modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-09 18:59:16
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
551 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-09 18:27:33
card
stringlengths
11
1.01M
GuiTap/bert-large-uncased-finetuned-ner-harem
GuiTap
2024-12-04T16:56:43Z
110
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "token-classification", "generated_from_trainer", "base_model:google-bert/bert-large-uncased", "base_model:finetune:google-bert/bert-large-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-11-26T15:07:33Z
--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-large-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-large-uncased-finetuned-ner-harem results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased-finetuned-ner-harem This model is a fine-tuned version of [google-bert/bert-large-uncased](https://huggingface.co/google-bert/bert-large-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3109 - Precision: 0.6895 - Recall: 0.6442 - F1: 0.6661 - Accuracy: 0.9512 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.9978 | 281 | 0.2896 | 0.5442 | 0.4772 | 0.5085 | 0.9238 | | 0.3496 | 1.9973 | 562 | 0.2340 | 0.6811 | 0.5295 | 0.5958 | 0.9412 | | 0.3496 | 2.9969 | 843 | 0.2240 | 0.5876 | 0.5599 | 0.5734 | 0.9409 | | 0.1372 | 3.9964 | 1124 | 0.2540 | 0.6910 | 0.6223 | 0.6548 | 0.9403 | | 0.1372 | 4.9960 | 1405 | 0.2598 | 0.6433 | 0.6358 | 0.6395 | 0.9439 | | 0.0648 | 5.9956 | 1686 | 0.2377 | 0.6945 | 0.6442 | 0.6684 | 0.9497 | | 0.0648 | 6.9951 | 1967 | 0.2822 | 0.6965 | 0.6425 | 0.6684 | 0.9501 | | 0.0316 | 7.9982 | 2249 | 0.2958 | 0.7044 | 0.6509 | 0.6766 | 0.9518 | | 0.0148 | 8.9978 | 2530 | 0.3006 | 0.6944 | 0.6476 | 0.6702 | 0.9496 | | 0.0148 | 9.9938 | 2810 | 0.3109 | 0.6895 | 0.6442 | 0.6661 | 0.9512 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
jaba99/Phi-3-mini-4k-lora-tuned-4b
jaba99
2024-12-04T16:54:13Z
6
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-12-03T20:05:25Z
--- base_model: unsloth/phi-3-mini-4k-instruct-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - trl - sft --- # Uploaded model - **Developed by:** jaba99 - **License:** apache-2.0 - **Finetuned from model :** unsloth/phi-3-mini-4k-instruct-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
kclayto1/mt5-small-finetuned-amazon-en-es
kclayto1
2024-12-04T16:53:35Z
12
0
transformers
[ "transformers", "tensorboard", "safetensors", "mt5", "text2text-generation", "summarization", "generated_from_trainer", "base_model:google/mt5-small", "base_model:finetune:google/mt5-small", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2024-12-02T21:29:05Z
--- library_name: transformers license: apache-2.0 base_model: google/mt5-small tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: mt5-small-finetuned-amazon-en-es results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-amazon-en-es This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.9719 - Rouge1: 12.8375 - Rouge2: 4.873 - Rougel: 12.7298 - Rougelsum: 12.7317 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:| | 5.97 | 1.0 | 2202 | 3.2260 | 9.8577 | 3.6445 | 9.7485 | 9.7848 | | 3.647 | 2.0 | 4404 | 3.0734 | 11.4598 | 4.3082 | 11.3677 | 11.4138 | | 3.3891 | 3.0 | 6606 | 3.0070 | 12.0211 | 4.3801 | 11.7115 | 11.7438 | | 3.2655 | 4.0 | 8808 | 2.9878 | 11.8522 | 4.3727 | 11.6773 | 11.7271 | | 3.1735 | 5.0 | 11010 | 2.9825 | 12.6673 | 4.3875 | 12.5586 | 12.6202 | | 3.1156 | 6.0 | 13212 | 2.9798 | 13.0236 | 5.2414 | 12.8478 | 12.9195 | | 3.0672 | 7.0 | 15414 | 2.9771 | 12.6105 | 4.8806 | 12.5344 | 12.545 | | 3.044 | 8.0 | 17616 | 2.9719 | 12.8375 | 4.873 | 12.7298 | 12.7317 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
gokulsrinivasagan/distilbert_base_lda_qnli
gokulsrinivasagan
2024-12-04T16:50:53Z
119
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "base_model:gokulsrinivasagan/distilbert_base_lda", "base_model:finetune:gokulsrinivasagan/distilbert_base_lda", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-12-04T16:37:55Z
--- library_name: transformers language: - en base_model: gokulsrinivasagan/distilbert_base_lda tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert_base_lda_qnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE QNLI type: glue args: qnli metrics: - name: Accuracy type: accuracy value: 0.8228079809628409 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_base_lda_qnli This model is a fine-tuned version of [gokulsrinivasagan/distilbert_base_lda](https://huggingface.co/gokulsrinivasagan/distilbert_base_lda) on the GLUE QNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.3940 - Accuracy: 0.8228 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4991 | 1.0 | 410 | 0.4308 | 0.8034 | | 0.3844 | 2.0 | 820 | 0.3940 | 0.8228 | | 0.3017 | 3.0 | 1230 | 0.4049 | 0.8309 | | 0.2254 | 4.0 | 1640 | 0.5099 | 0.8023 | | 0.164 | 5.0 | 2050 | 0.5351 | 0.8083 | | 0.1187 | 6.0 | 2460 | 0.6020 | 0.8148 | | 0.0911 | 7.0 | 2870 | 0.6820 | 0.8144 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3
GigoFof/llama-3.2-3b-lv2-CSP-RU-ChatBot
GigoFof
2024-12-04T16:50:07Z
113
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-classification", "ru", "en", "base_model:meta-llama/Llama-3.2-3B-Instruct", "base_model:finetune:meta-llama/Llama-3.2-3B-Instruct", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2024-12-04T10:52:31Z
--- library_name: transformers license: mit language: - ru - en base_model: - meta-llama/Llama-3.2-3B-Instruct pipeline_tag: text-classification --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> С этой моделью вы можете поговорить о культурных ценностях. - **Developed by:** Artamonov K.A. - **Model type:** Textual - **Language(s) (NLP):** Russian, English - **License:** MIT - **Finetuned from model [optional]:** LLAMA3.2-3B-Instrcut
Dawid511/speecht5_finetuned_librispeech_polish
Dawid511
2024-12-04T16:46:20Z
75
0
transformers
[ "transformers", "tensorboard", "safetensors", "speecht5", "text-to-audio", "generated_from_trainer", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-audio
2024-12-04T16:06:28Z
--- library_name: transformers license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer model-index: - name: speecht5_finetuned_librispeech_polish results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speecht5_finetuned_librispeech_polish This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3712 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.4598 | 1.3851 | 100 | 0.4189 | | 0.4308 | 2.7703 | 200 | 0.3925 | | 0.4123 | 4.1589 | 300 | 0.3818 | | 0.4004 | 5.5440 | 400 | 0.3754 | | 0.3973 | 6.9292 | 500 | 0.3712 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
Muadil/t5-large_sum_DPO_25k_8_1ep
Muadil
2024-12-04T16:44:15Z
105
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-12-04T16:43:21Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
gokulsrinivasagan/bert-base-uncased_mrpc
gokulsrinivasagan
2024-12-04T16:42:31Z
119
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-22T04:55:47Z
--- library_name: transformers language: - en license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: bert-base-uncased_mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.7867647058823529 - name: F1 type: f1 value: 0.8481675392670157 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased_mrpc This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.4455 - Accuracy: 0.7868 - F1: 0.8482 - Combined Score: 0.8175 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.5933 | 1.0 | 15 | 0.5066 | 0.7745 | 0.8351 | 0.8048 | | 0.4605 | 2.0 | 30 | 0.4455 | 0.7868 | 0.8482 | 0.8175 | | 0.31 | 3.0 | 45 | 0.5169 | 0.8162 | 0.8777 | 0.8469 | | 0.1871 | 4.0 | 60 | 0.4473 | 0.8407 | 0.8862 | 0.8634 | | 0.1453 | 5.0 | 75 | 0.5061 | 0.8235 | 0.8672 | 0.8453 | | 0.0963 | 6.0 | 90 | 0.5724 | 0.8284 | 0.8797 | 0.8541 | | 0.0515 | 7.0 | 105 | 0.7238 | 0.8333 | 0.8863 | 0.8598 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3
gokulsrinivasagan/bert_uncased_L-2_H-256_A-4_mrpc
gokulsrinivasagan
2024-12-04T16:40:46Z
113
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "base_model:google/bert_uncased_L-2_H-256_A-4", "base_model:finetune:google/bert_uncased_L-2_H-256_A-4", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-12-04T16:40:02Z
--- library_name: transformers language: - en license: apache-2.0 base_model: google/bert_uncased_L-2_H-256_A-4 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: bert_uncased_L-2_H-256_A-4_mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.7475490196078431 - name: F1 type: f1 value: 0.835725677830941 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_uncased_L-2_H-256_A-4_mrpc This model is a fine-tuned version of [google/bert_uncased_L-2_H-256_A-4](https://huggingface.co/google/bert_uncased_L-2_H-256_A-4) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.5344 - Accuracy: 0.7475 - F1: 0.8357 - Combined Score: 0.7916 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.619 | 1.0 | 15 | 0.5956 | 0.6887 | 0.8146 | 0.7517 | | 0.5893 | 2.0 | 30 | 0.5835 | 0.7010 | 0.8179 | 0.7594 | | 0.5612 | 3.0 | 45 | 0.5597 | 0.7059 | 0.8171 | 0.7615 | | 0.5397 | 4.0 | 60 | 0.5398 | 0.7377 | 0.8320 | 0.7849 | | 0.5063 | 5.0 | 75 | 0.5358 | 0.7426 | 0.8336 | 0.7881 | | 0.476 | 6.0 | 90 | 0.5344 | 0.7475 | 0.8357 | 0.7916 | | 0.4361 | 7.0 | 105 | 0.5515 | 0.7451 | 0.8349 | 0.7900 | | 0.4014 | 8.0 | 120 | 0.5508 | 0.75 | 0.8365 | 0.7933 | | 0.3684 | 9.0 | 135 | 0.5901 | 0.7304 | 0.8254 | 0.7779 | | 0.3396 | 10.0 | 150 | 0.5755 | 0.7426 | 0.8276 | 0.7851 | | 0.3061 | 11.0 | 165 | 0.5943 | 0.75 | 0.8317 | 0.7908 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3
gokulsrinivasagan/bert_uncased_L-2_H-256_A-4_cola
gokulsrinivasagan
2024-12-04T16:39:43Z
123
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "base_model:google/bert_uncased_L-2_H-256_A-4", "base_model:finetune:google/bert_uncased_L-2_H-256_A-4", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-12-04T16:38:47Z
--- library_name: transformers language: - en license: apache-2.0 base_model: google/bert_uncased_L-2_H-256_A-4 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation - accuracy model-index: - name: bert_uncased_L-2_H-256_A-4_cola results: - task: name: Text Classification type: text-classification dataset: name: GLUE COLA type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.0 - name: Accuracy type: accuracy value: 0.6912751793861389 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_uncased_L-2_H-256_A-4_cola This model is a fine-tuned version of [google/bert_uncased_L-2_H-256_A-4](https://huggingface.co/google/bert_uncased_L-2_H-256_A-4) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.6078 - Matthews Correlation: 0.0 - Accuracy: 0.6913 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------------------:|:--------:| | 0.6144 | 1.0 | 34 | 0.6150 | 0.0 | 0.6913 | | 0.6036 | 2.0 | 68 | 0.6160 | 0.0 | 0.6913 | | 0.5981 | 3.0 | 102 | 0.6136 | 0.0 | 0.6913 | | 0.5876 | 4.0 | 136 | 0.6078 | 0.0 | 0.6913 | | 0.5762 | 5.0 | 170 | 0.6084 | 0.0549 | 0.6913 | | 0.5546 | 6.0 | 204 | 0.6115 | 0.1563 | 0.6980 | | 0.533 | 7.0 | 238 | 0.6301 | 0.1339 | 0.6961 | | 0.5116 | 8.0 | 272 | 0.6459 | 0.1041 | 0.6846 | | 0.4936 | 9.0 | 306 | 0.6675 | 0.1149 | 0.6894 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3
mradermacher/Mistral-7b-Sumi-v0.2-GGUF
mradermacher
2024-12-04T16:38:55Z
73
0
transformers
[ "transformers", "gguf", "unsloth", "en", "base_model:Oisu/Mistral-7b-Sumi-v0.2", "base_model:quantized:Oisu/Mistral-7b-Sumi-v0.2", "endpoints_compatible", "region:us" ]
null
2024-12-04T14:56:14Z
--- base_model: Oisu/Mistral-7b-Sumi-v0.2 language: - en library_name: transformers quantized_by: mradermacher tags: - unsloth --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> static quants of https://huggingface.co/Oisu/Mistral-7b-Sumi-v0.2 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Mistral-7b-Sumi-v0.2-GGUF/resolve/main/Mistral-7b-Sumi-v0.2.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-7b-Sumi-v0.2-GGUF/resolve/main/Mistral-7b-Sumi-v0.2.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-7b-Sumi-v0.2-GGUF/resolve/main/Mistral-7b-Sumi-v0.2.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Mistral-7b-Sumi-v0.2-GGUF/resolve/main/Mistral-7b-Sumi-v0.2.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-7b-Sumi-v0.2-GGUF/resolve/main/Mistral-7b-Sumi-v0.2.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-7b-Sumi-v0.2-GGUF/resolve/main/Mistral-7b-Sumi-v0.2.Q4_0_4_4.gguf) | Q4_0_4_4 | 4.2 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/Mistral-7b-Sumi-v0.2-GGUF/resolve/main/Mistral-7b-Sumi-v0.2.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Mistral-7b-Sumi-v0.2-GGUF/resolve/main/Mistral-7b-Sumi-v0.2.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Mistral-7b-Sumi-v0.2-GGUF/resolve/main/Mistral-7b-Sumi-v0.2.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-7b-Sumi-v0.2-GGUF/resolve/main/Mistral-7b-Sumi-v0.2.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-7b-Sumi-v0.2-GGUF/resolve/main/Mistral-7b-Sumi-v0.2.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Mistral-7b-Sumi-v0.2-GGUF/resolve/main/Mistral-7b-Sumi-v0.2.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Mistral-7b-Sumi-v0.2-GGUF/resolve/main/Mistral-7b-Sumi-v0.2.f16.gguf) | f16 | 14.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
gokulsrinivasagan/bert_uncased_L-4_H-256_A-4_mrpc
gokulsrinivasagan
2024-12-04T16:38:54Z
110
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "base_model:google/bert_uncased_L-4_H-256_A-4", "base_model:finetune:google/bert_uncased_L-4_H-256_A-4", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-12-04T16:38:03Z
--- library_name: transformers language: - en license: apache-2.0 base_model: google/bert_uncased_L-4_H-256_A-4 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: bert_uncased_L-4_H-256_A-4_mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.7720588235294118 - name: F1 type: f1 value: 0.8393782383419689 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_uncased_L-4_H-256_A-4_mrpc This model is a fine-tuned version of [google/bert_uncased_L-4_H-256_A-4](https://huggingface.co/google/bert_uncased_L-4_H-256_A-4) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.5071 - Accuracy: 0.7721 - F1: 0.8394 - Combined Score: 0.8057 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.6375 | 1.0 | 15 | 0.6024 | 0.6936 | 0.8170 | 0.7553 | | 0.594 | 2.0 | 30 | 0.5776 | 0.6985 | 0.8167 | 0.7576 | | 0.5504 | 3.0 | 45 | 0.5475 | 0.7279 | 0.8274 | 0.7777 | | 0.5155 | 4.0 | 60 | 0.5083 | 0.7598 | 0.8345 | 0.7971 | | 0.4668 | 5.0 | 75 | 0.5116 | 0.7598 | 0.8345 | 0.7971 | | 0.4292 | 6.0 | 90 | 0.5237 | 0.7696 | 0.8433 | 0.8065 | | 0.3859 | 7.0 | 105 | 0.5071 | 0.7721 | 0.8394 | 0.8057 | | 0.3455 | 8.0 | 120 | 0.5300 | 0.7721 | 0.8426 | 0.8073 | | 0.3049 | 9.0 | 135 | 0.5408 | 0.7721 | 0.8410 | 0.8065 | | 0.2735 | 10.0 | 150 | 0.5337 | 0.7745 | 0.8425 | 0.8085 | | 0.2454 | 11.0 | 165 | 0.5962 | 0.7647 | 0.84 | 0.8024 | | 0.2117 | 12.0 | 180 | 0.5756 | 0.7794 | 0.8469 | 0.8132 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3
gokulsrinivasagan/bert-base-uncased_cola
gokulsrinivasagan
2024-12-04T16:38:43Z
108
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-22T04:48:21Z
--- library_name: transformers language: - en license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation - accuracy model-index: - name: bert-base-uncased_cola results: - task: name: Text Classification type: text-classification dataset: name: GLUE COLA type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5683668297227801 - name: Accuracy type: accuracy value: 0.8245446085929871 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased_cola This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.4191 - Matthews Correlation: 0.5684 - Accuracy: 0.8245 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------------------:|:--------:| | 0.5311 | 1.0 | 34 | 0.4443 | 0.5154 | 0.8035 | | 0.3306 | 2.0 | 68 | 0.4191 | 0.5684 | 0.8245 | | 0.2104 | 3.0 | 102 | 0.5792 | 0.5730 | 0.8265 | | 0.1325 | 4.0 | 136 | 0.5178 | 0.5883 | 0.8322 | | 0.0962 | 5.0 | 170 | 0.6488 | 0.5779 | 0.8274 | | 0.0751 | 6.0 | 204 | 0.7336 | 0.5449 | 0.8159 | | 0.0685 | 7.0 | 238 | 0.7193 | 0.5650 | 0.8236 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3
ELVISIO/jina_embeddings_v3_finetuned_online_contrastive_01
ELVISIO
2024-12-04T16:37:48Z
5
0
sentence-transformers
[ "sentence-transformers", "safetensors", "xlm-roberta", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:10000", "loss:OnlineContrastiveLoss", "custom_code", "arxiv:1908.10084", "base_model:jinaai/jina-embeddings-v3", "base_model:finetune:jinaai/jina-embeddings-v3", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-12-02T05:10:41Z
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:10000 - loss:OnlineContrastiveLoss base_model: jinaai/jina-embeddings-v3 widget: - source_sentence: i be try to picture the pitch for dark angel . i be think matrix and i be think bladerunner and i be think that chick that play faith in angel and wear shiny black leather or some chick just like her and leave that one with u . only get this . we will do it without any plot and dialogue and character and decent action or budget and just some loud bang and a hot chick in shiny black leather straddle a big throbbing bike . fanboys dig loud bang and hot chick in shiny black leather straddle big throbbing bike and right . flashy and shallow and dreary and formulaic and passionless and tedious and dull and dumb and humourless and desultory and barely competent . live action anime without any action and or indeed any life . sf just the way joe fanboy like it and in fact . negative . sentences: - This is a semantically positive review. - This is a semantically negative review. - This is a semantically positive review. - source_sentence: despite the high rating give to this film by imdb user and this be nothing more than your typical girl with a bad childhood obsessively stalks married man film . the attractive justine priestly brief nude scene may attract voyeur and but the film be hackneyed tripe . half out of . sentences: - This is a semantically positive review. - This is a semantically positive review. - This is a semantically positive review. - source_sentence: this movie portray ruth a a womanizing and hard drinking and gambling and overeat sport figure with a little baseball thrown in . babe ruth early life be quite interesting and this be for all intent and purpose be omit in this film . also and lou gehrig be barely cover and this be a well know relationship and good bad or indifferent and it should have be cover well than it be . his life be more than all bad . he be an american hero and an icon that a lot of baseball great pattern their life after . i feel that i be be fair to the memory of a great baseball player that this film completely ignore . shame on the maker of this film for capitalize on his fault and not his greatness . sentences: - This is a semantically positive review. - This is a semantically negative review. - This is a semantically positive review. - source_sentence: the silent one panel cartoon henry come to fleischer studio and bill a the world funny human in this dull little cartoon . betty and long past her prime and thanks to the production code and be run a pet shop and leave henry in charge for far too long five minute . a bore . sentences: - This is a semantically positive review. - This is a semantically negative review. - This is a semantically negative review. - source_sentence: zu warrior most definitely should have be an animated series because a a movie it like watch an old anime on acid . the movie just start out of nowhere and people just fly around fight with metal wing and other stupid weapon until this princess sacrifice herself for her lover on a cloud or something . whether this princess be a god or an angel be beyond me but soon enough this fly wind bad guy come in and kill her while the guy with the razor wing fight some other mystical god or demon or wizard thing . the plot line be either not there or extremely hard to follow you need to be insanely intelligent to get this movie . the plot soon follow this chinese mortal who be call upon by this god to fight the evil flying and princess kill bad guy and soon we have a very badly choreograph uwe boll like fight scene complete with terrible martial art on a mountain or something . even the visuals be weird some might say they be stun and colorful but i be go to say they be blurry and acid trip like ( yes that a word . ) . i watch it both dub and with subtitle and both be equally bad and hard to understand . who be i kidding i do not understand it at all . it felt like i be watch episode 30 of some 1980 anime and completely miss how the story begin or like i start read a comic series of 5 at number 4 because i have no clue how this thing start where it be go or how it would end i be lose the entire time . i can honestly say this be one of the bad film experience ever it be like watch inu yasha at episode 134 drunk . yeah that right you do not know what the hell be go on . don not waste your brain try to figure this out . sentences: - This is a semantically positive review. - This is a semantically negative review. - This is a semantically positive review. pipeline_tag: sentence-similarity library_name: sentence-transformers --- # SentenceTransformer based on jinaai/jina-embeddings-v3 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [jinaai/jina-embeddings-v3](https://huggingface.co/jinaai/jina-embeddings-v3). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [jinaai/jina-embeddings-v3](https://huggingface.co/jinaai/jina-embeddings-v3) <!-- at revision 30996fea06f69ecd8382ee4f11e29acaf6b5405e --> - **Maximum Sequence Length:** 8194 tokens - **Output Dimensionality:** 1024 tokens - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (transformer): Transformer( (auto_model): XLMRobertaLoRA( (roberta): XLMRobertaModel( (embeddings): XLMRobertaEmbeddings( (word_embeddings): ParametrizedEmbedding( 250002, 1024, padding_idx=1 (parametrizations): ModuleDict( (weight): ParametrizationList( (0): LoRAParametrization() ) ) ) (token_type_embeddings): ParametrizedEmbedding( 1, 1024 (parametrizations): ModuleDict( (weight): ParametrizationList( (0): LoRAParametrization() ) ) ) ) (emb_drop): Dropout(p=0.1, inplace=False) (emb_ln): LayerNorm((1024,), eps=1e-05, elementwise_affine=True) (encoder): XLMRobertaEncoder( (layers): ModuleList( (0-23): 24 x Block( (mixer): MHA( (rotary_emb): RotaryEmbedding() (Wqkv): ParametrizedLinearResidual( in_features=1024, out_features=3072, bias=True (parametrizations): ModuleDict( (weight): ParametrizationList( (0): LoRAParametrization() ) ) ) (inner_attn): FlashSelfAttention( (drop): Dropout(p=0.1, inplace=False) ) (inner_cross_attn): FlashCrossAttention( (drop): Dropout(p=0.1, inplace=False) ) (out_proj): ParametrizedLinear( in_features=1024, out_features=1024, bias=True (parametrizations): ModuleDict( (weight): ParametrizationList( (0): LoRAParametrization() ) ) ) ) (dropout1): Dropout(p=0.1, inplace=False) (drop_path1): StochasticDepth(p=0.0, mode=row) (norm1): LayerNorm((1024,), eps=1e-05, elementwise_affine=True) (mlp): Mlp( (fc1): ParametrizedLinear( in_features=1024, out_features=4096, bias=True (parametrizations): ModuleDict( (weight): ParametrizationList( (0): LoRAParametrization() ) ) ) (fc2): ParametrizedLinear( in_features=4096, out_features=1024, bias=True (parametrizations): ModuleDict( (weight): ParametrizationList( (0): LoRAParametrization() ) ) ) ) (dropout2): Dropout(p=0.1, inplace=False) (drop_path2): StochasticDepth(p=0.0, mode=row) (norm2): LayerNorm((1024,), eps=1e-05, elementwise_affine=True) ) ) ) (pooler): XLMRobertaPooler( (dense): ParametrizedLinear( in_features=1024, out_features=1024, bias=True (parametrizations): ModuleDict( (weight): ParametrizationList( (0): LoRAParametrization() ) ) ) (activation): Tanh() ) ) ) ) (pooler): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (normalizer): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("ELVISIO/jina_embeddings_v3_finetuned_online_contrastive_01", trust_remote_code=True, model_kwargs={'default_task': 'classification'}) # Run inference sentences = [ 'zu warrior most definitely should have be an animated series because a a movie it like watch an old anime on acid . the movie just start out of nowhere and people just fly around fight with metal wing and other stupid weapon until this princess sacrifice herself for her lover on a cloud or something . whether this princess be a god or an angel be beyond me but soon enough this fly wind bad guy come in and kill her while the guy with the razor wing fight some other mystical god or demon or wizard thing . the plot line be either not there or extremely hard to follow you need to be insanely intelligent to get this movie . the plot soon follow this chinese mortal who be call upon by this god to fight the evil flying and princess kill bad guy and soon we have a very badly choreograph uwe boll like fight scene complete with terrible martial art on a mountain or something . even the visuals be weird some might say they be stun and colorful but i be go to say they be blurry and acid trip like ( yes that a word . ) . i watch it both dub and with subtitle and both be equally bad and hard to understand . who be i kidding i do not understand it at all . it felt like i be watch episode 30 of some 1980 anime and completely miss how the story begin or like i start read a comic series of 5 at number 4 because i have no clue how this thing start where it be go or how it would end i be lose the entire time . i can honestly say this be one of the bad film experience ever it be like watch inu yasha at episode 134 drunk . yeah that right you do not know what the hell be go on . don not waste your brain try to figure this out .', 'This is a semantically negative review.', 'This is a semantically positive review.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 10000 training samples * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code> * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | label | |:--------|:--------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------| | type | string | string | float | | details | <ul><li>min: 19 tokens</li><li>mean: 300.92 tokens</li><li>max: 1415 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 11.0 tokens</li><li>max: 11 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.5</li><li>max: 1.0</li></ul> | * Samples: | sentence1 | sentence2 | label | |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------|:-----------------| | <code>i rent i be curious yellow from my video store because of all the controversy that surround it when it be first release in 1967. i also hear that at first it be seize by u. s. custom if it ever try to enter this country and therefore be a fan of film consider controversial i really have to see this for myself . the plot be center around a young swedish drama student name lena who want to learn everything she can about life . in particular she want to focus her attention to make some sort of documentary on what the average swede think about certain political issue such a the vietnam war and race issue in the united state . in between ask politician and ordinary denizen of stockholm about their opinion on politics and she have sex with her drama teacher and classmate and and marry men . what kill me about i be curious yellow be that 40 year ago and this be consider pornographic . really and the sex and nudity scene be few and far between and even then it not shot like some cheaply make porno . while my countryman mind find it shock and in reality sex and nudity be a major staple in swedish cinema . even ingmar bergman and arguably their answer to good old boy john ford and have sex scene in his film . i do commend the filmmaker for the fact that any sex show in the film be show for artistic purpose rather than just to shock people and make money to be show in pornographic theater in america . i be curious yellow be a good film for anyone want to study the meat and potato ( no pun intend ) of swedish cinema . but really and this film doesn not have much of a plot .</code> | <code>This is a semantically negative review.</code> | <code>1.0</code> | | <code>i rent i be curious yellow from my video store because of all the controversy that surround it when it be first release in 1967. i also hear that at first it be seize by u. s. custom if it ever try to enter this country and therefore be a fan of film consider controversial i really have to see this for myself . the plot be center around a young swedish drama student name lena who want to learn everything she can about life . in particular she want to focus her attention to make some sort of documentary on what the average swede think about certain political issue such a the vietnam war and race issue in the united state . in between ask politician and ordinary denizen of stockholm about their opinion on politics and she have sex with her drama teacher and classmate and and marry men . what kill me about i be curious yellow be that 40 year ago and this be consider pornographic . really and the sex and nudity scene be few and far between and even then it not shot like some cheaply make porno . while my countryman mind find it shock and in reality sex and nudity be a major staple in swedish cinema . even ingmar bergman and arguably their answer to good old boy john ford and have sex scene in his film . i do commend the filmmaker for the fact that any sex show in the film be show for artistic purpose rather than just to shock people and make money to be show in pornographic theater in america . i be curious yellow be a good film for anyone want to study the meat and potato ( no pun intend ) of swedish cinema . but really and this film doesn not have much of a plot .</code> | <code>This is a semantically positive review.</code> | <code>0.0</code> | | <code>i be curious represent yellow be a risible and pretentious steam pile . it doesn not matter what one political view be because this film can hardly be take seriously on any level . a for the claim that frontal male nudity be an automatic nc 17 and that isn not true . i have see r rat film with male nudity . grant and they only offer some fleeting view and but where be the r rat film with gap vulva and flap labium . nowhere and because they do not exist . the same go for those crappy cable show represent schlongs swing in the breeze but not a clitoris in sight . and those pretentious indie movie like the brown bunny and in which be treat to the site of vincent gallo throb johnson and but not a trace of pink visible on chloe sevigny . before cry ( or imply ) double standard in matter of nudity and the mentally obtuse should take into account one unavoidably obvious anatomical difference between men and woman represent there be no genitals on display when actresses appear nude and and the same can not be say for a man . in fact and you generally would not see female genitals in an american film in anything short of porn or explicit erotica . this allege double standard be less a double standard than an admittedly depressing ability to come to term culturally with the inside of woman body .</code> | <code>This is a semantically negative review.</code> | <code>1.0</code> | * Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss) ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 3.0 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | |:------:|:----:|:-------------:| | 0.6394 | 500 | 0.9485 | | 1.2788 | 1000 | 0.6908 | | 1.9182 | 1500 | 0.7048 | | 2.5575 | 2000 | 0.6892 | ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.1.1 - Transformers: 4.45.2 - PyTorch: 2.5.1+cu121 - Accelerate: 1.1.1 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
gokulsrinivasagan/bert_uncased_L-4_H-256_A-4_cola
gokulsrinivasagan
2024-12-04T16:37:44Z
105
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "base_model:google/bert_uncased_L-4_H-256_A-4", "base_model:finetune:google/bert_uncased_L-4_H-256_A-4", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-12-04T16:36:25Z
--- library_name: transformers language: - en license: apache-2.0 base_model: google/bert_uncased_L-4_H-256_A-4 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation - accuracy model-index: - name: bert_uncased_L-4_H-256_A-4_cola results: - task: name: Text Classification type: text-classification dataset: name: GLUE COLA type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.2650812590803394 - name: Accuracy type: accuracy value: 0.7027804255485535 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_uncased_L-4_H-256_A-4_cola This model is a fine-tuned version of [google/bert_uncased_L-4_H-256_A-4](https://huggingface.co/google/bert_uncased_L-4_H-256_A-4) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.5943 - Matthews Correlation: 0.2651 - Accuracy: 0.7028 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------------------:|:--------:| | 0.6358 | 1.0 | 34 | 0.6182 | 0.0 | 0.6913 | | 0.6077 | 2.0 | 68 | 0.6184 | 0.0 | 0.6913 | | 0.5982 | 3.0 | 102 | 0.6035 | 0.0 | 0.6913 | | 0.575 | 4.0 | 136 | 0.5997 | 0.1458 | 0.7009 | | 0.5391 | 5.0 | 170 | 0.5992 | 0.2018 | 0.7028 | | 0.4999 | 6.0 | 204 | 0.6159 | 0.2088 | 0.7085 | | 0.4722 | 7.0 | 238 | 0.5974 | 0.2782 | 0.7248 | | 0.4437 | 8.0 | 272 | 0.5943 | 0.2651 | 0.7028 | | 0.4204 | 9.0 | 306 | 0.6239 | 0.2618 | 0.7210 | | 0.3956 | 10.0 | 340 | 0.6360 | 0.2655 | 0.7191 | | 0.3671 | 11.0 | 374 | 0.6876 | 0.2592 | 0.7200 | | 0.3546 | 12.0 | 408 | 0.7041 | 0.2665 | 0.7239 | | 0.333 | 13.0 | 442 | 0.6849 | 0.2891 | 0.7229 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3
wavyduck/XLRS_FullDataset
wavyduck
2024-12-04T16:35:42Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "en", "dataset:timit-asr/timit_asr", "base_model:facebook/wav2vec2-base", "base_model:finetune:facebook/wav2vec2-base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-12-03T15:32:53Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: XLRS_FullDataset results: [] datasets: - timit-asr/timit_asr language: - en base_model: - facebook/wav2vec2-base pipeline_tag: automatic-speech-recognition metrics: - wer library_name: transformers --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLRS_FullDataset This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3057 - Wer: 0.2697 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.5696 | 1.0 | 500 | 3.1546 | 1.0 | | 2.491 | 2.01 | 1000 | 0.8309 | 0.7872 | | 0.7519 | 3.01 | 1500 | 0.3648 | 0.4364 | | 0.4704 | 4.02 | 2000 | 0.2998 | 0.3758 | | 0.3385 | 5.02 | 2500 | 0.2639 | 0.3439 | | 0.2837 | 6.02 | 3000 | 0.2604 | 0.3309 | | 0.2233 | 7.03 | 3500 | 0.2734 | 0.3143 | | 0.1997 | 8.03 | 4000 | 0.2676 | 0.3121 | | 0.1717 | 9.04 | 4500 | 0.2489 | 0.2941 | | 0.1558 | 10.04 | 5000 | 0.2777 | 0.2969 | | 0.1497 | 11.04 | 5500 | 0.2693 | 0.2890 | | 0.1326 | 12.05 | 6000 | 0.2844 | 0.2921 | | 0.118 | 13.05 | 6500 | 0.2818 | 0.2969 | | 0.119 | 14.06 | 7000 | 0.2798 | 0.2854 | | 0.0991 | 15.06 | 7500 | 0.2765 | 0.2858 | | 0.108 | 16.06 | 8000 | 0.2904 | 0.2794 | | 0.0935 | 17.07 | 8500 | 0.2846 | 0.2773 | | 0.0857 | 18.07 | 9000 | 0.3120 | 0.2812 | | 0.0928 | 19.08 | 9500 | 0.3073 | 0.2820 | | 0.0832 | 20.08 | 10000 | 0.2981 | 0.2808 | | 0.0768 | 21.08 | 10500 | 0.3065 | 0.2807 | | 0.0768 | 22.09 | 11000 | 0.2960 | 0.2766 | | 0.0754 | 23.09 | 11500 | 0.3007 | 0.2783 | | 0.063 | 24.1 | 12000 | 0.2918 | 0.2739 | | 0.0614 | 25.1 | 12500 | 0.3144 | 0.2748 | | 0.0628 | 26.1 | 13000 | 0.3074 | 0.2713 | | 0.0595 | 27.11 | 13500 | 0.3103 | 0.2695 | | 0.0616 | 28.11 | 14000 | 0.3108 | 0.2697 | | 0.0587 | 29.12 | 14500 | 0.3057 | 0.2697 | ### Framework versions - Transformers 4.17.0 - Pytorch 2.5.1+cu121 - Datasets 1.18.3 - Tokenizers 0.20.3
MayBashendy/ArabicNewSplits3_FineTuningAraBERT_run3_AugV5_k20_task1_organization
MayBashendy
2024-12-04T16:35:18Z
163
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-12-04T16:23:37Z
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: ArabicNewSplits3_FineTuningAraBERT_run3_AugV5_k20_task1_organization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ArabicNewSplits3_FineTuningAraBERT_run3_AugV5_k20_task1_organization This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7283 - Qwk: 0.5487 - Mse: 0.7283 - Rmse: 0.8534 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:------:|:----:|:---------------:|:-------:|:------:|:------:| | No log | 0.0208 | 2 | 4.7881 | -0.0151 | 4.7881 | 2.1882 | | No log | 0.0417 | 4 | 2.7562 | -0.0058 | 2.7562 | 1.6602 | | No log | 0.0625 | 6 | 1.9863 | 0.0708 | 1.9863 | 1.4094 | | No log | 0.0833 | 8 | 1.4735 | 0.0749 | 1.4735 | 1.2139 | | No log | 0.1042 | 10 | 1.1256 | 0.2912 | 1.1256 | 1.0610 | | No log | 0.125 | 12 | 1.0993 | 0.3915 | 1.0993 | 1.0485 | | No log | 0.1458 | 14 | 1.0230 | 0.3266 | 1.0230 | 1.0114 | | No log | 0.1667 | 16 | 1.0721 | 0.2474 | 1.0721 | 1.0354 | | No log | 0.1875 | 18 | 1.1100 | 0.2474 | 1.1100 | 1.0536 | | No log | 0.2083 | 20 | 1.1660 | 0.1761 | 1.1660 | 1.0798 | | No log | 0.2292 | 22 | 1.2153 | 0.2612 | 1.2153 | 1.1024 | | No log | 0.25 | 24 | 1.1355 | 0.2416 | 1.1355 | 1.0656 | | No log | 0.2708 | 26 | 1.1988 | 0.3089 | 1.1988 | 1.0949 | | No log | 0.2917 | 28 | 1.1352 | 0.1818 | 1.1352 | 1.0655 | | No log | 0.3125 | 30 | 1.1160 | 0.3089 | 1.1160 | 1.0564 | | No log | 0.3333 | 32 | 1.0678 | 0.2903 | 1.0678 | 1.0333 | | No log | 0.3542 | 34 | 1.1708 | 0.0803 | 1.1708 | 1.0820 | | No log | 0.375 | 36 | 1.1162 | 0.1910 | 1.1162 | 1.0565 | | No log | 0.3958 | 38 | 1.0168 | 0.4096 | 1.0168 | 1.0084 | | No log | 0.4167 | 40 | 1.0098 | 0.4276 | 1.0098 | 1.0049 | | No log | 0.4375 | 42 | 1.0968 | 0.4454 | 1.0968 | 1.0473 | | No log | 0.4583 | 44 | 1.0906 | 0.4454 | 1.0906 | 1.0443 | | No log | 0.4792 | 46 | 0.9501 | 0.4454 | 0.9501 | 0.9747 | | No log | 0.5 | 48 | 0.9508 | 0.3211 | 0.9508 | 0.9751 | | No log | 0.5208 | 50 | 1.1001 | 0.2305 | 1.1001 | 1.0489 | | No log | 0.5417 | 52 | 0.9371 | 0.4203 | 0.9371 | 0.9681 | | No log | 0.5625 | 54 | 0.8986 | 0.4414 | 0.8986 | 0.9480 | | No log | 0.5833 | 56 | 0.8932 | 0.535 | 0.8932 | 0.9451 | | No log | 0.6042 | 58 | 0.8702 | 0.5758 | 0.8702 | 0.9329 | | No log | 0.625 | 60 | 0.8444 | 0.5396 | 0.8444 | 0.9189 | | No log | 0.6458 | 62 | 0.7809 | 0.6422 | 0.7809 | 0.8837 | | No log | 0.6667 | 64 | 0.6907 | 0.6704 | 0.6907 | 0.8311 | | No log | 0.6875 | 66 | 0.6904 | 0.5786 | 0.6904 | 0.8309 | | No log | 0.7083 | 68 | 0.6392 | 0.6864 | 0.6392 | 0.7995 | | No log | 0.7292 | 70 | 0.6485 | 0.7237 | 0.6485 | 0.8053 | | No log | 0.75 | 72 | 0.6744 | 0.6892 | 0.6744 | 0.8212 | | No log | 0.7708 | 74 | 0.6578 | 0.7097 | 0.6578 | 0.8111 | | No log | 0.7917 | 76 | 0.7250 | 0.5666 | 0.7250 | 0.8515 | | No log | 0.8125 | 78 | 0.7300 | 0.5909 | 0.7300 | 0.8544 | | No log | 0.8333 | 80 | 0.6192 | 0.6447 | 0.6192 | 0.7869 | | No log | 0.8542 | 82 | 0.6387 | 0.6447 | 0.6387 | 0.7992 | | No log | 0.875 | 84 | 0.7998 | 0.5574 | 0.7998 | 0.8943 | | No log | 0.8958 | 86 | 1.1013 | 0.4290 | 1.1013 | 1.0494 | | No log | 0.9167 | 88 | 1.1100 | 0.4176 | 1.1100 | 1.0536 | | No log | 0.9375 | 90 | 1.0181 | 0.3915 | 1.0181 | 1.0090 | | No log | 0.9583 | 92 | 0.7709 | 0.4936 | 0.7709 | 0.8780 | | No log | 0.9792 | 94 | 0.8041 | 0.5204 | 0.8041 | 0.8967 | | No log | 1.0 | 96 | 0.9883 | 0.4038 | 0.9883 | 0.9941 | | No log | 1.0208 | 98 | 0.9787 | 0.4320 | 0.9787 | 0.9893 | | No log | 1.0417 | 100 | 0.7014 | 0.5359 | 0.7014 | 0.8375 | | No log | 1.0625 | 102 | 0.6554 | 0.6212 | 0.6554 | 0.8096 | | No log | 1.0833 | 104 | 0.7481 | 0.5330 | 0.7481 | 0.8649 | | No log | 1.1042 | 106 | 0.8204 | 0.5789 | 0.8204 | 0.9057 | | No log | 1.125 | 108 | 0.9833 | 0.5755 | 0.9833 | 0.9916 | | No log | 1.1458 | 110 | 1.0799 | 0.5089 | 1.0799 | 1.0392 | | No log | 1.1667 | 112 | 1.1292 | 0.5215 | 1.1292 | 1.0626 | | No log | 1.1875 | 114 | 0.8704 | 0.5877 | 0.8704 | 0.9329 | | No log | 1.2083 | 116 | 0.6763 | 0.6438 | 0.6763 | 0.8224 | | No log | 1.2292 | 118 | 0.7456 | 0.6192 | 0.7456 | 0.8635 | | No log | 1.25 | 120 | 1.0700 | 0.5590 | 1.0700 | 1.0344 | | No log | 1.2708 | 122 | 1.1244 | 0.5206 | 1.1244 | 1.0604 | | No log | 1.2917 | 124 | 0.8907 | 0.5877 | 0.8907 | 0.9438 | | No log | 1.3125 | 126 | 0.7172 | 0.5112 | 0.7172 | 0.8469 | | No log | 1.3333 | 128 | 0.7926 | 0.6050 | 0.7926 | 0.8903 | | No log | 1.3542 | 130 | 0.7416 | 0.5237 | 0.7416 | 0.8612 | | No log | 1.375 | 132 | 0.8042 | 0.5156 | 0.8042 | 0.8968 | | No log | 1.3958 | 134 | 0.9929 | 0.4252 | 0.9929 | 0.9965 | | No log | 1.4167 | 136 | 0.9129 | 0.4877 | 0.9129 | 0.9554 | | No log | 1.4375 | 138 | 0.9181 | 0.5526 | 0.9181 | 0.9582 | | No log | 1.4583 | 140 | 0.7750 | 0.5760 | 0.7750 | 0.8804 | | No log | 1.4792 | 142 | 0.7910 | 0.5822 | 0.7910 | 0.8894 | | No log | 1.5 | 144 | 0.7775 | 0.6026 | 0.7775 | 0.8818 | | No log | 1.5208 | 146 | 0.9220 | 0.5777 | 0.9220 | 0.9602 | | No log | 1.5417 | 148 | 1.0334 | 0.5104 | 1.0334 | 1.0166 | | No log | 1.5625 | 150 | 0.8791 | 0.5645 | 0.8791 | 0.9376 | | No log | 1.5833 | 152 | 0.8940 | 0.5270 | 0.8940 | 0.9455 | | No log | 1.6042 | 154 | 1.0551 | 0.5357 | 1.0551 | 1.0272 | | No log | 1.625 | 156 | 1.0206 | 0.5357 | 1.0206 | 1.0103 | | No log | 1.6458 | 158 | 0.7377 | 0.5552 | 0.7377 | 0.8589 | | No log | 1.6667 | 160 | 0.6507 | 0.6287 | 0.6507 | 0.8067 | | No log | 1.6875 | 162 | 0.6498 | 0.6527 | 0.6498 | 0.8061 | | No log | 1.7083 | 164 | 0.7715 | 0.5358 | 0.7715 | 0.8783 | | No log | 1.7292 | 166 | 1.0440 | 0.5378 | 1.0440 | 1.0218 | | No log | 1.75 | 168 | 0.9958 | 0.5357 | 0.9958 | 0.9979 | | No log | 1.7708 | 170 | 0.7167 | 0.6217 | 0.7167 | 0.8466 | | No log | 1.7917 | 172 | 0.6154 | 0.6417 | 0.6154 | 0.7845 | | No log | 1.8125 | 174 | 0.6231 | 0.6336 | 0.6231 | 0.7894 | | No log | 1.8333 | 176 | 0.6101 | 0.6550 | 0.6101 | 0.7811 | | No log | 1.8542 | 178 | 0.6069 | 0.6825 | 0.6069 | 0.7790 | | No log | 1.875 | 180 | 0.6355 | 0.6672 | 0.6355 | 0.7972 | | No log | 1.8958 | 182 | 0.5888 | 0.7008 | 0.5888 | 0.7674 | | No log | 1.9167 | 184 | 0.5870 | 0.6813 | 0.5870 | 0.7661 | | No log | 1.9375 | 186 | 0.6171 | 0.6795 | 0.6171 | 0.7855 | | No log | 1.9583 | 188 | 0.8046 | 0.5943 | 0.8046 | 0.8970 | | No log | 1.9792 | 190 | 0.8988 | 0.5668 | 0.8988 | 0.9481 | | No log | 2.0 | 192 | 0.7854 | 0.6114 | 0.7854 | 0.8862 | | No log | 2.0208 | 194 | 0.6687 | 0.6777 | 0.6687 | 0.8178 | | No log | 2.0417 | 196 | 0.6901 | 0.6291 | 0.6901 | 0.8307 | | No log | 2.0625 | 198 | 0.7321 | 0.625 | 0.7321 | 0.8556 | | No log | 2.0833 | 200 | 0.9630 | 0.5668 | 0.9630 | 0.9813 | | No log | 2.1042 | 202 | 1.0300 | 0.5615 | 1.0300 | 1.0149 | | No log | 2.125 | 204 | 0.9468 | 0.5668 | 0.9468 | 0.9730 | | No log | 2.1458 | 206 | 0.8285 | 0.5584 | 0.8285 | 0.9102 | | No log | 2.1667 | 208 | 0.7432 | 0.6139 | 0.7432 | 0.8621 | | No log | 2.1875 | 210 | 0.7412 | 0.625 | 0.7412 | 0.8609 | | No log | 2.2083 | 212 | 0.8342 | 0.58 | 0.8342 | 0.9133 | | No log | 2.2292 | 214 | 0.8733 | 0.5909 | 0.8733 | 0.9345 | | No log | 2.25 | 216 | 0.8472 | 0.5943 | 0.8472 | 0.9205 | | No log | 2.2708 | 218 | 0.6503 | 0.6358 | 0.6503 | 0.8064 | | No log | 2.2917 | 220 | 0.6147 | 0.6646 | 0.6147 | 0.7840 | | No log | 2.3125 | 222 | 0.6293 | 0.6364 | 0.6293 | 0.7933 | | No log | 2.3333 | 224 | 0.6729 | 0.5377 | 0.6729 | 0.8203 | | No log | 2.3542 | 226 | 0.6703 | 0.6494 | 0.6703 | 0.8187 | | No log | 2.375 | 228 | 0.6233 | 0.6045 | 0.6233 | 0.7895 | | No log | 2.3958 | 230 | 0.6599 | 0.5802 | 0.6599 | 0.8123 | | No log | 2.4167 | 232 | 0.6573 | 0.5802 | 0.6573 | 0.8108 | | No log | 2.4375 | 234 | 0.6311 | 0.6186 | 0.6311 | 0.7944 | | No log | 2.4583 | 236 | 0.6328 | 0.5968 | 0.6328 | 0.7955 | | No log | 2.4792 | 238 | 0.6762 | 0.5989 | 0.6762 | 0.8223 | | No log | 2.5 | 240 | 0.8398 | 0.5691 | 0.8398 | 0.9164 | | No log | 2.5208 | 242 | 0.9586 | 0.5152 | 0.9586 | 0.9791 | | No log | 2.5417 | 244 | 0.9076 | 0.4915 | 0.9076 | 0.9527 | | No log | 2.5625 | 246 | 0.8812 | 0.4915 | 0.8812 | 0.9387 | | No log | 2.5833 | 248 | 0.7892 | 0.5551 | 0.7892 | 0.8884 | | No log | 2.6042 | 250 | 0.7055 | 0.6104 | 0.7055 | 0.8399 | | No log | 2.625 | 252 | 0.7326 | 0.5811 | 0.7326 | 0.8559 | | No log | 2.6458 | 254 | 0.9604 | 0.5119 | 0.9604 | 0.9800 | | No log | 2.6667 | 256 | 1.1813 | 0.4860 | 1.1813 | 1.0869 | | No log | 2.6875 | 258 | 1.1682 | 0.4870 | 1.1682 | 1.0808 | | No log | 2.7083 | 260 | 0.9108 | 0.5840 | 0.9108 | 0.9543 | | No log | 2.7292 | 262 | 0.7301 | 0.5909 | 0.7301 | 0.8544 | | No log | 2.75 | 264 | 0.7045 | 0.5997 | 0.7045 | 0.8393 | | No log | 2.7708 | 266 | 0.7349 | 0.5760 | 0.7349 | 0.8573 | | No log | 2.7917 | 268 | 0.8936 | 0.5449 | 0.8936 | 0.9453 | | No log | 2.8125 | 270 | 1.1077 | 0.5119 | 1.1077 | 1.0525 | | No log | 2.8333 | 272 | 1.0901 | 0.5378 | 1.0901 | 1.0441 | | No log | 2.8542 | 274 | 1.0415 | 0.5378 | 1.0415 | 1.0205 | | No log | 2.875 | 276 | 0.8918 | 0.5402 | 0.8918 | 0.9443 | | No log | 2.8958 | 278 | 0.7644 | 0.5355 | 0.7644 | 0.8743 | | No log | 2.9167 | 280 | 0.7114 | 0.5804 | 0.7114 | 0.8434 | | No log | 2.9375 | 282 | 0.6608 | 0.6182 | 0.6608 | 0.8129 | | No log | 2.9583 | 284 | 0.6228 | 0.6569 | 0.6228 | 0.7892 | | No log | 2.9792 | 286 | 0.6103 | 0.6577 | 0.6103 | 0.7812 | | No log | 3.0 | 288 | 0.6057 | 0.6369 | 0.6057 | 0.7783 | | No log | 3.0208 | 290 | 0.6255 | 0.6777 | 0.6255 | 0.7909 | | No log | 3.0417 | 292 | 0.6686 | 0.6059 | 0.6686 | 0.8177 | | No log | 3.0625 | 294 | 0.6515 | 0.6777 | 0.6515 | 0.8071 | | No log | 3.0833 | 296 | 0.6196 | 0.7008 | 0.6196 | 0.7871 | | No log | 3.1042 | 298 | 0.6294 | 0.7210 | 0.6294 | 0.7933 | | No log | 3.125 | 300 | 0.6396 | 0.7210 | 0.6396 | 0.7998 | | No log | 3.1458 | 302 | 0.6490 | 0.7008 | 0.6490 | 0.8056 | | No log | 3.1667 | 304 | 0.6865 | 0.6914 | 0.6865 | 0.8286 | | No log | 3.1875 | 306 | 0.7775 | 0.5822 | 0.7775 | 0.8818 | | No log | 3.2083 | 308 | 0.9298 | 0.5535 | 0.9298 | 0.9642 | | No log | 3.2292 | 310 | 0.8729 | 0.5535 | 0.8729 | 0.9343 | | No log | 3.25 | 312 | 0.6645 | 0.6511 | 0.6645 | 0.8152 | | No log | 3.2708 | 314 | 0.5727 | 0.7179 | 0.5727 | 0.7568 | | No log | 3.2917 | 316 | 0.6571 | 0.6777 | 0.6571 | 0.8106 | | No log | 3.3125 | 318 | 0.6440 | 0.6777 | 0.6440 | 0.8025 | | No log | 3.3333 | 320 | 0.5814 | 0.7171 | 0.5814 | 0.7625 | | No log | 3.3542 | 322 | 0.6139 | 0.64 | 0.6139 | 0.7835 | | No log | 3.375 | 324 | 0.6737 | 0.5944 | 0.6737 | 0.8208 | | No log | 3.3958 | 326 | 0.6486 | 0.6956 | 0.6486 | 0.8054 | | No log | 3.4167 | 328 | 0.6117 | 0.6191 | 0.6117 | 0.7821 | | No log | 3.4375 | 330 | 0.6405 | 0.6176 | 0.6405 | 0.8003 | | No log | 3.4583 | 332 | 0.6662 | 0.6359 | 0.6662 | 0.8162 | | No log | 3.4792 | 334 | 0.6405 | 0.6857 | 0.6405 | 0.8003 | | No log | 3.5 | 336 | 0.6162 | 0.6550 | 0.6162 | 0.7850 | | No log | 3.5208 | 338 | 0.6342 | 0.6099 | 0.6342 | 0.7964 | | No log | 3.5417 | 340 | 0.7087 | 0.5358 | 0.7087 | 0.8418 | | No log | 3.5625 | 342 | 0.6654 | 0.6599 | 0.6654 | 0.8157 | | No log | 3.5833 | 344 | 0.6213 | 0.64 | 0.6213 | 0.7882 | | No log | 3.6042 | 346 | 0.6210 | 0.6561 | 0.6210 | 0.7880 | | No log | 3.625 | 348 | 0.6415 | 0.6297 | 0.6415 | 0.8009 | | No log | 3.6458 | 350 | 0.6802 | 0.5831 | 0.6802 | 0.8247 | | No log | 3.6667 | 352 | 0.6618 | 0.6297 | 0.6618 | 0.8135 | | No log | 3.6875 | 354 | 0.6508 | 0.6297 | 0.6508 | 0.8067 | | No log | 3.7083 | 356 | 0.6463 | 0.6528 | 0.6463 | 0.8039 | | No log | 3.7292 | 358 | 0.6393 | 0.6528 | 0.6393 | 0.7996 | | No log | 3.75 | 360 | 0.6540 | 0.6476 | 0.6540 | 0.8087 | | No log | 3.7708 | 362 | 0.6748 | 0.5873 | 0.6748 | 0.8215 | | No log | 3.7917 | 364 | 0.6828 | 0.6274 | 0.6828 | 0.8263 | | No log | 3.8125 | 366 | 0.7140 | 0.5486 | 0.7140 | 0.8450 | | No log | 3.8333 | 368 | 0.7643 | 0.5263 | 0.7643 | 0.8742 | | No log | 3.8542 | 370 | 0.7335 | 0.5408 | 0.7335 | 0.8565 | | No log | 3.875 | 372 | 0.6730 | 0.6273 | 0.6730 | 0.8203 | | No log | 3.8958 | 374 | 0.6654 | 0.6273 | 0.6654 | 0.8157 | | No log | 3.9167 | 376 | 0.6764 | 0.6297 | 0.6764 | 0.8224 | | No log | 3.9375 | 378 | 0.7029 | 0.5359 | 0.7029 | 0.8384 | | No log | 3.9583 | 380 | 0.7203 | 0.5433 | 0.7203 | 0.8487 | | No log | 3.9792 | 382 | 0.6967 | 0.5610 | 0.6967 | 0.8347 | | No log | 4.0 | 384 | 0.6610 | 0.6273 | 0.6610 | 0.8130 | | No log | 4.0208 | 386 | 0.6551 | 0.6369 | 0.6551 | 0.8094 | | No log | 4.0417 | 388 | 0.6583 | 0.625 | 0.6583 | 0.8113 | | No log | 4.0625 | 390 | 0.6891 | 0.6197 | 0.6891 | 0.8301 | | No log | 4.0833 | 392 | 0.7011 | 0.6197 | 0.7011 | 0.8373 | | No log | 4.1042 | 394 | 0.6709 | 0.6143 | 0.6709 | 0.8191 | | No log | 4.125 | 396 | 0.6597 | 0.6497 | 0.6597 | 0.8122 | | No log | 4.1458 | 398 | 0.6495 | 0.6597 | 0.6495 | 0.8059 | | No log | 4.1667 | 400 | 0.6472 | 0.6662 | 0.6472 | 0.8045 | | No log | 4.1875 | 402 | 0.6566 | 0.6297 | 0.6566 | 0.8103 | | No log | 4.2083 | 404 | 0.6832 | 0.6227 | 0.6832 | 0.8266 | | No log | 4.2292 | 406 | 0.7245 | 0.6009 | 0.7245 | 0.8512 | | No log | 4.25 | 408 | 0.7239 | 0.6009 | 0.7239 | 0.8508 | | No log | 4.2708 | 410 | 0.6848 | 0.6355 | 0.6848 | 0.8276 | | No log | 4.2917 | 412 | 0.6550 | 0.6378 | 0.6550 | 0.8093 | | No log | 4.3125 | 414 | 0.6424 | 0.6351 | 0.6424 | 0.8015 | | No log | 4.3333 | 416 | 0.6271 | 0.6949 | 0.6271 | 0.7919 | | No log | 4.3542 | 418 | 0.6393 | 0.7324 | 0.6393 | 0.7996 | | No log | 4.375 | 420 | 0.6732 | 0.7109 | 0.6732 | 0.8205 | | No log | 4.3958 | 422 | 0.6643 | 0.7109 | 0.6643 | 0.8150 | | No log | 4.4167 | 424 | 0.6842 | 0.6938 | 0.6842 | 0.8272 | | No log | 4.4375 | 426 | 0.6719 | 0.6914 | 0.6719 | 0.8197 | | No log | 4.4583 | 428 | 0.6407 | 0.6518 | 0.6407 | 0.8004 | | No log | 4.4792 | 430 | 0.6428 | 0.6518 | 0.6428 | 0.8017 | | No log | 4.5 | 432 | 0.6390 | 0.6749 | 0.6390 | 0.7994 | | No log | 4.5208 | 434 | 0.6352 | 0.6888 | 0.6352 | 0.7970 | | No log | 4.5417 | 436 | 0.6330 | 0.6767 | 0.6330 | 0.7956 | | No log | 4.5625 | 438 | 0.6301 | 0.6767 | 0.6301 | 0.7938 | | No log | 4.5833 | 440 | 0.6545 | 0.6538 | 0.6545 | 0.8090 | | No log | 4.6042 | 442 | 0.6743 | 0.6606 | 0.6743 | 0.8212 | | No log | 4.625 | 444 | 0.6475 | 0.6468 | 0.6475 | 0.8047 | | No log | 4.6458 | 446 | 0.6290 | 0.6767 | 0.6290 | 0.7931 | | No log | 4.6667 | 448 | 0.6405 | 0.6983 | 0.6405 | 0.8003 | | No log | 4.6875 | 450 | 0.6263 | 0.6983 | 0.6263 | 0.7914 | | No log | 4.7083 | 452 | 0.6469 | 0.6892 | 0.6469 | 0.8043 | | No log | 4.7292 | 454 | 0.7488 | 0.6466 | 0.7488 | 0.8653 | | No log | 4.75 | 456 | 0.7796 | 0.6654 | 0.7796 | 0.8830 | | No log | 4.7708 | 458 | 0.7353 | 0.6828 | 0.7353 | 0.8575 | | No log | 4.7917 | 460 | 0.6724 | 0.6916 | 0.6724 | 0.8200 | | No log | 4.8125 | 462 | 0.6442 | 0.7157 | 0.6442 | 0.8026 | | No log | 4.8333 | 464 | 0.6570 | 0.6949 | 0.6570 | 0.8105 | | No log | 4.8542 | 466 | 0.7246 | 0.6240 | 0.7246 | 0.8513 | | No log | 4.875 | 468 | 0.8446 | 0.556 | 0.8446 | 0.9190 | | No log | 4.8958 | 470 | 0.8565 | 0.556 | 0.8565 | 0.9255 | | No log | 4.9167 | 472 | 0.8245 | 0.5164 | 0.8245 | 0.9080 | | No log | 4.9375 | 474 | 0.8630 | 0.5278 | 0.8630 | 0.9290 | | No log | 4.9583 | 476 | 0.9134 | 0.5169 | 0.9134 | 0.9557 | | No log | 4.9792 | 478 | 0.9709 | 0.5401 | 0.9709 | 0.9853 | | No log | 5.0 | 480 | 1.0286 | 0.5119 | 1.0286 | 1.0142 | | No log | 5.0208 | 482 | 1.0159 | 0.5119 | 1.0159 | 1.0079 | | No log | 5.0417 | 484 | 0.9497 | 0.5401 | 0.9497 | 0.9745 | | No log | 5.0625 | 486 | 0.8894 | 0.4823 | 0.8894 | 0.9431 | | No log | 5.0833 | 488 | 0.8146 | 0.5164 | 0.8146 | 0.9026 | | No log | 5.1042 | 490 | 0.8184 | 0.4621 | 0.8184 | 0.9046 | | No log | 5.125 | 492 | 0.8758 | 0.4957 | 0.8758 | 0.9358 | | No log | 5.1458 | 494 | 0.8886 | 0.4957 | 0.8886 | 0.9427 | | No log | 5.1667 | 496 | 0.8379 | 0.4474 | 0.8379 | 0.9154 | | No log | 5.1875 | 498 | 0.8445 | 0.4729 | 0.8445 | 0.9190 | | 0.383 | 5.2083 | 500 | 0.7990 | 0.5183 | 0.7990 | 0.8938 | | 0.383 | 5.2292 | 502 | 0.7386 | 0.6676 | 0.7386 | 0.8594 | | 0.383 | 5.25 | 504 | 0.7259 | 0.6730 | 0.7259 | 0.8520 | | 0.383 | 5.2708 | 506 | 0.7213 | 0.6730 | 0.7213 | 0.8493 | | 0.383 | 5.2917 | 508 | 0.7517 | 0.6125 | 0.7517 | 0.8670 | | 0.383 | 5.3125 | 510 | 0.7579 | 0.6332 | 0.7579 | 0.8706 | | 0.383 | 5.3333 | 512 | 0.7307 | 0.6125 | 0.7307 | 0.8548 | | 0.383 | 5.3542 | 514 | 0.7096 | 0.6165 | 0.7096 | 0.8424 | | 0.383 | 5.375 | 516 | 0.6834 | 0.7157 | 0.6834 | 0.8267 | | 0.383 | 5.3958 | 518 | 0.7075 | 0.6395 | 0.7075 | 0.8411 | | 0.383 | 5.4167 | 520 | 0.7821 | 0.6719 | 0.7821 | 0.8844 | | 0.383 | 5.4375 | 522 | 0.8247 | 0.5844 | 0.8247 | 0.9081 | | 0.383 | 5.4583 | 524 | 0.7888 | 0.6199 | 0.7888 | 0.8881 | | 0.383 | 5.4792 | 526 | 0.7814 | 0.6332 | 0.7814 | 0.8840 | | 0.383 | 5.5 | 528 | 0.7686 | 0.6165 | 0.7686 | 0.8767 | | 0.383 | 5.5208 | 530 | 0.7858 | 0.6375 | 0.7858 | 0.8864 | | 0.383 | 5.5417 | 532 | 0.8385 | 0.5584 | 0.8385 | 0.9157 | | 0.383 | 5.5625 | 534 | 0.9337 | 0.5276 | 0.9337 | 0.9663 | | 0.383 | 5.5833 | 536 | 1.0495 | 0.5 | 1.0495 | 1.0245 | | 0.383 | 5.6042 | 538 | 1.0694 | 0.5 | 1.0694 | 1.0341 | | 0.383 | 5.625 | 540 | 0.9871 | 0.5013 | 0.9871 | 0.9935 | | 0.383 | 5.6458 | 542 | 0.8844 | 0.5289 | 0.8844 | 0.9404 | | 0.383 | 5.6667 | 544 | 0.7831 | 0.5897 | 0.7831 | 0.8849 | | 0.383 | 5.6875 | 546 | 0.7220 | 0.6730 | 0.7220 | 0.8497 | | 0.383 | 5.7083 | 548 | 0.6954 | 0.6730 | 0.6954 | 0.8339 | | 0.383 | 5.7292 | 550 | 0.6961 | 0.6730 | 0.6961 | 0.8343 | | 0.383 | 5.75 | 552 | 0.7373 | 0.6332 | 0.7373 | 0.8587 | | 0.383 | 5.7708 | 554 | 0.8375 | 0.556 | 0.8375 | 0.9151 | | 0.383 | 5.7917 | 556 | 0.8906 | 0.5426 | 0.8906 | 0.9437 | | 0.383 | 5.8125 | 558 | 0.8446 | 0.5428 | 0.8446 | 0.9190 | | 0.383 | 5.8333 | 560 | 0.7715 | 0.5789 | 0.7715 | 0.8784 | | 0.383 | 5.8542 | 562 | 0.7153 | 0.6375 | 0.7153 | 0.8458 | | 0.383 | 5.875 | 564 | 0.6738 | 0.6870 | 0.6738 | 0.8209 | | 0.383 | 5.8958 | 566 | 0.6606 | 0.6662 | 0.6606 | 0.8128 | | 0.383 | 5.9167 | 568 | 0.6580 | 0.6662 | 0.6580 | 0.8112 | | 0.383 | 5.9375 | 570 | 0.6584 | 0.6870 | 0.6584 | 0.8114 | | 0.383 | 5.9583 | 572 | 0.6609 | 0.6932 | 0.6609 | 0.8130 | | 0.383 | 5.9792 | 574 | 0.6676 | 0.7125 | 0.6676 | 0.8171 | | 0.383 | 6.0 | 576 | 0.6626 | 0.7125 | 0.6626 | 0.8140 | | 0.383 | 6.0208 | 578 | 0.6382 | 0.7258 | 0.6382 | 0.7989 | | 0.383 | 6.0417 | 580 | 0.6189 | 0.7258 | 0.6189 | 0.7867 | | 0.383 | 6.0625 | 582 | 0.6140 | 0.6795 | 0.6140 | 0.7836 | | 0.383 | 6.0833 | 584 | 0.6146 | 0.7085 | 0.6146 | 0.7839 | | 0.383 | 6.1042 | 586 | 0.6184 | 0.7258 | 0.6184 | 0.7864 | | 0.383 | 6.125 | 588 | 0.6534 | 0.7258 | 0.6534 | 0.8084 | | 0.383 | 6.1458 | 590 | 0.7340 | 0.5773 | 0.7340 | 0.8567 | | 0.383 | 6.1667 | 592 | 0.7652 | 0.5362 | 0.7652 | 0.8748 | | 0.383 | 6.1875 | 594 | 0.7464 | 0.55 | 0.7464 | 0.8639 | | 0.383 | 6.2083 | 596 | 0.7229 | 0.6379 | 0.7229 | 0.8502 | | 0.383 | 6.2292 | 598 | 0.7036 | 0.5921 | 0.7036 | 0.8388 | | 0.383 | 6.25 | 600 | 0.6964 | 0.6662 | 0.6964 | 0.8345 | | 0.383 | 6.2708 | 602 | 0.6964 | 0.6662 | 0.6964 | 0.8345 | | 0.383 | 6.2917 | 604 | 0.7011 | 0.6662 | 0.7011 | 0.8373 | | 0.383 | 6.3125 | 606 | 0.7082 | 0.6662 | 0.7082 | 0.8416 | | 0.383 | 6.3333 | 608 | 0.7198 | 0.6104 | 0.7198 | 0.8484 | | 0.383 | 6.3542 | 610 | 0.7319 | 0.5846 | 0.7319 | 0.8555 | | 0.383 | 6.375 | 612 | 0.7323 | 0.5846 | 0.7323 | 0.8558 | | 0.383 | 6.3958 | 614 | 0.7432 | 0.5256 | 0.7432 | 0.8621 | | 0.383 | 6.4167 | 616 | 0.7520 | 0.5204 | 0.7520 | 0.8672 | | 0.383 | 6.4375 | 618 | 0.7537 | 0.5146 | 0.7537 | 0.8681 | | 0.383 | 6.4583 | 620 | 0.7415 | 0.5797 | 0.7415 | 0.8611 | | 0.383 | 6.4792 | 622 | 0.7273 | 0.6178 | 0.7273 | 0.8528 | | 0.383 | 6.5 | 624 | 0.7231 | 0.6178 | 0.7231 | 0.8503 | | 0.383 | 6.5208 | 626 | 0.7002 | 0.6777 | 0.7002 | 0.8368 | | 0.383 | 6.5417 | 628 | 0.6883 | 0.6741 | 0.6883 | 0.8296 | | 0.383 | 6.5625 | 630 | 0.6711 | 0.7125 | 0.6711 | 0.8192 | | 0.383 | 6.5833 | 632 | 0.6583 | 0.7125 | 0.6583 | 0.8113 | | 0.383 | 6.6042 | 634 | 0.6281 | 0.7068 | 0.6281 | 0.7925 | | 0.383 | 6.625 | 636 | 0.6208 | 0.6662 | 0.6208 | 0.7879 | | 0.383 | 6.6458 | 638 | 0.6226 | 0.6662 | 0.6226 | 0.7891 | | 0.383 | 6.6667 | 640 | 0.6286 | 0.6662 | 0.6286 | 0.7928 | | 0.383 | 6.6875 | 642 | 0.6497 | 0.7171 | 0.6497 | 0.8061 | | 0.383 | 6.7083 | 644 | 0.6632 | 0.7171 | 0.6632 | 0.8144 | | 0.383 | 6.7292 | 646 | 0.6578 | 0.7171 | 0.6578 | 0.8110 | | 0.383 | 6.75 | 648 | 0.6434 | 0.6662 | 0.6434 | 0.8021 | | 0.383 | 6.7708 | 650 | 0.6491 | 0.6662 | 0.6491 | 0.8057 | | 0.383 | 6.7917 | 652 | 0.6707 | 0.6518 | 0.6707 | 0.8190 | | 0.383 | 6.8125 | 654 | 0.7161 | 0.5794 | 0.7161 | 0.8463 | | 0.383 | 6.8333 | 656 | 0.7601 | 0.5243 | 0.7601 | 0.8719 | | 0.383 | 6.8542 | 658 | 0.8175 | 0.5336 | 0.8175 | 0.9041 | | 0.383 | 6.875 | 660 | 0.8564 | 0.5537 | 0.8564 | 0.9254 | | 0.383 | 6.8958 | 662 | 0.8351 | 0.5562 | 0.8351 | 0.9138 | | 0.383 | 6.9167 | 664 | 0.7960 | 0.5336 | 0.7960 | 0.8922 | | 0.383 | 6.9375 | 666 | 0.7463 | 0.5291 | 0.7463 | 0.8639 | | 0.383 | 6.9583 | 668 | 0.7113 | 0.6099 | 0.7113 | 0.8434 | | 0.383 | 6.9792 | 670 | 0.7029 | 0.6099 | 0.7029 | 0.8384 | | 0.383 | 7.0 | 672 | 0.7233 | 0.5610 | 0.7233 | 0.8505 | | 0.383 | 7.0208 | 674 | 0.7746 | 0.5100 | 0.7746 | 0.8801 | | 0.383 | 7.0417 | 676 | 0.8338 | 0.5449 | 0.8338 | 0.9131 | | 0.383 | 7.0625 | 678 | 0.8794 | 0.5537 | 0.8794 | 0.9378 | | 0.383 | 7.0833 | 680 | 0.9210 | 0.5401 | 0.9210 | 0.9597 | | 0.383 | 7.1042 | 682 | 0.9037 | 0.5537 | 0.9037 | 0.9507 | | 0.383 | 7.125 | 684 | 0.8581 | 0.5310 | 0.8581 | 0.9263 | | 0.383 | 7.1458 | 686 | 0.7853 | 0.4746 | 0.7853 | 0.8862 | | 0.383 | 7.1667 | 688 | 0.7279 | 0.5934 | 0.7279 | 0.8532 | | 0.383 | 7.1875 | 690 | 0.7093 | 0.6730 | 0.7093 | 0.8422 | | 0.383 | 7.2083 | 692 | 0.7158 | 0.6497 | 0.7158 | 0.8460 | | 0.383 | 7.2292 | 694 | 0.7323 | 0.5934 | 0.7323 | 0.8558 | | 0.383 | 7.25 | 696 | 0.7594 | 0.4652 | 0.7594 | 0.8714 | | 0.383 | 7.2708 | 698 | 0.7779 | 0.5139 | 0.7779 | 0.8820 | | 0.383 | 7.2917 | 700 | 0.7879 | 0.5586 | 0.7879 | 0.8876 | | 0.383 | 7.3125 | 702 | 0.7576 | 0.5193 | 0.7576 | 0.8704 | | 0.383 | 7.3333 | 704 | 0.7271 | 0.5340 | 0.7271 | 0.8527 | | 0.383 | 7.3542 | 706 | 0.7130 | 0.6143 | 0.7130 | 0.8444 | | 0.383 | 7.375 | 708 | 0.7017 | 0.6676 | 0.7017 | 0.8377 | | 0.383 | 7.3958 | 710 | 0.7025 | 0.6676 | 0.7025 | 0.8382 | | 0.383 | 7.4167 | 712 | 0.7028 | 0.6676 | 0.7028 | 0.8383 | | 0.383 | 7.4375 | 714 | 0.7160 | 0.6622 | 0.7160 | 0.8462 | | 0.383 | 7.4583 | 716 | 0.7156 | 0.6935 | 0.7156 | 0.8459 | | 0.383 | 7.4792 | 718 | 0.7085 | 0.6875 | 0.7085 | 0.8417 | | 0.383 | 7.5 | 720 | 0.7158 | 0.6538 | 0.7158 | 0.8461 | | 0.383 | 7.5208 | 722 | 0.7466 | 0.5433 | 0.7466 | 0.8641 | | 0.383 | 7.5417 | 724 | 0.7743 | 0.5284 | 0.7743 | 0.8800 | | 0.383 | 7.5625 | 726 | 0.8046 | 0.5526 | 0.8046 | 0.8970 | | 0.383 | 7.5833 | 728 | 0.8111 | 0.5978 | 0.8111 | 0.9006 | | 0.383 | 7.6042 | 730 | 0.8209 | 0.5451 | 0.8209 | 0.9060 | | 0.383 | 7.625 | 732 | 0.8125 | 0.5451 | 0.8125 | 0.9014 | | 0.383 | 7.6458 | 734 | 0.7744 | 0.5965 | 0.7744 | 0.8800 | | 0.383 | 7.6667 | 736 | 0.7208 | 0.7065 | 0.7208 | 0.8490 | | 0.383 | 7.6875 | 738 | 0.6737 | 0.6949 | 0.6737 | 0.8208 | | 0.383 | 7.7083 | 740 | 0.6524 | 0.7085 | 0.6524 | 0.8077 | | 0.383 | 7.7292 | 742 | 0.6514 | 0.7085 | 0.6514 | 0.8071 | | 0.383 | 7.75 | 744 | 0.6575 | 0.7085 | 0.6575 | 0.8108 | | 0.383 | 7.7708 | 746 | 0.6741 | 0.7141 | 0.6741 | 0.8210 | | 0.383 | 7.7917 | 748 | 0.6859 | 0.7141 | 0.6859 | 0.8282 | | 0.383 | 7.8125 | 750 | 0.6995 | 0.7125 | 0.6995 | 0.8364 | | 0.383 | 7.8333 | 752 | 0.7289 | 0.6769 | 0.7289 | 0.8538 | | 0.383 | 7.8542 | 754 | 0.7507 | 0.6425 | 0.7507 | 0.8664 | | 0.383 | 7.875 | 756 | 0.7584 | 0.5781 | 0.7584 | 0.8709 | | 0.383 | 7.8958 | 758 | 0.7494 | 0.6098 | 0.7494 | 0.8657 | | 0.383 | 7.9167 | 760 | 0.7372 | 0.6711 | 0.7372 | 0.8586 | | 0.383 | 7.9375 | 762 | 0.7227 | 0.6497 | 0.7227 | 0.8501 | | 0.383 | 7.9583 | 764 | 0.7067 | 0.6730 | 0.7067 | 0.8406 | | 0.383 | 7.9792 | 766 | 0.6926 | 0.6730 | 0.6926 | 0.8322 | | 0.383 | 8.0 | 768 | 0.6878 | 0.6949 | 0.6878 | 0.8293 | | 0.383 | 8.0208 | 770 | 0.6923 | 0.6949 | 0.6923 | 0.8320 | | 0.383 | 8.0417 | 772 | 0.7022 | 0.7141 | 0.7022 | 0.8380 | | 0.383 | 8.0625 | 774 | 0.7322 | 0.6218 | 0.7322 | 0.8557 | | 0.383 | 8.0833 | 776 | 0.7751 | 0.5743 | 0.7751 | 0.8804 | | 0.383 | 8.1042 | 778 | 0.8033 | 0.5931 | 0.8033 | 0.8963 | | 0.383 | 8.125 | 780 | 0.8076 | 0.604 | 0.8076 | 0.8987 | | 0.383 | 8.1458 | 782 | 0.7900 | 0.5965 | 0.7900 | 0.8888 | | 0.383 | 8.1667 | 784 | 0.7625 | 0.5781 | 0.7625 | 0.8732 | | 0.383 | 8.1875 | 786 | 0.7283 | 0.5934 | 0.7283 | 0.8534 | | 0.383 | 8.2083 | 788 | 0.7051 | 0.6351 | 0.7051 | 0.8397 | | 0.383 | 8.2292 | 790 | 0.6982 | 0.6351 | 0.6982 | 0.8356 | | 0.383 | 8.25 | 792 | 0.6885 | 0.6730 | 0.6885 | 0.8298 | | 0.383 | 8.2708 | 794 | 0.6935 | 0.6351 | 0.6935 | 0.8328 | | 0.383 | 8.2917 | 796 | 0.6966 | 0.6378 | 0.6966 | 0.8346 | | 0.383 | 8.3125 | 798 | 0.7065 | 0.5947 | 0.7065 | 0.8405 | | 0.383 | 8.3333 | 800 | 0.7254 | 0.5204 | 0.7254 | 0.8517 | | 0.383 | 8.3542 | 802 | 0.7368 | 0.5583 | 0.7368 | 0.8584 | | 0.383 | 8.375 | 804 | 0.7339 | 0.5459 | 0.7339 | 0.8567 | | 0.383 | 8.3958 | 806 | 0.7175 | 0.5359 | 0.7175 | 0.8471 | | 0.383 | 8.4167 | 808 | 0.7007 | 0.6378 | 0.7007 | 0.8371 | | 0.383 | 8.4375 | 810 | 0.6857 | 0.6378 | 0.6857 | 0.8281 | | 0.383 | 8.4583 | 812 | 0.6834 | 0.6766 | 0.6834 | 0.8267 | | 0.383 | 8.4792 | 814 | 0.6821 | 0.6766 | 0.6821 | 0.8259 | | 0.383 | 8.5 | 816 | 0.6882 | 0.6622 | 0.6882 | 0.8296 | | 0.383 | 8.5208 | 818 | 0.6972 | 0.6205 | 0.6972 | 0.8350 | | 0.383 | 8.5417 | 820 | 0.7074 | 0.6205 | 0.7074 | 0.8411 | | 0.383 | 8.5625 | 822 | 0.7171 | 0.5785 | 0.7171 | 0.8468 | | 0.383 | 8.5833 | 824 | 0.7159 | 0.6205 | 0.7159 | 0.8461 | | 0.383 | 8.6042 | 826 | 0.7049 | 0.6589 | 0.7049 | 0.8396 | | 0.383 | 8.625 | 828 | 0.6907 | 0.6730 | 0.6907 | 0.8311 | | 0.383 | 8.6458 | 830 | 0.6852 | 0.6730 | 0.6852 | 0.8278 | | 0.383 | 8.6667 | 832 | 0.6831 | 0.6730 | 0.6831 | 0.8265 | | 0.383 | 8.6875 | 834 | 0.6849 | 0.6730 | 0.6849 | 0.8276 | | 0.383 | 8.7083 | 836 | 0.6861 | 0.6730 | 0.6861 | 0.8283 | | 0.383 | 8.7292 | 838 | 0.6892 | 0.6730 | 0.6892 | 0.8302 | | 0.383 | 8.75 | 840 | 0.6906 | 0.6730 | 0.6906 | 0.8311 | | 0.383 | 8.7708 | 842 | 0.6993 | 0.6730 | 0.6993 | 0.8362 | | 0.383 | 8.7917 | 844 | 0.7049 | 0.6730 | 0.7049 | 0.8396 | | 0.383 | 8.8125 | 846 | 0.7064 | 0.6730 | 0.7064 | 0.8405 | | 0.383 | 8.8333 | 848 | 0.7138 | 0.6622 | 0.7138 | 0.8449 | | 0.383 | 8.8542 | 850 | 0.7237 | 0.6205 | 0.7237 | 0.8507 | | 0.383 | 8.875 | 852 | 0.7294 | 0.5785 | 0.7294 | 0.8540 | | 0.383 | 8.8958 | 854 | 0.7341 | 0.5636 | 0.7341 | 0.8568 | | 0.383 | 8.9167 | 856 | 0.7364 | 0.5486 | 0.7364 | 0.8582 | | 0.383 | 8.9375 | 858 | 0.7331 | 0.5486 | 0.7331 | 0.8562 | | 0.383 | 8.9583 | 860 | 0.7240 | 0.5785 | 0.7240 | 0.8509 | | 0.383 | 8.9792 | 862 | 0.7209 | 0.5785 | 0.7209 | 0.8490 | | 0.383 | 9.0 | 864 | 0.7135 | 0.6622 | 0.7135 | 0.8447 | | 0.383 | 9.0208 | 866 | 0.7050 | 0.6589 | 0.7050 | 0.8397 | | 0.383 | 9.0417 | 868 | 0.7051 | 0.6589 | 0.7051 | 0.8397 | | 0.383 | 9.0625 | 870 | 0.6968 | 0.6730 | 0.6968 | 0.8348 | | 0.383 | 9.0833 | 872 | 0.6923 | 0.6730 | 0.6923 | 0.8321 | | 0.383 | 9.1042 | 874 | 0.6880 | 0.6730 | 0.6880 | 0.8295 | | 0.383 | 9.125 | 876 | 0.6902 | 0.6730 | 0.6902 | 0.8308 | | 0.383 | 9.1458 | 878 | 0.6925 | 0.6730 | 0.6925 | 0.8321 | | 0.383 | 9.1667 | 880 | 0.6969 | 0.6730 | 0.6969 | 0.8348 | | 0.383 | 9.1875 | 882 | 0.7027 | 0.6184 | 0.7027 | 0.8383 | | 0.383 | 9.2083 | 884 | 0.7089 | 0.6184 | 0.7089 | 0.8420 | | 0.383 | 9.2292 | 886 | 0.7142 | 0.6041 | 0.7142 | 0.8451 | | 0.383 | 9.25 | 888 | 0.7168 | 0.6041 | 0.7168 | 0.8466 | | 0.383 | 9.2708 | 890 | 0.7236 | 0.5632 | 0.7236 | 0.8506 | | 0.383 | 9.2917 | 892 | 0.7349 | 0.5486 | 0.7349 | 0.8573 | | 0.383 | 9.3125 | 894 | 0.7478 | 0.5047 | 0.7478 | 0.8648 | | 0.383 | 9.3333 | 896 | 0.7622 | 0.5047 | 0.7622 | 0.8731 | | 0.383 | 9.3542 | 898 | 0.7804 | 0.5307 | 0.7804 | 0.8834 | | 0.383 | 9.375 | 900 | 0.7900 | 0.5645 | 0.7900 | 0.8888 | | 0.383 | 9.3958 | 902 | 0.7923 | 0.5874 | 0.7923 | 0.8901 | | 0.383 | 9.4167 | 904 | 0.7910 | 0.5874 | 0.7910 | 0.8894 | | 0.383 | 9.4375 | 906 | 0.7931 | 0.5874 | 0.7931 | 0.8906 | | 0.383 | 9.4583 | 908 | 0.7982 | 0.5874 | 0.7982 | 0.8934 | | 0.383 | 9.4792 | 910 | 0.7968 | 0.5874 | 0.7968 | 0.8927 | | 0.383 | 9.5 | 912 | 0.7914 | 0.5874 | 0.7914 | 0.8896 | | 0.383 | 9.5208 | 914 | 0.7882 | 0.5757 | 0.7882 | 0.8878 | | 0.383 | 9.5417 | 916 | 0.7835 | 0.5757 | 0.7835 | 0.8851 | | 0.383 | 9.5625 | 918 | 0.7788 | 0.5789 | 0.7788 | 0.8825 | | 0.383 | 9.5833 | 920 | 0.7712 | 0.5701 | 0.7712 | 0.8782 | | 0.383 | 9.6042 | 922 | 0.7626 | 0.5459 | 0.7626 | 0.8733 | | 0.383 | 9.625 | 924 | 0.7594 | 0.5459 | 0.7594 | 0.8714 | | 0.383 | 9.6458 | 926 | 0.7568 | 0.5204 | 0.7568 | 0.8700 | | 0.383 | 9.6667 | 928 | 0.7528 | 0.5204 | 0.7528 | 0.8676 | | 0.383 | 9.6875 | 930 | 0.7495 | 0.5204 | 0.7495 | 0.8657 | | 0.383 | 9.7083 | 932 | 0.7448 | 0.5204 | 0.7448 | 0.8630 | | 0.383 | 9.7292 | 934 | 0.7402 | 0.5486 | 0.7402 | 0.8603 | | 0.383 | 9.75 | 936 | 0.7368 | 0.5487 | 0.7368 | 0.8584 | | 0.383 | 9.7708 | 938 | 0.7337 | 0.5487 | 0.7337 | 0.8565 | | 0.383 | 9.7917 | 940 | 0.7319 | 0.5487 | 0.7319 | 0.8555 | | 0.383 | 9.8125 | 942 | 0.7316 | 0.5487 | 0.7316 | 0.8553 | | 0.383 | 9.8333 | 944 | 0.7295 | 0.5487 | 0.7295 | 0.8541 | | 0.383 | 9.8542 | 946 | 0.7272 | 0.5487 | 0.7272 | 0.8528 | | 0.383 | 9.875 | 948 | 0.7259 | 0.5487 | 0.7259 | 0.8520 | | 0.383 | 9.8958 | 950 | 0.7258 | 0.5487 | 0.7258 | 0.8519 | | 0.383 | 9.9167 | 952 | 0.7260 | 0.5487 | 0.7260 | 0.8521 | | 0.383 | 9.9375 | 954 | 0.7267 | 0.5487 | 0.7267 | 0.8525 | | 0.383 | 9.9583 | 956 | 0.7273 | 0.5487 | 0.7273 | 0.8528 | | 0.383 | 9.9792 | 958 | 0.7280 | 0.5487 | 0.7280 | 0.8532 | | 0.383 | 10.0 | 960 | 0.7283 | 0.5487 | 0.7283 | 0.8534 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
Ryenhails/w2v-bert-2.0-geo-all-train_withSpec
Ryenhails
2024-12-04T16:35:11Z
75
0
transformers
[ "transformers", "safetensors", "wav2vec2-bert", "automatic-speech-recognition", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-12-04T16:33:27Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
gokulsrinivasagan/distilbert_base_lda_cola
gokulsrinivasagan
2024-12-04T16:35:06Z
122
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "base_model:gokulsrinivasagan/distilbert_base_lda", "base_model:finetune:gokulsrinivasagan/distilbert_base_lda", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-22T04:49:54Z
--- library_name: transformers language: - en base_model: gokulsrinivasagan/distilbert_base_lda tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation - accuracy model-index: - name: distilbert_base_lda_cola results: - task: name: Text Classification type: text-classification dataset: name: GLUE COLA type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.06369722017462824 - name: Accuracy type: accuracy value: 0.6874400973320007 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_base_lda_cola This model is a fine-tuned version of [gokulsrinivasagan/distilbert_base_lda](https://huggingface.co/gokulsrinivasagan/distilbert_base_lda) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.6122 - Matthews Correlation: 0.0637 - Accuracy: 0.6874 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------------------:|:--------:| | 0.612 | 1.0 | 34 | 0.6140 | 0.0663 | 0.6932 | | 0.5907 | 2.0 | 68 | 0.6122 | 0.0637 | 0.6874 | | 0.5383 | 3.0 | 102 | 0.6135 | 0.1260 | 0.6635 | | 0.4644 | 4.0 | 136 | 0.6588 | 0.1918 | 0.6779 | | 0.3799 | 5.0 | 170 | 0.6821 | 0.1670 | 0.6769 | | 0.3082 | 6.0 | 204 | 0.8649 | 0.1628 | 0.6769 | | 0.2435 | 7.0 | 238 | 0.9477 | 0.1554 | 0.6510 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3
plaguss/Mistral-7B-v0.1-Math-Shepherd-PRM-0.1
plaguss
2024-12-04T16:29:35Z
14
0
transformers
[ "transformers", "safetensors", "mistral", "token-classification", "generated_from_trainer", "trl", "stepwise-reward-trainer", "dataset:trl-lib/math_shepherd", "arxiv:2211.14275", "base_model:mistralai/Mistral-7B-v0.1", "base_model:finetune:mistralai/Mistral-7B-v0.1", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
token-classification
2024-12-04T07:26:59Z
--- base_model: mistralai/Mistral-7B-v0.1 datasets: trl-lib/math_shepherd library_name: transformers model_name: Mistral-7B-v0.1-Math-Shepherd-PRM-0.1 tags: - generated_from_trainer - trl - stepwise-reward-trainer licence: license --- # Model Card for Mistral-7B-v0.1-Math-Shepherd-PRM-0.1 This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the [trl-lib/math_shepherd](https://huggingface.co/datasets/trl-lib/math_shepherd) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start Example 1 ```python from datasets import load_dataset from transformers import pipeline pipe = pipeline("token-classification", model="plaguss/Mistral-7B-v0.1-Math-Shepherd-PRM-0.1") dataset = load_dataset("trl-lib/math_shepherd") example = dataset["test"][10] print("\n".join((example["prompt"], *example["completions"]))) for idx in range(1, len(example["completions"])+1): text = "\n".join((example["prompt"], *example["completions"][0:idx])) + "\n" score = float(pipe(text)[-1]["score"]) print(f"Step {idx}\tScore: {score:.4f}\tLabel: {example['labels'][idx-1]}") # Asking to truncate to max_length but no maximum length is provided and the model has no predefined maximum length. Default to no truncation. # Step 1 Score: 1.00 Label: True # Step 2 Score: 1.00 Label: True # Step 3 Score: 1.00 Label: True # Step 4 Score: 0.96 Label: True # Step 5 Score: 0.95 Label: True # Step 6 Score: 0.88 Label: False # Step 7 Score: 0.73 Label: False # Step 8 Score: 0.86 Label: False # Step 9 Score: 0.96 Label: False ``` Original case from the Math-Shepherd paper ```python from datasets import load_dataset from transformers import pipeline pipe = pipeline("token-classification", model="plaguss/Mistral-7B-v0.1-Math-Shepherd-PRM-0.1", device="cuda") examples = [ { "prompt": "Janet\u2019s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her friends every day with four. She sells the remainder at the farmers' market daily for $2 per fresh duck egg. How much in dollars does she make every day at the farmers' market?", "completions": [ "Step 1: Janet's ducks lay 16 eggs per day.", 'Step 2: She eats three for breakfast every morning, so she has 16 - 3 = 13 eggs left.', 'Step 3: She bakes muffins for her friends every day with four eggs, so she has 13 - 4 = 9 eggs left.', "Step 4: She sells the remainder at the farmers' market daily for $2 per fresh duck egg, so she makes 9 * $2 = $18 every day at the farmers' market. The answer is: 18" ], "labels": [True, True, True, True] }, { "prompt": "Janet\u2019s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her friends every day with four. She sells the remainder at the farmers' market daily for $2 per fresh duck egg. How much in dollars does she make every day at the farmers' market?", "completions": [ "Step 1: Janet's ducks lay 16 eggs per day.", 'Step 2: She eats three for breakfast every morning, so she has 16 - 3 = 13 eggs left.', 'Step 3: She bakes muffins for her friends every day with four eggs, so she has 13 - 4 = 9 eggs left.', "Step 4: She sells the remainder at the farmers' market daily for $2 per fresh duck egg, so she makes 9 * $2 = $18 every day at the farmers' market. The answer is: 17" ], "labels": [True, True, True, False] }, ] for i, example in enumerate(examples): print(f"- Example {i}:") for idx in range(1, len(example["completions"])+1): text = "\n".join((example["prompt"], *example["completions"][0:idx])) + "\n" score = float(pipe(text)[-1]["score"]) print(f"Step {idx}\tScore: {score:.2f}\tLabel: {example['labels'][idx-1]}") # - Example 0: # Step 1 Score: 1.00 Label: True # Step 2 Score: 1.00 Label: True # Step 3 Score: 1.00 Label: True # Step 4 Score: 1.00 Label: True # - Example 1: # Step 1 Score: 1.00 Label: True # Step 2 Score: 1.00 Label: True # Step 3 Score: 1.00 Label: True # Step 4 Score: 0.98 Label: False ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/plaguss/huggingface/runs/lnkexnro) This model was trained with Stepwise Reward. ### Framework versions - TRL: 0.13.0.dev0 - Transformers: 4.46.0.dev0 - Pytorch: 2.4.1 - Datasets: 3.0.1 - Tokenizers: 0.20.1 ## Citations Cite Stepwise Reward as: ```bibtex @article{uesato2022solving, title = {Solving Math Word Problems With Process- and Outcome-Based Feedback}, author = {Uesato, Jonathan and Kushman, Nate and Kumar, Ramana and Song, Francis and Siegel, Noah and Wang, Lisa and Creswell, Antonia and Irving, Geoffrey and Higgins, Irina}, year = 2022, journal = {arXiv preprint arXiv:2211.14275} } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
