python_code
stringlengths
0
4.04M
repo_name
stringlengths
7
58
file_path
stringlengths
5
147
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from torch import nn from functools import partial from einops.layers.torch import Rearrange, Reduce import torch.nn as nn from crlapi.sl.architectures.mixture_model import MixtureLayer,SoftMaxGateModule,HardSoftMaxGateModule,Gate,MoE,MoE_RandomGrow,MoE_UsageGrow class LinearSoftGate(Gate): def __init__(self,input_shape, n_experts, prepro_fn=None): super().__init__(input_shape,n_experts) assert len(input_shape)==1 self.module=SoftMaxGateModule(nn.Linear(input_shape[0],n_experts)) def forward(self,x): print(x.size()) return self.module(x) class LinearHardGate(Gate): def __init__(self,input_shape, n_experts, prepro_fn=None): super().__init__(input_shape,n_experts) assert len(input_shape)==1 self.module=HardSoftMaxGateModule(nn.Linear(input_shape[0],n_experts)) def forward(self,x): return self.module(x) class PreNormResidual(nn.Module): def __init__(self, dim, fn): super().__init__() self.fn = fn self.norm = nn.LayerNorm(dim) def forward(self, x): return self.fn(self.norm(x)) + x def FeedForward(dim, expansion_factor = 4, dropout = 0., dense = nn.Linear): return nn.Sequential( dense(dim, dim * expansion_factor), PrintModule("After dense"), nn.GELU(), nn.Dropout(dropout), dense(dim * expansion_factor, dim), nn.Dropout(dropout) ) class PrintModule(nn.Module): def __init__(self,msg=""): super().__init__() self.msg=msg def forward(self,x): print(self.msg," : ",x.size()) return x def MLPMixer(task, patch_size, dim, depth, expansion_factor = 4, dropout = 0.): image_size= task.input_shape[1] assert image_size==task.input_shape[2] channels=task.input_shape[0] num_classes=task.n_classes assert (image_size % patch_size) == 0, 'image must be divisible by patch size' num_patches = (image_size // patch_size) ** 2 chan_first, chan_last = partial(nn.Conv1d, kernel_size = 1), nn.Linear return nn.Sequential( PrintModule("L1"), Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_size, p2 = patch_size), PrintModule("L2"), nn.Linear((patch_size ** 2) * channels, dim), PrintModule("L3"), *[nn.Sequential( PreNormResidual(dim, FeedForward(num_patches, expansion_factor, dropout, chan_first)), PreNormResidual(dim, FeedForward(dim, expansion_factor, dropout, chan_last)), PrintModule("L."), ) for _ in range(depth)], PrintModule("L4"), nn.LayerNorm(dim), Reduce('b n c -> b c', 'mean'), nn.Linear(dim, num_classes) )
alma-main
crlapi/sl/architectures/mlpmixer.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import torch.nn as nn import torch.nn.functional as F import torchvision import numpy as np import time import itertools from copy import deepcopy from pydoc import locate from fvcore.nn import FlopCountAnalysis as FCA from torchvision.models import * from . import sp # ---------------------------------------------------------------- # Models # ---------------------------------------------------------------- class module_list_wrapper(nn.Module): def __init__(self, layers): super().__init__() self.layer = nn.Sequential(*layers) def forward(self, x): out = self.layer(x) return out def __getitem__(self, i): return self.layer[i] def __len__(self): return len(self.layer) def sp_vgg(model, n_classes=10, dimh=16, method='none'): cfgs = { 'vgg11': [1, 'M', 2, 'M', 4, 4, 'M', 8, 8, 'M', 8, 8, 'M'], 'vgg14': [1, 1, 'M', 2, 2, 'M', 4, 4, 'M', 8, 8, 'M', 8, 8, 'M'], 'vgg16': [1, 1, 'M', 2, 2, 'M', 4, 4, 4, 'M', 8, 8, 8, 'M', 8, 8, 8, 'M'], 'vgg19': [1, 1, 'M', 2, 2, 'M', 4, 4, 4, 4, 'M', 8, 8, 8, 8, 'M', 8, 8, 8, 8, 'M'], } cfg = cfgs[model] next_layers = {} prev_idx = -1 in_channels = 3 net = [] n = len(cfg) for i, x in enumerate(cfg): if x == 'M': net.append(nn.MaxPool2d(kernel_size=2, stride=2)) elif x == 'A': net.append(nn.AvgPool2d(kernel_size=2, stride=2)) else: if method == 'none': net.append(sp.Conv2d(in_channels, 64*x, kernel_size=3, padding=1, actv_fn='relu', has_bn=True)) in_channels = 64*x else: net.append(sp.Conv2d(in_channels, dimh, kernel_size=3, padding=1, actv_fn='relu', has_bn=True)) in_channels = dimh if prev_idx >= 0: next_layers[prev_idx] = [i] prev_idx = i net.append(sp.Conv2d(in_channels, n_classes, kernel_size=1, padding=0, actv_fn='none', can_split=False)) net.append(nn.Flatten()) net = module_list_wrapper(net) old_fwd = net.forward next_layers[prev_idx] = [n] layer2split = list(next_layers.keys()) return net, next_layers, layer2split
alma-main
crlapi/sl/architectures/firefly_vgg/models.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # *** MODULES taken from original code https://github.com/klightz/Firefly import numpy as np import time import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable from torch.distributions import Normal from torch.optim import * from crlapi.sl.architectures.firefly_vgg import sp ############################################################################### # # Split Network # ############################################################################### class SpNet(nn.Module): def __init__(self): super(SpNet, self).__init__() self.net = None self.next_layers = {} self.previous_layers = {} self.layers_to_split = [] self.verbose = True self.n_elites = 0 self.num_group = 1 def create_optimizer(self): pass def forward(self, x): pass def split(self): pass def clear(self): for layer in self.net: if isinstance(layer, sp.SpModule): layer.clear() def get_num_elites(self): n = 0 for i in self.layers_to_split: n += self.net[i].module.weight.shape[0] self.n_elites = int(n * self.grow_ratio) def get_num_elites_group(self, group_num): for g in range(group_num): n = 0 for i in self.layers_to_split_group[g]: n += self.net[i].module.weight.shape[0] try: self.n_elites_group[g] = int(n * self.grow_ratio) except: self.n_elites_group = {} self.n_elites_group[g] = int(n * self.grow_ratio) def sp_threshold(self): ws, wi = torch.sort(torch.cat([self.net[i].w for i in self.layers_to_split]).reshape(-1)) total= ws.shape[0] threshold = ws[self.n_elites] return threshold def sp_threshold_group(self, group_num): ws, wi = torch.sort(torch.cat([self.net[i].w for i in self.layers_to_split_group[group_num]]).reshape(-1)) total= ws.shape[0] threshold = ws[self.n_elites_group[group_num]] return threshold def save(self, path='./tmp.pt'): torch.save(self.state_dict(), path) def load(self, path='./tmp.pt'): self.load_state_dict(torch.load(path)) def get_num_params(self): model_n_params = sum(p.numel() for p in self.parameters() if p.requires_grad) return model_n_params def spe(self, dataloader, n_batches): pass def spf(self, dataloader, n_batches): pass def spff(self, dataloader, n_batches): pass def split(self, split_method, dataset, n_batches=-1): self.num_group = 1 if self.config.model != 'mobile' else 2 if split_method not in ['random', 'exact', 'fast', 'firefly', 'fireflyn']: raise NotImplementedError if self.verbose: print('[INFO] start splitting ...') start_time = time.time() self.net.eval() if self.num_group == 1: self.get_num_elites() else: self.get_num_elites_group(self.num_group) split_fn = { 'exact': self.spe, 'fast': self.spf, 'firefly': self.spff, 'fireflyn': self.spffn, } if split_method != 'random': split_fn[split_method](dataset, n_batches) n_neurons_added = {} if split_method == 'random': n_layers = len(self.layers_to_split) n_total_neurons = 0 threshold = 0. for l in self.layers_to_split: n_total_neurons += self.net[l].get_n_neurons() n_grow = int(n_total_neurons * self.grow_ratio) n_new1 = np.random.choice(n_grow, n_layers, replace=False) n_new1 = np.sort(n_new1) n_news = [] for i in range(len(n_new1) - 1): if i == 0: n_news.append(n_new1[i]) n_news.append(n_new1[i + 1] - n_new1[i]) else: n_news.append(n_new1[i + 1] - n_new1[i]) n_news[-1] += 1 for i, n_new_ in zip(reversed(self.layers_to_split), n_news): if isinstance(self.net[i], sp.SpModule) and self.net[i].can_split: n_new, idx = self.net[i].random_split(n_new_) n_neurons_added[i] = n_new if n_new > 0: # we have indeed splitted this layer for j in self.next_layers[i]: self.net[j].passive_split(idx) elif split_method == 'fireflyn': if self.num_group == 1: threshold = self.sp_threshold() for i in reversed(self.layers_to_split): if isinstance(self.net[i], sp.SpModule) and self.net[i].can_split: if self.num_group != 1: group = self.total_group[i] threshold = self.sp_threshold_group(group) n_new, split_idx, new_idx = self.net[i].spffn_active_grow(threshold) sp_new = split_idx.shape[0] if split_idx is not None else 0 n_neurons_added[i] = (sp_new, n_new-sp_new) if self.net[i].kh == 1: isfirst = True else: isfirst = False for j in self.next_layers[i]: print('passive', self.net[j].module.weight.shape) self.net[j].spffn_passive_grow(split_idx, new_idx) else: threshold= self.sp_threshold() # actual splitting for i in reversed(self.layers_to_split): if isinstance(self.net[i], sp.SpModule) and self.net[i].can_split: n_new, idx = self.net[i].active_split(threshold) n_neurons_added[i] = n_new if n_new > 0: # we have indeed splitted this layer for j in self.next_layers[i]: self.net[j].passive_split(idx) self.net.train() self.clear() # cleanup auxiliaries self.create_optimizer() # re-initialize optimizer end_time = time.time() if self.verbose: print('[INFO] splitting takes %10.4f sec. Threshold value is %10.9f' % ( end_time - start_time, threshold)) if split_method == 'fireflyn': print('[INFO] number of added neurons: \n%s\n' % \ '\n'.join(['-- %d grows (sp %d | new %d)' % (x, y1, y2) for x, (y1, y2) in n_neurons_added.items()])) else: print('[INFO] number of added neurons: \n%s\n' % \ '\n'.join(['-- %d grows %d neurons' % (x, y) for x, y in n_neurons_added.items()])) return n_neurons_added
alma-main
crlapi/sl/architectures/firefly_vgg/sp/net.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # *** MODULES taken from original code https://github.com/klightz/Firefly from .conv import Conv2d from .net import SpNet from .module import SpModule __all__ = [ 'SpNet', 'SpModule', 'Conv2d', ]
alma-main
crlapi/sl/architectures/firefly_vgg/sp/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # *** MODULES taken from original code https://github.com/klightz/Firefly import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable from torch.distributions import Normal from torch.optim import * ############################################################################### # # Split Block Abstract Class # ############################################################################### class SpModule(nn.Module): def __init__(self, can_split=True, actv_fn='relu', has_bn=False, has_bias=True, rescale=1.0): super(SpModule, self).__init__() # properties self.can_split = can_split self.actv_fn = actv_fn self.has_bn = has_bn self.has_bias = has_bias self.epsilon = 1e-2 self.K = 70 # modules self.module = None self.bn = None # auxiliaries self.w = None self.v = None self.y = None self.S = [] self.leaky_alpha = 0.2 def clear(self): del self.w del self.v del self.y del self.S try: del self.vni except: pass try: del self.vno except: pass self.w = self.v = self.y = None self.S = [] def get_device(self): try: return 'cuda' if self.module.weight.data.is_cuda else 'cpu' except: raise Exception('[ERROR] no module initialized') def _d2_actv(self, x, beta=3.): if self.actv_fn == 'relu': # use 2nd order derivative of softplus for approximation s = torch.sigmoid(x*beta) return beta*s*(1.-s) elif self.actv_fn == 'softplus': s = torch.sigmoid(x) return s*(1.-s) elif self.actv_fn == 'rbf': return (x.pow(2)-1)*(-x.pow(2)/2).exp() elif self.actv_fn == 'leaky_relu': s = torch.sigmoid(x*beta) return beta*s*(1.-s)*(1.-self.leaky_alpha) elif self.actv_fn == 'swish': s = torch.sigmoid(x) return s*(1.-s) + s + x*s*(1.-s) - (s.pow(2) + 2.*x*s.pow(2)*(1.-s)) elif self.actv_fn == 'sigmoid': s = torch.sigmoid(x) return (s-s.pow(2)) * (1.-s).pow(2) elif self.actv_fn == 'tanh': h = torch.tanh(x) return -2.*h * (1-h.pow(2)) elif self.actv_fn == 'none': return torch.ones_like(x) else: raise NotImplementedError def _activate(self, x): if self.actv_fn == 'relu': return F.relu(x) elif self.actv_fn == 'leaky_relu': return F.leaky_relu(x, self.leaky_alpha) elif self.actv_fn == 'swish': return x * torch.sigmoid(x) elif self.actv_fn == 'rbf': return (-x.pow(2)/2).exp() elif self.actv_fn == 'sigmoid': return torch.sigmoid(x) elif self.actv_fn == 'tanh': return torch.tanh(x) elif self.actv_fn == 'softplus': return F.softplus(x) elif self.actv_fn == 'none': return x else: raise NotImplementedError def forward(self, x): x = self.module(x) if self.has_bn: x = self.bn(x) return self._activate(x) def active_split(self, threshold): pass def passive_split(self, idx): pass
alma-main
crlapi/sl/architectures/firefly_vgg/sp/module.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # *** MODULES taken from original code https://github.com/klightz/Firefly import math import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable, grad from torch.distributions import Normal from torch.optim import * from .module import SpModule from crlapi.sl.architectures.firefly_vgg import sp ############################################################################### # # Conv2d Split Layer # ############################################################################### class Conv2d(SpModule): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=1, groups = 1, can_split=True, bias=True, actv_fn='relu', has_bn=False, rescale=1.0): super().__init__(can_split=can_split, actv_fn=actv_fn, has_bn=has_bn, has_bias=bias, rescale=rescale) if has_bn: self.bn = nn.BatchNorm2d(out_channels) self.has_bias = False if isinstance(kernel_size, int): self.kh = self.kw = kernel_size else: assert len(kernel_size) == 2 self.kh, self.kw = kernel_size if isinstance(padding, int): self.ph = self.pw = padding else: assert len(padding) == 2 self.ph, self.pw = padding if isinstance(stride, int): self.dh = self.dw = stride else: assert len(stride) == 2 self.dh, self.dw = stride self.groups = groups self.module = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, groups = groups, stride=stride, padding=padding, bias=self.has_bias) def get_conv_patches(self, x): x = F.pad(x, (self.pw, self.pw, self.ph, self.ph)) # pad (left, right, top, bottom) # get all image windows of size (kh, kw) and stride (dh, dw) patches = x.unfold(2, self.kh, self.dh).unfold(3, self.kw, self.dw) patches = patches.permute(0, 2, 3, 1, 4, 5).contiguous() # [B, H, W, C_in, kh, kw] return patches ########################################################################### # fast split ########################################################################### def spf_reset(self): # y is a dummy variable for storing gradients of v W = self.module.weight.data self.y = nn.Parameter(torch.zeros_like(W)) self.y.retain_grad() self.v = nn.Parameter(torch.zeros_like(W)) self.v.data.uniform_(-1e-1, 1e-1) self.v.retain_grad() self.w = 0. def spf_update_v(self): v = self.v sv = self.y.grad vv = v.pow(2).sum([1,2,3], keepdim=True) vsv = (sv * v).sum([1,2,3], keepdim=True) v_grad = 2. * (sv * vv - v * vsv) / vv.pow(2) self.v.grad = v_grad self.y.grad = None def spf_update_w(self, n=1.): v = self.v sv = self.y.grad vv = v.pow(2).sum([1,2,3]) vsv = (sv * v).sum([1,2,3]) self.w += (vsv / vv).data.clone() / n def spf_forward(self, x): out = self.module(x) # [B, C_out] bn_coef = 1. if self.has_bn: self.bn.eval() # fix running mean/variance out = self.bn(out) # calculate bn_coef bn_coef = 1. / torch.sqrt(self.bn.running_var + 1e-5) * self.bn.weight bn_coef = bn_coef.view(1, -1, 1, 1) # [1, C_out, 1, 1] # normalize v v_norm = self.v.pow(2).sum([1,2,3], keepdim=True).sqrt().data self.v.data = self.v.data / v_norm patches = self.get_conv_patches(x) B, H, W, C_in, kh, kw = patches.size() x = patches.reshape(B*H*W, -1) left = x.mm(self.y.view(-1, C_in*kh*kw).t()).view(B, H, W, -1).permute(0,3,1,2) right = x.mm(self.v.view(-1, C_in*kh*kw).t()).view(B, H, W, -1).permute(0,3,1,2) aux = self._d2_actv(out) * (bn_coef*left) * (bn_coef*right) out = self._activate(out) + aux return out ########################################################################### # firefly split + new neurons ########################################################################### def spffn_add_new(self, enlarge_out=True, enlarge_in=True): self.eout = self.K if enlarge_out else 0 self.ein = self.K if enlarge_in else 0 if self.groups == 1: C_out, C_in = self.module.weight.data.shape[:2] else: C_out, _ = self.module.weight.data.shape[:2] C_in = C_out device = self.get_device() if self.has_bn and self.eout > 0: new_bn = nn.BatchNorm2d(C_out+self.eout).to(device) new_bn.weight.data[:C_out] = self.bn.weight.data.clone() new_bn.bias.data[:C_out] = self.bn.bias.data.clone() new_bn.running_mean.data[:C_out] = self.bn.running_mean.data.clone() new_bn.running_var.data[:C_out] = self.bn.running_var.data.clone() new_bn.weight.data[C_out:] = 1. new_bn.bias.data[C_out:] = 0. self.bn = new_bn self.bn.eval() if self.groups != 1: self.groups += self.K new_layer = nn.Conv2d(in_channels=C_in+self.ein, out_channels=C_out+self.eout, kernel_size=(self.kh, self.kw), stride=(self.dh, self.dw), padding=(self.ph, self.pw), bias=self.has_bias, groups = self.groups).to(device) new_layer.weight.data[:C_out, :C_in, :, :] = self.module.weight.data.clone() if self.ein > 0: new_layer.weight.data[:, C_in:, :, :] = 0. if self.eout > 0: new_layer.weight.data[C_out:, :, :, :] = 0. self.module = new_layer self.module.eval() def spffn_penalty(self): penalty = 0. if self.can_split: penalty += self.v.pow(2).sum() if self.eout > 0: penalty += 1e-2 * self.vno.pow(2).sum() if penalty > 0: (penalty * 1e-2).backward() def spffn_clip(self): if self.ein > 0: # since output is just 1 self.vni.data.clamp_(-1e-2, 1e-2) def spffn_reset(self): if self.groups == 1: C_out, C_in, kh, kw = self.module.weight.data.shape else: C_out, C_in, kh, kw = self.module.weight.data.shape C_in = C_out device = self.get_device() self.y = nn.Parameter(torch.zeros(1,C_out,1,1)).to(device) self.y.retain_grad() self.w = 0. if self.can_split: v = torch.zeros(C_out-self.eout, C_in-self.ein,kh,kw).to(device) v.uniform_(-1e-1, 1e-1) self.v = nn.Parameter(v) if self.ein > 0: vni = torch.zeros(C_out, self.ein, kh, kw).to(device) vni.uniform_(-1e-2, 1e-2) self.vni = nn.Parameter(vni) if self.eout > 0: vno = torch.zeros(self.eout, C_in-self.ein, kh, kw).to(device) n = kh * kw * (C_in - self.ein) stdv = 1. / math.sqrt(n) #vno.uniform_(-stdv, stdv) vno.normal_(0, 0.1) self.vno = nn.Parameter(vno) def spffn_update_w(self, d, output = False): if not output: self.w += (self.y.grad.data / d).view(-1) self.y.grad = None else: y_grad = grad(self.output.mean(), self.y) self.w += (self.y.grad.data / y_grad[0].data / d).view(-1) self.y.grad = None def spffn_forward(self, x, alpha=-1): out = self.module(x) # [out+eout, in+ein, H, W] patches = self.get_conv_patches(x) B, H, W, C_in, kh, kw = patches.size() C_out = out.shape[1] cin, cout = C_in - self.ein, C_out - self.eout x = patches.view(B*H*W, -1, kh*kw) if self.ein > 0: x1, x2 = x[:,:cin,:].view(B*H*W, -1), x[:,cin:,:].view(B*H*W,-1) else: x1 = x.view(B*H*W, -1) if self.can_split: noise_v = x1.mm(self.v.view(-1, cin*kh*kw).t()).view(B,H,W,-1).permute(0,3,1,2) # [B,cout,H,W] if alpha >= 0.: noise_v = (noise_v.detach() * self.y[:,:cout,:,:] + noise_v * alpha) if self.eout > 0: noise_vo = x1.mm(self.vno.view(-1, cin*kh*kw).t()).view(B,H,W,-1).permute(0,3,1,2) if alpha >= 0.: noise_vo = (noise_vo.detach() * self.y[:,cout:,:,:] + noise_vo * alpha) if self.ein > 0: noise_vi1 = x2.mm(self.vni.view(-1, self.ein*kh*kw).t()) if self.eout > 0: noise_vi1, noise_vi2 = noise_vi1[:,:cout], noise_vi1[:,cout:] # [B*H*W, cout/eout] noise_vi1 = noise_vi1.view(B,H,W,-1).permute(0,3,1,2) noise_vi2 = noise_vi2.view(B,H,W,-1).permute(0,3,1,2) else: noise_vi1 = noise_vi1.view(B,H,W,-1).permute(0,3,1,2) o1_plus = o1_minus = o2 = 0. if self.can_split: o1_plus = out[:,:cout,:,:] + noise_v # [B, cout, H, W] o1_minus = out[:,:cout,:,:] - noise_v # [B, cout, H, W] if self.eout > 0: o2 = out[:,cout:,:,:] + noise_vo if self.ein > 0: o1_plus = o1_plus + noise_vi1 o1_minus = o1_minus + noise_vi1 if self.eout > 0: o2 = o2 + noise_vi2 if self.eout > 0: o1_plus = torch.cat((o1_plus, o2), 1) o1_minus = torch.cat((o1_minus, o2), 1) if self.has_bn: o1_plus = self.bn(o1_plus) o1_minus = self.bn(o1_minus) o1_plus = self._activate(o1_plus) o1_minus = self._activate(o1_minus) output = (o1_plus + o1_minus) / 2. else: o1 = out[:,:cout,:,:] if self.eout > 0: o2 = out[:,cout:,:,:] + noise_vo if self.ein > 0: o2 = o2 + noise_vi2 if self.ein > 0: o1 = o1 + noise_vi1 if self.eout > 0: o1 = torch.cat((o1, o2), 1) if self.has_bn: o1 = self.bn(o1) output = self._activate(o1) self.output = output return output ########################################################################### # firefly split ########################################################################### def spff_reset(self): W = self.module.weight.data device = self.get_device() self.y = nn.Parameter(torch.zeros(1, W.shape[0], 1, 1)).to(device) self.y.retain_grad() self.v = nn.Parameter(torch.zeros_like(W)) self.v.data.uniform_(-1e-1, 1e-1) self.w = 0. def spff_update_w(self, d): self.w += (self.y.grad.data/d).view(-1) def spff_scale_v(self): self.v.data = self.v.data * 1e2 def spff_forward(self, x, alpha=-1): out = self.module(x) patches = self.get_conv_patches(x) B, H, W, C_in, kh, kw = patches.size() x = patches.view(B*H*W, -1) if alpha >= 0.: noise_out = x.mm(self.v.view(-1, C_in*kh*kw).t()) noise_out = noise_out.view(B, H, W, -1).permute(0, 3, 1, 2) noise_out = (self.y * noise_out.detach() + noise_out * alpha) else: noise_out = x.mm(self.v.view(-1, C_in*kh*kw).t()) noise_out = noise_out.view(B, H, W, -1).permute(0, 3, 1, 2) out_plus = out + noise_out out_minus = out - noise_out if self.has_bn: self.bn.eval() out_plus = self.bn(out_plus) out_minus = self.bn(out_minus) out_plus = self._activate(out_plus) out_minus = self._activate(out_minus) return (out_plus + out_minus) / 2. ########################################################################### # exact split ########################################################################### def spe_forward(self, x): out = self.module(x) # [B, C_out, H, W] if self.has_bn: self.bn.eval() # fix running mean/variance out = self.bn(out) # calculate bn_coff bn_coff = 1. / torch.sqrt(self.bn.running_var + 1e-5) * self.bn.weight bn_coff = bn_coff.view(1, -1, 1, 1) # [1, C_out, 1, 1] first_run = (len(self.S) == 0) # calculate 2nd order derivative of the activation nabla2_out = self._d2_actv(out) # [B, C_out, H, W] patches = self.get_conv_patches(x) B, H, W, C_in, KH, KW = patches.size() C_out = out.shape[1] D = C_in * KH * KW x = patches.view(B, H, W, D) device = self.get_device() auxs = [] # separate calculations for each neuron for space efficiency for neuron_idx in range(C_out): c = bn_coff[:, neuron_idx:neuron_idx+1, :, :] if self.has_bn else 1. l = c * x if first_run: S = Variable(torch.zeros(D, D).to(device), requires_grad=True) # [H_in, H_in] self.S.append(S) else: S = self.S[neuron_idx] aux = l.view(-1, D).mm(S).unsqueeze(1).bmm(l.view(-1, D, 1)).squeeze(-1) # (Bx)S(Bx^T), [B*H*W,1] aux = aux.view(B, 1, H, W) auxs.append(aux) auxs = torch.cat(auxs, 1) # [B, C_out, H, W] auxs = auxs * nabla2_out # [B, C_out, H, W] out = self._activate(out) + auxs return out def spe_eigen(self, avg_over=1.): A = np.array([item.grad.data.cpu().numpy() for item in self.S]) # [C_out, D, D] A /= avg_over A = (A + np.transpose(A, [0, 2, 1])) / 2 w, v = np.linalg.eig(A) # [C_out, K], [C_out, D, K] w = np.real(w) v = np.real(v) min_idx = np.argmin(w, axis=1) w_min = np.min(w, axis=1) # [C_out,] v_min = v[np.arange(w_min.shape[0]), :, min_idx] # [C_out, D] self.w = w_min self.v = v_min device = self.get_device() self.w = torch.FloatTensor(w_min).to(device) self.v = torch.FloatTensor(v_min).to(device) self.v = self.v.view(*self.module.weight.data.shape) del A ## below are for copying weights and actual splitting def get_n_neurons(self): return self.module.weight.data.shape[0] def random_split(self, C_new): if C_new == 0: return 0, None C_out, C_in, kh, kw = self.module.weight.shape idx = np.random.choice(C_out, C_new) device = self.get_device() delta1 = F.normalize(torch.randn(C_new, C_in, kh, kw).to(device), p=2, dim=-1) delta2 = F.normalize(torch.randn(C_new, C_in, kh, kw).to(device), p=2, dim=-1) delta1 = delta1 * 1e-2 delta2 = delta2 * 1e-2 idx = torch.LongTensor(idx).to(device) new_layer = nn.Conv2d(in_channels=C_in, out_channels=C_out+C_new, kernel_size=(self.kh, self.kw), stride=(self.dh, self.dw), padding=(self.ph, self.pw), bias=self.has_bias).to(device) # for current layer new_layer.weight.data[:C_out, ...] = self.module.weight.data.clone() new_layer.weight.data[C_out:, ...] = self.module.weight.data[idx, ...] new_layer.weight.data[idx, ...] += delta1 new_layer.weight.data[C_out:, ...] -= delta2 if self.has_bias: new_layer.bias.data[:C_out, ...] = self.module.bias.data.clone() new_layer.bias.data[C_out:, ...] = self.module.bias.data[idx] self.module = new_layer # for batchnorm layer if self.has_bn: new_bn = nn.BatchNorm2d(C_out+C_new).to(device) new_bn.weight.data[:C_out] = self.bn.weight.data.clone() new_bn.weight.data[C_out:] = self.bn.weight.data[idx] new_bn.bias.data[:C_out] = self.bn.bias.data.clone() new_bn.bias.data[C_out:] = self.bn.bias.data[idx] new_bn.running_mean.data[:C_out] = self.bn.running_mean.data.clone() new_bn.running_mean.data[C_out:] = self.bn.running_mean.data[idx] new_bn.running_var.data[:C_out] = self.bn.running_var.data.clone() new_bn.running_var.data[C_out:] = self.bn.running_var.data[idx] self.bn = new_bn return C_new, idx def rdinit_grow_output(self): C_out, C_in, kh, kw = self.module.weight.shape device = self.get_device() new_layer = nn.Conv2d(in_channels=C_in, out_channels=C_out+1, kernel_size=(self.kh, self.kw), stride=(self.dh, self.dw), padding=(self.ph, self.pw), bias=self.has_bias).to(device) new_layer.weight.data[:C_out, ...] = self.module.weight.data.clone() self.module = new_layer def rdinit_grow_input(self): C_out, C_in, kh, kw = self.module.weight.shape device = self.get_device() new_layer = nn.Conv2d(in_channels=C_in+1, out_channels=C_out, kernel_size=(self.kh, self.kw), stride=(self.dh, self.dw), padding=(self.ph, self.pw), bias=self.has_bias).to(device) new_layer.weight.data[:,:C_in, ...] = self.module.weight.data.clone() self.module = new_layer def active_split(self, threshold): idx = torch.nonzero((self.w <= threshold).float()).view(-1) C_new = idx.shape[0] if C_new == 0: return 0, None C_out, C_in, kh, kw = self.module.weight.shape device = self.get_device() delta = self.v[idx, ...] * 1e-2 delta = delta.view(C_new, C_in, kh, kw) new_layer = nn.Conv2d(in_channels=C_in, out_channels=C_out+C_new, kernel_size=(self.kh, self.kw), stride=(self.dh, self.dw), padding=(self.ph, self.pw), bias=self.has_bias).to(device) # for current layer new_layer.weight.data[:C_out, ...] = self.module.weight.data.clone() new_layer.weight.data[C_out:, ...] = self.module.weight.data[idx, ...] new_layer.weight.data[idx, ...] += delta new_layer.weight.data[C_out:, ...] -= delta if self.has_bias: new_layer.bias.data[:C_out, ...] = self.module.bias.data.clone() new_layer.bias.data[C_out:, ...] = self.module.bias.data[idx] self.module = new_layer # for batchnorm layer if self.has_bn: new_bn = nn.BatchNorm2d(C_out+C_new).to(device) new_bn.weight.data[:C_out] = self.bn.weight.data.clone() new_bn.weight.data[C_out:] = self.bn.weight.data[idx] new_bn.bias.data[:C_out] = self.bn.bias.data.clone() new_bn.bias.data[C_out:] = self.bn.bias.data[idx] new_bn.running_mean.data[:C_out] = self.bn.running_mean.data.clone() new_bn.running_mean.data[C_out:] = self.bn.running_mean.data[idx] new_bn.running_var.data[:C_out] = self.bn.running_var.data.clone() new_bn.running_var.data[C_out:] = self.bn.running_var.data[idx] self.bn = new_bn return C_new, idx def passive_split(self, idx): C_new = idx.shape[0] C_out, C_in, _, _ = self.module.weight.shape device = self.get_device() new_layer = nn.Conv2d(in_channels=C_in+C_new, out_channels=C_out, kernel_size=(self.kh, self.kw), stride=(self.dh, self.dw), padding=(self.ph, self.pw), bias=self.has_bias).to(device) new_layer.weight.data[:, :C_in, ...] = self.module.weight.data.clone() new_layer.weight.data[:, C_in:, ...] = self.module.weight.data[:, idx, ...] / 2. new_layer.weight.data[:, idx, ...] /= 2. if self.has_bias: new_layer.bias.data = self.module.bias.data.clone() self.module = new_layer def spffn_active_grow(self, threshold): idx = torch.nonzero((self.w <= threshold).float()).view(-1) C_out, C_in, kh, kw = self.module.weight.shape c1 = C_out - self.eout c3 = C_in - self.ein split_idx, new_idx = idx[idx < c1], idx[idx >= c1] n_split = split_idx.shape[0] n_new = new_idx.shape[0] c2 = c1 + n_split device = self.get_device() delta = self.v[split_idx, ...] new_layer = nn.Conv2d(in_channels=C_in, out_channels=c1+n_split+n_new, kernel_size=(self.kh, self.kw), stride=(self.dh, self.dw), padding=(self.ph, self.pw), bias=self.has_bias).to(device) # for current layer [--original--c1--split_new--c2--add new--] old_W = self.module.weight.data.clone() try: old_W[:, C_in - self.ein:, :, :] = self.vni.clone() except: pass try: old_W[C_out-self.eout:, :C_in-self.ein, :, :] = self.vno.clone() except: pass new_layer.weight.data[:c1, ...] = old_W[:c1,...] if n_split > 0: new_layer.weight.data[c1:c2, ...] = old_W[split_idx, ...] new_layer.weight.data[split_idx,:c3,...] += delta new_layer.weight.data[c1:c2:,:c3,...] -= delta if n_new > 0: new_layer.weight.data[c2:, ...] = old_W[new_idx, ...] if self.has_bias: old_b = self.module.bias.data.clone() new_layer.bias.data[:c1, ...] = old_b[:c1,...].clone() if n_split > 0: new_layer.bias.data[c1:c2, ...] = old_b[split_idx] if n_new > 0: new_layer.bias.data[c2:,...] = 0. self.module = new_layer # for batchnorm layer if self.has_bn: new_bn = nn.BatchNorm2d(c1+n_split+n_new).to(device) new_bn.weight.data[:c1] = self.bn.weight.data[:c1].clone() new_bn.bias.data[:c1] = self.bn.bias.data[:c1].clone() new_bn.running_mean.data[:c1] = self.bn.running_mean.data[:c1].clone() new_bn.running_var.data[:c1] = self.bn.running_var.data[:c1].clone() if n_split > 0: new_bn.weight.data[c1:c2] = self.bn.weight.data[split_idx] new_bn.bias.data[c1:c2] = self.bn.bias.data[split_idx] new_bn.running_mean.data[c1:c2] = self.bn.running_mean.data[split_idx] new_bn.running_var.data[c1:c2] = self.bn.running_var.data[split_idx] if n_new > 0: new_bn.weight.data[c2:] = self.bn.weight.data[new_idx] new_bn.bias.data[c2:] = self.bn.bias.data[new_idx] new_bn.running_mean.data[c2:] = self.bn.running_mean.data[new_idx] new_bn.running_var.data[c2:] = self.bn.running_var.data[new_idx] self.bn = new_bn return n_split+n_new, split_idx, new_idx def spffn_passive_grow(self, split_idx, new_idx): n_split = split_idx.shape[0] if split_idx is not None else 0 n_new = new_idx.shape[0] if new_idx is not None else 0 C_out, C_in, _, _ = self.module.weight.shape if self.groups != 1: C_in = C_out device = self.get_device() c1 = C_in-self.ein if n_split == 0 and n_new == self.ein: return if self.groups != 1: self.groups = c1 + n_split + n_new C_out = self.groups new_layer = nn.Conv2d(in_channels=c1+n_split+n_new, out_channels=C_out, kernel_size=(self.kh, self.kw), stride=(self.dh, self.dw), padding=(self.ph, self.pw), bias=self.has_bias, groups = self.groups).to(device) c2 = c1 + n_split if self.has_bias: new_layer.bias.data = self.module.bias.data.clone() if self.groups != 1: new_layer.weight.data[:c1,:,...] = self.module.weight.data[:c1,:,...].clone() else: new_layer.weight.data[:,:c1,...] = self.module.weight.data[:,:c1,...].clone() if n_split > 0: if self.groups == 1: new_layer.weight.data[:,c1:c2,:,:] = self.module.weight.data[:,split_idx,:,:] / 2. new_layer.weight.data[:,split_idx,...] /= 2. else: new_layer.weight.data[c1:c2, :,...] = self.module.weight.data[split_idx, :,...] if self.groups != 1: new_bn = nn.BatchNorm2d(C_out).to(device) out = C_out - n_new - n_split out1 = out + n_split out2 = out1 + n_new new_bn.weight.data[:out] = self.bn.weight.data.clone()[:out] new_bn.bias.data[:out] = self.bn.bias.data.clone()[:out] new_bn.running_mean.data[:out] = self.bn.running_mean.data.clone()[:out] new_bn.running_var.data[:out] = self.bn.running_var.data.clone()[:out] if n_split > 0: out1 = out + n_split new_bn.weight.data[out:out1] = self.bn.weight.data[split_idx] new_bn.bias.data[out:out1] = self.bn.bias.data[split_idx] new_bn.running_mean.data[out:out1] = self.bn.running_mean.data[split_idx] new_bn.running_var.data[out:out1] = self.bn.running_var.data[split_idx] if n_new > 0: new_bn.weight.data[out1:out2] = self.bn.weight.data[new_idx] new_bn.bias.data[out1:out2] = self.bn.bias.data[new_idx] new_bn.running_mean.data[out1:out2] = self.bn.running_mean.data[new_idx] new_bn.running_var.data[out1:out2] = self.bn.running_var.data[new_idx] self.bn = new_bn if n_new > 0: if self.groups != 1: new_layer.weight.data[c2:,:,...] = self.module.weight.data[new_idx, :,...] else: new_layer.weight.data[:,c2:,...] = self.module.weight.data[:,new_idx,...] self.module = new_layer
alma-main
crlapi/sl/architectures/firefly_vgg/sp/conv.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import sys import copy import time from pydoc import locate import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from crlapi.core import CLModel from crlapi.sl.clmodels.core import SupervisedCLModel from crlapi.sl.architectures.firefly_vgg import sp from crlapi.sl.architectures.firefly_vgg.models import sp_vgg def _state_dict(model, device): sd = model.state_dict() for k, v in sd.items(): sd[k] = v.to(device) return sd # --- Firefly Implementation. Since we do not plan to extend this method, # --- everything is self-contained here. class Firefly(SupervisedCLModel): def __init__(self, stream, clmodel_args): super().__init__() self.models = [] self.config = clmodel_args self.verbose = True def build_initial_net(self, task, **model_args): # only support the custom VGG backbone for now model, next_layers, layers_to_split = \ sp_vgg('vgg19', n_classes=task.n_classes, dimh=model_args['n_channels'], method='fireflyn') # Hacky AF model.next_layers = next_layers model.layers_to_split = layers_to_split return model def get_prediction_net(self,task): if task.task_descriptor() is None: model = self.models[-1] else: model = self.models[task.task_descriptor] model.eval() return model def update(self, task, logger): assert isinstance(task.task_descriptor(),int) logger.message("Building training dataset") training_dataset = task.task_resources().make() # Creating datasets and loaders training_loader,validation_loader = self.get_train_and_validation_loaders(training_dataset) if len(self.models)==0: model_args=self.config.model model=self.build_initial_net(task,**model_args) elif (task.task_descriptor() % self.config.grow_every) == 0: model=copy.deepcopy(self.models[task.task_descriptor()-1]) print('growing') base_gr = self.config.model.grow_ratio grow_ratio = (base_gr * task.task_descriptor() + 1) / (base_gr * (task.task_descriptor() - 1) + 1) - 1 n_pre = sum(np.prod(x.shape) for x in model.parameters()) added = self.split(model, training_loader, grow_ratio) n_post = sum(np.prod(x.shape) for x in model.parameters()) assert n_post > n_pre print(f'from {n_pre} to {n_post}') else: model=copy.deepcopy(self.models[task.task_descriptor()-1]) flops_per_input = self.count_flops(task, model) best_model=copy.deepcopy(model) best_loss, best_acc = None, None # Optionally create GPU training augmentations train_aug = self.get_train_augs() # Optinally use patience :) patience = self.config.patience patience_delta = self.config.patience_delta patience_count = 0 device=self.config["device"] model.to(device) optimizer = self.get_optimizer(model.parameters()) #Launching training procedure logger.message("Start training for "+str(self.config["max_epochs"])+" epochs") iteration, n_fwd_samples = 0, 0 for epoch in range(self.config["max_epochs"]): # Make sure model is ready for train model.train() #Training loop for i, (raw_x, y) in enumerate(training_loader): raw_x, y = raw_x.to(device), y.to(device) # apply transformations x = train_aug(raw_x) predicted=model(x) loss=F.cross_entropy(predicted,y) nb_ok=predicted.max(1)[1].eq(y).float().sum().item() accuracy=nb_ok/x.size()[0] logger.add_scalar("train/loss",loss.item(),iteration) logger.add_scalar("train/accuracy",accuracy,iteration) optimizer.zero_grad() loss.backward() optimizer.step() iteration += 1 n_fwd_samples += x.size(0) #Validation out=self._validation_loop(model,device,validation_loader) validation_loss,validation_accuracy=out["loss"],out["accuracy"] logger.add_scalar("validation/loss",validation_loss,epoch) logger.add_scalar("validation/accuracy",validation_accuracy,epoch) # Right now CV against accuracy # if best_loss is None or validation_loss < (best_loss - patience_delta): if best_acc is None or validation_accuracy > (best_acc + patience_delta): print("\tFound best model at epoch ",epoch) best_model.load_state_dict(_state_dict(model,"cpu")) best_loss = validation_loss best_acc = validation_accuracy patience_count = 0 else: patience_count += 1 logger.message(f"Validation Acc {validation_accuracy:.4f}\t Loss {validation_loss:.4}") if patience_count == patience: break self.models.append(best_model) logger.message("Training Done...") logger.add_scalar('train/model_params', sum([np.prod(x.shape) for x in model.parameters()]), 0) logger.add_scalar('train/one_sample_megaflop', flops_per_input / 1e6, 0) logger.add_scalar('train/total_megaflops', n_fwd_samples * flops_per_input / 1e6, 0) return self # -------------------------------------------- # Firefly specific methods (from Classifier) # -------------------------------------------- def spffn_forward(self, net, x, alpha): for layer in net: #if isinstance(layer, sp.SpModule) and layer.can_split: prev_x = x.cpu().data.numpy() if isinstance(layer, sp.SpModule): x = layer.spffn_forward(x, alpha=alpha) else: x = layer(x) return x.view(x.shape[0], -1) def spffn_loss_fn(self, net, x, y, alpha=-1): scores = self.spffn_forward(net, x, alpha=alpha) loss = F.cross_entropy(scores, y) return loss ## -- firefly new split -- ## def spffn(self, net, loader, n_batches): v_params = [] for i, layer in enumerate(net): if isinstance(layer, sp.SpModule): enlarge_in = (i > 0) enlarge_out = (i < len(net)-1) net[i].spffn_add_new(enlarge_in=enlarge_in, enlarge_out=enlarge_out) net[i].spffn_reset() if layer.can_split: v_params += [net[i].v] if enlarge_in: v_params += [net[i].vni] if enlarge_out: v_params += [net[i].vno] opt_v = torch.optim.RMSprop(nn.ParameterList(v_params), lr=1e-3, momentum=0.1, alpha=0.9) self.device = next(iter(net.parameters())).device torch.cuda.empty_cache() n_batches = 0 for i, (x, y) in enumerate(loader): n_batches += 1 x, y = x.to(self.device), y.to(self.device) loss = self.spffn_loss_fn(net, x, y) opt_v.zero_grad() loss.backward() for layer in net: if isinstance(layer, sp.SpModule): layer.spffn_penalty() opt_v.step() self.config.model.granularity = 1 alphas = np.linspace(0, 1, self.config.model.granularity*2+1) for alpha in alphas[1::2]: for x, y in loader: x, y = x.to(self.device), y.to(self.device) loss = self.spffn_loss_fn(net, x, y, alpha=1.0) opt_v.zero_grad() loss.backward() # for i in self.layers_to_split: for i in net.layers_to_split: net[i].spffn_update_w(self.config.model.granularity * n_batches, output = False) # -------------------------------------------- # Firefly specific methods (from SpNet) # -------------------------------------------- def clear(self, net): for layer in net: if isinstance(layer, sp.SpModule): layer.clear() def get_num_elites(self, net, grow_ratio): n = 0 # for i in self.layers_to_split: for i in net.layers_to_split: n += net[i].module.weight.shape[0] self.n_elites = int(n * grow_ratio) def get_num_elites_group(self, net, group_num, grow_ratio): for g in range(group_num): n = 0 for i in self.layers_to_split_group[g]: n += net[i].module.weight.shape[0] try: self.n_elites_group[g] = int(n * grow_ratio) except: self.n_elites_group = {} self.n_elites_group[g] = int(n * grow_ratio) def sp_threshold(self, net): # ws, wi = torch.sort(torch.cat([net[i].w for i in self.layers_to_split]).reshape(-1)) ws, wi = torch.sort(torch.cat([net[i].w for i in net.layers_to_split]).reshape(-1)) total= ws.shape[0] threshold = ws[self.n_elites] return threshold def sp_threshold_group(self, net, group_num): # ws, wi = torch.sort(torch.cat([net[i].w for i in self.layers_to_split_group[group_num]]).reshape(-1)) ws, wi = torch.sort(torch.cat([net[i].w for i in net.layers_to_split_group[group_num]]).reshape(-1)) total= ws.shape[0] threshold = ws[self.n_elites_group[group_num]] return threshold def split(self, net, loader, grow_ratio, n_batches=-1, split_method='fireflyn'): self.num_group = 1# if self.config.backbne != 'mobile' else 2 if split_method not in ['random', 'exact', 'fast', 'firefly', 'fireflyn']: raise NotImplementedError if self.verbose: print('[INFO] start splitting ...') start_time = time.time() net.eval() if self.num_group == 1: self.get_num_elites(net, grow_ratio) else: self.get_num_elites_group(net, grow_ratio, self.num_group) split_fn = { #'exact': self.spe, #'fast': self.spf, #'firefly': self.spff, 'fireflyn': self.spffn, } if split_method != 'random': split_fn[split_method](net, loader, n_batches) n_neurons_added = {} if split_method == 'random': # n_layers = len(self.layers_to_split) n_layers = len(net.layers_to_split) n_total_neurons = 0 threshold = 0. # for l in self.layers_to_split: for l in net.layers_to_split: n_total_neurons += net[l].get_n_neurons() n_grow = int(n_total_neurons * grow_ratio) n_new1 = np.random.choice(n_grow, n_layers, replace=False) n_new1 = np.sort(n_new1) n_news = [] for i in range(len(n_new1) - 1): if i == 0: n_news.append(n_new1[i]) n_news.append(n_new1[i + 1] - n_new1[i]) else: n_news.append(n_new1[i + 1] - n_new1[i]) n_news[-1] += 1 # for i, n_new_ in zip(reversed(self.layers_to_split), n_news): for i, n_new_ in zip(reversed(net.layers_to_split), n_news): if isinstance(net[i], sp.SpModule) and net[i].can_split: n_new, idx = net[i].random_split(n_new_) n_neurons_added[i] = n_new if n_new > 0: # we have indeed splitted this layer # for j in self.next_layers[i]: for j in net.next_layers[i]: net[j].passive_split(idx) elif split_method == 'fireflyn': if self.num_group == 1: threshold = self.sp_threshold(net) # for i in reversed(self.layers_to_split): for i in reversed(net.layers_to_split): if isinstance(net[i], sp.SpModule) and net[i].can_split: if self.num_group != 1: group = self.total_group[i] threshold = self.sp_threshold_group(net, group) n_new, split_idx, new_idx = net[i].spffn_active_grow(threshold) sp_new = split_idx.shape[0] if split_idx is not None else 0 n_neurons_added[i] = (sp_new, n_new-sp_new) if net[i].kh == 1: isfirst = True else: isfirst = False # for j in self.next_layers[i]: for j in net.next_layers[i]: print('passive', net[j].module.weight.shape) net[j].spffn_passive_grow(split_idx, new_idx) else: threshold= self.sp_threshold() # actual splitting # for i in reversed(self.layers_to_split): for i in reversed(net.layers_to_split): if isinstance(net[i], sp.SpModule) and net[i].can_split: n_new, idx = net[i].active_split(threshold) n_neurons_added[i] = n_new if n_new > 0: # we have indeed splitted this layer # for j in self.next_layers[i]: for j in net.next_layers[i]: net[j].passive_split(idx) net.train() self.clear(net) # cleanup auxiliaries end_time = time.time() if self.verbose: print('[INFO] splitting takes %10.4f sec. Threshold value is %10.9f' % ( end_time - start_time, threshold)) if split_method == 'fireflyn': print('[INFO] number of added neurons: \n%s\n' % \ '\n'.join(['-- %d grows (sp %d | new %d)' % (x, y1, y2) for x, (y1, y2) in n_neurons_added.items()])) else: print('[INFO] number of added neurons: \n%s\n' % \ '\n'.join(['-- %d grows %d neurons' % (x, y) for x, y in n_neurons_added.items()])) return n_neurons_added
alma-main
