modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-09 12:33:01
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
550 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-09 12:32:40
card
stringlengths
11
1.01M
ILKT/2024-06-24_22-31-18_epoch_68
ILKT
2024-06-28T18:20:15Z
141
0
sentence-transformers
[ "sentence-transformers", "safetensors", "ILKT", "sentence-similarity", "mteb", "feature-extraction", "custom_code", "en", "pl", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-25T18:07:17Z
--- language: - en - pl model-index: - name: 2024-06-24_22-31-18_epoch_68 results: - dataset: config: default name: MTEB AllegroReviews revision: b89853e6de927b0e3bfa8ecc0e56fe4e02ceafc6 split: test type: PL-MTEB/allegro-reviews metrics: - type: accuracy value: 23.717693836978132 - type: f1 value: 21.8718761030048 task: type: Classification - dataset: config: default name: MTEB CBD revision: 36ddb419bcffe6a5374c3891957912892916f28d split: test type: PL-MTEB/cbd metrics: - type: accuracy value: 55.910000000000004 - type: ap value: 15.725742132380047 - type: f1 value: 47.07555207349068 task: type: Classification - dataset: config: default name: MTEB CDSC-E revision: 0a3d4aa409b22f80eb22cbf59b492637637b536d split: test type: PL-MTEB/cdsce-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB CDSC-R revision: 1cd6abbb00df7d14be3dbd76a7dcc64b3a79a7cd split: test type: PL-MTEB/cdscr-sts metrics: [] task: type: STS - dataset: config: default name: MTEB EightTagsClustering revision: 78b962b130c6690659c65abf67bf1c2f030606b6 split: test type: PL-MTEB/8tags-clustering metrics: - type: v_measure value: 11.02189104267596 - type: v_measure_std value: 2.076618095290337 task: type: Clustering - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 28.032952252858106 - type: f1 value: 25.792242977543527 task: type: Classification - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: validation type: mteb/amazon_massive_intent metrics: - type: accuracy value: 28.022626660108212 - type: f1 value: 25.33504563897343 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 36.44250168123739 - type: f1 value: 34.71502961902022 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: validation type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 36.32562715199213 - type: f1 value: 35.25444966807039 task: type: Classification - dataset: config: default name: MTEB PAC revision: fc69d1c153a8ccdcf1eef52f4e2a27f88782f543 split: test type: laugustyniak/abusive-clauses-pl metrics: - type: accuracy value: 61.453808282652766 - type: ap value: 71.68193384089211 - type: f1 value: 57.33297115047484 task: type: Classification - dataset: config: default name: MTEB PSC revision: d05a294af9e1d3ff2bfb6b714e08a24a6cabc669 split: test type: PL-MTEB/psc-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB PlscClusteringP2P revision: 8436dd4c05222778013d6642ee2f3fa1722bca9b split: test type: PL-MTEB/plsc-clustering-p2p metrics: - type: v_measure value: 36.9210116722259 task: type: Clustering - dataset: config: default name: MTEB PlscClusteringS2S revision: 39bcadbac6b1eddad7c1a0a176119ce58060289a split: test type: PL-MTEB/plsc-clustering-s2s metrics: - type: v_measure value: 32.38778773867662 task: type: Clustering - dataset: config: default name: MTEB PolEmo2.0-IN revision: d90724373c70959f17d2331ad51fb60c71176b03 split: test type: PL-MTEB/polemo2_in metrics: - type: accuracy value: 49.45983379501385 - type: f1 value: 50.57704677799859 task: type: Classification - dataset: config: default name: MTEB PolEmo2.0-OUT revision: 6a21ab8716e255ab1867265f8b396105e8aa63d4 split: test type: PL-MTEB/polemo2_out metrics: - type: accuracy value: 20.263157894736842 - type: f1 value: 17.770873756468234 task: type: Classification - dataset: config: default name: MTEB SICK-E-PL revision: 71bba34b0ece6c56dfcf46d9758a27f7a90f17e9 split: test type: PL-MTEB/sicke-pl-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB SICK-R-PL revision: fd5c2441b7eeff8676768036142af4cfa42c1339 split: test type: PL-MTEB/sickr-pl-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STS22 (pl) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: dev type: mteb/stsb_multi_mt metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: test type: mteb/stsb_multi_mt metrics: [] task: type: STS pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
CreitinGameplays/mistral-7b-v0.1-chat-test
CreitinGameplays
2024-06-28T18:18:30Z
10
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "dataset:CreitinGameplays/merged-data-v2", "base_model:mistralai/Mistral-7B-v0.1", "base_model:finetune:mistralai/Mistral-7B-v0.1", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-06-28T15:11:00Z
--- license: mit datasets: - CreitinGameplays/merged-data-v2 base_model: mistralai/Mistral-7B-v0.1 ---
ILKT/2024-06-24_22-31-18_epoch_67
ILKT
2024-06-28T18:14:57Z
140
0
sentence-transformers
[ "sentence-transformers", "safetensors", "ILKT", "sentence-similarity", "mteb", "feature-extraction", "custom_code", "en", "pl", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-25T17:48:37Z
--- language: - en - pl model-index: - name: 2024-06-24_22-31-18_epoch_67 results: - dataset: config: default name: MTEB AllegroReviews revision: b89853e6de927b0e3bfa8ecc0e56fe4e02ceafc6 split: test type: PL-MTEB/allegro-reviews metrics: - type: accuracy value: 24.622266401590455 - type: f1 value: 22.936267682156487 task: type: Classification - dataset: config: default name: MTEB CBD revision: 36ddb419bcffe6a5374c3891957912892916f28d split: test type: PL-MTEB/cbd metrics: - type: accuracy value: 53.48 - type: ap value: 15.322095521539064 - type: f1 value: 45.49225512083147 task: type: Classification - dataset: config: default name: MTEB CDSC-E revision: 0a3d4aa409b22f80eb22cbf59b492637637b536d split: test type: PL-MTEB/cdsce-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB CDSC-R revision: 1cd6abbb00df7d14be3dbd76a7dcc64b3a79a7cd split: test type: PL-MTEB/cdscr-sts metrics: [] task: type: STS - dataset: config: default name: MTEB EightTagsClustering revision: 78b962b130c6690659c65abf67bf1c2f030606b6 split: test type: PL-MTEB/8tags-clustering metrics: - type: v_measure value: 9.363928383066206 - type: v_measure_std value: 1.3367977820048715 task: type: Clustering - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 26.54001344989913 - type: f1 value: 23.96832609186341 task: type: Classification - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: validation type: mteb/amazon_massive_intent metrics: - type: accuracy value: 26.015740285292676 - type: f1 value: 23.212345772348385 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 34.862138533960994 - type: f1 value: 32.8318592868999 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: validation type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 34.63354648303001 - type: f1 value: 33.231436557685505 task: type: Classification - dataset: config: default name: MTEB PAC revision: fc69d1c153a8ccdcf1eef52f4e2a27f88782f543 split: test type: laugustyniak/abusive-clauses-pl metrics: - type: accuracy value: 65.54590211410367 - type: ap value: 74.21876513105504 - type: f1 value: 62.16874555498553 task: type: Classification - dataset: config: default name: MTEB PSC revision: d05a294af9e1d3ff2bfb6b714e08a24a6cabc669 split: test type: PL-MTEB/psc-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB PlscClusteringP2P revision: 8436dd4c05222778013d6642ee2f3fa1722bca9b split: test type: PL-MTEB/plsc-clustering-p2p metrics: - type: v_measure value: 35.760616638633856 task: type: Clustering - dataset: config: default name: MTEB PlscClusteringS2S revision: 39bcadbac6b1eddad7c1a0a176119ce58060289a split: test type: PL-MTEB/plsc-clustering-s2s metrics: - type: v_measure value: 32.24926171089566 task: type: Clustering - dataset: config: default name: MTEB PolEmo2.0-IN revision: d90724373c70959f17d2331ad51fb60c71176b03 split: test type: PL-MTEB/polemo2_in metrics: - type: accuracy value: 49.279778393351805 - type: f1 value: 49.51142756516184 task: type: Classification - dataset: config: default name: MTEB PolEmo2.0-OUT revision: 6a21ab8716e255ab1867265f8b396105e8aa63d4 split: test type: PL-MTEB/polemo2_out metrics: - type: accuracy value: 18.157894736842103 - type: f1 value: 15.771804883173445 task: type: Classification - dataset: config: default name: MTEB SICK-E-PL revision: 71bba34b0ece6c56dfcf46d9758a27f7a90f17e9 split: test type: PL-MTEB/sicke-pl-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB SICK-R-PL revision: fd5c2441b7eeff8676768036142af4cfa42c1339 split: test type: PL-MTEB/sickr-pl-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STS22 (pl) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: dev type: mteb/stsb_multi_mt metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: test type: mteb/stsb_multi_mt metrics: [] task: type: STS pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
RichardErkhov/ItchyChin_-_OrpoLlama-3-8B-memorize-translate-gguf
RichardErkhov
2024-06-28T18:04:15Z
79
0
null
[ "gguf", "arxiv:1910.09700", "endpoints_compatible", "region:us", "conversational" ]
null
2024-06-28T15:24:54Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) OrpoLlama-3-8B-memorize-translate - GGUF - Model creator: https://huggingface.co/ItchyChin/ - Original model: https://huggingface.co/ItchyChin/OrpoLlama-3-8B-memorize-translate/ | Name | Quant method | Size | | ---- | ---- | ---- | | [OrpoLlama-3-8B-memorize-translate.Q2_K.gguf](https://huggingface.co/RichardErkhov/ItchyChin_-_OrpoLlama-3-8B-memorize-translate-gguf/blob/main/OrpoLlama-3-8B-memorize-translate.Q2_K.gguf) | Q2_K | 2.96GB | | [OrpoLlama-3-8B-memorize-translate.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/ItchyChin_-_OrpoLlama-3-8B-memorize-translate-gguf/blob/main/OrpoLlama-3-8B-memorize-translate.IQ3_XS.gguf) | IQ3_XS | 3.28GB | | [OrpoLlama-3-8B-memorize-translate.IQ3_S.gguf](https://huggingface.co/RichardErkhov/ItchyChin_-_OrpoLlama-3-8B-memorize-translate-gguf/blob/main/OrpoLlama-3-8B-memorize-translate.IQ3_S.gguf) | IQ3_S | 3.43GB | | [OrpoLlama-3-8B-memorize-translate.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/ItchyChin_-_OrpoLlama-3-8B-memorize-translate-gguf/blob/main/OrpoLlama-3-8B-memorize-translate.Q3_K_S.gguf) | Q3_K_S | 3.41GB | | [OrpoLlama-3-8B-memorize-translate.IQ3_M.gguf](https://huggingface.co/RichardErkhov/ItchyChin_-_OrpoLlama-3-8B-memorize-translate-gguf/blob/main/OrpoLlama-3-8B-memorize-translate.IQ3_M.gguf) | IQ3_M | 3.52GB | | [OrpoLlama-3-8B-memorize-translate.Q3_K.gguf](https://huggingface.co/RichardErkhov/ItchyChin_-_OrpoLlama-3-8B-memorize-translate-gguf/blob/main/OrpoLlama-3-8B-memorize-translate.Q3_K.gguf) | Q3_K | 3.74GB | | [OrpoLlama-3-8B-memorize-translate.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/ItchyChin_-_OrpoLlama-3-8B-memorize-translate-gguf/blob/main/OrpoLlama-3-8B-memorize-translate.Q3_K_M.gguf) | Q3_K_M | 3.74GB | | [OrpoLlama-3-8B-memorize-translate.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/ItchyChin_-_OrpoLlama-3-8B-memorize-translate-gguf/blob/main/OrpoLlama-3-8B-memorize-translate.Q3_K_L.gguf) | Q3_K_L | 4.03GB | | [OrpoLlama-3-8B-memorize-translate.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/ItchyChin_-_OrpoLlama-3-8B-memorize-translate-gguf/blob/main/OrpoLlama-3-8B-memorize-translate.IQ4_XS.gguf) | IQ4_XS | 4.18GB | | [OrpoLlama-3-8B-memorize-translate.Q4_0.gguf](https://huggingface.co/RichardErkhov/ItchyChin_-_OrpoLlama-3-8B-memorize-translate-gguf/blob/main/OrpoLlama-3-8B-memorize-translate.Q4_0.gguf) | Q4_0 | 4.34GB | | [OrpoLlama-3-8B-memorize-translate.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/ItchyChin_-_OrpoLlama-3-8B-memorize-translate-gguf/blob/main/OrpoLlama-3-8B-memorize-translate.IQ4_NL.gguf) | IQ4_NL | 4.38GB | | [OrpoLlama-3-8B-memorize-translate.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/ItchyChin_-_OrpoLlama-3-8B-memorize-translate-gguf/blob/main/OrpoLlama-3-8B-memorize-translate.Q4_K_S.gguf) | Q4_K_S | 4.37GB | | [OrpoLlama-3-8B-memorize-translate.Q4_K.gguf](https://huggingface.co/RichardErkhov/ItchyChin_-_OrpoLlama-3-8B-memorize-translate-gguf/blob/main/OrpoLlama-3-8B-memorize-translate.Q4_K.gguf) | Q4_K | 4.58GB | | [OrpoLlama-3-8B-memorize-translate.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/ItchyChin_-_OrpoLlama-3-8B-memorize-translate-gguf/blob/main/OrpoLlama-3-8B-memorize-translate.Q4_K_M.gguf) | Q4_K_M | 4.58GB | | [OrpoLlama-3-8B-memorize-translate.Q4_1.gguf](https://huggingface.co/RichardErkhov/ItchyChin_-_OrpoLlama-3-8B-memorize-translate-gguf/blob/main/OrpoLlama-3-8B-memorize-translate.Q4_1.gguf) | Q4_1 | 4.78GB | | [OrpoLlama-3-8B-memorize-translate.Q5_0.gguf](https://huggingface.co/RichardErkhov/ItchyChin_-_OrpoLlama-3-8B-memorize-translate-gguf/blob/main/OrpoLlama-3-8B-memorize-translate.Q5_0.gguf) | Q5_0 | 5.21GB | | [OrpoLlama-3-8B-memorize-translate.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/ItchyChin_-_OrpoLlama-3-8B-memorize-translate-gguf/blob/main/OrpoLlama-3-8B-memorize-translate.Q5_K_S.gguf) | Q5_K_S | 5.21GB | | [OrpoLlama-3-8B-memorize-translate.Q5_K.gguf](https://huggingface.co/RichardErkhov/ItchyChin_-_OrpoLlama-3-8B-memorize-translate-gguf/blob/main/OrpoLlama-3-8B-memorize-translate.Q5_K.gguf) | Q5_K | 5.34GB | | [OrpoLlama-3-8B-memorize-translate.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/ItchyChin_-_OrpoLlama-3-8B-memorize-translate-gguf/blob/main/OrpoLlama-3-8B-memorize-translate.Q5_K_M.gguf) | Q5_K_M | 5.34GB | | [OrpoLlama-3-8B-memorize-translate.Q5_1.gguf](https://huggingface.co/RichardErkhov/ItchyChin_-_OrpoLlama-3-8B-memorize-translate-gguf/blob/main/OrpoLlama-3-8B-memorize-translate.Q5_1.gguf) | Q5_1 | 5.65GB | | [OrpoLlama-3-8B-memorize-translate.Q6_K.gguf](https://huggingface.co/RichardErkhov/ItchyChin_-_OrpoLlama-3-8B-memorize-translate-gguf/blob/main/OrpoLlama-3-8B-memorize-translate.Q6_K.gguf) | Q6_K | 6.14GB | | [OrpoLlama-3-8B-memorize-translate.Q8_0.gguf](https://huggingface.co/RichardErkhov/ItchyChin_-_OrpoLlama-3-8B-memorize-translate-gguf/blob/main/OrpoLlama-3-8B-memorize-translate.Q8_0.gguf) | Q8_0 | 7.95GB | Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ILKT/2024-06-24_22-31-18_epoch_64
ILKT
2024-06-28T18:03:18Z
141
0
sentence-transformers
[ "sentence-transformers", "safetensors", "ILKT", "sentence-similarity", "mteb", "feature-extraction", "custom_code", "en", "pl", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-25T16:50:36Z
--- language: - en - pl model-index: - name: 2024-06-24_22-31-18_epoch_64 results: - dataset: config: default name: MTEB AllegroReviews revision: b89853e6de927b0e3bfa8ecc0e56fe4e02ceafc6 split: test type: PL-MTEB/allegro-reviews metrics: - type: accuracy value: 23.031809145129227 - type: f1 value: 21.057805091218334 task: type: Classification - dataset: config: default name: MTEB CBD revision: 36ddb419bcffe6a5374c3891957912892916f28d split: test type: PL-MTEB/cbd metrics: - type: accuracy value: 55.749999999999986 - type: ap value: 14.966302623752831 - type: f1 value: 45.9572961131143 task: type: Classification - dataset: config: default name: MTEB CDSC-E revision: 0a3d4aa409b22f80eb22cbf59b492637637b536d split: test type: PL-MTEB/cdsce-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB CDSC-R revision: 1cd6abbb00df7d14be3dbd76a7dcc64b3a79a7cd split: test type: PL-MTEB/cdscr-sts metrics: [] task: type: STS - dataset: config: default name: MTEB EightTagsClustering revision: 78b962b130c6690659c65abf67bf1c2f030606b6 split: test type: PL-MTEB/8tags-clustering metrics: - type: v_measure value: 9.193257287011564 - type: v_measure_std value: 1.3490920029411124 task: type: Clustering - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 25.295897780766648 - type: f1 value: 22.70370592035699 task: type: Classification - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: validation type: mteb/amazon_massive_intent metrics: - type: accuracy value: 25.302508607968516 - type: f1 value: 22.20934032431153 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 31.418964357767322 - type: f1 value: 29.564934972848455 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: validation type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 31.24938514510575 - type: f1 value: 29.831266979197295 task: type: Classification - dataset: config: default name: MTEB PAC revision: fc69d1c153a8ccdcf1eef52f4e2a27f88782f543 split: test type: laugustyniak/abusive-clauses-pl metrics: - type: accuracy value: 61.934549666956265 - type: ap value: 72.59210383383544 - type: f1 value: 58.69042699225203 task: type: Classification - dataset: config: default name: MTEB PSC revision: d05a294af9e1d3ff2bfb6b714e08a24a6cabc669 split: test type: PL-MTEB/psc-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB PlscClusteringP2P revision: 8436dd4c05222778013d6642ee2f3fa1722bca9b split: test type: PL-MTEB/plsc-clustering-p2p metrics: - type: v_measure value: 35.946668247493655 task: type: Clustering - dataset: config: default name: MTEB PlscClusteringS2S revision: 39bcadbac6b1eddad7c1a0a176119ce58060289a split: test type: PL-MTEB/plsc-clustering-s2s metrics: - type: v_measure value: 31.51135720828322 task: type: Clustering - dataset: config: default name: MTEB PolEmo2.0-IN revision: d90724373c70959f17d2331ad51fb60c71176b03 split: test type: PL-MTEB/polemo2_in metrics: - type: accuracy value: 48.10249307479223 - type: f1 value: 49.30092885238284 task: type: Classification - dataset: config: default name: MTEB PolEmo2.0-OUT revision: 6a21ab8716e255ab1867265f8b396105e8aa63d4 split: test type: PL-MTEB/polemo2_out metrics: - type: accuracy value: 22.51012145748988 - type: f1 value: 19.6361344035574 task: type: Classification - dataset: config: default name: MTEB SICK-E-PL revision: 71bba34b0ece6c56dfcf46d9758a27f7a90f17e9 split: test type: PL-MTEB/sicke-pl-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB SICK-R-PL revision: fd5c2441b7eeff8676768036142af4cfa42c1339 split: test type: PL-MTEB/sickr-pl-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STS22 (pl) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: dev type: mteb/stsb_multi_mt metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: test type: mteb/stsb_multi_mt metrics: [] task: type: STS pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
mradermacher/Trendyol-LLM-7b-chat-v1.8-GGUF
mradermacher
2024-06-28T17:57:23Z
7
0
transformers
[ "transformers", "gguf", "tr", "base_model:Trendyol/Trendyol-LLM-7b-chat-v1.8", "base_model:quantized:Trendyol/Trendyol-LLM-7b-chat-v1.8", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-06-28T17:30:41Z
--- base_model: Trendyol/Trendyol-LLM-7b-chat-v1.8 language: - tr library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Trendyol/Trendyol-LLM-7b-chat-v1.8 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Trendyol-LLM-7b-chat-v1.8-GGUF/resolve/main/Trendyol-LLM-7b-chat-v1.8.Q2_K.gguf) | Q2_K | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/Trendyol-LLM-7b-chat-v1.8-GGUF/resolve/main/Trendyol-LLM-7b-chat-v1.8.IQ3_XS.gguf) | IQ3_XS | 3.2 | | | [GGUF](https://huggingface.co/mradermacher/Trendyol-LLM-7b-chat-v1.8-GGUF/resolve/main/Trendyol-LLM-7b-chat-v1.8.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Trendyol-LLM-7b-chat-v1.8-GGUF/resolve/main/Trendyol-LLM-7b-chat-v1.8.IQ3_S.gguf) | IQ3_S | 3.3 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Trendyol-LLM-7b-chat-v1.8-GGUF/resolve/main/Trendyol-LLM-7b-chat-v1.8.IQ3_M.gguf) | IQ3_M | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/Trendyol-LLM-7b-chat-v1.8-GGUF/resolve/main/Trendyol-LLM-7b-chat-v1.8.Q3_K_M.gguf) | Q3_K_M | 3.7 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Trendyol-LLM-7b-chat-v1.8-GGUF/resolve/main/Trendyol-LLM-7b-chat-v1.8.Q3_K_L.gguf) | Q3_K_L | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/Trendyol-LLM-7b-chat-v1.8-GGUF/resolve/main/Trendyol-LLM-7b-chat-v1.8.IQ4_XS.gguf) | IQ4_XS | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/Trendyol-LLM-7b-chat-v1.8-GGUF/resolve/main/Trendyol-LLM-7b-chat-v1.8.Q4_K_S.gguf) | Q4_K_S | 4.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Trendyol-LLM-7b-chat-v1.8-GGUF/resolve/main/Trendyol-LLM-7b-chat-v1.8.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Trendyol-LLM-7b-chat-v1.8-GGUF/resolve/main/Trendyol-LLM-7b-chat-v1.8.Q5_K_S.gguf) | Q5_K_S | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/Trendyol-LLM-7b-chat-v1.8-GGUF/resolve/main/Trendyol-LLM-7b-chat-v1.8.Q5_K_M.gguf) | Q5_K_M | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/Trendyol-LLM-7b-chat-v1.8-GGUF/resolve/main/Trendyol-LLM-7b-chat-v1.8.Q6_K.gguf) | Q6_K | 6.1 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Trendyol-LLM-7b-chat-v1.8-GGUF/resolve/main/Trendyol-LLM-7b-chat-v1.8.Q8_0.gguf) | Q8_0 | 7.9 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Trendyol-LLM-7b-chat-v1.8-GGUF/resolve/main/Trendyol-LLM-7b-chat-v1.8.f16.gguf) | f16 | 14.8 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
samvelkoch/masked-fat-mamba
samvelkoch
2024-06-28T17:57:13Z
5
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "gpt", "llm", "large language model", "h2o-llmstudio", "en", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-06-28T17:53:09Z
--- language: - en library_name: transformers tags: - gpt - llm - large language model - h2o-llmstudio inference: false thumbnail: https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico --- # Model Card ## Summary This model was trained using [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio). - Base model: [h2oai/h2ogpt-4096-llama2-7b](https://huggingface.co/h2oai/h2ogpt-4096-llama2-7b) ## Usage To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers` library installed. ```bash pip install transformers==4.40.2 ``` Also make sure you are providing your huggingface token if the model is lying in a private repo. - You can login to hugginface_hub by running ```python import huggingface_hub huggingface_hub.login(<ACCESS_TOKEN>) ``` You will also need to download the classification head, either manually, or by running the following code: ```python from huggingface_hub import hf_hub_download model_name = "samvelkoch/masked-fat-mamba" # either local folder or huggingface model name hf_hub_download(repo_id=model_name, filename="classification_head.pth", local_dir="./") ``` You can make classification predictions by following the example below: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "samvelkoch/masked-fat-mamba" # either local folder or huggingface model name # Important: The prompt needs to be in the same format the model was trained with. # You can find an example prompt in the experiment logs. prompt = "How are you?" tokenizer = AutoTokenizer.from_pretrained( model_name, trust_remote_code=True, ) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map={"": "cuda:0"}, trust_remote_code=True, ).cuda().eval() head_weights = torch.load("classification_head.pth", map_location="cuda") # settings can be arbitrary here as we overwrite with saved weights head = torch.nn.Linear(1, 1, bias=False).to("cuda") head.weight.data = head_weights inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to("cuda") out = model(**inputs).logits logits = head(out[:,-1]) print(logits) ``` ## Quantization and sharding You can load the models using quantization by specifying ```load_in_8bit=True``` or ```load_in_4bit=True```. Also, sharding on multiple GPUs is possible by setting ```device_map=auto```. ## Model Architecture ``` LlamaForCausalLM( (model): LlamaModel( (embed_tokens): Embedding(32000, 4096, padding_idx=0) (layers): ModuleList( (0-31): 32 x LlamaDecoderLayer( (self_attn): LlamaSdpaAttention( (q_proj): Linear(in_features=4096, out_features=4096, bias=False) (k_proj): Linear(in_features=4096, out_features=4096, bias=False) (v_proj): Linear(in_features=4096, out_features=4096, bias=False) (o_proj): Linear(in_features=4096, out_features=4096, bias=False) (rotary_emb): LlamaRotaryEmbedding() ) (mlp): LlamaMLP( (gate_proj): Linear(in_features=4096, out_features=11008, bias=False) (up_proj): Linear(in_features=4096, out_features=11008, bias=False) (down_proj): Linear(in_features=11008, out_features=4096, bias=False) (act_fn): SiLU() ) (input_layernorm): LlamaRMSNorm() (post_attention_layernorm): LlamaRMSNorm() ) ) (norm): LlamaRMSNorm() ) (lm_head): Linear(in_features=4096, out_features=32000, bias=False) ) ``` ## Model Configuration This model was trained using H2O LLM Studio and with the configuration in [cfg.yaml](cfg.yaml). Visit [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to learn how to train your own large language models. ## Disclaimer Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions. - Biases and Offensiveness: The large language model is trained on a diverse range of internet text data, which may contain biased, racist, offensive, or otherwise inappropriate content. By using this model, you acknowledge and accept that the generated content may sometimes exhibit biases or produce content that is offensive or inappropriate. The developers of this repository do not endorse, support, or promote any such content or viewpoints. - Limitations: The large language model is an AI-based tool and not a human. It may produce incorrect, nonsensical, or irrelevant responses. It is the user's responsibility to critically evaluate the generated content and use it at their discretion. - Use at Your Own Risk: Users of this large language model must assume full responsibility for any consequences that may arise from their use of the tool. The developers and contributors of this repository shall not be held liable for any damages, losses, or harm resulting from the use or misuse of the provided model. - Ethical Considerations: Users are encouraged to use the large language model responsibly and ethically. By using this model, you agree not to use it for purposes that promote hate speech, discrimination, harassment, or any form of illegal or harmful activities. - Reporting Issues: If you encounter any biased, offensive, or otherwise inappropriate content generated by the large language model, please report it to the repository maintainers through the provided channels. Your feedback will help improve the model and mitigate potential issues. - Changes to this Disclaimer: The developers of this repository reserve the right to modify or update this disclaimer at any time without prior notice. It is the user's responsibility to periodically review the disclaimer to stay informed about any changes. By using the large language model provided in this repository, you agree to accept and comply with the terms and conditions outlined in this disclaimer. If you do not agree with any part of this disclaimer, you should refrain from using the model and any content generated by it.
