modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-09 00:41:25
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
549 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-09 00:41:08
card
stringlengths
11
1.01M
mrferr3t/b2c66b31-ca98-4d88-967a-21feb45c51ec
mrferr3t
2025-01-30T04:58:24Z
8
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/mistral-7b", "base_model:adapter:unsloth/mistral-7b", "license:apache-2.0", "region:us" ]
null
2025-01-30T04:49:28Z
--- library_name: peft license: apache-2.0 base_model: unsloth/mistral-7b tags: - axolotl - generated_from_trainer model-index: - name: b2c66b31-ca98-4d88-967a-21feb45c51ec results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/mistral-7b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 349d1a68b79d245f_train_data.json ds_type: json format: custom path: /workspace/input_data/349d1a68b79d245f_train_data.json type: field_instruction: question field_output: best_answer format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: 30 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: mrferr3t/b2c66b31-ca98-4d88-967a-21feb45c51ec hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0005 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 2 mlflow_experiment_name: /tmp/349d1a68b79d245f_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 300 saves_per_epoch: 0 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 9119e1b2-3b65-4cce-8060-7a9f2e96c7cf wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 9119e1b2-3b65-4cce-8060-7a9f2e96c7cf warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # b2c66b31-ca98-4d88-967a-21feb45c51ec This model is a fine-tuned version of [unsloth/mistral-7b](https://huggingface.co/unsloth/mistral-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8167 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 76 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.8396 | 0.0133 | 1 | 1.1466 | | 2.8951 | 0.3987 | 30 | 0.9471 | | 3.0997 | 0.7973 | 60 | 0.8167 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1
rl-llm-coders/RS_GT_RM_1B_iter1
rl-llm-coders
2025-01-30T04:58:20Z
45
0
transformers
[ "transformers", "safetensors", "llama", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2025-01-30T04:47:00Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
arcwarden46/836b4081-36e5-4089-97c4-9a4e82385312
arcwarden46
2025-01-30T04:54:44Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-0.5B-Instruct", "base_model:adapter:unsloth/Qwen2-0.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-30T04:35:43Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-0.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 836b4081-36e5-4089-97c4-9a4e82385312 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2-0.5B-Instruct bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - 5dd32cdee5c892d5_train_data.json ds_type: json format: custom path: /workspace/input_data/5dd32cdee5c892d5_train_data.json type: field_instruction: english_prompt field_output: sql_statement format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: arcwarden46/836b4081-36e5-4089-97c4-9a4e82385312 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/5dd32cdee5c892d5_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 132b9665-5e41-4e60-9e8b-87e501bd6138 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 132b9665-5e41-4e60-9e8b-87e501bd6138 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 836b4081-36e5-4089-97c4-9a4e82385312 This model is a fine-tuned version of [unsloth/Qwen2-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2-0.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0413 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.4922 | 0.0003 | 1 | 2.5977 | | 0.3941 | 0.0169 | 50 | 0.2369 | | 0.1448 | 0.0337 | 100 | 0.0865 | | 0.1021 | 0.0506 | 150 | 0.0484 | | 0.1136 | 0.0675 | 200 | 0.0413 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nbninh/be919448-aaa4-4b50-99ce-9cf180d0ec82
nbninh
2025-01-30T04:53:54Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM2-135M", "base_model:adapter:unsloth/SmolLM2-135M", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-30T04:40:12Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM2-135M tags: - axolotl - generated_from_trainer model-index: - name: be919448-aaa4-4b50-99ce-9cf180d0ec82 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM2-135M bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c6da635b3fbbd7dd_train_data.json ds_type: json format: custom path: /workspace/input_data/c6da635b3fbbd7dd_train_data.json type: field_input: '' field_instruction: problem field_output: solution format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nbninh/be919448-aaa4-4b50-99ce-9cf180d0ec82 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/c6da635b3fbbd7dd_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: e31f0b8d-60e7-432d-ab6b-0e559cb390ed wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: e31f0b8d-60e7-432d-ab6b-0e559cb390ed warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # be919448-aaa4-4b50-99ce-9cf180d0ec82 This model is a fine-tuned version of [unsloth/SmolLM2-135M](https://huggingface.co/unsloth/SmolLM2-135M) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2662 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.751 | 0.0973 | 200 | 1.2662 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nblinh/fd3eae18-f101-47e7-bab7-fac444bd0b31
nblinh
2025-01-30T04:53:46Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM2-135M", "base_model:adapter:unsloth/SmolLM2-135M", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-30T04:40:13Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM2-135M tags: - axolotl - generated_from_trainer model-index: - name: fd3eae18-f101-47e7-bab7-fac444bd0b31 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM2-135M bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c6da635b3fbbd7dd_train_data.json ds_type: json format: custom path: /workspace/input_data/c6da635b3fbbd7dd_train_data.json type: field_input: '' field_instruction: problem field_output: solution format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nblinh/fd3eae18-f101-47e7-bab7-fac444bd0b31 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/c6da635b3fbbd7dd_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: e31f0b8d-60e7-432d-ab6b-0e559cb390ed wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: e31f0b8d-60e7-432d-ab6b-0e559cb390ed warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # fd3eae18-f101-47e7-bab7-fac444bd0b31 This model is a fine-tuned version of [unsloth/SmolLM2-135M](https://huggingface.co/unsloth/SmolLM2-135M) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.741 | 0.0973 | 200 | 1.2649 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
AlSamCur123/Mistral-Nemo-InstructContinuedFine
AlSamCur123
2025-01-30T04:49:23Z
367
0
transformers
[ "transformers", "safetensors", "gguf", "mistral", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:unsloth/Mistral-Nemo-Instruct-2407-bnb-4bit", "base_model:quantized:unsloth/Mistral-Nemo-Instruct-2407-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-11-07T06:01:42Z
--- base_model: unsloth/Mistral-Nemo-Instruct-2407-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - trl - sft --- # Uploaded model - **Developed by:** AlSamCur123 - **License:** apache-2.0 - **Finetuned from model :** unsloth/Mistral-Nemo-Instruct-2407-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
alchemist69/54057398-61da-494b-b287-9f551c9bc6ec
alchemist69
2025-01-30T04:44:51Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM2-135M", "base_model:adapter:unsloth/SmolLM2-135M", "license:apache-2.0", "region:us" ]
null