crlapi/sl/clmodels/firefly.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import torch.nn as nn import torch.nn.functional as F from crlapi.core import CLModel from crlapi.sl.clmodels.finetune import Finetune import copy import numpy as np from pydoc import locate class IndexDataset(torch.utils.data.Dataset): def __init__(self, og_dataset): self.og_dataset = og_dataset def __getitem__(self, index): data, target = self.og_dataset[index] return data, target, index def __len__(self): return len(self.og_dataset) def _state_dict(model, device): sd = model.state_dict() for k, v in sd.items(): sd[k] = v.to(device) return sd class AdaBoost(Finetune): def get_prediction_net(self,task): for i, model in enumerate(self.models): model.eval() self.models[i] = model.to(self.config.device) return self def forward(self, x): outs = [] for model in self.models: outs += [model(x)] out = torch.stack(outs) * self.model_weights.reshape((-1,) + (1,) * outs[0].ndim) out = out.mean(0) return out def compute_errors(self, loader, model): unshuffled_loader = torch.utils.data.DataLoader( loader.dataset, batch_size=loader.batch_size, drop_last=False, shuffle=False) device=self.config.device model.to(device) model.eval() # --- Upweighting err = [] # eval mode with torch.no_grad(): for x, y in unshuffled_loader: x, y = x.to(device), y.to(device) err += [~model(x).argmax(1).eq(y)] err = torch.cat(err).float() # (DS, ) return err def update(self, task, logger): assert isinstance(task.task_descriptor(),int) logger.message("Building training dataset") training_dataset = task.task_resources().make() # Creating datasets and loaders og_training_loader, validation_loader = self.get_train_and_validation_loaders(training_dataset) training_loader = torch.utils.data.DataLoader( IndexDataset(og_training_loader.dataset), batch_size=og_training_loader.batch_size, shuffle=True ) to_print = [] # --- step 1 : Initialize the observation weights uniformly ds_len = len(og_training_loader.dataset) sample_weights = torch.zeros(size=(ds_len,)).fill_(1. / ds_len).to(self.config.device) for around in range(self.config.n_rounds): # --- 2. a) Fit new classifier on weighted data # init model model_args=self.config.model model, best_model = [self.build_initial_net(task,**model_args) for _ in range(2)] flops_per_input = self.count_flops(task, model) n_params = sum(np.prod(x.shape) for x in model.parameters()) print(f'new model has {n_params} params') best_loss, best_acc = None, None # Optionally create GPU training augmentations train_aug = self.get_train_augs() # Optinally use patience :) patience = self.config.patience patience_delta = self.config.patience_delta patience_count = 0 device=self.config.device model.to(device) optimizer = self.get_optimizer(model.parameters()) #Launching training procedure logger.message("Start training for "+str(self.config.max_epochs) + " epochs") iteration, n_fwd_samples = 0, 0 epoch = 0 while True: # Run until convergence epoch += 1 # Make sure model is ready for train model.train() # Training loop training_loss=0.0 training_accuracy=0.0 n=0 for i, (raw_x, y, idx) in enumerate(training_loader): raw_x, y = raw_x.to(device), y.to(device) weight_x = sample_weights[idx] n += y.size(0) # apply transformations x = train_aug(raw_x) predicted = model(x) loss = F.cross_entropy(predicted, y, reduction='none') loss = (loss * weight_x).mean() * ds_len nb_ok=predicted.max(1)[1].eq(y).float().sum().item() accuracy=nb_ok/x.size()[0] training_accuracy+=nb_ok training_loss+=loss.item() logger.add_scalar("train/loss",loss.item(),iteration) logger.add_scalar("train/accuracy",accuracy,iteration) optimizer.zero_grad() loss.backward() optimizer.step() iteration += 1 n_fwd_samples += x.size(0) # Validation training_accuracy/=n training_loss/=n out=self._validation_loop(model,device,validation_loader) validation_loss,validation_accuracy=out["loss"],out["accuracy"] logger.add_scalar("validation/loss",validation_loss,epoch) logger.add_scalar("validation/accuracy",validation_accuracy,epoch) # Right now CV against accuracy if best_acc is None or validation_accuracy > (best_acc + patience_delta): print(f"\t Round {around}. Found best model at epoch ",epoch) best_model.load_state_dict(_state_dict(model,"cpu")) best_loss = validation_loss best_acc = validation_accuracy patience_count = 0 else: patience_count += 1 logger.message(f"Validation Acc {validation_accuracy:.4f}\t Validation Loss {validation_loss:.4f}") logger.message(f"Training Acc {training_accuracy:.4f}\t Training Loss {training_loss:.4f}") if patience_count == patience or epoch == self.config.max_epochs: break del model # --- Step 2 b) Compute the new classifier errors all_errs = self.compute_errors(og_training_loader, best_model) # 1, ds_size assert all_errs.shape == (ds_len, ) cls_err = (all_errs * sample_weights).sum() / sample_weights.sum() # --- Step 2 c) Compute the new classifier weight K = task.n_classes cls_alpha = torch.log((K - 1) * (1 - cls_err) / cls_err) # --- Step 2 d) Update the sample weights sample_weights = sample_weights * torch.exp(cls_alpha * all_errs) sample_weights /= sample_weights.sum() print(f'sample weights min {sample_weights.min():.6f}\t max {sample_weights.max():.6f} \t median {sample_weights.median():.6f}') print(torch.multinomial(sample_weights, ds_len, replacement=True).bincount().bincount()) # store best model self.models.append(best_model) cls_alpha = cls_alpha.reshape(1) # store classifier weights if not hasattr(self, 'model_weights'): self.model_weights = cls_alpha else: self.model_weights = torch.cat((self.model_weights, cls_alpha)) print(self.model_weights) # Evaluate each model individually : accs = [] for model in self.models: accs += [self._validation_loop(model, device, validation_loader)['accuracy']] ensemble = self._validation_loop(self, device, validation_loader)['accuracy'] fill = lambda x : str(x) + (100 - len(str(x))) * ' ' to_print += [fill(accs) + '\t' + str(ensemble)] for item in to_print: print(item) logger.message("Training Done...") logger.add_scalar('train/model_params', len(self.models) * sum([np.prod(x.shape) for x in model.parameters()]), 0) logger.add_scalar('train/one_sample_megaflop', len(self.models) * flops_per_input / 1e6 * len(self.models), 0) logger.add_scalar('train/total_megaflops', n_fwd_samples * flops_per_input / 1e6, 0) logger.add_scalar('train/best_validation_accuracy', best_acc, 0) return self
alma-main
crlapi/sl/clmodels/adaboost.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import torch.nn as nn import torch.nn.functional as F from crlapi.core import CLModel from crlapi.sl.clmodels.finetune import Finetune import copy import numpy as np from pydoc import locate from itertools import chain def _state_dict(model, device): sd = model.state_dict() for k, v in sd.items(): sd[k] = v.to(device) return sd class AggEnsemble(Finetune): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.to_print = [] print(f'voting {self.config.vote}') def get_prediction_net(self,task): for model in self.models: model.eval() return self def forward(self, x): outs = [] for model in self.models: outs += [model(x)] out = torch.stack(outs).sum(0) return out def _validation_loop(self,nets,device,dataloader): [net.eval() for net in nets] [net.to(device) for net in nets] with torch.no_grad(): loss_values=[] nb_ok=0 nb_total=0 for x,y in dataloader: x,y=x.to(device),y.to(device) predicted=0 for net in nets: predicted += net(x) loss=F.cross_entropy(predicted,y) loss_values.append(loss.item()) nb_ok+=predicted.max(1)[1].eq(y).float().sum().item() nb_total+=x.size()[0] loss=np.mean(loss_values) accuracy=nb_ok/nb_total net = net.train() return {"loss":loss,"accuracy":accuracy} def update(self, task, logger): assert isinstance(task.task_descriptor(),int) if len(self.models)==0 or getattr(self.config, 'init_from_scratch', False): model_args=self.config.model models = [self.build_initial_net(task,**model_args) for _ in range(self.config.k)] n_params = sum(np.prod(x.shape) for x in models[0].parameters()) print(f'new model has {n_params} params') else: # get the last k models models = [copy.deepcopy(model) for model in self.models] logger.message("Building training dataset") training_dataset = task.task_resources().make() flops_per_input = self.count_flops(task, models[0]) * self.config.k # Creating datasets and loaders training_loader, validation_loader = self.get_train_and_validation_loaders(training_dataset) best_models = [copy.deepcopy(model) for model in models] best_loss, best_acc = 1e10, None # Optionally create GPU training augmentations train_aug = self.get_train_augs() # Optinally use patience :) patience = self.config.patience patience_delta = self.config.patience_delta patience_count = 0 device=self.config.device models = [model.to(device) for model in models] optimizer = self.get_optimizer(chain(*[model.parameters() for model in models])) #Launching training procedure logger.message("Start training for " + str(self.config.max_epochs) + " epochs") iteration, n_fwd_samples = 0, 0 for epoch in range(self.config.max_epochs): # Make sure model is ready for train [model.train() for model in models] # Keep a single track of these for now training_loss=0.0 training_accuracy=0.0 n=0 for i, (raw_x, y) in enumerate(training_loader): raw_x, y = raw_x.to(device), y.to(device) # apply transformations x = train_aug(raw_x) predicted = 0. for model in models: predicted += model(x) loss = F.cross_entropy(predicted,y) nb_ok = predicted.max(1)[1].eq(y).float().sum().item() acc = nb_ok/x.size()[0] accuracy = acc loss_ = loss.item() training_accuracy += accuracy training_loss += loss_ n += x.size(0) n_fwd_samples += x.size(0) logger.add_scalar("train/loss",loss_,iteration) logger.add_scalar("train/accuracy",accuracy,iteration) optimizer.zero_grad() loss.backward() optimizer.step() iteration += 1 #Validation training_accuracy /= i training_loss /= i out=self._validation_loop(models,device,validation_loader) validation_loss, validation_accuracy = out["loss"], out["accuracy"] logger.add_scalar("validation/loss",validation_loss,epoch) logger.add_scalar("validation/accuracy",validation_accuracy,epoch) if best_acc is None or validation_accuracy > (best_acc): best_acc = validation_accuracy for model_idx in range(self.config.k): best_models[model_idx].load_state_dict(_state_dict(models[model_idx],"cpu")) patience_count = 0 else: patience_count += 1 logger.message(f"Validation Acc {validation_accuracy:.4f}\t Validation Loss {validation_loss:.4f}") logger.message(f"Training Acc {training_accuracy:.4f}\t Training Loss {training_loss:.4f}") if patience_count == patience: break # overwrite the best models self.models = nn.ModuleList(best_models) logger.message("Training Done...") logger.add_scalar('train/model_params', len(self.models) * sum([np.prod(x.shape) for x in model.parameters()]), 0) logger.add_scalar('train/one_sample_megaflop', flops_per_input / 1e6 * len(self.models), 0) logger.add_scalar('train/total_megaflops', n_fwd_samples * flops_per_input / 1e6, 0) logger.add_scalar('train/best_validation_accuracy', best_acc, 0) return self
alma-main
crlapi/sl/clmodels/agg_ensemble.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import torch.nn as nn import torch.nn.functional as F from crlapi.core import CLModel from crlapi.sl.clmodels.finetune import Finetune import copy import numpy as np from pydoc import locate from itertools import chain def _state_dict(model, device): sd = model.state_dict() for k, v in sd.items(): sd[k] = v.to(device) return sd class BaggingSampler(torch.utils.data.Sampler): """ Simulate a Dataset Sampled with Replacement """ def __init__(self, indices, real_ds_size): self.size = real_ds_size self.indices = indices weights = torch.zeros(size=(self.size,)).float() weights[self.indices] = 1 self.weights = weights # do this here so that each epoch sees same sample dist samples = torch.multinomial(weights, self.size, replacement=True) self.samples = samples unique_samples = samples.unique() counts = samples.bincount().bincount() assert (counts * torch.arange(counts.size(0)))[1:].sum().item() == self.size print(counts, unique_samples.size(0), self.indices.size(0)) for ss in unique_samples: assert (ss == unique_samples).sum() > 0 def __iter__(self): samples = self.samples samples = samples[torch.randperm(samples.size(0))] # RESAMPLING samples = torch.multinomial(self.weights, self.size, replacement=True) for sample in samples: yield sample.item() class Bagging(Finetune): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.to_print = [] def get_prediction_net(self,task): for model in self.models: model.eval() return self def forward(self, x): outs = [] for model in self.models: outs += [model(x)] out = torch.stack(outs).mean(0) return out def update(self, task, logger): assert isinstance(task.task_descriptor(),int) if len(self.models)==0 or getattr(self.config, 'init_from_scratch', False): model_args=self.config.model models = [self.build_initial_net(task,**model_args) for _ in range(self.config.k)] n_params = sum(np.prod(x.shape) for x in models[0].parameters()) print(f'new model has {n_params} params') else: # get the last k models models = [copy.deepcopy(self.models[-i]) for i in range(self.config.k)] logger.message("Building training dataset") training_dataset = task.task_resources().make() flops_per_input = self.count_flops(task, models[0]) * self.config.k # Creating datasets and loaders training_loader, validation_loader = self.get_train_and_validation_loaders(training_dataset) ds_len = len(training_loader.dataset) training_loaders = [] # build boosted loaders for _ in range(self.config.k): all_idx = torch.arange(ds_len) idx = torch.multinomial( torch.ones_like(all_idx).float(), int(self.config.subsample_p * ds_len), replacement=False ) sampler = BaggingSampler(idx, ds_len) loader = torch.utils.data.DataLoader( training_loader.dataset, batch_size=training_loader.batch_size, sampler=sampler ) training_loaders += [loader] best_models = [copy.deepcopy(model) for model in models] best_losses, best_accs = [1e10] * self.config.k, [0] * self.config.k # Optionally create GPU training augmentations train_aug = self.get_train_augs() device=self.config.device models = [model.to(device) for model in models] optimizer = self.get_optimizer(chain(*[model.parameters() for model in models])) #Launching training procedure logger.message("Start training for " + str(self.config.max_epochs) + " epochs") iteration, n_fwd_samples = 0, 0 for epoch in range(self.config.max_epochs): # Make sure model is ready for train [model.train() for model in models] # Keep a single track of these for now training_loss=0.0 training_accuracy=0.0 n=0 for i, items in enumerate(zip(*training_loaders)): xs, ys = [], [] for item in items: x, y = item x, y = x.to(device), y.to(device) xs += [train_aug(x)] ys += [y] xs = torch.stack(xs) ys = torch.stack(ys) loss, acc = 0, 0 for model_idx in range(self.config.k): model, x, y = models[model_idx], xs[model_idx], ys[model_idx] predicted = model(x) loss += F.cross_entropy(predicted,y) nb_ok = predicted.max(1)[1].eq(y).float().sum().item() acc += nb_ok/x.size()[0] accuracy = acc / self.config.k loss_ = loss.item() / self.config.k training_accuracy += accuracy training_loss += loss_ n += xs.size(1) n_fwd_samples += xs.size(1) logger.add_scalar("train/loss",loss_,iteration) logger.add_scalar("train/accuracy",accuracy,iteration) optimizer.zero_grad() loss.backward() optimizer.step() iteration += 1 #Validation training_accuracy /= i training_loss /= i outs = [self._validation_loop(model,device,validation_loader) for model in models] validation_losses = [x['loss'] for x in outs] validation_accuracies = [x['accuracy'] for x in outs] validation_loss, validation_accuracy = np.mean(validation_losses), np.mean(validation_accuracies) logger.add_scalar("validation/loss",validation_loss,epoch) logger.add_scalar("validation/accuracy",validation_accuracy,epoch) for model_idx in range(self.config.k): if validation_accuracies[model_idx] > best_accs[model_idx]: print("\tFound best model at epoch ",epoch, '\t', model_idx) best_models[model_idx].load_state_dict(_state_dict(models[model_idx],"cpu")) best_accs[model_idx] = validation_accuracies[model_idx] logger.message(f"Validation Acc {validation_accuracy:.4f}\t Validation Loss {validation_loss:.4f}") logger.message(f"Training Acc {training_accuracy:.4f}\t Training Loss {training_loss:.4f}") for best_model in best_models: self.models.append(best_model) # Evaluate each model individually : accs = [] for model in self.models: accs += [self._validation_loop(model, device, validation_loader)['accuracy']] self.prog_pred_stats = [] ensemble = self._validation_loop(self, device, validation_loader)['accuracy'] fill = lambda x : str(x) + (100 - len(str(x))) * ' ' self.to_print += [fill(accs) + '\t' + str(ensemble)] for item in self.to_print: print(item) logger.message("Training Done...") logger.add_scalar('train/model_params', len(self.models) * sum([np.prod(x.shape) for x in model.parameters()]), 0) logger.add_scalar('train/one_sample_megaflop', flops_per_input / 1e6 * len(self.models), 0) logger.add_scalar('train/total_megaflops', n_fwd_samples * flops_per_input / 1e6, 0) logger.add_scalar('train/best_validation_accuracy', np.mean(best_accs), 0) return self
alma-main
crlapi/sl/clmodels/bagging.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import torch.nn as nn import torch.nn.functional as F from crlapi.core import CLModel from crlapi.sl.clmodels.finetune import Finetune import time import copy import numpy as np from pydoc import locate class IndexDataset(torch.utils.data.Dataset): """ Wrapper that additionally returns the index for each sample """ def __init__(self, og_dataset): self.og_dataset = og_dataset def __getitem__(self, index): data, target = self.og_dataset[index] return data, target, index def __len__(self): return len(self.og_dataset) class BoostingSampler(torch.utils.data.Sampler): """ Upsample points based on sample weight """ def __init__(self, weights): self.weights = weights def __iter__(self): assert -1e-5 < self.weights.sum().item() - 1 < 1e-5 samples = torch.multinomial(self.weights, self.weights.size(0), replacement=True) if not hasattr(self, 'epoch'): print('sampling with replacement counts', samples.bincount().bincount()) self.epoch = 0 else: self.epoch += 1 for sample in samples: yield sample.item() def _state_dict(model, device): sd = model.state_dict() for k, v in sd.items(): sd[k] = v.to(device) return sd class AdaBoost(Finetune): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.to_print = [] self.prog_pred_stats = [] def get_prediction_net(self,task): for i, model in enumerate(self.models): model.eval() self.models[i] = model.to(self.config.device) return self def forward(self, x): outs = [] for model in self.models: outs += [model(x)] out = torch.stack(outs) * self.model_alphas.reshape((-1,) + (1,) * outs[0].ndim) u_out = torch.stack(outs) print('diff weighted / unw', (out.sum(0).argmax(-1) != u_out.sum(0).argmax(-1)).float().mean()) prog_pred = out.cumsum(0).argmax(-1) diff_from_last = prog_pred[-1, :] != prog_pred diff_from_last = torch.flip(diff_from_last, dims=(0,)) # n_models, bs : with oldest model as idx = 0 last_conseq_steps_with_same_pred = (diff_from_last.int().cumsum(0) == 0).int().sum(0) useful_steps = len(self.models) - last_conseq_steps_with_same_pred + 1 self.prog_pred_stats += [useful_steps.bincount(minlength=len(self.models) + 1)] return out.sum(0) """ # --- actually let's pick the most confident model out = u_out max_prob = F.softmax(out,-1).max(-1)[0] # n_models, BS model_idx = max_prob.argmax(0) #BS, N_CLS = out.size(-1) idx = torch.arange(model_idx.size(0)).cuda() * len(self.models) + model_idx out = out.transpose(1,0) # BS, n_models, C out = out.reshape(-1,N_CLS)[idx].reshape(-1,N_CLS) return out # ---- #return u_out.sum(0) #return out.sum(0) """ def weighted_validation_loop(self,net,device, dataloader, weights): """ weight loss and accuracy using sample specific weights """ net = net.eval() # Return indices for the dataset loader = torch.utils.data.DataLoader( IndexDataset(dataloader.dataset), batch_size=dataloader.batch_size, shuffle=False ) ds_len = len(dataloader.dataset) with torch.no_grad(): loss_values=[] acc = 0 for i, (x,y,idx) in enumerate(loader): x, y, idx = x.to(device),y.to(device), idx.to(device) weight_x = weights[idx] predicted=net(x) loss = F.cross_entropy(predicted,y, reduction='none') loss = (loss * weight_x).mean() * ds_len loss_values.append(loss.item()) acc += (predicted.argmax(1).eq(y).float() * weight_x).sum() loss=np.mean(loss_values) net = net.train() return {"loss":loss,"accuracy":acc.item()} def _all_validation_loop(self, device, dataloader,task): """ weight loss and accuracy using sample specific weights """ self.get_prediction_net(task) ds_len = len(dataloader.dataset) acc = 0 with torch.no_grad(): loss_values=[] acc = 0 for i, (x,y) in enumerate(dataloader): x, y= x.to(device),y.to(device) out = [] for model in self.models: out += [model(x)] out = torch.stack(out).argmax(-1) acc += (out == y.view(1,-1)).int().max(0)[0].float().sum().item() return acc / ds_len def compute_errors(self, loader, models): """ given a loader and a list of models, returns a per_model x per_sample error matrix """ unshuffled_loader = torch.utils.data.DataLoader( loader.dataset, batch_size=loader.batch_size, drop_last=False, shuffle=False) device=self.config.device # --- Upweighting all_errs = [] # eval mode [x.eval() for x in models] with torch.no_grad(): for x, y in unshuffled_loader: x, y = x.to(device), y.to(device) for i, model in enumerate(models): if i == 0: err = [~model(x).argmax(1).eq(y)] else: err += [~model(x).argmax(1).eq(y)] err = torch.stack(err) # n_models, bs all_errs += [err] all_errs = torch.cat(all_errs, dim=1).float() # n_models, DS return all_errs def compute_model_and_sample_weights(self, err_matrix, task): """ compound sample and model models w.r.t to each model's performance """ n_models, ds_len = err_matrix.size() sample_weights = torch.zeros(size=(ds_len,)).fill_(1. / ds_len).to(self.config.device) model_alphas = [] for model_idx in range(n_models): model_err = err_matrix[model_idx] weighted_model_err = (sample_weights * model_err).sum() / sample_weights.sum() model_alpha = torch.log((1 - weighted_model_err) / weighted_model_err) + np.log(task.n_classes - 1) model_alphas += [model_alpha.reshape(1)] sample_weights = sample_weights * torch.exp(model_alpha * model_err) sample_weights /= sample_weights.sum() return sample_weights, model_alphas def update(self, task, logger): """ train model on new MB """ task_id = task.task_descriptor() assert isinstance(task_id, int) self.validation_outputs = None if task_id == 0 or self.config.init == 'scratch': # create model model_args = self.config.model model = self.build_initial_net(task,**model_args) elif self.config.init == 'last': model = copy.deepcopy(self.models[-1]) elif self.config.init == 'first': model = copy.deepcopy(self.models[0]) # Creating datasets and loaders logger.message("Building training dataset") training_dataset = task.task_resources().make() flops_per_input = self.count_flops(task, model) og_training_loader, validation_loader = self.get_train_and_validation_loaders(training_dataset) ds_len = len(og_training_loader.dataset) # --- get per sample weights if task_id == 0: n_params = sum(np.prod(x.shape) for x in model.parameters()) print(model) print(f'new model has {n_params} params') sample_weights = torch.zeros(size=(ds_len,)).fill_(1. / ds_len).to(self.config.device) model_alphas = [] err_matrix = val_err_matrix = None else: err_matrix = self.compute_errors(og_training_loader, self.models) sample_weights, model_alphas = self.compute_model_and_sample_weights(err_matrix, task) val_err_matrix = self.compute_errors(validation_loader, self.models) val_sample_weights, val_model_alphas = self.compute_model_and_sample_weights(val_err_matrix, task) print('tr sample weights',torch.multinomial(sample_weights, sample_weights.size(0), replacement=True).bincount().bincount()) print('val sample weights',torch.multinomial(val_sample_weights, val_sample_weights.size(0), replacement=True).bincount().bincount()) if self.config.compute_model_weights_on_val: model_alphas = val_model_alphas if self.config.boosting == 'weighting' or task_id == 0: # sample normally, but weight each point sampler = None training_weights = sample_weights #like ensembleat thispoint #print('UNIFORM WEIGHTS') #training_weights = torch.zeros(size=(ds_len,)).fill_(1. / ds_len).to(self.config.device) elif self.config.boosting == 'sampling': # oversample points with high weight --> no need to upweight them # print('UNIFORM WEIGHTS') #sample_weights = torch.zeros(size=(ds_len,)).fill_(1. / ds_len).to(self.config.device) sampler = BoostingSampler(sample_weights) training_weights = torch.zeros(size=(ds_len,)).fill_(1. / ds_len).to(self.config.device) else: raise ValueError # Return indices for the dataset training_loader = torch.utils.data.DataLoader( IndexDataset(og_training_loader.dataset), batch_size=og_training_loader.batch_size, shuffle=sampler is None, sampler=sampler ) best_model=copy.deepcopy(model) best_loss, best_acc = None, None # Optionally create GPU training augmentations train_aug = self.get_train_augs() # Optinally use patience :) patience = self.config.patience patience_delta = self.config.patience_delta patience_count = 0 device=self.config.device model.to(device) optimizer = self.get_optimizer(model.parameters()) # Launching training procedure logger.message("Start training for "+str(self.config.max_epochs)+" epochs") iteration = 0 for epoch in range(self.config.max_epochs): # Make sure model is ready for train model.train() # Training loop training_loss=0.0 training_accuracy=0.0 n=0 start = time.time() for i, (raw_x, y, idx) in enumerate(training_loader): raw_x, y = raw_x.to(device), y.to(device) weight_x = training_weights[idx] n += y.size(0) # apply transformations x = train_aug(raw_x) predicted = model(x) loss = F.cross_entropy(predicted, y, reduction='none') loss = (loss * weight_x).mean() * ds_len nb_ok = predicted.argmax(1).eq(y).sum().item() accuracy = nb_ok/x.size(0) training_accuracy += nb_ok training_loss += loss.item() logger.add_scalar("train/loss",loss.item(), iteration) logger.add_scalar("train/accuracy",accuracy, iteration) optimizer.zero_grad() loss.backward() optimizer.step() iteration += 1 # Validation epoch_time = time.time() - start training_accuracy /= n training_loss /= n if task_id == 0 or self.config.validation == 'normal': out=self._validation_loop(model,device,validation_loader) elif self.config.validation == 'weighted': out=self.weighted_validation_loop(model,device,validation_loader, val_sample_weights) else: raise ValueError validation_loss,validation_accuracy=out["loss"],out["accuracy"] logger.add_scalar('training/one_epoch_time', epoch_time, epoch) logger.add_scalar("validation/loss",validation_loss,epoch) logger.add_scalar("validation/accuracy",validation_accuracy,epoch) # Right now CV against accuracy # if best_loss is None or validation_loss < (best_loss - patience_delta): if best_acc is None or validation_accuracy > (best_acc + patience_delta): print("\tFound best model at epoch ",epoch) best_model.load_state_dict(_state_dict(model,"cpu")) best_loss = validation_loss best_acc = validation_accuracy patience_count = 0 else: patience_count += 1 logger.message(f"Validation Acc {validation_accuracy:.4f}\t Validation Loss {validation_loss:.4f}") logger.message(f"Training Acc {training_accuracy:.4f}\t Training Loss {training_loss:.4f}\t Time {epoch_time:.4f}") if patience_count == patience: break # Store best model self.models.append(best_model) # Before making predictions, we need to calculate the weight of the new model if self.config.compute_model_weights_on_val: final_loader, err_mat = validation_loader, val_err_matrix else: final_loader, err_mat = og_training_loader, err_matrix new_model_err = self.compute_errors(final_loader, [best_model]) # (1, DS) if err_mat is not None: err_mat = torch.cat((err_mat, new_model_err)) else: err_mat = new_model_err _, model_alphas = self.compute_model_and_sample_weights(err_mat, task) self.model_alphas = torch.cat(model_alphas) # Evaluate each model individually : accs = [] for model in self.models: accs += [self._validation_loop(model, device, validation_loader)['accuracy']] self.prog_pred_stats = [] ensemble = self._validation_loop(self, device, validation_loader)['accuracy'] best=self._all_validation_loop(device,validation_loader,task) print('among best ', best) pred_stats = torch.stack(self.prog_pred_stats).sum(0).float() pred_stats /= pred_stats.sum() print('model weights', self.model_alphas) print('pred stats', pred_stats) for i in range(pred_stats.size(0)): logger.add_scalar('model/prediction_depth', pred_stats[i].item(), i) fill = lambda x : str(x) + (100 - len(str(x))) * ' ' self.to_print += [fill(accs) + '\t' + str(ensemble)] for item in self.to_print: print(item) logger.message("Training Done...") logger.add_scalar('train/model_params', sum([np.prod(x.shape) for x in model.parameters()]), 0) logger.add_scalar('train/one_sample_megaflop', flops_per_input / 1e6, 0) logger.add_scalar('train/total_megaflops', n * flops_per_input / 1e6, 0) logger.add_scalar('train/best_validation_accuracy', best_acc, 0) return self
alma-main
crlapi/sl/clmodels/boosting.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import copy import numpy as np from pydoc import locate from random import shuffle from crlapi.core import CLModel from fvcore.nn import FlopCountAnalysis as FCA import torch import torch.nn as nn import torch.nn.functional as F from crlapi import instantiate_class,get_class,get_arguments import torch.utils.data class SupervisedCLModel(CLModel, nn.Module): """ A CLmodel based on a pytorch model, for supervised task over dataset Args: CLModel ([type]): [description] """ def __init__(self): nn.Module.__init__(self) self.memory_training_set=None self.memory_validation_set=None def update(self, task, logger): raise NotImplementedError def get_prediction_net(self,task): raise NotImplementedError def count_flops(self, task, model=None): if model is None: model = self.get_prediction_model(task) # don't mess up BN stats! model = model.eval() input = torch.FloatTensor(size=(1, *task.input_shape)).to(self.config['device']).normal_() model = model.to(self.config['device']) flops = FCA(model, input).total() return flops def _validation_loop(self,net,device,dataloader): net = net.eval() net.to(device) with torch.no_grad(): loss_values=[] nb_ok=0 nb_total=0 for x,y in dataloader: x,y=x.to(device),y.to(device) predicted=net(x) loss=F.cross_entropy(predicted,y) loss_values.append(loss.item()) nb_ok+=predicted.max(1)[1].eq(y).float().sum().item() nb_total+=x.size()[0] loss=np.mean(loss_values) accuracy=nb_ok/nb_total net = net.train() return {"loss":loss,"accuracy":accuracy} def evaluate(self,task,logger,evaluation_args): logger.message("Evaluating...") evaluation_dataset = task.task_resources().make() #Building dataloader for both evaluation_loader = torch.utils.data.DataLoader( evaluation_dataset, batch_size=evaluation_args["batch_size"], num_workers=evaluation_args["num_workers"], ) # TODO: is deepcopy here necessary ? evaluation_model=copy.deepcopy(self.get_prediction_net(task)) evaluation_model.eval() device=evaluation_args["device"] evaluation_model.to(device) with torch.no_grad(): loss_values=[] nb_ok=0 nb_total=0 for x,y in evaluation_loader: x,y=x.to(device),y.to(device) predicted=evaluation_model(x) loss=F.cross_entropy(predicted,y).item() nb_ok+=predicted.max(1)[1].eq(y).float().sum().item() nb_total+=x.size()[0] loss_values.append(loss) evaluation_loss=np.mean(loss_values) accuracy=nb_ok/nb_total r={"loss":evaluation_loss,"accuracy":accuracy} logger.debug(str(r)) return r def build_initial_net(self,task,**model_args): from importlib import import_module classname=model_args["class_name"] del model_args["class_name"] module_path, class_name = classname.rsplit(".", 1) module = import_module(module_path) c = getattr(module, class_name) return c(task, **model_args) # -- Helpers def get_train_and_validation_loaders(self, dataset): val_size = int(len(dataset) * self.config.validation_proportion) tr_size = len(dataset) - val_size training_dataset, validation_dataset = torch.utils.data.random_split(dataset, [tr_size, val_size]) if self.config.train_replay_proportion>0.0: if not self.memory_training_set is None: l=int(len(self.memory_training_set)*self.config.train_replay_proportion) m,_= torch.utils.data.random_split(self.memory_training_set,[l,len(self.memory_training_set)-l]) training_dataset=torch.utils.data.ConcatDataset([training_dataset,m]) if self.config.validation_replay_proportion>0.0: if not self.memory_validation_set is None: l=int(len(self.memory_validation_set)*self.config.validation_replay_proportion) m,_= torch.utils.data.random_split(self.memory_validation_set,[l,len(self.memory_validation_set)-l]) validation_dataset=torch.utils.data.ConcatDataset([validation_dataset,m]) print("Training set size = ",len(training_dataset)) print("Validation set size = ",len(validation_dataset)) self.memory_training_set=training_dataset self.memory_validation_set=validation_dataset training_loader = torch.utils.data.DataLoader( training_dataset, batch_size=self.config.training_batch_size, num_workers=self.config.training_num_workers, persistent_workers=self.config.training_num_workers>0, shuffle=True, # pin_memory=self.config['device'] != 'cpu' ) validation_loader = torch.utils.data.DataLoader( validation_dataset, batch_size=self.config.validation_batch_size, num_workers=self.config.validation_num_workers, persistent_workers=self.config.validation_num_workers>0, shuffle=False, # pin_memory=self.config['device'] != 'cpu' ) return training_loader,validation_loader def get_optimizer(self, model_params): c=get_class(self.config.optim) args=get_arguments(self.config.optim) return c(model_params,**args) def get_train_augs(self): if self.config.get('kornia_augs', None) is not None: tfs = [] import kornia for tf_cfg in self.config['kornia_augs']: tf = locate(f'kornia.augmentation.{tf_cfg.name}') args = dict(tf_cfg) args.pop('name') tfs += [tf(**args)] tfs = nn.Sequential(*tfs) else: tfs = nn.Identity() tfs = tfs.to(self.config['device']) return tfs
alma-main
crlapi/sl/clmodels/core.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import torch.nn as nn import torch.nn.functional as F from crlapi.core import CLModel from crlapi.sl.clmodels.finetune import Finetune import copy import numpy as np from pydoc import locate def _state_dict(model, device): sd = model.state_dict() for k, v in sd.items(): sd[k] = v.to(device) return sd class Ensemble(Finetune): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.to_print = [] print(f'voting {self.config.vote}') def get_prediction_net(self,task): for model in self.models: model.eval() return self def forward(self, x): outs = [] for model in self.models: outs += [model(x)] out = torch.stack(outs) if self.config.vote: votes = out.argmax(-1) oh_votes = F.one_hot(votes, dim=-1, num_classes=out.size(-1)) vote_count = oh_votes.sum(0).float() most_confident = out.max(0)[0].max(-1)[1] # Break ties vote_count[torch.arange(out.size(0)), most_confident] += 0.1 out = vote_count else: out = out.mean(0) return out def _all_validation_loop(self, device, dataloader,task): """ weight loss and accuracy using sample specific weights """ self.get_prediction_net(task) ds_len = len(dataloader.dataset) acc = 0 with torch.no_grad(): loss_values=[] acc = 0 for i, (x,y) in enumerate(dataloader): x, y= x.to(device),y.to(device) out = [] for model in self.models: out += [model(x)] out = torch.stack(out).argmax(-1) acc += (out == y.view(1,-1)).int().max(0)[0].float().sum().item() return acc / ds_len def update(self, task, logger): assert isinstance(task.task_descriptor(),int) if len(self.models)==0 or getattr(self.config, 'init_from_scratch', False): model_args=self.config.model model=self.build_initial_net(task,**model_args) n_params = sum(np.prod(x.shape) for x in model.parameters()) print(f'new model has {n_params} params') else: model=copy.deepcopy(self.models[task.task_descriptor()-1]) logger.message("Building training dataset") training_dataset = task.task_resources().make() flops_per_input = self.count_flops(task, model) # Creating datasets and loaders training_loader,validation_loader = self.get_train_and_validation_loaders(training_dataset) best_model=copy.deepcopy(model) best_loss, best_acc = None, None # Optionally create GPU training augmentations train_aug = self.get_train_augs() # Optinally use patience :) patience = self.config.patience patience_delta = self.config.patience_delta patience_count = 0 device=self.config.device model.to(device) optimizer = self.get_optimizer(model.parameters()) #Launching training procedure logger.message("Start training for "+str(self.config.max_epochs)+" epochs") iteration, n_fwd_samples = 0, 0 for epoch in range(self.config.max_epochs): # Make sure model is ready for train model.train() #Training loop training_loss=0.0 training_accuracy=0.0 n=0 for i, (raw_x, y) in enumerate(training_loader): raw_x, y = raw_x.to(device), y.to(device) n+=raw_x.size()[0] # apply transformations x = train_aug(raw_x) predicted=model(x) loss=F.cross_entropy(predicted,y) nb_ok=predicted.max(1)[1].eq(y).float().sum().item() accuracy=nb_ok/x.size()[0] training_accuracy+=nb_ok training_loss+=loss.item() logger.add_scalar("train/loss",loss.item(),iteration) logger.add_scalar("train/accuracy",accuracy,iteration) optimizer.zero_grad() loss.backward() optimizer.step() iteration += 1 n_fwd_samples += x.size(0) #Validation training_accuracy/=n training_loss/=n out=self._validation_loop(model,device,validation_loader) validation_loss,validation_accuracy=out["loss"],out["accuracy"] logger.add_scalar("validation/loss",validation_loss,epoch) logger.add_scalar("validation/accuracy",validation_accuracy,epoch) # Right now CV against accuracy # if best_loss is None or validation_loss < (best_loss - patience_delta): if best_acc is None or validation_accuracy > (best_acc + patience_delta): print("\tFound best model at epoch ",epoch) best_model.load_state_dict(_state_dict(model,"cpu")) best_loss = validation_loss best_acc = validation_accuracy patience_count = 0 else: patience_count += 1 logger.message(f"Validation Acc {validation_accuracy:.4f}\t Validation Loss {validation_loss:.4f}") logger.message(f"Training Acc {training_accuracy:.4f}\t Training Loss {training_loss:.4f}") if patience_count == patience: break self.models.append(best_model) # Evaluate each model individually : accs = [] for model in self.models: accs += [self._validation_loop(model, device, validation_loader)['accuracy']] self.prog_pred_stats = [] ensemble = self._validation_loop(self, device, validation_loader)['accuracy'] best=self._all_validation_loop(device,validation_loader,task) print('among best ', best) fill = lambda x : str(x) + (100 - len(str(x))) * ' ' self.to_print += [fill(accs) + '\t' + str(ensemble)] for item in self.to_print: print(item) logger.message("Training Done...") logger.add_scalar('train/model_params', len(self.models) * sum([np.prod(x.shape) for x in model.parameters()]), 0) logger.add_scalar('train/one_sample_megaflop', flops_per_input / 1e6 * len(self.models), 0) logger.add_scalar('train/total_megaflops', n_fwd_samples * flops_per_input / 1e6, 0) logger.add_scalar('train/best_validation_accuracy', best_acc, 0) return self
alma-main
crlapi/sl/clmodels/ensemble.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import torch.nn as nn import torch.nn.functional as F from crlapi.core import CLModel from crlapi.sl.clmodels.finetune import Finetune import copy import numpy as np from pydoc import locate def _state_dict(model, device): sd = model.state_dict() for k, v in sd.items(): sd[k] = v.to(device) return sd class Ensemble(Finetune): def get_prediction_net(self,task): for i, model in enumerate(self.models): model.eval() self.models[i] = model.to(self.config.device) return self def forward(self, x): outs = [] for model in self.models: outs += [model(x)] out = torch.stack(outs) out = out.mean(0) return out def update(self, task, logger): assert isinstance(task.task_descriptor(),int) model_args=self.config.model model=self.build_initial_net(task,**model_args) n_params = sum(np.prod(x.shape) for x in model.parameters()) print(f'new model has {n_params} params') logger.message("Building training dataset") training_dataset = task.task_resources().make() flops_per_input = self.count_flops(task, model) # Creating datasets and loaders training_loader, validation_loader = self.get_train_and_validation_loaders(training_dataset) prev_sample_weights = None to_print = [] for around in range(self.config.n_rounds): # start new round with the best model of the last one if around > 0: model = copy.deepcopy(best_model) best_model = copy.deepcopy(model) best_loss, best_acc = None, None # Optionally create GPU training augmentations train_aug = self.get_train_augs() # Optinally use patience :) patience = self.config.patience patience_delta = self.config.patience_delta patience_count = 0 device=self.config.device model.to(device) optimizer = self.get_optimizer(model.parameters()) #Launching training procedure logger.message("Start training for "+str(self.config.max_epochs) + " epochs") iteration, n_fwd_samples = 0, 0 epoch = 0 while True: # Run until convergence epoch += 1 # Make sure model is ready for train model.train() # Training loop training_loss=0.0 training_accuracy=0.0 n=0 for i, (raw_x, y) in enumerate(training_loader): raw_x, y = raw_x.to(device), y.to(device) n+=raw_x.size()[0] # apply transformations x = train_aug(raw_x) predicted=model(x) loss=F.cross_entropy(predicted,y) nb_ok=predicted.max(1)[1].eq(y).float().sum().item() accuracy=nb_ok/x.size()[0] training_accuracy+=nb_ok training_loss+=loss.item() logger.add_scalar("train/loss",loss.item(),iteration) logger.add_scalar("train/accuracy",accuracy,iteration) optimizer.zero_grad() loss.backward() optimizer.step() iteration += 1 n_fwd_samples += x.size(0) # Validation training_accuracy/=n training_loss/=n out=self._validation_loop(model,device,validation_loader) validation_loss,validation_accuracy=out["loss"],out["accuracy"] logger.add_scalar("validation/loss",validation_loss,epoch) logger.add_scalar("validation/accuracy",validation_accuracy,epoch) # Right now CV against accuracy # if best_loss is None or validation_loss < (best_loss - patience_delta): if best_acc is None or validation_accuracy > (best_acc + patience_delta): print(f"\t Round {around}. Found best model at epoch ",epoch) best_model.load_state_dict(_state_dict(model,"cpu")) best_loss = validation_loss best_acc = validation_accuracy patience_count = 0 else: patience_count += 1 logger.message(f"Validation Acc {validation_accuracy:.4f}\t Validation Loss {validation_loss:.4f}") logger.message(f"Training Acc {training_accuracy:.4f}\t Training Loss {training_loss:.4f}") if patience_count == patience or epoch == self.config.max_epochs: break self.models.append(best_model) # Evaluate each model individually : accs = [] for model in self.models: accs += [self._validation_loop(model, device, validation_loader)['accuracy']] ensemble = self._validation_loop(self, device, validation_loader)['accuracy'] fill = lambda x : str(x) + (100 - len(str(x))) * ' ' to_print += [fill(accs) + '\t' + str(ensemble)] for item in to_print: print(item) logger.message("Training Done...") logger.add_scalar('train/model_params', len(self.models) * sum([np.prod(x.shape) for x in model.parameters()]), 0) logger.add_scalar('train/one_sample_megaflop', flops_per_input / 1e6 * len(self.models), 0) logger.add_scalar('train/total_megaflops', n_fwd_samples * flops_per_input / 1e6, 0) logger.add_scalar('train/best_validation_accuracy', best_acc, 0) return self
alma-main
