modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-08-30 18:26:50
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 530
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-08-30 18:26:48
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
Word2vec/polyglot_words_embeddings_ilo
|
Word2vec
| 2023-05-28T19:51:31Z | 0 | 0 | null |
[
"word2vec",
"ilo",
"license:gpl-3.0",
"region:us"
] | null | 2023-05-19T22:03:41Z |
---
tags:
- word2vec
language: ilo
license: gpl-3.0
---
## Description
Word embedding model trained by Al-Rfou et al.
## How to use?
```
import pickle
from numpy import dot
from numpy.linalg import norm
from huggingface_hub import hf_hub_download
words, embeddings = pickle.load(open(hf_hub_download(repo_id="Word2vec/polyglot_words_embeddings_en", filename="words_embeddings_en.pkl"), 'rb'),encoding="latin1")
word = "Irish"
a = embeddings[words.index(word)]
most_similar = []
for i in range(len(embeddings)):
if i != words.index(word):
b = embeddings[i]
cos_sim = dot(a, b)/(norm(a)*norm(b))
most_similar.append(cos_sim)
else:
most_similar.append(0)
words[most_similar.index(max(most_similar))]
```
## Citation
```
@InProceedings{polyglot:2013:ACL-CoNLL,
author = {Al-Rfou, Rami and Perozzi, Bryan and Skiena, Steven},
title = {Polyglot: Distributed Word Representations for Multilingual NLP},
booktitle = {Proceedings of the Seventeenth Conference on Computational Natural Language Learning},
month = {August},
year = {2013},
address = {Sofia, Bulgaria},
publisher = {Association for Computational Linguistics},
pages = {183--192},
url = {http://www.aclweb.org/anthology/W13-3520}
}
```
|
Word2vec/polyglot_words_embeddings_fra
|
Word2vec
| 2023-05-28T19:49:42Z | 0 | 0 | null |
[
"word2vec",
"fr",
"license:gpl-3.0",
"region:us"
] | null | 2023-05-19T22:02:20Z |
---
tags:
- word2vec
language: fr
license: gpl-3.0
---
## Description
Word embedding model trained by Al-Rfou et al.
## How to use?
```
import pickle
from numpy import dot
from numpy.linalg import norm
from huggingface_hub import hf_hub_download
words, embeddings = pickle.load(open(hf_hub_download(repo_id="Word2vec/polyglot_words_embeddings_en", filename="words_embeddings_en.pkl"), 'rb'),encoding="latin1")
word = "Irish"
a = embeddings[words.index(word)]
most_similar = []
for i in range(len(embeddings)):
if i != words.index(word):
b = embeddings[i]
cos_sim = dot(a, b)/(norm(a)*norm(b))
most_similar.append(cos_sim)
else:
most_similar.append(0)
words[most_similar.index(max(most_similar))]
```
## Citation
```
@InProceedings{polyglot:2013:ACL-CoNLL,
author = {Al-Rfou, Rami and Perozzi, Bryan and Skiena, Steven},
title = {Polyglot: Distributed Word Representations for Multilingual NLP},
booktitle = {Proceedings of the Seventeenth Conference on Computational Natural Language Learning},
month = {August},
year = {2013},
address = {Sofia, Bulgaria},
publisher = {Association for Computational Linguistics},
pages = {183--192},
url = {http://www.aclweb.org/anthology/W13-3520}
}
```
|
Word2vec/polyglot_words_embeddings_hsb
|
Word2vec
| 2023-05-28T19:48:40Z | 0 | 0 | null |
[
"word2vec",
"hsb",
"license:gpl-3.0",
"region:us"
] | null | 2023-05-19T22:03:15Z |
---
tags:
- word2vec
language: hsb
license: gpl-3.0
---
## Description
Word embedding model trained by Al-Rfou et al.
## How to use?
```
import pickle
from numpy import dot
from numpy.linalg import norm
from huggingface_hub import hf_hub_download
words, embeddings = pickle.load(open(hf_hub_download(repo_id="Word2vec/polyglot_words_embeddings_en", filename="words_embeddings_en.pkl"), 'rb'),encoding="latin1")
word = "Irish"
a = embeddings[words.index(word)]
most_similar = []
for i in range(len(embeddings)):
if i != words.index(word):
b = embeddings[i]
cos_sim = dot(a, b)/(norm(a)*norm(b))
most_similar.append(cos_sim)
else:
most_similar.append(0)
words[most_similar.index(max(most_similar))]
```
## Citation
```
@InProceedings{polyglot:2013:ACL-CoNLL,
author = {Al-Rfou, Rami and Perozzi, Bryan and Skiena, Steven},
title = {Polyglot: Distributed Word Representations for Multilingual NLP},
booktitle = {Proceedings of the Seventeenth Conference on Computational Natural Language Learning},
month = {August},
year = {2013},
address = {Sofia, Bulgaria},
publisher = {Association for Computational Linguistics},
pages = {183--192},
url = {http://www.aclweb.org/anthology/W13-3520}
}
```
|
Word2vec/polyglot_words_embeddings_hif
|
Word2vec
| 2023-05-28T19:48:23Z | 0 | 0 | null |
[
"word2vec",
"hif",
"license:gpl-3.0",
"region:us"
] | null | 2023-05-19T22:03:06Z |
---
tags:
- word2vec
language: hif
license: gpl-3.0
---
## Description
Word embedding model trained by Al-Rfou et al.
## How to use?
```
import pickle
from numpy import dot
from numpy.linalg import norm
from huggingface_hub import hf_hub_download
words, embeddings = pickle.load(open(hf_hub_download(repo_id="Word2vec/polyglot_words_embeddings_en", filename="words_embeddings_en.pkl"), 'rb'),encoding="latin1")
word = "Irish"
a = embeddings[words.index(word)]
most_similar = []
for i in range(len(embeddings)):
if i != words.index(word):
b = embeddings[i]
cos_sim = dot(a, b)/(norm(a)*norm(b))
most_similar.append(cos_sim)
else:
most_similar.append(0)
words[most_similar.index(max(most_similar))]
```
## Citation
```
@InProceedings{polyglot:2013:ACL-CoNLL,
author = {Al-Rfou, Rami and Perozzi, Bryan and Skiena, Steven},
title = {Polyglot: Distributed Word Representations for Multilingual NLP},
booktitle = {Proceedings of the Seventeenth Conference on Computational Natural Language Learning},
month = {August},
year = {2013},
address = {Sofia, Bulgaria},
publisher = {Association for Computational Linguistics},
pages = {183--192},
url = {http://www.aclweb.org/anthology/W13-3520}
}
```
|
Word2vec/polyglot_words_embeddings_bos
|
Word2vec
| 2023-05-28T19:44:39Z | 0 | 0 | null |
[
"word2vec",
"bs",
"license:gpl-3.0",
"region:us"
] | null | 2023-05-19T22:00:40Z |
---
tags:
- word2vec
language: bs
license: gpl-3.0
---
## Description
Word embedding model trained by Al-Rfou et al.
## How to use?
```
import pickle
from numpy import dot
from numpy.linalg import norm
from huggingface_hub import hf_hub_download
words, embeddings = pickle.load(open(hf_hub_download(repo_id="Word2vec/polyglot_words_embeddings_en", filename="words_embeddings_en.pkl"), 'rb'),encoding="latin1")
word = "Irish"
a = embeddings[words.index(word)]
most_similar = []
for i in range(len(embeddings)):
if i != words.index(word):
b = embeddings[i]
cos_sim = dot(a, b)/(norm(a)*norm(b))
most_similar.append(cos_sim)
else:
most_similar.append(0)
words[most_similar.index(max(most_similar))]
```
## Citation
```
@InProceedings{polyglot:2013:ACL-CoNLL,
author = {Al-Rfou, Rami and Perozzi, Bryan and Skiena, Steven},
title = {Polyglot: Distributed Word Representations for Multilingual NLP},
booktitle = {Proceedings of the Seventeenth Conference on Computational Natural Language Learning},
month = {August},
year = {2013},
address = {Sofia, Bulgaria},
publisher = {Association for Computational Linguistics},
pages = {183--192},
url = {http://www.aclweb.org/anthology/W13-3520}
}
```
|
Word2vec/polyglot_words_embeddings_cat
|
Word2vec
| 2023-05-28T19:44:29Z | 0 | 0 | null |
[
"word2vec",
"ca",
"license:gpl-3.0",
"region:us"
] | null | 2023-05-19T22:00:46Z |
---
tags:
- word2vec
language: ca
license: gpl-3.0
---
## Description
Word embedding model trained by Al-Rfou et al.
## How to use?
```
import pickle
from numpy import dot
from numpy.linalg import norm
from huggingface_hub import hf_hub_download
words, embeddings = pickle.load(open(hf_hub_download(repo_id="Word2vec/polyglot_words_embeddings_en", filename="words_embeddings_en.pkl"), 'rb'),encoding="latin1")
word = "Irish"
a = embeddings[words.index(word)]
most_similar = []
for i in range(len(embeddings)):
if i != words.index(word):
b = embeddings[i]
cos_sim = dot(a, b)/(norm(a)*norm(b))
most_similar.append(cos_sim)
else:
most_similar.append(0)
words[most_similar.index(max(most_similar))]
```
## Citation
```
@InProceedings{polyglot:2013:ACL-CoNLL,
author = {Al-Rfou, Rami and Perozzi, Bryan and Skiena, Steven},
title = {Polyglot: Distributed Word Representations for Multilingual NLP},
booktitle = {Proceedings of the Seventeenth Conference on Computational Natural Language Learning},
month = {August},
year = {2013},
address = {Sofia, Bulgaria},
publisher = {Association for Computational Linguistics},
pages = {183--192},
url = {http://www.aclweb.org/anthology/W13-3520}
}
```
|
Word2vec/polyglot_words_embeddings_che
|
Word2vec
| 2023-05-28T19:44:21Z | 0 | 0 | null |
[
"word2vec",
"ce",
"license:gpl-3.0",
"region:us"
] | null | 2023-05-19T22:00:51Z |
---
tags:
- word2vec
language: ce
license: gpl-3.0
---
## Description
Word embedding model trained by Al-Rfou et al.
## How to use?
```
import pickle
from numpy import dot
from numpy.linalg import norm
from huggingface_hub import hf_hub_download
words, embeddings = pickle.load(open(hf_hub_download(repo_id="Word2vec/polyglot_words_embeddings_en", filename="words_embeddings_en.pkl"), 'rb'),encoding="latin1")
word = "Irish"
a = embeddings[words.index(word)]
most_similar = []
for i in range(len(embeddings)):
if i != words.index(word):
b = embeddings[i]
cos_sim = dot(a, b)/(norm(a)*norm(b))
most_similar.append(cos_sim)
else:
most_similar.append(0)
words[most_similar.index(max(most_similar))]
```
## Citation
```
@InProceedings{polyglot:2013:ACL-CoNLL,
author = {Al-Rfou, Rami and Perozzi, Bryan and Skiena, Steven},
title = {Polyglot: Distributed Word Representations for Multilingual NLP},
booktitle = {Proceedings of the Seventeenth Conference on Computational Natural Language Learning},
month = {August},
year = {2013},
address = {Sofia, Bulgaria},
publisher = {Association for Computational Linguistics},
pages = {183--192},
url = {http://www.aclweb.org/anthology/W13-3520}
}
```
|
Word2vec/polyglot_words_embeddings_ces
|
Word2vec
| 2023-05-28T19:43:55Z | 0 | 0 | null |
[
"word2vec",
"cs",
"license:gpl-3.0",
"region:us"
] | null | 2023-05-19T22:00:58Z |
---
tags:
- word2vec
language: cs
license: gpl-3.0
---
## Description
Word embedding model trained by Al-Rfou et al.
## How to use?
```
import pickle
from numpy import dot
from numpy.linalg import norm
from huggingface_hub import hf_hub_download
words, embeddings = pickle.load(open(hf_hub_download(repo_id="Word2vec/polyglot_words_embeddings_en", filename="words_embeddings_en.pkl"), 'rb'),encoding="latin1")
word = "Irish"
a = embeddings[words.index(word)]
most_similar = []
for i in range(len(embeddings)):
if i != words.index(word):
b = embeddings[i]
cos_sim = dot(a, b)/(norm(a)*norm(b))
most_similar.append(cos_sim)
else:
most_similar.append(0)
words[most_similar.index(max(most_similar))]
```
## Citation
```
@InProceedings{polyglot:2013:ACL-CoNLL,
author = {Al-Rfou, Rami and Perozzi, Bryan and Skiena, Steven},
title = {Polyglot: Distributed Word Representations for Multilingual NLP},
booktitle = {Proceedings of the Seventeenth Conference on Computational Natural Language Learning},
month = {August},
year = {2013},
address = {Sofia, Bulgaria},
publisher = {Association for Computational Linguistics},
pages = {183--192},
url = {http://www.aclweb.org/anthology/W13-3520}
}
```
|
Word2vec/polyglot_words_embeddings_chv
|
Word2vec
| 2023-05-28T19:43:45Z | 0 | 0 | null |
[
"word2vec",
"cv",
"license:gpl-3.0",
"region:us"
] | null | 2023-05-19T22:01:03Z |
---
tags:
- word2vec
language: cv
license: gpl-3.0
---
## Description
Word embedding model trained by Al-Rfou et al.
## How to use?
```
import pickle
from numpy import dot
from numpy.linalg import norm
from huggingface_hub import hf_hub_download
words, embeddings = pickle.load(open(hf_hub_download(repo_id="Word2vec/polyglot_words_embeddings_en", filename="words_embeddings_en.pkl"), 'rb'),encoding="latin1")
word = "Irish"
a = embeddings[words.index(word)]
most_similar = []
for i in range(len(embeddings)):
if i != words.index(word):
b = embeddings[i]
cos_sim = dot(a, b)/(norm(a)*norm(b))
most_similar.append(cos_sim)
else:
most_similar.append(0)
words[most_similar.index(max(most_similar))]
```
## Citation
```
@InProceedings{polyglot:2013:ACL-CoNLL,
author = {Al-Rfou, Rami and Perozzi, Bryan and Skiena, Steven},
title = {Polyglot: Distributed Word Representations for Multilingual NLP},
booktitle = {Proceedings of the Seventeenth Conference on Computational Natural Language Learning},
month = {August},
year = {2013},
address = {Sofia, Bulgaria},
publisher = {Association for Computational Linguistics},
pages = {183--192},
url = {http://www.aclweb.org/anthology/W13-3520}
}
```
|
Word2vec/polyglot_words_embeddings_cym
|
Word2vec
| 2023-05-28T19:43:35Z | 0 | 0 | null |
[
"word2vec",
"cy",
"license:gpl-3.0",
"region:us"
] | null | 2023-05-19T22:01:06Z |
---
tags:
- word2vec
language: cy
license: gpl-3.0
---
## Description
Word embedding model trained by Al-Rfou et al.
## How to use?
```
import pickle
from numpy import dot
from numpy.linalg import norm
from huggingface_hub import hf_hub_download
words, embeddings = pickle.load(open(hf_hub_download(repo_id="Word2vec/polyglot_words_embeddings_en", filename="words_embeddings_en.pkl"), 'rb'),encoding="latin1")
word = "Irish"
a = embeddings[words.index(word)]
most_similar = []
for i in range(len(embeddings)):
if i != words.index(word):
b = embeddings[i]
cos_sim = dot(a, b)/(norm(a)*norm(b))
most_similar.append(cos_sim)
else:
most_similar.append(0)
words[most_similar.index(max(most_similar))]
```
## Citation
```
@InProceedings{polyglot:2013:ACL-CoNLL,
author = {Al-Rfou, Rami and Perozzi, Bryan and Skiena, Steven},
title = {Polyglot: Distributed Word Representations for Multilingual NLP},
booktitle = {Proceedings of the Seventeenth Conference on Computational Natural Language Learning},
month = {August},
year = {2013},
address = {Sofia, Bulgaria},
publisher = {Association for Computational Linguistics},
pages = {183--192},
url = {http://www.aclweb.org/anthology/W13-3520}
}
```
|
Word2vec/polyglot_words_embeddings_dan
|
Word2vec
| 2023-05-28T19:43:21Z | 0 | 0 | null |
[
"word2vec",
"da",
"license:gpl-3.0",
"region:us"
] | null | 2023-05-19T22:01:10Z |
---
tags:
- word2vec
language: da
license: gpl-3.0
---
## Description
Word embedding model trained by Al-Rfou et al.
