python_code
stringlengths
0
4.04M
repo_name
stringlengths
7
58
file_path
stringlengths
5
147
from setuptools import setup, find_packages setup(name='observational', version='1.0', packages=find_packages())
observational-main
setup.py
import numpy as np import torch import torch.nn as nn from scipy.stats import norm from skimage.util.shape import view_as_windows from sklearn.metrics import ( f1_score, roc_auc_score, recall_score, ) import os import pickle from sklearn.model_selection import StratifiedShuffleSplit from sklearn.metrics import roc_auc_score import warnings warnings.filterwarnings("ignore", category=UserWarning) from functools import partial import pdb def load_file_markers( source: str, split_type: str, train_scale: float, val_scale: float, seed: int = 0, ): """ A helper function that fetches image paths and labels Returns: a list of file markers with (image_path,label) tuples Args: source: (str) the dataset name split_type: (str) whether to return [train, val, train_val, test] split train_scale: (float) percentage of train set to use (used for sample complexity analysis) val_scale: (float) the val split percentage seed: (int) the random seed """ file_dir = os.path.join("./file_markers", source) if split_type in ["train", "val", "train_val"]: file_markers_dir = os.path.join(file_dir, "trainval_list.pkl") with open(file_markers_dir, "rb") as fp: file_markers = pickle.load(fp) labels = [fm[1] for fm in file_markers] sss = StratifiedShuffleSplit(n_splits=1, test_size=val_scale, random_state=seed) for train_ndx, val_ndx in sss.split(np.zeros(len(labels)), labels): file_markers_train = [file_markers[ndx] for ndx in train_ndx] file_markers_val = [file_markers[ndx] for ndx in val_ndx] if train_scale < 1: # stratified shuffle split labels = [fm[1] for fm in file_markers_train] sss2 = StratifiedShuffleSplit( n_splits=1, test_size=train_scale, random_state=seed ) for _, test_ndx in sss2.split(np.zeros(len(labels)), labels): file_markers_train = [file_markers_train[ndx] for ndx in test_ndx] if split_type == "train": file_markers = file_markers_train elif split_type == "train_val": file_markers = file_markers_train file_markers.extend(file_markers_val) else: file_markers = file_markers_val elif split_type == "test": file_markers_dir = os.path.join(file_dir, "test_list.pkl") with open(file_markers_dir, "rb") as fp: file_markers = pickle.load(fp) else: raise ValueError(f"Split type {split_type} not an option.") print(f"{len(file_markers)} files in {split_type} split...") # shuffle file markers np.random.seed(seed) np.random.shuffle(file_markers) return file_markers def load_weak_labels(source: str, train_scale: float, val_scale: float, seed: int = 0): """ A helper function that fetches the weak labels using the Gaze-WS method Returns: a dictionary of (image_id: weak_label) entries Args: source: (str) the dataset name train_scale: (float) percentage of train set to use (used for sample complexity analysis) val_scale: (float) the val split percentage seed: (int) the random seed """ predictions, gaze_ids = run_gaze_ws( source, train_scale, val_scale, seed, ) weak_dict = {gaze_id: predictions[ndx] for ndx, gaze_id in enumerate(gaze_ids)} return weak_dict def load_helper_task_labels(source: str, gaze_mtl_task: str): """ A helper function that fetches the helper task labels for Gaze-MTL Returns: a list of helper task labels Args: source: (str) the dataset name gaze_mtl_task: (str) the helper task (can be multiple helper tasks seperated by "_") """ # pull all gaze sequences seqs, labels, gaze_ids = load_gaze_data(source, "train_val", 1, 0.2, 0) # create task_labels dict task_labels = {gaze_id: [] for gaze_id in gaze_ids} tasks = gaze_mtl_task.split("_") for task in tasks: if task == "loc": grid_size = 3 heatmaps = make_heatmaps(seqs, grid_size).reshape(-1, grid_size * grid_size) for ndx, gaze_id in enumerate(gaze_ids): if labels[ndx]: task_labels[gaze_id].append(np.argmax(heatmaps[ndx, :].T)) else: task_labels[gaze_id].append(0) elif task == "time": lengths = np.array([len(seq) for seq in seqs]) mean_plus_std = np.mean(lengths) + 2 * np.std(lengths) lengths = np.array([min(len(seq) / mean_plus_std, 1) for seq in seqs]) for ndx, gaze_id in enumerate(gaze_ids): task_labels[gaze_id].append(lengths[ndx]) elif task == "diffusivity": grid_size = 10 heatmaps = make_heatmaps(seqs, grid_size).squeeze() diffuse_all = apply_lf(heatmaps, partial(diffusivity, s1=2, s2=2)) for ndx, gaze_id in enumerate(gaze_ids): task_labels[gaze_id].append(diffuse_all[ndx]) else: raise ValueError(f"Helper task {task} not an option.") return task_labels def load_gaze_data( source, split_type, train_scale=1, val_scale=0.2, seed=0, return_img_pths=False, ): """ Returns: a dictionary of (gaze_id: gaze_seq) for the split type and source """ gaze_dict_pth = os.path.join( "./gaze_data", source + "_gaze_data.pkl", ) with open(gaze_dict_pth, "rb") as pkl_f: gaze_dict_all = pickle.load(pkl_f) # load file markers for split to know which gaze sequences to return if split_type == "all": file_markers = load_file_markers(source, "train", train_scale, val_scale, seed) file_markers.extend( load_file_markers(source, "val", train_scale, val_scale, seed) ) file_markers.extend( load_file_markers(source, "test", train_scale, val_scale, seed) ) else: file_markers = load_file_markers( source, split_type, train_scale, val_scale, seed ) gaze_seqs = [] labels = [] gaze_ids = [] img_pths = [] for img_pth, lab in file_markers: img_pths.append(img_pth) labels.append(standardize_label(lab, source)) # extract gaze_id from img_pth gaze_id_base = img_pth.split("/")[-1] gaze_id = gaze_id_base.split(".")[0] if source == "cxr": gaze_id = img_pth # get gaze seq if gaze_id in gaze_dict_all: if source == "mets": gaze_ids.append(gaze_id_base) else: gaze_ids.append(gaze_id) if gaze_dict_all[gaze_id] == []: gaze_seqs.append([[0.5, 0.5, 1]]) else: gaze_seqs.append(gaze_dict_all[gaze_id]) else: gaze_seqs.append([[0.5, 0.5, 1]]) gaze_seqs = np.array(gaze_seqs) labels = np.array(labels) gaze_ids = np.array(gaze_ids) print(f"{len(gaze_seqs)} gaze sequences in {split_type} split...") if return_img_pths: return gaze_seqs, labels, img_pths return gaze_seqs, labels, gaze_ids def standardize_label(label, source): # standardize labels so that 0 is negative and 1 is positive if source in ["cxr", "mets", "clevr", "cub", "cxr2"]: # label is already standardized standard_label = label elif source == "poet": # labels are 1-10, should be 0-9 standard_label = label - 1 else: raise ValueError(f"undefined source: {source}") return standard_label def rle2mask(rle, width, height): mask = np.zeros(width * height) array = np.asarray([int(x) for x in rle.split()]) starts = array[0::2] lengths = array[1::2] current_position = 0 for index, start in enumerate(starts): current_position += start mask[current_position : current_position + lengths[index]] = 1 current_position += lengths[index] return mask.reshape(width, height) def make_heatmaps(gaze_seqs, num_patches=8, normalize_heatmaps=False): all_grids = np.zeros( (len(gaze_seqs), 1, num_patches, num_patches), dtype=np.float32 ) for ndx, gaze_seq in enumerate(gaze_seqs): # loop through gaze seq and increment # of visits to each patch for (x, y, t) in gaze_seq: # make sure if x or y are > 1 then they are 1 x, y = np.clip([x, y], 0.0, 0.999) patch_x, patch_y = int(x * num_patches), int(y * num_patches) all_grids[ndx, 0, patch_x, patch_y] += t if normalize_heatmaps: # Destroy total time information, as a diagnostic all_grids[ndx] /= np.sum(all_grids[ndx]) return all_grids def apply_lf(data, lf): # Apply a labeling function to a bunch of data return np.array([lf(x) for x in data]) def max_visit(heatmap, pct=0.5): if np.any(heatmap > np.sum(heatmap) * pct): return np.max(heatmap) return 0 def diffusivity(heatmap, s1=5, s2=5, stride=1): heatmap = heatmap / np.sum(heatmap) heatmap_windows = view_as_windows(heatmap, (s1, s2), step=stride) conv_results = np.tensordot( heatmap_windows, np.ones((s1, s2)), axes=((2, 3), (0, 1)) ) return np.amax(conv_results) def unique_visits(heatmap): return np.sum(heatmap > 0) def total_time(heatmap): return np.sum(heatmap) def run_gaze_ws( source: str, train_scale: float, val_scale: float, seed: int = 0, ): """ A helper function that runs the Gaze-WS method Returns: a list of the weak labels and a list of the image_ids Args: source: (str) the dataset name train_scale: (float) percentage of train set to use (used for sample complexity analysis) val_scale: (float) the val split percentage seed: (int) the random seed """ # extract the gaze sequences of the train split seqs, labels, gaze_ids = load_gaze_data( source, "train", train_scale, val_scale, seed ) # extract the gaze sequences of the val split, which will be used as "training" data in Gaze-WS seqs_train, y_train, _ = load_gaze_data(source, "val", train_scale, val_scale, seed) # Get the corresponding gaze feature hyperparameters depending on the dataset if source == "mets": grid_size = 10 s1 = 2 s2 = 2 stride = 1 view_pct = 0.3 elif source in ["cxr", "cxr2"]: grid_size = 25 s1 = grid_size s2 = 12 stride = 13 view_pct = 0 # compute gaze features for the train split heatmaps = make_heatmaps(seqs, num_patches=grid_size) time_all = apply_lf(np.squeeze(heatmaps), total_time) max_visit_all = apply_lf(np.squeeze(heatmaps), partial(max_visit, pct=view_pct)) unique_all = apply_lf(np.squeeze(heatmaps), unique_visits) diffusivity_all = apply_lf( np.squeeze(heatmaps), partial(diffusivity, s1=s1, s2=s2, stride=stride) ) L = np.vstack((time_all, max_visit_all, unique_all, diffusivity_all)).T # compute gaze features for the val split heatmaps_train = make_heatmaps(seqs_train, num_patches=grid_size) time_train = apply_lf(np.squeeze(heatmaps_train), total_time) max_visit_all_train = apply_lf( np.squeeze(heatmaps_train), partial(max_visit, pct=view_pct) ) unique_all_train = apply_lf(np.squeeze(heatmaps_train), unique_visits) diffusivity_all_train = apply_lf( np.squeeze(heatmaps_train), partial(diffusivity, s1=s1, s2=s2, stride=stride) ) L_train = np.vstack( (time_train, max_visit_all_train, unique_all_train, diffusivity_all_train) ).T # normaliz the gaze features L = L - np.mean(L, 0) L = L / np.std(L, 0) L_train = L_train - np.mean(L_train, 0) L_train = L_train / np.std(L_train, 0) # run Gaze-WS method pred_mat_gmm_pos_test = np.zeros_like(L) pred_mat_gmm_pos_train = np.zeros_like(L_train) pred_mat_gmm_neg_test = np.zeros_like(L) pred_mat_gmm_neg_train = np.zeros_like(L_train) for feat_ind in np.arange(L.shape[1]): feats_train = L_train[:, feat_ind] feats_test = L[:, feat_ind] mean_pos, std_pos = norm.fit(feats_train[y_train == 1]) mean_neg, std_neg = norm.fit(feats_train[y_train == 0]) pred_mat_gmm_pos_test[:, feat_ind] = norm.pdf(feats_test, mean_pos, std_pos) pred_mat_gmm_pos_train[:, feat_ind] = norm.pdf(feats_train, mean_pos, std_pos) pred_mat_gmm_neg_test[:, feat_ind] = norm.pdf(feats_test, mean_neg, std_neg) pred_mat_gmm_neg_train[:, feat_ind] = norm.pdf(feats_train, mean_neg, std_neg) pred_mat_gmm_pos_test = np.prod(pred_mat_gmm_pos_test, 1) * np.mean(y_train) pred_mat_gmm_pos_train = np.prod(pred_mat_gmm_pos_train, 1) * np.mean(y_train) pred_mat_gmm_neg_test = np.prod(pred_mat_gmm_neg_test, 1) * np.mean( np.abs(1 - y_train) ) pred_mat_gmm_neg_train = np.prod(pred_mat_gmm_neg_train, 1) * np.mean( np.abs(1 - y_train) ) prob_preds = pred_mat_gmm_pos_train / ( pred_mat_gmm_pos_train + pred_mat_gmm_neg_train ) prob_preds = np.expand_dims(prob_preds, 0) best_f1 = 0 best_thresh = 0 for thresh in np.arange(0, 1, 0.01): bin_preds = (prob_preds > thresh) * 1.0 thresh_f1 = f1_score(y_train, np.squeeze(bin_preds)) if thresh_f1 > best_f1: best_f1 = thresh_f1.copy() best_thresh = thresh.copy() all_prob_preds = pred_mat_gmm_pos_test / ( pred_mat_gmm_pos_test + pred_mat_gmm_neg_test ) all_bin_preds = (all_prob_preds > best_thresh) * 1.0 # print relevant metrics on how Gaze-WS performed print( "train size:", L_train.shape, "predict size:", L.shape, "all roc:", roc_auc_score(labels, all_prob_preds), "all f1:", f1_score(labels, all_bin_preds), "all recall:", recall_score(labels, all_bin_preds), "predicted CB:", np.mean(all_bin_preds), ) return all_bin_preds, gaze_ids def write_to_file(path, file_name, value): if not isinstance(value, str): value = str(value) fout = open(os.path.join(path, file_name), "w") fout.write(value + "\n") fout.close() def add_application_args(parser): parser.add_argument("--source", default="poet", type=str, help="dataset source") parser.add_argument( "--data_dir", default="original", help="Directory where image data is", type=str ) parser.add_argument( "--train_scale", default=1, help="scale ratio for train set size", type=float ) parser.add_argument( "--val_scale", default=0.1, help="scale ratio for train set size", type=float ) parser.add_argument( "--task_weights", default=[1], help="weights on the aux tasks when running MTL", type=float, nargs="+", ) parser.add_argument( "--task", default="original", help="defines the task, could be 'original', 'gaze_mtl', or 'unsup_gaze'", type=str, ) parser.add_argument( "--gaze_mtl_task", default="none", help="defines the gaze mtl task, could be 'none', 'loc1', 'loc2', 'time', or 'diffusivity', and can concanenate by adding '_' between ", type=str, ) parser.add_argument("--batch_size", type=int, default=32, help="batch size") parser.add_argument( "--evaluate", action="store_true", help="Indicates if should evaluate features learnt", ) parser.add_argument( "--transfer_learning", action="store_true", help="If true, runs tranfer learning experiment on the gaze mtl tasks", ) parser.add_argument( "--pretrained", action="store_true", help="for pretrained model weights" ) parser.add_argument("--load_cnn", type=str, default=None, help="load path")
observational-main
utils.py
from typing import List import torch import torch.nn as nn import torch.nn.functional as F from torch import Tensor class SoftCrossEntropyLoss(nn.Module): """ Calculate the CrossEntropyLoss with soft targets :param weight: Weight to assign to each of the classes. Default: None :type weight: list of float :param reduction: The way to reduce the losses: 'none' | 'mean' | 'sum'. 'none': no reduction, 'mean': the mean of the losses, 'sum': the sum of the losses. :type reduction: str """ def __init__(self, weight: List[float] = None, reduction: str = "mean"): super().__init__() if weight is None: self.weight = None else: self.register_buffer("weight", torch.tensor(weight)) self.reduction = reduction def forward(self, input: Tensor, target: Tensor) -> Tensor: # type:ignore """ Calculate the loss :param input: prediction logits :param target: target probabilities :return: loss """ n, k = input.shape losses = input.new_zeros(n) for i in range(k): cls_idx = input.new_full((n,), i, dtype=torch.long) loss = F.cross_entropy(input, cls_idx, reduction="none") if self.weight is not None: loss = loss * self.weight[i] losses += target[:, i].float() * loss if self.reduction == "mean": losses = losses.mean() elif self.reduction == "sum": losses = losses.sum() elif self.reduction != "none": raise ValueError(f"Unrecognized reduction: {self.reduction}") return losses
observational-main
end_model/soft_cross_entropy.py
observational-main
end_model/__init__.py
#!/usr/bin/env python # coding: utf-8 # # Author: Kazuto Nakashima # URL: http://kazuto1011.github.io # Created: 2017-05-26 from collections import Sequence import numpy as np import torch import torch.nn as nn from torch.nn import functional as F from tqdm import tqdm import pdb class _BaseWrapper(object): def __init__(self, model): super(_BaseWrapper, self).__init__() self.device = next(model.parameters()).device self.model = model self.handlers = [] # a set of hook function handlers def _encode_one_hot(self, ids): one_hot = torch.zeros_like(self.logits).to(self.device) one_hot.scatter_(0, ids, 1.0) return one_hot def forward(self, image): self.image_shape = image.shape[2:] self.logits = self.model(image) self.probs = F.softmax(self.logits) # , dim=1) return self.probs.sort(descending=True) # , dim=1) # ordered results def backward(self, ids): """ Class-specific backpropagation """ one_hot = self._encode_one_hot(ids) self.model.zero_grad() self.logits.backward(gradient=one_hot, retain_graph=True) def generate(self): raise NotImplementedError def remove_hook(self): """ Remove all the forward/backward hook functions """ for handle in self.handlers: handle.remove() class BackPropagation(_BaseWrapper): def forward(self, image): self.image = image.requires_grad_() return super(BackPropagation, self).forward(self.image) def generate(self): gradient = self.image.grad.clone() self.image.grad.zero_() return gradient class GuidedBackPropagation(BackPropagation): """ "Striving for Simplicity: the All Convolutional Net" https://arxiv.org/pdf/1412.6806.pdf Look at Figure 1 on page 8. """ def __init__(self, model): super(GuidedBackPropagation, self).__init__(model) def backward_hook(module, grad_in, grad_out): # Cut off negative gradients if isinstance(module, nn.ReLU): return (F.relu(grad_in[0]),) for module in self.model.named_modules(): self.handlers.append(module[1].register_backward_hook(backward_hook))
observational-main
end_model/grad_cam.py
# Convolutional neural network (three convolutional layers) import torch import torch.nn as nn import torchvision class ConvNet(nn.Module): def __init__(self, num_classes=10): super(ConvNet, self).__init__() self.layer1 = nn.Sequential( nn.Conv2d(3, 16, kernel_size=5, stride=2, padding=2), nn.BatchNorm2d(16), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2)) self.layer2 = nn.Sequential( nn.Conv2d(16, 32, kernel_size=5, stride=2, padding=2), nn.BatchNorm2d(32), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2)) self.layer3 = nn.Sequential( nn.Conv2d(32, 32, kernel_size=5, stride=2, padding=2), nn.BatchNorm2d(32), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2)) self.avg_pool = nn.AvgPool2d(kernel_size=3, stride=1, padding=0) self.fc = nn.Linear(32, num_classes) def forward(self, x): out = self.layer1(x) out = self.layer2(out) out = self.layer3(out) out = self.avg_pool(out) out = out.reshape(out.size(0), -1) #out = self.fc(out) return out
observational-main
end_model/cnn.py
import os, sys import numpy as np import torch from emmental.data import EmmentalDataset from PIL import Image import pydicom sys.path.append("../") from utils import ( load_file_markers, load_helper_task_labels, load_weak_labels, standardize_label, ) import pdb num_gaze_dims_dict = { "none": 0, "loc": 9, "time": 1, "diffusivity": 1, } num_classes_dict = {"cxr": 2, "mets": 2, "cxr2": 2} def rle2mask(rle, width, height): mask = np.zeros(width * height) array = np.asarray([int(x) for x in rle.split()]) starts = array[0::2] lengths = array[1::2] current_position = 0 for index, start in enumerate(starts): current_position += start mask[current_position : current_position + lengths[index]] = 1 current_position += lengths[index] return mask.reshape(width, height) class ObservationalDataset(EmmentalDataset): """ A standard PyTorch definition of Dataset which defines the functions __len__ and __getitem__. """ def __init__( self, source, task, gaze_mtl_task, data_dir, split_type, transform, train_scale=1, val_scale=0.1, seed=0, ): """ Store the filenames of the seizures to use. Args: file_dir: (string) directory containing the list of file names to pull in split_type: (string) whether train, val, or test set """ self.split_type = split_type self.transform = transform self.data_dir = data_dir self.source = source self.task = task # load appropriate file markers, which are a list of (image_path, label) tuples self.file_markers = load_file_markers( source, split_type, train_scale, val_scale, seed, ) print(f"{len(self.file_markers)} files in {split_type} split...") # If Gaze-WS, load weak labels derived from gaze if task == "weak_gaze" and split_type == "train": weak_dict = load_weak_labels(source, train_scale, val_scale, seed) # If Gaze-MTL, load helper task labels derived from gaze if gaze_mtl_task: helper_task_labels_dict = load_helper_task_labels(source, gaze_mtl_task) helper_tasks = gaze_mtl_task.split("_") if gaze_mtl_task else [] self.num_helper_tasks = len(helper_tasks) self.num_gaze_dims = [num_gaze_dims_dict[task] for task in helper_tasks] self.num_classes = num_classes_dict[source] X_dict = { "img_id": [], "image": [], } Y_dict = {"target": [], "weak": []} for i in range(self.num_helper_tasks): Y_dict["helper_task_" + str(i)] = [] for idx in range(len(self.file_markers)): img_pth, label = self.file_markers[idx] img_id = img_pth.split("/")[-1] img_name = img_id.split(".")[0] if source == "cxr": img_id = img_pth img_name = img_pth if source == "mets": img_name = img_id X_dict["img_id"].append(img_id) # standardize labels so that 0 is negative and 1 is positive label = standardize_label(label, source) Y_dict["target"].append(label) if self.task == "gaze_mtl" and img_name in helper_task_labels_dict: gaze_labels = helper_task_labels_dict[img_name] else: gaze_labels = [] for i in range(self.num_helper_tasks): if self.num_gaze_dims[i] == 1: gaze_labels.append(0) else: gaze_labels.append([0] * self.num_gaze_dims[i]) for i in range(self.num_helper_tasks): Y_dict["helper_task_" + str(i)].append(gaze_labels[i]) if split_type == "train" and task == "weak_gaze": if img_name in weak_dict: weak_vec = weak_dict[img_name] else: weak_vec = [0.5] * self.num_classes Y_dict["weak"].append(weak_vec) Y_dict["target"] = torch.from_numpy(np.array(Y_dict["target"])) Y_dict["weak"] = torch.from_numpy(np.array(Y_dict["weak"])) for i in range(self.num_helper_tasks): Y_dict["helper_task_" + str(i)] = torch.from_numpy( np.array(Y_dict["helper_task_" + str(i)]) ) super().__init__(name=source, X_dict=X_dict, Y_dict=Y_dict, uid="image") def __len__(self): return len(self.file_markers) def __getitem__(self, idx): """ Fetch index idx image and label from dataset. Args: idx: (int) index in [0, 1, ..., size_of_dataset-1] Returns: image: (Tensor) transformed image label: (int) corresponding label of image """ img_id = self.X_dict["img_id"][idx] true_label = self.Y_dict["target"][idx] base_dir = os.path.join(self.data_dir, self.source.upper()) if self.source == "mets": # for mets there is an extra directory in the path for the image case num img_case_id = img_id.split("_")[1] img_pth = os.path.join(base_dir, "Mets_" + img_case_id) img_pth = os.path.join(img_pth, img_id) elif self.source == "cxr": img_pth = os.path.join(base_dir, "dicom_images", img_id) else: img_pth = os.path.join(base_dir, img_id) if "cxr" in self.source: ds = pydicom.dcmread(img_pth) img = ds.pixel_array img = Image.fromarray(np.uint8(img)) else: img = Image.open(img_pth) img = self.transform(img) if img.shape[0] == 1: img = torch.cat([img, img, img]) x_dict = { "image": img, "img_id": self.X_dict["img_id"][idx], "id": self.X_dict["img_id"][idx], } # we only want the weak label for the training set if self.split_type == "train" and self.task == "weak_gaze": weak_label = self.Y_dict["weak"][idx] else: weak_label = true_label # Return X and Y dictionaries depending on the task y_dict = {"target": true_label} if self.task == "weak_gaze": y_dict = {"target": true_label, "weak": weak_label} elif self.task == "gaze_mtl": for i in range(self.num_helper_tasks): y_dict["helper_task_" + str(i)] = self.Y_dict["helper_task_" + str(i)][ idx ] return x_dict, y_dict
observational-main
end_model/dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import pickle from open3d import visualization as o3dv import random import argparse import numpy as np import time import contactopt.util as util import contactopt.geometric_eval as geometric_eval import pprint from tqdm import tqdm from joblib import Parallel, delayed import multiprocessing as mp import matplotlib.pyplot as plt import matplotlib as mpl import sklearn.metrics import trimesh import os SAVE_OBJ_FOLDER = 'eval/saveobj' def vis_sample(gt_ho, in_ho, out_ho, mje_in=None, mje_out=None): hand_gt, obj_gt = gt_ho.get_o3d_meshes(hand_contact=True, normalize_pos=True) hand_in, obj_in = in_ho.get_o3d_meshes(hand_contact=True, normalize_pos=True) hand_in.translate((0.0, 0.2, 0.0)) obj_in.translate((0.0, 0.2, 0.0)) if not args.split == 'honn': out_ho.hand_contact = in_ho.hand_contact out_ho.obj_contact = in_ho.obj_contact hand_out, obj_out = out_ho.get_o3d_meshes(hand_contact=True, normalize_pos=True) hand_out.translate((0.0, 0.4, 0.0)) obj_out.translate((0.0, 0.4, 0.0)) geom_list = [hand_gt, obj_gt, hand_out, obj_out, hand_in, obj_in] geom_list.append(util.text_3d('In', pos=[-0.4, 0.2, 0], font_size=40, density=2)) geom_list.append(util.text_3d('Refined', pos=[-0.4, 0.4, 0], font_size=40, density=2)) geom_list.append(util.text_3d('GT', pos=[-0.4, 0.0, 0], font_size=40, density=2)) if mje_in is not None: geom_list.append(util.text_3d('MJE in {:.2f}cm out {:.2f}cm'.format(mje_in * 100, mje_out * 100), pos=[-0.4, -0.2, 0], font_size=40, density=2)) o3dv.draw_geometries(geom_list) def calc_mean_dicts(all_dicts, phase=''): keys = all_dicts[0].keys() mean_dict = dict() stds = ['pen_vol'] for k in keys: l = list() for d in all_dicts: l.append(d[k]) mean_dict[k] = np.array(l).mean() if k in stds: mean_dict[k + '_std'] = np.array(l).std() return mean_dict def calc_sample(ho_test, ho_gt, idx, phase='nophase'): stats = geometric_eval.geometric_eval(ho_test, ho_gt) return stats def process_sample(sample, idx): gt_ho, in_ho, out_ho = sample['gt_ho'], sample['in_ho'], sample['out_ho'] in_stats = calc_sample(in_ho, gt_ho, idx, 'before ContactOpt') out_stats = calc_sample(out_ho, gt_ho, idx, 'after ContactOpt') return in_stats, out_stats def run_eval(args): in_file = 'data/optimized_{}.pkl'.format(args.split) runs = pickle.load(open(in_file, 'rb')) print('Loaded {} len {}'.format(in_file, len(runs))) # if args.vis or args.physics: # print('Shuffling!!!') # random.shuffle(runs) if args.partial > 0: runs = runs[:args.partial] do_parallel = not args.vis if do_parallel: all_data = Parallel(n_jobs=mp.cpu_count() - 2)(delayed(process_sample)(s, idx) for idx, s in enumerate(tqdm(runs))) in_all = [item[0] for item in all_data] out_all = [item[1] for item in all_data] else: all_data = [] # Do non-parallel for idx, s in enumerate(tqdm(runs)): all_data.append(process_sample(s, idx)) if args.vis: print('In vs GT\n', pprint.pformat(all_data[-1][0])) print('Out vs GT\n', pprint.pformat(all_data[-1][1])) if args.split == 'im_pred_trans': vis_sample(s['gt_ho'], s['in_ho'], s['out_ho'], mje_in=all_data[-1][0]['objalign_hand_joints'], mje_out=all_data[-1][1]['objalign_hand_joints']) else: vis_sample(s['gt_ho'], s['in_ho'], s['out_ho'], mje_in=all_data[-1][0]['unalign_hand_joints'], mje_out=all_data[-1][1]['unalign_hand_joints']) in_all = [item[0] for item in all_data] out_all = [item[1] for item in all_data] mean_in = calc_mean_dicts(in_all, 'In vs GT') mean_out = calc_mean_dicts(out_all, 'Out vs GT') print('In vs GT\n', pprint.pformat(mean_in)) print('Out vs GT\n', pprint.pformat(mean_out)) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Run eval on fitted pkl') parser.add_argument('--split', default='aug', type=str) parser.add_argument('--vis', action='store_true') parser.add_argument('--contact_f1', action='store_true') parser.add_argument('--pen', action='store_true') parser.add_argument('--saveobj', action='store_true') parser.add_argument('--partial', default=-1, type=int, help='Only run for n samples') args = parser.parse_args() start_time = time.time() run_eval(args) print('Eval time', time.time() - start_time)
ContactOpt-main
contactopt/run_eval.py
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os from os import path as osp import numpy as np import json import matplotlib.pyplot as plt import torch import pytorch3d from manopth import manolayer import open3d from PIL import Image, ImageFont, ImageDraw from pyquaternion import Quaternion from open3d import io as o3dio from open3d import geometry as o3dg from open3d import utility as o3du from open3d import visualization as o3dv from manopth.manolayer import ManoLayer import trimesh SAMPLE_VERTS_NUM = 2048 DEEPCONTACT_BIN_WEIGHTS_FILE = 'data/class_bin_weights.out' DEEPCONTACT_NUM_BINS = 10 def val_to_class(val): """ Converts a contact value [0-1] to a class assignment :param val: tensor (batch, verts) :return: class assignment (batch, verts) """ expanded = torch.floor(val * DEEPCONTACT_NUM_BINS) return torch.clamp(expanded, 0, DEEPCONTACT_NUM_BINS - 1).long() # Cut off potential 1.0 inputs? def class_to_val(raw_scores): """ Finds the highest softmax for each class :param raw_scores: tensor (batch, verts, classes) :return: highest class (batch, verts) """ cls = torch.argmax(raw_scores, dim=2) val = (cls + 0.5) / DEEPCONTACT_NUM_BINS return val def forward_mano(mano_model, pose, beta, tforms): """Forward mano pass, MANO params to mesh""" device = pose.device batch_size = pose.shape[0] verts, joints = mano_model(pose, beta) verts_homo = torch.cat((verts / 1000, torch.ones(batch_size, verts.shape[1], 1, device=device)), 2) joints_homo = torch.cat((joints / 1000, torch.ones(batch_size, joints.shape[1], 1, device=device)), 2) tform_agg = torch.eye(4, device=device).reshape(1, 4, 4).repeat(batch_size, 1, 1) for tform in tforms: tform_agg = torch.bmm(tform, tform_agg) # Aggregate all transforms # Apply aggregated transform to all points, permuting for matmul verts_homo = torch.bmm(tform_agg, verts_homo.permute(0, 2, 1)).permute(0, 2, 1) joints_homo = torch.bmm(tform_agg, joints_homo.permute(0, 2, 1)).permute(0, 2, 1) return verts_homo[:, :, :3], joints_homo[:, :, :3] def fit_pca_to_axang(mano_pose, mano_beta): """ This project uses the MANO model parameterized with 15 PCA components. However, many other approaches use different parameterizations (15 joints, parameterized with 45 axis-angle parameters). This function allows converting between the formats. It first runs the MANO model forwards to get the hand vertices of the initial format. Then an optimization is performed to adjust the 15 PCA parameters of a second MANO model to match the initial vertices. Perhaps there are better ways to do this, but this ensures highest accuracy. :param mano_pose: numpy (45) axis angle coordinates :param mano_beta: numpy (10) beta parameters :return: numpy (15) PCA parameters of fitted hand """ mano_pose = np.array(mano_pose) full_axang = torch.Tensor(mano_pose).unsqueeze(0) mano_model = ManoLayer(mano_root='mano/models', use_pca=True, ncomps=45, side='right', flat_hand_mean=False) beta_in = torch.Tensor(mano_beta).unsqueeze(0) mano_model_orig = ManoLayer(mano_root='mano/models', joint_rot_mode="axisang", use_pca=False, center_idx=None, flat_hand_mean=True) _, target_joints = forward_mano(mano_model_orig, full_axang, beta_in, []) full_axang[:, 3:] -= mano_model.th_hands_mean pca_mat = mano_model.th_selected_comps.T pca_shape = full_axang[:, 3:].mm(pca_mat) # Since the HO gt is in full 45 dim axang coords, convert back to PCA shape new_pca_shape = np.zeros(18) new_pca_shape[:3] = mano_pose[:3] # set axang new_pca_shape[3:] = pca_shape[0, :15] # set pca pose # Do optimization pca_in = torch.Tensor(new_pca_shape).unsqueeze(0) pca_in.requires_grad = True mano_model = ManoLayer(mano_root='mano/models', use_pca=True, ncomps=15, side='right', flat_hand_mean=False) optimizer = torch.optim.Adam([pca_in], lr=0.03, amsgrad=True) # AMSgrad helps loss_criterion = torch.nn.L1Loss() for it in range(200): optimizer.zero_grad() hand_verts, hand_joints = forward_mano(mano_model, pca_in, beta_in, []) # 2.2ms # vis_pointcloud(hand_joints, target_joints) loss = loss_criterion(hand_joints, target_joints) # print('Opt loss', loss.detach()) loss.backward() optimizer.step() return pca_in.detach().squeeze(0).numpy() def hand_color(): return np.asarray([224.0, 172.0, 105.0]) / 255 def obj_color(): return np.asarray([100.0, 100.0, 100.0]) / 255 def save_trimesh(obj_mesh, output_path): obj_raw = trimesh.exchange.obj.export_obj(obj_mesh, include_texture=False) os.makedirs(os.path.dirname(output_path), exist_ok=True) with open(output_path, "w") as obj_file: obj_file.write(obj_raw) def verts_to_name(num_verts): """Hacky function allowing finding the name of an object by the number of vertices. Each object happens to have a different number.""" num_verts_dict = {100597: 'mouse', 29537: 'binoculars', 100150: 'bowl', 120611: 'camera', 64874: 'cell_phone', 177582: 'cup', 22316: 'eyeglasses', 46334: 'flashlight', 35949: 'hammer', 93324: 'headphones', 19962: 'knife', 169964: 'mug', 57938: 'pan', 95822: 'ps_controller', 57824: 'scissors', 144605: 'stapler', 19708: 'toothbrush', 42394: 'toothpaste', 126627: 'utah_teapot', 90926: 'water_bottle', 104201: 'wine_glass', 108248: 'door_knob', 71188: 'light_bulb', 42232: 'banana', 93361: 'apple', 8300: 'HO_sugar', 8251: 'HO_soap', 16763: 'HO_mug', 10983: 'HO_mustard', 9174: 'HO_drill', 8291: 'HO_cheezits', 8342: 'HO_spam', 10710: 'HO_banana', 8628: 'HO_scissors', 148245: 'train_exclude'} if num_verts in num_verts_dict: return num_verts_dict[num_verts] return 'DIDNT FIND {}'.format(num_verts) def mesh_is_thin(num_verts): """For thin meshes, the interpenetration loss doesn't do anything, since they're thinner than 2*2mm. For thin objects, we set this margin to zero mm.""" thins = [19708, 19962, 22316, 16763, 8628] # Toothbrush, Knife, Eyeglasses, HO_mug, HO_scissors is_thin = torch.zeros_like(num_verts) for t in thins: is_thin[num_verts == t] = 1 return is_thin def upscale_contact(obj_mesh, obj_sampled_idx, contact_obj): """ When we run objects through our network, they always have a fixed number of vertices. We need to up/downscale the contact from this to the original number of vertices :param obj_mesh: Pytorch3d Meshes object :param obj_sampled_idx: (batch, 2048) :param contact_obj: (batch, 2048) :return: """ obj_verts = obj_mesh.verts_padded() _, closest_idx, _ = pytorch3d.ops.knn_points(obj_verts, batched_index_select(obj_verts, 1, obj_sampled_idx), K=1) upscaled = batched_index_select(contact_obj, 1, closest_idx.squeeze(2)) return upscaled.detach() def hack_filedesciptor(): """ Sometimes needed if reading datasets very quickly? Fixes: RuntimeError: received 0 items of ancdata https://github.com/pytorch/pytorch/issues/973 """ torch.multiprocessing.set_sharing_strategy('file_system') def apply_tform(tform, verts): """ Applies a 4x4 rigid transform to a list of points :param tform: tensor (batch, 4, 4) :param verts: tensor (batch, N, 3) :return: """ verts_homo = torch.cat((verts, torch.ones(verts.shape[0], verts.shape[1], 1, device=verts.device)), 2) new_verts = torch.bmm(tform, verts_homo.permute(0, 2, 1)).permute(0, 2, 1) return new_verts[:, :, :3] def apply_rot(rot, verts, around_centroid=False): """ Applies a 3x3 rotation matrix to a list of points :param rot: tensor (batch, 3, 3) :param verts: tensor (batch, N, 3) :return: """ if around_centroid: centroid = verts.mean(dim=1) verts = verts - centroid new_verts = torch.bmm(rot, verts.permute(0, 2, 1)).permute(0, 2, 1) if around_centroid: new_verts = new_verts + centroid return new_verts def translation_to_tform(translation): """ (batch, 3) to (batch, 4, 4) """ tform_out = pytorch3d.ops.eyes(4, translation.shape[0], device=translation.device) tform_out[:, :3, 3] = translation return tform_out def sharpen_contact(c, slope=10, thresh=0.6): """ Apply filter to input, makes into a "soft binary" """ out = slope * (c - thresh) + thresh return torch.clamp(out, 0.0, 1.0) def fit_sigmoid(colors, a=0.05): """Fits a sigmoid to raw contact temperature readings from the ContactPose dataset. This function is copied from that repo""" idx = colors > 0 ci = colors[idx] x1 = min(ci) # Find two points y1 = a x2 = max(ci) y2 = 1-a lna = np.log((1 - y1) / y1) lnb = np.log((1 - y2) / y2) k = (lnb - lna) / (x1 - x2) mu = (x2*lna - x1*lnb) / (lna - lnb) ci = np.exp(k * (ci-mu)) / (1 + np.exp(k * (ci-mu))) # Apply the sigmoid colors[idx] = ci return colors def subdivide_verts(edges, verts): """ Takes a list of edges and vertices, and subdivides each edge and puts a vert in the middle. May not work with variable-size meshes :param edges: (batch, E, 2) :param verts: (batch, V, 3) :return: new_verts (batch, E+V, 3) """ selected_verts = edges.view(edges.shape[0], -1) # Flatten into (batch, E*2) new_verts = batched_index_select(verts, 1, selected_verts) new_verts = new_verts.view(edges.shape[0], edges.shape[1], 2, 3) new_verts = new_verts.mean(dim=2) new_verts = torch.cat([verts, new_verts], dim=1) # (sum(V_n)+sum(E_n), 3) return new_verts def calc_l2_err(a, b, axis=2): if torch.is_tensor(a): mse = torch.sum(torch.square(a - b), dim=axis) l2_err = torch.sqrt(mse) return torch.mean(l2_err, 1) else: mse = np.linalg.norm(a - b, 2, axis=axis) return mse.mean() def batched_index_select(t, dim, inds): """ Helper function to extract batch-varying indicies along array :param t: array to select from :param dim: dimension to select along :param inds: batch-vary indicies :return: """ dummy = inds.unsqueeze(2).expand(inds.size(0), inds.size(1), t.size(2)) out = t.gather(dim, dummy) # b x e x f return out def mesh_set_color(color, mesh, colormap=plt.cm.inferno): """ Applies colormap to object :param color: Tensor or numpy array, (N, 1) :param mesh: Open3D TriangleMesh :return: """ # vertex_colors = np.tile(color.squeeze(), (3, 1)).T # mesh.vertex_colors = o3du.Vector3dVector(vertex_colors) # geometry.apply_colormap(mesh, apply_sigmoid=False) colors = np.asarray(color).squeeze() if len(colors.shape) > 1: colors = colors[:, 0] colors[colors < 0.1] = 0.1 # TODO hack to make brighter colors = colormap(colors)[:, :3] colors = o3du.Vector3dVector(colors) mesh.vertex_colors = colors def aggregate_tforms(tforms): """Aggregates a list of 4x4 rigid transformation matricies""" device = tforms[0].device batch_size = tforms[0].shape[0] tform_agg = pytorch3d.ops.eyes(4, batch_size, device=device) for tform in tforms: tform_agg = torch.bmm(tform, tform_agg) # Aggregate all transforms return tform_agg def axisEqual3D(ax): """Sets a matplotlib 3D plot to have equal-scale axes""" extents = np.array([getattr(ax, 'get_{}lim'.format(dim))() for dim in 'xyz']) sz = extents[:,1] - extents[:,0] centers = np.mean(extents, axis=1) maxsize = max(abs(sz)) r = maxsize/2 for ctr, dim in zip(centers, 'xyz'): getattr(ax, 'set_{}lim'.format(dim))(ctr - r, ctr + r) def vis_pointcloud(object_points, hand_points, idx=None, show=True): if show: plt.switch_backend('TkAgg') else: plt.switch_backend('agg') if idx is None: idx = int(np.random.randint(0, hand_points.shape[0])) # Select random sample from batch object_points = object_points[idx, :, :].detach().cpu().numpy() hand_points = hand_points[idx, :, :].detach().cpu().numpy() fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(object_points[:, 0], object_points[:, 1], object_points[:, 2]) ax.scatter(hand_points[:, 0], hand_points[:, 1], hand_points[:, 2]) #, c=np.arange(hand_points.shape[0])) if show: axisEqual3D(ax) # plt.axis('off') ax.set_xlabel('X Label') ax.set_ylabel('Y Label') ax.set_zlabel('Z Label') plt.show() return fig def get_mano_closed_faces(): """The default MANO mesh is "open" at the wrist. By adding additional faces, the hand mesh is closed, which looks much better. https://github.com/hassony2/handobjectconsist/blob/master/meshreg/models/manoutils.py""" mano_layer = manolayer.ManoLayer( joint_rot_mode="axisang", use_pca=False, mano_root='mano/models', center_idx=None, flat_hand_mean=True ) close_faces = torch.Tensor( [ [92, 38, 122], [234, 92, 122], [239, 234, 122], [279, 239, 122], [215, 279, 122], [215, 122, 118], [215, 118, 117], [215, 117, 119], [215, 119, 120], [215, 120, 108], [215, 108, 79], [215, 79, 78], [215, 78, 121], [214, 215, 121], ] ) closed_faces = torch.cat([mano_layer.th_faces, close_faces.long()]) # Indices of faces added during closing --> should be ignored as they match the wrist # part of the hand, which is not an external surface of the human # Valid because added closed faces are at the end hand_ignore_faces = [1538, 1539, 1540, 1541, 1542, 1543, 1544, 1545, 1546, 1547, 1548, 1549, 1550, 1551] return closed_faces.detach().cpu().numpy() #, hand_ignore_faces def text_3d(text, pos, direction=None, degree=-90.0, density=10, font='/usr/share/fonts/truetype/freefont/FreeMono.ttf', font_size=10): """ Generate a Open3D text point cloud used for visualization. https://github.com/intel-isl/Open3D/issues/2 :param text: content of the text :param pos: 3D xyz position of the text upper left corner :param direction: 3D normalized direction of where the text faces :param degree: in plane rotation of text :param font: Name of the font - change it according to your system :param font_size: size of the font :return: o3d.geoemtry.PointCloud object """ if direction is None: direction = (0., 0., 1.) # font_obj = ImageFont.truetype(font, font_size) font_obj = ImageFont.truetype(font, font_size * density) font_dim = font_obj.getsize(text) img = Image.new('RGB', font_dim, color=(255, 255, 255)) draw = ImageDraw.Draw(img) draw.text((0, 0), text, font=font_obj, fill=(0, 0, 0)) img = np.asarray(img) img_mask = img[:, :, 0] < 128 indices = np.indices([*img.shape[0:2], 1])[:, img_mask, 0].reshape(3, -1).T pcd = open3d.geometry.PointCloud() pcd.colors = open3d.utility.Vector3dVector(img[img_mask, :].astype(float) / 255.0) # pcd.points = o3d.utility.Vector3dVector(indices / 100.0) pcd.points = open3d.utility.Vector3dVector(indices / 1000 / density) raxis = np.cross([0.0, 0.0, 1.0], direction) if np.linalg.norm(raxis) < 1e-6: raxis = (0.0, 0.0, 1.0) trans = (Quaternion(axis=raxis, radians=np.arccos(direction[2])) * Quaternion(axis=direction, degrees=degree)).transformation_matrix trans[0:3, 3] = np.asarray(pos) pcd.transform(trans) return pcd def to_cpu_numpy(obj): """Convert torch cuda tensors to cpu, numpy tensors""" if torch.is_tensor(obj): return obj.detach().cpu().numpy() elif isinstance(obj, dict): res = {} for k, v in obj.items(): res[k] = to_cpu_numpy(v) return res elif isinstance(obj, list): res = [] for v in obj: res.append(to_cpu_numpy(v)) return res else: raise TypeError("Invalid type for move_to") def dict_to_device(data, device): """Move dict of tensors to device""" out = dict() for k in data.keys(): out[k] = data[k].to(device) return out class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self, name, fmt=':f'): self.name = name self.fmt = fmt self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def __str__(self): fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})' return fmtstr.format(**self.__dict__)
ContactOpt-main
contactopt/util.py
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import datetime def parse_dataset(args): """ Converts the --split argument into a dataset file """ if args.split == 'aug': args.train_dataset = 'data/perturbed_contactpose_train.pkl' args.test_dataset = 'data/perturbed_contactpose_test.pkl' elif args.split == 'fine': args.test_dataset = 'data/contactpose_test.pkl' elif args.split == 'im': args.test_dataset = 'data/ho3d_image.pkl' elif args.split == 'demo': args.test_dataset = 'data/ho3d_image_demo.pkl' else: raise ValueError('Unknown dataset') def run_contactopt_parse_args(): parser = argparse.ArgumentParser(description='Alignment networks training') parser.add_argument('--batch_size', default=64, type=int) parser.add_argument('--split', default='aug', type=str) parser.add_argument('--lr', type=float) parser.add_argument('--n_iter', type=int) parser.add_argument('--partial', default=-1, type=int, help='Only run for n batches') parser.add_argument('--w_cont_hand', type=float, help='Weight of the hand contact in optimization') parser.add_argument('--sharpen_thresh', type=float) parser.add_argument('--ncomps', type=int) parser.add_argument('--w_cont_asym', type=float) parser.add_argument('--w_opt_trans', type=float) parser.add_argument('--w_opt_rot', type=float) parser.add_argument('--w_opt_pose', type=float) parser.add_argument('--caps_rad', type=float) parser.add_argument('--caps_hand', action='store_true') parser.add_argument('--cont_method', type=int) parser.add_argument('--caps_top', type=float) parser.add_argument('--caps_bot', type=float) parser.add_argument('--w_pen_cost', type=float) parser.add_argument('--pen_it', type=float) parser.add_argument('--w_obj_rot', type=float) parser.add_argument('--rand_re', type=int) parser.add_argument('--rand_re_trans', type=float) parser.add_argument('--rand_re_rot', type=float) parser.add_argument('--vis_method', type=int) parser.add_argument('--vis', action='store_true') parser.add_argument('--video', action='store_true') parser.add_argument('--min_cont', default=1, type=int, help='Cut grasps with less than this points of initial contact') args = parser.parse_args() parse_dataset(args) if args.vis: args.batch_size = 1 return args def train_network_parse_args(): parser = argparse.ArgumentParser(description='Alignment networks training') parser.add_argument('--lr', default=0.01, type=float) parser.add_argument('--batch_size', default=32, type=int) parser.add_argument('--optimizer', default='adam', type=str) parser.add_argument('--split', default='aug', type=str) # parser.add_argument('--loss_pose', default=0, type=float) parser.add_argument('--loss_c_obj', default=1, type=float) parser.add_argument('--loss_c_hand', default=1, type=float) # parser.add_argument('--loss_3d', default=0, type=float) parser.add_argument('--epochs', default=101, type=int) parser.add_argument('--checkpoint', default='', type=str) parser.add_argument('--desc', default='', type=str) parser.add_argument('--vis', action='store_true') args = parser.parse_args() if args.desc == '': args.desc = str(datetime.datetime.now().strftime("%Y%m%d-%H%M%S")) all_str = '' for key, val in vars(args).items(): all_str += '--{}={} '.format(key, val) print(all_str) # Convert to dict and print args.all_str = all_str parse_dataset(args) return args
ContactOpt-main
contactopt/arguments.py
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree.
ContactOpt-main
contactopt/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from contactopt.loader import * import contactopt.util as util from contactopt.hand_object import HandObject import time from open3d import io as o3dio from open3d import geometry as o3dg from open3d import utility as o3du from open3d import visualization as o3dv def show_optimization(data, opt_state, hand_contact_target=None, obj_contact_target=None, is_video=False, label=None, vis_method=1, delay=0.001): """Displays video/still frame of optimization process Contact visualization options: 0 GT contact on opt 1 Predicted contact on opt 2 Live contact on opt hand 3 Live contact on both 4 No contact on any 5 No hand contact, predicted obj contact """ gt_ho = HandObject() opt_ho = HandObject() gt_ho.load_from_batch(data['hand_beta_gt'], data['hand_pose_gt'], data['hand_mTc_gt'], data['hand_contact_gt'], data['obj_contact_gt'], data['mesh_gt']) opt_ho.load_from_batch(data['hand_beta_gt'], data['hand_pose_gt'], data['hand_mTc_gt'], data['hand_contact_gt'], data['obj_contact_gt'], data['mesh_aug'], obj_rot=opt_state[-1]['obj_rot']) hand_mesh_gt, obj_mesh_gt = gt_ho.get_o3d_meshes() hand_mesh_opt, obj_mesh_opt = opt_ho.get_o3d_meshes() geom_list = [hand_mesh_gt, obj_mesh_gt, obj_mesh_opt, hand_mesh_opt] if vis_method == 1 or vis_method == 5: util.mesh_set_color(hand_contact_target, hand_mesh_opt) if obj_contact_target.shape[1] == util.SAMPLE_VERTS_NUM: obj_contact_target = upscale_contact(data['mesh_aug'], data['obj_sampled_idx'], obj_contact_target) util.mesh_set_color(obj_contact_target, obj_mesh_opt) if vis_method == 2 or vis_method == 3: util.mesh_set_color(opt_state[-1]['contact_hand'].squeeze(), hand_mesh_opt) if opt_state[-1]['contact_obj'].shape[1] == util.SAMPLE_VERTS_NUM: c = upscale_contact(data['mesh_aug'], data['obj_sampled_idx'], opt_state[-1]['contact_obj']) util.mesh_set_color(c, obj_mesh_opt) else: util.mesh_set_color(opt_state[-1]['contact_obj'].squeeze(), obj_mesh_opt) if vis_method == 4 or vis_method == 5: hand_mesh_gt.paint_uniform_color(np.asarray([150.0, 250.0, 150.0]) / 255) # Green hand_mesh_opt.paint_uniform_color(np.asarray([250.0, 150.0, 150.0]) / 255) # Red if vis_method == 4: obj_mesh_gt.paint_uniform_color(np.asarray([100.0, 100.0, 100.0]) / 255) # Gray obj_mesh_opt.paint_uniform_color(np.asarray([100.0, 100.0, 100.0]) / 255) # Gray if label is not None: lbl_verts = util.text_3d(label, pos=[0, 0.1, 0], font_size=20, density=2) geom_list.append(lbl_verts) hand_mesh_opt.vertices = o3du.Vector3dVector(opt_state[-1]['hand_verts'].squeeze()) hand_mesh_opt.compute_vertex_normals() hand_mesh_gt.translate((0, 0.2, 0)) obj_mesh_gt.translate((0, 0.2, 0)) if not is_video: o3dv.draw_geometries(geom_list) else: vis = o3dv.VisualizerWithKeyCallback() vis.create_window() for g in geom_list: vis.add_geometry(g) for i in range(len(opt_state) * 2): out_dict = opt_state[i % len(opt_state)] if out_dict['obj_rot'][0, 0, 0] < 1: obj_verts = util.apply_rot(out_dict['obj_rot'], data['mesh_aug'].verts_padded(), around_centroid=True).squeeze() obj_mesh_opt.vertices = o3du.Vector3dVector(obj_verts) hand_mesh_opt.vertices = o3du.Vector3dVector(out_dict['hand_verts'].squeeze()) if vis_method == 2 or vis_method == 3: util.mesh_set_color(out_dict['contact_hand'].squeeze(), hand_mesh_opt) if vis_method == 3: if out_dict['contact_obj'].shape[1] == util.SAMPLE_VERTS_NUM: c = util.upscale_contact(data['mesh_aug'], data['obj_sampled_idx'], out_dict['contact_obj']) util.mesh_set_color(c, obj_mesh_opt) else: util.mesh_set_color(out_dict['contact_obj'].squeeze(), obj_mesh_opt) vis.update_geometry(hand_mesh_opt) vis.update_geometry(obj_mesh_opt) vis.poll_events() vis.update_renderer() if i % len(opt_state) == 0: time.sleep(2) # time.sleep(delay) vis.destroy_window()
ContactOpt-main
contactopt/visualize.py
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import pytorch3d.ops from contactopt.util import * from pytorch3d.structures import Meshes def capsule_sdf(mesh_verts, mesh_normals, query_points, query_normals, caps_rad, caps_top, caps_bot, foreach_on_mesh): """ Find the SDF of query points to mesh verts Capsule SDF formulation from https://iquilezles.org/www/articles/distfunctions/distfunctions.htm :param mesh_verts: (batch, V, 3) :param mesh_normals: (batch, V, 3) :param query_points: (batch, Q, 3) :param caps_rad: scalar, radius of capsules :param caps_top: scalar, distance from mesh to top of capsule :param caps_bot: scalar, distance from mesh to bottom of capsule :param foreach_on_mesh: boolean, foreach point on mesh find closest query (V), or foreach query find closest mesh (Q) :return: normalized sdf + 1 (batch, V or Q) """ # TODO implement normal check? if foreach_on_mesh: # Foreach mesh vert, find closest query point knn_dists, nearest_idx, nearest_pos = pytorch3d.ops.knn_points(mesh_verts, query_points, K=1, return_nn=True) # TODO should attract capsule middle? capsule_tops = mesh_verts + mesh_normals * caps_top capsule_bots = mesh_verts + mesh_normals * caps_bot delta_top = nearest_pos[:, :, 0, :] - capsule_tops normal_dot = torch.sum(mesh_normals * batched_index_select(query_normals, 1, nearest_idx.squeeze(2)), dim=2) else: # Foreach query vert, find closest mesh point knn_dists, nearest_idx, nearest_pos = pytorch3d.ops.knn_points(query_points, mesh_verts, K=1, return_nn=True) # TODO should attract capsule middle? closest_mesh_verts = batched_index_select(mesh_verts, 1, nearest_idx.squeeze(2)) # Shape (batch, V, 3) closest_mesh_normals = batched_index_select(mesh_normals, 1, nearest_idx.squeeze(2)) # Shape (batch, V, 3) capsule_tops = closest_mesh_verts + closest_mesh_normals * caps_top # Coordinates of the top focii of the capsules (batch, V, 3) capsule_bots = closest_mesh_verts + closest_mesh_normals * caps_bot delta_top = query_points - capsule_tops normal_dot = torch.sum(query_normals * closest_mesh_normals, dim=2) bot_to_top = capsule_bots - capsule_tops # Vector from capsule bottom to top along_axis = torch.sum(delta_top * bot_to_top, dim=2) # Dot product top_to_bot_square = torch.sum(bot_to_top * bot_to_top, dim=2) h = torch.clamp(along_axis / top_to_bot_square, 0, 1) # Could avoid NaNs with offset in division here dist_to_axis = torch.norm(delta_top - bot_to_top * h.unsqueeze(2), dim=2) # Distance to capsule centerline return dist_to_axis / caps_rad, normal_dot # (Normalized SDF)+1 0 on endpoint, 1 on edge of capsule def sdf_to_contact(sdf, dot_normal, method=0): """ Transform normalized SDF into some contact value :param sdf: NORMALIZED SDF, 1 is surface of object :param method: select method :return: contact (batch, S, 1) """ if method == 0: c = 1 / (sdf + 0.0001) # Exponential dropoff elif method == 1: c = -sdf + 2 # Linear dropoff elif method == 2: c = 1 / (sdf + 0.0001) # Exponential dropoff c = torch.pow(c, 2) elif method == 3: c = torch.sigmoid(-sdf + 2.5) elif method == 4: c = (-dot_normal/2+0.5) / (sdf + 0.0001) # Exponential dropoff with sharp normal elif method == 5: c = 1 / (sdf + 0.0001) # Proxy for other stuff return torch.clamp(c, 0.0, 1.0) def calculate_contact_capsule(hand_verts, hand_normals, object_verts, object_normals, caps_top=0.0005, caps_bot=-0.0015, caps_rad=0.001, caps_on_hand=False, contact_norm_method=0): """ Calculates contact maps on object and hand. :param hand_verts: (batch, V, 3) :param hand_normals: (batch, V, 3) :param object_verts: (batch, O, 3) :param object_normals: (batch, O, 3) :param caps_top: ctop, distance to top capsule center :param caps_bot: cbot, distance to bottom capsule center :param caps_rad: crad, radius of the contact capsule :param caps_on_hand: are contact capsules placed on hand or object vertices :param contact_norm_method: select a distance-to-contact function :return: object contact (batch, O, 1), hand contact (batch, V, 1) """ if caps_on_hand: sdf_obj, dot_obj = capsule_sdf(hand_verts, hand_normals, object_verts, object_normals, caps_rad, caps_top, caps_bot, False) sdf_hand, dot_hand = capsule_sdf(hand_verts, hand_normals, object_verts, object_normals, caps_rad, caps_top, caps_bot, True) else: sdf_obj, dot_obj = capsule_sdf(object_verts, object_normals, hand_verts, hand_normals, caps_rad, caps_top, caps_bot, True) sdf_hand, dot_hand = capsule_sdf(object_verts, object_normals, hand_verts, hand_normals, caps_rad, caps_top, caps_bot, False) obj_contact = sdf_to_contact(sdf_obj, dot_obj, method=contact_norm_method)# * (dot_obj/2+0.5) # TODO dotting contact normal hand_contact = sdf_to_contact(sdf_hand, dot_hand, method=contact_norm_method)# * (dot_hand/2+0.5) # print('oshape, nshape', obj_contact.shape, (dot_obj/2+0.5).shape)## return obj_contact.unsqueeze(2), hand_contact.unsqueeze(2) def calculate_penetration_cost(hand_verts, hand_normals, object_verts, object_normals, is_thin, contact_norm_method, allowable_pen=0.002): """ Calculates an increasing cost for hands heavily intersecting with objects. Foreach hand vertex, find the nearest object point, dot with object normal. Include "allowable-pen" buffer margin to account for hand deformation. """ allowable_pen = (torch.zeros_like(is_thin) + allowable_pen) * (1 - is_thin) allowable_pen = allowable_pen.unsqueeze(1) if contact_norm_method == 5: hand_verts_offset = hand_verts + hand_normals * -0.004 else: hand_verts_offset = hand_verts knn_dists, nearest_idx, nearest_pos = pytorch3d.ops.knn_points(hand_verts_offset, object_verts, K=1, return_nn=True) # Foreach hand vert, find closest obj vert closest_obj_verts = batched_index_select(object_verts, 1, nearest_idx.squeeze(2)) # Shape (batch, V, 3) closest_obj_normals = batched_index_select(object_normals, 1, nearest_idx.squeeze(2)) # Shape (batch, V, 3) # print('nearest shape', nearest_pos.shape, closest_obj_verts.shape) delta_pos = hand_verts - closest_obj_verts dist_along_normal = torch.sum(delta_pos * closest_obj_normals, dim=2) # Dot product. Negative means backward along normal # print('d along normal', dist_along_normal.shape) pen_score = torch.nn.functional.relu(-dist_along_normal - allowable_pen) # print('pen score', pen_score) return pen_score if __name__ == '__main__': # Plot all sdf_to_contact mappings import matplotlib.pyplot as plt for m in range(4): d = torch.linspace(0, 3, 1000) c = sdf_to_contact(d, method=m) plt.plot(d.numpy(), c.numpy(), label=str(m)) plt.ylabel('Contact value') plt.xlabel('Normalized SDF from center') plt.legend() plt.show()
ContactOpt-main
contactopt/diffcontact.py
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np import trimesh import json import contactopt.util as util import contactopt.arguments as arguments from contactopt.hand_object import HandObject from contactopt.run_contactopt import run_contactopt def create_demo_dataset(): obj_mesh = trimesh.load('data/demo_obj.obj') # Load object mesh with open('data/demo_mano.json') as json_file: # Load mano parameters mano_params = json.load(json_file) # Initialize the HandObject class with the given mano parameters and object mesh. # Note that pose must be represented using the 15-dimensional PCA space ho_pred = HandObject() ho_pred.load_from_mano_params(hand_beta=mano_params['beta'], hand_pose=mano_params['pose'], hand_trans=mano_params['trans'], obj_faces=obj_mesh.faces, obj_verts=obj_mesh.vertices) # To make the dataloader happy, we need a "ground truth" H/O set. # However, since this isn't used for this demo, just copy the ho_pred object. ho_gt = HandObject() ho_gt.load_from_ho(ho_pred) new_sample = dict() new_sample['ho_aug'] = ho_pred new_sample['ho_gt'] = ho_gt # Select the random object vertices which will be sampled new_sample['obj_sampled_idx'] = np.random.randint(0, len(ho_gt.obj_verts), util.SAMPLE_VERTS_NUM) # Calculate hand and object features. The network uses these for improved performance. new_sample['hand_feats_aug'], new_sample['obj_feats_aug'] = ho_pred.generate_pointnet_features(new_sample['obj_sampled_idx']) return [new_sample] # Return a dataset of length 1 if __name__ == '__main__': dataset = create_demo_dataset() args = arguments.run_contactopt_parse_args() defaults = {'lr': 0.01, 'n_iter': 250, 'w_cont_hand': 2.5, 'sharpen_thresh': -1, 'ncomps': 15, 'w_cont_asym': 2, 'w_opt_trans': 0.3, 'w_opt_rot': 1, 'w_opt_pose': 1.0, 'caps_rad': 0.001, 'cont_method': 0, 'caps_top': 0.0005, 'caps_bot': -0.001, 'w_pen_cost': 320, 'pen_it': 0, 'rand_re': 8, 'rand_re_trans': 0.02, 'rand_re_rot': 5, 'w_obj_rot': 0, 'vis_method': 1} for k in defaults.keys(): if vars(args)[k] is None: vars(args)[k] = defaults[k] args.test_dataset = dataset args.split = 'user' run_contactopt(args)
ContactOpt-main
contactopt/run_user_demo.py
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import pytorch3d import time from contactopt.loader import * from manopth.manolayer import ManoLayer from manopth import rodrigues_layer import contactopt.diffcontact as calculate_contact import contactopt.util as util from contactopt.hand_object import HandObject from contactopt.visualize import show_optimization def optimize_pose(data, hand_contact_target, obj_contact_target, n_iter=250, lr=0.01, w_cont_hand=2, w_cont_obj=1, save_history=False, ncomps=15, w_cont_asym=2, w_opt_trans=0.3, w_opt_pose=1, w_opt_rot=1, caps_top=0.0005, caps_bot=-0.001, caps_rad=0.001, caps_on_hand=False, contact_norm_method=0, w_pen_cost=600, w_obj_rot=0, pen_it=0): """Runs differentiable optimization to align the hand with the target contact map. Minimizes the loss between ground truth contact and contact calculated with DiffContact""" batch_size = data['hand_pose_aug'].shape[0] device = data['hand_pose_aug'].device opt_vector = torch.zeros((batch_size, ncomps + 6 + 3), device=device) # 3 hand rot, 3 hand trans, 3 obj rot opt_vector.requires_grad = True mano_model = ManoLayer(mano_root='mano/models', use_pca=True, ncomps=ncomps, side='right', flat_hand_mean=False).to(device) if data['obj_sampled_idx'].numel() > 1: obj_normals_sampled = util.batched_index_select(data['obj_normals_aug'], 1, data['obj_sampled_idx']) else: # If we're optimizing over all verts obj_normals_sampled = data['obj_normals_aug'] optimizer = torch.optim.Adam([opt_vector], lr=lr, amsgrad=True) # AMSgrad helps loss_criterion = torch.nn.L1Loss(reduction='none') # Benchmarked, L1 performs best vs MSE/SmoothL1 opt_state = [] is_thin = mesh_is_thin(data['mesh_aug'].num_verts_per_mesh()) # print('is thin', is_thin, data['mesh_aug'].num_verts_per_mesh()) for it in range(n_iter): optimizer.zero_grad() mano_pose_out = torch.cat([opt_vector[:, 0:3] * w_opt_rot, opt_vector[:, 3:ncomps+3] * w_opt_pose], dim=1) mano_pose_out[:, :18] += data['hand_pose_aug'] tform_out = util.translation_to_tform(opt_vector[:, ncomps+3:ncomps+6] * w_opt_trans) hand_verts, hand_joints = util.forward_mano(mano_model, mano_pose_out, data['hand_beta_aug'], [data['hand_mTc_aug'], tform_out]) # 2.2ms if contact_norm_method != 0 and not caps_on_hand: with torch.no_grad(): # We need to calculate hand normals if using more complicated methods mano_mesh = Meshes(verts=hand_verts, faces=mano_model.th_faces.repeat(batch_size, 1, 1)) hand_normals = mano_mesh.verts_normals_padded() else: hand_normals = torch.zeros(hand_verts.shape, device=device) obj_verts = data['obj_sampled_verts_aug'] obj_normals = obj_normals_sampled obj_rot_mat = rodrigues_layer.batch_rodrigues(opt_vector[:, ncomps+6:]) obj_rot_mat = obj_rot_mat.view(batch_size, 3, 3) if w_obj_rot > 0: obj_verts = util.apply_rot(obj_rot_mat, obj_verts, around_centroid=True) obj_normals = util.apply_rot(obj_rot_mat, obj_normals) contact_obj, contact_hand = calculate_contact.calculate_contact_capsule(hand_verts, hand_normals, obj_verts, obj_normals, caps_top=caps_top, caps_bot=caps_bot, caps_rad=caps_rad, caps_on_hand=caps_on_hand, contact_norm_method=contact_norm_method) contact_obj_sub = obj_contact_target - contact_obj contact_obj_weighted = contact_obj_sub + torch.nn.functional.relu(contact_obj_sub) * w_cont_asym # Loss for 'missing' contact higher loss_contact_obj = loss_criterion(contact_obj_weighted, torch.zeros_like(contact_obj_weighted)).mean(dim=(1, 2)) contact_hand_sub = hand_contact_target - contact_hand contact_hand_weighted = contact_hand_sub + torch.nn.functional.relu(contact_hand_sub) * w_cont_asym # Loss for 'missing' contact higher loss_contact_hand = loss_criterion(contact_hand_weighted, torch.zeros_like(contact_hand_weighted)).mean(dim=(1, 2)) loss = loss_contact_obj * w_cont_obj + loss_contact_hand * w_cont_hand if w_pen_cost > 0 and it >= pen_it: pen_cost = calculate_contact.calculate_penetration_cost(hand_verts, hand_normals, data['obj_sampled_verts_aug'], obj_normals_sampled, is_thin, contact_norm_method) loss += pen_cost.mean(dim=1) * w_pen_cost out_dict = {'loss': loss.detach().cpu()} if save_history: out_dict['hand_verts'] = hand_verts.detach().cpu()#.numpy() out_dict['hand_joints'] = hand_joints.detach().cpu()#.numpy() out_dict['contact_obj'] = contact_obj.detach().cpu()#.numpy() out_dict['contact_hand'] = contact_hand.detach().cpu()#.numpy() out_dict['obj_rot'] = obj_rot_mat.detach().cpu()#.numpy() opt_state.append(out_dict) loss.mean().backward() optimizer.step() tform_full_out = util.aggregate_tforms([data['hand_mTc_aug'], tform_out]) return mano_pose_out, tform_full_out, obj_rot_mat, opt_state def show_optimization_video(data, device): """Displays video of optimization process of hand converging""" data_gpu = util.dict_to_device(data, device) contact_obj_pred = util.batched_index_select(data_gpu['obj_contact_gt'], 1, data_gpu['obj_sampled_idx']) out_pose, out_tform, obj_rot_mat, opt_state = optimize_pose(data_gpu, data_gpu['hand_contact_gt'], contact_obj_pred, save_history=True) show_optimization(data, opt_state, hand_contact_target=data['hand_contact_gt'], obj_contact_target=contact_obj_pred.detach().cpu(), is_video=True, vis_method=1) if __name__ == '__main__': """Show a video optimization from perturbed pose""" test_dataset = ContactDBDataset('data/perturbed_contactpose_test.pkl') dataloader = DataLoader(test_dataset, batch_size=1, shuffle=True, collate_fn=ContactDBDataset.collate_fn) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') for idx, data in enumerate(dataloader): show_optimization_video(data, device) # do optimization and show video if idx >= 10: break
ContactOpt-main
contactopt/optimize_pose.py
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from torch.utils.data import Dataset from contactopt.util import * import torch import numpy as np from pytorch3d.structures import Meshes import pytorch3d from torch.utils.data import DataLoader import time from tqdm import tqdm import pickle class ContactDBDataset(Dataset): """PyTorch Dataset object which allows batched fetching of hand/object pairs from a dataset. PyTorch3D Meshes are used to handle batches of variable-size meshes""" def __init__(self, data, train=False, min_num_cont=1): start_time = time.time() self.train = train self.aug_vert_jitter = 0.0005 if isinstance(data, str): self.dataset = pickle.load(open(data, 'rb')) # Load pickle, can take many seconds else: self.dataset = data if 'num_verts_in_contact' in self.dataset[0]: print('Cutting samples with less than {} points in contact. Was size {}'.format(min_num_cont, len(self.dataset))) self.dataset = [s for s in self.dataset if s['num_verts_in_contact'] >= min_num_cont] print('Dataset loaded in {:.2f} sec, {} samples'.format(time.time() - start_time, len(self.dataset))) def __len__(self): return len(self.dataset) def __getitem__(self, idx): sample = self.dataset[idx] out = dict() out['obj_faces'] = torch.Tensor(sample['ho_gt'].obj_faces) out['obj_sampled_idx'] = torch.Tensor(sample['obj_sampled_idx']).long() out['obj_verts_gt'] = torch.Tensor(sample['ho_gt'].obj_verts) out['obj_sampled_verts_gt'] = out['obj_verts_gt'][out['obj_sampled_idx'], :] out['obj_contact_gt'] = torch.Tensor(sample['ho_gt'].obj_contact) out['hand_contact_gt'] = torch.Tensor(sample['ho_gt'].hand_contact) out['hand_pose_gt'] = torch.Tensor(sample['ho_gt'].hand_pose) out['hand_beta_gt'] = torch.Tensor(sample['ho_gt'].hand_beta) out['hand_mTc_gt'] = torch.Tensor(sample['ho_gt'].hand_mTc) out['hand_verts_gt'] = torch.Tensor(sample['ho_gt'].hand_verts) out['obj_verts_aug'] = torch.Tensor(sample['ho_aug'].obj_verts) out['obj_sampled_verts_aug'] = out['obj_verts_aug'][out['obj_sampled_idx'], :] out['hand_pose_aug'] = torch.Tensor(sample['ho_aug'].hand_pose) out['hand_beta_aug'] = torch.Tensor(sample['ho_aug'].hand_beta) out['hand_mTc_aug'] = torch.Tensor(sample['ho_aug'].hand_mTc) out['hand_verts_aug'] = torch.Tensor(sample['ho_aug'].hand_verts) out['hand_feats_aug'] = torch.Tensor(sample['hand_feats_aug']) out['obj_feats_aug'] = torch.Tensor(sample['obj_feats_aug']) out['obj_normals_aug'] = torch.Tensor(sample['ho_aug'].obj_normals) if self.train: out['obj_sampled_verts_aug'] += torch.randn(out['obj_sampled_verts_aug'].shape) * self.aug_vert_jitter return out @staticmethod def collate_fn(batch): out = dict() batch_keys = batch[0].keys() skip_keys = ['obj_faces', 'obj_verts_gt', 'obj_contact_gt', 'obj_normals_aug', 'obj_verts_aug'] # These will be manually collated # For each not in skip_keys, use default torch collator for key in [k for k in batch_keys if k not in skip_keys]: out[key] = torch.utils.data._utils.collate.default_collate([d[key] for d in batch]) verts_gt_all = [sample['obj_verts_gt'] for sample in batch] verts_aug_all = [sample['obj_verts_aug'] for sample in batch] faces_all = [sample['obj_faces'] for sample in batch] contact_all = [sample['obj_contact_gt'] for sample in batch] obj_normals_aug_all = [sample['obj_normals_aug'] for sample in batch] out['obj_contact_gt'] = pytorch3d.structures.utils.list_to_padded(contact_all, pad_value=-1) out['obj_normals_aug'] = pytorch3d.structures.utils.list_to_padded(obj_normals_aug_all, pad_value=-1) # out['obj_verts_gt'] = pytorch3d.structures.utils.list_to_padded(verts_gt_all, pad_value=-1) # out['obj_verts_aug'] = pytorch3d.structures.utils.list_to_padded(verts_aug_all, pad_value=-1) # out['obj_faces'] = pytorch3d.structures.utils.list_to_padded(faces_all, pad_value=-1) out['mesh_gt'] = Meshes(verts=verts_gt_all, faces=faces_all) # This is slower than the above, but probably fast enough out['mesh_aug'] = Meshes(verts=verts_aug_all, faces=faces_all) return out if __name__ == '__main__': # Test the speed of the dataloader by going through the entire perturbed-contactpose train set dataset = ContactDBDataset('data/perturbed_contactpose_train.pkl') dataloader = DataLoader(dataset, batch_size=16, num_workers=6, collate_fn=ContactDBDataset.collate_fn) start_time = time.time() print('start', len(dataloader)) for idx, sample in enumerate(tqdm(dataloader)): pass print('Epoch dataload time: ', time.time() - start_time)
ContactOpt-main
contactopt/loader.py
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np import pickle from contactopt.hand_object import HandObject import open3d from tqdm import tqdm from scipy.spatial.transform import Rotation as R import random from contactopt.util import SAMPLE_VERTS_NUM def process_image_pkl(input_file, output_file): """ Reads pre-generated pkl file containing pose estimates and ground truth poses, Generates a dataset pkl file and does preprocessing for the PyTorch dataloader :param input_file: path of input pkl :param output_file: path of output pkl """ input_pkl = pickle.load(open(input_file, 'rb')) random.shuffle(input_pkl) all_data = [] for idx, sample_dict in enumerate(tqdm(input_pkl)): ho_gt = HandObject() # Apply the extrinsic matrix to the pose axis-angle values cam_extr = sample_dict['hand_extr_gt'] rot_pose = R.from_rotvec(sample_dict['hand_pose_gt'][:3]) rot_extr = R.from_matrix(cam_extr[:3, :3]) rot_new = rot_extr * rot_pose sample_dict['hand_pose_gt'][:3] = rot_new.as_rotvec() # Overwrite the original axang rotation with new one ho_gt.load_from_image(sample_dict['hand_beta_gt'], sample_dict['hand_pose_gt'], sample_dict['obj_faces'], sample_dict['obj_verts_gt'], hand_verts=sample_dict['hand_verts_gt']) ho_gt.calc_dist_contact(hand=True, obj=True) num_verts_in_contact = np.sum(ho_gt.hand_contact >= 0.9) ho_gt.hand_contact *= 0 ho_gt.obj_contact *= 0 obj_verts = sample_dict['obj_verts_gt'] ho_pred = HandObject() ho_pred.load_from_image(sample_dict['hand_beta_pred'], sample_dict['hand_pose_pred'], sample_dict['obj_faces'], obj_verts, hand_verts=sample_dict['hand_verts_pred']) new_sample = dict() new_sample['ho_aug'] = ho_pred new_sample['ho_gt'] = ho_gt new_sample['obj_sampled_idx'] = np.random.randint(0, len(ho_gt.obj_verts), SAMPLE_VERTS_NUM) new_sample['hand_feats_aug'], new_sample['obj_feats_aug'] = ho_pred.generate_pointnet_features(new_sample['obj_sampled_idx']) new_sample['num_verts_in_contact'] = num_verts_in_contact all_data.append(new_sample) if len(all_data) > 10: print('Cutting short!') break pickle.dump(all_data, open(output_file, 'wb')) if __name__ == '__main__': IN_PKL = 'data/pose_estimates.pkl' OUT_PKL = 'data/ho3d_image.pkl' process_image_pkl(IN_PKL, OUT_PKL)