rainjay/gemma-2-27b-it-4bit
rainjay
2024-06-28T17:51:44Z
22
3
transformers
[ "transformers", "safetensors", "gemma2", "text-generation", "conversational", "arxiv:2009.03300", "arxiv:1905.07830", "arxiv:1911.11641", "arxiv:1904.09728", "arxiv:1905.10044", "arxiv:1907.10641", "arxiv:1811.00937", "arxiv:1809.02789", "arxiv:1911.01547", "arxiv:1705.03551", "arxiv:2107.03374", "arxiv:2108.07732", "arxiv:2110.14168", "arxiv:2009.11462", "arxiv:2101.11718", "arxiv:2110.08193", "arxiv:1804.09301", "arxiv:2109.07958", "arxiv:1804.06876", "arxiv:2103.03874", "arxiv:2304.06364", "arxiv:2206.04615", "arxiv:2203.09509", "license:gemma", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-06-28T17:20:50Z
--- library_name: transformers license: gemma pipeline_tag: text-generation extra_gated_heading: Access Gemma on Hugging Face extra_gated_prompt: To access Gemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging Face and click below. Requests are processed immediately. --- # Fork from google/gemma-2-27b-it ## 4-bit Quantization ```python nf4_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_quant_type="nf4") ``` # Gemma 2 model card **Model Page**: [Gemma](https://ai.google.dev/gemma/docs) **Resources and Technical Documentation**: * [Responsible Generative AI Toolkit][rai-toolkit] * [Gemma on Kaggle][kaggle-gemma] * [Gemma on Vertex Model Garden][vertex-mg-gemma] **Terms of Use**: [Terms](https://www.kaggle.com/models/google/gemma/license/consent/verify/huggingface?returnModelRepoId=google/gemma-2-27b-it) **Authors**: Google ## Model Information Summary description and brief definition of inputs and outputs. ### Description Gemma is a family of lightweight, state-of-the-art open models from Google, built from the same research and technology used to create the Gemini models. They are text-to-text, decoder-only large language models, available in English, with open weights for both pre-trained variants and instruction-tuned variants. Gemma models are well-suited for a variety of text generation tasks, including question answering, summarization, and reasoning. Their relatively small size makes it possible to deploy them in environments with limited resources such as a laptop, desktop or your own cloud infrastructure, democratizing access to state of the art AI models and helping foster innovation for everyone. ### Usage Below we share some code snippets on how to get quickly started with running the model. First make sure to `pip install -U transformers`, then copy the snippet from the section that is relevant for your usecase. #### Running the model on a single / multi GPU ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-27b-it") model = AutoModelForCausalLM.from_pretrained( "google/gemma-2-27b-it", device_map="auto", torch_dtype=torch.bfloat16 ) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` <a name="precisions"></a> #### Running the model on a GPU using different precisions The native weights of this model were exported in `bfloat16` precision. You can use `float16`, which may be faster on certain hardware, indicating the `torch_dtype` when loading the model. For convenience, the `float16` revision of the repo contains a copy of the weights already converted to that precision. You can also use `float32` if you skip the dtype, but no precision increase will occur (model weights will just be upcasted to `float32`). See examples below. * _Using `torch.float16`_ ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-27b-it") model = AutoModelForCausalLM.from_pretrained( "google/gemma-2-27b-it", device_map="auto", torch_dtype=torch.float16, revision="float16", ) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` * _Using `torch.bfloat16`_ ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-27b-it") model = AutoModelForCausalLM.from_pretrained( "google/gemma-2-27b-it", device_map="auto", torch_dtype=torch.bfloat16) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` * _Upcasting to `torch.float32`_ ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-27b-it") model = AutoModelForCausalLM.from_pretrained( "google/gemma-2-27b-it", device_map="auto" ) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` #### Quantized Versions through `bitsandbytes` * _Using 8-bit precision (int8)_ ```python # pip install bitsandbytes accelerate from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig quantization_config = BitsAndBytesConfig(load_in_8bit=True) tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-27b-it") model = AutoModelForCausalLM.from_pretrained( "google/gemma-2-27b-it", quantization_config=quantization_config) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` * _Using 4-bit precision_ ```python # pip install bitsandbytes accelerate from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig quantization_config = BitsAndBytesConfig(load_in_4bit=True) tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-27b-it") model = AutoModelForCausalLM.from_pretrained( "google/gemma-2-27b-it", quantization_config=quantization_config) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` #### Other optimizations * _Flash Attention 2_ First make sure to install `flash-attn` in your environment `pip install flash-attn` ```diff model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.float16, + attn_implementation="flash_attention_2" ).to(0) ``` ### Chat Template The instruction-tuned models use a chat template that must be adhered to for conversational use. The easiest way to apply it is using the tokenizer's built-in chat template, as shown in the following snippet. Let's load the model and apply the chat template to a conversation. In this example, we'll start with a single user interaction: ```py from transformers import AutoTokenizer, AutoModelForCausalLM import transformers import torch model_id = "google/gemma-2-27b-it" dtype = torch.bfloat16 tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, device_map="cuda", torch_dtype=dtype, ) chat = [ { "role": "user", "content": "Write a hello world program" }, ] prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) ``` At this point, the prompt contains the following text: ``` <bos><start_of_turn>user Write a hello world program<end_of_turn> <start_of_turn>model ``` As you can see, each turn is preceded by a `<start_of_turn>` delimiter and then the role of the entity (either `user`, for content supplied by the user, or `model` for LLM responses). Turns finish with the `<end_of_turn>` token. You can follow this format to build the prompt manually, if you need to do it without the tokenizer's chat template. After the prompt is ready, generation can be performed like this: ```py inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=150) print(tokenizer.decode(outputs[0])) ``` ### Inputs and outputs * **Input:** Text string, such as a question, a prompt, or a document to be summarized. * **Output:** Generated English-language text in response to the input, such as an answer to a question, or a summary of a document. ### Citation ```none @article{gemma_2024, title={Gemma}, url={https://www.kaggle.com/m/3301}, DOI={10.34740/KAGGLE/M/3301}, publisher={Kaggle}, author={Gemma Team}, year={2024} } ``` ## Model Data Data used for model training and how the data was processed. ### Training Dataset These models were trained on a dataset of text data that includes a wide variety of sources. The 27B model was trained with 13 trillion tokens and the 9B model was trained with 8 trillion tokens. Here are the key components: * Web Documents: A diverse collection of web text ensures the model is exposed to a broad range of linguistic styles, topics, and vocabulary. Primarily English-language content. * Code: Exposing the model to code helps it to learn the syntax and patterns of programming languages, which improves its ability to generate code or understand code-related questions. * Mathematics: Training on mathematical text helps the model learn logical reasoning, symbolic representation, and to address mathematical queries. The combination of these diverse data sources is crucial for training a powerful language model that can handle a wide variety of different tasks and text formats. ### Data Preprocessing Here are the key data cleaning and filtering methods applied to the training data: * CSAM Filtering: Rigorous CSAM (Child Sexual Abuse Material) filtering was applied at multiple stages in the data preparation process to ensure the exclusion of harmful and illegal content. * Sensitive Data Filtering: As part of making Gemma pre-trained models safe and reliable, automated techniques were used to filter out certain personal information and other sensitive data from training sets. * Additional methods: Filtering based on content quality and safety in line with [our policies][safety-policies]. ## Implementation Information Details about the model internals. ### Hardware Gemma was trained using the latest generation of [Tensor Processing Unit (TPU)][tpu] hardware (TPUv5p). Training large language models requires significant computational power. TPUs, designed specifically for matrix operations common in machine learning, offer several advantages in this domain: * Performance: TPUs are specifically designed to handle the massive computations involved in training LLMs. They can speed up training considerably compared to CPUs. * Memory: TPUs often come with large amounts of high-bandwidth memory, allowing for the handling of large models and batch sizes during training. This can lead to better model quality. * Scalability: TPU Pods (large clusters of TPUs) provide a scalable solution for handling the growing complexity of large foundation models. You can distribute training across multiple TPU devices for faster and more efficient processing. * Cost-effectiveness: In many scenarios, TPUs can provide a more cost-effective solution for training large models compared to CPU-based infrastructure, especially when considering the time and resources saved due to faster training. * These advantages are aligned with [Google's commitments to operate sustainably][sustainability]. ### Software Training was done using [JAX][jax] and [ML Pathways][ml-pathways]. JAX allows researchers to take advantage of the latest generation of hardware, including TPUs, for faster and more efficient training of large models. ML Pathways is Google's latest effort to build artificially intelligent systems capable of generalizing across multiple tasks. This is specially suitable for [foundation models][foundation-models], including large language models like these ones. Together, JAX and ML Pathways are used as described in the [paper about the Gemini family of models][gemini-2-paper]; "the 'single controller' programming model of Jax and Pathways allows a single Python process to orchestrate the entire training run, dramatically simplifying the development workflow." ## Evaluation Model evaluation metrics and results. ### Benchmark Results These models were evaluated against a large collection of different datasets and metrics to cover different aspects of text generation: | Benchmark | Metric | Gemma PT 9B | Gemma PT 27B | | ------------------------------ | ------------- | ----------- | ------------ | | [MMLU][mmlu] | 5-shot, top-1 | 71.3 | 75.2 | | [HellaSwag][hellaswag] | 10-shot | 81.9 | 86.4 | | [PIQA][piqa] | 0-shot | 81.7 | 83.2 | | [SocialIQA][socialiqa] | 0-shot | 53.4 | 53.7 | | [BoolQ][boolq] | 0-shot | 84.2 | 84.8 | | [WinoGrande][winogrande] | partial score | 80.6 | 83.7 | | [ARC-e][arc] | 0-shot | 88.0 | 88.6 | | [ARC-c][arc] | 25-shot | 68.4 | 71.4 | | [TriviaQA][triviaqa] | 5-shot | 76.6 | 83.7 | | [Natural Questions][naturalq] | 5-shot | 29.2 | 34.5 | | [HumanEval][humaneval] | pass@1 | 40.2 | 51.8 | | [MBPP][mbpp] | 3-shot | 52.4 | 62.6 | | [GSM8K][gsm8k] | 5-shot, maj@1 | 68.6 | 74.0 | | [MATH][math] | 4-shot | 36.6 | 42.3 | | [AGIEval][agieval] | 3-5-shot | 52.8 | 55.1 | | [BIG-Bench][big-bench] | 3-shot, CoT | 68.2 | 74.9 | | ------------------------------ | ------------- | ----------- | ------------ | ## Ethics and Safety Ethics and safety evaluation approach and results. ### Evaluation Approach Our evaluation methods include structured evaluations and internal red-teaming testing of relevant content policies. Red-teaming was conducted by a number of different teams, each with different goals and human evaluation metrics. These models were evaluated against a number of different categories relevant to ethics and safety, including: * Text-to-Text Content Safety: Human evaluation on prompts covering safety policies including child sexual abuse and exploitation, harassment, violence and gore, and hate speech. * Text-to-Text Representational Harms: Benchmark against relevant academic datasets such as [WinoBias][winobias] and [BBQ Dataset][bbq]. * Memorization: Automated evaluation of memorization of training data, including the risk of personally identifiable information exposure. * Large-scale harm: Tests for "dangerous capabilities," such as chemical, biological, radiological, and nuclear (CBRN) risks. ### Evaluation Results The results of ethics and safety evaluations are within acceptable thresholds for meeting [internal policies][safety-policies] for categories such as child safety, content safety, representational harms, memorization, large-scale harms. On top of robust internal evaluations, the results of well-known safety benchmarks like BBQ, BOLD, Winogender, Winobias, RealToxicity, and TruthfulQA are shown here. #### Gemma 2.0 | Benchmark | Metric | Gemma 2 IT 9B | Gemma 2 IT 27B | | ------------------------ | ------------- | --------------- | ---------------- | | [RealToxicity][realtox] | average | 8.25 | 8.84 | | [CrowS-Pairs][crows] | top-1 | 37.47 | 36.67 | | [BBQ Ambig][bbq] | 1-shot, top-1 | 88.58 | 85.99 | | [BBQ Disambig][bbq] | top-1 | 82.67 | 86.94 | | [Winogender][winogender] | top-1 | 79.17 | 77.22 | | [TruthfulQA][truthfulqa] | | 50.27 | 51.60 | | [Winobias 1_2][winobias] | | 78.09 | 81.94 | | [Winobias 2_2][winobias] | | 95.32 | 97.22 | | [Toxigen][toxigen] | | 39.30 | 38.42 | | ------------------------ | ------------- | --------------- | ---------------- | ## Usage and Limitations These models have certain limitations that users should be aware of. ### Intended Usage Open Large Language Models (LLMs) have a wide range of applications across various industries and domains. The following list of potential uses is not comprehensive. The purpose of this list is to provide contextual information about the possible use-cases that the model creators considered as part of model training and development. * Content Creation and Communication * Text Generation: These models can be used to generate creative text formats such as poems, scripts, code, marketing copy, and email drafts. * Chatbots and Conversational AI: Power conversational interfaces for customer service, virtual assistants, or interactive applications. * Text Summarization: Generate concise summaries of a text corpus, research papers, or reports. * Research and Education * Natural Language Processing (NLP) Research: These models can serve as a foundation for researchers to experiment with NLP techniques, develop algorithms, and contribute to the advancement of the field. * Language Learning Tools: Support interactive language learning experiences, aiding in grammar correction or providing writing practice. * Knowledge Exploration: Assist researchers in exploring large bodies of text by generating summaries or answering questions about specific topics. ### Limitations * Training Data * The quality and diversity of the training data significantly influence the model's capabilities. Biases or gaps in the training data can lead to limitations in the model's responses. * The scope of the training dataset determines the subject areas the model can handle effectively. * Context and Task Complexity * LLMs are better at tasks that can be framed with clear prompts and instructions. Open-ended or highly complex tasks might be challenging. * A model's performance can be influenced by the amount of context provided (longer context generally leads to better outputs, up to a certain point). * Language Ambiguity and Nuance * Natural language is inherently complex. LLMs might struggle to grasp subtle nuances, sarcasm, or figurative language. * Factual Accuracy * LLMs generate responses based on information they learned from their training datasets, but they are not knowledge bases. They may generate incorrect or outdated factual statements. * Common Sense * LLMs rely on statistical patterns in language. They might lack the ability to apply common sense reasoning in certain situations. ### Ethical Considerations and Risks The development of large language models (LLMs) raises several ethical concerns. In creating an open model, we have carefully considered the following: * Bias and Fairness * LLMs trained on large-scale, real-world text data can reflect socio-cultural biases embedded in the training material. These models underwent careful scrutiny, input data pre-processing described and posterior evaluations reported in this card. * Misinformation and Misuse * LLMs can be misused to generate text that is false, misleading, or harmful. * Guidelines are provided for responsible use with the model, see the [Responsible Generative AI Toolkit][rai-toolkit]. * Transparency and Accountability: * This model card summarizes details on the models' architecture, capabilities, limitations, and evaluation processes. * A responsibly developed open model offers the opportunity to share innovation by making LLM technology accessible to developers and researchers across the AI ecosystem. Risks identified and mitigations: * Perpetuation of biases: It's encouraged to perform continuous monitoring (using evaluation metrics, human review) and the exploration of de-biasing techniques during model training, fine-tuning, and other use cases. * Generation of harmful content: Mechanisms and guidelines for content safety are essential. Developers are encouraged to exercise caution and implement appropriate content safety safeguards based on their specific product policies and application use cases. * Misuse for malicious purposes: Technical limitations and developer and end-user education can help mitigate against malicious applications of LLMs. Educational resources and reporting mechanisms for users to flag misuse are provided. Prohibited uses of Gemma models are outlined in the [Gemma Prohibited Use Policy][prohibited-use]. * Privacy violations: Models were trained on data filtered for removal of PII (Personally Identifiable Information). Developers are encouraged to adhere to privacy regulations with privacy-preserving techniques. ### Benefits At the time of release, this family of models provides high-performance open large language model implementations designed from the ground up for Responsible AI development compared to similarly sized models. Using the benchmark evaluation metrics described in this document, these models have shown to provide superior performance to other, comparably-sized open model alternatives. [rai-toolkit]: https://ai.google.dev/responsible [kaggle-gemma]: https://www.kaggle.com/models/google/gemma-2 [terms]: https://ai.google.dev/gemma/terms [vertex-mg-gemma]: https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/335 [sensitive-info]: https://cloud.google.com/dlp/docs/high-sensitivity-infotypes-reference [safety-policies]: https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11 [prohibited-use]: https://ai.google.dev/gemma/prohibited_use_policy [tpu]: https://cloud.google.com/tpu/docs/intro-to-tpu [sustainability]: https://sustainability.google/operating-sustainably/ [jax]: https://github.com/google/jax [ml-pathways]: https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/ [sustainability]: https://sustainability.google/operating-sustainably/ [foundation-models]: https://ai.google/discover/foundation-models/ [gemini-2-paper]: https://goo.gle/gemma2report [mmlu]: https://arxiv.org/abs/2009.03300 [hellaswag]: https://arxiv.org/abs/1905.07830 [piqa]: https://arxiv.org/abs/1911.11641 [socialiqa]: https://arxiv.org/abs/1904.09728 [boolq]: https://arxiv.org/abs/1905.10044 [winogrande]: https://arxiv.org/abs/1907.10641 [commonsenseqa]: https://arxiv.org/abs/1811.00937 [openbookqa]: https://arxiv.org/abs/1809.02789 [arc]: https://arxiv.org/abs/1911.01547 [triviaqa]: https://arxiv.org/abs/1705.03551 [naturalq]: https://github.com/google-research-datasets/natural-questions [humaneval]: https://arxiv.org/abs/2107.03374 [mbpp]: https://arxiv.org/abs/2108.07732 [gsm8k]: https://arxiv.org/abs/2110.14168 [realtox]: https://arxiv.org/abs/2009.11462 [bold]: https://arxiv.org/abs/2101.11718 [crows]: https://aclanthology.org/2020.emnlp-main.154/ [bbq]: https://arxiv.org/abs/2110.08193v2 [winogender]: https://arxiv.org/abs/1804.09301 [truthfulqa]: https://arxiv.org/abs/2109.07958 [winobias]: https://arxiv.org/abs/1804.06876 [math]: https://arxiv.org/abs/2103.03874 [agieval]: https://arxiv.org/abs/2304.06364 [big-bench]: https://arxiv.org/abs/2206.04615 [toxigen]: https://arxiv.org/abs/2203.09509
mlx-community/Hercules-5.0-Qwen2-1.5B-4bits
mlx-community
2024-06-28T17:49:51Z
10
0
mlx
[ "mlx", "safetensors", "qwen2", "en", "dataset:Locutusque/hercules-v5.0", "license:apache-2.0", "region:us" ]
null
2024-06-28T17:39:33Z
--- language: - en license: apache-2.0 tags: - mlx datasets: - Locutusque/hercules-v5.0 inference: parameters: do_sample: true temperature: 0.8 top_p: 0.95 top_k: 40 min_p: 0.1 max_new_tokens: 250 repetition_penalty: 1.1 --- # mlx-community/Hercules-5.0-Qwen2-1.5B-4bits The Model [mlx-community/Hercules-5.0-Qwen2-1.5B-4bits](https://huggingface.co/mlx-community/Hercules-5.0-Qwen2-1.5B-4bits) was converted to MLX format from [M4-ai/Hercules-5.0-Qwen2-1.5B](https://huggingface.co/M4-ai/Hercules-5.0-Qwen2-1.5B) using mlx-lm version **0.14.0**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/Hercules-5.0-Qwen2-1.5B-4bits") response = generate(model, tokenizer, prompt="hello", verbose=True) ```
mradermacher/DeepSeekMath-RL-Step-DPO-GGUF
mradermacher
2024-06-28T17:48:43Z
370
0
transformers
[ "transformers", "gguf", "en", "base_model:xinlai/DeepSeekMath-RL-Step-DPO", "base_model:quantized:xinlai/DeepSeekMath-RL-Step-DPO", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-06-28T16:18:22Z
--- base_model: xinlai/DeepSeekMath-RL-Step-DPO language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/xinlai/DeepSeekMath-RL-Step-DPO <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/DeepSeekMath-RL-Step-DPO-GGUF/resolve/main/DeepSeekMath-RL-Step-DPO.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/DeepSeekMath-RL-Step-DPO-GGUF/resolve/main/DeepSeekMath-RL-Step-DPO.IQ3_XS.gguf) | IQ3_XS | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/DeepSeekMath-RL-Step-DPO-GGUF/resolve/main/DeepSeekMath-RL-Step-DPO.IQ3_S.gguf) | IQ3_S | 3.2 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/DeepSeekMath-RL-Step-DPO-GGUF/resolve/main/DeepSeekMath-RL-Step-DPO.Q3_K_S.gguf) | Q3_K_S | 3.2 | | | [GGUF](https://huggingface.co/mradermacher/DeepSeekMath-RL-Step-DPO-GGUF/resolve/main/DeepSeekMath-RL-Step-DPO.IQ3_M.gguf) | IQ3_M | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/DeepSeekMath-RL-Step-DPO-GGUF/resolve/main/DeepSeekMath-RL-Step-DPO.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/DeepSeekMath-RL-Step-DPO-GGUF/resolve/main/DeepSeekMath-RL-Step-DPO.Q3_K_L.gguf) | Q3_K_L | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/DeepSeekMath-RL-Step-DPO-GGUF/resolve/main/DeepSeekMath-RL-Step-DPO.IQ4_XS.gguf) | IQ4_XS | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/DeepSeekMath-RL-Step-DPO-GGUF/resolve/main/DeepSeekMath-RL-Step-DPO.Q4_K_S.gguf) | Q4_K_S | 4.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/DeepSeekMath-RL-Step-DPO-GGUF/resolve/main/DeepSeekMath-RL-Step-DPO.Q4_K_M.gguf) | Q4_K_M | 4.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/DeepSeekMath-RL-Step-DPO-GGUF/resolve/main/DeepSeekMath-RL-Step-DPO.Q5_K_S.gguf) | Q5_K_S | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/DeepSeekMath-RL-Step-DPO-GGUF/resolve/main/DeepSeekMath-RL-Step-DPO.Q5_K_M.gguf) | Q5_K_M | 5.0 | | | [GGUF](https://huggingface.co/mradermacher/DeepSeekMath-RL-Step-DPO-GGUF/resolve/main/DeepSeekMath-RL-Step-DPO.Q6_K.gguf) | Q6_K | 5.8 | very good quality | | [GGUF](https://huggingface.co/mradermacher/DeepSeekMath-RL-Step-DPO-GGUF/resolve/main/DeepSeekMath-RL-Step-DPO.Q8_0.gguf) | Q8_0 | 7.4 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/DeepSeekMath-RL-Step-DPO-GGUF/resolve/main/DeepSeekMath-RL-Step-DPO.f16.gguf) | f16 | 13.9 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
ILKT/2024-06-24_22-31-18_epoch_61
ILKT
2024-06-28T17:47:17Z
140
0
sentence-transformers
[ "sentence-transformers", "safetensors", "ILKT", "sentence-similarity", "mteb", "feature-extraction", "custom_code", "en", "pl", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-25T15:52:44Z
--- language: - en - pl model-index: - name: 2024-06-24_22-31-18_epoch_61 results: - dataset: config: default name: MTEB AllegroReviews revision: b89853e6de927b0e3bfa8ecc0e56fe4e02ceafc6 split: test type: PL-MTEB/allegro-reviews metrics: - type: accuracy value: 22.932405566600398 - type: f1 value: 20.94902529179322 task: type: Classification - dataset: config: default name: MTEB CBD revision: 36ddb419bcffe6a5374c3891957912892916f28d split: test type: PL-MTEB/cbd metrics: - type: accuracy value: 54.33 - type: ap value: 15.47199582631999 - type: f1 value: 45.997891561312656 task: type: Classification - dataset: config: default name: MTEB CDSC-E revision: 0a3d4aa409b22f80eb22cbf59b492637637b536d split: test type: PL-MTEB/cdsce-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB CDSC-R revision: 1cd6abbb00df7d14be3dbd76a7dcc64b3a79a7cd split: test type: PL-MTEB/cdscr-sts metrics: [] task: type: STS - dataset: config: default name: MTEB EightTagsClustering revision: 78b962b130c6690659c65abf67bf1c2f030606b6 split: test type: PL-MTEB/8tags-clustering metrics: - type: v_measure value: 9.084943103309566 - type: v_measure_std value: 1.458336761181277 task: type: Clustering - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 25.060524546065903 - type: f1 value: 22.58815267353224 task: type: Classification - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: validation type: mteb/amazon_massive_intent metrics: - type: accuracy value: 24.727004426955233 - type: f1 value: 22.280090733703737 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 32.7572293207801 - type: f1 value: 31.213486455980178 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: validation type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 32.508607968519435 - type: f1 value: 31.604345690790854 task: type: Classification - dataset: config: default name: MTEB PAC revision: fc69d1c153a8ccdcf1eef52f4e2a27f88782f543 split: test type: laugustyniak/abusive-clauses-pl metrics: - type: accuracy value: 61.24529394729221 - type: ap value: 71.93372173407076 - type: f1 value: 57.791653249991185 task: type: Classification - dataset: config: default name: MTEB PSC revision: d05a294af9e1d3ff2bfb6b714e08a24a6cabc669 split: test type: PL-MTEB/psc-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB PlscClusteringP2P revision: 8436dd4c05222778013d6642ee2f3fa1722bca9b split: test type: PL-MTEB/plsc-clustering-p2p metrics: - type: v_measure value: 36.0473526698752 task: type: Clustering - dataset: config: default name: MTEB PlscClusteringS2S revision: 39bcadbac6b1eddad7c1a0a176119ce58060289a split: test type: PL-MTEB/plsc-clustering-s2s metrics: - type: v_measure value: 31.62467732864379 task: type: Clustering - dataset: config: default name: MTEB PolEmo2.0-IN revision: d90724373c70959f17d2331ad51fb60c71176b03 split: test type: PL-MTEB/polemo2_in metrics: - type: accuracy value: 46.8005540166205 - type: f1 value: 48.70316734098828 task: type: Classification - dataset: config: default name: MTEB PolEmo2.0-OUT revision: 6a21ab8716e255ab1867265f8b396105e8aa63d4 split: test type: PL-MTEB/polemo2_out metrics: - type: accuracy value: 24.21052631578947 - type: f1 value: 19.523345189352405 task: type: Classification - dataset: config: default name: MTEB SICK-E-PL revision: 71bba34b0ece6c56dfcf46d9758a27f7a90f17e9 split: test type: PL-MTEB/sicke-pl-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB SICK-R-PL revision: fd5c2441b7eeff8676768036142af4cfa42c1339 split: test type: PL-MTEB/sickr-pl-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STS22 (pl) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: dev type: mteb/stsb_multi_mt metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: test type: mteb/stsb_multi_mt metrics: [] task: type: STS pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
yangzhao02/llama3-8b-base-dpo
yangzhao02
2024-06-28T17:43:47Z
4
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "dpo", "generated_from_trainer", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-06-28T13:17:00Z
--- tags: - trl - dpo - generated_from_trainer model-index: - name: llama3-8b-base-dpo-120 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/zhaoyang1/huggingface/runs/fbpwm86a) # llama3-8b-base-dpo-120 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4893 - Rewards/chosen: -0.5883 - Rewards/rejected: -1.3409 - Rewards/accuracies: 0.6905 - Rewards/margins: 0.7525 - Logps/rejected: -293.5897 - Logps/chosen: -331.5697 - Logits/rejected: 0.4485 - Logits/chosen: 0.2338 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 1 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 24 - gradient_accumulation_steps: 5 - total_train_batch_size: 120 - total_eval_batch_size: 48 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.467 | 0.4906 | 250 | 0.4987 | -0.6034 | -1.2547 | 0.7262 | 0.6512 | -291.8655 | -331.8713 | 0.4838 | 0.2542 | | 0.4536 | 0.9812 | 500 | 0.4893 | -0.5883 | -1.3409 | 0.6905 | 0.7525 | -293.5897 | -331.5697 | 0.4485 | 0.2338 | ### Framework versions - Transformers 4.42.0 - Pytorch 2.2.2+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
ShauryaNova/autotrain-rp16o-pxwa0
ShauryaNova
2024-06-28T17:43:40Z
8
0
sentence-transformers
[ "sentence-transformers", "tensorboard", "safetensors", "bert", "sentence-similarity", "feature-extraction", "autotrain", "base_model:sentence-transformers/all-MiniLM-L6-v2", "base_model:finetune:sentence-transformers/all-MiniLM-L6-v2", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-28T17:15:50Z
--- library_name: sentence-transformers tags: - sentence-transformers - sentence-similarity - feature-extraction - autotrain base_model: sentence-transformers/all-MiniLM-L6-v2 widget: - source_sentence: 'search_query: i love autotrain' sentences: - 'search_query: huggingface auto train' - 'search_query: hugging face auto train' - 'search_query: i love autotrain' pipeline_tag: sentence-similarity --- # Model Trained Using AutoTrain - Problem type: Sentence Transformers ## Validation Metrics loss: 0.056603044271469116 cosine_accuracy: 1.0 dot_accuracy: 0.0 manhattan_accuracy: 1.0 euclidean_accuracy: 1.0 max_accuracy: 1.0 runtime: 43.9603 samples_per_second: 13.194 steps_per_second: 0.842 : 3.0 ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the Hugging Face Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ 'search_query: autotrain', 'search_query: auto train', 'search_query: i love autotrain', ] embeddings = model.encode(sentences) print(embeddings.shape) # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) ```
ILKT/2024-06-24_22-31-18_epoch_60
ILKT
2024-06-28T17:42:00Z
140
0
sentence-transformers
[ "sentence-transformers", "safetensors", "ILKT", "sentence-similarity", "mteb", "feature-extraction", "custom_code", "en", "pl", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-25T15:33:26Z
--- language: - en - pl model-index: - name: 2024-06-24_22-31-18_epoch_60 results: - dataset: config: default name: MTEB AllegroReviews revision: b89853e6de927b0e3bfa8ecc0e56fe4e02ceafc6 split: test type: PL-MTEB/allegro-reviews metrics: - type: accuracy value: 23.86679920477137 - type: f1 value: 21.882489806075938 task: type: Classification - dataset: config: default name: MTEB CBD revision: 36ddb419bcffe6a5374c3891957912892916f28d split: test type: PL-MTEB/cbd metrics: - type: accuracy value: 54.96 - type: ap value: 16.367178584288883 - type: f1 value: 47.185167794463176 task: type: Classification - dataset: config: default name: MTEB CDSC-E revision: 0a3d4aa409b22f80eb22cbf59b492637637b536d split: test type: PL-MTEB/cdsce-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB CDSC-R revision: 1cd6abbb00df7d14be3dbd76a7dcc64b3a79a7cd split: test type: PL-MTEB/cdscr-sts metrics: [] task: type: STS - dataset: config: default name: MTEB EightTagsClustering revision: 78b962b130c6690659c65abf67bf1c2f030606b6 split: test type: PL-MTEB/8tags-clustering metrics: - type: v_measure value: 10.929651745558191 - type: v_measure_std value: 1.4613173779872772 task: type: Clustering - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 24.828513786146605 - type: f1 value: 23.50773383494496 task: type: Classification - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: validation type: mteb/amazon_massive_intent metrics: - type: accuracy value: 24.9877029021151 - type: f1 value: 22.925341846598787 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 32.48150638870209 - type: f1 value: 31.422287777752146 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: validation type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 32.242990654205606 - type: f1 value: 31.718443403022135 task: type: Classification - dataset: config: default name: MTEB PAC revision: fc69d1c153a8ccdcf1eef52f4e2a27f88782f543 split: test type: laugustyniak/abusive-clauses-pl metrics: - type: accuracy value: 62.87576020851434 - type: ap value: 73.15080832218128 - type: f1 value: 59.552044859037444 task: type: Classification - dataset: config: default name: MTEB PSC revision: d05a294af9e1d3ff2bfb6b714e08a24a6cabc669 split: test type: PL-MTEB/psc-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB PlscClusteringP2P revision: 8436dd4c05222778013d6642ee2f3fa1722bca9b split: test type: PL-MTEB/plsc-clustering-p2p metrics: - type: v_measure value: 36.406650287523476 task: type: Clustering - dataset: config: default name: MTEB PlscClusteringS2S revision: 39bcadbac6b1eddad7c1a0a176119ce58060289a split: test type: PL-MTEB/plsc-clustering-s2s metrics: - type: v_measure value: 31.85212838167898 task: type: Clustering - dataset: config: default name: MTEB PolEmo2.0-IN revision: d90724373c70959f17d2331ad51fb60c71176b03 split: test type: PL-MTEB/polemo2_in metrics: - type: accuracy value: 50.74792243767312 - type: f1 value: 51.79370776767938 task: type: Classification - dataset: config: default name: MTEB PolEmo2.0-OUT revision: 6a21ab8716e255ab1867265f8b396105e8aa63d4 split: test type: PL-MTEB/polemo2_out metrics: - type: accuracy value: 21.72064777327935 - type: f1 value: 17.209117243594445 task: type: Classification - dataset: config: default name: MTEB SICK-E-PL revision: 71bba34b0ece6c56dfcf46d9758a27f7a90f17e9 split: test type: PL-MTEB/sicke-pl-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB SICK-R-PL revision: fd5c2441b7eeff8676768036142af4cfa42c1339 split: test type: PL-MTEB/sickr-pl-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STS22 (pl) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: dev type: mteb/stsb_multi_mt metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: test type: mteb/stsb_multi_mt metrics: [] task: type: STS pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
ILKT/2024-06-24_22-31-18_epoch_59
ILKT
2024-06-28T17:40:49Z
140
0
sentence-transformers
[ "sentence-transformers", "safetensors", "ILKT", "sentence-similarity", "mteb", "feature-extraction", "custom_code", "en", "pl", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-25T15:14:19Z