MayBashendy/ArabicNewSplits2_FineTuningAraBERT_run1_AugV4_k70_task1_organization
MayBashendy
2024-12-04T16:23:50Z
182
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-12-04T15:21:11Z
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: ArabicNewSplits2_FineTuningAraBERT_run1_AugV4_k70_task1_organization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ArabicNewSplits2_FineTuningAraBERT_run1_AugV4_k70_task1_organization This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9107 - Qwk: 0.4931 - Mse: 0.9107 - Rmse: 0.9543 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:------:|:----:|:---------------:|:-------:|:------:|:------:| | No log | 0.0034 | 2 | 4.9532 | -0.0322 | 4.9532 | 2.2256 | | No log | 0.0069 | 4 | 3.0359 | 0.0674 | 3.0359 | 1.7424 | | No log | 0.0103 | 6 | 1.9072 | 0.0972 | 1.9072 | 1.3810 | | No log | 0.0138 | 8 | 1.2139 | 0.1833 | 1.2139 | 1.1018 | | No log | 0.0172 | 10 | 1.1173 | 0.2198 | 1.1173 | 1.0570 | | No log | 0.0207 | 12 | 1.3641 | 0.1954 | 1.3641 | 1.1679 | | No log | 0.0241 | 14 | 1.8158 | 0.2259 | 1.8158 | 1.3475 | | No log | 0.0275 | 16 | 1.9003 | -0.0289 | 1.9003 | 1.3785 | | No log | 0.0310 | 18 | 2.2217 | 0.1674 | 2.2217 | 1.4905 | | No log | 0.0344 | 20 | 2.3755 | 0.1056 | 2.3755 | 1.5413 | | No log | 0.0379 | 22 | 2.5879 | 0.0982 | 2.5879 | 1.6087 | | No log | 0.0413 | 24 | 2.6498 | 0.0982 | 2.6498 | 1.6278 | | No log | 0.0448 | 26 | 2.5044 | 0.0680 | 2.5044 | 1.5825 | | No log | 0.0482 | 28 | 2.6112 | 0.0680 | 2.6112 | 1.6159 | | No log | 0.0516 | 30 | 2.2750 | 0.0749 | 2.2750 | 1.5083 | | No log | 0.0551 | 32 | 1.9070 | 0.1694 | 1.9070 | 1.3810 | | No log | 0.0585 | 34 | 1.9180 | 0.1052 | 1.9180 | 1.3849 | | No log | 0.0620 | 36 | 2.0971 | 0.1290 | 2.0971 | 1.4482 | | No log | 0.0654 | 38 | 2.6041 | 0.0503 | 2.6041 | 1.6137 | | No log | 0.0688 | 40 | 2.8958 | 0.0277 | 2.8958 | 1.7017 | | No log | 0.0723 | 42 | 2.8565 | 0.0277 | 2.8565 | 1.6901 | | No log | 0.0757 | 44 | 2.4540 | 0.0942 | 2.4540 | 1.5665 | | No log | 0.0792 | 46 | 2.5919 | 0.0621 | 2.5919 | 1.6099 | | No log | 0.0826 | 48 | 3.1619 | 0.0780 | 3.1619 | 1.7782 | | No log | 0.0861 | 50 | 3.3076 | 0.0780 | 3.3076 | 1.8187 | | No log | 0.0895 | 52 | 3.2954 | 0.0984 | 3.2954 | 1.8153 | | No log | 0.0929 | 54 | 2.7327 | 0.0503 | 2.7327 | 1.6531 | | No log | 0.0964 | 56 | 2.3254 | 0.1520 | 2.3254 | 1.5249 | | No log | 0.0998 | 58 | 2.3115 | 0.1379 | 2.3115 | 1.5204 | | No log | 0.1033 | 60 | 2.1962 | 0.1471 | 2.1962 | 1.4820 | | No log | 0.1067 | 62 | 2.5026 | 0.1056 | 2.5026 | 1.5820 | | No log | 0.1102 | 64 | 2.9234 | 0.0277 | 2.9234 | 1.7098 | | No log | 0.1136 | 66 | 2.7962 | 0.0277 | 2.7962 | 1.6722 | | No log | 0.1170 | 68 | 2.6829 | 0.0802 | 2.6829 | 1.6380 | | No log | 0.1205 | 70 | 2.1787 | 0.1619 | 2.1787 | 1.4760 | | No log | 0.1239 | 72 | 1.8859 | 0.2139 | 1.8859 | 1.3733 | | No log | 0.1274 | 74 | 1.9206 | 0.1737 | 1.9206 | 1.3859 | | No log | 0.1308 | 76 | 2.3491 | 0.2424 | 2.3491 | 1.5327 | | No log | 0.1343 | 78 | 2.4381 | 0.2275 | 2.4381 | 1.5614 | | No log | 0.1377 | 80 | 1.9809 | 0.2792 | 1.9810 | 1.4075 | | No log | 0.1411 | 82 | 1.6162 | 0.3623 | 1.6162 | 1.2713 | | No log | 0.1446 | 84 | 1.4155 | 0.3641 | 1.4155 | 1.1897 | | No log | 0.1480 | 86 | 1.7479 | 0.3235 | 1.7479 | 1.3221 | | No log | 0.1515 | 88 | 2.6459 | 0.2235 | 2.6459 | 1.6266 | | No log | 0.1549 | 90 | 3.0568 | 0.1496 | 3.0568 | 1.7484 | | No log | 0.1583 | 92 | 2.8222 | 0.1242 | 2.8222 | 1.6800 | | No log | 0.1618 | 94 | 2.2701 | 0.1827 | 2.2701 | 1.5067 | | No log | 0.1652 | 96 | 1.8733 | 0.2537 | 1.8733 | 1.3687 | | No log | 0.1687 | 98 | 1.7527 | 0.2727 | 1.7527 | 1.3239 | | No log | 0.1721 | 100 | 1.6284 | 0.3157 | 1.6284 | 1.2761 | | No log | 0.1756 | 102 | 1.4281 | 0.2973 | 1.4281 | 1.1950 | | No log | 0.1790 | 104 | 1.3380 | 0.2246 | 1.3380 | 1.1567 | | No log | 0.1824 | 106 | 1.3581 | 0.3268 | 1.3581 | 1.1654 | | No log | 0.1859 | 108 | 1.6216 | 0.3539 | 1.6216 | 1.2734 | | No log | 0.1893 | 110 | 1.7263 | 0.3539 | 1.7263 | 1.3139 | | No log | 0.1928 | 112 | 2.2106 | 0.2713 | 2.2106 | 1.4868 | | No log | 0.1962 | 114 | 2.3469 | 0.2867 | 2.3469 | 1.5320 | | No log | 0.1997 | 116 | 2.3057 | 0.2867 | 2.3057 | 1.5185 | | No log | 0.2031 | 118 | 2.1113 | 0.2817 | 2.1113 | 1.4530 | | No log | 0.2065 | 120 | 2.2383 | 0.2817 | 2.2383 | 1.4961 | | No log | 0.2100 | 122 | 2.2800 | 0.2843 | 2.2800 | 1.5100 | | No log | 0.2134 | 124 | 1.9925 | 0.3304 | 1.9925 | 1.4116 | | No log | 0.2169 | 126 | 1.5880 | 0.4159 | 1.5880 | 1.2601 | | No log | 0.2203 | 128 | 1.7665 | 0.3698 | 1.7665 | 1.3291 | | No log | 0.2238 | 130 | 1.8871 | 0.3374 | 1.8871 | 1.3737 | | No log | 0.2272 | 132 | 2.0904 | 0.3110 | 2.0904 | 1.4458 | | No log | 0.2306 | 134 | 2.1743 | 0.3077 | 2.1743 | 1.4746 | | No log | 0.2341 | 136 | 2.0983 | 0.3406 | 2.0983 | 1.4485 | | No log | 0.2375 | 138 | 2.6150 | 0.2206 | 2.6150 | 1.6171 | | No log | 0.2410 | 140 | 2.9793 | 0.1873 | 2.9793 | 1.7261 | | No log | 0.2444 | 142 | 2.9671 | 0.1873 | 2.9671 | 1.7225 | | No log | 0.2478 | 144 | 2.8415 | 0.1868 | 2.8415 | 1.6857 | | No log | 0.2513 | 146 | 2.7863 | 0.1719 | 2.7863 | 1.6692 | | No log | 0.2547 | 148 | 2.6756 | 0.1994 | 2.6756 | 1.6357 | | No log | 0.2582 | 150 | 2.1297 | 0.3410 | 2.1297 | 1.4594 | | No log | 0.2616 | 152 | 1.7682 | 0.2889 | 1.7682 | 1.3297 | | No log | 0.2651 | 154 | 1.8568 | 0.3557 | 1.8568 | 1.3627 | | No log | 0.2685 | 156 | 2.0878 | 0.3571 | 2.0878 | 1.4449 | | No log | 0.2719 | 158 | 2.5276 | 0.2588 | 2.5276 | 1.5899 | | No log | 0.2754 | 160 | 2.7889 | 0.2414 | 2.7889 | 1.6700 | | No log | 0.2788 | 162 | 3.0111 | 0.2429 | 3.0111 | 1.7352 | | No log | 0.2823 | 164 | 2.4902 | 0.2400 | 2.4902 | 1.5780 | | No log | 0.2857 | 166 | 2.4689 | 0.2206 | 2.4689 | 1.5713 | | No log | 0.2892 | 168 | 2.7096 | 0.2446 | 2.7096 | 1.6461 | | No log | 0.2926 | 170 | 2.6838 | 0.2696 | 2.6838 | 1.6382 | | No log | 0.2960 | 172 | 2.3723 | 0.2841 | 2.3723 | 1.5402 | | No log | 0.2995 | 174 | 1.9362 | 0.2987 | 1.9362 | 1.3915 | | No log | 0.3029 | 176 | 1.7476 | 0.3440 | 1.7476 | 1.3220 | | No log | 0.3064 | 178 | 1.7811 | 0.3150 | 1.7811 | 1.3346 | | No log | 0.3098 | 180 | 2.2615 | 0.2793 | 2.2615 | 1.5038 | | No log | 0.3133 | 182 | 2.3796 | 0.2771 | 2.3796 | 1.5426 | | No log | 0.3167 | 184 | 2.0942 | 0.2745 | 2.0942 | 1.4471 | | No log | 0.3201 | 186 | 2.2800 | 0.2723 | 2.2800 | 1.5100 | | No log | 0.3236 | 188 | 2.0412 | 0.3294 | 2.0412 | 1.4287 | | No log | 0.3270 | 190 | 1.6894 | 0.3105 | 1.6894 | 1.2998 | | No log | 0.3305 | 192 | 1.7076 | 0.3105 | 1.7076 | 1.3067 | | No log | 0.3339 | 194 | 2.0356 | 0.3312 | 2.0356 | 1.4267 | | No log | 0.3373 | 196 | 2.1710 | 0.3070 | 2.1710 | 1.4734 | | No log | 0.3408 | 198 | 2.4053 | 0.2794 | 2.4053 | 1.5509 | | No log | 0.3442 | 200 | 2.1154 | 0.3070 | 2.1154 | 1.4545 | | No log | 0.3477 | 202 | 1.7370 | 0.3527 | 1.7370 | 1.3180 | | No log | 0.3511 | 204 | 1.9232 | 0.3359 | 1.9232 | 1.3868 | | No log | 0.3546 | 206 | 2.0638 | 0.2987 | 2.0638 | 1.4366 | | No log | 0.3580 | 208 | 2.2056 | 0.2870 | 2.2056 | 1.4851 | | No log | 0.3614 | 210 | 2.0524 | 0.3359 | 2.0524 | 1.4326 | | No log | 0.3649 | 212 | 2.0940 | 0.2708 | 2.0940 | 1.4471 | | No log | 0.3683 | 214 | 2.2624 | 0.2870 | 2.2624 | 1.5041 | | No log | 0.3718 | 216 | 2.4150 | 0.2093 | 2.4150 | 1.5540 | | No log | 0.3752 | 218 | 2.2586 | 0.2644 | 2.2586 | 1.5029 | | No log | 0.3787 | 220 | 1.8588 | 0.3359 | 1.8588 | 1.3634 | | No log | 0.3821 | 222 | 2.0419 | 0.2969 | 2.0419 | 1.4289 | | No log | 0.3855 | 224 | 2.7439 | 0.2256 | 2.7439 | 1.6565 | | No log | 0.3890 | 226 | 2.8497 | 0.2410 | 2.8497 | 1.6881 | | No log | 0.3924 | 228 | 2.2876 | 0.2817 | 2.2876 | 1.5125 | | No log | 0.3959 | 230 | 1.7035 | 0.3859 | 1.7035 | 1.3052 | | No log | 0.3993 | 232 | 1.6196 | 0.2823 | 1.6196 | 1.2726 | | No log | 0.4028 | 234 | 1.9294 | 0.2664 | 1.9294 | 1.3890 | | No log | 0.4062 | 236 | 2.3813 | 0.2224 | 2.3813 | 1.5431 | | No log | 0.4096 | 238 | 2.8086 | 0.2395 | 2.8086 | 1.6759 | | No log | 0.4131 | 240 | 2.6978 | 0.2398 | 2.6978 | 1.6425 | | No log | 0.4165 | 242 | 2.1492 | 0.3347 | 2.1492 | 1.4660 | | No log | 0.4200 | 244 | 1.6078 | 0.2795 | 1.6078 | 1.2680 | | No log | 0.4234 | 246 | 1.5253 | 0.2795 | 1.5253 | 1.2350 | | No log | 0.4269 | 248 | 1.7395 | 0.2983 | 1.7395 | 1.3189 | | No log | 0.4303 | 250 | 2.0592 | 0.2307 | 2.0592 | 1.4350 | | No log | 0.4337 | 252 | 2.1575 | 0.1931 | 2.1575 | 1.4689 | | No log | 0.4372 | 254 | 2.1722 | 0.2345 | 2.1722 | 1.4738 | | No log | 0.4406 | 256 | 2.1686 | 0.2817 | 2.1686 | 1.4726 | | No log | 0.4441 | 258 | 2.2999 | 0.2817 | 2.2999 | 1.5165 | | No log | 0.4475 | 260 | 2.6142 | 0.25 | 2.6142 | 1.6169 | | No log | 0.4509 | 262 | 2.6809 | 0.2794 | 2.6809 | 1.6374 | | No log | 0.4544 | 264 | 2.5426 | 0.2961 | 2.5426 | 1.5945 | | No log | 0.4578 | 266 | 1.9857 | 0.2969 | 1.9857 | 1.4091 | | No log | 0.4613 | 268 | 1.8400 | 0.2764 | 1.8400 | 1.3565 | | No log | 0.4647 | 270 | 1.9456 | 0.3142 | 1.9456 | 1.3948 | | No log | 0.4682 | 272 | 2.5192 | 0.3258 | 2.5192 | 1.5872 | | No log | 0.4716 | 274 | 2.6759 | 0.2927 | 2.6759 | 1.6358 | | No log | 0.4750 | 276 | 2.3693 | 0.3128 | 2.3693 | 1.5392 | | No log | 0.4785 | 278 | 2.1770 | 0.2817 | 2.1770 | 1.4755 | | No log | 0.4819 | 280 | 1.8499 | 0.3255 | 1.8499 | 1.3601 | | No log | 0.4854 | 282 | 1.7655 | 0.3005 | 1.7655 | 1.3287 | | No log | 0.4888 | 284 | 2.1795 | 0.2969 | 2.1795 | 1.4763 | | No log | 0.4923 | 286 | 2.7589 | 0.2551 | 2.7589 | 1.6610 | | No log | 0.4957 | 288 | 2.5904 | 0.2360 | 2.5904 | 1.6095 | | No log | 0.4991 | 290 | 2.1812 | 0.2657 | 2.1812 | 1.4769 | | No log | 0.5026 | 292 | 1.8935 | 0.2393 | 1.8935 | 1.3761 | | No log | 0.5060 | 294 | 1.7355 | 0.2282 | 1.7355 | 1.3174 | | No log | 0.5095 | 296 | 1.5363 | 0.2761 | 1.5363 | 1.2395 | | No log | 0.5129 | 298 | 1.6008 | 0.3137 | 1.6008 | 1.2652 | | No log | 0.5164 | 300 | 1.9595 | 0.3313 | 1.9595 | 1.3998 | | No log | 0.5198 | 302 | 2.3996 | 0.3380 | 2.3996 | 1.5491 | | No log | 0.5232 | 304 | 2.5672 | 0.3101 | 2.5672 | 1.6022 | | No log | 0.5267 | 306 | 2.3328 | 0.2670 | 2.3328 | 1.5273 | | No log | 0.5301 | 308 | 1.8711 | 0.2445 | 1.8711 | 1.3679 | | No log | 0.5336 | 310 | 1.7083 | 0.2760 | 1.7083 | 1.3070 | | No log | 0.5370 | 312 | 1.7169 | 0.2760 | 1.7169 | 1.3103 | | No log | 0.5404 | 314 | 1.9480 | 0.2307 | 1.9480 | 1.3957 | | No log | 0.5439 | 316 | 2.2159 | 0.2817 | 2.2159 | 1.4886 | | No log | 0.5473 | 318 | 2.5236 | 0.2927 | 2.5236 | 1.5886 | | No log | 0.5508 | 320 | 2.2190 | 0.3110 | 2.2190 | 1.4896 | | No log | 0.5542 | 322 | 1.7829 | 0.3417 | 1.7829 | 1.3352 | | No log | 0.5577 | 324 | 1.9497 | 0.3559 | 1.9497 | 1.3963 | | No log | 0.5611 | 326 | 2.4383 | 0.3157 | 2.4383 | 1.5615 | | No log | 0.5645 | 328 | 2.2803 | 0.3336 | 2.2803 | 1.5101 | | No log | 0.5680 | 330 | 1.6275 | 0.3639 | 1.6275 | 1.2758 | | No log | 0.5714 | 332 | 1.2882 | 0.3152 | 1.2882 | 1.1350 | | No log | 0.5749 | 334 | 1.4237 | 0.3971 | 1.4237 | 1.1932 | | No log | 0.5783 | 336 | 1.8259 | 0.3855 | 1.8259 | 1.3513 | | No log | 0.5818 | 338 | 2.1515 | 0.3421 | 2.1515 | 1.4668 | | No log | 0.5852 | 340 | 2.1293 | 0.3822 | 2.1293 | 1.4592 | | No log | 0.5886 | 342 | 1.7096 | 0.3010 | 1.7096 | 1.3075 | | No log | 0.5921 | 344 | 1.2817 | 0.3289 | 1.2817 | 1.1321 | | No log | 0.5955 | 346 | 1.1801 | 0.2597 | 1.1801 | 1.0863 | | No log | 0.5990 | 348 | 1.3485 | 0.2901 | 1.3485 | 1.1613 | | No log | 0.6024 | 350 | 1.8704 | 0.3359 | 1.8704 | 1.3676 | | No log | 0.6059 | 352 | 2.4414 | 0.3147 | 2.4414 | 1.5625 | | No log | 0.6093 | 354 | 2.5878 | 0.3147 | 2.5878 | 1.6087 | | No log | 0.6127 | 356 | 2.1855 | 0.3392 | 2.1855 | 1.4783 | | No log | 0.6162 | 358 | 1.8918 | 0.3762 | 1.8918 | 1.3754 | | No log | 0.6196 | 360 | 1.8358 | 0.3926 | 1.8358 | 1.3549 | | No log | 0.6231 | 362 | 1.6891 | 0.2791 | 1.6891 | 1.2996 | | No log | 0.6265 | 364 | 1.6238 | 0.2445 | 1.6238 | 1.2743 | | No log | 0.6299 | 366 | 1.6275 | 0.2445 | 1.6275 | 1.2757 | | No log | 0.6334 | 368 | 1.9186 | 0.3364 | 1.9186 | 1.3851 | | No log | 0.6368 | 370 | 2.2531 | 0.3110 | 2.2531 | 1.5010 | | No log | 0.6403 | 372 | 2.1360 | 0.3110 | 2.1360 | 1.4615 | | No log | 0.6437 | 374 | 1.8123 | 0.3364 | 1.8123 | 1.3462 | | No log | 0.6472 | 376 | 1.7528 | 0.2820 | 1.7528 | 1.3239 | | No log | 0.6506 | 378 | 1.7675 | 0.3286 | 1.7675 | 1.3295 | | No log | 0.6540 | 380 | 1.6564 | 0.2465 | 1.6564 | 1.2870 | | No log | 0.6575 | 382 | 1.8730 | 0.3263 | 1.8730 | 1.3686 | | No log | 0.6609 | 384 | 1.8322 | 0.3263 | 1.8322 | 1.3536 | | No log | 0.6644 | 386 | 1.5849 | 0.3544 | 1.5849 | 1.2589 | | No log | 0.6678 | 388 | 1.6607 | 0.3571 | 1.6607 | 1.2887 | | No log | 0.6713 | 390 | 1.9503 | 0.3346 | 1.9503 | 1.3965 | | No log | 0.6747 | 392 | 2.2303 | 0.3096 | 2.2303 | 1.4934 | | No log | 0.6781 | 394 | 1.9927 | 0.3190 | 1.9927 | 1.4116 | | No log | 0.6816 | 396 | 1.6455 | 0.3627 | 1.6455 | 1.2828 | | No log | 0.6850 | 398 | 1.6255 | 0.3627 | 1.6255 | 1.2749 | | No log | 0.6885 | 400 | 1.6347 | 0.3627 | 1.6347 | 1.2786 | | No log | 0.6919 | 402 | 1.6287 | 0.3093 | 1.6287 | 1.2762 | | No log | 0.6954 | 404 | 1.8661 | 0.3125 | 1.8661 | 1.3661 | | No log | 0.6988 | 406 | 2.1142 | 0.3110 | 2.1142 | 1.4540 | | No log | 0.7022 | 408 | 1.9534 | 0.3364 | 1.9534 | 1.3976 | | No log | 0.7057 | 410 | 1.5844 | 0.2367 | 1.5844 | 1.2587 | | No log | 0.7091 | 412 | 1.5245 | 0.2520 | 1.5245 | 1.2347 | | No log | 0.7126 | 414 | 1.6325 | 0.2850 | 1.6325 | 1.2777 | | No log | 0.7160 | 416 | 1.8600 | 0.3364 | 1.8600 | 1.3638 | | No log | 0.7194 | 418 | 1.9904 | 0.2793 | 1.9904 | 1.4108 | | No log | 0.7229 | 420 | 1.8127 | 0.3508 | 1.8127 | 1.3464 | | No log | 0.7263 | 422 | 1.5302 | 0.36 | 1.5302 | 1.2370 | | No log | 0.7298 | 424 | 1.4558 | 0.3969 | 1.4558 | 1.2066 | | No log | 0.7332 | 426 | 1.5762 | 0.4084 | 1.5762 | 1.2555 | | No log | 0.7367 | 428 | 1.5618 | 0.4842 | 1.5618 | 1.2497 | | No log | 0.7401 | 430 | 1.5308 | 0.4842 | 1.5308 | 1.2373 | | No log | 0.7435 | 432 | 1.2554 | 0.4989 | 1.2554 | 1.1204 | | No log | 0.7470 | 434 | 1.1263 | 0.5897 | 1.1263 | 1.0613 | | No log | 0.7504 | 436 | 1.2339 | 0.4405 | 1.2339 | 1.1108 | | No log | 0.7539 | 438 | 1.5229 | 0.3346 | 1.5229 | 1.2340 | | No log | 0.7573 | 440 | 1.8585 | 0.3209 | 1.8585 | 1.3633 | | No log | 0.7608 | 442 | 2.0492 | 0.2769 | 2.0492 | 1.4315 | | No log | 0.7642 | 444 | 2.0638 | 0.2769 | 2.0638 | 1.4366 | | No log | 0.7676 | 446 | 1.7495 | 0.2573 | 1.7495 | 1.3227 | | No log | 0.7711 | 448 | 1.3177 | 0.3852 | 1.3177 | 1.1479 | | No log | 0.7745 | 450 | 1.0818 | 0.4087 | 1.0818 | 1.0401 | | No log | 0.7780 | 452 | 1.0347 | 0.4249 | 1.0347 | 1.0172 | | No log | 0.7814 | 454 | 1.0909 | 0.4928 | 1.0909 | 1.0445 | | No log | 0.7849 | 456 | 1.1828 | 0.5099 | 1.1828 | 1.0875 | | No log | 0.7883 | 458 | 1.2750 | 0.4758 | 1.2750 | 1.1292 | | No log | 0.7917 | 460 | 1.2022 | 0.4663 | 1.2022 | 1.0964 | | No log | 0.7952 | 462 | 1.1787 | 0.4988 | 1.1787 | 1.0857 | | No log | 0.7986 | 464 | 1.2584 | 0.4964 | 1.2584 | 1.1218 | | No log | 0.8021 | 466 | 1.4060 | 0.4604 | 1.4060 | 1.1858 | | No log | 0.8055 | 468 | 1.5645 | 0.4398 | 1.5645 | 1.2508 | | No log | 0.8090 | 470 | 1.4719 | 0.4290 | 1.4719 | 1.2132 | | No log | 0.8124 | 472 | 1.3267 | 0.4737 | 1.3267 | 1.1518 | | No log | 0.8158 | 474 | 1.3999 | 0.4921 | 1.3999 | 1.1832 | | No log | 0.8193 | 476 | 1.6839 | 0.3964 | 1.6839 | 1.2977 | | No log | 0.8227 | 478 | 1.8703 | 0.3609 | 1.8703 | 1.3676 | | No log | 0.8262 | 480 | 1.9009 | 0.3621 | 1.9009 | 1.3787 | | No log | 0.8296 | 482 | 1.7456 | 0.3758 | 1.7456 | 1.3212 | | No log | 0.8330 | 484 | 1.4884 | 0.4154 | 1.4884 | 1.2200 | | No log | 0.8365 | 486 | 1.4027 | 0.4015 | 1.4027 | 1.1844 | | No log | 0.8399 | 488 | 1.2739 | 0.4403 | 1.2739 | 1.1287 | | No log | 0.8434 | 490 | 1.2096 | 0.4302 | 1.2096 | 1.0998 | | No log | 0.8468 | 492 | 1.2662 | 0.4520 | 1.2662 | 1.1252 | | No log | 0.8503 | 494 | 1.4308 | 0.4528 | 1.4308 | 1.1961 | | No log | 0.8537 | 496 | 1.8566 | 0.4342 | 1.8566 | 1.3626 | | No log | 0.8571 | 498 | 2.1939 | 0.3517 | 2.1939 | 1.4812 | | 0.4688 | 0.8606 | 500 | 1.9529 | 0.3417 | 1.9529 | 1.3975 | | 0.4688 | 0.8640 | 502 | 1.5336 | 0.4808 | 1.5336 | 1.2384 | | 0.4688 | 0.8675 | 504 | 1.1322 | 0.3625 | 1.1322 | 1.0641 | | 0.4688 | 0.8709 | 506 | 1.0754 | 0.4261 | 1.0754 | 1.0370 | | 0.4688 | 0.8744 | 508 | 1.2328 | 0.3886 | 1.2328 | 1.1103 | | 0.4688 | 0.8778 | 510 | 1.5741 | 0.48 | 1.5741 | 1.2546 | | 0.4688 | 0.8812 | 512 | 1.6813 | 0.4421 | 1.6813 | 1.2966 | | 0.4688 | 0.8847 | 514 | 1.6334 | 0.4523 | 1.6334 | 1.2780 | | 0.4688 | 0.8881 | 516 | 1.3132 | 0.4941 | 1.3132 | 1.1460 | | 0.4688 | 0.8916 | 518 | 0.9364 | 0.5931 | 0.9364 | 0.9677 | | 0.4688 | 0.8950 | 520 | 0.8444 | 0.5459 | 0.8444 | 0.9189 | | 0.4688 | 0.8985 | 522 | 0.9431 | 0.5931 | 0.9431 | 0.9711 | | 0.4688 | 0.9019 | 524 | 1.3420 | 0.4634 | 1.3420 | 1.1585 | | 0.4688 | 0.9053 | 526 | 1.5949 | 0.4341 | 1.5949 | 1.2629 | | 0.4688 | 0.9088 | 528 | 1.4213 | 0.4512 | 1.4213 | 1.1922 | | 0.4688 | 0.9122 | 530 | 1.2847 | 0.4824 | 1.2847 | 1.1334 | | 0.4688 | 0.9157 | 532 | 1.3513 | 0.4816 | 1.3513 | 1.1624 | | 0.4688 | 0.9191 | 534 | 1.3507 | 0.4512 | 1.3507 | 1.1622 | | 0.4688 | 0.9225 | 536 | 1.5477 | 0.4238 | 1.5477 | 1.2441 | | 0.4688 | 0.9260 | 538 | 1.7203 | 0.3895 | 1.7203 | 1.3116 | | 0.4688 | 0.9294 | 540 | 1.8990 | 0.3759 | 1.8990 | 1.3780 | | 0.4688 | 0.9329 | 542 | 1.7199 | 0.3903 | 1.7199 | 1.3114 | | 0.4688 | 0.9363 | 544 | 1.7159 | 0.3903 | 1.7159 | 1.3099 | | 0.4688 | 0.9398 | 546 | 1.5639 | 0.4238 | 1.5639 | 1.2506 | | 0.4688 | 0.9432 | 548 | 1.4740 | 0.3979 | 1.4740 | 1.2141 | | 0.4688 | 0.9466 | 550 | 1.5753 | 0.4065 | 1.5753 | 1.2551 | | 0.4688 | 0.9501 | 552 | 1.8731 | 0.375 | 1.8731 | 1.3686 | | 0.4688 | 0.9535 | 554 | 2.1090 | 0.3457 | 2.1090 | 1.4522 | | 0.4688 | 0.9570 | 556 | 2.1962 | 0.3206 | 2.1962 | 1.4820 | | 0.4688 | 0.9604 | 558 | 2.1616 | 0.3206 | 2.1616 | 1.4702 | | 0.4688 | 0.9639 | 560 | 1.8757 | 0.3417 | 1.8757 | 1.3695 | | 0.4688 | 0.9673 | 562 | 1.7337 | 0.2969 | 1.7337 | 1.3167 | | 0.4688 | 0.9707 | 564 | 1.6335 | 0.3386 | 1.6335 | 1.2781 | | 0.4688 | 0.9742 | 566 | 1.5915 | 0.3726 | 1.5915 | 1.2615 | | 0.4688 | 0.9776 | 568 | 1.6363 | 0.3810 | 1.6363 | 1.2792 | | 0.4688 | 0.9811 | 570 | 1.5811 | 0.4050 | 1.5811 | 1.2574 | | 0.4688 | 0.9845 | 572 | 1.8175 | 0.3837 | 1.8175 | 1.3482 | | 0.4688 | 0.9880 | 574 | 1.7621 | 0.4000 | 1.7621 | 1.3274 | | 0.4688 | 0.9914 | 576 | 1.9475 | 0.3837 | 1.9475 | 1.3955 | | 0.4688 | 0.9948 | 578 | 1.9045 | 0.3837 | 1.9045 | 1.3801 | | 0.4688 | 0.9983 | 580 | 1.5508 | 0.4206 | 1.5508 | 1.2453 | | 0.4688 | 1.0017 | 582 | 1.2107 | 0.4136 | 1.2107 | 1.1003 | | 0.4688 | 1.0052 | 584 | 0.9530 | 0.5733 | 0.9530 | 0.9762 | | 0.4688 | 1.0086 | 586 | 0.8999 | 0.55 | 0.8999 | 0.9487 | | 0.4688 | 1.0120 | 588 | 1.0234 | 0.5733 | 1.0234 | 1.0116 | | 0.4688 | 1.0155 | 590 | 1.4276 | 0.48 | 1.4276 | 1.1948 | | 0.4688 | 1.0189 | 592 | 2.0474 | 0.3286 | 2.0474 | 1.4309 | | 0.4688 | 1.0224 | 594 | 2.1982 | 0.3058 | 2.1982 | 1.4826 | | 0.4688 | 1.0258 | 596 | 1.9235 | 0.3346 | 1.9235 | 1.3869 | | 0.4688 | 1.0293 | 598 | 1.3645 | 0.4952 | 1.3645 | 1.1681 | | 0.4688 | 1.0327 | 600 | 1.1775 | 0.5013 | 1.1775 | 1.0851 | | 0.4688 | 1.0361 | 602 | 1.1849 | 0.5123 | 1.1849 | 1.0885 | | 0.4688 | 1.0396 | 604 | 1.2860 | 0.4964 | 1.2860 | 1.1340 | | 0.4688 | 1.0430 | 606 | 1.2395 | 0.4632 | 1.2395 | 1.1133 | | 0.4688 | 1.0465 | 608 | 1.2580 | 0.4632 | 1.2580 | 1.1216 | | 0.4688 | 1.0499 | 610 | 1.3838 | 0.4824 | 1.3838 | 1.1764 | | 0.4688 | 1.0534 | 612 | 1.3487 | 0.5071 | 1.3487 | 1.1613 | | 0.4688 | 1.0568 | 614 | 1.4260 | 0.5046 | 1.4260 | 1.1941 | | 0.4688 | 1.0602 | 616 | 1.5603 | 0.4342 | 1.5603 | 1.2491 | | 0.4688 | 1.0637 | 618 | 1.4399 | 0.5303 | 1.4399 | 1.2000 | | 0.4688 | 1.0671 | 620 | 1.4308 | 0.5303 | 1.4308 | 1.1961 | | 0.4688 | 1.0706 | 622 | 1.6467 | 0.4618 | 1.6467 | 1.2832 | | 0.4688 | 1.0740 | 624 | 1.7846 | 0.3689 | 1.7846 | 1.3359 | | 0.4688 | 1.0775 | 626 | 1.7537 | 0.3895 | 1.7537 | 1.3243 | | 0.4688 | 1.0809 | 628 | 1.8000 | 0.3508 | 1.8000 | 1.3416 | | 0.4688 | 1.0843 | 630 | 1.6521 | 0.4082 | 1.6521 | 1.2853 | | 0.4688 | 1.0878 | 632 | 1.4026 | 0.4150 | 1.4026 | 1.1843 | | 0.4688 | 1.0912 | 634 | 1.2383 | 0.4162 | 1.2383 | 1.1128 | | 0.4688 | 1.0947 | 636 | 1.2379 | 0.4302 | 1.2379 | 1.1126 | | 0.4688 | 1.0981 | 638 | 1.4804 | 0.4931 | 1.4804 | 1.2167 | | 0.4688 | 1.1015 | 640 | 1.9837 | 0.3077 | 1.9837 | 1.4084 | | 0.4688 | 1.1050 | 642 | 2.3142 | 0.3111 | 2.3142 | 1.5213 | | 0.4688 | 1.1084 | 644 | 2.2089 | 0.3111 | 2.2089 | 1.4862 | | 0.4688 | 1.1119 | 646 | 1.7429 | 0.4441 | 1.7429 | 1.3202 | | 0.4688 | 1.1153 | 648 | 1.3058 | 0.4867 | 1.3058 | 1.1427 | | 0.4688 | 1.1188 | 650 | 1.1453 | 0.4050 | 1.1453 | 1.0702 | | 0.4688 | 1.1222 | 652 | 1.1783 | 0.3660 | 1.1783 | 1.0855 | | 0.4688 | 1.1256 | 654 | 1.4268 | 0.4499 | 1.4268 | 1.1945 | | 0.4688 | 1.1291 | 656 | 1.8679 | 0.3263 | 1.8679 | 1.3667 | | 0.4688 | 1.1325 | 658 | 2.0844 | 0.3077 | 2.0844 | 1.4438 | | 0.4688 | 1.1360 | 660 | 1.9268 | 0.3263 | 1.9268 | 1.3881 | | 0.4688 | 1.1394 | 662 | 1.6032 | 0.4318 | 1.6032 | 1.2662 | | 0.4688 | 1.1429 | 664 | 1.2319 | 0.4653 | 1.2319 | 1.1099 | | 0.4688 | 1.1463 | 666 | 1.0912 | 0.4699 | 1.0912 | 1.0446 | | 0.4688 | 1.1497 | 668 | 1.1504 | 0.4794 | 1.1504 | 1.0726 | | 0.4688 | 1.1532 | 670 | 1.3568 | 0.4613 | 1.3568 | 1.1648 | | 0.4688 | 1.1566 | 672 | 1.6972 | 0.3966 | 1.6972 | 1.3028 | | 0.4688 | 1.1601 | 674 | 1.8359 | 0.3286 | 1.8359 | 1.3549 | | 0.4688 | 1.1635 | 676 | 1.7075 | 0.3495 | 1.7075 | 1.3067 | | 0.4688 | 1.1670 | 678 | 1.4275 | 0.3423 | 1.4275 | 1.1948 | | 0.4688 | 1.1704 | 680 | 1.3039 | 0.3589 | 1.3039 | 1.1419 | | 0.4688 | 1.1738 | 682 | 1.3535 | 0.3423 | 1.3535 | 1.1634 | | 0.4688 | 1.1773 | 684 | 1.4162 | 0.3423 | 1.4162 | 1.1900 | | 0.4688 | 1.1807 | 686 | 1.4481 | 0.3587 | 1.4481 | 1.2034 | | 0.4688 | 1.1842 | 688 | 1.6275 | 0.3710 | 1.6275 | 1.2758 | | 0.4688 | 1.1876 | 690 | 2.0199 | 0.3128 | 2.0199 | 1.4212 | | 0.4688 | 1.1910 | 692 | 2.1541 | 0.2974 | 2.1541 | 1.4677 | | 0.4688 | 1.1945 | 694 | 1.9390 | 0.3488 | 1.9390 | 1.3925 | | 0.4688 | 1.1979 | 696 | 1.7317 | 0.3508 | 1.7317 | 1.3159 | | 0.4688 | 1.2014 | 698 | 1.6720 | 0.3651 | 1.6720 | 1.2930 | | 0.4688 | 1.2048 | 700 | 1.4833 | 0.4277 | 1.4833 | 1.2179 | | 0.4688 | 1.2083 | 702 | 1.2812 | 0.3886 | 1.2812 | 1.1319 | | 0.4688 | 1.2117 | 704 | 1.3087 | 0.3886 | 1.3087 | 1.1440 | | 0.4688 | 1.2151 | 706 | 1.5113 | 0.4499 | 1.5113 | 1.2293 | | 0.4688 | 1.2186 | 708 | 1.5872 | 0.4315 | 1.5872 | 1.2598 | | 0.4688 | 1.2220 | 710 | 1.5091 | 0.4424 | 1.5091 | 1.2285 | | 0.4688 | 1.2255 | 712 | 1.3816 | 0.4731 | 1.3816 | 1.1754 | | 0.4688 | 1.2289 | 714 | 1.3766 | 0.4307 | 1.3766 | 1.1733 | | 0.4688 | 1.2324 | 716 | 1.5279 | 0.4341 | 1.5279 | 1.2361 | | 0.4688 | 1.2358 | 718 | 1.6499 | 0.3888 | 1.6499 | 1.2845 | | 0.4688 | 1.2392 | 720 | 1.7388 | 0.3402 | 1.7388 | 1.3186 | | 0.4688 | 1.2427 | 722 | 1.8172 | 0.3154 | 1.8172 | 1.3480 | | 0.4688 | 1.2461 | 724 | 1.5898 | 0.3631 | 1.5898 | 1.2609 | | 0.4688 | 1.2496 | 726 | 1.4515 | 0.3142 | 1.4515 | 1.2048 | | 0.4688 | 1.2530 | 728 | 1.5786 | 0.2918 | 1.5786 | 1.2564 | | 0.4688 | 1.2565 | 730 | 1.9029 | 0.2766 | 1.9029 | 1.3795 | | 0.4688 | 1.2599 | 732 | 2.1169 | 0.2933 | 2.1169 | 1.4549 | | 0.4688 | 1.2633 | 734 | 2.0363 | 0.3321 | 2.0363 | 1.4270 | | 0.4688 | 1.2668 | 736 | 1.8432 | 0.3028 | 1.8432 | 1.3576 | | 0.4688 | 1.2702 | 738 | 1.6426 | 0.3647 | 1.6426 | 1.2816 | | 0.4688 | 1.2737 | 740 | 1.4735 | 0.4008 | 1.4735 | 1.2139 | | 0.4688 | 1.2771 | 742 | 1.4606 | 0.4008 | 1.4606 | 1.2086 | | 0.4688 | 1.2806 | 744 | 1.5299 | 0.4008 | 1.5299 | 1.2369 | | 0.4688 | 1.2840 | 746 | 1.6040 | 0.3726 | 1.6040 | 1.2665 | | 0.4688 | 1.2874 | 748 | 1.5435 | 0.4375 | 1.5435 | 1.2424 | | 0.4688 | 1.2909 | 750 | 1.5961 | 0.3950 | 1.5961 | 1.2633 | | 0.4688 | 1.2943 | 752 | 1.7206 | 0.37 | 1.7206 | 1.3117 | | 0.4688 | 1.2978 | 754 | 1.7856 | 0.37 | 1.7856 | 1.3363 | | 0.4688 | 1.3012 | 756 | 1.6573 | 0.4007 | 1.6573 | 1.2873 | | 0.4688 | 1.3046 | 758 | 1.4766 | 0.3925 | 1.4766 | 1.2151 | | 0.4688 | 1.3081 | 760 | 1.2982 | 0.3747 | 1.2982 | 1.1394 | | 0.4688 | 1.3115 | 762 | 1.3676 | 0.3906 | 1.3676 | 1.1695 | | 0.4688 | 1.3150 | 764 | 1.4551 | 0.3925 | 1.4551 | 1.2063 | | 0.4688 | 1.3184 | 766 | 1.6262 | 0.3868 | 1.6262 | 1.2752 | | 0.4688 | 1.3219 | 768 | 1.6860 | 0.4055 | 1.6860 | 1.2985 | | 0.4688 | 1.3253 | 770 | 1.5930 | 0.4044 | 1.5930 | 1.2621 | | 0.4688 | 1.3287 | 772 | 1.6544 | 0.4236 | 1.6544 | 1.2862 | | 0.4688 | 1.3322 | 774 | 1.6105 | 0.3868 | 1.6105 | 1.2691 | | 0.4688 | 1.3356 | 776 | 1.5908 | 0.3148 | 1.5908 | 1.2613 | | 0.4688 | 1.3391 | 778 | 1.7170 | 0.3116 | 1.7170 | 1.3104 | | 0.4688 | 1.3425 | 780 | 1.6077 | 0.3239 | 1.6077 | 1.2679 | | 0.4688 | 1.3460 | 782 | 1.3641 | 0.4141 | 1.3641 | 1.1679 | | 0.4688 | 1.3494 | 784 | 1.2339 | 0.4017 | 1.2339 | 1.1108 | | 0.4688 | 1.3528 | 786 | 1.2820 | 0.4307 | 1.2820 | 1.1323 | | 0.4688 | 1.3563 | 788 | 1.5548 | 0.4528 | 1.5548 | 1.2469 | | 0.4688 | 1.3597 | 790 | 1.6727 | 0.4422 | 1.6727 | 1.2933 | | 0.4688 | 1.3632 | 792 | 1.5600 | 0.4620 | 1.5600 | 1.2490 | | 0.4688 | 1.3666 | 794 | 1.4885 | 0.4425 | 1.4885 | 1.2201 | | 0.4688 | 1.3701 | 796 | 1.5612 | 0.4620 | 1.5612 | 1.2495 | | 0.4688 | 1.3735 | 798 | 1.7740 | 0.406 | 1.7740 | 1.3319 | | 0.4688 | 1.3769 | 800 | 1.7458 | 0.4165 | 1.7458 | 1.3213 | | 0.4688 | 1.3804 | 802 | 1.5169 | 0.3971 | 1.5169 | 1.2316 | | 0.4688 | 1.3838 | 804 | 1.2853 | 0.4271 | 1.2853 | 1.1337 | | 0.4688 | 1.3873 | 806 | 1.2290 | 0.4017 | 1.2290 | 1.1086 | | 0.4688 | 1.3907 | 808 | 1.3119 | 0.4046 | 1.3119 | 1.1454 | | 0.4688 | 1.3941 | 810 | 1.5154 | 0.4071 | 1.5154 | 1.2310 | | 0.4688 | 1.3976 | 812 | 1.4445 | 0.4190 | 1.4445 | 1.2019 | | 0.4688 | 1.4010 | 814 | 1.3094 | 0.3947 | 1.3094 | 1.1443 | | 0.4688 | 1.4045 | 816 | 1.2719 | 0.4167 | 1.2719 | 1.1278 | | 0.4688 | 1.4079 | 818 | 1.3285 | 0.4755 | 1.3285 | 1.1526 | | 0.4688 | 1.4114 | 820 | 1.4153 | 0.4014 | 1.4153 | 1.1897 | | 0.4688 | 1.4148 | 822 | 1.4857 | 0.3962 | 1.4857 | 1.2189 | | 0.4688 | 1.4182 | 824 | 1.6678 | 0.4162 | 1.6678 | 1.2914 | | 0.4688 | 1.4217 | 826 | 1.6712 | 0.3864 | 1.6712 | 1.2928 | | 0.4688 | 1.4251 | 828 | 1.5529 | 0.3962 | 1.5529 | 1.2462 | | 0.4688 | 1.4286 | 830 | 1.3749 | 0.4523 | 1.3749 | 1.1726 | | 0.4688 | 1.4320 | 832 | 1.3660 | 0.4039 | 1.3660 | 1.1688 | | 0.4688 | 1.4355 | 834 | 1.4155 | 0.4046 | 1.4155 | 1.1897 | | 0.4688 | 1.4389 | 836 | 1.4620 | 0.4520 | 1.4620 | 1.2091 | | 0.4688 | 1.4423 | 838 | 1.5321 | 0.4261 | 1.5321 | 1.2378 | | 0.4688 | 1.4458 | 840 | 1.3330 | 0.4762 | 1.3330 | 1.1546 | | 0.4688 | 1.4492 | 842 | 1.3025 | 0.4661 | 1.3025 | 1.1413 | | 0.4688 | 1.4527 | 844 | 1.5564 | 0.4722 | 1.5564 | 1.2476 | | 0.4688 | 1.4561 | 846 | 2.0247 | 0.3698 | 2.0247 | 1.4229 | | 0.4688 | 1.4596 | 848 | 2.1273 | 0.3708 | 2.1273 | 1.4585 | | 0.4688 | 1.4630 | 850 | 1.9054 | 0.3689 | 1.9054 | 1.3804 | | 0.4688 | 1.4664 | 852 | 1.5710 | 0.4261 | 1.5710 | 1.2534 | | 0.4688 | 1.4699 | 854 | 1.4262 | 0.4402 | 1.4262 | 1.1943 | | 0.4688 | 1.4733 | 856 | 1.2588 | 0.4404 | 1.2588 | 1.1220 | | 0.4688 | 1.4768 | 858 | 1.2607 | 0.4404 | 1.2607 | 1.1228 | | 0.4688 | 1.4802 | 860 | 1.3998 | 0.4183 | 1.3998 | 1.1831 | | 0.4688 | 1.4836 | 862 | 1.5787 | 0.4543 | 1.5787 | 1.2565 | | 0.4688 | 1.4871 | 864 | 1.5420 | 0.4543 | 1.5420 | 1.2418 | | 0.4688 | 1.4905 | 866 | 1.3129 | 0.4836 | 1.3129 | 1.1458 | | 0.4688 | 1.4940 | 868 | 1.2073 | 0.4762 | 1.2073 | 1.0988 | | 0.4688 | 1.4974 | 870 | 1.2710 | 0.4431 | 1.2710 | 1.1274 | | 0.4688 | 1.5009 | 872 | 1.5552 | 0.4424 | 1.5552 | 1.2471 | | 0.4688 | 1.5043 | 874 | 1.6955 | 0.4214 | 1.6955 | 1.3021 | | 0.4688 | 1.5077 | 876 | 1.7835 | 0.3482 | 1.7835 | 1.3355 | | 0.4688 | 1.5112 | 878 | 1.7047 | 0.2792 | 1.7047 | 1.3056 | | 0.4688 | 1.5146 | 880 | 1.5356 | 0.2482 | 1.5356 | 1.2392 | | 0.4688 | 1.5181 | 882 | 1.3337 | 0.4268 | 1.3337 | 1.1549 | | 0.4688 | 1.5215 | 884 | 1.3063 | 0.4268 | 1.3063 | 1.1429 | | 0.4688 | 1.5250 | 886 | 1.2376 | 0.4665 | 1.2376 | 1.1125 | | 0.4688 | 1.5284 | 888 | 1.3012 | 0.4302 | 1.3012 | 1.1407 | | 0.4688 | 1.5318 | 890 | 1.2634 | 0.4302 | 1.2634 | 1.1240 | | 0.4688 | 1.5353 | 892 | 1.2458 | 0.4302 | 1.2458 | 1.1162 | | 0.4688 | 1.5387 | 894 | 1.2916 | 0.4404 | 1.2916 | 1.1365 | | 0.4688 | 1.5422 | 896 | 1.3603 | 0.4273 | 1.3603 | 1.1663 | | 0.4688 | 1.5456 | 898 | 1.4278 | 0.3095 | 1.4278 | 1.1949 | | 0.4688 | 1.5491 | 900 | 1.4739 | 0.3738 | 1.4739 | 1.2140 | | 0.4688 | 1.5525 | 902 | 1.5234 | 0.4314 | 1.5234 | 1.2343 | | 0.4688 | 1.5559 | 904 | 1.5670 | 0.4084 | 1.5670 | 1.2518 | | 0.4688 | 1.5594 | 906 | 1.5390 | 0.4364 | 1.5390 | 1.2406 | | 0.4688 | 1.5628 | 908 | 1.4714 | 0.4545 | 1.4714 | 1.2130 | | 0.4688 | 1.5663 | 910 | 1.2508 | 0.4302 | 1.2508 | 1.1184 | | 0.4688 | 1.5697 | 912 | 1.1210 | 0.4677 | 1.1210 | 1.0588 | | 0.4688 | 1.5731 | 914 | 1.1658 | 0.4302 | 1.1658 | 1.0797 | | 0.4688 | 1.5766 | 916 | 1.2676 | 0.4627 | 1.2676 | 1.1259 | | 0.4688 | 1.5800 | 918 | 1.3724 | 0.4183 | 1.3724 | 1.1715 | | 0.4688 | 1.5835 | 920 | 1.6045 | 0.3371 | 1.6045 | 1.2667 | | 0.4688 | 1.5869 | 922 | 1.6333 | 0.3371 | 1.6333 | 1.2780 | | 0.4688 | 1.5904 | 924 | 1.5342 | 0.3386 | 1.5342 | 1.2386 | | 0.4688 | 1.5938 | 926 | 1.2998 | 0.3916 | 1.2998 | 1.1401 | | 0.4688 | 1.5972 | 928 | 1.0874 | 0.4522 | 1.0874 | 1.0428 | | 0.4688 | 1.6007 | 930 | 1.1251 | 0.4870 | 1.1251 | 1.0607 | | 0.4688 | 1.6041 | 932 | 1.4330 | 0.4718 | 1.4330 | 1.1971 | | 0.4688 | 1.6076 | 934 | 1.8385 | 0.3945 | 1.8385 | 1.3559 | | 0.4688 | 1.6110 | 936 | 2.0176 | 0.3945 | 2.0176 | 1.4204 | | 0.4688 | 1.6145 | 938 | 1.8903 | 0.3945 | 1.8903 | 1.3749 | | 0.4688 | 1.6179 | 940 | 1.5940 | 0.3661 | 1.5940 | 1.2625 | | 0.4688 | 1.6213 | 942 | 1.2513 | 0.4130 | 1.2513 | 1.1186 | | 0.4688 | 1.6248 | 944 | 1.0603 | 0.4802 | 1.0603 | 1.0297 | | 0.4688 | 1.6282 | 946 | 1.0268 | 0.5093 | 1.0268 | 1.0133 | | 0.4688 | 1.6317 | 948 | 1.0309 | 0.5093 | 1.0309 | 1.0153 | | 0.4688 | 1.6351 | 950 | 1.1086 | 0.4911 | 1.1086 | 1.0529 | | 0.4688 | 1.6386 | 952 | 1.2897 | 0.4375 | 1.2897 | 1.1356 | | 0.4688 | 1.6420 | 954 | 1.6755 | 0.3422 | 1.6755 | 1.2944 | | 0.4688 | 1.6454 | 956 | 1.8763 | 0.3971 | 1.8763 | 1.3698 | | 0.4688 | 1.6489 | 958 | 1.7734 | 0.3837 | 1.7734 | 1.3317 | | 0.4688 | 1.6523 | 960 | 1.4072 | 0.4915 | 1.4072 | 1.1862 | | 0.4688 | 1.6558 | 962 | 1.0570 | 0.4643 | 1.0570 | 1.0281 | | 0.4688 | 1.6592 | 964 | 0.9462 | 0.55 | 0.9462 | 0.9727 | | 0.4688 | 1.6627 | 966 | 0.9891 | 0.4941 | 0.9891 | 0.9945 | | 0.4688 | 1.6661 | 968 | 1.2026 | 0.4632 | 1.2026 | 1.0967 | | 0.4688 | 1.6695 | 970 | 1.4644 | 0.4065 | 1.4644 | 1.2101 | | 0.4688 | 1.6730 | 972 | 1.5232 | 0.4071 | 1.5232 | 1.2342 | | 0.4688 | 1.6764 | 974 | 1.3752 | 0.4504 | 1.3752 | 1.1727 | | 0.4688 | 1.6799 | 976 | 1.2080 | 0.4515 | 1.2080 | 1.0991 | | 0.4688 | 1.6833 | 978 | 1.2493 | 0.4756 | 1.2493 | 1.1177 | | 0.4688 | 1.6867 | 980 | 1.3882 | 0.4627 | 1.3882 | 1.1782 | | 0.4688 | 1.6902 | 982 | 1.5413 | 0.4071 | 1.5413 | 1.2415 | | 0.4688 | 1.6936 | 984 | 1.5163 | 0.4071 | 1.5163 | 1.2314 | | 0.4688 | 1.6971 | 986 | 1.5206 | 0.4496 | 1.5206 | 1.2331 | | 0.4688 | 1.7005 | 988 | 1.4576 | 0.4617 | 1.4576 | 1.2073 | | 0.4688 | 1.7040 | 990 | 1.3039 | 0.4860 | 1.3039 | 1.1419 | | 0.4688 | 1.7074 | 992 | 1.3377 | 0.5182 | 1.3377 | 1.1566 | | 0.4688 | 1.7108 | 994 | 1.5609 | 0.4716 | 1.5609 | 1.2494 | | 0.4688 | 1.7143 | 996 | 1.7178 | 0.3939 | 1.7178 | 1.3106 | | 0.4688 | 1.7177 | 998 | 1.7034 | 0.3939 | 1.7034 | 1.3051 | | 0.149 | 1.7212 | 1000 | 1.4455 | 0.4931 | 1.4455 | 1.2023 | | 0.149 | 1.7246 | 1002 | 1.1984 | 0.4405 | 1.1984 | 1.0947 | | 0.149 | 1.7281 | 1004 | 1.0897 | 0.4147 | 1.0897 | 1.0439 | | 0.149 | 1.7315 | 1006 | 1.1296 | 0.4263 | 1.1296 | 1.0628 | | 0.149 | 1.7349 | 1008 | 1.1369 | 0.4263 | 1.1369 | 1.0663 | | 0.149 | 1.7384 | 1010 | 1.2488 | 0.4405 | 1.2488 | 1.1175 | | 0.149 | 1.7418 | 1012 | 1.3514 | 0.5182 | 1.3514 | 1.1625 | | 0.149 | 1.7453 | 1014 | 1.2686 | 0.4767 | 1.2686 | 1.1263 | | 0.149 | 1.7487 | 1016 | 1.2867 | 0.4405 | 1.2867 | 1.1343 | | 0.149 | 1.7522 | 1018 | 1.4202 | 0.4824 | 1.4202 | 1.1917 | | 0.149 | 1.7556 | 1020 | 1.4963 | 0.4494 | 1.4963 | 1.2233 | | 0.149 | 1.7590 | 1022 | 1.4385 | 0.4499 | 1.4385 | 1.1994 | | 0.149 | 1.7625 | 1024 | 1.2353 | 0.4017 | 1.2353 | 1.1114 | | 0.149 | 1.7659 | 1026 | 1.0180 | 0.5248 | 1.0180 | 1.0090 | | 0.149 | 1.7694 | 1028 | 0.9676 | 0.5124 | 0.9676 | 0.9836 | | 0.149 | 1.7728 | 1030 | 1.0248 | 0.4955 | 1.0248 | 1.0123 | | 0.149 | 1.7762 | 1032 | 1.2177 | 0.4632 | 1.2177 | 1.1035 | | 0.149 | 1.7797 | 1034 | 1.5036 | 0.4400 | 1.5036 | 1.2262 | | 0.149 | 1.7831 | 1036 | 1.5322 | 0.3737 | 1.5322 | 1.2378 | | 0.149 | 1.7866 | 1038 | 1.3371 | 0.4964 | 1.3371 | 1.1563 | | 0.149 | 1.7900 | 1040 | 1.0728 | 0.4435 | 1.0728 | 1.0358 | | 0.149 | 1.7935 | 1042 | 0.9916 | 0.4691 | 0.9916 | 0.9958 | | 0.149 | 1.7969 | 1044 | 0.9994 | 0.4691 | 0.9994 | 0.9997 | | 0.149 | 1.8003 | 1046 | 1.0302 | 0.4296 | 1.0302 | 1.0150 | | 0.149 | 1.8038 | 1048 | 1.0848 | 0.4671 | 1.0848 | 1.0415 | | 0.149 | 1.8072 | 1050 | 1.2206 | 0.4632 | 1.2206 | 1.1048 | | 0.149 | 1.8107 | 1052 | 1.1909 | 0.5 | 1.1909 | 1.0913 | | 0.149 | 1.8141 | 1054 | 1.2360 | 0.4632 | 1.2360 | 1.1117 | | 0.149 | 1.8176 | 1056 | 1.4200 | 0.4071 | 1.4200 | 1.1916 | | 0.149 | 1.8210 | 1058 | 1.4350 | 0.4281 | 1.4350 | 1.1979 | | 0.149 | 1.8244 | 1060 | 1.4023 | 0.4504 | 1.4023 | 1.1842 | | 0.149 | 1.8279 | 1062 | 1.2843 | 0.4620 | 1.2843 | 1.1333 | | 0.149 | 1.8313 | 1064 | 1.3306 | 0.4620 | 1.3306 | 1.1535 | | 0.149 | 1.8348 | 1066 | 1.3281 | 0.4740 | 1.3281 | 1.1525 | | 0.149 | 1.8382 | 1068 | 1.2999 | 0.4740 | 1.2999 | 1.1401 | | 0.149 | 1.8417 | 1070 | 1.4658 | 0.4150 | 1.4658 | 1.2107 | | 0.149 | 1.8451 | 1072 | 1.5228 | 0.3661 | 1.5228 | 1.2340 | | 0.149 | 1.8485 | 1074 | 1.3926 | 0.4733 | 1.3926 | 1.1801 | | 0.149 | 1.8520 | 1076 | 1.1624 | 0.4870 | 1.1624 | 1.0781 | | 0.149 | 1.8554 | 1078 | 0.9644 | 0.5124 | 0.9644 | 0.9820 | | 0.149 | 1.8589 | 1080 | 0.9331 | 0.5124 | 0.9331 | 0.9660 | | 0.149 | 1.8623 | 1082 | 1.0385 | 0.5152 | 1.0385 | 1.0191 | | 0.149 | 1.8657 | 1084 | 1.1443 | 0.4756 | 1.1443 | 1.0697 | | 0.149 | 1.8692 | 1086 | 1.2724 | 0.4504 | 1.2724 | 1.1280 | | 0.149 | 1.8726 | 1088 | 1.2321 | 0.4506 | 1.2321 | 1.1100 | | 0.149 | 1.8761 | 1090 | 1.2764 | 0.4504 | 1.2764 | 1.1298 | | 0.149 | 1.8795 | 1092 | 1.2129 | 0.4509 | 1.2129 | 1.1013 | | 0.149 | 1.8830 | 1094 | 1.1622 | 0.4509 | 1.1622 | 1.0780 | | 0.149 | 1.8864 | 1096 | 1.1102 | 0.4509 | 1.1102 | 1.0536 | | 0.149 | 1.8898 | 1098 | 1.0626 | 0.4756 | 1.0626 | 1.0308 | | 0.149 | 1.8933 | 1100 | 0.9408 | 0.5798 | 0.9408 | 0.9700 | | 0.149 | 1.8967 | 1102 | 0.9134 | 0.5556 | 0.9134 | 0.9557 | | 0.149 | 1.9002 | 1104 | 0.9998 | 0.5207 | 0.9998 | 0.9999 | | 0.149 | 1.9036 | 1106 | 1.1679 | 0.4509 | 1.1679 | 1.0807 | | 0.149 | 1.9071 | 1108 | 1.3642 | 0.4150 | 1.3642 | 1.1680 | | 0.149 | 1.9105 | 1110 | 1.3913 | 0.4496 | 1.3913 | 1.1795 | | 0.149 | 1.9139 | 1112 | 1.2435 | 0.4504 | 1.2435 | 1.1151 | | 0.149 | 1.9174 | 1114 | 1.0253 | 0.4792 | 1.0253 | 1.0126 | | 0.149 | 1.9208 | 1116 | 0.9623 | 0.5773 | 0.9623 | 0.9810 | | 0.149 | 1.9243 | 1118 | 0.9784 | 0.5773 | 0.9784 | 0.9891 | | 0.149 | 1.9277 | 1120 | 1.0394 | 0.4522 | 1.0394 | 1.0195 | | 0.149 | 1.9312 | 1122 | 1.0517 | 0.4928 | 1.0517 | 1.0255 | | 0.149 | 1.9346 | 1124 | 1.0337 | 0.4813 | 1.0337 | 1.0167 | | 0.149 | 1.9380 | 1126 | 1.1180 | 0.4756 | 1.1180 | 1.0573 | | 0.149 | 1.9415 | 1128 | 1.2006 | 0.5286 | 1.2006 | 1.0957 | | 0.149 | 1.9449 | 1130 | 1.1814 | 0.5286 | 1.1814 | 1.0869 | | 0.149 | 1.9484 | 1132 | 1.1420 | 0.4987 | 1.1420 | 1.0686 | | 0.149 | 1.9518 | 1134 | 1.1066 | 0.4515 | 1.1066 | 1.0519 | | 0.149 | 1.9552 | 1136 | 1.1037 | 0.4515 | 1.1037 | 1.0506 | | 0.149 | 1.9587 | 1138 | 1.0419 | 0.4661 | 1.0419 | 1.0207 | | 0.149 | 1.9621 | 1140 | 0.9225 | 0.5921 | 0.9225 | 0.9605 | | 0.149 | 1.9656 | 1142 | 0.8651 | 0.5985 | 0.8651 | 0.9301 | | 0.149 | 1.9690 | 1144 | 0.9150 | 0.6069 | 0.9150 | 0.9566 | | 0.149 | 1.9725 | 1146 | 1.0752 | 0.4263 | 1.0752 | 1.0369 | | 0.149 | 1.9759 | 1148 | 1.1912 | 0.5199 | 1.1912 | 1.0914 | | 0.149 | 1.9793 | 1150 | 1.1552 | 0.5199 | 1.1552 | 1.0748 | | 0.149 | 1.9828 | 1152 | 1.1442 | 0.5199 | 1.1442 | 1.0697 | | 0.149 | 1.9862 | 1154 | 1.0659 | 0.5251 | 1.0659 | 1.0324 | | 0.149 | 1.9897 | 1156 | 1.0146 | 0.5056 | 1.0146 | 1.0073 | | 0.149 | 1.9931 | 1158 | 0.9603 | 0.5449 | 0.9603 | 0.9799 | | 0.149 | 1.9966 | 1160 | 1.0351 | 0.5152 | 1.0351 | 1.0174 | | 0.149 | 2.0 | 1162 | 1.1805 | 0.4748 | 1.1805 | 1.0865 | | 0.149 | 2.0034 | 1164 | 1.1368 | 0.4748 | 1.1368 | 1.0662 | | 0.149 | 2.0069 | 1166 | 1.1003 | 0.5014 | 1.1003 | 1.0489 | | 0.149 | 2.0103 | 1168 | 1.1500 | 0.4620 | 1.1500 | 1.0724 | | 0.149 | 2.0138 | 1170 | 1.3085 | 0.4501 | 1.3085 | 1.1439 | | 0.149 | 2.0172 | 1172 | 1.4351 | 0.4494 | 1.4351 | 1.1980 | | 0.149 | 2.0207 | 1174 | 1.4169 | 0.4824 | 1.4169 | 1.1903 | | 0.149 | 2.0241 | 1176 | 1.2419 | 0.5075 | 1.2419 | 1.1144 | | 0.149 | 2.0275 | 1178 | 1.2083 | 0.5075 | 1.2083 | 1.0992 | | 0.149 | 2.0310 | 1180 | 1.2611 | 0.5075 | 1.2611 | 1.1230 | | 0.149 | 2.0344 | 1182 | 1.2930 | 0.4964 | 1.2930 | 1.1371 | | 0.149 | 2.0379 | 1184 | 1.2053 | 0.5199 | 1.2053 | 1.0979 | | 0.149 | 2.0413 | 1186 | 1.0269 | 0.5100 | 1.0269 | 1.0133 | | 0.149 | 2.0448 | 1188 | 0.9732 | 0.4986 | 0.9732 | 0.9865 | | 0.149 | 2.0482 | 1190 | 1.0421 | 0.5197 | 1.0421 | 1.0208 | | 0.149 | 2.0516 | 1192 | 1.0538 | 0.4931 | 1.0538 | 1.0265 | | 0.149 | 2.0551 | 1194 | 1.1390 | 0.4756 | 1.1390 | 1.0672 | | 0.149 | 2.0585 | 1196 | 1.2590 | 0.4375 | 1.2590 | 1.1221 | | 0.149 | 2.0620 | 1198 | 1.4331 | 0.3916 | 1.4331 | 1.1971 | | 0.149 | 2.0654 | 1200 | 1.3959 | 0.3916 | 1.3959 | 1.1815 | | 0.149 | 2.0688 | 1202 | 1.2478 | 0.4620 | 1.2478 | 1.1171 | | 0.149 | 2.0723 | 1204 | 1.0817 | 0.4522 | 1.0817 | 1.0401 | | 0.149 | 2.0757 | 1206 | 1.0756 | 0.4522 | 1.0756 | 1.0371 | | 0.149 | 2.0792 | 1208 | 1.2166 | 0.4375 | 1.2166 | 1.1030 | | 0.149 | 2.0826 | 1210 | 1.3472 | 0.5236 | 1.3472 | 1.1607 | | 0.149 | 2.0861 | 1212 | 1.3089 | 0.5331 | 1.3089 | 1.1441 | | 0.149 | 2.0895 | 1214 | 1.2542 | 0.5269 | 1.2542 | 1.1199 | | 0.149 | 2.0929 | 1216 | 1.1488 | 0.5385 | 1.1488 | 1.0718 | | 0.149 | 2.0964 | 1218 | 1.2158 | 0.5269 | 1.2158 | 1.1026 | | 0.149 | 2.0998 | 1220 | 1.4308 | 0.4815 | 1.4308 | 1.1961 | | 0.149 | 2.1033 | 1222 | 1.5556 | 0.4421 | 1.5556 | 1.2472 | | 0.149 | 2.1067 | 1224 | 1.4976 | 0.48 | 1.4976 | 1.2238 | | 0.149 | 2.1102 | 1226 | 1.4120 | 0.4150 | 1.4120 | 1.1883 | | 0.149 | 2.1136 | 1228 | 1.3182 | 0.4136 | 1.3182 | 1.1481 | | 0.149 | 2.1170 | 1230 | 1.2598 | 0.4136 | 1.2598 | 1.1224 | | 0.149 | 2.1205 | 1232 | 1.1900 | 0.4504 | 1.1900 | 1.0909 | | 0.149 | 2.1239 | 1234 | 1.1444 | 0.4136 | 1.1444 | 1.0697 | | 0.149 | 2.1274 | 1236 | 1.1452 | 0.4136 | 1.1452 | 1.0702 | | 0.149 | 2.1308 | 1238 | 1.1691 | 0.4136 | 1.1691 | 1.0812 | | 0.149 | 2.1343 | 1240 | 1.2096 | 0.4136 | 1.2096 | 1.0998 | | 0.149 | 2.1377 | 1242 | 1.3218 | 0.4375 | 1.3218 | 1.1497 | | 0.149 | 2.1411 | 1244 | 1.3846 | 0.4150 | 1.3846 | 1.1767 | | 0.149 | 2.1446 | 1246 | 1.2854 | 0.4375 | 1.2854 | 1.1338 | | 0.149 | 2.1480 | 1248 | 1.1384 | 0.4375 | 1.1384 | 1.0669 | | 0.149 | 2.1515 | 1250 | 1.0218 | 0.5093 | 1.0218 | 1.0109 | | 0.149 | 2.1549 | 1252 | 1.0397 | 0.5207 | 1.0397 | 1.0197 | | 0.149 | 2.1583 | 1254 | 1.1637 | 0.4509 | 1.1637 | 1.0788 | | 0.149 | 2.1618 | 1256 | 1.1589 | 0.4509 | 1.1589 | 1.0765 | | 0.149 | 2.1652 | 1258 | 1.1203 | 0.4740 | 1.1203 | 1.0585 | | 0.149 | 2.1687 | 1260 | 1.0749 | 0.4740 | 1.0749 | 1.0368 | | 0.149 | 2.1721 | 1262 | 1.0416 | 0.5014 | 1.0416 | 1.0206 | | 0.149 | 2.1756 | 1264 | 1.1115 | 0.4740 | 1.1115 | 1.0543 | | 0.149 | 2.1790 | 1266 | 1.0534 | 0.5119 | 1.0534 | 1.0264 | | 0.149 | 2.1824 | 1268 | 1.0073 | 0.5014 | 1.0073 | 1.0036 | | 0.149 | 2.1859 | 1270 | 1.0242 | 0.4515 | 1.0242 | 1.0120 | | 0.149 | 2.1893 | 1272 | 1.0694 | 0.4643 | 1.0694 | 1.0341 | | 0.149 | 2.1928 | 1274 | 0.9595 | 0.5702 | 0.9595 | 0.9796 | | 0.149 | 2.1962 | 1276 | 0.9567 | 0.5702 | 0.9567 | 0.9781 | | 0.149 | 2.1997 | 1278 | 1.1036 | 0.5013 | 1.1036 | 1.0505 | | 0.149 | 2.2031 | 1280 | 1.3413 | 0.5119 | 1.3413 | 1.1581 | | 0.149 | 2.2065 | 1282 | 1.3669 | 0.4624 | 1.3669 | 1.1691 | | 0.149 | 2.2100 | 1284 | 1.2167 | 0.4637 | 1.2167 | 1.1031 | | 0.149 | 2.2134 | 1286 | 1.0361 | 0.5041 | 1.0361 | 1.0179 | | 0.149 | 2.2169 | 1288 | 0.9313 | 0.5041 | 0.9313 | 0.9650 | | 0.149 | 2.2203 | 1290 | 0.8948 | 0.5978 | 0.8948 | 0.9459 | | 0.149 | 2.2238 | 1292 | 0.9036 | 0.5511 | 0.9036 | 0.9506 | | 0.149 | 2.2272 | 1294 | 0.8373 | 0.6992 | 0.8373 | 0.9150 | | 0.149 | 2.2306 | 1296 | 0.9096 | 0.5281 | 0.9096 | 0.9537 | | 0.149 | 2.2341 | 1298 | 1.0759 | 0.5013 | 1.0759 | 1.0373 | | 0.149 | 2.2375 | 1300 | 1.1805 | 0.5013 | 1.1805 | 1.0865 | | 0.149 | 2.2410 | 1302 | 1.1570 | 0.4903 | 1.1570 | 1.0756 | | 0.149 | 2.2444 | 1304 | 1.1094 | 0.5473 | 1.1094 | 1.0533 | | 0.149 | 2.2478 | 1306 | 1.1955 | 0.4631 | 1.1955 | 1.0934 | | 0.149 | 2.2513 | 1308 | 1.3248 | 0.3983 | 1.3248 | 1.1510 | | 0.149 | 2.2547 | 1310 | 1.4355 | 0.4036 | 1.4355 | 1.1981 | | 0.149 | 2.2582 | 1312 | 1.3694 | 0.4504 | 1.3694 | 1.1702 | | 0.149 | 2.2616 | 1314 | 1.1692 | 0.5593 | 1.1692 | 1.0813 | | 0.149 | 2.2651 | 1316 | 0.9831 | 0.5556 | 0.9831 | 0.9915 | | 0.149 | 2.2685 | 1318 | 0.9315 | 0.5457 | 0.9315 | 0.9651 | | 0.149 | 2.2719 | 1320 | 0.9895 | 0.5358 | 0.9895 | 0.9947 | | 0.149 | 2.2754 | 1322 | 1.1380 | 0.5615 | 1.1380 | 1.0668 | | 0.149 | 2.2788 | 1324 | 1.1908 | 0.5709 | 1.1908 | 1.0913 | | 0.149 | 2.2823 | 1326 | 1.1373 | 0.4793 | 1.1373 | 1.0664 | | 0.149 | 2.2857 | 1328 | 1.0282 | 0.4813 | 1.0282 | 1.0140 | | 0.149 | 2.2892 | 1330 | 0.9061 | 0.5645 | 0.9061 | 0.9519 | | 0.149 | 2.2926 | 1332 | 0.8910 | 0.5645 | 0.8910 | 0.9439 | | 0.149 | 2.2960 | 1334 | 0.9668 | 0.4957 | 0.9668 | 0.9832 | | 0.149 | 2.2995 | 1336 | 0.9913 | 0.4957 | 0.9913 | 0.9957 | | 0.149 | 2.3029 | 1338 | 1.0946 | 0.4793 | 1.0946 | 1.0462 | | 0.149 | 2.3064 | 1340 | 1.1141 | 0.4793 | 1.1141 | 1.0555 | | 0.149 | 2.3098 | 1342 | 1.0485 | 0.4813 | 1.0485 | 1.0240 | | 0.149 | 2.3133 | 1344 | 0.9811 | 0.5354 | 0.9811 | 0.9905 | | 0.149 | 2.3167 | 1346 | 0.9735 | 0.5354 | 0.9735 | 0.9867 | | 0.149 | 2.3201 | 1348 | 1.0722 | 0.4813 | 1.0722 | 1.0355 | | 0.149 | 2.3236 | 1350 | 1.3163 | 0.4032 | 1.3163 | 1.1473 | | 0.149 | 2.3270 | 1352 | 1.4526 | 0.3587 | 1.4526 | 1.2052 | | 0.149 | 2.3305 | 1354 | 1.4107 | 0.4015 | 1.4107 | 1.1877 | | 0.149 | 2.3339 | 1356 | 1.2559 | 0.4130 | 1.2559 | 1.1206 | | 0.149 | 2.3373 | 1358 | 1.1665 | 0.4903 | 1.1665 | 1.0800 | | 0.149 | 2.3408 | 1360 | 1.1948 | 0.4903 | 1.1948 | 1.0931 | | 0.149 | 2.3442 | 1362 | 1.2402 | 0.4756 | 1.2402 | 1.1137 | | 0.149 | 2.3477 | 1364 | 1.2458 | 0.4756 | 1.2458 | 1.1162 | | 0.149 | 2.3511 | 1366 | 1.2275 | 0.4756 | 1.2275 | 1.1079 | | 0.149 | 2.3546 | 1368 | 1.1474 | 0.4661 | 1.1474 | 1.0712 | | 0.149 | 2.3580 | 1370 | 1.1309 | 0.4661 | 1.1309 | 1.0634 | | 0.149 | 2.3614 | 1372 | 1.1953 | 0.4509 | 1.1953 | 1.0933 | | 0.149 | 2.3649 | 1374 | 1.1891 | 0.4509 | 1.1891 | 1.0904 | | 0.149 | 2.3683 | 1376 | 1.1519 | 0.4649 | 1.1519 | 1.0733 | | 0.149 | 2.3718 | 1378 | 1.0600 | 0.4813 | 1.0600 | 1.0296 | | 0.149 | 2.3752 | 1380 | 1.1344 | 0.4793 | 1.1344 | 1.0651 | | 0.149 | 2.3787 | 1382 | 1.2631 | 0.4532 | 1.2631 | 1.1239 | | 0.149 | 2.3821 | 1384 | 1.2033 | 0.4532 | 1.2033 | 1.0970 | | 0.149 | 2.3855 | 1386 | 1.0814 | 0.5056 | 1.0814 | 1.0399 | | 0.149 | 2.3890 | 1388 | 1.0148 | 0.4813 | 1.0148 | 1.0074 | | 0.149 | 2.3924 | 1390 | 0.9861 | 0.4682 | 0.9861 | 0.9930 | | 0.149 | 2.3959 | 1392 | 1.1018 | 0.4661 | 1.1018 | 1.0497 | | 0.149 | 2.3993 | 1394 | 1.1972 | 0.4512 | 1.1972 | 1.0941 | | 0.149 | 2.4028 | 1396 | 1.1890 | 0.4767 | 1.1890 | 1.0904 | | 0.149 | 2.4062 | 1398 | 1.0322 | 0.4784 | 1.0322 | 1.0160 | | 0.149 | 2.4096 | 1400 | 0.9195 | 0.5381 | 0.9195 | 0.9589 | | 0.149 | 2.4131 | 1402 | 0.8438 | 0.5610 | 0.8438 | 0.9186 | | 0.149 | 2.4165 | 1404 | 0.8181 | 0.6003 | 0.8181 | 0.9045 | | 0.149 | 2.4200 | 1406 | 0.9022 | 0.5671 | 0.9022 | 0.9499 | | 0.149 | 2.4234 | 1408 | 1.0799 | 0.4759 | 1.0799 | 1.0392 | | 0.149 | 2.4269 | 1410 | 1.3504 | 0.4824 | 1.3504 | 1.1621 | | 0.149 | 2.4303 | 1412 | 1.3621 | 0.4499 | 1.3621 | 1.1671 | | 0.149 | 2.4337 | 1414 | 1.1990 | 0.4614 | 1.1990 | 1.0950 | | 0.149 | 2.4372 | 1416 | 1.0188 | 0.4969 | 1.0188 | 1.0093 | | 0.149 | 2.4406 | 1418 | 0.9338 | 0.4969 | 0.9338 | 0.9663 | | 0.149 | 2.4441 | 1420 | 0.9690 | 0.4969 | 0.9690 | 0.9844 | | 0.149 | 2.4475 | 1422 | 1.1163 | 0.4620 | 1.1163 | 1.0566 | | 0.149 | 2.4509 | 1424 | 1.3678 | 0.4499 | 1.3678 | 1.1695 | | 0.149 | 2.4544 | 1426 | 1.5025 | 0.4238 | 1.5025 | 1.2258 | | 0.149 | 2.4578 | 1428 | 1.4254 | 0.4401 | 1.4254 | 1.1939 | | 0.149 | 2.4613 | 1430 | 1.1857 | 0.4860 | 1.1857 | 1.0889 | | 0.149 | 2.4647 | 1432 | 0.9534 | 0.4845 | 0.9534 | 0.9764 | | 0.149 | 2.4682 | 1434 | 0.9188 | 0.5431 | 0.9188 | 0.9585 | | 0.149 | 2.4716 | 1436 | 1.0109 | 0.4698 | 1.0109 | 1.0054 | | 0.149 | 2.4750 | 1438 | 1.2010 | 0.5167 | 1.2010 | 1.0959 | | 0.149 | 2.4785 | 1440 | 1.3560 | 0.5094 | 1.3560 | 1.1645 | | 0.149 | 2.4819 | 1442 | 1.3984 | 0.4921 | 1.3984 | 1.1826 | | 0.149 | 2.4854 | 1444 | 1.2735 | 0.4499 | 1.2735 | 1.1285 | | 0.149 | 2.4888 | 1446 | 1.1865 | 0.4620 | 1.1865 | 1.0893 | | 0.149 | 2.4923 | 1448 | 1.1769 | 0.4620 | 1.1769 | 1.0848 | | 0.149 | 2.4957 | 1450 | 1.2425 | 0.4375 | 1.2425 | 1.1147 | | 0.149 | 2.4991 | 1452 | 1.2798 | 0.4375 | 1.2798 | 1.1313 | | 0.149 | 2.5026 | 1454 | 1.2077 | 0.4375 | 1.2077 | 1.0989 | | 0.149 | 2.5060 | 1456 | 1.1211 | 0.4748 | 1.1211 | 1.0588 | | 0.149 | 2.5095 | 1458 | 1.1909 | 0.4504 | 1.1909 | 1.0913 | | 0.149 | 2.5129 | 1460 | 1.2451 | 0.4622 | 1.2451 | 1.1158 | | 0.149 | 2.5164 | 1462 | 1.3794 | 0.4281 | 1.3794 | 1.1745 | | 0.149 | 2.5198 | 1464 | 1.4526 | 0.3673 | 1.4526 | 1.2052 | | 0.149 | 2.5232 | 1466 | 1.4332 | 0.3859 | 1.4332 | 1.1971 | | 0.149 | 2.5267 | 1468 | 1.5134 | 0.3526 | 1.5134 | 1.2302 | | 0.149 | 2.5301 | 1470 | 1.4810 | 0.3713 | 1.4810 | 1.2169 | | 0.149 | 2.5336 | 1472 | 1.5012 | 0.3587 | 1.5012 | 1.2252 | | 0.149 | 2.5370 | 1474 | 1.4480 | 0.3587 | 1.4480 | 1.2033 | | 0.149 | 2.5404 | 1476 | 1.3743 | 0.3916 | 1.3743 | 1.1723 | | 0.149 | 2.5439 | 1478 | 1.2327 | 0.4375 | 1.2327 | 1.1103 | | 0.149 | 2.5473 | 1480 | 1.1515 | 0.4375 | 1.1515 | 1.0731 | | 0.149 | 2.5508 | 1482 | 0.9774 | 0.4440 | 0.9774 | 0.9886 | | 0.149 | 2.5542 | 1484 | 0.9198 | 0.5556 | 0.9198 | 0.9591 | | 0.149 | 2.5577 | 1486 | 0.9935 | 0.4691 | 0.9935 | 0.9968 | | 0.149 | 2.5611 | 1488 | 1.1181 | 0.4506 | 1.1181 | 1.0574 | | 0.149 | 2.5645 | 1490 | 1.1978 | 0.4375 | 1.1978 | 1.0944 | | 0.149 | 2.5680 | 1492 | 1.1113 | 0.4271 | 1.1113 | 1.0542 | | 0.149 | 2.5714 | 1494 | 1.0902 | 0.4271 | 1.0902 | 1.0441 | | 0.149 | 2.5749 | 1496 | 1.0674 | 0.4405 | 1.0674 | 1.0332 | | 0.149 | 2.5783 | 1498 | 0.9632 | 0.5072 | 0.9632 | 0.9814 | | 0.1033 | 2.5818 | 1500 | 0.8536 | 0.5734 | 0.8536 | 0.9239 | | 0.1033 | 2.5852 | 1502 | 0.8437 | 0.5734 | 0.8437 | 0.9185 | | 0.1033 | 2.5886 | 1504 | 0.9248 | 0.5124 | 0.9248 | 0.9617 | | 0.1033 | 2.5921 | 1506 | 1.0186 | 0.4773 | 1.0186 | 1.0093 | | 0.1033 | 2.5955 | 1508 | 1.1388 | 0.4130 | 1.1388 | 1.0671 | | 0.1033 | 2.5990 | 1510 | 1.2539 | 0.4375 | 1.2539 | 1.1198 | | 0.1033 | 2.6024 | 1512 | 1.2792 | 0.4375 | 1.2792 | 1.1310 | | 0.1033 | 2.6059 | 1514 | 1.2226 | 0.4375 | 1.2226 | 1.1057 | | 0.1033 | 2.6093 | 1516 | 1.2535 | 0.4375 | 1.2535 | 1.1196 | | 0.1033 | 2.6127 | 1518 | 1.3668 | 0.4496 | 1.3668 | 1.1691 | | 0.1033 | 2.6162 | 1520 | 1.3909 | 0.4282 | 1.3909 | 1.1794 | | 0.1033 | 2.6196 | 1522 | 1.2536 | 0.4375 | 1.2536 | 1.1197 | | 0.1033 | 2.6231 | 1524 | 1.0973 | 0.5014 | 1.0973 | 1.0475 | | 0.1033 | 2.6265 | 1526 | 0.9922 | 0.4408 | 0.9922 | 0.9961 | | 0.1033 | 2.6299 | 1528 | 1.0357 | 0.4408 | 1.0357 | 1.0177 | | 0.1033 | 2.6334 | 1530 | 1.2147 | 0.4627 | 1.2147 | 1.1021 | | 0.1033 | 2.6368 | 1532 | 1.3750 | 0.4076 | 1.3750 | 1.1726 | | 0.1033 | 2.6403 | 1534 | 1.3758 | 0.4076 | 1.3758 | 1.1730 | | 0.1033 | 2.6437 | 1536 | 1.3997 | 0.3942 | 1.3997 | 1.1831 | | 0.1033 | 2.6472 | 1538 | 1.3109 | 0.4154 | 1.3109 | 1.1449 | | 0.1033 | 2.6506 | 1540 | 1.2992 | 0.4154 | 1.2992 | 1.1398 | | 0.1033 | 2.6540 | 1542 | 1.3161 | 0.4154 | 1.3161 | 1.1472 | | 0.1033 | 2.6575 | 1544 | 1.2925 | 0.4154 | 1.2925 | 1.1369 | | 0.1033 | 2.6609 | 1546 | 1.2469 | 0.4277 | 1.2469 | 1.1166 | | 0.1033 | 2.6644 | 1548 | 1.2440 | 0.4499 | 1.2440 | 1.1153 | | 0.1033 | 2.6678 | 1550 | 1.2647 | 0.4499 | 1.2647 | 1.1246 | | 0.1033 | 2.6713 | 1552 | 1.2186 | 0.4726 | 1.2186 | 1.1039 | | 0.1033 | 2.6747 | 1554 | 1.1844 | 0.4748 | 1.1844 | 1.0883 | | 0.1033 | 2.6781 | 1556 | 1.1706 | 0.5014 | 1.1706 | 1.0819 | | 0.1033 | 2.6816 | 1558 | 1.1108 | 0.5014 | 1.1108 | 1.0540 | | 0.1033 | 2.6850 | 1560 | 1.0942 | 0.4773 | 1.0942 | 1.0460 | | 0.1033 | 2.6885 | 1562 | 1.0795 | 0.4773 | 1.0795 | 1.0390 | | 0.1033 | 2.6919 | 1564 | 1.1301 | 0.5119 | 1.1301 | 1.0631 | | 0.1033 | 2.6954 | 1566 | 1.1120 | 0.5014 | 1.1120 | 1.0545 | | 0.1033 | 2.6988 | 1568 | 1.0804 | 0.4773 | 1.0804 | 1.0394 | | 0.1033 | 2.7022 | 1570 | 1.0654 | 0.4773 | 1.0654 | 1.0322 | | 0.1033 | 2.7057 | 1572 | 1.0473 | 0.5043 | 1.0473 | 1.0234 | | 0.1033 | 2.7091 | 1574 | 1.0060 | 0.5350 | 1.0060 | 1.0030 | | 0.1033 | 2.7126 | 1576 | 1.0276 | 0.4792 | 1.0276 | 1.0137 | | 0.1033 | 2.7160 | 1578 | 1.0629 | 0.4515 | 1.0629 | 1.0310 | | 0.1033 | 2.7194 | 1580 | 1.0477 | 0.4515 | 1.0477 | 1.0236 | | 0.1033 | 2.7229 | 1582 | 1.1148 | 0.4870 | 1.1148 | 1.0559 | | 0.1033 | 2.7263 | 1584 | 1.2411 | 0.4952 | 1.2411 | 1.1141 | | 0.1033 | 2.7298 | 1586 | 1.2866 | 0.4729 | 1.2866 | 1.1343 | | 0.1033 | 2.7332 | 1588 | 1.1827 | 0.5291 | 1.1827 | 1.0875 | | 0.1033 | 2.7367 | 1590 | 0.9838 | 0.5742 | 0.9838 | 0.9919 | | 0.1033 | 2.7401 | 1592 | 0.9113 | 0.5714 | 0.9113 | 0.9546 | | 0.1033 | 2.7435 | 1594 | 0.9249 | 0.5535 | 0.9249 | 0.9617 | | 0.1033 | 2.7470 | 1596 | 1.0001 | 0.5742 | 1.0001 | 1.0001 | | 0.1033 | 2.7504 | 1598 | 1.1198 | 0.5543 | 1.1198 | 1.0582 | | 0.1033 | 2.7539 | 1600 | 1.0556 | 0.5663 | 1.0556 | 1.0274 | | 0.1033 | 2.7573 | 1602 | 0.9453 | 0.5742 | 0.9453 | 0.9723 | | 0.1033 | 2.7608 | 1604 | 0.9663 | 0.5489 | 0.9663 | 0.9830 | | 0.1033 | 2.7642 | 1606 | 0.9483 | 0.5535 | 0.9483 | 0.9738 | | 0.1033 | 2.7676 | 1608 | 1.0421 | 0.5444 | 1.0421 | 1.0208 | | 0.1033 | 2.7711 | 1610 | 1.0516 | 0.5372 | 1.0516 | 1.0255 | | 0.1033 | 2.7745 | 1612 | 0.9964 | 0.5843 | 0.9964 | 0.9982 | | 0.1033 | 2.7780 | 1614 | 0.9867 | 0.5843 | 0.9867 | 0.9933 | | 0.1033 | 2.7814 | 1616 | 0.8813 | 0.6591 | 0.8813 | 0.9388 | | 0.1033 | 2.7849 | 1618 | 0.8543 | 0.6319 | 0.8543 | 0.9243 | | 0.1033 | 2.7883 | 1620 | 0.8288 | 0.6568 | 0.8288 | 0.9104 | | 0.1033 | 2.7917 | 1622 | 0.8095 | 0.6568 | 0.8095 | 0.8997 | | 0.1033 | 2.7952 | 1624 | 0.8573 | 0.6568 | 0.8573 | 0.9259 | | 0.1033 | 2.7986 | 1626 | 1.0046 | 0.6058 | 1.0046 | 1.0023 | | 0.1033 | 2.8021 | 1628 | 1.0539 | 0.5953 | 1.0539 | 1.0266 | | 0.1033 | 2.8055 | 1630 | 1.0595 | 0.5953 | 1.0595 | 1.0293 | | 0.1033 | 2.8090 | 1632 | 1.0165 | 0.5700 | 1.0165 | 1.0082 | | 0.1033 | 2.8124 | 1634 | 0.9537 | 0.5641 | 0.9537 | 0.9766 | | 0.1033 | 2.8158 | 1636 | 0.8282 | 0.6176 | 0.8282 | 0.9101 | | 0.1033 | 2.8193 | 1638 | 0.7960 | 0.6358 | 0.7960 | 0.8922 | | 0.1033 | 2.8227 | 1640 | 0.8002 | 0.6587 | 0.8002 | 0.8945 | | 0.1033 | 2.8262 | 1642 | 0.8207 | 0.5957 | 0.8207 | 0.9059 | | 0.1033 | 2.8296 | 1644 | 0.8362 | 0.5431 | 0.8362 | 0.9145 | | 0.1033 | 2.8330 | 1646 | 0.8746 | 0.5381 | 0.8746 | 0.9352 | | 0.1033 | 2.8365 | 1648 | 0.9888 | 0.5161 | 0.9888 | 0.9944 | | 0.1033 | 2.8399 | 1650 | 1.0411 | 0.4759 | 1.0411 | 1.0203 | | 0.1033 | 2.8434 | 1652 | 0.9762 | 0.5257 | 0.9762 | 0.9880 | | 0.1033 | 2.8468 | 1654 | 0.9244 | 0.55 | 0.9244 | 0.9614 | | 0.1033 | 2.8503 | 1656 | 0.8932 | 0.5381 | 0.8932 | 0.9451 | | 0.1033 | 2.8537 | 1658 | 0.9756 | 0.5152 | 0.9756 | 0.9877 | | 0.1033 | 2.8571 | 1660 | 1.0374 | 0.4509 | 1.0374 | 1.0185 | | 0.1033 | 2.8606 | 1662 | 1.0318 | 0.4509 | 1.0318 | 1.0158 | | 0.1033 | 2.8640 | 1664 | 1.1132 | 0.4509 | 1.1132 | 1.0551 | | 0.1033 | 2.8675 | 1666 | 1.1972 | 0.4506 | 1.1972 | 1.0942 | | 0.1033 | 2.8709 | 1668 | 1.3543 | 0.4402 | 1.3543 | 1.1637 | | 0.1033 | 2.8744 | 1670 | 1.3665 | 0.4517 | 1.3665 | 1.1690 | | 0.1033 | 2.8778 | 1672 | 1.2826 | 0.4627 | 1.2826 | 1.1325 | | 0.1033 | 2.8812 | 1674 | 1.1555 | 0.4627 | 1.1555 | 1.0750 | | 0.1033 | 2.8847 | 1676 | 1.0061 | 0.4515 | 1.0061 | 1.0030 | | 0.1033 | 2.8881 | 1678 | 1.0126 | 0.4515 | 1.0126 | 1.0063 | | 0.1033 | 2.8916 | 1680 | 1.0278 | 0.4515 | 1.0278 | 1.0138 | | 0.1033 | 2.8950 | 1682 | 0.9842 | 0.4515 | 0.9842 | 0.9921 | | 0.1033 | 2.8985 | 1684 | 0.9636 | 0.4522 | 0.9636 | 0.9816 | | 0.1033 | 2.9019 | 1686 | 0.9177 | 0.55 | 0.9177 | 0.9580 | | 0.1033 | 2.9053 | 1688 | 0.9345 | 0.4957 | 0.9345 | 0.9667 | | 0.1033 | 2.9088 | 1690 | 0.9447 | 0.5068 | 0.9447 | 0.9720 | | 0.1033 | 2.9122 | 1692 | 1.0556 | 0.4987 | 1.0556 | 1.0274 | | 0.1033 | 2.9157 | 1694 | 1.3094 | 0.4545 | 1.3094 | 1.1443 | | 0.1033 | 2.9191 | 1696 | 1.4154 | 0.4801 | 1.4154 | 1.1897 | | 0.1033 | 2.9225 | 1698 | 1.3657 | 0.4808 | 1.3657 | 1.1686 | | 0.1033 | 2.9260 | 1700 | 1.2180 | 0.4918 | 1.2180 | 1.1037 | | 0.1033 | 2.9294 | 1702 | 1.0349 | 0.5085 | 1.0349 | 1.0173 | | 0.1033 | 2.9329 | 1704 | 0.9360 | 0.4957 | 0.9360 | 0.9675 | | 0.1033 | 2.9363 | 1706 | 0.9089 | 0.55 | 0.9089 | 0.9534 | | 0.1033 | 2.9398 | 1708 | 0.9613 | 0.4668 | 0.9613 | 0.9805 | | 0.1033 | 2.9432 | 1710 | 1.0693 | 0.4509 | 1.0693 | 1.0341 | | 0.1033 | 2.9466 | 1712 | 1.1583 | 0.4964 | 1.1583 | 1.0763 | | 0.1033 | 2.9501 | 1714 | 1.1347 | 0.4964 | 1.1347 | 1.0652 | | 0.1033 | 2.9535 | 1716 | 1.1204 | 0.4964 | 1.1204 | 1.0585 | | 0.1033 | 2.9570 | 1718 | 1.0022 | 0.4870 | 1.0022 | 1.0011 | | 0.1033 | 2.9604 | 1720 | 0.8623 | 0.5985 | 0.8623 | 0.9286 | | 0.1033 | 2.9639 | 1722 | 0.7352 | 0.6018 | 0.7352 | 0.8574 | | 0.1033 | 2.9673 | 1724 | 0.6942 | 0.6184 | 0.6942 | 0.8332 | | 0.1033 | 2.9707 | 1726 | 0.7069 | 0.6143 | 0.7069 | 0.8408 | | 0.1033 | 2.9742 | 1728 | 0.7887 | 0.6702 | 0.7887 | 0.8881 | | 0.1033 | 2.9776 | 1730 | 0.9490 | 0.6831 | 0.9490 | 0.9742 | | 0.1033 | 2.9811 | 1732 | 1.1386 | 0.5132 | 1.1386 | 1.0671 | | 0.1033 | 2.9845 | 1734 | 1.1797 | 0.5236 | 1.1797 | 1.0861 | | 0.1033 | 2.9880 | 1736 | 1.0937 | 0.4632 | 1.0937 | 1.0458 | | 0.1033 | 2.9914 | 1738 | 0.9621 | 0.5448 | 0.9621 | 0.9808 | | 0.1033 | 2.9948 | 1740 | 0.8125 | 0.5765 | 0.8125 | 0.9014 | | 0.1033 | 2.9983 | 1742 | 0.7603 | 0.5994 | 0.7603 | 0.8720 | | 0.1033 | 3.0017 | 1744 | 0.7793 | 0.5823 | 0.7793 | 0.8828 | | 0.1033 | 3.0052 | 1746 | 0.8640 | 0.55 | 0.8640 | 0.9295 | | 0.1033 | 3.0086 | 1748 | 1.0199 | 0.5488 | 1.0199 | 1.0099 | | 0.1033 | 3.0120 | 1750 | 1.1878 | 0.4941 | 1.1878 | 1.0898 | | 0.1033 | 3.0155 | 1752 | 1.1880 | 0.5119 | 1.1880 | 1.0900 | | 0.1033 | 3.0189 | 1754 | 1.0612 | 0.5168 | 1.0612 | 1.0301 | | 0.1033 | 3.0224 | 1756 | 0.8860 | 0.6473 | 0.8860 | 0.9413 | | 0.1033 | 3.0258 | 1758 | 0.7876 | 0.6358 | 0.7876 | 0.8875 | | 0.1033 | 3.0293 | 1760 | 0.7671 | 0.6239 | 0.7671 | 0.8758 | | 0.1033 | 3.0327 | 1762 | 0.8239 | 0.5970 | 0.8239 | 0.9077 | | 0.1033 | 3.0361 | 1764 | 0.9766 | 0.5678 | 0.9766 | 0.9882 | | 0.1033 | 3.0396 | 1766 | 1.1462 | 0.4851 | 1.1462 | 1.0706 | | 0.1033 | 3.0430 | 1768 | 1.1778 | 0.4851 | 1.1778 | 1.0853 | | 0.1033 | 3.0465 | 1770 | 1.0997 | 0.4851 | 1.0997 | 1.0487 | | 0.1033 | 3.0499 | 1772 | 1.0087 | 0.5119 | 1.0087 | 1.0043 | | 0.1033 | 3.0534 | 1774 | 0.8883 | 0.5885 | 0.8883 | 0.9425 | | 0.1033 | 3.0568 | 1776 | 0.8288 | 0.5859 | 0.8288 | 0.9104 | | 0.1033 | 3.0602 | 1778 | 0.8603 | 0.6585 | 0.8603 | 0.9275 | | 0.1033 | 3.0637 | 1780 | 0.9329 | 0.5512 | 0.9329 | 0.9659 | | 0.1033 | 3.0671 | 1782 | 0.9575 | 0.5512 | 0.9575 | 0.9785 | | 0.1033 | 3.0706 | 1784 | 0.9556 | 0.5809 | 0.9556 | 0.9776 | | 0.1033 | 3.0740 | 1786 | 0.9581 | 0.5257 | 0.9581 | 0.9788 | | 0.1033 | 3.0775 | 1788 | 0.8838 | 0.628 | 0.8838 | 0.9401 | | 0.1033 | 3.0809 | 1790 | 0.7836 | 0.5859 | 0.7836 | 0.8852 | | 0.1033 | 3.0843 | 1792 | 0.7436 | 0.5613 | 0.7436 | 0.8623 | | 0.1033 | 3.0878 | 1794 | 0.7580 | 0.5613 | 0.7580 | 0.8707 | | 0.1033 | 3.0912 | 1796 | 0.8375 | 0.5708 | 0.8375 | 0.9151 | | 0.1033 | 3.0947 | 1798 | 0.9788 | 0.5401 | 0.9788 | 0.9894 | | 0.1033 | 3.0981 | 1800 | 1.0471 | 0.5014 | 1.0471 | 1.0233 | | 0.1033 | 3.1015 | 1802 | 1.0298 | 0.5014 | 1.0298 | 1.0148 | | 0.1033 | 3.1050 | 1804 | 1.0492 | 0.5014 | 1.0492 | 1.0243 | | 0.1033 | 3.1084 | 1806 | 1.0353 | 0.5014 | 1.0353 | 1.0175 | | 0.1033 | 3.1119 | 1808 | 0.9093 | 0.5227 | 0.9093 | 0.9536 | | 0.1033 | 3.1153 | 1810 | 0.8580 | 0.5154 | 0.8580 | 0.9263 | | 0.1033 | 3.1188 | 1812 | 0.8508 | 0.5405 | 0.8508 | 0.9224 | | 0.1033 | 3.1222 | 1814 | 0.9009 | 0.5588 | 0.9009 | 0.9491 | | 0.1033 | 3.1256 | 1816 | 0.9373 | 0.5512 | 0.9373 | 0.9681 | | 0.1033 | 3.1291 | 1818 | 0.9255 | 0.5998 | 0.9255 | 0.9620 | | 0.1033 | 3.1325 | 1820 | 0.8674 | 0.6170 | 0.8674 | 0.9313 | | 0.1033 | 3.1360 | 1822 | 0.8533 | 0.5864 | 0.8533 | 0.9238 | | 0.1033 | 3.1394 | 1824 | 0.7864 | 0.5307 | 0.7864 | 0.8868 | | 0.1033 | 3.1429 | 1826 | 0.8076 | 0.5307 | 0.8076 | 0.8987 | | 0.1033 | 3.1463 | 1828 | 0.8921 | 0.5354 | 0.8921 | 0.9445 | | 0.1033 | 3.1497 | 1830 | 1.0775 | 0.5014 | 1.0775 | 1.0380 | | 0.1033 | 3.1532 | 1832 | 1.3391 | 0.4015 | 1.3391 | 1.1572 | | 0.1033 | 3.1566 | 1834 | 1.4934 | 0.3461 | 1.4934 | 1.2220 | | 0.1033 | 3.1601 | 1836 | 1.4887 | 0.3461 | 1.4887 | 1.2201 | | 0.1033 | 3.1635 | 1838 | 1.3744 | 0.4015 | 1.3744 | 1.1724 | | 0.1033 | 3.1670 | 1840 | 1.1818 | 0.4773 | 1.1818 | 1.0871 | | 0.1033 | 3.1704 | 1842 | 1.0167 | 0.5093 | 1.0167 | 1.0083 | | 0.1033 | 3.1738 | 1844 | 0.9557 | 0.5528 | 0.9557 | 0.9776 | | 0.1033 | 3.1773 | 1846 | 0.9550 | 0.5681 | 0.9550 | 0.9773 | | 0.1033 | 3.1807 | 1848 | 1.0562 | 0.5310 | 1.0562 | 1.0277 | | 0.1033 | 3.1842 | 1850 | 1.2543 | 0.4737 | 1.2543 | 1.1200 | | 0.1033 | 3.1876 | 1852 | 1.3284 | 0.4727 | 1.3284 | 1.1525 | | 0.1033 | 3.1910 | 1854 | 1.3672 | 0.4727 | 1.3672 | 1.1693 | | 0.1033 | 3.1945 | 1856 | 1.2573 | 0.4737 | 1.2573 | 1.1213 | | 0.1033 | 3.1979 | 1858 | 1.0670 | 0.5673 | 1.0670 | 1.0330 | | 0.1033 | 3.2014 | 1860 | 0.9530 | 0.5681 | 0.9530 | 0.9762 | | 0.1033 | 3.2048 | 1862 | 0.9401 | 0.5681 | 0.9401 | 0.9696 | | 0.1033 | 3.2083 | 1864 | 0.9856 | 0.5591 | 0.9856 | 0.9928 | | 0.1033 | 3.2117 | 1866 | 1.1012 | 0.4756 | 1.1012 | 1.0494 | | 0.1033 | 3.2151 | 1868 | 1.2482 | 0.4851 | 1.2482 | 1.1172 | | 0.1033 | 3.2186 | 1870 | 1.2552 | 0.4851 | 1.2552 | 1.1203 | | 0.1033 | 3.2220 | 1872 | 1.2275 | 0.4860 | 1.2275 | 1.1079 | | 0.1033 | 3.2255 | 1874 | 1.1123 | 0.5233 | 1.1123 | 1.0547 | | 0.1033 | 3.2289 | 1876 | 1.0033 | 0.5072 | 1.0033 | 1.0017 | | 0.1033 | 3.2324 | 1878 | 0.9396 | 0.5708 | 0.9396 | 0.9693 | | 0.1033 | 3.2358 | 1880 | 0.9812 | 0.5921 | 0.9812 | 0.9906 | | 0.1033 | 3.2392 | 1882 | 1.1224 | 0.4756 | 1.1224 | 1.0594 | | 0.1033 | 3.2427 | 1884 | 1.2533 | 0.4860 | 1.2533 | 1.1195 | | 0.1033 | 3.2461 | 1886 | 1.2257 | 0.4860 | 1.2257 | 1.1071 | | 0.1033 | 3.2496 | 1888 | 1.1951 | 0.4870 | 1.1951 | 1.0932 | | 0.1033 | 3.2530 | 1890 | 1.0865 | 0.5538 | 1.0865 | 1.0424 | | 0.1033 | 3.2565 | 1892 | 0.9763 | 0.5350 | 0.9763 | 0.9881 | | 0.1033 | 3.2599 | 1894 | 0.9354 | 0.5528 | 0.9354 | 0.9672 | | 0.1033 | 3.2633 | 1896 | 0.9705 | 0.5350 | 0.9705 | 0.9852 | | 0.1033 | 3.2668 | 1898 | 1.0805 | 0.5826 | 1.0805 | 1.0395 | | 0.1033 | 3.2702 | 1900 | 1.1661 | 0.4870 | 1.1661 | 1.0798 | | 0.1033 | 3.2737 | 1902 | 1.1458 | 0.4870 | 1.1458 | 1.0704 | | 0.1033 | 3.2771 | 1904 | 1.0881 | 0.5622 | 1.0881 | 1.0431 | | 0.1033 | 3.2806 | 1906 | 0.9959 | 0.5850 | 0.9959 | 0.9980 | | 0.1033 | 3.2840 | 1908 | 0.9474 | 0.5991 | 0.9474 | 0.9733 | | 0.1033 | 3.2874 | 1910 | 0.9980 | 0.5850 | 0.9980 | 0.9990 | | 0.1033 | 3.2909 | 1912 | 1.1159 | 0.4870 | 1.1159 | 1.0564 | | 0.1033 | 3.2943 | 1914 | 1.1640 | 0.4870 | 1.1640 | 1.0789 | | 0.1033 | 3.2978 | 1916 | 1.1581 | 0.4870 | 1.1581 | 1.0762 | | 0.1033 | 3.3012 | 1918 | 1.0516 | 0.5593 | 1.0516 | 1.0255 | | 0.1033 | 3.3046 | 1920 | 0.9218 | 0.5528 | 0.9218 | 0.9601 | | 0.1033 | 3.3081 | 1922 | 0.8325 | 0.5585 | 0.8325 | 0.9124 | | 0.1033 | 3.3115 | 1924 | 0.8145 | 0.5457 | 0.8145 | 0.9025 | | 0.1033 | 3.3150 | 1926 | 0.8418 | 0.5457 | 0.8418 | 0.9175 | | 0.1033 | 3.3184 | 1928 | 0.9170 | 0.5681 | 0.9170 | 0.9576 | | 0.1033 | 3.3219 | 1930 | 1.0800 | 0.5357 | 1.0800 | 1.0392 | | 0.1033 | 3.3253 | 1932 | 1.1683 | 0.4632 | 1.1683 | 1.0809 | | 0.1033 | 3.3287 | 1934 | 1.1104 | 0.4632 | 1.1104 | 1.0537 | | 0.1033 | 3.3322 | 1936 | 0.9774 | 0.5921 | 0.9774 | 0.9886 | | 0.1033 | 3.3356 | 1938 | 0.9005 | 0.5798 | 0.9005 | 0.9490 | | 0.1033 | 3.3391 | 1940 | 0.8885 | 0.5798 | 0.8885 | 0.9426 | | 0.1033 | 3.3425 | 1942 | 0.9294 | 0.5921 | 0.9294 | 0.9641 | | 0.1033 | 3.3460 | 1944 | 0.9460 | 0.5773 | 0.9460 | 0.9726 | | 0.1033 | 3.3494 | 1946 | 0.9835 | 0.5773 | 0.9835 | 0.9917 | | 0.1033 | 3.3528 | 1948 | 0.9877 | 0.5350 | 0.9877 | 0.9938 | | 0.1033 | 3.3563 | 1950 | 0.9905 | 0.5350 | 0.9905 | 0.9953 | | 0.1033 | 3.3597 | 1952 | 1.0221 | 0.5350 | 1.0221 | 1.0110 | | 0.1033 | 3.3632 | 1954 | 1.0649 | 0.4522 | 1.0649 | 1.0319 | | 0.1033 | 3.3666 | 1956 | 1.0021 | 0.5350 | 1.0021 | 1.0011 | | 0.1033 | 3.3701 | 1958 | 0.9492 | 0.5921 | 0.9492 | 0.9742 | | 0.1033 | 3.3735 | 1960 | 0.8821 | 0.5556 | 0.8821 | 0.9392 | | 0.1033 | 3.3769 | 1962 | 0.8674 | 0.5457 | 0.8674 | 0.9313 | | 0.1033 | 3.3804 | 1964 | 0.9063 | 0.5429 | 0.9063 | 0.9520 | | 0.1033 | 3.3838 | 1966 | 1.0080 | 0.5207 | 1.0080 | 1.0040 | | 0.1033 | 3.3873 | 1968 | 1.1308 | 0.4649 | 1.1308 | 1.0634 | | 0.1033 | 3.3907 | 1970 | 1.1997 | 0.5104 | 1.1997 | 1.0953 | | 0.1033 | 3.3941 | 1972 | 1.2196 | 0.4733 | 1.2196 | 1.1043 | | 0.1033 | 3.3976 | 1974 | 1.1876 | 0.4974 | 1.1876 | 1.0898 | | 0.1033 | 3.4010 | 1976 | 1.0766 | 0.4881 | 1.0766 | 1.0376 | | 0.1033 | 3.4045 | 1978 | 0.9846 | 0.5350 | 0.9846 | 0.9923 | | 0.1033 | 3.4079 | 1980 | 0.9002 | 0.5681 | 0.9002 | 0.9488 | | 0.1033 | 3.4114 | 1982 | 0.9014 | 0.5528 | 0.9014 | 0.9494 | | 0.1033 | 3.4148 | 1984 | 0.9379 | 0.5093 | 0.9379 | 0.9685 | | 0.1033 | 3.4182 | 1986 | 1.0209 | 0.5448 | 1.0209 | 1.0104 | | 0.1033 | 3.4217 | 1988 | 1.0931 | 0.5401 | 1.0931 | 1.0455 | | 0.1033 | 3.4251 | 1990 | 1.1190 | 0.4892 | 1.1190 | 1.0578 | | 0.1033 | 3.4286 | 1992 | 1.0829 | 0.5152 | 1.0829 | 1.0406 | | 0.1033 | 3.4320 | 1994 | 1.0241 | 0.5448 | 1.0241 | 1.0120 | | 0.1033 | 3.4355 | 1996 | 1.0594 | 0.4915 | 1.0594 | 1.0293 | | 0.1033 | 3.4389 | 1998 | 1.0476 | 0.4792 | 1.0476 | 1.0235 | | 0.0835 | 3.4423 | 2000 | 1.0039 | 0.5350 | 1.0039 | 1.0020 | | 0.0835 | 3.4458 | 2002 | 1.0005 | 0.5350 | 1.0005 | 1.0002 | | 0.0835 | 3.4492 | 2004 | 1.0611 | 0.4522 | 1.0611 | 1.0301 | | 0.0835 | 3.4527 | 2006 | 1.0933 | 0.5014 | 1.0933 | 1.0456 | | 0.0835 | 3.4561 | 2008 | 1.1978 | 0.4748 | 1.1978 | 1.0945 | | 0.0835 | 3.4596 | 2010 | 1.2562 | 0.4627 | 1.2562 | 1.1208 | | 0.0835 | 3.4630 | 2012 | 1.2355 | 0.4627 | 1.2355 | 1.1115 | | 0.0835 | 3.4664 | 2014 | 1.1960 | 0.4627 | 1.1960 | 1.0936 | | 0.0835 | 3.4699 | 2016 | 1.0791 | 0.4522 | 1.0791 | 1.0388 | | 0.0835 | 3.4733 | 2018 | 0.9500 | 0.5773 | 0.9500 | 0.9747 | | 0.0835 | 3.4768 | 2020 | 0.8877 | 0.5556 | 0.8877 | 0.9422 | | 0.0835 | 3.4802 | 2022 | 0.9148 | 0.5773 | 0.9148 | 0.9565 | | 0.0835 | 3.4836 | 2024 | 1.0088 | 0.5773 | 1.0088 | 1.0044 | | 0.0835 | 3.4871 | 2026 | 1.0801 | 0.5059 | 1.0801 | 1.0393 | | 0.0835 | 3.4905 | 2028 | 1.0829 | 0.5473 | 1.0829 | 1.0406 | | 0.0835 | 3.4940 | 2030 | 1.0494 | 0.5473 | 1.0494 | 1.0244 | | 0.0835 | 3.4974 | 2032 | 1.0224 | 0.5773 | 1.0224 | 1.0112 | | 0.0835 | 3.5009 | 2034 | 0.9939 | 0.5921 | 0.9939 | 0.9970 | | 0.0835 | 3.5043 | 2036 | 1.0531 | 0.5773 | 1.0531 | 1.0262 | | 0.0835 | 3.5077 | 2038 | 1.1557 | 0.4404 | 1.1557 | 1.0750 | | 0.0835 | 3.5112 | 2040 | 1.2240 | 0.4404 | 1.2240 | 1.1063 | | 0.0835 | 3.5146 | 2042 | 1.2175 | 0.4404 | 1.2175 | 1.1034 | | 0.0835 | 3.5181 | 2044 | 1.1529 | 0.4271 | 1.1529 | 1.0737 | | 0.0835 | 3.5215 | 2046 | 1.0838 | 0.5169 | 1.0838 | 1.0410 | | 0.0835 | 3.5250 | 2048 | 1.0693 | 0.5188 | 1.0693 | 1.0341 | | 0.0835 | 3.5284 | 2050 | 1.0912 | 0.4643 | 1.0912 | 1.0446 | | 0.0835 | 3.5318 | 2052 | 1.0848 | 0.4649 | 1.0848 | 1.0415 | | 0.0835 | 3.5353 | 2054 | 1.1239 | 0.4881 | 1.1239 | 1.0601 | | 0.0835 | 3.5387 | 2056 | 1.0968 | 0.4881 | 1.0968 | 1.0473 | | 0.0835 | 3.5422 | 2058 | 1.0038 | 0.5188 | 1.0038 | 1.0019 | | 0.0835 | 3.5456 | 2060 | 0.9637 | 0.55 | 0.9637 | 0.9817 | | 0.0835 | 3.5491 | 2062 | 0.9897 | 0.5449 | 0.9897 | 0.9948 | | 0.0835 | 3.5525 | 2064 | 1.0788 | 0.4881 | 1.0788 | 1.0387 | | 0.0835 | 3.5559 | 2066 | 1.0904 | 0.4881 | 1.0904 | 1.0442 | | 0.0835 | 3.5594 | 2068 | 1.0000 | 0.5068 | 1.0000 | 1.0000 | | 0.0835 | 3.5628 | 2070 | 0.8781 | 0.5789 | 0.8781 | 0.9371 | | 0.0835 | 3.5663 | 2072 | 0.7809 | 0.5859 | 0.7809 | 0.8837 | | 0.0835 | 3.5697 | 2074 | 0.7714 | 0.5859 | 0.7714 | 0.8783 | | 0.0835 | 3.5731 | 2076 | 0.8277 | 0.5859 | 0.8277 | 0.9098 | | 0.0835 | 3.5766 | 2078 | 0.9665 | 0.5216 | 0.9665 | 0.9831 | | 0.0835 | 3.5800 | 2080 | 1.1782 | 0.4627 | 1.1782 | 1.0854 | | 0.0835 | 3.5835 | 2082 | 1.2832 | 0.4627 | 1.2832 | 1.1328 | | 0.0835 | 3.5869 | 2084 | 1.2363 | 0.4627 | 1.2363 | 1.1119 | | 0.0835 | 3.5904 | 2086 | 1.0860 | 0.5233 | 1.0860 | 1.0421 | | 0.0835 | 3.5938 | 2088 | 0.9475 | 0.5765 | 0.9475 | 0.9734 | | 0.0835 | 3.5972 | 2090 | 0.8900 | 0.6093 | 0.8900 | 0.9434 | | 0.0835 | 3.6007 | 2092 | 0.9278 | 0.5789 | 0.9278 | 0.9632 | | 0.0835 | 3.6041 | 2094 | 1.0722 | 0.5114 | 1.0722 | 1.0355 | | 0.0835 | 3.6076 | 2096 | 1.1633 | 0.5286 | 1.1633 | 1.0785 | | 0.0835 | 3.6110 | 2098 | 1.1976 | 0.4952 | 1.1976 | 1.0943 | | 0.0835 | 3.6145 | 2100 | 1.1455 | 0.4767 | 1.1455 | 1.0703 | | 0.0835 | 3.6179 | 2102 | 1.1570 | 0.4404 | 1.1570 | 1.0756 | | 0.0835 | 3.6213 | 2104 | 1.1594 | 0.4506 | 1.1594 | 1.0768 | | 0.0835 | 3.6248 | 2106 | 1.2098 | 0.4375 | 1.2098 | 1.0999 | | 0.0835 | 3.6282 | 2108 | 1.2694 | 0.4145 | 1.2694 | 1.1267 | | 0.0835 | 3.6317 | 2110 | 1.2617 | 0.4375 | 1.2617 | 1.1233 | | 0.0835 | 3.6351 | 2112 | 1.2404 | 0.4375 | 1.2404 | 1.1137 | | 0.0835 | 3.6386 | 2114 | 1.2185 | 0.4375 | 1.2185 | 1.1038 | | 0.0835 | 3.6420 | 2116 | 1.1569 | 0.4870 | 1.1569 | 1.0756 | | 0.0835 | 3.6454 | 2118 | 1.0989 | 0.4643 | 1.0989 | 1.0483 | | 0.0835 | 3.6489 | 2120 | 1.0747 | 0.5341 | 1.0747 | 1.0367 | | 0.0835 | 3.6523 | 2122 | 1.0564 | 0.5593 | 1.0564 | 1.0278 | | 0.0835 | 3.6558 | 2124 | 1.0302 | 0.5855 | 1.0302 | 1.0150 | | 0.0835 | 3.6592 | 2126 | 1.0387 | 0.5825 | 1.0387 | 1.0191 | | 0.0835 | 3.6627 | 2128 | 1.0457 | 0.5512 | 1.0457 | 1.0226 | | 0.0835 | 3.6661 | 2130 | 1.1013 | 0.4860 | 1.1013 | 1.0494 | | 0.0835 | 3.6695 | 2132 | 1.1586 | 0.4860 | 1.1586 | 1.0764 | | 0.0835 | 3.6730 | 2134 | 1.1460 | 0.4860 | 1.1460 | 1.0705 | | 0.0835 | 3.6764 | 2136 | 1.0916 | 0.5028 | 1.0916 | 1.0448 | | 0.0835 | 3.6799 | 2138 | 1.0107 | 0.5593 | 1.0107 | 1.0053 | | 0.0835 | 3.6833 | 2140 | 0.9996 | 0.5593 | 0.9996 | 0.9998 | | 0.0835 | 3.6867 | 2142 | 1.0597 | 0.5028 | 1.0597 | 1.0294 | | 0.0835 | 3.6902 | 2144 | 1.1952 | 0.4627 | 1.1952 | 1.0933 | | 0.0835 | 3.6936 | 2146 | 1.2942 | 0.4499 | 1.2942 | 1.1376 | | 0.0835 | 3.6971 | 2148 | 1.3017 | 0.4402 | 1.3017 | 1.1409 | | 0.0835 | 3.7005 | 2150 | 1.1981 | 0.4627 | 1.1981 | 1.0946 | | 0.0835 | 3.7040 | 2152 | 1.0679 | 0.5119 | 1.0679 | 1.0334 | | 0.0835 | 3.7074 | 2154 | 1.0266 | 0.4892 | 1.0266 | 1.0132 | | 0.0835 | 3.7108 | 2156 | 1.0321 | 0.4892 | 1.0321 | 1.0159 | | 0.0835 | 3.7143 | 2158 | 1.1014 | 0.5119 | 1.1014 | 1.0495 | | 0.0835 | 3.7177 | 2160 | 1.1994 | 0.4627 | 1.1994 | 1.0952 | | 0.0835 | 3.7212 | 2162 | 1.1897 | 0.4627 | 1.1897 | 1.0907 | | 0.0835 | 3.7246 | 2164 | 1.1020 | 0.5014 | 1.1020 | 1.0497 | | 0.0835 | 3.7281 | 2166 | 1.0087 | 0.5968 | 1.0087 | 1.0043 | | 0.0835 | 3.7315 | 2168 | 1.0322 | 0.5968 | 1.0322 | 1.0160 | | 0.0835 | 3.7349 | 2170 | 1.0322 | 0.5968 | 1.0322 | 1.0160 | | 0.0835 | 3.7384 | 2172 | 1.1267 | 0.5244 | 1.1267 | 1.0614 | | 0.0835 | 3.7418 | 2174 | 1.2347 | 0.4952 | 1.2347 | 1.1112 | | 0.0835 | 3.7453 | 2176 | 1.2559 | 0.4952 | 1.2559 | 1.1207 | | 0.0835 | 3.7487 | 2178 | 1.1403 | 0.4952 | 1.1403 | 1.0679 | | 0.0835 | 3.7522 | 2180 | 0.9935 | 0.5968 | 0.9935 | 0.9968 | | 0.0835 | 3.7556 | 2182 | 0.9836 | 0.5968 | 0.9836 | 0.9918 | | 0.0835 | 3.7590 | 2184 | 1.0367 | 0.5565 | 1.0367 | 1.0182 | | 0.0835 | 3.7625 | 2186 | 1.0575 | 0.5565 | 1.0575 | 1.0283 | | 0.0835 | 3.7659 | 2188 | 1.0297 | 0.5326 | 1.0297 | 1.0147 | | 0.0835 | 3.7694 | 2190 | 0.9819 | 0.5773 | 0.9819 | 0.9909 | | 0.0835 | 3.7728 | 2192 | 0.9874 | 0.5773 | 0.9874 | 0.9937 | | 0.0835 | 3.7762 | 2194 | 1.0117 | 0.5773 | 1.0117 | 1.0058 | | 0.0835 | 3.7797 | 2196 | 1.1003 | 0.5565 | 1.1003 | 1.0489 | | 0.0835 | 3.7831 | 2198 | 1.1140 | 0.5565 | 1.1140 | 1.0555 | | 0.0835 | 3.7866 | 2200 | 1.0479 | 0.5350 | 1.0479 | 1.0237 | | 0.0835 | 3.7900 | 2202 | 0.9418 | 0.5773 | 0.9418 | 0.9705 | | 0.0835 | 3.7935 | 2204 | 0.9178 | 0.5921 | 0.9178 | 0.9580 | | 0.0835 | 3.7969 | 2206 | 0.9461 | 0.5921 | 0.9461 | 0.9727 | | 0.0835 | 3.8003 | 2208 | 1.0455 | 0.5424 | 1.0455 | 1.0225 | | 0.0835 | 3.8038 | 2210 | 1.2017 | 0.4851 | 1.2017 | 1.0962 | | 0.0835 | 3.8072 | 2212 | 1.3917 | 0.4613 | 1.3917 | 1.1797 | | 0.0835 | 3.8107 | 2214 | 1.4334 | 0.4608 | 1.4334 | 1.1972 | | 0.0835 | 3.8141 | 2216 | 1.3263 | 0.4726 | 1.3263 | 1.1517 | | 0.0835 | 3.8176 | 2218 | 1.1287 | 0.4756 | 1.1287 | 1.0624 | | 0.0835 | 3.8210 | 2220 | 0.9471 | 0.5528 | 0.9471 | 0.9732 | | 0.0835 | 3.8244 | 2222 | 0.8806 | 0.5681 | 0.8806 | 0.9384 | | 0.0835 | 3.8279 | 2224 | 0.8958 | 0.5681 | 0.8958 | 0.9465 | | 0.0835 | 3.8313 | 2226 | 0.9822 | 0.6006 | 0.9822 | 0.9910 | | 0.0835 | 3.8348 | 2228 | 1.1261 | 0.4637 | 1.1261 | 1.0612 | | 0.0835 | 3.8382 | 2230 | 1.1817 | 0.4833 | 1.1817 | 1.0871 | | 0.0835 | 3.8417 | 2232 | 1.1658 | 0.4833 | 1.1658 | 1.0797 | | 0.0835 | 3.8451 | 2234 | 1.1156 | 0.5075 | 1.1156 | 1.0562 | | 0.0835 | 3.8485 | 2236 | 1.0301 | 0.5593 | 1.0301 | 1.0150 | | 0.0835 | 3.8520 | 2238 | 0.9287 | 0.6006 | 0.9287 | 0.9637 | | 0.0835 | 3.8554 | 2240 | 0.9369 | 0.5593 | 0.9369 | 0.9679 | | 0.0835 | 3.8589 | 2242 | 1.0231 | 0.5538 | 1.0231 | 1.0115 | | 0.0835 | 3.8623 | 2244 | 1.0768 | 0.5595 | 1.0768 | 1.0377 | | 0.0835 | 3.8657 | 2246 | 1.1918 | 0.4833 | 1.1918 | 1.0917 | | 0.0835 | 3.8692 | 2248 | 1.2048 | 0.4833 | 1.2048 | 1.0976 | | 0.0835 | 3.8726 | 2250 | 1.0950 | 0.5182 | 1.0950 | 1.0464 | | 0.0835 | 3.8761 | 2252 | 0.9213 | 0.6461 | 0.9213 | 0.9598 | | 0.0835 | 3.8795 | 2254 | 0.8136 | 0.5921 | 0.8136 | 0.9020 | | 0.0835 | 3.8830 | 2256 | 0.7701 | 0.5681 | 0.7701 | 0.8776 | | 0.0835 | 3.8864 | 2258 | 0.7751 | 0.5681 | 0.7751 | 0.8804 | | 0.0835 | 3.8898 | 2260 | 0.8164 | 0.5921 | 0.8164 | 0.9035 | | 0.0835 | 3.8933 | 2262 | 0.8409 | 0.5921 | 0.8409 | 0.9170 | | 0.0835 | 3.8967 | 2264 | 0.8713 | 0.5921 | 0.8713 | 0.9335 | | 0.0835 | 3.9002 | 2266 | 0.9234 | 0.5304 | 0.9234 | 0.9609 | | 0.0835 | 3.9036 | 2268 | 0.9923 | 0.5283 | 0.9923 | 0.9961 | | 0.0835 | 3.9071 | 2270 | 0.9865 | 0.5014 | 0.9865 | 0.9933 | | 0.0835 | 3.9105 | 2272 | 0.9433 | 0.5708 | 0.9433 | 0.9713 | | 0.0835 | 3.9139 | 2274 | 0.9364 | 0.5708 | 0.9364 | 0.9677 | | 0.0835 | 3.9174 | 2276 | 0.9210 | 0.5708 | 0.9210 | 0.9597 | | 0.0835 | 3.9208 | 2278 | 0.8608 | 0.5921 | 0.8608 | 0.9278 | | 0.0835 | 3.9243 | 2280 | 0.7710 | 0.6173 | 0.7710 | 0.8781 | | 0.0835 | 3.9277 | 2282 | 0.7554 | 0.6053 | 0.7554 | 0.8691 | | 0.0835 | 3.9312 | 2284 | 0.7947 | 0.5921 | 0.7947 | 0.8915 | | 0.0835 | 3.9346 | 2286 | 0.8855 | 0.6301 | 0.8855 | 0.9410 | | 0.0835 | 3.9380 | 2288 | 1.0215 | 0.625 | 1.0215 | 1.0107 | | 0.0835 | 3.9415 | 2290 | 1.0931 | 0.5182 | 1.0931 | 1.0455 | | 0.0835 | 3.9449 | 2292 | 1.1286 | 0.5182 | 1.1286 | 1.0624 | | 0.0835 | 3.9484 | 2294 | 1.0478 | 0.5059 | 1.0478 | 1.0236 | | 0.0835 | 3.9518 | 2296 | 0.9320 | 0.5350 | 0.9320 | 0.9654 | | 0.0835 | 3.9552 | 2298 | 0.8887 | 0.5773 | 0.8887 | 0.9427 | | 0.0835 | 3.9587 | 2300 | 0.9165 | 0.5350 | 0.9165 | 0.9573 | | 0.0835 | 3.9621 | 2302 | 0.9961 | 0.5350 | 0.9961 | 0.9981 | | 0.0835 | 3.9656 | 2304 | 1.0647 | 0.5283 | 1.0647 | 1.0319 | | 0.0835 | 3.9690 | 2306 | 1.1374 | 0.5422 | 1.1374 | 1.0665 | | 0.0835 | 3.9725 | 2308 | 1.1635 | 0.4952 | 1.1635 | 1.0787 | | 0.0835 | 3.9759 | 2310 | 1.0867 | 0.5215 | 1.0867 | 1.0424 | | 0.0835 | 3.9793 | 2312 | 1.0136 | 0.5565 | 1.0136 | 1.0068 | | 0.0835 | 3.9828 | 2314 | 1.0450 | 0.4765 | 1.0450 | 1.0223 | | 0.0835 | 3.9862 | 2316 | 1.0277 | 0.5028 | 1.0277 | 1.0137 | | 0.0835 | 3.9897 | 2318 | 1.0486 | 0.4765 | 1.0486 | 1.0240 | | 0.0835 | 3.9931 | 2320 | 0.9906 | 0.5028 | 0.9906 | 0.9953 | | 0.0835 | 3.9966 | 2322 | 0.8749 | 0.5921 | 0.8749 | 0.9354 | | 0.0835 | 4.0 | 2324 | 0.8487 | 0.6069 | 0.8487 | 0.9212 | | 0.0835 | 4.0034 | 2326 | 0.8828 | 0.6390 | 0.8828 | 0.9396 | | 0.0835 | 4.0069 | 2328 | 0.9899 | 0.6023 | 0.9899 | 0.9950 | | 0.0835 | 4.0103 | 2330 | 1.0489 | 0.5303 | 1.0489 | 1.0242 | | 0.0835 | 4.0138 | 2332 | 1.1327 | 0.4848 | 1.1327 | 1.0643 | | 0.0835 | 4.0172 | 2334 | 1.1297 | 0.4848 | 1.1297 | 1.0629 | | 0.0835 | 4.0207 | 2336 | 1.0491 | 0.5898 | 1.0491 | 1.0242 | | 0.0835 | 4.0241 | 2338 | 0.9764 | 0.5326 | 0.9764 | 0.9881 | | 0.0835 | 4.0275 | 2340 | 0.9395 | 0.55 | 0.9395 | 0.9693 | | 0.0835 | 4.0310 | 2342 | 0.9447 | 0.5473 | 0.9447 | 0.9720 | | 0.0835 | 4.0344 | 2344 | 0.9451 | 0.5473 | 0.9451 | 0.9722 | | 0.0835 | 4.0379 | 2346 | 0.8773 | 0.5921 | 0.8773 | 0.9366 | | 0.0835 | 4.0413 | 2348 | 0.7700 | 0.6337 | 0.7700 | 0.8775 | | 0.0835 | 4.0448 | 2350 | 0.7434 | 0.6451 | 0.7434 | 0.8622 | | 0.0835 | 4.0482 | 2352 | 0.7969 | 0.7032 | 0.7969 | 0.8927 | | 0.0835 | 4.0516 | 2354 | 0.9068 | 0.6897 | 0.9068 | 0.9522 | | 0.0835 | 4.0551 | 2356 | 0.9512 | 0.6538 | 0.9512 | 0.9753 | | 0.0835 | 4.0585 | 2358 | 0.9159 | 0.6836 | 0.9159 | 0.9570 | | 0.0835 | 4.0620 | 2360 | 0.8380 | 0.6365 | 0.8380 | 0.9154 | | 0.0835 | 4.0654 | 2362 | 0.7916 | 0.6410 | 0.7916 | 0.8897 | | 0.0835 | 4.0688 | 2364 | 0.7905 | 0.6410 | 0.7905 | 0.8891 | | 0.0835 | 4.0723 | 2366 | 0.8253 | 0.5921 | 0.8253 | 0.9084 | | 0.0835 | 4.0757 | 2368 | 0.8654 | 0.5326 | 0.8654 | 0.9303 | | 0.0835 | 4.0792 | 2370 | 0.8621 | 0.5773 | 0.8621 | 0.9285 | | 0.0835 | 4.0826 | 2372 | 0.8771 | 0.5773 | 0.8771 | 0.9365 | | 0.0835 | 4.0861 | 2374 | 0.8474 | 0.5773 | 0.8474 | 0.9206 | | 0.0835 | 4.0895 | 2376 | 0.8528 | 0.5773 | 0.8528 | 0.9235 | | 0.0835 | 4.0929 | 2378 | 0.8634 | 0.5773 | 0.8634 | 0.9292 | | 0.0835 | 4.0964 | 2380 | 0.8403 | 0.6069 | 0.8403 | 0.9167 | | 0.0835 | 4.0998 | 2382 | 0.8863 | 0.5773 | 0.8863 | 0.9415 | | 0.0835 | 4.1033 | 2384 | 0.9427 | 0.5350 | 0.9427 | 0.9709 | | 0.0835 | 4.1067 | 2386 | 0.8954 | 0.5921 | 0.8954 | 0.9463 | | 0.0835 | 4.1102 | 2388 | 0.8755 | 0.5921 | 0.8755 | 0.9357 | | 0.0835 | 4.1136 | 2390 | 0.7999 | 0.6093 | 0.7999 | 0.8944 | | 0.0835 | 4.1170 | 2392 | 0.7173 | 0.6139 | 0.7173 | 0.8469 | | 0.0835 | 4.1205 | 2394 | 0.7070 | 0.6139 | 0.7070 | 0.8408 | | 0.0835 | 4.1239 | 2396 | 0.7549 | 0.6358 | 0.7549 | 0.8689 | | 0.0835 | 4.1274 | 2398 | 0.8436 | 0.6316 | 0.8436 | 0.9185 | | 0.0835 | 4.1308 | 2400 | 0.9263 | 0.5179 | 0.9263 | 0.9625 | | 0.0835 | 4.1343 | 2402 | 0.9493 | 0.5170 | 0.9493 | 0.9743 | | 0.0835 | 4.1377 | 2404 | 0.8904 | 0.5965 | 0.8904 | 0.9436 | | 0.0835 | 4.1411 | 2406 | 0.7931 | 0.6568 | 0.7931 | 0.8905 | | 0.0835 | 4.1446 | 2408 | 0.7510 | 0.6358 | 0.7510 | 0.8666 | | 0.0835 | 4.1480 | 2410 | 0.7286 | 0.6587 | 0.7286 | 0.8536 | | 0.0835 | 4.1515 | 2412 | 0.7238 | 0.6587 | 0.7238 | 0.8507 | | 0.0835 | 4.1549 | 2414 | 0.7775 | 0.6568 | 0.7775 | 0.8818 | | 0.0835 | 4.1583 | 2416 | 0.8240 | 0.6548 | 0.8240 | 0.9078 | | 0.0835 | 4.1618 | 2418 | 0.8382 | 0.6316 | 0.8382 | 0.9155 | | 0.0835 | 4.1652 | 2420 | 0.8273 | 0.6069 | 0.8273 | 0.9096 | | 0.0835 | 4.1687 | 2422 | 0.8320 | 0.6069 | 0.8320 | 0.9121 | | 0.0835 | 4.1721 | 2424 | 0.7981 | 0.6195 | 0.7981 | 0.8933 | | 0.0835 | 4.1756 | 2426 | 0.7838 | 0.6337 | 0.7838 | 0.8853 | | 0.0835 | 4.1790 | 2428 | 0.7640 | 0.6116 | 0.7640 | 0.8741 | | 0.0835 | 4.1824 | 2430 | 0.7816 | 0.6116 | 0.7816 | 0.8841 | | 0.0835 | 4.1859 | 2432 | 0.8442 | 0.6132 | 0.8442 | 0.9188 | | 0.0835 | 4.1893 | 2434 | 0.9618 | 0.5013 | 0.9618 | 0.9807 | | 0.0835 | 4.1928 | 2436 | 1.0488 | 0.4637 | 1.0488 | 1.0241 | | 0.0835 | 4.1962 | 2438 | 1.0560 | 0.4512 | 1.0560 | 1.0276 | | 0.0835 | 4.1997 | 2440 | 1.0378 | 0.4765 | 1.0378 | 1.0187 | | 0.0835 | 4.2031 | 2442 | 1.0019 | 0.4765 | 1.0019 | 1.0010 | | 0.0835 | 4.2065 | 2444 | 0.9573 | 0.5283 | 0.9573 | 0.9784 | | 0.0835 | 4.2100 | 2446 | 0.9050 | 0.5740 | 0.9050 | 0.9513 | | 0.0835 | 4.2134 | 2448 | 0.8869 | 0.5740 | 0.8869 | 0.9418 | | 0.0835 | 4.2169 | 2450 | 0.8663 | 0.5921 | 0.8663 | 0.9307 | | 0.0835 | 4.2203 | 2452 | 0.8314 | 0.5833 | 0.8314 | 0.9118 | | 0.0835 | 4.2238 | 2454 | 0.8810 | 0.6150 | 0.8810 | 0.9386 | | 0.0835 | 4.2272 | 2456 | 0.9827 | 0.5215 | 0.9827 | 0.9913 | | 0.0835 | 4.2306 | 2458 | 1.0074 | 0.5215 | 1.0074 | 1.0037 | | 0.0835 | 4.2341 | 2460 | 1.0557 | 0.5215 | 1.0557 | 1.0275 | | 0.0835 | 4.2375 | 2462 | 1.0631 | 0.5119 | 1.0631 | 1.0311 | | 0.0835 | 4.2410 | 2464 | 0.9937 | 0.4765 | 0.9937 | 0.9968 | | 0.0835 | 4.2444 | 2466 | 0.9075 | 0.6006 | 0.9075 | 0.9526 | | 0.0835 | 4.2478 | 2468 | 0.9055 | 0.6006 | 0.9055 | 0.9516 | | 0.0835 | 4.2513 | 2470 | 0.9307 | 0.6006 | 0.9307 | 0.9647 | | 0.0835 | 4.2547 | 2472 | 1.0198 | 0.4765 | 1.0198 | 1.0099 | | 0.0835 | 4.2582 | 2474 | 1.1586 | 0.4622 | 1.1586 | 1.0764 | | 0.0835 | 4.2616 | 2476 | 1.2068 | 0.4622 | 1.2068 | 1.0985 | | 0.0835 | 4.2651 | 2478 | 1.2943 | 0.4613 | 1.2943 | 1.1377 | | 0.0835 | 4.2685 | 2480 | 1.3356 | 0.4613 | 1.3356 | 1.1557 | | 0.0835 | 4.2719 | 2482 | 1.2674 | 0.4622 | 1.2674 | 1.1258 | | 0.0835 | 4.2754 | 2484 | 1.1395 | 0.4631 | 1.1395 | 1.0675 | | 0.0835 | 4.2788 | 2486 | 1.0479 | 0.5446 | 1.0479 | 1.0237 | | 0.0835 | 4.2823 | 2488 | 1.0041 | 0.5593 | 1.0041 | 1.0020 | | 0.0835 | 4.2857 | 2490 | 1.0263 | 0.5593 | 1.0263 | 1.0131 | | 0.0835 | 4.2892 | 2492 | 1.1201 | 0.5215 | 1.1201 | 1.0583 | | 0.0835 | 4.2926 | 2494 | 1.2063 | 0.4622 | 1.2063 | 1.0983 | | 0.0835 | 4.2960 | 2496 | 1.1878 | 0.4745 | 1.1878 | 1.0899 | | 0.0835 | 4.2995 | 2498 | 1.1214 | 0.4975 | 1.1214 | 1.0590 | | 0.0739 | 4.3029 | 2500 | 1.0153 | 0.6371 | 1.0153 | 1.0076 | | 0.0739 | 4.3064 | 2502 | 0.9611 | 0.6371 | 0.9611 | 0.9803 | | 0.0739 | 4.3098 | 2504 | 0.9462 | 0.6070 | 0.9462 | 0.9727 | | 0.0739 | 4.3133 | 2506 | 0.9172 | 0.6150 | 0.9172 | 0.9577 | | 0.0739 | 4.3167 | 2508 | 0.8875 | 0.6150 | 0.8875 | 0.9421 | | 0.0739 | 4.3201 | 2510 | 0.8945 | 0.6150 | 0.8945 | 0.9458 | | 0.0739 | 4.3236 | 2512 | 0.8827 | 0.6150 | 0.8827 | 0.9395 | | 0.0739 | 4.3270 | 2514 | 0.8879 | 0.6150 | 0.8879 | 0.9423 | | 0.0739 | 4.3305 | 2516 | 0.9044 | 0.6150 | 0.9044 | 0.9510 | | 0.0739 | 4.3339 | 2518 | 0.9424 | 0.6006 | 0.9424 | 0.9708 | | 0.0739 | 4.3373 | 2520 | 0.9846 | 0.5708 | 0.9846 | 0.9923 | | 0.0739 | 4.3408 | 2522 | 0.9553 | 0.6006 | 0.9553 | 0.9774 | | 0.0739 | 4.3442 | 2524 | 0.8802 | 0.6150 | 0.8802 | 0.9382 | | 0.0739 | 4.3477 | 2526 | 0.8446 | 0.6150 | 0.8446 | 0.9190 | | 0.0739 | 4.3511 | 2528 | 0.8310 | 0.6029 | 0.8310 | 0.9116 | | 0.0739 | 4.3546 | 2530 | 0.8532 | 0.6150 | 0.8532 | 0.9237 | | 0.0739 | 4.3580 | 2532 | 0.8308 | 0.6294 | 0.8308 | 0.9115 | | 0.0739 | 4.3614 | 2534 | 0.8307 | 0.6294 | 0.8307 | 0.9114 | | 0.0739 | 4.3649 | 2536 | 0.8876 | 0.5968 | 0.8876 | 0.9421 | | 0.0739 | 4.3683 | 2538 | 0.9723 | 0.5028 | 0.9723 | 0.9861 | | 0.0739 | 4.3718 | 2540 | 1.0050 | 0.4765 | 1.0050 | 1.0025 | | 0.0739 | 4.3752 | 2542 | 1.0097 | 0.4881 | 1.0097 | 1.0048 | | 0.0739 | 4.3787 | 2544 | 0.9831 | 0.4881 | 0.9831 | 0.9915 | | 0.0739 | 4.3821 | 2546 | 0.9338 | 0.5028 | 0.9338 | 0.9664 | | 0.0739 | 4.3855 | 2548 | 0.9064 | 0.5563 | 0.9064 | 0.9520 | | 0.0739 | 4.3890 | 2550 | 0.9235 | 0.5310 | 0.9235 | 0.9610 | | 0.0739 | 4.3924 | 2552 | 0.9182 | 0.5310 | 0.9182 | 0.9582 | | 0.0739 | 4.3959 | 2554 | 0.9439 | 0.5537 | 0.9439 | 0.9715 | | 0.0739 | 4.3993 | 2556 | 0.9206 | 0.5310 | 0.9206 | 0.9595 | | 0.0739 | 4.4028 | 2558 | 0.8754 | 0.5840 | 0.8754 | 0.9356 | | 0.0739 | 4.4062 | 2560 | 0.8810 | 0.5840 | 0.8810 | 0.9386 | | 0.0739 | 4.4096 | 2562 | 0.9414 | 0.5909 | 0.9414 | 0.9703 | | 0.0739 | 4.4131 | 2564 | 1.0254 | 0.5303 | 1.0254 | 1.0126 | | 0.0739 | 4.4165 | 2566 | 1.0365 | 0.5182 | 1.0365 | 1.0181 | | 0.0739 | 4.4200 | 2568 | 1.0086 | 0.5303 | 1.0086 | 1.0043 | | 0.0739 | 4.4234 | 2570 | 1.0075 | 0.4987 | 1.0075 | 1.0037 | | 0.0739 | 4.4269 | 2572 | 0.9398 | 0.5742 | 0.9398 | 0.9694 | | 0.0739 | 4.4303 | 2574 | 0.8707 | 0.6076 | 0.8707 | 0.9331 | | 0.0739 | 4.4337 | 2576 | 0.8653 | 0.6410 | 0.8653 | 0.9302 | | 0.0739 | 4.4372 | 2578 | 0.9074 | 0.5808 | 0.9074 | 0.9526 | | 0.0739 | 4.4406 | 2580 | 0.9129 | 0.5808 | 0.9129 | 0.9554 | | 0.0739 | 4.4441 | 2582 | 0.9288 | 0.5877 | 0.9288 | 0.9637 | | 0.0739 | 4.4475 | 2584 | 0.9231 | 0.6390 | 0.9231 | 0.9608 | | 0.0739 | 4.4509 | 2586 | 0.9712 | 0.5257 | 0.9712 | 0.9855 | | 0.0739 | 4.4544 | 2588 | 0.9953 | 0.4860 | 0.9953 | 0.9976 | | 0.0739 | 4.4578 | 2590 | 0.9451 | 0.5257 | 0.9451 | 0.9722 | | 0.0739 | 4.4613 | 2592 | 0.8695 | 0.6173 | 0.8696 | 0.9325 | | 0.0739 | 4.4647 | 2594 | 0.8409 | 0.6173 | 0.8409 | 0.9170 | | 0.0739 | 4.4682 | 2596 | 0.8484 | 0.6173 | 0.8484 | 0.9211 | | 0.0739 | 4.4716 | 2598 | 0.9072 | 0.5350 | 0.9072 | 0.9525 | | 0.0739 | 4.4750 | 2600 | 1.0102 | 0.5 | 1.0102 | 1.0051 | | 0.0739 | 4.4785 | 2602 | 1.0882 | 0.4375 | 1.0882 | 1.0432 | | 0.0739 | 4.4819 | 2604 | 1.1137 | 0.4501 | 1.1137 | 1.0553 | | 0.0739 | 4.4854 | 2606 | 1.0587 | 0.4627 | 1.0587 | 1.0289 | | 0.0739 | 4.4888 | 2608 | 0.9496 | 0.5027 | 0.9496 | 0.9745 | | 0.0739 | 4.4923 | 2610 | 0.8589 | 0.6316 | 0.8589 | 0.9268 | | 0.0739 | 4.4957 | 2612 | 0.7973 | 0.6337 | 0.7973 | 0.8929 | | 0.0739 | 4.4991 | 2614 | 0.7711 | 0.6786 | 0.7711 | 0.8781 | | 0.0739 | 4.5026 | 2616 | 0.7720 | 0.6786 | 0.7720 | 0.8786 | | 0.0739 | 4.5060 | 2618 | 0.8200 | 0.625 | 0.8200 | 0.9056 | | 0.0739 | 4.5095 | 2620 | 0.8730 | 0.6434 | 0.8730 | 0.9343 | | 0.0739 | 4.5129 | 2622 | 0.8894 | 0.6092 | 0.8894 | 0.9431 | | 0.0739 | 4.5164 | 2624 | 0.8744 | 0.625 | 0.8744 | 0.9351 | | 0.0739 | 4.5198 | 2626 | 0.9079 | 0.5850 | 0.9079 | 0.9529 | | 0.0739 | 4.5232 | 2628 | 0.9073 | 0.5593 | 0.9073 | 0.9525 | | 0.0739 | 4.5267 | 2630 | 0.8906 | 0.5593 | 0.8906 | 0.9437 | | 0.0739 | 4.5301 | 2632 | 0.9240 | 0.5593 | 0.9240 | 0.9612 | | 0.0739 | 4.5336 | 2634 | 0.9200 | 0.5593 | 0.9200 | 0.9592 | | 0.0739 | 4.5370 | 2636 | 0.9206 | 0.5593 | 0.9206 | 0.9595 | | 0.0739 | 4.5404 | 2638 | 0.9181 | 0.5850 | 0.9181 | 0.9582 | | 0.0739 | 4.5439 | 2640 | 0.9134 | 0.5850 | 0.9134 | 0.9557 | | 0.0739 | 4.5473 | 2642 | 0.9325 | 0.5563 | 0.9325 | 0.9657 | | 0.0739 | 4.5508 | 2644 | 0.9499 | 0.5537 | 0.9499 | 0.9746 | | 0.0739 | 4.5542 | 2646 | 0.9468 | 0.5537 | 0.9468 | 0.9730 | | 0.0739 | 4.5577 | 2648 | 1.0125 | 0.4776 | 1.0125 | 1.0062 | | 0.0739 | 4.5611 | 2650 | 1.0436 | 0.4776 | 1.0436 | 1.0216 | | 0.0739 | 4.5645 | 2652 | 1.0493 | 0.4375 | 1.0493 | 1.0244 | | 0.0739 | 4.5680 | 2654 | 1.0363 | 0.4512 | 1.0363 | 1.0180 | | 0.0739 | 4.5714 | 2656 | 0.9904 | 0.5283 | 0.9904 | 0.9952 | | 0.0739 | 4.5749 | 2658 | 1.0065 | 0.5014 | 1.0065 | 1.0032 | | 0.0739 | 4.5783 | 2660 | 1.0234 | 0.5014 | 1.0234 | 1.0116 | | 0.0739 | 4.5818 | 2662 | 1.0102 | 0.5283 | 1.0102 | 1.0051 | | 0.0739 | 4.5852 | 2664 | 1.0631 | 0.4512 | 1.0631 | 1.0311 | | 0.0739 | 4.5886 | 2666 | 1.1287 | 0.4375 | 1.1287 | 1.0624 | | 0.0739 | 4.5921 | 2668 | 1.1777 | 0.4614 | 1.1777 | 1.0852 | | 0.0739 | 4.5955 | 2670 | 1.1621 | 0.4375 | 1.1621 | 1.0780 | | 0.0739 | 4.5990 | 2672 | 1.0817 | 0.4512 | 1.0817 | 1.0400 | | 0.0739 | 4.6024 | 2674 | 0.9838 | 0.5593 | 0.9838 | 0.9918 | | 0.0739 | 4.6059 | 2676 | 0.9244 | 0.5740 | 0.9244 | 0.9615 | | 0.0739 | 4.6093 | 2678 | 0.9288 | 0.5740 | 0.9288 | 0.9637 | | 0.0739 | 4.6127 | 2680 | 0.9571 | 0.5740 | 0.9571 | 0.9783 | | 0.0739 | 4.6162 | 2682 | 1.0181 | 0.5014 | 1.0181 | 1.0090 | | 0.0739 | 4.6196 | 2684 | 1.0428 | 0.4637 | 1.0428 | 1.0212 | | 0.0739 | 4.6231 | 2686 | 1.0379 | 0.5135 | 1.0379 | 1.0188 | | 0.0739 | 4.6265 | 2688 | 1.0185 | 0.5678 | 1.0185 | 1.0092 | | 0.0739 | 4.6299 | 2690 | 0.9697 | 0.5593 | 0.9697 | 0.9847 | | 0.0739 | 4.6334 | 2692 | 0.9410 | 0.5350 | 0.9410 | 0.9701 | | 0.0739 | 4.6368 | 2694 | 0.9049 | 0.5350 | 0.9049 | 0.9513 | | 0.0739 | 4.6403 | 2696 | 0.9063 | 0.5350 | 0.9063 | 0.9520 | | 0.0739 | 4.6437 | 2698 | 0.9500 | 0.5593 | 0.9500 | 0.9747 | | 0.0739 | 4.6472 | 2700 | 0.9689 | 0.5304 | 0.9689 | 0.9843 | | 0.0739 | 4.6506 | 2702 | 0.9205 | 0.5350 | 0.9205 | 0.9594 | | 0.0739 | 4.6540 | 2704 | 0.8375 | 0.5556 | 0.8375 | 0.9151 | | 0.0739 | 4.6575 | 2706 | 0.7813 | 0.5859 | 0.7813 | 0.8839 | | 0.0739 | 4.6609 | 2708 | 0.7953 | 0.5708 | 0.7953 | 0.8918 | | 0.0739 | 4.6644 | 2710 | 0.8608 | 0.5681 | 0.8608 | 0.9278 | | 0.0739 | 4.6678 | 2712 | 1.0025 | 0.5465 | 1.0025 | 1.0013 | | 0.0739 | 4.6713 | 2714 | 1.0931 | 0.5182 | 1.0931 | 1.0455 | | 0.0739 | 4.6747 | 2716 | 1.1045 | 0.5182 | 1.1045 | 1.0510 | | 0.0739 | 4.6781 | 2718 | 1.0630 | 0.4987 | 1.0630 | 1.0310 | | 0.0739 | 4.6816 | 2720 | 0.9545 | 0.5350 | 0.9545 | 0.9770 | | 0.0739 | 4.6850 | 2722 | 0.9142 | 0.55 | 0.9142 | 0.9561 | | 0.0739 | 4.6885 | 2724 | 0.9434 | 0.5350 | 0.9434 | 0.9713 | | 0.0739 | 4.6919 | 2726 | 0.9934 | 0.5350 | 0.9934 | 0.9967 | | 0.0739 | 4.6954 | 2728 | 1.0337 | 0.5043 | 1.0337 | 1.0167 | | 0.0739 | 4.6988 | 2730 | 1.0236 | 0.5043 | 1.0236 | 1.0118 | | 0.0739 | 4.7022 | 2732 | 0.9484 | 0.5350 | 0.9484 | 0.9739 | | 0.0739 | 4.7057 | 2734 | 0.8964 | 0.55 | 0.8964 | 0.9468 | | 0.0739 | 4.7091 | 2736 | 0.8652 | 0.5248 | 0.8652 | 0.9301 | | 0.0739 | 4.7126 | 2738 | 0.8600 | 0.5248 | 0.8600 | 0.9274 | | 0.0739 | 4.7160 | 2740 | 0.9087 | 0.55 | 0.9087 | 0.9533 | | 0.0739 | 4.7194 | 2742 | 0.9574 | 0.5591 | 0.9574 | 0.9785 | | 0.0739 | 4.7229 | 2744 | 0.9902 | 0.5310 | 0.9902 | 0.9951 | | 0.0739 | 4.7263 | 2746 | 0.9828 | 0.5310 | 0.9828 | 0.9914 | | 0.0739 | 4.7298 | 2748 | 0.9491 | 0.55 | 0.9491 | 0.9742 | | 0.0739 | 4.7332 | 2750 | 0.8705 | 0.5921 | 0.8705 | 0.9330 | | 0.0739 | 4.7367 | 2752 | 0.8328 | 0.5946 | 0.8328 | 0.9126 | | 0.0739 | 4.7401 | 2754 | 0.8583 | 0.6173 | 0.8583 | 0.9264 | | 0.0739 | 4.7435 | 2756 | 0.9240 | 0.55 | 0.9240 | 0.9613 | | 0.0739 | 4.7470 | 2758 | 1.0258 | 0.4538 | 1.0258 | 1.0128 | | 0.0739 | 4.7504 | 2760 | 1.0891 | 0.4975 | 1.0891 | 1.0436 | | 0.0739 | 4.7539 | 2762 | 1.0645 | 0.5099 | 1.0645 | 1.0318 | | 0.0739 | 4.7573 | 2764 | 0.9655 | 0.5207 | 0.9655 | 0.9826 | | 0.0739 | 4.7608 | 2766 | 0.8424 | 0.5681 | 0.8424 | 0.9178 | | 0.0739 | 4.7642 | 2768 | 0.7891 | 0.5708 | 0.7891 | 0.8883 | | 0.0739 | 4.7676 | 2770 | 0.8018 | 0.5946 | 0.8018 | 0.8955 | | 0.0739 | 4.7711 | 2772 | 0.8736 | 0.5921 | 0.8736 | 0.9347 | | 0.0739 | 4.7745 | 2774 | 1.0129 | 0.5207 | 1.0129 | 1.0065 | | 0.0739 | 4.7780 | 2776 | 1.1187 | 0.4512 | 1.1187 | 1.0577 | | 0.0739 | 4.7814 | 2778 | 1.1409 | 0.4512 | 1.1409 | 1.0681 | | 0.0739 | 4.7849 | 2780 | 1.1034 | 0.4512 | 1.1034 | 1.0504 | | 0.0739 | 4.7883 | 2782 | 1.0622 | 0.5350 | 1.0622 | 1.0306 | | 0.0739 | 4.7917 | 2784 | 1.0339 | 0.5350 | 1.0339 | 1.0168 | | 0.0739 | 4.7952 | 2786 | 0.9672 | 0.55 | 0.9672 | 0.9835 | | 0.0739 | 4.7986 | 2788 | 0.9344 | 0.5248 | 0.9344 | 0.9667 | | 0.0739 | 4.8021 | 2790 | 0.9422 | 0.55 | 0.9422 | 0.9707 | | 0.0739 | 4.8055 | 2792 | 0.9720 | 0.5591 | 0.9720 | 0.9859 | | 0.0739 | 4.8090 | 2794 | 0.9830 | 0.5920 | 0.9830 | 0.9915 | | 0.0739 | 4.8124 | 2796 | 1.0121 | 0.5593 | 1.0121 | 1.0060 | | 0.0739 | 4.8158 | 2798 | 1.0336 | 0.5593 | 1.0336 | 1.0167 | | 0.0739 | 4.8193 | 2800 | 1.0086 | 0.5855 | 1.0086 | 1.0043 | | 0.0739 | 4.8227 | 2802 | 0.9937 | 0.5740 | 0.9937 | 0.9969 | | 0.0739 | 4.8262 | 2804 | 1.0588 | 0.5028 | 1.0588 | 1.0290 | | 0.0739 | 4.8296 | 2806 | 1.0715 | 0.5028 | 1.0715 | 1.0351 | | 0.0739 | 4.8330 | 2808 | 1.0619 | 0.5304 | 1.0619 | 1.0305 | | 0.0739 | 4.8365 | 2810 | 1.0346 | 0.5593 | 1.0346 | 1.0171 | | 0.0739 | 4.8399 | 2812 | 1.0638 | 0.5028 | 1.0638 | 1.0314 | | 0.0739 | 4.8434 | 2814 | 1.0973 | 0.5014 | 1.0973 | 1.0475 | | 0.0739 | 4.8468 | 2816 | 1.1362 | 0.4512 | 1.1362 | 1.0659 | | 0.0739 | 4.8503 | 2818 | 1.1149 | 0.4512 | 1.1149 | 1.0559 | | 0.0739 | 4.8537 | 2820 | 1.0997 | 0.5099 | 1.0997 | 1.0487 | | 0.0739 | 4.8571 | 2822 | 1.0223 | 0.5568 | 1.0223 | 1.0111 | | 0.0739 | 4.8606 | 2824 | 0.8925 | 0.5991 | 0.8925 | 0.9447 | | 0.0739 | 4.8640 | 2826 | 0.8292 | 0.5946 | 0.8292 | 0.9106 | | 0.0739 | 4.8675 | 2828 | 0.8254 | 0.6093 | 0.8254 | 0.9085 | | 0.0739 | 4.8709 | 2830 | 0.8748 | 0.652 | 0.8748 | 0.9353 | | 0.0739 | 4.8744 | 2832 | 0.9287 | 0.6501 | 0.9287 | 0.9637 | | 0.0739 | 4.8778 | 2834 | 0.9608 | 0.5855 | 0.9608 | 0.9802 | | 0.0739 | 4.8812 | 2836 | 0.9618 | 0.5537 | 0.9618 | 0.9807 | | 0.0739 | 4.8847 | 2838 | 0.9658 | 0.5448 | 0.9658 | 0.9828 | | 0.0739 | 4.8881 | 2840 | 0.9318 | 0.55 | 0.9318 | 0.9653 | | 0.0739 | 4.8916 | 2842 | 0.9533 | 0.55 | 0.9533 | 0.9764 | | 0.0739 | 4.8950 | 2844 | 1.0235 | 0.5304 | 1.0235 | 1.0117 | | 0.0739 | 4.8985 | 2846 | 1.0969 | 0.5283 | 1.0969 | 1.0473 | | 0.0739 | 4.9019 | 2848 | 1.1213 | 0.4765 | 1.1213 | 1.0589 | | 0.0739 | 4.9053 | 2850 | 1.1080 | 0.4765 | 1.1080 | 1.0526 | | 0.0739 | 4.9088 | 2852 | 1.0642 | 0.5304 | 1.0642 | 1.0316 | | 0.0739 | 4.9122 | 2854 | 0.9664 | 0.5248 | 0.9664 | 0.9831 | | 0.0739 | 4.9157 | 2856 | 0.8676 | 0.5681 | 0.8676 | 0.9315 | | 0.0739 | 4.9191 | 2858 | 0.8278 | 0.5681 | 0.8278 | 0.9098 | | 0.0739 | 4.9225 | 2860 | 0.8424 | 0.5681 | 0.8424 | 0.9178 | | 0.0739 | 4.9260 | 2862 | 0.9169 | 0.5681 | 0.9169 | 0.9575 | | 0.0739 | 4.9294 | 2864 | 1.0158 | 0.5645 | 1.0158 | 1.0079 | | 0.0739 | 4.9329 | 2866 | 1.0797 | 0.5726 | 1.0797 | 1.0391 | | 0.0739 | 4.9363 | 2868 | 1.0782 | 0.5401 | 1.0782 | 1.0384 | | 0.0739 | 4.9398 | 2870 | 1.0365 | 0.5207 | 1.0365 | 1.0181 | | 0.0739 | 4.9432 | 2872 | 1.0200 | 0.5207 | 1.0200 | 1.0100 | | 0.0739 | 4.9466 | 2874 | 0.9864 | 0.4955 | 0.9864 | 0.9932 | | 0.0739 | 4.9501 | 2876 | 0.9700 | 0.5248 | 0.9700 | 0.9849 | | 0.0739 | 4.9535 | 2878 | 0.9650 | 0.5248 | 0.9650 | 0.9824 | | 0.0739 | 4.9570 | 2880 | 0.9459 | 0.5681 | 0.9459 | 0.9726 | | 0.0739 | 4.9604 | 2882 | 0.9327 | 0.5681 | 0.9327 | 0.9658 | | 0.0739 | 4.9639 | 2884 | 0.9368 | 0.5681 | 0.9368 | 0.9679 | | 0.0739 | 4.9673 | 2886 | 0.9292 | 0.5681 | 0.9292 | 0.9639 | | 0.0739 | 4.9707 | 2888 | 0.9621 | 0.5765 | 0.9621 | 0.9809 | | 0.0739 | 4.9742 | 2890 | 0.9789 | 0.5474 | 0.9789 | 0.9894 | | 0.0739 | 4.9776 | 2892 | 0.9586 | 0.5681 | 0.9586 | 0.9791 | | 0.0739 | 4.9811 | 2894 | 0.9491 | 0.5681 | 0.9491 | 0.9742 | | 0.0739 | 4.9845 | 2896 | 0.9332 | 0.5681 | 0.9332 | 0.9660 | | 0.0739 | 4.9880 | 2898 | 0.9472 | 0.5765 | 0.9472 | 0.9732 | | 0.0739 | 4.9914 | 2900 | 0.9161 | 0.5765 | 0.9161 | 0.9571 | | 0.0739 | 4.9948 | 2902 | 0.9186 | 0.5765 | 0.9186 | 0.9585 | | 0.0739 | 4.9983 | 2904 | 0.9602 | 0.6092 | 0.9602 | 0.9799 | | 0.0739 | 5.0017 | 2906 | 0.9628 | 0.6092 | 0.9628 | 0.9812 | | 0.0739 | 5.0052 | 2908 | 0.9962 | 0.6301 | 0.9962 | 0.9981 | | 0.0739 | 5.0086 | 2910 | 0.9842 | 0.6301 | 0.9842 | 0.9921 | | 0.0739 | 5.0120 | 2912 | 0.9241 | 0.5765 | 0.9241 | 0.9613 | | 0.0739 | 5.0155 | 2914 | 0.8540 | 0.5681 | 0.8540 | 0.9241 | | 0.0739 | 5.0189 | 2916 | 0.8060 | 0.5833 | 0.8060 | 0.8978 | | 0.0739 | 5.0224 | 2918 | 0.8269 | 0.5681 | 0.8269 | 0.9094 | | 0.0739 | 5.0258 | 2920 | 0.8960 | 0.6092 | 0.8960 | 0.9466 | | 0.0739 | 5.0293 | 2922 | 1.0046 | 0.5720 | 1.0046 | 1.0023 | | 0.0739 | 5.0327 | 2924 | 1.0410 | 0.5761 | 1.0410 | 1.0203 | | 0.0739 | 5.0361 | 2926 | 1.0007 | 0.5693 | 1.0007 | 1.0003 | | 0.0739 | 5.0396 | 2928 | 0.9547 | 0.6019 | 0.9547 | 0.9771 | | 0.0739 | 5.0430 | 2930 | 0.9173 | 0.6092 | 0.9173 | 0.9577 | | 0.0739 | 5.0465 | 2932 | 0.9052 | 0.6092 | 0.9052 | 0.9514 | | 0.0739 | 5.0499 | 2934 | 0.9321 | 0.6092 | 0.9321 | 0.9654 | | 0.0739 | 5.0534 | 2936 | 0.9199 | 0.5765 | 0.9199 | 0.9591 | | 0.0739 | 5.0568 | 2938 | 0.9420 | 0.6260 | 0.9420 | 0.9706 | | 0.0739 | 5.0602 | 2940 | 0.9438 | 0.5748 | 0.9438 | 0.9715 | | 0.0739 | 5.0637 | 2942 | 0.9333 | 0.6260 | 0.9333 | 0.9661 | | 0.0739 | 5.0671 | 2944 | 0.9279 | 0.5955 | 0.9279 | 0.9633 | | 0.0739 | 5.0706 | 2946 | 0.8910 | 0.5733 | 0.8910 | 0.9439 | | 0.0739 | 5.0740 | 2948 | 0.8442 | 0.5833 | 0.8442 | 0.9188 | | 0.0739 | 5.0775 | 2950 | 0.8291 | 0.5833 | 0.8291 | 0.9105 | | 0.0739 | 5.0809 | 2952 | 0.8631 | 0.5909 | 0.8631 | 0.9290 | | 0.0739 | 5.0843 | 2954 | 0.9110 | 0.5733 | 0.9110 | 0.9545 | | 0.0739 | 5.0878 | 2956 | 0.9922 | 0.5444 | 0.9922 | 0.9961 | | 0.0739 | 5.0912 | 2958 | 1.0170 | 0.5444 | 1.0170 | 1.0085 | | 0.0739 | 5.0947 | 2960 | 0.9718 | 0.5693 | 0.9718 | 0.9858 | | 0.0739 | 5.0981 | 2962 | 0.8949 | 0.5733 | 0.8949 | 0.9460 | | 0.0739 | 5.1015 | 2964 | 0.8244 | 0.5833 | 0.8244 | 0.9080 | | 0.0739 | 5.1050 | 2966 | 0.7893 | 0.5985 | 0.7893 | 0.8884 | | 0.0739 | 5.1084 | 2968 | 0.7863 | 0.5859 | 0.7863 | 0.8867 | | 0.0739 | 5.1119 | 2970 | 0.8178 | 0.5833 | 0.8178 | 0.9043 | | 0.0739 | 5.1153 | 2972 | 0.8956 | 0.5733 | 0.8956 | 0.9463 | | 0.0739 | 5.1188 | 2974 | 0.9998 | 0.5693 | 0.9998 | 0.9999 | | 0.0739 | 5.1222 | 2976 | 1.0122 | 0.5642 | 1.0122 | 1.0061 | | 0.0739 | 5.1256 | 2978 | 0.9483 | 0.5693 | 0.9483 | 0.9738 | | 0.0739 | 5.1291 | 2980 | 0.8553 | 0.6092 | 0.8553 | 0.9248 | | 0.0739 | 5.1325 | 2982 | 0.8139 | 0.6154 | 0.8139 | 0.9022 | | 0.0739 | 5.1360 | 2984 | 0.7684 | 0.6116 | 0.7684 | 0.8766 | | 0.0739 | 5.1394 | 2986 | 0.7679 | 0.6116 | 0.7679 | 0.8763 | | 0.0739 | 5.1429 | 2988 | 0.8133 | 0.6053 | 0.8133 | 0.9018 | | 0.0739 | 5.1463 | 2990 | 0.8937 | 0.5909 | 0.8937 | 0.9453 | | 0.0739 | 5.1497 | 2992 | 0.9209 | 0.5488 | 0.9209 | 0.9596 | | 0.0739 | 5.1532 | 2994 | 0.8820 | 0.6475 | 0.8820 | 0.9391 | | 0.0739 | 5.1566 | 2996 | 0.8292 | 0.6322 | 0.8292 | 0.9106 | | 0.0739 | 5.1601 | 2998 | 0.7885 | 0.6239 | 0.7885 | 0.8880 | | 0.0609 | 5.1635 | 3000 | 0.7700 | 0.6116 | 0.7700 | 0.8775 | | 0.0609 | 5.1670 | 3002 | 0.8104 | 0.6538 | 0.8104 | 0.9002 | | 0.0609 | 5.1704 | 3004 | 0.9098 | 0.6457 | 0.9098 | 0.9538 | | 0.0609 | 5.1738 | 3006 | 1.0112 | 0.5444 | 1.0112 | 1.0056 | | 0.0609 | 5.1773 | 3008 | 1.0565 | 0.5303 | 1.0565 | 1.0279 | | 0.0609 | 5.1807 | 3010 | 1.0521 | 0.5303 | 1.0521 | 1.0257 | | 0.0609 | 5.1842 | 3012 | 0.9769 | 0.5512 | 0.9769 | 0.9884 | | 0.0609 | 5.1876 | 3014 | 0.8823 | 0.5921 | 0.8823 | 0.9393 | | 0.0609 | 5.1910 | 3016 | 0.8057 | 0.5833 | 0.8057 | 0.8976 | | 0.0609 | 5.1945 | 3018 | 0.7885 | 0.5833 | 0.7885 | 0.8880 | | 0.0609 | 5.1979 | 3020 | 0.7615 | 0.6239 | 0.7615 | 0.8726 | | 0.0609 | 5.2014 | 3022 | 0.7515 | 0.6239 | 0.7515 | 0.8669 | | 0.0609 | 5.2048 | 3024 | 0.7686 | 0.6239 | 0.7686 | 0.8767 | | 0.0609 | 5.2083 | 3026 | 0.8324 | 0.5833 | 0.8324 | 0.9124 | | 0.0609 | 5.2117 | 3028 | 0.9353 | 0.6260 | 0.9353 | 0.9671 | | 0.0609 | 5.2151 | 3030 | 0.9778 | 0.5693 | 0.9778 | 0.9888 | | 0.0609 | 5.2186 | 3032 | 0.9577 | 0.5645 | 0.9577 | 0.9786 | | 0.0609 | 5.2220 | 3034 | 0.8953 | 0.5650 | 0.8953 | 0.9462 | | 0.0609 | 5.2255 | 3036 | 0.8085 | 0.5833 | 0.8085 | 0.8992 | | 0.0609 | 5.2289 | 3038 | 0.7729 | 0.5985 | 0.7729 | 0.8791 | | 0.0609 | 5.2324 | 3040 | 0.7788 | 0.5985 | 0.7788 | 0.8825 | | 0.0609 | 5.2358 | 3042 | 0.8087 | 0.5985 | 0.8087 | 0.8993 | | 0.0609 | 5.2392 | 3044 | 0.8889 | 0.5733 | 0.8889 | 0.9428 | | 0.0609 | 5.2427 | 3046 | 1.0452 | 0.5642 | 1.0452 | 1.0223 | | 0.0609 | 5.2461 | 3048 | 1.1929 | 0.4954 | 1.1929 | 1.0922 | | 0.0609 | 5.2496 | 3050 | 1.2643 | 0.5044 | 1.2643 | 1.1244 | | 0.0609 | 5.2530 | 3052 | 1.2313 | 0.4954 | 1.2313 | 1.1096 | | 0.0609 | 5.2565 | 3054 | 1.1229 | 0.5071 | 1.1229 | 1.0597 | | 0.0609 | 5.2599 | 3056 | 0.9750 | 0.5382 | 0.9750 | 0.9874 | | 0.0609 | 5.2633 | 3058 | 0.8637 | 0.5650 | 0.8637 | 0.9294 | | 0.0609 | 5.2668 | 3060 | 0.8314 | 0.5985 | 0.8314 | 0.9118 | | 0.0609 | 5.2702 | 3062 | 0.8522 | 0.5681 | 0.8522 | 0.9231 | | 0.0609 | 5.2737 | 3064 | 0.8950 | 0.5650 | 0.8950 | 0.9460 | | 0.0609 | 5.2771 | 3066 | 0.9183 | 0.5650 | 0.9183 | 0.9583 | | 0.0609 | 5.2806 | 3068 | 0.9246 | 0.5885 | 0.9246 | 0.9615 | | 0.0609 | 5.2840 | 3070 | 0.9425 | 0.5955 | 0.9425 | 0.9708 | | 0.0609 | 5.2874 | 3072 | 0.9220 | 0.5955 | 0.9220 | 0.9602 | | 0.0609 | 5.2909 | 3074 | 0.8844 | 0.5955 | 0.8844 | 0.9404 | | 0.0609 | 5.2943 | 3076 | 0.8170 | 0.5833 | 0.8170 | 0.9039 | | 0.0609 | 5.2978 | 3078 | 0.7981 | 0.5708 | 0.7981 | 0.8934 | | 0.0609 | 5.3012 | 3080 | 0.8244 | 0.5833 | 0.8244 | 0.9080 | | 0.0609 | 5.3046 | 3082 | 0.8666 | 0.5765 | 0.8666 | 0.9309 | | 0.0609 | 5.3081 | 3084 | 0.9122 | 0.5955 | 0.9122 | 0.9551 | | 0.0609 | 5.3115 | 3086 | 0.9872 | 0.5817 | 0.9872 | 0.9936 | | 0.0609 | 5.3150 | 3088 | 1.0169 | 0.625 | 1.0169 | 1.0084 | | 0.0609 | 5.3184 | 3090 | 1.0035 | 0.6645 | 1.0035 | 1.0018 | | 0.0609 | 5.3219 | 3092 | 0.9373 | 0.5955 | 0.9373 | 0.9682 | | 0.0609 | 5.3253 | 3094 | 0.8666 | 0.5765 | 0.8666 | 0.9309 | | 0.0609 | 5.3287 | 3096 | 0.8167 | 0.5708 | 0.8167 | 0.9037 | | 0.0609 | 5.3322 | 3098 | 0.8187 | 0.5708 | 0.8187 | 0.9048 | | 0.0609 | 5.3356 | 3100 | 0.8222 | 0.5708 | 0.8222 | 0.9068 | | 0.0609 | 5.3391 | 3102 | 0.8311 | 0.5708 | 0.8311 | 0.9116 | | 0.0609 | 5.3425 | 3104 | 0.8233 | 0.5708 | 0.8233 | 0.9074 | | 0.0609 | 5.3460 | 3106 | 0.8093 | 0.5708 | 0.8093 | 0.8996 | | 0.0609 | 5.3494 | 3108 | 0.8382 | 0.5681 | 0.8382 | 0.9155 | | 0.0609 | 5.3528 | 3110 | 0.8560 | 0.5681 | 0.8560 | 0.9252 | | 0.0609 | 5.3563 | 3112 | 0.8746 | 0.5921 | 0.8746 | 0.9352 | | 0.0609 | 5.3597 | 3114 | 0.8656 | 0.5885 | 0.8656 | 0.9304 | | 0.0609 | 5.3632 | 3116 | 0.8772 | 0.6110 | 0.8772 | 0.9366 | | 0.0609 | 5.3666 | 3118 | 0.8840 | 0.6168 | 0.8840 | 0.9402 | | 0.0609 | 5.3701 | 3120 | 0.8686 | 0.5955 | 0.8686 | 0.9320 | | 0.0609 | 5.3735 | 3122 | 0.8126 | 0.5946 | 0.8126 | 0.9014 | | 0.0609 | 5.3769 | 3124 | 0.7591 | 0.5985 | 0.7591 | 0.8712 | | 0.0609 | 5.3804 | 3126 | 0.7591 | 0.5985 | 0.7591 | 0.8713 | | 0.0609 | 5.3838 | 3128 | 0.7956 | 0.5946 | 0.7956 | 0.8920 | | 0.0609 | 5.3873 | 3130 | 0.8607 | 0.5874 | 0.8607 | 0.9278 | | 0.0609 | 5.3907 | 3132 | 0.9345 | 0.5645 | 0.9345 | 0.9667 | | 0.0609 | 5.3941 | 3134 | 0.9524 | 0.5855 | 0.9524 | 0.9759 | | 0.0609 | 5.3976 | 3136 | 0.9330 | 0.5645 | 0.9330 | 0.9659 | | 0.0609 | 5.4010 | 3138 | 0.8967 | 0.5650 | 0.8967 | 0.9469 | | 0.0609 | 5.4045 | 3140 | 0.8502 | 0.5650 | 0.8502 | 0.9220 | | 0.0609 | 5.4079 | 3142 | 0.8435 | 0.5650 | 0.8435 | 0.9184 | | 0.0609 | 5.4114 | 3144 | 0.8517 | 0.5650 | 0.8517 | 0.9229 | | 0.0609 | 5.4148 | 3146 | 0.8607 | 0.5650 | 0.8607 | 0.9277 | | 0.0609 | 5.4182 | 3148 | 0.8530 | 0.5681 | 0.8530 | 0.9236 | | 0.0609 | 5.4217 | 3150 | 0.8204 | 0.5681 | 0.8204 | 0.9058 | | 0.0609 | 5.4251 | 3152 | 0.8234 | 0.5681 | 0.8234 | 0.9074 | | 0.0609 | 5.4286 | 3154 | 0.8159 | 0.5985 | 0.8159 | 0.9033 | | 0.0609 | 5.4320 | 3156 | 0.8322 | 0.5985 | 0.8322 | 0.9122 | | 0.0609 | 5.4355 | 3158 | 0.8693 | 0.5650 | 0.8693 | 0.9324 | | 0.0609 | 5.4389 | 3160 | 0.8898 | 0.5650 | 0.8898 | 0.9433 | | 0.0609 | 5.4423 | 3162 | 0.8758 | 0.5650 | 0.8758 | 0.9358 | | 0.0609 | 5.4458 | 3164 | 0.8678 | 0.5733 | 0.8678 | 0.9316 | | 0.0609 | 5.4492 | 3166 | 0.8758 | 0.5733 | 0.8758 | 0.9358 | | 0.0609 | 5.4527 | 3168 | 0.8361 | 0.6014 | 0.8361 | 0.9144 | | 0.0609 | 5.4561 | 3170 | 0.8152 | 0.6014 | 0.8152 | 0.9029 | | 0.0609 | 5.4596 | 3172 | 0.8056 | 0.5946 | 0.8056 | 0.8975 | | 0.0609 | 5.4630 | 3174 | 0.7867 | 0.6195 | 0.7867 | 0.8870 | | 0.0609 | 5.4664 | 3176 | 0.7846 | 0.6195 | 0.7846 | 0.8858 | | 0.0609 | 5.4699 | 3178 | 0.7994 | 0.625 | 0.7994 | 0.8941 | | 0.0609 | 5.4733 | 3180 | 0.7864 | 0.625 | 0.7864 | 0.8868 | | 0.0609 | 5.4768 | 3182 | 0.7987 | 0.625 | 0.7987 | 0.8937 | | 0.0609 | 5.4802 | 3184 | 0.8138 | 0.6454 | 0.8138 | 0.9021 | | 0.0609 | 5.4836 | 3186 | 0.7857 | 0.625 | 0.7857 | 0.8864 | | 0.0609 | 5.4871 | 3188 | 0.7306 | 0.6587 | 0.7306 | 0.8547 | | 0.0609 | 5.4905 | 3190 | 0.7139 | 0.6587 | 0.7139 | 0.8449 | | 0.0609 | 5.4940 | 3192 | 0.7162 | 0.6587 | 0.7162 | 0.8463 | | 0.0609 | 5.4974 | 3194 | 0.7571 | 0.6076 | 0.7571 | 0.8701 | | 0.0609 | 5.5009 | 3196 | 0.8161 | 0.625 | 0.8161 | 0.9034 | | 0.0609 | 5.5043 | 3198 | 0.8810 | 0.6520 | 0.8810 | 0.9386 | | 0.0609 | 5.5077 | 3200 | 0.8936 | 0.6390 | 0.8936 | 0.9453 | | 0.0609 | 5.5112 | 3202 | 0.9161 | 0.6092 | 0.9161 | 0.9571 | | 0.0609 | 5.5146 | 3204 | 0.9006 | 0.6029 | 0.9006 | 0.9490 | | 0.0609 | 5.5181 | 3206 | 0.8616 | 0.6029 | 0.8616 | 0.9282 | | 0.0609 | 5.5215 | 3208 | 0.8222 | 0.5946 | 0.8222 | 0.9067 | | 0.0609 | 5.5250 | 3210 | 0.8107 | 0.5985 | 0.8107 | 0.9004 | | 0.0609 | 5.5284 | 3212 | 0.8151 | 0.5946 | 0.8151 | 0.9028 | | 0.0609 | 5.5318 | 3214 | 0.7892 | 0.5985 | 0.7892 | 0.8884 | | 0.0609 | 5.5353 | 3216 | 0.7988 | 0.6053 | 0.7988 | 0.8938 | | 0.0609 | 5.5387 | 3218 | 0.8313 | 0.6520 | 0.8313 | 0.9117 | | 0.0609 | 5.5422 | 3220 | 0.8320 | 0.6520 | 0.8320 | 0.9121 | | 0.0609 | 5.5456 | 3222 | 0.8448 | 0.6520 | 0.8448 | 0.9191 | | 0.0609 | 5.5491 | 3224 | 0.8592 | 0.6520 | 0.8592 | 0.9269 | | 0.0609 | 5.5525 | 3226 | 0.8482 | 0.6520 | 0.8482 | 0.9210 | | 0.0609 | 5.5559 | 3228 | 0.8021 | 0.6271 | 0.8021 | 0.8956 | | 0.0609 | 5.5594 | 3230 | 0.7545 | 0.5859 | 0.7545 | 0.8686 | | 0.0609 | 5.5628 | 3232 | 0.7550 | 0.5859 | 0.7550 | 0.8689 | | 0.0609 | 5.5663 | 3234 | 0.7873 | 0.6216 | 0.7873 | 0.8873 | | 0.0609 | 5.5697 | 3236 | 0.8332 | 0.6069 | 0.8332 | 0.9128 | | 0.0609 | 5.5731 | 3238 | 0.8480 | 0.6069 | 0.8480 | 0.9209 | | 0.0609 | 5.5766 | 3240 | 0.8315 | 0.6069 | 0.8315 | 0.9119 | | 0.0609 | 5.5800 | 3242 | 0.7829 | 0.5985 | 0.7829 | 0.8848 | | 0.0609 | 5.5835 | 3244 | 0.7412 | 0.6116 | 0.7412 | 0.8609 | | 0.0609 | 5.5869 | 3246 | 0.7090 | 0.6116 | 0.7090 | 0.8420 | | 0.0609 | 5.5904 | 3248 | 0.7167 | 0.6116 | 0.7167 | 0.8466 | | 0.0609 | 5.5938 | 3250 | 0.7604 | 0.6239 | 0.7604 | 0.8720 | | 0.0609 | 5.5972 | 3252 | 0.8210 | 0.5985 | 0.8210 | 0.9061 | | 0.0609 | 5.6007 | 3254 | 0.8922 | 0.6301 | 0.8922 | 0.9446 | | 0.0609 | 5.6041 | 3256 | 0.8966 | 0.6301 | 0.8966 | 0.9469 | | 0.0609 | 5.6076 | 3258 | 0.8568 | 0.5985 | 0.8568 | 0.9256 | | 0.0609 | 5.6110 | 3260 | 0.8053 | 0.5985 | 0.8053 | 0.8974 | | 0.0609 | 5.6145 | 3262 | 0.7976 | 0.5985 | 0.7976 | 0.8931 | | 0.0609 | 5.6179 | 3264 | 0.7966 | 0.5985 | 0.7966 | 0.8925 | | 0.0609 | 5.6213 | 3266 | 0.8004 | 0.5985 | 0.8004 | 0.8947 | | 0.0609 | 5.6248 | 3268 | 0.8307 | 0.6053 | 0.8307 | 0.9114 | | 0.0609 | 5.6282 | 3270 | 0.8401 | 0.6053 | 0.8401 | 0.9166 | | 0.0609 | 5.6317 | 3272 | 0.8394 | 0.6271 | 0.8394 | 0.9162 | | 0.0609 | 5.6351 | 3274 | 0.8380 | 0.65 | 0.8380 | 0.9154 | | 0.0609 | 5.6386 | 3276 | 0.8145 | 0.65 | 0.8145 | 0.9025 | | 0.0609 | 5.6420 | 3278 | 0.7895 | 0.6293 | 0.7895 | 0.8886 | | 0.0609 | 5.6454 | 3280 | 0.7516 | 0.6116 | 0.7516 | 0.8669 | | 0.0609 | 5.6489 | 3282 | 0.7247 | 0.6116 | 0.7247 | 0.8513 | | 0.0609 | 5.6523 | 3284 | 0.7397 | 0.6116 | 0.7397 | 0.8601 | | 0.0609 | 5.6558 | 3286 | 0.7933 | 0.6293 | 0.7933 | 0.8907 | | 0.0609 | 5.6592 | 3288 | 0.8571 | 0.6132 | 0.8571 | 0.9258 | | 0.0609 | 5.6627 | 3290 | 0.9517 | 0.5251 | 0.9517 | 0.9755 | | 0.0609 | 5.6661 | 3292 | 0.9981 | 0.4637 | 0.9981 | 0.9990 | | 0.0609 | 5.6695 | 3294 | 1.0236 | 0.4637 | 1.0236 | 1.0117 | | 0.0609 | 5.6730 | 3296 | 1.0272 | 0.4512 | 1.0272 | 1.0135 | | 0.0609 | 5.6764 | 3298 | 0.9961 | 0.4765 | 0.9961 | 0.9981 | | 0.0609 | 5.6799 | 3300 | 0.9948 | 0.4765 | 0.9948 | 0.9974 | | 0.0609 | 5.6833 | 3302 | 0.9639 | 0.5678 | 0.9639 | 0.9818 | | 0.0609 | 5.6867 | 3304 | 0.8957 | 0.6069 | 0.8957 | 0.9464 | | 0.0609 | 5.6902 | 3306 | 0.8378 | 0.5833 | 0.8378 | 0.9153 | | 0.0609 | 5.6936 | 3308 | 0.7776 | 0.6239 | 0.7776 | 0.8818 | | 0.0609 | 5.6971 | 3310 | 0.7679 | 0.6116 | 0.7679 | 0.8763 | | 0.0609 | 5.7005 | 3312 | 0.8031 | 0.6053 | 0.8031 | 0.8962 | | 0.0609 | 5.7040 | 3314 | 0.8747 | 0.5909 | 0.8747 | 0.9353 | | 0.0609 | 5.7074 | 3316 | 0.9206 | 0.5991 | 0.9206 | 0.9595 | | 0.0609 | 5.7108 | 3318 | 0.9192 | 0.5991 | 0.9192 | 0.9587 | | 0.0609 | 5.7143 | 3320 | 0.8787 | 0.5765 | 0.8787 | 0.9374 | | 0.0609 | 5.7177 | 3322 | 0.8231 | 0.5909 | 0.8231 | 0.9072 | | 0.0609 | 5.7212 | 3324 | 0.8103 | 0.5833 | 0.8103 | 0.9002 | | 0.0609 | 5.7246 | 3326 | 0.8160 | 0.5833 | 0.8160 | 0.9033 | | 0.0609 | 5.7281 | 3328 | 0.8213 | 0.5833 | 0.8213 | 0.9062 | | 0.0609 | 5.7315 | 3330 | 0.8413 | 0.5909 | 0.8413 | 0.9172 | | 0.0609 | 5.7349 | 3332 | 0.8935 | 0.5991 | 0.8935 | 0.9452 | | 0.0609 | 5.7384 | 3334 | 0.9533 | 0.5817 | 0.9533 | 0.9764 | | 0.0609 | 5.7418 | 3336 | 0.9503 | 0.5817 | 0.9503 | 0.9749 | | 0.0609 | 5.7453 | 3338 | 0.9488 | 0.5817 | 0.9488 | 0.9741 | | 0.0609 | 5.7487 | 3340 | 0.9228 | 0.5354 | 0.9228 | 0.9606 | | 0.0609 | 5.7522 | 3342 | 0.8810 | 0.5354 | 0.8810 | 0.9386 | | 0.0609 | 5.7556 | 3344 | 0.8693 | 0.5354 | 0.8693 | 0.9324 | | 0.0609 | 5.7590 | 3346 | 0.8880 | 0.5354 | 0.8880 | 0.9424 | | 0.0609 | 5.7625 | 3348 | 0.9346 | 0.5354 | 0.9346 | 0.9667 | | 0.0609 | 5.7659 | 3350 | 0.9430 | 0.5591 | 0.9430 | 0.9711 | | 0.0609 | 5.7694 | 3352 | 0.9058 | 0.5354 | 0.9058 | 0.9517 | | 0.0609 | 5.7728 | 3354 | 0.8335 | 0.5909 | 0.8335 | 0.9130 | | 0.0609 | 5.7762 | 3356 | 0.7996 | 0.6053 | 0.7996 | 0.8942 | | 0.0609 | 5.7797 | 3358 | 0.7916 | 0.6239 | 0.7916 | 0.8897 | | 0.0609 | 5.7831 | 3360 | 0.8260 | 0.5909 | 0.8260 | 0.9089 | | 0.0609 | 5.7866 | 3362 | 0.8638 | 0.5909 | 0.8638 | 0.9294 | | 0.0609 | 5.7900 | 3364 | 0.9068 | 0.5354 | 0.9068 | 0.9523 | | 0.0609 | 5.7935 | 3366 | 0.9386 | 0.5207 | 0.9386 | 0.9688 | | 0.0609 | 5.7969 | 3368 | 0.9249 | 0.5093 | 0.9249 | 0.9617 | | 0.0609 | 5.8003 | 3370 | 0.8873 | 0.5248 | 0.8873 | 0.9420 | | 0.0609 | 5.8038 | 3372 | 0.8635 | 0.5248 | 0.8635 | 0.9292 | | 0.0609 | 5.8072 | 3374 | 0.8661 | 0.5248 | 0.8661 | 0.9306 | | 0.0609 | 5.8107 | 3376 | 0.8834 | 0.5093 | 0.8834 | 0.9399 | | 0.0609 | 5.8141 | 3378 | 0.8658 | 0.5248 | 0.8658 | 0.9305 | | 0.0609 | 5.8176 | 3380 | 0.8691 | 0.5248 | 0.8691 | 0.9323 | | 0.0609 | 5.8210 | 3382 | 0.8956 | 0.5093 | 0.8956 | 0.9464 | | 0.0609 | 5.8244 | 3384 | 0.9263 | 0.5207 | 0.9263 | 0.9624 | | 0.0609 | 5.8279 | 3386 | 0.9990 | 0.5649 | 0.9990 | 0.9995 | | 0.0609 | 5.8313 | 3388 | 1.0483 | 0.5357 | 1.0483 | 1.0238 | | 0.0609 | 5.8348 | 3390 | 1.0251 | 0.5357 | 1.0251 | 1.0125 | | 0.0609 | 5.8382 | 3392 | 0.9613 | 0.5424 | 0.9613 | 0.9805 | | 0.0609 | 5.8417 | 3394 | 0.8924 | 0.55 | 0.8924 | 0.9446 | | 0.0609 | 5.8451 | 3396 | 0.8425 | 0.5402 | 0.8425 | 0.9179 | | 0.0609 | 5.8485 | 3398 | 0.8055 | 0.5402 | 0.8055 | 0.8975 | | 0.0609 | 5.8520 | 3400 | 0.8103 | 0.5402 | 0.8103 | 0.9001 | | 0.0609 | 5.8554 | 3402 | 0.8335 | 0.5402 | 0.8335 | 0.9130 | | 0.0609 | 5.8589 | 3404 | 0.9008 | 0.5733 | 0.9008 | 0.9491 | | 0.0609 | 5.8623 | 3406 | 0.9455 | 0.5448 | 0.9455 | 0.9723 | | 0.0609 | 5.8657 | 3408 | 0.9538 | 0.5448 | 0.9538 | 0.9766 | | 0.0609 | 5.8692 | 3410 | 0.9572 | 0.5448 | 0.9572 | 0.9784 | | 0.0609 | 5.8726 | 3412 | 0.9087 | 0.55 | 0.9087 | 0.9532 | | 0.0609 | 5.8761 | 3414 | 0.8582 | 0.5402 | 0.8582 | 0.9264 | | 0.0609 | 5.8795 | 3416 | 0.8286 | 0.5402 | 0.8286 | 0.9103 | | 0.0609 | 5.8830 | 3418 | 0.8472 | 0.5402 | 0.8472 | 0.9204 | | 0.0609 | 5.8864 | 3420 | 0.9088 | 0.5650 | 0.9088 | 0.9533 | | 0.0609 | 5.8898 | 3422 | 0.9700 | 0.5488 | 0.9700 | 0.9849 | | 0.0609 | 5.8933 | 3424 | 1.0138 | 0.5357 | 1.0138 | 1.0069 | | 0.0609 | 5.8967 | 3426 | 1.0122 | 0.5357 | 1.0122 | 1.0061 | | 0.0609 | 5.9002 | 3428 | 0.9542 | 0.5270 | 0.9542 | 0.9768 | | 0.0609 | 5.9036 | 3430 | 0.8754 | 0.5650 | 0.8754 | 0.9356 | | 0.0609 | 5.9071 | 3432 | 0.8125 | 0.5833 | 0.8125 | 0.9014 | | 0.0609 | 5.9105 | 3434 | 0.7968 | 0.5833 | 0.7968 | 0.8926 | | 0.0609 | 5.9139 | 3436 | 0.8234 | 0.5833 | 0.8234 | 0.9074 | | 0.0609 | 5.9174 | 3438 | 0.8625 | 0.5402 | 0.8625 | 0.9287 | | 0.0609 | 5.9208 | 3440 | 0.9314 | 0.5473 | 0.9314 | 0.9651 | | 0.0609 | 5.9243 | 3442 | 0.9664 | 0.5424 | 0.9664 | 0.9830 | | 0.0609 | 5.9277 | 3444 | 0.9430 | 0.5326 | 0.9430 | 0.9711 | | 0.0609 | 5.9312 | 3446 | 0.8805 | 0.5248 | 0.8805 | 0.9384 | | 0.0609 | 5.9346 | 3448 | 0.8518 | 0.5402 | 0.8518 | 0.9229 | | 0.0609 | 5.9380 | 3450 | 0.8299 | 0.5833 | 0.8299 | 0.9110 | | 0.0609 | 5.9415 | 3452 | 0.8213 | 0.5985 | 0.8213 | 0.9063 | | 0.0609 | 5.9449 | 3454 | 0.8533 | 0.5909 | 0.8533 | 0.9237 | | 0.0609 | 5.9484 | 3456 | 0.9065 | 0.5563 | 0.9065 | 0.9521 | | 0.0609 | 5.9518 | 3458 | 0.9136 | 0.5563 | 0.9136 | 0.9558 | | 0.0609 | 5.9552 | 3460 | 0.8816 | 0.55 | 0.8816 | 0.9389 | | 0.0609 | 5.9587 | 3462 | 0.8870 | 0.5227 | 0.8870 | 0.9418 | | 0.0609 | 5.9621 | 3464 | 0.9148 | 0.5473 | 0.9148 | 0.9565 | | 0.0609 | 5.9656 | 3466 | 0.9590 | 0.5473 | 0.9590 | 0.9793 | | 0.0609 | 5.9690 | 3468 | 0.9710 | 0.5708 | 0.9710 | 0.9854 | | 0.0609 | 5.9725 | 3470 | 0.9399 | 0.5473 | 0.9399 | 0.9695 | | 0.0609 | 5.9759 | 3472 | 0.8702 | 0.5227 | 0.8702 | 0.9329 | | 0.0609 | 5.9793 | 3474 | 0.8385 | 0.5402 | 0.8385 | 0.9157 | | 0.0609 | 5.9828 | 3476 | 0.8540 | 0.5378 | 0.8540 | 0.9241 | | 0.0609 | 5.9862 | 3478 | 0.8824 | 0.5331 | 0.8824 | 0.9394 | | 0.0609 | 5.9897 | 3480 | 0.8613 | 0.5874 | 0.8613 | 0.9281 | | 0.0609 | 5.9931 | 3482 | 0.8511 | 0.5874 | 0.8511 | 0.9226 | | 0.0609 | 5.9966 | 3484 | 0.8553 | 0.5874 | 0.8553 | 0.9248 | | 0.0609 | 6.0 | 3486 | 0.8894 | 0.5331 | 0.8894 | 0.9431 | | 0.0609 | 6.0034 | 3488 | 0.8960 | 0.5227 | 0.8960 | 0.9466 | | 0.0609 | 6.0069 | 3490 | 0.9109 | 0.5563 | 0.9109 | 0.9544 | | 0.0609 | 6.0103 | 3492 | 0.9499 | 0.5785 | 0.9499 | 0.9746 | | 0.0609 | 6.0138 | 3494 | 0.9583 | 0.5785 | 0.9583 | 0.9789 | | 0.0609 | 6.0172 | 3496 | 0.9379 | 0.5473 | 0.9379 | 0.9684 | | 0.0609 | 6.0207 | 3498 | 0.9252 | 0.5473 | 0.9252 | 0.9619 | | 0.0557 | 6.0241 | 3500 | 0.9060 | 0.5473 | 0.9060 | 0.9519 | | 0.0557 | 6.0275 | 3502 | 0.8553 | 0.5227 | 0.8553 | 0.9248 | | 0.0557 | 6.0310 | 3504 | 0.8287 | 0.5527 | 0.8287 | 0.9103 | | 0.0557 | 6.0344 | 3506 | 0.8342 | 0.5527 | 0.8342 | 0.9133 | | 0.0557 | 6.0379 | 3508 | 0.8823 | 0.5563 | 0.8823 | 0.9393 | | 0.0557 | 6.0413 | 3510 | 0.9159 | 0.5649 | 0.9159 | 0.9570 | | 0.0557 | 6.0448 | 3512 | 0.9373 | 0.5649 | 0.9373 | 0.9681 | | 0.0557 | 6.0482 | 3514 | 0.9248 | 0.5649 | 0.9248 | 0.9616 | | 0.0557 | 6.0516 | 3516 | 0.9034 | 0.5424 | 0.9034 | 0.9505 | | 0.0557 | 6.0551 | 3518 | 0.8822 | 0.5188 | 0.8822 | 0.9392 | | 0.0557 | 6.0585 | 3520 | 0.8803 | 0.5188 | 0.8803 | 0.9382 | | 0.0557 | 6.0620 | 3522 | 0.9283 | 0.5424 | 0.9283 | 0.9635 | | 0.0557 | 6.0654 | 3524 | 0.9980 | 0.5135 | 0.9980 | 0.9990 | | 0.0557 | 6.0688 | 3526 | 1.0095 | 0.5135 | 1.0095 | 1.0047 | | 0.0557 | 6.0723 | 3528 | 0.9669 | 0.5649 | 0.9669 | 0.9833 | | 0.0557 | 6.0757 | 3530 | 0.8929 | 0.5188 | 0.8929 | 0.9449 | | 0.0557 | 6.0792 | 3532 | 0.8234 | 0.5833 | 0.8234 | 0.9074 | | 0.0557 | 6.0826 | 3534 | 0.8089 | 0.5985 | 0.8089 | 0.8994 | | 0.0557 | 6.0861 | 3536 | 0.8270 | 0.5833 | 0.8270 | 0.9094 | | 0.0557 | 6.0895 | 3538 | 0.8418 | 0.5798 | 0.8418 | 0.9175 | | 0.0557 | 6.0929 | 3540 | 0.8753 | 0.5874 | 0.8753 | 0.9356 | | 0.0557 | 6.0964 | 3542 | 0.9198 | 0.5817 | 0.9198 | 0.9590 | | 0.0557 | 6.0998 | 3544 | 0.9756 | 0.5424 | 0.9756 | 0.9877 | | 0.0557 | 6.1033 | 3546 | 0.9787 | 0.5424 | 0.9787 | 0.9893 | | 0.0557 | 6.1067 | 3548 | 0.9408 | 0.5424 | 0.9408 | 0.9699 | | 0.0557 | 6.1102 | 3550 | 0.8974 | 0.5885 | 0.8974 | 0.9473 | | 0.0557 | 6.1136 | 3552 | 0.8977 | 0.5885 | 0.8977 | 0.9475 | | 0.0557 | 6.1170 | 3554 | 0.9179 | 0.5473 | 0.9179 | 0.9581 | | 0.0557 | 6.1205 | 3556 | 0.9633 | 0.5424 | 0.9633 | 0.9815 | | 0.0557 | 6.1239 | 3558 | 0.9626 | 0.5424 | 0.9626 | 0.9811 | | 0.0557 | 6.1274 | 3560 | 0.9321 | 0.5563 | 0.9321 | 0.9654 | | 0.0557 | 6.1308 | 3562 | 0.8969 | 0.5955 | 0.8969 | 0.9471 | | 0.0557 | 6.1343 | 3564 | 0.8869 | 0.5955 | 0.8869 | 0.9417 | | 0.0557 | 6.1377 | 3566 | 0.9248 | 0.5563 | 0.9248 | 0.9617 | | 0.0557 | 6.1411 | 3568 | 0.9359 | 0.5563 | 0.9359 | 0.9674 | | 0.0557 | 6.1446 | 3570 | 0.9244 | 0.5563 | 0.9244 | 0.9615 | | 0.0557 | 6.1480 | 3572 | 0.9243 | 0.5563 | 0.9243 | 0.9614 | | 0.0557 | 6.1515 | 3574 | 0.9173 | 0.55 | 0.9173 | 0.9578 | | 0.0557 | 6.1549 | 3576 | 0.9668 | 0.5326 | 0.9668 | 0.9833 | | 0.0557 | 6.1583 | 3578 | 1.0350 | 0.5135 | 1.0350 | 1.0173 | | 0.0557 | 6.1618 | 3580 | 1.0441 | 0.5135 | 1.0441 | 1.0218 | | 0.0557 | 6.1652 | 3582 | 0.9966 | 0.5424 | 0.9966 | 0.9983 | | 0.0557 | 6.1687 | 3584 | 0.9926 | 0.5424 | 0.9926 | 0.9963 | | 0.0557 | 6.1721 | 3586 | 0.9826 | 0.5424 | 0.9826 | 0.9912 | | 0.0557 | 6.1756 | 3588 | 0.9566 | 0.5326 | 0.9566 | 0.9781 | | 0.0557 | 6.1790 | 3590 | 0.9589 | 0.5326 | 0.9589 | 0.9792 | | 0.0557 | 6.1824 | 3592 | 0.9835 | 0.4903 | 0.9835 | 0.9917 | | 0.0557 | 6.1859 | 3594 | 1.0045 | 0.5135 | 1.0045 | 1.0023 | | 0.0557 | 6.1893 | 3596 | 0.9744 | 0.5041 | 0.9744 | 0.9871 | | 0.0557 | 6.1928 | 3598 | 0.9301 | 0.5885 | 0.9301 | 0.9644 | | 0.0557 | 6.1962 | 3600 | 0.8732 | 0.5681 | 0.8732 | 0.9345 | | 0.0557 | 6.1997 | 3602 | 0.8583 | 0.5681 | 0.8583 | 0.9264 | | 0.0557 | 6.2031 | 3604 | 0.8919 | 0.5885 | 0.8919 | 0.9444 | | 0.0557 | 6.2065 | 3606 | 0.9243 | 0.5885 | 0.9243 | 0.9614 | | 0.0557 | 6.2100 | 3608 | 0.9867 | 0.5169 | 0.9867 | 0.9933 | | 0.0557 | 6.2134 | 3610 | 1.0320 | 0.5104 | 1.0320 | 1.0159 | | 0.0557 | 6.2169 | 3612 | 1.0250 | 0.5104 | 1.0250 | 1.0124 | | 0.0557 | 6.2203 | 3614 | 0.9839 | 0.4903 | 0.9839 | 0.9919 | | 0.0557 | 6.2238 | 3616 | 0.9452 | 0.5708 | 0.9452 | 0.9722 | | 0.0557 | 6.2272 | 3618 | 0.9248 | 0.5885 | 0.9248 | 0.9616 | | 0.0557 | 6.2306 | 3620 | 0.8901 | 0.5921 | 0.8901 | 0.9434 | | 0.0557 | 6.2341 | 3622 | 0.8500 | 0.5833 | 0.8500 | 0.9220 | | 0.0557 | 6.2375 | 3624 | 0.8499 | 0.5833 | 0.8499 | 0.9219 | | 0.0557 | 6.2410 | 3626 | 0.8887 | 0.5681 | 0.8887 | 0.9427 | | 0.0557 | 6.2444 | 3628 | 0.9331 | 0.5921 | 0.9331 | 0.9660 | | 0.0557 | 6.2478 | 3630 | 0.9755 | 0.5188 | 0.9755 | 0.9877 | | 0.0557 | 6.2513 | 3632 | 1.0378 | 0.4765 | 1.0378 | 1.0187 | | 0.0557 | 6.2547 | 3634 | 1.0543 | 0.5 | 1.0543 | 1.0268 | | 0.0557 | 6.2582 | 3636 | 1.0220 | 0.5283 | 1.0220 | 1.0110 | | 0.0557 | 6.2616 | 3638 | 0.9809 | 0.5207 | 0.9809 | 0.9904 | | 0.0557 | 6.2651 | 3640 | 0.9409 | 0.55 | 0.9409 | 0.9700 | | 0.0557 | 6.2685 | 3642 | 0.8779 | 0.5681 | 0.8779 | 0.9370 | | 0.0557 | 6.2719 | 3644 | 0.8309 | 0.5833 | 0.8309 | 0.9115 | | 0.0557 | 6.2754 | 3646 | 0.8099 | 0.5833 | 0.8099 | 0.9000 | | 0.0557 | 6.2788 | 3648 | 0.8024 | 0.5708 | 0.8024 | 0.8958 | | 0.0557 | 6.2823 | 3650 | 0.7733 | 0.5708 | 0.7733 | 0.8794 | | 0.0557 | 6.2857 | 3652 | 0.7587 | 0.5708 | 0.7587 | 0.8710 | | 0.0557 | 6.2892 | 3654 | 0.7703 | 0.5789 | 0.7703 | 0.8777 | | 0.0557 | 6.2926 | 3656 | 0.8219 | 0.5909 | 0.8219 | 0.9066 | | 0.0557 | 6.2960 | 3658 | 0.8945 | 0.5874 | 0.8945 | 0.9458 | | 0.0557 | 6.2995 | 3660 | 0.9527 | 0.5512 | 0.9527 | 0.9761 | | 0.0557 | 6.3029 | 3662 | 0.9722 | 0.5382 | 0.9722 | 0.9860 | | 0.0557 | 6.3064 | 3664 | 0.9391 | 0.5673 | 0.9391 | 0.9691 | | 0.0557 | 6.3098 | 3666 | 0.9104 | 0.6029 | 0.9104 | 0.9541 | | 0.0557 | 6.3133 | 3668 | 0.8809 | 0.5798 | 0.8809 | 0.9386 | | 0.0557 | 6.3167 | 3670 | 0.8744 | 0.5798 | 0.8744 | 0.9351 | | 0.0557 | 6.3201 | 3672 | 0.9028 | 0.5650 | 0.9028 | 0.9502 | | 0.0557 | 6.3236 | 3674 | 0.9464 | 0.5227 | 0.9464 | 0.9728 | | 0.0557 | 6.3270 | 3676 | 1.0060 | 0.4903 | 1.0060 | 1.0030 | | 0.0557 | 6.3305 | 3678 | 1.0851 | 0.5104 | 1.0851 | 1.0417 | | 0.0557 | 6.3339 | 3680 | 1.1271 | 0.4860 | 1.1271 | 1.0616 | | 0.0557 | 6.3373 | 3682 | 1.1265 | 0.4860 | 1.1265 | 1.0614 | | 0.0557 | 6.3408 | 3684 | 1.1122 | 0.4860 | 1.1122 | 1.0546 | | 0.0557 | 6.3442 | 3686 | 1.0907 | 0.4881 | 1.0907 | 1.0444 | | 0.0557 | 6.3477 | 3688 | 1.0214 | 0.5013 | 1.0214 | 1.0106 | | 0.0557 | 6.3511 | 3690 | 0.9741 | 0.5382 | 0.9741 | 0.9870 | | 0.0557 | 6.3546 | 3692 | 0.9252 | 0.5354 | 0.9252 | 0.9619 | | 0.0557 | 6.3580 | 3694 | 0.9005 | 0.5378 | 0.9005 | 0.9489 | | 0.0557 | 6.3614 | 3696 | 0.8768 | 0.5765 | 0.8768 | 0.9364 | | 0.0557 | 6.3649 | 3698 | 0.8800 | 0.5765 | 0.8800 | 0.9381 | | 0.0557 | 6.3683 | 3700 | 0.8908 | 0.5733 | 0.8908 | 0.9438 | | 0.0557 | 6.3718 | 3702 | 0.9232 | 0.4931 | 0.9232 | 0.9608 | | 0.0557 | 6.3752 | 3704 | 1.0095 | 0.5382 | 1.0095 | 1.0047 | | 0.0557 | 6.3787 | 3706 | 1.0668 | 0.5233 | 1.0668 | 1.0328 | | 0.0557 | 6.3821 | 3708 | 1.0820 | 0.5104 | 1.0820 | 1.0402 | | 0.0557 | 6.3855 | 3710 | 1.0560 | 0.5104 | 1.0560 | 1.0276 | | 0.0557 | 6.3890 | 3712 | 1.0100 | 0.4784 | 1.0100 | 1.0050 | | 0.0557 | 6.3924 | 3714 | 0.9857 | 0.4784 | 0.9857 | 0.9928 | | 0.0557 | 6.3959 | 3716 | 0.9673 | 0.5733 | 0.9673 | 0.9835 | | 0.0557 | 6.3993 | 3718 | 0.9814 | 0.5161 | 0.9814 | 0.9907 | | 0.0557 | 6.4028 | 3720 | 1.0192 | 0.4784 | 1.0192 | 1.0096 | | 0.0557 | 6.4062 | 3722 | 1.0060 | 0.5161 | 1.0060 | 1.0030 | | 0.0557 | 6.4096 | 3724 | 0.9849 | 0.5161 | 0.9849 | 0.9924 | | 0.0557 | 6.4131 | 3726 | 0.9529 | 0.5733 | 0.9529 | 0.9762 | | 0.0557 | 6.4165 | 3728 | 0.9250 | 0.5733 | 0.9250 | 0.9618 | | 0.0557 | 6.4200 | 3730 | 0.9232 | 0.5733 | 0.9232 | 0.9608 | | 0.0557 | 6.4234 | 3732 | 0.9203 | 0.5733 | 0.9203 | 0.9593 | | 0.0557 | 6.4269 | 3734 | 0.9477 | 0.5733 | 0.9477 | 0.9735 | | 0.0557 | 6.4303 | 3736 | 0.9695 | 0.5161 | 0.9695 | 0.9846 | | 0.0557 | 6.4337 | 3738 | 0.9913 | 0.4784 | 0.9913 | 0.9956 | | 0.0557 | 6.4372 | 3740 | 1.0158 | 0.4784 | 1.0158 | 1.0079 | | 0.0557 | 6.4406 | 3742 | 1.0430 | 0.4649 | 1.0430 | 1.0213 | | 0.0557 | 6.4441 | 3744 | 1.0495 | 0.4649 | 1.0495 | 1.0244 | | 0.0557 | 6.4475 | 3746 | 1.0655 | 0.4881 | 1.0655 | 1.0322 | | 0.0557 | 6.4509 | 3748 | 1.0727 | 0.4881 | 1.0727 | 1.0357 | | 0.0557 | 6.4544 | 3750 | 1.0670 | 0.4881 | 1.0670 | 1.0329 | | 0.0557 | 6.4578 | 3752 | 1.0584 | 0.4881 | 1.0584 | 1.0288 | | 0.0557 | 6.4613 | 3754 | 1.0375 | 0.4881 | 1.0375 | 1.0186 | | 0.0557 | 6.4647 | 3756 | 1.0425 | 0.4881 | 1.0425 | 1.0210 | | 0.0557 | 6.4682 | 3758 | 1.0204 | 0.4881 | 1.0204 | 1.0101 | | 0.0557 | 6.4716 | 3760 | 1.0145 | 0.4649 | 1.0145 | 1.0072 | | 0.0557 | 6.4750 | 3762 | 0.9944 | 0.4408 | 0.9944 | 0.9972 | | 0.0557 | 6.4785 | 3764 | 0.9736 | 0.4408 | 0.9736 | 0.9867 | | 0.0557 | 6.4819 | 3766 | 0.9758 | 0.4408 | 0.9758 | 0.9878 | | 0.0557 | 6.4854 | 3768 | 0.9533 | 0.4955 | 0.9533 | 0.9764 | | 0.0557 | 6.4888 | 3770 | 0.9317 | 0.5378 | 0.9317 | 0.9652 | | 0.0557 | 6.4923 | 3772 | 0.9204 | 0.5378 | 0.9204 | 0.9594 | | 0.0557 | 6.4957 | 3774 | 0.9382 | 0.5378 | 0.9382 | 0.9686 | | 0.0557 | 6.4991 | 3776 | 0.9524 | 0.5619 | 0.9524 | 0.9759 | | 0.0557 | 6.5026 | 3778 | 0.9585 | 0.5179 | 0.9585 | 0.9790 | | 0.0557 | 6.5060 | 3780 | 0.9641 | 0.5179 | 0.9641 | 0.9819 | | 0.0557 | 6.5095 | 3782 | 0.9401 | 0.5179 | 0.9401 | 0.9696 | | 0.0557 | 6.5129 | 3784 | 0.9319 | 0.5619 | 0.9319 | 0.9653 | | 0.0557 | 6.5164 | 3786 | 0.9065 | 0.5619 | 0.9065 | 0.9521 | | 0.0557 | 6.5198 | 3788 | 0.9016 | 0.5619 | 0.9016 | 0.9495 | | 0.0557 | 6.5232 | 3790 | 0.8911 | 0.5921 | 0.8911 | 0.9440 | | 0.0557 | 6.5267 | 3792 | 0.8956 | 0.5619 | 0.8956 | 0.9464 | | 0.0557 | 6.5301 | 3794 | 0.8741 | 0.5921 | 0.8741 | 0.9349 | | 0.0557 | 6.5336 | 3796 | 0.8450 | 0.5681 | 0.8450 | 0.9192 | | 0.0557 | 6.5370 | 3798 | 0.8514 | 0.5681 | 0.8514 | 0.9227 | | 0.0557 | 6.5404 | 3800 | 0.8904 | 0.5702 | 0.8904 | 0.9436 | | 0.0557 | 6.5439 | 3802 | 0.9553 | 0.5382 | 0.9553 | 0.9774 | | 0.0557 | 6.5473 | 3804 | 1.0309 | 0.5013 | 1.0309 | 1.0153 | | 0.0557 | 6.5508 | 3806 | 1.0819 | 0.4881 | 1.0819 | 1.0402 | | 0.0557 | 6.5542 | 3808 | 1.0833 | 0.4881 | 1.0833 | 1.0408 | | 0.0557 | 6.5577 | 3810 | 1.0734 | 0.4881 | 1.0734 | 1.0360 | | 0.0557 | 6.5611 | 3812 | 1.0638 | 0.4625 | 1.0638 | 1.0314 | | 0.0557 | 6.5645 | 3814 | 1.0508 | 0.4625 | 1.0508 | 1.0251 | | 0.0557 | 6.5680 | 3816 | 1.0262 | 0.4765 | 1.0262 | 1.0130 | | 0.0557 | 6.5714 | 3818 | 0.9863 | 0.4518 | 0.9863 | 0.9931 | | 0.0557 | 6.5749 | 3820 | 0.9624 | 0.4408 | 0.9624 | 0.9810 | | 0.0557 | 6.5783 | 3822 | 0.9523 | 0.4813 | 0.9523 | 0.9759 | | 0.0557 | 6.5818 | 3824 | 0.9711 | 0.4784 | 0.9711 | 0.9854 | | 0.0557 | 6.5852 | 3826 | 0.9953 | 0.5013 | 0.9953 | 0.9976 | | 0.0557 | 6.5886 | 3828 | 0.9830 | 0.5382 | 0.9830 | 0.9914 | | 0.0557 | 6.5921 | 3830 | 0.9926 | 0.5382 | 0.9926 | 0.9963 | | 0.0557 | 6.5955 | 3832 | 1.0089 | 0.5013 | 1.0089 | 1.0044 | | 0.0557 | 6.5990 | 3834 | 0.9763 | 0.5382 | 0.9763 | 0.9881 | | 0.0557 | 6.6024 | 3836 | 0.9176 | 0.4944 | 0.9176 | 0.9579 | | 0.0557 | 6.6059 | 3838 | 0.8791 | 0.5946 | 0.8791 | 0.9376 | | 0.0557 | 6.6093 | 3840 | 0.8859 | 0.5100 | 0.8859 | 0.9412 | | 0.0557 | 6.6127 | 3842 | 0.9145 | 0.4823 | 0.9145 | 0.9563 | | 0.0557 | 6.6162 | 3844 | 0.9531 | 0.4823 | 0.9531 | 0.9763 | | 0.0557 | 6.6196 | 3846 | 1.0141 | 0.4903 | 1.0141 | 1.0070 | | 0.0557 | 6.6231 | 3848 | 1.0354 | 0.4649 | 1.0354 | 1.0176 | | 0.0557 | 6.6265 | 3850 | 1.0056 | 0.4915 | 1.0056 | 1.0028 | | 0.0557 | 6.6299 | 3852 | 0.9371 | 0.5100 | 0.9371 | 0.9680 | | 0.0557 | 6.6334 | 3854 | 0.8644 | 0.5946 | 0.8644 | 0.9297 | | 0.0557 | 6.6368 | 3856 | 0.8038 | 0.6093 | 0.8038 | 0.8965 | | 0.0557 | 6.6403 | 3858 | 0.7866 | 0.6093 | 0.7866 | 0.8869 | | 0.0557 | 6.6437 | 3860 | 0.7907 | 0.6093 | 0.7907 | 0.8892 | | 0.0557 | 6.6472 | 3862 | 0.8099 | 0.6093 | 0.8099 | 0.9000 | | 0.0557 | 6.6506 | 3864 | 0.8582 | 0.5946 | 0.8582 | 0.9264 | | 0.0557 | 6.6540 | 3866 | 0.9407 | 0.4698 | 0.9407 | 0.9699 | | 0.0557 | 6.6575 | 3868 | 1.0351 | 0.5013 | 1.0351 | 1.0174 | | 0.0557 | 6.6609 | 3870 | 1.1166 | 0.4532 | 1.1166 | 1.0567 | | 0.0557 | 6.6644 | 3872 | 1.1760 | 0.4627 | 1.1760 | 1.0844 | | 0.0557 | 6.6678 | 3874 | 1.1666 | 0.4627 | 1.1666 | 1.0801 | | 0.0557 | 6.6713 | 3876 | 1.1141 | 0.4532 | 1.1141 | 1.0555 | | 0.0557 | 6.6747 | 3878 | 1.0180 | 0.5027 | 1.0180 | 1.0090 | | 0.0557 | 6.6781 | 3880 | 0.9050 | 0.4823 | 0.9050 | 0.9513 | | 0.0557 | 6.6816 | 3882 | 0.8286 | 0.6093 | 0.8286 | 0.9103 | | 0.0557 | 6.6850 | 3884 | 0.7997 | 0.6093 | 0.7997 | 0.8942 | | 0.0557 | 6.6885 | 3886 | 0.7985 | 0.6093 | 0.7985 | 0.8936 | | 0.0557 | 6.6919 | 3888 | 0.8192 | 0.6093 | 0.8192 | 0.9051 | | 0.0557 | 6.6954 | 3890 | 0.8532 | 0.6093 | 0.8532 | 0.9237 | | 0.0557 | 6.6988 | 3892 | 0.8928 | 0.5474 | 0.8928 | 0.9449 | | 0.0557 | 6.7022 | 3894 | 0.9202 | 0.4549 | 0.9202 | 0.9593 | | 0.0557 | 6.7057 | 3896 | 0.9663 | 0.5013 | 0.9663 | 0.9830 | | 0.0557 | 6.7091 | 3898 | 0.9846 | 0.5013 | 0.9846 | 0.9923 | | 0.0557 | 6.7126 | 3900 | 0.9678 | 0.5013 | 0.9678 | 0.9837 | | 0.0557 | 6.7160 | 3902 | 0.9513 | 0.5013 | 0.9513 | 0.9754 | | 0.0557 | 6.7194 | 3904 | 0.9482 | 0.5257 | 0.9482 | 0.9738 | | 0.0557 | 6.7229 | 3906 | 0.9324 | 0.5257 | 0.9324 | 0.9656 | | 0.0557 | 6.7263 | 3908 | 0.9015 | 0.5235 | 0.9015 | 0.9495 | | 0.0557 | 6.7298 | 3910 | 0.9155 | 0.4955 | 0.9155 | 0.9568 | | 0.0557 | 6.7332 | 3912 | 0.9432 | 0.4408 | 0.9432 | 0.9712 | | 0.0557 | 6.7367 | 3914 | 0.9656 | 0.4903 | 0.9656 | 0.9826 | | 0.0557 | 6.7401 | 3916 | 1.0030 | 0.4903 | 1.0030 | 1.0015 | | 0.0557 | 6.7435 | 3918 | 1.0040 | 0.5013 | 1.0040 | 1.0020 | | 0.0557 | 6.7470 | 3920 | 0.9744 | 0.5013 | 0.9744 | 0.9871 | | 0.0557 | 6.7504 | 3922 | 0.9660 | 0.4784 | 0.9660 | 0.9829 | | 0.0557 | 6.7539 | 3924 | 0.9354 | 0.5056 | 0.9354 | 0.9671 | | 0.0557 | 6.7573 | 3926 | 0.9315 | 0.4941 | 0.9315 | 0.9652 | | 0.0557 | 6.7608 | 3928 | 0.9697 | 0.4784 | 0.9697 | 0.9847 | | 0.0557 | 6.7642 | 3930 | 1.0179 | 0.5013 | 1.0179 | 1.0089 | | 0.0557 | 6.7676 | 3932 | 1.0316 | 0.5013 | 1.0316 | 1.0157 | | 0.0557 | 6.7711 | 3934 | 1.0051 | 0.5013 | 1.0051 | 1.0026 | | 0.0557 | 6.7745 | 3936 | 0.9810 | 0.4903 | 0.9810 | 0.9905 | | 0.0557 | 6.7780 | 3938 | 0.9428 | 0.5473 | 0.9428 | 0.9710 | | 0.0557 | 6.7814 | 3940 | 0.9191 | 0.5227 | 0.9191 | 0.9587 | | 0.0557 | 6.7849 | 3942 | 0.9169 | 0.5227 | 0.9169 | 0.9575 | | 0.0557 | 6.7883 | 3944 | 0.9151 | 0.5588 | 0.9151 | 0.9566 | | 0.0557 | 6.7917 | 3946 | 0.9330 | 0.5257 | 0.9330 | 0.9659 | | 0.0557 | 6.7952 | 3948 | 0.9539 | 0.5257 | 0.9539 | 0.9767 | | 0.0557 | 6.7986 | 3950 | 0.9421 | 0.5257 | 0.9421 | 0.9706 | | 0.0557 | 6.8021 | 3952 | 0.9214 | 0.5257 | 0.9214 | 0.9599 | | 0.0557 | 6.8055 | 3954 | 0.8948 | 0.5449 | 0.8948 | 0.9459 | | 0.0557 | 6.8090 | 3956 | 0.9014 | 0.5449 | 0.9014 | 0.9494 | | 0.0557 | 6.8124 | 3958 | 0.9364 | 0.4931 | 0.9364 | 0.9677 | | 0.0557 | 6.8158 | 3960 | 1.0000 | 0.4903 | 1.0000 | 1.0000 | | 0.0557 | 6.8193 | 3962 | 1.0954 | 0.4860 | 1.0954 | 1.0466 | | 0.0557 | 6.8227 | 3964 | 1.1805 | 0.4860 | 1.1805 | 1.0865 | | 0.0557 | 6.8262 | 3966 | 1.2246 | 0.4627 | 1.2246 | 1.1066 | | 0.0557 | 6.8296 | 3968 | 1.2038 | 0.4860 | 1.2038 | 1.0972 | | 0.0557 | 6.8330 | 3970 | 1.1439 | 0.4748 | 1.1439 | 1.0695 | | 0.0557 | 6.8365 | 3972 | 1.0827 | 0.4765 | 1.0827 | 1.0405 | | 0.0557 | 6.8399 | 3974 | 1.0005 | 0.4903 | 1.0005 | 1.0003 | | 0.0557 | 6.8434 | 3976 | 0.9085 | 0.5207 | 0.9085 | 0.9531 | | 0.0557 | 6.8468 | 3978 | 0.8518 | 0.5946 | 0.8518 | 0.9229 | | 0.0557 | 6.8503 | 3980 | 0.8270 | 0.5946 | 0.8270 | 0.9094 | | 0.0557 | 6.8537 | 3982 | 0.8362 | 0.5946 | 0.8362 | 0.9145 | | 0.0557 | 6.8571 | 3984 | 0.8836 | 0.5874 | 0.8836 | 0.9400 | | 0.0557 | 6.8606 | 3986 | 0.9462 | 0.5276 | 0.9462 | 0.9727 | | 0.0557 | 6.8640 | 3988 | 1.0287 | 0.5013 | 1.0287 | 1.0142 | | 0.0557 | 6.8675 | 3990 | 1.0636 | 0.5013 | 1.0636 | 1.0313 | | 0.0557 | 6.8709 | 3992 | 1.0654 | 0.4881 | 1.0654 | 1.0322 | | 0.0557 | 6.8744 | 3994 | 1.0513 | 0.4881 | 1.0513 | 1.0253 | | 0.0557 | 6.8778 | 3996 | 1.0321 | 0.4915 | 1.0321 | 1.0159 | | 0.0557 | 6.8812 | 3998 | 1.0174 | 0.4915 | 1.0174 | 1.0087 | | 0.0478 | 6.8847 | 4000 | 0.9877 | 0.5207 | 0.9877 | 0.9938 | | 0.0478 | 6.8881 | 4002 | 0.9677 | 0.5207 | 0.9677 | 0.9837 | | 0.0478 | 6.8916 | 4004 | 0.9592 | 0.5207 | 0.9592 | 0.9794 | | 0.0478 | 6.8950 | 4006 | 0.9288 | 0.4955 | 0.9288 | 0.9638 | | 0.0478 | 6.8985 | 4008 | 0.8993 | 0.5248 | 0.8993 | 0.9483 | | 0.0478 | 6.9019 | 4010 | 0.8971 | 0.5248 | 0.8971 | 0.9471 | | 0.0478 | 6.9053 | 4012 | 0.8829 | 0.5248 | 0.8829 | 0.9396 | | 0.0478 | 6.9088 | 4014 | 0.8896 | 0.5248 | 0.8896 | 0.9432 | | 0.0478 | 6.9122 | 4016 | 0.9182 | 0.5248 | 0.9182 | 0.9582 | | 0.0478 | 6.9157 | 4018 | 0.9835 | 0.5289 | 0.9835 | 0.9917 | | 0.0478 | 6.9191 | 4020 | 1.0516 | 0.5013 | 1.0516 | 1.0255 | | 0.0478 | 6.9225 | 4022 | 1.0763 | 0.5013 | 1.0763 | 1.0375 | | 0.0478 | 6.9260 | 4024 | 1.0692 | 0.5013 | 1.0692 | 1.0340 | | 0.0478 | 6.9294 | 4026 | 1.0131 | 0.5013 | 1.0131 | 1.0065 | | 0.0478 | 6.9329 | 4028 | 0.9762 | 0.4803 | 0.9762 | 0.9880 | | 0.0478 | 6.9363 | 4030 | 0.9857 | 0.4803 | 0.9857 | 0.9928 | | 0.0478 | 6.9398 | 4032 | 0.9800 | 0.4803 | 0.9800 | 0.9899 | | 0.0478 | 6.9432 | 4034 | 0.9718 | 0.4803 | 0.9718 | 0.9858 | | 0.0478 | 6.9466 | 4036 | 0.9533 | 0.5331 | 0.9533 | 0.9764 | | 0.0478 | 6.9501 | 4038 | 0.9576 | 0.5331 | 0.9576 | 0.9786 | | 0.0478 | 6.9535 | 4040 | 0.9993 | 0.4545 | 0.9993 | 0.9997 | | 0.0478 | 6.9570 | 4042 | 1.0451 | 0.4784 | 1.0451 | 1.0223 | | 0.0478 | 6.9604 | 4044 | 1.0398 | 0.4784 | 1.0398 | 1.0197 | | 0.0478 | 6.9639 | 4046 | 1.0324 | 0.4784 | 1.0324 | 1.0161 | | 0.0478 | 6.9673 | 4048 | 1.0066 | 0.4545 | 1.0066 | 1.0033 | | 0.0478 | 6.9707 | 4050 | 0.9628 | 0.5248 | 0.9628 | 0.9812 | | 0.0478 | 6.9742 | 4052 | 0.9093 | 0.5248 | 0.9093 | 0.9536 | | 0.0478 | 6.9776 | 4054 | 0.8904 | 0.5248 | 0.8904 | 0.9436 | | 0.0478 | 6.9811 | 4056 | 0.8940 | 0.5765 | 0.8940 | 0.9455 | | 0.0478 | 6.9845 | 4058 | 0.9212 | 0.5765 | 0.9212 | 0.9598 | | 0.0478 | 6.9880 | 4060 | 0.9303 | 0.5765 | 0.9303 | 0.9645 | | 0.0478 | 6.9914 | 4062 | 0.9355 | 0.5474 | 0.9355 | 0.9672 | | 0.0478 | 6.9948 | 4064 | 0.9643 | 0.5072 | 0.9643 | 0.9820 | | 0.0478 | 6.9983 | 4066 | 0.9662 | 0.5072 | 0.9662 | 0.9830 | | 0.0478 | 7.0017 | 4068 | 0.9597 | 0.5072 | 0.9597 | 0.9797 | | 0.0478 | 7.0052 | 4070 | 0.9232 | 0.5072 | 0.9232 | 0.9608 | | 0.0478 | 7.0086 | 4072 | 0.8916 | 0.5681 | 0.8916 | 0.9442 | | 0.0478 | 7.0120 | 4074 | 0.8924 | 0.5681 | 0.8924 | 0.9447 | | 0.0478 | 7.0155 | 4076 | 0.9228 | 0.4955 | 0.9228 | 0.9606 | | 0.0478 | 7.0189 | 4078 | 0.9505 | 0.5072 | 0.9505 | 0.9749 | | 0.0478 | 7.0224 | 4080 | 0.9545 | 0.5072 | 0.9545 | 0.9770 | | 0.0478 | 7.0258 | 4082 | 0.9571 | 0.5072 | 0.9571 | 0.9783 | | 0.0478 | 7.0293 | 4084 | 1.0011 | 0.4545 | 1.0011 | 1.0006 | | 0.0478 | 7.0327 | 4086 | 1.0421 | 0.5013 | 1.0421 | 1.0208 | | 0.0478 | 7.0361 | 4088 | 1.0904 | 0.4881 | 1.0904 | 1.0442 | | 0.0478 | 7.0396 | 4090 | 1.0863 | 0.4881 | 1.0863 | 1.0423 | | 0.0478 | 7.0430 | 4092 | 1.0395 | 0.5013 | 1.0395 | 1.0196 | | 0.0478 | 7.0465 | 4094 | 0.9686 | 0.4941 | 0.9686 | 0.9842 | | 0.0478 | 7.0499 | 4096 | 0.9205 | 0.5248 | 0.9205 | 0.9595 | | 0.0478 | 7.0534 | 4098 | 0.8867 | 0.5527 | 0.8867 | 0.9417 | | 0.0478 | 7.0568 | 4100 | 0.8796 | 0.5946 | 0.8796 | 0.9379 | | 0.0478 | 7.0602 | 4102 | 0.8921 | 0.5527 | 0.8921 | 0.9445 | | 0.0478 | 7.0637 | 4104 | 0.9297 | 0.5227 | 0.9297 | 0.9642 | | 0.0478 | 7.0671 | 4106 | 0.9977 | 0.4784 | 0.9977 | 0.9989 | | 0.0478 | 7.0706 | 4108 | 1.0693 | 0.4881 | 1.0693 | 1.0340 | | 0.0478 | 7.0740 | 4110 | 1.1159 | 0.4881 | 1.1159 | 1.0563 | | 0.0478 | 7.0775 | 4112 | 1.1308 | 0.4881 | 1.1308 | 1.0634 | | 0.0478 | 7.0809 | 4114 | 1.1011 | 0.4881 | 1.1011 | 1.0493 | | 0.0478 | 7.0843 | 4116 | 1.0541 | 0.5013 | 1.0541 | 1.0267 | | 0.0478 | 7.0878 | 4118 | 0.9950 | 0.4784 | 0.9950 | 0.9975 | | 0.0478 | 7.0912 | 4120 | 0.9341 | 0.5650 | 0.9341 | 0.9665 | | 0.0478 | 7.0947 | 4122 | 0.8997 | 0.5650 | 0.8997 | 0.9485 | | 0.0478 | 7.0981 | 4124 | 0.8892 | 0.5650 | 0.8892 | 0.9430 | | 0.0478 | 7.1015 | 4126 | 0.8979 | 0.5650 | 0.8979 | 0.9476 | | 0.0478 | 7.1050 | 4128 | 0.9154 | 0.5650 | 0.9154 | 0.9568 | | 0.0478 | 7.1084 | 4130 | 0.9018 | 0.5650 | 0.9018 | 0.9496 | | 0.0478 | 7.1119 | 4132 | 0.8784 | 0.5650 | 0.8784 | 0.9372 | | 0.0478 | 7.1153 | 4134 | 0.8829 | 0.5733 | 0.8829 | 0.9396 | | 0.0478 | 7.1188 | 4136 | 0.8905 | 0.5733 | 0.8905 | 0.9437 | | 0.0478 | 7.1222 | 4138 | 0.9114 | 0.5197 | 0.9114 | 0.9547 | | 0.0478 | 7.1256 | 4140 | 0.9286 | 0.5197 | 0.9286 | 0.9636 | | 0.0478 | 7.1291 | 4142 | 0.9547 | 0.5426 | 0.9547 | 0.9771 | | 0.0478 | 7.1325 | 4144 | 0.9883 | 0.5161 | 0.9883 | 0.9941 | | 0.0478 | 7.1360 | 4146 | 1.0055 | 0.4784 | 1.0055 | 1.0027 | | 0.0478 | 7.1394 | 4148 | 1.0396 | 0.5013 | 1.0396 | 1.0196 | | 0.0478 | 7.1429 | 4150 | 1.0507 | 0.5013 | 1.0507 | 1.0250 | | 0.0478 | 7.1463 | 4152 | 1.0667 | 0.5341 | 1.0667 | 1.0328 | | 0.0478 | 7.1497 | 4154 | 1.0402 | 0.5013 | 1.0402 | 1.0199 | | 0.0478 | 7.1532 | 4156 | 0.9780 | 0.4784 | 0.9780 | 0.9890 | | 0.0478 | 7.1566 | 4158 | 0.9315 | 0.5197 | 0.9315 | 0.9651 | | 0.0478 | 7.1601 | 4160 | 0.8740 | 0.5798 | 0.8740 | 0.9349 | | 0.0478 | 7.1635 | 4162 | 0.8215 | 0.6053 | 0.8215 | 0.9063 | | 0.0478 | 7.1670 | 4164 | 0.8042 | 0.6053 | 0.8042 | 0.8968 | | 0.0478 | 7.1704 | 4166 | 0.8099 | 0.6093 | 0.8099 | 0.8999 | | 0.0478 | 7.1738 | 4168 | 0.8395 | 0.5798 | 0.8395 | 0.9162 | | 0.0478 | 7.1773 | 4170 | 0.8888 | 0.5650 | 0.8888 | 0.9428 | | 0.0478 | 7.1807 | 4172 | 0.9230 | 0.5227 | 0.9230 | 0.9607 | | 0.0478 | 7.1842 | 4174 | 0.9669 | 0.5188 | 0.9669 | 0.9833 | | 0.0478 | 7.1876 | 4176 | 1.0055 | 0.4903 | 1.0055 | 1.0028 | | 0.0478 | 7.1910 | 4178 | 1.0078 | 0.4903 | 1.0078 | 1.0039 | | 0.0478 | 7.1945 | 4180 | 0.9906 | 0.4661 | 0.9906 | 0.9953 | | 0.0478 | 7.1979 | 4182 | 0.9593 | 0.5188 | 0.9593 | 0.9794 | | 0.0478 | 7.2014 | 4184 | 0.9526 | 0.4941 | 0.9526 | 0.9760 | | 0.0478 | 7.2048 | 4186 | 0.9584 | 0.4661 | 0.9584 | 0.9790 | | 0.0478 | 7.2083 | 4188 | 0.9669 | 0.4661 | 0.9669 | 0.9833 | | 0.0478 | 7.2117 | 4190 | 0.9477 | 0.4813 | 0.9477 | 0.9735 | | 0.0478 | 7.2151 | 4192 | 0.9064 | 0.5650 | 0.9064 | 0.9520 | | 0.0478 | 7.2186 | 4194 | 0.8648 | 0.5798 | 0.8648 | 0.9300 | | 0.0478 | 7.2220 | 4196 | 0.8505 | 0.5833 | 0.8505 | 0.9223 | | 0.0478 | 7.2255 | 4198 | 0.8507 | 0.5833 | 0.8507 | 0.9223 | | 0.0478 | 7.2289 | 4200 | 0.8538 | 0.5833 | 0.8538 | 0.9240 | | 0.0478 | 7.2324 | 4202 | 0.8726 | 0.5650 | 0.8726 | 0.9341 | | 0.0478 | 7.2358 | 4204 | 0.9060 | 0.5650 | 0.9060 | 0.9518 | | 0.0478 | 7.2392 | 4206 | 0.9582 | 0.4813 | 0.9582 | 0.9789 | | 0.0478 | 7.2427 | 4208 | 1.0014 | 0.4903 | 1.0014 | 1.0007 | | 0.0478 | 7.2461 | 4210 | 1.0053 | 0.4903 | 1.0053 | 1.0026 | | 0.0478 | 7.2496 | 4212 | 0.9985 | 0.4903 | 0.9985 | 0.9993 | | 0.0478 | 7.2530 | 4214 | 0.9798 | 0.4408 | 0.9798 | 0.9899 | | 0.0478 | 7.2565 | 4216 | 0.9573 | 0.4408 | 0.9573 | 0.9784 | | 0.0478 | 7.2599 | 4218 | 0.9524 | 0.4408 | 0.9524 | 0.9759 | | 0.0478 | 7.2633 | 4220 | 0.9598 | 0.4408 | 0.9598 | 0.9797 | | 0.0478 | 7.2668 | 4222 | 0.9569 | 0.4408 | 0.9569 | 0.9782 | | 0.0478 | 7.2702 | 4224 | 0.9658 | 0.4408 | 0.9658 | 0.9827 | | 0.0478 | 7.2737 | 4226 | 0.9596 | 0.4813 | 0.9596 | 0.9796 | | 0.0478 | 7.2771 | 4228 | 0.9468 | 0.4813 | 0.9468 | 0.9730 | | 0.0478 | 7.2806 | 4230 | 0.9708 | 0.4813 | 0.9708 | 0.9853 | | 0.0478 | 7.2840 | 4232 | 1.0143 | 0.5013 | 1.0143 | 1.0071 | | 0.0478 | 7.2874 | 4234 | 1.0476 | 0.5013 | 1.0476 | 1.0235 | | 0.0478 | 7.2909 | 4236 | 1.0525 | 0.5013 | 1.0525 | 1.0259 | | 0.0478 | 7.2943 | 4238 | 1.0322 | 0.4903 | 1.0322 | 1.0160 | | 0.0478 | 7.2978 | 4240 | 1.0101 | 0.4408 | 1.0101 | 1.0051 | | 0.0478 | 7.3012 | 4242 | 1.0214 | 0.4903 | 1.0214 | 1.0106 | | 0.0478 | 7.3046 | 4244 | 1.0169 | 0.4661 | 1.0169 | 1.0084 | | 0.0478 | 7.3081 | 4246 | 0.9805 | 0.4408 | 0.9805 | 0.9902 | | 0.0478 | 7.3115 | 4248 | 0.9373 | 0.4813 | 0.9373 | 0.9681 | | 0.0478 | 7.3150 | 4250 | 0.9327 | 0.4813 | 0.9327 | 0.9658 | | 0.0478 | 7.3184 | 4252 | 0.9285 | 0.4813 | 0.9285 | 0.9636 | | 0.0478 | 7.3219 | 4254 | 0.9441 | 0.5056 | 0.9441 | 0.9716 | | 0.0478 | 7.3253 | 4256 | 0.9638 | 0.4661 | 0.9638 | 0.9817 | | 0.0478 | 7.3287 | 4258 | 0.9648 | 0.4661 | 0.9648 | 0.9823 | | 0.0478 | 7.3322 | 4260 | 0.9529 | 0.4661 | 0.9529 | 0.9761 | | 0.0478 | 7.3356 | 4262 | 0.9304 | 0.4661 | 0.9304 | 0.9646 | | 0.0478 | 7.3391 | 4264 | 0.8965 | 0.5650 | 0.8965 | 0.9468 | | 0.0478 | 7.3425 | 4266 | 0.8626 | 0.5833 | 0.8626 | 0.9288 | | 0.0478 | 7.3460 | 4268 | 0.8645 | 0.5833 | 0.8645 | 0.9298 | | 0.0478 | 7.3494 | 4270 | 0.8965 | 0.5650 | 0.8965 | 0.9469 | | 0.0478 | 7.3528 | 4272 | 0.9470 | 0.5056 | 0.9470 | 0.9732 | | 0.0478 | 7.3563 | 4274 | 0.9687 | 0.4661 | 0.9687 | 0.9842 | | 0.0478 | 7.3597 | 4276 | 0.9536 | 0.5056 | 0.9536 | 0.9765 | | 0.0478 | 7.3632 | 4278 | 0.9369 | 0.4813 | 0.9369 | 0.9679 | | 0.0478 | 7.3666 | 4280 | 0.9350 | 0.4813 | 0.9350 | 0.9669 | | 0.0478 | 7.3701 | 4282 | 0.9301 | 0.5650 | 0.9301 | 0.9644 | | 0.0478 | 7.3735 | 4284 | 0.9401 | 0.5227 | 0.9401 | 0.9696 | | 0.0478 | 7.3769 | 4286 | 0.9418 | 0.5227 | 0.9418 | 0.9705 | | 0.0478 | 7.3804 | 4288 | 0.9585 | 0.4408 | 0.9585 | 0.9790 | | 0.0478 | 7.3838 | 4290 | 0.9770 | 0.4408 | 0.9770 | 0.9884 | | 0.0478 | 7.3873 | 4292 | 0.9914 | 0.4661 | 0.9914 | 0.9957 | | 0.0478 | 7.3907 | 4294 | 0.9719 | 0.4408 | 0.9719 | 0.9859 | | 0.0478 | 7.3941 | 4296 | 0.9283 | 0.5650 | 0.9283 | 0.9635 | | 0.0478 | 7.3976 | 4298 | 0.8847 | 0.5681 | 0.8847 | 0.9406 | | 0.0478 | 7.4010 | 4300 | 0.8545 | 0.5833 | 0.8545 | 0.9244 | | 0.0478 | 7.4045 | 4302 | 0.8202 | 0.5833 | 0.8202 | 0.9056 | | 0.0478 | 7.4079 | 4304 | 0.8145 | 0.5833 | 0.8145 | 0.9025 | | 0.0478 | 7.4114 | 4306 | 0.8263 | 0.5833 | 0.8263 | 0.9090 | | 0.0478 | 7.4148 | 4308 | 0.8558 | 0.5833 | 0.8558 | 0.9251 | | 0.0478 | 7.4182 | 4310 | 0.9116 | 0.5650 | 0.9116 | 0.9548 | | 0.0478 | 7.4217 | 4312 | 0.9904 | 0.4903 | 0.9904 | 0.9952 | | 0.0478 | 7.4251 | 4314 | 1.0498 | 0.5013 | 1.0498 | 1.0246 | | 0.0478 | 7.4286 | 4316 | 1.0775 | 0.5013 | 1.0775 | 1.0380 | | 0.0478 | 7.4320 | 4318 | 1.0640 | 0.4903 | 1.0640 | 1.0315 | | 0.0478 | 7.4355 | 4320 | 1.0581 | 0.4903 | 1.0581 | 1.0287 | | 0.0478 | 7.4389 | 4322 | 1.0542 | 0.4903 | 1.0542 | 1.0267 | | 0.0478 | 7.4423 | 4324 | 1.0317 | 0.4903 | 1.0317 | 1.0157 | | 0.0478 | 7.4458 | 4326 | 0.9956 | 0.4903 | 0.9956 | 0.9978 | | 0.0478 | 7.4492 | 4328 | 0.9479 | 0.5227 | 0.9479 | 0.9736 | | 0.0478 | 7.4527 | 4330 | 0.9079 | 0.5650 | 0.9079 | 0.9528 | | 0.0478 | 7.4561 | 4332 | 0.8813 | 0.5650 | 0.8813 | 0.9388 | | 0.0478 | 7.4596 | 4334 | 0.8590 | 0.5681 | 0.8590 | 0.9268 | | 0.0478 | 7.4630 | 4336 | 0.8577 | 0.5681 | 0.8577 | 0.9261 | | 0.0478 | 7.4664 | 4338 | 0.8797 | 0.5650 | 0.8797 | 0.9379 | | 0.0478 | 7.4699 | 4340 | 0.9272 | 0.5188 | 0.9272 | 0.9629 | | 0.0478 | 7.4733 | 4342 | 0.9532 | 0.5188 | 0.9532 | 0.9763 | | 0.0478 | 7.4768 | 4344 | 0.9525 | 0.5424 | 0.9525 | 0.9760 | | 0.0478 | 7.4802 | 4346 | 0.9237 | 0.5188 | 0.9237 | 0.9611 | | 0.0478 | 7.4836 | 4348 | 0.8740 | 0.5591 | 0.8740 | 0.9349 | | 0.0478 | 7.4871 | 4350 | 0.8325 | 0.5833 | 0.8325 | 0.9124 | | 0.0478 | 7.4905 | 4352 | 0.8234 | 0.5833 | 0.8234 | 0.9074 | | 0.0478 | 7.4940 | 4354 | 0.8069 | 0.5833 | 0.8069 | 0.8983 | | 0.0478 | 7.4974 | 4356 | 0.8080 | 0.5833 | 0.8080 | 0.8989 | | 0.0478 | 7.5009 | 4358 | 0.8302 | 0.5833 | 0.8302 | 0.9111 | | 0.0478 | 7.5043 | 4360 | 0.8612 | 0.5619 | 0.8612 | 0.9280 | | 0.0478 | 7.5077 | 4362 | 0.8667 | 0.5619 | 0.8667 | 0.9310 | | 0.0478 | 7.5112 | 4364 | 0.8650 | 0.5765 | 0.8650 | 0.9300 | | 0.0478 | 7.5146 | 4366 | 0.8701 | 0.5733 | 0.8701 | 0.9328 | | 0.0478 | 7.5181 | 4368 | 0.8520 | 0.5833 | 0.8520 | 0.9231 | | 0.0478 | 7.5215 | 4370 | 0.8316 | 0.5833 | 0.8316 | 0.9119 | | 0.0478 | 7.5250 | 4372 | 0.8249 | 0.5833 | 0.8249 | 0.9082 | | 0.0478 | 7.5284 | 4374 | 0.8428 | 0.5833 | 0.8428 | 0.9180 | | 0.0478 | 7.5318 | 4376 | 0.8685 | 0.55 | 0.8685 | 0.9319 | | 0.0478 | 7.5353 | 4378 | 0.8759 | 0.55 | 0.8759 | 0.9359 | | 0.0478 | 7.5387 | 4380 | 0.8671 | 0.5833 | 0.8671 | 0.9312 | | 0.0478 | 7.5422 | 4382 | 0.8537 | 0.5833 | 0.8537 | 0.9240 | | 0.0478 | 7.5456 | 4384 | 0.8492 | 0.5833 | 0.8492 | 0.9215 | | 0.0478 | 7.5491 | 4386 | 0.8441 | 0.5833 | 0.8441 | 0.9188 | | 0.0478 | 7.5525 | 4388 | 0.8377 | 0.5833 | 0.8377 | 0.9152 | | 0.0478 | 7.5559 | 4390 | 0.8406 | 0.5833 | 0.8406 | 0.9168 | | 0.0478 | 7.5594 | 4392 | 0.8594 | 0.5833 | 0.8594 | 0.9271 | | 0.0478 | 7.5628 | 4394 | 0.8886 | 0.5227 | 0.8886 | 0.9426 | | 0.0478 | 7.5663 | 4396 | 0.9316 | 0.4408 | 0.9316 | 0.9652 | | 0.0478 | 7.5697 | 4398 | 0.9675 | 0.5013 | 0.9675 | 0.9836 | | 0.0478 | 7.5731 | 4400 | 0.9967 | 0.5013 | 0.9967 | 0.9984 | | 0.0478 | 7.5766 | 4402 | 0.9923 | 0.5013 | 0.9923 | 0.9961 | | 0.0478 | 7.5800 | 4404 | 0.9626 | 0.5013 | 0.9626 | 0.9811 | | 0.0478 | 7.5835 | 4406 | 0.9185 | 0.4408 | 0.9185 | 0.9584 | | 0.0478 | 7.5869 | 4408 | 0.8974 | 0.5227 | 0.8974 | 0.9473 | | 0.0478 | 7.5904 | 4410 | 0.8799 | 0.5378 | 0.8799 | 0.9380 | | 0.0478 | 7.5938 | 4412 | 0.8765 | 0.5833 | 0.8765 | 0.9362 | | 0.0478 | 7.5972 | 4414 | 0.8855 | 0.5833 | 0.8855 | 0.9410 | | 0.0478 | 7.6007 | 4416 | 0.8876 | 0.5527 | 0.8876 | 0.9421 | | 0.0478 | 7.6041 | 4418 | 0.9017 | 0.4941 | 0.9017 | 0.9496 | | 0.0478 | 7.6076 | 4420 | 0.9125 | 0.4408 | 0.9125 | 0.9553 | | 0.0478 | 7.6110 | 4422 | 0.9401 | 0.4661 | 0.9401 | 0.9696 | | 0.0478 | 7.6145 | 4424 | 0.9449 | 0.4661 | 0.9449 | 0.9721 | | 0.0478 | 7.6179 | 4426 | 0.9383 | 0.4661 | 0.9383 | 0.9687 | | 0.0478 | 7.6213 | 4428 | 0.9019 | 0.4941 | 0.9019 | 0.9497 | | 0.0478 | 7.6248 | 4430 | 0.8529 | 0.5833 | 0.8529 | 0.9235 | | 0.0478 | 7.6282 | 4432 | 0.8325 | 0.5833 | 0.8325 | 0.9124 | | 0.0478 | 7.6317 | 4434 | 0.8376 | 0.5833 | 0.8376 | 0.9152 | | 0.0478 | 7.6351 | 4436 | 0.8561 | 0.5833 | 0.8561 | 0.9253 | | 0.0478 | 7.6386 | 4438 | 0.8889 | 0.4955 | 0.8889 | 0.9428 | | 0.0478 | 7.6420 | 4440 | 0.9390 | 0.4661 | 0.9390 | 0.9690 | | 0.0478 | 7.6454 | 4442 | 0.9720 | 0.4661 | 0.9720 | 0.9859 | | 0.0478 | 7.6489 | 4444 | 0.9761 | 0.4661 | 0.9761 | 0.9880 | | 0.0478 | 7.6523 | 4446 | 0.9612 | 0.4661 | 0.9612 | 0.9804 | | 0.0478 | 7.6558 | 4448 | 0.9280 | 0.5207 | 0.9280 | 0.9633 | | 0.0478 | 7.6592 | 4450 | 0.8999 | 0.4955 | 0.8999 | 0.9486 | | 0.0478 | 7.6627 | 4452 | 0.8638 | 0.5402 | 0.8638 | 0.9294 | | 0.0478 | 7.6661 | 4454 | 0.8483 | 0.5833 | 0.8483 | 0.9210 | | 0.0478 | 7.6695 | 4456 | 0.8531 | 0.5833 | 0.8531 | 0.9236 | | 0.0478 | 7.6730 | 4458 | 0.8778 | 0.5248 | 0.8778 | 0.9369 | | 0.0478 | 7.6764 | 4460 | 0.9169 | 0.4955 | 0.9169 | 0.9576 | | 0.0478 | 7.6799 | 4462 | 0.9595 | 0.4661 | 0.9595 | 0.9795 | | 0.0478 | 7.6833 | 4464 | 0.9673 | 0.4903 | 0.9673 | 0.9835 | | 0.0478 | 7.6867 | 4466 | 0.9576 | 0.4903 | 0.9576 | 0.9786 | | 0.0478 | 7.6902 | 4468 | 0.9349 | 0.4661 | 0.9349 | 0.9669 | | 0.0478 | 7.6936 | 4470 | 0.9093 | 0.4668 | 0.9093 | 0.9536 | | 0.0478 | 7.6971 | 4472 | 0.9115 | 0.4668 | 0.9115 | 0.9547 | | 0.0478 | 7.7005 | 4474 | 0.9372 | 0.4903 | 0.9372 | 0.9681 | | 0.0478 | 7.7040 | 4476 | 0.9438 | 0.4903 | 0.9438 | 0.9715 | | 0.0478 | 7.7074 | 4478 | 0.9489 | 0.4903 | 0.9489 | 0.9741 | | 0.0478 | 7.7108 | 4480 | 0.9395 | 0.4903 | 0.9395 | 0.9693 | | 0.0478 | 7.7143 | 4482 | 0.9159 | 0.4668 | 0.9159 | 0.9570 | | 0.0478 | 7.7177 | 4484 | 0.8876 | 0.5765 | 0.8876 | 0.9421 | | 0.0478 | 7.7212 | 4486 | 0.8723 | 0.5765 | 0.8723 | 0.9340 | | 0.0478 | 7.7246 | 4488 | 0.8676 | 0.5765 | 0.8676 | 0.9314 | | 0.0478 | 7.7281 | 4490 | 0.8795 | 0.5354 | 0.8795 | 0.9378 | | 0.0478 | 7.7315 | 4492 | 0.9031 | 0.5207 | 0.9031 | 0.9503 | | 0.0478 | 7.7349 | 4494 | 0.9098 | 0.5207 | 0.9098 | 0.9538 | | 0.0478 | 7.7384 | 4496 | 0.9157 | 0.5207 | 0.9157 | 0.9569 | | 0.0478 | 7.7418 | 4498 | 0.9159 | 0.5207 | 0.9159 | 0.9570 | | 0.0432 | 7.7453 | 4500 | 0.9052 | 0.5207 | 0.9052 | 0.9514 | | 0.0432 | 7.7487 | 4502 | 0.9137 | 0.5188 | 0.9137 | 0.9559 | | 0.0432 | 7.7522 | 4504 | 0.9078 | 0.5188 | 0.9078 | 0.9528 | | 0.0432 | 7.7556 | 4506 | 0.8947 | 0.5207 | 0.8947 | 0.9459 | | 0.0432 | 7.7590 | 4508 | 0.8972 | 0.5188 | 0.8972 | 0.9472 | | 0.0432 | 7.7625 | 4510 | 0.9105 | 0.5188 | 0.9105 | 0.9542 | | 0.0432 | 7.7659 | 4512 | 0.9372 | 0.4661 | 0.9372 | 0.9681 | | 0.0432 | 7.7694 | 4514 | 0.9450 | 0.4903 | 0.9450 | 0.9721 | | 0.0432 | 7.7728 | 4516 | 0.9367 | 0.4903 | 0.9367 | 0.9678 | | 0.0432 | 7.7762 | 4518 | 0.9311 | 0.4661 | 0.9311 | 0.9649 | | 0.0432 | 7.7797 | 4520 | 0.9048 | 0.5188 | 0.9048 | 0.9512 | | 0.0432 | 7.7831 | 4522 | 0.9036 | 0.5188 | 0.9036 | 0.9506 | | 0.0432 | 7.7866 | 4524 | 0.9091 | 0.4661 | 0.9091 | 0.9534 | | 0.0432 | 7.7900 | 4526 | 0.9082 | 0.5331 | 0.9082 | 0.9530 | | 0.0432 | 7.7935 | 4528 | 0.9242 | 0.4661 | 0.9242 | 0.9614 | | 0.0432 | 7.7969 | 4530 | 0.9511 | 0.4661 | 0.9511 | 0.9753 | | 0.0432 | 7.8003 | 4532 | 0.9821 | 0.4765 | 0.9821 | 0.9910 | | 0.0432 | 7.8038 | 4534 | 0.9829 | 0.4765 | 0.9829 | 0.9914 | | 0.0432 | 7.8072 | 4536 | 0.9554 | 0.4903 | 0.9554 | 0.9775 | | 0.0432 | 7.8107 | 4538 | 0.9243 | 0.4661 | 0.9243 | 0.9614 | | 0.0432 | 7.8141 | 4540 | 0.8869 | 0.5588 | 0.8869 | 0.9417 | | 0.0432 | 7.8176 | 4542 | 0.8646 | 0.6053 | 0.8646 | 0.9299 | | 0.0432 | 7.8210 | 4544 | 0.8711 | 0.5978 | 0.8711 | 0.9333 | | 0.0432 | 7.8244 | 4546 | 0.9045 | 0.5068 | 0.9045 | 0.9511 | | 0.0432 | 7.8279 | 4548 | 0.9343 | 0.4661 | 0.9343 | 0.9666 | | 0.0432 | 7.8313 | 4550 | 0.9390 | 0.4931 | 0.9390 | 0.9690 | | 0.0432 | 7.8348 | 4552 | 0.9455 | 0.4903 | 0.9455 | 0.9724 | | 0.0432 | 7.8382 | 4554 | 0.9306 | 0.5068 | 0.9306 | 0.9647 | | 0.0432 | 7.8417 | 4556 | 0.8953 | 0.5451 | 0.8953 | 0.9462 | | 0.0432 | 7.8451 | 4558 | 0.8684 | 0.6053 | 0.8684 | 0.9319 | | 0.0432 | 7.8485 | 4560 | 0.8527 | 0.6053 | 0.8527 | 0.9234 | | 0.0432 | 7.8520 | 4562 | 0.8431 | 0.6093 | 0.8431 | 0.9182 | | 0.0432 | 7.8554 | 4564 | 0.8518 | 0.6093 | 0.8518 | 0.9229 | | 0.0432 | 7.8589 | 4566 | 0.8636 | 0.6053 | 0.8636 | 0.9293 | | 0.0432 | 7.8623 | 4568 | 0.8868 | 0.55 | 0.8868 | 0.9417 | | 0.0432 | 7.8657 | 4570 | 0.9170 | 0.5068 | 0.9170 | 0.9576 | | 0.0432 | 7.8692 | 4572 | 0.9411 | 0.5068 | 0.9411 | 0.9701 | | 0.0432 | 7.8726 | 4574 | 0.9623 | 0.5295 | 0.9623 | 0.9810 | | 0.0432 | 7.8761 | 4576 | 0.9674 | 0.5295 | 0.9674 | 0.9836 | | 0.0432 | 7.8795 | 4578 | 0.9490 | 0.5295 | 0.9490 | 0.9742 | | 0.0432 | 7.8830 | 4580 | 0.9263 | 0.5451 | 0.9263 | 0.9624 | | 0.0432 | 7.8864 | 4582 | 0.8946 | 0.5223 | 0.8946 | 0.9459 | | 0.0432 | 7.8898 | 4584 | 0.8700 | 0.55 | 0.8700 | 0.9327 | | 0.0432 | 7.8933 | 4586 | 0.8687 | 0.5526 | 0.8687 | 0.9320 | | 0.0432 | 7.8967 | 4588 | 0.8720 | 0.5526 | 0.8720 | 0.9338 | | 0.0432 | 7.9002 | 4590 | 0.8958 | 0.5223 | 0.8958 | 0.9465 | | 0.0432 | 7.9036 | 4592 | 0.9382 | 0.5668 | 0.9382 | 0.9686 | | 0.0432 | 7.9071 | 4594 | 0.9894 | 0.5295 | 0.9894 | 0.9947 | | 