modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-01 06:29:04
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
530 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-01 06:28:51
card
stringlengths
11
1.01M
begangowsik/HTML-finetunined-WORK-A
begangowsik
2023-12-24T12:50:24Z
1
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:TheBloke/Llama-2-7B-Chat-GPTQ", "base_model:adapter:TheBloke/Llama-2-7B-Chat-GPTQ", "region:us" ]
null
2023-12-24T12:50:01Z
--- library_name: peft base_model: TheBloke/Llama-2-7b-Chat-GPTQ --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
nurcan/turkishReviews-ds-mini
nurcan
2023-12-24T12:50:08Z
4
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-12-23T18:53:50Z
--- license: mit base_model: gpt2 tags: - generated_from_keras_callback model-index: - name: turkishReviews-ds-mini results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # turkishReviews-ds-mini This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 8.2671 - Validation Loss: 8.7544 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'transformers.optimization_tf', 'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': -896, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}, 'registered_name': 'WarmUp'}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 9.0918 | 9.2015 | 0 | | 8.6097 | 8.9164 | 1 | | 8.2671 | 8.7544 | 2 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.16.0 - Tokenizers 0.15.0
mlx-community/Llama-2-7b-chat-4-bit
mlx-community
2023-12-24T12:49:14Z
56
6
mlx
[ "mlx", "llama", "facebook", "meta", "llama-2", "text-generation", "license:llama2", "region:us" ]
text-generation
2023-12-22T16:07:51Z
--- pipeline_tag: text-generation library_name: mlx inference: false tags: - facebook - meta - llama - llama-2 - mlx license: llama2 --- # **Llama 2 7B Chat 4-bit** Llama 2 is a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. This is the repository for the 7B fine-tuned model, in `npz` format suitable for use in Apple's MLX framework. Weights have been converted to `float16` from the original `bfloat16` type, because `numpy` is not compatible with `bfloat16` out of the box. How to use with [MLX](https://github.com/ml-explore/mlx). ```bash # Install mlx, mlx-examples, huggingface-cli pip install mlx pip install huggingface_hub hf_transfer git clone https://github.com/ml-explore/mlx-examples.git # Download model export HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download --local-dir Llama-2-7b-chat-mlx/ mlx-community/Llama-2-7b-chat-4-bit # Run example python mlx-examples/llms/llama/llama.py --prompt "My name is " --model-path Llama-2-7b-chat-mlx/ ``` Please, refer to the [original model card](https://huggingface.co/meta-llama/Llama-2-7b-chat) for details on Llama 2.
behzadnet/Llama-2-7b-chat-hf-sharded-bf16-fine-tuned_RandomError0.0_Seed104
behzadnet
2023-12-24T12:47:48Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:Trelis/Llama-2-7b-chat-hf-sharded-bf16", "base_model:adapter:Trelis/Llama-2-7b-chat-hf-sharded-bf16", "region:us" ]
null
2023-12-24T12:47:44Z
--- library_name: peft base_model: Trelis/Llama-2-7b-chat-hf-sharded-bf16 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.7.0.dev0
behzadnet/Llama-2-7b-chat-hf-sharded-bf16-fine-tuned-adapters_RandomError0.0_Seed104
behzadnet
2023-12-24T12:47:38Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:Trelis/Llama-2-7b-chat-hf-sharded-bf16", "base_model:adapter:Trelis/Llama-2-7b-chat-hf-sharded-bf16", "region:us" ]
null
2023-12-24T12:47:33Z
--- library_name: peft base_model: Trelis/Llama-2-7b-chat-hf-sharded-bf16 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.7.0.dev0 ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.7.0.dev0
Q-bert/Merged-AGI-7B
Q-bert
2023-12-24T12:41:18Z
56
5
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "Math", "merge", "en", "dataset:meta-math/MetaMathQA", "base_model:Q-bert/MetaMath-Cybertron-Starling", "base_model:merge:Q-bert/MetaMath-Cybertron-Starling", "base_model:fblgit/juanako-7b-UNA", "base_model:merge:fblgit/juanako-7b-UNA", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-10T09:20:47Z
--- license: cc-by-nc-4.0 datasets: - meta-math/MetaMathQA language: - en pipeline_tag: text-generation tags: - Math - merge base_model: - Q-bert/MetaMath-Cybertron-Starling - fblgit/juanako-7b-UNA --- ## Merged-AGI-7B Merge [Q-bert/MetaMath-Cybertron-Starling](https://huggingface.co/Q-bert/MetaMath-Cybertron-Starling) and [fblgit/juanako-7b-UNA](https://huggingface.co/fblgit/juanako-7b-UNA) using slerp merge. You can use ChatML format. # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [Coming soon]() | Metric | Value | |-----------------------|---------------------------| | Avg. | Coming soon | | ARC (25-shot) | Coming soon | | HellaSwag (10-shot) | Coming soon | | MMLU (5-shot) | Coming soon | | TruthfulQA (0-shot) | Coming soon | | Winogrande (5-shot) | Coming soon | | GSM8K (5-shot) | Coming soon |
chanhua/autotrain-xcbf5-99oqk
chanhua
2023-12-24T12:37:19Z
25
0
transformers
[ "transformers", "safetensors", "resnet", "image-classification", "autotrain", "dataset:chanhua/autotrain-data-autotrain-xcbf5-99oqk", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-12-24T12:37:14Z
--- tags: - autotrain - image-classification widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace datasets: - chanhua/autotrain-data-autotrain-xcbf5-99oqk --- # Model Trained Using AutoTrain - Problem type: Image Classification ## Validation Metricsg loss: 1.094420313835144 f1_macro: 0.45714285714285713 f1_micro: 0.5714285714285714 f1_weighted: 0.5061224489795919 precision_macro: 0.4666666666666666 precision_micro: 0.5714285714285714 precision_weighted: 0.5428571428571428 recall_macro: 0.5555555555555555 recall_micro: 0.5714285714285714 recall_weighted: 0.5714285714285714 accuracy: 0.5714285714285714
hkivancoral/hushem_40x_deit_base_rms_001_fold1
hkivancoral
2023-12-24T12:36:51Z
5
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-base-patch16-224", "base_model:finetune:facebook/deit-base-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-12-24T11:53:55Z
--- license: apache-2.0 base_model: facebook/deit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_40x_deit_base_rms_001_fold1 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.5333333333333333 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_40x_deit_base_rms_001_fold1 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 7.0637 - Accuracy: 0.5333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.3874 | 1.0 | 215 | 1.5845 | 0.2667 | | 1.2829 | 2.0 | 430 | 1.2221 | 0.4 | | 0.7962 | 3.0 | 645 | 2.1065 | 0.4 | | 0.7528 | 4.0 | 860 | 1.0651 | 0.5556 | | 0.6029 | 5.0 | 1075 | 1.5642 | 0.4889 | | 0.6246 | 6.0 | 1290 | 1.7962 | 0.4222 | | 0.589 | 7.0 | 1505 | 1.4819 | 0.4444 | | 0.6081 | 8.0 | 1720 | 1.4452 | 0.4222 | | 0.4808 | 9.0 | 1935 | 1.4389 | 0.4444 | | 0.4155 | 10.0 | 2150 | 1.7698 | 0.4667 | | 0.4393 | 11.0 | 2365 | 1.4569 | 0.5778 | | 0.4007 | 12.0 | 2580 | 2.1115 | 0.4 | | 0.3758 | 13.0 | 2795 | 1.5230 | 0.5556 | | 0.3244 | 14.0 | 3010 | 2.2901 | 0.4444 | | 0.3063 | 15.0 | 3225 | 2.0129 | 0.4889 | | 0.3072 | 16.0 | 3440 | 2.2969 | 0.5333 | | 0.2444 | 17.0 | 3655 | 2.5054 | 0.4667 | | 0.2293 | 18.0 | 3870 | 2.3449 | 0.4889 | | 0.2391 | 19.0 | 4085 | 2.0401 | 0.6444 | | 0.1843 | 20.0 | 4300 | 2.7271 | 0.5333 | | 0.2073 | 21.0 | 4515 | 2.2599 | 0.4889 | | 0.194 | 22.0 | 4730 | 3.1378 | 0.4444 | | 0.2943 | 23.0 | 4945 | 2.7236 | 0.5333 | | 0.2089 | 24.0 | 5160 | 2.5054 | 0.5778 | | 0.2145 | 25.0 | 5375 | 3.8073 | 0.4667 | | 0.1232 | 26.0 | 5590 | 3.5697 | 0.4889 | | 0.1349 | 27.0 | 5805 | 3.5985 | 0.5333 | | 0.1548 | 28.0 | 6020 | 3.0930 | 0.4889 | | 0.0655 | 29.0 | 6235 | 4.3232 | 0.4889 | | 0.1304 | 30.0 | 6450 | 3.6994 | 0.5333 | | 0.0997 | 31.0 | 6665 | 3.7329 | 0.5333 | | 0.0825 | 32.0 | 6880 | 3.4793 | 0.5333 | | 0.154 | 33.0 | 7095 | 5.2562 | 0.4667 | | 0.1206 | 34.0 | 7310 | 4.5299 | 0.4889 | | 0.1019 | 35.0 | 7525 | 3.6522 | 0.5111 | | 0.019 | 36.0 | 7740 | 3.9235 | 0.5333 | | 0.0485 | 37.0 | 7955 | 4.7342 | 0.5556 | | 0.0155 | 38.0 | 8170 | 4.4779 | 0.5778 | | 0.0142 | 39.0 | 8385 | 4.2139 | 0.5556 | | 0.0256 | 40.0 | 8600 | 5.0724 | 0.5333 | | 0.0211 | 41.0 | 8815 | 4.8895 | 0.4889 | | 0.019 | 42.0 | 9030 | 4.8291 | 0.5556 | | 0.0047 | 43.0 | 9245 | 5.9102 | 0.5333 | | 0.0027 | 44.0 | 9460 | 5.9480 | 0.5556 | | 0.0009 | 45.0 | 9675 | 6.2260 | 0.5333 | | 0.0008 | 46.0 | 9890 | 6.6029 | 0.5556 | | 0.0001 | 47.0 | 10105 | 6.7925 | 0.5556 | | 0.0001 | 48.0 | 10320 | 6.7039 | 0.5333 | | 0.0 | 49.0 | 10535 | 7.0556 | 0.5333 | | 0.0001 | 50.0 | 10750 | 7.0637 | 0.5333 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
Chhaya/results
Chhaya
2023-12-24T12:34:29Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:NousResearch/Llama-2-7b-chat-hf", "base_model:adapter:NousResearch/Llama-2-7b-chat-hf", "region:us" ]
null
2023-12-24T12:32:50Z
--- library_name: peft tags: - trl - sft - generated_from_trainer base_model: NousResearch/Llama-2-7b-chat-hf model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [NousResearch/Llama-2-7b-chat-hf](https://huggingface.co/NousResearch/Llama-2-7b-chat-hf) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 1 ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0
chanhua/autotrain-82nel-cfd2f
chanhua
2023-12-24T12:30:01Z
25
0
transformers
[ "transformers", "safetensors", "resnet", "image-classification", "autotrain", "dataset:chanhua/autotrain-data-autotrain-82nel-cfd2f", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-12-24T12:29:55Z
--- tags: - autotrain - image-classification widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace datasets: - chanhua/autotrain-data-autotrain-82nel-cfd2f --- # Model Trained Using AutoTrain - Problem type: Image Classification ## Validation Metricsg loss: nan f1_macro: 0.06666666666666668 f1_micro: 0.20000000000000004 f1_weighted: 0.06666666666666668 precision_macro: 0.04 precision_micro: 0.2 precision_weighted: 0.04 recall_macro: 0.2 recall_micro: 0.2 recall_weighted: 0.2 accuracy: 0.2
helpmefindaname/flair-eml-biobert-bc5cdr-chemical
helpmefindaname
2023-12-24T12:20:57Z
5
0
flair
[ "flair", "pytorch", "entity-mention-linker", "region:us" ]
null
2023-12-23T22:50:52Z
--- tags: - flair - entity-mention-linker --- ## biobert-bc5cdr-chemical Biomedical Entity Mention Linking for chemical ### Demo: How to use in Flair Requires: - **[Flair](https://github.com/flairNLP/flair/)>=0.14.0** (`pip install flair` or `pip install git+https://github.com/flairNLP/flair.git`) ```python from flair.data import Sentence from flair.models import Classifier, EntityMentionLinker sentence = Sentence("Behavioral abnormalities in the Fmr1 KO2 Mouse Model of Fragile X Syndrome") # load hunflair to detect the entity mentions we want to link. tagger = Classifier.load("hunflair") tagger.predict(sentence) # load the linker and dictionary linker = EntityMentionLinker.load("helpmefindaname/flair-eml-biobert-bc5cdr-chemical") dictionary = linker.dictionary # find then candidates for the mentions linker.predict(sentence) # print the results for each entity mention: for span in sentence.get_spans(linker.entity_label_type): print(f"Span: {span.text}") for candidate_label in span.get_labels(linker.label_type): candidate = dictionary[candidate_label.value] print(f"Candidate: {candidate.concept_name}") ``` As an alternative to downloading the already precomputed model (much storage). You can also build the model and compute the embeddings for the dataset using: ```python linker = EntityMentionLinker.build("dmis-lab/biosyn-biobert-bc5cdr-chemical", "chemical", dictionary_name_or_path="ctd-chemicals", hybrid_search=False, entity_type="chemical-eml") ``` This will reduce the download requirements, at the cost of computation. This EntityMentionLinker uses [https://huggingface.co/dmis-lab/biosyn-biobert-bc5cdr-chemical](dmis-lab/biosyn-biobert-bc5cdr-chemical) as embeddings for linking mentions to candidates.
helpmefindaname/flair-eml-biobert-bc2gn-gene
helpmefindaname
2023-12-24T12:20:40Z
5
0
flair
[ "flair", "pytorch", "entity-mention-linker", "region:us" ]
null
2023-12-24T06:10:56Z
--- tags: - flair - entity-mention-linker --- ## biobert-bc2gn-gene Biomedical Entity Mention Linking for gene ### Demo: How to use in Flair Requires: - **[Flair](https://github.com/flairNLP/flair/)>=0.14.0** (`pip install flair` or `pip install git+https://github.com/flairNLP/flair.git`) ```python from flair.data import Sentence from flair.models import Classifier, EntityMentionLinker sentence = Sentence("Behavioral abnormalities in the Fmr1 KO2 Mouse Model of Fragile X Syndrome") # load hunflair to detect the entity mentions we want to link. tagger = Classifier.load("hunflair") tagger.predict(sentence) # load the linker and dictionary linker = EntityMentionLinker.load("helpmefindaname/flair-eml-biobert-bc2gn-gene") dictionary = linker.dictionary # find then candidates for the mentions linker.predict(sentence) # print the results for each entity mention: for span in sentence.get_spans(linker.entity_label_type): print(f"Span: {span.text}") for candidate_label in span.get_labels(linker.label_type): candidate = dictionary[candidate_label.value] print(f"Candidate: {candidate.concept_name}") ``` As an alternative to downloading the already precomputed model (much storage). You can also build the model and compute the embeddings for the dataset using: ```python linker = EntityMentionLinker.build("dmis-lab/biosyn-biobert-bc2gn", "gene", dictionary_name_or_path="ncbi-gene", hybrid_search=False, entity_type="gene-eml") ``` This will reduce the download requirements, at the cost of computation. This EntityMentionLinker uses [https://huggingface.co/dmis-lab/biosyn-biobert-bc2gn](dmis-lab/biosyn-biobert-bc2gn) as embeddings for linking mentions to candidates.
jgodding/ppo-LunarLander-v2
jgodding
2023-12-24T12:10:50Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-12-24T12:10:27Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 243.91 +/- 17.20 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
MadFritz/LunarLander-v2
MadFritz
2023-12-24T12:10:15Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-12-24T12:08:53Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -159.28 +/- 133.83 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo-LunarLander' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'MadFritz/LunarLander-v2' 'batch_size': 512 'minibatch_size': 128} ```
ThuyNT03/KLTN_COQE_viT5_total_ASPOL_v4
ThuyNT03
2023-12-24T12:09:33Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:VietAI/vit5-large", "base_model:finetune:VietAI/vit5-large", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-12-24T11:27:28Z
--- license: mit base_model: VietAI/vit5-large tags: - generated_from_trainer model-index: - name: KLTN_COQE_viT5_total_ASPOL_v4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # KLTN_COQE_viT5_total_ASPOL_v4 This model is a fine-tuned version of [VietAI/vit5-large](https://huggingface.co/VietAI/vit5-large) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.36.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.15.0
ThuyNT03/KLTN_COQE_viT5_total_APSOL_v4
ThuyNT03
2023-12-24T12:06:51Z
3
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:VietAI/vit5-large", "base_model:finetune:VietAI/vit5-large", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-12-24T10:43:27Z
--- license: mit base_model: VietAI/vit5-large tags: - generated_from_trainer model-index: - name: KLTN_COQE_viT5_total_APSOL_v4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # KLTN_COQE_viT5_total_APSOL_v4 This model is a fine-tuned version of [VietAI/vit5-large](https://huggingface.co/VietAI/vit5-large) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.36.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.15.0
GordonMcGregor/stable-diffusion-xl-base-1.0-lora-TOK-Gordon_dec_24
GordonMcGregor
2023-12-24T11:59:14Z
1
0
diffusers
[ "diffusers", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-12-24T07:13:19Z
--- tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - template:sd-lora widget: - text: 'a photo of TOK man in a fedora' output: url: "image_0.png" - text: 'a photo of TOK man in a fedora' output: url: "image_1.png" - text: 'a photo of TOK man in a fedora' output: url: "image_2.png" - text: 'a photo of TOK man in a fedora' output: url: "image_3.png" base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of TOK man license: openrail++ --- # SDXL LoRA DreamBooth - GordonMcGregor/stable-diffusion-xl-base-1.0-lora-TOK-Gordon_dec_24 <Gallery /> ## Model description These are GordonMcGregor/stable-diffusion-xl-base-1.0-lora-TOK-Gordon_dec_24 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of TOK man to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](GordonMcGregor/stable-diffusion-xl-base-1.0-lora-TOK-Gordon_dec_24/tree/main) them in the Files & versions tab.
lemoneresearch/tsdae-lemone-mbert-tax
lemoneresearch
2023-12-24T11:49:09Z
4
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "feature-extraction", "sentence-similarity", "transformers", "legal", "french-law", "droit français", "tax", "droit fiscal", "fiscalité", "fr", "dataset:louisbrulenaudet/lpf", "dataset:louisbrulenaudet/cgi", "dataset:louisbrulenaudet/code-douanes", "license:apache-2.0", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-12-24T11:31:40Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers - legal - french-law - droit français - tax - droit fiscal - fiscalité license: apache-2.0 pretty_name: Domain-adapted mBERT for French Tax Practice datasets: - louisbrulenaudet/lpf - louisbrulenaudet/cgi - louisbrulenaudet/code-douanes language: - fr library_name: sentence-transformers --- # Domain-adapted mBERT for French Tax Practice This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. Pretrained transformers model on the top 102 languages with the largest Wikipedia using a masked language modeling (MLM) objective, fitted using Transformer-based Sequential Denoising Auto-Encoder for unsupervised sentence embedding learning with one objective : french tax domain adaptation. This way, the model learns an inner representation of the french legal language in the training set that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the model as inputs. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer("louisbrulenaudet/tsdae-lemone-mbert-tax") embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained("louisbrulenaudet/tsdae-lemone-mbert-tax") model = AutoModel.from_pretrained("louisbrulenaudet/tsdae-lemone-mbert-tax") # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors="pt") # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input["attention_mask"]) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 5507 with parameters: ``` {'batch_size': 5, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.DenoisingAutoEncoderLoss.DenoisingAutoEncoderLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 3e-05 }, "scheduler": "constantlr", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors If you use this code in your research, please use the following BibTeX entry. ```BibTeX @misc{louisbrulenaudet2023, author = {Louis Brulé Naudet}, title = {Domain-adapted mBERT for French Tax Practice}, year = {2023} howpublished = {\url{https://huggingface.co/louisbrulenaudet/tsdae-lemone-mbert-tax}}, } ``` ## Feedback If you have any feedback, please reach out at [louisbrulenaudet@icloud.com](mailto:louisbrulenaudet@icloud.com).