ContactOpt-main
contactopt/create_dataset_im.py
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn import contactopt.pointnet as pointnet import torch.nn.functional as F from pytorch3d import ops, transforms import contactopt.util as util class DeepContactNet(nn.Module): def __init__(self, normalize_pts=True): super(DeepContactNet, self).__init__() self.pointnet = pointnet.Net() self.normalize_pts = normalize_pts pointnet_total_params = sum(p.numel() for p in self.pointnet.parameters() if p.requires_grad) print('Backbone params: {}'.format(pointnet_total_params)) def forward(self, hand_verts, hand_feats, obj_verts, obj_feats): device = hand_verts.device batch_size = hand_verts.shape[0] out = dict() if self.normalize_pts: tform = self.get_normalizing_tform(hand_verts, obj_verts) hand_verts = util.apply_tform(tform, hand_verts) obj_verts = util.apply_tform(tform, obj_verts) # util.vis_pointcloud(obj_verts, hand_verts) # View pointnet input x, pos, batch = self.verts_to_pointcloud(hand_verts, hand_feats, obj_verts, obj_feats) contact_batched = self.pointnet(x, pos, batch) contact = contact_batched.view(batch_size, hand_verts.shape[1] + obj_verts.shape[1], 10) out['contact_hand'] = contact[:, :hand_verts.shape[1], :] out['contact_obj'] = contact[:, hand_verts.shape[1]:, :] return out @staticmethod def get_normalizing_tform(hand_verts, obj_verts, random_rot=True): """ Find a 4x4 rigid transform to normalize the pointcloud. We choose the object center of mass to be the origin, the hand center of mass to be along the +X direction, and the rotation around this axis to be random. :param hand_verts: (batch, 778, 3) :param obj_verts: (batch, 2048, 3) :return: tform: (batch, 4, 4) """ with torch.no_grad(): obj_centroid = torch.mean(obj_verts, dim=1) # (batch, 3) hand_centroid = torch.mean(hand_verts, dim=1) x_vec = F.normalize(hand_centroid - obj_centroid, dim=1) # From object to hand if random_rot: rand_vec = transforms.random_rotations(hand_verts.shape[0], device=hand_verts.device) # Generate random rot matrix y_vec = F.normalize(torch.cross(x_vec, rand_vec[:, :3, 0]), dim=1) # Make orthogonal else: ref_pt = hand_verts[:, 80, :] y_vec = F.normalize(torch.cross(x_vec, ref_pt - obj_centroid), dim=1) # From object to hand ref point z_vec = F.normalize(torch.cross(x_vec, y_vec), dim=1) # Z axis tform = ops.eyes(4, hand_verts.shape[0], device=hand_verts.device) tform[:, :3, 0] = x_vec tform[:, :3, 1] = y_vec tform[:, :3, 2] = z_vec tform[:, :3, 3] = obj_centroid return torch.inverse(tform) @staticmethod def verts_to_pointcloud(hand_verts, hand_feats, obj_verts, obj_feats): """ Convert hand and object vertices and features from Pytorch3D padded format (batch, vertices, N) to Pytorch-Geometric packed format (all_vertices, N) """ batch_size = hand_verts.shape[0] device = hand_verts.device ptcloud_pos = torch.cat((hand_verts, obj_verts), dim=1) ptcloud_x = torch.cat((hand_feats, obj_feats), dim=1) _, N, _ = ptcloud_pos.shape # (batch_size, num_points, 3) pos = ptcloud_pos.view(batch_size * N, -1) batch = torch.zeros((batch_size, N), device=device, dtype=torch.long) for i in range(batch_size): batch[i, :] = i batch = batch.view(-1) x = ptcloud_x.view(-1, hand_feats.shape[2]) # print('x', x.shape, pos.shape, batch.shape) return x, pos, batch
ContactOpt-main
contactopt/deepcontact_net.py
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from contactopt.loader import ContactDBDataset from contactopt.deepcontact_net import DeepContactNet import glob import argparse from contactopt.optimize_pose import optimize_pose from contactopt.visualize import show_optimization import pickle from contactopt.hand_object import HandObject import contactopt.util as util from tqdm import tqdm import contactopt.arguments as arguments import time import torch import os from torch.utils.data import DataLoader import pytorch3d import numpy as np def get_newest_checkpoint(): """ Finds the newest model checkpoint file, sorted by the date of the file :return: Model with loaded weights """ list_of_files = glob.glob('checkpoints/*.pt') latest_file = max(list_of_files, key=os.path.getctime) print('Loading checkpoint file:', latest_file) model = DeepContactNet() model.load_state_dict(torch.load(latest_file)) return model def run_contactopt(args): """ Actually run ContactOpt approach. Estimates target contact with DeepContact, then optimizes it. Performs random restarts if selected. Saves results to a pkl file. :param args: input settings """ print('Running split', args.split) dataset = ContactDBDataset(args.test_dataset, min_num_cont=args.min_cont) shuffle = args.vis or args.partial > 0 print('Shuffle:', shuffle) test_loader = DataLoader(dataset, batch_size=args.batch_size, shuffle=shuffle, num_workers=6, collate_fn=ContactDBDataset.collate_fn) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = get_newest_checkpoint() model.to(device) model.eval() all_data = list() for idx, data in enumerate(tqdm(test_loader)): data_gpu = util.dict_to_device(data, device) batch_size = data['obj_sampled_idx'].shape[0] if args.split != 'fine': with torch.no_grad(): network_out = model(data_gpu['hand_verts_aug'], data_gpu['hand_feats_aug'], data_gpu['obj_sampled_verts_aug'], data_gpu['obj_feats_aug']) hand_contact_target = util.class_to_val(network_out['contact_hand']).unsqueeze(2) obj_contact_target = util.class_to_val(network_out['contact_obj']).unsqueeze(2) else: hand_contact_target = data_gpu['hand_contact_gt'] obj_contact_target = util.batched_index_select(data_gpu['obj_contact_gt'], 1, data_gpu['obj_sampled_idx']) if args.sharpen_thresh > 0: # If flag, sharpen contact print('Sharpening') obj_contact_target = util.sharpen_contact(obj_contact_target, slope=2, thresh=args.sharpen_thresh) hand_contact_target = util.sharpen_contact(hand_contact_target, slope=2, thresh=args.sharpen_thresh) if args.rand_re > 1: # If we desire random restarts mtc_orig = data_gpu['hand_mTc_aug'].detach().clone() print('Doing random optimization restarts') best_loss = torch.ones(batch_size) * 100000 for re_it in range(args.rand_re): # Add noise to hand translation and rotation data_gpu['hand_mTc_aug'] = mtc_orig.detach().clone() random_rot_mat = pytorch3d.transforms.euler_angles_to_matrix(torch.randn((batch_size, 3), device=device) * args.rand_re_rot / 180 * np.pi, 'ZYX') data_gpu['hand_mTc_aug'][:, :3, :3] = torch.bmm(random_rot_mat, data_gpu['hand_mTc_aug'][:, :3, :3]) data_gpu['hand_mTc_aug'][:, :3, 3] += torch.randn((batch_size, 3), device=device) * args.rand_re_trans cur_result = optimize_pose(data_gpu, hand_contact_target, obj_contact_target, n_iter=args.n_iter, lr=args.lr, w_cont_hand=args.w_cont_hand, w_cont_obj=1, save_history=args.vis, ncomps=args.ncomps, w_cont_asym=args.w_cont_asym, w_opt_trans=args.w_opt_trans, w_opt_pose=args.w_opt_pose, w_opt_rot=args.w_opt_rot, caps_top=args.caps_top, caps_bot=args.caps_bot, caps_rad=args.caps_rad, caps_on_hand=args.caps_hand, contact_norm_method=args.cont_method, w_pen_cost=args.w_pen_cost, w_obj_rot=args.w_obj_rot, pen_it=args.pen_it) if re_it == 0: out_pose = torch.zeros_like(cur_result[0]) out_mTc = torch.zeros_like(cur_result[1]) obj_rot = torch.zeros_like(cur_result[2]) opt_state = cur_result[3] loss_val = cur_result[3][-1]['loss'] for b in range(batch_size): if loss_val[b] < best_loss[b]: best_loss[b] = loss_val[b] out_pose[b, :] = cur_result[0][b, :] out_mTc[b, :, :] = cur_result[1][b, :, :] obj_rot[b, :, :] = cur_result[2][b, :, :] # print('Loss, re', re_it, loss_val) # print('Best loss', best_loss) else: result = optimize_pose(data_gpu, hand_contact_target, obj_contact_target, n_iter=args.n_iter, lr=args.lr, w_cont_hand=args.w_cont_hand, w_cont_obj=1, save_history=args.vis, ncomps=args.ncomps, w_cont_asym=args.w_cont_asym, w_opt_trans=args.w_opt_trans, w_opt_pose=args.w_opt_pose, w_opt_rot=args.w_opt_rot, caps_top=args.caps_top, caps_bot=args.caps_bot, caps_rad=args.caps_rad, caps_on_hand=args.caps_hand, contact_norm_method=args.cont_method, w_pen_cost=args.w_pen_cost, w_obj_rot=args.w_obj_rot, pen_it=args.pen_it) out_pose, out_mTc, obj_rot, opt_state = result obj_contact_upscale = util.upscale_contact(data_gpu['mesh_aug'], data_gpu['obj_sampled_idx'], obj_contact_target) for b in range(obj_contact_upscale.shape[0]): # Loop over batch gt_ho = HandObject() in_ho = HandObject() out_ho = HandObject() gt_ho.load_from_batch(data['hand_beta_gt'], data['hand_pose_gt'], data['hand_mTc_gt'], data['hand_contact_gt'], data['obj_contact_gt'], data['mesh_gt'], b) in_ho.load_from_batch(data['hand_beta_aug'], data['hand_pose_aug'], data['hand_mTc_aug'], hand_contact_target, obj_contact_upscale, data['mesh_aug'], b) out_ho.load_from_batch(data['hand_beta_aug'], out_pose, out_mTc, data['hand_contact_gt'], data['obj_contact_gt'], data['mesh_aug'], b, obj_rot=obj_rot) # out_ho.calc_dist_contact(hand=True, obj=True) all_data.append({'gt_ho': gt_ho, 'in_ho': in_ho, 'out_ho': out_ho}) if args.vis: show_optimization(data, opt_state, hand_contact_target.detach().cpu().numpy(), obj_contact_upscale.detach().cpu().numpy(), is_video=args.video, vis_method=args.vis_method) if idx >= args.partial > 0: # Speed up for eval break out_file = 'data/optimized_{}.pkl'.format(args.split) print('Saving to {}. Len {}'.format(out_file, len(all_data))) pickle.dump(all_data, open(out_file, 'wb')) if __name__ == '__main__': util.hack_filedesciptor() args = arguments.run_contactopt_parse_args() if args.split == 'aug': # Settings defaults for Perturbed ContactPose defaults = {'lr': 0.01, 'n_iter': 250, 'w_cont_hand': 2.0, 'sharpen_thresh': -1, 'ncomps': 15, 'w_cont_asym': 2, 'w_opt_trans': 0.3, 'w_opt_rot': 1.0, 'w_opt_pose': 1.0, 'caps_rad': 0.001, 'cont_method': 0, 'caps_top': 0.0005, 'caps_bot': -0.001, 'w_pen_cost': 600, 'pen_it': 0, 'rand_re': 8, 'rand_re_trans': 0.04, 'rand_re_rot': 5, 'w_obj_rot': 0, 'vis_method': 1} elif args.split == 'im' or args.split == 'demo': # Settings defaults for image-based pose estimates defaults = {'lr': 0.01, 'n_iter': 250, 'w_cont_hand': 2.5, 'sharpen_thresh': -1, 'ncomps': 15, 'w_cont_asym': 2, 'w_opt_trans': 0.3, 'w_opt_rot': 1, 'w_opt_pose': 1.0, 'caps_rad': 0.001, 'cont_method': 0, 'caps_top': 0.0005, 'caps_bot': -0.001, 'w_pen_cost': 320, 'pen_it': 0, 'rand_re': 8, 'rand_re_trans': 0.02, 'rand_re_rot': 5, 'w_obj_rot': 0, 'vis_method': 1} elif args.split == 'fine': # Settings defaults for small-scale refinement defaults = {'lr': 0.003, 'n_iter': 250, 'w_cont_hand': 0, 'sharpen_thresh': 0.3, 'ncomps': 15, 'w_cont_asym': 4, 'w_opt_trans': 0.03, 'w_opt_rot': 1.0, 'w_opt_pose': 1.0, 'caps_rad': 0.001, 'cont_method': 5, 'caps_top': 0.0005, 'caps_bot': -0.001, 'w_pen_cost': 600, 'pen_it': 0, 'rand_re': 1, 'rand_re_trans': 0.00, 'rand_re_rot': 0, 'w_obj_rot': 0, 'vis_method': 5} for k in defaults.keys(): # Override arguments that have not been manually set with defaults if vars(args)[k] is None: vars(args)[k] = defaults[k] print(args) start_time = time.time() run_contactopt(args) print('Elapsed time:', time.time() - start_time)
ContactOpt-main
contactopt/run_contactopt.py
"""Pytorch-Geometric implementation of Pointnet++ Original source available at https://github.com/rusty1s/pytorch_geometric""" import torch import torch.nn.functional as F from torch.nn import Sequential as Seq, Linear as Lin, ReLU, BatchNorm1d as BN from torch_geometric.datasets import ModelNet import torch_geometric.transforms as T from torch_geometric.data import DataLoader from torch_geometric.nn import PointConv, fps, radius, global_max_pool, knn_interpolate class SAModule(torch.nn.Module): def __init__(self, ratio, r, nn): super(SAModule, self).__init__() self.ratio = ratio self.r = r self.conv = PointConv(nn) def forward(self, x, pos, batch): idx = fps(pos, batch, ratio=self.ratio) row, col = radius(pos, pos[idx], self.r, batch, batch[idx], max_num_neighbors=64) edge_index = torch.stack([col, row], dim=0) x = self.conv(x, (pos, pos[idx]), edge_index) pos, batch = pos[idx], batch[idx] return x, pos, batch class GlobalSAModule(torch.nn.Module): def __init__(self, nn): super(GlobalSAModule, self).__init__() self.nn = nn def forward(self, x, pos, batch): x = self.nn(torch.cat([x, pos], dim=1)) x = global_max_pool(x, batch) pos = pos.new_zeros((x.size(0), 3)) batch = torch.arange(x.size(0), device=batch.device) return x, pos, batch def MLP(channels): return Seq(*[ Seq(Lin(channels[i - 1], channels[i]), ReLU(), BN(channels[i])) for i in range(1, len(channels)) ]) class FPModule(torch.nn.Module): def __init__(self, k, nn): super(FPModule, self).__init__() self.k = k self.nn = nn def forward(self, x, pos, batch, x_skip, pos_skip, batch_skip): x = knn_interpolate(x, pos, pos_skip, batch, batch_skip, k=self.k) if x_skip is not None: x = torch.cat([x, x_skip], dim=1) x = self.nn(x) return x, pos_skip, batch_skip class Net(torch.nn.Module): def __init__(self): super(Net, self).__init__() NUM_FEATS = 25 NUM_CLASSES = 10 self.sa1_module = SAModule(0.2, 0.1, MLP([3 + NUM_FEATS, 64, 64, 128])) # TODO, reduce PN params self.sa2_module = SAModule(0.25, 0.2, MLP([128 + 3, 128, 128, 256])) self.sa3_module = GlobalSAModule(MLP([256 + 3, 256, 512, 1024])) self.fp3_module = FPModule(1, MLP([1024 + 256, 256, 256])) self.fp2_module = FPModule(3, MLP([256 + 128, 256, 128])) self.fp1_module = FPModule(3, MLP([128 + NUM_FEATS, 128, 128, 128])) self.lin1 = torch.nn.Linear(128, 128) self.lin2 = torch.nn.Linear(128, 128) self.lin3 = torch.nn.Linear(128, NUM_CLASSES) def forward(self, x, pos, batch): sa0_out = (x, pos, batch) sa1_out = self.sa1_module(*sa0_out) sa2_out = self.sa2_module(*sa1_out) sa3_out = self.sa3_module(*sa2_out) fp3_out = self.fp3_module(*sa3_out, *sa2_out) fp2_out = self.fp2_module(*fp3_out, *sa1_out) x, _, _ = self.fp1_module(*fp2_out, *sa0_out) x = F.relu(self.lin1(x)) x = F.dropout(x, p=0.5, training=self.training) x = self.lin2(x) x = F.dropout(x, p=0.5, training=self.training) x = self.lin3(x) # return x # return F.sigmoid(x) # big hyperparam, Bound to 0-1 # print('pre softmax shape', x.shape) return F.log_softmax(x, dim=-1)
ContactOpt-main
contactopt/pointnet.py
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from os import path import sys import numpy as np import pickle from tqdm import tqdm from joblib import Parallel, delayed import multiprocessing from contactopt.hand_object import HandObject from contactopt.util import * sys.path.append('../ContactPose') # Change this path to point to the ContactPose repo from utilities.dataset import get_object_names, ContactPose object_cut_list = [] # object_cut_list = ['eyeglasses'] def get_all_contactpose_samples(): """ Gets all participants and objects from ContactPose Cuts out grasps with two hands or grasps using left hand :return: list of (participant_num, intent, object_name, ContactPose_object) """ samples = [] print('Reading ContactPose dataset') for participant_id in tqdm(range(1, 51)): for intent in ['handoff', 'use']: for object_name in get_object_names(participant_id, intent): cp = ContactPose(participant_id, intent, object_name, load_mano=False) if cp._valid_hands != [1]: # If anything else than just the right hand, remove continue samples.append((participant_id, intent, object_name, cp)) print('Valid ContactPose samples:', len(samples)) return samples def generate_contactpose_dataset(dataset, output_file, low_p, high_p, num_pert=1, aug_trans=0.02, aug_rot=0.05, aug_pca=0.3): """ Generates a dataset pkl file and does preprocessing for the PyTorch dataloader :param dataset: List of ContactPose objects :param output_file: path to output pkl file :param low_p: Lower split location of the dataset, [0-1) :param high_p: Upper split location of the dataset, [0-1) :param num_pert: Number of random perturbations which are computed for every true dataset sample :param aug_trans: Std deviation of hand translation noise added to the datasets, meters :param aug_rot: Std deviation of hand rotation noise, axis-angle radians :param aug_pca: Std deviation of hand pose noise, PCA units """ low_split = int(len(dataset) * low_p) high_split = int(len(dataset) * high_p) dataset = dataset[low_split:high_split] if len(object_cut_list) > 0: dataset = [s for s in dataset if s[2] not in object_cut_list] print('Some objects are being removed', object_cut_list) def process_sample(s, idx): ho_gt = HandObject() ho_gt.load_from_contactpose(s[3]) sample_list = [] # print('Processing', idx) for i in range(num_pert): # Since we're only saving pointers to the data, it's memory efficient sample_data = dict() ho_aug = HandObject() aug_t = np.random.randn(3) * aug_trans aug_p = np.concatenate((np.random.randn(3) * aug_rot, np.random.randn(15) * aug_pca)).astype(np.float32) ho_aug.load_from_ho(ho_gt, aug_p, aug_t) sample_data['ho_gt'] = ho_gt sample_data['ho_aug'] = ho_aug sample_data['obj_sampled_idx'] = np.random.randint(0, len(ho_gt.obj_verts), SAMPLE_VERTS_NUM) sample_data['hand_feats_aug'], sample_data['obj_feats_aug'] = ho_aug.generate_pointnet_features(sample_data['obj_sampled_idx']) sample_list.append(sample_data) return sample_list parallel = True if parallel: num_cores = multiprocessing.cpu_count() print('Running on {} cores'.format(num_cores)) all_data_2d = Parallel(n_jobs=num_cores)(delayed(process_sample)(s, idx) for idx, s in enumerate(tqdm(dataset))) all_data = [item for sublist in all_data_2d for item in sublist] # flatten 2d list else: all_data = [] # Do non-parallel for idx, s in enumerate(tqdm(dataset)): all_data.extend(process_sample(s, idx)) print('Writing pickle file, often slow and freezes computer') pickle.dump(all_data, open(output_file, 'wb')) if __name__ == '__main__': train_file = 'data/perturbed_contactpose_train.pkl' test_file = 'data/perturbed_contactpose_test.pkl' fine_file = 'data/contactpose_test.pkl' aug_trans = 0.05 aug_rot = 0.1 aug_pca = 0.5 contactpose_dataset = get_all_contactpose_samples() # Generate Perturbed ContactPose generate_contactpose_dataset(contactpose_dataset, train_file, 0.0, 0.8, num_pert=16, aug_trans=aug_trans, aug_rot=aug_rot, aug_pca=aug_pca) generate_contactpose_dataset(contactpose_dataset, test_file, 0.8, 1.0, num_pert=4, aug_trans=aug_trans, aug_rot=aug_rot, aug_pca=aug_pca) # Generate "Small Refinements" dataset for optimizing ground-truth thermal contact generate_contactpose_dataset(contactpose_dataset, fine_file, 0.0, 1.0, num_pert=1, aug_trans=0, aug_rot=0, aug_pca=0)
ContactOpt-main
contactopt/create_dataset_contactpose.py
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np import hand_object import os import util from scipy.linalg import orthogonal_procrustes from scipy.spatial.transform import Rotation as R import trimesh from open3d import io as o3dio from open3d import geometry as o3dg from open3d import utility as o3du from open3d import visualization as o3dv import matplotlib.pyplot as plt import torch def np_apply_tform(points, tform): """ The non-batched numpy version :param points: (N, 3) :param tform: (4, 4) :return: """ points_homo = np.concatenate((points, np.ones((points.shape[0], 1))), axis=1) points_out = np.matmul(tform, points_homo.T).T return points_out[:, :3] def get_hand_align_tform(hand_joints): """ Find a 4x4 rigid transform to align the joints of a hand to a 'cardinal rotation' :param hand_joints: (21, 3) :return: tform: (4, 4) """ center_joint = 0 x_joint = 2 y_joint = 17 trans = hand_joints[center_joint, :] x_vec = hand_joints[x_joint, :] - hand_joints[center_joint, :] x_vec = x_vec / np.linalg.norm(x_vec) y_vec = hand_joints[y_joint, :] - hand_joints[center_joint, :] y_vec = np.cross(x_vec, y_vec) y_vec = y_vec / np.linalg.norm(y_vec) z_vec = np.cross(x_vec, y_vec) z_vec = z_vec / np.linalg.norm(z_vec) tform = np.eye(4) tform[:3, 0] = x_vec tform[:3, 1] = y_vec tform[:3, 2] = z_vec tform[:3, 3] = trans return np.linalg.inv(tform) def calc_procrustes(points1, points2, return_tform=False): """ Align the predicted entity in some optimality sense with the ground truth. Does NOT align scale https://github.com/shreyashampali/ho3d/blob/master/eval.py """ t1 = points1.mean(0) # Find centroid t2 = points2.mean(0) points1_t = points1 - t1 # Zero mean points2_t = points2 - t2 R, s = orthogonal_procrustes(points1_t, points2_t) # Run procrustes alignment, returns rotation matrix and scale points2_t = np.dot(points2_t, R.T) # Apply tform to second pointcloud points2_t = points2_t + t1 if return_tform: return R, t1 - t2 else: return points2_t def align_by_tform(mtx, tform): t2 = mtx.mean(0) mtx_t = mtx - t2 R, t1 = tform return np.dot(mtx_t, R.T) + t1 + t2 def get_trans_rot_err(points1, points2): """ Given two pointclouds, find the error in centroid and rotation :param points1: numpy (V, 3) :param points2: numpy (V, 3) :return: translation error (meters), rotation error (degrees) """ tform = calc_procrustes(points1, points2, return_tform=True) translation_error = np.linalg.norm(tform[1], 2) r = R.from_matrix(tform[0]) rotation_error = r.magnitude() * 180 / np.pi return translation_error, rotation_error def geometric_eval(ho_test, ho_gt): """ Computes many statistics about ground truth and HO Note that official HO-3D metrics are available here, but they only consider the hand, and I think they do too much alignment https://github.com/shreyashampali/ho3d/blob/master/eval.py :param ho_test: hand-object under test :param ho_gt: ground-truth hand-object :return: dictionary of stats """ stats = dict() stats['unalign_hand_verts'] = util.calc_l2_err(ho_gt.hand_verts, ho_test.hand_verts, axis=1) stats['unalign_hand_joints'] = util.calc_l2_err(ho_gt.hand_joints, ho_test.hand_joints, axis=1) stats['unalign_obj_verts'] = util.calc_l2_err(ho_gt.obj_verts, ho_test.obj_verts, axis=1) root_test = ho_test.hand_joints[0, :] root_gt = ho_gt.hand_joints[0, :] stats['rootalign_hand_joints'] = util.calc_l2_err(ho_gt.hand_joints - root_gt, ho_test.hand_joints - root_test, axis=1) stats['rootalign_obj_verts'] = util.calc_l2_err(ho_gt.obj_verts - root_gt, ho_test.obj_verts - root_test, axis=1) obj_cent_gt = ho_gt.obj_verts.mean(0) obj_cent_test = ho_test.obj_verts.mean(0) stats['objalign_hand_joints'] = util.calc_l2_err(ho_gt.hand_joints - obj_cent_gt, ho_test.hand_joints - obj_cent_test, axis=1) hand_joints_align_gt = np_apply_tform(ho_gt.hand_joints, get_hand_align_tform(ho_gt.hand_joints)) hand_joints_align_test = np_apply_tform(ho_test.hand_joints, get_hand_align_tform(ho_test.hand_joints)) hand_verts_align_gt = np_apply_tform(ho_gt.hand_verts, get_hand_align_tform(ho_gt.hand_joints)) hand_verts_align_test = np_apply_tform(ho_test.hand_verts, get_hand_align_tform(ho_test.hand_joints)) stats['handalign_hand_joints'] = util.calc_l2_err(hand_joints_align_gt, hand_joints_align_test, axis=1) stats['handalign_hand_verts'] = util.calc_l2_err(hand_verts_align_gt, hand_verts_align_test, axis=1) stats['verts'] = ho_gt.obj_verts.shape[0] return stats
ContactOpt-main
contactopt/geometric_eval.py
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from os import path as osp import numpy as np from open3d import io as o3dio from open3d import geometry as o3dg from open3d import utility as o3du from open3d import visualization as o3dv import json import transforms3d.quaternions as txq import torch import pytorch3d from pytorch3d.structures import Meshes import contactopt.util as util from manopth.manolayer import ManoLayer from contactopt.diffcontact import calculate_contact_capsule import matplotlib.pyplot as plt def mano_get_faces(): return util.get_mano_closed_faces() class HandObject: """ Universal data structure to handle hand, object, and contact data. This class has many data elements, not all of them are always populated. Has many loader functions to take data from multiple sources. """ closed_faces = util.get_mano_closed_faces() def __init__(self): self.is_left = None self.hand_beta = None self.hand_pose = None self.hand_mTc = None self.hand_contact = None self.hand_verts = None self.hand_joints = None self.obj_verts = None self.obj_faces = None self.obj_contact = None self.path = None self.obj_normals = None def load_from_verts(self, hand_verts, obj_faces, obj_verts): """Load from hand/object vertices alone""" self.obj_verts = obj_verts self.obj_faces = obj_faces self.hand_verts = hand_verts self.calc_dist_contact(hand=True, obj=True) def load_from_image(self, hand_beta, hand_pose, obj_faces, obj_verts, hand_verts=None): """Load from image-based results pkl file. Mano root translation is not known, but hand vertices are""" self.hand_beta = hand_beta self.hand_pose = hand_pose self.hand_mTc = np.eye(4) self.obj_verts = obj_verts self.obj_faces = obj_faces self.run_mano() # Run mano model forwards if hand_verts is not None: displ = hand_verts[0, :] - self.hand_verts[0, :] # Find translation by comparing vertices of aligned hands self.hand_mTc[:3, 3] = displ self.run_mano() # Rerun mano model to account for translation mean_err = np.linalg.norm(self.hand_verts - hand_verts, 2, 1) if mean_err.mean() > 1e-6: # Check if there's much error in reconstruction print('Mean verts error', mean_err.mean()) print('Mano reconstruction failure') # self.calc_dist_contact(hand=True, obj=True) self.hand_contact = np.zeros((self.hand_verts.shape[0], 1)) # Set to zero since we don't know the ground truth self.obj_contact = np.zeros((self.obj_verts.shape[0], 1)) def load_from_batch(self, hand_beta, hand_pose, hand_mTc, hand_contact, obj_contact, obj_mesh, idx=0, obj_rot=None): """Generate HO object from a torch dataloader batch""" obj_verts = obj_mesh.verts_list()[idx] if obj_rot is not None: obj_verts = util.apply_rot(obj_rot[idx, :, :].unsqueeze(0).detach().cpu(), obj_verts.unsqueeze(0), around_centroid=True).squeeze(0) self.hand_beta = hand_beta[idx, :].detach().cpu().numpy() self.hand_pose = hand_pose[idx, :].detach().cpu().numpy() self.hand_mTc = hand_mTc[idx, :, :].detach().cpu().numpy() self.hand_contact = hand_contact[idx, :, :].detach().cpu().numpy() self.obj_verts = obj_verts.detach().cpu().numpy() self.obj_faces = obj_mesh.faces_list()[idx].detach().cpu().numpy() self.obj_contact = obj_contact[idx, :self.obj_verts.shape[0], :].detach().cpu().numpy() # Since we're using a padded array, need to cut off some self.run_mano() def load_from_contactpose(self, cp_obj): """Load HO object from ContactPose dataset""" if not osp.isfile(cp_obj.contactmap_filename): raise FileNotFoundError('Could not find {}'.format(cp_obj.contactmap_filename)) obj_mesh = o3dio.read_triangle_mesh(cp_obj.contactmap_filename) # Includes object mesh and contact map embedded as vertex colors vertex_colors = np.array(obj_mesh.vertex_colors, dtype=np.float32) self.obj_contact = np.expand_dims(util.fit_sigmoid(vertex_colors[:, 0]), axis=1) # Normalize with sigmoid, shape (V, 1) self.obj_verts = np.array(obj_mesh.vertices, dtype=np.float32) # Keep as floats since torch uses floats self.obj_faces = np.array(obj_mesh.triangles) for idx, mp in enumerate(cp_obj.mano_params): if mp is None: continue self.is_left = idx == 0 # Left then right self.hand_beta = np.array(mp['betas']) # 10 shape PCA parameters self.hand_pose = np.array(mp['pose']) # 18 dim length, first 3 ax-angle, 15 PCA pose mTc = mp['hTm'] # mTc = np.linalg.inv(mTc) # World to object self.hand_mTc = mTc if self.is_left: raise ValueError('Pipeline currently cant handle left hands') self.run_mano() self.calc_dist_contact(hand=True, obj=False) def load_from_ho(self, ho, aug_pose=None, aug_trans=None): """Load from another HandObject obj, potentially with augmentation""" self.hand_beta = np.array(ho.hand_beta) self.hand_pose = np.array(ho.hand_pose) self.hand_mTc = np.array(ho.hand_mTc) self.obj_verts = ho.obj_verts self.obj_faces = ho.obj_faces self.obj_contact = ho.obj_contact if aug_pose is not None: self.hand_pose += aug_pose if aug_trans is not None: self.hand_mTc[:3, 3] += aug_trans self.run_mano() # self.calc_dist_contact(hand=True, obj=False) # DONT calculate hand contact, since it's not ground truth def load_from_mano_params(self, hand_beta, hand_pose, hand_trans, obj_faces, obj_verts): """Load from mano parameters and object mesh""" self.hand_beta = np.array(hand_beta) self.hand_pose = np.array(hand_pose) self.hand_mTc = np.eye(4) self.hand_mTc[:3, 3] = hand_trans self.obj_verts = np.array(obj_verts) self.obj_faces = np.array(obj_faces) self.run_mano() self.hand_contact = np.zeros((self.hand_verts.shape[0], 1)) # Set to zero since we don't know the ground truth self.obj_contact = np.zeros((self.obj_verts.shape[0], 1)) def calc_dist_contact(self, hand=True, obj=False, special_contact=False): """Set hand and object contact maps based on DiffContact method. This is sometimes used when ground truth contact is not known""" object_mesh = Meshes(verts=[torch.Tensor(self.obj_verts)], faces=[torch.Tensor(self.obj_faces)]) hand_mesh = Meshes(verts=torch.Tensor(self.hand_verts).unsqueeze(0), faces=torch.Tensor(self.closed_faces).unsqueeze(0)) hand_verts = torch.Tensor(self.hand_verts).unsqueeze(0) if not special_contact: obj_contact, hand_contact = calculate_contact_capsule(hand_verts, hand_mesh.verts_normals_padded(), object_mesh.verts_padded(), object_mesh.verts_normals_padded()) else: # hand_verts_subdivided = util.subdivide_verts(hand_mesh.edges_packed().unsqueeze(0), hand_verts) # hand_normals_subdivided = util.subdivide_verts(hand_mesh.edges_packed().unsqueeze(0), hand_mesh.verts_normals_padded()) hand_verts_subdivided = hand_verts hand_normals_subdivided = hand_mesh.verts_normals_padded() obj_contact, hand_contact = calculate_contact_capsule(hand_verts_subdivided, hand_normals_subdivided, object_mesh.verts_padded(), object_mesh.verts_normals_padded(), caps_rad=0.003) # needed for paper vis? if hand: self.hand_contact = hand_contact.squeeze(0).detach().cpu().numpy() if obj: self.obj_contact = obj_contact.squeeze(0).detach().cpu().numpy() def run_mano(self): """Runs forward_mano, computing the hand vertices and joints based on pose/beta parameters. Handles numpy-pytorch-numpy conversion""" if self.hand_pose.shape[0] == 48: # Special case when we're loading GT honnotate mano_model = ManoLayer(mano_root='mano/models', joint_rot_mode="axisang", use_pca=False, center_idx=None, flat_hand_mean=True) else: # Everything else mano_model = ManoLayer(mano_root='mano/models', use_pca=True, ncomps=15, side='right', flat_hand_mean=False) pose_tensor = torch.Tensor(self.hand_pose).unsqueeze(0) beta_tensor = torch.Tensor(self.hand_beta).unsqueeze(0) tform_tensor = torch.Tensor(self.hand_mTc).unsqueeze(0) mano_verts, mano_joints = util.forward_mano(mano_model, pose_tensor, beta_tensor, [tform_tensor]) self.hand_verts = mano_verts.squeeze().detach().numpy() self.hand_joints = mano_joints.squeeze().detach().numpy() def generate_pointnet_features(self, obj_sampled_idx): """Calculates per-point features for pointnet. DeepContact uses these features""" obj_mesh = Meshes(verts=[torch.Tensor(self.obj_verts)], faces=[torch.Tensor(self.obj_faces)]) hand_mesh = Meshes(verts=[torch.Tensor(self.hand_verts)], faces=[torch.Tensor(util.get_mano_closed_faces())]) obj_sampled_verts_tensor = obj_mesh.verts_padded()[:, obj_sampled_idx, :] _, _, obj_nearest = pytorch3d.ops.knn_points(obj_sampled_verts_tensor, hand_mesh.verts_padded(), K=1, return_nn=True) # Calculate on object _, _, hand_nearest = pytorch3d.ops.knn_points(hand_mesh.verts_padded(), obj_sampled_verts_tensor, K=1, return_nn=True) # Calculate on hand obj_normals = obj_mesh.verts_normals_padded() obj_normals = torch.nn.functional.normalize(obj_normals, dim=2, eps=1e-12) # Because buggy mistuned value in Pytorch3d, must re-normalize norms = torch.sum(obj_normals * obj_normals, dim=2) # Dot product obj_normals[norms < 0.8] = 0.6 # TODO hacky get-around when normal finding fails completely self.obj_normals = obj_normals.detach().squeeze().numpy() obj_sampled_verts = self.obj_verts[obj_sampled_idx, :] obj_sampled_normals = obj_normals[0, obj_sampled_idx, :].detach().numpy() hand_normals = hand_mesh.verts_normals_padded()[0, :, :].detach().numpy() hand_centroid = np.mean(self.hand_verts, axis=0) obj_centroid = np.mean(self.obj_verts, axis=0) # Hand features hand_one_hot = np.ones((self.hand_verts.shape[0], 1)) hand_vec_to_closest = hand_nearest.squeeze().numpy() - self.hand_verts hand_dist_to_closest = np.expand_dims(np.linalg.norm(hand_vec_to_closest, 2, 1), axis=1) hand_dist_along_normal = np.expand_dims(np.sum(hand_vec_to_closest * hand_normals, axis=1), axis=1) hand_dist_to_joint = np.expand_dims(self.hand_verts, axis=1) - np.expand_dims(self.hand_joints, axis=0) # Expand for broadcasting hand_dist_to_joint = np.linalg.norm(hand_dist_to_joint, 2, 2) hand_dot_to_centroid = np.expand_dims(np.sum((self.hand_verts - obj_centroid) * hand_normals, axis=1), axis=1) # Object features obj_one_hot = np.zeros((obj_sampled_verts.shape[0], 1)) obj_vec_to_closest = obj_nearest.squeeze().numpy() - obj_sampled_verts obj_dist_to_closest = np.expand_dims(np.linalg.norm(obj_vec_to_closest, 2, 1), axis=1) obj_dist_along_normal = np.expand_dims(np.sum(obj_vec_to_closest * obj_sampled_normals, axis=1), axis=1) obj_dist_to_joint = np.expand_dims(obj_sampled_verts, axis=1) - np.expand_dims(self.hand_joints, axis=0) # Expand for broadcasting obj_dist_to_joint = np.linalg.norm(obj_dist_to_joint, 2, 2) obj_dot_to_centroid = np.expand_dims(np.sum((obj_sampled_verts - hand_centroid) * obj_sampled_normals, axis=1), axis=1) # hand_feats = np.concatenate((hand_one_hot, hand_normals, hand_vec_to_closest, hand_dist_to_closest, hand_dist_along_normal, hand_dist_to_joint), axis=1) # obj_feats = np.concatenate((obj_one_hot, obj_sampled_normals, obj_vec_to_closest, obj_dist_to_closest, obj_dist_along_normal, obj_dist_to_joint), axis=1) hand_feats = np.concatenate((hand_one_hot, hand_dot_to_centroid, hand_dist_to_closest, hand_dist_along_normal, hand_dist_to_joint), axis=1) obj_feats = np.concatenate((obj_one_hot, obj_dot_to_centroid, obj_dist_to_closest, obj_dist_along_normal, obj_dist_to_joint), axis=1) return hand_feats, obj_feats def get_o3d_meshes(self, hand_contact=False, normalize_pos=False): """Returns Open3D meshes for visualization Draw with: o3dv.draw_geometries([hand_mesh, obj_mesh])""" hand_color = np.asarray([224.0, 172.0, 105.0]) / 255 obj_color = np.asarray([100.0, 100.0, 100.0]) / 255 obj_centroid = self.obj_verts.mean(0) if not normalize_pos: obj_centroid *= 0 hand_mesh = o3dg.TriangleMesh() hand_mesh.vertices = o3du.Vector3dVector(self.hand_verts - obj_centroid) hand_mesh.triangles = o3du.Vector3iVector(HandObject.closed_faces) hand_mesh.compute_vertex_normals() if hand_contact and self.hand_contact.mean() != 0: util.mesh_set_color(self.hand_contact, hand_mesh) else: hand_mesh.paint_uniform_color(hand_color) obj_mesh = o3dg.TriangleMesh() obj_mesh.vertices = o3du.Vector3dVector(self.obj_verts - obj_centroid) obj_mesh.triangles = o3du.Vector3iVector(self.obj_faces) obj_mesh.compute_vertex_normals() if self.obj_contact.mean() != 0: util.mesh_set_color(self.obj_contact, obj_mesh) else: obj_mesh.paint_uniform_color(obj_color) return hand_mesh, obj_mesh def vis_hand_object(self): """Runs Open3D visualizer for the current data""" hand_mesh, obj_mesh = self.get_o3d_meshes(hand_contact=True) o3dv.draw_geometries([hand_mesh, obj_mesh])
ContactOpt-main
contactopt/hand_object.py
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import numpy as np from torch.utils.data import DataLoader from tensorboardX import SummaryWriter import contactopt.arguments as arguments from contactopt.deepcontact_net import DeepContactNet from tqdm import tqdm import contactopt.util as util from contactopt.loader import ContactDBDataset def calc_losses(network_out, contact_obj_gt, contact_hand_gt, sampled_verts_idx): losses = dict() batch_size = contact_obj_gt.shape[0] batch = torch.zeros(sampled_verts_idx.shape, device=device, dtype=torch.long) for i in range(batch_size): batch[i, :] = i batch = batch.view(-1) contact_obj_gt = contact_obj_gt[batch, sampled_verts_idx.view(-1), :] # Select sampled verts contact_obj_gt = contact_obj_gt.reshape(batch_size, sampled_verts_idx.shape[1], 1) # Reshape into network's shape class_hand_gt = util.val_to_class(contact_hand_gt).squeeze(2) class_obj_gt = util.val_to_class(contact_obj_gt).squeeze(2) # print('class obj gt', class_obj_gt.shape, network_out['contact_obj'], class_obj_gt) losses['contact_obj'] = criterion(network_out['contact_obj'].permute(0, 2, 1), class_obj_gt) losses['contact_hand'] = criterion(network_out['contact_hand'].permute(0, 2, 1), class_hand_gt) return losses def train_epoch(epoch): model.train() scheduler.step() loss_meter = util.AverageMeter('Loss', ':.2f') for idx, data in enumerate(tqdm(train_loader)): data = util.dict_to_device(data, device) batch_size = data['hand_pose_gt'].shape[0] optimizer.zero_grad() out = model(data['hand_verts_aug'], data['hand_feats_aug'], data['obj_sampled_verts_aug'], data['obj_feats_aug']) losses = calc_losses(out, data['obj_contact_gt'], data['hand_contact_gt'], data['obj_sampled_idx']) loss = losses['contact_obj'] * args.loss_c_obj + losses['contact_hand'] * args.loss_c_hand loss_meter.update(loss.item(), batch_size) # TODO better loss monitoring loss.backward() optimizer.step() if idx % 10 == 0: print('{} / {}'.format(idx, len(train_loader)), loss_meter) global_iter = epoch * len(train_loader) + idx writer.add_scalar('training/loss_contact_obj', losses['contact_obj'], global_iter) writer.add_scalar('training/loss_contact_hand', losses['contact_hand'], global_iter) writer.add_scalar('training/lr', scheduler.get_lr(), global_iter) print('Train epoch: {}. Avg loss {:.4f} --------------------'.format(epoch, loss_meter.avg)) def test(): model.eval() for idx, data in enumerate(test_loader): data = util.dict_to_device(data, device) with torch.no_grad(): out = model(data['hand_verts_aug'], data['hand_feats_aug'], data['obj_sampled_verts_aug'], data['obj_feats_aug']) losses = calc_losses(out, data['obj_contact_gt'], data['hand_contact_gt'], data['obj_sampled_idx']) global_iter = epoch * len(train_loader) writer.add_scalar('testing/loss_contact_obj', losses['contact_obj'], global_iter) writer.add_scalar('testing/loss_contact_hand', losses['contact_hand'], global_iter) # print('Test epoch: Mean joint err {:.2f} cm --------------------'.format(joint_err_meter.avg)) if __name__ == '__main__': util.hack_filedesciptor() args = arguments.train_network_parse_args() train_dataset = ContactDBDataset(args.train_dataset, train=True) test_dataset = ContactDBDataset(args.test_dataset) train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=6, collate_fn=ContactDBDataset.collate_fn) test_loader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, num_workers=6, collate_fn=ContactDBDataset.collate_fn) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = DeepContactNet().to(device) if args.checkpoint != '': print('Attempting to load checkpoint file:', args.checkpoint) pretrained_dict = torch.load(args.checkpoint) model_dict = model.state_dict() pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict and 'mano' not in k} model_dict.update(pretrained_dict) model.load_state_dict(model_dict) if args.optimizer == 'adam': optimizer = torch.optim.Adam(model.parameters(), lr=args.lr) elif args.optimizer == 'SGD': optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=0.9) bin_weights = torch.Tensor(np.loadtxt(util.DEEPCONTACT_BIN_WEIGHTS_FILE)).to(device) # criterion = torch.nn.CrossEntropyLoss(weight=bin_weights) criterion = torch.nn.NLLLoss(weight=bin_weights) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[10], gamma=0.1) # TODO automatic? writer = SummaryWriter(logdir='runs/' + args.desc) writer.add_text('Hyperparams', args.all_str, 0) for epoch in range(1, args.epochs): train_epoch(epoch) test() torch.save(model.state_dict(), 'checkpoints/{}.pt'.format(args.desc)) print('\n')
ContactOpt-main
contactopt/train_deepcontact.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import argparse import os parser = argparse.ArgumentParser(description='Generate Data') parser.add_argument('--env-name', default='InvertedPendulum-v1', help='environment to train on (default: InvertedPendulum-v1)') parser.add_argument('--N', type=int, default=1000000) parser.add_argument('--seed', type=int, default=1, help='random seed (default: 1)') parser.add_argument('--out', type=str, default='/data/ddr') parser.add_argument('--num-processes', type=int, default=40, help='how many training processes to use (default: 40)') parser.add_argument('--rollout', type=int, default=20, help="rollout for goal") parser.add_argument('--method', type=str, default='random', help='["random", "pixel_control"]') parser.add_argument('--render', action='store_true') parser.add_argument('--reset', action='store_true') parser.add_argument('--from-policy', type=str, default=None, help="use reward module as policy") parser.add_argument('--framework', default='gym', help='framework of env (default: gym)') parser.add_argument('--maze-id', type=int, default=0) parser.add_argument('--maze-length', type=int, default=1) parser.add_argument('--single-env', action='store_true') parser.add_argument('--random-start', action='store_true') parser.add_argument('-v', action='store_true', help='verbose logging') parser.add_argument('--max-episode-length', type=int, default=500, help='maximum length of an episode (default: 500)') parser.add_argument('--file-path', type=str, default=None, help='path to XML file for mujoco') def generate_data(rank, args, start, end): from envs import create_env, set_seed, get_obs from model import R_Module import torch print(rank, "started") env = create_env(args.env_name, framework=args.framework, args=args) env = set_seed(args.seed + rank, env, args.framework) state = get_obs(env, args.framework) if args.from_policy is not None: model_state, r_args = torch.load(args.from_policy) policy = R_Module(env.action_space.shape[0], r_args.dim, discrete=r_args.discrete, baseline=r_args.baseline, state_space=env.observation_space.shape[0]) policy.load_state_dict(model_state) policy.eval() states = [] actions = [] i = start done = False while i < end: if i % 100 == 0: print(rank, i) ep_states = [] ep_actions = [] if args.from_policy is not None: cx_p = Variable(torch.zeros(1, r_args.dim)) hx_p = Variable(torch.zeros(1, r_args.dim)) for j in range(args.rollout): if args.from_policy is not None: value, logit, (hx_p, cx_p) = policy( state.unsqueeze(0), (hx_p, cx_p)) a, _, _ = get_action(logit, r_args.discrete) else: a = env.action_space.sample() ep_actions.append(a) state = get_obs(env, args.framework) env.step(a) if args.render: env.render() ep_states.append(state) final_state = get_obs(env, args.framework) ep_states.append(final_state) states.append(ep_states) actions.append(ep_actions) i += 1 # reset the environment here if done or args.reset: env.reset() done = False torch.save((states, actions), os.path.join( args.out_dir, 'states_actions_%s_%s.pt' % (start, end))) if __name__ == '__main__': import torch import torch.multiprocessing as mp mp.set_start_method('spawn') from torch.autograd import Variable from envs import create_env, set_seed, get_obs from model import R_Module os.environ['OMP_NUM_THREADS'] = '1' args = parser.parse_args() env_name = args.env_name env_name += '_rollout%s' % args.rollout if args.env_name.endswith('MazeEnv'): env_name += 'mazeid%slength%s' % (args.maze_id, args.maze_length) if args.single_env and args.maze_id == -1: env = create_env(args.env_name, framework=args.framework, args=args) env_name += '_single_env' args.maze_structure = env._env.MAZE_STRUCTURE if args.random_start: env_name += '_randomstart' if args.file_path is not None: env_name += '_transfer' if args.framework == 'mazebase': env_name += '_rollout_%s_length_%s' % (args.rollout, args.maze_length) args.out_dir = os.path.join(args.out, env_name) print(args) print(args.out_dir) os.makedirs(args.out_dir, exist_ok=True) processes = [] block = int(args.N / args.num_processes) for rank in range(0, args.num_processes): start = rank * block end = (rank + 1) * block p = mp.Process(target=generate_data, args=(rank, args, start, end)) p.start() processes.append(p) torch.save(args, os.path.join(args.out_dir, 'args.pt')) # exit cleanly for p in processes: p.join()
ddr-master
generate_dynamics_data.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import math import numpy as np import os import time from itertools import chain import torch import torch.nn.functional as F import torch.optim as optim from torch.autograd import Variable from envs import * from model import Encoder, Decoder, D_Module, R_Module from train_dynamics_module import D_Module, get_dynamics_losses from common import * from tensorboardX import SummaryWriter def ensure_shared_grads(model, shared_model): for param, shared_param in zip(model.parameters(), shared_model.parameters()): if shared_param.grad is not None: return shared_param._grad = param.grad def train_online(rank, args, shared_model, optimizer=None, writer_dir=None): """ Arguments: - writer: the tensorboard summary writer directory (note: can't get it working directly with the SummaryWriter object) """ # create writer here itself writer = None if writer_dir is not None: writer = SummaryWriter(log_dir=writer_dir) shared_enc, shared_dec, shared_d_module, shared_r_module = shared_model running_t, running_reward, running_value_loss, running_policy_loss, \ running_reward_loss = 0, 0, 0, 0, 0 torch.manual_seed(args.seed + rank) env = create_env(args.env_name, framework=args.framework, args=args) set_seed(args.seed + rank, env, args.framework) enc = Encoder(env.observation_space.shape[0], args.dim, use_conv=args.use_conv) dec = Decoder(env.observation_space.shape[0], args.dim, use_conv=args.use_conv) d_module = D_Module(env.action_space.shape[0], args.dim, args.discrete) r_module = R_Module(env.action_space.shape[0], args.dim, discrete=args.discrete, baseline=False, state_space=env.observation_space.shape[0]) all_params = chain(enc.parameters(), dec.parameters(), d_module.parameters(), r_module.parameters()) # no shared adam ? if optimizer is None: optimizer = optim.Adam(all_params, lr=args.lr) enc.train() dec.train() d_module.train() r_module.train() results_dict = { 'enc': None, 'dec': None, 'd_module': None, 'args': args, 'reward': [], 'policy_loss': [], 'value_loss': [], 'mean_entropy': [], 'mean_predicted_value': [], 'dec_losses': [], 'forward_losses': [], 'inverse_losses': [], 'total_losses': [], } episode_length = 0 i_episode, total_episode = 0, 0 done = True start = time.time() while total_episode < args.num_episodes: # Sync with the shared model r_module.load_state_dict(shared_r_module.state_dict()) d_module.load_state_dict(shared_d_module.state_dict()) enc.load_state_dict(shared_enc.state_dict()) dec.load_state_dict(shared_dec.state_dict()) if done: cx_p = Variable(torch.zeros(1, args.dim)) hx_p = Variable(torch.zeros(1, args.dim)) cx_d = Variable(torch.zeros(1, args.dim)) hx_d = Variable(torch.zeros(1, args.dim)) i_episode += 1 episode_length = 0 total_episode = args.num_processes * (i_episode - 1) + rank start = time.time() last_episode_length = episode_length if not args.single_env and args.env_name.endswith('MazeEnv'): # generate new maze env = create_env( args.env_name, framework=args.framework, args=args) s = env.reset() s = Variable(torch.from_numpy(s).float()) else: cx_p = Variable(cx_p.data) hx_p = Variable(hx_p.data) cx_d = Variable(cx_d.data) hx_d = Variable(hx_d.data) s = Variable(s.data) z = enc(s).unsqueeze(0) s_hat = dec(z) values = [] rhats = [] log_probs = [] rewards = [] entropies = [] dec_loss = 0 inv_loss = 0 model_loss = 0 recon_loss = 0 forward_loss = 0 for step in range(args.num_steps): episode_length += 1 value, rhat, logit, (hx_p, cx_p) = r_module(( z.detach(), (hx_p, cx_p))) action, entropy, log_prob = get_action(logit, discrete=args.discrete) vlog("Action: %s\t Bounds: %s" % (str(action), str((env.action_space.low, env.action_space.high))), args.v) entropies.append(entropy) s_prime, reward, done, _ = env.step(action.data.numpy()) s_prime = Variable(torch.from_numpy(s_prime).float()) done = done or episode_length >= args.max_episode_length z_prime = enc(s_prime) z_prime_hat, a_hat, (hx_d, cx_d) = d_module( (z, z_prime, action, (hx_d, cx_d))) s_prime_hat = dec(z_prime_hat) r_loss, m_loss, d_loss, i_loss, f_loss = get_dynamics_losses( s, s_hat, s_prime, s_prime_hat, z_prime, z_prime_hat, a_hat, action) values.append(value) rhats.append(rhat) log_probs.append(log_prob) rewards.append(reward) dec_loss += d_loss inv_loss += i_loss model_loss += m_loss recon_loss += r_loss forward_loss += f_loss z = z_prime_hat s = s_prime s_hat = s_prime_hat if done: break R = torch.zeros(1, 1) if not done: value, _, _, _ = r_module((z, (hx_p, cx_p))) R = value.data values.append(Variable(R)) policy_loss = 0 value_loss = 0 rew_loss = 0 pred_reward_loss = 0 R = Variable(R) gae = torch.zeros(1, 1) vlog("values: %s" % str([v.data[0,0] for v in values]), args.v) vlog("rhats: %s" % str(rhats), args.v) for i in reversed(range(len(rewards))): R = args.gamma * R + rewards[i] advantage = R - values[i] value_loss += 0.5 * advantage.pow(2) # reward loss rew_loss += F.mse_loss(rhats[i], Variable(torch.from_numpy( np.array([rewards[i]])).float())) # Generalized Advantage Estimation delta_t = rewards[i] + args.gamma * values[i + 1].data \ - values[i].data gae = gae * args.gamma * args.tau + delta_t if args.discrete: policy_loss = policy_loss - log_probs[i] * Variable(gae) \ - args.entropy_coef * entropies[i] else: policy_loss = policy_loss - (log_probs[i] * Variable(gae).expand_as( log_probs[i])).sum() - (args.entropy_coef * entropies[i]).sum() optimizer.zero_grad() U = 1. / min(i_episode, 100) running_reward = running_reward * (1 - U) + sum(rewards) * U running_t = running_t * (1 - U) + episode_length * U running_policy_loss = running_policy_loss * (1 - U) + policy_loss.data[0] * U running_value_loss = running_value_loss * (1 - U) + \ args.value_loss_coef * value_loss.data[0, 0] * U running_reward_loss = running_reward_loss * (1 - U) + \ args.rew_loss_coef * rew_loss.data[0] * U mean_entropy = np.mean([e.sum().data[0] for e in entropies]) mean_predicted_value = np.mean([v.sum().data[0] for v in values]) loss = policy_loss + args.value_loss_coef * value_loss + \ args.rew_loss_coef * rew_loss + args.inv_loss_coef * inv_loss + \ args.dec_loss_coef * dec_loss + forward_loss if total_episode % args.log_interval == 0 and done: if not args.discrete: sample_logits = (list(logit[0].data[0].numpy()), list(logit[1].data[0].numpy())) else: sample_logits = list(logit.data[0].numpy()) log( 'Episode {}\t'.format(total_episode) + \ 'Avg reward: {:.2f}\tAverage length: {:.2f}\t'.format( running_reward, running_t) + \ 'Entropy: {:.2f}\tTime: {:.2f}\tRank: {}\t'.format( mean_entropy, time.time() - start, rank) + \ 'Policy Loss: {:.2f}\t'.format(running_policy_loss) + \ 'Reward Loss: {:.2f}\t'.format(running_reward_loss) + \ 'Weighted Value Loss: {:.2f}\t'.format(running_value_loss) + \ 'Sample Action: %s\t' % str(list(action.data.numpy())) + \ 'Logits: %s\t' % str(sample_logits) + \ 'Decoder Loss: {:.2f}\t'.format(dec_loss.data[0]) + \ 'Forward Loss: {:.2f}\t'.format(forward_loss.data[0]) + \ 'Inverse Loss: {:.2f}\t'.format(inv_loss.data[0]) + \ 'Loss: {:.2f}\t'.format(loss.data[0, 0])) # write summaries here if writer_dir is not None and done: log('writing to tensorboard') # running losses writer.add_scalar('reward/running_reward', running_reward, i_episode) writer.add_scalar('reward/running_policy_loss', running_policy_loss, i_episode) writer.add_scalar('reward/running_value_loss', running_value_loss, i_episode) # current episode stats writer.add_scalar('reward/episode_reward', sum(rewards), i_episode) writer.add_scalar('reward/episode_policy_loss', policy_loss.data[0], i_episode) writer.add_scalar('reward/episode_value_loss', value_loss.data[0,0], i_episode) writer.add_scalar('reward/mean_entropy', mean_entropy, i_episode) writer.add_scalar('reward/mean_predicted_value', mean_predicted_value, i_episode) writer.add_scalar('dynamics/total_loss', loss.data[0], i_episode) writer.add_scalar('dynamics/decoder', dec_loss.data[0], i_episode) writer.add_scalar('dynamics/reconstruction_loss', recon_loss.data[0], i_episode) writer.add_scalar('dynamics/next_state_prediction_loss', model_loss.data[0], i_episode) writer.add_scalar('dynamics/inv_loss', inv_loss.data[0], i_episode) writer.add_scalar('dynamics/forward_loss', forward_loss.data[0], i_episode) results_dict['reward'].append(sum(rewards)) results_dict['policy_loss'].append(policy_loss.data[0]) results_dict['value_loss'].append(value_loss.data[0,0]) results_dict['mean_entropy'].append(mean_entropy) results_dict['mean_predicted_value'].append(mean_predicted_value) results_dict['dec_losses'].append(dec_loss.data[0]) results_dict['forward_losses'].append(forward_loss.data[0]) results_dict['inverse_losses'].append(inv_loss.data[0]) results_dict['total_losses'].append(loss.data[0]) loss.backward() torch.nn.utils.clip_grad_norm(all_params, args.max_grad_norm) ensure_shared_grads(r_module, shared_r_module) ensure_shared_grads(d_module, shared_d_module) ensure_shared_grads(enc, shared_enc) ensure_shared_grads(dec, shared_dec) optimizer.step() if total_episode % args.checkpoint_interval == 0: args.curr_iter = total_episode args.dynamics_module = os.path.join( args.out, 'dynamics_module%s.pt' % total_episode) torch.save((shared_r_module.state_dict(), args), os.path.join( args.out, 'reward_module%s.pt' % total_episode)) results_dict['enc'] = shared_enc.state_dict() results_dict['dec'] = shared_dec.state_dict() results_dict['d_module'] = shared_d_module.state_dict() torch.save(results_dict, os.path.join(args.out, 'dynamics_module%s.pt' % total_episode)) log("Saved model %d" % total_episode) if writer_dir is not None and i_episode % \ (args.checkpoint_interval // args.num_processes) == 0: torch.save(results_dict, os.path.join(args.out, 'results_dict.pt')) print(os.path.join(args.out, 'results_dict.pt')) if writer_dir is not None: torch.save(results_dict, os.path.join(args.out, 'results_dict.pt')) print(os.path.join(args.out, 'results_dict.pt'))
ddr-master
train_online.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import numpy as np import gym from gym.spaces.box import Box from rllab.envs.mujoco.swimmer_env import SwimmerEnv from rllab.envs.mujoco.ant_env import AntEnv from rllab.envs.mujoco.half_cheetah_env import HalfCheetahEnv from rllab.envs.mujoco.hopper_env import HopperEnv from rllab.envs.mujoco.humanoid_env import HumanoidEnv from rllab.envs.mujoco.simple_humanoid_env import SimpleHumanoidEnv from rllab.envs.mujoco.maze.point_maze_env import PointMazeEnv from rllab.envs.mujoco.maze.swimmer_maze_env import SwimmerMazeEnv from rllab.envs.mujoco.maze.ant_maze_env import AntMazeEnv from rllab.envs.mujoco.inverted_double_pendulum_env import InvertedDoublePendulumEnv from rllab.misc import ext from rllab.envs.normalized_env import normalize from common import * def create_env(env_str, framework='gym', args=None, eval_flag=False, norm=True, rank=0): if framework == 'gym': env = gym.make(env_str) if norm: env = NormalizedEnv(env) elif framework == 'rllab': if not hasattr(args, 'file_path'): args.file_path = None if env_str.endswith('MazeEnv'): if not hasattr(args, 'coef_inner_rew'): args.coef_inner_rew = 0. if not hasattr(args, 'maze_structure'): args.maze_structure = None if not hasattr(args, 'random_start'): args.random_start = False if not hasattr(args, 'difficulty'): args.difficulty = -1 difficulty = args.difficulty if args.difficulty > 1 and not eval_flag: if args.difficulty <= 5: difficulty = np.random.choice(range( args.difficulty - 1, args.difficulty + 1)) elif args.difficulty == -1: difficulty = np.random.choice([1, 2, 3, 4, 5, -1]) env = eval(env_str)(maze_id=args.maze_id, length=args.maze_length, coef_inner_rew=args.coef_inner_rew, structure=args.maze_structure, file_path=args.file_path, random_start=args.random_start, difficulty=difficulty) env.horizon = args.max_episode_length vlog(args.maze_structure, args.v) else: env = eval(env_str)(file_path=args.file_path) if norm: env = normalize(env) else: raise("framework not supported") env.reset() set_seed(args.seed + rank, env, framework) return env def wrapper(env): def _wrap(): return env return _wrap def get_obs(env, framework): if framework == 'gym': state = env.unwrapped._get_obs() elif framework == 'rllab': state = env.get_current_obs() else: raise("framework not supported") return state def set_seed(seed, env, framework): if framework == 'gym': env.unwrapped.seed(seed) elif framework == 'rllab': ext.set_seed(seed) else: raise("framework not supported") return env def reset_env(env, args): """Reset env. Can differ based on env. e.g. in maze maybe we want to randomly deposit the agent in different locations?""" env.reset() return get_obs(env, args.framework) class NormalizedEnv(gym.ObservationWrapper): def __init__(self, env=None): super(NormalizedEnv, self).__init__(env) self.state_mean = 0 self.state_std = 0 self.alpha = 0.9999 self.num_steps = 0 def _observation(self, observation): self.num_steps += 1 self.state_mean = self.state_mean * self.alpha + \ observation.mean() * (1 - self.alpha) self.state_std = self.state_std * self.alpha + \ observation.std() * (1 - self.alpha) unbiased_mean = self.state_mean / (1 - pow(self.alpha, self.num_steps)) unbiased_std = self.state_std / (1 - pow(self.alpha, self.num_steps)) return (observation - unbiased_mean) / (unbiased_std + 1e-8)
ddr-master
envs.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import math import numpy as np import os import time import torch import torch.nn.functional as F import torch.optim as optim from torch.autograd import Variable from envs import * from model import R_Module from common import * from tensorboardX import SummaryWriter def ensure_shared_grads(model, shared_model): for param, shared_param in zip(model.parameters(), shared_model.parameters()): if shared_param.grad is not None: return shared_param._grad = param.grad def train_rewards(rank, args, shared_model, enc, optimizer=None, writer_dir=None, d_module=None): """ Arguments: - writer: the tensorboard summary writer directory (note: can't get it working directly with the SummaryWriter object) """ # create writer here itself writer = None if writer_dir is not None: writer = SummaryWriter(log_dir=writer_dir) results_dict = { 'reward': [], 'policy_loss': [], 'value_loss': [], 'mean_entropy': [], 'mean_predicted_value': [] } running_t, running_reward, running_value_loss, running_policy_loss, \ running_reward_loss = 0, 0, 0, 0, 0 torch.manual_seed(args.seed + rank) env = create_env(args.env_name, framework=args.framework, args=args) set_seed(args.seed + rank, env, args.framework) model = R_Module(env.action_space.shape[0], args.dim, discrete=args.discrete, baseline=args.baseline, state_space=env.observation_space.shape[0]) max_rollout = 0 if args.planning: max_rollout = args.rollout if args.from_checkpoint is not None: model_state, _ = torch.load(args.from_checkpoint, map_location=lambda storage, loc: storage) model.load_state_dict(model_state) # no shared adam ? if optimizer is None: optimizer = optim.Adam(shared_model.parameters(), lr=args.lr, eps=args.eps) model.train() done = True episode_length = 0 i_episode, total_episode = 0, 0 start = time.time() while total_episode < args.num_episodes: # Sync with the shared model model.load_state_dict(shared_model.state_dict()) if done: cx_p = Variable(torch.zeros(1, args.dim)) hx_p = Variable(torch.zeros(1, args.dim)) cx_d = Variable(torch.zeros(1, args.dim)) hx_d = Variable(torch.zeros(1, args.dim)) i_episode += 1 episode_length = 0 total_episode = args.num_steps * (i_episode - 1) + rank start = time.time() last_episode_length = episode_length if not args.single_env and args.env_name.endswith('MazeEnv'): # generate new maze env = create_env( args.env_name, framework=args.framework, args=args) state = env.reset() state = Variable(torch.from_numpy(state).float()) if not args.baseline: state = enc(state) else: cx_p = Variable(cx_p.data) hx_p = Variable(hx_p.data) cx_d = Variable(cx_d.data) hx_d = Variable(hx_d.data) values = [] value_preds = [] log_probs = [] rewards = [] total_actions = [] entropies = [] obses = [] hx_ps = [] cx_ps = [] step = 0 while step < args.num_steps: episode_length += 1 if args.planning: _, actions, (hx_p, cx_p), (hx_d, cx_d), values, es, \ lps = mcts( env, state, model, d_module, enc, (hx_p, cx_p), (hx_d, cx_d), args, discrete=args.discrete) log_probs += lps entropies += es actions = actions[:1] else: obses.append(state.unsqueeze(0)) hx_ps.append(hx_p) cx_ps.append(cx_p) value, logit, (hx_p, cx_p) = model(( state.unsqueeze(0), (hx_p, cx_p))) action, entropy, log_prob = get_action( logit, discrete=args.discrete) vlog("Action: %s\t Bounds: %s" % (str(action), str( (env.action_space.low, env.action_space.high))), args.v) entropies.append(entropy.mean().data) actions = [action] values.append(value) log_probs.append(log_prob) for action in actions: state, reward, done, _ = env.step(action.data.numpy()) if args.neg_reward: reward = -reward state = Variable(torch.from_numpy(state).float()) if args.clip_reward: reward = max(min(reward, 1), -1) if not args.baseline: state = enc(state) rewards.append(reward) total_actions.append(action) step += 1 if done: break if done: break R = torch.zeros(1, 1) if not done: value, _, _ = model((state.unsqueeze(0), (hx_p, cx_p))) R = value.data done = True values.append(Variable(R)) policy_loss = 0 value_loss = 0 advantages = np.zeros_like(rewards, dtype=float) R = Variable(R) gae = torch.zeros(1, 1) Rs = np.zeros_like(rewards, dtype=float) vlog("values: %s" % str([v.data[0,0] for v in values]), args.v) for i in reversed(range(len(rewards))): R = args.gamma * R + rewards[i] Rs[i] = R advantage = R - values[i] advantages[i] = advantage if args.algo == 'a3c': value_loss += 0.5 * advantage.pow(2) # Generalized Advantage Estimation if args.gae: delta_t = rewards[i] + args.gamma * values[i + 1].data \ - values[i].data gae = gae * args.gamma * args.tau + delta_t policy_loss -= (log_probs[i] * Variable(gae).expand_as( log_probs[i])).mean() else: policy_loss -= advantage * (log_probs[i].mean()) if args.algo == 'a3c': optimizer.zero_grad() (policy_loss + args.value_loss_coef * value_loss - \ args.entropy_coef * np.mean(entropies)).backward() torch.nn.utils.clip_grad_norm(model.parameters(), args.max_grad_norm) ensure_shared_grads(model, shared_model) optimizer.step() ########Bookkeeping and logging############# U = 1. / min(i_episode, 100) running_reward = running_reward * (1 - U) + sum(rewards) * U running_t = running_t * (1 - U) + episode_length * U running_policy_loss = running_policy_loss * (1 - U) + policy_loss.squeeze().data[0] * U running_value_loss = running_value_loss * (1 - U) + \ args.value_loss_coef * value_loss.squeeze().data[0] * U mean_entropy = np.mean([e.mean().data[0] for e in entropies]) mean_predicted_value = np.mean([v.sum().data[0] for v in values]) if total_episode % args.log_interval == 0 and done: if not args.discrete: sample_logits = (list(logit[0].data[0].numpy()), list(logit[1].data[0].numpy())) else: sample_logits = list(logit.data[0].numpy()) log( 'Frames {}\t'.format(total_episode) + \ 'Avg reward: {:.2f}\tAverage length: {:.2f}\t'.format( running_reward, running_t) + \ 'Entropy: {:.2f}\tTime: {:.2f}\tRank: {}\t'.format( mean_entropy, time.time() - start, rank) + \ 'Policy Loss: {:.2f}\t'.format(running_policy_loss) + \ # 'Reward Loss: {:.2f}\t'.format(running_reward_loss) + \ 'Weighted Value Loss: {:.2f}\t'.format(running_value_loss)) vlog('Sample Action: %s\t' % str(list(action.data.numpy())) + \ 'Logits: %s\t' % str(sample_logits), args.v) # write summaries here if writer_dir is not None and done: log('writing to tensorboard') # running losses writer.add_scalar('reward/running_reward', running_reward, i_episode) writer.add_scalar('reward/running_policy_loss', running_policy_loss, i_episode) writer.add_scalar('reward/running_value_loss', running_value_loss, i_episode) # current episode stats writer.add_scalar('reward/episode_reward', sum(rewards), i_episode) writer.add_scalar('reward/episode_policy_loss', policy_loss.squeeze().data[0], i_episode) writer.add_scalar('reward/episode_value_loss', value_loss.squeeze().data[0], i_episode) writer.add_scalar('reward/mean_entropy', mean_entropy, i_episode) writer.add_scalar('reward/mean_predicted_value', mean_predicted_value, i_episode) results_dict['reward'].append(sum(rewards)) results_dict['policy_loss'].append(policy_loss.squeeze().data[0]) results_dict['value_loss'].append(value_loss.squeeze().data[0]) results_dict['mean_entropy'].append(mean_entropy) results_dict['mean_predicted_value'].append(mean_predicted_value) if total_episode % args.checkpoint_interval == 0: args.curr_iter = total_episode args.optimizer = optimizer torch.save((shared_model.state_dict(), args), os.path.join( args.out, args.model_name + '%s.pt' % total_episode)) log("Saved model %d rank %s" % (total_episode, rank)) log(os.path.join( args.out, args.model_name + '%s.pt' % total_episode)) if writer_dir is not None and i_episode % \ (args.checkpoint_interval // args.num_processes) == 0: torch.save(results_dict, os.path.join(args.out, 'results_dict.pt')) log(os.path.join(args.out, 'results_dict.pt')) if writer_dir is not None: torch.save(results_dict, os.path.join(args.out, 'results_dict.pt')) log(os.path.join(args.out, 'results_dict.pt'))
ddr-master