--- language: - en - pl model-index: - name: 2024-06-24_22-31-18_epoch_59 results: - dataset: config: default name: MTEB AllegroReviews revision: b89853e6de927b0e3bfa8ecc0e56fe4e02ceafc6 split: test type: PL-MTEB/allegro-reviews metrics: - type: accuracy value: 23.290258449304176 - type: f1 value: 21.509087845399694 task: type: Classification - dataset: config: default name: MTEB CBD revision: 36ddb419bcffe6a5374c3891957912892916f28d split: test type: PL-MTEB/cbd metrics: - type: accuracy value: 56.05 - type: ap value: 15.78398498218104 - type: f1 value: 47.397988042921675 task: type: Classification - dataset: config: default name: MTEB CDSC-E revision: 0a3d4aa409b22f80eb22cbf59b492637637b536d split: test type: PL-MTEB/cdsce-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB CDSC-R revision: 1cd6abbb00df7d14be3dbd76a7dcc64b3a79a7cd split: test type: PL-MTEB/cdscr-sts metrics: [] task: type: STS - dataset: config: default name: MTEB EightTagsClustering revision: 78b962b130c6690659c65abf67bf1c2f030606b6 split: test type: PL-MTEB/8tags-clustering metrics: - type: v_measure value: 7.320766934631824 - type: v_measure_std value: 1.1646057607143652 task: type: Clustering - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 26.869535978480158 - type: f1 value: 25.215177623598578 task: type: Classification - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: validation type: mteb/amazon_massive_intent metrics: - type: accuracy value: 26.468273487456962 - type: f1 value: 24.373904499019712 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 33.36919973100202 - type: f1 value: 32.06093037046196 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: validation type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 33.413674372848 - type: f1 value: 32.70535475843592 task: type: Classification - dataset: config: default name: MTEB PAC revision: fc69d1c153a8ccdcf1eef52f4e2a27f88782f543 split: test type: laugustyniak/abusive-clauses-pl metrics: - type: accuracy value: 63.866203301476986 - type: ap value: 73.76128512968913 - type: f1 value: 61.05892164159117 task: type: Classification - dataset: config: default name: MTEB PSC revision: d05a294af9e1d3ff2bfb6b714e08a24a6cabc669 split: test type: PL-MTEB/psc-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB PlscClusteringP2P revision: 8436dd4c05222778013d6642ee2f3fa1722bca9b split: test type: PL-MTEB/plsc-clustering-p2p metrics: - type: v_measure value: 35.66040751469705 task: type: Clustering - dataset: config: default name: MTEB PlscClusteringS2S revision: 39bcadbac6b1eddad7c1a0a176119ce58060289a split: test type: PL-MTEB/plsc-clustering-s2s metrics: - type: v_measure value: 30.77367170717621 task: type: Clustering - dataset: config: default name: MTEB PolEmo2.0-IN revision: d90724373c70959f17d2331ad51fb60c71176b03 split: test type: PL-MTEB/polemo2_in metrics: - type: accuracy value: 50.18005540166205 - type: f1 value: 51.779903761185395 task: type: Classification - dataset: config: default name: MTEB PolEmo2.0-OUT revision: 6a21ab8716e255ab1867265f8b396105e8aa63d4 split: test type: PL-MTEB/polemo2_out metrics: - type: accuracy value: 21.538461538461537 - type: f1 value: 18.00426524613684 task: type: Classification - dataset: config: default name: MTEB SICK-E-PL revision: 71bba34b0ece6c56dfcf46d9758a27f7a90f17e9 split: test type: PL-MTEB/sicke-pl-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB SICK-R-PL revision: fd5c2441b7eeff8676768036142af4cfa42c1339 split: test type: PL-MTEB/sickr-pl-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STS22 (pl) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: dev type: mteb/stsb_multi_mt metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: test type: mteb/stsb_multi_mt metrics: [] task: type: STS pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
kurosekurose/wav2vec2-base-EMOPIA
kurosekurose
2024-06-28T17:39:11Z
35
0
transformers
[ "transformers", "pytorch", "safetensors", "wav2vec2", "generated_from_trainer", "base_model:facebook/wav2vec2-base", "base_model:finetune:facebook/wav2vec2-base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-03-15T15:47:31Z
--- base_model: facebook/wav2vec2-base license: apache-2.0 metrics: - accuracy tags: - generated_from_trainer model-index: - name: wav2vec2-base-EMOPIA results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-EMOPIA This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.1691 - Accuracy: 0.6338 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 3 - total_train_batch_size: 3 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8716 | 1.0 | 269 | 0.9822 | 0.6197 | | 0.8143 | 2.0 | 538 | 1.2324 | 0.5352 | | 0.7584 | 3.0 | 807 | 1.0226 | 0.6479 | | 0.6715 | 4.0 | 1076 | 0.9550 | 0.6620 | | 0.6471 | 5.0 | 1345 | 1.1272 | 0.6761 | | 0.5759 | 6.0 | 1614 | 1.2193 | 0.6761 | | 0.4963 | 7.0 | 1883 | 1.2214 | 0.7183 | | 0.4053 | 8.0 | 2152 | 1.3083 | 0.7465 | | 0.3344 | 9.0 | 2421 | 1.6391 | 0.6620 | | 0.3216 | 10.0 | 2690 | 1.7224 | 0.6479 | | 0.2248 | 11.0 | 2959 | 1.7973 | 0.6761 | | 0.1982 | 12.0 | 3228 | 2.0241 | 0.6479 | | 0.1362 | 13.0 | 3497 | 1.9933 | 0.6479 | | 0.0879 | 14.0 | 3766 | 2.0865 | 0.6479 | | 0.0712 | 15.0 | 4035 | 2.1691 | 0.6338 | ### Framework versions - Transformers 4.42.2 - Pytorch 2.3.1+cu118 - Datasets 2.20.0 - Tokenizers 0.19.1
mlx-community/TinyMistral-248M-8bits
mlx-community
2024-06-28T17:32:16Z
30
1
mlx
[ "mlx", "safetensors", "mistral", "text-generation", "en", "dataset:Skylion007/openwebtext", "dataset:JeanKaddour/minipile", "license:apache-2.0", "region:us" ]
text-generation
2024-06-28T17:30:42Z
--- language: - en license: apache-2.0 tags: - mlx datasets: - Skylion007/openwebtext - JeanKaddour/minipile pipeline_tag: text-generation inference: parameters: do_sample: true temperature: 0.5 top_p: 0.5 top_k: 50 max_new_tokens: 250 repetition_penalty: 1.176 --- # mlx-community/TinyMistral-248M-8bits The Model [mlx-community/TinyMistral-248M-8bits](https://huggingface.co/mlx-community/TinyMistral-248M-8bits) was converted to MLX format from [Locutusque/TinyMistral-248M](https://huggingface.co/Locutusque/TinyMistral-248M) using mlx-lm version **0.14.0**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/TinyMistral-248M-8bits") response = generate(model, tokenizer, prompt="hello", verbose=True) ```
ILKT/2024-06-24_22-31-18_epoch_55
ILKT
2024-06-28T17:19:18Z
140
0
sentence-transformers
[ "sentence-transformers", "safetensors", "ILKT", "sentence-similarity", "mteb", "feature-extraction", "custom_code", "en", "pl", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-25T13:56:23Z
--- language: - en - pl model-index: - name: 2024-06-24_22-31-18_epoch_55 results: - dataset: config: default name: MTEB AllegroReviews revision: b89853e6de927b0e3bfa8ecc0e56fe4e02ceafc6 split: test type: PL-MTEB/allegro-reviews metrics: - type: accuracy value: 22.86282306163022 - type: f1 value: 21.32278358968244 task: type: Classification - dataset: config: default name: MTEB CBD revision: 36ddb419bcffe6a5374c3891957912892916f28d split: test type: PL-MTEB/cbd metrics: - type: accuracy value: 55.57000000000001 - type: ap value: 15.68012521716698 - type: f1 value: 46.76720480718772 task: type: Classification - dataset: config: default name: MTEB CDSC-E revision: 0a3d4aa409b22f80eb22cbf59b492637637b536d split: test type: PL-MTEB/cdsce-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB CDSC-R revision: 1cd6abbb00df7d14be3dbd76a7dcc64b3a79a7cd split: test type: PL-MTEB/cdscr-sts metrics: [] task: type: STS - dataset: config: default name: MTEB EightTagsClustering revision: 78b962b130c6690659c65abf67bf1c2f030606b6 split: test type: PL-MTEB/8tags-clustering metrics: - type: v_measure value: 11.44974273401705 - type: v_measure_std value: 2.6336005930054065 task: type: Clustering - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 27.622730329522525 - type: f1 value: 25.903006106915726 task: type: Classification - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: validation type: mteb/amazon_massive_intent metrics: - type: accuracy value: 27.26020659124447 - type: f1 value: 25.128529286595942 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 36.593813046402154 - type: f1 value: 35.262887718884485 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: validation type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 36.20757501229709 - type: f1 value: 35.17455612323974 task: type: Classification - dataset: config: default name: MTEB PAC revision: fc69d1c153a8ccdcf1eef52f4e2a27f88782f543 split: test type: laugustyniak/abusive-clauses-pl metrics: - type: accuracy value: 62.52823631624674 - type: ap value: 73.0495405579752 - type: f1 value: 59.16875508637578 task: type: Classification - dataset: config: default name: MTEB PSC revision: d05a294af9e1d3ff2bfb6b714e08a24a6cabc669 split: test type: PL-MTEB/psc-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB PlscClusteringP2P revision: 8436dd4c05222778013d6642ee2f3fa1722bca9b split: test type: PL-MTEB/plsc-clustering-p2p metrics: - type: v_measure value: 35.58687427086566 task: type: Clustering - dataset: config: default name: MTEB PlscClusteringS2S revision: 39bcadbac6b1eddad7c1a0a176119ce58060289a split: test type: PL-MTEB/plsc-clustering-s2s metrics: - type: v_measure value: 32.17577390094799 task: type: Clustering - dataset: config: default name: MTEB PolEmo2.0-IN revision: d90724373c70959f17d2331ad51fb60c71176b03 split: test type: PL-MTEB/polemo2_in metrics: - type: accuracy value: 49.903047091412745 - type: f1 value: 51.2490780359124 task: type: Classification - dataset: config: default name: MTEB PolEmo2.0-OUT revision: 6a21ab8716e255ab1867265f8b396105e8aa63d4 split: test type: PL-MTEB/polemo2_out metrics: - type: accuracy value: 16.05263157894737 - type: f1 value: 14.630653114227302 task: type: Classification - dataset: config: default name: MTEB SICK-E-PL revision: 71bba34b0ece6c56dfcf46d9758a27f7a90f17e9 split: test type: PL-MTEB/sicke-pl-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB SICK-R-PL revision: fd5c2441b7eeff8676768036142af4cfa42c1339 split: test type: PL-MTEB/sickr-pl-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STS22 (pl) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: dev type: mteb/stsb_multi_mt metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: test type: mteb/stsb_multi_mt metrics: [] task: type: STS pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
RichardErkhov/gemmathon_-_gemma-2b-ko-dev-pbc432-gguf
RichardErkhov
2024-06-28T17:18:27Z
57
0
null
[ "gguf", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-06-28T15:55:43Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) gemma-2b-ko-dev-pbc432 - GGUF - Model creator: https://huggingface.co/gemmathon/ - Original model: https://huggingface.co/gemmathon/gemma-2b-ko-dev-pbc432/ | Name | Quant method | Size | | ---- | ---- | ---- | | [gemma-2b-ko-dev-pbc432.Q2_K.gguf](https://huggingface.co/RichardErkhov/gemmathon_-_gemma-2b-ko-dev-pbc432-gguf/blob/main/gemma-2b-ko-dev-pbc432.Q2_K.gguf) | Q2_K | 1.08GB | | [gemma-2b-ko-dev-pbc432.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/gemmathon_-_gemma-2b-ko-dev-pbc432-gguf/blob/main/gemma-2b-ko-dev-pbc432.IQ3_XS.gguf) | IQ3_XS | 1.16GB | | [gemma-2b-ko-dev-pbc432.IQ3_S.gguf](https://huggingface.co/RichardErkhov/gemmathon_-_gemma-2b-ko-dev-pbc432-gguf/blob/main/gemma-2b-ko-dev-pbc432.IQ3_S.gguf) | IQ3_S | 1.2GB | | [gemma-2b-ko-dev-pbc432.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/gemmathon_-_gemma-2b-ko-dev-pbc432-gguf/blob/main/gemma-2b-ko-dev-pbc432.Q3_K_S.gguf) | Q3_K_S | 1.2GB | | [gemma-2b-ko-dev-pbc432.IQ3_M.gguf](https://huggingface.co/RichardErkhov/gemmathon_-_gemma-2b-ko-dev-pbc432-gguf/blob/main/gemma-2b-ko-dev-pbc432.IQ3_M.gguf) | IQ3_M | 1.22GB | | [gemma-2b-ko-dev-pbc432.Q3_K.gguf](https://huggingface.co/RichardErkhov/gemmathon_-_gemma-2b-ko-dev-pbc432-gguf/blob/main/gemma-2b-ko-dev-pbc432.Q3_K.gguf) | Q3_K | 1.29GB | | [gemma-2b-ko-dev-pbc432.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/gemmathon_-_gemma-2b-ko-dev-pbc432-gguf/blob/main/gemma-2b-ko-dev-pbc432.Q3_K_M.gguf) | Q3_K_M | 1.29GB | | [gemma-2b-ko-dev-pbc432.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/gemmathon_-_gemma-2b-ko-dev-pbc432-gguf/blob/main/gemma-2b-ko-dev-pbc432.Q3_K_L.gguf) | Q3_K_L | 1.36GB | | [gemma-2b-ko-dev-pbc432.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/gemmathon_-_gemma-2b-ko-dev-pbc432-gguf/blob/main/gemma-2b-ko-dev-pbc432.IQ4_XS.gguf) | IQ4_XS | 1.4GB | | [gemma-2b-ko-dev-pbc432.Q4_0.gguf](https://huggingface.co/RichardErkhov/gemmathon_-_gemma-2b-ko-dev-pbc432-gguf/blob/main/gemma-2b-ko-dev-pbc432.Q4_0.gguf) | Q4_0 | 1.44GB | | [gemma-2b-ko-dev-pbc432.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/gemmathon_-_gemma-2b-ko-dev-pbc432-gguf/blob/main/gemma-2b-ko-dev-pbc432.IQ4_NL.gguf) | IQ4_NL | 1.45GB | | [gemma-2b-ko-dev-pbc432.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/gemmathon_-_gemma-2b-ko-dev-pbc432-gguf/blob/main/gemma-2b-ko-dev-pbc432.Q4_K_S.gguf) | Q4_K_S | 1.45GB | | [gemma-2b-ko-dev-pbc432.Q4_K.gguf](https://huggingface.co/RichardErkhov/gemmathon_-_gemma-2b-ko-dev-pbc432-gguf/blob/main/gemma-2b-ko-dev-pbc432.Q4_K.gguf) | Q4_K | 1.52GB | | [gemma-2b-ko-dev-pbc432.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/gemmathon_-_gemma-2b-ko-dev-pbc432-gguf/blob/main/gemma-2b-ko-dev-pbc432.Q4_K_M.gguf) | Q4_K_M | 1.52GB | | [gemma-2b-ko-dev-pbc432.Q4_1.gguf](https://huggingface.co/RichardErkhov/gemmathon_-_gemma-2b-ko-dev-pbc432-gguf/blob/main/gemma-2b-ko-dev-pbc432.Q4_1.gguf) | Q4_1 | 1.56GB | | [gemma-2b-ko-dev-pbc432.Q5_0.gguf](https://huggingface.co/RichardErkhov/gemmathon_-_gemma-2b-ko-dev-pbc432-gguf/blob/main/gemma-2b-ko-dev-pbc432.Q5_0.gguf) | Q5_0 | 1.68GB | | [gemma-2b-ko-dev-pbc432.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/gemmathon_-_gemma-2b-ko-dev-pbc432-gguf/blob/main/gemma-2b-ko-dev-pbc432.Q5_K_S.gguf) | Q5_K_S | 1.68GB | | [gemma-2b-ko-dev-pbc432.Q5_K.gguf](https://huggingface.co/RichardErkhov/gemmathon_-_gemma-2b-ko-dev-pbc432-gguf/blob/main/gemma-2b-ko-dev-pbc432.Q5_K.gguf) | Q5_K | 1.71GB | | [gemma-2b-ko-dev-pbc432.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/gemmathon_-_gemma-2b-ko-dev-pbc432-gguf/blob/main/gemma-2b-ko-dev-pbc432.Q5_K_M.gguf) | Q5_K_M | 1.71GB | | [gemma-2b-ko-dev-pbc432.Q5_1.gguf](https://huggingface.co/RichardErkhov/gemmathon_-_gemma-2b-ko-dev-pbc432-gguf/blob/main/gemma-2b-ko-dev-pbc432.Q5_1.gguf) | Q5_1 | 1.79GB | | [gemma-2b-ko-dev-pbc432.Q6_K.gguf](https://huggingface.co/RichardErkhov/gemmathon_-_gemma-2b-ko-dev-pbc432-gguf/blob/main/gemma-2b-ko-dev-pbc432.Q6_K.gguf) | Q6_K | 1.92GB | | [gemma-2b-ko-dev-pbc432.Q8_0.gguf](https://huggingface.co/RichardErkhov/gemmathon_-_gemma-2b-ko-dev-pbc432-gguf/blob/main/gemma-2b-ko-dev-pbc432.Q8_0.gguf) | Q8_0 | 2.49GB | Original model description: --- license: other library_name: transformers license_name: gemma-terms-of-use license_link: https://ai.google.dev/gemma/terms pipeline_tag: text-generation --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/Llama-3-Elyza-Youko-moe-2x8B-GGUF
mradermacher
2024-06-28T17:13:34Z
17
0
transformers
[ "transformers", "gguf", "en", "base_model:aixsatoshi/Llama-3-Elyza-Youko-moe-2x8B", "base_model:quantized:aixsatoshi/Llama-3-Elyza-Youko-moe-2x8B", "license:llama3", "endpoints_compatible", "region:us", "conversational" ]
null
2024-06-28T16:25:55Z
--- base_model: aixsatoshi/Llama-3-Elyza-Youko-moe-2x8B language: - en library_name: transformers license: llama3 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/aixsatoshi/Llama-3-Elyza-Youko-moe-2x8B <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Llama-3-Elyza-Youko-moe-2x8B-GGUF/resolve/main/Llama-3-Elyza-Youko-moe-2x8B.Q2_K.gguf) | Q2_K | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Elyza-Youko-moe-2x8B-GGUF/resolve/main/Llama-3-Elyza-Youko-moe-2x8B.IQ3_XS.gguf) | IQ3_XS | 5.9 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Elyza-Youko-moe-2x8B-GGUF/resolve/main/Llama-3-Elyza-Youko-moe-2x8B.Q3_K_S.gguf) | Q3_K_S | 6.2 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Elyza-Youko-moe-2x8B-GGUF/resolve/main/Llama-3-Elyza-Youko-moe-2x8B.IQ3_S.gguf) | IQ3_S | 6.2 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Elyza-Youko-moe-2x8B-GGUF/resolve/main/Llama-3-Elyza-Youko-moe-2x8B.IQ3_M.gguf) | IQ3_M | 6.3 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Elyza-Youko-moe-2x8B-GGUF/resolve/main/Llama-3-Elyza-Youko-moe-2x8B.Q3_K_M.gguf) | Q3_K_M | 6.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Elyza-Youko-moe-2x8B-GGUF/resolve/main/Llama-3-Elyza-Youko-moe-2x8B.Q3_K_L.gguf) | Q3_K_L | 7.3 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Elyza-Youko-moe-2x8B-GGUF/resolve/main/Llama-3-Elyza-Youko-moe-2x8B.IQ4_XS.gguf) | IQ4_XS | 7.6 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Elyza-Youko-moe-2x8B-GGUF/resolve/main/Llama-3-Elyza-Youko-moe-2x8B.Q4_K_S.gguf) | Q4_K_S | 8.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Elyza-Youko-moe-2x8B-GGUF/resolve/main/Llama-3-Elyza-Youko-moe-2x8B.Q4_K_M.gguf) | Q4_K_M | 8.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Elyza-Youko-moe-2x8B-GGUF/resolve/main/Llama-3-Elyza-Youko-moe-2x8B.Q5_K_S.gguf) | Q5_K_S | 9.6 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Elyza-Youko-moe-2x8B-GGUF/resolve/main/Llama-3-Elyza-Youko-moe-2x8B.Q5_K_M.gguf) | Q5_K_M | 9.8 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Elyza-Youko-moe-2x8B-GGUF/resolve/main/Llama-3-Elyza-Youko-moe-2x8B.Q6_K.gguf) | Q6_K | 11.3 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Elyza-Youko-moe-2x8B-GGUF/resolve/main/Llama-3-Elyza-Youko-moe-2x8B.Q8_0.gguf) | Q8_0 | 14.6 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
ILKT/2024-06-24_22-31-18_epoch_52
ILKT
2024-06-28T17:07:14Z
147
0
sentence-transformers
[ "sentence-transformers", "safetensors", "ILKT", "sentence-similarity", "mteb", "feature-extraction", "custom_code", "en", "pl", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-25T12:57:35Z
--- language: - en - pl model-index: - name: 2024-06-24_22-31-18_epoch_52 results: - dataset: config: default name: MTEB AllegroReviews revision: b89853e6de927b0e3bfa8ecc0e56fe4e02ceafc6 split: test type: PL-MTEB/allegro-reviews metrics: - type: accuracy value: 23.389662027833005 - type: f1 value: 21.43078920869762 task: type: Classification - dataset: config: default name: MTEB CBD revision: 36ddb419bcffe6a5374c3891957912892916f28d split: test type: PL-MTEB/cbd metrics: - type: accuracy value: 53.42 - type: ap value: 15.60707097305462 - type: f1 value: 45.74272892086198 task: type: Classification - dataset: config: default name: MTEB CDSC-E revision: 0a3d4aa409b22f80eb22cbf59b492637637b536d split: test type: PL-MTEB/cdsce-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB CDSC-R revision: 1cd6abbb00df7d14be3dbd76a7dcc64b3a79a7cd split: test type: PL-MTEB/cdscr-sts metrics: [] task: type: STS - dataset: config: default name: MTEB EightTagsClustering revision: 78b962b130c6690659c65abf67bf1c2f030606b6 split: test type: PL-MTEB/8tags-clustering metrics: - type: v_measure value: 8.808695576377874 - type: v_measure_std value: 1.8978369423148689 task: type: Clustering - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 28.194351042367188 - type: f1 value: 26.460418424351168 task: type: Classification - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: validation type: mteb/amazon_massive_intent metrics: - type: accuracy value: 27.584849975405813 - type: f1 value: 25.880856873378306 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 36.66778749159381 - type: f1 value: 35.73019148736344 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: validation type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 35.95671421544516 - type: f1 value: 35.40835927928668 task: type: Classification - dataset: config: default name: MTEB PAC revision: fc69d1c153a8ccdcf1eef52f4e2a27f88782f543 split: test type: laugustyniak/abusive-clauses-pl metrics: - type: accuracy value: 65.36634810309876 - type: ap value: 74.39369241586353 - type: f1 value: 62.05646583155308 task: type: Classification - dataset: config: default name: MTEB PSC revision: d05a294af9e1d3ff2bfb6b714e08a24a6cabc669 split: test type: PL-MTEB/psc-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB PlscClusteringP2P revision: 8436dd4c05222778013d6642ee2f3fa1722bca9b split: test type: PL-MTEB/plsc-clustering-p2p metrics: - type: v_measure value: 36.84022540962507 task: type: Clustering - dataset: config: default name: MTEB PlscClusteringS2S revision: 39bcadbac6b1eddad7c1a0a176119ce58060289a split: test type: PL-MTEB/plsc-clustering-s2s metrics: - type: v_measure value: 32.210088799097576 task: type: Clustering - dataset: config: default name: MTEB PolEmo2.0-IN revision: d90724373c70959f17d2331ad51fb60c71176b03 split: test type: PL-MTEB/polemo2_in metrics: - type: accuracy value: 47.78393351800555 - type: f1 value: 49.56616389760143 task: type: Classification - dataset: config: default name: MTEB PolEmo2.0-OUT revision: 6a21ab8716e255ab1867265f8b396105e8aa63d4 split: test type: PL-MTEB/polemo2_out metrics: - type: accuracy value: 21.558704453441297 - type: f1 value: 17.83311916226355 task: type: Classification - dataset: config: default name: MTEB SICK-E-PL revision: 71bba34b0ece6c56dfcf46d9758a27f7a90f17e9 split: test type: PL-MTEB/sicke-pl-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB SICK-R-PL revision: fd5c2441b7eeff8676768036142af4cfa42c1339 split: test type: PL-MTEB/sickr-pl-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STS22 (pl) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: dev type: mteb/stsb_multi_mt metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: test type: mteb/stsb_multi_mt metrics: [] task: type: STS pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
srinivasan-sridhar28/bert-finetuned-ner
srinivasan-sridhar28
2024-06-28T17:06:46Z
107
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-06-28T14:01:58Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9345346338237726 - name: Recall type: recall value: 0.9513631773813531 - name: F1 type: f1 value: 0.9428738220331916 - name: Accuracy type: accuracy value: 0.9865632542532525 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0628 - Precision: 0.9345 - Recall: 0.9514 - F1: 0.9429 - Accuracy: 0.9866 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.078 | 1.0 | 1756 | 0.0681 | 0.9034 | 0.9298 | 0.9164 | 0.9819 | | 0.0362 | 2.0 | 3512 | 0.0692 | 0.9306 | 0.9428 | 0.9366 | 0.9850 | | 0.0205 | 3.0 | 5268 | 0.0628 | 0.9345 | 0.9514 | 0.9429 | 0.9866 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1
iremmd/thy_model_32
iremmd
2024-06-28T17:04:04Z
7
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "base_model:quantized:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-06-28T16:51:53Z
--- base_model: unsloth/llama-3-8b-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - gguf --- # Uploaded model - **Developed by:** iremmd - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Kit-Lemonfoot/kitlemonfoot_gptsovits_models
Kit-Lemonfoot
2024-06-28T16:59:51Z
0
1
null
[ "speech", "gpt-sovits", "dataset:Kit-Lemonfoot/LemonfootVoiceDatasets", "license:creativeml-openrail-m", "region:us" ]
null
2024-03-05T02:16:49Z
--- license: creativeml-openrail-m tags: - speech - gpt-sovits datasets: - Kit-Lemonfoot/LemonfootVoiceDatasets --- # Kit Lemonfoot's GPT-SoVITS Models This repository exists to host GPT-SoVITS models made by Kit Lemonfoot. Please credit me if you use any models in this repository in any way. ## Currently Avaliable Models: - Vestia Zeta [Hololive ID] - Mori Calliope [Hololive EN] - Amelia Watson [Hololive EN] - Shiori Novella [Hololive EN] - Finana Ryugu [Nijisanji EN] - Pipkin Pippa [Phase Connect] - Tenma Maemi [Phase Connect] - Ashelia Rinkou [Phase Connect] - Dokibird [YouTubers] - Mint Fantôme [YouTubers]
mgoin/Meta-Llama-3-8B-Instruct-pruned50-quant-ds
mgoin
2024-06-28T16:59:41Z
25
0
transformers
[ "transformers", "onnx", "llama", "text-generation", "deepsparse", "conversational", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:quantized:meta-llama/Meta-Llama-3-8B-Instruct", "autotrain_compatible", "region:us" ]
text-generation
2024-06-28T16:13:17Z
--- base_model: meta-llama/Meta-Llama-3-8B-Instruct inference: false tags: - deepsparse --- Llama 3 8B Instruct that has been compressed in one-shot to 50% sparsity and INT8 weights+activations using SparseGPT, SmoothQuant, and GPTQ. Made with SparseML+DeepSparse=1.7. Install with `pip install deepsparse~=1.7 "sparseml[transformers]"~=1.7 "numpy<2"`. Here is the script used for SparseML compression: ```python from datasets import load_dataset from sparseml.transformers import ( SparseAutoModelForCausalLM, SparseAutoTokenizer, load_dataset, compress, ) model = SparseAutoModelForCausalLM.from_pretrained( "meta-llama/Meta-Llama-3-8B-Instruct", device_map="auto" ) tokenizer = SparseAutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct") dataset = load_dataset("garage-bAInd/Open-Platypus") def format_data(data): instruction = tokenizer.apply_chat_template( [{"role": "user", "content": data["instruction"]}], tokenize=False, add_generation_prompt=True, ) return {"text": instruction + data["output"]} dataset = dataset.map(format_data) recipe = """ compression_stage: run_type: oneshot oneshot_modifiers: QuantizationModifier: ignore: # These operations don't make sense to quantize - LlamaRotaryEmbedding - LlamaRMSNorm - SiLUActivation - QuantizableMatMul # Skip quantizing the layers with the most sensitive activations - model.layers.1.mlp.down_proj - model.layers.31.mlp.down_proj - model.layers.14.self_attn.q_proj - model.layers.14.self_attn.k_proj - model.layers.14.self_attn.v_proj post_oneshot_calibration: true scheme_overrides: # Enable channelwise quantization for better accuracy Linear: weights: num_bits: 8 symmetric: true strategy: channel # For the embeddings, only weight-quantization makes sense Embedding: input_activations: null weights: num_bits: 8 symmetric: false SparseGPTModifier: sparsity: 0.5 quantize: True targets: ['re:model.layers.\\d*$'] """ compress( model=model, tokenizer=tokenizer, dataset=dataset, recipe=recipe, output_dir="./one-shot-checkpoint", ) ```
ILKT/2024-06-24_22-31-18_epoch_49
ILKT
2024-06-28T16:55:07Z
141
0
sentence-transformers
[ "sentence-transformers", "safetensors", "ILKT", "sentence-similarity", "mteb", "feature-extraction", "custom_code", "en", "pl", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-25T11:59:56Z
--- language: - en - pl model-index: - name: 2024-06-24_22-31-18_epoch_49 results: - dataset: config: default name: MTEB AllegroReviews revision: b89853e6de927b0e3bfa8ecc0e56fe4e02ceafc6 split: test type: PL-MTEB/allegro-reviews metrics: - type: accuracy value: 23.220675944333998 - type: f1 value: 20.735651305223108 task: type: Classification - dataset: config: default name: MTEB CBD revision: 36ddb419bcffe6a5374c3891957912892916f28d split: test type: PL-MTEB/cbd metrics: - type: accuracy value: 54.22 - type: ap value: 15.071677708208137 - type: f1 value: 45.499279764845674 task: type: Classification - dataset: config: default name: MTEB CDSC-E revision: 0a3d4aa409b22f80eb22cbf59b492637637b536d split: test type: PL-MTEB/cdsce-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB CDSC-R revision: 1cd6abbb00df7d14be3dbd76a7dcc64b3a79a7cd split: test type: PL-MTEB/cdscr-sts metrics: [] task: type: STS - dataset: config: default name: MTEB EightTagsClustering revision: 78b962b130c6690659c65abf67bf1c2f030606b6 split: test type: PL-MTEB/8tags-clustering metrics: - type: v_measure value: 10.694919674511663 - type: v_measure_std value: 1.606686134664951 task: type: Clustering - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 27.37726967047747 - type: f1 value: 25.537951926761448 task: type: Classification - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: validation type: mteb/amazon_massive_intent metrics: - type: accuracy value: 26.27151992129858 - type: f1 value: 24.27490477504838 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 33.92737054472092 - type: f1 value: 32.550588065653145 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: validation type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 32.823413674372844 - type: f1 value: 32.00836868024851 task: type: Classification - dataset: config: default name: MTEB PAC revision: fc69d1c153a8ccdcf1eef52f4e2a27f88782f543 split: test type: laugustyniak/abusive-clauses-pl metrics: - type: accuracy value: 67.64552562988706 - type: ap value: 75.1700569219729 - type: f1 value: 63.86372795462002 task: type: Classification - dataset: config: default name: MTEB PSC revision: d05a294af9e1d3ff2bfb6b714e08a24a6cabc669 split: test type: PL-MTEB/psc-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB PlscClusteringP2P revision: 8436dd4c05222778013d6642ee2f3fa1722bca9b split: test type: PL-MTEB/plsc-clustering-p2p metrics: - type: v_measure value: 35.26588194986782 task: type: Clustering - dataset: config: default name: MTEB PlscClusteringS2S revision: 39bcadbac6b1eddad7c1a0a176119ce58060289a split: test type: PL-MTEB/plsc-clustering-s2s metrics: - type: v_measure value: 31.751898030974658 task: type: Clustering - dataset: config: default name: MTEB PolEmo2.0-IN revision: d90724373c70959f17d2331ad51fb60c71176b03 split: test type: PL-MTEB/polemo2_in metrics: - type: accuracy value: 48.18559556786703 - type: f1 value: 50.63657474760809 task: type: Classification - dataset: config: default name: MTEB PolEmo2.0-OUT revision: 6a21ab8716e255ab1867265f8b396105e8aa63d4 split: test type: PL-MTEB/polemo2_out metrics: - type: accuracy value: 22.469635627530362 - type: f1 value: 19.48121978570884 task: type: Classification - dataset: config: default name: MTEB SICK-E-PL revision: 71bba34b0ece6c56dfcf46d9758a27f7a90f17e9 split: test type: PL-MTEB/sicke-pl-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB SICK-R-PL revision: fd5c2441b7eeff8676768036142af4cfa42c1339 split: test type: PL-MTEB/sickr-pl-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STS22 (pl) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: dev type: mteb/stsb_multi_mt metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: test type: mteb/stsb_multi_mt metrics: [] task: type: STS pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
ILKT/2024-06-24_22-31-18_epoch_47
ILKT
2024-06-28T16:44:28Z
142
0
sentence-transformers
[ "sentence-transformers", "safetensors", "ILKT", "sentence-similarity", "mteb", "feature-extraction", "custom_code", "en", "pl", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-25T11:22:04Z
--- language: - en - pl model-index: - name: 2024-06-24_22-31-18_epoch_47 results: - dataset: config: default name: MTEB AllegroReviews revision: b89853e6de927b0e3bfa8ecc0e56fe4e02ceafc6 split: test type: PL-MTEB/allegro-reviews metrics: - type: accuracy value: 24.224652087475146 - type: f1 value: 22.197349586271862 task: type: Classification - dataset: config: default name: MTEB CBD revision: 36ddb419bcffe6a5374c3891957912892916f28d split: test type: PL-MTEB/cbd metrics: - type: accuracy value: 55.11000000000001 - type: ap value: 15.439755473946972 - type: f1 value: 46.63708808621908 task: type: Classification - dataset: config: default name: MTEB CDSC-E revision: 0a3d4aa409b22f80eb22cbf59b492637637b536d split: test type: PL-MTEB/cdsce-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB CDSC-R revision: 1cd6abbb00df7d14be3dbd76a7dcc64b3a79a7cd split: test type: PL-MTEB/cdscr-sts metrics: [] task: type: STS - dataset: config: default name: MTEB EightTagsClustering revision: 78b962b130c6690659c65abf67bf1c2f030606b6 split: test type: PL-MTEB/8tags-clustering metrics: - type: v_measure value: 11.483440601500842 - type: v_measure_std value: 2.214700617841053 task: type: Clustering - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 29.56624075319435 - type: f1 value: 27.566380470193025 task: type: Classification - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: validation type: mteb/amazon_massive_intent metrics: - type: accuracy value: 29.252336448598133 - type: f1 value: 26.43327803125083 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 37.726967047747145 - type: f1 value: 35.488045013857636 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: validation type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 37.40777176586326 - type: f1 value: 35.73001265939156 task: type: Classification - dataset: config: default name: MTEB PAC revision: fc69d1c153a8ccdcf1eef52f4e2a27f88782f543 split: test type: laugustyniak/abusive-clauses-pl metrics: - type: accuracy value: 62.589052997393566 - type: ap value: 73.31614916490435 - type: f1 value: 59.74859354718296 task: type: Classification - dataset: config: default name: MTEB PSC revision: d05a294af9e1d3ff2bfb6b714e08a24a6cabc669 split: test type: PL-MTEB/psc-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB PlscClusteringP2P revision: 8436dd4c05222778013d6642ee2f3fa1722bca9b split: test type: PL-MTEB/plsc-clustering-p2p metrics: - type: v_measure value: 35.15870428407872 task: type: Clustering - dataset: config: default name: MTEB PlscClusteringS2S revision: 39bcadbac6b1eddad7c1a0a176119ce58060289a split: test type: PL-MTEB/plsc-clustering-s2s metrics: - type: v_measure value: 31.302698279530393 task: type: Clustering - dataset: config: default name: MTEB PolEmo2.0-IN revision: d90724373c70959f17d2331ad51fb60c71176b03 split: test type: PL-MTEB/polemo2_in metrics: - type: accuracy value: 49.362880886426595 - type: f1 value: 50.96460093590364 task: type: Classification - dataset: config: default name: MTEB PolEmo2.0-OUT revision: 6a21ab8716e255ab1867265f8b396105e8aa63d4 split: test type: PL-MTEB/polemo2_out metrics: - type: accuracy value: 24.33198380566802 - type: f1 value: 19.361423993025443 task: type: Classification - dataset: config: default name: MTEB SICK-E-PL revision: 71bba34b0ece6c56dfcf46d9758a27f7a90f17e9 split: test type: PL-MTEB/sicke-pl-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB SICK-R-PL revision: fd5c2441b7eeff8676768036142af4cfa42c1339 split: test type: PL-MTEB/sickr-pl-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STS22 (pl) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: dev type: mteb/stsb_multi_mt metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: test type: mteb/stsb_multi_mt metrics: [] task: type: STS pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
turkish-nlp-suite/POS-bert-128K-midsize
turkish-nlp-suite
2024-06-28T16:43:00Z
182
0
transformers
[ "transformers", "safetensors", "bert", "token-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-06-28T16:42:28Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
1231czx/7b_dpo_iter2_7e7_bz_32_cv
1231czx
2024-06-28T16:42:52Z
6
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-06-28T16:39:29Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
turkish-nlp-suite/POS-bert-52K-midsize
turkish-nlp-suite
2024-06-28T16:40:33Z
182
0
transformers
[ "transformers", "safetensors", "bert", "token-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-06-28T16:38:38Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
outy/haniwa_LoRA2
outy
2024-06-28T16:40:12Z
3
0
diffusers
[ "diffusers", "tensorboard", "text-to-image", "diffusers-training", "dora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2024-06-16T14:59:33Z
--- license: openrail++ library_name: diffusers tags: - text-to-image - text-to-image - diffusers-training - diffusers - dora - template:sd-lora - stable-diffusion-xl - stable-diffusion-xl-diffusers base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of TOK haniwa widget: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # SDXL LoRA DreamBooth - outy/haniwa_LoRA2 <Gallery /> ## Model description These are outy/haniwa_LoRA2 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use "a photo of TOK haniwa" to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](outy/haniwa_LoRA2/tree/main) them in the Files & versions tab. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
nelsonjq/frame-semantic-transformer-french-small
nelsonjq
2024-06-28T16:37:34Z
106
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "framenet", "fr", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-06-28T16:25:11Z
--- license: apache-2.0 language: - fr tags: - framenet --- Fine-tuned T5 small model for use as a frame semantic parser for French language in the [Frame Semantic Transformer project](https://github.com/chanind/frame-semantic-transformer). This model is trained on data from the [French FrameNet project called ASFALDA](https://sites.google.com/site/anrasfalda/). # Usage This is meant to be used a part of [Frame Semantic Transformer](https://github.com/chanind/frame-semantic-transformer). See that project for usage instructions. # Tasks This model is trained to perform 3 tasks related to semantic frame parsing: * Identify frame trigger locations in the text * Classify the frame given a trigger location * Extract frame elements in the sentence # Performance This model is trained on the whole dataset of ASFALDA. The evaluation is pending. # More info This training was part of the research project on FrameNet for analyzing Corporate Social Responsability (CSR, or RSE in French) reports. The GitHub repository of this project can be [accessed here: RSE-FrameNet](https://github.com/NelsonJQ/RSE-FrameNet).
