPONSE, __module__ = 'core_pb2' # @@protoc_insertion_point(class_scope:ListPrimitivesResponse) )) _sym_db.RegisterMessage(ListPrimitivesResponse) HelloRequest = _reflection.GeneratedProtocolMessageType('HelloRequest', (_message.Message,), dict( DESCRIPTOR = _HELLOREQUEST, __module__ = 'core_pb2' # @@protoc_insertion_point(class_scope:HelloRequest) )) _sym_db.RegisterMessage(HelloRequest) HelloResponse = _reflection.GeneratedProtocolMessageType('HelloResponse', (_message.Message,), dict( DESCRIPTOR = _HELLORESPONSE, __module__ = 'core_pb2' # @@protoc_insertion_point(class_scope:HelloResponse) )) _sym_db.RegisterMessage(HelloResponse) google_dot_protobuf_dot_descriptor__pb2.FileOptions.RegisterExtension(protocol_version) DESCRIPTOR.has_options = True DESCRIPTOR._options = _descriptor._ParseOptions(descriptor_pb2.FileOptions(), _b('Z\010pipeline\242\265\032\0102018.7.7')) _PRIMITIVESTEPDESCRIPTION_HYPERPARAMSENTRY.has_options = True _PRIMITIVESTEPDESCRIPTION_HYPERPARAMSENTRY._options = _descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b('8\001')) _GETFITSOLUTIONRESULTSRESPONSE_EXPOSEDOUTPUTSENTRY.has_options = True _GETFITSOLUTIONRESULTSRESPONSE_EXPOSEDOUTPUTSENTRY._options = _descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b('8\001')) _GETPRODUCESOLUTIONRESULTSRESPONSE_EXPOSEDOUTPUTSENTRY.has_options = True _GETPRODUCESOLUTIONRESULTSRESPONSE_EXPOSEDOUTPUTSENTRY._options = _descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b('8\001')) _CORE = _descriptor.ServiceDescriptor( name='Core', full_name='Core', file=DESCRIPTOR, index=0, options=None, serialized_start=4073, serialized_end=5233, methods=[ _descriptor.MethodDescriptor( name='SearchSolutions', full_name='Core.SearchSolutions', index=0, containing_service=None, input_type=_SEARCHSOLUTIONSREQUEST, output_type=_SEARCHSOLUTIONSRESPONSE, options=None, ), _descriptor.MethodDescriptor( name='GetSearchSolutionsResults', full_name='Core.GetSearchSolutionsResults', index=1, containing_service=None, input_type=_GETSEARCHSOLUTIONSRESULTSREQUEST, output_type=_GETSEARCHSOLUTIONSRESULTSRESPONSE, options=None, ), _descriptor.MethodDescriptor( name='EndSearchSolutions', full_name='Core.EndSearchSolutions', index=2, containing_service=None, input_type=_ENDSEARCHSOLUTIONSREQUEST, output_type=_ENDSEARCHSOLUTIONSRESPONSE, options=None, ), _descriptor.MethodDescriptor( name='StopSearchSolutions', full_name='Core.StopSearchSolutions', index=3, containing_service=None, input_type=_STOPSEARCHSOLUTIONSREQUEST, output_type=_STOPSEARCHSOLUTIONSRESPONSE, options=None, ), _descriptor.MethodDescriptor( name='DescribeSolution', full_name='Core.DescribeSolution', index=4, containing_service=None, input_type=_DESCRIBESOLUTIONREQUEST, output_type=_DESCRIBESOLUTIONRESPONSE, options=None, ), _descriptor.MethodDescriptor( name='ScoreSolution', full_name='Core.ScoreSolution', index=5, containing_service=None, input_type=_SCORESOLUTIONREQUEST, output_type=_SCORESOLUTIONRESPONSE, options=None, ), _descriptor.MethodDescriptor( name='GetScoreSolutionResults', full_name='Core.GetScoreSolutionResults', index=6, containing_service=None, input_type=_GETSCORESOLUTIONRESULTSREQUEST, output_type=_GETSCORESOLUTIONRESULTSRESPONSE, options=None, ), _descriptor.MethodDescriptor( name='FitSolution', full_name='Core.FitSolution', index=7, containing_service=None, input_type=_FITSOLUTIONREQUEST, output_type=_FITSOLUTIONRESPONSE, options=None, ), _descriptor.MethodDescriptor( name='GetFitSolutionResults', full_name='Core.GetFitSolutionResults', index=8, containing_service=None, input_type=_GETFITSOLUTIONRESULTSREQUEST, output_type=_GETFITSOLUTIONRESULTSRESPONSE, options=None, ), _descriptor.MethodDescriptor( name='ProduceSolution', full_name='Core.ProduceSolution', index=9, containing_service=None, input_type=_PRODUCESOLUTIONREQUEST, output_type=_PRODUCESOLUTIONRESPONSE, options=None, ), _descriptor.MethodDescriptor( name='GetProduceSolutionResults', full_name='Core.GetProduceSolutionResults', index=10, containing_service=None, input_type=_GETPRODUCESOLUTIONRESULTSREQUEST, output_type=_GETPRODUCESOLUTIONRESULTSRESPONSE, options=None, ), _descriptor.MethodDescriptor( name='SolutionExport', full_name='Core.SolutionExport', index=11, containing_service=None, input_type=_SOLUTIONEXPORTREQUEST, output_type=_SOLUTIONEXPORTRESPONSE, options=None, ), _descriptor.MethodDescriptor( name='UpdateProblem', full_name='Core.UpdateProblem', index=12, containing_service=None, input_type=_UPDATEPROBLEMREQUEST, output_type=_UPDATEPROBLEMRESPONSE, options=None, ), _descriptor.MethodDescriptor( name='ListPrimitives', full_name='Core.ListPrimitives', index=13, containing_service=None, input_type=_LISTPRIMITIVESREQUEST, output_type=_LISTPRIMITIVESRESPONSE, options=None, ), _descriptor.MethodDescriptor( name='Hello', full_name='Core.Hello', index=14, containing_service=None, input_type=_HELLOREQUEST, output_type=_HELLORESPONSE, options=None, ), ]) _sym_db.RegisterServiceDescriptor(_CORE) DESCRIPTOR.services_by_name['Core'] = _CORE # @@protoc_insertion_point(module_scope)
d3m-model-search-master
Stanford-D3M-Full/ta3ta2/api/core_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: problem.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf.internal import enum_type_wrapper from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.protobuf import descriptor_pb2 as google_dot_protobuf_dot_descriptor__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='problem.proto', package='', syntax='proto3', serialized_pb=_b('\n\rproblem.proto\x1a google/protobuf/descriptor.proto\"\\\n\x18ProblemPerformanceMetric\x12\"\n\x06metric\x18\x01 \x01(\x0e\x32\x12.PerformanceMetric\x12\t\n\x01k\x18\x02 \x01(\x05\x12\x11\n\tpos_label\x18\x03 \x01(\t\"\xc3\x01\n\x07Problem\x12\n\n\x02id\x18\x01 \x01(\t\x12\x0f\n\x07version\x18\x02 \x01(\t\x12\x0c\n\x04name\x18\x03 \x01(\t\x12\x13\n\x0b\x64\x65scription\x18\x04 \x01(\t\x12\x1c\n\ttask_type\x18\x05 \x01(\x0e\x32\t.TaskType\x12\"\n\x0ctask_subtype\x18\x06 \x01(\x0e\x32\x0c.TaskSubtype\x12\x36\n\x13performance_metrics\x18\x07 \x03(\x0b\x32\x19.ProblemPerformanceMetric\"~\n\rProblemTarget\x12\x14\n\x0ctarget_index\x18\x01 \x01(\x05\x12\x13\n\x0bresource_id\x18\x02 \x01(\t\x12\x14\n\x0c\x63olumn_index\x18\x03 \x01(\x05\x12\x13\n\x0b\x63olumn_name\x18\x04 \x01(\t\x12\x17\n\x0f\x63lusters_number\x18\x05 \x01(\x05\"C\n\x0cProblemInput\x12\x12\n\ndataset_id\x18\x01 \x01(\t\x12\x1f\n\x07targets\x18\x02 \x03(\x0b\x32\x0e.ProblemTarget\"N\n\x12ProblemDescription\x12\x19\n\x07problem\x18\x01 \x01(\x0b\x32\x08.Problem\x12\x1d\n\x06inputs\x18\x02 \x03(\x0b\x32\r.ProblemInput*\x96\x02\n\x08TaskType\x12\x17\n\x13TASK_TYPE_UNDEFINED\x10\x00\x12\x12\n\x0e\x43LASSIFICATION\x10\x01\x12\x0e\n\nREGRESSION\x10\x02\x12\x0e\n\nCLUSTERING\x10\x03\x12\x13\n\x0fLINK_PREDICTION\x10\x04\x12\x15\n\x11VERTEX_NOMINATION\x10\x05\x12\x17\n\x13\x43OMMUNITY_DETECTION\x10\x06\x12\x14\n\x10GRAPH_CLUSTERING\x10\x07\x12\x12\n\x0eGRAPH_MATCHING\x10\x08\x12\x1b\n\x17TIME_SERIES_FORECASTING\x10\t\x12\x1b\n\x17\x43OLLABORATIVE_FILTERING\x10\n\x12\x14\n\x10OBJECT_DETECTION\x10\x0b*\xa6\x01\n\x0bTaskSubtype\x12\x1a\n\x16TASK_SUBTYPE_UNDEFINED\x10\x00\x12\x08\n\x04NONE\x10\x01\x12\n\n\x06\x42INARY\x10\x02\x12\x0e\n\nMULTICLASS\x10\x03\x12\x0e\n\nMULTILABEL\x10\x04\x12\x0e\n\nUNIVARIATE\x10\x05\x12\x10\n\x0cMULTIVARIATE\x10\x06\x12\x0f\n\x0bOVERLAPPING\x10\x07\x12\x12\n\x0eNONOVERLAPPING\x10\x08*\xb2\x03\n\x11PerformanceMetric\x12\x14\n\x10METRIC_UNDEFINED\x10\x00\x12\x0c\n\x08\x41\x43\x43URACY\x10\x01\x12\r\n\tPRECISION\x10\x02\x12\n\n\x06RECALL\x10\x03\x12\x06\n\x02\x46\x31\x10\x04\x12\x0c\n\x08\x46\x31_MICRO\x10\x05\x12\x0c\n\x08\x46\x31_MACRO\x10\x06\x12\x0b\n\x07ROC_AUC\x10\x07\x12\x11\n\rROC_AUC_MICRO\x10\x08\x12\x11\n\rROC_AUC_MACRO\x10\t\x12\x16\n\x12MEAN_SQUARED_ERROR\x10\n\x12\x1b\n\x17ROOT_MEAN_SQUARED_ERROR\x10\x0b\x12\x1f\n\x1bROOT_MEAN_SQUARED_ERROR_AVG\x10\x0c\x12\x17\n\x13MEAN_ABSOLUTE_ERROR\x10\r\x12\r\n\tR_SQUARED\x10\x0e\x12!\n\x1dNORMALIZED_MUTUAL_INFORMATION\x10\x0f\x12\x1c\n\x18JACCARD_SIMILARITY_SCORE\x10\x10\x12\x16\n\x12PRECISION_AT_TOP_K\x10\x11\x12&\n\"OBJECT_DETECTION_AVERAGE_PRECISION\x10\x12\x12\x08\n\x04LOSS\x10\x64\x42\nZ\x08pipelineb\x06proto3') , dependencies=[google_dot_protobuf_dot_descriptor__pb2.DESCRIPTOR,]) _TASKTYPE = _descriptor.EnumDescriptor( name='TaskType', full_name='TaskType', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='TASK_TYPE_UNDEFINED', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='CLASSIFICATION', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='REGRESSION', index=2, number=2, options=None, type=None), _descriptor.EnumValueDescriptor( name='CLUSTERING', index=3, number=3, options=None, type=None), _descriptor.EnumValueDescriptor( name='LINK_PREDICTION', index=4, number=4, options=None, type=None), _descriptor.EnumValueDescriptor( name='VERTEX_NOMINATION', index=5, number=5, options=None, type=None), _descriptor.EnumValueDescriptor( name='COMMUNITY_DETECTION', index=6, number=6, options=None, type=None), _descriptor.EnumValueDescriptor( name='GRAPH_CLUSTERING', index=7, number=7, options=None, type=None), _descriptor.EnumValueDescriptor( name='GRAPH_MATCHING', index=8, number=8, options=None, type=None), _descriptor.EnumValueDescriptor( name='TIME_SERIES_FORECASTING', index=9, number=9, options=None, type=None), _descriptor.EnumValueDescriptor( name='COLLABORATIVE_FILTERING', index=10, number=10, options=None, type=None), _descriptor.EnumValueDescriptor( name='OBJECT_DETECTION', index=11, number=11, options=None, type=None), ], containing_type=None, options=None, serialized_start=621, serialized_end=899, ) _sym_db.RegisterEnumDescriptor(_TASKTYPE) TaskType = enum_type_wrapper.EnumTypeWrapper(_TASKTYPE) _TASKSUBTYPE = _descriptor.EnumDescriptor( name='TaskSubtype', full_name='TaskSubtype', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='TASK_SUBTYPE_UNDEFINED', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='NONE', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='BINARY', index=2, number=2, options=None, type=None), _descriptor.EnumValueDescriptor( name='MULTICLASS', index=3, number=3, options=None, type=None), _descriptor.EnumValueDescriptor( name='MULTILABEL', index=4, number=4, options=None, type=None), _descriptor.EnumValueDescriptor( name='UNIVARIATE', index=5, number=5, options=None, type=None), _descriptor.EnumValueDescriptor( name='MULTIVARIATE', index=6, number=6, options=None, type=None), _descriptor.EnumValueDescriptor( name='OVERLAPPING', index=7, number=7, options=None, type=None), _descriptor.EnumValueDescriptor( name='NONOVERLAPPING', index=8, number=8, options=None, type=None), ], containing_type=None, options=None, serialized_start=902, serialized_end=1068, ) _sym_db.RegisterEnumDescriptor(_TASKSUBTYPE) TaskSubtype = enum_type_wrapper.EnumTypeWrapper(_TASKSUBTYPE) _PERFORMANCEMETRIC = _descriptor.EnumDescriptor( name='PerformanceMetric', full_name='PerformanceMetric', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='METRIC_UNDEFINED', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='ACCURACY', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='PRECISION', index=2, number=2, options=None, type=None), _descriptor.EnumValueDescriptor( name='RECALL', index=3, number=3, options=None, type=None), _descriptor.EnumValueDescriptor( name='F1', index=4, number=4, options=None, type=None), _descriptor.EnumValueDescriptor( name='F1_MICRO', index=5, number=5, options=None, type=None), _descriptor.EnumValueDescriptor( name='F1_MACRO', index=6, number=6, options=None, type=None), _descriptor.EnumValueDescriptor( name='ROC_AUC', index=7, number=7, options=None, type=None), _descriptor.EnumValueDescriptor( name='ROC_AUC_MICRO', index=8, number=8, options=None, type=None), _descriptor.EnumValueDescriptor( name='ROC_AUC_MACRO', index=9, number=9, options=None, type=None), _descriptor.EnumValueDescriptor( name='MEAN_SQUARED_ERROR', index=10, number=10, options=None, type=None), _descriptor.EnumValueDescriptor( name='ROOT_MEAN_SQUARED_ERROR', index=11, number=11, options=None, type=None), _descriptor.EnumValueDescriptor( name='ROOT_MEAN_SQUARED_ERROR_AVG', index=12, number=12, options=None, type=None), _descriptor.EnumValueDescriptor( name='MEAN_ABSOLUTE_ERROR', index=13, number=13, options=None, type=None), _descriptor.EnumValueDescriptor( name='R_SQUARED', index=14, number=14, options=None, type=None), _descriptor.EnumValueDescriptor( name='NORMALIZED_MUTUAL_INFORMATION', index=15, number=15, options=None, type=None), _descriptor.EnumValueDescriptor( name='JACCARD_SIMILARITY_SCORE', index=16, number=16, options=None, type=None), _descriptor.EnumValueDescriptor( name='PRECISION_AT_TOP_K', index=17, number=17, options=None, type=None), _descriptor.EnumValueDescriptor( name='OBJECT_DETECTION_AVERAGE_PRECISION', index=18, number=18, options=None, type=None), _descriptor.EnumValueDescriptor( name='LOSS', index=19, number=100, options=None, type=None), ], containing_type=None, options=None, serialized_start=1071, serialized_end=1505, ) _sym_db.RegisterEnumDescriptor(_PERFORMANCEMETRIC) PerformanceMetric = enum_type_wrapper.EnumTypeWrapper(_PERFORMANCEMETRIC) TASK_TYPE_UNDEFINED = 0 CLASSIFICATION = 1 REGRESSION = 2 CLUSTERING = 3 LINK_PREDICTION = 4 VERTEX_NOMINATION = 5 COMMUNITY_DETECTION = 6 GRAPH_CLUSTERING = 7 GRAPH_MATCHING = 8 TIME_SERIES_FORECASTING = 9 COLLABORATIVE_FILTERING = 10 OBJECT_DETECTION = 11 TASK_SUBTYPE_UNDEFINED = 0 NONE = 1 BINARY = 2 MULTICLASS = 3 MULTILABEL = 4 UNIVARIATE = 5 MULTIVARIATE = 6 OVERLAPPING = 7 NONOVERLAPPING = 8 METRIC_UNDEFINED = 0 ACCURACY = 1 PRECISION = 2 RECALL = 3 F1 = 4 F1_MICRO = 5 F1_MACRO = 6 ROC_AUC = 7 ROC_AUC_MICRO = 8 ROC_AUC_MACRO = 9 MEAN_SQUARED_ERROR = 10 ROOT_MEAN_SQUARED_ERROR = 11 ROOT_MEAN_SQUARED_ERROR_AVG = 12 MEAN_ABSOLUTE_ERROR = 13 R_SQUARED = 14 NORMALIZED_MUTUAL_INFORMATION = 15 JACCARD_SIMILARITY_SCORE = 16 PRECISION_AT_TOP_K = 17 OBJECT_DETECTION_AVERAGE_PRECISION = 18 LOSS = 100 _PROBLEMPERFORMANCEMETRIC = _descriptor.Descriptor( name='ProblemPerformanceMetric', full_name='ProblemPerformanceMetric', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='metric', full_name='ProblemPerformanceMetric.metric', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='k', full_name='ProblemPerformanceMetric.k', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='pos_label', full_name='ProblemPerformanceMetric.pos_label', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=51, serialized_end=143, ) _PROBLEM = _descriptor.Descriptor( name='Problem', full_name='Problem', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='id', full_name='Problem.id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='version', full_name='Problem.version', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='name', full_name='Problem.name', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='description', full_name='Problem.description', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='task_type', full_name='Problem.task_type', index=4, number=5, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='task_subtype', full_name='Problem.task_subtype', index=5, number=6, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='performance_metrics', full_name='Problem.performance_metrics', index=6, number=7, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=146, serialized_end=341, ) _PROBLEMTARGET = _descriptor.Descriptor( name='ProblemTarget', full_name='ProblemTarget', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='target_index', full_name='ProblemTarget.target_index', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='resource_id', full_name='ProblemTarget.resource_id', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='column_index', full_name='ProblemTarget.column_index', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='column_name', full_name='ProblemTarget.column_name', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='clusters_number', full_name='ProblemTarget.clusters_number', index=4, number=5, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=343, serialized_end=469, ) _PROBLEMINPUT = _descriptor.Descriptor( name='ProblemInput', full_name='ProblemInput', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='dataset_id', full_name='ProblemInput.dataset_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='targets', full_name='ProblemInput.targets', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=471, serialized_end=538, ) _PROBLEMDESCRIPTION = _descriptor.Descriptor( name='ProblemDescription', full_name='ProblemDescription', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='problem', full_name='ProblemDescription.problem', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='inputs', full_name='ProblemDescription.inputs', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=540, serialized_end=618, ) _PROBLEMPERFORMANCEMETRIC.fields_by_name['metric'].enum_type = _PERFORMANCEMETRIC _PROBLEM.fields_by_name['task_type'].enum_type = _TASKTYPE _PROBLEM.fields_by_name['task_subtype'].enum_type = _TASKSUBTYPE _PROBLEM.fields_by_name['performance_metrics'].message_type = _PROBLEMPERFORMANCEMETRIC _PROBLEMINPUT.fields_by_name['targets'].message_type = _PROBLEMTARGET _PROBLEMDESCRIPTION.fields_by_name['problem'].message_type = _PROBLEM _PROBLEMDESCRIPTION.fields_by_name['inputs'].message_type = _PROBLEMINPUT DESCRIPTOR.message_types_by_name['ProblemPerformanceMetric'] = _PROBLEMPERFORMANCEMETRIC DESCRIPTOR.message_types_by_name['Problem'] = _PROBLEM DESCRIPTOR.message_types_by_name['ProblemTarget'] = _PROBLEMTARGET DESCRIPTOR.message_types_by_name['ProblemInput'] = _PROBLEMINPUT DESCRIPTOR.message_types_by_name['ProblemDescription'] = _PROBLEMDESCRIPTION DESCRIPTOR.enum_types_by_name['TaskType'] = _TASKTYPE DESCRIPTOR.enum_types_by_name['TaskSubtype'] = _TASKSUBTYPE DESCRIPTOR.enum_types_by_name['PerformanceMetric'] = _PERFORMANCEMETRIC _sym_db.RegisterFileDescriptor(DESCRIPTOR) ProblemPerformanceMetric = _reflection.GeneratedProtocolMessageType('ProblemPerformanceMetric', (_message.Message,), dict( DESCRIPTOR = _PROBLEMPERFORMANCEMETRIC, __module__ = 'problem_pb2' # @@protoc_insertion_point(class_scope:ProblemPerformanceMetric) )) _sym_db.RegisterMessage(ProblemPerformanceMetric) Problem = _reflection.GeneratedProtocolMessageType('Problem', (_message.Message,), dict( DESCRIPTOR = _PROBLEM, __module__ = 'problem_pb2' # @@protoc_insertion_point(class_scope:Problem) )) _sym_db.RegisterMessage(Problem) ProblemTarget = _reflection.GeneratedProtocolMessageType('ProblemTarget', (_message.Message,), dict( DESCRIPTOR = _PROBLEMTARGET, __module__ = 'problem_pb2' # @@protoc_insertion_point(class_scope:ProblemTarget) )) _sym_db.RegisterMessage(ProblemTarget) ProblemInput = _reflection.GeneratedProtocolMessageType('ProblemInput', (_message.Message,), dict( DESCRIPTOR = _PROBLEMINPUT, __module__ = 'problem_pb2' # @@protoc_insertion_point(class_scope:ProblemInput) )) _sym_db.RegisterMessage(ProblemInput) ProblemDescription = _reflection.GeneratedProtocolMessageType('ProblemDescription', (_message.Message,), dict( DESCRIPTOR = _PROBLEMDESCRIPTION, __module__ = 'problem_pb2' # @@protoc_insertion_point(class_scope:ProblemDescription) )) _sym_db.RegisterMessage(ProblemDescription) DESCRIPTOR.has_options = True DESCRIPTOR._options = _descriptor._ParseOptions(descriptor_pb2.FileOptions(), _b('Z\010pipeline')) # @@protoc_insertion_point(module_scope)
d3m-model-search-master
Stanford-D3M-Full/ta3ta2/api/problem_pb2.py
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT! import grpc
d3m-model-search-master
Stanford-D3M-Full/ta3ta2/api/value_pb2_grpc.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: value.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf.internal import enum_type_wrapper from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.protobuf import descriptor_pb2 as google_dot_protobuf_dot_descriptor__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='value.proto', package='', syntax='proto3', serialized_pb=_b('\n\x0bvalue.proto\x1a google/protobuf/descriptor.proto\"\x1d\n\nValueError\x12\x0f\n\x07message\x18\x01 \x01(\t\"%\n\tValueList\x12\x18\n\x05items\x18\x01 \x03(\x0b\x32\t.ValueRaw\"j\n\tValueDict\x12$\n\x05items\x18\x01 \x03(\x0b\x32\x15.ValueDict.ItemsEntry\x1a\x37\n\nItemsEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\x18\n\x05value\x18\x02 \x01(\x0b\x32\t.ValueRaw:\x02\x38\x01\"\xbb\x01\n\x08ValueRaw\x12\x1a\n\x04null\x18\x01 \x01(\x0e\x32\n.NullValueH\x00\x12\x10\n\x06\x64ouble\x18\x02 \x01(\x01H\x00\x12\x0f\n\x05int64\x18\x03 \x01(\x03H\x00\x12\x0e\n\x04\x62ool\x18\x04 \x01(\x08H\x00\x12\x10\n\x06string\x18\x05 \x01(\tH\x00\x12\x0f\n\x05\x62ytes\x18\x06 \x01(\x0cH\x00\x12\x1a\n\x04list\x18\x07 \x01(\x0b\x32\n.ValueListH\x00\x12\x1a\n\x04\x64ict\x18\x08 \x01(\x0b\x32\n.ValueDictH\x00\x42\x05\n\x03raw\"\xb4\x01\n\x05Value\x12\x1c\n\x05\x65rror\x18\x01 \x01(\x0b\x32\x0b.ValueErrorH\x00\x12\x18\n\x03raw\x18\x02 \x01(\x0b\x32\t.ValueRawH\x00\x12\x15\n\x0b\x64\x61taset_uri\x18\x03 \x01(\tH\x00\x12\x11\n\x07\x63sv_uri\x18\x04 \x01(\tH\x00\x12\x14\n\npickle_uri\x18\x05 \x01(\tH\x00\x12\x15\n\x0bpickle_blob\x18\x06 \x01(\x0cH\x00\x12\x13\n\tplasma_id\x18\x07 \x01(\x0cH\x00\x42\x07\n\x05value*|\n\tValueType\x12\x18\n\x14VALUE_TYPE_UNDEFINED\x10\x00\x12\x07\n\x03RAW\x10\x01\x12\x0f\n\x0b\x44\x41TASET_URI\x10\x02\x12\x0b\n\x07\x43SV_URI\x10\x03\x12\x0e\n\nPICKLE_URI\x10\x04\x12\x0f\n\x0bPICKLE_BLOB\x10\x05\x12\r\n\tPLASMA_ID\x10\x06*\x1b\n\tNullValue\x12\x0e\n\nNULL_VALUE\x10\x00\x42\nZ\x08pipelineb\x06proto3') , dependencies=[google_dot_protobuf_dot_descriptor__pb2.DESCRIPTOR,]) _VALUETYPE = _descriptor.EnumDescriptor( name='ValueType', full_name='ValueType', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='VALUE_TYPE_UNDEFINED', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='RAW', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='DATASET_URI', index=2, number=2, options=None, type=None), _descriptor.EnumValueDescriptor( name='CSV_URI', index=3, number=3, options=None, type=None), _descriptor.EnumValueDescriptor( name='PICKLE_URI', index=4, number=4, options=None, type=None), _descriptor.EnumValueDescriptor( name='PICKLE_BLOB', index=5, number=5, options=None, type=None), _descriptor.EnumValueDescriptor( name='PLASMA_ID', index=6, number=6, options=None, type=None), ], containing_type=None, options=None, serialized_start=600, serialized_end=724, ) _sym_db.RegisterEnumDescriptor(_VALUETYPE) ValueType = enum_type_wrapper.EnumTypeWrapper(_VALUETYPE) _NULLVALUE = _descriptor.EnumDescriptor( name='NullValue', full_name='NullValue', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='NULL_VALUE', index=0, number=0, options=None, type=None), ], containing_type=None, options=None, serialized_start=726, serialized_end=753, ) _sym_db.RegisterEnumDescriptor(_NULLVALUE) NullValue = enum_type_wrapper.EnumTypeWrapper(_NULLVALUE) VALUE_TYPE_UNDEFINED = 0 RAW = 1 DATASET_URI = 2 CSV_URI = 3 PICKLE_URI = 4 PICKLE_BLOB = 5 PLASMA_ID = 6 NULL_VALUE = 0 _VALUEERROR = _descriptor.Descriptor( name='ValueError', full_name='ValueError', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='message', full_name='ValueError.message', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=49, serialized_end=78, ) _VALUELIST = _descriptor.Descriptor( name='ValueList', full_name='ValueList', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='items', full_name='ValueList.items', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=80, serialized_end=117, ) _VALUEDICT_ITEMSENTRY = _descriptor.Descriptor( name='ItemsEntry', full_name='ValueDict.ItemsEntry', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='ValueDict.ItemsEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='value', full_name='ValueDict.ItemsEntry.value', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=_descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b('8\001')), is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=170, serialized_end=225, ) _VALUEDICT = _descriptor.Descriptor( name='ValueDict', full_name='ValueDict', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='items', full_name='ValueDict.items', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_VALUEDICT_ITEMSENTRY, ], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=119, serialized_end=225, ) _VALUERAW = _descriptor.Descriptor( name='ValueRaw', full_name='ValueRaw', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='null', full_name='ValueRaw.null', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='double', full_name='ValueRaw.double', index=1, number=2, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='int64', full_name='ValueRaw.int64', index=2, number=3, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='bool', full_name='ValueRaw.bool', index=3, number=4, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='string', full_name='ValueRaw.string', index=4, number=5, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='bytes', full_name='ValueRaw.bytes', index=5, number=6, type=12, cpp_type=9, label=1, has_default_value=False, default_value=_b(""), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='list', full_name='ValueRaw.list', index=6, number=7, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='dict', full_name='ValueRaw.dict', index=7, number=8, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name='raw', full_name='ValueRaw.raw', index=0, containing_type=None, fields=[]), ], serialized_start=228, serialized_end=415, ) _VALUE = _descriptor.Descriptor( name='Value', full_name='Value', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='error', full_name='Value.error', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='raw', full_name='Value.raw', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='dataset_uri', full_name='Value.dataset_uri', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='csv_uri', full_name='Value.csv_uri', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='pickle_uri', full_name='Value.pickle_uri', index=4, number=5, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='pickle_blob', full_name='Value.pickle_blob', index=5, number=6, type=12, cpp_type=9, label=1, has_default_value=False, default_value=_b(""), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='plasma_id', full_name='Value.plasma_id', index=6, number=7, type=12, cpp_type=9, label=1, has_default_value=False, default_value=_b(""), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name='value', full_name='Value.value', index=0, containing_type=None, fields=[]), ], serialized_start=418, serialized_end=598, ) _VALUELIST.fields_by_name['items'].message_type = _VALUERAW _VALUEDICT_ITEMSENTRY.fields_by_name['value'].message_type = _VALUERAW _VALUEDICT_ITEMSENTRY.containing_type = _VALUEDICT _VALUEDICT.fields_by_name['items'].message_type = _VALUEDICT_ITEMSENTRY _VALUERAW.fields_by_name['null'].enum_type = _NULLVALUE _VALUERAW.fields_by_name['list'].message_type = _VALUELIST _VALUERAW.fields_by_name['dict'].message_type = _VALUEDICT _VALUERAW.oneofs_by_name['raw'].fields.append( _VALUERAW.fields_by_name['null']) _VALUERAW.fields_by_name['null'].containing_oneof = _VALUERAW.oneofs_by_name['raw'] _VALUERAW.oneofs_by_name['raw'].fields.append( _VALUERAW.fields_by_name['double']) _VALUERAW.fields_by_name['double'].containing_oneof = _VALUERAW.oneofs_by_name['raw'] _VALUERAW.oneofs_by_name['raw'].fields.append( _VALUERAW.fields_by_name['int64']) _VALUERAW.fields_by_name['int64'].containing_oneof = _VALUERAW.oneofs_by_name['raw'] _VALUERAW.oneofs_by_name['raw'].fields.append( _VALUERAW.fields_by_name['bool']) _VALUERAW.fields_by_name['bool'].containing_oneof = _VALUERAW.oneofs_by_name['raw'] _VALUERAW.oneofs_by_name['raw'].fields.append( _VALUERAW.fields_by_name['string']) _VALUERAW.fields_by_name['string'].containing_oneof = _VALUERAW.oneofs_by_name['raw'] _VALUERAW.oneofs_by_name['raw'].fields.append( _VALUERAW.fields_by_name['bytes']) _VALUERAW.fields_by_name['bytes'].containing_oneof = _VALUERAW.oneofs_by_name['raw'] _VALUERAW.oneofs_by_name['raw'].fields.append( _VALUERAW.fields_by_name['list']) _VALUERAW.fields_by_name['list'].containing_oneof = _VALUERAW.oneofs_by_name['raw'] _VALUERAW.oneofs_by_name['raw'].fields.append( _VALUERAW.fields_by_name['dict']) _VALUERAW.fields_by_name['dict'].containing_oneof = _VALUERAW.oneofs_by_name['raw'] _VALUE.fields_by_name['error'].message_type = _VALUEERROR _VALUE.fields_by_name['raw'].message_type = _VALUERAW _VALUE.oneofs_by_name['value'].fields.append( _VALUE.fields_by_name['error']) _VALUE.fields_by_name['error'].containing_oneof = _VALUE.oneofs_by_name['value'] _VALUE.oneofs_by_name['value'].fields.append( _VALUE.fields_by_name['raw']) _VALUE.fields_by_name['raw'].containing_oneof = _VALUE.oneofs_by_name['value'] _VALUE.oneofs_by_name['value'].fields.append( _VALUE.fields_by_name['dataset_uri']) _VALUE.fields_by_name['dataset_uri'].containing_oneof = _VALUE.oneofs_by_name['value'] _VALUE.oneofs_by_name['value'].fields.append( _VALUE.fields_by_name['csv_uri']) _VALUE.fields_by_name['csv_uri'].containing_oneof = _VALUE.oneofs_by_name['value'] _VALUE.oneofs_by_name['value'].fields.append( _VALUE.fields_by_name['pickle_uri']) _VALUE.fields_by_name['pickle_uri'].containing_oneof = _VALUE.oneofs_by_name['value'] _VALUE.oneofs_by_name['value'].fields.append( _VALUE.fields_by_name['pickle_blob']) _VALUE.fields_by_name['pickle_blob'].containing_oneof = _VALUE.oneofs_by_name['value'] _VALUE.oneofs_by_name['value'].fields.append( _VALUE.fields_by_name['plasma_id']) _VALUE.fields_by_name['plasma_id'].containing_oneof = _VALUE.oneofs_by_name['value'] DESCRIPTOR.message_types_by_name['ValueError'] = _VALUEERROR DESCRIPTOR.message_types_by_name['ValueList'] = _VALUELIST DESCRIPTOR.message_types_by_name['ValueDict'] = _VALUEDICT DESCRIPTOR.message_types_by_name['ValueRaw'] = _VALUERAW DESCRIPTOR.message_types_by_name['Value'] = _VALUE DESCRIPTOR.enum_types_by_name['ValueType'] = _VALUETYPE DESCRIPTOR.enum_types_by_name['NullValue'] = _NULLVALUE _sym_db.RegisterFileDescriptor(DESCRIPTOR) ValueError = _reflection.GeneratedProtocolMessageType('ValueError', (_message.Message,), dict( DESCRIPTOR = _VALUEERROR, __module__ = 'value_pb2' # @@protoc_insertion_point(class_scope:ValueError) )) _sym_db.RegisterMessage(ValueError) ValueList = _reflection.GeneratedProtocolMessageType('ValueList', (_message.Message,), dict( DESCRIPTOR = _VALUELIST, __module__ = 'value_pb2' # @@protoc_insertion_point(class_scope:ValueList) )) _sym_db.RegisterMessage(ValueList) ValueDict = _reflection.GeneratedProtocolMessageType('ValueDict', (_message.Message,), dict( ItemsEntry = _reflection.GeneratedProtocolMessageType('ItemsEntry', (_message.Message,), dict( DESCRIPTOR = _VALUEDICT_ITEMSENTRY, __module__ = 'value_pb2' # @@protoc_insertion_point(class_scope:ValueDict.ItemsEntry) )) , DESCRIPTOR = _VALUEDICT, __module__ = 'value_pb2' # @@protoc_insertion_point(class_scope:ValueDict) )) _sym_db.RegisterMessage(ValueDict) _sym_db.RegisterMessage(ValueDict.ItemsEntry) ValueRaw = _reflection.GeneratedProtocolMessageType('ValueRaw', (_message.Message,), dict( DESCRIPTOR = _VALUERAW, __module__ = 'value_pb2' # @@protoc_insertion_point(class_scope:ValueRaw) )) _sym_db.RegisterMessage(ValueRaw) Value = _reflection.GeneratedProtocolMessageType('Value', (_message.Message,), dict( DESCRIPTOR = _VALUE, __module__ = 'value_pb2' # @@protoc_insertion_point(class_scope:Value) )) _sym_db.RegisterMessage(Value) DESCRIPTOR.has_options = True DESCRIPTOR._options = _descriptor._ParseOptions(descriptor_pb2.FileOptions(), _b('Z\010pipeline')) _VALUEDICT_ITEMSENTRY.has_options = True _VALUEDICT_ITEMSENTRY._options = _descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b('8\001')) # @@protoc_insertion_point(module_scope)
d3m-model-search-master
Stanford-D3M-Full/ta3ta2/api/value_pb2.py
# Description # ----------------- # This file trains/tests a LSTM that predicts the performance of a pipeline. # # Training: # One can train a new LSTM by supplying a data-set of pipelines and their respective performance scores. # The data can be collected by running apps/basic_run.py with 'save_all_scored_pipelines_path' option turned on # # Testing: # One can use a trained LSTM to predict the performance of a given pipeline # Current testing code is used for validation purposes - to see where the model is actually used for whole solution, # refer to LSTMPredictWorker.py in the same directory. # To test LSTM model, one should provide 1. list of pipelines to test 2. path to lstm model # # Example usage: # ------------------- # Train: python LSTMMetaLearnerApp.py --mode train --lstm_model_save_path saved_models/test/ --path_to_pipelines data.json # Test: python LSTMMetaLearnerApp.py --mode test --lstm_model_save_path saved_models/test/ --path_to_pipelines data.json import sys import os import argparse import json import numpy as np from itertools import product from LSTMMetaLearner import LSTMMetaLearner from d3m.index import search # Python args parser = argparse.ArgumentParser() parser.add_argument("--n_seeds", help="Number of seeds per hyperparameter search", type=int, default=1) parser.add_argument("--n_epochs", help="Number of training epochs to perform in train mode", type=int, default=100) parser.add_argument("--mode", help="Either train or test (train a lstm on given pipeline jsons, score on given pipeline jsons)", default="train", choices=["train", "test"]) parser.add_argument("--path_to_pipelines", help="Path to pipeline jsons", default=None, type=str) parser.add_argument("--lstm_model_save_path", help="Path to lstm model (either to save to or to load from)", default=None, type=str) args = parser.parse_args() NUM_SEEDS = args.n_seeds NUM_EPOCHS = args.n_epochs class LSTMMetaLearnerFramework: def __init__(self, primitives, data): self.primitive_dict = {word.lower():ind for (ind, word) in enumerate(primitives)} self.data = data def hyperParameterSearch(self, hyperParameters): ''' Params: - hyperParameters: dictionary which includes the following values: - lr (learning rate) - dropout - l2_reg Tests all combinations of the hyperparameters to identify the best performing one ''' print("Starting hyperparameter search") all_options = [[(key, v) for v in vs] for key, vs in hyperParameters.items()] param_options = [dict(items) for items in product(*all_options)] # test each parameter option perfs = [] best_model = None best_val = float('inf') for param_option in param_options: (lr, dropout, l2_reg) = map(lambda key: param_option[key], ["lr", "dropout", "l2_reg"]) exp_name = "lr_" + str(lr) + "_dropout_" + str(dropout)+ "_l2_reg_" + str(l2_reg) print("Starting {}".format(exp_name)) val_rmse_list = [] test_rmse_list = [] for i in range(NUM_SEEDS): print("Starting seed {}".format(i)) np.random.seed(i) data = np.copy(self.data) np.random.shuffle(data) lstm = LSTMMetaLearner(self.primitive_dict) lstm.constructModel(lr, dropout, l2_reg) (best_val_rmse, test_rmse_at_best_val_rmse, _, _) = lstm.train(data, NUM_EPOCHS) val_rmse_list.append(best_val_rmse) test_rmse_list.append(test_rmse_at_best_val_rmse) perfs.append((exp_name, val_rmse_list, test_rmse_list)) if np.mean(val_rmse_list) < best_val: best_model = lstm best_val = np.mean(val_rmse_list) print("{}| val : {:.4f}, test : {:.4f}".format(exp_name, np.mean(val_rmse_list), np.mean(test_rmse_list))) perfs = sorted(perfs, key=lambda x:np.mean(x[1])) print("best validation accuracy model ", perfs, np.mean(perfs[-1][1]), np.std(perfs[-1][2] ) ) return best_model def train(path_to_pipelines, lstm_save_path): print("Training LSTM...") with open(path_to_pipelines, "r") as f: data = json.loads(f.read()) primitive_names = search() print("In app, length of primitive names: {}".format(len(primitive_names))) framework = LSTMMetaLearnerFramework(primitive_names, data) """hyperParameters = { "lr": [0.005, 0.001, 0.01, 0.05], "dropout": [0.2, 0.5], "l2_reg": [3e-3, 1e-3, 1e-2, 3e-2] }""" hyperParameters = { "lr": [0.01], "dropout": [0.2], "l2_reg": [1e-3] } lstm = framework.hyperParameterSearch(hyperParameters) lstm.save(lstm_save_path) print("Training completed.") def test(path_to_pipelines, lstm_save_path): print("Testing LSTM...") with open(path_to_pipelines, "r") as f: data = json.loads(f.read()) testPipelines= data[:5] lstm = LSTMMetaLearner() lstm.load(lstm_save_path) scores = lstm.test(testPipelines) print(scores) print("Testing completed") if __name__ == '__main__': path_to_pipelines, lstm_save_path = args.path_to_pipelines, args.lstm_model_save_path assert(path_to_pipelines is not None) assert(lstm_save_path is not None) # Create save dir if not exists base_save_dir = os.path.dirname(lstm_save_path) if not os.path.exists(base_save_dir): os.makedirs(base_save_dir) if args.mode == "train": train(path_to_pipelines, lstm_save_path) if args.mode == "test": test(path_to_pipelines, lstm_save_path)
d3m-model-search-master
Stanford-D3M-Full/experimental/lstm_predictor/LSTMMetaLearnerApp.py
from keras.models import Sequential, load_model from keras.layers.embeddings import Embedding from keras.layers import Dense, LSTM, BatchNormalization, Activation from keras import backend from keras import regularizers from keras import optimizers from keras.preprocessing import sequence import numpy as np import time import pickle import json from LSTMConstants import MAX_NUM_CONV_LAYERS, EMBEDDING_SIZE, LSTM_DIM, DENSE_LAYER_DIMS, BN_AXIS, BATCH_SIZE from LSTMUtils import get_data_from_json, split_data, get_model_path def rmse(y_true, y_pred): return backend.mean(backend.sqrt(backend.square(y_pred - y_true) ), axis=-1) class LSTMMetaLearner: def __init__(self, primitive_dict = None): self.primitive_dict = primitive_dict self.model = None def constructModel(self, lr, dropout, l2_reg): ''' Construct a lstm model using given hyperparameters ''' self.model = Sequential() vocab_size = len(self.primitive_dict) self.model.add(Embedding(vocab_size, EMBEDDING_SIZE, input_length=MAX_NUM_CONV_LAYERS)) self.model.add(LSTM(LSTM_DIM, return_sequences=True, dropout=dropout)) self.model.add(LSTM(LSTM_DIM, dropout=dropout)) for dense_dim in DENSE_LAYER_DIMS: self.model.add(Dense(dense_dim, kernel_regularizer=regularizers.l2(l2_reg), bias_regularizer = regularizers.l2(l2_reg) ) ) #model.add(BatchNormalization(axis=BN_AXIS) ) self.model.add(Activation("relu") ) assert DENSE_LAYER_DIMS[-1] == 1 opt = optimizers.Adam(lr=lr) self.model.compile(loss='mean_squared_error', optimizer=opt, metrics=[rmse]) print(self.model.summary()) def train(self, pipeline_jsons, num_epochs): ''' Params: - pipeline_jsons: list of jsons - num_epochs: number of training rounds Returns: - (best validation rmse, test rmse at best validation rmse, index that gave best validation rmse) Trains given model for 'num_epochs' times ''' (pipeline_data, pipeline_rank) = get_data_from_json(pipeline_jsons) X = [[self.primitive_dict[step.lower()] for step in pipeline] for pipeline in pipeline_data] # subtracting the minimum value (which is non-negative) to get data closer to 0 min_rank = min(pipeline_rank) y = [y - min_rank for y in pipeline_rank] X_train, X_val, X_test, y_train, y_val, y_test = split_data(X, y) # Pad X and convert y into numpy arrays [X_train, X_val, X_test] = map(lambda x: sequence.pad_sequences(x, maxlen=MAX_NUM_CONV_LAYERS), [X_train, X_val, X_test] ) [y_train, y_val, y_test] = map(lambda y: np.array(y), [y_train, y_val, y_test] ) best_val_rmse = float('inf') test_rmse_at_best_val_rmse = float('inf') best_val_ind = -1 full_history = [] # train the model, check the validation set RMSE and test set RMSE for i in range(num_epochs): history = self.model.fit(X_train, y_train, validation_data = (X_val, y_val), epochs = 1, batch_size = BATCH_SIZE, verbose = 0) scores = self.model.evaluate(X_test, y_test, verbose = 0) full_history.append(history.history) if history.history["val_rmse"][0] < best_val_rmse: best_val_rmse = history.history["val_rmse"][0] test_rmse_at_best_val_rmse = scores[1] best_val_ind = i return (best_val_rmse, test_rmse_at_best_val_rmse, best_val_ind, full_history) def test(self, pipelines, is_json=True): ''' Params: - pipelines: list of pipelines to test - is_json: indicates if 'pipelines' is in json format or is list of strings Returns: scores: The expected values output by the model ''' if is_json: (pipeline_data, _) = get_data_from_json(pipelines) else: pipeline_data = pipelines x = [[self.primitive_dict[step.lower()] for step in pipeline] for pipeline in pipeline_data] x = sequence.pad_sequences(x, maxlen=MAX_NUM_CONV_LAYERS) scores = self.model.predict(x, verbose = 0) return [float(x) for x in scores] def filterPipelines(self, pipelines, num_output, is_json=True): ''' Params: - pipelines: list of pipelines to test - num_output: number of filtered pipelines to output - is_json: indicates if 'pipelines' is in json format or is list of strings Returns: - filtered_pipelines: list of best performing pipelines, as predicted by lstm ''' results = self.test(pipelines, is_json) num_output = min(num_output, len(results)) # get the indices of top num_output results, the last element being the index of largest element inds = sorted(range(len(results)), key=lambda x: results[x])[-num_output:] best_pipelines = [pipelines[ind] for ind in reversed(inds)] return best_pipelines def save(self, path): (lstm_model_path, json_path) = get_model_path(path) self.model.save(lstm_model_path) # save network with open(json_path, "wb") as f: pickle.dump(self.primitive_dict, f, pickle.HIGHEST_PROTOCOL) print("LSTM model saved") def load(self, path): (lstm_model_path, json_path) = get_model_path(path) self.model = load_model(lstm_model_path, custom_objects={'rmse': rmse}) with open(json_path, "rb") as f: self.primitive_dict = pickle.load(f) print("LSTM model loaded")
d3m-model-search-master
Stanford-D3M-Full/experimental/lstm_predictor/LSTMMetaLearner.py