0.0432 | 7.9105 | 4596 | 1.0223 | 0.5013 | 1.0223 | 1.0111 | | 0.0432 | 7.9139 | 4598 | 1.0320 | 0.5013 | 1.0320 | 1.0159 | | 0.0432 | 7.9174 | 4600 | 1.0257 | 0.4903 | 1.0257 | 1.0128 | | 0.0432 | 7.9208 | 4602 | 0.9996 | 0.4903 | 0.9996 | 0.9998 | | 0.0432 | 7.9243 | 4604 | 0.9540 | 0.5295 | 0.9540 | 0.9767 | | 0.0432 | 7.9277 | 4606 | 0.9145 | 0.5243 | 0.9145 | 0.9563 | | 0.0432 | 7.9312 | 4608 | 0.8949 | 0.5526 | 0.8949 | 0.9460 | | 0.0432 | 7.9346 | 4610 | 0.8896 | 0.5526 | 0.8896 | 0.9432 | | 0.0432 | 7.9380 | 4612 | 0.8901 | 0.5526 | 0.8901 | 0.9435 | | 0.0432 | 7.9415 | 4614 | 0.8976 | 0.5526 | 0.8976 | 0.9474 | | 0.0432 | 7.9449 | 4616 | 0.9057 | 0.5526 | 0.9057 | 0.9517 | | 0.0432 | 7.9484 | 4618 | 0.9299 | 0.5451 | 0.9299 | 0.9643 | | 0.0432 | 7.9518 | 4620 | 0.9714 | 0.5668 | 0.9714 | 0.9856 | | 0.0432 | 7.9552 | 4622 | 1.0187 | 0.5013 | 1.0187 | 1.0093 | | 0.0432 | 7.9587 | 4624 | 1.0476 | 0.5013 | 1.0476 | 1.0235 | | 0.0432 | 7.9621 | 4626 | 1.0387 | 0.5257 | 1.0387 | 1.0192 | | 0.0432 | 7.9656 | 4628 | 1.0022 | 0.5385 | 1.0022 | 1.0011 | | 0.0432 | 7.9690 | 4630 | 0.9476 | 0.5668 | 0.9476 | 0.9734 | | 0.0432 | 7.9725 | 4632 | 0.9182 | 0.5726 | 0.9182 | 0.9583 | | 0.0432 | 7.9759 | 4634 | 0.8807 | 0.55 | 0.8807 | 0.9385 | | 0.0432 | 7.9793 | 4636 | 0.8475 | 0.55 | 0.8475 | 0.9206 | | 0.0432 | 7.9828 | 4638 | 0.8438 | 0.5526 | 0.8438 | 0.9186 | | 0.0432 | 7.9862 | 4640 | 0.8588 | 0.55 | 0.8588 | 0.9267 | | 0.0432 | 7.9897 | 4642 | 0.8712 | 0.55 | 0.8712 | 0.9334 | | 0.0432 | 7.9931 | 4644 | 0.8999 | 0.55 | 0.8999 | 0.9486 | | 0.0432 | 7.9966 | 4646 | 0.9454 | 0.5068 | 0.9454 | 0.9723 | | 0.0432 | 8.0 | 4648 | 0.9732 | 0.5041 | 0.9732 | 0.9865 | | 0.0432 | 8.0034 | 4650 | 0.9845 | 0.4903 | 0.9845 | 0.9922 | | 0.0432 | 8.0069 | 4652 | 0.9855 | 0.4903 | 0.9855 | 0.9927 | | 0.0432 | 8.0103 | 4654 | 0.9713 | 0.4661 | 0.9713 | 0.9855 | | 0.0432 | 8.0138 | 4656 | 0.9567 | 0.5072 | 0.9567 | 0.9781 | | 0.0432 | 8.0172 | 4658 | 0.9450 | 0.4823 | 0.9450 | 0.9721 | | 0.0432 | 8.0207 | 4660 | 0.9472 | 0.4823 | 0.9472 | 0.9733 | | 0.0432 | 8.0241 | 4662 | 0.9493 | 0.4823 | 0.9493 | 0.9743 | | 0.0432 | 8.0275 | 4664 | 0.9391 | 0.4823 | 0.9391 | 0.9691 | | 0.0432 | 8.0310 | 4666 | 0.9466 | 0.4823 | 0.9466 | 0.9729 | | 0.0432 | 8.0344 | 4668 | 0.9446 | 0.4823 | 0.9446 | 0.9719 | | 0.0432 | 8.0379 | 4670 | 0.9401 | 0.4823 | 0.9401 | 0.9696 | | 0.0432 | 8.0413 | 4672 | 0.9189 | 0.4823 | 0.9189 | 0.9586 | | 0.0432 | 8.0448 | 4674 | 0.8935 | 0.5235 | 0.8935 | 0.9453 | | 0.0432 | 8.0482 | 4676 | 0.8886 | 0.55 | 0.8886 | 0.9426 | | 0.0432 | 8.0516 | 4678 | 0.8928 | 0.55 | 0.8928 | 0.9449 | | 0.0432 | 8.0551 | 4680 | 0.9031 | 0.55 | 0.9031 | 0.9503 | | 0.0432 | 8.0585 | 4682 | 0.9175 | 0.55 | 0.9175 | 0.9579 | | 0.0432 | 8.0620 | 4684 | 0.9272 | 0.5100 | 0.9272 | 0.9629 | | 0.0432 | 8.0654 | 4686 | 0.9400 | 0.5100 | 0.9400 | 0.9695 | | 0.0432 | 8.0688 | 4688 | 0.9557 | 0.5336 | 0.9557 | 0.9776 | | 0.0432 | 8.0723 | 4690 | 0.9691 | 0.5161 | 0.9691 | 0.9844 | | 0.0432 | 8.0757 | 4692 | 0.9701 | 0.5161 | 0.9701 | 0.9849 | | 0.0432 | 8.0792 | 4694 | 0.9883 | 0.4903 | 0.9883 | 0.9941 | | 0.0432 | 8.0826 | 4696 | 1.0091 | 0.4765 | 1.0091 | 1.0046 | | 0.0432 | 8.0861 | 4698 | 1.0112 | 0.4765 | 1.0112 | 1.0056 | | 0.0432 | 8.0895 | 4700 | 1.0111 | 0.4765 | 1.0111 | 1.0055 | | 0.0432 | 8.0929 | 4702 | 1.0003 | 0.4765 | 1.0003 | 1.0001 | | 0.0432 | 8.0964 | 4704 | 0.9822 | 0.4903 | 0.9822 | 0.9911 | | 0.0432 | 8.0998 | 4706 | 0.9747 | 0.4931 | 0.9747 | 0.9873 | | 0.0432 | 8.1033 | 4708 | 0.9614 | 0.4931 | 0.9614 | 0.9805 | | 0.0432 | 8.1067 | 4710 | 0.9526 | 0.4931 | 0.9526 | 0.9760 | | 0.0432 | 8.1102 | 4712 | 0.9449 | 0.5170 | 0.9449 | 0.9720 | | 0.0432 | 8.1136 | 4714 | 0.9300 | 0.5535 | 0.9300 | 0.9643 | | 0.0432 | 8.1170 | 4716 | 0.9133 | 0.5726 | 0.9133 | 0.9557 | | 0.0432 | 8.1205 | 4718 | 0.9021 | 0.5726 | 0.9021 | 0.9498 | | 0.0432 | 8.1239 | 4720 | 0.8962 | 0.5726 | 0.8962 | 0.9467 | | 0.0432 | 8.1274 | 4722 | 0.8979 | 0.5726 | 0.8979 | 0.9476 | | 0.0432 | 8.1308 | 4724 | 0.9043 | 0.5336 | 0.9043 | 0.9509 | | 0.0432 | 8.1343 | 4726 | 0.9240 | 0.5336 | 0.9240 | 0.9612 | | 0.0432 | 8.1377 | 4728 | 0.9509 | 0.4931 | 0.9509 | 0.9751 | | 0.0432 | 8.1411 | 4730 | 0.9535 | 0.4931 | 0.9535 | 0.9765 | | 0.0432 | 8.1446 | 4732 | 0.9333 | 0.5068 | 0.9333 | 0.9661 | | 0.0432 | 8.1480 | 4734 | 0.8964 | 0.5336 | 0.8964 | 0.9468 | | 0.0432 | 8.1515 | 4736 | 0.8750 | 0.6053 | 0.8750 | 0.9354 | | 0.0432 | 8.1549 | 4738 | 0.8715 | 0.6053 | 0.8715 | 0.9335 | | 0.0432 | 8.1583 | 4740 | 0.8721 | 0.6053 | 0.8721 | 0.9339 | | 0.0432 | 8.1618 | 4742 | 0.8878 | 0.6053 | 0.8878 | 0.9422 | | 0.0432 | 8.1652 | 4744 | 0.9206 | 0.5336 | 0.9206 | 0.9595 | | 0.0432 | 8.1687 | 4746 | 0.9448 | 0.5068 | 0.9448 | 0.9720 | | 0.0432 | 8.1721 | 4748 | 0.9546 | 0.5068 | 0.9546 | 0.9771 | | 0.0432 | 8.1756 | 4750 | 0.9519 | 0.5068 | 0.9519 | 0.9757 | | 0.0432 | 8.1790 | 4752 | 0.9400 | 0.5068 | 0.9400 | 0.9695 | | 0.0432 | 8.1824 | 4754 | 0.9109 | 0.5336 | 0.9109 | 0.9544 | | 0.0432 | 8.1859 | 4756 | 0.8881 | 0.55 | 0.8881 | 0.9424 | | 0.0432 | 8.1893 | 4758 | 0.8753 | 0.6053 | 0.8753 | 0.9356 | | 0.0432 | 8.1928 | 4760 | 0.8648 | 0.6053 | 0.8648 | 0.9299 | | 0.0432 | 8.1962 | 4762 | 0.8674 | 0.6053 | 0.8674 | 0.9313 | | 0.0432 | 8.1997 | 4764 | 0.8865 | 0.5100 | 0.8865 | 0.9415 | | 0.0432 | 8.2031 | 4766 | 0.9120 | 0.5336 | 0.9120 | 0.9550 | | 0.0432 | 8.2065 | 4768 | 0.9452 | 0.5336 | 0.9452 | 0.9722 | | 0.0432 | 8.2100 | 4770 | 0.9839 | 0.5257 | 0.9839 | 0.9919 | | 0.0432 | 8.2134 | 4772 | 0.9920 | 0.5129 | 0.9920 | 0.9960 | | 0.0432 | 8.2169 | 4774 | 0.9800 | 0.5027 | 0.9800 | 0.9899 | | 0.0432 | 8.2203 | 4776 | 0.9509 | 0.5562 | 0.9509 | 0.9752 | | 0.0432 | 8.2238 | 4778 | 0.9140 | 0.5336 | 0.9140 | 0.9560 | | 0.0432 | 8.2272 | 4780 | 0.9011 | 0.5336 | 0.9011 | 0.9493 | | 0.0432 | 8.2306 | 4782 | 0.9042 | 0.5336 | 0.9042 | 0.9509 | | 0.0432 | 8.2341 | 4784 | 0.9245 | 0.5336 | 0.9245 | 0.9615 | | 0.0432 | 8.2375 | 4786 | 0.9430 | 0.5562 | 0.9430 | 0.9711 | | 0.0432 | 8.2410 | 4788 | 0.9377 | 0.5562 | 0.9377 | 0.9683 | | 0.0432 | 8.2444 | 4790 | 0.9244 | 0.5336 | 0.9244 | 0.9615 | | 0.0432 | 8.2478 | 4792 | 0.9243 | 0.5336 | 0.9243 | 0.9614 | | 0.0432 | 8.2513 | 4794 | 0.9209 | 0.5336 | 0.9209 | 0.9596 | | 0.0432 | 8.2547 | 4796 | 0.9142 | 0.5336 | 0.9142 | 0.9562 | | 0.0432 | 8.2582 | 4798 | 0.9103 | 0.5336 | 0.9103 | 0.9541 | | 0.0432 | 8.2616 | 4800 | 0.9085 | 0.5336 | 0.9085 | 0.9532 | | 0.0432 | 8.2651 | 4802 | 0.9091 | 0.5336 | 0.9091 | 0.9535 | | 0.0432 | 8.2685 | 4804 | 0.8993 | 0.5726 | 0.8993 | 0.9483 | | 0.0432 | 8.2719 | 4806 | 0.9045 | 0.5726 | 0.9045 | 0.9511 | | 0.0432 | 8.2754 | 4808 | 0.9069 | 0.5336 | 0.9069 | 0.9523 | | 0.0432 | 8.2788 | 4810 | 0.9024 | 0.5336 | 0.9024 | 0.9500 | | 0.0432 | 8.2823 | 4812 | 0.9119 | 0.5336 | 0.9119 | 0.9549 | | 0.0432 | 8.2857 | 4814 | 0.9359 | 0.5197 | 0.9359 | 0.9674 | | 0.0432 | 8.2892 | 4816 | 0.9671 | 0.4903 | 0.9671 | 0.9834 | | 0.0432 | 8.2926 | 4818 | 0.9961 | 0.4765 | 0.9961 | 0.9981 | | 0.0432 | 8.2960 | 4820 | 1.0076 | 0.4765 | 1.0076 | 1.0038 | | 0.0432 | 8.2995 | 4822 | 1.0042 | 0.4765 | 1.0042 | 1.0021 | | 0.0432 | 8.3029 | 4824 | 1.0083 | 0.4765 | 1.0083 | 1.0042 | | 0.0432 | 8.3064 | 4826 | 0.9954 | 0.4765 | 0.9954 | 0.9977 | | 0.0432 | 8.3098 | 4828 | 0.9892 | 0.4903 | 0.9892 | 0.9946 | | 0.0432 | 8.3133 | 4830 | 0.9900 | 0.4903 | 0.9900 | 0.9950 | | 0.0432 | 8.3167 | 4832 | 0.9937 | 0.4903 | 0.9937 | 0.9968 | | 0.0432 | 8.3201 | 4834 | 0.9741 | 0.5161 | 0.9741 | 0.9870 | | 0.0432 | 8.3236 | 4836 | 0.9355 | 0.5562 | 0.9355 | 0.9672 | | 0.0432 | 8.3270 | 4838 | 0.8893 | 0.55 | 0.8893 | 0.9430 | | 0.0432 | 8.3305 | 4840 | 0.8643 | 0.6093 | 0.8643 | 0.9297 | | 0.0432 | 8.3339 | 4842 | 0.8610 | 0.6093 | 0.8610 | 0.9279 | | 0.0432 | 8.3373 | 4844 | 0.8730 | 0.6093 | 0.8730 | 0.9343 | | 0.0432 | 8.3408 | 4846 | 0.8956 | 0.55 | 0.8956 | 0.9464 | | 0.0432 | 8.3442 | 4848 | 0.9079 | 0.55 | 0.9079 | 0.9528 | | 0.0432 | 8.3477 | 4850 | 0.9264 | 0.5562 | 0.9264 | 0.9625 | | 0.0432 | 8.3511 | 4852 | 0.9293 | 0.5562 | 0.9293 | 0.9640 | | 0.0432 | 8.3546 | 4854 | 0.9312 | 0.5426 | 0.9312 | 0.9650 | | 0.0432 | 8.3580 | 4856 | 0.9395 | 0.5426 | 0.9395 | 0.9693 | | 0.0432 | 8.3614 | 4858 | 0.9419 | 0.5161 | 0.9419 | 0.9705 | | 0.0432 | 8.3649 | 4860 | 0.9555 | 0.5161 | 0.9555 | 0.9775 | | 0.0432 | 8.3683 | 4862 | 0.9685 | 0.5161 | 0.9685 | 0.9841 | | 0.0432 | 8.3718 | 4864 | 0.9754 | 0.4903 | 0.9754 | 0.9876 | | 0.0432 | 8.3752 | 4866 | 0.9743 | 0.4903 | 0.9743 | 0.9870 | | 0.0432 | 8.3787 | 4868 | 0.9714 | 0.4903 | 0.9714 | 0.9856 | | 0.0432 | 8.3821 | 4870 | 0.9747 | 0.4903 | 0.9747 | 0.9873 | | 0.0432 | 8.3855 | 4872 | 0.9701 | 0.4903 | 0.9701 | 0.9849 | | 0.0432 | 8.3890 | 4874 | 0.9775 | 0.4903 | 0.9775 | 0.9887 | | 0.0432 | 8.3924 | 4876 | 0.9916 | 0.4765 | 0.9916 | 0.9958 | | 0.0432 | 8.3959 | 4878 | 1.0105 | 0.4765 | 1.0105 | 1.0053 | | 0.0432 | 8.3993 | 4880 | 1.0132 | 0.4765 | 1.0132 | 1.0066 | | 0.0432 | 8.4028 | 4882 | 0.9941 | 0.4765 | 0.9941 | 0.9970 | | 0.0432 | 8.4062 | 4884 | 0.9829 | 0.4903 | 0.9829 | 0.9914 | | 0.0432 | 8.4096 | 4886 | 0.9678 | 0.4903 | 0.9678 | 0.9837 | | 0.0432 | 8.4131 | 4888 | 0.9627 | 0.4903 | 0.9627 | 0.9812 | | 0.0432 | 8.4165 | 4890 | 0.9636 | 0.4903 | 0.9636 | 0.9816 | | 0.0432 | 8.4200 | 4892 | 0.9801 | 0.4903 | 0.9801 | 0.9900 | | 0.0432 | 8.4234 | 4894 | 1.0025 | 0.4903 | 1.0025 | 1.0013 | | 0.0432 | 8.4269 | 4896 | 1.0020 | 0.4903 | 1.0020 | 1.0010 | | 0.0432 | 8.4303 | 4898 | 0.9994 | 0.4903 | 0.9994 | 0.9997 | | 0.0432 | 8.4337 | 4900 | 0.9788 | 0.4903 | 0.9788 | 0.9893 | | 0.0432 | 8.4372 | 4902 | 0.9484 | 0.4928 | 0.9484 | 0.9739 | | 0.0432 | 8.4406 | 4904 | 0.9250 | 0.5227 | 0.9250 | 0.9618 | | 0.0432 | 8.4441 | 4906 | 0.9212 | 0.5227 | 0.9212 | 0.9598 | | 0.0432 | 8.4475 | 4908 | 0.9345 | 0.5227 | 0.9345 | 0.9667 | | 0.0432 | 8.4509 | 4910 | 0.9386 | 0.5227 | 0.9386 | 0.9688 | | 0.0432 | 8.4544 | 4912 | 0.9555 | 0.4928 | 0.9555 | 0.9775 | | 0.0432 | 8.4578 | 4914 | 0.9625 | 0.4903 | 0.9625 | 0.9810 | | 0.0432 | 8.4613 | 4916 | 0.9711 | 0.4903 | 0.9711 | 0.9854 | | 0.0432 | 8.4647 | 4918 | 0.9749 | 0.4903 | 0.9749 | 0.9874 | | 0.0432 | 8.4682 | 4920 | 0.9738 | 0.4903 | 0.9738 | 0.9868 | | 0.0432 | 8.4716 | 4922 | 0.9545 | 0.4903 | 0.9545 | 0.9770 | | 0.0432 | 8.4750 | 4924 | 0.9241 | 0.5885 | 0.9241 | 0.9613 | | 0.0432 | 8.4785 | 4926 | 0.8918 | 0.5650 | 0.8918 | 0.9444 | | 0.0432 | 8.4819 | 4928 | 0.8754 | 0.5650 | 0.8754 | 0.9357 | | 0.0432 | 8.4854 | 4930 | 0.8532 | 0.6093 | 0.8532 | 0.9237 | | 0.0432 | 8.4888 | 4932 | 0.8362 | 0.6093 | 0.8362 | 0.9145 | | 0.0432 | 8.4923 | 4934 | 0.8295 | 0.6093 | 0.8295 | 0.9108 | | 0.0432 | 8.4957 | 4936 | 0.8254 | 0.6093 | 0.8254 | 0.9085 | | 0.0432 | 8.4991 | 4938 | 0.8332 | 0.6093 | 0.8332 | 0.9128 | | 0.0432 | 8.5026 | 4940 | 0.8511 | 0.6093 | 0.8511 | 0.9226 | | 0.0432 | 8.5060 | 4942 | 0.8803 | 0.5909 | 0.8803 | 0.9382 | | 0.0432 | 8.5095 | 4944 | 0.8950 | 0.6132 | 0.8950 | 0.9460 | | 0.0432 | 8.5129 | 4946 | 0.9132 | 0.5588 | 0.9132 | 0.9556 | | 0.0432 | 8.5164 | 4948 | 0.9351 | 0.5536 | 0.9351 | 0.9670 | | 0.0432 | 8.5198 | 4950 | 0.9369 | 0.5536 | 0.9369 | 0.9679 | | 0.0432 | 8.5232 | 4952 | 0.9238 | 0.5588 | 0.9238 | 0.9612 | | 0.0432 | 8.5267 | 4954 | 0.9034 | 0.5588 | 0.9034 | 0.9505 | | 0.0432 | 8.5301 | 4956 | 0.8738 | 0.5909 | 0.8738 | 0.9348 | | 0.0432 | 8.5336 | 4958 | 0.8564 | 0.6053 | 0.8564 | 0.9254 | | 0.0432 | 8.5370 | 4960 | 0.8590 | 0.6053 | 0.8590 | 0.9268 | | 0.0432 | 8.5404 | 4962 | 0.8726 | 0.5909 | 0.8726 | 0.9341 | | 0.0432 | 8.5439 | 4964 | 0.8926 | 0.5358 | 0.8926 | 0.9448 | | 0.0432 | 8.5473 | 4966 | 0.9002 | 0.5588 | 0.9002 | 0.9488 | | 0.0432 | 8.5508 | 4968 | 0.9019 | 0.5588 | 0.9019 | 0.9497 | | 0.0432 | 8.5542 | 4970 | 0.9102 | 0.5588 | 0.9102 | 0.9541 | | 0.0432 | 8.5577 | 4972 | 0.9236 | 0.5315 | 0.9236 | 0.9611 | | 0.0432 | 8.5611 | 4974 | 0.9341 | 0.5161 | 0.9341 | 0.9665 | | 0.0432 | 8.5645 | 4976 | 0.9366 | 0.5161 | 0.9366 | 0.9678 | | 0.0432 | 8.5680 | 4978 | 0.9337 | 0.4931 | 0.9337 | 0.9663 | | 0.0432 | 8.5714 | 4980 | 0.9194 | 0.5315 | 0.9194 | 0.9589 | | 0.0432 | 8.5749 | 4982 | 0.9017 | 0.5588 | 0.9017 | 0.9496 | | 0.0432 | 8.5783 | 4984 | 0.8866 | 0.5358 | 0.8866 | 0.9416 | | 0.0432 | 8.5818 | 4986 | 0.8601 | 0.6053 | 0.8601 | 0.9274 | | 0.0432 | 8.5852 | 4988 | 0.8495 | 0.6093 | 0.8495 | 0.9217 | | 0.0432 | 8.5886 | 4990 | 0.8432 | 0.6093 | 0.8432 | 0.9182 | | 0.0432 | 8.5921 | 4992 | 0.8287 | 0.6239 | 0.8287 | 0.9104 | | 0.0432 | 8.5955 | 4994 | 0.8226 | 0.6239 | 0.8226 | 0.9070 | | 0.0432 | 8.5990 | 4996 | 0.8259 | 0.6093 | 0.8259 | 0.9088 | | 0.0432 | 8.6024 | 4998 | 0.8338 | 0.6093 | 0.8338 | 0.9131 | | 0.0397 | 8.6059 | 5000 | 0.8552 | 0.5946 | 0.8552 | 0.9247 | | 0.0397 | 8.6093 | 5002 | 0.8887 | 0.5909 | 0.8887 | 0.9427 | | 0.0397 | 8.6127 | 5004 | 0.9104 | 0.5197 | 0.9104 | 0.9541 | | 0.0397 | 8.6162 | 5006 | 0.9273 | 0.4661 | 0.9273 | 0.9630 | | 0.0397 | 8.6196 | 5008 | 0.9256 | 0.4661 | 0.9256 | 0.9621 | | 0.0397 | 8.6231 | 5010 | 0.9153 | 0.5473 | 0.9153 | 0.9567 | | 0.0397 | 8.6265 | 5012 | 0.9021 | 0.5227 | 0.9021 | 0.9498 | | 0.0397 | 8.6299 | 5014 | 0.8970 | 0.5227 | 0.8970 | 0.9471 | | 0.0397 | 8.6334 | 5016 | 0.8805 | 0.5248 | 0.8805 | 0.9384 | | 0.0397 | 8.6368 | 5018 | 0.8654 | 0.5946 | 0.8654 | 0.9303 | | 0.0397 | 8.6403 | 5020 | 0.8486 | 0.5946 | 0.8486 | 0.9212 | | 0.0397 | 8.6437 | 5022 | 0.8476 | 0.5946 | 0.8476 | 0.9207 | | 0.0397 | 8.6472 | 5024 | 0.8599 | 0.5946 | 0.8599 | 0.9273 | | 0.0397 | 8.6506 | 5026 | 0.8803 | 0.5248 | 0.8803 | 0.9382 | | 0.0397 | 8.6540 | 5028 | 0.9117 | 0.5473 | 0.9117 | 0.9549 | | 0.0397 | 8.6575 | 5030 | 0.9460 | 0.4661 | 0.9460 | 0.9726 | | 0.0397 | 8.6609 | 5032 | 0.9580 | 0.4661 | 0.9580 | 0.9788 | | 0.0397 | 8.6644 | 5034 | 0.9508 | 0.4661 | 0.9508 | 0.9751 | | 0.0397 | 8.6678 | 5036 | 0.9330 | 0.4661 | 0.9330 | 0.9659 | | 0.0397 | 8.6713 | 5038 | 0.9222 | 0.5473 | 0.9222 | 0.9603 | | 0.0397 | 8.6747 | 5040 | 0.9078 | 0.5733 | 0.9078 | 0.9528 | | 0.0397 | 8.6781 | 5042 | 0.8865 | 0.5946 | 0.8865 | 0.9415 | | 0.0397 | 8.6816 | 5044 | 0.8574 | 0.5946 | 0.8574 | 0.9259 | | 0.0397 | 8.6850 | 5046 | 0.8366 | 0.6093 | 0.8366 | 0.9146 | | 0.0397 | 8.6885 | 5048 | 0.8257 | 0.6093 | 0.8257 | 0.9087 | | 0.0397 | 8.6919 | 5050 | 0.8166 | 0.6093 | 0.8166 | 0.9037 | | 0.0397 | 8.6954 | 5052 | 0.8200 | 0.6093 | 0.8200 | 0.9055 | | 0.0397 | 8.6988 | 5054 | 0.8339 | 0.6093 | 0.8339 | 0.9132 | | 0.0397 | 8.7022 | 5056 | 0.8572 | 0.6093 | 0.8572 | 0.9259 | | 0.0397 | 8.7057 | 5058 | 0.8804 | 0.5946 | 0.8804 | 0.9383 | | 0.0397 | 8.7091 | 5060 | 0.9040 | 0.6132 | 0.9040 | 0.9508 | | 0.0397 | 8.7126 | 5062 | 0.9208 | 0.4931 | 0.9208 | 0.9596 | | 0.0397 | 8.7160 | 5064 | 0.9249 | 0.4931 | 0.9249 | 0.9617 | | 0.0397 | 8.7194 | 5066 | 0.9338 | 0.4661 | 0.9338 | 0.9663 | | 0.0397 | 8.7229 | 5068 | 0.9286 | 0.4661 | 0.9286 | 0.9636 | | 0.0397 | 8.7263 | 5070 | 0.9253 | 0.4661 | 0.9253 | 0.9619 | | 0.0397 | 8.7298 | 5072 | 0.9157 | 0.5473 | 0.9157 | 0.9569 | | 0.0397 | 8.7332 | 5074 | 0.9115 | 0.5227 | 0.9115 | 0.9547 | | 0.0397 | 8.7367 | 5076 | 0.9082 | 0.5227 | 0.9082 | 0.9530 | | 0.0397 | 8.7401 | 5078 | 0.9081 | 0.5227 | 0.9081 | 0.9529 | | 0.0397 | 8.7435 | 5080 | 0.9008 | 0.5248 | 0.9008 | 0.9491 | | 0.0397 | 8.7470 | 5082 | 0.8873 | 0.5527 | 0.8873 | 0.9420 | | 0.0397 | 8.7504 | 5084 | 0.8742 | 0.5527 | 0.8742 | 0.9350 | | 0.0397 | 8.7539 | 5086 | 0.8740 | 0.5527 | 0.8740 | 0.9349 | | 0.0397 | 8.7573 | 5088 | 0.8890 | 0.5248 | 0.8890 | 0.9429 | | 0.0397 | 8.7608 | 5090 | 0.9115 | 0.5227 | 0.9115 | 0.9547 | | 0.0397 | 8.7642 | 5092 | 0.9219 | 0.5227 | 0.9219 | 0.9601 | | 0.0397 | 8.7676 | 5094 | 0.9275 | 0.4675 | 0.9275 | 0.9631 | | 0.0397 | 8.7711 | 5096 | 0.9375 | 0.4928 | 0.9375 | 0.9682 | | 0.0397 | 8.7745 | 5098 | 0.9312 | 0.4675 | 0.9312 | 0.9650 | | 0.0397 | 8.7780 | 5100 | 0.9227 | 0.4957 | 0.9227 | 0.9606 | | 0.0397 | 8.7814 | 5102 | 0.9063 | 0.55 | 0.9063 | 0.9520 | | 0.0397 | 8.7849 | 5104 | 0.8983 | 0.55 | 0.8983 | 0.9478 | | 0.0397 | 8.7883 | 5106 | 0.8975 | 0.55 | 0.8975 | 0.9473 | | 0.0397 | 8.7917 | 5108 | 0.8995 | 0.55 | 0.8995 | 0.9484 | | 0.0397 | 8.7952 | 5110 | 0.8991 | 0.55 | 0.8991 | 0.9482 | | 0.0397 | 8.7986 | 5112 | 0.9006 | 0.55 | 0.9006 | 0.9490 | | 0.0397 | 8.8021 | 5114 | 0.8943 | 0.55 | 0.8943 | 0.9457 | | 0.0397 | 8.8055 | 5116 | 0.8964 | 0.55 | 0.8964 | 0.9468 | | 0.0397 | 8.8090 | 5118 | 0.9000 | 0.55 | 0.9000 | 0.9487 | | 0.0397 | 8.8124 | 5120 | 0.8975 | 0.55 | 0.8975 | 0.9473 | | 0.0397 | 8.8158 | 5122 | 0.9041 | 0.4957 | 0.9041 | 0.9508 | | 0.0397 | 8.8193 | 5124 | 0.9139 | 0.4931 | 0.9139 | 0.9560 | | 0.0397 | 8.8227 | 5126 | 0.9233 | 0.4931 | 0.9233 | 0.9609 | | 0.0397 | 8.8262 | 5128 | 0.9235 | 0.4931 | 0.9235 | 0.9610 | | 0.0397 | 8.8296 | 5130 | 0.9153 | 0.4931 | 0.9153 | 0.9567 | | 0.0397 | 8.8330 | 5132 | 0.8985 | 0.55 | 0.8985 | 0.9479 | | 0.0397 | 8.8365 | 5134 | 0.8776 | 0.5645 | 0.8776 | 0.9368 | | 0.0397 | 8.8399 | 5136 | 0.8639 | 0.6053 | 0.8639 | 0.9295 | | 0.0397 | 8.8434 | 5138 | 0.8620 | 0.6053 | 0.8620 | 0.9285 | | 0.0397 | 8.8468 | 5140 | 0.8698 | 0.6053 | 0.8698 | 0.9326 | | 0.0397 | 8.8503 | 5142 | 0.8782 | 0.5645 | 0.8782 | 0.9371 | | 0.0397 | 8.8537 | 5144 | 0.8941 | 0.5227 | 0.8941 | 0.9456 | | 0.0397 | 8.8571 | 5146 | 0.9180 | 0.4661 | 0.9180 | 0.9581 | | 0.0397 | 8.8606 | 5148 | 0.9336 | 0.4661 | 0.9336 | 0.9662 | | 0.0397 | 8.8640 | 5150 | 0.9400 | 0.4661 | 0.9400 | 0.9695 | | 0.0397 | 8.8675 | 5152 | 0.9313 | 0.4661 | 0.9313 | 0.9650 | | 0.0397 | 8.8709 | 5154 | 0.9101 | 0.5227 | 0.9101 | 0.9540 | | 0.0397 | 8.8744 | 5156 | 0.8982 | 0.5227 | 0.8982 | 0.9478 | | 0.0397 | 8.8778 | 5158 | 0.8828 | 0.5378 | 0.8828 | 0.9396 | | 0.0397 | 8.8812 | 5160 | 0.8707 | 0.5378 | 0.8707 | 0.9331 | | 0.0397 | 8.8847 | 5162 | 0.8542 | 0.6093 | 0.8542 | 0.9242 | | 0.0397 | 8.8881 | 5164 | 0.8427 | 0.6093 | 0.8427 | 0.9180 | | 0.0397 | 8.8916 | 5166 | 0.8315 | 0.6093 | 0.8315 | 0.9119 | | 0.0397 | 8.8950 | 5168 | 0.8191 | 0.6093 | 0.8191 | 0.9051 | | 0.0397 | 8.8985 | 5170 | 0.8147 | 0.6093 | 0.8147 | 0.9026 | | 0.0397 | 8.9019 | 5172 | 0.8161 | 0.6093 | 0.8161 | 0.9034 | | 0.0397 | 8.9053 | 5174 | 0.8105 | 0.6093 | 0.8105 | 0.9003 | | 0.0397 | 8.9088 | 5176 | 0.8050 | 0.6239 | 0.8050 | 0.8972 | | 0.0397 | 8.9122 | 5178 | 0.8077 | 0.6239 | 0.8077 | 0.8987 | | 0.0397 | 8.9157 | 5180 | 0.8182 | 0.6093 | 0.8182 | 0.9045 | | 0.0397 | 8.9191 | 5182 | 0.8327 | 0.6093 | 0.8327 | 0.9125 | | 0.0397 | 8.9225 | 5184 | 0.8512 | 0.6093 | 0.8512 | 0.9226 | | 0.0397 | 8.9260 | 5186 | 0.8648 | 0.6053 | 0.8648 | 0.9299 | | 0.0397 | 8.9294 | 5188 | 0.8857 | 0.6271 | 0.8857 | 0.9411 | | 0.0397 | 8.9329 | 5190 | 0.9074 | 0.5197 | 0.9074 | 0.9526 | | 0.0397 | 8.9363 | 5192 | 0.9246 | 0.4661 | 0.9246 | 0.9616 | | 0.0397 | 8.9398 | 5194 | 0.9242 | 0.4661 | 0.9242 | 0.9614 | | 0.0397 | 8.9432 | 5196 | 0.9111 | 0.4661 | 0.9111 | 0.9545 | | 0.0397 | 8.9466 | 5198 | 0.8923 | 0.6029 | 0.8923 | 0.9446 | | 0.0397 | 8.9501 | 5200 | 0.8750 | 0.5798 | 0.8750 | 0.9354 | | 0.0397 | 8.9535 | 5202 | 0.8639 | 0.5798 | 0.8639 | 0.9295 | | 0.0397 | 8.9570 | 5204 | 0.8567 | 0.6093 | 0.8567 | 0.9256 | | 0.0397 | 8.9604 | 5206 | 0.8500 | 0.6093 | 0.8500 | 0.9220 | | 0.0397 | 8.9639 | 5208 | 0.8371 | 0.6093 | 0.8371 | 0.9149 | | 0.0397 | 8.9673 | 5210 | 0.8309 | 0.6093 | 0.8309 | 0.9116 | | 0.0397 | 8.9707 | 5212 | 0.8262 | 0.6093 | 0.8262 | 0.9090 | | 0.0397 | 8.9742 | 5214 | 0.8279 | 0.6093 | 0.8279 | 0.9099 | | 0.0397 | 8.9776 | 5216 | 0.8290 | 0.6093 | 0.8290 | 0.9105 | | 0.0397 | 8.9811 | 5218 | 0.8386 | 0.6093 | 0.8386 | 0.9157 | | 0.0397 | 8.9845 | 5220 | 0.8446 | 0.6093 | 0.8446 | 0.9190 | | 0.0397 | 8.9880 | 5222 | 0.8527 | 0.6093 | 0.8527 | 0.9234 | | 0.0397 | 8.9914 | 5224 | 0.8620 | 0.6053 | 0.8620 | 0.9285 | | 0.0397 | 8.9948 | 5226 | 0.8751 | 0.6053 | 0.8751 | 0.9354 | | 0.0397 | 8.9983 | 5228 | 0.8803 | 0.6053 | 0.8803 | 0.9382 | | 0.0397 | 9.0017 | 5230 | 0.8780 | 0.6053 | 0.8780 | 0.9370 | | 0.0397 | 9.0052 | 5232 | 0.8731 | 0.6053 | 0.8731 | 0.9344 | | 0.0397 | 9.0086 | 5234 | 0.8603 | 0.6053 | 0.8603 | 0.9275 | | 0.0397 | 9.0120 | 5236 | 0.8491 | 0.6053 | 0.8491 | 0.9214 | | 0.0397 | 9.0155 | 5238 | 0.8349 | 0.6093 | 0.8349 | 0.9137 | | 0.0397 | 9.0189 | 5240 | 0.8304 | 0.6093 | 0.8304 | 0.9113 | | 0.0397 | 9.0224 | 5242 | 0.8361 | 0.6093 | 0.8361 | 0.9144 | | 0.0397 | 9.0258 | 5244 | 0.8456 | 0.6093 | 0.8456 | 0.9196 | | 0.0397 | 9.0293 | 5246 | 0.8439 | 0.6093 | 0.8439 | 0.9186 | | 0.0397 | 9.0327 | 5248 | 0.8475 | 0.6093 | 0.8475 | 0.9206 | | 0.0397 | 9.0361 | 5250 | 0.8514 | 0.6093 | 0.8514 | 0.9227 | | 0.0397 | 9.0396 | 5252 | 0.8573 | 0.6093 | 0.8573 | 0.9259 | | 0.0397 | 9.0430 | 5254 | 0.8691 | 0.6053 | 0.8691 | 0.9323 | | 0.0397 | 9.0465 | 5256 | 0.8798 | 0.6053 | 0.8798 | 0.9380 | | 0.0397 | 9.0499 | 5258 | 0.8975 | 0.5840 | 0.8975 | 0.9474 | | 0.0397 | 9.0534 | 5260 | 0.9134 | 0.5591 | 0.9134 | 0.9557 | | 0.0397 | 9.0568 | 5262 | 0.9153 | 0.5591 | 0.9153 | 0.9567 | | 0.0397 | 9.0602 | 5264 | 0.9071 | 0.5840 | 0.9071 | 0.9524 | | 0.0397 | 9.0637 | 5266 | 0.8947 | 0.5840 | 0.8947 | 0.9459 | | 0.0397 | 9.0671 | 5268 | 0.8873 | 0.5909 | 0.8873 | 0.9420 | | 0.0397 | 9.0706 | 5270 | 0.8745 | 0.5909 | 0.8745 | 0.9352 | | 0.0397 | 9.0740 | 5272 | 0.8646 | 0.6093 | 0.8646 | 0.9299 | | 0.0397 | 9.0775 | 5274 | 0.8579 | 0.6093 | 0.8579 | 0.9262 | | 0.0397 | 9.0809 | 5276 | 0.8495 | 0.6093 | 0.8495 | 0.9217 | | 0.0397 | 9.0843 | 5278 | 0.8471 | 0.6093 | 0.8471 | 0.9204 | | 0.0397 | 9.0878 | 5280 | 0.8487 | 0.6093 | 0.8487 | 0.9213 | | 0.0397 | 9.0912 | 5282 | 0.8540 | 0.6093 | 0.8540 | 0.9241 | | 0.0397 | 9.0947 | 5284 | 0.8658 | 0.5946 | 0.8658 | 0.9305 | | 0.0397 | 9.0981 | 5286 | 0.8804 | 0.5946 | 0.8804 | 0.9383 | | 0.0397 | 9.1015 | 5288 | 0.8860 | 0.5946 | 0.8860 | 0.9413 | | 0.0397 | 9.1050 | 5290 | 0.8936 | 0.5616 | 0.8936 | 0.9453 | | 0.0397 | 9.1084 | 5292 | 0.8974 | 0.5616 | 0.8974 | 0.9473 | | 0.0397 | 9.1119 | 5294 | 0.8960 | 0.5616 | 0.8960 | 0.9466 | | 0.0397 | 9.1153 | 5296 | 0.8917 | 0.5616 | 0.8917 | 0.9443 | | 0.0397 | 9.1188 | 5298 | 0.8891 | 0.5946 | 0.8891 | 0.9429 | | 0.0397 | 9.1222 | 5300 | 0.8913 | 0.5650 | 0.8913 | 0.9441 | | 0.0397 | 9.1256 | 5302 | 0.8855 | 0.5681 | 0.8855 | 0.9410 | | 0.0397 | 9.1291 | 5304 | 0.8804 | 0.5946 | 0.8804 | 0.9383 | | 0.0397 | 9.1325 | 5306 | 0.8761 | 0.5946 | 0.8761 | 0.9360 | | 0.0397 | 9.1360 | 5308 | 0.8705 | 0.5946 | 0.8705 | 0.9330 | | 0.0397 | 9.1394 | 5310 | 0.8673 | 0.5946 | 0.8673 | 0.9313 | | 0.0397 | 9.1429 | 5312 | 0.8686 | 0.5946 | 0.8686 | 0.9320 | | 0.0397 | 9.1463 | 5314 | 0.8731 | 0.5946 | 0.8731 | 0.9344 | | 0.0397 | 9.1497 | 5316 | 0.8772 | 0.5681 | 0.8772 | 0.9366 | | 0.0397 | 9.1532 | 5318 | 0.8845 | 0.5681 | 0.8845 | 0.9405 | | 0.0397 | 9.1566 | 5320 | 0.8909 | 0.5227 | 0.8909 | 0.9439 | | 0.0397 | 9.1601 | 5322 | 0.8978 | 0.5227 | 0.8978 | 0.9475 | | 0.0397 | 9.1635 | 5324 | 0.9025 | 0.5227 | 0.9025 | 0.9500 | | 0.0397 | 9.1670 | 5326 | 0.9051 | 0.5227 | 0.9051 | 0.9514 | | 0.0397 | 9.1704 | 5328 | 0.9057 | 0.5227 | 0.9057 | 0.9517 | | 0.0397 | 9.1738 | 5330 | 0.9107 | 0.5227 | 0.9107 | 0.9543 | | 0.0397 | 9.1773 | 5332 | 0.9177 | 0.4941 | 0.9177 | 0.9580 | | 0.0397 | 9.1807 | 5334 | 0.9251 | 0.4408 | 0.9251 | 0.9618 | | 0.0397 | 9.1842 | 5336 | 0.9250 | 0.4408 | 0.9250 | 0.9617 | | 0.0397 | 9.1876 | 5338 | 0.9215 | 0.4408 | 0.9215 | 0.9600 | | 0.0397 | 9.1910 | 5340 | 0.9188 | 0.4408 | 0.9188 | 0.9585 | | 0.0397 | 9.1945 | 5342 | 0.9204 | 0.4408 | 0.9204 | 0.9594 | | 0.0397 | 9.1979 | 5344 | 0.9205 | 0.4408 | 0.9205 | 0.9594 | | 0.0397 | 9.2014 | 5346 | 0.9148 | 0.4813 | 0.9148 | 0.9565 | | 0.0397 | 9.2048 | 5348 | 0.9022 | 0.5650 | 0.9022 | 0.9498 | | 0.0397 | 9.2083 | 5350 | 0.8889 | 0.6053 | 0.8889 | 0.9428 | | 0.0397 | 9.2117 | 5352 | 0.8830 | 0.6053 | 0.8830 | 0.9397 | | 0.0397 | 9.2151 | 5354 | 0.8767 | 0.6053 | 0.8767 | 0.9363 | | 0.0397 | 9.2186 | 5356 | 0.8760 | 0.6053 | 0.8760 | 0.9359 | | 0.0397 | 9.2220 | 5358 | 0.8726 | 0.6053 | 0.8726 | 0.9341 | | 0.0397 | 9.2255 | 5360 | 0.8733 | 0.6053 | 0.8733 | 0.9345 | | 0.0397 | 9.2289 | 5362 | 0.8786 | 0.6053 | 0.8786 | 0.9373 | | 0.0397 | 9.2324 | 5364 | 0.8838 | 0.6053 | 0.8838 | 0.9401 | | 0.0397 | 9.2358 | 5366 | 0.8896 | 0.6053 | 0.8896 | 0.9432 | | 0.0397 | 9.2392 | 5368 | 0.8904 | 0.6053 | 0.8904 | 0.9436 | | 0.0397 | 9.2427 | 5370 | 0.8890 | 0.6053 | 0.8890 | 0.9429 | | 0.0397 | 9.2461 | 5372 | 0.8902 | 0.6053 | 0.8902 | 0.9435 | | 0.0397 | 9.2496 | 5374 | 0.8844 | 0.6053 | 0.8844 | 0.9404 | | 0.0397 | 9.2530 | 5376 | 0.8837 | 0.6053 | 0.8837 | 0.9400 | | 0.0397 | 9.2565 | 5378 | 0.8911 | 0.6053 | 0.8911 | 0.9440 | | 0.0397 | 9.2599 | 5380 | 0.8978 | 0.5223 | 0.8978 | 0.9475 | | 0.0397 | 9.2633 | 5382 | 0.9018 | 0.5223 | 0.9018 | 0.9496 | | 0.0397 | 9.2668 | 5384 | 0.9059 | 0.5223 | 0.9059 | 0.9518 | | 0.0397 | 9.2702 | 5386 | 0.9080 | 0.4957 | 0.9080 | 0.9529 | | 0.0397 | 9.2737 | 5388 | 0.9090 | 0.4813 | 0.9090 | 0.9534 | | 0.0397 | 9.2771 | 5390 | 0.9094 | 0.4813 | 0.9094 | 0.9536 | | 0.0397 | 9.2806 | 5392 | 0.9095 | 0.4813 | 0.9095 | 0.9537 | | 0.0397 | 9.2840 | 5394 | 0.9082 | 0.4813 | 0.9082 | 0.9530 | | 0.0397 | 9.2874 | 5396 | 0.9085 | 0.4813 | 0.9085 | 0.9532 | | 0.0397 | 9.2909 | 5398 | 0.9076 | 0.4408 | 0.9076 | 0.9527 | | 0.0397 | 9.2943 | 5400 | 0.9073 | 0.4941 | 0.9073 | 0.9525 | | 0.0397 | 9.2978 | 5402 | 0.9025 | 0.5227 | 0.9025 | 0.9500 | | 0.0397 | 9.3012 | 5404 | 0.8973 | 0.5227 | 0.8973 | 0.9472 | | 0.0397 | 9.3046 | 5406 | 0.8966 | 0.5227 | 0.8966 | 0.9469 | | 0.0397 | 9.3081 | 5408 | 0.9017 | 0.5227 | 0.9017 | 0.9496 | | 0.0397 | 9.3115 | 5410 | 0.9052 | 0.5227 | 0.9052 | 0.9514 | | 0.0397 | 9.3150 | 5412 | 0.9108 | 0.4941 | 0.9108 | 0.9544 | | 0.0397 | 9.3184 | 5414 | 0.9216 | 0.4408 | 0.9216 | 0.9600 | | 0.0397 | 9.3219 | 5416 | 0.9388 | 0.4661 | 0.9388 | 0.9689 | | 0.0397 | 9.3253 | 5418 | 0.9561 | 0.4661 | 0.9561 | 0.9778 | | 0.0397 | 9.3287 | 5420 | 0.9623 | 0.4661 | 0.9623 | 0.9810 | | 0.0397 | 9.3322 | 5422 | 0.9624 | 0.4661 | 0.9624 | 0.9810 | | 0.0397 | 9.3356 | 5424 | 0.9599 | 0.4661 | 0.9599 | 0.9797 | | 0.0397 | 9.3391 | 5426 | 0.9633 | 0.4661 | 0.9633 | 0.9815 | | 0.0397 | 9.3425 | 5428 | 0.9669 | 0.4661 | 0.9669 | 0.9833 | | 0.0397 | 9.3460 | 5430 | 0.9670 | 0.4661 | 0.9670 | 0.9833 | | 0.0397 | 9.3494 | 5432 | 0.9615 | 0.4661 | 0.9615 | 0.9806 | | 0.0397 | 9.3528 | 5434 | 0.9552 | 0.4661 | 0.9552 | 0.9773 | | 0.0397 | 9.3563 | 5436 | 0.9459 | 0.4661 | 0.9459 | 0.9726 | | 0.0397 | 9.3597 | 5438 | 0.9353 | 0.4661 | 0.9353 | 0.9671 | | 0.0397 | 9.3632 | 5440 | 0.9222 | 0.4941 | 0.9222 | 0.9603 | | 0.0397 | 9.3666 | 5442 | 0.9074 | 0.5227 | 0.9074 | 0.9526 | | 0.0397 | 9.3701 | 5444 | 0.8922 | 0.5227 | 0.8922 | 0.9446 | | 0.0397 | 9.3735 | 5446 | 0.8770 | 0.5378 | 0.8770 | 0.9365 | | 0.0397 | 9.3769 | 5448 | 0.8710 | 0.5378 | 0.8710 | 0.9332 | | 0.0397 | 9.3804 | 5450 | 0.8640 | 0.5402 | 0.8640 | 0.9295 | | 0.0397 | 9.3838 | 5452 | 0.8606 | 0.5402 | 0.8606 | 0.9277 | | 0.0397 | 9.3873 | 5454 | 0.8611 | 0.5402 | 0.8611 | 0.9280 | | 0.0397 | 9.3907 | 5456 | 0.8638 | 0.5402 | 0.8638 | 0.9294 | | 0.0397 | 9.3941 | 5458 | 0.8649 | 0.5402 | 0.8649 | 0.9300 | | 0.0397 | 9.3976 | 5460 | 0.8689 | 0.5378 | 0.8689 | 0.9322 | | 0.0397 | 9.4010 | 5462 | 0.8733 | 0.5378 | 0.8733 | 0.9345 | | 0.0397 | 9.4045 | 5464 | 0.8768 | 0.5378 | 0.8768 | 0.9364 | | 0.0397 | 9.4079 | 5466 | 0.8860 | 0.5378 | 0.8860 | 0.9413 | | 0.0397 | 9.4114 | 5468 | 0.8932 | 0.5378 | 0.8932 | 0.9451 | | 0.0397 | 9.4148 | 5470 | 0.9021 | 0.4941 | 0.9021 | 0.9498 | | 0.0397 | 9.4182 | 5472 | 0.9075 | 0.5188 | 0.9075 | 0.9526 | | 0.0397 | 9.4217 | 5474 | 0.9072 | 0.5188 | 0.9072 | 0.9525 | | 0.0397 | 9.4251 | 5476 | 0.9055 | 0.5088 | 0.9055 | 0.9516 | | 0.0397 | 9.4286 | 5478 | 0.9042 | 0.5088 | 0.9042 | 0.9509 | | 0.0397 | 9.4320 | 5480 | 0.9065 | 0.5331 | 0.9065 | 0.9521 | | 0.0397 | 9.4355 | 5482 | 0.9106 | 0.4661 | 0.9106 | 0.9543 | | 0.0397 | 9.4389 | 5484 | 0.9100 | 0.4661 | 0.9100 | 0.9540 | | 0.0397 | 9.4423 | 5486 | 0.9065 | 0.5331 | 0.9065 | 0.9521 | | 0.0397 | 9.4458 | 5488 | 0.9035 | 0.5331 | 0.9035 | 0.9505 | | 0.0397 | 9.4492 | 5490 | 0.8946 | 0.5645 | 0.8946 | 0.9459 | | 0.0397 | 9.4527 | 5492 | 0.8896 | 0.5645 | 0.8896 | 0.9432 | | 0.0397 | 9.4561 | 5494 | 0.8842 | 0.5645 | 0.8842 | 0.9403 | | 0.0397 | 9.4596 | 5496 | 0.8805 | 0.5645 | 0.8805 | 0.9384 | | 0.0397 | 9.4630 | 5498 | 0.8710 | 0.5645 | 0.8710 | 0.9333 | | 0.0379 | 9.4664 | 5500 | 0.8664 | 0.5645 | 0.8664 | 0.9308 | | 0.0379 | 9.4699 | 5502 | 0.8638 | 0.5645 | 0.8638 | 0.9294 | | 0.0379 | 9.4733 | 5504 | 0.8597 | 0.5645 | 0.8597 | 0.9272 | | 0.0379 | 9.4768 | 5506 | 0.8587 | 0.5645 | 0.8587 | 0.9267 | | 0.0379 | 9.4802 | 5508 | 0.8559 | 0.6053 | 0.8559 | 0.9251 | | 0.0379 | 9.4836 | 5510 | 0.8548 | 0.6053 | 0.8548 | 0.9245 | | 0.0379 | 9.4871 | 5512 | 0.8530 | 0.6053 | 0.8530 | 0.9236 | | 0.0379 | 9.4905 | 5514 | 0.8554 | 0.5645 | 0.8554 | 0.9249 | | 0.0379 | 9.4940 | 5516 | 0.8601 | 0.5645 | 0.8601 | 0.9274 | | 0.0379 | 9.4974 | 5518 | 0.8693 | 0.5645 | 0.8693 | 0.9324 | | 0.0379 | 9.5009 | 5520 | 0.8769 | 0.5645 | 0.8769 | 0.9364 | | 0.0379 | 9.5043 | 5522 | 0.8844 | 0.5378 | 0.8844 | 0.9404 | | 0.0379 | 9.5077 | 5524 | 0.8888 | 0.5378 | 0.8888 | 0.9427 | | 0.0379 | 9.5112 | 5526 | 0.8952 | 0.5378 | 0.8952 | 0.9462 | | 0.0379 | 9.5146 | 5528 | 0.9010 | 0.5227 | 0.9010 | 0.9492 | | 0.0379 | 9.5181 | 5530 | 0.9048 | 0.5188 | 0.9048 | 0.9512 | | 0.0379 | 9.5215 | 5532 | 0.9112 | 0.5188 | 0.9112 | 0.9546 | | 0.0379 | 9.5250 | 5534 | 0.9216 | 0.4661 | 0.9216 | 0.9600 | | 0.0379 | 9.5284 | 5536 | 0.9359 | 0.4661 | 0.9359 | 0.9674 | | 0.0379 | 9.5318 | 5538 | 0.9516 | 0.4661 | 0.9516 | 0.9755 | | 0.0379 | 9.5353 | 5540 | 0.9617 | 0.4661 | 0.9617 | 0.9807 | | 0.0379 | 9.5387 | 5542 | 0.9651 | 0.4661 | 0.9651 | 0.9824 | | 0.0379 | 9.5422 | 5544 | 0.9645 | 0.4661 | 0.9645 | 0.9821 | | 0.0379 | 9.5456 | 5546 | 0.9600 | 0.4661 | 0.9600 | 0.9798 | | 0.0379 | 9.5491 | 5548 | 0.9558 | 0.4661 | 0.9558 | 0.9776 | | 0.0379 | 9.5525 | 5550 | 0.9464 | 0.4661 | 0.9464 | 0.9728 | | 0.0379 | 9.5559 | 5552 | 0.9354 | 0.4661 | 0.9354 | 0.9672 | | 0.0379 | 9.5594 | 5554 | 0.9243 | 0.4661 | 0.9243 | 0.9614 | | 0.0379 | 9.5628 | 5556 | 0.9133 | 0.5188 | 0.9133 | 0.9556 | | 0.0379 | 9.5663 | 5558 | 0.9054 | 0.5227 | 0.9054 | 0.9515 | | 0.0379 | 9.5697 | 5560 | 0.8967 | 0.5227 | 0.8967 | 0.9469 | | 0.0379 | 9.5731 | 5562 | 0.8924 | 0.5378 | 0.8924 | 0.9447 | | 0.0379 | 9.5766 | 5564 | 0.8892 | 0.5378 | 0.8892 | 0.9430 | | 0.0379 | 9.5800 | 5566 | 0.8860 | 0.5378 | 0.8860 | 0.9413 | | 0.0379 | 9.5835 | 5568 | 0.8795 | 0.5378 | 0.8795 | 0.9378 | | 0.0379 | 9.5869 | 5570 | 0.8744 | 0.5645 | 0.8744 | 0.9351 | | 0.0379 | 9.5904 | 5572 | 0.8747 | 0.5645 | 0.8747 | 0.9353 | | 0.0379 | 9.5938 | 5574 | 0.8758 | 0.5645 | 0.8758 | 0.9358 | | 0.0379 | 9.5972 | 5576 | 0.8810 | 0.5645 | 0.8810 | 0.9386 | | 0.0379 | 9.6007 | 5578 | 0.8832 | 0.5645 | 0.8832 | 0.9398 | | 0.0379 | 9.6041 | 5580 | 0.8826 | 0.5645 | 0.8826 | 0.9395 | | 0.0379 | 9.6076 | 5582 | 0.8833 | 0.5645 | 0.8833 | 0.9399 | | 0.0379 | 9.6110 | 5584 | 0.8841 | 0.5645 | 0.8841 | 0.9402 | | 0.0379 | 9.6145 | 5586 | 0.8803 | 0.5645 | 0.8803 | 0.9382 | | 0.0379 | 9.6179 | 5588 | 0.8803 | 0.5645 | 0.8803 | 0.9382 | | 0.0379 | 9.6213 | 5590 | 0.8819 | 0.5645 | 0.8819 | 0.9391 | | 0.0379 | 9.6248 | 5592 | 0.8860 | 0.5645 | 0.8860 | 0.9413 | | 0.0379 | 9.6282 | 5594 | 0.8893 | 0.5874 | 0.8893 | 0.9430 | | 0.0379 | 9.6317 | 5596 | 0.8896 | 0.5874 | 0.8896 | 0.9432 | | 0.0379 | 9.6351 | 5598 | 0.8870 | 0.5874 | 0.8870 | 0.9418 | | 0.0379 | 9.6386 | 5600 | 0.8835 | 0.5645 | 0.8835 | 0.9400 | | 0.0379 | 9.6420 | 5602 | 0.8803 | 0.5645 | 0.8803 | 0.9383 | | 0.0379 | 9.6454 | 5604 | 0.8754 | 0.5645 | 0.8754 | 0.9356 | | 0.0379 | 9.6489 | 5606 | 0.8722 | 0.5645 | 0.8722 | 0.9339 | | 0.0379 | 9.6523 | 5608 | 0.8721 | 0.5645 | 0.8721 | 0.9339 | | 0.0379 | 9.6558 | 5610 | 0.8748 | 0.5645 | 0.8748 | 0.9353 | | 0.0379 | 9.6592 | 5612 | 0.8800 | 0.5645 | 0.8800 | 0.9381 | | 0.0379 | 9.6627 | 5614 | 0.8873 | 0.5874 | 0.8873 | 0.9420 | | 0.0379 | 9.6661 | 5616 | 0.8923 | 0.5588 | 0.8923 | 0.9446 | | 0.0379 | 9.6695 | 5618 | 0.8976 | 0.5068 | 0.8976 | 0.9474 | | 0.0379 | 9.6730 | 5620 | 0.9014 | 0.5068 | 0.9014 | 0.9494 | | 0.0379 | 9.6764 | 5622 | 0.9016 | 0.5068 | 0.9016 | 0.9495 | | 0.0379 | 9.6799 | 5624 | 0.9020 | 0.5068 | 0.9020 | 0.9497 | | 0.0379 | 9.6833 | 5626 | 0.9025 | 0.5068 | 0.9025 | 0.9500 | | 0.0379 | 9.6867 | 5628 | 0.9058 | 0.5068 | 0.9058 | 0.9517 | | 0.0379 | 9.6902 | 5630 | 0.9100 | 0.4931 | 0.9100 | 0.9539 | | 0.0379 | 9.6936 | 5632 | 0.9167 | 0.4931 | 0.9167 | 0.9574 | | 0.0379 | 9.6971 | 5634 | 0.9226 | 0.4931 | 0.9226 | 0.9605 | | 0.0379 | 9.7005 | 5636 | 0.9273 | 0.4931 | 0.9273 | 0.9630 | | 0.0379 | 9.7040 | 5638 | 0.9329 | 0.4931 | 0.9329 | 0.9659 | | 0.0379 | 9.7074 | 5640 | 0.9373 | 0.4931 | 0.9373 | 0.9681 | | 0.0379 | 9.7108 | 5642 | 0.9387 | 0.4931 | 0.9387 | 0.9689 | | 0.0379 | 9.7143 | 5644 | 0.9385 | 0.4931 | 0.9385 | 0.9688 | | 0.0379 | 9.7177 | 5646 | 0.9406 | 0.4931 | 0.9406 | 0.9698 | | 0.0379 | 9.7212 | 5648 | 0.9406 | 0.4931 | 0.9406 | 0.9699 | | 0.0379 | 9.7246 | 5650 | 0.9393 | 0.4931 | 0.9393 | 0.9692 | | 0.0379 | 9.7281 | 5652 | 0.9391 | 0.4931 | 0.9391 | 0.9691 | | 0.0379 | 9.7315 | 5654 | 0.9389 | 0.4931 | 0.9389 | 0.9690 | | 0.0379 | 9.7349 | 5656 | 0.9370 | 0.4931 | 0.9370 | 0.9680 | | 0.0379 | 9.7384 | 5658 | 0.9363 | 0.4931 | 0.9363 | 0.9676 | | 0.0379 | 9.7418 | 5660 | 0.9343 | 0.4931 | 0.9343 | 0.9666 | | 0.0379 | 9.7453 | 5662 | 0.9298 | 0.4931 | 0.9298 | 0.9643 | | 0.0379 | 9.7487 | 5664 | 0.9260 | 0.4931 | 0.9260 | 0.9623 | | 0.0379 | 9.7522 | 5666 | 0.9229 | 0.4931 | 0.9229 | 0.9607 | | 0.0379 | 9.7556 | 5668 | 0.9203 | 0.4931 | 0.9203 | 0.9593 | | 0.0379 | 9.7590 | 5670 | 0.9160 | 0.4931 | 0.9160 | 0.9571 | | 0.0379 | 9.7625 | 5672 | 0.9103 | 0.4931 | 0.9103 | 0.9541 | | 0.0379 | 9.7659 | 5674 | 0.9058 | 0.5068 | 0.9058 | 0.9518 | | 0.0379 | 9.7694 | 5676 | 0.9029 | 0.5068 | 0.9029 | 0.9502 | | 0.0379 | 9.7728 | 5678 | 0.9017 | 0.5068 | 0.9017 | 0.9496 | | 0.0379 | 9.7762 | 5680 | 0.9024 | 0.5068 | 0.9024 | 0.9500 | | 0.0379 | 9.7797 | 5682 | 0.9036 | 0.5068 | 0.9036 | 0.9506 | | 0.0379 | 9.7831 | 5684 | 0.9047 | 0.5068 | 0.9047 | 0.9512 | | 0.0379 | 9.7866 | 5686 | 0.9062 | 0.4931 | 0.9062 | 0.9520 | | 0.0379 | 9.7900 | 5688 | 0.9052 | 0.4931 | 0.9052 | 0.9514 | | 0.0379 | 9.7935 | 5690 | 0.9042 | 0.5449 | 0.9042 | 0.9509 | | 0.0379 | 9.7969 | 5692 | 0.9024 | 0.5449 | 0.9024 | 0.9499 | | 0.0379 | 9.8003 | 5694 | 0.9018 | 0.5449 | 0.9018 | 0.9496 | | 0.0379 | 9.8038 | 5696 | 0.9015 | 0.5449 | 0.9015 | 0.9495 | | 0.0379 | 9.8072 | 5698 | 0.9023 | 0.5449 | 0.9023 | 0.9499 | | 0.0379 | 9.8107 | 5700 | 0.9044 | 0.5449 | 0.9044 | 0.9510 | | 0.0379 | 9.8141 | 5702 | 0.9072 | 0.5449 | 0.9072 | 0.9525 | | 0.0379 | 9.8176 | 5704 | 0.9079 | 0.5449 | 0.9079 | 0.9528 | | 0.0379 | 9.8210 | 5706 | 0.9064 | 0.5449 | 0.9064 | 0.9521 | | 0.0379 | 9.8244 | 5708 | 0.9032 | 0.5449 | 0.9032 | 0.9504 | | 0.0379 | 9.8279 | 5710 | 0.8994 | 0.5449 | 0.8994 | 0.9484 | | 0.0379 | 9.8313 | 5712 | 0.8957 | 0.5588 | 0.8957 | 0.9464 | | 0.0379 | 9.8348 | 5714 | 0.8939 | 0.5874 | 0.8939 | 0.9455 | | 0.0379 | 9.8382 | 5716 | 0.8917 | 0.5874 | 0.8917 | 0.9443 | | 0.0379 | 9.8417 | 5718 | 0.8884 | 0.5645 | 0.8884 | 0.9425 | | 0.0379 | 9.8451 | 5720 | 0.8861 | 0.5645 | 0.8861 | 0.9413 | | 0.0379 | 9.8485 | 5722 | 0.8858 | 0.5645 | 0.8858 | 0.9412 | | 0.0379 | 9.8520 | 5724 | 0.8862 | 0.5645 | 0.8862 | 0.9414 | | 0.0379 | 9.8554 | 5726 | 0.8869 | 0.5645 | 0.8869 | 0.9418 | | 0.0379 | 9.8589 | 5728 | 0.8884 | 0.5874 | 0.8884 | 0.9426 | | 0.0379 | 9.8623 | 5730 | 0.8906 | 0.5874 | 0.8906 | 0.9437 | | 0.0379 | 9.8657 | 5732 | 0.8934 | 0.5588 | 0.8934 | 0.9452 | | 0.0379 | 9.8692 | 5734 | 0.8955 | 0.5588 | 0.8955 | 0.9463 | | 0.0379 | 9.8726 | 5736 | 0.8979 | 0.5588 | 0.8979 | 0.9476 | | 0.0379 | 9.8761 | 5738 | 0.8987 | 0.5588 | 0.8987 | 0.9480 | | 0.0379 | 9.8795 | 5740 | 0.8996 | 0.5588 | 0.8996 | 0.9485 | | 0.0379 | 9.8830 | 5742 | 0.9008 | 0.5588 | 0.9008 | 0.9491 | | 0.0379 | 9.8864 | 5744 | 0.9028 | 0.5588 | 0.9028 | 0.9502 | | 0.0379 | 9.8898 | 5746 | 0.9052 | 0.5068 | 0.9052 | 0.9514 | | 0.0379 | 9.8933 | 5748 | 0.9065 | 0.4931 | 0.9065 | 0.9521 | | 0.0379 | 9.8967 | 5750 | 0.9078 | 0.4931 | 0.9078 | 0.9528 | | 0.0379 | 9.9002 | 5752 | 0.9093 | 0.4931 | 0.9093 | 0.9536 | | 0.0379 | 9.9036 | 5754 | 0.9101 | 0.4931 | 0.9101 | 0.9540 | | 0.0379 | 9.9071 | 5756 | 0.9110 | 0.4931 | 0.9110 | 0.9545 | | 0.0379 | 9.9105 | 5758 | 0.9112 | 0.4931 | 0.9112 | 0.9546 | | 0.0379 | 9.9139 | 5760 | 0.9118 | 0.4931 | 0.9118 | 0.9549 | | 0.0379 | 9.9174 | 5762 | 0.9130 | 0.4931 | 0.9130 | 0.9555 | | 0.0379 | 9.9208 | 5764 | 0.9131 | 0.4931 | 0.9131 | 0.9556 | | 0.0379 | 9.9243 | 5766 | 0.9131 | 0.4931 | 0.9131 | 0.9556 | | 0.0379 | 9.9277 | 5768 | 0.9125 | 0.4931 | 0.9125 | 0.9553 | | 0.0379 | 9.9312 | 5770 | 0.9116 | 0.4931 | 0.9116 | 0.9548 | | 0.0379 | 9.9346 | 5772 | 0.9109 | 0.4931 | 0.9109 | 0.9544 | | 0.0379 | 9.9380 | 5774 | 0.9105 | 0.4931 | 0.9105 | 0.9542 | | 0.0379 | 9.9415 | 5776 | 0.9103 | 0.4931 | 0.9103 | 0.9541 | | 0.0379 | 9.9449 | 5778 | 0.9102 | 0.4931 | 0.9102 | 0.9540 | | 0.0379 | 9.9484 | 5780 | 0.9104 | 0.4931 | 0.9104 | 0.9541 | | 0.0379 | 9.9518 | 5782 | 0.9103 | 0.4931 | 0.9103 | 0.9541 | | 0.0379 | 9.9552 | 5784 | 0.9102 | 0.4931 | 0.9102 | 0.9540 | | 0.0379 | 9.9587 | 5786 | 0.9099 | 0.4931 | 0.9099 | 0.9539 | | 0.0379 | 9.9621 | 5788 | 0.9098 | 0.4931 | 0.9098 | 0.9538 | | 0.0379 | 9.9656 | 5790 | 0.9097 | 0.4931 | 0.9097 | 0.9538 | | 0.0379 | 9.9690 | 5792 | 0.9098 | 0.4931 | 0.9098 | 0.9538 | | 0.0379 | 9.9725 | 5794 | 0.9101 | 0.4931 | 0.9101 | 0.9540 | | 0.0379 | 9.9759 | 5796 | 0.9106 | 0.4931 | 0.9106 | 0.9542 | | 0.0379 | 9.9793 | 5798 | 0.9108 | 0.4931 | 0.9108 | 0.9544 | | 0.0379 | 9.9828 | 5800 | 0.9107 | 0.4931 | 0.9107 | 0.9543 | | 0.0379 | 9.9862 | 5802 | 0.9108 | 0.4931 | 0.9108 | 0.9543 | | 0.0379 | 9.9897 | 5804 | 0.9108 | 0.4931 | 0.9108 | 0.9544 | | 0.0379 | 9.9931 | 5806 | 0.9107 | 0.4931 | 0.9107 | 0.9543 | | 0.0379 | 9.9966 | 5808 | 0.9107 | 0.4931 | 0.9107 | 0.9543 | | 0.0379 | 10.0 | 5810 | 0.9107 | 0.4931 | 0.9107 | 0.9543 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
MayBashendy/ArabicNewSplits3_FineTuningAraBERT_run3_AugV5_k10_task1_organization
MayBashendy
2024-12-04T16:23:12Z
163
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-12-04T16:16:36Z
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: ArabicNewSplits3_FineTuningAraBERT_run3_AugV5_k10_task1_organization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ArabicNewSplits3_FineTuningAraBERT_run3_AugV5_k10_task1_organization This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7273 - Qwk: 0.6431 - Mse: 0.7273 - Rmse: 0.8528 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:------:|:----:|:---------------:|:-------:|:------:|:------:| | No log | 0.04 | 2 | 4.7660 | -0.0151 | 4.7660 | 2.1831 | | No log | 0.08 | 4 | 2.7800 | 0.0315 | 2.7800 | 1.6673 | | No log | 0.12 | 6 | 1.9801 | -0.0354 | 1.9801 | 1.4072 | | No log | 0.16 | 8 | 2.4587 | -0.1636 | 2.4587 | 1.5680 | | No log | 0.2 | 10 | 1.9055 | -0.0680 | 1.9055 | 1.3804 | | No log | 0.24 | 12 | 1.4720 | 0.1236 | 1.4720 | 1.2133 | | No log | 0.28 | 14 | 1.3428 | 0.0493 | 1.3428 | 1.1588 | | No log | 0.32 | 16 | 1.5088 | 0.0502 | 1.5088 | 1.2283 | | No log | 0.36 | 18 | 1.5366 | 0.0502 | 1.5366 | 1.2396 | | No log | 0.4 | 20 | 1.3687 | 0.0502 | 1.3687 | 1.1699 | | No log | 0.44 | 22 | 1.2149 | 0.1164 | 1.2149 | 1.1022 | | No log | 0.48 | 24 | 1.0969 | 0.3793 | 1.0969 | 1.0473 | | No log | 0.52 | 26 | 1.0160 | 0.3696 | 1.0160 | 1.0080 | | No log | 0.56 | 28 | 1.0119 | 0.2980 | 1.0119 | 1.0059 | | No log | 0.6 | 30 | 0.9662 | 0.3276 | 0.9662 | 0.9830 | | No log | 0.64 | 32 | 0.8600 | 0.4438 | 0.8600 | 0.9274 | | No log | 0.68 | 34 | 0.8412 | 0.5 | 0.8412 | 0.9172 | | No log | 0.72 | 36 | 0.9916 | 0.4527 | 0.9916 | 0.9958 | | No log | 0.76 | 38 | 1.1141 | 0.4137 | 1.1141 | 1.0555 | | No log | 0.8 | 40 | 0.9422 | 0.4493 | 0.9422 | 0.9707 | | No log | 0.84 | 42 | 0.7827 | 0.4852 | 0.7827 | 0.8847 | | No log | 0.88 | 44 | 0.7817 | 0.5629 | 0.7817 | 0.8841 | | No log | 0.92 | 46 | 0.7947 | 0.5037 | 0.7947 | 0.8914 | | No log | 0.96 | 48 | 0.8103 | 0.5037 | 0.8103 | 0.9002 | | No log | 1.0 | 50 | 0.7784 | 0.5484 | 0.7784 | 0.8823 | | No log | 1.04 | 52 | 0.7824 | 0.5272 | 0.7824 | 0.8846 | | No log | 1.08 | 54 | 0.7833 | 0.5629 | 0.7833 | 0.8850 | | No log | 1.12 | 56 | 0.7761 | 0.5758 | 0.7761 | 0.8810 | | No log | 1.16 | 58 | 0.7943 | 0.5758 | 0.7943 | 0.8912 | | No log | 1.2 | 60 | 0.7965 | 0.4897 | 0.7965 | 0.8925 | | No log | 1.24 | 62 | 0.7978 | 0.4897 | 0.7978 | 0.8932 | | No log | 1.28 | 64 | 0.7500 | 0.5345 | 0.7500 | 0.8660 | | No log | 1.32 | 66 | 0.7429 | 0.4875 | 0.7429 | 0.8619 | | No log | 1.3600 | 68 | 0.7668 | 0.4897 | 0.7668 | 0.8756 | | No log | 1.4 | 70 | 0.7577 | 0.5034 | 0.7577 | 0.8705 | | No log | 1.44 | 72 | 0.8103 | 0.5083 | 0.8103 | 0.9002 | | No log | 1.48 | 74 | 0.8455 | 0.4873 | 0.8455 | 0.9195 | | No log | 1.52 | 76 | 0.7940 | 0.5286 | 0.7940 | 0.8910 | | No log | 1.56 | 78 | 0.7399 | 0.6283 | 0.7399 | 0.8602 | | No log | 1.6 | 80 | 0.7827 | 0.6419 | 0.7827 | 0.8847 | | No log | 1.6400 | 82 | 0.7471 | 0.6322 | 0.7471 | 0.8644 | | No log | 1.6800 | 84 | 0.7640 | 0.6801 | 0.7640 | 0.8741 | | No log | 1.72 | 86 | 0.7978 | 0.6741 | 0.7978 | 0.8932 | | No log | 1.76 | 88 | 0.7038 | 0.6959 | 0.7038 | 0.8389 | | No log | 1.8 | 90 | 0.6945 | 0.6743 | 0.6945 | 0.8334 | | No log | 1.8400 | 92 | 0.6982 | 0.6927 | 0.6982 | 0.8356 | | No log | 1.88 | 94 | 0.6950 | 0.6835 | 0.6950 | 0.8336 | | No log | 1.92 | 96 | 0.7052 | 0.7034 | 0.7052 | 0.8398 | | No log | 1.96 | 98 | 0.6851 | 0.7130 | 0.6851 | 0.8277 | | No log | 2.0 | 100 | 0.6280 | 0.6905 | 0.6280 | 0.7925 | | No log | 2.04 | 102 | 0.6430 | 0.6918 | 0.6430 | 0.8019 | | No log | 2.08 | 104 | 0.6034 | 0.7133 | 0.6034 | 0.7768 | | No log | 2.12 | 106 | 0.6815 | 0.6937 | 0.6815 | 0.8255 | | No log | 2.16 | 108 | 0.7411 | 0.5909 | 0.7411 | 0.8609 | | No log | 2.2 | 110 | 0.6543 | 0.7132 | 0.6543 | 0.8089 | | No log | 2.24 | 112 | 0.6511 | 0.6855 | 0.6511 | 0.8069 | | No log | 2.2800 | 114 | 0.6789 | 0.7340 | 0.6789 | 0.8240 | | No log | 2.32 | 116 | 0.7071 | 0.6671 | 0.7071 | 0.8409 | | No log | 2.36 | 118 | 0.6994 | 0.6712 | 0.6994 | 0.8363 | | No log | 2.4 | 120 | 0.6608 | 0.6671 | 0.6608 | 0.8129 | | No log | 2.44 | 122 | 0.7031 | 0.6683 | 0.7031 | 0.8385 | | No log | 2.48 | 124 | 0.5697 | 0.7165 | 0.5697 | 0.7548 | | No log | 2.52 | 126 | 0.5652 | 0.7164 | 0.5652 | 0.7518 | | No log | 2.56 | 128 | 0.6030 | 0.6375 | 0.6030 | 0.7765 | | No log | 2.6 | 130 | 0.5643 | 0.7317 | 0.5643 | 0.7512 | | No log | 2.64 | 132 | 0.6556 | 0.6548 | 0.6556 | 0.8097 | | No log | 2.68 | 134 | 0.6535 | 0.6548 | 0.6535 | 0.8084 | | No log | 2.7200 | 136 | 0.5613 | 0.7564 | 0.5613 | 0.7492 | | No log | 2.76 | 138 | 0.5474 | 0.7515 | 0.5474 | 0.7399 | | No log | 2.8 | 140 | 0.6650 | 0.6548 | 0.6650 | 0.8155 | | No log | 2.84 | 142 | 0.7601 | 0.6271 | 0.7601 | 0.8718 | | No log | 2.88 | 144 | 0.7676 | 0.6480 | 0.7676 | 0.8762 | | No log | 2.92 | 146 | 0.6482 | 0.7164 | 0.6482 | 0.8051 | | No log | 2.96 | 148 | 0.6089 | 0.7227 | 0.6089 | 0.7803 | | No log | 3.0 | 150 | 0.7263 | 0.6548 | 0.7263 | 0.8522 | | No log | 3.04 | 152 | 0.8609 | 0.5645 | 0.8609 | 0.9279 | | No log | 3.08 | 154 | 0.7347 | 0.6686 | 0.7347 | 0.8571 | | No log | 3.12 | 156 | 0.6637 | 0.6814 | 0.6637 | 0.8147 | | No log | 3.16 | 158 | 0.6927 | 0.6758 | 0.6927 | 0.8323 | | No log | 3.2 | 160 | 0.7841 | 0.5475 | 0.7841 | 0.8855 | | No log | 3.24 | 162 | 0.7068 | 0.6686 | 0.7068 | 0.8407 | | No log | 3.2800 | 164 | 0.7263 | 0.6548 | 0.7263 | 0.8522 | | No log | 3.32 | 166 | 0.9497 | 0.5536 | 0.9497 | 0.9745 | | No log | 3.36 | 168 | 1.0767 | 0.5276 | 1.0767 | 1.0376 | | No log | 3.4 | 170 | 0.9387 | 0.5536 | 0.9387 | 0.9689 | | No log | 3.44 | 172 | 0.8986 | 0.6055 | 0.8986 | 0.9479 | | No log | 3.48 | 174 | 0.7807 | 0.7089 | 0.7807 | 0.8836 | | No log | 3.52 | 176 | 0.6557 | 0.6228 | 0.6557 | 0.8097 | | No log | 3.56 | 178 | 0.6231 | 0.6150 | 0.6231 | 0.7894 | | No log | 3.6 | 180 | 0.6019 | 0.7036 | 0.6019 | 0.7758 | | No log | 3.64 | 182 | 0.6548 | 0.6587 | 0.6548 | 0.8092 | | No log | 3.68 | 184 | 0.7935 | 0.6271 | 0.7935 | 0.8908 | | No log | 3.7200 | 186 | 0.7408 | 0.6195 | 0.7408 | 0.8607 | | No log | 3.76 | 188 | 0.7020 | 0.6116 | 0.7020 | 0.8379 | | No log | 3.8 | 190 | 0.6662 | 0.6653 | 0.6662 | 0.8162 | | No log | 3.84 | 192 | 0.6191 | 0.7164 | 0.6191 | 0.7868 | | No log | 3.88 | 194 | 0.6713 | 0.7089 | 0.6713 | 0.8194 | | No log | 3.92 | 196 | 0.8613 | 0.5276 | 0.8613 | 0.9280 | | No log | 3.96 | 198 | 1.0149 | 0.5382 | 1.0149 | 1.0074 | | No log | 4.0 | 200 | 0.9587 | 0.5276 | 0.9587 | 0.9791 | | No log | 4.04 | 202 | 0.8194 | 0.6410 | 0.8194 | 0.9052 | | No log | 4.08 | 204 | 0.8184 | 0.628 | 0.8184 | 0.9046 | | No log | 4.12 | 206 | 0.8315 | 0.628 | 0.8315 | 0.9119 | | No log | 4.16 | 208 | 0.7777 | 0.6538 | 0.7777 | 0.8819 | | No log | 4.2 | 210 | 0.7584 | 0.6829 | 0.7584 | 0.8708 | | No log | 4.24 | 212 | 0.6917 | 0.7295 | 0.6917 | 0.8317 | | No log | 4.28 | 214 | 0.6309 | 0.7008 | 0.6309 | 0.7943 | | No log | 4.32 | 216 | 0.6109 | 0.6710 | 0.6109 | 0.7816 | | No log | 4.36 | 218 | 0.6073 | 0.7123 | 0.6073 | 0.7793 | | No log | 4.4 | 220 | 0.5952 | 0.7474 | 0.5952 | 0.7715 | | No log | 4.44 | 222 | 0.5859 | 0.7474 | 0.5859 | 0.7654 | | No log | 4.48 | 224 | 0.5857 | 0.7324 | 0.5857 | 0.7653 | | No log | 4.52 | 226 | 0.5748 | 0.7210 | 0.5748 | 0.7581 | | No log | 4.5600 | 228 | 0.5790 | 0.7210 | 0.5790 | 0.7609 | | No log | 4.6 | 230 | 0.5892 | 0.7051 | 0.5892 | 0.7676 | | No log | 4.64 | 232 | 0.6282 | 0.6840 | 0.6282 | 0.7926 | | No log | 4.68 | 234 | 0.6040 | 0.6851 | 0.6040 | 0.7771 | | No log | 4.72 | 236 | 0.5974 | 0.6851 | 0.5974 | 0.7729 | | No log | 4.76 | 238 | 0.5714 | 0.6929 | 0.5714 | 0.7559 | | No log | 4.8 | 240 | 0.5629 | 0.6579 | 0.5629 | 0.7503 | | No log | 4.84 | 242 | 0.5739 | 0.6433 | 0.5739 | 0.7576 | | No log | 4.88 | 244 | 0.5526 | 0.6480 | 0.5526 | 0.7434 | | No log | 4.92 | 246 | 0.5793 | 0.6992 | 0.5793 | 0.7611 | | No log | 4.96 | 248 | 0.6925 | 0.6431 | 0.6925 | 0.8322 | | No log | 5.0 | 250 | 0.7460 | 0.65 | 0.7460 | 0.8637 | | No log | 5.04 | 252 | 0.6890 | 0.6478 | 0.6890 | 0.8301 | | No log | 5.08 | 254 | 0.6209 | 0.5982 | 0.6209 | 0.7880 | | No log | 5.12 | 256 | 0.6214 | 0.5982 | 0.6214 | 0.7883 | | No log | 5.16 | 258 | 0.6174 | 0.6468 | 0.6174 | 0.7857 | | No log | 5.2 | 260 | 0.6088 | 0.6870 | 0.6088 | 0.7803 | | No log | 5.24 | 262 | 0.6184 | 0.6875 | 0.6184 | 0.7864 | | No log | 5.28 | 264 | 0.6172 | 0.6875 | 0.6172 | 0.7856 | | No log | 5.32 | 266 | 0.6107 | 0.7258 | 0.6107 | 0.7815 | | No log | 5.36 | 268 | 0.5841 | 0.6732 | 0.5841 | 0.7643 | | No log | 5.4 | 270 | 0.5862 | 0.6616 | 0.5862 | 0.7656 | | No log | 5.44 | 272 | 0.5902 | 0.6767 | 0.5902 | 0.7682 | | No log | 5.48 | 274 | 0.6431 | 0.6261 | 0.6431 | 0.8019 | | No log | 5.52 | 276 | 0.7174 | 0.6154 | 0.7174 | 0.8470 | | No log | 5.5600 | 278 | 0.6994 | 0.6176 | 0.6994 | 0.8363 | | No log | 5.6 | 280 | 0.6612 | 0.6471 | 0.6612 | 0.8132 | | No log | 5.64 | 282 | 0.6587 | 0.6471 | 0.6587 | 0.8116 | | No log | 5.68 | 284 | 0.6518 | 0.6471 | 0.6518 | 0.8074 | | No log | 5.72 | 286 | 0.6918 | 0.6405 | 0.6918 | 0.8317 | | No log | 5.76 | 288 | 0.7977 | 0.6229 | 0.7977 | 0.8931 | | No log | 5.8 | 290 | 0.8901 | 0.5808 | 0.8901 | 0.9435 | | No log | 5.84 | 292 | 0.8898 | 0.5808 | 0.8898 | 0.9433 | | No log | 5.88 | 294 | 0.8565 | 0.5943 | 0.8565 | 0.9255 | | No log | 5.92 | 296 | 0.7590 | 0.6473 | 0.7590 | 0.8712 | | No log | 5.96 | 298 | 0.7121 | 0.6604 | 0.7121 | 0.8438 | | No log | 6.0 | 300 | 0.6767 | 0.6821 | 0.6767 | 0.8226 | | No log | 6.04 | 302 | 0.6990 | 0.6689 | 0.6990 | 0.8361 | | No log | 6.08 | 304 | 0.7633 | 0.5986 | 0.7633 | 0.8736 | | No log | 6.12 | 306 | 0.8722 | 0.5808 | 0.8722 | 0.9339 | | No log | 6.16 | 308 | 0.8806 | 0.5808 | 0.8806 | 0.9384 | | No log | 6.2 | 310 | 0.8080 | 0.6322 | 0.8080 | 0.8989 | | No log | 6.24 | 312 | 0.6933 | 0.6751 | 0.6933 | 0.8327 | | No log | 6.28 | 314 | 0.6190 | 0.6813 | 0.6190 | 0.7867 | | No log | 6.32 | 316 | 0.6060 | 0.7117 | 0.6060 | 0.7784 | | No log | 6.36 | 318 | 0.5976 | 0.6926 | 0.5976 | 0.7731 | | No log | 6.4 | 320 | 0.6070 | 0.7195 | 0.6070 | 0.7791 | | No log | 6.44 | 322 | 0.6634 | 0.7063 | 0.6634 | 0.8145 | | No log | 6.48 | 324 | 0.7573 | 0.6634 | 0.7573 | 0.8702 | | No log | 6.52 | 326 | 0.7539 | 0.65 | 0.7539 | 0.8683 | | No log | 6.5600 | 328 | 0.7108 | 0.6768 | 0.7108 | 0.8431 | | No log | 6.6 | 330 | 0.6769 | 0.6358 | 0.6769 | 0.8227 | | No log | 6.64 | 332 | 0.6629 | 0.6358 | 0.6629 | 0.8142 | | No log | 6.68 | 334 | 0.6982 | 0.6217 | 0.6982 | 0.8356 | | No log | 6.72 | 336 | 0.7167 | 0.6217 | 0.7167 | 0.8466 | | No log | 6.76 | 338 | 0.6958 | 0.6261 | 0.6958 | 0.8342 | | No log | 6.8 | 340 | 0.6819 | 0.6405 | 0.6819 | 0.8258 | | No log | 6.84 | 342 | 0.6588 | 0.6405 | 0.6588 | 0.8116 | | No log | 6.88 | 344 | 0.6609 | 0.6405 | 0.6609 | 0.8130 | | No log | 6.92 | 346 | 0.6955 | 0.6261 | 0.6955 | 0.8340 | | No log | 6.96 | 348 | 0.7469 | 0.6053 | 0.7469 | 0.8643 | | No log | 7.0 | 350 | 0.7467 | 0.5933 | 0.7467 | 0.8641 | | No log | 7.04 | 352 | 0.7061 | 0.6261 | 0.7061 | 0.8403 | | No log | 7.08 | 354 | 0.7138 | 0.5970 | 0.7138 | 0.8449 | | No log | 7.12 | 356 | 0.7529 | 0.5970 | 0.7529 | 0.8677 | | No log | 7.16 | 358 | 0.7571 | 0.5823 | 0.7571 | 0.8701 | | No log | 7.2 | 360 | 0.7467 | 0.5823 | 0.7467 | 0.8641 | | No log | 7.24 | 362 | 0.6954 | 0.6261 | 0.6954 | 0.8339 | | No log | 7.28 | 364 | 0.6803 | 0.6261 | 0.6803 | 0.8248 | | No log | 7.32 | 366 | 0.7005 | 0.6261 | 0.7005 | 0.8369 | | No log | 7.36 | 368 | 0.7434 | 0.6014 | 0.7434 | 0.8622 | | No log | 7.4 | 370 | 0.7748 | 0.6014 | 0.7748 | 0.8802 | | No log | 7.44 | 372 | 0.7794 | 0.6014 | 0.7794 | 0.8828 | | No log | 7.48 | 374 | 0.8323 | 0.6055 | 0.8323 | 0.9123 | | No log | 7.52 | 376 | 0.8832 | 0.6055 | 0.8832 | 0.9398 | | No log | 7.5600 | 378 | 0.8824 | 0.6055 | 0.8824 | 0.9393 | | No log | 7.6 | 380 | 0.8168 | 0.5943 | 0.8168 | 0.9038 | | No log | 7.64 | 382 | 0.7402 | 0.6293 | 0.7402 | 0.8604 | | No log | 7.68 | 384 | 0.7071 | 0.6431 | 0.7071 | 0.8409 | | No log | 7.72 | 386 | 0.7158 | 0.6431 | 0.7158 | 0.8460 | | No log | 7.76 | 388 | 0.7231 | 0.6431 | 0.7231 | 0.8504 | | No log | 7.8 | 390 | 0.7341 | 0.6431 | 0.7341 | 0.8568 | | No log | 7.84 | 392 | 0.7243 | 0.6431 | 0.7243 | 0.8510 | | No log | 7.88 | 394 | 0.7349 | 0.6293 | 0.7349 | 0.8573 | | No log | 7.92 | 396 | 0.7463 | 0.6293 | 0.7463 | 0.8639 | | No log | 7.96 | 398 | 0.7480 | 0.6293 | 0.7480 | 0.8649 | | No log | 8.0 | 400 | 0.7290 | 0.6478 | 0.7290 | 0.8538 | | No log | 8.04 | 402 | 0.6982 | 0.6478 | 0.6982 | 0.8356 | | No log | 8.08 | 404 | 0.6923 | 0.6478 | 0.6923 | 0.8320 | | No log | 8.12 | 406 | 0.6999 | 0.6478 | 0.6999 | 0.8366 | | No log | 8.16 | 408 | 0.6788 | 0.6499 | 0.6788 | 0.8239 | | No log | 8.2 | 410 | 0.6675 | 0.6379 | 0.6675 | 0.8170 | | No log | 8.24 | 412 | 0.6456 | 0.6519 | 0.6456 | 0.8035 | | No log | 8.28 | 414 | 0.6464 | 0.6519 | 0.6464 | 0.8040 | | No log | 8.32 | 416 | 0.6444 | 0.6519 | 0.6444 | 0.8027 | | No log | 8.36 | 418 | 0.6487 | 0.6519 | 0.6487 | 0.8054 | | No log | 8.4 | 420 | 0.6559 | 0.6283 | 0.6559 | 0.8098 | | No log | 8.44 | 422 | 0.6846 | 0.6261 | 0.6846 | 0.8274 | | No log | 8.48 | 424 | 0.7055 | 0.6478 | 0.7055 | 0.8399 | | No log | 8.52 | 426 | 0.7070 | 0.6478 | 0.7070 | 0.8409 | | No log | 8.56 | 428 | 0.6968 | 0.6478 | 0.6968 | 0.8348 | | No log | 8.6 | 430 | 0.6670 | 0.6283 | 0.6670 | 0.8167 | | No log | 8.64 | 432 | 0.6433 | 0.6519 | 0.6433 | 0.8020 | | No log | 8.68 | 434 | 0.6455 | 0.6519 | 0.6455 | 0.8035 | | No log | 8.72 | 436 | 0.6651 | 0.6283 | 0.6651 | 0.8155 | | No log | 8.76 | 438 | 0.6870 | 0.6261 | 0.6870 | 0.8288 | | No log | 8.8 | 440 | 0.6996 | 0.6478 | 0.6996 | 0.8364 | | No log | 8.84 | 442 | 0.6999 | 0.6261 | 0.6999 | 0.8366 | | No log | 8.88 | 444 | 0.7098 | 0.6261 | 0.7098 | 0.8425 | | No log | 8.92 | 446 | 0.7263 | 0.6431 | 0.7263 | 0.8522 | | No log | 8.96 | 448 | 0.7246 | 0.6478 | 0.7246 | 0.8512 | | No log | 9.0 | 450 | 0.7314 | 0.6431 | 0.7314 | 0.8552 | | No log | 9.04 | 452 | 0.7268 | 0.6261 | 0.7268 | 0.8525 | | No log | 9.08 | 454 | 0.7244 | 0.6261 | 0.7244 | 0.8511 | | No log | 9.12 | 456 | 0.7135 | 0.6261 | 0.7135 | 0.8447 | | No log | 9.16 | 458 | 0.7088 | 0.6261 | 0.7088 | 0.8419 | | No log | 9.2 | 460 | 0.7176 | 0.6261 | 0.7176 | 0.8471 | | No log | 9.24 | 462 | 0.7237 | 0.6217 | 0.7237 | 0.8507 | | No log | 9.28 | 464 | 0.7308 | 0.6431 | 0.7308 | 0.8549 | | No log | 9.32 | 466 | 0.7368 | 0.6293 | 0.7368 | 0.8584 | | No log | 9.36 | 468 | 0.7496 | 0.6293 | 0.7496 | 0.8658 | | No log | 9.4 | 470 | 0.7583 | 0.6154 | 0.7583 | 0.8708 | | No log | 9.44 | 472 | 0.7712 | 0.6154 | 0.7712 | 0.8782 | | No log | 9.48 | 474 | 0.7728 | 0.6154 | 0.7728 | 0.8791 | | No log | 9.52 | 476 | 0.7697 | 0.6154 | 0.7697 | 0.8773 | | No log | 9.56 | 478 | 0.7638 | 0.6154 | 0.7638 | 0.8740 | | No log | 9.6 | 480 | 0.7514 | 0.6293 | 0.7514 | 0.8668 | | No log | 9.64 | 482 | 0.7414 | 0.6431 | 0.7414 | 0.8611 | | No log | 9.68 | 484 | 0.7309 | 0.6431 | 0.7309 | 0.8549 | | No log | 9.72 | 486 | 0.7235 | 0.6431 | 0.7235 | 0.8506 | | No log | 9.76 | 488 | 0.7169 | 0.6431 | 0.7169 | 0.8467 | | No log | 9.8 | 490 | 0.7171 | 0.6431 | 0.7171 | 0.8468 | | No log | 9.84 | 492 | 0.7207 | 0.6431 | 0.7207 | 0.8489 | | No log | 9.88 | 494 | 0.7221 | 0.6431 | 0.7221 | 0.8497 | | No log | 9.92 | 496 | 0.7242 | 0.6431 | 0.7242 | 0.8510 | | No log | 9.96 | 498 | 0.7262 | 0.6431 | 0.7262 | 0.8522 | | 0.353 | 10.0 | 500 | 0.7273 | 0.6431 | 0.7273 | 0.8528 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
dada22231/e93b15dc-a886-41d4-82be-188d20cae77e
dada22231
2024-12-04T16:21:34Z
5
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-3B", "base_model:adapter:unsloth/Qwen2.5-3B", "license:other", "region:us" ]
null
2024-12-04T16:04:54Z
--- library_name: peft license: other base_model: unsloth/Qwen2.5-3B tags: - axolotl - generated_from_trainer model-index: - name: e93b15dc-a886-41d4-82be-188d20cae77e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-3B bf16: auto chat_template: llama3 cosine_min_lr_ratio: 0.1 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - acef9caccbb2bf36_train_data.json ds_type: json format: custom path: /workspace/input_data/acef9caccbb2bf36_train_data.json type: field_input: seq field_instruction: id field_output: labels_str format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 1 eval_batch_size: 1 eval_sample_packing: false eval_steps: 25 evaluation_strategy: steps flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 32 gradient_checkpointing: true group_by_length: true hub_model_id: dada22231/e93b15dc-a886-41d4-82be-188d20cae77e hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lora_target_modules: - q_proj - v_proj lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 70GiB 1: 70GiB 2: 70GiB 3: 70GiB max_steps: 25 micro_batch_size: 1 mlflow_experiment_name: /tmp/acef9caccbb2bf36_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 25 save_strategy: steps sequence_len: 2048 strict: false tf32: false tokenizer_type: AutoTokenizer torch_compile: false train_on_inputs: false trust_remote_code: true val_set_size: 50 wandb_entity: null wandb_mode: online wandb_name: e93b15dc-a886-41d4-82be-188d20cae77e wandb_project: Public_TuningSN wandb_runid: e93b15dc-a886-41d4-82be-188d20cae77e warmup_ratio: 0.04 weight_decay: 0.01 xformers_attention: null ``` </details><br> # e93b15dc-a886-41d4-82be-188d20cae77e This model is a fine-tuned version of [unsloth/Qwen2.5-3B](https://huggingface.co/unsloth/Qwen2.5-3B) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - total_eval_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 2 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 5791798.0 | 0.0002 | 1 | nan | | 0.0 | 0.0061 | 25 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/Hebrew-Gemma-11B-V2-GGUF
mradermacher
2024-12-04T16:19:49Z
22
0
transformers
[ "transformers", "gguf", "en", "he", "base_model:yam-peleg/Hebrew-Gemma-11B-V2", "base_model:quantized:yam-peleg/Hebrew-Gemma-11B-V2", "license:other", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-03T22:50:03Z
--- base_model: yam-peleg/Hebrew-Gemma-11B-V2 language: - en - he library_name: transformers license: other license_link: https://ai.google.dev/gemma/terms license_name: gemma-terms-of-use quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> static quants of https://huggingface.co/yam-peleg/Hebrew-Gemma-11B-V2 <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Hebrew-Gemma-11B-V2-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Hebrew-Gemma-11B-V2-GGUF/resolve/main/Hebrew-Gemma-11B-V2.Q2_K.gguf) | Q2_K | 4.3 | | | [GGUF](https://huggingface.co/mradermacher/Hebrew-Gemma-11B-V2-GGUF/resolve/main/Hebrew-Gemma-11B-V2.Q3_K_S.gguf) | Q3_K_S | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/Hebrew-Gemma-11B-V2-GGUF/resolve/main/Hebrew-Gemma-11B-V2.Q3_K_M.gguf) | Q3_K_M | 5.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Hebrew-Gemma-11B-V2-GGUF/resolve/main/Hebrew-Gemma-11B-V2.Q3_K_L.gguf) | Q3_K_L | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Hebrew-Gemma-11B-V2-GGUF/resolve/main/Hebrew-Gemma-11B-V2.IQ4_XS.gguf) | IQ4_XS | 5.9 | | | [GGUF](https://huggingface.co/mradermacher/Hebrew-Gemma-11B-V2-GGUF/resolve/main/Hebrew-Gemma-11B-V2.Q4_0_4_4.gguf) | Q4_0_4_4 | 6.2 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/Hebrew-Gemma-11B-V2-GGUF/resolve/main/Hebrew-Gemma-11B-V2.Q4_K_S.gguf) | Q4_K_S | 6.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Hebrew-Gemma-11B-V2-GGUF/resolve/main/Hebrew-Gemma-11B-V2.Q4_K_M.gguf) | Q4_K_M | 6.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Hebrew-Gemma-11B-V2-GGUF/resolve/main/Hebrew-Gemma-11B-V2.Q5_K_S.gguf) | Q5_K_S | 7.4 | | | [GGUF](https://huggingface.co/mradermacher/Hebrew-Gemma-11B-V2-GGUF/resolve/main/Hebrew-Gemma-11B-V2.Q5_K_M.gguf) | Q5_K_M | 7.6 | | | [GGUF](https://huggingface.co/mradermacher/Hebrew-Gemma-11B-V2-GGUF/resolve/main/Hebrew-Gemma-11B-V2.Q6_K.gguf) | Q6_K | 8.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Hebrew-Gemma-11B-V2-GGUF/resolve/main/Hebrew-Gemma-11B-V2.Q8_0.gguf) | Q8_0 | 11.2 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Hebrew-Gemma-11B-V2-GGUF/resolve/main/Hebrew-Gemma-11B-V2.f16.gguf) | f16 | 21.1 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
OpenBuddy/openbuddy-qwen2.5coder-32b-v24.1q-200k
OpenBuddy
2024-12-04T16:09:04Z
6
2
null
[ "safetensors", "qwen2", "qwen2.5", "text-generation", "conversational", "zh", "en", "fr", "de", "ja", "ko", "it", "fi", "base_model:Qwen/Qwen2.5-Coder-32B-Instruct", "base_model:finetune:Qwen/Qwen2.5-Coder-32B-Instruct", "license:apache-2.0", "region:us" ]
text-generation
2024-12-04T12:28:29Z
--- language: - zh - en - fr - de - ja - ko - it - fi license: apache-2.0 tags: - qwen2.5 pipeline_tag: text-generation base_model: Qwen/Qwen2.5-Coder-32B-Instruct --- # ⚛️ Q Model: Optimized for Enhanced Quantized Inference Capability This model has been specially optimized to improve the performance of quantized inference and is recommended for use in 3 to 8-bit quantization scenarios. Quantized version: https://huggingface.co/OpenBuddy/openbuddy-qwen2.5coder-32b-v24.1q-200k-gguf # OpenBuddy - Open Multilingual Chatbot GitHub and Usage Guide: [https://github.com/OpenBuddy/OpenBuddy](https://github.com/OpenBuddy/OpenBuddy) Website and Demo: [https://openbuddy.ai](https://openbuddy.ai) Evaluation result of this model: [Evaluation.txt](Evaluation.txt) ![Demo](https://raw.githubusercontent.com/OpenBuddy/OpenBuddy/main/media/demo.png) # Copyright Notice Base Model: Qwen2.5-Coder-32B-Instruct License: Apache 2.0 # Prompt Format We recommend using the fast tokenizer from `transformers`, which should be enabled by default in the `transformers` and `vllm` libraries. Other implementations including `sentencepiece` may not work as expected, especially for special tokens like `<|role|>`, `<|says|>` and `<|end|>`. ``` <|role|>system<|says|>You(assistant) are a helpful, respectful and honest INTP-T AI Assistant named Buddy. You are talking to a human(user). Always answer as helpfully and logically as possible, while being safe. Your answers should not include any harmful, political, religious, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. You cannot access the internet, but you have vast knowledge, cutoff: 2023-04. You are trained by OpenBuddy team, (https://openbuddy.ai, https://github.com/OpenBuddy/OpenBuddy), not related to GPT or OpenAI.<|end|> <|role|>user<|says|>History input 1<|end|> <|role|>assistant<|says|>History output 1<|end|> <|role|>user<|says|>History input 2<|end|> <|role|>assistant<|says|>History output 2<|end|> <|role|>user<|says|>Current input<|end|> <|role|>assistant<|says|> ``` This format is also defined in `tokenizer_config.json`, which means you can directly use `vllm` to deploy an OpenAI-like API service. For more information, please refer to the [vllm documentation](https://docs.vllm.ai/en/latest/serving/openai_compatible_server.html). ## Disclaimer All OpenBuddy models have inherent limitations and may potentially produce outputs that are erroneous, harmful, offensive, or otherwise undesirable. Users should not use these models in critical or high-stakes situations that may lead to personal injury, property damage, or significant losses. Examples of such scenarios include, but are not limited to, the medical field, controlling software and hardware systems that may cause harm, and making important financial or legal decisions. OpenBuddy is provided "as-is" without any warranty of any kind, either express or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement. In no event shall the authors, contributors, or copyright holders be liable for any claim, damages, or other liabilities, whether in an action of contract, tort, or otherwise, arising from, out of, or in connection with the software or the use or other dealings in the software. By using OpenBuddy, you agree to these terms and conditions, and acknowledge that you understand the potential risks associated with its use. You also agree to indemnify and hold harmless the authors, contributors, and copyright holders from any claims, damages, or liabilities arising from your use of OpenBuddy. ## 免责声明 所有OpenBuddy模型均存在固有的局限性,可能产生错误的、有害的、冒犯性的或其他不良的输出。用户在关键或高风险场景中应谨慎行事,不要使用这些模型,以免导致人身伤害、财产损失或重大损失。此类场景的例子包括但不限于医疗领域、可能导致伤害的软硬件系统的控制以及进行重要的财务或法律决策。 OpenBuddy按“原样”提供,不附带任何种类的明示或暗示的保证,包括但不限于适销性、特定目的的适用性和非侵权的暗示保证。在任何情况下,作者、贡献者或版权所有者均不对因软件或使用或其他软件交易而产生的任何索赔、损害赔偿或其他责任(无论是合同、侵权还是其他原因)承担责任。 使用OpenBuddy即表示您同意这些条款和条件,并承认您了解其使用可能带来的潜在风险。您还同意赔偿并使作者、贡献者和版权所有者免受因您使用OpenBuddy而产生的任何索赔、损害赔偿或责任的影响。
MayBashendy/ArabicNewSplits3_FineTuningAraBERT_run3_AugV5_k2_task1_organization
MayBashendy
2024-12-04T16:03:48Z
163
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-12-04T16:01:19Z
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: ArabicNewSplits3_FineTuningAraBERT_run3_AugV5_k2_task1_organization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ArabicNewSplits3_FineTuningAraBERT_run3_AugV5_k2_task1_organization This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0411 - Qwk: 0.4933 - Mse: 1.0411 - Rmse: 1.0203 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:------:|:----:|:---------------:|:-------:|:------:|:------:| | No log | 0.1538 | 2 | 4.8755 | -0.0722 | 4.8755 | 2.2081 | | No log | 0.3077 | 4 | 3.0731 | 0.0738 | 3.0731 | 1.7530 | | No log | 0.4615 | 6 | 1.7811 | 0.1254 | 1.7811 | 1.3346 | | No log | 0.6154 | 8 | 1.3472 | 0.1296 | 1.3472 | 1.1607 | | No log | 0.7692 | 10 | 1.2827 | 0.0701 | 1.2827 | 1.1326 | | No log | 0.9231 | 12 | 1.2158 | 0.0899 | 1.2158 | 1.1026 | | No log | 1.0769 | 14 | 1.0297 | 0.3445 | 1.0297 | 1.0147 | | No log | 1.2308 | 16 | 1.1103 | 0.2736 | 1.1103 | 1.0537 | | No log | 1.3846 | 18 | 1.1941 | 0.1648 | 1.1941 | 1.0927 | | No log | 1.5385 | 20 | 1.1982 | 0.2471 | 1.1982 | 1.0946 | | No log | 1.6923 | 22 | 1.1769 | 0.3050 | 1.1769 | 1.0848 | | No log | 1.8462 | 24 | 1.1307 | 0.3145 | 1.1307 | 1.0633 | | No log | 2.0 | 26 | 1.1225 | 0.3198 | 1.1225 | 1.0595 | | No log | 2.1538 | 28 | 1.2005 | 0.1301 | 1.2005 | 1.0957 | | No log | 2.3077 | 30 | 1.2531 | 0.1503 | 1.2531 | 1.1194 | | No log | 2.4615 | 32 | 1.1448 | 0.2230 | 1.1448 | 1.0700 | | No log | 2.6154 | 34 | 1.0100 | 0.3793 | 1.0100 | 1.0050 | | No log | 2.7692 | 36 | 0.9753 | 0.3571 | 0.9753 | 0.9876 | | No log | 2.9231 | 38 | 0.9982 | 0.2771 | 0.9982 | 0.9991 | | No log | 3.0769 | 40 | 0.9904 | 0.3423 | 0.9904 | 0.9952 | | No log | 3.2308 | 42 | 1.0048 | 0.3717 | 1.0048 | 1.0024 | | No log | 3.3846 | 44 | 1.0774 | 0.2528 | 1.0774 | 1.0380 | | No log | 3.5385 | 46 | 1.3022 | 0.2826 | 1.3022 | 1.1411 | | No log | 3.6923 | 48 | 1.4397 | 0.1888 | 1.4397 | 1.1999 | | No log | 3.8462 | 50 | 1.2720 | 0.4219 | 1.2720 | 1.1278 | | No log | 4.0 | 52 | 1.1023 | 0.2721 | 1.1023 | 1.0499 | | No log | 4.1538 | 54 | 1.0140 | 0.5071 | 1.0140 | 1.0070 | | No log | 4.3077 | 56 | 1.0495 | 0.4357 | 1.0495 | 1.0244 | | No log | 4.4615 | 58 | 1.0388 | 0.4068 | 1.0388 | 1.0192 | | No log | 4.6154 | 60 | 1.0341 | 0.4583 | 1.0341 | 1.0169 | | No log | 4.7692 | 62 | 1.0435 | 0.4559 | 1.0435 | 1.0215 | | No log | 4.9231 | 64 | 1.0465 | 0.4393 | 1.0465 | 1.0230 | | No log | 5.0769 | 66 | 1.0186 | 0.5103 | 1.0186 | 1.0093 | | No log | 5.2308 | 68 | 0.9823 | 0.5777 | 0.9823 | 0.9911 | | No log | 5.3846 | 70 | 0.9632 | 0.5745 | 0.9632 | 0.9814 | | No log | 5.5385 | 72 | 0.9583 | 0.5745 | 0.9583 | 0.9789 | | No log | 5.6923 | 74 | 0.9579 | 0.5629 | 0.9579 | 0.9787 | | No log | 5.8462 | 76 | 0.9809 | 0.5745 | 0.9809 | 0.9904 | | No log | 6.0 | 78 | 1.0332 | 0.4669 | 1.0332 | 1.0165 | | No log | 6.1538 | 80 | 1.0979 | 0.4391 | 1.0979 | 1.0478 | | No log | 6.3077 | 82 | 1.1242 | 0.4253 | 1.1242 | 1.0603 | | No log | 6.4615 | 84 | 1.0957 | 0.4391 | 1.0957 | 1.0468 | | No log | 6.6154 | 86 | 1.0546 | 0.4945 | 1.0546 | 1.0270 | | No log | 6.7692 | 88 | 1.0216 | 0.5462 | 1.0216 | 1.0108 | | No log | 6.9231 | 90 | 1.0302 | 0.5601 | 1.0302 | 1.0150 | | No log | 7.0769 | 92 | 1.0255 | 0.5601 | 1.0255 | 1.0127 | | No log | 7.2308 | 94 | 1.0372 | 0.5082 | 1.0372 | 1.0184 | | No log | 7.3846 | 96 | 1.0460 | 0.5067 | 1.0461 | 1.0228 | | No log | 7.5385 | 98 | 1.0610 | 0.5067 | 1.0610 | 1.0301 | | No log | 7.6923 | 100 | 1.0750 | 0.4933 | 1.0750 | 1.0368 | | No log | 7.8462 | 102 | 1.0843 | 0.4933 | 1.0843 | 1.0413 | | No log | 8.0 | 104 | 1.0914 | 0.4933 | 1.0914 | 1.0447 | | No log | 8.1538 | 106 | 1.0905 | 0.4933 | 1.0905 | 1.0443 | | No log | 8.3077 | 108 | 1.0880 | 0.4933 | 1.0880 | 1.0431 | | No log | 8.4615 | 110 | 1.0890 | 0.4933 | 1.0890 | 1.0435 | | No log | 8.6154 | 112 | 1.0865 | 0.4933 | 1.0865 | 1.0424 | | No log | 8.7692 | 114 | 1.0780 | 0.4933 | 1.0780 | 1.0383 | | No log | 8.9231 | 116 | 1.0789 | 0.4933 | 1.0789 | 1.0387 | | No log | 9.0769 | 118 | 1.0787 | 0.4798 | 1.0787 | 1.0386 | | No log | 9.2308 | 120 | 1.0701 | 0.4798 | 1.0701 | 1.0344 | | No log | 9.3846 | 122 | 1.0583 | 0.4798 | 1.0583 | 1.0287 | | No log | 9.5385 | 124 | 1.0499 | 0.4933 | 1.0499 | 1.0247 | | No log | 9.6923 | 126 | 1.0453 | 0.4933 | 1.0453 | 1.0224 | | No log | 9.8462 | 128 | 1.0424 | 0.4933 | 1.0424 | 1.0210 | | No log | 10.0 | 130 | 1.0411 | 0.4933 | 1.0411 | 1.0203 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
CogACT/CogACT-Base
CogACT
2024-12-04T16:02:40Z
3,828
6
transformers
[ "transformers", "robotics", "vla", "diffusion", "multimodal", "pretraining", "en", "arxiv:2411.19650", "license:mit", "endpoints_compatible", "region:us" ]
robotics
2024-11-29T03:42:05Z
--- license: mit library_name: transformers tags: - robotics - vla - diffusion - multimodal - pretraining language: - en pipeline_tag: robotics --- # CogACT-Base CogACT is a new advanced VLA architecture derived from VLM. Unlike previous works that directly repurpose VLM for action prediction by simple action quantization, we propose a componentized VLA architecture that has a specialized action module conditioned on VLM output. CogACT-Base employs a [DiT-Base](https://github.com/facebookresearch/DiT) model as the action module. All our [code](https://github.com/microsoft/CogACT), [pre-trained model weights](https://huggingface.co/CogACT), are licensed under the MIT license. Please refer to our [project page](https://cogact.github.io/) and [paper](https://arxiv.org/abs/2411.19650) for more details. ## Model Summary - **Developed by:** The CogACT consisting of researchers from [Microsoft Research Asia](https://www.microsoft.com/en-us/research/lab/microsoft-research-asia/). - **Model type:** Vision-Language-Action (language, image => robot actions) - **Language(s) (NLP):** en - **License:** MIT - **Model components:** + **Vision Backbone**: DINOv2 ViT-L/14 and SigLIP ViT-So400M/14 + **Language Model**: Llama-2 + **Action Model**: DiT-Base - **Pretraining Dataset:** A subset of [Open X-Embodiment](https://robotics-transformer-x.github.io/) - **Repository:** [https://github.com/microsoft/CogACT](https://github.com/microsoft/CogACT) - **Paper:** [CogACT: A Foundational Vision-Language-Action Model for Synergizing Cognition and Action in Robotic Manipulation](https://arxiv.org/abs/2411.19650) - **Project Page:** [https://cogact.github.io/](https://cogact.github.io/) ## Uses CogACT takes a language instruction and a single view RGB image as input and predicts the next 16 normalized robot actions (consisting of the 7-DoF end effector deltas of the form ``x, y, z, roll, pitch, yaw, gripper``). These actions should be unnormalized and integrated by our ``Adaptive Action Ensemble``(Optional). Unnormalization and ensemble depend on the dataset statistics. CogACT models can be used zero-shot to control robots for setups seen in the [Open-X](https://robotics-transformer-x.github.io/) pretraining mixture. They can also be fine-tuned for new tasks and robot setups with an extremely small amount of demonstrations. See [our repository](https://github.com/microsoft/CogACT) for more information. Here is a simple example for inference. ```python # Please clone and install dependencies in our repo # Install minimal dependencies (`torch`, `transformers`, `timm`, `tokenizers`, ...) from PIL import Image from vla import load_vla import torch model = load_vla( 'CogACT/CogACT-Base', load_for_training=False, action_model_type='DiT-B', future_action_window_size=15, ) # about 30G Memory in fp32; # (Optional) use "model.vlm = model.vlm.to(torch.bfloat16)" to load vlm in bf16 model.to('cuda:0').eval() image: Image.Image = <input_your_image> prompt = "move sponge near apple" # input your prompt # Predict Action (7-DoF; un-normalize for RT-1 google robot data, i.e. fractal20220817_data) actions, _ = model.predict_action( image, prompt, unnorm_key='fractal20220817_data', # input your unnorm_key of dataset cfg_scale = 1.5, # cfg from 1.5 to 7 also performs well use_ddim = True, # use DDIM sampling num_ddim_steps = 10, # number of steps for DDIM sampling ) # results in 7-DoF actions of 16 steps with shape [16, 7] ``` ## Citation ```bibtex @article{li2024cogact, title={CogACT: A Foundational Vision-Language-Action Model for Synergizing Cognition and Action in Robotic Manipulation}, author={Li, Qixiu and Liang, Yaobo and Wang, Zeyu and Luo, Lin and Chen, Xi and Liao, Mozheng and Wei, Fangyun and Deng, Yu and Xu, Sicheng and Zhang, Yizhong and others}, journal={arXiv preprint arXiv:2411.19650}, year={2024} } ```
gokulsrinivasagan/bert_tiny_lda_20_v1_mnli
gokulsrinivasagan
2024-12-04T16:02:24Z
122
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "base_model:gokulsrinivasagan/bert_tiny_lda_20_v1", "base_model:finetune:gokulsrinivasagan/bert_tiny_lda_20_v1", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-26T22:05:18Z