crlapi/sl/clmodels/debug_ensemble.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import torch.nn as nn import torch.nn.functional as F from crlapi.core import CLModel from crlapi.sl.clmodels.finetune import Finetune import copy import numpy as np from pydoc import locate from itertools import chain def _state_dict(model, device): sd = model.state_dict() for k, v in sd.items(): sd[k] = v.to(device) return sd class KEnsemble(Finetune): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.to_print = [] print(f'voting {self.config.vote}') def get_prediction_net(self,task): for model in self.models: model.eval() return self def forward(self, x): outs = [] for model in self.models: outs += [model(x)] out = torch.stack(outs) out = F.softmax(out, dim=-1) if self.config.vote: votes = out.argmax(-1) oh_votes = F.one_hot(votes, num_classes=out.size(-1)) vote_count = oh_votes.sum(0).float() most_confident = out.max(0)[0].max(-1)[1] # Break ties vote_count[torch.arange(vote_count.size(0)), most_confident] += 0.1 out = vote_count else: out = out.mean(0) return out def update(self, task, logger): assert isinstance(task.task_descriptor(),int) if len(self.models)==0 or getattr(self.config, 'init_from_scratch', False): model_args=self.config.model models = [self.build_initial_net(task,**model_args) for _ in range(self.config.k)] n_params = sum(np.prod(x.shape) for x in models[0].parameters()) print(f'new model has {n_params} params') else: # get the last k models models = [copy.deepcopy(model) for model in self.models] logger.message("Building training dataset") training_dataset = task.task_resources().make() flops_per_input = self.count_flops(task, models[0]) * self.config.k # Creating datasets and loaders training_loader, validation_loader = self.get_train_and_validation_loaders(training_dataset) training_loaders = [] for i in range(self.config.k): training_loaders += [torch.utils.data.DataLoader( training_loader.dataset, batch_size=training_loader.batch_size, shuffle=True )] best_models = [copy.deepcopy(model) for model in models] best_losses, best_accs = [1e10] * self.config.k, [0] * self.config.k # Optionally create GPU training augmentations train_aug = self.get_train_augs() # Optinally use patience :) patience = self.config.patience patience_delta = self.config.patience_delta patience_count = 0 device=self.config.device models = [model.to(device) for model in models] optimizer = self.get_optimizer(chain(*[model.parameters() for model in models])) #Launching training procedure logger.message("Start training for " + str(self.config.max_epochs) + " epochs") iteration, n_fwd_samples = 0, 0 for epoch in range(self.config.max_epochs): # Make sure model is ready for train [model.train() for model in models] # Keep a single track of these for now training_loss=0.0 training_accuracy=0.0 n=0 for i, items in enumerate(zip(*training_loaders)): xs, ys = [], [] for item in items: x, y = item x, y = x.to(device), y.to(device) xs += [train_aug(x)] ys += [y] xs = torch.stack(xs) ys = torch.stack(ys) loss, acc = 0, 0 for model_idx in range(self.config.k): model, x, y = models[model_idx], xs[model_idx], ys[model_idx] predicted = model(x) loss += F.cross_entropy(predicted,y) nb_ok = predicted.max(1)[1].eq(y).float().sum().item() acc += nb_ok/x.size()[0] accuracy = acc / self.config.k loss_ = loss.item() / self.config.k training_accuracy += accuracy training_loss += loss_ n += xs.size(1) n_fwd_samples += xs.size(1) logger.add_scalar("train/loss",loss_,iteration) logger.add_scalar("train/accuracy",accuracy,iteration) optimizer.zero_grad() loss.backward() optimizer.step() iteration += 1 #Validation training_accuracy /= i training_loss /= i outs = [self._validation_loop(model,device,validation_loader) for model in models] validation_losses = [x['loss'] for x in outs] validation_accuracies = [x['accuracy'] for x in outs] validation_loss, validation_accuracy = np.mean(validation_losses), np.mean(validation_accuracies) logger.add_scalar("validation/loss",validation_loss,epoch) logger.add_scalar("validation/accuracy",validation_accuracy,epoch) found_best = False for model_idx in range(self.config.k): if validation_accuracies[model_idx] > best_accs[model_idx]: print("\tFound best model at epoch ",epoch, '\t', model_idx) best_models[model_idx].load_state_dict(_state_dict(models[model_idx],"cpu")) best_accs[model_idx] = validation_accuracies[model_idx] found_best = True logger.message(f"Validation Acc {validation_accuracy:.4f}\t Validation Loss {validation_loss:.4f}") logger.message(f"Training Acc {training_accuracy:.4f}\t Training Loss {training_loss:.4f}") if found_best: patience_count = 0 else: patience_count += 1 if patience_count == patience: break # overwrite the best models self.models = nn.ModuleList(best_models) # Evaluate each model individually : accs = [] for model in self.models: accs += [self._validation_loop(model, device, validation_loader)['accuracy']] self.prog_pred_stats = [] ensemble = self._validation_loop(self, device, validation_loader)['accuracy'] fill = lambda x : str(x) + (100 - len(str(x))) * ' ' self.to_print += [fill(accs) + '\t' + str(ensemble)] for item in self.to_print: print(item) logger.message("Training Done...") logger.add_scalar('train/model_params', len(self.models) * sum([np.prod(x.shape) for x in model.parameters()]), 0) # TODO: FIX! this is wrong logger.add_scalar('train/one_sample_megaflop', flops_per_input / 1e6 * len(self.models), 0) logger.add_scalar('train/total_megaflops', n_fwd_samples * flops_per_input / 1e6, 0) logger.add_scalar('train/best_validation_accuracy', np.mean(best_accs), 0) return self
alma-main
crlapi/sl/clmodels/k_ensemble.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import copy import torch import numpy as np import torch.nn.functional as F from crlapi.core import CLModel from crlapi.sl.clmodels.core import SupervisedCLModel from pydoc import locate def _state_dict(model, device): sd = model.state_dict() for k, v in sd.items(): sd[k] = v.to(device) return sd class Finetune_Grow(SupervisedCLModel): def __init__(self, stream, clmodel_args): super().__init__() self.models=[] self.config=clmodel_args def get_prediction_net(self,task): if task.task_descriptor() is None: model = self.models[-1] else: model = self.models[task.task_descriptor] model.eval() return model def update(self, task, logger): assert isinstance(task.task_descriptor(),int) logger.message("Building training dataset") training_dataset = task.task_resources().make() # Creating datasets and loaders training_loader,validation_loader = self.get_train_and_validation_loaders(training_dataset) if len(self.models)==0: model_args=self.config.model model=self.build_initial_net(task,**model_args) elif (task.task_descriptor() % self.config['grow_every']) == 0: print('growing') model=copy.deepcopy(self.models[task.task_descriptor()-1]) model=model.grow(validation_loader,**self.config) else: model=copy.deepcopy(self.models[task.task_descriptor()-1]) if getattr(self.config, 'init_from_scratch', False): print('re-initializing the model') def weight_reset(m): try: m.reset_parameters() except: pass model.apply(weight_reset) best_model=copy.deepcopy(model) best_loss, best_acc = None, None # Optionally create GPU training augmentations train_aug = self.get_train_augs() # Optinally use patience :) patience = self.config.patience patience_delta = self.config.patience_delta patience_count = 0 device=self.config.device model.to(device) flops_per_input = self.count_flops(task, model) optimizer = self.get_optimizer(model.parameters()) #Launching training procedure logger.message("Start training for "+str(self.config.max_epochs)+" epochs") iteration, n_fwd_samples = 0, 0 for epoch in range(self.config.max_epochs): # Make sure model is ready for train model.train() #Training loop for i, (raw_x, y) in enumerate(training_loader): raw_x, y = raw_x.to(device), y.to(device) # apply transformations x = train_aug(raw_x) predicted=model(x) loss=F.cross_entropy(predicted,y) nb_ok=predicted.max(1)[1].eq(y).float().sum().item() accuracy=nb_ok/x.size()[0] logger.add_scalar("train/loss",loss.item(),iteration) logger.add_scalar("train/accuracy",accuracy,iteration) optimizer.zero_grad() loss.backward() optimizer.step() iteration += 1 n_fwd_samples += x.size(0) #Validation out=self._validation_loop(model,device,validation_loader) validation_loss,validation_accuracy=out["loss"],out["accuracy"] logger.add_scalar("validation/loss",validation_loss,epoch) logger.add_scalar("validation/accuracy",validation_accuracy,epoch) # Right now CV against accuracy # if best_loss is None or validation_loss < (best_loss - patience_delta): if best_acc is None or validation_accuracy > (best_acc + patience_delta): print("\tFound best model at epoch ",epoch) best_model.load_state_dict(_state_dict(model,"cpu")) best_loss = validation_loss best_acc = validation_accuracy patience_count = 0 else: patience_count += 1 logger.message(f"Validation Acc {validation_accuracy:.4f}\t Loss {validation_loss:.4f}") if patience_count == patience: break self.models.append(best_model) logger.message("Training Done...") logger.add_scalar('train/model_params', sum([np.prod(x.shape) for x in model.parameters()]), 0) logger.add_scalar('train/one_sample_megaflop', flops_per_input / 1e6, 0) logger.add_scalar('train/total_megaflops', n_fwd_samples * flops_per_input / 1e6, 0) logger.add_scalar('train/best_validation_accuracy', best_acc, 0) logger.message("Training Done...") return self
alma-main
crlapi/sl/clmodels/finetune_grow.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import torch.nn as nn import torch.nn.functional as F from crlapi.core import CLModel from crlapi.sl.clmodels.core import SupervisedCLModel import time import copy import numpy as np from pydoc import locate def _state_dict(model, device): sd = model.state_dict() for k, v in sd.items(): sd[k] = v.to(device) return sd class Finetune(SupervisedCLModel): def __init__(self, stream, clmodel_args): super().__init__() self.models = nn.ModuleList() self.config=clmodel_args def get_prediction_net(self,task): if task.task_descriptor() is None: model = self.models[-1] else: model = self.models[task.task_descriptor] model.eval() return model def update(self, task, logger): assert isinstance(task.task_descriptor(),int) if len(self.models)==0 or getattr(self.config, 'init_from_scratch', False): model_args=self.config.model model=self.build_initial_net(task,**model_args) n_params = sum(np.prod(x.shape) for x in model.parameters()) print(model) print(f'new model has {n_params} params') else: model=copy.deepcopy(self.models[task.task_descriptor()-1]) logger.message("Building training dataset") training_dataset = task.task_resources().make() flops_per_input = self.count_flops(task, model) # Creating datasets and loaders training_loader,validation_loader = self.get_train_and_validation_loaders(training_dataset) best_model=copy.deepcopy(model) best_loss, best_acc = None, None # Optionally create GPU training augmentations train_aug = self.get_train_augs() # Optinally use patience :) patience = self.config.patience patience_delta = self.config.patience_delta patience_count = 0 device=self.config.device model.to(device) optimizer = self.get_optimizer(model.parameters()) #Launching training procedure logger.message("Start training for "+str(self.config.max_epochs)+" epochs") iteration, n_fwd_samples = 0, 0 for epoch in range(self.config.max_epochs): # Make sure model is ready for train model.train() #Training loop training_loss=0.0 training_accuracy=0.0 n=0 start = time.time() for i, (raw_x, y) in enumerate(training_loader): raw_x, y = raw_x.to(device), y.to(device) n+=raw_x.size()[0] # apply transformations x = train_aug(raw_x) predicted=model(x) loss=F.cross_entropy(predicted,y) nb_ok=predicted.max(1)[1].eq(y).float().sum().item() accuracy=nb_ok/x.size()[0] training_accuracy+=nb_ok training_loss+=loss.item() logger.add_scalar("train/loss",loss.item(),iteration) logger.add_scalar("train/accuracy",accuracy,iteration) optimizer.zero_grad() loss.backward() optimizer.step() iteration += 1 n_fwd_samples += x.size(0) #Validation epoch_time = time.time() - start training_accuracy/=n training_loss/=n out=self._validation_loop(model,device,validation_loader) validation_loss,validation_accuracy=out["loss"],out["accuracy"] logger.add_scalar('training/one_epoch_time', epoch_time, epoch) logger.add_scalar("validation/loss",validation_loss,epoch) logger.add_scalar("validation/accuracy",validation_accuracy,epoch) # Right now CV against accuracy # if best_loss is None or validation_loss < (best_loss - patience_delta): if best_acc is None or validation_accuracy > (best_acc + patience_delta): print("\tFound best model at epoch ",epoch) best_model.load_state_dict(_state_dict(model,"cpu")) best_loss = validation_loss best_acc = validation_accuracy patience_count = 0 else: patience_count += 1 logger.message(f"Validation Acc {validation_accuracy:.4f}\t Validation Loss {validation_loss:.4f}") logger.message(f"Training Acc {training_accuracy:.4f}\t Training Loss {training_loss:.4f}\t Time {epoch_time:.4f}") if patience_count == patience: break self.models.append(best_model) logger.message("Training Done...") logger.add_scalar('train/model_params', sum([np.prod(x.shape) for x in model.parameters()]), 0) logger.add_scalar('train/one_sample_megaflop', flops_per_input / 1e6, 0) logger.add_scalar('train/total_megaflops', n_fwd_samples * flops_per_input / 1e6, 0) logger.add_scalar('train/best_validation_accuracy', best_acc, 0) return self
alma-main
crlapi/sl/clmodels/finetune.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import json import re from datetime import datetime import requests def get_ad_archive_id(data): """ Extract ad_archive_id from ad_snapshot_url """ return re.search(r"/\?id=([0-9]+)", data["ad_snapshot_url"]).group(1) class FbAdsLibraryTraversal: default_url_pattern = ( "https://graph.facebook.com/{}/ads_archive?access_token={}&" + "fields={}&search_terms={}&ad_reached_countries={}&search_page_ids={}&" + "ad_active_status={}&limit={}" ) default_api_version = "v14.0" def __init__( self, access_token, fields, search_term, country, search_page_ids="", ad_active_status="ALL", after_date="1970-01-01", page_limit=500, api_version=None, retry_limit=3, ): self.page_count = 0 self.access_token = access_token self.fields = fields self.search_term = search_term self.country = country self.after_date = after_date self.search_page_ids = search_page_ids self.ad_active_status = ad_active_status self.page_limit = page_limit self.retry_limit = retry_limit if api_version is None: self.api_version = self.default_api_version else: self.api_version = api_version def generate_ad_archives(self): next_page_url = self.default_url_pattern.format( self.api_version, self.access_token, self.fields, self.search_term, self.country, self.search_page_ids, self.ad_active_status, self.page_limit, ) return self.__class__._get_ad_archives_from_url( next_page_url, after_date=self.after_date, retry_limit=self.retry_limit ) @staticmethod def _get_ad_archives_from_url( next_page_url, after_date="1970-01-01", retry_limit=3 ): last_error_url = None last_retry_count = 0 start_time_cutoff_after = datetime.strptime(after_date, "%Y-%m-%d").timestamp() while next_page_url is not None: response = requests.get(next_page_url) response_data = json.loads(response.text) if "error" in response_data: if next_page_url == last_error_url: # failed again if last_retry_count >= retry_limit: raise Exception( "Error message: [{}], failed on URL: [{}]".format( json.dumps(response_data["error"]), next_page_url ) ) else: last_error_url = next_page_url last_retry_count = 0 last_retry_count += 1 continue filtered = list( filter( lambda ad_archive: ("ad_delivery_start_time" in ad_archive) and ( datetime.strptime( ad_archive["ad_delivery_start_time"], "%Y-%m-%d" ).timestamp() >= start_time_cutoff_after ), response_data["data"], ) ) if len(filtered) == 0: # if no data after the after_date, break next_page_url = None break yield filtered if "paging" in response_data: next_page_url = response_data["paging"]["next"] else: next_page_url = None @classmethod def generate_ad_archives_from_url(cls, failure_url, after_date="1970-01-01"): """ if we failed from error, later we can just continue from the last failure url """ return cls._get_ad_archives_from_url(failure_url, after_date=after_date)
Ad-Library-API-Script-Repository-main
python/fb_ads_library_api.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import datetime import json from collections import Counter def get_operators(): """ Feel free to add your own 'operator' here; The input will be: generator_ad_archives: a generator of array of ad_archvie args: extra arguments passed in from CLI is_verbose: check this for debugging information """ return { "count": count_ads, "save": save_to_file, "save_to_csv": save_to_csv, "start_time_trending": count_start_time_trending, } def count_ads(generator_ad_archives, args, is_verbose=False): """ Count how many ad_archives match your query """ count = 0 for ad_archives in generator_ad_archives: count += len(ad_archives) if is_verbose: print("counting %d" % count) print("Total number of ads match the query: {}".format(count)) def save_to_file(generator_ad_archives, args, is_verbose=False): """ Save all retrieved ad_archives to the file; each ad_archive will be stored in JSON format in a single line; """ if len(args) != 1: raise Exception("save action requires exact 1 param: output file") with open(args[0], "w+") as file: count = 0 for ad_archives in generator_ad_archives: for data in ad_archives: file.write(json.dumps(data)) file.write("\n") count += len(ad_archives) if is_verbose: print("Items wrote: %d" % count) print("Total number of ads wrote: %d" % count) def save_to_csv(generator_ad_archives, args, fields, is_verbose=False): """ Save all retrieved ad_archives to the output file. Each ad_archive will be stored as a row in the CSV """ if len(args) != 1: raise Exception("save_to_csv action takes 1 argument: output_file") delimiter = "," total_count = 0 output = fields + "\n" output_file = args[0] for ad_archives in generator_ad_archives: total_count += len(ad_archives) if is_verbose: print("Items processed: %d" % total_count) for ad_archive in ad_archives: for field in list(fields.split(delimiter)): if field in ad_archive: value = ad_archive[field] if (type(value) == list and type(value[0]) == dict) or type( value ) == dict: value = json.dumps(value) elif type(value) == list: value = delimiter.join(value) output += ( '"' + value.replace("\n", "").replace('"', "") + '"' + delimiter ) else: output += delimiter output = output.rstrip(",") + "\n" with open(output_file, "w") as csvfile: csvfile.write(output) print("Successfully wrote data to file: %s" % output_file) def count_start_time_trending(generator_ad_archives, args, is_verbose=False): """ output the count trending of ads by start date; Accept one parameters: output_file: path to write the csv """ if len(args) != 1: raise Exception("start_time_trending action takes 1 arguments: output_file") total_count = 0 output_file = args[0] date_to_count = Counter({}) for ad_archives in generator_ad_archives: total_count += len(ad_archives) if is_verbose: print("Item processed: %d" % total_count) start_dates = list( map( lambda data: datetime.datetime.strptime( data["ad_delivery_start_time"], "%Y-%m-%d" ).strftime("%Y-%m-%d"), ad_archives, ) ) date_to_count.update(start_dates) with open(output_file, "w") as csvfile: csvfile.write("date, count\n") for date in date_to_count.keys(): csvfile.write("%s, %s\n" % (date, date_to_count[date])) print("Successfully wrote data to file: %s" % output_file)
Ad-Library-API-Script-Repository-main
python/fb_ads_library_api_operators.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from iso3166 import countries supported_countries = [ "AT", "BE", "BG", "CA", "CY", "CZ", "DE", "DK", "EE", "ES", "FI", "FR", "GB", "GR", "HR", "HU", "IE", "IL", "IN", "IT", "LT", "LU", "LV", "MT", "NL", "PL", "PT", "RO", "SE", "SI", "SK", "UA", "US", ] valid_query_fields = [ "ad_creation_time", "ad_creative_body", "ad_creative_bodies", "ad_creative_link_caption", "ad_creative_link_captions", "ad_creative_link_description", "ad_creative_link_descriptions", "ad_creative_link_title", "ad_creative_link_titles", "ad_delivery_start_time", "ad_delivery_stop_time", "ad_snapshot_url", "currency", "delivery_by_region", "demographic_distribution", "bylines", "id", "impressions", "languages", "page_id", "page_name", "potential_reach", "publisher_platforms", "region_distribution", "spend", ] def get_country_code(country_str): """ Convert the country input to valid country code """ global supported_countries try: country = countries.get(country_str) except Exception: country = None if not country or country.alpha2 not in supported_countries: return None return country.alpha2 def is_valid_fields(field): """ The Facebook Ads Library API has a list of supported fields """ global valid_query_fields return field in valid_query_fields
Ad-Library-API-Script-Repository-main
python/fb_ads_library_api_utils.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse import sys from fb_ads_library_api import FbAdsLibraryTraversal from fb_ads_library_api_operators import get_operators, save_to_csv from fb_ads_library_api_utils import get_country_code, is_valid_fields def get_parser(): parser = argparse.ArgumentParser( description="The Facebook Ads Library API CLI Utility" ) parser.add_argument( "-t", "--access-token", help="The Facebook developer access token", required=True, ) parser.add_argument( "-f", "--fields", help="Fields to retrieve from the Ad Library API", required=True, type=validate_fields_param, ) parser.add_argument("-s", "--search-term", help="The term you want to search for") parser.add_argument( "-c", "--country", help="Comma-separated country code (no spaces)", required=True, type=validate_country_param, ) parser.add_argument( "--search-page-ids", help="The specific Facebook Page you want to search" ) parser.add_argument( "--ad-active-status", help="Filter by the current status of the ads at the moment the script runs", ) parser.add_argument( "--after-date", help="Only return ads that started delivery after this date" ) parser.add_argument("--batch-size", type=int, help="Batch size") parser.add_argument( "--retry-limit", type=int, help="When an error occurs, the script will abort if it fails to get the same batch this amount of times", ) parser.add_argument("-v", "--verbose", action="store_true") actions = ",".join(get_operators().keys()) parser.add_argument( "action", help="Action to take on the ads, possible values: %s" % actions ) parser.add_argument( "args", nargs=argparse.REMAINDER, help="The parameter for the specific action" ) return parser def validate_country_param(country_input): if not country_input: return "" country_list = list(filter(lambda x: x.strip(), country_input.split(","))) if not country_list: raise argparse.ArgumentTypeError("Country cannot be empty") valid_country_codes = list(map(lambda x: get_country_code(x), country_list)) invalid_inputs = { key: value for (key, value) in zip(country_list, valid_country_codes) if value is None } if invalid_inputs: raise argparse.ArgumentTypeError( "Invalid/unsupported country code: %s" % (",".join(invalid_inputs.keys())) ) else: return ",".join(valid_country_codes) def validate_fields_param(fields_input): if not fields_input: return False fields_list = list( filter(lambda x: x, map(lambda x: x.strip(), fields_input.split(","))) ) if not fields_list: raise argparse.ArgumentTypeError("Fields cannot be empty") invalid_fields = list(filter(lambda x: not is_valid_fields(x), fields_list)) if not invalid_fields: return ",".join(fields_list) else: raise argparse.ArgumentTypeError( "Unsupported fields: %s" % (",".join(invalid_fields)) ) def main(): parser = get_parser() opts = parser.parse_args() if not opts.search_term and not opts.search_page_ids: print("At least one must be set: --search-term, --search-page-ids") sys.exit(1) if not opts.search_term: search_term = "." else: search_term = opts.search_term api = FbAdsLibraryTraversal( opts.access_token, opts.fields, search_term, opts.country ) if opts.search_page_ids: api.search_page_ids = opts.search_page_ids if opts.ad_active_status: api.ad_active_status = opts.ad_active_status if opts.batch_size: api.page_limit = opts.batch_size if opts.retry_limit: api.retry_limit = opts.retry_limit if opts.after_date: api.after_date = opts.after_date generator_ad_archives = api.generate_ad_archives() if opts.action in get_operators(): if opts.action == "save_to_csv": save_to_csv( generator_ad_archives, opts.args, opts.fields, is_verbose=opts.verbose ) else: get_operators()[opts.action]( generator_ad_archives, opts.args, is_verbose=opts.verbose ) else: print("Invalid 'action' value: %s" % opts.action) sys.exit(1) if __name__ == "__main__": main()
Ad-Library-API-Script-Repository-main
python/fb_ads_library_api_cli.py
import argparse from utils.train_utils import add_flags_from_config config_args = { 'training_config': { 'lr': (0.01, 'learning rate'), 'dropout': (0.0, 'dropout probability'), 'cuda': (-1, 'which cuda device to use (-1 for cpu training)'), 'epochs': (5000, 'maximum number of epochs to train for'), 'weight-decay': (0., 'l2 regularization strength'), 'optimizer': ('Adam', 'which optimizer to use, can be any of [Adam, RiemannianAdam]'), 'momentum': (0.999, 'momentum in optimizer'), 'patience': (100, 'patience for early stopping'), 'seed': (1234, 'seed for training'), 'log-freq': (1, 'how often to compute print train/val metrics (in epochs)'), 'eval-freq': (1, 'how often to compute val metrics (in epochs)'), 'save': (0, '1 to save model and logs and 0 otherwise'), 'save-dir': (None, 'path to save training logs and model weights (defaults to logs/task/date/run/)'), 'sweep-c': (0, ''), 'lr-reduce-freq': (None, 'reduce lr every lr-reduce-freq or None to keep lr constant'), 'gamma': (0.5, 'gamma for lr scheduler'), 'print-epoch': (True, ''), 'grad-clip': (None, 'max norm for gradient clipping, or None for no gradient clipping'), 'min-epochs': (100, 'do not early stop before min-epochs') }, 'model_config': { 'task': ('nc', 'which tasks to train on, can be any of [lp, nc]'), 'model': ('GCN', 'which encoder to use, can be any of [Shallow, MLP, HNN, GCN, GAT, HyperGCN]'), 'dim': (128, 'embedding dimension'), 'manifold': ('Euclidean', 'which manifold to use, can be any of [Euclidean, Hyperboloid, PoincareBall]'), 'c': (1.0, 'hyperbolic radius, set to None for trainable curvature'), 'r': (2., 'fermi-dirac decoder parameter for lp'), 't': (1., 'fermi-dirac decoder parameter for lp'), 'pretrained-embeddings': (None, 'path to pretrained embeddings (.npy file) for Shallow node classification'), 'pos-weight': (0, 'whether to upweight positive class in node classification tasks'), 'num-layers': (2, 'number of hidden layers in encoder'), 'bias': (1, 'whether to use bias (1) or not (0)'), 'act': ('relu', 'which activation function to use (or None for no activation)'), 'n-heads': (4, 'number of attention heads for graph attention networks, must be a divisor dim'), 'alpha': (0.2, 'alpha for leakyrelu in graph attention networks'), 'double-precision': ('0', 'whether to use double precision'), 'use-att': (0, 'whether to use hyperbolic attention or not'), 'local-agg': (0, 'whether to local tangent space aggregation or not') }, 'data_config': { 'dataset': ('cora', 'which dataset to use'), 'val-prop': (0.05, 'proportion of validation edges for link prediction'), 'test-prop': (0.1, 'proportion of test edges for link prediction'), 'use-feats': (1, 'whether to use node features or not'), 'normalize-feats': (1, 'whether to normalize input node features'), 'normalize-adj': (1, 'whether to row-normalize the adjacency matrix'), 'split-seed': (1234, 'seed for data splits (train/test/val)'), } } parser = argparse.ArgumentParser() for _, config_dict in config_args.items(): parser = add_flags_from_config(parser, config_dict)
hgcn-master
config.py
from __future__ import print_function from __future__ import division
hgcn-master
__init__.py
from __future__ import division from __future__ import print_function import datetime import json import logging import os import pickle import time import numpy as np import optimizers import torch from config import parser from models.base_models import NCModel, LPModel from utils.data_utils import load_data from utils.train_utils import get_dir_name, format_metrics def train(args): np.random.seed(args.seed) torch.manual_seed(args.seed) if int(args.double_precision): torch.set_default_dtype(torch.float64) if int(args.cuda) >= 0: torch.cuda.manual_seed(args.seed) args.device = 'cuda:' + str(args.cuda) if int(args.cuda) >= 0 else 'cpu' args.patience = args.epochs if not args.patience else int(args.patience) logging.getLogger().setLevel(logging.INFO) if args.save: if not args.save_dir: dt = datetime.datetime.now() date = f"{dt.year}_{dt.month}_{dt.day}" models_dir = os.path.join(os.environ['LOG_DIR'], args.task, date) save_dir = get_dir_name(models_dir) else: save_dir = args.save_dir logging.basicConfig(level=logging.INFO, handlers=[ logging.FileHandler(os.path.join(save_dir, 'log.txt')), logging.StreamHandler() ]) logging.info(f'Using: {args.device}') logging.info("Using seed {}.".format(args.seed)) # Load data data = load_data(args, os.path.join(os.environ['DATAPATH'], args.dataset)) args.n_nodes, args.feat_dim = data['features'].shape if args.task == 'nc': Model = NCModel args.n_classes = int(data['labels'].max() + 1) logging.info(f'Num classes: {args.n_classes}') else: args.nb_false_edges = len(data['train_edges_false']) args.nb_edges = len(data['train_edges']) if args.task == 'lp': Model = LPModel else: Model = RECModel # No validation for reconstruction task args.eval_freq = args.epochs + 1 if not args.lr_reduce_freq: args.lr_reduce_freq = args.epochs # Model and optimizer model = Model(args) logging.info(str(model)) optimizer = getattr(optimizers, args.optimizer)(params=model.parameters(), lr=args.lr, weight_decay=args.weight_decay) lr_scheduler = torch.optim.lr_scheduler.StepLR( optimizer, step_size=int(args.lr_reduce_freq), gamma=float(args.gamma) ) tot_params = sum([np.prod(p.size()) for p in model.parameters()]) logging.info(f"Total number of parameters: {tot_params}") if args.cuda is not None and int(args.cuda) >= 0 : os.environ['CUDA_VISIBLE_DEVICES'] = str(args.cuda) model = model.to(args.device) for x, val in data.items(): if torch.is_tensor(data[x]): data[x] = data[x].to(args.device) # Train model t_total = time.time() counter = 0 best_val_metrics = model.init_metric_dict() best_test_metrics = None best_emb = None for epoch in range(args.epochs): t = time.time() model.train() optimizer.zero_grad() embeddings = model.encode(data['features'], data['adj_train_norm']) train_metrics = model.compute_metrics(embeddings, data, 'train') train_metrics['loss'].backward() if args.grad_clip is not None: max_norm = float(args.grad_clip) all_params = list(model.parameters()) for param in all_params: torch.nn.utils.clip_grad_norm_(param, max_norm) optimizer.step() lr_scheduler.step() if (epoch + 1) % args.log_freq == 0: logging.info(" ".join(['Epoch: {:04d}'.format(epoch + 1), 'lr: {}'.format(lr_scheduler.get_lr()[0]), format_metrics(train_metrics, 'train'), 'time: {:.4f}s'.format(time.time() - t) ])) if (epoch + 1) % args.eval_freq == 0: model.eval() embeddings = model.encode(data['features'], data['adj_train_norm']) val_metrics = model.compute_metrics(embeddings, data, 'val') if (epoch + 1) % args.log_freq == 0: logging.info(" ".join(['Epoch: {:04d}'.format(epoch + 1), format_metrics(val_metrics, 'val')])) if model.has_improved(best_val_metrics, val_metrics): best_test_metrics = model.compute_metrics(embeddings, data, 'test') best_emb = embeddings.cpu() if args.save: np.save(os.path.join(save_dir, 'embeddings.npy'), best_emb.detach().numpy()) best_val_metrics = val_metrics counter = 0 else: counter += 1 if counter == args.patience and epoch > args.min_epochs: logging.info("Early stopping") break logging.info("Optimization Finished!") logging.info("Total time elapsed: {:.4f}s".format(time.time() - t_total)) if not best_test_metrics: model.eval() best_emb = model.encode(data['features'], data['adj_train_norm']) best_test_metrics = model.compute_metrics(best_emb, data, 'test') logging.info(" ".join(["Val set results:", format_metrics(best_val_metrics, 'val')])) logging.info(" ".join(["Test set results:", format_metrics(best_test_metrics, 'test')])) if args.save: np.save(os.path.join(save_dir, 'embeddings.npy'), best_emb.cpu().detach().numpy()) if hasattr(model.encoder, 'att_adj'): filename = os.path.join(save_dir, args.dataset + '_att_adj.p') pickle.dump(model.encoder.att_adj.cpu().to_dense(), open(filename, 'wb')) print('Dumped attention adj: ' + filename) json.dump(vars(args), open(os.path.join(save_dir, 'config.json'), 'w')) torch.save(model.state_dict(), os.path.join(save_dir, 'model.pth')) logging.info(f"Saved model in {save_dir}") if __name__ == '__main__': args = parser.parse_args() train(args)
hgcn-master
train.py
"""Attention layers (some modules are copied from https://github.com/Diego999/pyGAT.""" import numpy as np import torch import torch.nn as nn import torch.nn.functional as F class DenseAtt(nn.Module): def __init__(self, in_features, dropout): super(DenseAtt, self).__init__() self.dropout = dropout self.linear = nn.Linear(2 * in_features, 1, bias=True) self.in_features = in_features def forward (self, x, adj): n = x.size(0) # n x 1 x d x_left = torch.unsqueeze(x, 1) x_left = x_left.expand(-1, n, -1) # 1 x n x d x_right = torch.unsqueeze(x, 0) x_right = x_right.expand(n, -1, -1) x_cat = torch.cat((x_left, x_right), dim=2) att_adj = self.linear(x_cat).squeeze() att_adj = F.sigmoid(att_adj) att_adj = torch.mul(adj.to_dense(), att_adj) return att_adj class SpecialSpmmFunction(torch.autograd.Function): """Special function for only sparse region backpropataion layer.""" @staticmethod def forward(ctx, indices, values, shape, b): assert indices.requires_grad == False a = torch.sparse_coo_tensor(indices, values, shape) ctx.save_for_backward(a, b) ctx.N = shape[0] return torch.matmul(a, b) @staticmethod def backward(ctx, grad_output): a, b = ctx.saved_tensors grad_values = grad_b = None if ctx.needs_input_grad[1]: grad_a_dense = grad_output.matmul(b.t()) edge_idx = a._indices()[0, :] * ctx.N + a._indices()[1, :] grad_values = grad_a_dense.view(-1)[edge_idx] if ctx.needs_input_grad[3]: grad_b = a.t().matmul(grad_output) return None, grad_values, None, grad_b class SpecialSpmm(nn.Module): def forward(self, indices, values, shape, b): return SpecialSpmmFunction.apply(indices, values, shape, b) class SpGraphAttentionLayer(nn.Module): """ Sparse version GAT layer, similar to https://arxiv.org/abs/1710.10903 """ def __init__(self, in_features, out_features, dropout, alpha, activation): super(SpGraphAttentionLayer, self).__init__() self.in_features = in_features self.out_features = out_features self.alpha = alpha self.W = nn.Parameter(torch.zeros(size=(in_features, out_features))) nn.init.xavier_normal_(self.W.data, gain=1.414) self.a = nn.Parameter(torch.zeros(size=(1, 2 * out_features))) nn.init.xavier_normal_(self.a.data, gain=1.414) self.dropout = nn.Dropout(dropout) self.leakyrelu = nn.LeakyReLU(self.alpha) self.special_spmm = SpecialSpmm() self.act = activation def forward(self, input, adj): N = input.size()[0] edge = adj._indices() h = torch.mm(input, self.W) # h: N x out assert not torch.isnan(h).any() # Self-attention on the nodes - Shared attention mechanism edge_h = torch.cat((h[edge[0, :], :], h[edge[1, :], :]), dim=1).t() # edge: 2*D x E edge_e = torch.exp(-self.leakyrelu(self.a.mm(edge_h).squeeze())) assert not torch.isnan(edge_e).any() # edge_e: E ones = torch.ones(size=(N, 1)) if h.is_cuda: ones = ones.cuda() e_rowsum = self.special_spmm(edge, edge_e, torch.Size([N, N]), ones) # e_rowsum: N x 1 edge_e = self.dropout(edge_e) # edge_e: E h_prime = self.special_spmm(edge, edge_e, torch.Size([N, N]), h) assert not torch.isnan(h_prime).any() # h_prime: N x out h_prime = h_prime.div(e_rowsum) # h_prime: N x out assert not torch.isnan(h_prime).any() return self.act(h_prime) def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_features) + ' -> ' + str(self.out_features) + ')' class GraphAttentionLayer(nn.Module): def __init__(self, input_dim, output_dim, dropout, activation, alpha, nheads, concat): """Sparse version of GAT.""" super(GraphAttentionLayer, self).__init__() self.dropout = dropout self.output_dim = output_dim self.attentions = [SpGraphAttentionLayer(input_dim, output_dim, dropout=dropout, alpha=alpha, activation=activation) for _ in range(nheads)] self.concat = concat for i, attention in enumerate(self.attentions): self.add_module('attention_{}'.format(i), attention) def forward(self, input): x, adj = input x = F.dropout(x, self.dropout, training=self.training) if self.concat: h = torch.cat([att(x, adj) for att in self.attentions], dim=1) else: h_cat = torch.cat([att(x, adj).view((-1, self.output_dim, 1)) for att in self.attentions], dim=2) h = torch.mean(h_cat, dim=2) h = F.dropout(h, self.dropout, training=self.training) return (h, adj)
hgcn-master
layers/att_layers.py
hgcn-master
layers/__init__.py
"""Hyperbolic layers.""" import math import torch import torch.nn as nn import torch.nn.functional as F import torch.nn.init as init from torch.nn.modules.module import Module from layers.att_layers import DenseAtt def get_dim_act_curv(args): """ Helper function to get dimension and activation at every layer. :param args: :return: """ if not args.act: act = lambda x: x else: act = getattr(F, args.act) acts = [act] * (args.num_layers - 1) dims = [args.feat_dim] + ([args.dim] * (args.num_layers - 1)) if args.task in ['lp', 'rec']: dims += [args.dim] acts += [act] n_curvatures = args.num_layers else: n_curvatures = args.num_layers - 1 if args.c is None: # create list of trainable curvature parameters curvatures = [nn.Parameter(torch.Tensor([1.])) for _ in range(n_curvatures)] else: # fixed curvature curvatures = [torch.tensor([args.c]) for _ in range(n_curvatures)] if not args.cuda == -1: curvatures = [curv.to(args.device) for curv in curvatures] return dims, acts, curvatures class HNNLayer(nn.Module): """ Hyperbolic neural networks layer. """ def __init__(self, manifold, in_features, out_features, c, dropout, act, use_bias): super(HNNLayer, self).__init__() self.linear = HypLinear(manifold, in_features, out_features, c, dropout, use_bias) self.hyp_act = HypAct(manifold, c, c, act) def forward(self, x): h = self.linear.forward(x) h = self.hyp_act.forward(h) return h class HyperbolicGraphConvolution(nn.Module): """ Hyperbolic graph convolution layer. """ def __init__(self, manifold, in_features, out_features, c_in, c_out, dropout, act, use_bias, use_att, local_agg): super(HyperbolicGraphConvolution, self).__init__() self.linear = HypLinear(manifold, in_features, out_features, c_in, dropout, use_bias) self.agg = HypAgg(manifold, c_in, out_features, dropout, use_att, local_agg) self.hyp_act = HypAct(manifold, c_in, c_out, act) def forward(self, input): x, adj = input h = self.linear.forward(x) h = self.agg.forward(h, adj) h = self.hyp_act.forward(h) output = h, adj return output class HypLinear(nn.Module): """ Hyperbolic linear layer. """ def __init__(self, manifold, in_features, out_features, c, dropout, use_bias): super(HypLinear, self).__init__() self.manifold = manifold self.in_features = in_features self.out_features = out_features self.c = c self.dropout = dropout self.use_bias = use_bias self.bias = nn.Parameter(torch.Tensor(out_features)) self.weight = nn.Parameter(torch.Tensor(out_features, in_features)) self.reset_parameters() def reset_parameters(self): init.xavier_uniform_(self.weight, gain=math.sqrt(2)) init.constant_(self.bias, 0) def forward(self, x): drop_weight = F.dropout(self.weight, self.dropout, training=self.training) mv = self.manifold.mobius_matvec(drop_weight, x, self.c) res = self.manifold.proj(mv, self.c) if self.use_bias: bias = self.manifold.proj_tan0(self.bias.view(1, -1), self.c) hyp_bias = self.manifold.expmap0(bias, self.c) hyp_bias = self.manifold.proj(hyp_bias, self.c) res = self.manifold.mobius_add(res, hyp_bias, c=self.c) res = self.manifold.proj(res, self.c) return res def extra_repr(self): return 'in_features={}, out_features={}, c={}'.format( self.in_features, self.out_features, self.c ) class HypAgg(Module): """ Hyperbolic aggregation layer. """ def __init__(self, manifold, c, in_features, dropout, use_att, local_agg): super(HypAgg, self).__init__() self.manifold = manifold self.c = c self.in_features = in_features self.dropout = dropout self.local_agg = local_agg self.use_att = use_att if self.use_att: self.att = DenseAtt(in_features, dropout) def forward(self, x, adj): x_tangent = self.manifold.logmap0(x, c=self.c) if self.use_att: if self.local_agg: x_local_tangent = [] for i in range(x.size(0)): x_local_tangent.append(self.manifold.logmap(x[i], x, c=self.c)) x_local_tangent = torch.stack(x_local_tangent, dim=0) adj_att = self.att(x_tangent, adj) att_rep = adj_att.unsqueeze(-1) * x_local_tangent support_t = torch.sum(adj_att.unsqueeze(-1) * x_local_tangent, dim=1) output = self.manifold.proj(self.manifold.expmap(x, support_t, c=self.c), c=self.c) return output else: adj_att = self.att(x_tangent, adj) support_t = torch.matmul(adj_att, x_tangent) else: support_t = torch.spmm(adj, x_tangent) output = self.manifold.proj(self.manifold.expmap0(support_t, c=self.c), c=self.c) return output def extra_repr(self): return 'c={}'.format(self.c) class HypAct(Module): """ Hyperbolic activation layer. """ def __init__(self, manifold, c_in, c_out, act): super(HypAct, self).__init__() self.manifold = manifold self.c_in = c_in self.c_out = c_out self.act = act def forward(self, x): xt = self.act(self.manifold.logmap0(x, c=self.c_in)) xt = self.manifold.proj_tan0(xt, c=self.c_out) return self.manifold.proj(self.manifold.expmap0(xt, c=self.c_out), c=self.c_out) def extra_repr(self): return 'c_in={}, c_out={}'.format( self.c_in, self.c_out )
hgcn-master
layers/hyp_layers.py
"""Euclidean layers.""" import math import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.modules.module import Module from torch.nn.parameter import Parameter def get_dim_act(args): """ Helper function to get dimension and activation at every layer. :param args: :return: """ if not args.act: act = lambda x: x else: act = getattr(F, args.act) acts = [act] * (args.num_layers - 1) dims = [args.feat_dim] + ([args.dim] * (args.num_layers - 1)) if args.task in ['lp', 'rec']: dims += [args.dim] acts += [act] return dims, acts class GraphConvolution(Module): """ Simple GCN layer. """ def __init__(self, in_features, out_features, dropout, act, use_bias): super(GraphConvolution, self).__init__() self.dropout = dropout self.linear = nn.Linear(in_features, out_features, use_bias) self.act = act self.in_features = in_features self.out_features = out_features def forward(self, input): x, adj = input hidden = self.linear.forward(x) hidden = F.dropout(hidden, self.dropout, training=self.training) if adj.is_sparse: support = torch.spmm(adj, hidden) else: support = torch.mm(adj, hidden) output = self.act(support), adj return output def extra_repr(self): return 'input_dim={}, output_dim={}'.format( self.in_features, self.out_features ) class Linear(Module): """ Simple Linear layer with dropout. """ def __init__(self, in_features, out_features, dropout, act, use_bias): super(Linear, self).__init__() self.dropout = dropout self.linear = nn.Linear(in_features, out_features, use_bias) self.act = act def forward(self, x): hidden = self.linear.forward(x) hidden = F.dropout(hidden, self.dropout, training=self.training) out = self.act(hidden) return out class FermiDiracDecoder(Module): """Fermi Dirac to compute edge probabilities based on distances.""" def __init__(self, r, t): super(FermiDiracDecoder, self).__init__() self.r = r self.t = t def forward(self, dist): probs = 1. / (torch.exp((dist - self.r) / self.t) + 1.0) return probs