csujeong/Falcon-7b-Finetuned-Financial-Stock
csujeong
2023-12-24T11:48:40Z
7
0
peft
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:tiiuae/falcon-7b", "base_model:adapter:tiiuae/falcon-7b", "license:apache-2.0", "region:us" ]
null
2023-12-24T11:40:14Z
--- license: apache-2.0 library_name: peft tags: - trl - sft - generated_from_trainer base_model: tiiuae/falcon-7b model-index: - name: Falcon-7b-Finetuned-Financial-Stock results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Falcon-7b-Finetuned-Financial-Stock This model is a fine-tuned version of [tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - training_steps: 60 ### Training results ### Framework versions - PEFT 0.7.2.dev0 - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0
YagiASAFAS/distilbert-base-uncased-finetuned-emotion
YagiASAFAS
2023-12-24T11:45:30Z
3
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-24T11:02:58Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - emotion model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - eval_loss: 0.1710 - eval_accuracy: 0.9295 - eval_f1: 0.9302 - eval_runtime: 11.2289 - eval_samples_per_second: 178.112 - eval_steps_per_second: 2.85 - epoch: 1.0 - step: 250 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.33.3 - Pytorch 2.2.0.dev20231211 - Datasets 2.15.0 - Tokenizers 0.11.0
yuanhuaisen/autotrain-r6fhf-a4d7f
yuanhuaisen
2023-12-24T11:18:54Z
7
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "autotrain", "dataset:yuanhuaisen/autotrain-data-autotrain-r6fhf-a4d7f", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-12-24T11:18:20Z
--- tags: - autotrain - image-classification widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace datasets: - yuanhuaisen/autotrain-data-autotrain-r6fhf-a4d7f --- # Model Trained Using AutoTrain - Problem type: Image Classification ## Validation Metricsg loss: 0.4276469945907593 f1_macro: 0.8530901722391085 f1_micro: 0.875 f1_weighted: 0.878488532743852 precision_macro: 0.8621098104793757 precision_micro: 0.875 precision_weighted: 0.8893636933718457 recall_macro: 0.8544277360066833 recall_micro: 0.875 recall_weighted: 0.875 accuracy: 0.875
ThuyNT03/KLTN_COQE_viT5_total_PASOL_v4
ThuyNT03
2023-12-24T11:18:23Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:VietAI/vit5-large", "base_model:finetune:VietAI/vit5-large", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-12-24T09:57:52Z
--- license: mit base_model: VietAI/vit5-large tags: - generated_from_trainer model-index: - name: KLTN_COQE_viT5_total_PASOL_v4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # KLTN_COQE_viT5_total_PASOL_v4 This model is a fine-tuned version of [VietAI/vit5-large](https://huggingface.co/VietAI/vit5-large) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.36.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.15.0
clewiston/autotrain-vlxo9-2s7eh
clewiston
2023-12-24T11:16:20Z
27
0
transformers
[ "transformers", "safetensors", "resnet", "image-classification", "autotrain", "dataset:clewiston/autotrain-data-autotrain-vlxo9-2s7eh", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-12-24T11:15:32Z
--- tags: - autotrain - image-classification widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace datasets: - clewiston/autotrain-data-autotrain-vlxo9-2s7eh --- # Model Trained Using AutoTrain - Problem type: Image Classification ## Validation Metricsg loss: 1.347914457321167 f1_macro: 0.196969696969697 f1_micro: 0.65 f1_weighted: 0.5121212121212122 precision_macro: 0.1625 precision_micro: 0.65 precision_weighted: 0.42250000000000004 recall_macro: 0.25 recall_micro: 0.65 recall_weighted: 0.65 accuracy: 0.65
iForgotMyName8008/ppo-Huggy
iForgotMyName8008
2023-12-24T11:01:02Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-12-24T11:00:56Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: iForgotMyName8008/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
hkivancoral/hushem_40x_deit_base_sgd_0001_fold4
hkivancoral
2023-12-24T11:00:48Z
5
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-base-patch16-224", "base_model:finetune:facebook/deit-base-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-12-24T10:19:12Z
--- license: apache-2.0 base_model: facebook/deit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_40x_deit_base_sgd_0001_fold4 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.42857142857142855 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_40x_deit_base_sgd_0001_fold4 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2151 - Accuracy: 0.4286 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.3918 | 1.0 | 219 | 1.4045 | 0.3095 | | 1.3704 | 2.0 | 438 | 1.3956 | 0.3095 | | 1.3491 | 3.0 | 657 | 1.3880 | 0.3333 | | 1.3369 | 4.0 | 876 | 1.3811 | 0.3333 | | 1.3406 | 5.0 | 1095 | 1.3747 | 0.3333 | | 1.3171 | 6.0 | 1314 | 1.3686 | 0.3333 | | 1.2982 | 7.0 | 1533 | 1.3628 | 0.3571 | | 1.2896 | 8.0 | 1752 | 1.3571 | 0.3571 | | 1.2549 | 9.0 | 1971 | 1.3513 | 0.3810 | | 1.2384 | 10.0 | 2190 | 1.3457 | 0.4048 | | 1.2507 | 11.0 | 2409 | 1.3401 | 0.4286 | | 1.2362 | 12.0 | 2628 | 1.3346 | 0.4286 | | 1.1966 | 13.0 | 2847 | 1.3293 | 0.4286 | | 1.2279 | 14.0 | 3066 | 1.3240 | 0.4286 | | 1.2136 | 15.0 | 3285 | 1.3188 | 0.4286 | | 1.1856 | 16.0 | 3504 | 1.3138 | 0.4286 | | 1.1941 | 17.0 | 3723 | 1.3088 | 0.4286 | | 1.1805 | 18.0 | 3942 | 1.3039 | 0.4286 | | 1.1554 | 19.0 | 4161 | 1.2991 | 0.4048 | | 1.1709 | 20.0 | 4380 | 1.2943 | 0.4048 | | 1.1523 | 21.0 | 4599 | 1.2895 | 0.4048 | | 1.138 | 22.0 | 4818 | 1.2848 | 0.4048 | | 1.0984 | 23.0 | 5037 | 1.2803 | 0.4048 | | 1.1405 | 24.0 | 5256 | 1.2759 | 0.4048 | | 1.1028 | 25.0 | 5475 | 1.2716 | 0.4286 | | 1.1236 | 26.0 | 5694 | 1.2674 | 0.4286 | | 1.0819 | 27.0 | 5913 | 1.2634 | 0.4286 | | 1.1245 | 28.0 | 6132 | 1.2595 | 0.4286 | | 1.0929 | 29.0 | 6351 | 1.2557 | 0.4286 | | 1.0861 | 30.0 | 6570 | 1.2521 | 0.4048 | | 1.082 | 31.0 | 6789 | 1.2486 | 0.4048 | | 1.0826 | 32.0 | 7008 | 1.2452 | 0.4048 | | 1.0889 | 33.0 | 7227 | 1.2420 | 0.4048 | | 1.052 | 34.0 | 7446 | 1.2390 | 0.4286 | | 1.056 | 35.0 | 7665 | 1.2361 | 0.4286 | | 1.0391 | 36.0 | 7884 | 1.2333 | 0.4286 | | 1.0236 | 37.0 | 8103 | 1.2307 | 0.4286 | | 1.0474 | 38.0 | 8322 | 1.2283 | 0.4286 | | 1.0069 | 39.0 | 8541 | 1.2261 | 0.4286 | | 1.0443 | 40.0 | 8760 | 1.2242 | 0.4286 | | 1.0711 | 41.0 | 8979 | 1.2223 | 0.4048 | | 1.053 | 42.0 | 9198 | 1.2207 | 0.4286 | | 1.0356 | 43.0 | 9417 | 1.2193 | 0.4286 | | 1.0491 | 44.0 | 9636 | 1.2181 | 0.4286 | | 0.9928 | 45.0 | 9855 | 1.2171 | 0.4286 | | 1.0402 | 46.0 | 10074 | 1.2163 | 0.4286 | | 1.0792 | 47.0 | 10293 | 1.2157 | 0.4286 | | 1.0146 | 48.0 | 10512 | 1.2153 | 0.4286 | | 1.0325 | 49.0 | 10731 | 1.2152 | 0.4286 | | 1.0249 | 50.0 | 10950 | 1.2151 | 0.4286 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
hkivancoral/hushem_40x_deit_base_sgd_00001_fold4
hkivancoral
2023-12-24T10:59:01Z
8
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-base-patch16-224", "base_model:finetune:facebook/deit-base-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-12-24T10:16:24Z
--- license: apache-2.0 base_model: facebook/deit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_40x_deit_base_sgd_00001_fold4 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.30952380952380953 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_40x_deit_base_sgd_00001_fold4 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.3940 - Accuracy: 0.3095 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.4075 | 1.0 | 219 | 1.4139 | 0.2857 | | 1.4006 | 2.0 | 438 | 1.4128 | 0.2857 | | 1.397 | 3.0 | 657 | 1.4119 | 0.2857 | | 1.4009 | 4.0 | 876 | 1.4109 | 0.2857 | | 1.4192 | 5.0 | 1095 | 1.4100 | 0.2857 | | 1.4068 | 6.0 | 1314 | 1.4091 | 0.2857 | | 1.4024 | 7.0 | 1533 | 1.4083 | 0.2857 | | 1.3965 | 8.0 | 1752 | 1.4075 | 0.2857 | | 1.3783 | 9.0 | 1971 | 1.4067 | 0.3095 | | 1.3738 | 10.0 | 2190 | 1.4060 | 0.3095 | | 1.3936 | 11.0 | 2409 | 1.4053 | 0.3095 | | 1.3746 | 12.0 | 2628 | 1.4046 | 0.3095 | | 1.3536 | 13.0 | 2847 | 1.4040 | 0.3095 | | 1.4005 | 14.0 | 3066 | 1.4033 | 0.3095 | | 1.3798 | 15.0 | 3285 | 1.4027 | 0.3095 | | 1.3748 | 16.0 | 3504 | 1.4022 | 0.3095 | | 1.3581 | 17.0 | 3723 | 1.4016 | 0.3095 | | 1.3695 | 18.0 | 3942 | 1.4011 | 0.3095 | | 1.366 | 19.0 | 4161 | 1.4006 | 0.3095 | | 1.3735 | 20.0 | 4380 | 1.4001 | 0.3095 | | 1.3732 | 21.0 | 4599 | 1.3997 | 0.3095 | | 1.3632 | 22.0 | 4818 | 1.3992 | 0.3095 | | 1.3525 | 23.0 | 5037 | 1.3988 | 0.3095 | | 1.3845 | 24.0 | 5256 | 1.3984 | 0.3095 | | 1.363 | 25.0 | 5475 | 1.3980 | 0.3095 | | 1.3693 | 26.0 | 5694 | 1.3977 | 0.3095 | | 1.3693 | 27.0 | 5913 | 1.3973 | 0.3095 | | 1.3914 | 28.0 | 6132 | 1.3970 | 0.3095 | | 1.3857 | 29.0 | 6351 | 1.3967 | 0.3095 | | 1.3681 | 30.0 | 6570 | 1.3964 | 0.3095 | | 1.3619 | 31.0 | 6789 | 1.3962 | 0.3095 | | 1.3666 | 32.0 | 7008 | 1.3959 | 0.3095 | | 1.3733 | 33.0 | 7227 | 1.3957 | 0.3095 | | 1.3572 | 34.0 | 7446 | 1.3955 | 0.3095 | | 1.3715 | 35.0 | 7665 | 1.3953 | 0.3095 | | 1.3581 | 36.0 | 7884 | 1.3951 | 0.3095 | | 1.3453 | 37.0 | 8103 | 1.3949 | 0.3095 | | 1.3666 | 38.0 | 8322 | 1.3948 | 0.3095 | | 1.3416 | 39.0 | 8541 | 1.3946 | 0.3095 | | 1.3435 | 40.0 | 8760 | 1.3945 | 0.3095 | | 1.3731 | 41.0 | 8979 | 1.3944 | 0.3095 | | 1.3652 | 42.0 | 9198 | 1.3943 | 0.3095 | | 1.3499 | 43.0 | 9417 | 1.3942 | 0.3095 | | 1.3629 | 44.0 | 9636 | 1.3941 | 0.3095 | | 1.3332 | 45.0 | 9855 | 1.3941 | 0.3095 | | 1.3535 | 46.0 | 10074 | 1.3940 | 0.3095 | | 1.3876 | 47.0 | 10293 | 1.3940 | 0.3095 | | 1.363 | 48.0 | 10512 | 1.3940 | 0.3095 | | 1.3575 | 49.0 | 10731 | 1.3940 | 0.3095 | | 1.3466 | 50.0 | 10950 | 1.3940 | 0.3095 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
ntc-ai/SDXL-LoRA-slider.deep-soulful-olive-eyes
ntc-ai
2023-12-24T10:45:03Z
123
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2023-12-24T10:44:59Z
--- language: - en thumbnail: "images/evaluate/deep soulful olive eyes...regular eye color/deep soulful olive eyes_17_3.0.png" widget: - text: deep soulful olive eyes output: url: images/deep soulful olive eyes_17_3.0.png - text: deep soulful olive eyes output: url: images/deep soulful olive eyes_19_3.0.png - text: deep soulful olive eyes output: url: images/deep soulful olive eyes_20_3.0.png - text: deep soulful olive eyes output: url: images/deep soulful olive eyes_21_3.0.png - text: deep soulful olive eyes output: url: images/deep soulful olive eyes_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "deep soulful olive eyes" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - deep soulful olive eyes (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/deep soulful olive eyes_17_-3.0.png" width=256 height=256 /> | <img src="images/deep soulful olive eyes_17_0.0.png" width=256 height=256 /> | <img src="images/deep soulful olive eyes_17_3.0.png" width=256 height=256 /> | | <img src="images/deep soulful olive eyes_19_-3.0.png" width=256 height=256 /> | <img src="images/deep soulful olive eyes_19_0.0.png" width=256 height=256 /> | <img src="images/deep soulful olive eyes_19_3.0.png" width=256 height=256 /> | | <img src="images/deep soulful olive eyes_20_-3.0.png" width=256 height=256 /> | <img src="images/deep soulful olive eyes_20_0.0.png" width=256 height=256 /> | <img src="images/deep soulful olive eyes_20_3.0.png" width=256 height=256 /> | ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` deep soulful olive eyes ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.deep-soulful-olive-eyes', weight_name='deep soulful olive eyes.safetensors', adapter_name="deep soulful olive eyes") # Activate the LoRA pipe.set_adapters(["deep soulful olive eyes"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, deep soulful olive eyes" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 590+ unique and diverse LoRAs, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful LoRA slider creator, allowing you to craft your own custom LoRAs and experiment with endless possibilities. Your support on Patreon will allow us to continue developing and refining new models. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
FirstLast/RealisticVision-LoRA-lidrs-4
FirstLast
2023-12-24T10:26:47Z
2
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:SG161222/Realistic_Vision_V5.1_noVAE", "base_model:adapter:SG161222/Realistic_Vision_V5.1_noVAE", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-12-24T08:24:43Z
--- license: creativeml-openrail-m base_model: SG161222/Realistic_Vision_V5.1_noVAE instance_prompt: a woman in a lidrs dress tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - FirstLast/RealisticVision-LoRA-lidrs-4 These are LoRA adaption weights for SG161222/Realistic_Vision_V5.1_noVAE. The weights were trained on a woman in a lidrs dress using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False.
hkivancoral/hushem_40x_deit_base_sgd_0001_fold3
hkivancoral
2023-12-24T10:19:03Z
5
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-base-patch16-224", "base_model:finetune:facebook/deit-base-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-12-24T09:36:09Z
--- license: apache-2.0 base_model: facebook/deit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_40x_deit_base_sgd_0001_fold3 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.46511627906976744 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_40x_deit_base_sgd_0001_fold3 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2710 - Accuracy: 0.4651 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.3787 | 1.0 | 217 | 1.4567 | 0.2326 | | 1.3411 | 2.0 | 434 | 1.4476 | 0.2326 | | 1.3346 | 3.0 | 651 | 1.4398 | 0.2326 | | 1.3522 | 4.0 | 868 | 1.4325 | 0.2558 | | 1.295 | 5.0 | 1085 | 1.4257 | 0.2558 | | 1.3027 | 6.0 | 1302 | 1.4192 | 0.2791 | | 1.2908 | 7.0 | 1519 | 1.4129 | 0.3023 | | 1.2684 | 8.0 | 1736 | 1.4068 | 0.3023 | | 1.2597 | 9.0 | 1953 | 1.4007 | 0.3023 | | 1.2504 | 10.0 | 2170 | 1.3948 | 0.3023 | | 1.2181 | 11.0 | 2387 | 1.3891 | 0.3023 | | 1.2286 | 12.0 | 2604 | 1.3834 | 0.3023 | | 1.229 | 13.0 | 2821 | 1.3779 | 0.3023 | | 1.2118 | 14.0 | 3038 | 1.3725 | 0.3256 | | 1.1939 | 15.0 | 3255 | 1.3673 | 0.3256 | | 1.2054 | 16.0 | 3472 | 1.3622 | 0.3488 | | 1.1836 | 17.0 | 3689 | 1.3572 | 0.3721 | | 1.1754 | 18.0 | 3906 | 1.3524 | 0.3721 | | 1.1872 | 19.0 | 4123 | 1.3477 | 0.3721 | | 1.1652 | 20.0 | 4340 | 1.3431 | 0.3721 | | 1.1396 | 21.0 | 4557 | 1.3387 | 0.3721 | | 1.1373 | 22.0 | 4774 | 1.3343 | 0.3953 | | 1.1381 | 23.0 | 4991 | 1.3300 | 0.3953 | | 1.101 | 24.0 | 5208 | 1.3259 | 0.3953 | | 1.1305 | 25.0 | 5425 | 1.3219 | 0.4186 | | 1.1458 | 26.0 | 5642 | 1.3181 | 0.4186 | | 1.0969 | 27.0 | 5859 | 1.3143 | 0.4186 | | 1.092 | 28.0 | 6076 | 1.3106 | 0.4186 | | 1.0422 | 29.0 | 6293 | 1.3071 | 0.4186 | | 1.07 | 30.0 | 6510 | 1.3037 | 0.4419 | | 1.097 | 31.0 | 6727 | 1.3005 | 0.4419 | | 1.1048 | 32.0 | 6944 | 1.2974 | 0.4419 | | 1.0657 | 33.0 | 7161 | 1.2945 | 0.4419 | | 1.0841 | 34.0 | 7378 | 1.2918 | 0.4419 | | 1.0697 | 35.0 | 7595 | 1.2891 | 0.4419 | | 1.0586 | 36.0 | 7812 | 1.2867 | 0.4419 | | 1.0346 | 37.0 | 8029 | 1.2845 | 0.4419 | | 1.0364 | 38.0 | 8246 | 1.2824 | 0.4651 | | 1.055 | 39.0 | 8463 | 1.2804 | 0.4651 | | 1.0391 | 40.0 | 8680 | 1.2787 | 0.4651 | | 1.0408 | 41.0 | 8897 | 1.2771 | 0.4651 | | 1.0911 | 42.0 | 9114 | 1.2757 | 0.4651 | | 1.042 | 43.0 | 9331 | 1.2745 | 0.4651 | | 1.0562 | 44.0 | 9548 | 1.2735 | 0.4651 | | 1.0444 | 45.0 | 9765 | 1.2727 | 0.4651 | | 1.0551 | 46.0 | 9982 | 1.2720 | 0.4651 | | 1.0314 | 47.0 | 10199 | 1.2715 | 0.4651 | | 1.067 | 48.0 | 10416 | 1.2712 | 0.4651 | | 1.0573 | 49.0 | 10633 | 1.2710 | 0.4651 | | 1.0022 | 50.0 | 10850 | 1.2710 | 0.4651 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
ThuyNT03/KLTN_COQE_viT5_total_APSOL_v2
ThuyNT03
2023-12-24T10:03:50Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:VietAI/vit5-large", "base_model:finetune:VietAI/vit5-large", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-12-23T00:56:54Z
--- license: mit base_model: VietAI/vit5-large tags: - generated_from_trainer model-index: - name: KLTN_COQE_viT5_total_APSOL_v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # KLTN_COQE_viT5_total_APSOL_v2 This model is a fine-tuned version of [VietAI/vit5-large](https://huggingface.co/VietAI/vit5-large) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.36.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.15.0
ThuyNT03/KLTN_COQE_viT5_total_POASL_v4
ThuyNT03
2023-12-24T09:57:44Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:VietAI/vit5-large", "base_model:finetune:VietAI/vit5-large", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-12-24T09:16:51Z
--- license: mit base_model: VietAI/vit5-large tags: - generated_from_trainer model-index: - name: KLTN_COQE_viT5_total_POASL_v4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # KLTN_COQE_viT5_total_POASL_v4 This model is a fine-tuned version of [VietAI/vit5-large](https://huggingface.co/VietAI/vit5-large) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.36.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.15.0
Pianokill/fashion-sdxl-lora-training-with-256x256
Pianokill
2023-12-24T09:55:50Z
2
0
diffusers
[ "diffusers", "tensorboard", "text-to-image", "en", "vi", "dataset:Pianokill/SportFashionImages_256x256", "license:apache-2.0", "region:us" ]
text-to-image
2023-12-24T01:33:30Z
--- license: apache-2.0 datasets: - Pianokill/SportFashionImages_256x256 language: - en - vi metrics: - accuracy library_name: diffusers pipeline_tag: text-to-image ---
Anwaarma/Merged-MM-praj
Anwaarma
2023-12-24T09:49:59Z
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:prajjwal1/bert-tiny", "base_model:finetune:prajjwal1/bert-tiny", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-24T09:43:11Z
--- license: mit base_model: prajjwal1/bert-tiny tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: Merged-MM-praj results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Merged-MM-praj This model is a fine-tuned version of [prajjwal1/bert-tiny](https://huggingface.co/prajjwal1/bert-tiny) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5525 - Accuracy: 0.7777 - F1: 0.8749 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 0.0 | 50 | 0.6929 | 0.526 | 0.3813 | | No log | 0.0 | 100 | 0.6938 | 0.48 | 0.3125 | | No log | 0.01 | 150 | 0.6971 | 0.479 | 0.3103 | | No log | 0.01 | 200 | 0.6948 | 0.479 | 0.3103 | | No log | 0.01 | 250 | 0.6938 | 0.479 | 0.3103 | | No log | 0.01 | 300 | 0.6939 | 0.479 | 0.3103 | | No log | 0.01 | 350 | 0.6927 | 0.521 | 0.3587 | | No log | 0.02 | 400 | 0.6931 | 0.501 | 0.4988 | | No log | 0.02 | 450 | 0.6944 | 0.479 | 0.3103 | | 0.6942 | 0.02 | 500 | 0.6954 | 0.479 | 0.3103 | | 0.6942 | 0.02 | 550 | 0.6960 | 0.479 | 0.3103 | | 0.6942 | 0.02 | 600 | 0.6934 | 0.486 | 0.3322 | | 0.6942 | 0.02 | 650 | 0.6970 | 0.479 | 0.3103 | | 0.6942 | 0.03 | 700 | 0.6929 | 0.535 | 0.4767 | | 0.6942 | 0.03 | 750 | 0.6931 | 0.499 | 0.4609 | | 0.6942 | 0.03 | 800 | 0.6952 | 0.479 | 0.3103 | | 0.6942 | 0.03 | 850 | 0.6933 | 0.48 | 0.3160 | | 0.6942 | 0.03 | 900 | 0.6979 | 0.479 | 0.3103 | | 0.6942 | 0.04 | 950 | 0.6940 | 0.479 | 0.3103 | | 0.6938 | 0.04 | 1000 | 0.6915 | 0.521 | 0.3569 | | 0.6938 | 0.04 | 1050 | 0.6942 | 0.479 | 0.3103 | | 0.6938 | 0.04 | 1100 | 0.6884 | 0.519 | 0.3630 | | 0.6938 | 0.04 | 1150 | 0.6849 | 0.596 | 0.5817 | | 0.6938 | 0.05 | 1200 | 0.6849 | 0.547 | 0.5131 | | 0.6938 | 0.05 | 1250 | 0.6771 | 0.568 | 0.5502 | | 0.6938 | 0.05 | 1300 | 0.6792 | 0.572 | 0.5558 | | 0.6938 | 0.05 | 1350 | 0.6889 | 0.55 | 0.5161 | | 0.6938 | 0.05 | 1400 | 0.6792 | 0.59 | 0.5828 | | 0.6938 | 0.06 | 1450 | 0.6729 | 0.602 | 0.5987 | | 0.6781 | 0.06 | 1500 | 0.6702 | 0.592 | 0.5822 | | 0.6781 | 0.06 | 1550 | 0.6711 | 0.578 | 0.5633 | | 0.6781 | 0.06 | 1600 | 0.6642 | 0.607 | 0.6024 | | 0.6781 | 0.06 | 1650 | 0.6624 | 0.592 | 0.5819 | | 0.6781 | 0.07 | 1700 | 0.6585 | 0.595 | 0.5883 | | 0.6781 | 0.07 | 1750 | 0.6543 | 0.584 | 0.5740 | | 0.6781 | 0.07 | 1800 | 0.6452 | 0.6 | 0.5926 | | 0.6781 | 0.07 | 1850 | 0.6355 | 0.615 | 0.6106 | | 0.6781 | 0.07 | 1900 | 0.6280 | 0.615 | 0.6090 | | 0.6781 | 0.07 | 1950 | 0.6209 | 0.621 | 0.6139 | | 0.6465 | 0.08 | 2000 | 0.6178 | 0.632 | 0.6247 | | 0.6465 | 0.08 | 2050 | 0.6133 | 0.641 | 0.6303 | | 0.6465 | 0.08 | 2100 | 0.6132 | 0.629 | 0.6218 | | 0.6465 | 0.08 | 2150 | 0.6155 | 0.63 | 0.6289 | | 0.6465 | 0.08 | 2200 | 0.5984 | 0.635 | 0.6322 | | 0.6465 | 0.09 | 2250 | 0.6065 | 0.633 | 0.6102 | | 0.6465 | 0.09 | 2300 | 0.5968 | 0.629 | 0.6063 | | 0.6465 | 0.09 | 2350 | 0.5871 | 0.649 | 0.6411 | | 0.6465 | 0.09 | 2400 | 0.5824 | 0.64 | 0.6218 | | 0.6465 | 0.09 | 2450 | 0.5812 | 0.643 | 0.6390 | | 0.6042 | 0.1 | 2500 | 0.5790 | 0.644 | 0.6355 | | 0.6042 | 0.1 | 2550 | 0.5744 | 0.654 | 0.6507 | | 0.6042 | 0.1 | 2600 | 0.5679 | 0.641 | 0.6292 | | 0.6042 | 0.1 | 2650 | 0.5707 | 0.644 | 0.6311 | | 0.6042 | 0.1 | 2700 | 0.5707 | 0.652 | 0.6439 | | 0.6042 | 0.11 | 2750 | 