## How to use?
```
import pickle
from numpy import dot
from numpy.linalg import norm
from huggingface_hub import hf_hub_download
words, embeddings = pickle.load(open(hf_hub_download(repo_id="Word2vec/polyglot_words_embeddings_en", filename="words_embeddings_en.pkl"), 'rb'),encoding="latin1")
word = "Irish"
a = embeddings[words.index(word)]
most_similar = []
for i in range(len(embeddings)):
if i != words.index(word):
b = embeddings[i]
cos_sim = dot(a, b)/(norm(a)*norm(b))
most_similar.append(cos_sim)
else:
most_similar.append(0)
words[most_similar.index(max(most_similar))]
```
## Citation
```
@InProceedings{polyglot:2013:ACL-CoNLL,
author = {Al-Rfou, Rami and Perozzi, Bryan and Skiena, Steven},
title = {Polyglot: Distributed Word Representations for Multilingual NLP},
booktitle = {Proceedings of the Seventeenth Conference on Computational Natural Language Learning},
month = {August},
year = {2013},
address = {Sofia, Bulgaria},
publisher = {Association for Computational Linguistics},
pages = {183--192},
url = {http://www.aclweb.org/anthology/W13-3520}
}
```
|
Word2vec/polyglot_words_embeddings_deu
|
Word2vec
| 2023-05-28T19:43:10Z | 0 | 0 | null |
[
"word2vec",
"de",
"license:gpl-3.0",
"region:us"
] | null | 2023-05-19T22:01:15Z |
---
tags:
- word2vec
language: de
license: gpl-3.0
---
## Description
Word embedding model trained by Al-Rfou et al.
## How to use?
```
import pickle
from numpy import dot
from numpy.linalg import norm
from huggingface_hub import hf_hub_download
words, embeddings = pickle.load(open(hf_hub_download(repo_id="Word2vec/polyglot_words_embeddings_en", filename="words_embeddings_en.pkl"), 'rb'),encoding="latin1")
word = "Irish"
a = embeddings[words.index(word)]
most_similar = []
for i in range(len(embeddings)):
if i != words.index(word):
b = embeddings[i]
cos_sim = dot(a, b)/(norm(a)*norm(b))
most_similar.append(cos_sim)
else:
most_similar.append(0)
words[most_similar.index(max(most_similar))]
```
## Citation
```
@InProceedings{polyglot:2013:ACL-CoNLL,
author = {Al-Rfou, Rami and Perozzi, Bryan and Skiena, Steven},
title = {Polyglot: Distributed Word Representations for Multilingual NLP},
booktitle = {Proceedings of the Seventeenth Conference on Computational Natural Language Learning},
month = {August},
year = {2013},
address = {Sofia, Bulgaria},
publisher = {Association for Computational Linguistics},
pages = {183--192},
url = {http://www.aclweb.org/anthology/W13-3520}
}
```
|
Word2vec/polyglot_words_embeddings_div
|
Word2vec
| 2023-05-28T19:42:48Z | 0 | 0 | null |
[
"word2vec",
"dv",
"license:gpl-3.0",
"region:us"
] | null | 2023-05-19T22:01:23Z |
---
tags:
- word2vec
language: dv
license: gpl-3.0
---
## Description
Word embedding model trained by Al-Rfou et al.
## How to use?
```
import pickle
from numpy import dot
from numpy.linalg import norm
from huggingface_hub import hf_hub_download
words, embeddings = pickle.load(open(hf_hub_download(repo_id="Word2vec/polyglot_words_embeddings_en", filename="words_embeddings_en.pkl"), 'rb'),encoding="latin1")
word = "Irish"
a = embeddings[words.index(word)]
most_similar = []
for i in range(len(embeddings)):
if i != words.index(word):
b = embeddings[i]
cos_sim = dot(a, b)/(norm(a)*norm(b))
most_similar.append(cos_sim)
else:
most_similar.append(0)
words[most_similar.index(max(most_similar))]
```
## Citation
```
@InProceedings{polyglot:2013:ACL-CoNLL,
author = {Al-Rfou, Rami and Perozzi, Bryan and Skiena, Steven},
title = {Polyglot: Distributed Word Representations for Multilingual NLP},
booktitle = {Proceedings of the Seventeenth Conference on Computational Natural Language Learning},
month = {August},
year = {2013},
address = {Sofia, Bulgaria},
publisher = {Association for Computational Linguistics},
pages = {183--192},
url = {http://www.aclweb.org/anthology/W13-3520}
}
```
|
Word2vec/polyglot_words_embeddings_eng
|
Word2vec
| 2023-05-28T19:41:40Z | 0 | 0 | null |
[
"word2vec",
"en",
"license:gpl-3.0",
"region:us"
] | null | 2023-05-19T22:01:36Z |
---
tags:
- word2vec
language: en
license: gpl-3.0
---
## Description
Word embedding model trained by Al-Rfou et al.
## How to use?
```
import pickle
from numpy import dot
from numpy.linalg import norm
from huggingface_hub import hf_hub_download
words, embeddings = pickle.load(open(hf_hub_download(repo_id="Word2vec/polyglot_words_embeddings_en", filename="words_embeddings_en.pkl"), 'rb'),encoding="latin1")
word = "Irish"
a = embeddings[words.index(word)]
most_similar = []
for i in range(len(embeddings)):
if i != words.index(word):
b = embeddings[i]
cos_sim = dot(a, b)/(norm(a)*norm(b))
most_similar.append(cos_sim)
else:
most_similar.append(0)
words[most_similar.index(max(most_similar))]
```
## Citation
```
@InProceedings{polyglot:2013:ACL-CoNLL,
author = {Al-Rfou, Rami and Perozzi, Bryan and Skiena, Steven},
title = {Polyglot: Distributed Word Representations for Multilingual NLP},
booktitle = {Proceedings of the Seventeenth Conference on Computational Natural Language Learning},
month = {August},
year = {2013},
address = {Sofia, Bulgaria},
publisher = {Association for Computational Linguistics},
pages = {183--192},
url = {http://www.aclweb.org/anthology/W13-3520}
}
```
|
Word2vec/polyglot_words_embeddings_spa
|
Word2vec
| 2023-05-28T19:37:07Z | 0 | 2 | null |
[
"word2vec",
"es",
"license:gpl-3.0",
"region:us"
] | null | 2023-05-19T22:01:47Z |
---
tags:
- word2vec
language: es
license: gpl-3.0
---
## Description
Word embedding model trained by Al-Rfou et al.
## How to use?
```
import pickle
from numpy import dot
from numpy.linalg import norm
from huggingface_hub import hf_hub_download
words, embeddings = pickle.load(open(hf_hub_download(repo_id="Word2vec/polyglot_words_embeddings_en", filename="words_embeddings_en.pkl"), 'rb'),encoding="latin1")
word = "Irish"
a = embeddings[words.index(word)]
most_similar = []
for i in range(len(embeddings)):
if i != words.index(word):
b = embeddings[i]
cos_sim = dot(a, b)/(norm(a)*norm(b))
most_similar.append(cos_sim)
else:
most_similar.append(0)
words[most_similar.index(max(most_similar))]
```
## Citation
```
@InProceedings{polyglot:2013:ACL-CoNLL,
author = {Al-Rfou, Rami and Perozzi, Bryan and Skiena, Steven},
title = {Polyglot: Distributed Word Representations for Multilingual NLP},
booktitle = {Proceedings of the Seventeenth Conference on Computational Natural Language Learning},
month = {August},
year = {2013},
address = {Sofia, Bulgaria},
publisher = {Association for Computational Linguistics},
pages = {183--192},
url = {http://www.aclweb.org/anthology/W13-3520}
}
```
|
Word2vec/polyglot_words_embeddings_est
|
Word2vec
| 2023-05-28T19:36:57Z | 0 | 0 | null |
[
"word2vec",
"et",
"license:gpl-3.0",
"region:us"
] | null | 2023-05-19T22:01:52Z |
---
tags:
- word2vec
language: et
license: gpl-3.0
---
## Description
Word embedding model trained by Al-Rfou et al.
## How to use?
```
import pickle
from numpy import dot
from numpy.linalg import norm
from huggingface_hub import hf_hub_download
words, embeddings = pickle.load(open(hf_hub_download(repo_id="Word2vec/polyglot_words_embeddings_en", filename="words_embeddings_en.pkl"), 'rb'),encoding="latin1")
word = "Irish"
a = embeddings[words.index(word)]
most_similar = []
for i in range(len(embeddings)):
if i != words.index(word):
b = embeddings[i]
cos_sim = dot(a, b)/(norm(a)*norm(b))
most_similar.append(cos_sim)
else:
most_similar.append(0)
words[most_similar.index(max(most_similar))]
```
## Citation
```
@InProceedings{polyglot:2013:ACL-CoNLL,
author = {Al-Rfou, Rami and Perozzi, Bryan and Skiena, Steven},
title = {Polyglot: Distributed Word Representations for Multilingual NLP},
booktitle = {Proceedings of the Seventeenth Conference on Computational Natural Language Learning},
month = {August},
year = {2013},
address = {Sofia, Bulgaria},
publisher = {Association for Computational Linguistics},
pages = {183--192},
url = {http://www.aclweb.org/anthology/W13-3520}
}
```
|
Word2vec/polyglot_words_embeddings_ast
|
Word2vec
| 2023-05-28T19:21:25Z | 0 | 0 | null |
[
"word2vec",
"ast",
"license:gpl-3.0",
"region:us"
] | null | 2023-05-19T21:59:59Z |
---
tags:
- word2vec
language: ast
license: gpl-3.0
---
## Description
Word embedding model trained by Al-Rfou et al.
## How to use?
```
import pickle
from numpy import dot
from numpy.linalg import norm
from huggingface_hub import hf_hub_download
words, embeddings = pickle.load(open(hf_hub_download(repo_id="Word2vec/polyglot_words_embeddings_en", filename="words_embeddings_en.pkl"), 'rb'),encoding="latin1")
word = "Irish"
a = embeddings[words.index(word)]
most_similar = []
for i in range(len(embeddings)):
if i != words.index(word):
b = embeddings[i]
cos_sim = dot(a, b)/(norm(a)*norm(b))
most_similar.append(cos_sim)
else:
most_similar.append(0)
words[most_similar.index(max(most_similar))]
```
## Citation
```
@InProceedings{polyglot:2013:ACL-CoNLL,
author = {Al-Rfou, Rami and Perozzi, Bryan and Skiena, Steven},
title = {Polyglot: Distributed Word Representations for Multilingual NLP},
booktitle = {Proceedings of the Seventeenth Conference on Computational Natural Language Learning},
month = {August},
year = {2013},
address = {Sofia, Bulgaria},
publisher = {Association for Computational Linguistics},
pages = {183--192},
url = {http://www.aclweb.org/anthology/W13-3520}
}
```
|
Word2vec/polyglot_words_embeddings_aze
|
Word2vec
| 2023-05-28T19:21:16Z | 0 | 0 | null |
[
"word2vec",
"az",
"license:gpl-3.0",
"region:us"
] | null | 2023-05-19T22:00:03Z |
---
tags:
- word2vec
language: az
license: gpl-3.0
---
## Description
Word embedding model trained by Al-Rfou et al.
## How to use?
```
import pickle
from numpy import dot
from numpy.linalg import norm
from huggingface_hub import hf_hub_download
words, embeddings = pickle.load(open(hf_hub_download(repo_id="Word2vec/polyglot_words_embeddings_en", filename="words_embeddings_en.pkl"), 'rb'),encoding="latin1")
word = "Irish"
a = embeddings[words.index(word)]
most_similar = []
for i in range(len(embeddings)):
if i != words.index(word):
b = embeddings[i]
cos_sim = dot(a, b)/(norm(a)*norm(b))
most_similar.append(cos_sim)
else:
most_similar.append(0)
words[most_similar.index(max(most_similar))]
```
## Citation
```
@InProceedings{polyglot:2013:ACL-CoNLL,
author = {Al-Rfou, Rami and Perozzi, Bryan and Skiena, Steven},
title = {Polyglot: Distributed Word Representations for Multilingual NLP},
booktitle = {Proceedings of the Seventeenth Conference on Computational Natural Language Learning},
month = {August},
year = {2013},
address = {Sofia, Bulgaria},
publisher = {Association for Computational Linguistics},
pages = {183--192},
url = {http://www.aclweb.org/anthology/W13-3520}
}
```
|
asenella/mmnist_MMVAEPlusconfig2_seed_2_ratio_02_c
|
asenella
| 2023-05-28T19:20:59Z | 0 | 0 | null |
[
"multivae",
"en",
"license:apache-2.0",
"region:us"
] | null | 2023-05-25T10:42:03Z |
---
language: en
tags:
- multivae
license: apache-2.0
---
### Downloading this model from the Hub
This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub`
```python
>>> from multivae.models import AutoModel
>>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name")
```
|
Word2vec/polyglot_words_embeddings_bul
|
Word2vec
| 2023-05-28T19:20:32Z | 0 | 4 | null |
[
"word2vec",
"bg",
"license:gpl-3.0",
"region:us"
] | null | 2023-05-19T22:00:21Z |
---
tags:
- word2vec
language: bg
license: gpl-3.0
---
## Description
Word embedding model trained by Al-Rfou et al.
## How to use?
```
import pickle
from numpy import dot
from numpy.linalg import norm
from huggingface_hub import hf_hub_download
words, embeddings = pickle.load(open(hf_hub_download(repo_id="Word2vec/polyglot_words_embeddings_en", filename="words_embeddings_en.pkl"), 'rb'),encoding="latin1")
word = "Irish"
a = embeddings[words.index(word)]
most_similar = []
for i in range(len(embeddings)):
if i != words.index(word):
b = embeddings[i]
cos_sim = dot(a, b)/(norm(a)*norm(b))
most_similar.append(cos_sim)
else:
most_similar.append(0)
words[most_similar.index(max(most_similar))]
```
## Citation
```
@InProceedings{polyglot:2013:ACL-CoNLL,
author = {Al-Rfou, Rami and Perozzi, Bryan and Skiena, Steven},
title = {Polyglot: Distributed Word Representations for Multilingual NLP},
booktitle = {Proceedings of the Seventeenth Conference on Computational Natural Language Learning},
month = {August},
year = {2013},
address = {Sofia, Bulgaria},
publisher = {Association for Computational Linguistics},
pages = {183--192},
url = {http://www.aclweb.org/anthology/W13-3520}
}
```
|
Word2vec/polyglot_words_embeddings_bpy
|
Word2vec
| 2023-05-28T19:19:50Z | 0 | 0 | null |
[
"word2vec",
"bpy",
"license:gpl-3.0",
"region:us"
] | null | 2023-05-19T22:00:33Z |
---
tags:
- word2vec
language: bpy
license: gpl-3.0
---
## Description
Word embedding model trained by Al-Rfou et al.
## How to use?
```
import pickle
from numpy import dot
from numpy.linalg import norm
from huggingface_hub import hf_hub_download
words, embeddings = pickle.load(open(hf_hub_download(repo_id="Word2vec/polyglot_words_embeddings_en", filename="words_embeddings_en.pkl"), 'rb'),encoding="latin1")
word = "Irish"
a = embeddings[words.index(word)]
most_similar = []
for i in range(len(embeddings)):
if i != words.index(word):
b = embeddings[i]
cos_sim = dot(a, b)/(norm(a)*norm(b))
most_similar.append(cos_sim)
else:
most_similar.append(0)
words[most_similar.index(max(most_similar))]
```
## Citation
```
@InProceedings{polyglot:2013:ACL-CoNLL,
author = {Al-Rfou, Rami and Perozzi, Bryan and Skiena, Steven},
title = {Polyglot: Distributed Word Representations for Multilingual NLP},
booktitle = {Proceedings of the Seventeenth Conference on Computational Natural Language Learning},
month = {August},
year = {2013},
address = {Sofia, Bulgaria},
publisher = {Association for Computational Linguistics},
pages = {183--192},
url = {http://www.aclweb.org/anthology/W13-3520}
}
```
|
Word2vec/polyglot_words_embeddings_amh
|
Word2vec
| 2023-05-28T19:19:41Z | 0 | 0 | null |
[
"word2vec",
"am",
"license:gpl-3.0",
"region:us"
] | null | 2023-05-19T21:59:41Z |
---
tags:
- word2vec
language: am
license: gpl-3.0
---
## Description
Word embedding model trained by Al-Rfou et al.
## How to use?
```
import pickle
from numpy import dot
from numpy.linalg import norm
from huggingface_hub import hf_hub_download
words, embeddings = pickle.load(open(hf_hub_download(repo_id="Word2vec/polyglot_words_embeddings_en", filename="words_embeddings_en.pkl"), 'rb'),encoding="latin1")
word = "Irish"
a = embeddings[words.index(word)]
most_similar = []
for i in range(len(embeddings)):
if i != words.index(word):
b = embeddings[i]
cos_sim = dot(a, b)/(norm(a)*norm(b))
most_similar.append(cos_sim)
else:
most_similar.append(0)
words[most_similar.index(max(most_similar))]
```
## Citation
```
@InProceedings{polyglot:2013:ACL-CoNLL,
author = {Al-Rfou, Rami and Perozzi, Bryan and Skiena, Steven},
title = {Polyglot: Distributed Word Representations for Multilingual NLP},
booktitle = {Proceedings of the Seventeenth Conference on Computational Natural Language Learning},
month = {August},
year = {2013},
address = {Sofia, Bulgaria},
publisher = {Association for Computational Linguistics},
pages = {183--192},
url = {http://www.aclweb.org/anthology/W13-3520}
}
```
|
Word2vec/polyglot_words_embeddings_nld
|
Word2vec
| 2023-05-28T19:14:08Z | 0 | 0 | null |
[
"word2vec",
"nl",
"license:gpl-3.0",
"region:us"
] | null | 2023-05-19T22:05:40Z |
---
tags:
- word2vec
language: nl
license: gpl-3.0
---
## Description
Word embedding model trained by Al-Rfou et al.