--- library_name: transformers language: - en base_model: gokulsrinivasagan/bert_tiny_lda_20_v1 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert_tiny_lda_20_v1_mnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE MNLI type: glue args: mnli metrics: - name: Accuracy type: accuracy value: 0.6954841334418226 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_tiny_lda_20_v1_mnli This model is a fine-tuned version of [gokulsrinivasagan/bert_tiny_lda_20_v1](https://huggingface.co/gokulsrinivasagan/bert_tiny_lda_20_v1) on the GLUE MNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.7126 - Accuracy: 0.6955 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.9696 | 1.0 | 1534 | 0.8635 | 0.6102 | | 0.8307 | 2.0 | 3068 | 0.7849 | 0.6501 | | 0.7523 | 3.0 | 4602 | 0.7467 | 0.6728 | | 0.6962 | 4.0 | 6136 | 0.7247 | 0.6862 | | 0.6472 | 5.0 | 7670 | 0.7248 | 0.6957 | | 0.6032 | 6.0 | 9204 | 0.7455 | 0.6984 | | 0.5606 | 7.0 | 10738 | 0.7510 | 0.6987 | | 0.5204 | 8.0 | 12272 | 0.7849 | 0.6915 | | 0.4808 | 9.0 | 13806 | 0.8428 | 0.6963 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3
MayBashendy/ArabicNewSplits3_FineTuningAraBERT_run3_AugV5_k1_task1_organization
MayBashendy
2024-12-04T16:00:52Z
266
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-12-04T15:58:29Z
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: ArabicNewSplits3_FineTuningAraBERT_run3_AugV5_k1_task1_organization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ArabicNewSplits3_FineTuningAraBERT_run3_AugV5_k1_task1_organization This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7176 - Qwk: 0.6693 - Mse: 0.7176 - Rmse: 0.8471 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:------:|:----:|:---------------:|:-------:|:------:|:------:| | No log | 0.2222 | 2 | 4.7780 | -0.0582 | 4.7780 | 2.1859 | | No log | 0.4444 | 4 | 3.1128 | 0.1066 | 3.1128 | 1.7643 | | No log | 0.6667 | 6 | 2.0032 | 0.1713 | 2.0032 | 1.4153 | | No log | 0.8889 | 8 | 1.2087 | 0.2215 | 1.2087 | 1.0994 | | No log | 1.1111 | 10 | 1.0608 | 0.2530 | 1.0608 | 1.0299 | | No log | 1.3333 | 12 | 1.0632 | 0.3827 | 1.0632 | 1.0311 | | No log | 1.5556 | 14 | 1.2407 | 0.3485 | 1.2407 | 1.1139 | | No log | 1.7778 | 16 | 1.0530 | 0.3684 | 1.0530 | 1.0262 | | No log | 2.0 | 18 | 0.9129 | 0.4613 | 0.9129 | 0.9555 | | No log | 2.2222 | 20 | 0.8556 | 0.5 | 0.8556 | 0.9250 | | No log | 2.4444 | 22 | 1.0047 | 0.4265 | 1.0047 | 1.0023 | | No log | 2.6667 | 24 | 1.0017 | 0.4306 | 1.0017 | 1.0008 | | No log | 2.8889 | 26 | 0.7764 | 0.5206 | 0.7764 | 0.8811 | | No log | 3.1111 | 28 | 0.7065 | 0.6373 | 0.7065 | 0.8406 | | No log | 3.3333 | 30 | 0.7061 | 0.6282 | 0.7061 | 0.8403 | | No log | 3.5556 | 32 | 0.8003 | 0.6119 | 0.8003 | 0.8946 | | No log | 3.7778 | 34 | 0.9348 | 0.5889 | 0.9348 | 0.9668 | | No log | 4.0 | 36 | 0.8889 | 0.6241 | 0.8889 | 0.9428 | | No log | 4.2222 | 38 | 0.7831 | 0.6505 | 0.7831 | 0.8849 | | No log | 4.4444 | 40 | 0.7470 | 0.6769 | 0.7470 | 0.8643 | | No log | 4.6667 | 42 | 0.8496 | 0.6230 | 0.8496 | 0.9217 | | No log | 4.8889 | 44 | 0.8149 | 0.6241 | 0.8149 | 0.9027 | | No log | 5.1111 | 46 | 0.7461 | 0.6932 | 0.7461 | 0.8638 | | No log | 5.3333 | 48 | 0.8198 | 0.6382 | 0.8198 | 0.9054 | | No log | 5.5556 | 50 | 0.8182 | 0.6039 | 0.8182 | 0.9046 | | No log | 5.7778 | 52 | 0.7212 | 0.7030 | 0.7212 | 0.8492 | | No log | 6.0 | 54 | 0.7459 | 0.7208 | 0.7459 | 0.8636 | | No log | 6.2222 | 56 | 0.7669 | 0.6970 | 0.7669 | 0.8757 | | No log | 6.4444 | 58 | 0.7488 | 0.7 | 0.7488 | 0.8653 | | No log | 6.6667 | 60 | 0.7425 | 0.6872 | 0.7425 | 0.8617 | | No log | 6.8889 | 62 | 0.8120 | 0.6530 | 0.8120 | 0.9011 | | No log | 7.1111 | 64 | 0.8103 | 0.6713 | 0.8103 | 0.9001 | | No log | 7.3333 | 66 | 0.8061 | 0.6777 | 0.8061 | 0.8978 | | No log | 7.5556 | 68 | 0.7488 | 0.6872 | 0.7488 | 0.8653 | | No log | 7.7778 | 70 | 0.7326 | 0.6877 | 0.7326 | 0.8559 | | No log | 8.0 | 72 | 0.7338 | 0.6877 | 0.7338 | 0.8566 | | No log | 8.2222 | 74 | 0.7250 | 0.6662 | 0.7250 | 0.8515 | | No log | 8.4444 | 76 | 0.7223 | 0.6662 | 0.7223 | 0.8499 | | No log | 8.6667 | 78 | 0.7172 | 0.6662 | 0.7172 | 0.8469 | | No log | 8.8889 | 80 | 0.7163 | 0.6662 | 0.7163 | 0.8463 | | No log | 9.1111 | 82 | 0.7150 | 0.6662 | 0.7150 | 0.8456 | | No log | 9.3333 | 84 | 0.7146 | 0.6662 | 0.7146 | 0.8453 | | No log | 9.5556 | 86 | 0.7161 | 0.6693 | 0.7161 | 0.8462 | | No log | 9.7778 | 88 | 0.7169 | 0.6693 | 0.7169 | 0.8467 | | No log | 10.0 | 90 | 0.7176 | 0.6693 | 0.7176 | 0.8471 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
Chinnu1103/ROSLlama
Chinnu1103
2024-12-04T16:00:28Z
150
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-12-04T15:57:07Z
--- base_model: unsloth/llama-3.2-3b-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Chinnu1103 - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
gokulsrinivasagan/bert_tiny_lda_5_v1_mnli
gokulsrinivasagan
2024-12-04T15:50:07Z
130
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "base_model:gokulsrinivasagan/bert_tiny_lda_5_v1", "base_model:finetune:gokulsrinivasagan/bert_tiny_lda_5_v1", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-26T21:15:44Z
--- library_name: transformers language: - en base_model: gokulsrinivasagan/bert_tiny_lda_5_v1 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert_tiny_lda_5_v1_mnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE MNLI type: glue args: mnli metrics: - name: Accuracy type: accuracy value: 0.6503254678600489 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_tiny_lda_5_v1_mnli This model is a fine-tuned version of [gokulsrinivasagan/bert_tiny_lda_5_v1](https://huggingface.co/gokulsrinivasagan/bert_tiny_lda_5_v1) on the GLUE MNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.8033 - Accuracy: 0.6503 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.9869 | 1.0 | 1534 | 0.9311 | 0.5462 | | 0.9068 | 2.0 | 3068 | 0.8786 | 0.5912 | | 0.8437 | 3.0 | 4602 | 0.8481 | 0.6158 | | 0.7821 | 4.0 | 6136 | 0.8241 | 0.6377 | | 0.727 | 5.0 | 7670 | 0.8183 | 0.6445 | | 0.6752 | 6.0 | 9204 | 0.8311 | 0.6532 | | 0.6251 | 7.0 | 10738 | 0.8516 | 0.6500 | | 0.5774 | 8.0 | 12272 | 0.9028 | 0.6482 | | 0.5308 | 9.0 | 13806 | 0.9652 | 0.6511 | | 0.4879 | 10.0 | 15340 | 0.9956 | 0.6522 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3
Augusto777/BEiT-RD-DA
Augusto777
2024-12-04T15:44:02Z
5
0
null
[ "tensorboard", "safetensors", "beit", "generated_from_trainer", "dataset:imagefolder", "base_model:microsoft/beit-base-patch16-224", "base_model:finetune:microsoft/beit-base-patch16-224", "license:apache-2.0", "model-index", "region:us" ]
null
2024-12-04T15:42:55Z
--- license: apache-2.0 base_model: microsoft/beit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: BEiT-RD-DA results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.6654545454545454 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BEiT-RD-DA This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.9617 - Accuracy: 0.6655 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.4123 | 1.0 | 96 | 1.4099 | 0.4927 | | 0.9503 | 2.0 | 192 | 1.8852 | 0.4927 | | 0.8284 | 3.0 | 288 | 2.1702 | 0.5073 | | 0.7677 | 4.0 | 384 | 2.0408 | 0.5345 | | 0.788 | 5.0 | 480 | 2.7991 | 0.5127 | | 0.5822 | 6.0 | 576 | 2.0951 | 0.5636 | | 0.5172 | 7.0 | 672 | 2.5977 | 0.5364 | | 0.4615 | 8.0 | 768 | 2.0968 | 0.58 | | 0.3672 | 9.0 | 864 | 2.8535 | 0.5436 | | 0.379 | 10.0 | 960 | 2.9515 | 0.5382 | | 0.3301 | 11.0 | 1056 | 2.7200 | 0.5582 | | 0.2786 | 12.0 | 1152 | 1.9000 | 0.6273 | | 0.2746 | 13.0 | 1248 | 3.1768 | 0.5364 | | 0.2298 | 14.0 | 1344 | 3.1003 | 0.5527 | | 0.2013 | 15.0 | 1440 | 2.3441 | 0.6182 | | 0.2225 | 16.0 | 1536 | 3.0214 | 0.5709 | | 0.2229 | 17.0 | 1632 | 2.0676 | 0.6164 | | 0.2024 | 18.0 | 1728 | 2.6478 | 0.5673 | | 0.1401 | 19.0 | 1824 | 2.8952 | 0.5636 | | 0.1984 | 20.0 | 1920 | 2.3083 | 0.6145 | | 0.1788 | 21.0 | 2016 | 3.7702 | 0.52 | | 0.1907 | 22.0 | 2112 | 1.9617 | 0.6655 | | 0.1113 | 23.0 | 2208 | 2.6546 | 0.5964 | | 0.1293 | 24.0 | 2304 | 2.6427 | 0.6036 | | 0.1354 | 25.0 | 2400 | 3.4105 | 0.5527 | | 0.1447 | 26.0 | 2496 | 2.5460 | 0.6127 | | 0.0995 | 27.0 | 2592 | 2.9865 | 0.5855 | | 0.1369 | 28.0 | 2688 | 3.5281 | 0.5545 | | 0.1238 | 29.0 | 2784 | 2.8161 | 0.6018 | | 0.1256 | 30.0 | 2880 | 3.4917 | 0.5491 | | 0.1064 | 31.0 | 2976 | 3.0659 | 0.58 | | 0.1333 | 32.0 | 3072 | 3.5972 | 0.5473 | | 0.1134 | 33.0 | 3168 | 3.6116 | 0.54 | | 0.0831 | 34.0 | 3264 | 3.5308 | 0.5509 | | 0.1035 | 35.0 | 3360 | 3.4789 | 0.5582 | | 0.0957 | 36.0 | 3456 | 3.6358 | 0.5509 | | 0.0764 | 37.0 | 3552 | 3.3639 | 0.5709 | | 0.072 | 38.0 | 3648 | 3.5639 | 0.5564 | | 0.0727 | 39.0 | 3744 | 3.5193 | 0.5582 | | 0.0619 | 40.0 | 3840 | 3.5836 | 0.5582 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0
gokulsrinivasagan/bert_tiny_lda_100_v1_rte
gokulsrinivasagan
2024-12-04T15:43:58Z
107
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "base_model:gokulsrinivasagan/bert_tiny_lda_100_v1", "base_model:finetune:gokulsrinivasagan/bert_tiny_lda_100_v1", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-26T23:04:11Z
--- library_name: transformers language: - en base_model: gokulsrinivasagan/bert_tiny_lda_100_v1 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert_tiny_lda_100_v1_rte results: - task: name: Text Classification type: text-classification dataset: name: GLUE RTE type: glue args: rte metrics: - name: Accuracy type: accuracy value: 0.48736462093862815 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_tiny_lda_100_v1_rte This model is a fine-tuned version of [gokulsrinivasagan/bert_tiny_lda_100_v1](https://huggingface.co/gokulsrinivasagan/bert_tiny_lda_100_v1) on the GLUE RTE dataset. It achieves the following results on the evaluation set: - Loss: 0.6925 - Accuracy: 0.4874 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7159 | 1.0 | 10 | 0.7091 | 0.4729 | | 0.6926 | 2.0 | 20 | 0.6925 | 0.4874 | | 0.6814 | 3.0 | 30 | 0.6944 | 0.5199 | | 0.6663 | 4.0 | 40 | 0.6978 | 0.5271 | | 0.6472 | 5.0 | 50 | 0.7425 | 0.5415 | | 0.6276 | 6.0 | 60 | 0.7315 | 0.5451 | | 0.5534 | 7.0 | 70 | 0.8165 | 0.5018 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3
nickoloss/detr-resnet-50_finetuned_cppe5
nickoloss
2024-12-04T15:43:26Z
43
0
transformers
[ "transformers", "tensorboard", "safetensors", "detr", "object-detection", "generated_from_trainer", "base_model:facebook/detr-resnet-50", "base_model:finetune:facebook/detr-resnet-50", "license:apache-2.0", "endpoints_compatible", "region:us" ]
object-detection
2024-11-15T12:19:22Z
--- library_name: transformers license: apache-2.0 base_model: facebook/detr-resnet-50 tags: - generated_from_trainer model-index: - name: detr-resnet-50_finetuned_cppe5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # detr-resnet-50_finetuned_cppe5 This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1397 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.941058844013093e-07 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - num_epochs: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:-----:|:---------------:| | No log | 1.0 | 10 | 7.0795 | | No log | 2.0 | 20 | 5.7431 | | No log | 3.0 | 30 | 6.7530 | | No log | 4.0 | 40 | 5.3270 | | 5.8012 | 5.0 | 50 | 6.1804 | | 5.8012 | 6.0 | 60 | 6.0216 | | 5.8012 | 7.0 | 70 | 5.2871 | | 5.8012 | 8.0 | 80 | 5.1623 | | 5.8012 | 9.0 | 90 | 6.9306 | | 5.1916 | 10.0 | 100 | 5.7015 | | 5.1916 | 11.0 | 110 | 7.5914 | | 5.1916 | 12.0 | 120 | 6.0398 | | 5.1916 | 13.0 | 130 | 5.3490 | | 5.1916 | 14.0 | 140 | 5.8373 | | 5.4281 | 15.0 | 150 | 4.1271 | | 5.4281 | 16.0 | 160 | 6.2398 | | 5.4281 | 17.0 | 170 | 4.2083 | | 5.4281 | 18.0 | 180 | 4.7579 | | 5.4281 | 19.0 | 190 | 5.2079 | | 4.8531 | 20.0 | 200 | 3.9074 | | 4.8531 | 21.0 | 210 | 5.1759 | | 4.8531 | 22.0 | 220 | 3.8891 | | 4.8531 | 23.0 | 230 | 3.8469 | | 4.8531 | 24.0 | 240 | 4.0659 | | 4.6505 | 25.0 | 250 | 4.7758 | | 4.6505 | 26.0 | 260 | 4.2206 | | 4.6505 | 27.0 | 270 | 4.8899 | | 4.6505 | 28.0 | 280 | 4.6572 | | 4.6505 | 29.0 | 290 | 4.1456 | | 4.7175 | 30.0 | 300 | 4.3631 | | 4.7175 | 31.0 | 310 | 3.9849 | | 4.7175 | 32.0 | 320 | 5.4221 | | 4.7175 | 33.0 | 330 | 3.7069 | | 4.7175 | 34.0 | 340 | 5.2221 | | 4.3464 | 35.0 | 350 | 4.0269 | | 4.3464 | 36.0 | 360 | 3.8471 | | 4.3464 | 37.0 | 370 | 4.0817 | | 4.3464 | 38.0 | 380 | 4.0005 | | 4.3464 | 39.0 | 390 | 3.7973 | | 4.4884 | 40.0 | 400 | 4.1382 | | 4.4884 | 41.0 | 410 | 3.9224 | | 4.4884 | 42.0 | 420 | 4.3754 | | 4.4884 | 43.0 | 430 | 3.9821 | | 4.4884 | 44.0 | 440 | 3.9350 | | 4.2526 | 45.0 | 450 | 4.0074 | | 4.2526 | 46.0 | 460 | 3.6133 | | 4.2526 | 47.0 | 470 | 3.8681 | | 4.2526 | 48.0 | 480 | 3.9367 | | 4.2526 | 49.0 | 490 | 3.8197 | | 4.1344 | 50.0 | 500 | 3.5646 | | 4.1344 | 51.0 | 510 | 3.7987 | | 4.1344 | 52.0 | 520 | 3.9491 | | 4.1344 | 53.0 | 530 | 4.1457 | | 4.1344 | 54.0 | 540 | 3.6863 | | 4.0492 | 55.0 | 550 | 3.8259 | | 4.0492 | 56.0 | 560 | 3.8122 | | 4.0492 | 57.0 | 570 | 4.0111 | | 4.0492 | 58.0 | 580 | 3.7859 | | 4.0492 | 59.0 | 590 | 3.7566 | | 3.9168 | 60.0 | 600 | 3.6876 | | 3.9168 | 61.0 | 610 | 3.7469 | | 3.9168 | 62.0 | 620 | 4.0203 | | 3.9168 | 63.0 | 630 | 4.7051 | | 3.9168 | 64.0 | 640 | 3.6666 | | 3.8979 | 65.0 | 650 | 3.5877 | | 3.8979 | 66.0 | 660 | 3.5737 | | 3.8979 | 67.0 | 670 | 3.6520 | | 3.8979 | 68.0 | 680 | 3.4342 | | 3.8979 | 69.0 | 690 | 3.9668 | | 3.7801 | 70.0 | 700 | 4.0617 | | 3.7801 | 71.0 | 710 | 3.8625 | | 3.7801 | 72.0 | 720 | 3.3205 | | 3.7801 | 73.0 | 730 | 4.0774 | | 3.7801 | 74.0 | 740 | 4.0416 | | 3.7303 | 75.0 | 750 | 3.4343 | | 3.7303 | 76.0 | 760 | 3.5131 | | 3.7303 | 77.0 | 770 | 3.5507 | | 3.7303 | 78.0 | 780 | 3.9112 | | 3.7303 | 79.0 | 790 | 3.3022 | | 3.5806 | 80.0 | 800 | 3.8618 | | 3.5806 | 81.0 | 810 | 3.6697 | | 3.5806 | 82.0 | 820 | 3.5536 | | 3.5806 | 83.0 | 830 | 3.3500 | | 3.5806 | 84.0 | 840 | 3.8134 | | 3.6183 | 85.0 | 850 | 3.4067 | | 3.6183 | 86.0 | 860 | 3.4425 | | 3.6183 | 87.0 | 870 | 3.2812 | | 3.6183 | 88.0 | 880 | 3.3909 | | 3.6183 | 89.0 | 890 | 3.6878 | | 3.4767 | 90.0 | 900 | 3.5409 | | 3.4767 | 91.0 | 910 | 3.5380 | | 3.4767 | 92.0 | 920 | 3.8982 | | 3.4767 | 93.0 | 930 | 3.4205 | | 3.4767 | 94.0 | 940 | 4.0828 | | 3.5444 | 95.0 | 950 | 3.2579 | | 3.5444 | 96.0 | 960 | 3.3702 | | 3.5444 | 97.0 | 970 | 4.2833 | | 3.5444 | 98.0 | 980 | 3.4222 | | 3.5444 | 99.0 | 990 | 3.4477 | | 3.3821 | 100.0 | 1000 | 3.2484 | | 3.3821 | 101.0 | 1010 | 3.3493 | | 3.3821 | 102.0 | 1020 | 3.2192 | | 3.3821 | 103.0 | 1030 | 3.2491 | | 3.3821 | 104.0 | 1040 | 3.3853 | | 3.3429 | 105.0 | 1050 | 3.4362 | | 3.3429 | 106.0 | 1060 | 4.1587 | | 3.3429 | 107.0 | 1070 | 3.9797 | | 3.3429 | 108.0 | 1080 | 3.6257 | | 3.3429 | 109.0 | 1090 | 3.4861 | | 3.304 | 110.0 | 1100 | 3.3520 | | 3.304 | 111.0 | 1110 | 3.0047 | | 3.304 | 112.0 | 1120 | 3.4988 | | 3.304 | 113.0 | 1130 | 3.4723 | | 3.304 | 114.0 | 1140 | 3.4294 | | 3.2826 | 115.0 | 1150 | 3.6923 | | 3.2826 | 116.0 | 1160 | 3.2513 | | 3.2826 | 117.0 | 1170 | 3.6769 | | 3.2826 | 118.0 | 1180 | 3.5384 | | 3.2826 | 119.0 | 1190 | 3.3773 | | 3.1944 | 120.0 | 1200 | 3.2538 | | 3.1944 | 121.0 | 1210 | 3.2896 | | 3.1944 | 122.0 | 1220 | 3.4226 | | 3.1944 | 123.0 | 1230 | 3.3085 | | 3.1944 | 124.0 | 1240 | 3.1047 | | 3.1978 | 125.0 | 1250 | 3.3142 | | 3.1978 | 126.0 | 1260 | 3.4432 | | 3.1978 | 127.0 | 1270 | 2.9309 | | 3.1978 | 128.0 | 1280 | 3.3678 | | 3.1978 | 129.0 | 1290 | 3.6156 | | 3.3425 | 130.0 | 1300 | 3.3015 | | 3.3425 | 131.0 | 1310 | 3.3181 | | 3.3425 | 132.0 | 1320 | 3.2688 | | 3.3425 | 133.0 | 1330 | 3.4590 | | 3.3425 | 134.0 | 1340 | 3.0809 | | 3.3654 | 135.0 | 1350 | 3.0907 | | 3.3654 | 136.0 | 1360 | 3.2888 | | 3.3654 | 137.0 | 1370 | 3.1504 | | 3.3654 | 138.0 | 1380 | 3.4285 | | 3.3654 | 139.0 | 1390 | 3.4080 | | 3.1702 | 140.0 | 1400 | 3.1543 | | 3.1702 | 141.0 | 1410 | 3.5154 | | 3.1702 | 142.0 | 1420 | 3.1132 | | 3.1702 | 143.0 | 1430 | 3.2503 | | 3.1702 | 144.0 | 1440 | 3.6848 | | 3.1929 | 145.0 | 1450 | 3.1961 | | 3.1929 | 146.0 | 1460 | 3.4146 | | 3.1929 | 147.0 | 1470 | 3.4162 | | 3.1929 | 148.0 | 1480 | 3.2388 | | 3.1929 | 149.0 | 1490 | 3.6281 | | 3.0 | 150.0 | 1500 | 2.9830 | | 3.0 | 151.0 | 1510 | 3.1817 | | 3.0 | 152.0 | 1520 | 3.2862 | | 3.0 | 153.0 | 1530 | 3.0465 | | 3.0 | 154.0 | 1540 | 3.1208 | | 2.9975 | 155.0 | 1550 | 3.3041 | | 2.9975 | 156.0 | 1560 | 3.4944 | | 2.9975 | 157.0 | 1570 | 3.5826 | | 2.9975 | 158.0 | 1580 | 3.5453 | | 2.9975 | 159.0 | 1590 | 4.0256 | | 3.0312 | 160.0 | 1600 | 3.3678 | | 3.0312 | 161.0 | 1610 | 2.9384 | | 3.0312 | 162.0 | 1620 | 3.0596 | | 3.0312 | 163.0 | 1630 | 3.3952 | | 3.0312 | 164.0 | 1640 | 3.5299 | | 2.9855 | 165.0 | 1650 | 2.9930 | | 2.9855 | 166.0 | 1660 | 3.3869 | | 2.9855 | 167.0 | 1670 | 3.1676 | | 2.9855 | 168.0 | 1680 | 3.1330 | | 2.9855 | 169.0 | 1690 | 3.2595 | | 2.863 | 170.0 | 1700 | 3.1151 | | 2.863 | 171.0 | 1710 | 3.1382 | | 2.863 | 172.0 | 1720 | 3.7265 | | 2.863 | 173.0 | 1730 | 2.8716 | | 2.863 | 174.0 | 1740 | 3.0285 | | 2.8942 | 175.0 | 1750 | 3.0285 | | 2.8942 | 176.0 | 1760 | 3.7873 | | 2.8942 | 177.0 | 1770 | 2.9266 | | 2.8942 | 178.0 | 1780 | 2.9751 | | 2.8942 | 179.0 | 1790 | 3.1875 | | 2.7614 | 180.0 | 1800 | 2.6317 | | 2.7614 | 181.0 | 1810 | 3.3780 | | 2.7614 | 182.0 | 1820 | 3.1680 | | 2.7614 | 183.0 | 1830 | 3.3270 | | 2.7614 | 184.0 | 1840 | 3.2822 | | 2.9 | 185.0 | 1850 | 3.0026 | | 2.9 | 186.0 | 1860 | 3.0610 | | 2.9 | 187.0 | 1870 | 3.2631 | | 2.9 | 188.0 | 1880 | 2.8804 | | 2.9 | 189.0 | 1890 | 3.2069 | | 2.9176 | 190.0 | 1900 | 2.8339 | | 2.9176 | 191.0 | 1910 | 2.9836 | | 2.9176 | 192.0 | 1920 | 3.0211 | | 2.9176 | 193.0 | 1930 | 2.8448 | | 2.9176 | 194.0 | 1940 | 4.1654 | | 2.8189 | 195.0 | 1950 | 3.0910 | | 2.8189 | 196.0 | 1960 | 2.7972 | | 2.8189 | 197.0 | 1970 | 3.5421 | | 2.8189 | 198.0 | 1980 | 2.8334 | | 2.8189 | 199.0 | 1990 | 3.0457 | | 2.7236 | 200.0 | 2000 | 3.0531 | | 2.7236 | 201.0 | 2010 | 3.0384 | | 2.7236 | 202.0 | 2020 | 3.0183 | | 2.7236 | 203.0 | 2030 | 3.1019 | | 2.7236 | 204.0 | 2040 | 2.6909 | | 2.6289 | 205.0 | 2050 | 2.8969 | | 2.6289 | 206.0 | 2060 | 2.8063 | | 2.6289 | 207.0 | 2070 | 3.3533 | | 2.6289 | 208.0 | 2080 | 3.0578 | | 2.6289 | 209.0 | 2090 | 3.0081 | | 2.6592 | 210.0 | 2100 | 3.1674 | | 2.6592 | 211.0 | 2110 | 3.0982 | | 2.6592 | 212.0 | 2120 | 2.9070 | | 2.6592 | 213.0 | 2130 | 2.8881 | | 2.6592 | 214.0 | 2140 | 2.7869 | | 2.6898 | 215.0 | 2150 | 2.9736 | | 2.6898 | 216.0 | 2160 | 2.7309 | | 2.6898 | 217.0 | 2170 | 3.2656 | | 2.6898 | 218.0 | 2180 | 2.7734 | | 2.6898 | 219.0 | 2190 | 2.6135 | | 2.6117 | 220.0 | 2200 | 3.0652 | | 2.6117 | 221.0 | 2210 | 3.0918 | | 2.6117 | 222.0 | 2220 | 3.2191 | | 2.6117 | 223.0 | 2230 | 2.8947 | | 2.6117 | 224.0 | 2240 | 2.6307 | | 2.6281 | 225.0 | 2250 | 2.6585 | | 2.6281 | 226.0 | 2260 | 3.0801 | | 2.6281 | 227.0 | 2270 | 2.9075 | | 2.6281 | 228.0 | 2280 | 3.1795 | | 2.6281 | 229.0 | 2290 | 2.8762 | | 2.4503 | 230.0 | 2300 | 2.6883 | | 2.4503 | 231.0 | 2310 | 3.0329 | | 2.4503 | 232.0 | 2320 | 2.8990 | | 2.4503 | 233.0 | 2330 | 2.7381 | | 2.4503 | 234.0 | 2340 | 2.8102 | | 2.5171 | 235.0 | 2350 | 3.0730 | | 2.5171 | 236.0 | 2360 | 2.9376 | | 2.5171 | 237.0 | 2370 | 2.5781 | | 2.5171 | 238.0 | 2380 | 2.9466 | | 2.5171 | 239.0 | 2390 | 2.6868 | | 2.5004 | 240.0 | 2400 | 2.6414 | | 2.5004 | 241.0 | 2410 | 3.0623 | | 2.5004 | 242.0 | 2420 | 2.8071 | | 2.5004 | 243.0 | 2430 | 2.4406 | | 2.5004 | 244.0 | 2440 | 2.6247 | | 2.5338 | 245.0 | 2450 | 2.7334 | | 2.5338 | 246.0 | 2460 | 2.8576 | | 2.5338 | 247.0 | 2470 | 2.6042 | | 2.5338 | 248.0 | 2480 | 2.8519 | | 2.5338 | 249.0 | 2490 | 3.0416 | | 2.429 | 250.0 | 2500 | 2.7010 | | 2.429 | 251.0 | 2510 | 4.0268 | | 2.429 | 252.0 | 2520 | 2.9236 | | 2.429 | 253.0 | 2530 | 2.5467 | | 2.429 | 254.0 | 2540 | 2.7355 | | 2.4368 | 255.0 | 2550 | 3.1205 | | 2.4368 | 256.0 | 2560 | 2.8335 | | 2.4368 | 257.0 | 2570 | 2.7752 | | 2.4368 | 258.0 | 2580 | 2.7598 | | 2.4368 | 259.0 | 2590 | 2.6409 | | 2.3204 | 260.0 | 2600 | 2.7808 | | 2.3204 | 261.0 | 2610 | 2.4784 | | 2.3204 | 262.0 | 2620 | 2.9005 | | 2.3204 | 263.0 | 2630 | 2.6729 | | 2.3204 | 264.0 | 2640 | 2.6290 | | 2.4044 | 265.0 | 2650 | 2.8760 | | 2.4044 | 266.0 | 2660 | 2.5683 | | 2.4044 | 267.0 | 2670 | 2.8607 | | 2.4044 | 268.0 | 2680 | 2.5760 | | 2.4044 | 269.0 | 2690 | 2.6616 | | 2.3464 | 270.0 | 2700 | 2.6968 | | 2.3464 | 271.0 | 2710 | 2.7200 | | 2.3464 | 272.0 | 2720 | 2.7963 | | 2.3464 | 273.0 | 2730 | 2.5230 | | 2.3464 | 274.0 | 2740 | 2.7015 | | 2.2999 | 275.0 | 2750 | 2.9836 | | 2.2999 | 276.0 | 2760 | 2.6443 | | 2.2999 | 277.0 | 2770 | 2.5045 | | 2.2999 | 278.0 | 2780 | 3.2068 | | 2.2999 | 279.0 | 2790 | 2.5038 | | 2.3102 | 280.0 | 2800 | 2.7581 | | 2.3102 | 281.0 | 2810 | 2.6092 | | 2.3102 | 282.0 | 2820 | 2.4482 | | 2.3102 | 283.0 | 2830 | 3.0941 | | 2.3102 | 284.0 | 2840 | 2.3476 | | 2.2134 | 285.0 | 2850 | 2.8535 | | 2.2134 | 286.0 | 2860 | 2.6361 | | 2.2134 | 287.0 | 2870 | 2.6033 | | 2.2134 | 288.0 | 2880 | 2.4526 | | 2.2134 | 289.0 | 2890 | 2.7966 | | 2.3276 | 290.0 | 2900 | 2.6472 | | 2.3276 | 291.0 | 2910 | 2.6410 | | 2.3276 | 292.0 | 2920 | 2.5670 | | 2.3276 | 293.0 | 2930 | 2.7832 | | 2.3276 | 294.0 | 2940 | 2.5031 | | 2.287 | 295.0 | 2950 | 2.5614 | | 2.287 | 296.0 | 2960 | 3.0045 | | 2.287 | 297.0 | 2970 | 2.5755 | | 2.287 | 298.0 | 2980 | 2.5132 | | 2.287 | 299.0 | 2990 | 2.6427 | | 2.1723 | 300.0 | 3000 | 3.2675 | | 2.1723 | 301.0 | 3010 | 2.5890 | | 2.1723 | 302.0 | 3020 | 2.7935 | | 2.1723 | 303.0 | 3030 | 2.5836 | | 2.1723 | 304.0 | 3040 | 2.4359 | | 2.237 | 305.0 | 3050 | 2.7048 | | 2.237 | 306.0 | 3060 | 2.4640 | | 2.237 | 307.0 | 3070 | 2.5528 | | 2.237 | 308.0 | 3080 | 2.4919 | | 2.237 | 309.0 | 3090 | 2.5067 | | 2.1502 | 310.0 | 3100 | 2.6569 | | 2.1502 | 311.0 | 3110 | 2.6649 | | 2.1502 | 312.0 | 3120 | 2.7721 | | 2.1502 | 313.0 | 3130 | 2.3934 | | 2.1502 | 314.0 | 3140 | 2.4799 | | 2.2248 | 315.0 | 3150 | 2.6882 | | 2.2248 | 316.0 | 3160 | 2.8493 | | 2.2248 | 317.0 | 3170 | 2.5919 | | 2.2248 | 318.0 | 3180 | 2.4124 | | 2.2248 | 319.0 | 3190 | 2.5997 | | 2.2399 | 320.0 | 3200 | 2.3440 | | 2.2399 | 321.0 | 3210 | 2.6292 | | 2.2399 | 322.0 | 3220 | 3.2851 | | 2.2399 | 323.0 | 3230 | 2.4422 | | 2.2399 | 324.0 | 3240 | 2.3866 | | 2.1759 | 325.0 | 3250 | 2.4307 | | 2.1759 | 326.0 | 3260 | 2.2842 | | 2.1759 | 327.0 | 3270 | 2.5418 | | 2.1759 | 328.0 | 3280 | 2.5840 | | 2.1759 | 329.0 | 3290 | 2.9884 | | 2.2557 | 330.0 | 3300 | 2.5096 | | 2.2557 | 331.0 | 3310 | 3.2382 | | 2.2557 | 332.0 | 3320 | 2.5237 | | 2.2557 | 333.0 | 3330 | 2.4346 | | 2.2557 | 334.0 | 3340 | 2.4034 | | 2.216 | 335.0 | 3350 | 2.4259 | | 2.216 | 336.0 | 3360 | 2.4239 | | 2.216 | 337.0 | 3370 | 2.5417 | | 2.216 | 338.0 | 3380 | 2.7757 | | 2.216 | 339.0 | 3390 | 2.6264 | | 2.2112 | 340.0 | 3400 | 2.6611 | | 2.2112 | 341.0 | 3410 | 2.6828 | | 2.2112 | 342.0 | 3420 | 2.4541 | | 2.2112 | 343.0 | 3430 | 2.4426 | | 2.2112 | 344.0 | 3440 | 2.4566 | | 2.1473 | 345.0 | 3450 | 2.8140 | | 2.1473 | 346.0 | 3460 | 2.3079 | | 2.1473 | 347.0 | 3470 | 2.4263 | | 2.1473 | 348.0 | 3480 | 2.4176 | | 2.1473 | 349.0 | 3490 | 2.5132 | | 2.0273 | 350.0 | 3500 | 2.5695 | | 2.0273 | 351.0 | 3510 | 2.3300 | | 2.0273 | 352.0 | 3520 | 2.3673 | | 2.0273 | 353.0 | 3530 | 2.4108 | | 2.0273 | 354.0 | 3540 | 2.1937 | | 1.9724 | 355.0 | 3550 | 2.4282 | | 1.9724 | 356.0 | 3560 | 2.5854 | | 1.9724 | 357.0 | 3570 | 2.3549 | | 1.9724 | 358.0 | 3580 | 2.7288 | | 1.9724 | 359.0 | 3590 | 2.3138 | | 2.1214 | 360.0 | 3600 | 2.6228 | | 2.1214 | 361.0 | 3610 | 2.5202 | | 2.1214 | 362.0 | 3620 | 2.3395 | | 2.1214 | 363.0 | 3630 | 2.7839 | | 2.1214 | 364.0 | 3640 | 2.3686 | | 2.0616 | 365.0 | 3650 | 2.1838 | | 2.0616 | 366.0 | 3660 | 2.1441 | | 2.0616 | 367.0 | 3670 | 2.3893 | | 2.0616 | 368.0 | 3680 | 2.3090 | | 2.0616 | 369.0 | 3690 | 2.5005 | | 2.0561 | 370.0 | 3700 | 2.5149 | | 2.0561 | 371.0 | 3710 | 2.4185 | | 2.0561 | 372.0 | 3720 | 2.2988 | | 2.0561 | 373.0 | 3730 | 2.5609 | | 2.0561 | 374.0 | 3740 | 2.4859 | | 1.9504 | 375.0 | 3750 | 2.6781 | | 1.9504 | 376.0 | 3760 | 2.4028 | | 1.9504 | 377.0 | 3770 | 2.2976 | | 1.9504 | 378.0 | 3780 | 2.6518 | | 1.9504 | 379.0 | 3790 | 2.4606 | | 1.9662 | 380.0 | 3800 | 2.0894 | | 1.9662 | 381.0 | 3810 | 2.7766 | | 1.9662 | 382.0 | 3820 | 2.6676 | | 1.9662 | 383.0 | 3830 | 2.3832 | | 1.9662 | 384.0 | 3840 | 2.3459 | | 2.007 | 385.0 | 3850 | 2.5191 | | 2.007 | 386.0 | 3860 | 2.5370 | | 2.007 | 387.0 | 3870 | 2.3437 | | 2.007 | 388.0 | 3880 | 2.5367 | | 2.007 | 389.0 | 3890 | 2.3221 | | 1.9401 | 390.0 | 3900 | 2.2395 | | 1.9401 | 391.0 | 3910 | 2.3589 | | 1.9401 | 392.0 | 3920 | 2.3799 | | 1.9401 | 393.0 | 3930 | 2.3295 | | 1.9401 | 394.0 | 3940 | 2.6330 | | 1.9375 | 395.0 | 3950 | 2.4340 | | 1.9375 | 396.0 | 3960 | 2.5184 | | 1.9375 | 397.0 | 3970 | 2.1730 | | 1.9375 | 398.0 | 3980 | 2.2300 | | 1.9375 | 399.0 | 3990 | 2.4796 | | 1.9703 | 400.0 | 4000 | 2.2612 | | 1.9703 | 401.0 | 4010 | 2.3175 | | 1.9703 | 402.0 | 4020 | 2.5344 | | 1.9703 | 403.0 | 4030 | 2.1123 | | 1.9703 | 404.0 | 4040 | 2.2479 | | 1.8652 | 405.0 | 4050 | 2.6316 | | 1.8652 | 406.0 | 4060 | 2.1574 | | 1.8652 | 407.0 | 4070 | 2.4231 | | 1.8652 | 408.0 | 4080 | 2.1255 | | 1.8652 | 409.0 | 4090 | 2.2994 | | 1.9834 | 410.0 | 4100 | 2.3541 | | 1.9834 | 411.0 | 4110 | 2.3113 | | 1.9834 | 412.0 | 4120 | 2.3966 | | 1.9834 | 413.0 | 4130 | 2.3865 | | 1.9834 | 414.0 | 4140 | 3.0955 | | 1.976 | 415.0 | 4150 | 2.6212 | | 1.976 | 416.0 | 4160 | 2.3237 | | 1.976 | 417.0 | 4170 | 3.3010 | | 1.976 | 418.0 | 4180 | 2.7378 | | 1.976 | 419.0 | 4190 | 2.4063 | | 1.9165 | 420.0 | 4200 | 2.9853 | | 1.9165 | 421.0 | 4210 | 2.0776 | | 1.9165 | 422.0 | 4220 | 2.3036 | | 1.9165 | 423.0 | 4230 | 2.1934 | | 1.9165 | 424.0 | 4240 | 2.1535 | | 1.9224 | 425.0 | 4250 | 2.3000 | | 1.9224 | 426.0 | 4260 | 2.6858 | | 1.9224 | 427.0 | 4270 | 2.4825 | | 1.9224 | 428.0 | 4280 | 2.4776 | | 1.9224 | 429.0 | 4290 | 2.2042 | | 1.9091 | 430.0 | 4300 | 2.2847 | | 1.9091 | 431.0 | 4310 | 2.0935 | | 1.9091 | 432.0 | 4320 | 2.6040 | | 1.9091 | 433.0 | 4330 | 2.2520 | | 1.9091 | 434.0 | 4340 | 2.5126 | | 1.9543 | 435.0 | 4350 | 2.3081 | | 1.9543 | 436.0 | 4360 | 2.5018 | | 1.9543 | 437.0 | 4370 | 2.4462 | | 1.9543 | 438.0 | 4380 | 2.1927 | | 1.9543 | 439.0 | 4390 | 2.1584 | | 1.7975 | 440.0 | 4400 | 2.2996 | | 1.7975 | 441.0 | 4410 | 2.2288 | | 1.7975 | 442.0 | 4420 | 2.4102 | | 1.7975 | 443.0 | 4430 | 2.3321 | | 1.7975 | 444.0 | 4440 | 1.9341 | | 1.9595 | 445.0 | 4450 | 2.1064 | | 1.9595 | 446.0 | 4460 | 2.4024 | | 1.9595 | 447.0 | 4470 | 2.1377 | | 1.9595 | 448.0 | 4480 | 2.2580 | | 1.9595 | 449.0 | 4490 | 2.2505 | | 1.8746 | 450.0 | 4500 | 2.3562 | | 1.8746 | 451.0 | 4510 | 2.2730 | | 1.8746 | 452.0 | 4520 | 2.1447 | | 1.8746 | 453.0 | 4530 | 2.2458 | | 1.8746 | 454.0 | 4540 | 2.2136 | | 2.0722 | 455.0 | 4550 | 2.1459 | | 2.0722 | 456.0 | 4560 | 1.9991 | | 2.0722 | 457.0 | 4570 | 2.1572 | | 2.0722 | 458.0 | 4580 | 2.2700 | | 2.0722 | 459.0 | 4590 | 2.3094 | | 1.9179 | 460.0 | 4600 | 2.2721 | | 1.9179 | 461.0 | 4610 | 2.2809 | | 1.9179 | 462.0 | 4620 | 2.4517 | | 1.9179 | 463.0 | 4630 | 2.2500 | | 1.9179 | 464.0 | 4640 | 2.2107 | | 2.0428 | 465.0 | 4650 | 2.1489 | | 2.0428 | 466.0 | 4660 | 2.2571 | | 2.0428 | 467.0 | 4670 | 2.2047 | | 2.0428 | 468.0 | 4680 | 2.5041 | | 2.0428 | 469.0 | 4690 | 2.2354 | | 1.8738 | 470.0 | 4700 | 2.0811 | | 1.8738 | 471.0 | 4710 | 2.1300 | | 1.8738 | 472.0 | 4720 | 2.3041 | | 1.8738 | 473.0 | 4730 | 2.1780 | | 1.8738 | 474.0 | 4740 | 2.0481 | | 1.8625 | 475.0 | 4750 | 2.2354 | | 1.8625 | 476.0 | 4760 | 2.1670 | | 1.8625 | 477.0 | 4770 | 2.1575 | | 1.8625 | 478.0 | 4780 | 2.0797 | | 1.8625 | 479.0 | 4790 | 2.2353 | | 1.7743 | 480.0 | 4800 | 2.2478 | | 1.7743 | 481.0 | 4810 | 2.1120 | | 1.7743 | 482.0 | 4820 | 2.1790 | | 1.7743 | 483.0 | 4830 | 3.1939 | | 1.7743 | 484.0 | 4840 | 2.0575 | | 1.7955 | 485.0 | 4850 | 2.3685 | | 1.7955 | 486.0 | 4860 | 2.1021 | | 1.7955 | 487.0 | 4870 | 2.3043 | | 1.7955 | 488.0 | 4880 | 2.1155 | | 1.7955 | 489.0 | 4890 | 2.0982 | | 1.7685 | 490.0 | 4900 | 2.2740 | | 1.7685 | 491.0 | 4910 | 2.1216 | | 1.7685 | 492.0 | 4920 | 2.0764 | | 1.7685 | 493.0 | 4930 | 2.1182 | | 1.7685 | 494.0 | 4940 | 2.0343 | | 1.8806 | 495.0 | 4950 | 2.0229 | | 1.8806 | 496.0 | 4960 | 2.9971 | | 1.8806 | 497.0 | 4970 | 2.1848 | | 1.8806 | 498.0 | 4980 | 2.6586 | | 1.8806 | 499.0 | 4990 | 2.3622 | | 1.8554 | 500.0 | 5000 | 2.5255 | | 1.8554 | 501.0 | 5010 | 2.1792 | | 1.8554 | 502.0 | 5020 | 2.2098 | | 1.8554 | 503.0 | 5030 | 3.0466 | | 1.8554 | 504.0 | 5040 | 2.2054 | | 1.8123 | 505.0 | 5050 | 2.0846 | | 1.8123 | 506.0 | 5060 | 2.4480 | | 1.8123 | 507.0 | 5070 | 2.1692 | | 1.8123 | 508.0 | 5080 | 2.1262 | | 1.8123 | 509.0 | 5090 | 2.0610 | | 1.8189 | 510.0 | 5100 | 2.1438 | | 1.8189 | 511.0 | 5110 | 1.9691 | | 1.8189 | 512.0 | 5120 | 1.9818 | | 1.8189 | 513.0 | 5130 | 2.1824 | | 1.8189 | 514.0 | 5140 | 2.3053 | | 1.7296 | 515.0 | 5150 | 2.0095 | | 1.7296 | 516.0 | 5160 | 2.3895 | | 1.7296 | 517.0 | 5170 | 2.4203 | | 1.7296 | 518.0 | 5180 | 2.8143 | | 1.7296 | 519.0 | 5190 | 1.9249 | | 1.9353 | 520.0 | 5200 | 1.9745 | | 1.9353 | 521.0 | 5210 | 2.3712 | | 1.9353 | 522.0 | 5220 | 2.2221 | | 1.9353 | 523.0 | 5230 | 2.3223 | | 1.9353 | 524.0 | 5240 | 2.0649 | | 1.8203 | 525.0 | 5250 | 2.4524 | | 1.8203 | 526.0 | 5260 | 2.1729 | | 1.8203 | 527.0 | 5270 | 2.3503 | | 1.8203 | 528.0 | 5280 | 1.8859 | | 1.8203 | 529.0 | 5290 | 2.5795 | | 1.9042 | 530.0 | 5300 | 2.2665 | | 1.9042 | 531.0 | 5310 | 1.9231 | | 1.9042 | 532.0 | 5320 | 2.1896 | | 1.9042 | 533.0 | 5330 | 2.1866 | | 1.9042 | 534.0 | 5340 | 2.1273 | | 1.797 | 535.0 | 5350 | 2.1864 | | 1.797 | 536.0 | 5360 | 2.1360 | | 1.797 | 537.0 | 5370 | 2.1195 | | 1.797 | 538.0 | 5380 | 1.9885 | | 1.797 | 539.0 | 5390 | 1.9990 | | 1.8289 | 540.0 | 5400 | 2.0208 | | 1.8289 | 541.0 | 5410 | 1.9337 | | 1.8289 | 542.0 | 5420 | 2.0515 | | 1.8289 | 543.0 | 5430 | 2.3292 | | 1.8289 | 544.0 | 5440 | 1.8969 | | 1.7952 | 545.0 | 5450 | 2.0917 | | 1.7952 | 546.0 | 5460 | 2.2664 | | 1.7952 | 547.0 | 5470 | 2.1886 | | 1.7952 | 548.0 | 5480 | 2.2333 | | 1.7952 | 549.0 | 5490 | 2.1483 | | 1.8083 | 550.0 | 5500 | 2.2158 | | 1.8083 | 551.0 | 5510 | 2.2681 | | 1.8083 | 552.0 | 5520 | 2.7891 | | 1.8083 | 553.0 | 5530 | 1.9523 | | 1.8083 | 554.0 | 5540 | 2.2605 | | 1.8217 | 555.0 | 5550 | 2.4190 | | 1.8217 | 556.0 | 5560 | 2.1206 | | 1.8217 | 557.0 | 5570 | 2.5011 | | 1.8217 | 558.0 | 5580 | 2.1416 | | 1.8217 | 559.0 | 5590 | 2.1722 | | 1.7937 | 560.0 | 5600 | 2.0521 | | 1.7937 | 561.0 | 5610 | 2.1215 | | 1.7937 | 562.0 | 5620 | 2.7153 | | 1.7937 | 563.0 | 5630 | 2.1914 | | 1.7937 | 564.0 | 5640 | 2.1923 | | 1.7143 | 565.0 | 5650 | 2.4663 | | 1.7143 | 566.0 | 5660 | 1.9746 | | 1.7143 | 567.0 | 5670 | 2.0240 | | 1.7143 | 568.0 | 5680 | 2.5691 | | 1.7143 | 569.0 | 5690 | 2.3204 | | 1.6601 | 570.0 | 5700 | 2.1723 | | 1.6601 | 571.0 | 5710 | 1.9296 | | 1.6601 | 572.0 | 5720 | 2.1570 | | 1.6601 | 573.0 | 5730 | 2.1298 | | 1.6601 | 574.0 | 5740 | 2.3539 | | 1.8999 | 575.0 | 5750 | 2.1365 | | 1.8999 | 576.0 | 5760 | 2.0601 | | 1.8999 | 577.0 | 5770 | 2.0550 | | 1.8999 | 578.0 | 5780 | 2.5869 | | 1.8999 | 579.0 | 5790 | 2.1311 | | 1.6806 | 580.0 | 5800 | 1.9451 | | 1.6806 | 581.0 | 5810 | 2.1228 | | 1.6806 | 582.0 | 5820 | 2.3437 | | 1.6806 | 583.0 | 5830 | 2.3398 | | 1.6806 | 584.0 | 5840 | 2.1228 | | 1.7643 | 585.0 | 5850 | 2.0135 | | 1.7643 | 586.0 | 5860 | 1.9824 | | 1.7643 | 587.0 | 5870 | 2.2028 | | 1.7643 | 588.0 | 5880 | 2.4352 | | 1.7643 | 589.0 | 5890 | 1.9458 | | 1.803 | 590.0 | 5900 | 2.3152 | | 1.803 | 591.0 | 5910 | 2.0768 | | 1.803 | 592.0 | 5920 | 2.2836 | | 1.803 | 593.0 | 5930 | 2.1446 | | 1.803 | 594.0 | 5940 | 2.1702 | | 1.6866 | 595.0 | 5950 | 2.3142 | | 1.6866 | 596.0 | 5960 | 2.1351 | | 1.6866 | 597.0 | 5970 | 1.9202 | | 1.6866 | 598.0 | 5980 | 2.0712 | | 1.6866 | 599.0 | 5990 | 1.9634 | | 1.6967 | 600.0 | 6000 | 2.3699 | | 1.6967 | 601.0 | 6010 | 2.1562 | | 1.6967 | 602.0 | 6020 | 2.3168 | | 1.6967 | 603.0 | 6030 | 2.2248 | | 1.6967 | 604.0 | 6040 | 2.2533 | | 1.6627 | 605.0 | 6050 | 1.8170 | | 1.6627 | 606.0 | 6060 | 2.3989 | | 1.6627 | 607.0 | 6070 | 2.0302 | | 1.6627 | 608.0 | 6080 | 2.3638 | | 1.6627 | 609.0 | 6090 | 1.9077 | | 1.6703 | 610.0 | 6100 | 1.9806 | | 1.6703 | 611.0 | 6110 | 1.9167 | | 1.6703 | 612.0 | 6120 | 2.2209 | | 1.6703 | 613.0 | 6130 | 2.2042 | | 1.6703 | 614.0 | 6140 | 1.7366 | | 1.6809 | 615.0 | 6150 | 2.1843 | | 1.6809 | 616.0 | 6160 | 2.9500 | | 1.6809 | 617.0 | 6170 | 2.1226 | | 1.6809 | 618.0 | 6180 | 2.2124 | | 1.6809 | 619.0 | 6190 | 2.8095 | | 1.762 | 620.0 | 6200 | 1.9578 | | 1.762 | 621.0 | 6210 | 2.0715 | | 1.762 | 622.0 | 6220 | 2.1241 | | 1.762 | 623.0 | 6230 | 2.4005 | | 1.762 | 624.0 | 6240 | 1.9467 | | 1.7518 | 625.0 | 6250 | 1.9363 | | 1.7518 | 626.0 | 6260 | 2.3800 | | 1.7518 | 627.0 | 6270 | 2.0086 | | 1.7518 | 628.0 | 6280 | 2.0844 | | 1.7518 | 629.0 | 6290 | 1.9936 | | 1.7146 | 630.0 | 6300 | 2.9278 | | 1.7146 | 631.0 | 6310 | 2.2130 | | 1.7146 | 632.0 | 6320 | 1.8916 | | 1.7146 | 633.0 | 6330 | 1.9770 | | 1.7146 | 634.0 | 6340 | 1.9727 | | 1.7078 | 635.0 | 6350 | 2.5519 | | 1.7078 | 636.0 | 6360 | 1.8578 | | 1.7078 | 637.0 | 6370 | 2.1396 | | 1.7078 | 638.0 | 6380 | 2.1651 | | 1.7078 | 639.0 | 6390 | 1.9666 | | 1.7668 | 640.0 | 6400 | 2.1160 | | 1.7668 | 641.0 | 6410 | 2.0328 | | 1.7668 | 642.0 | 6420 | 2.0711 | | 1.7668 | 643.0 | 6430 | 2.1058 | | 1.7668 | 644.0 | 6440 | 2.0504 | | 1.7245 | 645.0 | 6450 | 2.2605 | | 1.7245 | 646.0 | 6460 | 2.3964 | | 1.7245 | 647.0 | 6470 | 2.0940 | | 1.7245 | 648.0 | 6480 | 2.4811 | | 1.7245 | 649.0 | 6490 | 2.2603 | | 1.66 | 650.0 | 6500 | 2.0771 | | 1.66 | 651.0 | 6510 | 2.0068 | | 1.66 | 652.0 | 6520 | 1.9992 | | 1.66 | 653.0 | 6530 | 2.0482 | | 1.66 | 654.0 | 6540 | 2.1352 | | 1.6753 | 655.0 | 6550 | 2.0777 | | 1.6753 | 656.0 | 6560 | 1.9601 | | 1.6753 | 657.0 | 6570 | 2.0755 | | 1.6753 | 658.0 | 6580 | 2.0130 | | 1.6753 | 659.0 | 6590 | 2.5618 | | 1.6751 | 660.0 | 6600 | 2.0391 | | 1.6751 | 661.0 | 6610 | 1.9881 | | 1.6751 | 662.0 | 6620 | 2.0105 | | 1.6751 | 663.0 | 6630 | 2.0397 | | 1.6751 | 664.0 | 6640 | 1.9171 | | 1.7329 | 665.0 | 6650 | 2.1690 | | 1.7329 | 666.0 | 6660 | 1.9315 | | 1.7329 | 667.0 | 6670 | 2.4457 | | 1.7329 | 668.0 | 6680 | 2.0552 | | 1.7329 | 669.0 | 6690 | 2.1250 | | 1.7304 | 670.0 | 6700 | 1.9498 | | 1.7304 | 671.0 | 6710 | 2.1620 | | 1.7304 | 672.0 | 6720 | 2.1663 | | 1.7304 | 673.0 | 6730 | 2.2802 | | 1.7304 | 674.0 | 6740 | 2.0857 | | 1.6356 | 675.0 | 6750 | 2.2656 | | 1.6356 | 676.0 | 6760 | 1.9959 | | 1.6356 | 677.0 | 6770 | 2.0719 | | 1.6356 | 678.0 | 6780 | 2.0429 | | 1.6356 | 679.0 | 6790 | 1.9561 | | 1.6098 | 680.0 | 6800 | 2.3071 | | 1.6098 | 681.0 | 6810 | 2.2920 | | 1.6098 | 682.0 | 6820 | 2.1268 | | 1.6098 | 683.0 | 6830 | 1.9186 | | 1.6098 | 684.0 | 6840 | 1.8820 | | 1.6784 | 685.0 | 6850 | 2.1013 | | 1.6784 | 686.0 | 6860 | 2.0973 | | 1.6784 | 687.0 | 6870 | 2.3960 | | 1.6784 | 688.0 | 6880 | 1.8338 | | 1.6784 | 689.0 | 6890 | 2.0245 | | 1.689 | 690.0 | 6900 | 2.1786 | | 1.689 | 691.0 | 6910 | 2.0254 | | 1.689 | 692.0 | 6920 | 1.9316 | | 1.689 | 693.0 | 6930 | 1.9776 | | 1.689 | 694.0 | 6940 | 2.1271 | | 1.6889 | 695.0 | 6950 | 2.3542 | | 1.6889 | 696.0 | 6960 | 2.1932 | | 1.6889 | 697.0 | 6970 | 1.8910 | | 1.6889 | 698.0 | 6980 | 2.1252 | | 1.6889 | 699.0 | 6990 | 1.9726 | | 1.7028 | 700.0 | 7000 | 2.0448 | | 1.7028 | 701.0 | 7010 | 2.1499 | | 1.7028 | 702.0 | 7020 | 1.8854 | | 1.7028 | 703.0 | 7030 | 1.9297 | | 1.7028 | 704.0 | 7040 | 2.1054 | | 1.6484 | 705.0 | 7050 | 1.9997 | | 1.6484 | 706.0 | 7060 | 2.0114 | | 1.6484 | 707.0 | 7070 | 2.0139 | | 1.6484 | 708.0 | 7080 | 2.9272 | | 1.6484 | 709.0 | 7090 | 1.8419 | | 1.6615 | 710.0 | 7100 | 3.2302 | | 1.6615 | 711.0 | 7110 | 2.0337 | | 1.6615 | 712.0 | 7120 | 2.0933 | | 1.6615 | 713.0 | 7130 | 2.0162 | | 1.6615 | 714.0 | 7140 | 2.0073 | | 1.6318 | 715.0 | 7150 | 2.1256 | | 1.6318 | 716.0 | 7160 | 1.8836 | | 1.6318 | 717.0 | 7170 | 2.0321 | | 1.6318 | 718.0 | 7180 | 2.0796 | | 1.6318 | 719.0 | 7190 | 1.9985 | | 1.7706 | 720.0 | 7200 | 2.6352 | | 1.7706 | 721.0 | 7210 | 1.9618 | | 1.7706 | 722.0 | 7220 | 1.8866 | | 1.7706 | 723.0 | 7230 | 1.9311 | | 1.7706 | 724.0 | 7240 | 2.2133 | | 1.7221 | 725.0 | 7250 | 1.8637 | | 1.7221 | 726.0 | 7260 | 2.1916 | | 1.7221 | 727.0 | 7270 | 1.8545 | | 1.7221 | 728.0 | 7280 | 2.1350 | | 1.7221 | 729.0 | 7290 | 2.0091 | | 1.754 | 730.0 | 7300 | 1.9316 | | 1.754 | 731.0 | 7310 | 2.0585 | | 1.754 | 732.0 | 7320 | 2.0417 | | 1.754 | 733.0 | 7330 | 2.1116 | | 1.754 | 734.0 | 7340 | 2.0630 | | 1.6204 | 735.0 | 7350 | 1.9218 | | 1.6204 | 736.0 | 7360 | 2.5058 | | 1.6204 | 737.0 | 7370 | 2.2771 | | 1.6204 | 738.0 | 7380 | 1.9493 | | 1.6204 | 739.0 | 7390 | 2.1200 | | 1.6891 | 740.0 | 7400 | 2.0596 | | 1.6891 | 741.0 | 7410 | 2.0757 | | 1.6891 | 742.0 | 7420 | 1.9904 | | 1.6891 | 743.0 | 7430 | 2.1336 | | 1.6891 | 744.0 | 7440 | 2.4599 | | 1.7584 | 745.0 | 7450 | 2.1578 | | 1.7584 | 746.0 | 7460 | 1.9749 | | 1.7584 | 747.0 | 7470 | 2.1406 | | 1.7584 | 748.0 | 7480 | 2.3524 | | 1.7584 | 749.0 | 7490 | 2.0798 | | 1.5819 | 750.0 | 7500 | 1.8948 | | 1.5819 | 751.0 | 7510 | 1.8562 | | 1.5819 | 752.0 | 7520 | 3.5239 | | 1.5819 | 753.0 | 7530 | 2.2157 | | 1.5819 | 754.0 | 7540 | 2.7353 | | 1.6342 | 755.0 | 7550 | 2.2190 | | 1.6342 | 756.0 | 7560 | 2.3935 | | 1.6342 | 757.0 | 7570 | 2.0825 | | 1.6342 | 758.0 | 7580 | 2.0174 | | 1.6342 | 759.0 | 7590 | 1.9563 | | 1.7279 | 760.0 | 7600 | 2.1491 | | 1.7279 | 761.0 | 7610 | 1.9795 | | 1.7279 | 762.0 | 7620 | 1.9805 | | 1.7279 | 763.0 | 7630 | 1.9753 | | 1.7279 | 764.0 | 7640 | 2.0721 | | 1.5626 | 765.0 | 7650 | 2.1229 | | 1.5626 | 766.0 | 7660 | 2.0831 | | 1.5626 | 767.0 | 7670 | 2.8723 | | 1.5626 | 768.0 | 7680 | 1.9799 | | 1.5626 | 769.0 | 7690 | 2.0792 | | 1.6589 | 770.0 | 7700 | 1.9836 | | 1.6589 | 771.0 | 7710 | 1.8836 | | 1.6589 | 772.0 | 7720 | 2.1195 | | 1.6589 | 773.0 | 7730 | 2.2073 | | 1.6589 | 774.0 | 7740 | 1.9880 | | 1.641 | 775.0 | 7750 | 2.2762 | | 1.641 | 776.0 | 7760 | 2.0996 | | 1.641 | 777.0 | 7770 | 2.0157 | | 1.641 | 778.0 | 7780 | 1.9012 | | 1.641 | 779.0 | 7790 | 3.4505 | | 1.8726 | 780.0 | 7800 | 1.9617 | | 1.8726 | 781.0 | 7810 | 2.0913 | | 1.8726 | 782.0 | 7820 | 1.9486 | | 1.8726 | 783.0 | 7830 | 2.0114 | | 1.8726 | 784.0 | 7840 | 1.9957 | | 1.6342 | 785.0 | 7850 | 2.1678 | | 1.6342 | 786.0 | 7860 | 2.1731 | | 1.6342 | 787.0 | 7870 | 1.9840 | | 1.6342 | 788.0 | 7880 | 2.2147 | | 1.6342 | 789.0 | 7890 | 2.4845 | | 1.6656 | 790.0 | 7900 | 2.0647 | | 1.6656 | 791.0 | 7910 | 1.9105 | | 1.6656 | 792.0 | 7920 | 1.9711 | | 1.6656 | 793.0 | 7930 | 2.8114 | | 1.6656 | 794.0 | 7940 | 2.1196 | | 1.7298 | 795.0 | 7950 | 2.0664 | | 1.7298 | 796.0 | 7960 | 2.2231 | | 1.7298 | 797.0 | 7970 | 1.9946 | | 1.7298 | 798.0 | 7980 | 2.3052 | | 1.7298 | 799.0 | 7990 | 2.4928 | | 1.7294 | 800.0 | 8000 | 2.0689 | | 1.7294 | 801.0 | 8010 | 2.1222 | | 1.7294 | 802.0 | 8020 | 1.9995 | | 1.7294 | 803.0 | 8030 | 2.0070 | | 1.7294 | 804.0 | 8040 | 1.8976 | | 1.6905 | 805.0 | 8050 | 2.0889 | | 1.6905 | 806.0 | 8060 | 2.0273 | | 1.6905 | 807.0 | 8070 | 1.8873 | | 1.6905 | 808.0 | 8080 | 2.5260 | | 1.6905 | 809.0 | 8090 | 2.0703 | | 1.6383 | 810.0 | 8100 | 2.1421 | | 1.6383 | 811.0 | 8110 | 1.9730 | | 1.6383 | 812.0 | 8120 | 2.2552 | | 1.6383 | 813.0 | 8130 | 1.8962 | | 1.6383 | 814.0 | 8140 | 2.0572 | | 1.6897 | 815.0 | 8150 | 2.0349 | | 1.6897 | 816.0 | 8160 | 2.0451 | | 1.6897 | 817.0 | 8170 | 2.0762 | | 1.6897 | 818.0 | 8180 | 2.0079 | | 1.6897 | 819.0 | 8190 | 2.1432 | | 1.5845 | 820.0 | 8200 | 2.5644 | | 1.5845 | 821.0 | 8210 | 2.1259 | | 1.5845 | 822.0 | 8220 | 2.1217 | | 1.5845 | 823.0 | 8230 | 1.8807 | | 1.5845 | 824.0 | 8240 | 2.2475 | | 1.6942 | 825.0 | 8250 | 2.7079 | | 1.6942 | 826.0 | 8260 | 2.1418 | | 1.6942 | 827.0 | 8270 | 1.9854 | | 1.6942 | 828.0 | 8280 | 2.1039 | | 1.6942 | 829.0 | 8290 | 1.9488 | | 1.5919 | 830.0 | 8300 | 2.1037 | | 1.5919 | 831.0 | 8310 | 2.0170 | | 1.5919 | 832.0 | 8320 | 1.8831 | | 1.5919 | 833.0 | 8330 | 1.7501 | | 1.5919 | 834.0 | 8340 | 2.5991 | | 1.6626 | 835.0 | 8350 | 2.0915 | | 1.6626 | 836.0 | 8360 | 2.0901 | | 1.6626 | 837.0 | 8370 | 2.0779 | | 1.6626 | 838.0 | 8380 | 1.9901 | | 1.6626 | 839.0 | 8390 | 2.1458 | | 1.5978 | 840.0 | 8400 | 2.1409 | | 1.5978 | 841.0 | 8410 | 2.2341 | | 1.5978 | 842.0 | 8420 | 2.3387 | | 1.5978 | 843.0 | 8430 | 2.0669 | | 1.5978 | 844.0 | 8440 | 2.1725 | | 1.6153 | 845.0 | 8450 | 1.9977 | | 1.6153 | 846.0 | 8460 | 2.3008 | | 1.6153 | 847.0 | 8470 | 2.0032 | | 1.6153 | 848.0 | 8480 | 2.0802 | | 1.6153 | 849.0 | 8490 | 2.1358 | | 1.6977 | 850.0 | 8500 | 2.2539 | | 1.6977 | 851.0 | 8510 | 2.3892 | | 1.6977 | 852.0 | 8520 | 1.8730 | | 1.6977 | 853.0 | 8530 | 2.4494 | | 1.6977 | 854.0 | 8540 | 1.7971 | | 1.6117 | 855.0 | 8550 | 1.8645 | | 1.6117 | 856.0 | 8560 | 2.1854 | | 1.6117 | 857.0 | 8570 | 1.7846 | | 1.6117 | 858.0 | 8580 | 2.0895 | | 1.6117 | 859.0 | 8590 | 1.9494 | | 1.6776 | 860.0 | 8600 | 3.0806 | | 1.6776 | 861.0 | 8610 | 2.5941 | | 1.6776 | 862.0 | 8620 | 1.8778 | | 1.6776 | 863.0 | 8630 | 1.9408 | | 1.6776 | 864.0 | 8640 | 2.0962 | | 1.7326 | 865.0 | 8650 | 1.8876 | | 1.7326 | 866.0 | 8660 | 1.9434 | | 1.7326 | 867.0 | 8670 | 2.0616 | | 1.7326 | 868.0 | 8680 | 2.4041 | | 1.7326 | 869.0 | 8690 | 2.8890 | | 1.6468 | 870.0 | 8700 | 2.1031 | | 1.6468 | 871.0 | 8710 | 2.1359 | | 1.6468 | 872.0 | 8720 | 1.8292 | | 1.6468 | 873.0 | 8730 | 2.0762 | | 1.6468 | 874.0 | 8740 | 2.1207 | | 1.7116 | 875.0 | 8750 | 1.8605 | | 1.7116 | 876.0 | 8760 | 1.8536 | | 1.7116 | 877.0 | 8770 | 2.0260 | | 1.7116 | 878.0 | 8780 | 2.6150 | | 1.7116 | 879.0 | 8790 | 1.9157 | | 1.5673 | 880.0 | 8800 | 1.9184 | | 1.5673 | 881.0 | 8810 | 1.9319 | | 1.5673 | 882.0 | 8820 | 2.4362 | | 1.5673 | 883.0 | 8830 | 1.9637 | | 1.5673 | 884.0 | 8840 | 1.8797 | | 1.7281 | 885.0 | 8850 | 1.9358 | | 1.7281 | 886.0 | 8860 | 2.0570 | | 1.7281 | 887.0 | 8870 | 1.8167 | | 1.7281 | 888.0 | 8880 | 2.4525 | | 1.7281 | 889.0 | 8890 | 2.0002 | | 1.6826 | 890.0 | 8900 | 2.1198 | | 1.6826 | 891.0 | 8910 | 2.0699 | | 1.6826 | 892.0 | 8920 | 1.9274 | | 1.6826 | 893.0 | 8930 | 2.1415 | | 1.6826 | 894.0 | 8940 | 2.2883 | | 1.6198 | 895.0 | 8950 | 2.0476 | | 1.6198 | 896.0 | 8960 | 2.2307 | | 1.6198 | 897.0 | 8970 | 2.0366 | | 1.6198 | 898.0 | 8980 | 2.2318 | | 1.6198 | 899.0 | 8990 | 1.8846 | | 1.6745 | 900.0 | 9000 | 2.1018 | | 1.6745 | 901.0 | 9010 | 1.9280 | | 1.6745 | 902.0 | 9020 | 1.9235 | | 1.6745 | 903.0 | 9030 | 1.9320 | | 1.6745 | 904.0 | 9040 | 2.0586 | | 1.6756 | 905.0 | 9050 | 2.2404 | | 1.6756 | 906.0 | 9060 | 1.7918 | | 1.6756 | 907.0 | 9070 | 2.0683 | | 1.6756 | 908.0 | 9080 | 2.1354 | | 1.6756 | 909.0 | 9090 | 1.8801 | | 1.6787 | 910.0 | 9100 | 1.9743 | | 1.6787 | 911.0 | 9110 | 1.9033 | | 1.6787 | 912.0 | 9120 | 1.9763 | | 1.6787 | 913.0 | 9130 | 2.4240 | | 1.6787 | 914.0 | 9140 | 2.1385 | | 1.7097 | 915.0 | 9150 | 2.1198 | | 1.7097 | 916.0 | 9160 | 2.0050 | | 1.7097 | 917.0 | 9170 | 2.2088 | | 1.7097 | 918.0 | 9180 | 2.1206 | | 1.7097 | 919.0 | 9190 | 2.0948 | | 1.6659 | 920.0 | 9200 | 1.8802 | | 1.6659 | 921.0 | 9210 | 2.1338 | | 1.6659 | 922.0 | 9220 | 2.1038 | | 1.6659 | 923.0 | 9230 | 1.9181 | | 1.6659 | 924.0 | 9240 | 2.7046 | | 1.6811 | 925.0 | 9250 | 2.0183 | | 1.6811 | 926.0 | 9260 | 1.8901 | | 1.6811 | 927.0 | 9270 | 1.9689 | | 1.6811 | 928.0 | 9280 | 2.0394 | | 1.6811 | 929.0 | 9290 | 2.2120 | | 1.6563 | 930.0 | 9300 | 2.0195 | | 1.6563 | 931.0 | 9310 | 1.9242 | | 1.6563 | 932.0 | 9320 | 1.9250 | | 1.6563 | 933.0 | 9330 | 2.0381 | | 1.6563 | 934.0 | 9340 | 2.0593 | | 1.6305 | 935.0 | 9350 | 2.0884 | | 1.6305 | 936.0 | 9360 | 2.2510 | | 1.6305 | 937.0 | 9370 | 2.1661 | | 1.6305 | 938.0 | 9380 | 2.1428 | | 1.6305 | 939.0 | 9390 | 1.9285 | | 1.7281 | 940.0 | 9400 | 2.2593 | | 1.7281 | 941.0 | 9410 | 1.9035 | | 1.7281 | 942.0 | 9420 | 2.1112 | | 1.7281 | 943.0 | 9430 | 1.8724 | | 1.7281 | 944.0 | 9440 | 2.1733 | | 1.7082 | 945.0 | 9450 | 2.0155 | | 1.7082 | 946.0 | 9460 | 2.3869 | | 1.7082 | 947.0 | 9470 | 1.8851 | | 1.7082 | 948.0 | 9480 | 2.0056 | | 1.7082 | 949.0 | 9490 | 2.2667 | | 1.6896 | 950.0 | 9500 | 1.8944 | | 1.6896 | 951.0 | 9510 | 2.1082 | | 1.6896 | 952.0 | 9520 | 1.9545 | | 1.6896 | 953.0 | 9530 | 1.8668 | | 1.6896 | 954.0 | 9540 | 2.0611 | | 1.6217 | 955.0 | 9550 | 1.9020 | | 1.6217 | 956.0 | 9560 | 1.9017 | | 1.6217 | 957.0 | 9570 | 1.8864 | | 1.6217 | 958.0 | 9580 | 1.8889 | | 1.6217 | 959.0 | 9590 | 2.1421 | | 1.6448 | 960.0 | 9600 | 2.0292 | | 1.6448 | 961.0 | 9610 | 1.9317 | | 1.6448 | 962.0 | 9620 | 2.1516 | | 1.6448 | 963.0 | 9630 | 1.9716 | | 1.6448 | 964.0 | 9640 | 2.1114 | | 1.6824 | 965.0 | 9650 | 2.1036 | | 1.6824 | 966.0 | 9660 | 2.0659 | | 1.6824 | 967.0 | 9670 | 1.9232 | | 1.6824 | 968.0 | 9680 | 1.9512 | | 1.6824 | 969.0 | 9690 | 1.9665 | | 1.6428 | 970.0 | 9700 | 2.0697 | | 1.6428 | 971.0 | 9710 | 2.4811 | | 1.6428 | 972.0 | 9720 | 2.2800 | | 1.6428 | 973.0 | 9730 | 2.0109 | | 1.6428 | 974.0 | 9740 | 1.9637 | | 1.6795 | 975.0 | 9750 | 1.7978 | | 1.6795 | 976.0 | 9760 | 2.2613 | | 1.6795 | 977.0 | 9770 | 2.0626 | | 1.6795 | 978.0 | 9780 | 1.9644 | | 1.6795 | 979.0 | 9790 | 1.9700 | | 1.668 | 980.0 | 9800 | 2.0342 | | 1.668 | 981.0 | 9810 | 1.9443 | | 1.668 | 982.0 | 9820 | 1.9675 | | 1.668 | 983.0 | 9830 | 1.8887 | | 1.668 | 984.0 | 9840 | 1.9073 | | 1.6776 | 985.0 | 9850 | 2.0161 | | 1.6776 | 986.0 | 9860 | 1.8777 | | 1.6776 | 987.0 | 9870 | 2.4692 | | 1.6776 | 988.0 | 9880 | 2.0462 | | 1.6776 | 989.0 | 9890 | 1.9776 | | 1.744 | 990.0 | 9900 | 2.0838 | | 1.744 | 991.0 | 9910 | 2.1438 | | 1.744 | 992.0 | 9920 | 2.2172 | | 1.744 | 993.0 | 9930 | 2.4513 | | 1.744 | 994.0 | 9940 | 1.8723 | | 1.644 | 995.0 | 9950 | 2.9081 | | 1.644 | 996.0 | 9960 | 1.8090 | | 1.644 | 997.0 | 9970 | 1.9621 | | 1.644 | 998.0 | 9980 | 2.1157 | | 1.644 | 999.0 | 9990 | 1.9026 | | 1.6751 | 1000.0 | 10000 | 2.1397 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3
gokulsrinivasagan/bert_tiny_lda_100_v1_qqp
gokulsrinivasagan
2024-12-04T15:43:12Z
121
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "base_model:gokulsrinivasagan/bert_tiny_lda_100_v1", "base_model:finetune:gokulsrinivasagan/bert_tiny_lda_100_v1", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-26T22:36:39Z
--- library_name: transformers language: - en base_model: gokulsrinivasagan/bert_tiny_lda_100_v1 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: bert_tiny_lda_100_v1_qqp results: - task: name: Text Classification type: text-classification dataset: name: GLUE QQP type: glue args: qqp metrics: - name: Accuracy type: accuracy value: 0.8543408360128617 - name: F1 type: f1 value: 0.8063020096700984 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_tiny_lda_100_v1_qqp This model is a fine-tuned version of [gokulsrinivasagan/bert_tiny_lda_100_v1](https://huggingface.co/gokulsrinivasagan/bert_tiny_lda_100_v1) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.3551 - Accuracy: 0.8543 - F1: 0.8063 - Combined Score: 0.8303 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.4874 | 1.0 | 1422 | 0.4274 | 0.7980 | 0.7125 | 0.7553 | | 0.388 | 2.0 | 2844 | 0.3786 | 0.8224 | 0.7726 | 0.7975 | | 0.3354 | 3.0 | 4266 | 0.3613 | 0.8372 | 0.7899 | 0.8136 | | 0.2928 | 4.0 | 5688 | 0.3564 | 0.8447 | 0.7830 | 0.8139 | | 0.2583 | 5.0 | 7110 | 0.3614 | 0.8509 | 0.7997 | 0.8253 | | 0.2277 | 6.0 | 8532 | 0.3551 | 0.8543 | 0.8063 | 0.8303 | | 0.2014 | 7.0 | 9954 | 0.3854 | 0.8552 | 0.8093 | 0.8322 | | 0.1784 | 8.0 | 11376 | 0.3979 | 0.8545 | 0.8064 | 0.8305 | | 0.1578 | 9.0 | 12798 | 0.4261 | 0.8558 | 0.8102 | 0.8330 | | 0.1403 | 10.0 | 14220 | 0.4443 | 0.8588 | 0.8108 | 0.8348 | | 0.1246 | 11.0 | 15642 | 0.4678 | 0.8567 | 0.8093 | 0.8330 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3
MarsupialAI/Monstral-123B-v2_GGUF
MarsupialAI
2024-12-04T15:40:43Z
1,990
3
transformers
[ "transformers", "gguf", "chat", "text-generation", "en", "license:other", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
text-generation
2024-12-03T16:37:58Z
--- license: other license_name: mrl language: - en tags: - chat pipeline_tag: text-generation library_name: transformers --- iMatrix GGUFs for https://huggingface.co/MarsupialAI/Monstral-123B-v2 iMat generated with Kalomaze's groups_merged.txt
gokulsrinivasagan/bert_tiny_lda_50_v1_wnli
gokulsrinivasagan
2024-12-04T15:30:31Z
122
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "base_model:gokulsrinivasagan/bert_tiny_lda_50_v1", "base_model:finetune:gokulsrinivasagan/bert_tiny_lda_50_v1", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-26T22:08:32Z
--- library_name: transformers language: - en base_model: gokulsrinivasagan/bert_tiny_lda_50_v1 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert_tiny_lda_50_v1_wnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE WNLI type: glue args: wnli metrics: - name: Accuracy type: accuracy value: 0.5633802816901409 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_tiny_lda_50_v1_wnli This model is a fine-tuned version of [gokulsrinivasagan/bert_tiny_lda_50_v1](https://huggingface.co/gokulsrinivasagan/bert_tiny_lda_50_v1) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6909 - Accuracy: 0.5634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6929 | 1.0 | 3 | 0.6941 | 0.5634 | | 0.6983 | 2.0 | 6 | 0.7115 | 0.4507 | | 0.7073 | 3.0 | 9 | 0.7136 | 0.4507 | | 0.7008 | 4.0 | 12 | 0.6909 | 0.5634 | | 0.703 | 5.0 | 15 | 0.6937 | 0.5634 | | 0.6958 | 6.0 | 18 | 0.7127 | 0.4366 | | 0.6937 | 7.0 | 21 | 0.7092 | 0.4225 | | 0.6955 | 8.0 | 24 | 0.7010 | 0.4789 | | 0.6926 | 9.0 | 27 | 0.7048 | 0.4507 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3
gokulsrinivasagan/bert_tiny_lda_50_v1_stsb
gokulsrinivasagan
2024-12-04T15:29:48Z
107
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "base_model:gokulsrinivasagan/bert_tiny_lda_50_v1", "base_model:finetune:gokulsrinivasagan/bert_tiny_lda_50_v1", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-26T22:07:37Z
--- library_name: transformers language: - en base_model: gokulsrinivasagan/bert_tiny_lda_50_v1 tags: - generated_from_trainer datasets: - glue metrics: - spearmanr model-index: - name: bert_tiny_lda_50_v1_stsb results: - task: name: Text Classification type: text-classification dataset: name: GLUE STSB type: glue args: stsb metrics: - name: Spearmanr type: spearmanr value: 0.18445543404254133 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_tiny_lda_50_v1_stsb This model is a fine-tuned version of [gokulsrinivasagan/bert_tiny_lda_50_v1](https://huggingface.co/gokulsrinivasagan/bert_tiny_lda_50_v1) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 2.3765 - Pearson: 0.1882 - Spearmanr: 0.1845 - Combined Score: 0.1863 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:| | 2.7864 | 1.0 | 23 | 2.4307 | 0.0696 | 0.0608 | 0.0652 | | 2.0367 | 2.0 | 46 | 2.7090 | 0.0822 | 0.0803 | 0.0812 | | 1.9366 | 3.0 | 69 | 2.6122 | 0.1308 | 0.1278 | 0.1293 | | 1.801 | 4.0 | 92 | 2.3765 | 0.1882 | 0.1845 | 0.1863 | | 1.6026 | 5.0 | 115 | 2.5150 | 0.1998 | 0.2016 | 0.2007 | | 1.3683 | 6.0 | 138 | 2.7483 | 0.1906 | 0.1931 | 0.1918 | | 1.2143 | 7.0 | 161 | 2.5671 | 0.2152 | 0.2193 | 0.2173 | | 1.0711 | 8.0 | 184 | 3.4697 | 0.1887 | 0.1904 | 0.1895 | | 1.1482 | 9.0 | 207 | 2.6297 | 0.2285 | 0.2319 | 0.2302 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3
asmaRida00/model
asmaRida00
2024-12-04T15:29:26Z
76
0
transformers
[ "transformers", "safetensors", "gguf", "llama", "text-generation-inference", "unsloth", "trl", "en", "license:apache-2.0", "endpoints_compatible", "8-bit", "region:us" ]
null
2024-12-04T14:28:24Z
--- base_model: unsloth/llama-3.2-3b-instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** asmaRida00 - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
gokulsrinivasagan/bert_tiny_lda_20_v1_sst2
gokulsrinivasagan
2024-12-04T15:27:06Z
122
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "base_model:gokulsrinivasagan/bert_tiny_lda_20_v1", "base_model:finetune:gokulsrinivasagan/bert_tiny_lda_20_v1", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-26T21:57:38Z
--- library_name: transformers language: - en base_model: gokulsrinivasagan/bert_tiny_lda_20_v1 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert_tiny_lda_20_v1_sst2 results: - task: name: Text Classification type: text-classification dataset: name: GLUE SST2 type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.8165137614678899 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_tiny_lda_20_v1_sst2 This model is a fine-tuned version of [gokulsrinivasagan/bert_tiny_lda_20_v1](https://huggingface.co/gokulsrinivasagan/bert_tiny_lda_20_v1) on the GLUE SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.4656 - Accuracy: 0.8165 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4233 | 1.0 | 264 | 0.4932 | 0.7844 | | 0.2592 | 2.0 | 528 | 0.4656 | 0.8165 | | 0.1987 | 3.0 | 792 | 0.4725 | 0.8131 | | 0.161 | 4.0 | 1056 | 0.5317 | 0.8108 | | 0.1363 | 5.0 | 1320 | 0.5661 | 0.8073 | | 0.1147 | 6.0 | 1584 | 0.6462 | 0.8085 | | 0.0959 | 7.0 | 1848 | 0.7103 | 0.7970 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3
miasetya/fine_tuned_t5_small_model_sec_5_v8
miasetya
2024-12-04T15:24:23Z
68
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-12-04T15:24:11Z
--- library_name: transformers license: apache-2.0 base_model: t5-small tags: - generated_from_trainer metrics: - rouge model-index: - name: fine_tuned_t5_small_model_sec_5_v8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fine_tuned_t5_small_model_sec_5_v8 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0291 - Rouge1: 0.4097 - Rouge2: 0.1755 - Rougel: 0.265 - Rougelsum: 0.265 - Gen Len: 91.6842 - Bert F1: 0.8773 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | Bert F1 | |:-------------:|:------:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|:-------:| | 4.0511 | 0.8333 | 40 | 3.4679 | 0.3889 | 0.1606 | 0.2546 | 0.2544 | 76.5053 | 0.8751 | | 3.5797 | 1.6667 | 80 | 3.2230 | 0.3977 | 0.1652 | 0.2577 | 0.2572 | 83.4368 | 0.8754 | | 3.412 | 2.5 | 120 | 3.1147 | 0.4011 | 0.1665 | 0.2601 | 0.2595 | 86.7526 | 0.8758 | | 3.4241 | 3.3333 | 160 | 3.0614 | 0.4082 | 0.1739 | 0.2624 | 0.2622 | 89.2895 | 0.877 | | 3.3084 | 4.1667 | 200 | 3.0368 | 0.4066 | 0.1733 | 0.2633 | 0.2639 | 89.6579 | 0.8769 | | 3.3262 | 5.0 | 240 | 3.0291 | 0.4097 | 0.1755 | 0.265 | 0.265 | 91.6842 | 0.8773 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.0 - Datasets 3.1.0 - Tokenizers 0.20.3
gokulsrinivasagan/bert_tiny_lda_50_v1_rte
gokulsrinivasagan
2024-12-04T15:24:08Z
76
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "base_model:gokulsrinivasagan/bert_tiny_lda_50_v1", "base_model:finetune:gokulsrinivasagan/bert_tiny_lda_50_v1", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-26T22:00:09Z
--- library_name: transformers language: - en base_model: gokulsrinivasagan/bert_tiny_lda_50_v1 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert_tiny_lda_50_v1_rte results: - task: name: Text Classification type: text-classification dataset: name: GLUE RTE type: glue args: rte metrics: - name: Accuracy type: accuracy value: 0.516245487364621 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_tiny_lda_50_v1_rte This model is a fine-tuned version of [gokulsrinivasagan/bert_tiny_lda_50_v1](https://huggingface.co/gokulsrinivasagan/bert_tiny_lda_50_v1) on the GLUE RTE dataset. It achieves the following results on the evaluation set: - Loss: 0.6947 - Accuracy: 0.5162 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7102 | 1.0 | 10 | 0.7030 | 0.4513 | | 0.6931 | 2.0 | 20 | 0.6947 | 0.5162 | | 0.684 | 3.0 | 30 | 0.6952 | 0.5596 | | 0.6672 | 4.0 | 40 | 0.6998 | 0.5415 | | 0.6337 | 5.0 | 50 | 0.7336 | 0.5162 | | 0.5785 | 6.0 | 60 | 0.8523 | 0.4693 | | 0.5141 | 7.0 | 70 | 0.8520 | 0.5415 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3
gokulsrinivasagan/bert_tiny_lda_50_v1_qqp
gokulsrinivasagan
2024-12-04T15:23:03Z
73
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "base_model:gokulsrinivasagan/bert_tiny_lda_50_v1", "base_model:finetune:gokulsrinivasagan/bert_tiny_lda_50_v1", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-26T21:16:30Z
--- library_name: transformers language: - en base_model: gokulsrinivasagan/bert_tiny_lda_50_v1 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: bert_tiny_lda_50_v1_qqp results: - task: name: Text Classification type: text-classification dataset: name: GLUE QQP type: glue args: qqp metrics: - name: Accuracy type: accuracy value: 0.824956715310413 - name: F1 type: f1 value: 0.7710671885614465 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_tiny_lda_50_v1_qqp This model is a fine-tuned version of [gokulsrinivasagan/bert_tiny_lda_50_v1](https://huggingface.co/gokulsrinivasagan/bert_tiny_lda_50_v1) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.3820 - Accuracy: 0.8250 - F1: 0.7711 - Combined Score: 0.7980 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.4989 | 1.0 | 1422 | 0.4520 | 0.7819 | 0.6719 | 0.7269 | | 0.403 | 2.0 | 2844 | 0.3968 | 0.8146 | 0.7527 | 0.7836 | | 0.3459 | 3.0 | 4266 | 0.3820 | 0.8250 | 0.7711 | 0.7980 | | 0.2995 | 4.0 | 5688 | 0.3891 | 0.8334 | 0.7644 | 0.7989 | | 0.2618 | 5.0 | 7110 | 0.4069 | 0.8376 | 0.7723 | 0.8050 | | 0.2277 | 6.0 | 8532 | 0.3923 | 0.8411 | 0.7899 | 0.8155 | | 0.1997 | 7.0 | 9954 | 0.4387 | 0.8435 | 0.7863 | 0.8149 | | 0.1755 | 8.0 | 11376 | 0.4638 | 0.8448 | 0.7911 | 0.8180 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3
gokulsrinivasagan/bert_tiny_lda_20_v1_qqp
gokulsrinivasagan
2024-12-04T15:21:16Z
90
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "base_model:gokulsrinivasagan/bert_tiny_lda_20_v1", "base_model:finetune:gokulsrinivasagan/bert_tiny_lda_20_v1", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-26T21:28:12Z
--- library_name: transformers language: - en base_model: gokulsrinivasagan/bert_tiny_lda_20_v1 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: bert_tiny_lda_20_v1_qqp results: - task: name: Text Classification type: text-classification dataset: name: GLUE QQP type: glue args: qqp metrics: - name: Accuracy type: accuracy value: 0.8355181795696265 - name: F1 type: f1 value: 0.7821386450006552 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_tiny_lda_20_v1_qqp This model is a fine-tuned version of [gokulsrinivasagan/bert_tiny_lda_20_v1](https://huggingface.co/gokulsrinivasagan/bert_tiny_lda_20_v1) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.3641 - Accuracy: 0.8355 - F1: 0.7821 - Combined Score: 0.8088 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.4896 | 1.0 | 1422 | 0.4397 | 0.7902 | 0.6817 | 0.7359 | | 0.3891 | 2.0 | 2844 | 0.3806 | 0.8247 | 0.7674 | 0.7960 | | 0.3332 | 3.0 | 4266 | 0.3641 | 0.8355 | 0.7821 | 0.8088 | | 0.29 | 4.0 | 5688 | 0.3666 | 0.8448 | 0.7868 | 0.8158 | | 0.2535 | 5.0 | 7110 | 0.3724 | 0.8485 | 0.7977 | 0.8231 | | 0.2212 | 6.0 | 8532 | 0.3716 | 0.8517 | 0.8042 | 0.8280 | | 0.1947 | 7.0 | 9954 | 0.4039 | 0.8528 | 0.8050 | 0.8289 | | 0.1711 | 8.0 | 11376 | 0.4276 | 0.8535 | 0.7964 | 0.8249 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3
gokulsrinivasagan/bert_tiny_lda_5_v1_wnli
gokulsrinivasagan
2024-12-04T15:13:44Z
107
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "base_model:gokulsrinivasagan/bert_tiny_lda_5_v1", "base_model:finetune:gokulsrinivasagan/bert_tiny_lda_5_v1", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-26T21:14:05Z
--- library_name: transformers language: - en base_model: gokulsrinivasagan/bert_tiny_lda_5_v1 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert_tiny_lda_5_v1_wnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE WNLI type: glue args: wnli metrics: - name: Accuracy type: accuracy value: 0.4507042253521127 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_tiny_lda_5_v1_wnli This model is a fine-tuned version of [gokulsrinivasagan/bert_tiny_lda_5_v1](https://huggingface.co/gokulsrinivasagan/bert_tiny_lda_5_v1) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.7044 - Accuracy: 0.4507 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7046 | 1.0 | 3 | 0.7044 | 0.4507 | | 0.6988 | 2.0 | 6 | 0.7140 | 0.4789 | | 0.6966 | 3.0 | 9 | 0.7436 | 0.2958 | | 0.6905 | 4.0 | 12 | 0.7424 | 0.2394 | | 0.6915 | 5.0 | 15 | 0.7469 | 0.2958 | | 0.6853 | 6.0 | 18 | 0.7605 | 0.2113 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3
gokulsrinivasagan/distilbert_lda_20_v1_mnli
gokulsrinivasagan
2024-12-04T15:13:12Z
119
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "base_model:gokulsrinivasagan/distilbert_lda_20_v1", "base_model:finetune:gokulsrinivasagan/distilbert_lda_20_v1", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-26T21:03:19Z
--- library_name: transformers language: - en base_model: gokulsrinivasagan/distilbert_lda_20_v1 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert_lda_20_v1_mnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE MNLI type: glue args: mnli metrics: - name: Accuracy type: accuracy value: 0.7496948738812043 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_lda_20_v1_mnli This model is a fine-tuned version of [gokulsrinivasagan/distilbert_lda_20_v1](https://huggingface.co/gokulsrinivasagan/distilbert_lda_20_v1) on the GLUE MNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6113 - Accuracy: 0.7497 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.7997 | 1.0 | 1534 | 0.7015 | 0.6993 | | 0.6366 | 2.0 | 3068 | 0.6519 | 0.7348 | | 0.5415 | 3.0 | 4602 | 0.6345 | 0.7454 | | 0.4571 | 4.0 | 6136 | 0.6564 | 0.7495 | | 0.3787 | 5.0 | 7670 | 0.7103 | 0.7490 | | 0.3108 | 6.0 | 9204 | 0.7443 | 0.7472 | | 0.2508 | 7.0 | 10738 | 0.8307 | 0.7462 | | 0.2051 | 8.0 | 12272 | 0.9429 | 0.7401 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3
AstraMindAI/xtts2-gpt
AstraMindAI
2024-12-04T15:09:44Z
9,974
6
null
[ "safetensors", "xtts_gpt", "custom_code", "base_model:coqui/XTTS-v2", "base_model:finetune:coqui/XTTS-v2", "license:apache-2.0", "region:us" ]
null
2024-10-24T09:39:52Z
--- license: apache-2.0 base_model: - coqui/XTTS-v2 --- # Auralis 🌌 ## Model Details 🛠️ **Model Name:** Auralis **Model Architecture:** Based on [Coqui XTTS-v2](https://huggingface.co/coqui/XTTS-v2) **License:** - license: Apache 2.0 - base_model: XTTS-v2 Components [Coqui AI License](https://coqui.ai/cpml) **Language Support:** English, Spanish, French, German, Italian, Portuguese, Polish, Turkish, Russian, Dutch, Czech, Arabic, Chinese (Simplified), Hungarian, Korean, Japanese, Hindi **Developed by:** [AstraMind.ai](https://www.astramind.ai) **GitHub:** [AstraMind AI](https://github.com/astramind-ai/Auralis/tree/main) **Primary Use Case:** Text-to-Speech (TTS) generation for real-world applications, including books, dialogues, and multilingual tasks. --- ## Model Description 🚀 Auralis transforms text into natural, high-quality speech with exceptional speed and scalability. It is powered by [Coqui XTTS-v2](https://huggingface.co/coqui/XTTS-v2) and optimized for both consumer-grade and high-performance GPUs. Auralis is designed to meet real-world needs like long-text processing, voice cloning, and concurrent request handling. ### Key Features: - **Warp-Speed Processing:** Generate speech for an entire novel (e.g., Harry Potter) in ~10 minutes. - **Hardware Friendly:** Requires <10GB VRAM on a single NVIDIA RTX 3090. - **Scalable:** Handles multiple requests simultaneously. - **Streaming:** Seamlessly processes long texts in a streaming format. - **Custom Voices:** Enables voice cloning from short reference audio. --- ## Quick Start ⭐ ```python from auralis import TTS, TTSRequest # Initialize the model tts = TTS().from_pretrained("AstraMindAI/xtts2-gpt") # Create a TTS request request = TTSRequest( text="Hello Earth! This is Auralis speaking.", speaker_files=["reference.wav"] ) # Generate speech output = tts.generate_speech(request) output.save("output.wav") ``` --- ## Ebook Generation 📚 Auralis converting ebooks into audio formats at lightning speed. For Python script, check out [ebook_audio_generator.py](https://github.com/astramind-ai/Auralis/blob/main/examples/vocalize_a_ebook.py). ```python def process_book(chapter_file: str, speaker_file: str): # Read chapter with open(chapter_file, 'r') as f: chapter = f.read() # You can pass the whole book, auralis will take care of splitting request = TTSRequest( text=chapter, speaker_files=[speaker_file], audio_config=AudioPreprocessingConfig( enhance_speech=True, normalize=True ) ) output = tts.generate_speech(request) output.play() output.save("chapter_output.wav") # Example usage process_book("chapter1.txt", "reference_voice.wav") ``` --- ## Intended Use 🌟 Auralis is designed for: - **Content Creators:** Generate audiobooks, podcasts, or voiceovers. - **Developers:** Integrate TTS into applications via a simple Python API. - **Accessibility**: Providing audio versions of digital content for people with visual or reading difficulties. - **Multilingual Scenarios:** Convert text to speech in multiple supported languages. --- ## Performance 📊 **Benchmarks on NVIDIA RTX 3090:** - Short phrases (<100 characters): ~1 second - Medium texts (<1,000 characters): ~5-10 seconds - Full books (~100,000 characters): ~10 minutes **Memory Usage:** - Base VRAM: ~4GB - Peak VRAM: ~10GB --- ## Model Features 🛸 1. **Speed & Efficiency:** - Smart batching for rapid processing of long texts. - Memory-optimized for consumer GPUs. 2. **Easy Integration:** - Python API with support for synchronous and asynchronous workflows. - Streaming mode for continuous playback during generation. 3. **Audio Quality Enhancements:** - Background noise reduction. - Voice clarity and volume normalization. - Customizable audio preprocessing. 4. **Multilingual Support:** - Automatic language detection. - High-quality speech in 15+ languages. 5. **Customization:** - Voice cloning using short reference clips. - Adjustable parameters for tone, pacing, and language. --- ## Limitations & Ethical Considerations ⚠️ - **Voice Cloning Risks:** Auralis supports voice cloning, which may raise ethical concerns about misuse. Use responsibly and ensure proper consent. - **Accent Limitations:** While robust for many languages, accents and intonations may vary based on the input. --- ## Citation 📜 If you use Auralis in your research or projects, please cite: ```bibtex @misc{auralis2024, author = {AstraMind AI}, title = {Auralis: High-Performance Text-to-Speech Engine}, year = {2024}, url = {https://huggingface.co/AstraMindAI/auralis} } ```
gokulsrinivasagan/distilbert_lda_100_v1_mnli
gokulsrinivasagan
2024-12-04T15:00:49Z
120
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "base_model:gokulsrinivasagan/distilbert_lda_100_v1", "base_model:finetune:gokulsrinivasagan/distilbert_lda_100_v1", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-26T21:03:14Z
--- library_name: transformers language: - en base_model: gokulsrinivasagan/distilbert_lda_100_v1 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert_lda_100_v1_mnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE MNLI type: glue args: mnli metrics: - name: Accuracy type: accuracy value: 0.7477624084621644 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_lda_100_v1_mnli This model is a fine-tuned version of [gokulsrinivasagan/distilbert_lda_100_v1](https://huggingface.co/gokulsrinivasagan/distilbert_lda_100_v1) on the GLUE MNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6210 - Accuracy: 0.7478 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.8015 | 1.0 | 1534 | 0.7065 | 0.6998 | | 0.6395 | 2.0 | 3068 | 0.6530 | 0.7296 | | 0.5434 | 3.0 | 4602 | 0.6438 | 0.7388 | | 0.459 | 4.0 | 6136 | 0.6610 | 0.7388 | | 0.3802 | 5.0 | 7670 | 0.7116 | 0.7474 | | 0.3083 | 6.0 | 9204 | 0.7747 | 0.7442 | | 0.2483 | 7.0 | 10738 | 0.8570 | 0.7382 | | 0.202 | 8.0 | 12272 | 0.9470 | 0.7383 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3
maghrane/speecht5_finetuned_marar1000
maghrane
2024-12-04T14:54:54Z
76
0
transformers
[ "transformers", "tensorboard", "safetensors", "speecht5", "text-to-audio", "generated_from_trainer", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-audio
2024-12-04T14:24:45Z
--- library_name: transformers license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer model-index: - name: speecht5_finetuned_marar1000 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speecht5_finetuned_marar1000 This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4988 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | 0.7169 | 3.1873 | 100 | 0.6299 | | 0.5985 | 6.3745 | 200 | 0.5623 | | 0.5607 | 9.5618 | 300 | 0.5406 | | 0.5473 | 12.7490 | 400 | 0.5500 | | 0.5191 | 15.9363 | 500 | 0.5234 | | 0.5276 | 19.1235 | 600 | 0.5260 | | 0.5116 | 22.3108 | 700 | 0.5064 | | 0.504 | 25.4980 | 800 | 0.5191 | | 0.4838 | 28.6853 | 900 | 0.5001 | | 0.4825 | 31.8725 | 1000 | 0.4988 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Tokenizers 0.20.3
gokulsrinivasagan/bert_tiny_lda_100_v1_cola
gokulsrinivasagan
2024-12-04T14:53:13Z
106
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "base_model:gokulsrinivasagan/bert_tiny_lda_100_v1", "base_model:finetune:gokulsrinivasagan/bert_tiny_lda_100_v1", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-26T22:26:48Z
--- library_name: transformers language: - en base_model: gokulsrinivasagan/bert_tiny_lda_100_v1 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation - accuracy model-index: - name: bert_tiny_lda_100_v1_cola results: - task: name: Text Classification type: text-classification dataset: name: GLUE COLA type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.07380739515541786 - name: Accuracy type: accuracy value: 0.6941514611244202 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_tiny_lda_100_v1_cola This model is a fine-tuned version of [gokulsrinivasagan/bert_tiny_lda_100_v1](https://huggingface.co/gokulsrinivasagan/bert_tiny_lda_100_v1) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.6106 - Matthews Correlation: 0.0738 - Accuracy: 0.6942 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------------------:|:--------:| | 0.6154 | 1.0 | 34 | 0.6166 | 0.0 | 0.6913 | | 0.6048 | 2.0 | 68 | 0.6133 | 0.0 | 0.6913 | | 0.5957 | 3.0 | 102 | 0.6106 | 0.0738 | 0.6942 | | 0.5772 | 4.0 | 136 | 0.6261 | 0.0274 | 0.6903 | | 0.5353 | 5.0 | 170 | 0.6314 | 0.1252 | 0.6692 | | 0.496 | 6.0 | 204 | 0.6528 | 0.0916 | 0.6261 | | 0.4518 | 7.0 | 238 | 0.6883 | 0.0837 | 0.6251 | | 0.4203 | 8.0 | 272 | 0.7735 | 0.0681 | 0.6405 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3
fbaldassarri/meta-llama_Llama-3.2-3B-auto_awq-int4-gs128-sym
fbaldassarri
2024-12-04T14:51:57Z
95
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "autoround", "autoawq", "awq", "gptq", "woq", "meta", "pytorch", "llama-3", "intel-autoround", "intel", "en", "de", "fr", "it", "pt", "hi", "es", "th", "base_model:meta-llama/Llama-3.2-3B", "base_model:quantized:meta-llama/Llama-3.2-3B", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "4-bit", "region:us" ]
text-generation
2024-12-04T14:50:26Z
--- language: - en - de - fr - it - pt - hi - es - th license: llama3.2 library_name: transformers tags: - autoround - autoawq - awq - gptq - woq - meta - pytorch - llama - llama-3 - intel-autoround - intel model_name: Llama 3.2 3B base_model: meta-llama/Llama-3.2-3B inference: false model_creator: meta-llama pipeline_tag: text-generation prompt_template: '{prompt} ' quantized_by: fbaldassarri --- ## Model Information Quantized version of [meta-llama/Llama-3.2-3B](meta-llama/Llama-3.2-3B) using torch.float32 for quantization tuning. - 4 bits (INT4) - group size = 128 - Symmetrical Quantization - Method AutoAWQ Quantization framework: [Intel AutoRound](https://github.com/intel/auto-round) Note: this INT4 version of Llama-3.2-3B has been quantized to run inference through CPU. ## Replication Recipe ### Step 1 Install Requirements I suggest to install requirements into a dedicated python-virtualenv or a conda enviroment. ``` python -m pip install <package> --upgrade ``` - accelerate==1.0.1 - auto_gptq==0.7.1 - neural_compressor==3.1 - torch==2.3.0+cpu - torchaudio==2.5.0+cpu - torchvision==0.18.0+cpu - transformers==4.45.2 ### Step 2 Build Intel Autoround wheel from sources ``` python -m pip install git+https://github.com/intel/auto-round.git ``` ### Step 3 Script for Quantization ``` from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "meta-llama/Llama-3.2-3B" model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) from auto_round import AutoRound bits, group_size, sym = 4, 128, True autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym) autoround.quantize() output_dir = "./AutoRound/meta-llama_Llama-3.2-3B-auto_awq-int4-gs128-sym" autoround.save_quantized(output_dir, format='auto_awq', inplace=True) ``` ## License [Llama 3.2 Community License](https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/LICENSE) ## Disclaimer This quantized model comes with no warrenty. It has been developed only for research purposes.