0.5680 | 0.661 | 0.6569 | | 0.6042 | 0.11 | 2800 | 0.5592 | 0.67 | 0.6684 | | 0.6042 | 0.11 | 2850 | 0.5557 | 0.678 | 0.6758 | | 0.6042 | 0.11 | 2900 | 0.5579 | 0.671 | 0.6690 | | 0.6042 | 0.11 | 2950 | 0.5490 | 0.692 | 0.6909 | | 0.5834 | 0.11 | 3000 | 0.5474 | 0.688 | 0.6858 | | 0.5834 | 0.12 | 3050 | 0.5447 | 0.696 | 0.6902 | | 0.5834 | 0.12 | 3100 | 0.5456 | 0.699 | 0.6985 | | 0.5834 | 0.12 | 3150 | 0.5592 | 0.675 | 0.6628 | | 0.5834 | 0.12 | 3200 | 0.5442 | 0.69 | 0.6856 | | 0.5834 | 0.12 | 3250 | 0.5424 | 0.698 | 0.6974 | | 0.5834 | 0.13 | 3300 | 0.5464 | 0.691 | 0.6907 | | 0.5834 | 0.13 | 3350 | 0.5433 | 0.693 | 0.6922 | | 0.5834 | 0.13 | 3400 | 0.5400 | 0.746 | 0.7461 | | 0.5834 | 0.13 | 3450 | 0.5406 | 0.712 | 0.7091 | | 0.5551 | 0.13 | 3500 | 0.5367 | 0.738 | 0.7376 | | 0.5551 | 0.14 | 3550 | 0.5354 | 0.713 | 0.7091 | | 0.5551 | 0.14 | 3600 | 0.5377 | 0.74 | 0.7400 | | 0.5551 | 0.14 | 3650 | 0.5342 | 0.751 | 0.7506 | | 0.5551 | 0.14 | 3700 | 0.5386 | 0.701 | 0.6992 | | 0.5551 | 0.14 | 3750 | 0.5395 | 0.737 | 0.7368 | | 0.5551 | 0.15 | 3800 | 0.5333 | 0.733 | 0.7330 | | 0.5551 | 0.15 | 3850 | 0.5245 | 0.737 | 0.7371 | | 0.5551 | 0.15 | 3900 | 0.5236 | 0.745 | 0.7451 | | 0.5551 | 0.15 | 3950 | 0.5149 | 0.741 | 0.7400 | | 0.5508 | 0.15 | 4000 | 0.5208 | 0.743 | 0.7422 | | 0.5508 | 0.16 | 4050 | 0.5109 | 0.744 | 0.7440 | | 0.5508 | 0.16 | 4100 | 0.5179 | 0.742 | 0.7398 | | 0.5508 | 0.16 | 4150 | 0.5133 | 0.75 | 0.7499 | | 0.5508 | 0.16 | 4200 | 0.5110 | 0.744 | 0.7416 | | 0.5508 | 0.16 | 4250 | 0.5133 | 0.749 | 0.7476 | | 0.5508 | 0.16 | 4300 | 0.5075 | 0.743 | 0.7410 | | 0.5508 | 0.17 | 4350 | 0.5108 | 0.755 | 0.7544 | | 0.5508 | 0.17 | 4400 | 0.5051 | 0.747 | 0.7465 | | 0.5508 | 0.17 | 4450 | 0.5064 | 0.746 | 0.7455 | | 0.5362 | 0.17 | 4500 | 0.5030 | 0.744 | 0.7441 | | 0.5362 | 0.17 | 4550 | 0.5043 | 0.748 | 0.7476 | | 0.5362 | 0.18 | 4600 | 0.5010 | 0.753 | 0.7531 | | 0.5362 | 0.18 | 4650 | 0.4988 | 0.762 | 0.7616 | | 0.5362 | 0.18 | 4700 | 0.4999 | 0.755 | 0.7548 | | 0.5362 | 0.18 | 4750 | 0.5159 | 0.754 | 0.7529 | | 0.5362 | 0.18 | 4800 | 0.4924 | 0.764 | 0.7639 | | 0.5362 | 0.19 | 4850 | 0.4935 | 0.755 | 0.7549 | | 0.5362 | 0.19 | 4900 | 0.4874 | 0.76 | 0.7601 | | 0.5362 | 0.19 | 4950 | 0.4859 | 0.759 | 0.7591 | | 0.5226 | 0.19 | 5000 | 0.4901 | 0.761 | 0.7610 | | 0.5226 | 0.19 | 5050 | 0.4740 | 0.779 | 0.7790 | | 0.5226 | 0.2 | 5100 | 0.4799 | 0.783 | 0.7831 | | 0.5226 | 0.2 | 5150 | 0.4833 | 0.771 | 0.7698 | | 0.5226 | 0.2 | 5200 | 0.4879 | 0.759 | 0.7561 | | 0.5226 | 0.2 | 5250 | 0.4812 | 0.772 | 0.7719 | | 0.5226 | 0.2 | 5300 | 0.4825 | 0.772 | 0.7715 | | 0.5226 | 0.2 | 5350 | 0.4791 | 0.775 | 0.7744 | | 0.5226 | 0.21 | 5400 | 0.4749 | 0.773 | 0.7729 | | 0.5226 | 0.21 | 5450 | 0.4691 | 0.782 | 0.7811 | | 0.5055 | 0.21 | 5500 | 0.4752 | 0.78 | 0.7791 | | 0.5055 | 0.21 | 5550 | 0.4621 | 0.766 | 0.7645 | | 0.5055 | 0.21 | 5600 | 0.4628 | 0.779 | 0.7790 | | 0.5055 | 0.22 | 5650 | 0.4543 | 0.776 | 0.7760 | | 0.5055 | 0.22 | 5700 | 0.4548 | 0.786 | 0.7861 | | 0.5055 | 0.22 | 5750 | 0.4578 | 0.777 | 0.7763 | | 0.5055 | 0.22 | 5800 | 0.4684 | 0.778 | 0.7780 | | 0.5055 | 0.22 | 5850 | 0.4626 | 0.775 | 0.7751 | | 0.5055 | 0.23 | 5900 | 0.4714 | 0.785 | 0.7850 | | 0.5055 | 0.23 | 5950 | 0.4514 | 0.79 | 0.7896 | | 0.4985 | 0.23 | 6000 | 0.4541 | 0.773 | 0.7731 | | 0.4985 | 0.23 | 6050 | 0.4587 | 0.788 | 0.7876 | | 0.4985 | 0.23 | 6100 | 0.4523 | 0.787 | 0.7867 | | 0.4985 | 0.24 | 6150 | 0.4441 | 0.787 | 0.7870 | | 0.4985 | 0.24 | 6200 | 0.4529 | 0.784 | 0.7841 | | 0.4985 | 0.24 | 6250 | 0.4512 | 0.784 | 0.7840 | | 0.4985 | 0.24 | 6300 | 0.4545 | 0.777 | 0.7757 | | 0.4985 | 0.24 | 6350 | 0.4399 | 0.788 | 0.7874 | | 0.4985 | 0.25 | 6400 | 0.4478 | 0.794 | 0.7939 | | 0.4985 | 0.25 | 6450 | 0.4495 | 0.793 | 0.7930 | | 0.4937 | 0.25 | 6500 | 0.4454 | 0.792 | 0.7913 | | 0.4937 | 0.25 | 6550 | 0.4438 | 0.795 | 0.7950 | | 0.4937 | 0.25 | 6600 | 0.4476 | 0.795 | 0.7948 | | 0.4937 | 0.25 | 6650 | 0.4448 | 0.794 | 0.7939 | | 0.4937 | 0.26 | 6700 | 0.4472 | 0.791 | 0.7911 | | 0.4937 | 0.26 | 6750 | 0.4431 | 0.793 | 0.7924 | | 0.4937 | 0.26 | 6800 | 0.4434 | 0.796 | 0.7958 | | 0.4937 | 0.26 | 6850 | 0.4340 | 0.802 | 0.802 | | 0.4937 | 0.26 | 6900 | 0.4502 | 0.786 | 0.7848 | | 0.4937 | 0.27 | 6950 | 0.4349 | 0.797 | 0.7964 | | 0.4826 | 0.27 | 7000 | 0.4348 | 0.79 | 0.7894 | | 0.4826 | 0.27 | 7050 | 0.4321 | 0.788 | 0.7875 | | 0.4826 | 0.27 | 7100 | 0.4300 | 0.787 | 0.7868 | | 0.4826 | 0.27 | 7150 | 0.4346 | 0.78 | 0.7779 | | 0.4826 | 0.28 | 7200 | 0.4246 | 0.802 | 0.8020 | | 0.4826 | 0.28 | 7250 | 0.4273 | 0.793 | 0.7930 | | 0.4826 | 0.28 | 7300 | 0.4346 | 0.79 | 0.7894 | | 0.4826 | 0.28 | 7350 | 0.4358 | 0.789 | 0.7887 | | 0.4826 | 0.28 | 7400 | 0.4368 | 0.788 | 0.7871 | | 0.4826 | 0.29 | 7450 | 0.4426 | 0.784 | 0.7841 | | 0.4756 | 0.29 | 7500 | 0.4312 | 0.802 | 0.8019 | | 0.4756 | 0.29 | 7550 | 0.4303 | 0.795 | 0.7944 | | 0.4756 | 0.29 | 7600 | 0.4391 | 0.792 | 0.7916 | | 0.4756 | 0.29 | 7650 | 0.4325 | 0.793 | 0.7922 | | 0.4756 | 0.29 | 7700 | 0.4283 | 0.793 | 0.7920 | | 0.4756 | 0.3 | 7750 | 0.4271 | 0.799 | 0.7991 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0
daoyuanzhai/distilgpt2-finetuned-wikitext2
daoyuanzhai
2023-12-24T09:46:26Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "base_model:distilbert/distilgpt2", "base_model:finetune:distilbert/distilgpt2", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-24T09:14:17Z
--- license: apache-2.0 base_model: distilgpt2 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6434 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7501 | 1.0 | 2334 | 3.6669 | | 3.6498 | 2.0 | 4668 | 3.6464 | | 3.5868 | 3.0 | 7002 | 3.6434 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0
Akshat4112/bloom_prompt_tuning_1703410758.7083309
Akshat4112
2023-12-24T09:39:49Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:bigscience/bloomz-560m", "base_model:adapter:bigscience/bloomz-560m", "region:us" ]
null
2023-12-24T09:39:46Z
--- library_name: peft base_model: bigscience/bloomz-560m --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
hkivancoral/hushem_40x_deit_base_sgd_00001_fold2
hkivancoral
2023-12-24T09:34:04Z
5
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-base-patch16-224", "base_model:finetune:facebook/deit-base-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-12-24T08:53:10Z
--- license: apache-2.0 base_model: facebook/deit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_40x_deit_base_sgd_00001_fold2 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.3111111111111111 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_40x_deit_base_sgd_00001_fold2 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.3898 - Accuracy: 0.3111 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.4168 | 1.0 | 215 | 1.4077 | 0.2444 | | 1.3843 | 2.0 | 430 | 1.4068 | 0.2444 | | 1.4045 | 3.0 | 645 | 1.4059 | 0.2444 | | 1.3944 | 4.0 | 860 | 1.4051 | 0.2444 | | 1.3979 | 5.0 | 1075 | 1.4043 | 0.2444 | | 1.4212 | 6.0 | 1290 | 1.4036 | 0.2667 | | 1.4197 | 7.0 | 1505 | 1.4029 | 0.2667 | | 1.369 | 8.0 | 1720 | 1.4022 | 0.2667 | | 1.3853 | 9.0 | 1935 | 1.4015 | 0.2667 | | 1.4053 | 10.0 | 2150 | 1.4008 | 0.2667 | | 1.3723 | 11.0 | 2365 | 1.4002 | 0.2667 | | 1.3571 | 12.0 | 2580 | 1.3996 | 0.2667 | | 1.3936 | 13.0 | 2795 | 1.3990 | 0.2667 | | 1.3779 | 14.0 | 3010 | 1.3985 | 0.2667 | | 1.3861 | 15.0 | 3225 | 1.3979 | 0.2667 | | 1.4005 | 16.0 | 3440 | 1.3974 | 0.2889 | | 1.3769 | 17.0 | 3655 | 1.3969 | 0.2889 | | 1.3909 | 18.0 | 3870 | 1.3964 | 0.2889 | | 1.3834 | 19.0 | 4085 | 1.3960 | 0.2889 | | 1.3642 | 20.0 | 4300 | 1.3956 | 0.2889 | | 1.3863 | 21.0 | 4515 | 1.3951 | 0.2889 | | 1.3863 | 22.0 | 4730 | 1.3947 | 0.2889 | | 1.3703 | 23.0 | 4945 | 1.3944 | 0.2889 | | 1.3733 | 24.0 | 5160 | 1.3940 | 0.2889 | | 1.3751 | 25.0 | 5375 | 1.3937 | 0.3111 | | 1.3799 | 26.0 | 5590 | 1.3933 | 0.3111 | | 1.3637 | 27.0 | 5805 | 1.3930 | 0.3111 | | 1.3658 | 28.0 | 6020 | 1.3927 | 0.3111 | | 1.3837 | 29.0 | 6235 | 1.3924 | 0.3111 | | 1.3573 | 30.0 | 6450 | 1.3922 | 0.3111 | | 1.3483 | 31.0 | 6665 | 1.3919 | 0.3111 | | 1.3737 | 32.0 | 6880 | 1.3917 | 0.3111 | | 1.3567 | 33.0 | 7095 | 1.3915 | 0.3111 | | 1.3764 | 34.0 | 7310 | 1.3913 | 0.3111 | | 1.3646 | 35.0 | 7525 | 1.3911 | 0.3111 | | 1.3557 | 36.0 | 7740 | 1.3909 | 0.3111 | | 1.3829 | 37.0 | 7955 | 1.3907 | 0.3111 | | 1.3713 | 38.0 | 8170 | 1.3906 | 0.3111 | | 1.3468 | 39.0 | 8385 | 1.3905 | 0.3111 | | 1.3527 | 40.0 | 8600 | 1.3903 | 0.3111 | | 1.3629 | 41.0 | 8815 | 1.3902 | 0.3111 | | 1.3464 | 42.0 | 9030 | 1.3901 | 0.3111 | | 1.3709 | 43.0 | 9245 | 1.3901 | 0.3111 | | 1.3524 | 44.0 | 9460 | 1.3900 | 0.3111 | | 1.3532 | 45.0 | 9675 | 1.3899 | 0.3111 | | 1.3657 | 46.0 | 9890 | 1.3899 | 0.3111 | | 1.3891 | 47.0 | 10105 | 1.3899 | 0.3111 | | 1.3666 | 48.0 | 10320 | 1.3898 | 0.3111 | | 1.3713 | 49.0 | 10535 | 1.3898 | 0.3111 | | 1.3614 | 50.0 | 10750 | 1.3898 | 0.3111 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
Anwaarma/Merged-Server-praj
Anwaarma
2023-12-24T09:30:05Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:Anwaarma/BP-server02andinteger03", "base_model:finetune:Anwaarma/BP-server02andinteger03", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-24T08:29:19Z
--- base_model: Anwaarma/BP-server02andinteger03 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: Merged-Server-praj results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Merged-Server-praj This model is a fine-tuned version of [Anwaarma/BP-server02andinteger03](https://huggingface.co/Anwaarma/BP-server02andinteger03) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6453 - Accuracy: 0.619 - F1: 0.7647 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 0.0 | 50 | 0.6887 | 0.518 | 0.4747 | | No log | 0.0 | 100 | 0.6872 | 0.539 | 0.4913 | | No log | 0.01 | 150 | 0.6870 | 0.556 | 0.5124 | | No log | 0.01 | 200 | 0.6845 | 0.554 | 0.5490 | | No log | 0.01 | 250 | 0.6823 | 0.555 | 0.5509 | | No log | 0.01 | 300 | 0.6818 | 0.545 | 0.5339 | | No log | 0.02 | 350 | 0.6841 | 0.561 | 0.5207 | | No log | 0.02 | 400 | 0.6845 | 0.566 | 0.5402 | | No log | 0.02 | 450 | 0.6792 | 0.566 | 0.5650 | | 0.6886 | 0.02 | 500 | 0.6808 | 0.532 | 0.4867 | | 0.6886 | 0.02 | 550 | 0.6821 | 0.527 | 0.4643 | | 0.6886 | 0.03 | 600 | 0.6777 | 0.577 | 0.5729 | | 0.6886 | 0.03 | 650 | 0.6758 | 0.58 | 0.58 | | 0.6886 | 0.03 | 700 | 0.6762 | 0.585 | 0.5793 | | 0.6886 | 0.03 | 750 | 0.6743 | 0.577 | 0.5731 | | 0.6886 | 0.04 | 800 | 0.6731 | 0.577 | 0.5762 | | 0.6886 | 0.04 | 850 | 0.6762 | 0.582 | 0.5534 | | 0.6886 | 0.04 | 900 | 0.6749 | 0.568 | 0.5458 | | 0.6886 | 0.04 | 950 | 0.6739 | 0.578 | 0.5746 | | 0.6819 | 0.04 | 1000 | 0.6715 | 0.588 | 0.588 | | 0.6819 | 0.05 | 1050 | 0.6741 | 0.579 | 0.5524 | | 0.6819 | 0.05 | 1100 | 0.6712 | 0.592 | 0.5894 | | 0.6819 | 0.05 | 1150 | 0.6692 | 0.594 | 0.5905 | | 0.6819 | 0.05 | 1200 | 0.6683 | 0.597 | 0.5957 | | 0.6819 | 0.06 | 1250 | 0.6757 | 0.566 | 0.5209 | | 0.6819 | 0.06 | 1300 | 0.6676 | 0.6 | 0.5882 | | 0.6819 | 0.06 | 1350 | 0.6655 | 0.598 | 0.5943 | | 0.6819 | 0.06 | 1400 | 0.6671 | 0.584 | 0.5724 | | 0.6819 | 0.06 | 1450 | 0.6631 | 0.587 | 0.5812 | | 0.6763 | 0.07 | 1500 | 0.6614 | 0.62 | 0.6140 | | 0.6763 | 0.07 | 1550 | 0.6610 | 0.603 | 0.6018 | | 0.6763 | 0.07 | 1600 | 0.6615 | 0.589 | 0.5843 | | 0.6763 | 0.07 | 1650 | 0.6597 | 0.633 | 0.6326 | | 0.6763 | 0.08 | 1700 | 0.6561 | 0.607 | 0.6025 | | 0.6763 | 0.08 | 1750 | 0.6515 | 0.632 | 0.6318 | | 0.6763 | 0.08 | 1800 | 0.6509 | 0.635 | 0.6323 | | 0.6763 | 0.08 | 1850 | 0.6538 | 0.604 | 0.5903 | | 0.6763 | 0.08 | 1900 | 0.6483 | 0.632 | 0.632 | | 0.6763 | 0.09 | 1950 | 0.6513 | 0.616 | 0.6142 | | 0.6659 | 0.09 | 2000 | 0.6475 | 0.618 | 0.6166 | | 0.6659 | 0.09 | 2050 | 0.6443 | 0.613 | 0.6106 | | 0.6659 | 0.09 | 2100 | 0.6482 | 0.629 | 0.6261 | | 0.6659 | 0.1 | 2150 | 0.6552 | 0.604 | 0.5837 | | 0.6659 | 0.1 | 2200 | 0.6492 | 0.618 | 0.6042 | | 0.6659 | 0.1 | 2250 | 0.6441 | 0.63 | 0.6256 | | 0.6659 | 0.1 | 2300 | 0.6447 | 0.63 | 0.6293 | | 0.6659 | 0.1 | 2350 | 0.6429 | 0.633 | 0.6317 | | 0.6659 | 0.11 | 2400 | 0.6450 | 0.62 | 0.6200 | | 0.6659 | 0.11 | 2450 | 0.6480 | 0.639 | 0.6358 | | 0.6577 | 0.11 | 2500 | 0.6480 | 0.601 | 0.5844 | | 0.6577 | 0.11 | 2550 | 0.6422 | 0.641 | 0.6402 | | 0.6577 | 0.11 | 2600 | 0.6407 | 0.623 | 0.6177 | | 0.6577 | 0.12 | 2650 | 0.6393 | 0.634 | 0.6336 | | 0.6577 | 0.12 | 2700 | 0.6405 | 0.635 | 0.6320 | | 0.6577 | 0.12 | 2750 | 0.6422 | 0.642 | 0.6413 | | 0.6577 | 0.12 | 2800 | 0.6355 | 0.632 | 0.6271 | | 0.6577 | 0.13 | 2850 | 0.6351 | 0.622 | 0.6150 | | 0.6577 | 0.13 | 2900 | 0.6331 | 0.658 | 0.6569 | | 0.6577 | 0.13 | 2950 | 0.6352 | 0.656 | 0.6548 | | 0.6569 | 0.13 | 3000 | 0.6385 | 0.609 | 0.5927 | | 0.6569 | 0.13 | 3050 | 0.6307 | 0.645 | 0.6449 | | 0.6569 | 0.14 | 3100 | 0.6304 | 0.639 | 0.6324 | | 0.6569 | 0.14 | 3150 | 0.6268 | 0.654 | 0.6540 | | 0.6569 | 0.14 | 3200 | 0.6297 | 0.641 | 0.6402 | | 0.6569 | 0.14 | 3250 | 0.6293 | 0.651 | 0.6488 | | 0.6569 | 0.15 | 3300 | 0.6251 | 0.66 | 0.66 | | 0.6569 | 0.15 | 3350 | 0.6207 | 0.653 | 0.6513 | | 0.6569 | 0.15 | 3400 | 0.6184 | 0.649 | 0.6470 | | 0.6569 | 0.15 | 3450 | 0.6176 | 0.653 | 0.6523 | | 0.6394 | 0.15 | 3500 | 0.6195 | 0.654 | 0.6527 | | 0.6394 | 0.16 | 3550 | 0.6172 | 0.655 | 0.6535 | | 0.6394 | 0.16 | 3600 | 0.6168 | 0.659 | 0.6590 | | 0.6394 | 0.16 | 3650 | 0.6138 | 0.664 | 0.6631 | | 0.6394 | 0.16 | 3700 | 0.6228 | 0.659 | 0.6478 | | 0.6394 | 0.17 | 3750 | 0.6117 | 0.662 | 0.6608 | | 0.6394 | 0.17 | 3800 | 0.6121 | 0.645 | 0.6443 | | 0.6394 | 0.17 | 3850 | 0.6099 | 0.652 | 0.6515 | | 0.6394 | 0.17 | 3900 | 0.6128 | 0.657 | 0.6515 | | 0.6394 | 0.17 | 3950 | 0.6103 | 0.65 | 0.6499 | | 0.6366 | 0.18 | 4000 | 0.6149 | 0.652 | 0.6447 | | 0.6366 | 0.18 | 4050 | 0.6111 | 0.652 | 0.6518 | | 0.6366 | 0.18 | 4100 | 0.6098 | 0.651 | 0.6502 | | 0.6366 | 0.18 | 4150 | 0.6072 | 0.666 | 0.6640 | | 0.6366 | 0.19 | 4200 | 0.6065 | 0.669 | 0.6646 | | 0.6366 | 0.19 | 4250 | 0.6057 | 0.658 | 0.6531 | | 0.6366 | 0.19 | 4300 | 0.6044 | 0.667 | 0.6634 | | 0.6366 | 0.19 | 4350 | 0.6061 | 0.656 | 0.6451 | | 0.6366 | 0.19 | 4400 | 0.5962 | 0.666 | 0.6660 | | 0.6366 | 0.2 | 4450 | 0.5936 | 0.664 | 0.6637 | | 0.6275 | 0.2 | 4500 | 0.5978 | 0.651 | 0.6508 | | 0.6275 | 0.2 | 4550 | 0.5998 | 0.664 | 0.6601 | | 0.6275 | 0.2 | 4600 | 0.5967 | 0.657 | 0.6560 | | 0.6275 | 0.21 | 4650 | 0.5931 | 0.671 | 0.6708 | | 0.6275 | 0.21 | 4700 | 0.5953 | 0.686 | 0.6856 | | 0.6275 | 0.21 | 4750 | 0.6119 | 0.643 | 0.6331 | | 0.6275 | 0.21 | 4800 | 0.6035 | 0.657 | 0.6497 | | 0.6275 | 0.21 | 4850 | 0.5864 | 0.676 | 0.6756 | | 0.6275 | 0.22 | 4900 | 0.5876 | 0.681 | 0.6809 | | 0.6275 | 0.22 | 4950 | 0.5864 | 0.677 | 0.6762 | | 0.6279 | 0.22 | 5000 | 0.5876 | 0.677 | 0.6770 | | 0.6279 | 0.22 | 5050 | 0.5876 | 0.666 | 0.6636 | | 0.6279 | 0.23 | 5100 | 0.5848 | 0.675 | 0.6745 | | 0.6279 | 0.23 | 5150 | 0.5904 | 0.672 | 0.6719 | | 0.6279 | 0.23 | 5200 | 0.5854 | 0.672 | 0.6718 | | 0.6279 | 0.23 | 5250 | 0.5864 | 0.673 | 0.6709 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0
mcysqrd/mojo-coder-1B
mcysqrd
2023-12-24T09:25:24Z
7
6
transformers
[ "transformers", "safetensors", "llama", "text-generation", "dataset:mcysqrd/mojo_code", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-24T08:47:05Z
--- license: apache-2.0 datasets: - mcysqrd/mojo_code --- FIM training over deepseek-coder-1.3B using a mojo-code dataset. This is an alpha version. It is trained only for FIM co-pilot style usage. later versions should have Q&A added as well as better performance. please leave your comments to help improve it. the recipe for this was based on this template from https://huggingface.co/blog/personal-copilot ``` tokenizer = AutoTokenizer.from_pretrained(merged_model_path,trust_remote_code=True,use_fast=True) model = AutoModelForCausalLM.from_pretrained( merged_model_path, device_map={"": 0}, use_cache=True, trust_remote_code=True, attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16 ) input_text = """<|fim▁begin|> from algorithm import parallelize, vectorize from benchmark import Benchmark from complex import ComplexSIMD, ComplexFloat64 from math import iota from os import env from python import Python from python.object import PythonObject from runtime.llcl import num_cores, Runtime from tensor import Tensor from utils.index import Index alias float_type = DType.float64 alias simd_width = simdwidthof[float_type]() alias width = 960 alias height = 960 alias MAX_ITERS = 200 alias min_x = -2.0 alias max_x = 0.6 alias min_y = -1.5 alias max_y = 1.5 fn mandelbrot_kernel_SIMD[ simd_width: Int ](c: ComplexSIMD[float_type, simd_width]) -> SIMD[float_type, simd_width]: let cx = c.re let cy = c.im var x = SIMD[float_type, simd_width](0) var y = SIMD[float_type, simd_width](0) var y2 = SIMD[float_type, simd_width](0) var iters = SIMD[float_type, simd_width](0) var t: SIMD[DType.bool, simd_width] = True for i in range(MAX_ITERS): if not t.reduce_or(): break y2 = y*y y = x.fma(y + y, cy) t = x.fma(x, y2) <= 4 x = x.fma(x, cx - y2) iters = t.select(iters + 1, iters) return iters fn compare(): let t = Tensor[float_type](height, width) @parameter fn worker(row: Int): let scale_x = (max_x - min_x) / width let scale_y = (max_y - min_y) / height <|fim▁hole|> fn main(): compare() <|fim▁end|>""" inputs = tokenizer(input_text, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_length=547+200) print(tokenizer.decode(outputs[0], skip_special_tokens=True)[len(input_text):]) def stream(user_prompt): runtimeFlag = "cuda:0" inputs = tokenizer([user_prompt], return_tensors="pt").to(runtimeFlag) streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) _ = model.generate(**inputs, streamer=streamer, max_new_tokens=200) stream(input_text) ``` also try to use an inference endpoint and use a VS-Code extension
Adalee1001/my_awesome_mind_model
Adalee1001
2023-12-24T09:12:46Z
3
0
transformers
[ "transformers", "tensorboard", "safetensors", "wav2vec2", "audio-classification", "generated_from_trainer", "base_model:facebook/wav2vec2-base", "base_model:finetune:facebook/wav2vec2-base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2023-12-24T07:51:08Z
--- license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: my_awesome_mind_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_mind_model This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: nan - Accuracy: 0.0442 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.8 | 3 | nan | 0.0442 | | No log | 1.87 | 7 | nan | 0.0442 | | 241.8072 | 2.93 | 11 | nan | 0.0442 | | 241.8072 | 4.0 | 15 | nan | 0.0442 | | 241.8072 | 4.8 | 18 | nan | 0.0442 | | 0.0 | 5.87 | 22 | nan | 0.0442 | | 0.0 | 6.93 | 26 | nan | 0.0442 | | 0.0 | 8.0 | 30 | nan | 0.0442 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0
LeamonLee/lilt-en-funsd
LeamonLee
2023-12-24T09:12:26Z
3
0
transformers
[ "transformers", "tensorboard", "safetensors", "lilt", "token-classification", "generated_from_trainer", "base_model:SCUT-DLVCLab/lilt-roberta-en-base", "base_model:finetune:SCUT-DLVCLab/lilt-roberta-en-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-12-24T09:12:05Z
--- license: mit base_model: SCUT-DLVCLab/lilt-roberta-en-base tags: - generated_from_trainer model-index: - name: lilt-en-funsd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lilt-en-funsd This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6973 - Answer: {'precision': 0.8658109684947491, 'recall': 0.9082007343941249, 'f1': 0.886499402628435, 'number': 817} - Header: {'precision': 0.6770833333333334, 'recall': 0.5462184873949579, 'f1': 0.6046511627906976, 'number': 119} - Question: {'precision': 0.9074243813015582, 'recall': 0.9192200557103064, 'f1': 0.9132841328413284, 'number': 1077} - Overall Precision: 0.8792 - Overall Recall: 0.8927 - Overall F1: 0.8859 - Overall Accuracy: 0.8011 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.1857 | 26.32 | 500 | 1.4181 | {'precision': 0.8298109010011123, 'recall': 0.9130966952264382, 'f1': 0.8694638694638694, 'number': 817} | {'precision': 0.6923076923076923, 'recall': 0.5294117647058824, 'f1': 0.5999999999999999, 'number': 119} | {'precision': 0.886672710788758, 'recall': 0.9080779944289693, 'f1': 0.8972477064220182, 'number': 1077} | 0.8538 | 0.8877 | 0.8704 | 0.7981 | | 0.0068 | 52.63 | 1000 | 1.6084 | {'precision': 0.8581235697940504, 'recall': 0.9179926560587516, 'f1': 0.8870490833826139, 'number': 817} | {'precision': 0.5877192982456141, 'recall': 0.5630252100840336, 'f1': 0.5751072961373391, 'number': 119} | {'precision': 0.9083255378858747, 'recall': 0.9015784586815228, 'f1': 0.9049394221808015, 'number': 1077} | 0.8692 | 0.8882 | 0.8786 | 0.7956 | | 0.0018 | 78.95 | 1500 | 1.6068 | {'precision': 0.8742655699177438, 'recall': 0.9106487148102815, 'f1': 0.8920863309352519, 'number': 817} | {'precision': 0.6050420168067226, 'recall': 0.6050420168067226, 'f1': 0.6050420168067226, 'number': 119} | {'precision': 0.902867715078631, 'recall': 0.9062209842154132, 'f1': 0.9045412418906396, 'number': 1077} | 0.8737 | 0.8902 | 0.8819 | 0.8095 | | 0.0007 | 105.26 | 2000 | 1.6522 | {'precision': 0.8611111111111112, 'recall': 0.9106487148102815, 'f1': 0.8851873884592504, 'number': 817} | {'precision': 0.6126126126126126, 'recall': 0.5714285714285714, 'f1': 0.591304347826087, 'number': 119} | {'precision': 0.9098513011152416, 'recall': 0.9090064995357474, 'f1': 0.9094287041337669, 'number': 1077} | 0.8732 | 0.8897 | 0.8814 | 0.8028 | | 0.0002 | 131.58 | 2500 | 1.6973 | {'precision': 0.8658109684947491, 'recall': 0.9082007343941249, 'f1': 0.886499402628435, 'number': 817} | {'precision': 0.6770833333333334, 'recall': 0.5462184873949579, 'f1': 0.6046511627906976, 'number': 119} | {'precision': 0.9074243813015582, 'recall': 0.9192200557103064, 'f1': 0.9132841328413284, 'number': 1077} | 0.8792 | 0.8927 | 0.8859 | 0.8011 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0