import numpy as np import pickle import json from experimental.lstm_predictor.LSTMConstants import MAX_NUM_CONV_LAYERS from experimental.lstm_predictor.LSTMUtils import get_data_from_json, get_model_path ''' This file loads an lstm model and filters a given list of data-loading pipelines to predict which pipeline will perform the best Used by SklearnStackedLSTMExecutor.py Note that this is not the most efficient way to perform this: we are loading LSTM every time we have to filter, rather than retain it in memory. The reason for this is that we have a lot of known issues with parallelism in Keras. ''' def LSTM_filter(path, pipelines, num_output, is_json=True): from keras.models import load_model from keras import backend as K from keras.preprocessing import sequence def rmse(y_true, y_pred): return K.mean(K.sqrt(K.square(y_pred - y_true)), axis=-1) (lstm_model_path, json_path) = get_model_path(path) model = load_model(lstm_model_path, custom_objects={'rmse': rmse}) with open(json_path, "rb") as f: primitive_dict = pickle.load(f) print("LSTM model loaded") if is_json: (pipeline_data, _) = get_data_from_json(pipelines) else: pipeline_data = pipelines x = [[primitive_dict[step.lower()] for step in pipeline] for pipeline in pipeline_data] x = sequence.pad_sequences(x, maxlen=MAX_NUM_CONV_LAYERS) scores = model.predict(x, verbose = 0) results = [float(x) for x in scores] num_output = min(num_output, len(results)) # get the indices of top num_output results (note lower score predicted by lstm is better) inds = sorted(range(len(results)), key=lambda x: results[x])[0:num_output] best_pipelines = [pipelines[ind] for ind in inds] return best_pipelines ''' Keeping code for now: some attempts to get multi-process worker to work class LSTMPredictWorker: def __init__(self, path): from keras.models import load_model from keras import backend as K from keras.preprocessing import sequence def rmse(y_true, y_pred): return K.mean(K.sqrt(K.square(y_pred - y_true)), axis=-1) lstm_model_path = path self.model = load_model(lstm_model_path, custom_objects={'rmse': rmse}) _ = self.model.predict(sequence.pad_sequences(np.array([[0,0]]), maxlen=MAX_NUM_CONV_LAYERS)) #warmup self.session = K.get_session() self.graph = self.session.graph self.graph.finalize() json_path = path + "_primitives_list.json" with open(json_path, "rb") as f: self.primitive_dict = pickle.load(f) def filter_pipelines(self, pipelines, num_output, is_json=True): from keras.preprocessing import sequence if is_json: (pipeline_data, _) = get_data_from_json(pipelines) else: pipeline_data = pipelines x = [[self.primitive_dict[step.lower()] for step in pipeline] for pipeline in pipeline_data] x = sequence.pad_sequences(x, maxlen=MAX_NUM_CONV_LAYERS) with self.session.as_default(): with self.graph.as_default(): print("Starting prediction") scores = self.model.predict(x, verbose = 0) print("Finished prediction") results = [float(x) for x in scores] num_output = min(num_output, len(results)) # get the indices of top num_output results, the last element being the index of largest element inds = sorted(range(len(results)), key=lambda x: results[x])[-num_output:] best_pipelines = [pipelines[ind] for ind in reversed(inds)] return best_pipelines '''
d3m-model-search-master
Stanford-D3M-Full/experimental/lstm_predictor/LSTMPredictWorker.py
import json from sklearn.model_selection import train_test_split def get_data_from_json(pipeline_jsons): pipeline_data = [] pipeline_rank = [] for pipeline_json in pipeline_jsons: pipeline = json.loads(pipeline_json) stepIds = [ step["primitive"]["python_path"] for step in pipeline["steps"]] pipeline_data.append(stepIds) if "pipeline_rank" in pipeline: pipeline_rank.append(pipeline["pipeline_rank"]) return (pipeline_data, pipeline_rank) # ratio should be train:validation:test def split_data(X_data, Y_data, ratio = [0.6, 0.2, 0.2]): denom = float(sum(ratio)) test_ratio = ratio[2] / denom val_ratio = ratio[1] / (ratio[0] + ratio[1]) X_train, X_test, y_train, y_test = train_test_split(X_data, Y_data, test_size=test_ratio, random_state=1) X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=val_ratio, random_state=1) return (X_train, X_val, X_test, y_train, y_val, y_test) def get_model_path(path): if path[-1] != "/" or path[-1] != "\\": path += "/" lstm_path = path + "lstm" json_path = path + "primitives_list.json" return (lstm_path, json_path)
d3m-model-search-master
Stanford-D3M-Full/experimental/lstm_predictor/LSTMUtils.py
MAX_NUM_CONV_LAYERS=15 EMBEDDING_SIZE=40 LSTM_DIM = 100 DENSE_LAYER_DIMS = [100, 10, 1] BN_AXIS = 1 BATCH_SIZE = 32
d3m-model-search-master
Stanford-D3M-Full/experimental/lstm_predictor/LSTMConstants.py
"""Run all tests with filenames beginning with "test*" inside module""" import sys import unittest if __name__ == '__main__': print("run_tests.py running all tests...") test_suite = unittest.defaultTestLoader.discover('.', 'test*py') test_runner = unittest.TextTestRunner(resultclass=unittest.TextTestResult) result = test_runner.run(test_suite) sys.exit(not result.wasSuccessful())
d3m-model-search-master
Stanford-D3M-Full/tests/run_tests.py
d3m-model-search-master
Stanford-D3M-Full/tests/__init__.py
d3m-model-search-master
Stanford-D3M-Full/tests/unit_tests/__init__.py
d3m-model-search-master
Stanford-D3M-Full/tests/unit_tests/ta3ta2/__init__.py
import unittest import os import utils.utils import utils.primitive_pipeline_utils import utils.train_utils import shutil import pdb import numpy as np class UtilsTest(unittest.TestCase): def test_get_global_score(self): # Load baseball data_uri = utils.utils.get_git_root(os.path.dirname(os.path.abspath(__file__))) + "/test_data/185_baseball" assert(os.path.exists(data_uri)) problem_doc, dataset = utils.utils.load_data_from_dir(data_uri, mode="train") # Test global score f1_scores = [68.5, 30, 10] global_scores = [] for f1_score in f1_scores: global_score = utils.utils.get_global_score(f1_score, problem_doc) global_scores.append(global_score) # Make sure that scores are sorted (68.5 f1 is better than 30 and 10) assert(sorted(global_scores) == global_scores) def test_save_scored_pipeline(self): # Load baseball data_uri = utils.utils.get_git_root(os.path.dirname(os.path.abspath(__file__))) + "/test_data/185_baseball" assert(os.path.exists(data_uri)) problem_doc, dataset = utils.utils.load_data_from_dir(data_uri, mode="train") # Load a random saved pipeline pipeline_json_path = ( utils.utils.get_git_root(os.path.dirname(os.path.abspath(__file__))) + "/test_data/185_baseball_pipeline/test_pipeline.json") with open(pipeline_json_path) as f: pipeline = utils.primitive_pipeline_utils.load_pipeline(f.read()) # Create a test outputdirectory test_outdir = "/tmp/test_outdir" if os.path.exists(test_outdir): shutil.rmtree(test_outdir) local_score = 69 utils.utils.save_scored_pipeline(test_outdir, local_score, pipeline, problem_doc) # Make sure there are files in executables, supporting files and pipelines expected_pipelines_filepath = "/tmp/test_outdir/pipelines_ranked/999999999931.0.json" assert(os.path.exists(expected_pipelines_filepath)) # The new D3M evaluation doesn't require executables anymore. #expected_supporting_filepath = "/tmp/test_outdir/supporting_files/999999999931.0/Stanford-D3M-Full/" #expected_execuables_filepath = "/tmp/test_outdir/executables/999999999931.0.sh" #assert(os.path.exists(expected_supporting_filepath)) #assert(os.path.exists(expected_execuables_filepath)) def test_save_scored_pipeline_keep_top_5(self): # Load baseball data_uri = utils.utils.get_git_root(os.path.dirname(os.path.abspath(__file__))) + "/test_data/185_baseball" assert(os.path.exists(data_uri)) problem_doc, dataset = utils.utils.load_data_from_dir(data_uri, mode="train") # Load a random saved pipeline pipeline_json_path = ( utils.utils.get_git_root(os.path.dirname(os.path.abspath(__file__))) + "/test_data/185_baseball_pipeline/test_pipeline.json") with open(pipeline_json_path) as f: pipeline = utils.primitive_pipeline_utils.load_pipeline(f.read()) # Create a test outputdirectory test_outdir = "/tmp/test_outdir" if os.path.exists(test_outdir): shutil.rmtree(test_outdir) scores = [100, 90, 50, 30, 20, 10, 5, 1] for score in scores: utils.utils.save_scored_pipeline(test_outdir, score, pipeline, problem_doc, keep_top=5) # Make sure only the top 5 are saved top_pipelines = os.listdir("/tmp/test_outdir/pipelines_ranked") assert(len(top_pipelines) <= 5) assert(set(top_pipelines) == set(["999999999900.0.json", "999999999910.0.json", "999999999950.0.json", "999999999970.0.json", "999999999980.0.json"])) def test_write_predictions_to_file(self): np.random.seed(0) # Create a pipeline that just extracts attributes and target p = utils.primitive_pipeline_utils.PipelineWrapper( [ { "stage_name" : "denormalize", "primitive" : "d3m.primitives.data_transformation.denormalize.Common", "input" : utils.primitive_pipeline_utils.PipelineWrapper.PIPELINE_INPUT, }, { "stage_name" : "dataset_to_dataframe", "primitive" : "d3m.primitives.data_transformation.dataset_to_dataframe.Common", "input" : "denormalize" }, { "stage_name" : "column_parser", "primitive" : "d3m.primitives.data_transformation.column_parser.DataFrameCommon", "input" : "dataset_to_dataframe", }, { "stage_name" : "extract_attrs", "primitive" : "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon", "input" : "column_parser", "hyperparameters" : { "semantic_types" : ['https://metadata.datadrivendiscovery.org/types/Attribute'] } }, { "stage_name" : "extract_targets", "primitive" : "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon", "input" : "column_parser", "hyperparameters" : { "semantic_types" : ['https://metadata.datadrivendiscovery.org/types/Target'] } } ]) # Load sample data data_uri = utils.utils.get_git_root(os.path.dirname(os.path.abspath(__file__))) + "/test_data/185_baseball" assert(os.path.exists(data_uri)) problem_doc, dataset = utils.utils.load_data_from_dir(data_uri, mode="train") dataset_train, dataset_validate = utils.train_utils.split_dataset(dataset, problem_doc) # Run predictions = p.run(dataset_train, eval_datasets=[dataset_validate])[0].values['outputs.0'] test_out_predictions_path = "/tmp/test_predictions" if os.path.exists(test_out_predictions_path): os.remove(test_out_predictions_path) assert(not os.path.exists(test_out_predictions_path)) utils.utils.write_predictions_to_file(predictions, test_out_predictions_path, problem_doc, dataset_validate) assert(os.path.exists(test_out_predictions_path)) if __name__ == '__main__': unittest.main()
d3m-model-search-master
Stanford-D3M-Full/tests/unit_tests/utils/test_utils.py
import unittest import utils.train_utils import utils.utils import utils.primitive_pipeline_utils import random import numpy as np import os import pdb class TrainUtilsTest(unittest.TestCase): def test_extract_labels(self): random.seed(0) np.random.seed(0) # Load sample data data_uri = utils.utils.get_git_root(os.path.dirname(os.path.abspath(__file__))) + "/test_data/185_baseball" assert(os.path.exists(data_uri)) problem_doc, dataset = utils.utils.load_data_from_dir(data_uri, mode="train") dataset_train, dataset_validate = utils.train_utils.split_dataset(dataset, problem_doc) preds = utils.train_utils.extract_labels(dataset_validate).values.tolist() assert(preds == [['0'], ['0'], ['0'], ['2'], ['0'], ['0'], ['0'], ['0'], ['0'], ['1'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['2'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['2'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['1'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['2'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['2'], ['1'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['2'], ['0'], ['0'], ['1'], ['0'], ['0'], ['0'], ['0'], ['1'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['1'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['2'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['2'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['1'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['2'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['0'], ['2'], ['0']]) def create_pipeliner(self): kwargs = {"data_loading_pipeline_candidates": [ [ { "stage_name" : "denormalize", "primitive" : "d3m.primitives.data_transformation.denormalize.Common", "input" : utils.primitive_pipeline_utils.PipelineWrapper.PIPELINE_INPUT, }, { "stage_name" : "dataset_to_dataframe", "primitive" : "d3m.primitives.data_transformation.dataset_to_dataframe.Common", "input" : "denormalize" }, { "stage_name" : "column_parser", "primitive" : "d3m.primitives.data_transformation.column_parser.DataFrameCommon", "input" : "dataset_to_dataframe", }, { "stage_name" : "extract_attributes", "primitive" : "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon", "input" : "column_parser", "hyperparameters" : { "semantic_types" : ['https://metadata.datadrivendiscovery.org/types/Attribute'] } }, { "stage_name" : "targets", "primitive" : "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon", "input" : "column_parser", "hyperparameters" : { "semantic_types" : ['https://metadata.datadrivendiscovery.org/types/Target'] } }, { "stage_name": "cast_to_type", "primitive": "d3m.primitives.data_transformation.cast_to_type.Common", "input": "extract_attributes", "hyperparameters" : { "type_to_cast" : "float" } }, { "stage_name": "attributes", "primitive": "d3m.primitives.data_cleaning.imputer.SKlearn", "input": "cast_to_type" }, ] ]} pipeliner = utils.primitive_pipeline_utils.SKLearnPipeliner(**kwargs) # Override with just skdecision tree pipeliner.sklearn_primitives = ['d3m.primitives.classification.decision_tree.SKlearn'] return pipeliner def test_score(self): random.seed(0) np.random.seed(0) # Load sample data data_uri = utils.utils.get_git_root(os.path.dirname(os.path.abspath(__file__))) + "/test_data/185_baseball" assert(os.path.exists(data_uri)) problem_doc, dataset = utils.utils.load_data_from_dir(data_uri, mode="train") dataset_train, dataset_validate = utils.train_utils.split_dataset(dataset, problem_doc) # Make prediction p = self.create_pipeliner() predictions = p.run(dataset_train, eval_datasets=[dataset_validate])[0].values['outputs.0'] # Test the f1 score f1_score = utils.train_utils.score(predictions, dataset_validate, problem_doc) assert(np.abs(f1_score - 0.47746807194308194) < .001) if __name__ == '__main__': unittest.main()
d3m-model-search-master
Stanford-D3M-Full/tests/unit_tests/utils/test_train_utils.py
d3m-model-search-master
Stanford-D3M-Full/tests/unit_tests/utils/__init__.py
import unittest import os import random import utils.primitive_pipeline_utils import utils.utils import utils.train_utils import numpy as np from d3m.metadata import problem class PrimitivePipelineUtilsTest(unittest.TestCase): def test_simple_sklearn_pipeliner(self): np.random.seed(0) random.seed(0) kwargs = { "data_loading_pipeline_candidates" :[ [ { "stage_name" : "dataset_to_dataframe", "primitive" : "d3m.primitives.data_transformation.dataset_to_dataframe.Common", "input" : utils.primitive_pipeline_utils.PipelineWrapper.PIPELINE_INPUT, }, { "stage_name" : "column_parser", "primitive" : "d3m.primitives.data_transformation.column_parser.DataFrameCommon", "input" : "dataset_to_dataframe", }, { "stage_name" : "extract_attributes", "primitive" : "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon", "input" : "column_parser", "hyperparameters" : { "semantic_types" : ['https://metadata.datadrivendiscovery.org/types/Attribute'] } }, { "stage_name" : "targets", "primitive" : "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon", "input" : "column_parser", "hyperparameters" : { "semantic_types" : ['https://metadata.datadrivendiscovery.org/types/Target'] } }, { "stage_name": "cast_to_type", "primitive": "d3m.primitives.data_transformation.cast_to_type.Common", "input": "extract_attributes", "hyperparameters" : { "type_to_cast" : "float" } }, { "stage_name": "attributes", "primitive": "d3m.primitives.data_cleaning.imputer.SKlearn", "input": "cast_to_type" } ] ]} pipeliner = utils.primitive_pipeline_utils.SKLearnPipeliner(**kwargs) # Override with just skdecision tree pipeliner.sklearn_primitives = ['d3m.primitives.classification.decision_tree.SKlearn'] # Load sample data data_uri = utils.utils.get_git_root(os.path.dirname(os.path.abspath(__file__))) + "/test_data/185_baseball" assert(os.path.exists(data_uri)) problem_doc, dataset = utils.utils.load_data_from_dir(data_uri, mode="train") dataset_train, dataset_validate = utils.train_utils.split_dataset(dataset, problem_doc) # Run predictions = pipeliner.run(dataset_train, eval_datasets=[dataset_validate]) print(predictions[0].error) assert(len(list(predictions[0].values.keys())) > 0) def test_pipeline_wrapper_add_stage(self): np.random.seed(0) # Create a pipeline that just extracts attributes and target p = utils.primitive_pipeline_utils.PipelineWrapper( [ { "stage_name" : "denormalize", "primitive" : "d3m.primitives.data_transformation.denormalize.Common", "input" : utils.primitive_pipeline_utils.PipelineWrapper.PIPELINE_INPUT, }, { "stage_name" : "dataset_to_dataframe", "primitive" : "d3m.primitives.data_transformation.dataset_to_dataframe.Common", "input" : "denormalize" }, { "stage_name" : "column_parser", "primitive" : "d3m.primitives.data_transformation.column_parser.DataFrameCommon", "input" : "dataset_to_dataframe", }, { "stage_name" : "extract_attrs", "primitive" : "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon", "input" : "column_parser", "hyperparameters" : { "semantic_types" : ['https://metadata.datadrivendiscovery.org/types/Attribute'] } }, { "stage_name" : "extract_targets", "primitive" : "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon", "input" : "column_parser", "hyperparameters" : { "semantic_types" : ['https://metadata.datadrivendiscovery.org/types/Target'] } } ]) p.add_stage({ "input" : "extract_attrs", "primitive" : "d3m.primitives.data_cleaning.imputer.SKlearn" }) assert(set(p.get_branches()) == set(['d3m.primitives.data_cleaning.imputer.SKlearn', 'extract_targets'])) def test_pipeline_wrapper_branches(self): np.random.seed(0) # Create a pipeline that just extracts attributes and target p = utils.primitive_pipeline_utils.PipelineWrapper( [ { "stage_name" : "denormalize", "primitive" : "d3m.primitives.data_transformation.denormalize.Common", "input" : utils.primitive_pipeline_utils.PipelineWrapper.PIPELINE_INPUT, }, { "stage_name" : "dataset_to_dataframe", "primitive" : "d3m.primitives.data_transformation.dataset_to_dataframe.Common", "input" : "denormalize" }, { "stage_name" : "column_parser", "primitive" : "d3m.primitives.data_transformation.column_parser.DataFrameCommon", "input" : "dataset_to_dataframe", }, { "stage_name" : "extract_attrs", "primitive" : "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon", "input" : "column_parser", "hyperparameters" : { "semantic_types" : ['https://metadata.datadrivendiscovery.org/types/Attribute'] } }, { "stage_name" : "extract_targets", "primitive" : "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon", "input" : "column_parser", "hyperparameters" : { "semantic_types" : ['https://metadata.datadrivendiscovery.org/types/Target'] } } ]) assert(set(p.get_branches()) == set(['extract_attrs', 'extract_targets'])) def test_pipeline_wrapper(self): np.random.seed(0) # Create a pipeline that just extracts attributes and target p = utils.primitive_pipeline_utils.PipelineWrapper( [ { "stage_name" : "denormalize", "primitive" : "d3m.primitives.data_transformation.denormalize.Common", "input" : utils.primitive_pipeline_utils.PipelineWrapper.PIPELINE_INPUT, }, { "stage_name" : "dataset_to_dataframe", "primitive" : "d3m.primitives.data_transformation.dataset_to_dataframe.Common", "input" : "denormalize" }, { "stage_name" : "column_parser", "primitive" : "d3m.primitives.data_transformation.column_parser.DataFrameCommon", "input" : "dataset_to_dataframe", }, { "stage_name" : "extract_attrs", "primitive" : "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon", "input" : "column_parser", "hyperparameters" : { "semantic_types" : ['https://metadata.datadrivendiscovery.org/types/Attribute'] } }, { "stage_name" : "extract_targets", "primitive" : "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon", "input" : "column_parser", "hyperparameters" : { "semantic_types" : ['https://metadata.datadrivendiscovery.org/types/Target'] } } ]) # Load sample data data_uri = utils.utils.get_git_root(os.path.dirname(os.path.abspath(__file__))) + "/test_data/185_baseball" assert(os.path.exists(data_uri)) problem_doc, dataset = utils.utils.load_data_from_dir(data_uri, mode="train") dataset_train, dataset_validate = utils.train_utils.split_dataset(dataset, problem_doc) # Run predictions = p.run(dataset_train, eval_datasets=[dataset_validate]) # The targets is around 209 rows by 1 columns assert(predictions[0].values['outputs.0'].shape == (216,1)) def test_pipeline_wrapper_return_pipeline(self): np.random.seed(0) # Create a pipeline that just extracts attributes and target p = utils.primitive_pipeline_utils.PipelineWrapper( [ { "stage_name" : "denormalize", "primitive" : "d3m.primitives.data_transformation.denormalize.Common", "input" : utils.primitive_pipeline_utils.PipelineWrapper.PIPELINE_INPUT, }, { "stage_name" : "dataset_to_dataframe", "primitive" : "d3m.primitives.data_transformation.dataset_to_dataframe.Common", "input" : "denormalize" }, { "stage_name" : "column_parser", "primitive" : "d3m.primitives.data_transformation.column_parser.DataFrameCommon", "input" : "dataset_to_dataframe", }, { "stage_name" : "extract_attrs", "primitive" : "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon", "input" : "column_parser", "hyperparameters" : { "semantic_types" : ['https://metadata.datadrivendiscovery.org/types/Attribute'] } }, { "stage_name" : "extract_targets", "primitive" : "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon", "input" : "column_parser", "hyperparameters" : { "semantic_types" : ['https://metadata.datadrivendiscovery.org/types/Target'] } } ]) # Load sample data data_uri = utils.utils.get_git_root(os.path.dirname(os.path.abspath(__file__))) + "/test_data/185_baseball" assert(os.path.exists(data_uri)) problem_doc, dataset = utils.utils.load_data_from_dir(data_uri, mode="train") dataset_train, dataset_validate = utils.train_utils.split_dataset(dataset, problem_doc) # Run predictions, pipeline = p.run(dataset_train, eval_datasets=[dataset_validate], return_pipeline=True) print(type(pipeline)) if __name__ == '__main__': unittest.main()
d3m-model-search-master
Stanford-D3M-Full/tests/unit_tests/utils/test_primitive_pipeline_utils.py
import os import unittest import utils.utils import utils.train_utils import executors.HyperbandExecutor import executors.Executor from multiprocessing import Process, Queue, JoinableQueue from queue import Empty def get_data_loading_pipelines_override(): return [ [ { "stage_name" : "denormalize", "primitive" : "d3m.primitives.data_transformation.denormalize.Common", "input" : utils.primitive_pipeline_utils.PipelineWrapper.PIPELINE_INPUT, }, { "stage_name" : "dataset_to_dataframe", "primitive" : "d3m.primitives.data_transformation.dataset_to_dataframe.Common", "input" : "denormalize" }, { "stage_name" : "column_parser", "primitive" : "d3m.primitives.data_transformation.column_parser.DataFrameCommon", "input" : "dataset_to_dataframe", }, { "stage_name" : "extract_attributes", "primitive" : "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon", "input" : "column_parser", "hyperparameters" : { "semantic_types" : ['https://metadata.datadrivendiscovery.org/types/Attribute'] } }, { "stage_name" : "targets", "primitive" : "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon", "input" : "column_parser", "hyperparameters" : { "semantic_types" : ['https://metadata.datadrivendiscovery.org/types/Target'] } }, { "stage_name": "cast_to_type", "primitive": "d3m.primitives.data_transformation.cast_to_type.Common", "input": "extract_attributes", "hyperparameters" : { "type_to_cast" : "float" } }, { "stage_name": "attributes", "input": "cast_to_type", "primitive": "d3m.primitives.data_cleaning.imputer.SKlearn", }, ] ] class HyperbandExecutorTest(unittest.TestCase): def test_hyperband_executor_basic(self): # Create executor inputs_queue = JoinableQueue() results_queue = JoinableQueue() executor = executors.HyperbandExecutor.HyperbandExecutor( inputs_queue, results_queue, hyperband_epochs_budget=100 ) executor.get_data_loading_pipelines = get_data_loading_pipelines_override # Load sample data data_uri = utils.utils.get_git_root(os.path.dirname( os.path.abspath(__file__))) + "/test_data/185_baseball" assert(os.path.exists(data_uri)) problem_doc, dataset = utils.utils.load_data_from_dir(data_uri, mode="train") # Process item inputs_queue.put((problem_doc, dataset)) executor.start() inputs_queue.join() # Gather results results = [] while not results_queue.empty(): print("Gathering...") results.append(results_queue.get(True, executors.Executor.QUEUE_TIMEOUT)) executor.terminate() if __name__ == '__main__': unittest.main()
d3m-model-search-master
Stanford-D3M-Full/tests/unit_tests/executor/test_HyperbandExecutor.py
import os import unittest import utils.utils import utils.train_utils import executors.SklearnStackedLSTMExecutor import executors.Executor from multiprocessing import Process, Queue, JoinableQueue from queue import Empty def get_data_loading_pipelines_override(): return [ [ { "stage_name" : "denormalize", "primitive" : "d3m.primitives.data_transformation.denormalize.Common", "input" : utils.primitive_pipeline_utils.PipelineWrapper.PIPELINE_INPUT, }, { "stage_name" : "dataset_to_dataframe", "primitive" : "d3m.primitives.data_transformation.dataset_to_dataframe.Common", "input" : "denormalize" }, { "stage_name" : "column_parser", "primitive" : "d3m.primitives.data_transformation.column_parser.DataFrameCommon", "input" : "dataset_to_dataframe", }, { "stage_name" : "extract_attributes", "primitive" : "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon", "input" : "column_parser", "hyperparameters" : { "semantic_types" : ['https://metadata.datadrivendiscovery.org/types/Attribute'] } }, { "stage_name" : "targets", "primitive" : "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon", "input" : "column_parser", "hyperparameters" : { "semantic_types" : ['https://metadata.datadrivendiscovery.org/types/Target'] } }, { "stage_name": "cast_to_type", "primitive": "d3m.primitives.data_transformation.cast_to_type.Common", "input": "extract_attributes", "hyperparameters" : { "type_to_cast" : "float" } }, { "stage_name": "attributes", "input": "cast_to_type", "primitive": "d3m.primitives.data_cleaning.imputer.SKlearn", }, ] ] class SklearnStackedLSTMExecutorTest(unittest.TestCase): def test_sklearn_stacked_lstm_executor(self): git_root_path = utils.utils.get_git_root(os.path.dirname(os.path.abspath(__file__))) # Create executor inputs_queue = JoinableQueue() results_queue = JoinableQueue() lstm_path = git_root_path + "/Stanford-D3M-Full/experimental/lstm_predictor/saved_models/20190130/" assert(os.path.exists(lstm_path)) executor = executors.SklearnStackedLSTMExecutor.SklearnStackedLSTMExecutor( inputs_queue, results_queue, override_sklearn_primitives_set=["d3m.primitives.regression.linear_svr.SKlearn", "d3m.primitives.regression.gaussian_process.SKlearn"], lstm_path= lstm_path ) executor.get_data_loading_pipelines = get_data_loading_pipelines_override # Load sample data data_uri = git_root_path + "/test_data/185_baseball" assert(os.path.exists(data_uri)) problem_doc, dataset = utils.utils.load_data_from_dir(data_uri, mode="train") # Process item inputs_queue.put((problem_doc, dataset)) inputs_queue.put((problem_doc, dataset)) inputs_queue.put((problem_doc, dataset)) executor.start() inputs_queue.join() # Gather results results = [] while not results_queue.empty(): print("Gathering...") results.append(results_queue.get(True, executors.Executor.QUEUE_TIMEOUT)) executor.terminate() for result in results: assert None not in result if __name__ == '__main__': unittest.main()
d3m-model-search-master
Stanford-D3M-Full/tests/unit_tests/executor/test_SklearnStackedLSTMExecutor.py
d3m-model-search-master
Stanford-D3M-Full/tests/unit_tests/executor/__init__.py
import os import unittest import utils.utils import utils.train_utils import executors.SimpleRandomSklearnExecutor import executors.Executor from multiprocessing import Process, Queue, JoinableQueue from queue import Empty def get_data_loading_pipelines_override(): return [ [ { "stage_name" : "denormalize", "primitive" : "d3m.primitives.data_transformation.denormalize.Common", "input" : utils.primitive_pipeline_utils.PipelineWrapper.PIPELINE_INPUT, }, { "stage_name" : "dataset_to_dataframe", "primitive" : "d3m.primitives.data_transformation.dataset_to_dataframe.Common", "input" : "denormalize" }, { "stage_name" : "column_parser", "primitive" : "d3m.primitives.data_transformation.column_parser.DataFrameCommon", "input" : "dataset_to_dataframe", }, { "stage_name" : "extract_attributes", "primitive" : "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon", "input" : "column_parser", "hyperparameters" : { "semantic_types" : ['https://metadata.datadrivendiscovery.org/types/Attribute'] } }, { "stage_name" : "targets", "primitive" : "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon", "input" : "column_parser", "hyperparameters" : { "semantic_types" : ['https://metadata.datadrivendiscovery.org/types/Target'] } }, { "stage_name": "cast_to_type", "primitive": "d3m.primitives.data_transformation.cast_to_type.Common", "input": "extract_attributes", "hyperparameters" : { "type_to_cast" : "float" } }, { "stage_name": "attributes", "input": "cast_to_type", "primitive": "d3m.primitives.data_cleaning.imputer.SKlearn", }, ] ] class SimpleRandomSklearnExecutorTest(unittest.TestCase): def test_simple_random_sklearn_executor(self): # Create executor inputs_queue = JoinableQueue() results_queue = JoinableQueue() executor = executors.SimpleRandomSklearnExecutor.SimpleRandomSklearnExecutor( inputs_queue, results_queue, override_sklearn_primitives_set=["d3m.primitives.regression.linear_svr.SKlearn"] ) executor.get_data_loading_pipelines = get_data_loading_pipelines_override # Load sample data data_uri = utils.utils.get_git_root(os.path.dirname( os.path.abspath(__file__))) + "/test_data/185_baseball" assert(os.path.exists(data_uri)) problem_doc, dataset = utils.utils.load_data_from_dir(data_uri, mode="train") # Process item inputs_queue.put((problem_doc, dataset)) inputs_queue.put((problem_doc, dataset)) inputs_queue.put((problem_doc, dataset)) executor.start() inputs_queue.join() # Gather results results = [] while not results_queue.empty(): print("Gathering...") results.append(results_queue.get(True, executors.Executor.QUEUE_TIMEOUT)) executor.terminate() assert(len(results) == 3) for result in results: assert None not in result if __name__ == '__main__': unittest.main()
d3m-model-search-master
Stanford-D3M-Full/tests/unit_tests/executor/test_SimpleRandomSklearnExecutor.py
import os import unittest import shutil import utils.utils import utils.train_utils import executors.NistSaverExecutor import executors.Executor from multiprocessing import Process, Queue, JoinableQueue from queue import Empty class SimpleRandomSklearnExecutorTest(unittest.TestCase): def test_saver_executor(self): # Create executor inputs_queue = JoinableQueue() results_queue = JoinableQueue() executor = executors.NistSaverExecutor.NistSaverExecutor( inputs_queue, results_queue ) # Load sample data data_uri = utils.utils.get_git_root(os.path.dirname( os.path.abspath(__file__))) + "/test_data/185_baseball" assert(os.path.exists(data_uri)) problem_doc, dataset = utils.utils.load_data_from_dir(data_uri, mode="train") # Load a random saved pipeline pipeline_json_path = ( utils.utils.get_git_root(os.path.dirname(os.path.abspath(__file__))) + "/test_data/185_baseball_pipeline/test_pipeline.json") with open(pipeline_json_path) as f: pipeline_json = f.read() # Process item base_outputdir, pipeline_json, problem_doc, score = ( "/tmp/test_outdir", pipeline_json, problem_doc, 69 ) if os.path.exists(base_outputdir): shutil.rmtree(base_outputdir) item = (base_outputdir, pipeline_json, problem_doc, score) inputs_queue.put(item) executor.start() inputs_queue.join() executor.terminate() # Make sure there are files in executables, supporting files and pipelines #expected_supporting_filepath = "/tmp/test_outdir/supporting_files/999999999931.0/Stanford-D3M-Full/" expected_pipelines_filepath = "/tmp/test_outdir/pipelines_ranked/999999999931.0.json" #expected_execuables_filepath = "/tmp/test_outdir/executables/999999999931.0.sh" #assert(os.path.exists(expected_supporting_filepath)) assert(os.path.exists(expected_pipelines_filepath)) #assert(os.path.exists(expected_execuables_filepath)) if __name__ == '__main__': unittest.main()
d3m-model-search-master
Stanford-D3M-Full/tests/unit_tests/executor/test_NistSaverExecutor.py
d3m-model-search-master
Stanford-D3M-Full/tests/unit_tests/apps/__init__.py
d3m-model-search-master
Stanford-D3M-Full/tests/integration_tests/__init__.py
d3m-model-search-master
Stanford-D3M-Full/tests/integration_tests/ta3ta2/__init__.py
d3m-model-search-master
Stanford-D3M-Full/tests/integration_tests/utils/__init__.py
d3m-model-search-master
Stanford-D3M-Full/tests/integration_tests/executor/__init__.py
d3m-model-search-master
Stanford-D3M-Full/tests/integration_tests/apps/__init__.py
""" train_utils.py ------------------------------------ Contains utilities for: - K-fold cross validation - Scoring - Extracting labels """ import sys import glob import pdb import shutil import json import pandas import numpy as np import os import copy import traceback import time from d3m import metadata from d3m.metadata import problem from d3m.metadata.problem import * from d3m.metadata.pipeline import Pipeline, PrimitiveStep from d3m.metadata.base import Metadata from d3m.container.dataset import D3MDatasetLoader, Dataset from d3m import primitives from d3m_outputs import Predictions import d3m.metrics import d3m_outputs from utils.utils import * from utils.primitive_pipeline_utils import * def get_entrypoint_resource_id(dataset): for resource_id in dataset.keys(): if ('https://metadata.datadrivendiscovery.org/types/DatasetEntryPoint' in dataset.metadata.query(selector=(resource_id,))["semantic_types"]): return resource_id return resource_id def split_dataset(dataset, problem_doc): """ Split dataset into 80% train and 20% validate. """ resource_id = get_entrypoint_resource_id(dataset) full_dataframe = dataset[resource_id] # 20% split of the data msk = np.random.rand(len(full_dataframe)) < .8 train = full_dataframe[msk] test = full_dataframe[~msk] train.reset_index(inplace=True, drop=True) test.reset_index(inplace=True, drop=True) # Copy over to new train and validation datasets dataset_train = copy.copy(dataset) dataset_validate = copy.copy(dataset) dataset_train[resource_id] = train dataset_validate[resource_id] = test # Update length train_length = len(train) validate_length = len(test) dataset_train.metadata = dataset_train.metadata.update(selector=[resource_id], metadata={"dimension": {"length" : train_length}}, source=dataset_train.metadata) dataset_validate.metadata = dataset_validate.metadata.update(selector=[resource_id], metadata={"dimension": {"length" : validate_length}}, source=dataset_validate.metadata) add_target_columns_metadata(dataset_train, problem_doc) add_target_columns_metadata(dataset_validate, problem_doc) return dataset_train, dataset_validate def split_dataset_kfold(dataset, problem_doc, k=3): dataset_trains, dataset_validates = [], [] # Get full dataframe resource_id = get_entrypoint_resource_id(dataset) full_dataframe = dataset[resource_id] # Shuffle dataframe full_dataframe = full_dataframe.sample(frac=1).reset_index(drop=True) # split into k folds and generate train and test for fold in range(k): length_of_validation_set = int(1 / float(k) * len(full_dataframe)) start_of_validation = fold * length_of_validation_set end_of_validation = len(full_dataframe) if fold == k-1 else (fold+1)*length_of_validation_set msk = np.zeros(len(full_dataframe)) msk[start_of_validation : end_of_validation] = 1 msk = msk.astype(np.bool) # Partition train = full_dataframe[~msk] test = full_dataframe[msk] train.reset_index(inplace=True, drop=True) test.reset_index(inplace=True, drop=True) # Copy over to new train and validation datasets dataset_train = copy.copy(dataset) dataset_validate = copy.copy(dataset) dataset_train[resource_id] = train dataset_validate[resource_id] = test # Update length train_length = len(train) validate_length = len(test) dataset_train.metadata = dataset_train.metadata.update(selector=[resource_id], metadata={"dimension": {"length" : train_length}}, source=dataset_train.metadata) dataset_validate.metadata = dataset_validate.metadata.update(selector=[resource_id], metadata={"dimension": {"length" : validate_length}}, source=dataset_validate.metadata) add_target_columns_metadata(dataset_train, problem_doc) add_target_columns_metadata(dataset_validate, problem_doc) dataset_trains.append(dataset_train) dataset_validates.append(dataset_validate) return dataset_trains, dataset_validates def create_labels_extraction_pipeline(): """ Create a pipeline to extract labels from a dataset. """ pipeliner = PipelineWrapper( [ { "stage_name" : "dataset_to_dataframe", "primitive" : "d3m.primitives.data_transformation.dataset_to_dataframe.Common", "input" : PipelineWrapper.PIPELINE_INPUT }, { "stage_name" : "parser", "primitive" : "d3m.primitives.data_transformation.column_parser.DataFrameCommon", "input" : "dataset_to_dataframe", }, { "stage_name" : "extract_targets", "primitive" : "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon", "input" : "parser", "hyperparameters" : { "semantic_types" : ['https://metadata.datadrivendiscovery.org/types/Target'] } } ]) return pipeliner def extract_labels(dataset): """ Extract labels from dataset. Returns a pandas dataframe. """ labels_extraction_pipeliner = create_labels_extraction_pipeline() return labels_extraction_pipeliner.run(dataset, eval_datasets=[dataset])[0].values['outputs.0'] def metric_keys_from_doc(doc): return [PerformanceMetric.get_map()[x.get("metric")] for x in doc.query(()).get("inputs").get("performanceMetrics")] def score(predictions, dataset_test, problem_doc, override_metric_key=None): """ Score predictions against test labels """ target_key = predictions.keys()[-1] predictions = predictions.loc[:,target_key] test_labels = extract_labels(dataset_test) # Extract the score function metric = problem_doc.query(()).get("inputs").get("performanceMetrics")[0].get("metric") metric_key = PerformanceMetric.get_map()[metric] if override_metric_key is not None: print("train_utils.py:score - Overriding metric from %s -> %s" % (str(metric_key), str(override_metric_key))) sys.stdout.flush() metric_key = override_metric_key score_function = d3m.metrics.functions_map[metric_key] # Expect predictions and test_labels to both be pandas dataframe groundtruth_vector, preds_vector = test_labels, predictions try: groundtruth_vector = groundtruth_vector.values preds_vector = preds_vector.values except: pass try: groundtruth_vector = groundtruth_vector.astype(np.float) preds_vector = preds_vector.astype(np.float) except: pass try: groundtruth_vector = groundtruth_vector.flatten() preds_vector = preds_vector.flatten() except: pass return score_function(groundtruth_vector, preds_vector) def get_score_on_score_set(inputdir, problem_doc, predictions): """ NIST seed datasets have a score directory with groundtruth files. This method returns the score of a given set of predictions against this. """ path_to_score_root = "%s/SCORE/" % inputdir groundtruth_path = "%s/targets.csv" % path_to_score_root result_file_path = "/tmp/%s" % str(uuid.uuid4()) while os.path.exists(result_file_path): result_file_path = "/tmp/%s" % str(uuid.uuid4()) write_predictions_to_file(predictions, result_file_path, problem_doc, dataset=None) p = Predictions(result_file_path, path_to_score_root) #assert p.is_valid() scores = p.score(groundtruth_path) return list(scores)[0].scorevalue
d3m-model-search-master
Stanford-D3M-Full/utils/train_utils.py
d3m-model-search-master
Stanford-D3M-Full/utils/__init__.py