hgcn-master
layers/layers.py
"""Hyperboloid manifold.""" import torch from manifolds.base import Manifold from utils.math_utils import arcosh, cosh, sinh class Hyperboloid(Manifold): """ Hyperboloid manifold class. We use the following convention: -x0^2 + x1^2 + ... + xd^2 = -K c = 1 / K is the hyperbolic curvature. """ def __init__(self): super(Hyperboloid, self).__init__() self.name = 'Hyperboloid' self.eps = {torch.float32: 1e-7, torch.float64: 1e-15} self.min_norm = 1e-15 self.max_norm = 1e6 def minkowski_dot(self, x, y, keepdim=True): res = torch.sum(x * y, dim=-1) - 2 * x[..., 0] * y[..., 0] if keepdim: res = res.view(res.shape + (1,)) return res def minkowski_norm(self, u, keepdim=True): dot = self.minkowski_dot(u, u, keepdim=keepdim) return torch.sqrt(torch.clamp(dot, min=self.eps[u.dtype])) def sqdist(self, x, y, c): K = 1. / c prod = self.minkowski_dot(x, y) theta = torch.clamp(-prod / K, min=1.0 + self.eps[x.dtype]) sqdist = K * arcosh(theta) ** 2 # clamp distance to avoid nans in Fermi-Dirac decoder return torch.clamp(sqdist, max=50.0) def proj(self, x, c): K = 1. / c d = x.size(-1) - 1 y = x.narrow(-1, 1, d) y_sqnorm = torch.norm(y, p=2, dim=1, keepdim=True) ** 2 mask = torch.ones_like(x) mask[:, 0] = 0 vals = torch.zeros_like(x) vals[:, 0:1] = torch.sqrt(torch.clamp(K + y_sqnorm, min=self.eps[x.dtype])) return vals + mask * x def proj_tan(self, u, x, c): K = 1. / c d = x.size(1) - 1 ux = torch.sum(x.narrow(-1, 1, d) * u.narrow(-1, 1, d), dim=1, keepdim=True) mask = torch.ones_like(u) mask[:, 0] = 0 vals = torch.zeros_like(u) vals[:, 0:1] = ux / torch.clamp(x[:, 0:1], min=self.eps[x.dtype]) return vals + mask * u def proj_tan0(self, u, c): narrowed = u.narrow(-1, 0, 1) vals = torch.zeros_like(u) vals[:, 0:1] = narrowed return u - vals def expmap(self, u, x, c): K = 1. / c sqrtK = K ** 0.5 normu = self.minkowski_norm(u) normu = torch.clamp(normu, max=self.max_norm) theta = normu / sqrtK theta = torch.clamp(theta, min=self.min_norm) result = cosh(theta) * x + sinh(theta) * u / theta return self.proj(result, c) def logmap(self, x, y, c): K = 1. / c xy = torch.clamp(self.minkowski_dot(x, y) + K, max=-self.eps[x.dtype]) - K u = y + xy * x * c normu = self.minkowski_norm(u) normu = torch.clamp(normu, min=self.min_norm) dist = self.sqdist(x, y, c) ** 0.5 result = dist * u / normu return self.proj_tan(result, x, c) def expmap0(self, u, c): K = 1. / c sqrtK = K ** 0.5 d = u.size(-1) - 1 x = u.narrow(-1, 1, d).view(-1, d) x_norm = torch.norm(x, p=2, dim=1, keepdim=True) x_norm = torch.clamp(x_norm, min=self.min_norm) theta = x_norm / sqrtK res = torch.ones_like(u) res[:, 0:1] = sqrtK * cosh(theta) res[:, 1:] = sqrtK * sinh(theta) * x / x_norm return self.proj(res, c) def logmap0(self, x, c): K = 1. / c sqrtK = K ** 0.5 d = x.size(-1) - 1 y = x.narrow(-1, 1, d).view(-1, d) y_norm = torch.norm(y, p=2, dim=1, keepdim=True) y_norm = torch.clamp(y_norm, min=self.min_norm) res = torch.zeros_like(x) theta = torch.clamp(x[:, 0:1] / sqrtK, min=1.0 + self.eps[x.dtype]) res[:, 1:] = sqrtK * arcosh(theta) * y / y_norm return res def mobius_add(self, x, y, c): u = self.logmap0(y, c) v = self.ptransp0(x, u, c) return self.expmap(v, x, c) def mobius_matvec(self, m, x, c): u = self.logmap0(x, c) mu = u @ m.transpose(-1, -2) return self.expmap0(mu, c) def ptransp(self, x, y, u, c): logxy = self.logmap(x, y, c) logyx = self.logmap(y, x, c) sqdist = torch.clamp(self.sqdist(x, y, c), min=self.min_norm) alpha = self.minkowski_dot(logxy, u) / sqdist res = u - alpha * (logxy + logyx) return self.proj_tan(res, y, c) def ptransp0(self, x, u, c): K = 1. / c sqrtK = K ** 0.5 x0 = x.narrow(-1, 0, 1) d = x.size(-1) - 1 y = x.narrow(-1, 1, d) y_norm = torch.clamp(torch.norm(y, p=2, dim=1, keepdim=True), min=self.min_norm) y_normalized = y / y_norm v = torch.ones_like(x) v[:, 0:1] = - y_norm v[:, 1:] = (sqrtK - x0) * y_normalized alpha = torch.sum(y_normalized * u[:, 1:], dim=1, keepdim=True) / sqrtK res = u - alpha * v return self.proj_tan(res, x, c) def to_poincare(self, x, c): K = 1. / c sqrtK = K ** 0.5 d = x.size(-1) - 1 return sqrtK * x.narrow(-1, 1, d) / (x[:, 0:1] + sqrtK)
hgcn-master
manifolds/hyperboloid.py
"""Poincare ball manifold.""" import torch from manifolds.base import Manifold from utils.math_utils import artanh, tanh class PoincareBall(Manifold): """ PoicareBall Manifold class. We use the following convention: x0^2 + x1^2 + ... + xd^2 < 1 / c Note that 1/sqrt(c) is the Poincare ball radius. """ def __init__(self, ): super(PoincareBall, self).__init__() self.name = 'PoincareBall' self.min_norm = 1e-15 self.eps = {torch.float32: 4e-3, torch.float64: 1e-5} def sqdist(self, p1, p2, c): sqrt_c = c ** 0.5 dist_c = artanh( sqrt_c * self.mobius_add(-p1, p2, c, dim=-1).norm(dim=-1, p=2, keepdim=False) ) dist = dist_c * 2 / sqrt_c return dist ** 2 def _lambda_x(self, x, c): x_sqnorm = torch.sum(x.data.pow(2), dim=-1, keepdim=True) return 2 / (1. - c * x_sqnorm).clamp_min(self.min_norm) def egrad2rgrad(self, p, dp, c): lambda_p = self._lambda_x(p, c) dp /= lambda_p.pow(2) return dp def proj(self, x, c): norm = torch.clamp_min(x.norm(dim=-1, keepdim=True, p=2), self.min_norm) maxnorm = (1 - self.eps[x.dtype]) / (c ** 0.5) cond = norm > maxnorm projected = x / norm * maxnorm return torch.where(cond, projected, x) def proj_tan(self, u, p, c): return u def proj_tan0(self, u, c): return u def expmap(self, u, p, c): sqrt_c = c ** 0.5 u_norm = u.norm(dim=-1, p=2, keepdim=True).clamp_min(self.min_norm) second_term = ( tanh(sqrt_c / 2 * self._lambda_x(p, c) * u_norm) * u / (sqrt_c * u_norm) ) gamma_1 = self.mobius_add(p, second_term, c) return gamma_1 def logmap(self, p1, p2, c): sub = self.mobius_add(-p1, p2, c) sub_norm = sub.norm(dim=-1, p=2, keepdim=True).clamp_min(self.min_norm) lam = self._lambda_x(p1, c) sqrt_c = c ** 0.5 return 2 / sqrt_c / lam * artanh(sqrt_c * sub_norm) * sub / sub_norm def expmap0(self, u, c): sqrt_c = c ** 0.5 u_norm = torch.clamp_min(u.norm(dim=-1, p=2, keepdim=True), self.min_norm) gamma_1 = tanh(sqrt_c * u_norm) * u / (sqrt_c * u_norm) return gamma_1 def logmap0(self, p, c): sqrt_c = c ** 0.5 p_norm = p.norm(dim=-1, p=2, keepdim=True).clamp_min(self.min_norm) scale = 1. / sqrt_c * artanh(sqrt_c * p_norm) / p_norm return scale * p def mobius_add(self, x, y, c, dim=-1): x2 = x.pow(2).sum(dim=dim, keepdim=True) y2 = y.pow(2).sum(dim=dim, keepdim=True) xy = (x * y).sum(dim=dim, keepdim=True) num = (1 + 2 * c * xy + c * y2) * x + (1 - c * x2) * y denom = 1 + 2 * c * xy + c ** 2 * x2 * y2 return num / denom.clamp_min(self.min_norm) def mobius_matvec(self, m, x, c): sqrt_c = c ** 0.5 x_norm = x.norm(dim=-1, keepdim=True, p=2).clamp_min(self.min_norm) mx = x @ m.transpose(-1, -2) mx_norm = mx.norm(dim=-1, keepdim=True, p=2).clamp_min(self.min_norm) res_c = tanh(mx_norm / x_norm * artanh(sqrt_c * x_norm)) * mx / (mx_norm * sqrt_c) cond = (mx == 0).prod(-1, keepdim=True, dtype=torch.uint8) res_0 = torch.zeros(1, dtype=res_c.dtype, device=res_c.device) res = torch.where(cond, res_0, res_c) return res def init_weights(self, w, c, irange=1e-5): w.data.uniform_(-irange, irange) return w def _gyration(self, u, v, w, c, dim: int = -1): u2 = u.pow(2).sum(dim=dim, keepdim=True) v2 = v.pow(2).sum(dim=dim, keepdim=True) uv = (u * v).sum(dim=dim, keepdim=True) uw = (u * w).sum(dim=dim, keepdim=True) vw = (v * w).sum(dim=dim, keepdim=True) c2 = c ** 2 a = -c2 * uw * v2 + c * vw + 2 * c2 * uv * vw b = -c2 * vw * u2 - c * uw d = 1 + 2 * c * uv + c2 * u2 * v2 return w + 2 * (a * u + b * v) / d.clamp_min(self.min_norm) def inner(self, x, c, u, v=None, keepdim=False): if v is None: v = u lambda_x = self._lambda_x(x, c) return lambda_x ** 2 * (u * v).sum(dim=-1, keepdim=keepdim) def ptransp(self, x, y, u, c): lambda_x = self._lambda_x(x, c) lambda_y = self._lambda_x(y, c) return self._gyration(y, -x, u, c) * lambda_x / lambda_y def ptransp_(self, x, y, u, c): lambda_x = self._lambda_x(x, c) lambda_y = self._lambda_x(y, c) return self._gyration(y, -x, u, c) * lambda_x / lambda_y def ptransp0(self, x, u, c): lambda_x = self._lambda_x(x, c) return 2 * u / lambda_x.clamp_min(self.min_norm) def to_hyperboloid(self, x, c): K = 1./ c sqrtK = K ** 0.5 sqnorm = torch.norm(x, p=2, dim=1, keepdim=True) ** 2 return sqrtK * torch.cat([K + sqnorm, 2 * sqrtK * x], dim=1) / (K - sqnorm)
hgcn-master
manifolds/poincare.py
from .base import ManifoldParameter from .euclidean import Euclidean from .hyperboloid import Hyperboloid from .poincare import PoincareBall
hgcn-master
manifolds/__init__.py
"""Base manifold.""" from torch.nn import Parameter class Manifold(object): """ Abstract class to define operations on a manifold. """ def __init__(self): super().__init__() self.eps = 10e-8 def sqdist(self, p1, p2, c): """Squared distance between pairs of points.""" raise NotImplementedError def egrad2rgrad(self, p, dp, c): """Converts Euclidean Gradient to Riemannian Gradients.""" raise NotImplementedError def proj(self, p, c): """Projects point p on the manifold.""" raise NotImplementedError def proj_tan(self, u, p, c): """Projects u on the tangent space of p.""" raise NotImplementedError def proj_tan0(self, u, c): """Projects u on the tangent space of the origin.""" raise NotImplementedError def expmap(self, u, p, c): """Exponential map of u at point p.""" raise NotImplementedError def logmap(self, p1, p2, c): """Logarithmic map of point p1 at point p2.""" raise NotImplementedError def expmap0(self, u, c): """Exponential map of u at the origin.""" raise NotImplementedError def logmap0(self, p, c): """Logarithmic map of point p at the origin.""" raise NotImplementedError def mobius_add(self, x, y, c, dim=-1): """Adds points x and y.""" raise NotImplementedError def mobius_matvec(self, m, x, c): """Performs hyperboic martrix-vector multiplication.""" raise NotImplementedError def init_weights(self, w, c, irange=1e-5): """Initializes random weigths on the manifold.""" raise NotImplementedError def inner(self, p, c, u, v=None, keepdim=False): """Inner product for tangent vectors at point x.""" raise NotImplementedError def ptransp(self, x, y, u, c): """Parallel transport of u from x to y.""" raise NotImplementedError def ptransp0(self, x, u, c): """Parallel transport of u from the origin to y.""" raise NotImplementedError class ManifoldParameter(Parameter): """ Subclass of torch.nn.Parameter for Riemannian optimization. """ def __new__(cls, data, requires_grad, manifold, c): return Parameter.__new__(cls, data, requires_grad) def __init__(self, data, requires_grad, manifold, c): self.c = c self.manifold = manifold def __repr__(self): return '{} Parameter containing:\n'.format(self.manifold.name) + super(Parameter, self).__repr__()
hgcn-master
manifolds/base.py
"""Euclidean manifold.""" from manifolds.base import Manifold class Euclidean(Manifold): """ Euclidean Manifold class. """ def __init__(self): super(Euclidean, self).__init__() self.name = 'Euclidean' def normalize(self, p): dim = p.size(-1) p.view(-1, dim).renorm_(2, 0, 1.) return p def sqdist(self, p1, p2, c): return (p1 - p2).pow(2).sum(dim=-1) def egrad2rgrad(self, p, dp, c): return dp def proj(self, p, c): return p def proj_tan(self, u, p, c): return u def proj_tan0(self, u, c): return u def expmap(self, u, p, c): return p + u def logmap(self, p1, p2, c): return p2 - p1 def expmap0(self, u, c): return u def logmap0(self, p, c): return p def mobius_add(self, x, y, c, dim=-1): return x + y def mobius_matvec(self, m, x, c): mx = x @ m.transpose(-1, -2) return mx def init_weights(self, w, c, irange=1e-5): w.data.uniform_(-irange, irange) return w def inner(self, p, c, u, v=None, keepdim=False): if v is None: v = u return (u * v).sum(dim=-1, keepdim=keepdim) def ptransp(self, x, y, v, c): return v def ptransp0(self, x, v, c): return x + v
hgcn-master
manifolds/euclidean.py
"""Math utils functions.""" import torch def cosh(x, clamp=15): return x.clamp(-clamp, clamp).cosh() def sinh(x, clamp=15): return x.clamp(-clamp, clamp).sinh() def tanh(x, clamp=15): return x.clamp(-clamp, clamp).tanh() def arcosh(x): return Arcosh.apply(x) def arsinh(x): return Arsinh.apply(x) def artanh(x): return Artanh.apply(x) class Artanh(torch.autograd.Function): @staticmethod def forward(ctx, x): x = x.clamp(-1 + 1e-15, 1 - 1e-15) ctx.save_for_backward(x) z = x.double() return (torch.log_(1 + z).sub_(torch.log_(1 - z))).mul_(0.5).to(x.dtype) @staticmethod def backward(ctx, grad_output): input, = ctx.saved_tensors return grad_output / (1 - input ** 2) class Arsinh(torch.autograd.Function): @staticmethod def forward(ctx, x): ctx.save_for_backward(x) z = x.double() return (z + torch.sqrt_(1 + z.pow(2))).clamp_min_(1e-15).log_().to(x.dtype) @staticmethod def backward(ctx, grad_output): input, = ctx.saved_tensors return grad_output / (1 + input ** 2) ** 0.5 class Arcosh(torch.autograd.Function): @staticmethod def forward(ctx, x): x = x.clamp(min=1.0 + 1e-15) ctx.save_for_backward(x) z = x.double() return (z + torch.sqrt_(z.pow(2) - 1)).clamp_min_(1e-15).log_().to(x.dtype) @staticmethod def backward(ctx, grad_output): input, = ctx.saved_tensors return grad_output / (input ** 2 - 1) ** 0.5
hgcn-master
utils/math_utils.py
import os import numpy as np import torch import torch.nn.functional as F import torch.nn.modules.loss def format_metrics(metrics, split): """Format metric in metric dict for logging.""" return " ".join( ["{}_{}: {:.4f}".format(split, metric_name, metric_val) for metric_name, metric_val in metrics.items()]) def get_dir_name(models_dir): """Gets a directory to save the model. If the directory already exists, then append a new integer to the end of it. This method is useful so that we don't overwrite existing models when launching new jobs. Args: models_dir: The directory where all the models are. Returns: The name of a new directory to save the training logs and model weights. """ if not os.path.exists(models_dir): save_dir = os.path.join(models_dir, '0') os.makedirs(save_dir) else: existing_dirs = np.array( [ d for d in os.listdir(models_dir) if os.path.isdir(os.path.join(models_dir, d)) ] ).astype(np.int) if len(existing_dirs) > 0: dir_id = str(existing_dirs.max() + 1) else: dir_id = "1" save_dir = os.path.join(models_dir, dir_id) os.makedirs(save_dir) return save_dir def add_flags_from_config(parser, config_dict): """ Adds a flag (and default value) to an ArgumentParser for each parameter in a config """ def OrNone(default): def func(x): # Convert "none" to proper None object if x.lower() == "none": return None # If default is None (and x is not None), return x without conversion as str elif default is None: return str(x) # Otherwise, default has non-None type; convert x to that type else: return type(default)(x) return func for param in config_dict: default, description = config_dict[param] try: if isinstance(default, dict): parser = add_flags_from_config(parser, default) elif isinstance(default, list): if len(default) > 0: # pass a list as argument parser.add_argument( f"--{param}", action="append", type=type(default[0]), default=default, help=description ) else: pass parser.add_argument(f"--{param}", action="append", default=default, help=description) else: pass parser.add_argument(f"--{param}", type=OrNone(default), default=default, help=description) except argparse.ArgumentError: print( f"Could not add flag for param {param} because it was already present." ) return parser
hgcn-master
utils/train_utils.py
hgcn-master
utils/__init__.py
import os import pickle as pkl import sys import time import networkx as nx import numpy as np from tqdm import tqdm from utils.data_utils import load_data_lp def hyperbolicity_sample(G, num_samples=50000): curr_time = time.time() hyps = [] for i in tqdm(range(num_samples)): curr_time = time.time() node_tuple = np.random.choice(G.nodes(), 4, replace=False) s = [] try: d01 = nx.shortest_path_length(G, source=node_tuple[0], target=node_tuple[1], weight=None) d23 = nx.shortest_path_length(G, source=node_tuple[2], target=node_tuple[3], weight=None) d02 = nx.shortest_path_length(G, source=node_tuple[0], target=node_tuple[2], weight=None) d13 = nx.shortest_path_length(G, source=node_tuple[1], target=node_tuple[3], weight=None) d03 = nx.shortest_path_length(G, source=node_tuple[0], target=node_tuple[3], weight=None) d12 = nx.shortest_path_length(G, source=node_tuple[1], target=node_tuple[2], weight=None) s.append(d01 + d23) s.append(d02 + d13) s.append(d03 + d12) s.sort() hyps.append((s[-1] - s[-2]) / 2) except Exception as e: continue print('Time for hyp: ', time.time() - curr_time) return max(hyps) if __name__ == '__main__': dataset = 'pubmed' data_path = os.path.join(os.environ['DATAPATH'], dataset) data = load_data_lp(dataset, use_feats=False, data_path=data_path) graph = nx.from_scipy_sparse_matrix(data['adj_train']) print('Computing hyperbolicity', graph.number_of_nodes(), graph.number_of_edges()) hyp = hyperbolicity_sample(graph) print('Hyp: ', hyp)
hgcn-master
utils/hyperbolicity.py
"""Data utils functions for pre-processing and data loading.""" import os import pickle as pkl import sys import networkx as nx import numpy as np import scipy.sparse as sp import torch def load_data(args, datapath): if args.task == 'nc': data = load_data_nc(args.dataset, args.use_feats, datapath, args.split_seed) else: data = load_data_lp(args.dataset, args.use_feats, datapath) adj = data['adj_train'] if args.task == 'lp': adj_train, train_edges, train_edges_false, val_edges, val_edges_false, test_edges, test_edges_false = mask_edges( adj, args.val_prop, args.test_prop, args.split_seed ) data['adj_train'] = adj_train data['train_edges'], data['train_edges_false'] = train_edges, train_edges_false data['val_edges'], data['val_edges_false'] = val_edges, val_edges_false data['test_edges'], data['test_edges_false'] = test_edges, test_edges_false data['adj_train_norm'], data['features'] = process( data['adj_train'], data['features'], args.normalize_adj, args.normalize_feats ) if args.dataset == 'airport': data['features'] = augment(data['adj_train'], data['features']) return data # ############### FEATURES PROCESSING #################################### def process(adj, features, normalize_adj, normalize_feats): if sp.isspmatrix(features): features = np.array(features.todense()) if normalize_feats: features = normalize(features) features = torch.Tensor(features) if normalize_adj: adj = normalize(adj + sp.eye(adj.shape[0])) adj = sparse_mx_to_torch_sparse_tensor(adj) return adj, features def normalize(mx): """Row-normalize sparse matrix.""" rowsum = np.array(mx.sum(1)) r_inv = np.power(rowsum, -1).flatten() r_inv[np.isinf(r_inv)] = 0. r_mat_inv = sp.diags(r_inv) mx = r_mat_inv.dot(mx) return mx def sparse_mx_to_torch_sparse_tensor(sparse_mx): """Convert a scipy sparse matrix to a torch sparse tensor.""" sparse_mx = sparse_mx.tocoo() indices = torch.from_numpy( np.vstack((sparse_mx.row, sparse_mx.col)).astype(np.int64) ) values = torch.Tensor(sparse_mx.data) shape = torch.Size(sparse_mx.shape) return torch.sparse.FloatTensor(indices, values, shape) def augment(adj, features, normalize_feats=True): deg = np.squeeze(np.sum(adj, axis=0).astype(int)) deg[deg > 5] = 5 deg_onehot = torch.tensor(np.eye(6)[deg], dtype=torch.float).squeeze() const_f = torch.ones(features.size(0), 1) features = torch.cat((features, deg_onehot, const_f), dim=1) return features # ############### DATA SPLITS ##################################################### def mask_edges(adj, val_prop, test_prop, seed): np.random.seed(seed) # get tp edges x, y = sp.triu(adj).nonzero() pos_edges = np.array(list(zip(x, y))) np.random.shuffle(pos_edges) # get tn edges x, y = sp.triu(sp.csr_matrix(1. - adj.toarray())).nonzero() neg_edges = np.array(list(zip(x, y))) np.random.shuffle(neg_edges) m_pos = len(pos_edges) n_val = int(m_pos * val_prop) n_test = int(m_pos * test_prop) val_edges, test_edges, train_edges = pos_edges[:n_val], pos_edges[n_val:n_test + n_val], pos_edges[n_test + n_val:] val_edges_false, test_edges_false = neg_edges[:n_val], neg_edges[n_val:n_test + n_val] train_edges_false = np.concatenate([neg_edges, val_edges, test_edges], axis=0) adj_train = sp.csr_matrix((np.ones(train_edges.shape[0]), (train_edges[:, 0], train_edges[:, 1])), shape=adj.shape) adj_train = adj_train + adj_train.T return adj_train, torch.LongTensor(train_edges), torch.LongTensor(train_edges_false), torch.LongTensor(val_edges), \ torch.LongTensor(val_edges_false), torch.LongTensor(test_edges), torch.LongTensor( test_edges_false) def split_data(labels, val_prop, test_prop, seed): np.random.seed(seed) nb_nodes = labels.shape[0] all_idx = np.arange(nb_nodes) pos_idx = labels.nonzero()[0] neg_idx = (1. - labels).nonzero()[0] np.random.shuffle(pos_idx) np.random.shuffle(neg_idx) pos_idx = pos_idx.tolist() neg_idx = neg_idx.tolist() nb_pos_neg = min(len(pos_idx), len(neg_idx)) nb_val = round(val_prop * nb_pos_neg) nb_test = round(test_prop * nb_pos_neg) idx_val_pos, idx_test_pos, idx_train_pos = pos_idx[:nb_val], pos_idx[nb_val:nb_val + nb_test], pos_idx[ nb_val + nb_test:] idx_val_neg, idx_test_neg, idx_train_neg = neg_idx[:nb_val], neg_idx[nb_val:nb_val + nb_test], neg_idx[ nb_val + nb_test:] return idx_val_pos + idx_val_neg, idx_test_pos + idx_test_neg, idx_train_pos + idx_train_neg def bin_feat(feat, bins): digitized = np.digitize(feat, bins) return digitized - digitized.min() # ############### LINK PREDICTION DATA LOADERS #################################### def load_data_lp(dataset, use_feats, data_path): if dataset in ['cora', 'pubmed']: adj, features = load_citation_data(dataset, use_feats, data_path)[:2] elif dataset == 'disease_lp': adj, features = load_synthetic_data(dataset, use_feats, data_path)[:2] elif dataset == 'airport': adj, features = load_data_airport(dataset, data_path, return_label=False) else: raise FileNotFoundError('Dataset {} is not supported.'.format(dataset)) data = {'adj_train': adj, 'features': features} return data # ############### NODE CLASSIFICATION DATA LOADERS #################################### def load_data_nc(dataset, use_feats, data_path, split_seed): if dataset in ['cora', 'pubmed']: adj, features, labels, idx_train, idx_val, idx_test = load_citation_data( dataset, use_feats, data_path, split_seed ) else: if dataset == 'disease_nc': adj, features, labels = load_synthetic_data(dataset, use_feats, data_path) val_prop, test_prop = 0.10, 0.60 elif dataset == 'airport': adj, features, labels = load_data_airport(dataset, data_path, return_label=True) val_prop, test_prop = 0.15, 0.15 else: raise FileNotFoundError('Dataset {} is not supported.'.format(dataset)) idx_val, idx_test, idx_train = split_data(labels, val_prop, test_prop, seed=split_seed) labels = torch.LongTensor(labels) data = {'adj_train': adj, 'features': features, 'labels': labels, 'idx_train': idx_train, 'idx_val': idx_val, 'idx_test': idx_test} return data # ############### DATASETS #################################### def load_citation_data(dataset_str, use_feats, data_path, split_seed=None): names = ['x', 'y', 'tx', 'ty', 'allx', 'ally', 'graph'] objects = [] for i in range(len(names)): with open(os.path.join(data_path, "ind.{}.{}".format(dataset_str, names[i])), 'rb') as f: if sys.version_info > (3, 0): objects.append(pkl.load(f, encoding='latin1')) else: objects.append(pkl.load(f)) x, y, tx, ty, allx, ally, graph = tuple(objects) test_idx_reorder = parse_index_file(os.path.join(data_path, "ind.{}.test.index".format(dataset_str))) test_idx_range = np.sort(test_idx_reorder) features = sp.vstack((allx, tx)).tolil() features[test_idx_reorder, :] = features[test_idx_range, :] labels = np.vstack((ally, ty)) labels[test_idx_reorder, :] = labels[test_idx_range, :] labels = np.argmax(labels, 1) idx_test = test_idx_range.tolist() idx_train = list(range(len(y))) idx_val = range(len(y), len(y) + 500) adj = nx.adjacency_matrix(nx.from_dict_of_lists(graph)) if not use_feats: features = sp.eye(adj.shape[0]) return adj, features, labels, idx_train, idx_val, idx_test def parse_index_file(filename): index = [] for line in open(filename): index.append(int(line.strip())) return index def load_synthetic_data(dataset_str, use_feats, data_path): object_to_idx = {} idx_counter = 0 edges = [] with open(os.path.join(data_path, "{}.edges.csv".format(dataset_str)), 'r') as f: all_edges = f.readlines() for line in all_edges: n1, n2 = line.rstrip().split(',') if n1 in object_to_idx: i = object_to_idx[n1] else: i = idx_counter object_to_idx[n1] = i idx_counter += 1 if n2 in object_to_idx: j = object_to_idx[n2] else: j = idx_counter object_to_idx[n2] = j idx_counter += 1 edges.append((i, j)) adj = np.zeros((len(object_to_idx), len(object_to_idx))) for i, j in edges: adj[i, j] = 1. # comment this line for directed adjacency matrix adj[j, i] = 1. if use_feats: features = sp.load_npz(os.path.join(data_path, "{}.feats.npz".format(dataset_str))) else: features = sp.eye(adj.shape[0]) labels = np.load(os.path.join(data_path, "{}.labels.npy".format(dataset_str))) return sp.csr_matrix(adj), features, labels def load_data_airport(dataset_str, data_path, return_label=False): graph = pkl.load(open(os.path.join(data_path, dataset_str + '.p'), 'rb')) adj = nx.adjacency_matrix(graph) features = np.array([graph.node[u]['feat'] for u in graph.nodes()]) if return_label: label_idx = 4 labels = features[:, label_idx] features = features[:, :label_idx] labels = bin_feat(labels, bins=[7.0/7, 8.0/7, 9.0/7]) return sp.csr_matrix(adj), features, labels else: return sp.csr_matrix(adj), features
hgcn-master
utils/data_utils.py
from sklearn.metrics import average_precision_score, accuracy_score, f1_score def acc_f1(output, labels, average='binary'): preds = output.max(1)[1].type_as(labels) if preds.is_cuda: preds = preds.cpu() labels = labels.cpu() accuracy = accuracy_score(preds, labels) f1 = f1_score(preds, labels, average=average) return accuracy, f1
hgcn-master
utils/eval_utils.py
"""Base model class.""" import numpy as np from sklearn.metrics import roc_auc_score, average_precision_score import torch import torch.nn as nn import torch.nn.functional as F from layers.layers import FermiDiracDecoder import layers.hyp_layers as hyp_layers import manifolds import models.encoders as encoders from models.decoders import model2decoder from utils.eval_utils import acc_f1 class BaseModel(nn.Module): """ Base model for graph embedding tasks. """ def __init__(self, args): super(BaseModel, self).__init__() self.manifold_name = args.manifold if args.c is not None: self.c = torch.tensor([args.c]) if not args.cuda == -1: self.c = self.c.to(args.device) else: self.c = nn.Parameter(torch.Tensor([1.])) self.manifold = getattr(manifolds, self.manifold_name)() if self.manifold.name == 'Hyperboloid': args.feat_dim = args.feat_dim + 1 self.nnodes = args.n_nodes self.encoder = getattr(encoders, args.model)(self.c, args) def encode(self, x, adj): if self.manifold.name == 'Hyperboloid': o = torch.zeros_like(x) x = torch.cat([o[:, 0:1], x], dim=1) h = self.encoder.encode(x, adj) return h def compute_metrics(self, embeddings, data, split): raise NotImplementedError def init_metric_dict(self): raise NotImplementedError def has_improved(self, m1, m2): raise NotImplementedError class NCModel(BaseModel): """ Base model for node classification task. """ def __init__(self, args): super(NCModel, self).__init__(args) self.decoder = model2decoder[args.model](self.c, args) if args.n_classes > 2: self.f1_average = 'micro' else: self.f1_average = 'binary' if args.pos_weight: self.weights = torch.Tensor([1., 1. / data['labels'][idx_train].mean()]) else: self.weights = torch.Tensor([1.] * args.n_classes) if not args.cuda == -1: self.weights = self.weights.to(args.device) def decode(self, h, adj, idx): output = self.decoder.decode(h, adj) return F.log_softmax(output[idx], dim=1) def compute_metrics(self, embeddings, data, split): idx = data[f'idx_{split}'] output = self.decode(embeddings, data['adj_train_norm'], idx) loss = F.nll_loss(output, data['labels'][idx], self.weights) acc, f1 = acc_f1(output, data['labels'][idx], average=self.f1_average) metrics = {'loss': loss, 'acc': acc, 'f1': f1} return metrics def init_metric_dict(self): return {'acc': -1, 'f1': -1} def has_improved(self, m1, m2): return m1["f1"] < m2["f1"] class LPModel(BaseModel): """ Base model for link prediction task. """ def __init__(self, args): super(LPModel, self).__init__(args) self.dc = FermiDiracDecoder(r=args.r, t=args.t) self.nb_false_edges = args.nb_false_edges self.nb_edges = args.nb_edges def decode(self, h, idx): if self.manifold_name == 'Euclidean': h = self.manifold.normalize(h) emb_in = h[idx[:, 0], :] emb_out = h[idx[:, 1], :] sqdist = self.manifold.sqdist(emb_in, emb_out, self.c) probs = self.dc.forward(sqdist) return probs def compute_metrics(self, embeddings, data, split): if split == 'train': edges_false = data[f'{split}_edges_false'][np.random.randint(0, self.nb_false_edges, self.nb_edges)] else: edges_false = data[f'{split}_edges_false'] pos_scores = self.decode(embeddings, data[f'{split}_edges']) neg_scores = self.decode(embeddings, edges_false) loss = F.binary_cross_entropy(pos_scores, torch.ones_like(pos_scores)) loss += F.binary_cross_entropy(neg_scores, torch.zeros_like(neg_scores)) if pos_scores.is_cuda: pos_scores = pos_scores.cpu() neg_scores = neg_scores.cpu() labels = [1] * pos_scores.shape[0] + [0] * neg_scores.shape[0] preds = list(pos_scores.data.numpy()) + list(neg_scores.data.numpy()) roc = roc_auc_score(labels, preds) ap = average_precision_score(labels, preds) metrics = {'loss': loss, 'roc': roc, 'ap': ap} return metrics def init_metric_dict(self): return {'roc': -1, 'ap': -1} def has_improved(self, m1, m2): return 0.5 * (m1['roc'] + m1['ap']) < 0.5 * (m2['roc'] + m2['ap'])
hgcn-master
models/base_models.py
"""Graph decoders.""" import manifolds import torch.nn as nn import torch.nn.functional as F from layers.att_layers import GraphAttentionLayer from layers.layers import GraphConvolution, Linear class Decoder(nn.Module): """ Decoder abstract class for node classification tasks. """ def __init__(self, c): super(Decoder, self).__init__() self.c = c def decode(self, x, adj): if self.decode_adj: input = (x, adj) probs, _ = self.cls.forward(input) else: probs = self.cls.forward(x) return probs class GCNDecoder(Decoder): """ Graph Convolution Decoder. """ def __init__(self, c, args): super(GCNDecoder, self).__init__(c) act = lambda x: x self.cls = GraphConvolution(args.dim, args.n_classes, args.dropout, act, args.bias) self.decode_adj = True class GATDecoder(Decoder): """ Graph Attention Decoder. """ def __init__(self, c, args): super(GATDecoder, self).__init__(c) self.cls = GraphAttentionLayer(args.dim, args.n_classes, args.dropout, F.elu, args.alpha, 1, True) self.decode_adj = True class LinearDecoder(Decoder): """ MLP Decoder for Hyperbolic/Euclidean node classification models. """ def __init__(self, c, args): super(LinearDecoder, self).__init__(c) self.manifold = getattr(manifolds, args.manifold)() self.input_dim = args.dim self.output_dim = args.n_classes self.bias = args.bias self.cls = Linear(self.input_dim, self.output_dim, args.dropout, lambda x: x, self.bias) self.decode_adj = False def decode(self, x, adj): h = self.manifold.proj_tan0(self.manifold.logmap0(x, c=self.c), c=self.c) return super(LinearDecoder, self).decode(h, adj) def extra_repr(self): return 'in_features={}, out_features={}, bias={}, c={}'.format( self.input_dim, self.output_dim, self.bias, self.c ) model2decoder = { 'GCN': GCNDecoder, 'GAT': GATDecoder, 'HNN': LinearDecoder, 'HGCN': LinearDecoder, 'MLP': LinearDecoder, 'Shallow': LinearDecoder, }
hgcn-master
models/decoders.py
hgcn-master
models/__init__.py
"""Graph encoders.""" import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import manifolds from layers.att_layers import GraphAttentionLayer import layers.hyp_layers as hyp_layers from layers.layers import GraphConvolution, Linear, get_dim_act import utils.math_utils as pmath class Encoder(nn.Module): """ Encoder abstract class. """ def __init__(self, c): super(Encoder, self).__init__() self.c = c def encode(self, x, adj): if self.encode_graph: input = (x, adj) output, _ = self.layers.forward(input) else: output = self.layers.forward(x) return output class MLP(Encoder): """ Multi-layer perceptron. """ def __init__(self, c, args): super(MLP, self).__init__(c) assert args.num_layers > 0 dims, acts = get_dim_act(args) layers = [] for i in range(len(dims) - 1): in_dim, out_dim = dims[i], dims[i + 1] act = acts[i] layers.append(Linear(in_dim, out_dim, args.dropout, act, args.bias)) self.layers = nn.Sequential(*layers) self.encode_graph = False class HNN(Encoder): """ Hyperbolic Neural Networks. """ def __init__(self, c, args): super(HNN, self).__init__(c) self.manifold = getattr(manifolds, args.manifold)() assert args.num_layers > 1 dims, acts, _ = hyp_layers.get_dim_act_curv(args) hnn_layers = [] for i in range(len(dims) - 1): in_dim, out_dim = dims[i], dims[i + 1] act = acts[i] hnn_layers.append( hyp_layers.HNNLayer( self.manifold, in_dim, out_dim, self.c, args.dropout, act, args.bias) ) self.layers = nn.Sequential(*hnn_layers) self.encode_graph = False def encode(self, x, adj): x_hyp = self.manifold.proj(self.manifold.expmap0(self.manifold.proj_tan0(x, self.c), c=self.c), c=self.c) return super(HNN, self).encode(x_hyp, adj) class GCN(Encoder): """ Graph Convolution Networks. """ def __init__(self, c, args): super(GCN, self).__init__(c) assert args.num_layers > 0 dims, acts = get_dim_act(args) gc_layers = [] for i in range(len(dims) - 1): in_dim, out_dim = dims[i], dims[i + 1] act = acts[i] gc_layers.append(GraphConvolution(in_dim, out_dim, args.dropout, act, args.bias)) self.layers = nn.Sequential(*gc_layers) self.encode_graph = True class HGCN(Encoder): """ Hyperbolic-GCN. """ def __init__(self, c, args): super(HGCN, self).__init__(c) self.manifold = getattr(manifolds, args.manifold)() assert args.num_layers > 1 dims, acts, self.curvatures = hyp_layers.get_dim_act_curv(args) self.curvatures.append(self.c) hgc_layers = [] for i in range(len(dims) - 1): c_in, c_out = self.curvatures[i], self.curvatures[i + 1] in_dim, out_dim = dims[i], dims[i + 1] act = acts[i] hgc_layers.append( hyp_layers.HyperbolicGraphConvolution( self.manifold, in_dim, out_dim, c_in, c_out, args.dropout, act, args.bias, args.use_att, args.local_agg ) ) self.layers = nn.Sequential(*hgc_layers) self.encode_graph = True def encode(self, x, adj): x_tan = self.manifold.proj_tan0(x, self.curvatures[0]) x_hyp = self.manifold.expmap0(x_tan, c=self.curvatures[0]) x_hyp = self.manifold.proj(x_hyp, c=self.curvatures[0]) return super(HGCN, self).encode(x_hyp, adj) class GAT(Encoder): """ Graph Attention Networks. """ def __init__(self, c, args): super(GAT, self).__init__(c) assert args.num_layers > 0 dims, acts = get_dim_act(args) gat_layers = [] for i in range(len(dims) - 1): in_dim, out_dim = dims[i], dims[i + 1] act = acts[i] assert dims[i + 1] % args.n_heads == 0 out_dim = dims[i + 1] // args.n_heads concat = True gat_layers.append( GraphAttentionLayer(in_dim, out_dim, args.dropout, act, args.alpha, args.n_heads, concat)) self.layers = nn.Sequential(*gat_layers) self.encode_graph = True class Shallow(Encoder): """ Shallow Embedding method. Learns embeddings or loads pretrained embeddings and uses an MLP for classification. """ def __init__(self, c, args): super(Shallow, self).__init__(c) self.manifold = getattr(manifolds, args.manifold)() self.use_feats = args.use_feats weights = torch.Tensor(args.n_nodes, args.dim) if not args.pretrained_embeddings: weights = self.manifold.init_weights(weights, self.c) trainable = True else: weights = torch.Tensor(np.load(args.pretrained_embeddings)) assert weights.shape[0] == args.n_nodes, "The embeddings you passed seem to be for another dataset." trainable = False self.lt = manifolds.ManifoldParameter(weights, trainable, self.manifold, self.c) self.all_nodes = torch.LongTensor(list(range(args.n_nodes))) layers = [] if args.pretrained_embeddings is not None and args.num_layers > 0: # MLP layers after pre-trained embeddings dims, acts = get_dim_act(args) if self.use_feats: dims[0] = args.feat_dim + weights.shape[1] else: dims[0] = weights.shape[1] for i in range(len(dims) - 1): in_dim, out_dim = dims[i], dims[i + 1] act = acts[i] layers.append(Linear(in_dim, out_dim, args.dropout, act, args.bias)) self.layers = nn.Sequential(*layers) self.encode_graph = False def encode(self, x, adj): h = self.lt[self.all_nodes, :] if self.use_feats: h = torch.cat((h, x), 1) return super(Shallow, self).encode(h, adj)
hgcn-master
models/encoders.py
from torch.optim import Adam from .radam import RiemannianAdam
hgcn-master
optimizers/__init__.py
"""Riemannian adam optimizer geoopt implementation (https://github.com/geoopt/).""" import torch.optim from manifolds import Euclidean, ManifoldParameter # in order not to create it at each iteration _default_manifold = Euclidean() class OptimMixin(object): def __init__(self, *args, stabilize=None, **kwargs): self._stabilize = stabilize super().__init__(*args, **kwargs) def stabilize_group(self, group): pass def stabilize(self): """Stabilize parameters if they are off-manifold due to numerical reasons """ for group in self.param_groups: self.stabilize_group(group) def copy_or_set_(dest, source): """ A workaround to respect strides of :code:`dest` when copying :code:`source` (https://github.com/geoopt/geoopt/issues/70) Parameters ---------- dest : torch.Tensor Destination tensor where to store new data source : torch.Tensor Source data to put in the new tensor Returns ------- dest torch.Tensor, modified inplace """ if dest.stride() != source.stride(): return dest.copy_(source) else: return dest.set_(source) class RiemannianAdam(OptimMixin, torch.optim.Adam): r"""Riemannian Adam with the same API as :class:`torch.optim.Adam` Parameters ---------- params : iterable iterable of parameters to optimize or dicts defining parameter groups lr : float (optional) learning rate (default: 1e-3) betas : Tuple[float, float] (optional) coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) eps : float (optional) term added to the denominator to improve numerical stability (default: 1e-8) weight_decay : float (optional) weight decay (L2 penalty) (default: 0) amsgrad : bool (optional) whether to use the AMSGrad variant of this algorithm from the paper `On the Convergence of Adam and Beyond`_ (default: False) Other Parameters ---------------- stabilize : int Stabilize parameters if they are off-manifold due to numerical reasons every ``stabilize`` steps (default: ``None`` -- no stabilize) .. _On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ """ def step(self, closure=None): """Performs a single optimization step. Arguments --------- closure : callable (optional) A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() with torch.no_grad(): for group in self.param_groups: if "step" not in group: group["step"] = 0 betas = group["betas"] weight_decay = group["weight_decay"] eps = group["eps"] learning_rate = group["lr"] amsgrad = group["amsgrad"] for point in group["params"]: grad = point.grad if grad is None: continue if isinstance(point, (ManifoldParameter)): manifold = point.manifold c = point.c else: manifold = _default_manifold c = None if grad.is_sparse: raise RuntimeError( "Riemannian Adam does not support sparse gradients yet (PR is welcome)" ) state = self.state[point] # State initialization if len(state) == 0: state["step"] = 0 # Exponential moving average of gradient values state["exp_avg"] = torch.zeros_like(point) # Exponential moving average of squared gradient values state["exp_avg_sq"] = torch.zeros_like(point) if amsgrad: # Maintains max of all exp. moving avg. of sq. grad. values state["max_exp_avg_sq"] = torch.zeros_like(point) # make local variables for easy access exp_avg = state["exp_avg"] exp_avg_sq = state["exp_avg_sq"] # actual step grad.add_(weight_decay, point) grad = manifold.egrad2rgrad(point, grad, c) exp_avg.mul_(betas[0]).add_(1 - betas[0], grad) exp_avg_sq.mul_(betas[1]).add_( 1 - betas[1], manifold.inner(point, c, grad, keepdim=True) ) if amsgrad: max_exp_avg_sq = state["max_exp_avg_sq"] # Maintains the maximum of all 2nd moment running avg. till now torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) # Use the max. for normalizing running avg. of gradient denom = max_exp_avg_sq.sqrt().add_(eps) else: denom = exp_avg_sq.sqrt().add_(eps) group["step"] += 1 bias_correction1 = 1 - betas[0] ** group["step"] bias_correction2 = 1 - betas[1] ** group["step"] step_size = ( learning_rate * bias_correction2 ** 0.5 / bias_correction1 ) # copy the state, we need it for retraction # get the direction for ascend direction = exp_avg / denom # transport the exponential averaging to the new point new_point = manifold.proj(manifold.expmap(-step_size * direction, point, c), c) exp_avg_new = manifold.ptransp(point, new_point, exp_avg, c) # use copy only for user facing point copy_or_set_(point, new_point) exp_avg.set_(exp_avg_new) group["step"] += 1 if self._stabilize is not None and group["step"] % self._stabilize == 0: self.stabilize_group(group) return loss @torch.no_grad() def stabilize_group(self, group): for p in group["params"]: if not isinstance(p, ManifoldParameter): continue state = self.state[p] if not state: # due to None grads continue manifold = p.manifold c = p.c exp_avg = state["exp_avg"] copy_or_set_(p, manifold.proj(p, c)) exp_avg.set_(manifold.proj_tan(exp_avg, u, c))
hgcn-master
optimizers/radam.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os from pathlib import Path import setuptools requirements = [ r for r in Path("requirements.txt").read_text().splitlines() if "@" not in r ] extra_requirements = { module: [ r for r in Path(os.path.join("augly", module, "requirements.txt")) .read_text() .splitlines() if "@" not in r ] for module in ["audio", "image", "text", "video"] } extra_requirements["video"].extend( extra_requirements["audio"] + extra_requirements["image"] ) extra_requirements["all"] = list( {r for reqs in extra_requirements.values() for r in reqs} ) with open("README.md", encoding="utf8") as f: readme = f.read() with open("version.txt", "r") as f: version = f.read().strip() setuptools.setup( name="augly", version=version, description="A data augmentations library for audio, image, text, & video.", long_description=readme, long_description_content_type="text/markdown", url="https://github.com/facebookresearch/AugLy", author="Zoe Papakipos and Joanna Bitton", author_email="zoep@fb.com", packages=setuptools.find_packages(exclude=["augly.tests"]), include_package_data=True, install_requires=requirements, extras_require=extra_requirements, classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], python_requires=">=3.6", )
AugLy-main
setup.py
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys sys.path.insert(0, os.path.abspath("../..")) # -- Project information ----------------------------------------------------- project = "AugLy" copyright = "2021, Joanna Bitton and Zoe Papakipos" author = "Joanna Bitton and Zoe Papakipos" # The full version, including alpha/beta/rc tags release = open("../../version.txt", "r").read().strip() # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ "sphinx.ext.autodoc", "sphinx_epytext", "sphinx_autodoc_typehints", "myst_parser", ] # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. # TODO: Deal with this exclude_patterns = [] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = "sphinx_rtd_theme" html_logo = "_static/logo.png" # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"] html_theme_options = {"logo_only": True} # -- Preventing member skips ------------------------------------------------- specials = ["__init__", "__call__"] def skip(app, what, name, obj, would_skip, options): if name in specials: return False return would_skip def setup(app): app.connect("autodoc-skip-member", skip)
AugLy-main
docs/source/conf.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree.