## How to use?
```
import pickle
from numpy import dot
from numpy.linalg import norm
from huggingface_hub import hf_hub_download
words, embeddings = pickle.load(open(hf_hub_download(repo_id="Word2vec/polyglot_words_embeddings_en", filename="words_embeddings_en.pkl"), 'rb'),encoding="latin1")
word = "Irish"
a = embeddings[words.index(word)]
most_similar = []
for i in range(len(embeddings)):
if i != words.index(word):
b = embeddings[i]
cos_sim = dot(a, b)/(norm(a)*norm(b))
most_similar.append(cos_sim)
else:
most_similar.append(0)
words[most_similar.index(max(most_similar))]
```
## Citation
```
@InProceedings{polyglot:2013:ACL-CoNLL,
author = {Al-Rfou, Rami and Perozzi, Bryan and Skiena, Steven},
title = {Polyglot: Distributed Word Representations for Multilingual NLP},
booktitle = {Proceedings of the Seventeenth Conference on Computational Natural Language Learning},
month = {August},
year = {2013},
address = {Sofia, Bulgaria},
publisher = {Association for Computational Linguistics},
pages = {183--192},
url = {http://www.aclweb.org/anthology/W13-3520}
}
```
|
Word2vec/polyglot_words_embeddings_nno
|
Word2vec
| 2023-05-28T19:13:59Z | 0 | 0 | null |
[
"word2vec",
"nn",
"license:gpl-3.0",
"region:us"
] | null | 2023-05-19T22:05:45Z |
---
tags:
- word2vec
language: nn
license: gpl-3.0
---
## Description
Word embedding model trained by Al-Rfou et al.
## How to use?
```
import pickle
from numpy import dot
from numpy.linalg import norm
from huggingface_hub import hf_hub_download
words, embeddings = pickle.load(open(hf_hub_download(repo_id="Word2vec/polyglot_words_embeddings_en", filename="words_embeddings_en.pkl"), 'rb'),encoding="latin1")
word = "Irish"
a = embeddings[words.index(word)]
most_similar = []
for i in range(len(embeddings)):
if i != words.index(word):
b = embeddings[i]
cos_sim = dot(a, b)/(norm(a)*norm(b))
most_similar.append(cos_sim)
else:
most_similar.append(0)
words[most_similar.index(max(most_similar))]
```
## Citation
```
@InProceedings{polyglot:2013:ACL-CoNLL,
author = {Al-Rfou, Rami and Perozzi, Bryan and Skiena, Steven},
title = {Polyglot: Distributed Word Representations for Multilingual NLP},
booktitle = {Proceedings of the Seventeenth Conference on Computational Natural Language Learning},
month = {August},
year = {2013},
address = {Sofia, Bulgaria},
publisher = {Association for Computational Linguistics},
pages = {183--192},
url = {http://www.aclweb.org/anthology/W13-3520}
}
```
|
Word2vec/polyglot_words_embeddings_ori
|
Word2vec
| 2023-05-28T19:13:23Z | 0 | 0 | null |
[
"word2vec",
"or",
"license:gpl-3.0",
"region:us"
] | null | 2023-05-19T22:06:03Z |
---
tags:
- word2vec
language: or
license: gpl-3.0
---
## Description
Word embedding model trained by Al-Rfou et al.
## How to use?
```
import pickle
from numpy import dot
from numpy.linalg import norm
from huggingface_hub import hf_hub_download
words, embeddings = pickle.load(open(hf_hub_download(repo_id="Word2vec/polyglot_words_embeddings_en", filename="words_embeddings_en.pkl"), 'rb'),encoding="latin1")
word = "Irish"
a = embeddings[words.index(word)]
most_similar = []
for i in range(len(embeddings)):
if i != words.index(word):
b = embeddings[i]
cos_sim = dot(a, b)/(norm(a)*norm(b))
most_similar.append(cos_sim)
else:
most_similar.append(0)
words[most_similar.index(max(most_similar))]
```
## Citation
```
@InProceedings{polyglot:2013:ACL-CoNLL,
author = {Al-Rfou, Rami and Perozzi, Bryan and Skiena, Steven},
title = {Polyglot: Distributed Word Representations for Multilingual NLP},
booktitle = {Proceedings of the Seventeenth Conference on Computational Natural Language Learning},
month = {August},
year = {2013},
address = {Sofia, Bulgaria},
publisher = {Association for Computational Linguistics},
pages = {183--192},
url = {http://www.aclweb.org/anthology/W13-3520}
}
```
|
Word2vec/polyglot_words_embeddings_oss
|
Word2vec
| 2023-05-28T19:13:14Z | 0 | 0 | null |
[
"word2vec",
"os",
"license:gpl-3.0",
"region:us"
] | null | 2023-05-19T22:06:07Z |
---
tags:
- word2vec
language: os
license: gpl-3.0
---
## Description
Word embedding model trained by Al-Rfou et al.
## How to use?
```
import pickle
from numpy import dot
from numpy.linalg import norm
from huggingface_hub import hf_hub_download
words, embeddings = pickle.load(open(hf_hub_download(repo_id="Word2vec/polyglot_words_embeddings_en", filename="words_embeddings_en.pkl"), 'rb'),encoding="latin1")
word = "Irish"
a = embeddings[words.index(word)]
most_similar = []
for i in range(len(embeddings)):
if i != words.index(word):
b = embeddings[i]
cos_sim = dot(a, b)/(norm(a)*norm(b))
most_similar.append(cos_sim)
else:
most_similar.append(0)
words[most_similar.index(max(most_similar))]
```
## Citation
```
@InProceedings{polyglot:2013:ACL-CoNLL,
author = {Al-Rfou, Rami and Perozzi, Bryan and Skiena, Steven},
title = {Polyglot: Distributed Word Representations for Multilingual NLP},
booktitle = {Proceedings of the Seventeenth Conference on Computational Natural Language Learning},
month = {August},
year = {2013},
address = {Sofia, Bulgaria},
publisher = {Association for Computational Linguistics},
pages = {183--192},
url = {http://www.aclweb.org/anthology/W13-3520}
}
```
|
Word2vec/polyglot_words_embeddings_pan
|
Word2vec
| 2023-05-28T19:13:06Z | 0 | 0 | null |
[
"word2vec",
"pa",
"license:gpl-3.0",
"region:us"
] | null | 2023-05-19T22:06:09Z |
---
tags:
- word2vec
language: pa
license: gpl-3.0
---
## Description
Word embedding model trained by Al-Rfou et al.
## How to use?
```
import pickle
from numpy import dot
from numpy.linalg import norm
from huggingface_hub import hf_hub_download
words, embeddings = pickle.load(open(hf_hub_download(repo_id="Word2vec/polyglot_words_embeddings_en", filename="words_embeddings_en.pkl"), 'rb'),encoding="latin1")
word = "Irish"
a = embeddings[words.index(word)]
most_similar = []
for i in range(len(embeddings)):
if i != words.index(word):
b = embeddings[i]
cos_sim = dot(a, b)/(norm(a)*norm(b))
most_similar.append(cos_sim)
else:
most_similar.append(0)
words[most_similar.index(max(most_similar))]
```
## Citation
```
@InProceedings{polyglot:2013:ACL-CoNLL,
author = {Al-Rfou, Rami and Perozzi, Bryan and Skiena, Steven},
title = {Polyglot: Distributed Word Representations for Multilingual NLP},
booktitle = {Proceedings of the Seventeenth Conference on Computational Natural Language Learning},
month = {August},
year = {2013},
address = {Sofia, Bulgaria},
publisher = {Association for Computational Linguistics},
pages = {183--192},
url = {http://www.aclweb.org/anthology/W13-3520}
}
```
|
YakovElm/IntelDAOS5Classic_512
|
YakovElm
| 2023-05-28T19:12:59Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-05-28T19:12:26Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: IntelDAOS5Classic_512
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# IntelDAOS5Classic_512
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.3745
- Train Accuracy: 0.8740
- Validation Loss: 0.4273
- Validation Accuracy: 0.8438
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.3984 | 0.8710 | 0.4399 | 0.8438 | 0 |
| 0.3811 | 0.8740 | 0.4332 | 0.8438 | 1 |
| 0.3745 | 0.8740 | 0.4273 | 0.8438 | 2 |
### Framework versions
- Transformers 4.29.2
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|
Word2vec/polyglot_words_embeddings_pam
|
Word2vec
| 2023-05-28T19:12:57Z | 0 | 0 | null |
[
"word2vec",
"pam",
"license:gpl-3.0",
"region:us"
] | null | 2023-05-19T22:06:13Z |
---
tags:
- word2vec
language: pam
license: gpl-3.0
---
## Description
Word embedding model trained by Al-Rfou et al.
## How to use?
```
import pickle
from numpy import dot
from numpy.linalg import norm
from huggingface_hub import hf_hub_download
words, embeddings = pickle.load(open(hf_hub_download(repo_id="Word2vec/polyglot_words_embeddings_en", filename="words_embeddings_en.pkl"), 'rb'),encoding="latin1")
word = "Irish"
a = embeddings[words.index(word)]
most_similar = []
for i in range(len(embeddings)):
if i != words.index(word):
b = embeddings[i]
cos_sim = dot(a, b)/(norm(a)*norm(b))
most_similar.append(cos_sim)
else:
most_similar.append(0)
words[most_similar.index(max(most_similar))]
```
## Citation
```
@InProceedings{polyglot:2013:ACL-CoNLL,
author = {Al-Rfou, Rami and Perozzi, Bryan and Skiena, Steven},
title = {Polyglot: Distributed Word Representations for Multilingual NLP},
booktitle = {Proceedings of the Seventeenth Conference on Computational Natural Language Learning},
month = {August},
year = {2013},
address = {Sofia, Bulgaria},
publisher = {Association for Computational Linguistics},
pages = {183--192},
url = {http://www.aclweb.org/anthology/W13-3520}
}
```
|
Word2vec/polyglot_words_embeddings_pol
|
Word2vec
| 2023-05-28T19:12:48Z | 0 | 1 | null |
[
"word2vec",
"pl",
"license:gpl-3.0",
"region:us"
] | null | 2023-05-19T22:06:16Z |
---
tags:
- word2vec
language: pl
license: gpl-3.0
---
## Description
Word embedding model trained by Al-Rfou et al.
## How to use?
```
import pickle
from numpy import dot
from numpy.linalg import norm
from huggingface_hub import hf_hub_download
words, embeddings = pickle.load(open(hf_hub_download(repo_id="Word2vec/polyglot_words_embeddings_en", filename="words_embeddings_en.pkl"), 'rb'),encoding="latin1")
word = "Irish"
a = embeddings[words.index(word)]
most_similar = []
for i in range(len(embeddings)):
if i != words.index(word):
b = embeddings[i]
cos_sim = dot(a, b)/(norm(a)*norm(b))
most_similar.append(cos_sim)
else:
most_similar.append(0)
words[most_similar.index(max(most_similar))]
```
## Citation
```
@InProceedings{polyglot:2013:ACL-CoNLL,
author = {Al-Rfou, Rami and Perozzi, Bryan and Skiena, Steven},
title = {Polyglot: Distributed Word Representations for Multilingual NLP},
booktitle = {Proceedings of the Seventeenth Conference on Computational Natural Language Learning},
month = {August},
year = {2013},
address = {Sofia, Bulgaria},
publisher = {Association for Computational Linguistics},
pages = {183--192},
url = {http://www.aclweb.org/anthology/W13-3520}
}
```
|
Word2vec/polyglot_words_embeddings_pms
|
Word2vec
| 2023-05-28T19:12:38Z | 0 | 0 | null |
[
"word2vec",
"pms",
"license:gpl-3.0",
"region:us"
] | null | 2023-05-19T22:06:27Z |
---
tags:
- word2vec
language: pms
license: gpl-3.0
---
## Description
Word embedding model trained by Al-Rfou et al.
## How to use?
```
import pickle
from numpy import dot
from numpy.linalg import norm
from huggingface_hub import hf_hub_download
words, embeddings = pickle.load(open(hf_hub_download(repo_id="Word2vec/polyglot_words_embeddings_en", filename="words_embeddings_en.pkl"), 'rb'),encoding="latin1")
word = "Irish"
a = embeddings[words.index(word)]
most_similar = []
for i in range(len(embeddings)):
if i != words.index(word):
b = embeddings[i]
cos_sim = dot(a, b)/(norm(a)*norm(b))
most_similar.append(cos_sim)
else:
most_similar.append(0)
words[most_similar.index(max(most_similar))]
```
## Citation
```
@InProceedings{polyglot:2013:ACL-CoNLL,
author = {Al-Rfou, Rami and Perozzi, Bryan and Skiena, Steven},
title = {Polyglot: Distributed Word Representations for Multilingual NLP},
booktitle = {Proceedings of the Seventeenth Conference on Computational Natural Language Learning},
month = {August},
year = {2013},
address = {Sofia, Bulgaria},
publisher = {Association for Computational Linguistics},
pages = {183--192},
url = {http://www.aclweb.org/anthology/W13-3520}
}
```
|
Word2vec/polyglot_words_embeddings_que
|
Word2vec
| 2023-05-28T19:12:09Z | 0 | 0 | null |
[
"word2vec",
"qu",
"license:gpl-3.0",
"region:us"
] | null | 2023-05-19T22:06:41Z |
---
tags:
- word2vec
language: qu
license: gpl-3.0
---
## Description
Word embedding model trained by Al-Rfou et al.
## How to use?
```
import pickle
from numpy import dot
from numpy.linalg import norm
from huggingface_hub import hf_hub_download
words, embeddings = pickle.load(open(hf_hub_download(repo_id="Word2vec/polyglot_words_embeddings_en", filename="words_embeddings_en.pkl"), 'rb'),encoding="latin1")
word = "Irish"
a = embeddings[words.index(word)]
most_similar = []
for i in range(len(embeddings)):
if i != words.index(word):
b = embeddings[i]
cos_sim = dot(a, b)/(norm(a)*norm(b))
most_similar.append(cos_sim)
else:
most_similar.append(0)
words[most_similar.index(max(most_similar))]
```
## Citation
```
@InProceedings{polyglot:2013:ACL-CoNLL,
author = {Al-Rfou, Rami and Perozzi, Bryan and Skiena, Steven},
title = {Polyglot: Distributed Word Representations for Multilingual NLP},
booktitle = {Proceedings of the Seventeenth Conference on Computational Natural Language Learning},
month = {August},
year = {2013},
address = {Sofia, Bulgaria},
publisher = {Association for Computational Linguistics},
pages = {183--192},
url = {http://www.aclweb.org/anthology/W13-3520}
}
```
|
Word2vec/polyglot_words_embeddings_roh
|
Word2vec
| 2023-05-28T19:12:00Z | 0 | 0 | null |
[
"word2vec",
"rm",
"license:gpl-3.0",
"region:us"
] | null | 2023-05-19T22:06:44Z |
---
tags:
- word2vec
language: rm
license: gpl-3.0
---
## Description
Word embedding model trained by Al-Rfou et al.
## How to use?
```
import pickle
from numpy import dot
from numpy.linalg import norm
from huggingface_hub import hf_hub_download
words, embeddings = pickle.load(open(hf_hub_download(repo_id="Word2vec/polyglot_words_embeddings_en", filename="words_embeddings_en.pkl"), 'rb'),encoding="latin1")
word = "Irish"
a = embeddings[words.index(word)]
most_similar = []
for i in range(len(embeddings)):
if i != words.index(word):
b = embeddings[i]
cos_sim = dot(a, b)/(norm(a)*norm(b))
most_similar.append(cos_sim)
else:
most_similar.append(0)
words[most_similar.index(max(most_similar))]
```
## Citation
```
@InProceedings{polyglot:2013:ACL-CoNLL,
author = {Al-Rfou, Rami and Perozzi, Bryan and Skiena, Steven},
title = {Polyglot: Distributed Word Representations for Multilingual NLP},
booktitle = {Proceedings of the Seventeenth Conference on Computational Natural Language Learning},
month = {August},
year = {2013},
address = {Sofia, Bulgaria},
publisher = {Association for Computational Linguistics},
pages = {183--192},
url = {http://www.aclweb.org/anthology/W13-3520}
}
```
|
Word2vec/polyglot_words_embeddings_nep
|
Word2vec
| 2023-05-28T19:11:40Z | 0 | 0 | null |
[
"word2vec",
"ne",
"license:gpl-3.0",
"region:us"
] | null | 2023-05-19T22:05:36Z |
---
tags:
- word2vec
language: ne
license: gpl-3.0
---
## Description
Word embedding model trained by Al-Rfou et al.