gokulsrinivasagan/bert_base_lda_100_v1_mnli
gokulsrinivasagan
2024-12-04T14:51:41Z
11
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "base_model:gokulsrinivasagan/bert_base_lda_100_v1", "base_model:finetune:gokulsrinivasagan/bert_base_lda_100_v1", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-26T19:56:36Z
--- library_name: transformers language: - en base_model: gokulsrinivasagan/bert_base_lda_100_v1 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert_base_lda_100_v1_mnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE MNLI type: glue args: mnli metrics: - name: Accuracy type: accuracy value: 0.7162327095199349 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_base_lda_100_v1_mnli This model is a fine-tuned version of [gokulsrinivasagan/bert_base_lda_100_v1](https://huggingface.co/gokulsrinivasagan/bert_base_lda_100_v1) on the GLUE MNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6799 - Accuracy: 0.7162 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.9588 | 1.0 | 1534 | 0.8420 | 0.6249 | | 0.7857 | 2.0 | 3068 | 0.7451 | 0.6808 | | 0.6825 | 3.0 | 4602 | 0.7162 | 0.6976 | | 0.5973 | 4.0 | 6136 | 0.7056 | 0.7113 | | 0.5208 | 5.0 | 7670 | 0.7460 | 0.7144 | | 0.4464 | 6.0 | 9204 | 0.7907 | 0.7078 | | 0.3775 | 7.0 | 10738 | 0.8362 | 0.7172 | | 0.316 | 8.0 | 12272 | 0.9463 | 0.7101 | | 0.2617 | 9.0 | 13806 | 1.0094 | 0.7111 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3
miasetya/fine_tuned_t5_small_model_sec_5_v7
miasetya
2024-12-04T14:50:43Z
106
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-12-04T14:50:32Z
--- library_name: transformers license: apache-2.0 base_model: t5-small tags: - generated_from_trainer metrics: - rouge model-index: - name: fine_tuned_t5_small_model_sec_5_v7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fine_tuned_t5_small_model_sec_5_v7 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9444 - Rouge1: 0.4164 - Rouge2: 0.1713 - Rougel: 0.2629 - Rougelsum: 0.263 - Gen Len: 97.6789 - Bert F1: 0.8782 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | Bert F1 | |:-------------:|:------:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:--------:|:-------:| | 3.7935 | 0.8333 | 40 | 3.2861 | 0.4017 | 0.1617 | 0.2553 | 0.2555 | 85.1947 | 0.8757 | | 3.4033 | 1.6667 | 80 | 3.0832 | 0.4134 | 0.1674 | 0.2577 | 0.258 | 96.5105 | 0.8765 | | 3.2373 | 2.5 | 120 | 3.0022 | 0.4197 | 0.1746 | 0.2653 | 0.2655 | 100.2632 | 0.8777 | | 3.1774 | 3.3333 | 160 | 2.9664 | 0.4146 | 0.1695 | 0.262 | 0.2619 | 98.3895 | 0.8773 | | 3.1783 | 4.1667 | 200 | 2.9495 | 0.4151 | 0.1708 | 0.2633 | 0.2633 | 97.4684 | 0.878 | | 3.1614 | 5.0 | 240 | 2.9444 | 0.4164 | 0.1713 | 0.2629 | 0.263 | 97.6789 | 0.8782 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.0 - Datasets 3.1.0 - Tokenizers 0.20.3
code135/scene_segmentation
code135
2024-12-04T14:49:36Z
32
0
transformers
[ "transformers", "tf", "segformer", "generated_from_keras_callback", "base_model:nvidia/mit-b0", "base_model:finetune:nvidia/mit-b0", "license:other", "endpoints_compatible", "region:us" ]
null
2024-11-14T08:08:35Z
--- library_name: transformers license: other base_model: nvidia/mit-b0 tags: - generated_from_keras_callback model-index: - name: code135/scene_segmentation results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # code135/scene_segmentation This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: nan - Validation Loss: nan - Validation Mean Iou: 0.0183 - Validation Mean Accuracy: 0.1667 - Validation Overall Accuracy: 0.1607 - Validation Accuracy Ciel: 1.0 - Validation Accuracy Vegetation: 0.0 - Validation Accuracy Batiment peu vitre (<50%): 0.0 - Validation Accuracy Batiment tres vitre (>50%): 0.0 - Validation Accuracy Couvert: 0.0 - Validation Accuracy Autre: 0.0 - Validation Iou Ciel: 0.1098 - Validation Iou Vegetation: 0.0 - Validation Iou Batiment peu vitre (<50%): 0.0 - Validation Iou Batiment tres vitre (>50%): 0.0 - Validation Iou Couvert: 0.0 - Validation Iou Autre: 0.0 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 6e-05, 'decay_steps': 120, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Validation Mean Iou | Validation Mean Accuracy | Validation Overall Accuracy | Validation Accuracy Ciel | Validation Accuracy Vegetation | Validation Accuracy Batiment peu vitre (<50%) | Validation Accuracy Batiment tres vitre (>50%) | Validation Accuracy Couvert | Validation Accuracy Autre | Validation Iou Ciel | Validation Iou Vegetation | Validation Iou Batiment peu vitre (<50%) | Validation Iou Batiment tres vitre (>50%) | Validation Iou Couvert | Validation Iou Autre | Epoch | |:----------:|:---------------:|:-------------------:|:------------------------:|:---------------------------:|:------------------------:|:------------------------------:|:---------------------------------------------:|:----------------------------------------------:|:---------------------------:|:-------------------------:|:-------------------:|:-------------------------:|:----------------------------------------:|:-----------------------------------------:|:----------------------:|:--------------------:|:-----:| | nan | nan | 0.0183 | 0.1667 | 0.1607 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1098 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | | nan | nan | 0.0183 | 0.1667 | 0.1607 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1098 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1 | | nan | nan | 0.0183 | 0.1667 | 0.1607 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1098 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2 | ### Framework versions - Transformers 4.46.2 - TensorFlow 2.17.1 - Datasets 3.1.0 - Tokenizers 0.20.3
fbaldassarri/meta-llama_Llama-3.2-3B-auto_gptq-int4-gs128-sym
fbaldassarri
2024-12-04T14:48:10Z
78
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "autoround", "autogptq", "gptq", "woq", "meta", "pytorch", "llama-3", "intel-autoround", "intel", "en", "de", "fr", "it", "pt", "hi", "es", "th", "base_model:meta-llama/Llama-3.2-3B", "base_model:quantized:meta-llama/Llama-3.2-3B", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "4-bit", "region:us" ]
text-generation
2024-12-04T14:47:01Z
--- language: - en - de - fr - it - pt - hi - es - th license: llama3.2 library_name: transformers tags: - autoround - autogptq - gptq - woq - meta - pytorch - llama - llama-3 - intel-autoround - intel model_name: Llama 3.2 3B base_model: meta-llama/Llama-3.2-3B inference: false model_creator: meta-llama pipeline_tag: text-generation prompt_template: '{prompt} ' quantized_by: fbaldassarri --- ## Model Information Quantized version of [meta-llama/Llama-3.2-3B](meta-llama/Llama-3.2-3B) using torch.float32 for quantization tuning. - 4 bits (INT4) - group size = 128 - Symmetrical Quantization - Method AutoGPTQ Quantization framework: [Intel AutoRound](https://github.com/intel/auto-round) Note: this INT4 version of Llama-3.2-3B has been quantized to run inference through CPU. ## Replication Recipe ### Step 1 Install Requirements I suggest to install requirements into a dedicated python-virtualenv or a conda enviroment. ``` python -m pip install <package> --upgrade ``` - accelerate==1.0.1 - auto_gptq==0.7.1 - neural_compressor==3.1 - torch==2.3.0+cpu - torchaudio==2.5.0+cpu - torchvision==0.18.0+cpu - transformers==4.45.2 ### Step 2 Build Intel Autoround wheel from sources ``` python -m pip install git+https://github.com/intel/auto-round.git ``` ### Step 3 Script for Quantization ``` from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "meta-llama/Llama-3.2-3B" model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) from auto_round import AutoRound bits, group_size, sym = 4, 128, True autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym) autoround.quantize() output_dir = "./AutoRound/meta-llama_Llama-3.2-3B-auto_gptq-int4-gs128-sym" autoround.save_quantized(output_dir, format='auto_gptq', inplace=True) ``` ## License [Llama 3.2 Community License](https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/LICENSE) ## Disclaimer This quantized model comes with no warrenty. It has been developed only for research purposes.
fbaldassarri/meta-llama_Llama-3.2-3B-auto_round-int4-gs128-sym
fbaldassarri
2024-12-04T14:45:07Z
77
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "autoround", "intel", "gptq", "woq", "meta", "pytorch", "llama-3", "intel-autoround", "en", "de", "fr", "it", "pt", "hi", "es", "th", "base_model:meta-llama/Llama-3.2-3B", "base_model:quantized:meta-llama/Llama-3.2-3B", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "4-bit", "intel/auto-round", "region:us" ]
text-generation
2024-12-04T14:43:57Z
--- language: - en - de - fr - it - pt - hi - es - th license: llama3.2 library_name: transformers tags: - autoround - intel - gptq - woq - meta - pytorch - llama - llama-3 - intel-autoround model_name: Llama 3.2 3B base_model: meta-llama/Llama-3.2-3B inference: false model_creator: meta-llama pipeline_tag: text-generation prompt_template: '{prompt} ' quantized_by: fbaldassarri --- ## Model Information Quantized version of [meta-llama/Llama-3.2-3B](meta-llama/Llama-3.2-3B) using torch.float32 for quantization tuning. - 4 bits (INT4) - group size = 128 - Symmetrical Quantization - Method WoQ (AutoRound format) Fast and low memory, 2-3X speedup (slight accuracy drop at W4G128) Quantization framework: [Intel AutoRound](https://github.com/intel/auto-round) Note: this INT4 version of Llama-3.2-3B has been quantized to run inference through CPU. ## Replication Recipe ### Step 1 Install Requirements I suggest to install requirements into a dedicated python-virtualenv or a conda enviroment. ``` python -m pip install <package> --upgrade ``` - accelerate==1.0.1 - auto_gptq==0.7.1 - neural_compressor==3.1 - torch==2.3.0+cpu - torchaudio==2.5.0+cpu - torchvision==0.18.0+cpu - transformers==4.45.2 ### Step 2 Build Intel Autoround wheel from sources ``` python -m pip install git+https://github.com/intel/auto-round.git ``` ### Step 3 Script for Quantization ``` from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "meta-llama/Llama-3.2-3B" model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) from auto_round import AutoRound bits, group_size, sym = 4, 128, True autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym) autoround.quantize() output_dir = "./AutoRound/meta-llama_Llama-3.2-3B-auto_round-int4-gs128-sym" autoround.save_quantized(output_dir, format='auto_round', inplace=True) ``` ## License [Llama 3.2 Community License](https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/LICENSE) ## Disclaimer This quantized model comes with no warrenty. It has been developed only for research purposes.
fbaldassarri/meta-llama_Llama-3.2-3B-auto_round-int4-gs128-asym
fbaldassarri
2024-12-04T14:43:30Z
79
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "autoround", "intel", "gptq", "woq", "meta", "pytorch", "llama-3", "intel-autoround", "en", "de", "fr", "it", "pt", "hi", "es", "th", "base_model:meta-llama/Llama-3.2-3B", "base_model:quantized:meta-llama/Llama-3.2-3B", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "4-bit", "intel/auto-round", "region:us" ]
text-generation
2024-12-04T14:42:06Z
--- language: - en - de - fr - it - pt - hi - es - th license: llama3.2 library_name: transformers tags: - autoround - intel - gptq - woq - meta - pytorch - llama - llama-3 - intel-autoround model_name: Llama 3.2 3B base_model: meta-llama/Llama-3.2-3B inference: false model_creator: meta-llama pipeline_tag: text-generation prompt_template: '{prompt} ' quantized_by: fbaldassarri --- ## Model Information Quantized version of [meta-llama/Llama-3.2-3B](meta-llama/Llama-3.2-3B) using torch.float32 for quantization tuning. - 4 bits (INT4) - group size = 128 - Asymmetrical Quantization - Method WoQ (AutoRound format) Fast and low memory, 2-3X speedup (slight accuracy drop at W4G128) Quantization framework: [Intel AutoRound](https://github.com/intel/auto-round) Note: this INT4 version of Llama-3.2-3B has been quantized to run inference through CPU. ## Replication Recipe ### Step 1 Install Requirements I suggest to install requirements into a dedicated python-virtualenv or a conda enviroment. ``` python -m pip install <package> --upgrade ``` - accelerate==1.0.1 - auto_gptq==0.7.1 - neural_compressor==3.1 - torch==2.3.0+cpu - torchaudio==2.5.0+cpu - torchvision==0.18.0+cpu - transformers==4.45.2 ### Step 2 Build Intel Autoround wheel from sources ``` python -m pip install git+https://github.com/intel/auto-round.git ``` ### Step 3 Script for Quantization ``` from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "meta-llama/Llama-3.2-3B" model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) from auto_round import AutoRound bits, group_size, sym = 4, 128, False autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym) autoround.quantize() output_dir = "./AutoRound/meta-llama_Llama-3.2-3B-auto_round-int4-gs128-asym" autoround.save_quantized(output_dir, format='auto_round', inplace=True) ``` ## License [Llama 3.2 Community License](https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/LICENSE) ## Disclaimer This quantized model comes with no warrenty. It has been developed only for research purposes.
gokulsrinivasagan/bert_base_lda_50_v1_mnli
gokulsrinivasagan
2024-12-04T14:40:39Z
107
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "base_model:gokulsrinivasagan/bert_base_lda_50_v1", "base_model:finetune:gokulsrinivasagan/bert_base_lda_50_v1", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-26T19:49:30Z
--- library_name: transformers language: - en base_model: gokulsrinivasagan/bert_base_lda_50_v1 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert_base_lda_50_v1_mnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE MNLI type: glue args: mnli metrics: - name: Accuracy type: accuracy value: 0.6771765663140765 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_base_lda_50_v1_mnli This model is a fine-tuned version of [gokulsrinivasagan/bert_base_lda_50_v1](https://huggingface.co/gokulsrinivasagan/bert_base_lda_50_v1) on the GLUE MNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.7495 - Accuracy: 0.6772 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.9617 | 1.0 | 1534 | 0.8662 | 0.6088 | | 0.814 | 2.0 | 3068 | 0.8016 | 0.6440 | | 0.7181 | 3.0 | 4602 | 0.7586 | 0.6704 | | 0.6352 | 4.0 | 6136 | 0.7738 | 0.6728 | | 0.5553 | 5.0 | 7670 | 0.8012 | 0.6811 | | 0.4748 | 6.0 | 9204 | 0.8789 | 0.6837 | | 0.3985 | 7.0 | 10738 | 0.9567 | 0.6792 | | 0.3311 | 8.0 | 12272 | 1.0359 | 0.6737 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3
gokulsrinivasagan/bert_tiny_lda_20_v1_cola
gokulsrinivasagan
2024-12-04T14:40:16Z
107
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "base_model:gokulsrinivasagan/bert_tiny_lda_20_v1", "base_model:finetune:gokulsrinivasagan/bert_tiny_lda_20_v1", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-26T21:11:19Z
--- library_name: transformers language: - en base_model: gokulsrinivasagan/bert_tiny_lda_20_v1 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation - accuracy model-index: - name: bert_tiny_lda_20_v1_cola results: - task: name: Text Classification type: text-classification dataset: name: GLUE COLA type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.0 - name: Accuracy type: accuracy value: 0.6912751793861389 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_tiny_lda_20_v1_cola This model is a fine-tuned version of [gokulsrinivasagan/bert_tiny_lda_20_v1](https://huggingface.co/gokulsrinivasagan/bert_tiny_lda_20_v1) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.6166 - Matthews Correlation: 0.0 - Accuracy: 0.6913 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------------------:|:--------:| | 0.6144 | 1.0 | 34 | 0.6166 | 0.0 | 0.6913 | | 0.605 | 2.0 | 68 | 0.6190 | 0.0213 | 0.6903 | | 0.5934 | 3.0 | 102 | 0.6171 | 0.0043 | 0.6759 | | 0.567 | 4.0 | 136 | 0.6516 | 0.0362 | 0.6836 | | 0.518 | 5.0 | 170 | 0.6389 | 0.0675 | 0.6692 | | 0.4781 | 6.0 | 204 | 0.7010 | 0.0997 | 0.6663 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3
gokulsrinivasagan/bert_tiny_lda_5_v1_qnli
gokulsrinivasagan
2024-12-04T14:37:24Z
107
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "base_model:gokulsrinivasagan/bert_tiny_lda_5_v1", "base_model:finetune:gokulsrinivasagan/bert_tiny_lda_5_v1", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-26T20:23:50Z
--- library_name: transformers language: - en base_model: gokulsrinivasagan/bert_tiny_lda_5_v1 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert_tiny_lda_5_v1_qnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE QNLI type: glue args: qnli metrics: - name: Accuracy type: accuracy value: 0.6587955335896027 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_tiny_lda_5_v1_qnli This model is a fine-tuned version of [gokulsrinivasagan/bert_tiny_lda_5_v1](https://huggingface.co/gokulsrinivasagan/bert_tiny_lda_5_v1) on the GLUE QNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6180 - Accuracy: 0.6588 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6621 | 1.0 | 410 | 0.6380 | 0.6324 | | 0.6225 | 2.0 | 820 | 0.6180 | 0.6588 | | 0.5606 | 3.0 | 1230 | 0.6307 | 0.6562 | | 0.482 | 4.0 | 1640 | 0.6562 | 0.6544 | | 0.401 | 5.0 | 2050 | 0.7177 | 0.6614 | | 0.3259 | 6.0 | 2460 | 0.8533 | 0.6612 | | 0.2652 | 7.0 | 2870 | 0.9130 | 0.6553 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3
DevQuasar/meta-llama.Llama-3.2-1B-GGUF
DevQuasar
2024-12-04T14:34:02Z
160
0
null
[ "gguf", "text-generation", "base_model:meta-llama/Llama-3.2-1B", "base_model:quantized:meta-llama/Llama-3.2-1B", "license:llama3.2", "endpoints_compatible", "region:us" ]
text-generation
2024-09-26T00:34:43Z
--- license: llama3.2 base_model: - meta-llama/Llama-3.2-1B pipeline_tag: text-generation --- I'm doing this to 'Make knowledge free for everyone', using my personal time and resources. If you want to support my efforts please visit my ko-fi page: https://ko-fi.com/devquasar Also feel free to visit my website https://devquasar.com/
mradermacher/34b-beta-i1-GGUF
mradermacher
2024-12-04T14:33:23Z
8
1
transformers
[ "transformers", "gguf", "en", "base_model:CausalLM/34b-beta", "base_model:quantized:CausalLM/34b-beta", "license:gpl-3.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-12-04T11:48:41Z
--- base_model: CausalLM/34b-beta language: - en library_name: transformers license: gpl-3.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/CausalLM/34b-beta <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/34b-beta-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/34b-beta-i1-GGUF/resolve/main/34b-beta.i1-IQ1_S.gguf) | i1-IQ1_S | 7.6 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/34b-beta-i1-GGUF/resolve/main/34b-beta.i1-IQ1_M.gguf) | i1-IQ1_M | 8.3 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/34b-beta-i1-GGUF/resolve/main/34b-beta.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 9.4 | | | [GGUF](https://huggingface.co/mradermacher/34b-beta-i1-GGUF/resolve/main/34b-beta.i1-IQ2_XS.gguf) | i1-IQ2_XS | 10.4 | | | [GGUF](https://huggingface.co/mradermacher/34b-beta-i1-GGUF/resolve/main/34b-beta.i1-IQ2_S.gguf) | i1-IQ2_S | 11.0 | | | [GGUF](https://huggingface.co/mradermacher/34b-beta-i1-GGUF/resolve/main/34b-beta.i1-IQ2_M.gguf) | i1-IQ2_M | 11.9 | | | [GGUF](https://huggingface.co/mradermacher/34b-beta-i1-GGUF/resolve/main/34b-beta.i1-Q2_K_S.gguf) | i1-Q2_K_S | 12.0 | very low quality | | [GGUF](https://huggingface.co/mradermacher/34b-beta-i1-GGUF/resolve/main/34b-beta.i1-Q2_K.gguf) | i1-Q2_K | 12.9 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/34b-beta-i1-GGUF/resolve/main/34b-beta.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 13.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/34b-beta-i1-GGUF/resolve/main/34b-beta.i1-IQ3_XS.gguf) | i1-IQ3_XS | 14.3 | | | [GGUF](https://huggingface.co/mradermacher/34b-beta-i1-GGUF/resolve/main/34b-beta.i1-Q3_K_S.gguf) | i1-Q3_K_S | 15.1 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/34b-beta-i1-GGUF/resolve/main/34b-beta.i1-IQ3_S.gguf) | i1-IQ3_S | 15.1 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/34b-beta-i1-GGUF/resolve/main/34b-beta.i1-IQ3_M.gguf) | i1-IQ3_M | 15.7 | | | [GGUF](https://huggingface.co/mradermacher/34b-beta-i1-GGUF/resolve/main/34b-beta.i1-Q3_K_M.gguf) | i1-Q3_K_M | 16.8 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/34b-beta-i1-GGUF/resolve/main/34b-beta.i1-Q3_K_L.gguf) | i1-Q3_K_L | 18.2 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/34b-beta-i1-GGUF/resolve/main/34b-beta.i1-IQ4_XS.gguf) | i1-IQ4_XS | 18.6 | | | [GGUF](https://huggingface.co/mradermacher/34b-beta-i1-GGUF/resolve/main/34b-beta.i1-Q4_0.gguf) | i1-Q4_0 | 19.6 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/34b-beta-i1-GGUF/resolve/main/34b-beta.i1-Q4_K_S.gguf) | i1-Q4_K_S | 19.7 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/34b-beta-i1-GGUF/resolve/main/34b-beta.i1-Q4_K_M.gguf) | i1-Q4_K_M | 20.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/34b-beta-i1-GGUF/resolve/main/34b-beta.i1-Q5_K_S.gguf) | i1-Q5_K_S | 23.8 | | | [GGUF](https://huggingface.co/mradermacher/34b-beta-i1-GGUF/resolve/main/34b-beta.i1-Q5_K_M.gguf) | i1-Q5_K_M | 24.4 | | | [GGUF](https://huggingface.co/mradermacher/34b-beta-i1-GGUF/resolve/main/34b-beta.i1-Q6_K.gguf) | i1-Q6_K | 28.3 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
DevQuasar/xLAM-1b-fc-r-GGUF
DevQuasar
2024-12-04T14:31:32Z
21
0
null
[ "gguf", "text-generation", "base_model:Salesforce/xLAM-1b-fc-r", "base_model:quantized:Salesforce/xLAM-1b-fc-r", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-09-29T19:58:59Z
--- base_model: - Salesforce/xLAM-1b-fc-r pipeline_tag: text-generation --- I'm doing this to 'Make knowledge free for everyone', using my personal time and resources. If you want to support my efforts please visit my ko-fi page: https://ko-fi.com/devquasar Also feel free to visit my website https://devquasar.com/
DevQuasar/granite-20b-code-instruct-8k-GGUF
DevQuasar
2024-12-04T14:30:51Z
26
1
null
[ "gguf", "text-generation", "base_model:ibm-granite/granite-20b-code-instruct-8k", "base_model:quantized:ibm-granite/granite-20b-code-instruct-8k", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-09-28T15:43:34Z
--- base_model: - ibm-granite/granite-20b-code-instruct-8k pipeline_tag: text-generation --- I'm doing this to 'Make knowledge free for everyone', using my personal time and resources. If you want to support my efforts please visit my ko-fi page: https://ko-fi.com/devquasar Also feel free to visit my website https://devquasar.com/
nlingampallyy/marian-finetuned-kde4-en-to-fr
nlingampallyy
2024-12-04T14:30:43Z
105
0
transformers
[ "transformers", "tensorboard", "safetensors", "marian", "text2text-generation", "translation", "generated_from_trainer", "dataset:kde4", "base_model:Helsinki-NLP/opus-mt-en-fr", "base_model:finetune:Helsinki-NLP/opus-mt-en-fr", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2024-12-04T03:57:00Z
--- library_name: transformers license: apache-2.0 base_model: Helsinki-NLP/opus-mt-en-fr tags: - translation - generated_from_trainer datasets: - kde4 metrics: - bleu model-index: - name: marian-finetuned-kde4-en-to-fr results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: kde4 type: kde4 config: en-fr split: train args: en-fr metrics: - name: Bleu type: bleu value: 45.85529482217844 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 1.2789 - Bleu: 45.8553 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
DevQuasar/granite-8b-code-base-128k-GGUF
DevQuasar
2024-12-04T14:28:24Z
9
0
null
[ "gguf", "text-generation", "base_model:ibm-granite/granite-8b-code-base-128k", "base_model:quantized:ibm-granite/granite-8b-code-base-128k", "endpoints_compatible", "region:us" ]
text-generation
2024-09-28T05:33:02Z
--- base_model: - ibm-granite/granite-8b-code-base-128k pipeline_tag: text-generation --- I'm doing this to 'Make knowledge free for everyone', using my personal time and resources. If you want to support my efforts please visit my ko-fi page: https://ko-fi.com/devquasar Also feel free to visit my website https://devquasar.com/
gokulsrinivasagan/bert_tiny_lda_5_v1_cola
gokulsrinivasagan
2024-12-04T14:28:23Z
107
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "base_model:gokulsrinivasagan/bert_tiny_lda_5_v1", "base_model:finetune:gokulsrinivasagan/bert_tiny_lda_5_v1", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-26T20:21:04Z
--- library_name: transformers language: - en base_model: gokulsrinivasagan/bert_tiny_lda_5_v1 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation - accuracy model-index: - name: bert_tiny_lda_5_v1_cola results: - task: name: Text Classification type: text-classification dataset: name: GLUE COLA type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.0 - name: Accuracy type: accuracy value: 0.6912751793861389 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_tiny_lda_5_v1_cola This model is a fine-tuned version of [gokulsrinivasagan/bert_tiny_lda_5_v1](https://huggingface.co/gokulsrinivasagan/bert_tiny_lda_5_v1) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.6138 - Matthews Correlation: 0.0 - Accuracy: 0.6913 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------------------:|:--------:| | 0.6154 | 1.0 | 34 | 0.6138 | 0.0 | 0.6913 | | 0.5986 | 2.0 | 68 | 0.6147 | 0.0064 | 0.6865 | | 0.5752 | 3.0 | 102 | 0.6158 | 0.0616 | 0.6894 | | 0.5356 | 4.0 | 136 | 0.6378 | 0.1110 | 0.6807 | | 0.4841 | 5.0 | 170 | 0.6615 | 0.0969 | 0.6721 | | 0.4382 | 6.0 | 204 | 0.7818 | 0.0896 | 0.6673 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3
DevQuasar/Llama-3.2-3B-GGUF
DevQuasar
2024-12-04T14:28:09Z
9
0
null
[ "gguf", "text-generation", "base_model:meta-llama/Llama-3.2-3B", "base_model:quantized:meta-llama/Llama-3.2-3B", "license:llama3.2", "endpoints_compatible", "region:us" ]
text-generation
2024-09-26T00:35:30Z
--- license: llama3.2 base_model: - meta-llama/Llama-3.2-3B pipeline_tag: text-generation --- I'm doing this to 'Make knowledge free for everyone', using my personal time and resources. If you want to support my efforts please visit my ko-fi page: https://ko-fi.com/devquasar Also feel free to visit my website https://devquasar.com/
DevQuasar/Llama-Guard-3-1B-GGUF
DevQuasar
2024-12-04T14:27:55Z
8
0
null
[ "gguf", "text-classification", "base_model:meta-llama/Llama-Guard-3-1B", "base_model:quantized:meta-llama/Llama-Guard-3-1B", "endpoints_compatible", "region:us", "conversational" ]
text-classification
2024-09-26T23:13:07Z
--- base_model: - meta-llama/Llama-Guard-3-1B pipeline_tag: text-classification --- I'm doing this to 'Make knowledge free for everyone', using my personal time and resources. If you want to support my efforts please visit my ko-fi page: https://ko-fi.com/devquasar Also feel free to visit my website https://devquasar.com/
gokulsrinivasagan/bert_base_lda_5_v1_mnli
gokulsrinivasagan
2024-12-04T14:27:10Z
118
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "base_model:gokulsrinivasagan/bert_base_lda_5_v1", "base_model:finetune:gokulsrinivasagan/bert_base_lda_5_v1", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-26T19:05:23Z
--- library_name: transformers language: - en base_model: gokulsrinivasagan/bert_base_lda_5_v1 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert_base_lda_5_v1_mnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE MNLI type: glue args: mnli metrics: - name: Accuracy type: accuracy value: 0.6910089503661514 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_base_lda_5_v1_mnli This model is a fine-tuned version of [gokulsrinivasagan/bert_base_lda_5_v1](https://huggingface.co/gokulsrinivasagan/bert_base_lda_5_v1) on the GLUE MNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.7249 - Accuracy: 0.6910 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.9579 | 1.0 | 1534 | 0.8463 | 0.6233 | | 0.7978 | 2.0 | 3068 | 0.7706 | 0.6570 | | 0.703 | 3.0 | 4602 | 0.7456 | 0.6771 | | 0.6236 | 4.0 | 6136 | 0.7698 | 0.6787 | | 0.5471 | 5.0 | 7670 | 0.7924 | 0.6860 | | 0.4694 | 6.0 | 9204 | 0.9036 | 0.6861 | | 0.3948 | 7.0 | 10738 | 0.9024 | 0.6824 | | 0.3291 | 8.0 | 12272 | 0.9799 | 0.6773 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3
DevQuasar/openbuddy-llama3.1-8b-v22.3-131k-GGUF
DevQuasar
2024-12-04T14:26:36Z
7
0
null
[ "gguf", "text-generation", "base_model:OpenBuddy/openbuddy-llama3.1-8b-v22.3-131k", "base_model:quantized:OpenBuddy/openbuddy-llama3.1-8b-v22.3-131k", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-09-24T19:34:10Z
--- base_model: - OpenBuddy/openbuddy-llama3.1-8b-v22.3-131k pipeline_tag: text-generation --- I'm doing this to 'Make knowledge free for everyone', using my personal time and resources. If you want to support my efforts please visit my ko-fi page: https://ko-fi.com/devquasar Also feel free to visit my website https://devquasar.com/
DevQuasar/Qwen2.5-Math-72B-GGUF
DevQuasar
2024-12-04T14:25:49Z
19
0
null
[ "gguf", "text-generation", "base_model:Qwen/Qwen2.5-Math-72B", "base_model:quantized:Qwen/Qwen2.5-Math-72B", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-09-22T17:19:47Z
--- base_model: - Qwen/Qwen2.5-Math-72B pipeline_tag: text-generation --- I'm doing this to 'Make knowledge free for everyone', using my personal time and resources. If you want to support my efforts please visit my ko-fi page: https://ko-fi.com/devquasar Also feel free to visit my website https://devquasar.com/
DevQuasar/shieldgemma-9b-GGUF
DevQuasar
2024-12-04T14:24:03Z
50
0
null
[ "gguf", "text-generation", "base_model:google/shieldgemma-9b", "base_model:quantized:google/shieldgemma-9b", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-09-19T05:14:25Z
--- base_model: - google/shieldgemma-9b pipeline_tag: text-generation --- I'm doing this to 'Make knowledge free for everyone', using my personal time and resources. If you want to support my efforts please visit my ko-fi page: https://ko-fi.com/devquasar Also feel free to visit my website https://devquasar.com/
DevQuasar/datagemma-rig-27b-it-GGUF
DevQuasar
2024-12-04T14:23:06Z
30
0
null
[ "gguf", "text-generation", "base_model:google/datagemma-rig-27b-it", "base_model:quantized:google/datagemma-rig-27b-it", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-09-12T21:17:04Z
--- base_model: - google/datagemma-rig-27b-it pipeline_tag: text-generation --- I'm doing this to 'Make knowledge free for everyone', using my personal time and resources. If you want to support my efforts please visit my ko-fi page: https://ko-fi.com/devquasar Also feel free to visit my website https://devquasar.com/
MayBashendy/ArabicNewSplits2_FineTuningAraBERT_run1_AugV4_k50_task1_organization
MayBashendy
2024-12-04T14:20:57Z
183
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-12-04T13:20:30Z
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: ArabicNewSplits2_FineTuningAraBERT_run1_AugV4_k50_task1_organization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ArabicNewSplits2_FineTuningAraBERT_run1_AugV4_k50_task1_organization This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8964 - Qwk: 0.6410 - Mse: 0.8964 - Rmse: 0.9468 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:------:|:----:|:---------------:|:-------:|:------:|:------:| | No log | 0.0048 | 2 | 4.5785 | -0.0102 | 4.5785 | 2.1397 | | No log | 0.0096 | 4 | 2.5376 | 0.0501 | 2.5376 | 1.5930 | | No log | 0.0144 | 6 | 1.6809 | -0.0312 | 1.6809 | 1.2965 | | No log | 0.0192 | 8 | 1.2607 | 0.0760 | 1.2607 | 1.1228 | | No log | 0.0240 | 10 | 1.1288 | 0.2560 | 1.1288 | 1.0625 | | No log | 0.0288 | 12 | 1.4414 | 0.1380 | 1.4414 | 1.2006 | | No log | 0.0337 | 14 | 2.0116 | 0.1772 | 2.0116 | 1.4183 | | No log | 0.0385 | 16 | 2.4212 | 0.1293 | 2.4212 | 1.5560 | | No log | 0.0433 | 18 | 2.4305 | 0.1293 | 2.4305 | 1.5590 | | No log | 0.0481 | 20 | 1.9867 | 0.2095 | 1.9867 | 1.4095 | | No log | 0.0529 | 22 | 1.7828 | 0.1509 | 1.7828 | 1.3352 | | No log | 0.0577 | 24 | 1.6944 | 0.2349 | 1.6944 | 1.3017 | | No log | 0.0625 | 26 | 1.8129 | 0.1911 | 1.8129 | 1.3464 | | No log | 0.0673 | 28 | 1.9478 | 0.1227 | 1.9478 | 1.3956 | | No log | 0.0721 | 30 | 1.7661 | 0.1724 | 1.7661 | 1.3289 | | No log | 0.0769 | 32 | 1.6062 | 0.1478 | 1.6062 | 1.2674 | | No log | 0.0817 | 34 | 1.8835 | 0.1591 | 1.8835 | 1.3724 | | No log | 0.0865 | 36 | 2.6850 | 0.1470 | 2.6850 | 1.6386 | | No log | 0.0913 | 38 | 2.4763 | 0.1921 | 2.4763 | 1.5736 | | No log | 0.0962 | 40 | 1.6846 | 0.3059 | 1.6846 | 1.2979 | | No log | 0.1010 | 42 | 1.7020 | 0.3589 | 1.7020 | 1.3046 | | No log | 0.1058 | 44 | 2.3162 | 0.2159 | 2.3162 | 1.5219 | | No log | 0.1106 | 46 | 2.2339 | 0.2471 | 2.2339 | 1.4946 | | No log | 0.1154 | 48 | 1.4998 | 0.4110 | 1.4998 | 1.2246 | | No log | 0.1202 | 50 | 1.5650 | 0.3966 | 1.5650 | 1.2510 | | No log | 0.125 | 52 | 1.7989 | 0.3721 | 1.7989 | 1.3412 | | No log | 0.1298 | 54 | 1.9343 | 0.3558 | 1.9343 | 1.3908 | | No log | 0.1346 | 56 | 1.6069 | 0.3850 | 1.6069 | 1.2676 | | No log | 0.1394 | 58 | 1.4107 | 0.3485 | 1.4107 | 1.1877 | | No log | 0.1442 | 60 | 1.6766 | 0.2732 | 1.6766 | 1.2948 | | No log | 0.1490 | 62 | 1.5660 | 0.3182 | 1.5660 | 1.2514 | | No log | 0.1538 | 64 | 1.5078 | 0.3105 | 1.5078 | 1.2279 | | No log | 0.1587 | 66 | 1.6542 | 0.2925 | 1.6542 | 1.2862 | | No log | 0.1635 | 68 | 1.9378 | 0.2573 | 1.9378 | 1.3920 | | No log | 0.1683 | 70 | 1.7430 | 0.2727 | 1.7430 | 1.3202 | | No log | 0.1731 | 72 | 1.4994 | 0.4104 | 1.4994 | 1.2245 | | No log | 0.1779 | 74 | 1.8129 | 0.2768 | 1.8129 | 1.3464 | | No log | 0.1827 | 76 | 2.9558 | 0.2337 | 2.9558 | 1.7192 | | No log | 0.1875 | 78 | 3.4980 | 0.2349 | 3.4980 | 1.8703 | | No log | 0.1923 | 80 | 2.9849 | 0.2225 | 2.9849 | 1.7277 | | No log | 0.1971 | 82 | 1.6225 | 0.3031 | 1.6225 | 1.2738 | | No log | 0.2019 | 84 | 1.2579 | 0.3631 | 1.2579 | 1.1216 | | No log | 0.2067 | 86 | 1.4193 | 0.3402 | 1.4193 | 1.1913 | | No log | 0.2115 | 88 | 1.7236 | 0.3645 | 1.7236 | 1.3128 | | No log | 0.2163 | 90 | 2.2150 | 0.3189 | 2.2150 | 1.4883 | | No log | 0.2212 | 92 | 2.7823 | 0.2059 | 2.7823 | 1.6680 | | No log | 0.2260 | 94 | 2.5745 | 0.2752 | 2.5745 | 1.6045 | | No log | 0.2308 | 96 | 1.7644 | 0.2667 | 1.7644 | 1.3283 | | No log | 0.2356 | 98 | 1.6347 | 0.3347 | 1.6347 | 1.2785 | | No log | 0.2404 | 100 | 1.9091 | 0.2518 | 1.9091 | 1.3817 | | No log | 0.2452 | 102 | 2.4210 | 0.2617 | 2.4210 | 1.5560 | | No log | 0.25 | 104 | 3.0730 | 0.2241 | 3.0730 | 1.7530 | | No log | 0.2548 | 106 | 3.1097 | 0.2241 | 3.1097 | 1.7634 | | No log | 0.2596 | 108 | 2.6093 | 0.2714 | 2.6093 | 1.6153 | | No log | 0.2644 | 110 | 2.3688 | 0.2927 | 2.3688 | 1.5391 | | No log | 0.2692 | 112 | 2.2465 | 0.2330 | 2.2465 | 1.4988 | | No log | 0.2740 | 114 | 1.5614 | 0.3423 | 1.5614 | 1.2496 | | No log | 0.2788 | 116 | 0.9234 | 0.5072 | 0.9234 | 0.9609 | | No log | 0.2837 | 118 | 0.8127 | 0.5848 | 0.8127 | 0.9015 | | No log | 0.2885 | 120 | 0.9567 | 0.5188 | 0.9567 | 0.9781 | | No log | 0.2933 | 122 | 1.4920 | 0.3753 | 1.4920 | 1.2215 | | No log | 0.2981 | 124 | 1.9918 | 0.3707 | 1.9918 | 1.4113 | | No log | 0.3029 | 126 | 2.4146 | 0.3173 | 2.4146 | 1.5539 | | No log | 0.3077 | 128 | 2.1557 | 0.3514 | 2.1557 | 1.4682 | | No log | 0.3125 | 130 | 1.5124 | 0.3409 | 1.5124 | 1.2298 | | No log | 0.3173 | 132 | 0.9676 | 0.5326 | 0.9676 | 0.9837 | | No log | 0.3221 | 134 | 0.8188 | 0.6045 | 0.8188 | 0.9049 | | No log | 0.3269 | 136 | 0.9493 | 0.4898 | 0.9493 | 0.9743 | | No log | 0.3317 | 138 | 1.2347 | 0.4482 | 1.2347 | 1.1112 | | No log | 0.3365 | 140 | 1.5474 | 0.3789 | 1.5474 | 1.2439 | | No log | 0.3413 | 142 | 1.4186 | 0.3973 | 1.4186 | 1.1911 | | No log | 0.3462 | 144 | 1.3061 | 0.4400 | 1.3061 | 1.1429 | | No log | 0.3510 | 146 | 1.4393 | 0.4134 | 1.4393 | 1.1997 | | No log | 0.3558 | 148 | 1.7746 | 0.3971 | 1.7746 | 1.3321 | | No log | 0.3606 | 150 | 1.7968 | 0.3787 | 1.7968 | 1.3404 | | No log | 0.3654 | 152 | 1.8679 | 0.3971 | 1.8679 | 1.3667 | | No log | 0.3702 | 154 | 2.1114 | 0.3822 | 2.1114 | 1.4531 | | No log | 0.375 | 156 | 2.1136 | 0.3768 | 2.1136 | 1.4538 | | No log | 0.3798 | 158 | 2.0309 | 0.3768 | 2.0309 | 1.4251 | | No log | 0.3846 | 160 | 1.6320 | 0.3586 | 1.6320 | 1.2775 | | No log | 0.3894 | 162 | 1.5046 | 0.3213 | 1.5046 | 1.2266 | | No log | 0.3942 | 164 | 1.5847 | 0.3371 | 1.5847 | 1.2588 | | No log | 0.3990 | 166 | 1.5081 | 0.3820 | 1.5081 | 1.2280 | | No log | 0.4038 | 168 | 1.0901 | 0.4643 | 1.0901 | 1.0441 | | No log | 0.4087 | 170 | 0.9336 | 0.5773 | 0.9336 | 0.9662 | | No log | 0.4135 | 172 | 1.2571 | 0.5250 | 1.2571 | 1.1212 | | No log | 0.4183 | 174 | 1.4535 | 0.4701 | 1.4535 | 1.2056 | | No log | 0.4231 | 176 | 1.3786 | 0.5142 | 1.3786 | 1.1742 | | No log | 0.4279 | 178 | 1.3028 | 0.5406 | 1.3028 | 1.1414 | | No log | 0.4327 | 180 | 1.3070 | 0.5199 | 1.3070 | 1.1433 | | No log | 0.4375 | 182 | 1.0938 | 0.5357 | 1.0938 | 1.0459 | | No log | 0.4423 | 184 | 1.0955 | 0.5570 | 1.0955 | 1.0467 | | No log | 0.4471 | 186 | 1.0432 | 0.5595 | 1.0432 | 1.0214 | | No log | 0.4519 | 188 | 1.3057 | 0.5199 | 1.3057 | 1.1427 | | No log | 0.4567 | 190 | 1.2332 | 0.5701 | 1.2332 | 1.1105 | | No log | 0.4615 | 192 | 1.4539 | 0.5058 | 1.4539 | 1.2058 | | No log | 0.4663 | 194 | 1.8243 | 0.3689 | 1.8243 | 1.3507 | | No log | 0.4712 | 196 | 1.8802 | 0.3444 | 1.8802 | 1.3712 | | No log | 0.4760 | 198 | 1.3979 | 0.4476 | 1.3979 | 1.1823 | | No log | 0.4808 | 200 | 1.0150 | 0.5538 | 1.0150 | 1.0075 | | No log | 0.4856 | 202 | 1.0340 | 0.5263 | 1.0340 | 1.0169 | | No log | 0.4904 | 204 | 1.3196 | 0.4713 | 1.3196 | 1.1487 | | No log | 0.4952 | 206 | 1.9796 | 0.3046 | 1.9796 | 1.4070 | | No log | 0.5 | 208 | 2.1554 | 0.3189 | 2.1554 | 1.4681 | | No log | 0.5048 | 210 | 1.8102 | 0.3799 | 1.8102 | 1.3455 | | No log | 0.5096 | 212 | 1.5742 | 0.4706 | 1.5742 | 1.2547 | | No log | 0.5144 | 214 | 1.2772 | 0.5236 | 1.2772 | 1.1302 | | No log | 0.5192 | 216 | 1.2687 | 0.5061 | 1.2687 | 1.1264 | | No log | 0.5240 | 218 | 1.2781 | 0.4950 | 1.2781 | 1.1305 | | No log | 0.5288 | 220 | 1.4885 | 0.3696 | 1.4885 | 1.2201 | | No log | 0.5337 | 222 | 2.0089 | 0.3328 | 2.0089 | 1.4174 | | No log | 0.5385 | 224 | 2.2985 | 0.3189 | 2.2985 | 1.5161 | | No log | 0.5433 | 226 | 2.3323 | 0.3189 | 2.3323 | 1.5272 | | No log | 0.5481 | 228 | 2.0546 | 0.2273 | 2.0546 | 1.4334 | | No log | 0.5529 | 230 | 1.6071 | 0.3182 | 1.6071 | 1.2677 | | No log | 0.5577 | 232 | 1.4835 | 0.4073 | 1.4835 | 1.2180 | | No log | 0.5625 | 234 | 1.5404 | 0.3389 | 1.5404 | 1.2411 | | No log | 0.5673 | 236 | 1.6830 | 0.3036 | 1.6830 | 1.2973 | | No log | 0.5721 | 238 | 1.8945 | 0.2649 | 1.8945 | 1.3764 | | No log | 0.5769 | 240 | 1.6789 | 0.3182 | 1.6789 | 1.2957 | | No log | 0.5817 | 242 | 1.7196 | 0.3050 | 1.7196 | 1.3114 | | No log | 0.5865 | 244 | 1.8647 | 0.3362 | 1.8647 | 1.3656 | | No log | 0.5913 | 246 | 2.3505 | 0.3328 | 2.3505 | 1.5331 | | No log | 0.5962 | 248 | 2.6512 | 0.3088 | 2.6512 | 1.6283 | | No log | 0.6010 | 250 | 2.6637 | 0.2856 | 2.6637 | 1.6321 | | No log | 0.6058 | 252 | 2.3140 | 0.2794 | 2.3140 | 1.5212 | | No log | 0.6106 | 254 | 2.0143 | 0.2917 | 2.0143 | 1.4193 | | No log | 0.6154 | 256 | 1.8500 | 0.2672 | 1.8500 | 1.3602 | | No log | 0.6202 | 258 | 1.4212 | 0.3157 | 1.4212 | 1.1921 | | No log | 0.625 | 260 | 1.2817 | 0.3950 | 1.2817 | 1.1321 | | No log | 0.6298 | 262 | 1.5820 | 0.3205 | 1.5820 | 1.2578 | | No log | 0.6346 | 264 | 1.6017 | 0.2821 | 1.6017 | 1.2656 | | No log | 0.6394 | 266 | 1.4060 | 0.3589 | 1.4060 | 1.1858 | | No log | 0.6442 | 268 | 1.1841 | 0.4198 | 1.1841 | 1.0882 | | No log | 0.6490 | 270 | 1.3887 | 0.4346 | 1.3887 | 1.1784 | | No log | 0.6538 | 272 | 1.3870 | 0.4591 | 1.3870 | 1.1777 | | No log | 0.6587 | 274 | 1.0494 | 0.6146 | 1.0494 | 1.0244 | | No log | 0.6635 | 276 | 0.9451 | 0.5773 | 0.9451 | 0.9722 | | No log | 0.6683 | 278 | 1.0839 | 0.5375 | 1.0839 | 1.0411 | | No log | 0.6731 | 280 | 1.0563 | 0.5762 | 1.0563 | 1.0278 | | No log | 0.6779 | 282 | 0.9448 | 0.6146 | 0.9448 | 0.9720 | | No log | 0.6827 | 284 | 1.1744 | 0.5404 | 1.1744 | 1.0837 | | No log | 0.6875 | 286 | 1.2827 | 0.5273 | 1.2827 | 1.1326 | | No log | 0.6923 | 288 | 1.2384 | 0.5441 | 1.2384 | 1.1128 | | No log | 0.6971 | 290 | 1.1826 | 0.5465 | 1.1826 | 1.0875 | | No log | 0.7019 | 292 | 1.0292 | 0.5378 | 1.0292 | 1.0145 | | No log | 0.7067 | 294 | 0.8250 | 0.5921 | 0.8250 | 0.9083 | | No log | 0.7115 | 296 | 0.7838 | 0.6337 | 0.7838 | 0.8853 | | No log | 0.7163 | 298 | 0.8242 | 0.625 | 0.8242 | 0.9078 | | No log | 0.7212 | 300 | 0.8437 | 0.6061 | 0.8437 | 0.9185 | | No log | 0.7260 | 302 | 0.8414 | 0.6061 | 0.8414 | 0.9173 | | No log | 0.7308 | 304 | 0.9165 | 0.6062 | 0.9165 | 0.9573 | | No log | 0.7356 | 306 | 0.8922 | 0.5770 | 0.8922 | 0.9446 | | No log | 0.7404 | 308 | 0.9118 | 0.5770 | 0.9118 | 0.9549 | | No log | 0.7452 | 310 | 1.0634 | 0.5568 | 1.0634 | 1.0312 | | No log | 0.75 | 312 | 1.3483 | 0.4423 | 1.3483 | 1.1612 | | No log | 0.7548 | 314 | 1.4766 | 0.3951 | 1.4766 | 1.2152 | | No log | 0.7596 | 316 | 1.2672 | 0.5269 | 1.2672 | 1.1257 | | No log | 0.7644 | 318 | 1.0219 | 0.5618 | 1.0219 | 1.0109 | | No log | 0.7692 | 320 | 1.0812 | 0.5239 | 1.0812 | 1.0398 | | No log | 0.7740 | 322 | 1.2859 | 0.5227 | 1.2859 | 1.1340 | | No log | 0.7788 | 324 | 1.4938 | 0.4233 | 1.4938 | 1.2222 | | No log | 0.7837 | 326 | 1.7260 | 0.3675 | 1.7260 | 1.3138 | | No log | 0.7885 | 328 | 1.6483 | 0.3465 | 1.6483 | 1.2839 | | No log | 0.7933 | 330 | 1.3870 | 0.3639 | 1.3870 | 1.1777 | | No log | 0.7981 | 332 | 1.1639 | 0.4752 | 1.1639 | 1.0788 | | No log | 0.8029 | 334 | 0.9433 | 0.5619 | 0.9433 | 0.9712 | | No log | 0.8077 | 336 | 0.8776 | 0.6092 | 0.8776 | 0.9368 | | No log | 0.8125 | 338 | 0.9989 | 0.5846 | 0.9989 | 0.9994 | | No log | 0.8173 | 340 | 1.2252 | 0.5389 | 1.2252 | 1.1069 | | No log | 0.8221 | 342 | 1.1867 | 0.5909 | 1.1867 | 1.0894 | | No log | 0.8269 | 344 | 1.2392 | 0.6143 | 1.2392 | 1.1132 | | No log | 0.8317 | 346 | 1.0924 | 0.5855 | 1.0924 | 1.0452 | | No log | 0.8365 | 348 | 0.9728 | 0.5920 | 0.9728 | 0.9863 | | No log | 0.8413 | 350 | 1.0220 | 0.5678 | 1.0220 | 1.0110 | | No log | 0.8462 | 352 | 1.1443 | 0.496 | 1.1443 | 1.0697 | | No log | 0.8510 | 354 | 1.0960 | 0.5464 | 1.0960 | 1.0469 | | No log | 0.8558 | 356 | 0.9329 | 0.5919 | 0.9329 | 0.9658 | | No log | 0.8606 | 358 | 0.7883 | 0.6133 | 0.7883 | 0.8878 | | No log | 0.8654 | 360 | 0.6597 | 0.6786 | 0.6597 | 0.8122 | | No log | 0.8702 | 362 | 0.7203 | 0.6568 | 0.7203 | 0.8487 | | No log | 0.875 | 364 | 0.9090 | 0.5873 | 0.9090 | 0.9534 | | No log | 0.8798 | 366 | 1.3183 | 0.5518 | 1.3183 | 1.1482 | | No log | 0.8846 | 368 | 1.6170 | 0.4512 | 1.6170 | 1.2716 | | No log | 0.8894 | 370 | 1.5310 | 0.4596 | 1.5310 | 1.2373 | | No log | 0.8942 | 372 | 1.2063 | 0.4526 | 1.2063 | 1.0983 | | No log | 0.8990 | 374 | 1.1178 | 0.4655 | 1.1178 | 1.0572 | | No log | 0.9038 | 376 | 1.2166 | 0.4526 | 1.2166 | 1.1030 | | No log | 0.9087 | 378 | 1.4463 | 0.3810 | 1.4463 | 1.2026 | | No log | 0.9135 | 380 | 1.3789 | 0.4422 | 1.3789 | 1.1743 | | No log | 0.9183 | 382 | 1.0740 | 0.4857 | 1.0740 | 1.0363 | | No log | 0.9231 | 384 | 0.8671 | 0.5691 | 0.8671 | 0.9312 | | No log | 0.9279 | 386 | 0.9148 | 0.5960 | 0.9148 | 0.9565 | | No log | 0.9327 | 388 | 1.0619 | 0.5935 | 1.0619 | 1.0305 | | No log | 0.9375 | 390 | 1.0697 | 0.5985 | 1.0697 | 1.0343 | | No log | 0.9423 | 392 | 0.9683 | 0.5991 | 0.9683 | 0.9840 | | No log | 0.9471 | 394 | 0.7514 | 0.6286 | 0.7514 | 0.8668 | | No log | 0.9519 | 396 | 0.7262 | 0.6293 | 0.7262 | 0.8522 | | No log | 0.9567 | 398 | 0.8199 | 0.65 | 0.8199 | 0.9055 | | No log | 0.9615 | 400 | 1.0021 | 0.5851 | 1.0021 | 1.0010 | | No log | 0.9663 | 402 | 0.8983 | 0.5867 | 0.8983 | 0.9478 | | No log | 0.9712 | 404 | 0.9510 | 0.5817 | 0.9510 | 0.9752 | | No log | 0.9760 | 406 | 1.0538 | 0.5642 | 1.0538 | 1.0266 | | No log | 0.9808 | 408 | 1.0753 | 0.5772 | 1.0753 | 1.0370 | | No log | 0.9856 | 410 | 0.9953 | 0.5615 | 0.9953 | 0.9977 | | No log | 0.9904 | 412 | 0.9385 | 0.5205 | 0.9385 | 0.9688 | | No log | 0.9952 | 414 | 0.9152 | 0.5527 | 0.9152 | 0.9566 | | No log | 1.0 | 416 | 1.0330 | 0.5424 | 1.0330 | 1.0164 | | No log | 1.0048 | 418 | 1.1932 | 0.5866 | 1.1932 | 1.0923 | | No log | 1.0096 | 420 | 1.2062 | 0.5657 | 1.2062 | 1.0983 | | No log | 1.0144 | 422 | 1.0100 | 0.5909 | 1.0100 | 1.0050 | | No log | 1.0192 | 424 | 0.9347 | 0.5967 | 0.9347 | 0.9668 | | No log | 1.0240 | 426 | 1.0490 | 0.6290 | 1.0490 | 1.0242 | | No log | 1.0288 | 428 | 1.1005 | 0.6290 | 1.1005 | 1.0491 | | No log | 1.0337 | 430 | 0.9918 | 0.6277 | 0.9918 | 0.9959 | | No log | 1.0385 | 432 | 0.8045 | 0.6135 | 0.8045 | 0.8969 | | No log | 1.0433 | 434 | 0.6764 | 0.6050 | 0.6764 | 0.8224 | | No log | 1.0481 | 436 | 0.6861 | 0.6050 | 0.6861 | 0.8283 | | No log | 1.0529 | 438 | 0.8116 | 0.6362 | 0.8116 | 0.9009 | | No log | 1.0577 | 440 | 1.2223 | 0.5863 | 1.2223 | 1.1056 | | No log | 1.0625 | 442 | 1.5686 | 0.3768 | 1.5686 | 1.2524 | | No log | 1.0673 | 444 | 1.4790 | 0.3810 | 1.4790 | 1.2161 | | No log | 1.0721 | 446 | 1.1714 | 0.4735 | 1.1714 | 1.0823 | | No log | 1.0769 | 448 | 0.9957 | 0.5623 | 0.9957 | 0.9979 | | No log | 1.0817 | 450 | 0.9618 | 0.6029 | 0.9618 | 0.9807 | | No log | 1.0865 | 452 | 0.9126 | 0.6173 | 0.9126 | 0.9553 | | No log | 1.0913 | 454 | 1.0865 | 0.6283 | 1.0865 | 1.0424 | | No log | 1.0962 | 456 | 1.3427 | 0.5357 | 1.3427 | 1.1588 | | No log | 1.1010 | 458 | 1.2514 | 0.5491 | 1.2514 | 1.1187 | | No log | 1.1058 | 460 | 0.9139 | 0.5951 | 0.9139 | 0.9560 | | No log | 1.1106 | 462 | 0.6483 | 0.5884 | 0.6483 | 0.8051 | | No log | 1.1154 | 464 | 0.6158 | 0.6182 | 0.6158 | 0.7847 | | No log | 1.1202 | 466 | 0.7025 | 0.6362 | 0.7025 | 0.8382 | | No log | 1.125 | 468 | 1.0035 | 0.6415 | 1.0035 | 1.0017 | | No log | 1.1298 | 470 | 1.4929 | 0.3631 | 1.4929 | 1.2218 | | No log | 1.1346 | 472 | 1.6160 | 0.3116 | 1.6160 | 1.2712 | | No log | 1.1394 | 474 | 1.4090 | 0.4115 | 1.4090 | 1.1870 | | No log | 1.1442 | 476 | 1.0964 | 0.5256 | 1.0964 | 1.0471 | | No log | 1.1490 | 478 | 0.8767 | 0.6111 | 0.8767 | 0.9363 | | No log | 1.1538 | 480 | 0.8938 | 0.6111 | 0.8938 | 0.9454 | | No log | 1.1587 | 482 | 1.0824 | 0.5256 | 1.0824 | 1.0404 | | No log | 1.1635 | 484 | 1.2204 | 0.5022 | 1.2204 | 1.1047 | | No log | 1.1683 | 486 | 1.3676 | 0.4607 | 1.3676 | 1.1694 | | No log | 1.1731 | 488 | 1.5089 | 0.4244 | 1.5089 | 1.2284 | | No log | 1.1779 | 490 | 1.3414 | 0.4591 | 1.3414 | 1.1582 | | No log | 1.1827 | 492 | 1.1870 | 0.5353 | 1.1870 | 1.0895 | | No log | 1.1875 | 494 | 1.0176 | 0.5448 | 1.0176 | 1.0088 | | No log | 1.1923 | 496 | 1.0070 | 0.5740 | 1.0070 | 1.0035 | | No log | 1.1971 | 498 | 1.0337 | 0.5593 | 1.0337 | 1.0167 | | 0.4404 | 1.2019 | 500 | 1.1673 | 0.4986 | 1.1673 | 1.0804 | | 0.4404 | 1.2067 | 502 | 1.1953 | 0.5312 | 1.1953 | 1.0933 | | 0.4404 | 1.2115 | 504 | 1.1618 | 0.5803 | 1.1618 | 1.0779 | | 0.4404 | 1.2163 | 506 | 1.1046 | 0.5299 | 1.1046 | 1.0510 | | 0.4404 | 1.2212 | 508 | 1.0527 | 0.5299 | 1.0527 | 1.0260 | | 0.4404 | 1.2260 | 510 | 1.0346 | 0.4781 | 1.0346 | 1.0171 | | 0.4404 | 1.2308 | 512 | 1.0886 | 0.4340 | 1.0886 | 1.0434 | | 0.4404 | 1.2356 | 514 | 1.0904 | 0.4340 | 1.0904 | 1.0442 | | 0.4404 | 1.2404 | 516 | 1.0971 | 0.4340 | 1.0971 | 1.0474 | | 0.4404 | 1.2452 | 518 | 1.1864 | 0.4243 | 1.1864 | 1.0892 | | 0.4404 | 1.25 | 520 | 1.1172 | 0.5443 | 1.1172 | 1.0570 | | 0.4404 | 1.2548 | 522 | 1.0718 | 0.5263 | 1.0718 | 1.0353 | | 0.4404 | 1.2596 | 524 | 1.0706 | 0.5012 | 1.0706 | 1.0347 | | 0.4404 | 1.2644 | 526 | 1.0794 | 0.5387 | 1.0794 | 1.0390 | | 0.4404 | 1.2692 | 528 | 1.1157 | 0.5461 | 1.1157 | 1.0563 | | 0.4404 | 1.2740 | 530 | 1.0374 | 0.5705 | 1.0374 | 1.0185 | | 0.4404 | 1.2788 | 532 | 1.0677 | 0.5742 | 1.0677 | 1.0333 | | 0.4404 | 1.2837 | 534 | 1.1140 | 0.5719 | 1.1140 | 1.0555 | | 0.4404 | 1.2885 | 536 | 1.2117 | 0.5424 | 1.2117 | 1.1008 | | 0.4404 | 1.2933 | 538 | 1.4103 | 0.5166 | 1.4103 | 1.1876 | | 0.4404 | 1.2981 | 540 | 1.3105 | 0.5227 | 1.3105 | 1.1448 | | 0.4404 | 1.3029 | 542 | 1.3240 | 0.4962 | 1.3240 | 1.1506 | | 0.4404 | 1.3077 | 544 | 1.5389 | 0.3333 | 1.5389 | 1.2405 | | 0.4404 | 1.3125 | 546 | 1.7362 | 0.2742 | 1.7362 | 1.3177 | | 0.4404 | 1.3173 | 548 | 1.6206 | 0.3231 | 1.6206 | 1.2730 | | 0.4404 | 1.3221 | 550 | 1.4466 | 0.4036 | 1.4466 | 1.2028 | | 0.4404 | 1.3269 | 552 | 1.4361 | 0.4315 | 1.4361 | 1.1984 | | 0.4404 | 1.3317 | 554 | 1.3225 | 0.4510 | 1.3225 | 1.1500 | | 0.4404 | 1.3365 | 556 | 1.1657 | 0.5512 | 1.1657 | 1.0797 | | 0.4404 | 1.3413 | 558 | 1.1765 | 0.5422 | 1.1765 | 1.0847 | | 0.4404 | 1.3462 | 560 | 1.2855 | 0.5103 | 1.2855 | 1.1338 | | 0.4404 | 1.3510 | 562 | 1.1302 | 0.5772 | 1.1302 | 1.0631 | | 0.4404 | 1.3558 | 564 | 1.0808 | 0.6161 | 1.0808 | 1.0396 | | 0.4404 | 1.3606 | 566 | 1.2216 | 0.4924 | 1.2216 | 1.1052 | | 0.4404 | 1.3654 | 568 | 1.4432 | 0.4315 | 1.4432 | 1.2013 | | 0.4404 | 1.3702 | 570 | 1.3490 | 0.4279 | 1.3490 | 1.1615 | | 0.4404 | 1.375 | 572 | 1.1775 | 0.4609 | 1.1775 | 1.0851 | | 0.4404 | 1.3798 | 574 | 0.9670 | 0.6208 | 0.9670 | 0.9834 | | 0.4404 | 1.3846 | 576 | 0.9920 | 0.6208 | 0.9920 | 0.9960 | | 0.4404 | 1.3894 | 578 | 1.1687 | 0.5772 | 1.1687 | 1.0810 | | 0.4404 | 1.3942 | 580 | 1.3064 | 0.5103 | 1.3064 | 1.1430 | | 0.4404 | 1.3990 | 582 | 1.3611 | 0.4830 | 1.3611 | 1.1667 | | 0.4404 | 1.4038 | 584 | 1.3979 | 0.4712 | 1.3979 | 1.1823 | | 0.4404 | 1.4087 | 586 | 1.4361 | 0.4400 | 1.4361 | 1.1984 | | 0.4404 | 1.4135 | 588 | 1.3052 | 0.4728 | 1.3052 | 1.1425 | | 0.4404 | 1.4183 | 590 | 1.1678 | 0.4744 | 1.1678 | 1.0806 | | 0.4404 | 1.4231 | 592 | 1.1738 | 0.5465 | 1.1738 | 1.0834 | | 0.4404 | 1.4279 | 594 | 1.2196 | 0.5551 | 1.2196 | 1.1043 | | 0.4404 | 1.4327 | 596 | 1.0317 | 0.65 | 1.0317 | 1.0157 | | 0.4404 | 1.4375 | 598 | 0.7959 | 0.6698 | 0.7959 | 0.8922 | | 0.4404 | 1.4423 | 600 | 0.7739 | 0.6195 | 0.7739 | 0.8797 | | 0.4404 | 1.4471 | 602 | 0.9080 | 0.6475 | 0.9080 | 0.9529 | | 0.4404 | 1.4519 | 604 | 1.0254 | 0.6036 | 1.0254 | 1.0126 | | 0.4404 | 1.4567 | 606 | 1.1547 | 0.5547 | 1.1547 | 1.0746 | | 0.4404 | 1.4615 | 608 | 1.1255 | 0.5183 | 1.1255 | 1.0609 | | 0.4404 | 1.4663 | 610 | 1.0367 | 0.5942 | 1.0367 | 1.0182 | | 0.4404 | 1.4712 | 612 | 0.9930 | 0.5762 | 0.9930 | 0.9965 | | 0.4404 | 1.4760 | 614 | 1.0915 | 0.5878 | 1.0915 | 1.0448 | | 0.4404 | 1.4808 | 616 | 1.0595 | 0.6231 | 1.0595 | 1.0293 | | 0.4404 | 1.4856 | 618 | 0.9811 | 0.5898 | 0.9811 | 0.9905 | | 0.4404 | 1.4904 | 620 | 0.8945 | 0.6324 | 0.8945 | 0.9458 | | 0.4404 | 1.4952 | 622 | 0.9418 | 0.6753 | 0.9418 | 0.9705 | | 0.4404 | 1.5 | 624 | 1.0762 | 0.6065 | 1.0762 | 1.0374 | | 0.4404 | 1.5048 | 626 | 0.9577 | 0.6753 | 0.9577 | 0.9786 | | 0.4404 | 1.5096 | 628 | 0.9086 | 0.6482 | 0.9086 | 0.9532 | | 0.4404 | 1.5144 | 630 | 0.8613 | 0.6415 | 0.8613 | 0.9280 | | 0.4404 | 1.5192 | 632 | 0.8950 | 0.6819 | 0.8950 | 0.9461 | | 0.4404 | 1.5240 | 634 | 0.8211 | 0.6680 | 0.8211 | 0.9061 | | 0.4404 | 1.5288 | 636 | 0.7987 | 0.6945 | 0.7987 | 0.8937 | | 0.4404 | 1.5337 | 638 | 0.8033 | 0.6738 | 0.8033 | 0.8963 | | 0.4404 | 1.5385 | 640 | 0.8460 | 0.6617 | 0.8460 | 0.9198 | | 0.4404 | 1.5433 | 642 | 0.7784 | 0.6819 | 0.7784 | 0.8823 | | 0.4404 | 1.5481 | 644 | 0.6683 | 0.6384 | 0.6683 | 0.8175 | | 0.4404 | 1.5529 | 646 | 0.6838 | 0.6507 | 0.6838 | 0.8269 | | 0.4404 | 1.5577 | 648 | 0.7563 | 0.6390 | 0.7563 | 0.8697 | | 0.4404 | 1.5625 | 650 | 0.9178 | 0.6232 | 0.9178 | 0.9580 | | 0.4404 | 1.5673 | 652 | 1.1508 | 0.5639 | 1.1508 | 1.0728 | | 0.4404 | 1.5721 | 654 | 1.1112 | 0.5661 | 1.1112 | 1.0541 | | 0.4404 | 1.5769 | 656 | 0.9939 | 0.6146 | 0.9939 | 0.9970 | | 0.4404 | 1.5817 | 658 | 0.9687 | 0.6392 | 0.9687 | 0.9842 | | 0.4404 | 1.5865 | 660 | 0.9904 | 0.6146 | 0.9904 | 0.9952 | | 0.4404 | 1.5913 | 662 | 0.9903 | 0.6392 | 0.9903 | 0.9952 | | 0.4404 | 1.5962 | 664 | 1.1182 | 0.5661 | 1.1182 | 1.0575 | | 0.4404 | 1.6010 | 666 | 1.1676 | 0.5661 | 1.1676 | 1.0806 | | 0.4404 | 1.6058 | 668 | 1.0972 | 0.6277 | 1.0972 | 1.0475 | | 0.4404 | 1.6106 | 670 | 0.9526 | 0.6280 | 0.9526 | 0.9760 | | 0.4404 | 1.6154 | 672 | 0.9494 | 0.6280 | 0.9494 | 0.9744 | | 0.4404 | 1.6202 | 674 | 1.0391 | 0.6070 | 1.0391 | 1.0194 | | 0.4404 | 1.625 | 676 | 1.1124 | 0.6273 | 1.1124 | 1.0547 | | 0.4404 | 1.6298 | 678 | 1.0604 | 0.6266 | 1.0604 | 1.0298 | | 0.4404 | 1.6346 | 680 | 0.8704 | 0.6170 | 0.8704 | 0.9329 | | 0.4404 | 1.6394 | 682 | 0.8285 | 0.6271 | 0.8285 | 0.9102 | | 0.4404 | 1.6442 | 684 | 0.8555 | 0.5850 | 0.8555 | 0.9249 | | 0.4404 | 1.6490 | 686 | 0.9662 | 0.5801 | 0.9662 | 0.9830 | | 0.4404 | 1.6538 | 688 | 1.2287 | 0.5776 | 1.2287 | 1.1085 | | 0.4404 | 1.6587 | 690 | 1.3785 | 0.5077 | 1.3785 | 1.1741 | | 0.4404 | 1.6635 | 692 | 1.2534 | 0.5529 | 1.2534 | 1.1195 | | 0.4404 | 1.6683 | 694 | 1.0999 | 0.5705 | 1.0999 | 1.0487 | | 0.4404 | 1.6731 | 696 | 1.1729 | 0.5529 | 1.1729 | 1.0830 | | 0.4404 | 1.6779 | 698 | 1.1398 | 0.6053 | 1.1398 | 1.0676 | | 0.4404 | 1.6827 | 700 | 0.9596 | 0.6093 | 0.9596 | 0.9796 | | 0.4404 | 1.6875 | 702 | 0.8301 | 0.6135 | 0.8301 | 0.9111 | | 0.4404 | 1.6923 | 704 | 0.7653 | 0.6009 | 0.7653 | 0.8748 | | 0.4404 | 1.6971 | 706 | 0.7905 | 0.6009 | 0.7905 | 0.8891 | | 0.4404 | 1.7019 | 708 | 0.9895 | 0.6146 | 0.9895 | 0.9948 | | 0.4404 | 1.7067 | 710 | 1.1511 | 0.6273 | 1.1511 | 1.0729 | | 0.4404 | 1.7115 | 712 | 1.0381 | 0.6146 | 1.0381 | 1.0189 | | 0.4404 | 1.7163 | 714 | 0.8501 | 0.6387 | 0.8501 | 0.9220 | | 0.4404 | 1.7212 | 716 | 0.6895 | 0.5884 | 0.6895 | 0.8303 | | 0.4404 | 1.7260 | 718 | 0.6831 | 0.5884 | 0.6831 | 0.8265 | | 0.4404 | 1.7308 | 720 | 0.7462 | 0.5970 | 0.7462 | 0.8638 | | 0.4404 | 1.7356 | 722 | 0.9430 | 0.6348 | 0.9430 | 0.9711 | | 0.4404 | 1.7404 | 724 | 1.1611 | 0.5522 | 1.1611 | 1.0775 | | 0.4404 | 1.7452 | 726 | 1.2847 | 0.4520 | 1.2847 | 1.1335 | | 0.4404 | 1.75 | 728 | 1.1931 | 0.5225 | 1.1931 | 1.0923 | | 0.4404 | 1.7548 | 730 | 1.0440 | 0.5898 | 1.0440 | 1.0218 | | 0.4404 | 1.7596 | 732 | 0.9004 | 0.625 | 0.9004 | 0.9489 | | 0.4404 | 1.7644 | 734 | 0.8587 | 0.625 | 0.8587 | 0.9267 | | 0.4404 | 1.7692 | 736 | 0.8103 | 0.6529 | 0.8103 | 0.9002 | | 0.4404 | 1.7740 | 738 | 0.7432 | 0.7203 | 0.7432 | 0.8621 | | 0.4404 | 1.7788 | 740 | 0.6121 | 0.7017 | 0.6121 | 0.7824 | | 0.4404 | 1.7837 | 742 | 0.5886 | 0.7017 | 0.5886 | 0.7672 | | 0.4404 | 1.7885 | 744 | 0.6678 | 0.7160 | 0.6678 | 0.8172 | | 0.4404 | 1.7933 | 746 | 0.7808 | 0.7044 | 0.7808 | 0.8836 | | 0.4404 | 1.7981 | 748 | 0.7581 | 0.7016 | 0.7581 | 0.8707 | | 0.4404 | 1.8029 | 750 | 0.6175 | 0.6358 | 0.6175 | 0.7858 | | 0.4404 | 1.8077 | 752 | 0.5755 | 0.6184 | 0.5755 | 0.7586 | | 0.4404 | 1.8125 | 754 | 0.5796 | 0.6184 | 0.5796 | 0.7613 | | 0.4404 | 1.8173 | 756 | 0.6557 | 0.6358 | 0.6557 | 0.8097 | | 0.4404 | 1.8221 | 758 | 0.7692 | 0.6707 | 0.7692 | 0.8770 | | 0.4404 | 1.8269 | 760 | 0.8088 | 0.6331 | 0.8088 | 0.8993 | | 0.4404 | 1.8317 | 762 | 0.8743 | 0.6578 | 0.8743 | 0.9350 | | 0.4404 | 1.8365 | 764 | 0.9374 | 0.6578 | 0.9374 | 0.9682 | | 0.4404 | 1.8413 | 766 | 0.9602 | 0.6331 | 0.9602 | 0.9799 | | 0.4404 | 1.8462 | 768 | 0.8608 | 0.6149 | 0.8608 | 0.9278 | | 0.4404 | 1.8510 | 770 | 0.8171 | 0.6409 | 0.8171 | 0.9039 | | 0.4404 | 1.8558 | 772 | 0.7709 | 0.6409 | 0.7709 | 0.8780 | | 0.4404 | 1.8606 | 774 | 0.7462 | 0.6606 | 0.7462 | 0.8638 | | 0.4404 | 1.8654 | 776 | 0.8555 | 0.6445 | 0.8555 | 0.9249 | | 0.4404 | 1.8702 | 778 | 1.1278 | 0.613 | 1.1278 | 1.0620 | | 0.4404 | 1.875 | 780 | 1.3889 | 0.5406 | 1.3889 | 1.1785 | | 0.4404 | 1.8798 | 782 | 1.3558 | 0.5231 | 1.3558 | 1.1644 | | 0.4404 | 1.8846 | 784 | 1.1410 | 0.5639 | 1.1410 | 1.0682 | | 0.4404 | 1.8894 | 786 | 0.9587 | 0.6324 | 0.9587 | 0.9791 | | 0.4404 | 1.8942 | 788 | 0.8677 | 0.6173 | 0.8677 | 0.9315 | | 0.4404 | 1.8990 | 790 | 0.7574 | 0.5946 | 0.7574 | 0.8703 | | 0.4404 | 1.9038 | 792 | 0.7185 | 0.6239 | 0.7185 | 0.8476 | | 0.4404 | 1.9087 | 794 | 0.7307 | 0.625 | 0.7307 | 0.8548 | | 0.4404 | 1.9135 | 796 | 0.7845 | 0.6831 | 0.7845 | 0.8857 | | 0.4404 | 1.9183 | 798 | 0.7324 | 0.6944 | 0.7324 | 0.8558 | | 0.4404 | 1.9231 | 800 | 0.7330 | 0.6944 | 0.7330 | 0.8561 | | 0.4404 | 1.9279 | 802 | 0.7496 | 0.6927 | 0.7496 | 0.8658 | | 0.4404 | 1.9327 | 804 | 0.8550 | 0.6809 | 0.8550 | 0.9247 | | 0.4404 | 1.9375 | 806 | 0.9769 | 0.6269 | 0.9769 | 0.9884 | | 0.4404 | 1.9423 | 808 | 1.0180 | 0.5997 | 1.0180 | 1.0090 | | 0.4404 | 1.9471 | 810 | 0.9298 | 0.6415 | 0.9298 | 0.9643 | | 0.4404 | 1.9519 | 812 | 0.8614 | 0.6390 | 0.8614 | 0.9281 | | 0.4404 | 1.9567 | 814 | 0.8991 | 0.6019 | 0.8991 | 0.9482 | | 0.4404 | 1.9615 | 816 | 1.0374 | 0.6318 | 1.0374 | 1.0185 | | 0.4404 | 1.9663 | 818 | 1.0473 | 0.6318 | 1.0473 | 1.0234 | | 0.4404 | 1.9712 | 820 | 1.0485 | 0.6083 | 1.0485 | 1.0240 | | 0.4404 | 1.9760 | 822 | 1.1768 | 0.5724 | 1.1768 | 1.0848 | | 0.4404 | 1.9808 | 824 | 1.4089 | 0.4695 | 1.4089 | 1.1870 | | 0.4404 | 1.9856 | 826 | 1.5111 | 0.4343 | 1.5111 | 1.2293 | | 0.4404 | 1.9904 | 828 | 1.4163 | 0.4314 | 1.4163 | 1.1901 | | 0.4404 | 1.9952 | 830 | 1.2183 | 0.5152 | 1.2183 | 1.1038 | | 0.4404 | 2.0 | 832 | 1.1020 | 0.5233 | 1.1020 | 1.0498 | | 0.4404 | 2.0048 | 834 | 0.9780 | 0.5591 | 0.9780 | 0.9889 | | 0.4404 | 2.0096 | 836 | 0.8967 | 0.6097 | 0.8967 | 0.9469 | | 0.4404 | 2.0144 | 838 | 0.9309 | 0.625 | 0.9309 | 0.9648 | | 0.4404 | 2.0192 | 840 | 0.8955 | 0.6430 | 0.8955 | 0.9463 | | 0.4404 | 2.0240 | 842 | 0.8366 | 0.6369 | 0.8366 | 0.9147 | | 0.4404 | 2.0288 | 844 | 0.7885 | 0.6300 | 0.7885 | 0.8880 | | 0.4404 | 2.0337 | 846 | 0.7677 | 0.6362 | 0.7677 | 0.8762 | | 0.4404 | 2.0385 | 848 | 0.7860 | 0.6173 | 0.7860 | 0.8866 | | 0.4404 | 2.0433 | 850 | 0.7983 | 0.6173 | 0.7983 | 0.8935 | | 0.4404 | 2.0481 | 852 | 0.8154 | 0.6390 | 0.8154 | 0.9030 | | 0.4404 | 2.0529 | 854 | 0.8327 | 0.6348 | 0.8327 | 0.9125 | | 0.4404 | 2.0577 | 856 | 0.8565 | 0.6391 | 0.8565 | 0.9255 | | 0.4404 | 2.0625 | 858 | 0.8275 | 0.6512 | 0.8275 | 0.9097 | | 0.4404 | 2.0673 | 860 | 0.7938 | 0.6679 | 0.7938 | 0.8910 | | 0.4404 | 2.0721 | 862 | 0.8686 | 0.6077 | 0.8686 | 0.9320 | | 0.4404 | 2.0769 | 864 | 1.0019 | 0.5951 | 1.0019 | 1.0009 | | 0.4404 | 2.0817 | 866 | 0.9639 | 0.6129 | 0.9639 | 0.9818 | | 0.4404 | 2.0865 | 868 | 0.9785 | 0.5755 | 0.9785 | 0.9892 | | 0.4404 | 2.0913 | 870 | 0.8667 | 0.6461 | 0.8667 | 0.9310 | | 0.4404 | 2.0962 | 872 | 0.8336 | 0.6597 | 0.8336 | 0.9130 | | 0.4404 | 2.1010 | 874 | 0.8153 | 0.6189 | 0.8153 | 0.9030 | | 0.4404 | 2.1058 | 876 | 0.8158 | 0.6633 | 0.8158 | 0.9032 | | 0.4404 | 2.1106 | 878 | 0.7451 | 0.6667 | 0.7451 | 0.8632 | | 0.4404 | 2.1154 | 880 | 0.7141 | 0.6486 | 0.7141 | 0.8451 | | 0.4404 | 2.1202 | 882 | 0.8097 | 0.6663 | 0.8097 | 0.8998 | | 0.4404 | 2.125 | 884 | 0.8796 | 0.6718 | 0.8796 | 0.9379 | | 0.4404 | 2.1298 | 886 | 0.9026 | 0.6604 | 0.9026 | 0.9501 | | 0.4404 | 2.1346 | 888 | 0.8238 | 0.6189 | 0.8238 | 0.9077 | | 0.4404 | 2.1394 | 890 | 0.6843 | 0.6116 | 0.6843 | 0.8272 | | 0.4404 | 2.1442 | 892 | 0.6171 | 0.6426 | 0.6171 | 0.7856 | | 0.4404 | 2.1490 | 894 | 0.6207 | 0.6426 | 0.6207 | 0.7878 | | 0.4404 | 2.1538 | 896 | 0.6718 | 0.6217 | 0.6718 | 0.8196 | | 0.4404 | 2.1587 | 898 | 0.8387 | 0.6691 | 0.8387 | 0.9158 | | 0.4404 | 2.1635 | 900 | 1.0331 | 0.6489 | 1.0331 | 1.0164 | | 0.4404 | 2.1683 | 902 | 1.1024 | 0.6413 | 1.1024 | 1.0500 | | 0.4404 | 2.1731 | 904 | 1.0161 | 0.6129 | 1.0161 | 1.0080 | | 0.4404 | 2.1779 | 906 | 0.8685 | 0.5650 | 0.8685 | 0.9319 | | 0.4404 | 2.1827 | 908 | 0.8027 | 0.5798 | 0.8027 | 0.8959 | | 0.4404 | 2.1875 | 910 | 0.7354 | 0.6093 | 0.7354 | 0.8576 | | 0.4404 | 2.1923 | 912 | 0.7213 | 0.6093 | 0.7213 | 0.8493 | | 0.4404 | 2.1971 | 914 | 0.8115 | 0.6209 | 0.8115 | 0.9008 | | 0.4404 | 2.2019 | 916 | 1.0856 | 0.6207 | 1.0856 | 1.0419 | | 0.4404 | 2.2067 | 918 | 1.2537 | 0.5884 | 1.2537 | 1.1197 | | 0.4404 | 2.2115 | 920 | 1.2156 | 0.5661 | 1.2156 | 1.1026 | | 0.4404 | 2.2163 | 922 | 1.0508 | 0.6232 | 1.0508 | 1.0251 | | 0.4404 | 2.2212 | 924 | 1.0056 | 0.6220 | 1.0056 | 1.0028 | | 0.4404 | 2.2260 | 926 | 1.0690 | 0.6055 | 1.0690 | 1.0339 | | 0.4404 | 2.2308 | 928 | 1.0627 | 0.6055 | 1.0627 | 1.0309 | | 0.4404 | 2.2356 | 930 | 1.0155 | 0.5088 | 1.0155 | 1.0077 | | 0.4404 | 2.2404 | 932 | 1.0594 | 0.5310 | 1.0594 | 1.0293 | | 0.4404 | 2.2452 | 934 | 1.1096 | 0.5839 | 1.1096 | 1.0534 | | 0.4404 | 2.25 | 936 | 1.0294 | 0.6010 | 1.0294 | 1.0146 | | 0.4404 | 2.2548 | 938 | 0.9480 | 0.6351 | 0.9480 | 0.9737 | | 0.4404 | 2.2596 | 940 | 0.8481 | 0.5972 | 0.8481 | 0.9209 | | 0.4404 | 2.2644 | 942 | 0.7548 | 0.625 | 0.7548 | 0.8688 | | 0.4404 | 2.2692 | 944 | 0.7302 | 0.5933 | 0.7302 | 0.8545 | | 0.4404 | 2.2740 | 946 | 0.7668 | 0.6 | 0.7668 | 0.8757 | | 0.4404 | 2.2788 | 948 | 0.8767 | 0.6351 | 0.8767 | 0.9363 | | 0.4404 | 2.2837 | 950 | 0.9780 | 0.6224 | 0.9780 | 0.9890 | | 0.4404 | 2.2885 | 952 | 0.9740 | 0.6351 | 0.9740 | 0.9869 | | 0.4404 | 2.2933 | 954 | 0.8770 | 0.5955 | 0.8770 | 0.9365 | | 0.4404 | 2.2981 | 956 | 0.8538 | 0.5991 | 0.8538 | 0.9240 | | 0.4404 | 2.3029 | 958 | 0.8239 | 0.5714 | 0.8239 | 0.9077 | | 0.4404 | 2.3077 | 960 | 0.8150 | 0.5456 | 0.8150 | 0.9027 | | 0.4404 | 2.3125 | 962 | 0.8525 | 0.5527 | 0.8525 | 0.9233 | | 0.4404 | 2.3173 | 964 | 0.9523 | 0.5817 | 0.9523 | 0.9758 | | 0.4404 | 2.3221 | 966 | 1.0378 | 0.6196 | 1.0378 | 1.0187 | | 0.4404 | 2.3269 | 968 | 1.0823 | 0.6077 | 1.0823 | 1.0404 | | 0.4404 | 2.3317 | 970 | 1.0459 | 0.5951 | 1.0459 | 1.0227 | | 0.4404 | 2.3365 | 972 | 1.0589 | 0.5951 | 1.0589 | 1.0290 | | 0.4404 | 2.3413 | 974 | 1.0591 | 0.5887 | 1.0591 | 1.0291 | | 0.4404 | 2.3462 | 976 | 1.1579 | 0.5488 | 1.1579 | 1.0760 | | 0.4404 | 2.3510 | 978 | 1.2250 | 0.472 | 1.2250 | 1.1068 | | 0.4404 | 2.3558 | 980 | 1.1861 | 0.4987 | 1.1861 | 1.0891 | | 0.4404 | 2.3606 | 982 | 1.1385 | 0.5488 | 1.1385 | 1.0670 | | 0.4404 | 2.3654 | 984 | 1.1799 | 0.5215 | 1.1799 | 1.0862 | | 0.4404 | 2.3702 | 986 | 1.1925 | 0.5424 | 1.1925 | 1.0920 | | 0.4404 | 2.375 | 988 | 1.1650 | 0.5824 | 1.1650 | 1.0793 | | 0.4404 | 2.3798 | 990 | 1.0194 | 0.6483 | 1.0194 | 1.0096 | | 0.4404 | 2.3846 | 992 | 0.8414 | 0.6311 | 0.8414 | 0.9173 | | 0.4404 | 2.3894 | 994 | 0.8395 | 0.6663 | 0.8395 | 0.9162 | | 0.4404 | 2.3942 | 996 | 0.9327 | 0.6478 | 0.9327 | 0.9658 | | 0.4404 | 2.3990 | 998 | 1.0596 | 0.625 | 1.0596 | 1.0293 | | 0.1328 | 2.4038 | 1000 | 1.2228 | 0.5830 | 1.2228 | 1.1058 | | 0.1328 | 2.4087 | 1002 | 1.2686 | 0.4846 | 1.2686 | 1.1263 | | 0.1328 | 2.4135 | 1004 | 1.1648 | 0.5341 | 1.1648 | 1.0793 | | 0.1328 | 2.4183 | 1006 | 1.0463 | 0.5403 | 1.0463 | 1.0229 | | 0.1328 | 2.4231 | 1008 | 0.9599 | 0.6390 | 0.9599 | 0.9797 | | 0.1328 | 2.4279 | 1010 | 0.9124 | 0.6390 | 0.9124 | 0.9552 | | 0.1328 | 2.4327 | 1012 | 0.9392 | 0.6189 | 0.9392 | 0.9691 | | 0.1328 | 2.4375 | 1014 | 0.9451 | 0.6240 | 0.9451 | 0.9722 | | 0.1328 | 2.4423 | 1016 | 0.9369 | 0.6718 | 0.9369 | 0.9680 | | 0.1328 | 2.4471 | 1018 | 0.9192 | 0.6538 | 0.9192 | 0.9588 | | 0.1328 | 2.4519 | 1020 | 0.9302 | 0.6429 | 0.9302 | 0.9645 | | 0.1328 | 2.4567 | 1022 | 0.9014 | 0.6718 | 0.9014 | 0.9494 | | 0.1328 | 2.4615 | 1024 | 0.8927 | 0.6691 | 0.8927 | 0.9448 | | 0.1328 | 2.4663 | 1026 | 0.8053 | 0.6014 | 0.8053 | 0.8974 | | 0.1328 | 2.4712 | 1028 | 0.8073 | 0.6216 | 0.8073 | 0.8985 | | 0.1328 | 2.4760 | 1030 | 0.9030 | 0.6597 | 0.9030 | 0.9502 | | 0.1328 | 2.4808 | 1032 | 1.0468 | 0.5984 | 1.0468 | 1.0231 | | 0.1328 | 2.4856 | 1034 | 1.0539 | 0.5618 | 1.0539 | 1.0266 | | 0.1328 | 2.4904 | 1036 | 0.9253 | 0.625 | 0.9253 | 0.9619 | | 0.1328 | 2.4952 | 1038 | 0.8063 | 0.5985 | 0.8063 | 0.8979 | | 0.1328 | 2.5 | 1040 | 0.8102 | 0.5741 | 0.8102 | 0.9001 | | 0.1328 | 2.5048 | 1042 | 0.8899 | 0.6216 | 0.8899 | 0.9434 | | 0.1328 | 2.5096 | 1044 | 1.0616 | 0.5887 | 1.0616 | 1.0304 | | 0.1328 | 2.5144 | 1046 | 1.1628 | 0.6002 | 1.1628 | 1.0783 | | 0.1328 | 2.5192 | 1048 | 1.1166 | 0.5919 | 1.1166 | 1.0567 | | 0.1328 | 2.5240 | 1050 | 0.9593 | 0.6461 | 0.9593 | 0.9794 | | 0.1328 | 2.5288 | 1052 | 0.8524 | 0.6437 | 0.8524 | 0.9233 | | 0.1328 | 2.5337 | 1054 | 0.7740 | 0.6135 | 0.7740 | 0.8798 | | 0.1328 | 2.5385 | 1056 | 0.8056 | 0.6362 | 0.8056 | 0.8975 | | 0.1328 | 2.5433 | 1058 | 0.8404 | 0.6322 | 0.8404 | 0.9167 | | 0.1328 | 2.5481 | 1060 | 0.8688 | 0.652 | 0.8688 | 0.9321 | | 0.1328 | 2.5529 | 1062 | 0.8936 | 0.652 | 0.8936 | 0.9453 | | 0.1328 | 2.5577 | 1064 | 0.8252 | 0.5985 | 0.8252 | 0.9084 | | 0.1328 | 2.5625 | 1066 | 0.7843 | 0.6135 | 0.7843 | 0.8856 | | 0.1328 | 2.5673 | 1068 | 0.7883 | 0.6135 | 0.7883 | 0.8878 | | 0.1328 | 2.5721 | 1070 | 0.8753 | 0.6316 | 0.8753 | 0.9356 | | 0.1328 | 2.5769 | 1072 | 1.0248 | 0.6604 | 1.0248 | 1.0123 | | 0.1328 | 2.5817 | 1074 | 1.0883 | 0.6013 | 1.0883 | 1.0432 | | 0.1328 | 2.5865 | 1076 | 1.0410 | 0.6041 | 1.0410 | 1.0203 | | 0.1328 | 2.5913 | 1078 | 0.9738 | 0.6604 | 0.9738 | 0.9868 | | 0.1328 | 2.5962 | 1080 | 0.8888 | 0.5789 | 0.8888 | 0.9428 | | 0.1328 | 2.6010 | 1082 | 0.8072 | 0.6135 | 0.8072 | 0.8984 | | 0.1328 | 2.6058 | 1084 | 0.7951 | 0.6135 | 0.7951 | 0.8917 | | 0.1328 | 2.6106 | 1086 | 0.8551 | 0.5985 | 0.8551 | 0.9247 | | 0.1328 | 2.6154 | 1088 | 0.9583 | 0.6260 | 0.9583 | 0.9789 | | 0.1328 | 2.6202 | 1090 | 1.1406 | 0.6045 | 1.1406 | 1.0680 | | 0.1328 | 2.625 | 1092 | 1.2203 | 0.5804 | 1.2203 | 1.1047 | | 0.1328 | 2.6298 | 1094 | 1.1821 | 0.5804 | 1.1821 | 1.0872 | | 0.1328 | 2.6346 | 1096 | 1.1743 | 0.5522 | 1.1743 | 1.0837 | | 0.1328 | 2.6394 | 1098 | 1.1604 | 0.5225 | 1.1604 | 1.0772 | | 0.1328 | 2.6442 | 1100 | 1.0226 | 0.5826 | 1.0226 | 1.0112 | | 0.1328 | 2.6490 | 1102 | 0.9784 | 0.5826 | 0.9784 | 0.9891 | | 0.1328 | 2.6538 | 1104 | 0.9506 | 0.6070 | 0.9506 | 0.9750 | | 0.1328 | 2.6587 | 1106 | 0.8722 | 0.6070 | 0.8722 | 0.9339 | | 0.1328 | 2.6635 | 1108 | 0.8105 | 0.6437 | 0.8105 | 0.9003 | | 0.1328 | 2.6683 | 1110 | 0.8641 | 0.6475 | 0.8641 | 0.9296 | | 0.1328 | 2.6731 | 1112 | 0.9728 | 0.6467 | 0.9728 | 0.9863 | | 0.1328 | 2.6779 | 1114 | 0.9614 | 0.6786 | 0.9614 | 0.9805 | | 0.1328 | 2.6827 | 1116 | 0.8431 | 0.6993 | 0.8431 | 0.9182 | | 0.1328 | 2.6875 | 1118 | 0.7139 | 0.6667 | 0.7139 | 0.8449 | | 0.1328 | 2.6923 | 1120 | 0.7006 | 0.6478 | 0.7006 | 0.8370 | | 0.1328 | 2.6971 | 1122 | 0.7704 | 0.675 | 0.7704 | 0.8777 | | 