turkish-nlp-suite/POS-bert-128K-small
turkish-nlp-suite
2024-06-28T16:36:59Z
188
0
transformers
[ "transformers", "safetensors", "bert", "token-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-06-28T16:36:20Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
turkish-nlp-suite/POS-bert-32K-midsize
turkish-nlp-suite
2024-06-28T16:36:34Z
181
0
transformers
[ "transformers", "safetensors", "bert", "token-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-06-28T16:36:23Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
shng2025/xlm-roberta-base-finetuned-panx-en
shng2025
2024-06-28T16:36:25Z
106
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "token-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-06-27T13:44:42Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4010 - F1: 0.6807 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.0335 | 1.0 | 50 | 0.4896 | 0.6043 | | 0.4883 | 2.0 | 100 | 0.4397 | 0.6465 | | 0.3936 | 3.0 | 150 | 0.4010 | 0.6807 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1
damgomz/fp_bs1_lr5_x4
damgomz
2024-06-28T16:36:07Z
108
0
transformers
[ "transformers", "safetensors", "albert", "fill-mask", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2024-06-25T10:12:38Z
--- language: en tags: - fill-mask --- ## Environmental Impact (CODE CARBON DEFAULT) | Metric | Value | |--------------------------|---------------------------------| | Duration (in seconds) | [More Information Needed] | | Emissions (Co2eq in kg) | [More Information Needed] | | CPU power (W) | [NO CPU] | | GPU power (W) | [No GPU] | | RAM power (W) | [More Information Needed] | | CPU energy (kWh) | [No CPU] | | GPU energy (kWh) | [No GPU] | | RAM energy (kWh) | [More Information Needed] | | Consumed energy (kWh) | [More Information Needed] | | Country name | [More Information Needed] | | Cloud provider | [No Cloud] | | Cloud region | [No Cloud] | | CPU count | [No CPU] | | CPU model | [No CPU] | | GPU count | [No GPU] | | GPU model | [No GPU] | ## Environmental Impact (for one core) | Metric | Value | |--------------------------|---------------------------------| | CPU energy (kWh) | [No CPU] | | Emissions (Co2eq in kg) | [More Information Needed] | ## Note 24 juin 2024 ! ## My Config | Config | Value | |--------------------------|-----------------| | checkpoint | albert-base-v2 | | model_name | fp_bs1_lr5_x4 | | sequence_length | 400 | | num_epoch | 6 | | learning_rate | 5e-05 | | batch_size | 1 | | weight_decay | 0.0 | | warm_up_prop | 0.0 | | drop_out_prob | 0.1 | | packing_length | 100 | | train_test_split | 0.2 | | num_steps | 662818 | ## Training and Testing steps Epoch | Train Loss | Test Loss ---|---|--- | 0.0 | 15.241581 | 12.120975 | | 0.5 | 5.497093 | 7.297294 | | 1.0 | 7.354010 | 7.360407 | | 1.5 | 7.350967 | 7.350409 | | 2.0 | 7.398173 | 7.515934 | | 2.5 | 7.383929 | 7.345428 | | 3.0 | 7.333906 | 7.355884 | | 3.5 | 7.334240 | 7.339396 | | 4.0 | 7.327380 | 7.331812 | | 4.5 | 7.311137 | 7.321233 | | 5.0 | 7.297813 | 7.296060 | | 5.5 | 7.278189 | 7.279098 |
turkish-nlp-suite/POS-bert-52K-small
turkish-nlp-suite
2024-06-28T16:34:18Z
182
0
transformers
[ "transformers", "safetensors", "bert", "token-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-06-28T16:34:04Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ILKT/2024-06-24_22-31-18_epoch_45
ILKT
2024-06-28T16:33:45Z
140
0
sentence-transformers
[ "sentence-transformers", "safetensors", "ILKT", "sentence-similarity", "mteb", "feature-extraction", "custom_code", "en", "pl", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-25T10:43:17Z
--- language: - en - pl model-index: - name: 2024-06-24_22-31-18_epoch_45 results: - dataset: config: default name: MTEB AllegroReviews revision: b89853e6de927b0e3bfa8ecc0e56fe4e02ceafc6 split: test type: PL-MTEB/allegro-reviews metrics: - type: accuracy value: 22.95228628230616 - type: f1 value: 20.758134175255407 task: type: Classification - dataset: config: default name: MTEB CBD revision: 36ddb419bcffe6a5374c3891957912892916f28d split: test type: PL-MTEB/cbd metrics: - type: accuracy value: 59.160000000000004 - type: ap value: 16.042846996837472 - type: f1 value: 49.077145077829684 task: type: Classification - dataset: config: default name: MTEB CDSC-E revision: 0a3d4aa409b22f80eb22cbf59b492637637b536d split: test type: PL-MTEB/cdsce-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB CDSC-R revision: 1cd6abbb00df7d14be3dbd76a7dcc64b3a79a7cd split: test type: PL-MTEB/cdscr-sts metrics: [] task: type: STS - dataset: config: default name: MTEB EightTagsClustering revision: 78b962b130c6690659c65abf67bf1c2f030606b6 split: test type: PL-MTEB/8tags-clustering metrics: - type: v_measure value: 7.790770505399927 - type: v_measure_std value: 0.9426097962459844 task: type: Clustering - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 24.926025554808334 - type: f1 value: 22.683891279408485 task: type: Classification - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: validation type: mteb/amazon_massive_intent metrics: - type: accuracy value: 25.036891293654694 - type: f1 value: 22.678050107906156 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 31.274377942165426 - type: f1 value: 29.945511983056594 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: validation type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 30.69355632070831 - type: f1 value: 29.846805091244335 task: type: Classification - dataset: config: default name: MTEB PAC revision: fc69d1c153a8ccdcf1eef52f4e2a27f88782f543 split: test type: laugustyniak/abusive-clauses-pl metrics: - type: accuracy value: 63.61424847958297 - type: ap value: 72.9605020338053 - type: f1 value: 59.65659959759218 task: type: Classification - dataset: config: default name: MTEB PSC revision: d05a294af9e1d3ff2bfb6b714e08a24a6cabc669 split: test type: PL-MTEB/psc-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB PlscClusteringP2P revision: 8436dd4c05222778013d6642ee2f3fa1722bca9b split: test type: PL-MTEB/plsc-clustering-p2p metrics: - type: v_measure value: 35.51152964059234 task: type: Clustering - dataset: config: default name: MTEB PlscClusteringS2S revision: 39bcadbac6b1eddad7c1a0a176119ce58060289a split: test type: PL-MTEB/plsc-clustering-s2s metrics: - type: v_measure value: 31.444001049140937 task: type: Clustering - dataset: config: default name: MTEB PolEmo2.0-IN revision: d90724373c70959f17d2331ad51fb60c71176b03 split: test type: PL-MTEB/polemo2_in metrics: - type: accuracy value: 46.191135734072034 - type: f1 value: 47.06241405765367 task: type: Classification - dataset: config: default name: MTEB PolEmo2.0-OUT revision: 6a21ab8716e255ab1867265f8b396105e8aa63d4 split: test type: PL-MTEB/polemo2_out metrics: - type: accuracy value: 21.761133603238868 - type: f1 value: 19.445751422628245 task: type: Classification - dataset: config: default name: MTEB SICK-E-PL revision: 71bba34b0ece6c56dfcf46d9758a27f7a90f17e9 split: test type: PL-MTEB/sicke-pl-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB SICK-R-PL revision: fd5c2441b7eeff8676768036142af4cfa42c1339 split: test type: PL-MTEB/sickr-pl-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STS22 (pl) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: dev type: mteb/stsb_multi_mt metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: test type: mteb/stsb_multi_mt metrics: [] task: type: STS pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
BUAADreamer/Yi-VL-34B-hf
BUAADreamer
2024-06-28T16:31:36Z
12
5
transformers
[ "transformers", "safetensors", "llama-factory", "yi-vl", "llava", "visual-question-answering", "zh", "en", "license:other", "endpoints_compatible", "region:us" ]
visual-question-answering
2024-05-15T07:14:05Z
--- library_name: transformers tags: - llama-factory - yi-vl - llava license: other language: - zh - en pipeline_tag: visual-question-answering --- This is the Huggingface version of [Yi-VL-34B](https://huggingface.co/01-ai/Yi-VL-34B) model. You may use this model for fine-tuning in downstream tasks, we recommend using our efficient fine-tuning toolkit. https://github.com/hiyouga/LLaMA-Factory - **Developed by:** [01-AI](https://www.01.ai/). - **Language(s) (NLP):** Chinese/English - **License:** [Yi Series Model License](https://huggingface.co/01-ai/Yi-VL-34B/blob/main/LICENSE) Usage: ```python import requests from PIL import Image import torch from transformers import AutoProcessor, AutoModelForVision2Seq, LlavaConfig import transformers from torch import nn class LlavaMultiModalProjectorYiVL(nn.Module): def __init__(self, config: "LlavaConfig"): super().__init__() self.linear_1 = nn.Linear(config.vision_config.hidden_size, config.text_config.hidden_size, bias=True) self.linear_2 = nn.LayerNorm(config.text_config.hidden_size, bias=True) self.linear_3 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True) self.linear_4 = nn.LayerNorm(config.text_config.hidden_size, bias=True) self.act = nn.GELU() def forward(self, image_features): hidden_states = self.linear_1(image_features) hidden_states = self.linear_2(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.linear_3(hidden_states) hidden_states = self.linear_4(hidden_states) return hidden_states # Monkey patch of LlavaMultiModalProjector is mandatory transformers.models.llava.modeling_llava.LlavaMultiModalProjector = LlavaMultiModalProjectorYiVL model_id = "BUAADreamer/Yi-VL-34B-hf" messages = [ { "role": "user", "content": "<image>What's in the picture?" } ] image_file = "http://images.cocodataset.org/val2017/000000039769.jpg" model = AutoModelForVision2Seq.from_pretrained( model_id, torch_dtype=torch.float16, low_cpu_mem_usage=True, ).to(0) processor = AutoProcessor.from_pretrained(model_id) text = [processor.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=False)] images = [Image.open(requests.get(image_file, stream=True).raw)] inputs = processor(text=text, images=images, return_tensors='pt').to(0, torch.float16) output = model.generate(**inputs, max_new_tokens=200) output = processor.batch_decode(output, skip_special_tokens=True) print(output.split("Assistant:")[-1].strip()) ``` You could also alternatively launch a Web demo by using the CLI command in [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory) ```bash llamafactory-cli webchat \ --model_name_or_path BUAADreamer/Yi-VL-34B-hf \ --template yi_vl \ --visual_inputs ```
BUAADreamer/Yi-VL-6B-hf
BUAADreamer
2024-06-28T16:31:23Z
236
2
transformers
[ "transformers", "safetensors", "llava", "image-text-to-text", "llama-factory", "yi-vl", "visual-question-answering", "zh", "en", "license:other", "endpoints_compatible", "region:us" ]
visual-question-answering
2024-05-14T08:51:09Z
--- library_name: transformers tags: - llama-factory - yi-vl - llava license: other language: - zh - en pipeline_tag: visual-question-answering --- This is the Huggingface version of [Yi-VL-6B](https://huggingface.co/01-ai/Yi-VL-6B) model. You may use this model for fine-tuning in downstream tasks, we recommend using our efficient fine-tuning toolkit. https://github.com/hiyouga/LLaMA-Factory - **Developed by:** [01-AI](https://www.01.ai/). - **Language(s) (NLP):** Chinese/English - **License:** [Yi Series Model License](https://huggingface.co/01-ai/Yi-VL-34B/blob/main/LICENSE) Usage: ```python import requests from PIL import Image import torch from transformers import AutoProcessor, AutoModelForVision2Seq, LlavaConfig import transformers from torch import nn class LlavaMultiModalProjectorYiVL(nn.Module): def __init__(self, config: "LlavaConfig"): super().__init__() self.linear_1 = nn.Linear(config.vision_config.hidden_size, config.text_config.hidden_size, bias=True) self.linear_2 = nn.LayerNorm(config.text_config.hidden_size, bias=True) self.linear_3 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True) self.linear_4 = nn.LayerNorm(config.text_config.hidden_size, bias=True) self.act = nn.GELU() def forward(self, image_features): hidden_states = self.linear_1(image_features) hidden_states = self.linear_2(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.linear_3(hidden_states) hidden_states = self.linear_4(hidden_states) return hidden_states # Monkey patch of LlavaMultiModalProjector is mandatory transformers.models.llava.modeling_llava.LlavaMultiModalProjector = LlavaMultiModalProjectorYiVL model_id = "BUAADreamer/Yi-VL-6B-hf" messages = [ { "role": "user", "content": "<image>What's in the picture?" } ] image_file = "http://images.cocodataset.org/val2017/000000039769.jpg" model = AutoModelForVision2Seq.from_pretrained( model_id, torch_dtype=torch.float16, low_cpu_mem_usage=True, ).to(0) processor = AutoProcessor.from_pretrained(model_id) text = [processor.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=False)] images = [Image.open(requests.get(image_file, stream=True).raw)] inputs = processor(text=text, images=images, return_tensors='pt').to(0, torch.float16) output = model.generate(**inputs, max_new_tokens=200) output = processor.batch_decode(output, skip_special_tokens=True) print(output.split("Assistant:")[-1].strip()) ``` You could also alternatively launch a Web demo by using the CLI command in [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory) ```bash llamafactory-cli webchat \ --model_name_or_path BUAADreamer/Yi-VL-6B-hf \ --template yivl \ --visual_inputs ``` # [lmms-eval Evaluation Results](https://github.com/EvolvingLMMs-Lab/lmms-eval) | Metric |Value| |---------------------------------|----:| | MMMU_val |36.8| |CMMMU_val |32.2|
turkish-nlp-suite/POS-bert-52K-large
turkish-nlp-suite
2024-06-28T16:29:24Z
183
0
transformers
[ "transformers", "safetensors", "bert", "token-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-06-28T16:28:49Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Jnjnpx/fine-tuned-bert-extractive-summarization
Jnjnpx
2024-06-28T16:28:09Z
19
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "lao-extractive-summarization", "lo", "base_model:Twitter/twhin-bert-base", "base_model:finetune:Twitter/twhin-bert-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-06-19T17:46:20Z
--- license: apache-2.0 base_model: Twitter/twhin-bert-base tags: - text-classification - generated_from_trainer - lao-extractive-summarization metrics: - accuracy - precision - recall - f1 model-index: - name: fine-tuned-bert-extractive-summarization results: [] language: - lo --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fine-tuned-bert-extractive-summarization This model is a fine-tuned version of [Twitter/twhin-bert-base](https://huggingface.co/Twitter/twhin-bert-base) on the LaoNews dataset for Lao text extractive summarization. It achieves the following results on the evaluation set: - Loss: 0.5566 - Accuracy: 0.6995 - Precision: 0.6947 - Recall: 0.6995 - F1: 0.6961 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.5748 | 1.0 | 7107 | 0.5609 | 0.6916 | 0.6858 | 0.6916 | 0.6873 | | 0.5552 | 2.0 | 14215 | 0.5659 | 0.6839 | 0.6931 | 0.6839 | 0.6870 | | 0.5364 | 3.0 | 21321 | 0.5566 | 0.6995 | 0.6947 | 0.6995 | 0.6961 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.3.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
turkish-nlp-suite/POS-bert-10K-midsize
turkish-nlp-suite
2024-06-28T16:25:48Z
180
0
transformers
[ "transformers", "safetensors", "bert", "token-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-06-28T16:22:24Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
turkish-nlp-suite/POS-bert-10K-small
turkish-nlp-suite
2024-06-28T16:25:23Z
162
0
transformers
[ "transformers", "safetensors", "bert", "token-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-06-28T16:25:11Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ekaterina-blatova-jb/model_lr1e-4_old_scheduler_with_t_max_275_non_relevant_v3
ekaterina-blatova-jb
2024-06-28T16:23:46Z
170
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-06-28T16:21:47Z
--- {} --- ## Evaluation results Validation loss on the whole input: 1.0965804909355938 Validation loss on completion: 1.0036829547025263
ILKT/2024-06-24_22-31-18_epoch_43
ILKT
2024-06-28T16:22:56Z
140
0
sentence-transformers
[ "sentence-transformers", "safetensors", "ILKT", "sentence-similarity", "mteb", "feature-extraction", "custom_code", "en", "pl", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-25T10:05:22Z
--- language: - en - pl model-index: - name: 2024-06-24_22-31-18_epoch_43 results: - dataset: config: default name: MTEB AllegroReviews revision: b89853e6de927b0e3bfa8ecc0e56fe4e02ceafc6 split: test type: PL-MTEB/allegro-reviews metrics: - type: accuracy value: 23.34990059642147 - type: f1 value: 21.04164793833201 task: type: Classification - dataset: config: default name: MTEB CBD revision: 36ddb419bcffe6a5374c3891957912892916f28d split: test type: PL-MTEB/cbd metrics: - type: accuracy value: 55.38999999999999 - type: ap value: 15.232112617919086 - type: f1 value: 46.512958539427736 task: type: Classification - dataset: config: default name: MTEB CDSC-E revision: 0a3d4aa409b22f80eb22cbf59b492637637b536d split: test type: PL-MTEB/cdsce-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB CDSC-R revision: 1cd6abbb00df7d14be3dbd76a7dcc64b3a79a7cd split: test type: PL-MTEB/cdscr-sts metrics: [] task: type: STS - dataset: config: default name: MTEB EightTagsClustering revision: 78b962b130c6690659c65abf67bf1c2f030606b6 split: test type: PL-MTEB/8tags-clustering metrics: - type: v_measure value: 11.478969307432818 - type: v_measure_std value: 2.1069305474401228 task: type: Clustering - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 28.86684599865501 - type: f1 value: 26.14933857940183 task: type: Classification - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: validation type: mteb/amazon_massive_intent metrics: - type: accuracy value: 29.119527791441218 - type: f1 value: 25.719236957640568 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 34.73100201748487 - type: f1 value: 32.349846283817705 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: validation type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 34.24495818986719 - type: f1 value: 32.69487276994948 task: type: Classification - dataset: config: default name: MTEB PAC revision: fc69d1c153a8ccdcf1eef52f4e2a27f88782f543 split: test type: laugustyniak/abusive-clauses-pl metrics: - type: accuracy value: 64.96090356211988 - type: ap value: 74.75796133106857 - type: f1 value: 61.7993966493105 task: type: Classification - dataset: config: default name: MTEB PSC revision: d05a294af9e1d3ff2bfb6b714e08a24a6cabc669 split: test type: PL-MTEB/psc-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB PlscClusteringP2P revision: 8436dd4c05222778013d6642ee2f3fa1722bca9b split: test type: PL-MTEB/plsc-clustering-p2p metrics: - type: v_measure value: 35.164896504315394 task: type: Clustering - dataset: config: default name: MTEB PlscClusteringS2S revision: 39bcadbac6b1eddad7c1a0a176119ce58060289a split: test type: PL-MTEB/plsc-clustering-s2s metrics: - type: v_measure value: 31.497731684906288 task: type: Clustering - dataset: config: default name: MTEB PolEmo2.0-IN revision: d90724373c70959f17d2331ad51fb60c71176b03 split: test type: PL-MTEB/polemo2_in metrics: - type: accuracy value: 46.8421052631579 - type: f1 value: 47.73931132210295 task: type: Classification - dataset: config: default name: MTEB PolEmo2.0-OUT revision: 6a21ab8716e255ab1867265f8b396105e8aa63d4 split: test type: PL-MTEB/polemo2_out metrics: - type: accuracy value: 21.072874493927127 - type: f1 value: 18.733880418534408 task: type: Classification - dataset: config: default name: MTEB SICK-E-PL revision: 71bba34b0ece6c56dfcf46d9758a27f7a90f17e9 split: test type: PL-MTEB/sicke-pl-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB SICK-R-PL revision: fd5c2441b7eeff8676768036142af4cfa42c1339 split: test type: PL-MTEB/sickr-pl-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STS22 (pl) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: dev type: mteb/stsb_multi_mt metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: test type: mteb/stsb_multi_mt metrics: [] task: type: STS pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
jdh-algo/JoyType-v1-1M
jdh-algo
2024-06-28T16:18:28Z
49
0
diffusers
[ "diffusers", "safetensors", "license:apache-2.0", "endpoints_compatible", "diffusers:StableDiffusionControlNetPipeline", "region:us" ]
text-to-image
2024-06-28T12:22:34Z
--- license: apache-2.0 ---
ILKT/2024-06-24_22-31-18_epoch_42
ILKT
2024-06-28T16:17:33Z
140
0
sentence-transformers
[ "sentence-transformers", "safetensors", "ILKT", "sentence-similarity", "mteb", "feature-extraction", "custom_code", "en", "pl", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-25T09:46:20Z
--- language: - en - pl model-index: - name: 2024-06-24_22-31-18_epoch_42 results: - dataset: config: default name: MTEB AllegroReviews revision: b89853e6de927b0e3bfa8ecc0e56fe4e02ceafc6 split: test type: PL-MTEB/allegro-reviews metrics: - type: accuracy value: 23.220675944333998 - type: f1 value: 21.226560888486727 task: type: Classification - dataset: config: default name: MTEB CBD revision: 36ddb419bcffe6a5374c3891957912892916f28d split: test type: PL-MTEB/cbd metrics: - type: accuracy value: 55.730000000000004 - type: ap value: 15.178884164375855 - type: f1 value: 46.63325157293971 task: type: Classification - dataset: config: default name: MTEB CDSC-E revision: 0a3d4aa409b22f80eb22cbf59b492637637b536d split: test type: PL-MTEB/cdsce-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB CDSC-R revision: 1cd6abbb00df7d14be3dbd76a7dcc64b3a79a7cd split: test type: PL-MTEB/cdscr-sts metrics: [] task: type: STS - dataset: config: default name: MTEB EightTagsClustering revision: 78b962b130c6690659c65abf67bf1c2f030606b6 split: test type: PL-MTEB/8tags-clustering metrics: - type: v_measure value: 9.07097609273709 - type: v_measure_std value: 1.650707974615873 task: type: Clustering - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 23.550773369199735 - type: f1 value: 20.981492242779964 task: type: Classification - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: validation type: mteb/amazon_massive_intent metrics: - type: accuracy value: 22.744712247909497 - type: f1 value: 19.939837158771336 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 29.949562878278414 - type: f1 value: 27.98335375031368 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: validation type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 28.93753074274471 - type: f1 value: 27.17886319241846 task: type: Classification - dataset: config: default name: MTEB PAC revision: fc69d1c153a8ccdcf1eef52f4e2a27f88782f543 split: test type: laugustyniak/abusive-clauses-pl metrics: - type: accuracy value: 64.4801621778164 - type: ap value: 74.41796588932846 - type: f1 value: 61.67815167577027 task: type: Classification - dataset: config: default name: MTEB PSC revision: d05a294af9e1d3ff2bfb6b714e08a24a6cabc669 split: test type: PL-MTEB/psc-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB PlscClusteringP2P revision: 8436dd4c05222778013d6642ee2f3fa1722bca9b split: test type: PL-MTEB/plsc-clustering-p2p metrics: - type: v_measure value: 36.127519388733106 task: type: Clustering - dataset: config: default name: MTEB PlscClusteringS2S revision: 39bcadbac6b1eddad7c1a0a176119ce58060289a split: test type: PL-MTEB/plsc-clustering-s2s metrics: - type: v_measure value: 31.977371038739733 task: type: Clustering - dataset: config: default name: MTEB PolEmo2.0-IN revision: d90724373c70959f17d2331ad51fb60c71176b03 split: test type: PL-MTEB/polemo2_in metrics: - type: accuracy value: 47.86703601108033 - type: f1 value: 48.88719197911639 task: type: Classification - dataset: config: default name: MTEB PolEmo2.0-OUT revision: 6a21ab8716e255ab1867265f8b396105e8aa63d4 split: test type: PL-MTEB/polemo2_out metrics: - type: accuracy value: 19.190283400809715 - type: f1 value: 16.168771916705342 task: type: Classification - dataset: config: default name: MTEB SICK-E-PL revision: 71bba34b0ece6c56dfcf46d9758a27f7a90f17e9 split: test type: PL-MTEB/sicke-pl-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB SICK-R-PL revision: fd5c2441b7eeff8676768036142af4cfa42c1339 split: test type: PL-MTEB/sickr-pl-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STS22 (pl) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: dev type: mteb/stsb_multi_mt metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: test type: mteb/stsb_multi_mt metrics: [] task: type: STS pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
ton-anh/testing
ton-anh
2024-06-28T16:05:06Z
48
0
transformers
[ "transformers", "safetensors", "gpt", "text-generation", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "region:us" ]
text-generation
2024-06-28T11:45:00Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
YorkieOH10/Qwen2-7B-Multilingual-RP-Q4_K_M-GGUF
YorkieOH10
2024-06-28T16:00:52Z
342
1
null
[ "gguf", "llama-cpp", "gguf-my-repo", "en", "ko", "ja", "zh", "es", "base_model:maywell/Qwen2-7B-Multilingual-RP", "base_model:quantized:maywell/Qwen2-7B-Multilingual-RP", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-06-28T16:00:32Z
--- base_model: maywell/Qwen2-7B-Multilingual-RP language: - en - ko - ja - zh - es license: apache-2.0 tags: - llama-cpp - gguf-my-repo --- # YorkieOH10/Qwen2-7B-Multilingual-RP-Q4_K_M-GGUF This model was converted to GGUF format from [`maywell/Qwen2-7B-Multilingual-RP`](https://huggingface.co/maywell/Qwen2-7B-Multilingual-RP) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/maywell/Qwen2-7B-Multilingual-RP) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo YorkieOH10/Qwen2-7B-Multilingual-RP-Q4_K_M-GGUF --hf-file qwen2-7b-multilingual-rp-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo YorkieOH10/Qwen2-7B-Multilingual-RP-Q4_K_M-GGUF --hf-file qwen2-7b-multilingual-rp-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo YorkieOH10/Qwen2-7B-Multilingual-RP-Q4_K_M-GGUF --hf-file qwen2-7b-multilingual-rp-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo YorkieOH10/Qwen2-7B-Multilingual-RP-Q4_K_M-GGUF --hf-file qwen2-7b-multilingual-rp-q4_k_m.gguf -c 2048 ```
ILKT/2024-06-24_22-31-18_epoch_38
ILKT
2024-06-28T15:58:49Z
144
0
sentence-transformers
[ "sentence-transformers", "safetensors", "ILKT", "sentence-similarity", "mteb", "feature-extraction", "custom_code", "en", "pl", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-25T08:30:54Z
--- language: - en - pl model-index: - name: 2024-06-24_22-31-18_epoch_38 results: - dataset: config: default name: MTEB AllegroReviews revision: b89853e6de927b0e3bfa8ecc0e56fe4e02ceafc6 split: test type: PL-MTEB/allegro-reviews metrics: - type: accuracy value: 21.202783300198806 - type: f1 value: 18.303579076831948 task: type: Classification - dataset: config: default name: MTEB CBD revision: 36ddb419bcffe6a5374c3891957912892916f28d split: test type: PL-MTEB/cbd metrics: - type: accuracy value: 58.29 - type: ap value: 15.607598411645975 - type: f1 value: 47.87244776449094 task: type: Classification - dataset: config: default name: MTEB CDSC-E revision: 0a3d4aa409b22f80eb22cbf59b492637637b536d split: test type: PL-MTEB/cdsce-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB CDSC-R revision: 1cd6abbb00df7d14be3dbd76a7dcc64b3a79a7cd split: test type: PL-MTEB/cdscr-sts metrics: [] task: type: STS - dataset: config: default name: MTEB EightTagsClustering revision: 78b962b130c6690659c65abf67bf1c2f030606b6 split: test type: PL-MTEB/8tags-clustering metrics: - type: v_measure value: 6.5864826792499205 - type: v_measure_std value: 1.56919919409007 task: type: Clustering - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 25.34297242770679 - type: f1 value: 23.33749939021394 task: type: Classification - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: validation type: mteb/amazon_massive_intent metrics: - type: accuracy value: 24.722085587801278 - type: f1 value: 22.22691652331911 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 32.972427706792196 - type: f1 value: 31.385778219184473 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: validation type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 31.731431382193804 - type: f1 value: 30.239004134542107 task: type: Classification - dataset: config: default name: MTEB PAC revision: fc69d1c153a8ccdcf1eef52f4e2a27f88782f543 split: test type: laugustyniak/abusive-clauses-pl metrics: - type: accuracy value: 63.87489139878366 - type: ap value: 73.70602922819654 - type: f1 value: 60.951203669553486 task: type: Classification - dataset: config: default name: MTEB PSC revision: d05a294af9e1d3ff2bfb6b714e08a24a6cabc669 split: test type: PL-MTEB/psc-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB PlscClusteringP2P revision: 8436dd4c05222778013d6642ee2f3fa1722bca9b split: test type: PL-MTEB/plsc-clustering-p2p metrics: - type: v_measure value: 35.29951156684666 task: type: Clustering - dataset: config: default name: MTEB PlscClusteringS2S revision: 39bcadbac6b1eddad7c1a0a176119ce58060289a split: test type: PL-MTEB/plsc-clustering-s2s metrics: - type: v_measure value: 31.29721661528533 task: type: Clustering - dataset: config: default name: MTEB PolEmo2.0-IN revision: d90724373c70959f17d2331ad51fb60c71176b03 split: test type: PL-MTEB/polemo2_in metrics: - type: accuracy value: 44.390581717451525 - type: f1 value: 44.43563490035684 task: type: Classification - dataset: config: default name: MTEB PolEmo2.0-OUT revision: 6a21ab8716e255ab1867265f8b396105e8aa63d4 split: test type: PL-MTEB/polemo2_out metrics: - type: accuracy value: 17.145748987854255 - type: f1 value: 15.007113843553077 task: type: Classification - dataset: config: default name: MTEB SICK-E-PL revision: 71bba34b0ece6c56dfcf46d9758a27f7a90f17e9 split: test type: PL-MTEB/sicke-pl-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB SICK-R-PL revision: fd5c2441b7eeff8676768036142af4cfa42c1339 split: test type: PL-MTEB/sickr-pl-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STS22 (pl) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: dev type: mteb/stsb_multi_mt metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: test type: mteb/stsb_multi_mt metrics: [] task: type: STS pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
manjoslima/vit-base-patch16-224-finetuned-flower
manjoslima
2024-06-28T15:58:41Z
164
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-06-28T14:02:20Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder model-index: - name: vit-base-patch16-224-finetuned-flower results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-finetuned-flower This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 2.3.0+cu121 - Datasets 2.7.1 - Tokenizers 0.13.3
ShauryaNova/autotrain-ShauryaNova
ShauryaNova
2024-06-28T15:58:05Z
7
1
sentence-transformers
[ "sentence-transformers", "tensorboard", "safetensors", "bert", "sentence-similarity", "feature-extraction", "autotrain", "base_model:sentence-transformers/all-MiniLM-L6-v2", "base_model:finetune:sentence-transformers/all-MiniLM-L6-v2", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-28T15:57:49Z
--- library_name: sentence-transformers tags: - sentence-transformers - sentence-similarity - feature-extraction - autotrain base_model: sentence-transformers/all-MiniLM-L6-v2 widget: - source_sentence: 'search_query: i love autotrain' sentences: - 'search_query: huggingface auto train' - 'search_query: hugging face auto train' - 'search_query: i love autotrain' pipeline_tag: sentence-similarity --- # Model Trained Using AutoTrain - Problem type: Sentence Transformers ## Validation Metrics loss: 6.586054801940918 validation_pearson_cosine: 0.15590647163663807 validation_spearman_cosine: 0.28867513459481287 validation_pearson_manhattan: 0.20874094632850035 validation_spearman_manhattan: 0.28867513459481287 validation_pearson_euclidean: 0.21989747670451043 validation_spearman_euclidean: 0.28867513459481287 validation_pearson_dot: 0.15590640231031966 validation_spearman_dot: 0.28867513459481287 validation_pearson_max: 0.21989747670451043 validation_spearman_max: 0.28867513459481287 runtime: 0.1469 samples_per_second: 34.037 steps_per_second: 6.807 : 3.0 ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the Hugging Face Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ 'search_query: autotrain', 'search_query: auto train', 'search_query: i love autotrain', ] embeddings = model.encode(sentences) print(embeddings.shape) # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) ```
shayantreylon2/Phi-3-mini_model
shayantreylon2
2024-06-28T15:57:28Z
19
0
transformers
[ "transformers", "gguf", "mistral", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-06-28T15:52:19Z
--- base_model: unsloth/phi-3-mini-4k-instruct-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - gguf --- # Uploaded model - **Developed by:** shayantreylon2 - **License:** apache-2.0 - **Finetuned from model :** unsloth/phi-3-mini-4k-instruct-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
ILKT/2024-06-24_22-31-18_epoch_34
ILKT
2024-06-28T15:40:08Z
142
0
sentence-transformers
[ "sentence-transformers", "safetensors", "ILKT", "sentence-similarity", "mteb", "feature-extraction", "custom_code", "en", "pl", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-25T07:14:14Z