""" pipeline_utils.py ------------------------------------ Contains utilities for: - Saving and loading piplelines - Constructing pipelines - Running pipelines - Loading primitives """ import sys import glob import pdb import shutil import uuid import json import random import pandas import numpy as np import os import traceback import time import copy from d3m.metadata import base as metadata_base, hyperparams as hyperparams_module, pipeline as pipeline_module, problem import d3m from d3m import metadata from d3m.metadata import problem from d3m.metadata.problem import * from d3m.metadata.pipeline import Pipeline, PrimitiveStep from d3m.metadata.base import ArgumentType, Context from d3m.metadata.base import Metadata from d3m.container.dataset import D3MDatasetLoader, Dataset from d3m import primitives import d3m_outputs from d3m_outputs import Predictions from d3m.runtime import Runtime def load_pipeline(pipeline_json): return Pipeline.from_json(pipeline_json) def get_primitive_names(): """Return list of names of primitives.""" return d3m.index.search() def get_primitive_with_name(name): """Loads and returns a primitive with given name.""" return d3m.index.get_primitive(name) def get_data_primitives_names(): """Helper to return names of all primitives that deal with data.""" return [x for x in get_primitive_names() if ".data." in x or ".datasets." in x] def get_sklearn_primitives_names(): """Helper to return names of all sklearn primitives.""" return [x for x in get_primitive_names() if ".SKlearn" in x] def load_all_primitives(): """Loads all primitives.""" d3m.index.load_all() def get_loaded_primitives(): """Returns loaded primitives.""" return d3m.index.get_loaded_primitives() def get_primitive_attribute(primitive_or_primitive_name, attribute_selector): """Given a primitive or primitive name, gets the value in the metadata of primitive associated with attribute_selector. Example: => get_primitive_attribute("d3m.primitives.bbn.sklearn_wrap.BBNMLPClassifier", ("primitive_code","class_type_arguments","Inputs")) => <class 'd3m.container.pandas.DataFrame'> """ primitive = primitive_or_primitive_name if type(primitive_or_primitive_name) == str: primitive = get_primitive_with_name(primitive_or_primitive_name) metadata_selector = primitive.metadata.query() for attribute in attribute_selector: metadata_selector = metadata_selector.get(attribute) return metadata_selector def get_primitive_input_type(primitive_or_primitive_name): """Returns the input type of given primitive or primitive name.""" return get_primitive_attribute(primitive_or_primitive_name, ("primitive_code", "class_type_arguments", "Inputs")) def get_primitive_output_type(primitive_or_primitive_name): """Returns the output type of given primitive or primitive name.""" return get_primitive_attribute(primitive_or_primitive_name, ("primitive_code", "class_type_arguments", "Outputs")) def get_primitive_family_type(primitive_or_primitive_name): """Returns the primitive type of given primitive or primitive name.""" return get_primitive_attribute(primitive_or_primitive_name, ("primitive_family",)) class PipelineWrapper(object): """ Wrapper around the d3m pipeline object which allows fast and easy construction of pipelines. """ PIPELINE_INPUT = "PIPELINE_INPUT" def __init__(self, pipeline_architecture): """ Create a new PipelineWrapper object. pipeline_architecture should be a list of dictionaries specifiying the stages of the pipeline. Each stage dictionary in the pipeline_architecture list should specify: "primitive" - primitive name or class to instantiate (required) "stage_name" - name of the stage (required) "input" - name of the stage whose output should be passed as input to the current stage (required). Use PipelineWrapper.PIPELINE_INPUT for referencing the input of the pipeline. "hyperparameters" - dict mapping names to data. (optional) Example: [ { "stage_name" : "denormalize", "primitive" : "d3m.primitives.dsbox.Denormalize", "input" : PipelineWrapper.PIPELINE_INPUT, }, { "stage_name" : "dataset_to_dataframe", "primitive" : "d3m.primitives.data_transformation.dataset_to_dataframe.Common", "input" : "denormalize", }, { "stage_name" : "column_parser", "primitive" : "d3m.primitives.data_transformation.column_parser.DataFrameCommon", "input" : "dataset_to_dataframe", }, { "stage_name" : "extract_attrs", "primitive" : "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon", "input" : "column_parser", "hyperparameters" : { "semantic_types" : ['https://metadata.datadrivendiscovery.org/types/Attribute'] } }, { "stage_name" : "extract_targets", "primitive" : "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon", "input" : "column_parser", "hyperparameters" : { "semantic_types" : ['https://metadata.datadrivendiscovery.org/types/Target'] } } ] """ self.pipeline_architecture_dict = copy.deepcopy(pipeline_architecture) self.verify_pipeline_architecture_dict(self.pipeline_architecture_dict) def get_stage_names(self): return set([x["stage_name"] for x in self.pipeline_architecture_dict]) def run(self, input_dataset, eval_datasets=[], return_pipeline=False): """ Converts internal pipeline architecture dict into pipeline and runs it. Args: - input_dataset: Input dataset to train - eval_dataset: Dataset to evaluate - return_pipeline: Whether to return the pipeline which fitted and produced the preds Returns: - If return_pipeline is False, returns just the predictions, otherwise returns a tuple (preds, pipeline) """ pipeline = self.load_pipeline_architecture(self.pipeline_architecture_dict) pipeline.check() runtime = Runtime(pipeline, context=Context.TESTING) runtime.fit(inputs=[input_dataset], return_values=['outputs.0']) all_preds = [] for dataset in eval_datasets: all_preds.append(runtime.produce(inputs=[dataset], return_values=['outputs.0'])) results = all_preds if return_pipeline: results = (all_preds, pipeline) return results def load_pipeline_architecture(self, pipeline_architecture_dict): """ Loads pipeline architecture dictionary and returns a d3m Pipeline object. Return pipeline """ pipeline_description = Pipeline(context=Context.TESTING) pipeline_description.add_input(name='inputs') # For each corresponding stage in the dictionary create a step steps = [] stage_name_to_reference_name = {} for stage_dict in pipeline_architecture_dict: # Extract stage attributes primitive = stage_dict["primitive"] if type(primitive) == str: primitive = get_primitive_with_name(primitive) cur_stage_name = stage_dict["stage_name"] input_stage = stage_dict["input"] # Create primitive step step = PrimitiveStep(primitive_description=primitive.metadata.query()) data_reference = "inputs.0" if input_stage == PipelineWrapper.PIPELINE_INPUT else stage_name_to_reference_name[input_stage] step.add_argument(name="inputs", argument_type=ArgumentType.CONTAINER, data_reference=data_reference) if "hyperparameters" in stage_dict: for k,v in stage_dict["hyperparameters"].items(): step.add_hyperparameter(name=k, argument_type=ArgumentType.VALUE, data=v) if "arguments" in stage_dict: for k,v in stage_dict["arguments"].items(): step.add_argument(name=k, argument_type=ArgumentType.CONTAINER, data_reference=stage_name_to_reference_name[v]) step.add_output("produce") pipeline_description.add_step(step) reference_name = next(iter(step.get_output_data_references())) # Update accounting stage_name_to_reference_name[cur_stage_name] = reference_name steps.append(step) # Output is output of the last step last_output_reference = next(iter(steps[-1].get_output_data_references())) pipeline_description.add_output(name="output", data_reference=last_output_reference) return pipeline_description def get_branches(self): """ Returns stagenames that are not being used as inputs for any other stages. """ stage_names = [x["stage_name"] for x in self.pipeline_architecture_dict] for stage_dict in self.pipeline_architecture_dict: input_name = stage_dict["input"] if input_name in stage_names: stage_names.remove(input_name) return stage_names def add_stage(self, new_stage): """ Adds a stage to the pipeline architecture dict; then asserts validity of stages. """ # If new_stage does not have a stage_name, give it a unique name if "stage_name" not in new_stage: primitive_name = str(new_stage["primitive"]) stage_names = [x["stage_name"] for x in self.pipeline_architecture_dict] candidate_stage_name = primitive_name while candidate_stage_name in stage_names: candidate_stage_name = primitive_name + "_" + str(uuid.uuid4()) new_stage["stage_name"] = candidate_stage_name self.pipeline_architecture_dict.append(new_stage) self.verify_pipeline_architecture_dict(self.pipeline_architecture_dict) def verify_pipeline_architecture_dict(self, pipeline_json): """ Verifies correctness of pipeline architecture dict. - Make sure that stage dictionaries have "stage_name", "primitive", "input" - Make sure that stage dictionaries have valid "primitive" - Make sure that stage_names are unique. - Make sure the inputs reference an existing stage name. """ # Verify that dictionaries have "stage_name" "primitive" "input" keys for stage_dict in pipeline_json: keys_to_check = ["stage_name", "primitive", "input"] for k in keys_to_check: if k not in stage_dict.keys(): raise Exception("Key '%s' not in pipeline dictionary" % k) # Verify that "primitives" are valid valid_primitives_names = get_primitive_names() for stage_dict in pipeline_json: primitive_or_primitive_name = stage_dict["primitive"] if type(primitive_or_primitive_name) == str: if primitive_or_primitive_name not in valid_primitives_names: raise Exception("Primitive name '%s' not in list of valid primitives." % primitive_or_primitive_name) elif type(primitive_or_primitive_name) != d3m.primitive_interfaces.base.PrimitiveBaseMeta: raise Exception("Primitive '%s' not the right type (got object of type %s instead of %s" % (str(primitive_or_primitive_name), str(type(primitive_or_primitive_name)), str(type(d3m.primitive_interfaces.base.PrimitiveBaseMeta)))) # Verify that stage names are unique stage_names = set([x["stage_name"] for x in pipeline_json]) n_unique_stage_names = len(stage_names) if n_unique_stage_names != len(pipeline_json): raise Exception("Stage names in pipeline dictionary are not unique.") # Make sure inputs reference previous stage names stage_names_so_far = set() for stage_dict in pipeline_json: input_stage = stage_dict["input"] if input_stage != PipelineWrapper.PIPELINE_INPUT and input_stage not in stage_names_so_far: raise Exception("Stage not found: %s" % input_stage) stage_names_so_far.add(stage_dict["stage_name"]) class SKLearnPipeliner(object): """ Represents an object which can construct random simple sklearn classification pipelines and run them on inputs. One can either (1) provide a specific pipeline with 'data_loading_pipeline', or (2) provide a list of candidate piplines via 'data_loading_pipeline_candidates' """ def __init__(self, data_loading_pipeline=None, data_loading_pipeline_candidates=None, sklearn_predictor=None): """ Create SimpleSKLearnPipeliner. Note: a "pipeline" specifies data loading pipeline (see PipelineWrapper). Expect stage output branches to be ["attributes", "targets"] - data_loading_pipeline - a pipeline architecture - data_loading_pipelines - a list of pipeline architecture dicts - sklearn_predictor - the sklearn predictor to use as last step of the pipeline """ self.data_loading_pipeline = data_loading_pipeline self.data_loading_pipeline_candidates = data_loading_pipeline_candidates self.sklearn_predictor = sklearn_predictor # check that we are given either a specific pipeline or candidates assert bool(data_loading_pipeline) ^ bool(data_loading_pipeline_candidates) if sklearn_predictor is None: self.sklearn_primitives = get_sklearn_primitives_names() def run(self, dataset_train, eval_datasets=[], return_pipeline=False): """ If we are given a configuration of primitives, create a pipeline and run it on the given input datasets If we are not given a specific configuration, samples a simple sklearn based classification pipeline and runs it on the given input datasets. """ # Load data loading pipeline pipeline = random.choice(self.data_loading_pipeline_candidates) if (self.data_loading_pipeline is None) \ else self.data_loading_pipeline pipeline_wrapper = PipelineWrapper(pipeline) expected_stage_outputs = set(["attributes", "targets"]) stage_outputs = set(pipeline_wrapper.get_branches()) if expected_stage_outputs != stage_outputs: raise Exception("Expected stage outputs (%s) does not match actual (%s)." % (str(expected_stage_outputs), str(stage_outputs))) # Make sure we have `dataset_to_dataframe` since that's required for predictions assert("column_parser" in pipeline_wrapper.get_stage_names()) # Sample a random sklearn primitive sklearn_primitive = random.choice(self.sklearn_primitives) if (self.sklearn_predictor is None) \ else self.sklearn_predictor pipeline_wrapper.add_stage({ "stage_name": "predict", "input" : "attributes", "primitive": sklearn_primitive, "arguments": { "outputs": "targets" }, "hyperparameters": { # Todo(maxlam): Better way to handle GeneralRelationalDataset.... "use_semantic_types": True if random.random() <= .5 else False, } }) # Make sure to write predictions in the correct format pipeline_wrapper.add_stage({ "input": "predict", "primitive": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon", "arguments": { "reference": "column_parser" } }) # Run the pipeline return pipeline_wrapper.run(dataset_train, eval_datasets=eval_datasets, return_pipeline=return_pipeline) \
d3m-model-search-master
Stanford-D3M-Full/utils/primitive_pipeline_utils.py
""" utils.py ------------------------------------------------ Contains general utilities for: - Loading d3m dataset, writing d3m predictions - Dealing with problem docs, protos - Running functions with timelimit """ import sys import glob import pdb import shutil import json import pandas import numpy as np import os import traceback import time import git import shutil import pdb from multiprocessing import Process from d3m import metadata from d3m.metadata import problem from d3m.metadata.problem import * from d3m.metadata.pipeline import Pipeline, PrimitiveStep from d3m.metadata.base import Metadata from d3m.container.dataset import D3MDatasetLoader, Dataset from d3m import primitives import d3m_outputs from d3m.metadata import base as metadata_base from d3m_outputs import Predictions def get_git_root(path): git_repo = git.Repo(path, search_parent_directories=True) git_root = git_repo.git.rev_parse("--show-toplevel") return git_root def load_problem_doc(problem_doc_uri: str): """ Load problem_doc from problem_doc_uri Parameters --------- problem_doc_uri Uri where the problemDoc.json is located """ with open(problem_doc_uri) as file: problem_doc = json.load(file) problem_doc_metadata = Metadata(problem_doc) return problem_doc_metadata def add_target_columns_metadata(dataset: 'Dataset', problem_doc_metadata: 'Metadata'): """ Add metadata to the dataset from problem_doc_metadata Parameters --------- dataset Dataset problem_doc_metadata: Metadata about the problemDoc """ for data in problem_doc_metadata.query(())['inputs']['data']: targets = data['targets'] for target in targets: semantic_types = list(dataset.metadata.query( (target['resID'], metadata_base.ALL_ELEMENTS, target['colIndex'])).get('semantic_types', [])) if 'https://metadata.datadrivendiscovery.org/types/Target' not in semantic_types: semantic_types.append('https://metadata.datadrivendiscovery.org/types/Target') dataset.metadata = dataset.metadata.update( (target['resID'], metadata_base.ALL_ELEMENTS, target['colIndex']), {'semantic_types': semantic_types}) if 'https://metadata.datadrivendiscovery.org/types/TrueTarget' not in semantic_types: semantic_types.append('https://metadata.datadrivendiscovery.org/types/TrueTarget') dataset.metadata = dataset.metadata.update( (target['resID'], metadata_base.ALL_ELEMENTS, target['colIndex']), {'semantic_types': semantic_types}) return dataset def load_data_from_dir(inputdir, mode="train"): """ Returns problem_doc and dataset given input directory. """ assert mode in ["train", "test", "score"] if mode == "train": problemdir = "%s/TRAIN/problem_TRAIN" % inputdir problem_doc_uri = "%s/problemDoc.json" % problemdir datasetdir = "%s/TRAIN/dataset_TRAIN" % inputdir dataset_uri = "%s/datasetDoc.json" % datasetdir if mode == "test": problemdir = "%s/TEST/problem_TEST" % inputdir problem_doc_uri = "%s/problemDoc.json" % problemdir datasetdir = "%s/TEST/dataset_TEST" % inputdir dataset_uri = "%s/datasetDoc.json" % datasetdir if mode == "score": problemdir = "%s/SCORE/problem_TEST" % inputdir problem_doc_uri = "%s/problemDoc.json" % problemdir datasetdir = "%s/SCORE/dataset_TEST" % inputdir dataset_uri = "%s/datasetDoc.json" % datasetdir # Problem doc and dataset loading problem_doc = load_problem_doc(problem_doc_uri) # Dataset if 'file:' not in dataset_uri: dataset_uri = 'file://{dataset_uri}'.format(dataset_uri=os.path.abspath(dataset_uri)) dataset = D3MDatasetLoader() dataset = dataset.load(dataset_uri=dataset_uri) dataset = add_target_columns_metadata(dataset, problem_doc) if mode == "train" or mode == "score": dataset = add_target_columns_metadata(dataset, problem_doc) return problem_doc, dataset def is_higher_score_better(problem_doc): """ Returns whether higher score is better for the given problem. Currently this is a hack: If metric string has "err" in it, return False, otherwise True """ metric_string = problem_doc.query(selector=()).get("inputs").get("performanceMetrics")[0].get("metric") return not "err" in metric_string.lower() def get_global_score(local_score, problem_doc): """ Convert local_score to global_score. A global_score has the property the a lower value always means a better solution. The algorithm is as follows: If problem_doc indicates higher scores are better: return LARGE_EPS - local_score else return LARGE_EPS + local_score LARGE_EPS should be chosen to be bigger than any possible |local_score|. However if this is not the case and |local_score| > LARGE_EPS, we return a global score LARGE_EPS (which is basically 0) to indicate an error. """ LARGE_EPS = 1e12 if np.abs(local_score) > LARGE_EPS: return LARGE_EPS higher_is_better = is_higher_score_better(problem_doc) sign = -1 if higher_is_better else 1 return LARGE_EPS + sign*local_score def save_pipeline(pipeline_file_path, pipeline, pipeline_rank=None): """ Save pipeline to pipeline_file_path. pipeline is a d3m object. """ to_json_structure = pipeline.to_json_structure() if pipeline_rank is not None: to_json_structure["pipeline_rank"] = pipeline_rank with open(pipeline_file_path, "w") as f: f.write(json.dumps(to_json_structure, sort_keys=True, indent=4, separators=(',', ': '))) def save_supporting_files(supporting_files_path): """ Save all supporting files to the given directory path. Simply copy over the whole repository to this path. """ git_root_path = get_git_root(os.path.dirname(os.path.abspath(__file__))) def ign_func(d, files): keep_files_with_py = [f for f in files if os.path.isfile(os.path.join(d, f)) and not f.endswith(".py")] ignore_files_with_leading_dot = [f for f in files if os.path.isfile(os.path.join(d,f)) and f[0] == "."] return keep_files_with_py + ignore_files_with_leading_dot shutil.copytree(git_root_path, supporting_files_path, ignore=ign_func) def save_executable(exe_path, pipeline_id): """ Save a bash script with a command that will run the pipeline against a target directory and generate predictions. """ # TODO(maxlam): FINISH command = "testing" with open(exe_path, "w") as f: f.write(command) def clear_all_files_but_top(output_dir, n_to_keep=5): """ Clears all files but the top n_to_keep. Assumes that lower scores are better. """ pipelines_files_path = "%s/pipelines_ranked" % output_dir files = os.listdir(pipelines_files_path) files_and_scores = [(x, float(x.replace(".json",""))) for x in files] files_and_scores.sort(key=lambda x:x[1]) files_and_scores_to_delete = files_and_scores[n_to_keep:] for f, score in files_and_scores_to_delete: pipeline_id = str(score) pipelines_files_path_to_delete = "%s/pipelines_ranked/%s.json" % (output_dir, pipeline_id) for to_delete in [pipelines_files_path_to_delete]: if os.path.isdir(to_delete): shutil.rmtree(to_delete) else: if os.path.exists(to_delete): os.remove(to_delete) def save_scored_pipeline(outputdir, local_score, pipeline, problem_doc, keep_top=5, clear_directories=False): """ Save scored pipeline, executables and supporting files to the given output directory as specified by NIST. Keep only the top keep_top configurations. Creates the following directory structure if it doesn't exist: outputdir/ pipelines_ranked pipelines_scored pipelines_searched subpipelines pipeline_runs additional_inputs The process is as follows: 1. Given local_score (e.g: 68.5), converts this to a global score (e.g: 1000-68.5 = 931.5) in which a lower value implies a better prediction. This global score is the id of the pipeline. Set the pipeline's id as such. 2. Given the id of the pipeline, create `outputdir`/pipelines_ranked/`pipeline_id`.json containing the pipeline json. 3. Collect all pipelines saved; sort them; delete all but the top keep_top pipelines (in pipelines_ranked. pipelines_scored should contain every single pipeline ever scored). ######################################################## # Note this function is not necessarily thread safe!!! # ######################################################## Furthermore: It is possible that this function may be in the middle of writing to output when the program is terminated, leading to nasty bugs. Please give enough time for this function before the deadline of the evaluation. Arguments - outputdir - Full path to output to save pipelines, supporting_files, executables - local_score - The local score of the pipeline - pipeline - The pipeline object (not json) representing pipeline to save - problem_doc - Problem doc of the problem of the pipeline being saved - keep_top - Number of total pipelines / supporting files to keep - clear_directories - Should clear the directories or not """ # Create the directory structure pipelines_ranked = "%s/pipelines_ranked" % outputdir pipelines_scored = "%s/pipelines_scored" % outputdir pipelines_searched = "%s/pipelines_searched" % outputdir subpipelines = "%s/subpipelines" % outputdir pipeline_runs = "%s/pipeline_runs" % outputdir additional_inputs = "%s/additional_inputs" % outputdir all_paths = [pipelines_ranked, pipelines_scored, pipelines_searched, subpipelines, pipeline_runs, additional_inputs] # Clear the path outputs if specified if clear_directories: for path_to_clear in all_paths: if os.path.exists(path_to_clear): shutil.rmtree(path_to_clear) # Create the dirs for necessary_path in all_paths: if not os.path.exists(necessary_path): os.makedirs(necessary_path) # Get pipeline id pipeline_id = str(get_global_score(local_score, problem_doc)) pipeline.id = pipeline_id target_pipeline_file_path = "%s/%s.json" % (pipelines_ranked, pipeline_id) # If pipeline json with pipeline id already exists, don't do anything if os.path.exists(target_pipeline_file_path): return paths_to_save = ["%s/%s.json" % (d, pipeline_id) for d in [pipelines_ranked, pipelines_searched, pipelines_scored]] # Save the pipeline for p in paths_to_save: save_pipeline(p, pipeline, pipeline_rank=pipeline_id) # The new D3M evaluation doesn't require saving supporting files or executables! #save_supporting_files(target_supporting_files_path) #save_executable(target_executable_file_path, pipeline_id) # Clear all but the top clear_all_files_but_top(outputdir, n_to_keep=keep_top) def get_entrypoint_resource_id(dataset): """ Gets the entrypoint resource id of a dataset. TODO(maxlam): Maybe put this in train utils? """ for resource_id in dataset.keys(): if ('https://metadata.datadrivendiscovery.org/types/DatasetEntryPoint' in dataset.metadata.query(selector=(resource_id,)).get("semantic_types")): return resource_id return resource_id def write_predictions_to_file(preds, fpath, problemdoc, dataset=None): """ Writes predictions to file path fpath. Args: - preds - Dataframe of predictions TODO(maxlam): CLEAN THIS UP! """ preds.to_csv(fpath, index=False, header=True) def run_with_limited_time(func, args, kwargs, time): """Runs a function with time limit :param func: The function to run :param args: The functions args, given as tuple :param kwargs: The functions keywords, given as dict :param time: The time limit in seconds :return: True if the function ended successfully. False if it was terminated. """ p = Process(target=func, args=args, kwargs=kwargs) p.start() p.join(time) if p.is_alive(): p.terminate() return (False, None) return True def convert_problem_doc_proto_to_metadata(problem_doc): # Convert problem_doc proto to json json_problem_doc = {} # General info json_problem_doc["about"] = { "problemID": problem_doc.problem.id, "problemVersion": problem_doc.problem.version, "problemName": problem_doc.problem.name, "taskType": problem_doc.problem.task_type, "taskSubType": problem_doc.problem.task_subtype, "problemSchemaVersion": "3.1.1", "problemDescription": problem_doc.problem.description } # Set inputs inputs_data = [] for input_proto in problem_doc.inputs: targets_data = [] for target_data in input_proto.targets: targets_data.append({ "targetIndex": target_data.target_index, "resID": target_data.resource_id, "colIndex": target_data.column_index, "colName": target_data.column_name, }) inputs_data.append({ "datasetID": input_proto.dataset_id, "targets": targets_data }) # Set metrics perf_metrics = [] for performance_metric in problem_doc.problem.performance_metrics: print(performance_metric.metric) reverse_map = {v:k for k,v in PerformanceMetric.get_map().items()} metric_string = reverse_map[PerformanceMetric(performance_metric.metric)] perf_metrics.append({ "metric": metric_string }) json_problem_doc["inputs"] = { "data": inputs_data, "performanceMetrics": perf_metrics } # From json use standard methods to parse to metadata return Metadata(json_problem_doc) def convert_dataset_uri_to_dataset(problem_doc, dataset_uri, mode="train"): if "file://" in dataset_uri: dataset_uri = dataset_uri[len("file://"):] # Dataset dataset_uri = 'file://{dataset_uri}'.format(dataset_uri=os.path.abspath(dataset_uri)) dataset = D3MDatasetLoader() dataset = dataset.load(dataset_uri=dataset_uri) dataset = add_target_columns_metadata(dataset, problem_doc) if mode == "train" or mode == "score": dataset = add_target_columns_metadata(dataset, problem_doc) return dataset
d3m-model-search-master
Stanford-D3M-Full/utils/utils.py
import utils.utils import utils.primitive_pipeline_utils import utils.train_utils import executors.Executor import executors.SimpleRandomSklearnExecutor class ExtendedSklearnExecutor(executors.SimpleRandomSklearnExecutor.SimpleRandomSklearnExecutor): """ Executor that processes tuples of (problem_doc, dataset) and writes (pipelines, scores) to the results. Has more data loading pipelines than SimpleSklearnExecutor """ def get_data_loading_pipelines(self): return super().get_data_loading_pipelines() + [ # General Relational Dataset [ { "stage_name" : "denormalize", "primitive" : "d3m.primitives.data_transformation.denormalize.Common", "input" : utils.primitive_pipeline_utils.PipelineWrapper.PIPELINE_INPUT, }, { "stage_name" : "dataset_to_dataframe", "primitive" : "d3m.primitives.data_transformation.dataset_to_dataframe.Common", "input" : "denormalize" }, { "stage_name" : "column_parser", "primitive" : "d3m.primitives.data_transformation.column_parser.DataFrameCommon", "input" : "dataset_to_dataframe", }, { "stage_name" : "targets", "primitive" : "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon", "input" : "column_parser", "hyperparameters" : { "semantic_types" : ['https://metadata.datadrivendiscovery.org/types/Target'] } }, { "stage_name": "general", "primitive": "d3m.primitives.sri.psl.GeneralRelationalDataset", "input": utils.primitive_pipeline_utils.PipelineWrapper.PIPELINE_INPUT }, { "stage_name": "attributes", "input": "general", "primitive": "d3m.primitives.data_transformation.cast_to_type.Common", "hyperparameters" : { "type_to_cast" : "float" } }, ], ]
d3m-model-search-master
Stanford-D3M-Full/executors/ExtendedSklearnExecutor.py
import utils.utils import utils.primitive_pipeline_utils import utils.train_utils import executors.Executor import executors.NistSaverExecutor from d3m.metadata.pipeline import Pipeline, PrimitiveStep from d3m.metadata.base import ArgumentType, Context from d3m.runtime import Runtime import uuid import os import sys class ScoreFitProduceExecutor(executors.Executor.Executor): """ Executor that either scores, fits & produces results. Input to process item is (mode, ...). Arguments depend on mode. There are 2 modes: "score" - input should look like (mode, problem_doc, pipeline, dataset_train, dataset_validate) "fitproduce" - input should look like (mode, problem_doc, pipeline, dataset_train, dataset_test, should_export) "export" - input should look like (mode, problem_doc, pipeline) """ def __init__(self, inputs_queue, results_queue): super().__init__(inputs_queue, results_queue) def process_item(self, input_item): mode = input_item[0] if mode == "score": return self.score(input_item) elif mode == "fitproduce": return self.fitproduce(input_item) elif mode == "export": return self.export(input_item) def get_predictions_save_path(self): savepath = None while savepath is None or os.path.exists(savepath): savedir = os.environ["D3MOUTPUTDIR"] savepath = "%s/predictions-%s.csv" % (savedir, uuid.uuid4()) return savepath def score(self, input_item): problem_doc, metric, pipeline_json, dataset_train, dataset_test = input_item[1:] # Run pipeline pipeline = Pipeline.from_json(pipeline_json) pipeline_runtime = Runtime(pipeline, context=Context.TESTING) pipeline_runtime.fit(inputs=[dataset_train], return_values=['outputs.0']) score_predictions = pipeline_runtime.produce(inputs=[dataset_test], return_values=['outputs.0']) score_predictions = score_predictions.values['outputs.0'] # Evaluate scores on score dir achieved_score = utils.train_utils.score(score_predictions, dataset_test, problem_doc, override_metric_key=metric) return achieved_score def fitproduce(self, input_item): problem_doc, pipeline_json, dataset_train, dataset_test = input_item[1:] # Run pipeline pipeline = Pipeline.from_json(pipeline_json) pipeline_runtime = Runtime(pipeline, context=Context.TESTING) pipeline_runtime.fit(inputs=[dataset_train], return_values=['outputs.0']) score_predictions = pipeline_runtime.produce(inputs=[dataset_test], return_values=['outputs.0']) score_predictions = score_predictions.values['outputs.0'] # Write predictions to output path path = self.get_predictions_save_path() utils.utils.write_predictions_to_file(score_predictions, path, problem_doc) path_uri = "file://%s" % path return path_uri def export(self, input_item): problem_doc, pipeline_json, score = input_item[1:] # Call Nist Saver saver = executors.NistSaverExecutor.NistSaverExecutor(None, None) saver.process_item((os.environ["D3MOUTPUTDIR"], pipeline_json, problem_doc, score))
d3m-model-search-master
Stanford-D3M-Full/executors/ScoreFitProduceExecutor.py
d3m-model-search-master
Stanford-D3M-Full/executors/__init__.py
import utils.utils import utils.primitive_pipeline_utils import utils.train_utils import executors.Executor class NistSaverExecutor(executors.Executor.Executor): """ Executor which saves (baseoutputdir, pipeline_json, score) to output. """ def process_item(self, input_item): base_outputdir, pipeline_json, problem_doc, score = input_item # Convert pipeline_json to pipeline pipeline = utils.primitive_pipeline_utils.load_pipeline(pipeline_json) utils.utils.save_scored_pipeline(base_outputdir, score, pipeline, problem_doc) return None
d3m-model-search-master
Stanford-D3M-Full/executors/NistSaverExecutor.py
import utils.utils import utils.primitive_pipeline_utils import utils.train_utils import executors.Executor import executors.SimpleRandomSklearnExecutor import numpy as np import sys import math import random from d3m.metadata.pipeline import Pipeline, PrimitiveStep class HyperbandExecutor(executors.Executor.Executor): """ Executor that processes tuples of (problem_doc, dataset) and writes (pipelines, scores) to the results. Uses Hyperband. """ def __init__(self, inputs_queue, results_queue, hyperband_epochs_budget=60*20, hyperband_proportion_discard=2): """ Initializes a hyperband executor. Upon initialization, will create a hyperband schedule with the given parameters; this schedule will guide the hyperband search of each task that is popped from the queue. Specifically, for each (problem, dataset) that is popped from the queue, this executor will perform the full hyperband search on the given task. Note that hyperband_epochs_budget is actually the time budget in number of seconds. todo(maxlam): Change hyperband_epochs_budget => hyperband_seconds_budget """ super().__init__(inputs_queue, results_queue) # Option to override set of sklearn primitives to sample from print("Initializing Hyperband executor") # Hyperband parameters self.hyperband_epochs_budget = hyperband_epochs_budget self.hyperband_proportion_discard = hyperband_proportion_discard # Given the budget, generate the largest hyperband schedule # within budget self.hyperband_schedule = self.get_largest_schedule_within_budget( self.hyperband_epochs_budget, self.hyperband_proportion_discard ) # Print the search schedule self.pretty_print_schedule(self.hyperband_schedule) def create_hyperband_infinite_schedule(self): """ An infinite iterator that continuously yields the next (resources, number of threads) in the next band. This is not currently used anywhere but could be useful. """ k = 1 while True: for s in range(1, k): if k-s >= np.log2(s): bk_s = 2**k nk_s = 2**s yield (bk_s, nk_s) k += 1 def pretty_print_schedule( self, hyperband_schedule, describe_hyperband=True ): """ Prints scheduler for user to read. """ print("=========================================") print("| Hyperband Schedule |") print("=========================================") if describe_hyperband: # Print a message indicating what the below schedule means print( "Table consists of tuples of " "(num configs, num_resources_per_config)" "which specify how many configs to run and" "for how many epochs. " ) print( "Each bracket starts with a list of random " "configurations which is successively halved " "according the schedule." ) print( "See the Hyperband paper " "(https://arxiv.org/pdf/1603.06560.pdf) for more details." ) print("-----------------------------------------") for bracket_index, bracket in enumerate(hyperband_schedule): bracket_string = "Bracket %d:" % bracket_index for n_i, r_i in bracket: bracket_string += " (%d, %d)" % (n_i, r_i) print(bracket_string) print("-----------------------------------------") def get_largest_schedule_within_budget(self, budget, proportion_discard): """ Gets the largest hyperband schedule within target_budget. This is required since the original hyperband algorithm uses R, the maximum number of resources per configuration. TODO(maxlam): Possibly binary search it if this becomes a bottleneck. Args: budget: total budget of the schedule. proportion_discard: hyperband parameter that specifies the proportion of configurations to discard per iteration. """ # Exhaustively generate schedules and check if # they're within budget, adding to a list. valid_schedules_and_costs = [] for R in range(1, budget): schedule = self.generate_hyperband_schedule(R, proportion_discard) cost = self.compute_schedule_cost(schedule) if cost <= budget: valid_schedules_and_costs.append((schedule, cost)) # Choose a valid schedule that maximizes usage of the budget. valid_schedules_and_costs.sort(key=lambda x: x[1], reverse=True) return valid_schedules_and_costs[0][0] def compute_schedule_cost(self, schedule): # Sum up all n_i * r_i for each band. flattened = [item for sublist in schedule for item in sublist] return sum([x[0] * x[1] for x in flattened]) def generate_hyperband_schedule(self, R, eta): """ Generate hyperband schedule according to the paper. Args: R: maximum resources per config. eta: proportion of configruations to discard per iteration of successive halving. Returns: hyperband schedule, which is represented as a list of brackets, where each bracket contains a list of (num configurations, num resources to use per configuration). See the paper for more details. """ schedule = [] s_max = int(math.floor(math.log(R, eta))) # B = (s_max + 1) * R for s in range(0, s_max + 1): n = math.ceil(int((s_max + 1) / (s + 1)) * eta ** s) r = R * eta ** (-s) bracket = [] for i in range(0, s + 1): n_i = int(math.floor(n * eta ** (-i))) r_i = int(r * eta ** i) bracket.append((n_i, r_i)) schedule = [bracket] + schedule return schedule def search(self, problem_doc, dataset): """ Perform hyperband search with problem_doc and dataset. Since hyperband usually targets hyperparameter tuning (and we are doing architecture search), the first band of each bracket samples a random architectures with default hyperparameters to execute. Subsequent bands of the bracket use the same architecture with random hyperparameters. """ best_score, best_pipeline = float("inf"), None # Split into train and validation dataset_train, dataset_validate = ( utils.train_utils.split_dataset(dataset, problem_doc)) # Loop over each bracket n_models_scored = 0 for bracket_index, bracket in enumerate(self.hyperband_schedule): # Sample random configurations to seed SuccessiveHalving n_starting_configurations, _ = bracket[0] configurations = [HyperbandPipeliner() for i in range(n_starting_configurations)] # Successive Halving for band_index, (n_i, r_i) in enumerate(bracket): assert len(configurations) <= n_i # Evaluate each configuration for r_i epochs scored_configurations = [] for i, configuration in enumerate(configurations): cur_model_index = n_models_scored # Train model and get the score. Sample hyperparameters if not # on the first band. try: # hack: Give at least 30 seconds to each job # todo(maxlam): figure better solution results = configuration.run(dataset_train, eval_datasets=[dataset_validate], return_pipeline=True, sample_random_hyperparameters=band_index != 0, tlimit_secs=r_i+30) predictions, pipeline = results[0][0].values['outputs.0'], results[1] score = utils.train_utils.score(predictions, dataset_validate, problem_doc) # Normalize the score (lower is better for normalized scores) normalized_score = utils.utils.get_global_score(score, problem_doc) except Exception as e: pipeline = None score = float("inf") normalized_score = float("inf") print(e) print("Hyperband executor achieved score: %s" % (str(score))) if normalized_score < best_score: best_score = normalized_score best_pipeline = pipeline # Add current best score to queue self.results_queue.put(self.to_return_result(score, best_pipeline), True, executors.Executor.QUEUE_TIMEOUT) # Add score and model to list scored_configurations.append( (normalized_score, cur_model_index, configuration) ) n_models_scored += 1 # Sort scored configurations by score scored_configurations.sort(key=lambda x: x[0]) # Successively halve the configurations if band_index + 1 < len(bracket): n_to_keep, _ = bracket[band_index + 1] configurations = [x[2] for x in scored_configurations][ :n_to_keep ] # Return the best pipeline return best_score, best_pipeline def to_return_result(self, score, pipeline): return_result = (None, None) if score is not None and pipeline is not None: return_result = (score, pipeline.to_json(indent=4, sort_keys=True, ensure_ascii=False)) return return_result def process_item(self, input_item): problem_doc, dataset = input_item # Perform search score, pipeline = self.search(problem_doc, dataset) return_result = self.to_return_result(score, pipeline) return return_result class HyperbandPipeliner(object): """ Represents an object which can construct random pipelines and run them on inputs. This pipeliner has the following features: - Support creating random architecture pipelines - Support running pipelines with random hyperparameters or default hyperparameters - Support running pipelines with time limit For now, this pipeliner only supports sklearn primitives. todo(maxlam): support other primitives """ def __init__(self): """ Create HyperbandPipeliner """ self.data_loading_pipelines = self.get_data_loading_pipelines() self.sklearn_primitives = utils.primitive_pipeline_utils.get_sklearn_primitives_names() def run(self, dataset_train, eval_datasets=[], return_pipeline=False, sample_random_hyperparameters=False, tlimit_secs=120): """ Samples a simple sklearn based classification pipeline and runs it on the given input datasets. """ # Load data loading pipeline data_pipeline_to_use = random.choice(self.data_loading_pipelines) pipeline_wrapper = utils.primitive_pipeline_utils.PipelineWrapper(data_pipeline_to_use) expected_stage_outputs = set(["attributes", "targets"]) stage_outputs = set(pipeline_wrapper.get_branches()) if expected_stage_outputs != stage_outputs: raise Exception("Expected stage outputs (%s) does not match actual (%s)." % (str(expected_stage_outputs), str(stage_outputs))) # Sample a random sklearn primitive random_sklearn_primitive = random.choice(self.sklearn_primitives) sklearn_stage_dict = { "input" : "attributes", "primitive": random_sklearn_primitive, "arguments": { "outputs": "targets" } } pipeline_wrapper.add_stage(sklearn_stage_dict) # Extract the full pipeline from the wrapper; set hyperparameters for the sklearn primitive. pipeline = pipeline_wrapper.load_pipeline_architecture(pipeline_wrapper.pipeline_architecture_dict) if sample_random_hyperparameters: # Sample hyperparameters for the last sklearn primitive sklearn_hyperparam_dict = self.sample_hyperparameters_for_step_as_dict(pipeline, len(pipeline.steps)-1) # Recreate pipeline wrapper pipeline_wrapper = utils.primitive_pipeline_utils.PipelineWrapper(data_pipeline_to_use) sklearn_with_hyperparams_dict_stage = dict(sklearn_stage_dict) sklearn_with_hyperparams_dict_stage["hyperparameters"] = sklearn_hyperparam_dict pipeline_wrapper.add_stage(sklearn_with_hyperparams_dict_stage) # Run the pipeline with a time limit # It is difficult to pass objects between processes. So we use a hack: # - Run the training process with half the time. Check if finished. # - If finished, train and evaluate in the current process, otherwise return None print("HyperbandExecutor: Running pipeline with time limit: %s" % str(tlimit_secs)) finished = utils.utils.run_with_limited_time(pipeline_wrapper.run, (dataset_train,), {"eval_datasets":eval_datasets, "return_pipeline":return_pipeline}, tlimit_secs/2) if finished: results = pipeline_wrapper.run(dataset_train, eval_datasets=eval_datasets, return_pipeline=return_pipeline) return results return None, None def sample_hyperparameters_for_step_as_dict(self, pipeline, step_index): """ Samples hyperparameters for a given step and adds them to a dict. We have to do this because d3m's `add_hyperparameter` method screws up the entire pipeline. So an easy way to extract, sample and add hyperparameters is to recreate the whole pipeline. """ step = pipeline.steps[step_index] hyperparams = step.get_primitive_hyperparams().configuration hyperparam_dict = {} for hyperparam_name, hyperparam in hyperparams.items(): # If hyperparmeter exists delete it if hyperparam_name in step.hyperparams: del step.hyperparams[hyperparam_name] # If hyperparameter name in blacklist, skip if hyperparam_name in ["return_result", "use_semantic_types", "add_index_columns", "use_columns", "exclude_columns"]: continue # Sample and use it sampled_value = hyperparam.sample() if sampled_value is not None: if "numpy" in str(type(sampled_value)): sampled_value = np.asscalar(sampled_value) print("Sample for primitive %s: %s => %s" % (step.primitive_description["name"], hyperparam_name, str(sampled_value))) hyperparam_dict[hyperparam_name] = sampled_value return hyperparam_dict def get_data_loading_pipelines(self): return [ # Simple sklearn data loading [ { "stage_name" : "denormalize", "primitive" : "d3m.primitives.data_transformation.denormalize.Common", "input" : utils.primitive_pipeline_utils.PipelineWrapper.PIPELINE_INPUT, }, { "stage_name" : "dataset_to_dataframe", "primitive" : "d3m.primitives.data_transformation.dataset_to_dataframe.Common", "input" : "denormalize" }, { "stage_name" : "column_parser", "primitive" : "d3m.primitives.data_transformation.column_parser.DataFrameCommon", "input" : "dataset_to_dataframe", }, { "stage_name" : "extract_attributes", "primitive" : "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon", "input" : "column_parser", "hyperparameters" : { "semantic_types" : ['https://metadata.datadrivendiscovery.org/types/Attribute'] } }, { "stage_name" : "targets", "primitive" : "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon", "input" : "column_parser", "hyperparameters" : { "semantic_types" : ['https://metadata.datadrivendiscovery.org/types/Target'] } }, { "stage_name": "cast_to_type", "primitive": "d3m.primitives.data_transformation.cast_to_type.Common", "input": "extract_attributes", "hyperparameters" : { "type_to_cast" : "float" } }, { "stage_name": "attributes", "primitive": "d3m.primitives.byudml.imputer.RandomSamplingImputer", "input": "cast_to_type" }, ], # General Relational Dataset [ { "stage_name" : "denormalize", "primitive" : "d3m.primitives.data_transformation.denormalize.Common", "input" : utils.primitive_pipeline_utils.PipelineWrapper.PIPELINE_INPUT, }, { "stage_name" : "dataset_to_dataframe", "primitive" : "d3m.primitives.data_transformation.dataset_to_dataframe.Common", "input" : "denormalize" }, { "stage_name" : "column_parser", "primitive" : "d3m.primitives.data_transformation.column_parser.DataFrameCommon", "input" : "dataset_to_dataframe", }, { "stage_name" : "targets", "primitive" : "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon", "input" : "column_parser", "hyperparameters" : { "semantic_types" : ['https://metadata.datadrivendiscovery.org/types/Target'] } }, { "stage_name": "attributes", "primitive": "d3m.primitives.sri.psl.GeneralRelationalDataset", "input": utils.primitive_pipeline_utils.PipelineWrapper.PIPELINE_INPUT }, ], [ { "stage_name" : "denormalize", "primitive" : "d3m.primitives.data_transformation.denormalize.Common", "input" : utils.primitive_pipeline_utils.PipelineWrapper.PIPELINE_INPUT, }, { "stage_name" : "dataset_to_dataframe", "primitive" : "d3m.primitives.data_transformation.dataset_to_dataframe.Common", "input" : "denormalize" }, { "stage_name" : "column_parser", "primitive" : "d3m.primitives.data_transformation.column_parser.DataFrameCommon", "input" : "dataset_to_dataframe", }, { "stage_name" : "extract_attributes", "primitive" : "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon", "input" : "column_parser", "hyperparameters" : { "semantic_types" : ['https://metadata.datadrivendiscovery.org/types/Attribute'] } }, { "stage_name" : "targets", "primitive" : "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon", "input" : "column_parser", "hyperparameters" : { "semantic_types" : ['https://metadata.datadrivendiscovery.org/types/Target'] } }, { "stage_name": "cast_to_type", "primitive": "d3m.primitives.data_transformation.cast_to_type.Common", "input": "extract_attributes", "hyperparameters" : { "type_to_cast" : "float" } }, { "stage_name": "attributes", "input": "cast_to_type", "primitive": "d3m.primitives.data_cleaning.imputer.SKlearn", }, ] ]