## How to use?
```
import pickle
from numpy import dot
from numpy.linalg import norm
from huggingface_hub import hf_hub_download
words, embeddings = pickle.load(open(hf_hub_download(repo_id="Word2vec/polyglot_words_embeddings_en", filename="words_embeddings_en.pkl"), 'rb'),encoding="latin1")
word = "Irish"
a = embeddings[words.index(word)]
most_similar = []
for i in range(len(embeddings)):
if i != words.index(word):
b = embeddings[i]
cos_sim = dot(a, b)/(norm(a)*norm(b))
most_similar.append(cos_sim)
else:
most_similar.append(0)
words[most_similar.index(max(most_similar))]
```
## Citation
```
@InProceedings{polyglot:2013:ACL-CoNLL,
author = {Al-Rfou, Rami and Perozzi, Bryan and Skiena, Steven},
title = {Polyglot: Distributed Word Representations for Multilingual NLP},
booktitle = {Proceedings of the Seventeenth Conference on Computational Natural Language Learning},
month = {August},
year = {2013},
address = {Sofia, Bulgaria},
publisher = {Association for Computational Linguistics},
pages = {183--192},
url = {http://www.aclweb.org/anthology/W13-3520}
}
```
|
Word2vec/polyglot_words_embeddings_sco
|
Word2vec
| 2023-05-28T19:06:02Z | 0 | 0 | null |
[
"word2vec",
"sco",
"license:gpl-3.0",
"region:us"
] | null | 2023-05-19T22:07:04Z |
---
tags:
- word2vec
language: sco
license: gpl-3.0
---
## Description
Word embedding model trained by Al-Rfou et al.
## How to use?
```
import pickle
from numpy import dot
from numpy.linalg import norm
from huggingface_hub import hf_hub_download
words, embeddings = pickle.load(open(hf_hub_download(repo_id="Word2vec/polyglot_words_embeddings_en", filename="words_embeddings_en.pkl"), 'rb'),encoding="latin1")
word = "Irish"
a = embeddings[words.index(word)]
most_similar = []
for i in range(len(embeddings)):
if i != words.index(word):
b = embeddings[i]
cos_sim = dot(a, b)/(norm(a)*norm(b))
most_similar.append(cos_sim)
else:
most_similar.append(0)
words[most_similar.index(max(most_similar))]
```
## Citation
```
@InProceedings{polyglot:2013:ACL-CoNLL,
author = {Al-Rfou, Rami and Perozzi, Bryan and Skiena, Steven},
title = {Polyglot: Distributed Word Representations for Multilingual NLP},
booktitle = {Proceedings of the Seventeenth Conference on Computational Natural Language Learning},
month = {August},
year = {2013},
address = {Sofia, Bulgaria},
publisher = {Association for Computational Linguistics},
pages = {183--192},
url = {http://www.aclweb.org/anthology/W13-3520}
}
```
|
Word2vec/polyglot_words_embeddings_sme
|
Word2vec
| 2023-05-28T19:05:52Z | 0 | 0 | null |
[
"word2vec",
"se",
"license:gpl-3.0",
"region:us"
] | null | 2023-05-19T22:07:07Z |
---
tags:
- word2vec
language: se
license: gpl-3.0
---
## Description
Word embedding model trained by Al-Rfou et al.
## How to use?
```
import pickle
from numpy import dot
from numpy.linalg import norm
from huggingface_hub import hf_hub_download
words, embeddings = pickle.load(open(hf_hub_download(repo_id="Word2vec/polyglot_words_embeddings_en", filename="words_embeddings_en.pkl"), 'rb'),encoding="latin1")
word = "Irish"
a = embeddings[words.index(word)]
most_similar = []
for i in range(len(embeddings)):
if i != words.index(word):
b = embeddings[i]
cos_sim = dot(a, b)/(norm(a)*norm(b))
most_similar.append(cos_sim)
else:
most_similar.append(0)
words[most_similar.index(max(most_similar))]
```
## Citation
```
@InProceedings{polyglot:2013:ACL-CoNLL,
author = {Al-Rfou, Rami and Perozzi, Bryan and Skiena, Steven},
title = {Polyglot: Distributed Word Representations for Multilingual NLP},
booktitle = {Proceedings of the Seventeenth Conference on Computational Natural Language Learning},
month = {August},
year = {2013},
address = {Sofia, Bulgaria},
publisher = {Association for Computational Linguistics},
pages = {183--192},
url = {http://www.aclweb.org/anthology/W13-3520}
}
```
|
Word2vec/polyglot_words_embeddings_sin
|
Word2vec
| 2023-05-28T19:05:32Z | 0 | 0 | null |
[
"word2vec",
"si",
"license:gpl-3.0",
"region:us"
] | null | 2023-05-19T22:07:18Z |
---
tags:
- word2vec
language: si
license: gpl-3.0
---
## Description
Word embedding model trained by Al-Rfou et al.
## How to use?
```
import pickle
from numpy import dot
from numpy.linalg import norm
from huggingface_hub import hf_hub_download
words, embeddings = pickle.load(open(hf_hub_download(repo_id="Word2vec/polyglot_words_embeddings_en", filename="words_embeddings_en.pkl"), 'rb'),encoding="latin1")
word = "Irish"
a = embeddings[words.index(word)]
most_similar = []
for i in range(len(embeddings)):
if i != words.index(word):
b = embeddings[i]
cos_sim = dot(a, b)/(norm(a)*norm(b))
most_similar.append(cos_sim)
else:
most_similar.append(0)
words[most_similar.index(max(most_similar))]
```
## Citation
```
@InProceedings{polyglot:2013:ACL-CoNLL,
author = {Al-Rfou, Rami and Perozzi, Bryan and Skiena, Steven},
title = {Polyglot: Distributed Word Representations for Multilingual NLP},
booktitle = {Proceedings of the Seventeenth Conference on Computational Natural Language Learning},
month = {August},
year = {2013},
address = {Sofia, Bulgaria},
publisher = {Association for Computational Linguistics},
pages = {183--192},
url = {http://www.aclweb.org/anthology/W13-3520}
}
```
|
Word2vec/polyglot_words_embeddings_scn
|
Word2vec
| 2023-05-28T19:04:38Z | 0 | 0 | null |
[
"word2vec",
"scn",
"license:gpl-3.0",
"region:us"
] | null | 2023-05-19T22:07:01Z |
---
tags:
- word2vec
language: scn
license: gpl-3.0
---
## Description
Word embedding model trained by Al-Rfou et al.
## How to use?
```
import pickle
from numpy import dot
from numpy.linalg import norm
from huggingface_hub import hf_hub_download
words, embeddings = pickle.load(open(hf_hub_download(repo_id="Word2vec/polyglot_words_embeddings_en", filename="words_embeddings_en.pkl"), 'rb'),encoding="latin1")
word = "Irish"
a = embeddings[words.index(word)]
most_similar = []
for i in range(len(embeddings)):
if i != words.index(word):
b = embeddings[i]
cos_sim = dot(a, b)/(norm(a)*norm(b))
most_similar.append(cos_sim)
else:
most_similar.append(0)
words[most_similar.index(max(most_similar))]
```
## Citation
```
@InProceedings{polyglot:2013:ACL-CoNLL,
author = {Al-Rfou, Rami and Perozzi, Bryan and Skiena, Steven},
title = {Polyglot: Distributed Word Representations for Multilingual NLP},
booktitle = {Proceedings of the Seventeenth Conference on Computational Natural Language Learning},
month = {August},
year = {2013},
address = {Sofia, Bulgaria},
publisher = {Association for Computational Linguistics},
pages = {183--192},
url = {http://www.aclweb.org/anthology/W13-3520}
}
```
|
Word2vec/polyglot_words_embeddings_sqi
|
Word2vec
| 2023-05-28T19:04:09Z | 0 | 0 | null |
[
"word2vec",
"sq",
"license:gpl-3.0",
"region:us"
] | null | 2023-05-19T22:07:33Z |
---
tags:
- word2vec
language: sq
license: gpl-3.0
---
## Description
Word embedding model trained by Al-Rfou et al.
## How to use?
```
import pickle
from numpy import dot
from numpy.linalg import norm
from huggingface_hub import hf_hub_download
words, embeddings = pickle.load(open(hf_hub_download(repo_id="Word2vec/polyglot_words_embeddings_en", filename="words_embeddings_en.pkl"), 'rb'),encoding="latin1")
word = "Irish"
a = embeddings[words.index(word)]
most_similar = []
for i in range(len(embeddings)):
if i != words.index(word):
b = embeddings[i]
cos_sim = dot(a, b)/(norm(a)*norm(b))
most_similar.append(cos_sim)
else:
most_similar.append(0)
words[most_similar.index(max(most_similar))]
```
## Citation
```
@InProceedings{polyglot:2013:ACL-CoNLL,
author = {Al-Rfou, Rami and Perozzi, Bryan and Skiena, Steven},
title = {Polyglot: Distributed Word Representations for Multilingual NLP},
booktitle = {Proceedings of the Seventeenth Conference on Computational Natural Language Learning},
month = {August},
year = {2013},
address = {Sofia, Bulgaria},
publisher = {Association for Computational Linguistics},
pages = {183--192},
url = {http://www.aclweb.org/anthology/W13-3520}
}
```
|
Word2vec/polyglot_words_embeddings_srp
|
Word2vec
| 2023-05-28T19:03:53Z | 0 | 0 | null |
[
"word2vec",
"sr",
"license:gpl-3.0",
"region:us"
] | null | 2023-05-19T22:07:38Z |
---
tags:
- word2vec
language: sr
license: gpl-3.0
---
## Description
Word embedding model trained by Al-Rfou et al.
## How to use?
```
import pickle
from numpy import dot
from numpy.linalg import norm
from huggingface_hub import hf_hub_download
words, embeddings = pickle.load(open(hf_hub_download(repo_id="Word2vec/polyglot_words_embeddings_en", filename="words_embeddings_en.pkl"), 'rb'),encoding="latin1")
word = "Irish"
a = embeddings[words.index(word)]
most_similar = []
for i in range(len(embeddings)):
if i != words.index(word):
b = embeddings[i]
cos_sim = dot(a, b)/(norm(a)*norm(b))
most_similar.append(cos_sim)
else:
most_similar.append(0)
words[most_similar.index(max(most_similar))]
```
## Citation
```
@InProceedings{polyglot:2013:ACL-CoNLL,
author = {Al-Rfou, Rami and Perozzi, Bryan and Skiena, Steven},
title = {Polyglot: Distributed Word Representations for Multilingual NLP},
booktitle = {Proceedings of the Seventeenth Conference on Computational Natural Language Learning},
month = {August},
year = {2013},
address = {Sofia, Bulgaria},
publisher = {Association for Computational Linguistics},
pages = {183--192},
url = {http://www.aclweb.org/anthology/W13-3520}
}
```
|
Word2vec/polyglot_words_embeddings_sun
|
Word2vec
| 2023-05-28T19:03:35Z | 0 | 0 | null |
[
"word2vec",
"su",
"license:gpl-3.0",
"region:us"
] | null | 2023-05-19T22:07:43Z |
---
tags:
- word2vec
language: su
license: gpl-3.0
---
## Description
Word embedding model trained by Al-Rfou et al.
## How to use?
```
import pickle
from numpy import dot
from numpy.linalg import norm
from huggingface_hub import hf_hub_download
words, embeddings = pickle.load(open(hf_hub_download(repo_id="Word2vec/polyglot_words_embeddings_en", filename="words_embeddings_en.pkl"), 'rb'),encoding="latin1")
word = "Irish"
a = embeddings[words.index(word)]
most_similar = []
for i in range(len(embeddings)):
if i != words.index(word):
b = embeddings[i]
cos_sim = dot(a, b)/(norm(a)*norm(b))
most_similar.append(cos_sim)
else:
most_similar.append(0)
words[most_similar.index(max(most_similar))]
```
## Citation
```
@InProceedings{polyglot:2013:ACL-CoNLL,
author = {Al-Rfou, Rami and Perozzi, Bryan and Skiena, Steven},
title = {Polyglot: Distributed Word Representations for Multilingual NLP},
booktitle = {Proceedings of the Seventeenth Conference on Computational Natural Language Learning},
month = {August},
year = {2013},
address = {Sofia, Bulgaria},
publisher = {Association for Computational Linguistics},
pages = {183--192},
url = {http://www.aclweb.org/anthology/W13-3520}
}
```
|
Word2vec/polyglot_words_embeddings_swe
|
Word2vec
| 2023-05-28T19:03:23Z | 0 | 0 | null |
[
"word2vec",
"sv",
"license:gpl-3.0",
"region:us"
] | null | 2023-05-19T22:07:47Z |
---
tags:
- word2vec
language: sv
license: gpl-3.0
---
## Description
Word embedding model trained by Al-Rfou et al.
## How to use?
```
import pickle
from numpy import dot
from numpy.linalg import norm
from huggingface_hub import hf_hub_download
words, embeddings = pickle.load(open(hf_hub_download(repo_id="Word2vec/polyglot_words_embeddings_en", filename="words_embeddings_en.pkl"), 'rb'),encoding="latin1")
word = "Irish"
a = embeddings[words.index(word)]
most_similar = []
for i in range(len(embeddings)):
if i != words.index(word):
b = embeddings[i]
cos_sim = dot(a, b)/(norm(a)*norm(b))
most_similar.append(cos_sim)
else:
most_similar.append(0)
words[most_similar.index(max(most_similar))]
```
## Citation
```
@InProceedings{polyglot:2013:ACL-CoNLL,
author = {Al-Rfou, Rami and Perozzi, Bryan and Skiena, Steven},
title = {Polyglot: Distributed Word Representations for Multilingual NLP},
booktitle = {Proceedings of the Seventeenth Conference on Computational Natural Language Learning},
month = {August},
year = {2013},
address = {Sofia, Bulgaria},
publisher = {Association for Computational Linguistics},
pages = {183--192},
url = {http://www.aclweb.org/anthology/W13-3520}
}
```
|
Word2vec/polyglot_words_embeddings_szl
|
Word2vec
| 2023-05-28T19:03:02Z | 0 | 0 | null |
[
"word2vec",
"szl",
"license:gpl-3.0",
"region:us"
] | null | 2023-05-19T22:07:55Z |
---
tags:
- word2vec
language: szl
license: gpl-3.0
---
## Description
Word embedding model trained by Al-Rfou et al.
## How to use?
```
import pickle
from numpy import dot
from numpy.linalg import norm
from huggingface_hub import hf_hub_download
words, embeddings = pickle.load(open(hf_hub_download(repo_id="Word2vec/polyglot_words_embeddings_en", filename="words_embeddings_en.pkl"), 'rb'),encoding="latin1")
word = "Irish"
a = embeddings[words.index(word)]
most_similar = []
for i in range(len(embeddings)):
if i != words.index(word):
b = embeddings[i]
cos_sim = dot(a, b)/(norm(a)*norm(b))
most_similar.append(cos_sim)
else:
most_similar.append(0)
words[most_similar.index(max(most_similar))]
```
## Citation
```
@InProceedings{polyglot:2013:ACL-CoNLL,
author = {Al-Rfou, Rami and Perozzi, Bryan and Skiena, Steven},
title = {Polyglot: Distributed Word Representations for Multilingual NLP},
booktitle = {Proceedings of the Seventeenth Conference on Computational Natural Language Learning},
month = {August},
year = {2013},
address = {Sofia, Bulgaria},
publisher = {Association for Computational Linguistics},
pages = {183--192},
url = {http://www.aclweb.org/anthology/W13-3520}
}
```
|
Word2vec/polyglot_words_embeddings_tgk
|
Word2vec
| 2023-05-28T18:55:01Z | 0 | 0 | null |
[
"word2vec",
"tg",
"license:gpl-3.0",
"region:us"
] | null | 2023-05-19T22:08:09Z |
---
tags:
- word2vec
language: tg
license: gpl-3.0
---
## Description
Word embedding model trained by Al-Rfou et al.
## How to use?
```
import pickle
from numpy import dot
from numpy.linalg import norm
from huggingface_hub import hf_hub_download
words, embeddings = pickle.load(open(hf_hub_download(repo_id="Word2vec/polyglot_words_embeddings_en", filename="words_embeddings_en.pkl"), 'rb'),encoding="latin1")
word = "Irish"
a = embeddings[words.index(word)]
most_similar = []
for i in range(len(embeddings)):
if i != words.index(word):
b = embeddings[i]
cos_sim = dot(a, b)/(norm(a)*norm(b))
most_similar.append(cos_sim)
else:
most_similar.append(0)
words[most_similar.index(max(most_similar))]
```
## Citation
```
@InProceedings{polyglot:2013:ACL-CoNLL,
author = {Al-Rfou, Rami and Perozzi, Bryan and Skiena, Steven},
title = {Polyglot: Distributed Word Representations for Multilingual NLP},
booktitle = {Proceedings of the Seventeenth Conference on Computational Natural Language Learning},
month = {August},
year = {2013},
address = {Sofia, Bulgaria},
publisher = {Association for Computational Linguistics},
pages = {183--192},
url = {http://www.aclweb.org/anthology/W13-3520}
}
```
|
Word2vec/polyglot_words_embeddings_tuk
|
Word2vec
| 2023-05-28T18:54:33Z | 0 | 0 | null |
[
"word2vec",
"tk",
"license:gpl-3.0",
"region:us"
] | null | 2023-05-19T22:08:16Z |
---
tags:
- word2vec
language: tk
license: gpl-3.0
---
## Description
Word embedding model trained by Al-Rfou et al.