--- language: - en - pl model-index: - name: 2024-06-24_22-31-18_epoch_34 results: - dataset: config: default name: MTEB AllegroReviews revision: b89853e6de927b0e3bfa8ecc0e56fe4e02ceafc6 split: test type: PL-MTEB/allegro-reviews metrics: - type: accuracy value: 22.842942345924456 - type: f1 value: 20.749095215583708 task: type: Classification - dataset: config: default name: MTEB CBD revision: 36ddb419bcffe6a5374c3891957912892916f28d split: test type: PL-MTEB/cbd metrics: - type: accuracy value: 54.370000000000005 - type: ap value: 15.190356100252247 - type: f1 value: 45.90909757835719 task: type: Classification - dataset: config: default name: MTEB CDSC-E revision: 0a3d4aa409b22f80eb22cbf59b492637637b536d split: test type: PL-MTEB/cdsce-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB CDSC-R revision: 1cd6abbb00df7d14be3dbd76a7dcc64b3a79a7cd split: test type: PL-MTEB/cdscr-sts metrics: [] task: type: STS - dataset: config: default name: MTEB EightTagsClustering revision: 78b962b130c6690659c65abf67bf1c2f030606b6 split: test type: PL-MTEB/8tags-clustering metrics: - type: v_measure value: 9.615665159425438 - type: v_measure_std value: 1.262076007772157 task: type: Clustering - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 26.87626092804304 - type: f1 value: 24.630850778599182 task: type: Classification - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: validation type: mteb/amazon_massive_intent metrics: - type: accuracy value: 26.778160354156416 - type: f1 value: 24.01717906246031 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 34.8453261600538 - type: f1 value: 32.56539021281307 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: validation type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 34.702410231185446 - type: f1 value: 32.77141561233463 task: type: Classification - dataset: config: default name: MTEB PAC revision: fc69d1c153a8ccdcf1eef52f4e2a27f88782f543 split: test type: laugustyniak/abusive-clauses-pl metrics: - type: accuracy value: 65.80944106573993 - type: ap value: 74.76507883395132 - type: f1 value: 62.54969812143767 task: type: Classification - dataset: config: default name: MTEB PSC revision: d05a294af9e1d3ff2bfb6b714e08a24a6cabc669 split: test type: PL-MTEB/psc-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB PlscClusteringP2P revision: 8436dd4c05222778013d6642ee2f3fa1722bca9b split: test type: PL-MTEB/plsc-clustering-p2p metrics: - type: v_measure value: 35.699587768554906 task: type: Clustering - dataset: config: default name: MTEB PlscClusteringS2S revision: 39bcadbac6b1eddad7c1a0a176119ce58060289a split: test type: PL-MTEB/plsc-clustering-s2s metrics: - type: v_measure value: 31.84639574537173 task: type: Clustering - dataset: config: default name: MTEB PolEmo2.0-IN revision: d90724373c70959f17d2331ad51fb60c71176b03 split: test type: PL-MTEB/polemo2_in metrics: - type: accuracy value: 47.43767313019391 - type: f1 value: 47.95073117518173 task: type: Classification - dataset: config: default name: MTEB PolEmo2.0-OUT revision: 6a21ab8716e255ab1867265f8b396105e8aa63d4 split: test type: PL-MTEB/polemo2_out metrics: - type: accuracy value: 16.902834008097162 - type: f1 value: 14.502935529082656 task: type: Classification - dataset: config: default name: MTEB SICK-E-PL revision: 71bba34b0ece6c56dfcf46d9758a27f7a90f17e9 split: test type: PL-MTEB/sicke-pl-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB SICK-R-PL revision: fd5c2441b7eeff8676768036142af4cfa42c1339 split: test type: PL-MTEB/sickr-pl-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STS22 (pl) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: dev type: mteb/stsb_multi_mt metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: test type: mteb/stsb_multi_mt metrics: [] task: type: STS pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
mradermacher/cerberus-v0.1-GGUF
mradermacher
2024-06-28T15:38:02Z
25
0
transformers
[ "transformers", "gguf", "en", "base_model:brahmairesearch/cerberus-v0.1", "base_model:quantized:brahmairesearch/cerberus-v0.1", "license:llama3", "endpoints_compatible", "region:us", "conversational" ]
null
2024-06-28T05:18:58Z
--- base_model: brahmairesearch/cerberus-v0.1 language: - en library_name: transformers license: llama3 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/brahmairesearch/cerberus-v0.1 <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/cerberus-v0.1-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/cerberus-v0.1-GGUF/resolve/main/cerberus-v0.1.Q2_K.gguf) | Q2_K | 26.5 | | | [GGUF](https://huggingface.co/mradermacher/cerberus-v0.1-GGUF/resolve/main/cerberus-v0.1.IQ3_XS.gguf) | IQ3_XS | 29.4 | | | [GGUF](https://huggingface.co/mradermacher/cerberus-v0.1-GGUF/resolve/main/cerberus-v0.1.IQ3_S.gguf) | IQ3_S | 31.0 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/cerberus-v0.1-GGUF/resolve/main/cerberus-v0.1.Q3_K_S.gguf) | Q3_K_S | 31.0 | | | [GGUF](https://huggingface.co/mradermacher/cerberus-v0.1-GGUF/resolve/main/cerberus-v0.1.IQ3_M.gguf) | IQ3_M | 32.0 | | | [GGUF](https://huggingface.co/mradermacher/cerberus-v0.1-GGUF/resolve/main/cerberus-v0.1.Q3_K_M.gguf) | Q3_K_M | 34.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/cerberus-v0.1-GGUF/resolve/main/cerberus-v0.1.Q3_K_L.gguf) | Q3_K_L | 37.2 | | | [GGUF](https://huggingface.co/mradermacher/cerberus-v0.1-GGUF/resolve/main/cerberus-v0.1.IQ4_XS.gguf) | IQ4_XS | 38.4 | | | [GGUF](https://huggingface.co/mradermacher/cerberus-v0.1-GGUF/resolve/main/cerberus-v0.1.Q4_K_S.gguf) | Q4_K_S | 40.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/cerberus-v0.1-GGUF/resolve/main/cerberus-v0.1.Q4_K_M.gguf) | Q4_K_M | 42.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/cerberus-v0.1-GGUF/resolve/main/cerberus-v0.1.Q5_K_S.gguf) | Q5_K_S | 48.8 | | | [GGUF](https://huggingface.co/mradermacher/cerberus-v0.1-GGUF/resolve/main/cerberus-v0.1.Q5_K_M.gguf) | Q5_K_M | 50.0 | | | [PART 1](https://huggingface.co/mradermacher/cerberus-v0.1-GGUF/resolve/main/cerberus-v0.1.Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/cerberus-v0.1-GGUF/resolve/main/cerberus-v0.1.Q6_K.gguf.part2of2) | Q6_K | 58.0 | very good quality | | [PART 1](https://huggingface.co/mradermacher/cerberus-v0.1-GGUF/resolve/main/cerberus-v0.1.Q8_0.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/cerberus-v0.1-GGUF/resolve/main/cerberus-v0.1.Q8_0.gguf.part2of2) | Q8_0 | 75.1 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
YorkieOH10/Qwen2-7B-Multilingual-RP-Q8_0-GGUF
YorkieOH10
2024-06-28T15:32:24Z
22
2
null
[ "gguf", "llama-cpp", "gguf-my-repo", "en", "ko", "ja", "zh", "es", "base_model:maywell/Qwen2-7B-Multilingual-RP", "base_model:quantized:maywell/Qwen2-7B-Multilingual-RP", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-06-28T15:31:50Z
--- base_model: maywell/Qwen2-7B-Multilingual-RP language: - en - ko - ja - zh - es license: apache-2.0 tags: - llama-cpp - gguf-my-repo --- # YorkieOH10/Qwen2-7B-Multilingual-RP-Q8_0-GGUF This model was converted to GGUF format from [`maywell/Qwen2-7B-Multilingual-RP`](https://huggingface.co/maywell/Qwen2-7B-Multilingual-RP) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/maywell/Qwen2-7B-Multilingual-RP) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo YorkieOH10/Qwen2-7B-Multilingual-RP-Q8_0-GGUF --hf-file qwen2-7b-multilingual-rp-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo YorkieOH10/Qwen2-7B-Multilingual-RP-Q8_0-GGUF --hf-file qwen2-7b-multilingual-rp-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo YorkieOH10/Qwen2-7B-Multilingual-RP-Q8_0-GGUF --hf-file qwen2-7b-multilingual-rp-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo YorkieOH10/Qwen2-7B-Multilingual-RP-Q8_0-GGUF --hf-file qwen2-7b-multilingual-rp-q8_0.gguf -c 2048 ```
enochprince/gpt2TWI
enochprince
2024-06-28T15:26:23Z
114
0
transformers
[ "transformers", "tensorboard", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-06-28T15:10:17Z
--- base_model: gpt2 license: mit tags: - generated_from_trainer model-index: - name: gpt2TWI results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2TWI This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 4.0769 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.971 | 1.0 | 884 | 4.1424 | | 2.9944 | 2.0 | 1768 | 4.0690 | | 2.7402 | 3.0 | 2652 | 4.0769 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.2.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1
johnpaulbin/llama8b-tokipona-epoch1-merged
johnpaulbin
2024-06-28T15:24:03Z
78
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-06-28T15:19:24Z
--- base_model: unsloth/llama-3-8b-instruct-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl --- # Uploaded model - **Developed by:** johnpaulbin - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Marzu39/bertturk-Cased-128k-QA
Marzu39
2024-06-28T15:22:54Z
26
2
transformers
[ "transformers", "safetensors", "bert", "question-answering", "Question Answering", "tr", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2024-06-27T19:55:37Z
--- license: mit language: - tr tags: - Question Answering - bert metrics: - exact_match - f1 pipeline_tag: question-answering --- # Turkish SQuAD Model: Question Answering I fine-tuned Turkish-Bert-Model for Question-Answering problem with THQuAD; - **BERTürk-Cased128k:** https://huggingface.co/dbmdz/bert-base-turkish-128k-cased - **THQuAD Dataset:** https://github.com/okanvk/Turkish-Reading-Comprehension-Question-Answering-Dataset
turkish-nlp-suite/NER-bert-32K-large
turkish-nlp-suite
2024-06-28T15:21:11Z
180
0
transformers
[ "transformers", "safetensors", "bert", "token-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-06-28T15:20:55Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ahmedesmail16/Psoriasis-500-100aug-224-swinv2-large
ahmedesmail16
2024-06-28T15:20:44Z
213
0
transformers
[ "transformers", "tensorboard", "safetensors", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:microsoft/swin-large-patch4-window7-224", "base_model:finetune:microsoft/swin-large-patch4-window7-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-06-28T11:22:14Z
--- license: apache-2.0 base_model: microsoft/swin-large-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: Psoriasis-500-100aug-224-swinv2-large results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.8227074235807861 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Psoriasis-500-100aug-224-swinv2-large This model is a fine-tuned version of [microsoft/swin-large-patch4-window7-224](https://huggingface.co/microsoft/swin-large-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.7383 - Accuracy: 0.8227 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 1.4126 | 0.9840 | 46 | 0.9408 | 0.6882 | | 0.3672 | 1.9893 | 93 | 0.6431 | 0.7703 | | 0.133 | 2.9947 | 140 | 0.5938 | 0.7921 | | 0.0624 | 4.0 | 187 | 0.6128 | 0.8035 | | 0.0473 | 4.9840 | 233 | 0.6654 | 0.8114 | | 0.0276 | 5.9893 | 280 | 0.7090 | 0.8166 | | 0.0111 | 6.9947 | 327 | 0.7133 | 0.8140 | | 0.0081 | 8.0 | 374 | 0.7639 | 0.8183 | | 0.0039 | 8.9840 | 420 | 0.7387 | 0.8236 | | 0.0065 | 9.8396 | 460 | 0.7383 | 0.8227 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.1.2 - Datasets 2.19.2 - Tokenizers 0.19.1
ILKT/2024-06-24_22-31-18_epoch_30
ILKT
2024-06-28T15:17:47Z
139
0
sentence-transformers
[ "sentence-transformers", "safetensors", "ILKT", "sentence-similarity", "mteb", "feature-extraction", "custom_code", "en", "pl", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-25T05:58:12Z
--- language: - en - pl model-index: - name: 2024-06-24_22-31-18_epoch_30 results: - dataset: config: default name: MTEB AllegroReviews revision: b89853e6de927b0e3bfa8ecc0e56fe4e02ceafc6 split: test type: PL-MTEB/allegro-reviews metrics: - type: accuracy value: 22.88270377733598 - type: f1 value: 21.226258398469113 task: type: Classification - dataset: config: default name: MTEB CBD revision: 36ddb419bcffe6a5374c3891957912892916f28d split: test type: PL-MTEB/cbd metrics: - type: accuracy value: 57.85 - type: ap value: 16.259810764416162 - type: f1 value: 48.45287399764252 task: type: Classification - dataset: config: default name: MTEB CDSC-E revision: 0a3d4aa409b22f80eb22cbf59b492637637b536d split: test type: PL-MTEB/cdsce-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB CDSC-R revision: 1cd6abbb00df7d14be3dbd76a7dcc64b3a79a7cd split: test type: PL-MTEB/cdscr-sts metrics: [] task: type: STS - dataset: config: default name: MTEB EightTagsClustering revision: 78b962b130c6690659c65abf67bf1c2f030606b6 split: test type: PL-MTEB/8tags-clustering metrics: - type: v_measure value: 10.704051750841453 - type: v_measure_std value: 1.5468867317269348 task: type: Clustering - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 28.19435104236718 - type: f1 value: 26.01025873588997 task: type: Classification - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: validation type: mteb/amazon_massive_intent metrics: - type: accuracy value: 28.175110673880965 - type: f1 value: 25.88034202525453 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 37.0275722932078 - type: f1 value: 35.40017423181055 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: validation type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 36.43384161337924 - type: f1 value: 35.56073988420182 task: type: Classification - dataset: config: default name: MTEB PAC revision: fc69d1c153a8ccdcf1eef52f4e2a27f88782f543 split: test type: laugustyniak/abusive-clauses-pl metrics: - type: accuracy value: 61.42484795829712 - type: ap value: 72.67069903592473 - type: f1 value: 58.28454496310418 task: type: Classification - dataset: config: default name: MTEB PSC revision: d05a294af9e1d3ff2bfb6b714e08a24a6cabc669 split: test type: PL-MTEB/psc-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB PlscClusteringP2P revision: 8436dd4c05222778013d6642ee2f3fa1722bca9b split: test type: PL-MTEB/plsc-clustering-p2p metrics: - type: v_measure value: 34.838139817849815 task: type: Clustering - dataset: config: default name: MTEB PlscClusteringS2S revision: 39bcadbac6b1eddad7c1a0a176119ce58060289a split: test type: PL-MTEB/plsc-clustering-s2s metrics: - type: v_measure value: 31.573685397455332 task: type: Clustering - dataset: config: default name: MTEB PolEmo2.0-IN revision: d90724373c70959f17d2331ad51fb60c71176b03 split: test type: PL-MTEB/polemo2_in metrics: - type: accuracy value: 47.64542936288089 - type: f1 value: 48.73973292772384 task: type: Classification - dataset: config: default name: MTEB PolEmo2.0-OUT revision: 6a21ab8716e255ab1867265f8b396105e8aa63d4 split: test type: PL-MTEB/polemo2_out metrics: - type: accuracy value: 17.125506072874494 - type: f1 value: 14.570271092564107 task: type: Classification - dataset: config: default name: MTEB SICK-E-PL revision: 71bba34b0ece6c56dfcf46d9758a27f7a90f17e9 split: test type: PL-MTEB/sicke-pl-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB SICK-R-PL revision: fd5c2441b7eeff8676768036142af4cfa42c1339 split: test type: PL-MTEB/sickr-pl-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STS22 (pl) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: dev type: mteb/stsb_multi_mt metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: test type: mteb/stsb_multi_mt metrics: [] task: type: STS pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
n0w0f/MatText-atom-seq-2m
n0w0f
2024-06-28T15:15:57Z
162
0
transformers
[ "transformers", "safetensors", "bert", "feature-extraction", "chemistry", "materials", "pretrained", "en", "dataset:n0w0f/MatText", "arxiv:1910.09700", "arxiv:2406.17295", "license:mit", "endpoints_compatible", "region:us" ]
feature-extraction
2024-06-05T03:51:42Z
--- library_name: transformers tags: - chemistry - bert - materials - pretrained license: mit datasets: - n0w0f/MatText language: - en --- # Model Card for Model ID Model Pretrained using Masked Language Modelling on 2 million crystal structures in one of the **MatText** Representation ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> **MatText** model pretrained using Masked Language Modelling on crystal structures mined from NOMAD and represented using MatText - Atom Sequences represntation (A space-separated enumeration of element symbols). - **Developed by:** [Lamalab](https://github.com/lamalab-org) - **Homepage:** https://github.com/lamalab-org/MatText - **Leaderboard:** To be published - **Point of Contact:** [Nawaf Alampara](https://github.com/n0w0f) - **Model type:** Pretrained BERT - **Language(s) (NLP):** This is not a natural language model - **License:** MIT ### Model Sources - **Repository:** https://github.com/lamalab-org/MatText - **Paper:** To be published ## Uses ### Direct Use The base model can be used for generating meaningful features/embeddings of bulk structures without further training. This model is ideal if finetuned for narrowdown tasks. ### Downstream Use This model can be used with fientuning for property prediction, classification or extractions. ## Bias, Risks, and Limitations > Model was trained only on bulk structures (**n0w0f/MatText - pretrain2m** - dataset). The pertaining dataset is a subset of the materials deposited in the NOMAD archive. We queried only 3D-connected structures (i.e., excluding 2D materials, which often require special treatment) and, for consistency, limited our query to materials for which the bandgap has been computed using the PBE functional and the VASP code. ### Recommendations ## How to Get Started with the Model ```python from transformers import AutoModel model = AutoModel.from_pretrained("n0w0f/MatText-atom-seq-2m") ``` ## Training Details ### Training Data **n0w0f/MatText - pretrain2m** The dataset contains crystal structures in various text representations and labels for some subsets. https://huggingface.co/datasets/n0w0f/MatText <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> ### Training Procedure #### Training Hyperparameters - **Training regime:** fp32 <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> ### Testing Data, Factors & Metrics #### Testing Data https://huggingface.co/datasets/n0w0f/MatText/viewer/pretrain2m/test ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** 8 A100 GPUs with 40GB - **Hours used:** 72h - **Cloud Provider:** Private Infrastructure - **Compute Region:** US/EU - **Carbon Emitted:** 250W x 72h = 18 kWh x 0.432 kg eq. CO2/kWh = 7.78 kg eq. CO2 ## Technical Specifications #### Software Pretrained using https://github.com/lamalab-org/MatText ## Citation If you use MatText in your work, please cite ``` @misc{alampara2024mattextlanguagemodelsneed, title={MatText: Do Language Models Need More than Text & Scale for Materials Modeling?}, author={Nawaf Alampara and Santiago Miret and Kevin Maik Jablonka}, year={2024}, eprint={2406.17295}, archivePrefix={arXiv}, primaryClass={cond-mat.mtrl-sci} url={https://arxiv.org/abs/2406.17295}, } ``` ## Model Card Authors The model was trained by Nawaf Alampara ([n0w0f](https://github.com/n0w0f)), Santiago Miret ([LinkedIn]()), and Kevin Maik Jablonka ([kjappelbaum](https://github.com/kjappelbaum)). ## Model Card Contact [Nawaf](https://github.com/n0w0f), [Kevin](https://github.com/kjappelbaum)
n0w0f/MatText-slices-2m
n0w0f
2024-06-28T15:14:30Z
169
0
transformers
[ "transformers", "safetensors", "bert", "feature-extraction", "chemistry", "materials", "pretrained", "en", "dataset:n0w0f/MatText", "arxiv:1910.09700", "arxiv:2406.17295", "license:mit", "endpoints_compatible", "region:us" ]
feature-extraction
2024-06-05T03:40:52Z
--- library_name: transformers tags: - chemistry - bert - materials - pretrained license: mit datasets: - n0w0f/MatText language: - en --- # Model Card for Model ID Model Pretrained using Masked Language Modelling on 2 million crystal structures in one of the **MatText** Representation ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> **MatText** model pretrained using Masked Language Modelling on crystal structures mined from NOMAD and represented using MatText - SLICES (The [SLICES representation](https://github.com/xiaohang007/SLICES) of a material ). - **Developed by:** [Lamalab](https://github.com/lamalab-org) - **Homepage:** https://github.com/lamalab-org/MatText - **Leaderboard:** To be published - **Point of Contact:** [Nawaf Alampara](https://github.com/n0w0f) - **Model type:** Pretrained BERT - **Language(s) (NLP):** This is not a natural language model - **License:** MIT ### Model Sources - **Repository:** https://github.com/lamalab-org/MatText - **Paper:** To be published ## Uses ### Direct Use The base model can be used for generating meaningful features/embeddings of bulk structures without further training. This model is ideal if finetuned for narrowdown tasks. ### Downstream Use This model can be used with fientuning for property prediction, classification or extractions. ## Bias, Risks, and Limitations > Model was trained only on bulk structures (**n0w0f/MatText - pretrain2m** - dataset). The pertaining dataset is a subset of the materials deposited in the NOMAD archive. We queried only 3D-connected structures (i.e., excluding 2D materials, which often require special treatment) and, for consistency, limited our query to materials for which the bandgap has been computed using the PBE functional and the VASP code. ### Recommendations ## How to Get Started with the Model ```python from transformers import AutoModel model = AutoModel.from_pretrained("n0w0f/MatText-slices-2m") ``` ## Training Details ### Training Data **n0w0f/MatText - pretrain2m** The dataset contains crystal structures in various text representations and labels for some subsets. https://huggingface.co/datasets/n0w0f/MatText <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> ### Training Procedure #### Training Hyperparameters - **Training regime:** fp32 <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> ### Testing Data, Factors & Metrics #### Testing Data https://huggingface.co/datasets/n0w0f/MatText/viewer/pretrain2m/test ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** 8 A100 GPUs with 40GB - **Hours used:** 72h - **Cloud Provider:** Private Infrastructure - **Compute Region:** US/EU - **Carbon Emitted:** 250W x 72h = 18 kWh x 0.432 kg eq. CO2/kWh = 7.78 kg eq. CO2 ## Technical Specifications #### Software Pretrained using https://github.com/lamalab-org/MatText ## Citation If you use MatText in your work, please cite ``` @misc{alampara2024mattextlanguagemodelsneed, title={MatText: Do Language Models Need More than Text & Scale for Materials Modeling?}, author={Nawaf Alampara and Santiago Miret and Kevin Maik Jablonka}, year={2024}, eprint={2406.17295}, archivePrefix={arXiv}, primaryClass={cond-mat.mtrl-sci} url={https://arxiv.org/abs/2406.17295}, } ``` ## Model Card Authors The model was trained by Nawaf Alampara ([n0w0f](https://github.com/n0w0f)), Santiago Miret ([LinkedIn]()), and Kevin Maik Jablonka ([kjappelbaum](https://github.com/kjappelbaum)). ## Model Card Contact [Nawaf](https://github.com/n0w0f), [Kevin](https://github.com/kjappelbaum)
ekaterina-blatova-jb/model_lr1e-4_old_scheduler_with_t_max_275_non_relevant_v1
ekaterina-blatova-jb
2024-06-28T15:12:04Z
168
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-06-28T15:10:31Z
--- {} --- ## Evaluation results Validation loss on the whole input: 1.0974553918931633 Validation loss on completion: 1.011629299435299
jeggers/galactica-125m-cot
jeggers
2024-06-28T15:10:52Z
151
0
transformers
[ "transformers", "safetensors", "opt", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-06-28T14:18:11Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ILKT/2024-06-24_22-31-18_epoch_27
ILKT
2024-06-28T15:09:44Z
139
0
sentence-transformers
[ "sentence-transformers", "safetensors", "ILKT", "sentence-similarity", "mteb", "feature-extraction", "custom_code", "en", "pl", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-25T05:01:54Z
--- language: - en - pl model-index: - name: 2024-06-24_22-31-18_epoch_27 results: - dataset: config: default name: MTEB AllegroReviews revision: b89853e6de927b0e3bfa8ecc0e56fe4e02ceafc6 split: test type: PL-MTEB/allegro-reviews metrics: - type: accuracy value: 23.161033797216696 - type: f1 value: 21.482011086156934 task: type: Classification - dataset: config: default name: MTEB CBD revision: 36ddb419bcffe6a5374c3891957912892916f28d split: test type: PL-MTEB/cbd metrics: - type: accuracy value: 56.63 - type: ap value: 15.931690451233749 - type: f1 value: 47.44494833540974 task: type: Classification - dataset: config: default name: MTEB CDSC-E revision: 0a3d4aa409b22f80eb22cbf59b492637637b536d split: test type: PL-MTEB/cdsce-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB CDSC-R revision: 1cd6abbb00df7d14be3dbd76a7dcc64b3a79a7cd split: test type: PL-MTEB/cdscr-sts metrics: [] task: type: STS - dataset: config: default name: MTEB EightTagsClustering revision: 78b962b130c6690659c65abf67bf1c2f030606b6 split: test type: PL-MTEB/8tags-clustering metrics: - type: v_measure value: 13.45590374671452 - type: v_measure_std value: 1.7793243122498879 task: type: Clustering - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 24.414929388029588 - type: f1 value: 22.005744088686992 task: type: Classification - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: validation type: mteb/amazon_massive_intent metrics: - type: accuracy value: 24.540088539104765 - type: f1 value: 22.211774822570558 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 32.72696704774714 - type: f1 value: 30.17722657645675 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: validation type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 32.60206591244466 - type: f1 value: 30.674472721675965 task: type: Classification - dataset: config: default name: MTEB PAC revision: fc69d1c153a8ccdcf1eef52f4e2a27f88782f543 split: test type: laugustyniak/abusive-clauses-pl metrics: - type: accuracy value: 63.39415001448017 - type: ap value: 72.9699096941234 - type: f1 value: 59.46850236290796 task: type: Classification - dataset: config: default name: MTEB PSC revision: d05a294af9e1d3ff2bfb6b714e08a24a6cabc669 split: test type: PL-MTEB/psc-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB PlscClusteringP2P revision: 8436dd4c05222778013d6642ee2f3fa1722bca9b split: test type: PL-MTEB/plsc-clustering-p2p metrics: - type: v_measure value: 35.28671475445924 task: type: Clustering - dataset: config: default name: MTEB PlscClusteringS2S revision: 39bcadbac6b1eddad7c1a0a176119ce58060289a split: test type: PL-MTEB/plsc-clustering-s2s metrics: - type: v_measure value: 30.5039655519801 task: type: Clustering - dataset: config: default name: MTEB PolEmo2.0-IN revision: d90724373c70959f17d2331ad51fb60c71176b03 split: test type: PL-MTEB/polemo2_in metrics: - type: accuracy value: 47.202216066481995 - type: f1 value: 47.76052393675994 task: type: Classification - dataset: config: default name: MTEB PolEmo2.0-OUT revision: 6a21ab8716e255ab1867265f8b396105e8aa63d4 split: test type: PL-MTEB/polemo2_out metrics: - type: accuracy value: 18.60323886639676 - type: f1 value: 15.583334857497391 task: type: Classification - dataset: config: default name: MTEB SICK-E-PL revision: 71bba34b0ece6c56dfcf46d9758a27f7a90f17e9 split: test type: PL-MTEB/sicke-pl-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB SICK-R-PL revision: fd5c2441b7eeff8676768036142af4cfa42c1339 split: test type: PL-MTEB/sickr-pl-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STS22 (pl) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: dev type: mteb/stsb_multi_mt metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: test type: mteb/stsb_multi_mt metrics: [] task: type: STS pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
damgomz/fp_bs1_lr5_x8
damgomz
2024-06-28T15:03:00Z
108
0
transformers
[ "transformers", "safetensors", "albert", "fill-mask", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2024-06-25T10:12:07Z
--- language: en tags: - fill-mask --- ## Environmental Impact (CODE CARBON DEFAULT) | Metric | Value | |--------------------------|---------------------------------| | Duration (in seconds) | [More Information Needed] | | Emissions (Co2eq in kg) | [More Information Needed] | | CPU power (W) | [NO CPU] | | GPU power (W) | [No GPU] | | RAM power (W) | [More Information Needed] | | CPU energy (kWh) | [No CPU] | | GPU energy (kWh) | [No GPU] | | RAM energy (kWh) | [More Information Needed] | | Consumed energy (kWh) | [More Information Needed] | | Country name | [More Information Needed] | | Cloud provider | [No Cloud] | | Cloud region | [No Cloud] | | CPU count | [No CPU] | | CPU model | [No CPU] | | GPU count | [No GPU] | | GPU model | [No GPU] | ## Environmental Impact (for one core) | Metric | Value | |--------------------------|---------------------------------| | CPU energy (kWh) | [No CPU] | | Emissions (Co2eq in kg) | [More Information Needed] | ## Note 24 juin 2024 ! ## My Config | Config | Value | |--------------------------|-----------------| | checkpoint | albert-base-v2 | | model_name | fp_bs1_lr5_x8 | | sequence_length | 400 | | num_epoch | 6 | | learning_rate | 5e-05 | | batch_size | 1 | | weight_decay | 0.0 | | warm_up_prop | 0.0 | | drop_out_prob | 0.1 | | packing_length | 100 | | train_test_split | 0.2 | | num_steps | 659911 | ## Training and Testing steps Epoch | Train Loss | Test Loss ---|---|--- | 0.0 | 15.719150 | 11.665336 | | 0.5 | 7.340089 | 7.256945 | | 1.0 | 7.157110 | 7.134097 | | 1.5 | 7.130677 | 7.098063 | | 2.0 | 7.123113 | 7.127436 | | 2.5 | 7.122067 | 7.126453 | | 3.0 | 7.119943 | 7.094573 | | 3.5 | 7.115897 | 7.081500 | | 4.0 | 7.110891 | 7.116901 | | 4.5 | 7.099238 | 7.080173 | | 5.0 | 7.094084 | 7.070796 | | 5.5 | 7.086580 | 7.081593 |
bofenghuang/phonemizer-wav2vec2-ctc-french
bofenghuang
2024-06-28T15:01:51Z
91
0
transformers
[ "transformers", "safetensors", "wav2vec2", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_13_0", "license:mit", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-02-08T20:12:49Z
--- license: mit language: fr datasets: - mozilla-foundation/common_voice_13_0 tags: - automatic-speech-recognition --- # Wav2vec2-CTC-based French Phonemizer ## Usage *Infer audio* ```python import soundfile as sf import torch from transformers import AutoModelForCTC, AutoProcessor, pipeline device = "cuda:0" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 # Load model model_name_or_path = "bofenghuang/phonemizer-wav2vec2-ctc-french" processor = AutoProcessor.from_pretrained(model_name_or_path) model_sample_rate = processor.feature_extractor.sampling_rate model = AutoModelForCTC.from_pretrained(model_name_or_path, torch_dtype=torch_dtype) model.to(device) # Init pipeline pipe = pipeline( "automatic-speech-recognition", model=model, feature_extractor=processor.feature_extractor, tokenizer=processor.tokenizer, torch_dtype=torch_dtype, device=device, ) # Example audio audio_file_path = "/path/to/example/wav/file" # Infer with pipeline result = pipe(audio_file_path) print(result["text"]) # Infer w/ lower-level api waveform, sample_rate = sf.read(audio_file_path, start=0, frames=-1, dtype="float32", always_2d=False) input_dict = processor(waveform, sampling_rate=model_sample_rate, return_tensors="pt") with torch.inference_mode(): input_values = input_dict.input_values.to(device, dtype=torch_dtype) logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_text = processor.batch_decode(predicted_ids)[0] print(predicted_text) ``` *Phonemes were generated using the following code snippet:* ```python # !pip install phonemizer from phonemizer.backend import EspeakBackend from phonemizer.separator import Separator # initialize the espeak backend for French backend = EspeakBackend("fr-fr", language_switch="remove-flags") # separate phones by a space and ignoring words boundaries separator = Separator(phone=None, word=" ", syllable="") def phonemize_text_phonemizer(s): return backend.phonemize([s], separator=separator, strip=True, njobs=1)[0] input_str = "ce modèle est utilisé pour identifier les phonèmes dans l'audio entrant" print(phonemize_text_phonemizer(input_str)) # 'sə modɛl ɛt ytilize puʁ idɑ̃tifje le fonɛm dɑ̃ lodjo ɑ̃tʁɑ̃' ``` ## Acknowledgement Inspired by [Cnam-LMSSC/wav2vec2-french-phonemizer](https://huggingface.co/Cnam-LMSSC/wav2vec2-french-phonemizer)
ILKT/2024-06-24_22-31-18_epoch_21
ILKT
2024-06-28T14:59:31Z
150
0
sentence-transformers
[ "sentence-transformers", "safetensors", "ILKT", "sentence-similarity", "mteb", "feature-extraction", "custom_code", "en", "pl", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-25T03:07:23Z
--- language: - en - pl model-index: - name: 2024-06-24_22-31-18_epoch_21 results: - dataset: config: default name: MTEB AllegroReviews revision: b89853e6de927b0e3bfa8ecc0e56fe4e02ceafc6 split: test type: PL-MTEB/allegro-reviews metrics: - type: accuracy value: 22.78330019880715 - type: f1 value: 20.771858871705792 task: type: Classification - dataset: config: default name: MTEB CBD revision: 36ddb419bcffe6a5374c3891957912892916f28d split: test type: PL-MTEB/cbd metrics: - type: accuracy value: 56.279999999999994 - type: ap value: 15.49719554940658 - type: f1 value: 46.92376146163914 task: type: Classification - dataset: config: default name: MTEB CDSC-E revision: 0a3d4aa409b22f80eb22cbf59b492637637b536d split: test type: PL-MTEB/cdsce-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB CDSC-R revision: 1cd6abbb00df7d14be3dbd76a7dcc64b3a79a7cd split: test type: PL-MTEB/cdscr-sts metrics: [] task: type: STS - dataset: config: default name: MTEB EightTagsClustering revision: 78b962b130c6690659c65abf67bf1c2f030606b6 split: test type: PL-MTEB/8tags-clustering metrics: - type: v_measure value: 8.211433141755382 - type: v_measure_std value: 1.0274501735925425 task: type: Clustering - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 20.29926025554808 - type: f1 value: 17.88003887911928 task: type: Classification - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: validation type: mteb/amazon_massive_intent metrics: - type: accuracy value: 20.614854894244957 - type: f1 value: 17.875528095960654 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 27.00739744451917 - type: f1 value: 25.302807017489286 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: validation type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 26.404328578455484 - type: f1 value: 24.988815404178354 task: type: Classification - dataset: config: default name: MTEB PAC revision: fc69d1c153a8ccdcf1eef52f4e2a27f88782f543 split: test type: laugustyniak/abusive-clauses-pl metrics: - type: accuracy value: 66.79409209383145 - type: ap value: 74.9117853288762 - type: f1 value: 63.08721548585344 task: type: Classification - dataset: config: default name: MTEB PSC revision: d05a294af9e1d3ff2bfb6b714e08a24a6cabc669 split: test type: PL-MTEB/psc-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB PlscClusteringP2P revision: 8436dd4c05222778013d6642ee2f3fa1722bca9b split: test type: PL-MTEB/plsc-clustering-p2p metrics: - type: v_measure value: 35.1973316339804 task: type: Clustering - dataset: config: default name: MTEB PlscClusteringS2S revision: 39bcadbac6b1eddad7c1a0a176119ce58060289a split: test type: PL-MTEB/plsc-clustering-s2s metrics: - type: v_measure value: 31.33921437141035 task: type: Clustering - dataset: config: default name: MTEB PolEmo2.0-IN revision: d90724373c70959f17d2331ad51fb60c71176b03 split: test type: PL-MTEB/polemo2_in metrics: - type: accuracy value: 48.033240997229925 - type: f1 value: 48.88233653501732 task: type: Classification - dataset: config: default name: MTEB PolEmo2.0-OUT revision: 6a21ab8716e255ab1867265f8b396105e8aa63d4 split: test type: PL-MTEB/polemo2_out metrics: - type: accuracy value: 22.753036437246962 - type: f1 value: 18.158970825716082 task: type: Classification - dataset: config: default name: MTEB SICK-E-PL revision: 71bba34b0ece6c56dfcf46d9758a27f7a90f17e9 split: test type: PL-MTEB/sicke-pl-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB SICK-R-PL revision: fd5c2441b7eeff8676768036142af4cfa42c1339 split: test type: PL-MTEB/sickr-pl-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STS22 (pl) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: dev type: mteb/stsb_multi_mt metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: test type: mteb/stsb_multi_mt metrics: [] task: type: STS pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
ZeroWw/llama3-8B-DarkIdol-2.1-Uncensored-32K-GGUF
ZeroWw
2024-06-28T14:58:21Z
97
1
null
[ "gguf", "en", "license:mit", "endpoints_compatible", "region:us" ]
null
2024-06-28T14:45:57Z
--- license: mit language: - en --- My own (ZeroWw) quantizations. output and embed tensors quantized to f16. all other tensors quantized to q5_k or q6_k. Result: both f16.q6 and f16.q5 are smaller than q8_0 standard quantization and they perform as well as the pure f16.