AugLy-main
augly/__init__.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os import random from typing import Any, Callable, Dict, List, Optional, Tuple import numpy as np from augly import audio as audaugs, utils from augly.video import functional as F from augly.video.augmenters import ffmpeg as af from augly.video.helpers import identity_function """ Base Classes for Transforms """ class VidAugBaseClass: def __init__(self, p: float = 1.0): """ @param p: the probability of the transform being applied; default value is 1.0 """ assert 0 <= p <= 1.0, "p must be a value in the range [0, 1]" self.p = p def __call__(self, *args, **kwargs) -> Any: """ This function is to be implemented in the child classes. From this function, call the transform to be applied """ raise NotImplementedError() class BaseTransform(VidAugBaseClass): def __call__( self, video_path: str, output_path: Optional[str] = None, force: bool = False, seed: Optional[int] = None, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param force: if set to True, the transform will be applied. Otherwise, application is determined by the probability set @param seed: if provided, the random seed will be set to this before calling the transform @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ assert type(force) == bool, "Expected type bool for variable `force`" if not force and random.random() > self.p: return video_path if seed is not None: random.seed(seed) return self.apply_transform(video_path, output_path or video_path, metadata) def apply_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ This function is to be implemented in the child classes. From this function, call the augmentation function with the parameters specified """ raise NotImplementedError() class BaseRandomRangeTransform(BaseTransform): def __init__(self, min_val: float, max_val: float, p: float = 1.0): """ @param min_val: the lower value of the range @param max_val: the upper value of the range @param p: the probability of the transform being applied; default value is 1.0 """ self.min_val = min_val self.max_val = max_val self.chosen_value = None super().__init__(p) def apply_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ self.chosen_value = ( random.random() * (self.max_val - self.min_val) ) + self.min_val return self.apply_random_transform(video_path, output_path, metadata) def apply_random_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ This function is to be implemented in the child classes. It has access to `self.chosen_value` which is the randomly chosen value from the range specified to pass into the augmentation function """ raise NotImplementedError() """ Non-Random Transforms These classes below are essentially class-based versions of the augmentation functions previously defined. These classes were developed such that they can be used with Composition operators (such as `torchvision`'s) and to support use cases where a specific transform with specific attributes needs to be applied multiple times. Example: >>> blur_tsfm = Blur(radius=5.0, p=0.5) >>> blur_tsfm(video_path, output_path) """ class AddNoise(BaseTransform): def __init__(self, level: int = 25, p: float = 1.0): """ @param level: noise strength for specific pixel component. Default value is 25. Allowed range is [0, 100], where 0 indicates no change @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.level = level def apply_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Adds noise to a video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ return F.add_noise(video_path, output_path, self.level, metadata=metadata) class ApplyLambda(BaseTransform): def __init__( self, aug_function: Callable[..., str] = identity_function, p: float = 1.0, **kwargs, ): """ @param aug_function: the augmentation function to be applied onto the video (should expect a video path and output path as input and output the augmented video to the output path, then return the output path) @param p: the probability of the transform being applied; default value is 1.0 @param **kwargs: the input attributes to be passed into `aug_function` """ super().__init__(p) assert callable(aug_function), ( repr(type(aug_function).__name__) + " object is not callable" ) self.aug_function = aug_function self.kwargs = kwargs def apply_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Apply a user-defined lambda on a video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ return self.aug_function( video_path, output_path, metadata=metadata, **self.kwargs ) class AudioSwap(BaseTransform): def __init__(self, audio_path: str, offset: float = 0.0, p: float = 1.0): """ @param audio_path: the iopath uri to the audio you'd like to swap with the video's audio @param offset: starting point in seconds such that an audio clip of offset to offset + video_duration is used in the audio swap. Default value is zero @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.audio_path = audio_path self.offset = offset def apply_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Swaps the video audio for the audio passed in provided an offset @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ return F.audio_swap( video_path, self.audio_path, output_path, self.offset, metadata=metadata ) class AugmentAudio(BaseTransform): def __init__( self, audio_aug_function: Callable[ ..., Tuple[np.ndarray, int] ] = audaugs.apply_lambda, p: float = 1.0, **audio_aug_kwargs, ): """ @param audio_aug_function: the augmentation function to be applied onto the video's audio track. Should have the standard API of an AugLy audio augmentation, i.e. expect input audio as a numpy array or path & output path as input, and output the augmented audio to the output path @param p: the probability of the transform being applied; default value is 1.0 @param audio_aug_kwargs: the input attributes to be passed into `audio_aug` """ super().__init__(p) self.audio_aug_function = audio_aug_function self.audio_aug_kwargs = audio_aug_kwargs def apply_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Augments the audio track of the input video using a given AugLy audio augmentation @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ return F.augment_audio( video_path=video_path, audio_aug_function=self.audio_aug_function, output_path=output_path, metadata=metadata, **self.audio_aug_kwargs, ) class BlendVideos(BaseTransform): def __init__( self, overlay_path: str, opacity: float = 0.5, overlay_size: float = 1.0, x_pos: float = 0.0, y_pos: float = 0.0, use_second_audio: bool = True, p: float = 1.0, ): """ @param overlay_path: the path to the video that will be overlaid onto the background video @param opacity: the lower the opacity, the more transparent the overlaid video @param overlay_size: size of the overlaid video is overlay_size * height of the background video @param x_pos: position of overlaid video relative to the background video width @param y_pos: position of overlaid video relative to the background video height @param use_second_audio: use the audio of the overlaid video rather than the audio of the background video @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.overlay_path = overlay_path self.opacity = opacity self.overlay_size = overlay_size self.x_pos = x_pos self.y_pos = y_pos self.use_second_audio = use_second_audio def apply_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Overlays a video onto another video at position (width * x_pos, height * y_pos) at a lower opacity @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ return F.blend_videos( video_path, self.overlay_path, output_path, self.opacity, self.overlay_size, self.x_pos, self.y_pos, self.use_second_audio, metadata=metadata, ) class Blur(BaseTransform): def __init__(self, sigma: float = 1.0, p: float = 1.0): """ @param sigma: horizontal sigma, standard deviation of Gaussian blur @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.sigma = sigma def apply_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Blurs a video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ return F.blur(video_path, output_path, self.sigma, metadata=metadata) class Brightness(BaseTransform): def __init__(self, level: float = 0.15, p: float = 1.0): """ @param level: the value must be a float value in range -1.0 to 1.0, where a negative value darkens and positive brightens @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.level = level def apply_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Brightens or darkens a video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ return F.brightness( video_path, output_path, level=self.level, metadata=metadata, ) class ChangeAspectRatio(BaseTransform): def __init__(self, ratio: float = 1.0, p: float = 1.0): """ @param ratio: aspect ratio, i.e. width/height, of the new video @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.ratio = ratio def apply_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Changes the aspect ratio of the video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ return F.change_aspect_ratio( video_path, output_path, self.ratio, metadata=metadata ) class ChangeVideoSpeed(BaseTransform): def __init__(self, factor: float = 1.0, p: float = 1.0): """ @param factor: the factor by which to alter the speed of the video. A factor less than one will slow down the video, a factor equal to one won't alter the video, and a factor greater than one will speed up the video @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.factor = factor def apply_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Changes the speed of the video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ return F.change_video_speed( video_path, output_path, self.factor, metadata=metadata ) class ColorJitter(BaseTransform): def __init__( self, brightness_factor: float = 0, contrast_factor: float = 1.0, saturation_factor: float = 1.0, p: float = 1.0, ): """ @param brightness_factor: set the brightness expression. The value must be a float value in range -1.0 to 1.0. The default value is 0 @param contrast_factor: set the contrast expression. The value must be a float value in range -1000.0 to 1000.0. The default value is 1 @param saturation_factor: set the saturation expression. The value must be a float in range 0.0 to 3.0. The default value is 1 @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.brightness_factor = brightness_factor self.contrast_factor = contrast_factor self.saturation_factor = saturation_factor def apply_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Color jitters the video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ return F.color_jitter( video_path, output_path, self.brightness_factor, self.contrast_factor, self.saturation_factor, metadata=metadata, ) class Concat(BaseTransform): def __init__( self, other_video_paths: List[str], src_video_path_index: int = 0, transition: Optional[af.TransitionConfig] = None, p: float = 1.0, ): """ @param other_video_paths: a list of paths to the videos to be concatenated (in order) with the given video_path when called (which will be inserted in with this list of video paths at index src_video_path_index) @param src_video_path_index: for metadata purposes, this indicates which video in the list `video_paths` should be considered the `source` or original video @param transition: optional transition config between the clips @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.other_video_paths = other_video_paths self.src_video_path_index = src_video_path_index self.transition = transition def apply_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Concatenates videos together. Resizes all other videos to the size of the `source` video (video_paths[src_video_path_index]), and modifies the sample aspect ratios to match (ffmpeg will fail to concat if SARs don't match) @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ video_paths = ( self.other_video_paths[: self.src_video_path_index] + [video_path] + self.other_video_paths[self.src_video_path_index :] ) return F.concat( video_paths, output_path, self.src_video_path_index, transition=self.transition, metadata=metadata, ) class Contrast(BaseTransform): def __init__(self, level: float = 1.0, p: float = 1.0): """ @param level: the value must be a float value in range -1000.0 to 1000.0, where a negative value removes contrast and a positive value adds contrast @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.level = level def apply_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Alters the contrast of a video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ return F.contrast(video_path, output_path, self.level, metadata=metadata) class Crop(BaseTransform): def __init__( self, left: float = 0.25, top: float = 0.25, right: float = 0.75, bottom: float = 0.75, p: float = 1.0, ): """ @param left: left positioning of the crop; between 0 and 1, relative to the video width @param top: top positioning of the crop; between 0 and 1, relative to the video height @param right: right positioning of the crop; between 0 and 1, relative to the video width @param bottom: bottom positioning of the crop; between 0 and 1, relative to the video height @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.left, self.right, self.top, self.bottom = left, right, top, bottom def apply_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Crops the video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ return F.crop( video_path, output_path, self.left, self.top, self.right, self.bottom, metadata=metadata, ) class EncodingQuality(BaseTransform): def __init__(self, quality: int = 23, p: float = 1.0): """ @param quality: CRF scale is 0–51, where 0 is lossless, 23 is the default, and 51 is worst quality possible. A lower value generally leads to higher quality, and a subjectively sane range is 17–28 @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.quality = quality def apply_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Alters the encoding quality of a video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ return F.encoding_quality( video_path, output_path, quality=int(self.quality), metadata=metadata, ) class FPS(BaseTransform): def __init__(self, fps: int = 15, p: float = 1.0): """ @param fps: the desired output frame rate. Note that a FPS value greater than the original FPS of the video will result in an unaltered video @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.fps = fps def apply_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Alters the FPS of a video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ return F.fps(video_path, output_path, self.fps, metadata=metadata) class Grayscale(BaseTransform): def apply_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Changes a video to be grayscale @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ return F.grayscale(video_path, output_path, metadata=metadata) class HFlip(BaseTransform): def apply_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Horizontally flips a video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ return F.hflip(video_path, output_path, metadata=metadata) class HStack(BaseTransform): def __init__( self, second_video_path: str, use_second_audio: bool = False, p: float = 1.0, ): """ @param second_video_path: the path to the video that will be stacked to the right @param use_second_audio: if set to True, the audio of the right video will be used instead of the left's @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.second_video_path = second_video_path self.use_second_audio = use_second_audio def apply_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Horizontally stacks two videos @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ return F.hstack( video_path, self.second_video_path, output_path, self.use_second_audio, metadata=metadata, ) class InsertInBackground(BaseTransform): def __init__( self, background_path: Optional[str] = None, offset_factor: float = 0.0, transition: Optional[af.TransitionConfig] = None, p: float = 1.0, ): """ @param background_path: the path to the video in which to insert the main video. If set to None, the main video will play in the middle of a silent video with black frames @param offset_factor: the point in the background video in which the main video starts to play (this factor is multiplied by the background video duration to determine the start point) @param transition: optional transition config between the clips @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.background_path = background_path self.offset_factor = offset_factor self.transition = transition def apply_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Puts the video in the middle of the background video (at offset_factor * background.duration) @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ return F.insert_in_background( video_path, output_path, self.background_path, self.offset_factor, transition=self.transition, metadata=metadata, ) class InsertInBackgroundMultiple(BaseTransform): def __init__( self, background_path: str, additional_video_paths: List[str], src_ids: List[str], seed: Optional[int] = None, ): """ @param background_path: the path of the video in which to insert the main (and additional) video. @param additional_video_paths: list of additional video paths to be inserted alongside the main video; one clip from each of the input videos will be inserted in order. @param src_ids: the list of identifiers for the main video and additional videos. @param seed: if provided, this will set the random seed to ensure consistency between runs. """ super().__init__() self.background_path = background_path self.additional_video_paths = additional_video_paths self.src_ids = src_ids self.seed = seed def apply_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Places the video (and the additional videos) in the middle of the background video. @param video_path: the path of the main video to be augmented. @param output_path: the path in which the output video will be stored. @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned """ return F.insert_in_background_multiple( video_path=video_path, output_path=output_path, background_path=self.background_path, src_ids=self.src_ids, additional_video_paths=self.additional_video_paths, seed=self.seed, metadata=metadata, ) class Loop(BaseTransform): def __init__(self, num_loops: int = 0, p: float = 1.0): """ @param num_loops: the number of times to loop the video. 0 means that the video will play once (i.e. no loops) @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.num_loops = num_loops def apply_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Loops a video `num_loops` times @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ return F.loop(video_path, output_path, self.num_loops, metadata=metadata) class MemeFormat(BaseTransform): def __init__( self, text: str = "LOL", font_file: str = utils.MEME_DEFAULT_FONT, opacity: float = 1.0, text_color: Tuple[int, int, int] = utils.DEFAULT_COLOR, caption_height: int = 250, meme_bg_color: Tuple[int, int, int] = utils.WHITE_RGB_COLOR, p: float = 1.0, ): """ @param text: the text to be overlaid/used in the meme. note: if using a very long string, please add in newline characters such that the text remains in a readable font size @param font_file: iopath uri to the .ttf font file @param opacity: the lower the opacity, the more transparent the text @param text_color: color of the text in RGB values @param caption_height: the height of the meme caption @param meme_bg_color: background color of the meme caption in RGB values @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.text, self.font_file = text, font_file self.text_color, self.opacity = text_color, opacity self.meme_bg_color, self.caption_height = meme_bg_color, caption_height def apply_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Creates a new video that looks like a meme, given text and video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ return F.meme_format( video_path, output_path, self.text, self.font_file, self.opacity, self.text_color, self.caption_height, self.meme_bg_color, metadata=metadata, ) class Overlay(BaseTransform): def __init__( self, overlay_path: str, overlay_size: Optional[float] = None, x_factor: float = 0.0, y_factor: float = 0.0, use_overlay_audio: bool = False, metadata: Optional[List[Dict[str, Any]]] = None, p: float = 1.0, ): """ @param overlay_path: the path to the media (image or video) that will be overlaid onto the video @param overlay_size: size of the overlaid media with respect to the background video. If set to None, the original size of the overlaid media is used @param x_factor: specifies where the left side of the overlaid media should be placed, relative to the video width @param y_factor: specifies where the top side of the overlaid media should be placed, relative to the video height @param use_overlay_audio: if set to True and the media type is a video, the audio of the overlaid video will be used instead of the main/background video's audio @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.overlay_path = overlay_path self.overlay_size = overlay_size self.x_factor = x_factor self.y_factor = y_factor self.use_overlay_audio = use_overlay_audio def apply_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Overlays media onto the video at position (width * x_factor, height * y_factor) @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ return F.overlay( video_path, self.overlay_path, output_path, self.overlay_size, self.x_factor, self.y_factor, self.use_overlay_audio, metadata=metadata, ) class OverlayDots(BaseTransform): def __init__( self, num_dots: int = 100, dot_type: str = "colored", random_movement: bool = True, metadata: Optional[List[Dict[str, Any]]] = None, p: float = 1.0, ): """ @param num_dots: the number of dots to add to each frame @param dot_type: specify if you would like "blur" or "colored" @param random_movement: whether or not you want the dots to randomly move around across the frame or to move across in a "linear" way @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.num_dots = num_dots self.dot_type = dot_type self.random_movement = random_movement def apply_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Overlays dots onto a video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ return F.overlay_dots( video_path, output_path, self.num_dots, self.dot_type, self.random_movement, metadata=metadata, ) class OverlayEmoji(BaseTransform): def __init__( self, emoji_path: str = utils.EMOJI_PATH, x_factor: float = 0.4, y_factor: float = 0.4, opacity: float = 1.0, emoji_size: float = 0.15, p: float = 1.0, ): """ @param emoji_path: iopath uri to the emoji image @param x_factor: specifies where the left side of the emoji should be placed, relative to the video width @param y_factor: specifies where the top side of the emoji should be placed, relative to the video height @param opacity: opacity of the emoji image @param emoji_size: emoji size relative to the height of the video frame @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.emoji_path = emoji_path self.x_factor = x_factor self.y_factor = y_factor self.opacity = opacity self.emoji_size = emoji_size def apply_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Overlays an emoji onto each frame of a video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ return F.overlay_emoji( video_path, output_path, self.emoji_path, self.x_factor, self.y_factor, self.opacity, self.emoji_size, metadata=metadata, ) class OverlayOntoBackgroundVideo(BaseTransform): def __init__( self, background_path: str, overlay_size: Optional[float] = 0.7, x_factor: float = 0.0, y_factor: float = 0.0, use_background_audio: bool = False, p: float = 1.0, ): """ @param background_path: the path to the background video @param overlay_size: size of the overlaid media with respect to the background video. If set to None, the original size of the overlaid media is used @param x_factor: specifies where the left side of the overlaid media should be placed, relative to the video width @param y_factor: specifies where the top side of the overlaid media should be placed, relative to the video height @param use_background_audio: if set to True and the media type is a video, the audio of the background video will be used instead of the src video's audio @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.background_path = background_path self.overlay_size = overlay_size self.x_factor = x_factor self.y_factor = y_factor self.use_background_audio = use_background_audio def apply_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Overlays the video onto a background video, pointed to by background_path @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ return F.overlay_onto_background_video( video_path, self.background_path, output_path, self.overlay_size, self.x_factor, self.y_factor, self.use_background_audio, metadata=metadata, ) class OverlayOntoScreenshot(BaseTransform): def __init__( self, template_filepath: str = utils.TEMPLATE_PATH, template_bboxes_filepath: str = utils.BBOXES_PATH, max_image_size_pixels: Optional[int] = None, crop_src_to_fit: bool = False, p: float = 1.0, ): """ @param template_filepath: iopath uri to the screenshot template @param template_bboxes_filepath: iopath uri to the file containing the bounding box for each template @param max_image_size_pixels: if provided, the template image and/or src video will be scaled down to avoid an output image with an area greater than this size (in pixels) @param crop_src_to_fit: if True, the src image will be cropped if necessary to fit into the template image. If False, the src image will instead be resized if necessary @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.template_filepath = template_filepath self.template_bboxes_filepath = template_bboxes_filepath self.max_image_size_pixels = max_image_size_pixels self.crop_src_to_fit = crop_src_to_fit def apply_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Overlays the video onto a screenshot template so it looks like it was screen-recorded on Instagram @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ return F.overlay_onto_screenshot( video_path, output_path, self.template_filepath, self.template_bboxes_filepath, self.max_image_size_pixels, self.crop_src_to_fit, metadata=metadata, ) class OverlayShapes(BaseTransform): def __init__( self, num_shapes: int = 1, shape_type: Optional[str] = None, colors: Optional[List[Tuple[int, int, int]]] = None, thickness: Optional[int] = None, radius: Optional[float] = None, random_movement: bool = True, topleft: Optional[Tuple[float, float]] = None, bottomright: Optional[Tuple[float, float]] = None, metadata: Optional[List[Dict[str, Any]]] = None, p: float = 1.0, ): """ @param num_shapes: the number of shapes to add to each frame @param shape_type: specify if you would like circles or rectangles @param colors: list of (R, G, B) colors to sample from @param thickness: specify the thickness desired for the shapes @param random_movement: whether or not you want the shapes to randomly move around across the frame or to move across in a "linear" way @param topleft: specifying the boundary of shape region. The boundary are all floats [0, 1] representing the fraction w.r.t width/height @param bottomright: specifying the boundary of shape region. The boundary are all floats [0, 1] epresenting the fraction w.r.t width/height @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.num_shapes = num_shapes self.shape_type = shape_type self.colors = colors self.thickness = thickness self.radius = radius self.random_movement = random_movement self.topleft = topleft self.bottomright = bottomright def apply_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Overlays random shapes onto a video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ return F.overlay_shapes( video_path, output_path, self.num_shapes, self.shape_type, self.colors, self.thickness, self.radius, self.random_movement, self.topleft, self.bottomright, metadata=metadata, ) class OverlayText(BaseTransform): def __init__( self, text_len: int = 10, text_change_nth: Optional[int] = None, fonts: Optional[List[Tuple[Any, Optional[str]]]] = None, fontscales: Optional[Tuple[float, float]] = None, colors: Optional[List[Tuple[int, int, int]]] = None, thickness: Optional[int] = None, random_movement: bool = False, topleft: Optional[Tuple[float, float]] = None, bottomright: Optional[Tuple[float, float]] = None, metadata: Optional[List[Dict[str, Any]]] = None, p: float = 1.0, ): """ @param text_len: length of string for randomized texts. @param text_change_nth: change random text every nth frame. None means using same text for all frames @param fonts: list of fonts to sample from. Each font can be a cv2 fontFace, a PIL ImageFont, or a path to a PIL ImageFont file. Each font is coupled with a chars file (the second item in the tuple) - a path to a file which contains the characters associated with the given font. For example, non- western alphabets have different valid characters than the roman alphabet, and these must be specified in order to construct random valid text in that font. If the chars file path is None, the roman alphabet will be used @param fontscales: 2-tuple of float (min_scale, max_scale) @param colors: list of (R, G, B) colors to sample from @param thickness: specify the thickness desired for the text @param random_movement: whether or not you want the text to randomly move around across frame or to move across in a "linear" way @param topleft: specifying the boundary of text region. The boundary are all floats [0, 1] representing the fraction w.r.t width/height @param bottomright: specifying the boundary of text region. The boundary are all floats [0, 1] representing the fraction w.r.t width/height @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.text_len = text_len self.text_change_nth = text_change_nth self.fonts = fonts self.fontscales = fontscales self.colors = colors self.thickness = thickness self.random_movement = random_movement self.topleft = topleft self.bottomright = bottomright def apply_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Overlays random text onto a video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ return F.overlay_text( video_path, output_path, self.text_len, self.text_change_nth, self.fonts, self.fontscales, self.colors, self.thickness, self.random_movement, self.topleft, self.bottomright, metadata=metadata, ) class Pad(BaseTransform): def __init__( self, w_factor: float = 0.25, h_factor: float = 0.25, color: Tuple[int, int, int] = utils.DEFAULT_COLOR, p: float = 1.0, ): """ @param w_factor: pad right and left with w_factor * frame width @param h_factor: pad bottom and top with h_factor * frame height @param color: RGB color of the padded margin @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.w_factor, self.h_factor = w_factor, h_factor self.color = color def apply_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Pads the video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ return F.pad( video_path, output_path, self.w_factor, self.h_factor, self.color, metadata=metadata, ) class PerspectiveTransformAndShake(BaseTransform): def __init__( self, sigma: float = 50.0, shake_radius: float = 0.0, seed: Optional[int] = None, p: float = 1.0, ): """ @param sigma: the standard deviation of the distribution of destination coordinates. the larger the sigma value, the more intense the transform @param shake_radius: determines the amount by which to "shake" the video; the larger the radius, the more intense the shake @param seed: if provided, this will set the random seed to ensure consistency between runs @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.sigma, self.shake_radius = sigma, shake_radius self.seed = seed def apply_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Apply a perspective transform to the video so it looks like it was taken as a photo from another device (e.g. taking a video from your phone of a video on a computer). Also has a shake factor to mimic the shakiness of someone holding a phone @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ return F.perspective_transform_and_shake( video_path, output_path, self.sigma, self.shake_radius, self.seed, metadata ) class Pixelization(BaseTransform): def __init__(self, ratio: float = 1.0, p: float = 1.0): """ @param ratio: smaller values result in a more pixelated image, 1.0 indicates no change, and any value above one doesn't have a noticeable effect @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.ratio = ratio def apply_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Pixelizes the video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ return F.pixelization( video_path, output_path, ratio=self.ratio, metadata=metadata, ) class RemoveAudio(BaseTransform): def apply_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Removes the audio stream from a video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ return F.remove_audio(video_path, output_path, metadata=metadata) class ReplaceWithBackground(BaseTransform): def __init__( self, background_path: Optional[str] = None, source_offset: float = 0.0, background_offset: float = 0.0, source_percentage: float = 0.5, transition: Optional[af.TransitionConfig] = None, p: float = 1.0, ): """ @param background_path: the path to the video in which to insert the main video. If set to None, the main video will play in the middle of a silent video with black frames @param offset_factor: the point in the background video in which the main video starts to play (this factor is multiplied by the background video duration to determine the start point) @param transition: optional transition config between the clips @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.background_path = background_path self.source_offset = source_offset self.background_offset = background_offset self.source_percentage = source_percentage self.transition = transition def apply_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Puts the video in the middle of the background video (at offset_factor * background.duration) @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ return F.replace_with_background( video_path, output_path, background_path=self.background_path, source_offset=self.source_offset, background_offset=self.background_offset, source_percentage=self.source_percentage, transition=self.transition, metadata=metadata, ) class ReplaceWithColorFrames(BaseTransform): def __init__( self, offset_factor: float = 0.0, duration_factor: float = 1.0, color: Tuple[int, int, int] = utils.DEFAULT_COLOR, transition: Optional[af.TransitionConfig] = None, p: float = 1.0, ): """ @param offset_factor: start point of the replacement relative to the video duration (this parameter is multiplied by the video duration) @param duration_factor: the length of the replacement relative to the video duration (this parameter is multiplied by the video duration) @param color: RGB color of the replaced frames. Default color is black @param transition: optional transition config between the clips @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.offset_factor, self.duration_factor = offset_factor, duration_factor self.color = color self.transition = transition def apply_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Replaces part of the video with frames of the specified color @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ return F.replace_with_color_frames( video_path, output_path, self.offset_factor, self.duration_factor, self.color, transition=self.transition, metadata=metadata, ) class Resize(BaseTransform): def __init__( self, height: Optional[int] = None, width: Optional[int] = None, p: float = 1.0 ): """ @param height: the height in which the video should be resized to. If None, the original video height will be used @param width: the width in which the video should be resized to. If None, the original video width will be used @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.height, self.width = height, width def apply_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Resizes a video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ return F.resize( video_path, output_path, self.height, self.width, metadata=metadata ) class Rotate(BaseTransform): def __init__(self, degrees: float = 15, p: float = 1.0): """ @param degrees: expression for the angle by which to rotate the input video clockwise, expressed in degrees (supports negative values as well) @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.degrees = degrees def apply_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Rotates a video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ return F.rotate(video_path, output_path, self.degrees, metadata=metadata) class Scale(BaseTransform): def __init__(self, factor: float = 0.5, p: float = 1.0): """ @param factor: the ratio by which the video should be down-scaled or upscaled @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.factor = factor def apply_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Alters the resolution of a video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ return F.scale(video_path, output_path, self.factor, metadata=metadata) class Shift(BaseTransform): def __init__( self, x_factor: float = 0.0, y_factor: float = 0.0, color: Tuple[int, int, int] = utils.DEFAULT_COLOR, p: float = 1.0, ): """ @param x_factor: the horizontal amount that the video should be shifted, relative to the width of the video @param y_factor: the vertical amount that the video should be shifted, relative to the height of the video @param color: RGB color of the margin generated by the shift. Default color is black @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.x_factor, self.y_factor = x_factor, y_factor self.color = color def apply_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Shifts the original frame position from the center by a vector (width * x_factor, height * y_factor) and pads the rest with a colored margin @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ return F.shift( video_path, output_path, self.x_factor, self.y_factor, self.color, metadata=metadata, ) class TimeCrop(BaseTransform): def __init__( self, offset_factor: float = 0.0, duration_factor: float = 1.0, p: float = 1.0 ): """ @param offset_factor: start point of the crop relative to the video duration (this parameter is multiplied by the video duration) @param duration_factor: the length of the crop relative to the video duration (this parameter is multiplied by the video duration) @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.offset_factor, self.duration_factor = offset_factor, duration_factor def apply_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Crops the video using the specified offset and duration factors @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ return F.time_crop( video_path, output_path, self.offset_factor, self.duration_factor, metadata=metadata, ) class TimeDecimate(BaseTransform): def __init__( self, start_offset_factor: float = 0.0, on_factor: float = 0.2, off_factor: float = 0.5, transition: Optional[af.TransitionConfig] = None, p: float = 1.0, ): """ @param start_offset_factor: relative to the video duration; the offset at which to start taking "on" segments @param on_factor: relative to the video duration; the amount of time each "on" video chunk should be @param off_factor: relative to the "on" duration; the amount of time each "off" video chunk should be @param transition: optional transition config between the clips @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.start_offset_factor = start_offset_factor self.on_factor, self.off_factor = on_factor, off_factor self.transition = transition def apply_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Removes evenly sized (off) chunks, and concatenates evenly spaced (on) chunks from the video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ return F.time_decimate( video_path, output_path, start_offset_factor=self.start_offset_factor, on_factor=self.on_factor, off_factor=self.off_factor, transition=self.transition, metadata=metadata, ) class Trim(BaseTransform): def __init__( self, start: Optional[float] = None, end: Optional[float] = None, p: float = 1.0 ): """ @param start: starting point in seconds of when the trimmed video should start. If None, start will be 0 @param end: ending point in seconds of when the trimmed video should end. If None, the end will be the duration of the video @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.start, self.end = start, end def apply_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Trims the video using the specified start and end parameters @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ return F.trim(video_path, output_path, self.start, self.end, metadata=metadata) class VFlip(BaseTransform): def apply_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Vertically flips a video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ return F.vflip(video_path, output_path, metadata=metadata) class VStack(BaseTransform): def __init__( self, second_video_path: str, use_second_audio: bool = False, p: float = 1.0, ): """ @param second_video_path: the path to the video that will be stacked on the bottom @param use_second_audio: if set to True, the audio of the bottom video will be used instead of the top's @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.second_video_path = second_video_path self.use_second_audio = use_second_audio def apply_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Vertically stacks two videos @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ return F.vstack( video_path, self.second_video_path, output_path, self.use_second_audio, metadata=metadata, ) """ Random Transforms These classes below are similar to the non-random transforms in the sense where they can be used with the Compose operator, etc. However, instead of specifying specific parameters for the augmentation, with these functions you can specify a range (or a list) to randomly choose from instead. Example: >>> blur_tsfm = RandomBlur(min_radius=2.0, max_radius=5.0, p=0.5) >>> blur_tsfm(video_path, output_path) """ class RandomAspectRatio(BaseRandomRangeTransform): def __init__(self, min_ratio: float = 0.5, max_ratio: float = 2.0, p: float = 1.0): """ @param min_ratio: the lower value on the range of aspect ratio values to choose from, i.e. the width/height ratio @param max_ratio: the upper value on the range of aspect ratio values to choose from, i.e. the width/height ratio @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(min_ratio, max_ratio, p) def apply_random_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Transform that randomly changes the aspect ratio of a video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ return F.change_aspect_ratio( video_path, output_path, ratio=self.chosen_value, metadata=metadata ) class RandomBlur(BaseRandomRangeTransform): def __init__(self, min_sigma: float = 0.0, max_sigma: float = 10.0, p: float = 1.0): """ @param min_sigma: the lower value on the range of blur values to choose from. The larger the radius, the blurrier the video @param max_sigma: the upper value on the range of blur values to choose from. The larger the radius, the blurrier the video @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(min_sigma, max_sigma, p) def apply_random_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Transform that randomly blurs a video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ return F.blur( video_path, output_path, sigma=self.chosen_value, metadata=metadata ) class RandomBrightness(BaseRandomRangeTransform): def __init__(self, min_level: float = -1.0, max_level: float = 1.0, p: float = 1.0): """ @param min_level: the lower value on the range of brightness values to choose from. The lower the factor, the darker the video @param max_level: the upper value on the range of brightness values to choose from. The higher the factor, the brighter the video @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(min_level, max_level, p) def apply_random_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Transform that randomly changes the brightness of a video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ return F.brightness( video_path, output_path, level=self.chosen_value, metadata=metadata, ) class RandomContrast(BaseRandomRangeTransform): def __init__( self, min_factor: float = -5.0, max_factor: float = 5.0, p: float = 1.0 ): """ @param min_factor: the lower value on the range of contrast values to choose from. The lower the factor, the less contrast @param max_factor: the upper value on the range of contrast values to choose from. The higher the factor, the more contrast @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(min_factor, max_factor, p) def apply_random_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Transform that randomly changes the contrast of a video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ return F.contrast( video_path, output_path, level=self.chosen_value, metadata=metadata ) class RandomEmojiOverlay(BaseTransform): def __init__( self, emoji_directory: str = utils.SMILEY_EMOJI_DIR, opacity: float = 1.0, emoji_size: float = 0.15, x_factor: float = 0.4, y_factor: float = 0.4, p: float = 1.0, ): """ @param emoji_directory: iopath directory uri containing the emoji images @param opacity: the lower the opacity, the more transparent the overlaid emoji @param emoji_size: size of the emoji is emoji_size * height of the original video @param x_factor: position of emoji relative to the video width @param y_factor: position of emoji relative to the video height @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(p) self.emoji_directory = emoji_directory self.emoji_paths = utils.pathmgr.ls(emoji_directory) self.opacity = opacity self.emoji_size = emoji_size self.x_factor = x_factor self.y_factor = y_factor def apply_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Transform that overlays a random emoji onto a video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ emoji_path = random.choice(self.emoji_paths) return F.overlay_emoji( video_path, output_path, emoji_path=os.path.join(self.emoji_directory, emoji_path), opacity=self.opacity, emoji_size=self.emoji_size, x_factor=self.x_factor, y_factor=self.y_factor, metadata=metadata, ) class RandomEncodingQuality(BaseRandomRangeTransform): def __init__(self, min_quality: int = 10, max_quality: int = 40, p: float = 1.0): """ @param min_quality: the lower value on the range of encoding quality values to choose from. CRF scale is 0–51, where 0 is lossless, 23 is the default, and 51 is worst quality possible. a lower value generally leads to higher quality, and a subjectively sane range is 17–28 @param max_quality: the upper value on the range of encoding quality values to choose from. CRF scale is 0–51, where 0 is lossless, 23 is the default, and 51 is worst quality possible. a lower value generally leads to higher quality, and a subjectively sane range is 17–28 @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(min_quality, max_quality, p) def apply_random_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Transform that randomly changes the encoding quality of a video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ return F.encoding_quality( video_path, output_path, quality=int(self.chosen_value), metadata=metadata, ) class RandomFPS(BaseRandomRangeTransform): def __init__(self, min_fps: float = 5.0, max_fps: float = 30.0, p: float = 1.0): """ @param min_fps: the lower value on the range of fps values to choose from @param max_fps: the upper value on the range of fps values to choose from. Note that a FPS value greater than the original FPS of the video will result in an unaltered video @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(min_fps, max_fps, p) def apply_random_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Transform that randomly changes the FPS of a video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ return F.fps(video_path, output_path, fps=self.chosen_value, metadata=metadata) class RandomNoise(BaseRandomRangeTransform): def __init__(self, min_level: int = 0, max_level: int = 50, p: float = 1.0): """ @param min_level: the lower value on the range of noise strength level values to choose from. 0 indicates no change, allowed range is [0, 100] @param max_level: the upper value on the range of noise strength level values to choose from. 0 indicates no change, allowed range is [0, 100] @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(min_level, max_level, p) def apply_random_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Transform that randomly adds noise to a video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ return F.add_noise( video_path, output_path, level=int(self.chosen_value), metadata=metadata ) class RandomPixelization(BaseRandomRangeTransform): def __init__(self, min_ratio: float = 0.1, max_ratio: float = 1.0, p: float = 1.0): """ @param min_ratio: the lower value on the range of pixelization ratio values to choose from. Smaller values result in a more pixelated video, 1.0 indicates no change, and any value above one doesn't have a noticeable effect @param max_ratio: the upper value on the range of pixelization ratio values to choose from. Smaller values result in a more pixelated video, 1.0 indicates no change, and any value above one doesn't have a noticeable effect @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(min_ratio, max_ratio, p) def apply_random_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Transform that randomly pixelizes a video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ return F.pixelization( video_path, output_path, ratio=self.chosen_value, metadata=metadata, ) class RandomRotation(BaseRandomRangeTransform): def __init__( self, min_degrees: float = 0.0, max_degrees: float = 180.0, p: float = 1.0 ): """ @param min_degrees: the lower value on the range of degree values to choose from @param max_degrees: the upper value on the range of degree values to choose from @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(min_degrees, max_degrees, p) def apply_random_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Transform that randomly rotates a video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ return F.rotate( video_path, output_path, degrees=self.chosen_value, metadata=metadata ) class RandomVideoSpeed(BaseRandomRangeTransform): def __init__( self, min_factor: float = 0.25, max_factor: float = 4.0, p: float = 1.0 ): """ @param min_factor: the lower value on the range of speed values to choose from. A factor less than one will slow down the video, a factor equal to one won't alter the video, and a factor greater than one will speed up the video relative to the original speed @param max_factor: the upper value on the range of speed values to choose from. A factor less than one will slow down the video, a factor equal to one won't alter the video, and a factor greater than one will speed up the video relative to the original speed @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(min_factor, max_factor, p) def apply_random_transform( self, video_path: str, output_path: str, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Transform that randomly changes the video speed @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ return F.change_video_speed( video_path, output_path, factor=self.chosen_value, metadata=metadata )
AugLy-main
augly/video/transforms.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from augly.video.composition import Compose, OneOf from augly.video.functional import ( add_noise, apply_lambda, audio_swap, augment_audio, blend_videos, blur, brightness, change_aspect_ratio, change_video_speed, color_jitter, concat, contrast, crop, encoding_quality, fps, grayscale, hflip, hstack, insert_in_background, insert_in_background_multiple, loop, meme_format, overlay, overlay_dots, overlay_emoji, overlay_onto_background_video, overlay_onto_screenshot, overlay_shapes, overlay_text, pad, perspective_transform_and_shake, pixelization, remove_audio, replace_with_background, replace_with_color_frames, resize, rotate, scale, shift, time_crop, time_decimate, trim, vflip, vstack, ) from augly.video.transforms import ( AddNoise, ApplyLambda, AudioSwap, AugmentAudio, BlendVideos, Blur, Brightness, ChangeAspectRatio, ChangeVideoSpeed, ColorJitter, Concat, Contrast, Crop, EncodingQuality, FPS, Grayscale, HFlip, HStack, InsertInBackground, InsertInBackgroundMultiple, Loop, MemeFormat, Overlay, OverlayDots, OverlayEmoji, OverlayOntoBackgroundVideo, OverlayOntoScreenshot, OverlayShapes, OverlayText, Pad, PerspectiveTransformAndShake, Pixelization, RandomAspectRatio, RandomBlur, RandomBrightness, RandomContrast, RandomEmojiOverlay, RandomEncodingQuality, RandomFPS, RandomNoise, RandomPixelization, RandomRotation, RandomVideoSpeed, RemoveAudio, ReplaceWithBackground, ReplaceWithColorFrames, Resize, Rotate, Scale, Shift, TimeCrop, TimeDecimate, Trim, VFlip, VStack, ) __all__ = [ "AddNoise", "ApplyLambda", "AudioSwap", "AugmentAudio", "BlendVideos", "Blur", "Brightness", "ChangeAspectRatio", "ChangeVideoSpeed", "ColorJitter", "Compose", "Concat", "Contrast", "Crop", "EncodingQuality", "FPS", "Grayscale", "HFlip", "HStack", "InsertInBackground", "InsertInBackgroundMultiple", "Loop", "MemeFormat", "OneOf", "Overlay", "OverlayDots", "OverlayEmoji", "OverlayOntoBackgroundVideo", "OverlayOntoScreenshot", "OverlayShapes", "OverlayText", "Pad", "PerspectiveTransformAndShake", "Pixelization", "RandomAspectRatio", "RandomBlur", "RandomBrightness", "RandomContrast", "RandomEmojiOverlay", "RandomEncodingQuality", "RandomFPS", "RandomNoise", "RandomPixelization", "RandomRotation", "RandomVideoSpeed", "RemoveAudio", "ReplaceWithBackground", "ReplaceWithColorFrames", "Resize", "Rotate", "Scale", "Shift", "TimeCrop", "TimeDecimate", "Trim", "VFlip", "VStack", "add_noise", "apply_lambda", "audio_swap", "augment_audio", "blend_videos", "blur", "brightness", "change_aspect_ratio", "change_video_speed", "color_jitter", "concat", "contrast", "crop", "encoding_quality", "fps", "grayscale", "hflip", "hstack", "insert_in_background", "insert_in_background_multiple", "replace_with_background", "loop", "meme_format", "overlay", "overlay_dots", "overlay_emoji", "overlay_onto_background_video", "overlay_onto_screenshot", "overlay_shapes", "overlay_text", "pad", "perspective_transform_and_shake", "pixelization", "remove_audio", "replace_with_color_frames", "resize", "rotate", "scale", "shift", "time_crop", "time_decimate", "trim", "vflip", "vstack", ]
AugLy-main