d3m-model-search-master
Stanford-D3M-Full/executors/HyperbandExecutor.py
import utils.utils import utils.primitive_pipeline_utils import utils.train_utils import executors.Executor from experimental.lstm_predictor.LSTMPredictWorker import LSTM_filter import random import json MAX_TRIAL = 10 class SklearnStackedLSTMExecutor(executors.Executor.Executor): """ Executor that processes tuples of (problem_doc, dataset) and writes (pipelines, scores) to the results. """ def __init__(self, inputs_queue, results_queue, lstm_path, override_sklearn_primitives_set=None, num_candidates=10, tlimit=None): super().__init__(inputs_queue, results_queue) # Option to override set of sklearn primitives to sample from self.override_sklearn_primitives_set = override_sklearn_primitives_set self.tlimit = tlimit self.num_candidates = num_candidates self.lstm_path = lstm_path # DanKang - Create a local Cache # Note that this is local, and is not shared across processes. # However, for two reasons, I am just keeping it local # 1. If we use Managers.dict() to keep track of global cache, the lookup # time will be too slow and will cause a bottleneck # 2. As we get more primitives, the possibility of generating same # pipelines will decrease, that there is not too much need for a global check self.cache = set() def get_data_loading_pipelines(self): return [ [ { "stage_name" : "denormalize", "primitive" : "d3m.primitives.data_transformation.denormalize.Common", "input" : utils.primitive_pipeline_utils.PipelineWrapper.PIPELINE_INPUT, }, { "stage_name" : "dataset_to_dataframe", "primitive" : "d3m.primitives.data_transformation.dataset_to_dataframe.Common", "input" : "denormalize" }, { "stage_name" : "column_parser", "primitive" : "d3m.primitives.data_transformation.column_parser.DataFrameCommon", "input" : "dataset_to_dataframe", }, { "stage_name" : "extract_attributes", "primitive" : "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon", "input" : "column_parser", "hyperparameters" : { "semantic_types" : ['https://metadata.datadrivendiscovery.org/types/Attribute'] } }, { "stage_name" : "targets", "primitive" : "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon", "input" : "column_parser", "hyperparameters" : { "semantic_types" : ['https://metadata.datadrivendiscovery.org/types/Target'] } }, { "stage_name": "cast_to_type", "primitive": "d3m.primitives.data_transformation.cast_to_type.Common", "input": "extract_attributes", "hyperparameters" : { "type_to_cast" : "float" } }, { "stage_name": "attributes", "input": "cast_to_type", "primitive": "d3m.primitives.data_cleaning.imputer.SKlearn", }, ] ] def create_pipeline(self, sklearn_primitive): # Randomly choose a data loading pipeline, and append given sklearn_primitive data_load_pipeline = random.choice(self.get_data_loading_pipelines()) pipeline_names = [step["primitive"] for step in data_load_pipeline] pipeline_names.append(sklearn_primitive) return pipeline_names def get_key(self, pipeline): # Reconstruct the data loading pipeline from names return "_".join([step["primitive"] for step in pipeline]) def get_key_from_str(self, str_pipeline): return "_".join(str_pipeline) def process_item(self, input_item): problem_doc, dataset = input_item # Split into train and validation dataset_train, dataset_validate = ( utils.train_utils.split_dataset(dataset, problem_doc)) # Create a list of pipelines print("LSTM>Creating candidate pipelines") if self.override_sklearn_primitives_set is not None: sklearn_primitives = self.override_sklearn_primitives_set else: sklearn_primitives = utils.primitive_pipeline_utils.get_sklearn_primitives_names() num_pipeline, num_trial = 0, 0 candidate_pipelines = [] while num_pipeline < self.num_candidates: new_pipeline = self.create_pipeline(random.choice(sklearn_primitives)) new_pipeline_key = self.get_key_from_str(new_pipeline) if new_pipeline_key not in self.cache or num_trial > MAX_TRIAL: num_pipeline += 1 candidate_pipelines.append(new_pipeline) num_trial = 0 num_trial += 1 # select the pipeline that lstm predicts to be the best print("LSTM>Filtering best pipeline from candidates") best_pipeline = LSTM_filter(self.lstm_path, candidate_pipelines, 1, is_json=False)[0] best_sklearn_predictor = best_pipeline[-1] print("LSTM>Best candidate found") print(best_pipeline) loading_pipelines_dict = {self.get_key(pipeline):pipeline for pipeline in self.get_data_loading_pipelines()} best_pipeline_key = self.get_key_from_str(best_pipeline[0:-1]) kwargs = { "data_loading_pipeline": loading_pipelines_dict[best_pipeline_key], "sklearn_predictor": best_sklearn_predictor } pipeliner = utils.primitive_pipeline_utils.SKLearnPipeliner(**kwargs) # mark the pipeline as visited self.cache.add(self.get_key_from_str(best_pipeline)) # Run # TODO(maxlam): Put a timeout? try: # Enforce time limit. Hack: Run with half the time limit to see if it finishes. if self.tlimit is not None: finished = utils.utils.run_with_limited_time(pipeliner.run, (dataset_train,), {"eval_datasets":dataset_validate, "return_pipeline":True}, self.tlimit/2) if not finished: raise Exception("TLE") results = pipeliner.run(dataset_train, eval_datasets=[dataset_validate], return_pipeline=True) predictions, pipeline = results[0][0].values['outputs.0'], results[1] score = utils.train_utils.score(predictions, dataset_validate, problem_doc) except Exception as e: predictions = None pipeline = None score = None print(e) # Score the predictions return_result = (None, None) if score is not None: return_result = (score, pipeline.to_json(indent=4, sort_keys=True, ensure_ascii=False)) return return_result
d3m-model-search-master
Stanford-D3M-Full/executors/SklearnStackedLSTMExecutor.py
import sys import os from multiprocessing import Process, Queue, JoinableQueue from queue import Empty import logging import uuid import d3m.utils from d3m.utils import redirect_to_logging QUEUE_TIMEOUT = 3 """ The Executor class, a framework around a process to make processing input items from a queue and returning outputs more easily. """ class Executor(Process): def __init__(self, inputs_queue, results_queue): Process.__init__(self) self.inputs_queue = inputs_queue self.results_queue = results_queue def process_item(self, input_item): """ Processes an item from the inputs_queue, returns an object to be added to the results_queue. """ raise NotImplementedError() def run(self): while True: try: input_item = self.inputs_queue.get(True, QUEUE_TIMEOUT) result = self.process_item(input_item) self.results_queue.put(result, True, QUEUE_TIMEOUT) self.inputs_queue.task_done() except Empty: continue
d3m-model-search-master
Stanford-D3M-Full/executors/Executor.py
import utils.utils import utils.primitive_pipeline_utils import utils.train_utils import executors.Executor class SimpleRandomSklearnExecutor(executors.Executor.Executor): """ Executor that processes tuples of (problem_doc, dataset) and writes (pipelines, scores) to the results. """ def __init__(self, inputs_queue, results_queue, override_sklearn_primitives_set=None, tlimit=None): super().__init__(inputs_queue, results_queue) # Option to override set of sklearn primitives to sample from self.override_sklearn_primitives_set = override_sklearn_primitives_set self.tlimit = tlimit ''' Commenting outpart of pipeline for now, as we do not have RandomSamplingImputer defined in primitives yet [ { "stage_name" : "denormalize", "primitive" : "d3m.primitives.data_transformation.denormalize.Common", "input" : utils.primitive_pipeline_utils.PipelineWrapper.PIPELINE_INPUT, }, { "stage_name" : "dataset_to_dataframe", "primitive" : "d3m.primitives.data_transformation.dataset_to_dataframe.Common", "input" : "denormalize" }, { "stage_name" : "column_parser", "primitive" : "d3m.primitives.data_transformation.column_parser.DataFrameCommon", "input" : "dataset_to_dataframe", }, { "stage_name" : "extract_attributes", "primitive" : "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon", "input" : "column_parser", "hyperparameters" : { "semantic_types" : ['https://metadata.datadrivendiscovery.org/types/Attribute'] } }, { "stage_name" : "targets", "primitive" : "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon", "input" : "column_parser", "hyperparameters" : { "semantic_types" : ['https://metadata.datadrivendiscovery.org/types/Target'] } }, { "stage_name": "attributes", "primitive": "d3m.primitives.data_transformation.cast_to_type.Common", "input": "extract_attributes", "hyperparameters" : { "type_to_cast" : "float" } }, { "stage_name": "attributes", "primitive": "d3m.primitives.byudml.imputer.RandomSamplingImputer", "input": "cast_to_type" }, ], ''' def get_data_loading_pipelines(self): return [ [ { "stage_name" : "denormalize", "primitive" : "d3m.primitives.data_transformation.denormalize.Common", "input" : utils.primitive_pipeline_utils.PipelineWrapper.PIPELINE_INPUT, }, { "stage_name" : "dataset_to_dataframe", "primitive" : "d3m.primitives.data_transformation.dataset_to_dataframe.Common", "input" : "denormalize" }, { "stage_name" : "column_parser", "primitive" : "d3m.primitives.data_transformation.column_parser.DataFrameCommon", "input" : "dataset_to_dataframe", }, { "stage_name" : "extract_attributes", "primitive" : "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon", "input" : "column_parser", "hyperparameters" : { "semantic_types" : ['https://metadata.datadrivendiscovery.org/types/Attribute'] } }, { "stage_name" : "targets", "primitive" : "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon", "input" : "column_parser", "hyperparameters" : { "semantic_types" : ['https://metadata.datadrivendiscovery.org/types/Target'] } }, { "stage_name": "cast_to_type", "primitive": "d3m.primitives.data_transformation.cast_to_type.Common", "input": "extract_attributes", "hyperparameters" : { "type_to_cast" : "float" } }, { "stage_name": "attributes", "input": "cast_to_type", "primitive": "d3m.primitives.data_cleaning.imputer.SKlearn", }, ] ] def process_item(self, input_item): problem_doc, dataset = input_item # Split into train and validation dataset_train, dataset_validate = ( utils.train_utils.split_dataset(dataset, problem_doc)) # Run kwargs = { "data_loading_pipeline_candidates": self.get_data_loading_pipelines() } pipeliner = utils.primitive_pipeline_utils.SKLearnPipeliner(**kwargs) if self.override_sklearn_primitives_set is not None: pipeliner.sklearn_primitives = self.override_sklearn_primitives_set # TODO(maxlam): Put a timeout? try: # Enforce time limit. Hack: Run with half the time limit to see if it finishes. if self.tlimit is not None: finished = utils.utils.run_with_limited_time(pipeliner.run, (dataset_train,), {"eval_datasets":dataset_validate, "return_pipeline":True}, self.tlimit/2) if not finished: raise Exception("TLE") results = pipeliner.run(dataset_train, eval_datasets=[dataset_validate], return_pipeline=True) predictions, pipeline = results[0][0].values['outputs.0'], results[1] score = utils.train_utils.score(predictions, dataset_validate, problem_doc) except Exception as e: predictions = None pipeline = None score = None print(e) # Score the predictions return_result = (None, None) if score is not None: return_result = (score, pipeline.to_json(indent=4, sort_keys=True, ensure_ascii=False)) return return_result
d3m-model-search-master
Stanford-D3M-Full/executors/SimpleRandomSklearnExecutor.py
import matplotlib.pyplot as plt import numpy as np import argparse import json ''' Given multiple benchmark data, compare them and plot the result ''' if __name__ == "__main__": benchmark_results = ["190225_lstm_sklearn_n_threads_1_tlimit_100.json", "190225_simple_sklearn_n_threads_1_tlimit_100.json"] results = [] for result in benchmark_results: with open("benchmarks/" + result, "r") as f: data = json.load(f) timesteps = (data["data"]["timestamps"]) scores = (data["data"]["scores"]) results.append((timesteps, scores)) fig, ax = plt.subplots(nrows=1, ncols=1) for result in results: (timesteps, scores) = result cumulative_max_scores = list(np.maximum.accumulate(scores)) ax.plot(timesteps, cumulative_max_scores) print([str(timestep) + ": " + str(score) for timestep, score in zip(timesteps, cumulative_max_scores)]) ax.legend(benchmark_results, loc='lower right') fig.savefig('benchmarks/compare.png') print("Finished comparing models")
d3m-model-search-master
Stanford-D3M-Full/apps/compare_benchmarks.py
import time import json import sys import os import argparse from multiprocessing import Process, Queue, JoinableQueue from d3m.metadata.pipeline import Pipeline, PrimitiveStep from d3m.metadata.base import ArgumentType, Context from d3m.runtime import Runtime import executors.ExtendedSklearnExecutor import executors.SimpleRandomSklearnExecutor import executors.NistSaverExecutor import executors.Executor import utils.utils import utils.train_utils if __name__ == "__main__": # Get args try: path_to_pipeline_json = sys.argv[1] inputdir = sys.argv[2] # Load datasets problem_doc, dataset = utils.utils.load_data_from_dir(inputdir) # Create pipeline with open(path_to_pipeline_json, "r") as f: pipeline = Pipeline.from_json(f.read()) pipeline_runtime = Runtime(pipeline, context=Context.TESTING) pipeline_runtime.fit(inputs=[dataset], return_values=['outputs.0']) problem_doc_score, dataset_score = utils.utils.load_data_from_dir(inputdir, mode="score") score_predictions = pipeline_runtime.produce(inputs=[dataset_score], return_values=['outputs.0']) score_predictions = score_predictions.values['outputs.0'] # Evaluate scores on score dir achieved_score = utils.train_utils.score(score_predictions, dataset_score, problem_doc_score) print(achieved_score) except: print("N/A")
d3m-model-search-master
Stanford-D3M-Full/apps/compute_score.py
import time import json import sys import os import argparse import copy from multiprocessing import Process, Queue, JoinableQueue import executors.ExtendedSklearnExecutor import executors.SimpleRandomSklearnExecutor import executors.HyperbandExecutor import executors.NistSaverExecutor import executors.SklearnStackedLSTMExecutor import executors.Executor import utils.utils import datetime import json SIMPLE_SKLEARN = 'simple_sklearn' EXTENDED_SKLEARN = 'extended_sklearn' HYPERBAND = 'hyperband' LSTM_SKLEARN = 'lstm_sklearn' parser = argparse.ArgumentParser() parser.add_argument("--n_threads", help="Number of threads for parallel search", type=int, default=8) parser.add_argument("--tlimit", help="Time limit in seconds", type=int, default=60*5) parser.add_argument("--executor", help="Which executor to run", type=str, default="simple_sklearn", choices=[SIMPLE_SKLEARN, EXTENDED_SKLEARN, HYPERBAND, LSTM_SKLEARN]) parser.add_argument("--save_all_scored_pipelines_path", help="Path to json file to save a list of scored pipelines. If None then scored pipelines are not saved.", type=str, default=None) parser.add_argument("--tlimit_per_pipeline", help="Time limit for executing a single pipeline. Only works for simple_sklearn and extended_sklearn executors.", type=int, default=None) parser.add_argument("--lstm_path", help="Path (up to file name) for the lstm model to use", type=str, default=None) parser.add_argument("--save_benchmark",help="Whether to save the benchmarkoutput or not", action="store_true") def select_executor(executor_string): if executor_string == SIMPLE_SKLEARN: return executors.SimpleRandomSklearnExecutor.SimpleRandomSklearnExecutor if executor_string == EXTENDED_SKLEARN: return executors.ExtendedSklearnExecutor.ExtendedSklearnExecutor if executor_string == HYPERBAND: return executors.HyperbandExecutor.HyperbandExecutor if executor_string == LSTM_SKLEARN: return executors.SklearnStackedLSTMExecutor.SklearnStackedLSTMExecutor def main(raw_args=None): args = parser.parse_args(raw_args) print("Starting search with n_threads=%d, tlimit=%d" % (args.n_threads, args.tlimit)) # Input directory inputdir = os.environ["D3MINPUTDIR"] outputdir = os.environ["D3MOUTPUTDIR"] # Get problem doc and dataset_uri problem_doc, dataset = utils.utils.load_data_from_dir(inputdir) # Create executor inputs_queue = JoinableQueue() results_queue = JoinableQueue() executor = select_executor(args.executor) kwargs = {} if args.tlimit_per_pipeline is not None: assert args.executor in [SIMPLE_SKLEARN, EXTENDED_SKLEARN, LSTM_SKLEARN] kwargs["tlimit"] = args.tlimit_per_pipeline if args.lstm_path is not None: assert args.executor == LSTM_SKLEARN kwargs["lstm_path"] = args.lstm_path sklearn_executors = [ executor( inputs_queue, results_queue, **kwargs ) for i in range(args.n_threads)] # Executor for saving configurations save_pipelines_queue = JoinableQueue() unused_queue = JoinableQueue() nist_saver = executors.NistSaverExecutor.NistSaverExecutor( save_pipelines_queue, unused_queue) # Start executors for executor in sklearn_executors: executor.start() nist_saver.start() # Number of requests in the queue at a time target_queue_length = 100 start_time = time.time() # Processed results processed_results = [] # save progress timestamps = [] scores = [] while time.time() - start_time <= args.tlimit: # Refill the inputs queue if inputs_queue.empty(): print("Refilling queue...") for i in range(target_queue_length): inputs_queue.put((problem_doc, dataset)) while not results_queue.empty(): result = results_queue.get(True, executors.Executor.QUEUE_TIMEOUT) if None not in result: processed_results.append(result) print("Got result! Have %d results." % len(processed_results)) # Save it score, pipeline_json = result item = ( outputdir, pipeline_json, problem_doc, score ) save_pipelines_queue.put(item) timestamps.append(time.time() - start_time) scores.append(score) time.sleep(executors.Executor.QUEUE_TIMEOUT) # Terminate executors for executor in sklearn_executors: executor.terminate() print("#"*100) print("Done") print("#"*100) print(processed_results) print("#"*100) print("Collected %d total results" % len(processed_results)) if args.save_all_scored_pipelines_path is not None: # Gather all pipeline jsons all_pipeline_dicts = [] for result in processed_results: score, pipeline_json = result # Override pipeline_rank with normalized score normalized_score = utils.utils.get_global_score(score, problem_doc) pipeline_dict = json.loads(pipeline_json) pipeline_dict["pipeline_rank"] = normalized_score pipeline_json_modded = json.dumps(pipeline_dict) all_pipeline_dicts.append(pipeline_json_modded) with open(args.save_all_scored_pipelines_path, "w") as save_pipelines_file: json.dump(all_pipeline_dicts, save_pipelines_file) if args.save_benchmark: filename = datetime.datetime.today().strftime('%y%m%d') + "_" + args.executor for key,val in vars(args).items(): if key in ["n_threads", "tlimit", "tlimit_per_pipeline"] and val is not None: filename += "_{}_{}".format(key, val) content = { "arguments": vars(args), "data": { "timestamps": timestamps, "scores": scores } } with open("./apps/benchmarks/"+filename+".json", 'w') as f: json.dump(content, f) if __name__ == "__main__": main()
d3m-model-search-master
Stanford-D3M-Full/apps/basic_run.py
import sys import json import pandas import numpy as np import os import traceback from d3m.runtime import Runtime import utils.utils import utils.train_utils import utils.primitive_pipeline_utils if __name__ == "__main__": # Get args path_to_pipeline_json = sys.argv[1] inputdir = sys.argv[2] outputdir = sys.argv[3] ################ # Load dataset # ################ problem_doc_train, dataset_train = ( utils.utils.load_data_from_dir(inputdir, mode="train")) ################### # Create pipeline # ################### with open(path_to_pipeline_json, "r") as f: pipeline = utils.primitive_pipeline_utils.load_pipeline(f.read()) pipeline_runtime = Runtime(pipeline) pipeline_runtime.fit(inputs=[dataset_train]) ############################ # Try scoring on SCORE set # ############################ try: problem_doc_score, dataset_score = utils.utils.load_data_from_dir(inputdir, mode="score") score_predictions = pipeline_runtime.produce(inputs=[dataset_score]).values['outputs.0'] validation_score = utils.train_utils.get_score_on_score_set(inputdir, problem_doc_score, score_predictions) print("PipelineId: %s, Score: %s" % (pipeline.id, validation_score)) except: print("-------------------------------") print("Failed to evaluate on SCORE set") print("-------------------------------") traceback.print_exc() ####################### # Predict on TEST set # ####################### try: problem_doc_test, dataset_test = utils.utils.load_data_from_dir(inputdir, mode="test") test_predictions = pipeline_runtime.produce(inputs=[dataset_test]).values['outputs.0'] savedir = "%s/predictions/%s" % (outputdir, pipeline.id) if not os.path.exists(savedir): os.makedirs(savedir) savepath = "%s/predictions.csv" % (savedir) utils.utils.write_predictions_to_file(test_predictions, savepath, problem_doc_test, dataset=dataset_test) except: print("-------------------------------") print("Failed to predict on TEST set") print("-------------------------------") traceback.print_exc()
d3m-model-search-master
Stanford-D3M-Full/apps/predict.py
d3m-model-search-master
Stanford-D3M-Full/apps/__init__.py
import time import json import sys import os import argparse from multiprocessing import Process, Queue, JoinableQueue from d3m.metadata.pipeline import Pipeline, PrimitiveStep from d3m.runtime import Runtime import executors.ExtendedSklearnExecutor import executors.SimpleRandomSklearnExecutor import executors.NistSaverExecutor import executors.Executor import utils.utils import utils.train_utils if __name__ == "__main__": # Get args try: achieved_score = float(sys.argv[1]) baseline_score = float(sys.argv[2]) inputdir = sys.argv[3] # Load datasets problem_doc, dataset = utils.utils.load_data_from_dir(inputdir) # Normalize score achieved_score = utils.utils.get_global_score(achieved_score, problem_doc) baseline_score = utils.utils.get_global_score(baseline_score, problem_doc) win = int(achieved_score < baseline_score) print(win) except Exception as e: print("0")
d3m-model-search-master
Stanford-D3M-Full/apps/compare_score.py
import time import json import sys import os import argparse from multiprocessing import Process, Queue, JoinableQueue from d3m.runtime import Runtime import executors.ExtendedSklearnExecutor import executors.SimpleRandomSklearnExecutor import executors.NistSaverExecutor import executors.Executor import utils.utils import utils.train_utils if __name__ == "__main__": print("Usage: python -m apps.debug_pipeline abs_path_to_problem_and_dataset") path_to_problem_dataset = sys.argv[1] # Create a pipeline that just extracts attributes and target p = utils.primitive_pipeline_utils.PipelineWrapper( [ { "stage_name" : "denormalize", "primitive" : "d3m.primitives.data_transformation.denormalize.Common", "input" : utils.primitive_pipeline_utils.PipelineWrapper.PIPELINE_INPUT, }, { "stage_name" : "dataset_to_dataframe", "primitive" : "d3m.primitives.data_transformation.dataset_to_dataframe.Common", "input" : "denormalize" }, { "stage_name" : "column_parser", "primitive" : "d3m.primitives.data_transformation.column_parser.DataFrameCommon", "input" : "dataset_to_dataframe", }, { "stage_name" : "targets", "primitive" : "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon", "input" : "column_parser", "hyperparameters" : { "semantic_types" : ['https://metadata.datadrivendiscovery.org/types/Target'] } }, { "stage_name": "attributes", "primitive": "d3m.primitives.sri.psl.GeneralRelationalDataset", #"primitive": "d3m.primitives.sri.autoflow.DatasetTextReader", "input": utils.primitive_pipeline_utils.PipelineWrapper.PIPELINE_INPUT, #"hyperparameters": { # "jvm_memory" : .1, # "psl_temp_dir": "/tmp/testinggyoo" #} }, { "stage_name": "cast_to_type", "input": "attributes", "primitive": "d3m.primitives.data_transformation.cast_to_type.Common", "hyperparameters" : { "type_to_cast" : "float" } }, #{ # "stage_name": "attributes", # "primitive": "d3m.primitives.data_cleaning.imputer.SKlearn", # "input": "cast_to_type" #}, { "stage_name" : "output", "input" : "cast_to_type", "primitive": "d3m.primitives.classification.extra_trees.SKlearn", # "primitive": "d3m.primitives.classification.linear_svc.SKlearn", # #"primitive":"d3m.primitives.regression.random_forest.SKlearn", "arguments": { "outputs": "targets" }, #"hyperparameters": { # "use_semantic_types": True # } } ]) # Load sample data data_uri = path_to_problem_dataset assert(os.path.exists(data_uri)) problem_doc, dataset_train = utils.utils.load_data_from_dir(data_uri, mode="train") problem_doc, dataset_score = utils.utils.load_data_from_dir(data_uri, mode="score") # Run predictions = p.run(dataset_train, eval_datasets=[dataset_score], return_pipeline=False) assert(len(predictions[0].values.keys()) > 0) predictions = predictions[0].values["outputs.0"] print("YOOO", predictions) # Score achieved_score = utils.train_utils.score(predictions, dataset_score, problem_doc) print("Achieved: %s" % str(achieved_score))
d3m-model-search-master
Stanford-D3M-Full/apps/debug_pipeline.py
# coding=utf-8 # Copyright 2020- The Google AI Language Team Authors and The HuggingFace Inc. team and Facebook Inc. # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Named entity recognition fine-tuning: utilities to work with CoNLL-2003 task. """ import logging import os logger = logging.getLogger(__name__) class InputExample(object): """A single training/test example for token classification.""" def __init__(self, guid, words, labels): """Constructs a InputExample. Args: guid: Unique id for the example. words: list. The words of the sequence. labels: (Optional) list. The labels for each word of the sequence. This should be specified for train and dev examples, but not for test examples. """ self.guid = guid self.words = words self.labels = labels class InputFeatures(object): """A single set of features of data.""" def __init__(self, input_ids, input_mask, segment_ids, label_ids): self.input_ids = input_ids self.input_mask = input_mask self.segment_ids = segment_ids self.label_ids = label_ids def read_examples_from_file(data_dir, mode): file_path = os.path.join(data_dir, "{}.txt".format(mode)) guid_index = 1 examples = [] with open(file_path, encoding="utf-8") as f: words = [] labels = [] for line in f: if line.startswith("-DOCSTART-") or line == "" or line == "\n": if words: examples.append(InputExample(guid="{}-{}".format(mode, guid_index), words=words, labels=labels)) guid_index += 1 words = [] labels = [] else: splits = line.split(" ") words.append(splits[0]) if len(splits) > 1: labels.append(splits[-1].replace("\n", "")) else: # Examples could have no label for mode = "test" labels.append("O") if words: examples.append(InputExample(guid="{}-{}".format(mode, guid_index), words=words, labels=labels)) return examples def convert_examples_to_features( examples, label_list, max_seq_length, tokenizer, cls_token_at_end=False, cls_token="[CLS]", cls_token_segment_id=1, sep_token="[SEP]", sep_token_extra=False, pad_on_left=False, pad_token=0, pad_token_segment_id=0, pad_token_label_id=-100, sequence_a_segment_id=0, mask_padding_with_zero=True, ): """ Loads a data file into a list of `InputBatch`s `cls_token_at_end` define the location of the CLS token: - False (Default, BERT/XLM pattern): [CLS] + A + [SEP] + B + [SEP] - True (XLNet/GPT pattern): A + [SEP] + B + [SEP] + [CLS] `cls_token_segment_id` define the segment id associated to the CLS token (0 for BERT, 2 for XLNet) """ label_map = {label: i for i, label in enumerate(label_list)} features = [] for (ex_index, example) in enumerate(examples): if ex_index % 10000 == 0: logger.info("Writing example %d of %d", ex_index, len(examples)) tokens = [] label_ids = [] for word, label in zip(example.words, example.labels): word_tokens = tokenizer.tokenize(word) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(word_tokens) > 0: tokens.extend(word_tokens) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(word_tokens) - 1)) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. special_tokens_count = tokenizer.num_added_tokens() if len(tokens) > max_seq_length - special_tokens_count: tokens = tokens[: (max_seq_length - special_tokens_count)] label_ids = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] segment_ids = [sequence_a_segment_id] * len(tokens) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: tokens = [cls_token] + tokens label_ids = [pad_token_label_id] + label_ids segment_ids = [cls_token_segment_id] + segment_ids input_ids = tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) # Zero-pad up to the sequence length. padding_length = max_seq_length - len(input_ids) if pad_on_left: input_ids = ([pad_token] * padding_length) + input_ids input_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask segment_ids = ([pad_token_segment_id] * padding_length) + segment_ids label_ids = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(input_ids) == max_seq_length, breakpoint() assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length assert len(label_ids) == max_seq_length if ex_index < 5: logger.info("*** Example ***") logger.info("guid: %s", example.guid) logger.info("tokens: %s", " ".join([str(x) for x in tokens])) logger.info("input_ids: %s", " ".join([str(x) for x in input_ids])) logger.info("input_mask: %s", " ".join([str(x) for x in input_mask])) logger.info("segment_ids: %s", " ".join([str(x) for x in segment_ids])) logger.info("label_ids: %s", " ".join([str(x) for x in label_ids])) features.append( InputFeatures(input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, label_ids=label_ids) ) return features def get_labels(path): if path: with open(path, "r") as f: labels = f.read().splitlines() if "O" not in labels: labels = ["O"] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"]
bio-lm-main
biolm/utils_sequence_labelling.py
# Copyright (c) 2020-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. #
bio-lm-main
biolm/__init__.py
# coding=utf-8 # Copyright 2020- The Google AI Language Team Authors and The HuggingFace Inc. team and Facebook Inc. # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """processors and helpers for classification""" import logging import os from transformers.file_utils import is_tf_available from transformers.data.processors.utils import DataProcessor, InputExample, InputFeatures from transformers.data.metrics import pearson_and_spearman, simple_accuracy from sklearn.metrics import f1_score, precision_score, recall_score, precision_recall_fscore_support import numpy as np import json if is_tf_available(): import tensorflow as tf logger = logging.getLogger(__name__) def convert_examples_to_features( examples, tokenizer, max_length=512, task=None, label_list=None, output_mode=None, pad_on_left=False, pad_token=0, pad_token_segment_id=0, mask_padding_with_zero=True, ): """ Loads a data file into a list of ``InputFeatures`` Args: examples: List of ``InputExamples`` or ``tf.data.Dataset`` containing the examples. tokenizer: Instance of a tokenizer that will tokenize the examples max_length: Maximum example length task: GLUE task label_list: List of labels. Can be obtained from the processor using the ``processor.get_labels()`` method output_mode: String indicating the output mode. Either ``regression`` or ``classification`` pad_on_left: If set to ``True``, the examples will be padded on the left rather than on the right (default) pad_token: Padding token pad_token_segment_id: The segment ID for the padding token (It is usually 0, but can vary such as for XLNet where it is 4) mask_padding_with_zero: If set to ``True``, the attention mask will be filled by ``1`` for actual values and by ``0`` for padded values. If set to ``False``, inverts it (``1`` for padded values, ``0`` for actual values) Returns: If the ``examples`` input is a ``tf.data.Dataset``, will return a ``tf.data.Dataset`` containing the task-specific features. If the input is a list of ``InputExamples``, will return a list of task-specific ``InputFeatures`` which can be fed to the model. """ is_tf_dataset = False if is_tf_available() and isinstance(examples, tf.data.Dataset): is_tf_dataset = True if task is not None: processor = processors[task]() if label_list is None: label_list = processor.get_labels() logger.info("Using label list %s for task %s" % (label_list, task)) if output_mode is None: output_mode = output_modes[task] logger.info("Using output mode %s for task %s" % (output_mode, task)) label_map = {label: i for i, label in enumerate(label_list)} features = [] for (ex_index, example) in enumerate(examples): len_examples = 0 if is_tf_dataset: example = processor.get_example_from_tensor_dict(example) example = processor.tfds_map(example) len_examples = tf.data.experimental.cardinality(examples) else: len_examples = len(examples) if ex_index % 10000 == 0: logger.info("Writing example %d/%d" % (ex_index, len_examples)) inputs = tokenizer.encode_plus( example.text_a, example.text_b, add_special_tokens=True, max_length=max_length, return_token_type_ids=True, ) input_ids, token_type_ids = inputs["input_ids"], inputs["token_type_ids"] # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. attention_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) # Zero-pad up to the sequence length. padding_length = max_length - len(input_ids) if pad_on_left: input_ids = ([pad_token] * padding_length) + input_ids attention_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + attention_mask token_type_ids = ([pad_token_segment_id] * padding_length) + token_type_ids else: input_ids = input_ids + ([pad_token] * padding_length) attention_mask = attention_mask + ([0 if mask_padding_with_zero else 1] * padding_length) token_type_ids = token_type_ids + ([pad_token_segment_id] * padding_length) assert len(input_ids) == max_length, "Error with input length {} vs {}".format(len(input_ids), max_length) assert len(attention_mask) == max_length, "Error with input length {} vs {}".format( len(attention_mask), max_length ) assert len(token_type_ids) == max_length, "Error with input length {} vs {}".format( len(token_type_ids), max_length ) if output_mode == "classification": label = label_map[example.label] elif output_mode == "regression": label = float(example.label) elif output_mode == 'multilabel_classification': label = [label_map[l] for l in example.label] else: raise KeyError(output_mode) if ex_index < 5: logger.info("*** Example ***") logger.info("guid: %s" % (example.guid)) logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) logger.info("attention_mask: %s" % " ".join([str(x) for x in attention_mask])) logger.info("token_type_ids: %s" % " ".join([str(x) for x in token_type_ids])) if output_mode == 'multilabel_classification': logger.info("label: %s (id = %s)" % (example.label, str(label))) else: logger.info("label: %s (id = %d)" % (example.label, label)) features.append( InputFeatures( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, label=label ) ) if is_tf_available() and is_tf_dataset: def gen(): for ex in features: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) return tf.data.Dataset.from_generator( gen, ({"input_ids": tf.int32, "attention_mask": tf.int32, "token_type_ids": tf.int32}, tf.int64), ( { "input_ids": tf.TensorShape([None]), "attention_mask": tf.TensorShape([None]), "token_type_ids": tf.TensorShape([None]), }, tf.TensorShape([]), ), ) return features class HOCProcessor(DataProcessor): """Processor for the HOC data set""" def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample( tensor_dict["idx"].numpy(), tensor_dict["sentence"].numpy().decode("utf-8"), None, str(tensor_dict["label"].numpy()), ) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_labels(self): """See base class.""" return [ 'activating invasion and metastasis', 'avoiding immune destruction', 'cellular energetics', 'enabling replicative immortality', 'evading growth suppressors', 'genomic instability and mutation', 'inducing angiogenesis', 'resisting cell death', 'sustaining proliferative signaling', 'tumor promoting inflammation' ] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i != 0: guid = "%s-%s" % (set_type, line[0]) text_a = line[1] label = line[2].split(',') if line[2] != '' else [] examples.append(InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) return examples class MedNLIProcessor(DataProcessor): """Processor for the HOC data set""" def get_example_from_tensor_dict(self, tensor_dict): return InputExample( tensor_dict["idx"].numpy(), tensor_dict["sentence1"].numpy().decode("utf-8"), tensor_dict["sentence2"].numpy().decode("utf-8"), str(tensor_dict["label"].numpy()), ) def _read_jsonl(self, fi): dps = [] for line in open(fi): dps.append(json.loads(line)) return dps def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_jsonl(os.path.join(data_dir, "mli_train_v1.jsonl")), 'train') def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_jsonl(os.path.join(data_dir, "mli_dev_v1.jsonl")), 'dev') def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_jsonl(os.path.join(data_dir, "mli_test_v1.jsonl")), 'test') def get_labels(self): """See base class.""" return ["entailment", 'neutral', "contradiction"] def _create_examples(self, items, set_type): """Creates examples for the training and dev sets.""" examples = [] for item in items: guid = set_type + '-' + item['pairID'] text_a = item['sentence1'] text_b =item['sentence2'] label = item['gold_label'] examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class ChemProtProcessor(DataProcessor): """Processor for the HOC data set""" chem_pattern = '@CHEMICAL$' gene_pattern = '@GENE$' chem_gene_pattern = "@CHEMICAL-GENE$" def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample( tensor_dict["idx"].numpy(), tensor_dict["sentence"].numpy().decode("utf-8"), None, str(tensor_dict["label"].numpy()), ) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") def get_labels(self): """See base class.""" return ['CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', 'false'] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i != 0: guid = "%s-%s-%s" % (str(i), set_type, line[0]) if True:#line[2] != 'false': text_a = line[1] text_a = text_a.replace('@CHEMICAL$', self.chem_pattern).replace( '@GENE$', self.gene_pattern).replace( '@CHEM-GENE$', self.chem_gene_pattern) label = line[2] assert label in self.get_labels() examples.append(InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) return examples class GADProcessor(DataProcessor): """Processor for the HOC data set""" disease_pattern = '@DISEASE$' gene_pattern = '@GENE$' fold = 1 def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample( tensor_dict["idx"].numpy(), tensor_dict["sentence"].numpy().decode("utf-8"), None, str(tensor_dict["label"].numpy()), ) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, str(self.fold), f"train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, str(self.fold), f"test.tsv")), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, str(self.fold), f"test.tsv")), "test") def get_labels(self): """See base class.""" return ['0', '1'] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if len(line) == 2: line = [i] + line if line[0] == 'index': continue guid = "%s-%s-%s" % (str(i), set_type, line[0]) text_a = line[1] text_a = text_a.replace('@DISEASE$', self.disease_pattern).replace( '@GENE$', self.gene_pattern) label = line[2] examples.append(InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) return examples class EUADRProcessor(DataProcessor): """Processor for the HOC data set""" disease_pattern = '@DISEASE$' gene_pattern = '@GENE$' fold = 1 def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample( tensor_dict["idx"].numpy(), tensor_dict["sentence"].numpy().decode("utf-8"), None, str(tensor_dict["label"].numpy()), ) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, str(self.fold), f"train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, str(self.fold), f"test.tsv")), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, str(self.fold), f"test.tsv")), "test") def get_labels(self): """See base class.""" return ['0', '1'] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if len(line) == 2: line = [i] + line if line[0] == 'index': continue guid = "%s-%s-%s" % (str(i), set_type, line[0]) text_a = line[1] text_a = text_a.replace('@DISEASE$', self.disease_pattern).replace( '@GENE$', self.gene_pattern) label = line[2] examples.append(InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) return examples class DDIProcessor(DataProcessor): """Processor for the HOC data set""" drug_pattern = '@DRUG$' drug_drug_pattern = '@DRUG-DRUG$' def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample( tensor_dict["idx"].numpy(), tensor_dict["sentence"].numpy().decode("utf-8"), None, str(tensor_dict["label"].numpy()), ) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") def get_labels(self): """See base class.""" return ['DDI-advise', 'DDI-effect', 'DDI-int', 'DDI-mechanism', 'DDI-false'] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i != 0: guid = "%s-%s-%s" % (str(i), set_type, line[0]) # if line[2] == 'DDI-false': # continue text_a = line[1] text_a = text_a.replace('@DRUG$', self.drug_pattern).replace( '@DRUG-DRUG$', self.drug_drug_pattern) label = line[2] examples.append(InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) return examples class I2B22010Processor(DataProcessor): """Processor for the HOC data set""" problem_pattern = '@PROBLEM$' treatment_pattern = '@TREATMENT$' test_pattern = '@TEST$' problem_problem_pattern = "@PROBLEM-PROBLEM$" test_problem_pattern = "@TEST-PROBLEM$" test_test_pattern = "@TEST-TEST$" treatment_test_pattern = '@TREATMENT-TEST$' treatment_treatment_pattern = '@TREATMENT-TREATMENT$' def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample( tensor_dict["idx"].numpy(), tensor_dict["sentence"].numpy().decode("utf-8"), None, str(tensor_dict["label"].numpy()), ) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "train_new.