## How to use?
```
import pickle
from numpy import dot
from numpy.linalg import norm
from huggingface_hub import hf_hub_download
words, embeddings = pickle.load(open(hf_hub_download(repo_id="Word2vec/polyglot_words_embeddings_en", filename="words_embeddings_en.pkl"), 'rb'),encoding="latin1")
word = "Irish"
a = embeddings[words.index(word)]
most_similar = []
for i in range(len(embeddings)):
if i != words.index(word):
b = embeddings[i]
cos_sim = dot(a, b)/(norm(a)*norm(b))
most_similar.append(cos_sim)
else:
most_similar.append(0)
words[most_similar.index(max(most_similar))]
```
## Citation
```
@InProceedings{polyglot:2013:ACL-CoNLL,
author = {Al-Rfou, Rami and Perozzi, Bryan and Skiena, Steven},
title = {Polyglot: Distributed Word Representations for Multilingual NLP},
booktitle = {Proceedings of the Seventeenth Conference on Computational Natural Language Learning},
month = {August},
year = {2013},
address = {Sofia, Bulgaria},
publisher = {Association for Computational Linguistics},
pages = {183--192},
url = {http://www.aclweb.org/anthology/W13-3520}
}
```
|
Word2vec/polyglot_words_embeddings_uig
|
Word2vec
| 2023-05-28T18:53:51Z | 0 | 0 | null |
[
"word2vec",
"ug",
"license:gpl-3.0",
"region:us"
] | null | 2023-05-19T22:08:33Z |
---
tags:
- word2vec
language: ug
license: gpl-3.0
---
## Description
Word embedding model trained by Al-Rfou et al.
## How to use?
```
import pickle
from numpy import dot
from numpy.linalg import norm
from huggingface_hub import hf_hub_download
words, embeddings = pickle.load(open(hf_hub_download(repo_id="Word2vec/polyglot_words_embeddings_en", filename="words_embeddings_en.pkl"), 'rb'),encoding="latin1")
word = "Irish"
a = embeddings[words.index(word)]
most_similar = []
for i in range(len(embeddings)):
if i != words.index(word):
b = embeddings[i]
cos_sim = dot(a, b)/(norm(a)*norm(b))
most_similar.append(cos_sim)
else:
most_similar.append(0)
words[most_similar.index(max(most_similar))]
```
## Citation
```
@InProceedings{polyglot:2013:ACL-CoNLL,
author = {Al-Rfou, Rami and Perozzi, Bryan and Skiena, Steven},
title = {Polyglot: Distributed Word Representations for Multilingual NLP},
booktitle = {Proceedings of the Seventeenth Conference on Computational Natural Language Learning},
month = {August},
year = {2013},
address = {Sofia, Bulgaria},
publisher = {Association for Computational Linguistics},
pages = {183--192},
url = {http://www.aclweb.org/anthology/W13-3520}
}
```
|
Word2vec/polyglot_words_embeddings_uzb
|
Word2vec
| 2023-05-28T18:53:21Z | 0 | 0 | null |
[
"word2vec",
"uz",
"license:gpl-3.0",
"region:us"
] | null | 2023-05-19T22:08:46Z |
---
tags:
- word2vec
language: uz
license: gpl-3.0
---
## Description
Word embedding model trained by Al-Rfou et al.
## How to use?
```
import pickle
from numpy import dot
from numpy.linalg import norm
from huggingface_hub import hf_hub_download
words, embeddings = pickle.load(open(hf_hub_download(repo_id="Word2vec/polyglot_words_embeddings_en", filename="words_embeddings_en.pkl"), 'rb'),encoding="latin1")
word = "Irish"
a = embeddings[words.index(word)]
most_similar = []
for i in range(len(embeddings)):
if i != words.index(word):
b = embeddings[i]
cos_sim = dot(a, b)/(norm(a)*norm(b))
most_similar.append(cos_sim)
else:
most_similar.append(0)
words[most_similar.index(max(most_similar))]
```
## Citation
```
@InProceedings{polyglot:2013:ACL-CoNLL,
author = {Al-Rfou, Rami and Perozzi, Bryan and Skiena, Steven},
title = {Polyglot: Distributed Word Representations for Multilingual NLP},
booktitle = {Proceedings of the Seventeenth Conference on Computational Natural Language Learning},
month = {August},
year = {2013},
address = {Sofia, Bulgaria},
publisher = {Association for Computational Linguistics},
pages = {183--192},
url = {http://www.aclweb.org/anthology/W13-3520}
}
```
|
Word2vec/polyglot_words_embeddings_vol
|
Word2vec
| 2023-05-28T18:52:13Z | 0 | 0 | null |
[
"word2vec",
"vo",
"license:gpl-3.0",
"region:us"
] | null | 2023-05-19T22:09:02Z |
---
tags:
- word2vec
language: vo
license: gpl-3.0
---
## Description
Word embedding model trained by Al-Rfou et al.
## How to use?
```
import pickle
from numpy import dot
from numpy.linalg import norm
from huggingface_hub import hf_hub_download
words, embeddings = pickle.load(open(hf_hub_download(repo_id="Word2vec/polyglot_words_embeddings_en", filename="words_embeddings_en.pkl"), 'rb'),encoding="latin1")
word = "Irish"
a = embeddings[words.index(word)]
most_similar = []
for i in range(len(embeddings)):
if i != words.index(word):
b = embeddings[i]
cos_sim = dot(a, b)/(norm(a)*norm(b))
most_similar.append(cos_sim)
else:
most_similar.append(0)
words[most_similar.index(max(most_similar))]
```
## Citation
```
@InProceedings{polyglot:2013:ACL-CoNLL,
author = {Al-Rfou, Rami and Perozzi, Bryan and Skiena, Steven},
title = {Polyglot: Distributed Word Representations for Multilingual NLP},
booktitle = {Proceedings of the Seventeenth Conference on Computational Natural Language Learning},
month = {August},
year = {2013},
address = {Sofia, Bulgaria},
publisher = {Association for Computational Linguistics},
pages = {183--192},
url = {http://www.aclweb.org/anthology/W13-3520}
}
```
|
Word2vec/polyglot_words_embeddings_yor
|
Word2vec
| 2023-05-28T18:48:16Z | 0 | 0 | null |
[
"word2vec",
"yo",
"license:gpl-3.0",
"region:us"
] | null | 2023-05-19T22:09:15Z |
---
tags:
- word2vec
language: yo
license: gpl-3.0
---
## Description
Word embedding model trained by Al-Rfou et al.
## How to use?
```
import pickle
from numpy import dot
from numpy.linalg import norm
from huggingface_hub import hf_hub_download
words, embeddings = pickle.load(open(hf_hub_download(repo_id="Word2vec/polyglot_words_embeddings_en", filename="words_embeddings_en.pkl"), 'rb'),encoding="latin1")
word = "Irish"
a = embeddings[words.index(word)]
most_similar = []
for i in range(len(embeddings)):
if i != words.index(word):
b = embeddings[i]
cos_sim = dot(a, b)/(norm(a)*norm(b))
most_similar.append(cos_sim)
else:
most_similar.append(0)
words[most_similar.index(max(most_similar))]
```
## Citation
```
@InProceedings{polyglot:2013:ACL-CoNLL,
author = {Al-Rfou, Rami and Perozzi, Bryan and Skiena, Steven},
title = {Polyglot: Distributed Word Representations for Multilingual NLP},
booktitle = {Proceedings of the Seventeenth Conference on Computational Natural Language Learning},
month = {August},
year = {2013},
address = {Sofia, Bulgaria},
publisher = {Association for Computational Linguistics},
pages = {183--192},
url = {http://www.aclweb.org/anthology/W13-3520}
}
```
|
scroobiustrip/topic-model-v3
|
scroobiustrip
| 2023-05-28T18:31:52Z | 7 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-05-28T16:39:10Z |
---
license: mit
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: topic-model-v3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# topic-model-v3
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3458
- F1: 0.9015
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 0.6305 | 1.0 | 11964 | 0.4299 | 0.8788 |
| 0.3877 | 2.0 | 23928 | 0.3623 | 0.8953 |
| 0.3173 | 3.0 | 35892 | 0.3458 | 0.9015 |
### Framework versions
- Transformers 4.29.2
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
|
glombardo/misogynistic-statements-restructuring-model
|
glombardo
| 2023-05-28T18:22:03Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-05-17T19:07:31Z |
---
license: apache-2.0
tags:
- text2text-generation
- generated_from_trainer
model-index:
- name: misogynistic-statements-restructuring-model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# misogynistic-statements-restructuring-model
This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the glombardo/misogynistic-statements-and-their-potential-restructuring dataset.
It achieves the following results on the evaluation set:
- Loss: 23.0975
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
### Framework versions
- Transformers 4.29.2
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
|
adelmomo/q-FrozenLake-v1-no-slippery
|
adelmomo
| 2023-05-28T18:00:42Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-05-28T18:00:08Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-no-slippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="adelmomo/q-FrozenLake-v1-no-slippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
chieunq/vietnamese-sentence-paraphase-v1
|
chieunq
| 2023-05-28T17:52:05Z | 109 | 0 |
transformers
|
[
"transformers",
"pytorch",
"mt5",
"text2text-generation",
"vi-T5",
"paraphase",
"sentence-paraphase",
"vi",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-05-28T17:36:47Z |
---
language:
- vi
tags:
- vi-T5
- paraphase
- sentence-paraphase
---
This is tool for paraphase Vietnamese sentence.
### How to run
```
CKPT = 'chieunq/vietnamese-sentence-paraphase-v1'
from transformers import MT5Tokenizer, MT5ForConditionalGeneration
tokenizer = MT5Tokenizer.from_pretrained(CKPT)
model = MT5ForConditionalGeneration.from_pretrained(CKPT)
def paraphase(text):
inputs = tokenizer(text, padding='longest', max_length=64, return_tensors='pt')
input_ids = inputs.input_ids
attention_mask = inputs.attention_mask
output = model.generate(input_ids, attention_mask=attention_mask, max_length=64)
return tokenizer.decode(output[0], skip_special_tokens=True)
texts = ["Làm sao để sống tốt đời đẹp đạo",
"Bài học tốt nhất trong cuộc sống là gì?",
"Các bước chuẩn bị phỏng vấn tại Google",
"Vì sao phụ nữ thường sống thọ hơn đàn ông?",
"Nắng nóng bắt đầu xảy ra ở nhiều nơi tại Bắc Bộ và sẽ tiếp tục tăng nhiệt trong vài ngày tới."
]
for text in texts:
print(f'Input: {text}')
print(f'Output: {paraphase(text)}')
print('-'*100)
```
### Output
```
Input: Làm sao để sống tốt đời đẹp đạo
Output: Làm thế nào để tôi sống tốt đẹp
----------------------------------------------------------------------------------------------------
Input: Bài học tốt nhất trong cuộc sống là gì?
Output: Bài học cuộc sống tốt nhất là gì?
----------------------------------------------------------------------------------------------------
Input: Các bước chuẩn bị phỏng vấn tại Google
Output: Các bước chuẩn bị cho cuộc phỏng vấn tại Google là gì?
----------------------------------------------------------------------------------------------------
Input: Vì sao phụ nữ thường sống thọ hơn đàn ông?
Output: Tại sao phụ nữ sống thọ hơn đàn ông?
----------------------------------------------------------------------------------------------------
Input: Nắng nóng bắt đầu xảy ra ở nhiều nơi tại Bắc Bộ và sẽ tiếp tục tăng nhiệt trong vài ngày tới.
Output: Nắng nóng bắt đầu xảy ra ở Bắc Bộ và sẽ tiếp tục tăng nhiệt trong vài ngày tới.
----------------------------------------------------------------------------------------------------
```
|
edata/taxi-v3
|
edata
| 2023-05-28T17:44:57Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-05-28T17:44:50Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.54 +/- 2.69
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="edata/taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
gugomea/noticias_casificador
|
gugomea
| 2023-05-28T17:44:19Z | 0 | 0 |
fastai
|
[
"fastai",
"region:us"
] | null | 2023-05-28T17:44:14Z |
---
tags:
- fastai
---
# Amazing!
🥳 Congratulations on hosting your fastai model on the Hugging Face Hub!
# Some next steps
1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))!
2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)).
3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)!
Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card.
---
# Model card
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
|
damian0815/minigpt4-ff7r
|
damian0815
| 2023-05-28T17:40:34Z | 0 | 0 | null |
[
"license:cc-by-nc-4.0",
"region:us"
] | null | 2023-05-28T15:53:12Z |
---
license: cc-by-nc-4.0
---
MiniGPT-4 checkpoint aligned with @panopstor's FF7R dataset (link in the EveryDream discord). Produces captions that are more useful for training SD datasets that MiniGPT4's default output.
Easiest way to use this is to launch a docker instance for [oobabooga/text-generation-webui](https://github.com/oobabooga/text-generation-webui), eg `TheBloke/runpod-pytorch-runclick`, follow the instructions for MiniGPT-4 [here](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/multimodal). For now you'll need to manually edit `minigpt_pipeline.py` ([this line](`https://github.com/Wojtab/minigpt-4-pipeline/blob/16eda85c4bb15e2b1b05b20c55907a8ea2c06764/minigpt4_pipeline.py#L52) to point to [the .pth file in this repo](minigpt4-align-ff7r.pth) instead of the default.
## Dataset
adapted from the @panopstor's FF7R dataset - [zip here](cc_sbu_align_ff7r.zip)
## Sample output:



|
Dr-BERT/CAS-Biomedical-POS-Tagging
|
Dr-BERT
| 2023-05-28T17:38:50Z | 104 | 5 |
transformers
|
[
"transformers",
"pytorch",
"camembert",
"token-classification",
"medical",
"fr",
"dataset:bigbio/cas",
"arxiv:2304.00958",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-04-05T06:19:37Z |
---
license: apache-2.0
datasets:
- bigbio/cas
language:
- fr
metrics:
- f1
library_name: transformers
tags:
- medical
widget:
- text: Patiente atteinte d’une pathologie chronique
- text: Vous êtes amené à prendre en charge un homme de 54 ans qui souffre d’une spondylarthrite ankylosante sévère.
---
<p align="center">
<img src="https://github.com/qanastek/DrBERT/blob/main/assets/logo.png?raw=true" alt="drawing" width="250"/>
</p>
- Corpora: [bigbio/cas](https://huggingface.co/datasets/bigbio/cas)
- Embeddings & Sequence Labelling: [DrBERT-7GB](https://arxiv.org/abs/2304.00958)
- Number of Epochs: 200
# DrBERT: A Robust Pre-trained Model in French for Biomedical and Clinical domains
In recent years, pre-trained language models (PLMs) achieve the best performance on a wide range of natural language processing (NLP) tasks. While the first models were trained on general domain data, specialized ones have emerged to more effectively treat specific domains.
In this paper, we propose an original study of PLMs in the medical domain on French language. We compare, for the first time, the performance of PLMs trained on both public data from the web and private data from healthcare establishments. We also evaluate different learning strategies on a set of biomedical tasks.
Finally, we release the first specialized PLMs for the biomedical field in French, called DrBERT, as well as the largest corpus of medical data under free license on which these models are trained.
# CAS: French Corpus with Clinical Cases
| | Train | Dev | Test |
|:---------:|:-----:|:-----:|:-----:|
| Documents | 5,306 | 1,137 | 1,137 |
The ESSAIS (Dalloux et al., 2021) and CAS (Grabar et al., 2018) corpora respectively contain 13,848 and 7,580 clinical cases in French. Some clinical cases are associated with discussions. A subset of the whole set of cases is enriched with morpho-syntactic (part-of-speech (POS) tagging, lemmatization) and semantic (UMLS concepts, negation, uncertainty) annotations. In our case, we focus only on the POS tagging task.