augly/video/__init__.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import functools import math import os import shutil import tempfile from typing import Any, Callable, Dict, List, Optional, Tuple, Union import numpy as np from augly import audio as audaugs, image as imaugs, utils from augly.audio import utils as audutils from augly.video import helpers, utils as vdutils from augly.video.augmenters import cv2 as ac, ffmpeg as af def add_noise( video_path: str, output_path: Optional[str] = None, level: int = 25, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Adds noise to a video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param level: noise strength for specific pixel component. Default value is 25. Allowed range is [0, 100], where 0 indicates no change @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ func_kwargs = helpers.get_func_kwargs(metadata, locals(), video_path) noise_aug = af.VideoAugmenterByNoise(level) noise_aug.add_augmenter(video_path, output_path) if metadata is not None: helpers.get_metadata( metadata=metadata, function_name="add_noise", **func_kwargs ) return output_path or video_path def apply_lambda( video_path: str, output_path: Optional[str] = None, aug_function: Callable[..., Any] = helpers.identity_function, metadata: Optional[List[Dict[str, Any]]] = None, **kwargs, ) -> str: """ Apply a user-defined lambda on a video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param aug_function: the augmentation function to be applied onto the video (should expect a video path and output path as input and output the augmented video to the output path. Nothing needs to be returned) @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @param **kwargs: the input attributes to be passed into `aug_function` @returns: the path to the augmented video """ assert callable(aug_function), ( repr(type(aug_function).__name__) + " object is not callable" ) func_kwargs = helpers.get_func_kwargs( metadata, locals(), video_path, aug_function=aug_function.__name__ ) aug_function(video_path, output_path or video_path, **kwargs) if metadata is not None: helpers.get_metadata( metadata=metadata, function_name="apply_lambda", **func_kwargs ) return output_path or video_path def audio_swap( video_path: str, audio_path: str, output_path: Optional[str] = None, offset: float = 0.0, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Swaps the video audio for the audio passed in provided an offset @param video_path: the path to the video to be augmented @param audio_path: the iopath uri to the audio you'd like to swap with the video's audio @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param offset: starting point in seconds such that an audio clip of offset to offset + video_duration is used in the audio swap. Default value is zero @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ func_kwargs = helpers.get_func_kwargs(metadata, locals(), video_path) audio_swap_aug = af.VideoAugmenterByAudioSwap(audio_path, offset) audio_swap_aug.add_augmenter(video_path, output_path) if metadata is not None: helpers.get_metadata( metadata=metadata, function_name="audio_swap", **func_kwargs ) return output_path or video_path def augment_audio( video_path: str, output_path: Optional[str] = None, audio_aug_function: Callable[..., Tuple[np.ndarray, int]] = audaugs.apply_lambda, metadata: Optional[List[Dict[str, Any]]] = None, **audio_aug_kwargs, ) -> str: """ Augments the audio track of the input video using a given AugLy audio augmentation @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param audio_aug_function: the augmentation function to be applied onto the video's audio track. Should have the standard API of an AugLy audio augmentation, i.e. expect input audio as a numpy array or path & output path as input, and output the augmented audio to the output path @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @param audio_aug_kwargs: the input attributes to be passed into `audio_aug` @returns: the path to the augmented video """ assert callable(audio_aug_function), ( repr(type(audio_aug_function).__name__) + " object is not callable" ) func_kwargs = helpers.get_func_kwargs( metadata, locals(), video_path, audio_aug_function=audio_aug_function ) if audio_aug_function is not None: try: func_kwargs["audio_aug_function"] = audio_aug_function.__name__ except AttributeError: func_kwargs["audio_aug_function"] = type(audio_aug_function).__name__ audio_metadata = [] with tempfile.NamedTemporaryFile(suffix=".wav") as tmpfile: helpers.extract_audio_to_file(video_path, tmpfile.name) audio, sr = audutils.validate_and_load_audio(tmpfile.name) aug_audio, aug_sr = audio_aug_function( audio, sample_rate=sr, metadata=audio_metadata, **audio_aug_kwargs ) audutils.ret_and_save_audio(aug_audio, tmpfile.name, aug_sr) audio_swap(video_path, tmpfile.name, output_path=output_path or video_path) if metadata is not None: helpers.get_metadata( metadata=metadata, audio_metadata=audio_metadata, function_name="augment_audio", **func_kwargs, ) return output_path or video_path def blend_videos( video_path: str, overlay_path: str, output_path: Optional[str] = None, opacity: float = 0.5, overlay_size: float = 1.0, x_pos: float = 0.0, y_pos: float = 0.0, use_second_audio: bool = True, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Overlays a video onto another video at position (width * x_pos, height * y_pos) at a lower opacity @param video_path: the path to the video to be augmented @param overlay_path: the path to the video that will be overlaid onto the background video @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param opacity: the lower the opacity, the more transparent the overlaid video @param overlay_size: size of the overlaid video is overlay_size * height of the background video @param x_pos: position of overlaid video relative to the background video width @param y_pos: position of overlaid video relative to the background video height @param use_second_audio: use the audio of the overlaid video rather than the audio of the background video @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ func_kwargs = helpers.get_func_kwargs(metadata, locals(), video_path) blend_func = functools.partial( imaugs.overlay_image, opacity=opacity, overlay_size=overlay_size, x_pos=x_pos, y_pos=y_pos, ) vdutils.apply_to_frames( blend_func, video_path, overlay_path, output_path, use_second_audio ) if metadata is not None: helpers.get_metadata( metadata=metadata, function_name="blend_videos", **func_kwargs ) return output_path or video_path def blur( video_path: str, output_path: Optional[str] = None, sigma: float = 1, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Blurs a video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param sigma: horizontal sigma, standard deviation of Gaussian blur @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ func_kwargs = helpers.get_func_kwargs(metadata, locals(), video_path) blur_aug = af.VideoAugmenterByBlur(sigma) blur_aug.add_augmenter(video_path, output_path) if metadata is not None: helpers.get_metadata(metadata=metadata, function_name="blur", **func_kwargs) return output_path or video_path def brightness( video_path: str, output_path: Optional[str] = None, level: float = 0.15, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Brightens or darkens a video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param level: the value must be a float value in range -1.0 to 1.0, where a negative value darkens and positive brightens @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ func_kwargs = helpers.get_func_kwargs(metadata, locals(), video_path) brightness_aug = af.VideoAugmenterByBrightness(level) brightness_aug.add_augmenter(video_path, output_path) if metadata is not None: helpers.get_metadata( metadata=metadata, function_name="brightness", **func_kwargs ) return output_path or video_path def change_aspect_ratio( video_path: str, output_path: Optional[str] = None, ratio: Union[float, str] = 1.0, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Changes the sample aspect ratio attribute of the video, and resizes the video to reflect the new aspect ratio @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param ratio: aspect ratio of the new video, either as a float i.e. width/height, or as a string representing the ratio in the form "num:denom" @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ func_kwargs = helpers.get_func_kwargs(metadata, locals(), video_path) aspect_ratio_aug = af.VideoAugmenterByAspectRatio(ratio) aspect_ratio_aug.add_augmenter(video_path, output_path) if metadata is not None: helpers.get_metadata( metadata=metadata, function_name="change_aspect_ratio", **func_kwargs ) return output_path or video_path def change_video_speed( video_path: str, output_path: Optional[str] = None, factor: float = 1.0, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Changes the speed of the video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param factor: the factor by which to alter the speed of the video. A factor less than one will slow down the video, a factor equal to one won't alter the video, and a factor greater than one will speed up the video @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ func_kwargs = helpers.get_func_kwargs(metadata, locals(), video_path) speed_aug = af.VideoAugmenterBySpeed(factor) speed_aug.add_augmenter(video_path, output_path) if metadata is not None: helpers.get_metadata( metadata=metadata, function_name="change_video_speed", **func_kwargs ) return output_path or video_path def color_jitter( video_path: str, output_path: Optional[str] = None, brightness_factor: float = 0, contrast_factor: float = 1.0, saturation_factor: float = 1.0, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Color jitters the video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param brightness_factor: set the brightness expression. The value must be a float value in range -1.0 to 1.0. The default value is 0 @param contrast_factor: set the contrast expression. The value must be a float value in range -1000.0 to 1000.0. The default value is 1 @param saturation_factor: set the saturation expression. The value must be a float in range 0.0 to 3.0. The default value is 1 @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ func_kwargs = helpers.get_func_kwargs(metadata, locals(), video_path) color_jitter_aug = af.VideoAugmenterByColorJitter( brightness_level=brightness_factor, contrast_level=contrast_factor, saturation_level=saturation_factor, ) color_jitter_aug.add_augmenter(video_path, output_path) if metadata is not None: helpers.get_metadata( metadata=metadata, function_name="color_jitter", **func_kwargs ) return output_path or video_path def concat( video_paths: List[str], output_path: Optional[str] = None, src_video_path_index: int = 0, transition: Optional[af.TransitionConfig] = None, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Concatenates videos together. Resizes all other videos to the size of the `source` video (video_paths[src_video_path_index]), and modifies the sample aspect ratios to match (ffmpeg will fail to concat if SARs don't match) @param video_paths: a list of paths to all the videos to be concatenated (in order) @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param src_video_path_index: for metadata purposes, this indicates which video in the list `video_paths` should be considered the `source` or original video @param transition: optional transition configuration to apply between the clips @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ func_kwargs = helpers.get_func_kwargs( metadata, locals(), video_paths[src_video_path_index] ) concat_aug = af.VideoAugmenterByConcat( video_paths, src_video_path_index, transition, ) concat_aug.add_augmenter(video_paths[src_video_path_index], output_path) if metadata is not None: helpers.get_metadata( metadata=metadata, function_name="concat", video_path=video_paths[src_video_path_index], **func_kwargs, ) return output_path or video_paths[src_video_path_index] def contrast( video_path: str, output_path: Optional[str] = None, level: float = 1.0, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Alters the contrast of a video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param level: the value must be a float value in range -1000.0 to 1000.0, where a negative value removes contrast and a positive value adds contrast @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ func_kwargs = helpers.get_func_kwargs(metadata, locals(), video_path) contrast_aug = af.VideoAugmenterByContrast(level) contrast_aug.add_augmenter(video_path, output_path) if metadata is not None: helpers.get_metadata(metadata=metadata, function_name="contrast", **func_kwargs) return output_path or video_path def crop( video_path: str, output_path: Optional[str] = None, left: float = 0.25, top: float = 0.25, right: float = 0.75, bottom: float = 0.75, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Crops the video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param left: left positioning of the crop; between 0 and 1, relative to the video width @param top: top positioning of the crop; between 0 and 1, relative to the video height @param right: right positioning of the crop; between 0 and 1, relative to the video width @param bottom: bottom positioning of the crop; between 0 and 1, relative to the video height @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ func_kwargs = helpers.get_func_kwargs(metadata, locals(), video_path) crop_aug = af.VideoAugmenterByCrop(left, top, right, bottom) crop_aug.add_augmenter(video_path, output_path) if metadata is not None: helpers.get_metadata(metadata=metadata, function_name="crop", **func_kwargs) return output_path or video_path def encoding_quality( video_path: str, output_path: Optional[str] = None, quality: int = 23, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Alters the encoding quality of a video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param quality: CRF scale is 0–51, where 0 is lossless, 23 is the default, and 51 is worst quality possible. A lower value generally leads to higher quality, and a subjectively sane range is 17–28 @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ func_kwargs = helpers.get_func_kwargs(metadata, locals(), video_path) encoding_aug = af.VideoAugmenterByQuality(quality) encoding_aug.add_augmenter(video_path, output_path) if metadata is not None: helpers.get_metadata( metadata=metadata, function_name="encoding_quality", **func_kwargs ) return output_path or video_path def fps( video_path: str, output_path: Optional[str] = None, fps: int = 15, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Alters the FPS of a video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param fps: the desired output frame rate. Note that a FPS value greater than the original FPS of the video will result in an unaltered video @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ func_kwargs = helpers.get_func_kwargs(metadata, locals(), video_path) fps_aug = af.VideoAugmenterByFPSChange(fps) fps_aug.add_augmenter(video_path, output_path) if metadata is not None: helpers.get_metadata(metadata=metadata, function_name="fps", **func_kwargs) return output_path or video_path def grayscale( video_path: str, output_path: Optional[str] = None, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Changes a video to be grayscale @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ func_kwargs = helpers.get_func_kwargs(metadata, locals(), video_path) grayscale_aug = af.VideoAugmenterByGrayscale() grayscale_aug.add_augmenter(video_path, output_path) if metadata is not None: helpers.get_metadata( metadata=metadata, function_name="grayscale", **func_kwargs ) return output_path or video_path def hflip( video_path: str, output_path: Optional[str] = None, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Horizontally flips a video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ func_kwargs = helpers.get_func_kwargs(metadata, locals(), video_path) hflip_aug = af.VideoAugmenterByHFlip() hflip_aug.add_augmenter(video_path, output_path) if metadata is not None: helpers.get_metadata(metadata=metadata, function_name="hflip", **func_kwargs) return output_path or video_path def hstack( video_path: str, second_video_path: str, output_path: Optional[str] = None, use_second_audio: bool = False, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Horizontally stacks two videos @param video_path: the path to the video that will be stacked to the left @param second_video_path: the path to the video that will be stacked to the right @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param use_second_audio: if set to True, the audio of the right video will be used instead of the left's @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ func_kwargs = helpers.get_func_kwargs(metadata, locals(), video_path) hstack_aug = af.VideoAugmenterByStack(second_video_path, use_second_audio, "hstack") hstack_aug.add_augmenter(video_path, output_path) if metadata is not None: helpers.get_metadata(metadata=metadata, function_name="hstack", **func_kwargs) return output_path or video_path def insert_in_background( video_path: str, output_path: Optional[str] = None, background_path: Optional[str] = None, offset_factor: float = 0.0, source_percentage: Optional[float] = None, seed: Optional[int] = None, transition: Optional[af.TransitionConfig] = None, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Puts the video in the middle of the background video (at offset_factor * background.duration) @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param background_path: the path to the video in which to insert the main video. If set to None, the main video will play in the middle of a silent video with black frames @param offset_factor: the point in the background video in which the main video starts to play (this factor is multiplied by the background video duration to determine the start point) @param source_percentage: when set, source_percentage of the duration of the final video (background + source) will be taken up by the source video. Randomly crops the background video to the correct duration. If the background video isn't long enough to get the desired source_percentage, it will be looped. @param seed: if provided, this will set the random seed to ensure consistency between runs @param transition: optional transition configuration to apply between the clips @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ assert ( 0.0 <= offset_factor <= 1.0 ), "Offset factor must be a value in the range [0.0, 1.0]" if source_percentage is not None: assert ( 0.0 <= source_percentage <= 1.0 ), "Source percentage must be a value in the range [0.0, 1.0]" func_kwargs = helpers.get_func_kwargs(metadata, locals(), video_path) local_path = utils.pathmgr.get_local_path(video_path) utils.validate_video_path(local_path) video_info = helpers.get_video_info(local_path) video_duration = float(video_info["duration"]) width, height = video_info["width"], video_info["height"] rng = np.random.RandomState(seed) if seed is not None else np.random video_paths = [] with tempfile.TemporaryDirectory() as tmpdir: tmp_video_path = os.path.join(tmpdir, "in.mp4") resized_bg_path = os.path.join(tmpdir, "bg.mp4") helpers.add_silent_audio(video_path, tmp_video_path) if background_path is None: helpers.create_color_video(resized_bg_path, video_duration, height, width) else: resize(background_path, resized_bg_path, height, width) bg_video_info = helpers.get_video_info(resized_bg_path) bg_video_duration = float(bg_video_info["duration"]) bg_start = 0 bg_end = bg_video_duration desired_bg_duration = bg_video_duration if source_percentage is not None: # desired relationship: percent * (bg_len + s_len) = s_len # solve for bg_len -> bg_len = s_len / percent - s_len desired_bg_duration = video_duration / source_percentage - video_duration # if background vid isn't long enough, loop num_loops_needed = math.ceil(desired_bg_duration / bg_video_duration) if num_loops_needed > 1: loop(resized_bg_path, num_loops=num_loops_needed) bg_video_duration *= num_loops_needed bg_start = rng.uniform(0, bg_video_duration - desired_bg_duration) bg_end = bg_start + desired_bg_duration offset = desired_bg_duration * offset_factor transition_before = False if offset > 0: before_path = os.path.join(tmpdir, "before.mp4") trim(resized_bg_path, before_path, start=bg_start, end=bg_start + offset) video_paths.append(before_path) src_video_path_index = 1 transition_before = True else: src_video_path_index = 0 video_paths.append(tmp_video_path) transition_after = False if bg_start + offset < bg_end: after_path = os.path.join(tmpdir, "after.mp4") trim(resized_bg_path, after_path, start=bg_start + offset, end=bg_end) video_paths.append(after_path) transition_after = True concat( video_paths, output_path or video_path, src_video_path_index, transition=transition, ) if metadata is not None: helpers.get_metadata( metadata=metadata, function_name="insert_in_background", background_video_duration=desired_bg_duration, transition_before=transition_before, transition_after=transition_after, **func_kwargs, ) return output_path or video_path def insert_in_background_multiple( video_path: str, output_path: str, background_path: str, src_ids: List[str], additional_video_paths: List[str], seed: Optional[int] = None, min_source_segment_duration: float = 5.0, max_source_segment_duration: float = 20.0, min_background_segment_duration: float = 2.0, min_result_video_duration: float = 30.0, max_result_video_duration: float = 60.0, transition: Optional[af.TransitionConfig] = None, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Places the video (and the additional videos) in the middle of the background video. @param video_path: the path of the main video to be augmented. @param output_path: the path in which the output video will be stored. @param background_path: the path of the video in which to insert the main (and additional) video. @param src_ids: the list of identifiers for the main video and additional videos. @param additional_video_paths: list of additional video paths to be inserted alongside the main video; one clip from each of the input videos will be inserted in order. @param seed: if provided, this will set the random seed to ensure consistency between runs. @param min_source_segment_duration: minimum duration in seconds of the source segments that will be inserted in the background video. @param max_source_segment_duration: maximum duration in seconds of the source segments that will be inserted in the background video. @param min_background_segment_duration: minimum duration in seconds of a background segment. @param min_result_video_duration: minimum duration in seconds of the output video. @param max_result_video_duration: maximum duration in seconds of the output video. @param transition: optional transition configuration to apply between the clips. @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ if additional_video_paths: assert len(additional_video_paths) + 1 == len( src_ids ), "src_ids need to be specified for the main video and all additional videos." func_kwargs = helpers.get_func_kwargs(metadata, locals(), video_path) rng = np.random.RandomState(seed) if seed is not None else np.random local_path = utils.pathmgr.get_local_path(video_path) additional_local_paths = ( [utils.pathmgr.get_local_path(p) for p in additional_video_paths] if additional_video_paths else [] ) bkg_local_path = utils.pathmgr.get_local_path(background_path) src_paths = [ local_path, ] + additional_local_paths src_video_durations = np.array( [float(helpers.get_video_info(v)["duration"]) for v in src_paths] ) bkg_duration = float(helpers.get_video_info(bkg_local_path)["duration"]) src_segment_durations = ( rng.random_sample(len(src_video_durations)) * (max_source_segment_duration - min_source_segment_duration) + min_source_segment_duration ) src_segment_durations = np.minimum(src_segment_durations, src_video_durations) src_segment_starts = rng.random(len(src_video_durations)) * ( src_video_durations - src_segment_durations ) src_segment_ends = src_segment_starts + src_segment_durations sum_src_duration = np.sum(src_segment_durations) required_result_duration = ( len(src_segment_durations) + 1 ) * min_background_segment_duration + sum_src_duration if required_result_duration > max_result_video_duration: raise ValueError( "Failed to generate config for source segments in insert_in_background_multiple." ) duration_budget = max_result_video_duration - required_result_duration bkg_budget = rng.random() * duration_budget overall_bkg_needed_duration = ( len(src_segment_durations) + 1 ) * min_background_segment_duration + bkg_budget num_loops_needed = 0 if overall_bkg_needed_duration > bkg_duration: num_loops_needed = math.ceil(overall_bkg_needed_duration / bkg_duration) # Now sample insertion points by picking len(src_segment_durations) points in the interval [0, bkg_budget) # Then sort the segments and add spacing for the minimum background segment duration. bkg_insertion_points = ( np.sort(rng.random(len(src_segment_durations)) * bkg_budget) + np.arange(len(src_segment_durations)) * min_background_segment_duration ) last_bkg_point = overall_bkg_needed_duration dst_starts = bkg_insertion_points + np.concatenate( ( [ 0.0, ], np.cumsum(src_segment_durations)[:-1], ) ) # Start applying transforms. with tempfile.TemporaryDirectory() as tmpdir: # First, loop through background video if needed. if num_loops_needed > 0: buf = os.path.join(tmpdir, "bkg_loop.mp4") loop(bkg_local_path, buf, num_loops=num_loops_needed) bkg_path = buf else: bkg_path = bkg_local_path bkg_videos = [] # Sample background segments. prev = 0.0 for i, pt in enumerate(bkg_insertion_points): out_path = os.path.join(tmpdir, f"bkg_{i}.mp4") trim(bkg_path, out_path, start=prev, end=pt) prev = pt bkg_videos.append(out_path) # last background segment last_bkg_path = os.path.join(tmpdir, "bkg_last.mp4") trim(bkg_path, last_bkg_path, start=prev, end=last_bkg_point) src_videos = [] # Sample source segments. for i, seg in enumerate(zip(src_segment_starts, src_segment_ends)): out_path = os.path.join(tmpdir, f"src_{i}.mp4") trim(src_paths[i], out_path, start=seg[0], end=seg[1]) src_videos.append(out_path) all_videos = [v for pair in zip(bkg_videos, src_videos) for v in pair] + [ last_bkg_path, ] concat(all_videos, output_path, 1, transition=transition) if metadata is not None: helpers.get_metadata( metadata=metadata, function_name="insert_in_background_multiple", src_segment_starts=src_segment_starts, src_segment_ends=src_segment_ends, bkg_insertion_points=bkg_insertion_points, **func_kwargs, ) return output_path def replace_with_background( video_path: str, output_path: Optional[str] = None, background_path: Optional[str] = None, source_offset: float = 0.0, background_offset: float = 0.0, source_percentage: float = 0.5, transition: Optional[af.TransitionConfig] = None, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Replaces the beginning and end of the source video with the background video, keeping the total duration of the output video equal to the original duration of the source video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param background_path: the path to the video in which to insert the main video. If set to None, the main video will play in the middle of a silent video with black frames @param source_offset: the starting point where the background video transitions to the source video. Prior to this point, the source video is replaced with the background video. A value of 0 means all background is at the beginning. A value of 1 means all background is at the end of the video @param background_offset: the starting point from which the background video starts to play, as a proportion of the background video duration (i.e. this factor is multiplied by the background video duration to determine the start point) @param source_percentage: the percentage of the source video that remains unreplaced by the background video. The source percentage plus source offset should be less than 1. If it is greater, the output video duration will be longer than the source. If the background video is not long enough to get the desired source percentage, it will be looped @param transition: optional transition configuration to apply between the clips @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ assert ( 0.0 <= source_offset <= 1.0 ), "Source offset factor must be a value in the range [0.0, 1.0]" assert ( 0.0 <= background_offset <= 1.0 ), "Background offset factor must be a value in the range [0.0, 1.0]" assert ( 0.0 <= source_percentage <= 1.0 ), "Source percentage must be a value in the range [0.0, 1.0]" func_kwargs = helpers.get_func_kwargs(metadata, locals(), video_path) local_path = utils.pathmgr.get_local_path(video_path) utils.validate_video_path(local_path) video_info = helpers.get_video_info(video_path) video_duration = float(video_info["duration"]) width, height = video_info["width"], video_info["height"] video_paths = [] with tempfile.TemporaryDirectory() as tmpdir: tmp_video_path = os.path.join(tmpdir, "in.mp4") resized_bg_path = os.path.join(tmpdir, "bg.mp4") # create bg video if background_path is None: helpers.create_color_video(resized_bg_path, video_duration, height, width) else: resize(background_path, resized_bg_path, height, width) helpers.add_silent_audio(resized_bg_path) bg_video_info = helpers.get_video_info(resized_bg_path) bg_video_duration = float(bg_video_info["duration"]) src_video_path_index = 1 final_bg_len = video_duration * (1 - source_percentage) # if desired bg video too short, loop bg video num_loops_needed = math.ceil(final_bg_len / bg_video_duration) if num_loops_needed > 1: loop(resized_bg_path, num_loops=num_loops_needed) first_bg_segment_len = source_offset * final_bg_len last_bg_segment_len = final_bg_len - first_bg_segment_len # calculate bg start and end times of bg in output video bg_start = background_offset * bg_video_duration src_start = first_bg_segment_len src_length = source_percentage * video_duration src_end = src_start + src_length # add pre src background segment if source_offset > 0: before_path = os.path.join(tmpdir, "before.mp4") trim( resized_bg_path, before_path, start=bg_start, end=bg_start + first_bg_segment_len, ) video_paths.append(before_path) src_video_path_index = 1 else: src_video_path_index = 0 # trim source to length satisfying source_percentage helpers.add_silent_audio(video_path, tmp_video_path) trimmed_src_path = os.path.join(tmpdir, "trim_src.mp4") trim(tmp_video_path, trimmed_src_path, start=src_start, end=src_end) video_paths.append(trimmed_src_path) # add post src background segment if source_offset < 1: after_path = os.path.join(tmpdir, "after.mp4") trim( resized_bg_path, after_path, start=bg_start + src_start, end=bg_start + src_start + last_bg_segment_len, ) video_paths.append(after_path) concat( video_paths, output_path or video_path, src_video_path_index, transition=transition, ) if metadata is not None: helpers.get_metadata( metadata=metadata, function_name="replace_with_background", starting_background_duration=first_bg_segment_len, source_duration=src_length, ending_background_duration=last_bg_segment_len, **func_kwargs, ) return output_path or video_path def loop( video_path: str, output_path: Optional[str] = None, num_loops: int = 0, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Loops a video `num_loops` times @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param num_loops: the number of times to loop the video. 0 means that the video will play once (i.e. no loops) @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ func_kwargs = helpers.get_func_kwargs(metadata, locals(), video_path) loop_aug = af.VideoAugmenterByLoops(num_loops) loop_aug.add_augmenter(video_path, output_path) if metadata is not None: helpers.get_metadata(metadata=metadata, function_name="loop", **func_kwargs) return output_path or video_path def meme_format( video_path: str, output_path: Optional[str] = None, text: str = "LOL", font_file: str = utils.MEME_DEFAULT_FONT, opacity: float = 1.0, text_color: Tuple[int, int, int] = utils.DEFAULT_COLOR, caption_height: int = 250, meme_bg_color: Tuple[int, int, int] = utils.WHITE_RGB_COLOR, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Creates a new video that looks like a meme, given text and video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param text: the text to be overlaid/used in the meme. note: if using a very long string, please add in newline characters such that the text remains in a readable font size @param font_file: iopath uri to the .ttf font file @param opacity: the lower the opacity, the more transparent the text @param text_color: color of the text in RGB values @param caption_height: the height of the meme caption @param meme_bg_color: background color of the meme caption in RGB values @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ func_kwargs = helpers.get_func_kwargs(metadata, locals(), video_path) meme_func = functools.partial( imaugs.meme_format, text=text, font_file=font_file, opacity=opacity, text_color=text_color, caption_height=caption_height, meme_bg_color=meme_bg_color, ) vdutils.apply_to_each_frame(meme_func, video_path, output_path) if metadata is not None: helpers.get_metadata( metadata=metadata, function_name="meme_format", **func_kwargs ) return output_path or video_path def overlay( video_path: str, overlay_path: str, output_path: Optional[str] = None, overlay_size: Optional[float] = None, x_factor: float = 0.0, y_factor: float = 0.0, use_overlay_audio: bool = False, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Overlays media onto the video at position (width * x_factor, height * y_factor) @param video_path: the path to the video to be augmented @param overlay_path: the path to the media (image or video) that will be overlaid onto the video @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param overlay_size: size of the overlaid media with respect to the background video. If set to None, the original size of the overlaid media is used @param x_factor: specifies where the left side of the overlaid media should be placed, relative to the video width @param y_factor: specifies where the top side of the overlaid media should be placed, relative to the video height @param use_overlay_audio: if set to True and the media type is a video, the audio of the overlaid video will be used instead of the main/background video's audio @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ func_kwargs = helpers.get_func_kwargs(metadata, locals(), video_path) local_path = utils.pathmgr.get_local_path(video_path) overlay_path = utils.pathmgr.get_local_path(overlay_path) tmp_overlay_path = None if overlay_size is not None: assert 0 < overlay_size <= 1, "overlay_size must be a value in the range (0, 1]" video_info = helpers.get_video_info(local_path) overlay_h = int(video_info["height"] * overlay_size) overlay_w = int(video_info["width"] * overlay_size) _, tmp_overlay_path = tempfile.mkstemp(suffix=os.path.splitext(overlay_path)[1]) if utils.is_image_file(overlay_path): imaugs.resize(overlay_path, tmp_overlay_path, overlay_w, overlay_h) else: resize(overlay_path, tmp_overlay_path, overlay_h, overlay_w) overlay_aug = af.VideoAugmenterByOverlay( tmp_overlay_path or overlay_path, x_factor, y_factor, use_overlay_audio ) overlay_aug.add_augmenter(local_path, output_path) if tmp_overlay_path: os.remove(tmp_overlay_path) if metadata is not None: helpers.get_metadata(metadata=metadata, function_name="overlay", **func_kwargs) return output_path or video_path def overlay_dots( video_path: str, output_path: Optional[str] = None, num_dots: int = 100, dot_type: str = "colored", random_movement: bool = True, metadata: Optional[List[Dict[str, Any]]] = None, **kwargs, ) -> str: """ Overlays dots onto a video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param num_dots: the number of dots to add to each frame @param dot_type: specify if you would like "blur" or "colored" @param random_movement: whether or not you want the dots to randomly move around across the frame or to move across in a "linear" way @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ func_kwargs = helpers.get_func_kwargs(metadata, locals(), video_path) dots_aug = ac.VideoDistractorByDots(num_dots, dot_type, random_movement) vdutils.apply_cv2_augmenter(dots_aug, video_path, output_path, **kwargs) if metadata is not None: helpers.get_metadata( metadata=metadata, function_name="overlay_dots", **func_kwargs ) return output_path or video_path def overlay_emoji( video_path: str, output_path: Optional[str] = None, emoji_path: str = utils.EMOJI_PATH, x_factor: float = 0.4, y_factor: float = 0.4, opacity: float = 1.0, emoji_size: float = 0.15, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Overlays an emoji onto each frame of a video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param emoji_path: iopath uri to the emoji image @param x_factor: specifies where the left side of the emoji should be placed, relative to the video width @param y_factor: specifies where the top side of the emoji should be placed, relative to the video height @param opacity: opacity of the emoji image @param emoji_size: emoji size relative to the height of the video frame @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ func_kwargs = helpers.get_func_kwargs(metadata, locals(), video_path) local_path = utils.pathmgr.get_local_path(video_path) utils.validate_video_path(video_path) video_info = helpers.get_video_info(local_path) with tempfile.TemporaryDirectory() as tmpdir: local_emoji_path = utils.pathmgr.get_local_path(emoji_path, cache_dir=tmpdir) utils.validate_image_path(local_emoji_path) emoji_output_path = os.path.join(tmpdir, "modified_emoji.png") imaugs.resize( local_emoji_path, output_path=emoji_output_path, height=int(emoji_size * video_info["height"]), width=int(emoji_size * video_info["height"]), ) imaugs.opacity(emoji_output_path, output_path=emoji_output_path, level=opacity) overlay( video_path, emoji_output_path, output_path, x_factor=x_factor, y_factor=y_factor, ) if metadata is not None: helpers.get_metadata( metadata=metadata, function_name="overlay_emoji", **func_kwargs ) return output_path or video_path def overlay_onto_background_video( video_path: str, background_path: str, output_path: Optional[str] = None, overlay_size: Optional[float] = 0.7, x_factor: float = 0.0, y_factor: float = 0.0, use_background_audio: bool = False, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Overlays the video onto a background video, pointed to by background_path. @param video_path: the path to the video to be augmented @param background_path: the path to the background video @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param overlay_size: size of the overlaid media with respect to the background video. If set to None, the original size of the overlaid media is used @param x_factor: specifies where the left side of the overlaid media should be placed, relative to the video width @param y_factor: specifies where the top side of the overlaid media should be placed, relative to the video height @param use_background_audio: if set to True and the media type is a video, the audio of the background video will be used instead of the src video's audio @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ func_kwargs = helpers.get_func_kwargs(metadata, locals(), video_path) overlay( video_path=background_path, overlay_path=video_path, output_path=output_path or video_path, overlay_size=overlay_size, x_factor=x_factor, y_factor=y_factor, use_overlay_audio=not use_background_audio, ) if metadata is not None: helpers.get_metadata( metadata=metadata, function_name="overlay_onto_background_video", **func_kwargs, ) return output_path or video_path def overlay_onto_screenshot( video_path: str, output_path: Optional[str] = None, template_filepath: str = utils.TEMPLATE_PATH, template_bboxes_filepath: str = utils.BBOXES_PATH, max_image_size_pixels: Optional[int] = None, crop_src_to_fit: bool = False, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Overlays the video onto a screenshot template so it looks like it was screen-recorded on Instagram @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param template_filepath: iopath uri to the screenshot template @param template_bboxes_filepath: iopath uri to the file containing the bounding box for each template @param max_image_size_pixels: if provided, the template image and/or src video will be scaled down to avoid an output image with an area greater than this size (in pixels) @param crop_src_to_fit: if True, the src image will be cropped if necessary to fit into the template image. If False, the src image will instead be resized if necessary @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ func_kwargs = helpers.get_func_kwargs(metadata, locals(), video_path) sc_func = functools.partial( imaugs.overlay_onto_screenshot, template_filepath=template_filepath, template_bboxes_filepath=template_bboxes_filepath, max_image_size_pixels=max_image_size_pixels, crop_src_to_fit=crop_src_to_fit, ) vdutils.apply_to_each_frame(sc_func, video_path, output_path) if metadata is not None: helpers.get_metadata( metadata=metadata, function_name="overlay_onto_screenshot", **func_kwargs ) return output_path or video_path def overlay_shapes( video_path: str, output_path: Optional[str] = None, num_shapes: int = 1, shape_type: Optional[str] = None, colors: Optional[List[Tuple[int, int, int]]] = None, thickness: Optional[int] = None, radius: Optional[float] = None, random_movement: bool = True, topleft: Optional[Tuple[float, float]] = None, bottomright: Optional[Tuple[float, float]] = None, metadata: Optional[List[Dict[str, Any]]] = None, **kwargs, ) -> str: """ Overlays random shapes onto a video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param num_shapes: the number of shapes to add to each frame @param shape_type: specify if you would like circles or rectangles @param colors: list of (R, G, B) colors to sample from @param thickness: specify the thickness desired for the shapes @param random_movement: whether or not you want the shapes to randomly move around across the frame or to move across in a "linear" way @param topleft: specifying the boundary of shape region. The boundary are all floats [0, 1] representing the fraction w.r.t width/height @param bottomright: specifying the boundary of shape region. The boundary are all floats [0, 1] representing the fraction w.r.t width/height @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ func_kwargs = helpers.get_func_kwargs(metadata, locals(), video_path) shapes_aug = ac.VideoDistractorByShapes( num_shapes, shape_type, colors, thickness, radius, random_movement, topleft, bottomright, ) vdutils.apply_cv2_augmenter(shapes_aug, video_path, output_path, **kwargs) if metadata is not None: helpers.get_metadata( metadata=metadata, function_name="overlay_shapes", **func_kwargs ) return output_path or video_path def overlay_text( video_path: str, output_path: Optional[str] = None, text_len: int = 10, text_change_nth: Optional[int] = None, fonts: Optional[List[Tuple[Any, Optional[str]]]] = None, fontscales: Optional[Tuple[float, float]] = None, colors: Optional[List[Tuple[int, int, int]]] = None, thickness: Optional[int] = None, random_movement: bool = False, topleft: Optional[Tuple[float, float]] = None, bottomright: Optional[Tuple[float, float]] = None, metadata: Optional[List[Dict[str, Any]]] = None, **kwargs, ) -> str: """ Overlays random text onto a video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param text_len: length of string for randomized texts. @param text_change_nth: change random text every nth frame. None means using same text for all frames. @param fonts: list of fonts to sample from. Each font can be a cv2 fontFace, a PIL ImageFont, or a path to a PIL ImageFont file. Each font is coupled with a chars file (the second item in the tuple) - a path to a file which contains the characters associated with the given font. For example, non-western alphabets have different valid characters than the roman alphabet, and these must be specified in order to construct random valid text in that font. If the chars file path is None, the roman alphabet will be used. @param fontscales: 2-tuple of float (min_scale, max_scale). @param colors: list of (R, G, B) colors to sample from @param thickness: specify the thickness desired for the text. @param random_movement: whether or not you want the text to randomly move around across frame or to move across in a "linear" way @param topleft: specifying the boundary of text region. The boundary are all floats [0, 1] representing the fraction w.r.t width/height @param bottomright: specifying the boundary of text region. The boundary are all floats [0, 1] representing the fraction w.r.t width/height @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ func_kwargs = helpers.get_func_kwargs(metadata, locals(), video_path) text_aug = ac.VideoDistractorByText( text_len, text_change_nth, fonts, fontscales, colors, thickness, random_movement, topleft, bottomright, ) vdutils.apply_cv2_augmenter(text_aug, video_path, output_path, **kwargs) if metadata is not None: helpers.get_metadata( metadata=metadata, function_name="overlay_text", **func_kwargs ) return output_path or video_path def pad( video_path: str, output_path: Optional[str] = None, w_factor: float = 0.25, h_factor: float = 0.25, color: Tuple[int, int, int] = utils.DEFAULT_COLOR, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Pads the video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param w_factor: pad right and left with w_factor * frame width @param h_factor: pad bottom and top with h_factor * frame height @param color: RGB color of the padded margin @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ func_kwargs = helpers.get_func_kwargs(metadata, locals(), video_path) pad_aug = af.VideoAugmenterByPadding(w_factor, h_factor, color) pad_aug.add_augmenter(video_path, output_path) if metadata is not None: helpers.get_metadata(metadata=metadata, function_name="pad", **func_kwargs) return output_path or video_path def perspective_transform_and_shake( video_path: str, output_path: Optional[str] = None, sigma: float = 50.0, shake_radius: float = 0.0, seed: Optional[int] = None, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Apply a perspective transform to the video so it looks like it was taken as a photo from another device (e.g. taking a video from your phone of a video on a computer). Also has a shake factor to mimic the shakiness of someone holding a phone. @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param sigma: the standard deviation of the distribution of destination coordinates. The larger the sigma value, the more intense the transform @param shake_radius: determines the amount by which to "shake" the video; the larger the radius, the more intense the shake. @param seed: if provided, this will set the random seed to ensure consistency between runs @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ func_kwargs = helpers.get_func_kwargs(metadata, locals(), video_path) perspective_func = functools.partial( imaugs.perspective_transform, sigma=sigma, seed=seed ) duration = float(helpers.get_video_info(video_path)["duration"]) rng = np.random.RandomState(seed) if seed is not None else np.random def get_dx_dy(frame_number: int) -> Dict: u = math.sin(frame_number / duration * math.pi) ** 2 return { "dx": u * rng.normal(0, shake_radius), "dy": u * rng.normal(0, shake_radius), } vdutils.apply_to_each_frame(perspective_func, video_path, output_path, get_dx_dy) if metadata is not None: helpers.get_metadata( metadata=metadata, function_name="perspective_transform_and_shake", **func_kwargs, ) return output_path or video_path def pixelization( video_path: str, output_path: Optional[str] = None, ratio: float = 1.0, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Pixelizes the video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param ratio: smaller values result in a more pixelated video, 1.0 indicates no change, and any value above one doesn't have a noticeable effect @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ func_kwargs = helpers.get_func_kwargs(metadata, locals(), video_path) assert ratio > 0, "Expected 'ratio' to be a positive number" video_info = helpers.get_video_info(video_path) width, height = video_info["width"], video_info["height"] output_path = output_path or video_path resize(video_path, output_path, height * ratio, width * ratio) resize(output_path, output_path, height, width) if metadata is not None: helpers.get_metadata( metadata=metadata, function_name="pixelization", **func_kwargs ) return output_path or video_path def remove_audio( video_path: str, output_path: Optional[str] = None, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Removes the audio stream from a video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ func_kwargs = helpers.get_func_kwargs(metadata, locals(), video_path) remove_audio_aug = af.VideoAugmenterByRemovingAudio() remove_audio_aug.add_augmenter(video_path, output_path) if metadata is not None: helpers.get_metadata( metadata=metadata, function_name="remove_audio", **func_kwargs ) return output_path or video_path def replace_with_color_frames( video_path: str, output_path: Optional[str] = None, offset_factor: float = 0.0, duration_factor: float = 1.0, color: Tuple[int, int, int] = utils.DEFAULT_COLOR, transition: Optional[af.TransitionConfig] = None, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Replaces part of the video with frames of the specified color @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param offset_factor: start point of the replacement relative to the video duration (this parameter is multiplied by the video duration) @param duration_factor: the length of the replacement relative to the video duration (this parameter is multiplied by the video duration) @param color: RGB color of the replaced frames. Default color is black @param transition: optional transition configuration to apply between the clips @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ utils.validate_video_path(video_path) assert ( 0.0 <= offset_factor <= 1.0 and 0.0 <= duration_factor <= 1.0 ), "Both offset & duration factors must be values in the range [0.0, 1.0]" func_kwargs = { **helpers.get_func_kwargs(metadata, locals(), video_path), "function_name": "replace_with_color_frames", } video_info = helpers.get_video_info(video_path) video_duration = float(video_info["duration"]) width, height = video_info["width"], video_info["height"] offset = video_duration * offset_factor duration = video_duration * duration_factor output_path = output_path or video_path if duration == 0 or offset == video_duration: if output_path != video_path: shutil.copy(video_path, output_path) if metadata is not None: helpers.get_metadata(metadata=metadata, **func_kwargs) return output_path or video_path video_paths = [] src_video_path_index = 0 if offset > 0 else 2 with tempfile.TemporaryDirectory() as tmpdir: color_duration = ( video_duration - offset if offset + duration >= video_duration else duration ) color_path = os.path.join(tmpdir, "color_frames.mp4") helpers.create_color_video(color_path, color_duration, height, width, color) if helpers.has_audio_stream(video_path): audio_path = os.path.join(tmpdir, "audio.aac") helpers.extract_audio_to_file(video_path, audio_path) audio_swap(color_path, audio_path, offset=offset) if offset_factor == 0 and duration_factor == 1.0: shutil.copy(color_path, output_path) if metadata is not None: helpers.get_metadata(metadata=metadata, **func_kwargs) return output_path or video_path if offset > 0: before_path = os.path.join(tmpdir, "before.mp4") trim(video_path, before_path, end=offset) video_paths.append(before_path) video_paths.append(color_path) if offset + duration < video_duration: after_path = os.path.join(tmpdir, "after.mp4") trim(video_path, after_path, start=offset + duration) video_paths.append(after_path) concat( video_paths, output_path, src_video_path_index=src_video_path_index, transition=transition, ) if metadata is not None: helpers.get_metadata(metadata=metadata, **func_kwargs) return output_path or video_path def resize( video_path: str, output_path: Optional[str] = None, height: Union[int, str] = "ih", width: Union[int, str] = "iw", metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Resizes a video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param height: the height in which the video should be resized to. If not specified, the original video height will be used @param width: the width in which the video should be resized to. If not specified, the original video width will be used @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ func_kwargs = helpers.get_func_kwargs(metadata, locals(), video_path) resize_aug = af.VideoAugmenterByResize(height, width) resize_aug.add_augmenter(video_path, output_path) if metadata is not None: helpers.get_metadata(metadata=metadata, function_name="resize", **func_kwargs) return output_path or video_path def rotate( video_path: str, output_path: Optional[str] = None, degrees: float = 15.0, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Rotates a video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param degrees: expression for the angle by which to rotate the input video clockwise, expressed in degrees (supports negative values as well) @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ func_kwargs = helpers.get_func_kwargs(metadata, locals(), video_path) rotate_aug = af.VideoAugmenterByRotation(degrees) rotate_aug.add_augmenter(video_path, output_path) if metadata is not None: helpers.get_metadata(metadata=metadata, function_name="rotate", **func_kwargs) return output_path or video_path def scale( video_path: str, output_path: Optional[str] = None, factor: float = 0.5, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Alters the resolution of a video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param factor: the ratio by which the video should be downscaled or upscaled @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ func_kwargs = helpers.get_func_kwargs(metadata, locals(), video_path) scale_aug = af.VideoAugmenterByResolution(factor) scale_aug.add_augmenter(video_path, output_path) if metadata is not None: helpers.get_metadata(metadata=metadata, function_name="scale", **func_kwargs) return output_path or video_path def shift( video_path: str, output_path: Optional[str] = None, x_factor: float = 0.0, y_factor: float = 0.0, color: Tuple[int, int, int] = utils.DEFAULT_COLOR, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Shifts the original frame position from the center by a vector (width * x_factor, height * y_factor) and pads the rest with a colored margin @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param x_factor: the horizontal amount that the video should be shifted, relative to the width of the video @param y_factor: the vertical amount that the video should be shifted, relative to the height of the video @param color: RGB color of the margin generated by the shift. Default color is black @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ func_kwargs = helpers.get_func_kwargs(metadata, locals(), video_path) utils.validate_video_path(video_path) video_info = helpers.get_video_info(video_path) with tempfile.TemporaryDirectory() as tmpdir: background_path = os.path.join(tmpdir, "background.mp4") helpers.create_color_video( background_path, float(video_info["duration"]), video_info["height"], video_info["width"], color, ) overlay( background_path, video_path, output_path, x_factor=x_factor, y_factor=y_factor, use_overlay_audio=True, ) if metadata is not None: helpers.get_metadata(metadata=metadata, function_name="shift", **func_kwargs) return output_path or video_path def time_crop( video_path: str, output_path: Optional[str] = None, offset_factor: float = 0.0, duration_factor: float = 1.0, minimum_duration: float = 0.0, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Crops the video using the specified offset and duration factors @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param offset_factor: start point of the crop relative to the video duration (this parameter is multiplied by the video duration) @param duration_factor: the length of the crop relative to the video duration (this parameter is multiplied by the video duration) @param minimum_duration: the minimum duration of a segment selected @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ func_kwargs = helpers.get_func_kwargs(metadata, locals(), video_path) time_crop_aug = af.VideoAugmenterByTrim( offset_factor=offset_factor, duration_factor=duration_factor, minimum_duration=minimum_duration, ) time_crop_aug.add_augmenter(video_path, output_path) if metadata is not None: helpers.get_metadata( metadata=metadata, function_name="time_crop", **func_kwargs ) return output_path or video_path def time_decimate( video_path: str, output_path: Optional[str] = None, start_offset_factor: float = 0.0, on_factor: float = 0.2, off_factor: float = 0.5, transition: Optional[af.TransitionConfig] = None, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Removes evenly sized (off) chunks, and concatenates evenly spaced (on) chunks from the video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param start_offset_factor: relative to the video duration; the offset at which to start taking "on" segments @param on_factor: relative to the video duration; the amount of time each "on" video chunk should be @param off_factor: relative to the "on" duration; the amount of time each "off" video chunk should be @param transition: optional transition configuration to apply between the clips @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ assert ( 0 <= start_offset_factor < 1 ), f"start_offset_factor value {start_offset_factor} must be in the range [0, 1)" assert 0 < on_factor <= 1, "on_factor must be a value in the range (0, 1]" assert 0 <= off_factor <= 1, "off_factor must be a value in the range [0, 1]" func_kwargs = helpers.get_func_kwargs(metadata, locals(), video_path) local_path = utils.pathmgr.get_local_path(video_path) utils.validate_video_path(local_path) video_info = helpers.get_video_info(local_path) _, video_ext = os.path.splitext(local_path) duration = float(video_info["duration"]) start_offset = duration * start_offset_factor on_segment = duration * on_factor off_segment = on_segment * off_factor subclips = [] n = int((duration - start_offset) / (on_segment + off_segment)) # let a = on_segment and b = off_segment # subclips: 0->a, a+b -> 2*a + b, 2a+2b -> 3a+2b, .., na+nb -> (n+1)a + nb with tempfile.TemporaryDirectory() as tmpdir: for i in range(n): clip_path = os.path.join(tmpdir, f"{i}{video_ext}") trim( video_path, clip_path, start=start_offset + i * on_segment + i * off_segment, end=min( duration, start_offset + (i + 1) * on_segment + i * off_segment ), ) subclips.append(clip_path) # Skip concatenation if only 1 clip. if n > 1: concat( subclips, output_path, transition=transition, ) else: if output_path is not None: shutil.copy(subclips[0], output_path) else: shutil.copy(subclips[0], local_path) if metadata is not None: helpers.get_metadata( metadata=metadata, function_name="time_decimate", **func_kwargs ) return output_path or video_path def trim( video_path: str, output_path: Optional[str] = None, start: Optional[float] = None, end: Optional[float] = None, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Trims the video using the specified start and end parameters @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param start: starting point in seconds of when the trimmed video should start. If None, start will be 0 @param end: ending point in seconds of when the trimmed video should end. If None, the end will be the duration of the video @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ func_kwargs = helpers.get_func_kwargs(metadata, locals(), video_path) trim_aug = af.VideoAugmenterByTrim(start=start, end=end) trim_aug.add_augmenter(video_path, output_path) if metadata is not None: helpers.get_metadata(metadata=metadata, function_name="trim", **func_kwargs) return output_path or video_path def vflip( video_path: str, output_path: Optional[str] = None, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Vertically flips a video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ func_kwargs = helpers.get_func_kwargs(metadata, locals(), video_path) vflip_aug = af.VideoAugmenterByVFlip() vflip_aug.add_augmenter(video_path, output_path) if metadata is not None: helpers.get_metadata(metadata=metadata, function_name="vflip", **func_kwargs) return output_path or video_path def vstack( video_path: str, second_video_path: str, output_path: Optional[str] = None, use_second_audio: bool = False, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Vertically stacks two videos @param video_path: the path to the video that will be stacked on top @param second_video_path: the path to the video that will be stacked on the bottom @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param use_second_audio: if set to True, the audio of the bottom video will be used instead of the top's @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ func_kwargs = helpers.get_func_kwargs(metadata, locals(), video_path) vstack_aug = af.VideoAugmenterByStack(second_video_path, use_second_audio, "vstack") vstack_aug.add_augmenter(video_path, output_path) if metadata is not None: helpers.get_metadata(metadata=metadata, function_name="vstack", **func_kwargs) return output_path or video_path