2025-01-30T04:40:03Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM2-135M tags: - axolotl - generated_from_trainer model-index: - name: 54057398-61da-494b-b287-9f551c9bc6ec results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM2-135M bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - c6da635b3fbbd7dd_train_data.json ds_type: json format: custom path: /workspace/input_data/c6da635b3fbbd7dd_train_data.json type: field_input: '' field_instruction: problem field_output: solution format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: alchemist69/54057398-61da-494b-b287-9f551c9bc6ec hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/c6da635b3fbbd7dd_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: e31f0b8d-60e7-432d-ab6b-0e559cb390ed wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: e31f0b8d-60e7-432d-ab6b-0e559cb390ed warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 54057398-61da-494b-b287-9f551c9bc6ec This model is a fine-tuned version of [unsloth/SmolLM2-135M](https://huggingface.co/unsloth/SmolLM2-135M) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1376 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.8475 | 0.0019 | 1 | 1.4036 | | 1.1409 | 0.0973 | 50 | 1.2063 | | 1.1923 | 0.1946 | 100 | 1.1593 | | 1.055 | 0.2920 | 150 | 1.1421 | | 1.1963 | 0.3893 | 200 | 1.1376 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
ajku2199/Llama-2-7b-hf_abstract_prob6_dataset1_n1000_seed42_epochs10_batch8_qlora
ajku2199
2025-01-30T04:44:33Z
8
0
peft
[ "peft", "safetensors", "region:us" ]
null
2025-01-10T08:10:37Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0 - PEFT 0.4.0
Bhaskar009/sdxl_trial
Bhaskar009
2025-01-30T04:41:32Z
19
1
diffusers
[ "diffusers", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "diffusers-training", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2025-01-29T11:26:12Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 library_name: diffusers license: creativeml-openrail-m inference: true tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - diffusers-training - lora --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # LoRA text2image fine-tuning - Bhaskar009/sdxl_trial These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were fine-tuned on the AdamLucek/oldbookillustrations-small dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: True. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Intended uses & limitations #### How to use ```python from diffusers import DiffusionPipeline pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") pipe.load_lora_weights("Bhaskar009/sdxl_trial") pipe.to("cuda") prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k" image = pipe(prompt).images[0] ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
Lauther/emb-gte-large-en-v1.5-3e
Lauther
2025-01-30T04:41:21Z
7
0
sentence-transformers
[ "sentence-transformers", "safetensors", "new", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:5220", "loss:CosineSimilarityLoss", "custom_code", "dataset:Lauther/embeddings-train-semantic", "arxiv:1908.10084", "base_model:Alibaba-NLP/gte-large-en-v1.5", "base_model:finetune:Alibaba-NLP/gte-large-en-v1.5", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-01-30T04:40:44Z
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:5220 - loss:CosineSimilarityLoss base_model: Alibaba-NLP/gte-large-en-v1.5 widget: - source_sentence: Identify the column that stores the uncertainty value. sentences: - "What is measuring equipment?\nMeasuring equipment refers to the devices that\ \ make up a measurement system. Each piece of equipment has:\n- A unique serial\ \ number for identification.\n- A technical name, such as transmitter, plate,\ \ thermometer, etc.\n\nHow is equipment assigned to a measurement system?\nWhen\ \ equipment is assigned to a measurement system, it is given a unique identifier\ \ called an \"\"Equipment Tag.\"\"\n- If a piece of equipment has a tag, it is\ \ considered in use in a measurement system.\n- If it does not have a tag, it\ \ is considered spare or unused\n\nEquipment assignment based on technology:\n\ The type of equipment assigned to a measurement system depends on the technology\ \ used, for example:\n1. Differential technology (for gas measurement):\n -\ \ Static pressure transmitters\n - Differential pressure transmitters\n \ \ - Temperature transmitters\n - RTDs (thermometers)\n - Orifice plates\n\ \ - Straight stretch\n\n2. Linear technology (for gas measurement):\n -\ \ Temperature transmitters\n - RTDs\n - Static pressure transmitters\n \ \ - Ultrasonic meters\n\nRelationship between equipment and measurement systems:\n\ - A measurement system can have multiple pieces of equipment.\n- However, a piece\ \ of equipment can only be assigned to one measurement system.\n\nDatabase management:\n\ - The database includes a special table to manage the list of equipment assigned\ \ to measurement systems.\n- When a user refers to an \"\"Equipment Tag\"\", they\ \ are searching for operational equipment assigned to a measurement system.\n\ - If a user is looking for spare or unused equipment, they are searching for equipment\ \ not listed in the tagged equipment table.\n- Commonly used when user refers\ \ directly to an \"\"Equipment Tag\"" - 'What is equipment calibration? Calibration is a metrological verification process used to ensure the accuracy of measurement equipment. It is performed periodically, based on intervals set by the company or a regulatory body. Purpose of calibration: The calibration process corrects any deviations in how the equipment measures physical magnitudes (variables). This ensures the equipment provides accurate and reliable data. Calibration cycles: There are two main calibration cycles: 1. As-found: Represents the equipment''s measurement accuracy before any adjustments are made. This cycle is almost always implemented. 2. As-left: Represents the equipment''s measurement accuracy after adjustments are made. This cycle is used depending on regulatory requirements. Calibration uncertainty: - Uncertainty is included in the results of a calibration. - Calibration uncertainty refers to the margin of error in the device''s measurements, which also affects the uncertainty of the measured variable or magnitude.' - 'What kind of data store an equipment? Equipments can capture meteorological data, such as pressure, temperature, and volume (magnitudes). This data is essential for users to perform various calculations. Data storage: - The measured values are stored in a special table in the database for magnitudes. This table contains the values of the variables captured by the equipments. - These values are **direct measurements** from the fluid (e.g., raw pressure, temperature, or volume readings). **They are not calculated values**, such as uncertainty. - The values stored in the variable values table are **different** from variable uncertainty values, which are calculated separately and represent the margin of error. Accessing the data: - Users typically access the data by referring to the readings from the measurement system, not directly from the individual equipments. - The readings are stored in a "variable values" table within the database. Linking variable names: If the user needs to know the name of a variable, they must link the data to another table that stores information about the types of variables.' - source_sentence: SELECT * FROM EquipmentType LIMIT 1 sentences: - 'What kind of data store an equipment? Equipments can capture meteorological data, such as pressure, temperature, and volume (magnitudes). This data is essential for users to perform various calculations. Data storage: - The measured values are stored in a special table in the database for magnitudes. This table contains the values of the variables captured by the equipments. - These values are **direct measurements** from the fluid (e.g., raw pressure, temperature, or volume readings). **They are not calculated values**, such as uncertainty. - The values stored in the variable values table are **different** from variable uncertainty values, which are calculated separately and represent the margin of error. Accessing the data: - Users typically access the data by referring to the readings from the measurement system, not directly from the individual equipments. - The readings are stored in a "variable values" table within the database. Linking variable names: If the user needs to know the name of a variable, they must link the data to another table that stores information about the types of variables.' - "How does a flow computer generate and store reports?