behzadnet/Llama-2-7b-chat-hf-sharded-bf16-fine-tuned_RandomError0.2_Seed104
behzadnet
2023-12-24T09:04:58Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:Trelis/Llama-2-7b-chat-hf-sharded-bf16", "base_model:adapter:Trelis/Llama-2-7b-chat-hf-sharded-bf16", "region:us" ]
null
2023-12-24T09:04:53Z
--- library_name: peft base_model: Trelis/Llama-2-7b-chat-hf-sharded-bf16 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.7.0.dev0
behzadnet/Llama-2-7b-chat-hf-sharded-bf16-fine-tuned-adapters_RandomError0.2_Seed104
behzadnet
2023-12-24T09:04:47Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:Trelis/Llama-2-7b-chat-hf-sharded-bf16", "base_model:adapter:Trelis/Llama-2-7b-chat-hf-sharded-bf16", "region:us" ]
null
2023-12-24T09:04:41Z
--- library_name: peft base_model: Trelis/Llama-2-7b-chat-hf-sharded-bf16 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.7.0.dev0 ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.7.0.dev0
SJTU-CL/RoBERTa-large-ArguGPT
SJTU-CL
2023-12-24T09:04:06Z
20
6
transformers
[ "transformers", "pytorch", "safetensors", "roberta", "text-classification", "ArguGPT", "en", "dataset:SJTU-CL/ArguGPT", "arxiv:2304.07666", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-04-07T06:54:49Z
--- language: - en thumbnail: url to a thumbnail used in social sharing tags: - ArguGPT license: mit datasets: - SJTU-CL/ArguGPT metrics: - accuracy pipeline_tag: text-classification --- # ArguGPT RoBERTa-large finetuned on ArguGPT essays. - label 1 for machine generated essays - label 0 for human written essays **Please truncate your input essay to 512 tokens** ## Citation Please cite our work [arXiv:2304.07666](https://arxiv.org/abs/2304.07666) as ``` @misc{liu2023argugpt, title={ArguGPT: evaluating, understanding and identifying argumentative essays generated by GPT models}, author={Yikang Liu and Ziyin Zhang and Wanyang Zhang and Shisen Yue and Xiaojing Zhao and Xinyuan Cheng and Yiwen Zhang and Hai Hu}, year={2023}, eprint={2304.07666}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
SJTU-CL/RoBERTa-large-ArguGPT-sent
SJTU-CL
2023-12-24T09:03:24Z
24
2
transformers
[ "transformers", "pytorch", "safetensors", "roberta", "text-classification", "AIGC for education", "en", "dataset:SJTU-CL/ArguGPT", "arxiv:2304.07666", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-04-17T00:45:43Z
--- datasets: - SJTU-CL/ArguGPT language: - en metrics: - accuracy pipeline_tag: text-classification tags: - AIGC for education --- ## Citation Please cite our work [arXiv:2304.07666](https://arxiv.org/abs/2304.07666) as ``` @misc{liu2023argugpt, title={ArguGPT: evaluating, understanding and identifying argumentative essays generated by GPT models}, author={Yikang Liu and Ziyin Zhang and Wanyang Zhang and Shisen Yue and Xiaojing Zhao and Xinyuan Cheng and Yiwen Zhang and Hai Hu}, year={2023}, eprint={2304.07666}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
hkivancoral/hushem_40x_deit_base_sgd_00001_fold1
hkivancoral
2023-12-24T08:53:01Z
5
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-base-patch16-224", "base_model:finetune:facebook/deit-base-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-12-24T08:11:42Z
--- license: apache-2.0 base_model: facebook/deit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_40x_deit_base_sgd_00001_fold1 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.28888888888888886 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_40x_deit_base_sgd_00001_fold1 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.4455 - Accuracy: 0.2889 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.379 | 1.0 | 215 | 1.4681 | 0.2889 | | 1.3967 | 2.0 | 430 | 1.4670 | 0.2889 | | 1.423 | 3.0 | 645 | 1.4660 | 0.2889 | | 1.4018 | 4.0 | 860 | 1.4650 | 0.2889 | | 1.3899 | 5.0 | 1075 | 1.4640 | 0.2889 | | 1.4076 | 6.0 | 1290 | 1.4631 | 0.2889 | | 1.3743 | 7.0 | 1505 | 1.4622 | 0.2889 | | 1.3724 | 8.0 | 1720 | 1.4613 | 0.2889 | | 1.3757 | 9.0 | 1935 | 1.4604 | 0.2889 | | 1.3783 | 10.0 | 2150 | 1.4596 | 0.2889 | | 1.4141 | 11.0 | 2365 | 1.4589 | 0.2889 | | 1.3702 | 12.0 | 2580 | 1.4581 | 0.2889 | | 1.3842 | 13.0 | 2795 | 1.4574 | 0.2889 | | 1.3926 | 14.0 | 3010 | 1.4567 | 0.2889 | | 1.3764 | 15.0 | 3225 | 1.4560 | 0.2889 | | 1.3955 | 16.0 | 3440 | 1.4553 | 0.2889 | | 1.3752 | 17.0 | 3655 | 1.4547 | 0.2889 | | 1.3872 | 18.0 | 3870 | 1.4541 | 0.2889 | | 1.3795 | 19.0 | 4085 | 1.4535 | 0.2889 | | 1.3768 | 20.0 | 4300 | 1.4530 | 0.2889 | | 1.3609 | 21.0 | 4515 | 1.4524 | 0.2889 | | 1.3552 | 22.0 | 4730 | 1.4519 | 0.2889 | | 1.3869 | 23.0 | 4945 | 1.4514 | 0.2889 | | 1.3741 | 24.0 | 5160 | 1.4510 | 0.2889 | | 1.3721 | 25.0 | 5375 | 1.4505 | 0.2889 | | 1.3593 | 26.0 | 5590 | 1.4501 | 0.2889 | | 1.3536 | 27.0 | 5805 | 1.4497 | 0.2889 | | 1.3543 | 28.0 | 6020 | 1.4493 | 0.2889 | | 1.3589 | 29.0 | 6235 | 1.4489 | 0.2889 | | 1.3445 | 30.0 | 6450 | 1.4486 | 0.2889 | | 1.3539 | 31.0 | 6665 | 1.4483 | 0.2889 | | 1.3535 | 32.0 | 6880 | 1.4480 | 0.2889 | | 1.3498 | 33.0 | 7095 | 1.4477 | 0.2889 | | 1.3497 | 34.0 | 7310 | 1.4474 | 0.2889 | | 1.3582 | 35.0 | 7525 | 1.4472 | 0.2889 | | 1.354 | 36.0 | 7740 | 1.4469 | 0.2889 | | 1.3681 | 37.0 | 7955 | 1.4467 | 0.2889 | | 1.346 | 38.0 | 8170 | 1.4465 | 0.2889 | | 1.3468 | 39.0 | 8385 | 1.4463 | 0.2889 | | 1.3488 | 40.0 | 8600 | 1.4462 | 0.2889 | | 1.3542 | 41.0 | 8815 | 1.4460 | 0.2889 | | 1.3813 | 42.0 | 9030 | 1.4459 | 0.2889 | | 1.3585 | 43.0 | 9245 | 1.4458 | 0.2889 | | 1.3347 | 44.0 | 9460 | 1.4457 | 0.2889 | | 1.3527 | 45.0 | 9675 | 1.4456 | 0.2889 | | 1.3601 | 46.0 | 9890 | 1.4456 | 0.2889 | | 1.3484 | 47.0 | 10105 | 1.4455 | 0.2889 | | 1.3543 | 48.0 | 10320 | 1.4455 | 0.2889 | | 1.3639 | 49.0 | 10535 | 1.4455 | 0.2889 | | 1.3697 | 50.0 | 10750 | 1.4455 | 0.2889 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
hkivancoral/hushem_40x_deit_tiny_adamax_00001_fold1
hkivancoral
2023-12-24T08:44:00Z
4
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-tiny-patch16-224", "base_model:finetune:facebook/deit-tiny-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-12-24T08:08:23Z
--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_40x_deit_tiny_adamax_00001_fold1 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.7777777777777778 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_40x_deit_tiny_adamax_00001_fold1 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.7285 - Accuracy: 0.7778 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3612 | 1.0 | 215 | 0.8053 | 0.7111 | | 0.0954 | 2.0 | 430 | 0.7023 | 0.7111 | | 0.0263 | 3.0 | 645 | 0.7672 | 0.7333 | | 0.0113 | 4.0 | 860 | 0.8377 | 0.7778 | | 0.0012 | 5.0 | 1075 | 0.9748 | 0.7778 | | 0.0007 | 6.0 | 1290 | 0.9997 | 0.7778 | | 0.0004 | 7.0 | 1505 | 1.1150 | 0.7556 | | 0.0003 | 8.0 | 1720 | 1.1439 | 0.7556 | | 0.0002 | 9.0 | 1935 | 1.2019 | 0.7556 | | 0.0001 | 10.0 | 2150 | 1.2424 | 0.7556 | | 0.0001 | 11.0 | 2365 | 1.2284 | 0.7556 | | 0.0001 | 12.0 | 2580 | 1.2809 | 0.7556 | | 0.0001 | 13.0 | 2795 | 1.3071 | 0.7556 | | 0.0001 | 14.0 | 3010 | 1.3721 | 0.7556 | | 0.0 | 15.0 | 3225 | 1.3804 | 0.7556 | | 0.0 | 16.0 | 3440 | 1.3850 | 0.7556 | | 0.0 | 17.0 | 3655 | 1.4005 | 0.7556 | | 0.0 | 18.0 | 3870 | 1.4317 | 0.7556 | | 0.0 | 19.0 | 4085 | 1.4823 | 0.7556 | | 0.0 | 20.0 | 4300 | 1.4810 | 0.7556 | | 0.0 | 21.0 | 4515 | 1.4751 | 0.7556 | | 0.0 | 22.0 | 4730 | 1.5073 | 0.7556 | | 0.0 | 23.0 | 4945 | 1.5283 | 0.7333 | | 0.0 | 24.0 | 5160 | 1.5592 | 0.7556 | | 0.0 | 25.0 | 5375 | 1.5298 | 0.7556 | | 0.0 | 26.0 | 5590 | 1.5228 | 0.7778 | | 0.0 | 27.0 | 5805 | 1.5617 | 0.7556 | | 0.0 | 28.0 | 6020 | 1.5609 | 0.7778 | | 0.0 | 29.0 | 6235 | 1.5791 | 0.7556 | | 0.0 | 30.0 | 6450 | 1.6043 | 0.7778 | | 0.0 | 31.0 | 6665 | 1.6159 | 0.7556 | | 0.0 | 32.0 | 6880 | 1.6584 | 0.7556 | | 0.0 | 33.0 | 7095 | 1.6250 | 0.7778 | | 0.0 | 34.0 | 7310 | 1.6097 | 0.7778 | | 0.0 | 35.0 | 7525 | 1.6615 | 0.7778 | | 0.0 | 36.0 | 7740 | 1.6489 | 0.7778 | | 0.0 | 37.0 | 7955 | 1.6559 | 0.7778 | | 0.0 | 38.0 | 8170 | 1.6854 | 0.7778 | | 0.0 | 39.0 | 8385 | 1.6826 | 0.7778 | | 0.0 | 40.0 | 8600 | 1.7344 | 0.7333 | | 0.0 | 41.0 | 8815 | 1.7007 | 0.7778 | | 0.0 | 42.0 | 9030 | 1.6800 | 0.7778 | | 0.0 | 43.0 | 9245 | 1.7149 | 0.7778 | | 0.0 | 44.0 | 9460 | 1.7189 | 0.7556 | | 0.0 | 45.0 | 9675 | 1.7288 | 0.7778 | | 0.0 | 46.0 | 9890 | 1.7097 | 0.7778 | | 0.0 | 47.0 | 10105 | 1.7285 | 0.7778 | | 0.0 | 48.0 | 10320 | 1.7184 | 0.7778 | | 0.0 | 49.0 | 10535 | 1.7322 | 0.7778 | | 0.0 | 50.0 | 10750 | 1.7285 | 0.7778 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.1+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
dishhaa03/beautiful-roses
dishhaa03
2023-12-24T08:24:09Z
0
0
null
[ "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-12-24T08:22:07Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### Beautiful-roses Dreambooth model trained by dishhaa03 following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: CS21B1033 Sample pictures of this concept: ![0](https://huggingface.co/dishhaa03/beautiful-roses/resolve/main/sample_images/1667199972_7ba7d999c1_m.jpg)
stablediffusionapi/pmxl
stablediffusionapi
2023-12-24T08:08:33Z
0
1
diffusers
[ "diffusers", "modelslab.com", "stable-diffusion-api", "text-to-image", "ultra-realistic", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2023-10-16T20:06:46Z
--- license: creativeml-openrail-m tags: - modelslab.com - stable-diffusion-api - text-to-image - ultra-realistic pinned: true --- # PMXL API Inference ![generated from modelslab.com](https://pub-3626123a908346a7a8be8d9295f44e26.r2.dev/generations/11189669741697478283.png) ## Get API Key Get API key from [ModelsLab API](http://modelslab.com), No Payment needed. Replace Key in below code, change **model_id** to "pmxl" Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://modelslab.com/docs) Try model for free: [Generate Images](https://modelslab.com/models/pmxl) Model link: [View model](https://modelslab.com/models/pmxl) View all models: [View Models](https://modelslab.com/models) import requests import json url = "https://modelslab.com/api/v6/images/text2img" payload = json.dumps({ "key": "your_api_key", "model_id": "pmxl", "prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": "no", "enhance_prompt": "yes", "seed": None, "guidance_scale": 7.5, "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings": "embeddings_model_id", "lora": "lora_model_id", "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) print(response.text) > Use this coupon code to get 25% off **DMGG0RBN**
Anwaarma/Merged-Int-praj
Anwaarma
2023-12-24T08:07:50Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:prajjwal1/bert-tiny", "base_model:finetune:prajjwal1/bert-tiny", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-24T08:06:37Z
--- license: mit base_model: prajjwal1/bert-tiny tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: Merged-Int-praj results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Merged-Int-praj This model is a fine-tuned version of [prajjwal1/bert-tiny](https://huggingface.co/prajjwal1/bert-tiny) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1460 - Accuracy: 0.96 - F1: 0.9600 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 0.0 | 50 | 0.6933 | 0.5 | 0.3333 | | No log | 0.01 | 100 | 0.6929 | 0.58 | 0.4900 | | No log | 0.01 | 150 | 0.6937 | 0.5 | 0.3333 | | No log | 0.01 | 200 | 0.6951 | 0.5 | 0.3333 | | No log | 0.02 | 250 | 0.6902 | 0.52 | 0.5130 | | No log | 0.02 | 300 | 0.6909 | 0.5 | 0.3333 | | No log | 0.02 | 350 | 0.6795 | 0.56 | 0.4762 | | No log | 0.03 | 400 | 0.6524 | 0.61 | 0.6010 | | No log | 0.03 | 450 | 0.6139 | 0.71 | 0.7100 | | 0.6779 | 0.03 | 500 | 0.5827 | 0.71 | 0.7033 | | 0.6779 | 0.04 | 550 | 0.5732 | 0.71 | 0.7033 | | 0.6779 | 0.04 | 600 | 0.5467 | 0.74 | 0.7396 | | 0.6779 | 0.04 | 650 | 0.5174 | 0.8 | 0.7980 | | 0.6779 | 0.05 | 700 | 0.5193 | 0.74 | 0.7399 | | 0.6779 | 0.05 | 750 | 0.4905 | 0.8 | 0.7980 | | 0.6779 | 0.05 | 800 | 0.4710 | 0.8 | 0.7980 | | 0.6779 | 0.06 | 850 | 0.4523 | 0.83 | 0.8271 | | 0.6779 | 0.06 | 900 | 0.4373 | 0.84 | 0.8368 | | 0.6779 | 0.06 | 950 | 0.4214 | 0.84 | 0.8368 | | 0.5615 | 0.07 | 1000 | 0.4086 | 0.84 | 0.8368 | | 0.5615 | 0.07 | 1050 | 0.3803 | 0.84 | 0.8368 | | 0.5615 | 0.07 | 1100 | 0.3476 | 0.9 | 0.8994 | | 0.5615 | 0.08 | 1150 | 0.3218 | 0.91 | 0.9096 | | 0.5615 | 0.08 | 1200 | 0.3028 | 0.91 | 0.9096 | | 0.5615 | 0.08 | 1250 | 0.2851 | 0.92 | 0.9195 | | 0.5615 | 0.09 | 1300 | 0.2737 | 0.92 | 0.9195 | | 0.5615 | 0.09 | 1350 | 0.2637 | 0.91 | 0.9096 | | 0.5615 | 0.09 | 1400 | 0.2560 | 0.92 | 0.9195 | | 0.5615 | 0.1 | 1450 | 0.2426 | 0.92 | 0.9199 | | 0.4267 | 0.1 | 1500 | 0.2390 | 0.89 | 0.8897 | | 0.4267 | 0.1 | 1550 | 0.2320 | 0.92 | 0.9199 | | 0.4267 | 0.11 | 1600 | 0.2239 | 0.93 | 0.9298 | | 0.4267 | 0.11 | 1650 | 0.2159 | 0.94 | 0.9398 | | 0.4267 | 0.11 | 1700 | 0.2156 | 0.93 | 0.9298 | | 0.4267 | 0.12 | 1750 | 0.2079 | 0.93 | 0.9298 | | 0.4267 | 0.12 | 1800 | 0.1938 | 0.93 | 0.9298 | | 0.4267 | 0.12 | 1850 | 0.1909 | 0.93 | 0.9298 | | 0.4267 | 0.13 | 1900 | 0.1923 | 0.93 | 0.9298 | | 0.4267 | 0.13 | 1950 | 0.1893 | 0.94 | 0.9398 | | 0.3491 | 0.13 | 2000 | 0.1633 | 0.96 | 0.9600 | | 0.3491 | 0.14 | 2050 | 0.1662 | 0.95 | 0.9500 | | 0.3491 | 0.14 | 2100 | 0.1494 | 0.96 | 0.9600 | | 0.3491 | 0.14 | 2150 | 0.1606 | 0.95 | 0.9499 | | 0.3491 | 0.15 | 2200 | 0.1595 | 0.96 | 0.9599 | | 0.3491 | 0.15 | 2250 | 0.1460 | 0.96 | 0.9600 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0
boracious/llama-2-7b-finetune-korquad
boracious
2023-12-24T08:07:17Z
0
0
null
[ "safetensors", "autotrain", "text-generation", "license:other", "endpoints_compatible", "region:us" ]
text-generation
2023-12-24T08:07:11Z
--- tags: - autotrain - text-generation widget: - text: "I love AutoTrain because " license: other --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
TingTing0104/distilbert-base-uncased-finetuned-ag_news
TingTing0104
2023-12-24T08:05:21Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:ag_news", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-24T05:37:17Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - ag_news metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-ag_news results: - task: name: Text Classification type: text-classification dataset: name: ag_news type: ag_news args: default metrics: - name: Accuracy type: accuracy value: 0.9443421052631579 - name: F1 type: f1 value: 0.9444316710321217 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ag_news This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the ag_news dataset. It achieves the following results on the evaluation set: - Loss: 0.1691 - Accuracy: 0.9443 - F1: 0.9444 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.2253 | 1.0 | 3750 | 0.1749 | 0.9411 | 0.9413 | | 0.1335 | 2.0 | 7500 | 0.1691 | 0.9443 | 0.9444 | ### Framework versions - Transformers 4.16.2 - Pytorch 2.1.0+cu121 - Datasets 1.16.1 - Tokenizers 0.15.0
linhtran92/original-epiCPhotoGasm-no-prior-2400steps-1e-6
linhtran92
2023-12-24T08:05:05Z
0
1
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:Yntec/epiCPhotoGasm", "base_model:finetune:Yntec/epiCPhotoGasm", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-12-24T07:14:17Z
--- license: creativeml-openrail-m base_model: Yntec/epiCPhotoGasm instance_prompt: photo of sks man tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - linhtran92/original-epiCPhotoGasm-no-prior-2400steps-1e-6 This is a dreambooth model derived from Yntec/epiCPhotoGasm. The weights were trained on photo of sks man using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
Chars/AI-baki
Chars
2023-12-24T08:03:46Z
5
0
transformers
[ "transformers", "endpoints_compatible", "region:us" ]
null
2023-12-24T07:58:25Z
# AI 巴绮 # 感谢 本项目修改和训练自 [Bert-VITS2-Integration-package](https://github.com/YYuX-1145/Bert-VITS2-Integration-package) 非常感谢Bert-VITS2 制作组 # 使用方法 ```shell git clone xxx ``` 安装依赖 ```shell pip install -r requirements.txt ``` 请确保有8GB的显存并且是支持cuda ``` python webui.py ```
stablediffusionapi/manmaru-mix
stablediffusionapi
2023-12-24T07:51:45Z
7
1
diffusers
[ "diffusers", "modelslab.com", "stable-diffusion-api", "text-to-image", "ultra-realistic", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-12-24T07:41:33Z
--- license: creativeml-openrail-m tags: - modelslab.com - stable-diffusion-api - text-to-image - ultra-realistic pinned: true --- # Manmaru mix API Inference ![generated from modelslab.com](https://pub-3626123a908346a7a8be8d9295f44e26.r2.dev/generations/7962117411700591250.png) ## Get API Key Get API key from [ModelsLab API](http://modelslab.com), No Payment needed. Replace Key in below code, change **model_id** to "manmaru-mix" Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://modelslab.com/docs) Try model for free: [Generate Images](https://modelslab.com/models/manmaru-mix) Model link: [View model](https://modelslab.com/models/manmaru-mix) View all models: [View Models](https://modelslab.com/models) import requests import json url = "https://modelslab.com/api/v6/images/text2img" payload = json.dumps({ "key": "your_api_key", "model_id": "manmaru-mix", "prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": "no", "enhance_prompt": "yes", "seed": None, "guidance_scale": 7.5, "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings": "embeddings_model_id", "lora": "lora_model_id", "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) print(response.text) > Use this coupon code to get 25% off **DMGG0RBN**
stablediffusionapi/realistic-inpaint
stablediffusionapi
2023-12-24T07:51:44Z
1
0
diffusers
[ "diffusers", "modelslab.com", "stable-diffusion-api", "text-to-image", "ultra-realistic", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-12-24T07:41:28Z
--- license: creativeml-openrail-m tags: - modelslab.com - stable-diffusion-api - text-to-image - ultra-realistic pinned: true --- # Realistic Vision V5.1 API Inference ![generated from modelslab.com](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/6589ff8f-8835-488e-93cd-648c4da10fe1/width=768/00000-1237872118.jpeg) ## Get API Key Get API key from [ModelsLab API](http://modelslab.com), No Payment needed. Replace Key in below code, change **model_id** to "realistic-inpaint" Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://modelslab.com/docs) Try model for free: [Generate Images](https://modelslab.com/models/realistic-inpaint) Model link: [View model](https://modelslab.com/models/realistic-inpaint) View all models: [View Models](https://modelslab.com/models) import requests import json url = "https://modelslab.com/api/v6/images/text2img" payload = json.dumps({ "key": "your_api_key", "model_id": "realistic-inpaint", "prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": "no", "enhance_prompt": "yes", "seed": None, "guidance_scale": 7.5, "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings": "embeddings_model_id", "lora": "lora_model_id", "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) print(response.text) > Use this coupon code to get 25% off **DMGG0RBN**
shubnandi/distilbert-base-uncased-lora-txt-clfn
shubnandi
2023-12-24T07:28:10Z
2
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:distilbert/distilbert-base-uncased", "base_model:adapter:distilbert/distilbert-base-uncased", "region:us" ]
null
2023-12-24T07:28:08Z
--- library_name: peft base_model: distilbert-base-uncased --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
zaenalium/Esteler-DistilBERT-id
zaenalium
2023-12-24T07:26:08Z
9
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "id", "dataset:zaenalium/esteler-idn-corpus", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-10-22T06:08:19Z
--- license: mit datasets: - zaenalium/esteler-idn-corpus language: - id pipeline_tag: fill-mask --- The Finetuned version of DistillBert using Bahasa Indonesia.