AugLy-main
augly/video/functional.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import functools import os import shutil import tempfile from typing import Callable, Dict, List, Optional, Union from augly import utils from augly.video import helpers as helpers from augly.video.augmenters import cv2 as ac """ Utility Functions: Augmentation Application Functions - For FFMPEG-Based Functions - For CV2-Based Functions - For Applying Image Functions to Each Frame """ def apply_to_each_frame( img_aug_function: functools.partial, video_path: str, output_path: Optional[str], frame_func: Optional[Callable[[int], Dict]] = None, ) -> None: video_path, output_path = helpers.validate_input_and_output_paths( video_path, output_path ) with tempfile.TemporaryDirectory() as tmpdir: frame_dir = os.path.join(tmpdir, "video_frames") os.mkdir(frame_dir) helpers.extract_frames_to_dir(video_path, frame_dir) for i, frame_file in enumerate(os.listdir(frame_dir)): frame_path = os.path.join(frame_dir, frame_file) kwargs = frame_func(i) if frame_func is not None else {} img_aug_function(frame_path, output_path=frame_path, **kwargs) audio_path = None if helpers.has_audio_stream(video_path): audio_path = os.path.join(tmpdir, "audio.aac") helpers.extract_audio_to_file(video_path, audio_path) helpers.combine_frames_and_audio_to_file( os.path.join(frame_dir, "raw_frame*.jpg"), audio_path, output_path, helpers.get_video_fps(video_path) or utils.DEFAULT_FRAME_RATE, ) def apply_to_frames( img_aug_function: functools.partial, video_path: str, second_video_path: str, output_path: Optional[str], use_second_audio: bool = False, ) -> None: video_path, output_path = helpers.validate_input_and_output_paths( video_path, output_path ) second_video_path = helpers.get_local_path(second_video_path) with tempfile.TemporaryDirectory() as tmpdir: frame_dir = os.path.join(tmpdir, "video_frames") os.mkdir(frame_dir) helpers.extract_frames_to_dir(video_path, frame_dir) second_frame_dir = os.path.join(tmpdir, "second_video_frames") os.mkdir(second_frame_dir) helpers.extract_frames_to_dir(second_video_path, second_frame_dir) for frame_file, second_frame_file in zip( os.listdir(frame_dir), os.listdir(second_frame_dir) ): img_aug_function( os.path.join(frame_dir, frame_file), os.path.join(second_frame_dir, second_frame_file), output_path=os.path.join(frame_dir, frame_file), ) audio_path = None if not use_second_audio and helpers.has_audio_stream(video_path): audio_path = os.path.join(tmpdir, "audio.aac") helpers.extract_audio_to_file(video_path, audio_path) elif use_second_audio and helpers.has_audio_stream(second_video_path): audio_path = os.path.join(tmpdir, "audio.aac") helpers.extract_audio_to_file(second_video_path, audio_path) helpers.combine_frames_and_audio_to_file( os.path.join(frame_dir, "raw_frame*.jpg"), audio_path, output_path, helpers.get_video_fps(video_path) or utils.DEFAULT_FRAME_RATE, ) def apply_cv2_augmenter( distractor: ac.BaseCV2Augmenter, video_path: str, output_path: Optional[str], **kwargs, ) -> None: video_path, output_path = helpers.validate_input_and_output_paths( video_path, output_path ) with tempfile.TemporaryDirectory() as tmpdir: video_tmp_path = os.path.join(tmpdir, os.path.basename(video_path)) shutil.copyfile(video_path, video_tmp_path) fps = helpers.get_video_fps(video_tmp_path) or utils.DEFAULT_FRAME_RATE aug_frame_temp_dir = distractor.augment(video_tmp_path, fps, **kwargs) audio_path = None if helpers.has_audio_stream(video_path): audio_path = os.path.join(tmpdir, "audio.aac") helpers.extract_audio_to_file(video_path, audio_path) helpers.combine_frames_and_audio_to_file( os.path.join(aug_frame_temp_dir, "raw_frame*.jpg"), audio_path, video_tmp_path, fps, ) shutil.move(video_tmp_path, output_path) shutil.rmtree(aug_frame_temp_dir) def get_image_kwargs(imgs_dir: str) -> Dict[str, Optional[Union[List[str], str]]]: return {"imgs_dir": imgs_dir, "imgs_files": utils.pathmgr.ls(imgs_dir)}
AugLy-main
augly/video/utils.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import random import shutil from typing import Any, Dict, List, Optional from augly.video.helpers import validate_input_and_output_paths from augly.video.transforms import VidAugBaseClass """ Composition Operators: Compose: identical to the Compose object provided by the torchvision library, this class provides a similar experience for applying multiple transformations onto a video OneOf: the OneOf operator takes as input a list of transforms and may apply (with probability p) one of the transforms in the list. If a transform is applied, it is selected using the specified probabilities of the individual transforms. Example: >>> Compose([ >>> VFlip(), >>> Brightness(), >>> OneOf([ >>> OverlayOntoScreenshot(), >>> OverlayText(), >>> ]), >>> ]) """ class BaseComposition(VidAugBaseClass): def __init__(self, transforms: List[VidAugBaseClass], p: float = 1.0): """ @param transforms: a list of transforms @param p: the probability of the transform being applied; default value is 1.0 """ for transform in transforms: assert isinstance( transform, VidAugBaseClass ), "Expected instances of type 'VidAugBaseClass' for parameter 'transforms'" super().__init__(p) self.transforms = transforms class Compose(BaseComposition): def __call__( self, video_path: str, output_path: Optional[str] = None, seed: Optional[int] = None, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Applies the list of transforms in order to the video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param seed: if provided, the random seed will be set to this before calling the transform @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ video_path, output_path = validate_input_and_output_paths( video_path, output_path ) if video_path != output_path: shutil.copy(video_path, output_path) if seed is not None: random.seed(seed) for transform in self.transforms: output_path = transform(output_path, metadata=metadata) return output_path class OneOf(BaseComposition): def __init__(self, transforms: List[VidAugBaseClass], p: float = 1.0): """ @param transforms: a list of transforms to select from; one of which will be chosen to be applied to the video @param p: the probability of the transform being applied; default value is 1.0 """ super().__init__(transforms, p) transform_probs = [t.p for t in transforms] probs_sum = sum(transform_probs) self.transform_probs = [t / probs_sum for t in transform_probs] def __call__( self, video_path: str, output_path: Optional[str] = None, seed: Optional[int] = None, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: """ Applies one of the transforms to the video (with probability p) @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param seed: if provided, the random seed will be set to this before calling the transform @param metadata: if set to be a list, metadata about the function execution including its name, the source & dest duration, fps, etc. will be appended to the inputted list. If set to None, no metadata will be appended or returned @returns: the path to the augmented video """ video_path, output_path = validate_input_and_output_paths( video_path, output_path ) if seed is not None: random.seed(seed) if random.random() > self.p: return output_path transform = random.choices(self.transforms, self.transform_probs)[0] return transform(video_path, output_path, force=True, metadata=metadata)
AugLy-main
augly/video/composition.py
AugLy-main
augly/video/augmenters/__init__.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. """ Implementation of base class for FFMPEG-based video augmenters - Method to override: - `get_command(self, video_path: str, output_path: str)`: returns a list of strings containing the options to pass into the ffmpeg command """ import os import shutil import tempfile from abc import ABC, abstractmethod from typing import List, Optional from augly.video.helpers import validate_input_and_output_paths from vidgear.gears import WriteGear class BaseVidgearFFMPEGAugmenter(ABC): def add_augmenter( self, video_path: str, output_path: Optional[str] = None, **kwargs ) -> None: """ Applies the specific augmentation to the video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @param kwargs: parameters for specific augmenters """ video_path, output_path = validate_input_and_output_paths( video_path, output_path ) with tempfile.NamedTemporaryFile( suffix=os.path.splitext(video_path)[1] ) as tmpfile: if video_path == output_path: shutil.copyfile(video_path, tmpfile.name) video_path = tmpfile.name writer = WriteGear(output_filename=output_path, logging=True) writer.execute_ffmpeg_cmd(self.get_command(video_path, output_path)) writer.close() @abstractmethod def get_command(self, video_path: str, output_path: str) -> List[str]: """ Constructs the FFMPEG command for VidGear @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. @returns: a list of strings containing the CLI FFMPEG command for the augmentation """ raise NotImplementedError("Implement get_command method") @staticmethod def input_fmt(video_path: str) -> List[str]: return ["-y", "-i", video_path] @staticmethod def output_fmt(output_path: str) -> List[str]: return ["-preset", "ultrafast", output_path] @staticmethod def standard_filter_fmt( video_path: str, filters: List[str], output_path: str ) -> List[str]: return [ *BaseVidgearFFMPEGAugmenter.input_fmt(video_path), "-vf", *filters, "-c:a", "copy", *BaseVidgearFFMPEGAugmenter.output_fmt(output_path), ]
AugLy-main
augly/video/augmenters/ffmpeg/base_augmenter.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import math from typing import List, Union from augly.video.augmenters.ffmpeg.base_augmenter import BaseVidgearFFMPEGAugmenter from augly.video.helpers import get_video_info class VideoAugmenterByAspectRatio(BaseVidgearFFMPEGAugmenter): def __init__(self, ratio: Union[float, str]): assert (isinstance(ratio, str) and len(ratio.split(":")) == 2) or ( isinstance(ratio, (int, float)) and ratio > 0 ), "Aspect ratio must be a valid string ratio or a positive number" self.aspect_ratio = ratio def get_command(self, video_path: str, output_path: str) -> List[str]: """ Changes the sample (sar) & display (dar) aspect ratios of the video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. @returns: a list of strings containing the CLI FFMPEG command for the augmentation """ video_info = get_video_info(video_path) area = int(video_info["width"]) * int(video_info["height"]) if isinstance(self.aspect_ratio, float): aspect_ratio = float(self.aspect_ratio) else: num, denom = [int(x) for x in str(self.aspect_ratio).split(":")] aspect_ratio = num / denom new_w = int(math.sqrt(area * aspect_ratio)) new_h = int(area / new_w) filters = [ f"scale=width={new_w}:height={new_h}," + "pad=width=ceil(iw/2)*2:height=ceil(ih/2)*2," + f"setsar=ratio={self.aspect_ratio}," + f"setdar=ratio={self.aspect_ratio}", ] return self.standard_filter_fmt(video_path, filters, output_path)
AugLy-main
augly/video/augmenters/ffmpeg/aspect_ratio.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from typing import List from augly.utils import is_image_file, is_video_file, pathmgr from augly.video.augmenters.ffmpeg.base_augmenter import BaseVidgearFFMPEGAugmenter from augly.video.helpers import get_video_info, has_audio_stream class VideoAugmenterByOverlay(BaseVidgearFFMPEGAugmenter): def __init__( self, overlay_path: str, x_factor: float, y_factor: float, use_overlay_audio: bool, ): assert is_image_file(overlay_path) or is_video_file( overlay_path ), "Overlaid media type not supported: please overlay either an image or video" assert 0 <= x_factor <= 1, "x_factor must be a value in the range [0, 1]" assert 0 <= y_factor <= 1, "y_factor must be a value in the range [0, 1]" assert ( type(use_overlay_audio) == bool ), "Expected a boolean value for use_overlay_audio" self.overlay_path = pathmgr.get_local_path(overlay_path) self.x_factor = x_factor self.y_factor = y_factor self.use_overlay_audio = use_overlay_audio and is_video_file(overlay_path) def get_command(self, video_path: str, output_path: str) -> List[str]: """ Overlays media onto the video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. @returns: a list of strings containing the CLI FFMPEG command for the augmentation """ video_info = get_video_info(video_path) new_width = video_info["width"] * self.x_factor new_height = video_info["height"] * self.y_factor process_audio = has_audio_stream(video_path) ret = [ *self.input_fmt(video_path), "-i", self.overlay_path, "-filter_complex", f"[0:v][1:v] overlay={new_width}:{new_height}", ] if process_audio: ret += [ "-map", f"{int(self.use_overlay_audio)}:a:0", ] ret += self.output_fmt(output_path) return ret
AugLy-main
augly/video/augmenters/ffmpeg/overlay.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from typing import List from augly.video.augmenters.ffmpeg.base_augmenter import BaseVidgearFFMPEGAugmenter class VideoAugmenterByGrayscale(BaseVidgearFFMPEGAugmenter): def get_command(self, video_path: str, output_path: str) -> List[str]: """ Changes the video to be grayscale @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. @returns: a list of strings containing the CLI FFMPEG command for the augmentation """ return self.standard_filter_fmt(video_path, ["hue=s=0"], output_path)
AugLy-main
augly/video/augmenters/ffmpeg/grayscale.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from typing import List from augly.video.augmenters.ffmpeg.base_augmenter import BaseVidgearFFMPEGAugmenter class VideoAugmenterByFPSChange(BaseVidgearFFMPEGAugmenter): def __init__(self, fps: int): assert fps > 0, "FPS must be greater than zero" self.fps = fps def get_command(self, video_path: str, output_path: str) -> List[str]: """ Changes the frame rate of the video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. @returns: a list of strings containing the CLI FFMPEG command for the augmentation """ return self.standard_filter_fmt( video_path, [f"fps=fps={self.fps}:round=up"], output_path )
AugLy-main
augly/video/augmenters/ffmpeg/fps.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import logging from dataclasses import dataclass from enum import Enum from math import ceil from typing import List, Optional from augly.utils import pathmgr from augly.video.augmenters.ffmpeg.base_augmenter import BaseVidgearFFMPEGAugmenter from augly.video.helpers import get_video_info, has_audio_stream from dataclasses_json import dataclass_json log = logging.getLogger(__name__) class TransitionEffect(Enum): DISSOLVE = 2 RADIAL = 3 CIRCLEOPEN = 4 CIRCLECLOSE = 5 PIXELIZE = 6 HLSLICE = 7 HRSLICE = 8 VUSLICE = 9 VDSLICE = 10 HBLUR = 11 FADEGRAYS = 12 FADEBLACK = 13 FADEWHITE = 14 RECTCROP = 15 CIRCLECROP = 16 WIPELEFT = 17 WIPERIGHT = 18 SLIDEDOWN = 19 SLIDEUP = 20 SLIDELEFT = 21 SLIDERIGHT = 22 @dataclass_json @dataclass class TransitionConfig: effect: TransitionEffect # transition duration in seconds. duration: float = 2.0 class VideoAugmenterByConcat(BaseVidgearFFMPEGAugmenter): def __init__( self, video_paths: List[str], src_video_path_index: int, transition: Optional[TransitionConfig] = None, ): assert len(video_paths) > 0, "Please provide at least one input video" assert all( pathmgr.exists(video_path) for video_path in video_paths ), "Invalid video path(s) provided" self.video_paths = [ pathmgr.get_local_path(video_path) for video_path in video_paths ] self.src_video_path_index = src_video_path_index video_info = get_video_info(self.video_paths[src_video_path_index]) self.height = ceil(video_info["height"] / 2) * 2 self.width = ceil(video_info["width"] / 2) * 2 log.info("Width=%d height=%d", self.width, self.height) self.sample_aspect_ratio = video_info.get("sample_aspect_ratio", "1") log.info("Aspect ratio=%s", self.sample_aspect_ratio) self.transition = transition def _create_null_transition_filters( self, video_streams: List[str], audio_streams: List[str], process_audio: bool, ) -> List[str]: if process_audio: # Interleave the video and audio streams. all_streams = [ v for pair in zip(video_streams, audio_streams) for v in pair ] out_streams = "v=1:a=1[v][a]" else: all_streams = video_streams out_streams = "v=1[v]" filters = [ f"{''.join(all_streams)}concat=n={len(self.video_paths)}:{out_streams}" ] return filters def _create_transition_filters( self, video_streams: List[str], audio_streams: List[str], process_audio: bool, out_video: str = "[v]", out_audio: str = "[a]", ) -> List[str]: if self.transition is None: return self._create_null_transition_filters( video_streams, audio_streams, process_audio ) transition = self.transition effect = transition.effect.name.lower() video_durations = [ float(get_video_info(video_path)["duration"]) for video_path in self.video_paths ] log.info(f"Video durations = {video_durations}.") # There are 2 steps: # 1. Harmonize the timebase between clips; # 2. Add the transition filter. td = transition.duration concat_filters = [] for i, name in enumerate(video_streams): fps_filter = f"[{i}fps]" concat_filters.append(f"{name}settb=AVTB,fps=30/1{fps_filter}") if td > min(video_durations): raise ValueError( f"transition duration {td} should be smaller than video durations {min(video_durations)} " ) prev = "[0fps]" cum_dur = video_durations[0] for i in range(1, len(video_durations) - 1): dur = video_durations[i] fps_filter = f"[{i}fps]" out_filter = f"[{i}m]" offset = cum_dur - td concat_filters.append( f"{prev}{fps_filter}xfade=transition={effect}:duration={td}:offset={offset}{out_filter}" ) prev = out_filter cum_dur += dur - td # Special processing for the last filter to comply with out_video requirement. concat_filters.append( f"{prev}[{len(video_durations) - 1}fps]xfade=transition={effect}:duration={td}:offset={cum_dur - td}{out_video}" ) # Concat audio filters. if process_audio: prev = audio_streams[0] cum_dur = video_durations[0] for i in range(1, len(video_durations) - 1): dur = video_durations[i] in_f = audio_streams[i] out_f = f"[a{i}m]" offset = cum_dur - td concat_filters.append( f"{prev}{in_f}acrossfade=d={td}:c1=tri:c2=tri{out_f}" ) prev = out_f cum_dur += dur - td concat_filters.append( f"{prev}[{len(video_durations) - 1}:a]acrossfade=d={td}:c1=tri:c2=tri{out_audio}" ) return concat_filters def get_command(self, video_path: str, output_path: str) -> List[str]: """ Concatenates multiple videos together on both channels, if present. If any of the input files does not have an audio stream, then audio will not be processed. @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. @returns: a list of strings containing the CLI FFMPEG command for the augmentation """ inputs = [["-i", video] for video in self.video_paths] flat_inputs = [element for sublist in inputs for element in sublist] filters = [] process_audio = all(has_audio_stream(v) for v in self.video_paths) if not process_audio: log.warn("Audio processing will be skipped.") video_streams = [] audio_streams = [] for i in range(len(self.video_paths)): filters.append( f"[{i}:v]scale={self.width}:{self.height}[{i}v],[{i}v]" f"setsar=ratio={self.sample_aspect_ratio}[{i}vf]" ) video_streams.append(f"[{i}vf]") audio_streams.append(f"[{i}:a]") filters += self._create_transition_filters( video_streams, audio_streams, process_audio ) result = [ "-y", *flat_inputs, "-filter_complex", ";".join(filters), "-map", "[v]", ] if process_audio: result += ["-map", "[a]"] result += [ "-vsync", "2", *self.output_fmt(output_path), ] return result
AugLy-main
augly/video/augmenters/ffmpeg/concat.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from typing import List from augly.video.augmenters.ffmpeg.base_augmenter import BaseVidgearFFMPEGAugmenter class VideoAugmenterBySpeed(BaseVidgearFFMPEGAugmenter): def __init__(self, factor: float): assert factor > 0, "Factor must be greater than zero" self.factor = factor def get_command(self, video_path: str, output_path: str) -> List[str]: """ Changes the speed of the video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @returns: a list of strings containing the CLI FFMPEG command for the augmentation """ return [ *self.input_fmt(video_path), "-vf", f"setpts={1/self.factor}*PTS", "-filter:a", f"atempo={self.factor}", *self.output_fmt(output_path), ]
AugLy-main
augly/video/augmenters/ffmpeg/speed.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from augly.video.augmenters.ffmpeg.aspect_ratio import VideoAugmenterByAspectRatio from augly.video.augmenters.ffmpeg.audio_swap import VideoAugmenterByAudioSwap from augly.video.augmenters.ffmpeg.base_augmenter import BaseVidgearFFMPEGAugmenter from augly.video.augmenters.ffmpeg.blur import VideoAugmenterByBlur from augly.video.augmenters.ffmpeg.brightness import VideoAugmenterByBrightness from augly.video.augmenters.ffmpeg.color_jitter import VideoAugmenterByColorJitter from augly.video.augmenters.ffmpeg.concat import ( TransitionConfig, TransitionEffect, VideoAugmenterByConcat, ) from augly.video.augmenters.ffmpeg.contrast import VideoAugmenterByContrast from augly.video.augmenters.ffmpeg.crop import VideoAugmenterByCrop from augly.video.augmenters.ffmpeg.fps import VideoAugmenterByFPSChange from augly.video.augmenters.ffmpeg.grayscale import VideoAugmenterByGrayscale from augly.video.augmenters.ffmpeg.hflip import VideoAugmenterByHFlip from augly.video.augmenters.ffmpeg.loops import VideoAugmenterByLoops from augly.video.augmenters.ffmpeg.no_audio import VideoAugmenterByRemovingAudio from augly.video.augmenters.ffmpeg.noise import VideoAugmenterByNoise from augly.video.augmenters.ffmpeg.overlay import VideoAugmenterByOverlay from augly.video.augmenters.ffmpeg.pad import VideoAugmenterByPadding from augly.video.augmenters.ffmpeg.quality import VideoAugmenterByQuality from augly.video.augmenters.ffmpeg.resize import VideoAugmenterByResize from augly.video.augmenters.ffmpeg.resolution import VideoAugmenterByResolution from augly.video.augmenters.ffmpeg.rotate import VideoAugmenterByRotation from augly.video.augmenters.ffmpeg.speed import VideoAugmenterBySpeed from augly.video.augmenters.ffmpeg.stack import VideoAugmenterByStack from augly.video.augmenters.ffmpeg.trim import VideoAugmenterByTrim from augly.video.augmenters.ffmpeg.vflip import VideoAugmenterByVFlip __all__ = [ "BaseVidgearFFMPEGAugmenter", "TransitionConfig", "TransitionEffect", "VideoAugmenterByAspectRatio", "VideoAugmenterByAudioSwap", "VideoAugmenterByBlur", "VideoAugmenterByBrightness", "VideoAugmenterByColorJitter", "VideoAugmenterByConcat", "VideoAugmenterByContrast", "VideoAugmenterByCrop", "VideoAugmenterByFPSChange", "VideoAugmenterByGrayscale", "VideoAugmenterByHFlip", "VideoAugmenterByLoops", "VideoAugmenterByNoise", "VideoAugmenterByOverlay", "VideoAugmenterByPadding", "VideoAugmenterByQuality", "VideoAugmenterByRemovingAudio", "VideoAugmenterByResize", "VideoAugmenterByResolution", "VideoAugmenterByRotation", "VideoAugmenterBySpeed", "VideoAugmenterByStack", "VideoAugmenterByTrim", "VideoAugmenterByVFlip", ]
AugLy-main
augly/video/augmenters/ffmpeg/__init__.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from typing import List, Optional from augly.video.augmenters.ffmpeg.base_augmenter import BaseVidgearFFMPEGAugmenter from augly.video.helpers import get_video_info class VideoAugmenterByTrim(BaseVidgearFFMPEGAugmenter): def __init__( self, start: Optional[float] = None, end: Optional[float] = None, offset_factor: float = 0.0, duration_factor: float = 1.0, minimum_duration: float = 0.0, ): assert start is None or start >= 0, "Start cannot be a negative number" assert ( end is None or (start is not None and end > start) or end > 0 ), "End must be a value greater than start" assert ( 0.0 <= offset_factor <= 1.0 ), "Offset factor must be a value in the range [0.0, 1.0]" assert ( 0.0 <= duration_factor <= 1.0 ), "Duration factor must be a value in the range [0.0, 1.0]" if start is not None or end is not None: self.start = start self.end = end self.offset_factor = None self.duration_factor = None self.minimum_duration = 0.0 else: self.start = None self.end = None self.offset_factor = offset_factor self.duration_factor = duration_factor self.minimum_duration = minimum_duration def get_command(self, video_path: str, output_path: str) -> List[str]: """ Trims the video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. @returns: a list of strings containing the CLI FFMPEG command for the augmentation """ video_info = get_video_info(video_path) duration = float(video_info["duration"]) if self.start is None and self.end is None: self.start = self.offset_factor * duration duration = min( max(self.minimum_duration, self.duration_factor * duration), duration - self.start, ) self.end = self.start + duration elif self.start is None: self.start = 0 elif self.end is None: self.end = duration return [ *self.input_fmt(video_path), "-vf", f"trim={self.start}:{self.end}," + "setpts=PTS-STARTPTS", "-af", f"atrim={self.start}:{self.end}," + "asetpts=PTS-STARTPTS", *self.output_fmt(output_path), ]
AugLy-main
augly/video/augmenters/ffmpeg/trim.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from typing import List from augly.video.augmenters.ffmpeg.base_augmenter import BaseVidgearFFMPEGAugmenter class VideoAugmenterByColorJitter(BaseVidgearFFMPEGAugmenter): def __init__( self, brightness_level: float, contrast_level: float, saturation_level: float ): assert ( -1.0 <= brightness_level <= 1.0 ), "Brightness factor must be a value in the range [-1.0, 1.0]" assert ( -1000.0 <= contrast_level <= 1000.0 ), "Contrast factor must be a value in the range [-1000, 1000]" assert ( 0.0 <= saturation_level <= 3.0 ), "Saturation factor must be a value in the range [0.0, 3.0]" self.brightness_level = brightness_level self.contrast_level = contrast_level self.saturation_level = saturation_level def get_command(self, video_path: str, output_path: str) -> List[str]: """ Color jitters the video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. @returns: a list of strings containing the CLI FFMPEG command for the augmentation """ filters = [ f"eq=brightness={self.brightness_level}" + f":contrast={self.contrast_level}" + f":saturation={self.saturation_level}" ] return self.standard_filter_fmt(video_path, filters, output_path)
AugLy-main
augly/video/augmenters/ffmpeg/color_jitter.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from typing import List from augly.video.augmenters.ffmpeg.base_augmenter import BaseVidgearFFMPEGAugmenter from augly.video.helpers import get_video_info class VideoAugmenterByCrop(BaseVidgearFFMPEGAugmenter): def __init__(self, left: float, top: float, right: float, bottom: float): assert 0.0 <= left <= 1.0, "Left must be a value in the range [0.0, 1.0]" assert 0.0 <= top <= 1.0, "Top must be a value in the range [0.0, 1.0]" assert left < right <= 1.0, "Right must be a value in the range (left, 1.0]" assert top < bottom <= 1.0, "Bottom must be a value in the range (top, 1.0]" self.left = left self.top = top self.right = right self.bottom = bottom def get_command(self, video_path: str, output_path: str) -> List[str]: """ Crops the video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. @returns: a list of strings containing the CLI FFMPEG command for the augmentation """ video_info = get_video_info(video_path) x1 = int(video_info["width"] * self.left) y1 = int(video_info["height"] * self.top) width = int(video_info["width"] * (self.right - self.left)) height = int(video_info["height"] * (self.bottom - self.top)) return self.standard_filter_fmt( video_path, [f"crop=w={width}:h={height}:x={x1}:y={y1}"], output_path )
AugLy-main
augly/video/augmenters/ffmpeg/crop.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from typing import List from augly.video.augmenters.ffmpeg.base_augmenter import BaseVidgearFFMPEGAugmenter class VideoAugmenterByRemovingAudio(BaseVidgearFFMPEGAugmenter): def get_command(self, video_path: str, output_path: str) -> List[str]: """ Removes the audio from the video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @returns: a list of strings containing the CLI FFMPEG command for the augmentation """ return [ *self.input_fmt(video_path), "-c", "copy", "-an", *self.output_fmt(output_path), ]
AugLy-main
augly/video/augmenters/ffmpeg/no_audio.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from typing import List from augly.video.augmenters.ffmpeg.base_augmenter import BaseVidgearFFMPEGAugmenter class VideoAugmenterByHFlip(BaseVidgearFFMPEGAugmenter): def get_command(self, video_path: str, output_path: str, **kwargs) -> List[str]: """ Horizontally flips the video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. @returns: a list of strings containing the CLI FFMPEG command for the augmentation """ return self.standard_filter_fmt(video_path, ["hflip"], output_path)
AugLy-main
augly/video/augmenters/ffmpeg/hflip.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from typing import List from augly.video.augmenters.ffmpeg.base_augmenter import BaseVidgearFFMPEGAugmenter class VideoAugmenterByLoops(BaseVidgearFFMPEGAugmenter): def __init__(self, num_loops: int): assert type(num_loops) == int, "Number of loops must be an integer" assert num_loops >= 0, "Number of loops cannot be a negative number" self.num_loops = num_loops def get_command(self, video_path: str, output_path: str) -> List[str]: """ Loops the video `num_loops` times @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. @returns: a list of strings containing the CLI FFMPEG command for the augmentation """ return [ "-y", "-stream_loop", str(self.num_loops), "-i", video_path, "-c:a", "copy", *self.output_fmt(output_path), ]
AugLy-main
augly/video/augmenters/ffmpeg/loops.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from typing import List, Tuple from augly.utils import validate_rgb_color from augly.video.augmenters.ffmpeg.base_augmenter import BaseVidgearFFMPEGAugmenter from augly.video.helpers import get_video_info class VideoAugmenterByPadding(BaseVidgearFFMPEGAugmenter): def __init__(self, w_factor: float, h_factor: float, color: Tuple[int, int, int]): assert w_factor >= 0, "w_factor cannot be a negative number" assert h_factor >= 0, "h_factor cannot be a negative number" validate_rgb_color(color) self.w_factor = w_factor self.h_factor = h_factor self.hex_color = "%02x%02x%02x" % color def get_command(self, video_path: str, output_path: str) -> List[str]: """ Adds padding to the video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. @returns: a list of strings containing the CLI FFMPEG command for the augmentation """ video_info = get_video_info(video_path) left = int(video_info["width"] * self.w_factor) top = int(video_info["height"] * self.h_factor) filters = [ f"pad=width={left*2}+iw:height={top*2}+ih" + f":x={left}:y={top}:color={self.hex_color}" ] return self.standard_filter_fmt(video_path, filters, output_path)
AugLy-main
augly/video/augmenters/ffmpeg/pad.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from typing import List from augly.video.augmenters.ffmpeg.base_augmenter import BaseVidgearFFMPEGAugmenter class VideoAugmenterByBlur(BaseVidgearFFMPEGAugmenter): def __init__(self, sigma: float): assert sigma >= 0, "Sigma cannot be a negative number" self.sigma = sigma def get_command(self, video_path: str, output_path: str) -> List[str]: """ Blurs the video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. @returns: a list of strings containing the CLI FFMPEG command for the augmentation """ return self.standard_filter_fmt( video_path, [f"gblur={self.sigma}"], output_path )
AugLy-main
augly/video/augmenters/ffmpeg/blur.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from typing import List, Union from augly.video.augmenters.ffmpeg.base_augmenter import BaseVidgearFFMPEGAugmenter class VideoAugmenterByResize(BaseVidgearFFMPEGAugmenter): def __init__(self, height: Union[int, str] = "ih", width: Union[int, str] = "iw"): """ Constructor. See https://trac.ffmpeg.org/wiki/Scaling for height and width options. @param height: height specification. Defaults to input if not specified. @param width: width specification. Defaults to input width if not specified. """ self.new_h = height self.new_w = width def get_command(self, video_path: str, output_path: str) -> List[str]: """ Resizes the video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @returns: a list of strings containing the CLI FFMPEG command for the augmentation """ filters = [ f"scale=height:{self.new_h}:width={self.new_w}," + "pad=width=ceil(iw/2)*2:height=ceil(ih/2)*2", ] return self.standard_filter_fmt(video_path, filters, output_path)
AugLy-main
augly/video/augmenters/ffmpeg/resize.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from typing import List from augly.utils import pathmgr from augly.video.augmenters.ffmpeg.base_augmenter import BaseVidgearFFMPEGAugmenter from augly.video.helpers import get_video_info, has_audio_stream class VideoAugmenterByStack(BaseVidgearFFMPEGAugmenter): def __init__( self, second_video_path: str, use_second_audio: bool, orientation: str ): assert ( type(use_second_audio) == bool ), "Expected a boolean value for use_second_audio" assert orientation in [ "hstack", "vstack", ], "Expected orientation to be either 'hstack' or 'vstack'" self.second_video_path = pathmgr.get_local_path(second_video_path) self.use_second_audio = use_second_audio self.orientation = orientation def get_command(self, video_path: str, output_path: str) -> List[str]: """ Stacks two videos together @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @returns: a list of strings containing the CLI FFMPEG command for the augmentation """ video_info = get_video_info(video_path) process_audio = False if self.use_second_audio: process_audio = has_audio_stream(self.second_video_path) else: process_audio = has_audio_stream(video_path) ret = [ *self.input_fmt(video_path), "-i", self.second_video_path, "-filter_complex", f"[1:v]scale={video_info['width']}:{video_info['height']}[1v];" + f"[0:v][1v]{self.orientation}=inputs=2[v]", "-map", "[v]", ] if process_audio: ret += [ "-map", f"{int(self.use_second_audio)}:a", ] ret += [ "-vsync", "2", *self.output_fmt(output_path), ] return ret
AugLy-main
augly/video/augmenters/ffmpeg/stack.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from typing import List from augly.video.augmenters.ffmpeg.base_augmenter import BaseVidgearFFMPEGAugmenter class VideoAugmenterByNoise(BaseVidgearFFMPEGAugmenter): def __init__(self, level: int): assert 0 <= level <= 100, "Level must be a value in the range [0, 100]" self.level = level def get_command(self, video_path: str, output_path: str) -> List[str]: """ Adds noise to the video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. @returns: a list of strings containing the CLI FFMPEG command for the augmentation """ return self.standard_filter_fmt( video_path, [f"boxblur=lr=1.2,noise=c0s={self.level}:allf=t"], output_path )
AugLy-main
augly/video/augmenters/ffmpeg/noise.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from typing import List from augly.utils import pathmgr from augly.video.augmenters.ffmpeg.base_augmenter import BaseVidgearFFMPEGAugmenter from augly.video.helpers import get_audio_info, get_video_info class VideoAugmenterByAudioSwap(BaseVidgearFFMPEGAugmenter): def __init__(self, audio_path: str, offset: float): assert offset >= 0, "Offset cannot be a negative number" self.audio_path = pathmgr.get_local_path(audio_path) self.offset = offset def get_command(self, video_path: str, output_path: str) -> List[str]: """ Swaps the audio of a video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. @returns: a list of strings containing the CLI FFMPEG command for the augmentation """ audio_info = get_audio_info(self.audio_path) video_info = get_video_info(video_path) audio_duration = float(audio_info["duration"]) audio_sample_rate = float(audio_info["sample_rate"]) start = self.offset end = start + float(video_info["duration"]) audio_filters = f"atrim={start}:{end}," + "asetpts=PTS-STARTPTS" if end > audio_duration: pad_len = (end - audio_duration) * audio_sample_rate audio_filters += f",apad=pad_len={pad_len}" return [ *self.input_fmt(video_path), "-i", self.audio_path, "-c:v", "copy", "-af", audio_filters, "-map", "0:v:0", "-map", "1:a:0", output_path, ]
AugLy-main
augly/video/augmenters/ffmpeg/audio_swap.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from typing import List from augly.video.augmenters.ffmpeg.base_augmenter import BaseVidgearFFMPEGAugmenter class VideoAugmenterByVFlip(BaseVidgearFFMPEGAugmenter): def get_command(self, video_path: str, output_path: str) -> List[str]: """ Vertically flips the video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. @returns: a list of strings containing the CLI FFMPEG command for the augmentation """ return self.standard_filter_fmt(video_path, ["vflip"], output_path)
AugLy-main
augly/video/augmenters/ffmpeg/vflip.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from typing import List from augly.video.augmenters.ffmpeg.base_augmenter import BaseVidgearFFMPEGAugmenter class VideoAugmenterByBrightness(BaseVidgearFFMPEGAugmenter): def __init__(self, level: float): assert -1.0 <= level <= 1.0, "Level must be a value in the range [-1.0, 1.0]" self.level = level def get_command(self, video_path: str, output_path: str) -> List[str]: """ Changes the brightness level of the video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. @returns: a list of strings containing the CLI FFMPEG command for the augmentation """ return self.standard_filter_fmt( video_path, [f"eq=brightness={self.level}"], output_path )
AugLy-main
augly/video/augmenters/ffmpeg/brightness.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from typing import List from augly.video.augmenters.ffmpeg.base_augmenter import BaseVidgearFFMPEGAugmenter class VideoAugmenterByResolution(BaseVidgearFFMPEGAugmenter): def __init__(self, resolution: float): assert ( isinstance(resolution, (int, float)) and resolution > 0.0 ), "Invalid resolution: scale factor must be positive" self.resolution = resolution def get_command(self, video_path: str, output_path: str) -> List[str]: """ Alters the resolution of the video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @returns: a list of strings containing the CLI FFMPEG command for the augmentation """ filters = [ f"scale=height:ih*{self.resolution}:width=iw*{self.resolution}," + "pad=width=ceil(iw/2)*2:height=ceil(ih/2)*2" ] return self.standard_filter_fmt(video_path, filters, output_path)
AugLy-main
augly/video/augmenters/ffmpeg/resolution.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import math from typing import List from augly.video.augmenters.ffmpeg.base_augmenter import BaseVidgearFFMPEGAugmenter class VideoAugmenterByRotation(BaseVidgearFFMPEGAugmenter): def __init__(self, degrees: float): assert isinstance(degrees, (float, int)), "Expected 'degrees' to be a number" self.degrees = degrees def get_command(self, video_path: str, output_path: str) -> List[str]: """ Rotates the video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @returns: a list of strings containing the CLI FFMPEG command for the augmentation """ return self.standard_filter_fmt( video_path, [f"rotate={self.degrees * (math.pi / 180)}"], output_path )
AugLy-main
augly/video/augmenters/ffmpeg/rotate.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from typing import List from augly.video.augmenters.ffmpeg.base_augmenter import BaseVidgearFFMPEGAugmenter class VideoAugmenterByQuality(BaseVidgearFFMPEGAugmenter): def __init__(self, quality: int): assert 0 <= quality <= 51, "Quality must be a value in the range [0, 51]" self.quality = quality def get_command(self, video_path: str, output_path: str) -> List[str]: """ Alters the quality level of the video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @returns: a list of strings containing the CLI FFMPEG command for the augmentation """ return [ *self.input_fmt(video_path), "-c:v", "libx264", "-crf", f"{self.quality}", "-c:a", "copy", *self.output_fmt(output_path), ]
AugLy-main
augly/video/augmenters/ffmpeg/quality.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from typing import List from augly.video.augmenters.ffmpeg.base_augmenter import BaseVidgearFFMPEGAugmenter class VideoAugmenterByContrast(BaseVidgearFFMPEGAugmenter): def __init__(self, level: float): assert ( -1000.0 <= level <= 1000.0 ), "Level must be a value in the range [-1000, 1000]" self.level = level def get_command(self, video_path: str, output_path: str) -> List[str]: """ Changes the contrast level of the video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. If not passed in, the original video file will be overwritten @returns: a list of strings containing the CLI FFMPEG command for the augmentation """ return self.standard_filter_fmt( video_path, [f"eq=contrast={self.level}"], output_path )
AugLy-main
augly/video/augmenters/ffmpeg/contrast.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. """ Implementation of base class for video distractors - Interface: - `augment(self, video_temp_path: str, fps: float, **kwargs)`: extracts frames from the video, and turns original set of frames into augumented frames by mapping each of them using `apply_augmentation` operators. the path to the temporary directory containing the augmented frames is returned - Methods to override - `apply_augmentation(self, raw_frame: np.ndarray, **kwargs)`: applies the augmentation to each frame """ import os import random import shutil from abc import ABC, abstractmethod from pathlib import Path from typing import Iterator, List, Optional, Tuple import cv2 import numpy as np from augly import utils from augly.video.helpers import extract_frames_to_dir class BaseCV2Augmenter(ABC): def __init__( self, num_dist: int = 0, random_movement: bool = True, topleft: Optional[Tuple[float, float]] = None, bottomright: Optional[Tuple[float, float]] = None, **kwargs, ): assert type(random_movement) == bool, "Random movement must be set to a boolean" assert topleft is None or all( 0.0 <= t <= 1.0 for t in topleft ), "Topleft must be in the range [0, 1]" assert bottomright is None or all( 0.0 <= b <= 1.0 for b in bottomright ), "Bottomright must be in the range [0, 1]" self.random_movement = random_movement if self.random_movement: self.origins = BaseCV2Augmenter.random_origins(topleft, bottomright) else: top, left = topleft or (0.01, 0.01) bottom, right = bottomright or (0.99, 0.99) y_vals = random.choices(np.linspace(top, bottom, num=15), k=num_dist) random.shuffle(y_vals) self.origins = [ BaseCV2Augmenter.moving_origins(left, y_val, left, right) for y_val in y_vals ] def augment(self, video_temp_path: str, fps: float, **kwargs) -> str: """ Augment a set of frames by adding distractors to each by mapping each frame with `apply_augmentation` method @param video_temp_path: local temp path of the video to be augmented @param kwargs: parameters to pass into apply_augmentation @returns: path to the temp directory containing augmented frames """ video_temp_dir = Path(video_temp_path).parent frame_temp_dir = os.path.join(video_temp_dir, "raw_frames_distractor") os.mkdir(frame_temp_dir) aug_frame_temp_dir = os.path.join(video_temp_dir, "aug_frames_distractor") os.mkdir(aug_frame_temp_dir) extract_frames_to_dir(video_temp_path, frame_temp_dir) for raw_frame_file in os.listdir(frame_temp_dir): frame = cv2.imread(os.path.join(frame_temp_dir, raw_frame_file)) aug_frame = self.apply_augmentation(frame, **kwargs) cv2.imwrite(os.path.join(aug_frame_temp_dir, raw_frame_file), aug_frame) shutil.rmtree(frame_temp_dir) return aug_frame_temp_dir @abstractmethod def apply_augmentation(self, raw_frame: np.ndarray, **kwargs) -> np.ndarray: """ Applies the specific augmentation to a single frame @param raw_frame: raw, single RGB/Gray frame @returns: the augumented frame """ raise NotImplementedError("Implement apply_augmentation method") def get_origins(self, index: int) -> Tuple[float, float]: if self.random_movement: return next(self.origins) return next(self.origins[index]) @staticmethod def random_origins( topleft: Optional[Tuple[float, float]], bottomright: Optional[Tuple[float, float]], ) -> Iterator[Tuple[float, float]]: top, left = topleft or (0.01, 0.01) bottom, right = bottomright or (0.99, 0.99) while True: yield (random.uniform(left, right), random.uniform(top, bottom)) @staticmethod def moving_origins( x_start: float, y_val: float, x_min: float, x_max: float ) -> Iterator[Tuple[float, float]]: x_curr = x_start while True: yield x_curr, y_val x_curr += 0.02 x_curr = x_curr if x_curr <= x_max else x_min @staticmethod def random_colors( colors: Optional[List[Tuple[int, int, int]]] ) -> Iterator[Tuple[int, int, int]]: if colors is not None: assert type(colors) == list, "Expected type 'List' for colors variable" for color in colors: utils.validate_rgb_color(color) while True: if colors: color = colors[random.randint(0, len(colors) - 1)] else: color = ( random.randint(0, 255), # R random.randint(0, 255), # G random.randint(0, 255), # B ) yield color
AugLy-main
augly/video/augmenters/cv2/base_augmenter.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import random from typing import Iterator, List, Optional, Tuple import cv2 import numpy as np from augly.video.augmenters.cv2.base_augmenter import BaseCV2Augmenter class VideoDistractorByShapes(BaseCV2Augmenter): def __init__( self, num_shapes: int, shape_type: Optional[str] = None, colors: Optional[List[Tuple[int, int, int]]] = None, thickness: Optional[int] = None, radius: Optional[float] = None, random_movement: bool = True, topleft: Optional[Tuple[float, float]] = None, bottomright: Optional[Tuple[float, float]] = None, **kwargs, ) -> None: assert num_shapes > 0, "Number of shapes must be greater than zero" assert shape_type is None or shape_type in [ "circle", "rectangle", ], "Shape type must be set to None or to 'circle' or 'rectangle'" assert ( thickness is None or type(thickness) == int ), "Invalid thickness provided: must be set to None or an integer" super().__init__(num_shapes, random_movement, topleft, bottomright, **kwargs) self.num_shapes = num_shapes self.shape_type = VideoDistractorByShapes.random_shape_type(shape_type) self.colors = BaseCV2Augmenter.random_colors(colors) self.thickness = VideoDistractorByShapes.random_thickness(thickness) self.radius = VideoDistractorByShapes.random_radius(radius) # overrides abstract method of base class def apply_augmentation(self, raw_frame: np.ndarray, **kwargs) -> np.ndarray: """ Adds shape distracts (in various colors and positions) to each frame @param raw_frame: raw, single RGB/Gray frame @returns: the augumented frame """ assert (raw_frame.ndim == 3) and ( raw_frame.shape[2] == 3 ), "VideoDistractorByShapes only accepts RGB images" height, width = raw_frame.shape[:2] distract_frame = raw_frame.copy() for i in range(self.num_shapes): shape_type = next(self.shape_type) color = next(self.colors) thickness = next(self.thickness) fraction_x, fraction_y = self.get_origins(i) x = int(fraction_x * width) y = int(fraction_y * height) if shape_type == "circle": smaller_side = min(height, width) radius = int(next(self.radius) * smaller_side) cv2.circle(distract_frame, (x, y), radius, color, thickness) if shape_type == "rectangle": fraction_x, fraction_y = self.get_origins(i) x_2 = int(fraction_x * width) y_2 = int(fraction_y * height) cv2.rectangle(distract_frame, (x, y), (x_2, y_2), color, thickness) return distract_frame @staticmethod def random_shape_type(shape_type: Optional[str]) -> Iterator[str]: shapes = ["circle", "rectangle"] while True: yield shape_type if shape_type else shapes[ random.randint(0, len(shapes) - 1) ] @staticmethod def random_thickness(thickness: Optional[int]) -> Iterator[int]: while True: yield thickness or random.randint(-1, 5) @staticmethod def random_radius(radius: Optional[float]) -> Iterator[float]: if radius: radius = radius if radius < 0.5 else radius / 2 while True: yield radius or (random.random() / 2)
AugLy-main
augly/video/augmenters/cv2/shapes.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import logging import cv2 import numpy as np from augly.video.augmenters.cv2.base_augmenter import BaseCV2Augmenter from augly.video.augmenters.cv2.shapes import VideoDistractorByShapes logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) class VideoDistractorByDots(BaseCV2Augmenter): def __init__( self, num_dots: int, dot_type: str, random_movement: bool = True, **kwargs ) -> None: assert num_dots > 0, "Number of dots must be greater than zero" assert dot_type in [ "colored", "blur", ], "Dot type must be set to None or to 'colored' or 'blur'" super().__init__(num_dots, random_movement, **kwargs) self.num_dots = num_dots self.dot_type = dot_type self.shapes_distractor = None if self.dot_type == "colored": self.shapes_distractor = VideoDistractorByShapes( num_dots, shape_type="circle", colors=[(0, 0, 0), (91, 123, 166)], thickness=2, radius=0.001, random_movement=random_movement, ) def add_blurred_dots(self, raw_frame: np.ndarray) -> np.ndarray: height, width = raw_frame.shape[:2] distract_frame = raw_frame.copy() for i in range(self.num_dots): fraction_x, fraction_y = self.get_origins(i) x = int(fraction_x * width) y = int(fraction_y * height) # I think that sometimes the random positioning of the dot goes # past the frame resulting in an error, but I can't repro this, so # try/catching for now try: dot_bbox = distract_frame[y : y + 10, x : x + 10] dot_bbox = cv2.GaussianBlur(dot_bbox, (111, 111), cv2.BORDER_DEFAULT) distract_frame[y : y + 10, x : x + 10] = dot_bbox except Exception as e: logger.warning(f"Exception while adding Gaussian dot distractor: {e}") return distract_frame # overrides abstract method of base class def apply_augmentation(self, raw_frame: np.ndarray, **kwargs) -> np.ndarray: """ Adds random dot distracts (in various colors and positions) to each frame @param raw_frame: raw, single RGB/Gray frame @returns: the augumented frame """ assert (raw_frame.ndim == 3) and ( raw_frame.shape[2] == 3 ), "VideoDistractorByDots only accepts RGB images" if self.dot_type == "colored": return self.shapes_distractor.apply_augmentation(raw_frame, **kwargs) return self.add_blurred_dots(raw_frame)
AugLy-main
augly/video/augmenters/cv2/dots.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from augly.video.augmenters.cv2.base_augmenter import BaseCV2Augmenter from augly.video.augmenters.cv2.dots import VideoDistractorByDots from augly.video.augmenters.cv2.shapes import VideoDistractorByShapes from augly.video.augmenters.cv2.text import VideoDistractorByText __all__ = [ "BaseCV2Augmenter", "VideoDistractorByText", "VideoDistractorByShapes", "VideoDistractorByDots", ]
AugLy-main
augly/video/augmenters/cv2/__init__.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import pickle import random import string from typing import Any, Iterator, List, Optional, Tuple import cv2 import numpy as np from augly.utils import pathmgr from augly.video.augmenters.cv2.base_augmenter import BaseCV2Augmenter from PIL import Image, ImageDraw, ImageFont CV2_FONTS = [ cv2.FONT_HERSHEY_SIMPLEX, cv2.FONT_HERSHEY_PLAIN, cv2.FONT_HERSHEY_DUPLEX, cv2.FONT_HERSHEY_COMPLEX, cv2.FONT_HERSHEY_TRIPLEX, cv2.FONT_HERSHEY_COMPLEX_SMALL, cv2.FONT_HERSHEY_SCRIPT_SIMPLEX, cv2.FONT_HERSHEY_SCRIPT_COMPLEX, ] class VideoDistractorByText(BaseCV2Augmenter): def __init__( self, text_len: int, text_change_nth: Optional[int] = None, fonts: Optional[List[Tuple[Any, Optional[str]]]] = None, fontscales: Optional[Tuple[float, float]] = None, colors: Optional[List[Tuple[int, int, int]]] = None, thickness: Optional[int] = None, random_movement: bool = False, topleft: Optional[Tuple[float, float]] = None, bottomright: Optional[Tuple[float, float]] = None, **kwargs, ) -> None: assert text_len > 0, "Text length must be greater than zero" assert ( text_change_nth is None or text_change_nth > 0 ), "`text_change_nth` must be greater than zero" assert fonts is None or all( (isinstance(font, (str, ImageFont.ImageFont)) or (font in CV2_FONTS)) and (chars is None or isinstance(chars, str)) for font, chars in fonts ), "Fonts must be either None or a list of tuples of font (cv2 font, PIL ImageFont, or str path to a .ttf file) & chars file (str path or None)" assert fontscales is None or ( fontscales[0] > 0 and fontscales[1] > fontscales[0] ), "Fontscale ranges must be greater than zero and the second value must be greater than the first" # noqa: B950 assert thickness is None or ( type(thickness) == int and thickness > 0 ), "Invalid thickness provided: must be set to None or be an integer greater than zero" # noqa: B950 super().__init__(1, random_movement, topleft, bottomright, **kwargs) self.texts = self.random_texts(text_len, text_change_nth) self.fonts = self.random_fonts(fonts) self.fontscales = self.random_fontscales(fontscales) self.colors = BaseCV2Augmenter.random_colors(colors) self.thickness = self.random_thickness(thickness) def random_texts( self, text_len: int, text_change_nth: Optional[int] ) -> Iterator[List[float]]: def random_text(n): return [random.random() for _ in range(n)] iframe = 0 if not text_change_nth: text = random_text(text_len) while True: if text_change_nth and iframe % text_change_nth == 0: text = random_text(text_len) # pyre-fixme[61]: `text` may not be initialized here. yield text iframe += 1 def random_fonts( self, fonts: Optional[List[Tuple[Any, Optional[str]]]] ) -> Iterator[Tuple[Any, List[str]]]: fonts_and_chars = fonts or [(font, None) for font in CV2_FONTS] while True: font_idx = random.randint(0, len(fonts_and_chars) - 1) font, chars_path = fonts_and_chars[font_idx] if chars_path is not None: with pathmgr.open(chars_path, "rb") as f: chars = [chr(c) for c in pickle.load(f)] else: chars = list(string.ascii_letters + string.punctuation) yield font, chars def random_fontscales( self, fontscales: Optional[Tuple[float, float]] ) -> Iterator[float]: fontscales = fontscales or (2.5, 5) while True: yield random.uniform(*fontscales) def random_thickness(self, thickness: Optional[int]) -> Iterator[int]: while True: yield thickness or random.randint(2, 5) # overrides abstract method of base class def apply_augmentation(self, raw_frame: np.ndarray, **kwargs) -> np.ndarray: """ Adds text distracts (in various colors, fonts, and positions) to each frame @param raw_frame: raw, single RGB/Gray frame @returns: the augumented frame """ assert (raw_frame.ndim == 3) and ( raw_frame.shape[2] == 3 ), "VideoDistractorByText only accepts RGB images" height, width = raw_frame.shape[:2] text = next(self.texts) font, chars = next(self.fonts) # pyre-ignore fontscale = next(self.fontscales) color = next(self.colors) thickness = next(self.thickness) fraction_x, fraction_y = self.get_origins(0) x = int(fraction_x * width) y = int(fraction_y * height) n = len(chars) text_str = "".join([chars[int(c * n)] for c in text]) distract_frame = raw_frame.copy() if isinstance(font, str): with pathmgr.open(font, "rb") as f: font = ImageFont.truetype(f, int(fontscale * 100)) if isinstance( font, (ImageFont.ImageFont, ImageFont.FreeTypeFont, ImageFont.TransposedFont), ): # To use an ImageFont, we need to convert into PIL distract_frame_rgb = cv2.cvtColor(distract_frame, cv2.COLOR_BGR2RGB) distract_frame_pil = Image.fromarray(distract_frame_rgb) # pyre-fixme[6]: Expected `Optional[ImageFont._Font]` for 3rd param but # got `Union[ImageFont.FreeTypeFont, ImageFont.ImageFont, # ImageFont.TransposedFont]`. ImageDraw.Draw(distract_frame_pil).text((x, y), text_str, font=font) distract_frame = cv2.cvtColor( np.array(distract_frame_pil), cv2.COLOR_RGB2BGR ) else: cv2.putText( distract_frame, text_str, (x, y), font, fontscale, color, thickness, cv2.LINE_AA, ) return distract_frame
AugLy-main