\nA flow computer generates\ \ daily or hourly reports to provide users with operational data. These reports\ \ are stored in the flow computer's memory in an organized format.\n\nReport structure:\n\ - Each report includes:\n- Date and time of the data recording.\n- Data recorded\ \ from flow computers.\n\nData storage in tables:\nThe reports are saved in two\ \ tables:\n1. Main table (Index):\n - Stores the date, time, and flow computer\ \ identifier.\n2. Detail table:\n - Stores the measured values associated with\ \ the report.\n\nConnection to the Modbus table:\nThe flow computer's reports\ \ are linked to a Modbus table. This table contains the names corresponding to\ \ each value in the reports, making it easier to interpret the data." - 'What is a flow computer? A flow computer is a device used in measurement engineering. It collects analog and digital data from flow meters and other sensors. Key features of a flow computer: - It has a unique name, firmware version, and manufacturer information. - It is designed to record and process data such as temperature, pressure, and fluid volume (for gases or oils). Main function: The flow computer sends the collected data to a measurement system. This allows measurement engineers to analyze the data and perform their tasks effectively.' - source_sentence: What tables store measurement system data? sentences: - "What is uncertainty?\nUncertainty is a measure of confidence in the precision\ \ and reliability of results obtained from equipment or measurement systems. It\ \ quantifies the potential error or margin of error in measurements.\n\nTypes\ \ of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of\ \ magnitudes (variables):\n - Refers to the uncertainty of specific variables,\ \ such as temperature or pressure.\n - It is calculated after calibrating a\ \ device or obtained from the equipment manufacturer's manual.\n - This uncertainty\ \ serves as a starting point for further calculations related to the equipment.\n\ \n2. Uncertainty of the measurement system:\n - Refers to the uncertainty calculated\ \ for the overall flow measurement.\n - It depends on the uncertainties of\ \ the individual variables (magnitudes) and represents the combined margin of\ \ error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes\ \ (variables) are the foundation for calculating the uncertainty of the measurement\ \ system. Think of them as the \"building blocks.\"\n- Do not confuse the two\ \ types of uncertainty:\n - **Uncertainty of magnitudes/variables**: Specific\ \ to individual variables (e.g., temperature, pressure).\n - **Uncertainty\ \ of the measurement system**: Specific to the overall flow measurement.\n\nDatabase\ \ storage for uncertainties:\nIn the database, uncertainty calculations are stored\ \ in two separate tables:\n1. Uncertainty of magnitudes (variables):\n - Stores\ \ the uncertainty values for specific variables (e.g., temperature, pressure).\n\ \n2. Uncertainty of the measurement system:\n - Stores the uncertainty values\ \ for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n\ - To find the uncertainty of the measurement system, join the measurement systems\ \ table with the uncertainty of the measurement system table.\n- To find the uncertainty\ \ of a specific variable (magnitude), join the measurement systems table with\ \ the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not\ \ confuse the two types of uncertainty:\n- If the user requests the uncertainty\ \ of the measurement system, use the first join (measurement systems table + uncertainty\ \ of the measurement system table).\n- If the user requests the uncertainty of\ \ a specific variable (magnitude) in a report, use the second join (measurement\ \ systems table + uncertainty of magnitudes table)." - "What is a measurement system?\nA measurement system, also referred to as a delivery\ \ point, measurement point, or reception point, is used to measure and monitor\ \ fluids in industrial processes.\n\nKey characteristics of a measurement system:\n\ 1. Measurement technology:\n - Differential: Used for precise measurements.\n\ \ - Linear: Used for straightforward measurements.\n\n2. System identifier\ \ (TAG):\n - A unique identifier for the system.\n\n3. Fluid type:\n - The\ \ system can measure gases, oils, condensates, water, steam, or other fluids.\n\ 4. System type:\n - Specifies the category or purpose of the system.\n\nMeasurement\ \ technology by fluid type:\n- Gas measurement systems: Use both linear and differential\ \ measurement technologies.\n- Oil measurement systems: Do not use linear or differential\ \ technologies; they are programmed differently.\"\n\n\nClassification of measurement\ \ systems:\nMeasurement systems are classified based on the stage of the process\ \ in which they are used. Common classifications include:\n- Fiscal\n- Operational\n\ - Appropriation\n- Custody\n- Production Poços" - 'What do measurement equipment measure? Each equipment measures a physical magnitude, also known as a variable. Based on the type of variable they measure, devices are classified into different categories. Equipment classification: - Primary meter: Assigned by default to equipments like orifice plates. - Secondary meter: Assigned by default to equipments like transmitters. - Tertiary meter: Used for other types of equipments. Equipment types in the database: The database includes a table listing all equipment types. Examples of equipment types are: - Differential pressure transmitters - RTDs (Resistance Temperature Detectors) - Orifice plates - Multivariable transmitters - Ultrasonic meters Meteorological checks for equipments: Each equipment type is assigned a meteorological check, which can be either: - Calibration: To ensure measurement accuracy. - Inspection: To verify proper functioning. Data storage in tables: The database also includes a separate table for equipment classifications, which are: - Primary meter - Secondary meter - Tertiary meter So, an equipment has equipment types and this types has classifications.' - source_sentence: What is the table structure for equipment types? sentences: - "How does a flow computer generate and store reports?\nA flow computer generates\ \ daily or hourly reports to provide users with operational data. These reports\ \ are stored in the flow computer's memory in an organized format.\n\nReport structure:\n\ - Each report includes:\n- Date and time of the data recording.\n- Data recorded\ \ from flow computers.\n\nData storage in tables:\nThe reports are saved in two\ \ tables:\n1. Main table (Index):\n - Stores the date, time, and flow computer\ \ identifier.\n2. Detail table:\n - Stores the measured values associated with\ \ the report.\n\nConnection to the Modbus table:\nThe flow computer's reports\ \ are linked to a Modbus table. This table contains the names corresponding to\ \ each value in the reports, making it easier to interpret the data." - "What is measuring equipment?