train_reward_module.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import math import numpy as np import os import time from itertools import chain import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torch.utils.data as data from torch.autograd import Variable from model import Encoder, Decoder, D_Module from common import * def get_dynamics_losses(s, s_hat, s_prime, s_prime_hat, z_prime, z_prime_hat, a_hat, curr_actions, discrete=False): # reconstruction loss recon_loss = F.mse_loss(s_hat, s) # next state prediction loss model_loss = F.mse_loss(s_prime_hat, s_prime) # net decoder loss dec_loss = (F.mse_loss(s_hat, s) + F.mse_loss(s_prime_hat, s_prime)) # action reconstruction loss if discrete: a_hat = F.log_softmax(a_hat) inv_loss = F.mse_loss(a_hat, curr_actions) # representation space constraint forward_loss = F.mse_loss(z_prime_hat, z_prime.detach()) return recon_loss, model_loss, dec_loss, inv_loss, forward_loss def get_maze_dynamics_losses(s, s_hat_logits, s_prime, s_prime_hat_logits, z_prime, z_prime_hat, a_hat_logits, curr_actions, discrete=True, dec_mask=None): """ dec_mask: if to reweigh the weights on the agent and goal locations, """ # reconstruction loss if dec_mask is not None: recon_loss = F.cross_entropy(s_hat_logits.view(-1, 2), s.view(-1).long(), reduce=False) recon_loss = (recon_loss * dec_mask).mean() else: recon_loss = F.cross_entropy(s_hat_logits.view(-1, 2), s.view(-1).long()) # next state prediction loss if dec_mask is not None: model_loss = F.cross_entropy(s_prime_hat_logits.view(-1, 2), s_prime.view(-1).long(), reduce=False) model_loss = (model_loss * dec_mask).mean() else: model_loss = F.cross_entropy(s_prime_hat_logits.view(-1, 2), s_prime.view(-1).long()) # net decoder loss dec_loss = recon_loss + model_loss # action reconstruction loss inv_loss = F.cross_entropy(a_hat_logits, curr_actions.view(-1).long()) # representation space constraint forward_loss = F.mse_loss(z_prime_hat, z_prime.detach()) return recon_loss, model_loss, dec_loss, inv_loss, forward_loss class DynamicsDataset(data.Dataset): def __init__(self, root, size, batch, rollout): self.size = size self.root = root self.actions = [] self.states = [] start = 0 while len(self.actions) < size: end = start + batch states, actions = torch.load( os.path.join(self.root, 'states_actions_%s_%s.pt' % (start, end))) self.states += states self.actions += actions start = end rollout = len(actions[0]) self.actions = torch.Tensor(self.actions[:size]).view( self.size, rollout, -1) self.states = torch.Tensor(self.states[:size]).view( self.size, rollout + 1, -1) def __getitem__(self, index): assert index < self.size return self.states[index], self.actions[index] def __len__(self): return len(self.actions) class MazeDynamicsDataset(data.Dataset): def __init__(self, root, size, batch, rollout): """ batch: is the size of the blocks of the data size: total size of the dataset, num of trajectories rollout: length of the trajectory """ self.size = size self.root = root self.actions = [] self.states = [] start = 0 while len(self.actions) < size: end = start + batch states, actions = torch.load( os.path.join(self.root, 'states_actions_%s_%s.pt' % (start, end))) self.states += states self.actions += actions start = end # convert the state and actions to the float self.states = np.asarray(self.states, dtype=np.float32) self.actions = np.asarray(self.actions, dtype=np.float32) # convert to tensors self.actions = torch.Tensor(self.actions).view( self.size, rollout, -1) self.states = torch.Tensor(self.states).view( self.size, rollout + 1, -1) def __getitem__(self, index): assert index < self.size return self.states[index], self.actions[index] def __len__(self): return len(self.actions) def forward(i, states, target_actions, enc, dec, d_module, args, d_init=None, dec_mask=None): if args.framework == "mazebase": # cx_d = Variable(torch.zeros(states.size(0), args.lstm_dim)) # hx_d = Variable(torch.zeros(states.size(0), args.lstm_dim)) hx_d, cx_d = d_init(Variable(states[:, 0, :]).contiguous().cuda()) else: cx_d = Variable(torch.zeros(states.size(0), args.dim)) hx_d = Variable(torch.zeros(states.size(0), args.dim)) if args.gpu: cx_d = cx_d.cuda() hx_d = hx_d.cuda() dec_loss = 0 inv_loss = 0 model_loss = 0 recon_loss = 0 forward_loss = 0 current_epoch_actions = 0 current_epoch_predicted_a_hat = 0 s = None for r in range(args.rollout): curr_state = states[:, r, :] next_state = states[:, r + 1, :] if args.framework == "mazebase": curr_actions = Variable(target_actions[:, r].contiguous().view( -1, 1)) else: curr_actions = Variable(target_actions[:, r].contiguous().view( -1, args.action_space.shape[0])) if s is None: s = Variable(curr_state.contiguous()) if args.gpu: s = s.cuda() z = enc(s) s_prime = Variable(next_state.contiguous()) if args.gpu: s_prime = s_prime.cuda() z_prime = enc(s_prime) if args.gpu: curr_actions = curr_actions.cuda() if args.framework == "mazebase": s_hat, s_hat_binary = dec(z) z_prime_hat, a_hat, (hx_d, cx_d) = d_module( z, curr_actions.long(), z_prime.detach(), (hx_d, cx_d)) s_prime_hat, s_prime_hat_binary = dec(z_prime_hat) r_loss, m_loss, d_loss, i_loss, f_loss = get_maze_dynamics_losses( s, s_hat, s_prime, s_prime_hat, z_prime, z_prime_hat, a_hat, curr_actions, discrete=args.discrete, dec_mask= dec_mask) # caculate the accuracy here _, predicted_a = torch.max(F.sigmoid(a_hat),1) current_epoch_predicted_a_hat += (predicted_a == curr_actions.view(-1).long()).sum().data[0] current_epoch_actions += curr_actions.size(0) else: s_hat = dec(z) z_prime_hat, a_hat, (hx_d, cx_d) = d_module( (z, z_prime, curr_actions, (hx_d, cx_d))) s_prime_hat = dec(z_prime_hat) r_loss, m_loss, d_loss, i_loss, f_loss = get_dynamics_losses( s, s_hat, s_prime, s_prime_hat, z_prime, z_prime_hat, a_hat, curr_actions, discrete=args.discrete) inv_loss += i_loss dec_loss += d_loss forward_loss += f_loss recon_loss += r_loss model_loss += m_loss s = s_prime z = z_prime return forward_loss, inv_loss, dec_loss, recon_loss, model_loss, \ current_epoch_predicted_a_hat, current_epoch_actions def forward_planning(i, states, target_actions, enc, dec, d_module, args, d_init=None, dec_mask=None): cx_d = Variable(torch.zeros(states.size(0), args.dim)) hx_d = Variable(torch.zeros(states.size(0), args.dim)) if args.gpu: cx_d = cx_d.cuda() hx_d = hx_d.cuda() dec_loss = 0 inv_loss = 0 model_loss = 0 recon_loss = 0 forward_loss = 0 current_epoch_actions = 0 current_epoch_predicted_a_hat = 0 s = None for r in range(args.rollout): curr_state = states[:, r, :] next_state = states[:, r + 1, :] curr_actions = Variable(target_actions[:, r].contiguous().view( -1, args.action_space.shape[0])) if s is None: s = Variable(curr_state.contiguous()) if args.gpu: s = s.cuda() z = enc(s) s_prime = Variable(next_state.contiguous()) if args.gpu: s_prime = s_prime.cuda() z_prime = enc(s_prime) if args.gpu: curr_actions = curr_actions.cuda() s_hat = dec(z) z_prime_hat, a_hat, (hx_d, cx_d) = d_module( (z, z_prime, curr_actions, (hx_d, cx_d))) s_prime_hat = dec(z_prime_hat) r_loss, m_loss, d_loss, i_loss, f_loss = get_dynamics_losses( s, s_hat, s_prime, s_prime_hat, z_prime, z_prime_hat, a_hat, curr_actions, discrete=args.discrete) inv_loss += i_loss dec_loss += d_loss forward_loss += f_loss recon_loss += r_loss model_loss += m_loss s = s_prime z = z_prime_hat return forward_loss, inv_loss, dec_loss, recon_loss, model_loss, \ current_epoch_predicted_a_hat, current_epoch_actions def multiple_forward(i, states, target_actions, enc, dec, d_module, args, d_init=None, dec_mask = None): cx_d = Variable(torch.zeros(states.size(0), args.dim)) hx_d = Variable(torch.zeros(states.size(0), args.dim)) if args.gpu: cx_d = cx_d.cuda() hx_d = hx_d.cuda() dec_loss = 0 inv_loss = 0 model_loss = 0 recon_loss = 0 forward_loss = 0 current_epoch_actions = 0 current_epoch_predicted_a_hat = 0 s = None for r in range(args.rollout): curr_state = states[:, r, :] next_state = states[:, r + 1, :] if args.framework == "mazebase": curr_actions = Variable(target_actions[:, r].contiguous().view( -1, 1)) else: curr_actions = Variable(target_actions[:, r].contiguous().view( -1, args.action_space.shape[0])) if s is None: s = Variable(curr_state.contiguous()) if args.gpu: s = s.cuda() z = enc(s) s_prime = Variable(next_state.contiguous()) if args.gpu: s_prime = s_prime.cuda() z_prime = enc(s_prime) if args.gpu: curr_actions = curr_actions.cuda() if args.framework == "mazebase": s_hat, s_hat_binary = dec(z) z_prime_hat, a_hat, (hx_d, cx_d) = d_module( z, curr_actions.long(), z_prime.detach(), (hx_d, cx_d)) s_prime_hat, s_prime_hat_binary = dec(z_prime_hat) r_loss, m_loss, d_loss, i_loss, f_loss = get_maze_dynamics_losses( s, s_hat, s_prime, s_prime_hat, z_prime, z_prime_hat, a_hat, curr_actions, discrete=args.discrete, dec_mask= dec_mask) # caculate the accuracy here _, predicted_a = torch.max(F.sigmoid(a_hat),1) current_epoch_predicted_a_hat += (predicted_a == curr_actions.view(-1).long()).sum().data[0] current_epoch_actions += curr_actions.size(0) else: s_hat = dec(z) z_prime_hat, a_hat, (hx_d, cx_d) = d_module( (z, z_prime, curr_actions, (hx_d, cx_d))) s_prime_hat = dec(z_prime_hat) r_loss, m_loss, d_loss, i_loss, f_loss = get_dynamics_losses( s, s_hat, s_prime, s_prime_hat, z_prime, z_prime_hat, a_hat, curr_actions, discrete=args.discrete) inv_loss += i_loss dec_loss += d_loss forward_loss += f_loss recon_loss += r_loss model_loss += m_loss s = s_prime z = z_prime_hat return forward_loss, inv_loss, dec_loss, recon_loss, model_loss, \ current_epoch_predicted_a_hat, current_epoch_actions def train_dynamics(env, args, writer=None): """ Trains the Dynamics module. Supervised. Arguments: env: the initialized environment (rllab/gym) args: input arguments writer: initialized summary writer for tensorboard """ args.action_space = env.action_space # Initialize models enc = Encoder(env.observation_space.shape[0], args.dim, use_conv=args.use_conv) dec = Decoder(env.observation_space.shape[0], args.dim, use_conv=args.use_conv) d_module = D_Module(env.action_space.shape[0], args.dim, args.discrete) if args.from_checkpoint is not None: results_dict = torch.load(args.from_checkpoint) enc.load_state_dict(results_dict['enc']) dec.load_state_dict(results_dict['dec']) d_module.load_state_dict(results_dict['d_module']) all_params = chain(enc.parameters(), dec.parameters(), d_module.parameters()) if args.transfer: for p in enc.parameters(): p.requires_grad = False for p in dec.parameters(): p.requires_grad = False all_params = d_module.parameters() optimizer = torch.optim.Adam(all_params, lr=args.lr, weight_decay=args.weight_decay) if args.gpu: enc = enc.cuda() dec = dec.cuda() d_module = d_module.cuda() # Initialize datasets val_loader = None train_dataset = DynamicsDataset( args.train_set, args.train_size, batch=args.train_batch, rollout=args.rollout) val_dataset = DynamicsDataset(args.test_set, 5000, batch=args.test_batch, rollout=args.rollout) val_loader = torch.utils.data.DataLoader( dataset=val_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers) train_loader = torch.utils.data.DataLoader( dataset=train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers) results_dict = { 'dec_losses': [], 'forward_losses': [], 'inverse_losses': [], 'total_losses': [], 'enc': None, 'dec': None, 'd_module': None, 'd_init':None, 'args': args } total_action_taken = 0 correct_predicted_a_hat = 0 # create the mask here for re-weighting dec_mask = None if args.dec_mask is not None: dec_mask = torch.ones(9) game_vocab = dict([(b, a) for a, b in enumerate(sorted(env.game.all_possible_features()))]) dec_mask[game_vocab['Agent']] = args.dec_mask dec_mask[game_vocab['Goal']] = args.dec_mask dec_mask = dec_mask.expand(args.batch_size, args.maze_length,args.maze_length,9).contiguous().view(-1) dec_mask = Variable(dec_mask, requires_grad = False) if args.gpu: dec_mask = dec_mask.cuda() for epoch in range(1, args.num_epochs + 1): enc.train() dec.train() d_module.train() if args.framework == "mazebase": d_init.train() # for measuring the accuracy train_acc = 0 current_epoch_actions = 0 current_epoch_predicted_a_hat = 0 start = time.time() for i, (states, target_actions) in enumerate(train_loader): optimizer.zero_grad() if args.framework != "mazebase": forward_loss, inv_loss, dec_loss, recon_loss, model_loss, _, _ = forward_planning( i, states, target_actions, enc, dec, d_module, args) else: forward_loss, inv_loss, dec_loss, recon_loss, model_loss, current_epoch_predicted_a_hat, current_epoch_actions = multiple_forward( i, states, target_actions, enc, dec, d_module, args, d_init, dec_mask ) loss = forward_loss + args.inv_loss_coef * inv_loss + \ args.dec_loss_coef * dec_loss if i % args.log_interval == 0: log( 'Epoch [{}/{}]\tIter [{}/{}]\t'.format( epoch, args.num_epochs, i+1, len( train_dataset)//args.batch_size) + \ 'Time: {:.2f}\t'.format(time.time() - start) + \ 'Decoder Loss: {:.2f}\t'.format(dec_loss.data[0]) + \ 'Forward Loss: {:.2f}\t'.format(forward_loss.data[0] ) + \ 'Inverse Loss: {:.2f}\t'.format(inv_loss.data[0]) + \ 'Loss: {:.2f}\t'.format(loss.data[0])) results_dict['dec_losses'].append(dec_loss.data[0]) results_dict['forward_losses'].append(forward_loss.data[0]) results_dict['inverse_losses'].append(inv_loss.data[0]) results_dict['total_losses'].append(loss.data[0]) # write the summaries here if writer: writer.add_scalar('dynamics/total_loss', loss.data[0], epoch) writer.add_scalar('dynamics/decoder', dec_loss.data[0], epoch) writer.add_scalar( 'dynamics/reconstruction_loss', recon_loss.data[0], epoch) writer.add_scalar( 'dynamics/next_state_prediction_loss', model_loss.data[0], epoch) writer.add_scalar('dynamics/inv_loss', inv_loss.data[0], epoch) writer.add_scalar( 'dynamics/forward_loss', forward_loss.data[0], epoch) writer.add_scalars( 'dynamics/all_losses', {"total_loss":loss.data[0], "reconstruction_loss":recon_loss.data[0], "next_state_prediction_loss":model_loss.data[0], "decoder_loss":dec_loss.data[0], "inv_loss":inv_loss.data[0], "forward_loss":forward_loss.data[0], } , epoch) loss.backward() correct_predicted_a_hat += current_epoch_predicted_a_hat total_action_taken += current_epoch_actions # does it not work at all without grad clipping ? torch.nn.utils.clip_grad_norm(all_params, args.max_grad_norm) optimizer.step() # maybe add the generated image to add the logs # writer.add_image() # Run validation if val_loader is not None: enc.eval() dec.eval() d_module.eval() forward_loss, inv_loss, dec_loss = 0, 0, 0 for i, (states, target_actions) in enumerate(val_loader): f_loss, i_loss, d_loss, _, _, _, _ = forward_planning( i, states, target_actions, enc, dec, d_module, args) forward_loss += f_loss inv_loss += i_loss dec_loss += d_loss loss = forward_loss + args.inv_loss_coef * inv_loss + \ args.dec_loss_coef * dec_loss if writer: writer.add_scalar('val/forward_loss', forward_loss.data[0] / i, epoch) writer.add_scalar('val/inverse_loss', inv_loss.data[0] / i, epoch) writer.add_scalar('val/decoder_loss', dec_loss.data[0] / i, epoch) log( '[Validation]\t' + \ 'Decoder Loss: {:.2f}\t'.format(dec_loss.data[0] / i) + \ 'Forward Loss: {:.2f}\t'.format(forward_loss.data[0] / i) + \ 'Inverse Loss: {:.2f}\t'.format(inv_loss.data[0] / i) + \ 'Loss: {:.2f}\t'.format(loss.data[0] / i)) if epoch % args.checkpoint == 0: results_dict['enc'] = enc.state_dict() results_dict['dec'] = dec.state_dict() results_dict['d_module'] = d_module.state_dict() if args.framework == "mazebase": results_dict['d_init'] = d_init.state_dict() torch.save(results_dict, os.path.join(args.out, 'dynamics_module_epoch%s.pt' % epoch)) log('Saved model %s' % epoch) results_dict['enc'] = enc.state_dict() results_dict['dec'] = dec.state_dict() results_dict['d_module'] = d_module.state_dict() torch.save(results_dict, os.path.join(args.out, 'dynamics_module_epoch%s.pt' % epoch)) print(os.path.join(args.out, 'dynamics_module_epoch%s.pt' % epoch))
ddr-master
train_dynamics_module.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import argparse def get_args(): parser = argparse.ArgumentParser(description='Train Modules') # Learning parameters parser.add_argument('--lr', type=float, default=0.0001, help='learning rate (default: 0.0001)') parser.add_argument('--gamma', type=float, default=0.99, help='discount factor for rewards (default: 0.99)') parser.add_argument('--tau', type=float, default=0.95, help='parameter for GAE (default: 0.95)') parser.add_argument('--eps', type=float, default=1e-5, help='RMSprop optimizer epsilon (default: 1e-5)') parser.add_argument('--alpha', type=float, default=0.99, help='RMSprop optimizer apha (default: 0.99)') parser.add_argument('--max-grad-norm', type=float, default=50, help='value loss coefficient (default: 50)') parser.add_argument('--no-shared', default=False, help='use an optimizer without shared momentum.') parser.add_argument('--dim', type=int, default=32, help='number of dimensions of representation space') parser.add_argument('--use-conv', action='store_true', help='Use conv layers') parser.add_argument('--discrete', action='store_true', help='discrete action space') parser.add_argument('--weight-decay', type=float, default=0.0001) # TODO:// finish implementation for discrete action spaces. # Environment settings parser.add_argument('--seed', type=int, default=1, help='random seed (default: 1)') parser.add_argument('--num-processes', type=int, default=40, help='how many training processes to use (default: 40)') parser.add_argument('--num-steps', type=int, default=200, help='number of forward steps in A3C (default: 20)') parser.add_argument('--framework', default='gym', help='framework of env (default: gym)') parser.add_argument('--env-name', default='InvertedPendulum-v1', help='environment to train on (default: InvertedPendulum-v1)') parser.add_argument('--maze-id', type=int, default=0) parser.add_argument('--maze-length', type=int, default=1) # Dynamics Module settings parser.add_argument('--rollout', type=int, default=20, help="rollout for goal") parser.add_argument('--train-set', type=str, default=None) parser.add_argument('--train-batch', type=int, default=2500) parser.add_argument('--test-set', type=str) parser.add_argument('--test-batch', type=int, default=2500) parser.add_argument('--train-size', type=int, default=100000) parser.add_argument('--dec-loss-coef', type=float, default=0.1, help='decoder loss coefficient (default: 0.1)') parser.add_argument('--forward-loss-coef', type=float, default=10, help='forward loss coefficient (default: 10)') parser.add_argument('--inv-loss-coef', type=float, default=100, help='inverse loss coefficient (default: 10)') parser.add_argument('--num-epochs', type=int, default=1000) parser.add_argument('--batch-size', type=int, default=128) parser.add_argument('--num-workers', type=int, default=20) parser.add_argument('--out', type=str, default='/checkpoint/amyzhang/ddr/models') parser.add_argument('--dec-mask', type=float, default = None, help="to use masking while calculating the decoder reconstruction loss ") # Rewards Module settings parser.add_argument('--coef-inner-rew', type=float, default=1.) parser.add_argument('--checkpoint-interval', type=int, default=1000) parser.add_argument('--num-episodes', type=int, default=1000000, help='max number of episodes to train') parser.add_argument('--max-episode-length', type=int, default=500, help='maximum length of an episode (default: 500)') parser.add_argument('--curriculum', type=int, default=0, help='number of iterations in curriculum. (default: 0, no curriculum)') parser.add_argument('--single-env', action='store_true') parser.add_argument('--entropy-coef', type=float, default=0., help='entropy term coefficient (default: 0.), use 0.0001 for mujoco') parser.add_argument('--value-loss-coef', type=float, default=0.5, help='value loss coefficient (default: 0.5)') parser.add_argument('--rew-loss-coef', type=float, default=0, help='reward loss coefficient (default: 0)') parser.add_argument('--lstm-dim', type=int, default=128, help='number of dimensions of lstm hidden state') parser.add_argument('--difficulty', type=int, default=-1, help='difficulty of maze') parser.add_argument('--clip-reward', action='store_true') parser.add_argument('--finetune-enc', action='store_true', help="allow the ActorCritic to change the observation space representation") parser.add_argument('--gae', action='store_true') parser.add_argument('--algo', default='a3c', help='algorithm to use: a3c') # General training settings parser.add_argument('--checkpoint', type=int, default=10000) parser.add_argument('--log-interval', type=int, default=100, help='interval between training status logs (default: 100)') parser.add_argument('-v', action='store_true', help='verbose logging') parser.add_argument('--gpu', action='store_true') parser.add_argument('--log-dir', type=str, default='/checkpoint/amyzhang/ddr/logs', help='The logging directory to record the logs and tensorboard summaries') parser.add_argument('--reset-dir', action='store_true', help="give this argument to delete the existing logs for the current set of parameters") # transfer parser.add_argument('--file-path', type=str, default=None, help='path to XML file for mujoco') parser.add_argument('--neg-reward', action='store_true', help='set reward negative for transfer') parser.add_argument('--random-start', action='store_true') # What to run parser.add_argument('--train-dynamics', action='store_true') parser.add_argument('--train-reward', action='store_true') parser.add_argument('--train-online', action='store_true', help='train both modules online') parser.add_argument('--dynamics-module', type=str, default=None, help='Encoder from dynamics module') parser.add_argument('--from-checkpoint', type=str, default=None, help='Start from stored model') parser.add_argument('--baseline', action='store_true', help='Running A3C baseline.') parser.add_argument('--planning', action='store_true', help='train with planning (reward and online only)') parser.add_argument('--transfer', action='store_true', help='Keep encoder and decoder static') parser.add_argument('--eval-every', type=float, default=10) parser.add_argument('--enc-dims', type=int, nargs='+', default=[256, 128]) parser.add_argument('--dec-dims', type=int, nargs='+', default=[128, 256]) parser.add_argument('--num-runs', type=int, default=5, help='number of models to train in parallel') parser.add_argument('--mcts', action='store_true', help='Monte Carlo Tree Search') parser.add_argument('--render', action='store_true') parser.add_argument('-b', type=int, default=4, help='branching factor') parser.add_argument('-d', type=int, default=3, help='planning depth') parser.add_argument('--eval', action='store_true') parser.add_argument('--local', action='store_true') args = parser.parse_args() return args
ddr-master
arguments.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import time from collections import deque import torch import torch.nn.functional as F from torch.autograd import Variable from envs import create_env from model import * def test(rank, args, shared_model, counter): torch.manual_seed(args.seed + rank) env = create_env(args.env_name) env.seed(args.seed + rank) model = ActorCritic(env.observation_space.shape[0], env.action_space) model.eval() state = env.reset() state = torch.from_numpy(state).float() reward_sum = 0 done = True start_time = time.time() # a quick hack to prevent the agent from stucking actions = deque(maxlen=100) episode_length = 0 while True: episode_length += 1 # Sync with the shared model if done: model.load_state_dict(shared_model.state_dict()) cx_d = Variable(torch.zeros(1, 256), volatile=True) hx_d = Variable(torch.zeros(1, 256), volatile=True) cx_p = Variable(torch.zeros(1, 256), volatile=True) hx_p = Variable(torch.zeros(1, 256), volatile=True) else: cx_d = Variable(cx_d.data, volatile=True) hx_d = Variable(hx_d.data, volatile=True) cx_p = Variable(cx_p.data, volatile=True) hx_p = Variable(hx_p.data, volatile=True) value, logit, (hx_d, cx_d), (hx_p, cx_p) = model((Variable( state.unsqueeze(0), volatile=True), (hx_d, cx_d), (hx_p, cx_p))) if args.discrete: prob = F.softmax(logit) action = prob.max(1, keepdim=True)[1].data.numpy() else: mu, sigma_sq = logit sigma_sq = F.softplus(sigma_sq) eps = torch.randn(mu.size()) action = (mu + sigma_sq.sqrt()*Variable(eps)).data state, reward, done, _ = env.step(action[0, 0]) done = done or episode_length >= args.max_episode_length reward_sum += reward # a quick hack to prevent the agent from stucking actions.append(action[0, 0]) if actions.count(actions[0]) == actions.maxlen: done = True if done: print("Time {}, num steps {}, FPS {:.0f}, episode reward {}, episode length {}".format( time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - start_time)), counter.value, counter.value / (time.time() - start_time), reward_sum, episode_length)) reward_sum = 0 episode_length = 0 actions.clear() state = env.reset() time.sleep(60) state = torch.from_numpy(state).float()
ddr-master
test.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.nn.init as init def normalized_columns_initializer(weights, std=1.0): out = torch.randn(weights.size()) out *= std / torch.sqrt(out.pow(2).sum(1, keepdim=True)) return out def weights_init(m): classname = m.__class__.__name__ if classname.find('Conv') != -1: weight_shape = list(m.weight.data.size()) fan_in = np.prod(weight_shape[1:4]) fan_out = np.prod(weight_shape[2:4]) * weight_shape[0] w_bound = np.sqrt(6. / (fan_in + fan_out)) m.weight.data.uniform_(-w_bound, w_bound) m.bias.data.fill_(0) elif classname.find('Linear') != -1: weight_shape = list(m.weight.data.size()) fan_in = weight_shape[1] fan_out = weight_shape[0] w_bound = np.sqrt(6. / (fan_in + fan_out)) m.weight.data.uniform_(-w_bound, w_bound) m.bias.data.fill_(0) class Encoder(torch.nn.Module): def __init__(self, obs_space, dim, use_conv=False): """ architecture should be input, so that we can pass multiple jobs ! """ super(Encoder, self).__init__() self.use_conv = use_conv self.obs_space = obs_space if use_conv: self.conv1 = nn.Conv2d(3, 32, 3, stride=2, padding=1) self.conv2 = nn.Conv2d(32, 32, 3, stride=2, padding=1) self.conv3 = nn.Conv2d(32, 32, 3, stride=2, padding=1) self.conv4 = nn.Conv2d(32, 32, 3, stride=2, padding=1) else: self.linear1 = nn.Linear(obs_space, dim) self.linear2 = nn.Linear(dim, 32 * 3 * 3) self.fc = nn.Linear(32 * 3 * 3, dim) self.apply(weights_init) self.train() def forward(self, inputs): # why elu and not relu ? if self.use_conv: x = F.elu(self.conv1(inputs)) x = F.elu(self.conv2(x)) x = F.elu(self.conv3(x)) x = F.elu(self.conv4(x)) else: x = F.elu(self.linear1(inputs)) x = F.elu(self.linear2(x)) x = F.tanh(self.fc(x)) return x class Decoder(torch.nn.Module): def __init__(self, obs_space, dim, use_conv=False): super(Decoder, self).__init__() self.use_conv = use_conv self.fc = nn.Linear(dim, 32 * 3 * 3) if self.use_conv: self.deconv1 = nn.ConvTranspose2d(32, 32, 3, stride=2, padding=1) self.deconv2 = nn.ConvTranspose2d(32, 32, 3, stride=2, padding=1) self.deconv3 = nn.ConvTranspose2d(32, 32, 3, stride=2, padding=1) self.deconv4 = nn.ConvTranspose2d(32, 3, 3, stride=2, padding=1) else: self.linear1 = nn.Linear(32 * 3 * 3, dim) self.linear2 = nn.Linear(dim, obs_space) self.apply(weights_init) self.train() def forward(self, inputs): x = F.elu(self.fc(inputs)) if self.use_conv: x = F.elu(self.deconv1(x)) x = F.elu(self.deconv2(x)) x = F.elu(self.deconv3(x)) x = self.deconv4(x) else: x = F.elu(self.linear1(x)) x = self.linear2(x) return x class D_Module(torch.nn.Module): def __init__(self, action_space, dim, discrete=False): super(D_Module, self).__init__() self.dim = dim self.discrete = discrete self.za_embed = nn.Linear(2 * dim, dim) self.lstm_dynamics = nn.LSTMCell(dim, dim) self.z_embed = nn.Linear(dim, dim) self.inv = nn.Linear(2 * dim, dim) self.inv2 = nn.Linear(dim, action_space) self.action_linear = nn.Linear(action_space, dim) self.action_linear2 = nn.Linear(dim, dim) self.apply(weights_init) self.lstm_dynamics.bias_ih.data.fill_(0) self.lstm_dynamics.bias_hh.data.fill_(0) self.train() def forward(self, inputs): z, z_prime, actions, (hx_d, cx_d) = inputs z = z.view(-1, self.dim) a_embedding = F.elu(self.action_linear(actions)) a_embedding = self.action_linear2(a_embedding) za_embedding = self.za_embed( torch.cat([z, a_embedding.view(z.size())], 1)) hx_d, cx_d = self.lstm_dynamics(za_embedding, (hx_d, cx_d)) z_prime_hat = F.tanh(self.z_embed(hx_d)) # decode the action if z_prime is not None: z_prime = z_prime.view(-1, self.dim) else: z_prime = z_prime_hat a_hat = F.elu(self.inv(torch.cat([z, z_prime], 1))) a_hat = self.inv2(a_hat) return z_prime_hat, a_hat, (hx_d, cx_d) class R_Module(torch.nn.Module): def __init__(self, action_space, dim, discrete=False, baseline=False, state_space=None): super(R_Module, self).__init__() self.discrete = discrete self.baseline = baseline self.dim = dim if baseline: self.linear1 = nn.Linear(state_space, dim) self.linear2 = nn.Linear(dim, dim) self.lstm_policy = nn.LSTMCell(dim, dim) self.actor_linear = nn.Linear(dim, action_space) self.critic_linear = nn.Linear(dim, 1) self.rhat_linear = nn.Linear(dim, 1) if not discrete: self.actor_sigma_sq = nn.Linear(dim, action_space) self.apply(weights_init) self.actor_linear.weight.data = normalized_columns_initializer( self.actor_linear.weight.data, 0.01) self.actor_linear.bias.data.fill_(0) self.critic_linear.weight.data = normalized_columns_initializer( self.critic_linear.weight.data, 1.0) self.critic_linear.bias.data.fill_(0) # only forget should be 1 self.lstm_policy.bias_ih.data.fill_(0) self.lstm_policy.bias_hh.data.fill_(0) if not discrete: self.actor_sigma_sq.weight.data = normalized_columns_initializer( self.actor_sigma_sq.weight.data, 0.01) self.actor_sigma_sq.bias.data.fill_(0) self.train() def forward(self, inputs): inputs, (hx_p, cx_p) = inputs if self.baseline: inputs = F.elu(self.linear1(inputs)) inputs = F.elu(self.linear2(inputs)) hx_p, cx_p = self.lstm_policy(inputs, (hx_p, cx_p)) x = hx_p if self.discrete: action = self.actor_linear(x) else: action = (self.actor_linear(x), self.actor_sigma_sq(x)) return self.critic_linear(x), action, (hx_p, cx_p)
ddr-master
model.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import math import sys from datetime import datetime import torch import torch.nn.functional as F from torch.autograd import Variable from model import Encoder, D_Module pi = Variable(torch.FloatTensor([math.pi])) def get_prob(x, mu, sigma_sq): a = (-1*(Variable(x)-mu).pow(2)/(2*sigma_sq + 1e-5)).exp() b = 1/(2*sigma_sq*pi.expand_as(sigma_sq) + 1e-5).sqrt() return a*b def log(msg): print("[%s]\t%s" % (datetime.now().strftime("%Y-%m-%d %H:%M:%S"), msg)) sys.stdout.flush() def vlog(msg, v): if v: log(msg) def load_encoder(obs_space, args, freeze=True): enc = Encoder(obs_space, args.dim, use_conv=args.use_conv) enc_state = torch.load(args.dynamics_module, map_location=lambda storage, loc: storage)['enc'] enc.load_state_dict(enc_state) enc.eval() if freeze: for p in enc.parameters(): p.requires_grad = False return enc def load_d_module(action_space, args, freeze=True): d_module_state = torch.load(args.dynamics_module, map_location=lambda storage, loc: storage)['d_module'] d_module = D_Module(action_space, args.dim, args.discrete) d_module.load_state_dict(d_module_state) d_module.eval() if freeze: for p in d_module.parameters(): p.requires_grad = False return d_module def get_action(logit, discrete, v=False): """Compute action, entropy, and log prob for discrete and continuous case from logit. """ if discrete: prob = F.softmax(logit) log_prob = F.log_softmax(logit) # why entropy regularization ? entropy = -(log_prob * prob).sum(1, keepdim=True) action = prob.multinomial() log_prob = log_prob.gather(1, action) else: mu, sigma_sq = logit sigma_sq = F.softplus(sigma_sq) vlog('sigma_sq: %s' % str(sigma_sq.data), v) action = torch.normal(mu, sigma_sq) prob = get_prob(action.data, mu, sigma_sq) + 1e-5 entropy = -0.5*((2 * sigma_sq * pi.expand_as(sigma_sq) + 1e-5).log() + 1) log_prob = prob.log() return action, entropy, log_prob def eval_action(logit, action, discrete, v=False): mu, sigma_sq = logit sigma_sq = F.softplus(sigma_sq) vlog('sigma_sq: %s' % str(sigma_sq.data), v) prob = get_prob(action.data, mu, sigma_sq) + 1e-5 entropy = -0.5*((2 * sigma_sq * pi.expand_as(sigma_sq) + 1e-5).log() + 1) log_prob = prob.log() return entropy, log_prob def mcts(env, z_hat, r_module, d_module, enc, r_state, d_state, args, discrete, use_env=False): import torch import torch.nn.functional as F from torch.autograd import Variable from common import get_action from envs import get_obs (hx_r, cx_r) = r_state (hx_d, cx_d) = d_state parent_states = [(z_hat, [], (hx_r, cx_r), (hx_d, cx_d), [], [], [])] child_states = [] init_state = get_obs(env, args.framework) for i in range(args.d): actions = [] best_val = None for z_hat, trajectory, (hx_r, cx_r), (hx_d, cx_d), val, entropies, \ logprobs in parent_states: if best_val is None: best_val = val elif val < best_val: continue value, logit, (hx_r_prime, cx_r_prime) = r_module( (z_hat, (hx_r, cx_r))) val.append(value) if not discrete: for b in range(args.b): action, entropy, log_prob = get_action( logit, discrete=False, v=args.v) actions.append((action, entropy, log_prob)) else: prob = F.softmax(logit) actions = np.argpartition(prob.data.numpy(), args.b)[:b] for a, e, lp in actions: if not use_env: z_prime_hat, _, (hx_d_prime, cx_d_prime) = d_module( (z_hat, z_hat, a, (hx_d, cx_d))) else: state = get_obs(env, args.framework) for t in trajectory: env.step(t.data.numpy()) s_prime, _, _, _ = env.step(a.data.numpy()) s_prime = Variable(torch.from_numpy(s_prime).float()) z_prime_hat = enc(s_prime).unsqueeze(0) env.reset(state) hx_d_prime, cx_d_prime = hx_d, cx_d child_states.append( (z_prime_hat, trajectory + [a], (hx_r_prime, cx_r_prime), (hx_d_prime, cx_d_prime), val, entropies + [e], logprobs + [lp])) child_states = prune(child_states, b) parent_states = child_states child_states = [] # compute value of final state in each trajectory and choose best best_val = sum(parent_states[0][4]).data[0,0] best_ind = 0 for ind, (z, traj, hr, hd, v, _, _) in enumerate(parent_states): vr, _, _ = r_module((z, hr)) v.append(vr) if sum(v).data[0,0] > best_val: best_ind = ind best_val = sum(v).data[0,0] return parent_states[best_ind]
ddr-master
common.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from __future__ import print_function import argparse import numpy as np import os import random from operator import itemgetter # Environment settings parser = argparse.ArgumentParser(description='Eval DDR') parser.add_argument('--dynamics-module', type=str, default=None, help='Dynamics module') parser.add_argument('--rewards-module', type=str, default=None, help='Rewards module') parser.add_argument('--num-processes', type=int, default=20, help='how many training processes to use (default: 20)') parser.add_argument('--N', type=int, default=1, help='Number of episodes') parser.add_argument('--rollout', type=int, default=20, help="rollout for goal") parser.add_argument('--seed', type=int, default=1, help='random seed (default: 1)') parser.add_argument('--render', action='store_true') parser.add_argument('--out', type=str, default=None) parser.add_argument('--max-episode-length', type=int, default=1000, help='maximum length of an episode') parser.add_argument('--framework', default='gym', help='framework of env (default: gym)') parser.add_argument('--env-name', default='InvertedPendulum-v1', help='environment to train on (default: InvertedPendulum-v1)') parser.add_argument('--maze-id', type=int, default=0) parser.add_argument('--maze-length', type=int, default=1) parser.add_argument('--log-interval', type=int, default=1) parser.add_argument('--baseline', action='store_true') parser.add_argument('--local', action='store_true', help='running locally to render, no multiprocessing') parser.add_argument('--single-env', action='store_true') parser.add_argument('--coef-inner-rew', type=float, default=1.) parser.add_argument('--mcts', action='store_true', help='Monte Carlo Tree Search') parser.add_argument('-b', type=int, default=4, help='branching factor') parser.add_argument('-d', type=int, default=3, help='planning depth') parser.add_argument('--file-path', type=str, default=None, help='path to XML file for mujoco') parser.add_argument('--save-figs', action='store_true') parser.add_argument('--neg-reward', action='store_true', help='set reward negative for transfer') parser.add_argument('--use-env', action='store_true', help='Use env with MCTS') parser.add_argument('-v', action='store_true', help='verbose logging') parser.add_argument('--difficulty', type=int, default=-1, help='difficulty of maze') def prune(states, b): """Prune states down to length b, sorting by val.""" return sorted(states, key=itemgetter(4))[:b] def test(block, args, d_args, r_args, d_module, r_module, enc, dec, q=None, rank=0): import torch from torch.autograd import Variable from envs import create_env, reset_env, get_obs from common import get_action, log seed = args.seed * 9823 + 194885 + rank # make sure doesn't copy train torch.manual_seed(seed) np.random.seed(seed) random.seed(seed) i = 1 total_acc, total_reward = [], [] avg_succ, avg_reward, avg_len = 0, 0, 0 while len(total_acc) < block: reward_sum, succ = 0, 0 actions = [] if args.single_env and i > 1: reset_env(env, args) else: env = create_env(args.env_name, framework=args.framework, args=args, eval_flag=True) done = False step = 0 # Should the two LSTMs share a hidden state? cx_r = Variable(torch.zeros(1, r_args.dim)) hx_r = Variable(torch.zeros(1, r_args.dim)) if not args.baseline: cx_d = Variable(torch.zeros(1, d_args.dim)) hx_d = Variable(torch.zeros(1, d_args.dim)) while step < args.max_episode_length and not done: # Encode state state = get_obs(env, r_args.framework) state = Variable(torch.from_numpy(state).float()) if not args.baseline: z = enc(state) z_prime_hat = z.unsqueeze(0) else: z_prime_hat = state.unsqueeze(0) actions = [] if args.mcts: z_prime_hat, actions, (hx_r, cx_r), (hx_d, cx_d), _, _, _ = mcts( env, z_prime_hat, r_module, d_module, enc, (hx_r, cx_r), (hx_d, cx_d), args, discrete=r_args.discrete, use_env=args.use_env) for r in range(args.rollout - args.d): value, logit, (hx_r, cx_r) = r_module( (z_prime_hat, (hx_r, cx_r))) action, entropy, log_prob = get_action( logit, discrete=r_args.discrete) actions.append(action) if not args.baseline: z_prime_hat, _, (hx_d, cx_d) = d_module( (z_prime_hat, z_prime_hat, action, (hx_d, cx_d))) if args.save_figs: s_prime_hat = dec(z_prime_hat) for action in actions[:args.rollout]: _, reward, done, _ = env.step(action.data.numpy()) if args.render: env.render() reward_sum += reward step += 1 if done: succ = 1 break U = 1. / i total_acc.append(succ) total_reward.append(reward_sum) avg_succ = avg_succ * (1 - U) + succ * U avg_reward = avg_reward * (1 - U) + reward_sum * U avg_len = avg_len * (1 - U) + (step + 1) * U if i % args.log_interval == 0: log("Eval: {:d} episodes, avg succ {:.2f}, avg reward {:.2f}, avg length {:.2f}".format( len(total_acc), avg_succ, reward_sum, step)) i += 1 if args.local: return (sum(total_acc), len(total_acc), sum(total_reward), avg_len) q.put((sum(total_acc), len(total_acc), sum(total_reward))) if __name__ == '__main__': import torch import torch.multiprocessing as mp mp.set_start_method('spawn') from envs import * from model import * from common import * # from ppo.model import MLPPolicy os.environ['OMP_NUM_THREADS'] = '1' os.environ['CUDA_VISIBLE_DEVICES'] = "" args = parser.parse_args() if not args.mcts: args.d = 0 log(args) torch.manual_seed(args.seed) d_args, d_module, enc, dec = None, None, None, None r_state_dict, r_args = torch.load(args.rewards_module, map_location=lambda storage, loc: storage) if args.single_env and hasattr(r_args, 'maze_structure'): args.maze_structure = r_args.maze_structure env = create_env(args.env_name, framework=args.framework, args=args, eval_flag=True) r_module = R_Module(env.action_space.shape[0], r_args.dim, discrete=r_args.discrete, baseline=r_args.baseline, state_space=env.observation_space.shape[0]) r_module.load_state_dict(r_state_dict) r_module.eval() if not args.baseline: if args.local: r_args.dynamics_module = '/Users/amyzhang/ddr_for_tl' + r_args.dynamics_module[24:] if args.dynamics_module is None: d_dict = torch.load(r_args.dynamics_module, map_location=lambda storage, loc: storage) else: d_dict = torch.load(args.dynamics_module, map_location=lambda storage, loc: storage) d_args = d_dict['args'] enc_state = d_dict['enc'] dec_state = d_dict['dec'] d_state_dict = d_dict['d_module'] d_module = D_Module(env.action_space.shape[0], d_args.dim, d_args.discrete) d_module.load_state_dict(d_state_dict) d_module.eval() enc = Encoder(env.observation_space.shape[0], d_args.dim, use_conv=d_args.use_conv) dec = Decoder(env.observation_space.shape[0], d_args.dim, use_conv=d_args.use_conv) enc.load_state_dict(enc_state) dec.load_state_dict(dec_state) enc.eval() dec.eval() block = int(args.N / args.num_processes) if args.local: all_succ, all_total, avg_reward = test( block, args, d_args, r_args, d_module, r_module, enc, dec) else: processes = [] queues = [] for rank in range(0, args.num_processes): q = mp.Queue() p = mp.Process(target=test, args=( block, args, d_args, r_args, d_module, r_module, enc, dec, q, rank)) p.start() processes.append(p) queues.append(q) for i, p in enumerate(processes): log("Exit process %d" % i) p.join() all_succ = 0 all_total = 0 total_reward = 0 for q in queues: while not q.empty(): succ, total, total_r = q.get() all_succ += succ all_total += total total_reward += total_r log("Success: %s, %s, %s" % (all_succ / all_total, all_succ, all_total)) log("Average Reward: %s" % (total_reward / all_total)) if args.out: with open(args.out, 'a') as f: f.write("Success: %s \n" % (all_succ / all_total))
ddr-master
eval.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from __future__ import print_function import datetime import os import time import shutil from itertools import chain import dill from arguments import get_args if __name__ == '__main__': import torch import torch.multiprocessing as mp mp.set_start_method('spawn') import my_optim from envs import create_env from model import * from test import test from train_reward_module import train_rewards from common import * from train_dynamics_module import train_dynamics from train_online import train_online from eval_modules import eval_reward from tensorboardX import SummaryWriter os.environ['OMP_NUM_THREADS'] = '1' args = get_args() log(args) if not args.gpu: os.environ['CUDA_VISIBLE_DEVICES'] = "" torch.manual_seed(args.seed) args_param = vars(args) toprint = ['seed', 'lr', 'entropy_coef', 'value_loss_coef', 'num_steps', 'dim'] if args.planning: toprint += ['rollout'] env_name = args.env_name if args.env_name.endswith("MazeEnv"): env_name += 'mazeid%slength%s' % (args.maze_id, args.maze_length) toprint += ['random_start', 'difficulty'] if args.baseline: model_type = 'baseline' if args.neg_reward: model_type += '_neg_reward' if args.file_path: model_type += '_dynamics_transfer' toprint += ['algo', 'gae', 'num_processes'] elif args.train_dynamics: model_type = 'dynamics_planning' toprint = ['lr', 'forward_loss_coef', 'dec_loss_coef', 'inv_loss_coef', 'rollout', 'dim', 'train_size'] # env_name = os.path.basename(args.train_set.strip('/')) if args.single_env: data_args = torch.load(os.path.join(args.train_set, 'args.pt')) args.maze_structure = data_args.maze_structure elif args.train_reward: model_type = 'reward' if args.neg_reward: model_type += '_neg_reward' if args.file_path: model_type += '_dynamics_transfer' toprint += ['algo', 'gae'] if args.planning: model_type += '_planning' elif args.train_online: model_type = 'online' toprint += ['lr', 'dec_loss_coef', 'inv_loss_coef', 'rollout', 'dim'] if args.transfer: model_type += '_transfer' name = '' for arg in toprint: name += '_{}{}'.format(arg, args_param[arg]) out_dir = os.path.join(args.out, env_name, model_type, name) args.out = out_dir dynamics_path = '' if args.dynamics_module is not None and not args.baseline: dynamics_path = args.dynamics_module.split('/') dynamics_path = dynamics_path[-4] + dynamics_path[-2] +\ '_' + dynamics_path[-1].strip('.pt') args.out = os.path.join(out_dir, dynamics_path) os.makedirs(args.out, exist_ok=True) # create the tensorboard summary writer here tb_log_dir = os.path.join(args.log_dir, env_name, model_type, name, dynamics_path, 'tb_logs') print(tb_log_dir) print(args.out) if args.reset_dir: shutil.rmtree(tb_log_dir, ignore_errors=True) os.makedirs(tb_log_dir, exist_ok=True) tb_writer = SummaryWriter(log_dir=tb_log_dir) # dump all the arguments in the tb_log_dir print(args, file=open(os.path.join(tb_log_dir, "arguments"), "w")) env = create_env(args.env_name, framework=args.framework, args=args) if args.train_dynamics: train_dynamics(env, args, None) # tb_writer if args.train_reward: model_name = 'rewards_module' if args.from_checkpoint is not None: # using curriculum model_name += 'curr' if args.single_env: model_name += '_single_env' args.maze_structure = env._env.MAZE_STRUCTURE args.model_name = model_name enc = None d_module = None assert args.dynamics_module is not None enc = load_encoder(env.observation_space.shape[0], args) if args.planning: d_module = load_d_module(env.action_space.shape[0], args) shared_model = R_Module(env.action_space.shape[0], args.dim, discrete=args.discrete, baseline=args.baseline, state_space=env.observation_space.shape[0]) # shared reward module for everyone shared_model.share_memory() if args.no_shared: optimizer = None else: optimizer = my_optim.SharedAdam(shared_model.parameters(), lr=args.lr) optimizer.share_memory() processes = [] train_agent_method = None total_args = args train_agent_method = train_rewards for rank in range(0, args.num_processes): if rank==0: p = mp.Process(target=train_agent_method, args=( rank, total_args, shared_model, enc, optimizer, tb_log_dir, d_module)) else: p = mp.Process(target=train_agent_method, args=( rank, total_args, shared_model, enc, optimizer, None, d_module)) p.start() processes.append(p) for p in processes: p.join() torch.save((shared_model.state_dict(), args), os.path.join( args.out, model_name + '%s.pt' % args.num_episodes)) print(os.path.join(args.out, model_name)) if args.train_online: model_name = 'rewards_module' if args.from_checkpoint is not None: # using curriculum model_name += 'curr' if args.single_env: model_name += '_single_env' args.maze_structure = env._env.MAZE_STRUCTURE args.model_name = model_name shared_enc = Encoder(env.observation_space.shape[0], args.dim, use_conv=args.use_conv) shared_dec = Decoder(env.observation_space.shape[0], args.dim, use_conv=args.use_conv) shared_d_module = D_Module(env.action_space.shape[0], args.dim, args.discrete) shared_r_module = R_Module(env.action_space.shape[0], args.dim, discrete=args.discrete, baseline=args.baseline, state_space=env.observation_space.shape[0]) shared_enc = Encoder(env.observation_space.shape[0], args.dim, use_conv=args.use_conv) shared_dec = Decoder(env.observation_space.shape[0], args.dim, use_conv=args.use_conv) shared_d_module = D_Module(env.action_space.shape[0], args.dim, args.discrete) shared_r_module = R_Module(env.action_space.shape[0], args.dim, discrete=args.discrete, baseline=args.baseline, state_space=env.observation_space.shape[0]) shared_enc.share_memory() shared_dec.share_memory() shared_d_module.share_memory() shared_r_module.share_memory() all_params = chain(shared_enc.parameters(), shared_dec.parameters(), shared_d_module.parameters(), shared_r_module.parameters()) shared_model = [shared_enc, shared_dec, shared_d_module, shared_r_module] if args.single_env: model_name += '_single_env' args.maze_structure = env.MAZE_STRUCTURE if args.no_shared: optimizer = None else: optimizer = my_optim.SharedAdam(all_params, lr=args.lr) optimizer.share_memory() train_agent_method = train_online processes = [] for rank in range(0, args.num_processes): if rank==0: p = mp.Process(target=train_agent_method, args=( rank, args, shared_model, optimizer, tb_log_dir)) else: p = mp.Process(target=train_agent_method, args=( rank, args, shared_model, optimizer)) p.start() processes.append(p) # start an eval process here eval_agent_method = eval_reward p = mp.Process(target=eval_agent_method, args=( args, shared_model, tb_log_dir)) p.start() processes.append(p) for p in processes: p.join() results_dict = {'args': args} torch.save((shared_r_module.state_dict(), args), os.path.join( args.out, 'reward_module%s.pt' % args.num_episodes)) results_dict['enc'] = shared_enc.state_dict() results_dict['dec'] = shared_dec.state_dict() results_dict['d_module'] = shared_d_module.state_dict() torch.save(results_dict, os.path.join(args.out, 'dynamics_module%s.pt' % args.num_episodes)) log("Saved model %s" % os.path.join(args.out, model_name))
ddr-master
main.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import math import numpy as np import os import time import torch import torch.nn.functional as F import torch.optim as optim from torch.autograd import Variable from envs import * from model import Encoder, Decoder, D_Module, R_Module from common import * from tensorboardX import SummaryWriter from itertools import chain from eval import test def eval_reward(args, shared_model, writer_dir=None): """ For evaluation Arguments: - writer: the tensorboard summary writer directory (note: can't get it working directly with the SummaryWriter object) """ writer = SummaryWriter(log_dir=os.path.join(writer_dir,'eval')) if writer_dir is not None else None # current episode stats episode_reward = episode_value_mse = episode_td_error = episode_pg_loss = episode_length = 0 # global stats i_episode = 0 total_episode = total_steps = 0 num_goals_achieved = 0 # intilialize the env and models torch.manual_seed(args.seed) env = create_env(args.env_name, framework=args.framework, args=args) set_seed(args.seed , env, args.framework) shared_enc, shared_dec, shared_d_module, shared_r_module = shared_model enc = Encoder(env.observation_space.shape[0], args.dim, use_conv=args.use_conv) dec = Decoder(env.observation_space.shape[0], args.dim, use_conv=args.use_conv) d_module = D_Module(env.action_space.shape[0], args.dim, args.discrete) r_module = R_Module(env.action_space.shape[0], args.dim, discrete=args.discrete, baseline=False, state_space=env.observation_space.shape[0]) all_params = chain(enc.parameters(), dec.parameters(), d_module.parameters(), r_module.parameters()) if args.from_checkpoint is not None: model_state, _ = torch.load(args.from_checkpoint) model.load_state_dict(model_state) # set the model to evaluation mode enc.eval() dec.eval() d_module.eval() r_module.eval() # reset the state state = env.reset() state = Variable(torch.from_numpy(state).float()) start = time.time() while total_episode < args.num_episodes: # Sync with the shared model r_module.load_state_dict(shared_r_module.state_dict()) d_module.load_state_dict(shared_d_module.state_dict()) enc.load_state_dict(shared_enc.state_dict()) dec.load_state_dict(shared_dec.state_dict()) # reset stuff cd_p = Variable(torch.zeros(1, args.lstm_dim)) hd_p = Variable(torch.zeros(1, args.lstm_dim)) # for the reward cr_p = Variable(torch.zeros(1, args.lstm_dim)) hr_p = Variable(torch.zeros(1, args.lstm_dim)) i_episode += 1 episode_length = 0 episode_reward = 0 args.local = True args.d = 0 succ, _, episode_reward, episode_length = test( 1, args, args, args, d_module, r_module, enc) log("Eval: succ {:.2f}, reward {:.2f}, length {:.2f}".format( succ, episode_reward, episode_length)) # Episode has ended, write the summaries here if writer_dir is not None: # current episode stats writer.add_scalar('eval/episode_reward', episode_reward, i_episode) writer.add_scalar('eval/episode_length', episode_length, i_episode) writer.add_scalar('eval/success', succ, i_episode) time.sleep(args.eval_every) print("sleep")
ddr-master
eval_modules.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import math import torch import torch.optim as optim class SharedAdam(optim.Adam): """Implements Adam algorithm with shared states. """ def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0): super(SharedAdam, self).__init__(params, lr, betas, eps, weight_decay) for group in self.param_groups: for p in group['params']: state = self.state[p] state['step'] = torch.zeros(1) state['exp_avg'] = p.data.new().resize_as_(p.data).zero_() state['exp_avg_sq'] = p.data.new().resize_as_(p.data).zero_() def share_memory(self): for group in self.param_groups: for p in group['params']: state = self.state[p] state['step'].share_memory_() state['exp_avg'].share_memory_() state['exp_avg_sq'].share_memory_() def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data state = self.state[p] exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] beta1, beta2 = group['betas'] state['step'] += 1 if group['weight_decay'] != 0: grad = grad.add(group['weight_decay'], p.data) # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(1 - beta1, grad) exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) denom = exp_avg_sq.sqrt().add_(group['eps']) bias_correction1 = 1 - beta1**state['step'][0] bias_correction2 = 1 - beta2**state['step'][0] step_size = group['lr'] * math.sqrt( bias_correction2) / bias_correction1 p.data.addcdiv_(exp_avg, denom, value=-float(step_size.data.numpy()[0])) return loss
ddr-master
my_optim.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement. import fire from llama import Llama def main( ckpt_dir: str, tokenizer_path: str, temperature: float = 0.0, top_p: float = 0.9, max_seq_len: int = 192, max_gen_len: int = 128, max_batch_size: int = 4, ): generator = Llama.build( ckpt_dir=ckpt_dir, tokenizer_path=tokenizer_path, max_seq_len=max_seq_len, max_batch_size=max_batch_size, ) prompts = [ '''def remove_non_ascii(s: str) -> str: """ <FILL> return result ''', """# Installation instructions: ```bash <FILL> ``` This downloads the LLaMA inference code and installs the repository as a local pip package. """, """class InterfaceManagerFactory(AbstractManagerFactory): def __init__(<FILL> def main(): factory = InterfaceManagerFactory(start=datetime.now()) managers = [] for i in range(10): managers.append(factory.build(id=i)) """, """/-- A quasi-prefunctoid is 1-connected iff all its etalisations are 1-connected. -/ theorem connected_iff_etalisation [C D : precategoroid] (P : quasi_prefunctoid C D) : π₁ P = 0 ↔ <FILL> = 0 := begin split, { intros h f, rw pi_1_etalisation at h, simp [h], refl }, { intro h, have := @quasi_adjoint C D P, simp [←pi_1_etalisation, this, h], refl } end """, ] prefixes = [p.split("<FILL>")[0] for p in prompts] suffixes = [p.split("<FILL>")[1] for p in prompts] results = generator.text_infilling( prefixes=prefixes, suffixes=suffixes, max_gen_len=max_gen_len, temperature=temperature, top_p=top_p, ) for prompt, result in zip(prompts, results): print("\n================= Prompt text =================\n") print(prompt) print("\n================= Filled text =================\n") print(result["full_text"]) if __name__ == "__main__": fire.Fire(main)
codellama-main
example_infilling.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement. from typing import Optional import fire from llama import Llama def main( ckpt_dir: str, tokenizer_path: str, temperature: float = 0.2, top_p: float = 0.95, max_seq_len: int = 512, max_batch_size: int = 8, max_gen_len: Optional[int] = None, ): generator = Llama.build( ckpt_dir=ckpt_dir, tokenizer_path=tokenizer_path, max_seq_len=max_seq_len, max_batch_size=max_batch_size, ) instructions = [ [ { "role": "user", "content": "In Bash, how do I list all text files in the current directory (excluding subdirectories) that have been modified in the last month?", } ], [ { "role": "user", "content": "What is the difference between inorder and preorder traversal? Give an example in Python.", } ], [ { "role": "system", "content": "Provide answers in JavaScript", }, { "role": "user", "content": "Write a function that computes the set of sums of all contiguous sublists of a given list.", } ], ] results = generator.chat_completion( instructions, # type: ignore max_gen_len=max_gen_len, temperature=temperature, top_p=top_p, ) for instruction, result in zip(instructions, results): for msg in instruction: print(f"{msg['role'].capitalize()}: {msg['content']}\n") print( f"> {result['generation']['role'].capitalize()}: {result['generation']['content']}" ) print("\n==================================\n") if __name__ == "__main__": fire.Fire(main)
codellama-main
example_instructions.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement. from typing import Optional import fire from llama import Llama def main( ckpt_dir: str, tokenizer_path: str, temperature: float = 0.2, top_p: float = 0.9, max_seq_len: int = 256, max_batch_size: int = 4, max_gen_len: Optional[int] = None, ): generator = Llama.build( ckpt_dir=ckpt_dir, tokenizer_path=tokenizer_path, max_seq_len=max_seq_len, max_batch_size=max_batch_size, ) prompts = [ # For these prompts, the expected answer is the natural continuation of the prompt """\ import socket def ping_exponential_backoff(host: str):""", """\ import argparse def main(string: str): print(string) print(string[::-1]) if __name__ == "__main__":""" ] results = generator.text_completion( prompts, max_gen_len=max_gen_len, temperature=temperature, top_p=top_p, ) for prompt, result in zip(prompts, results): print(prompt) print(f"> {result['generation']}") print("\n==================================\n") if __name__ == "__main__": fire.Fire(main)
codellama-main
example_completion.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement. from setuptools import find_packages, setup def get_requirements(path: str): return [l.strip() for l in open(path)] setup( name="codellama", version="0.0.1", packages=find_packages(), install_requires=get_requirements("requirements.txt"), )
codellama-main
setup.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement. import json import os import sys import time from pathlib import Path from typing import List, Literal, Optional, Tuple, TypedDict import torch import torch.nn.functional as F from fairscale.nn.model_parallel.initialize import ( get_model_parallel_rank, initialize_model_parallel, model_parallel_is_initialized, ) from llama.model import ModelArgs, Transformer from llama.tokenizer import Tokenizer Role = Literal["system", "user", "assistant"] class Message(TypedDict): role: Role content: str class InfillingPrediction(TypedDict, total=False): generation: str full_text: str tokens: List[str] # not required logprobs: List[float] # not required class CompletionPrediction(TypedDict, total=False): generation: str tokens: List[str] # not required logprobs: List[float] # not required class ChatPrediction(TypedDict, total=False): generation: Message tokens: List[str] # not required logprobs: List[float] # not required Dialog = List[Message] B_INST, E_INST = "[INST]", "[/INST]" B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n" SPECIAL_TAGS = [B_INST, E_INST, "<<SYS>>", "<</SYS>>"] UNSAFE_ERROR = "Error: special tags are not allowed as part of the prompt." class Llama: @staticmethod def build( ckpt_dir: str, tokenizer_path: str, max_seq_len: int, max_batch_size: int, model_parallel_size: Optional[int] = None, ) -> "Llama": if not torch.distributed.is_initialized(): torch.distributed.init_process_group("nccl") if not model_parallel_is_initialized(): if model_parallel_size is None: model_parallel_size = int(os.environ.get("WORLD_SIZE", 1)) initialize_model_parallel(model_parallel_size) local_rank = int(os.environ.get("LOCAL_RANK", 0)) torch.cuda.set_device(local_rank) # seed must be the same in all processes torch.manual_seed(1) if local_rank > 0: sys.stdout = open(os.devnull, "w") start_time = time.time() checkpoints = sorted(Path(ckpt_dir).glob("*.pth")) assert len(checkpoints) > 0, f"no checkpoint files found in {ckpt_dir}" assert model_parallel_size == len( checkpoints ), f"Loading a checkpoint for MP={len(checkpoints)} but world size is {model_parallel_size}" ckpt_path = checkpoints[get_model_parallel_rank()] checkpoint = torch.load(ckpt_path, map_location="cpu") with open(Path(ckpt_dir) / "params.json", "r") as f: params = json.loads(f.read()) model_args: ModelArgs = ModelArgs( max_seq_len=max_seq_len, max_batch_size=max_batch_size, **params, ) tokenizer = Tokenizer(model_path=tokenizer_path) model_args.vocab_size = tokenizer.n_words if torch.cuda.is_bf16_supported(): torch.set_default_tensor_type(torch.cuda.BFloat16Tensor) else: torch.set_default_tensor_type(torch.cuda.HalfTensor) model = Transformer(model_args) model.load_state_dict(checkpoint, strict=False) print(f"Loaded in {time.time() - start_time:.2f} seconds") return Llama(model, tokenizer) def __init__(self, model: Transformer, tokenizer: Tokenizer): self.model = model self.tokenizer = tokenizer @torch.inference_mode() def generate( self, prompt_tokens: List[List[int]], max_gen_len: int, temperature: float = 0.6, top_p: float = 0.9, logprobs: bool = False, echo: bool = False, stop_token: Optional[int] = None, ) -> Tuple[List[List[int]], Optional[List[List[float]]]]: if stop_token is None: stop_token = self.tokenizer.eos_id params = self.model.params bsz = len(prompt_tokens) assert bsz <= params.max_batch_size, (bsz, params.max_batch_size) min_prompt_len = min(len(t) for t in prompt_tokens) max_prompt_len = max(len(t) for t in prompt_tokens) assert max_prompt_len <= params.max_seq_len total_len = min(params.max_seq_len, max_gen_len + max_prompt_len) pad_id = self.tokenizer.pad_id tokens = torch.full((bsz, total_len), pad_id, dtype=torch.long, device="cuda") for k, t in enumerate(prompt_tokens): tokens[k, : len(t)] = torch.tensor(t, dtype=torch.long, device="cuda") if logprobs: token_logprobs = torch.zeros_like(tokens, dtype=torch.float) prev_pos = 0 stop_reached = torch.tensor([False] * bsz, device="cuda") input_text_mask = tokens != pad_id for cur_pos in range(min_prompt_len, total_len): logits = self.model.forward(tokens[:, prev_pos:cur_pos], prev_pos) if logprobs: token_logprobs[:, prev_pos + 1 : cur_pos + 1] = -F.cross_entropy( input=logits.transpose(1, 2), target=tokens[:, prev_pos + 1 : cur_pos + 1], reduction="none", ignore_index=pad_id, ) if temperature > 0: probs = torch.softmax(logits[:, -1] / temperature, dim=-1) next_token = sample_top_p(probs, top_p) else: next_token = torch.argmax(logits[:, -1], dim=-1) next_token = next_token.reshape(-1) # only replace token if prompt has already been generated next_token = torch.where( input_text_mask[:, cur_pos], tokens[:, cur_pos], next_token ) tokens[:, cur_pos] = next_token stop_reached |= (~input_text_mask[:, cur_pos]) & (next_token == stop_token) prev_pos = cur_pos if all(stop_reached): break if logprobs: token_logprobs = token_logprobs.tolist() out_tokens, out_logprobs = [], [] for i, toks in enumerate(tokens.tolist()): # cut to max gen len start = 0 if echo else len(prompt_tokens[i]) toks = toks[start : len(prompt_tokens[i]) + max_gen_len] probs = None if logprobs: probs = token_logprobs[i][start : len(prompt_tokens[i]) + max_gen_len] # cut to stop token if present if stop_token in toks: stop_idx = toks.index(stop_token) toks = toks[:stop_idx] probs = probs[:stop_idx] if logprobs else None out_tokens.append(toks) out_logprobs.append(probs) return (out_tokens, out_logprobs if logprobs else None) def text_completion( self, prompts: List[str], temperature: float = 0.6, top_p: float = 0.9, max_gen_len: Optional[int] = None, logprobs: bool = False, echo: bool = False, ) -> List[CompletionPrediction]: if max_gen_len is None: max_gen_len = self.model.params.max_seq_len - 1 prompt_tokens = [self.tokenizer.encode(x, bos=True, eos=False) for x in prompts] generation_tokens, generation_logprobs = self.generate( prompt_tokens=prompt_tokens, max_gen_len=max_gen_len, temperature=temperature, top_p=top_p, logprobs=logprobs, echo=echo, ) if logprobs: return [ { "generation": self.tokenizer.decode(t), "tokens": [self.tokenizer.decode(x) for x in t], "logprobs": logprobs_i, } for t, logprobs_i in zip(generation_tokens, generation_logprobs) ] return [{"generation": self.tokenizer.decode(t)} for t in generation_tokens] def text_infilling( self, prefixes: List[str], suffixes: List[str], temperature: float = 0.6, top_p: float = 0.9, max_gen_len: Optional[int] = None, logprobs: bool = False, suffix_first: bool = False, ) -> List[InfillingPrediction]: assert self.tokenizer.eot_id is not None if max_gen_len is None: max_gen_len = self.model.params.max_seq_len - 1 prompt_tokens = [ infilling_prompt_tokens( self.tokenizer, prefix, suffix, suffix_first=suffix_first ) for prefix, suffix in zip(prefixes, suffixes) ] generation_tokens, generation_logprobs = self.generate( prompt_tokens=prompt_tokens, max_gen_len=max_gen_len, temperature=temperature, top_p=top_p, logprobs=logprobs, echo=False, stop_token=self.tokenizer.eot_id, ) generations = [self.tokenizer.decode_infilling(t) for t in generation_tokens] if logprobs: return [ { "generation": generation, "logprobs": logprobs_i, "tokens": t, "full_text": prefix + generation + suffix, } for prefix, suffix, generation, t, logprobs_i in zip( prefixes, suffixes, generations, generation_tokens, generation_logprobs, ) ] else: return [ { "generation": generation, "full_text": prefix + generation + suffix, } for prefix, suffix, generation in zip(prefixes, suffixes, generations) ] def chat_completion( self, dialogs: List[Dialog], temperature: float = 0.6, top_p: float = 0.9, max_gen_len: Optional[int] = None, logprobs: bool = False, ) -> List[ChatPrediction]: if max_gen_len is None: max_gen_len = self.model.params.max_seq_len - 1 prompt_tokens = [] unsafe_requests = [] for dialog in dialogs: unsafe_requests.append( any([tag in msg["content"] for tag in SPECIAL_TAGS for msg in dialog]) ) if dialog[0]["role"] == "system": dialog = [ { "role": dialog[1]["role"], "content": B_SYS + dialog[0]["content"] + E_SYS + dialog[1]["content"], } ] + dialog[2:] assert all([msg["role"] == "user" for msg in dialog[::2]]) and all( [msg["role"] == "assistant" for msg in dialog[1::2]] ), ( "model only supports 'system', 'user' and 'assistant' roles, " "starting with 'system', then 'user' and alternating (u/a/u/a/u...)" ) dialog_tokens: List[int] = sum( [ self.tokenizer.encode( f"{B_INST} {(prompt['content']).strip()} {E_INST} {(answer['content']).strip()} ", bos=True, eos=True, ) for prompt, answer in zip( dialog[::2], dialog[1::2], ) ], [], ) assert ( dialog[-1]["role"] == "user" ), f"Last message must be from user, got {dialog[-1]['role']}" dialog_tokens += self.tokenizer.encode( f"{B_INST} {(dialog[-1]['content']).strip()} {E_INST}", bos=True, eos=False, ) prompt_tokens.append(dialog_tokens) generation_tokens, generation_logprobs = self.generate( prompt_tokens=prompt_tokens, max_gen_len=max_gen_len, temperature=temperature, top_p=top_p, logprobs=logprobs, ) if logprobs: return [ { "generation": { "role": "assistant", "content": self.tokenizer.decode(t) if not unsafe else UNSAFE_ERROR, }, "tokens": [self.tokenizer.decode(x) for x in t], "logprobs": logprobs_i, } for t, logprobs_i, unsafe in zip( generation_tokens, generation_logprobs, unsafe_requests ) ] return [ { "generation": { "role": "assistant", "content": self.tokenizer.decode(t) if not unsafe else UNSAFE_ERROR, } } for t, unsafe in zip(generation_tokens, unsafe_requests) ] def sample_top_p(probs, p): probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True) probs_sum = torch.cumsum(probs_sort, dim=-1) mask = probs_sum - probs_sort > p probs_sort[mask] = 0.0 probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True)) next_token = torch.multinomial(probs_sort, num_samples=1) next_token = torch.gather(probs_idx, -1, next_token) return next_token def infilling_prompt_tokens( tokenizer: Tokenizer, pre: str, suf: str, suffix_first: bool = False, ) -> List[int]: """ Format and encode an infilling problem. If `suffix_first` is set, format in suffix-prefix-middle format. """ assert tokenizer.prefix_id is not None assert tokenizer.middle_id is not None assert tokenizer.suffix_id is not None if suffix_first: # format as "<PRE> <SUF>{suf} <MID> {pre}" return ( [tokenizer.bos_id, tokenizer.prefix_id, tokenizer.suffix_id] + tokenizer.encode_infilling(suf) + [tokenizer.middle_id] + tokenizer.encode(pre, bos=False, eos=False) ) else: # format as "<PRE> {pre} <SUF>{suf} <MID>" return ( [tokenizer.bos_id, tokenizer.prefix_id] + tokenizer.encode(pre, bos=False, eos=False) + [tokenizer.suffix_id] + tokenizer.encode_infilling(suf) + [tokenizer.middle_id] )
codellama-main
llama/generation.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement. from .generation import Llama from .model import ModelArgs, Transformer from .tokenizer import Tokenizer
codellama-main
llama/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement. import math from dataclasses import dataclass from typing import Any, Optional, Tuple import fairscale.nn.model_parallel.initialize as fs_init import torch import torch.nn.functional as F from fairscale.nn.model_parallel.layers import ( ColumnParallelLinear, ParallelEmbedding, RowParallelLinear, ) from torch import nn @dataclass class ModelArgs: dim: int = 4096 n_layers: int = 32 n_heads: int = 32 n_kv_heads: Optional[int] = None vocab_size: int = -1 # defined later by tokenizer multiple_of: int = 256 # make SwiGLU hidden layer size multiple of large power of 2 ffn_dim_multiplier: Optional[float] = None norm_eps: float = 1e-5 rope_theta: float = 10000 max_batch_size: int = 32 max_seq_len: int = 2048 class RMSNorm(torch.nn.Module): def __init__(self, dim: int, eps: float = 1e-6): super().__init__() self.eps = eps self.weight = nn.Parameter(torch.ones(dim)) def _norm(self, x): return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) def forward(self, x): output = self._norm(x.float()).type_as(x) return output * self.weight def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0): freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) t = torch.arange(end, device=freqs.device, dtype=torch.float32) # type: ignore freqs = torch.outer(t, freqs) # type: ignore freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64 return freqs_cis def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor): ndim = x.ndim assert 0 <= 1 < ndim assert freqs_cis.shape == (x.shape[1], x.shape[-1]) shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)] return freqs_cis.view(*shape) def apply_rotary_emb( xq: torch.Tensor, xk: torch.Tensor, freqs_cis: torch.Tensor, ) -> Tuple[torch.Tensor, torch.Tensor]: xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) freqs_cis = reshape_for_broadcast(freqs_cis, xq_) xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3) xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3) return xq_out.type_as(xq), xk_out.type_as(xk) def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor: """torch.repeat_interleave(x, dim=2, repeats=n_rep)""" bs, slen, n_kv_heads, head_dim = x.shape if n_rep == 1: return x return ( x[:, :, :, None, :] .expand(bs, slen, n_kv_heads, n_rep, head_dim) .reshape(bs, slen, n_kv_heads * n_rep, head_dim) ) class Attention(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads model_parallel_size = fs_init.get_model_parallel_world_size() self.n_local_heads = args.n_heads // model_parallel_size self.n_local_kv_heads = self.n_kv_heads // model_parallel_size self.n_rep = self.n_local_heads // self.n_local_kv_heads self.head_dim = args.dim // args.n_heads self.wq = ColumnParallelLinear( args.dim, args.n_heads * self.head_dim, bias=False, gather_output=False, init_method=lambda x: x, ) self.wk = ColumnParallelLinear( args.dim, self.n_kv_heads * self.head_dim, bias=False, gather_output=False, init_method=lambda x: x, ) self.wv = ColumnParallelLinear( args.dim, self.n_kv_heads * self.head_dim, bias=False, gather_output=False, init_method=lambda x: x, ) self.wo = RowParallelLinear( args.n_heads * self.head_dim, args.dim, bias=False, input_is_parallel=True, init_method=lambda x: x, ) self.cache_k = torch.zeros( ( args.max_batch_size, args.max_seq_len, self.n_local_kv_heads, self.head_dim, ) ).cuda() self.cache_v = torch.zeros( ( args.max_batch_size, args.max_seq_len, self.n_local_kv_heads, self.head_dim, ) ).cuda() def forward( self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor], ): bsz, seqlen, _ = x.shape xq, xk, xv = self.wq(x), self.wk(x), self.wv(x) xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim) xk = xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim) xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim) xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis) self.cache_k = self.cache_k.to(xq) self.cache_v = self.cache_v.to(xq) self.cache_k[:bsz, start_pos : start_pos + seqlen] = xk self.cache_v[:bsz, start_pos : start_pos + seqlen] = xv keys = self.cache_k[:bsz, : start_pos + seqlen] values = self.cache_v[:bsz, : start_pos + seqlen] # repeat k/v heads if n_kv_heads < n_heads keys = repeat_kv(keys, self.n_rep) # (bs, seqlen, n_local_heads, head_dim) values = repeat_kv(values, self.n_rep) # (bs, seqlen, n_local_heads, head_dim) xq = xq.transpose(1, 2) # (bs, n_local_heads, seqlen, head_dim) keys = keys.transpose(1, 2) values = values.transpose(1, 2) scores = torch.matmul(xq, keys.transpose(2, 3)) / math.sqrt(self.head_dim) if mask is not None: scores = scores + mask # (bs, n_local_heads, seqlen, cache_len + seqlen) scores = F.softmax(scores.float(), dim=-1).type_as(xq) output = torch.matmul(scores, values) # (bs, n_local_heads, seqlen, head_dim) output = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1) return self.wo(output) class FeedForward(nn.Module): def __init__( self, dim: int, hidden_dim: int, multiple_of: int, ffn_dim_multiplier: Optional[float], ): super().__init__() hidden_dim = int(2 * hidden_dim / 3) # custom dim factor multiplier if ffn_dim_multiplier is not None: hidden_dim = int(ffn_dim_multiplier * hidden_dim) hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) self.w1 = ColumnParallelLinear( dim, hidden_dim, bias=False, gather_output=False, init_method=lambda x: x ) self.w2 = RowParallelLinear( hidden_dim, dim, bias=False, input_is_parallel=True, init_method=lambda x: x ) self.w3 = ColumnParallelLinear( dim, hidden_dim, bias=False, gather_output=False, init_method=lambda x: x ) def forward(self, x): return self.w2(F.silu(self.w1(x)) * self.w3(x)) class TransformerBlock(nn.Module): def __init__(self, layer_id: int, args: ModelArgs): super().__init__() self.n_heads = args.n_heads self.dim = args.dim self.head_dim = args.dim // args.n_heads self.attention = Attention(args) self.feed_forward = FeedForward( dim=args.dim, hidden_dim=4 * args.dim, multiple_of=args.multiple_of, ffn_dim_multiplier=args.ffn_dim_multiplier, ) self.layer_id = layer_id self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps) self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps) def forward( self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor], ): h = x + self.attention.forward( self.attention_norm(x), start_pos, freqs_cis, mask ) out = h + self.feed_forward.forward(self.ffn_norm(h)) return out class Transformer(nn.Module): def __init__(self, params: ModelArgs): super().__init__() self.params = params self.vocab_size = params.vocab_size self.n_layers = params.n_layers self.tok_embeddings = ParallelEmbedding( params.vocab_size, params.dim, init_method=lambda x: x ) self.layers = torch.nn.ModuleList() for layer_id in range(params.n_layers): self.layers.append(TransformerBlock(layer_id, params)) self.norm = RMSNorm(params.dim, eps=params.norm_eps) self.output = ColumnParallelLinear( params.dim, params.vocab_size, bias=False, init_method=lambda x: x ) self.freqs_cis = precompute_freqs_cis( self.params.dim // self.params.n_heads, self.params.max_seq_len * 2, params.rope_theta, ) @torch.inference_mode() def forward(self, tokens: torch.Tensor, start_pos: int): _bsz, seqlen = tokens.shape h = self.tok_embeddings(tokens) self.freqs_cis = self.freqs_cis.to(h.device) freqs_cis = self.freqs_cis[start_pos : start_pos + seqlen] mask = None if seqlen > 1: mask = torch.full( (1, 1, seqlen, seqlen), float("-inf"), device=tokens.device ) mask = mask.to(torch.float32).triu(diagonal=start_pos+1).type_as(h) for layer in self.layers: h = layer(h, start_pos, freqs_cis, mask) h = self.norm(h) output = self.output(h).float() return output