augly/video/augmenters/cv2/text.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from copy import deepcopy from typing import Any, Dict, List, Optional, Tuple from augly import utils from augly.video import helpers from augly.video.helpers import intensity as vdintensity Segment = utils.Segment def get_func_kwargs( metadata: Optional[List[Dict[str, Any]]], local_kwargs: Dict[str, Any], video_path: str, **kwargs, ) -> Dict[str, Any]: if metadata is None: return {} func_kwargs = deepcopy(local_kwargs) func_kwargs.pop("metadata") func_kwargs.update( { "src_video_info": helpers.get_video_info(video_path), "src_fps": helpers.get_video_fps(video_path), **kwargs, } ) return func_kwargs def compute_time_crop_segments( src_segment: Segment, dst_segment: Segment, speed_factor: float, crop_start: float, crop_end: float, new_src_segments: List[Segment], new_dst_segments: List[Segment], end_dst_offset: float = 0.0, ) -> None: """ Calculates how the given matching pair src_segment & dst_segment change given a temporal crop starting at crop_start & ending at crop_end. We can use the same logic here for multiple transforms, by setting the crop_start & crop_end depending on the transform kwargs. Doesn't return anything, but appends the new matching segments in the dst video corresponding to the pair passed in to new_src_segments & new_dst_segments, if the segment pair still matches in the dst video. If the passed in segment pair is cropped out as a result of this temporal crop, nothing will be appended to the lists, since the segment pair doesn't exist in the dst video. """ # Crop segment is outside of the initial clip, so this matching segment # pair no longer exists in the new video. if crop_start >= dst_segment.end or crop_end <= dst_segment.start: return # new_start represents where the matching segment starts in the dst audio # (if negative, then part of the matching segment is getting cut out, so # we need to adjust both the src & dst starts). # Note: if the video was sped up before, we need to take this into account # (the matching segment that is e.g. 10 seconds of dst audio might # correspond to 5 seconds of src audio, if it was previously # slowed down by 0.5x). new_start = (dst_segment.start - crop_start) * speed_factor src_start, src_end, src_id = src_segment if new_start < 0: # We're cropping the beginning of the matching segment. src_start = src_segment.start - new_start new_start = 0 new_end = min(dst_segment.end - crop_start, crop_end - crop_start) if crop_end < dst_segment.end: # We're cropping the end of the matching segment. # Note: if the video was sped up before, we need to take this into # account (as above). src_end = src_segment.end - (dst_segment.end - crop_end) * speed_factor new_src_segments.append(Segment(src_start, src_end, src_id)) new_dst_segments.append( Segment(new_start + end_dst_offset, new_end + end_dst_offset) ) def compute_insert_in_background_multiple_segments( src_segment_starts: List[float], src_segment_ends: List[float], bkg_insertion_points: List[float], src_ids: List[str], transition_duration: float, new_src_segments: List[Segment], new_dst_segments: List[Segment], **kwargs, ) -> None: n = len(src_segment_starts) assert n == len( src_segment_ends ), "Source segment starts and ends lists must have equal length." assert n == len( bkg_insertion_points ), "Source segment starts and background insertion points lists must have equal length." assert n == len( src_ids ), "Source segment starts and source ids lists must have equal length." if n == 0: # nothing to do return dst_cum_dur = 0.0 # background cumulative duration. offset = transition_duration / 2.0 prev_bkg = 0.0 for src_start, src_end, src_id, bkg_pt in zip( src_segment_starts, src_segment_ends, src_ids, bkg_insertion_points ): crop_start = src_start + offset crop_end = src_end - offset dst_start = dst_cum_dur + (bkg_pt - prev_bkg) - offset src_segment = Segment(start=crop_start, end=crop_end, src_id=src_id) dst_segment = Segment(start=dst_start, end=dst_start + (crop_end - crop_start)) new_src_segments.append(src_segment) new_dst_segments.append(dst_segment) dst_cum_dur = dst_segment.end - offset prev_bkg = bkg_pt def compute_time_decimate_segments( src_segment: Segment, dst_segment: Segment, src_duration: float, speed_factor: float, transition_duration: float, new_src_segments: List[Segment], new_dst_segments: List[Segment], **kwargs, ) -> None: start_offset = src_duration * kwargs["start_offset_factor"] on_segment = src_duration * kwargs["on_factor"] off_segment = on_segment * kwargs["off_factor"] n = int((src_duration - start_offset) / (on_segment + off_segment)) dst_offset = 0 for i in range(n): crop_start = ( start_offset + i * on_segment + i * off_segment + (i > 0) * transition_duration / 2.0 ) crop_end = ( start_offset + (i + 1) * on_segment + i * off_segment - (i < n - 1) * transition_duration / 2 ) crop_end = min(src_duration, crop_end) if crop_start > src_duration: break compute_time_crop_segments( src_segment, dst_segment, speed_factor, crop_start, crop_end, new_src_segments, new_dst_segments, end_dst_offset=dst_offset, ) dst_offset = new_dst_segments[-1].end def get_transition_duration(kwargs): transition = kwargs.get("transition") if transition: return transition.duration return 0.0 def compute_changed_segments( name: str, src_segments: List[Segment], dst_segments: List[Segment], src_duration: float, dst_duration: float, speed_factor: float, **kwargs, ) -> Tuple[List[Segment], List[Segment]]: """ This function performs the logic of computing the new matching segments based on the old ones, for the set of transforms that temporally change the video. Returns the lists of new src segments & dst segments, respectively. """ new_src_segments, new_dst_segments = [], [] td = get_transition_duration(kwargs) for src_segment, dst_segment in zip(src_segments, dst_segments): if name == "insert_in_background": # Note: When we implement insert_in_background, make sure to pass these kwargs offset = kwargs["offset_factor"] * kwargs["background_video_duration"] transition_before = int(kwargs["transition_before"]) transition_after = int(kwargs["transition_after"]) # The matching segments are just offset in the dst audio by the amount # of background video inserted before the src video. new_src_segments.append( src_segment.delta( transition_before * td / 2, -transition_after * td / 2 ) ) new_dst_segments.append( Segment( dst_segment.start + offset - transition_before * td / 2, dst_segment.end + offset - transition_before * td - transition_after * td / 2, ) ) elif name == "insert_in_background_multiple": compute_insert_in_background_multiple_segments( src_segment_starts=kwargs["src_segment_starts"], src_segment_ends=kwargs["src_segment_ends"], bkg_insertion_points=kwargs["bkg_insertion_points"], src_ids=kwargs["src_ids"], transition_duration=td, new_src_segments=new_src_segments, new_dst_segments=new_dst_segments, ) elif name == "replace_with_background": clip_start = kwargs["starting_background_duration"] duration = kwargs["source_duration"] compute_time_crop_segments( src_segment, dst_segment, speed_factor, clip_start, clip_start + duration, new_src_segments, new_dst_segments, end_dst_offset=clip_start, ) elif name == "change_video_speed": crt_factor = kwargs["factor"] global_factor = crt_factor * speed_factor new_src_segments.append(src_segment) new_dst_segments.append( Segment( dst_segment.start / global_factor, dst_segment.end / global_factor, ) ) elif name == "concat": src_index = kwargs["src_video_path_index"] num_videos = len(kwargs["video_paths"]) transition_offset_start = td / 2 if src_index > 0 else 0.0 transition_offset_end = td / 2 if src_index < num_videos - 1 else 0.0 new_src_segments.append( src_segment.delta(transition_offset_start, -transition_offset_end) ) offset = sum( float(helpers.get_video_info(vp)["duration"]) - td for vp in kwargs["video_paths"][: kwargs["src_video_path_index"]] ) new_dst_segments.append( Segment( dst_segment.start + offset + transition_offset_start, dst_segment.end + offset - transition_offset_end, ) ) elif name == "loop": # The existing segments are unchanged. new_src_segments.append(src_segment) new_dst_segments.append(dst_segment) # Each original src segments now additionally matches a segment in # each loop in the dst video. for l_idx in range(kwargs["num_loops"]): new_src_segments.append(src_segment) new_dst_segments.append( Segment( dst_segment.start + (l_idx + 1) * src_duration, dst_segment.end + (l_idx + 1) * src_duration, ) ) elif name == "time_crop": crop_start = kwargs["offset_factor"] * src_duration crop_end = crop_start + kwargs["duration_factor"] * src_duration compute_time_crop_segments( src_segment, dst_segment, speed_factor, crop_start, crop_end, new_src_segments, new_dst_segments, ) elif name == "time_decimate": compute_time_decimate_segments( src_segment, dst_segment, src_duration, speed_factor, td, new_src_segments, new_dst_segments, **kwargs, ) elif name == "trim": crop_start = kwargs["start"] or 0.0 crop_end = kwargs["end"] or src_duration compute_time_crop_segments( src_segment, dst_segment, speed_factor, crop_start, crop_end, new_src_segments, new_dst_segments, ) elif name == "replace_with_color_frames": # This transform is like the inverse of time_crop/trim, because # offset & duration denote where the src content is being cropped # out, instead of which src content is being kept. offset = kwargs["offset_factor"] * src_duration duration = kwargs["duration_factor"] * src_duration compute_time_crop_segments( src_segment, dst_segment, speed_factor, 0.0, offset, new_src_segments, new_dst_segments, ) compute_time_crop_segments( src_segment, dst_segment, speed_factor, offset + duration, dst_duration, new_src_segments, new_dst_segments, ) return new_src_segments, new_dst_segments def compute_segments( name: str, src_duration: float, dst_duration: float, metadata: List[Dict[str, Any]], **kwargs, ) -> Tuple[List[Segment], List[Segment]]: """ Compute matching pairs of src_segment -> dst_segment, given the kwargs of the transform, as well as the metadata about previously applied transforms. """ speed_factor = 1.0 src_id = kwargs.get("src_id", None) if not metadata: src_segments = [Segment(0.0, src_duration, src_id)] dst_segments = [Segment(0.0, src_duration)] else: src_segments = [ Segment( segment_dict["start"], segment_dict["end"], segment_dict.get("src_id") ) for segment_dict in metadata[-1]["src_segments"] ] dst_segments = [ Segment(segment_dict["start"], segment_dict["end"]) for segment_dict in metadata[-1]["dst_segments"] ] for meta in metadata: if meta["name"] in ["change_video_speed"]: speed_factor *= meta["factor"] if name in [ "insert_in_background", "insert_in_background_multiple", "replace_with_background", "change_video_speed", "loop", "time_crop", "time_decimate", "trim", "replace_with_color_frames", "concat", ]: return compute_changed_segments( name, src_segments, dst_segments, src_duration, dst_duration, speed_factor, **kwargs, ) else: return src_segments, dst_segments def get_metadata( metadata: Optional[List[Dict[str, Any]]], function_name: str, video_path: str, output_path: Optional[str], src_video_info: Dict[str, Any], src_fps: Optional[float], **kwargs, ) -> None: if metadata is None: return assert isinstance( metadata, list ), "Expected 'metadata' to be set to None or of type list" assert src_fps is not None output_path = output_path or video_path src_video_info = src_video_info dst_video_info = helpers.get_video_info(output_path) src_duration = float(src_video_info["duration"]) dst_duration = float(dst_video_info["duration"]) src_segments, dst_segments = compute_segments( function_name, src_duration, dst_duration, metadata, **kwargs ) # Json can't represent tuples, so they're represented as lists, which should # be equivalent to tuples. So let's avoid tuples in the metadata by # converting any tuples to lists here. kwargs_types_fixed = dict( (k, list(v)) if isinstance(v, tuple) else (k, v) for k, v in kwargs.items() ) metadata.append( { "name": function_name, "src_duration": src_duration, "dst_duration": dst_duration, "src_fps": src_fps, "dst_fps": helpers.get_video_fps(output_path), "src_width": src_video_info["width"], "src_height": src_video_info["height"], "dst_width": dst_video_info["width"], "dst_height": dst_video_info["height"], "src_segments": [src_segment._asdict() for src_segment in src_segments], "dst_segments": [dst_segment._asdict() for dst_segment in dst_segments], **kwargs_types_fixed, } ) intensity_kwargs = {"metadata": metadata[-1], **kwargs} metadata[-1]["intensity"] = getattr( vdintensity, f"{function_name}_intensity", lambda **_: 0.0 )(**intensity_kwargs)
AugLy-main
augly/video/helpers/metadata.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from typing import Any, Dict, List, Optional, Tuple import numpy as np from augly.image import intensity as imint, utils as imutils from augly.video.helpers import get_video_info """ This file contains 'intensity' functions for each of our augmentations. Intensity functions give a float representation of how intense a particular transform called with particular parameters is. Each intensity function expects as parameters the kwargs the corresponding transform was called with, as well as the metadata dictionary computed by the transform (e.g. metadata[-1] after passing a list 'metadata' into the transform). All intensity functions are normalized to be in [0, 100]. This means we are assuming a range of valid values for each param - e.g. for change_aspect_ratio we assume we will never change the aspect ratio of the video by more than 10x, meaning the range of valid values for `ratio` is [0.1, 10.0], which you can see is assumed in the intensity function below. """ def add_noise_intensity(level: int, **kwargs) -> float: assert ( isinstance(level, (float, int)) and 0 <= level <= 100 ), "level must be a number in [0, 100]" return (level / 100) * 100.0 def apply_lambda_intensity(aug_function: str, **kwargs) -> float: intensity_func = globals().get(f"{aug_function}_intensity") return intensity_func(**kwargs) if intensity_func else 100.0 def audio_swap_intensity(offset: float, **kwargs) -> float: return (1.0 - offset) * 100.0 def augment_audio_intensity(audio_metadata: List[Dict[str, Any]], **kwargs) -> float: return audio_metadata[0]["intensity"] def blend_videos_intensity(opacity: float, overlay_size: float, **kwargs) -> float: return imint.overlay_media_intensity_helper(opacity, overlay_size) def blur_intensity(sigma: int, **kwargs) -> float: assert ( isinstance(sigma, (float, int)) and sigma >= 0 ), "sigma must be a non-negative number" max_sigma = 100 return min((sigma / max_sigma) * 100.0, 100.0) def brightness_intensity(level: float, **kwargs) -> float: assert ( isinstance(level, (float, int)) and -1 <= level <= 1 ), "level must be a number in [-1, 1]" return abs(level) * 100.0 def change_aspect_ratio_intensity( ratio: float, metadata: Dict[str, Any], **kwargs ) -> float: assert ( isinstance(ratio, (float, int)) and ratio > 0 ), "ratio must be a positive number" current_ratio = metadata["src_width"] / metadata["src_height"] max_ratio_change = 10.0 ratio_change = abs(ratio - current_ratio) return min((ratio_change / max_ratio_change) * 100.0, 100.0) def change_video_speed_intensity(factor: float, **kwargs) -> float: assert ( isinstance(factor, (float, int)) and factor > 0 ), "factor must be a positive number" if factor == 1.0: return 0.0 max_factor = 10.0 speed_change_factor = factor if factor > 1 else 1 / factor return min((speed_change_factor / max_factor) * 100.0, 100.0) def color_jitter_intensity( brightness_factor: float, contrast_factor: float, saturation_factor: float, **kwargs ) -> float: assert ( isinstance(brightness_factor, (float, int)) and -1 <= brightness_factor <= 1 ), "brightness_factor must be a number in [-1, 1]" assert ( isinstance(contrast_factor, (float, int)) and -1000 <= contrast_factor <= 1000 ), "contrast_factor must be a number in [-1000, 1000]" assert ( isinstance(saturation_factor, (float, int)) and 0 <= saturation_factor <= 3 ), "saturation_factor must be a number in [0, 3]" brightness_intensity = abs(brightness_factor) contrast_intensity = abs(contrast_factor) / 1000 saturation_intensity = saturation_factor / 3 return (brightness_intensity * contrast_intensity * saturation_intensity) * 100.0 def concat_intensity(metadata: Dict[str, Any], **kwargs) -> float: return time_crop_or_pad_intensity_helper(metadata) def contrast_intensity(level: float, **kwargs) -> float: assert ( isinstance(level, (float, int)) and -1000 <= level <= 1000 ), "level must be a number in [-1000, 1000]" return (abs(level) / 1000) * 100.0 def crop_intensity(metadata: Dict[str, Any], **kwargs) -> float: return imint.resize_intensity_helper(metadata) def encoding_quality_intensity(quality: int, **kwargs) -> float: assert ( isinstance(quality, int) and 0 <= quality <= 51 ), "quality must be a number in [0, 51]" return (quality / 51) * 100.0 def fps_intensity(fps: int, metadata: Dict[str, Any], **kwargs) -> float: assert isinstance(fps, (float, int)), "fps must be a number" src_fps = metadata["src_fps"] return min(((src_fps - fps) / src_fps) * 100.0, 100.0) def grayscale_intensity(**kwargs) -> float: return 100.0 def hflip_intensity(**kwargs) -> float: return 100.0 def hstack_intensity(metadata: Dict[str, Any], **kwargs) -> float: return imint.resize_intensity_helper(metadata) def identity_function_intensity(**kwargs) -> float: return 0.0 def insert_in_background_intensity(metadata: Dict[str, Any], **kwargs) -> float: return time_crop_or_pad_intensity_helper(metadata) def loop_intensity(num_loops: int, **kwargs) -> float: max_num_loops = 100 return min((num_loops / max_num_loops) * 100.0, 100.0) def meme_format_intensity(metadata: Dict[str, Any], **kwargs) -> float: return imint.resize_intensity_helper(metadata) def overlay_intensity( overlay_size: Optional[float], overlay_path: str, metadata: Dict[str, Any], **kwargs ) -> float: assert overlay_size is None or ( isinstance(overlay_size, (float, int)) and 0 < overlay_size <= 1 ), "overlay_size must be a value in the range (0, 1]" if overlay_size is not None: return (overlay_size**2) * 100.0 try: img = imutils.validate_and_load_image(overlay_path) overlay_area = img.width * img.height except Exception: video_info = get_video_info(overlay_path) overlay_area = video_info["width"] * video_info["height"] src_area = metadata["src_width"] * metadata["src_height"] return min((overlay_area / src_area) * 100.0, 100.0) def overlay_dots_intensity(num_dots: int, **kwargs) -> float: max_num_dots = 10000 return min((num_dots / max_num_dots) * 100.0, 100.0) def overlay_emoji_intensity( emoji_size: float, opacity: float, metadata: Dict[str, Any], **kwargs ) -> float: assert ( isinstance(emoji_size, (float, int)) and 0 <= emoji_size <= 1 ), "emoji_size must be a number in [0, 1]" assert ( isinstance(opacity, (float, int)) and 0 <= opacity <= 1 ), "opacity must be a number in [0, 1]" video_area = metadata["dst_width"] * metadata["dst_height"] emoji_width = min(metadata["dst_width"], metadata["dst_height"] * emoji_size) emoji_height = metadata["dst_height"] * emoji_size emoji_area = emoji_width * emoji_height area_intensity = emoji_area / video_area return area_intensity * opacity * 100.0 def overlay_onto_background_video_intensity( overlay_size: Optional[float], metadata: Dict[str, Any], **kwargs ) -> float: if overlay_size is not None: return (1 - overlay_size**2) * 100.0 src_area = metadata["src_width"] * metadata["src_height"] dst_area = metadata["dst_width"] * metadata["dst_height"] return min(100.0, max(0.0, 1.0 - src_area / dst_area) * 100.0) def overlay_onto_screenshot_intensity( template_filepath: str, template_bboxes_filepath: str, metadata: Dict[str, Any], **kwargs, ) -> float: _, bbox = imutils.get_template_and_bbox(template_filepath, template_bboxes_filepath) bbox_area = (bbox[2] - bbox[0]) * (bbox[3] - bbox[1]) dst_area = metadata["dst_width"] * metadata["dst_height"] return ((dst_area - bbox_area) / dst_area) * 100.0 def overlay_shapes_intensity( topleft: Optional[Tuple[float, float]], bottomright: Optional[Tuple[float, float]], num_shapes: int, **kwargs, ) -> float: return distractor_overlay_intensity_helper(topleft, bottomright, num_shapes) def overlay_text_intensity( topleft: Optional[Tuple[float, float]], bottomright: Optional[Tuple[float, float]], **kwargs, ) -> float: return distractor_overlay_intensity_helper(topleft, bottomright, 1) def pad_intensity(metadata: Dict[str, Any], **kwargs) -> float: return imint.resize_intensity_helper(metadata) def perspective_transform_and_shake_intensity( sigma: float, shake_radius: float, **kwargs ) -> float: assert ( isinstance(sigma, (float, int)) and sigma >= 0 ), "sigma must be a non-negative number" assert ( isinstance(shake_radius, (float, int)) and shake_radius >= 0 ), "shake_radius must be a non-negative number" max_sigma_val = 100 max_shake_radius_val = 100 sigma_intensity = sigma / max_sigma_val shake_radius_intensity = shake_radius / max_shake_radius_val return min((sigma_intensity * shake_radius_intensity) * 100.0, 100.0) def pixelization_intensity(ratio: float, **kwargs) -> float: assert ( isinstance(ratio, (float, int)) and 0 <= ratio <= 1 ), "ratio must be a number in [0, 1]" return (1 - ratio) * 100.0 def remove_audio_intensity(**kwargs) -> float: return 100.0 def insert_in_background_multiple_intensity( metadata: Dict[str, Any], **kwargs ) -> float: """ The intensity is calculated as the percentage of the result video that contains inserted segments. """ dst_duration = metadata["dst_duration"] starts = metadata["src_segment_starts"] ends = metadata["src_segment_ends"] inserted = np.sum(ends - starts) return inserted / dst_duration def replace_with_background_intensity(metadata: Dict[str, Any], **kwargs) -> float: """ The intensity of replace_with_background is the fraction of the source video duration that was replaced with background. Because the overall duration of the video is preserved, the background segments together must be shorter than the source duration so the intensity is never greater than 100. """ src_duration = metadata["src_duration"] total_bg_duration = ( metadata["starting_background_duration"] + metadata["ending_background_duration"] ) return min((total_bg_duration / src_duration) * 100.0, 100.0) def replace_with_color_frames_intensity( duration_factor: float, offset_factor: float, **kwargs ) -> float: assert ( isinstance(duration_factor, (float, int)) and 0 <= duration_factor <= 1 ), "duration_factor must be a number in [0, 1]" assert ( isinstance(offset_factor, (float, int)) and 0 <= offset_factor <= 1 ), "offset_factor must be a number in [0, 1]" # The proportion of the video that is replaced by color frames is generally # equal to duration factor, unless offset_factor + duration_factor > 1, in # which case it will be 1 - offset_factor. return min(duration_factor, 1 - offset_factor) * 100.0 def resize_intensity(metadata: Dict[str, Any], **kwargs) -> float: return imint.resize_intensity_helper(metadata) def rotate_intensity(degrees: float, **kwargs) -> float: assert isinstance(degrees, (float, int)), "degrees must be a number" max_degrees_val = 180 degrees = abs(degrees) % 180 return (degrees / max_degrees_val) * 100.0 def scale_intensity(factor: float, **kwargs) -> float: assert ( isinstance(factor, (float, int)) and factor > 0 ), "factor must be a positive number" if factor == 1.0: return 0.0 max_factor_val = 10.0 scale_factor = factor if factor > 1 else 1 / factor return min((scale_factor / max_factor_val) * 100.0, 100.0) def shift_intensity(x_factor: float, y_factor: float, **kwargs) -> float: assert ( isinstance(x_factor, (float, int)) and 0 <= x_factor <= 1 and isinstance(y_factor, (float, int)) and 0 <= y_factor <= 1 ), "x_factor & y_factor must be positive numbers in [0, 1]" return (1 - x_factor) * (1 - y_factor) * 100.0 def time_crop_intensity(metadata: Dict[str, Any], **kwargs) -> float: return time_crop_or_pad_intensity_helper(metadata) def time_decimate_intensity(metadata: Dict[str, Any], **kwargs) -> float: return time_crop_or_pad_intensity_helper(metadata) def trim_intensity(metadata: Dict[str, Any], **kwargs) -> float: return time_crop_or_pad_intensity_helper(metadata) def vflip_intensity(**kwargs) -> float: return 100.0 def vstack_intensity(metadata: Dict[str, Any], **kwargs) -> float: return imint.resize_intensity_helper(metadata) def distractor_overlay_intensity_helper( topleft: Optional[Tuple[float, float]], bottomright: Optional[Tuple[float, float]], num_overlay_content: int, **kwargs, ) -> float: """ Computes intensity of any distractor-type transform, which adds some kind of media (images, emojis, text, dots, logos) on top of the src video within a specified bounding box. """ assert topleft is None or all( 0.0 <= t <= 1.0 for t in topleft ), "Topleft must be in the range [0, 1]" assert bottomright is None or all( 0.0 <= b <= 1.0 for b in bottomright ), "Bottomright must be in the range [0, 1]" assert ( isinstance(num_overlay_content, int) and num_overlay_content >= 0 ), "num_overlay_content must be a nonnegative int" if topleft is None or bottomright is None: return 100.0 max_num_overlay_content_val = 100 num_overlay_content_intensity = num_overlay_content / max_num_overlay_content_val x1, y1 = topleft x2, y2 = bottomright distractor_area = (x2 - x1) * (y2 - y1) return min((distractor_area * num_overlay_content_intensity) * 100.0, 100.0) def time_crop_or_pad_intensity_helper(metadata: Dict[str, Any]) -> float: """ Computes intensity of a transform that consists of temporal cropping or padding. For these types of transforms the intensity is defined as the percentage of video time that has been cut out (for cropping) or added (for padding). When computing the percentage, the denominator should be the longer of the src & dst durations so the resulting percentage isn't greater than 100. """ dst_duration = metadata["dst_duration"] src_duration = metadata["src_duration"] larger_duration = max(src_duration, dst_duration) return (abs(dst_duration - src_duration) / larger_duration) * 100.0
AugLy-main
augly/video/helpers/intensity.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import math import os import shutil import tempfile from typing import Any, Dict, List, Optional import ffmpeg import numpy as np from augly.audio import utils as audutils from augly.utils import pathmgr, SILENT_AUDIO_PATH from augly.utils.ffmpeg import FFMPEG_PATH, FFPROBE_PATH from vidgear.gears import WriteGear def combine_frames_and_audio_to_file( raw_frames: str, audio: Optional[str], output_path: str, framerate: float, ) -> None: frame_dir = os.path.dirname(raw_frames) if not os.path.isdir(frame_dir): raise RuntimeError( f"Got raw frames glob path of {raw_frames}, but {frame_dir} is not " "a directory" ) with tempfile.TemporaryDirectory() as tmpdir: temp_video_path = os.path.join(tmpdir, "out.mp4") ffmpeg_command = [ "-y", "-framerate", str(framerate), "-pattern_type", "glob", "-i", raw_frames, "-c:v", "libx264", "-pix_fmt", "yuv420p", "-preset", "ultrafast", "-vf", "pad=ceil(iw/2)*2:ceil(ih/2)*2", temp_video_path, ] execute_vidgear_command(temp_video_path, ffmpeg_command) temp_padded_video_path = os.path.join(tmpdir, "out1.mp4") ffmpeg_command = [ "-y", "-i", temp_video_path, "-vf", "pad=width=ceil(iw/2)*2:height=ceil(ih/2)*2", "-preset", "ultrafast", temp_padded_video_path, ] execute_vidgear_command(temp_padded_video_path, ffmpeg_command) merge_video_and_audio(temp_padded_video_path, audio, output_path) def execute_vidgear_command(output_path: str, ffmpeg_command: List[str]) -> None: writer = WriteGear(output_filename=output_path, logging=True) writer.execute_ffmpeg_cmd(ffmpeg_command) writer.close() def extract_audio_to_file(video_path: str, output_audio_path: str) -> None: audio_info = get_audio_info(video_path) sample_rate = str(audio_info["sample_rate"]) codec = audio_info["codec_name"] if os.path.splitext(output_audio_path)[-1] == ".aac": ( ffmpeg.input(video_path, loglevel="quiet") .output(output_audio_path, acodec=codec, ac=1) .overwrite_output() .run(cmd=FFMPEG_PATH) ) else: out, err = ( ffmpeg.input(video_path, loglevel="quiet") .output("-", format="f32le", acodec="pcm_f32le", ac=1, ar=sample_rate) .run(cmd=FFMPEG_PATH, capture_stdout=True, capture_stderr=True) ) audio = np.frombuffer(out, np.float32) audutils.ret_and_save_audio(audio, output_audio_path, int(sample_rate)) def extract_frames_to_dir( video_path: str, output_dir: str, output_pattern: str = "raw_frame%08d.jpg", quality: int = 0, scale: float = 1, ) -> None: video_info = get_video_info(video_path) ffmpeg_command = [ "-y", "-i", video_path, "-vf", f"scale=iw*{scale}:ih*{scale}", "-vframes", str(video_info["nb_frames"]), "-qscale:v", str(quality), "-preset", "ultrafast", os.path.join(output_dir, output_pattern), ] execute_vidgear_command(os.path.join(output_dir, output_pattern), ffmpeg_command) def get_audio_info(media_path: str) -> Dict[str, Any]: """ Returns whatever ffprobe returns. Of particular use are things such as the encoder ("codec_name") used for audio encoding, the sample rate ("sample_rate"), and length in seconds ("duration") Accepts as input either an audio or video path. """ try: local_media_path = pathmgr.get_local_path(media_path) except RuntimeError: raise FileNotFoundError(f"Provided media path {media_path} does not exist") probe = ffmpeg.probe(local_media_path, cmd=FFPROBE_PATH) audio_info = next( (stream for stream in probe["streams"] if stream["codec_type"] == "audio"), None, ) assert ( audio_info is not None ), "Error retrieving audio metadata, please verify that an audio stream exists" return audio_info def get_video_fps(video_path: str) -> Optional[float]: video_info = get_video_info(video_path) try: frame_rate = video_info["avg_frame_rate"] # ffmpeg often returns fractional framerates, e.g. 225480/7523 if "/" in frame_rate: num, denom = (float(f) for f in frame_rate.split("/")) return num / denom else: return float(frame_rate) except Exception: return None def get_video_info(video_path: str) -> Dict[str, Any]: """ Returns whatever ffprobe returns. Of particular use are things such as the FPS ("avg_frame_rate"), number of raw frames ("nb_frames"), height and width of each frame ("height", "width") and length in seconds ("duration") """ try: local_video_path = pathmgr.get_local_path(video_path) except RuntimeError: raise FileNotFoundError(f"Provided video path {video_path} does not exist") probe = ffmpeg.probe(local_video_path, cmd=FFPROBE_PATH) video_info = next( (stream for stream in probe["streams"] if stream["codec_type"] == "video"), None, ) assert ( video_info is not None ), "Error retrieving video metadata, please verify that the video file exists" return video_info def has_audio_stream(video_path: str) -> bool: streams = ffmpeg.probe(video_path, cmd=FFPROBE_PATH)["streams"] for stream in streams: if stream["codec_type"] == "audio": return True return False def add_silent_audio( video_path: str, output_path: Optional[str] = None, duration: Optional[float] = None, ) -> None: local_video_path = pathmgr.get_local_path(video_path) if local_video_path != video_path: assert ( output_path is not None ), "If remote video_path is provided, an output_path must be provided" video_path = local_video_path output_path = output_path or video_path if has_audio_stream(video_path): if video_path != output_path: shutil.copy(video_path, output_path) return duration = duration or float(get_video_info(video_path)["duration"]) video = ffmpeg.input(video_path).video silent_audio_path = pathmgr.get_local_path(SILENT_AUDIO_PATH) audio = ffmpeg.input(silent_audio_path, stream_loop=math.ceil(duration)).audio output = ffmpeg.output(video, audio, output_path, pix_fmt="yuv420p", t=duration) output.overwrite_output().run(cmd=FFMPEG_PATH) def merge_video_and_audio( video_path: str, audio_path: Optional[str], output_path: str, ) -> None: ffmpeg_command = [] if audio_path: ffmpeg_command = [ "-y", "-i", video_path, "-i", audio_path, "-vf", "format=pix_fmts=yuv420p", "-c:v", "libx264", "-c:a", "copy", "-bsf:a", "aac_adtstoasc", "-preset", "ultrafast", output_path, ] else: ffmpeg_command = [ "-y", "-i", video_path, "-vf", "format=pix_fmts=yuv420p", "-c:v", "libx264", "-c:a", "copy", "-bsf:a", "aac_adtstoasc", "-preset", "ultrafast", output_path, ] execute_vidgear_command(output_path, ffmpeg_command)
AugLy-main
augly/video/helpers/ffmpeg.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from augly.video.helpers.ffmpeg import ( add_silent_audio, combine_frames_and_audio_to_file, extract_audio_to_file, extract_frames_to_dir, get_audio_info, get_video_fps, get_video_info, has_audio_stream, ) from augly.video.helpers.intensity import ( add_noise_intensity, apply_lambda_intensity, audio_swap_intensity, augment_audio_intensity, blend_videos_intensity, blur_intensity, brightness_intensity, change_aspect_ratio_intensity, change_video_speed_intensity, color_jitter_intensity, concat_intensity, contrast_intensity, crop_intensity, encoding_quality_intensity, fps_intensity, grayscale_intensity, hflip_intensity, hstack_intensity, insert_in_background_intensity, insert_in_background_multiple_intensity, loop_intensity, meme_format_intensity, overlay_dots_intensity, overlay_emoji_intensity, overlay_intensity, overlay_onto_background_video_intensity, overlay_onto_screenshot_intensity, overlay_shapes_intensity, overlay_text_intensity, pad_intensity, perspective_transform_and_shake_intensity, pixelization_intensity, remove_audio_intensity, replace_with_background_intensity, replace_with_color_frames_intensity, rotate_intensity, scale_intensity, shift_intensity, time_crop_intensity, time_decimate_intensity, trim_intensity, vflip_intensity, vstack_intensity, ) from augly.video.helpers.metadata import ( compute_changed_segments, compute_segments, compute_time_crop_segments, compute_time_decimate_segments, get_func_kwargs, get_metadata, ) from augly.video.helpers.utils import ( create_color_video, create_video_from_image, get_local_path, identity_function, validate_input_and_output_paths, ) __all__ = [ # -- ffmpeg -- "add_silent_audio", "combine_frames_and_audio_to_file", "extract_audio_to_file", "extract_frames_to_dir", "get_audio_info", "get_video_fps", "get_video_info", "has_audio_stream", # -- intensity -- "add_noise_intensity", "apply_lambda_intensity", "audio_swap_intensity", "augment_audio_intensity", "blend_videos_intensity", "blur_intensity", "brightness_intensity", "change_aspect_ratio_intensity", "change_video_speed_intensity", "color_jitter_intensity", "concat_intensity", "contrast_intensity", "crop_intensity", "encoding_quality_intensity", "fps_intensity", "grayscale_intensity", "hflip_intensity", "hstack_intensity", "insert_in_background_intensity", "insert_in_background_multiple_intensity", "loop_intensity", "meme_format_intensity", "overlay_intensity", "overlay_dots_intensity", "overlay_emoji_intensity", "overlay_onto_background_video_intensity", "overlay_onto_screenshot_intensity", "overlay_shapes_intensity", "overlay_text_intensity", "pad_intensity", "perspective_transform_and_shake_intensity", "pixelization_intensity", "remove_audio_intensity", "replace_with_background_intensity", "replace_with_color_frames_intensity", "rotate_intensity", "scale_intensity", "shift_intensity", "time_crop_intensity", "time_decimate_intensity", "trim_intensity", "vflip_intensity", "vstack_intensity", # -- metadata -- "compute_changed_segments", "compute_segments", "compute_time_crop_segments", "compute_time_decimate_segments", "get_func_kwargs", "get_metadata", # -- utils -- "create_color_video", "create_video_from_image", "get_local_path", "identity_function", "validate_input_and_output_paths", ]
AugLy-main
augly/video/helpers/__init__.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import math import os import shutil import tempfile from typing import Any, Dict, List, Optional, Tuple import cv2 import ffmpeg import numpy as np from augly import utils from augly.utils.ffmpeg import FFMPEG_PATH from augly.video import helpers DEFAULT_FRAME_RATE = 10 def create_color_video( output_path: str, duration: float, height: int, width: int, color: Tuple[int, int, int] = utils.DEFAULT_COLOR, ) -> None: """ Creates a video with frames of the specified color @param output_path: the path in which the resulting video will be stored @param duration: how long the video should be, in seconds @param height: the desired height of the video to be generated @param width: the desired width of the video to be generated @param color: RGB color of the video. Default color is black """ utils.validate_output_path(output_path) assert duration > 0, "Duration of the video must be a positive value" assert height > 0, "Height of the video must be a positive value" assert width > 0, "Width of the video must be a positive value" with tempfile.TemporaryDirectory() as tmpdir: image_path = os.path.join(tmpdir, "image.png") color_frame = np.full((height, width, 3), color[::-1]) cv2.imwrite(image_path, color_frame) create_video_from_image(output_path, image_path, duration) def create_video_from_image(output_path: str, image_path: str, duration: float) -> None: """ Creates a video with all frames being the image provided @param output_path: the path in which the resulting video will be stored @param image_path: the path to the image to use to create the video @param duration: how long the video should be, in seconds """ utils.validate_output_path(output_path) utils.validate_image_path(image_path) assert duration > 0, "Duration of the video must be a positive value" im_stream = ffmpeg.input(image_path) video = ( im_stream.filter("loop", 1) .filter("framerate", utils.DEFAULT_FRAME_RATE) .filter("pad", **{"width": "ceil(iw/2)*2", "height": "ceil(ih/2)*2"}) ) silent_audio_path = utils.pathmgr.get_local_path(utils.SILENT_AUDIO_PATH) audio = ffmpeg.input(silent_audio_path, stream_loop=math.ceil(duration)).audio output = ffmpeg.output(video, audio, output_path, pix_fmt="yuv420p", t=duration) output.overwrite_output().run(cmd=FFMPEG_PATH) def get_local_path(video_path: str) -> str: return utils.pathmgr.get_local_path(video_path) def identity_function( video_path: str, output_path: Optional[str] = None, metadata: Optional[List[Dict[str, Any]]] = None, ) -> str: video_path, output_path = validate_input_and_output_paths(video_path, output_path) if output_path is not None and output_path != video_path: shutil.copy(video_path, output_path) if metadata is not None: func_kwargs = helpers.get_func_kwargs(metadata, locals(), video_path) helpers.get_metadata( metadata=metadata, function_name="identity_function", **func_kwargs ) return output_path or video_path def validate_input_and_output_paths( video_path: str, output_path: Optional[str] ) -> Tuple[str, str]: local_video_path = get_local_path(video_path) utils.validate_video_path(local_video_path) if output_path is None: assert ( video_path == local_video_path ), "If using a nonlocal input path, you must specify an output path" output_path = output_path or video_path utils.validate_output_path(output_path) return local_video_path, output_path
AugLy-main
augly/video/helpers/utils.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from augly.tests.base_configs import AudioAugConfig, ImageAugConfig, VideoAugConfig __all__ = [ "AudioAugConfig", "ImageAugConfig", "VideoAugConfig", ]
AugLy-main
augly/tests/__init__.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os from dataclasses import dataclass from typing import Optional, Sequence, Tuple from augly.utils import TEST_URI @dataclass class BaseAugConfig: output_dir: str input_dir: str input_files: Sequence[str] input_file_index: int = 0 def get_input_path(self, input_file_index: Optional[int] = None) -> Tuple[str, str]: if input_file_index is None: input_file_index = self.input_file_index filename = self.input_files[input_file_index] filepath = os.path.join(self.input_dir, filename) return filepath, filename def get_output_path(self, filename: str, prefix: str = "") -> str: aug_filename = f"aug_{prefix}{filename}" output_path = os.path.join(self.output_dir, aug_filename) return output_path @dataclass class ImageAugConfig(BaseAugConfig): output_dir: str = os.path.join(TEST_URI, "image", "outputs") input_dir: str = os.path.join(TEST_URI, "image", "inputs") input_files: Sequence[str] = ("dfdc_1.jpg", "dfdc_2.jpg", "dfdc_3.jpg") @dataclass class VideoAugConfig(BaseAugConfig): output_dir: str = os.path.join(TEST_URI, "video", "outputs") input_dir: str = os.path.join(TEST_URI, "video", "inputs") input_files: Sequence[str] = ("input_1.mp4", "input_2.mp4", "input_3.mp4") input_audio_file: str = os.path.join(TEST_URI, "video", "inputs", "input_1.aac") @dataclass class AudioAugConfig(BaseAugConfig): output_dir: str = os.path.join(TEST_URI, "audio", "outputs") input_dir: str = os.path.join(TEST_URI, "audio", "inputs") input_files: Sequence[str] = ("vad-go-mono-32000.wav", "vad-go-stereo-44100.wav")
AugLy-main
augly/tests/base_configs.py
AugLy-main
augly/tests/image_tests/__init__.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import unittest from augly import image as imaugs from augly.tests.image_tests.base_unit_test import BaseImageUnitTest from augly.utils import EMOJI_PATH, IMG_MASK_PATH from PIL import Image class FunctionalImageUnitTest(BaseImageUnitTest): def test_apply_lambda(self): self.evaluate_function(imaugs.apply_lambda) def test_apply_pil_filter(self): self.evaluate_function(imaugs.apply_pil_filter) def test_blur(self): self.evaluate_function(imaugs.blur) def test_brightness(self): self.evaluate_function(imaugs.brightness) def test_change_aspect_ratio(self): self.evaluate_function(imaugs.change_aspect_ratio) def test_clip_image_size(self): self.evaluate_function(imaugs.clip_image_size, max_resolution=1500000) def test_color_jitter(self): self.evaluate_function(imaugs.color_jitter) def test_contrast(self): self.evaluate_function(imaugs.contrast) def test_convert_color(self): self.evaluate_function(imaugs.convert_color, mode="L") def test_crop(self): self.evaluate_function(imaugs.crop) def test_encoding_quality(self): self.evaluate_function(imaugs.encoding_quality, quality=30) def test_grayscale(self): self.evaluate_function(imaugs.grayscale) def test_hflip(self): self.evaluate_function(imaugs.hflip) def test_masked_composite(self): self.evaluate_function( imaugs.masked_composite, mask=IMG_MASK_PATH, transform_function=imaugs.Brightness(factor=0.1), ) @unittest.skip("Failing on some envs, will fix") def test_meme_format(self): self.evaluate_function(imaugs.meme_format) def test_opacity(self): self.evaluate_function(imaugs.opacity) def test_overlay_emoji(self): self.evaluate_function(imaugs.overlay_emoji) def test_overlay_image(self): self.evaluate_function( imaugs.overlay_image, overlay=EMOJI_PATH, overlay_size=0.15, y_pos=0.8 ) def test_overlay_onto_background_image(self): self.evaluate_function( imaugs.overlay_onto_background_image, background_image=EMOJI_PATH, overlay_size=0.5, scale_bg=True, ) def test_overlay_onto_screenshot(self): self.evaluate_function( imaugs.overlay_onto_screenshot, resize_src_to_match_template=False ) def test_overlay_stripes(self): self.evaluate_function(imaugs.overlay_stripes) @unittest.skip("Failing on some envs, will fix") def test_overlay_text(self): text_indices = [5, 3, 1, 2, 1000, 221] self.evaluate_function(imaugs.overlay_text, text=text_indices) def test_pad(self): self.evaluate_function(imaugs.pad) def test_pad_square(self): self.evaluate_function(imaugs.pad_square) def test_perspective_transform(self): self.evaluate_function(imaugs.perspective_transform, sigma=100.0) def test_pixelization(self): self.evaluate_function(imaugs.pixelization) def test_random_noise(self): self.evaluate_function(imaugs.random_noise) def test_resize(self): self.evaluate_function(imaugs.resize, resample=Image.BICUBIC) def test_rotate(self): self.evaluate_function(imaugs.rotate) def test_saturation(self): self.evaluate_function(imaugs.saturation, factor=0.5) def test_scale(self): self.evaluate_function(imaugs.scale) def test_sharpen(self): self.evaluate_function(imaugs.sharpen, factor=2.0) def test_shuffle_pixels(self): self.evaluate_function(imaugs.shuffle_pixels, factor=0.5) def test_skew(self): self.evaluate_function(imaugs.skew) def test_vflip(self): self.evaluate_function(imaugs.vflip) if __name__ == "__main__": unittest.main()
AugLy-main
augly/tests/image_tests/functional_unit_test.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import unittest import torch import torchvision.transforms as transforms # @manual from augly import image as imaugs from augly.tests import ImageAugConfig from augly.utils import pathmgr from PIL import Image COLOR_JITTER_PARAMS = { "brightness_factor": 1.2, "contrast_factor": 1.2, "saturation_factor": 1.4, } AUGMENTATIONS = [ imaugs.ColorJitter(**COLOR_JITTER_PARAMS), imaugs.OneOf( [imaugs.OverlayOntoScreenshot(), imaugs.OverlayEmoji(), imaugs.OverlayText()] ), ] TRANSFORMS = imaugs.Compose(AUGMENTATIONS) TENSOR_TRANSFORMS = transforms.Compose(AUGMENTATIONS + [transforms.ToTensor()]) class ComposeAugmentationsTestCase(unittest.TestCase): def test_torchvision_compose_compability(self) -> None: config = ImageAugConfig() image_path, image_file = config.get_input_path() local_img_path = pathmgr.get_local_path(image_path) image = Image.open(local_img_path) tsfm_image = TENSOR_TRANSFORMS(image) self.assertIsInstance(tsfm_image, torch.Tensor) def test_augly_image_compose(self) -> None: config = ImageAugConfig() image_path, image_file = config.get_input_path() local_img_path = pathmgr.get_local_path(image_path) image = Image.open(local_img_path) tsfm_image = TRANSFORMS(image) self.assertIsInstance(tsfm_image, Image.Image) if __name__ == "__main__": unittest.main()
AugLy-main
augly/tests/image_tests/pytorch_test.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os import tempfile import unittest from typing import Any, Callable, Dict, List, Optional import numpy as np from augly.tests import ImageAugConfig from augly.utils import pathmgr, TEST_URI from PIL import Image def are_equal_images(a: Image.Image, b: Image.Image) -> bool: return a.size == b.size and np.allclose(np.array(a), np.array(b)) def are_equal_metadata( actual_meta: List[Dict[str, Any]], expected_meta: List[Dict[str, Any]], exclude_keys: Optional[List[str]], ) -> bool: if actual_meta == expected_meta: return True for actual_dict, expected_dict in zip(actual_meta, expected_meta): for (act_k, act_v), (exp_k, exp_v) in zip( sorted(actual_dict.items(), key=lambda kv: kv[0]), sorted(expected_dict.items(), key=lambda kv: kv[0]), ): if exclude_keys is not None and act_k in exclude_keys: continue if act_k != exp_k: return False if act_v == exp_v: continue # Bboxes are tuples but stored as lists in expected metadata if ( isinstance(act_v, list) and all(isinstance(x, tuple) for x in zip(act_v, exp_v)) and len(act_v) == len(exp_v) and all(list(x) == y for x, y in zip(act_v, exp_v)) ): continue """ Allow relative paths in expected metadata: just check that the end of the actual path matches the expected path """ if not ( isinstance(act_v, str) and isinstance(exp_v, str) and act_v[-len(exp_v) :] == exp_v ): return False return True class BaseImageUnitTest(unittest.TestCase): ref_img_dir = os.path.join(TEST_URI, "image", "dfdc_expected_output") def test_import(self) -> None: try: from augly import image as imaugs except ImportError: self.fail("imaugs failed to import") self.assertTrue(dir(imaugs), "Image directory does not exist") @classmethod def setUpClass(cls): cls.maxDiff = None cls.config = ImageAugConfig(input_file_index=0) img_path, img_file = cls.config.get_input_path() cls.local_img_path = pathmgr.get_local_path(img_path) cls.img = Image.open(cls.local_img_path) def evaluate_function(self, aug_function: Callable[..., Image.Image], **kwargs): ref = self.get_ref_image(aug_function.__name__) with tempfile.NamedTemporaryFile(suffix=".png") as tmpfile: aug_function(self.local_img_path, output_path=tmpfile.name, **kwargs) file_dst = Image.open(tmpfile.name) pil_dst = aug_function(self.img, **kwargs) self.assertTrue( are_equal_images(pil_dst, ref), "Expected and outputted images do not match" ) self.assertTrue( are_equal_images(file_dst, ref), "Expected and outputted images do not match", ) def evaluate_class( self, transform_class: Callable[..., Image.Image], fname: str, metadata_exclude_keys: Optional[List[str]] = None, check_mode: bool = True, ): metadata = [] bboxes, bbox_format = [(0.5, 0.5, 0.25, 0.75)], "yolo" ref = self.get_ref_image(fname) dst = transform_class( self.img, metadata=metadata, bboxes=bboxes, bbox_format=bbox_format ) if check_mode: self.assertTrue( self.img.mode == dst.mode, "Expected and outputted image modes do not match", ) self.assertTrue( are_equal_metadata(metadata, self.metadata[fname], metadata_exclude_keys), "Expected and outputted metadata do not match", ) self.assertTrue( are_equal_images(dst, ref), "Expected and outputted images do not match" ) def get_ref_image(self, fname: str) -> Image.Image: ref_img_name = f"test_{fname}.png" ref_local_path = pathmgr.get_local_path( os.path.join(self.ref_img_dir, ref_img_name) ) return Image.open(ref_local_path)
AugLy-main
augly/tests/image_tests/base_unit_test.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import json import random import unittest from augly import image as imaugs from augly.tests.image_tests.base_unit_test import BaseImageUnitTest from augly.utils import EMOJI_PATH, IMAGE_METADATA_PATH, IMG_MASK_PATH from PIL import Image class TransformsImageUnitTest(BaseImageUnitTest): @classmethod def setUpClass(cls): super().setUpClass() with open(IMAGE_METADATA_PATH, "r") as f: cls.metadata = json.load(f) def test_ApplyLambda(self): self.evaluate_class(imaugs.ApplyLambda(), fname="apply_lambda") def test_ApplyPILFilter(self): self.evaluate_class(imaugs.ApplyPILFilter(), fname="apply_pil_filter") def test_Blur(self): self.evaluate_class(imaugs.Blur(), fname="blur") def test_Brightness(self): self.evaluate_class(imaugs.Brightness(), fname="brightness") def test_ChangeAspectRatio(self): self.evaluate_class(imaugs.ChangeAspectRatio(), fname="change_aspect_ratio") def test_ClipImageSize(self): self.evaluate_class( imaugs.ClipImageSize(max_resolution=1500000), fname="clip_image_size" ) def test_ColorJitter(self): self.evaluate_class(imaugs.ColorJitter(), fname="color_jitter") def test_Compose(self): random.seed(1) self.evaluate_class( imaugs.Compose( [ imaugs.Blur(), imaugs.ColorJitter(saturation_factor=1.5), imaugs.OneOf( [ imaugs.OverlayOntoScreenshot(), imaugs.OverlayEmoji(), imaugs.OverlayText(), ] ), ] ), fname="compose", ) def test_Contrast(self): self.evaluate_class(imaugs.Contrast(), fname="contrast") def test_ConvertColor(self): self.evaluate_class( imaugs.ConvertColor(mode="L"), fname="convert_color", check_mode=False, ) def test_Crop(self): self.evaluate_class(imaugs.Crop(), fname="crop") def test_EncodingQuality(self): self.evaluate_class( imaugs.EncodingQuality(quality=30), fname="encoding_quality" ) def test_Grayscale(self): self.evaluate_class(imaugs.Grayscale(), fname="grayscale") def test_HFlip(self): self.evaluate_class(imaugs.HFlip(), fname="hflip") def test_MaskedComposite(self): self.evaluate_class( imaugs.MaskedComposite( mask=IMG_MASK_PATH, transform_function=imaugs.Brightness(factor=0.1), ), fname="masked_composite", ) @unittest.skip("Failing on some envs, will fix") def test_MemeFormat(self): self.evaluate_class(imaugs.MemeFormat(), fname="meme_format") def test_Opacity(self): self.evaluate_class(imaugs.Opacity(), fname="opacity") def test_OverlayEmoji(self): self.evaluate_class(imaugs.OverlayEmoji(), fname="overlay_emoji") def test_OverlayImage(self): self.evaluate_class( imaugs.OverlayImage(overlay=EMOJI_PATH, overlay_size=0.15, y_pos=0.8), fname="overlay_image", ) def test_OverlayOntoBackgroundImage(self): self.evaluate_class( imaugs.OverlayOntoBackgroundImage( background_image=EMOJI_PATH, overlay_size=0.5, scale_bg=True ), fname="overlay_onto_background_image", ) def test_OverlayOntoScreenshot(self): self.evaluate_class( imaugs.OverlayOntoScreenshot(resize_src_to_match_template=False), fname="overlay_onto_screenshot", metadata_exclude_keys=[ "dst_bboxes", "dst_height", "dst_width", "intensity", "template_filepath", ], ) def test_OverlayStripes(self): self.evaluate_class(imaugs.OverlayStripes(), fname="overlay_stripes") @unittest.skip("Failing on some envs, will fix") def test_OverlayText(self): text_indices = [5, 3, 1, 2, 1000, 221] self.evaluate_class(imaugs.OverlayText(text=text_indices), fname="overlay_text") def test_Pad(self): self.evaluate_class(imaugs.Pad(), fname="pad") def test_PadSquare(self): self.evaluate_class(imaugs.PadSquare(), fname="pad_square") def test_PerspectiveTransform(self): self.evaluate_class( imaugs.PerspectiveTransform(sigma=100.0), fname="perspective_transform" ) def test_Pixelization(self): self.evaluate_class(imaugs.Pixelization(), fname="pixelization") def test_RandomAspectRatio(self): random.seed(1) self.evaluate_class(imaugs.RandomAspectRatio(), fname="RandomAspectRatio") def test_RandomBlur(self): random.seed(1) self.evaluate_class(imaugs.RandomBlur(), fname="RandomBlur") def test_RandomBrightness(self): random.seed(1) self.evaluate_class(imaugs.RandomBrightness(), fname="RandomBrightness") @unittest.skip("Failing on some envs, will fix") def test_RandomEmojiOverlay(self): random.seed(1) self.evaluate_class( imaugs.RandomEmojiOverlay(emoji_size=(0.15, 0.3)), fname="RandomEmojiOverlay", ) def test_RandomNoise(self): self.evaluate_class(imaugs.RandomNoise(), fname="random_noise") def test_RandomPixelization(self): random.seed(1) self.evaluate_class(imaugs.RandomPixelization(), fname="RandomPixelization") def test_RandomRotation(self): random.seed(1) self.evaluate_class(imaugs.RandomRotation(), fname="RandomRotation") def test_Resize(self): self.evaluate_class(imaugs.Resize(resample=Image.BICUBIC), fname="resize") def test_Rotate(self): self.evaluate_class(imaugs.Rotate(), fname="rotate") def test_Saturation(self): self.evaluate_class(imaugs.Saturation(factor=0.5), fname="saturation") def test_Scale(self): self.evaluate_class(imaugs.Scale(), fname="scale") def test_Sharpen(self): self.evaluate_class(imaugs.Sharpen(factor=2.0), fname="sharpen") def test_ShufflePixels(self): self.evaluate_class(imaugs.ShufflePixels(factor=0.5), fname="shuffle_pixels") def test_Skew(self): self.evaluate_class(imaugs.Skew(), fname="skew") def test_VFlip(self): self.evaluate_class(imaugs.VFlip(), fname="vflip") if __name__ == "__main__": unittest.main()
AugLy-main
augly/tests/image_tests/transforms_unit_test.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import unittest import numpy as np from augly import audio as audaugs class IntensityAudioUnitTest(unittest.TestCase): def test_add_background_noise_intensity(self): intensity = audaugs.add_background_noise_intensity( metadata={}, snr_level_db=10.0 ) self.assertAlmostEqual(intensity, 90.90909091) def test_apply_lambda_intensity(self): intensity = audaugs.apply_lambda_intensity( metadata={}, aug_function=lambda x, y: (x, y) ) self.assertAlmostEqual(intensity, 100.0) def test_change_volume_intensity(self): intensity = audaugs.change_volume_intensity(metadata={}, volume_db=10.0) self.assertAlmostEqual(intensity, 9.090909091) def test_clicks_intensity(self): intensity = audaugs.clicks_intensity( metadata={}, seconds_between_clicks=0.5, snr_level_db=1.0 ) self.assertAlmostEqual(intensity, 98.26515152) def test_clip_intensity(self): intensity = audaugs.clip_intensity(metadata={}, duration_factor=0.75) self.assertAlmostEqual(intensity, 25.0) def test_harmonic_intensity(self): intensity = audaugs.harmonic_intensity(metadata={}) self.assertAlmostEqual(intensity, 100.0) def test_high_pass_filter_intensity(self): intensity = audaugs.high_pass_filter_intensity(metadata={}, cutoff_hz=3000.0) self.assertAlmostEqual(intensity, 15.0) def test_insert_in_background_intensity(self): intensity = audaugs.insert_in_background_intensity( metadata={"src_duration": 10.0, "dst_duration": 15.0} ) self.assertAlmostEqual(intensity, 33.3333333) def test_invert_channels_intensity(self): intensity = audaugs.invert_channels_intensity(metadata={"src_num_channels": 2}) self.assertAlmostEqual(intensity, 100.0) def test_loop_intensity(self): intensity = audaugs.loop_intensity(metadata={}, n=1) self.assertAlmostEqual(intensity, 1.0) def test_low_pass_filter_intensity(self): intensity = audaugs.low_pass_filter_intensity(metadata={}, cutoff_hz=500.0) self.assertAlmostEqual(intensity, 97.5) def test_normalize_intensity(self): intensity = audaugs.normalize_intensity(metadata={}, norm=np.inf) self.assertAlmostEqual(intensity, 100.0) def test_peaking_equalizer_intensity(self): intensity = audaugs.peaking_equalizer_intensity(q=1.0, gain_db=-20.0) self.assertAlmostEqual(intensity, 17.786561264822133) def test_percussive_intensity(self): intensity = audaugs.percussive_intensity(metadata={}) self.assertAlmostEqual(intensity, 100.0) def test_pitch_shift_intensity(self): intensity = audaugs.pitch_shift_intensity(metadata={}, n_steps=2.0) self.assertAlmostEqual(intensity, 2.380952381) def test_reverb_intensity(self): intensity = audaugs.reverb_intensity( metadata={}, reverberance=75.0, wet_only=False, room_scale=100.0 ) self.assertAlmostEqual(intensity, 75.0) def test_speed_intensity(self): intensity = audaugs.speed_intensity(metadata={}, factor=2.0) self.assertAlmostEqual(intensity, 20.0) def test_tempo_intensity(self): intensity = audaugs.tempo_intensity(metadata={}, factor=0.5) self.assertAlmostEqual(intensity, 20.0) def test_time_stretch_intensity(self): intensity = audaugs.time_stretch_intensity(metadata={}, factor=1.5) self.assertAlmostEqual(intensity, 15.0) def test_to_mono_intensity(self): intensity = audaugs.to_mono_intensity(metadata={"src_num_channels": 1}) self.assertAlmostEqual(intensity, 0.0)
AugLy-main
augly/tests/audio_tests/intensity_unit_test.py
AugLy-main
augly/tests/audio_tests/__init__.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import unittest from augly import audio as audaugs from augly.tests.audio_tests.base_unit_test import BaseAudioUnitTest class FunctionalAudioUnitTest(BaseAudioUnitTest): def test_add_background_noise(self): self.evaluate_function( audaugs.add_background_noise, background_audio=None, snr_level_db=10.0 ) def test_apply_lambda(self): self.evaluate_function(audaugs.apply_lambda) def test_change_volume(self): self.evaluate_function(audaugs.change_volume, volume_db=10.0) def test_clicks(self): self.evaluate_function(audaugs.clicks, seconds_between_clicks=0.5) def test_clip(self): self.evaluate_function(audaugs.clip, offset_factor=0.25, duration_factor=0.5) def test_harmonic(self): self.evaluate_function(audaugs.harmonic, kernel_size=31, power=2.0, margin=1.0) def test_high_pass_filter(self): self.evaluate_function(audaugs.high_pass_filter, cutoff_hz=3000) def test_insert_in_background(self): self.evaluate_function(audaugs.insert_in_background, offset_factor=0.3) def test_invert_channels(self): self.evaluate_function(audaugs.invert_channels) def test_loop(self): self.evaluate_function(audaugs.loop, n=1) def test_low_pass_filter(self): self.evaluate_function(audaugs.low_pass_filter, cutoff_hz=500) def test_normalize(self): self.evaluate_function(audaugs.normalize) def test_peaking_equalizer(self): self.evaluate_function(audaugs.peaking_equalizer, gain_db=-20.0) def test_percussive(self): self.evaluate_function( audaugs.percussive, kernel_size=31, power=2.0, margin=1.0 ) def test_pitch_shift(self): self.evaluate_function(audaugs.pitch_shift, n_steps=4) def test_reverb(self): self.evaluate_function(audaugs.reverb, reverberance=100.0) def test_speed(self): self.evaluate_function(audaugs.speed, factor=3.0) def test_tempo(self): self.evaluate_function(audaugs.tempo, factor=2.0) def test_time_stretch(self): self.evaluate_function(audaugs.time_stretch, rate=1.5) def test_to_mono(self): self.evaluate_function(audaugs.to_mono) def test_fft_convolve(self): self.evaluate_function(audaugs.fft_convolve) if __name__ == "__main__": unittest.main()
AugLy-main
augly/tests/audio_tests/functional_unit_test.py