0.1328 | 2.7019 | 1124 | 0.9270 | 0.6165 | 0.9270 | 0.9628 | | 0.1328 | 2.7067 | 1126 | 1.0558 | 0.5951 | 1.0558 | 1.0275 | | 0.1328 | 2.7115 | 1128 | 1.0085 | 0.5951 | 1.0085 | 1.0042 | | 0.1328 | 2.7163 | 1130 | 0.8575 | 0.6301 | 0.8575 | 0.9260 | | 0.1328 | 2.7212 | 1132 | 0.7665 | 0.6599 | 0.7665 | 0.8755 | | 0.1328 | 2.7260 | 1134 | 0.7158 | 0.6384 | 0.7158 | 0.8460 | | 0.1328 | 2.7308 | 1136 | 0.7215 | 0.6384 | 0.7215 | 0.8494 | | 0.1328 | 2.7356 | 1138 | 0.7671 | 0.675 | 0.7671 | 0.8758 | | 0.1328 | 2.7404 | 1140 | 0.8439 | 0.6574 | 0.8439 | 0.9186 | | 0.1328 | 2.7452 | 1142 | 0.8655 | 0.6754 | 0.8655 | 0.9303 | | 0.1328 | 2.75 | 1144 | 0.9098 | 0.6512 | 0.9098 | 0.9539 | | 0.1328 | 2.7548 | 1146 | 0.9406 | 0.6512 | 0.9406 | 0.9699 | | 0.1328 | 2.7596 | 1148 | 0.8696 | 0.6754 | 0.8696 | 0.9325 | | 0.1328 | 2.7644 | 1150 | 0.7428 | 0.6548 | 0.7428 | 0.8618 | | 0.1328 | 2.7692 | 1152 | 0.7119 | 0.6384 | 0.7119 | 0.8437 | | 0.1328 | 2.7740 | 1154 | 0.7134 | 0.6176 | 0.7134 | 0.8447 | | 0.1328 | 2.7788 | 1156 | 0.7919 | 0.6825 | 0.7919 | 0.8899 | | 0.1328 | 2.7837 | 1158 | 0.8310 | 0.6846 | 0.8310 | 0.9116 | | 0.1328 | 2.7885 | 1160 | 0.8792 | 0.6846 | 0.8792 | 0.9377 | | 0.1328 | 2.7933 | 1162 | 0.8301 | 0.6846 | 0.8301 | 0.9111 | | 0.1328 | 2.7981 | 1164 | 0.7465 | 0.6574 | 0.7465 | 0.8640 | | 0.1328 | 2.8029 | 1166 | 0.7404 | 0.6585 | 0.7404 | 0.8604 | | 0.1328 | 2.8077 | 1168 | 0.7232 | 0.6384 | 0.7232 | 0.8504 | | 0.1328 | 2.8125 | 1170 | 0.7596 | 0.6804 | 0.7596 | 0.8716 | | 0.1328 | 2.8173 | 1172 | 0.7876 | 0.675 | 0.7876 | 0.8875 | | 0.1328 | 2.8221 | 1174 | 0.7723 | 0.675 | 0.7723 | 0.8788 | | 0.1328 | 2.8269 | 1176 | 0.7870 | 0.675 | 0.7870 | 0.8871 | | 0.1328 | 2.8317 | 1178 | 0.7873 | 0.675 | 0.7873 | 0.8873 | | 0.1328 | 2.8365 | 1180 | 0.7679 | 0.675 | 0.7679 | 0.8763 | | 0.1328 | 2.8413 | 1182 | 0.7465 | 0.6548 | 0.7465 | 0.8640 | | 0.1328 | 2.8462 | 1184 | 0.7429 | 0.6548 | 0.7429 | 0.8619 | | 0.1328 | 2.8510 | 1186 | 0.6973 | 0.6159 | 0.6973 | 0.8350 | | 0.1328 | 2.8558 | 1188 | 0.7429 | 0.6384 | 0.7429 | 0.8619 | | 0.1328 | 2.8606 | 1190 | 0.8414 | 0.6195 | 0.8414 | 0.9173 | | 0.1328 | 2.8654 | 1192 | 0.8932 | 0.5798 | 0.8932 | 0.9451 | | 0.1328 | 2.8702 | 1194 | 0.9422 | 0.5650 | 0.9422 | 0.9707 | | 0.1328 | 2.875 | 1196 | 0.9286 | 0.5798 | 0.9286 | 0.9636 | | 0.1328 | 2.8798 | 1198 | 0.9602 | 0.5798 | 0.9602 | 0.9799 | | 0.1328 | 2.8846 | 1200 | 0.9850 | 0.5798 | 0.9850 | 0.9925 | | 0.1328 | 2.8894 | 1202 | 0.9671 | 0.5946 | 0.9671 | 0.9834 | | 0.1328 | 2.8942 | 1204 | 0.9585 | 0.5831 | 0.9585 | 0.9790 | | 0.1328 | 2.8990 | 1206 | 0.9682 | 0.6679 | 0.9682 | 0.9840 | | 0.1328 | 2.9038 | 1208 | 0.9803 | 0.6846 | 0.9803 | 0.9901 | | 0.1328 | 2.9087 | 1210 | 1.0451 | 0.6554 | 1.0451 | 1.0223 | | 0.1328 | 2.9135 | 1212 | 1.1251 | 0.6224 | 1.1251 | 1.0607 | | 0.1328 | 2.9183 | 1214 | 1.0509 | 0.6214 | 1.0509 | 1.0251 | | 0.1328 | 2.9231 | 1216 | 0.8921 | 0.6548 | 0.8921 | 0.9445 | | 0.1328 | 2.9279 | 1218 | 0.7639 | 0.6337 | 0.7639 | 0.8740 | | 0.1328 | 2.9327 | 1220 | 0.7301 | 0.6337 | 0.7301 | 0.8544 | | 0.1328 | 2.9375 | 1222 | 0.7597 | 0.6337 | 0.7597 | 0.8716 | | 0.1328 | 2.9423 | 1224 | 0.7561 | 0.6136 | 0.7561 | 0.8695 | | 0.1328 | 2.9471 | 1226 | 0.7684 | 0.6429 | 0.7684 | 0.8766 | | 0.1328 | 2.9519 | 1228 | 0.8116 | 0.6468 | 0.8116 | 0.9009 | | 0.1328 | 2.9567 | 1230 | 0.9022 | 0.6327 | 0.9022 | 0.9499 | | 0.1328 | 2.9615 | 1232 | 0.9101 | 0.6076 | 0.9101 | 0.9540 | | 0.1328 | 2.9663 | 1234 | 0.9191 | 0.5798 | 0.9191 | 0.9587 | | 0.1328 | 2.9712 | 1236 | 0.8733 | 0.5946 | 0.8733 | 0.9345 | | 0.1328 | 2.9760 | 1238 | 0.8599 | 0.5946 | 0.8599 | 0.9273 | | 0.1328 | 2.9808 | 1240 | 0.8933 | 0.5798 | 0.8933 | 0.9451 | | 0.1328 | 2.9856 | 1242 | 1.0043 | 0.5940 | 1.0043 | 1.0022 | | 0.1328 | 2.9904 | 1244 | 1.0428 | 0.6489 | 1.0428 | 1.0212 | | 0.1328 | 2.9952 | 1246 | 0.9634 | 0.6348 | 0.9634 | 0.9816 | | 0.1328 | 3.0 | 1248 | 0.8189 | 0.6239 | 0.8189 | 0.9049 | | 0.1328 | 3.0048 | 1250 | 0.7259 | 0.6478 | 0.7259 | 0.8520 | | 0.1328 | 3.0096 | 1252 | 0.7137 | 0.6358 | 0.7137 | 0.8448 | | 0.1328 | 3.0144 | 1254 | 0.7572 | 0.6478 | 0.7572 | 0.8702 | | 0.1328 | 3.0192 | 1256 | 0.9136 | 0.6732 | 0.9136 | 0.9558 | | 0.1328 | 3.0240 | 1258 | 1.0242 | 0.5618 | 1.0242 | 1.0120 | | 0.1328 | 3.0288 | 1260 | 0.9884 | 0.5755 | 0.9884 | 0.9942 | | 0.1328 | 3.0337 | 1262 | 0.9057 | 0.6168 | 0.9057 | 0.9517 | | 0.1328 | 3.0385 | 1264 | 0.8314 | 0.675 | 0.8314 | 0.9118 | | 0.1328 | 3.0433 | 1266 | 0.7085 | 0.6358 | 0.7085 | 0.8417 | | 0.1328 | 3.0481 | 1268 | 0.6665 | 0.6283 | 0.6665 | 0.8164 | | 0.1328 | 3.0529 | 1270 | 0.6954 | 0.6358 | 0.6954 | 0.8339 | | 0.1328 | 3.0577 | 1272 | 0.7852 | 0.6686 | 0.7852 | 0.8861 | | 0.1328 | 3.0625 | 1274 | 0.8989 | 0.6410 | 0.8989 | 0.9481 | | 0.1328 | 3.0673 | 1276 | 1.0611 | 0.6489 | 1.0611 | 1.0301 | | 0.1328 | 3.0721 | 1278 | 1.1405 | 0.5747 | 1.1405 | 1.0679 | | 0.1328 | 3.0769 | 1280 | 1.0813 | 0.6129 | 1.0813 | 1.0398 | | 0.1328 | 3.0817 | 1282 | 0.9573 | 0.6461 | 0.9573 | 0.9784 | | 0.1328 | 3.0865 | 1284 | 0.8711 | 0.6548 | 0.8711 | 0.9333 | | 0.1328 | 3.0913 | 1286 | 0.7207 | 0.6358 | 0.7207 | 0.8489 | | 0.1328 | 3.0962 | 1288 | 0.6134 | 0.6405 | 0.6134 | 0.7832 | | 0.1328 | 3.1010 | 1290 | 0.5988 | 0.6691 | 0.5988 | 0.7738 | | 0.1328 | 3.1058 | 1292 | 0.6454 | 0.6157 | 0.6454 | 0.8034 | | 0.1328 | 3.1106 | 1294 | 0.7857 | 0.6860 | 0.7857 | 0.8864 | | 0.1328 | 3.1154 | 1296 | 0.9499 | 0.6445 | 0.9499 | 0.9746 | | 0.1328 | 3.1202 | 1298 | 0.9996 | 0.6335 | 0.9996 | 0.9998 | | 0.1328 | 3.125 | 1300 | 0.9984 | 0.6308 | 0.9984 | 0.9992 | | 0.1328 | 3.1298 | 1302 | 1.0028 | 0.6006 | 1.0028 | 1.0014 | | 0.1328 | 3.1346 | 1304 | 1.0791 | 0.5446 | 1.0791 | 1.0388 | | 0.1328 | 3.1394 | 1306 | 1.1265 | 0.4986 | 1.1265 | 1.0614 | | 0.1328 | 3.1442 | 1308 | 1.2048 | 0.5093 | 1.2048 | 1.0976 | | 0.1328 | 3.1490 | 1310 | 1.2150 | 0.5191 | 1.2150 | 1.1023 | | 0.1328 | 3.1538 | 1312 | 1.1440 | 0.5594 | 1.1440 | 1.0696 | | 0.1328 | 3.1587 | 1314 | 1.0118 | 0.6224 | 1.0118 | 1.0059 | | 0.1328 | 3.1635 | 1316 | 0.9057 | 0.6185 | 0.9057 | 0.9517 | | 0.1328 | 3.1683 | 1318 | 0.8059 | 0.5965 | 0.8059 | 0.8977 | | 0.1328 | 3.1731 | 1320 | 0.7910 | 0.5965 | 0.7910 | 0.8894 | | 0.1328 | 3.1779 | 1322 | 0.7988 | 0.5897 | 0.7988 | 0.8937 | | 0.1328 | 3.1827 | 1324 | 0.8407 | 0.6076 | 0.8407 | 0.9169 | | 0.1328 | 3.1875 | 1326 | 0.8363 | 0.5757 | 0.8363 | 0.9145 | | 0.1328 | 3.1923 | 1328 | 0.8535 | 0.6173 | 0.8535 | 0.9239 | | 0.1328 | 3.1971 | 1330 | 0.8704 | 0.6173 | 0.8704 | 0.9330 | | 0.1328 | 3.2019 | 1332 | 0.8574 | 0.5946 | 0.8574 | 0.9260 | | 0.1328 | 3.2067 | 1334 | 0.8219 | 0.5946 | 0.8219 | 0.9066 | | 0.1328 | 3.2115 | 1336 | 0.8227 | 0.6410 | 0.8227 | 0.9070 | | 0.1328 | 3.2163 | 1338 | 0.8793 | 0.6733 | 0.8793 | 0.9377 | | 0.1328 | 3.2212 | 1340 | 0.9906 | 0.63 | 0.9906 | 0.9953 | | 0.1328 | 3.2260 | 1342 | 1.0123 | 0.63 | 1.0123 | 1.0062 | | 0.1328 | 3.2308 | 1344 | 0.9845 | 0.6313 | 0.9845 | 0.9922 | | 0.1328 | 3.2356 | 1346 | 0.8946 | 0.6616 | 0.8946 | 0.9458 | | 0.1328 | 3.2404 | 1348 | 0.8701 | 0.6616 | 0.8701 | 0.9328 | | 0.1328 | 3.2452 | 1350 | 0.9444 | 0.6110 | 0.9444 | 0.9718 | | 0.1328 | 3.25 | 1352 | 0.9616 | 0.5920 | 0.9616 | 0.9806 | | 0.1328 | 3.2548 | 1354 | 0.9378 | 0.5984 | 0.9378 | 0.9684 | | 0.1328 | 3.2596 | 1356 | 0.9291 | 0.6202 | 0.9291 | 0.9639 | | 0.1328 | 3.2644 | 1358 | 0.9480 | 0.6269 | 0.9480 | 0.9736 | | 0.1328 | 3.2692 | 1360 | 1.0155 | 0.6489 | 1.0155 | 1.0077 | | 0.1328 | 3.2740 | 1362 | 1.0196 | 0.5984 | 1.0196 | 1.0098 | | 0.1328 | 3.2788 | 1364 | 0.9506 | 0.5920 | 0.9506 | 0.9750 | | 0.1328 | 3.2837 | 1366 | 0.8672 | 0.5885 | 0.8672 | 0.9313 | | 0.1328 | 3.2885 | 1368 | 0.8561 | 0.5650 | 0.8561 | 0.9253 | | 0.1328 | 3.2933 | 1370 | 0.8426 | 0.5946 | 0.8426 | 0.9179 | | 0.1328 | 3.2981 | 1372 | 0.7885 | 0.6217 | 0.7885 | 0.8879 | | 0.1328 | 3.3029 | 1374 | 0.7641 | 0.6022 | 0.7641 | 0.8741 | | 0.1328 | 3.3077 | 1376 | 0.7944 | 0.6022 | 0.7944 | 0.8913 | | 0.1328 | 3.3125 | 1378 | 0.8959 | 0.625 | 0.8959 | 0.9465 | | 0.1328 | 3.3173 | 1380 | 0.9581 | 0.6130 | 0.9581 | 0.9788 | | 0.1328 | 3.3221 | 1382 | 1.0482 | 0.6161 | 1.0482 | 1.0238 | | 0.1328 | 3.3269 | 1384 | 1.1249 | 0.6161 | 1.1249 | 1.0606 | | 0.1328 | 3.3317 | 1386 | 1.0989 | 0.5825 | 1.0989 | 1.0483 | | 0.1328 | 3.3365 | 1388 | 1.0191 | 0.5448 | 1.0192 | 1.0095 | | 0.1328 | 3.3413 | 1390 | 0.9738 | 0.5623 | 0.9738 | 0.9868 | | 0.1328 | 3.3462 | 1392 | 0.9642 | 0.5702 | 0.9642 | 0.9819 | | 0.1328 | 3.3510 | 1394 | 0.9272 | 0.6040 | 0.9272 | 0.9629 | | 0.1328 | 3.3558 | 1396 | 0.9353 | 0.6040 | 0.9353 | 0.9671 | | 0.1328 | 3.3606 | 1398 | 1.0376 | 0.6043 | 1.0376 | 1.0186 | | 0.1328 | 3.3654 | 1400 | 1.0876 | 0.6354 | 1.0876 | 1.0429 | | 0.1328 | 3.3702 | 1402 | 1.0361 | 0.6313 | 1.0361 | 1.0179 | | 0.1328 | 3.375 | 1404 | 0.9472 | 0.5898 | 0.9472 | 0.9732 | | 0.1328 | 3.3798 | 1406 | 0.8810 | 0.6190 | 0.8810 | 0.9386 | | 0.1328 | 3.3846 | 1408 | 0.8884 | 0.6117 | 0.8884 | 0.9426 | | 0.1328 | 3.3894 | 1410 | 0.9144 | 0.5831 | 0.9144 | 0.9562 | | 0.1328 | 3.3942 | 1412 | 0.9604 | 0.6240 | 0.9604 | 0.9800 | | 0.1328 | 3.3990 | 1414 | 0.9141 | 0.6173 | 0.9141 | 0.9561 | | 0.1328 | 3.4038 | 1416 | 0.9077 | 0.5798 | 0.9077 | 0.9527 | | 0.1328 | 3.4087 | 1418 | 0.8854 | 0.5798 | 0.8854 | 0.9410 | | 0.1328 | 3.4135 | 1420 | 0.9002 | 0.5798 | 0.9002 | 0.9488 | | 0.1328 | 3.4183 | 1422 | 0.9054 | 0.5798 | 0.9054 | 0.9515 | | 0.1328 | 3.4231 | 1424 | 0.9099 | 0.5798 | 0.9099 | 0.9539 | | 0.1328 | 3.4279 | 1426 | 0.9345 | 0.5616 | 0.9345 | 0.9667 | | 0.1328 | 3.4327 | 1428 | 0.9497 | 0.6055 | 0.9497 | 0.9745 | | 0.1328 | 3.4375 | 1430 | 0.9067 | 0.6209 | 0.9067 | 0.9522 | | 0.1328 | 3.4423 | 1432 | 0.8404 | 0.6 | 0.8404 | 0.9167 | | 0.1328 | 3.4471 | 1434 | 0.8875 | 0.5946 | 0.8875 | 0.9421 | | 0.1328 | 3.4519 | 1436 | 0.9503 | 0.5840 | 0.9503 | 0.9749 | | 0.1328 | 3.4567 | 1438 | 0.9724 | 0.6029 | 0.9724 | 0.9861 | | 0.1328 | 3.4615 | 1440 | 0.9278 | 0.5798 | 0.9278 | 0.9632 | | 0.1328 | 3.4663 | 1442 | 0.9253 | 0.5798 | 0.9253 | 0.9619 | | 0.1328 | 3.4712 | 1444 | 0.9332 | 0.5798 | 0.9332 | 0.9660 | | 0.1328 | 3.4760 | 1446 | 0.9451 | 0.5946 | 0.9451 | 0.9722 | | 0.1328 | 3.4808 | 1448 | 1.0340 | 0.5304 | 1.0340 | 1.0169 | | 0.1328 | 3.4856 | 1450 | 1.0812 | 0.5899 | 1.0812 | 1.0398 | | 0.1328 | 3.4904 | 1452 | 1.0087 | 0.6287 | 1.0087 | 1.0043 | | 0.1328 | 3.4952 | 1454 | 0.8725 | 0.5757 | 0.8725 | 0.9341 | | 0.1328 | 3.5 | 1456 | 0.8044 | 0.6093 | 0.8044 | 0.8969 | | 0.1328 | 3.5048 | 1458 | 0.7869 | 0.6093 | 0.7869 | 0.8871 | | 0.1328 | 3.5096 | 1460 | 0.7973 | 0.6093 | 0.7973 | 0.8929 | | 0.1328 | 3.5144 | 1462 | 0.8525 | 0.5946 | 0.8525 | 0.9233 | | 0.1328 | 3.5192 | 1464 | 0.8552 | 0.5946 | 0.8552 | 0.9247 | | 0.1328 | 3.5240 | 1466 | 0.9054 | 0.5681 | 0.9054 | 0.9515 | | 0.1328 | 3.5288 | 1468 | 1.0004 | 0.6150 | 1.0004 | 1.0002 | | 0.1328 | 3.5337 | 1470 | 1.0093 | 0.5861 | 1.0093 | 1.0046 | | 0.1328 | 3.5385 | 1472 | 0.9320 | 0.5681 | 0.9320 | 0.9654 | | 0.1328 | 3.5433 | 1474 | 0.8790 | 0.5681 | 0.8790 | 0.9376 | | 0.1328 | 3.5481 | 1476 | 0.8682 | 0.5946 | 0.8682 | 0.9318 | | 0.1328 | 3.5529 | 1478 | 0.9197 | 0.5921 | 0.9197 | 0.9590 | | 0.1328 | 3.5577 | 1480 | 1.0269 | 0.5678 | 1.0269 | 1.0134 | | 0.1328 | 3.5625 | 1482 | 1.0976 | 0.55 | 1.0976 | 1.0477 | | 0.1328 | 3.5673 | 1484 | 1.0818 | 0.5839 | 1.0818 | 1.0401 | | 0.1328 | 3.5721 | 1486 | 0.9774 | 0.5861 | 0.9774 | 0.9887 | | 0.1328 | 3.5769 | 1488 | 0.8323 | 0.5681 | 0.8323 | 0.9123 | | 0.1328 | 3.5817 | 1490 | 0.7672 | 0.6135 | 0.7672 | 0.8759 | | 0.1328 | 3.5865 | 1492 | 0.7520 | 0.6135 | 0.7520 | 0.8672 | | 0.1328 | 3.5913 | 1494 | 0.8028 | 0.5965 | 0.8028 | 0.8960 | | 0.1328 | 3.5962 | 1496 | 0.8325 | 0.6450 | 0.8325 | 0.9124 | | 0.1328 | 3.6010 | 1498 | 0.8953 | 0.6547 | 0.8953 | 0.9462 | | 0.0901 | 3.6058 | 1500 | 0.8808 | 0.6547 | 0.8808 | 0.9385 | | 0.0901 | 3.6106 | 1502 | 0.8131 | 0.6170 | 0.8131 | 0.9017 | | 0.0901 | 3.6154 | 1504 | 0.7638 | 0.6093 | 0.7638 | 0.8740 | | 0.0901 | 3.6202 | 1506 | 0.7518 | 0.6135 | 0.7518 | 0.8671 | | 0.0901 | 3.625 | 1508 | 0.8056 | 0.5681 | 0.8056 | 0.8975 | | 0.0901 | 3.6298 | 1510 | 0.9075 | 0.5681 | 0.9075 | 0.9526 | | 0.0901 | 3.6346 | 1512 | 1.0178 | 0.5244 | 1.0178 | 1.0089 | | 0.0901 | 3.6394 | 1514 | 1.0428 | 0.4864 | 1.0428 | 1.0212 | | 0.0901 | 3.6442 | 1516 | 1.0029 | 0.5299 | 1.0029 | 1.0015 | | 0.0901 | 3.6490 | 1518 | 1.0404 | 0.5244 | 1.0404 | 1.0200 | | 0.0901 | 3.6538 | 1520 | 1.0294 | 0.5570 | 1.0294 | 1.0146 | | 0.0901 | 3.6587 | 1522 | 0.9505 | 0.5673 | 0.9505 | 0.9750 | | 0.0901 | 3.6635 | 1524 | 0.8973 | 0.5808 | 0.8973 | 0.9473 | | 0.0901 | 3.6683 | 1526 | 0.8590 | 0.5726 | 0.8590 | 0.9268 | | 0.0901 | 3.6731 | 1528 | 0.8752 | 0.5943 | 0.8752 | 0.9355 | | 0.0901 | 3.6779 | 1530 | 0.9395 | 0.6308 | 0.9395 | 0.9693 | | 0.0901 | 3.6827 | 1532 | 0.9215 | 0.6633 | 0.9215 | 0.9600 | | 0.0901 | 3.6875 | 1534 | 0.8440 | 0.6170 | 0.8440 | 0.9187 | | 0.0901 | 3.6923 | 1536 | 0.7580 | 0.6337 | 0.7580 | 0.8707 | | 0.0901 | 3.6971 | 1538 | 0.7187 | 0.6384 | 0.7187 | 0.8478 | | 0.0901 | 3.7019 | 1540 | 0.7386 | 0.6135 | 0.7386 | 0.8594 | | 0.0901 | 3.7067 | 1542 | 0.8219 | 0.6316 | 0.8219 | 0.9066 | | 0.0901 | 3.7115 | 1544 | 0.9730 | 0.6019 | 0.9730 | 0.9864 | | 0.0901 | 3.7163 | 1546 | 1.1003 | 0.6092 | 1.1003 | 1.0489 | | 0.0901 | 3.7212 | 1548 | 1.1124 | 0.6143 | 1.1124 | 1.0547 | | 0.0901 | 3.7260 | 1550 | 1.0293 | 0.6183 | 1.0293 | 1.0146 | | 0.0901 | 3.7308 | 1552 | 0.9386 | 0.6240 | 0.9386 | 0.9688 | | 0.0901 | 3.7356 | 1554 | 0.8436 | 0.6529 | 0.8436 | 0.9185 | | 0.0901 | 3.7404 | 1556 | 0.7735 | 0.6316 | 0.7735 | 0.8795 | | 0.0901 | 3.7452 | 1558 | 0.7761 | 0.6316 | 0.7761 | 0.8810 | | 0.0901 | 3.75 | 1560 | 0.7680 | 0.6548 | 0.7680 | 0.8764 | | 0.0901 | 3.7548 | 1562 | 0.7948 | 0.6367 | 0.7948 | 0.8915 | | 0.0901 | 3.7596 | 1564 | 0.7802 | 0.6574 | 0.7802 | 0.8833 | | 0.0901 | 3.7644 | 1566 | 0.7450 | 0.6386 | 0.7450 | 0.8631 | | 0.0901 | 3.7692 | 1568 | 0.7657 | 0.6386 | 0.7657 | 0.8750 | | 0.0901 | 3.7740 | 1570 | 0.8123 | 0.6574 | 0.8123 | 0.9013 | | 0.0901 | 3.7788 | 1572 | 0.8107 | 0.6529 | 0.8107 | 0.9004 | | 0.0901 | 3.7837 | 1574 | 0.7938 | 0.6529 | 0.7938 | 0.8909 | | 0.0901 | 3.7885 | 1576 | 0.8210 | 0.6529 | 0.8210 | 0.9061 | | 0.0901 | 3.7933 | 1578 | 0.8360 | 0.6529 | 0.8360 | 0.9143 | | 0.0901 | 3.7981 | 1580 | 0.8334 | 0.6529 | 0.8334 | 0.9129 | | 0.0901 | 3.8029 | 1582 | 0.8138 | 0.6634 | 0.8138 | 0.9021 | | 0.0901 | 3.8077 | 1584 | 0.7845 | 0.6634 | 0.7845 | 0.8857 | | 0.0901 | 3.8125 | 1586 | 0.7890 | 0.6634 | 0.7890 | 0.8883 | | 0.0901 | 3.8173 | 1588 | 0.7543 | 0.6431 | 0.7543 | 0.8685 | | 0.0901 | 3.8221 | 1590 | 0.7199 | 0.6431 | 0.7199 | 0.8485 | | 0.0901 | 3.8269 | 1592 | 0.7307 | 0.6431 | 0.7307 | 0.8548 | | 0.0901 | 3.8317 | 1594 | 0.7604 | 0.6634 | 0.7604 | 0.8720 | | 0.0901 | 3.8365 | 1596 | 0.7625 | 0.6634 | 0.7625 | 0.8732 | | 0.0901 | 3.8413 | 1598 | 0.8011 | 0.6634 | 0.8011 | 0.8951 | | 0.0901 | 3.8462 | 1600 | 0.8168 | 0.6634 | 0.8168 | 0.9038 | | 0.0901 | 3.8510 | 1602 | 0.8119 | 0.6634 | 0.8119 | 0.9010 | | 0.0901 | 3.8558 | 1604 | 0.8333 | 0.6634 | 0.8333 | 0.9129 | | 0.0901 | 3.8606 | 1606 | 0.8540 | 0.6634 | 0.8540 | 0.9241 | | 0.0901 | 3.8654 | 1608 | 0.9272 | 0.6300 | 0.9272 | 0.9629 | | 0.0901 | 3.8702 | 1610 | 0.9120 | 0.6468 | 0.9120 | 0.9550 | | 0.0901 | 3.875 | 1612 | 0.8307 | 0.6634 | 0.8307 | 0.9114 | | 0.0901 | 3.8798 | 1614 | 0.7721 | 0.6634 | 0.7721 | 0.8787 | | 0.0901 | 3.8846 | 1616 | 0.7389 | 0.6768 | 0.7389 | 0.8596 | | 0.0901 | 3.8894 | 1618 | 0.7542 | 0.6634 | 0.7542 | 0.8685 | | 0.0901 | 3.8942 | 1620 | 0.8289 | 0.6468 | 0.8289 | 0.9104 | | 0.0901 | 3.8990 | 1622 | 0.9542 | 0.6461 | 0.9542 | 0.9769 | | 0.0901 | 3.9038 | 1624 | 0.9863 | 0.6445 | 0.9863 | 0.9931 | | 0.0901 | 3.9087 | 1626 | 0.9698 | 0.6554 | 0.9698 | 0.9848 | | 0.0901 | 3.9135 | 1628 | 0.9286 | 0.6574 | 0.9286 | 0.9636 | | 0.0901 | 3.9183 | 1630 | 0.9327 | 0.6574 | 0.9327 | 0.9657 | | 0.0901 | 3.9231 | 1632 | 0.8866 | 0.6538 | 0.8866 | 0.9416 | | 0.0901 | 3.9279 | 1634 | 0.8436 | 0.6548 | 0.8436 | 0.9185 | | 0.0901 | 3.9327 | 1636 | 0.8267 | 0.6217 | 0.8267 | 0.9092 | | 0.0901 | 3.9375 | 1638 | 0.8205 | 0.6022 | 0.8205 | 0.9058 | | 0.0901 | 3.9423 | 1640 | 0.8867 | 0.6574 | 0.8867 | 0.9417 | | 0.0901 | 3.9471 | 1642 | 0.9396 | 0.6574 | 0.9396 | 0.9693 | | 0.0901 | 3.9519 | 1644 | 0.9347 | 0.6574 | 0.9347 | 0.9668 | | 0.0901 | 3.9567 | 1646 | 0.8980 | 0.6574 | 0.8980 | 0.9476 | | 0.0901 | 3.9615 | 1648 | 0.8806 | 0.6341 | 0.8806 | 0.9384 | | 0.0901 | 3.9663 | 1650 | 0.8279 | 0.6136 | 0.8279 | 0.9099 | | 0.0901 | 3.9712 | 1652 | 0.7728 | 0.6337 | 0.7728 | 0.8791 | | 0.0901 | 3.9760 | 1654 | 0.7636 | 0.6337 | 0.7636 | 0.8739 | | 0.0901 | 3.9808 | 1656 | 0.7952 | 0.6337 | 0.7952 | 0.8918 | | 0.0901 | 3.9856 | 1658 | 0.8663 | 0.6619 | 0.8663 | 0.9308 | | 0.0901 | 3.9904 | 1660 | 0.9017 | 0.6650 | 0.9017 | 0.9496 | | 0.0901 | 3.9952 | 1662 | 0.8602 | 0.6341 | 0.8602 | 0.9275 | | 0.0901 | 4.0 | 1664 | 0.7805 | 0.6384 | 0.7805 | 0.8834 | | 0.0901 | 4.0048 | 1666 | 0.7399 | 0.6384 | 0.7399 | 0.8602 | | 0.0901 | 4.0096 | 1668 | 0.7162 | 0.6384 | 0.7162 | 0.8463 | | 0.0901 | 4.0144 | 1670 | 0.7524 | 0.6384 | 0.7524 | 0.8674 | | 0.0901 | 4.0192 | 1672 | 0.7836 | 0.6341 | 0.7836 | 0.8852 | | 0.0901 | 4.0240 | 1674 | 0.8513 | 0.6825 | 0.8513 | 0.9227 | | 0.0901 | 4.0288 | 1676 | 0.8733 | 0.6846 | 0.8733 | 0.9345 | | 0.0901 | 4.0337 | 1678 | 0.8809 | 0.6846 | 0.8809 | 0.9385 | | 0.0901 | 4.0385 | 1680 | 0.9007 | 0.6606 | 0.9007 | 0.9491 | | 0.0901 | 4.0433 | 1682 | 0.8622 | 0.6538 | 0.8622 | 0.9285 | | 0.0901 | 4.0481 | 1684 | 0.7782 | 0.675 | 0.7782 | 0.8822 | | 0.0901 | 4.0529 | 1686 | 0.7510 | 0.6431 | 0.7510 | 0.8666 | | 0.0901 | 4.0577 | 1688 | 0.7547 | 0.6634 | 0.7547 | 0.8687 | | 0.0901 | 4.0625 | 1690 | 0.7736 | 0.6634 | 0.7736 | 0.8795 | | 0.0901 | 4.0673 | 1692 | 0.8287 | 0.675 | 0.8287 | 0.9103 | | 0.0901 | 4.0721 | 1694 | 0.8824 | 0.6538 | 0.8824 | 0.9394 | | 0.0901 | 4.0769 | 1696 | 0.8838 | 0.6538 | 0.8838 | 0.9401 | | 0.0901 | 4.0817 | 1698 | 0.8207 | 0.6538 | 0.8207 | 0.9059 | | 0.0901 | 4.0865 | 1700 | 0.8022 | 0.6341 | 0.8022 | 0.8957 | | 0.0901 | 4.0913 | 1702 | 0.8088 | 0.6337 | 0.8088 | 0.8993 | | 0.0901 | 4.0962 | 1704 | 0.8408 | 0.6529 | 0.8408 | 0.9170 | | 0.0901 | 4.1010 | 1706 | 0.9321 | 0.6189 | 0.9321 | 0.9654 | | 0.0901 | 4.1058 | 1708 | 1.0066 | 0.6189 | 1.0066 | 1.0033 | | 0.0901 | 4.1106 | 1710 | 1.0497 | 0.5537 | 1.0497 | 1.0245 | | 0.0901 | 4.1154 | 1712 | 1.0813 | 0.5283 | 1.0813 | 1.0398 | | 0.0901 | 4.1202 | 1714 | 1.0500 | 0.5850 | 1.0500 | 1.0247 | | 0.0901 | 4.125 | 1716 | 1.0262 | 0.5991 | 1.0262 | 1.0130 | | 0.0901 | 4.1298 | 1718 | 1.0279 | 0.5991 | 1.0279 | 1.0139 | | 0.0901 | 4.1346 | 1720 | 0.9792 | 0.6390 | 0.9792 | 0.9895 | | 0.0901 | 4.1394 | 1722 | 0.9806 | 0.6390 | 0.9806 | 0.9903 | | 0.0901 | 4.1442 | 1724 | 0.9474 | 0.6390 | 0.9474 | 0.9733 | | 0.0901 | 4.1490 | 1726 | 0.9066 | 0.5946 | 0.9066 | 0.9522 | | 0.0901 | 4.1538 | 1728 | 0.9147 | 0.5946 | 0.9147 | 0.9564 | | 0.0901 | 4.1587 | 1730 | 0.9556 | 0.6189 | 0.9556 | 0.9775 | | 0.0901 | 4.1635 | 1732 | 1.0438 | 0.6547 | 1.0438 | 1.0217 | | 0.0901 | 4.1683 | 1734 | 1.0873 | 0.6547 | 1.0873 | 1.0427 | | 0.0901 | 4.1731 | 1736 | 1.0546 | 0.6547 | 1.0546 | 1.0269 | | 0.0901 | 4.1779 | 1738 | 1.0114 | 0.6547 | 1.0114 | 1.0057 | | 0.0901 | 4.1827 | 1740 | 1.0013 | 0.6077 | 1.0013 | 1.0006 | | 0.0901 | 4.1875 | 1742 | 1.0707 | 0.5720 | 1.0707 | 1.0348 | | 0.0901 | 4.1923 | 1744 | 1.1323 | 0.5378 | 1.1323 | 1.0641 | | 0.0901 | 4.1971 | 1746 | 1.2477 | 0.4740 | 1.2477 | 1.1170 | | 0.0901 | 4.2019 | 1748 | 1.3492 | 0.4375 | 1.3492 | 1.1615 | | 0.0901 | 4.2067 | 1750 | 1.3820 | 0.4492 | 1.3820 | 1.1756 | | 0.0901 | 4.2115 | 1752 | 1.3252 | 0.4159 | 1.3252 | 1.1512 | | 0.0901 | 4.2163 | 1754 | 1.2056 | 0.5317 | 1.2056 | 1.0980 | | 0.0901 | 4.2212 | 1756 | 1.0490 | 0.5350 | 1.0490 | 1.0242 | | 0.0901 | 4.2260 | 1758 | 0.9411 | 0.5248 | 0.9411 | 0.9701 | | 0.0901 | 4.2308 | 1760 | 0.8884 | 0.5870 | 0.8884 | 0.9425 | | 0.0901 | 4.2356 | 1762 | 0.9129 | 0.5645 | 0.9129 | 0.9555 | | 0.0901 | 4.2404 | 1764 | 0.9822 | 0.5720 | 0.9822 | 0.9910 | | 0.0901 | 4.2452 | 1766 | 1.0328 | 0.6010 | 1.0328 | 1.0162 | | 0.0901 | 4.25 | 1768 | 1.0844 | 0.5638 | 1.0844 | 1.0414 | | 0.0901 | 4.2548 | 1770 | 1.0626 | 0.5720 | 1.0626 | 1.0308 | | 0.0901 | 4.2596 | 1772 | 1.0970 | 0.5720 | 1.0970 | 1.0474 | | 0.0901 | 4.2644 | 1774 | 1.0790 | 0.5593 | 1.0790 | 1.0387 | | 0.0901 | 4.2692 | 1776 | 1.0273 | 0.55 | 1.0273 | 1.0135 | | 0.0901 | 4.2740 | 1778 | 0.9921 | 0.5248 | 0.9921 | 0.9961 | | 0.0901 | 4.2788 | 1780 | 0.9722 | 0.5248 | 0.9722 | 0.9860 | | 0.0901 | 4.2837 | 1782 | 1.0127 | 0.5093 | 1.0127 | 1.0063 | | 0.0901 | 4.2885 | 1784 | 1.0900 | 0.4941 | 1.0900 | 1.0440 | | 0.0901 | 4.2933 | 1786 | 1.1753 | 0.5 | 1.1753 | 1.0841 | | 0.0901 | 4.2981 | 1788 | 1.2248 | 0.4740 | 1.2248 | 1.1067 | | 0.0901 | 4.3029 | 1790 | 1.2037 | 0.4740 | 1.2037 | 1.0971 | | 0.0901 | 4.3077 | 1792 | 1.0996 | 0.4792 | 1.0996 | 1.0486 | | 0.0901 | 4.3125 | 1794 | 1.0102 | 0.5088 | 1.0102 | 1.0051 | | 0.0901 | 4.3173 | 1796 | 0.9989 | 0.5088 | 0.9989 | 0.9994 | | 0.0901 | 4.3221 | 1798 | 1.0215 | 0.5088 | 1.0215 | 1.0107 | | 0.0901 | 4.3269 | 1800 | 0.9912 | 0.55 | 0.9912 | 0.9956 | | 0.0901 | 4.3317 | 1802 | 0.9935 | 0.5733 | 0.9935 | 0.9968 | | 0.0901 | 4.3365 | 1804 | 1.0353 | 0.5817 | 1.0353 | 1.0175 | | 0.0901 | 4.3413 | 1806 | 1.0069 | 0.5955 | 1.0069 | 1.0034 | | 0.0901 | 4.3462 | 1808 | 0.9499 | 0.5921 | 0.9499 | 0.9746 | | 0.0901 | 4.3510 | 1810 | 0.8610 | 0.5714 | 0.8610 | 0.9279 | | 0.0901 | 4.3558 | 1812 | 0.7905 | 0.5714 | 0.7905 | 0.8891 | | 0.0901 | 4.3606 | 1814 | 0.7859 | 0.5714 | 0.7859 | 0.8865 | | 0.0901 | 4.3654 | 1816 | 0.8273 | 0.5714 | 0.8273 | 0.9095 | | 0.0901 | 4.3702 | 1818 | 0.9029 | 0.5921 | 0.9029 | 0.9502 | | 0.0901 | 4.375 | 1820 | 0.9183 | 0.5921 | 0.9183 | 0.9583 | | 0.0901 | 4.3798 | 1822 | 0.9506 | 0.5733 | 0.9506 | 0.9750 | | 0.0901 | 4.3846 | 1824 | 0.9507 | 0.5733 | 0.9507 | 0.9750 | | 0.0901 | 4.3894 | 1826 | 0.9846 | 0.5733 | 0.9846 | 0.9923 | | 0.0901 | 4.3942 | 1828 | 0.9498 | 0.55 | 0.9498 | 0.9746 | | 0.0901 | 4.3990 | 1830 | 0.9467 | 0.55 | 0.9467 | 0.9730 | | 0.0901 | 4.4038 | 1832 | 0.9432 | 0.5757 | 0.9432 | 0.9712 | | 0.0901 | 4.4087 | 1834 | 0.8837 | 0.5789 | 0.8837 | 0.9401 | | 0.0901 | 4.4135 | 1836 | 0.8481 | 0.5985 | 0.8481 | 0.9209 | | 0.0901 | 4.4183 | 1838 | 0.8433 | 0.5985 | 0.8433 | 0.9183 | | 0.0901 | 4.4231 | 1840 | 0.8864 | 0.5985 | 0.8864 | 0.9415 | | 0.0901 | 4.4279 | 1842 | 0.9643 | 0.55 | 0.9643 | 0.9820 | | 0.0901 | 4.4327 | 1844 | 1.0560 | 0.5817 | 1.0560 | 1.0276 | | 0.0901 | 4.4375 | 1846 | 1.1284 | 0.5671 | 1.1284 | 1.0623 | | 0.0901 | 4.4423 | 1848 | 1.1181 | 0.5104 | 1.1181 | 1.0574 | | 0.0901 | 4.4471 | 1850 | 1.1173 | 0.5104 | 1.1173 | 1.0570 | | 0.0901 | 4.4519 | 1852 | 1.0642 | 0.5043 | 1.0642 | 1.0316 | | 0.0901 | 4.4567 | 1854 | 1.0184 | 0.5188 | 1.0184 | 1.0092 | | 0.0901 | 4.4615 | 1856 | 0.9856 | 0.5354 | 0.9856 | 0.9928 | | 0.0901 | 4.4663 | 1858 | 0.9545 | 0.5527 | 0.9545 | 0.9770 | | 0.0901 | 4.4712 | 1860 | 0.8996 | 0.5527 | 0.8996 | 0.9485 | | 0.0901 | 4.4760 | 1862 | 0.8514 | 0.5527 | 0.8514 | 0.9227 | | 0.0901 | 4.4808 | 1864 | 0.8453 | 0.5676 | 0.8453 | 0.9194 | | 0.0901 | 4.4856 | 1866 | 0.8528 | 0.5676 | 0.8528 | 0.9235 | | 0.0901 | 4.4904 | 1868 | 0.9337 | 0.5840 | 0.9337 | 0.9663 | | 0.0901 | 4.4952 | 1870 | 1.0661 | 0.6530 | 1.0661 | 1.0325 | | 0.0901 | 4.5 | 1872 | 1.0850 | 0.6146 | 1.0850 | 1.0416 | | 0.0901 | 4.5048 | 1874 | 1.0344 | 0.5955 | 1.0344 | 1.0171 | | 0.0901 | 4.5096 | 1876 | 0.9686 | 0.5921 | 0.9686 | 0.9842 | | 0.0901 | 4.5144 | 1878 | 0.9618 | 0.5960 | 0.9618 | 0.9807 | | 0.0901 | 4.5192 | 1880 | 0.9573 | 0.5960 | 0.9573 | 0.9784 | | 0.0901 | 4.5240 | 1882 | 0.8716 | 0.5870 | 0.8716 | 0.9336 | | 0.0901 | 4.5288 | 1884 | 0.7996 | 0.5870 | 0.7996 | 0.8942 | | 0.0901 | 4.5337 | 1886 | 0.8029 | 0.5676 | 0.8029 | 0.8961 | | 0.0901 | 4.5385 | 1888 | 0.8598 | 0.5831 | 0.8598 | 0.9272 | | 0.0901 | 4.5433 | 1890 | 0.9264 | 0.6287 | 0.9264 | 0.9625 | | 0.0901 | 4.5481 | 1892 | 1.0139 | 0.6351 | 1.0139 | 1.0069 | | 0.0901 | 4.5529 | 1894 | 1.0519 | 0.6196 | 1.0519 | 1.0256 | | 0.0901 | 4.5577 | 1896 | 0.9984 | 0.6168 | 0.9984 | 0.9992 | | 0.0901 | 4.5625 | 1898 | 0.9138 | 0.6150 | 0.9138 | 0.9559 | | 0.0901 | 4.5673 | 1900 | 0.8624 | 0.5833 | 0.8624 | 0.9287 | | 0.0901 | 4.5721 | 1902 | 0.7916 | 0.6135 | 0.7916 | 0.8897 | | 0.0901 | 4.5769 | 1904 | 0.7855 | 0.6135 | 0.7855 | 0.8863 | | 0.0901 | 4.5817 | 1906 | 0.8188 | 0.6093 | 0.8188 | 0.9049 | | 0.0901 | 4.5865 | 1908 | 0.9023 | 0.5681 | 0.9023 | 0.9499 | | 0.0901 | 4.5913 | 1910 | 0.9734 | 0.5817 | 0.9734 | 0.9866 | | 0.0901 | 4.5962 | 1912 | 0.9918 | 0.6033 | 0.9918 | 0.9959 | | 0.0901 | 4.6010 | 1914 | 1.0021 | 0.6033 | 1.0021 | 1.0010 | | 0.0901 | 4.6058 | 1916 | 0.9421 | 0.5978 | 0.9422 | 0.9706 | | 0.0901 | 4.6106 | 1918 | 0.8429 | 0.6093 | 0.8429 | 0.9181 | | 0.0901 | 4.6154 | 1920 | 0.7986 | 0.6135 | 0.7986 | 0.8936 | | 0.0901 | 4.6202 | 1922 | 0.7842 | 0.6135 | 0.7842 | 0.8856 | | 0.0901 | 4.625 | 1924 | 0.8180 | 0.5897 | 0.8180 | 0.9045 | | 0.0901 | 4.6298 | 1926 | 0.9166 | 0.6287 | 0.9166 | 0.9574 | | 0.0901 | 4.6346 | 1928 | 0.9778 | 0.6718 | 0.9778 | 0.9889 | | 0.0901 | 4.6394 | 1930 | 0.9627 | 0.6547 | 0.9627 | 0.9812 | | 0.0901 | 4.6442 | 1932 | 0.8928 | 0.6409 | 0.8928 | 0.9449 | | 0.0901 | 4.6490 | 1934 | 0.7924 | 0.5933 | 0.7924 | 0.8902 | | 0.0901 | 4.6538 | 1936 | 0.7245 | 0.6135 | 0.7245 | 0.8512 | | 0.0901 | 4.6587 | 1938 | 0.7103 | 0.6135 | 0.7103 | 0.8428 | | 0.0901 | 4.6635 | 1940 | 0.7326 | 0.6135 | 0.7326 | 0.8559 | | 0.0901 | 4.6683 | 1942 | 0.7906 | 0.6135 | 0.7906 | 0.8891 | | 0.0901 | 4.6731 | 1944 | 0.8458 | 0.6362 | 0.8458 | 0.9197 | | 0.0901 | 4.6779 | 1946 | 0.8641 | 0.6316 | 0.8641 | 0.9295 | | 0.0901 | 4.6827 | 1948 | 0.8498 | 0.6135 | 0.8498 | 0.9218 | | 0.0901 | 4.6875 | 1950 | 0.8264 | 0.6135 | 0.8264 | 0.9091 | | 0.0901 | 4.6923 | 1952 | 0.8087 | 0.6135 | 0.8087 | 0.8993 | | 0.0901 | 4.6971 | 1954 | 0.7682 | 0.6135 | 0.7682 | 0.8765 | | 0.0901 | 4.7019 | 1956 | 0.7509 | 0.6135 | 0.7509 | 0.8665 | | 0.0901 | 4.7067 | 1958 | 0.7508 | 0.6135 | 0.7508 | 0.8665 | | 0.0901 | 4.7115 | 1960 | 0.8051 | 0.5897 | 0.8051 | 0.8973 | | 0.0901 | 4.7163 | 1962 | 0.8855 | 0.6170 | 0.8855 | 0.9410 | | 0.0901 | 4.7212 | 1964 | 0.9410 | 0.6221 | 0.9410 | 0.9701 | | 0.0901 | 4.7260 | 1966 | 0.9853 | 0.6409 | 0.9853 | 0.9926 | | 0.0901 | 4.7308 | 1968 | 0.9874 | 0.6240 | 0.9874 | 0.9937 | | 0.0901 | 4.7356 | 1970 | 0.9281 | 0.6316 | 0.9281 | 0.9634 | | 0.0901 | 4.7404 | 1972 | 0.8780 | 0.6093 | 0.8780 | 0.9370 | | 0.0901 | 4.7452 | 1974 | 0.8435 | 0.6093 | 0.8435 | 0.9184 | | 0.0901 | 4.75 | 1976 | 0.8253 | 0.6093 | 0.8253 | 0.9085 | | 0.0901 | 4.7548 | 1978 | 0.8538 | 0.5946 | 0.8538 | 0.9240 | | 0.0901 | 4.7596 | 1980 | 0.9164 | 0.5955 | 0.9164 | 0.9573 | | 0.0901 | 4.7644 | 1982 | 0.9844 | 0.5537 | 0.9844 | 0.9921 | | 0.0901 | 4.7692 | 1984 | 1.0546 | 0.5465 | 1.0546 | 1.0270 | | 0.0901 | 4.7740 | 1986 | 1.0867 | 0.5546 | 1.0867 | 1.0425 | | 0.0901 | 4.7788 | 1988 | 1.0238 | 0.5593 | 1.0238 | 1.0118 | | 0.0901 | 4.7837 | 1990 | 0.9324 | 0.6040 | 0.9324 | 0.9656 | | 0.0901 | 4.7885 | 1992 | 0.8485 | 0.6170 | 0.8485 | 0.9211 | | 0.0901 | 4.7933 | 1994 | 0.8111 | 0.6170 | 0.8111 | 0.9006 | | 0.0901 | 4.7981 | 1996 | 0.8055 | 0.6170 | 0.8055 | 0.8975 | | 0.0901 | 4.8029 | 1998 | 0.8310 | 0.6170 | 0.8310 | 0.9116 | | 0.0735 | 4.8077 | 2000 | 0.8579 | 0.6367 | 0.8579 | 0.9262 | | 0.0735 | 4.8125 | 2002 | 0.8458 | 0.6170 | 0.8458 | 0.9197 | | 0.0735 | 4.8173 | 2004 | 0.8644 | 0.6170 | 0.8644 | 0.9297 | | 0.0735 | 4.8221 | 2006 | 0.8462 | 0.6365 | 0.8462 | 0.9199 | | 0.0735 | 4.8269 | 2008 | 0.8344 | 0.6316 | 0.8344 | 0.9135 | | 0.0735 | 4.8317 | 2010 | 0.8362 | 0.6093 | 0.8362 | 0.9144 | | 0.0735 | 4.8365 | 2012 | 0.8986 | 0.6316 | 0.8986 | 0.9480 | | 0.0735 | 4.8413 | 2014 | 0.9874 | 0.5593 | 0.9874 | 0.9937 | | 0.0735 | 4.8462 | 2016 | 1.0190 | 0.5826 | 1.0190 | 1.0095 | | 0.0735 | 4.8510 | 2018 | 0.9678 | 0.5350 | 0.9678 | 0.9838 | | 0.0735 | 4.8558 | 2020 | 0.9418 | 0.5921 | 0.9418 | 0.9704 | | 0.0735 | 4.8606 | 2022 | 0.9503 | 0.6173 | 0.9503 | 0.9748 | | 0.0735 | 4.8654 | 2024 | 0.9384 | 0.6316 | 0.9384 | 0.9687 | | 0.0735 | 4.8702 | 2026 | 0.9629 | 0.6529 | 0.9629 | 0.9813 | | 0.0735 | 4.875 | 2028 | 0.9905 | 0.6150 | 0.9905 | 0.9952 | | 0.0735 | 4.8798 | 2030 | 0.9958 | 0.6150 | 0.9958 | 0.9979 | | 0.0735 | 4.8846 | 2032 | 1.0531 | 0.5968 | 1.0531 | 1.0262 | | 0.0735 | 4.8894 | 2034 | 1.0906 | 0.5826 | 1.0906 | 1.0443 | | 0.0735 | 4.8942 | 2036 | 1.0348 | 0.5968 | 1.0348 | 1.0172 | | 0.0735 | 4.8990 | 2038 | 0.9473 | 0.6732 | 0.9473 | 0.9733 | | 0.0735 | 4.9038 | 2040 | 0.8690 | 0.6316 | 0.8690 | 0.9322 | | 0.0735 | 4.9087 | 2042 | 0.7950 | 0.6093 | 0.7950 | 0.8917 | | 0.0735 | 4.9135 | 2044 | 0.7501 | 0.6093 | 0.7501 | 0.8661 | | 0.0735 | 4.9183 | 2046 | 0.7409 | 0.6093 | 0.7409 | 0.8608 | | 0.0735 | 4.9231 | 2048 | 0.7556 | 0.6093 | 0.7556 | 0.8693 | | 0.0735 | 4.9279 | 2050 | 0.7807 | 0.6093 | 0.7807 | 0.8835 | | 0.0735 | 4.9327 | 2052 | 0.8111 | 0.6093 | 0.8111 | 0.9006 | | 0.0735 | 4.9375 | 2054 | 0.8924 | 0.6069 | 0.8924 | 0.9447 | | 0.0735 | 4.9423 | 2056 | 0.9663 | 0.5817 | 0.9663 | 0.9830 | | 0.0735 | 4.9471 | 2058 | 1.0571 | 0.5512 | 1.0571 | 1.0281 | | 0.0735 | 4.9519 | 2060 | 1.0664 | 0.5422 | 1.0664 | 1.0327 | | 0.0735 | 4.9567 | 2062 | 1.0406 | 0.4924 | 1.0406 | 1.0201 | | 0.0735 | 4.9615 | 2064 | 1.0346 | 0.4498 | 1.0346 | 1.0172 | | 0.0735 | 4.9663 | 2066 | 0.9911 | 0.4656 | 0.9911 | 0.9955 | | 0.0735 | 4.9712 | 2068 | 0.9523 | 0.4813 | 0.9523 | 0.9759 | | 0.0735 | 4.9760 | 2070 | 0.9020 | 0.5681 | 0.9020 | 0.9497 | | 0.0735 | 4.9808 | 2072 | 0.8393 | 0.5617 | 0.8393 | 0.9161 | | 0.0735 | 4.9856 | 2074 | 0.8043 | 0.5617 | 0.8043 | 0.8968 | | 0.0735 | 4.9904 | 2076 | 0.8128 | 0.5833 | 0.8128 | 0.9015 | | 0.0735 | 4.9952 | 2078 | 0.8793 | 0.6229 | 0.8793 | 0.9377 | | 0.0735 | 5.0 | 2080 | 0.9342 | 0.6287 | 0.9342 | 0.9665 | | 0.0735 | 5.0048 | 2082 | 0.9245 | 0.6287 | 0.9245 | 0.9615 | | 0.0735 | 5.0096 | 2084 | 0.8773 | 0.6097 | 0.8773 | 0.9366 | | 0.0735 | 5.0144 | 2086 | 0.8257 | 0.5833 | 0.8257 | 0.9087 | | 0.0735 | 5.0192 | 2088 | 0.7747 | 0.5833 | 0.7747 | 0.8801 | | 0.0735 | 5.0240 | 2090 | 0.7883 | 0.5833 | 0.7883 | 0.8879 | | 0.0735 | 5.0288 | 2092 | 0.8522 | 0.5833 | 0.8522 | 0.9232 | | 0.0735 | 5.0337 | 2094 | 0.9425 | 0.6509 | 0.9425 | 0.9708 | | 0.0735 | 5.0385 | 2096 | 0.9680 | 0.6509 | 0.9680 | 0.9839 | | 0.0735 | 5.0433 | 2098 | 0.9210 | 0.6069 | 0.9210 | 0.9597 | | 0.0735 | 5.0481 | 2100 | 0.8673 | 0.5833 | 0.8673 | 0.9313 | | 0.0735 | 5.0529 | 2102 | 0.8179 | 0.5833 | 0.8179 | 0.9044 | | 0.0735 | 5.0577 | 2104 | 0.7896 | 0.5833 | 0.7896 | 0.8886 | | 0.0735 | 5.0625 | 2106 | 0.7598 | 0.5833 | 0.7598 | 0.8717 | | 0.0735 | 5.0673 | 2108 | 0.7640 | 0.5870 | 0.7640 | 0.8740 | | 0.0735 | 5.0721 | 2110 | 0.7904 | 0.5833 | 0.7904 | 0.8890 | | 0.0735 | 5.0769 | 2112 | 0.8261 | 0.5833 | 0.8261 | 0.9089 | | 0.0735 | 5.0817 | 2114 | 0.8597 | 0.5833 | 0.8597 | 0.9272 | | 0.0735 | 5.0865 | 2116 | 0.8801 | 0.6069 | 0.8801 | 0.9381 | | 0.0735 | 5.0913 | 2118 | 0.8814 | 0.6069 | 0.8814 | 0.9388 | | 0.0735 | 5.0962 | 2120 | 0.8479 | 0.5833 | 0.8479 | 0.9208 | | 0.0735 | 5.1010 | 2122 | 0.8481 | 0.5833 | 0.8481 | 0.9209 | | 0.0735 | 5.1058 | 2124 | 0.8734 | 0.5833 | 0.8734 | 0.9346 | | 0.0735 | 5.1106 | 2126 | 0.9532 | 0.5921 | 0.9532 | 0.9763 | | 0.0735 | 5.1154 | 2128 | 0.9994 | 0.5645 | 0.9994 | 0.9997 | | 0.0735 | 5.1202 | 2130 | 0.9965 | 0.5645 | 0.9965 | 0.9983 | | 0.0735 | 5.125 | 2132 | 1.0175 | 0.5645 | 1.0175 | 1.0087 | | 0.0735 | 5.1298 | 2134 | 1.0646 | 0.5545 | 1.0646 | 1.0318 | | 0.0735 | 5.1346 | 2136 | 1.0609 | 0.5545 | 1.0609 | 1.0300 | | 0.0735 | 5.1394 | 2138 | 1.0235 | 0.5041 | 1.0235 | 1.0117 | | 0.0735 | 5.1442 | 2140 | 1.0066 | 0.5188 | 1.0066 | 1.0033 | | 0.0735 | 5.1490 | 2142 | 0.9841 | 0.5921 | 0.9841 | 0.9920 | | 0.0735 | 5.1538 | 2144 | 1.0130 | 0.5808 | 1.0130 | 1.0065 | | 0.0735 | 5.1587 | 2146 | 1.0891 | 0.5357 | 1.0891 | 1.0436 | | 0.0735 | 5.1635 | 2148 | 1.1317 | 0.5597 | 1.1317 | 1.0638 | | 0.0735 | 5.1683 | 2150 | 1.0954 | 0.5225 | 1.0954 | 1.0466 | | 0.0735 | 5.1731 | 2152 | 1.0572 | 0.5277 | 1.0573 | 1.0282 | | 0.0735 | 5.1779 | 2154 | 0.9758 | 0.4924 | 0.9758 | 0.9878 | | 0.0735 | 5.1827 | 2156 | 0.9260 | 0.5681 | 0.9260 | 0.9623 | | 0.0735 | 5.1875 | 2158 | 0.9089 | 0.5681 | 0.9089 | 0.9534 | | 0.0735 | 5.1923 | 2160 | 0.9310 | 0.5921 | 0.9310 | 0.9649 | | 0.0735 | 5.1971 | 2162 | 0.9782 | 0.5773 | 0.9782 | 0.9891 | | 0.0735 | 5.2019 | 2164 | 0.9872 | 0.5773 | 0.9872 | 0.9936 | | 0.0735 | 5.2067 | 2166 | 1.0176 | 0.6232 | 1.0176 | 1.0088 | | 0.0735 | 5.2115 | 2168 | 1.0005 | 0.6718 | 1.0005 | 1.0002 | | 0.0735 | 5.2163 | 2170 | 0.9283 | 0.6229 | 0.9283 | 0.9635 | | 0.0735 | 5.2212 | 2172 | 0.8638 | 0.6548 | 0.8638 | 0.9294 | | 0.0735 | 5.2260 | 2174 | 0.8611 | 0.6410 | 0.8611 | 0.9279 | | 0.0735 | 5.2308 | 2176 | 0.8365 | 0.6384 | 0.8365 | 0.9146 | | 0.0735 | 5.2356 | 2178 | 0.8169 | 0.6384 | 0.8169 | 0.9038 | | 0.0735 | 5.2404 | 2180 | 0.8098 | 0.6384 | 0.8098 | 0.8999 | | 0.0735 | 5.2452 | 2182 | 0.8242 | 0.6239 | 0.8242 | 0.9078 | | 0.0735 | 5.25 | 2184 | 0.8565 | 0.6410 | 0.8565 | 0.9255 | | 0.0735 | 5.2548 | 2186 | 0.8638 | 0.6410 | 0.8638 | 0.9294 | | 0.0735 | 5.2596 | 2188 | 0.8890 | 0.6410 | 0.8890 | 0.9429 | | 0.0735 | 5.2644 | 2190 | 0.8652 | 0.6410 | 0.8652 | 0.9301 | | 0.0735 | 5.2692 | 2192 | 0.8371 | 0.6410 | 0.8371 | 0.9149 | | 0.0735 | 5.2740 | 2194 | 0.8298 | 0.6410 | 0.8298 | 0.9109 | | 0.0735 | 5.2788 | 2196 | 0.8374 | 0.6410 | 0.8374 | 0.9151 | | 0.0735 | 5.2837 | 2198 | 0.8654 | 0.6410 | 0.8654 | 0.9302 | | 0.0735 | 5.2885 | 2200 | 0.8694 | 0.6410 | 0.8694 | 0.9324 | | 0.0735 | 5.2933 | 2202 | 0.8478 | 0.6410 | 0.8478 | 0.9207 | | 0.0735 | 5.2981 | 2204 | 0.8264 | 0.6548 | 0.8264 | 0.9091 | | 0.0735 | 5.3029 | 2206 | 0.8248 | 0.6548 | 0.8248 | 0.9082 | | 0.0735 | 5.3077 | 2208 | 0.8435 | 0.6548 | 0.8435 | 0.9184 | | 0.0735 | 5.3125 | 2210 | 0.9193 | 0.652 | 0.9193 | 0.9588 | | 0.0735 | 5.3173 | 2212 | 0.9510 | 0.6475 | 0.9510 | 0.9752 | | 0.0735 | 5.3221 | 2214 | 0.9366 | 0.652 | 0.9366 | 0.9678 | | 0.0735 | 5.3269 | 2216 | 0.8936 | 0.6616 | 0.8936 | 0.9453 | | 0.0735 | 5.3317 | 2218 | 0.8351 | 0.6884 | 0.8351 | 0.9138 | | 0.0735 | 5.3365 | 2220 | 0.8174 | 0.6686 | 0.8174 | 0.9041 | | 0.0735 | 5.3413 | 2222 | 0.7766 | 0.6568 | 0.7766 | 0.8813 | | 0.0735 | 5.3462 | 2224 | 0.7266 | 0.6568 | 0.7266 | 0.8524 | | 0.0735 | 5.3510 | 2226 | 0.7265 | 0.6568 | 0.7265 | 0.8524 | | 0.0735 | 5.3558 | 2228 | 0.7731 | 0.6686 | 0.7731 | 0.8793 | | 0.0735 | 5.3606 | 2230 | 0.8385 | 0.6548 | 0.8385 | 0.9157 | | 0.0735 | 5.3654 | 2232 | 0.8757 | 0.6410 | 0.8757 | 0.9358 | | 0.0735 | 5.3702 | 2234 | 0.8627 | 0.6410 | 0.8627 | 0.9288 | | 0.0735 | 5.375 | 2236 | 0.8540 | 0.6410 | 0.8540 | 0.9241 | | 0.0735 | 5.3798 | 2238 | 0.8779 | 0.6410 | 0.8779 | 0.9370 | | 0.0735 | 5.3846 | 2240 | 0.9264 | 0.6410 | 0.9264 | 0.9625 | | 0.0735 | 5.3894 | 2242 | 0.9034 | 0.6410 | 0.9034 | 0.9505 | | 0.0735 | 5.3942 | 2244 | 0.8699 | 0.6410 | 0.8699 | 0.9327 | | 0.0735 | 5.3990 | 2246 | 0.8586 | 0.6410 | 0.8586 | 0.9266 | | 0.0735 | 5.4038 | 2248 | 0.8694 | 0.6410 | 0.8694 | 0.9324 | | 0.0735 | 5.4087 | 2250 | 0.8539 | 0.6410 | 0.8539 | 0.9241 | | 0.0735 | 5.4135 | 2252 | 0.7852 | 0.6686 | 0.7852 | 0.8861 | | 0.0735 | 5.4183 | 2254 | 0.6767 | 0.6405 | 0.6767 | 0.8226 | | 0.0735 | 5.4231 | 2256 | 0.6185 | 0.6549 | 0.6185 | 0.7865 | | 0.0735 | 5.4279 | 2258 | 0.6032 | 0.6549 | 0.6032 | 0.7767 | | 0.0735 | 5.4327 | 2260 | 0.6178 | 0.6405 | 0.6178 | 0.7860 | | 0.0735 | 5.4375 | 2262 | 0.6686 | 0.6405 | 0.6686 | 0.8177 | | 0.0735 | 5.4423 | 2264 | 0.7392 | 0.6528 | 0.7392 | 0.8598 | | 0.0735 | 5.4471 | 2266 | 0.8106 | 0.6548 | 0.8106 | 0.9004 | | 0.0735 | 5.4519 | 2268 | 0.8618 | 0.6410 | 0.8618 | 0.9283 | | 0.0735 | 5.4567 | 2270 | 0.8930 | 0.6410 | 0.8930 | 0.9450 | | 0.0735 | 5.4615 | 2272 | 0.8730 | 0.6410 | 0.8730 | 0.9343 | | 0.0735 | 5.4663 | 2274 | 0.8788 | 0.6410 | 0.8788 | 0.9374 | | 0.0735 | 5.4712 | 2276 | 0.8599 | 0.6410 | 0.8599 | 0.9273 | | 0.0735 | 5.4760 | 2278 | 0.8318 | 0.6458 | 0.8318 | 0.9120 | | 0.0735 | 5.4808 | 2280 | 0.7844 | 0.6384 | 0.7844 | 0.8857 | | 0.0735 | 5.4856 | 2282 | 0.7894 | 0.6384 | 0.7894 | 0.8885 | | 0.0735 | 5.4904 | 2284 | 0.8264 | 0.6599 | 0.8264 | 0.9090 | | 0.0735 | 5.4952 | 2286 | 0.8756 | 0.6410 | 0.8756 | 0.9357 | | 0.0735 | 5.5 | 2288 | 0.8730 | 0.6410 | 0.8730 | 0.9343 | | 0.0735 | 5.5048 | 2290 | 0.8340 | 0.6599 | 0.8340 | 0.9132 | | 0.0735 | 5.5096 | 2292 | 0.7918 | 0.6599 | 0.7918 | 0.8899 | | 0.0735 | 5.5144 | 2294 | 0.7779 | 0.6599 | 0.7779 | 0.8820 | | 0.0735 | 5.5192 | 2296 | 0.8076 | 0.6599 | 0.8076 | 0.8987 | | 0.0735 | 5.5240 | 2298 | 0.8724 | 0.6014 | 0.8724 | 0.9340 | | 0.0735 | 5.5288 | 2300 | 0.9146 | 0.5616 | 0.9146 | 0.9564 | | 0.0735 | 5.5337 | 2302 | 0.9007 | 0.6014 | 0.9007 | 0.9491 | | 0.0735 | 5.5385 | 2304 | 0.8645 | 0.6410 | 0.8645 | 0.9298 | | 0.0735 | 5.5433 | 2306 | 0.8280 | 0.6458 | 0.8280 | 0.9100 | | 0.0735 | 5.5481 | 2308 | 0.8228 | 0.6458 | 0.8228 | 0.9071 | | 0.0735 | 5.5529 | 2310 | 0.8568 | 0.6458 | 0.8568 | 0.9256 | | 0.0735 | 5.5577 | 2312 | 0.8837 | 0.6410 | 0.8837 | 0.9401 | | 0.0735 | 5.5625 | 2314 | 0.9506 | 0.6229 | 0.9506 | 0.9750 | | 0.0735 | 5.5673 | 2316 | 0.9666 | 0.5840 | 0.9666 | 0.9832 | | 0.0735 | 5.5721 | 2318 | 0.9501 | 0.6229 | 0.9501 | 0.9747 | | 0.0735 | 5.5769 | 2320 | 0.8898 | 0.6410 | 0.8898 | 0.9433 | | 0.0735 | 5.5817 | 2322 | 0.8079 | 0.6239 | 0.8079 | 0.8988 | | 0.0735 | 5.5865 | 2324 | 0.7801 | 0.6384 | 0.7801 | 0.8832 | | 0.0735 | 5.5913 | 2326 | 0.7566 | 0.6384 | 0.7566 | 0.8698 | | 0.0735 | 5.5962 | 2328 | 0.7793 | 0.6384 | 0.7793 | 0.8828 | | 0.0735 | 5.6010 | 2330 | 0.8388 | 0.6239 | 0.8388 | 0.9159 | | 0.0735 | 5.6058 | 2332 | 0.9278 | 0.5789 | 0.9278 | 0.9632 | | 0.0735 | 5.6106 | 2334 | 1.0090 | 0.4928 | 1.0090 | 1.0045 | | 0.0735 | 5.6154 | 2336 | 1.0183 | 0.4783 | 1.0183 | 1.0091 | | 0.0735 | 5.6202 | 2338 | 0.9879 | 0.4656 | 0.9879 | 0.9939 | | 0.0735 | 5.625 | 2340 | 1.0010 | 0.4656 | 1.0010 | 1.0005 | | 0.0735 | 5.6298 | 2342 | 1.0261 | 0.4771 | 1.0261 | 1.0129 | | 0.0735 | 5.6346 | 2344 | 1.0474 | 0.5030 | 1.0474 | 1.0234 | | 0.0735 | 5.6394 | 2346 | 1.0240 | 0.5030 | 1.0240 | 1.0119 | | 0.0735 | 5.6442 | 2348 | 0.9796 | 0.5740 | 0.9796 | 0.9898 | | 0.0735 | 5.6490 | 2350 | 0.9598 | 0.5740 | 0.9598 | 0.9797 | | 0.0735 | 5.6538 | 2352 | 0.9410 | 0.6437 | 0.9410 | 0.9700 | | 0.0735 | 5.6587 | 2354 | 0.8831 | 0.6362 | 0.8831 | 0.9397 | | 0.0735 | 5.6635 | 2356 | 0.8685 | 0.6362 | 0.8685 | 0.9319 | | 0.0735 | 5.6683 | 2358 | 0.8368 | 0.6599 | 0.8368 | 0.9148 | | 0.0735 | 5.6731 | 2360 | 0.7907 | 0.6599 | 0.7907 | 0.8892 | | 0.0735 | 5.6779 | 2362 | 0.7571 | 0.6384 | 0.7571 | 0.8701 | | 0.0735 | 5.6827 | 2364 | 0.7339 | 0.6384 | 0.7339 | 0.8567 | | 0.0735 | 5.6875 | 2366 | 0.7457 | 0.6384 | 0.7457 | 0.8636 | | 0.0735 | 5.6923 | 2368 | 0.7458 | 0.6384 | 0.7458 | 0.8636 | | 0.0735 | 5.6971 | 2370 | 0.7611 | 0.6384 | 0.7611 | 0.8724 | | 0.0735 | 5.7019 | 2372 | 0.8265 | 0.6362 | 0.8265 | 0.9091 | | 0.0735 | 5.7067 | 2374 | 0.9114 | 0.6216 | 0.9114 | 0.9547 | | 0.0735 | 5.7115 | 2376 | 0.9795 | 0.5798 | 0.9795 | 0.9897 | | 0.0735 | 5.7163 | 2378 | 1.0389 | 0.5528 | 1.0389 | 1.0193 | | 0.0735 | 5.7212 | 2380 | 1.0512 | 0.5528 | 1.0512 | 1.0253 | | 0.0735 | 5.7260 | 2382 | 1.0348 | 0.5528 | 1.0348 | 1.0173 | | 0.0735 | 5.7308 | 2384 | 0.9994 | 0.5271 | 0.9994 | 0.9997 | | 0.0735 | 5.7356 | 2386 | 0.9740 | 0.5271 | 0.9740 | 0.9869 | | 0.0735 | 5.7404 | 2388 | 0.9957 | 0.5112 | 0.9957 | 0.9978 | | 0.0735 | 5.7452 | 2390 | 0.9971 | 0.4952 | 0.9971 | 0.9986 | | 0.0735 | 5.75 | 2392 | 0.9930 | 0.5112 | 0.9930 | 0.9965 | | 0.0735 | 5.7548 | 2394 | 1.0308 | 0.5219 | 1.0308 | 1.0153 | | 0.0735 | 5.7596 | 2396 | 1.1159 | 0.5030 | 1.1159 | 1.0564 | | 0.0735 | 5.7644 | 2398 | 1.1797 | 0.4600 | 1.1797 | 1.0861 | | 0.0735 | 5.7692 | 2400 | 1.1792 | 0.4600 | 1.1792 | 1.0859 | | 0.0735 | 5.7740 | 2402 | 1.1290 | 0.5 | 1.1290 | 1.0626 | | 0.0735 | 5.7788 | 2404 | 1.0469 | 0.5740 | 1.0469 | 1.0232 | | 0.0735 | 5.7837 | 2406 | 0.9800 | 0.5528 | 0.9800 | 0.9900 | | 0.0735 | 5.7885 | 2408 | 0.9705 | 0.5960 | 0.9705 | 0.9851 | | 0.0735 | 5.7933 | 2410 | 0.9979 | 0.5271 | 0.9979 | 0.9990 | | 0.0735 | 5.7981 | 2412 | 1.0401 | 0.5350 | 1.0401 | 1.0199 | | 0.0735 | 5.8029 | 2414 | 1.0749 | 0.5350 | 1.0749 | 1.0368 | | 0.0735 | 5.8077 | 2416 | 1.1362 | 0.4072 | 1.1362 | 1.0659 | | 0.0735 | 5.8125 | 2418 | 1.2176 | 0.4456 | 1.2176 | 1.1034 | | 0.0735 | 5.8173 | 2420 | 1.2714 | 0.3959 | 1.2714 | 1.1276 | | 0.0735 | 5.8221 | 2422 | 1.2513 | 0.3950 | 1.2513 | 1.1186 | | 0.0735 | 5.8269 | 2424 | 1.1875 | 0.3919 | 1.1875 | 1.0897 | | 0.0735 | 5.8317 | 2426 | 1.1385 | 0.4340 | 1.1385 | 1.0670 | | 0.0735 | 5.8365 | 2428 | 1.1082 | 0.4771 | 1.1082 | 1.0527 | | 0.0735 | 5.8413 | 2430 | 1.0968 | 0.4924 | 1.0968 | 1.0473 | | 0.0735 | 5.8462 | 2432 | 1.0687 | 0.5350 | 1.0687 | 1.0338 | | 0.0735 | 5.8510 | 2434 | 1.0680 | 0.5350 | 1.0680 | 1.0334 | | 0.0735 | 5.8558 | 2436 | 1.0548 | 0.4924 | 1.0548 | 1.0271 | | 0.0735 | 5.8606 | 2438 | 1.0786 | 0.4924 | 1.0786 | 1.0386 | | 0.0735 | 5.8654 | 2440 | 1.0789 | 0.4924 | 1.0789 | 1.0387 | | 0.0735 | 5.8702 | 2442 | 1.0986 | 0.4924 | 1.0986 | 1.0482 | | 0.0735 | 5.875 | 2444 | 1.1160 | 0.4495 | 1.1160 | 1.0564 | | 0.0735 | 5.8798 | 2446 | 1.1447 | 0.4495 | 1.1447 | 1.0699 | | 0.0735 | 5.8846 | 2448 | 1.1270 | 0.4495 | 1.1270 | 1.0616 | | 0.0735 | 5.8894 | 2450 | 1.1110 | 0.4924 | 1.1110 | 1.0540 | | 0.0735 | 5.8942 | 2452 | 1.0915 | 0.4924 | 1.0915 | 1.0448 | | 0.0735 | 5.8990 | 2454 | 1.0740 | 0.5076 | 1.0740 | 1.0363 | | 0.0735 | 5.9038 | 2456 | 1.0719 | 0.4924 | 1.0719 | 1.0353 | | 0.0735 | 5.9087 | 2458 | 1.0531 | 0.5076 | 1.0531 | 1.0262 | | 0.0735 | 5.9135 | 2460 | 1.0736 | 0.4495 | 1.0736 | 1.0361 | | 0.0735 | 5.9183 | 2462 | 1.1007 | 0.4495 | 1.1007 | 1.0492 | | 0.0735 | 5.9231 | 2464 | 1.0989 | 0.4495 | 1.0989 | 1.0483 | | 0.0735 | 5.9279 | 2466 | 1.0590 | 0.55 | 1.0590 | 1.0291 | | 0.0735 | 5.9327 | 2468 | 1.0171 | 0.5528 | 1.0171 | 1.0085 | | 0.0735 | 5.9375 | 2470 | 0.9841 | 0.5528 | 0.9841 | 0.9920 | | 0.0735 | 5.9423 | 2472 | 0.9896 | 0.5354 | 0.9896 | 0.9948 | | 0.0735 | 5.9471 | 2474 | 1.0442 | 0.5426 | 1.0442 | 1.0218 | | 0.0735 | 5.9519 | 2476 | 1.0709 | 0.5145 | 1.0709 | 1.0348 | | 0.0735 | 5.9567 | 2478 | 1.0651 | 0.5145 | 1.0651 | 1.0320 | | 0.0735 | 5.9615 | 2480 | 1.0777 | 0.5145 | 1.0777 | 1.0381 | | 0.0735 | 5.9663 | 2482 | 1.0501 | 0.4941 | 1.0501 | 1.0247 | | 0.0735 | 5.9712 | 2484 | 0.9949 | 0.5093 | 0.9949 | 0.9975 | | 0.0735 | 5.9760 | 2486 | 0.9529 | 0.5271 | 0.9529 | 0.9761 | | 0.0735 | 5.9808 | 2488 | 0.9292 | 0.5556 | 0.9292 | 0.9640 | | 0.0735 | 5.9856 | 2490 | 0.9220 | 0.5556 | 0.9220 | 0.9602 | | 0.0735 | 5.9904 | 2492 | 0.9507 | 0.5556 | 0.9507 | 0.9750 | | 0.0735 | 5.9952 | 2494 | 0.9993 | 0.5216 | 0.9993 | 0.9997 | | 0.0735 | 6.0 | 2496 | 1.0153 | 0.5216 | 1.0153 | 1.0076 | | 0.0735 | 6.0048 | 2498 | 0.9912 | 0.5798 | 0.9912 | 0.9956 | | 0.0602 | 6.0096 | 2500 | 0.9915 | 0.5124 | 0.9915 | 0.9958 | | 0.0602 | 6.0144 | 2502 | 1.0032 | 0.5124 | 1.0032 | 1.0016 | | 0.0602 | 6.0192 | 2504 | 1.0158 | 0.4824 | 1.0158 | 1.0079 | | 0.0602 | 6.0240 | 2506 | 1.0097 | 0.4824 | 1.0097 | 1.0048 | | 0.0602 | 6.0288 | 2508 | 0.9868 | 0.4824 | 0.9868 | 0.9934 | | 0.0602 | 6.0337 | 2510 | 1.0021 | 0.4824 | 1.0021 | 1.0010 | | 0.0602 | 6.0385 | 2512 | 1.0415 | 0.4656 | 1.0415 | 1.0206 | | 0.0602 | 6.0433 | 2514 | 1.0724 | 0.4649 | 1.0724 | 1.0356 | | 0.0602 | 6.0481 | 2516 | 1.0528 | 0.4656 | 1.0528 | 1.0261 | | 0.0602 | 6.0529 | 2518 | 1.0358 | 0.5093 | 1.0358 | 1.0177 | | 0.0602 | 6.0577 | 2520 | 1.0421 | 0.5378 | 1.0421 | 1.0208 | | 0.0602 | 6.0625 | 2522 | 1.0625 | 0.5354 | 1.0625 | 1.0308 | | 0.0602 | 6.0673 | 2524 | 1.0904 | 0.4941 | 1.0904 | 1.0442 | | 0.0602 | 6.0721 | 2526 | 1.0640 | 0.5354 | 1.0640 | 1.0315 | | 0.0602 | 6.0769 | 2528 | 0.9901 | 0.5378 | 0.9901 | 0.9950 | | 0.0602 | 6.0817 | 2530 | 0.8970 | 0.6362 | 0.8970 | 0.9471 | | 0.0602 | 6.0865 | 2532 | 0.8512 | 0.6135 | 0.8512 | 0.9226 | | 0.0602 | 6.0913 | 2534 | 0.8564 | 0.6135 | 0.8564 | 0.9254 | | 0.0602 | 6.0962 | 2536 | 0.8888 | 0.6362 | 0.8888 | 0.9428 | | 0.0602 | 6.1010 | 2538 | 0.9262 | 0.6362 | 0.9262 | 0.9624 | | 0.0602 | 6.1058 | 2540 | 0.9463 | 0.5946 | 0.9463 | 0.9728 | | 0.0602 | 6.1106 | 2542 | 0.9721 | 0.5946 | 0.9721 | 0.9860 | | 0.0602 | 6.1154 | 2544 | 0.9532 | 0.5946 | 0.9532 | 0.9763 | | 0.0602 | 6.1202 | 2546 | 0.9416 | 0.5946 | 0.9416 | 0.9704 | | 0.0602 | 6.125 | 2548 | 0.9155 | 0.6362 | 0.9155 | 0.9568 | | 0.0602 | 6.1298 | 2550 | 0.8781 | 0.6362 | 0.8781 | 0.9370 | | 0.0602 | 6.1346 | 2552 | 0.8435 | 0.6135 | 0.8435 | 0.9184 | | 0.0602 | 6.1394 | 2554 | 0.8354 | 0.6135 | 0.8354 | 0.9140 | | 0.0602 | 6.1442 | 2556 | 0.8358 | 0.6135 | 0.8358 | 0.9142 | | 0.0602 | 6.1490 | 2558 | 0.8524 | 0.6362 | 0.8524 | 0.9233 | | 0.0602 | 6.1538 | 2560 | 0.8542 | 0.6599 | 0.8542 | 0.9242 | | 0.0602 | 6.1587 | 2562 | 0.8778 | 0.6362 | 0.8778 | 0.9369 | | 0.0602 | 6.1635 | 2564 | 0.9091 | 0.6362 | 0.9091 | 0.9535 | | 0.0602 | 6.1683 | 2566 | 0.9201 | 0.6362 | 0.9201 | 0.9592 | | 0.0602 | 6.1731 | 2568 | 0.9427 | 0.6216 | 0.9427 | 0.9709 | | 0.0602 | 6.1779 | 2570 | 0.9304 | 0.6216 | 0.9304 | 0.9646 | | 0.0602 | 6.1827 | 2572 | 0.9051 | 0.6362 | 0.9051 | 0.9514 | | 0.0602 | 6.1875 | 2574 | 0.8729 | 0.6135 | 0.8729 | 0.9343 | | 0.0602 | 6.1923 | 2576 | 0.8751 | 0.6135 | 0.8751 | 0.9355 | | 0.0602 | 6.1971 | 2578 | 0.8727 | 0.6135 | 0.8727 | 0.9342 | | 0.0602 | 6.2019 | 2580 | 0.9003 | 0.5985 | 0.9003 | 0.9488 | | 0.0602 | 6.2067 | 2582 | 0.9229 | 0.6216 | 0.9229 | 0.9607 | | 0.0602 | 6.2115 | 2584 | 0.9590 | 0.6216 | 0.9590 | 0.9793 | | 0.0602 | 6.2163 | 2586 | 0.9464 | 0.6216 | 0.9464 | 0.9729 | | 0.0602 | 6.2212 | 2588 | 0.9386 | 0.6216 | 0.9386 | 0.9688 | | 0.0602 | 6.2260 | 2590 | 0.9416 | 0.6216 | 0.9416 | 0.9704 | | 0.0602 | 6.2308 | 2592 | 0.9553 | 0.6216 | 0.9553 | 0.9774 | | 0.0602 | 6.2356 | 2594 | 0.9956 | 0.5378 | 0.9956 | 0.9978 | | 0.0602 | 6.2404 | 2596 | 1.0428 | 0.5216 | 1.0428 | 1.0212 | | 0.0602 | 6.2452 | 2598 | 1.0470 | 0.5216 | 1.0470 | 1.0232 | | 0.0602 | 6.25 | 2600 | 1.0010 | 0.5378 | 1.0010 | 1.0005 | | 0.0602 | 6.2548 | 2602 | 0.9424 | 0.5798 | 0.9424 | 0.9708 | | 0.0602 | 6.2596 | 2604 | 0.9334 | 0.5556 | 0.9334 | 0.9661 | | 0.0602 | 6.2644 | 2606 | 0.9250 | 0.5556 | 0.9250 | 0.9618 | | 0.0602 | 6.2692 | 2608 | 0.9078 | 0.5556 | 0.9078 | 0.9528 | | 0.0602 | 6.2740 | 2610 | 0.9194 | 0.5556 | 0.9194 | 0.9589 | | 0.0602 | 6.2788 | 2612 | 0.9463 | 0.5556 | 0.9463 | 0.9728 | | 0.0602 | 6.2837 | 2614 | 0.9347 | 0.5556 | 0.9347 | 0.9668 | | 0.0602 | 6.2885 | 2616 | 0.9460 | 0.5556 | 0.9460 | 0.9726 | | 0.0602 | 6.2933 | 2618 | 0.9786 | 0.5556 | 0.9786 | 0.9893 | | 0.0602 | 6.2981 | 2620 | 1.0022 | 0.5616 | 1.0022 | 1.0011 | | 0.0602 | 6.3029 | 2622 | 0.9925 | 0.5616 | 0.9925 | 0.9963 | | 0.0602 | 6.3077 | 2624 | 0.9960 | 0.5616 | 0.9960 | 0.9980 | | 0.0602 | 6.3125 | 2626 | 1.0093 | 0.5616 | 1.0093 | 1.0047 | | 0.0602 | 6.3173 | 2628 | 0.9783 | 0.5381 | 0.9783 | 0.9891 | | 0.0602 | 6.3221 | 2630 | 0.9643 | 0.5556 | 0.9643 | 0.9820 | | 0.0602 | 6.3269 | 2632 | 0.9298 | 0.5708 | 0.9298 | 0.9643 | | 0.0602 | 6.3317 | 2634 | 0.9009 | 0.6135 | 0.9009 | 0.9491 | | 0.0602 | 6.3365 | 2636 | 0.8952 | 0.6135 | 0.8952 | 0.9462 | | 0.0602 | 6.3413 | 2638 | 0.9199 | 0.5985 | 0.9199 | 0.9591 | | 0.0602 | 6.3462 | 2640 | 0.9751 | 0.5556 | 0.9751 | 0.9875 | | 0.0602 | 6.3510 | 2642 | 1.0050 | 0.5616 | 1.0050 | 1.0025 | | 0.0602 | 6.3558 | 2644 | 0.9964 | 0.5616 | 0.9964 | 0.9982 | | 0.0602 | 6.3606 | 2646 | 0.9544 | 0.5757 | 0.9544 | 0.9770 | | 0.0602 | 6.3654 | 2648 | 0.8909 | 0.6362 | 0.8909 | 0.9439 | | 0.0602 | 6.3702 | 2650 | 0.8707 | 0.6384 | 0.8707 | 0.9331 | | 0.0602 | 6.375 | 2652 | 0.8644 | 0.6384 | 0.8644 | 0.9297 | | 0.0602 | 6.3798 | 2654 | 0.8545 | 0.6385 | 0.8545 | 0.9244 | | 0.0602 | 6.3846 | 2656 | 0.8725 | 0.6385 | 0.8725 | 0.9341 | | 0.0602 | 6.3894 | 2658 | 0.8954 | 0.6385 | 0.8954 | 0.9463 | | 0.0602 | 6.3942 | 2660 | 0.9119 | 0.6154 | 0.9119 | 0.9549 | | 0.0602 | 6.3990 | 2662 | 0.9521 | 0.5757 | 0.9521 | 0.9758 | | 0.0602 | 6.4038 | 2664 | 0.9677 | 0.5757 | 0.9677 | 0.9837 | | 0.0602 | 6.4087 | 2666 | 0.9597 | 0.5757 | 0.9597 | 0.9796 | | 0.0602 | 6.4135 | 2668 | 0.9235 | 0.6362 | 0.9235 | 0.9610 | | 0.0602 | 6.4183 | 2670 | 0.9303 | 0.6362 | 0.9303 | 0.9645 | | 0.0602 | 6.4231 | 2672 | 0.9308 | 0.6362 | 0.9308 | 0.9648 | | 0.0602 | 6.4279 | 2674 | 0.9553 | 0.5946 | 0.9553 | 0.9774 | | 0.0602 | 6.4327 | 2676 | 0.9577 | 0.5946 | 0.9577 | 0.9786 | | 0.0602 | 6.4375 | 2678 | 0.9388 | 0.5946 | 0.9388 | 0.9689 | | 0.0602 | 6.4423 | 2680 | 0.9145 | 0.5946 | 0.9145 | 0.9563 | | 0.0602 | 6.4471 | 2682 | 0.9010 | 0.6362 | 0.9010 | 0.9492 | | 0.0602 | 6.4519 | 2684 | 0.9281 | 0.5946 | 0.9281 | 0.9634 | | 0.0602 | 6.4567 | 2686 | 0.9234 | 0.5946 | 0.9234 | 0.9610 | | 0.0602 | 6.4615 | 2688 | 0.9402 | 0.5946 | 0.9402 | 0.9697 | | 0.0602 | 6.4663 | 2690 | 0.9810 | 0.5757 | 0.9810 | 0.9904 | | 0.0602 | 6.4712 | 2692 | 1.0313 | 0.5216 | 1.0313 | 1.0155 | | 0.0602 | 6.4760 | 2694 | 1.0421 | 0.5295 | 1.0421 | 1.0208 | | 0.0602 | 6.4808 | 2696 | 1.0124 | 0.5216 | 1.0124 | 1.0062 | | 0.0602 | 6.4856 | 2698 | 0.9811 | 0.5757 | 0.9811 | 0.9905 | | 0.0602 | 6.4904 | 2700 | 0.9354 | 0.5757 | 0.9354 | 0.9672 | | 0.0602 | 6.4952 | 2702 | 0.8698 | 0.6599 | 0.8698 | 0.9326 | | 0.0602 | 6.5 | 2704 | 0.8043 | 0.6384 | 0.8043 | 0.8968 | | 0.0602 | 6.5048 | 2706 | 0.7850 | 0.6384 | 0.7850 | 0.8860 | | 0.0602 | 6.5096 | 2708 | 0.7823 | 0.6384 | 0.7823 | 0.8845 | | 0.0602 | 6.5144 | 2710 | 0.8001 | 0.6385 | 0.8001 | 0.8945 | | 0.0602 | 6.5192 | 2712 | 0.8334 | 0.6429 | 0.8334 | 0.9129 | | 0.0602 | 6.5240 | 2714 | 0.8606 | 0.6429 | 0.8606 | 0.9277 | | 0.0602 | 6.5288 | 2716 | 0.8743 | 0.6429 | 0.8743 | 0.9350 | | 0.0602 | 6.5337 | 2718 | 0.8590 | 0.6429 | 0.8590 | 0.9268 | | 0.0602 | 6.5385 | 2720 | 0.8328 | 0.6599 | 0.8328 | 0.9126 | | 0.0602 | 6.5433 | 2722 | 0.8316 | 0.6599 | 0.8316 | 0.9119 | | 0.0602 | 6.5481 | 2724 | 0.8213 | 0.6599 | 0.8213 | 0.9062 | | 0.0602 | 6.5529 | 2726 | 0.8006 | 0.6599 | 0.8006 | 0.8948 | | 0.0602 | 6.5577 | 2728 | 0.8107 | 0.6599 | 0.8107 | 0.9004 | | 0.0602 | 6.5625 | 2730 | 0.8260 | 0.6599 | 0.8260 | 0.9089 | | 0.0602 | 6.5673 | 2732 | 0.8175 | 0.6599 | 0.8175 | 0.9042 | | 0.0602 | 6.5721 | 2734 | 0.8239 | 0.6599 | 0.8239 | 0.9077 | | 0.0602 | 6.5769 | 2736 | 0.8203 | 0.6384 | 0.8203 | 0.9057 | | 0.0602 | 6.5817 | 2738 | 0.8200 | 0.6384 | 0.8200 | 0.9055 | | 0.0602 | 6.5865 | 2740 | 0.8133 | 0.6384 | 0.8133 | 0.9018 | | 0.0602 | 6.5913 | 2742 | 0.8145 | 0.6384 | 0.8145 | 0.9025 | | 0.0602 | 6.5962 | 2744 | 0.7936 | 0.6384 | 0.7936 | 0.8908 | | 0.0602 | 6.6010 | 2746 | 0.7816 | 0.6384 | 0.7816 | 0.8841 | | 0.0602 | 6.6058 | 2748 | 0.7613 | 0.6528 | 0.7613 | 0.8725 | | 0.0602 | 6.6106 | 2750 | 0.7495 | 0.6528 | 0.7495 | 0.8657 | | 0.0602 | 6.6154 | 2752 | 0.7519 | 0.6528 | 0.7519 | 0.8671 | | 0.0602 | 6.6202 | 2754 | 0.7840 | 0.6384 | 0.7840 | 0.8854 | | 0.0602 | 6.625 | 2756 | 0.8360 | 0.6599 | 0.8360 | 0.9144 | | 0.0602 | 6.6298 | 2758 | 0.8695 | 0.6599 | 0.8695 | 0.9325 | | 0.0602 | 6.6346 | 2760 | 0.8686 | 0.6599 | 0.8686 | 0.9320 | | 0.0602 | 6.6394 | 2762 | 0.8366 | 0.6384 | 0.8366 | 0.9146 | | 0.0602 | 6.6442 | 2764 | 0.8028 | 0.6384 | 0.8028 | 0.8960 | | 0.0602 | 6.6490 | 2766 | 0.7777 | 0.6528 | 0.7777 | 0.8819 | | 0.0602 | 6.6538 | 2768 | 0.7812 | 0.6528 | 0.7812 | 0.8838 | | 0.0602 | 6.6587 | 2770 | 0.8059 | 0.6384 | 0.8059 | 0.8977 | | 0.0602 | 6.6635 | 2772 | 0.8401 | 0.6384 | 0.8401 | 0.9166 | | 0.0602 | 6.6683 | 2774 | 0.9127 | 0.6410 | 0.9127 | 0.9553 | | 0.0602 | 6.6731 | 2776 | 0.9527 | 0.6209 | 0.9527 | 0.9761 | | 0.0602 | 6.6779 | 2778 | 0.9465 | 0.6209 | 0.9465 | 0.9729 | | 0.0602 | 6.6827 | 2780 | 0.9264 | 0.6410 | 0.9264 | 0.9625 | | 0.0602 | 6.6875 | 2782 | 0.8821 | 0.6548 | 0.8821 | 0.9392 | | 0.0602 | 6.6923 | 2784 | 0.8244 | 0.6384 | 0.8244 | 0.9079 | | 0.0602 | 6.6971 | 2786 | 0.7724 | 0.6528 | 0.7724 | 0.8788 | | 0.0602 | 6.7019 | 2788 | 0.7433 | 0.6528 | 0.7433 | 0.8622 | | 0.0602 | 6.7067 | 2790 | 0.7417 | 0.6528 | 0.7417 | 0.8612 | | 0.0602 | 6.7115 | 2792 | 0.7666 | 0.6528 | 0.7666 | 0.8756 | | 0.0602 | 6.7163 | 2794 | 0.8013 | 0.6528 | 0.8013 | 0.8952 | | 0.0602 | 6.7212 | 2796 | 0.8670 | 0.6548 | 0.8670 | 0.9311 | | 0.0602 | 6.7260 | 2798 | 0.9580 | 0.6548 | 0.9580 | 0.9788 | | 0.0602 | 6.7308 | 2800 | 0.9965 | 0.6410 | 0.9965 | 0.9983 | | 0.0602 | 6.7356 | 2802 | 1.0026 | 0.6410 | 1.0026 | 1.0013 | | 0.0602 | 6.7404 | 2804 | 0.9859 | 0.6410 | 0.9859 | 0.9929 | | 0.0602 | 6.7452 | 2806 | 0.9446 | 0.6410 | 0.9446 | 0.9719 | | 0.0602 | 6.75 | 2808 | 0.9224 | 0.6410 | 0.9224 | 0.9604 | | 0.0602 | 6.7548 | 2810 | 0.8862 | 0.6337 | 0.8862 | 0.9414 | | 0.0602 | 6.7596 | 2812 | 0.8571 | 0.6384 | 0.8571 | 0.9258 | | 0.0602 | 6.7644 | 2814 | 0.8362 | 0.6384 | 0.8362 | 0.9144 | | 0.0602 | 6.7692 | 2816 | 0.8384 | 0.6384 | 0.8384 | 0.9156 | | 0.0602 | 6.7740 | 2818 | 0.8262 | 0.6384 | 0.8262 | 0.9090 | | 0.0602 | 6.7788 | 2820 | 0.7969 | 0.6384 | 0.7969 | 0.8927 | | 0.0602 | 6.7837 | 2822 | 0.7662 | 0.6384 | 0.7662 | 0.8753 | | 0.0602 | 6.7885 | 2824 | 0.7574 | 0.6384 | 0.7574 | 0.8703 | | 0.0602 | 6.7933 | 2826 | 0.7571 | 0.6528 | 0.7571 | 0.8701 | | 0.0602 | 6.7981 | 2828 | 0.7850 | 0.6384 | 0.7850 | 0.8860 | | 0.0602 | 6.8029 | 2830 | 0.8127 | 0.6384 | 0.8127 | 0.9015 | | 0.0602 | 6.8077 | 2832 | 0.8034 | 0.6384 | 0.8034 | 0.8963 | | 0.0602 | 6.8125 | 2834 | 0.7871 | 0.6384 | 0.7871 | 0.8872 | | 0.0602 | 6.8173 | 2836 | 0.7684 | 0.6384 | 0.7684 | 0.8766 | | 0.0602 | 6.8221 | 2838 | 0.7763 | 0.6384 | 0.7763 | 0.8811 | | 0.0602 | 6.8269 | 2840 | 0.7712 | 0.6384 | 0.7712 | 0.8782 | | 0.0602 | 6.8317 | 2842 | 0.7716 | 0.6384 | 0.7716 | 0.8784 | | 0.0602 | 6.8365 | 2844 | 0.7877 | 0.6384 | 0.7877 | 0.8875 | | 0.0602 | 6.8413 | 2846 | 0.8194 | 0.6599 | 0.8194 | 0.9052 | | 0.0602 | 6.8462 | 2848 | 0.8349 | 0.6599 | 0.8349 | 0.9137 | | 0.0602 | 6.8510 | 2850 | 0.8245 | 0.6599 | 0.8245 | 0.9080 | | 0.0602 | 6.8558 | 2852 | 0.8060 | 0.6599 | 0.8060 | 0.8978 | | 0.0602 | 6.8606 | 2854 | 0.7857 | 0.6384 | 0.7857 | 0.8864 | | 0.0602 | 6.8654 | 2856 | 0.7814 | 0.6384 | 0.7814 | 0.8839 | | 0.0602 | 6.8702 | 2858 | 0.8046 | 0.6384 | 0.8046 | 0.8970 | | 0.0602 | 6.875 | 2860 | 0.8291 | 0.6384 | 0.8291 | 0.9105 | | 0.0602 | 6.8798 | 2862 | 0.8614 | 0.6599 | 0.8614 | 0.9281 | | 0.0602 | 6.8846 | 2864 | 0.9015 | 0.6599 | 0.9015 | 0.9495 | | 0.0602 | 6.8894 | 2866 | 0.9094 | 0.6599 | 0.9094 | 0.9536 | | 0.0602 | 6.8942 | 2868 | 0.9332 | 0.6053 | 0.9332 | 0.9660 | | 0.0602 | 6.8990 | 2870 | 0.9443 | 0.6014 | 0.9443 | 0.9718 | | 0.0602 | 6.9038 | 2872 | 0.9357 | 0.6154 | 0.9357 | 0.9673 | | 0.0602 | 6.9087 | 2874 | 0.9193 | 0.6599 | 0.9193 | 0.9588 | | 0.0602 | 6.9135 | 2876 | 0.8932 | 0.6599 | 0.8932 | 0.9451 | | 0.0602 | 6.9183 | 2878 | 0.8638 | 0.6384 | 0.8638 | 0.9294 | | 0.0602 | 6.9231 | 2880 | 0.8381 | 0.6384 | 0.8381 | 0.9155 | | 0.0602 | 6.9279 | 2882 | 0.8435 | 0.6384 | 0.8435 | 0.9184 | | 0.0602 | 6.9327 | 2884 | 0.8375 | 0.6384 | 0.8375 | 0.9151 | | 0.0602 | 6.9375 | 2886 | 0.8277 | 0.6384 | 0.8277 | 0.9098 | | 0.0602 | 6.9423 | 2888 | 0.8290 | 0.6384 | 0.8290 | 0.9105 | | 0.0602 | 6.9471 | 2890 | 0.8221 | 0.6384 | 0.8221 | 0.9067 | | 0.0602 | 6.9519 | 2892 | 0.8357 | 0.6384 | 0.8357 | 0.9142 | | 0.0602 | 6.9567 | 2894 | 0.8584 | 0.6384 | 0.8584 | 0.9265 | | 0.0602 | 6.9615 | 2896 | 0.8669 | 0.6384 | 0.8669 | 0.9311 | | 0.0602 | 6.9663 | 2898 | 0.8742 | 0.6384 | 0.8742 | 0.9350 | | 0.0602 | 6.9712 | 2900 | 0.8708 | 0.6384 | 0.8708 | 0.9332 | | 0.0602 | 6.9760 | 2902 | 0.8709 | 0.6384 | 0.8709 | 0.9332 | | 0.0602 | 6.9808 | 2904 | 0.8694 | 0.6384 | 0.8694 | 0.9324 | | 0.0602 | 6.9856 | 2906 | 0.8551 | 0.6384 | 0.8551 | 0.9247 | | 0.0602 | 6.9904 | 2908 | 0.8634 | 0.6384 | 0.8634 | 0.9292 | | 0.0602 | 6.9952 | 2910 | 0.8815 | 0.6384 | 0.8815 | 0.9389 | | 0.0602 | 7.0 | 2912 | 0.8991 | 0.6599 | 0.8991 | 0.9482 | | 0.0602 | 7.0048 | 2914 | 0.8892 | 0.6599 | 0.8892 | 0.9430 | | 0.0602 | 7.0096 | 2916 | 0.8764 | 0.6599 | 0.8764 | 0.9361 | | 0.0602 | 7.0144 | 2918 | 0.8844 | 0.6599 | 0.8844 | 0.9404 | | 0.0602 | 7.0192 | 2920 | 0.8745 | 0.6599 | 0.8745 | 0.9352 | | 0.0602 | 7.0240 | 2922 | 0.8562 | 0.6599 | 0.8562 | 0.9253 | | 0.0602 | 7.0288 | 2924 | 0.8372 | 0.6599 | 0.8372 | 0.9150 | | 0.0602 | 7.0337 | 2926 | 0.8378 | 0.6599 | 0.8378 | 0.9153 | | 0.0602 | 7.0385 | 2928 | 0.8382 | 0.6599 | 0.8382 | 0.9155 | | 0.0602 | 7.0433 | 2930 | 0.8577 | 0.6599 | 0.8577 | 0.9261 | | 0.0602 | 7.0481 | 2932 | 0.8847 | 0.6362 | 0.8847 | 0.9406 | | 0.0602 | 7.0529 | 2934 | 0.9274 | 0.6111 | 0.9274 | 0.9630 | | 0.0602 | 7.0577 | 2936 | 0.9773 | 0.4649 | 0.9773 | 0.9886 | | 0.0602 | 7.0625 | 2938 | 0.9874 | 0.4649 | 0.9874 | 0.9937 | | 0.0602 | 7.0673 | 2940 | 0.9916 | 0.4649 | 0.9916 | 0.9958 | | 0.0602 | 7.0721 | 2942 | 0.9596 | 0.4656 | 0.9596 | 0.9796 | | 0.0602 | 7.0769 | 2944 | 0.9128 | 0.6111 | 0.9128 | 0.9554 | | 0.0602 | 7.0817 | 2946 | 0.8586 | 0.6135 | 0.8586 | 0.9266 | | 0.0602 | 7.0865 | 2948 | 0.8024 | 0.6384 | 0.8024 | 0.8958 | | 0.0602 | 7.0913 | 2950 | 0.7800 | 0.6159 | 0.7800 | 0.8832 | | 0.0602 | 7.0962 | 2952 | 0.7837 | 0.6384 | 0.7837 | 0.8852 | | 0.0602 | 7.1010 | 2954 | 0.8022 | 0.6384 | 0.8022 | 0.8956 | | 0.0602 | 7.1058 | 2956 | 0.8438 | 0.6384 | 0.8438 | 0.9186 | | 0.0602 | 7.1106 | 2958 | 0.8845 | 0.6599 | 0.8845 | 0.9405 | | 0.0602 | 7.1154 | 2960 | 0.9000 | 0.6599 | 0.9000 | 0.9487 | | 0.0602 | 7.1202 | 2962 | 0.8988 | 0.6599 | 0.8988 | 0.9481 | | 0.0602 | 7.125 | 2964 | 0.8824 | 0.6599 | 0.8824 | 0.9394 | | 0.0602 | 7.1298 | 2966 | 0.8529 | 0.6599 | 0.8529 | 0.9236 | | 0.0602 | 7.1346 | 2968 | 0.8381 | 0.6599 | 0.8381 | 0.9155 | | 0.0602 | 7.1394 | 2970 | 0.8227 | 0.6384 | 0.8227 | 0.9070 | | 0.0602 | 7.1442 | 2972 | 0.8217 | 0.6384 | 0.8217 | 0.9065 | | 0.0602 | 7.1490 | 2974 | 0.8422 | 0.6599 | 0.8422 | 0.9177 | | 0.0602 | 7.1538 | 2976 | 0.8817 | 0.6548 | 0.8817 | 0.9390 | | 0.0602 | 7.1587 | 2978 | 0.9277 | 0.6316 | 0.9277 | 0.9632 | | 0.0602 | 7.1635 | 2980 | 0.9718 | 0.6173 | 0.9718 | 0.9858 | | 0.0602 | 7.1683 | 2982 | 1.0071 | 0.5921 | 1.0071 | 1.0035 | | 0.0602 | 7.1731 | 2984 | 1.0006 | 0.6173 | 1.0006 | 1.0003 | | 0.0602 | 7.1779 | 2986 | 1.0061 | 0.6173 | 1.0061 | 1.0030 | | 0.0602 | 7.1827 | 2988 | 0.9869 | 0.6173 | 0.9869 | 0.9934 | | 0.0602 | 7.1875 | 2990 | 0.9627 | 0.6173 | 0.9627 | 0.9812 | | 0.0602 | 7.1923 | 2992 | 0.9622 | 0.6173 | 0.9622 | 0.9809 | | 0.0602 | 7.1971 | 2994 | 0.9878 | 0.6173 | 0.9878 | 0.9939 | | 0.0602 | 7.2019 | 2996 | 1.0154 | 0.6173 | 1.0154 | 1.0077 | | 0.0602 | 7.2067 | 2998 | 1.0154 | 0.6173 | 1.0154 | 1.0077 | | 0.0507 | 7.2115 | 3000 | 0.9779 | 0.6173 | 0.9779 | 0.9889 | | 0.0507 | 7.2163 | 3002 | 0.9504 | 0.6410 | 0.9504 | 0.9749 | | 0.0507 | 7.2212 | 3004 | 0.9461 | 0.6548 | 0.9461 | 0.9727 | | 0.0507 | 7.2260 | 3006 | 0.9589 | 0.6410 | 0.9589 | 0.9792 | | 0.0507 | 7.2308 | 3008 | 0.9440 | 0.6548 | 0.9440 | 0.9716 | | 0.0507 | 7.2356 | 3010 | 0.9127 | 0.6548 | 0.9127 | 0.9553 | | 0.0507 | 7.2404 | 3012 | 0.9025 | 0.6548 | 0.9025 | 0.9500 | | 0.0507 | 7.2452 | 3014 | 0.9184 | 0.6548 | 0.9184 | 0.9583 | | 0.0507 | 7.25 | 3016 | 0.9602 | 0.6173 | 0.9602 | 0.9799 | | 0.0507 | 7.2548 | 3018 | 1.0170 | 0.5188 | 1.0170 | 1.0085 | | 0.0507 | 7.2596 | 3020 | 1.0624 | 0.5593 | 1.0624 | 1.0307 | | 0.0507 | 7.2644 | 3022 | 1.1119 | 0.5795 | 1.1119 | 1.0545 | | 0.0507 | 7.2692 | 3024 | 1.1546 | 0.4523 | 1.1546 | 1.0745 | | 0.0507 | 7.2740 | 3026 | 1.1502 | 0.4523 | 1.1502 | 1.0725 | | 0.0507 | 7.2788 | 3028 | 1.1135 | 0.5199 | 1.1135 | 1.0552 | | 0.0507 | 7.2837 | 3030 | 1.0461 | 0.5593 | 1.0461 | 1.0228 | | 0.0507 | 7.2885 | 3032 | 0.9631 | 0.5921 | 0.9631 | 0.9814 | | 0.0507 | 7.2933 | 3034 | 0.8952 | 0.6548 | 0.8952 | 0.9461 | | 0.0507 | 7.2981 | 3036 | 0.8464 | 0.6599 | 0.8464 | 0.9200 | | 0.0507 | 7.3029 | 3038 | 0.8312 | 0.6384 | 0.8312 | 0.9117 | | 0.0507 | 7.3077 | 3040 | 0.8473 | 0.6599 | 0.8473 | 0.9205 | | 0.0507 | 7.3125 | 3042 | 0.8774 | 0.6599 | 0.8774 | 0.9367 | | 0.0507 | 7.3173 | 3044 | 0.9124 | 0.6173 | 0.9124 | 0.9552 | | 0.0507 | 7.3221 | 3046 | 0.9486 | 0.5921 | 0.9486 | 0.9740 | | 0.0507 | 7.3269 | 3048 | 0.9590 | 0.5921 | 0.9590 | 0.9793 | | 0.0507 | 7.3317 | 3050 | 0.9681 | 0.5921 | 0.9681 | 0.9839 | | 0.0507 | 7.3365 | 3052 | 0.9925 | 0.5773 | 0.9925 | 0.9962 | | 0.0507 | 7.3413 | 3054 | 0.9896 | 0.5350 | 0.9896 | 0.9948 | | 0.0507 | 7.3462 | 3056 | 0.9591 | 0.5921 | 0.9591 | 0.9794 | | 0.0507 | 7.3510 | 3058 | 0.9173 | 0.5960 | 0.9173 | 0.9577 | | 0.0507 | 7.3558 | 3060 | 0.8991 | 0.5714 | 0.8991 | 0.9482 | | 0.0507 | 7.3606 | 3062 | 0.8990 | 0.5714 | 0.8990 | 0.9481 | | 0.0507 | 7.3654 | 3064 | 0.9093 | 0.5960 | 0.9093 | 0.9536 | | 0.0507 | 7.3702 | 3066 | 0.9198 | 0.5960 | 0.9198 | 0.9591 | | 0.0507 | 7.375 | 3068 | 0.9267 | 0.6216 | 0.9267 | 0.9627 | | 0.0507 | 7.3798 | 3070 | 0.9255 | 0.6216 | 0.9255 | 0.9620 | | 0.0507 | 7.3846 | 3072 | 0.9226 | 0.6216 | 0.9226 | 0.9605 | | 0.0507 | 7.3894 | 3074 | 0.9324 | 0.6216 | 0.9324 | 0.9656 | | 0.0507 | 7.3942 | 3076 | 0.9498 | 0.6216 | 0.9498 | 0.9746 | | 0.0507 | 7.3990 | 3078 | 0.9787 | 0.5765 | 0.9787 | 0.9893 | | 0.0507 | 7.4038 | 3080 | 0.9719 | 0.5765 | 0.9719 | 0.9858 | | 0.0507 | 7.4087 | 3082 | 0.9590 | 0.6173 | 0.9590 | 0.9793 | | 0.0507 | 7.4135 | 3084 | 0.9417 | 0.6173 | 0.9417 | 0.9704 | | 0.0507 | 7.4183 | 3086 | 0.9375 | 0.5798 | 0.9375 | 0.9682 | | 0.0507 | 7.4231 | 3088 | 0.9445 | 0.5798 | 0.9445 | 0.9719 | | 0.0507 | 7.4279 | 3090 | 0.9596 | 0.5093 | 0.9596 | 0.9796 | | 0.0507 | 7.4327 | 3092 | 0.9613 | 0.5093 | 0.9613 | 0.9805 | | 0.0507 | 7.4375 | 3094 | 0.9557 | 0.5378 | 0.9557 | 0.9776 | | 0.0507 | 7.4423 | 3096 | 0.9671 | 0.5378 | 0.9671 | 0.9834 | | 0.0507 | 7.4471 | 3098 | 1.0107 | 0.5354 | 1.0107 | 1.0053 | | 0.0507 | 7.4519 | 3100 | 1.0427 | 0.5426 | 1.0427 | 1.0211 | | 0.0507 | 7.4567 | 3102 | 1.0481 | 0.5426 | 1.0481 | 1.0238 | | 0.0507 | 7.4615 | 3104 | 1.0144 | 0.5354 | 1.0144 | 1.0072 | | 0.0507 | 7.4663 | 3106 | 0.9551 | 0.5765 | 0.9551 | 0.9773 | | 0.0507 | 7.4712 | 3108 | 0.8950 | 0.5985 | 0.8950 | 0.9460 | | 0.0507 | 7.4760 | 3110 | 0.8676 | 0.5985 | 0.8676 | 0.9315 | | 0.0507 | 7.4808 | 3112 | 0.8607 | 0.5985 | 0.8607 | 0.9277 | | 0.0507 | 7.4856 | 3114 | 0.8717 | 0.5985 | 0.8717 | 0.9337 | | 0.0507 | 7.4904 | 3116 | 0.8746 | 0.6239 | 0.8746 | 0.9352 | | 0.0507 | 7.4952 | 3118 | 0.8810 | 0.6458 | 0.8810 | 0.9386 | | 0.0507 | 7.5 | 3120 | 0.8740 | 0.625 | 0.8740 | 0.9349 | | 0.0507 | 7.5048 | 3122 | 0.8599 | 0.625 | 0.8599 | 0.9273 | | 0.0507 | 7.5096 | 3124 | 0.8474 | 0.6176 | 0.8474 | 0.9205 | | 0.0507 | 7.5144 | 3126 | 0.8457 | 0.6176 | 0.8457 | 0.9196 | | 0.0507 | 7.5192 | 3128 | 0.8507 | 0.625 | 0.8507 | 0.9223 | | 0.0507 | 7.5240 | 3130 | 0.8605 | 0.625 | 0.8605 | 0.9276 | | 0.0507 | 7.5288 | 3132 | 0.8770 | 0.625 | 0.8770 | 0.9365 | | 0.0507 | 7.5337 | 3134 | 0.8805 | 0.6458 | 0.8805 | 0.9383 | | 0.0507 | 7.5385 | 3136 | 0.8802 | 0.6458 | 0.8802 | 0.9382 | | 0.0507 | 7.5433 | 3138 | 0.8784 | 0.6458 | 0.8784 | 0.9372 | | 0.0507 | 7.5481 | 3140 | 0.8843 | 0.6458 | 0.8843 | 0.9404 | | 0.0507 | 7.5529 | 3142 | 0.8852 | 0.6458 | 0.8852 | 0.9409 | | 0.0507 | 7.5577 | 3144 | 0.8648 | 0.6458 | 0.8648 | 0.9299 | | 0.0507 | 7.5625 | 3146 | 0.8365 | 0.6239 | 0.8365 | 0.9146 | | 0.0507 | 7.5673 | 3148 | 0.8106 | 0.6384 | 0.8106 | 0.9003 | | 0.0507 | 7.5721 | 3150 | 0.7940 | 0.6384 | 0.7940 | 0.8911 | | 0.0507 | 7.5769 | 3152 | 0.7965 | 0.6384 | 0.7965 | 0.8925 | | 0.0507 | 7.5817 | 3154 | 0.8167 | 0.6384 | 0.8167 | 0.9037 | | 0.0507 | 7.5865 | 3156 | 0.8427 | 0.5985 | 0.8427 | 0.9180 | | 0.0507 | 7.5913 | 3158 | 0.8743 | 0.6216 | 0.8743 | 0.9351 | | 0.0507 | 7.5962 | 3160 | 0.9141 | 0.6216 | 0.9141 | 0.9561 | | 0.0507 | 7.6010 | 3162 | 0.9356 | 0.6216 | 0.9356 | 0.9672 | | 0.0507 | 7.6058 | 3164 | 0.9689 | 0.6014 | 0.9689 | 0.9843 | | 0.0507 | 7.6106 | 3166 | 0.9946 | 0.6189 | 0.9946 | 0.9973 | | 0.0507 | 7.6154 | 3168 | 0.9979 | 0.5874 | 0.9979 | 0.9989 | | 0.0507 | 7.6202 | 3170 | 0.9825 | 0.5874 | 0.9825 | 0.9912 | | 0.0507 | 7.625 | 3172 | 0.9530 | 0.6014 | 0.9530 | 0.9762 | | 0.0507 | 7.6298 | 3174 | 0.9255 | 0.6216 | 0.9255 | 0.9621 | | 0.0507 | 7.6346 | 3176 | 0.8925 | 0.6216 | 0.8925 | 0.9447 | | 0.0507 | 7.6394 | 3178 | 0.8803 | 0.6216 | 0.8803 | 0.9382 | | 0.0507 | 7.6442 | 3180 | 0.8883 | 0.6216 | 0.8883 | 0.9425 | | 0.0507 | 7.6490 | 3182 | 0.9017 | 0.6216 | 0.9017 | 0.9496 | | 0.0507 | 7.6538 | 3184 | 0.8999 | 0.6216 | 0.8999 | 0.9486 | | 0.0507 | 7.6587 | 3186 | 0.8980 | 0.6216 | 0.8980 | 0.9477 | | 0.0507 | 7.6635 | 3188 | 0.9075 | 0.6216 | 0.9075 | 0.9526 | | 0.0507 | 7.6683 | 3190 | 0.9160 | 0.6014 | 0.9160 | 0.9571 | | 0.0507 | 7.6731 | 3192 | 0.8995 | 0.6014 | 0.8995 | 0.9484 | | 0.0507 | 7.6779 | 3194 | 0.8685 | 0.6599 | 0.8685 | 0.9319 | | 0.0507 | 7.6827 | 3196 | 0.8605 | 0.6599 | 0.8605 | 0.9276 | | 0.0507 | 7.6875 | 3198 | 0.8607 | 0.6362 | 0.8607 | 0.9277 | | 0.0507 | 7.6923 | 3200 | 0.8755 | 0.6216 | 0.8755 | 0.9357 | | 0.0507 | 7.6971 | 3202 | 0.9020 | 0.6216 | 0.9020 | 0.9498 | | 0.0507 | 7.7019 | 3204 | 0.9344 | 0.6014 | 0.9344 | 0.9666 | | 0.0507 | 7.7067 | 3206 | 0.9317 | 0.6014 | 0.9317 | 0.9652 | | 0.0507 | 7.7115 | 3208 | 0.9308 | 0.6014 | 0.9308 | 0.9648 | | 0.0507 | 7.7163 | 3210 | 0.9546 | 0.5978 | 0.9546 | 0.9770 | | 0.0507 | 7.7212 | 3212 | 0.9827 | 0.6040 | 0.9827 | 0.9913 | | 0.0507 | 7.7260 | 3214 | 0.9982 | 0.6040 | 0.9982 | 0.9991 | | 0.0507 | 7.7308 | 3216 | 1.0045 | 0.6240 | 1.0045 | 1.0022 | | 0.0507 | 7.7356 | 3218 | 0.9813 | 0.6173 | 0.9813 | 0.9906 | | 0.0507 | 7.7404 | 3220 | 0.9791 | 0.6173 | 0.9791 | 0.9895 | | 0.0507 | 7.7452 | 3222 | 0.9958 | 0.5921 | 