codellama-main
llama/model.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement. import os from logging import getLogger from typing import List, Optional from sentencepiece import SentencePieceProcessor logger = getLogger() class Tokenizer: def __init__(self, model_path: str): # reload tokenizer assert os.path.isfile(model_path), model_path self.sp_model = SentencePieceProcessor(model_file=model_path) logger.info(f"Reloaded SentencePiece model from {model_path}") # BOS / EOS token IDs self.n_words: int = self.sp_model.vocab_size() self.bos_id: int = self.sp_model.bos_id() self.eos_id: int = self.sp_model.eos_id() self.pad_id: int = self.sp_model.pad_id() # token IDs for special infilling tokens self.prefix_id: Optional[int] = self.sp_model.piece_to_id("▁<PRE>") or None self.middle_id: Optional[int] = self.sp_model.piece_to_id("▁<MID>") or None self.suffix_id: Optional[int] = self.sp_model.piece_to_id("▁<SUF>") or None self.eot_id: Optional[int] = self.sp_model.piece_to_id("▁<EOT>") or None logger.info( f"#words: {self.n_words} - BOS ID: {self.bos_id} - EOS ID: {self.eos_id} " f"- PRE ID: {self.prefix_id} - MID ID: {self.middle_id} - SUF ID: {self.suffix_id} - EOT ID: {self.eot_id}" ) assert self.sp_model.vocab_size() == self.sp_model.get_piece_size() def encode(self, s: str, bos: bool, eos: bool) -> List[int]: assert type(s) is str t = self.sp_model.encode(s) if bos: t = [self.bos_id] + t if eos: t = t + [self.eos_id] return t def decode(self, t: List[int]) -> str: return self.sp_model.decode(t) def encode_infilling(self, s: str) -> List[int]: """Encode a string without an implicit leading space.""" return self.sp_model.encode("☺" + s)[2:] def decode_infilling(self, t: List[int]) -> str: """Decode a string without an implicit leading space.""" return self.sp_model.decode([self.sp_model.piece_to_id("☺")] + t)[1:]
codellama-main
llama/tokenizer.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import torch.nn as nn import torch.nn.functional as F from layers import convnet, coordinates class FiLMed(nn.Module): """ Implements a FiLMed block. """ def __init__(self, num_conv_filts_in, num_conv_filts, stride, dilation): super(FiLMed, self).__init__() self.conv1 = nn.Conv2d(num_conv_filts_in, num_conv_filts, kernel_size=3, padding=1, stride=stride, dilation=dilation) self.conv2 = nn.Conv2d(num_conv_filts, num_conv_filts, kernel_size=3, padding=1, stride=stride, dilation=dilation) self.batchnorm2 = nn.BatchNorm2d(num_conv_filts, affine=False) def forward(self, x, gamma, beta): b1 = F.relu(self.conv1(x)) b2 = self.batchnorm2(self.conv2(b1)) gamma = gamma.unsqueeze(2).unsqueeze(3).expand_as(b2) beta = beta.unsqueeze(2).unsqueeze(3).expand_as(b2) b2 = F.relu((b2 * gamma) + beta) return (b1 + b2) class FiLM(nn.Module): """ Implements FiLM. """ def __init__(self, vocab_dim, embedding_dim, padding_idx, lstm_hidden_dim_q, num_lstm_layers_q, bidirectional, num_conv_filts_base, num_conv_layers_base, stride_base, dilation_base, use_coordinates, num_conv_filts_film, num_conv_layers_film, stride_film, dilation_film, fcn_output_dim, fcn_coeff_dim, fcn_temp_dim, aggregate, output_hidden_dim, output_dim): super(FiLM, self).__init__() self.bidirectional = bidirectional self.use_coordinates = use_coordinates self.embeddings = nn.Embedding(vocab_dim, embedding_dim, padding_idx=padding_idx) self.lstm_q = nn.LSTM(embedding_dim, lstm_hidden_dim_q, num_lstm_layers_q, batch_first=True, bidirectional=bidirectional) if bidirectional: lstm_output_dim_q = (2 * lstm_hidden_dim_q) else: lstm_output_dim_q = lstm_hidden_dim_q # Compute required output dimension given convnet specs # * 2 for gamma and beta. Assumes constant num filters per layer num_feats = num_conv_filts_film * num_conv_layers_film * 2 self.num_conv_filts_film = num_conv_filts_film self.num_conv_layers_film = num_conv_layers_film self.decoder = nn.Linear(lstm_output_dim_q, num_feats) # Base convnet self.conv, num_channels, _ = convnet(num_conv_filts_base, num_conv_layers_base, stride_base, dilation_base) # Filmed convnet self.film_conv_modules = [] for i in range(num_conv_layers_film): num_channels += 2 if use_coordinates else 0 fcm = FiLMed(num_channels, num_conv_filts_film, stride_film, dilation_film) num_channels = num_conv_filts_film self.film_conv_modules.append(fcm) self.add_module('film_module_%d' % i, fcm) num_conv_filts_film += 2 if use_coordinates else 0 self.conv1 = nn.Conv2d(num_conv_filts_film, fcn_output_dim, kernel_size=1, padding=0) if aggregate == 'max': self.pool = nn.AdaptiveMaxPool2d((fcn_coeff_dim, fcn_temp_dim)) elif aggregate == 'mean': self.pool = nn.AdaptiveAvgPool2d((fcn_coeff_dim, fcn_temp_dim)) else: assert False, 'Unknown aggregate function.' self.use_coordinates_class = (use_coordinates and fcn_coeff_dim > 1 and fcn_temp_dim > 1) fcn_output_dim += 2 if self.use_coordinates_class else 0 adaptive_pool_dim = fcn_output_dim * fcn_coeff_dim * fcn_temp_dim self.output = nn.Sequential(nn.Linear(adaptive_pool_dim, output_hidden_dim), nn.ReLU(), nn.Linear(output_hidden_dim, output_dim)) def forward(self, a, len_a, q, len_q): embeddings = self.embeddings(q) packed = torch.nn.utils.rnn.pack_padded_sequence(embeddings, len_q, batch_first=True) lstm_q, _ = self.lstm_q(packed) unpacked, lens = torch.nn.utils.rnn.pad_packed_sequence(lstm_q, batch_first=True) if self.bidirectional: bid_q = unpacked.view(unpacked.size(0), unpacked.size(1), 2, int(unpacked.size(2) / 2)) enc_q = torch.cat((bid_q[torch.arange(bid_q.size(0), dtype=torch.long), lens - 1, 0], bid_q[torch.arange(bid_q.size(0), dtype=torch.long), lens - 1, 1]), dim=1) else: enc_q = unpacked[torch.arange(unpacked.size(0), dtype=torch.long), lens - 1] gammas_betas = self.decoder(enc_q) gammas_betas = gammas_betas.view(gammas_betas.size(0), self.num_conv_layers_film, self.num_conv_filts_film, 2) a = torch.unsqueeze(a, 1) a = self.conv(a) for i, fcm in enumerate(self.film_conv_modules): # Append coordinate maps if self.use_coordinates: coordinates_maps = coordinates(a.shape[2], a.shape[3]).to(a.device) a = torch.cat((a, coordinates_maps.expand(a.size(0), -1, -1, -1)), 1) # see FiLM appendix for + 1 a = fcm(a, gammas_betas[:, i, :, 0] + 1, gammas_betas[:, i, :, 1]) if self.use_coordinates: coordinates_maps = coordinates(a.shape[2], a.shape[3]).to(a.device) a = torch.cat((a, coordinates_maps.expand(a.size(0), -1, -1, -1)), 1) a = self.conv1(a) a = self.pool(a) if self.use_coordinates_class: coordinates_maps = coordinates(a.shape[2], a.shape[3]).to(a.device) a = torch.cat((a, coordinates_maps.expand(a.size(0), -1, -1, -1)), 1) a = a.view(a.size(0), -1) output = self.output(a) return output
daqa-master
daqa-mod/film.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import torch.nn as nn from layers import StackedAttention, StackedAttention1D, convnet, coordinates class LSTMN(nn.Module): def __init__(self, vocab_dim, embedding_dim, padding_idx, lstm_hidden_dim_q, num_lstm_layers_q, bidirectional, input_dim, lstm_hidden_dim_a, num_lstm_layers_a, output_hidden_dim, output_dim): super(LSTMN, self).__init__() self.bidirectional = bidirectional self.embeddings = nn.Embedding(vocab_dim, embedding_dim, padding_idx=padding_idx) self.lstm_q = nn.LSTM(embedding_dim, lstm_hidden_dim_q, num_lstm_layers_q, batch_first=True, bidirectional=bidirectional) self.lstm_a = nn.LSTM(input_dim, lstm_hidden_dim_a, num_lstm_layers_a, batch_first=True, bidirectional=bidirectional) if bidirectional: lstm_output_dim_q = (2 * lstm_hidden_dim_q) lstm_output_dim_a = (2 * lstm_hidden_dim_a) else: lstm_output_dim_q = lstm_hidden_dim_q lstm_output_dim_a = lstm_hidden_dim_a lstm_output_dim = lstm_output_dim_q + lstm_output_dim_a self.output = nn.Sequential(nn.Linear(lstm_output_dim, output_hidden_dim), nn.ReLU(), nn.Linear(output_hidden_dim, output_dim)) def forward(self, a, len_a, q, len_q): embeddings = self.embeddings(q) packed = torch.nn.utils.rnn.pack_padded_sequence(embeddings, len_q, batch_first=True) # self.lstm_q.flatten_parameters() lstm_q, _ = self.lstm_q(packed) unpacked, lens = torch.nn.utils.rnn.pad_packed_sequence(lstm_q, batch_first=True) # self.lstm_a.flatten_parameters() lstm_a, _ = self.lstm_a(a) if self.bidirectional: bid_q = unpacked.view(unpacked.size(0), unpacked.size(1), 2, int(unpacked.size(2) / 2)) bid_a = lstm_a.view(lstm_a.size(0), lstm_a.size(1), 2, int(lstm_a.size(2) / 2)) cat_q = torch.cat((bid_q[torch.arange(bid_q.size(0), dtype=torch.long), lens - 1, 0], bid_q[torch.arange(bid_q.size(0), dtype=torch.long), lens - 1, 1]), dim=1) cat_a = torch.cat((bid_a[torch.arange(bid_a.size(0), dtype=torch.long), len_a - 1, 0], bid_a[torch.arange(bid_a.size(0), dtype=torch.long), len_a - 1, 1]), dim=1) else: cat_a = lstm_a[torch.arange(lstm_a.size(0), dtype=torch.long), len_a - 1] cat_q = unpacked[torch.arange(unpacked.size(0), dtype=torch.long), lens - 1] cat = torch.cat((cat_a, cat_q), 1) output = self.output(cat) return output class FCNLSTMN(nn.Module): def __init__(self, vocab_dim, embedding_dim, padding_idx, lstm_hidden_dim_q, num_lstm_layers_q, bidirectional, num_conv_filts, num_conv_layers, stride, dilation, fcn_output_dim, fcn_coeff_dim, fcn_temp_dim, aggregate, output_hidden_dim, output_dim): super(FCNLSTMN, self).__init__() self.bidirectional = bidirectional self.embeddings = nn.Embedding(vocab_dim, embedding_dim, padding_idx=padding_idx) self.lstm_q = nn.LSTM(embedding_dim, lstm_hidden_dim_q, num_lstm_layers_q, batch_first=True, bidirectional=bidirectional) if bidirectional: lstm_output_dim_q = (2 * lstm_hidden_dim_q) else: lstm_output_dim_q = lstm_hidden_dim_q self.conv, num_channels, _ = convnet(num_conv_filts, num_conv_layers, stride, dilation) self.conv1 = nn.Conv2d(num_channels, fcn_output_dim, kernel_size=1, padding=0) if aggregate == 'max': self.pool = nn.AdaptiveMaxPool2d((fcn_coeff_dim, fcn_temp_dim)) elif aggregate == 'mean': self.pool = nn.AdaptiveAvgPool2d((fcn_coeff_dim, fcn_temp_dim)) else: assert False, 'Unknown aggregate function.' lstm_output_dim = lstm_output_dim_q \ + (fcn_output_dim * fcn_coeff_dim * fcn_temp_dim) self.output = nn.Sequential(nn.Linear(lstm_output_dim, output_hidden_dim), nn.ReLU(), nn.Linear(output_hidden_dim, output_dim)) def forward(self, a, len_a, q, len_q): embeddings = self.embeddings(q) packed = torch.nn.utils.rnn.pack_padded_sequence(embeddings, len_q, batch_first=True) # self.lstm_q.flatten_parameters() lstm_q, _ = self.lstm_q(packed) unpacked, lens = torch.nn.utils.rnn.pad_packed_sequence(lstm_q, batch_first=True) if self.bidirectional: bid_q = unpacked.view(unpacked.size(0), unpacked.size(1), 2, int(unpacked.size(2) / 2)) cat_q = torch.cat((bid_q[torch.arange(bid_q.size(0), dtype=torch.long), lens - 1, 0], bid_q[torch.arange(bid_q.size(0), dtype=torch.long), lens - 1, 1]), dim=1) else: cat_q = unpacked[torch.arange(unpacked.size(0), dtype=torch.long), lens - 1] a = torch.unsqueeze(a, 1) conv_a = self.conv(a) conv1_a = self.conv1(conv_a) pool_a = self.pool(conv1_a) cat_a = pool_a.view(pool_a.size(0), -1) cat = torch.cat((cat_a, cat_q), 1) output = self.output(cat) return output class CONVLSTMN(nn.Module): def __init__(self, vocab_dim, embedding_dim, padding_idx, lstm_hidden_dim_q, num_lstm_layers_q, bidirectional, input_dim, num_conv_filts, num_conv_layers, stride, dilation, lstm_hidden_dim_a, num_lstm_layers_a, output_hidden_dim, output_dim): super(CONVLSTMN, self).__init__() self.bidirectional = bidirectional self.embeddings = nn.Embedding(vocab_dim, embedding_dim, padding_idx=padding_idx) self.lstm_q = nn.LSTM(embedding_dim, lstm_hidden_dim_q, num_lstm_layers_q, batch_first=True, bidirectional=bidirectional) self.conv, num_channels, conv_red_dim = convnet(num_conv_filts, num_conv_layers, stride, dilation) self.lstm_a = nn.LSTM(num_channels * int(input_dim / conv_red_dim), lstm_hidden_dim_a, num_lstm_layers_a, batch_first=True, bidirectional=bidirectional) if bidirectional: lstm_output_dim_q = (2 * lstm_hidden_dim_q) lstm_output_dim_a = (2 * lstm_hidden_dim_a) else: lstm_output_dim_q = lstm_hidden_dim_q lstm_output_dim_a = lstm_hidden_dim_a lstm_output_dim = lstm_output_dim_q + lstm_output_dim_a self.output = nn.Sequential(nn.Linear(lstm_output_dim, output_hidden_dim), nn.ReLU(), nn.Linear(output_hidden_dim, output_dim)) def forward(self, a, len_a, q, len_q): embeddings = self.embeddings(q) packed = torch.nn.utils.rnn.pack_padded_sequence(embeddings, len_q, batch_first=True) # self.lstm_q.flatten_parameters() lstm_q, _ = self.lstm_q(packed) unpacked, lens = torch.nn.utils.rnn.pad_packed_sequence(lstm_q, batch_first=True) a = torch.unsqueeze(a, 1) a = self.conv(a) a = a.permute(0, 2, 1, 3).contiguous() a = a.view(a.size(0), a.size(1), a.size(2) * a.size(3)) lstm_a, _ = self.lstm_a(a) if self.bidirectional: bid_a = lstm_a.view(lstm_a.size(0), lstm_a.size(1), 2, int(lstm_a.size(2) / 2)) bid_q = unpacked.view(unpacked.size(0), unpacked.size(1), 2, int(unpacked.size(2) / 2)) cat_a = torch.cat((bid_a[torch.arange(bid_a.size(0), dtype=torch.long), -1, 0], bid_a[torch.arange(bid_a.size(0), dtype=torch.long), -1, 1]), dim=1) cat_q = torch.cat((bid_q[torch.arange(bid_q.size(0), dtype=torch.long), lens - 1, 0], bid_q[torch.arange(bid_q.size(0), dtype=torch.long), lens - 1, 1]), dim=1) else: cat_a = lstm_a[torch.arange(lstm_a.size(0), dtype=torch.long), -1] cat_q = unpacked[torch.arange(unpacked.size(0), dtype=torch.long), lens - 1] cat = torch.cat((cat_a, cat_q), 1) output = self.output(cat) return output class FCNLSTMNSA(nn.Module): def __init__(self, vocab_dim, embedding_dim, padding_idx, lstm_hidden_dim_q, num_lstm_layers_q, bidirectional, num_conv_filts, num_conv_layers, stride, dilation, fcn_output_dim, fcn_coeff_dim, fcn_temp_dim, aggregate, use_coordinates, stacked_att_dim, num_stacked_att, output_hidden_dim, output_dim): super(FCNLSTMNSA, self).__init__() self.bidirectional = bidirectional self.embeddings = nn.Embedding(vocab_dim, embedding_dim, padding_idx=padding_idx) self.lstm_q = nn.LSTM(embedding_dim, lstm_hidden_dim_q, num_lstm_layers_q, batch_first=True, bidirectional=bidirectional) if bidirectional: lstm_output_dim_q = (2 * lstm_hidden_dim_q) else: lstm_output_dim_q = lstm_hidden_dim_q self.conv, num_channels, _ = convnet(num_conv_filts, num_conv_layers, stride, dilation) self.conv1 = nn.Conv2d(num_channels, fcn_output_dim, kernel_size=1, padding=0) if aggregate == 'max': self.pool = nn.AdaptiveMaxPool2d((fcn_coeff_dim, fcn_temp_dim)) elif aggregate == 'mean': self.pool = nn.AdaptiveAvgPool2d((fcn_coeff_dim, fcn_temp_dim)) else: assert False, 'Unknown aggregate function.' self.use_coordinates = (use_coordinates and fcn_coeff_dim > 1 and fcn_temp_dim > 1) fcn_output_dim += 2 if self.use_coordinates else 0 self.projection = nn.Conv2d(fcn_output_dim, lstm_output_dim_q, kernel_size=1, padding=0) self.stacked_att = [] for i in range(num_stacked_att): sa = StackedAttention(lstm_output_dim_q, stacked_att_dim) self.stacked_att.append(sa) self.add_module('stacked_att_%d' % i, sa) self.output = nn.Sequential(nn.Linear(lstm_output_dim_q, output_hidden_dim), nn.ReLU(), nn.Linear(output_hidden_dim, output_dim)) def forward(self, a, len_a, q, len_q): embeddings = self.embeddings(q) packed = torch.nn.utils.rnn.pack_padded_sequence(embeddings, len_q, batch_first=True) # self.lstm_q.flatten_parameters() lstm_q, _ = self.lstm_q(packed) unpacked, lens = torch.nn.utils.rnn.pad_packed_sequence(lstm_q, batch_first=True) if self.bidirectional: bid_q = unpacked.view(unpacked.size(0), unpacked.size(1), 2, int(unpacked.size(2) / 2)) cat_q = torch.cat((bid_q[torch.arange(bid_q.size(0), dtype=torch.long), lens - 1, 0], bid_q[torch.arange(bid_q.size(0), dtype=torch.long), lens - 1, 1]), dim=1) else: cat_q = unpacked[torch.arange(unpacked.size(0), dtype=torch.long), lens - 1] a = torch.unsqueeze(a, 1) conv_a = self.conv(a) conv1_a = self.conv1(conv_a) pool_a = self.pool(conv1_a) if self.use_coordinates: coo = coordinates(pool_a.shape[2], pool_a.shape[3]).to(pool_a.device) pool_a = torch.cat((pool_a, coo.expand(pool_a.size(0), -1, -1, -1)), 1) pool_a = torch.tanh(self.projection(pool_a)) for sa in self.stacked_att: cat_q = sa(pool_a, cat_q) output = self.output(cat_q) return output class CONVLSTMNSA(nn.Module): def __init__(self, vocab_dim, embedding_dim, padding_idx, lstm_hidden_dim_q, num_lstm_layers_q, bidirectional, input_dim, num_conv_filts, num_conv_layers, stride, dilation, lstm_hidden_dim_a, num_lstm_layers_a, stacked_att_dim, num_stacked_att, output_hidden_dim, output_dim): super(CONVLSTMNSA, self).__init__() self.bidirectional = bidirectional self.embeddings = nn.Embedding(vocab_dim, embedding_dim, padding_idx=padding_idx) self.lstm_q = nn.LSTM(embedding_dim, lstm_hidden_dim_q, num_lstm_layers_q, batch_first=True, bidirectional=bidirectional) self.conv, num_channels, conv_red_dim = convnet(num_conv_filts, num_conv_layers, stride, dilation) self.lstm_a = nn.LSTM(num_channels * int(input_dim / conv_red_dim), lstm_hidden_dim_a, num_lstm_layers_a, batch_first=True, bidirectional=bidirectional) if bidirectional: lstm_output_dim_q = (2 * lstm_hidden_dim_q) lstm_output_dim_a = (2 * lstm_hidden_dim_a) else: lstm_output_dim_q = lstm_hidden_dim_q lstm_output_dim_a = lstm_hidden_dim_a self.projection = nn.Linear(lstm_output_dim_a, lstm_output_dim_q) self.stacked_att = [] for i in range(num_stacked_att): sa = StackedAttention1D(lstm_output_dim_q, stacked_att_dim) self.stacked_att.append(sa) self.add_module('stacked_att_%d' % i, sa) self.output = nn.Sequential(nn.Linear(lstm_output_dim_q, output_hidden_dim), nn.ReLU(), nn.Linear(output_hidden_dim, output_dim)) def forward(self, a, len_a, q, len_q): embeddings = self.embeddings(q) packed = torch.nn.utils.rnn.pack_padded_sequence(embeddings, len_q, batch_first=True) # self.lstm_q.flatten_parameters() lstm_q, _ = self.lstm_q(packed) unpacked, lens = torch.nn.utils.rnn.pad_packed_sequence(lstm_q, batch_first=True) a = torch.unsqueeze(a, 1) a = self.conv(a) a = a.permute(0, 2, 1, 3).contiguous() a = a.view(a.size(0), a.size(1), a.size(2) * a.size(3)) # self.lstm_a.flatten_parameters() lstm_a, _ = self.lstm_a(a) if self.bidirectional: bid_a = lstm_a.view(lstm_a.size(0), lstm_a.size(1), 2, int(lstm_a.size(2) / 2)) bid_q = unpacked.view(unpacked.size(0), unpacked.size(1), 2, int(unpacked.size(2) / 2)) cat_a = torch.cat((bid_a[torch.arange(bid_a.size(0), dtype=torch.long), -1, 0], bid_a[torch.arange(bid_a.size(0), dtype=torch.long), -1, 1]), dim=1) cat_q = torch.cat((bid_q[torch.arange(bid_q.size(0), dtype=torch.long), lens - 1, 0], bid_q[torch.arange(bid_q.size(0), dtype=torch.long), lens - 1, 1]), dim=1) else: cat_a = lstm_a[torch.arange(lstm_a.size(0), dtype=torch.long), -1] cat_q = unpacked[torch.arange(unpacked.size(0), dtype=torch.long), lens - 1] cat_a = torch.tanh(self.projection(cat_a)) # cat_a.size() == cat_q.size() for sa in self.stacked_att: cat_q = sa(cat_a, cat_q) output = self.output(cat_q) return output
daqa-master
daqa-mod/models.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import torch.nn as nn import torch.nn.functional as F from layers import convnet, coordinates class FiLM(nn.Module): """ Implements a FiLM block. """ def __init__(self, num_conv_filts_in, num_conv_filts, stride, dilation): super(FiLM, self).__init__() self.conv1 = nn.Conv2d(num_conv_filts_in, num_conv_filts, kernel_size=3, padding=1, stride=stride, dilation=dilation) self.conv2 = nn.Conv2d(num_conv_filts, num_conv_filts, kernel_size=3, padding=1, stride=stride, dilation=dilation) self.batchnorm2 = nn.BatchNorm2d(num_conv_filts, affine=False) def forward(self, x, gamma, beta): b1 = F.relu(self.conv1(x)) b2 = self.batchnorm2(self.conv2(b1)) gamma = gamma.unsqueeze(2).unsqueeze(3).expand_as(b2) beta = beta.unsqueeze(2).unsqueeze(3).expand_as(b2) b2 = F.relu((b2 * gamma) + beta) return (b1 + b2) class MALiMo(nn.Module): """ Implements MALiMo. """ def __init__(self, vocab_dim, embedding_dim, padding_idx, lstm_hidden_dim_q, num_lstm_layers_q, bidirectional, num_conv_filts_base, num_conv_layers_base, stride_base, dilation_base, input_dim, a_aggregate, lstm_hidden_dim_a, num_lstm_layers_a, use_coordinates, num_conv_filts_film, num_conv_layers_film, stride_film, dilation_film, fcn_output_dim, fcn_coeff_dim, fcn_temp_dim, aggregate, output_hidden_dim, output_dim): super(MALiMo, self).__init__() self.bidirectional = bidirectional self.use_coordinates = use_coordinates # Base convnet self.conv, num_channels, freq_red = convnet(num_conv_filts_base, num_conv_layers_base, stride_base, dilation_base) # Compute required output dimension given convnet specs # * 2 for gamma and beta. Assumes constant num filters per layer num_feats = num_conv_filts_film * num_conv_layers_film * 2 self.num_conv_filts_film = num_conv_filts_film self.num_conv_layers_film = num_conv_layers_film # Audio Controller if a_aggregate == 'max': self.a_decoder_pool = nn.MaxPool2d( kernel_size=(input_dim // freq_red, 8), stride=(input_dim // freq_red, 8)) elif a_aggregate == 'mean': self.a_decoder_pool = nn.MaxPool2d( kernel_size=(input_dim // freq_red, 8), stride=(input_dim // freq_red, 8)) else: assert False, 'Unknown aggregate function.' self.lstm_a = nn.LSTM(num_channels, lstm_hidden_dim_a, num_lstm_layers_a, batch_first=True, bidirectional=bidirectional) if bidirectional: lstm_output_dim_a = (2 * lstm_hidden_dim_a) else: lstm_output_dim_a = lstm_hidden_dim_a self.audio_decoder = nn.Linear(lstm_output_dim_a, num_feats) # Question Controller self.embeddings = nn.Embedding(vocab_dim, embedding_dim, padding_idx=padding_idx) self.lstm_q = nn.LSTM(embedding_dim, lstm_hidden_dim_q, num_lstm_layers_q, batch_first=True, bidirectional=bidirectional) if bidirectional: lstm_output_dim_q = (2 * lstm_hidden_dim_q) else: lstm_output_dim_q = lstm_hidden_dim_q self.question_decoder = nn.Linear(lstm_output_dim_q, num_feats) # Modulated Layers self.a_modulated_modules = [] self.q_modulated_modules = [] for i in range(num_conv_layers_film): num_channels += 2 if use_coordinates else 0 afcm = FiLM(num_channels, num_conv_filts_film, stride_film, dilation_film) self.a_modulated_modules.append(afcm) self.add_module('a_modulated_module_%d' % i, afcm) num_channels = num_conv_filts_film num_channels += 2 if use_coordinates else 0 qfcm = FiLM(num_channels, num_conv_filts_film, stride_film, dilation_film) self.q_modulated_modules.append(qfcm) self.add_module('q_modulated_module_%d' % i, qfcm) num_channels = num_conv_filts_film num_conv_filts_film += 2 if use_coordinates else 0 self.conv1 = nn.Conv2d(num_conv_filts_film, fcn_output_dim, kernel_size=1, padding=0) if aggregate == 'max': self.pool = nn.AdaptiveMaxPool2d((fcn_coeff_dim, fcn_temp_dim)) elif aggregate == 'mean': self.pool = nn.AdaptiveAvgPool2d((fcn_coeff_dim, fcn_temp_dim)) else: assert False, 'Unknown aggregate function.' # Classifier self.use_coordinates_class = (use_coordinates and fcn_coeff_dim > 1 and fcn_temp_dim > 1) fcn_output_dim += 2 if self.use_coordinates_class else 0 adaptive_pool_dim = fcn_output_dim * fcn_coeff_dim * fcn_temp_dim self.output = nn.Sequential(nn.Linear(adaptive_pool_dim, output_hidden_dim), nn.ReLU(), nn.Linear(output_hidden_dim, output_dim)) # Initialization for m in self.modules(): if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear): nn.init.xavier_normal_(m.weight) def forward(self, a, len_a, q, len_q): # Base convnet a = torch.unsqueeze(a, 1) a = self.conv(a) # Audio Controller pooled_a = self.a_decoder_pool(a) pooled_a = torch.transpose(pooled_a, 1, 2) pooled_a = pooled_a.view(pooled_a.size(0), pooled_a.size(1), pooled_a.size(2) * pooled_a.size(3)) lstm_a, _ = self.lstm_a(pooled_a) if self.bidirectional: bid_a = lstm_a.view(lstm_a.size(0), lstm_a.size(1), 2, int(lstm_a.size(2) / 2)) enc_a = torch.cat((bid_a[torch.arange(bid_a.size(0), dtype=torch.long), -1, 0], bid_a[torch.arange(bid_a.size(0), dtype=torch.long), -1, 1]), dim=1) else: enc_a = lstm_a[torch.arange(lstm_a.size(0), dtype=torch.long), -1] a_gammas_betas = self.audio_decoder(enc_a) a_gammas_betas = a_gammas_betas.view(a_gammas_betas.size(0), self.num_conv_layers_film, self.num_conv_filts_film, 2) # Question Controller embeddings = self.embeddings(q) packed = torch.nn.utils.rnn.pack_padded_sequence(embeddings, len_q, batch_first=True) # self.lstm_q.flatten_parameters() lstm_q, _ = self.lstm_q(packed) unpacked, lens = torch.nn.utils.rnn.pad_packed_sequence(lstm_q, batch_first=True) if self.bidirectional: bid_q = unpacked.view(unpacked.size(0), unpacked.size(1), 2, int(unpacked.size(2) / 2)) enc_q = torch.cat((bid_q[torch.arange(bid_q.size(0), dtype=torch.long), lens - 1, 0], bid_q[torch.arange(bid_q.size(0), dtype=torch.long), lens - 1, 1]), dim=1) else: enc_q = unpacked[torch.arange(unpacked.size(0), dtype=torch.long), lens - 1] q_gammas_betas = self.question_decoder(enc_q) q_gammas_betas = q_gammas_betas.view(q_gammas_betas.size(0), self.num_conv_layers_film, self.num_conv_filts_film, 2) # Modulated Layers for i, (afcm, qfcm) in enumerate(zip(self.a_modulated_modules, self.q_modulated_modules)): # Append coordinate maps if self.use_coordinates: coordinates_maps = coordinates(a.shape[2], a.shape[3]).to(a.device) a = torch.cat((a, coordinates_maps.expand(a.size(0), -1, -1, -1)), 1) # see FiLM appendix for + 1 a = afcm(a, a_gammas_betas[:, i, :, 0] + 1, a_gammas_betas[:, i, :, 1]) # Append coordinate maps if self.use_coordinates: coordinates_maps = coordinates(a.shape[2], a.shape[3]).to(a.device) a = torch.cat((a, coordinates_maps.expand(a.size(0), -1, -1, -1)), 1) # see FiLM appendix for + 1 a = qfcm(a, q_gammas_betas[:, i, :, 0] + 1, q_gammas_betas[:, i, :, 1]) # Classifier if self.use_coordinates: coordinates_maps = coordinates(a.shape[2], a.shape[3]).to(a.device) a = torch.cat((a, coordinates_maps.expand(a.size(0), -1, -1, -1)), 1) a = self.conv1(a) a = self.pool(a) if self.use_coordinates_class: coordinates_maps = coordinates(a.shape[2], a.shape[3]).to(a.device) a = torch.cat((a, coordinates_maps.expand(a.size(0), -1, -1, -1)), 1) a = a.view(a.size(0), -1) output = self.output(a) return output
daqa-master
daqa-mod/malimo.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import argparse import os # import numpy as np import torch import torch.distributed as dist import torch.multiprocessing as mp import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets # NOQA F401 from data import DAQA from models import LSTMN, FCNLSTMN, CONVLSTMN, FCNLSTMNSA, CONVLSTMNSA from film import FiLM from malimo import MALiMo # Training settings parser = argparse.ArgumentParser() # Input parser.add_argument('--audio-training-set', type=str, default='daqa_audio_train.h5', help='Path to training data.') parser.add_argument('--qa-training-set', type=str, default='daqa_train_questions_answers.json', help='Path to training data.') parser.add_argument('--audio-test-set', type=str, default='daqa_audio_val.h5', help='Path to test data.') parser.add_argument('--qa-test-set', type=str, default='daqa_val_questions_answers.json', help='Path to test data.') # Settings parser.add_argument('--seed', type=int, default=0, metavar='S', help='Random seed.') parser.add_argument('--no-cuda', action='store_true', default=False, help='Disable CUDA.') parser.add_argument('--multi-gpus', action='store_true', default=False, help='Use all available GPUs.') parser.add_argument('--distributed-parallel', action='store_true', default=False, help='Distributed data parallel mode.') parser.add_argument('--resume', action='store_true', default=False, help='Resume training.') parser.add_argument('--model', type=str, default='malimo', help='Model to train.') parser.add_argument('--embedding-dim', type=int, default=256, help='Size of embedding layer.') parser.add_argument('--lstm-hidden-dim-q', type=int, default=128, help='Size of layer(s) in LSTM.') parser.add_argument('--num-lstm-layers-q', type=int, default=1, help='Number of layers in LSTM.') parser.add_argument('--bidirectional', action='store_true', default=False, help='Bidirectional LSTM.') parser.add_argument('--num-conv-filts', type=int, default=16, help='Number of filters in first layer in ConvNet.') parser.add_argument('--num-conv-layers', type=int, default=5, help='Number of layers in ConvNet.') parser.add_argument('--stride', type=int, default=1, help='Convolution stride.') parser.add_argument('--dilation', type=int, default=1, help='Convolution dilation.') parser.add_argument('--fcn-output-dim', type=int, default=256, help='Number of filters in final FCN layer.') parser.add_argument('--fcn-coeff-dim', type=int, default=1, help='Dimension along coefficients in adaptive pooling.') parser.add_argument('--fcn-temp-dim', type=int, default=1, help='Dimension along time in adaptive pooling.') parser.add_argument('--aggregate', type=str, default='mean', help='Function to aggregate over variable size input.') parser.add_argument('--lstm-hidden-dim-a', type=int, default=128, help='Size of layer(s) in LSTM.') parser.add_argument('--num-lstm-layers-a', type=int, default=1, help='Number of layers in LSTM.') parser.add_argument('--stacked-att-dim', type=int, default=512, help='Stacked attention layer dimension.') parser.add_argument('--num-stacked-att', type=int, default=2, help='Number of stacked attention layers.') parser.add_argument('--use-coordinates', action='store_true', default=False, help='Append coordinates to feature maps.') parser.add_argument('--num-conv-filts-film', type=int, default=64, help='Number of filters in first layer in film ConvNet.') parser.add_argument('--num-conv-layers-film', type=int, default=2, help='Number of layers in film ConvNet.') parser.add_argument('--output-hidden-dim', type=int, default=1024, help='Dimension of hidden layer before output layer.') parser.add_argument('--optimizer', type=str, default='adam', help='Optimzer.') parser.add_argument('--lr', type=float, default=0.0001, metavar='L', help='Learning rate.') parser.add_argument('--l2', type=float, default=0.0001, metavar='M', help='Weight decay.') parser.add_argument('--dropout', type=float, default=0.0, metavar='R', help='Dropout rate.') parser.add_argument('--batch-size', type=int, default=1, metavar='N', help='Batch size for training.') parser.add_argument('--test-batch-size', type=int, default=1, metavar='N', help='Batch size for testing.') parser.add_argument('--epochs', type=int, default=10, metavar='T', help='Number of epochs to train.') parser.add_argument('--early-stopping', action='store_true', default=False, help='Early stopping.') parser.add_argument('--anneal-learning-rate', action='store_true', default=False, help='Anneal Learning Rate.') parser.add_argument('--patience', type=int, default=10, metavar='P', help='Number of epochs before early stopping.') # Output parser.add_argument('--show-log', action='store_true', default=False, help='Log training status.') parser.add_argument('--log-interval', type=int, default=1000, metavar='I', help='Number of batches to logging status.') parser.add_argument('--save-model', action='store_true', default=False, help='Save current model.') parser.add_argument('--model-dir', type=str, default='models', help='Path to model.') parser.add_argument('--model-name', type=str, default='model.pt', help='Model name.') parser.add_argument('--infer-only', action='store_true', default=False, help='Run in test mode only.') def build_model(args, vocab_dim, padding_idx, input_dim, output_dim): if args.model == 'lstmn': model = LSTMN(vocab_dim=vocab_dim, embedding_dim=args.embedding_dim, padding_idx=padding_idx, lstm_hidden_dim_q=args.lstm_hidden_dim_q, num_lstm_layers_q=args.num_lstm_layers_q, bidirectional=args.bidirectional, input_dim=input_dim, lstm_hidden_dim_a=args.lstm_hidden_dim_a, num_lstm_layers_a=args.num_lstm_layers_a, output_hidden_dim=args.output_hidden_dim, output_dim=output_dim) elif args.model == 'fcnlstmn': model = FCNLSTMN(vocab_dim=vocab_dim, embedding_dim=args.embedding_dim, padding_idx=padding_idx, lstm_hidden_dim_q=args.lstm_hidden_dim_q, num_lstm_layers_q=args.num_lstm_layers_q, bidirectional=args.bidirectional, num_conv_filts=args.num_conv_filts, num_conv_layers=args.num_conv_layers, stride=args.stride, dilation=args.dilation, fcn_output_dim=args.fcn_output_dim, fcn_coeff_dim=args.fcn_coeff_dim, fcn_temp_dim=args.fcn_temp_dim, aggregate=args.aggregate, output_hidden_dim=args.output_hidden_dim, output_dim=output_dim) elif args.model == 'convlstmn': model = CONVLSTMN(vocab_dim=vocab_dim, embedding_dim=args.embedding_dim, padding_idx=padding_idx, lstm_hidden_dim_q=args.lstm_hidden_dim_q, num_lstm_layers_q=args.num_lstm_layers_q, bidirectional=args.bidirectional, input_dim=input_dim, num_conv_filts=args.num_conv_filts, num_conv_layers=args.num_conv_layers, stride=args.stride, dilation=args.dilation, lstm_hidden_dim_a=args.lstm_hidden_dim_a, num_lstm_layers_a=args.num_lstm_layers_a, output_hidden_dim=args.output_hidden_dim, output_dim=output_dim) elif args.model == 'fcnlstmnsa': model = FCNLSTMNSA(vocab_dim=vocab_dim, embedding_dim=args.embedding_dim, padding_idx=padding_idx, lstm_hidden_dim_q=args.lstm_hidden_dim_q, num_lstm_layers_q=args.num_lstm_layers_q, bidirectional=args.bidirectional, num_conv_filts=args.num_conv_filts, num_conv_layers=args.num_conv_layers, stride=args.stride, dilation=args.dilation, fcn_output_dim=args.fcn_output_dim, fcn_coeff_dim=args.fcn_coeff_dim, fcn_temp_dim=args.fcn_temp_dim, aggregate=args.aggregate, use_coordinates=args.use_coordinates, stacked_att_dim=args.stacked_att_dim, num_stacked_att=args.num_stacked_att, output_hidden_dim=args.output_hidden_dim, output_dim=output_dim) elif args.model == 'convlstmnsa': model = CONVLSTMNSA(vocab_dim=vocab_dim, embedding_dim=args.embedding_dim, padding_idx=padding_idx, lstm_hidden_dim_q=args.lstm_hidden_dim_q, num_lstm_layers_q=args.num_lstm_layers_q, bidirectional=args.bidirectional, input_dim=input_dim, num_conv_filts=args.num_conv_filts, num_conv_layers=args.num_conv_layers, stride=args.stride, dilation=args.dilation, lstm_hidden_dim_a=args.lstm_hidden_dim_a, num_lstm_layers_a=args.num_lstm_layers_a, stacked_att_dim=args.stacked_att_dim, num_stacked_att=args.num_stacked_att, output_hidden_dim=args.output_hidden_dim, output_dim=output_dim) elif args.model == 'film': model = FiLM(vocab_dim=vocab_dim, embedding_dim=args.embedding_dim, padding_idx=padding_idx, lstm_hidden_dim_q=args.lstm_hidden_dim_q, num_lstm_layers_q=args.num_lstm_layers_q, bidirectional=args.bidirectional, num_conv_filts_base=args.num_conv_filts, num_conv_layers_base=args.num_conv_layers, stride_base=args.stride, dilation_base=args.dilation, use_coordinates=args.use_coordinates, num_conv_filts_film=args.num_conv_filts_film, num_conv_layers_film=args.num_conv_layers_film, stride_film=args.stride, dilation_film=args.dilation, fcn_output_dim=args.fcn_output_dim, fcn_coeff_dim=args.fcn_coeff_dim, fcn_temp_dim=args.fcn_temp_dim, aggregate=args.aggregate, output_hidden_dim=args.output_hidden_dim, output_dim=output_dim) elif args.model == 'malimo': model = MALiMo(vocab_dim=vocab_dim, embedding_dim=args.embedding_dim, padding_idx=padding_idx, lstm_hidden_dim_q=args.lstm_hidden_dim_q, num_lstm_layers_q=args.num_lstm_layers_q, bidirectional=args.bidirectional, num_conv_filts_base=args.num_conv_filts, num_conv_layers_base=args.num_conv_layers, stride_base=args.stride, dilation_base=args.dilation, input_dim=input_dim, a_aggregate=args.aggregate, lstm_hidden_dim_a=args.lstm_hidden_dim_a, num_lstm_layers_a=args.num_lstm_layers_a, use_coordinates=args.use_coordinates, num_conv_filts_film=args.num_conv_filts_film, num_conv_layers_film=args.num_conv_layers_film, stride_film=args.stride, dilation_film=args.dilation, fcn_output_dim=args.fcn_output_dim, fcn_coeff_dim=args.fcn_coeff_dim, fcn_temp_dim=args.fcn_temp_dim, aggregate=args.aggregate, output_hidden_dim=args.output_hidden_dim, output_dim=output_dim) else: assert False, 'Unknown model.' return model def save_state(args, epoch, model, optimizer, scheduler, train_loss, train_perf, test_loss, test_perf, best_perf, patience, early_stopping, best=False): checkpoint = os.path.join(args.model_dir, args.model_name) kwargs = { 'epoch': epoch, 'optimizer_state_dict': optimizer.state_dict(), 'scheduler_state_dict': scheduler.state_dict(), 'train_loss': train_loss, 'train_perf': train_perf, 'test_loss': test_loss, 'test_perf': test_perf, 'best_perf': best_perf, 'patience': patience, 'early_stopping': early_stopping, } if best: checkpoint += '.best' kwargs['model_state_dict'] = model.module.state_dict() # unwrap model torch.save(kwargs, checkpoint) else: kwargs['model_state_dict'] = model.state_dict() torch.save(kwargs, checkpoint) def load_state(args, model, optimizer, scheduler): checkpoint = torch.load(os.path.join(args.model_dir, args.model_name)) model.load_state_dict(checkpoint['model_state_dict']) sepoch = checkpoint['epoch'] if 'epoch' in checkpoint else 0 if 'optimizer_state_dict' in checkpoint: optimizer.load_state_dict(checkpoint['optimizer_state_dict']) if 'scheduler_state_dict' in checkpoint: scheduler.load_state_dict(checkpoint['scheduler_state_dict']) train_loss = checkpoint['train_loss'] if 'train_loss' in checkpoint else 0 train_perf = checkpoint['train_perf'] if 'train_perf' in checkpoint else 0 test_loss = checkpoint['test_loss'] if 'test_loss' in checkpoint else 0 test_perf = checkpoint['test_perf'] if 'test_perf' in checkpoint else 0 best_perf = checkpoint['best_perf'] if 'best_perf' in checkpoint else 0 patience = checkpoint['patience'] if 'patience' in checkpoint else 0 if 'early_stopping' in checkpoint: early_stopping = checkpoint['early_stopping'] else: early_stopping = False return sepoch, model, optimizer, scheduler, train_loss, train_perf, \ test_loss, test_perf, best_perf, patience, early_stopping def train(args, model, device, train_loader, optimizer, epoch): model.train() for batch_idx, (a, len_a, q, len_q, target) in enumerate(train_loader): a = a.to(device) len_a = len_a.to(device) q = q.to(device) len_q = len_q.to(device) target = target.to(device) optimizer.zero_grad() output = model(a, len_a, q, len_q) loss = F.cross_entropy(output, target) loss.backward() optimizer.step() if args.show_log and batch_idx % args.log_interval == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx, len(train_loader), 100. * batch_idx / len(train_loader), loss.item())) def test(args, model, device, test_loader): model.eval() test_loss, correct, examples = 0., 0, 0 with torch.no_grad(): for a, len_a, q, len_q, target in test_loader: a = a.to(device) len_a = len_a.to(device) q = q.to(device) len_q = len_q.to(device) target = target.to(device) output = model(a, len_a, q, len_q) test_loss += F.cross_entropy(output, target, reduction='sum').item() label = output.argmax(dim=1, keepdim=True) correct += label.eq(target.view_as(label)).sum().item() examples += len(a) test_loss /= examples perf = correct / examples # print('Average loss: {:.4f}, perf: {:.4f}%'.format(test_loss, 100. * perf)) return test_loss, perf def main(id, args): # noqa C901 # Infra use_cuda = not args.no_cuda and torch.cuda.is_available() dist_parallel_mode = (use_cuda and args.multi_gpus and args.distributed_parallel and torch.cuda.device_count() > 1) if dist_parallel_mode: dist.init_process_group(backend='nccl', init_method='tcp://127.0.0.1:23456', world_size=torch.cuda.device_count(), rank=id) torch.cuda.set_device(id) device = torch.device('cuda:%d' % id) else: device = torch.device('cuda' if use_cuda else 'cpu') if id == 0 and args.save_model: if not os.path.isdir(args.model_dir): os.makedirs(args.model_dir) # Dataset train_set = DAQA(args.audio_training_set, args.qa_training_set) test_set = DAQA(args.audio_test_set, args.qa_test_set, train_set.stats, train_set.word_to_ix, train_set.answer_to_ix) if dist_parallel_mode: sampler_kwargs = {'num_replicas': torch.cuda.device_count(), 'rank': id} train_sampler = torch.utils.data.DistributedSampler(train_set, **sampler_kwargs) # test_sampler = torch.utils.data.DistributedSampler(test_set, **sampler_kwargs) # The above is commented out because we only evaluate on the main process # Note also that this means that evaluation using train_sampler will lead to # evaluation on a subset of the training set which is advantageous. test_sampler = torch.utils.data.RandomSampler(test_set) batch_size = int(args.batch_size / torch.cuda.device_count()) else: train_sampler = torch.utils.data.RandomSampler(train_set) test_sampler = torch.utils.data.RandomSampler(test_set) batch_size = args.batch_size assert batch_size == 1, 'Batch size / number of GPUs != 1.' loader_kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {} train_loader = torch.utils.data.DataLoader(train_set, batch_size=batch_size, sampler=train_sampler, collate_fn=DAQA.pad_collate_fn, **loader_kwargs) test_loader = torch.utils.data.DataLoader(test_set, batch_size=batch_size, sampler=test_sampler, collate_fn=DAQA.pad_collate_fn, **loader_kwargs) # Model model = build_model(args, vocab_dim=len(train_set.word_to_ix), padding_idx=train_set.word_to_ix['<pad>'], input_dim=train_set.stats['mean'].shape[0], output_dim=len(train_set.answer_to_ix)) model = model.to(device) # GPU / multi-GPU / distributed multi-GPU if dist_parallel_mode: model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model) model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[id], output_device=id, check_reduction=True, broadcast_buffers=False) if id == 0: print('DistributedDataParallel! Using', device) elif (use_cuda and args.multi_gpus and torch.cuda.device_count() > 1): model = nn.DataParallel(model) print('DataParallel! Using', torch.cuda.device_count(), 'GPUs!') else: print('Single CPU/GPU! Using', device) # Optimizer and scheduler if args.optimizer == 'adam': optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.l2) elif args.optimizer == 'rmsprop': optimizer = optim.RMSprop(model.parameters(), lr=args.lr, weight_decay=args.l2) else: assert False, 'Unknown optimizer.' scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'max', 0.1, int(args.patience / 2), verbose=True) checkpoint_pt = os.path.join(args.model_dir, args.model_name) # Inference if args.infer_only: if id == 0: if os.path.isfile(checkpoint_pt): print('Testing: ' + checkpoint_pt) _, model, optimizer, scheduler, _, _, _, _, _, _, _ = \ load_state(args, model, optimizer, scheduler) print(' ') print('Hyperparamters') print(args) print(' ') print('Model') print(model) print(' ') print('Start testing.') test_loss, test_perf = test(args, model, device, test_loader) print(('Test loss: {:.3f}, Test Perf: {:.3f}%.').format( test_loss, 100. * test_perf)) else: print('Could not find model to test.') return # inference done, nothing else to do here. # Initialize or load from exisiting checkpoint if (args.resume and os.path.isfile(checkpoint_pt)): if id == 0: print('Continue training from: ' + checkpoint_pt) sepoch, model, optimizer, scheduler, train_loss, train_perf, \ test_loss, test_perf, best_perf, patience, early_stopping = \ load_state(args, model, optimizer, scheduler) else: sepoch = 0 best_perf, patience = 0., 0 early_stopping = False if id == 0: # evaluate only on main process print(' ') print('Hyperparamters') print(args) print(' ') print('Model') print(model) print(' ') print('Start training.') train_loss, train_perf = test(args, model, device, train_loader) test_loss, test_perf = test(args, model, device, test_loader) print(('Epoch {:03d}. Train loss: {:.3f}, Train Perf: {:.3f}%' + '. Test loss: {:.3f}, Test Perf: {:.3f}%.').format(sepoch, train_loss, 100. * train_perf, test_loss, 100. * test_perf)) else: # Other processes don't need this train_loss, train_perf, test_loss, test_perf = 0, 0, 0, 0 # Force other processes to wait if dist_parallel_mode or dist.is_initialized(): dist.barrier() # Training loop for epoch in range(sepoch + 1, args.epochs + 1): # Load latest checkpoint to synchronize optimizer, early stopping, etc. if dist_parallel_mode and epoch > sepoch + 1: if args.anneal_learning_rate or args.early_stopping: checkpoint = torch.load(checkpoint_pt) if args.anneal_learning_rate: optimizer.load_state_dict(checkpoint['optimizer_state_dict']) if args.early_stopping: early_stopping = checkpoint['early_stopping'] if early_stopping: print('Early Stopping! Id: ' + id) break # DistributedSampler requires manually seting the epoch for randomization if dist_parallel_mode: train_loader.sampler.set_epoch(epoch) # test_loader is RandomSampler doesnt require this # Train train(args, model, device, train_loader, optimizer, epoch) # Force other processes to wait if dist_parallel_mode or dist.is_initialized(): dist.barrier() # Eval if id == 0: # evaluate only on main process train_loss, train_perf = test(args, model, device, train_loader) test_loss, test_perf = test(args, model, device, test_loader) print(('Epoch {:03d}. Train loss: {:.3f}, Train Perf: {:.3f}%' + '. Test loss: {:.3f}, Test Perf: {:.3f}%.').format(epoch, train_loss, 100. * train_perf, test_loss, 100. * test_perf)) if args.anneal_learning_rate: scheduler.step(test_perf) # Monitor best performance so far assuming higher better if test_perf > best_perf: best_perf, patience = test_perf, 0 print('Best Model at Epoch ' + str(epoch)) if args.save_model: save_state(args, epoch, model, optimizer, scheduler, train_loss, train_perf, test_loss, test_perf, best_perf, patience, early_stopping, best=True) else: patience += 1 if args.early_stopping and (patience >= args.patience): early_stopping = True if (args.save_model): save_state(args, epoch, model, optimizer, scheduler, train_loss, train_perf, test_loss, test_perf, best_perf, patience, early_stopping) # If there is only a single process then break now # If > a single process then all processes break start of next epoch if not dist_parallel_mode and early_stopping: print('Early Stopping!') break # Force other processes to wait if dist_parallel_mode or dist.is_initialized(): dist.barrier() def union(args): # Set seed # np.random.seed(args.seed) torch.manual_seed(args.seed) if (not args.no_cuda and torch.cuda.is_available() and args.multi_gpus and args.distributed_parallel and torch.cuda.device_count() > 1): assert args.batch_size == torch.cuda.device_count(), \ 'Batch size must equal to number of GPUs.' if not args.save_model: assert not args.anneal_learning_rate, \ 'Checkpoints are used to synchronize learning rate.' assert not args.early_stopping, \ 'Checkpoints are used to synchronize early stopping flag.' print('Distributed!') mp.spawn(main, nprocs=torch.cuda.device_count(), args=(args,), daemon=False) else: assert args.batch_size == 1, 'Illegal batch size > 1 for undistributed mode.' main(0, args) if __name__ == '__main__': args = parser.parse_args() union(args) print('Success!')
daqa-master
daqa-mod/main.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import torch.nn as nn import torch.nn.functional as F def convnet(num_conv_filts, num_conv_layers, stride, dilation, max_n_filts=512): """ Implements num_conv_layers conv layers a la VGG. """ layers = [] in_channels = 1 n_filts = num_conv_filts conv_red_dim = 1 # subsampling factor for _ in range(num_conv_layers): if len(layers) == 0: layers += [nn.Conv2d(in_channels, n_filts, kernel_size=(12, 3), padding=1, stride=(9, stride), dilation=dilation)] else: layers += [nn.Conv2d(in_channels, n_filts, kernel_size=3, padding=1, stride=stride, dilation=dilation)] layers += [nn.BatchNorm2d(n_filts, affine=True)] layers += [nn.ReLU()] layers += [nn.Conv2d(n_filts, n_filts, kernel_size=3, padding=1, stride=stride, dilation=dilation)] layers += [nn.BatchNorm2d(n_filts, affine=True)] layers += [nn.ReLU()] if conv_red_dim <= 32: layers += [nn.MaxPool2d(kernel_size=2, stride=2)] conv_red_dim *= 2 # max pooled (only correct for frequency dim) in_channels = n_filts n_filts = 2 * n_filts if n_filts < max_n_filts else n_filts return nn.Sequential(*layers), in_channels, conv_red_dim def coordinates(x, y, start=-1, end=1): """ Returns a map of coordinates with x rows and y columns. Input: - x: rows - y: columns Returns: - xy_coords: 1 x 2 x 'x' x y """ x_row = torch.linspace(start, end, steps=y) # y y_row = torch.linspace(start, end, steps=x) # x x_coords = x_row.unsqueeze(0).expand(x, y).unsqueeze(0) # 1 x y y_coords = y_row.unsqueeze(1).expand(x, y).unsqueeze(0) # 1 x y # 1 2 x y return torch.autograd.Variable(torch.cat([x_coords, y_coords], 0).unsqueeze(0)) class StackedAttention1D(nn.Module): """ Adapted from clevr-iep/blob/master/iep/models/baselines.py """ def __init__(self, input_dim, hidden_dim): super(StackedAttention1D, self).__init__() self.Wa = nn.Linear(input_dim, hidden_dim) self.Wu = nn.Linear(input_dim, hidden_dim) self.Wp = nn.Linear(hidden_dim, input_dim) def forward(self, a, u): """ Input: - a: N x D - u: N x D Returns: - next_u: N x D """ a_proj = self.Wa(a) # N x K u_proj = self.Wu(u) # N x K h = torch.tanh(a_proj + u_proj) p = F.softmax(self.Wp(h), dim=1) # N x D a_tilde = p * a # N x D next_u = a_tilde + u # N x D return next_u class StackedAttention(nn.Module): """ Adapted from clevr-iep/blob/master/iep/models/baselines.py """ def __init__(self, input_dim, hidden_dim): super(StackedAttention, self).__init__() self.Wv = nn.Conv2d(input_dim, hidden_dim, kernel_size=1, padding=0) self.Wu = nn.Linear(input_dim, hidden_dim) self.Wp = nn.Conv2d(hidden_dim, 1, kernel_size=1, padding=0) self.hidden_dim = hidden_dim self.attention_maps = None def forward(self, v, u): """ Input: - v: N x D x H x W - u: N x D Returns: - next_u: N x D """ N, K = v.size(0), self.hidden_dim H, W = v.size(2), v.size(3) v_proj = self.Wv(v) # N x K x H x W u_proj = self.Wu(u) # N x K u_proj_expand = u_proj.view(N, K, 1, 1).expand(N, K, H, W) h = torch.tanh(v_proj + u_proj_expand) p = F.softmax(self.Wp(h).view(N, H * W), dim=1).view(N, 1, H, W) self.attention_maps = p.data.clone() v_tilde = (p.expand_as(v) * v).sum((2, 3)) next_u = u + v_tilde return next_u
daqa-master
daqa-mod/layers.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import json import re import h5py import torch from torch.utils.data.dataloader import default_collate from torchvision import datasets # NOQA F401 class DAQA(torch.utils.data.Dataset): _special_ix = {'<pad>': 0} def __init__(self, audio_pt, ques_ans_pt, stats=None, word_to_ix=None, answer_to_ix=None): # Read audio HDF5 file self.audio = h5py.File(audio_pt, 'r') if stats is None: self.stats = {} self.stats['mean'] = self.audio['mean'][:] self.stats['stddev'] = self.audio['stddev'][:] else: self.stats = stats # h5py doesnt support using one file handle for multithreaded ops # uncomment the following two lines if using >1 worker # and ammend __getitem__ accordingly. self.audio.close() self.audio = audio_pt # Read JSON file with open(ques_ans_pt, 'r') as f: questions_answers = json.load(f) # Audio, questions, and answers to a nice list dataset = [] for i in range(len(questions_answers['questions'])): aud = questions_answers['questions'][i]['audio_filename'][:-4] ques = questions_answers['questions'][i]['question'] ans = questions_answers['questions'][i]['answer_token'] dataset.append({'audio': aud, 'question': ques, 'answer': ans}) if word_to_ix is None: self.word_to_ix = DAQA.build_vocab_questions(dataset, DAQA._special_ix) else: self.word_to_ix = word_to_ix dataset = DAQA.encode_questions(dataset, self.word_to_ix) if answer_to_ix is None: self.answer_to_ix = DAQA.build_vocab_answers(dataset) else: self.answer_to_ix = answer_to_ix dataset = DAQA.encode_answers(dataset, self.answer_to_ix) self.dataset = dataset # Pack questions and answers for each audio into a nice dictionary. dataset_wrt_audio = {} for i in range(len(dataset)): aud = dataset[i]['audio'] ques = dataset[i]['question'] ans = dataset[i]['answer'] if aud not in dataset_wrt_audio: dataset_wrt_audio[aud] = [{'question': ques, 'answer': ans}] else: dataset_wrt_audio[aud] += [{'question': ques, 'answer': ans}] self.dataset_wrt_audio = dataset_wrt_audio def __len__(self): # return len(self.dataset) return len(self.dataset_wrt_audio) def __getitem__(self, index): sub_mini_batch = [] audio = sorted(self.dataset_wrt_audio)[index] # maybe move up audio_pt = h5py.File(self.audio, 'r') # swmr=True a = audio_pt[audio][:] a = torch.tensor((a - self.stats['mean']) / self.stats['stddev']) # The previous 3 lines should be commented if reading audio from memory, # as well as audio_pt.close() below. # The following line should be uncommented if reading audio from memory. # a = torch.tensor((self.audio[audio][:] - self.stats['mean']) # / self.stats['stddev']) len_a = torch.tensor(a.shape[0], dtype=torch.long) for qas in range(len(self.dataset_wrt_audio[audio])): q = torch.tensor(self.dataset_wrt_audio[audio][qas]['question'], dtype=torch.long) len_q = torch.tensor(len(q), dtype=torch.long) y = torch.tensor(self.dataset_wrt_audio[audio][qas]['answer'], dtype=torch.long) sub_mini_batch += [(a, len_a, q, len_q, y)] audio_pt.close() return sub_mini_batch @staticmethod def build_vocab_questions(d, special_ix): to_ix = special_ix # start with special tokens for i in range(len(d)): # Remove punctuation, lower case, convert to list of words qr = re.sub(r'[^\w\s]', '', d[i]['question']).lower().split() for w in qr: if w not in to_ix: to_ix[w] = len(to_ix) return to_ix @staticmethod def build_vocab_answers(d): to_ix = {} for i in range(len(d)): if d[i]['answer'] not in to_ix: to_ix[d[i]['answer']] = len(to_ix) return to_ix @staticmethod def encode_questions(d, to_ix): for i in range(len(d)): qr = re.sub(r'[^\w\s]', '', d[i]['question']).lower().split() d[i]['question'] = [to_ix[w] for w in qr if w in to_ix] # if w in to_ix is potentially dangerous return d @staticmethod def encode_answers(d, to_ix): for i in range(len(d)): d[i]['answer'] = to_ix[d[i]['answer']] return d @staticmethod def pad_collate_fn(batch): """ Input: a list of list((A, len_A, Q, len_Q, Ans)). """ batch = [i for j in batch for i in j] # unpack list of lists to list pad_idx = DAQA._special_ix['<pad>'] # Sort batch wrt to length of question batch = sorted(batch, key=lambda x: x[3], reverse=True) # sort wrt Q max_len_q = batch[0][3] # Pad questions with pad_idx for i in range(len(batch)): x = torch.ones(max_len_q, dtype=batch[i][2].dtype) * pad_idx x[:batch[i][2].size(0)] = batch[i][2] batch[i] = (batch[i][0], batch[i][1], x, batch[i][3], batch[i][4]) return default_collate(batch)
daqa-master
daqa-mod/data.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import argparse import os import h5py import numpy as np import scipy import scipy.io.wavfile import librosa parser = argparse.ArgumentParser() # Input parser.add_argument('--input-wavs', default='wavs', type=str, help='Path to folder with wavs to process.') parser.add_argument('--input-features', default='features', type=str, help='Path to folder with mels to process.') # Settings parser.add_argument('--compute-features', action='store_true', default=False, help='Compute features.') parser.add_argument('--window', default=0.025, type=float, help='Window size (s).') parser.add_argument('--stride', default=0.01, type=float, help='Window stride (s).') parser.add_argument('--num-mels', default=64, type=int, help='Number of Mel coefficients.') parser.add_argument('--astype', default='float32', type=str, help='Data type for storage.') parser.add_argument('--pack-features', action='store_true', default=False, help='Pack features.') parser.add_argument('--compressed', action='store_true', default=False, help='Compress features.') # Output parser.add_argument('--output-features', default='features', type=str, help='Path to folder with processed features.') parser.add_argument('--output-file', default='features.hdf5', type=str, help='Path to file with processed features.') def compute_features(args): """ Compute MFSCs for all audio wav files in a given directory. """ print('Computing features...') if not os.path.isdir(args.output_features): os.makedirs(args.output_features) lst_wavs = os.listdir(args.input_wavs) lst_wavs = [e[:-4] for e in lst_wavs if e.endswith('.wav')] counter = 0 for i in lst_wavs: try: fs, audio = scipy.io.wavfile.read(os.path.join(args.input_wavs, i + '.wav')) mfsc = librosa.feature.melspectrogram(y=audio.astype(float), sr=fs, n_fft=int(fs * args.window), n_mels=args.num_mels, hop_length=int(fs * args.stride), power=1) mfsc = librosa.power_to_db(mfsc, ref=np.max).T.astype(args.astype) np.save(os.path.join(args.output_features, i), mfsc) except Exception: print('Error processing: ' + str(i)) counter += 1 if counter % 1000 == 0: print('Finished processing: ' + str(counter) + ' files.') def pack_features(args): """ Pack all npy MFSCs in a given directory into a single hdf file. """ print('Packing features...') lst_npys = os.listdir(args.input_features) lst_npys = [e[:-4] for e in lst_npys if e.endswith('.npy')] counter = 0 # Variables for Welford’s mean and variance n, mean, v = 0, np.zeros(args.num_mels), np.zeros(args.num_mels) kwargs = {'compression': 'gzip', 'compression_opts': 9} if args.compressed else {} with h5py.File(args.output_file, 'w') as f: for i in lst_npys: mfsc = np.load(os.path.join(args.output_features, i + '.npy')) f.create_dataset(i, data=mfsc, dtype=args.astype, **kwargs) for w in range(mfsc.shape[0]): n += 1 delta = mfsc[w] - mean mean += delta / n v += (mfsc[w] - mean) * delta counter += 1 if counter % 1000 == 0: print('Finished packing: ' + str(counter) + ' files.') var = v / (n - 1) stddev = np.sqrt(var) f.create_dataset('mean', data=mean.astype(args.astype), dtype=args.astype, **kwargs) f.create_dataset('variance', data=var.astype(args.astype), dtype=args.astype, **kwargs) f.create_dataset('stddev', data=stddev.astype(args.astype), dtype=args.astype, **kwargs) def main(args): if args.compute_features: compute_features(args) if args.pack_features: pack_features(args) if not args.compute_features and not args.pack_features: print('P.S. I didnt do anything. Both compute and pack features are false.') if __name__ == "__main__": args = parser.parse_args() main(args) print('Success!')
daqa-master
daqa-mod/compute_audio_features.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from __future__ import (absolute_import, division, print_function, unicode_literals) import argparse import datetime import json import random import numpy as np from qpas.exist import (was_there, was_there_two_and, was_there_two_or, # was_there_source, # was_there_source_two_and, # was_there_source_two_or, was_there_relative, was_there_immediate_relative, was_there_similar_ordinal, was_there_similar_loudness, was_there_at_least_two_similar_loudness, was_there_similar_loudness_ordinal, was_there_at_least_two_similar_loudness_ordinal, was_there_similar_duration, was_there_at_least_two_similar_duration, was_there_similar_duration_ordinal, was_there_at_least_two_similar_duration_ordinal, ) from qpas.query import (what_was, what_was_relative, what_was_loudness, what_was_loudness_relative, what_was_loudness_relative_ordinal, what_was_duration, what_was_duration_relative, what_was_duration_relative_ordinal, ) from qpas.count import (how_many, how_many_event, how_many_ordinal, how_many_event_two, how_many_event_two_ordinal, how_many_sounds_relative, how_many_sounds_relative_ordinal, how_many_event_relative, how_many_event_relative_ordinal, how_many_sounds_loudness_event, how_many_sounds_loudness_ordinal, how_many_sounds_duration_event, how_many_sounds_duration_ordinal, ) from qpas.compare import (compare_ordinal, compare_ordinal_event, compare_loudness, compare_loudness_ordinal, compare_loudness_event_ordinal, compare_loudness_ordinal_event, compare_same_loudness, compare_same_loudness_ordinal, compare_same_loudness_event_ordinal, compare_duration, compare_duration_ordinal, compare_duration_event_ordinal, compare_duration_ordinal_event, compare_same_duration, compare_same_duration_ordinal, compare_same_duration_event_ordinal, ) from qpas.compare_integer import (less_than, equal_to, more_than, ) parser = argparse.ArgumentParser() # Input parser.add_argument('--dataset', default='daqa.json', type=str, help='JSON file describing the dataset.') parser.add_argument('--input_narrative_file', default='../daqa/daqa_narratives.json', help="Path to narratives JSON file.") parser.add_argument('--start_narrative_idx', default=0, type=int, help='Start reading from start_narrative_idx.') # Settings parser.add_argument('--set', default='new', help='Set name: train / val / test.') parser.add_argument('--num_questions_per_narrative', default=10, type=int, help='Number of questions per narrative.') parser.add_argument('--patience_narrative', default=10, type=int, help='Number of failed attempts to reach num_q_per_narr.') parser.add_argument('--patience_template', default=10, type=int, help='Number of failed attempts to reach num_q_per_narr.') parser.add_argument('--rel_diff', default=0.1, type=int, help='Loudness sensitivity (%).') parser.add_argument('--max_diff', default=0.05, type=float, help='Maximum difference between (in)frequent answers.') parser.add_argument('--seed', default=0, type=int, help='Random Seed.') parser.add_argument('--version', default='1.0', type=str, help='Version.') parser.add_argument('--license', default='Creative Commons Attribution (CC-BY 4.0)', help='License.') parser.add_argument('--date', default=datetime.datetime.today().strftime("%m/%d/%Y"), help="Date.") # Output parser.add_argument('--start_output_idx', default=0, type=int, help='Start numbering from start_output_idx.') parser.add_argument('--output_qa_file', default='../daqa/daqa_questions_answers.json', help="Path to questions answers JSON file.") def tokenize_answer(dataset, ans): # Tokenize answer anss = ans.split(' ') for e in dataset['events']: lst_syn = dataset['sources'][e] + dataset['actions'][e] lst_syn = ' '.join(s for s in lst_syn) lst_check = [] for a in anss: lst_check.append((' ' + a + ' ') in (' ' + lst_syn + ' ')) if all(lst_check): ans = e return ans def add_answer(ans_dist_per_temp, ques_temp, ans_tk, max_diff): # Only one answer seen so far for this template if len(ans_dist_per_temp[ques_temp].keys()) <= 1: return True # First instance of this answer in this template if ans_dist_per_temp[ques_temp][ans_tk] == 0: return True num_occ = sorted(((v, k) for k, v in ans_dist_per_temp[ques_temp].items())) # Not the most frequent answer if num_occ[-1][1] != ans_tk: return True # Difference between the (most + 1) and least frequent is less than max_diff if ((num_occ[-1][0] + 1) - num_occ[0][0]) <= max_diff: return True return False def main(args): """Randomly sample questions for given narrative and deduce answer.""" random.seed(args.seed) np.random.seed(args.seed) # Read dataset description and narratives with open(args.dataset, 'r') as f: dataset = json.load(f) with open(args.input_narrative_file, 'r') as f: narratives = json.load(f) assert args.set == narratives['info']['set'], 'train/val/test mismatch.' templates = [was_there, was_there_two_and, was_there_two_or, # was_there_source, # was_there_source_two_and, # was_there_source_two_or, was_there_relative, was_there_immediate_relative, was_there_similar_ordinal, was_there_similar_loudness, was_there_at_least_two_similar_loudness, was_there_similar_loudness_ordinal, was_there_at_least_two_similar_loudness_ordinal, was_there_similar_duration, was_there_at_least_two_similar_duration, was_there_similar_duration_ordinal, was_there_at_least_two_similar_duration_ordinal, what_was, what_was_relative, what_was_loudness, what_was_loudness_relative, what_was_loudness_relative_ordinal, what_was_duration, what_was_duration_relative, what_was_duration_relative_ordinal, how_many, how_many_event, how_many_ordinal, how_many_event_two, how_many_event_two_ordinal, how_many_sounds_relative, how_many_sounds_relative_ordinal, how_many_event_relative, how_many_event_relative_ordinal, how_many_sounds_loudness_event, how_many_sounds_loudness_ordinal, how_many_sounds_duration_event, how_many_sounds_duration_ordinal, compare_ordinal, compare_ordinal_event, compare_loudness, compare_loudness_ordinal, compare_loudness_event_ordinal, compare_loudness_ordinal_event, compare_same_loudness, compare_same_loudness_ordinal, compare_same_loudness_event_ordinal, compare_duration, compare_duration_ordinal, compare_duration_event_ordinal, compare_duration_ordinal_event, compare_same_duration, compare_same_duration_ordinal, compare_same_duration_event_ordinal, less_than, equal_to, more_than, ] print('Generating ' + str(args.num_questions_per_narrative) + ' questions for each of the ' + str(len(narratives['narratives'])) + ' narratives.') idx = args.start_output_idx lst_questions = [] num_skewed_answers = 0 num_illposed_questions = 0 ans_dist_per_temp = {} # The delta between (in)frequent answers is irrespective of the set size max_diff = (args.max_diff * ((len(narratives['narratives']) - args.start_narrative_idx) * args.num_questions_per_narrative) / len(templates)) for n in range(args.start_narrative_idx, len(narratives['narratives'])): narrative = narratives['narratives'][n] num_questions, patience_narrative = 0, 0 while num_questions < args.num_questions_per_narrative: question_template = random.choice(templates) try: # catch illposed questions patience_template = 0 while patience_template < args.patience_template: ques, ans = question_template(dataset, narrative, args.rel_diff) ans_tk = tokenize_answer(dataset, ans) ques_temp_name = question_template.__name__ if ques_temp_name not in ans_dist_per_temp: ans_dist_per_temp[ques_temp_name] = {} if ans_tk not in ans_dist_per_temp[ques_temp_name]: ans_dist_per_temp[ques_temp_name][ans_tk] = 0 if add_answer(ans_dist_per_temp, ques_temp_name, ans_tk, max_diff): question = { 'set': narrative['set'], 'audio_index': narrative['audio_index'], 'audio_filename': narrative['audio_filename'], 'question_template': ques_temp_name, 'question': ques, 'answer': ans, 'answer_token': ans_tk, } lst_questions.append(question) ans_dist_per_temp[ques_temp_name][ans_tk] += 1 idx += 1 num_questions += 1 break else: patience_template += 1 num_skewed_answers += 1 if patience_template >= args.patience_template: print('R1. Out of patience for narrative #' + str(n) + ' for template: ' + ques_temp_name + '.') except AssertionError as error: print(error) patience_narrative += 1 num_illposed_questions += 1 if patience_narrative >= args.patience_narrative: print('R2. Out of patience for narrative #' + str(n) + '.') break print('Generated ' + str(idx) + ' questions.') print('Failed to generate ' + str(num_skewed_answers) + ' questions.' + ' Reason: skewed answers.') print('Failed to generate ' + str(num_illposed_questions) + ' questions.' + ' Reason: illposed questions.') print('Total number of attempts: ' + str(idx + num_skewed_answers + num_illposed_questions)) output = { 'info': { 'set': args.set, 'version': args.version, 'date': args.date, 'license': args.license, }, 'questions': lst_questions } with open(args.output_qa_file, 'w') as f: json.dump(output, f) return True if __name__ == "__main__": args = parser.parse_args() main(args) print('Success!')