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev_new.tsv")), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") def get_labels(self): """See base class.""" return ['PIP', 'TeCP', 'TeRP', 'TrAP', 'TrCP', 'TrIP', 'TrNAP', 'TrWP','false'] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i != 0: guid = "%s-%s-%s" % (str(i), set_type, line[0]) text_a = line[1] text_a = text_a.replace( '@problem$', self.problem_pattern).replace( '@treatment$', self.treatment_pattern).replace( '@test$', self.test_pattern).replace( "@problem-problem$", self.problem_problem_pattern).replace( "@test-problem$", self.test_problem_pattern).replace( "@test-test$", self.test_test_pattern).replace( '@treatment-test$', self.treatment_test_pattern).replace( '@treatment-treatment$', self.treatment_treatment_pattern ) label = line[2] assert label in self.get_labels() examples.append(InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) return examples tasks_num_labels = { "hoc": 10, "mednli": 3, "chemprot": 6, "gad1": 2, "gad2": 2, "gad3": 2, "gad4": 2, "gad5": 2, "gad6": 2, "gad7": 2, "gad8": 2, "gad9": 2, "gad10": 2, "euadr1": 2, "euadr2": 2, "euadr3": 2, "euadr4": 2, "euadr5": 2, "euadr6": 2, "euadr7": 2, "euadr8": 2, "euadr9": 2, "euadr10": 2, 'ddi': 5, "i2b22010re": 9, } processors = { "hoc": HOCProcessor, "mednli": MedNLIProcessor, "chemprot": ChemProtProcessor, "gad1": GADProcessor, "gad2": GADProcessor, "gad3": GADProcessor, "gad4": GADProcessor, "gad5": GADProcessor, "gad6": GADProcessor, "gad7": GADProcessor, "gad8": GADProcessor, "gad9": GADProcessor, "gad10": GADProcessor, "euadr1": EUADRProcessor, "euadr2": EUADRProcessor, "euadr3": EUADRProcessor, "euadr4": EUADRProcessor, "euadr5": EUADRProcessor, "euadr6": EUADRProcessor, "euadr7": EUADRProcessor, "euadr8": EUADRProcessor, "euadr9": EUADRProcessor, "euadr10": EUADRProcessor, "ddi": DDIProcessor, "i2b22010re": I2B22010Processor, } output_modes = { "hoc": "multilabel_classification", "mednli": "classification", "chemprot": "classification", "gad1": "classification", "gad2": "classification", "gad3": "classification", "gad4": "classification", "gad5": "classification", "gad6": "classification", "gad7": "classification", "gad8": "classification", "gad9": "classification", "gad10": "classification", "euadr1": "classification", "euadr2": "classification", "euadr3": "classification", "euadr4": "classification", "euadr5": "classification", "euadr6": "classification", "euadr7": "classification", "euadr8": "classification", "euadr9": "classification", "euadr10": "classification", "ddi": "classification", "i2b22010re": "classification", } stopping_metrics = { "hoc": "f", "mednli": "acc", "chemprot": "micro_f1", "gad1": "f1", "gad2": "f1", "gad3": "f1", "gad4": "f1", "gad5": "f1", "gad6": "f1", "gad7": "f1", "gad8": "f1", "gad9": "f1", "gad10": "f1", "euadr1": "f1", "euadr2": "f1", "euadr3": "f1", "euadr4": "f1", "euadr5": "f1", "euadr6": "f1", "euadr7": "f1", "euadr8": "f1", "euadr9": "f1", "euadr10": "f1", "ddi": "micro_f1", "i2b22010re": "micro_f1", } def multiclass_acc_and_f1(preds, labels): acc = simple_accuracy(preds, labels) macro_f1 = f1_score(y_true=labels, y_pred=preds, average='macro') macro_weighted_f1 = f1_score(y_true=labels, y_pred=preds, average='weighted') macro_precision = precision_score(y_true=labels, y_pred=preds, average='macro') macro_weighted_precision = precision_score(y_true=labels, y_pred=preds, average='weighted') macro_recall = recall_score(y_true=labels, y_pred=preds, average='macro') macro_weighted_recall = recall_score(y_true=labels, y_pred=preds, average='weighted') micro_f1 = f1_score(y_true=labels, y_pred=preds, average='micro') return { "acc": acc, 'micro_f1': micro_f1, "macro_f1": macro_f1, "macro_weighted_f1": macro_weighted_f1, "macro_precision": macro_precision, "macro_weighted_precision": macro_weighted_precision, "macro_recall": macro_recall, "macro_weighted_recall": macro_weighted_recall, } def acc_and_micro_f1(preds, labels): acc = simple_accuracy(preds, labels) micro_f1 = f1_score(y_true=labels, y_pred=preds, average='micro') return { "acc": acc, "micro_f1": micro_f1, } def acc_p_r_and_f1(preds, labels): acc = simple_accuracy(preds, labels) f1 = f1_score(y_true=labels, y_pred=preds, ) recall = recall_score(y_true=labels, y_pred=preds, ) precision = precision_score(y_true=labels, y_pred=preds, ) return { "acc": acc, "f1": f1, 'precision': precision, 'recall': recall } def hoc_get_p_r_f_arrary(preds, labels, examples): """adapted from BLUE benchmark: https://github.com/ncbi-nlp/BLUE_Benchmark/blob/b6216f2cb9bba209ee7028fc874123d8fd5a810c/blue/eval_hoc.py """ threshold = 0.5 cat = 10 test_predict_label = {} test_true_label = {} for pred, label, example in zip(preds, labels, examples): doc_id = example.guid.split('-')[1].split('_')[0] snum = int(example.guid.split('-')[1].split('_s')[1]) ttl = test_true_label.get(doc_id, [0 for _ in range(10)]) tpl = test_predict_label.get(doc_id, [0 for _ in range(10)]) for ind in range(10): if pred[ind] > threshold: tpl[ind] = 1 if label[ind] == 1: ttl[ind] = 1 test_true_label[doc_id] = ttl test_predict_label[doc_id] = tpl doc_ids = list(test_true_label.keys()) acc_list = [] prc_list = [] rec_list = [] f_score_list = [] for doc_id in doc_ids: label_pred_set = set() label_gold_set = set() for j in range(cat): if test_predict_label[doc_id][j] == 1: label_pred_set.add(j) if test_true_label[doc_id][j] == 1: label_gold_set.add(j) uni_set = label_gold_set.union(label_pred_set) intersec_set = label_gold_set.intersection(label_pred_set) tt = len(intersec_set) if len(label_pred_set) == 0: prc = 0 else: prc = tt / len(label_pred_set) acc = tt / len(uni_set) rec = tt / len(label_gold_set) if prc == 0 and rec == 0: f_score = 0 else: f_score = 2 * prc * rec / (prc + rec) acc_list.append(acc) prc_list.append(prc) rec_list.append(rec) f_score_list.append(f_score) mean_prc = np.mean(prc_list) mean_rec = np.mean(rec_list) def divide(x, y): return np.true_divide(x, y, out=np.zeros_like(x, dtype=np.float), where=y != 0) f_score = divide(2 * mean_prc * mean_rec, (mean_prc + mean_rec)) return {'p': mean_prc, 'r': mean_rec, 'f': f_score, 'acc': np.mean(acc_list)} def chemprot_eval(preds, labels): p,r,f,s = precision_recall_fscore_support(y_pred=preds, y_true=labels, labels=[0, 1, 2, 3, 4], average="micro") return { "micro_p": p, 'micro_f1': f, "micro_r": r, } def ddi_eval(preds, labels): p,r,f,s = precision_recall_fscore_support(y_pred=preds, y_true=labels, labels=[0, 1, 2, 3], average="micro") return { "micro_p": p, 'micro_f1': f, "micro_r": r, } def i2b22010re_eval(preds, labels): p,r,f,s = precision_recall_fscore_support(y_pred=preds, y_true=labels, labels=[0, 1, 2, 3, 4, 5, 6, 7], average="micro") return { "micro_p": p, 'micro_f1': f, "micro_r": r, } def compute_metrics(task_name, preds, labels, examples): assert len(preds) == len(labels) == len(examples) if task_name == "medsts": return pearson_and_spearman(preds, labels) elif task_name == "biosses": return pearson_and_spearman(preds, labels) elif task_name == "hoc": return hoc_get_p_r_f_arrary(preds, labels, examples) elif task_name == "mednli": return multiclass_acc_and_f1(preds, labels) elif task_name =='chemprot': return chemprot_eval(preds, labels) elif task_name == 'gad1': return acc_p_r_and_f1(preds, labels) elif task_name == 'gad2': return acc_p_r_and_f1(preds, labels) elif task_name == 'gad3': return acc_p_r_and_f1(preds, labels) elif task_name == 'gad4': return acc_p_r_and_f1(preds, labels) elif task_name == 'gad5': return acc_p_r_and_f1(preds, labels) elif task_name == 'gad6': return acc_p_r_and_f1(preds, labels) elif task_name == 'gad7': return acc_p_r_and_f1(preds, labels) elif task_name == 'gad8': return acc_p_r_and_f1(preds, labels) elif task_name == 'gad9': return acc_p_r_and_f1(preds, labels) elif task_name == 'gad10': return acc_p_r_and_f1(preds, labels) elif task_name == 'euadr1': return acc_p_r_and_f1(preds, labels) elif task_name == 'euadr2': return acc_p_r_and_f1(preds, labels) elif task_name == 'euadr3': return acc_p_r_and_f1(preds, labels) elif task_name == 'euadr4': return acc_p_r_and_f1(preds, labels) elif task_name == 'euadr5': return acc_p_r_and_f1(preds, labels) elif task_name == 'euadr6': return acc_p_r_and_f1(preds, labels) elif task_name == 'euadr7': return acc_p_r_and_f1(preds, labels) elif task_name == 'euadr8': return acc_p_r_and_f1(preds, labels) elif task_name == 'euadr9': return acc_p_r_and_f1(preds, labels) elif task_name == 'euadr10': return acc_p_r_and_f1(preds, labels) elif task_name == 'ddi': return ddi_eval(preds, labels) elif task_name == "i2b22010": return i2b22010re_eval(preds, labels) else: raise KeyError(task_name)
bio-lm-main
biolm/utils_classification.py
# coding=utf-8 # Copyright 2020- The Google AI Language Team Authors and The HuggingFace Inc. team and Facebook Inc. # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning the library models for named entity recognition and sequence labelling""" import argparse import glob import logging import os import random import numpy as np import torch from seqeval.metrics import f1_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from torch.utils.data.distributed import DistributedSampler from tqdm import tqdm, trange from transformers import ( MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, WEIGHTS_NAME, AdamW, AutoConfig, AutoModelForTokenClassification, AutoTokenizer, get_linear_schedule_with_warmup, ) from biolm.utils_sequence_labelling import convert_examples_to_features, get_labels, read_examples_from_file try: from torch.utils.tensorboard import SummaryWriter except ImportError: from tensorboardX import SummaryWriter logger = logging.getLogger(__name__) MODEL_CONFIG_CLASSES = list(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.keys()) MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) for conf in MODEL_CONFIG_CLASSES), ()) TOKENIZER_ARGS = ["do_lower_case", "strip_accents", "keep_accents", "use_fast"] def set_seed(args): random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed) def train(args, train_dataset, model, tokenizer, labels, pad_token_label_id): """ Train the model """ if args.local_rank in [-1, 0]: tb_writer = SummaryWriter() args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) if args.max_steps > 0: t_total = args.max_steps args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 else: t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs # Prepare optimizer and schedule (linear warmup and decay) no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": args.weight_decay, }, {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0}, ] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total ) # Check if saved optimizer or scheduler states exist if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile( os.path.join(args.model_name_or_path, "scheduler.pt") ): # Load in optimizer and scheduler states optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt"))) scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt"))) if args.fp16: try: from apex import amp except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) # multi-gpu training (should be after apex fp16 initialization) if args.n_gpu > 1: model = torch.nn.DataParallel(model) # Distributed training (should be after apex fp16 initialization) if args.local_rank != -1: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True ) # Train! logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_dataset)) logger.info(" Num Epochs = %d", args.num_train_epochs) logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) logger.info( " Total train batch size (w. parallel, distributed & accumulation) = %d", args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1), ) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", t_total) global_step = 0 epochs_trained = 0 steps_trained_in_current_epoch = 0 # Check if continuing training from a checkpoint if os.path.exists(args.model_name_or_path): # set global_step to gobal_step of last saved checkpoint from model path try: global_step = int(args.model_name_or_path.split("-")[-1].split("/")[0]) except ValueError: global_step = 0 epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps) steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps) logger.info(" Continuing training from checkpoint, will skip to saved global_step") logger.info(" Continuing training from epoch %d", epochs_trained) logger.info(" Continuing training from global step %d", global_step) logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch) tr_loss, logging_loss = 0.0, 0.0 model.zero_grad() train_iterator = trange( epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0] ) set_seed(args) # Added here for reproductibility for _ in train_iterator: epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) for step, batch in enumerate(epoch_iterator): # Skip past any already trained steps if resuming training if steps_trained_in_current_epoch > 0: steps_trained_in_current_epoch -= 1 continue model.train() batch = tuple(t.to(args.device) for t in batch) inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if args.model_type != "distilbert": inputs["token_type_ids"] = ( batch[2] if args.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use segment_ids outputs = model(**inputs) loss = outputs[0] # model outputs are always tuple in pytorch-transformers (see doc) if args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu parallel training if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() tr_loss += loss.item() if (step + 1) % args.gradient_accumulation_steps == 0: if args.fp16: torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) else: torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) optimizer.step() scheduler.step() # Update learning rate schedule model.zero_grad() global_step += 1 if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: # Log metrics if ( args.local_rank == -1 and args.evaluate_during_training ): # Only evaluate when single GPU otherwise metrics may not average well results, _, _ = evaluate(args, model, tokenizer, labels, pad_token_label_id, mode="dev") for key, value in results.items(): tb_writer.add_scalar("eval_{}".format(key), value, global_step) tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step) tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step) logging_loss = tr_loss if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0: # Save model checkpoint output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step)) if not os.path.exists(output_dir): os.makedirs(output_dir) model_to_save = ( model.module if hasattr(model, "module") else model ) # Take care of distributed/parallel training model_to_save.save_pretrained(output_dir) tokenizer.save_pretrained(output_dir) torch.save(args, os.path.join(output_dir, "training_args.bin")) logger.info("Saving model checkpoint to %s", output_dir) torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt")) torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt")) logger.info("Saving optimizer and scheduler states to %s", output_dir) if args.max_steps > 0 and global_step > args.max_steps: epoch_iterator.close() break if args.max_steps > 0 and global_step > args.max_steps: train_iterator.close() break if args.local_rank in [-1, 0]: tb_writer.close() return global_step, tr_loss / global_step def evaluate(args, model, tokenizer, labels, pad_token_label_id, mode, prefix=""): eval_dataset = load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, mode=mode) args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) # Note that DistributedSampler samples randomly eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset) eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) # multi-gpu evaluate if args.n_gpu > 1: model = torch.nn.DataParallel(model) # Eval! logger.info("***** Running evaluation %s *****", prefix) logger.info(" Num examples = %d", len(eval_dataset)) logger.info(" Batch size = %d", args.eval_batch_size) eval_loss = 0.0 nb_eval_steps = 0 preds = None out_label_ids = None model.eval() for batch in tqdm(eval_dataloader, desc="Evaluating"): batch = tuple(t.to(args.device) for t in batch) with torch.no_grad(): inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if args.model_type != "distilbert": inputs["token_type_ids"] = ( batch[2] if args.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use segment_ids outputs = model(**inputs) tmp_eval_loss, logits = outputs[:2] if args.n_gpu > 1: tmp_eval_loss = tmp_eval_loss.mean() # mean() to average on multi-gpu parallel evaluating eval_loss += tmp_eval_loss.item() nb_eval_steps += 1 if preds is None: preds = logits.detach().cpu().numpy() out_label_ids = inputs["labels"].detach().cpu().numpy() else: preds = np.append(preds, logits.detach().cpu().numpy(), axis=0) out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0) eval_loss = eval_loss / nb_eval_steps preds = np.argmax(preds, axis=2) label_map = {i: label for i, label in enumerate(labels)} out_label_list = [[] for _ in range(out_label_ids.shape[0])] preds_list = [[] for _ in range(out_label_ids.shape[0])] for i in range(out_label_ids.shape[0]): for j in range(out_label_ids.shape[1]): if out_label_ids[i, j] != pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]]) preds_list[i].append(label_map[preds[i][j]]) results = { "loss": eval_loss, "precision": precision_score(out_label_list, preds_list), "recall": recall_score(out_label_list, preds_list), "f1": f1_score(out_label_list, preds_list), } logger.info("***** Eval results %s *****", prefix) for key in sorted(results.keys()): logger.info(" %s = %s", key, str(results[key])) return results, preds_list, out_label_list def load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, mode): if args.local_rank not in [-1, 0] and not evaluate: torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache # Load data features from cache or dataset file cached_features_file = os.path.join( args.data_dir, "cached_{}_{}_{}".format( mode, list(filter(None, args.model_name_or_path.split("/"))).pop(), str(args.max_seq_length) ), ) if os.path.exists(cached_features_file) and not args.overwrite_cache: logger.info("Loading features from cached file %s", cached_features_file) features = torch.load(cached_features_file) else: logger.info("Creating features from dataset file at %s", args.data_dir) examples = read_examples_from_file(args.data_dir, mode) features = convert_examples_to_features( examples, labels, args.max_seq_length, tokenizer, cls_token_at_end=bool(args.model_type in ["xlnet"]), # xlnet has a cls token at the end cls_token=tokenizer.cls_token, cls_token_segment_id=2 if args.model_type in ["xlnet"] else 0, sep_token=tokenizer.sep_token, sep_token_extra=bool(args.model_type in ["roberta"]), # roberta uses an extra separator b/w pairs of sentences, cf. github.com/pytorch/fairseq/commit/1684e166e3da03f5b600dbb7855cb98ddfcd0805 pad_on_left=bool(args.model_type in ["xlnet"]), # pad on the left for xlnet pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0], pad_token_segment_id=4 if args.model_type in ["xlnet"] else 0, pad_token_label_id=pad_token_label_id, ) if args.local_rank in [-1, 0]: logger.info("Saving features into cached file %s", cached_features_file) torch.save(features, cached_features_file) if args.local_rank == 0 and not evaluate: torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache # Convert to Tensors and build dataset all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long) all_label_ids = torch.tensor([f.label_ids for f in features], dtype=torch.long) dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids) return dataset def main(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--data_dir", default=None, type=str, required=True, help="The input data dir. Should contain the training files for the CoNLL-2003 NER task.", ) parser.add_argument( "--model_type", default=None, type=str, required=True, help="Model type selected in the list: " + ", ".join(MODEL_TYPES), ) parser.add_argument( "--model_name_or_path", default=None, type=str, required=True, help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS), ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.", ) # Other parameters parser.add_argument( "--labels", default="", type=str, help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.", ) parser.add_argument( "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name" ) parser.add_argument( "--tokenizer_name", default="", type=str, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--cache_dir", default="", type=str, help="Where do you want to store the pre-trained models downloaded from s3", ) parser.add_argument( "--max_seq_length", default=128, type=int, help="The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded.", ) parser.add_argument("--do_train", action="store_true", help="Whether to run training.") parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.") parser.add_argument("--do_predict", action="store_true", help="Whether to run predictions on the test set.") parser.add_argument( "--evaluate_during_training", action="store_true", help="Whether to run evaluation during training at each logging step.", ) parser.add_argument( "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model." ) parser.add_argument( "--keep_accents", action="store_const", const=True, help="Set this flag if model is trained with accents." ) parser.add_argument( "--strip_accents", action="store_const", const=True, help="Set this flag if model is trained without accents." ) parser.add_argument("--use_fast", action="store_const", const=True, help="Set this flag to use fast tokenization.") parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.") parser.add_argument( "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation." ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument( "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform." ) parser.add_argument( "--max_steps", default=-1, type=int, help="If > 0: set total number of training steps to perform. Override num_train_epochs.", ) parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") parser.add_argument("--logging_steps", type=int, default=500, help="Log every X updates steps.") parser.add_argument("--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.") parser.add_argument( "--eval_all_checkpoints", action="store_true", help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number", ) parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available") parser.add_argument( "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory" ) parser.add_argument( "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets" ) parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", ) parser.add_argument( "--fp16_opt_level", type=str, default="O1", help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html", ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.") parser.add_argument("--server_port", type=str, default="", help="For distant debugging.") args = parser.parse_args() if ( os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir ): raise ValueError( "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format( args.output_dir ) ) # Setup distant debugging if needed if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend="nccl") args.n_gpu = 1 args.device = device # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16, ) # Set seed set_seed(args) # Prepare CONLL-2003 task labels = get_labels(args.labels) num_labels = len(labels) # Use cross entropy ignore index as padding label id so that only real label ids contribute to the loss later pad_token_label_id = CrossEntropyLoss().ignore_index # Load pretrained model and tokenizer if args.local_rank not in [-1, 0]: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab args.model_type = args.model_type.lower() config = AutoConfig.from_pretrained( args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels, id2label={str(i): label for i, label in enumerate(labels)}, label2id={label: i for i, label in enumerate(labels)}, cache_dir=args.cache_dir if args.cache_dir else None, ) tokenizer_args = {k: v for k, v in vars(args).items() if v is not None and k in TOKENIZER_ARGS} logger.info("Tokenizer arguments: %s", tokenizer_args) tokenizer = AutoTokenizer.from_pretrained( args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, cache_dir=args.cache_dir if args.cache_dir else None, **tokenizer_args, ) model = AutoModelForTokenClassification.from_pretrained( args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config, cache_dir=args.cache_dir if args.cache_dir else None, ) if args.local_rank == 0: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab model.to(args.device) logger.info("Training/evaluation parameters %s", args) # Training if args.do_train: train_dataset = load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, mode="train") global_step, tr_loss = train(args, train_dataset, model, tokenizer, labels, pad_token_label_id) logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained() if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0): # Create output directory if needed if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: os.makedirs(args.output_dir) logger.info("Saving model checkpoint to %s", args.output_dir) # Save a trained model, configuration and tokenizer using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` model_to_save = ( model.module if hasattr(model, "module") else model ) # Take care of distributed/parallel training model_to_save.save_pretrained(args.output_dir) tokenizer.save_pretrained(args.output_dir) # Good practice: save your training arguments together with the trained model torch.save(args, os.path.join(args.output_dir, "training_args.bin")) # Evaluation results = {} if args.do_eval and args.local_rank in [-1, 0]: tokenizer = AutoTokenizer.from_pretrained(args.output_dir, **tokenizer_args) checkpoints = [args.output_dir] if args.eval_all_checkpoints: checkpoints = list( os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True)) ) logging.getLogger("pytorch_transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging logger.info("Evaluate the following checkpoints: %s", checkpoints) for checkpoint in checkpoints: global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else "" model = AutoModelForTokenClassification.from_pretrained(checkpoint) model.to(args.device) result, _, _ = evaluate(args, model, tokenizer, labels, pad_token_label_id, mode="dev", prefix=global_step) if global_step: result = {"{}_{}".format(global_step, k): v for k, v in result.items()} results.update(result) output_eval_file = os.path.join(args.output_dir, "eval_results.txt") with open(output_eval_file, "w") as writer: for key in sorted(results.keys()): writer.write("{} = {}\n".format(key, str(results[key]))) if args.do_predict and args.local_rank in [-1, 0]: tokenizer = AutoTokenizer.from_pretrained(args.output_dir, **tokenizer_args) model = AutoModelForTokenClassification.from_pretrained(args.output_dir) model.to(args.device) result, predictions, out_label_list = evaluate(args, model, tokenizer, labels, pad_token_label_id, mode="test") # Save results output_test_results_file = os.path.join(args.output_dir, "test_results.txt") with open(output_test_results_file, "w") as writer: for key in sorted(result.keys()): writer.write("{} = {}\n".format(key, str(result[key]))) # Save predictions output_test_predictions_file = os.path.join(args.output_dir, "test_predictions.txt") with open(output_test_predictions_file, "w") as writer: with open(os.path.join(args.data_dir, "test.txt"), "r") as f: example_id = 0 for line in f: if line.startswith("-DOCSTART-") or line == "" or line == "\n": writer.write(line) if not predictions[example_id]: example_id += 1 elif predictions[example_id]: output_line = line.split()[0] + " " + out_label_list[example_id].pop(0) + " " + predictions[example_id].pop(0) + "\n" writer.write(output_line) else: logger.warning("Maximum sequence length exceeded: No prediction for '%s'.", line.split()[0]) return results if __name__ == "__main__": main()
bio-lm-main
biolm/run_sequence_labelling.py
# coding=utf-8 # Copyright 2020- The Google AI Language Team Authors and The HuggingFace Inc. team and Facebook Inc. # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Finetuning the library models for sequence classification""" import argparse import glob import json import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from torch.utils.data.distributed import DistributedSampler from tqdm import tqdm, trange from torch import nn from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, WEIGHTS_NAME, AdamW, AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, ) from biolm.utils_classification import compute_metrics from biolm.utils_classification import convert_examples_to_features from biolm.utils_classification import output_modes from biolm.utils_classification import processors, stopping_metrics from transformers.data.processors.utils import InputExample import dataclasses logger = logging.getLogger(__name__) MODEL_CONFIG_CLASSES = list(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING.keys()) MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) for conf in MODEL_CONFIG_CLASSES), (),) def set_seed(args): random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed) def train(args, train_dataset, model, tokenizer): """ Train the model """ # if args.local_rank in [-1, 0]: # tb_writer = SummaryWriter() args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) if args.max_steps > 0: t_total = args.max_steps args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 else: t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs # Prepare optimizer and schedule (linear warmup and decay) no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": args.weight_decay, }, {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0}, ] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total ) # Check if saved optimizer or scheduler states exist if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile( os.path.join(args.model_name_or_path, "scheduler.pt") ): # Load in optimizer and scheduler states optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt"))) scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt"))) if args.fp16: try: from apex import amp except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) # multi-gpu training (should be after apex fp16 initialization) if args.n_gpu > 1: model = torch.nn.DataParallel(model) # Distributed training (should be after apex fp16 initialization) if args.local_rank != -1: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True, ) # Train! logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_dataset)) logger.info(" Num Epochs = %d", args.num_train_epochs) logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) logger.info( " Total train batch size (w. parallel, distributed & accumulation) = %d", args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1), ) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", t_total) global_step = 0 epochs_trained = 0 steps_trained_in_current_epoch = 0 # Check if continuing training from a checkpoint if os.path.exists(args.model_name_or_path): # set global_step to global_step of last saved checkpoint from model path try: global_step = int(args.model_name_or_path.split("-")[-1].split("/")[0]) except ValueError: global_step = 0 epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps) steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps) logger.info(" Continuing training from checkpoint, will skip to saved global_step") logger.info(" Continuing training from epoch %d", epochs_trained) logger.info(" Continuing training from global step %d", global_step) logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch) tr_loss, logging_loss = 0.0, 0.0 best_stopping_score = -1. stopping_metric = stopping_metrics[args.task_name] model.zero_grad() train_iterator = trange( epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0], ) set_seed(args) # Added here for reproductibility if args.output_mode == 'multilabel_classification': loss_fn = nn.BCEWithLogitsLoss() for _ in train_iterator: epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) for step, batch in enumerate(epoch_iterator): # Skip past any already trained steps if resuming training if steps_trained_in_current_epoch > 0: steps_trained_in_current_epoch -= 1 continue model.train() batch = tuple(t.to(args.device) for t in batch) if args.output_mode == 'multilabel_classification': inputs = {"input_ids": batch[0], "attention_mask": batch[1]} labels = batch[3] if args.model_type != "distilbert": inputs["token_type_ids"] = ( batch[2] if args.model_type in ["bert", "xlnet", "albert"] else None ) # XLM, DistilBERT, RoBERTa, and XLM-RoBERTa don't use segment_ids outputs = model(**inputs) loss = loss_fn(outputs[0], labels.to(outputs[0])) else: inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if args.model_type != "distilbert": inputs["token_type_ids"] = ( batch[2] if args.model_type in ["bert", "xlnet", "albert"] else None ) # XLM, DistilBERT, RoBERTa, and XLM-RoBERTa don't use segment_ids outputs = model(**inputs) loss = outputs[0] # model outputs are always tuple in transformers (see doc) if args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu parallel training if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() tr_loss += loss.item() if (step + 1) % args.gradient_accumulation_steps == 0 or ( # last step in epoch but step is always smaller than gradient_accumulation_steps len(epoch_iterator) <= args.gradient_accumulation_steps and (step + 1) == len(epoch_iterator) ): if args.fp16: torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) else: torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) optimizer.step() scheduler.step() # Update learning rate schedule model.zero_grad() global_step += 1 if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: logs = {} if ( args.local_rank == -1 and args.evaluate_during_training ): # Only evaluate when single GPU otherwise metrics may not average well results = evaluate(args, model, tokenizer) for key, value in results.items(): eval_key = "eval_{}".format(key) logs[eval_key] = value loss_scalar = (tr_loss - logging_loss) / args.logging_steps learning_rate_scalar = scheduler.get_lr()[0] logs["learning_rate"] = learning_rate_scalar logs["loss"] = loss_scalar logging_loss = tr_loss # for key, value in logs.items(): # tb_writer.add_scalar(key, value, global_step) print(json.dumps({**logs, **{"step": global_step}})) if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0: # Save model checkpoint output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step)) if not os.path.exists(output_dir): os.makedirs(output_dir) results = evaluate(args, model, tokenizer, prefix="checkpoint-{}".format(global_step)) stopping_score = results[stopping_metric] logger.info(f'Step: {global_step} | {stopping_metric}: {stopping_score}') if stopping_score > best_stopping_score: logger.info(f'New best {stopping_metric}: {stopping_score}') best_stopping_score = stopping_score model_to_save = ( model.module if hasattr(model, "module") else model ) # Take care of distributed/parallel training model_to_save.save_pretrained(args.output_dir) tokenizer.save_pretrained(args.output_dir) logger.info("Saving model checkpoint to %s", args.output_dir) torch.save(optimizer.state_dict(), os.path.join(args.output_dir, "optimizer.pt")) torch.save(scheduler.state_dict(), os.path.join(args.output_dir, "scheduler.pt")) logger.info("Saving optimizer and scheduler states to %s", args.output_dir) if args.max_steps > 0 and global_step > args.max_steps: epoch_iterator.close() break if args.max_steps > 0 and global_step > args.max_steps: train_iterator.close() break return global_step, tr_loss / global_step def evaluate(args, model, tokenizer, prefix=""): eval_task_names = (args.task_name,) eval_outputs_dirs = (args.output_dir,) results = {} if args.output_mode == 'multilabel_classification': loss_fn = nn.BCEWithLogitsLoss() else: loss_fn = None for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs): eval_dataset, examples = load_and_cache_examples(args, eval_task, tokenizer, evaluate=True, return_examples=True) if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]: os.makedirs(eval_output_dir) args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) # Note that DistributedSampler samples randomly eval_sampler = SequentialSampler(eval_dataset) eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) # multi-gpu eval if args.n_gpu > 1 and not isinstance(model, torch.nn.DataParallel): model = torch.nn.DataParallel(model) # Eval! logger.info("***** Running evaluation {} *****".format(prefix)) logger.info(" Num examples = %d", len(eval_dataset)) logger.info(" Batch size = %d", args.eval_batch_size) eval_loss = 0.0 nb_eval_steps = 0 preds = None out_label_ids = None for batch in tqdm(eval_dataloader, desc="Evaluating"): model.eval() batch = tuple(t.to(args.device) for t in batch) with torch.no_grad(): if args.output_mode == 'multilabel_classification': inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} modified_inputs ={"input_ids": batch[0], "attention_mask": batch[1]} if args.model_type != "distilbert": modified_inputs["token_type_ids"] = ( batch[2] if args.model_type in ["bert", "xlnet", "albert"] else None ) # XLM, DistilBERT, RoBERTa, and XLM-RoBERTa don't use segment_ids outputs = model(**modified_inputs) logits = outputs[0] tmp_eval_loss = loss_fn(logits, inputs['labels'].to(outputs[0])) else: inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if args.model_type != "distilbert": inputs["token_type_ids"] = ( batch[2] if args.model_type in ["bert", "xlnet", "albert"] else None ) # XLM, DistilBERT, RoBERTa, and XLM-RoBERTa don't use segment_ids outputs = model(**inputs) tmp_eval_loss, logits = outputs[:2] eval_loss += tmp_eval_loss.mean().item() nb_eval_steps += 1 if preds is None: preds = logits.detach().cpu().numpy() out_label_ids = inputs["labels"].detach().cpu().numpy() else: preds = np.append(preds, logits.detach().cpu().numpy(), axis=0) out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0) eval_loss = eval_loss / nb_eval_steps if args.output_mode == "classification": preds = np.argmax(preds, axis=1) elif args.output_mode == "regression": preds = np.squeeze(preds) elif args.output_mode == 'multilabel_classification': preds = torch.sigmoid(torch.tensor(preds)).numpy() result = compute_metrics(eval_task, preds, out_label_ids, examples) results.update(result) results['eval_loss'] = eval_loss output_eval_file = os.path.join(eval_output_dir, prefix, "test_results.txt" if args.do_test else "eval_results.txt") with open(output_eval_file, "w") as writer: # with open('bioroberta_chemprot.txt', 'w') as writer: logger.info("***** Eval results {} *****".format(prefix)) for key in sorted(result.keys()): logger.