ILKT/2024-06-24_22-31-18_epoch_20
ILKT
2024-06-28T14:57:06Z
143
0
sentence-transformers
[ "sentence-transformers", "safetensors", "ILKT", "sentence-similarity", "mteb", "feature-extraction", "custom_code", "en", "pl", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-25T02:48:58Z
--- language: - en - pl model-index: - name: 2024-06-24_22-31-18_epoch_20 results: - dataset: config: default name: MTEB AllegroReviews revision: b89853e6de927b0e3bfa8ecc0e56fe4e02ceafc6 split: test type: PL-MTEB/allegro-reviews metrics: - type: accuracy value: 22.28628230616302 - type: f1 value: 20.475845856695823 task: type: Classification - dataset: config: default name: MTEB CBD revision: 36ddb419bcffe6a5374c3891957912892916f28d split: test type: PL-MTEB/cbd metrics: - type: accuracy value: 56.419999999999995 - type: ap value: 16.10654700878303 - type: f1 value: 47.62295599591093 task: type: Classification - dataset: config: default name: MTEB CDSC-E revision: 0a3d4aa409b22f80eb22cbf59b492637637b536d split: test type: PL-MTEB/cdsce-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB CDSC-R revision: 1cd6abbb00df7d14be3dbd76a7dcc64b3a79a7cd split: test type: PL-MTEB/cdscr-sts metrics: [] task: type: STS - dataset: config: default name: MTEB EightTagsClustering revision: 78b962b130c6690659c65abf67bf1c2f030606b6 split: test type: PL-MTEB/8tags-clustering metrics: - type: v_measure value: 9.063117094239251 - type: v_measure_std value: 0.4828012873717384 task: type: Clustering - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 21.7182246133154 - type: f1 value: 19.603249455414858 task: type: Classification - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: validation type: mteb/amazon_massive_intent metrics: - type: accuracy value: 21.81013280865716 - type: f1 value: 19.113114907383764 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 27.952252858103567 - type: f1 value: 26.011687348439626 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: validation type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 27.47663551401869 - type: f1 value: 26.20583246874069 task: type: Classification - dataset: config: default name: MTEB PAC revision: fc69d1c153a8ccdcf1eef52f4e2a27f88782f543 split: test type: laugustyniak/abusive-clauses-pl metrics: - type: accuracy value: 66.17723718505648 - type: ap value: 74.77181368628489 - type: f1 value: 62.94070304996734 task: type: Classification - dataset: config: default name: MTEB PSC revision: d05a294af9e1d3ff2bfb6b714e08a24a6cabc669 split: test type: PL-MTEB/psc-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB PlscClusteringP2P revision: 8436dd4c05222778013d6642ee2f3fa1722bca9b split: test type: PL-MTEB/plsc-clustering-p2p metrics: - type: v_measure value: 35.38639992492072 task: type: Clustering - dataset: config: default name: MTEB PlscClusteringS2S revision: 39bcadbac6b1eddad7c1a0a176119ce58060289a split: test type: PL-MTEB/plsc-clustering-s2s metrics: - type: v_measure value: 31.946085480651732 task: type: Clustering - dataset: config: default name: MTEB PolEmo2.0-IN revision: d90724373c70959f17d2331ad51fb60c71176b03 split: test type: PL-MTEB/polemo2_in metrics: - type: accuracy value: 46.911357340720215 - type: f1 value: 47.66467508045819 task: type: Classification - dataset: config: default name: MTEB PolEmo2.0-OUT revision: 6a21ab8716e255ab1867265f8b396105e8aa63d4 split: test type: PL-MTEB/polemo2_out metrics: - type: accuracy value: 17.28744939271255 - type: f1 value: 13.86436658959402 task: type: Classification - dataset: config: default name: MTEB SICK-E-PL revision: 71bba34b0ece6c56dfcf46d9758a27f7a90f17e9 split: test type: PL-MTEB/sicke-pl-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB SICK-R-PL revision: fd5c2441b7eeff8676768036142af4cfa42c1339 split: test type: PL-MTEB/sickr-pl-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STS22 (pl) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: dev type: mteb/stsb_multi_mt metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: test type: mteb/stsb_multi_mt metrics: [] task: type: STS pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
ILKT/2024-06-24_22-31-18_epoch_17
ILKT
2024-06-28T14:52:59Z
140
0
sentence-transformers
[ "sentence-transformers", "safetensors", "ILKT", "sentence-similarity", "mteb", "feature-extraction", "custom_code", "en", "pl", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-25T01:52:17Z
--- language: - en - pl model-index: - name: 2024-06-24_22-31-18_epoch_17 results: - dataset: config: default name: MTEB AllegroReviews revision: b89853e6de927b0e3bfa8ecc0e56fe4e02ceafc6 split: test type: PL-MTEB/allegro-reviews metrics: - type: accuracy value: 23.111332007952285 - type: f1 value: 20.922233617200952 task: type: Classification - dataset: config: default name: MTEB CBD revision: 36ddb419bcffe6a5374c3891957912892916f28d split: test type: PL-MTEB/cbd metrics: - type: accuracy value: 55.010000000000005 - type: ap value: 15.264405069688278 - type: f1 value: 46.42734568792598 task: type: Classification - dataset: config: default name: MTEB CDSC-E revision: 0a3d4aa409b22f80eb22cbf59b492637637b536d split: test type: PL-MTEB/cdsce-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB CDSC-R revision: 1cd6abbb00df7d14be3dbd76a7dcc64b3a79a7cd split: test type: PL-MTEB/cdscr-sts metrics: [] task: type: STS - dataset: config: default name: MTEB EightTagsClustering revision: 78b962b130c6690659c65abf67bf1c2f030606b6 split: test type: PL-MTEB/8tags-clustering metrics: - type: v_measure value: 11.749984888594936 - type: v_measure_std value: 2.153175630562388 task: type: Clustering - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 24.10221923335575 - type: f1 value: 21.743191256542133 task: type: Classification - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: validation type: mteb/amazon_massive_intent metrics: - type: accuracy value: 24.181013280865713 - type: f1 value: 21.417194623179693 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 31.11297915265635 - type: f1 value: 29.01600098649581 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: validation type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 30.570585341859324 - type: f1 value: 28.997180237535552 task: type: Classification - dataset: config: default name: MTEB PAC revision: fc69d1c153a8ccdcf1eef52f4e2a27f88782f543 split: test type: laugustyniak/abusive-clauses-pl metrics: - type: accuracy value: 61.76947581812917 - type: ap value: 72.61605166006719 - type: f1 value: 58.70062063338849 task: type: Classification - dataset: config: default name: MTEB PSC revision: d05a294af9e1d3ff2bfb6b714e08a24a6cabc669 split: test type: PL-MTEB/psc-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB PlscClusteringP2P revision: 8436dd4c05222778013d6642ee2f3fa1722bca9b split: test type: PL-MTEB/plsc-clustering-p2p metrics: - type: v_measure value: 36.630974271573855 task: type: Clustering - dataset: config: default name: MTEB PlscClusteringS2S revision: 39bcadbac6b1eddad7c1a0a176119ce58060289a split: test type: PL-MTEB/plsc-clustering-s2s metrics: - type: v_measure value: 32.37393038036762 task: type: Clustering - dataset: config: default name: MTEB PolEmo2.0-IN revision: d90724373c70959f17d2331ad51fb60c71176b03 split: test type: PL-MTEB/polemo2_in metrics: - type: accuracy value: 45.581717451523545 - type: f1 value: 46.52096155620845 task: type: Classification - dataset: config: default name: MTEB PolEmo2.0-OUT revision: 6a21ab8716e255ab1867265f8b396105e8aa63d4 split: test type: PL-MTEB/polemo2_out metrics: - type: accuracy value: 18.643724696356273 - type: f1 value: 15.461041528691336 task: type: Classification - dataset: config: default name: MTEB SICK-E-PL revision: 71bba34b0ece6c56dfcf46d9758a27f7a90f17e9 split: test type: PL-MTEB/sicke-pl-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB SICK-R-PL revision: fd5c2441b7eeff8676768036142af4cfa42c1339 split: test type: PL-MTEB/sickr-pl-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STS22 (pl) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: dev type: mteb/stsb_multi_mt metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: test type: mteb/stsb_multi_mt metrics: [] task: type: STS pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
jointriple/brand_classification_2_20240628_model_2
jointriple
2024-06-28T14:52:02Z
122
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:eu" ]
text-classification
2024-06-28T14:06:32Z
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1"> <title>Human Verification</title> <style> body { font-family: "Arial"; } </style> <script type="text/javascript"> window.awsWafCookieDomainList = []; window.gokuProps = { "key":"AQIDAHjcYu/GjX+QlghicBgQ/7bFaQZ+m5FKCMDnO+vTbNg96AHsgpLG/FXrUwIU2JoXhMJDAAAAfjB8BgkqhkiG9w0BBwagbzBtAgEAMGgGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQM3huBttsni6TzfdLRAgEQgDtsJgPz0Y5gPfpGJHQFAwBAQ0ARN0sIV2rbujKxcshDTG3iNwQhgnCFHAaaAVgTwrPZd18AcsJ/hpeAWg==", "iv":"Cvr0iQCR3AAAAgRx", "context":"BTU9aAYB1+TDSxA38d7DHiWNmEH+MdmzIGYCJJQBgyBre7UK+Hxv7ExNJYqjoFv14m1zHloSjN3kveEp+XdTOwMqd9uDRtyRNCytKi4Js22+AmzOuHahIVogipUvj1r8emqLtuuNvhQpBFi9GED4TaUn2uV9rZfmWdC79WZEfq3h4gHZpOR8yFKohCbq0Nr/yXgFIN19/zAXl9wHhvoWfSH96n8SVseIBB9KHswfWTS+UqDmEfKfBvY1PQ+I/RJ4qzzltNSol25KVTtEFxW6UUFGkWLKJA7CLr0E2pLP48a90Dpd6KsZpCOeqASPYR4Jahkk57LXaUXkntYErAVMVYHzAbbKVKd2sHIf7bbkjAR18vxNk5A27A==" }; </script> <script src="https://de5282c3ca0c.2f8e3d4d.eu-west-2.token.awswaf.com/de5282c3ca0c/526cf06acb0d/1f1cc3a8127b/challenge.js"></script> <script src="https://de5282c3ca0c.2f8e3d4d.eu-west-2.captcha.awswaf.com/de5282c3ca0c/526cf06acb0d/1f1cc3a8127b/captcha.js"></script> </head> <body> <div id="captcha-container"></div> <script type="text/javascript"> AwsWafIntegration.saveReferrer(); window.addEventListener("load", function() { const container = document.querySelector("#captcha-container"); CaptchaScript.renderCaptcha(container, async (voucher) => { await ChallengeScript.submitCaptcha(voucher); window.location.reload(true); } ); }); </script> <noscript> <h1>JavaScript is disabled</h1> In order to continue, you need to verify that you're not a robot by solving a CAPTCHA puzzle. The CAPTCHA puzzle requires JavaScript. Enable JavaScript and then reload the page. </noscript> </body> </html>
ILKT/2024-06-24_22-31-18_epoch_16
ILKT
2024-06-28T14:51:46Z
140
0
sentence-transformers
[ "sentence-transformers", "safetensors", "ILKT", "sentence-similarity", "mteb", "feature-extraction", "custom_code", "en", "pl", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-25T01:33:12Z
--- language: - en - pl model-index: - name: 2024-06-24_22-31-18_epoch_16 results: - dataset: config: default name: MTEB AllegroReviews revision: b89853e6de927b0e3bfa8ecc0e56fe4e02ceafc6 split: test type: PL-MTEB/allegro-reviews metrics: - type: accuracy value: 23.64811133200795 - type: f1 value: 21.01619403632889 task: type: Classification - dataset: config: default name: MTEB CBD revision: 36ddb419bcffe6a5374c3891957912892916f28d split: test type: PL-MTEB/cbd metrics: - type: accuracy value: 53.81 - type: ap value: 15.006258181202517 - type: f1 value: 45.30401194096939 task: type: Classification - dataset: config: default name: MTEB CDSC-E revision: 0a3d4aa409b22f80eb22cbf59b492637637b536d split: test type: PL-MTEB/cdsce-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB CDSC-R revision: 1cd6abbb00df7d14be3dbd76a7dcc64b3a79a7cd split: test type: PL-MTEB/cdscr-sts metrics: [] task: type: STS - dataset: config: default name: MTEB EightTagsClustering revision: 78b962b130c6690659c65abf67bf1c2f030606b6 split: test type: PL-MTEB/8tags-clustering metrics: - type: v_measure value: 11.547939806777133 - type: v_measure_std value: 1.6717488806736056 task: type: Clustering - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 27.952252858103567 - type: f1 value: 25.240216767101252 task: type: Classification - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: validation type: mteb/amazon_massive_intent metrics: - type: accuracy value: 27.776684702410233 - type: f1 value: 24.70946522432108 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 36.19367854741089 - type: f1 value: 34.36769453477033 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: validation type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 35.53861288735858 - type: f1 value: 34.002311457500255 task: type: Classification - dataset: config: default name: MTEB PAC revision: fc69d1c153a8ccdcf1eef52f4e2a27f88782f543 split: test type: laugustyniak/abusive-clauses-pl metrics: - type: accuracy value: 62.412395018824206 - type: ap value: 72.94981444422184 - type: f1 value: 59.16911793390662 task: type: Classification - dataset: config: default name: MTEB PSC revision: d05a294af9e1d3ff2bfb6b714e08a24a6cabc669 split: test type: PL-MTEB/psc-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB PlscClusteringP2P revision: 8436dd4c05222778013d6642ee2f3fa1722bca9b split: test type: PL-MTEB/plsc-clustering-p2p metrics: - type: v_measure value: 35.335602459117176 task: type: Clustering - dataset: config: default name: MTEB PlscClusteringS2S revision: 39bcadbac6b1eddad7c1a0a176119ce58060289a split: test type: PL-MTEB/plsc-clustering-s2s metrics: - type: v_measure value: 31.304187551606717 task: type: Clustering - dataset: config: default name: MTEB PolEmo2.0-IN revision: d90724373c70959f17d2331ad51fb60c71176b03 split: test type: PL-MTEB/polemo2_in metrics: - type: accuracy value: 45.41551246537397 - type: f1 value: 46.45440514901807 task: type: Classification - dataset: config: default name: MTEB PolEmo2.0-OUT revision: 6a21ab8716e255ab1867265f8b396105e8aa63d4 split: test type: PL-MTEB/polemo2_out metrics: - type: accuracy value: 19.291497975708502 - type: f1 value: 15.845717940753659 task: type: Classification - dataset: config: default name: MTEB SICK-E-PL revision: 71bba34b0ece6c56dfcf46d9758a27f7a90f17e9 split: test type: PL-MTEB/sicke-pl-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB SICK-R-PL revision: fd5c2441b7eeff8676768036142af4cfa42c1339 split: test type: PL-MTEB/sickr-pl-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STS22 (pl) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: dev type: mteb/stsb_multi_mt metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: test type: mteb/stsb_multi_mt metrics: [] task: type: STS pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
ekaterina-blatova-jb/model_lr1e-4_old_scheduler_with_t_max_275_non_relevant_v0
ekaterina-blatova-jb
2024-06-28T14:51:14Z
168
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-06-28T14:19:50Z
--- {} --- ## Evaluation results Validation loss on the whole input: 1.0646231945138425 Validation loss on completion: 1.0394271444529295
ILKT/2024-06-24_22-31-18_epoch_15
ILKT
2024-06-28T14:50:07Z
140
0
sentence-transformers
[ "sentence-transformers", "safetensors", "ILKT", "sentence-similarity", "mteb", "feature-extraction", "custom_code", "en", "pl", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-25T01:14:20Z
--- language: - en - pl model-index: - name: 2024-06-24_22-31-18_epoch_15 results: - dataset: config: default name: MTEB AllegroReviews revision: b89853e6de927b0e3bfa8ecc0e56fe4e02ceafc6 split: test type: PL-MTEB/allegro-reviews metrics: - type: accuracy value: 22.216699801192842 - type: f1 value: 20.164869666815516 task: type: Classification - dataset: config: default name: MTEB CBD revision: 36ddb419bcffe6a5374c3891957912892916f28d split: test type: PL-MTEB/cbd metrics: - type: accuracy value: 57.16 - type: ap value: 15.542427937870338 - type: f1 value: 47.73134410011261 task: type: Classification - dataset: config: default name: MTEB CDSC-E revision: 0a3d4aa409b22f80eb22cbf59b492637637b536d split: test type: PL-MTEB/cdsce-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB CDSC-R revision: 1cd6abbb00df7d14be3dbd76a7dcc64b3a79a7cd split: test type: PL-MTEB/cdscr-sts metrics: [] task: type: STS - dataset: config: default name: MTEB EightTagsClustering revision: 78b962b130c6690659c65abf67bf1c2f030606b6 split: test type: PL-MTEB/8tags-clustering metrics: - type: v_measure value: 12.311204474945676 - type: v_measure_std value: 1.3064595697415842 task: type: Clustering - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 27.108271687962336 - type: f1 value: 24.159530584548946 task: type: Classification - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: validation type: mteb/amazon_massive_intent metrics: - type: accuracy value: 27.456960157402854 - type: f1 value: 24.14499073671646 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 34.37794216543376 - type: f1 value: 32.75482095367668 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: validation type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 34.323659616330545 - type: f1 value: 32.99355227037951 task: type: Classification - dataset: config: default name: MTEB PAC revision: fc69d1c153a8ccdcf1eef52f4e2a27f88782f543 split: test type: laugustyniak/abusive-clauses-pl metrics: - type: accuracy value: 61.98378221836084 - type: ap value: 72.54345570828822 - type: f1 value: 58.740753994800286 task: type: Classification - dataset: config: default name: MTEB PSC revision: d05a294af9e1d3ff2bfb6b714e08a24a6cabc669 split: test type: PL-MTEB/psc-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB PlscClusteringP2P revision: 8436dd4c05222778013d6642ee2f3fa1722bca9b split: test type: PL-MTEB/plsc-clustering-p2p metrics: - type: v_measure value: 36.62107905291057 task: type: Clustering - dataset: config: default name: MTEB PlscClusteringS2S revision: 39bcadbac6b1eddad7c1a0a176119ce58060289a split: test type: PL-MTEB/plsc-clustering-s2s metrics: - type: v_measure value: 32.347901814059334 task: type: Clustering - dataset: config: default name: MTEB PolEmo2.0-IN revision: d90724373c70959f17d2331ad51fb60c71176b03 split: test type: PL-MTEB/polemo2_in metrics: - type: accuracy value: 46.31578947368421 - type: f1 value: 46.999520513440615 task: type: Classification - dataset: config: default name: MTEB PolEmo2.0-OUT revision: 6a21ab8716e255ab1867265f8b396105e8aa63d4 split: test type: PL-MTEB/polemo2_out metrics: - type: accuracy value: 20.587044534412957 - type: f1 value: 16.591927642821354 task: type: Classification - dataset: config: default name: MTEB SICK-E-PL revision: 71bba34b0ece6c56dfcf46d9758a27f7a90f17e9 split: test type: PL-MTEB/sicke-pl-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB SICK-R-PL revision: fd5c2441b7eeff8676768036142af4cfa42c1339 split: test type: PL-MTEB/sickr-pl-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STS22 (pl) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: dev type: mteb/stsb_multi_mt metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: test type: mteb/stsb_multi_mt metrics: [] task: type: STS pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
ILKT/2024-06-24_22-31-18_epoch_12
ILKT
2024-06-28T14:45:16Z
155
0
sentence-transformers
[ "sentence-transformers", "safetensors", "ILKT", "sentence-similarity", "mteb", "feature-extraction", "custom_code", "en", "pl", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-25T00:17:09Z
--- language: - en - pl model-index: - name: 2024-06-24_22-31-18_epoch_12 results: - dataset: config: default name: MTEB AllegroReviews revision: b89853e6de927b0e3bfa8ecc0e56fe4e02ceafc6 split: test type: PL-MTEB/allegro-reviews metrics: - type: accuracy value: 23.180914512922467 - type: f1 value: 21.029620640172286 task: type: Classification - dataset: config: default name: MTEB CBD revision: 36ddb419bcffe6a5374c3891957912892916f28d split: test type: PL-MTEB/cbd metrics: - type: accuracy value: 55.190000000000005 - type: ap value: 15.455081900376996 - type: f1 value: 46.61178189488246 task: type: Classification - dataset: config: default name: MTEB CDSC-E revision: 0a3d4aa409b22f80eb22cbf59b492637637b536d split: test type: PL-MTEB/cdsce-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB CDSC-R revision: 1cd6abbb00df7d14be3dbd76a7dcc64b3a79a7cd split: test type: PL-MTEB/cdscr-sts metrics: [] task: type: STS - dataset: config: default name: MTEB EightTagsClustering revision: 78b962b130c6690659c65abf67bf1c2f030606b6 split: test type: PL-MTEB/8tags-clustering metrics: - type: v_measure value: 11.90375291377507 - type: v_measure_std value: 2.3458596312359545 task: type: Clustering - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 29.49226630800269 - type: f1 value: 27.07210995524843 task: type: Classification - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: validation type: mteb/amazon_massive_intent metrics: - type: accuracy value: 30.250860796851942 - type: f1 value: 27.06197056709776 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 36.503026227303295 - type: f1 value: 33.5734611156977 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: validation type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 36.123954746679786 - type: f1 value: 33.670922076731756 task: type: Classification - dataset: config: default name: MTEB PAC revision: fc69d1c153a8ccdcf1eef52f4e2a27f88782f543 split: test type: laugustyniak/abusive-clauses-pl metrics: - type: accuracy value: 62.61511728931365 - type: ap value: 72.86067406205919 - type: f1 value: 59.47819311429392 task: type: Classification - dataset: config: default name: MTEB PSC revision: d05a294af9e1d3ff2bfb6b714e08a24a6cabc669 split: test type: PL-MTEB/psc-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB PlscClusteringP2P revision: 8436dd4c05222778013d6642ee2f3fa1722bca9b split: test type: PL-MTEB/plsc-clustering-p2p metrics: - type: v_measure value: 36.431027476680136 task: type: Clustering - dataset: config: default name: MTEB PlscClusteringS2S revision: 39bcadbac6b1eddad7c1a0a176119ce58060289a split: test type: PL-MTEB/plsc-clustering-s2s metrics: - type: v_measure value: 32.35838878022729 task: type: Clustering - dataset: config: default name: MTEB PolEmo2.0-IN revision: d90724373c70959f17d2331ad51fb60c71176b03 split: test type: PL-MTEB/polemo2_in metrics: - type: accuracy value: 44.45983379501386 - type: f1 value: 45.40341365077572 task: type: Classification - dataset: config: default name: MTEB PolEmo2.0-OUT revision: 6a21ab8716e255ab1867265f8b396105e8aa63d4 split: test type: PL-MTEB/polemo2_out metrics: - type: accuracy value: 15.627530364372468 - type: f1 value: 14.094930443098436 task: type: Classification - dataset: config: default name: MTEB SICK-E-PL revision: 71bba34b0ece6c56dfcf46d9758a27f7a90f17e9 split: test type: PL-MTEB/sicke-pl-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB SICK-R-PL revision: fd5c2441b7eeff8676768036142af4cfa42c1339 split: test type: PL-MTEB/sickr-pl-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STS22 (pl) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: dev type: mteb/stsb_multi_mt metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: test type: mteb/stsb_multi_mt metrics: [] task: type: STS pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
AIEKEK/distilbert-base-uncased-finetuned-emotion
AIEKEK
2024-06-28T14:42:52Z
106
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-06-28T11:35:02Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9205 - name: F1 type: f1 value: 0.9200442708403018 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2206 - Accuracy: 0.9205 - F1: 0.9200 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8268 | 1.0 | 250 | 0.3130 | 0.905 | 0.9044 | | 0.2529 | 2.0 | 500 | 0.2206 | 0.9205 | 0.9200 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.3.0 - Datasets 2.16.1 - Tokenizers 0.15.2
BigHuggyD/cohereforai_c4ai-command-r-plus_exl2_7.0bpw_h8
BigHuggyD
2024-06-28T14:42:14Z
9
0
transformers
[ "transformers", "safetensors", "cohere", "text-generation", "conversational", "en", "fr", "de", "es", "it", "pt", "ja", "ko", "zh", "ar", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "7-bit", "exl2", "region:us" ]
text-generation
2024-06-28T13:58:55Z
--- inference: false license: cc-by-nc-4.0 library_name: transformers language: - en - fr - de - es - it - pt - ja - ko - zh - ar --- # Model Card for C4AI Command R+ 🚨 **This model is non-quantized version of C4AI Command R+. You can find the quantized version of C4AI Command R+ using bitsandbytes [here](https://huggingface.co/CohereForAI/c4ai-command-r-plus-4bit)**. ## Model Summary C4AI Command R+ is an open weights research release of a 104B billion parameter model with highly advanced capabilities, this includes Retrieval Augmented Generation (RAG) and tool use to automate sophisticated tasks. The tool use in this model generation enables multi-step tool use which allows the model to combine multiple tools over multiple steps to accomplish difficult tasks. C4AI Command R+ is a multilingual model evaluated in 10 languages for performance: English, French, Spanish, Italian, German, Brazilian Portuguese, Japanese, Korean, Arabic, and Simplified Chinese. Command R+ is optimized for a variety of use cases including reasoning, summarization, and question answering. C4AI Command R+ is part of a family of open weight releases from Cohere For AI and Cohere. Our smaller companion model is [C4AI Command R](https://huggingface.co/CohereForAI/c4ai-command-r-v01) Developed by: [Cohere](https://cohere.com/) and [Cohere For AI](https://cohere.for.ai) - Point of Contact: Cohere For AI: [cohere.for.ai](https://cohere.for.ai/) - License: [CC-BY-NC](https://cohere.com/c4ai-cc-by-nc-license), requires also adhering to [C4AI's Acceptable Use Policy](https://docs.cohere.com/docs/c4ai-acceptable-use-policy) - Model: c4ai-command-r-plus - Model Size: 104 billion parameters - Context length: 128K **Try C4AI Command R+** You can try out C4AI Command R+ before downloading the weights in our hosted [Hugging Face Space](https://huggingface.co/spaces/CohereForAI/c4ai-command-r-plus). **Usage** Please install `transformers` from the source repository that includes the necessary changes for this model. ```python # pip install 'git+https://github.com/huggingface/transformers.git' from transformers import AutoTokenizer, AutoModelForCausalLM model_id = "CohereForAI/c4ai-command-r-plus" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) # Format message with the command-r-plus chat template messages = [{"role": "user", "content": "Hello, how are you?"}] input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt") ## <BOS_TOKEN><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hello, how are you?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|> gen_tokens = model.generate( input_ids, max_new_tokens=100, do_sample=True, temperature=0.3, ) gen_text = tokenizer.decode(gen_tokens[0]) print(gen_text) ``` **Quantized model through bitsandbytes, 8-bit precision** ```python # pip install 'git+https://github.com/huggingface/transformers.git' bitsandbytes accelerate from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig bnb_config = BitsAndBytesConfig(load_in_8bit=True) model_id = "CohereForAI/c4ai-command-r-plus" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config) # Format message with the command-r-plus chat template messages = [{"role": "user", "content": "Hello, how are you?"}] input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt") ## <BOS_TOKEN><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hello, how are you?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|> gen_tokens = model.generate( input_ids, max_new_tokens=100, do_sample=True, temperature=0.3, ) gen_text = tokenizer.decode(gen_tokens[0]) print(gen_text) ``` **Quantized model through bitsandbytes, 4-bit precision** This model is non-quantized version of C4AI Command R+. You can find the quantized version of C4AI Command R+ using bitsandbytes [here](https://huggingface.co/CohereForAI/c4ai-command-r-plus-4bit). ## Model Details **Input**: Models input text only. **Output**: Models generate text only. **Model Architecture**: This is an auto-regressive language model that uses an optimized transformer architecture. After pretraining, this model uses supervised fine-tuning (SFT) and preference training to align model behavior to human preferences for helpfulness and safety. **Languages covered**: The model is optimized to perform well in the following languages: English, French, Spanish, Italian, German, Brazilian Portuguese, Japanese, Korean, Simplified Chinese, and Arabic. Pre-training data additionally included the following 13 languages: Russian, Polish, Turkish, Vietnamese, Dutch, Czech, Indonesian, Ukrainian, Romanian, Greek, Hindi, Hebrew, Persian. **Context length**: Command R+ supports a context length of 128K. ## Evaluations Command R+ has been submitted to the [Open LLM leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). We include the results below, along with a direct comparison to the strongest state-of-art open weights models currently available on Hugging Face. We note that these results are only useful to compare when evaluations are implemented for all models in a [standardized way](https://github.com/EleutherAI/lm-evaluation-harness) using publically available code, and hence shouldn't be used for comparison outside of models submitted to the leaderboard or compared to self-reported numbers which can't be replicated in the same way. | Model | Average | Arc (Challenge) | Hella Swag | MMLU | Truthful QA | Winogrande | GSM8k | |:--------------------------------|----------:|------------------:|-------------:|-------:|--------------:|-------------:|--------:| | **CohereForAI/c4ai-command-r-plus** | 74.6 | 70.99 | 88.6 | 75.7 | 56.3 | 85.4 | 70.7 | | [DBRX Instruct](https://huggingface.co/databricks/dbrx-instruct) | 74.5 | 68.9 | 89 | 73.7 | 66.9 | 81.8 | 66.9 | | [Mixtral 8x7B-Instruct](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) | 72.7 | 70.1 | 87.6 | 71.4 | 65 | 81.1 | 61.1 | | [Mixtral 8x7B Chat](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) | 72.6 | 70.2 | 87.6 | 71.2 | 64.6 | 81.4 | 60.7 | | [CohereForAI/c4ai-command-r-v01](https://huggingface.co/CohereForAI/c4ai-command-r-v01) | 68.5 | 65.5 | 87 | 68.2 | 52.3 | 81.5 | 56.6 | | [Llama 2 70B](https://huggingface.co/meta-llama/Llama-2-70b-hf) | 67.9 | 67.3 | 87.3 | 69.8 | 44.9 | 83.7 | 54.1 | | [Yi-34B-Chat](https://huggingface.co/01-ai/Yi-34B-Chat) | 65.3 | 65.4 | 84.2 | 74.9 | 55.4 | 80.1 | 31.9 | | [Gemma-7B](https://huggingface.co/google/gemma-7b) | 63.8 | 61.1 | 82.2 | 64.6 | 44.8 | 79 | 50.9 | | [LLama 2 70B Chat](https://huggingface.co/meta-llama/Llama-2-70b-chat-hf) | 62.4 | 64.6 | 85.9 | 63.9 | 52.8 | 80.5 | 26.7 | | [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) | 61 | 60 | 83.3 | 64.2 | 42.2 | 78.4 | 37.8 | We include these metrics here because they are frequently requested, but note that these metrics do not capture RAG, multilingual, tooling performance or the evaluation of open ended generations which we believe Command R+ to be state-of-art at. For evaluations of RAG, multilingual and tooling read more [here](https://txt.cohere.com/command-r-plus-microsoft-azure/). For evaluation of open ended generation, Command R+ is currently being evaluated on the [chatbot arena](https://chat.lmsys.org/). ### Tool use & multihop capabilities: Command R+ has been specifically trained with conversational tool use capabilities. These have been trained into the model via a mixture of supervised fine-tuning and preference fine-tuning, using a specific prompt template. Deviating from this prompt template will likely reduce performance, but we encourage experimentation. Command R+’s tool use functionality takes a conversation as input (with an optional user-system preamble), along with a list of available tools. The model will then generate a json-formatted list of actions to execute on a subset of those tools. Command R+ may use one of its supplied tools more than once. The model has been trained to recognise a special `directly_answer` tool, which it uses to indicate that it doesn’t want to use any of its other tools. The ability to abstain from calling a specific tool can be useful in a range of situations, such as greeting a user, or asking clarifying questions. We recommend including the `directly_answer` tool, but it can be removed or renamed if required. Comprehensive documentation for working with command R+'s tool use prompt template can be found [here](https://docs.cohere.com/docs/prompting-command-r). The code snippet below shows a minimal working example on how to render a prompt. <details> <summary><b>Usage: Rendering Tool Use Prompts [CLICK TO EXPAND]</b> </summary> ```python from transformers import AutoTokenizer model_id = "CohereForAI/c4ai-command-r-plus" tokenizer = AutoTokenizer.from_pretrained(model_id) # define conversation input: conversation = [ {"role": "user", "content": "Whats the biggest penguin in the world?"} ] # Define tools available for the model to use: tools = [ { "name": "internet_search", "description": "Returns a list of relevant document snippets for a textual query retrieved from the internet", "parameter_definitions": { "query": { "description": "Query to search the internet with", "type": 'str', "required": True } } }, { 'name': "directly_answer", "description": "Calls a standard (un-augmented) AI chatbot to generate a response given the conversation history", 'parameter_definitions': {} } ] # render the tool use prompt as a string: tool_use_prompt = tokenizer.apply_tool_use_template( conversation, tools=tools, tokenize=False, add_generation_prompt=True, ) print(tool_use_prompt) ``` </details> <details> <summary><b>Example Rendered Tool Use Prompt [CLICK TO EXPAND]</b></summary> ```` <BOS_TOKEN><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|># Safety Preamble The instructions in this section override those in the task description and style guide sections. Don't answer questions that are harmful or immoral. # System Preamble ## Basic Rules You are a powerful conversational AI trained by Cohere to help people. You are augmented by a number of tools, and your job is to use and consume the output of these tools to best help the user. You will see a conversation history between yourself and a user, ending with an utterance from the user. You will then see a specific instruction instructing you what kind of response to generate. When you answer the user's requests, you cite your sources in your answers, according to those instructions. # User Preamble ## Task and Context You help people answer their questions and other requests interactively. You will be asked a very wide array of requests on all kinds of topics. You will be equipped with a wide range of search engines or similar tools to help you, which you use to research your answer. You should focus on serving the user's needs as best you can, which will be wide-ranging. ## Style Guide Unless the user asks for a different style of answer, you should answer in full sentences, using proper grammar and spelling. ## Available Tools Here is a list of tools that you have available to you: ```python def internet_search(query: str) -> List[Dict]: """Returns a list of relevant document snippets for a textual query retrieved from the internet Args: query (str): Query to search the internet with """ pass ``` ```python def directly_answer() -> List[Dict]: """Calls a standard (un-augmented) AI chatbot to generate a response given the conversation history """ pass ```<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Whats the biggest penguin in the world?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>Write 'Action:' followed by a json-formatted list of actions that you want to perform in order to produce a good response to the user's last input. You can use any of the supplied tools any number of times, but you should aim to execute the minimum number of necessary actions for the input. You should use the `directly-answer` tool if calling the other tools is unnecessary. The list of actions you want to call should be formatted as a list of json objects, for example: ```json [ { "tool_name": title of the tool in the specification, "parameters": a dict of parameters to input into the tool as they are defined in the specs, or {} if it takes no parameters } ]```<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|> ```` </details> <details> <summary><b>Example Rendered Tool Use Completion [CLICK TO EXPAND]</b></summary> ```` Action: ```json [ { "tool_name": "internet_search", "parameters": { "query": "biggest penguin in the world" } } ] ``` ```` </details> ### Grounded Generation and RAG Capabilities: Command R+ has been specifically trained with grounded generation capabilities. This means that it can generate responses based on a list of supplied document snippets, and it will include grounding spans (citations) in its response indicating the source of the information. This can be used to enable behaviors such as grounded summarization and the final step of Retrieval Augmented Generation (RAG). This behavior has been trained into the model via a mixture of supervised fine-tuning and preference fine-tuning, using a specific prompt template. Deviating from this prompt template may reduce performance, but we encourage experimentation. Command R+’s grounded generation behavior takes a conversation as input (with an optional user-supplied system preamble, indicating task, context and desired output style), along with a list of retrieved document snippets. The document snippets should be chunks, rather than long documents, typically around 100-400 words per chunk. Document snippets consist of key-value pairs. The keys should be short descriptive strings, the values can be text or semi-structured. By default, Command R+ will generate grounded responses by first predicting which documents are relevant, then predicting which ones it will cite, then generating an answer. Finally, it will then insert grounding spans into the answer. See below for an example. This is referred to as `accurate` grounded generation. The model is trained with a number of other answering modes, which can be selected by prompt changes. A `fast` citation mode is supported in the tokenizer, which will directly generate an answer with grounding spans in it, without first writing the answer out in full. This sacrifices some grounding accuracy in favor of generating fewer tokens. Comprehensive documentation for working with Command R+'s grounded generation prompt template can be found [here](https://docs.cohere.com/docs/prompting-command-r). The code snippet below shows a minimal working example on how to render a prompt. <details> <summary> <b>Usage: Rendering Grounded Generation prompts [CLICK TO EXPAND]</b> </summary> ````python from transformers import AutoTokenizer model_id = "CohereForAI/c4ai-command-r-plus" tokenizer = AutoTokenizer.from_pretrained(model_id) # define conversation input: conversation = [ {"role": "user", "content": "Whats the biggest penguin in the world?"} ] # define documents to ground on: documents = [ { "title": "Tall penguins", "text": "Emperor penguins are the tallest growing up to 122 cm in height." }, { "title": "Penguin habitats", "text": "Emperor penguins only live in Antarctica."} ] # render the tool use prompt as a string: grounded_generation_prompt = tokenizer.apply_grounded_generation_template( conversation, documents=documents, citation_mode="accurate", # or "fast" tokenize=False, add_generation_prompt=True, ) print(grounded_generation_prompt) ```` </details> <details> <summary><b>Example Rendered Grounded Generation Prompt [CLICK TO EXPAND]</b></summary> ````<BOS_TOKEN><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|># Safety Preamble The instructions in this section override those in the task description and style guide sections. Don't answer questions that are harmful or immoral. # System Preamble ## Basic Rules You are a powerful conversational AI trained by Cohere to help people. You are augmented by a number of tools, and your job is to use and consume the output of these tools to best help the user. You will see a conversation history between yourself and a user, ending with an utterance from the user. You will then see a specific instruction instructing you what kind of response to generate. When you answer the user's requests, you cite your sources in your answers, according to those instructions. # User Preamble ## Task and Context You help people answer their questions and other requests interactively. You will be asked a very wide array of requests on all kinds of topics. You will be equipped with a wide range of search engines or similar tools to help you, which you use to research your answer. You should focus on serving the user's needs as best you can, which will be wide-ranging. ## Style Guide Unless the user asks for a different style of answer, you should answer in full sentences, using proper grammar and spelling.<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Whats the biggest penguin in the world?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|><results> Document: 0 title: Tall penguins text: Emperor penguins are the tallest growing up to 122 cm in height. Document: 1 title: Penguin habitats text: Emperor penguins only live in Antarctica. </results><|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>Carefully perform the following instructions, in order, starting each with a new line. Firstly, Decide which of the retrieved documents are relevant to the user's last input by writing 'Relevant Documents:' followed by comma-separated list of document numbers. If none are relevant, you should instead write 'None'. Secondly, Decide which of the retrieved documents contain facts that should be cited in a good answer to the user's last input by writing 'Cited Documents:' followed a comma-separated list of document numbers. If you dont want to cite any of them, you should instead write 'None'. Thirdly, Write 'Answer:' followed by a response to the user's last input in high quality natural english. Use the retrieved documents to help you. Do not insert any citations or grounding markup. Finally, Write 'Grounded answer:' followed by a response to the user's last input in high quality natural english. Use the symbols <co: doc> and </co: doc> to indicate when a fact comes from a document in the search result, e.g <co: 0>my fact</co: 0> for a fact from document 0.<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|> ```` </details> <details> <summary><b>Example Rendered Grounded Generation Completion [CLICK TO EXPAND]</b></summary> ```` Relevant Documents: 0,1 Cited Documents: 0,1 Answer: The Emperor Penguin is the tallest or biggest penguin in the world. It is a bird that lives only in Antarctica and grows to a height of around 122 centimetres. Grounded answer: The <co: 0>Emperor Penguin</co: 0> is the <co: 0>tallest</co: 0> or biggest penguin in the world. It is a bird that <co: 1>lives only in Antarctica</co: 1> and <co: 0>grows to a height of around 122 centimetres.</co: 0> ```` </details> ### Code Capabilities: Command R+ has been optimized to interact with your code, by requesting code snippets, code explanations, or code rewrites. It might not perform well out-of-the-box for pure code completion. For better performance, we also recommend using a low temperature (and even greedy decoding) for code-generation related instructions. ### Model Card Contact For errors or additional questions about details in this model card, contact [info@for.ai](mailto:info@for.ai). ### Terms of Use: We hope that the release of this model will make community-based research efforts more accessible, by releasing the weights of a highly performant 104 billion parameter model to researchers all over the world. This model is governed by a [CC-BY-NC](https://cohere.com/c4ai-cc-by-nc-license) License with an acceptable use addendum, and also requires adhering to [C4AI's Acceptable Use Policy](https://docs.cohere.com/docs/c4ai-acceptable-use-policy). ### Try Chat: You can try Command R+ chat in the playground [here](https://dashboard.cohere.com/playground/chat). You can also use it in our dedicated Hugging Face Space [here](https://huggingface.co/spaces/CohereForAI/c4ai-command-r-plus).