daqa-master
daqa-gen/generate_questions_answers.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # Events with urls are a subset of AudioSet, see https://research.google.com/audioset/. from __future__ import (absolute_import, division, print_function, unicode_literals) import json def main(): sources = { 1: { 'event': 'a000', 'url': 'dAOa3WbL54w', 'start': 160, 'end': 180, }, 2: { 'event': 'a000', 'url': 'dAOa3WbL54w', 'start': 200, 'end': 215, }, 3: { 'event': 'a000', 'url': 'dAOa3WbL54w', 'start': 220, 'end': 238, }, 4: { 'event': 'a000', 'url': 'dAOa3WbL54w', 'start': 250, 'end': 268, }, 5: { 'event': 'a000', 'url': 'dAOa3WbL54w', 'start': 270, 'end': 290, }, 6: { 'event': 'a000', 'url': 'dAOa3WbL54w', 'start': 310, 'end': 326, }, 7: { 'event': 'a000', 'url': 'dAOa3WbL54w', 'start': 330, 'end': 342, }, 8: { 'event': 'a000', 'url': 'dAOa3WbL54w', 'start': 346, 'end': 364, }, 9: { 'event': 'a000', 'url': 'dAOa3WbL54w', 'start': 366, 'end': 377, }, 10: { 'event': 'a000', 'url': 'AqwOCxkhrjI', 'start': 280, 'end': 299, }, 11: { 'event': 'a000', 'url': '3klGi-ujenE', 'start': 65, 'end': 84, }, 12: { 'event': 'a000', 'url': '8W0KcQLImuo', 'start': 130, 'end': 150, }, 13: { 'event': 'a000', 'url': '9KSO1R50AXY', 'start': 33, 'end': 42, }, 14: { 'event': 'a000', 'url': 'AqwOCxkhrjI', 'start': 92, 'end': 112, }, 15: { 'event': 'a000', 'url': 'AqwOCxkhrjI', 'start': 116, 'end': 130, }, 16: { 'event': 'a000', 'url': 'AqwOCxkhrjI', 'start': 131, 'end': 145, }, 17: { 'event': 'a000', 'url': 'AqwOCxkhrjI', 'start': 146, 'end': 159, }, 18: { 'event': 'a000', 'url': 'AqwOCxkhrjI', 'start': 160, 'end': 175, }, 19: { 'event': 'a000', 'url': 'AqwOCxkhrjI', 'start': 176, 'end': 196, }, 20: { 'event': 'a000', 'url': 'AqwOCxkhrjI', 'start': 198, 'end': 218, }, ####################################################################### 21: { 'event': 'b000', 'url': '-6krAYK2LLo', 'start': 11, 'end': 25, }, 22: { 'event': 'b000', 'url': '-6krAYK2LLo', 'start': 38, 'end': 48, }, 23: { 'event': 'b000', 'url': '-8wQV7VJnmM', 'start': 0, 'end': 20, }, 24: { 'event': 'b000', 'url': '-DYZX74qgFQ', 'start': 10, 'end': 24, }, 25: { 'event': 'b000', 'url': '-DYZX74qgFQ', 'start': 37, 'end': 50, }, 26: { 'event': 'b000', 'url': '-DYZX74qgFQ', 'start': 570, 'end': 579, }, 27: { 'event': 'b000', 'url': '-NPqCu4DyAM', 'start': 17, 'end': 28, }, 28: { 'event': 'b000', 'url': '-u5yvewHxzE', 'start': 0, 'end': 17, }, 29: { 'event': 'b000', 'url': '-u5yvewHxzE', 'start': 414, 'end': 424, }, 30: { 'event': 'b000', 'url': '-u5yvewHxzE', 'start': 590, 'end': 604, }, 31: { 'event': 'b000', 'url': '03frQGyrgQ4', 'start': 1, 'end': 21, }, 32: { 'event': 'b000', 'url': '08YFRFx-g7s', 'start': 0, 'end': 17, }, 33: { 'event': 'b000', 'url': '08YFRFx-g7s', 'start': 20, 'end': 29, }, 34: { 'event': 'b000', 'url': '0WWuZRd-O3c', 'start': 0, 'end': 12, }, 35: { 'event': 'b000', 'url': 'fPIG7nrpgec', 'start': 15, 'end': 30, }, 36: { 'event': 'b000', 'url': 'fYvUB-qy4IM', 'start': 0, 'end': 14, }, 37: { 'event': 'b000', 'url': 'gIQ4QrKXjCc', 'start': 0, 'end': 20, }, 38: { 'event': 'b000', 'url': 'i5TlfRqdawk', 'start': 13, 'end': 28, }, 39: { 'event': 'b000', 'url': 'iUyxzXcyrqI', 'start': 8, 'end': 28, }, 40: { 'event': 'b000', 'url': 'iyB5q7bb1l8', 'start': 0, 'end': 13, }, ####################################################################### 41: { 'event': 'b001', 'url': 'DTieJvYa-sA', 'start': 21, 'end': 26, }, 42: { 'event': 'b001', 'url': 'DVEuOBxAyFM', 'start': 10, 'end': 20, }, 43: { 'event': 'b001', 'url': 'E-As4tECwcQ', 'start': 195, 'end': 200, }, 44: { 'event': 'b001', 'url': 'EodzL5d9A78', 'start': 15, 'end': 25, }, 45: { 'event': 'b001', 'url': 'FSm6Z98ALhw', 'start': 345, 'end': 355, }, 46: { 'event': 'b001', 'url': 'G8tT-uKj3Ls', 'start': 12, 'end': 30, }, 47: { 'event': 'b001', 'url': 'HAS6G7Uq4Oc', 'start': 1, 'end': 16, }, 48: { 'event': 'b001', 'url': 'H_Bcux0FRxM', 'start': 34, 'end': 44, }, 49: { 'event': 'b001', 'url': 'I3_SwBhnUj0', 'start': 8, 'end': 20, }, 50: { 'event': 'b001', 'url': 'KZXC1iouJyo', 'start': 1, 'end': 6, }, 51: { 'event': 'b001', 'url': 'MIV0-6O-dLM', 'start': 10, 'end': 18, }, 52: { 'event': 'b001', 'url': 'MOV9rXOes3k', 'start': 0, 'end': 9, }, 53: { 'event': 'b001', 'url': 'W4oEM0W6mhM', 'start': 0, 'end': 7, }, 54: { 'event': 'b001', 'url': 'WCFt-dggFlk', 'start': 6, 'end': 12, }, 55: { 'event': 'b001', 'url': 'YykyGidfpfw', 'start': 0, 'end': 10, }, 56: { 'event': 'b001', 'url': 'ZPZa1zMpxBU', 'start': 0, 'end': 6, }, 57: { 'event': 'b001', 'url': 'eE8QMTqL01I', 'start': 0, 'end': 6, }, 58: { 'event': 'b001', 'url': 'fppKGJD3Y6c', 'start': 7, 'end': 13, }, 59: { 'event': 'b001', 'url': 'j_ZwYJNu5mE', 'start': 0, 'end': 15, }, 60: { 'event': 'b001', 'url': 'm1yOTcjRjcM', 'start': 0, 'end': 17, }, ####################################################################### 61: { 'event': 'c000', 'dir': 'raws/c000_1.wav', 'start': 0, 'end': -1, }, 62: { 'event': 'c000', 'dir': 'raws/c000_2.wav', 'start': 0, 'end': -1, }, 63: { 'event': 'c000', 'dir': 'raws/c000_3.wav', 'start': 0, 'end': -1, }, 64: { 'event': 'c000', 'dir': 'raws/c000_4.wav', 'start': 0, 'end': -1, }, 65: { 'event': 'c000', 'dir': 'raws/c000_5.wav', 'start': 0, 'end': -1, }, 66: { 'event': 'c000', 'dir': 'raws/c000_6.wav', 'start': 0, 'end': -1, }, 67: { 'event': 'c000', 'dir': 'raws/c000_7.wav', 'start': 0, 'end': -1, }, 68: { 'event': 'c000', 'dir': 'raws/c000_8.wav', 'start': 0, 'end': -1, }, 69: { 'event': 'c000', 'dir': 'raws/c000_9.wav', 'start': 0, 'end': -1, }, 70: { 'event': 'c000', 'dir': 'raws/c000_10.wav', 'start': 0, 'end': -1, }, 71: { 'event': 'c000', 'dir': 'raws/c000_11.wav', 'start': 0, 'end': -1, }, 72: { 'event': 'c000', 'dir': 'raws/c000_12.wav', 'start': 0, 'end': -1, }, 73: { 'event': 'c000', 'dir': 'raws/c000_13.wav', 'start': 0, 'end': -1, }, 74: { 'event': 'c000', 'dir': 'raws/c000_14.wav', 'start': 0, 'end': -1, }, 75: { 'event': 'c000', 'dir': 'raws/c000_15.wav', 'start': 0, 'end': -1, }, 76: { 'event': 'c000', 'dir': 'raws/c000_16.wav', 'start': 0, 'end': -1, }, 77: { 'event': 'c000', 'dir': 'raws/c000_17.wav', 'start': 0, 'end': -1, }, 78: { 'event': 'c000', 'dir': 'raws/c000_18.wav', 'start': 0, 'end': -1, }, 79: { 'event': 'c000', 'dir': 'raws/c000_19.wav', 'start': 0, 'end': -1, }, 80: { 'event': 'c000', 'dir': 'raws/c000_20.wav', 'start': 0, 'end': -1, }, ####################################################################### 81: { 'event': 'c001', 'dir': 'raws/c001_1.wav', 'start': 0, 'end': -1, }, 82: { 'event': 'c001', 'dir': 'raws/c001_2.wav', 'start': 0, 'end': -1, }, 83: { 'event': 'c001', 'dir': 'raws/c001_3.wav', 'start': 0, 'end': -1, }, 84: { 'event': 'c001', 'dir': 'raws/c001_4.wav', 'start': 0, 'end': -1, }, 85: { 'event': 'c001', 'dir': 'raws/c001_5.wav', 'start': 0, 'end': -1, }, 86: { 'event': 'c001', 'dir': 'raws/c001_6.wav', 'start': 0, 'end': -1, }, 87: { 'event': 'c001', 'dir': 'raws/c001_7.wav', 'start': 0, 'end': -1, }, 88: { 'event': 'c001', 'dir': 'raws/c001_8.wav', 'start': 0, 'end': -1, }, 89: { 'event': 'c001', 'dir': 'raws/c001_9.wav', 'start': 0, 'end': -1, }, 90: { 'event': 'c001', 'dir': 'raws/c001_10.wav', 'start': 0, 'end': -1, }, 91: { 'event': 'c001', 'dir': 'raws/c001_11.wav', 'start': 0, 'end': -1, }, 92: { 'event': 'c001', 'dir': 'raws/c001_12.wav', 'start': 0, 'end': -1, }, 93: { 'event': 'c001', 'url': 'ApJA85gwNFo', 'start': 7, 'end': 17, }, 94: { 'event': 'c001', 'url': 'ApJA85gwNFo', 'start': 18, 'end': 30, }, 95: { 'event': 'c001', 'url': 'ApJA85gwNFo', 'start': 45, 'end': 56, }, 96: { 'event': 'c001', 'url': 'ApJA85gwNFo', 'start': 60, 'end': 72, }, 97: { 'event': 'c001', 'url': 'ApJA85gwNFo', 'start': 90, 'end': 96, }, 98: { 'event': 'c001', 'url': 'ApJA85gwNFo', 'start': 120, 'end': 130, }, 99: { 'event': 'c001', 'url': 'ApJA85gwNFo', 'start': 230, 'end': 242, }, 100: { 'event': 'c001', 'url': 'ApJA85gwNFo', 'start': 270, 'end': 279, }, ####################################################################### 101: { 'event': 'c002', 'dir': 'raws/c002_1.wav', 'start': 0, 'end': -1, }, 102: { 'event': 'c002', 'dir': 'raws/c002_2.wav', 'start': 0, 'end': -1, }, 103: { 'event': 'c002', 'dir': 'raws/c002_3.wav', 'start': 0, 'end': -1, }, 104: { 'event': 'c002', 'dir': 'raws/c002_4.wav', 'start': 0, 'end': -1, }, 105: { 'event': 'c002', 'dir': 'raws/c002_5.wav', 'start': 0, 'end': -1, }, 106: { 'event': 'c002', 'dir': 'raws/c002_6.wav', 'start': 0, 'end': -1, }, 107: { 'event': 'c002', 'dir': 'raws/c002_7.wav', 'start': 0, 'end': -1, }, 108: { 'event': 'c002', 'dir': 'raws/c002_8.wav', 'start': 0, 'end': -1, }, 109: { 'event': 'c002', 'dir': 'raws/c002_9.wav', 'start': 0, 'end': -1, }, 110: { 'event': 'c002', 'dir': 'raws/c002_10.wav', 'start': 0, 'end': -1, }, 111: { 'event': 'c002', 'dir': 'raws/c002_11.wav', 'start': 0, 'end': -1, }, 112: { 'event': 'c002', 'dir': 'raws/c002_12.wav', 'start': 0, 'end': -1, }, 113: { 'event': 'c002', 'dir': 'raws/c002_13.wav', 'start': 0, 'end': -1, }, 114: { 'event': 'c002', 'dir': 'raws/c002_14.wav', 'start': 0, 'end': -1, }, 115: { 'event': 'c002', 'dir': 'raws/c002_15.wav', 'start': 0, 'end': -1, }, 116: { 'event': 'c002', 'dir': 'raws/c002_16.wav', 'start': 0, 'end': -1, }, 117: { 'event': 'c002', 'dir': 'raws/c002_17.wav', 'start': 0, 'end': -1, }, 118: { 'event': 'c002', 'dir': 'raws/c002_18.wav', 'start': 0, 'end': -1, }, 119: { 'event': 'c002', 'dir': 'raws/c002_19.wav', 'start': 0, 'end': -1, }, 120: { 'event': 'c002', 'dir': 'raws/c002_20.wav', 'start': 0, 'end': -1, }, ####################################################################### 121: { 'event': 'c003', 'url': '2p_d6vsFKJM', 'start': 2, 'end': 7, }, 122: { 'event': 'c003', 'url': '7e2ifgqrN1Q', 'start': 15, 'end': 20, }, 123: { 'event': 'c003', 'url': 'AiQoXi32QIA', 'start': 13, 'end': 18, }, 124: { 'event': 'c003', 'url': 'acIL82JWyq4', 'start': 90, 'end': 95, }, 125: { 'event': 'c003', 'url': 'acIL82JWyq4', 'start': 99, 'end': 105, }, 126: { 'event': 'c003', 'url': 'TpYdG5rqKnc', 'start': 77, 'end': 81, }, 127: { 'event': 'c003', 'url': 'aLHxMaT3uYg', 'start': 82, 'end': 87, }, 128: { 'event': 'c003', 'url': 'bWtCva4PDKE', 'start': 3, 'end': 10, }, 129: { 'event': 'c003', 'url': 'cM4zYIOdrYk', 'start': 1, 'end': 7, }, 130: { 'event': 'c003', 'url': 'fWBzCRl6LUs', 'start': 0, 'end': 4, }, 131: { 'event': 'c003', 'url': 'f_7ujxIzNmU', 'start': 11, 'end': 16, }, 132: { 'event': 'c003', 'url': 'fxbrSjGLrXY', 'start': 161, 'end': 166, }, 133: { 'event': 'c003', 'url': 'rbI18LmDHpw', 'start': 3, 'end': 8, }, 134: { 'event': 'c003', 'url': 'rbI18LmDHpw', 'start': 9, 'end': 16, }, 135: { 'event': 'c003', 'url': 's-jlycmfUsw', 'start': 21, 'end': 27, }, 136: { 'event': 'c003', 'url': 's-jlycmfUsw', 'start': 50, 'end': 56, }, 137: { 'event': 'c003', 'url': 't5fv6TTbsA0', 'start': 510, 'end': 516, }, 138: { 'event': 'c003', 'url': 'u0DxoED_3kA', 'start': 47, 'end': 52, }, 139: { 'event': 'c003', 'url': 'wBeYh9V8Iw4', 'start': 137, 'end': 142, }, 140: { 'event': 'c003', 'url': 'YJG1Zz097M4', 'start': 1, 'end': 9, }, ####################################################################### 141: { 'event': 'c004', 'url': 'ocOYpa4na5k', 'start': 0, 'end': 16, }, 142: { 'event': 'c004', 'url': 'ow2cNtqCNPw', 'start': 0, 'end': 6, }, 143: { 'event': 'c004', 'url': 'ow2cNtqCNPw', 'start': 8, 'end': 13, }, 144: { 'event': 'c004', 'url': 'ow2cNtqCNPw', 'start': 17, 'end': 23, }, 145: { 'event': 'c004', 'url': 'ow2cNtqCNPw', 'start': 27, 'end': 32, }, 146: { 'event': 'c004', 'url': 'ow2cNtqCNPw', 'start': 37, 'end': 43, }, 147: { 'event': 'c004', 'url': 'ow2cNtqCNPw', 'start': 45, 'end': 53, }, 148: { 'event': 'c004', 'url': 'rqzIV5OzbH0', 'start': 30, 'end': 37, }, 149: { 'event': 'c004', 'url': '1Ms9GajaUQ4', 'start': 0, 'end': 10, }, 150: { 'event': 'c004', 'url': '2rcRqeXnsNw', 'start': 17, 'end': 27, }, 151: { 'event': 'c004', 'url': '8yRROnG0-lA', 'start': 11, 'end': 23, }, 152: { 'event': 'c004', 'url': '8yRROnG0-lA', 'start': 24, 'end': 32, }, 153: { 'event': 'c004', 'url': '9EsNtRXnYbE', 'start': 0, 'end': 14, }, 154: { 'event': 'c004', 'url': '9EsNtRXnYbE', 'start': 15, 'end': 30, }, 155: { 'event': 'c004', 'url': 'FyQuHLiMuIk', 'start': 0, 'end': 5, }, 156: { 'event': 'c004', 'url': 'H7xKYPGjhhg', 'start': 10, 'end': 19, }, 157: { 'event': 'c004', 'url': 'H7xKYPGjhhg', 'start': 23, 'end': 29, }, 158: { 'event': 'c004', 'url': 'UPohyk3ynFk', 'start': 4, 'end': 10, }, 159: { 'event': 'c004', 'url': '7qnX0WB1x1k', 'start': 0, 'end': 9, }, 160: { 'event': 'c004', 'url': 'W-o0tTfwuOg', 'start': 39, 'end': 44, }, ####################################################################### 161: { 'event': 'd000', 'dir': 'raws/d000_1.wav', 'start': 0, 'end': -1, }, 162: { 'event': 'd000', 'dir': 'raws/d000_2.wav', 'start': 0, 'end': -1, }, 163: { 'event': 'd000', 'dir': 'raws/d000_3.wav', 'start': 0, 'end': -1, }, 164: { 'event': 'd000', 'dir': 'raws/d000_4.wav', 'start': 0, 'end': -1, }, 165: { 'event': 'd000', 'dir': 'raws/d000_5.wav', 'start': 0, 'end': -1, }, 166: { 'event': 'd000', 'dir': 'raws/d000_6.wav', 'start': 0, 'end': -1, }, 167: { 'event': 'd000', 'dir': 'raws/d000_7.wav', 'start': 0, 'end': -1, }, 168: { 'event': 'd000', 'dir': 'raws/d000_8.wav', 'start': 0, 'end': -1, }, 169: { 'event': 'd000', 'dir': 'raws/d000_9.wav', 'start': 0, 'end': -1, }, 170: { 'event': 'd000', 'dir': 'raws/d000_10.wav', 'start': 0, 'end': -1, }, 171: { 'event': 'd000', 'dir': 'raws/d000_11.wav', 'start': 0, 'end': -1, }, 172: { 'event': 'd000', 'dir': 'raws/d000_12.wav', 'start': 0, 'end': -1, }, 173: { 'event': 'd000', 'dir': 'raws/d000_13.wav', 'start': 0, 'end': -1, }, 174: { 'event': 'd000', 'dir': 'raws/d000_14.wav', 'start': 0, 'end': -1, }, 175: { 'event': 'd000', 'dir': 'raws/d000_15.wav', 'start': 0, 'end': -1, }, 176: { 'event': 'd000', 'dir': 'raws/d000_16.wav', 'start': 0, 'end': -1, }, 177: { 'event': 'd000', 'dir': 'raws/d000_17.wav', 'start': 0, 'end': -1, }, 178: { 'event': 'd000', 'dir': 'raws/d000_18.wav', 'start': 0, 'end': -1, }, 179: { 'event': 'd000', 'dir': 'raws/d000_19.wav', 'start': 0, 'end': -1, }, 180: { 'event': 'd000', 'dir': 'raws/d000_20.wav', 'start': 0, 'end': -1, }, ####################################################################### 181: { 'event': 'd001', 'url': 'nZIY8BKixjc', 'start': 7, 'end': 12, }, 182: { 'event': 'd001', 'url': 'ptIHZv3KdJw', 'start': 0, 'end': 2, }, 183: { 'event': 'd001', 'url': 'tNEGx3WCwBA', 'start': 0, 'end': 4, }, 184: { 'event': 'd001', 'url': 'vmeWtjzGZPs', 'start': 0, 'end': 6, }, 185: { 'event': 'd001', 'url': 'vmeWtjzGZPs', 'start': 7, 'end': 10, }, 186: { 'event': 'd001', 'url': 'vmeWtjzGZPs', 'start': 11, 'end': 16, }, 187: { 'event': 'd001', 'url': '-9ek6eO0RtI', 'start': 259, 'end': 265, }, 188: { 'event': 'd001', 'url': '6qlfodh49BA', 'start': 0, 'end': 2, }, 189: { 'event': 'd001', 'url': '7P-1BJ1A9ME', 'start': 0, 'end': 6, }, 190: { 'event': 'd001', 'url': '9VJL-ktypNw', 'start': 0, 'end': 5, }, 191: { 'event': 'd001', 'url': 'BurGML_ZqSA', 'start': 490.8, 'end': 495, }, 192: { 'event': 'd001', 'url': 'JL76D1HWv-U', 'start': 549, 'end': 555, }, 193: { 'event': 'd001', 'url': 'M47-JuWnx6U', 'start': 0, 'end': 3.6, }, 194: { 'event': 'd001', 'dir': 'raws/d001_1.wav', 'start': 0, 'end': 10, }, 195: { 'event': 'd001', 'dir': 'raws/d001_2.wav', 'start': 11, 'end': 19, }, 196: { 'event': 'd001', 'dir': 'raws/d001_3.wav', 'start': 20, 'end': 30, }, 197: { 'event': 'd001', 'dir': 'raws/d001_4.wav', 'start': 31, 'end': 41, }, 198: { 'event': 'd001', 'url': 'Vbx6TFxSPYY', 'start': 64, 'end': 70, }, 199: { 'event': 'd001', 'url': 'Vbx6TFxSPYY', 'start': 90, 'end': 92.8, }, 200: { 'event': 'd001', 'url': 'Vbx6TFxSPYY', 'start': 96, 'end': 101, }, ####################################################################### 201: { 'event': 'd002', 'url': '3xCWI_22Z9A', 'start': 45, 'end': 51, }, 202: { 'event': 'd002', 'url': '3xCWI_22Z9A', 'start': 61, 'end': 66, }, 203: { 'event': 'd002', 'url': '3xCWI_22Z9A', 'start': 117, 'end': 126, }, 204: { 'event': 'd002', 'url': '5PbIH_kMyis', 'start': 2, 'end': 18, }, 205: { 'event': 'd002', 'url': '64K4SlYR3BU', 'start': 0, 'end': 17, }, 206: { 'event': 'd002', 'url': 'CTBFPn_S5u0', 'start': 0, 'end': 5, }, 207: { 'event': 'd002', 'url': 'CTBFPn_S5u0', 'start': 12, 'end': 17, }, 208: { 'event': 'd002', 'url': 'EakI8v4Ztt4', 'start': 2, 'end': 14, }, 209: { 'event': 'd002', 'url': 'EakI8v4Ztt4', 'start': 29, 'end': 34, }, 210: { 'event': 'd002', 'url': 'FeRaDiSPb2c', 'start': 11, 'end': 16, }, 211: { 'event': 'd002', 'url': 'FeRaDiSPb2c', 'start': 18, 'end': 23, }, 212: { 'event': 'd002', 'url': 'Fw09tDLa-78', 'start': 0, 'end': 5, }, 213: { 'event': 'd002', 'url': 'Fw09tDLa-78', 'start': 40, 'end': 46, }, 214: { 'event': 'd002', 'url': 'G7vXKtePlGM', 'start': 0, 'end': 20, }, 215: { 'event': 'd002', 'url': 'GamZltmhYuc', 'start': 40, 'end': 45, }, 216: { 'event': 'd002', 'url': 'Glc6Ekc67OE', 'start': 25, 'end': 35, }, 217: { 'event': 'd002', 'url': 'Ki7Xvd2_hxY', 'start': 3, 'end': 10, }, 218: { 'event': 'd002', 'url': 'Ki7Xvd2_hxY', 'start': 15, 'end': 20, }, 219: { 'event': 'd002', 'url': 'KrtiLKd4VCI', 'start': 99, 'end': 110, }, 220: { 'event': 'd002', 'url': 'P_dXuddk3fE', 'start': 0, 'end': 18, }, ####################################################################### 221: { 'event': 'f000', 'url': '0JPT13OUVV8', 'start': 39, 'end': 45, }, 222: { 'event': 'f000', 'url': '3uZy0wkterE', 'start': 33, 'end': 40, }, 223: { 'event': 'f000', 'url': '3uZy0wkterE', 'start': 75, 'end': 81, }, 224: { 'event': 'f000', 'url': '3uZy0wkterE', 'start': 84, 'end': 89, }, 225: { 'event': 'f000', 'url': '3uZy0wkterE', 'start': 103, 'end': 118, }, 226: { 'event': 'f000', 'url': '3uZy0wkterE', 'start': 129, 'end': 135, }, 227: { 'event': 'f000', 'url': '3uZy0wkterE', 'start': 225, 'end': 232, }, 228: { 'event': 'f000', 'url': '3uZy0wkterE', 'start': 235, 'end': 249, }, 229: { 'event': 'f000', 'url': '3uZy0wkterE', 'start': 258, 'end': 264, }, 230: { 'event': 'f000', 'url': '3uZy0wkterE', 'start': 338, 'end': 348, }, 231: { 'event': 'f000', 'url': '3uZy0wkterE', 'start': 384, 'end': 396, }, 232: { 'event': 'f000', 'url': '3uZy0wkterE', 'start': 400, 'end': 410, }, 233: { 'event': 'f000', 'url': '3uZy0wkterE', 'start': 626, 'end': 634, }, 234: { 'event': 'f000', 'url': '3uZy0wkterE', 'start': 719, 'end': 725, }, 235: { 'event': 'f000', 'url': '4yub23Xuzos', 'start': 0, 'end': 12, }, 236: { 'event': 'f000', 'url': '4yub23Xuzos', 'start': 61, 'end': 72, }, 237: { 'event': 'f000', 'url': '4yub23Xuzos', 'start': 73, 'end': 85, }, 238: { 'event': 'f000', 'url': '4yub23Xuzos', 'start': 320, 'end': 340, }, 239: { 'event': 'f000', 'url': '4yub23Xuzos', 'start': 360, 'end': 380, }, 240: { 'event': 'f000', 'url': '4yub23Xuzos', 'start': 407, 'end': 416, }, ####################################################################### 241: { 'event': 'f001', 'url': '5EbJQCFom8o', 'start': 8, 'end': 19, }, 242: { 'event': 'f001', 'url': '6z4HD7Dw7i8', 'start': 35, 'end': 40, }, 243: { 'event': 'f001', 'url': 'PCsQ3zgL3CU', 'start': 66, 'end': 86, }, 244: { 'event': 'f001', 'url': '7GEiPdnqJUw', 'start': 4, 'end': 24, }, 245: { 'event': 'f001', 'url': 'BIK1Ds79KVM', 'start': 105, 'end': 125, }, 246: { 'event': 'f001', 'url': 'CDwk_DbprX4', 'start': 37, 'end': 42, }, 247: { 'event': 'f001', 'url': 'D2_KIhSbmt0', 'start': 9, 'end': 17, }, 248: { 'event': 'f001', 'url': 'DMMCiQB7-E4', 'start': 24, 'end': 29, }, 249: { 'event': 'f001', 'url': 'F3dasUA6LqU', 'start': 85, 'end': 104, }, 250: { 'event': 'f001', 'url': 'GyygYycarL0', 'start': 69, 'end': 80, }, 251: { 'event': 'f001', 'url': 'HFpfDaLZtzQ', 'start': 50, 'end': 60, }, 252: { 'event': 'f001', 'url': 'HFpfDaLZtzQ', 'start': 68, 'end': 78, }, 253: { 'event': 'f001', 'url': 'HFpfDaLZtzQ', 'start': 86, 'end': 96, }, 254: { 'event': 'f001', 'url': 'HFpfDaLZtzQ', 'start': 160, 'end': 170, }, 255: { 'event': 'f001', 'url': 'HxO2GRMD_fw', 'start': 47, 'end': 57, }, 256: { 'event': 'f001', 'url': 'I6YfsWzCvLI', 'start': 25, 'end': 34, }, 257: { 'event': 'f001', 'url': 'IYrVF4tHN08', 'start': 1, 'end': 19, }, 258: { 'event': 'f001', 'url': 'LjeZYuAHjpk', 'start': 2, 'end': 14, }, 259: { 'event': 'f001', 'url': 'Mls0tzvQpzQ', 'start': 83, 'end': 92, }, 260: { 'event': 'f001', 'url': 'O2htSqXhdqE', 'start': 65, 'end': 71, }, ####################################################################### 261: { 'event': 'h000', 'url': 'cSrL0BXsO40', 'start': 0, 'end': 17, }, 262: { 'event': 'h000', 'url': 'drVo5VQfsDc', 'start': 0, 'end': 6, }, 263: { 'event': 'h000', 'url': '-dEOa2GkXHw', 'start': 137, 'end': 143, }, 264: { 'event': 'h000', 'url': 'kVQbu_BsZ9o', 'start': 0, 'end': 10, }, 265: { 'event': 'h000', 'url': 'k_kRSOra2qA', 'start': 9.5, 'end': 17, }, 266: { 'event': 'h000', 'url': 'k_kRSOra2qA', 'start': 294, 'end': 304, }, 267: { 'event': 'h000', 'url': '-q1pzc3VMrg', 'start': 30, 'end': 38, }, 268: { 'event': 'h000', 'url': '-q1pzc3VMrg', 'start': 296, 'end': 309, }, 269: { 'event': 'h000', 'url': 'qF90ezvPe14', 'start': 8, 'end': 13, }, 270: { 'event': 'h000', 'url': 'x9Kkv8j42mI', 'start': 21, 'end': 28, }, 271: { 'event': 'h000', 'url': 'yOelIR7hiMc', 'start': 6, 'end': 25, }, 272: { 'event': 'h000', 'url': '0StCxWx9dV8', 'start': 6, 'end': 14, }, 273: { 'event': 'h000', 'url': 'zLo1mkKE4sw', 'start': 31, 'end': 41, }, 274: { 'event': 'h000', 'url': '0150dZu3Na8', 'start': 0, 'end': 7, }, 275: { 'event': 'h000', 'url': '7rk62G1WyG8', 'start': 17, 'end': 24, }, 276: { 'event': 'h000', 'url': '7rk62G1WyG8', 'start': 60, 'end': 73, }, 277: { 'event': 'h000', 'url': '9avOnbp3NA8', 'start': 3, 'end': 20, }, 278: { 'event': 'h000', 'url': '0jzTEIxgsjM', 'start': 11, 'end': 18, }, 279: { 'event': 'h000', 'url': 'E9etGzNH2SM', 'start': 0, 'end': 8, }, 280: { 'event': 'h000', 'url': 'GGyrdlFfowc', 'start': 0, 'end': 12, }, ####################################################################### 281: { 'event': 'h001', 'url': '8TkXXqFWNWQ', 'start': 24, 'end': 42, }, 282: { 'event': 'h001', 'url': 'KpGO2VTksIw', 'start': 61, 'end': 81, }, 283: { 'event': 'h001', 'url': 'KpGO2VTksIw', 'start': 90, 'end': 102, }, 284: { 'event': 'h001', 'url': 'KpGO2VTksIw', 'start': 123, 'end': 132, }, 285: { 'event': 'h001', 'url': 'KpGO2VTksIw', 'start': 166, 'end': 182, }, 286: { 'event': 'h001', 'url': 'KpGO2VTksIw', 'start': 184, 'end': 202, }, 287: { 'event': 'h001', 'url': 'KpGO2VTksIw', 'start': 203, 'end': 212, }, 288: { 'event': 'h001', 'url': 'KpGO2VTksIw', 'start': 214, 'end': 224, }, 289: { 'event': 'h001', 'url': 'KpGO2VTksIw', 'start': 257, 'end': 272, }, 290: { 'event': 'h001', 'url': 'KpGO2VTksIw', 'start': 274, 'end': 285, }, 291: { 'event': 'h001', 'url': 'KpGO2VTksIw', 'start': 305, 'end': 315, }, 292: { 'event': 'h001', 'url': 'KpGO2VTksIw', 'start': 318, 'end': 324, }, 293: { 'event': 'h001', 'url': 'KpGO2VTksIw', 'start': 327, 'end': 339, }, 294: { 'event': 'h001', 'url': 'KpGO2VTksIw', 'start': 397, 'end': 406, }, 295: { 'event': 'h001', 'url': 'KpGO2VTksIw', 'start': 407, 'end': 426, }, 296: { 'event': 'h001', 'url': 'oDQb7qZsz6o', 'start': 373, 'end': 381, }, 297: { 'event': 'h001', 'url': 'soVRoIbewMM', 'start': 35, 'end': 42, }, 298: { 'event': 'h001', 'url': 'xnliLFqdfo0', 'start': 92, 'end': 112, }, 299: { 'event': 'h001', 'url': 'VOUm1PTYpB0', 'start': 34, 'end': 39, }, 300: { 'event': 'h001', 'url': 'zGsY2GGVSao', 'start': 67, 'end': 73, }, ####################################################################### 301: { 'event': 'h002', 'url': 'K9BXym8IG_o', 'start': 3, 'end': 13, }, 302: { 'event': 'h002', 'url': 'LUK71I-yxXI', 'start': 4, 'end': 20, }, 303: { 'event': 'h002', 'url': 'NYG_T2t542Q', 'start': 19, 'end': 35, }, 304: { 'event': 'h002', 'url': 'RYK03ltDcqM', 'start': 1, 'end': 15, }, 305: { 'event': 'h002', 'url': 'RYK03ltDcqM', 'start': 31, 'end': 41, }, 306: { 'event': 'h002', 'url': 'RYK03ltDcqM', 'start': 51, 'end': 59, }, 307: { 'event': 'h002', 'url': 'RYK03ltDcqM', 'start': 67, 'end': 87, }, 308: { 'event': 'h002', 'url': 'Vb_Xvjbj_TI', 'start': 0, 'end': 15, }, 309: { 'event': 'h002', 'url': 'Vb_Xvjbj_TI', 'start': 16, 'end': 30, }, 310: { 'event': 'h002', 'url': 'Vb_Xvjbj_TI', 'start': 31, 'end': 45, }, 311: { 'event': 'h002', 'url': 'Vb_Xvjbj_TI', 'start': 46, 'end': 60, }, 312: { 'event': 'h002', 'url': 'Vb_Xvjbj_TI', 'start': 61, 'end': 80, }, 313: { 'event': 'h002', 'url': 'bcYI2CTlH5o', 'start': 13, 'end': 24, }, 314: { 'event': 'h002', 'url': 'guYpxmm4vFU', 'start': 85, 'end': 95, }, 315: { 'event': 'h002', 'url': 'guYpxmm4vFU', 'start': 100, 'end': 110, }, 316: { 'event': 'h002', 'url': 'guYpxmm4vFU', 'start': 120, 'end': 126, }, 317: { 'event': 'h002', 'url': 'guYpxmm4vFU', 'start': 159, 'end': 179, }, 318: { 'event': 'h002', 'url': 'hxH7Uith0tQ', 'start': 0, 'end': 15, }, 319: { 'event': 'h002', 'url': 'hxH7Uith0tQ', 'start': 16, 'end': 30, }, 320: { 'event': 'h002', 'url': 'hxH7Uith0tQ', 'start': 31, 'end': 45, }, ####################################################################### 321: { 'event': 'h003', 'url': '3rGHjZMdW4Y', 'start': 15, 'end': 24, }, 322: { 'event': 'h003', 'url': '9bIchzOP8PA', 'start': 18, 'end': 25, }, 323: { 'event': 'h003', 'url': 'A8sju2x5nhE', 'start': 339, 'end': 345, }, 324: { 'event': 'h003', 'url': 'FUXSq44CbHo', 'start': 221, 'end': 232, }, 325: { 'event': 'h003', 'url': 'IWxlWrfpk_g', 'start': 8, 'end': 28, }, 326: { 'event': 'h003', 'url': 'NETQtgbQ9-s', 'start': 0, 'end': 9, }, 327: { 'event': 'h003', 'url': 'SqsmuNOtmwM', 'start': 26, 'end': 39, }, 328: { 'event': 'h003', 'url': 'XrKDtjFM9Ec', 'start': 0, 'end': 13, }, 329: { 'event': 'h003', 'url': '_H4iHqtGlAY', 'start': 0, 'end': 15, }, 330: { 'event': 'h003', 'url': 'aa_468eUE1o', 'start': 230, 'end': 242, }, 331: { 'event': 'h003', 'url': 'aomaneVgUs0', 'start': 51, 'end': 57, }, 332: { 'event': 'h003', 'url': 'bW-xjy5-a1s', 'start': 58, 'end': 71, }, 333: { 'event': 'h003', 'url': 'fIPsH57dZIY', 'start': 0, 'end': 20, }, 334: { 'event': 'h003', 'url': 'ojvtp3aHKdc', 'start': 5, 'end': 12, }, 335: { 'event': 'h003', 'dir': 'raws/h003_1.wav', 'start': 0, 'end': -1, }, 336: { 'event': 'h003', 'dir': 'raws/h003_2.wav', 'start': 0, 'end': -1, }, 337: { 'event': 'h003', 'dir': 'raws/h003_3.wav', 'start': 0, 'end': -1, }, 338: { 'event': 'h003', 'dir': 'raws/h003_4.wav', 'start': 0, 'end': -1, }, 339: { 'event': 'h003', 'dir': 'raws/h003_5.wav', 'start': 0, 'end': -1, }, 340: { 'event': 'h003', 'dir': 'raws/h003_6.wav', 'start': 0, 'end': -1, }, ####################################################################### 341: { 'event': 'h004', 'url': 'nFdmth2N8Bo', 'start': 0, 'end': 18, }, 342: { 'event': 'h004', 'url': 'pNrjoDwCnik', 'start': 280, 'end': 294, }, 343: { 'event': 'h004', 'url': 't4wDKhMiKpA', 'start': 13, 'end': 20, }, 344: { 'event': 'h004', 'url': 'uscPSf6C_Js', 'start': 14, 'end': 30, }, 345: { 'event': 'h004', 'url': 'w8an1GY8T00', 'start': 42, 'end': 46, }, 346: { 'event': 'h004', 'url': '2k6Bw9EVz7g', 'start': 17, 'end': 22, }, 347: { 'event': 'h004', 'url': '8g2Uv6QqI_Y', 'start': 185, 'end': 200, }, 348: { 'event': 'h004', 'url': 'BH0rbQ6zHlw', 'start': 6, 'end': 22, }, 349: { 'event': 'h004', 'url': 'GlWecURh_OU', 'start': 94, 'end': 104, }, 350: { 'event': 'h004', 'url': 'LU1vqeS4G4s', 'start': 78, 'end': 88, }, 351: { 'event': 'h004', 'url': 'SA4SG1Nt0mw', 'start': 0, 'end': 5, }, 352: { 'event': 'h004', 'url': '4t524YeonRo', 'start': 7, 'end': 15, }, 353: { 'event': 'h004', 'url': 'UQtbZNMp1nY', 'start': 0, 'end': 14, }, 354: { 'event': 'h004', 'url': 'UhANSJnLXNs', 'start': 0, 'end': 15, }, 355: { 'event': 'h004', 'url': '4t524YeonRo', 'start': 37, 'end': 43, }, 356: { 'event': 'h004', 'url': 'Wy49nszOnxo', 'start': 139, 'end': 149, }, 357: { 'event': 'h004', 'url': '_yFwVTg-V-M', 'start': 0, 'end': 18, }, 358: { 'event': 'h004', 'url': 'e3BdNhbiDwA', 'start': 191, 'end': 201, }, 359: { 'event': 'h004', 'url': 'iLUd4l1JFDI', 'start': 0, 'end': 16, }, 360: { 'event': 'h004', 'url': 'jx1sWITDw-E', 'start': 24, 'end': 37, }, ####################################################################### 361: { 'event': 'p000', 'url': 'QeS7zmkTOig', 'start': 0, 'end': 4, }, 362: { 'event': 'p000', 'url': 'URxsjJi1IL4', 'start': 2, 'end': 21, }, 363: { 'event': 'p000', 'url': 'Zf5gYtlz6Pw', 'start': 3, 'end': 20, }, 364: { 'event': 'p000', 'url': 'yKls2m5kM14', 'start': 0, 'end': 4, }, 365: { 'event': 'p000', 'url': 'yibeLZXOHiU', 'start': 0, 'end': 4, }, 366: { 'event': 'p000', 'url': 'ys60zlhXTs4', 'start': 0, 'end': 16, }, 367: { 'event': 'p000', 'url': '2QcOD8uCu0E', 'start': 0, 'end': 4, }, 368: { 'event': 'p000', 'url': '4BUEj-TxY5g', 'start': 0, 'end': 11, }, 369: { 'event': 'p000', 'url': 'IigiZ3ss6HE', 'start': 8, 'end': 21, }, 370: { 'event': 'p000', 'url': 'NK92DUyyngc', 'start': 13, 'end': 25, }, 371: { 'event': 'p000', 'url': 'fR2lhjlHR4I', 'start': 28, 'end': 48, }, 372: { 'event': 'p000', 'dir': 'raws/p000_1.wav', 'start': 0, 'end': -1, }, 373: { 'event': 'p000', 'dir': 'raws/p000_2.wav', 'start': 0, 'end': -1, }, 374: { 'event': 'p000', 'dir': 'raws/p000_3.wav', 'start': 0, 'end': -1, }, 375: { 'event': 'p000', 'dir': 'raws/p000_4.wav', 'start': 0, 'end': -1, }, 376: { 'event': 'p000', 'dir': 'raws/p000_5.wav', 'start': 0, 'end': -1, }, 377: { 'event': 'p000', 'dir': 'raws/p000_6.wav', 'start': 0, 'end': -1, }, 378: { 'event': 'p000', 'dir': 'raws/p000_7.wav', 'start': 0, 'end': -1, }, 379: { 'event': 'p000', 'dir': 'raws/p000_8.wav', 'start': 0, 'end': -1, }, 380: { 'event': 'p000', 'dir': 'raws/p000_9.wav', 'start': 0, 'end': -1, }, ####################################################################### 381: { 'event': 't000', 'url': '3y2aZEs1F5s', 'start': 75, 'end': 85, }, 382: { 'event': 't000', 'url': '4lNM6Ah99hw', 'start': 0, 'end': 11, }, 383: { 'event': 't000', 'url': '6OHetw29o_A', 'start': 3, 'end': 15, }, 384: { 'event': 't000', 'url': '78R6KgsSPRk', 'start': 0, 'end': 7, }, 385: { 'event': 't000', 'url': 'APYXZHZPCE4', 'start': 38, 'end': 52, }, 386: { 'event': 't000', 'url': 'SavkOa_GGLs', 'start': 12, 'end': 16, }, 387: { 'event': 't000', 'url': 'bW_PMIAIHBE', 'start': 47, 'end': 52, }, 388: { 'event': 't000', 'url': 'dI9HTTk6Mgs', 'start': 5, 'end': 11, }, 389: { 'event': 't000', 'url': 'dJudErPaMWI', 'start': 39, 'end': 48, }, 390: { 'event': 't000', 'url': 'dxcs_lpcwj0', 'start': 5, 'end': 25, }, 391: { 'event': 't000', 'url': 'dxcs_lpcwj0', 'start': 119, 'end': 139, }, 392: { 'event': 't000', 'url': 'h6voPlJG0m0', 'start': 24, 'end': 31, }, 393: { 'event': 't000', 'url': 'jDdYqpYoIGY', 'start': 29, 'end': 41, }, 394: { 'event': 't000', 'url': 'jotE032i05c', 'start': 2, 'end': 22, }, 395: { 'event': 't000', 'url': 'jotE032i05c', 'start': 60, 'end': 72, }, 396: { 'event': 't000', 'url': 'nD_HctFk3Hc', 'start': 434, 'end': 442, }, 397: { 'event': 't000', 'url': 'y2A1Pmiu7yw', 'start': 76, 'end': 86, }, 398: { 'event': 't000', 'url': 'y2A1Pmiu7yw', 'start': 587, 'end': 595, }, 399: { 'event': 't000', 'url': '8pJUJvPfIx0', 'start': 76, 'end': 94, }, 400: { 'event': 't000', 'url': 'mi-s3pLeR3U', 'start': 616, 'end': 634, }, } with open('daqa_sources.json', 'w') as f: json.dump(sources, f) if __name__ == "__main__": main() print('Success!')
daqa-master
daqa-gen/daqa_sources.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from __future__ import (absolute_import, division, print_function, unicode_literals) import json def main(): dataset = { 'events': ['a000', 'b000', 'b001', 'c000', 'c001', 'c002', 'c003', 'c004', 'd000', 'd001', 'd002', 'f000', 'f001', 'h000', 'h001', 'h002', 'h003', 'h004', 'p000', 't000'], # unique 'sources': { 'a000': ['aircraft', 'plane'], 'b000': ['band'], 'b001': ['bird'], 'c000': ['crowd'], 'c001': ['crowd'], 'c002': ['crowd'], 'c003': ['driver', 'car', 'vehicle'], 'c004': ['car', 'vehicle'], 'd000': ['door'], 'd001': ['doorbell'], 'd002': ['dog'], 'f000': ['fire truck', 'fire engine', 'emergency vehicle'], 'f001': ['fire alarm', 'alarm'], 'h000': ['human'], 'h001': ['human'], 'h002': ['human'], 'h003': ['human'], 'h004': ['human'], 'p000': ['phone'], 't000': ['storm'], }, 'actions': { 'a000': ['passing by', 'flying over'], 'b000': ['playing'], 'b001': ['singing'], 'c000': ['babbling'], 'c001': ['applauding', 'clapping'], 'c002': ['rioting', 'making noise'], 'c003': ['honking'], 'c004': ['passing by'], 'd000': ['slamming', 'closing', 'shutting'], 'd001': ['ringing'], 'd002': ['barking', 'making noise'], 'f000': ['passing by'], 'f001': ['going off'], 'h000': ['speaking', 'talking'], 'h001': ['laughing'], 'h002': ['typing on a keyboard', 'typing'], 'h003': ['whistling'], 'h004': ['operating a machine'], 'p000': ['ringing'], 't000': ['thundering'], }, 'consecutive': { 'a000': True, 'b000': False, 'b001': False, 'c000': False, 'c001': False, 'c002': False, 'c003': False, 'c004': True, 'd000': True, 'd001': False, 'd002': False, 'f000': False, 'f001': False, 'h000': True, 'h001': True, 'h002': False, 'h003': False, 'h004': False, 'p000': False, 't000': False, } } with open('daqa_outline.json', 'w') as f: json.dump(dataset, f) if __name__ == "__main__": main() print('Success!')
daqa-master
daqa-gen/daqa_outline.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from __future__ import (absolute_import, division, print_function, unicode_literals) import argparse import datetime import json import os import random import numpy as np import scipy import scipy.io.wavfile parser = argparse.ArgumentParser() # Input parser.add_argument('--dataset', default='daqa.json', type=str, help='JSON file describing the dataset.') parser.add_argument('--events', default='events', type=str, help='Location of individual audio events.') parser.add_argument('--backgrounds', default='backgrounds', type=str, help='Location of some background noise audio.') parser.add_argument('--data_fs', default=16000, type=int, help='Sampling frequency (Hz).') # Settings parser.add_argument('--min_num_events', default=5, type=int, help='Minimum number of events per generated audio.') parser.add_argument('--max_num_events', default=12, type=int, help='Maximum number of events per generated audio.') parser.add_argument('--rand_overlap', default=0.5, type=float, help='Maximum overlap between adjacent events (seconds).') parser.add_argument('--seed', default=0, type=int, help='Random Seed.') parser.add_argument('--version', default='1.0', type=str, help='Version.') parser.add_argument('--date', default=datetime.datetime.today().strftime("%m/%d/%Y"), help="Date.") parser.add_argument('--license', default='Creative Commons Attribution (CC-BY 4.0)', help='License.') # Output parser.add_argument('--start_idx', default=0, type=int, help='Start numbering from start_idx.') parser.add_argument('--num_audio', default=10, type=int, help='Number of audio to generate.') parser.add_argument('--filename_prefix', default='daqa', type=str, help='Filename prefix to audio and JSON files.') parser.add_argument('--set', default='new', help='Set name: train / val / test.') parser.add_argument('--num_digits', default=6, type=int, help='Number of digits to enumerate the generated files.') parser.add_argument('--output_audio_dir', default='../daqa/audio/', help='Directory to output generated audio.') parser.add_argument('--output_narrative_dir', default='../daqa/narratives/', help='Directory to output generated narratives.') parser.add_argument('--output_narrative_file', default='../daqa/daqa_narratives.json', help="Path to narratives JSON file.") def main(args): """Randomly sample audio events to form sequences of events.""" random.seed(args.seed) np.random.seed(args.seed) # Read dataset description with open(args.dataset, 'r') as f: dataset = json.load(f) # Define naming conventions and directories prefix = '%s_%s_' % (args.filename_prefix, args.set) audio_template = '%s%%0%dd.wav' % (prefix, args.num_digits) audio_template = os.path.join(args.output_audio_dir, audio_template) narrative_template = '%s%%0%dd.json' % (prefix, args.num_digits) narrative_template = os.path.join(args.output_narrative_dir, narrative_template) if not os.path.isdir(args.output_audio_dir): os.makedirs(args.output_audio_dir) if not os.path.isdir(args.output_narrative_dir): os.makedirs(args.output_narrative_dir) # Get list of events and backgrounds lst_events = list(dataset['origins'].keys()) # without .wav lst_events_wav = os.listdir(args.events) lst_events_wav = [e[:-4] for e in lst_events_wav if e.endswith('.wav')] assert len(lst_events) == len(lst_events_wav), 'Dataset mismatch.' assert sorted(lst_events) == sorted(lst_events_wav), 'Dataset mismatch.' lst_bckgrnds = os.listdir(args.backgrounds) lst_bckgrnds = [e for e in lst_bckgrnds if e.endswith('.wav')] x_consctvs = [k for k, v in dataset['consecutive'].items() if v is False] num_fails = 0 # Generate audio and narratives from events lst_narrative_paths = [] for i in range(args.num_audio): idx = args.start_idx + i audio_path = audio_template % idx narrative_path = narrative_template % idx lst_narrative_paths.append(narrative_path) num_events = random.randint(args.min_num_events, args.max_num_events) # Sample num_events number of events (not unique) sel_events = None while sel_events is None: sel_events = random.sample(lst_events, num_events) # The following checks if the sequence of selected events is ok sel_events_dx = [x.split('_')[0] for x in sel_events] # Check if the list has any identical consective events consecutives = [] for x in range(len(sel_events_dx) - 1): if sel_events_dx[x] == sel_events_dx[x + 1]: consecutives.append(sel_events_dx[x]) # Check if any of the events in consecutives are not allowed if len([x for x in consecutives if x in x_consctvs]) > 0: sel_events = None # retry num_fails += 1 sel_bckgrnd = random.sample(lst_bckgrnds, 1) audio, narrative = gen_audio_narrative(dataset=dataset, args=args, selcted_events=sel_events, selcted_bckgrnd=sel_bckgrnd, output_index=idx, output_audio=audio_path, ) scipy.io.wavfile.write(audio_path, args.data_fs, audio) with open(narrative_path, 'w') as f: json.dump(narrative, f) print('Generated ' + str(args.num_audio) + ' audio sequences (' + str(num_fails) + ' failed attempts). Compiliing narratives...') # Combine all narratives into a single JSON file lst_narratives = [] for narrative_path in lst_narrative_paths: with open(narrative_path, 'r') as f: lst_narratives.append(json.load(f)) output = { 'info': { 'set': args.set, 'version': args.version, 'date': args.date, 'license': args.license, }, 'narratives': lst_narratives } with open(args.output_narrative_file, 'w') as f: json.dump(output, f) return True def gen_audio_narrative(dataset, args, selcted_events, selcted_bckgrnd, output_index, output_audio): # Read audio events lst_audio_events = [] for e in selcted_events: e_wav = os.path.join(args.events, e + '.wav') event_fs, event = scipy.io.wavfile.read(e_wav) assert event_fs == args.data_fs, \ 'Audio event sampling frequency != ' + str(args.data_fs) + ' Hz.' lst_audio_events.append(event) # Toss an unbiased coin to concatenate or add events if random.random() < 0.5: # concatenate audio = np.concatenate(lst_audio_events) else: # add (allows overlap between adjacent events) audio = lst_audio_events[0] for event in lst_audio_events[1:]: idx_overlap = random.randint(0, (args.rand_overlap * args.data_fs)) plhldr = np.zeros(event.shape[0] - idx_overlap, event.dtype) audio = np.concatenate((audio, plhldr)) audio[-event.shape[0]:] += event assert len(audio.shape) == 1, 'Audio events not concatenated properly.' # Toss an unbiased coin to add background noise background = 'None' if random.random() < 0.5: selec_bckgrnd = os.path.join(args.backgrounds, selcted_bckgrnd[0]) bckgrnd_fs, bckgrnd = scipy.io.wavfile.read(selec_bckgrnd) assert event_fs == args.data_fs, \ 'Bckgrnd sampling frequency != ' + str(args.data_fs) + ' Hz.' idx_trim = random.randint(0, bckgrnd.shape[0] - audio.shape[0]) trim_bckgrnd = bckgrnd[idx_trim:(audio.shape[0] + idx_trim)] audio += trim_bckgrnd background = selcted_bckgrnd[0][:-4] events = [] for idx, sel_event in enumerate(selcted_events): event_dx = sel_event.split('_')[0] event = { # 'start_time': 'end_time': 'order': idx, 'event': event_dx, 'audio': sel_event, 'source': random.choice(dataset['sources'][event_dx]), 'action': random.choice(dataset['actions'][event_dx]), 'duration': (float(lst_audio_events[idx].shape[0]) / args.data_fs), 'loudness': dataset['origins'][sel_event]['loudness'], } events.append(event) # Generate JSON narrative = { 'set': args.set, 'audio_index': output_index, 'audio_filename': os.path.basename(output_audio), 'background': background, 'events': events, } return audio, narrative if __name__ == "__main__": args = parser.parse_args() main(args) print('Success!')
daqa-master
daqa-gen/generate_audio.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from __future__ import (absolute_import, division, print_function, unicode_literals) import argparse import datetime import json parser = argparse.ArgumentParser() # Input parser.add_argument('--outline', default='daqa_outline.json', type=str, help='Location of outline file.') parser.add_argument('--sources', default='daqa_sources.json', type=str, help='Location of sources file.') parser.add_argument('--loudness', default='daqa_loudness.json', type=str, help='Location of loudness file.') # Settings parser.add_argument('--version', default='1.0', type=str, help='Version.') parser.add_argument('--date', default=datetime.datetime.today().strftime("%m/%d/%Y"), help="Date.") parser.add_argument('--license', default='Creative Commons Attribution (CC-BY 4.0)', help='License.') # Output parser.add_argument('--output', default='daqa.json', type=str, help='Location of dataset file.') def main(args): # Read files with open(args.outline, 'r') as f: outline = json.load(f) with open(args.sources, 'r') as f: sources = json.load(f) with open(args.loudness, 'r') as f: loudness = json.load(f) dataset = { 'info': { 'version': args.version, 'date': args.date, 'license': args.license, }, 'events': outline['events'], 'sources': outline['sources'], 'actions': outline['actions'], 'consecutive': outline['consecutive'], 'origins': {}, } counter = {} for i in range(len(dataset['events'])): counter[dataset['events'][i]] = 0 for i in range(1, len(sources.keys()) + 1): counter[sources[str(i)]['event']] += 1 ins = sources[str(i)]['event'] + '_' + \ str(counter[sources[str(i)]['event']]) dataset['origins'][ins] = sources[str(i)] dataset['origins'][ins]['filename'] = ins + '.wav' dataset['origins'][ins]['loudness'] = loudness[ins] with open(args.output, 'w') as f: json.dump(dataset, f) # indent=2 if __name__ == "__main__": args = parser.parse_args() main(args) print('Success!')
daqa-master
daqa-gen/daqa.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from __future__ import (absolute_import, division, print_function, unicode_literals) import numpy as np from qpas.utils import (compute_rel_diff, get_lst_durations, get_lst_events, get_lst_loudness, sample_absolute_duration, sample_absolute_loudness, sample_immediate_preposition, sample_number, sample_preposition, sanitize_question) def what_was(dataset, narrative, _): questions = ['What was the <O> sound you [heard,listened to]?', 'What was the <O> sound?', 'What did the <O> sound [sound,seem] like?', ] question = str(np.random.choice(questions)) # sample question lst_events = get_lst_events(narrative) number, ordinal = sample_number(len(lst_events)) question = question.replace('<O>', ordinal) # insert ordinal question = sanitize_question(question) # correct grammar event = lst_events[number - 1] answer = (str(np.random.choice(dataset['sources'][event])) + ' ' + str(np.random.choice(dataset['actions'][event]))) return question, answer def what_was_relative(dataset, narrative, _): questions = ['What was the sound <RO> the <S> <A>?', 'What was the sound <RO> [hearing,listening to] the <S> <A>?', 'What was the sound <RO> the <S> <A> was heard?', 'What did you [hear,listen to] <RO> the <S> <A>?', 'What did you [hear,listen to] <RO> [hearing,listening to] the <S> <A>?', # noqa: E501 'What did you [hear,listen to] <RO> the <S> <A> was heard?', 'What was the sound <IO> the <S> <A>?', 'What was the sound <IO> [hearing,listening to] the <S> <A>?', 'What was the sound <IO> the <S> <A> was heard?', 'What did you [hear,listen to] <IO> the <S> <A>?', 'What did you [hear,listen to] <IO> [hearing,listening to] the <S> <A>?', # noqa: E501 'What did you [hear,listen to] <IO> the <S> <A> was heard?', ] question = str(np.random.choice(questions)) # sample question preposition = sample_preposition() immediate_preposition = sample_immediate_preposition() lst_events = get_lst_events(narrative) unique_lst_events = [e for e in lst_events if lst_events.count(e) == 1] assert len(unique_lst_events) > 0, \ 'Question (what_was_relative) illposed.' event = str(np.random.choice(unique_lst_events)) source = str(np.random.choice(dataset['sources'][event])) # sample source action = str(np.random.choice(dataset['actions'][event])) # sample action # Only one of the following two lines will have an effect question = question.replace('<RO>', preposition) # insert preposition question = question.replace('<IO>', immediate_preposition) question = question.replace('<S>', source) # insert source question = question.replace('<A>', action) # insert action question = sanitize_question(question) # correct grammar assert lst_events.count(event) == 1, \ 'Question (what_was_relative) illposed.' event_idx = lst_events.index(event) if 'before' in question: if (event_idx - 1) < 0: answer = 'nothing' else: e = lst_events[event_idx - 1] answer = (str(np.random.choice(dataset['sources'][e])) + ' ' + str(np.random.choice(dataset['actions'][e]))) elif 'after' in question: if (event_idx + 1) >= len(lst_events): answer = 'nothing' else: e = lst_events[event_idx + 1] answer = (str(np.random.choice(dataset['sources'][e])) + ' ' + str(np.random.choice(dataset['actions'][e]))) else: assert False, 'Preposition illdefined in Question (what_was_relative).' return question, answer def what_was_loudness(dataset, narrative, rel_diff=0.1): questions = ['What was the <AL> sound?', 'What was the <AL> sound you [heard,listened to]?', 'What was the <AL> sound that you [heard,listened to]?', 'What was the <AL> sound that was heard?', ] question = str(np.random.choice(questions)) # sample question loudness = sample_absolute_loudness() question = question.replace('<AL>', loudness) # insert loudness question = sanitize_question(question) # correct grammar lst_events = get_lst_events(narrative) lst_loudness = get_lst_loudness(narrative) if 'loud' in question: est = np.argmax(lst_loudness) elif 'quiet' in question: est = np.argmin(lst_loudness) else: assert False, \ 'Loudness illdefined in Question (what_was_loudness).' # Assert a good margin in relative loudness evt_loudness = lst_loudness[est] x_loudness = [j for i, j in enumerate(lst_loudness) if i != est] rel_loudness_diff = compute_rel_diff(np.array(x_loudness), np.array(evt_loudness)) assert np.sum(rel_loudness_diff < rel_diff) <= 0, \ 'Question (what_was_loudness) illposed.' e = lst_events[est] answer = (str(np.random.choice(dataset['sources'][e])) + ' ' + str(np.random.choice(dataset['actions'][e]))) return question, answer def what_was_loudness_relative(dataset, narrative, rel_diff=0.1): questions = ['What was the <AL> sound <RO> the <S> <A>?', 'What was the <AL> sound <RO> [hearing,listening to] the <S> <A>?', 'What was the <AL> sound <RO> the <S> <A> was heard?', ] question = str(np.random.choice(questions)) # sample question loudness = sample_absolute_loudness() preposition = sample_preposition() lst_events = get_lst_events(narrative) unique_lst_events = [e for e in lst_events if lst_events.count(e) == 1] assert len(unique_lst_events) > 0, \ 'Question (what_was_loudness_relative) illposed.' event = str(np.random.choice(unique_lst_events)) source = str(np.random.choice(dataset['sources'][event])) # sample source action = str(np.random.choice(dataset['actions'][event])) # sample action question = question.replace('<AL>', loudness) # insert loudness question = question.replace('<RO>', preposition) # insert preposition question = question.replace('<S>', source) # insert source question = question.replace('<A>', action) # insert action question = sanitize_question(question) # correct grammar assert lst_events.count(event) == 1, \ 'Question (what_was_loudness_relative) illposed.' lst_loudness = get_lst_loudness(narrative) event_idx = lst_events.index(event) if 'before' in question: lst_events_e = lst_events[:event_idx] lst_events_l = lst_loudness[:event_idx] elif 'after' in question: lst_events_e = lst_events[(event_idx + 1):] lst_events_l = lst_loudness[(event_idx + 1):] else: assert False, \ 'Preposition illdefined in Question (what_was_loudness_relative).' assert len(lst_events_e) > 0, \ 'Question (what_was_loudness_relative) illposed.' if 'loud' in question: est = np.argmax(lst_events_l) elif 'quiet' in question: est = np.argmin(lst_events_l) else: assert False, \ 'Loudness illdefined in Question (what_was_loudness_relative).' # Assert a good margin in relative loudness evt_loudness = lst_events_l[est] x_loudness = [j for i, j in enumerate(lst_events_l) if i != est] rel_loudness_diff = compute_rel_diff(np.array(x_loudness), np.array(evt_loudness)) assert np.sum(rel_loudness_diff < rel_diff) <= 0, \ 'Question (what_was_loudness_relative) illposed.' e = lst_events_e[est] answer = (str(np.random.choice(dataset['sources'][e])) + ' ' + str(np.random.choice(dataset['actions'][e]))) return question, answer def what_was_loudness_relative_ordinal(dataset, narrative, rel_diff=0.1): questions = ['What was the <AL> sound <RO> the <O> sound?', 'What was the <AL> sound <RO> [hearing,listening to] the <O> sound?', 'What was the <AL> sound <RO> the <O> sound was heard?', ] question = str(np.random.choice(questions)) # sample question loudness = sample_absolute_loudness() preposition = sample_preposition() lst_events = get_lst_events(narrative) number, ordinal = sample_number(len(lst_events)) question = question.replace('<AL>', loudness) # insert loudness question = question.replace('<RO>', preposition) # insert preposition question = question.replace('<O>', ordinal) # insert ordinal question = sanitize_question(question) # correct grammar lst_loudness = get_lst_loudness(narrative) event_idx = (number - 1) answer = None if 'before' in question: if (event_idx - 1) < 0: answer = 'nothing' else: lst_events_e = lst_events[:event_idx] lst_events_l = lst_loudness[:event_idx] elif 'after' in question: if (event_idx + 1) >= len(lst_events): answer = 'nothing' else: lst_events_e = lst_events[(event_idx + 1):] lst_events_l = lst_loudness[(event_idx + 1):] else: assert False, \ 'Preposition illdefined in Question (what_was_loudness_relative_ordinal).' if answer is None: assert len(lst_events_e) > 0, \ 'Question (what_was_loudness_relative_ordinal) illposed.' if 'loud' in question: est = np.argmax(lst_events_l) elif 'quiet' in question: est = np.argmin(lst_events_l) else: assert False, \ 'Loudness illdefined in Question (what_was_loudness_relative_ordinal).' # Assert a good margin in relative loudness evt_loudness = lst_events_l[est] x_loudness = [j for i, j in enumerate(lst_events_l) if i != est] rel_loudness_diff = compute_rel_diff(np.array(x_loudness), np.array(evt_loudness)) assert np.sum(rel_loudness_diff < rel_diff) <= 0, \ 'Question (what_was_loudness_relative_ordinal) illposed.' e = lst_events_e[est] answer = (str(np.random.choice(dataset['sources'][e])) + ' ' + str(np.random.choice(dataset['actions'][e]))) return question, answer def what_was_duration(dataset, narrative, rel_diff=0.1): questions = ['What was the <AD> sound?', 'What was the <AD> sound you [heard,listened to]?', 'What was the <AD> sound that you [heard,listened to]?', 'What was the <AD> sound that was heard?', ] question = str(np.random.choice(questions)) # sample question duration = sample_absolute_duration() question = question.replace('<AD>', duration) # insert duration question = sanitize_question(question) # correct grammar lst_events = get_lst_events(narrative) lst_durations = get_lst_durations(narrative) if 'long' in question: est = np.argmax(lst_durations) elif 'short' in question: est = np.argmin(lst_durations) else: assert False, \ 'Duration illdefined in Question (what_was_duration).' # Assert a good margin in relative duration evt_duration = lst_durations[est] x_durations = [j for i, j in enumerate(lst_durations) if i != est] rel_duration_diff = compute_rel_diff(np.array(x_durations), np.array(evt_duration)) assert np.sum(rel_duration_diff < rel_diff) <= 0, \ 'Question (what_was_duration) illposed.' e = lst_events[est] answer = (str(np.random.choice(dataset['sources'][e])) + ' ' + str(np.random.choice(dataset['actions'][e]))) return question, answer def what_was_duration_relative(dataset, narrative, rel_diff=0.1): questions = ['What was the <AD> sound <RO> the <S> <A>?', 'What was the <AD> sound <RO> [hearing,listening to] the <S> <A>?', 'What was the <AD> sound <RO> the <S> <A> was heard?', ] question = str(np.random.choice(questions)) # sample question duration = sample_absolute_duration() preposition = sample_preposition() lst_events = get_lst_events(narrative) unique_lst_events = [e for e in lst_events if lst_events.count(e) == 1] assert len(unique_lst_events) > 0, \ 'Question (what_was_duration_relative) illposed.' event = str(np.random.choice(unique_lst_events)) source = str(np.random.choice(dataset['sources'][event])) # sample source action = str(np.random.choice(dataset['actions'][event])) # sample action question = question.replace('<AD>', duration) # insert duration question = question.replace('<RO>', preposition) # insert preposition question = question.replace('<S>', source) # insert source question = question.replace('<A>', action) # insert action question = sanitize_question(question) # correct grammar assert lst_events.count(event) == 1, \ 'Question (what_was_duration_relative) illposed.' lst_durations = get_lst_durations(narrative) event_idx = lst_events.index(event) if 'before' in question: lst_events_e = lst_events[:event_idx] lst_events_d = lst_durations[:event_idx] elif 'after' in question: lst_events_e = lst_events[(event_idx + 1):] lst_events_d = lst_durations[(event_idx + 1):] else: assert False, \ 'Preposition illdefined in Question (what_was_duration_relative).' assert len(lst_events_e) > 0, \ 'Question (what_was_duration_relative) illposed.' if 'long' in question: est = np.argmax(lst_events_d) elif 'short' in question: est = np.argmin(lst_events_d) else: assert False, \ 'Duration illdefined in Question (what_was_duration_relative).' # Assert a good margin in relative duration evt_duration = lst_events_d[est] x_durations = [j for i, j in enumerate(lst_events_d) if i != est] rel_duration_diff = compute_rel_diff(np.array(x_durations), np.array(evt_duration)) assert np.sum(rel_duration_diff < rel_diff) <= 0, \ 'Question (what_was_duration_relative) illposed.' e = lst_events_e[est] answer = (str(np.random.choice(dataset['sources'][e])) + ' ' + str(np.random.choice(dataset['actions'][e]))) return question, answer def what_was_duration_relative_ordinal(dataset, narrative, rel_diff=0.1): questions = ['What was the <AD> sound <RO> the <O> sound?', 'What was the <AD> sound <RO> [hearing,listening to] the <O> sound?', 'What was the <AD> sound <RO> the <O> sound was heard?', ] question = str(np.random.choice(questions)) # sample question duration = sample_absolute_duration() preposition = sample_preposition() lst_events = get_lst_events(narrative) number, ordinal = sample_number(len(lst_events)) question = question.replace('<AD>', duration) # insert duration question = question.replace('<RO>', preposition) # insert preposition question = question.replace('<O>', ordinal) # insert ordinal question = sanitize_question(question) # correct grammar lst_durations = get_lst_durations(narrative) event_idx = (number - 1) answer = None if 'before' in question: if (event_idx - 1) < 0: answer = 'nothing' else: lst_events_e = lst_events[:event_idx] lst_events_d = lst_durations[:event_idx] elif 'after' in question: if (event_idx + 1) >= len(lst_events): answer = 'nothing' else: lst_events_e = lst_events[(event_idx + 1):] lst_events_d = lst_durations[(event_idx + 1):] else: assert False, \ 'Preposition illdefined in Question (what_was_duration_relative_ordinal).' if answer is None: assert len(lst_events_e) > 0, \ 'Question (what_was_duration_relative_ordinal) illposed.' if 'long' in question: est = np.argmax(lst_events_d) elif 'short' in question: est = np.argmin(lst_events_d) else: assert False, \ 'Duration illdefined in Question (what_was_duration_relative_ordinal).' # Assert a good margin in relative duration evt_duration = lst_events_d[est] x_durations = [j for i, j in enumerate(lst_events_d) if i != est] rel_duration_diff = compute_rel_diff(np.array(x_durations), np.array(evt_duration)) assert np.sum(rel_duration_diff < rel_diff) <= 0, \ 'Question (what_was_duration_relative_ordinal) illposed.' e = lst_events_e[est] answer = (str(np.random.choice(dataset['sources'][e])) + ' ' + str(np.random.choice(dataset['actions'][e]))) return question, answer
daqa-master
daqa-gen/qpas/query.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from __future__ import (absolute_import, division, print_function, unicode_literals) import numpy as np from qpas.utils import (compute_rel_diff, get_lst_all_sources, get_lst_durations, get_lst_events, get_lst_loudness, sample_duration, sample_immediate_preposition, sample_loudness, sample_number, sample_preposition, sanitize_question) def was_there(dataset, narrative, _): questions = ['Did you [hear,listen to] [a,an] <S> <A>?', 'Have you [heard,listened to] [a,an] <S> <A>?', 'Did you [hear,listen to] any <S> <A>?', 'Have you [heard,listened to] any <S> <A>?', 'Did you [hear,listen to] a sound that [sounds like,sounded like,is,was] [a,an] <S> <A>?', # noqa: E501 'Have you [heard,listened to] a sound that [sounds like,sounded like,is,was] [a,an] <S> <A>?', # noqa: E501 'Was there [a,an] <S> <A>?', 'Were there any <S>s <A>?', ] question = str(np.random.choice(questions)) # sample question event = str(np.random.choice(dataset['events'])) # sample event source = str(np.random.choice(dataset['sources'][event])) # sample source action = str(np.random.choice(dataset['actions'][event])) # sample action question = question.replace('<S>', source) # insert source question = question.replace('<A>', action) # insert action question = sanitize_question(question) # correct grammar answer = 'yes' if event in get_lst_events(narrative) else 'no' return question, answer def was_there_two_and(dataset, narrative, _): questions = ['Did you [hear,listen to] [a,an] <S1> <A1> and [a,an] <S2> <A2>?', 'Have you [heard,listened to] [a,an] <S1> <A1> and [a,an] <S2> <A2>?', 'Did you [hear,listen to] any <S1> <A1> and any <S2> <A2>?', 'Have you [heard,listened to] any <S1> <A1> and any <S2> <A2>?', 'Did you [hear,listen to] a sound that [sounds like,is] [a,an] <S1> <A1> and a sound [sounds like,is] [a,an] <S2> <A2>?', # noqa: E501 'Did you [hear,listen to] a sound that [sounded like,was] [a,an] <S1> <A1> and a sound [sounded like,was] [a,an] <S2> <A2>?', # noqa: E501 'Have you [heard,listened to] a sound that [sounds like,is] [a,an] <S1> <A1> and a sound [sounds like,is] [a,an] <S2> <A2>?', # noqa: E501 'Have you [heard,listened to] a sound that [sounded like,was] [a,an] <S1> <A1> and a sound [sounded like,was] [a,an] <S2> <A2>?', # noqa: E501 'Was there [a,an] <S1> <A1> and [a,an] <S2> <A2>?', 'Were there any <S1>s <A1> and any <S2>s <A2>?', ] question = str(np.random.choice(questions)) # sample question event_1 = str(np.random.choice(dataset['events'])) # sample event source_1 = str(np.random.choice(dataset['sources'][event_1])) # sample source action_1 = str(np.random.choice(dataset['actions'][event_1])) # sample action lst_events = [e for e in dataset['events'] if e != event_1] event_2 = str(np.random.choice(lst_events)) # sample event source_2 = str(np.random.choice(dataset['sources'][event_2])) # sample source action_2 = str(np.random.choice(dataset['actions'][event_2])) # sample action question = question.replace('<S1>', source_1) # insert source question = question.replace('<A1>', action_1) # insert action question = question.replace('<S2>', source_2) # insert source question = question.replace('<A2>', action_2) # insert action question = sanitize_question(question) # correct grammar lst_events = get_lst_events(narrative) answer = 'yes' if (event_1 in lst_events and event_2 in lst_events) else 'no' return question, answer def was_there_two_or(dataset, narrative, _): questions = ['Did you [hear,listen to] [a,an] <S1> <A1> or [a,an] <S2> <A2>?', 'Have you [heard,listened to] [a,an] <S1> <A1> or [a,an] <S2> <A2>?', 'Did you [hear,listen to] any <S1> <A1> or any <S2> <A2>?', 'Have you [heard,listened to] any <S1> <A1> or any <S2> <A2>?', 'Did you [hear,listen to] a sound that [sounds like,is] [a,an] <S1> <A1> or a sound [sounds like,is] [a,an] <S2> <A2>?', # noqa: E501 'Did you [hear,listen to] a sound that [sounded like,was] [a,an] <S1> <A1> or a sound [sounded like,was] [a,an] <S2> <A2>?', # noqa: E501 'Have you [heard,listened to] a sound that [sounds like,is] [a,an] <S1> <A1> or a sound [sounds like,is] [a,an] <S2> <A2>?', # noqa: E501 'Have you [heard,listened to] a sound that [sounded like,was] [a,an] <S1> <A1> or a sound [sounded like,was] [a,an] <S2> <A2>?', # noqa: E501 'Was there [a,an] <S1> <A1> or [a,an] <S2> <A2>?', 'Were there any <S1>s <A1> or any <S2>s <A2>?', ] question = str(np.random.choice(questions)) # sample question event_1 = str(np.random.choice(dataset['events'])) # sample event source_1 = str(np.random.choice(dataset['sources'][event_1])) # sample source action_1 = str(np.random.choice(dataset['actions'][event_1])) # sample action lst_events = [e for e in dataset['events'] if e != event_1] event_2 = str(np.random.choice(lst_events)) # sample event source_2 = str(np.random.choice(dataset['sources'][event_2])) # sample source action_2 = str(np.random.choice(dataset['actions'][event_2])) # sample action question = question.replace('<S1>', source_1) # insert source question = question.replace('<A1>', action_1) # insert action question = question.replace('<S2>', source_2) # insert source question = question.replace('<A2>', action_2) # insert action question = sanitize_question(question) # correct grammar lst_events = get_lst_events(narrative) answer = 'yes' if (event_1 in lst_events or event_2 in lst_events) else 'no' return question, answer def was_there_source(dataset, narrative, _): questions = ['Did you [hear,listen to] [a,an] <S>?', 'Have you [heard,listened to] [a,an] <S>?' 'Did you [hear,listen to] any <S>?', 'Have you [heard,listened to] any <S>?', 'Was there a sound [produced,made] by [a,an] <S>?', 'Were there any sounds [produced,made] by [a,an] <S>?', ] question = str(np.random.choice(questions)) # sample question event = str(np.random.choice(dataset['events'])) # sample event source = str(np.random.choice(dataset['sources'][event])) # sample source question = question.replace('<S>', source) # insert source question = sanitize_question(question) # correct grammar answer = 'yes' if source in get_lst_all_sources(dataset, narrative) else 'no' return question, answer def was_there_source_two_and(dataset, narrative, _): questions = ['Did you [hear,listen to] [a,an] <S1> and [a,an] <S2>?', 'Have you [heard,listened to] [a,an] <S1> and [a,an] <S2>?' 'Did you [hear,listen to] any <S1> and any <S2>?', 'Have you [heard,listened to] any <S1> and any <S2>?', 'Was there a sound [produced,made] by [a,an] <S1> and a sound [produced,made] by [a,an] <S2>?', # noqa: E501 'Were there any sounds [produced,made] by [a,an] <S1> and any sounds [produced,made] by [a,an] <S2>?', # noqa: E501 ] question = str(np.random.choice(questions)) # sample question event_1 = str(np.random.choice(dataset['events'])) # sample event source_1 = str(np.random.choice(dataset['sources'][event_1])) # sample source lst_events = [e for e in dataset['events'] if e != event_1] event_2 = str(np.random.choice(lst_events)) # sample event source_2 = str(np.random.choice(dataset['sources'][event_2])) # sample source question = question.replace('<S1>', source_1) # insert source question = question.replace('<S2>', source_2) # insert source question = sanitize_question(question) # correct grammar lst_sources = get_lst_all_sources(dataset, narrative) answer = 'yes' if (source_1 in lst_sources and source_2 in lst_sources) else 'no' return question, answer def was_there_source_two_or(dataset, narrative, _): questions = ['Did you [hear,listen to] [a,an] <S1> or [a,an] <S2>?', 'Have you [heard,listened to] [a,an] <S1> or [a,an] <S2>?' 'Did you [hear,listen to] any <S1> or any <S2>?', 'Have you [heard,listened to] any <S1> or any <S2>?', 'Was there a sound [produced,made] by [a,an] <S1> or a sound [produced,made] by [a,an] <S2>?', # noqa: E501 'Were there any sounds [produced,made] by [a,an] <S1> or any sounds [produced,made] by [a,an] <S2>?', # noqa: E501 ] question = str(np.random.choice(questions)) # sample question event_1 = str(np.random.choice(dataset['events'])) # sample event source_1 = str(np.random.choice(dataset['sources'][event_1])) # sample source lst_events = [e for e in dataset['events'] if e != event_1] event_2 = str(np.random.choice(lst_events)) # sample event source_2 = str(np.random.choice(dataset['sources'][event_2])) # sample source question = question.replace('<S1>', source_1) # insert source question = question.replace('<S2>', source_2) # insert source question = sanitize_question(question) # correct grammar lst_sources = get_lst_all_sources(dataset, narrative) answer = 'yes' if (source_1 in lst_sources or source_2 in lst_sources) else 'no' return question, answer def was_there_relative(dataset, narrative, _): questions = ['Did you [hear,listen to] [a,an] <S1> <A1> <RO> the <S2> <A2>?', # noqa: E501 'Have you [heard,listened to] [a,an] <S1> <A1> <RO> the <S2> <A2>?', # noqa: E501 'Did you [hear,listen to] any <S1> <A1> <RO> the <S2> <A2>?', 'Have you [heard,listened to] any <S1> <A1> <RO> the <S2> <A2>?', 'Was there [a,an] <S1> <A1> <RO> the <S2> <A2>?', 'Were there any <S1>s <A1> <RO> the <S2> <A2>?', 'Did you [hear,listen to] a sound that [sounds like,sounded like,is,was] [a,an] <S1> <A1> <RO> the <S2> <A2>?', # noqa: E501 '<RO> the <S2> <A2>, did you [hear,listen to] [a,an] <S1> <A1> ?', # noqa: E501 '<RO> the <S2> <A2>, did you [hear,listen to] any <S1> <A1>?', '<RO> the <S2> <A2>, was there [a,an] <S1> <A1>?', '<RO> the <S2> <A2>, were there any <S1>s <A1>?', '<RO> the <S2> <A2>, did you [hear,listen to] a sound that [sounds like,sounded like,is,was] [a,an] <S1> <A1>?', # noqa: E501 ] question = str(np.random.choice(questions)) # sample question event_1 = str(np.random.choice(dataset['events'])) # sample event source_1 = str(np.random.choice(dataset['sources'][event_1])) action_1 = str(np.random.choice(dataset['actions'][event_1])) preposition = sample_preposition() lst_events = get_lst_events(narrative) unique_lst_events = [e for e in lst_events if lst_events.count(e) == 1] unique_lst_events = [e for e in unique_lst_events if e != event_1] assert len(unique_lst_events) > 0, \ 'Question (was_there_relative) illposed.' event_2 = str(np.random.choice(unique_lst_events)) source_2 = str(np.random.choice(dataset['sources'][event_2])) action_2 = str(np.random.choice(dataset['actions'][event_2])) question = question.replace('<S1>', source_1) # insert source question = question.replace('<A1>', action_1) # insert action question = question.replace('<RO>', preposition) # insert preposition question = question.replace('<S2>', source_2) # insert source question = question.replace('<A2>', action_2) # insert action question = sanitize_question(question) # correct grammar assert lst_events.count(event_2) == 1, \ 'Question (was_there_relative) illposed.' event_2_idx = lst_events.index(event_2) if 'before' in preposition: lst_events = lst_events[:event_2_idx] elif 'after' in preposition: lst_events = lst_events[(event_2_idx + 1):] else: assert False, 'Preposition illdefined in Question (was_there_relative).' answer = 'yes' if event_1 in lst_events else 'no' return question, answer def was_there_immediate_relative(dataset, narrative, _): questions = ['Did you [hear,listen to] [a,an] <S1> <A1> <IO> the <S2> <A2>?', # noqa: E501 'Have you [heard,listened to] [a,an] <S1> <A1> <IO> the <S2> <A2>?', # noqa: E501 'Did you [hear,listen to] any <S1> <A1> <IO> the <S2> <A2>?', 'Have you [heard,listened to] any <S1> <A1> <IO> the <S2> <A2>?', 'Was there [a,an] <S1> <A1> <IO> the <S2> <A2>?', 'Were there any <S1>s <A1> <IO> the <S2> <A2>?', 'Did you [hear,listen to] a sound that [sounds like,sounded like,is,was] [a,an] <S1> <A1> <IO> the <S2> <A2>?', # noqa: E501 '<IO> the <S2> <A2>, did you [hear,listen to] [a,an] <S1> <A1> ?', # noqa: E501 '<IO> the <S2> <A2>, did you [hear,listen to] any <S1> <A1>?', '<IO> the <S2> <A2>, was there [a,an] <S1> <A1>?', '<IO> the <S2> <A2>, were there any <S1>s <A1>?', '<IO> the <S2> <A2>, did you [hear,listen to] a sound that [sounds like,sounded like,is,was] [a,an] <S1> <A1>?', # noqa: E501 ] question = str(np.random.choice(questions)) # sample question event_1 = str(np.random.choice(dataset['events'])) # sample event source_1 = str(np.random.choice(dataset['sources'][event_1])) action_1 = str(np.random.choice(dataset['actions'][event_1])) preposition = sample_immediate_preposition() lst_events = get_lst_events(narrative) unique_lst_events = [e for e in lst_events if lst_events.count(e) == 1] unique_lst_events = [e for e in unique_lst_events if e != event_1] assert len(unique_lst_events) > 0, \ 'Question (was_there_immediate_relative) illposed.' event_2 = str(np.random.choice(unique_lst_events)) source_2 = str(np.random.choice(dataset['sources'][event_2])) action_2 = str(np.random.choice(dataset['actions'][event_2])) question = question.replace('<S1>', source_1) # insert source question = question.replace('<A1>', action_1) # insert action question = question.replace('<IO>', preposition) # insert preposition question = question.replace('<S2>', source_2) # insert source question = question.replace('<A2>', action_2) # insert action question = sanitize_question(question) # correct grammar assert lst_events.count(event_2) == 1, \ 'Question (was_there_immediate_relative) illposed.' event_2_idx = lst_events.index(event_2) if 'before' in preposition: if (event_2_idx - 1) < 0: target_event = [] else: target_event = lst_events[event_2_idx - 1] elif 'after' in preposition: if (event_2_idx + 1) >= len(lst_events): target_event = [] else: target_event = lst_events[event_2_idx + 1] else: assert False, \ 'Preposition illdefined in Question (was_there_immediate_relative).' answer = 'yes' if event_1 == target_event else 'no' return question, answer def was_there_similar_ordinal(dataset, narrative, _): questions = ['Were there any similar sounds to the <O> sound?', 'Were there any sounds that were similar to the <O> sound?', 'Was there at least a sound similar to the <O> sound?', 'Was there at least a sound that was similar to the <O> sound?', # noqa: E501 'Was there at least [one,a single] sound similar to the <O> sound?', 'Was there at least [one,a single] sound that was similar to the <O> sound?', # noqa: E501 ] question = str(np.random.choice(questions)) # sample question lst_events = get_lst_events(narrative) number, ordinal = sample_number(len(lst_events)) question = question.replace('<O>', ordinal) # insert ordinal question = sanitize_question(question) # correct grammar event = lst_events[number - 1] answer = 'yes' if lst_events.count(event) > 1 else 'no' # 1 for reference return question, answer def was_there_similar_loudness(dataset, narrative, rel_diff=0.1): questions = ['Were there any sounds [roughly,approximately] as <L> as the <S> <A>?', # noqa: E501 'Were there any sounds that were [roughly,approximately] as <L> as the <S> <A>?', # noqa: E501 'Were there any sounds that were [roughly,approximately] the same loudness as the <S> <A>?', # noqa: E501 'Was there any sound [roughly,approximately] as <L> as the <S> <A>?', # noqa: E501 'Was there any sound that was [roughly,approximately] as <L> as the <S> <A>?', # noqa: E501 'Was there any sound that was [roughly,approximately] the same loudness as the <S> <A>?', # noqa: E501 'Was there at least a sound [roughly,approximately] as <L> as the <S> <A>?', # noqa: E501 'Was there at least a sound that was [roughly,approximately] as <L> as the <S> <A>?', # noqa: E501 'Was there at least a sound that was [roughly,approximately] the same loudness as <S> <A>?', # noqa: E501 'Was there at least [one,a single] sound [roughly,approximately] as <L> as the <S> <A>?', # noqa: E501 'Was there at least [one,a single] sound that was [roughly,approximately] as <L> as the <S> <A>?', # noqa: E501 'Was there at least [one,a single] sound that was [roughly,approximately] the same loudness as <S> <A>?', # noqa: E501 ] question = str(np.random.choice(questions)) # sample question loudness = sample_loudness() # sample loudness lst_events = get_lst_events(narrative) unique_lst_events = [e for e in lst_events if lst_events.count(e) == 1] assert len(unique_lst_events) > 0, \ 'Question (was_there_similar_loudness) illposed.' event = str(np.random.choice(unique_lst_events)) source = str(np.random.choice(dataset['sources'][event])) # sample source action = str(np.random.choice(dataset['actions'][event])) # sample action question = question.replace('<L>', loudness) # insert loudness question = question.replace('<S>', source) # insert source question = question.replace('<A>', action) # insert action question = sanitize_question(question) # correct grammar assert lst_events.count(event) == 1, \ 'Question (was_there_similar_loudness) illposed.' lst_loudness = get_lst_loudness(narrative) event_idx = lst_events.index(event) evt_loudness = lst_loudness[event_idx] x_loudness = [j for i, j in enumerate(lst_loudness) if i != event_idx] rel_loudness_diff = compute_rel_diff(np.array(x_loudness), np.array(evt_loudness)) # Assert a good margin in relative loudness assert np.sum(np.logical_and(rel_loudness_diff > rel_diff, rel_loudness_diff < (2 * rel_diff))) <= 0, \ 'Question (was_there_similar_loudness) illposed.' answer = 'yes' if np.sum(rel_loudness_diff <= rel_diff) >= 1 else 'no' return question, answer def was_there_at_least_two_similar_loudness(dataset, narrative, rel_diff=0.1): questions = ['Were there at least two sounds [roughly,approximately] as <L> as the <S> <A>?', # noqa: E501 'Were there at least two sounds that were [roughly,approximately] as <L> as the <S> <A>?', # noqa: E501 'Were there at least two sounds that were [roughly,approximately] the same loudness as the <S> <A>?', # noqa: E501 'Was there more than a sound [roughly,approximately] as <L> as the <S> <A>?', # noqa: E501 'Was there more than a sound that was [roughly,approximately] as <L> as the <S> <A>?', # noqa: E501 'Was there more than a sound that was [roughly,approximately] the same loudness as the <S> <A>?', # noqa: E501 'Was there more than [one,a single] sound [roughly,approximately] as <L> as the <S> <A>?', # noqa: E501 'Was there more than [one,a single] sound that was [roughly,approximately] as <L> as the <S> <A>?', # noqa: E501 'Was there more than [one,a single] sound that was [roughly,approximately] the same loudness as the <S> <A>?', # noqa: E501 ] question = str(np.random.choice(questions)) # sample question loudness = sample_loudness() # sample loudness lst_events = get_lst_events(narrative) unique_lst_events = [e for e in lst_events if lst_events.count(e) == 1] assert len(unique_lst_events) > 0, \ 'Question (was_there_at_least_two_similar_loudness) illposed.' event = str(np.random.choice(unique_lst_events)) source = str(np.random.choice(dataset['sources'][event])) # sample source action = str(np.random.choice(dataset['actions'][event])) # sample action question = question.replace('<L>', loudness) # insert loudness question = question.replace('<S>', source) # insert source question = question.replace('<A>', action) # insert action question = sanitize_question(question) # correct grammar assert lst_events.count(event) == 1, \ 'Question (was_there_at_least_two_similar_loudness) illposed.' lst_loudness = get_lst_loudness(narrative) event_idx = lst_events.index(event) evt_loudness = lst_loudness[event_idx] x_loudness = [j for i, j in enumerate(lst_loudness) if i != event_idx] rel_loudness_diff = compute_rel_diff(np.array(x_loudness), np.array(evt_loudness)) # Assert a good margin in relative loudness assert np.sum(np.logical_and(rel_loudness_diff > rel_diff, rel_loudness_diff < (2 * rel_diff))) <= 0, \ 'Question (was_there_at_least_two_similar_loudness) illposed.' answer = 'yes' if np.sum(rel_loudness_diff <= rel_diff) >= 2 else 'no' return question, answer def was_there_similar_loudness_ordinal(dataset, narrative, rel_diff=0.1): questions = ['Were there any sounds [roughly,approximately] as <L> as the <O> sound?', # noqa: E501 'Were there any sounds that were [roughly,approximately] as <L> as the <O> sound?', # noqa: E501 'Were there any sounds that were [roughly,approximately] the same loudness as the <O> sound?', # noqa: E501 'Was there any sound [roughly,approximately] as <L> as the <O> sound?', # noqa: E501 'Was there any sound that was [roughly,approximately] as <L> as the <O> sound?', # noqa: E501 'Was there any sound that was [roughly,approximately] the same loudness as the <O> sound?', # noqa: E501 'Was there at least a sound [roughly,approximately] as <L> as the <O> sound?', # noqa: E501 'Was there at least a sound that was [roughly,approximately] as <L> as the <O> sound?', # noqa: E501 'Was there at least a sound that was [roughly,approximately] the same loudness as the <O> sound?', # noqa: E501 'Was there at least [one,a single] sound that was [roughly,approximately] as <L> as the <O> sound?', # noqa: E501 'Was there at least [one,a single] sound [roughly,approximately] as <L> as the <O> sound?', # noqa: E501 'Was there at least [one,a single] sound that was [roughly,approximately] the same loudness as the <O> sound?', # noqa: E501 ] question = str(np.random.choice(questions)) # sample question loudness = sample_loudness() # sample loudness lst_events = get_lst_events(narrative) number, ordinal = sample_number(len(lst_events)) question = question.replace('<L>', loudness) # insert loudness question = question.replace('<O>', ordinal) # insert ordinal question = sanitize_question(question) # correct grammar lst_loudness = get_lst_loudness(narrative) evt_loudness = lst_loudness[number - 1] x_loudness = [j for i, j in enumerate(lst_loudness) if i != (number - 1)] rel_loudness_diff = compute_rel_diff(np.array(x_loudness), np.array(evt_loudness)) # Assert a good margin in relative loudness assert np.sum(np.logical_and(rel_loudness_diff > rel_diff, rel_loudness_diff < (2 * rel_diff))) <= 0, \ 'Question (was_there_similar_loudness_ordinal) illposed.' answer = 'yes' if np.sum(rel_loudness_diff <= rel_diff) >= 1 else 'no' return question, answer def was_there_at_least_two_similar_loudness_ordinal(dataset, narrative, rel_diff=0.1): questions = ['Were there at least two sounds [roughly,approximately] as <L> as the <O> sound?', # noqa: E501 'Were there at least two sounds that were [roughly,approximately] as <L> as the <O> sound?', # noqa: E501 'Were there at least two sounds that were [roughly,approximately] the same loudness as the <O> sound?', # noqa: E501 'Was there more than a sound [roughly,approximately] as <L> as the <O> sound?', # noqa: E501 'Was there more than a sound that was [roughly,approximately] as <L> as the <O> sound?', # noqa: E501 'Was there more than a sound that was [roughly,approximately] the same loudness as the <O> sound?', # noqa: E501 'Was there more than [one,a single] sound [roughly,approximately] as <L> as the <O> sound?', # noqa: E501 'Was there more than [one,a single] sound that was [roughly,approximately] as <L> as the <O> sound?', # noqa: E501 'Was there more than [one,a single] sound that was [roughly,approximately] the same loudness as the <O> sound?', # noqa: E501 ] question = str(np.random.choice(questions)) # sample question loudness = sample_loudness() # sample loudness lst_events = get_lst_events(narrative) number, ordinal = sample_number(len(lst_events)) question = question.replace('<L>', loudness) # insert loudness question = question.replace('<O>', ordinal) # insert ordinal question = sanitize_question(question) # correct grammar lst_loudness = get_lst_loudness(narrative) evt_loudness = lst_loudness[number - 1] x_loudness = [j for i, j in enumerate(lst_loudness) if i != (number - 1)] rel_loudness_diff = compute_rel_diff(np.array(x_loudness), np.array(evt_loudness)) # Assert a good margin in relative loudness assert np.sum(np.logical_and(rel_loudness_diff > rel_diff, rel_loudness_diff < (2 * rel_diff))) <= 0, \ 'Question (was_there_at_least_two_similar_loudness_ordinal) illposed.' answer = 'yes' if np.sum(rel_loudness_diff <= rel_diff) >= 2 else 'no' return question, answer def was_there_similar_duration(dataset, narrative, rel_diff=0.1): questions = ['Were there any sounds [roughly,approximately] as <D> as the <S> <A>?', # noqa: E501 'Were there any sounds that were [roughly,approximately] as <D> as the <S> <A>?', # noqa: E501 'Were there any sounds that were [roughly,approximately] the same duration as the <S> <A>?', # noqa: E501 'Was there any sound [roughly,approximately] as <D> as the <S> <A>?', # noqa: E501 'Was there any sound that was [roughly,approximately] as <D> as the <S> <A>?', # noqa: E501 'Was there any sound that was [roughly,approximately] the same duration as the <S> <A>?', # noqa: E501 'Was there at least a sound [roughly,approximately] as <D> as the <S> <A>?', # noqa: E501 'Was there at least a sound that was [roughly,approximately] as <D> as the <S> <A>?', # noqa: E501 'Was there at least a sound that was [roughly,approximately] the same duration as <S> <A>?', # noqa: E501 'Was there at least [one,a single] sound [roughly,approximately] as <D> as the <S> <A>?', # noqa: E501 'Was there at least [one,a single] sound that was [roughly,approximately] as <D> as the <S> <A>?', # noqa: E501 'Was there at least [one,a single] sound that was [roughly,approximately] the same duration as <S> <A>?', # noqa: E501 ] question = str(np.random.choice(questions)) # sample question duration = sample_duration() # sample duration lst_events = get_lst_events(narrative) unique_lst_events = [e for e in lst_events if lst_events.count(e) == 1] assert len(unique_lst_events) > 0, \ 'Question (was_there_similar_duration) illposed.' event = str(np.random.choice(unique_lst_events)) source = str(np.random.choice(dataset['sources'][event])) # sample source action = str(np.random.choice(dataset['actions'][event])) # sample action question = question.replace('<D>', duration) # insert duration question = question.replace('<S>', source) # insert source question = question.replace('<A>', action) # insert action question = sanitize_question(question) # correct grammar assert lst_events.count(event) == 1, \ 'Question (was_there_similar_duration) illposed.' lst_durations = get_lst_durations(narrative) event_idx = lst_events.index(event) evt_duration = lst_durations[event_idx] x_durations = [j for i, j in enumerate(lst_durations) if i != event_idx] rel_durations_diff = compute_rel_diff(np.array(x_durations), np.array(evt_duration)) # Assert a good margin in relative duration assert np.sum(np.logical_and(rel_durations_diff > rel_diff, rel_durations_diff < (2 * rel_diff))) <= 0, \ 'Question (was_there_similar_duration) illposed.' answer = 'yes' if np.sum(rel_durations_diff <= rel_diff) >= 1 else 'no' return question, answer def was_there_at_least_two_similar_duration(dataset, narrative, rel_diff=0.1): questions = ['Were there at least two sounds [roughly,approximately] as <D> as the <S> <A>?', # noqa: E501 'Were there at least two sounds that were [roughly,approximately] as <D> as the <S> <A>?', # noqa: E501 'Were there at least two sounds that were [roughly,approximately] the same duration as the <S> <A>?', # noqa: E501 'Was there more than a sound [roughly,approximately] as <D> as the <S> <A>?', # noqa: E501 'Was there more than a sound that was [roughly,approximately] as <D> as the <S> <A>?', # noqa: E501 'Was there more than a sound that was [roughly,approximately] the same duration as the <S> <A>?', # noqa: E501 'Was there more than [one,a single] sound [roughly,approximately] as <D> as the <S> <A>?', # noqa: E501 'Was there more than [one,a single] sound that was [roughly,approximately] as <D> as the <S> <A>?', # noqa: E501 'Was there more than [one,a single] sound that was [roughly,approximately] the same duration as the <S> <A>?', # noqa: E501 ] question = str(np.random.choice(questions)) # sample question duration = sample_duration() # sample duration lst_events = get_lst_events(narrative) unique_lst_events = [e for e in lst_events if lst_events.count(e) == 1] assert len(unique_lst_events) > 0, \ 'Question (was_there_at_least_two_similar_duration) illposed.' event = str(np.random.choice(unique_lst_events)) source = str(np.random.choice(dataset['sources'][event])) # sample source action = str(np.random.choice(dataset['actions'][event])) # sample action question = question.replace('<D>', duration) # insert duration question = question.replace('<S>', source) # insert source question = question.replace('<A>', action) # insert action question = sanitize_question(question) # correct grammar assert lst_events.count(event) == 1, \ 'Question (was_there_at_least_two_similar_duration) illposed.' lst_durations = get_lst_durations(narrative) event_idx = lst_events.index(event) evt_duration = lst_durations[event_idx] x_durations = [j for i, j in enumerate(lst_durations) if i != event_idx] rel_durations_diff = compute_rel_diff(np.array(x_durations), np.array(evt_duration)) # Assert a good margin in relative duration assert np.sum(np.logical_and(rel_durations_diff > rel_diff, rel_durations_diff < (2 * rel_diff))) <= 0, \ 'Question (was_there_at_least_two_similar_duration) illposed.' answer = 'yes' if np.sum(rel_durations_diff <= rel_diff) >= 2 else 'no' return question, answer def was_there_similar_duration_ordinal(dataset, narrative, rel_diff=0.1): questions = ['Were there any sounds [roughly,approximately] as <D> as the <O> sound?', # noqa: E501 'Were there any sounds that were [roughly,approximately] as <D> as the <O> sound?', # noqa: E501 'Were there any sounds that were [roughly,approximately] the same duration as the <O> sound?', # noqa: E501 'Was there any sound [roughly,approximately] as <D> as the <O> sound?', # noqa: E501 'Was there any sound that was [roughly,approximately] as <D> as the <O> sound?', # noqa: E501 'Was there any sound that was [roughly,approximately] the same duration as the <O> sound?', # noqa: E501 'Was there at least a sound [roughly,approximately] as <D> as the <O> sound?', # noqa: E501 'Was there at least a sound that was [roughly,approximately] as <D> as the <O> sound?', # noqa: E501 'Was there at least a sound that was [roughly,approximately] the same duration as the <O> sound?', # noqa: E501 'Was there at least [one,a single] sound that was [roughly,approximately] as <D> as the <O> sound?', # noqa: E501 'Was there at least [one,a single] sound [roughly,approximately] as <D> as the <O> sound?', # noqa: E501 'Was there at least [one,a single] sound that was [roughly,approximately] the same duration as the <O> sound?', # noqa: E501 ] question = str(np.random.choice(questions)) # sample question duration = sample_duration() # sample duration lst_events = get_lst_events(narrative) number, ordinal = sample_number(len(lst_events)) question = question.replace('<D>', duration) # insert duration question = question.replace('<O>', ordinal) # insert ordinal question = sanitize_question(question) # correct grammar lst_durations = get_lst_durations(narrative) evt_duration = lst_durations[number - 1] x_durations = [j for i, j in enumerate(lst_durations) if i != (number - 1)] rel_durations_diff = compute_rel_diff(np.array(x_durations), np.array(evt_duration)) # Assert a good margin in relative duration assert np.sum(np.logical_and(rel_durations_diff > rel_diff, rel_durations_diff < (2 * rel_diff))) <= 0, \ 'Question (was_there_similar_duration_ordinal) illposed.' answer = 'yes' if np.sum(rel_durations_diff <= rel_diff) >= 1 else 'no' return question, answer def was_there_at_least_two_similar_duration_ordinal(dataset, narrative, rel_diff=0.1): questions = ['Were there at least two sounds [roughly,approximately] as <D> as the <O> sound?', # noqa: E501 'Were there at least two sounds that were [roughly,approximately] as <D> as the <O> sound?', # noqa: E501 'Were there at least two sounds that were [roughly,approximately] the same duration as the <O> sound?', # noqa: E501 'Was there more than a sound [roughly,approximately] as <D> as the <O> sound?', # noqa: E501 'Was there more than a sound that was [roughly,approximately] as <D> as the <O> sound?', # noqa: E501 'Was there more than a sound that was [roughly,approximately] the same duration as the <O> sound?', # noqa: E501 'Was there more than [one,a single] sound [roughly,approximately] as <D> as the <O> sound?', # noqa: E501 'Was there more than [one,a single] sound that was [roughly,approximately] as <D> as the <O> sound?', # noqa: E501 'Was there more than [one,a single] sound that was [roughly,approximately] the same duration as the <O> sound?', # noqa: E501 ] question = str(np.random.choice(questions)) # sample question duration = sample_duration() # sample duration lst_events = get_lst_events(narrative) number, ordinal = sample_number(len(lst_events)) question = question.replace('<D>', duration) # insert duration question = question.replace('<O>', ordinal) # insert ordinal question = sanitize_question(question) # correct grammar lst_durations = get_lst_durations(narrative) evt_duration = lst_durations[number - 1] x_durations = [j for i, j in enumerate(lst_durations) if i != (number - 1)] rel_durations_diff = compute_rel_diff(np.array(x_durations), np.array(evt_duration)) # Assert a good margin in relative duration assert np.sum(np.logical_and(rel_durations_diff > rel_diff, rel_durations_diff < (2 * rel_diff))) <= 0, \ 'Question (was_there_at_least_two_similar_duration_ordinal) illposed.' answer = 'yes' if np.sum(rel_durations_diff <= rel_diff) >= 2 else 'no' return question, answer