\nMeasuring equipment refers to the devices that\ \ make up a measurement system. Each piece of equipment has:\n- A unique serial\ \ number for identification.\n- A technical name, such as transmitter, plate,\ \ thermometer, etc.\n\nHow is equipment assigned to a measurement system?\nWhen\ \ equipment is assigned to a measurement system, it is given a unique identifier\ \ called an \"\"Equipment Tag.\"\"\n- If a piece of equipment has a tag, it is\ \ considered in use in a measurement system.\n- If it does not have a tag, it\ \ is considered spare or unused\n\nEquipment assignment based on technology:\n\ The type of equipment assigned to a measurement system depends on the technology\ \ used, for example:\n1. Differential technology (for gas measurement):\n -\ \ Static pressure transmitters\n - Differential pressure transmitters\n \ \ - Temperature transmitters\n - RTDs (thermometers)\n - Orifice plates\n\ \ - Straight stretch\n\n2. Linear technology (for gas measurement):\n -\ \ Temperature transmitters\n - RTDs\n - Static pressure transmitters\n \ \ - Ultrasonic meters\n\nRelationship between equipment and measurement systems:\n\ - A measurement system can have multiple pieces of equipment.\n- However, a piece\ \ of equipment can only be assigned to one measurement system.\n\nDatabase management:\n\ - The database includes a special table to manage the list of equipment assigned\ \ to measurement systems.\n- When a user refers to an \"\"Equipment Tag\"\", they\ \ are searching for operational equipment assigned to a measurement system.\n\ - If a user is looking for spare or unused equipment, they are searching for equipment\ \ not listed in the tagged equipment table.\n- Commonly used when user refers\ \ directly to an \"\"Equipment Tag\"" - "What is uncertainty?\nUncertainty is a measure of confidence in the precision\ \ and reliability of results obtained from equipment or measurement systems. It\ \ quantifies the potential error or margin of error in measurements.\n\nTypes\ \ of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of\ \ magnitudes (variables):\n - Refers to the uncertainty of specific variables,\ \ such as temperature or pressure.\n - It is calculated after calibrating a\ \ device or obtained from the equipment manufacturer's manual.\n - This uncertainty\ \ serves as a starting point for further calculations related to the equipment.\n\ \n2. Uncertainty of the measurement system:\n - Refers to the uncertainty calculated\ \ for the overall flow measurement.\n - It depends on the uncertainties of\ \ the individual variables (magnitudes) and represents the combined margin of\ \ error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes\ \ (variables) are the foundation for calculating the uncertainty of the measurement\ \ system. Think of them as the \"building blocks.\"\n- Do not confuse the two\ \ types of uncertainty:\n - **Uncertainty of magnitudes/variables**: Specific\ \ to individual variables (e.g., temperature, pressure).\n - **Uncertainty\ \ of the measurement system**: Specific to the overall flow measurement.\n\nDatabase\ \ storage for uncertainties:\nIn the database, uncertainty calculations are stored\ \ in two separate tables:\n1. Uncertainty of magnitudes (variables):\n - Stores\ \ the uncertainty values for specific variables (e.g., temperature, pressure).\n\ \n2. Uncertainty of the measurement system:\n - Stores the uncertainty values\ \ for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n\ - To find the uncertainty of the measurement system, join the measurement systems\ \ table with the uncertainty of the measurement system table.\n- To find the uncertainty\ \ of a specific variable (magnitude), join the measurement systems table with\ \ the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not\ \ confuse the two types of uncertainty:\n- If the user requests the uncertainty\ \ of the measurement system, use the first join (measurement systems table + uncertainty\ \ of the measurement system table).\n- If the user requests the uncertainty of\ \ a specific variable (magnitude) in a report, use the second join (measurement\ \ systems table + uncertainty of magnitudes table)." - source_sentence: What columns store the uncertainty values? sentences: - "What is a measurement system?\nA measurement system, also referred to as a delivery\ \ point, measurement point, or reception point, is used to measure and monitor\ \ fluids in industrial processes.\n\nKey characteristics of a measurement system:\n\ 1. Measurement technology:\n - Differential: Used for precise measurements.\n\ \ - Linear: Used for straightforward measurements.\n\n2. System identifier\ \ (TAG):\n - A unique identifier for the system.\n\n3. Fluid type:\n - The\ \ system can measure gases, oils, condensates, water, steam, or other fluids.\n\ 4. System type:\n - Specifies the category or purpose of the system.\n\nMeasurement\ \ technology by fluid type:\n- Gas measurement systems: Use both linear and differential\ \ measurement technologies.\n- Oil measurement systems: Do not use linear or differential\ \ technologies; they are programmed differently.\"\n\n\nClassification of measurement\ \ systems:\nMeasurement systems are classified based on the stage of the process\ \ in which they are used. Common classifications include:\n- Fiscal\n- Operational\n\ - Appropriation\n- Custody\n- Production Poços" - 'How are flow computers and measurement systems related? Flow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer. Database terminology: In the database, this relationship is referred to as: - Meter streams - Meter runs - Sections Storage of the relationship: The relationship between a flow computer and its assigned measurement system is stored in a special table. User context: When a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.' - "What is uncertainty?\nUncertainty is a measure of confidence in the precision\ \ and reliability of results obtained from equipment or measurement systems. It\ \ quantifies the potential error or margin of error in measurements.\n\nTypes\ \ of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of\ \ magnitudes (variables):\n - Refers to the uncertainty of specific variables,\ \ such as temperature or pressure.\n - It is calculated after calibrating a\ \ device or obtained from the equipment manufacturer's manual.\n - This uncertainty\ \ serves as a starting point for further calculations related to the equipment.\n\ \n2. Uncertainty of the measurement system:\n - Refers to the uncertainty calculated\ \ for the overall flow measurement.\n - It depends on the uncertainties of\ \ the individual variables (magnitudes) and represents the combined margin of\ \ error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes\ \ (variables) are the foundation for calculating the uncertainty of the measurement\ \ system. Think of them as the \"building blocks.\"\n- Do not confuse the two\ \ types of uncertainty:\n - **Uncertainty of magnitudes/variables**: Specific\ \ to individual variables (e.g., temperature, pressure).\n - **Uncertainty\ \ of the measurement system**: Specific to the overall flow measurement.\n\nDatabase\ \ storage for uncertainties:\nIn the database, uncertainty calculations are stored\ \ in two separate tables:\n1. Uncertainty of magnitudes (variables):\n - Stores\ \ the uncertainty values for specific variables (e.g., temperature, pressure).\n\ \n2. Uncertainty of the measurement system:\n - Stores the uncertainty values\ \ for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n\ - To find the uncertainty of the measurement system, join the measurement systems\ \ table with the uncertainty of the measurement system table.