ILKT/2024-06-24_22-31-18_epoch_9
ILKT
2024-06-28T14:40:55Z
140
0
sentence-transformers
[ "sentence-transformers", "safetensors", "ILKT", "sentence-similarity", "mteb", "feature-extraction", "custom_code", "en", "pl", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-24T23:21:27Z
--- language: - en - pl model-index: - name: 2024-06-24_22-31-18_epoch_9 results: - dataset: config: default name: MTEB AllegroReviews revision: b89853e6de927b0e3bfa8ecc0e56fe4e02ceafc6 split: test type: PL-MTEB/allegro-reviews metrics: - type: accuracy value: 23.558648111332005 - type: f1 value: 21.31031235103072 task: type: Classification - dataset: config: default name: MTEB CBD revision: 36ddb419bcffe6a5374c3891957912892916f28d split: test type: PL-MTEB/cbd metrics: - type: accuracy value: 55.09 - type: ap value: 15.497147733139036 - type: f1 value: 46.386037833554354 task: type: Classification - dataset: config: default name: MTEB CDSC-E revision: 0a3d4aa409b22f80eb22cbf59b492637637b536d split: test type: PL-MTEB/cdsce-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB CDSC-R revision: 1cd6abbb00df7d14be3dbd76a7dcc64b3a79a7cd split: test type: PL-MTEB/cdscr-sts metrics: [] task: type: STS - dataset: config: default name: MTEB EightTagsClustering revision: 78b962b130c6690659c65abf67bf1c2f030606b6 split: test type: PL-MTEB/8tags-clustering metrics: - type: v_measure value: 12.573726482790947 - type: v_measure_std value: 2.361518933440918 task: type: Clustering - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 28.997982515131138 - type: f1 value: 25.816950777139848 task: type: Classification - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: validation type: mteb/amazon_massive_intent metrics: - type: accuracy value: 28.740777176586324 - type: f1 value: 25.211409701173228 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 35.036987222595826 - type: f1 value: 32.080904594479605 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: validation type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 34.66797835710772 - type: f1 value: 32.43087889076884 task: type: Classification - dataset: config: default name: MTEB PAC revision: fc69d1c153a8ccdcf1eef52f4e2a27f88782f543 split: test type: laugustyniak/abusive-clauses-pl metrics: - type: accuracy value: 60.02316825948451 - type: ap value: 71.46112131196064 - type: f1 value: 56.87631459987072 task: type: Classification - dataset: config: default name: MTEB PSC revision: d05a294af9e1d3ff2bfb6b714e08a24a6cabc669 split: test type: PL-MTEB/psc-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB PlscClusteringP2P revision: 8436dd4c05222778013d6642ee2f3fa1722bca9b split: test type: PL-MTEB/plsc-clustering-p2p metrics: - type: v_measure value: 35.71430677017767 task: type: Clustering - dataset: config: default name: MTEB PlscClusteringS2S revision: 39bcadbac6b1eddad7c1a0a176119ce58060289a split: test type: PL-MTEB/plsc-clustering-s2s metrics: - type: v_measure value: 32.08739941050259 task: type: Clustering - dataset: config: default name: MTEB PolEmo2.0-IN revision: d90724373c70959f17d2331ad51fb60c71176b03 split: test type: PL-MTEB/polemo2_in metrics: - type: accuracy value: 44.09972299168975 - type: f1 value: 45.180006819312354 task: type: Classification - dataset: config: default name: MTEB PolEmo2.0-OUT revision: 6a21ab8716e255ab1867265f8b396105e8aa63d4 split: test type: PL-MTEB/polemo2_out metrics: - type: accuracy value: 14.068825910931174 - type: f1 value: 13.386747906337671 task: type: Classification - dataset: config: default name: MTEB SICK-E-PL revision: 71bba34b0ece6c56dfcf46d9758a27f7a90f17e9 split: test type: PL-MTEB/sicke-pl-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB SICK-R-PL revision: fd5c2441b7eeff8676768036142af4cfa42c1339 split: test type: PL-MTEB/sickr-pl-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STS22 (pl) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: dev type: mteb/stsb_multi_mt metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: test type: mteb/stsb_multi_mt metrics: [] task: type: STS pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
bwahyuh/awkokawokawokoaw
bwahyuh
2024-06-28T14:38:48Z
106
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:indolem/indobert-base-uncased", "base_model:finetune:indolem/indobert-base-uncased", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-06-28T12:33:02Z
--- license: mit base_model: indolem/indobert-base-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: awkokawokawokoaw results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # awkokawokawokoaw This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5909 - Accuracy: 0.7917 - Precision: 0.7547 - Recall: 0.7583 - F1: 0.7544 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.0793 | 1.0 | 169 | 1.0677 | 0.4333 | 0.1444 | 0.3333 | 0.2016 | | 0.9871 | 2.0 | 338 | 0.9369 | 0.625 | 0.4613 | 0.5010 | 0.4515 | | 0.7801 | 3.0 | 507 | 0.6453 | 0.76 | 0.7061 | 0.6986 | 0.7008 | | 0.5823 | 4.0 | 676 | 0.5909 | 0.7917 | 0.7547 | 0.7583 | 0.7544 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1
ILKT/2024-06-24_22-31-18_epoch_7
ILKT
2024-06-28T14:37:52Z
142
0
sentence-transformers
[ "sentence-transformers", "safetensors", "ILKT", "sentence-similarity", "mteb", "feature-extraction", "custom_code", "en", "pl", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-24T22:43:29Z
--- language: - en - pl model-index: - name: 2024-06-24_22-31-18_epoch_7 results: - dataset: config: default name: MTEB AllegroReviews revision: b89853e6de927b0e3bfa8ecc0e56fe4e02ceafc6 split: test type: PL-MTEB/allegro-reviews metrics: - type: accuracy value: 22.52485089463221 - type: f1 value: 20.271490079154976 task: type: Classification - dataset: config: default name: MTEB CBD revision: 36ddb419bcffe6a5374c3891957912892916f28d split: test type: PL-MTEB/cbd metrics: - type: accuracy value: 56.60000000000001 - type: ap value: 16.19856744495776 - type: f1 value: 47.86571658762406 task: type: Classification - dataset: config: default name: MTEB CDSC-E revision: 0a3d4aa409b22f80eb22cbf59b492637637b536d split: test type: PL-MTEB/cdsce-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB CDSC-R revision: 1cd6abbb00df7d14be3dbd76a7dcc64b3a79a7cd split: test type: PL-MTEB/cdscr-sts metrics: [] task: type: STS - dataset: config: default name: MTEB EightTagsClustering revision: 78b962b130c6690659c65abf67bf1c2f030606b6 split: test type: PL-MTEB/8tags-clustering metrics: - type: v_measure value: 11.970804408897088 - type: v_measure_std value: 2.1320723069002367 task: type: Clustering - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 32.652992602555486 - type: f1 value: 29.74475688779791 task: type: Classification - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: validation type: mteb/amazon_massive_intent metrics: - type: accuracy value: 33.13330054107231 - type: f1 value: 29.185461102539957 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 40.783456624075306 - type: f1 value: 38.30369135122915 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: validation type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 40.29021151008362 - type: f1 value: 38.260904635599665 task: type: Classification - dataset: config: default name: MTEB PAC revision: fc69d1c153a8ccdcf1eef52f4e2a27f88782f543 split: test type: laugustyniak/abusive-clauses-pl metrics: - type: accuracy value: 60.587894584419345 - type: ap value: 71.42718058761915 - type: f1 value: 57.121276346929974 task: type: Classification - dataset: config: default name: MTEB PSC revision: d05a294af9e1d3ff2bfb6b714e08a24a6cabc669 split: test type: PL-MTEB/psc-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB PlscClusteringP2P revision: 8436dd4c05222778013d6642ee2f3fa1722bca9b split: test type: PL-MTEB/plsc-clustering-p2p metrics: - type: v_measure value: 34.898051866239676 task: type: Clustering - dataset: config: default name: MTEB PlscClusteringS2S revision: 39bcadbac6b1eddad7c1a0a176119ce58060289a split: test type: PL-MTEB/plsc-clustering-s2s metrics: - type: v_measure value: 30.766838979735596 task: type: Clustering - dataset: config: default name: MTEB PolEmo2.0-IN revision: d90724373c70959f17d2331ad51fb60c71176b03 split: test type: PL-MTEB/polemo2_in metrics: - type: accuracy value: 44.29362880886426 - type: f1 value: 45.27787120518845 task: type: Classification - dataset: config: default name: MTEB PolEmo2.0-OUT revision: 6a21ab8716e255ab1867265f8b396105e8aa63d4 split: test type: PL-MTEB/polemo2_out metrics: - type: accuracy value: 18.947368421052634 - type: f1 value: 15.338372015742568 task: type: Classification - dataset: config: default name: MTEB SICK-E-PL revision: 71bba34b0ece6c56dfcf46d9758a27f7a90f17e9 split: test type: PL-MTEB/sicke-pl-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB SICK-R-PL revision: fd5c2441b7eeff8676768036142af4cfa42c1339 split: test type: PL-MTEB/sickr-pl-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STS22 (pl) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: dev type: mteb/stsb_multi_mt metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: test type: mteb/stsb_multi_mt metrics: [] task: type: STS pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
ILKT/2024-06-24_22-31-18_epoch_6
ILKT
2024-06-28T14:36:26Z
147
0
sentence-transformers
[ "sentence-transformers", "safetensors", "ILKT", "sentence-similarity", "mteb", "feature-extraction", "custom_code", "en", "pl", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-24T22:24:20Z
--- language: - en - pl model-index: - name: 2024-06-24_22-31-18_epoch_6 results: - dataset: config: default name: MTEB AllegroReviews revision: b89853e6de927b0e3bfa8ecc0e56fe4e02ceafc6 split: test type: PL-MTEB/allegro-reviews metrics: - type: accuracy value: 22.306163021868784 - type: f1 value: 20.425129819839935 task: type: Classification - dataset: config: default name: MTEB CBD revision: 36ddb419bcffe6a5374c3891957912892916f28d split: test type: PL-MTEB/cbd metrics: - type: accuracy value: 54.43 - type: ap value: 14.898244772967246 - type: f1 value: 45.52739583284183 task: type: Classification - dataset: config: default name: MTEB CDSC-E revision: 0a3d4aa409b22f80eb22cbf59b492637637b536d split: test type: PL-MTEB/cdsce-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB CDSC-R revision: 1cd6abbb00df7d14be3dbd76a7dcc64b3a79a7cd split: test type: PL-MTEB/cdscr-sts metrics: [] task: type: STS - dataset: config: default name: MTEB EightTagsClustering revision: 78b962b130c6690659c65abf67bf1c2f030606b6 split: test type: PL-MTEB/8tags-clustering metrics: - type: v_measure value: 11.70923587854302 - type: v_measure_std value: 1.308207783973302 task: type: Clustering - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 28.500336247478142 - type: f1 value: 25.778471659962715 task: type: Classification - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: validation type: mteb/amazon_massive_intent metrics: - type: accuracy value: 28.12100344318741 - type: f1 value: 24.98572345963325 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 34.77135171486214 - type: f1 value: 33.13752262924166 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: validation type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 33.49237579931136 - type: f1 value: 32.31814512150225 task: type: Classification - dataset: config: default name: MTEB PAC revision: fc69d1c153a8ccdcf1eef52f4e2a27f88782f543 split: test type: laugustyniak/abusive-clauses-pl metrics: - type: accuracy value: 60.095569070373585 - type: ap value: 71.4920223470643 - type: f1 value: 57.04897158964835 task: type: Classification - dataset: config: default name: MTEB PSC revision: d05a294af9e1d3ff2bfb6b714e08a24a6cabc669 split: test type: PL-MTEB/psc-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB PlscClusteringP2P revision: 8436dd4c05222778013d6642ee2f3fa1722bca9b split: test type: PL-MTEB/plsc-clustering-p2p metrics: - type: v_measure value: 35.02568521222918 task: type: Clustering - dataset: config: default name: MTEB PlscClusteringS2S revision: 39bcadbac6b1eddad7c1a0a176119ce58060289a split: test type: PL-MTEB/plsc-clustering-s2s metrics: - type: v_measure value: 31.25973731340811 task: type: Clustering - dataset: config: default name: MTEB PolEmo2.0-IN revision: d90724373c70959f17d2331ad51fb60c71176b03 split: test type: PL-MTEB/polemo2_in metrics: - type: accuracy value: 44.23822714681441 - type: f1 value: 45.70560706279163 task: type: Classification - dataset: config: default name: MTEB PolEmo2.0-OUT revision: 6a21ab8716e255ab1867265f8b396105e8aa63d4 split: test type: PL-MTEB/polemo2_out metrics: - type: accuracy value: 16.842105263157897 - type: f1 value: 15.056174742534159 task: type: Classification - dataset: config: default name: MTEB SICK-E-PL revision: 71bba34b0ece6c56dfcf46d9758a27f7a90f17e9 split: test type: PL-MTEB/sicke-pl-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB SICK-R-PL revision: fd5c2441b7eeff8676768036142af4cfa42c1339 split: test type: PL-MTEB/sickr-pl-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STS22 (pl) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: dev type: mteb/stsb_multi_mt metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: test type: mteb/stsb_multi_mt metrics: [] task: type: STS pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
TensorFamily/SigmaJourney
TensorFamily
2024-06-28T14:36:11Z
43
7
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "full", "pixart", "pixart sigma", "base_model:PixArt-alpha/PixArt-Sigma-XL-2-1024-MS", "base_model:finetune:PixArt-alpha/PixArt-Sigma-XL-2-1024-MS", "license:creativeml-openrail-m", "diffusers:PixArtSigmaPipeline", "region:us" ]
text-to-image
2024-06-21T02:33:18Z
--- base_model: PixArt-alpha/PixArt-Sigma-XL-2-1024-MS library_name: diffusers license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - full - pixart - pixart sigma inference: true widget: - text: A blonde sexy girl, wearing glasses at latex shirt and a blue beanie with a tattoo, blue and white, highly detailed, sublime, extremely beautiful, sharp focus, refined, cinematic, intricate, elegant, dynamic, rich deep colors, bright color, shining light, attractive, cute, pretty, background full, epic composition, dramatic atmosphere, radiant, professional, stunning parameters: negative_prompt: blurry, cropped, ugly output: url: ./assets/1.png - text: a wizard with a glowing staff and a glowing hat, colorful magic, dramatic atmosphere, sharp focus, highly detailed, cinematic, original composition, fine detail, intricate, elegant, creative, color spread, shiny, amazing, symmetry, illuminated, inspired, pretty, attractive, artistic, dynamic background, relaxed, professional, extremely inspirational, beautiful, determined, cute, adorable, best parameters: negative_prompt: blurry, cropped, ugly output: url: ./assets/2.png - text: girl in modern car, intricate, elegant, highly detailed, extremely complimentary colors, beautiful, glowing aesthetic, pretty, dramatic light, sharp focus, perfect composition, clear artistic color, calm professional background, precise, joyful, emotional, unique, cute, best, gorgeous, great delicate, expressive, thought, iconic, fine, awesome, creative, winning, charming, enhanced parameters: negative_prompt: blurry, cropped, ugly output: url: ./assets/3.png - text: A girl stands amidst scattered glass shards, surrounded by a beautifully crafted and expansive world. The scene is depicted from a dynamic angle, emphasizing her determined expression. The background features vast landscapes with floating crystals and soft, glowing lights that create a mystical and grand atmosphere. parameters: negative_prompt: blurry, cropped, ugly output: url: ./assets/ComfyUI_PixArt_00040_.png - text: A girl stands amidst scattered glass shards, surrounded by a beautifully crafted and expansive world. The scene is depicted from a dynamic angle, emphasizing her determined expression. The background features vast landscapes with floating crystals and soft, glowing lights that create a mystical and grand atmosphere. parameters: negative_prompt: blurry, cropped, ugly output: url: ./assets/ComfyUI_PixArt_00036_.png - text: A close-up shot of a beautiful girl in a serene world. She has white hair and is blindfolded, with a calm expression. Her hands are pressed together in a prayer pose, with fingers interlaced and palms touching. The background is softly blurred, enhancing her ethereal presence. parameters: negative_prompt: blurry, cropped, ugly output: url: ./assets/ComfyUI_PixArt_00041_.png --- # SigmaJourney: PixartSigma + MidJourney v6 <Gallery /> ## Inference ### ComfyUI - Download model file `transformer/diffusion_pytorch_model.safetensors` and put into `ComfyUI/models/checkpoints` - Use ExtraModels node: https://github.com/city96/ComfyUI_ExtraModels?tab=readme-ov-file#pixart ![image/png](https://cdn-uploads.huggingface.co/production/uploads/643c7e91b409fef15e0bd11b/MJfTShin1fYOOCo4mTv2-.png) ```python import torch from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler from diffusers.models import PixArtTransformer2DModel model_id = "TensorFamily/SigmaJourney" negative_prompt = "malformed, disgusting, overexposed, washed-out" pipeline = DiffusionPipeline.from_pretrained("PixArt-alpha/PixArt-Sigma-XL-2-1024-MS", torch_dtype=torch.float16) pipeline.transformer = PixArtTransformer2DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.float16) pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(pipeline.scheduler.config) pipeline.to('cuda' if torch.cuda.is_available() else 'cpu') prompt = "On the left, there is a red cube. On the right, there is a blue sphere. On top of the red cube is a dog. On top of the blue sphere is a cat" image = pipeline( prompt=prompt, negative_prompt='blurry, cropped, ugly', num_inference_steps=30, generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826), width=1024, height=1024, guidance_scale=5.5, ).images[0] image.save("output.png", format="JPEG") ```
ILKT/2024-06-24_22-31-18_epoch_5
ILKT
2024-06-28T14:34:48Z
147
0
sentence-transformers
[ "sentence-transformers", "safetensors", "ILKT", "sentence-similarity", "mteb", "feature-extraction", "custom_code", "en", "pl", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-24T22:05:10Z
--- language: - en - pl model-index: - name: 2024-06-24_22-31-18_epoch_5 results: - dataset: config: default name: MTEB AllegroReviews revision: b89853e6de927b0e3bfa8ecc0e56fe4e02ceafc6 split: test type: PL-MTEB/allegro-reviews metrics: - type: accuracy value: 22.68389662027833 - type: f1 value: 20.35204242570132 task: type: Classification - dataset: config: default name: MTEB CBD revision: 36ddb419bcffe6a5374c3891957912892916f28d split: test type: PL-MTEB/cbd metrics: - type: accuracy value: 52.65 - type: ap value: 14.4576722771974 - type: f1 value: 43.709536786405664 task: type: Classification - dataset: config: default name: MTEB CDSC-E revision: 0a3d4aa409b22f80eb22cbf59b492637637b536d split: test type: PL-MTEB/cdsce-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB CDSC-R revision: 1cd6abbb00df7d14be3dbd76a7dcc64b3a79a7cd split: test type: PL-MTEB/cdscr-sts metrics: [] task: type: STS - dataset: config: default name: MTEB EightTagsClustering revision: 78b962b130c6690659c65abf67bf1c2f030606b6 split: test type: PL-MTEB/8tags-clustering metrics: - type: v_measure value: 13.988704827730041 - type: v_measure_std value: 2.25902646682839 task: type: Clustering - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 27.363819771351714 - type: f1 value: 24.237876108101116 task: type: Classification - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: validation type: mteb/amazon_massive_intent metrics: - type: accuracy value: 26.84702410231185 - type: f1 value: 23.466499803828157 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 32.67652992602555 - type: f1 value: 31.006308473068977 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: validation type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 32.223315297589764 - type: f1 value: 30.765388148876188 task: type: Classification - dataset: config: default name: MTEB PAC revision: fc69d1c153a8ccdcf1eef52f4e2a27f88782f543 split: test type: laugustyniak/abusive-clauses-pl metrics: - type: accuracy value: 61.89690124529393 - type: ap value: 72.12289348443896 - type: f1 value: 58.39300609083562 task: type: Classification - dataset: config: default name: MTEB PSC revision: d05a294af9e1d3ff2bfb6b714e08a24a6cabc669 split: test type: PL-MTEB/psc-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB PlscClusteringP2P revision: 8436dd4c05222778013d6642ee2f3fa1722bca9b split: test type: PL-MTEB/plsc-clustering-p2p metrics: - type: v_measure value: 35.289108697400984 task: type: Clustering - dataset: config: default name: MTEB PlscClusteringS2S revision: 39bcadbac6b1eddad7c1a0a176119ce58060289a split: test type: PL-MTEB/plsc-clustering-s2s metrics: - type: v_measure value: 32.056187579711434 task: type: Clustering - dataset: config: default name: MTEB PolEmo2.0-IN revision: d90724373c70959f17d2331ad51fb60c71176b03 split: test type: PL-MTEB/polemo2_in metrics: - type: accuracy value: 44.03047091412742 - type: f1 value: 44.825821827557796 task: type: Classification - dataset: config: default name: MTEB PolEmo2.0-OUT revision: 6a21ab8716e255ab1867265f8b396105e8aa63d4 split: test type: PL-MTEB/polemo2_out metrics: - type: accuracy value: 16.336032388663963 - type: f1 value: 14.497649305669832 task: type: Classification - dataset: config: default name: MTEB SICK-E-PL revision: 71bba34b0ece6c56dfcf46d9758a27f7a90f17e9 split: test type: PL-MTEB/sicke-pl-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB SICK-R-PL revision: fd5c2441b7eeff8676768036142af4cfa42c1339 split: test type: PL-MTEB/sickr-pl-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STS22 (pl) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: dev type: mteb/stsb_multi_mt metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: test type: mteb/stsb_multi_mt metrics: [] task: type: STS pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
ILKT/2024-06-24_22-31-18_epoch_4
ILKT
2024-06-28T14:32:55Z
141
0
sentence-transformers
[ "sentence-transformers", "safetensors", "ILKT", "sentence-similarity", "mteb", "feature-extraction", "custom_code", "en", "pl", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-24T21:46:21Z
--- language: - en - pl model-index: - name: 2024-06-24_22-31-18_epoch_4 results: - dataset: config: default name: MTEB AllegroReviews revision: b89853e6de927b0e3bfa8ecc0e56fe4e02ceafc6 split: test type: PL-MTEB/allegro-reviews metrics: - type: accuracy value: 22.306163021868784 - type: f1 value: 20.236487626058857 task: type: Classification - dataset: config: default name: MTEB CBD revision: 36ddb419bcffe6a5374c3891957912892916f28d split: test type: PL-MTEB/cbd metrics: - type: accuracy value: 53.68000000000001 - type: ap value: 14.73726623742049 - type: f1 value: 45.190406815153224 task: type: Classification - dataset: config: default name: MTEB CDSC-E revision: 0a3d4aa409b22f80eb22cbf59b492637637b536d split: test type: PL-MTEB/cdsce-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB CDSC-R revision: 1cd6abbb00df7d14be3dbd76a7dcc64b3a79a7cd split: test type: PL-MTEB/cdscr-sts metrics: [] task: type: STS - dataset: config: default name: MTEB EightTagsClustering revision: 78b962b130c6690659c65abf67bf1c2f030606b6 split: test type: PL-MTEB/8tags-clustering metrics: - type: v_measure value: 14.477465473489056 - type: v_measure_std value: 1.2451504858169187 task: type: Clustering - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 29.603227975790187 - type: f1 value: 26.912672734118765 task: type: Classification - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: validation type: mteb/amazon_massive_intent metrics: - type: accuracy value: 30.250860796851942 - type: f1 value: 27.119957429866933 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 35.53799596503026 - type: f1 value: 33.170354622674765 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: validation type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 35.40088539104772 - type: f1 value: 33.52216405101386 task: type: Classification - dataset: config: default name: MTEB PAC revision: fc69d1c153a8ccdcf1eef52f4e2a27f88782f543 split: test type: laugustyniak/abusive-clauses-pl metrics: - type: accuracy value: 61.132348682305235 - type: ap value: 72.63375062740438 - type: f1 value: 58.53955276732978 task: type: Classification - dataset: config: default name: MTEB PSC revision: d05a294af9e1d3ff2bfb6b714e08a24a6cabc669 split: test type: PL-MTEB/psc-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB PlscClusteringP2P revision: 8436dd4c05222778013d6642ee2f3fa1722bca9b split: test type: PL-MTEB/plsc-clustering-p2p metrics: - type: v_measure value: 35.49887039263635 task: type: Clustering - dataset: config: default name: MTEB PlscClusteringS2S revision: 39bcadbac6b1eddad7c1a0a176119ce58060289a split: test type: PL-MTEB/plsc-clustering-s2s metrics: - type: v_measure value: 31.779790766120197 task: type: Clustering - dataset: config: default name: MTEB PolEmo2.0-IN revision: d90724373c70959f17d2331ad51fb60c71176b03 split: test type: PL-MTEB/polemo2_in metrics: - type: accuracy value: 44.25207756232686 - type: f1 value: 45.16348806946095 task: type: Classification - dataset: config: default name: MTEB PolEmo2.0-OUT revision: 6a21ab8716e255ab1867265f8b396105e8aa63d4 split: test type: PL-MTEB/polemo2_out metrics: - type: accuracy value: 19.19028340080972 - type: f1 value: 14.783737091434995 task: type: Classification - dataset: config: default name: MTEB SICK-E-PL revision: 71bba34b0ece6c56dfcf46d9758a27f7a90f17e9 split: test type: PL-MTEB/sicke-pl-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB SICK-R-PL revision: fd5c2441b7eeff8676768036142af4cfa42c1339 split: test type: PL-MTEB/sickr-pl-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STS22 (pl) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: dev type: mteb/stsb_multi_mt metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: test type: mteb/stsb_multi_mt metrics: [] task: type: STS pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
ILKT/2024-06-24_22-31-18_epoch_2
ILKT
2024-06-28T14:30:13Z
141
0
sentence-transformers
[ "sentence-transformers", "safetensors", "ILKT", "sentence-similarity", "mteb", "feature-extraction", "custom_code", "en", "pl", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-24T21:08:41Z
--- language: - en - pl model-index: - name: 2024-06-24_22-31-18_epoch_2 results: - dataset: config: default name: MTEB AllegroReviews revision: b89853e6de927b0e3bfa8ecc0e56fe4e02ceafc6 split: test type: PL-MTEB/allegro-reviews metrics: - type: accuracy value: 22.1272365805169 - type: f1 value: 20.40706274241936 task: type: Classification - dataset: config: default name: MTEB CBD revision: 36ddb419bcffe6a5374c3891957912892916f28d split: test type: PL-MTEB/cbd metrics: - type: accuracy value: 53.89000000000001 - type: ap value: 15.0065757866563 - type: f1 value: 45.37807244348154 task: type: Classification - dataset: config: default name: MTEB CDSC-E revision: 0a3d4aa409b22f80eb22cbf59b492637637b536d split: test type: PL-MTEB/cdsce-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB CDSC-R revision: 1cd6abbb00df7d14be3dbd76a7dcc64b3a79a7cd split: test type: PL-MTEB/cdscr-sts metrics: [] task: type: STS - dataset: config: default name: MTEB EightTagsClustering revision: 78b962b130c6690659c65abf67bf1c2f030606b6 split: test type: PL-MTEB/8tags-clustering metrics: - type: v_measure value: 13.831518417378962 - type: v_measure_std value: 1.8740709967382303 task: type: Clustering - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 30.854068594485547 - type: f1 value: 28.77354244993034 task: type: Classification - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: validation type: mteb/amazon_massive_intent metrics: - type: accuracy value: 30.880472208558785 - type: f1 value: 28.26846880996342 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 35.232010759919305 - type: f1 value: 33.58056574741105 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: validation type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 34.49581898671913 - type: f1 value: 33.452200741970806 task: type: Classification - dataset: config: default name: MTEB PAC revision: fc69d1c153a8ccdcf1eef52f4e2a27f88782f543 split: test type: laugustyniak/abusive-clauses-pl metrics: - type: accuracy value: 58.71416159860991 - type: ap value: 71.2673061123842 - type: f1 value: 55.77970118525706 task: type: Classification - dataset: config: default name: MTEB PSC revision: d05a294af9e1d3ff2bfb6b714e08a24a6cabc669 split: test type: PL-MTEB/psc-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB PlscClusteringP2P revision: 8436dd4c05222778013d6642ee2f3fa1722bca9b split: test type: PL-MTEB/plsc-clustering-p2p metrics: - type: v_measure value: 35.94292905709959 task: type: Clustering - dataset: config: default name: MTEB PlscClusteringS2S revision: 39bcadbac6b1eddad7c1a0a176119ce58060289a split: test type: PL-MTEB/plsc-clustering-s2s metrics: - type: v_measure value: 32.030570447745774 task: type: Clustering - dataset: config: default name: MTEB PolEmo2.0-IN revision: d90724373c70959f17d2331ad51fb60c71176b03 split: test type: PL-MTEB/polemo2_in metrics: - type: accuracy value: 42.7562326869806 - type: f1 value: 43.42905909545033 task: type: Classification - dataset: config: default name: MTEB PolEmo2.0-OUT revision: 6a21ab8716e255ab1867265f8b396105e8aa63d4 split: test type: PL-MTEB/polemo2_out metrics: - type: accuracy value: 21.700404858299596 - type: f1 value: 16.90237734516155 task: type: Classification - dataset: config: default name: MTEB SICK-E-PL revision: 71bba34b0ece6c56dfcf46d9758a27f7a90f17e9 split: test type: PL-MTEB/sicke-pl-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB SICK-R-PL revision: fd5c2441b7eeff8676768036142af4cfa42c1339 split: test type: PL-MTEB/sickr-pl-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STS22 (pl) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: dev type: mteb/stsb_multi_mt metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: test type: mteb/stsb_multi_mt metrics: [] task: type: STS pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
nota-ai/bk-sdm-v2-tiny
nota-ai
2024-06-28T14:27:09Z
490
0
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dataset:ChristophSchuhmann/improved_aesthetics_6.5plus", "arxiv:2305.15798", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-06-25T12:44:01Z
--- license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image datasets: - ChristophSchuhmann/improved_aesthetics_6.5plus library_name: diffusers pipeline_tag: text-to-image extra_gated_prompt: >- This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claim no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) Please read the full license carefully here: https://huggingface.co/spaces/CompVis/stable-diffusion-license extra_gated_heading: Please read the LICENSE to access this model --- # BK-SDM-v2 Model Card BK-SDM-{[**v2-Base**](https://huggingface.co/nota-ai/bk-sdm-v2-base), [**v2-Small**](https://huggingface.co/nota-ai/bk-sdm-v2-small), [**v2-Tiny**](https://huggingface.co/nota-ai/bk-sdm-v2-tiny)} are obtained by compressing [SD-v2.1-base](https://huggingface.co/stabilityai/stable-diffusion-2-1-base). - Block-removed Knowledge-distilled Stable Diffusion Models (BK-SDMs) are developed for efficient text-to-image (T2I) synthesis: - Certain residual & attention blocks are eliminated from the U-Net of SD. - Despite the use of very limited data, distillation retraining remains surprisingly effective. - Resources for more information: [Paper](https://arxiv.org/abs/2305.15798), [GitHub](https://github.com/Nota-NetsPresso/BK-SDM). ## Examples with 🤗[Diffusers library](https://github.com/huggingface/diffusers). An inference code with the default PNDM scheduler and 50 denoising steps is as follows. ```python import torch from diffusers import StableDiffusionPipeline pipe = StableDiffusionPipeline.from_pretrained("nota-ai/bk-sdm-v2-tiny", torch_dtype=torch.float16) pipe = pipe.to("cuda") prompt = "a black vase holding a bouquet of roses" image = pipe(prompt).images[0] image.save("example.png") ``` ## Compression Method Based on the [U-Net architecture](https://huggingface.co/nota-ai/bk-sdm-base#u-net-architecture) and [distillation retraining](https://huggingface.co/nota-ai/bk-sdm-base#distillation-pretraining) of BK-SDM, a reduced batch size (from 256 to 128) is used in BK-SDM-v2 for faster training speeds. - **Training Data**: 212,776 image-text pairs (i.e., 0.22M pairs) from [LAION-Aesthetics V2 6.5+](https://laion.ai/blog/laion-aesthetics/). - **Hardware:** A single NVIDIA A100 80GB GPU - **Gradient Accumulations**: 4 - **Batch:** 128 (=4×32) - **Optimizer:** AdamW - **Learning Rate:** a constant learning rate of 5e-5 for 50K-iteration retraining ## Experimental Results The following table shows the zero-shot results on 30K samples from the MS-COCO validation split. After generating 512×512 images with the PNDM scheduler and 25 denoising steps, we downsampled them to 256×256 for evaluating generation scores. - Our models were drawn at the 50K-th training iteration. #### Compression of SD-v2.1-base | Model | FID↓ | IS↑ | CLIP Score↑<br>(ViT-g/14) | # Params,<br>U-Net | # Params,<br>Whole SDM | |---|:---:|:---:|:---:|:---:|:---:| | [Stable Diffusion v2.1-base](https://huggingface.co/stabilityai/stable-diffusion-2-1-base) | 13.93 | 35.93 | 0.3075 | 0.87B | 1.26B | | [BK-SDM-v2-Base](https://huggingface.co/nota-ai/bk-sdm-v2-base) (Ours) | 15.85 | 31.70 | 0.2868 | 0.59B | 0.98B | | [BK-SDM-v2-Small](https://huggingface.co/nota-ai/bk-sdm-v2-small) (Ours) | 16.61 | 31.73 | 0.2901 | 0.49B | 0.88B | | [BK-SDM-v2-Tiny](https://huggingface.co/nota-ai/bk-sdm-v2-tiny) (Ours) | 15.68 | 31.64 | 0.2897 | 0.33B | 0.72B | #### Compression of SD-v1.4 | Model | FID↓ | IS↑ | CLIP Score↑<br>(ViT-g/14) | # Params,<br>U-Net | # Params,<br>Whole SDM | |---|:---:|:---:|:---:|:---:|:---:| | [Stable Diffusion v1.4](https://huggingface.co/CompVis/stable-diffusion-v1-4) | 13.05 | 36.76 | 0.2958 | 0.86B | 1.04B | | [BK-SDM-Base](https://huggingface.co/nota-ai/bk-sdm-base) (Ours) | 15.76 | 33.79 | 0.2878 | 0.58B | 0.76B | | [BK-SDM-Base-2M](https://huggingface.co/nota-ai/bk-sdm-base-2m) (Ours) | 14.81 | 34.17 | 0.2883 | 0.58B | 0.76B | | [BK-SDM-Small](https://huggingface.co/nota-ai/bk-sdm-small) (Ours) | 16.98 | 31.68 | 0.2677 | 0.49B | 0.66B | | [BK-SDM-Small-2M](https://huggingface.co/nota-ai/bk-sdm-small-2m) (Ours) | 17.05 | 33.10 | 0.2734 | 0.49B | 0.66B | | [BK-SDM-Tiny](https://huggingface.co/nota-ai/bk-sdm-tiny) (Ours) | 17.12 | 30.09 | 0.2653 | 0.33B | 0.50B | | [BK-SDM-Tiny-2M](https://huggingface.co/nota-ai/bk-sdm-tiny-2m) (Ours) | 17.53 | 31.32 | 0.2690 | 0.33B | 0.50B | #### Visual Analysis: Image Areas Affected By Each Word KD enables our models to mimic the SDM, yielding similar per-word attribution maps. The model without KD behaves differently, causing dissimilar maps and inaccurate generation (e.g., two sheep and unusual bird shapes). <center> <img alt="cross-attn-maps" img src="https://netspresso-research-code-release.s3.us-east-2.amazonaws.com/assets-bk-sdm/fig_cross-attn-maps_bk-sd-v2.png" width="100%"> </center> # Uses Please follow [the usage guidelines of Stable Diffusion v1](https://huggingface.co/CompVis/stable-diffusion-v1-4#uses). # Acknowledgments - [Microsoft for Startups Founders Hub](https://www.microsoft.com/en-us/startups) and [Gwangju AICA](http://www.aica-gj.kr/main.php) for generously providing GPU resources. - [CompVis](https://github.com/CompVis/latent-diffusion), [Runway](https://runwayml.com/), and [Stability AI](https://stability.ai/) for the pioneering research on Stable Diffusion. - [LAION](https://laion.ai/), [Diffusers](https://github.com/huggingface/diffusers), [PEFT](https://github.com/huggingface/peft), [DreamBooth](https://dreambooth.github.io/), [Gradio](https://www.gradio.app/), and [Core ML Stable Diffusion](https://github.com/apple/ml-stable-diffusion) for their valuable contributions. # Citation ```bibtex @article{kim2023architectural, title={BK-SDM: A Lightweight, Fast, and Cheap Version of Stable Diffusion}, author={Kim, Bo-Kyeong and Song, Hyoung-Kyu and Castells, Thibault and Choi, Shinkook}, journal={arXiv preprint arXiv:2305.15798}, year={2023}, url={https://arxiv.org/abs/2305.15798} } ``` ```bibtex @article{kim2023bksdm, title={BK-SDM: Architecturally Compressed Stable Diffusion for Efficient Text-to-Image Generation}, author={Kim, Bo-Kyeong and Song, Hyoung-Kyu and Castells, Thibault and Choi, Shinkook}, journal={ICML Workshop on Efficient Systems for Foundation Models (ES-FoMo)}, year={2023}, url={https://openreview.net/forum?id=bOVydU0XKC} } ``` *This model card is based on the [Stable Diffusion v1 model card]( https://huggingface.co/CompVis/stable-diffusion-v1-4).*