daqa-master
daqa-gen/qpas/exist.py
daqa-master
daqa-gen/qpas/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from __future__ import (absolute_import, division, print_function, unicode_literals) import re import numpy as np def a_or_an(q): a_an_letter = re.findall(r'\[a,an\] \w', q) for e in a_an_letter: a_an, letter = e.split(' ') if letter in ['a', 'e', 'i', 'o', 'u']: q = q.replace('[a,an]', 'an', 1) # 1 to denote first occurrence else: q = q.replace('[a,an]', 'a', 1) return q def options(q): assert ('[a' not in q) or ('an]' not in q), '[a,an] choice cant be random.' opt = re.findall(r'\[(.*?)\]', q) for o in opt: q = q.replace('[' + o + ']', np.random.choice(o.split(','))) return q def spaces(q): q = q.replace(' ', ' ') q = q.replace(' ', ' ') return q def sanitize_question(q): q = a_or_an(q) q = options(q) q = spaces(q) q = q.lower() q = q.capitalize() # capitalizes only first letter assert '<' not in q, 'Could not sanitize template: ' + q assert '>' not in q, 'Could not sanitize template: ' + q assert '[' not in q, 'Could not sanitize template: ' + q assert ']' not in q, 'Could not sanitize template: ' + q return q def sample_conjunction(): return str(np.random.choice(['and', 'or'])) def sample_preposition(): return str(np.random.choice(['before', 'after'])) def sample_immediate_preposition(): return '[just,immediately] ' + sample_preposition() def numbers_to_ordinals(num): ordinals = { 1: 'first', 2: 'second', 3: 'third', 4: 'fourth', 5: 'fifth', 6: 'sixth', 7: 'seventh', 8: 'eighth', 9: 'ninth', 10: 'tenth', 11: 'eleventh', 12: 'twelveth', 13: 'thirteenth', 14: 'fourteenth', 15: 'fifteenth', } return ordinals[num] def sample_number(n): number = int(np.random.randint(1, n + 1, 1)) # human indexing return number, numbers_to_ordinals(number) def sample_second_number(n, x_n): lst_x_n = list(range(1, n + 1)) # human indexing lst_x_n.remove(x_n) number = int(np.random.choice(lst_x_n)) return number, numbers_to_ordinals(number) def sample_loudness(): return str(np.random.choice(['quiet', 'loud'])) def sample_rel_loudness(): return str(np.random.choice(['quieter', 'louder'])) def sample_absolute_loudness(): return str(np.random.choice(['quietest', 'loudest'])) def sample_duration(): return str(np.random.choice(['short', 'long'])) def sample_rel_duration(): return str(np.random.choice(['shorter', 'longer'])) def sample_absolute_duration(): return str(np.random.choice(['shortest', 'longest'])) def get_lst_events(narrative): le = len(narrative['events']) return [narrative['events'][e]['event'] for e in range(le)] def get_lst_sources(narrative): le = len(narrative['events']) return [narrative['events'][e]['source'] for e in range(le)] def get_lst_all_sources(dataset, narrative): ls = [] for e in range(len(narrative['events'])): ls += dataset['sources'][narrative['events'][e]['event']] return ls def get_lst_actions(narrative): le = len(narrative['events']) return [narrative['events'][e]['action'] for e in range(le)] def get_lst_durations(narrative): le = len(narrative['events']) return np.array([narrative['events'][e]['duration'] for e in range(le)]) def get_lst_loudness(narrative): le = len(narrative['events']) return np.array([narrative['events'][e]['loudness'] for e in range(le)]) def compute_rel_diff(actual, reference): return np.abs(actual - reference) / reference def numbers_to_words(n): numbers = { 0: 'zero', 1: 'one', 2: 'two', 3: 'three', 4: 'four', 5: 'five', 6: 'six', 7: 'seven', 8: 'eight', 9: 'nine', 10: 'ten', 11: 'eleven', 12: 'twelve', 13: 'thirteen', 14: 'fourteen', 15: 'fifteen', } return numbers[n]
daqa-master
daqa-gen/qpas/utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from __future__ import (absolute_import, division, print_function, unicode_literals) import numpy as np from qpas.utils import (compute_rel_diff, get_lst_durations, get_lst_events, get_lst_loudness, sample_duration, sample_loudness, sample_number, sample_second_number, sample_rel_duration, sample_rel_loudness, sanitize_question) def compare_ordinal(dataset, narrative, _): questions = ['Was the <O1> [sound event,sound] [the same as,similar to] the <O2> [sound event,sound]?', # noqa: E501 'Was the <O1> [sound event,sound] and <O2> [sound event,sound] [the same,similar]?', # noqa: E501 'Were the <O1> and <O2> [sound events,sounds] [the same,similar]?', ] question = str(np.random.choice(questions)) # sample question lst_events = get_lst_events(narrative) number_1, ordinal_1 = sample_number(len(lst_events)) number_2, ordinal_2 = sample_second_number(len(lst_events), number_1) assert number_1 != number_2, 'Question (compare_ordinal) illposed.' question = question.replace('<O1>', ordinal_1) # insert ordinal question = question.replace('<O2>', ordinal_2) # insert ordinal question = sanitize_question(question) # correct grammar answer = 'yes' if lst_events[number_1 - 1] == lst_events[number_2 - 1] \ else 'no' return question, answer def compare_ordinal_event(dataset, narrative, _): questions = ['Was the <O> [sound event,sound] [a,an] <S> <A>?', # noqa: E501 'Did the <O> [sound event,sound] [sound,seem] like [a,an] <S> <A>?', # noqa: E501 '[Listening to,Hearing] the <O> [sound event,sound], was it [a,an] <S> <A>?', # noqa: E501 '[Listening to,Hearing] the <O> [sound event,sound], did it [sound,seem] like [a,an] <S> <A>?', # noqa: E501 ] question = str(np.random.choice(questions)) # sample question lst_events = get_lst_events(narrative) number, ordinal = sample_number(len(lst_events)) event = str(np.random.choice(dataset['events'])) # sample event source = str(np.random.choice(dataset['sources'][event])) # sample source action = str(np.random.choice(dataset['actions'][event])) # sample action question = question.replace('<O>', ordinal) # insert ordinal question = question.replace('<S>', source) # insert source question = question.replace('<A>', action) # insert action question = sanitize_question(question) # correct grammar answer = 'yes' if lst_events[number - 1] == event else 'no' return question, answer def compare_loudness(dataset, narrative, rel_diff): questions = ['Was the <S1> <A1> <RL> than the <S2> <A2>?', 'Was the sound of the <S1> <A1> <RL> than the sound of the <S2> <A2>?', # noqa: E501 '[Comparing,Listening to,Hearing] the sound of the <S1> <A1> and the sound of the <S2> <A2>, was the former <RL>?', # noqa: E501 '[Comparing,Listening to,Hearing] the sounds of the <S1> <A1> and the <S2> <A2>, was the former <RL>?', # noqa: E501 '[Comparing,Listening to,Hearing] the sound of the <S2> <A2> and the sound of the <S1> <A1>, was the latter <RL>?', # noqa: E501 '[Comparing,Listening to,Hearing] the sounds of the <S2> <A2> and the <S1> <A1>, was the latter <RL>?', # noqa: E501 ] question = str(np.random.choice(questions)) # sample question lst_events = get_lst_events(narrative) unique_lst_events = [e for e in lst_events if lst_events.count(e) == 1] assert len(unique_lst_events) > 0, 'Question (compare_loudness) illposed.' event_1 = str(np.random.choice(unique_lst_events)) # sample event source_1 = str(np.random.choice(dataset['sources'][event_1])) action_1 = str(np.random.choice(dataset['actions'][event_1])) rel_loudness = sample_rel_loudness() x_unique_lst_events = [e for e in unique_lst_events if e != event_1] assert len(x_unique_lst_events) > 0, \ 'Question (compare_loudness) illposed.' event_2 = str(np.random.choice(x_unique_lst_events)) # sample event source_2 = str(np.random.choice(dataset['sources'][event_2])) action_2 = str(np.random.choice(dataset['actions'][event_2])) assert lst_events.count(event_1) == 1, \ 'Question (compare_loudness) illposed.' assert lst_events.count(event_2) == 1, \ 'Question (compare_loudness) illposed.' assert event_1 != event_2, 'Question (compare_loudness) illposed.' question = question.replace('<S1>', source_1) # insert source question = question.replace('<A1>', action_1) # insert action question = question.replace('<RL>', rel_loudness) # insert loudness question = question.replace('<S2>', source_2) # insert source question = question.replace('<A2>', action_2) # insert action question = sanitize_question(question) lst_loudness = get_lst_loudness(narrative) e_1_loudness = lst_loudness[lst_events.index(event_1)] e_2_loudness = lst_loudness[lst_events.index(event_2)] # Assert a good margin in relative loudness rel_loudness_diff = compute_rel_diff(np.array(e_1_loudness), np.array(e_2_loudness)) assert np.sum(rel_loudness_diff < rel_diff) <= 0, \ 'Question (compare_loudness) illposed.' if 'quiet' in question: answer = 'yes' if e_1_loudness < e_2_loudness else 'no' elif 'loud' in question: answer = 'yes' if e_1_loudness > e_2_loudness else 'no' else: assert False, 'Loudness illdefined in Question (compare_loudness).' return question, answer def compare_loudness_ordinal(dataset, narrative, rel_diff=0.1): questions = ['Was the <O1> [sound event,sound] <RL> than the <O2> [sound event,sound]?', # noqa: E501 '[Comparing,Listening to,Hearing] the <O1> [sound event,sound] and the <O2> [sound event,sound], was the former <RL>?', # noqa: E501 '[Comparing,Listening to,Hearing] the <O1> and <O2> [sound events,sounds], was the former <RL>?', # noqa: E501 '[Comparing,Listening to,Hearing] the <O2> [sound event,sound] and the <O1> [sound event,sound], was the latter <RL>?', # noqa: E501 '[Comparing,Listening to,Hearing] the <O2> and <O1> [sound events,sounds], was the latter <RL>?', # noqa: E501 ] question = str(np.random.choice(questions)) # sample question lst_events = get_lst_events(narrative) number_1, ordinal_1 = sample_number(len(lst_events)) rel_loudness = sample_rel_loudness() number_2, ordinal_2 = sample_second_number(len(lst_events), number_1) assert number_1 != number_2, 'Question (compare_loudness_ordinal) illposed.' question = question.replace('<O1>', ordinal_1) # insert ordinal question = question.replace('<RL>', rel_loudness) # insert loudness question = question.replace('<O2>', ordinal_2) # insert ordinal question = sanitize_question(question) # correct grammar lst_loudness = get_lst_loudness(narrative) e_1_loudness = lst_loudness[number_1 - 1] e_2_loudness = lst_loudness[number_2 - 1] # Assert a good margin in relative loudness rel_loudness_diff = compute_rel_diff(np.array(e_1_loudness), np.array(e_2_loudness)) assert np.sum(rel_loudness_diff < rel_diff) <= 0, \ 'Question (compare_loudness_ordinal) illposed.' if 'quiet' in question: answer = 'yes' if e_1_loudness < e_2_loudness else 'no' elif 'loud' in question: answer = 'yes' if e_1_loudness > e_2_loudness else 'no' else: assert False, 'Loudness illdefined in Question (compare_loudness_ordinal).' return question, answer def compare_loudness_event_ordinal(dataset, narrative, rel_diff=0.1): questions = ['Was the <S> <A> <RL> than the <O> [sound event,sound]?', 'Was the sound of the <S> <A> <RL> than the <O> [sound event,sound]?', # noqa: E501 '[Comparing,Listening to,Hearing] the <S> <A> and the <O> [sound event,sound], was the former <RL>?', # noqa: E501 '[Comparing,Listening to,Hearing] the <O> [sound event,sound] and the <S> <A>, was the latter <RL>?', # noqa: E501 ] question = str(np.random.choice(questions)) # sample question lst_events = get_lst_events(narrative) unique_lst_events = [e for e in lst_events if lst_events.count(e) == 1] assert len(unique_lst_events) > 0, \ 'Question (compare_loudness_event_ordinal) illposed.' event = str(np.random.choice(unique_lst_events)) # sample event source = str(np.random.choice(dataset['sources'][event])) action = str(np.random.choice(dataset['actions'][event])) rel_loudness = sample_rel_loudness() number, ordinal = sample_second_number(len(lst_events), lst_events.index(event) + 1) assert lst_events.count(event) == 1, \ 'Question (compare_loudness_event_ordinal) illposed.' assert lst_events.index(event) != (number - 1), \ 'Question (compare_loudness_event_ordinal) illposed.' question = question.replace('<S>', source) # insert source question = question.replace('<A>', action) # insert action question = question.replace('<RL>', rel_loudness) # insert loudness question = question.replace('<O>', ordinal) # insert ordinal question = sanitize_question(question) # correct grammar lst_loudness = get_lst_loudness(narrative) e_1_loudness = lst_loudness[lst_events.index(event)] e_2_loudness = lst_loudness[number - 1] # Assert a good margin in relative loudness rel_loudness_diff = compute_rel_diff(np.array(e_1_loudness), np.array(e_2_loudness)) assert np.sum(rel_loudness_diff < rel_diff) <= 0, \ 'Question (compare_loudness_event_ordinal) illposed.' if 'quiet' in question: answer = 'yes' if e_1_loudness < e_2_loudness else 'no' elif 'loud' in question: answer = 'yes' if e_1_loudness > e_2_loudness else 'no' else: assert False, \ 'Loudness illdefined in Question (compare_loudness_event_ordinal).' return question, answer def compare_loudness_ordinal_event(dataset, narrative, rel_diff=0.1): questions = ['Was the <O> [sound event,sound] <RL> than the <S> <A>?', 'Was the <O> [sound event,sound] <RL> than the sound of the <S> <A>?', # noqa: E501 '[Comparing,Listening to,Hearing] the <O> [sound event,sound] and the <S> <A>, was the former <RL>?', # noqa: E501 '[Comparing,Listening to,Hearing] the <S> <A> and the <O> [sound event,sound], was the latter <RL>?', # noqa: E501 ] question = str(np.random.choice(questions)) # sample question lst_events = get_lst_events(narrative) unique_lst_events = [e for e in lst_events if lst_events.count(e) == 1] assert len(unique_lst_events) > 0, \ 'Question (compare_loudness_ordinal_event) illposed.' event = str(np.random.choice(unique_lst_events)) # sample event source = str(np.random.choice(dataset['sources'][event])) action = str(np.random.choice(dataset['actions'][event])) rel_loudness = sample_rel_loudness() number, ordinal = sample_second_number(len(lst_events), lst_events.index(event) + 1) assert lst_events.count(event) == 1, \ 'Question (compare_loudness_ordinal_event) illposed.' assert lst_events.index(event) != (number - 1), \ 'Question (compare_loudness_ordinal_event) illposed.' question = question.replace('<S>', source) # insert source question = question.replace('<A>', action) # insert action question = question.replace('<RL>', rel_loudness) # insert loudness question = question.replace('<O>', ordinal) # insert ordinal question = sanitize_question(question) # correct grammar lst_loudness = get_lst_loudness(narrative) e_1_loudness = lst_loudness[number - 1] e_2_loudness = lst_loudness[lst_events.index(event)] # Assert a good margin in relative loudness rel_loudness_diff = compute_rel_diff(np.array(e_1_loudness), np.array(e_2_loudness)) assert np.sum(rel_loudness_diff < rel_diff) <= 0, \ 'Question (compare_loudness_ordinal_event) illposed.' if 'quiet' in question: answer = 'yes' if e_1_loudness < e_2_loudness else 'no' elif 'loud' in question: answer = 'yes' if e_1_loudness > e_2_loudness else 'no' else: assert False, \ 'Loudness illdefined in Question (compare_loudness_ordinal_event).' return question, answer def compare_same_loudness(dataset, narrative, rel_diff=0.1): questions = ['Was the <S1> <A1> [roughly,approximately] as <L> as the <S2> <A2>?', # noqa: E501 'Was the sound of the <S1> <A1> [roughly,approximately] as <L> as the sound of the <S2> <A2>?', # noqa: E501 'Was the sound of the <S1> <A1> [roughly,approximately] the same loudness as the sound of the <S2> <A2>?', # noqa: E501 '[Comparing,Listening to,Hearing] the sound of the <S1> <A1> and the sound of the <S2> <A2>, did they [roughly,approximately] have the same loudness?', # noqa: E501 '[Comparing,Listening to,Hearing] the sounds of the <S1> <A1> and the <S2> <A2>, did they [roughly,approximately] have the same loudness?', # noqa: E501 ] question = str(np.random.choice(questions)) # sample question lst_events = get_lst_events(narrative) unique_lst_events = [e for e in lst_events if lst_events.count(e) == 1] assert len(unique_lst_events) > 0, \ 'Question (compare_same_loudness) illposed.' event_1 = str(np.random.choice(unique_lst_events)) # sample event source_1 = str(np.random.choice(dataset['sources'][event_1])) action_1 = str(np.random.choice(dataset['actions'][event_1])) loudness = sample_loudness() x_unique_lst_events = [e for e in unique_lst_events if e != event_1] assert len(x_unique_lst_events) > 0, \ 'Question (compare_same_loudness) illposed.' event_2 = str(np.random.choice(x_unique_lst_events)) # sample event source_2 = str(np.random.choice(dataset['sources'][event_2])) action_2 = str(np.random.choice(dataset['actions'][event_2])) assert lst_events.count(event_1) == 1, \ 'Question (compare_same_loudness) illposed.' assert lst_events.count(event_2) == 1, \ 'Question (compare_same_loudness) illposed.' assert event_1 != event_2, 'Question (compare_same_loudness) illposed.' question = question.replace('<S1>', source_1) # insert source question = question.replace('<A1>', action_1) # insert action question = question.replace('<L>', loudness) # insert loudness question = question.replace('<S2>', source_2) # insert source question = question.replace('<A2>', action_2) # insert action question = sanitize_question(question) lst_loudness = get_lst_loudness(narrative) e_1_loudness = lst_loudness[lst_events.index(event_1)] e_2_loudness = lst_loudness[lst_events.index(event_2)] rel_loudness_diff = compute_rel_diff(np.array(e_1_loudness), np.array(e_2_loudness)) # Assert a good margin in relative loudness assert np.sum(np.logical_and(rel_loudness_diff > rel_diff, rel_loudness_diff < (2 * rel_diff))) <= 0, \ 'Question (compare_same_loudness) illposed.' answer = 'yes' if rel_loudness_diff <= rel_diff else 'no' return question, answer def compare_same_loudness_ordinal(dataset, narrative, rel_diff=0.1): questions = ['Was the <O1> [sound event,sound] [roughly,approximately] as <L> as the <O2> [sound event,sound]?', # noqa: E501 'Was the <O1> and <O2> [sound events,sounds] [roughly,approximately] as <L>?', # noqa: E501 '[Comparing,Listening to,Hearing] the <O1> [sound event,sound] and the <O2> [sound event,sound], were they [roughly,approximately] as loud?', # noqa: E501 '[Comparing,Listening to,Hearing] the <O1> [sound event,sound] and the <O2> [sound event,sound], did they [roughly,approximately] have the same loudness?', # noqa: E501 '[Comparing,Listening to,Hearing] the <O1> and <O2> [sound events,sounds], were they [roughly,approximately] as loud?', # noqa: E501 '[Comparing,Listening to,Hearing] the <O1> and <O2> [sound events,sounds], did they have [roughly,approximately] the same loudness?', # noqa: E501 ] question = str(np.random.choice(questions)) # sample question lst_events = get_lst_events(narrative) number_1, ordinal_1 = sample_number(len(lst_events)) loudness = sample_loudness() number_2, ordinal_2 = sample_second_number(len(lst_events), number_1) assert number_1 != number_2, 'Question (compare_same_loudness_ordinal) illposed.' question = question.replace('<O1>', ordinal_1) # insert ordinal question = question.replace('<L>', loudness) # insert loudness question = question.replace('<O2>', ordinal_2) # insert ordinal question = sanitize_question(question) # correct grammar lst_loudness = get_lst_loudness(narrative) e_1_loudness = lst_loudness[number_1 - 1] e_2_loudness = lst_loudness[number_2 - 1] rel_loudness_diff = compute_rel_diff(np.array(e_1_loudness), np.array(e_2_loudness)) # Assert a good margin in relative loudness assert np.sum(np.logical_and(rel_loudness_diff > rel_diff, rel_loudness_diff < (2 * rel_diff))) <= 0, \ 'Question (compare_same_loudness_ordinal) illposed.' answer = 'yes' if rel_loudness_diff <= rel_diff else 'no' return question, answer def compare_same_loudness_event_ordinal(dataset, narrative, rel_diff=0.1): questions = ['Was the <S> <A> [roughly,approximately] as <L> as the <O> [sound event,sound]?', # noqa: E501 '[Comparing,Listening to,Hearing] the <S> <A> and the <O> [sound event,sound], were they [roughly,approximately] as loud?', # noqa: E501 '[Comparing,Listening to,Hearing] the sound of the <S> <A> and the <O> [sound event,sound], were they [roughly,approximately] as loud?', # noqa: E501 '[Comparing,Listening to,Hearing] the <S> <A> and the <O> [sound event,sound], did they [roughly,approximately] have the same loudness?', # noqa: E501 '[Comparing,Listening to,Hearing] the sound of the <S> <A> and the <O> [sound event,sound], did they [roughly,approximately] have the same loudness?', # noqa: E501 'Was the <O> [sound event,sound] [roughly,approximately] as <L> as the <S> <A>?', # noqa: E501 '[Comparing,Listening to,Hearing] the <O> [sound event,sound] and the <S> <A>, were they [roughly,approximately] as loud?', # noqa: E501 '[Comparing,Listening to,Hearing] the <O> [sound event,sound] and the sound of the <S> <A>, were they [roughly,approximately] as loud?', # noqa: E501 '[Comparing,Listening to,Hearing] the <O> [sound event,sound] and the <S> <A>, did they [roughly,approximately] have the same loudness?', # noqa: E501 '[Comparing,Listening to,Hearing] the <O> [sound event,sound] and the sound of the <S> <A>, did they [roughly,approximately] have the same loudness?', # noqa: E501 ] question = str(np.random.choice(questions)) # sample question lst_events = get_lst_events(narrative) unique_lst_events = [e for e in lst_events if lst_events.count(e) == 1] assert len(unique_lst_events) > 0, \ 'Question (compare_same_loudness_event_ordinal) illposed.' event = str(np.random.choice(unique_lst_events)) # sample event source = str(np.random.choice(dataset['sources'][event])) action = str(np.random.choice(dataset['actions'][event])) loudness = sample_loudness() number, ordinal = sample_second_number(len(lst_events), lst_events.index(event) + 1) assert lst_events.count(event) == 1, \ 'Question (compare_same_loudness_event_ordinal) illposed.' assert lst_events.index(event) != (number - 1), \ 'Question (compare_same_loudness_event_ordinal) illposed.' question = question.replace('<S>', source) # insert source question = question.replace('<A>', action) # insert action question = question.replace('<L>', loudness) # insert loudness question = question.replace('<O>', ordinal) # insert ordinal question = sanitize_question(question) # correct grammar lst_loudness = get_lst_loudness(narrative) e_1_loudness = lst_loudness[lst_events.index(event)] e_2_loudness = lst_loudness[number - 1] rel_loudness_diff = compute_rel_diff(np.array(e_1_loudness), np.array(e_2_loudness)) # Assert a good margin in relative loudness assert np.sum(np.logical_and(rel_loudness_diff > rel_diff, rel_loudness_diff < (2 * rel_diff))) <= 0, \ 'Question (compare_same_loudness_event_ordinal) illposed.' answer = 'yes' if rel_loudness_diff <= rel_diff else 'no' return question, answer def compare_duration(dataset, narrative, rel_diff=0.1): questions = ['Was the <S1> <A1> <RD> than the <S2> <A2>?', 'Was the sound of the <S1> <A1> <RD> than the sound of the <S2> <A2>?', # noqa: E501 '[Comparing,Listening to,Hearing] the sound of the <S1> <A1> and the sound of the <S2> <A2>, was the former <RD>?', # noqa: E501 '[Comparing,Listening to,Hearing] the sounds of the <S1> <A1> and the <S2> <A2>, was the former <RD>?', # noqa: E501 '[Comparing,Listening to,Hearing] the sound of the <S2> <A2> and the sound of the <S1> <A1>, was the latter <RD>?', # noqa: E501 '[Comparing,Listening to,Hearing] the sounds of the <S2> <A2> and the <S1> <A1>, was the latter <RD>?', # noqa: E501 ] question = str(np.random.choice(questions)) # sample question lst_events = get_lst_events(narrative) unique_lst_events = [e for e in lst_events if lst_events.count(e) == 1] assert len(unique_lst_events) > 0, \ 'Question (compare_duration) illposed.' event_1 = str(np.random.choice(unique_lst_events)) # sample event source_1 = str(np.random.choice(dataset['sources'][event_1])) action_1 = str(np.random.choice(dataset['actions'][event_1])) rel_duration = sample_rel_duration() x_unique_lst_events = [e for e in unique_lst_events if e != event_1] assert len(x_unique_lst_events) > 0, \ 'Question (compare_duration) illposed.' event_2 = str(np.random.choice(x_unique_lst_events)) # sample event source_2 = str(np.random.choice(dataset['sources'][event_2])) action_2 = str(np.random.choice(dataset['actions'][event_2])) assert lst_events.count(event_1) == 1, \ 'Question (compare_duration) illposed.' assert lst_events.count(event_2) == 1, \ 'Question (compare_duration) illposed.' assert event_1 != event_2, 'Question (compare_duration) illposed.' question = question.replace('<S1>', source_1) # insert source question = question.replace('<A1>', action_1) # insert action question = question.replace('<RD>', rel_duration) # insert duration question = question.replace('<S2>', source_2) # insert source question = question.replace('<A2>', action_2) # insert action question = sanitize_question(question) lst_duration = get_lst_durations(narrative) e_1_duration = lst_duration[lst_events.index(event_1)] e_2_duration = lst_duration[lst_events.index(event_2)] # Assert a good margin in relative duration rel_duration_diff = compute_rel_diff(np.array(e_1_duration), np.array(e_2_duration)) assert np.sum(rel_duration_diff < rel_diff) <= 0, \ 'Question (compare_duration) illposed.' if 'short' in question: answer = 'yes' if e_1_duration < e_2_duration else 'no' elif 'long' in question: answer = 'yes' if e_1_duration > e_2_duration else 'no' else: assert False, 'Duration illdefined in Question (compare_duration).' return question, answer def compare_duration_ordinal(dataset, narrative, rel_diff=0.1): questions = ['Was the <O1> [sound event,sound] <RD> than the <O2> [sound event,sound]?', # noqa: E501 '[Comparing,Listening to,Hearing] the <O1> [sound event,sound] and the <O2> [sound event,sound], was the former <RD>?', # noqa: E501 '[Comparing,Listening to,Hearing] the <O1> and <O2> [sound events,sounds], was the former <RD>?', # noqa: E501 '[Comparing,Listening to,Hearing] the <O2> [sound event,sound] and the <O1> [sound event,sound], was the latter <RD>?', # noqa: E501 '[Comparing,Listening to,Hearing] the <O2> and <O1> [sound events,sounds], was the latter <RD>?', # noqa: E501 ] question = str(np.random.choice(questions)) # sample question lst_events = get_lst_events(narrative) number_1, ordinal_1 = sample_number(len(lst_events)) rel_duration = sample_rel_duration() number_2, ordinal_2 = sample_second_number(len(lst_events), number_1) assert number_1 != number_2, 'Question (compare_duration_ordinal) illposed.' question = question.replace('<O1>', ordinal_1) # insert ordinal question = question.replace('<RD>', rel_duration) # insert duration question = question.replace('<O2>', ordinal_2) # insert ordinal question = sanitize_question(question) # correct grammar lst_duration = get_lst_durations(narrative) e_1_duration = lst_duration[number_1 - 1] e_2_duration = lst_duration[number_2 - 1] # Assert a good margin in relative duration rel_duration_diff = compute_rel_diff(np.array(e_1_duration), np.array(e_2_duration)) assert np.sum(rel_duration_diff < rel_diff) <= 0, \ 'Question (compare_duration_ordinal) illposed.' if 'short' in question: answer = 'yes' if e_1_duration < e_2_duration else 'no' elif 'long' in question: answer = 'yes' if e_1_duration > e_2_duration else 'no' else: assert False, 'Duration illdefined in Question (compare_duration_ordinal).' return question, answer def compare_duration_event_ordinal(dataset, narrative, rel_diff=0.1): questions = ['Was the <S> <A> <RD> than the <O> [sound event,sound]?', 'Was the sound of the <S> <A> <RD> than the <O> [sound event,sound]?', # noqa: E501 '[Comparing,Listening to,Hearing] the <S> <A> and the <O> [sound event,sound], was the former <RD>?', # noqa: E501 '[Comparing,Listening to,Hearing] the <O> [sound event,sound] and the <S> <A>, was the latter <RD>?', # noqa: E501 ] question = str(np.random.choice(questions)) # sample question lst_events = get_lst_events(narrative) unique_lst_events = [e for e in lst_events if lst_events.count(e) == 1] assert len(unique_lst_events) > 0, \ 'Question (compare_duration_event_ordinal) illposed.' event = str(np.random.choice(unique_lst_events)) # sample event source = str(np.random.choice(dataset['sources'][event])) action = str(np.random.choice(dataset['actions'][event])) rel_duration = sample_rel_duration() number, ordinal = sample_second_number(len(lst_events), lst_events.index(event) + 1) assert lst_events.count(event) == 1, \ 'Question (compare_duration_event_ordinal) illposed.' assert lst_events.index(event) != (number - 1), \ 'Question (compare_duration_event_ordinal) illposed.' question = question.replace('<S>', source) # insert source question = question.replace('<A>', action) # insert action question = question.replace('<RD>', rel_duration) # insert duration question = question.replace('<O>', ordinal) # insert ordinal question = sanitize_question(question) # correct grammar lst_duration = get_lst_durations(narrative) e_1_duration = lst_duration[lst_events.index(event)] e_2_duration = lst_duration[number - 1] # Assert a good margin in relative duration rel_duration_diff = compute_rel_diff(np.array(e_1_duration), np.array(e_2_duration)) assert np.sum(rel_duration_diff < rel_diff) <= 0, \ 'Question (compare_duration_event_ordinal) illposed.' if 'short' in question: answer = 'yes' if e_1_duration < e_2_duration else 'no' elif 'long' in question: answer = 'yes' if e_1_duration > e_2_duration else 'no' else: assert False, \ 'Duration illdefined in Question (compare_duration_event_ordinal).' return question, answer def compare_duration_ordinal_event(dataset, narrative, rel_diff=0.1): questions = ['Was the <O> [sound event,sound] <RD> than the <S> <A>?', 'Was the <O> [sound event,sound] <RD> than the sound of the <S> <A>?', # noqa: E501 '[Comparing,Listening to,Hearing] the <O> [sound event,sound] and the <S> <A>, was the former <RD>?', # noqa: E501 '[Comparing,Listening to,Hearing] the <S> <A> and the <O> [sound event,sound], was the latter <RD>?', # noqa: E501 ] question = str(np.random.choice(questions)) # sample question lst_events = get_lst_events(narrative) unique_lst_events = [e for e in lst_events if lst_events.count(e) == 1] assert len(unique_lst_events) > 0, \ 'Question (compare_duration_ordinal_event) illposed.' event = str(np.random.choice(unique_lst_events)) # sample event source = str(np.random.choice(dataset['sources'][event])) action = str(np.random.choice(dataset['actions'][event])) rel_duration = sample_rel_duration() number, ordinal = sample_second_number(len(lst_events), lst_events.index(event) + 1) assert lst_events.count(event) == 1, \ 'Question (compare_duration_ordinal_event) illposed.' assert lst_events.index(event) != (number - 1), \ 'Question (compare_duration_ordinal_event) illposed.' question = question.replace('<S>', source) # insert source question = question.replace('<A>', action) # insert action question = question.replace('<RD>', rel_duration) # insert duration question = question.replace('<O>', ordinal) # insert ordinal question = sanitize_question(question) # correct grammar lst_duration = get_lst_durations(narrative) e_1_duration = lst_duration[number - 1] e_2_duration = lst_duration[lst_events.index(event)] # Assert a good margin in relative duration rel_duration_diff = compute_rel_diff(np.array(e_1_duration), np.array(e_2_duration)) assert np.sum(rel_duration_diff < rel_diff) <= 0, \ 'Question (compare_duration_ordinal_event) illposed.' if 'short' in question: answer = 'yes' if e_1_duration < e_2_duration else 'no' elif 'long' in question: answer = 'yes' if e_1_duration > e_2_duration else 'no' else: assert False, \ 'Duration illdefined in Question (compare_duration_ordinal_event).' return question, answer def compare_same_duration(dataset, narrative, rel_diff=0.1): questions = ['Was the <S1> <A1> [roughly,approximately] as <D> as the <S2> <A2>?', # noqa: E501 'Was the sound of the <S1> <A1> [roughly,approximately] as <D> as the sound of the <S2> <A2>?', # noqa: E501 'Was the sound of the <S1> <A1> [roughly,approximately] the same duration as the sound of the <S2> <A2>?', # noqa: E501 '[Comparing,Listening to,Hearing] the sound of the <S1> <A1> and the sound of the <S2> <A2>, did they [roughly,approximately] have the same duration?', # noqa: E501 '[Comparing,Listening to,Hearing] the sounds of the <S1> <A1> and the <S2> <A2>, did they [roughly,approximately] have the same duration?', # noqa: E501 ] question = str(np.random.choice(questions)) # sample question lst_events = get_lst_events(narrative) unique_lst_events = [e for e in lst_events if lst_events.count(e) == 1] assert len(unique_lst_events) > 0, \ 'Question (compare_same_duration) illposed.' event_1 = str(np.random.choice(unique_lst_events)) # sample event source_1 = str(np.random.choice(dataset['sources'][event_1])) action_1 = str(np.random.choice(dataset['actions'][event_1])) duration = sample_duration() x_unique_lst_events = [e for e in unique_lst_events if e != event_1] assert len(x_unique_lst_events) > 0, \ 'Question (compare_same_duration) illposed.' event_2 = str(np.random.choice(x_unique_lst_events)) # sample event source_2 = str(np.random.choice(dataset['sources'][event_2])) action_2 = str(np.random.choice(dataset['actions'][event_2])) assert lst_events.count(event_1) == 1, \ 'Question (compare_same_duration) illposed.' assert lst_events.count(event_2) == 1, \ 'Question (compare_same_duration) illposed.' assert event_1 != event_2, 'Question (compare_same_duration) illposed.' question = question.replace('<S1>', source_1) # insert source question = question.replace('<A1>', action_1) # insert action question = question.replace('<D>', duration) # insert duration question = question.replace('<S2>', source_2) # insert source question = question.replace('<A2>', action_2) # insert action question = sanitize_question(question) lst_duration = get_lst_durations(narrative) e_1_duration = lst_duration[lst_events.index(event_1)] e_2_duration = lst_duration[lst_events.index(event_2)] rel_duration_diff = compute_rel_diff(np.array(e_1_duration), np.array(e_2_duration)) # Assert a good margin in relative duration assert np.sum(np.logical_and(rel_duration_diff > rel_diff, rel_duration_diff < (2 * rel_diff))) <= 0, \ 'Question (compare_same_duration) illposed.' answer = 'yes' if rel_duration_diff <= rel_diff else 'no' return question, answer def compare_same_duration_ordinal(dataset, narrative, rel_diff=0.1): questions = ['Was the <O1> [sound event,sound] [roughly,approximately] as <D> as the <O2> [sound event,sound]?', # noqa: E501 'Was the <O1> and <O2> [sound events,sounds] [roughly,approximately] as <D>?', # noqa: E501 '[Comparing,Listening to,Hearing] the <O1> [sound event,sound] and the <O2> [sound event,sound], were they [roughly,approximately] as <D>?', # noqa: E501 '[Comparing,Listening to,Hearing] the <O1> [sound event,sound] and the <O2> [sound event,sound], did they [roughly,approximately] have the same duration?', # noqa: E501 '[Comparing,Listening to,Hearing] the <O1> and <O2> [sound events,sounds], were they [roughly,approximately] as <D>?', # noqa: E501 '[Comparing,Listening to,Hearing] the <O1> and <O2> [sound events,sounds], did they [roughly,approximately] have the same duration?', # noqa: E501 ] question = str(np.random.choice(questions)) # sample question lst_events = get_lst_events(narrative) number_1, ordinal_1 = sample_number(len(lst_events)) duration = sample_duration() number_2, ordinal_2 = sample_second_number(len(lst_events), number_1) assert number_1 != number_2, 'Question (compare_same_duration_ordinal) illposed.' question = question.replace('<O1>', ordinal_1) # insert ordinal question = question.replace('<D>', duration) # insert duration question = question.replace('<O2>', ordinal_2) # insert ordinal question = sanitize_question(question) # correct grammar lst_duration = get_lst_durations(narrative) e_1_duration = lst_duration[number_1 - 1] e_2_duration = lst_duration[number_2 - 1] rel_duration_diff = compute_rel_diff(np.array(e_1_duration), np.array(e_2_duration)) # Assert a good margin in relative duration assert np.sum(np.logical_and(rel_duration_diff > rel_diff, rel_duration_diff < (2 * rel_diff))) <= 0, \ 'Question (compare_same_duration_ordinal) illposed.' answer = 'yes' if rel_duration_diff <= rel_diff else 'no' return question, answer def compare_same_duration_event_ordinal(dataset, narrative, rel_diff=0.1): questions = ['Was the <S> <A> [roughly,approximately] as <D> as the <O> [sound event,sound]?', # noqa: E501 '[Comparing,Listening to,Hearing] the <S> <A> and the <O> [sound event,sound], were they [roughly,approximately] as <D>?', # noqa: E501 '[Comparing,Listening to,Hearing] the sound of the <S> <A> and the <O> [sound event,sound], were they [roughly,approximately] as <D>?', # noqa: E501 '[Comparing,Listening to,Hearing] the <S> <A> and the <O> [sound event,sound], did they [roughly,approximately] have the same duration?', # noqa: E501 '[Comparing,Listening to,Hearing] the sound of the <S> <A> and the <O> [sound event,sound], did they [roughly,approximately] have the same duration?', # noqa: E501 'Was the <O> [sound event,sound] [roughly,approximately] as <D> as the <S> <A>?', # noqa: E501 '[Comparing,Listening to,Hearing] the <O> [sound event,sound] and the <S> <A>, were they [roughly,approximately] as <D>?', # noqa: E501 '[Comparing,Listening to,Hearing] the <O> [sound event,sound] and the sound of the <S> <A>, were they [roughly,approximately] as <D>?', # noqa: E501 '[Comparing,Listening to,Hearing] the <O> [sound event,sound] and the <S> <A>, did they [roughly,approximately] have the same duration?', # noqa: E501 '[Comparing,Listening to,Hearing] the <O> [sound event,sound] and the sound of the <S> <A>, did they [roughly,approximately] have the same duration?', # noqa: E501 ] question = str(np.random.choice(questions)) # sample question lst_events = get_lst_events(narrative) unique_lst_events = [e for e in lst_events if lst_events.count(e) == 1] assert len(unique_lst_events) > 0, \ 'Question (compare_same_duration_event_ordinal) illposed.' event = str(np.random.choice(unique_lst_events)) # sample event source = str(np.random.choice(dataset['sources'][event])) action = str(np.random.choice(dataset['actions'][event])) duration = sample_duration() number, ordinal = sample_second_number(len(lst_events), lst_events.index(event) + 1) assert lst_events.count(event) == 1, \ 'Question (compare_same_duration_event_ordinal) illposed.' assert lst_events.index(event) != (number - 1), \ 'Question (compare_same_duration_event_ordinal) illposed.' question = question.replace('<S>', source) # insert source question = question.replace('<A>', action) # insert action question = question.replace('<D>', duration) # insert duration question = question.replace('<O>', ordinal) # insert ordinal question = sanitize_question(question) # correct grammar lst_duration = get_lst_durations(narrative) e_1_duration = lst_duration[lst_events.index(event)] e_2_duration = lst_duration[number - 1] rel_duration_diff = compute_rel_diff(np.array(e_1_duration), np.array(e_2_duration)) # Assert a good margin in relative duration assert np.sum(np.logical_and(rel_duration_diff > rel_diff, rel_duration_diff < (2 * rel_diff))) <= 0, \ 'Question (compare_same_duration_event_ordinal) illposed.' answer = 'yes' if rel_duration_diff <= rel_diff else 'no' return question, answer
daqa-master
daqa-gen/qpas/compare.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from __future__ import (absolute_import, division, print_function, unicode_literals) import numpy as np from qpas.utils import (compute_rel_diff, get_lst_durations, get_lst_events, get_lst_loudness, numbers_to_words, sample_duration, sample_loudness, sample_number, sample_second_number, sample_preposition, sanitize_question) def how_many(dataset, narrative, _): questions = ['How many [sound events,sounds] were there?', 'How many [sound events,sounds] [did,could] you [hear,listen to]?', 'How many [sound events,sounds] have you [heard,listened to]?', 'What is the number of [sound events,sounds]?', 'What is the number of [sound events,sounds] [did,could] you [hear,listen to]?', # noqa: E501 'What is the number of [sound events,sounds] have you [heard,listened to]?', # noqa: E501 ] question = str(np.random.choice(questions)) # sample question question = sanitize_question(question) # correct grammar lst_events = get_lst_events(narrative) answer = numbers_to_words(len(lst_events)) return question, answer def how_many_event(dataset, narrative, _): questions = ['How many times was [a,an] <S> <A>?', 'How many times did you [hear,listen to] [a,an] <S> <A>?', 'How many times have you [heard,listened to] [a,an] <S> <A>?', 'What is the number of times [a,an] <S> <A>?', 'What is the number of times did you [hear,listen to] [a,an] <S> <A>?', # noqa: E501 'What is the number of times you [heard,listened to] [a,an] <S> <A>?', # noqa: E501 ] question = str(np.random.choice(questions)) # sample question lst_events = get_lst_events(narrative) event = str(np.random.choice(lst_events)) source = str(np.random.choice(dataset['sources'][event])) # sample source action = str(np.random.choice(dataset['actions'][event])) # sample action question = question.replace('<S>', source) # insert source question = question.replace('<A>', action) # insert action question = sanitize_question(question) # correct grammar answer = numbers_to_words(lst_events.count(event)) return question, answer def how_many_ordinal(dataset, narrative, _): questions = ['How many times did you [hear,listen to] a sound that [sounded,seemed] like the <O> [sound event,sound]?', # noqa: E501 'What is the number of times did you [hear,listen to] a sound that [sounded,seemed] like the <O> [sound event,sound]?', # noqa: E501 '[Hearing,Listening to] the <O> [sound event,sound], how many sounds were [the same, similar]?', # noqa: E501 '[Hearing,Listening to] the <O> [sound event,sound], what is the number of sounds that were [the same, similar]?', # noqa: E501 ] question = str(np.random.choice(questions)) # sample question lst_events = get_lst_events(narrative) number, ordinal = sample_number(len(lst_events)) question = question.replace('<O>', ordinal) # insert ordinal question = sanitize_question(question) # correct grammar event = lst_events[number - 1] answer = numbers_to_words(lst_events.count(event) - 1) # -1 for base event return question, answer def how_many_event_two(dataset, narrative, _): questions = ['How many times was [a,an] <S1> <A1> [or,and] [a,an] <S2> <A2>?', 'How many times did you [hear,listen to] [a,an] <S1> <A1> [or,and] [a,an] <S2> <A2>?', # noqa: E501 'How many times have you [heard,listened to] [a,an] <S1> <A1> [or,and] [a,an] <S2> <A2>?', # noqa: E501 'What is the number of times [a,an] <S1> <A1> [or,and] [a,an] <S2> <A2>?', # noqa: E501 'What is the number of times did you [hear,listen to] [a,an] <S1> <A1> [or,and] [a,an] <S2> <A2>?', # noqa: E501 'What is the number of times you [heard,listened to] [a,an] <S1> <A1> [or,and] [a,an] <S2> <A2>?', # noqa: E501 ] question = str(np.random.choice(questions)) # sample question event_1 = str(np.random.choice(dataset['events'])) # sample event source_1 = str(np.random.choice(dataset['sources'][event_1])) action_1 = str(np.random.choice(dataset['actions'][event_1])) x_lst_events = [e for e in dataset['events'] if e != event_1] event_2 = str(np.random.choice(x_lst_events)) # sample event source_2 = str(np.random.choice(dataset['sources'][event_2])) action_2 = str(np.random.choice(dataset['actions'][event_2])) assert event_1 != event_2, 'Question (how_many_event_two) illposed.' question = question.replace('<S1>', source_1) # insert source question = question.replace('<A1>', action_1) # insert action question = question.replace('<S2>', source_2) # insert source question = question.replace('<A2>', action_2) # insert action question = sanitize_question(question) # correct grammar lst_events = get_lst_events(narrative) answer = numbers_to_words(lst_events.count(event_1) + lst_events.count(event_2)) return question, answer def how_many_event_two_ordinal(dataset, narrative, _): questions = ['How many times did you [hear,listen to] a sound that [sounded,seemed] like the <O1> [sound event,sound] [or,and] the <O2> [sound event,sound]?', # noqa: E501 'What is the number of times did you [hear,listen to] a sound that [sounded,seemed] like the <O1> [sound event,sound] [or,and] the <O2> [sound event,sound]?', # noqa: E501 '[Hearing,Listening to] the <O1> [sound event,sound] and the <O2> [sound event,sound], how many sounds were [the same,similar]?', # noqa: E501 '[Hearing,Listening to] the <O1> [sound event,sound] and the <O2> [sound event,sound], what is the number of sounds that were [the same,similar]?', # noqa: E501 ] question = str(np.random.choice(questions)) # sample question lst_events = get_lst_events(narrative) number_1, ordinal_1 = sample_number(len(lst_events)) number_2, ordinal_2 = sample_second_number(len(lst_events), number_1) question = question.replace('<O1>', ordinal_1) # insert ordinal question = question.replace('<O2>', ordinal_2) # insert ordinal question = sanitize_question(question) # correct grammar event_1 = lst_events[number_1 - 1] event_2 = lst_events[number_2 - 1] answer = numbers_to_words((lst_events.count(event_1) - 1) # -1 for base event + (lst_events.count(event_2) - 1)) return question, answer def how_many_sounds_relative(dataset, narrative, _): questions = ['How many [sound events,sounds] <RO> the <S> <A> were there?', 'How many [sound events,sounds] <RO> the <S> <A> [did,could] you [hear,listen to]?', # noqa: E501 'How many [sound events,sounds] <RO> the <S> <A> have you [heard,listened to]?', # noqa: E501 'What is the number of [sound events,sounds] <RO> the <S> <A>?', 'What is the number of [sound events,sounds] <RO> the <S> <A> [did,could] you [hear,listen to]?', # noqa: E501 'What is the number of [sound events,sounds] <RO> the <S> <A> have you [heard,listened to]?', # noqa: E501 'There is [a,an] <S> <A>; how many [sound events,sounds] [did,could] you hear <RO>?', # noqa: E501 'There is [a,an] <S> <A>; how many [sound events,sounds] have you heard <RO>?', # noqa: E501 'There is [a,an] <S> <A>; what is the number of [sound events,sounds] [did,could] you hear <RO>?', # noqa: E501 ] question = str(np.random.choice(questions)) # sample question preposition = sample_preposition() lst_events = get_lst_events(narrative) unique_lst_events = [e for e in lst_events if lst_events.count(e) == 1] assert len(unique_lst_events) > 0, \ 'Question (how_many_sounds_relative) illposed.' event = str(np.random.choice(unique_lst_events)) source = str(np.random.choice(dataset['sources'][event])) # sample source action = str(np.random.choice(dataset['actions'][event])) # sample action question = question.replace('<RO>', preposition) # insert preposition question = question.replace('<S>', source) # insert source question = question.replace('<A>', action) # insert action question = sanitize_question(question) # correct grammar assert lst_events.count(event) == 1, \ 'Question (how_many_sounds_relative) illposed.' event_idx = lst_events.index(event) if 'before' in question: lst_events_e = lst_events[:event_idx] elif 'after' in question: lst_events_e = lst_events[(event_idx + 1):] else: assert False, \ 'Preposition illdefined in Question (how_many_sounds_relative).' answer = numbers_to_words(len(lst_events_e)) return question, answer def how_many_sounds_relative_ordinal(dataset, narrative, _): questions = ['How many [sound events,sounds] after the <O> [sound event,sound] were there?', # noqa: E501 'How many [sound events,sounds] after the <O> [sound event,sound] [did,could] you [hear,listen to]?', # noqa: E501 'How many [sound events,sounds] after the <O> [sound event,sound] have you [heard,listened to]?', # noqa: E501 'What is the number of [sound events,sounds] after the <O> [sound event,sound]?', # noqa: E501 'What is the number of [sound events,sounds] after the <O> [sound event,sound] [did,could] you [hear,listen to]?', # noqa: E501 'What is the number of [sound events,sounds] after the <O> [sound event,sound] have you [heard,listened to]?', # noqa: E501 ] question = str(np.random.choice(questions)) # sample question lst_events = get_lst_events(narrative) number, ordinal = sample_number(len(lst_events)) question = question.replace('<O>', ordinal) # insert ordinal question = sanitize_question(question) # correct grammar assert number < (len(lst_events) - 1), \ 'Question (how_many_sounds_relative_ordinal) illposed.' lst_events_e = lst_events[number:] answer = numbers_to_words(len(lst_events_e)) return question, answer def how_many_event_relative(dataset, narrative, _): questions = ['How many <S1>s <A1> <RO> the <S2> <A2> were there?', 'How many <S1>s <A1> <RO> the <S2> <A2> [did,could] you [hear,listen to]?', # noqa: E501 'How many <S1>s <A1> <RO> the <S2> <A2> have you [heard,listened to]?', # noqa: E501 'What is the number of <S1>s <A1> <RO> the <S2> <A2>?', 'What is the number of <S1>s <A1> <RO> the <S2> <A2> [did,could] you [hear,listen to]?', # noqa: E501 'What is the number of <S1>s <A1> <RO> the <S2> <A2> have you [heard,listened to]?', # noqa: E501 'There is [a,an] <S2> <A2>; how many <S1>s <A1> [did,could] you hear <RO>?', # noqa: E501 'There is [a,an] <S2> <A2>; how many <S1>s <A1> have you heard <RO>?', # noqa: E501 'There is [a,an] <S2> <A2>; what is the number of <S1>s <A1> [did,could] you hear <RO>?', # noqa: E501 ] question = str(np.random.choice(questions)) # sample question event_1 = str(np.random.choice(dataset['events'])) # sample event source_1 = str(np.random.choice(dataset['sources'][event_1])) action_1 = str(np.random.choice(dataset['actions'][event_1])) preposition = sample_preposition() lst_events = get_lst_events(narrative) unique_lst_events = [e for e in lst_events if lst_events.count(e) == 1] unique_lst_events = [e for e in unique_lst_events if e != event_1] assert len(unique_lst_events) > 0, \ 'Question (how_many_event_relative) illposed.' event_2 = str(np.random.choice(unique_lst_events)) source_2 = str(np.random.choice(dataset['sources'][event_2])) action_2 = str(np.random.choice(dataset['actions'][event_2])) question = question.replace('<S1>', source_1) # insert source question = question.replace('<A1>', action_1) # insert action question = question.replace('<RO>', preposition) # insert preposition question = question.replace('<S2>', source_2) # insert source question = question.replace('<A2>', action_2) # insert action question = sanitize_question(question) # correct grammar assert lst_events.count(event_2) == 1, \ 'Question (how_many_event_relative) illposed.' event_2_idx = lst_events.index(event_2) if 'before' in question: lst_events_e = lst_events[:event_2_idx] elif 'after' in question: lst_events_e = lst_events[(event_2_idx + 1):] else: assert False, \ 'Relative preposition illdefined in Question (how_many_event_relative).' answer = numbers_to_words(lst_events_e.count(event_1)) return question, answer def how_many_event_relative_ordinal(dataset, narrative, _): questions = ['How many <S>s <A> <RO> the <O> [sound event,sound] were there?', 'How many <S>s <A> <RO> the <O> [sound event,sound] [did,could] you [hear,listen to]?', # noqa: E501 'How many <S>s <A> <RO> the <O> [sound event,sound] have you [heard,listened to]?', # noqa: E501 'What is the number of <S>s <A> <RO> the <O> [sound event,sound]?', 'What is the number of <S>s <A> <RO> the <O> [sound event,sound] [did,could] you [hear,listen to]?', # noqa: E501 'What is the number of <S>s <A> <RO> the <O> [sound event,sound] have you [heard,listened to]?', # noqa: E501 ] question = str(np.random.choice(questions)) # sample question event = str(np.random.choice(dataset['events'])) # sample event source = str(np.random.choice(dataset['sources'][event])) action = str(np.random.choice(dataset['actions'][event])) preposition = sample_preposition() lst_events = get_lst_events(narrative) number, ordinal = sample_number(len(lst_events)) question = question.replace('<S>', source) # insert source question = question.replace('<A>', action) # insert action question = question.replace('<RO>', preposition) # insert preposition question = question.replace('<O>', ordinal) # insert ordinal question = sanitize_question(question) # correct grammar if 'before' in question: assert number > 1, 'Question (how_many_event_relative_ordinal) illposed.' lst_events_e = lst_events[:(number - 1)] elif 'after' in question: assert number < (len(lst_events) - 1), \ 'Question (how_many_event_relative_ordinal) illposed.' lst_events_e = lst_events[number:] else: assert False, \ 'Relative preposition illdefined in Question (how_many_event_relative_ordinal).' # noqa: E501 answer = numbers_to_words(lst_events_e.count(event)) return question, answer def how_many_sounds_loudness_event(dataset, narrative, rel_diff=0.1): questions = ['How many [sound events,sounds] [roughly,approximately] as <L> as the <S> <A>?', # noqa: E501 'How many [sound events,sounds] that are [roughly,approximately] as <L> as the <S> <A> [did,could] you [hear,listen to]?', # noqa: E501 'How many [sound events,sounds] that are [roughly,approximately] as <L> as the <S> <A> have you heard?', # noqa: E501 'How many [sound events,sounds] that have [roughly,approximately] the same loudness as the <S> <A>?', # noqa: E501 'How many [sound events,sounds] that have [roughly,approximately] the same loudness as the <S> <A> [did,could] you [hear,listen to]?', # noqa: E501 'How many [sound events,sounds] that have [roughly,approximately] the same loudness as the <S> <A> have you heard?', # noqa: E501 'What is the number of [sound events,sounds] [roughly,approximately] as <L> as the <S> <A>?', # noqa: E501 'What is the number of [sound events,sounds] that are [roughly,approximately] as <L> as the <S> <A> [did,could] you [hear,listen to]?', # noqa: E501 'What is the number of [sound events,sounds] that are [roughly,approximately] as <L> as the <S> <A> have you heard?', # noqa: E501 'What is the number of [sound events,sounds] that have [roughly,approximately] the same loudness as the <S> <A>?', # noqa: E501 'What is the number of [sound events,sounds] that have [roughly,approximately] the same loudness as the <S> <A> [did,could] you [hear,listen to]?', # noqa: E501 'What is the number of [sound events,sounds] that have [roughly,approximately] the same loudness as the <S> <A> have you heard?', # noqa: E501 'There is [a,an] <S> <A>; how many [sound events,sounds] that are [roughly,approximately] as <L>?', # noqa: E501 'There is [a,an] <S> <A>; what is the number of [sound events,sounds] that are [roughly,approximately] as <L>?', # noqa: E501 ] question = str(np.random.choice(questions)) # sample question loudness = sample_loudness() # sample loudness lst_events = get_lst_events(narrative) unique_lst_events = [e for e in lst_events if lst_events.count(e) == 1] assert len(unique_lst_events) > 0, \ 'Question (how_many_sounds_loudness_event) illposed.' event = str(np.random.choice(unique_lst_events)) source = str(np.random.choice(dataset['sources'][event])) # sample source action = str(np.random.choice(dataset['actions'][event])) # sample action question = question.replace('<L>', loudness) # insert loudness question = question.replace('<S>', source) # insert source question = question.replace('<A>', action) # insert action question = sanitize_question(question) # correct grammar assert lst_events.count(event) == 1, \ 'Question (how_many_sounds_loudness_event) illposed.' lst_loudness = get_lst_loudness(narrative) event_idx = lst_events.index(event) evt_loudness = lst_loudness[event_idx] x_loudness = [j for i, j in enumerate(lst_loudness) if i != event_idx] rel_loudness_diff = compute_rel_diff(np.array(x_loudness), np.array(evt_loudness)) # Assert a good margin in relative loudness assert np.sum(np.logical_and(rel_loudness_diff > rel_diff, rel_loudness_diff < (2 * rel_diff))) <= 0, \ 'Question (how_many_sounds_loudness_event) illposed.' answer = numbers_to_words(np.sum(rel_loudness_diff <= rel_diff)) return question, answer def how_many_sounds_loudness_ordinal(dataset, narrative, rel_diff=0.1): questions = ['How many [sound events,sounds] [roughly,approximately] as <L> as the <O> sound?', # noqa: E501 'How many [sound events,sounds] that are [roughly,approximately] as <L> as the <O> sound?', # noqa: E501 'How many [sound events,sounds] that are [roughly,approximately] as <L> as the <O> sound [did,could] you [hear,listen to]?', # noqa: E501 'How many [sound events,sounds] that are [roughly,approximately] as <L> as the <O> sound have you heard?', # noqa: E501 'How many [sound events,sounds] that have [roughly,approximately] the same loudness as the <O> sound?', # noqa: E501 'How many [sound events,sounds] that have [roughly,approximately] the same loudness as the <O> sound [did,could] you [hear,listen to]?', # noqa: E501 'How many [sound events,sounds] that have [roughly,approximately] the same loudness as the <O> sound have you heard?', # noqa: E501 'What is the number of [sound events,sounds] [roughly,approximately] as <L> as the <O> sound?', # noqa: E501 'What is the number of [sound events,sounds] that are [roughly,approximately] as <L> as the <O> sound?', # noqa: E501 'What is the number of [sound events,sounds] that are [roughly,approximately] as <L> as the <O> sound [did,could] you [hear,listen to]?', # noqa: E501 'What is the number of [sound events,sounds] that are [roughly,approximately] as <L> as the <O> sound have you heard?', # noqa: E501 'What is the number of [sound events,sounds] that have [roughly,approximately] the same loudness as the <O> sound?', # noqa: E501 'What is the number of [sound events,sounds] that have [roughly,approximately] the same loudness as the <O> sound [did,could] you [hear,listen to]?', # noqa: E501 'What is the number of [sound events,sounds] that have [roughly,approximately] the same loudness as the <O> sound have you heard?', # noqa: E501 ] question = str(np.random.choice(questions)) # sample question loudness = sample_loudness() # sample loudness lst_events = get_lst_events(narrative) number, ordinal = sample_number(len(lst_events)) question = question.replace('<L>', loudness) # insert loudness question = question.replace('<O>', ordinal) # insert ordinal question = sanitize_question(question) # correct grammar lst_loudness = get_lst_loudness(narrative) evt_loudness = lst_loudness[number - 1] x_loudness = [j for i, j in enumerate(lst_loudness) if i != (number - 1)] rel_loudness_diff = compute_rel_diff(np.array(x_loudness), np.array(evt_loudness)) # Assert a good margin in relative loudness assert np.sum(np.logical_and(rel_loudness_diff > rel_diff, rel_loudness_diff < (2 * rel_diff))) <= 0, \ 'Question (how_many_sounds_loudness_ordinal) illposed.' answer = numbers_to_words(np.sum(rel_loudness_diff <= rel_diff)) return question, answer def how_many_sounds_duration_event(dataset, narrative, rel_diff=0.1): questions = ['How many [sound events,sounds] [roughly,approximately] as <D> as the <S> <A>?', # noqa: E501 'How many [sound events,sounds] that are [roughly,approximately] as <D> as the <S> <A> [did,could] you [hear,listen to]?', # noqa: E501 'How many [sound events,sounds] that are [roughly,approximately] as <D> as the <S> <A> have you heard?', # noqa: E501 'How many [sound events,sounds] that have [roughly,approximately] the same duration as the <S> <A>?', # noqa: E501 'How many [sound events,sounds] that have [roughly,approximately] the same duration as the <S> <A> [did,could] you [hear,listen to]?', # noqa: E501 'How many [sound events,sounds] that have [roughly,approximately] the same duration as the <S> <A> have you heard?', # noqa: E501 'What is the number of [sound events,sounds] [roughly,approximately] as <D> as the <S> <A>?', # noqa: E501 'What is the number of [sound events,sounds] that are [roughly,approximately] as <D> as the <S> <A> [did,could] you [hear,listen to]?', # noqa: E501 'What is the number of [sound events,sounds] that are [roughly,approximately] as <D> as the <S> <A> have you heard?', # noqa: E501 'What is the number of [sound events,sounds] that have [roughly,approximately] the same duration as the <S> <A>?', # noqa: E501 'What is the number of [sound events,sounds] that have [roughly,approximately] the same duration as the <S> <A> [did,could] you [hear,listen to]?', # noqa: E501 'What is the number of [sound events,sounds] that have [roughly,approximately] the same duration as the <S> <A> have you heard?', # noqa: E501 'There is [a,an] <S> <A>; how many [sound events,sounds] that are [roughly,approximately] as <D>?', # noqa: E501 'There is [a,an] <S> <A>; what is the number of [sound events,sounds] that are [roughly,approximately] as <D>?', # noqa: E501 ] question = str(np.random.choice(questions)) # sample question duration = sample_duration() # sample duration lst_events = get_lst_events(narrative) unique_lst_events = [e for e in lst_events if lst_events.count(e) == 1] assert len(unique_lst_events) > 0, \ 'Question (how_many_sounds_duration_event) illposed.' event = str(np.random.choice(unique_lst_events)) source = str(np.random.choice(dataset['sources'][event])) # sample source action = str(np.random.choice(dataset['actions'][event])) # sample action question = question.replace('<D>', duration) # insert duration question = question.replace('<S>', source) # insert source question = question.replace('<A>', action) # insert action question = sanitize_question(question) # correct grammar assert lst_events.count(event) == 1, \ 'Question (how_many_sounds_duration_event) illposed.' lst_durations = get_lst_durations(narrative) event_idx = lst_events.index(event) evt_duration = lst_durations[event_idx] x_durations = [j for i, j in enumerate(lst_durations) if i != event_idx] rel_durations_diff = compute_rel_diff(np.array(x_durations), np.array(evt_duration)) # Assert a good margin in relative loudness assert np.sum(np.logical_and(rel_durations_diff > rel_diff, rel_durations_diff < (2 * rel_diff))) <= 0, \ 'Question (how_many_sounds_duration_event) illposed.' answer = numbers_to_words(np.sum(rel_durations_diff <= rel_diff)) return question, answer def how_many_sounds_duration_ordinal(dataset, narrative, rel_diff=0.1): questions = ['How many [sound events,sounds] [roughly,approximately] as <D> as the <O> sound?', # noqa: E501 'How many [sound events,sounds] that are [roughly,approximately] as <D> as the <O> sound?', # noqa: E501 'How many [sound events,sounds] that are [roughly,approximately] as <D> as the <O> sound [did,could] you [hear,listen to]?', # noqa: E501 'How many [sound events,sounds] that are [roughly,approximately] as <D> as the <O> sound have you heard?', # noqa: E501 'How many [sound events,sounds] that have [roughly,approximately] the same duration as the <O> sound?', # noqa: E501 'How many [sound events,sounds] that have [roughly,approximately] the same duration as the <O> sound [did,could] you [hear,listen to]?', # noqa: E501 'How many [sound events,sounds] that have [roughly,approximately] the same duration as the <O> sound have you heard?', # noqa: E501 'What is the number of [sound events,sounds] [roughly,approximately] as <D> as the <O> sound?', # noqa: E501 'What is the number of [sound events,sounds] that are [roughly,approximately] as <D> as the <O> sound?', # noqa: E501 'What is the number of [sound events,sounds] that are [roughly,approximately] as <D> as the <O> sound [did,could] you [hear,listen to]?', # noqa: E501 'What is the number of [sound events,sounds] that are [roughly,approximately] as <D> as the <O> sound have you heard?', # noqa: E501 'What is the number of [sound events,sounds] that have [roughly,approximately] the same duration as the <O> sound?', # noqa: E501 'What is the number of [sound events,sounds] that have [roughly,approximately] the same duration as the <O> sound [did,could] you [hear,listen to]?', # noqa: E501 'What is the number of [sound events,sounds] that have [roughly,approximately] the same duration as the <O> sound have you heard?', # noqa: E501 ] question = str(np.random.choice(questions)) # sample question duration = sample_duration() # sample duration lst_events = get_lst_events(narrative) number, ordinal = sample_number(len(lst_events)) question = question.replace('<D>', duration) # insert duration question = question.replace('<O>', ordinal) # insert ordinal question = sanitize_question(question) # correct grammar lst_durations = get_lst_durations(narrative) evt_duration = lst_durations[number - 1] x_durations = [j for i, j in enumerate(lst_durations) if i != (number - 1)] rel_durations_diff = compute_rel_diff(np.array(x_durations), np.array(evt_duration)) # Assert a good margin in relative loudness assert np.sum(np.logical_and(rel_durations_diff > rel_diff, rel_durations_diff < (2 * rel_diff))) <= 0, \ 'Question (how_many_sounds_duration_ordinal) illposed.' answer = numbers_to_words(np.sum(rel_durations_diff <= rel_diff)) return question, answer
daqa-master
daqa-gen/qpas/count.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from __future__ import (absolute_import, division, print_function, unicode_literals) import numpy as np from qpas.utils import get_lst_events, sanitize_question def less_than(dataset, narrative, _): questions = ['Were there fewer <S1>s <A1> than <S2>s <A2>?', 'Was the number of [times,instances,occurrences] [a,an] <S1> <A1> less than the number of [times,instances,occurrences] [a,an] <S2> <A2>?', # noqa: E501 '[Comparing,Listening to,Hearing] the sounds of [a,an] <S1> <A1> and [a,an] <S2> <A2>, were there fewer [times,instances,occurrences] of the former?', # noqa: E501 '[Comparing,Listening to,Hearing] the sounds of [a,an] <S2> <A2> and [a,an] <S1> <A1>, were there fewer [times,instances,occurrences] of the latter?', # noqa: E501 ] question = str(np.random.choice(questions)) # sample question lst_events = get_lst_events(narrative) event_1 = str(np.random.choice(lst_events)) # sample event source_1 = str(np.random.choice(dataset['sources'][event_1])) action_1 = str(np.random.choice(dataset['actions'][event_1])) x_lst_events = [e for e in lst_events if e != event_1] assert len(x_lst_events) > 0, 'Question (less_than) illposed.' event_2 = str(np.random.choice(x_lst_events)) # sample event source_2 = str(np.random.choice(dataset['sources'][event_2])) action_2 = str(np.random.choice(dataset['actions'][event_2])) assert event_1 != event_2, 'Question (less_than) illposed.' question = question.replace('<S1>', source_1) # insert source question = question.replace('<A1>', action_1) # insert action question = question.replace('<S2>', source_2) # insert source question = question.replace('<A2>', action_2) # insert action question = sanitize_question(question) answer = 'yes' \ if lst_events.count(event_1) < lst_events.count(event_2) \ else 'no' return question, answer def equal_to(dataset, narrative, _): questions = ['Was the number of times [a,an] <S1> <A1> equal to the number of times [a,an] <S2> <A2>?', # noqa: E501 'Was the number of times [a,an] <S1> <A1> the same as the number of times [a,an] <S2> <A2>?', # noqa: E501 'Was there an equal number of times [a,an] <S1> <A1> and [a,an] <S2> <A2>?', # noqa: E501 'Was there the same number of <S1> <A1> and <S2> <A2>?', ] question = str(np.random.choice(questions)) # sample question lst_events = get_lst_events(narrative) event_1 = str(np.random.choice(lst_events)) # sample event source_1 = str(np.random.choice(dataset['sources'][event_1])) action_1 = str(np.random.choice(dataset['actions'][event_1])) x_lst_events = [e for e in lst_events if e != event_1] assert len(x_lst_events) > 0, 'Question (equal_to) illposed.' event_2 = str(np.random.choice(x_lst_events)) # sample event source_2 = str(np.random.choice(dataset['sources'][event_2])) action_2 = str(np.random.choice(dataset['actions'][event_2])) assert event_1 != event_2, 'Question (equal_to) illposed.' question = question.replace('<S1>', source_1) # insert source question = question.replace('<A1>', action_1) # insert action question = question.replace('<S2>', source_2) # insert source question = question.replace('<A2>', action_2) # insert action question = sanitize_question(question) answer = 'yes' \ if lst_events.count(event_1) == lst_events.count(event_2) \ else 'no' return question, answer def more_than(dataset, narrative, _): questions = ['Were there more <S1>s <A1> than <S2>s <A2>?', 'Was the number of [times,instances,occurrences] [a,an] <S1> <A1> more than the number of [times,instances,occurrences] [a,an] <S2> <A2>?', # noqa: E501 '[Comparing,Listening to,Hearing] the sounds of [a,an] <S1> <A1> and [a,an] <S2> <A2>, were there more [times,instances,occurrences] of the former?', # noqa: E501 '[Comparing,Listening to,Hearing] the sounds of [a,an] <S2> <A2> and [a,an] <S1> <A1>, were there more [times,instances,occurrences] of the latter?', # noqa: E501 ] question = str(np.random.choice(questions)) # sample question lst_events = get_lst_events(narrative) event_1 = str(np.random.choice(lst_events)) # sample event source_1 = str(np.random.choice(dataset['sources'][event_1])) action_1 = str(np.random.choice(dataset['actions'][event_1])) x_lst_events = [e for e in lst_events if e != event_1] assert len(x_lst_events) > 0, 'Question (more_than) illposed.' event_2 = str(np.random.choice(x_lst_events)) # sample event source_2 = str(np.random.choice(dataset['sources'][event_2])) action_2 = str(np.random.choice(dataset['actions'][event_2])) assert event_1 != event_2, 'Question (more_than) illposed.' question = question.replace('<S1>', source_1) # insert source question = question.replace('<A1>', action_1) # insert action question = question.replace('<S2>', source_2) # insert source question = question.replace('<A2>', action_2) # insert action question = sanitize_question(question) answer = 'yes' \ if lst_events.count(event_1) > lst_events.count(event_2) \ else 'no' return question, answer
daqa-master
daqa-gen/qpas/compare_integer.py
from unittest import TestCase from base import AbstractFeatureSelector import numpy as np from scipy import stats from scipy.sparse import issparse from sklearn.feature_selection import f_classif, SelectFromModel, SelectPercentile from sklearn.linear_model import Lasso from sklearn.svm import LinearSVC from sklearn.utils import check_X_y from sklearn.utils.extmath import safe_sparse_dot, row_norms from scipy.linalg import norm # modified to address the issue of centering sparse matrices with a bit of algebra def better_f_regression(X, y, center=True): """Univariate linear regression tests. Quick linear model for testing the effect of a single regressor, sequentially for many regressors. This is done in 2 steps: 1. The cross correlation between each regressor and the target is computed, that is, ((X[:, i] - mean(X[:, i])) * (y - mean_y)) / (std(X[:, i]) * std(y)). 2. It is converted to an F score then to a p-value. Read more in the :ref:`User Guide <univariate_feature_selection>`. Parameters ---------- X : {array-like, sparse matrix} shape = (n_samples, n_features) The set of regressors that will be tested sequentially. y : array of shape(n_samples). The data matrix center : True, bool, If true, X and y will be centered. Returns ------- F : array, shape=(n_features,) F values of features. pval : array, shape=(n_features,) p-values of F-scores. See also -------- f_classif: ANOVA F-value between label/feature for classification tasks. chi2: Chi-squared stats of non-negative features for classification tasks. """ X, y = check_X_y(X, y, ['csr', 'csc', 'coo'], dtype=np.float64) n_samples = X.shape[0] if center: y = y - np.mean(y) if issparse(X): X_means = X.mean(axis=0).getA1() else: X_means = X.mean(axis=0) X_norms = np.sqrt(row_norms(X.T, squared=True) - n_samples*X_means**2) else: X_norms = row_norms(X.T) # compute the correlation corr = safe_sparse_dot(y, X) corr /= X_norms corr /= norm(y) # convert to p-value degrees_of_freedom = y.size - (2 if center else 1) F = corr ** 2 / (1 - corr ** 2) * degrees_of_freedom pv = stats.f.sf(F, 1, degrees_of_freedom) return F, pv class SelectFromLinearSVC(AbstractFeatureSelector): param_distributions = { 'threshold': (1e-5,), 'C': [float(x) for x in np.logspace(-2, 5, 100)] } def __init__(self, threshold=None, penalty='l1', loss='squared_hinge', dual=False, tol=0.0001, C=1.0, fit_intercept=True, random_state=None, max_iter=1000): self.threshold = threshold self.penalty = penalty self.loss = loss self.dual = dual self.tol = tol self.C = C self.fit_intercept = fit_intercept self.random_state = random_state self.max_iter = max_iter def fit(self, X, y): self.linear_svc = LinearSVC(penalty=self.penalty, loss=self.loss, dual=self.dual, tol=self.tol, fit_intercept=self.fit_intercept, random_state=self.random_state, max_iter=self.max_iter) self.linear_svc.fit(X, y) self.select_from_model = SelectFromModel(self.linear_svc, threshold=self.threshold, prefit=True) return self def _get_support_mask(self): return self.select_from_model._get_support_mask() class SelectPercentileClassification(AbstractFeatureSelector, SelectPercentile): param_distributions = { 'score_func': ('f_classif',), 'percentile': [int(x) for x in np.linspace(10, 100, 100)] } score_funcs = { 'f_classif': f_classif } def __init__(self, *args, **kwargs): if 'score_func' in kwargs: kwargs['score_func'] = self.score_funcs[kwargs['score_func']] super().__init__(*args, **kwargs) class SelectFromLasso(AbstractFeatureSelector): param_distributions = { 'threshold': (1e-5,), 'alpha': [float(x) for x in np.logspace(-5, 2, 100)] } def __init__(self, threshold=None, alpha=1.0, fit_intercept=True, normalize=False, max_iter=1000, tol=0.0001, positive=False, selection='cyclic', random_state=None): self.threshold = threshold self.alpha = alpha self.fit_intercept = fit_intercept self.normalize = normalize self.max_iter = max_iter self.tol = tol self.positive = positive self.selection = selection self.random_state = random_state def fit(self, X, y): # NOTE: y is an ndarray of strings self.lasso = Lasso(alpha=self.alpha, fit_intercept=self.fit_intercept, normalize=self.normalize, max_iter=self.max_iter, tol=self.tol, positive=self.positive, selection=self.selection, random_state=self.random_state) self.lasso.fit(X, y) self.select_from_model = SelectFromModel(self.lasso, threshold=self.threshold, prefit=True) return self def _get_support_mask(self): return self.select_from_model._get_support_mask() class SelectPercentileRegression(AbstractFeatureSelector, SelectPercentile): param_distributions = { 'score_func': ('f_regression',), 'percentile': [int(x) for x in np.linspace(10, 100, 100)] } score_funcs = { 'f_regression': better_f_regression } def __init__(self, *args, **kwargs): if 'score_func' in kwargs: kwargs['score_func'] = self.score_funcs[kwargs['score_func']] super().__init__(*args, **kwargs) def fit(self, X, y): # NOTE: y is an ndarray of strings super().fit(X, y) return self