\n- To find the uncertainty\ \ of a specific variable (magnitude), join the measurement systems table with\ \ the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not\ \ confuse the two types of uncertainty:\n- If the user requests the uncertainty\ \ of the measurement system, use the first join (measurement systems table + uncertainty\ \ of the measurement system table).\n- If the user requests the uncertainty of\ \ a specific variable (magnitude) in a report, use the second join (measurement\ \ systems table + uncertainty of magnitudes table)." datasets: - Lauther/embeddings-train-semantic pipeline_tag: sentence-similarity library_name: sentence-transformers --- # SentenceTransformer based on Alibaba-NLP/gte-large-en-v1.5 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-large-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5) on the [embeddings-train-semantic](https://huggingface.co/datasets/Lauther/embeddings-train-semantic) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [Alibaba-NLP/gte-large-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5) <!-- at revision 104333d6af6f97649377c2afbde10a7704870c7b --> - **Maximum Sequence Length:** 8192 tokens - **Output Dimensionality:** 1024 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - [embeddings-train-semantic](https://huggingface.co/datasets/Lauther/embeddings-train-semantic) <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("Lauther/emb-gte-large-en-v1.5-3e") # Run inference sentences = [ 'What columns store the uncertainty values?', 'How are flow computers and measurement systems related?\nFlow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer.\n\nDatabase terminology:\nIn the database, this relationship is referred to as:\n- Meter streams\n- Meter runs\n- Sections\n\nStorage of the relationship:\nThe relationship between a flow computer and its assigned measurement system is stored in a special table.\n\nUser context:\nWhen a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.', 'What is uncertainty?\nUncertainty is a measure of confidence in the precision and reliability of results obtained from equipment or measurement systems. It quantifies the potential error or margin of error in measurements.\n\nTypes of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of magnitudes (variables):\n - Refers to the uncertainty of specific variables, such as temperature or pressure.\n - It is calculated after calibrating a device or obtained from the equipment manufacturer\'s manual.\n - This uncertainty serves as a starting point for further calculations related to the equipment.\n\n2. Uncertainty of the measurement system:\n - Refers to the uncertainty calculated for the overall flow measurement.\n - It depends on the uncertainties of the individual variables (magnitudes) and represents the combined margin of error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes (variables) are the foundation for calculating the uncertainty of the measurement system. Think of them as the "building blocks."\n- Do not confuse the two types of uncertainty:\n - **Uncertainty of magnitudes/variables**: Specific to individual variables (e.g., temperature, pressure).\n - **Uncertainty of the measurement system**: Specific to the overall flow measurement.\n\nDatabase storage for uncertainties:\nIn the database, uncertainty calculations are stored in two separate tables:\n1. Uncertainty of magnitudes (variables):\n - Stores the uncertainty values for specific variables (e.g., temperature, pressure).\n\n2. Uncertainty of the measurement system:\n - Stores the uncertainty values for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n- To find the uncertainty of the measurement system, join the measurement systems table with the uncertainty of the measurement system table.\n- To find the uncertainty of a specific variable (magnitude), join the measurement systems table with the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not confuse the two types of uncertainty:\n- If the user requests the uncertainty of the measurement system, use the first join (measurement systems table + uncertainty of the measurement system table).\n- If the user requests the uncertainty of a specific variable (magnitude) in a report, use the second join (measurement systems table + uncertainty of magnitudes table).', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### embeddings-train-semantic * Dataset: [embeddings-train-semantic](https://huggingface.co/datasets/Lauther/embeddings-train-semantic) at [ce90f53](https://huggingface.co/datasets/Lauther/embeddings-train-semantic/tree/ce90f531bc39037053d223b27868ad178852f330) * Size: 5,220 training samples * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | <ul><li>min: 6 tokens</li><li>mean: 15.47 tokens</li><li>max: 77 tokens</li></ul> | <ul><li>min: 108 tokens</li><li>mean: 222.4 tokens</li><li>max: 452 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.23</li><li>max: 1.0</li></ul> | * Samples: | sentence1 | sentence2 | score | |:------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------| | <code>What is the data type of differential pressure in the measurement system?</code> | <code>What is uncertainty?<br>Uncertainty is a measure of confidence in the precision and reliability of results obtained from equipment or measurement systems. It quantifies the potential error or margin of error in measurements.<br><br>Types of uncertainty:<br>There are two main types of uncertainty:<br>1. Uncertainty of magnitudes (variables):<br> - Refers to the uncertainty of specific variables, such as temperature or pressure.<br> - It is calculated after calibrating a device or obtained from the equipment manufacturer's manual.<br> - This uncertainty serves as a starting point for further calculations related to the equipment.<br><br>2. Uncertainty of the measurement system:<br> - Refers to the uncertainty calculated for the overall flow measurement.<br> - It depends on the uncertainties of the individual variables (magnitudes) and represents the combined margin of error for the entire system.<br><br>Key points:<br>- The uncertainties of magnitudes (variables) are the foundation for calculating the uncertainty of ...</code> | <code>0.15000000000000002</code> | | <code>What is the structure of the &&&equipment_data&&& table?</code> | <code>How are flow computers and measurement systems related?<br>Flow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer.<br><br>Database terminology:<br>In the database, this relationship is referred to as:<br>- Meter streams<br>- Meter runs<br>- Sections<br><br>Storage of the relationship:<br>The relationship between a flow computer and its assigned measurement system is stored in a special table.<br><br>User context:<br>When a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.</code> | <code>0.35000000000000003</code> | | <code>Find the columns in the flow computer table that identify the flow computer.</code> | <code>What kind of data store an equipment?<br>Equipments can capture meteorological data, such as pressure, temperature, and volume (magnitudes). This data is essential for users to perform various calculations.<br><br>Data storage:<br>- The measured values are stored in a special table in the database for magnitudes. This table contains the values of the variables captured by the equipments.<br>- These values are **direct measurements** from the fluid (e.g., raw pressure, temperature, or volume readings). **They are not calculated values**, such as uncertainty.<br>- The values stored in the variable values table are **different** from variable uncertainty values, which are calculated separately and represent the margin of error.<br><br>Accessing the data:<br>- Users typically access the data by referring to the readings from the measurement system, not directly from the individual equipments.