lxl2023/autotrain-v7eqd-8qq
lxl2023
2023-12-24T07:18:32Z
6
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "autotrain", "dataset:lxl2023/autotrain-data-autotrain-v7eqd-8qq", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-12-24T07:18:20Z
--- tags: - autotrain - image-classification widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace datasets: - lxl2023/autotrain-data-autotrain-v7eqd-8qq --- # Model Trained Using AutoTrain - Problem type: Image Classification ## Validation Metricsg loss: nan f1_macro: 0.16666666666666666 f1_micro: 0.3333333333333333 f1_weighted: 0.16666666666666666 precision_macro: 0.1111111111111111 precision_micro: 0.3333333333333333 precision_weighted: 0.1111111111111111 recall_macro: 0.3333333333333333 recall_micro: 0.3333333333333333 recall_weighted: 0.3333333333333333 accuracy: 0.3333333333333333
aramasethu/llama_lora_test
aramasethu
2023-12-24T07:17:03Z
0
0
null
[ "optimum_habana", "generated_from_trainer", "base_model:huggyllama/llama-7b", "base_model:finetune:huggyllama/llama-7b", "license:other", "region:us" ]
null
2023-12-24T06:36:39Z
--- license: other base_model: huggyllama/llama-7b tags: - generated_from_trainer model-index: - name: llama_lora_test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama_lora_test This model is a fine-tuned version of [huggyllama/llama-7b](https://huggingface.co/huggyllama/llama-7b) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.33.0 - Pytorch 2.1.0a0+gitf8b6084 - Datasets 2.15.0 - Tokenizers 0.13.3
FirstLast/RealisticVision-LoRA-lidrs-2
FirstLast
2023-12-24T06:44:30Z
2
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:SG161222/Realistic_Vision_V5.1_noVAE", "base_model:adapter:SG161222/Realistic_Vision_V5.1_noVAE", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-12-24T06:08:42Z
--- license: creativeml-openrail-m base_model: SG161222/Realistic_Vision_V5.1_noVAE instance_prompt: lidrs dress tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - FirstLast/RealisticVision-LoRA-lidrs-2 These are LoRA adaption weights for SG161222/Realistic_Vision_V5.1_noVAE. The weights were trained on lidrs dress using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False.
martyn/mixtral-megamerge-dare-8x7b-v1
martyn
2023-12-24T06:44:08Z
1,549
1
transformers
[ "transformers", "pytorch", "mixtral", "text-generation", "dare", "super mario merge", "merge", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-12-24T05:26:51Z
--- license: apache-2.0 language: - en pipeline_tag: text-generation inference: false tags: - dare - super mario merge - pytorch - mixtral - merge --- # mixtral megamerge 8x7b v1 The following models were merged with DARE using [https://github.com/martyn/safetensors-merge-supermario](https://github.com/martyn/safetensors-merge-supermario) ## Mergelist ``` cognitivecomputations/dolphin-2.6-mixtral-8x7b mistralai/Mixtral-8x7B-v0.1 mistralai/Mixtral-8x7B-Instruct-v0.1 ``` ## Merge command ``` python hf_merge.py mergelist.txt mixtral-merge-1 -p 0.1 -lambda 1.95 ``` ### Notes * seems to generalize instruct styles * MoE gates are not modified
getdiffus/SDELj-GhostMix
getdiffus
2023-12-24T06:31:50Z
0
0
null
[ "StableDiffusion", "GetDiffus", "anime", "photorealistic", "female", "base model", "art style", "game character", "girls", "portraits", "realistic", "license:creativeml-openrail-m", "region:us" ]
null
2023-12-23T20:18:56Z
--- license: creativeml-openrail-m tags: - StableDiffusion - GetDiffus - anime - photorealistic - female - base model - art style - game character - girls - portraits - realistic --- # SDELj-GhostMix SDID: **SDELj** For details on this model and how to use it, or to find more models, visit [https://getdiffus.com/m/SDELj/GhostMix](https://getdiffus.com/m/SDELj/GhostMix) GetDiffus is a model sharing site. It supports you to upload, search, and discover Stable Diffusion models. It stores models on Huggingface. ## Links This StableDiffusion model uploaded by [@lightning-joyce](https://huggingface.co/lightning-joyce). Follow me on X(Twitter): https://x.com/lightning_joyce Join our Discord: https://discord.gg/NR7bJXKFpX
LoneStriker/Sensei-7B-V1-5.0bpw-h6-exl2
LoneStriker
2023-12-24T06:21:24Z
5
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-24T06:19:21Z
--- {} --- # Sensei-7B-V1 Model Card Sensei-7B-V1 is a Large Language Model (LLM) fine-tuned from OpenPipe's mistral-ft-optimized-1218, which is based on Mistral-7B. Sensei-7B-V1 was was fine-tuned with a fully synthetic dataset to specialize at performing retrieval-augmented generation (RAG) over detailed web search results. This model strives to specialize in using search, such as [AgentSearch](https://huggingface.co/datasets/SciPhi/AgentSearch-V1), to generate accurate and well-cited summaries from a range of search results, providing more accurate answers to user queries. Please refer to the [docs here](https://agent-search.readthedocs.io/en/latest/) for more information on how to run Sensei end-to-end. Currently, Sensei is available via hosted api at https://www.sciphi.ai. You can try a demonstration [here](https://search.sciphi.ai/). ## Model Architecture Base Model: mistral-ft-optimized-1218 **Architecture Features:** - Transformer-based model - Grouped-Query Attention - Sliding-Window Attention - Byte-fallback BPE tokenizer ## Using the Model It is recommended to use a single search query. The model will return an answer using search results as context. Using the AgentSearch package an example is shown below. ``` export SCIPHI_API_KEY=MY_SCIPHI_API_KEY # Use `Sensei` for LLM RAG w/ AgentSearch python -m agent_search.scripts.run_rag run --query="What is Fermat's last theorem?" ``` Alternatively, you may provide your own search context directly to the model by adhereing to the following format: ``` ### Instruction: Your task is to perform retrieval augmented generation (RAG) over the given query and search results. Return your answer in a json format that includes a summary of the search results and a list of related queries. Query: {prompt} \n\n Search Results: {context} \n\n Query: {prompt} ### Response: {"summary": ``` __Note__: The inclusion of the text '{"summary":' following the Response footer is intentional. This ensures that the model responds with the proper json format, failure to include this leading prefix can cause small deviaitons. Combining the output with the leading string '{"summary":' results in a properly formatted JSON with keys 'summary' and 'other_queries'. [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) ## References 1. OpenPipe AI. (2023). Model Card for mistral-ft-optimized-1218. The mistral-ft-1218 Large Language Model (LLM) is a pretrained generative text model with 7 billion parameters optimized for downstream fine-tuning on a variety of tasks. For full details, please refer to the release blog post. Model Architecture: Transformer with Grouped-Query Attention, Sliding-Window Attention, and Byte-fallback BPE tokenizer. [Link](https://huggingface.co/OpenPipe/mistral-ft-optimized-1218)
AhmedSSoliman/mistral-Mistral-text2SQL
AhmedSSoliman
2023-12-24T06:13:49Z
2
0
peft
[ "peft", "safetensors", "generated_from_trainer", "base_model:mistralai/Mistral-7B-Instruct-v0.1", "base_model:adapter:mistralai/Mistral-7B-Instruct-v0.1", "license:apache-2.0", "region:us" ]
null
2023-12-24T06:12:57Z
--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: mistralai/Mistral-7B-Instruct-v0.1 model-index: - name: mistral-Mistral-text2SQL results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mistral-Mistral-text2SQL This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.5e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.7.2.dev0 - Transformers 4.37.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0
LoneStriker/Sensei-7B-V1-3.0bpw-h6-exl2
LoneStriker
2023-12-24T06:10:11Z
6
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-24T06:08:50Z
--- {} --- # Sensei-7B-V1 Model Card Sensei-7B-V1 is a Large Language Model (LLM) fine-tuned from OpenPipe's mistral-ft-optimized-1218, which is based on Mistral-7B. Sensei-7B-V1 was was fine-tuned with a fully synthetic dataset to specialize at performing retrieval-augmented generation (RAG) over detailed web search results. This model strives to specialize in using search, such as [AgentSearch](https://huggingface.co/datasets/SciPhi/AgentSearch-V1), to generate accurate and well-cited summaries from a range of search results, providing more accurate answers to user queries. Please refer to the [docs here](https://agent-search.readthedocs.io/en/latest/) for more information on how to run Sensei end-to-end. Currently, Sensei is available via hosted api at https://www.sciphi.ai. You can try a demonstration [here](https://search.sciphi.ai/). ## Model Architecture Base Model: mistral-ft-optimized-1218 **Architecture Features:** - Transformer-based model - Grouped-Query Attention - Sliding-Window Attention - Byte-fallback BPE tokenizer ## Using the Model It is recommended to use a single search query. The model will return an answer using search results as context. Using the AgentSearch package an example is shown below. ``` export SCIPHI_API_KEY=MY_SCIPHI_API_KEY # Use `Sensei` for LLM RAG w/ AgentSearch python -m agent_search.scripts.run_rag run --query="What is Fermat's last theorem?" ``` Alternatively, you may provide your own search context directly to the model by adhereing to the following format: ``` ### Instruction: Your task is to perform retrieval augmented generation (RAG) over the given query and search results. Return your answer in a json format that includes a summary of the search results and a list of related queries. Query: {prompt} \n\n Search Results: {context} \n\n Query: {prompt} ### Response: {"summary": ``` __Note__: The inclusion of the text '{"summary":' following the Response footer is intentional. This ensures that the model responds with the proper json format, failure to include this leading prefix can cause small deviaitons. Combining the output with the leading string '{"summary":' results in a properly formatted JSON with keys 'summary' and 'other_queries'. [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) ## References 1. OpenPipe AI. (2023). Model Card for mistral-ft-optimized-1218. The mistral-ft-1218 Large Language Model (LLM) is a pretrained generative text model with 7 billion parameters optimized for downstream fine-tuning on a variety of tasks. For full details, please refer to the release blog post. Model Architecture: Transformer with Grouped-Query Attention, Sliding-Window Attention, and Byte-fallback BPE tokenizer. [Link](https://huggingface.co/OpenPipe/mistral-ft-optimized-1218)
mitchyAI/sanamchy
mitchyAI
2023-12-24T06:03:39Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-12-24T06:02:03Z
--- license: creativeml-openrail-m ---
chanhua/autotrain-ar615-cxc9m
chanhua
2023-12-24T06:02:00Z
6
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "autotrain", "dataset:chanhua/autotrain-data-autotrain-ar615-cxc9m", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-12-24T06:01:51Z
--- tags: - autotrain - image-classification widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace datasets: - chanhua/autotrain-data-autotrain-ar615-cxc9m --- # Model Trained Using AutoTrain - Problem type: Image Classification ## Validation Metricsg loss: nan f1_macro: 0.16666666666666666 f1_micro: 0.3333333333333333 f1_weighted: 0.16666666666666666 precision_macro: 0.1111111111111111 precision_micro: 0.3333333333333333 precision_weighted: 0.1111111111111111 recall_macro: 0.3333333333333333 recall_micro: 0.3333333333333333 recall_weighted: 0.3333333333333333 accuracy: 0.3333333333333333
chanhua/autotrain-g6laz-7afl8
chanhua
2023-12-24T05:18:35Z
6
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "autotrain", "dataset:chanhua/autotrain-data-autotrain-g6laz-7afl8", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-12-24T05:18:25Z
--- tags: - autotrain - image-classification widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace datasets: - chanhua/autotrain-data-autotrain-g6laz-7afl8 --- # Model Trained Using AutoTrain - Problem type: Image Classification ## Validation Metricsg loss: nan f1_macro: 0.16666666666666666 f1_micro: 0.3333333333333333 f1_weighted: 0.16666666666666666 precision_macro: 0.1111111111111111 precision_micro: 0.3333333333333333 precision_weighted: 0.1111111111111111 recall_macro: 0.3333333333333333 recall_micro: 0.3333333333333333 recall_weighted: 0.3333333333333333 accuracy: 0.3333333333333333
BBGAME605065444/videomae-base-finetuned-camera_move-subset
BBGAME605065444
2023-12-24T05:01:44Z
50
0
transformers
[ "transformers", "pytorch", "videomae", "video-classification", "generated_from_trainer", "base_model:MCG-NJU/videomae-base", "base_model:finetune:MCG-NJU/videomae-base", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
video-classification
2023-12-12T09:00:24Z
--- license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-finetuned-camera_move-subset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # videomae-base-finetuned-camera_move-subset This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.0146 - Accuracy: 0.7285 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 13000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.4019 | 0.01 | 131 | 1.0423 | 0.5960 | | 1.0428 | 1.01 | 262 | 0.9115 | 0.6291 | | 0.8694 | 2.01 | 393 | 0.8362 | 0.6424 | | 0.6894 | 3.01 | 524 | 0.7107 | 0.7086 | | 0.6741 | 4.01 | 655 | 0.6441 | 0.7219 | | 0.5955 | 5.01 | 786 | 0.8368 | 0.6821 | | 0.5898 | 6.01 | 917 | 0.7774 | 0.7152 | | 0.5252 | 7.01 | 1048 | 0.6022 | 0.7682 | | 0.453 | 8.01 | 1179 | 0.6388 | 0.7881 | | 0.4625 | 9.01 | 1310 | 0.8417 | 0.7152 | | 0.465 | 10.01 | 1441 | 0.8575 | 0.6954 | | 0.5106 | 11.01 | 1572 | 0.7849 | 0.7616 | | 0.4138 | 12.01 | 1703 | 0.9293 | 0.7086 | | 0.3526 | 13.01 | 1834 | 1.2684 | 0.6225 | | 0.3645 | 14.01 | 1965 | 0.9428 | 0.7285 | | 0.2778 | 15.01 | 2096 | 1.0217 | 0.6821 | | 0.2821 | 16.01 | 2227 | 1.3365 | 0.6623 | | 0.2654 | 17.01 | 2358 | 1.0170 | 0.7550 | | 0.2961 | 18.01 | 2489 | 1.3952 | 0.7152 | | 0.1987 | 19.01 | 2620 | 1.4083 | 0.6954 | | 0.1832 | 20.01 | 2751 | 1.5808 | 0.6689 | | 0.2035 | 21.01 | 2882 | 1.2864 | 0.7483 | | 0.1608 | 22.01 | 3013 | 1.7499 | 0.6755 | | 0.2171 | 23.01 | 3144 | 1.2574 | 0.7417 | | 0.1824 | 24.01 | 3275 | 1.4203 | 0.7483 | | 0.152 | 25.01 | 3406 | 1.4163 | 0.7351 | | 0.1512 | 26.01 | 3537 | 1.5550 | 0.7086 | | 0.1635 | 27.01 | 3668 | 1.2334 | 0.7682 | | 0.1371 | 28.01 | 3799 | 1.5798 | 0.7417 | | 0.1048 | 29.01 | 3930 | 1.6993 | 0.7219 | | 0.097 | 30.01 | 4061 | 1.8505 | 0.6887 | | 0.1662 | 31.01 | 4192 | 1.5091 | 0.7417 | | 0.0957 | 32.01 | 4323 | 1.5388 | 0.7285 | | 0.0967 | 33.01 | 4454 | 1.6766 | 0.7219 | | 0.1581 | 34.01 | 4585 | 1.5444 | 0.7550 | | 0.0967 | 35.01 | 4716 | 1.6108 | 0.7219 | | 0.1013 | 36.01 | 4847 | 1.6734 | 0.7417 | | 0.0691 | 37.01 | 4978 | 1.5116 | 0.7616 | | 0.1161 | 38.01 | 5109 | 1.6343 | 0.7285 | | 0.0847 | 39.01 | 5240 | 1.6119 | 0.7616 | | 0.0769 | 40.01 | 5371 | 1.8494 | 0.7285 | | 0.0604 | 41.01 | 5502 | 1.9854 | 0.7020 | | 0.0845 | 42.01 | 5633 | 1.9722 | 0.7020 | | 0.0808 | 43.01 | 5764 | 1.9046 | 0.7219 | | 0.091 | 44.01 | 5895 | 1.8344 | 0.7152 | | 0.1249 | 45.01 | 6026 | 1.7306 | 0.7219 | | 0.0602 | 46.01 | 6157 | 1.8982 | 0.7550 | | 0.0901 | 47.01 | 6288 | 1.9487 | 0.6954 | | 0.081 | 48.01 | 6419 | 1.6702 | 0.7417 | | 0.0336 | 49.01 | 6550 | 1.5591 | 0.7682 | | 0.0975 | 50.01 | 6681 | 1.9009 | 0.7086 | | 0.0697 | 51.01 | 6812 | 1.6135 | 0.7616 | | 0.0474 | 52.01 | 6943 | 1.5886 | 0.7682 | | 0.0427 | 53.01 | 7074 | 1.6915 | 0.7616 | | 0.0774 | 54.01 | 7205 | 1.7434 | 0.7417 | | 0.0685 | 55.01 | 7336 | 1.9552 | 0.7152 | | 0.0531 | 56.01 | 7467 | 1.7448 | 0.7550 | | 0.0371 | 57.01 | 7598 | 1.8175 | 0.7483 | | 0.0244 | 58.01 | 7729 | 1.9252 | 0.7351 | | 0.0317 | 59.01 | 7860 | 2.1868 | 0.6954 | | 0.0813 | 60.01 | 7991 | 1.8846 | 0.7417 | | 0.0857 | 61.01 | 8122 | 1.7532 | 0.7285 | | 0.0424 | 62.01 | 8253 | 1.8003 | 0.7550 | | 0.0481 | 63.01 | 8384 | 1.7935 | 0.7351 | | 0.0495 | 64.01 | 8515 | 2.0369 | 0.7219 | | 0.0217 | 65.01 | 8646 | 2.0552 | 0.7219 | | 0.0303 | 66.01 | 8777 | 1.8629 | 0.7417 | | 0.0439 | 67.01 | 8908 | 1.9953 | 0.7417 | | 0.0518 | 68.01 | 9039 | 1.9958 | 0.7351 | | 0.0295 | 69.01 | 9170 | 1.8984 | 0.7616 | | 0.0485 | 70.01 | 9301 | 1.7583 | 0.7483 | | 0.0149 | 71.01 | 9432 | 1.8815 | 0.7351 | | 0.0107 | 72.01 | 9563 | 1.8341 | 0.7616 | | 0.0475 | 73.01 | 9694 | 1.7961 | 0.7351 | | 0.0318 | 74.01 | 9825 | 2.0999 | 0.7285 | | 0.0108 | 75.01 | 9956 | 2.0441 | 0.7219 | | 0.0085 | 76.01 | 10087 | 1.9867 | 0.7351 | | 0.0278 | 77.01 | 10218 | 1.7968 | 0.7682 | | 0.0106 | 78.01 | 10349 | 1.8662 | 0.7682 | | 0.0241 | 79.01 | 10480 | 1.8388 | 0.7682 | | 0.0303 | 80.01 | 10611 | 1.8758 | 0.7682 | | 0.0199 | 81.01 | 10742 | 1.9275 | 0.7483 | | 0.0052 | 82.01 | 10873 | 1.8741 | 0.7417 | | 0.007 | 83.01 | 11004 | 2.0243 | 0.7219 | | 0.0101 | 84.01 | 11135 | 1.9947 | 0.7285 | | 0.0184 | 85.01 | 11266 | 1.9342 | 0.7417 | | 0.0062 | 86.01 | 11397 | 2.0611 | 0.7351 | | 0.018 | 87.01 | 11528 | 1.9867 | 0.7550 | | 0.0194 | 88.01 | 11659 | 1.8631 | 0.7483 | | 0.0396 | 89.01 | 11790 | 1.9126 | 0.7417 | | 0.0048 | 90.01 | 11921 | 1.8788 | 0.7351 | | 0.0044 | 91.01 | 12052 | 1.8962 | 0.7351 | | 0.0033 | 92.01 | 12183 | 1.9455 | 0.7351 | | 0.0052 | 93.01 | 12314 | 1.9772 | 0.7351 | | 0.0068 | 94.01 | 12445 | 2.0047 | 0.7351 | | 0.0046 | 95.01 | 12576 | 2.0135 | 0.7351 | | 0.0158 | 96.01 | 12707 | 2.0176 | 0.7351 | | 0.0074 | 97.01 | 12838 | 2.0148 | 0.7285 | | 0.0016 | 98.01 | 12969 | 2.0152 | 0.7285 | | 0.0051 | 99.0 | 13000 | 2.0146 | 0.7285 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3
imfarzanansari/skintelligent-acne
imfarzanansari
2023-12-24T04:46:50Z
96,167
9
transformers
[ "transformers", "safetensors", "vit", "image-classification", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-12-24T04:24:55Z
--- license: mit language: - en metrics: - precision library_name: transformers pipeline_tag: image-classification --- # Acne Severity Detection Model ## Overview This model card provides documentation for the Acne Severity Detection model checkpoint used in the Hugging Face pipeline. The model is designed to assess acne severity levels, ranging from clear skin to very severe acne. ## Model Details The checkpoint includes the following files: - **`config.json`**: Model configuration settings. - **`model.safetensors`**: Serialized model parameters and architecture. - **`optimizer.pt`**: Optimizer state capturing the current model optimization. - **`preprocessor_config.json`**: Configuration file for the preprocessor. - **`rng_state.pth`**: Random number generator state for reproducibility. - **`scheduler.pt`**: Scheduler state for controlling learning rate schedules. - **`trainer_state.json`**: Trainer state with information about the training process. - **`training_args.bin`**: Binary file storing training arguments. ## Usage To utilize the model checkpoint, follow these steps: 1. Download this repository. 2. Ensure the required dependencies are installed (`pip install -r requirements.txt`). ## Severity Levels - **Level -1**: Clear Skin - **Level 0**: Occasional Spots - **Level 1**: Mild Acne - **Level 2**: Moderate Acne - **Level 3**: Severe Acne - **Level 4**: Very Severe Acne ## Important Notes - The model card provides insight into the model's purpose, capabilities, and usage instructions. - Ensure all necessary files are present in the `checkpoint` directory for proper functionality. ## License This Acne Severity Detection model checkpoint is licensed under the [MIT License](LICENSE). Please review and adhere to the license when using or modifying the code.