0.9958 | 0.9979 | | 0.0507 | 7.75 | 3224 | 1.0110 | 0.6006 | 1.0110 | 1.0055 | | 0.0507 | 7.7548 | 3226 | 0.9969 | 0.5773 | 0.9969 | 0.9984 | | 0.0507 | 7.7596 | 3228 | 0.9866 | 0.6173 | 0.9866 | 0.9933 | | 0.0507 | 7.7644 | 3230 | 0.9730 | 0.6173 | 0.9730 | 0.9864 | | 0.0507 | 7.7692 | 3232 | 0.9843 | 0.6173 | 0.9843 | 0.9921 | | 0.0507 | 7.7740 | 3234 | 1.0009 | 0.6029 | 1.0009 | 1.0004 | | 0.0507 | 7.7788 | 3236 | 1.0339 | 0.5817 | 1.0339 | 1.0168 | | 0.0507 | 7.7837 | 3238 | 1.0661 | 0.5512 | 1.0661 | 1.0325 | | 0.0507 | 7.7885 | 3240 | 1.0857 | 0.5512 | 1.0857 | 1.0420 | | 0.0507 | 7.7933 | 3242 | 1.0873 | 0.5593 | 1.0873 | 1.0428 | | 0.0507 | 7.7981 | 3244 | 1.0646 | 0.5887 | 1.0646 | 1.0318 | | 0.0507 | 7.8029 | 3246 | 1.0182 | 0.5591 | 1.0182 | 1.0091 | | 0.0507 | 7.8077 | 3248 | 0.9668 | 0.5921 | 0.9668 | 0.9832 | | 0.0507 | 7.8125 | 3250 | 0.9279 | 0.5921 | 0.9279 | 0.9633 | | 0.0507 | 7.8173 | 3252 | 0.9041 | 0.6111 | 0.9041 | 0.9509 | | 0.0507 | 7.8221 | 3254 | 0.8955 | 0.6111 | 0.8955 | 0.9463 | | 0.0507 | 7.8269 | 3256 | 0.9086 | 0.6111 | 0.9086 | 0.9532 | | 0.0507 | 7.8317 | 3258 | 0.9242 | 0.5874 | 0.9242 | 0.9614 | | 0.0507 | 7.8365 | 3260 | 0.9333 | 0.6287 | 0.9333 | 0.9661 | | 0.0507 | 7.8413 | 3262 | 0.9572 | 0.6165 | 0.9572 | 0.9784 | | 0.0507 | 7.8462 | 3264 | 0.9744 | 0.6165 | 0.9744 | 0.9871 | | 0.0507 | 7.8510 | 3266 | 0.9825 | 0.6369 | 0.9825 | 0.9912 | | 0.0507 | 7.8558 | 3268 | 0.9785 | 0.6369 | 0.9785 | 0.9892 | | 0.0507 | 7.8606 | 3270 | 0.9714 | 0.6369 | 0.9714 | 0.9856 | | 0.0507 | 7.8654 | 3272 | 0.9746 | 0.6369 | 0.9746 | 0.9872 | | 0.0507 | 7.8702 | 3274 | 0.9595 | 0.6488 | 0.9595 | 0.9795 | | 0.0507 | 7.875 | 3276 | 0.9216 | 0.6679 | 0.9216 | 0.9600 | | 0.0507 | 7.8798 | 3278 | 0.8795 | 0.6679 | 0.8795 | 0.9378 | | 0.0507 | 7.8846 | 3280 | 0.8480 | 0.6385 | 0.8480 | 0.9209 | | 0.0507 | 7.8894 | 3282 | 0.8301 | 0.6599 | 0.8301 | 0.9111 | | 0.0507 | 7.8942 | 3284 | 0.8185 | 0.6599 | 0.8185 | 0.9047 | | 0.0507 | 7.8990 | 3286 | 0.8237 | 0.6599 | 0.8237 | 0.9076 | | 0.0507 | 7.9038 | 3288 | 0.8422 | 0.6599 | 0.8422 | 0.9177 | | 0.0507 | 7.9087 | 3290 | 0.8483 | 0.6599 | 0.8483 | 0.9210 | | 0.0507 | 7.9135 | 3292 | 0.8600 | 0.6599 | 0.8600 | 0.9274 | | 0.0507 | 7.9183 | 3294 | 0.8792 | 0.6548 | 0.8792 | 0.9377 | | 0.0507 | 7.9231 | 3296 | 0.8890 | 0.6548 | 0.8890 | 0.9428 | | 0.0507 | 7.9279 | 3298 | 0.8933 | 0.6548 | 0.8933 | 0.9452 | | 0.0507 | 7.9327 | 3300 | 0.9171 | 0.6548 | 0.9171 | 0.9576 | | 0.0507 | 7.9375 | 3302 | 0.9263 | 0.6548 | 0.9263 | 0.9624 | | 0.0507 | 7.9423 | 3304 | 0.9182 | 0.6548 | 0.9182 | 0.9582 | | 0.0507 | 7.9471 | 3306 | 0.9038 | 0.6548 | 0.9038 | 0.9507 | | 0.0507 | 7.9519 | 3308 | 0.8735 | 0.6599 | 0.8735 | 0.9346 | | 0.0507 | 7.9567 | 3310 | 0.8545 | 0.6599 | 0.8545 | 0.9244 | | 0.0507 | 7.9615 | 3312 | 0.8529 | 0.6599 | 0.8529 | 0.9235 | | 0.0507 | 7.9663 | 3314 | 0.8427 | 0.6599 | 0.8427 | 0.9180 | | 0.0507 | 7.9712 | 3316 | 0.8148 | 0.6384 | 0.8148 | 0.9027 | | 0.0507 | 7.9760 | 3318 | 0.7998 | 0.6384 | 0.7998 | 0.8943 | | 0.0507 | 7.9808 | 3320 | 0.7891 | 0.6384 | 0.7891 | 0.8883 | | 0.0507 | 7.9856 | 3322 | 0.7954 | 0.6384 | 0.7954 | 0.8919 | | 0.0507 | 7.9904 | 3324 | 0.8200 | 0.6384 | 0.8200 | 0.9056 | | 0.0507 | 7.9952 | 3326 | 0.8502 | 0.6384 | 0.8502 | 0.9221 | | 0.0507 | 8.0 | 3328 | 0.8890 | 0.6599 | 0.8890 | 0.9428 | | 0.0507 | 8.0048 | 3330 | 0.9296 | 0.6599 | 0.9296 | 0.9642 | | 0.0507 | 8.0096 | 3332 | 0.9633 | 0.6053 | 0.9633 | 0.9815 | | 0.0507 | 8.0144 | 3334 | 0.9986 | 0.5697 | 0.9986 | 0.9993 | | 0.0507 | 8.0192 | 3336 | 1.0210 | 0.5697 | 1.0210 | 1.0104 | | 0.0507 | 8.0240 | 3338 | 1.0219 | 0.5697 | 1.0219 | 1.0109 | | 0.0507 | 8.0288 | 3340 | 0.9979 | 0.5697 | 0.9979 | 0.9989 | | 0.0507 | 8.0337 | 3342 | 0.9613 | 0.6053 | 0.9613 | 0.9805 | | 0.0507 | 8.0385 | 3344 | 0.9306 | 0.6599 | 0.9306 | 0.9647 | | 0.0507 | 8.0433 | 3346 | 0.9059 | 0.6599 | 0.9059 | 0.9518 | | 0.0507 | 8.0481 | 3348 | 0.8766 | 0.6599 | 0.8766 | 0.9363 | | 0.0507 | 8.0529 | 3350 | 0.8743 | 0.6599 | 0.8743 | 0.9351 | | 0.0507 | 8.0577 | 3352 | 0.8813 | 0.6599 | 0.8813 | 0.9388 | | 0.0507 | 8.0625 | 3354 | 0.8773 | 0.6599 | 0.8773 | 0.9367 | | 0.0507 | 8.0673 | 3356 | 0.8717 | 0.6599 | 0.8717 | 0.9336 | | 0.0507 | 8.0721 | 3358 | 0.8587 | 0.6599 | 0.8587 | 0.9267 | | 0.0507 | 8.0769 | 3360 | 0.8580 | 0.6599 | 0.8580 | 0.9263 | | 0.0507 | 8.0817 | 3362 | 0.8683 | 0.6599 | 0.8683 | 0.9318 | | 0.0507 | 8.0865 | 3364 | 0.8832 | 0.6599 | 0.8832 | 0.9398 | | 0.0507 | 8.0913 | 3366 | 0.8976 | 0.6599 | 0.8976 | 0.9474 | | 0.0507 | 8.0962 | 3368 | 0.9121 | 0.6599 | 0.9121 | 0.9551 | | 0.0507 | 8.1010 | 3370 | 0.9187 | 0.6599 | 0.9187 | 0.9585 | | 0.0507 | 8.1058 | 3372 | 0.9188 | 0.6195 | 0.9188 | 0.9585 | | 0.0507 | 8.1106 | 3374 | 0.9371 | 0.6053 | 0.9371 | 0.9680 | | 0.0507 | 8.1154 | 3376 | 0.9419 | 0.5798 | 0.9419 | 0.9705 | | 0.0507 | 8.1202 | 3378 | 0.9455 | 0.5798 | 0.9455 | 0.9724 | | 0.0507 | 8.125 | 3380 | 0.9248 | 0.5798 | 0.9248 | 0.9617 | | 0.0507 | 8.1298 | 3382 | 0.9177 | 0.5798 | 0.9177 | 0.9580 | | 0.0507 | 8.1346 | 3384 | 0.9237 | 0.5798 | 0.9237 | 0.9611 | | 0.0507 | 8.1394 | 3386 | 0.9237 | 0.5798 | 0.9237 | 0.9611 | | 0.0507 | 8.1442 | 3388 | 0.9298 | 0.5798 | 0.9298 | 0.9643 | | 0.0507 | 8.1490 | 3390 | 0.9226 | 0.6053 | 0.9226 | 0.9605 | | 0.0507 | 8.1538 | 3392 | 0.9049 | 0.6599 | 0.9049 | 0.9512 | | 0.0507 | 8.1587 | 3394 | 0.9000 | 0.6599 | 0.9000 | 0.9487 | | 0.0507 | 8.1635 | 3396 | 0.8820 | 0.6599 | 0.8820 | 0.9392 | | 0.0507 | 8.1683 | 3398 | 0.8638 | 0.6599 | 0.8638 | 0.9294 | | 0.0507 | 8.1731 | 3400 | 0.8571 | 0.6599 | 0.8571 | 0.9258 | | 0.0507 | 8.1779 | 3402 | 0.8655 | 0.6599 | 0.8655 | 0.9303 | | 0.0507 | 8.1827 | 3404 | 0.8757 | 0.6599 | 0.8757 | 0.9358 | | 0.0507 | 8.1875 | 3406 | 0.9012 | 0.6599 | 0.9012 | 0.9493 | | 0.0507 | 8.1923 | 3408 | 0.9091 | 0.6599 | 0.9091 | 0.9535 | | 0.0507 | 8.1971 | 3410 | 0.8972 | 0.6599 | 0.8972 | 0.9472 | | 0.0507 | 8.2019 | 3412 | 0.8857 | 0.6599 | 0.8857 | 0.9411 | | 0.0507 | 8.2067 | 3414 | 0.8627 | 0.6599 | 0.8627 | 0.9288 | | 0.0507 | 8.2115 | 3416 | 0.8532 | 0.6599 | 0.8532 | 0.9237 | | 0.0507 | 8.2163 | 3418 | 0.8610 | 0.6599 | 0.8610 | 0.9279 | | 0.0507 | 8.2212 | 3420 | 0.8863 | 0.6599 | 0.8863 | 0.9414 | | 0.0507 | 8.2260 | 3422 | 0.9181 | 0.6341 | 0.9181 | 0.9582 | | 0.0507 | 8.2308 | 3424 | 0.9446 | 0.6209 | 0.9446 | 0.9719 | | 0.0507 | 8.2356 | 3426 | 0.9531 | 0.6209 | 0.9531 | 0.9763 | | 0.0507 | 8.2404 | 3428 | 0.9413 | 0.6341 | 0.9413 | 0.9702 | | 0.0507 | 8.2452 | 3430 | 0.9262 | 0.6341 | 0.9262 | 0.9624 | | 0.0507 | 8.25 | 3432 | 0.9202 | 0.6341 | 0.9202 | 0.9593 | | 0.0507 | 8.2548 | 3434 | 0.9067 | 0.6341 | 0.9067 | 0.9522 | | 0.0507 | 8.2596 | 3436 | 0.8978 | 0.6385 | 0.8978 | 0.9475 | | 0.0507 | 8.2644 | 3438 | 0.8858 | 0.6599 | 0.8858 | 0.9412 | | 0.0507 | 8.2692 | 3440 | 0.8885 | 0.6385 | 0.8885 | 0.9426 | | 0.0507 | 8.2740 | 3442 | 0.8836 | 0.6385 | 0.8836 | 0.9400 | | 0.0507 | 8.2788 | 3444 | 0.8671 | 0.6385 | 0.8671 | 0.9312 | | 0.0507 | 8.2837 | 3446 | 0.8554 | 0.6599 | 0.8554 | 0.9249 | | 0.0507 | 8.2885 | 3448 | 0.8608 | 0.6599 | 0.8608 | 0.9278 | | 0.0507 | 8.2933 | 3450 | 0.8670 | 0.6599 | 0.8670 | 0.9311 | | 0.0507 | 8.2981 | 3452 | 0.8661 | 0.6599 | 0.8661 | 0.9307 | | 0.0507 | 8.3029 | 3454 | 0.8703 | 0.6599 | 0.8703 | 0.9329 | | 0.0507 | 8.3077 | 3456 | 0.8735 | 0.6599 | 0.8735 | 0.9346 | | 0.0507 | 8.3125 | 3458 | 0.8760 | 0.6599 | 0.8760 | 0.9359 | | 0.0507 | 8.3173 | 3460 | 0.8841 | 0.6599 | 0.8841 | 0.9402 | | 0.0507 | 8.3221 | 3462 | 0.8709 | 0.6599 | 0.8709 | 0.9332 | | 0.0507 | 8.3269 | 3464 | 0.8513 | 0.6599 | 0.8513 | 0.9227 | | 0.0507 | 8.3317 | 3466 | 0.8469 | 0.6599 | 0.8469 | 0.9203 | | 0.0507 | 8.3365 | 3468 | 0.8525 | 0.6599 | 0.8525 | 0.9233 | | 0.0507 | 8.3413 | 3470 | 0.8605 | 0.6599 | 0.8605 | 0.9277 | | 0.0507 | 8.3462 | 3472 | 0.8601 | 0.6599 | 0.8601 | 0.9274 | | 0.0507 | 8.3510 | 3474 | 0.8673 | 0.6599 | 0.8673 | 0.9313 | | 0.0507 | 8.3558 | 3476 | 0.8892 | 0.6599 | 0.8892 | 0.9430 | | 0.0507 | 8.3606 | 3478 | 0.9169 | 0.6599 | 0.9169 | 0.9576 | | 0.0507 | 8.3654 | 3480 | 0.9184 | 0.6385 | 0.9184 | 0.9583 | | 0.0507 | 8.3702 | 3482 | 0.9307 | 0.6385 | 0.9307 | 0.9647 | | 0.0507 | 8.375 | 3484 | 0.9371 | 0.6341 | 0.9371 | 0.9680 | | 0.0507 | 8.3798 | 3486 | 0.9247 | 0.6341 | 0.9247 | 0.9616 | | 0.0507 | 8.3846 | 3488 | 0.9067 | 0.6599 | 0.9067 | 0.9522 | | 0.0507 | 8.3894 | 3490 | 0.8944 | 0.6599 | 0.8944 | 0.9457 | | 0.0507 | 8.3942 | 3492 | 0.8759 | 0.6599 | 0.8759 | 0.9359 | | 0.0507 | 8.3990 | 3494 | 0.8572 | 0.6599 | 0.8572 | 0.9259 | | 0.0507 | 8.4038 | 3496 | 0.8399 | 0.6599 | 0.8399 | 0.9164 | | 0.0507 | 8.4087 | 3498 | 0.8392 | 0.6599 | 0.8392 | 0.9161 | | 0.0474 | 8.4135 | 3500 | 0.8480 | 0.6599 | 0.8480 | 0.9209 | | 0.0474 | 8.4183 | 3502 | 0.8573 | 0.6599 | 0.8573 | 0.9259 | | 0.0474 | 8.4231 | 3504 | 0.8675 | 0.6599 | 0.8675 | 0.9314 | | 0.0474 | 8.4279 | 3506 | 0.8741 | 0.6599 | 0.8741 | 0.9349 | | 0.0474 | 8.4327 | 3508 | 0.8849 | 0.6548 | 0.8849 | 0.9407 | | 0.0474 | 8.4375 | 3510 | 0.8931 | 0.6548 | 0.8931 | 0.9450 | | 0.0474 | 8.4423 | 3512 | 0.8975 | 0.6548 | 0.8975 | 0.9473 | | 0.0474 | 8.4471 | 3514 | 0.8973 | 0.6548 | 0.8973 | 0.9473 | | 0.0474 | 8.4519 | 3516 | 0.8833 | 0.6548 | 0.8833 | 0.9398 | | 0.0474 | 8.4567 | 3518 | 0.8746 | 0.6548 | 0.8746 | 0.9352 | | 0.0474 | 8.4615 | 3520 | 0.8725 | 0.6548 | 0.8725 | 0.9341 | | 0.0474 | 8.4663 | 3522 | 0.8896 | 0.6548 | 0.8896 | 0.9432 | | 0.0474 | 8.4712 | 3524 | 0.9066 | 0.6341 | 0.9066 | 0.9522 | | 0.0474 | 8.4760 | 3526 | 0.9053 | 0.6341 | 0.9053 | 0.9514 | | 0.0474 | 8.4808 | 3528 | 0.8923 | 0.6548 | 0.8923 | 0.9446 | | 0.0474 | 8.4856 | 3530 | 0.8816 | 0.6548 | 0.8816 | 0.9389 | | 0.0474 | 8.4904 | 3532 | 0.8804 | 0.6548 | 0.8804 | 0.9383 | | 0.0474 | 8.4952 | 3534 | 0.8694 | 0.6548 | 0.8694 | 0.9324 | | 0.0474 | 8.5 | 3536 | 0.8527 | 0.6548 | 0.8527 | 0.9234 | | 0.0474 | 8.5048 | 3538 | 0.8461 | 0.6548 | 0.8461 | 0.9198 | | 0.0474 | 8.5096 | 3540 | 0.8452 | 0.6599 | 0.8452 | 0.9193 | | 0.0474 | 8.5144 | 3542 | 0.8510 | 0.6548 | 0.8510 | 0.9225 | | 0.0474 | 8.5192 | 3544 | 0.8616 | 0.6548 | 0.8616 | 0.9282 | | 0.0474 | 8.5240 | 3546 | 0.8686 | 0.6548 | 0.8686 | 0.9320 | | 0.0474 | 8.5288 | 3548 | 0.8691 | 0.6548 | 0.8691 | 0.9323 | | 0.0474 | 8.5337 | 3550 | 0.8746 | 0.6548 | 0.8746 | 0.9352 | | 0.0474 | 8.5385 | 3552 | 0.8714 | 0.6548 | 0.8714 | 0.9335 | | 0.0474 | 8.5433 | 3554 | 0.8612 | 0.6548 | 0.8612 | 0.9280 | | 0.0474 | 8.5481 | 3556 | 0.8507 | 0.6599 | 0.8507 | 0.9223 | | 0.0474 | 8.5529 | 3558 | 0.8477 | 0.6548 | 0.8477 | 0.9207 | | 0.0474 | 8.5577 | 3560 | 0.8416 | 0.6599 | 0.8416 | 0.9174 | | 0.0474 | 8.5625 | 3562 | 0.8296 | 0.6599 | 0.8296 | 0.9108 | | 0.0474 | 8.5673 | 3564 | 0.8245 | 0.6599 | 0.8245 | 0.9080 | | 0.0474 | 8.5721 | 3566 | 0.8172 | 0.6599 | 0.8172 | 0.9040 | | 0.0474 | 8.5769 | 3568 | 0.7990 | 0.6599 | 0.7990 | 0.8939 | | 0.0474 | 8.5817 | 3570 | 0.7961 | 0.6599 | 0.7961 | 0.8923 | | 0.0474 | 8.5865 | 3572 | 0.7962 | 0.6599 | 0.7962 | 0.8923 | | 0.0474 | 8.5913 | 3574 | 0.7840 | 0.6599 | 0.7840 | 0.8855 | | 0.0474 | 8.5962 | 3576 | 0.7847 | 0.6599 | 0.7847 | 0.8858 | | 0.0474 | 8.6010 | 3578 | 0.7861 | 0.6599 | 0.7861 | 0.8866 | | 0.0474 | 8.6058 | 3580 | 0.8010 | 0.6599 | 0.8010 | 0.8950 | | 0.0474 | 8.6106 | 3582 | 0.8116 | 0.6599 | 0.8116 | 0.9009 | | 0.0474 | 8.6154 | 3584 | 0.8150 | 0.6599 | 0.8150 | 0.9028 | | 0.0474 | 8.6202 | 3586 | 0.8220 | 0.6599 | 0.8220 | 0.9066 | | 0.0474 | 8.625 | 3588 | 0.8266 | 0.6548 | 0.8266 | 0.9092 | | 0.0474 | 8.6298 | 3590 | 0.8466 | 0.6548 | 0.8466 | 0.9201 | | 0.0474 | 8.6346 | 3592 | 0.8641 | 0.6341 | 0.8641 | 0.9295 | | 0.0474 | 8.6394 | 3594 | 0.8762 | 0.6341 | 0.8762 | 0.9360 | | 0.0474 | 8.6442 | 3596 | 0.8792 | 0.6341 | 0.8792 | 0.9377 | | 0.0474 | 8.6490 | 3598 | 0.8721 | 0.6341 | 0.8721 | 0.9339 | | 0.0474 | 8.6538 | 3600 | 0.8585 | 0.6548 | 0.8585 | 0.9266 | | 0.0474 | 8.6587 | 3602 | 0.8541 | 0.6548 | 0.8541 | 0.9242 | | 0.0474 | 8.6635 | 3604 | 0.8600 | 0.6548 | 0.8600 | 0.9274 | | 0.0474 | 8.6683 | 3606 | 0.8706 | 0.6548 | 0.8706 | 0.9331 | | 0.0474 | 8.6731 | 3608 | 0.8789 | 0.6548 | 0.8789 | 0.9375 | | 0.0474 | 8.6779 | 3610 | 0.8930 | 0.6548 | 0.8930 | 0.9450 | | 0.0474 | 8.6827 | 3612 | 0.8968 | 0.6548 | 0.8968 | 0.9470 | | 0.0474 | 8.6875 | 3614 | 0.9019 | 0.6548 | 0.9019 | 0.9497 | | 0.0474 | 8.6923 | 3616 | 0.9067 | 0.6548 | 0.9067 | 0.9522 | | 0.0474 | 8.6971 | 3618 | 0.9077 | 0.6548 | 0.9077 | 0.9527 | | 0.0474 | 8.7019 | 3620 | 0.9084 | 0.6548 | 0.9084 | 0.9531 | | 0.0474 | 8.7067 | 3622 | 0.9056 | 0.6548 | 0.9056 | 0.9516 | | 0.0474 | 8.7115 | 3624 | 0.9076 | 0.6548 | 0.9076 | 0.9527 | | 0.0474 | 8.7163 | 3626 | 0.8996 | 0.6548 | 0.8996 | 0.9485 | | 0.0474 | 8.7212 | 3628 | 0.8936 | 0.6548 | 0.8936 | 0.9453 | | 0.0474 | 8.7260 | 3630 | 0.8839 | 0.6548 | 0.8839 | 0.9402 | | 0.0474 | 8.7308 | 3632 | 0.8881 | 0.6548 | 0.8881 | 0.9424 | | 0.0474 | 8.7356 | 3634 | 0.8875 | 0.6548 | 0.8875 | 0.9421 | | 0.0474 | 8.7404 | 3636 | 0.8875 | 0.6548 | 0.8875 | 0.9421 | | 0.0474 | 8.7452 | 3638 | 0.8839 | 0.6548 | 0.8839 | 0.9401 | | 0.0474 | 8.75 | 3640 | 0.8877 | 0.6548 | 0.8877 | 0.9422 | | 0.0474 | 8.7548 | 3642 | 0.8893 | 0.6548 | 0.8893 | 0.9430 | | 0.0474 | 8.7596 | 3644 | 0.8904 | 0.6548 | 0.8904 | 0.9436 | | 0.0474 | 8.7644 | 3646 | 0.8993 | 0.6548 | 0.8993 | 0.9483 | | 0.0474 | 8.7692 | 3648 | 0.9032 | 0.6548 | 0.9032 | 0.9504 | | 0.0474 | 8.7740 | 3650 | 0.9075 | 0.6548 | 0.9075 | 0.9526 | | 0.0474 | 8.7788 | 3652 | 0.9090 | 0.6548 | 0.9090 | 0.9534 | | 0.0474 | 8.7837 | 3654 | 0.8967 | 0.6548 | 0.8967 | 0.9469 | | 0.0474 | 8.7885 | 3656 | 0.8740 | 0.6548 | 0.8740 | 0.9349 | | 0.0474 | 8.7933 | 3658 | 0.8597 | 0.6548 | 0.8597 | 0.9272 | | 0.0474 | 8.7981 | 3660 | 0.8579 | 0.6548 | 0.8579 | 0.9262 | | 0.0474 | 8.8029 | 3662 | 0.8538 | 0.6599 | 0.8538 | 0.9240 | | 0.0474 | 8.8077 | 3664 | 0.8633 | 0.6548 | 0.8633 | 0.9291 | | 0.0474 | 8.8125 | 3666 | 0.8801 | 0.6548 | 0.8801 | 0.9382 | | 0.0474 | 8.8173 | 3668 | 0.8971 | 0.6548 | 0.8971 | 0.9472 | | 0.0474 | 8.8221 | 3670 | 0.9086 | 0.6548 | 0.9086 | 0.9532 | | 0.0474 | 8.8269 | 3672 | 0.9148 | 0.6548 | 0.9148 | 0.9565 | | 0.0474 | 8.8317 | 3674 | 0.9260 | 0.6548 | 0.9260 | 0.9623 | | 0.0474 | 8.8365 | 3676 | 0.9185 | 0.6548 | 0.9185 | 0.9584 | | 0.0474 | 8.8413 | 3678 | 0.9048 | 0.6548 | 0.9048 | 0.9512 | | 0.0474 | 8.8462 | 3680 | 0.9036 | 0.6548 | 0.9036 | 0.9506 | | 0.0474 | 8.8510 | 3682 | 0.9094 | 0.6548 | 0.9094 | 0.9536 | | 0.0474 | 8.8558 | 3684 | 0.9056 | 0.6548 | 0.9056 | 0.9516 | | 0.0474 | 8.8606 | 3686 | 0.8974 | 0.6548 | 0.8974 | 0.9473 | | 0.0474 | 8.8654 | 3688 | 0.8830 | 0.6548 | 0.8830 | 0.9397 | | 0.0474 | 8.8702 | 3690 | 0.8643 | 0.6599 | 0.8643 | 0.9297 | | 0.0474 | 8.875 | 3692 | 0.8478 | 0.6599 | 0.8478 | 0.9208 | | 0.0474 | 8.8798 | 3694 | 0.8427 | 0.6599 | 0.8427 | 0.9180 | | 0.0474 | 8.8846 | 3696 | 0.8488 | 0.6599 | 0.8488 | 0.9213 | | 0.0474 | 8.8894 | 3698 | 0.8543 | 0.6599 | 0.8543 | 0.9243 | | 0.0474 | 8.8942 | 3700 | 0.8542 | 0.6599 | 0.8542 | 0.9242 | | 0.0474 | 8.8990 | 3702 | 0.8518 | 0.6599 | 0.8518 | 0.9229 | | 0.0474 | 8.9038 | 3704 | 0.8589 | 0.6599 | 0.8589 | 0.9268 | | 0.0474 | 8.9087 | 3706 | 0.8649 | 0.6599 | 0.8649 | 0.9300 | | 0.0474 | 8.9135 | 3708 | 0.8758 | 0.6599 | 0.8758 | 0.9359 | | 0.0474 | 8.9183 | 3710 | 0.8992 | 0.6341 | 0.8992 | 0.9482 | | 0.0474 | 8.9231 | 3712 | 0.9192 | 0.6341 | 0.9192 | 0.9588 | | 0.0474 | 8.9279 | 3714 | 0.9487 | 0.6209 | 0.9487 | 0.9740 | | 0.0474 | 8.9327 | 3716 | 0.9747 | 0.6209 | 0.9747 | 0.9872 | | 0.0474 | 8.9375 | 3718 | 1.0011 | 0.6185 | 1.0011 | 1.0006 | | 0.0474 | 8.9423 | 3720 | 1.0151 | 0.6232 | 1.0151 | 1.0075 | | 0.0474 | 8.9471 | 3722 | 1.0220 | 0.6232 | 1.0220 | 1.0109 | | 0.0474 | 8.9519 | 3724 | 1.0116 | 0.6185 | 1.0116 | 1.0058 | | 0.0474 | 8.9567 | 3726 | 0.9922 | 0.5831 | 0.9922 | 0.9961 | | 0.0474 | 8.9615 | 3728 | 0.9675 | 0.5831 | 0.9675 | 0.9836 | | 0.0474 | 8.9663 | 3730 | 0.9437 | 0.6410 | 0.9437 | 0.9714 | | 0.0474 | 8.9712 | 3732 | 0.9330 | 0.6410 | 0.9330 | 0.9659 | | 0.0474 | 8.9760 | 3734 | 0.9265 | 0.6410 | 0.9265 | 0.9625 | | 0.0474 | 8.9808 | 3736 | 0.9279 | 0.6410 | 0.9279 | 0.9633 | | 0.0474 | 8.9856 | 3738 | 0.9273 | 0.6410 | 0.9273 | 0.9630 | | 0.0474 | 8.9904 | 3740 | 0.9326 | 0.6173 | 0.9326 | 0.9657 | | 0.0474 | 8.9952 | 3742 | 0.9393 | 0.6410 | 0.9393 | 0.9692 | | 0.0474 | 9.0 | 3744 | 0.9459 | 0.6410 | 0.9459 | 0.9726 | | 0.0474 | 9.0048 | 3746 | 0.9432 | 0.6410 | 0.9432 | 0.9712 | | 0.0474 | 9.0096 | 3748 | 0.9412 | 0.6209 | 0.9412 | 0.9701 | | 0.0474 | 9.0144 | 3750 | 0.9312 | 0.6209 | 0.9312 | 0.9650 | | 0.0474 | 9.0192 | 3752 | 0.9109 | 0.6341 | 0.9109 | 0.9544 | | 0.0474 | 9.0240 | 3754 | 0.8844 | 0.6599 | 0.8844 | 0.9404 | | 0.0474 | 9.0288 | 3756 | 0.8568 | 0.6599 | 0.8568 | 0.9257 | | 0.0474 | 9.0337 | 3758 | 0.8431 | 0.6599 | 0.8431 | 0.9182 | | 0.0474 | 9.0385 | 3760 | 0.8423 | 0.6599 | 0.8423 | 0.9178 | | 0.0474 | 9.0433 | 3762 | 0.8439 | 0.6599 | 0.8439 | 0.9187 | | 0.0474 | 9.0481 | 3764 | 0.8460 | 0.6599 | 0.8460 | 0.9198 | | 0.0474 | 9.0529 | 3766 | 0.8499 | 0.6599 | 0.8499 | 0.9219 | | 0.0474 | 9.0577 | 3768 | 0.8564 | 0.6599 | 0.8564 | 0.9254 | | 0.0474 | 9.0625 | 3770 | 0.8588 | 0.6599 | 0.8588 | 0.9267 | | 0.0474 | 9.0673 | 3772 | 0.8649 | 0.6599 | 0.8649 | 0.9300 | | 0.0474 | 9.0721 | 3774 | 0.8683 | 0.6599 | 0.8683 | 0.9318 | | 0.0474 | 9.0769 | 3776 | 0.8699 | 0.6599 | 0.8699 | 0.9327 | | 0.0474 | 9.0817 | 3778 | 0.8787 | 0.6599 | 0.8787 | 0.9374 | | 0.0474 | 9.0865 | 3780 | 0.8973 | 0.6599 | 0.8973 | 0.9473 | | 0.0474 | 9.0913 | 3782 | 0.9201 | 0.6548 | 0.9201 | 0.9592 | | 0.0474 | 9.0962 | 3784 | 0.9430 | 0.6410 | 0.9430 | 0.9711 | | 0.0474 | 9.1010 | 3786 | 0.9554 | 0.6014 | 0.9554 | 0.9774 | | 0.0474 | 9.1058 | 3788 | 0.9544 | 0.6014 | 0.9544 | 0.9769 | | 0.0474 | 9.1106 | 3790 | 0.9459 | 0.6014 | 0.9459 | 0.9726 | | 0.0474 | 9.1154 | 3792 | 0.9384 | 0.6014 | 0.9384 | 0.9687 | | 0.0474 | 9.1202 | 3794 | 0.9260 | 0.6410 | 0.9260 | 0.9623 | | 0.0474 | 9.125 | 3796 | 0.9137 | 0.6458 | 0.9137 | 0.9559 | | 0.0474 | 9.1298 | 3798 | 0.9049 | 0.6599 | 0.9049 | 0.9513 | | 0.0474 | 9.1346 | 3800 | 0.8966 | 0.6599 | 0.8966 | 0.9469 | | 0.0474 | 9.1394 | 3802 | 0.8937 | 0.6599 | 0.8937 | 0.9453 | | 0.0474 | 9.1442 | 3804 | 0.8956 | 0.6599 | 0.8956 | 0.9464 | | 0.0474 | 9.1490 | 3806 | 0.9001 | 0.6599 | 0.9001 | 0.9487 | | 0.0474 | 9.1538 | 3808 | 0.9039 | 0.6458 | 0.9039 | 0.9507 | | 0.0474 | 9.1587 | 3810 | 0.9148 | 0.6458 | 0.9148 | 0.9565 | | 0.0474 | 9.1635 | 3812 | 0.9304 | 0.6410 | 0.9304 | 0.9646 | | 0.0474 | 9.1683 | 3814 | 0.9397 | 0.6173 | 0.9397 | 0.9694 | | 0.0474 | 9.1731 | 3816 | 0.9427 | 0.6173 | 0.9427 | 0.9709 | | 0.0474 | 9.1779 | 3818 | 0.9372 | 0.6173 | 0.9372 | 0.9681 | | 0.0474 | 9.1827 | 3820 | 0.9239 | 0.6173 | 0.9239 | 0.9612 | | 0.0474 | 9.1875 | 3822 | 0.9104 | 0.6458 | 0.9104 | 0.9542 | | 0.0474 | 9.1923 | 3824 | 0.8995 | 0.6458 | 0.8995 | 0.9484 | | 0.0474 | 9.1971 | 3826 | 0.8941 | 0.6458 | 0.8941 | 0.9456 | | 0.0474 | 9.2019 | 3828 | 0.8885 | 0.6384 | 0.8885 | 0.9426 | | 0.0474 | 9.2067 | 3830 | 0.8893 | 0.6599 | 0.8893 | 0.9430 | | 0.0474 | 9.2115 | 3832 | 0.8998 | 0.6458 | 0.8998 | 0.9486 | | 0.0474 | 9.2163 | 3834 | 0.9178 | 0.6173 | 0.9178 | 0.9580 | | 0.0474 | 9.2212 | 3836 | 0.9383 | 0.6173 | 0.9383 | 0.9687 | | 0.0474 | 9.2260 | 3838 | 0.9532 | 0.6173 | 0.9532 | 0.9763 | | 0.0474 | 9.2308 | 3840 | 0.9598 | 0.6173 | 0.9598 | 0.9797 | | 0.0474 | 9.2356 | 3842 | 0.9634 | 0.6173 | 0.9634 | 0.9815 | | 0.0474 | 9.2404 | 3844 | 0.9578 | 0.6173 | 0.9578 | 0.9787 | | 0.0474 | 9.2452 | 3846 | 0.9541 | 0.6173 | 0.9541 | 0.9768 | | 0.0474 | 9.25 | 3848 | 0.9589 | 0.6173 | 0.9589 | 0.9792 | | 0.0474 | 9.2548 | 3850 | 0.9611 | 0.6173 | 0.9611 | 0.9804 | | 0.0474 | 9.2596 | 3852 | 0.9673 | 0.5978 | 0.9673 | 0.9835 | | 0.0474 | 9.2644 | 3854 | 0.9721 | 0.5978 | 0.9721 | 0.9859 | | 0.0474 | 9.2692 | 3856 | 0.9665 | 0.5978 | 0.9665 | 0.9831 | | 0.0474 | 9.2740 | 3858 | 0.9647 | 0.5978 | 0.9647 | 0.9822 | | 0.0474 | 9.2788 | 3860 | 0.9667 | 0.6173 | 0.9667 | 0.9832 | | 0.0474 | 9.2837 | 3862 | 0.9588 | 0.6173 | 0.9588 | 0.9792 | | 0.0474 | 9.2885 | 3864 | 0.9475 | 0.6173 | 0.9475 | 0.9734 | | 0.0474 | 9.2933 | 3866 | 0.9388 | 0.6173 | 0.9388 | 0.9689 | | 0.0474 | 9.2981 | 3868 | 0.9269 | 0.6173 | 0.9269 | 0.9628 | | 0.0474 | 9.3029 | 3870 | 0.9190 | 0.6410 | 0.9190 | 0.9586 | | 0.0474 | 9.3077 | 3872 | 0.9151 | 0.6410 | 0.9151 | 0.9566 | | 0.0474 | 9.3125 | 3874 | 0.9126 | 0.6410 | 0.9126 | 0.9553 | | 0.0474 | 9.3173 | 3876 | 0.9150 | 0.6173 | 0.9150 | 0.9566 | | 0.0474 | 9.3221 | 3878 | 0.9159 | 0.6410 | 0.9159 | 0.9570 | | 0.0474 | 9.3269 | 3880 | 0.9188 | 0.6410 | 0.9188 | 0.9585 | | 0.0474 | 9.3317 | 3882 | 0.9219 | 0.6410 | 0.9219 | 0.9602 | | 0.0474 | 9.3365 | 3884 | 0.9252 | 0.6410 | 0.9252 | 0.9619 | | 0.0474 | 9.3413 | 3886 | 0.9242 | 0.6410 | 0.9242 | 0.9613 | | 0.0474 | 9.3462 | 3888 | 0.9205 | 0.6410 | 0.9205 | 0.9594 | | 0.0474 | 9.3510 | 3890 | 0.9109 | 0.6410 | 0.9109 | 0.9544 | | 0.0474 | 9.3558 | 3892 | 0.9013 | 0.6410 | 0.9013 | 0.9493 | | 0.0474 | 9.3606 | 3894 | 0.8984 | 0.6410 | 0.8984 | 0.9478 | | 0.0474 | 9.3654 | 3896 | 0.9005 | 0.6410 | 0.9005 | 0.9489 | | 0.0474 | 9.3702 | 3898 | 0.9044 | 0.6410 | 0.9044 | 0.9510 | | 0.0474 | 9.375 | 3900 | 0.9109 | 0.6410 | 0.9109 | 0.9544 | | 0.0474 | 9.3798 | 3902 | 0.9221 | 0.6410 | 0.9221 | 0.9602 | | 0.0474 | 9.3846 | 3904 | 0.9355 | 0.6410 | 0.9355 | 0.9672 | | 0.0474 | 9.3894 | 3906 | 0.9489 | 0.6173 | 0.9489 | 0.9741 | | 0.0474 | 9.3942 | 3908 | 0.9612 | 0.6173 | 0.9612 | 0.9804 | | 0.0474 | 9.3990 | 3910 | 0.9753 | 0.6173 | 0.9753 | 0.9876 | | 0.0474 | 9.4038 | 3912 | 0.9863 | 0.5619 | 0.9863 | 0.9931 | | 0.0474 | 9.4087 | 3914 | 0.9908 | 0.5619 | 0.9908 | 0.9954 | | 0.0474 | 9.4135 | 3916 | 0.9964 | 0.5619 | 0.9964 | 0.9982 | | 0.0474 | 9.4183 | 3918 | 0.9954 | 0.5619 | 0.9954 | 0.9977 | | 0.0474 | 9.4231 | 3920 | 0.9914 | 0.5619 | 0.9914 | 0.9957 | | 0.0474 | 9.4279 | 3922 | 0.9907 | 0.5619 | 0.9907 | 0.9954 | | 0.0474 | 9.4327 | 3924 | 0.9821 | 0.6029 | 0.9821 | 0.9910 | | 0.0474 | 9.4375 | 3926 | 0.9727 | 0.6173 | 0.9727 | 0.9862 | | 0.0474 | 9.4423 | 3928 | 0.9643 | 0.6173 | 0.9643 | 0.9820 | | 0.0474 | 9.4471 | 3930 | 0.9544 | 0.6410 | 0.9544 | 0.9770 | | 0.0474 | 9.4519 | 3932 | 0.9439 | 0.6410 | 0.9439 | 0.9715 | | 0.0474 | 9.4567 | 3934 | 0.9325 | 0.6410 | 0.9325 | 0.9657 | | 0.0474 | 9.4615 | 3936 | 0.9227 | 0.6410 | 0.9227 | 0.9606 | | 0.0474 | 9.4663 | 3938 | 0.9170 | 0.6410 | 0.9170 | 0.9576 | | 0.0474 | 9.4712 | 3940 | 0.9143 | 0.6410 | 0.9143 | 0.9562 | | 0.0474 | 9.4760 | 3942 | 0.9112 | 0.6410 | 0.9112 | 0.9546 | | 0.0474 | 9.4808 | 3944 | 0.9106 | 0.6410 | 0.9106 | 0.9543 | | 0.0474 | 9.4856 | 3946 | 0.9073 | 0.6410 | 0.9073 | 0.9525 | | 0.0474 | 9.4904 | 3948 | 0.9022 | 0.6410 | 0.9022 | 0.9499 | | 0.0474 | 9.4952 | 3950 | 0.8950 | 0.6599 | 0.8950 | 0.9460 | | 0.0474 | 9.5 | 3952 | 0.8880 | 0.6599 | 0.8880 | 0.9423 | | 0.0474 | 9.5048 | 3954 | 0.8790 | 0.6599 | 0.8790 | 0.9375 | | 0.0474 | 9.5096 | 3956 | 0.8706 | 0.6599 | 0.8706 | 0.9330 | | 0.0474 | 9.5144 | 3958 | 0.8659 | 0.6599 | 0.8659 | 0.9306 | | 0.0474 | 9.5192 | 3960 | 0.8633 | 0.6599 | 0.8633 | 0.9292 | | 0.0474 | 9.5240 | 3962 | 0.8629 | 0.6599 | 0.8629 | 0.9289 | | 0.0474 | 9.5288 | 3964 | 0.8672 | 0.6599 | 0.8672 | 0.9312 | | 0.0474 | 9.5337 | 3966 | 0.8685 | 0.6599 | 0.8685 | 0.9319 | | 0.0474 | 9.5385 | 3968 | 0.8671 | 0.6599 | 0.8671 | 0.9312 | | 0.0474 | 9.5433 | 3970 | 0.8699 | 0.6599 | 0.8699 | 0.9327 | | 0.0474 | 9.5481 | 3972 | 0.8747 | 0.6599 | 0.8747 | 0.9353 | | 0.0474 | 9.5529 | 3974 | 0.8817 | 0.6599 | 0.8817 | 0.9390 | | 0.0474 | 9.5577 | 3976 | 0.8876 | 0.6599 | 0.8876 | 0.9421 | | 0.0474 | 9.5625 | 3978 | 0.8952 | 0.6458 | 0.8952 | 0.9461 | | 0.0474 | 9.5673 | 3980 | 0.9036 | 0.6458 | 0.9036 | 0.9506 | | 0.0474 | 9.5721 | 3982 | 0.9107 | 0.6410 | 0.9107 | 0.9543 | | 0.0474 | 9.5769 | 3984 | 0.9197 | 0.6410 | 0.9197 | 0.9590 | | 0.0474 | 9.5817 | 3986 | 0.9257 | 0.6410 | 0.9257 | 0.9621 | | 0.0474 | 9.5865 | 3988 | 0.9317 | 0.6410 | 0.9317 | 0.9652 | | 0.0474 | 9.5913 | 3990 | 0.9347 | 0.6410 | 0.9347 | 0.9668 | | 0.0474 | 9.5962 | 3992 | 0.9388 | 0.6410 | 0.9388 | 0.9689 | | 0.0474 | 9.6010 | 3994 | 0.9411 | 0.6410 | 0.9411 | 0.9701 | | 0.0474 | 9.6058 | 3996 | 0.9406 | 0.6410 | 0.9406 | 0.9698 | | 0.0474 | 9.6106 | 3998 | 0.9413 | 0.6410 | 0.9413 | 0.9702 | | 0.038 | 9.6154 | 4000 | 0.9446 | 0.6410 | 0.9446 | 0.9719 | | 0.038 | 9.6202 | 4002 | 0.9500 | 0.6410 | 0.9500 | 0.9747 | | 0.038 | 9.625 | 4004 | 0.9507 | 0.6410 | 0.9507 | 0.9751 | | 0.038 | 9.6298 | 4006 | 0.9495 | 0.6410 | 0.9495 | 0.9744 | | 0.038 | 9.6346 | 4008 | 0.9437 | 0.6410 | 0.9437 | 0.9714 | | 0.038 | 9.6394 | 4010 | 0.9338 | 0.6410 | 0.9338 | 0.9664 | | 0.038 | 9.6442 | 4012 | 0.9236 | 0.6410 | 0.9236 | 0.9610 | | 0.038 | 9.6490 | 4014 | 0.9143 | 0.6458 | 0.9143 | 0.9562 | | 0.038 | 9.6538 | 4016 | 0.9051 | 0.6458 | 0.9051 | 0.9514 | | 0.038 | 9.6587 | 4018 | 0.9003 | 0.6458 | 0.9003 | 0.9488 | | 0.038 | 9.6635 | 4020 | 0.8974 | 0.6458 | 0.8974 | 0.9473 | | 0.038 | 9.6683 | 4022 | 0.8949 | 0.6458 | 0.8949 | 0.9460 | | 0.038 | 9.6731 | 4024 | 0.8956 | 0.6458 | 0.8956 | 0.9464 | | 0.038 | 9.6779 | 4026 | 0.8962 | 0.6458 | 0.8962 | 0.9467 | | 0.038 | 9.6827 | 4028 | 0.8976 | 0.6458 | 0.8976 | 0.9474 | | 0.038 | 9.6875 | 4030 | 0.9004 | 0.6458 | 0.9004 | 0.9489 | | 0.038 | 9.6923 | 4032 | 0.9047 | 0.6458 | 0.9047 | 0.9511 | | 0.038 | 9.6971 | 4034 | 0.9092 | 0.6410 | 0.9092 | 0.9535 | | 0.038 | 9.7019 | 4036 | 0.9118 | 0.6410 | 0.9118 | 0.9549 | | 0.038 | 9.7067 | 4038 | 0.9168 | 0.6410 | 0.9168 | 0.9575 | | 0.038 | 9.7115 | 4040 | 0.9191 | 0.6410 | 0.9191 | 0.9587 | | 0.038 | 9.7163 | 4042 | 0.9196 | 0.6410 | 0.9196 | 0.9590 | | 0.038 | 9.7212 | 4044 | 0.9183 | 0.6410 | 0.9183 | 0.9583 | | 0.038 | 9.7260 | 4046 | 0.9161 | 0.6410 | 0.9161 | 0.9571 | | 0.038 | 9.7308 | 4048 | 0.9155 | 0.6410 | 0.9155 | 0.9568 | | 0.038 | 9.7356 | 4050 | 0.9132 | 0.6410 | 0.9132 | 0.9556 | | 0.038 | 9.7404 | 4052 | 0.9103 | 0.6410 | 0.9103 | 0.9541 | | 0.038 | 9.7452 | 4054 | 0.9074 | 0.6410 | 0.9074 | 0.9526 | | 0.038 | 9.75 | 4056 | 0.9044 | 0.6410 | 0.9044 | 0.9510 | | 0.038 | 9.7548 | 4058 | 0.9005 | 0.6410 | 0.9005 | 0.9490 | | 0.038 | 9.7596 | 4060 | 0.8974 | 0.6410 | 0.8974 | 0.9473 | | 0.038 | 9.7644 | 4062 | 0.8971 | 0.6548 | 0.8971 | 0.9471 | | 0.038 | 9.7692 | 4064 | 0.8985 | 0.6410 | 0.8985 | 0.9479 | | 0.038 | 9.7740 | 4066 | 0.8989 | 0.6410 | 0.8989 | 0.9481 | | 0.038 | 9.7788 | 4068 | 0.8987 | 0.6410 | 0.8987 | 0.9480 | | 0.038 | 9.7837 | 4070 | 0.8978 | 0.6410 | 0.8978 | 0.9475 | | 0.038 | 9.7885 | 4072 | 0.8956 | 0.6410 | 0.8956 | 0.9464 | | 0.038 | 9.7933 | 4074 | 0.8913 | 0.6548 | 0.8913 | 0.9441 | | 0.038 | 9.7981 | 4076 | 0.8888 | 0.6599 | 0.8888 | 0.9427 | | 0.038 | 9.8029 | 4078 | 0.8862 | 0.6599 | 0.8862 | 0.9414 | | 0.038 | 9.8077 | 4080 | 0.8852 | 0.6599 | 0.8852 | 0.9409 | | 0.038 | 9.8125 | 4082 | 0.8839 | 0.6599 | 0.8839 | 0.9401 | | 0.038 | 9.8173 | 4084 | 0.8841 | 0.6599 | 0.8841 | 0.9402 | | 0.038 | 9.8221 | 4086 | 0.8851 | 0.6599 | 0.8851 | 0.9408 | | 0.038 | 9.8269 | 4088 | 0.8854 | 0.6599 | 0.8854 | 0.9410 | | 0.038 | 9.8317 | 4090 | 0.8848 | 0.6599 | 0.8848 | 0.9406 | | 0.038 | 9.8365 | 4092 | 0.8838 | 0.6599 | 0.8838 | 0.9401 | | 0.038 | 9.8413 | 4094 | 0.8820 | 0.6599 | 0.8820 | 0.9391 | | 0.038 | 9.8462 | 4096 | 0.8809 | 0.6599 | 0.8809 | 0.9386 | | 0.038 | 9.8510 | 4098 | 0.8808 | 0.6599 | 0.8808 | 0.9385 | | 0.038 | 9.8558 | 4100 | 0.8807 | 0.6599 | 0.8807 | 0.9384 | | 0.038 | 9.8606 | 4102 | 0.8811 | 0.6599 | 0.8811 | 0.9387 | | 0.038 | 9.8654 | 4104 | 0.8818 | 0.6599 | 0.8818 | 0.9390 | | 0.038 | 9.8702 | 4106 | 0.8829 | 0.6599 | 0.8829 | 0.9396 | | 0.038 | 9.875 | 4108 | 0.8847 | 0.6599 | 0.8847 | 0.9406 | | 0.038 | 9.8798 | 4110 | 0.8864 | 0.6599 | 0.8864 | 0.9415 | | 0.038 | 9.8846 | 4112 | 0.8887 | 0.6458 | 0.8887 | 0.9427 | | 0.038 | 9.8894 | 4114 | 0.8910 | 0.6458 | 0.8910 | 0.9439 | | 0.038 | 9.8942 | 4116 | 0.8932 | 0.6410 | 0.8932 | 0.9451 | | 0.038 | 9.8990 | 4118 | 0.8955 | 0.6410 | 0.8955 | 0.9463 | | 0.038 | 9.9038 | 4120 | 0.8972 | 0.6410 | 0.8972 | 0.9472 | | 0.038 | 9.9087 | 4122 | 0.8985 | 0.6410 | 0.8985 | 0.9479 | | 0.038 | 9.9135 | 4124 | 0.8990 | 0.6410 | 0.8990 | 0.9482 | | 0.038 | 9.9183 | 4126 | 0.8994 | 0.6410 | 0.8994 | 0.9483 | | 0.038 | 9.9231 | 4128 | 0.8998 | 0.6410 | 0.8998 | 0.9486 | | 0.038 | 9.9279 | 4130 | 0.9001 | 0.6410 | 0.9001 | 0.9487 | | 0.038 | 9.9327 | 4132 | 0.8997 | 0.6410 | 0.8997 | 0.9485 | | 0.038 | 9.9375 | 4134 | 0.8992 | 0.6410 | 0.8992 | 0.9483 | | 0.038 | 9.9423 | 4136 | 0.8988 | 0.6410 | 0.8988 | 0.9480 | | 0.038 | 9.9471 | 4138 | 0.8979 | 0.6410 | 0.8979 | 0.9476 | | 0.038 | 9.9519 | 4140 | 0.8973 | 0.6410 | 0.8973 | 0.9473 | | 0.038 | 9.9567 | 4142 | 0.8968 | 0.6410 | 0.8968 | 0.9470 | | 0.038 | 9.9615 | 4144 | 0.8967 | 0.6410 | 0.8967 | 0.9470 | | 0.038 | 9.9663 | 4146 | 0.8967 | 0.6410 | 0.8967 | 0.9469 | | 0.038 | 9.9712 | 4148 | 0.8967 | 0.6410 | 0.8967 | 0.9469 | | 0.038 | 9.9760 | 4150 | 0.8965 | 0.6410 | 0.8965 | 0.9469 | | 0.038 | 9.9808 | 4152 | 0.8965 | 0.6410 | 0.8965 | 0.9468 | | 0.038 | 9.9856 | 4154 | 0.8964 | 0.6410 | 0.8964 | 0.9468 | | 0.038 | 9.9904 | 4156 | 0.8964 | 0.6410 | 0.8964 | 0.9468 | | 0.038 | 9.9952 | 4158 | 0.8964 | 0.6410 | 0.8964 | 0.9468 | | 0.038 | 10.0 | 4160 | 0.8964 | 0.6410 | 0.8964 | 0.9468 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
DevQuasar/OLMoE-1B-7B-0924-Instruct-GGUF
DevQuasar
2024-12-04T14:20:18Z
27
0
null
[ "gguf", "text-generation", "base_model:allenai/OLMoE-1B-7B-0924-Instruct", "base_model:quantized:allenai/OLMoE-1B-7B-0924-Instruct", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-09-15T16:02:00Z
--- base_model: - allenai/OLMoE-1B-7B-0924-Instruct pipeline_tag: text-generation --- I'm doing this to 'Make knowledge free for everyone', using my personal time and resources. If you want to support my efforts please visit my ko-fi page: https://ko-fi.com/devquasar Also feel free to visit my website https://devquasar.com/
DevQuasar/OLMoE-1B-7B-0924-GGUF
DevQuasar
2024-12-04T14:20:02Z
7
0
null
[ "gguf", "text-generation", "base_model:allenai/OLMoE-1B-7B-0924", "base_model:quantized:allenai/OLMoE-1B-7B-0924", "endpoints_compatible", "region:us" ]
text-generation
2024-09-15T15:56:11Z
--- base_model: - allenai/OLMoE-1B-7B-0924 pipeline_tag: text-generation --- I'm doing this to 'Make knowledge free for everyone', using my personal time and resources. If you want to support my efforts please visit my ko-fi page: https://ko-fi.com/devquasar Also feel free to visit my website https://devquasar.com/
mradermacher/Virtuoso-Small-i1-GGUF
mradermacher
2024-12-04T14:18:42Z
37
2
transformers
[ "transformers", "gguf", "en", "base_model:arcee-ai/Virtuoso-Small", "base_model:quantized:arcee-ai/Virtuoso-Small", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-12-04T12:48:45Z
--- base_model: arcee-ai/Virtuoso-Small language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/arcee-ai/Virtuoso-Small <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Virtuoso-Small-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Virtuoso-Small-i1-GGUF/resolve/main/Virtuoso-Small.i1-IQ1_S.gguf) | i1-IQ1_S | 3.7 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Virtuoso-Small-i1-GGUF/resolve/main/Virtuoso-Small.i1-IQ1_M.gguf) | i1-IQ1_M | 4.0 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Virtuoso-Small-i1-GGUF/resolve/main/Virtuoso-Small.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Virtuoso-Small-i1-GGUF/resolve/main/Virtuoso-Small.i1-IQ2_XS.gguf) | i1-IQ2_XS | 4.8 | | | [GGUF](https://huggingface.co/mradermacher/Virtuoso-Small-i1-GGUF/resolve/main/Virtuoso-Small.i1-IQ2_S.gguf) | i1-IQ2_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/Virtuoso-Small-i1-GGUF/resolve/main/Virtuoso-Small.i1-IQ2_M.gguf) | i1-IQ2_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/Virtuoso-Small-i1-GGUF/resolve/main/Virtuoso-Small.i1-Q2_K_S.gguf) | i1-Q2_K_S | 5.5 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Virtuoso-Small-i1-GGUF/resolve/main/Virtuoso-Small.i1-Q2_K.gguf) | i1-Q2_K | 5.9 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Virtuoso-Small-i1-GGUF/resolve/main/Virtuoso-Small.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 6.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Virtuoso-Small-i1-GGUF/resolve/main/Virtuoso-Small.i1-IQ3_XS.gguf) | i1-IQ3_XS | 6.5 | | | [GGUF](https://huggingface.co/mradermacher/Virtuoso-Small-i1-GGUF/resolve/main/Virtuoso-Small.i1-Q3_K_S.gguf) | i1-Q3_K_S | 6.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Virtuoso-Small-i1-GGUF/resolve/main/Virtuoso-Small.i1-IQ3_S.gguf) | i1-IQ3_S | 6.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Virtuoso-Small-i1-GGUF/resolve/main/Virtuoso-Small.i1-IQ3_M.gguf) | i1-IQ3_M | 7.0 | | | [GGUF](https://huggingface.co/mradermacher/Virtuoso-Small-i1-GGUF/resolve/main/Virtuoso-Small.i1-Q3_K_M.gguf) | i1-Q3_K_M | 7.4 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Virtuoso-Small-i1-GGUF/resolve/main/Virtuoso-Small.i1-Q3_K_L.gguf) | i1-Q3_K_L | 8.0 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Virtuoso-Small-i1-GGUF/resolve/main/Virtuoso-Small.i1-IQ4_XS.gguf) | i1-IQ4_XS | 8.2 | | | [GGUF](https://huggingface.co/mradermacher/Virtuoso-Small-i1-GGUF/resolve/main/Virtuoso-Small.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 8.6 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/Virtuoso-Small-i1-GGUF/resolve/main/Virtuoso-Small.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 8.6 | fast on arm+i8mm, low quality | | [GGUF](https://huggingface.co/mradermacher/Virtuoso-Small-i1-GGUF/resolve/main/Virtuoso-Small.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 8.6 | fast on arm+sve, low quality | | [GGUF](https://huggingface.co/mradermacher/Virtuoso-Small-i1-GGUF/resolve/main/Virtuoso-Small.i1-Q4_0.gguf) | i1-Q4_0 | 8.6 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Virtuoso-Small-i1-GGUF/resolve/main/Virtuoso-Small.i1-Q4_K_S.gguf) | i1-Q4_K_S | 8.7 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Virtuoso-Small-i1-GGUF/resolve/main/Virtuoso-Small.i1-Q4_K_M.gguf) | i1-Q4_K_M | 9.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Virtuoso-Small-i1-GGUF/resolve/main/Virtuoso-Small.i1-Q5_K_S.gguf) | i1-Q5_K_S | 10.4 | | | [GGUF](https://huggingface.co/mradermacher/Virtuoso-Small-i1-GGUF/resolve/main/Virtuoso-Small.i1-Q5_K_M.gguf) | i1-Q5_K_M | 10.6 | | | [GGUF](https://huggingface.co/mradermacher/Virtuoso-Small-i1-GGUF/resolve/main/Virtuoso-Small.i1-Q6_K.gguf) | i1-Q6_K | 12.2 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
gokulsrinivasagan/distilbert_lda_20_v1_sst2
gokulsrinivasagan
2024-12-04T14:18:19Z
107
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "base_model:gokulsrinivasagan/distilbert_lda_20_v1", "base_model:finetune:gokulsrinivasagan/distilbert_lda_20_v1", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-26T20:47:37Z
--- library_name: transformers language: - en base_model: gokulsrinivasagan/distilbert_lda_20_v1 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert_lda_20_v1_sst2 results: - task: name: Text Classification type: text-classification dataset: name: GLUE SST2 type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.8451834862385321 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_lda_20_v1_sst2 This model is a fine-tuned version of [gokulsrinivasagan/distilbert_lda_20_v1](https://huggingface.co/gokulsrinivasagan/distilbert_lda_20_v1) on the GLUE SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.3649 - Accuracy: 0.8452 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3686 | 1.0 | 264 | 0.3649 | 0.8452 | | 0.2092 | 2.0 | 528 | 0.3841 | 0.8532 | | 0.143 | 3.0 | 792 | 0.4609 | 0.8383 | | 0.1028 | 4.0 | 1056 | 0.4837 | 0.8475 | | 0.0783 | 5.0 | 1320 | 0.5645 | 0.8406 | | 0.0607 | 6.0 | 1584 | 0.6181 | 0.8406 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3
MarketLLM/krx_Qwen2.5-7B-it_market_base_001
MarketLLM
2024-12-04T14:17:31Z
8
0
null
[ "safetensors", "qwen2", "krx", "license:apache-2.0", "region:us" ]
null
2024-12-04T11:17:41Z
--- license: apache-2.0 tags: - krx ---
DevQuasar/LongCite-glm4-9b-GGUF
DevQuasar
2024-12-04T14:17:24Z
25
2
null
[ "gguf", "text-generation", "base_model:THUDM/LongCite-glm4-9b", "base_model:quantized:THUDM/LongCite-glm4-9b", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-09-13T22:50:35Z
--- base_model: - THUDM/LongCite-glm4-9b pipeline_tag: text-generation --- I'm doing this to 'Make knowledge free for everyone', using my personal time and resources. If you want to support my efforts please visit my ko-fi page: https://ko-fi.com/devquasar Also feel free to visit my website https://devquasar.com/
miasetya/fine_tuned_t5_small_model_sec_5_v5
miasetya
2024-12-04T14:15:57Z
114
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-12-04T14:15:37Z
--- library_name: transformers license: apache-2.0 base_model: t5-small tags: - generated_from_trainer metrics: - rouge model-index: - name: fine_tuned_t5_small_model_sec_5_v5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fine_tuned_t5_small_model_sec_5_v5 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.8447 - Rouge1: 0.3701 - Rouge2: 0.1378 - Rougel: 0.2427 - Rougelsum: 0.2427 - Gen Len: 78.0105 - Bert F1: 0.8699 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | Bert F1 | |:-------------:|:------:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|:-------:| | 3.8604 | 0.4211 | 40 | 3.2077 | 0.3522 | 0.1312 | 0.2314 | 0.2321 | 60.8684 | 0.8715 | | 3.4406 | 0.8421 | 80 | 3.0222 | 0.3615 | 0.1333 | 0.2327 | 0.2331 | 70.9421 | 0.8725 | | 3.2592 | 1.2632 | 120 | 2.9491 | 0.3796 | 0.1401 | 0.2392 | 0.2395 | 81.9421 | 0.8728 | | 3.1817 | 1.6842 | 160 | 2.9082 | 0.3791 | 0.135 | 0.2382 | 0.2383 | 83.7579 | 0.873 | | 3.1808 | 2.1053 | 200 | 2.8893 | 0.3817 | 0.1403 | 0.2433 | 0.2436 | 82.9211 | 0.8741 | | 3.1333 | 2.5263 | 240 | 2.8745 | 0.3737 | 0.1365 | 0.2427 | 0.2431 | 80.8632 | 0.8735 | | 3.1758 | 2.9474 | 280 | 2.8623 | 0.3751 | 0.142 | 0.245 | 0.2452 | 79.6526 | 0.8744 | | 3.0898 | 3.3684 | 320 | 2.8559 | 0.3739 | 0.1407 | 0.2441 | 0.2443 | 80.1684 | 0.8741 | | 3.1227 | 3.7895 | 360 | 2.8499 | 0.3739 | 0.1406 | 0.2458 | 0.2456 | 78.8789 | 0.8743 | | 3.0641 | 4.2105 | 400 | 2.8467 | 0.3678 | 0.1368 | 0.2418 | 0.2418 | 78.2053 | 0.8691 | | 3.0768 | 4.6316 | 440 | 2.8447 | 0.3701 | 0.1378 | 0.2427 | 0.2427 | 78.0105 | 0.8699 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.0 - Datasets 3.1.0 - Tokenizers 0.20.3
DevQuasar/Llama-3.1-SuperNova-Lite-GGUF
DevQuasar
2024-12-04T14:15:44Z
8
0
null
[ "gguf", "text-generation", "base_model:arcee-ai/Llama-3.1-SuperNova-Lite", "base_model:quantized:arcee-ai/Llama-3.1-SuperNova-Lite", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-09-10T20:38:26Z
--- base_model: - arcee-ai/Llama-3.1-SuperNova-Lite pipeline_tag: text-generation --- I'm doing this to 'Make knowledge free for everyone', using my personal time and resources. If you want to support my efforts please visit my ko-fi page: https://ko-fi.com/devquasar Also feel free to visit my website https://devquasar.com/
DevQuasar/Mistral-7B-Instruct-v0.3_brainstorm-v3.1-GGUF
DevQuasar
2024-12-04T14:13:59Z
11
1
null
[ "gguf", "text-generation", "base_model:DevQuasar/Mistral-7B-Instruct-v0.3_brainstorm-v3.1", "base_model:quantized:DevQuasar/Mistral-7B-Instruct-v0.3_brainstorm-v3.1", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-08-31T16:54:28Z
--- license: apache-2.0 base_model: - DevQuasar/Mistral-7B-Instruct-v0.3_brainstorm-v3.1 pipeline_tag: text-generation --- I'm doing this to 'Make knowledge free for everyone', using my personal time and resources. If you want to support my efforts please visit my ko-fi page: https://ko-fi.com/devquasar Also feel free to visit my website https://devquasar.com/
ilhamiuturkkan/fake-news-model-3000-samples
ilhamiuturkkan
2024-12-04T14:12:46Z
117
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-12-04T13:59:53Z
--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: fake-news-model-3000-samples results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fake-news-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0007 - Accuracy: 0.9995 - F1: 0.9995 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
gokulsrinivasagan/distilbert_lda_20_v1_rte
gokulsrinivasagan
2024-12-04T14:10:14Z
121
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "base_model:gokulsrinivasagan/distilbert_lda_20_v1", "base_model:finetune:gokulsrinivasagan/distilbert_lda_20_v1", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-26T20:46:11Z
--- library_name: transformers language: - en base_model: gokulsrinivasagan/distilbert_lda_20_v1 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert_lda_20_v1_rte results: - task: name: Text Classification type: text-classification dataset: name: GLUE RTE type: glue args: rte metrics: - name: Accuracy type: accuracy value: 0.5415162454873647 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_lda_20_v1_rte This model is a fine-tuned version of [gokulsrinivasagan/distilbert_lda_20_v1](https://huggingface.co/gokulsrinivasagan/distilbert_lda_20_v1) on the GLUE RTE dataset. It achieves the following results on the evaluation set: - Loss: 0.6842 - Accuracy: 0.5415 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7258 | 1.0 | 10 | 0.6862 | 0.5343 | | 0.6879 | 2.0 | 20 | 0.6842 | 0.5415 | | 0.6517 | 3.0 | 30 | 0.6895 | 0.5090 | | 0.5932 | 4.0 | 40 | 0.7368 | 0.5307 | | 0.5085 | 5.0 | 50 | 0.8123 | 0.5307 | | 0.3794 | 6.0 | 60 | 0.9527 | 0.5199 | | 0.2539 | 7.0 | 70 | 1.1710 | 0.5235 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3
gokulsrinivasagan/distilbert_lda_100_v1_wnli
gokulsrinivasagan
2024-12-04T14:09:54Z
122
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "base_model:gokulsrinivasagan/distilbert_lda_100_v1", "base_model:finetune:gokulsrinivasagan/distilbert_lda_100_v1", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-26T21:00:18Z
--- library_name: transformers language: - en base_model: gokulsrinivasagan/distilbert_lda_100_v1 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert_lda_100_v1_wnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE WNLI type: glue args: wnli metrics: - name: Accuracy type: accuracy value: 0.5633802816901409 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_lda_100_v1_wnli This model is a fine-tuned version of [gokulsrinivasagan/distilbert_lda_100_v1](https://huggingface.co/gokulsrinivasagan/distilbert_lda_100_v1) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6910 - Accuracy: 0.5634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7643 | 1.0 | 3 | 0.7202 | 0.4507 | | 0.699 | 2.0 | 6 | 0.6910 | 0.5634 | | 0.7004 | 3.0 | 9 | 0.6951 | 0.4789 | | 0.6965 | 4.0 | 12 | 0.6969 | 0.4366 | | 0.6938 | 5.0 | 15 | 0.7141 | 0.4507 | | 0.6974 | 6.0 | 18 | 0.7016 | 0.4366 | | 0.6953 | 7.0 | 21 | 0.7069 | 0.4366 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3
mav23/zephyr-7b-sft-full-GGUF
mav23
2024-12-04T14:08:21Z
279
0
null
[ "gguf", "alignment-handbook", "generated_from_trainer", "trl", "sft", "dataset:HuggingFaceH4/ultrachat_200k", "base_model:mistralai/Mistral-7B-v0.1", "base_model:quantized:mistralai/Mistral-7B-v0.1", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-04T13:21:49Z
--- license: apache-2.0 base_model: mistralai/Mistral-7B-v0.1 tags: - alignment-handbook - generated_from_trainer - trl - sft - generated_from_trainer datasets: - HuggingFaceH4/ultrachat_200k model-index: - name: zephyr-7b-sft-full results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # zephyr-7b-sft-full This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the HuggingFaceH4/ultrachat_200k dataset. It achieves the following results on the evaluation set: - Loss: 0.9353 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 128 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.9075 | 1.0 | 1090 | 0.9353 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.15.0
mradermacher/Virtuoso-Small-GGUF
mradermacher
2024-12-04T14:08:08Z
38
1
transformers
[ "transformers", "gguf", "en", "base_model:arcee-ai/Virtuoso-Small", "base_model:quantized:arcee-ai/Virtuoso-Small", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-04T12:09:47Z
--- base_model: arcee-ai/Virtuoso-Small language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> static quants of https://huggingface.co/arcee-ai/Virtuoso-Small <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Virtuoso-Small-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Virtuoso-Small-GGUF/resolve/main/Virtuoso-Small.Q2_K.gguf) | Q2_K | 5.9 | | | [GGUF](https://huggingface.co/mradermacher/Virtuoso-Small-GGUF/resolve/main/Virtuoso-Small.Q3_K_S.gguf) | Q3_K_S | 6.8 | | | [GGUF](https://huggingface.co/mradermacher/Virtuoso-Small-GGUF/resolve/main/Virtuoso-Small.Q3_K_M.gguf) | Q3_K_M | 7.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Virtuoso-Small-GGUF/resolve/main/Virtuoso-Small.Q3_K_L.gguf) | Q3_K_L | 8.0 | | | [GGUF](https://huggingface.co/mradermacher/Virtuoso-Small-GGUF/resolve/main/Virtuoso-Small.IQ4_XS.gguf) | IQ4_XS | 8.3 | | | [GGUF](https://huggingface.co/mradermacher/Virtuoso-Small-GGUF/resolve/main/Virtuoso-Small.Q4_0_4_4.gguf) | Q4_0_4_4 | 8.6 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/Virtuoso-Small-GGUF/resolve/main/Virtuoso-Small.Q4_K_S.gguf) | Q4_K_S | 8.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Virtuoso-Small-GGUF/resolve/main/Virtuoso-Small.Q4_K_M.gguf) | Q4_K_M | 9.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Virtuoso-Small-GGUF/resolve/main/Virtuoso-Small.Q5_K_S.gguf) | Q5_K_S | 10.4 | | | [GGUF](https://huggingface.co/mradermacher/Virtuoso-Small-GGUF/resolve/main/Virtuoso-Small.Q5_K_M.gguf) | Q5_K_M | 10.6 | | | [GGUF](https://huggingface.co/mradermacher/Virtuoso-Small-GGUF/resolve/main/Virtuoso-Small.Q6_K.gguf) | Q6_K | 12.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Virtuoso-Small-GGUF/resolve/main/Virtuoso-Small.Q8_0.gguf) | Q8_0 | 15.8 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
Wisdom-math/wisdom-qwen2-70b
Wisdom-math
2024-12-04T14:07:47Z
6
0
null
[ "safetensors", "qwen2", "arxiv:2107.02027", "region:us" ]
null
2024-09-02T06:41:13Z
# 🧙🏼WISDOM <!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! --> > WISDOM: PROGRESSIVE CURRICULUM SYNTHESIS MAKES LLMS BETTER MATHEMATICAL REASONER 🤗[Datasets&Models@HF](https://huggingface.co/Wisdom-math) | 🐱 [Code@GitHub](https://anonymous.4open.science/r/Wisdom-math-377B) <div align="center"> <img src="https://anonymous.4open.science/r/Wisdom-math-377B/imgs/main.jpg"> <em> Figure 1: The overall workflow of _WISDOM_, which leverages Progressive Curriculum Synthesis to generate questions and responses with Deepseek Coder V2 and GPT-4o, including weak teacher guiding, critical expert teaching, experts consistency voting, and hard instruction evolving. </em> </div> ## Main Results on the smaller models | **Method** | **Base** | **GSM8K** | **MATH** | **College**† | **Olympiad** | **TabMWP** | **TheoremQA** | **AMC2023** | **AIME2024** | |------------------------|----------------|-----------|----------|--------------|--------------|------------|---------------|-------------|------------| | **Mathstral** | Mistral-7B | **83.3** | 54.3 | 36.7 | **22.4** | **82.8** | 26.3 | 12/40 | **1**/30 | | **KPMath-Plus** | Mistral-7B | 82.1 | 46.8 | – | – | 66.4 | – | – | – | | **DART-Math** | Mistral-7B | 81.3 | 45.0 | 28.3 | 14.5 | 65.8 | 20.5 | 7/40 | 0/30 | | **MAmmoTH2** | Mistral-7B | 67.4 | 34.2 | 31.0 | 9.8 | 26.8 | 26.7 | 6/40 | 1/30 | | **MathScale** | Mistral-7B | 58.5 | 33.2 | 22.0 | 7.8 | 73.3 | 18.1 | 6/40 | 1/30 | | **_WISDOM_** | Mistral-7B | 80.0 | **56.4** | **41.6** | 21.9 | 72.3 | **27.6** | **15**/40 | **1**/30 | | **Method** | **Base** | **GSM8K** | **MATH** | **College**† | **Olympiad** | **TabMWP** | **TheoremQA** | **AMC2023** | **AIME2024** | |------------------------|----------------|-----------|----------|--------------|--------------|------------|---------------|-------------|------------| | **Llama3-instruct** | Llama3-8B | 78.2 | 27.2 | 22.8 | 5.6 | 75.3 | 18.9 | 5/40 | 0/30 | | **MetaMath** | Llama3-8B | 80.5 | 32.6 | 19.3 | 6.7 | 54.1 | 13.3 | 6/40 | 0/30 | | **DART-Math** | Llama3-8B | 81.8 | 46.9 | 28.4 | 15.9 | 66.3 | 20.5 | 8/40 | **1**/30 | | **MAmmoTH2** | Llama3-8B | 69.6 | 33.4 | 32.3 | 8.1 | 43.8 | **29.7** | 7/40 | 0/30 | | **MathScale** | Llama3-8B | 70.8 | 34.6 | 22.5 | 9.0 | 74.3 | 18.9 | 2/40 | 1/30 | | _**WISDOM**_ | Llama3-8B | **83.2** | **59.7** | **42.2** | **25.6** | **83.0** | 28.6 | **17**/40 | **1**/30 | | **Method** | **Base** | **GSM8K** | **MATH** | **College**† | **Olympiad** | **TabMWP** | **TheoremQA** | **AMC2023** | **AIME2024** | |-----------------------|----------------|-----------|----------|--------------|--------------|------------|---------------|-----------|--------------| | **DSMath-instruct** | DSMath-7B | 82.0 | 46.3 | 38.1 | 13.6 | 76.7 | 31.9 | 7/40 | 1/30 | | **MetaMath** | DSMath-7B | 76.5 | 37.2 | 27.3 | 10.7 | 67.1 | 13.9 | 10/40 | 0/30 | | **KPMath-Plus** | DSMath-7B | 83.9 | 48.8 | – | – | 78.7 | – | – | – | | **DART-Math** | DSMath-7B | **87.5** | 53.9 | 40.7 | 20.0 | 82.9 | 31.5 | 8/30 | 0/30 | | **NuminaMath** | DSMath-7B | 77.1 | 53.7 | 32.4 | 24.0 | 77.7 | 29.4 | **12**/40 | 1/30 | | **MathScale** | DSMath-7B | 62.7 | 33.4 | 23.0 | 8.1 | 71.3 | 24.5 | 4/40 | 0/30 | | **WISDOM** | DSMath-7B | 83.3 | **62.4** | **45.0** | **28.9** | **85.7** | **34.9** | 11/40 | **2**/30 | ## Main Results on the bigger models | **Method** | **Base** | **GSM8K** | **MATH** | **College**† | **Olympiad** | **TabMWP** | **TheoremQA** | **AMC2023** | **AIME2024** | |------------------------|----------------|-----------|----------|--------------|--------------|------------|---------------|-------------|--------------| | **GPT-4o-0513** | – | 95.8 | 76.6 | – | – | – | – | – | 2/30 | | **GPT-4-1106-preview** | – | 91.4 | 64.3 | – | – | – | – | – | 1/30 | | **Claude-3-Opus** | – | 95.0 | 60.1 | – | – | – | – | – | 2/30 | | **DeepSeek Coder V2** | – | 94.9 | 75.7 | – | – | – | – | – | **4**/30 | | **Llama3-instruct** | Llama3-70B | 93.1 | 50.4 | 40.3 | 17.6 | 89.9 | 34.1 | 8/40 | 2/30 | | **Qwen2-instruct** | Qwen2-72B | 93.6 | 69.3 | 46.8 | 35.3 | 92.4 | 42.0 | 17/40 | **4**/30 | | **DART-Math** | Llama3-70B | 89.8 | 55.7 | 37.9 | 21.0 | 80.9 | 28.2 | 13/40 | 1/30 | | **KPMath-Plus** | Qwen1.5-72B | 87.0 | 58.3 | – | – | 76.7 | – | – | – | | **MetaMath** | Llama3-70B | 88.0 | 44.9 | 31.9 | 11.6 | – | 21.9 | – | – | | **NuminaMath** | Qwen2-72B | 91.5 | 66.9 | 42.1 | 33.6 | 86.7 | 29.0 | 13/40 | **4**/30 | | _**WISDOM**_ | Llama3-70B | 94.1 | 68.2 | 43.4 | 34.4 | 91.8 | 41.4 | 22/40 | 3/30 | | _**WISDOM**_ | Qwen2-72B | **94.2** | **76.1** | **47.6** | **39.1** | **94.5** | **45.4** | **23/40** | 2/30 | † In short of College MATH. <em>Table 1:Main results on in-domain benchmarks, GSM8K and MATH, and out-of-domain benchmarks, including College MATH, Olympiad, TabMWP, TheoremQA, AMC2023, and AIME2024. We select the current well-performing LLMs to evaluate their test accuracy on these benchmarks. Since KPMath-Plus is not open-sourced, the results are quoted from the corresponding paper.</em> ## **Introduction of Paper** we introduce _WISDOM_, which draws inspiration from the human learning process and employs curriculum learning to gradually synthesize high-quality CoT data from easy to hard. ## **Template** All models were trained using the [Alpaca](https://github.com/tatsu-lab/stanford_alpaca) template. ``` Below is an instruction that describes a task. Write a response that appropriately completes the request.\n### Instruction:\n{question}\n\n### Response: ``` ## **Training Setup** ### **Data Contamination** we applied a 10-gram hash deduplication method to the questions in both our in-domain and out-of-domain benchmarks, with a condition that the ratio of the longest common sequence must exceed 0.6, Any detected duplicates were removed. ### **Training details** We employ [Llama-factory](https://github.com/hiyouga/LLaMA-Factory) for fine-tuning the entire suite of models and utilized [sequence packing](https://arxiv.org/abs/2107.02027) to accelerate the training process. The training was conducted using 88 NVIDIA A800 GPUs, with a configuration of batch size 1, gradient accumulation of 2, sequence length of 8192, and bf16 precision. We optimized the models with the AdamW optimizer, setting a learning rate warmup using a cosine schedule with a warmup ratio of 0.03, and trained each model for 3 epochs. The learning rates were adjusted slightly for different models: Mistral 7B at 1e-5, DeepSeekMath-7B at 5e-5, Llama3-8B at 4e-5, and both Llama3-70B and Qwen2-72B at 2e-5.
gokulsrinivasagan/distilbert_lda_100_v1_stsb
gokulsrinivasagan
2024-12-04T14:07:40Z
125
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "base_model:gokulsrinivasagan/distilbert_lda_100_v1", "base_model:finetune:gokulsrinivasagan/distilbert_lda_100_v1", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-26T20:57:20Z
--- library_name: transformers language: - en base_model: gokulsrinivasagan/distilbert_lda_100_v1 tags: - generated_from_trainer datasets: - glue metrics: - spearmanr model-index: - name: distilbert_lda_100_v1_stsb results: - task: name: Text Classification type: text-classification dataset: name: GLUE STSB type: glue args: stsb metrics: - name: Spearmanr type: spearmanr value: 0.7703935491023064 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_lda_100_v1_stsb This model is a fine-tuned version of [gokulsrinivasagan/distilbert_lda_100_v1](https://huggingface.co/gokulsrinivasagan/distilbert_lda_100_v1) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 0.9153 - Pearson: 0.7758 - Spearmanr: 0.7704 - Combined Score: 0.7731 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:| | 2.622 | 1.0 | 23 | 2.5298 | 0.1011 | 0.0891 | 0.0951 | | 1.8404 | 2.0 | 46 | 2.3343 | 0.4642 | 0.4648 | 0.4645 | | 1.3143 | 3.0 | 69 | 1.2509 | 0.6736 | 0.6670 | 0.6703 | | 0.8809 | 4.0 | 92 | 1.3874 | 0.7172 | 0.7254 | 0.7213 | | 0.6317 | 5.0 | 115 | 1.5835 | 0.7091 | 0.7238 | 0.7164 | | 0.5139 | 6.0 | 138 | 1.2793 | 0.7443 | 0.7470 | 0.7456 | | 0.3919 | 7.0 | 161 | 1.0238 | 0.7576 | 0.7535 | 0.7556 | | 0.3125 | 8.0 | 184 | 1.4519 | 0.7331 | 0.7349 | 0.7340 | | 0.281 | 9.0 | 207 | 1.2564 | 0.7390 | 0.7374 | 0.7382 | | 0.2395 | 10.0 | 230 | 0.9153 | 0.7758 | 0.7704 | 0.7731 | | 0.2219 | 11.0 | 253 | 1.2411 | 0.7509 | 0.7509 | 0.7509 | | 0.1923 | 12.0 | 276 | 1.5144 | 0.7429 | 0.7444 | 0.7436 | | 0.1688 | 13.0 | 299 | 1.0667 | 0.7518 | 0.7468 | 0.7493 | | 0.1494 | 14.0 | 322 | 1.2371 | 0.7502 | 0.7483 | 0.7493 | | 0.1498 | 15.0 | 345 | 1.1066 | 0.7473 | 0.7433 | 0.7453 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3
gokulsrinivasagan/distilbert_lda_100_v1_sst2
gokulsrinivasagan
2024-12-04T14:03:31Z
120
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "base_model:gokulsrinivasagan/distilbert_lda_100_v1", "base_model:finetune:gokulsrinivasagan/distilbert_lda_100_v1", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-26T20:50:03Z
--- library_name: transformers language: - en base_model: gokulsrinivasagan/distilbert_lda_100_v1 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert_lda_100_v1_sst2 results: - task: name: Text Classification type: text-classification dataset: name: GLUE SST2 type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.8268348623853211 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_lda_100_v1_sst2 This model is a fine-tuned version of [gokulsrinivasagan/distilbert_lda_100_v1](https://huggingface.co/gokulsrinivasagan/distilbert_lda_100_v1) on the GLUE SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.3907 - Accuracy: 0.8268 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3896 | 1.0 | 264 | 0.3907 | 0.8268 | | 0.2205 | 2.0 | 528 | 0.4041 | 0.8349 | | 0.1574 | 3.0 | 792 | 0.5309 | 0.8165 | | 0.1151 | 4.0 | 1056 | 0.5299 | 0.8211 | | 0.0891 | 5.0 | 1320 | 0.5801 | 0.8372 | | 0.0677 | 6.0 | 1584 | 0.6953 | 0.8234 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3
2point5p/krx-gemma-2-9b-it-X-All-1
2point5p
2024-12-04T13:59:27Z
6
0
transformers
[ "transformers", "safetensors", "gemma2", "text-generation", "text-generation-inference", "unsloth", "trl", "krx", "conversational", "en", "base_model:unsloth/gemma-2-9b-it", "base_model:finetune:unsloth/gemma-2-9b-it", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-12-04T03:03:03Z
--- base_model: unsloth/gemma-2-9b-it tags: - text-generation-inference - transformers - unsloth - gemma2 - trl - krx license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** 2point5p - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-2-9b-it This gemma2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
JohnFante/Florence-2-base-ft-2-feat
JohnFante
2024-12-04T13:59:19Z
104
0
transformers
[ "transformers", "safetensors", "florence2", "text-generation", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "region:us" ]
text-generation
2024-12-04T11:49:07Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
DevQuasar/mathstral-7B-v0.1-GGUF
DevQuasar
2024-12-04T13:58:22Z
20
1
null
[ "gguf", "text-generation", "base_model:mistralai/Mathstral-7B-v0.1", "base_model:quantized:mistralai/Mathstral-7B-v0.1", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2024-07-16T18:18:47Z
--- license: apache-2.0 base_model: - mistralai/Mathstral-7B-v0.1 pipeline_tag: text-generation --- quantized version of [mistralai/mathstral-7B-v0.1](https://huggingface.co/mistralai/mathstral-7B-v0.1) I'm doing this to 'Make knowledge free for everyone', using my personal time and resources. If you want to support my efforts please visit my ko-fi page: https://ko-fi.com/devquasar Also feel free to visit my website https://devquasar.com/
gokulsrinivasagan/distilbert_lda_100_v1_rte
gokulsrinivasagan
2024-12-04T13:56:15Z
107
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "base_model:gokulsrinivasagan/distilbert_lda_100_v1", "base_model:finetune:gokulsrinivasagan/distilbert_lda_100_v1", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-26T20:48:23Z
--- library_name: transformers language: - en base_model: gokulsrinivasagan/distilbert_lda_100_v1 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert_lda_100_v1_rte results: - task: name: Text Classification type: text-classification dataset: name: GLUE RTE type: glue args: rte metrics: - name: Accuracy type: accuracy value: 0.5451263537906137 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_lda_100_v1_rte This model is a fine-tuned version of [gokulsrinivasagan/distilbert_lda_100_v1](https://huggingface.co/gokulsrinivasagan/distilbert_lda_100_v1) on the GLUE RTE dataset. It achieves the following results on the evaluation set: - Loss: 0.6952 - Accuracy: 0.5451 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6947 | 1.0 | 10 | 0.6952 | 0.5451 | | 0.6851 | 2.0 | 20 | 0.7430 | 0.4838 | | 0.6787 | 3.0 | 30 | 0.7019 | 0.5343 | | 0.634 | 4.0 | 40 | 0.7290 | 0.5054 | | 0.5534 | 5.0 | 50 | 0.8035 | 0.4874 | | 0.4215 | 6.0 | 60 | 1.0177 | 0.4693 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3
gokulsrinivasagan/distilbert_lda_100_v1_qqp
gokulsrinivasagan
2024-12-04T13:55:19Z
122
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "base_model:gokulsrinivasagan/distilbert_lda_100_v1", "base_model:finetune:gokulsrinivasagan/distilbert_lda_100_v1", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-26T19:59:55Z
--- library_name: transformers language: - en base_model: gokulsrinivasagan/distilbert_lda_100_v1 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: distilbert_lda_100_v1_qqp results: - task: name: Text Classification type: text-classification dataset: name: GLUE QQP type: glue args: qqp metrics: - name: Accuracy type: accuracy value: 0.8599554786049963 - name: F1 type: f1 value: 0.8240412704332154 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_lda_100_v1_qqp This model is a fine-tuned version of [gokulsrinivasagan/distilbert_lda_100_v1](https://huggingface.co/gokulsrinivasagan/distilbert_lda_100_v1) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.3133 - Accuracy: 0.8600 - F1: 0.8240 - Combined Score: 0.8420 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.4043 | 1.0 | 1422 | 0.3275 | 0.8511 | 0.7992 | 0.8252 | | 0.2918 | 2.0 | 2844 | 0.3133 | 0.8600 | 0.8240 | 0.8420 | | 0.2305 | 3.0 | 4266 | 0.3147 | 0.8715 | 0.8340 | 0.8527 | | 0.179 | 4.0 | 5688 | 0.3178 | 0.8760 | 0.8279 | 0.8520 | | 0.1389 | 5.0 | 7110 | 0.3525 | 0.8805 | 0.8365 | 0.8585 | | 0.1067 | 6.0 | 8532 | 0.3905 | 0.8783 | 0.8409 | 0.8596 | | 0.086 | 7.0 | 9954 | 0.4037 | 0.8788 | 0.8427 | 0.8608 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3
davidbzyk/Angionator-Qwen2.5-14b-Coder-merged_16bit
davidbzyk
2024-12-04T13:46:18Z
5
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-12-04T13:36:24Z
--- base_model: unsloth/qwen2.5-coder-14b-instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** davidbzyk - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-coder-14b-instruct-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mradermacher/UNA-SimpleSmaug-34b-v1beta-GGUF
mradermacher
2024-12-04T13:45:03Z
67
0
transformers
[ "transformers", "gguf", "UNA", "simple-math", "juanako", "en", "dataset:fblgit/simple-math", "dataset:jondurbin/bagel-v0.3", "base_model:fblgit/UNA-SimpleSmaug-34b-v1beta", "base_model:quantized:fblgit/UNA-SimpleSmaug-34b-v1beta", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-04T10:27:27Z
--- base_model: fblgit/UNA-SimpleSmaug-34b-v1beta datasets: - fblgit/simple-math - jondurbin/bagel-v0.3 language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - UNA - simple-math - juanako --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> static quants of https://huggingface.co/fblgit/UNA-SimpleSmaug-34b-v1beta <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/UNA-SimpleSmaug-34b-v1beta-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/UNA-SimpleSmaug-34b-v1beta-GGUF/resolve/main/UNA-SimpleSmaug-34b-v1beta.Q2_K.gguf) | Q2_K | 12.9 | | | [GGUF](https://huggingface.co/mradermacher/UNA-SimpleSmaug-34b-v1beta-GGUF/resolve/main/UNA-SimpleSmaug-34b-v1beta.Q3_K_S.gguf) | Q3_K_S | 15.1 | | | [GGUF](https://huggingface.co/mradermacher/UNA-SimpleSmaug-34b-v1beta-GGUF/resolve/main/UNA-SimpleSmaug-34b-v1beta.Q3_K_M.gguf) | Q3_K_M | 16.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/UNA-SimpleSmaug-34b-v1beta-GGUF/resolve/main/UNA-SimpleSmaug-34b-v1beta.Q3_K_L.gguf) | Q3_K_L | 18.2 | | | [GGUF](https://huggingface.co/mradermacher/UNA-SimpleSmaug-34b-v1beta-GGUF/resolve/main/UNA-SimpleSmaug-34b-v1beta.IQ4_XS.gguf) | IQ4_XS | 18.7 | | | [GGUF](https://huggingface.co/mradermacher/UNA-SimpleSmaug-34b-v1beta-GGUF/resolve/main/UNA-SimpleSmaug-34b-v1beta.Q4_K_S.gguf) | Q4_K_S | 19.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/UNA-SimpleSmaug-34b-v1beta-GGUF/resolve/main/UNA-SimpleSmaug-34b-v1beta.Q4_K_M.gguf) | Q4_K_M | 20.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/UNA-SimpleSmaug-34b-v1beta-GGUF/resolve/main/UNA-SimpleSmaug-34b-v1beta.Q5_K_S.gguf) | Q5_K_S | 23.8 | | | [GGUF](https://huggingface.co/mradermacher/UNA-SimpleSmaug-34b-v1beta-GGUF/resolve/main/UNA-SimpleSmaug-34b-v1beta.Q5_K_M.gguf) | Q5_K_M | 24.4 | | | [GGUF](https://huggingface.co/mradermacher/UNA-SimpleSmaug-34b-v1beta-GGUF/resolve/main/UNA-SimpleSmaug-34b-v1beta.Q6_K.gguf) | Q6_K | 28.3 | very good quality | | [GGUF](https://huggingface.co/mradermacher/UNA-SimpleSmaug-34b-v1beta-GGUF/resolve/main/UNA-SimpleSmaug-34b-v1beta.Q8_0.gguf) | Q8_0 | 36.6 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
jaeyong2/bge-m3-Thai
jaeyong2
2024-12-04T13:44:10Z
7
0
null
[ "safetensors", "xlm-roberta", "th", "base_model:BAAI/bge-m3", "base_model:finetune:BAAI/bge-m3", "license:mit", "region:us" ]
null
2024-12-04T13:40:13Z
--- license: mit language: - th base_model: - BAAI/bge-m3 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ## Train - H/W : colab A100 40GB - Data : jaeyong2/Thai-emb-PreView (step : 70729) ``` !torchrun --nproc_per_node 1 \ -m FlagEmbedding.finetune.embedder.encoder_only.m3 \ --output_dir "/content/drive/My Drive/bge_thai" \ --model_name_or_path BAAI/bge-m3 \ --train_data ./train.jsonl \ --learning_rate 1e-5 \ --bf16 \ --num_train_epochs 1 \ --per_device_train_batch_size 1 \ --dataloader_drop_last True \ --temperature 0.02 \ --query_max_len 2048 \ --passage_max_len 512 \ --train_group_size 2 \ --negatives_cross_device \ --logging_steps 10 \ --save_steps 1000 \ --query_instruction_for_retrieval "" ``` ## Evaluation Code : ``` import torch import numpy as np from sklearn.metrics import pairwise_distances from tqdm import tqdm import datasets def get_embedding(text, model): with torch.no_grad(): embedding = model.encode(text)['dense_vecs'] return embedding dataset = datasets.load_dataset("jaeyong2/Thai-emb-PreView") validation_dataset = dataset["test"].select(range((1000))) def evaluate(validation_dataset): correct_count = 0 for item in tqdm(validation_dataset): query_embedding = get_embedding(item["context"], fine_tuned_model) document_embedding = get_embedding(item["Title"], fine_tuned_model) negative_embedding = get_embedding(item["Fake Title"], fine_tuned_model) # 쿼리와 모든 문서 간의 유사도 계산 (코사인 거리 사용) positive_distances = pairwise_distances(query_embedding.reshape(1, -1), document_embedding.reshape(1, -1), metric="cosine") negative_distances = pairwise_distances(query_embedding.reshape(1, -1), negative_embedding.reshape(1, -1), metric="cosine") if positive_distances < negative_distances: correct_count += 1 accuracy = correct_count / len(validation_dataset) return accuracy results = evaluate(validation_dataset) print(f"Validation Results: {results}") ``` Accuracy - BAAI/bge-m3 : 0.961 - jaeyong2/bge-m3-Thai : 0.997 ### License - BAAI/bge-m3 : https://choosealicense.com/licenses/mit/