<br>- The readings are stored in a "variable values" table within the database.<br><br>Linking variable names:<br>If the user needs to kno...</code> | <code>0.1</code> | * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: ```json { "loss_fct": "torch.nn.modules.loss.MSELoss" } ``` ### Evaluation Dataset #### embeddings-train-semantic * Dataset: [embeddings-train-semantic](https://huggingface.co/datasets/Lauther/embeddings-train-semantic) at [ce90f53](https://huggingface.co/datasets/Lauther/embeddings-train-semantic/tree/ce90f531bc39037053d223b27868ad178852f330) * Size: 652 evaluation samples * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> * Approximate statistics based on the first 652 samples: | | sentence1 | sentence2 | score | |:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | <ul><li>min: 6 tokens</li><li>mean: 15.03 tokens</li><li>max: 77 tokens</li></ul> | <ul><li>min: 108 tokens</li><li>mean: 219.25 tokens</li><li>max: 452 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.24</li><li>max: 0.9</li></ul> | * Samples: | sentence1 | sentence2 | score | |:-------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------| | <code>How can I filter uncertainty reports by equipment tag?</code> | <code>How does a flow computer generate and store reports?<br>A flow computer generates daily or hourly reports to provide users with operational data. These reports are stored in the flow computer's memory in an organized format.<br><br>Report structure:<br>- Each report includes:<br>- Date and time of the data recording.<br>- Data recorded from flow computers.<br><br>Data storage in tables:<br>The reports are saved in two tables:<br>1. Main table (Index):<br> - Stores the date, time, and flow computer identifier.<br>2. Detail table:<br> - Stores the measured values associated with the report.<br><br>Connection to the Modbus table:<br>The flow computer's reports are linked to a Modbus table. This table contains the names corresponding to each value in the reports, making it easier to interpret the data.</code> | <code>0.09999999999999999</code> | | <code>What is the purpose of the flow_data table?</code> | <code>What is uncertainty?<br>Uncertainty is a measure of confidence in the precision and reliability of results obtained from equipment or measurement systems. It quantifies the potential error or margin of error in measurements.<br><br>Types of uncertainty:<br>There are two main types of uncertainty:<br>1. Uncertainty of magnitudes (variables):<br> - Refers to the uncertainty of specific variables, such as temperature or pressure.<br> - It is calculated after calibrating a device or obtained from the equipment manufacturer's manual.<br> - This uncertainty serves as a starting point for further calculations related to the equipment.<br><br>2. Uncertainty of the measurement system:<br> - Refers to the uncertainty calculated for the overall flow measurement.<br> - It depends on the uncertainties of the individual variables (magnitudes) and represents the combined margin of error for the entire system.<br><br>Key points:<br>- The uncertainties of magnitudes (variables) are the foundation for calculating the uncertainty of ...</code> | <code>0.15000000000000002</code> | | <code>What is the column name for the report date in the Reports table?</code> | <code>What is equipment calibration?<br>Calibration is a metrological verification process used to ensure the accuracy of measurement equipment. It is performed periodically, based on intervals set by the company or a regulatory body.<br><br>Purpose of calibration:<br>The calibration process corrects any deviations in how the equipment measures physical magnitudes (variables). This ensures the equipment provides accurate and reliable data.<br><br>Calibration cycles:<br>There are two main calibration cycles:<br>1. As-found: Represents the equipment's measurement accuracy before any adjustments are made. This cycle is almost always implemented.<br>2. As-left: Represents the equipment's measurement accuracy after adjustments are made. This cycle is used depending on regulatory requirements.<br><br>Calibration uncertainty:<br>- Uncertainty is included in the results of a calibration.<br>- Calibration uncertainty refers to the margin of error in the device's measurements, which also affects the uncertainty of the measured variable or ...</code> | <code>0.1</code> | * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: ```json { "loss_fct": "torch.nn.modules.loss.MSELoss" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 4 - `per_device_eval_batch_size`: 4 - `gradient_accumulation_steps`: 4 - `learning_rate`: 2e-05 - `warmup_ratio`: 0.1 #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 4 - `per_device_eval_batch_size`: 4 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 4 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 3 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0307 | 10 | 0.501 | - | | 0.0613 | 20 | 0.3017 | - | | 0.0920 | 30 | 0.1991 | - | | 0.1226 | 40 | 0.1107 | - | | 0.1533 | 50 | 0.1111 | - | | 0.1839 | 60 | 0.1187 | - | | 0.2146 | 70 | 0.105 | - | | 0.2452 | 80 | 0.1292 | - | | 0.2759 | 90 | 0.0905 | - | | 0.3065 | 100 | 0.0806 | - | | 0.3372 | 110 | 0.093 | - | | 0.3678 | 120 | 0.0787 | - | | 0.3985 | 130 | 0.0833 | - | | 0.4291 | 140 | 0.0633 | - | | 0.4598 | 150 | 0.0968 | 0.0191 | | 0.4904 | 160 | 0.0795 | - | | 0.5211 | 170 | 0.0883 | - | | 0.5517 | 180 | 0.0859 | - | | 0.5824 | 190 | 0.0673 | - | | 0.6130 | 200 | 0.0519 | - | | 0.6437 | 210 | 0.0757 | - | | 0.6743 | 220 | 0.0786 | - | | 0.7050 | 230 | 0.0752 | - | | 0.7356 | 240 | 0.1087 | - | | 0.7663 | 250 | 0.0812 | - | | 0.7969 | 260 | 0.0519 | - | | 0.8276 | 270 | 0.0596 | - | | 0.8582 | 280 | 0.0521 | - | | 0.8889 | 290 | 0.07 | - | | 0.9195 | 300 | 0.0577 | 0.0167 | | 0.9502 | 310 | 0.0668 | - | | 0.9808 | 320 | 0.0473 | - | | 1.0092 | 330 | 0.0477 | - | | 1.0398 | 340 | 0.0592 | - | | 1.0705 | 350 | 0.0518 | - | | 1.1011 | 360 | 0.0689 | - | | 1.1318 | 370 | 0.0557 | - | | 1.1625 | 380 | 0.0593 | - | | 1.1931 | 390 | 0.0672 | - | | 1.2238 | 400 | 0.0467 | - | | 1.2544 | 410 | 0.0348 | - | | 1.2851 | 420 | 0.0582 | - | | 1.3157 | 430 | 0.0568 | - | | 1.3464 | 440 | 0.0548 | - | | 1.3770 | 450 | 0.0599 | 0.0147 | | 1.4077 | 460 | 0.0495 | - | | 1.4383 | 470 | 0.0511 | - | | 1.4690 | 480 | 0.0525 | - | | 1.4996 | 490 | 0.0533 | - | | 1.5303 | 500 | 0.0499 | - | | 1.5609 | 510 | 0.0497 | - | | 1.5916 | 520 | 0.043 | - | | 1.6222 | 530 | 0.0471 | - | | 1.6529 | 540 | 0.0501 | - | | 1.6835 | 550 | 0.038 | - | | 1.7142 | 560 | 0.0378 | - | | 1.7448 | 570 | 0.0438 | - | | 1.7755 | 580 | 0.0441 | - | | 1.8061 | 590 | 0.0503 | - | | 1.8368 | 600 | 0.0534 | 0.0127 | | 1.8674 | 610 | 0.0403 | - | | 1.8981 | 620 | 0.0452 | - | | 1.9287 | 630 | 0.0478 | - | | 1.9594 | 640 | 0.0334 | - | | 1.9900 | 650 | 0.0564 | - | | 2.0184 | 660 | 0.03 | - | | 2.0490 | 670 | 0.0459 | - | | 2.0797 | 680 | 0.0284 | - | | 2.1103 | 690 | 0.029 | - | | 2.1410 | 700 | 0.0341 | - | | 2.1716 | 710 | 0.025 | - | | 2.2023 | 720 | 0.0167 | - | | 2.2330 | 730 | 0.0387 | - | | 2.2636 | 740 | 0.036 | - | | 2.2943 | 750 | 0.044 | 0.0123 | | 2.3249 | 760 | 0.0288 | - | | 2.3556 | 770 | 0.033 | - | | 2.3862 | 780 | 0.0323 | - | | 2.4169 | 790 | 0.0301 | - | | 2.4475 | 800 | 0.0399 | - | | 2.4782 | 810 | 0.0313 | - | | 2.5088 | 820 | 0.0418 | - | | 2.5395 | 830 | 0.03 | - | | 2.5701 | 840 | 0.0374 | - | | 2.6008 | 850 | 0.0299 | - | | 2.6314 | 860 | 0.0396 | - | | 2.6621 | 870 | 0.0302 | - | | 2.6927 | 880 | 0.0301 | - | | 2.7234 | 890 | 0.0283 | - | | 2.7540 | 900 | 0.016 | 0.0114 | | 2.7847 | 910 | 0.0308 | - | | 2.8153 | 920 | 0.0408 | - | | 2.8460 | 930 | 0.0187 | - | | 2.8766 | 940 | 0.0269 | - | | 2.9073 | 950 | 0.04 | - | | 2.9379 | 960 | 0.0207 | - | | 2.9686 | 970 | 0.0336 | - | ### Framework Versions - Python: 3.11.0 - Sentence Transformers: 3.4.0 - Transformers: 4.48.1 - PyTorch: 2.5.1+cu124 - Accelerate: 1.3.0 - Datasets: 3.2.0 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