d3m-model-search-master
test_data/185_baseball/185_baseball_solution/src/feature_selection.py
from base import AbstractEstimator import numpy as np from sklearn.base import BaseEstimator, TransformerMixin from sklearn.kernel_approximation import RBFSampler from sklearn.linear_model import SGDClassifier, SGDRegressor class SGDClassifierEstimator(AbstractEstimator): param_distributions = { 'loss': ('hinge', 'log', 'squared_hinge', 'perceptron'), 'penalty': ('elasticnet',), 'alpha': [float(x) for x in np.logspace(-9, 0, 10)], 'l1_ratio': [float(x) for x in np.linspace(0, 1, 11)], 'fit_intercept': (True, True, True, False) } def __init__(self, *args, **kwargs): self.args = args self.kwargs = kwargs def fit(self, X, y): n_samples = X.shape[0] self.kwargs['n_iter'] = max(5, int(10**6 / n_samples)) self.sgd_classifier = SGDClassifier(*self.args, **self.kwargs) self.sgd_classifier.fit(X, y) def predict(self, X): return self.sgd_classifier.predict(X) class SGDRegressorEstimator(AbstractEstimator): param_distributions = { 'loss': ('squared_loss', 'huber'), 'penalty': ('elasticnet',), 'alpha': [float(x) for x in np.logspace(-9, 0, 10)], 'l1_ratio': [float(x) for x in np.linspace(0, 1, 11)], 'fit_intercept': (True, True, True, False), 'epsilon': [float(x) for x in np.logspace(-2, 0, 5)], 'learning_rate': ('optimal', 'invscaling'), 'eta0': (0.1, 0.01, 0.001), 'power_t': [float(x) for x in np.linspace(0, 1, 5)] } def __init__(self, *args, **kwargs): self.args = args self.kwargs = kwargs def fit(self, X, y): n_samples = X.shape[0] self.kwargs['n_iter'] = max(5, int(10**6 / n_samples)) self.sgd_regressor = SGDRegressor(*self.args, **self.kwargs) self.sgd_regressor.fit(X, y) def predict(self, X): return self.sgd_regressor.predict(X) # TODO: inherit AbstractEstimator, grab param_distributions from cv_setup_map.py in the old slacker, class RBFSamplerSGDClassifierEstimator(BaseEstimator, TransformerMixin): def __init__(self, gamma=1.0, n_components=100, random_state=None, **kwargs): kwargs['random_state'] = random_state self.rbf_sampler = RBFSampler(gamma=gamma, n_components=n_components, random_state=random_state) self.sgdclassifier = SGDClassifier(**kwargs) def fit(self, X, y): X = self.rbf_sampler.fit_transform(X) self.sgdclassifier.fit(X, y) return self def transform(self, X, y=None): return np.sqrt(self.rbf_sampler.n_components) / np.sqrt(2.) * self.rbf_sampler.transform(X) def predict(self, X): return self.sgdclassifier.predict(self.transform(X)) def decision_function(self, X): return self.sgdclassifier.decision_function(self.transform(X)) # TODO: inherit AbstractEstimator, grab param_distributions from cv_setup_map.py in the old slacker, class RBFSamplerSGDRegressorEstimator(BaseEstimator, TransformerMixin): def __init__(self, gamma=1.0, n_components=100, random_state=None, **kwargs): kwargs['random_state'] = random_state self.rbf_sampler = RBFSampler(gamma=gamma, n_components=n_components, random_state=random_state) self.sgdregressor = SGDRegressor(**kwargs) def fit(self, X, y): X = self.rbf_sampler.fit_transform(X) self.sgdregressor.fit(X, y) return self def transform(self, X, y=None): return np.sqrt(self.rbf_sampler.n_components) / np.sqrt(2.) * self.rbf_sampler.transform(X) def predict(self, X): return self.sgdregressor.predict(self.transform(X)) # TODO: Add kernel SVM # TODO: Add kernel ridge regressor # TODO: Add random forests / xgboost
d3m-model-search-master
test_data/185_baseball/185_baseball_solution/src/estimation.py
d3m-model-search-master
test_data/185_baseball/185_baseball_solution/src/__init__.py
from collections import defaultdict, OrderedDict import numpy as np from scipy import signal from scipy.sparse import csr_matrix, hstack import pandas as pd from sklearn.base import BaseEstimator, TransformerMixin from sklearn.cluster import MiniBatchKMeans from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import LogisticRegression from sklearn.preprocessing import Imputer, OneHotEncoder, StandardScaler from sklearn.utils.validation import check_is_fitted from base import AbstractFeatureExtractor class DenseMixedStrategyImputer(BaseEstimator, TransformerMixin): def __init__(self, missing_values='NaN', strategies=None, add_missing_indicator=True, verbose=False): self.missing_values = missing_values if strategies is None: raise ValueError('Must provide strategy.') allowed_strategies = ['mean', 'median', 'most_frequent'] if any(s not in allowed_strategies for s in strategies): raise ValueError('Invalid strategy in list.') self.strategies = strategies self.add_missing_indicator = add_missing_indicator self.verbose = verbose def fit(self, X, y=None): n_samples, n_features = X.shape print('n_features',n_features) if len(self.strategies) != n_features: raise ValueError('Number of strategies must equal number of features.') self.impute_strategies = list(set(self.strategies)) self.impute_indices = [np.array([i for i, x in enumerate(self.strategies) if x == s]) for s in self.impute_strategies] self.impute_valid_indices = [] self.imputers = [Imputer(missing_values=self.missing_values, strategy=s, verbose=self.verbose) for s in self.impute_strategies] for indices, imputer in zip(self.impute_indices, self.imputers): imputer.fit(X[:, indices]) valid_mask = np.logical_not(np.isnan(imputer.statistics_)) self.impute_valid_indices.append(indices[valid_mask]) return self def transform(self, X): n_samples, n_features = X.shape if len(self.strategies) != n_features: raise ValueError('Number of strategies must equal number of features.') check_is_fitted(self, 'imputers') if self.add_missing_indicator: output_scale = 2 else: output_scale = 1 X_out = np.zeros((n_samples, output_scale*n_features)) for input_indices, output_indices, imputer in zip(self.impute_indices, self.impute_valid_indices, self.imputers): X_out[:, output_scale*output_indices] = imputer.transform(X[:, input_indices]) if self.add_missing_indicator: X_out[:, np.arange(1, 2*n_features, 2)] = np.isnan(X).astype('float', copy=False) return X_out class DataFrameCategoricalEncoder(BaseEstimator, TransformerMixin): def fit(self, X, y=None): self.code_maps = {} for k in X.columns: self.code_maps[k] = defaultdict(lambda: np.nan) self.code_maps[k].update({v: k for k, v in enumerate(X[k].astype('category').cat.categories)}) return self def transform(self, X): if set(X.columns) != set(self.code_maps): raise ValueError('Columns do not match fit model.') return X.apply(lambda x: x.apply(lambda y: self.code_maps[x.name][y])).as_matrix() class AnnotatedTabularExtractor(AbstractFeatureExtractor): param_distributions = { 'normalize_text': [True, False], 'categorize': [True, False], 'numeric_strategy': ['mean', 'median'], 'add_missing_indicator': [True, False] } def __init__(self, normalize_text=False, categorize=False, numeric_strategy='mean', add_missing_indicator=True): self.normalize_text = normalize_text self.categorize = categorize self.numeric_strategy = numeric_strategy self.add_missing_indicator = add_missing_indicator def set_cols_info(self, cols_info): self.cols_info = cols_info def determine_colType(self, column): variables = self.cols_info for var in variables: var_colName = var['colName'] if str(var_colName) != str(column): continue var_colType = var['colType'] if var_colType in {'categorical', 'boolean'}: return 'categorical' elif var_colType in {'integer', 'real'}: return 'numeric' elif var_colType == 'string': return 'text' elif var_colType == 'dateTime': raise RuntimeError('datTime not implemented in this feature extractor yet !!') def fit_transform(self, df, variables): df = self.copy_normalize_text(df) self.column_types = OrderedDict() for column in df: itype = self.determine_colType(column) # print('itype',itype) self.column_types[column] = itype self.numeric_columns = [column for column, type in self.column_types.items() if type == 'numeric'] self.categorical_columns = [column for column, type in self.column_types.items() if type == 'categorical'] self.text_columns = [column for column, type in self.column_types.items() if type == 'text'] output_arrays = [] if len(self.numeric_columns) > 0: X = df[self.numeric_columns].apply(lambda x: pd.to_numeric(x, errors='coerce')).as_matrix() self.numeric_imputer = DenseMixedStrategyImputer( strategies=[self.numeric_strategy]*len(self.numeric_columns), add_missing_indicator=self.add_missing_indicator ) X = self.numeric_imputer.fit_transform(X) self.numeric_scaler = StandardScaler() output_arrays.append(self.numeric_scaler.fit_transform(X)) if len(self.categorical_columns) > 0: self.categorical_encoder = DataFrameCategoricalEncoder() X = self.categorical_encoder.fit_transform(df[self.categorical_columns]) self.categorical_imputer = DenseMixedStrategyImputer( strategies=['most_frequent']*len(self.categorical_columns), add_missing_indicator=self.add_missing_indicator ) X = self.categorical_imputer.fit_transform(X) self.one_hot_encoder = OneHotEncoder( categorical_features=np.arange(len(self.categorical_columns)) * (2 if self.add_missing_indicator else 1) ) output_arrays.append(self.one_hot_encoder.fit_transform(X)) return hstack([csr_matrix(X) for X in output_arrays], format='csr') def transform(self, df): check_is_fitted(self, 'column_types') if list(df) != list(self.column_types): raise ValueError('Data to be transformed does not match fitting data.') df = self.copy_normalize_text(df) output_arrays = [] if len(self.numeric_columns) > 0: X = df[self.numeric_columns].apply(lambda x: pd.to_numeric(x, errors='coerce')).as_matrix() output_arrays.append(self.numeric_scaler.transform(self.numeric_imputer.transform(X))) if len(self.categorical_columns) > 0: X = self.categorical_encoder.transform(df[self.categorical_columns]) output_arrays.append(self.one_hot_encoder.transform(self.categorical_imputer.transform(X))) return hstack([csr_matrix(X) for X in output_arrays], format='csr') def copy_normalize_text(self, df): df = df.copy() if self.normalize_text: for column in df: try: df[column] = df[column].str.lower().str.strip() except: df[column] = df[column] return df
d3m-model-search-master
test_data/185_baseball/185_baseball_solution/src/feature_extraction.py
# -*- coding: utf-8 -*- # file: d3mds.py # lab: MIT Lincoln Lab # author(s): sw26425 # description: a rudimentary API for interacting with D3MDataSupply, which mainly consists of a Dataset and a Problem import os, json, sys import pandas as pd import numpy as np import warnings DATASET_SCHEMA_VERSION = '3.0' PROBLEM_SCHEMA_VERSION = '3.0' class D3MDataset: dsHome = None dsDoc = None learningDataFile = None def __init__(self, datasetPath): self.dsHome = datasetPath # read the schema in dsHome _dsDoc = os.path.join(self.dsHome, 'datasetDoc.json') assert os.path.exists(_dsDoc) with open(_dsDoc, 'r') as f: self.dsDoc = json.load(f) # make sure the versions line up if self.get_datasetSchemaVersion() != DATASET_SCHEMA_VERSION: warnings.warn("the datasetSchemaVersions in the API and datasetDoc do not match !!!!!!!") # locate the special learningData file self.learningDataFile = self._get_learning_data_path() def get_datasetID(self): """ Returns the datasetID from datasetDoc """ return self.dsDoc['about']['datasetID'] def get_datasetSchemaVersion(self): """ Returns the dataset schema version that was used to create this dataset """ return self.dsDoc['about']['datasetSchemaVersion'] def get_learning_data(self, view=None, problem=None): """ Returns the contents of learningData.doc as a DataFrame. If view is 'TRAIN' or 'TEST', then the full learningData is filtered to return learningData only for that view. For view-based filtering, the problem object has to be passed because this method used the splitsData from the problem. """ df = pd.read_csv(self.learningDataFile, index_col='d3mIndex') if view is None: return df if view.upper() == 'TRAIN' or view.upper() == 'TEST': if problem is None: raise RuntimeError('asking for learningData for a split, but the problem is not given') splitsdf = problem.get_datasplits(view) df = df.loc[splitsdf.index] return df def get_learning_data_columns(self): res = self._get_learning_data_resource() return res['columns'] def set_learning_data(self, df): """ Sets the contents of the learningData file to df """ df.to_csv(self.learningDataFile) def delete_column_entries(self, target): """ Deletes all the entries of a particular column of a particular tabular data resource. The deleted entries are set to numpy.NaN """ resID = target['resID'] colIndex = target['colIndex'] colName = target['colName'] for res in self.dsDoc['dataResources']: _resID = res['resID'] if _resID != resID: continue _resPath = res['resPath'] _resPath = os.path.join(self.dsHome, _resPath) _resType = res['resType'] assert _resType == 'table' for col in res['columns']: _colIndex = col['colIndex'] if _colIndex != colIndex: continue _colName = col['colName'] assert _colName == colName df = pd.read_csv(_resPath) df[_colName] = [np.NaN]*len(df[_colName]) df.to_csv(_resPath, index=None) return True raise RuntimeError('could not find the column') raise RuntimeError('could not find the resource') def delete_identifying_fields(self, view): """ Deletes some fields that might contain identifying information. These fields should not be in the train or test view during the blinds evaluation. """ assert view.upper()=='TRAIN' or view.upper()=='TEST' # ensures we perform this only if view is train or test self.dsDoc['about']['datasetName']='NULL' self.dsDoc['about']['redacted'] = True try: del self.dsDoc['about']['description'] except KeyError: pass try: del self.dsDoc['about']['citation'] except KeyError: pass try: del self.dsDoc['about']['source'] except KeyError: pass try: del self.dsDoc['about']['sourceURI'] except KeyError: pass # save datasetDoc.json file with open(os.path.join(self.dsHome, 'datasetDoc.json'), 'w') as fp: json.dump(self.dsDoc, fp, indent=2, sort_keys=False) ############# private methods def _get_learning_data_path(self): """ Returns the path of learningData.csv in a dataset """ for res in self.dsDoc['dataResources']: resID = res['resID'] resPath = res['resPath'] resType = res['resType'] resFormat = res['resFormat'] dirname = os.path.basename(os.path.normpath(os.path.dirname(resPath))) if resType =='table' and dirname=='tables': if 'learningData.csv' in res['resPath'] : return os.path.join(self.dsHome, resPath) else: raise RuntimeError('non-CSV learningData (not implemented yet ...)') # if the for loop is over and learningDoc is not found, then return None raise RuntimeError('could not find learningData file the dataset') def _get_learning_data_resource(self): """ Returns the path of learningData.csv in a dataset """ for res in self.dsDoc['dataResources']: resID = res['resID'] resPath = res['resPath'] resType = res['resType'] resFormat = res['resFormat'] if resType =='table': if 'learningData.csv' in res['resPath'] : return res else: raise RuntimeError('could not find learningData.csv') # if the for loop is over and learningDoc is not found, then return None raise RuntimeError('could not find learningData resource') class D3MProblem: prHome = None prDoc = None splitsFile = None def __init__(self, problemPath): self.prHome = problemPath # read the schema in prHome _prDoc = os.path.join(self.prHome, 'problemDoc.json') assert os.path.exists(_prDoc) with open(_prDoc, 'r') as f: self.prDoc = json.load(f) # make sure the versions line up if self.get_problemSchemaVersion() != PROBLEM_SCHEMA_VERSION: warnings.warn("the problemSchemaVersions in the API and datasetDoc do not match !!!!!!!") # locate the splitsFile self.splitsFile = self._get_datasplits_file() def get_problemID(self): """ Returns the problemID from problemDoc """ return self.prDoc['about']['problemID'] def get_problemSchemaVersion(self): """ Returns the problem schema version that was used to create this dataset """ return self.prDoc['about']['problemSchemaVersion'] def get_datasetID(self): """ Returns the ID of the dataset referenced in the problem """ return self.prDoc['inputs']['data'][0]['datasetID'] def get_targets(self): """ Looks at the problemDoc and returns the colIndex and colName of the target variable """ return self.prDoc['inputs']['data'][0]['targets'] def get_datasplits(self, view=None): """ Returns the data splits splits in a dataframe """ df = pd.read_csv(self.splitsFile, index_col='d3mIndex') if view is None: return df elif view.upper() == 'TRAIN': df = df[df['type']=='TRAIN'] return df elif view.upper() == 'TEST': df = df[df['type']=='TEST'] return df def set_datasplits(self, df): """ Sets the contents of the dataSplits file to df """ df.to_csv(self.splitsFile) def delete_identifying_fields(self, view): """ Deletes some fields that might contain identifying information. These fields should not be in the train or test view during the blinds evaluation. """ assert view.upper()=='TRAIN' or view.upper()=='TEST' # ensures we perform this only if view is train or test self.prDoc['about']['problemName']='NULL' try: del self.prDoc['about']['problemDescription'] except KeyError: pass # save datasetDoc.json file with open(os.path.join(self.prHome, 'problemDoc.json'), 'w') as fp: json.dump(self.prDoc, fp, indent=2, sort_keys=False) def get_performance_metrics(self): return self.prDoc['inputs']['performanceMetrics'] ############# private methods def _get_datasplits_file(self): splitsFile = self.prDoc['inputs']['dataSplits']['splitsFile'] splitsFile = os.path.join(self.prHome, splitsFile) assert os.path.exists(splitsFile) return splitsFile class D3MDS: dataset = None problem = None def __init__(self, datasetPath, problemPath): self.dataset = D3MDataset(datasetPath) self.problem = D3MProblem(problemPath) # sanity check assert self.dataset.get_datasetID() == self.problem.get_datasetID() def _get_target_columns(self, df): target_cols = [] targets = self.problem.get_targets() for target in targets: colIndex = target['colIndex']-1 # 0th column is d3mIndex colName = df.columns[colIndex] assert colName == target['colName'] target_cols.append(colIndex) return target_cols def get_data_all(self): df = self.dataset.get_learning_data(view=None, problem=None) return df def get_train_data(self): df = self.dataset.get_learning_data(view='train', problem=self.problem) target_cols = self._get_target_columns(df) df.drop(df.columns[target_cols],axis=1,inplace=True) return df def get_train_targets(self): df = self.dataset.get_learning_data(view='train', problem=self.problem) target_cols = self._get_target_columns(df) X = df.shape[0] Y = len(target_cols) return (df[df.columns[target_cols]]).as_matrix().reshape(X,Y) # return np.ravel(df[df.columns[target_cols]]) def get_test_data(self): df = self.dataset.get_learning_data(view='test', problem=self.problem) target_cols = self._get_target_columns(df) df.drop(df.columns[target_cols],axis=1,inplace=True) return df def get_test_targets(self): df = self.dataset.get_learning_data(view='test', problem=self.problem) target_cols = self._get_target_columns(df) X = df.shape[0] Y = len(target_cols) return (df[df.columns[target_cols]]).as_matrix().reshape(X,Y) # return np.ravel(df[df.columns[target_cols]])
d3m-model-search-master
test_data/185_baseball/185_baseball_solution/src/d3mds.py
import os, sys, json import pandas as pd from sklearn.pipeline import Pipeline from sklearn.linear_model import SGDClassifier from sklearn.metrics import f1_score, mean_squared_error here = os.path.dirname(os.path.abspath(__file__)) from d3mds import D3MDataset, D3MProblem, D3MDS from feature_extraction import * from feature_selection import * from estimation import * if __name__ == '__main__': # get the paths of the dataset and problem try: dspath = (sys.argv[1]) except: dspath = input('Enter the path to the dataset: ') # dspath = os.path.join(here, '..', '..', 'data', '185_baseball_dataset') assert os.path.exists(dspath) try: prpath = (sys.argv[2]) except: prpath = input('Enter the path to the problem: ') # prpath = os.path.join(here, '..', '..', 'data', '185_baseball_problem') assert os.path.exists(prpath) # check the pipeline JSON file pipe_json = os.path.join(here, 'pipeline.json') assert os.path.exists(pipe_json) # read the JSON file with open(pipe_json) as data_file: ps = json.load(data_file) ## TBD: we need to make a check that that JSON aligns with the dataset and problem # initialize the API class d3mds = D3MDS(dspath, prpath) # this checks that the problem and dataset correspond # get the train and test data X_train = d3mds.get_train_data() y_train = d3mds.get_train_targets() X_test = d3mds.get_test_data() y_test = d3mds.get_test_targets() # get columns information cols_info = d3mds.dataset.get_learning_data_columns() ## instantiate feature extractor key, fe = ps['feature_extractors'].popitem() fe_class = fe['feature_extractor'] fe_params = fe['params'] FE = eval(fe_class)(**fe_params) if isinstance(FE, AnnotatedTabularExtractor): FE.set_cols_info(cols_info) ## instantiate feature selector fs = ps['feature_selector'] fs_class = fs['feature_selector'] fs_params = fs['params'] FS = eval(fs_class)(**fs_params) ## instantiate estimator est = ps['estimator'] est_class = est['estimator'] est_params = est['params'] EST = eval(est_class)(**est_params) ## make a pipeline from the above three components pipeline = Pipeline([ ('vect', FE), ('sel', FS), ('clf', EST), ]) ## train the pipeline on train data pipeline.fit(X_train, y_train) ## predict on test data y_pred = pipeline.predict(X_test) targetCols = [col['colName'] for col in d3mds.problem.get_targets()] y_pred_df = pd.DataFrame(index=X_test.index, data=y_pred, columns=targetCols) y_pred_df.to_csv(os.path.join('.','predictions.csv')) ## compute the score on test data metrics = d3mds.problem.get_performance_metrics() scoresdf = pd.DataFrame(columns=['metric','value']) for item in metrics: metric = item['metric'] if metric == 'f1Macro': score = f1_score(y_test, y_pred, average='macro') print('f1Macro', score) scoresdf.loc[len(scoresdf)]=['f1Macro', score] elif metric == 'meanSquaredError': score = mean_squared_error(y_test, y_pred) print('meanSquaredError', score) scoresdf.loc[len(scoresdf)]=['meanSquaredError', score] scoresdf.to_csv(os.path.join('.','scores.csv'))
d3m-model-search-master
test_data/185_baseball/185_baseball_solution/src/pipeline.py
from abc import ABC, abstractmethod from collections import OrderedDict import numpy as np from numpy import ndarray from scipy.sparse import csr_matrix from pandas import DataFrame from sklearn.base import BaseEstimator, TransformerMixin from sklearn.feature_selection.base import SelectorMixin # https://stackoverflow.com/a/3862957 def get_all_subclasses(cls): return cls.__subclasses__() + [g for s in cls.__subclasses__() for g in get_all_subclasses(s)] def sample_param_distributions(param_distributions): try: return sample_param_distributions_dict(param_distributions) except AttributeError: i = np.random.randint(len(param_distributions)) return sample_param_distributions_dict(param_distributions[i]) def sample_param_distributions_dict(param_distributions_dict): params = {} for k, v in param_distributions_dict.items(): i = np.random.randint(len(v)) params[k] = v[i] return params class AbstractParameterized(ABC): param_distributions = {} @classmethod def get_random_parameters(cls): return sample_param_distributions(cls.param_distributions) class AbstractFeatureExtractor(AbstractParameterized, BaseEstimator): def fit(self, df, variables): self.fit_transform(df, variables) return self @abstractmethod def fit_transform(self, df, variables): """ Fits the feature extractor :param df: :type df: DataFrame :param variables: :type variables: list[D3MVariable] :return: :rtype: csr_matrix """ pass @abstractmethod def transform(self, df): """ Transforms the data :param df: :type df: DataFrame :return: :rtype: csr_matrix """ pass class AbstractFeatureSelector(AbstractParameterized, BaseEstimator, SelectorMixin): pass class AbstractEstimator(AbstractParameterized, BaseEstimator): @abstractmethod def fit(self, X, y): """ :param X: :type X: csr_matrix :param y: :type y: ndarray :return: :rtype: AbstractEstimator """ return self @abstractmethod def predict(self, X): """ :param X: :type X: csr_matrix :return: :rtype: ndarray """ pass
d3m-model-search-master
test_data/185_baseball/185_baseball_solution/src/base.py
# -*- coding: utf-8 -*- # file: d3mds.py # lab: MIT Lincoln Lab # author(s): sw26425 # description: a rudimentary API for interacting with D3MDataSupply, which mainly consists of a Dataset and a Problem import os, json, sys import pandas as pd import numpy as np import warnings DATASET_SCHEMA_VERSION = '3.0' PROBLEM_SCHEMA_VERSION = '3.0' class D3MDataset: dsHome = None dsDoc = None learningDataFile = None def __init__(self, datasetPath): self.dsHome = datasetPath # read the schema in dsHome _dsDoc = os.path.join(self.dsHome, 'datasetDoc.json') assert os.path.exists(_dsDoc) with open(_dsDoc, 'r') as f: self.dsDoc = json.load(f) # make sure the versions line up if self.get_datasetSchemaVersion() != DATASET_SCHEMA_VERSION: warnings.warn("the datasetSchemaVersions in the API and datasetDoc do not match !!!!!!!") # locate the special learningData file self.learningDataFile = self._get_learning_data_path() def get_datasetID(self): """ Returns the datasetID from datasetDoc """ return self.dsDoc['about']['datasetID'] def get_datasetSchemaVersion(self): """ Returns the dataset schema version that was used to create this dataset """ return self.dsDoc['about']['datasetSchemaVersion'] def get_learning_data(self, view=None, problem=None): """ Returns the contents of learningData.doc as a DataFrame. If view is 'TRAIN' or 'TEST', then the full learningData is filtered to return learningData only for that view. For view-based filtering, the problem object has to be passed because this method used the splitsData from the problem. """ df = pd.read_csv(self.learningDataFile, index_col='d3mIndex') if view is None: return df if view.upper() == 'TRAIN' or view.upper() == 'TEST': if problem is None: raise RuntimeError('asking for learningData for a split, but the problem is not given') splitsdf = problem.get_datasplits(view) df = df.loc[splitsdf.index] return df def get_learning_data_columns(self): res = self._get_learning_data_resource() return res['columns'] def set_learning_data(self, df): """ Sets the contents of the learningData file to df """ df.to_csv(self.learningDataFile) def delete_column_entries(self, target): """ Deletes all the entries of a particular column of a particular tabular data resource. The deleted entries are set to numpy.NaN """ resID = target['resID'] colIndex = target['colIndex'] colName = target['colName'] for res in self.dsDoc['dataResources']: _resID = res['resID'] if _resID != resID: continue _resPath = res['resPath'] _resPath = os.path.join(self.dsHome, _resPath) _resType = res['resType'] assert _resType == 'table' for col in res['columns']: _colIndex = col['colIndex'] if _colIndex != colIndex: continue _colName = col['colName'] assert _colName == colName df = pd.read_csv(_resPath) df[_colName] = [np.NaN]*len(df[_colName]) df.to_csv(_resPath, index=None) return True raise RuntimeError('could not find the column') raise RuntimeError('could not find the resource') def delete_identifying_fields(self, view): """ Deletes some fields that might contain identifying information. These fields should not be in the train or test view during the blinds evaluation. """ assert view.upper()=='TRAIN' or view.upper()=='TEST' # ensures we perform this only if view is train or test self.dsDoc['about']['datasetName']='NULL' self.dsDoc['about']['redacted'] = True try: del self.dsDoc['about']['description'] except KeyError: pass try: del self.dsDoc['about']['citation'] except KeyError: pass try: del self.dsDoc['about']['source'] except KeyError: pass try: del self.dsDoc['about']['sourceURI'] except KeyError: pass # save datasetDoc.json file with open(os.path.join(self.dsHome, 'datasetDoc.json'), 'w') as fp: json.dump(self.dsDoc, fp, indent=2, sort_keys=False) ############# private methods def _get_learning_data_path(self): """ Returns the path of learningData.csv in a dataset """ for res in self.dsDoc['dataResources']: resID = res['resID'] resPath = res['resPath'] resType = res['resType'] resFormat = res['resFormat'] dirname = os.path.basename(os.path.normpath(os.path.dirname(resPath))) if resType =='table' and dirname=='tables': if 'learningData.csv' in res['resPath'] : return os.path.join(self.dsHome, resPath) else: raise RuntimeError('non-CSV learningData (not implemented yet ...)') # if the for loop is over and learningDoc is not found, then return None raise RuntimeError('could not find learningData file the dataset') def _get_learning_data_resource(self): """ Returns the path of learningData.csv in a dataset """ for res in self.dsDoc['dataResources']: resID = res['resID'] resPath = res['resPath'] resType = res['resType'] resFormat = res['resFormat'] if resType =='table': if 'learningData.csv' in res['resPath'] : return res else: raise RuntimeError('could not find learningData.csv') # if the for loop is over and learningDoc is not found, then return None raise RuntimeError('could not find learningData resource') class D3MProblem: prHome = None prDoc = None splitsFile = None def __init__(self, problemPath): self.prHome = problemPath # read the schema in prHome _prDoc = os.path.join(self.prHome, 'problemDoc.json') assert os.path.exists(_prDoc) with open(_prDoc, 'r') as f: self.prDoc = json.load(f) # make sure the versions line up if self.get_problemSchemaVersion() != PROBLEM_SCHEMA_VERSION: warnings.warn("the problemSchemaVersions in the API and datasetDoc do not match !!!!!!!") # locate the splitsFile self.splitsFile = self._get_datasplits_file() def get_problemID(self): """ Returns the problemID from problemDoc """ return self.prDoc['about']['problemID'] def get_problemSchemaVersion(self): """ Returns the problem schema version that was used to create this dataset """ return self.prDoc['about']['problemSchemaVersion'] def get_datasetID(self): """ Returns the ID of the dataset referenced in the problem """ return self.prDoc['inputs']['data'][0]['datasetID'] def get_targets(self): """ Looks at the problemDoc and returns the colIndex and colName of the target variable """ return self.prDoc['inputs']['data'][0]['targets'] def get_datasplits(self, view=None): """ Returns the data splits splits in a dataframe """ df = pd.read_csv(self.splitsFile, index_col='d3mIndex') if view is None: return df elif view.upper() == 'TRAIN': df = df[df['type']=='TRAIN'] return df elif view.upper() == 'TEST': df = df[df['type']=='TEST'] return df def set_datasplits(self, df): """ Sets the contents of the dataSplits file to df """ df.to_csv(self.splitsFile) def delete_identifying_fields(self, view): """ Deletes some fields that might contain identifying information. These fields should not be in the train or test view during the blinds evaluation. """ assert view.upper()=='TRAIN' or view.upper()=='TEST' # ensures we perform this only if view is train or test self.prDoc['about']['problemName']='NULL' try: del self.prDoc['about']['problemDescription'] except KeyError: pass # save datasetDoc.json file with open(os.path.join(self.prHome, 'problemDoc.json'), 'w') as fp: json.dump(self.prDoc, fp, indent=2, sort_keys=False) def get_performance_metrics(self): return self.prDoc['inputs']['performanceMetrics'] ############# private methods def _get_datasplits_file(self): splitsFile = self.prDoc['inputs']['dataSplits']['splitsFile'] splitsFile = os.path.join(self.prHome, splitsFile) assert os.path.exists(splitsFile) return splitsFile class D3MDS: dataset = None problem = None def __init__(self, datasetPath, problemPath): self.dataset = D3MDataset(datasetPath) self.problem = D3MProblem(problemPath) # sanity check assert self.dataset.get_datasetID() == self.problem.get_datasetID() def _get_target_columns(self, df): target_cols = [] targets = self.problem.get_targets() for target in targets: colIndex = target['colIndex']-1 # 0th column is d3mIndex colName = df.columns[colIndex] assert colName == target['colName'] target_cols.append(colIndex) return target_cols def get_data_all(self): df = self.dataset.get_learning_data(view=None, problem=None) return df def get_train_data(self): df = self.dataset.get_learning_data(view='train', problem=self.problem) target_cols = self._get_target_columns(df) df.drop(df.columns[target_cols],axis=1,inplace=True) return df def get_train_targets(self): df = self.dataset.get_learning_data(view='train', problem=self.problem) target_cols = self._get_target_columns(df) X = df.shape[0] Y = len(target_cols) return (df[df.columns[target_cols]]).as_matrix().reshape(X,Y) # return np.ravel(df[df.columns[target_cols]]) def get_test_data(self): df = self.dataset.get_learning_data(view='test', problem=self.problem) target_cols = self._get_target_columns(df) df.drop(df.columns[target_cols],axis=1,inplace=True) return df def get_test_targets(self): df = self.dataset.get_learning_data(view='test', problem=self.problem) target_cols = self._get_target_columns(df) X = df.shape[0] Y = len(target_cols) return (df[df.columns[target_cols]]).as_matrix().reshape(X,Y) # return np.ravel(df[df.columns[target_cols]])
d3m-model-search-master
test_data/test_cases_only/LL0_acled/LL0_acled_solution/src/d3mds.py
# coding: utf-8 import numpy as np import pandas as pd import os, json, sys, random from sklearn.preprocessing import LabelEncoder from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, confusion_matrix if __name__ == "__main__": here = os.path.dirname(os.path.abspath(__file__)) from d3mds import D3MDataset, D3MProblem, D3MDS dspath = os.path.join(here, '..', '..', 'LL0_acled_dataset') prpath = os.path.join(here, '..', '..', 'LL0_acled_problem') assert os.path.exists(dspath) assert os.path.exists(prpath) d3mds = D3MDS(dspath, prpath) # this checks that the problem and dataset correspond print('\nLoading train and test data') X_train = d3mds.get_train_data() y_train = d3mds.get_train_targets().ravel() print('X_train shape:', X_train.shape) print('y_train shape:', y_train.shape) X_test = d3mds.get_test_data() y_test = d3mds.get_test_targets().ravel() print('X_test shape:', X_test.shape) print('y_test shape:', y_test.shape) X_train = X_train[['notes']] X_test = X_test[['notes']] # Convert categorical labels to integers le = LabelEncoder() y_train_encoded = le.fit_transform(y_train) y_test_encoded = le.transform(y_test) print('\nBuilding and applying TF-IDF vectorizer') text_train = X_train['notes'].values vectorizer = TfidfVectorizer(token_pattern='(?u)\\b[^\d\W]+\\b') X_train_vec = vectorizer.fit_transform(text_train) print('\nTraining Random Forest Classifier') clf = RandomForestClassifier(n_estimators=100, random_state=0) clf.fit(X_train_vec, y_train_encoded) # print('\nEvaluating model on train set') # X_train_vec = vectorizer.transform(text_train) # pred_train = clf.predict(X_train_vec) # accuracy_train = accuracy_score(y_train_encoded, pred_train) # confusion_mat_train = confusion_matrix(y_train_encoded, pred_train) # print('Accuracy (train): ', accuracy_train) # print('Confusion Matrix (train): \n', confusion_mat_train) print('\nEvaluating model on test set') text_test = X_test['notes'].values X_test_vec = vectorizer.transform(text_test) pred_test = clf.predict(X_test_vec) accuracy_test = accuracy_score(y_test_encoded, pred_test) #confusion_mat_test = confusion_matrix(y_test_encoded, pred_test) print('Accuracy (test): ', accuracy_test) # print('Confusion Matrix (test): \n', confusion_mat_test) # Save predictions.csv target_cols = ([target['colName'] for target in d3mds.problem.get_targets()]) y_predict_df = pd.DataFrame(data=le.inverse_transform(pred_test), index=X_test.index, columns=target_cols) # y_predict_df = pd.DataFrame(data=pred_test, index=X_test.index, columns=target_cols) y_predict_df.to_csv(os.path.join(here, '..', 'predictions.csv')) # Save scores.csv file df = pd.DataFrame(columns=['metric', 'value']) df.loc[len(df)] = ['accuracy', accuracy_test] df.to_csv(os.path.join(here, '..', 'scores.csv'))
d3m-model-search-master
test_data/test_cases_only/LL0_acled/LL0_acled_solution/src/pipeline.py
# -*- coding: utf-8 -*- # file: d3mds.py # lab: MIT Lincoln Lab # author(s): sw26425 # description: a rudimentary API for interacting with D3MDataSupply, which mainly consists of a Dataset and a Problem import os, json, sys import pandas as pd import numpy as np import warnings DATASET_SCHEMA_VERSION = '3.0' PROBLEM_SCHEMA_VERSION = '3.0' class D3MDataset: dsHome = None dsDoc = None learningDataFile = None def __init__(self, datasetPath): self.dsHome = datasetPath # read the schema in dsHome _dsDoc = os.path.join(self.dsHome, 'datasetDoc.json') assert os.path.exists(_dsDoc) with open(_dsDoc, 'r') as f: self.dsDoc = json.load(f) # make sure the versions line up if self.get_datasetSchemaVersion() != DATASET_SCHEMA_VERSION: warnings.warn("the datasetSchemaVersions in the API and datasetDoc do not match !!!!!!!") # locate the special learningData file self.learningDataFile = self._get_learning_data_path() def get_datasetID(self): """ Returns the datasetID from datasetDoc """ return self.dsDoc['about']['datasetID'] def get_datasetSchemaVersion(self): """ Returns the dataset schema version that was used to create this dataset """ return self.dsDoc['about']['datasetSchemaVersion'] def get_learning_data(self, view=None, problem=None): """ Returns the contents of learningData.doc as a DataFrame. If view is 'TRAIN' or 'TEST', then the full learningData is filtered to return learningData only for that view. For view-based filtering, the problem object has to be passed because this method used the splitsData from the problem. """ df = pd.read_csv(self.learningDataFile, index_col='d3mIndex') if view is None: return df if view.upper() == 'TRAIN' or view.upper() == 'TEST': if problem is None: raise RuntimeError('asking for learningData for a split, but the problem is not given') splitsdf = problem.get_datasplits(view) df = df.loc[splitsdf.index] return df def get_learning_data_columns(self): res = self._get_learning_data_resource() return res['columns'] def set_learning_data(self, df): """ Sets the contents of the learningData file to df """ df.to_csv(self.learningDataFile) def delete_column_entries(self, target): """ Deletes all the entries of a particular column of a particular tabular data resource. The deleted entries are set to numpy.NaN """ resID = target['resID'] colIndex = target['colIndex'] colName = target['colName'] for res in self.dsDoc['dataResources']: _resID = res['resID'] if _resID != resID: continue _resPath = res['resPath'] _resPath = os.path.join(self.dsHome, _resPath) _resType = res['resType'] assert _resType == 'table' for col in res['columns']: _colIndex = col['colIndex'] if _colIndex != colIndex: continue _colName = col['colName'] assert _colName == colName df = pd.read_csv(_resPath) df[_colName] = [np.NaN]*len(df[_colName]) df.to_csv(_resPath, index=None) return True raise RuntimeError('could not find the column') raise RuntimeError('could not find the resource') def delete_identifying_fields(self, view): """ Deletes some fields that might contain identifying information. These fields should not be in the train or test view during the blinds evaluation. """ assert view.upper()=='TRAIN' or view.upper()=='TEST' # ensures we perform this only if view is train or test self.dsDoc['about']['datasetName']='NULL' self.dsDoc['about']['redacted'] = True try: del self.dsDoc['about']['description'] except KeyError: pass try: del self.dsDoc['about']['citation'] except KeyError: pass try: del self.dsDoc['about']['source'] except KeyError: pass try: del self.dsDoc['about']['sourceURI'] except KeyError: pass # save datasetDoc.json file with open(os.path.join(self.dsHome, 'datasetDoc.json'), 'w') as fp: json.dump(self.dsDoc, fp, indent=2, sort_keys=False) ############# private methods def _get_learning_data_path(self): """ Returns the path of learningData.csv in a dataset """ for res in self.dsDoc['dataResources']: resID = res['resID'] resPath = res['resPath'] resType = res['resType'] resFormat = res['resFormat'] dirname = os.path.basename(os.path.normpath(os.path.dirname(resPath))) if resType =='table' and dirname=='tables': if 'learningData.csv' in res['resPath'] : return os.path.join(self.dsHome, resPath) else: raise RuntimeError('non-CSV learningData (not implemented yet ...)') # if the for loop is over and learningDoc is not found, then return None raise RuntimeError('could not find learningData file the dataset') def _get_learning_data_resource(self): """ Returns the path of learningData.csv in a dataset """ for res in self.dsDoc['dataResources']: resID = res['resID'] resPath = res['resPath'] resType = res['resType'] resFormat = res['resFormat'] if resType =='table': if 'learningData.csv' in res['resPath'] : return res else: raise RuntimeError('could not find learningData.csv') # if the for loop is over and learningDoc is not found, then return None raise RuntimeError('could not find learningData resource') class D3MProblem: prHome = None prDoc = None splitsFile = None def __init__(self, problemPath): self.prHome = problemPath # read the schema in prHome _prDoc = os.path.join(self.prHome, 'problemDoc.json') assert os.path.exists(_prDoc) with open(_prDoc, 'r') as f: self.prDoc = json.load(f) # make sure the versions line up if self.get_problemSchemaVersion() != PROBLEM_SCHEMA_VERSION: warnings.warn("the problemSchemaVersions in the API and datasetDoc do not match !!!!!!!") # locate the splitsFile self.splitsFile = self._get_datasplits_file() def get_problemID(self): """ Returns the problemID from problemDoc """ return self.prDoc['about']['problemID'] def get_problemSchemaVersion(self): """ Returns the problem schema version that was used to create this dataset """ return self.prDoc['about']['problemSchemaVersion'] def get_datasetID(self): """ Returns the ID of the dataset referenced in the problem """ return self.prDoc['inputs']['data'][0]['datasetID'] def get_targets(self): """ Looks at the problemDoc and returns the colIndex and colName of the target variable """ return self.prDoc['inputs']['data'][0]['targets'] def get_datasplits(self, view=None): """ Returns the data splits splits in a dataframe """ df = pd.read_csv(self.splitsFile, index_col='d3mIndex') if view is None: return df elif view.upper() == 'TRAIN': df = df[df['type']=='TRAIN'] return df elif view.upper() == 'TEST': df = df[df['type']=='TEST'] return df def set_datasplits(self, df): """ Sets the contents of the dataSplits file to df """ df.to_csv(self.splitsFile) def delete_identifying_fields(self, view): """ Deletes some fields that might contain identifying information. These fields should not be in the train or test view during the blinds evaluation. """ assert view.upper()=='TRAIN' or view.upper()=='TEST' # ensures we perform this only if view is train or test self.prDoc['about']['problemName']='NULL' try: del self.prDoc['about']['problemDescription'] except KeyError: pass # save datasetDoc.json file with open(os.path.join(self.prHome, 'problemDoc.json'), 'w') as fp: json.dump(self.prDoc, fp, indent=2, sort_keys=False) def get_performance_metrics(self): return self.prDoc['inputs']['performanceMetrics'] ############# private methods def _get_datasplits_file(self): splitsFile = self.prDoc['inputs']['dataSplits']['splitsFile'] splitsFile = os.path.join(self.prHome, splitsFile) assert os.path.exists(splitsFile) return splitsFile class D3MDS: dataset = None problem = None def __init__(self, datasetPath, problemPath): self.dataset = D3MDataset(datasetPath) self.problem = D3MProblem(problemPath) # sanity check assert self.dataset.get_datasetID() == self.problem.get_datasetID() def _get_target_columns(self, df): target_cols = [] targets = self.problem.get_targets() for target in targets: colIndex = target['colIndex']-1 # 0th column is d3mIndex colName = df.columns[colIndex] assert colName == target['colName'] target_cols.append(colIndex) return target_cols def get_data_all(self): df = self.dataset.get_learning_data(view=None, problem=None) return df def get_train_data(self): df = self.dataset.get_learning_data(view='train', problem=self.problem) target_cols = self._get_target_columns(df) df.drop(df.columns[target_cols],axis=1,inplace=True) return df def get_train_targets(self): df = self.dataset.get_learning_data(view='train', problem=self.problem) target_cols = self._get_target_columns(df) X = df.shape[0] Y = len(target_cols) return (df[df.columns[target_cols]]).as_matrix().reshape(X,Y) # return np.ravel(df[df.columns[target_cols]]) def get_test_data(self): df = self.dataset.get_learning_data(view='test', problem=self.problem) target_cols = self._get_target_columns(df) df.drop(df.columns[target_cols],axis=1,inplace=True) return df def get_test_targets(self): df = self.dataset.get_learning_data(view='test', problem=self.problem) target_cols = self._get_target_columns(df) X = df.shape[0] Y = len(target_cols) return (df[df.columns[target_cols]]).as_matrix().reshape(X,Y) # return np.ravel(df[df.columns[target_cols]])
d3m-model-search-master
test_data/test_cases_only/30_personae/30_personae_solution/src/d3mds.py
# coding: utf-8 # In[1]: import nltk, os, glob, sys import pandas as pd from normalization import normalize_corpus, tokenize_text import numpy as np import codecs from sklearn.datasets.base import Bunch from sklearn.cross_validation import train_test_split from sklearn.model_selection import cross_val_score, ShuffleSplit, KFold from feature_extractors import bow_extractor, tfidf_extractor from feature_extractors import averaged_word_vectorizer from feature_extractors import tfidf_weighted_averaged_word_vectorizer import nltk import gensim from sklearn import metrics from sklearn.naive_bayes import MultinomialNB, GaussianNB from sklearn.linear_model import SGDClassifier import re, json import warnings warnings.filterwarnings('ignore') from collections import OrderedDict from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import f1_score # In[2]: here = os.path.dirname(os.path.abspath(__file__)) from d3mds import D3MDataset, D3MProblem, D3MDS dspath = os.path.join(here, '..', '..', '30_personae_dataset') prpath = os.path.join(here, '..', '..', '30_personae_problem') solpath = os.path.join(here, '..') textPath = os.path.join(dspath, 'text') assert os.path.exists(dspath) assert os.path.exists(prpath) TARGET_FIELD = 'extrovert' d3mds = D3MDS(dspath, prpath) # this checks that the problem and dataset correspond RANDOM_STATE = 100 # In[3]: def get_data(whichData='train'): dataset = Bunch() dataset.data = np.array([]) dataset.target = np.array([]) if whichData=='train': data = d3mds.get_train_data() targets = d3mds.get_train_targets() elif whichData=='test': data = d3mds.get_test_data() targets = d3mds.get_test_targets() else: raise RuntimeError('get_data should be passed either train or test, but got%s'%whichData) for i, rf in enumerate(data['raw_text_file']): path = os.path.join(textPath, rf) raw = open(path, encoding='utf-8').read() dataset.data = np.append(dataset.data, raw) dataset.target = targets.ravel() return dataset # In[4]: print('reading training data corpus ...') dataset = get_data(whichData='train') corpus, labels = dataset.data, dataset.target print('normalizing corpus ...') norm_corpus = normalize_corpus(corpus) print('creating BOW features ...') bow_vectorizer, bow_features = bow_extractor(norm_corpus) # print(bow_features.shape) print('creating tfidf features ...') tfidf_vectorizer, tfidf_features = tfidf_extractor(norm_corpus) # print(tfidf_features.shape) print('creating averaged word vector features ...') tokenized_corpus = [nltk.word_tokenize(text) for text in norm_corpus] model = gensim.models.Word2Vec(tokenized_corpus, size=500, window=100, min_count=30, sample=1e-3) avg_wv_features = averaged_word_vectorizer(corpus=tokenized_corpus, model=model, num_features=500) # print(avg_wv_features.shape) print('creating tfidf weighted averaged word vector features ...') vocab = tfidf_vectorizer.vocabulary_ tfidf_wv_features = tfidf_weighted_averaged_word_vectorizer(corpus=tokenized_corpus, tfidf_vectors=tfidf_features, tfidf_vocabulary=vocab, model=model, num_features=500) # print(tfidf_wv_features.shape) print('initializing RandomForestClassifier(RFC) and SVM classfiers ...') rfc = RandomForestClassifier(n_estimators=20, max_depth=20, random_state=RANDOM_STATE) svm = SGDClassifier(loss='hinge', n_iter=100, random_state=RANDOM_STATE) models=[] scores=[] train_performance = OrderedDict() print('training RFC with BOW features ...') cv = KFold(n_splits=10, shuffle=True, random_state=RANDOM_STATE) cv_scores = cross_val_score(rfc, bow_features, labels, cv=cv, scoring='f1') models.append((rfc, 'bow_features')) scores.append(cv_scores.mean()) print('training SVM with BOW features ...') cv = KFold(n_splits=10, shuffle=True, random_state=RANDOM_STATE) cv_scores = cross_val_score(svm, bow_features, labels, cv=cv, scoring='f1') models.append((svm, 'bow_features')) scores.append(cv_scores.mean()) print('training RFC with tfidf features ...') cv = KFold(n_splits=10, shuffle=True, random_state=RANDOM_STATE) cv_scores = cross_val_score(rfc, tfidf_features, labels, cv=cv, scoring='f1') models.append((rfc, 'tfidf_features')) scores.append(cv_scores.mean()) print('training SVM with tfidf features ...') cv = KFold(n_splits=10, shuffle=True, random_state=RANDOM_STATE) cv_scores = cross_val_score(svm, tfidf_features, labels, cv=cv, scoring='f1') models.append((svm, 'tfidf_features')) scores.append(cv_scores.mean()) print('training RFC with avg_wv_features features ...') cv = KFold(n_splits=10, shuffle=True, random_state=RANDOM_STATE) cv_scores = cross_val_score(rfc, avg_wv_features, labels, cv=cv, scoring='f1') models.append((rfc, 'avg_wv_features')) scores.append(cv_scores.mean()) print('training SVM with avg_wv_features features ...') cv = KFold(n_splits=10, shuffle=True, random_state=RANDOM_STATE) cv_scores = cross_val_score(svm, avg_wv_features, labels, cv=cv, scoring='f1') models.append((svm, 'avg_wv_features')) scores.append(cv_scores.mean()) print('training RFC with tfidf_wv_features features ...') cv = KFold(n_splits=10, shuffle=True, random_state=RANDOM_STATE) cv_scores = cross_val_score(rfc, tfidf_wv_features, labels, cv=cv, scoring='f1') models.append((rfc, 'tfidf_wv_features')) scores.append(cv_scores.mean()) print('training SVM with tfidf_wv_features features ...') cv = KFold(n_splits=10, shuffle=True, random_state=RANDOM_STATE) cv_scores = cross_val_score(svm, tfidf_wv_features, labels, cv=cv, scoring='f1') models.append((svm, 'tfidf_wv_features')) scores.append(cv_scores.mean()) print('choosing the best model for baseline...') baseline = models[np.argmax(scores)] baselineScore = scores[np.argmax(scores)] print('baseline model:', str(baseline)) print('baseline performance on 10-fold CV (mean f1):', baselineScore) # In[22]: print('training the model on the entire train data...') baselineMod = baseline[0] baselineFea = eval(baseline[1]) # print(baselineFea.shape) baselineMod.fit(baselineFea, labels) print('=============================================================================================') ## Make prediction on testData print('making predictions on testData (assuming that testData is available) ...') dataset = get_data(whichData='test') corpus, labels = dataset.data, dataset.target print('normalizing corpus ...') norm_corpus = normalize_corpus(corpus) print('creating BOW features ...') bow_features = bow_vectorizer.transform(norm_corpus) # print(bow_features.shape) print('creating tfidf features ...') tfidf_features = tfidf_vectorizer.transform(norm_corpus) # print(tfidf_features.shape) print('creating averaged word vector features ...') tokenized_corpus = [nltk.word_tokenize(text) for text in norm_corpus] model = gensim.models.Word2Vec(tokenized_corpus, size=500, window=100, min_count=30, sample=1e-3) avg_wv_features = averaged_word_vectorizer(corpus=tokenized_corpus, model=model, num_features=500) # print(avg_wv_features.shape) print('creating tfidf weighted averaged word vector features ...') vocab = tfidf_vectorizer.vocabulary_ tfidf_wv_features = tfidf_weighted_averaged_word_vectorizer(corpus=tokenized_corpus, tfidf_vectors=tfidf_features, tfidf_vocabulary=vocab, model=model, num_features=500) # print(tfidf_wv_features.shape) test_features = None if baseline[1] == 'bow_features': test_features = bow_features elif baseline[1] == 'tfidf_features': test_features = tfidf_features elif baseline[1] == 'avg_wv_features': test_features = avg_wv_features elif baseline[1] == 'tfidf_wv_features': test_features = tfidf_wv_features print('predicting ...') y_predict = baselineMod.predict(test_features) y_truth = labels f1 = f1_score(y_truth, y_predict) print('baseline performance on test data (mean f1):', f1) # save predictions.csv X_test = d3mds.get_test_data() target_cols = ([target['colName'] for target in d3mds.problem.get_targets()]) y_predict_df = pd.DataFrame(data=y_predict, index=X_test.index, columns=target_cols) y_predict_df.to_csv(os.path.join(here, '..', 'predictions.csv')) # save scores.csv file df = pd.DataFrame(columns=['metric', 'value']) df.loc[len(df)] = ['f1', f1] df.to_csv(os.path.join(here, '..', 'scores.csv'))
d3m-model-search-master
test_data/test_cases_only/30_personae/30_personae_solution/src/pipeline.py
# -*- coding: utf-8 -*- """ Created on Sat Aug 27 04:03:12 2016 @author: DIP """ from sklearn.feature_extraction.text import CountVectorizer def bow_extractor(corpus, ngram_range=(1,1)): vectorizer = CountVectorizer(min_df=1, ngram_range=ngram_range) features = vectorizer.fit_transform(corpus) return vectorizer, features from sklearn.feature_extraction.text import TfidfTransformer def tfidf_transformer(bow_matrix): transformer = TfidfTransformer(norm='l2', smooth_idf=True, use_idf=True) tfidf_matrix = transformer.fit_transform(bow_matrix) return transformer, tfidf_matrix from sklearn.feature_extraction.text import TfidfVectorizer def tfidf_extractor(corpus, ngram_range=(1,1)): vectorizer = TfidfVectorizer(min_df=1, norm='l2', smooth_idf=True, use_idf=True, ngram_range=ngram_range) features = vectorizer.fit_transform(corpus) return vectorizer, features import numpy as np def average_word_vectors(words, model, vocabulary, num_features): feature_vector = np.zeros((num_features,),dtype="float64") nwords = 0. for word in words: if word in vocabulary: nwords = nwords + 1. feature_vector = np.add(feature_vector, model[word]) if nwords: feature_vector = np.divide(feature_vector, nwords) return feature_vector def averaged_word_vectorizer(corpus, model, num_features): vocabulary = set(model.wv.index2word) features = [average_word_vectors(tokenized_sentence, model, vocabulary, num_features) for tokenized_sentence in corpus] return np.array(features) def tfidf_wtd_avg_word_vectors(words, tfidf_vector, tfidf_vocabulary, model, num_features): word_tfidfs = [tfidf_vector[0, tfidf_vocabulary.get(word)] if tfidf_vocabulary.get(word) else 0 for word in words] word_tfidf_map = {word:tfidf_val for word, tfidf_val in zip(words, word_tfidfs)} feature_vector = np.zeros((num_features,),dtype="float64") vocabulary = set(model.wv.index2word) wts = 0. for word in words: if word in vocabulary: word_vector = model[word] weighted_word_vector = word_tfidf_map[word] * word_vector wts = wts + word_tfidf_map[word] feature_vector = np.add(feature_vector, weighted_word_vector) if wts: feature_vector = np.divide(feature_vector, wts) return feature_vector def tfidf_weighted_averaged_word_vectorizer(corpus, tfidf_vectors, tfidf_vocabulary, model, num_features): docs_tfidfs = [(doc, doc_tfidf) for doc, doc_tfidf in zip(corpus, tfidf_vectors)] features = [tfidf_wtd_avg_word_vectors(tokenized_sentence, tfidf, tfidf_vocabulary, model, num_features) for tokenized_sentence, tfidf in docs_tfidfs] return np.array(features)
d3m-model-search-master
test_data/test_cases_only/30_personae/30_personae_solution/src/feature_extractors.py
# -*- coding: utf-8 -*- """ Created on Fri Aug 26 20:45:10 2016 @author: DIP """ from contractions import CONTRACTION_MAP import re, os import nltk import string from nltk.stem import WordNetLemmatizer import pandas as pd here = os.path.dirname(os.path.abspath(__file__)) #stopword_list = nltk.corpus.stopwords.words('english') stopword_list = pd.read_csv(os.path.join(here, 'stop.txt'), header=None)[0].as_matrix() wnl = WordNetLemmatizer() def tokenize_text(text): tokens = nltk.word_tokenize(text) tokens = [token.strip() for token in tokens] return tokens def expand_contractions(text, contraction_mapping): contractions_pattern = re.compile('({})'.format('|'.join(contraction_mapping.keys())), flags=re.IGNORECASE|re.DOTALL) def expand_match(contraction): match = contraction.group(0) first_char = match[0] expanded_contraction = contraction_mapping.get(match)\ if contraction_mapping.get(match)\ else contraction_mapping.get(match.lower()) expanded_contraction = first_char+expanded_contraction[1:] return expanded_contraction expanded_text = contractions_pattern.sub(expand_match, text) expanded_text = re.sub("'", "", expanded_text) return expanded_text # from pattern.en import tag from nltk.corpus import wordnet as wn # Annotate text tokens with POS tags def pos_tag_text(text): def penn_to_wn_tags(pos_tag): if pos_tag.startswith('J'): return wn.ADJ elif pos_tag.startswith('V'): return wn.VERB elif pos_tag.startswith('N'): return wn.NOUN elif pos_tag.startswith('R'): return wn.ADV else: return None # tagged_text = tag(text) tagged_text = nltk.pos_tag(text) tagged_lower_text = [(word.lower(), penn_to_wn_tags(pos_tag)) for word, pos_tag in tagged_text] return tagged_lower_text # lemmatize text based on POS tags def lemmatize_text(text): pos_tagged_text = pos_tag_text(text) lemmatized_tokens = [wnl.lemmatize(word, pos_tag) if pos_tag else word for word, pos_tag in pos_tagged_text] lemmatized_text = ' '.join(lemmatized_tokens) return lemmatized_text def standardize_case(text): tokens = tokenize_text(text) lowered_tokens = list(map(str.lower, tokens)) lowered_text = ' '.join(lowered_tokens) return lowered_text def remove_special_characters(text): tokens = tokenize_text(text) pattern = re.compile('[{}]'.format(re.escape(string.punctuation))) filtered_tokens = filter(None, [pattern.sub('', token) for token in tokens]) filtered_text = ' '.join(filtered_tokens) return filtered_text def remove_stopwords(text): tokens = tokenize_text(text) filtered_tokens = [token for token in tokens if token not in stopword_list] filtered_text = ' '.join(filtered_tokens) return filtered_text def normalize_corpus(corpus, tokenize=False): normalized_corpus = [] for text in corpus: text = expand_contractions(text, CONTRACTION_MAP) text = standardize_case(text) #text = lemmatize_text(text) text = remove_special_characters(text) text = remove_stopwords(text) normalized_corpus.append(text) if tokenize: text = tokenize_text(text) normalized_corpus.append(text) return normalized_corpus
d3m-model-search-master
test_data/test_cases_only/30_personae/30_personae_solution/src/normalization.py
# -*- coding: utf-8 -*- """ Created on Mon Aug 01 01:11:02 2016 @author: DIP """ CONTRACTION_MAP = { "ain't": "is not", "aren't": "are not", "can't": "cannot", "can't've": "cannot have", "'cause": "because", "could've": "could have", "couldn't": "could not", "couldn't've": "could not have", "didn't": "did not", "doesn't": "does not", "don't": "do not", "hadn't": "had not", "hadn't've": "had not have", "hasn't": "has not", "haven't": "have not", "he'd": "he would", "he'd've": "he would have", "he'll": "he will", "he'll've": "he he will have", "he's": "he is", "how'd": "how did", "how'd'y": "how do you", "how'll": "how will", "how's": "how is", "I'd": "I would", "I'd've": "I would have", "I'll": "I will", "I'll've": "I will have", "I'm": "I am", "I've": "I have", "i'd": "i would", "i'd've": "i would have", "i'll": "i will", "i'll've": "i will have", "i'm": "i am", "i've": "i have", "isn't": "is not", "it'd": "it would", "it'd've": "it would have", "it'll": "it will", "it'll've": "it will have", "it's": "it is", "let's": "let us", "ma'am": "madam", "mayn't": "may not", "might've": "might have", "mightn't": "might not", "mightn't've": "might not have", "must've": "must have", "mustn't": "must not", "mustn't've": "must not have", "needn't": "need not", "needn't've": "need not have", "o'clock": "of the clock", "oughtn't": "ought not", "oughtn't've": "ought not have", "shan't": "shall not", "sha'n't": "shall not", "shan't've": "shall not have", "she'd": "she would", "she'd've": "she would have", "she'll": "she will", "she'll've": "she will have", "she's": "she is", "should've": "should have", "shouldn't": "should not", "shouldn't've": "should not have", "so've": "so have", "so's": "so as", "that'd": "that would", "that'd've": "that would have", "that's": "that is", "there'd": "there would", "there'd've": "there would have", "there's": "there is", "they'd": "they would", "they'd've": "they would have", "they'll": "they will", "they'll've": "they will have", "they're": "they are", "they've": "they have", "to've": "to have", "wasn't": "was not", "we'd": "we would", "we'd've": "we would have", "we'll": "we will", "we'll've": "we will have", "we're": "we are", "we've": "we have", "weren't": "were not", "what'll": "what will", "what'll've": "what will have", "what're": "what are", "what's": "what is", "what've": "what have", "when's": "when is", "when've": "when have", "where'd": "where did", "where's": "where is", "where've": "where have", "who'll": "who will", "who'll've": "who will have", "who's": "who is", "who've": "who have", "why's": "why is", "why've": "why have", "will've": "will have", "won't": "will not", "won't've": "will not have", "would've": "would have", "wouldn't": "would not", "wouldn't've": "would not have", "y'all": "you all", "y'all'd": "you all would", "y'all'd've": "you all would have", "y'all're": "you all are", "y'all've": "you all have", "you'd": "you would", "you'd've": "you would have", "you'll": "you will", "you'll've": "you will have", "you're": "you are", "you've": "you have" }
d3m-model-search-master
test_data/test_cases_only/30_personae/30_personae_solution/src/contractions.py
# -*- coding: utf-8 -*- # file: d3mds.py # lab: MIT Lincoln Lab # author(s): sw26425 # description: a rudimentary API for interacting with D3MDataSupply, which mainly consists of a Dataset and a Problem import os, json, sys import pandas as pd import numpy as np import warnings DATASET_SCHEMA_VERSION = '3.0' PROBLEM_SCHEMA_VERSION = '3.0' class D3MDataset: dsHome = None dsDoc = None learningDataFile = None def __init__(self, datasetPath): self.dsHome = datasetPath # read the schema in dsHome _dsDoc = os.path.join(self.dsHome, 'datasetDoc.json') assert os.path.exists(_dsDoc) with open(_dsDoc, 'r') as f: self.dsDoc = json.load(f) # make sure the versions line up if self.get_datasetSchemaVersion() != DATASET_SCHEMA_VERSION: warnings.warn("the datasetSchemaVersions in the API and datasetDoc do not match !!!!!!!") # locate the special learningData file self.learningDataFile = self._get_learning_data_path() def get_datasetID(self): """ Returns the datasetID from datasetDoc """ return self.dsDoc['about']['datasetID'] def get_datasetSchemaVersion(self): """ Returns the dataset schema version that was used to create this dataset """ return self.dsDoc['about']['datasetSchemaVersion'] def get_learning_data(self, view=None, problem=None): """ Returns the contents of learningData.doc as a DataFrame. If view is 'TRAIN' or 'TEST', then the full learningData is filtered to return learningData only for that view. For view-based filtering, the problem object has to be passed because this method used the splitsData from the problem. """ df = pd.read_csv(self.learningDataFile, index_col='d3mIndex') if view is None: return df if view.upper() == 'TRAIN' or view.upper() == 'TEST': if problem is None: raise RuntimeError('asking for learningData for a split, but the problem is not given') splitsdf = problem.get_datasplits(view) df = df.loc[splitsdf.index] return df def get_learning_data_columns(self): res = self._get_learning_data_resource() return res['columns'] def set_learning_data(self, df): """ Sets the contents of the learningData file to df """ df.to_csv(self.learningDataFile) def delete_column_entries(self, target): """ Deletes all the entries of a particular column of a particular tabular data resource. The deleted entries are set to numpy.NaN """ resID = target['resID'] colIndex = target['colIndex'] colName = target['colName'] for res in self.dsDoc['dataResources']: _resID = res['resID'] if _resID != resID: continue _resPath = res['resPath'] _resPath = os.path.join(self.dsHome, _resPath) _resType = res['resType'] assert _resType == 'table' for col in res['columns']: _colIndex = col['colIndex'] if _colIndex != colIndex: continue _colName = col['colName'] assert _colName == colName df = pd.read_csv(_resPath) df[_colName] = [np.NaN]*len(df[_colName]) df.to_csv(_resPath, index=None) return True raise RuntimeError('could not find the column') raise RuntimeError('could not find the resource') def delete_identifying_fields(self, view): """ Deletes some fields that might contain identifying information. These fields should not be in the train or test view during the blinds evaluation. """ assert view.upper()=='TRAIN' or view.upper()=='TEST' # ensures we perform this only if view is train or test self.dsDoc['about']['datasetName']='NULL' self.dsDoc['about']['redacted'] = True try: del self.dsDoc['about']['description'] except KeyError: pass try: del self.dsDoc['about']['citation'] except KeyError: pass try: del self.dsDoc['about']['source'] except KeyError: pass try: del self.dsDoc['about']['sourceURI'] except KeyError: pass # save datasetDoc.json file with open(os.path.join(self.dsHome, 'datasetDoc.json'), 'w') as fp: json.dump(self.dsDoc, fp, indent=2, sort_keys=False) ############# private methods def _get_learning_data_path(self): """ Returns the path of learningData.csv in a dataset """ for res in self.dsDoc['dataResources']: resID = res['resID'] resPath = res['resPath'] resType = res['resType'] resFormat = res['resFormat'] dirname = os.path.basename(os.path.normpath(os.path.dirname(resPath))) if resType =='table' and dirname=='tables': if 'learningData.csv' in res['resPath'] : return os.path.join(self.dsHome, resPath) else: raise RuntimeError('non-CSV learningData (not implemented yet ...)') # if the for loop is over and learningDoc is not found, then return None raise RuntimeError('could not find learningData file the dataset') def _get_learning_data_resource(self): """ Returns the path of learningData.csv in a dataset """ for res in self.dsDoc['dataResources']: resID = res['resID'] resPath = res['resPath'] resType = res['resType'] resFormat = res['resFormat'] if resType =='table': if 'learningData.csv' in res['resPath'] : return res else: raise RuntimeError('could not find learningData.csv') # if the for loop is over and learningDoc is not found, then return None raise RuntimeError('could not find learningData resource') class D3MProblem: prHome = None prDoc = None splitsFile = None def __init__(self, problemPath): self.prHome = problemPath # read the schema in prHome _prDoc = os.path.join(self.prHome, 'problemDoc.json') assert os.path.exists(_prDoc) with open(_prDoc, 'r') as f: self.prDoc = json.load(f) # make sure the versions line up if self.get_problemSchemaVersion() != PROBLEM_SCHEMA_VERSION: warnings.warn("the problemSchemaVersions in the API and datasetDoc do not match !!!!!!!") # locate the splitsFile self.splitsFile = self._get_datasplits_file() def get_problemID(self): """ Returns the problemID from problemDoc """ return self.prDoc['about']['problemID'] def get_problemSchemaVersion(self): """ Returns the problem schema version that was used to create this dataset """ return self.prDoc['about']['problemSchemaVersion'] def get_datasetID(self): """ Returns the ID of the dataset referenced in the problem """ return self.prDoc['inputs']['data'][0]['datasetID'] def get_targets(self): """ Looks at the problemDoc and returns the colIndex and colName of the target variable """ return self.prDoc['inputs']['data'][0]['targets'] def get_datasplits(self, view=None): """ Returns the data splits splits in a dataframe """ df = pd.read_csv(self.splitsFile, index_col='d3mIndex') if view is None: return df elif view.upper() == 'TRAIN': df = df[df['type']=='TRAIN'] return df elif view.upper() == 'TEST': df = df[df['type']=='TEST'] return df def set_datasplits(self, df): """ Sets the contents of the dataSplits file to df """ df.to_csv(self.splitsFile) def delete_identifying_fields(self, view): """ Deletes some fields that might contain identifying information. These fields should not be in the train or test view during the blinds evaluation. """ assert view.upper()=='TRAIN' or view.upper()=='TEST' # ensures we perform this only if view is train or test self.prDoc['about']['problemName']='NULL' try: del self.prDoc['about']['problemDescription'] except KeyError: pass # save datasetDoc.json file with open(os.path.join(self.prHome, 'problemDoc.json'), 'w') as fp: json.dump(self.prDoc, fp, indent=2, sort_keys=False) def get_performance_metrics(self): return self.prDoc['inputs']['performanceMetrics'] ############# private methods def _get_datasplits_file(self): splitsFile = self.prDoc['inputs']['dataSplits']['splitsFile'] splitsFile = os.path.join(self.prHome, splitsFile) assert os.path.exists(splitsFile) return splitsFile class D3MDS: dataset = None problem = None def __init__(self, datasetPath, problemPath): self.dataset = D3MDataset(datasetPath) self.problem = D3MProblem(problemPath) # sanity check assert self.dataset.get_datasetID() == self.problem.get_datasetID() def _get_target_columns(self, df): target_cols = [] targets = self.problem.get_targets() for target in targets: colIndex = target['colIndex']-1 # 0th column is d3mIndex colName = df.columns[colIndex] assert colName == target['colName'] target_cols.append(colIndex) return target_cols def get_data_all(self): df = self.dataset.get_learning_data(view=None, problem=None) return df def get_train_data(self): df = self.dataset.get_learning_data(view='train', problem=self.problem) target_cols = self._get_target_columns(df) df.drop(df.columns[target_cols],axis=1,inplace=True) return df def get_train_targets(self): df = self.dataset.get_learning_data(view='train', problem=self.problem) target_cols = self._get_target_columns(df) X = df.shape[0] Y = len(target_cols) return (df[df.columns[target_cols]]).as_matrix().reshape(X,Y) # return np.ravel(df[df.columns[target_cols]]) def get_test_data(self): df = self.dataset.get_learning_data(view='test', problem=self.problem) target_cols = self._get_target_columns(df) df.drop(df.columns[target_cols],axis=1,inplace=True) return df def get_test_targets(self): df = self.dataset.get_learning_data(view='test', problem=self.problem) target_cols = self._get_target_columns(df) X = df.shape[0] Y = len(target_cols) return (df[df.columns[target_cols]]).as_matrix().reshape(X,Y) # return np.ravel(df[df.columns[target_cols]])
d3m-model-search-master
test_data/test_cases_only/uu1_datasmash/uu1_datasmash_solution/src/d3mds.py
import os, sys, json, random import pandas as pd import numpy as np from sklearn.base import BaseEstimator import pyflux as pf here = os.path.dirname(os.path.abspath(__file__)) from d3mds import D3MDataset, D3MProblem, D3MDS dspath = os.path.join(here, '..', '..', 'uu1_datasmash_dataset') prpath = os.path.join(here, '..', '..', 'uu1_datasmash_problem') solpath = os.path.join(here, '..') assert os.path.exists(dspath) assert os.path.exists(prpath) d3mds = D3MDS(dspath, prpath) # this checks that the problem and dataset correspond MIN = 50000 if __name__ == '__main__': # get training and test data trainData = d3mds.get_train_data() trainTargets = d3mds.get_train_targets() testData = d3mds.get_test_data() testTargets = d3mds.get_test_targets() featureCounts = set() def featurize(fileName): global featureCounts path = os.path.join(dspath, 'timeseries', fileName) assert os.path.exists(path) features = pd.read_csv(path, index_col=0)['val'].tolist() featureCounts.add(len(features)) return features[:MIN] if os.path.exists(os.path.join(here, 'X_train.csv')): print('loading X_train ....') X_train = pd.read_csv(os.path.join(here, 'X_train.csv'), index_col=0) print('shape of X_train', X_train.shape) else: print('making X_train from trainData ...') X_train = pd.DataFrame(index=trainData.index, data=trainData['time_series_file'].apply(featurize).tolist()) X_train.to_csv(os.path.join(here, 'X_train.csv')) print('shape of X_train', X_train.shape) from sklearn.neighbors import KNeighborsClassifier from sklearn.neighbors.nearest_centroid import NearestCentroid clf = clf = NearestCentroid(shrink_threshold=None) clf.fit(X_train, trainTargets.ravel()) # print('=========================================================') X_test = pd.DataFrame(index=testData.index, data=testData['time_series_file'].apply(featurize).tolist()) print('shape of X_test', X_test.shape) y_pred = clf.predict(X_test) y_truth = testTargets.ravel() from sklearn.metrics import accuracy_score, f1_score accuracy = accuracy_score(y_truth, y_pred) f1 = f1_score(y_truth, y_pred, average='macro') print('F1 (macro) score on test data', f1) # saving the predictions.csv file y_pred_df = pd.DataFrame(index=testData.index, data=y_pred, columns=[target['colName'] for target in d3mds.problem.get_targets()]) y_pred_df.to_csv(os.path.join(solpath, 'predictions.csv')) # saving the scores.csv file df = pd.DataFrame(columns=['metric', 'value']) df.loc[len(df)] = ['f1Macro', f1] df.to_csv(os.path.join(solpath, 'scores.csv'))
d3m-model-search-master
test_data/test_cases_only/uu1_datasmash/uu1_datasmash_solution/src/pipeline.py
from unittest import TestCase from base import AbstractFeatureSelector import numpy as np from scipy import stats from scipy.sparse import issparse from sklearn.feature_selection import f_classif, SelectFromModel, SelectPercentile from sklearn.linear_model import Lasso from sklearn.svm import LinearSVC from sklearn.utils import check_X_y from sklearn.utils.extmath import safe_sparse_dot, row_norms from scipy.linalg import norm # modified to address the issue of centering sparse matrices with a bit of algebra def better_f_regression(X, y, center=True): """Univariate linear regression tests. Quick linear model for testing the effect of a single regressor, sequentially for many regressors. This is done in 2 steps: 1. The cross correlation between each regressor and the target is computed, that is, ((X[:, i] - mean(X[:, i])) * (y - mean_y)) / (std(X[:, i]) * std(y)). 2. It is converted to an F score then to a p-value. Read more in the :ref:`User Guide <univariate_feature_selection>`. Parameters ---------- X : {array-like, sparse matrix} shape = (n_samples, n_features) The set of regressors that will be tested sequentially. y : array of shape(n_samples). The data matrix center : True, bool, If true, X and y will be centered. Returns ------- F : array, shape=(n_features,) F values of features. pval : array, shape=(n_features,) p-values of F-scores. See also -------- f_classif: ANOVA F-value between label/feature for classification tasks. chi2: Chi-squared stats of non-negative features for classification tasks. """ X, y = check_X_y(X, y, ['csr', 'csc', 'coo'], dtype=np.float64) n_samples = X.shape[0] if center: y = y - np.mean(y) if issparse(X): X_means = X.mean(axis=0).getA1() else: X_means = X.mean(axis=0) X_norms = np.sqrt(row_norms(X.T, squared=True) - n_samples*X_means**2) else: X_norms = row_norms(X.T) # compute the correlation corr = safe_sparse_dot(y, X) corr /= X_norms corr /= norm(y) # convert to p-value degrees_of_freedom = y.size - (2 if center else 1) F = corr ** 2 / (1 - corr ** 2) * degrees_of_freedom pv = stats.f.sf(F, 1, degrees_of_freedom) return F, pv class SelectFromLinearSVC(AbstractFeatureSelector): param_distributions = { 'threshold': (1e-5,), 'C': [float(x) for x in np.logspace(-2, 5, 100)] } def __init__(self, threshold=None, penalty='l1', loss='squared_hinge', dual=False, tol=0.0001, C=1.0, fit_intercept=True, random_state=None, max_iter=1000): self.threshold = threshold self.penalty = penalty self.loss = loss self.dual = dual self.tol = tol self.C = C self.fit_intercept = fit_intercept self.random_state = random_state self.max_iter = max_iter def fit(self, X, y): self.linear_svc = LinearSVC(penalty=self.penalty, loss=self.loss, dual=self.dual, tol=self.tol, fit_intercept=self.fit_intercept, random_state=self.random_state, max_iter=self.max_iter) self.linear_svc.fit(X, y) self.select_from_model = SelectFromModel(self.linear_svc, threshold=self.threshold, prefit=True) return self def _get_support_mask(self): return self.select_from_model._get_support_mask() class SelectPercentileClassification(AbstractFeatureSelector, SelectPercentile): param_distributions = { 'score_func': ('f_classif',), 'percentile': [int(x) for x in np.linspace(10, 100, 100)] } score_funcs = { 'f_classif': f_classif } def __init__(self, *args, **kwargs): if 'score_func' in kwargs: kwargs['score_func'] = self.score_funcs[kwargs['score_func']] super().__init__(*args, **kwargs) class SelectFromLasso(AbstractFeatureSelector): param_distributions = { 'threshold': (1e-5,), 'alpha': [float(x) for x in np.logspace(-5, 2, 100)] } def __init__(self, threshold=None, alpha=1.0, fit_intercept=True, normalize=False, max_iter=1000, tol=0.0001, positive=False, selection='cyclic', random_state=None): self.threshold = threshold self.alpha = alpha self.fit_intercept = fit_intercept self.normalize = normalize self.max_iter = max_iter self.tol = tol self.positive = positive self.selection = selection self.random_state = random_state def fit(self, X, y): # NOTE: y is an ndarray of strings self.lasso = Lasso(alpha=self.alpha, fit_intercept=self.fit_intercept, normalize=self.normalize, max_iter=self.max_iter, tol=self.tol, positive=self.positive, selection=self.selection, random_state=self.random_state) self.lasso.fit(X, y) self.select_from_model = SelectFromModel(self.lasso, threshold=self.threshold, prefit=True) return self def _get_support_mask(self): return self.select_from_model._get_support_mask() class SelectPercentileRegression(AbstractFeatureSelector, SelectPercentile): param_distributions = { 'score_func': ('f_regression',), 'percentile': [int(x) for x in np.linspace(10, 100, 100)] } score_funcs = { 'f_regression': better_f_regression } def __init__(self, *args, **kwargs): if 'score_func' in kwargs: kwargs['score_func'] = self.score_funcs[kwargs['score_func']] super().__init__(*args, **kwargs) def fit(self, X, y): # NOTE: y is an ndarray of strings super().fit(X, y) return self
d3m-model-search-master
test_data/test_cases_only/185_baseball/185_baseball_solution/src/feature_selection.py