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) with open(output_eval_file.replace('_results.txt', '_predictions.tsv'), "w") as writer: for example, pred in zip(examples, preds): if args.output_mode == "classification": pred_label = args.label_list[pred] elif args.output_mode == "regression": pred_label = str(pred) elif args.output_mode == 'multilabel_classification': pred_label = [args.label_list[ind] for ind, p in enumerate(pred) if p > 0.5] writer.write(f'{example.guid}\t{pred_label}\n') return results def load_and_cache_examples(args, task, tokenizer, evaluate=False, return_examples=False): if args.local_rank not in [-1, 0] and not evaluate: torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache processor = processors[task]() if args.task_name.startswith('gad') or args.task_name.startswith('euadr'): fold = int(''.join([t for t in args.task_name if t.isdigit()])) processor.fold = fold output_mode = output_modes[task] # Load data features from cache or dataset file cached_features_file = os.path.join( args.data_dir, "cached_{}_{}_{}_{}".format( ("test" if args.do_test else "dev") if evaluate else "train", list(filter(None, args.model_name_or_path.split("/"))).pop(), str(args.max_seq_length), str(task), ), ) if os.path.exists(cached_features_file) and not args.overwrite_cache: logger.info("Loading features from cached file %s", cached_features_file) features = torch.load(cached_features_file) examples = [] for line in open(cached_features_file + '.examples.jsonl'): examples.append(InputExample(**json.loads(line))) assert len(examples) == len(features) else: logger.info("Creating features from dataset file at %s", args.data_dir) label_list = processor.get_labels() if task in ["mnli", "mnli-mm"] and args.model_type in ["roberta", "xlmroberta"]: # HACK(label indices are swapped in RoBERTa pretrained model) label_list[1], label_list[2] = label_list[2], label_list[1] examples = ( (processor.get_test_examples(args.data_dir) if args.do_test else processor.get_dev_examples(args.data_dir)) if evaluate else processor.get_train_examples(args.data_dir) ) features = convert_examples_to_features( examples, tokenizer, label_list=label_list, max_length=args.max_seq_length, output_mode=output_mode, pad_on_left=bool(args.model_type in ["xlnet"]), # pad on the left for xlnet pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0], pad_token_segment_id=4 if args.model_type in ["xlnet"] else 0, ) if args.local_rank in [-1, 0]: logger.info("Saving features into cached file %s", cached_features_file) torch.save(features, cached_features_file) with open(cached_features_file + '.examples.jsonl', 'w') as f: for example in examples: dmp = json.dumps(dataclasses.asdict(example), sort_keys=True) + "\n" f.write(dmp) if args.local_rank == 0 and not evaluate: torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache # Convert to Tensors and build dataset all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long) all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long) if output_mode == "classification": all_labels = torch.tensor([f.label for f in features], dtype=torch.long) elif output_mode == "regression": all_labels = torch.tensor([f.label for f in features], dtype=torch.float) elif output_mode == 'multilabel_classification': all_labels = torch.zeros((len(features), len(processor.get_labels())), dtype=torch.long) for feat_no, feat in enumerate(features): for l in feat.label: all_labels[feat_no, l] = 1 else: raise Exception('') dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_labels) if return_examples: return dataset, examples return dataset def main(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--data_dir", default=None, type=str, required=True, help="The input data dir. Should contain the .tsv files (or other data files) for the task.", ) parser.add_argument( "--model_type", default=None, type=str, required=True, help="Model type selected in the list: " + ", ".join(MODEL_TYPES), ) parser.add_argument( "--model_name_or_path", default=None, type=str, required=True, help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS), ) parser.add_argument( "--task_name", default=None, type=str, required=True, help="The name of the task to train selected in the list: " + ", ".join(processors.keys()), ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.", ) # Other parameters parser.add_argument( "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name", ) parser.add_argument( "--tokenizer_name", default="", type=str, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--cache_dir", default="", type=str, help="Where do you want to store the pre-trained models downloaded from s3", ) parser.add_argument( "--max_seq_length", default=128, type=int, help="The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded.", ) parser.add_argument("--do_train", action="store_true", help="Whether to run training.") parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.") parser.add_argument("--do_test", action="store_true", help="Whether to run eval on the Test set.") parser.add_argument( "--evaluate_during_training", action="store_true", help="Run evaluation during training at each logging step.", ) parser.add_argument( "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model.", ) parser.add_argument( "--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.", ) parser.add_argument( "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument( "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.", ) parser.add_argument( "--max_steps", default=-1, type=int, help="If > 0: set total number of training steps to perform. Override num_train_epochs.", ) parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") parser.add_argument("--logging_steps", type=int, default=500, help="Log every X updates steps.") parser.add_argument("--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.") parser.add_argument( "--eval_all_checkpoints", action="store_true", help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number", ) parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available") parser.add_argument( "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory", ) parser.add_argument( "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets", ) parser.add_argument( "--overwrite_predictions", action="store_true", help="Overwrite predictions files", ) parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", ) parser.add_argument( "--fp16_opt_level", type=str, default="O1", help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html", ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.") parser.add_argument("--server_port", type=str, default="", help="For distant debugging.") args = parser.parse_args() if args.do_test: assert not args.do_eval assert not args.do_train if ( os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir ): raise ValueError( "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format( args.output_dir ) ) # Setup distant debugging if needed if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend="nccl") args.n_gpu = 1 args.device = device # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16, ) # Set seed set_seed(args) # Prepare GLUE task args.task_name = args.task_name.lower() if args.task_name not in processors: raise ValueError("Task not found: %s" % (args.task_name)) processor = processors[args.task_name]() if args.task_name.startswith('gad') or args.task_name.startswith('euadr'): fold = int(''.join([t for t in args.task_name if t.isdigit()])) processor.fold = fold args.output_mode = output_modes[args.task_name] label_list = processor.get_labels() num_labels = len(label_list) args.label_list = label_list # Load pretrained model and tokenizer if args.local_rank not in [-1, 0]: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab args.model_type = args.model_type.lower() config = AutoConfig.from_pretrained( args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels, finetuning_task=args.task_name, cache_dir=args.cache_dir if args.cache_dir else None, ) if 'roberta' in args.model_name_or_path: from transformers import RobertaTokenizerFast tokenizer = RobertaTokenizerFast.from_pretrained( args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, add_prefix_space=False, do_lower_case=args.do_lower_case, cache_dir=args.cache_dir if args.cache_dir else None, ) else: tokenizer = AutoTokenizer.from_pretrained( args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case, cache_dir=args.cache_dir if args.cache_dir else None, ) model = AutoModelForSequenceClassification.from_pretrained( args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config, cache_dir=args.cache_dir if args.cache_dir else None, ) if args.local_rank == 0: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab model.to(args.device) logger.info("Training/evaluation parameters %s", args) assert not args.eval_all_checkpoints # Training if args.do_train: assert not args.do_test train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False) global_step, tr_loss = train(args, train_dataset, model, tokenizer) logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained() if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0): # Create output directory if needed if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: os.makedirs(args.output_dir) logger.info("Saving model checkpoint to %s", args.output_dir) # Good practice: save your training arguments together with the trained model torch.save(args, os.path.join(args.output_dir, "training_args.bin")) # Load a trained model and vocabulary that you have fine-tuned model = AutoModelForSequenceClassification.from_pretrained(args.output_dir) if 'roberta' in args.model_name_or_path: from transformers import RobertaTokenizerFast tokenizer = RobertaTokenizerFast.from_pretrained( args.output_dir, add_prefix_space=False, ) else: tokenizer = AutoTokenizer.from_pretrained(args.output_dir) model.to(args.device) # Evaluation results = {} if (args.do_eval or args.do_test) and args.local_rank in [-1, 0]: checkpoints = [args.output_dir] if args.eval_all_checkpoints: assert not args.do_test checkpoints = list( os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True)) ) logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging logger.info("Evaluate the following checkpoints: %s", checkpoints) for checkpoint in checkpoints: global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else "" if checkpoint == args.output_dir: prefix = '' else: prefix = checkpoint.split("/")[-1] if args.do_test: output_eval_file = os.path.join(args.output_dir, prefix, "test_results.txt") else: output_eval_file = os.path.join(args.output_dir, prefix, "eval_results.txt") if os.path.exists(output_eval_file) and not args.overwrite_predictions: print(f'skipping {checkpoint}, eval already exists') continue model = AutoModelForSequenceClassification.from_pretrained(checkpoint) model.to(args.device) result = evaluate(args, model, tokenizer, prefix=prefix) result = dict((k + "_{}".format(global_step), v) for k, v in result.items()) results.update(result) del(model) return results if __name__ == "__main__": main()
bio-lm-main
biolm/run_classification.py
# Copyright (c) 2020-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from transformers import AutoTokenizer import argparse from tqdm import tqdm def main(args): """Inputs and cleans and ensures no inputs are too long Adapted from https://raw.githubusercontent.com/stefan-it/fine-tuned-berts-seq/master/scripts/preprocess.py """ subword_len_counter = 0 tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path) for line in tqdm(open(args.filename), desc=f'processing {args.filename}'): line = line.rstrip() if not line: print(line) subword_len_counter = 0 continue token = line.split()[0] current_subwords_len = len(tokenizer.tokenize(token)) # Token contains strange control characters like \x96 or \x95 # Just filter out the complete line if current_subwords_len == 0: continue if (subword_len_counter + current_subwords_len) > args.max_len: print("") print(line) subword_len_counter = 0 continue subword_len_counter += current_subwords_len print(line) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( "--filename", type=str, required=True, ) parser.add_argument( "--model_name_or_path", type=str, default='roberta-large', ) parser.add_argument( "--max_len", default=512, type=int, ) args = parser.parse_args() main(args)
bio-lm-main
preprocessing/clean_conll_file.py
# Copyright (c) 2020-present Emily Alsentzer and Facebook Inc. # Copyright (c) 2019 Emily Alsentzer # All rights reserved. # # This source code is licensed under the MIT license, which can be found here https://github.com/EmilyAlsentzer/clinicalBERT/blob/master/LICENSE # """Adapted from clinicalBERT preprocessing notebooks: https://github.com/EmilyAlsentzer/clinicalBERT""" import os, xml, xml.etree.ElementTree as ET, numpy as np, argparse START_CDATA = "<TEXT><![CDATA[" END_CDATA = "]]></TEXT>" TAGS = ['MEDICATION', 'OBSEE', 'SMOKER', 'HYPERTENSION', 'event', 'FAMILY_HIST'] def read_xml_file(xml_path, event_tag_type='ALL_CHILDREN', match_text=True): with open(xml_path, mode='r') as f: lines = f.readlines() text, in_text = [], False for i, l in enumerate(lines): if START_CDATA in l: text.append(list(l[l.find(START_CDATA) + len(START_CDATA):])) in_text = True elif END_CDATA in l: text.append(list(l[:l.find(END_CDATA)])) break elif in_text: text.append(list(l)) pos_transformer = {} linear_pos = 1 for line, sentence in enumerate(text): for char_pos, char in enumerate(sentence): pos_transformer[linear_pos] = (line, char_pos) linear_pos += 1 try: xml_parsed = ET.parse(xml_path) except: with open(xml_path) as f: txt = f.read() before = txt.split('<TEXT>')[0] after = txt.split('</TEXT>')[1] with open('temporary.xml', 'w') as f: f.write((before + after).replace('&', 'AMPERSAND')) xml_parsed = ET.parse('temporary.xml') # raise tag_containers = xml_parsed.findall('TAGS') assert len(tag_containers) == 1, "Found multiple tag sets!" tag_container = tag_containers[0] event_tags = tag_container.findall('EVENT') event_labels = [['O'] * len(sentence) for sentence in text] for event_tag in event_tags: base_label = event_tag.attrib['type'] start_pos, end_pos, event_text = event_tag.attrib['start'], event_tag.attrib['end'], event_tag.attrib['text'] start_pos, end_pos = int(start_pos) + 1, int(end_pos) event_text = ' '.join(event_text.split()) event_text = event_text.replace('AMPERSAND', '&') (start_line, start_char), (end_line, end_char) = pos_transformer[start_pos], pos_transformer[end_pos] obs_text = [] for line in range(start_line, end_line + 1): t = text[line] s = start_char if line == start_line else 0 e = end_char if line == end_line else len(t) obs_text.append(''.join(t[s:e + 1]).strip()) obs_text = ' '.join(obs_text) obs_text = ' '.join(obs_text.split()) if '&apos;' in obs_text and '&apos;' not in event_text: event_text = event_text.replace("'", "&apos;") if '&quot;' in obs_text and '&quot;' not in event_text: event_text = event_text.replace('"', '&quot;') if match_text: assert obs_text == event_text, ( ("Texts don't match! %s v %s" % (event_text, obs_text)) + '\n' + str(( start_pos, end_pos, line, s, e, t, xml_path )) ) if base_label.strip() == '': continue event_labels[end_line][end_char] = 'I-%s' % base_label event_labels[start_line][start_char] = 'B-%s' % base_label for line in range(start_line, end_line + 1): t = text[line] s = start_char + 1 if line == start_line else 0 e = end_char - 1 if line == end_line else len(t) - 1 for i in range(s, e + 1): event_labels[line][i] = 'I-%s' % base_label return text, event_labels def merge_into_words(text_by_char, all_labels_by_char): assert len(text_by_char) == len(all_labels_by_char), "Incorrect # of sentences!" N = len(text_by_char) text_by_word, all_labels_by_word = [], [] for sentence_num in range(N): sentence_by_char = text_by_char[sentence_num] labels_by_char = all_labels_by_char[sentence_num] assert len(sentence_by_char) == len(labels_by_char), "Incorrect # of chars in sentence!" S = len(sentence_by_char) if labels_by_char == (['O'] * len(sentence_by_char)): sentence_by_word = ''.join(sentence_by_char).split() labels_by_word = ['O'] * len(sentence_by_word) else: sentence_by_word, labels_by_word = [], [] text_chunks, labels_chunks = [], [] s = 0 for i in range(S): if i == S - 1: text_chunks.append(sentence_by_char[s:]) labels_chunks.append(labels_by_char[s:]) elif labels_by_char[i] == 'O': continue else: if i > 0 and labels_by_char[i - 1] == 'O': text_chunks.append(sentence_by_char[s:i]) labels_chunks.append(labels_by_char[s:i]) s = i if labels_by_char[i + 1] == 'O' or labels_by_char[i + 1][2:] != labels_by_char[i][2:]: text_chunks.append(sentence_by_char[s:i + 1]) labels_chunks.append(labels_by_char[s:i + 1]) s = i + 1 for text_chunk, labels_chunk in zip(text_chunks, labels_chunks): assert len(text_chunk) == len(labels_chunk), "Bad Chunking (len)" assert len(text_chunk) > 0, "Bad chunking (len 0)" + str(text_chunks) + str(labels_chunks) labels_set = set(labels_chunk) assert labels_set == set(['O']) or (len(labels_set) <= 3 and 'O' not in labels_set), ( ("Bad chunking (contents) %s" % ', '.join(labels_set)) + str(text_chunks) + str(labels_chunks) ) text_chunk_by_word = ''.join(text_chunk).split() W = len(text_chunk_by_word) if W == 0: continue if labels_chunk[0] == 'O': labels_chunk_by_word = ['O'] * W elif W == 1: labels_chunk_by_word = [labels_chunk[0]] elif W == 2: labels_chunk_by_word = [labels_chunk[0], labels_chunk[-1]] else: labels_chunk_by_word = [ labels_chunk[0] ] + [labels_chunk[1]] * (W - 2) + [ labels_chunk[-1] ] sentence_by_word.extend(text_chunk_by_word) labels_by_word.extend(labels_chunk_by_word) assert len(sentence_by_word) == len(labels_by_word), "Incorrect # of words in sentence!" if len(sentence_by_word) == 0: continue text_by_word.append(sentence_by_word) all_labels_by_word.append(labels_by_word) return text_by_word, all_labels_by_word def reprocess_event_labels(folders, base_path='.', event_tag_type='event', match_text=True, dev_set_size=None): all_texts_by_patient, all_labels_by_patient = {}, {} for folder in folders: folder_dir = os.path.join(base_path, folder) xml_filenames = [x for x in os.listdir(folder_dir) if x.endswith('xml')] for xml_filename in xml_filenames: patient_num = int(xml_filename[:-4]) xml_filepath = os.path.join(folder_dir, xml_filename) results = read_xml_file( xml_filepath, event_tag_type=event_tag_type, match_text=match_text ) if results is None: continue text_by_char, labels_by_char = results text_by_word, labels_by_word = merge_into_words(text_by_char, labels_by_char) if patient_num not in all_texts_by_patient: all_texts_by_patient[patient_num] = [] all_labels_by_patient[patient_num] = [] all_texts_by_patient[patient_num].extend(text_by_word) all_labels_by_patient[patient_num].extend(labels_by_word) patients = set(all_texts_by_patient.keys()) if dev_set_size is None: train_patients, dev_patients = list(patients), [] else: N_train = int(len(patients) * (1 - dev_set_size)) patients_random = np.random.permutation(list(patients)) train_patients = list(patients_random[:N_train]) dev_patients = list(patients_random[N_train:]) train_texts, train_labels = [], [] dev_texts, dev_labels = [], [] for patient_num in train_patients: train_texts.extend(all_texts_by_patient[patient_num]) train_labels.extend(all_labels_by_patient[patient_num]) for patient_num in dev_patients: dev_texts.extend(all_texts_by_patient[patient_num]) dev_labels.extend(all_labels_by_patient[patient_num]) train_out_text_by_sentence = [] for text, labels in zip(train_texts, train_labels): train_out_text_by_sentence.append('\n'.join('%s %s' % x for x in zip(text, labels))) dev_out_text_by_sentence = [] for text, labels in zip(dev_texts, dev_labels): dev_out_text_by_sentence.append('\n'.join('%s %s' % x for x in zip(text, labels))) return '\n\n'.join(train_out_text_by_sentence), '\n\n'.join(dev_out_text_by_sentence) def main(raw_data_dir, task_dir): final_train_text, final_dev_text = reprocess_event_labels( [os.path.join(raw_data_dir, '2012-07-15.original-annotation.release')], dev_set_size=0.1, match_text=True ) test_text, _ = reprocess_event_labels( [os.path.join(raw_data_dir, '2012-08-08.test-data.event-timex-groundtruth/xml')], match_text=False, dev_set_size=None ) labels = {} for s in final_train_text, final_dev_text, test_text: for line in s.split('\n'): if line == '': continue label = line.split()[-1] assert label == 'O' or label.startswith('B-') or label.startswith('I-'), "label wrong! %s" % label if label not in labels: labels[label] = 1 else: labels[label] += 1 with open(os.path.join(task_dir, 'train.txt.conll'), mode='w') as f: f.write(final_train_text) with open(os.path.join(task_dir, 'dev.txt.conll'), mode='w') as f: f.write(final_dev_text) with open(os.path.join(task_dir, 'test.txt.conll'), mode='w') as f: f.write(test_text) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( "--raw_data_dir", type=str, required=True, ) parser.add_argument( "--task_dir", type=str, required=True, ) args = parser.parse_args() main(args.raw_data_dir, args.task_dir)
bio-lm-main
preprocessing/preprocess_i2b2_2012_ner.py
# Copyright (c) 2020-present Emily Alsentzer and Facebook Inc. # Copyright (c) 2019 Emily Alsentzer # All rights reserved. # # This source code is licensed under the MIT license, which can be found here https://github.com/EmilyAlsentzer/clinicalBERT/blob/master/LICENSE # """Adapted from clinicalBERT preprocessing notebooks: https://github.com/EmilyAlsentzer/clinicalBERT""" import os, re, pickle, numpy as np import argparse def process_concept(concept_str): """ takes string like 'c="asymptomatic" 16:2 16:2||t="problem"' and returns dictionary like {'t': 'problem', 'start_line': 16, 'start_pos': 2, 'end_line': 16, 'end_pos': 2} """ try: position_bit, problem_bit = concept_str.split('||') t = problem_bit[3:-1] start_and_end_span = next(re.finditer('\s\d+:\d+\s\d+:\d+', concept_str)).span() c = concept_str[3:start_and_end_span[0]-1] c = [y for y in c.split(' ') if y.strip() != ''] c = ' '.join(c) start_and_end = concept_str[start_and_end_span[0]+1 : start_and_end_span[1]] start, end = start_and_end.split(' ') start_line, start_pos = [int(x) for x in start.split(':')] end_line, end_pos = [int(x) for x in end.split(':')] except: raise return { 't': t, 'start_line': start_line, 'start_pos': start_pos, 'end_line': end_line, 'end_pos': end_pos, 'c': c, } def build_label_vocab(base_dirs): seen, label_vocab, label_vocab_size = set(['O']), {'O': 'O'}, 0 for base_dir in base_dirs: concept_dir = os.path.join(base_dir, 'concept') assert os.path.isdir(concept_dir), "Directory structure doesn't match!" ids = set([x[:-4] for x in os.listdir(concept_dir) if x.endswith('.con')]) for i in ids: with open(os.path.join(concept_dir, '%s.con' % i)) as f: concepts = [process_concept(x.strip()) for x in f.readlines()] for c in concepts: if c['t'] not in seen: label_vocab_size += 1 label_vocab['B-%s' % c['t']] = 'B-%s' % c['t'] # label_vocab_size label_vocab_size += 1 label_vocab['I-%s' % c['t']] = 'I-%s' % c['t'] # label_vocab_size seen.update([c['t']]) return label_vocab, label_vocab_size def reformatter(base, label_vocab, txt_dir = None, concept_dir = None): if txt_dir is None: txt_dir = os.path.join(base, 'txt') if concept_dir is None: concept_dir = os.path.join(base, 'concept') assert os.path.isdir(txt_dir) and os.path.isdir(concept_dir), "Directory structure doesn't match!" txt_ids = set([x[:-4] for x in os.listdir(txt_dir) if x.endswith('.txt')]) concept_ids = set([x[:-4] for x in os.listdir(concept_dir) if x.endswith('.con')]) assert txt_ids == concept_ids, ( "id set doesn't match: txt - concept = %s, concept - txt = %s" "" % (str(txt_ids - concept_ids), str(concept_ids - txt_ids)) ) ids = txt_ids reprocessed_texts = {} for i in ids: with open(os.path.join(txt_dir, '%s.txt' % i), mode='r') as f: lines = f.readlines() txt = [[y for y in x.strip().split(' ') if y.strip() != ''] for x in lines] line_starts_with_space = [x.startswith(' ') for x in lines] with open(os.path.join(concept_dir, '%s.con' % i), mode='r') as f: concepts = [process_concept(x.strip()) for x in f.readlines()] labels = [['O' for _ in line] for line in txt] for c in concepts: if c['start_line'] == c['end_line']: line = c['start_line']-1 p_modifier = -1 if line_starts_with_space[line] else 0 text = (' '.join(txt[line][c['start_pos']+p_modifier:c['end_pos']+1+p_modifier])).lower() assert text == c['c'], ( "Text mismatch! %s vs. %s (id: %s, line: %d)\nFull line: %s" "" % (c['c'], text, i, line, txt[line]) ) for line in range(c['start_line']-1, c['end_line']): p_modifier = -1 if line_starts_with_space[line] else 0 start_pos = c['start_pos']+p_modifier if line == c['start_line']-1 else 0 end_pos = c['end_pos']+1+p_modifier if line == c['end_line']-1 else len(txt[line]) if line == c['end_line'] - 1: labels[line][end_pos-1] = label_vocab['I-%s' % c['t']] if line == c['start_line'] - 1: labels[line][start_pos] = label_vocab['B-%s' % c['t']] for j in range(start_pos + 1, end_pos-1): labels[line][j] = label_vocab['I-%s' % c['t']] joined_words_and_labels = [zip(txt_line, label_line) for txt_line, label_line in zip(txt, labels)] out_str = '\n\n'.join( ['\n'.join(['%s %s' % p for p in joined_line]) for joined_line in joined_words_and_labels] ) reprocessed_texts[i] = out_str return reprocessed_texts def main(beth_dir, partners_dir, test_dir, test_txt_dir, task_dir): label_vocab, label_vocab_size = build_label_vocab([beth_dir, partners_dir]) reprocessed_texts = { 'beth': reformatter(beth_dir, label_vocab), 'partners': reformatter(partners_dir, label_vocab), 'test': reformatter( test_dir, label_vocab, txt_dir=test_txt_dir, concept_dir=os.path.join(test_dir, 'concepts') ), } np.random.seed(1) all_partners_train_ids = np.random.permutation(list(reprocessed_texts['partners'].keys())) N = len(all_partners_train_ids) N_train = int(0.9 * N) partners_train_ids = all_partners_train_ids[:N_train] partners_dev_ids = all_partners_train_ids[N_train:] print("Partners # Patients: Train: %d, Dev: %d" %(len(partners_train_ids), len(partners_dev_ids))) all_beth_train_ids = np.random.permutation(list(reprocessed_texts['beth'].keys())) N = len(all_beth_train_ids) N_train = int(0.9 * N) beth_train_ids = all_beth_train_ids[:N_train] beth_dev_ids = all_beth_train_ids[N_train:] print("Beth # Patients: Train: %d, Dev: %d" % (len(beth_train_ids), len(beth_dev_ids))) print("Merged # Patients: Train: %d, Dev: %d" % ( len(partners_train_ids) + len(beth_train_ids), len(beth_dev_ids) + len(partners_dev_ids) )) merged_train_txt = '\n\n'.join(np.random.permutation( [reprocessed_texts['partners'][i] for i in partners_train_ids] + [reprocessed_texts['beth'][i] for i in beth_train_ids] )) merged_dev_txt = '\n\n'.join(np.random.permutation( [reprocessed_texts['partners'][i] for i in partners_dev_ids] + [reprocessed_texts['beth'][i] for i in beth_dev_ids] )) merged_test_txt = '\n\n'.join(np.random.permutation(list(reprocessed_texts['test'].values()))) print("Merged # Samples: Train: %d, Dev: %d, Test: %d" % ( len(merged_train_txt.split('\n\n')), len(merged_dev_txt.split('\n\n')), len(merged_test_txt.split('\n\n')) )) partners_train_txt = '\n\n'.join(np.random.permutation( [reprocessed_texts['partners'][i] for i in partners_train_ids] )) partners_dev_txt = '\n\n'.join(np.random.permutation( [reprocessed_texts['partners'][i] for i in partners_dev_ids] )) partners_test_txt = '\n\n'.join(np.random.permutation(list(reprocessed_texts['test'].values()))) OUT_FILES = { 'merged_train': os.path.join(task_dir, 'merged', 'train.tsv'), 'merged_dev': os.path.join(task_dir, 'merged', 'dev.tsv'), 'merged_test': os.path.join(task_dir, 'merged', 'test.tsv'), 'partners_train': os.path.join(task_dir, 'merged', 'train.tsv'), 'partners_dev': os.path.join(task_dir, 'merged', 'dev.tsv'), 'partners_test': os.path.join(task_dir, 'merged', 'test.tsv'), 'vocab': os.path.join(task_dir, 'merged' 'labels.txt') } os.makedirs(os.path.join(task_dir, 'merged'), exist_ok=True) os.makedirs(os.path.join(task_dir, 'partners'), exist_ok=True) with open(OUT_FILES['merged_train'], mode='w') as f: f.write(merged_train_txt) with open(OUT_FILES['merged_dev'], mode='w') as f: f.write(merged_dev_txt) with open(OUT_FILES['merged_test'], mode='w') as f: f.write(merged_test_txt) with open(OUT_FILES['partners_train'], mode='w') as f: f.write(partners_train_txt) with open(OUT_FILES['partners_dev'], mode='w') as f: f.write(partners_dev_txt) with open(OUT_FILES['partners_test'], mode='w') as f: f.write(partners_test_txt) with open(OUT_FILES['vocab'], mode='w') as f: f.write('\n'.join(label_vocab.keys())) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--beth_dir", type=str, required=True, ) parser.add_argument( "--partners_dir", type=str, required=True, ) parser.add_argument( "--test_dir", type=str, required=True, ) parser.add_argument( "--test_txt_dir", type=str, required=True, ) parser.add_argument( "--task_dir", type=str, required=True, ) args = parser.parse_args() # beth_dir = './data/blue_raw_data/data/i2b2-2010/original/concept_assertion_relation_training_data/beth/' # partners_dir = './data/blue_raw_data/data/i2b2-2010/original/concept_assertion_relation_training_data/partners/' # test_dir = './data/blue_raw_data/data/i2b2-2010/original/reference_standard_for_test_data/' # test_txt_dir = './data/blue_raw_data/data/i2b2-2010/original/test_data/' # task_dir = 'data/I2B22010NER' main(args.beth_dir, args.partners_dir, args.test_dir, args.test_txt_dir, args.task_dir)
bio-lm-main
preprocessing/preprocess_i2b2_2010_ner.py
# Copyright (c) 2020-present Emily Alsentzer and Facebook Inc. # Copyright (c) 2019 Emily Alsentzer # All rights reserved. # # This source code is licensed under the MIT license, which can be found here https://github.com/EmilyAlsentzer/clinicalBERT/blob/master/LICENSE # """Adapted from clinicalBERT preprocessing notebooks: https://github.com/EmilyAlsentzer/clinicalBERT""" import os, xml.etree.ElementTree as ET, numpy as np, argparse START_CDATA = "<TEXT><![CDATA[" END_CDATA = "]]></TEXT>" TAGS = ['MEDICATION', 'OBSEE', 'SMOKER', 'HYPERTENSION', 'PHI', 'FAMILY_HIST'] def read_xml_file(xml_path, PHI_tag_type='ALL_CHILDREN', match_text=True): with open(xml_path, mode='r') as f: lines = f.readlines() text, in_text = [], False for i, l in enumerate(lines): if START_CDATA in l: text.append(list(l[l.find(START_CDATA) + len(START_CDATA):])) in_text = True elif END_CDATA in l: text.append(list(l[:l.find(END_CDATA)])) break elif in_text: if xml_path.endswith('180-03.xml') and '0808' in l and 'Effingham' in l: print("Adjusting known error") l = l[:9] + ' ' * 4 + l[9:] text.append(list(l)) pos_transformer = {} linear_pos = 1 for line, sentence in enumerate(text): for char_pos, char in enumerate(sentence): pos_transformer[linear_pos] = (line, char_pos) linear_pos += 1 xml_parsed = ET.parse(xml_path) tag_containers = xml_parsed.findall('TAGS') assert len(tag_containers) == 1, "Found multiple tag sets!" tag_container = tag_containers[0] PHI_tags = tag_container.getchildren() if PHI_tag_type == 'ALL_CHILDREN' else tag_container.findall('PHI') PHI_labels = [['O'] * len(sentence) for sentence in text] for PHI_tag in PHI_tags: base_label = PHI_tag.attrib['TYPE'] start_pos, end_pos, PHI_text = PHI_tag.attrib['start'], PHI_tag.attrib['end'], PHI_tag.attrib['text'] start_pos, end_pos = int(start_pos) + 1, int(end_pos) PHI_text = ' '.join(PHI_text.split()) if PHI_text == 'Johnson and Johnson' and xml_path.endswith('188-05.xml'): print("Adjusting known error") PHI_text = 'Johnson & Johnson' (start_line, start_char), (end_line, end_char) = pos_transformer[start_pos], pos_transformer[end_pos] obs_text = [] for line in range(start_line, end_line + 1): t = text[line] s = start_char if line == start_line else 0 e = end_char if line == end_line else len(t) obs_text.append(''.join(t[s:e + 1]).strip()) obs_text = ' '.join(obs_text) obs_text = ' '.join(obs_text.split()) if match_text: assert obs_text == PHI_text, ( ("Texts don't match! %s v %s" % (PHI_text, obs_text)) + '\n' + str(( start_pos, end_pos, line, s, e, t, xml_path )) ) PHI_labels[end_line][end_char] = 'I-%s' % base_label PHI_labels[start_line][start_char] = 'B-%s' % base_label for line in range(start_line, end_line + 1): t = text[line] s = start_char + 1 if line == start_line else 0 e = end_char - 1 if line == end_line else len(t) - 1 for i in range(s, e + 1): PHI_labels[line][i] = 'I-%s' % base_label return text, PHI_labels def merge_into_words(text_by_char, all_labels_by_char): assert len(text_by_char) == len(all_labels_by_char), "Incorrect # of sentences!" N = len(text_by_char) text_by_word, all_labels_by_word = [], [] for sentence_num in range(N): sentence_by_char = text_by_char[sentence_num] labels_by_char = all_labels_by_char[sentence_num] assert len(sentence_by_char) == len(labels_by_char), "Incorrect # of chars in sentence!" S = len(sentence_by_char) if labels_by_char == (['O'] * len(sentence_by_char)): sentence_by_word = ''.join(sentence_by_char).split() labels_by_word = ['O'] * len(sentence_by_word) else: sentence_by_word, labels_by_word = [], [] text_chunks, labels_chunks = [], [] s = 0 for i in range(S): if i == S - 1: text_chunks.append(sentence_by_char[s:]) labels_chunks.append(labels_by_char[s:]) elif labels_by_char[i] == 'O': continue else: if i > 0 and labels_by_char[i - 1] == 'O': text_chunks.append(sentence_by_char[s:i]) labels_chunks.append(labels_by_char[s:i]) s = i if labels_by_char[i + 1] == 'O' or labels_by_char[i + 1][2:] != labels_by_char[i][2:]: text_chunks.append(sentence_by_char[s:i + 1]) labels_chunks.append(labels_by_char[s:i + 1]) s = i + 1 for text_chunk, labels_chunk in zip(text_chunks, labels_chunks): assert len(text_chunk) == len(labels_chunk), "Bad Chunking (len)" assert len(text_chunk) > 0, "Bad chunking (len 0)" + str(text_chunks) + str(labels_chunks) labels_set = set(labels_chunk) assert labels_set == set(['O']) or (len(labels_set) <= 3 and 'O' not in labels_set), ( ("Bad chunking (contents) %s" % ', '.join(labels_set)) + str(text_chunks) + str(labels_chunks) ) text_chunk_by_word = ''.join(text_chunk).split() W = len(text_chunk_by_word) if W == 0: continue if labels_chunk[0] == 'O': labels_chunk_by_word = ['O'] * W elif W == 1: labels_chunk_by_word = [labels_chunk[0]] elif W == 2: labels_chunk_by_word = [labels_chunk[0], labels_chunk[-1]] else: labels_chunk_by_word = [ labels_chunk[0] ] + [labels_chunk[1]] * (W - 2) + [ labels_chunk[-1] ] sentence_by_word.extend(text_chunk_by_word) labels_by_word.extend(labels_chunk_by_word) assert len(sentence_by_word) == len(labels_by_word), "Incorrect # of words in sentence!" if len(sentence_by_word) == 0: continue text_by_word.append(sentence_by_word) all_labels_by_word.append(labels_by_word) return text_by_word, all_labels_by_word def reprocess_PHI_labels(folders, base_path='.', PHI_tag_type='PHI', match_text=True, dev_set_size=None): all_texts_by_patient, all_labels_by_patient = {}, {} for folder in folders: folder_dir = os.path.join(base_path, folder) xml_filenames = [x for x in os.listdir(folder_dir) if x.endswith('xml')] for xml_filename in xml_filenames: patient_num = int(xml_filename[:3]) xml_filepath = os.path.join(folder_dir, xml_filename) text_by_char, labels_by_char = read_xml_file( xml_filepath, PHI_tag_type=PHI_tag_type, match_text=match_text ) text_by_word, labels_by_word = merge_into_words(text_by_char, labels_by_char) if patient_num not in all_texts_by_patient: all_texts_by_patient[patient_num] = [] all_labels_by_patient[patient_num] = [] all_texts_by_patient[patient_num].extend(text_by_word) all_labels_by_patient[patient_num].extend(labels_by_word) patients = set(all_texts_by_patient.keys()) if dev_set_size is None: train_patients, dev_patients = list(patients), [] else: N_train = int(len(patients) * (1 - dev_set_size)) patients_random = np.random.permutation(list(patients)) train_patients = list(patients_random[:N_train]) dev_patients = list(patients_random[N_train:]) train_texts, train_labels = [], [] dev_texts, dev_labels = [], [] for patient_num in train_patients: train_texts.extend(all_texts_by_patient[patient_num]) train_labels.extend(all_labels_by_patient[patient_num]) for patient_num in dev_patients: dev_texts.extend(all_texts_by_patient[patient_num]) dev_labels.extend(all_labels_by_patient[patient_num]) train_out_text_by_sentence = [] for text, labels in zip(train_texts, train_labels): train_out_text_by_sentence.append('\n'.join('%s %s' % x for x in zip(text, labels))) dev_out_text_by_sentence = [] for text, labels in zip(dev_texts, dev_labels): dev_out_text_by_sentence.append('\n'.join('%s %s' % x for x in zip(text, labels))) return '\n\n'.join(train_out_text_by_sentence), '\n\n'.join(dev_out_text_by_sentence) def main(gold_set_1_dir, gold_set_2_dir, test_gold_set_dir, task_dir): final_train_text, final_dev_text = reprocess_PHI_labels( [gold_set_1_dir, gold_set_2_dir], PHI_tag_type='ALL_CHILDREN', dev_set_size=0.1, match_text=True ) test_text, _ = reprocess_PHI_labels( [test_gold_set_dir], PHI_tag_type='ALL_CHILDREN', match_text=False, dev_set_size=None ) labels = {} for s in final_train_text, final_dev_text, test_text: for line in s.split('\n'): if line == '': continue label = line.split()[-1] assert label == 'O' or label.startswith('B-') or label.startswith('I-'), "label wrong! %s" % label if label not in labels: labels[label] = 1 else: labels[label] += 1 with open(os.path.join(task_dir, 'train.txt.conll'), mode='w') as f: f.write(final_train_text) with open(os.path.join(task_dir,'dev.txt.conll'), mode='w') as f: f.write(final_dev_text) with open(os.path.join(task_dir,'test.txt.conll'), mode='w') as f: f.write(test_text) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( "--gold_set_1_dir", type=str, required=True, ) parser.add_argument( "--gold_set_2_dir", type=str, required=True, ) parser.add_argument( "--test_gold_set_dir", type=str, required=True, ) parser.add_argument( "--task_dir", type=str, required=True, ) args = parser.parse_args() main(args.gold_set_1_dir, args.gold_set_2_dir, args.test_gold_set_dir, args.task_dir)
bio-lm-main
preprocessing/preprocess_i2b2_2014_ner.py
"""Run dimensionality reduction experiment.""" import argparse import logging import networkx as nx import numpy as np import torch import geom.hyperboloid as hyperboloid import geom.poincare as poincare from learning.frechet import Frechet from learning.pca import TangentPCA, EucPCA, PGA, HoroPCA, BSA from utils.data import load_graph, load_embeddings from utils.metrics import avg_distortion_measures, compute_metrics, format_metrics, aggregate_metrics from utils.sarkar import sarkar, pick_root parser = argparse.ArgumentParser( description="Hyperbolic dimensionality reduction" ) parser.add_argument('--dataset', type=str, help='which datasets to use', default="smalltree", choices=["smalltree", "phylo-tree", "bio-diseasome", "ca-CSphd"]) parser.add_argument('--model', type=str, help='which dimensionality reduction method to use', default="horopca", choices=["pca", "tpca", "pga", "bsa", "hmds", "horopca"]) parser.add_argument('--metrics', nargs='+', help='which metrics to use', default=["distortion", "frechet_var"]) parser.add_argument( "--dim", default=10, type=int, help="input embedding dimension to use" ) parser.add_argument( "--n-components", default=2, type=int, help="number of principal components" ) parser.add_argument( "--lr", default=5e-2, type=float, help="learning rate to use for optimization-based methods" ) parser.add_argument( "--n-runs", default=5, type=int, help="number of runs for optimization-based methods" ) parser.add_argument('--use-sarkar', default=False, action='store_true', help="use sarkar to embed the graphs") parser.add_argument( "--sarkar-scale", default=3.5, type=float, help="scale to use for embeddings computed with Sarkar's construction" ) if __name__ == "__main__": logging.basicConfig( format="%(asctime)s %(levelname)-8s %(message)s", level=logging.INFO, datefmt="%Y-%m-%d %H:%M:%S" ) args = parser.parse_args() torch.set_default_dtype(torch.float64) pca_models = { 'pca': {'class': EucPCA, 'optim': False, 'iterative': False, "n_runs": 1}, 'tpca': {'class': TangentPCA, 'optim': False, 'iterative': False, "n_runs": 1}, 'pga': {'class': PGA, 'optim': True, 'iterative': True, "n_runs": args.n_runs}, 'bsa': {'class': BSA, 'optim': True, 'iterative': False, "n_runs": args.n_runs}, 'horopca': {'class': HoroPCA, 'optim': True, 'iterative': False, "n_runs": args.n_runs}, } metrics = {} embeddings = {} logging.info(f"Running experiments for {args.dataset} dataset.") # load a graph args.dataset graph = load_graph(args.dataset) n_nodes = graph.number_of_nodes() nodelist = np.arange(n_nodes) graph_dist = torch.from_numpy(nx.floyd_warshall_numpy(graph, nodelist=nodelist)) logging.info(f"Loaded {args.dataset} dataset with {n_nodes} nodes") # get hyperbolic embeddings if args.use_sarkar: # embed with Sarkar logging.info("Using sarkar embeddings") root = pick_root(graph) z = sarkar(graph, tau=args.sarkar_scale, root=root, dim=args.dim) z = torch.from_numpy(z) z_dist = poincare.pairwise_distance(z) / args.sarkar_scale else: # load pre-trained embeddings logging.info("Using optimization-based embeddings") assert args.dim in [2, 10, 50], "pretrained embeddings are only for 2, 10 and 50 dimensions" z = load_embeddings(args.dataset, dim=args.dim) z = torch.from_numpy(z) z_dist = poincare.pairwise_distance(z) if torch.cuda.is_available(): z = z.cuda() z_dist = z_dist.cuda() graph_dist = graph_dist.cuda() # compute embeddings' distortion distortion = avg_distortion_measures(graph_dist, z_dist)[0] logging.info("Embedding distortion in {} dimensions: {:.4f}".format(args.dim, distortion)) # Compute the mean and center the data logging.info("Computing the Frechet mean to center the embeddings") frechet = Frechet(lr=1e-2, eps=1e-5, max_steps=5000) mu_ref, has_converged = frechet.mean(z, return_converged=True) logging.info(f"Mean computation has converged: {has_converged}") x = poincare.reflect_at_zero(z, mu_ref) # Run dimensionality reduction methods logging.info(f"Running {args.model} for dimensionality reduction") metrics = [] dist_orig = poincare.pairwise_distance(x) if args.model in pca_models.keys(): model_params = pca_models[args.model] for _ in range(model_params["n_runs"]): model = model_params['class'](dim=args.dim, n_components=args.n_components, lr=args.lr, max_steps=500) if torch.cuda.is_available(): model.cuda() model.fit(x, iterative=model_params['iterative'], optim=model_params['optim']) metrics.append(model.compute_metrics(x)) embeddings = model.map_to_ball(x).detach().cpu().numpy() metrics = aggregate_metrics(metrics) else: # run hMDS baseline logging.info(f"Running hMDS") x_hyperboloid = hyperboloid.from_poincare(x) distances = hyperboloid.distance(x.unsqueeze(-2), x.unsqueeze(-3)) D_p = poincare.pairwise_distance(x) x_h = hyperboloid.mds(D_p, d=args.n_components) x_proj = hyperboloid.to_poincare(x_h) embeddings["hMDS"] = x_proj.numpy() metrics = compute_metrics(x, x_proj) logging.info(f"Experiments for {args.dataset} dataset completed.") logging.info("Computing evaluation metrics") results = format_metrics(metrics, args.metrics) for line in results: logging.info(line)
HoroPCA-main
main.py
HoroPCA-main
learning/__init__.py
"""Frechet data statistics.""" import torch import geom.poincare as poincare class Frechet: """Class to compute Frechet statiscs (mean and variance).""" def __init__(self, lr=1e-1, eps=1e-5, max_steps=5000, max_lr_try=3): self.lr = lr self.eps = eps self.max_steps = max_steps self.max_lr_try = max_lr_try self.lr_values = [self.lr] self.lr_values = [self.lr * (2 ** (i + 1)) for i in range(self.max_lr_try)] self.lr_values += [self.lr * (0.5 * (i + 1)) for i in range(self.max_lr_try)] def mean(self, x, return_converged=False): """Compute the Frechet mean with gradient descent steps.""" n = x.shape[0] mu_init = torch.mean(x, dim=0, keepdim=True) has_converged = False for i, lr in enumerate(self.lr_values): mu = mu_init for i in range(self.max_steps): log_x = torch.sum(poincare.logmap(mu, x), dim=0, keepdim=True) delta_mu = lr / n * log_x mu = poincare.expmap(mu, delta_mu) if delta_mu.norm(dim=-1, p=2, keepdim=False) < self.eps: has_converged = True break if has_converged: break if not has_converged: mu = mu_init if return_converged: return mu, has_converged else: return mu def variance(self, x, return_converged=False): """Compute the Frechet variance.""" mu, has_converged = self.mean(x, return_converged=True) distances = poincare.distance(x, mu.unsqueeze(0)) ** 2 var = torch.mean(distances) if return_converged: return var, has_converged else: return var
HoroPCA-main
learning/frechet.py