ddh0/phi-2-GGUF-fp16
ddh0
2023-12-24T04:45:35Z
8
2
null
[ "gguf", "text-generation", "license:other", "endpoints_compatible", "region:us" ]
text-generation
2023-12-24T04:13:14Z
--- license: other license_name: microsoft-research-license license_link: https://huggingface.co/microsoft/phi-2/blob/main/LICENSE pipeline_tag: text-generation --- This is Microsoft's [Phi-2](https://huggingface.co/microsoft/phi-2), converted to GGUF without quantization. No other changes were made. The model was converted using `convert-hf-to-gguf.py` from Georgi Gerganov's llama.cpp repo, release `b1671`. All credit belongs to [Microsoft](https://huggingface.co/microsoft) for training and releasing this model. Thank you!
ntc-ai/SDXL-LoRA-slider.gold-eye-color
ntc-ai
2023-12-24T04:44:38Z
147
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2023-12-24T04:44:34Z
--- language: - en thumbnail: "images/evaluate/gold eye color...green eye color/gold eye color_17_3.0.png" widget: - text: gold eye color output: url: images/gold eye color_17_3.0.png - text: gold eye color output: url: images/gold eye color_19_3.0.png - text: gold eye color output: url: images/gold eye color_20_3.0.png - text: gold eye color output: url: images/gold eye color_21_3.0.png - text: gold eye color output: url: images/gold eye color_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "gold eye color" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - gold eye color (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/gold eye color_17_-3.0.png" width=256 height=256 /> | <img src="images/gold eye color_17_0.0.png" width=256 height=256 /> | <img src="images/gold eye color_17_3.0.png" width=256 height=256 /> | | <img src="images/gold eye color_19_-3.0.png" width=256 height=256 /> | <img src="images/gold eye color_19_0.0.png" width=256 height=256 /> | <img src="images/gold eye color_19_3.0.png" width=256 height=256 /> | | <img src="images/gold eye color_20_-3.0.png" width=256 height=256 /> | <img src="images/gold eye color_20_0.0.png" width=256 height=256 /> | <img src="images/gold eye color_20_3.0.png" width=256 height=256 /> | ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` gold eye color ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.gold-eye-color', weight_name='gold eye color.safetensors', adapter_name="gold eye color") # Activate the LoRA pipe.set_adapters(["gold eye color"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, gold eye color" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 580+ unique and diverse LoRAs, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful LoRA slider creator, allowing you to craft your own custom LoRAs and experiment with endless possibilities. Your support on Patreon will allow us to continue developing and refining new models. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
fasterinnerlooper/codeBERTa-csharp
fasterinnerlooper
2023-12-24T04:28:34Z
9
0
transformers
[ "transformers", "safetensors", "roberta", "fill-mask", "generated_from_trainer", "en", "dataset:microsoft/LCC_csharp", "base_model:huggingface/CodeBERTa-small-v1", "base_model:finetune:huggingface/CodeBERTa-small-v1", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-11-23T03:49:35Z
--- base_model: huggingface/CodeBERTa-small-v1 tags: - generated_from_trainer model-index: - name: models results: [] license: mit datasets: - microsoft/LCC_csharp language: - en library_name: transformers --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # models This model is a fine-tuned version of [huggingface/CodeBERTa-small-v1](https://huggingface.co/huggingface/CodeBERTa-small-v1) on an the [Microsoft/LCC_csharp](https://huggingface.com/microsoft/lcc_csharp) dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
hkivancoral/hushem_40x_deit_base_adamax_00001_fold5
hkivancoral
2023-12-24T03:56:50Z
3
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-base-patch16-224", "base_model:finetune:facebook/deit-base-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-12-24T03:17:28Z
--- license: apache-2.0 base_model: facebook/deit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_40x_deit_base_adamax_00001_fold5 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.8780487804878049 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_40x_deit_base_adamax_00001_fold5 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.3162 - Accuracy: 0.8780 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2212 | 1.0 | 220 | 0.5037 | 0.7805 | | 0.0167 | 2.0 | 440 | 0.4288 | 0.8049 | | 0.0048 | 3.0 | 660 | 0.5660 | 0.8293 | | 0.001 | 4.0 | 880 | 0.5808 | 0.8049 | | 0.0006 | 5.0 | 1100 | 0.5916 | 0.8049 | | 0.0005 | 6.0 | 1320 | 0.6221 | 0.8293 | | 0.0003 | 7.0 | 1540 | 0.6354 | 0.8293 | | 0.0002 | 8.0 | 1760 | 0.6592 | 0.8293 | | 0.0002 | 9.0 | 1980 | 0.6836 | 0.8293 | | 0.0001 | 10.0 | 2200 | 0.7195 | 0.8537 | | 0.0001 | 11.0 | 2420 | 0.7292 | 0.8293 | | 0.0001 | 12.0 | 2640 | 0.7556 | 0.8537 | | 0.0001 | 13.0 | 2860 | 0.7481 | 0.8537 | | 0.0001 | 14.0 | 3080 | 0.7541 | 0.8537 | | 0.0 | 15.0 | 3300 | 0.7642 | 0.8537 | | 0.0 | 16.0 | 3520 | 0.7944 | 0.8537 | | 0.0 | 17.0 | 3740 | 0.8081 | 0.8537 | | 0.0 | 18.0 | 3960 | 0.8431 | 0.8537 | | 0.0 | 19.0 | 4180 | 0.8377 | 0.8537 | | 0.0 | 20.0 | 4400 | 0.8619 | 0.8537 | | 0.0 | 21.0 | 4620 | 0.8688 | 0.8537 | | 0.0 | 22.0 | 4840 | 0.9067 | 0.8537 | | 0.0 | 23.0 | 5060 | 0.9298 | 0.8537 | | 0.0 | 24.0 | 5280 | 0.9319 | 0.8537 | | 0.0 | 25.0 | 5500 | 0.9416 | 0.8537 | | 0.0 | 26.0 | 5720 | 0.9575 | 0.8537 | | 0.0 | 27.0 | 5940 | 0.9826 | 0.8537 | | 0.0 | 28.0 | 6160 | 0.9800 | 0.8537 | | 0.0 | 29.0 | 6380 | 0.9999 | 0.8537 | | 0.0 | 30.0 | 6600 | 1.0189 | 0.8537 | | 0.0 | 31.0 | 6820 | 1.0648 | 0.8537 | | 0.0 | 32.0 | 7040 | 1.0627 | 0.8537 | | 0.0 | 33.0 | 7260 | 1.0899 | 0.8780 | | 0.0 | 34.0 | 7480 | 1.1141 | 0.8780 | | 0.0 | 35.0 | 7700 | 1.1351 | 0.8537 | | 0.0 | 36.0 | 7920 | 1.1265 | 0.8780 | | 0.0 | 37.0 | 8140 | 1.1654 | 0.8780 | | 0.0 | 38.0 | 8360 | 1.1754 | 0.8780 | | 0.0 | 39.0 | 8580 | 1.1881 | 0.8780 | | 0.0 | 40.0 | 8800 | 1.1930 | 0.8780 | | 0.0 | 41.0 | 9020 | 1.2376 | 0.8780 | | 0.0 | 42.0 | 9240 | 1.2450 | 0.8780 | | 0.0 | 43.0 | 9460 | 1.2371 | 0.8780 | | 0.0 | 44.0 | 9680 | 1.2839 | 0.8780 | | 0.0 | 45.0 | 9900 | 1.2844 | 0.8780 | | 0.0 | 46.0 | 10120 | 1.2849 | 0.8780 | | 0.0 | 47.0 | 10340 | 1.3098 | 0.8780 | | 0.0 | 48.0 | 10560 | 1.3232 | 0.8780 | | 0.0 | 49.0 | 10780 | 1.3105 | 0.8780 | | 0.0 | 50.0 | 11000 | 1.3162 | 0.8780 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
archisin/ppo-Huggy
archisin
2023-12-24T03:50:14Z
7
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-12-24T03:50:02Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: archishin/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
hkivancoral/hushem_40x_deit_base_sgd_001_fold5
hkivancoral
2023-12-24T03:48:01Z
3
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-base-patch16-224", "base_model:finetune:facebook/deit-base-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-12-24T03:04:20Z
--- license: apache-2.0 base_model: facebook/deit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_40x_deit_base_sgd_001_fold5 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.8048780487804879 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_40x_deit_base_sgd_001_fold5 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5235 - Accuracy: 0.8049 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.2691 | 1.0 | 220 | 1.3176 | 0.3415 | | 1.1324 | 2.0 | 440 | 1.2295 | 0.4634 | | 1.003 | 3.0 | 660 | 1.1173 | 0.6341 | | 0.8718 | 4.0 | 880 | 0.9888 | 0.6585 | | 0.7662 | 5.0 | 1100 | 0.8700 | 0.6829 | | 0.6305 | 6.0 | 1320 | 0.7780 | 0.6585 | | 0.552 | 7.0 | 1540 | 0.7068 | 0.6829 | | 0.4791 | 8.0 | 1760 | 0.6670 | 0.6829 | | 0.413 | 9.0 | 1980 | 0.6302 | 0.6829 | | 0.3827 | 10.0 | 2200 | 0.6050 | 0.7073 | | 0.3215 | 11.0 | 2420 | 0.5880 | 0.7073 | | 0.2953 | 12.0 | 2640 | 0.5689 | 0.7073 | | 0.2691 | 13.0 | 2860 | 0.5551 | 0.7073 | | 0.255 | 14.0 | 3080 | 0.5391 | 0.7317 | | 0.2205 | 15.0 | 3300 | 0.5338 | 0.7561 | | 0.2031 | 16.0 | 3520 | 0.5276 | 0.8049 | | 0.1827 | 17.0 | 3740 | 0.5158 | 0.8049 | | 0.178 | 18.0 | 3960 | 0.5117 | 0.8049 | | 0.1722 | 19.0 | 4180 | 0.5070 | 0.8293 | | 0.1354 | 20.0 | 4400 | 0.5054 | 0.8293 | | 0.1154 | 21.0 | 4620 | 0.5008 | 0.8293 | | 0.1032 | 22.0 | 4840 | 0.5031 | 0.8293 | | 0.123 | 23.0 | 5060 | 0.5052 | 0.8293 | | 0.0925 | 24.0 | 5280 | 0.5012 | 0.8049 | | 0.1004 | 25.0 | 5500 | 0.5002 | 0.8293 | | 0.1106 | 26.0 | 5720 | 0.5000 | 0.8293 | | 0.0932 | 27.0 | 5940 | 0.5018 | 0.8293 | | 0.0974 | 28.0 | 6160 | 0.5069 | 0.8293 | | 0.0749 | 29.0 | 6380 | 0.5067 | 0.8293 | | 0.0626 | 30.0 | 6600 | 0.5071 | 0.8293 | | 0.058 | 31.0 | 6820 | 0.5023 | 0.8293 | | 0.0771 | 32.0 | 7040 | 0.5068 | 0.8293 | | 0.0537 | 33.0 | 7260 | 0.5089 | 0.8049 | | 0.0443 | 34.0 | 7480 | 0.5110 | 0.8049 | | 0.0529 | 35.0 | 7700 | 0.5102 | 0.8049 | | 0.056 | 36.0 | 7920 | 0.5123 | 0.8293 | | 0.0373 | 37.0 | 8140 | 0.5147 | 0.8293 | | 0.0662 | 38.0 | 8360 | 0.5122 | 0.8293 | | 0.0489 | 39.0 | 8580 | 0.5155 | 0.8293 | | 0.0389 | 40.0 | 8800 | 0.5166 | 0.8293 | | 0.0414 | 41.0 | 9020 | 0.5205 | 0.8049 | | 0.0455 | 42.0 | 9240 | 0.5225 | 0.8293 | | 0.0397 | 43.0 | 9460 | 0.5226 | 0.8049 | | 0.0345 | 44.0 | 9680 | 0.5228 | 0.8049 | | 0.0281 | 45.0 | 9900 | 0.5217 | 0.8049 | | 0.0392 | 46.0 | 10120 | 0.5231 | 0.8049 | | 0.0436 | 47.0 | 10340 | 0.5235 | 0.8293 | | 0.0347 | 48.0 | 10560 | 0.5238 | 0.8049 | | 0.0331 | 49.0 | 10780 | 0.5237 | 0.8049 | | 0.0457 | 50.0 | 11000 | 0.5235 | 0.8049 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
hkivancoral/hushem_40x_deit_base_adamax_00001_fold4
hkivancoral
2023-12-24T03:17:18Z
3
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-base-patch16-224", "base_model:finetune:facebook/deit-base-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-12-24T02:30:39Z
--- license: apache-2.0 base_model: facebook/deit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_40x_deit_base_adamax_00001_fold4 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.9523809523809523 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_40x_deit_base_adamax_00001_fold4 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2776 - Accuracy: 0.9524 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2891 | 1.0 | 219 | 0.3655 | 0.9048 | | 0.0271 | 2.0 | 438 | 0.1551 | 0.9762 | | 0.0059 | 3.0 | 657 | 0.1424 | 0.9762 | | 0.0011 | 4.0 | 876 | 0.1398 | 0.9762 | | 0.0007 | 5.0 | 1095 | 0.1496 | 0.9762 | | 0.0005 | 6.0 | 1314 | 0.1466 | 0.9762 | | 0.0003 | 7.0 | 1533 | 0.1409 | 0.9762 | | 0.0002 | 8.0 | 1752 | 0.1498 | 0.9762 | | 0.0002 | 9.0 | 1971 | 0.1564 | 0.9762 | | 0.0001 | 10.0 | 2190 | 0.1656 | 0.9524 | | 0.0001 | 11.0 | 2409 | 0.1807 | 0.9524 | | 0.0001 | 12.0 | 2628 | 0.1735 | 0.9762 | | 0.0001 | 13.0 | 2847 | 0.1728 | 0.9762 | | 0.0001 | 14.0 | 3066 | 0.1752 | 0.9762 | | 0.0 | 15.0 | 3285 | 0.1830 | 0.9524 | | 0.0 | 16.0 | 3504 | 0.1909 | 0.9762 | | 0.0 | 17.0 | 3723 | 0.1856 | 0.9762 | | 0.0 | 18.0 | 3942 | 0.1931 | 0.9762 | | 0.0 | 19.0 | 4161 | 0.1937 | 0.9762 | | 0.0 | 20.0 | 4380 | 0.2012 | 0.9762 | | 0.0 | 21.0 | 4599 | 0.1972 | 0.9762 | | 0.0 | 22.0 | 4818 | 0.2059 | 0.9762 | | 0.0 | 23.0 | 5037 | 0.2072 | 0.9762 | | 0.0 | 24.0 | 5256 | 0.2139 | 0.9762 | | 0.0 | 25.0 | 5475 | 0.2220 | 0.9524 | | 0.0 | 26.0 | 5694 | 0.2242 | 0.9762 | | 0.0 | 27.0 | 5913 | 0.2291 | 0.9524 | | 0.0 | 28.0 | 6132 | 0.2302 | 0.9524 | | 0.0 | 29.0 | 6351 | 0.2283 | 0.9524 | | 0.0 | 30.0 | 6570 | 0.2384 | 0.9524 | | 0.0 | 31.0 | 6789 | 0.2437 | 0.9524 | | 0.0 | 32.0 | 7008 | 0.2389 | 0.9762 | | 0.0 | 33.0 | 7227 | 0.2474 | 0.9524 | | 0.0 | 34.0 | 7446 | 0.2474 | 0.9524 | | 0.0 | 35.0 | 7665 | 0.2453 | 0.9524 | | 0.0 | 36.0 | 7884 | 0.2498 | 0.9524 | | 0.0 | 37.0 | 8103 | 0.2535 | 0.9524 | | 0.0 | 38.0 | 8322 | 0.2499 | 0.9762 | | 0.0 | 39.0 | 8541 | 0.2607 | 0.9524 | | 0.0 | 40.0 | 8760 | 0.2656 | 0.9524 | | 0.0 | 41.0 | 8979 | 0.2652 | 0.9524 | | 0.0 | 42.0 | 9198 | 0.2609 | 0.9524 | | 0.0 | 43.0 | 9417 | 0.2697 | 0.9524 | | 0.0 | 44.0 | 9636 | 0.2693 | 0.9524 | | 0.0 | 45.0 | 9855 | 0.2763 | 0.9524 | | 0.0 | 46.0 | 10074 | 0.2779 | 0.9524 | | 0.0 | 47.0 | 10293 | 0.2750 | 0.9524 | | 0.0 | 48.0 | 10512 | 0.2730 | 0.9524 | | 0.0 | 49.0 | 10731 | 0.2766 | 0.9524 | | 0.0 | 50.0 | 10950 | 0.2776 | 0.9524 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
bandhit/typhoon-7b-q4-bnb_cuda-ts-1703352224
bandhit
2023-12-24T03:15:24Z
23
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "th", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2023-12-23T17:25:52Z
--- license: apache-2.0 language: - th library_name: transformers pipeline_tag: text-generation --- # Summary A 4-bits quantization of [scb10x/typhoon-7b](https://huggingface.co/scb10x/typhoon-7b) with only less than 8 GB VRAM is required. # Steps to reproduce ```python # init parameters model_name: str = 'scb10x/typhoon-7b' quantization_mode: str = 'q4-bnb_cuda' # possible values = {'q4-bnb_cuda', 'q8-bnb_cuda', 'q4-torch_ptdq', 'q8-torch_ptdq'} # load tokenizer from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained(model_name) tokenizer.pad_token_id = tokenizer.eos_token_id print(tokenizer) # LlamaTokenizerFast # load model import torch from transformers import AutoModelForCausalLM if quantization_mode == 'q4-bnb_cuda': # ampere architecture with 8gb vram + cpu with 20gb is recommended print('4-bits bitsandbytes quantization with cuda') model = AutoModelForCausalLM.from_pretrained( model_name, load_in_4bit = True, device_map = 'auto', torch_dtype = torch.bfloat16) elif quantization_mode == 'q8-bnb_cuda': # ampere architecture with 12gb vram + cpu with 20gb is recommended print('8-bits bitsandbytes quantization with cuda') model = AutoModelForCausalLM.from_pretrained( model_name, load_in_8bit = True, device_map = 'auto', torch_dtype = torch.bfloat16) elif quantization_mode == 'q4-torch_ptdq': # cpu with 64gb++ ram is recommended print('4-bits x2 post training dynamic quantization') base_model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype = torch.float32) model = torch.quantization.quantize_dynamic(base_model, dtype = torch.quint4x2) elif quantization_mode == 'q8-torch_ptdq': # cpu with 64gb++ ram is recommended print('8-bits post training dynamic quantization') base_model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype = torch.float32) model = torch.quantization.quantize_dynamic(base_model, dtype = torch.quint8) else: print('default model') model = AutoModelForCausalLM.from_pretrained(model_name) print(model) # MistralForCausalLM # text generator from transformers import GenerationConfig, TextGenerationPipeline config = GenerationConfig.from_pretrained(model_name) config.num_return_sequences: int = 1 config.do_sample: bool = True config.max_new_tokens: int = 128 config.temperature: float = 0.7 config.top_p: float = 0.95 config.repetition_penalty: float = 1.3 generator = TextGenerationPipeline( model = model, tokenizer = tokenizer, return_full_text = True, generation_config = config) # sample sample: str = 'ความหมายของชีวิตคืออะไร?\n' output = generator(sample, pad_token_id = tokenizer.eos_token_id) print(output[0]['generated_text']) ``` # `requirement.txt` ```txt torch==2.1.2 accelerate==0.25.0 bitsandbytes==0.41.3 #transformers==4.37.0.dev0 transformers @ git+https://github.com/huggingface/transformers ```
hkivancoral/hushem_40x_deit_base_sgd_001_fold4
hkivancoral
2023-12-24T03:04:11Z
3
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-base-patch16-224", "base_model:finetune:facebook/deit-base-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-12-24T02:21:00Z
--- license: apache-2.0 base_model: facebook/deit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_40x_deit_base_sgd_001_fold4 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.9285714285714286 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_40x_deit_base_sgd_001_fold4 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2186 - Accuracy: 0.9286 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.2742 | 1.0 | 219 | 1.3421 | 0.4286 | | 1.1364 | 2.0 | 438 | 1.2693 | 0.4048 | | 0.9912 | 3.0 | 657 | 1.1701 | 0.5238 | | 0.8292 | 4.0 | 876 | 1.0493 | 0.6429 | | 0.7771 | 5.0 | 1095 | 0.9148 | 0.7143 | | 0.6956 | 6.0 | 1314 | 0.8048 | 0.7381 | | 0.519 | 7.0 | 1533 | 0.7062 | 0.8095 | | 0.5042 | 8.0 | 1752 | 0.6401 | 0.7857 | | 0.4397 | 9.0 | 1971 | 0.5785 | 0.8333 | | 0.3933 | 10.0 | 2190 | 0.5338 | 0.8571 | | 0.341 | 11.0 | 2409 | 0.4959 | 0.8810 | | 0.3345 | 12.0 | 2628 | 0.4569 | 0.8810 | | 0.2949 | 13.0 | 2847 | 0.4265 | 0.9048 | | 0.2608 | 14.0 | 3066 | 0.3999 | 0.9286 | | 0.2368 | 15.0 | 3285 | 0.3796 | 0.9286 | | 0.2257 | 16.0 | 3504 | 0.3614 | 0.9286 | | 0.232 | 17.0 | 3723 | 0.3430 | 0.9286 | | 0.1928 | 18.0 | 3942 | 0.3249 | 0.9286 | | 0.1804 | 19.0 | 4161 | 0.3144 | 0.9286 | | 0.1542 | 20.0 | 4380 | 0.3019 | 0.9048 | | 0.1333 | 21.0 | 4599 | 0.2915 | 0.9286 | | 0.1333 | 22.0 | 4818 | 0.2894 | 0.9048 | | 0.1178 | 23.0 | 5037 | 0.2746 | 0.9286 | | 0.1098 | 24.0 | 5256 | 0.2771 | 0.9048 | | 0.1099 | 25.0 | 5475 | 0.2649 | 0.9048 | | 0.0836 | 26.0 | 5694 | 0.2732 | 0.9048 | | 0.0751 | 27.0 | 5913 | 0.2625 | 0.9048 | | 0.0745 | 28.0 | 6132 | 0.2608 | 0.9048 | | 0.0826 | 29.0 | 6351 | 0.2526 | 0.9048 | | 0.079 | 30.0 | 6570 | 0.2463 | 0.9286 | | 0.0659 | 31.0 | 6789 | 0.2439 | 0.9048 | | 0.0738 | 32.0 | 7008 | 0.2422 | 0.9286 | | 0.0683 | 33.0 | 7227 | 0.2335 | 0.9286 | | 0.0674 | 34.0 | 7446 | 0.2343 | 0.9048 | | 0.0633 | 35.0 | 7665 | 0.2311 | 0.9048 | | 0.0608 | 36.0 | 7884 | 0.2259 | 0.9286 | | 0.0543 | 37.0 | 8103 | 0.2239 | 0.9286 | | 0.0444 | 38.0 | 8322 | 0.2256 | 0.9286 | | 0.0496 | 39.0 | 8541 | 0.2255 | 0.9286 | | 0.0513 | 40.0 | 8760 | 0.2253 | 0.9286 | | 0.0449 | 41.0 | 8979 | 0.2226 | 0.9286 | | 0.0449 | 42.0 | 9198 | 0.2216 | 0.9286 | | 0.0549 | 43.0 | 9417 | 0.2202 | 0.9286 | | 0.0488 | 44.0 | 9636 | 0.2213 | 0.9286 | | 0.0437 | 45.0 | 9855 | 0.2208 | 0.9286 | | 0.0362 | 46.0 | 10074 | 0.2201 | 0.9286 | | 0.0622 | 47.0 | 10293 | 0.2188 | 0.9286 | | 0.0546 | 48.0 | 10512 | 0.2185 | 0.9286 | | 0.0472 | 49.0 | 10731 | 0.2186 | 0.9286 | | 0.0581 | 50.0 | 10950 | 0.2186 | 0.9286 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
geektech/t5-v1_1-xl-lora
geektech
2023-12-24T02:57:39Z
2
0
peft
[ "peft", "tensorboard", "safetensors", "arxiv:1910.09700", "base_model:google/t5-v1_1-xl", "base_model:adapter:google/t5-v1_1-xl", "region:us" ]
null
2023-12-23T17:27:05Z
--- library_name: peft base_model: google/t5-v1_1-xl --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
fliarbi/t5-flan-base-name-detailes-about-history-mission
fliarbi
2023-12-24T02:51:39Z
5
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google/flan-t5-base", "base_model:finetune:google/flan-t5-base", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-12-23T12:41:21Z
--- license: apache-2.0 base_model: google/flan-t5-base tags: - generated_from_trainer model-index: - name: t5-flan-base-name-detailes-about-history-mission results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-flan-base-name-detailes-about-history-mission This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2 - Datasets 2.16.0 - Tokenizers 0.15.0
helpmefindaname/flair-eml-sapbert-ncbi-disease
helpmefindaname
2023-12-24T02:38:37Z
4
0
flair
[ "flair", "pytorch", "entity-mention-linker", "region:us" ]
null
2023-12-24T02:23:44Z
--- tags: - flair - entity-mention-linker --- ## sapbert-ncbi-disease Biomedical Entity Mention Linking for diseases ### Demo: How to use in Flair Requires: - **[Flair](https://github.com/flairNLP/flair/)>=0.14.0** (`pip install flair` or `pip install git+https://github.com/flairNLP/flair.git`) ```python from flair.data import Sentence from flair.models import Classifier, EntityMentionLinker sentence = Sentence("Behavioral abnormalities in the Fmr1 KO2 Mouse Model of Fragile X Syndrome") # load hunflair to detect the entity mentions we want to link. tagger = Classifier.load("hunflair") tagger.predict(sentence) # load the linker and dictionary linker = EntityMentionLinker.load("helpmefindaname/flair-eml-sapbert-ncbi-disease") dictionary = linker.dictionary # find then candidates for the mentions linker.predict(sentence) # print the results for each entity mention: for span in sentence.get_spans(linker.entity_label_type): print(f"Span: {span.text}") for candidate_label in span.get_labels(linker.label_type): candidate = dictionary[candidate_label.value] print(f"Candidate: {candidate.concept_name}") ``` As an alternative to downloading the already precomputed model (much storage). You can also build the model and compute the embeddings for the dataset using: ```python linker = EntityMentionLinker.build("dmis-lab/biosyn-sapbert-ncbi-disease", "diseases", dictionary_name_or_path="ctd-diseases", hybrid_search=False, entity_type="diseases-eml") ``` This will reduce the download requirements, at the cost of computation. This EntityMentionLinker uses [https://huggingface.co/dmis-lab/biosyn-sapbert-ncbi-disease](dmis-lab/biosyn-sapbert-ncbi-disease) as embeddings for linking mentions to candidates.