from base import AbstractEstimator import numpy as np from sklearn.base import BaseEstimator, TransformerMixin from sklearn.kernel_approximation import RBFSampler from sklearn.linear_model import SGDClassifier, SGDRegressor class SGDClassifierEstimator(AbstractEstimator): param_distributions = { 'loss': ('hinge', 'log', 'squared_hinge', 'perceptron'), 'penalty': ('elasticnet',), 'alpha': [float(x) for x in np.logspace(-9, 0, 10)], 'l1_ratio': [float(x) for x in np.linspace(0, 1, 11)], 'fit_intercept': (True, True, True, False) } def __init__(self, *args, **kwargs): self.args = args self.kwargs = kwargs def fit(self, X, y): n_samples = X.shape[0] self.kwargs['n_iter'] = max(5, int(10**6 / n_samples)) self.sgd_classifier = SGDClassifier(*self.args, **self.kwargs) self.sgd_classifier.fit(X, y) def predict(self, X): return self.sgd_classifier.predict(X) class SGDRegressorEstimator(AbstractEstimator): param_distributions = { 'loss': ('squared_loss', 'huber'), 'penalty': ('elasticnet',), 'alpha': [float(x) for x in np.logspace(-9, 0, 10)], 'l1_ratio': [float(x) for x in np.linspace(0, 1, 11)], 'fit_intercept': (True, True, True, False), 'epsilon': [float(x) for x in np.logspace(-2, 0, 5)], 'learning_rate': ('optimal', 'invscaling'), 'eta0': (0.1, 0.01, 0.001), 'power_t': [float(x) for x in np.linspace(0, 1, 5)] } def __init__(self, *args, **kwargs): self.args = args self.kwargs = kwargs def fit(self, X, y): n_samples = X.shape[0] self.kwargs['n_iter'] = max(5, int(10**6 / n_samples)) self.sgd_regressor = SGDRegressor(*self.args, **self.kwargs) self.sgd_regressor.fit(X, y) def predict(self, X): return self.sgd_regressor.predict(X) # TODO: inherit AbstractEstimator, grab param_distributions from cv_setup_map.py in the old slacker, class RBFSamplerSGDClassifierEstimator(BaseEstimator, TransformerMixin): def __init__(self, gamma=1.0, n_components=100, random_state=None, **kwargs): kwargs['random_state'] = random_state self.rbf_sampler = RBFSampler(gamma=gamma, n_components=n_components, random_state=random_state) self.sgdclassifier = SGDClassifier(**kwargs) def fit(self, X, y): X = self.rbf_sampler.fit_transform(X) self.sgdclassifier.fit(X, y) return self def transform(self, X, y=None): return np.sqrt(self.rbf_sampler.n_components) / np.sqrt(2.) * self.rbf_sampler.transform(X) def predict(self, X): return self.sgdclassifier.predict(self.transform(X)) def decision_function(self, X): return self.sgdclassifier.decision_function(self.transform(X)) # TODO: inherit AbstractEstimator, grab param_distributions from cv_setup_map.py in the old slacker, class RBFSamplerSGDRegressorEstimator(BaseEstimator, TransformerMixin): def __init__(self, gamma=1.0, n_components=100, random_state=None, **kwargs): kwargs['random_state'] = random_state self.rbf_sampler = RBFSampler(gamma=gamma, n_components=n_components, random_state=random_state) self.sgdregressor = SGDRegressor(**kwargs) def fit(self, X, y): X = self.rbf_sampler.fit_transform(X) self.sgdregressor.fit(X, y) return self def transform(self, X, y=None): return np.sqrt(self.rbf_sampler.n_components) / np.sqrt(2.) * self.rbf_sampler.transform(X) def predict(self, X): return self.sgdregressor.predict(self.transform(X)) # TODO: Add kernel SVM # TODO: Add kernel ridge regressor # TODO: Add random forests / xgboost
d3m-model-search-master
test_data/test_cases_only/185_baseball/185_baseball_solution/src/estimation.py
d3m-model-search-master
test_data/test_cases_only/185_baseball/185_baseball_solution/src/__init__.py
from collections import defaultdict, OrderedDict import numpy as np from scipy import signal from scipy.sparse import csr_matrix, hstack import pandas as pd from sklearn.base import BaseEstimator, TransformerMixin from sklearn.cluster import MiniBatchKMeans from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import LogisticRegression from sklearn.preprocessing import Imputer, OneHotEncoder, StandardScaler from sklearn.utils.validation import check_is_fitted from base import AbstractFeatureExtractor class DenseMixedStrategyImputer(BaseEstimator, TransformerMixin): def __init__(self, missing_values='NaN', strategies=None, add_missing_indicator=True, verbose=False): self.missing_values = missing_values if strategies is None: raise ValueError('Must provide strategy.') allowed_strategies = ['mean', 'median', 'most_frequent'] if any(s not in allowed_strategies for s in strategies): raise ValueError('Invalid strategy in list.') self.strategies = strategies self.add_missing_indicator = add_missing_indicator self.verbose = verbose def fit(self, X, y=None): n_samples, n_features = X.shape print('n_features',n_features) if len(self.strategies) != n_features: raise ValueError('Number of strategies must equal number of features.') self.impute_strategies = list(set(self.strategies)) self.impute_indices = [np.array([i for i, x in enumerate(self.strategies) if x == s]) for s in self.impute_strategies] self.impute_valid_indices = [] self.imputers = [Imputer(missing_values=self.missing_values, strategy=s, verbose=self.verbose) for s in self.impute_strategies] for indices, imputer in zip(self.impute_indices, self.imputers): imputer.fit(X[:, indices]) valid_mask = np.logical_not(np.isnan(imputer.statistics_)) self.impute_valid_indices.append(indices[valid_mask]) return self def transform(self, X): n_samples, n_features = X.shape if len(self.strategies) != n_features: raise ValueError('Number of strategies must equal number of features.') check_is_fitted(self, 'imputers') if self.add_missing_indicator: output_scale = 2 else: output_scale = 1 X_out = np.zeros((n_samples, output_scale*n_features)) for input_indices, output_indices, imputer in zip(self.impute_indices, self.impute_valid_indices, self.imputers): X_out[:, output_scale*output_indices] = imputer.transform(X[:, input_indices]) if self.add_missing_indicator: X_out[:, np.arange(1, 2*n_features, 2)] = np.isnan(X).astype('float', copy=False) return X_out class DataFrameCategoricalEncoder(BaseEstimator, TransformerMixin): def fit(self, X, y=None): self.code_maps = {} for k in X.columns: self.code_maps[k] = defaultdict(lambda: np.nan) self.code_maps[k].update({v: k for k, v in enumerate(X[k].astype('category').cat.categories)}) return self def transform(self, X): if set(X.columns) != set(self.code_maps): raise ValueError('Columns do not match fit model.') return X.apply(lambda x: x.apply(lambda y: self.code_maps[x.name][y])).as_matrix() class AnnotatedTabularExtractor(AbstractFeatureExtractor): param_distributions = { 'normalize_text': [True, False], 'categorize': [True, False], 'numeric_strategy': ['mean', 'median'], 'add_missing_indicator': [True, False] } def __init__(self, normalize_text=False, categorize=False, numeric_strategy='mean', add_missing_indicator=True): self.normalize_text = normalize_text self.categorize = categorize self.numeric_strategy = numeric_strategy self.add_missing_indicator = add_missing_indicator def set_cols_info(self, cols_info): self.cols_info = cols_info def determine_colType(self, column): variables = self.cols_info for var in variables: var_colName = var['colName'] if str(var_colName) != str(column): continue var_colType = var['colType'] if var_colType in {'categorical', 'boolean'}: return 'categorical' elif var_colType in {'integer', 'real'}: return 'numeric' elif var_colType == 'string': return 'text' elif var_colType == 'dateTime': raise RuntimeError('datTime not implemented in this feature extractor yet !!') def fit_transform(self, df, variables): df = self.copy_normalize_text(df) self.column_types = OrderedDict() for column in df: itype = self.determine_colType(column) # print('itype',itype) self.column_types[column] = itype self.numeric_columns = [column for column, type in self.column_types.items() if type == 'numeric'] self.categorical_columns = [column for column, type in self.column_types.items() if type == 'categorical'] self.text_columns = [column for column, type in self.column_types.items() if type == 'text'] output_arrays = [] if len(self.numeric_columns) > 0: X = df[self.numeric_columns].apply(lambda x: pd.to_numeric(x, errors='coerce')).as_matrix() self.numeric_imputer = DenseMixedStrategyImputer( strategies=[self.numeric_strategy]*len(self.numeric_columns), add_missing_indicator=self.add_missing_indicator ) X = self.numeric_imputer.fit_transform(X) self.numeric_scaler = StandardScaler() output_arrays.append(self.numeric_scaler.fit_transform(X)) if len(self.categorical_columns) > 0: self.categorical_encoder = DataFrameCategoricalEncoder() X = self.categorical_encoder.fit_transform(df[self.categorical_columns]) self.categorical_imputer = DenseMixedStrategyImputer( strategies=['most_frequent']*len(self.categorical_columns), add_missing_indicator=self.add_missing_indicator ) X = self.categorical_imputer.fit_transform(X) self.one_hot_encoder = OneHotEncoder( categorical_features=np.arange(len(self.categorical_columns)) * (2 if self.add_missing_indicator else 1) ) output_arrays.append(self.one_hot_encoder.fit_transform(X)) return hstack([csr_matrix(X) for X in output_arrays], format='csr') def transform(self, df): check_is_fitted(self, 'column_types') if list(df) != list(self.column_types): raise ValueError('Data to be transformed does not match fitting data.') df = self.copy_normalize_text(df) output_arrays = [] if len(self.numeric_columns) > 0: X = df[self.numeric_columns].apply(lambda x: pd.to_numeric(x, errors='coerce')).as_matrix() output_arrays.append(self.numeric_scaler.transform(self.numeric_imputer.transform(X))) if len(self.categorical_columns) > 0: X = self.categorical_encoder.transform(df[self.categorical_columns]) output_arrays.append(self.one_hot_encoder.transform(self.categorical_imputer.transform(X))) return hstack([csr_matrix(X) for X in output_arrays], format='csr') def copy_normalize_text(self, df): df = df.copy() if self.normalize_text: for column in df: try: df[column] = df[column].str.lower().str.strip() except: df[column] = df[column] return df
d3m-model-search-master
test_data/test_cases_only/185_baseball/185_baseball_solution/src/feature_extraction.py
# -*- coding: utf-8 -*- # file: d3mds.py # lab: MIT Lincoln Lab # author(s): sw26425 # description: a rudimentary API for interacting with D3MDataSupply, which mainly consists of a Dataset and a Problem import os, json, sys import pandas as pd import numpy as np import warnings DATASET_SCHEMA_VERSION = '3.0' PROBLEM_SCHEMA_VERSION = '3.0' class D3MDataset: dsHome = None dsDoc = None learningDataFile = None def __init__(self, datasetPath): self.dsHome = datasetPath # read the schema in dsHome _dsDoc = os.path.join(self.dsHome, 'datasetDoc.json') assert os.path.exists(_dsDoc) with open(_dsDoc, 'r') as f: self.dsDoc = json.load(f) # make sure the versions line up if self.get_datasetSchemaVersion() != DATASET_SCHEMA_VERSION: warnings.warn("the datasetSchemaVersions in the API and datasetDoc do not match !!!!!!!") # locate the special learningData file self.learningDataFile = self._get_learning_data_path() def get_datasetID(self): """ Returns the datasetID from datasetDoc """ return self.dsDoc['about']['datasetID'] def get_datasetSchemaVersion(self): """ Returns the dataset schema version that was used to create this dataset """ return self.dsDoc['about']['datasetSchemaVersion'] def get_learning_data(self, view=None, problem=None): """ Returns the contents of learningData.doc as a DataFrame. If view is 'TRAIN' or 'TEST', then the full learningData is filtered to return learningData only for that view. For view-based filtering, the problem object has to be passed because this method used the splitsData from the problem. """ df = pd.read_csv(self.learningDataFile, index_col='d3mIndex') if view is None: return df if view.upper() == 'TRAIN' or view.upper() == 'TEST': if problem is None: raise RuntimeError('asking for learningData for a split, but the problem is not given') splitsdf = problem.get_datasplits(view) df = df.loc[splitsdf.index] return df def get_learning_data_columns(self): res = self._get_learning_data_resource() return res['columns'] def set_learning_data(self, df): """ Sets the contents of the learningData file to df """ df.to_csv(self.learningDataFile) def delete_column_entries(self, target): """ Deletes all the entries of a particular column of a particular tabular data resource. The deleted entries are set to numpy.NaN """ resID = target['resID'] colIndex = target['colIndex'] colName = target['colName'] for res in self.dsDoc['dataResources']: _resID = res['resID'] if _resID != resID: continue _resPath = res['resPath'] _resPath = os.path.join(self.dsHome, _resPath) _resType = res['resType'] assert _resType == 'table' for col in res['columns']: _colIndex = col['colIndex'] if _colIndex != colIndex: continue _colName = col['colName'] assert _colName == colName df = pd.read_csv(_resPath) df[_colName] = [np.NaN]*len(df[_colName]) df.to_csv(_resPath, index=None) return True raise RuntimeError('could not find the column') raise RuntimeError('could not find the resource') def delete_identifying_fields(self, view): """ Deletes some fields that might contain identifying information. These fields should not be in the train or test view during the blinds evaluation. """ assert view.upper()=='TRAIN' or view.upper()=='TEST' # ensures we perform this only if view is train or test self.dsDoc['about']['datasetName']='NULL' self.dsDoc['about']['redacted'] = True try: del self.dsDoc['about']['description'] except KeyError: pass try: del self.dsDoc['about']['citation'] except KeyError: pass try: del self.dsDoc['about']['source'] except KeyError: pass try: del self.dsDoc['about']['sourceURI'] except KeyError: pass # save datasetDoc.json file with open(os.path.join(self.dsHome, 'datasetDoc.json'), 'w') as fp: json.dump(self.dsDoc, fp, indent=2, sort_keys=False) ############# private methods def _get_learning_data_path(self): """ Returns the path of learningData.csv in a dataset """ for res in self.dsDoc['dataResources']: resID = res['resID'] resPath = res['resPath'] resType = res['resType'] resFormat = res['resFormat'] dirname = os.path.basename(os.path.normpath(os.path.dirname(resPath))) if resType =='table' and dirname=='tables': if 'learningData.csv' in res['resPath'] : return os.path.join(self.dsHome, resPath) else: raise RuntimeError('non-CSV learningData (not implemented yet ...)') # if the for loop is over and learningDoc is not found, then return None raise RuntimeError('could not find learningData file the dataset') def _get_learning_data_resource(self): """ Returns the path of learningData.csv in a dataset """ for res in self.dsDoc['dataResources']: resID = res['resID'] resPath = res['resPath'] resType = res['resType'] resFormat = res['resFormat'] if resType =='table': if 'learningData.csv' in res['resPath'] : return res else: raise RuntimeError('could not find learningData.csv') # if the for loop is over and learningDoc is not found, then return None raise RuntimeError('could not find learningData resource') class D3MProblem: prHome = None prDoc = None splitsFile = None def __init__(self, problemPath): self.prHome = problemPath # read the schema in prHome _prDoc = os.path.join(self.prHome, 'problemDoc.json') assert os.path.exists(_prDoc) with open(_prDoc, 'r') as f: self.prDoc = json.load(f) # make sure the versions line up if self.get_problemSchemaVersion() != PROBLEM_SCHEMA_VERSION: warnings.warn("the problemSchemaVersions in the API and datasetDoc do not match !!!!!!!") # locate the splitsFile self.splitsFile = self._get_datasplits_file() def get_problemID(self): """ Returns the problemID from problemDoc """ return self.prDoc['about']['problemID'] def get_problemSchemaVersion(self): """ Returns the problem schema version that was used to create this dataset """ return self.prDoc['about']['problemSchemaVersion'] def get_datasetID(self): """ Returns the ID of the dataset referenced in the problem """ return self.prDoc['inputs']['data'][0]['datasetID'] def get_targets(self): """ Looks at the problemDoc and returns the colIndex and colName of the target variable """ return self.prDoc['inputs']['data'][0]['targets'] def get_datasplits(self, view=None): """ Returns the data splits splits in a dataframe """ df = pd.read_csv(self.splitsFile, index_col='d3mIndex') if view is None: return df elif view.upper() == 'TRAIN': df = df[df['type']=='TRAIN'] return df elif view.upper() == 'TEST': df = df[df['type']=='TEST'] return df def set_datasplits(self, df): """ Sets the contents of the dataSplits file to df """ df.to_csv(self.splitsFile) def delete_identifying_fields(self, view): """ Deletes some fields that might contain identifying information. These fields should not be in the train or test view during the blinds evaluation. """ assert view.upper()=='TRAIN' or view.upper()=='TEST' # ensures we perform this only if view is train or test self.prDoc['about']['problemName']='NULL' try: del self.prDoc['about']['problemDescription'] except KeyError: pass # save datasetDoc.json file with open(os.path.join(self.prHome, 'problemDoc.json'), 'w') as fp: json.dump(self.prDoc, fp, indent=2, sort_keys=False) def get_performance_metrics(self): return self.prDoc['inputs']['performanceMetrics'] ############# private methods def _get_datasplits_file(self): splitsFile = self.prDoc['inputs']['dataSplits']['splitsFile'] splitsFile = os.path.join(self.prHome, splitsFile) assert os.path.exists(splitsFile) return splitsFile class D3MDS: dataset = None problem = None def __init__(self, datasetPath, problemPath): self.dataset = D3MDataset(datasetPath) self.problem = D3MProblem(problemPath) # sanity check assert self.dataset.get_datasetID() == self.problem.get_datasetID() def _get_target_columns(self, df): target_cols = [] targets = self.problem.get_targets() for target in targets: colIndex = target['colIndex']-1 # 0th column is d3mIndex colName = df.columns[colIndex] assert colName == target['colName'] target_cols.append(colIndex) return target_cols def get_data_all(self): df = self.dataset.get_learning_data(view=None, problem=None) return df def get_train_data(self): df = self.dataset.get_learning_data(view='train', problem=self.problem) target_cols = self._get_target_columns(df) df.drop(df.columns[target_cols],axis=1,inplace=True) return df def get_train_targets(self): df = self.dataset.get_learning_data(view='train', problem=self.problem) target_cols = self._get_target_columns(df) X = df.shape[0] Y = len(target_cols) return (df[df.columns[target_cols]]).as_matrix().reshape(X,Y) # return np.ravel(df[df.columns[target_cols]]) def get_test_data(self): df = self.dataset.get_learning_data(view='test', problem=self.problem) target_cols = self._get_target_columns(df) df.drop(df.columns[target_cols],axis=1,inplace=True) return df def get_test_targets(self): df = self.dataset.get_learning_data(view='test', problem=self.problem) target_cols = self._get_target_columns(df) X = df.shape[0] Y = len(target_cols) return (df[df.columns[target_cols]]).as_matrix().reshape(X,Y) # return np.ravel(df[df.columns[target_cols]])
d3m-model-search-master
test_data/test_cases_only/185_baseball/185_baseball_solution/src/d3mds.py
import os, sys, json import pandas as pd from sklearn.pipeline import Pipeline from sklearn.linear_model import SGDClassifier from sklearn.metrics import f1_score, mean_squared_error here = os.path.dirname(os.path.abspath(__file__)) from d3mds import D3MDataset, D3MProblem, D3MDS from feature_extraction import * from feature_selection import * from estimation import * if __name__ == '__main__': # get the paths of the dataset and problem try: dspath = (sys.argv[1]) except: dspath = input('Enter the path to the dataset: ') # dspath = os.path.join(here, '..', '..', 'data', '185_baseball_dataset') assert os.path.exists(dspath) try: prpath = (sys.argv[2]) except: prpath = input('Enter the path to the problem: ') # prpath = os.path.join(here, '..', '..', 'data', '185_baseball_problem') assert os.path.exists(prpath) # check the pipeline JSON file pipe_json = os.path.join(here, 'pipeline.json') assert os.path.exists(pipe_json) # read the JSON file with open(pipe_json) as data_file: ps = json.load(data_file) ## TBD: we need to make a check that that JSON aligns with the dataset and problem # initialize the API class d3mds = D3MDS(dspath, prpath) # this checks that the problem and dataset correspond # get the train and test data X_train = d3mds.get_train_data() y_train = d3mds.get_train_targets() X_test = d3mds.get_test_data() y_test = d3mds.get_test_targets() # get columns information cols_info = d3mds.dataset.get_learning_data_columns() ## instantiate feature extractor key, fe = ps['feature_extractors'].popitem() fe_class = fe['feature_extractor'] fe_params = fe['params'] FE = eval(fe_class)(**fe_params) if isinstance(FE, AnnotatedTabularExtractor): FE.set_cols_info(cols_info) ## instantiate feature selector fs = ps['feature_selector'] fs_class = fs['feature_selector'] fs_params = fs['params'] FS = eval(fs_class)(**fs_params) ## instantiate estimator est = ps['estimator'] est_class = est['estimator'] est_params = est['params'] EST = eval(est_class)(**est_params) ## make a pipeline from the above three components pipeline = Pipeline([ ('vect', FE), ('sel', FS), ('clf', EST), ]) ## train the pipeline on train data pipeline.fit(X_train, y_train) ## predict on test data y_pred = pipeline.predict(X_test) targetCols = [col['colName'] for col in d3mds.problem.get_targets()] y_pred_df = pd.DataFrame(index=X_test.index, data=y_pred, columns=targetCols) y_pred_df.to_csv(os.path.join('.','predictions.csv')) ## compute the score on test data metrics = d3mds.problem.get_performance_metrics() scoresdf = pd.DataFrame(columns=['metric','value']) for item in metrics: metric = item['metric'] if metric == 'f1Macro': score = f1_score(y_test, y_pred, average='macro') print('f1Macro', score) scoresdf.loc[len(scoresdf)]=['f1Macro', score] elif metric == 'meanSquaredError': score = mean_squared_error(y_test, y_pred) print('meanSquaredError', score) scoresdf.loc[len(scoresdf)]=['meanSquaredError', score] scoresdf.to_csv(os.path.join('.','scores.csv'))
d3m-model-search-master
test_data/test_cases_only/185_baseball/185_baseball_solution/src/pipeline.py
from abc import ABC, abstractmethod from collections import OrderedDict import numpy as np from numpy import ndarray from scipy.sparse import csr_matrix from pandas import DataFrame from sklearn.base import BaseEstimator, TransformerMixin from sklearn.feature_selection.base import SelectorMixin # https://stackoverflow.com/a/3862957 def get_all_subclasses(cls): return cls.__subclasses__() + [g for s in cls.__subclasses__() for g in get_all_subclasses(s)] def sample_param_distributions(param_distributions): try: return sample_param_distributions_dict(param_distributions) except AttributeError: i = np.random.randint(len(param_distributions)) return sample_param_distributions_dict(param_distributions[i]) def sample_param_distributions_dict(param_distributions_dict): params = {} for k, v in param_distributions_dict.items(): i = np.random.randint(len(v)) params[k] = v[i] return params class AbstractParameterized(ABC): param_distributions = {} @classmethod def get_random_parameters(cls): return sample_param_distributions(cls.param_distributions) class AbstractFeatureExtractor(AbstractParameterized, BaseEstimator): def fit(self, df, variables): self.fit_transform(df, variables) return self @abstractmethod def fit_transform(self, df, variables): """ Fits the feature extractor :param df: :type df: DataFrame :param variables: :type variables: list[D3MVariable] :return: :rtype: csr_matrix """ pass @abstractmethod def transform(self, df): """ Transforms the data :param df: :type df: DataFrame :return: :rtype: csr_matrix """ pass class AbstractFeatureSelector(AbstractParameterized, BaseEstimator, SelectorMixin): pass class AbstractEstimator(AbstractParameterized, BaseEstimator): @abstractmethod def fit(self, X, y): """ :param X: :type X: csr_matrix :param y: :type y: ndarray :return: :rtype: AbstractEstimator """ return self @abstractmethod def predict(self, X): """ :param X: :type X: csr_matrix :return: :rtype: ndarray """ pass
d3m-model-search-master
test_data/test_cases_only/185_baseball/185_baseball_solution/src/base.py
from unittest import TestCase from base import AbstractFeatureSelector import numpy as np from scipy import stats from scipy.sparse import issparse from sklearn.feature_selection import f_classif, SelectFromModel, SelectPercentile from sklearn.linear_model import Lasso from sklearn.svm import LinearSVC from sklearn.utils import check_X_y from sklearn.utils.extmath import safe_sparse_dot, row_norms from scipy.linalg import norm # modified to address the issue of centering sparse matrices with a bit of algebra def better_f_regression(X, y, center=True): """Univariate linear regression tests. Quick linear model for testing the effect of a single regressor, sequentially for many regressors. This is done in 2 steps: 1. The cross correlation between each regressor and the target is computed, that is, ((X[:, i] - mean(X[:, i])) * (y - mean_y)) / (std(X[:, i]) * std(y)). 2. It is converted to an F score then to a p-value. Read more in the :ref:`User Guide <univariate_feature_selection>`. Parameters ---------- X : {array-like, sparse matrix} shape = (n_samples, n_features) The set of regressors that will be tested sequentially. y : array of shape(n_samples). The data matrix center : True, bool, If true, X and y will be centered. Returns ------- F : array, shape=(n_features,) F values of features. pval : array, shape=(n_features,) p-values of F-scores. See also -------- f_classif: ANOVA F-value between label/feature for classification tasks. chi2: Chi-squared stats of non-negative features for classification tasks. """ X, y = check_X_y(X, y, ['csr', 'csc', 'coo'], dtype=np.float64) n_samples = X.shape[0] if center: y = y - np.mean(y) if issparse(X): X_means = X.mean(axis=0).getA1() else: X_means = X.mean(axis=0) X_norms = np.sqrt(row_norms(X.T, squared=True) - n_samples*X_means**2) else: X_norms = row_norms(X.T) # compute the correlation corr = safe_sparse_dot(y, X) corr /= X_norms corr /= norm(y) # convert to p-value degrees_of_freedom = y.size - (2 if center else 1) F = corr ** 2 / (1 - corr ** 2) * degrees_of_freedom pv = stats.f.sf(F, 1, degrees_of_freedom) return F, pv class SelectFromLinearSVC(AbstractFeatureSelector): param_distributions = { 'threshold': (1e-5,), 'C': [float(x) for x in np.logspace(-2, 5, 100)] } def __init__(self, threshold=None, penalty='l1', loss='squared_hinge', dual=False, tol=0.0001, C=1.0, fit_intercept=True, random_state=None, max_iter=1000): self.threshold = threshold self.penalty = penalty self.loss = loss self.dual = dual self.tol = tol self.C = C self.fit_intercept = fit_intercept self.random_state = random_state self.max_iter = max_iter def fit(self, X, y): self.linear_svc = LinearSVC(penalty=self.penalty, loss=self.loss, dual=self.dual, tol=self.tol, fit_intercept=self.fit_intercept, random_state=self.random_state, max_iter=self.max_iter) self.linear_svc.fit(X, y) self.select_from_model = SelectFromModel(self.linear_svc, threshold=self.threshold, prefit=True) return self def _get_support_mask(self): return self.select_from_model._get_support_mask() class SelectPercentileClassification(AbstractFeatureSelector, SelectPercentile): param_distributions = { 'score_func': ('f_classif',), 'percentile': [int(x) for x in np.linspace(10, 100, 100)] } score_funcs = { 'f_classif': f_classif } def __init__(self, *args, **kwargs): if 'score_func' in kwargs: kwargs['score_func'] = self.score_funcs[kwargs['score_func']] super().__init__(*args, **kwargs) class SelectFromLasso(AbstractFeatureSelector): param_distributions = { 'threshold': (1e-5,), 'alpha': [float(x) for x in np.logspace(-5, 2, 100)] } def __init__(self, threshold=None, alpha=1.0, fit_intercept=True, normalize=False, max_iter=1000, tol=0.0001, positive=False, selection='cyclic', random_state=None): self.threshold = threshold self.alpha = alpha self.fit_intercept = fit_intercept self.normalize = normalize self.max_iter = max_iter self.tol = tol self.positive = positive self.selection = selection self.random_state = random_state def fit(self, X, y): # NOTE: y is an ndarray of strings self.lasso = Lasso(alpha=self.alpha, fit_intercept=self.fit_intercept, normalize=self.normalize, max_iter=self.max_iter, tol=self.tol, positive=self.positive, selection=self.selection, random_state=self.random_state) self.lasso.fit(X, y) self.select_from_model = SelectFromModel(self.lasso, threshold=self.threshold, prefit=True) return self def _get_support_mask(self): return self.select_from_model._get_support_mask() class SelectPercentileRegression(AbstractFeatureSelector, SelectPercentile): param_distributions = { 'score_func': ('f_regression',), 'percentile': [int(x) for x in np.linspace(10, 100, 100)] } score_funcs = { 'f_regression': better_f_regression } def __init__(self, *args, **kwargs): if 'score_func' in kwargs: kwargs['score_func'] = self.score_funcs[kwargs['score_func']] super().__init__(*args, **kwargs) def fit(self, X, y): # NOTE: y is an ndarray of strings super().fit(X, y) return self
d3m-model-search-master
test_data/test_cases_only/1491_one_hundred_plants_margin/1491_one_hundred_plants_margin_solution/modules/feature_selection.py
from base import AbstractEstimator import numpy as np from sklearn.base import BaseEstimator, TransformerMixin from sklearn.kernel_approximation import RBFSampler from sklearn.linear_model import SGDClassifier, SGDRegressor class SGDClassifierEstimator(AbstractEstimator): param_distributions = { 'loss': ('hinge', 'log', 'squared_hinge', 'perceptron'), 'penalty': ('elasticnet',), 'alpha': [float(x) for x in np.logspace(-9, 0, 10)], 'l1_ratio': [float(x) for x in np.linspace(0, 1, 11)], 'fit_intercept': (True, True, True, False) } def __init__(self, *args, **kwargs): self.args = args self.kwargs = kwargs def fit(self, X, y): n_samples = X.shape[0] self.kwargs['n_iter'] = max(5, int(10**6 / n_samples)) self.sgd_classifier = SGDClassifier(*self.args, **self.kwargs) self.sgd_classifier.fit(X, y) def predict(self, X): return self.sgd_classifier.predict(X) class SGDRegressorEstimator(AbstractEstimator): param_distributions = { 'loss': ('squared_loss', 'huber'), 'penalty': ('elasticnet',), 'alpha': [float(x) for x in np.logspace(-9, 0, 10)], 'l1_ratio': [float(x) for x in np.linspace(0, 1, 11)], 'fit_intercept': (True, True, True, False), 'epsilon': [float(x) for x in np.logspace(-2, 0, 5)], 'learning_rate': ('optimal', 'invscaling'), 'eta0': (0.1, 0.01, 0.001), 'power_t': [float(x) for x in np.linspace(0, 1, 5)] } def __init__(self, *args, **kwargs): self.args = args self.kwargs = kwargs def fit(self, X, y): n_samples = X.shape[0] self.kwargs['n_iter'] = max(5, int(10**6 / n_samples)) self.sgd_regressor = SGDRegressor(*self.args, **self.kwargs) self.sgd_regressor.fit(X, y) def predict(self, X): return self.sgd_regressor.predict(X) # TODO: inherit AbstractEstimator, grab param_distributions from cv_setup_map.py in the old slacker, class RBFSamplerSGDClassifierEstimator(BaseEstimator, TransformerMixin): def __init__(self, gamma=1.0, n_components=100, random_state=None, **kwargs): kwargs['random_state'] = random_state self.rbf_sampler = RBFSampler(gamma=gamma, n_components=n_components, random_state=random_state) self.sgdclassifier = SGDClassifier(**kwargs) def fit(self, X, y): X = self.rbf_sampler.fit_transform(X) self.sgdclassifier.fit(X, y) return self def transform(self, X, y=None): return np.sqrt(self.rbf_sampler.n_components) / np.sqrt(2.) * self.rbf_sampler.transform(X) def predict(self, X): return self.sgdclassifier.predict(self.transform(X)) def decision_function(self, X): return self.sgdclassifier.decision_function(self.transform(X)) # TODO: inherit AbstractEstimator, grab param_distributions from cv_setup_map.py in the old slacker, class RBFSamplerSGDRegressorEstimator(BaseEstimator, TransformerMixin): def __init__(self, gamma=1.0, n_components=100, random_state=None, **kwargs): kwargs['random_state'] = random_state self.rbf_sampler = RBFSampler(gamma=gamma, n_components=n_components, random_state=random_state) self.sgdregressor = SGDRegressor(**kwargs) def fit(self, X, y): X = self.rbf_sampler.fit_transform(X) self.sgdregressor.fit(X, y) return self def transform(self, X, y=None): return np.sqrt(self.rbf_sampler.n_components) / np.sqrt(2.) * self.rbf_sampler.transform(X) def predict(self, X): return self.sgdregressor.predict(self.transform(X)) # TODO: Add kernel SVM # TODO: Add kernel ridge regressor # TODO: Add random forests / xgboost
d3m-model-search-master
test_data/test_cases_only/1491_one_hundred_plants_margin/1491_one_hundred_plants_margin_solution/modules/estimation.py
d3m-model-search-master
test_data/test_cases_only/1491_one_hundred_plants_margin/1491_one_hundred_plants_margin_solution/modules/__init__.py
from collections import defaultdict, OrderedDict import numpy as np from scipy import signal from scipy.sparse import csr_matrix, hstack import pandas as pd from sklearn.base import BaseEstimator, TransformerMixin from sklearn.cluster import MiniBatchKMeans from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import LogisticRegression from sklearn.preprocessing import Imputer, OneHotEncoder, StandardScaler from sklearn.utils.validation import check_is_fitted from base import AbstractFeatureExtractor class DenseMixedStrategyImputer(BaseEstimator, TransformerMixin): def __init__(self, missing_values='NaN', strategies=None, add_missing_indicator=True, verbose=False): self.missing_values = missing_values if strategies is None: raise ValueError('Must provide strategy.') allowed_strategies = ['mean', 'median', 'most_frequent'] if any(s not in allowed_strategies for s in strategies): raise ValueError('Invalid strategy in list.') self.strategies = strategies self.add_missing_indicator = add_missing_indicator self.verbose = verbose def fit(self, X, y=None): n_samples, n_features = X.shape print('n_features',n_features) if len(self.strategies) != n_features: raise ValueError('Number of strategies must equal number of features.') self.impute_strategies = list(set(self.strategies)) self.impute_indices = [np.array([i for i, x in enumerate(self.strategies) if x == s]) for s in self.impute_strategies] self.impute_valid_indices = [] self.imputers = [Imputer(missing_values=self.missing_values, strategy=s, verbose=self.verbose) for s in self.impute_strategies] for indices, imputer in zip(self.impute_indices, self.imputers): imputer.fit(X[:, indices]) valid_mask = np.logical_not(np.isnan(imputer.statistics_)) self.impute_valid_indices.append(indices[valid_mask]) return self def transform(self, X): n_samples, n_features = X.shape if len(self.strategies) != n_features: raise ValueError('Number of strategies must equal number of features.') check_is_fitted(self, 'imputers') if self.add_missing_indicator: output_scale = 2 else: output_scale = 1 X_out = np.zeros((n_samples, output_scale*n_features)) for input_indices, output_indices, imputer in zip(self.impute_indices, self.impute_valid_indices, self.imputers): X_out[:, output_scale*output_indices] = imputer.transform(X[:, input_indices]) if self.add_missing_indicator: X_out[:, np.arange(1, 2*n_features, 2)] = np.isnan(X).astype('float', copy=False) return X_out class DataFrameCategoricalEncoder(BaseEstimator, TransformerMixin): def fit(self, X, y=None): self.code_maps = {} for k in X.columns: self.code_maps[k] = defaultdict(lambda: np.nan) self.code_maps[k].update({v: k for k, v in enumerate(X[k].astype('category').cat.categories)}) return self def transform(self, X): if set(X.columns) != set(self.code_maps): raise ValueError('Columns do not match fit model.') return X.apply(lambda x: x.apply(lambda y: self.code_maps[x.name][y])).as_matrix() class AnnotatedTabularExtractor(AbstractFeatureExtractor): param_distributions = { 'normalize_text': [True, False], 'categorize': [True, False], 'numeric_strategy': ['mean', 'median'], 'add_missing_indicator': [True, False] } def __init__(self, normalize_text=False, categorize=False, numeric_strategy='mean', add_missing_indicator=True): self.normalize_text = normalize_text self.categorize = categorize self.numeric_strategy = numeric_strategy self.add_missing_indicator = add_missing_indicator def set_cols_info(self, cols_info): self.cols_info = cols_info def determine_colType(self, column): variables = self.cols_info for var in variables: var_colName = var['colName'] if str(var_colName) != str(column): continue var_colType = var['colType'] if var_colType in {'categorical', 'boolean'}: return 'categorical' elif var_colType in {'integer', 'real'}: return 'numeric' elif var_colType == 'string': return 'text' elif var_colType == 'dateTime': raise RuntimeError('datTime not implemented in this feature extractor yet !!') def fit_transform(self, df, variables): df = self.copy_normalize_text(df) self.column_types = OrderedDict() for column in df: itype = self.determine_colType(column) # print('itype',itype) self.column_types[column] = itype self.numeric_columns = [column for column, type in self.column_types.items() if type == 'numeric'] self.categorical_columns = [column for column, type in self.column_types.items() if type == 'categorical'] self.text_columns = [column for column, type in self.column_types.items() if type == 'text'] output_arrays = [] if len(self.numeric_columns) > 0: X = df[self.numeric_columns].apply(lambda x: pd.to_numeric(x, errors='coerce')).as_matrix() self.numeric_imputer = DenseMixedStrategyImputer( strategies=[self.numeric_strategy]*len(self.numeric_columns), add_missing_indicator=self.add_missing_indicator ) X = self.numeric_imputer.fit_transform(X) self.numeric_scaler = StandardScaler() output_arrays.append(self.numeric_scaler.fit_transform(X)) if len(self.categorical_columns) > 0: self.categorical_encoder = DataFrameCategoricalEncoder() X = self.categorical_encoder.fit_transform(df[self.categorical_columns]) self.categorical_imputer = DenseMixedStrategyImputer( strategies=['most_frequent']*len(self.categorical_columns), add_missing_indicator=self.add_missing_indicator ) X = self.categorical_imputer.fit_transform(X) self.one_hot_encoder = OneHotEncoder( categorical_features=np.arange(len(self.categorical_columns)) * (2 if self.add_missing_indicator else 1) ) output_arrays.append(self.one_hot_encoder.fit_transform(X)) return hstack([csr_matrix(X) for X in output_arrays], format='csr') def transform(self, df): check_is_fitted(self, 'column_types') if list(df) != list(self.column_types): raise ValueError('Data to be transformed does not match fitting data.') df = self.copy_normalize_text(df) output_arrays = [] if len(self.numeric_columns) > 0: X = df[self.numeric_columns].apply(lambda x: pd.to_numeric(x, errors='coerce')).as_matrix() output_arrays.append(self.numeric_scaler.transform(self.numeric_imputer.transform(X))) if len(self.categorical_columns) > 0: X = self.categorical_encoder.transform(df[self.categorical_columns]) output_arrays.append(self.one_hot_encoder.transform(self.categorical_imputer.transform(X))) return hstack([csr_matrix(X) for X in output_arrays], format='csr') def copy_normalize_text(self, df): df = df.copy() if self.normalize_text: for column in df: try: df[column] = df[column].str.lower().str.strip() except: df[column] = df[column] return df
d3m-model-search-master
test_data/test_cases_only/1491_one_hundred_plants_margin/1491_one_hundred_plants_margin_solution/modules/feature_extraction.py
# -*- coding: utf-8 -*- # file: d3mds.py # lab: MIT Lincoln Lab # author(s): sw26425 # description: a rudimentary API for interacting with D3MDataSupply, which mainly consists of a Dataset and a Problem import os, json import pandas as pd import numpy as np import warnings DATASET_SCHEMA_VERSION = '3.0' PROBLEM_SCHEMA_VERSION = '3.0' class D3MDataset: dsHome = None dsDoc = None learningDataFile = None def __init__(self, datasetPath): self.dsHome = datasetPath # read the schema in dsHome _dsDoc = os.path.join(self.dsHome, 'datasetDoc.json') assert os.path.exists(_dsDoc) with open(_dsDoc, 'r') as f: self.dsDoc = json.load(f) # make sure the versions line up if self.get_datasetSchemaVersion() != DATASET_SCHEMA_VERSION: warnings.warn("the datasetSchemaVersions in the API and datasetDoc do not match !!!!!!!") # locate the special learningData file self.learningDataFile = self._get_learning_data_path() def get_datasetID(self): """ Returns the datasetID from datasetDoc """ return self.dsDoc['about']['datasetID'] def get_datasetSchemaVersion(self): """ Returns the dataset schema version that was used to create this dataset """ return self.dsDoc['about']['datasetSchemaVersion'] def get_learning_data(self, view=None, problem=None): """ Returns the contents of learningData.doc as a DataFrame. If view is 'TRAIN' or 'TEST', then the full learningData is filtered to return learningData only for that view. For view-based filtering, the problem object has to be passed because this method used the splitsData from the problem. """ df = pd.read_csv(self.learningDataFile, index_col='d3mIndex') if view is None: return df if view.upper() == 'TRAIN' or view.upper() == 'TEST': if problem is None: raise RuntimeError('asking for learningData for a split, but the problem is not given') splitsdf = problem.get_datasplits(view) df = df.iloc[splitsdf.index] return df def get_learning_data_columns(self): res = self._get_learning_data_resource() return res['columns'] def set_learning_data(self, df): """ Sets the contents of the learningData file to df """ df.to_csv(self.learningDataFile) def delete_column_entries(self, target): """ Deletes all the entries of a particular column of a particular tabular data resource. The deleted entries are set to numpy.NaN """ resID = target['resID'] colIndex = target['colIndex'] colName = target['colName'] for res in self.dsDoc['dataResources']: _resID = res['resID'] if _resID != resID: continue _resPath = res['resPath'] _resPath = os.path.join(self.dsHome, _resPath) _resType = res['resType'] assert _resType == 'table' for col in res['columns']: _colIndex = col['colIndex'] if _colIndex != colIndex: continue _colName = col['colName'] assert _colName == colName df = pd.read_csv(_resPath) df[_colName] = [np.NaN]*len(df[_colName]) df.to_csv(_resPath, index=None) return True raise RuntimeError('could not find the column') raise RuntimeError('could not find the resource') def delete_identifying_fields(self, view): """ Deletes some fields that might contain identifying information. These fields should not be in the train or test view during the blinds evaluation. """ assert view.upper()=='TRAIN' or view.upper()=='TEST' # ensures we perform this only if view is train or test self.dsDoc['about']['datasetName']='redacted' self.dsDoc['about']['redacted'] = True try: del self.dsDoc['about']['description'] except KeyError: pass try: del self.dsDoc['about']['citation'] except KeyError: pass try: del self.dsDoc['about']['source'] except KeyError: pass try: del self.dsDoc['about']['sourceURI'] except KeyError: pass # save datasetDoc.json file with open(os.path.join(self.dsHome, 'datasetDoc.json'), 'w') as fp: json.dump(self.dsDoc, fp, indent=2, sort_keys=False) ############# private methods def _get_learning_data_path(self): """ Returns the path of learningData.csv in a dataset """ for res in self.dsDoc['dataResources']: resID = res['resID'] resPath = res['resPath'] resType = res['resType'] resFormat = res['resFormat'] if resType =='table': if 'learningData.csv' in res['resPath'] : return os.path.join(self.dsHome, resPath) else: raise RuntimeError('non-CSV learningData (not implemented yet ...)') # if the for loop is over and learningDoc is not found, then return None raise RuntimeError('could not find learningData file the dataset') def _get_learning_data_resource(self): """ Returns the path of learningData.csv in a dataset """ for res in self.dsDoc['dataResources']: resID = res['resID'] resPath = res['resPath'] resType = res['resType'] resFormat = res['resFormat'] if resType =='table': if 'learningData.csv' in res['resPath'] : return res else: raise RuntimeError('could not find learningData.csv') # if the for loop is over and learningDoc is not found, then return None raise RuntimeError('could not find learningData resource') class D3MProblem: prHome = None prDoc = None splitsFile = None def __init__(self, problemPath): self.prHome = problemPath # read the schema in prHome _prDoc = os.path.join(self.prHome, 'problemDoc.json') assert os.path.exists(_prDoc) with open(_prDoc, 'r') as f: self.prDoc = json.load(f) # make sure the versions line up if self.get_problemSchemaVersion() != PROBLEM_SCHEMA_VERSION: warnings.warn("the problemSchemaVersions in the API and datasetDoc do not match !!!!!!!") # locate the splitsFile self.splitsFile = self._get_datasplits_file() def get_problemID(self): """ Returns the problemID from problemDoc """ return self.prDoc['about']['problemID'] def get_problemSchemaVersion(self): """ Returns the problem schema version that was used to create this dataset """ return self.prDoc['about']['problemSchemaVersion'] def get_datasetID(self): """ Returns the ID of the dataset referenced in the problem """ return self.prDoc['inputs']['data'][0]['datasetID'] def get_targets(self): """ Looks at the problemDoc and returns the colIndex and colName of the target variable """ return self.prDoc['inputs']['data'][0]['targets'] def get_datasplits(self, view=None): """ Returns the data splits splits in a dataframe """ df = pd.read_csv(self.splitsFile, index_col='d3mIndex') if view is None: return df elif view.upper() == 'TRAIN': df = df[df['type']=='TRAIN'] return df elif view.upper() == 'TEST': df = df[df['type']=='TEST'] return df def set_datasplits(self, df): """ Sets the contents of the dataSplits file to df """ df.to_csv(self.splitsFile) def delete_identifying_fields(self, view): """ Deletes some fields that might contain identifying information. These fields should not be in the train or test view during the blinds evaluation. """ assert view.upper()=='TRAIN' or view.upper()=='TEST' # ensures we perform this only if view is train or test self.prDoc['about']['problemName']='redacted' try: del self.prDoc['about']['problemDescription'] except KeyError: pass # save datasetDoc.json file with open(os.path.join(self.prHome, 'problemDoc.json'), 'w') as fp: json.dump(self.prDoc, fp, indent=2, sort_keys=False) def get_performance_metrics(self): return self.prDoc['inputs']['performanceMetrics'] ############# private methods def _get_datasplits_file(self): splitsFile = self.prDoc['inputs']['dataSplits']['splitsFile'] splitsFile = os.path.join(self.prHome, splitsFile) assert os.path.exists(splitsFile) return splitsFile class D3MDS: dataset = None problem = None def __init__(self, datasetPath, problemPath): self.dataset = D3MDataset(datasetPath) self.problem = D3MProblem(problemPath) # sanity check assert self.dataset.get_datasetID() == self.problem.get_datasetID() def _get_target_columns(self, df): target_cols = [] targets = self.problem.get_targets() for target in targets: colIndex = target['colIndex']-1 # 0th column is d3mIndex colName = df.columns[colIndex] assert colName == target['colName'] target_cols.append(colIndex) return target_cols def get_data_all(self): df = self.dataset.get_learning_data(view=None, problem=None) return df def get_train_data(self): df = self.dataset.get_learning_data(view='train', problem=self.problem) target_cols = self._get_target_columns(df) df.drop(df.columns[target_cols],axis=1,inplace=True) return df def get_train_targets(self): df = self.dataset.get_learning_data(view='train', problem=self.problem) target_cols = self._get_target_columns(df) return np.ravel(df[df.columns[target_cols]]) def get_test_data(self): df = self.dataset.get_learning_data(view='test', problem=self.problem) target_cols = self._get_target_columns(df) df.drop(df.columns[target_cols],axis=1,inplace=True) return df def get_test_targets(self): df = self.dataset.get_learning_data(view='test', problem=self.problem) target_cols = self._get_target_columns(df) return np.ravel(df[df.columns[target_cols]])
d3m-model-search-master
test_data/test_cases_only/1491_one_hundred_plants_margin/1491_one_hundred_plants_margin_solution/modules/d3mds.py
import os, sys, json import pandas as pd from sklearn.pipeline import Pipeline from sklearn.linear_model import SGDClassifier from sklearn.metrics import f1_score, mean_squared_error here = os.path.dirname(os.path.abspath(__file__)) from d3mds import D3MDataset, D3MProblem, D3MDS from feature_extraction import * from feature_selection import * from estimation import * if __name__ == '__main__': # get the paths of the dataset and problem try: dspath = (sys.argv[1]) except: dspath = input('Enter the path to the dataset: ') # dspath = os.path.join(here, '..', '..', 'data', '185_baseball_dataset') assert os.path.exists(dspath) try: prpath = (sys.argv[2]) except: prpath = input('Enter the path to the problem: ') # prpath = os.path.join(here, '..', '..', 'data', '185_baseball_problem') assert os.path.exists(prpath) # check the pipeline JSON file pipe_json = os.path.join(here, 'pipeline.json') assert os.path.exists(pipe_json) # read the JSON file with open(pipe_json) as data_file: ps = json.load(data_file) ## TBD: we need to make a check that that JSON aligns with the dataset and problem # initialize the API class d3mds = D3MDS(dspath, prpath) # this checks that the problem and dataset correspond # get the train and test data X_train = d3mds.get_train_data() y_train = d3mds.get_train_targets() X_test = d3mds.get_test_data() y_test = d3mds.get_test_targets() # get columns information cols_info = d3mds.dataset.get_learning_data_columns() ## instantiate feature extractor key, fe = ps['feature_extractors'].popitem() fe_class = fe['feature_extractor'] fe_params = fe['params'] FE = eval(fe_class)(**fe_params) if isinstance(FE, AnnotatedTabularExtractor): FE.set_cols_info(cols_info) ## instantiate feature selector fs = ps['feature_selector'] fs_class = fs['feature_selector'] fs_params = fs['params'] FS = eval(fs_class)(**fs_params) ## instantiate estimator est = ps['estimator'] est_class = est['estimator'] est_params = est['params'] EST = eval(est_class)(**est_params) ## make a pipeline from the above three components pipeline = Pipeline([ ('vect', FE), ('sel', FS), ('clf', EST), ]) ## train the pipeline on train data pipeline.fit(X_train, y_train) ## predict on test data y_pred = pipeline.predict(X_test) targetCols = [col['colName'] for col in d3mds.problem.get_targets()] y_pred_df = pd.DataFrame(index=X_test.index, data=y_pred, columns=targetCols) y_pred_df.to_csv(os.path.join('.','predictions.csv')) ## compute the score on test data metrics = d3mds.problem.get_performance_metrics() scoresdf = pd.DataFrame(columns=['metric','value']) for item in metrics: metric = item['metric'] if metric == 'f1Macro': score = f1_score(y_test, y_pred, average='macro') print('f1Macro', score) scoresdf.loc[len(scoresdf)]=['f1Macro', score] elif metric == 'meanSquaredError': score = mean_squared_error(y_test, y_pred) print('meanSquaredError', score) scoresdf.loc[len(scoresdf)]=['meanSquaredError', score] scoresdf.to_csv(os.path.join('.','scores.csv'))
d3m-model-search-master
test_data/test_cases_only/1491_one_hundred_plants_margin/1491_one_hundred_plants_margin_solution/modules/pipeline.py
from abc import ABC, abstractmethod from collections import OrderedDict import numpy as np from numpy import ndarray from scipy.sparse import csr_matrix from pandas import DataFrame from sklearn.base import BaseEstimator, TransformerMixin from sklearn.feature_selection.base import SelectorMixin # https://stackoverflow.com/a/3862957 def get_all_subclasses(cls): return cls.__subclasses__() + [g for s in cls.__subclasses__() for g in get_all_subclasses(s)] def sample_param_distributions(param_distributions): try: return sample_param_distributions_dict(param_distributions) except AttributeError: i = np.random.randint(len(param_distributions)) return sample_param_distributions_dict(param_distributions[i]) def sample_param_distributions_dict(param_distributions_dict): params = {} for k, v in param_distributions_dict.items(): i = np.random.randint(len(v)) params[k] = v[i] return params class AbstractParameterized(ABC): param_distributions = {} @classmethod def get_random_parameters(cls): return sample_param_distributions(cls.param_distributions) class AbstractFeatureExtractor(AbstractParameterized, BaseEstimator): def fit(self, df, variables): self.fit_transform(df, variables) return self @abstractmethod def fit_transform(self, df, variables): """ Fits the feature extractor :param df: :type df: DataFrame :param variables: :type variables: list[D3MVariable] :return: :rtype: csr_matrix """ pass @abstractmethod def transform(self, df): """ Transforms the data :param df: :type df: DataFrame :return: :rtype: csr_matrix """ pass class AbstractFeatureSelector(AbstractParameterized, BaseEstimator, SelectorMixin): pass class AbstractEstimator(AbstractParameterized, BaseEstimator): @abstractmethod def fit(self, X, y): """ :param X: :type X: csr_matrix :param y: :type y: ndarray :return: :rtype: AbstractEstimator """ return self @abstractmethod def predict(self, X): """ :param X: :type X: csr_matrix :return: :rtype: ndarray """ pass
d3m-model-search-master
test_data/test_cases_only/1491_one_hundred_plants_margin/1491_one_hundred_plants_margin_solution/modules/base.py
# -*- coding: utf-8 -*- # file: d3mds.py # lab: MIT Lincoln Lab # author(s): sw26425 # description: a rudimentary API for interacting with D3MDataSupply, which mainly consists of a Dataset and a Problem import os, json, sys import pandas as pd import numpy as np import warnings DATASET_SCHEMA_VERSION = '3.0' PROBLEM_SCHEMA_VERSION = '3.0' class D3MDataset: dsHome = None dsDoc = None learningDataFile = None def __init__(self, datasetPath): self.dsHome = datasetPath # read the schema in dsHome _dsDoc = os.path.join(self.dsHome, 'datasetDoc.json') assert os.path.exists(_dsDoc) with open(_dsDoc, 'r') as f: self.dsDoc = json.load(f) # make sure the versions line up if self.get_datasetSchemaVersion() != DATASET_SCHEMA_VERSION: warnings.warn("the datasetSchemaVersions in the API and datasetDoc do not match !!!!!!!") # locate the special learningData file self.learningDataFile = self._get_learning_data_path() def get_datasetID(self): """ Returns the datasetID from datasetDoc """ return self.dsDoc['about']['datasetID'] def get_datasetSchemaVersion(self): """ Returns the dataset schema version that was used to create this dataset """ return self.dsDoc['about']['datasetSchemaVersion'] def get_learning_data(self, view=None, problem=None): """ Returns the contents of learningData.doc as a DataFrame. If view is 'TRAIN' or 'TEST', then the full learningData is filtered to return learningData only for that view. For view-based filtering, the problem object has to be passed because this method used the splitsData from the problem. """ df = pd.read_csv(self.learningDataFile, index_col='d3mIndex') if view is None: return df if view.upper() == 'TRAIN' or view.upper() == 'TEST': if problem is None: raise RuntimeError('asking for learningData for a split, but the problem is not given') splitsdf = problem.get_datasplits(view) df = df.loc[splitsdf.index] return df def get_learning_data_columns(self): res = self._get_learning_data_resource() return res['columns'] def set_learning_data(self, df): """ Sets the contents of the learningData file to df """ df.to_csv(self.learningDataFile) def delete_column_entries(self, target): """ Deletes all the entries of a particular column of a particular tabular data resource. The deleted entries are set to numpy.NaN """ resID = target['resID'] colIndex = target['colIndex'] colName = target['colName'] for res in self.dsDoc['dataResources']: _resID = res['resID'] if _resID != resID: continue _resPath = res['resPath'] _resPath = os.path.join(self.dsHome, _resPath) _resType = res['resType'] assert _resType == 'table' for col in res['columns']: _colIndex = col['colIndex'] if _colIndex != colIndex: continue _colName = col['colName'] assert _colName == colName df = pd.read_csv(_resPath) df[_colName] = [np.NaN]*len(df[_colName]) df.to_csv(_resPath, index=None) return True raise RuntimeError('could not find the column') raise RuntimeError('could not find the resource') def delete_identifying_fields(self, view): """ Deletes some fields that might contain identifying information. These fields should not be in the train or test view during the blinds evaluation. """ assert view.upper()=='TRAIN' or view.upper()=='TEST' # ensures we perform this only if view is train or test self.dsDoc['about']['datasetName']='NULL' self.dsDoc['about']['redacted'] = True try: del self.dsDoc['about']['description'] except KeyError: pass try: del self.dsDoc['about']['citation'] except KeyError: pass try: del self.dsDoc['about']['source'] except KeyError: pass try: del self.dsDoc['about']['sourceURI'] except KeyError: pass # save datasetDoc.json file with open(os.path.join(self.dsHome, 'datasetDoc.json'), 'w') as fp: json.dump(self.dsDoc, fp, indent=2, sort_keys=False) ############# private methods def _get_learning_data_path(self): """ Returns the path of learningData.csv in a dataset """ for res in self.dsDoc['dataResources']: resID = res['resID'] resPath = res['resPath'] resType = res['resType'] resFormat = res['resFormat'] dirname = os.path.basename(os.path.normpath(os.path.dirname(resPath))) if resType =='table' and dirname=='tables': if 'learningData.csv' in res['resPath'] : return os.path.join(self.dsHome, resPath) else: raise RuntimeError('non-CSV learningData (not implemented yet ...)') # if the for loop is over and learningDoc is not found, then return None raise RuntimeError('could not find learningData file the dataset') def _get_learning_data_resource(self): """ Returns the path of learningData.csv in a dataset """ for res in self.dsDoc['dataResources']: resID = res['resID'] resPath = res['resPath'] resType = res['resType'] resFormat = res['resFormat'] if resType =='table': if 'learningData.csv' in res['resPath'] : return res else: raise RuntimeError('could not find learningData.csv') # if the for loop is over and learningDoc is not found, then return None raise RuntimeError('could not find learningData resource') class D3MProblem: prHome = None prDoc = None splitsFile = None def __init__(self, problemPath): self.prHome = problemPath # read the schema in prHome _prDoc = os.path.join(self.prHome, 'problemDoc.json') assert os.path.exists(_prDoc) with open(_prDoc, 'r') as f: self.prDoc = json.load(f) # make sure the versions line up if self.get_problemSchemaVersion() != PROBLEM_SCHEMA_VERSION: warnings.warn("the problemSchemaVersions in the API and datasetDoc do not match !!!!!!!") # locate the splitsFile self.splitsFile = self._get_datasplits_file() def get_problemID(self): """ Returns the problemID from problemDoc """ return self.prDoc['about']['problemID'] def get_problemSchemaVersion(self): """ Returns the problem schema version that was used to create this dataset """ return self.prDoc['about']['problemSchemaVersion'] def get_datasetID(self): """ Returns the ID of the dataset referenced in the problem """ return self.prDoc['inputs']['data'][0]['datasetID'] def get_targets(self): """ Looks at the problemDoc and returns the colIndex and colName of the target variable """ return self.prDoc['inputs']['data'][0]['targets'] def get_datasplits(self, view=None): """ Returns the data splits splits in a dataframe """ df = pd.read_csv(self.splitsFile, index_col='d3mIndex') if view is None: return df elif view.upper() == 'TRAIN': df = df[df['type']=='TRAIN'] return df elif view.upper() == 'TEST': df = df[df['type']=='TEST'] return df def set_datasplits(self, df): """ Sets the contents of the dataSplits file to df """ df.to_csv(self.splitsFile) def delete_identifying_fields(self, view): """ Deletes some fields that might contain identifying information. These fields should not be in the train or test view during the blinds evaluation. """ assert view.upper()=='TRAIN' or view.upper()=='TEST' # ensures we perform this only if view is train or test self.prDoc['about']['problemName']='NULL' try: del self.prDoc['about']['problemDescription'] except KeyError: pass # save datasetDoc.json file with open(os.path.join(self.prHome, 'problemDoc.json'), 'w') as fp: json.dump(self.prDoc, fp, indent=2, sort_keys=False) def get_performance_metrics(self): return self.prDoc['inputs']['performanceMetrics'] ############# private methods def _get_datasplits_file(self): splitsFile = self.prDoc['inputs']['dataSplits']['splitsFile'] splitsFile = os.path.join(self.prHome, splitsFile) assert os.path.exists(splitsFile) return splitsFile class D3MDS: dataset = None problem = None def __init__(self, datasetPath, problemPath): self.dataset = D3MDataset(datasetPath) self.problem = D3MProblem(problemPath) # sanity check assert self.dataset.get_datasetID() == self.problem.get_datasetID() def _get_target_columns(self, df): target_cols = [] targets = self.problem.get_targets() for target in targets: colIndex = target['colIndex']-1 # 0th column is d3mIndex colName = df.columns[colIndex] assert colName == target['colName'] target_cols.append(colIndex) return target_cols def get_data_all(self): df = self.dataset.get_learning_data(view=None, problem=None) return df def get_train_data(self): df = self.dataset.get_learning_data(view='train', problem=self.problem) target_cols = self._get_target_columns(df) df.drop(df.columns[target_cols],axis=1,inplace=True) return df def get_train_targets(self): df = self.dataset.get_learning_data(view='train', problem=self.problem) target_cols = self._get_target_columns(df) X = df.shape[0] Y = len(target_cols) return (df[df.columns[target_cols]]).as_matrix().reshape(X,Y) # return np.ravel(df[df.columns[target_cols]]) def get_test_data(self): df = self.dataset.get_learning_data(view='test', problem=self.problem) target_cols = self._get_target_columns(df) df.drop(df.columns[target_cols],axis=1,inplace=True) return df def get_test_targets(self): df = self.dataset.get_learning_data(view='test', problem=self.problem) target_cols = self._get_target_columns(df) X = df.shape[0] Y = len(target_cols) return (df[df.columns[target_cols]]).as_matrix().reshape(X,Y) # return np.ravel(df[df.columns[target_cols]])
d3m-model-search-master
test_data/test_cases_only/59_umls/59_umls_solution/src/d3mds.py
# coding: utf-8 # In[23]: import networkx as nx import numpy as np from scipy.io.matlab import loadmat import sktensor, random import pandas as pd from scipy.sparse import lil_matrix from sktensor.rescal import als as rescal_als from numpy import zeros, dot from numpy.linalg import norm from sklearn.metrics import precision_recall_curve, auc, accuracy_score, roc_auc_score, roc_curve from sklearn.preprocessing import normalize import os, sys, json from sklearn.datasets import make_classification from sklearn.linear_model import LogisticRegression from collections import OrderedDict here = os.path.dirname(os.path.abspath(__file__)) from d3mds import D3MDataset, D3MProblem, D3MDS dspath = os.path.join(here, '..', '..', '59_umls_dataset') prpath = os.path.join(here, '..', '..', '59_umls_problem') rawDataDir = os.path.join(dspath, "graphs") solpath = os.path.join(here, '..') assert os.path.exists(dspath) assert os.path.exists(prpath) assert os.path.exists(rawDataDir) d3mds = D3MDS(dspath, prpath) # this checks that the problem and dataset correspond ## LinkPrediction model def tensorCompletion(T, V=[]): """ Complete the tensor by tensor factorization and recomposition (we use Rescal) """ def __predict_rescal_als(T, V=[]): if V==[]: A, R, _, _, _ = rescal_als(T, 100, init='nvecs', conv=1e-3, lambda_A=10, lambda_R=10) else: A, R, _, _, _ = rescal_als(T, 100, attr=[V], init='nvecs', conv=1e-3, lambda_A=10, lambda_R=10) n = A.shape[0] P = zeros((n, n, len(R))) for k in range(len(R)): P[:, :, k] = dot(A, dot(R[k], A.T)) return P def __normalize_predictions(P, e, k): for a in range(e): for b in range(e): nrm = norm(P[a, b, :k]) if nrm != 0: # round values for faster computation of AUC-PR P[a, b, :k] = np.round_(P[a, b, :k] / nrm, decimals=3) return P e, k = T.shape[0], T.shape[2] # Convert T into list of sparse matrices as required by Rescal T = [lil_matrix(T[:, :, i]) for i in range(k)] Tc = [Ti.copy() for Ti in T] # call Rescal and normalize P = __predict_rescal_als(Tc, V) P = __normalize_predictions(P, e, k) return P # In[4]: class LinkPrediciton(): def __init__(self, G): """ G is an instance of nx.MultiGraph """ # convert the graph into adjacency tensor I = len(G.nodes()) J = I K = len(set(nx.get_edge_attributes(G,'linkType').values())) shape = (I, J, K) # print(shape) self.A = np.zeros(shape=shape) for i,j,data in G.edges(data=True): k = (data['linkType']) self.A[i][j][k] = 1. # print(self.A.shape) def fit(self): # self.A_completed = tensorCompletion(self.A, attrDF.as_matrix()) self.A_completed = tensorCompletion(self.A) # print(np.amin(self.A_completed)) # print(np.amax(self.A_completed)) def predict(self, X): """ X is a DataFrame with columns=[source_nodeID, target_nodeID, linkType] """ def __predictLink(row, T): k = int(row.linkType) i = int(row.source_nodeID) j = int(row.target_nodeID) return int(round(T[i][j][k])) X['linkExists']=X.apply(__predictLink, T=self.A_completed, axis=1) return X # ## Make pipeline # initializations random.seed(0) graph = '%s/graph.gml'%rawDataDir # In[20]: # read the graph from gml file print('read graph ...') G = nx.read_gml(graph, label='id') # set aside some edges (10%) validation of the model print('setting aside 10% of edges for validation and remove them from graph ....') edges_validation=pd.DataFrame(columns=['source_nodeID','target_nodeID','linkType']) for i, (u,v,key,data) in enumerate(G.edges(data=True, keys=True)): if random.random() < 0.1: G.remove_edge(u,v,key=key) edges_validation.loc[len(edges_validation)] = [u,v,data['linkType']] print('number of edge set aside for validation:',len(edges_validation)) # In[21]: # initialize the model print('initializing the linkPrediction model ...') lp = LinkPrediciton(G) # fit the training graph print('fitting the training graph ...') lp.fit() # make predictions on the validation data print('making predicitons on validation edges ...') edges_prediction=lp.predict(edges_validation) # compute accuracy on validation data print('computing accuracy on validation data ...') accuracy = len(edges_prediction[edges_prediction['linkExists']==1])/len(edges_prediction) print('model accuracy:', accuracy) # now train the model on the whole graph print('training the model on the whole graph ...') # read the graph from gml file G = nx.read_gml(graph, label='id') # initialize the model lp = LinkPrediciton(G) # fit the graph lp.fit() print('===============================================================================') ## Submit predictions on test data print('predictions on test data ...') testData = d3mds.get_test_data() predictions = lp.predict(testData) y_pred = pd.DataFrame(predictions['linkExists']) y_truth = d3mds.get_test_targets().ravel() score = accuracy_score(y_truth, y_pred) print('model accuracy on test data:', score) # saving the predictions.csv file y_pred_df = pd.DataFrame(index=testData.index, data=y_pred, columns=[target['colName'] for target in d3mds.problem.get_targets()]) y_pred_df.to_csv(os.path.join(solpath, 'predictions.csv')) # saving the scores.csv file df = pd.DataFrame(columns=['metric', 'value']) df.loc[len(df)] = ['accuracy', score] df.to_csv(os.path.join(solpath, 'scores.csv'))
d3m-model-search-master
test_data/test_cases_only/59_umls/59_umls_solution/src/pipeline.py
from unittest import TestCase from base import AbstractFeatureSelector import numpy as np from scipy import stats from scipy.sparse import issparse from sklearn.feature_selection import f_classif, SelectFromModel, SelectPercentile from sklearn.linear_model import Lasso from sklearn.svm import LinearSVC from sklearn.utils import check_X_y from sklearn.utils.extmath import safe_sparse_dot, row_norms from scipy.linalg import norm # modified to address the issue of centering sparse matrices with a bit of algebra def better_f_regression(X, y, center=True): """Univariate linear regression tests. Quick linear model for testing the effect of a single regressor, sequentially for many regressors. This is done in 2 steps: 1. The cross correlation between each regressor and the target is computed, that is, ((X[:, i] - mean(X[:, i])) * (y - mean_y)) / (std(X[:, i]) * std(y)). 2. It is converted to an F score then to a p-value. Read more in the :ref:`User Guide <univariate_feature_selection>`. Parameters ---------- X : {array-like, sparse matrix} shape = (n_samples, n_features) The set of regressors that will be tested sequentially. y : array of shape(n_samples). The data matrix center : True, bool, If true, X and y will be centered. Returns ------- F : array, shape=(n_features,) F values of features. pval : array, shape=(n_features,) p-values of F-scores. See also -------- f_classif: ANOVA F-value between label/feature for classification tasks. chi2: Chi-squared stats of non-negative features for classification tasks. """ X, y = check_X_y(X, y, ['csr', 'csc', 'coo'], dtype=np.float64) n_samples = X.shape[0] if center: y = y - np.mean(y) if issparse(X): X_means = X.mean(axis=0).getA1() else: X_means = X.mean(axis=0) X_norms = np.sqrt(row_norms(X.T, squared=True) - n_samples*X_means**2) else: X_norms = row_norms(X.T) # compute the correlation corr = safe_sparse_dot(y, X) corr /= X_norms corr /= norm(y) # convert to p-value degrees_of_freedom = y.size - (2 if center else 1) F = corr ** 2 / (1 - corr ** 2) * degrees_of_freedom pv = stats.f.sf(F, 1, degrees_of_freedom) return F, pv class SelectFromLinearSVC(AbstractFeatureSelector): param_distributions = { 'threshold': (1e-5,), 'C': [float(x) for x in np.logspace(-2, 5, 100)] } def __init__(self, threshold=None, penalty='l1', loss='squared_hinge', dual=False, tol=0.0001, C=1.0, fit_intercept=True, random_state=None, max_iter=1000): self.threshold = threshold self.penalty = penalty self.loss = loss self.dual = dual self.tol = tol self.C = C self.fit_intercept = fit_intercept self.random_state = random_state self.max_iter = max_iter def fit(self, X, y): self.linear_svc = LinearSVC(penalty=self.penalty, loss=self.loss, dual=self.dual, tol=self.tol, fit_intercept=self.fit_intercept, random_state=self.random_state, max_iter=self.max_iter) self.linear_svc.fit(X, y) self.select_from_model = SelectFromModel(self.linear_svc, threshold=self.threshold, prefit=True) return self def _get_support_mask(self): return self.select_from_model._get_support_mask() class SelectPercentileClassification(AbstractFeatureSelector, SelectPercentile): param_distributions = { 'score_func': ('f_classif',), 'percentile': [int(x) for x in np.linspace(10, 100, 100)] } score_funcs = { 'f_classif': f_classif } def __init__(self, *args, **kwargs): if 'score_func' in kwargs: kwargs['score_func'] = self.score_funcs[kwargs['score_func']] super().__init__(*args, **kwargs) class SelectFromLasso(AbstractFeatureSelector): param_distributions = { 'threshold': (1e-5,), 'alpha': [float(x) for x in np.logspace(-5, 2, 100)] } def __init__(self, threshold=None, alpha=1.0, fit_intercept=True, normalize=False, max_iter=1000, tol=0.0001, positive=False, selection='cyclic', random_state=None): self.threshold = threshold self.alpha = alpha self.fit_intercept = fit_intercept self.normalize = normalize self.max_iter = max_iter self.tol = tol self.positive = positive self.selection = selection self.random_state = random_state def fit(self, X, y): # NOTE: y is an ndarray of strings self.lasso = Lasso(alpha=self.alpha, fit_intercept=self.fit_intercept, normalize=self.normalize, max_iter=self.max_iter, tol=self.tol, positive=self.positive, selection=self.selection, random_state=self.random_state) self.lasso.fit(X, y) self.select_from_model = SelectFromModel(self.lasso, threshold=self.threshold, prefit=True) return self def _get_support_mask(self): return self.select_from_model._get_support_mask() class SelectPercentileRegression(AbstractFeatureSelector, SelectPercentile): param_distributions = { 'score_func': ('f_regression',), 'percentile': [int(x) for x in np.linspace(10, 100, 100)] } score_funcs = { 'f_regression': better_f_regression } def __init__(self, *args, **kwargs): if 'score_func' in kwargs: kwargs['score_func'] = self.score_funcs[kwargs['score_func']] super().__init__(*args, **kwargs) def fit(self, X, y): # NOTE: y is an ndarray of strings super().fit(X, y) return self
d3m-model-search-master
test_data/test_cases_only/534_cps_85_wages/534_cps_85_wages_solution/modules/feature_selection.py
from base import AbstractEstimator import numpy as np from sklearn.base import BaseEstimator, TransformerMixin from sklearn.kernel_approximation import RBFSampler from sklearn.linear_model import SGDClassifier, SGDRegressor class SGDClassifierEstimator(AbstractEstimator): param_distributions = { 'loss': ('hinge', 'log', 'squared_hinge', 'perceptron'), 'penalty': ('elasticnet',), 'alpha': [float(x) for x in np.logspace(-9, 0, 10)], 'l1_ratio': [float(x) for x in np.linspace(0, 1, 11)], 'fit_intercept': (True, True, True, False) } def __init__(self, *args, **kwargs): self.args = args self.kwargs = kwargs def fit(self, X, y): n_samples = X.shape[0] self.kwargs['n_iter'] = max(5, int(10**6 / n_samples)) self.sgd_classifier = SGDClassifier(*self.args, **self.kwargs) self.sgd_classifier.fit(X, y) def predict(self, X): return self.sgd_classifier.predict(X) class SGDRegressorEstimator(AbstractEstimator): param_distributions = { 'loss': ('squared_loss', 'huber'), 'penalty': ('elasticnet',), 'alpha': [float(x) for x in np.logspace(-9, 0, 10)], 'l1_ratio': [float(x) for x in np.linspace(0, 1, 11)], 'fit_intercept': (True, True, True, False), 'epsilon': [float(x) for x in np.logspace(-2, 0, 5)], 'learning_rate': ('optimal', 'invscaling'), 'eta0': (0.1, 0.01, 0.001), 'power_t': [float(x) for x in np.linspace(0, 1, 5)] } def __init__(self, *args, **kwargs): self.args = args self.kwargs = kwargs def fit(self, X, y): n_samples = X.shape[0] self.kwargs['n_iter'] = max(5, int(10**6 / n_samples)) self.sgd_regressor = SGDRegressor(*self.args, **self.kwargs) self.sgd_regressor.fit(X, y) def predict(self, X): return self.sgd_regressor.predict(X) # TODO: inherit AbstractEstimator, grab param_distributions from cv_setup_map.py in the old slacker, class RBFSamplerSGDClassifierEstimator(BaseEstimator, TransformerMixin): def __init__(self, gamma=1.0, n_components=100, random_state=None, **kwargs): kwargs['random_state'] = random_state self.rbf_sampler = RBFSampler(gamma=gamma, n_components=n_components, random_state=random_state) self.sgdclassifier = SGDClassifier(**kwargs) def fit(self, X, y): X = self.rbf_sampler.fit_transform(X) self.sgdclassifier.fit(X, y) return self def transform(self, X, y=None): return np.sqrt(self.rbf_sampler.n_components) / np.sqrt(2.) * self.rbf_sampler.transform(X) def predict(self, X): return self.sgdclassifier.predict(self.transform(X)) def decision_function(self, X): return self.sgdclassifier.decision_function(self.transform(X)) # TODO: inherit AbstractEstimator, grab param_distributions from cv_setup_map.py in the old slacker, class RBFSamplerSGDRegressorEstimator(BaseEstimator, TransformerMixin): def __init__(self, gamma=1.0, n_components=100, random_state=None, **kwargs): kwargs['random_state'] = random_state self.rbf_sampler = RBFSampler(gamma=gamma, n_components=n_components, random_state=random_state) self.sgdregressor = SGDRegressor(**kwargs) def fit(self, X, y): X = self.rbf_sampler.fit_transform(X) self.sgdregressor.fit(X, y) return self def transform(self, X, y=None): return np.sqrt(self.rbf_sampler.n_components) / np.sqrt(2.) * self.rbf_sampler.transform(X) def predict(self, X): return self.sgdregressor.predict(self.transform(X)) # TODO: Add kernel SVM # TODO: Add kernel ridge regressor # TODO: Add random forests / xgboost
d3m-model-search-master
test_data/test_cases_only/534_cps_85_wages/534_cps_85_wages_solution/modules/estimation.py
d3m-model-search-master
test_data/test_cases_only/534_cps_85_wages/534_cps_85_wages_solution/modules/__init__.py
from collections import defaultdict, OrderedDict import numpy as np from scipy import signal from scipy.sparse import csr_matrix, hstack import pandas as pd from sklearn.base import BaseEstimator, TransformerMixin from sklearn.cluster import MiniBatchKMeans from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import LogisticRegression from sklearn.preprocessing import Imputer, OneHotEncoder, StandardScaler from sklearn.utils.validation import check_is_fitted from base import AbstractFeatureExtractor class DenseMixedStrategyImputer(BaseEstimator, TransformerMixin): def __init__(self, missing_values='NaN', strategies=None, add_missing_indicator=True, verbose=False): self.missing_values = missing_values if strategies is None: raise ValueError('Must provide strategy.') allowed_strategies = ['mean', 'median', 'most_frequent'] if any(s not in allowed_strategies for s in strategies): raise ValueError('Invalid strategy in list.') self.strategies = strategies self.add_missing_indicator = add_missing_indicator self.verbose = verbose def fit(self, X, y=None): n_samples, n_features = X.shape print('n_features',n_features) if len(self.strategies) != n_features: raise ValueError('Number of strategies must equal number of features.') self.impute_strategies = list(set(self.strategies)) self.impute_indices = [np.array([i for i, x in enumerate(self.strategies) if x == s]) for s in self.impute_strategies] self.impute_valid_indices = [] self.imputers = [Imputer(missing_values=self.missing_values, strategy=s, verbose=self.verbose) for s in self.impute_strategies] for indices, imputer in zip(self.impute_indices, self.imputers): imputer.fit(X[:, indices]) valid_mask = np.logical_not(np.isnan(imputer.statistics_)) self.impute_valid_indices.append(indices[valid_mask]) return self def transform(self, X): n_samples, n_features = X.shape if len(self.strategies) != n_features: raise ValueError('Number of strategies must equal number of features.') check_is_fitted(self, 'imputers') if self.add_missing_indicator: output_scale = 2 else: output_scale = 1 X_out = np.zeros((n_samples, output_scale*n_features)) for input_indices, output_indices, imputer in zip(self.impute_indices, self.impute_valid_indices, self.imputers): X_out[:, output_scale*output_indices] = imputer.transform(X[:, input_indices]) if self.add_missing_indicator: X_out[:, np.arange(1, 2*n_features, 2)] = np.isnan(X).astype('float', copy=False) return X_out class DataFrameCategoricalEncoder(BaseEstimator, TransformerMixin): def fit(self, X, y=None): self.code_maps = {} for k in X.columns: self.code_maps[k] = defaultdict(lambda: np.nan) self.code_maps[k].update({v: k for k, v in enumerate(X[k].astype('category').cat.categories)}) return self def transform(self, X): if set(X.columns) != set(self.code_maps): raise ValueError('Columns do not match fit model.') return X.apply(lambda x: x.apply(lambda y: self.code_maps[x.name][y])).as_matrix() class AnnotatedTabularExtractor(AbstractFeatureExtractor): param_distributions = { 'normalize_text': [True, False], 'categorize': [True, False], 'numeric_strategy': ['mean', 'median'], 'add_missing_indicator': [True, False] } def __init__(self, normalize_text=False, categorize=False, numeric_strategy='mean', add_missing_indicator=True): self.normalize_text = normalize_text self.categorize = categorize self.numeric_strategy = numeric_strategy self.add_missing_indicator = add_missing_indicator def set_cols_info(self, cols_info): self.cols_info = cols_info def determine_colType(self, column): variables = self.cols_info for var in variables: var_colName = var['colName'] if str(var_colName) != str(column): continue var_colType = var['colType'] if var_colType in {'categorical', 'boolean'}: return 'categorical' elif var_colType in {'integer', 'real'}: return 'numeric' elif var_colType == 'string': return 'text' elif var_colType == 'dateTime': raise RuntimeError('datTime not implemented in this feature extractor yet !!') def fit_transform(self, df, variables): df = self.copy_normalize_text(df) self.column_types = OrderedDict() for column in df: itype = self.determine_colType(column) # print('itype',itype) self.column_types[column] = itype self.numeric_columns = [column for column, type in self.column_types.items() if type == 'numeric'] self.categorical_columns = [column for column, type in self.column_types.items() if type == 'categorical'] self.text_columns = [column for column, type in self.column_types.items() if type == 'text'] output_arrays = [] if len(self.numeric_columns) > 0: X = df[self.numeric_columns].apply(lambda x: pd.to_numeric(x, errors='coerce')).as_matrix() self.numeric_imputer = DenseMixedStrategyImputer( strategies=[self.numeric_strategy]*len(self.numeric_columns), add_missing_indicator=self.add_missing_indicator ) X = self.numeric_imputer.fit_transform(X) self.numeric_scaler = StandardScaler() output_arrays.append(self.numeric_scaler.fit_transform(X)) if len(self.categorical_columns) > 0: self.categorical_encoder = DataFrameCategoricalEncoder() X = self.categorical_encoder.fit_transform(df[self.categorical_columns]) self.categorical_imputer = DenseMixedStrategyImputer( strategies=['most_frequent']*len(self.categorical_columns), add_missing_indicator=self.add_missing_indicator ) X = self.categorical_imputer.fit_transform(X) self.one_hot_encoder = OneHotEncoder( categorical_features=np.arange(len(self.categorical_columns)) * (2 if self.add_missing_indicator else 1) ) output_arrays.append(self.one_hot_encoder.fit_transform(X)) return hstack([csr_matrix(X) for X in output_arrays], format='csr') def transform(self, df): check_is_fitted(self, 'column_types') if list(df) != list(self.column_types): raise ValueError('Data to be transformed does not match fitting data.') df = self.copy_normalize_text(df) output_arrays = [] if len(self.numeric_columns) > 0: X = df[self.numeric_columns].apply(lambda x: pd.to_numeric(x, errors='coerce')).as_matrix() output_arrays.append(self.numeric_scaler.transform(self.numeric_imputer.transform(X))) if len(self.categorical_columns) > 0: X = self.categorical_encoder.transform(df[self.categorical_columns]) output_arrays.append(self.one_hot_encoder.transform(self.categorical_imputer.transform(X))) return hstack([csr_matrix(X) for X in output_arrays], format='csr') def copy_normalize_text(self, df): df = df.copy() if self.normalize_text: for column in df: try: df[column] = df[column].str.lower().str.strip() except: df[column] = df[column] return df
d3m-model-search-master
test_data/test_cases_only/534_cps_85_wages/534_cps_85_wages_solution/modules/feature_extraction.py