# Model Metric
```plain
precision recall f1-score support
ABR 0.8683 0.8480 0.8580 171
ADJ 0.9634 0.9751 0.9692 4018
ADV 0.9935 0.9849 0.9892 926
DET:ART 0.9982 0.9997 0.9989 3308
DET:POS 1.0000 1.0000 1.0000 133
INT 1.0000 0.7000 0.8235 10
KON 0.9883 0.9976 0.9929 845
NAM 0.9144 0.9353 0.9247 834
NOM 0.9827 0.9803 0.9815 7980
NUM 0.9825 0.9845 0.9835 1422
PRO:DEM 0.9924 1.0000 0.9962 131
PRO:IND 0.9630 1.0000 0.9811 78
PRO:PER 0.9948 0.9931 0.9939 579
PRO:REL 1.0000 0.9908 0.9954 109
PRP 0.9989 0.9982 0.9985 3785
PRP:det 1.0000 0.9985 0.9993 681
PUN 0.9996 0.9958 0.9977 2376
PUN:cit 0.9756 0.9524 0.9639 84
SENT 1.0000 0.9974 0.9987 1174
SYM 0.9495 1.0000 0.9741 94
VER:cond 1.0000 1.0000 1.0000 11
VER:futu 1.0000 0.9444 0.9714 18
VER:impf 1.0000 0.9963 0.9981 804
VER:infi 1.0000 0.9585 0.9788 193
VER:pper 0.9742 0.9564 0.9652 1261
VER:ppre 0.9617 0.9901 0.9757 203
VER:pres 0.9833 0.9904 0.9868 830
VER:simp 0.9123 0.7761 0.8387 67
VER:subi 1.0000 0.7000 0.8235 10
VER:subp 1.0000 0.8333 0.9091 18
accuracy 0.9842 32153
macro avg 0.9799 0.9492 0.9623 32153
weighted avg 0.9843 0.9842 0.9842 32153
```
# Citation BibTeX
```bibtex
@inproceedings{labrak2023drbert,
title = {{DrBERT: A Robust Pre-trained Model in French for Biomedical and Clinical domains}},
author = {Labrak, Yanis and Bazoge, Adrien and Dufour, Richard and Rouvier, Mickael and Morin, Emmanuel and Daille, Béatrice and Gourraud, Pierre-Antoine},
booktitle = {Proceedings of the 61th Annual Meeting of the Association for Computational Linguistics (ACL'23), Long Paper},
month = july,
year = 2023,
address = {Toronto, Canada},
publisher = {Association for Computational Linguistics}
}
```
|
Dr-BERT/DrBERT-7GB-Large
|
Dr-BERT
| 2023-05-28T17:38:14Z | 243 | 2 |
transformers
|
[
"transformers",
"pytorch",
"camembert",
"fill-mask",
"medical",
"chemistry",
"biomedical",
"life science",
"fr",
"dataset:Dr-BERT/NACHOS",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2023-04-09T13:59:08Z |
---
license: apache-2.0
datasets:
- Dr-BERT/NACHOS
language:
- fr
library_name: transformers
tags:
- medical
- chemistry
- biomedical
- life science
widget:
- text: "Le patient est atteint d'une <mask>."
---
<p align="center">
<img src="https://github.com/qanastek/DrBERT/blob/main/assets/logo.png?raw=true" alt="drawing" width="250"/>
</p>
# DrBERT: A Robust Pre-trained Model in French for Biomedical and Clinical domains
In recent years, pre-trained language models (PLMs) achieve the best performance on a wide range of natural language processing (NLP) tasks. While the first models were trained on general domain data, specialized ones have emerged to more effectively treat specific domains.
In this paper, we propose an original study of PLMs in the medical domain on French language. We compare, for the first time, the performance of PLMs trained on both public data from the web and private data from healthcare establishments. We also evaluate different learning strategies on a set of biomedical tasks.
Finally, we release the first specialized PLMs for the biomedical field in French, called DrBERT, as well as the largest corpus of medical data under free license on which these models are trained.
# 1. DrBERT models
**DrBERT** is a French RoBERTa trained on a open source corpus of French medical crawled textual data called NACHOS. Models with different amount of data from differents public and private sources are trained using the CNRS (French National Centre for Scientific Research) [Jean Zay](http://www.idris.fr/jean-zay/) French supercomputer. Only the weights of the models trained using exclusively open-sources data are publicly released to prevent any personnal information leak and to follow the european GDPR laws :
| Model name | Corpus | Number of layers | Attention Heads | Embedding Dimension | Sequence Length | Model URL |
| :------: | :---: | :---: | :---: | :---: | :---: | :---: |
| `DrBERT-7-GB-cased-Large` | NACHOS 7 GB | 24 | 16 | 1024 | 512 | [HuggingFace](https://huggingface.co/Dr-BERT/DrBERT-7GB-Large) |
| `DrBERT-7-GB-cased` | NACHOS 7 GB | 12 | 12 | 768 | 512 | [HuggingFace](https://huggingface.co/Dr-BERT/DrBERT-7GB) |
| `DrBERT-4-GB-cased` | NACHOS 4 GB | 12 | 12 | 768 | 512 | [HuggingFace](https://huggingface.co/Dr-BERT/DrBERT-4GB) |
| `DrBERT-4-GB-cased-CP-CamemBERT` | NACHOS 4 GB | 12 | 12 | 768 | 512 | [HuggingFace](https://huggingface.co/Dr-BERT/DrBERT-4GB-CP-CamemBERT) |
| `DrBERT-4-GB-cased-CP-PubMedBERT` | NACHOS 4 GB | 12 | 12 | 768 | 512 | [HuggingFace](https://huggingface.co/Dr-BERT/DrBERT-4GB-CP-PubMedBERT) |
# 2. Using DrBERT
You can use DrBERT with [Hugging Face's Transformers library](https://github.com/huggingface/transformers) as follow.
Loading the model and tokenizer :
```python
from transformers import AutoModel, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("Dr-BERT/DrBERT-7GB-Large")
model = AutoModel.from_pretrained("Dr-BERT/DrBERT-7GB-Large")
```
Perform the mask filling task :
```python
from transformers import pipeline
fill_mask = pipeline("fill-mask", model="Dr-BERT/DrBERT-7GB-Large", tokenizer="Dr-BERT/DrBERT-7GB-Large")
results = fill_mask("La patiente est atteinte d'une <mask>")
```
# 3. Pre-training DrBERT tokenizer and model from scratch by using HuggingFace Transformers Library
## 3.1 Install dependencies
```bash
accelerate @ git+https://github.com/huggingface/accelerate@66edfe103a0de9607f9b9fdcf6a8e2132486d99b
datasets==2.6.1
sentencepiece==0.1.97
protobuf==3.20.1
evaluate==0.2.2
tensorboard==2.11.0
torch >= 1.3
```
## 3.2 Download NACHOS Dataset text file
Download the full NACHOS dataset from [Zenodo]() and place it the the `from_scratch` or `continued_pretraining` directory.
## 3.3 Build your own tokenizer from scratch based on NACHOS
Note : This step is required only in the case of an from scratch pre-training, if you want to do a continued pre-training you just have to download the model and the tokenizer that correspond to the model you want to continue the training from. In this case, you simply have to go to the HuggingFace Hub, select a model (for example [RoBERTa-base](https://huggingface.co/roberta-base)). Finally, you have to download the entire model / tokenizer repository by clicking on the `Use In Transformers` button and get the Git link `git clone https://huggingface.co/roberta-base`.
Build the tokenizer from scratch on your data of the file `./corpus.txt` by using `./build_tokenizer.sh`.
## 3.4 Preprocessing and tokenization of the dataset
First, replace the field `tokenizer_path` of the shell script to match the path of your tokenizer directory downloaded before using HuggingFace Git or the one you have build.
Run `./preprocessing_dataset.sh` to generate the tokenized dataset by using the givent tokenizer.
## 3.5 Model training
First, change the number of GPUs `--ntasks=128` you are needing to match your computational capabilities in the shell script called `run_training.sh`. In our case, we used 128 V100 32 GB GPUs from 32 nodes of 4 GPUs (`--ntasks-per-node=4` and `--gres=gpu:4`) during 20 hours (`--time=20:00:00`).
If you are using Jean Zay, you also need to change the `-A` flag to match one of your `@gpu` profile capable of running the job. You also need to move **ALL** of your datasets, tokenizer, script and outputs on the `$SCRATCH` disk space to preserve others users of suffuring of IO issues.
### 3.5.1 Pre-training from scratch
Once the SLURM parameters updated, you have to change name of the model architecture in the flag `--model_type="camembert"` and to update the `--config_overrides=` according to the specifications of the architecture you are trying to train. In our case, RoBERTa had a `514` sequence length, a vocabulary of `32005` (32K tokens of the tokenizer and 5 of the model architecture) tokens, the identifier of the beginning-of-sentence token (BOS) and end-of-sentence token (EOS) are respectivly `5` and `6`. Change the
Then, go to `./from_scratch/` directory.
Run `sbatch ./run_training.sh` to send the training job in the SLURM queue.
### 3.5.2 continue pre-training
Once the SLURM parameters updated, you have to change path of the model / tokenizer you want to start from `--model_name_or_path=` / `--tokenizer_name=` to the path of the model downloaded from HuggingFace's Git in the section 3.3.
Then, go to `./continued_pretraining/` directory.
Run `sbatch ./run_training.sh` to send the training job in the SLURM queue.
# 4. Fine-tuning on a downstream task
You just need to change the name of the model to `Dr-BERT/DrBERT-7GB` in any of the examples given by HuggingFace's team [here](https://huggingface.co/docs/transformers/tasks/sequence_classification).
# Citation BibTeX
```bibtex
@inproceedings{labrak2023drbert,
title = {{DrBERT: A Robust Pre-trained Model in French for Biomedical and Clinical domains}},
author = {Labrak, Yanis and Bazoge, Adrien and Dufour, Richard and Rouvier, Mickael and Morin, Emmanuel and Daille, Béatrice and Gourraud, Pierre-Antoine},
booktitle = {Proceedings of the 61th Annual Meeting of the Association for Computational Linguistics (ACL'23), Long Paper},
month = july,
year = 2023,
address = {Toronto, Canada},
publisher = {Association for Computational Linguistics}
}
```
|
Dr-BERT/DrBERT-4GB
|
Dr-BERT
| 2023-05-28T17:38:07Z | 4 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"camembert",
"fill-mask",
"medical",
"chemistry",
"biomedical",
"life science",
"fr",
"dataset:Dr-BERT/NACHOS",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-12-25T19:21:28Z |
---
license: apache-2.0
datasets:
- Dr-BERT/NACHOS
language:
- fr
library_name: transformers
tags:
- medical
- chemistry
- biomedical
- life science
---
<p align="center">
<img src="https://github.com/qanastek/DrBERT/blob/main/assets/logo.png?raw=true" alt="drawing" width="250"/>
</p>
# DrBERT: A Robust Pre-trained Model in French for Biomedical and Clinical domains
In recent years, pre-trained language models (PLMs) achieve the best performance on a wide range of natural language processing (NLP) tasks. While the first models were trained on general domain data, specialized ones have emerged to more effectively treat specific domains.
In this paper, we propose an original study of PLMs in the medical domain on French language. We compare, for the first time, the performance of PLMs trained on both public data from the web and private data from healthcare establishments. We also evaluate different learning strategies on a set of biomedical tasks.
Finally, we release the first specialized PLMs for the biomedical field in French, called DrBERT, as well as the largest corpus of medical data under free license on which these models are trained.
# 1. DrBERT models
**DrBERT** is a French RoBERTa trained on a open source corpus of French medical crawled textual data called NACHOS. Models with different amount of data from differents public and private sources are trained using the CNRS (French National Centre for Scientific Research) [Jean Zay](http://www.idris.fr/jean-zay/) French supercomputer. Only the weights of the models trained using exclusively open-sources data are publicly released to prevent any personnal information leak and to follow the european GDPR laws :
| Model name | Corpus | Number of layers | Attention Heads | Embedding Dimension | Sequence Length | Model URL |
| :------: | :---: | :---: | :---: | :---: | :---: | :---: |
| `DrBERT-7-GB-cased-Large` | NACHOS 7 GB | 24 | 16 | 1024 | 512 | [HuggingFace](https://huggingface.co/Dr-BERT/DrBERT-7GB-Large) |
| `DrBERT-7-GB-cased` | NACHOS 7 GB | 12 | 12 | 768 | 512 | [HuggingFace](https://huggingface.co/Dr-BERT/DrBERT-7GB) |
| `DrBERT-4-GB-cased` | NACHOS 4 GB | 12 | 12 | 768 | 512 | [HuggingFace](https://huggingface.co/Dr-BERT/DrBERT-4GB) |
| `DrBERT-4-GB-cased-CP-CamemBERT` | NACHOS 4 GB | 12 | 12 | 768 | 512 | [HuggingFace](https://huggingface.co/Dr-BERT/DrBERT-4GB-CP-CamemBERT) |
| `DrBERT-4-GB-cased-CP-PubMedBERT` | NACHOS 4 GB | 12 | 12 | 768 | 512 | [HuggingFace](https://huggingface.co/Dr-BERT/DrBERT-4GB-CP-PubMedBERT) |
# 2. Using DrBERT
You can use DrBERT with [Hugging Face's Transformers library](https://github.com/huggingface/transformers) as follow.
Loading the model and tokenizer :
```python
from transformers import AutoModel, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("Dr-BERT/DrBERT-7GB")
model = AutoModel.from_pretrained("Dr-BERT/DrBERT-7GB")
```
Perform the mask filling task :
```python
from transformers import pipeline
fill_mask = pipeline("fill-mask", model="Dr-BERT/DrBERT-7GB", tokenizer="Dr-BERT/DrBERT-7GB")
results = fill_mask("La patiente est atteinte d'une <mask>")
```
# 3. Pre-training DrBERT tokenizer and model from scratch by using HuggingFace Transformers Library
## 3.1 Install dependencies
```bash
accelerate @ git+https://github.com/huggingface/accelerate@66edfe103a0de9607f9b9fdcf6a8e2132486d99b
datasets==2.6.1
sentencepiece==0.1.97
protobuf==3.20.1
evaluate==0.2.2
tensorboard==2.11.0
torch >= 1.3
```
## 3.2 Download NACHOS Dataset text file
Download the full NACHOS dataset from [Zenodo]() and place it the the `from_scratch` or `continued_pretraining` directory.
## 3.3 Build your own tokenizer from scratch based on NACHOS
Note : This step is required only in the case of an from scratch pre-training, if you want to do a continued pre-training you just have to download the model and the tokenizer that correspond to the model you want to continue the training from. In this case, you simply have to go to the HuggingFace Hub, select a model (for example [RoBERTa-base](https://huggingface.co/roberta-base)). Finally, you have to download the entire model / tokenizer repository by clicking on the `Use In Transformers` button and get the Git link `git clone https://huggingface.co/roberta-base`.
Build the tokenizer from scratch on your data of the file `./corpus.txt` by using `./build_tokenizer.sh`.
## 3.4 Preprocessing and tokenization of the dataset
First, replace the field `tokenizer_path` of the shell script to match the path of your tokenizer directory downloaded before using HuggingFace Git or the one you have build.
Run `./preprocessing_dataset.sh` to generate the tokenized dataset by using the givent tokenizer.
## 3.5 Model training
First, change the number of GPUs `--ntasks=128` you are needing to match your computational capabilities in the shell script called `run_training.sh`. In our case, we used 128 V100 32 GB GPUs from 32 nodes of 4 GPUs (`--ntasks-per-node=4` and `--gres=gpu:4`) during 20 hours (`--time=20:00:00`).
If you are using Jean Zay, you also need to change the `-A` flag to match one of your `@gpu` profile capable of running the job. You also need to move **ALL** of your datasets, tokenizer, script and outputs on the `$SCRATCH` disk space to preserve others users of suffuring of IO issues.
### 3.5.1 Pre-training from scratch
Once the SLURM parameters updated, you have to change name of the model architecture in the flag `--model_type="camembert"` and to update the `--config_overrides=` according to the specifications of the architecture you are trying to train. In our case, RoBERTa had a `514` sequence length, a vocabulary of `32005` (32K tokens of the tokenizer and 5 of the model architecture) tokens, the identifier of the beginning-of-sentence token (BOS) and end-of-sentence token (EOS) are respectivly `5` and `6`. Change the
Then, go to `./from_scratch/` directory.
Run `sbatch ./run_training.sh` to send the training job in the SLURM queue.
### 3.5.2 continue pre-training
Once the SLURM parameters updated, you have to change path of the model / tokenizer you want to start from `--model_name_or_path=` / `--tokenizer_name=` to the path of the model downloaded from HuggingFace's Git in the section 3.3.
Then, go to `./continued_pretraining/` directory.
Run `sbatch ./run_training.sh` to send the training job in the SLURM queue.
# 4. Fine-tuning on a downstream task
You just need to change the name of the model to `Dr-BERT/DrBERT-7GB` in any of the examples given by HuggingFace's team [here](https://huggingface.co/docs/transformers/tasks/sequence_classification).