rl-llm-coders/RS_GT_RM_1B_iter0
rl-llm-coders
2025-01-30T04:40:09Z
5
0
transformers
[ "transformers", "safetensors", "llama", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2025-01-30T04:23:12Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
lesso18/d6aac820-fda9-4758-aa5e-519095c706b2
lesso18
2025-01-30T04:39:01Z
7
0
peft
[ "peft", "safetensors", "gpt_neo", "axolotl", "generated_from_trainer", "base_model:EleutherAI/gpt-neo-1.3B", "base_model:adapter:EleutherAI/gpt-neo-1.3B", "license:mit", "region:us" ]
null
2025-01-30T04:07:23Z
--- library_name: peft license: mit base_model: EleutherAI/gpt-neo-1.3B tags: - axolotl - generated_from_trainer model-index: - name: d6aac820-fda9-4758-aa5e-519095c706b2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/gpt-neo-1.3B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 9220f3ec5e9baf46_train_data.json ds_type: json format: custom path: /workspace/input_data/9220f3ec5e9baf46_train_data.json type: field_instruction: dialogue field_output: reference format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso18/d6aac820-fda9-4758-aa5e-519095c706b2 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mixed_precision: bf16 mlflow_experiment_name: /tmp/9220f3ec5e9baf46_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b014ffbb-9de7-4765-9d8a-0bf229f9b0e3 wandb_project: new-01-29 wandb_run: your_name wandb_runid: b014ffbb-9de7-4765-9d8a-0bf229f9b0e3 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # d6aac820-fda9-4758-aa5e-519095c706b2 This model is a fine-tuned version of [EleutherAI/gpt-neo-1.3B](https://huggingface.co/EleutherAI/gpt-neo-1.3B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4715 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 5.7043 | 0.0169 | 200 | 1.4715 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nhung01/e15b6e90-39b5-4170-a5d6-dd192a8cb5ed
nhung01
2025-01-30T04:37:54Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-1.5B-Instruct", "base_model:adapter:unsloth/Qwen2-1.5B-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-30T04:21:56Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-1.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: e15b6e90-39b5-4170-a5d6-dd192a8cb5ed results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2-1.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - d5c0c6531c05927b_train_data.json ds_type: json format: custom path: /workspace/input_data/d5c0c6531c05927b_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhung01/e15b6e90-39b5-4170-a5d6-dd192a8cb5ed hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/d5c0c6531c05927b_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0b4dd25b-0edc-430d-b581-bf00a0e10324 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 0b4dd25b-0edc-430d-b581-bf00a0e10324 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # e15b6e90-39b5-4170-a5d6-dd192a8cb5ed This model is a fine-tuned version of [unsloth/Qwen2-1.5B-Instruct](https://huggingface.co/unsloth/Qwen2-1.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7172 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.4148 | 0.0681 | 200 | 0.7172 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
prxy5604/718a3229-73ba-4980-9425-ffb241853776
prxy5604
2025-01-30T04:36:21Z
8
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/Yarn-Mistral-7b-128k", "base_model:adapter:NousResearch/Yarn-Mistral-7b-128k", "license:apache-2.0", "region:us" ]
null
2025-01-30T03:37:43Z
--- library_name: peft license: apache-2.0 base_model: NousResearch/Yarn-Mistral-7b-128k tags: - axolotl - generated_from_trainer model-index: - name: 718a3229-73ba-4980-9425-ffb241853776 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Yarn-Mistral-7b-128k bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - b1454fa1fd1fe58d_train_data.json ds_type: json format: custom path: /workspace/input_data/b1454fa1fd1fe58d_train_data.json type: field_input: possible_answers field_instruction: question field_output: memory_answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: prxy5604/718a3229-73ba-4980-9425-ffb241853776 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/b1454fa1fd1fe58d_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 4d3d1b80-2351-40f7-99cf-7e411e41051a wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 4d3d1b80-2351-40f7-99cf-7e411e41051a warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 718a3229-73ba-4980-9425-ffb241853776 This model is a fine-tuned version of [NousResearch/Yarn-Mistral-7b-128k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-128k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4604 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 7.5599 | 0.0005 | 1 | 1.9562 | | 1.5145 | 0.0275 | 50 | 0.6537 | | 1.7453 | 0.0549 | 100 | 0.5282 | | 1.261 | 0.0824 | 150 | 0.4744 | | 1.8751 | 0.1099 | 200 | 0.4604 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
robiual-awal/b6e0548d-d114-41a4-8030-2ec5989a46c1
robiual-awal
2025-01-30T04:35:17Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:heegyu/WizardVicuna2-13b-hf", "base_model:adapter:heegyu/WizardVicuna2-13b-hf", "region:us" ]
null
2025-01-30T03:42:52Z
--- library_name: peft base_model: heegyu/WizardVicuna2-13b-hf tags: - axolotl - generated_from_trainer model-index: - name: b6e0548d-d114-41a4-8030-2ec5989a46c1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: heegyu/WizardVicuna2-13b-hf bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - de2f5a3df66e2619_train_data.json ds_type: json format: custom path: /workspace/input_data/de2f5a3df66e2619_train_data.json type: field_input: package_name field_instruction: products field_output: review format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: robiual-awal/b6e0548d-d114-41a4-8030-2ec5989a46c1 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/de2f5a3df66e2619_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 5ff6924c-590d-48b4-b2d4-0517ebbf6eba wandb_project: Birthday-SN56-29-Gradients-On-Demand wandb_run: your_name wandb_runid: 5ff6924c-590d-48b4-b2d4-0517ebbf6eba warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # b6e0548d-d114-41a4-8030-2ec5989a46c1 This model is a fine-tuned version of [heegyu/WizardVicuna2-13b-hf](https://huggingface.co/heegyu/WizardVicuna2-13b-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.4616 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0000 | 1 | 5.4028 | | 3.7717 | 0.0004 | 13 | 3.6447 | | 3.5306 | 0.0008 | 26 | 3.5163 | | 3.2121 | 0.0011 | 39 | 3.4616 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Best000/9fe467ab-bc07-4fbc-8be9-2476da2488aa
Best000
2025-01-30T04:35:10Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:heegyu/WizardVicuna2-13b-hf", "base_model:adapter:heegyu/WizardVicuna2-13b-hf", "region:us" ]
null
2025-01-30T03:42:39Z