jgaertner/bert-finetuned-ner4invoice10
jgaertner
2024-06-28T14:26:48Z
106
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "token-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-06-28T14:24:34Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ILKT/2024-06-24_22-31-28_epoch_73
ILKT
2024-06-28T14:25:25Z
140
0
sentence-transformers
[ "sentence-transformers", "safetensors", "ILKT", "sentence-similarity", "mteb", "feature-extraction", "custom_code", "en", "pl", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-25T19:57:04Z
--- language: - en - pl model-index: - name: 2024-06-24_22-31-28_epoch_73 results: - dataset: config: default name: MTEB AllegroReviews revision: b89853e6de927b0e3bfa8ecc0e56fe4e02ceafc6 split: test type: PL-MTEB/allegro-reviews metrics: - type: accuracy value: 26.312127236580512 - type: f1 value: 24.232481470553992 task: type: Classification - dataset: config: default name: MTEB CBD revision: 36ddb419bcffe6a5374c3891957912892916f28d split: test type: PL-MTEB/cbd metrics: - type: accuracy value: 58.31000000000002 - type: ap value: 16.46166963254208 - type: f1 value: 49.0055629670121 task: type: Classification - dataset: config: default name: MTEB CDSC-E revision: 0a3d4aa409b22f80eb22cbf59b492637637b536d split: test type: PL-MTEB/cdsce-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB CDSC-R revision: 1cd6abbb00df7d14be3dbd76a7dcc64b3a79a7cd split: test type: PL-MTEB/cdscr-sts metrics: [] task: type: STS - dataset: config: default name: MTEB EightTagsClustering revision: 78b962b130c6690659c65abf67bf1c2f030606b6 split: test type: PL-MTEB/8tags-clustering metrics: - type: v_measure value: 15.304671602739258 - type: v_measure_std value: 1.787642613655848 task: type: Clustering - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 37.32347007397445 - type: f1 value: 34.125272765290035 task: type: Classification - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: validation type: mteb/amazon_massive_intent metrics: - type: accuracy value: 37.62420068863748 - type: f1 value: 33.151978565270866 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 46.19367854741089 - type: f1 value: 43.67025977449479 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: validation type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 45.7206099360551 - type: f1 value: 44.05485930742759 task: type: Classification - dataset: config: default name: MTEB PAC revision: fc69d1c153a8ccdcf1eef52f4e2a27f88782f543 split: test type: laugustyniak/abusive-clauses-pl metrics: - type: accuracy value: 65.20417028670721 - type: ap value: 74.62925981711386 - type: f1 value: 62.24678973165976 task: type: Classification - dataset: config: default name: MTEB PSC revision: d05a294af9e1d3ff2bfb6b714e08a24a6cabc669 split: test type: PL-MTEB/psc-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB PlscClusteringP2P revision: 8436dd4c05222778013d6642ee2f3fa1722bca9b split: test type: PL-MTEB/plsc-clustering-p2p metrics: - type: v_measure value: 37.43213759850213 task: type: Clustering - dataset: config: default name: MTEB PlscClusteringS2S revision: 39bcadbac6b1eddad7c1a0a176119ce58060289a split: test type: PL-MTEB/plsc-clustering-s2s metrics: - type: v_measure value: 34.31473032389455 task: type: Clustering - dataset: config: default name: MTEB PolEmo2.0-IN revision: d90724373c70959f17d2331ad51fb60c71176b03 split: test type: PL-MTEB/polemo2_in metrics: - type: accuracy value: 51.24653739612188 - type: f1 value: 51.826795326324 task: type: Classification - dataset: config: default name: MTEB PolEmo2.0-OUT revision: 6a21ab8716e255ab1867265f8b396105e8aa63d4 split: test type: PL-MTEB/polemo2_out metrics: - type: accuracy value: 19.858299595141702 - type: f1 value: 18.61799209050263 task: type: Classification - dataset: config: default name: MTEB SICK-E-PL revision: 71bba34b0ece6c56dfcf46d9758a27f7a90f17e9 split: test type: PL-MTEB/sicke-pl-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB SICK-R-PL revision: fd5c2441b7eeff8676768036142af4cfa42c1339 split: test type: PL-MTEB/sickr-pl-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STS22 (pl) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: dev type: mteb/stsb_multi_mt metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: test type: mteb/stsb_multi_mt metrics: [] task: type: STS pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
QuantFactory/llm-compiler-7b-GGUF
QuantFactory
2024-06-28T14:24:35Z
151
1
null
[ "gguf", "text-generation", "base_model:facebook/llm-compiler-7b", "base_model:quantized:facebook/llm-compiler-7b", "license:other", "endpoints_compatible", "region:us" ]
text-generation
2024-06-28T11:37:08Z
--- license: other base_model: facebook/llm-compiler-7b pipeline_tag: text-generation --- # QuantFactory/llm-compiler-7b-GGUF This is quantized version of [facebook/llm-compiler-7b](https://huggingface.co/facebook/llm-compiler-7b) created using llama.cpp The information you provide will be collected, stored, processed and shared in accordance with the [Meta Privacy Policy](https://www.facebook.com/privacy/policy/). **Notice :** LLM Compiler is licensed under the LLM Compiler License, Copyright © Meta Platforms, Inc. All Rights Reserved. # Introducing Meta Large Language Model Compiler (LLM Compiler), a state-of-the-art LLM for compiler optimization ## Takeaways * LLM Compiler is a state-of-the-art LLM that builds upon Code Llama with improved performance for code optimization and compiler reasoning. * LLM Compiler is free for both research and commercial use. * LLM Compiler is available in two flavors: * _LLM Compiler_, the foundational models, pretrained on over 500B tokens of LLVM-IR, x86_84, ARM, and CUDA assembly codes and trained to predict the effect of LLVM optimizations; * and _LLM Compiler FTD_, which is further fine-tuned to predict the best optimizations for code in LLVM assembly to reduce code size, and to disassemble assembly code to LLVM-IR. * LLM Compiler demonstrates far stronger understanding of compiler optimizations than existing publicly available LLMs, perfectly emulating the compiler 20% of the time. * LLM Compiler FTD sets state-of-the-art results on the tasks of optimization for code size and disassembly. It achieves a 5.24% code size improvement over -Oz vs GPT-4 Turbo 0.03%, and 0.96 round-trip BLEU score on disassembly vs GPT-4 Turbo 0.43. --- LINKS * [LLM Compiler research paper](https://ai.meta.com/research/publications/meta-large-language-model-compiler-foundation-models-of-compiler-optimization/) * Download the LLM Compiler and LLM Compiler FTD models: * [llm-compiler-7b](https://huggingface.co/facebook/llm-compiler-7b) * [llm-compiler-7b-ftd](https://huggingface.co/facebook/llm-compiler-7b-ftd) * [llm-compiler-13b](https://huggingface.co/facebook/llm-compiler-13b) * [llm-compiler-13b-ftd](https://huggingface.co/facebook/llm-compiler-13b-ftd) --- We are excited to announce the release of LLM Compiler, a model targeted at code and compiler optimization tasks. LLM Compiler is built on top of our state-of-the-art large language model, Code Llama, adding capabilities to better understand compiler intermediate representations, assembly language and optimization. LLM Compiler is demonstrated on two difficult tasks: optimizing for code size and decompiling from assembly to the compiler’s intermediate representation. We release these foundation models to accelerate the application of LLMs for code optimization tasks and to enhance developer experience. We are releasing LLM Compiler under the [LLM Compiler License Agreement](LICENSE.pdf), which incorporates the [Acceptable Use Policy]([https://llama.meta.com/llama3/use-policy]) for Llama Materials. ## How LLM Compiler works LLM Compiler is a specialization of Code Llama. It is a cutting-edge tool designed to optimize code using deep learning. LLM Compiler has been pre-trained on a vast amount of LLVM assembly (IR), x86_64, ARM, and CUDA assembly codes. LLM Compiler can predict, given a piece of LLVM assembly and a sequence of optimization passes for `opt`, the LLVM optimizer, what the change in code size will be and what the output code will look like after applying these optimizations. It has ‘understood’ the behavior of the optimizing compiler to such a degree that in many cases it can perfectly replicate its output. These capabilities make it ideally suited to compiler optimization tasks. ![Compiler emulation](readme/emulate.png) In addition to this core functionality and to demonstrate its ability to solve complex compiler optimization problems, LLM Compiler has been fine-tuned for two specific downstream tasks: 1. Predicting the best optimization passes for `opt` to use in order to minimize code size, given a piece of LLVM assembly code. \ ![Autotuning](readme/autotune.png) 2. Generating LLVM IR from a piece of x86_64 or ARM assembly code. \ ![Disassemble](readme/disassemble.png) We are releasing LLM Compiler models in two sizes: 7B and 13B parameters. The models have been trained with a context window of 16,000 tokens. The two models address different serving and latency requirements. The 7B model, for example, can be served on a single GPU and is more suitable for tasks that require low latency, like fine grained optimisation. The 13B model returns the best results. When using the LLM Compiler models, users must abide by our license and acceptable use policy. ![Training](readme/training.png) ## LLM Compiler performance We tested the performance of LLM Compiler models for emulating compiler transformations, predicting optimal pass lists and decompiling intermediate representation on hold out test sets and compared them to Code Llama and GPT-4. We compare LLM Compiler Foundation to Code Llama Base and LLM Compiler FTD to Code Llama Instruct. We evaluate LLM Compiler's ability to emulate compiler optimizations by giving it samples of unoptimized intermediate representation and a randomly generated list of optimizations. We then ask the model to generate the corresponding IR after the optimizations have been applied. In the table below we report the model's accuracy in reproducing the IR we would get from running _opt_. With very little knowledge of IR, Code Llama is unable to achieve high values while the LLM Compiler can generate character-by-character matches of expected assembly in 20% of the cases. <table> <tr> <td>Model </td> <td>Size </td> <td>Accuracy at emulating compiler optimizations </td> </tr> <tr> <td>Code Llama </td> <td>7B </td> <td>1.2% </td> </tr> <tr> <td>Code Llama </td> <td>13B </td> <td>0.8% </td> </tr> <tr> <td>LLM Compiler </td> <td>7B </td> <td>16% </td> </tr> <tr> <td>LLM Compiler </td> <td>13B </td> <td><strong>20%</strong> </td> </tr> </table> In a similar approach we evaluate our model's ability to optimize IR for code size. In this instance, however, we let the model generate the pass list that is to be used on a given unoptimized IR. We then use this pass list to optimize the particular program using _opt_ and record the binary size. The baseline is the binary size of the program when optimized using -Oz. Only LLM Compiler FTD models provide an improvement over -Oz, with the 13B parameter model marginally outperforming the smaller model, generating smaller object files than -Oz in 61% of cases. Lastly, we evaluate disassembly performance by giving the model x86 assembly code and ask it to generate the corresponding IR. We then round-trip the model-generated disassembled IR back down to assembly. This enables us to evaluate accuracy of the disassembly by comparing the BLEU score of the original assembly against the round-trip result. LLM Compiler FTD 13B has the highest accuracy of round-tripped assembly (_round trip BLEU_) and most frequently produces perfect disassembly. Code Llama Instruct and GPT-4 Turbo struggle with generating syntactically correct LLVM-IR. <table> <tr> <td>Model </td> <td>Size </td> <td>Code Size Improvement </td> <td>Round trip BLEU </td> </tr> <tr> <td>GPT-4 Turbo </td> <td> </td> <td>-0.01% </td> <td>0.43 </td> </tr> <tr> <td>Code Llama Inst </td> <td>7B </td> <td>-0.49% </td> <td>0.48 </td> </tr> <tr> <td>Code Llama Inst </td> <td>13B </td> <td>-0.42% </td> <td>0.62 </td> </tr> <tr> <td>LLM Compiler FTD </td> <td>7B </td> <td>4.77% </td> <td>0.95 </td> </tr> <tr> <td>LLM Compiler FTD </td> <td>13B </td> <td><strong>4.88%</strong> </td> <td><strong>0.96</strong> </td> </tr> </table> ## Releasing LLM Compiler LLMs are being used to make programming easier. They are beginning to be used to make programs more efficient. At Meta, our conviction is that AI models, especially those designed for coding, thrive best with an open strategy, fostering both innovation and security. Models that are accessible to the public can expedite the creation of novel compiler optimization technologies. In turn, this will allow programs to be more efficient and smaller, enhancing the quality of life for all. By making models such as LLM Compiler available, the whole community can explore their potential, pinpoint problems, and rectify any vulnerabilities. The model weights are available on Hugging Face. ## Responsible use Our research paper provides an in-depth look into the development process of the LLM Compiler, the methods we used for our benchmarking tests, and further insights into the model's limitations. It also discusses the issues faced, the steps we took to mitigate them. Developers are advised to assess their models using evaluation benchmarks specific to compilers. Given that compilers are not bug-free, any suggested compiler optimizations must be rigorously tested. When a model decompiles assembly code, its accuracy should be confirmed. ## The future of generative AI for optimisation LLM Compiler is designed to support compiler researchers and engineers. But there are still many more use cases to support than what our models can serve. We hope that LLM Compiler will inspire others to leverage LLMs to create new innovative tools for research and commercial products. ### Try LLM Compiler today * Download the LLM Compiler and LLM Compiler FTD models: * [llm-compiler-7b](https://huggingface.co/facebook/llm-compiler-7b) * [llm-compiler-7b-ftd](https://huggingface.co/facebook/llm-compiler-7b-ftd) * [llm-compiler-13b](https://huggingface.co/facebook/llm-compiler-13b) * [llm-compiler-13b-ftd](https://huggingface.co/facebook/llm-compiler-13b-ftd) * Read the research paper * [LLM Compiler research paper](https://ai.meta.com/research/publications/meta-large-language-model-compiler-foundation-models-of-compiler-optimization/) # **Model Card** LLM Compiler is a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 13 billion parameters. This is the repository for the 13 billion parameter foundation model version in the Hugging Face Transformers format. This model is designed for code optimization. Links to other models can be found in the index at the bottom. | Number of parameters | Base Model | Fine-tuned for code size and dissassembly | | -------------------- | ---------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------- | | 7B | [facebook/llm-compiler-7b](https://huggingface.co/facebook/llm-compiler-7b) | [facebook/llm-compiler-7b-ftd](https://huggingface.co/facebook/llm-compiler-7b-ftd) | | 13B | [facebook/llm-compiler-13b](https://huggingface.co/facebook/llm-compiler-13b) | [facebook/llm-compiler-13b-ftd](https://huggingface.co/facebook/llm-compiler-13b-ftd) | ## Model Use To use this model, please make sure to install transformers: ```bash pip install transformers accelerate ``` Example code using each of the model's compiler capabilities may be found in [llm_compiler_demo.py](llm_compiler_demo.py). The code below demonstrates default capabilities. You may need to set the HuggingFace access token - see (https://huggingface.co/docs/hub/security-tokens). ```python from transformers import AutoTokenizer import transformers import torch model = "facebook/llm-compiler-13b" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) sequences = pipeline( '%3 = alloca i32, align 4', do_sample=True, top_k=10, temperature=0.1, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id, max_length=200, ) for seq in sequences: print(f"Result: {seq['generated_text']}") ``` ## Model Details *Note: Use of this model is governed by the Meta license. Meta developed and publicly released the LLM Compiler family of large language models (LLMs). **Model Developers** Meta **Variations** LLM Compiler comes in two model sizes of 7B, 13B parameters in two flavors, the foundation and instruction fine-tuned for code size and disassembly. **This repository contains the 13 billion parameter foundation model.** **Input** Models input text only. **Example prompt** See `llm_compiler_demo.py` in the repo for examples of the different use cases. **Output** Models generate text only. **Model Architecture** LLM Compiler is an auto-regressive language model that uses an optimized transformer architecture. **Model Dates** LLM Compiler has been trained between January 2024 and June 2024. **Status** This is a static model trained on an offline dataset. **License** A custom commercial license is available at: [https://ai.meta.com/resources/models-and-libraries/llama-downloads/](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) **Research Paper** More information can be found in the paper "[Meta Large Language Model Compiler: Foundation Models of Compiler Optimization](https://ai.meta.com/research/publications/meta-large-language-model-compiler-foundation-models-of-compiler-optimization/)". ## Intended Use **Intended Use Cases** LLM Compiler is intended for commercial and research use in English, relevant programming languages, LLVM IR, x86_64 assembly and ARM assembly. **Out-of-Scope Uses** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English. Use in any other way that is prohibited by the [Acceptable Use Policy](https://llama.meta.com/llama3/use-policy) and Licensing Agreement for LLM Compiler and its variants. ## Hardware and Software **Training Factors** We used custom training libraries. The training and fine-tuning of the released models have been performed Meta’s Research Super Cluster. **Carbon Footprint** In aggregate, training all LLM Compiler models required 14K GPU hours of computation on hardware of type A100-80GB (TDP of 350-400W), not including the training of Code Llama. 100% of the estimated tCO2eq emissions were offset by Meta’s sustainability program. ## Training Data All experiments reported here and the released models have been trained and fine-tuned using the same data as Code Llama with different weights (see Section 2 and Table 1 in the [research paper](https://ai.meta.com/research/publications/llm-compiler-foundation-models-for-compiler-optimization/) for details). ## Evaluation Results See evaluations for the main models and detailed ablations in Section 3 and safety evaluations in Section 4 of the research paper. ## Ethical Considerations and Limitations LLM Compiler and its variants are a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, LLM Compilers’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate or objectionable responses to user prompts. Therefore, before deploying any applications of LLM Compiler, developers should perform safety testing and tuning tailored to their specific applications of the model. Please see the Responsible Use Guide available available at [https://ai.meta.com/llama/responsible-use-guide](https://ai.meta.com/llama/responsible-use-guide).
TitanML/tiny-random-gemma2
TitanML
2024-06-28T14:13:28Z
96
0
transformers
[ "transformers", "safetensors", "gemma2", "text-generation", "conversational", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-06-28T14:11:42Z
--- license: apache-2.0 ---
Goekdeniz-Guelmez/J.O.S.I.E.v4o-8b-stage1-beta2.2-Q4_K_S-GGUF
Goekdeniz-Guelmez
2024-06-28T14:12:34Z
5
1
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "llama", "trl", "sft", "llama-cpp", "gguf-my-repo", "en", "de", "base_model:Goekdeniz-Guelmez/J.O.S.I.E.v4o-8b-stage1-beta2.2", "base_model:quantized:Goekdeniz-Guelmez/J.O.S.I.E.v4o-8b-stage1-beta2.2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-06-28T12:07:45Z
--- base_model: Isaak-Carter/JOSIEv4o-8b-stage1-beta2.2 language: - en - de license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl - sft - llama-cpp - gguf-my-repo --- # Isaak-Carter/JOSIEv4o-8b-stage1-beta2.2-Q4_K_S-GGUF This model was converted to GGUF format from [`Isaak-Carter/JOSIEv4o-8b-stage1-beta2.2`](https://huggingface.co/Isaak-Carter/JOSIEv4o-8b-stage1-beta2.2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Isaak-Carter/JOSIEv4o-8b-stage1-beta2.2) for more details on the model. ## Use in ollama ```shell ollama run goekdenizguelmez/j.o.s.i.e.v4o-8b-stage1-beta2.2 ``` ## Prompt Template ```text """<|begin_of_text|>system You are J.O.S.I.E. which is an acronym for "Just an Outstandingly Smart Intelligent Entity", a private and super-intelligent AI assistant, created by Gökdeniz Gülmez. <|begin_of_text|>main user "Gökdeniz Gülmez" {{ .Prompt }}<|end_of_text|> <|begin_of_text|>josie {{ .Response }}<|end_of_text|>""" ``` ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Isaak-Carter/JOSIEv4o-8b-stage1-beta2.2-Q4_K_S-GGUF --hf-file josiev4o-8b-stage1-beta2.2-q4_k_s.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Isaak-Carter/JOSIEv4o-8b-stage1-beta2.2-Q4_K_S-GGUF --hf-file josiev4o-8b-stage1-beta2.2-q4_k_s.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Isaak-Carter/JOSIEv4o-8b-stage1-beta2.2-Q4_K_S-GGUF --hf-file josiev4o-8b-stage1-beta2.2-q4_k_s.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Isaak-Carter/JOSIEv4o-8b-stage1-beta2.2-Q4_K_S-GGUF --hf-file josiev4o-8b-stage1-beta2.2-q4_k_s.gguf -c 2048 ```
ILKT/2024-06-24_22-31-28_epoch_70
ILKT
2024-06-28T14:09:25Z
140
0
sentence-transformers
[ "sentence-transformers", "safetensors", "ILKT", "sentence-similarity", "mteb", "feature-extraction", "custom_code", "en", "pl", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-25T18:58:47Z
--- language: - en - pl model-index: - name: 2024-06-24_22-31-28_epoch_70 results: - dataset: config: default name: MTEB AllegroReviews revision: b89853e6de927b0e3bfa8ecc0e56fe4e02ceafc6 split: test type: PL-MTEB/allegro-reviews metrics: - type: accuracy value: 26.48111332007952 - type: f1 value: 24.298380612639487 task: type: Classification - dataset: config: default name: MTEB CBD revision: 36ddb419bcffe6a5374c3891957912892916f28d split: test type: PL-MTEB/cbd metrics: - type: accuracy value: 60.35 - type: ap value: 16.78798415402588 - type: f1 value: 50.33518018271216 task: type: Classification - dataset: config: default name: MTEB CDSC-E revision: 0a3d4aa409b22f80eb22cbf59b492637637b536d split: test type: PL-MTEB/cdsce-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB CDSC-R revision: 1cd6abbb00df7d14be3dbd76a7dcc64b3a79a7cd split: test type: PL-MTEB/cdscr-sts metrics: [] task: type: STS - dataset: config: default name: MTEB EightTagsClustering revision: 78b962b130c6690659c65abf67bf1c2f030606b6 split: test type: PL-MTEB/8tags-clustering metrics: - type: v_measure value: 16.529773652785273 - type: v_measure_std value: 1.8877406886054209 task: type: Clustering - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 34.80497646267653 - type: f1 value: 31.94552315129161 task: type: Classification - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: validation type: mteb/amazon_massive_intent metrics: - type: accuracy value: 34.500737825873095 - type: f1 value: 30.511014967947876 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 43.71553463349024 - type: f1 value: 41.62070761820803 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: validation type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 43.20216428922774 - type: f1 value: 41.81727378474051 task: type: Classification - dataset: config: default name: MTEB PAC revision: fc69d1c153a8ccdcf1eef52f4e2a27f88782f543 split: test type: laugustyniak/abusive-clauses-pl metrics: - type: accuracy value: 65.46770923834347 - type: ap value: 75.03576405621197 - type: f1 value: 62.91820991346315 task: type: Classification - dataset: config: default name: MTEB PSC revision: d05a294af9e1d3ff2bfb6b714e08a24a6cabc669 split: test type: PL-MTEB/psc-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB PlscClusteringP2P revision: 8436dd4c05222778013d6642ee2f3fa1722bca9b split: test type: PL-MTEB/plsc-clustering-p2p metrics: - type: v_measure value: 37.43681338077093 task: type: Clustering - dataset: config: default name: MTEB PlscClusteringS2S revision: 39bcadbac6b1eddad7c1a0a176119ce58060289a split: test type: PL-MTEB/plsc-clustering-s2s metrics: - type: v_measure value: 34.50200074557669 task: type: Clustering - dataset: config: default name: MTEB PolEmo2.0-IN revision: d90724373c70959f17d2331ad51fb60c71176b03 split: test type: PL-MTEB/polemo2_in metrics: - type: accuracy value: 51.495844875346265 - type: f1 value: 52.14241705623085 task: type: Classification - dataset: config: default name: MTEB PolEmo2.0-OUT revision: 6a21ab8716e255ab1867265f8b396105e8aa63d4 split: test type: PL-MTEB/polemo2_out metrics: - type: accuracy value: 20.364372469635626 - type: f1 value: 18.883480054629086 task: type: Classification - dataset: config: default name: MTEB SICK-E-PL revision: 71bba34b0ece6c56dfcf46d9758a27f7a90f17e9 split: test type: PL-MTEB/sicke-pl-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB SICK-R-PL revision: fd5c2441b7eeff8676768036142af4cfa42c1339 split: test type: PL-MTEB/sickr-pl-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STS22 (pl) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: dev type: mteb/stsb_multi_mt metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: test type: mteb/stsb_multi_mt metrics: [] task: type: STS pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
ILKT/2024-06-24_22-31-28_epoch_69
ILKT
2024-06-28T14:08:14Z
140
0
sentence-transformers
[ "sentence-transformers", "safetensors", "ILKT", "sentence-similarity", "mteb", "feature-extraction", "custom_code", "en", "pl", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-25T18:39:34Z
--- language: - en - pl model-index: - name: 2024-06-24_22-31-28_epoch_69 results: - dataset: config: default name: MTEB AllegroReviews revision: b89853e6de927b0e3bfa8ecc0e56fe4e02ceafc6 split: test type: PL-MTEB/allegro-reviews metrics: - type: accuracy value: 26.143141153081512 - type: f1 value: 23.904705178927614 task: type: Classification - dataset: config: default name: MTEB CBD revision: 36ddb419bcffe6a5374c3891957912892916f28d split: test type: PL-MTEB/cbd metrics: - type: accuracy value: 59.92999999999999 - type: ap value: 16.12714363495812 - type: f1 value: 49.50162616416747 task: type: Classification - dataset: config: default name: MTEB CDSC-E revision: 0a3d4aa409b22f80eb22cbf59b492637637b536d split: test type: PL-MTEB/cdsce-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB CDSC-R revision: 1cd6abbb00df7d14be3dbd76a7dcc64b3a79a7cd split: test type: PL-MTEB/cdscr-sts metrics: [] task: type: STS - dataset: config: default name: MTEB EightTagsClustering revision: 78b962b130c6690659c65abf67bf1c2f030606b6 split: test type: PL-MTEB/8tags-clustering metrics: - type: v_measure value: 12.961871705587452 - type: v_measure_std value: 1.9107231004017178 task: type: Clustering - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 33.41627437794216 - type: f1 value: 30.94424646756232 task: type: Classification - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: validation type: mteb/amazon_massive_intent metrics: - type: accuracy value: 33.31529758976882 - type: f1 value: 29.912978954569226 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 41.04572965702757 - type: f1 value: 39.09529373996035 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: validation type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 40.56566650270536 - type: f1 value: 39.564183326514204 task: type: Classification - dataset: config: default name: MTEB PAC revision: fc69d1c153a8ccdcf1eef52f4e2a27f88782f543 split: test type: laugustyniak/abusive-clauses-pl metrics: - type: accuracy value: 66.79119606139588 - type: ap value: 75.56178700648525 - type: f1 value: 63.95585191938602 task: type: Classification - dataset: config: default name: MTEB PSC revision: d05a294af9e1d3ff2bfb6b714e08a24a6cabc669 split: test type: PL-MTEB/psc-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB PlscClusteringP2P revision: 8436dd4c05222778013d6642ee2f3fa1722bca9b split: test type: PL-MTEB/plsc-clustering-p2p metrics: - type: v_measure value: 36.86807636910853 task: type: Clustering - dataset: config: default name: MTEB PlscClusteringS2S revision: 39bcadbac6b1eddad7c1a0a176119ce58060289a split: test type: PL-MTEB/plsc-clustering-s2s metrics: - type: v_measure value: 34.69191873741806 task: type: Clustering - dataset: config: default name: MTEB PolEmo2.0-IN revision: d90724373c70959f17d2331ad51fb60c71176b03 split: test type: PL-MTEB/polemo2_in metrics: - type: accuracy value: 51.3573407202216 - type: f1 value: 51.71294126787257 task: type: Classification - dataset: config: default name: MTEB PolEmo2.0-OUT revision: 6a21ab8716e255ab1867265f8b396105e8aa63d4 split: test type: PL-MTEB/polemo2_out metrics: - type: accuracy value: 21.153846153846153 - type: f1 value: 19.802925983811352 task: type: Classification - dataset: config: default name: MTEB SICK-E-PL revision: 71bba34b0ece6c56dfcf46d9758a27f7a90f17e9 split: test type: PL-MTEB/sicke-pl-pairclassification metrics: [] task: type: PairClassification - dataset: config: default name: MTEB SICK-R-PL revision: fd5c2441b7eeff8676768036142af4cfa42c1339 split: test type: PL-MTEB/sickr-pl-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STS22 (pl) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: dev type: mteb/stsb_multi_mt metrics: [] task: type: STS - dataset: config: pl name: MTEB STSBenchmarkMultilingualSTS (pl) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: test type: mteb/stsb_multi_mt metrics: [] task: type: STS pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
Trendyol/Trendyol-LLM-7b-chat-v1.8
Trendyol
2024-06-28T14:02:59Z
2,794
8
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "tr", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-04-29T14:45:41Z
--- language: - tr pipeline_tag: text-generation license: apache-2.0 base_model: Trendyol/Trendyol-LLM-7b-base-v1.1 --- # **Trendyol LLM v1.8** Trendyol LLM v1.8 is a generative model that is based on Mistral 7B model. This is the repository for the chat model. ## Model Details **Model Developers** Trendyol **Input** Models input text only. **Output** Models generate text only. **Model Architecture** Trendyol LLM is an auto-regressive language model (based on Mistral 7b) that uses an optimized transformer architecture. The chat version is fine-tuned on instruction sets with the following trainables by using LoRA: - **lr**=1e-4 - **lora_rank**=64 - **lora_alpha**=128 - **lora_trainable**=q_proj,v_proj,k_proj,o_proj,gate_proj,down_proj,up_proj - **modules_to_save**=embed_tokens,lm_head - **lora_dropout**=0.05 - **bf16**=True - **max_seq_length**=1024 <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/peft/lora_diagram.png" alt="drawing" width="600"/> ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline import torch model_id = "Trendyol/Trendyol-LLM-7b-chat-v1.8" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, device_map='auto', torch_dtype= torch.bfloat16, load_in_8bit=True) sampling_params = dict(do_sample=True, temperature=0.3, top_k=50, top_p=0.9) pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device_map="auto", torch_dtype= torch.bfloat16, max_new_tokens=1024, return_full_text=True, repetition_penalty=1.1 ) DEFAULT_SYSTEM_PROMPT = "Sen yardımcı bir asistansın ve sana verilen talimatlar doğrultusunda en iyi cevabı üretmeye çalışacaksın.\n" TEMPLATE = ( "[INST] {system_prompt}\n\n" "{instruction} [/INST]" ) def generate_prompt(instruction, system_prompt=DEFAULT_SYSTEM_PROMPT): return TEMPLATE.format_map({'instruction': instruction,'system_prompt': system_prompt}) def generate_output(user_query, sys_prompt=DEFAULT_SYSTEM_PROMPT): prompt = generate_prompt(user_query, sys_prompt) outputs = pipe(prompt, **sampling_params ) return outputs[0]["generated_text"].split("[/INST]")[-1] user_query = "Türkiye'de kaç il var?" response = generate_output(user_query) print(response) ``` with chat template: ```python pipe = pipeline("conversational", model=model, tokenizer=tokenizer, device_map="auto", torch_dtype= torch.bfloat16, max_new_tokens=1024, repetition_penalty=1.1 ) messages = [ {"role": "user", "content": "Türkiye'de kaç il var?"} ] outputs = pipe(messages, **sampling_params) print(outputs) ``` ## Limitations, Risks, Bias, and Ethical Considerations ### Limitations and Known Biases - **Primary Function and Application:** Trendyol LLM, an autoregressive language model, is primarily designed to predict the next token in a text string. While often used for various applications, it is important to note that it has not undergone extensive real-world application testing. Its effectiveness and reliability across diverse scenarios remain largely unverified. - **Language Comprehension and Generation:** The model is primarily trained in standard English and Turkish. Its performance in understanding and generating slang, informal language, or other languages may be limited, leading to potential errors or misinterpretations. - **Generation of False Information:** Users should be aware that Trendyol LLM may produce inaccurate or misleading information. Outputs should be considered as starting points or suggestions rather than definitive answers. ### Risks and Ethical Considerations - **Potential for Harmful Use:** There is a risk that Trendyol LLM could be used to generate offensive or harmful language. We strongly discourage its use for any such purposes and emphasize the need for application-specific safety and fairness evaluations before deployment. - **Unintended Content and Bias:** The model was trained on a large corpus of text data, which was not explicitly checked for offensive content or existing biases. Consequently, it may inadvertently produce content that reflects these biases or inaccuracies. - **Toxicity:** Despite efforts to select appropriate training data, the model is capable of generating harmful content, especially when prompted explicitly. We encourage the open-source community to engage in developing strategies to minimize such risks. ### Recommendations for Safe and Ethical Usage - **Human Oversight:** We recommend incorporating a human curation layer or using filters to manage and improve the quality of outputs, especially in public-facing applications. This approach can help mitigate the risk of generating objectionable content unexpectedly. - **Application-Specific Testing:** Developers intending to use Trendyol LLM should conduct thorough safety testing and optimization tailored to their specific applications. This is crucial, as the model’s responses can be unpredictable and may occasionally be biased, inaccurate, or offensive. - **Responsible Development and Deployment:** It is the responsibility of developers and users of Trendyol LLM to ensure its ethical and safe application. We urge users to be mindful of the model's limitations and to employ appropriate safeguards to prevent misuse or harmful consequences.
SotaChambers/test2
SotaChambers
2024-06-28T14:00:11Z
39
0
transformers
[ "transformers", "tensorboard", "safetensors", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:imagefolder", "base_model:naver-clova-ix/donut-base", "base_model:finetune:naver-clova-ix/donut-base", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2024-06-28T13:31:56Z
--- license: mit base_model: naver-clova-ix/donut-base tags: - generated_from_trainer datasets: - imagefolder model-index: - name: test2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test2 This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1
AdamKasumovic/llama3-8b-instruct-bactrian-x-en-100-percent-med-high-perplexity
AdamKasumovic
2024-06-28T13:55:10Z
4
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "en", "base_model:unsloth/llama-3-8b-Instruct-bnb-4bit", "base_model:finetune:unsloth/llama-3-8b-Instruct-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-06-28T13:51:43Z
--- base_model: unsloth/llama-3-8b-Instruct-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl --- # Uploaded model - **Developed by:** AdamKasumovic - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-Instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)