"""Hyperbolic dimensionality reduction models.""" from abc import ABC, abstractmethod import torch import torch.nn as nn import geom.euclidean as euclidean import geom.hyperboloid as hyperboloid import geom.minkowski as minkowski import geom.poincare as poincare from geom.horo import busemann, project_kd from utils.metrics import compute_metrics class PCA(ABC, nn.Module): """Dimensionality reduction model class.""" def __init__(self, dim, n_components, lr=1e-3, max_steps=100, keep_orthogonal=False): super(PCA, self).__init__() self.dim = dim self.n_components = n_components self.components = nn.ParameterList(nn.Parameter(torch.randn(1, dim)) for _ in range(self.n_components)) self.max_steps = max_steps self.lr = lr self.keep_orthogonal = keep_orthogonal def project(self, x): """Projects points onto the principal components.""" Q = self.get_components() return self._project(x, Q) @abstractmethod def _project(self, x, Q): """Projects points onto the submanifold that goes through the origin and is spanned by different components. Args: x: torch.tensor of shape (batch_size, dim) Q: torch.tensor of shape (n_components, dim) Returns: x_p: torch.tensor of shape (batch_size, dim) """ raise NotImplementedError @abstractmethod def compute_loss(self, x, Q): """Computes objective to minimize. Args: x: torch.tensor of shape (batch_size, dim), data before _projection Q: torch.tensor of shape (n_components, dim) Args: loss: torch.tensor of shape (1,) """ raise NotImplementedError def gram_schmidt(self, ): """Applies Gram-Schmidt to the component vectors.""" def inner(u, v): return torch.sum(u * v) Q = [] for k in range(self.n_components): v_k = self.components[k][0] proj = 0.0 for v_j in Q: v_j = v_j[0] coeff = inner(v_j, v_k) / inner(v_j, v_j).clamp_min(1e-15) proj += coeff * v_j v_k = v_k - proj v_k = v_k / torch.norm(v_k).clamp_min(1e-15) Q.append(torch.unsqueeze(v_k, 0)) return torch.cat(Q, dim=0) def orthogonalize(self): Q = torch.cat([self.components[i] for i in range(self.n_components)]) # (k, d) # _, _, v = torch.svd(Q, some=False) # Q = USV^T # Q_ = v[:, :self.n_components] # return Q_.transpose(-1, -2)# (k, d) rows are orthonormal basis for rows of Q return euclidean.orthonormal(Q) def normalize(self, ): """Makes the component vectors unit-norm (not orthogonal).""" Q = torch.cat([self.components[i] for i in range(self.n_components)]) return Q / torch.norm(Q, dim=1, keepdim=True).clamp_min(1e-15) def get_components(self, ): if self.keep_orthogonal: Q = self.gram_schmidt() # Q = self.orthogonalize() else: Q = self.normalize() return Q # shape (n_components, dim) def map_to_ball(self, x): """Returns coordinates of _projected points in a lower-dimensional Poincare ball model. Args: x: torch.tensor of shape (batch_size, dim) Returns: torch.tensor of shape (batch_size, n_components) """ Q = self.get_components() x_p = self._project(x, Q) # Q_orthogonal = self.gram_schmidt() Q_orthogonal = self.orthogonalize() return x_p @ Q_orthogonal.transpose(0, 1) def fit_optim(self, x, iterative=False): """Finds component using gradient-descent-based optimization. Args: x: torch.tensor of size (batch_size x dim) iterative: boolean Note: If iterative = True returns optimizes components by components (nested subspace assumption). """ loss_vals = [] optimizer = torch.optim.Adam(self.parameters(), lr=self.lr) if not iterative: for i in range(self.max_steps): # Forward pass: compute _projected variance Q = self.get_components() loss = self.compute_loss(x, Q) loss_vals.append(loss.item()) optimizer.zero_grad() loss.backward() torch.nn.utils.clip_grad_norm_(self.parameters(), 1e5) # if self.components[0].grad.sum().isnan().item(): optimizer.step() else: for k in range(self.n_components): for i in range(self.max_steps): # Forward pass: compute _projected variance Q = self.get_components() # Project on first k components loss = self.compute_loss(x, Q[:k + 1, :]) loss_vals.append(loss.item()) optimizer.zero_grad() loss.backward() optimizer.step() self.components[k].data = self.get_components()[k].unsqueeze(0) self.components[k].requires_grad = False return loss_vals def fit_spectral(self, x): """Finds component using spectral decomposition (closed-form solution). Args: x: torch.tensor of size (batch_size x dim) """ raise NotImplementedError def fit(self, x, iterative=False, optim=True): """Finds principal components using optimization or spectral decomposition approaches. Args: x: torch.tensor of size (batch_size x dim) iterative: boolean (true to do iterative optimization of nested subspaces) optim: boolean (true to find components via optimization, defaults to SVD otherwise) """ if optim: self.fit_optim(x, iterative) else: self.fit_spectral(x) def compute_metrics(self, x): """Compute dimensionality reduction evaluation metrics.""" Q = self.get_components() x_proj = self._project(x, Q).detach() return compute_metrics(x, x_proj) class EucPCA(PCA): """Euclidean PCA (assumes data has Euclidean mean zero).""" def __init__(self, dim, n_components, lr=1e-3, max_steps=100): super(EucPCA, self).__init__(dim, n_components, lr, max_steps, keep_orthogonal=True) def compute_loss(self, x, Q): vals = x @ Q.transpose(0, 1) # shape (batch_size, n_components) return - torch.sum(vals ** 2) def _project(self, x, Q): return (x @ Q.transpose(0, 1)) @ Q # shape (batch_size, dim) def fit_spectral(self, x): """Euclidean PCA closed-form with SVD.""" S = (x.T @ x) U, S, V = torch.svd(S) for k in range(self.n_components): self.components[k].data = U[k:k + 1] class TangentPCA(PCA): """Euclidean PCA in the tangent space of the mean (assumes data has Frechet mean zero).""" def __init__(self, dim, n_components, lr=1e-3, max_steps=100): super(TangentPCA, self).__init__(dim, n_components, lr, max_steps, keep_orthogonal=True) def _project(self, x, Q): x_t = poincare.logmap0(x) # shape (batch_size, dim) x_pt = (x_t @ Q.transpose(0, 1)) @ Q # shape (batch_size, dim) x_p = poincare.expmap0(x_pt) # shape (batch_size, dim) return x_p def compute_loss(self, x, Q): x_t = poincare.logmap0(x) # shape (batch_size, dim) vals = x_t @ Q.transpose(0, 1) # shape (batch_size, n_components) return - torch.sum(vals ** 2) def fit_spectral(self, x): """Geodesic PCA closed-form with SVD.""" u = poincare.logmap0(x) S = (u.T @ u) U, S, V = torch.svd(S) for k in range(self.n_components): self.components[k].data = U[k:k + 1] class PGA(PCA): """Exact Hyperbolic PGA using geodesic _projection (assuming data has Frechet mean zero). This assumption is necessary because otherwise its unclear how to geodesically _project on the submanifold spanned by tangent vectors. For general Frechet mean, the PGA paper approximates this using Tangent PCA. """ def __init__(self, dim, n_components, lr=1e-3, max_steps=100): super(PGA, self).__init__(dim, n_components, lr, max_steps, keep_orthogonal=True) def _project(self, x, Q): """Geodesic projection.""" proj = poincare.orthogonal_projection(x, Q, normalized=self.keep_orthogonal) return proj def compute_loss(self, x, Q): proj = self._project(x, Q) sq_distances = poincare.distance0(proj) ** 2 var = torch.mean(sq_distances) return -var class HoroPCA(PCA): """Hyperbolic PCA using horocycle _projections (assumes data has Frechet mean zero).""" def __init__(self, dim, n_components, lr=1e-3, max_steps=100, frechet_variance=False, auc=False, hyperboloid=True): """ Currently auc=True and frechet_variance=True are not simultaneously supported (need to track mean parameter for each component). """ super(HoroPCA, self).__init__(dim, n_components, lr, max_steps, keep_orthogonal=True) self.hyperboloid = hyperboloid self.frechet_variance = frechet_variance self.auc = auc if self.frechet_variance: self.mean_weights = nn.Parameter(torch.zeros(n_components)) def _project(self, x, Q): if self.n_components == 1: proj = project_kd(Q, x)[0] else: if self.hyperboloid: hyperboloid_ideals = hyperboloid.from_poincare(Q, ideal=True) hyperboloid_x = hyperboloid.from_poincare(x) hyperboloid_proj = hyperboloid.horo_projection(hyperboloid_ideals, hyperboloid_x)[0] proj = hyperboloid.to_poincare(hyperboloid_proj) else: proj = project_kd(Q, x)[0] return proj def compute_variance(self, x): """ x are projected points. """ if self.frechet_variance: # mean = self.mean_weights.unsqueeze(-1) * torch.stack(self.components, dim=0) # (k, d) Q = [self.mean_weights[i] * self.components[i] for i in range(self.n_components)] # (k, d) mean = sum(Q).squeeze(0) distances = poincare.distance(mean, x) var = torch.mean(distances ** 2) else: distances = poincare.pairwise_distance(x) var = torch.mean(distances ** 2) return var def compute_loss(self, x, Q): if self.n_components == 1: # option 1 bus = busemann(x, Q[0]) # shape (batch_size, n_components) return -torch.var(bus) else: auc = [] if self.auc: for i in range(1, self.n_components): Q_ = Q[:i, :] proj = self._project(x, Q_) var = self.compute_variance(proj) auc.append(var) return -sum(auc) else: proj = self._project(x, Q) var = self.compute_variance(proj) return -var class BSA(PCA): """ Stores k+1 reference points to define geodesic projections. If hyperboloid option is false, only stores k reference points and assumes the first reference point (mean) is the origin. """ def __init__(self, dim, n_components, lr=1e-3, max_steps=100, hyperboloid=True, auc=True): """ hyperboloid: Do computations in the hyperboloid model, allowing for subspaces that do not pass through the origin (stores k+1 reference points instead of k) auc: Use AUC objective to optimize the entire flag Note that if auc=False and iterative=True, this is equivalent to forward BSA. However, hyperboloid=True is not currently supported in this case """ self.hyperboloid = hyperboloid self.auc = auc if self.hyperboloid: super(BSA, self).__init__(dim, n_components + 1, lr, max_steps, keep_orthogonal=True) else: super(BSA, self).__init__(dim, n_components, lr, max_steps, keep_orthogonal=True) def _project(self, x, Q): """Geodesic projection.""" # return poincare.orthogonal_projection(x, Q, normalized=self.keep_orthogonal) proj = poincare.orthogonal_projection(x, Q, normalized=self.keep_orthogonal) return proj def compute_loss(self, x, Q): if self.auc: auc = [] if self.hyperboloid: Q = hyperboloid.from_poincare(Q, ideal=True) x = hyperboloid.from_poincare(x) for i in range(1, self.n_components): Q_ = Q[:i + 1, :] proj = minkowski.orthogonal_projection(Q_, x) residual_variance = torch.sum(hyperboloid.distance(x, proj) ** 2) auc.append(residual_variance) else: for i in range(1, self.n_components): Q_ = Q[:i, :] proj = self._project(x, Q_) residual_variance = torch.sum(poincare.distance(x, proj) ** 2) auc.append(residual_variance) return sum(auc) else: if self.hyperboloid: Q = hyperboloid.from_poincare(Q, ideal=True) x = hyperboloid.from_poincare(x) proj = minkowski.orthogonal_projection(Q, x) residual_variance = torch.sum(hyperboloid.distance(x, proj) ** 2) else: proj = self._project(x, Q) residual_variance = torch.sum(poincare.distance(x, proj) ** 2) return residual_variance
HoroPCA-main
learning/pca.py
"""Evaluation metrics.""" import numpy as np import torch import geom.poincare as poincare from learning.frechet import Frechet def avg_distortion_measures(distances1, distances2, tau=1.0): """Computes different measures of average distortion between two distance matrices. :param distances1: N x N torch tensor with pairwise distances. (ground truth) :param distances2: N x N torch tensor with pairwise distances. (scaled embeddings) :return: Average distortion (scalar). """ n_nodes = distances1.shape[0] ids = torch.triu_indices(row=n_nodes, col=n_nodes, offset=1) distances1 = distances1[ids[0], ids[1]] distances2 = distances2[ids[0], ids[1]] / tau diff = torch.abs(distances2 - distances1) ratio = diff / distances1 avg_distortion = torch.mean(ratio).item() avg_distortion_sq = torch.mean(ratio ** 2).item() avg_distortion_abs = torch.mean(diff ** 2).item() return avg_distortion, avg_distortion_sq, avg_distortion_abs def worst_case_distortion(distances1, distances2): """Worst case distortion metric.""" n_nodes = distances1.shape[0] ids = torch.triu_indices(row=n_nodes, col=n_nodes, offset=1) ratio = (distances2 / distances1)[ids[0], ids[1]] return (torch.max(ratio) / torch.min(ratio)).item() def l2_error(dist_orig, dist_proj): """l2 error of distances.""" return torch.mean((dist_orig - dist_proj) ** 2).item() def unexplained_variance(x, x_proj): """Unexplained variance (see Pennec (2018)).""" res = poincare.distance(x, x_proj) ** 2 return torch.mean(res).item() def frechet_var_approx(dist_proj): """Approximation of the Frechet variance with pairwise squared distances.""" return torch.mean(dist_proj ** 2).item() def compute_metrics(x, x_proj, frechet_lr=0.1): """Computes various evaluation metrics projections.""" try: uv = unexplained_variance(x, x_proj) except RuntimeError: # exception for hMDS where unexplained variance cannot be computed uv = -1 dist_orig = poincare.pairwise_distance(x) dist_proj = poincare.pairwise_distance(x_proj) avg_distortion, avg_distortion_sq, avg_distortion_abs = avg_distortion_measures(dist_orig, dist_proj) wc_distortion = worst_case_distortion(dist_orig, dist_proj) frechet_var_apx = frechet_var_approx(dist_proj) frechet_var_apx_orig = frechet_var_approx(dist_orig) l2 = l2_error(dist_orig, dist_proj) frechet = Frechet(lr=frechet_lr) frechet_var, has_converged = frechet.variance(x_proj, return_converged=True) return { 'distortion': avg_distortion, 'distortion_sq': avg_distortion_sq, 'distortion_abs': avg_distortion_abs, 'distortion_wc': wc_distortion, 'unexplained_var': uv, 'l2_error': l2, 'frechet_var_apx': frechet_var_apx, 'frechet_var': frechet_var.item(), 'frechet_mean_has_converged': has_converged, "frechet_var_apx_orig": frechet_var_apx_orig, } def format_metrics(metrics, metric_names): """Print metrics.""" formatted_results = [] for metric in metric_names: x = metrics[metric] if isinstance(x, list): mean, std = x else: mean, std = x, 0.0 formatted_results.append("{}: \t{:.2f} +- {:.2f}".format(metric, mean, std)) return formatted_results def aggregate_metrics(metrics): """Compute average and standard deviation for metrics.""" if len(metrics) == 1: return metrics[0] else: agg_metrics = metrics[0] for metric in agg_metrics.keys(): vals = [x[metric] for x in metrics] agg_metrics[metric] = [np.mean(vals), np.std(vals)] return agg_metrics
HoroPCA-main
utils/metrics.py
HoroPCA-main
utils/__init__.py
"""Sarkar's combinatorial construction.""" import networkx as nx import numpy as np import scipy MIN_NORM = 1e-15 # ################# CIRCLE INVERSIONS ######################## def reflect_at_zero(x, mu): # Note: this differs from geom.poincare.reflect_at_zero because it's numpy instead of torch """ Image of x by circle inversion that takes mu to the origin """ mu_sqnorm = np.sum(mu ** 2) a = mu / mu_sqnorm.clip(min=1e-15) a_sqnorm = np.sum(a ** 2) r2 = a_sqnorm - np.longdouble([1.]) xa_sqnorm = np.maximum(np.sum((x - a) ** 2, axis=-1, keepdims=True), MIN_NORM) return (r2 / xa_sqnorm) * (x - a) + a def reflect_through_zero(p, q, x): """ Image of x under reflection that takes p (normalized) to q (normalized) and 0 to 0. """ p_ = p / np.linalg.norm(p, axis=-1, keepdims=True).clip(min=1e-15) q_ = q / np.linalg.norm(q, axis=-1, keepdims=True).clip(min=1e-15) # print("norm p, q", np.linalg.norm(p_), np.linalg.norm(q_)) r = q_ - p_ # Magnitude of x in direction of r m = np.sum(r * x, axis=-1, keepdims=True) / np.sum(r * r, axis=-1, keepdims=True) return x - 2 * r * m def test_reflect(): pass # ################# SARKAR CONSTRUCTION ######################## def pick_root(tree): graph_distances = np.array(nx.floyd_warshall_numpy(tree).astype(np.float32)) j_ids = np.argmax(graph_distances, axis=1) i = np.argmax(graph_distances[np.arange(tree.number_of_nodes()), j_ids]) j = j_ids[i] path = nx.shortest_path(tree, i, j) length = len(path) root = path[length // 2] return root def place_children(z_parent, n_children, scaling, dim=2, coding=True): """Embeds children of node embedded at the origin. Assumes z is embedding of parent of node at the origin. children are at disrance scale/2 from their parent in hyperbolic metric. """ if dim == 2: if z_parent is None: theta_parent = 0 n_neighbors = n_children else: theta_parent = np.angle(z_parent[0] + z_parent[1] * 1j) n_neighbors = n_children + 1 theta_children = [theta_parent + 2 * np.longdouble(np.pi) * (i + 1) / np.longdouble(n_neighbors) for i in range(n_children)] z_children = [] for theta_child in theta_children: z_children.append(scaling * np.array([np.cos(theta_child), np.sin(theta_child)])) return z_children else: normalize = lambda x: x / np.linalg.norm(x, keepdims=True) if coding: N = 2 ** int(np.ceil(np.log(dim) / np.log(2))) H = scipy.linalg.hadamard(N) if z_parent is not None: par_ = np.concatenate((z_parent, np.zeros(N - dim))) H = reflect_through_zero(H[0, :], par_, H) # print("reflecting H0 onto parent", scaling * normalize(H[0,:]) - par_) z_children = [H[i, :dim] for i in range(1, min(n_children + 1, N))] if n_children > N - 1: z_children += [np.random.randn(dim) for _ in range(n_children - N + 1)] z_children = [scaling * normalize(c) for c in z_children] else: z_children = [scaling * normalize(np.random.randn(dim)) for _ in range(n_children)] return z_children def sarkar(tree, tau=1.0, root=None, dim=2, coding=False, seed=1234): """Embeds a tree in H_d using Sarkar's construction. Args: tree: nx.Graph object representing the tree structure to embed. root: index of the root node in the tree object. tau: scale of hyperbolic embeddings, parent-child will be placed at hyperbolic distance tau from each other. """ np.random.seed(seed) if root is None: # pick root in Sarkar as node on longest path root = pick_root(tree) # Initialize embeddings array z = np.zeros((tree.number_of_nodes(), dim), dtype=np.float64) scaling = np.tanh(tau / 2) # Euclidean distance corresponding to hyperbolic distance of tau # bfs traversal bfs_tree_rev = nx.reverse_view(nx.bfs_tree(tree, root)) for current, children in nx.bfs_successors(tree, root): if current == root: z[root] = np.zeros(dim) z_children = place_children(None, len(children), scaling, dim=dim, coding=coding) for i, child_idx in enumerate(children): z[child_idx] = z_children[i] else: z_current = z[current] z_parent = z[list(bfs_tree_rev.neighbors(current))[0]] # inversion that maps current to the origin z_parent = reflect_at_zero(z_parent, z_current) z_children = place_children(z_parent, len(children), scaling, dim=dim, coding=coding) for i, child_idx in enumerate(children): z[child_idx] = reflect_at_zero(z_children[i], z_current) return z
HoroPCA-main
utils/sarkar.py
"""Data utils.""" import networkx as nx import numpy as np import geom.poincare as poincare from learning.frechet import Frechet def load_graph(dataset): """Loads a graph dataset. Return: networkx graph object """ G = nx.Graph() with open(f"data/edges/{dataset}.edges", "r") as f: for line in f: tokens = line.split() u = int(tokens[0]) v = int(tokens[1]) G.add_edge(u, v) return G def load_embeddings(dataset, dim): embeddings_path = f"data/embeddings/{dataset}_{dim}_poincare.npy" return np.load(embeddings_path) def center(x, lr): """Centers data so it has zero Frechet mean.""" frechet = Frechet(lr=lr) mu = frechet.mean(x) return poincare.reflect_at_zero(x, mu)
HoroPCA-main
utils/data.py
"""Util functions for hyperboloid models Convention: The ambient Minkowski space has signature -1, 1, 1, ... i.e. the squared norm of (t,x,y,z) is -t^2 + x^2 + y^2 + z^2, And we are using the positive sheet, i.e. every point on the hyperboloid has positive first coordinate. """ import torch import geom.minkowski as minkowski import geom.poincare as poincare MIN_NORM = 1e-15 def distance(x, y): """ Args: x, y: torch.tensor of the same shape (..., Minkowski_dim) Returns: torch.tensor of shape (..., ) """ # return torch.acosh(- minkowski.bilinear_pairing(x, y)) return torch.acosh(torch.clamp(- minkowski.bilinear_pairing(x, y), min=1.0)) def exp_unit_tangents(base_points, unit_tangents, distances): """Batched exponential map using the given base points, unit tangent directions, and distances Args: base_points, unit_tangents: torch.tensor of shape (..., Minkowski_dim) Each unit_tangents[j..., :] must have (Minkowski) squared norm 1 and is orthogonal to base_points[j..., :] distances: torch.tensor of shape (...) Returns: torch.tensor of shape (..., Minkowski_dim) """ distances = distances.unsqueeze(-1) return base_points * torch.cosh(distances) + unit_tangents * torch.sinh(distances) # def exp(base_points, tangents): # """Batched exponential map using the given base points and tangent vectors # # Args: # base_point, tangents: torch.tensor of shape (..., Minkowski_dim) # Each tangents[j..., :] must have squared norm > 0 and is orthogonal to base_points[j..., :] # # Returns: # torch.tensor of shape (..., Minkowski_dim) # """ # distances = torch.sqrt(minkowski.squared_norm(tangents)) # shape (...) # unit_tangets = tangents / distances.view(-1, 1) # shape (..., Minkowski_dim) # return exp_unit_tangents(base_point, unit_tangents, distances) def from_poincare(x, ideal=False): """Convert from Poincare ball model to hyperboloid model Args: x: torch.tensor of shape (..., dim) ideal: boolean. Should be True if the input vectors are ideal points, False otherwise Returns: torch.tensor of shape (..., dim+1) To do: Add some capping to make things numerically stable. This is only needed in the case ideal == False """ if ideal: t = torch.ones(x.shape[:-1], device=x.device).unsqueeze(-1) return torch.cat((t, x), dim=-1) else: eucl_squared_norm = (x * x).sum(dim=-1, keepdim=True) return torch.cat((1 + eucl_squared_norm, 2 * x), dim=-1) / (1 - eucl_squared_norm).clamp_min(MIN_NORM) def to_poincare(x, ideal=False): """Convert from hyperboloid model to Poincare ball model Args: x: torch.tensor of shape (..., Minkowski_dim), where Minkowski_dim >= 3 ideal: boolean. Should be True if the input vectors are ideal points, False otherwise Returns: torch.tensor of shape (..., Minkowski_dim - 1) """ if ideal: return x[..., 1:] / (x[..., 0].unsqueeze(-1)).clamp_min(MIN_NORM) else: return x[..., 1:] / (1 + x[..., 0].unsqueeze(-1)).clamp_min(MIN_NORM) def decision_boundary_to_poincare(minkowski_normal_vec): """Convert the totally geodesic submanifold defined by the Minkowski normal vector to Poincare ball model (Here the Minkowski normal vector defines a linear subspace, which intersects the hyperboloid at our submanifold) Args: minkowski_normal_vec: torch.tensor of shape (Minkowski_dim, ) Returns: center: torch.tensor of shape (Minkowski_dim -1, ) radius: float Warning: minkowski_normal_vec must have positive squared norm minkowski_normal_vec[0] must be nonzero (otherwise the submanifold is a flat plane through the origin) """ x = minkowski_normal_vec # poincare_origin = [1,0,0,0,...], # shape (Minkowski_dim, ) poincare_origin = torch.zeros(minkowski_normal_vec.shape[0], device=minkowski_normal_vec.device) poincare_origin[0] = 1 # shape (1, Minkowski_dim) poincare_origin_reflected = minkowski.reflection(minkowski_normal_vec, poincare_origin.unsqueeze(0)) # shape (Minkowski_dim-1, ) origin_reflected = to_poincare(poincare_origin_reflected).squeeze(0) center = poincare.reflection_center(origin_reflected) radius = torch.sqrt(torch.sum(center ** 2) - 1) return center, radius def orthogonal_projection(basis, x): """Compute the orthogonal projection of x onto the geodesic submanifold spanned by the given basis vectors (i.e. the intersection of the hyperboloid with the Euclidean linear subspace spanned by the basis vectors). Args: basis: torch.tensor of shape(num_basis, Minkowski_dim) x: torch.tensor of shape(batch_size, Minkowski_dim) Returns: torch.tensor of shape(batch_size, Minkowski_dim) Conditions: Each basis vector must have non-positive Minkowski squared norms. There must be at least 2 basis vectors. The basis vectors must be linearly independent. """ minkowski_proj = minkowski.orthogonal_projection(basis, x) # shape (batch_size, Minkowski_dim) squared_norms = minkowski.squared_norm(minkowski_proj) # shape (batch_size, ) return minkowski_proj / torch.sqrt(- squared_norms.unsqueeze(1)) def horo_projection(ideals, x): """Compute the projection based on horosphere intersections. The target submanifold has dimension num_ideals and is a geodesic submanifold passing through the ideal points and (1,0,0,0,...), i.e. the point corresponds to the origin in Poincare model. Args: ideals: torch.tensor of shape (num_ideals, Minkowski_dim) num_ideals must be STRICTLY between 1 and Minkowski_dim ideal vectors must be independent the geodesic submanifold spanned by ideals must not contain (1,0,0,...) x: torch.tensor of shape (batch_size, Minkowski_dim) Returns: torch.tensor of shape (batch_size, Minkowski_dim) """ # Compute orthogonal (geodesic) projection from x to the geodesic submanifold spanned by ideals # We call this submanifold the "spine" because of the "open book" intuition spine_ortho_proj = orthogonal_projection(ideals, x) # shape (batch_size, Minkowski_dim) spine_dist = distance(spine_ortho_proj, x) # shape (batch_size, ) # poincare_origin = [1,0,0,0,...], # shape (Minkowski_dim, ) poincare_origin = torch.zeros(x.shape[1], device=x.device) poincare_origin[0] = 1 # Find a tangent vector of the hyperboloid at spine_ortho_proj that is tangent to the target submanifold # and orthogonal to the spine. # This is done in a Gram-Schmidt way: Take the Euclidean vector pointing from spine_ortho_proj to poincare_origin, # then subtract a projection part so that it is orthogonal to the spine and tangent to the hyperboloid # Everything below has shape (batch_size, Minkowski_dim) chords = poincare_origin - spine_ortho_proj tangents = chords - minkowski.orthogonal_projection(ideals, chords) unit_tangents = tangents / torch.sqrt(minkowski.squared_norm(tangents)).view(-1, 1) proj_1 = exp_unit_tangents(spine_ortho_proj, unit_tangents, spine_dist) proj_2 = exp_unit_tangents(spine_ortho_proj, unit_tangents, -spine_dist) return proj_1, proj_2 def mds(D, d): """ Args: D - (..., n, n) distance matrix Returns: X - (..., n, d) hyperbolic embeddings """ Y = -torch.cosh(D) # print("Y:", Y) eigenvals, eigenvecs = torch.symeig(Y, eigenvectors=True) # print(Y.shape, eigenvals.shape, eigenvecs.shape) # print(eigenvals, eigenvecs) X = torch.sqrt(torch.clamp(eigenvals[-d:], min=0.)) * eigenvecs[..., -d:] # print("testing") # print(X) # print(Y @ X) u = torch.sqrt(1 + torch.sum(X * X, dim=-1, keepdim=True)) M = torch.cat((u, X), dim=-1) # print(minkowski.pairwise_bilinear_pairing(M, M)) return torch.cat((u, X), dim=-1) def test(): ideal = torch.tensor([[1.0, 0, 0, 0], [0.0, 1, 0, 0]]) x = torch.tensor([[0.2, 0.3, 0.4, 0.5], [0.0, 0, 0, 0], [0.0, 0, 0, 0.7]]) loid_ideal, loid_x = from_poincare(ideal, True), from_poincare(x) loid_p1, loid_p2 = horo_projection(loid_ideal, loid_x) pr1, pr2 = to_poincare(loid_p1), to_poincare(loid_p2) print(pr1) print(pr2) # ideals = torch.tensor([[3.0,3.0,0.0], [5.0,-5.0,0.0]]) # x = torch.tensor([[5.0,0.0,math.sqrt(24)],[2.0,-math.sqrt(3), 0]]) # print(orthogonal_projection(ideals, x)) ideals = torch.tensor([[1.0, 1.0, 0.0], [5.0, 3, 4]]) x = torch.tensor([[5.0, 0, 24 ** 0.5], [2.0, - 3 ** 0.5, 0]]) print(horo_projection(ideals, x)) def test_mds(n=100, d=10): X = torch.randn(n, d) X = X / torch.norm(X, dim=-1, keepdim=True) * 0.9 X = from_poincare(X) # print(X.shape) D = distance(X.unsqueeze(-2), X.unsqueeze(-3)) # print(D.shape) # print(D-D.transpose(0,1)) X_ = mds(D, d) # print(X_.shape) D_ = distance(X_.unsqueeze(-2), X_.unsqueeze(-3)) print(D - D_) def test_projection(): """ Test that orthogonal projection agrees with the Poincare disk version. """ d = 5 # x = torch.randn(1, d) * 0.01 x = poincare.random_points((1, d)) # Q = torch.randn(2, d) # Q = Q / torch.norm(Q, dim=-1, keepdim=True) Q = poincare.random_ideals((2, d)) # poincare projection import geom.poincare as P from geom.euclidean import orthonormal Q = orthonormal(Q) x_r = P.reflect(x, Q) p = P.midpoint(x, x_r) print(p) # hyperboloid projection Q = torch.cat([Q, torch.zeros(1, d)], dim=0) p_ = orthogonal_projection(from_poincare(Q, ideal=True), from_poincare(x)) print(to_poincare(p_)) # Sanity checks if __name__ == "__main__": # test() # test_mds(n=100, d=10) poincare_origin = torch.zeros(3) poincare_origin[0] = 1 print(from_poincare(poincare_origin, ideal=True)) print(to_poincare(from_poincare(poincare_origin, ideal=True), ideal=True)) test_projection()
HoroPCA-main
geom/hyperboloid.py
"""Poincare utils functions.""" import torch import geom.euclidean as euclidean MIN_NORM = 1e-15 BALL_EPS = {torch.float32: 4e-3, torch.float64: 1e-5} def expmap0(u): """Exponential map taken at the origin of the Poincare ball with curvature c. Args: u: torch.Tensor of size B x d with hyperbolic points c: torch.Tensor of size 1 or B x 1 with absolute hyperbolic curvatures Returns: torch.Tensor with tangent points shape (B, d) """ u_norm = u.norm(dim=-1, p=2, keepdim=True).clamp_min(MIN_NORM) gamma_1 = torch.tanh(u_norm) * u / u_norm return project(gamma_1) def logmap0(y): """Logarithmic map taken at the origin of the Poincare ball with curvature c. Args: y: torch.Tensor of size B x d with tangent points c: torch.Tensor of size 1 or B x 1 with absolute hyperbolic curvatures Returns: torch.Tensor with hyperbolic points. """ y_norm = y.norm(dim=-1, p=2, keepdim=True).clamp_min(MIN_NORM) return y / y_norm / 1. * torch.atanh(y_norm.clamp(-1 + 1e-15, 1 - 1e-15)) def expmap(x, u): u_norm = u.norm(dim=-1, p=2, keepdim=True).clamp_min(MIN_NORM) second_term = torch.tanh(lambda_(x) * u_norm / 2) * u / u_norm gamma_1 = mobius_add(x, second_term) return gamma_1 def logmap(x, y): sub = mobius_add(-x, y) sub_norm = sub.norm(dim=-1, p=2, keepdim=True).clamp_min(MIN_NORM).clamp_max(1 - 1e-15) return 2 / lambda_(x) * torch.atanh(sub_norm) * sub / sub_norm def lambda_(x): """Computes the conformal factor.""" x_sqnorm = torch.sum(x.data.pow(2), dim=-1, keepdim=True) return 2 / (1. - x_sqnorm).clamp_min(MIN_NORM) def project(x): """Project points to Poincare ball with curvature c. Args: x: torch.Tensor of size B x d with hyperbolic points Returns: torch.Tensor with projected hyperbolic points. """ norm = x.norm(dim=-1, p=2, keepdim=True).clamp_min(MIN_NORM) eps = BALL_EPS[x.dtype] maxnorm = (1 - eps) cond = norm > maxnorm projected = x / norm * maxnorm return torch.where(cond, projected, x) def distance(x, y, keepdim=True): """Hyperbolic distance on the Poincare ball with curvature c. Args: x: torch.Tensor of size B x d with hyperbolic points y: torch.Tensor of size B x d with hyperbolic points Returns: torch,Tensor with hyperbolic distances, size B x 1 """ pairwise_norm = mobius_add(-x, y).norm(dim=-1, p=2, keepdim=True) dist = 2.0 * torch.atanh(pairwise_norm.clamp(-1 + MIN_NORM, 1 - MIN_NORM)) if not keepdim: dist = dist.squeeze(-1) return dist def pairwise_distance(x, keepdim=False): """All pairs of hyperbolic distances (NxN matrix).""" return distance(x.unsqueeze(-2), x.unsqueeze(-3), keepdim=keepdim) def distance0(x, keepdim=True): """Computes hyperbolic distance between x and the origin.""" x_norm = x.norm(dim=-1, p=2, keepdim=True) d = 2 * torch.atanh(x_norm.clamp(-1 + 1e-15, 1 - 1e-15)) if not keepdim: d = d.squeeze(-1) return d def mobius_add(x, y): """Mobius addition.""" x2 = torch.sum(x * x, dim=-1, keepdim=True) y2 = torch.sum(y * y, dim=-1, keepdim=True) xy = torch.sum(x * y, dim=-1, keepdim=True) num = (1 + 2 * xy + y2) * x + (1 - x2) * y denom = 1 + 2 * xy + x2 * y2 return num / denom.clamp_min(MIN_NORM) def mobius_mul(x, t): """Mobius multiplication.""" normx = x.norm(dim=-1, p=2, keepdim=True).clamp(min=MIN_NORM, max=1. - 1e-5) return torch.tanh(t * torch.atanh(normx)) * x / normx def midpoint(x, y): """Computes hyperbolic midpoint beween x and y.""" t1 = mobius_add(-x, y) t2 = mobius_mul(t1, 0.5) return mobius_add(x, t2) # Reflection (circle inversion of x through orthogonal circle centered at a) def isometric_transform(x, a): r2 = torch.sum(a ** 2, dim=-1, keepdim=True) - 1. u = x - a return r2 / torch.sum(u ** 2, dim=-1, keepdim=True) * u + a # center of inversion circle def reflection_center(mu): return mu / torch.sum(mu ** 2, dim=-1, keepdim=True) # Map x under the isometry (inversion) taking mu to origin def reflect_at_zero(x, mu): a = reflection_center(mu) return isometric_transform(x, a) def orthogonal_projection(x, Q, normalized=False): """ Orthogonally project x onto linear subspace (through the origin) spanned by rows of Q. """ if not normalized: Q = euclidean.orthonormal(Q) x_ = euclidean.reflect(x, Q) return midpoint(x, x_) def geodesic_between_ideals(ideals): """Return the center and radius of the Euclidean circle representing the geodesic joining two ideal points p = ideals[0] and q = ideals[1] Args: ideals: torch.tensor of shape (...,2,dim) Return: center: torch.tensor of shape (..., dim) radius: torch.tensor of shape (...) Note: raise an error if p = -q, i.e. if the geodesic between them is an Euclidean line """ p = ideals[..., 0, :] q = ideals[..., 1, :] norm_sum = (p + q).norm(dim=-1, p=2) # shape (...) assert torch.all(norm_sum != 0) center = (p + q) / (1 + (p * q).sum(dim=-1, keepdim=True)) radius = (p - q).norm(dim=-1, p=2) / norm_sum return center, radius def random_points(size, std=1.0): tangents = torch.randn(*size) * std x = expmap0(tangents) return x def random_ideals(size): Q = torch.randn(*size) Q = Q / torch.norm(Q, dim=-1, keepdim=True) return Q
HoroPCA-main
geom/poincare.py
HoroPCA-main
geom/__init__.py
"""Horocycle projection utils (Poincare model).""" import torch MIN_NORM = 1e-15 def busemann(x, p, keepdim=True): """ x: (..., d) p: (..., d) Returns: (..., 1) if keepdim==True else (...) """ xnorm = x.norm(dim=-1, p=2, keepdim=True) pnorm = p.norm(dim=-1, p=2, keepdim=True) p = p / pnorm.clamp_min(MIN_NORM) num = torch.norm(p - x, dim=-1, keepdim=True) ** 2 den = (1 - xnorm ** 2).clamp_min(MIN_NORM) ans = torch.log((num / den).clamp_min(MIN_NORM)) if not keepdim: ans = ans.squeeze(-1) return ans def circle_intersection_(r, R): """ Computes the intersection of a circle of radius r and R with distance 1 between their centers. Returns: x - distance from center of first circle h - height off the line connecting the two centers of the two intersection pointers """ x = (1.0 - R ** 2 + r ** 2) / 2.0 s = (r + R + 1) / 2.0 sq_h = (s * (s - r) * (s - R) * (s - 1)).clamp_min(MIN_NORM) h = torch.sqrt(sq_h) * 2.0 return x, h def circle_intersection(c1, c2, r1, r2): """ Computes the intersections of a circle centered at ci of radius ri. c1, c2: (..., d) r1, r2: (...) """ d = torch.norm(c1 - c2) # (...) x, h = circle_intersection_(r1 / d.clamp_min(MIN_NORM), r2 / d.clamp_min(MIN_NORM)) # (...) x = x.unsqueeze(-1) h = h.unsqueeze(-1) center = x * c2 + (1 - x) * c1 # (..., d) radius = h * d # (...) # The intersection is a hypersphere of one lower dimension, intersected with the plane # orthogonal to the direction c1->c2 # In general, you can compute this with a sort of higher dimensional cross product? # For now, only 2 dimensions ortho = c2 - c1 # (..., d) assert ortho.size(-1) == 2 direction = torch.stack((-ortho[..., 1], ortho[..., 0]), dim=-1) direction = direction / torch.norm(direction, keepdim=True).clamp_min(MIN_NORM) return center + radius.unsqueeze(-1) * direction # , center - radius*direction def busemann_to_horocycle(p, t): """ Find the horocycle corresponding to the level set of the Busemann function to ideal point p with value t. p: (..., d) t: (...) Returns: c: (..., d) r: (...) """ # Busemann_p(x) = d means dist(0, x) = -d q = -torch.tanh(t / 2).unsqueeze(-1) * p c = (p + q) / 2.0 r = torch.norm(p - q, dim=-1) / 2.0 return c, r def sphere_intersection(c1, r1, c2, r2): """ Computes the intersections of a circle centered at ci of radius ri. c1, c2: (..., d) r1, r2: (...) Returns: center, radius such that the intersection of the two spheres is given by the intersection of the sphere (c, r) with the hyperplane orthogonal to the direction c1->c2 """ d = torch.norm(c1 - c2, dim=-1) # (...) x, h = circle_intersection_(r1 / d.clamp_min(MIN_NORM), r2 / d.clamp_min(MIN_NORM)) # (...) x = x.unsqueeze(-1) center = x * c2 + (1 - x) * c1 # (..., d) radius = h * d # (...) return center, radius def sphere_intersections(c, r): """ Computes the intersection of k spheres in dimension d. c: list of centers (..., k, d) r: list of radii (..., k) Returns: center: (..., d) radius: (...) ortho_directions: (..., d, k-1) """ k = c.size(-2) assert k == r.size(-1) ortho_directions = [] center = c[..., 0, :] # (..., d) radius = r[..., 0] # (...) for i in range(1, k): center, radius = sphere_intersection(center, radius, c[..., i, :], r[..., i]) ortho_directions.append(c[..., i, :] - center) ortho_directions.append(torch.zeros_like(center)) # trick to handle the case k=1 ortho_directions = torch.stack(ortho_directions, dim=-1) # (..., d, k-1) [last element is 0] return center, radius, ortho_directions # 2D projections def project_kd(p, x, keep_ambient=True): """ Project n points in dimension d onto 'direction' spanned by k ideal points p: (..., k, d) ideal points x: (..., n, d) points to project Returns: projection_1: (..., n, s) where s = d if keep_ambient==True otherwise s = k projection_2: same as projection_1. this is guaranteed to be the ideal point in the case k = 1 p: the ideal points """ if len(p.shape) < 2: p = p.unsqueeze(0) if len(x.shape) < 2: x = x.unsqueeze(0) k = p.size(-2) d = x.size(-1) assert d == p.size(-1) busemann_distances = busemann(x.unsqueeze(-2), p.unsqueeze(-3), keepdim=False) # (..., n, k) c, r = busemann_to_horocycle(p.unsqueeze(-3), busemann_distances) # (..., n, k, d) (..., n, k) c, r, ortho = sphere_intersections(c, r) # (..., n, d) (..., n) (..., n, d, k-1) # we are looking for a vector spanned by the k ideal points, orthogonal to k-1 given vectors # i.e. x @ p @ ortho = 0 if ortho is None: direction = torch.ones_like(busemann_distances) # (..., n, k) else: a = torch.matmul(p.unsqueeze(-3), ortho) # (..., n, k, k-1) = (..., n, k, d) @ (..., n, d, k-1) u, s, v = torch.svd(a, some=False) # a = u s v^T direction = u[..., -1] # (..., n, k) direction = direction @ p # (..., n, d) direction = direction / torch.norm(direction, dim=-1, keepdim=True).clamp_min(MIN_NORM) projection_1 = c - r.unsqueeze(-1) * direction projection_2 = c + r.unsqueeze(-1) * direction if not keep_ambient: _, _, v = torch.svd(p, some=False) # P = USV^T => PV = US so last d-k columns of PV are 0 projection_1 = (projection_1 @ v)[..., :k] projection_2 = (projection_2 @ v)[..., :k] p = (p @ v)[..., :k] return projection_1, projection_2, p def project2d(p, q, x): # reconstruct p and q in 2D p_ = torch.stack([p.new_ones(p.shape[:-1]), p.new_zeros(p.shape[:-1])], dim=-1) cos = torch.sum(p * q, dim=-1) sin = torch.sqrt(1 - cos ** 2) q_ = torch.stack([cos, sin], dim=-1) bp = busemann(x, p).squeeze(-1) bq = busemann(x, q).squeeze(-1) c0, r0 = busemann_to_horocycle(p_, bp) c1, r1 = busemann_to_horocycle(q_, bq) reconstruction = circle_intersection(c0, c1, r0, r1) return reconstruction def horo_project_using_one_ideal(submanifold_ideals, x, custom_ideal_direction=None, keep_ambient=True): """The first horospherical projection we discussed, currently section 5.3 of the overleaf doc Args: submanifold_ideals: torch.tensor of shape (sub_dim, dim) x: torch.tensor of shape (batch_size, dim) custom_ideal_direction (optional): torch.tensor of shape (dim, ) keep_ambient: boolean Returns: if keep_ambient == True: torch.tensor of shape (batch_size, dim) else: torch.tensor of shape (batch_size, sub_dim): the rotated projections Note: custom_ideal_direction, if provided, must be a unit vector in the row span of submanifold_ideals submanifold_ideals must have independent rows The submanifold we are projecting onto always passes through the origin. """ if custom_ideal_direction is None: p = submanifold_ideals[0, :] p = p / torch.sqrt(p.dot(p)) else: p = custom_ideal_direction eucl_proj_coefs, _ = torch.solve(submanifold_ideals @ x.transpose(0, 1), submanifold_ideals @ submanifold_ideals.transpose(0, 1)) # (sub_dim, batch_size) eucl_projs = eucl_proj_coefs.transpose(0, 1) @ submanifold_ideals # (batch_size, dim) t = torch.sum((p - x) * (p - x), dim=-1) / ( 2 * torch.sum((p - eucl_projs) * (p - x), dim=-1)) # shape (batch_size, ) t = t.unsqueeze(-1) output = 2 * t * eucl_projs + (1 - 2 * t) * p.unsqueeze(0) # shape (batch_size, dim) if keep_ambient: return output else: q, r = torch.qr(submanifold_ideals.transpose(0, 1)) # q.shape (dim, sub_dim) return output @ q def test_horo_project_one_ideal(): """ Sanity checks for horo_project_using_one_ideal: In this test, the first two input points are already in the submanifold, so they should project to themselves. The third input should not. """ print("Test Horo Projection with One Ideal:") print("------------------------------------") submanifold_ideals = torch.tensor([[1.0, 0, 0], [0.0, 1, 0]]) x = torch.tensor([[0.0, 0, 0], [0.7, 0.6, 0], [0.3, 0.4, 0.5]]) proj = horo_project_using_one_ideal(submanifold_ideals, x) print(x, proj) """ In the case sub_dim == 1, applying horo_project_using_one_ideal and then computing hyperbolic distance to the origin should give another implementation of the Busemann function, at least up to a sign convention """ import geom.poincare as poincare submanifold_ideals = torch.tensor([[1.0, 0, 0]]) x = torch.tensor([[0.0, 0, 0], [0.7, 0.6, 0], [0.3, 0.4, 0.5]]) proj = horo_project_using_one_ideal(submanifold_ideals, x, keep_ambient=False) print(poincare.distance0(proj)) print(busemann(x, submanifold_ideals)) if __name__ == "__main__": test_horo_project_one_ideal()
HoroPCA-main
geom/horo.py
""" Util functions for the Minkowski metric. Note that functions for the hyperboloid model itself are in geom.hyperboloid Most functions in this file has a bilinear_form argument that can generally be ignored. That argument is there just in case we need to use a non-standard norm/signature. """ import torch def product(x, y): eucl_pairing = torch.sum(x * y, dim=-1, keepdim=False) return 2 * x[..., 0] * y[..., 0] - eucl_pairing def bilinear_pairing(x, y, bilinear_form=None): """Compute the bilinear pairing (i.e. "dot product") of x and y using the given bilinear form. If bilinear_form is not provided, use the default Minkowski form, i.e. (x0, x1, x2) dot (y0, y1, y2) = -x0*y0 + x1*y1 + x2*y2 Args: x, y: torch.tensor of the same shape (..., dim), where dim >= 2 bilinear_form (optional): torch.tensor of shape (dim, dim) Returns: torch.tensor of shape (...) """ if bilinear_form is None: eucl_pairing = torch.sum(x * y, dim=-1, keepdim=False) return eucl_pairing - 2 * x[..., 0] * y[..., 0] else: pairing = torch.matmul(x.unsqueeze(-2), (y @ bilinear_form).unsqueeze(-1)) # shape (..., 1, 1) return pairing.reshape(x.shape[:-1]) def squared_norm(x, bilinear_form=None): return bilinear_pairing(x, x, bilinear_form) def pairwise_bilinear_pairing(x, y, bilinear_form=None): """Compute the pairwise bilinear pairings (i.e. "dot product") of two list of vectors with respect to the given bilinear form. If bilinear_form is not provided, use the default Minkowski form, i.e. (x0, x1, x2) dot (y0, y1, y2) = -x0*y0 + x1*y1 + x2*y2 Args: x: torch.tensor of shape (..., M, dim), where dim >= 2 y: torch.tensor of shape (..., N, dim), where dim >= 2 bilinear_form (optional): torch.tensor of shape (dim, dim). Returns: torch.tensor of shape (..., M, N) """ if bilinear_form is None: return x @ y.transpose(-1, -2) - 2 * torch.ger(x[:, 0], y[:, 0]) else: return x @ bilinear_form @ y.transpose(-1, -2) def orthogonal_projection(basis, x, bilinear_form=None): """Compute the orthogonal projection of x onto the vector subspace spanned by basis. Here orthogonality is defined using the given bilinear_form If bilinear_form is not provided, use the default Minkowski form, i.e. (x0, x1, x2) dot (y0, y1, y2) = -x0*y0 + x1*y1 + x2*y2 Args: basis: torch.tensor of shape (subspace_dim, dim), where dim >= 2 x: torch.tensor of shape (batch_size, dim), where dim >= 2 bilinear_form (optional): torch.tensor of shape (dim, dim). Returns: torch.tensor of shape (batch_size, dim) Warning: Will not work if the linear subspace spanned by basis is tangent to the light cone. (In that case, the orthogonal projection is not unique) """ coefs, _ = torch.solve(pairwise_bilinear_pairing(basis, x, bilinear_form), pairwise_bilinear_pairing(basis, basis, bilinear_form)) return coefs.transpose(-1, -2) @ basis def reflection(subspace, x, subspace_given_by_normal=True, bilinear_form=None): """Compute the reflection of x through a linear subspace (of dimension 1 less than the ambient space) Here reflection is defined using the notion of orthogonality coming from the given bilinear_form If bilinear_form is not provided, use the default Minkowski form, i.e. (x0, x1, x2) dot (y0, y1, y2) = -x0*y0 + x1*y1 + x2*y2 Args: subspace: If subspace_given_by_normal: torch.tensor of shape (dim, ), representing a normal vector to the subspace Else: torch.tensor of shape (dim-1, dim), representing a basis of the subspace x: torch.tensor of shape (batch_size, dim) bilinear_form (optional): torch.tensor of shape (dim, dim). Returns: torch.tensor of shape (batch_size, dim) Warning: Will not work if the linear subspace is tangent to the light cone. (In that case, the reflection is not unique) """ if subspace_given_by_normal: return x - 2 * orthogonal_projection(subspace.unsqueeze(0), x, bilinear_form) else: return 2 * orthogonal_projection(subspace, x, bilinear_form) - x