hkivancoral/hushem_40x_deit_base_adamax_00001_fold3
hkivancoral
2023-12-24T02:30:30Z
5
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-base-patch16-224", "base_model:finetune:facebook/deit-base-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-12-24T01:44:29Z
--- license: apache-2.0 base_model: facebook/deit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_40x_deit_base_adamax_00001_fold3 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.9302325581395349 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_40x_deit_base_adamax_00001_fold3 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.7075 - Accuracy: 0.9302 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2263 | 1.0 | 217 | 0.4817 | 0.7907 | | 0.0168 | 2.0 | 434 | 0.4089 | 0.8605 | | 0.0026 | 3.0 | 651 | 0.3730 | 0.9070 | | 0.0013 | 4.0 | 868 | 0.4093 | 0.9070 | | 0.0007 | 5.0 | 1085 | 0.4236 | 0.9070 | | 0.0005 | 6.0 | 1302 | 0.4344 | 0.9070 | | 0.0004 | 7.0 | 1519 | 0.4366 | 0.9070 | | 0.0003 | 8.0 | 1736 | 0.4561 | 0.9070 | | 0.0002 | 9.0 | 1953 | 0.4646 | 0.9070 | | 0.0001 | 10.0 | 2170 | 0.4712 | 0.9070 | | 0.0001 | 11.0 | 2387 | 0.4696 | 0.9070 | | 0.0001 | 12.0 | 2604 | 0.4779 | 0.9070 | | 0.0001 | 13.0 | 2821 | 0.4883 | 0.9070 | | 0.0001 | 14.0 | 3038 | 0.4911 | 0.9070 | | 0.0 | 15.0 | 3255 | 0.4887 | 0.9070 | | 0.0 | 16.0 | 3472 | 0.5049 | 0.9070 | | 0.0 | 17.0 | 3689 | 0.5115 | 0.9070 | | 0.0 | 18.0 | 3906 | 0.5246 | 0.9070 | | 0.0 | 19.0 | 4123 | 0.5207 | 0.9070 | | 0.0 | 20.0 | 4340 | 0.5310 | 0.9070 | | 0.0 | 21.0 | 4557 | 0.5341 | 0.9070 | | 0.0 | 22.0 | 4774 | 0.5389 | 0.9070 | | 0.0 | 23.0 | 4991 | 0.5470 | 0.9070 | | 0.0 | 24.0 | 5208 | 0.5525 | 0.9070 | | 0.0 | 25.0 | 5425 | 0.5607 | 0.9070 | | 0.0 | 26.0 | 5642 | 0.5630 | 0.9070 | | 0.0 | 27.0 | 5859 | 0.5707 | 0.9302 | | 0.0 | 28.0 | 6076 | 0.5785 | 0.9302 | | 0.0 | 29.0 | 6293 | 0.5816 | 0.9302 | | 0.0 | 30.0 | 6510 | 0.5927 | 0.9302 | | 0.0 | 31.0 | 6727 | 0.6021 | 0.9302 | | 0.0 | 32.0 | 6944 | 0.6045 | 0.9302 | | 0.0 | 33.0 | 7161 | 0.6209 | 0.9302 | | 0.0 | 34.0 | 7378 | 0.6273 | 0.9302 | | 0.0 | 35.0 | 7595 | 0.6296 | 0.9302 | | 0.0 | 36.0 | 7812 | 0.6372 | 0.9302 | | 0.0 | 37.0 | 8029 | 0.6432 | 0.9302 | | 0.0 | 38.0 | 8246 | 0.6544 | 0.9302 | | 0.0 | 39.0 | 8463 | 0.6520 | 0.9302 | | 0.0 | 40.0 | 8680 | 0.6641 | 0.9302 | | 0.0 | 41.0 | 8897 | 0.6713 | 0.9302 | | 0.0 | 42.0 | 9114 | 0.6757 | 0.9302 | | 0.0 | 43.0 | 9331 | 0.6829 | 0.9302 | | 0.0 | 44.0 | 9548 | 0.6913 | 0.9302 | | 0.0 | 45.0 | 9765 | 0.6942 | 0.9302 | | 0.0 | 46.0 | 9982 | 0.7019 | 0.9302 | | 0.0 | 47.0 | 10199 | 0.7046 | 0.9302 | | 0.0 | 48.0 | 10416 | 0.7061 | 0.9302 | | 0.0 | 49.0 | 10633 | 0.7073 | 0.9302 | | 0.0 | 50.0 | 10850 | 0.7075 | 0.9302 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
helpmefindaname/flair-eml-sapbert-bc5cdr-chemical
helpmefindaname
2023-12-24T02:23:43Z
5
0
flair
[ "flair", "pytorch", "entity-mention-linker", "region:us" ]
null
2023-12-24T01:23:10Z
--- tags: - flair - entity-mention-linker --- ## sapbert-bc5cdr-chemical Biomedical Entity Mention Linking for chemical ### Demo: How to use in Flair Requires: - **[Flair](https://github.com/flairNLP/flair/)>=0.14.0** (`pip install flair` or `pip install git+https://github.com/flairNLP/flair.git`) ```python from flair.data import Sentence from flair.models import Classifier, EntityMentionLinker sentence = Sentence("Behavioral abnormalities in the Fmr1 KO2 Mouse Model of Fragile X Syndrome") # load hunflair to detect the entity mentions we want to link. tagger = Classifier.load("hunflair") tagger.predict(sentence) # load the linker and dictionary linker = EntityMentionLinker.load("helpmefindaname/flair-eml-sapbert-bc5cdr-chemical") dictionary = linker.dictionary # find then candidates for the mentions linker.predict(sentence) # print the results for each entity mention: for span in sentence.get_spans(linker.entity_label_type): print(f"Span: {span.text}") for candidate_label in span.get_labels(linker.label_type): candidate = dictionary[candidate_label.value] print(f"Candidate: {candidate.concept_name}") ``` As an alternative to downloading the already precomputed model (much storage). You can also build the model and compute the embeddings for the dataset using: ```python linker = EntityMentionLinker.build("dmis-lab/biosyn-sapbert-bc5cdr-chemical", "chemical", dictionary_name_or_path="ctd-chemicals", hybrid_search=False, entity_type="chemical-eml") ``` This will reduce the download requirements, at the cost of computation. This EntityMentionLinker uses [https://huggingface.co/dmis-lab/biosyn-sapbert-bc5cdr-chemical](dmis-lab/biosyn-sapbert-bc5cdr-chemical) as embeddings for linking mentions to candidates.
hkivancoral/hushem_40x_deit_base_sgd_001_fold3
hkivancoral
2023-12-24T02:20:51Z
5
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-base-patch16-224", "base_model:finetune:facebook/deit-base-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-12-24T01:39:21Z
--- license: apache-2.0 base_model: facebook/deit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_40x_deit_base_sgd_001_fold3 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.7674418604651163 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_40x_deit_base_sgd_001_fold3 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4834 - Accuracy: 0.7674 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.2567 | 1.0 | 217 | 1.3908 | 0.3023 | | 1.1156 | 2.0 | 434 | 1.3183 | 0.4186 | | 0.9891 | 3.0 | 651 | 1.2352 | 0.5116 | | 0.902 | 4.0 | 868 | 1.1401 | 0.5814 | | 0.7383 | 5.0 | 1085 | 1.0533 | 0.6047 | | 0.6659 | 6.0 | 1302 | 0.9783 | 0.6279 | | 0.577 | 7.0 | 1519 | 0.9088 | 0.6047 | | 0.5084 | 8.0 | 1736 | 0.8504 | 0.6512 | | 0.4618 | 9.0 | 1953 | 0.8112 | 0.6512 | | 0.3986 | 10.0 | 2170 | 0.7644 | 0.6744 | | 0.3262 | 11.0 | 2387 | 0.7405 | 0.6744 | | 0.3187 | 12.0 | 2604 | 0.7073 | 0.7442 | | 0.287 | 13.0 | 2821 | 0.6756 | 0.7442 | | 0.2667 | 14.0 | 3038 | 0.6524 | 0.7674 | | 0.2566 | 15.0 | 3255 | 0.6373 | 0.7674 | | 0.2206 | 16.0 | 3472 | 0.6121 | 0.7674 | | 0.1851 | 17.0 | 3689 | 0.6018 | 0.7674 | | 0.1802 | 18.0 | 3906 | 0.5901 | 0.7674 | | 0.1691 | 19.0 | 4123 | 0.5735 | 0.7674 | | 0.1555 | 20.0 | 4340 | 0.5642 | 0.7674 | | 0.1532 | 21.0 | 4557 | 0.5647 | 0.7907 | | 0.1287 | 22.0 | 4774 | 0.5473 | 0.7907 | | 0.1172 | 23.0 | 4991 | 0.5337 | 0.7907 | | 0.1215 | 24.0 | 5208 | 0.5344 | 0.7907 | | 0.1 | 25.0 | 5425 | 0.5177 | 0.7907 | | 0.1218 | 26.0 | 5642 | 0.5181 | 0.7907 | | 0.0935 | 27.0 | 5859 | 0.5065 | 0.7907 | | 0.0833 | 28.0 | 6076 | 0.4985 | 0.7907 | | 0.0714 | 29.0 | 6293 | 0.4998 | 0.7907 | | 0.0825 | 30.0 | 6510 | 0.4944 | 0.7907 | | 0.0754 | 31.0 | 6727 | 0.4956 | 0.7674 | | 0.0765 | 32.0 | 6944 | 0.4881 | 0.7674 | | 0.0774 | 33.0 | 7161 | 0.4958 | 0.7674 | | 0.057 | 34.0 | 7378 | 0.4894 | 0.7674 | | 0.0663 | 35.0 | 7595 | 0.4882 | 0.7674 | | 0.059 | 36.0 | 7812 | 0.4848 | 0.7674 | | 0.0537 | 37.0 | 8029 | 0.4865 | 0.7674 | | 0.0454 | 38.0 | 8246 | 0.4882 | 0.7674 | | 0.0514 | 39.0 | 8463 | 0.4854 | 0.7674 | | 0.0629 | 40.0 | 8680 | 0.4861 | 0.7674 | | 0.0453 | 41.0 | 8897 | 0.4865 | 0.7674 | | 0.0447 | 42.0 | 9114 | 0.4837 | 0.7674 | | 0.0452 | 43.0 | 9331 | 0.4805 | 0.7907 | | 0.0545 | 44.0 | 9548 | 0.4818 | 0.7907 | | 0.0444 | 45.0 | 9765 | 0.4816 | 0.7907 | | 0.0454 | 46.0 | 9982 | 0.4835 | 0.7674 | | 0.0369 | 47.0 | 10199 | 0.4841 | 0.7674 | | 0.0401 | 48.0 | 10416 | 0.4827 | 0.7907 | | 0.0524 | 49.0 | 10633 | 0.4835 | 0.7674 | | 0.0394 | 50.0 | 10850 | 0.4834 | 0.7674 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
jetro30087/OpenHermesMistral7b-JanisAICompatible-v1.01
jetro30087
2023-12-24T02:03:51Z
0
0
null
[ "region:us" ]
null
2023-12-24T01:16:07Z
The default model for the JanisAI User Interface. Automatic Instructions: Run your JanisAIInstaller.exe or the JanisModelInstaller.exe located in your /JanisAI/ installation folder. Manual Instructions: Copy the zip file containing the model into your /JanisAI/ installation folder. Unzip the file in your /JanisAI/ installation folder. Janis AI uses OpenHermes-2.5-Mistral-7b. https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B This model is formatted and quantized according to MLC-LLM standards. https://github.com/mlc-ai/mlc-llm --- license: apache-2.0 ---
panosdou/my_awesome_eli5_clm-model
panosdou
2023-12-24T01:48:02Z
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "base_model:distilbert/distilgpt2", "base_model:finetune:distilbert/distilgpt2", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-23T22:54:25Z
--- license: apache-2.0 base_model: distilgpt2 tags: - generated_from_trainer model-index: - name: my_awesome_eli5_clm-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_eli5_clm-model This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.7925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 220 | 3.8066 | | No log | 2.0 | 440 | 3.7933 | | 3.9127 | 3.0 | 660 | 3.7925 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0
ntc-ai/SDXL-LoRA-slider.blue-eye-color
ntc-ai
2023-12-24T01:44:25Z
68
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2023-12-24T01:44:22Z
--- language: - en thumbnail: "images/evaluate/blue eye color...red eye color/blue eye color_17_3.0.png" widget: - text: blue eye color output: url: images/blue eye color_17_3.0.png - text: blue eye color output: url: images/blue eye color_19_3.0.png - text: blue eye color output: url: images/blue eye color_20_3.0.png - text: blue eye color output: url: images/blue eye color_21_3.0.png - text: blue eye color output: url: images/blue eye color_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "blue eye color" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - blue eye color (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/blue eye color_17_-3.0.png" width=256 height=256 /> | <img src="images/blue eye color_17_0.0.png" width=256 height=256 /> | <img src="images/blue eye color_17_3.0.png" width=256 height=256 /> | | <img src="images/blue eye color_19_-3.0.png" width=256 height=256 /> | <img src="images/blue eye color_19_0.0.png" width=256 height=256 /> | <img src="images/blue eye color_19_3.0.png" width=256 height=256 /> | | <img src="images/blue eye color_20_-3.0.png" width=256 height=256 /> | <img src="images/blue eye color_20_0.0.png" width=256 height=256 /> | <img src="images/blue eye color_20_3.0.png" width=256 height=256 /> | ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` blue eye color ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.blue-eye-color', weight_name='blue eye color.safetensors', adapter_name="blue eye color") # Activate the LoRA pipe.set_adapters(["blue eye color"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, blue eye color" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 580+ unique and diverse LoRAs, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful LoRA slider creator, allowing you to craft your own custom LoRAs and experiment with endless possibilities. Your support on Patreon will allow us to continue developing and refining new models. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
hkivancoral/hushem_40x_deit_base_adamax_00001_fold2
hkivancoral
2023-12-24T01:44:20Z
3
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-base-patch16-224", "base_model:finetune:facebook/deit-base-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-12-24T00:57:43Z
--- license: apache-2.0 base_model: facebook/deit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_40x_deit_base_adamax_00001_fold2 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.7555555555555555 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_40x_deit_base_adamax_00001_fold2 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 2.1410 - Accuracy: 0.7556 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.1698 | 1.0 | 215 | 0.9036 | 0.6667 | | 0.0086 | 2.0 | 430 | 0.8771 | 0.8 | | 0.0023 | 3.0 | 645 | 0.9467 | 0.8 | | 0.0009 | 4.0 | 860 | 1.0021 | 0.7778 | | 0.0006 | 5.0 | 1075 | 1.0414 | 0.7556 | | 0.0004 | 6.0 | 1290 | 1.0789 | 0.7556 | | 0.0003 | 7.0 | 1505 | 1.0927 | 0.7778 | | 0.0002 | 8.0 | 1720 | 1.1233 | 0.7778 | | 0.0002 | 9.0 | 1935 | 1.1652 | 0.7778 | | 0.0001 | 10.0 | 2150 | 1.1805 | 0.7778 | | 0.0001 | 11.0 | 2365 | 1.2046 | 0.7778 | | 0.0001 | 12.0 | 2580 | 1.2366 | 0.7778 | | 0.0001 | 13.0 | 2795 | 1.2540 | 0.7778 | | 0.0001 | 14.0 | 3010 | 1.2856 | 0.7778 | | 0.0 | 15.0 | 3225 | 1.3104 | 0.7778 | | 0.0 | 16.0 | 3440 | 1.3434 | 0.7778 | | 0.0 | 17.0 | 3655 | 1.3705 | 0.7778 | | 0.0 | 18.0 | 3870 | 1.3922 | 0.7778 | | 0.0 | 19.0 | 4085 | 1.4221 | 0.7778 | | 0.0 | 20.0 | 4300 | 1.4557 | 0.7778 | | 0.0 | 21.0 | 4515 | 1.4854 | 0.7778 | | 0.0 | 22.0 | 4730 | 1.5092 | 0.7778 | | 0.0 | 23.0 | 4945 | 1.5343 | 0.7778 | | 0.0 | 24.0 | 5160 | 1.5541 | 0.7778 | | 0.0 | 25.0 | 5375 | 1.5830 | 0.7778 | | 0.0 | 26.0 | 5590 | 1.6177 | 0.7778 | | 0.0 | 27.0 | 5805 | 1.6474 | 0.7778 | | 0.0 | 28.0 | 6020 | 1.6634 | 0.7778 | | 0.0 | 29.0 | 6235 | 1.6875 | 0.7778 | | 0.0 | 30.0 | 6450 | 1.7106 | 0.7778 | | 0.0 | 31.0 | 6665 | 1.7484 | 0.7778 | | 0.0 | 32.0 | 6880 | 1.7797 | 0.7778 | | 0.0 | 33.0 | 7095 | 1.8167 | 0.7778 | | 0.0 | 34.0 | 7310 | 1.8422 | 0.7778 | | 0.0 | 35.0 | 7525 | 1.8678 | 0.7778 | | 0.0 | 36.0 | 7740 | 1.8865 | 0.7778 | | 0.0 | 37.0 | 7955 | 1.9143 | 0.7778 | | 0.0 | 38.0 | 8170 | 1.9225 | 0.7778 | | 0.0 | 39.0 | 8385 | 1.9621 | 0.7778 | | 0.0 | 40.0 | 8600 | 1.9777 | 0.7556 | | 0.0 | 41.0 | 8815 | 2.0240 | 0.7778 | | 0.0 | 42.0 | 9030 | 2.0141 | 0.7556 | | 0.0 | 43.0 | 9245 | 2.0463 | 0.7556 | | 0.0 | 44.0 | 9460 | 2.0688 | 0.7556 | | 0.0 | 45.0 | 9675 | 2.0919 | 0.7556 | | 0.0 | 46.0 | 9890 | 2.1123 | 0.7556 | | 0.0 | 47.0 | 10105 | 2.1294 | 0.7556 | | 0.0 | 48.0 | 10320 | 2.1354 | 0.7556 | | 0.0 | 49.0 | 10535 | 2.1448 | 0.7556 | | 0.0 | 50.0 | 10750 | 2.1410 | 0.7556 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
hkivancoral/hushem_40x_deit_tiny_adamax_0001_fold2
hkivancoral
2023-12-24T01:34:59Z
10
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-tiny-patch16-224", "base_model:finetune:facebook/deit-tiny-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-12-24T00:59:28Z
--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_40x_deit_tiny_adamax_0001_fold2 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.7555555555555555 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_40x_deit_tiny_adamax_0001_fold2 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.9983 - Accuracy: 0.7556 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.0219 | 1.0 | 215 | 0.6349 | 0.8667 | | 0.0009 | 2.0 | 430 | 1.0022 | 0.7333 | | 0.0057 | 3.0 | 645 | 1.0734 | 0.7556 | | 0.0006 | 4.0 | 860 | 1.3398 | 0.7778 | | 0.0 | 5.0 | 1075 | 1.6890 | 0.7333 | | 0.0 | 6.0 | 1290 | 1.6522 | 0.7111 | | 0.0 | 7.0 | 1505 | 1.6220 | 0.7111 | | 0.0 | 8.0 | 1720 | 1.6021 | 0.7333 | | 0.0 | 9.0 | 1935 | 1.5870 | 0.7333 | | 0.0 | 10.0 | 2150 | 1.5842 | 0.7333 | | 0.0 | 11.0 | 2365 | 1.5782 | 0.7333 | | 0.0 | 12.0 | 2580 | 1.5625 | 0.7333 | | 0.0 | 13.0 | 2795 | 1.5601 | 0.7333 | | 0.0 | 14.0 | 3010 | 1.5521 | 0.7333 | | 0.0 | 15.0 | 3225 | 1.5637 | 0.7333 | | 0.0 | 16.0 | 3440 | 1.5652 | 0.7778 | | 0.0 | 17.0 | 3655 | 1.5622 | 0.7333 | | 0.0 | 18.0 | 3870 | 1.5700 | 0.7778 | | 0.0 | 19.0 | 4085 | 1.5813 | 0.7778 | | 0.0 | 20.0 | 4300 | 1.5874 | 0.7556 | | 0.0 | 21.0 | 4515 | 1.5931 | 0.7556 | | 0.0 | 22.0 | 4730 | 1.6081 | 0.7556 | | 0.0 | 23.0 | 4945 | 1.6167 | 0.7556 | | 0.0 | 24.0 | 5160 | 1.6398 | 0.7556 | | 0.0 | 25.0 | 5375 | 1.6448 | 0.7556 | | 0.0 | 26.0 | 5590 | 1.6610 | 0.7556 | | 0.0 | 27.0 | 5805 | 1.6849 | 0.7333 | | 0.0 | 28.0 | 6020 | 1.6982 | 0.7556 | | 0.0 | 29.0 | 6235 | 1.7059 | 0.7556 | | 0.0 | 30.0 | 6450 | 1.7216 | 0.7556 | | 0.0 | 31.0 | 6665 | 1.7579 | 0.7556 | | 0.0 | 32.0 | 6880 | 1.7634 | 0.7556 | | 0.0 | 33.0 | 7095 | 1.7775 | 0.7556 | | 0.0 | 34.0 | 7310 | 1.8193 | 0.7556 | | 0.0 | 35.0 | 7525 | 1.8288 | 0.7556 | | 0.0 | 36.0 | 7740 | 1.8617 | 0.7556 | | 0.0 | 37.0 | 7955 | 1.8992 | 0.7556 | | 0.0 | 38.0 | 8170 | 1.9097 | 0.7556 | | 0.0 | 39.0 | 8385 | 1.9200 | 0.7556 | | 0.0 | 40.0 | 8600 | 1.9431 | 0.7556 | | 0.0 | 41.0 | 8815 | 1.9378 | 0.7556 | | 0.0 | 42.0 | 9030 | 1.9739 | 0.7556 | | 0.0 | 43.0 | 9245 | 1.9777 | 0.7556 | | 0.0 | 44.0 | 9460 | 1.9924 | 0.7556 | | 0.0 | 45.0 | 9675 | 1.9923 | 0.7556 | | 0.0 | 46.0 | 9890 | 1.9872 | 0.7556 | | 0.0 | 47.0 | 10105 | 2.0011 | 0.7556 | | 0.0 | 48.0 | 10320 | 2.0002 | 0.7556 | | 0.0 | 49.0 | 10535 | 1.9945 | 0.7556 | | 0.0 | 50.0 | 10750 | 1.9983 | 0.7556 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.1+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
vit54155/vit-base-patch16-224-in21k-euroSat
vit54155
2023-12-24T01:18:33Z
4
0
transformers
[ "transformers", "tf", "tensorboard", "vit", "image-classification", "generated_from_keras_callback", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-12-24T01:16:31Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_keras_callback model-index: - name: vit54155/vit-base-patch16-224-in21k-euroSat results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # vit54155/vit-base-patch16-224-in21k-euroSat This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.6316 - Train Accuracy: 0.6693 - Train Top-3-accuracy: 1.0 - Validation Loss: 0.6555 - Validation Accuracy: 0.6320 - Validation Top-3-accuracy: 1.0 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'module': 'transformers.optimization_tf', 'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 360, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.8999999761581421, 'beta_2': 0.9990000128746033, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}, 'registered_name': 'AdamWeightDecay'}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch | |:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:| | 0.6316 | 0.6693 | 1.0 | 0.6555 | 0.6320 | 1.0 | 0 | ### Framework versions - Transformers 4.36.2 - TensorFlow 2.13.0 - Datasets 2.16.0 - Tokenizers 0.15.0
helpmefindaname/flair-eml-sapbert-bc2gn-gene
helpmefindaname
2023-12-24T01:08:36Z
2
0
flair
[ "flair", "pytorch", "entity-mention-linker", "region:us" ]
null
2023-12-24T00:04:55Z
--- tags: - flair - entity-mention-linker --- ## sapbert-bc2gn-gene Biomedical Entity Mention Linking for gene ### Demo: How to use in Flair Requires: - **[Flair](https://github.com/flairNLP/flair/)>=0.14.0** (`pip install flair` or `pip install git+https://github.com/flairNLP/flair.git`) ```python from flair.data import Sentence from flair.models import Classifier, EntityMentionLinker sentence = Sentence("Behavioral abnormalities in the Fmr1 KO2 Mouse Model of Fragile X Syndrome") # load hunflair to detect the entity mentions we want to link. tagger = Classifier.load("hunflair") tagger.predict(sentence) # load the linker and dictionary linker = EntityMentionLinker.load("helpmefindaname/flair-eml-sapbert-bc2gn-gene") dictionary = linker.dictionary # find then candidates for the mentions linker.predict(sentence) # print the results for each entity mention: for span in sentence.get_spans(linker.entity_label_type): print(f"Span: {span.text}") for candidate_label in span.get_labels(linker.label_type): candidate = dictionary[candidate_label.value] print(f"Candidate: {candidate.concept_name}") ``` As an alternative to downloading the already precomputed model (much storage). You can also build the model and compute the embeddings for the dataset using: ```python linker = EntityMentionLinker.build("dmis-lab/biosyn-sapbert-bc2gn", "gene", dictionary_name_or_path="ncbi-gene", hybrid_search=False, entity_type="gene-eml") ``` This will reduce the download requirements, at the cost of computation. This EntityMentionLinker uses [https://huggingface.co/dmis-lab/biosyn-sapbert-bc2gn](dmis-lab/biosyn-sapbert-bc2gn) as embeddings for linking mentions to candidates.