# Citation BibTeX
```bibtex
@inproceedings{labrak2023drbert,
title = {{DrBERT: A Robust Pre-trained Model in French for Biomedical and Clinical domains}},
author = {Labrak, Yanis and Bazoge, Adrien and Dufour, Richard and Rouvier, Mickael and Morin, Emmanuel and Daille, Béatrice and Gourraud, Pierre-Antoine},
booktitle = {Proceedings of the 61th Annual Meeting of the Association for Computational Linguistics (ACL'23), Long Paper},
month = july,
year = 2023,
address = {Toronto, Canada},
publisher = {Association for Computational Linguistics}
}
```
|
edata/q-FrozenLake-v1-4x4-noSlippery
|
edata
| 2023-05-28T17:37:17Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-05-28T17:37:12Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="edata/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
platzi/platzi-vit-model-joel-orellana
|
platzi
| 2023-05-28T17:34:34Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"vit",
"image-classification",
"generated_from_trainer",
"dataset:beans",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2023-05-28T17:18:39Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- beans
metrics:
- accuracy
model-index:
- name: platzi-vit-model-joel-orellana
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: beans
type: beans
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9924812030075187
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# platzi-vit-model-joel-orellana
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0283
- Accuracy: 0.9925
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.1313 | 3.85 | 500 | 0.0283 | 0.9925 |
### Framework versions
- Transformers 4.29.2
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
|
ChristianMDahl/segFormer_ver1_horizontal
|
ChristianMDahl
| 2023-05-28T17:31:58Z | 31 | 0 |
transformers
|
[
"transformers",
"tf",
"segformer",
"generated_from_keras_callback",
"license:other",
"endpoints_compatible",
"region:us"
] | null | 2023-05-28T07:00:34Z |
---
license: other
tags:
- generated_from_keras_callback
model-index:
- name: ChristianMDahl/segFormer_ver1_horizontal
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# ChristianMDahl/segFormer_ver1_horizontal
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1767
- Validation Loss: 0.1918
- Epoch: 19
## Model description
Model for **horizontal** lines
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': 6e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 0.3302 | 0.2673 | 0 |
| 0.2515 | 0.2329 | 1 |
| 0.2335 | 0.2197 | 2 |
| 0.2226 | 0.2125 | 3 |
| 0.2153 | 0.2083 | 4 |
| 0.2105 | 0.2039 | 5 |
| 0.2061 | 0.2023 | 6 |
| 0.2025 | 0.2013 | 7 |
| 0.1995 | 0.2015 | 8 |
| 0.1960 | 0.1976 | 9 |
| 0.1938 | 0.1966 | 10 |
| 0.1909 | 0.1973 | 11 |
| 0.1882 | 0.1936 | 12 |
| 0.1865 | 0.1951 | 13 |
| 0.1845 | 0.1942 | 14 |
| 0.1826 | 0.1953 | 15 |
| 0.1810 | 0.1934 | 16 |
| 0.1794 | 0.1928 | 17 |
| 0.1782 | 0.1919 | 18 |
| 0.1767 | 0.1918 | 19 |
### Framework versions
- Transformers 4.28.1
- TensorFlow 2.10.1
- Datasets 2.12.0
- Tokenizers 0.13.0.dev0
|
Seogmin/my_awesome_model
|
Seogmin
| 2023-05-28T17:21:17Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:imdb",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-05-28T17:18:13Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imdb
metrics:
- accuracy
model-index:
- name: my_awesome_model
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: imdb
type: imdb
config: plain_text
split: test
args: plain_text
metrics:
- name: Accuracy
type: accuracy
value: 1.0
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_model
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0021
- Accuracy: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 63 | 0.0032 | 1.0 |
| No log | 2.0 | 126 | 0.0021 | 1.0 |
### Framework versions
- Transformers 4.29.2
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
|
dimi1357/poca-SoccerTwos
|
dimi1357
| 2023-05-28T17:20:46Z | 0 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SoccerTwos",
"region:us"
] |
reinforcement-learning
| 2023-05-28T17:20:41Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SoccerTwos
library_name: ml-agents
---
# **poca** Agent playing **SoccerTwos**
This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos
2. Step 1: Write your model_id: dimi1357/poca-SoccerTwos
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
Word2vec/polyglot_words_embeddings_afr
|
Word2vec
| 2023-05-28T17:13:58Z | 0 | 0 | null |
[
"word2vec",
"af",
"license:gpl-3.0",
"region:us"
] | null | 2023-05-19T21:59:34Z |
---
tags:
- word2vec
language: af
license: gpl-3.0
---
## Description
Word embedding model trained by Al-Rfou et al.
## How to use?
```
import pickle
from numpy import dot
from numpy.linalg import norm
from huggingface_hub import hf_hub_download
words, embeddings = pickle.load(open(hf_hub_download(repo_id="Word2vec/polyglot_words_embeddings_en", filename="words_embeddings_en.pkl"), 'rb'),encoding="latin1")
word = "Irish"
a = embeddings[words.index(word)]
most_similar = []
for i in range(len(embeddings)):
if i != words.index(word):
b = embeddings[i]
cos_sim = dot(a, b)/(norm(a)*norm(b))
most_similar.append(cos_sim)
else:
most_similar.append(0)
words[most_similar.index(max(most_similar))]
```
## Citation
```
@InProceedings{polyglot:2013:ACL-CoNLL,
author = {Al-Rfou, Rami and Perozzi, Bryan and Skiena, Steven},
title = {Polyglot: Distributed Word Representations for Multilingual NLP},
booktitle = {Proceedings of the Seventeenth Conference on Computational Natural Language Learning},
month = {August},
year = {2013},
address = {Sofia, Bulgaria},
publisher = {Association for Computational Linguistics},
pages = {183--192},
url = {http://www.aclweb.org/anthology/W13-3520}
}
```
|
Word2vec/polyglot_words_embeddings_zhc
|
Word2vec
| 2023-05-28T17:03:30Z | 0 | 0 | null |
[
"word2vec",
"zhc",
"license:gpl-3.0",
"region:us"
] | null | 2023-05-19T22:09:23Z |
---
tags:
- word2vec
language: zhc
license: gpl-3.0
---
## Description
Word embedding model trained by Al-Rfou et al.
## How to use?
```
import pickle
from numpy import dot
from numpy.linalg import norm
from huggingface_hub import hf_hub_download
words, embeddings = pickle.load(open(hf_hub_download(repo_id="Word2vec/polyglot_words_embeddings_en", filename="words_embeddings_en.pkl"), 'rb'),encoding="latin1")
word = "Irish"
a = embeddings[words.index(word)]
most_similar = []
for i in range(len(embeddings)):
if i != words.index(word):
b = embeddings[i]
cos_sim = dot(a, b)/(norm(a)*norm(b))
most_similar.append(cos_sim)
else:
most_similar.append(0)
words[most_similar.index(max(most_similar))]
```
## Citation
```
@InProceedings{polyglot:2013:ACL-CoNLL,
author = {Al-Rfou, Rami and Perozzi, Bryan and Skiena, Steven},
title = {Polyglot: Distributed Word Representations for Multilingual NLP},
booktitle = {Proceedings of the Seventeenth Conference on Computational Natural Language Learning},
month = {August},
year = {2013},
address = {Sofia, Bulgaria},
publisher = {Association for Computational Linguistics},
pages = {183--192},
url = {http://www.aclweb.org/anthology/W13-3520}
}
```
|
thackerhelik/Reinforce-Cartpole-v1
|
thackerhelik
| 2023-05-28T16:56:26Z | 0 | 0 | null |
[
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-05-28T16:56:16Z |
---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-Cartpole-v1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
arturboyun/finetuning-sentiment-model-3000-samples
|
arturboyun
| 2023-05-28T16:51:35Z | 107 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:imdb",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-05-28T16:02:30Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imdb
metrics:
- accuracy
- f1
model-index:
- name: finetuning-sentiment-model-3000-samples
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: imdb
type: imdb
config: plain_text
split: test
args: plain_text
metrics:
- name: Accuracy
type: accuracy
value: 0.8833333333333333
- name: F1
type: f1
value: 0.8837209302325582
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuning-sentiment-model-3000-samples
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2907
- Accuracy: 0.8833
- F1: 0.8837
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.29.2
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
smartik/mbart-large-50-finetuned-ua-gec-2.1
|
smartik
| 2023-05-28T16:50:37Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-05-28T15:12:13Z |
---
license: mit
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mbart-large-50-finetuned-ua-gec-2.1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-large-50-finetuned-ua-gec-2.1
This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5376
- Rouge1: 18.2963
- Rouge2: 10.2365
- Rougel: 18.2593
- Rougelsum: 18.2759
- Gen Len: 28.6107
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 0.0765 | 1.0 | 1010 | 0.4070 | 18.2963 | 10.2365 | 18.2593 | 18.2759 | 28.522 |
| 0.046 | 2.0 | 2020 | 0.4710 | 18.2963 | 10.2365 | 18.2593 | 18.2759 | 28.578 |
| 0.0291 | 3.0 | 3030 | 0.4885 | 18.2833 | 10.2052 | 18.2454 | 18.263 | 28.5793 |
| 0.0188 | 4.0 | 4040 | 0.5145 | 18.2963 | 10.2365 | 18.2593 | 18.2759 | 28.6127 |
| 0.0117 | 5.0 | 5050 | 0.5376 | 18.2963 | 10.2365 | 18.2593 | 18.2759 | 28.6107 |
### Framework versions
- Transformers 4.29.2
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
|
dimi1357/rl_course_vizdoom_health_gathering_supreme
|
dimi1357
| 2023-05-28T16:47:22Z | 0 | 0 |
sample-factory
|
[
"sample-factory",
"tensorboard",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-05-28T16:36:32Z |
---
library_name: sample-factory
tags:
- deep-reinforcement-learning
- reinforcement-learning
- sample-factory
model-index:
- name: APPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: doom_health_gathering_supreme
type: doom_health_gathering_supreme
metrics:
- type: mean_reward
value: 11.18 +/- 5.56
name: mean_reward
verified: false
---
A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment.
This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
## Downloading the model
After installing Sample-Factory, download the model with:
```
python -m sample_factory.huggingface.load_from_hub -r dimi1357/rl_course_vizdoom_health_gathering_supreme
```
## Using the model
To run the model after download, use the `enjoy` script corresponding to this environment:
```
python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
```
You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
## Training with this model
To continue training with this model, use the `train` script corresponding to this environment:
```
python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
```
Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
|
Abhilashvj/CIRCL_website_classifier_test
|
Abhilashvj
| 2023-05-28T16:44:04Z | 52 | 1 |
transformers
|
[
"transformers",
"pytorch",
"resnet",
"image-classification",
"arxiv:1910.09700",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2023-05-28T16:16:41Z |
---
license: apache-2.0
pipeline_tag: image-classification
metrics:
- accuracy
- f1
---
# Model Card for Model ID
<!-- This model can be used to classify website screenshots. -->
This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Word2vec/fauconnier_frWac_non_lem_no_postag_no_phrase_500_skip_cut200
|
Word2vec
| 2023-05-28T16:42:43Z | 0 | 0 | null |
[
"word2vec",
"fr",
"license:cc-by-3.0",
"region:us"
] | null | 2023-05-16T20:30:13Z |
---
tags:
- word2vec
language: fr
license: cc-by-3.0
---
### Description
A French word2vec model trained on [FrWac](https://wacky.sslmit.unibo.it/doku.php?id=corpora) by Fauconnier with the following hyperparameters:
lem: no, pos: no, phrase: no, train: skip, dim: 500, cutoff: 200
### How to use?
```
from gensim.models import KeyedVectors
from huggingface_hub import hf_hub_download
model = KeyedVectors.load_word2vec_format("Word2vec/fauconnier_frWiki_no_phrase_no_postag_1000_skip_cut200.bin", binary=True, unicode_errors="ignore")
model.most_similar("intéressant_a")
```
### Citation
```
@misc{fauconnier_2015,
author = {Fauconnier, Jean-Philippe},
title = {French Word Embeddings},
url = {http://fauconnier.github.io},
year = {2015}}
```
|
Word2vec/fauconnier_frWac_no_postag_no_phrase_700_skip_cut50
|
Word2vec
| 2023-05-28T16:39:59Z | 0 | 0 | null |
[
"word2vec",
"fr",
"license:cc-by-3.0",
"region:us"
] | null | 2023-05-16T20:25:03Z |
---
tags:
- word2vec
language: fr
license: cc-by-3.0
---
### Description
A French word2vec model trained on [FrWac](https://wacky.sslmit.unibo.it/doku.php?id=corpora) by Fauconnier with the following hyperparameters:
lem: yes, pos: no, phrase: no, train: skip, dim: 700, cutoff: 50
### How to use?
```
from gensim.models import KeyedVectors
from huggingface_hub import hf_hub_download
model = KeyedVectors.load_word2vec_format("Word2vec/fauconnier_frWiki_no_phrase_no_postag_1000_skip_cut200.bin", binary=True, unicode_errors="ignore")
model.most_similar("intéressant_a")
```
### Citation
```
@misc{fauconnier_2015,
author = {Fauconnier, Jean-Philippe},
title = {French Word Embeddings},
url = {http://fauconnier.github.io},
year = {2015}}
```
|
Word2vec/fauconnier_frWac_no_postag_no_phrase_500_cbow_cut100
|
Word2vec
| 2023-05-28T16:39:32Z | 0 | 0 | null |
[
"word2vec",
"fr",
"license:cc-by-3.0",
"region:us"
] | null | 2023-05-16T20:23:23Z |
---
tags:
- word2vec
language: fr
license: cc-by-3.0
---
### Description
A French word2vec model trained on [FrWac](https://wacky.sslmit.unibo.it/doku.php?id=corpora) by Fauconnier with the following hyperparameters:
lem: yes, pos: no, phrase: no, train: cbow, dim: 500, cutoff: 100
### How to use?
```
from gensim.models import KeyedVectors
from huggingface_hub import hf_hub_download
model = KeyedVectors.load_word2vec_format("Word2vec/fauconnier_frWiki_no_phrase_no_postag_1000_skip_cut200.bin", binary=True, unicode_errors="ignore")
model.most_similar("intéressant_a")
```
### Citation
```
@misc{fauconnier_2015,
author = {Fauconnier, Jean-Philippe},
title = {French Word Embeddings},
url = {http://fauconnier.github.io},
year = {2015}}
```
|
Word2vec/fauconnier_frWac_no_postag_no_phrase_500_skip_cut100
|
Word2vec
| 2023-05-28T16:38:57Z | 0 | 0 | null |
[
"word2vec",
"fr",
"license:cc-by-3.0",
"region:us"
] | null | 2023-05-16T20:24:07Z |
---
tags:
- word2vec
language: fr
license: cc-by-3.0
---
### Description
A French word2vec model trained on [FrWac](https://wacky.sslmit.unibo.it/doku.php?id=corpora) by Fauconnier with the following hyperparameters:
lem: yes, pos: no, phrase: no, train: skip, dim: 500, cutoff: 100
### How to use?
```
from gensim.models import KeyedVectors
from huggingface_hub import hf_hub_download
model = KeyedVectors.load_word2vec_format("Word2vec/fauconnier_frWiki_no_phrase_no_postag_1000_skip_cut200.bin", binary=True, unicode_errors="ignore")
model.most_similar("intéressant_a")
```
### Citation
```
@misc{fauconnier_2015,
author = {Fauconnier, Jean-Philippe},
title = {French Word Embeddings},
url = {http://fauconnier.github.io},
year = {2015}}
```
|
asenella/mmnist_MMVAEPlusconfig2_seed_3_ratio_05_c
|
asenella
| 2023-05-28T16:38:07Z | 0 | 0 | null |
[
"multivae",
"en",
"license:apache-2.0",
"region:us"
] | null | 2023-05-25T09:40:14Z |
---
language: en
tags:
- multivae
license: apache-2.0
---
### Downloading this model from the Hub
This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub`
```python
>>> from multivae.models import AutoModel
>>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name")
```
|
Word2vec/fauconnier_frWac_non_lem_no_postag_no_phrase_200_cbow_cut0
|
Word2vec
| 2023-05-28T16:38:06Z | 0 | 0 | null |
[
"word2vec",
"fr",
"license:cc-by-3.0",
"region:us"
] | null | 2023-05-16T20:19:42Z |
---
tags:
- word2vec
language: fr
license: cc-by-3.0
---
### Description
A French word2vec model trained on [FrWac](https://wacky.sslmit.unibo.it/doku.php?id=corpora) by Fauconnier with the following hyperparameters:
lem: no, pos: no, phrase: no, train: cbow, dim: 200, cutoff: 0
### How to use?
```
from gensim.models import KeyedVectors
from huggingface_hub import hf_hub_download
model = KeyedVectors.load_word2vec_format("Word2vec/fauconnier_frWiki_no_phrase_no_postag_1000_skip_cut200.bin", binary=True, unicode_errors="ignore")
model.most_similar("intéressant_a")
```
### Citation
```
@misc{fauconnier_2015,
author = {Fauconnier, Jean-Philippe},
title = {French Word Embeddings},
url = {http://fauconnier.github.io},
year = {2015}}
```
|
Word2vec/fauconnier_frWac_non_lem_no_postag_no_phrase_200_skip_cut100
|
Word2vec
| 2023-05-28T16:33:16Z | 0 | 0 | null |
[
"word2vec",
"fr",
"license:cc-by-3.0",
"region:us"
] | null | 2023-05-16T19:14:54Z |
---
tags:
- word2vec
language: fr
license: cc-by-3.0
---
### Description
A French word2vec model trained on [FrWac](https://wacky.sslmit.unibo.it/doku.php?id=corpora) by Fauconnier with the following hyperparameters:
lem: no, pos: no, phrase: no, train: skip, dim: 200, cutoff: 100
### How to use?
```
from gensim.models import KeyedVectors
from huggingface_hub import hf_hub_download
model = KeyedVectors.load_word2vec_format("Word2vec/fauconnier_frWiki_no_phrase_no_postag_1000_skip_cut200.bin", binary=True, unicode_errors="ignore")
model.most_similar("intéressant_a")
```
### Citation
```
@misc{fauconnier_2015,
author = {Fauconnier, Jean-Philippe},
title = {French Word Embeddings},
url = {http://fauconnier.github.io},
year = {2015}}
```
|
Word2vec/fauconnier_frWac_non_lem_no_postag_no_phrase_200_cbow_cut100
|
Word2vec
| 2023-05-28T16:30:53Z | 0 | 0 | null |
[
"word2vec",
"fr",
"license:cc-by-3.0",
"region:us"
] | null | 2023-05-16T19:14:01Z |
---
tags:
- word2vec
language: fr
license: cc-by-3.0
---
### Description
A French word2vec model trained on [FrWac](https://wacky.sslmit.unibo.it/doku.php?id=corpora) by Fauconnier with the following hyperparameters:
lem: no, pos: no, phrase: no, train: cbow, dim: 200, cutoff: 100
### How to use?
```
from gensim.models import KeyedVectors
from huggingface_hub import hf_hub_download
model = KeyedVectors.load_word2vec_format("Word2vec/fauconnier_frWiki_no_phrase_no_postag_1000_skip_cut200.bin", binary=True, unicode_errors="ignore")
model.most_similar("intéressant_a")
```
### Citation
```
@misc{fauconnier_2015,
author = {Fauconnier, Jean-Philippe},
title = {French Word Embeddings},
url = {http://fauconnier.github.io},
year = {2015}}
```
|
ImPavloh/Streamers-AI-Voices
|
ImPavloh
| 2023-05-28T16:29:58Z | 0 | 0 | null |
[
"music",
"audio-to-audio",
"license:other",
"region:us"
] |
audio-to-audio
| 2023-05-28T16:16:20Z |
---
license: other
pipeline_tag: audio-to-audio
tags:
- music
---
# Modelos de Streamers utilizados en [VoiceIt](https://huggingface.co/spaces/ImPavloh/voiceit)
Estos modelos de Streamers son utilizados en [VoiceIt](https://voiceit.pavloh.com), una plataforma desarrollada por [Pavloh](https://twitter.com/ImPavloh) que permite la transformación de voz a voz.
# Tecnología empleada
Este proyecto ha sido creado utilizando SoftVC VITS Singing Voice Conversion (versión 4.0), una tecnología de vanguardia para la conversión de voz cantada.
Todos los modelos de este repositorio han sido creados por mi, hay mejores modelos en [este repositorio](https://huggingface.co/QuickWick/Music-AI-Voices) creados por otra gente.
Si necesitas más información o tienes alguna duda, no dudes en ponerte en contacto conmigo [Pavloh](https://twitter.com/ImPavloh).
## ⚠️ Importante | Las voces generadas no deben tener derechos de autor.
|
Word2vec/fauconnier_frWiki_no_lem_no_postag_no_phrase_1000_cbow_cut100
|
Word2vec
| 2023-05-28T16:24:11Z | 0 | 0 | null |
[
"word2vec",
"fr",
"dataset:wikipedia",
"license:cc-by-3.0",
"region:us"
] | null | 2023-05-16T17:41:24Z |
---
tags:
- word2vec
language: fr
license: cc-by-3.0
datasets:
- wikipedia
---
### Description
A French word2vec model trained on [frwiki](https://dumps.wikimedia.org/frwiki/) by Fauconnier with the following hyperparameters:
lem: no, pos: no, phrase: no, train: cbow, dim: 1000, cutoff: 100
### How to use?
```
from gensim.models import KeyedVectors
from huggingface_hub import hf_hub_download
model = KeyedVectors.load_word2vec_format("Word2vec/fauconnier_frWiki_no_phrase_no_postag_1000_skip_cut200.bin", binary=True, unicode_errors="ignore")
model.most_similar("intéressant_a")
```
### Citation
```
@misc{fauconnier_2015,
author = {Fauconnier, Jean-Philippe},
title = {French Word Embeddings},
url = {http://fauconnier.github.io},
year = {2015}}
```
|
asenella/mmnist_MMVAEPlusconfig2_seed_2_ratio_05_c
|
asenella
| 2023-05-28T16:23:55Z | 0 | 0 | null |
[
"multivae",
"en",
"license:apache-2.0",
"region:us"
] | null | 2023-05-25T09:34:35Z |
---
language: en
tags:
- multivae
license: apache-2.0
---
### Downloading this model from the Hub
This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub`
```python
>>> from multivae.models import AutoModel
>>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name")
```
|
Word2vec/fauconnier_frWiki_no_phrase_no_postag_1000_skip_cut100
|
Word2vec
| 2023-05-28T16:23:29Z | 0 | 0 | null |
[
"word2vec",
"fr",
"dataset:wikipedia",
"license:cc-by-3.0",
"region:us"
] | null | 2023-05-16T17:29:24Z |
---
tags:
- word2vec
language: fr
license: cc-by-3.0
datasets:
- wikipedia
---
### Description
A French word2vec model trained on [frwiki](https://dumps.wikimedia.org/frwiki/) by Fauconnier with the following hyperparameters:
lem: yes, pos: no, phrase: no, train: skip, dim: 1000, cutoff: 100
### How to use?
```
from gensim.models import KeyedVectors
from huggingface_hub import hf_hub_download
model = KeyedVectors.load_word2vec_format("Word2vec/fauconnier_frWiki_no_phrase_no_postag_1000_skip_cut200.bin", binary=True, unicode_errors="ignore")
model.most_similar("intéressant_a")
```
### Citation
```
@misc{fauconnier_2015,
author = {Fauconnier, Jean-Philippe},
title = {French Word Embeddings},
url = {http://fauconnier.github.io},
year = {2015}}
```
|
Word2vec/fauconnier_frWiki_no_lem_no_postag_no_phrase_1000_skip_cut100
|
Word2vec
| 2023-05-28T16:22:42Z | 0 | 0 | null |
[
"word2vec",
"fr",
"dataset:wikipedia",
"license:cc-by-3.0",
"region:us"
] | null | 2023-05-16T17:34:29Z |
---
tags:
- word2vec
language: fr
license: cc-by-3.0
datasets:
- wikipedia
---
### Description
A French word2vec model trained on [frwiki](https://dumps.wikimedia.org/frwiki/) by Fauconnier with the following hyperparameters:
lem: np, pos: no, phrase: no, train: skip, dim: 1000, cutoff: 100
### How to use?
```
from gensim.models import KeyedVectors
from huggingface_hub import hf_hub_download
model = KeyedVectors.load_word2vec_format("Word2vec/fauconnier_frWiki_no_phrase_no_postag_1000_skip_cut200.bin", binary=True, unicode_errors="ignore")
model.most_similar("intéressant_a")
```
### Citation
```
@misc{fauconnier_2015,
author = {Fauconnier, Jean-Philippe},
title = {French Word Embeddings},
url = {http://fauconnier.github.io},
year = {2015}}
```
|
Word2vec/fauconnier_frWiki_no_phrase_no_postag_1000_skip_cut200
|
Word2vec
| 2023-05-28T16:19:32Z | 0 | 0 | null |
[
"word2vec",
"fr",
"dataset:wikipedia",
"license:cc-by-3.0",
"region:us"
] | null | 2023-05-16T17:28:26Z |
---
tags:
- word2vec
language: fr
license: cc-by-3.0
datasets:
- wikipedia
---
### Description
A French word2vec model trained on [frwiki](https://dumps.wikimedia.org/frwiki/) by Fauconnier with the following hyperparameters:
lem: yes, pos: no, phrase: no, train: skip, dim: 1000, cutoff: 200
### How to use?
```
from gensim.models import KeyedVectors
from huggingface_hub import hf_hub_download
model = KeyedVectors.load_word2vec_format("Word2vec/fauconnier_frWiki_no_phrase_no_postag_1000_skip_cut200.bin", binary=True, unicode_errors="ignore")
model.most_similar("intéressant_a")
```
### Citation
```
@misc{fauconnier_2015,
author = {Fauconnier, Jean-Philippe},
title = {French Word Embeddings},
url = {http://fauconnier.github.io},
year = {2015}}
```
|
Rock910/Reinforce-CartPole-v1
|
Rock910
| 2023-05-28T16:06:57Z | 0 | 0 | null |
[
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-05-27T21:03:46Z |
---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-CartPole-v1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
Yhyu13/baize-v2-13b-gptq-4bit
|
Yhyu13
| 2023-05-28T15:54:40Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"llama",
"text-generation",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-05-27T15:51:08Z |
---
license: apache-2.0
---
GPTQ 4-bit no actor version for compatibility that works in textgen-webui
Generated by using scripts from https://gitee.com/yhyu13/llama_-tools
Original weight : https://huggingface.co/project-baize/baize-v2-7b
Baize is a lora training framework that allows fine-tuning LLaMA models on commondity GPUs.
Checkout my 7B baize gptq 4bit here : https://huggingface.co/Yhyu13/baize-v2-7b-gptq-4bit
|
YakovElm/Hyperledger15Classic_512
|
YakovElm
| 2023-05-28T15:51:00Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-05-28T15:50:25Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Hyperledger15Classic_512
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Hyperledger15Classic_512
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.2806
- Train Accuracy: 0.9035
- Validation Loss: 0.3198
- Validation Accuracy: 0.8807
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.3217 | 0.8952 | 0.3253 | 0.8807 | 0 |
| 0.2967 | 0.9035 | 0.3233 | 0.8807 | 1 |
| 0.2806 | 0.9035 | 0.3198 | 0.8807 | 2 |
### Framework versions
- Transformers 4.29.2
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|
dimi1357/LunarLander-v2
|
dimi1357
| 2023-05-28T15:36:18Z | 0 | 0 | null |
[
"tensorboard",
"LunarLander-v2",
"ppo",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"deep-rl-course",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-05-28T15:30:58Z |
---
tags:
- LunarLander-v2
- ppo
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
- deep-rl-course
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: -232.16 +/- 167.18
name: mean_reward
verified: false
---
# PPO Agent Playing LunarLander-v2
This is a trained model of a PPO agent playing LunarLander-v2.
# Hyperparameters
|
casque/eimifukada
|
casque
| 2023-05-28T15:28:16Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-05-28T15:26:45Z |
---
license: creativeml-openrail-m
---
|
maharishiva/ppo_v2-LunarLander-v2
|
maharishiva
| 2023-05-28T15:26:59Z | 4 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-05-28T15:26:42Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 249.01 +/- 22.09
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
danorel/q-FrozenLake-v1-4x4-noSlippery
|
danorel
| 2023-05-28T15:16:27Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-05-28T15:16:25Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="danorel/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
Disnutius/Elsex
|
Disnutius
| 2023-05-28T15:15:06Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-05-28T15:13:48Z |
---
license: creativeml-openrail-m
---
|
Kurapika993/Toxic_classifier_bert
|
Kurapika993
| 2023-05-28T15:11:36Z | 4 | 0 |
transformers
|
[
"transformers",
"bert",
"fill-mask",
"text-classification",
"en",
"dataset:jigsaw_toxicity_pred",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-05-17T18:49:19Z |
---
license: apache-2.0
datasets:
- jigsaw_toxicity_pred
metrics:
- accuracy
pipeline_tag: text-classification
language:
- en
library_name: transformers
---
|
MocktaiLEngineer/mt5-small-finetuned-QMSum-01
|
MocktaiLEngineer
| 2023-05-28T15:00:06Z | 8 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mt5",
"text2text-generation",
"summarization",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
summarization
| 2023-05-28T12:47:21Z |
---
license: apache-2.0
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mt5-small-finetuned-QMSum-01
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5-small-finetuned-QMSum-01
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.8022
- Rouge1: 18.0578
- Rouge2: 4.3867
- Rougel: 14.448
- Rougelsum: 16.1248
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|
| 5.8153 | 1.0 | 548 | 3.0610 | 11.8231 | 3.1478 | 9.9085 | 10.7642 |
| 3.5393 | 2.0 | 1096 | 2.9173 | 16.1634 | 4.0585 | 13.0541 | 14.6676 |
| 3.2879 | 3.0 | 1644 | 2.8507 | 16.6082 | 4.1563 | 13.4818 | 14.9447 |
| 3.163 | 4.0 | 2192 | 2.8268 | 16.9681 | 4.1602 | 13.7462 | 15.0741 |
| 3.0699 | 5.0 | 2740 | 2.8256 | 17.8647 | 4.5317 | 14.4077 | 15.8516 |
| 3.0156 | 6.0 | 3288 | 2.8175 | 17.7178 | 4.3329 | 14.3377 | 15.8622 |
| 2.9692 | 7.0 | 3836 | 2.7987 | 18.3523 | 4.6726 | 14.6873 | 16.413 |
| 2.9531 | 8.0 | 4384 | 2.8022 | 18.0578 | 4.3867 | 14.448 | 16.1248 |
### Framework versions
- Transformers 4.29.2
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
|
KHEW/MALA
|
KHEW
| 2023-05-28T14:53:01Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-05-28T14:50:31Z |
---
license: creativeml-openrail-m
---
|
thanut/skin
|
thanut
| 2023-05-28T14:47:09Z | 0 | 0 |
adapter-transformers
|
[
"adapter-transformers",
"license:afl-3.0",
"region:us"
] | null | 2023-05-28T14:39:36Z |
---
license: afl-3.0
metrics:
- accuracy
library_name: adapter-transformers
---
|
amjadfqs/swin-base-patch4-window7-224-in22k-finetuned-brain-tumor-final_10
|
amjadfqs
| 2023-05-28T14:37:25Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"swin",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2023-05-28T05:43:48Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- precision
model-index:
- name: swin-base-patch4-window7-224-in22k-finetuned-brain-tumor-final_10
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9375490966221524
- name: Precision
type: precision
value: 0.9451238954076366
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-base-patch4-window7-224-in22k-finetuned-brain-tumor-final_10
This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-base-patch4-window7-224-in22k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2175
- Accuracy: 0.9375
- F1 Score: 0.9383
- Precision: 0.9451
- Sensitivity: 0.9381
- Specificity: 0.9843
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 100
- eval_batch_size: 100
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 400
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Score | Precision | Sensitivity | Specificity |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:---------:|:-----------:|:-----------:|
| 1.3428 | 0.99 | 19 | 0.7059 | 0.7467 | 0.7535 | 0.7951 | 0.7464 | 0.9332 |
| 0.3308 | 1.97 | 38 | 0.2314 | 0.9183 | 0.9194 | 0.9239 | 0.9191 | 0.9792 |
| 0.1601 | 2.96 | 57 | 0.2024 | 0.9305 | 0.9314 | 0.9349 | 0.9306 | 0.9824 |
| 0.0976 | 4.0 | 77 | 0.3376 | 0.8904 | 0.8943 | 0.9126 | 0.8930 | 0.9724 |
| 0.0585 | 4.99 | 96 | 0.3893 | 0.8830 | 0.8853 | 0.9115 | 0.8854 | 0.9706 |
| 0.0432 | 5.97 | 115 | 0.2559 | 0.9214 | 0.9239 | 0.9330 | 0.9237 | 0.9802 |
| 0.0313 | 6.96 | 134 | 0.2175 | 0.9375 | 0.9383 | 0.9451 | 0.9381 | 0.9843 |
| 0.0176 | 8.0 | 154 | 0.2309 | 0.9313 | 0.9326 | 0.9386 | 0.9320 | 0.9827 |
| 0.0152 | 8.99 | 173 | 0.2358 | 0.9328 | 0.9339 | 0.9416 | 0.9336 | 0.9831 |
| 0.0089 | 9.87 | 190 | 0.2116 | 0.9360 | 0.9374 | 0.9437 | 0.9372 | 0.9839 |
### Framework versions
- Transformers 4.29.2
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
BayesBayes/codeparrot-ds
|
BayesBayes
| 2023-05-28T14:33:56Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-05-26T22:22:53Z |
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: codeparrot-ds
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# codeparrot-ds
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.29.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
omegaodin/replit-replit-code-v1-3b
|
omegaodin
| 2023-05-28T14:31:56Z | 0 | 0 |
adapter-transformers
|
[
"adapter-transformers",
"code",
"es",
"dataset:bigcode/the-stack-dedup",
"license:apache-2.0",
"region:us"
] | null | 2023-05-28T14:29:41Z |
---
license: apache-2.0
datasets:
- bigcode/the-stack-dedup
language:
- es
metrics:
- accuracy
library_name: adapter-transformers
tags:
- code
---
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.