HoroPCA-main
geom/minkowski.py
""" Geometric utility functions, mostly for standard Euclidean operations.""" import torch MIN_NORM = 1e-15 def orthonormal(Q): """Return orthonormal basis spanned by the vectors in Q. Q: (..., k, d) k vectors of dimension d to orthonormalize """ k = Q.size(-2) _, _, v = torch.svd(Q, some=False) # Q = USV^T Q_ = v[:, :k] return Q_.transpose(-1, -2) # (k, d) rows are orthonormal basis for rows of Q def euc_reflection(x, a): """ Euclidean reflection (also hyperbolic) of x Along the geodesic that goes through a and the origin (straight line) NOTE: this should be generalized by reflect() """ xTa = torch.sum(x * a, dim=-1, keepdim=True) norm_a_sq = torch.sum(a ** 2, dim=-1, keepdim=True) proj = xTa * a / norm_a_sq.clamp_min(MIN_NORM) return 2 * proj - x def reflect(x, Q): """Reflect points (euclidean) with respect to the space spanned by the rows of Q. Q: (k, d) set of k d-dimensional vectors (must be orthogonal) """ ref = 2 * Q.transpose(0, 1) @ Q - torch.eye(x.shape[-1], device=x.device) return x @ ref
HoroPCA-main
geom/euclidean.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch from crlapi.benchmark import StreamTrainer import hydra from omegaconf import DictConfig, OmegaConf def to_dict(cfg): r = {} for k, v in cfg.items(): if isinstance(v, DictConfig): td = to_dict(v) for kk in td: r[k + "/" + kk] = td[kk] else: r[k] = v return r @hydra.main(config_path=".", config_name="test_finetune_mlp.yaml") def main(cfg): import torch.multiprocessing as mp mp.set_start_method("spawn") import time stream_trainer = StreamTrainer() stream_trainer.run(cfg) if __name__ == "__main__": main()
alma-main
configs/mnist/run.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch from crlapi.benchmark import StreamTrainer import hydra from omegaconf import DictConfig, OmegaConf def to_dict(cfg): r = {} for k, v in cfg.items(): if isinstance(v, DictConfig): td = to_dict(v) for kk in td: r[k + "/" + kk] = td[kk] else: r[k] = v return r @hydra.main(config_path=".", config_name="test_finetune_mlp.yaml") def main(cfg): import torch.multiprocessing as mp mp.set_start_method("spawn") import time stream_trainer = StreamTrainer() stream_trainer.run(cfg) if __name__ == "__main__": main()
alma-main
configs/cifar10/run.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from crlapi import instantiate_class,get_class,get_arguments class StreamTrainer: def create_logger(self, logger_args,all_args): self.logger=instantiate_class(logger_args) self.logger.save_hps(all_args) def create_stream(self, stream_args): return instantiate_class(stream_args) def create_clmodel(self, cl_model_args): from importlib import import_module d = dict(cl_model_args) if "classname" in d: classname = d["classname"] else: classname = d["class_name"] module_path, class_name = classname.rsplit(".", 1) module = import_module(module_path) c = getattr(module, class_name) self.clmodel=c(self.train_stream,cl_model_args) def run(self, args): self.create_logger(args.logger,args) stream_args = args.stream.train self.train_stream=self.create_stream(stream_args) stream_args = args.stream.evaluation self.evaluation_stream=self.create_stream(stream_args) clmodel_args = args.clmodel self.create_clmodel(clmodel_args) evaluation_args = args.evaluation #args=_prefix(args,"benchmark/") evaluation_mode=evaluation_args.mode assert evaluation_mode=="all_tasks" or evaluation_mode=="previous_tasks" for n_stage, task in enumerate(self.train_stream): self.logger.message("Training at stage "+str(n_stage)) training_logger = self.logger.get_logger(f"train_stage_{n_stage}/") self.clmodel = self.clmodel.update(task, training_logger) evaluation_logger = self.logger.get_logger(f"evaluation_stage_{n_stage}/") self.logger.message("Evaluation at stage "+str(n_stage)) for k,evaluation_task in enumerate(self.evaluation_stream): if evaluation_mode=="previous_tasks" and k>n_stage: pass else: self.logger.message("\tEvaluation on task "+str(k)) evaluation=self.clmodel.evaluate(evaluation_task,evaluation_logger,evaluation_args) self.logger.message("\t == "+str(evaluation)) for kk,vv in evaluation.items(): evaluation_logger.add_scalar(kk,vv,k) self.logger.close()
alma-main
crlapi/benchmark.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # def instantiate_class(arguments): from importlib import import_module d = dict(arguments) if "classname" in d: classname = d["classname"] del d["classname"] else: classname = d["class_name"] del d["class_name"] module_path, class_name = classname.rsplit(".", 1) module = import_module(module_path) c = getattr(module, class_name) return c(**d) def get_class(arguments): from importlib import import_module d = dict(arguments) if "classname" in d: classname = d["classname"] del d["classname"] else: classname = d["class_name"] del d["class_name"] module_path, class_name = classname.rsplit(".", 1) module = import_module(module_path) c = getattr(module, class_name) return c def get_arguments(arguments): from importlib import import_module d = dict(arguments) if "classname" in d: classname = d["classname"] del d["classname"] else: classname = d["class_name"] del d["class_name"] return d
alma-main
crlapi/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import copy class TaskResources: """ Describe resources for a task (e.g a dataset, and environments, etc...) """ def make(self): raise NotImplementedError class Task: """ Describe a task to solve with a task descriptor, and associated ressources """ def task_descriptor(self): raise NotImplementedError def task_resources(self): raise NotImplementedError class CLModel: """ A continual learning model that is updated on different tasks. Such a model can evaluate itself on a particular task """ def __init__(self, config): self.config = config def update(self, task, logger): # return a clmodel raise NotImplementedError def evaluate(self, task,logger,**evaluation_args): raise NotImplementedError class Stream: """ A stream of tasks """ def __len__(self): raise NotImplementedError def __iter__(self): raise NotImplementedError def __getitem__(self,k): raise NotImplementedError
alma-main
crlapi/core.py
# # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # from torch.utils.tensorboard import SummaryWriter import sqlite3 import os import os.path import csv import copy from datetime import datetime import torch import numpy as np import time import pickle import bz2 import sys import pandas as pd from omegaconf import DictConfig, OmegaConf class TFPrefixLogger: def __init__(self,prefix,logger): self.logger=logger self.prefix=prefix def add_images(self, name, value, iteration): self.logger.add_images(self.prefix+name,value,iteration) def add_scalar(self, name, value, iteration): self.logger.add_scalar(self.prefix+name,value,iteration) def add_video(self, name, value, iteration, fps=10): self.logger.add_video(self.prefix+name,value,iteration,fps) def message(self,msg,from_name=""): self.logger.message(msg,from_name=self.prefix+from_name) def debug(self,msg,from_name=""): self.logger.debug(msg,from_name=self.prefix+from_name) class TFLogger(SummaryWriter): """A logger that stores informations both in tensorboard and CSV formats""" def __init__( self, log_dir=None, cache_size=10000, modulo=1,verbose=False, use_zip=True ): SummaryWriter.__init__(self, log_dir=log_dir) self.use_zip = use_zip self.save_every = cache_size self.modulo=modulo self.written_values={} self.log_dir = log_dir self.verbose = verbose self.picklename = log_dir + "/db.pickle.bzip2" if not self.use_zip: self.picklename = log_dir + "/db.pickle" self.to_pickle = [] def _omegaconf_to_dict(self,hps): d={} for k,v in hps.items(): if isinstance(v,DictConfig): d[k]=self._omegaconf_to_dict(v) else: d[k]=v return d def save_hps(self, hps): hps=self._omegaconf_to_dict(hps) print(hps) f = open(self.log_dir + "/params.json", "wt") f.write(str(hps) + "\n") f.close() outfile = open(self.log_dir + "/params.pickle", "wb") pickle.dump(hps, outfile) outfile.close() self.add_text("Hyperparameters", str(hps)) def get_logger(self,prefix): return TFPrefixLogger(prefix,self) def message(self,msg,from_name=""): print("[",from_name,"]: ",msg) def debug(self,msg,from_name=""): print("[DEBUG] [",from_name,"]: ",msg) def _to_pickle(self, name, value, iteration): self.to_pickle.append((name, iteration, value)) if len(self.to_pickle) > self.save_every: if self.use_zip: f = bz2.BZ2File(self.picklename, "ab") pickle.dump(self.to_pickle, f) f.close() else: f = open(self.picklename, "ab") pickle.dump(self.to_pickle, f) f.close() self.to_pickle = [] def add_images(self, name, value, iteration): iteration=int(iteration/self.modulo)*self.modulo if (name,iteration) in self.written_values: return else: self.written_values[(name,iteration)]=True self._to_pickle(name, value, iteration) SummaryWriter.add_images(self, name, value, iteration) def add_scalar(self, name, value, iteration): iteration=int(iteration/self.modulo)*self.modulo if (name,iteration) in self.written_values: return else: self.written_values[(name,iteration)]=True self._to_pickle(name, value, iteration) if self.verbose: print("['" + name + "' at " + str(iteration) + "] = " + str(value)) if isinstance(value, int) or isinstance(value, float): SummaryWriter.add_scalar(self, name, value, iteration) def add_video(self, name, value, iteration, fps=10): iteration=int(iteration/self.modulo)*self.modulo if (name,iteration) in self.written_values: return else: self.written_values[(name,iteration)]=True self._to_pickle(name, value.numpy(), iteration) SummaryWriter.add_video(self, name, value, iteration, fps=fps) def close(self): if len(self.to_pickle) > 0: if self.use_zip: f = bz2.BZ2File(self.picklename, "ab") pickle.dump(self.to_pickle, f) f.close() else: f = open(self.picklename, "ab") pickle.dump(self.to_pickle, f) f.close() self.to_pickle = [] SummaryWriter.close(self) f = open(self.log_dir + "/done", "wt") f.write("Done\n") f.close() class Log: def __init__(self, hps, values): self.hps = hps self.values = values max_length = max([len(v) for v in self.values]) for k in values: while len(values[k]) < max_length: values[k].append(None) self.length = max_length def to_xy(self, name): assert name in self.values x, y = [], [] for k, v in enumerate(self.values[name]): if not v is None: x.append(k) y.append(v) return x, y def to_dataframe(self, with_hps=False): max_len = np.max([len(k) for v, k in self.values.items()]) nv = {} for k, v in self.values.items(): while len(v) < max_len: v.append(None) nv[k] = v self.values = nv it = [k for k in range(max_len)] d = {**self.values, **{"iteration": it}} if with_hps: for k in self.hps: dd = [self.hps[k] for i in range(max_len)] d = {**d, **{"_hp/" + k: dd}} return pd.DataFrame(d) def get_at(self, name, iteration): return self.values[name][iteration] def get(self, name, keep_none=False): v = self.values[name] if not keep_none: return [k for k in v if not k is None] else: return v def replace_None_(self, name): v = self.values[name] last_v = None first_v = None r = [] for k in range(len(v)): if v[k] is None: r.append(last_v) else: r.append(v[k]) if last_v is None: first_v = v[k] last_v = v[k] p = 0 while r[p] is None: r[p] = first_v p += 1 self.values[name] = r def max(self, name): v = self.values[name] vv = [k for k in v if not k is None] return np.max(vv) def min(self, name): v = self.values[name] vv = [k for k in v if not k is None] return np.min(vv) def argmin(self, name): v = self.values[name] vv = [k for k in v if not k is None] _max = np.max(vv) for k in range(len(v)): if v[k] is None: vv.append(_max + 1.0) else: vv.append(v[k]) return np.argmin(vv) def argmax(self, name): v = self.values[name] vv = [k for k in v if not k is None] _min = np.min(vv) vv = [] for k in range(len(v)): if v[k] is None: vv.append(_min - 1.0) else: vv.append(v[k]) return np.argmax(vv) class Logs: def __init__(self): self.logs = [] self.hp_names = None self.filenames = [] def _add(self, log): self.hp_names = {k: True for k in log.hps} for l in self.logs: for k in log.hps: if not k in l.hps: l.hps[k] = "none" self.logs.append(log) def add(self, logs): if isinstance(logs, Log): self._add(logs) else: for l in logs: self._add(l) def max(self, function): alls = [function(l) for l in self.logs] idx = np.argmax(alls) return self.logs[idx] def hps(self): return list(self.hp_names) def size(self): return len(self.logs) def filter(self, hp_name, test_fn): logs = Logs() if not callable(test_fn): for l in self.logs: h = l.hps[hp_name] if h == test_fn: logs.add(l) else: for l in self.logs: if test_fn(l.hps[hp_name]): logs.add(l) return logs def unique_hps(self, name): r = {} for l in self.logs: v = l.hps[name] r[v] = 1 return list(r.keys()) def __len__(self): return len(self.logs) def to_dataframe(self): rdf = None for log in self.logs: df = log.to_dataframe(with_hps=True) if rdf is None: rdf = df else: rdf = pd.concat([rdf, df]) return rdf # def plot(self, y, x, hue=None, style=None, row=None, col=None, kind="line"): def flattify(d): d=dict(d) r = {} for k, v in d.items(): if isinstance(v, dict): rr = flattify(v) rrr = {k + "/" + kk: rr[kk] for kk in rr} r = {**r, **rrr} elif isinstance(v, list): r[k] = str(v) else: r[k] = v return r def read_log(directory, use_bz2=True, debug=False): print("== Read ", directory) # if os.path.exists(directory+"/fast.pickle"): # f=open(directory+"/fast.pickle","rb") # log=pickle.load(f) # f.close() # return log f = None if use_bz2: picklename = directory + "/db.pickle.bzip2" f = bz2.BZ2File(picklename, "rb") else: picklename = directory + "/db.pickle" f = open(picklename, "rb") values = {} try: while True: a = pickle.load(f) if not a is None: for name, iteration, value in a: # print(name,iteration,value) if debug: print(name, value, type(value)) if isinstance(value, np.int64): value = int(value) if ( isinstance(value, int) or isinstance(value, float) or isinstance(value, str) ): if not name in values: values[name] = [] while len(values[name]) < iteration + 1: values[name].append(None) values[name][iteration] = value except: f.close() f = open(directory + "/params.pickle", "rb") params = pickle.load(f) params = flattify(params) f.close() log = Log(params, values) log.from_directory = directory # f=open(directory+"/fast.pickle","wb") # pickle.dump(log,f) # f.close() return log def read_directory(directory, use_bz2=True): import os import os.path l = Logs() name = "db.pickle" if use_bz2: name = "db.pickle.bzip2" for dirpath, dirnames, filenames in os.walk(directory): if name in filenames: log = read_log(dirpath, use_bz2) l.add(log) print("Found %d logs" % l.size()) return l def _create_col(df, hps, _name): vs = [] for k, v in df.groupby(hps): n = {hps[i]: k[i] for i in range(len(hps))} v = v.copy() name = ",".join([str(k) + "=" + str(n[k]) for k in n]) print(name) print(_name) v[_name] = name vs.append(v) return pd.concat(vs) def plot_dataframe( df, y, x="iteration", hue=None, style=None, row=None, col=None, kind="line" ): import seaborn as sns cols = [y, x] if isinstance(row, list): cols += row else: cols += [row] if isinstance(col, list): cols += col else: cols += [col] if isinstance(style, list): cols += style else: cols += [style] if isinstance(hue, list): cols += hue else: cols += [hue] cols = [c for c in cols if not c is None] df = df[cols].dropna() if isinstance(row, list): df = _create_col(df, row, "__row") row = "__row" if isinstance(col, list): df = _create_col(df, col, "__col") col = "__col" if isinstance(style, list): df = _create_col(df, style, "__style") style = "__style" if isinstance(hue, list): df = _create_col(df, hue, "__hue") hue = "__hue" # df = convert_iteration_to_steps(df) sns.relplot(x=x, y=y, hue=hue, style=style, row=row, col=col, data=df, kind=kind)
alma-main
crlapi/logger.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from crlapi.core import TaskResources, Stream, Task import torchvision.datasets import torchvision.transforms import numpy.random import numpy import torch.utils.data import torch class CachedCIFAR10(torchvision.datasets.CIFAR10): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.data = torch.from_numpy(self.data).float().permute(0, 3, 1, 2) self.targets = numpy.array(self.targets) self.data = self.data / 255. # normalize mu = torch.Tensor([0.4914, 0.4822, 0.4465]).view(1, 3, 1, 1) var = torch.Tensor([0.2470, 0.2435, 0.2616]).view(1, 3, 1, 1) self.data = (self.data - mu) / var def __getitem__(self, index): x, y = self.data[index], self.targets[index] if self.transform is not None: x = self.transform(x) return x, y class ClassificationResources(TaskResources): def __init__(self): pass class CIFAR10Resources(ClassificationResources): def __init__(self, idx_batch, n_total_batches, seed,train,directory): self.idx_batch=idx_batch self.n_total_batches=n_total_batches self.train=train self.seed=seed self.directory=directory def make(self): dataset=CachedCIFAR10(self.directory, train=self.train, download=True) if self.n_total_batches==1: return dataset numpy.random.seed(self.seed) indices=numpy.arange(len(dataset)) indices=numpy.random.permutation(indices) _indices=numpy.array_split(indices,self.n_total_batches) indices=list(_indices[self.idx_batch]) _set=torch.utils.data.Subset(dataset,indices) return _set class CIFAR10Task(Task): def __init__(self,task_descriptor,resources): self._task_descriptor=task_descriptor self._resources=resources self.input_shape=(3, 32, 32) self.n_classes=10 def task_descriptor(self): return self._task_descriptor def task_resources(self): return self._resources class CIFAR10EvaluationAnytimeStream(Stream): def __init__(self,n_megabatches,seed,directory): self.tasks=[] evaluation_resources=CIFAR10Resources(0,1,seed,False,directory) self.tasks.append(CIFAR10Task(None,evaluation_resources)) def __len__(self): return len(self.tasks) def __iter__(self): return self.tasks.__iter__() def __getitem__(self,k): return self.tasks[k] class CIFAR10TrainAnytimeStream(Stream): def __init__(self,n_megabatches,seed,directory): self.tasks=[] for k in range(n_megabatches): resources=CIFAR10Resources(k,n_megabatches,seed,True,directory) self.tasks.append(CIFAR10Task(k,resources)) def __len__(self): return len(self.tasks) def __iter__(self): return self.tasks.__iter__() def __getitem__(self,k): return self.tasks[k]
alma-main
crlapi/sl/streams/cifar10.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from crlapi.core import TaskResources, Stream, Task import torchvision.datasets import torchvision.transforms import numpy.random import numpy import torch.utils.data import torch # TODO: did not verify this dataset class CachedEMNIST(torchvision.datasets.EMNIST): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.targets = self.targets.numpy() self.data = (self.data / 255. - .1307) / .3081 def __getitem__(self, index): x, y = self.data[index], self.targets[index] if self.transform is not None: x = self.transform(x) return x, y class ClassificationResources(TaskResources): def __init__(self): pass class EMNISTResources(ClassificationResources): def __init__(self, idx_batch, n_total_batches, seed,train,split,directory): self.idx_batch=idx_batch self.split=split self.n_total_batches=n_total_batches self.train=train self.seed=seed self.directory=directory def n_classes(self): print("Compputing n classes...") dataset=CachedEMNIST(self.directory, split=self.split,train=self.train, download=True) n=len(dataset.classes_split_dict[self.split]) return n def make(self): dataset=torchvision.datasets.EMNIST(self.directory, split=self.split,train=self.train, download=True, transform=torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize( (0.1307,), (0.3081,)) ])) if self.n_total_batches==1: return dataset numpy.random.seed(self.seed) indices=numpy.arange(len(dataset)) indices=numpy.random.permutation(indices) _indices=numpy.array_split(indices,self.n_total_batches) indices=list(_indices[self.idx_batch]) _set=torch.utils.data.Subset(dataset,indices) return _set class EMNISTTask(Task): def __init__(self,task_descriptor,resources): self._task_descriptor=task_descriptor self._resources=resources self.input_shape=(1,28,28) self.n_classes=self._resources.n_classes() def task_descriptor(self): return self._task_descriptor def task_resources(self): return self._resources class EMNISTEvaluationAnytimeStream(Stream): def __init__(self,n_megabatches,seed,split,directory): self.tasks=[] evaluation_resources=EMNISTResources(0,1,seed,False,split,directory) self.tasks.append(EMNISTTask(None,evaluation_resources)) def __len__(self): return len(self.tasks) def __iter__(self): return self.tasks.__iter__() def __getitem__(self,k): return self.tasks[k] class EMNISTTrainAnytimeStream(Stream): def __init__(self,n_megabatches,seed,split,directory): self.tasks=[] for k in range(n_megabatches): resources=EMNISTResources(k,n_megabatches,seed,True,split,directory) self.tasks.append(EMNISTTask(k,resources)) def __len__(self): return len(self.tasks) def __iter__(self): return self.tasks.__iter__() def __getitem__(self,k): return self.tasks[k]
alma-main
crlapi/sl/streams/emnist.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from crlapi.core import TaskResources, Stream, Task import torchvision.datasets import torchvision.transforms import numpy.random import numpy import torch.utils.data import torch class CachedMNIST(torchvision.datasets.MNIST): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.targets = self.targets.numpy() self.data = (self.data / 255. - .1307) / .3081 def __getitem__(self, index): x, y = self.data[index], self.targets[index] if self.transform is not None: x = self.transform(x) return x, y class ClassificationResources(TaskResources): def __init__(self): pass class MNISTResources(ClassificationResources): def __init__(self, idx_batch, n_total_batches, seed,train,directory): self.idx_batch=idx_batch self.n_total_batches=n_total_batches self.train=train self.seed=seed self.directory=directory def make(self): dataset=CachedMNIST(self.directory, train=self.train, download=True) if self.n_total_batches==1: return dataset numpy.random.seed(self.seed) indices=numpy.arange(len(dataset)) indices=numpy.random.permutation(indices) _indices=numpy.array_split(indices,self.n_total_batches) indices=list(_indices[self.idx_batch]) _set=torch.utils.data.Subset(dataset,indices) return _set class MNISTTask(Task): def __init__(self,task_descriptor,resources): self._task_descriptor=task_descriptor self._resources=resources self.input_shape=(1,28,28) self.n_classes=10 def task_descriptor(self): return self._task_descriptor def task_resources(self): return self._resources class MNISTEvaluationAnytimeStream(Stream): def __init__(self,n_megabatches,seed,directory): self.tasks=[] evaluation_resources=MNISTResources(0,1,seed,False,directory) self.tasks.append(MNISTTask(None,evaluation_resources)) def __len__(self): return len(self.tasks) def __iter__(self): return self.tasks.__iter__() def __getitem__(self,k): return self.tasks[k] class MNISTTrainAnytimeStream(Stream): def __init__(self,n_megabatches,seed,directory): self.tasks=[] for k in range(n_megabatches): resources=MNISTResources(k,n_megabatches,seed,True,directory) self.tasks.append(MNISTTask(k,resources)) def __len__(self): return len(self.tasks) def __iter__(self): return self.tasks.__iter__() def __getitem__(self,k): return self.tasks[k]
alma-main
crlapi/sl/streams/mnist.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import torch.nn as nn import numpy as np from copy import deepcopy from crlapi.sl.architectures.mixture_model import ( HardSoftMaxGateModule, SoftMaxGateModule, MixtureLayer, MoE_RandomGrow, MoE_UsageGrow, Gate, MoE, ) # -- Gates class SoftGate(Gate): def __init__(self, input_shape, n_experts, prepro_fn=None): super().__init__(input_shape, n_experts) gate_fn = nn.Linear(input_shape, n_experts) if prepro_fn is not None: self.prepro_fn = prepro_fn gate_fn = nn.Sequential(prepro_fn, gate_fn) self.module = SoftMaxGateModule(gate_fn) def forward(self,x): return self.module(x) class HardGate(Gate): def __init__(self, input_shape, n_experts, prepro_fn=None): super().__init__(input_shape, n_experts) gate_fn = nn.Linear(input_shape, n_experts) if prepro_fn is not None: gate_fn = nn.Sequential(prepro_fn, gate_fn) self.module = HardSoftMaxGateModule(gate_fn) def forward(self,x): return self.module(x) # -- Layers def _make_layers(array, in_channels): layers = [] for x in array: if x == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1), nn.BatchNorm2d(x), nn.ReLU(inplace=True)] in_channels = x return in_channels, nn.Sequential(*layers) def VGG(task, n_channels): vgg_parts = [ [64, 64, 'M'], [128, 128, 'M'], [256, 256, 256, 256, 'M'], [512, 512, 512, 512, 'M'], [512, 512, 512, 512, 'M'] ] if n_channels > 0: vgg_parts = [[n_channels if type(x) == int else x for x in block] for block in vgg_parts] in_channels, block0 = _make_layers(vgg_parts[0], 3) in_channels, block1 = _make_layers(vgg_parts[1], in_channels) in_channels, block2 = _make_layers(vgg_parts[2], in_channels) in_channels, block3 = _make_layers(vgg_parts[3], in_channels) in_channels, block4 = _make_layers(vgg_parts[4], in_channels) return nn.Sequential( block0, block1, block2, block3, block4, nn.Flatten(), nn.Linear(in_channels, task.n_classes) ) def MoE_VGG(task, n_channels, n_adaptivepooling, n_experts, is_hard): vgg_parts = [ [64, 64, 'M'], [128, 128, 'M'], [256, 256, 256, 256, 'M'], [512, 512, 512, 512, 'M'], [512, 512, 512, 512, 'M'] ] input_shape = task.input_shape gate = HardGate if is_hard else SoftGate if n_channels > 0: vgg_parts = [[n_channels if type(x) == int else x for x in block] for block in vgg_parts] in_channels, head = _make_layers(vgg_parts[0], 3) in_channels, block1 = _make_layers(vgg_parts[1], in_channels) in_channels, block2 = _make_layers(vgg_parts[2], in_channels) in_channels, block3 = _make_layers(vgg_parts[3], in_channels) in_channels, block4 = _make_layers(vgg_parts[4], in_channels) blocks = [block1, block2, block3, block4] dim_gates = [] x = torch.randn(1,3,32,32) for layer in [head] + blocks: x = layer(x) dim_gates += [x.shape[1:]] # Build Layers layers = [head] for i, (block, dim_gate) in enumerate(zip(blocks, dim_gates[:-1])): # build adaptive pooling gate input_size = dim_gate[0] * n_adaptivepooling ** 2 gate_fn = nn.Sequential( nn.AdaptiveAvgPool2d(n_adaptivepooling), nn.Flatten(), ) experts = [deepcopy(block) for _ in range(n_experts)] layers += [MixtureLayer(gate(input_size, n_experts, gate_fn), experts)] linear = nn.Linear(np.prod(dim_gates[-1]), task.n_classes) layers += nn.Sequential(nn.Flatten(), linear) model = MoE(layers) return model def MoE_VGG_RandomGrow(task, n_channels, n_adaptivepooling, n_experts, is_hard, n_experts_to_split): moe = MoE_VGG(task, n_channels, n_adaptivepooling, n_experts, is_hard) return MoE_RandomGrow(moe.layers,n_experts_to_split) def MoE_VGG_UsageGrow(task, n_channels, n_adaptivepooling, n_experts, is_hard, n_experts_to_split): moe = MoE_VGG(task, n_channels, n_adaptivepooling, n_experts, is_hard) return MoE_UsageGrow(moe.layers,n_experts_to_split)
alma-main
crlapi/sl/architectures/vgg.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import torch.nn as nn import torch.nn.functional as F import copy import random import numpy as np class SoftMaxGateModule(nn.Module): def __init__(self,module): super().__init__() self.module=module def forward(self,x): y=self.module(x) return torch.softmax(y,dim=1) class HardSoftMaxGateModule(nn.Module): def __init__(self,module): super().__init__() self.module=module def forward(self,x): y=self.module(x) if self.training: dist=torch.distributions.Categorical(y) sampled_y=dist.sample() oh=F.one_hot(sampled_y,num_classes=p.size()[1]) return oh+(y-y.detach()) else: _max=y.max(1)[1] oh=F.one_hot(_max,num_classes=y.size()[1]) return oh class Gate(nn.Module): def __init__(self,input_shape,n_experts, prepro_fn=None): self.input_shape=input_shape super().__init__() def _weight(output,score): s=output.size() while(len(score.size())<len(s)): score=score.unsqueeze(-1) score=score.repeat(1,*s[1:]) return output*score class MixtureLayer(nn.Module): def __init__(self,gate_module,experts): super().__init__() assert isinstance(gate_module,Gate) self.gate=gate_module self.experts=nn.ModuleList(experts) def forward(self,x): out=0.0 scores=self.gate(x) gate_scores=[] for k,e in enumerate(self.experts): score=scores[:,k] if isinstance(e,MixtureLayer): y,g=e(x) for kk,vv in enumerate(g): gate_scores.append(([k]+vv[0],vv[1]*score)) else: y=e(x) gate_scores.append(([k],score)) y=_weight(y,score) out=out+y return out,gate_scores class MoE(nn.Module): def __init__(self,layers): super().__init__() self.layers=nn.ModuleList(layers) @property def device(self): return next(self.parameters()).device def forward(self,x,with_gate_scores=False): gate_scores=[] for l in self.layers: if isinstance(l,MixtureLayer): x,g=l(x) gate_scores.append(g) else: x=l(x) if with_gate_scores: return x,gate_scores else: return x class MoE_RandomGrow(MoE): def __init__(self,layers,n_experts_split): super().__init__(layers) self.n_experts_split=n_experts_split def _list_experts(self,layer): assert isinstance(layer,MixtureLayer) experts_url=[] for k,e in enumerate(layer.experts): if not isinstance(e,MixtureLayer): experts_url.append([k]) else: le=self._list_experts(e) for v in le: experts_url.append([k]+v) return experts_url def _generate_splitting(self,layer,url_to_split): idx_split=url_to_split[0] gate=copy.deepcopy(layer.gate) experts=[] for k,e in enumerate(layer.experts): if k!=idx_split: experts.append(copy.deepcopy(e)) elif len(url_to_split)>1: experts.append(self._generate_splitting(e,url_to_split[1:])) else: n_experts=[copy.deepcopy(e) for _ in range(self.n_experts_split)] n_gate=layer.gate.__class__(layer.gate.input_shape, self.n_experts_split, getattr(layer.gate, 'prepro_fn', None)) experts.append(MixtureLayer(n_gate,n_experts)) return MixtureLayer(gate,experts) def _grow_layer(self,layer): assert isinstance(layer,MixtureLayer) #First, we list all the experts experts_urls=self._list_experts(layer) print("\tList of experts: ",experts_urls) #Choose one expert at random expert_to_split=random.choice(experts_urls) print("\t\tSplitting expert: "+str(expert_to_split)) new_module=self._generate_splitting(layer,expert_to_split) experts_urls=self._list_experts(new_module) print("\t\tNew list of experts = ",experts_urls) return new_module def grow(self,dataset_loader,**args): if self.n_experts_split==0: return self self.zero_grad() new_layers=[] for l in self.layers: if isinstance(l,MixtureLayer): new_layers.append(self._grow_layer(l)) else: new_layers.append(copy.deepcopy(l)) return MoE_RandomGrow(new_layers,self.n_experts_split) class MoE_UsageGrow(MoE): def __init__(self,layers,n_experts_split): super().__init__(layers) self.n_experts_split=n_experts_split def _list_experts(self,layer): assert isinstance(layer,MixtureLayer) experts_url=[] for k,e in enumerate(layer.experts): if not isinstance(e,MixtureLayer): experts_url.append([k]) else: le=self._list_experts(e) for v in le: experts_url.append([k]+v) return experts_url def _generate_splitting(self,layer,url_to_split): idx_split=url_to_split[0] gate=copy.deepcopy(layer.gate) experts=[] for k,e in enumerate(layer.experts): if k!=idx_split: experts.append(copy.deepcopy(e)) elif len(url_to_split)>1: experts.append(self._generate_splitting(e,url_to_split[1:])) else: n_experts=[copy.deepcopy(e) for _ in range(self.n_experts_split)] n_gate=layer.gate.__class__(layer.gate.input_shape, self.n_experts_split, getattr(layer.gate, 'prepro_fn', None)) experts.append(MixtureLayer(n_gate,n_experts)) return MixtureLayer(gate,experts) def _grow_layer(self,layer,to_split_expert): assert isinstance(layer,MixtureLayer) #First, we list all the experts experts_urls=self._list_experts(layer) print("\tList of experts: ",experts_urls) print("\t To split: ",to_split_expert) assert to_split_expert in experts_urls new_module=self._generate_splitting(layer,to_split_expert) experts_urls=self._list_experts(new_module) print("\t\tNew list of experts = ",experts_urls) return new_module def grow(self,dataset_loader,**args): if self.n_experts_split==0: return self with torch.no_grad(): usage=None n=0 for x,y in dataset_loader: x, y = x.to(self.device), y.to(self.device) out,gate_scores=self(x,with_gate_scores=True) loss=F.cross_entropy(out,y,reduction='none') gate_scores=[[(gg[0],gg[1].sum(0)) for gg in g] for g in gate_scores] n+=x.size()[0] if usage is None: usage=gate_scores else: for k,g in enumerate(gate_scores): for kk,gg in enumerate(g): assert gg[0]==usage[k][kk][0] usage[k][kk]=(gg[0],gg[1]+usage[k][kk][1]) self.zero_grad() new_layers=[] p=0 for k,l in enumerate(self.layers): if isinstance(l,MixtureLayer): u=usage[p] us=[uu[1].item() for uu in u] idx=np.argmax(us) print("Expert usage at layer ",k," is ",{str(uu[0]):uu[1].item() for uu in u}) max_expert=u[idx][0] print("\tSplitting expert ",max_expert) new_layers.append(self._grow_layer(l,max_expert)) p+=1 else: new_layers.append(copy.deepcopy(l)) return MoE_UsageGrow(new_layers,self.n_experts_split)
alma-main
crlapi/sl/architectures/mixture_model.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import torch.nn as nn from crlapi.sl.architectures.mixture_model import MixtureLayer,SoftMaxGateModule,HardSoftMaxGateModule,Gate,MoE,MoE_RandomGrow,MoE_UsageGrow class MLP(nn.Module): def __init__(self,task,**args): super().__init__() input_shape=task.input_shape d=1 for k in input_shape: d*=k input_dim=d output_dim=task.n_classes sizes=[input_dim]+[args["size_layers"] for k in range(args["n_layers"])]+[output_dim] print(sizes) layers=[] for k in range(len(sizes)-1): layers.append(nn.Linear(sizes[k],sizes[k+1])) if not k==len(sizes)-2: layers.append(nn.ReLU()) self.model=nn.Sequential(*layers) def forward(self,x): x=torch.flatten(x,start_dim=1) return self.model(x) class LinearSoftGate(Gate): def __init__(self,input_shape, n_experts, prepro_fn=None): super().__init__(input_shape,n_experts) assert len(input_shape)==1 self.module=SoftMaxGateModule(nn.Linear(input_shape[0],n_experts)) def forward(self,x): return self.module(x) class LinearHardGate(Gate): def __init__(self,input_shape, n_experts, prepro_fn=None): super().__init__(input_shape,n_experts) assert len(input_shape)==1 self.module=HardSoftMaxGateModule(nn.Linear(input_shape[0],n_experts)) def forward(self,x): return self.module(x) def mlp_layers(task,size_layers,n_layers,n_experts,is_hard): input_shape=task.input_shape d=1 for k in input_shape: d*=k input_dim=d output_dim=task.n_classes sizes=[input_dim]+[size_layers for k in range(n_layers)]+[output_dim] layers=[nn.Flatten(start_dim=1)] for k in range(len(sizes)-2): if is_hard: gate=LinearHardGate([sizes[k]],n_experts) else: gate=LinearSoftGate([sizes[k]],n_experts) experts=[nn.Sequential(nn.Linear(sizes[k],sizes[k+1]),nn.ReLU()) for _ in range(n_experts)] layer=MixtureLayer(gate,experts) layers.append(layer) layers.append(nn.Linear(sizes[-2],sizes[-1])) return layers def MoE_MLP(task,size_layers,n_layers,n_experts,is_hard): return MoE(mlp_layers(task,size_layers,n_layers,n_experts,is_hard)) def MoE_MLP_RandomGrow(task,size_layers,n_layers,n_experts,is_hard,n_experts_to_split): return MoE_RandomGrow(mlp_layers(task,size_layers,n_layers,n_experts,is_hard),n_experts_to_split) def MoE_MLP_UsageGrow(task,size_layers,n_layers,n_experts,is_hard,n_experts_to_split): return MoE_UsageGrow(mlp_layers(task,size_layers,n_layers,n_experts,is_hard),n_experts_to_split)
alma-main
crlapi/sl/architectures/mlp.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import math import logging import numpy as np import torch from torch import nn import torch.utils.data from torch.nn import functional as F from torch.autograd import Variable def conv3x3(in_planes, out_planes, stride=1): return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, in_planes, planes, stride=1): super(BasicBlock, self).__init__() self.conv1 = conv3x3(in_planes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion * planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion * planes) ) self.activation = nn.ReLU() def forward(self, x): out = self.activation(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out = out + self.shortcut(x) out = self.activation(out) return out class ResNet(nn.Module): def __init__(self, block, num_blocks, num_classes, nf, input_size): super(ResNet, self).__init__() self.in_planes = nf self.input_size = input_size self.conv1 = conv3x3(input_size[0], nf * 1) self.bn1 = nn.BatchNorm2d(nf * 1) self.layer1 = self._make_layer(block, nf * 1, num_blocks[0], stride=1) self.layer2 = self._make_layer(block, nf * 2, num_blocks[1], stride=2) self.layer3 = self._make_layer(block, nf * 4, num_blocks[2], stride=2) self.layer4 = self._make_layer(block, nf * 8, num_blocks[3], stride=2) # hardcoded for now last_hid = nf * 8 * block.expansion last_hid = last_hid * (self.input_size[-1] // 2 // 2 // 2 // 4) ** 2 self.linear = nn.Linear(last_hid, num_classes) self.activation = nn.ReLU() def _make_layer(self, block, planes, num_blocks, stride): strides = [stride] + [1] * (num_blocks - 1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, stride)) self.in_planes = planes * block.expansion return nn.Sequential(*layers) def return_hidden(self, x): bsz = x.size(0) assert x.ndim == 4 out = self.activation(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) # out = F.adaptive_avg_pool2d(out, 1) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) return out def forward(self, x): out = self.return_hidden(x) out = self.linear(out) return out def ResNet18(nclasses, nf=20, input_size=(3, 32, 32), *args, **kwargs): return ResNet(BasicBlock, [2, 2, 2, 2], nclasses, nf, input_size, *args, **kwargs)
alma-main
crlapi/sl/architectures/resnet.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import math import copy import torch import torch.autograd as autograd import torch.nn as nn import torch.nn.functional as F def percentile(t, qq): k = int(qq * t.numel()) #1 + round(float(q) * (t.numel() - 1)) return t.view(-1).kthvalue(k).values.item() class GetSubnet(torch.autograd.Function): @staticmethod def forward(ctx, scores, zeros, ones, sparsity): k_val = percentile(scores, sparsity) return torch.where(scores < k_val, zeros.to(scores.device), ones.to(scores.device)) @staticmethod def backward(ctx, g): return g, None, None, None # Not learning weights, finding subnet class SubnetConv(nn.Conv2d): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.scores = nn.Parameter(torch.Tensor(self.weight.size())) nn.init.kaiming_uniform_(self.scores, a=math.sqrt(5)) self.register_buffer('ones', torch.ones_like(self.scores.data)) self.register_buffer('zeros', torch.zeros_like(self.scores.data)) # hardcoded for now self.prune_rate = 0.5 def set_prune_rate(self, prune_rate): self.prune_rate = prune_rate @property def clamped_scores(self): return self.scores.abs() def forward(self, x): subnet = GetSubnet.apply(self.clamped_scores, self.zeros, self.ones, self.prune_rate) w = self.weight * subnet x = F.conv2d( x, w, self.bias, self.stride, self.padding, self.dilation, self.groups ) return x # -- Layers def _make_layers(array, in_channels): layers = [] for x in array: if x == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: layers += [SubnetConv(in_channels, x, kernel_size=3, padding=1), nn.BatchNorm2d(x, affine=False), nn.ReLU(inplace=True)] in_channels = x return in_channels, layers class SubnetVGG(nn.Module): def __init__(self, task, n_channels, grow_n_units): super().__init__() self.grow_n_units = grow_n_units vgg_parts = [ 64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M' ] if n_channels > 0: vgg_parts = [n_channels if type(x) == int else x for x in vgg_parts] out_channels, base = _make_layers(vgg_parts, 3) self.net = nn.Sequential( *base, SubnetConv(out_channels, task.n_classes, kernel_size=1, padding=0), nn.Flatten(), ) def forward(self, x): return self.net(x) def grow(self, valid_loader, **args): x = torch.FloatTensor(64, 3, 32, 32).normal_() new_layers = [] for i, layer in enumerate(self.net): if isinstance(layer, SubnetConv): # input size in_c = 3 if i == 0 else last_output_channels # output size out_c = layer.out_channels + (self.grow_n_units if i < len(self.net) - 2 else 0) # what is the minimal score to be selected ? max_val = percentile(layer.scores.abs(), layer.prune_rate) min_val = layer.scores.abs().min().item() # init new layer new_layer = SubnetConv(in_c, out_c, kernel_size=layer.kernel_size, padding=layer.padding) new_layer.scores.data.uniform_(min_val, max_val) # adjust the prune rate so that the same amount of points get selected new_layer.prune_rate = 1 - (1 - layer.prune_rate) * layer.weight.numel() / new_layer.weight.numel() # copy the old params a, b, c, d = layer.scores.size() new_layer.weight[:a, :b, :c, :d].data.copy_(layer.weight.data) new_layer.scores[:a, :b, :c, :d].data.copy_(layer.scores.data) new_layer.bias.data.fill_(0) new_layer.bias[:a].data.copy_(layer.bias) last_output_channels = out_c new_layers += [new_layer] new_sub = torch.where(new_layer.clamped_scores < percentile(new_layer.clamped_scores, new_layer.prune_rate), new_layer.zeros, new_layer.ones) import pdb # assert torch.allclose(layer(x[:, :b]), new_layer(x)[:, :a]), pdb.set_trace() elif isinstance(layer, nn.BatchNorm2d): new_bn = nn.BatchNorm2d(last_output_channels, affine=False) c = layer.running_mean.size(0) new_bn.running_mean[:c].data.copy_(layer.running_mean.data) new_bn.running_var[:c].data.copy_(layer.running_var.data) new_layers += [new_bn] new_bn.training = layer.training # assert torch.allclose(layer(x[:, :c]), new_bn(x)[:, :c], atol=1e-7) else: new_layers += [copy.deepcopy(layer)] x = new_layers[-1](x) net = nn.Sequential(*new_layers) copy_self = copy.deepcopy(self) copy_self.net = net print(net) return copy_self
alma-main
crlapi/sl/architectures/sp_vgg.py