evilfreelancer/PavelGPT-7B-128K-v0.1-LoRA
evilfreelancer
2023-12-24T01:05:34Z
11
9
peft
[ "peft", "mistral", "text-generation", "custom_code", "ru", "en", "dataset:d0rj/gsm8k-ru", "dataset:d0rj/alpaca-cleaned-ru", "dataset:IlyaGusev/ru_turbo_alpaca", "dataset:IlyaGusev/ru_turbo_alpaca_evol_instruct", "license:mit", "region:us" ]
text-generation
2023-12-22T15:02:46Z
--- license: mit datasets: - d0rj/gsm8k-ru - d0rj/alpaca-cleaned-ru - IlyaGusev/ru_turbo_alpaca - IlyaGusev/ru_turbo_alpaca_evol_instruct language: - ru - en library_name: peft pipeline_tag: text-generation --- # PavelGPT 7B 128K (v0.1) PavelGPT is a Russian language model based on [NousResearch/Yarn-Mistral-7b-128k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-128k) so it also has 7B parameters and 128k context size. - **Developed by:** [EvilFreelancer](https://github.com/EvilFreelancer) - **Model type:** LoRA - **Language(s) (NLP):** Russian, English - **License:** MIT - **Finetuned from model:** [NousResearch/Yarn-Mistral-7b-128k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-128k) ## Details ### Description The model is able to generate text in Russian, answer questions, solve simple logical puzzles and simple math calculations, it was trained on a medium corpus of Russian instructions, manuals and other texts. It optimized for INSTRUCT mode and it works better if you give it system prompt and only one instruction (without history at all). ### Datasets PavelGPT was trained on following datasets: - [d0rj/gsm8k-ru](https://huggingface.co/datasets/d0rj/gsm8k-ru) - 7.5k rows of Russian puzzles - [d0rj/alpaca-cleaned-ru](https://huggingface.co/datasets/d0rj/alpaca-cleaned-ru) - 51.8k rows of Russian general instructions - [IlyaGusev/ru_turbo_alpaca](https://huggingface.co/datasets/IlyaGusev/ru_turbo_alpaca) - 29.98k rows of Russian instructions, but was used only instructions with `ok` label (~4.5k) - [IlyaGusev/ru_turbo_alpaca_evol_instruct](https://huggingface.co/datasets/IlyaGusev/ru_turbo_alpaca_evol_instruct) - 47.8k rows of Russian instructions All datasets was merged with help of [create_instruct_set_v2.py](https://github.com/EvilFreelancer/saiga-custom/blob/main/data_processing/create_instruct_set_v2.py) (hash a1151bf903990b88177d30bd1de67c7b94fdecef). After merging and deduplication we got 46.2k rows of training data and 2.4k rows of validation data. ### Training Model was trained on 1x RTX 4090 24GB for 1 epoch (took ~12 hours), it was trained with help of Peft library and in 4bit quantization mode. Context size was set to 4096 tokens, batch size was set to 1, gradient accumulation was set to 128. Training script: [pavelgpt_7b_128k.ipynb](https://github.com/EvilFreelancer/saiga-custom/blob/main/pavelgpt_7b_128k.ipynb). Wandb report: [j6jt6cyd](https://api.wandb.ai/links/evilfreelancer/j6jt6cyd). ### Tests results Tests was performed on following [generation configuration](./generation_config.json): ```json { "pad_token_id": 0, "unk_token_id": 0, "bos_token_id": 1, "eos_token_id": 2, "temperature": 0.2, "top_p": 0.2, "top_k": 20, "do_sample": true, "max_new_tokens": 4096, "repetition_penalty": 1.2, "no_repeat_ngram_size": 15 } ``` Here is the results: ```text User: Привет! Кто ты? Bot: Я - языковой модель ИИ, называемый PavelGPT. Я способен к естественному языку и обучен отвечать на вопросы по многим темам. Как правило, я использую информацию из Интернета для создания своих ответов. User: Ты помнишь как здесь оказался? Bot: Я был создан компанией OpenAI в качестве исследовательского проекта и запущен в декабре 2018 года. С тех пор он продолжает развивать свой алгоритм путем обучения на больших объемах данных и улучшения его функций. User: Какой по твоему сейчас год? Bot: В настоящее время это 2023 год. User: А какой день? Bot: Сейчас 6 января 2023 г. User: Почему трава зелёная? Bot: Зеленый цвет является результатом взаимодействия хлорофилла (пигмента) со светом. Хлорофилл может поглощать красное и синее спектральные излучения, оставляя только зеленое. Эти компоненты вместе образуют зеленый цвет растительной массы. User: Я пошёл в магазин и купил 10 яблок. Два яблока я отдал соседу и два ремонтнику. Потом я купил ещё 5 яблок и одно из них съел. Также я отдал три банана моему брату. Сколько яблок у меня осталось? Bot: У вас осталось 10 яблок после того, как вы продали их друзьям и брату. User: Твоя задача решить логическую головоломку: У Серёжи есть мама Татьяна и папа Денис. И ещё у Серёжи есть брат Иван. Кем Ивану приходится Татьяна? Bot: Мамой Ивана должна быть Татьяна. ``` ## Links * https://t.me/evilfreelancer * https://dzen.ru/evilfreelancer * https://github.com/EvilFreelancer * https://youtube.com/@pavelzloi
toshi456/llava-pretrain-jp-1.3b-v1.0
toshi456
2023-12-24T01:05:16Z
18
3
transformers
[ "transformers", "llava", "text-generation", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-12-24T00:55:09Z
--- license: apache-2.0 --- # LLaVA-JP Model Card This is a pretrained checkpoint, you can use it to instruct tune your multimodal models. Check out the instructions [here](https://github.com/tosiyuki/LLaVA-JP) ## Model details **Model type:** LLaVA-JP is trained by fine-tuning [llm-jp/llm-jp-1.3b-v1.0](https://huggingface.co/llm-jp/llm-jp-1.3b-v1.0) on multimodal instruction-following data by LLaVA method. ## Training dataset - [LLaVA-CC3M-Pretrain-595K-JA](https://huggingface.co/datasets/toshi456/LLaVA-CC3M-Pretrain-595K-JA) - [Japanese STAIR Captions](http://captions.stair.center/) ## Acknowledgement - [LLaVA](https://llava-vl.github.io/) - [LLM-jp](https://llm-jp.nii.ac.jp/) ## License Apache-2.0
hkivancoral/hushem_40x_deit_tiny_adamax_0001_fold1
hkivancoral
2023-12-24T00:59:16Z
7
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-tiny-patch16-224", "base_model:finetune:facebook/deit-tiny-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-12-24T00:23:27Z
--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_40x_deit_tiny_adamax_0001_fold1 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.8444444444444444 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_40x_deit_tiny_adamax_0001_fold1 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.3786 - Accuracy: 0.8444 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.0587 | 1.0 | 215 | 0.8379 | 0.7778 | | 0.0029 | 2.0 | 430 | 0.8134 | 0.8222 | | 0.0061 | 3.0 | 645 | 0.6824 | 0.8667 | | 0.0003 | 4.0 | 860 | 0.8964 | 0.8444 | | 0.0004 | 5.0 | 1075 | 1.1389 | 0.8 | | 0.0069 | 6.0 | 1290 | 0.8847 | 0.8222 | | 0.0014 | 7.0 | 1505 | 0.9407 | 0.8444 | | 0.0208 | 8.0 | 1720 | 1.2665 | 0.8 | | 0.0 | 9.0 | 1935 | 0.7746 | 0.8222 | | 0.0001 | 10.0 | 2150 | 0.9541 | 0.8222 | | 0.0 | 11.0 | 2365 | 1.3297 | 0.7556 | | 0.0 | 12.0 | 2580 | 1.2887 | 0.7778 | | 0.0 | 13.0 | 2795 | 1.2405 | 0.7778 | | 0.0 | 14.0 | 3010 | 1.2098 | 0.8 | | 0.0 | 15.0 | 3225 | 1.1905 | 0.8 | | 0.0 | 16.0 | 3440 | 1.1775 | 0.8 | | 0.0 | 17.0 | 3655 | 1.1699 | 0.8 | | 0.0 | 18.0 | 3870 | 1.1668 | 0.8 | | 0.0 | 19.0 | 4085 | 1.1651 | 0.8 | | 0.0 | 20.0 | 4300 | 1.1645 | 0.8 | | 0.0 | 21.0 | 4515 | 1.1663 | 0.8 | | 0.0 | 22.0 | 4730 | 1.1709 | 0.8 | | 0.0 | 23.0 | 4945 | 1.1752 | 0.8 | | 0.0 | 24.0 | 5160 | 1.1807 | 0.8 | | 0.0 | 25.0 | 5375 | 1.1874 | 0.8222 | | 0.0 | 26.0 | 5590 | 1.1925 | 0.8222 | | 0.0 | 27.0 | 5805 | 1.1999 | 0.8222 | | 0.0 | 28.0 | 6020 | 1.2057 | 0.8222 | | 0.0 | 29.0 | 6235 | 1.2150 | 0.8222 | | 0.0 | 30.0 | 6450 | 1.2228 | 0.8222 | | 0.0 | 31.0 | 6665 | 1.2334 | 0.8222 | | 0.0 | 32.0 | 6880 | 1.2399 | 0.8222 | | 0.0 | 33.0 | 7095 | 1.2440 | 0.8222 | | 0.0 | 34.0 | 7310 | 1.2539 | 0.8222 | | 0.0 | 35.0 | 7525 | 1.2643 | 0.8222 | | 0.0 | 36.0 | 7740 | 1.2752 | 0.8222 | | 0.0 | 37.0 | 7955 | 1.2837 | 0.8222 | | 0.0 | 38.0 | 8170 | 1.2941 | 0.8222 | | 0.0 | 39.0 | 8385 | 1.3057 | 0.8444 | | 0.0 | 40.0 | 8600 | 1.3171 | 0.8444 | | 0.0 | 41.0 | 8815 | 1.3233 | 0.8444 | | 0.0 | 42.0 | 9030 | 1.3334 | 0.8444 | | 0.0 | 43.0 | 9245 | 1.3422 | 0.8444 | | 0.0 | 44.0 | 9460 | 1.3487 | 0.8444 | | 0.0 | 45.0 | 9675 | 1.3569 | 0.8444 | | 0.0 | 46.0 | 9890 | 1.3629 | 0.8444 | | 0.0 | 47.0 | 10105 | 1.3713 | 0.8444 | | 0.0 | 48.0 | 10320 | 1.3761 | 0.8444 | | 0.0 | 49.0 | 10535 | 1.3795 | 0.8444 | | 0.0 | 50.0 | 10750 | 1.3786 | 0.8444 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.1+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
hkivancoral/hushem_40x_deit_base_adamax_00001_fold1
hkivancoral
2023-12-24T00:57:29Z
3
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-base-patch16-224", "base_model:finetune:facebook/deit-base-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-12-24T00:12:59Z
--- license: apache-2.0 base_model: facebook/deit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_40x_deit_base_adamax_00001_fold1 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.7777777777777778 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_40x_deit_base_adamax_00001_fold1 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.7464 - Accuracy: 0.7778 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.175 | 1.0 | 215 | 0.7361 | 0.7556 | | 0.0109 | 2.0 | 430 | 0.6497 | 0.8 | | 0.0023 | 3.0 | 645 | 0.7453 | 0.8222 | | 0.001 | 4.0 | 860 | 0.7854 | 0.8222 | | 0.0006 | 5.0 | 1075 | 0.8105 | 0.8222 | | 0.0004 | 6.0 | 1290 | 0.8328 | 0.8222 | | 0.0003 | 7.0 | 1505 | 0.8638 | 0.8222 | | 0.0002 | 8.0 | 1720 | 0.8701 | 0.8222 | | 0.0002 | 9.0 | 1935 | 0.9048 | 0.8222 | | 0.0001 | 10.0 | 2150 | 0.9203 | 0.8 | | 0.0001 | 11.0 | 2365 | 0.9399 | 0.8 | | 0.0001 | 12.0 | 2580 | 0.9611 | 0.8 | | 0.0001 | 13.0 | 2795 | 0.9847 | 0.8 | | 0.0001 | 14.0 | 3010 | 1.0078 | 0.8 | | 0.0 | 15.0 | 3225 | 1.0165 | 0.8 | | 0.0 | 16.0 | 3440 | 1.0509 | 0.8 | | 0.0 | 17.0 | 3655 | 1.0662 | 0.8 | | 0.0 | 18.0 | 3870 | 1.0960 | 0.8 | | 0.0 | 19.0 | 4085 | 1.1102 | 0.8 | | 0.0 | 20.0 | 4300 | 1.1333 | 0.8 | | 0.0 | 21.0 | 4515 | 1.1560 | 0.8 | | 0.0 | 22.0 | 4730 | 1.1835 | 0.8 | | 0.0 | 23.0 | 4945 | 1.2066 | 0.8 | | 0.0 | 24.0 | 5160 | 1.2238 | 0.8 | | 0.0 | 25.0 | 5375 | 1.2452 | 0.8 | | 0.0 | 26.0 | 5590 | 1.2607 | 0.8 | | 0.0 | 27.0 | 5805 | 1.2985 | 0.8 | | 0.0 | 28.0 | 6020 | 1.3142 | 0.7778 | | 0.0 | 29.0 | 6235 | 1.3455 | 0.7778 | | 0.0 | 30.0 | 6450 | 1.3849 | 0.7778 | | 0.0 | 31.0 | 6665 | 1.4087 | 0.7778 | | 0.0 | 32.0 | 6880 | 1.4316 | 0.7778 | | 0.0 | 33.0 | 7095 | 1.4372 | 0.7778 | | 0.0 | 34.0 | 7310 | 1.4578 | 0.7778 | | 0.0 | 35.0 | 7525 | 1.5115 | 0.7778 | | 0.0 | 36.0 | 7740 | 1.5151 | 0.7778 | | 0.0 | 37.0 | 7955 | 1.5376 | 0.7778 | | 0.0 | 38.0 | 8170 | 1.5694 | 0.7778 | | 0.0 | 39.0 | 8385 | 1.5967 | 0.7778 | | 0.0 | 40.0 | 8600 | 1.6099 | 0.7778 | | 0.0 | 41.0 | 8815 | 1.6278 | 0.7778 | | 0.0 | 42.0 | 9030 | 1.6372 | 0.7778 | | 0.0 | 43.0 | 9245 | 1.6697 | 0.7778 | | 0.0 | 44.0 | 9460 | 1.6889 | 0.7778 | | 0.0 | 45.0 | 9675 | 1.6985 | 0.7778 | | 0.0 | 46.0 | 9890 | 1.7202 | 0.7778 | | 0.0 | 47.0 | 10105 | 1.7225 | 0.7778 | | 0.0 | 48.0 | 10320 | 1.7406 | 0.7778 | | 0.0 | 49.0 | 10535 | 1.7437 | 0.7778 | | 0.0 | 50.0 | 10750 | 1.7464 | 0.7778 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
hkivancoral/hushem_40x_deit_base_sgd_001_fold1
hkivancoral
2023-12-24T00:56:49Z
5
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-base-patch16-224", "base_model:finetune:facebook/deit-base-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-12-24T00:13:36Z
--- license: apache-2.0 base_model: facebook/deit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_40x_deit_base_sgd_001_fold1 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.7555555555555555 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_40x_deit_base_sgd_001_fold1 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.7430 - Accuracy: 0.7556 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.2392 | 1.0 | 215 | 1.3895 | 0.2667 | | 1.1003 | 2.0 | 430 | 1.3294 | 0.3333 | | 1.0196 | 3.0 | 645 | 1.2624 | 0.4444 | | 0.8639 | 4.0 | 860 | 1.1946 | 0.4889 | | 0.731 | 5.0 | 1075 | 1.1313 | 0.5111 | | 0.6646 | 6.0 | 1290 | 1.0718 | 0.5556 | | 0.545 | 7.0 | 1505 | 1.0254 | 0.6 | | 0.4701 | 8.0 | 1720 | 0.9800 | 0.6444 | | 0.4065 | 9.0 | 1935 | 0.9495 | 0.6222 | | 0.3851 | 10.0 | 2150 | 0.9148 | 0.6667 | | 0.3271 | 11.0 | 2365 | 0.8947 | 0.6667 | | 0.2977 | 12.0 | 2580 | 0.8732 | 0.6889 | | 0.2671 | 13.0 | 2795 | 0.8416 | 0.7111 | | 0.2428 | 14.0 | 3010 | 0.8450 | 0.6889 | | 0.2387 | 15.0 | 3225 | 0.8270 | 0.7111 | | 0.1988 | 16.0 | 3440 | 0.8218 | 0.7111 | | 0.1804 | 17.0 | 3655 | 0.8107 | 0.7333 | | 0.1681 | 18.0 | 3870 | 0.8058 | 0.7333 | | 0.1475 | 19.0 | 4085 | 0.7968 | 0.7333 | | 0.1494 | 20.0 | 4300 | 0.7851 | 0.7556 | | 0.1288 | 21.0 | 4515 | 0.7807 | 0.7556 | | 0.1265 | 22.0 | 4730 | 0.7751 | 0.7556 | | 0.1136 | 23.0 | 4945 | 0.7744 | 0.7556 | | 0.094 | 24.0 | 5160 | 0.7654 | 0.7556 | | 0.0987 | 25.0 | 5375 | 0.7661 | 0.7556 | | 0.096 | 26.0 | 5590 | 0.7527 | 0.7556 | | 0.084 | 27.0 | 5805 | 0.7535 | 0.7556 | | 0.069 | 28.0 | 6020 | 0.7589 | 0.7556 | | 0.0764 | 29.0 | 6235 | 0.7612 | 0.7556 | | 0.067 | 30.0 | 6450 | 0.7558 | 0.7556 | | 0.0458 | 31.0 | 6665 | 0.7531 | 0.7333 | | 0.0687 | 32.0 | 6880 | 0.7463 | 0.7556 | | 0.0414 | 33.0 | 7095 | 0.7445 | 0.7556 | | 0.0522 | 34.0 | 7310 | 0.7378 | 0.7556 | | 0.0521 | 35.0 | 7525 | 0.7477 | 0.7556 | | 0.0458 | 36.0 | 7740 | 0.7370 | 0.7556 | | 0.0586 | 37.0 | 7955 | 0.7425 | 0.7556 | | 0.0551 | 38.0 | 8170 | 0.7441 | 0.7556 | | 0.0389 | 39.0 | 8385 | 0.7437 | 0.7556 | | 0.0335 | 40.0 | 8600 | 0.7446 | 0.7556 | | 0.0337 | 41.0 | 8815 | 0.7439 | 0.7556 | | 0.0431 | 42.0 | 9030 | 0.7421 | 0.7556 | | 0.0392 | 43.0 | 9245 | 0.7439 | 0.7556 | | 0.03 | 44.0 | 9460 | 0.7447 | 0.7556 | | 0.0402 | 45.0 | 9675 | 0.7426 | 0.7556 | | 0.0313 | 46.0 | 9890 | 0.7416 | 0.7556 | | 0.0341 | 47.0 | 10105 | 0.7428 | 0.7556 | | 0.0375 | 48.0 | 10320 | 0.7420 | 0.7556 | | 0.0432 | 49.0 | 10535 | 0.7428 | 0.7556 | | 0.0389 | 50.0 | 10750 | 0.7430 | 0.7556 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
jdluzen/Mistral-7B-Instruct-v0.2-GGUF
jdluzen
2023-12-24T00:17:06Z
8
0
null
[ "gguf", "llama.cpp", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2023-12-23T23:42:22Z
--- license: apache-2.0 tags: - llama.cpp - gguf --- Direct llama.cpp/GGUF fp16 conversion from the original safetensors https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2, context 8192.
helpmefindaname/flair-eml-chemicals-exact-match
helpmefindaname
2023-12-24T00:04:47Z
4
0
flair
[ "flair", "pytorch", "entity-mention-linker", "region:us" ]
null
2023-12-24T00:03:34Z
--- tags: - flair - entity-mention-linker --- ## chemicals-exact-match Biomedical Entity Mention Linking for chemical ### Demo: How to use in Flair Requires: - **[Flair](https://github.com/flairNLP/flair/)>=0.14.0** (`pip install flair` or `pip install git+https://github.com/flairNLP/flair.git`) ```python from flair.data import Sentence from flair.models import Classifier, EntityMentionLinker sentence = Sentence("Behavioral abnormalities in the Fmr1 KO2 Mouse Model of Fragile X Syndrome") # load hunflair to detect the entity mentions we want to link. tagger = Classifier.load("hunflair") tagger.predict(sentence) # load the linker and dictionary linker = EntityMentionLinker.load("helpmefindaname/flair-eml-chemicals-exact-match") dictionary = linker.dictionary # find then candidates for the mentions linker.predict(sentence) # print the results for each entity mention: for span in sentence.get_spans(linker.entity_label_type): print(f"Span: {span.text}") for candidate_label in span.get_labels(linker.label_type): candidate = dictionary[candidate_label.value] print(f"Candidate: {candidate.concept_name}") ``` As an alternative to downloading the already precomputed model (much storage). You can also build the model and compute the embeddings for the dataset using: ```python linker = EntityMentionLinker.build("exact-string-match", "chemical", dictionary_name_or_path="ctd-chemicals", hybrid_search=False, entity_type="chemical-eml") ``` This will reduce the download requirements, at the cost of computation. This EntityMentionLinker uses [https://huggingface.co/exact-string-match](exact-string-match) as embeddings for linking mentions to candidates.
helpmefindaname/flair-eml-diseases-exact-match
helpmefindaname
2023-12-24T00:03:29Z
5
0
flair
[ "flair", "pytorch", "entity-mention-linker", "region:us" ]
null
2023-12-24T00:03:17Z
--- tags: - flair - entity-mention-linker --- ## diseases-exact-match Biomedical Entity Mention Linking for diseases ### Demo: How to use in Flair Requires: - **[Flair](https://github.com/flairNLP/flair/)>=0.14.0** (`pip install flair` or `pip install git+https://github.com/flairNLP/flair.git`) ```python from flair.data import Sentence from flair.models import Classifier, EntityMentionLinker sentence = Sentence("Behavioral abnormalities in the Fmr1 KO2 Mouse Model of Fragile X Syndrome") # load hunflair to detect the entity mentions we want to link. tagger = Classifier.load("hunflair") tagger.predict(sentence) # load the linker and dictionary linker = EntityMentionLinker.load("helpmefindaname/flair-eml-diseases-exact-match") dictionary = linker.dictionary # find then candidates for the mentions linker.predict(sentence) # print the results for each entity mention: for span in sentence.get_spans(linker.entity_label_type): print(f"Span: {span.text}") for candidate_label in span.get_labels(linker.label_type): candidate = dictionary[candidate_label.value] print(f"Candidate: {candidate.concept_name}") ``` As an alternative to downloading the already precomputed model (much storage). You can also build the model and compute the embeddings for the dataset using: ```python linker = EntityMentionLinker.build("exact-string-match", "diseases", dictionary_name_or_path="ctd-diseases", hybrid_search=False, entity_type="diseases-eml") ``` This will reduce the download requirements, at the cost of computation. This EntityMentionLinker uses [https://huggingface.co/exact-string-match](exact-string-match) as embeddings for linking mentions to candidates.