--- library_name: peft base_model: heegyu/WizardVicuna2-13b-hf tags: - axolotl - generated_from_trainer model-index: - name: 9fe467ab-bc07-4fbc-8be9-2476da2488aa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: heegyu/WizardVicuna2-13b-hf bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - de2f5a3df66e2619_train_data.json ds_type: json format: custom path: /workspace/input_data/de2f5a3df66e2619_train_data.json type: field_input: package_name field_instruction: products field_output: review format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: Best000/9fe467ab-bc07-4fbc-8be9-2476da2488aa hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/de2f5a3df66e2619_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 5ff6924c-590d-48b4-b2d4-0517ebbf6eba wandb_project: Birthday-SN56-15-Gradients-On-Demand wandb_run: your_name wandb_runid: 5ff6924c-590d-48b4-b2d4-0517ebbf6eba warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 9fe467ab-bc07-4fbc-8be9-2476da2488aa This model is a fine-tuned version of [heegyu/WizardVicuna2-13b-hf](https://huggingface.co/heegyu/WizardVicuna2-13b-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.4623 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0000 | 1 | 5.4028 | | 3.7715 | 0.0004 | 13 | 3.6480 | | 3.5329 | 0.0008 | 26 | 3.5187 | | 3.2091 | 0.0011 | 39 | 3.4623 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mrferr3t/5330137c-379e-45ee-ae47-6a4938e99b9d
mrferr3t
2025-01-30T04:35:01Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-1.5B-Instruct", "base_model:adapter:unsloth/Qwen2-1.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-30T04:29:47Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-1.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 5330137c-379e-45ee-ae47-6a4938e99b9d results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2-1.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - d5c0c6531c05927b_train_data.json ds_type: json format: custom path: /workspace/input_data/d5c0c6531c05927b_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: 30 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: mrferr3t/5330137c-379e-45ee-ae47-6a4938e99b9d hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0005 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 2 mlflow_experiment_name: /tmp/d5c0c6531c05927b_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 300 saves_per_epoch: 0 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0b4dd25b-0edc-430d-b581-bf00a0e10324 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 0b4dd25b-0edc-430d-b581-bf00a0e10324 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 5330137c-379e-45ee-ae47-6a4938e99b9d This model is a fine-tuned version of [unsloth/Qwen2-1.5B-Instruct](https://huggingface.co/unsloth/Qwen2-1.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6742 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.024 | 0.0003 | 1 | 1.7054 | | 0.6015 | 0.0102 | 30 | 0.7080 | | 0.5947 | 0.0204 | 60 | 0.6830 | | 0.5486 | 0.0307 | 90 | 0.6742 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1
sleepdeprived3/Cydonia-22B-v1_EXL2_5bpw_H8
sleepdeprived3
2025-01-30T04:34:54Z
11
0
null
[ "safetensors", "mistral", "license:other", "5-bit", "exl2", "region:us" ]
null
2025-01-30T03:32:23Z
--- license: other --- # Join our Discord! https://discord.gg/Nbv9pQ88Xb ## 1000+ members strong 💪 <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/65f2fd1c25b848bd061b5c2e/FNWdi0WlH-Xd3fjkGVPpp.mpga"></audio> *Thank you, Envoid! I cackled.* --- [BeaverAI](https://huggingface.co/BeaverAI) proudly presents... # Cydonia 22B v1 💿 *I christen this model, 'Miqu 2 Mini'* - @invisietch ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65f2fd1c25b848bd061b5c2e/UqdPv03eMkZP78XavSxIW.png) ## Links - Original: https://huggingface.co/TheDrummer/Cydonia-22B-v1 - GGUF: https://huggingface.co/TheDrummer/Cydonia-22B-v1-GGUF - iMatrix: https://huggingface.co/MarsupialAI/Cydonia-22B-v1_iMat_GGUF - EXL2: https://huggingface.co/MarsupialAI/Cydonia-22B-v1_EXL2 ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65f2fd1c25b848bd061b5c2e/A67a5B4kOqv6JZUQmYCGQ.png) ## Arsenal (Supported Chat Templates) - Metharme (a.k.a. Pygmalion in ST) for RP / Story - Text Completion for RP - Mistral for Instruct / RP / Story - You can mix it up and see which works best for you. ### Favorite RP Format `*action* Dialogue *thoughts* Dialogue *narration*` in 1st person PoV ## What's Next? - I might release a v1.1... Probably. - Already have plans for a v2! ![image/gif](https://cdn-uploads.huggingface.co/production/uploads/65f2fd1c25b848bd061b5c2e/iDWlUzYlxUaOkmJSuUrDf.gif) ``` No one's gonna take me alive Time has come to make things right You and I must fight for our rights You and I must fight to survive ``` ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65f2fd1c25b848bd061b5c2e/cyD7QKFLdvPrHEiPHVQh1.png) `>inb4 my model cards have turned into Tumblr`
yuniktmr/paraphrased_fine_tuned_bert_uncased-permission-predictor_prod
yuniktmr
2025-01-30T04:34:30Z
13
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-30T04:31:07Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
nhunglaaaaaaa/885edad0-d782-4939-b294-5cb531d9095e
nhunglaaaaaaa
2025-01-30T04:33:14Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-1.5B-Instruct", "base_model:adapter:unsloth/Qwen2-1.5B-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-30T04:21:13Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-1.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 885edad0-d782-4939-b294-5cb531d9095e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2-1.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - d5c0c6531c05927b_train_data.json ds_type: json format: custom path: /workspace/input_data/d5c0c6531c05927b_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhunglaaaaaaa/885edad0-d782-4939-b294-5cb531d9095e hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/d5c0c6531c05927b_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0b4dd25b-0edc-430d-b581-bf00a0e10324 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 0b4dd25b-0edc-430d-b581-bf00a0e10324 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 885edad0-d782-4939-b294-5cb531d9095e This model is a fine-tuned version of [unsloth/Qwen2-1.5B-Instruct](https://huggingface.co/unsloth/Qwen2-1.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7203 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.4142 | 0.0681 | 200 | 0.7203 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
LuckyLukke/DPO_1-2500
LuckyLukke
2025-01-30T04:32:51Z
5
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-30T04:28:32Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
lesso01/a7fb0e48-6b5a-4f67-af6d-15bed40b3884
lesso01
2025-01-30T04:32:10Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-1.5B-Instruct", "base_model:adapter:unsloth/Qwen2-1.5B-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-30T04:21:14Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-1.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: a7fb0e48-6b5a-4f67-af6d-15bed40b3884 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2-1.5B-Instruct bf16: auto chat_template: llama3 datasets: - data_files: - d5c0c6531c05927b_train_data.json ds_type: json format: custom path: /workspace/input_data/d5c0c6531c05927b_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso01/a7fb0e48-6b5a-4f67-af6d-15bed40b3884 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/d5c0c6531c05927b_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0b4dd25b-0edc-430d-b581-bf00a0e10324 wandb_project: new-01-29 wandb_run: your_name wandb_runid: 0b4dd25b-0edc-430d-b581-bf00a0e10324 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # a7fb0e48-6b5a-4f67-af6d-15bed40b3884 This model is a fine-tuned version of [unsloth/Qwen2-1.5B-Instruct](https://huggingface.co/unsloth/Qwen2-1.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0681 | 200 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
cilooor/39865643-c496-48ac-9f51-b9fc0f62f447
cilooor
2025-01-30T04:31:41Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/Llama-3.1-Storm-8B", "base_model:adapter:unsloth/Llama-3.1-Storm-8B", "license:llama3.1", "region:us" ]
null
2025-01-30T03:51:13Z
--- library_name: peft license: llama3.1 base_model: unsloth/Llama-3.1-Storm-8B tags: - axolotl - generated_from_trainer model-index: - name: 39865643-c496-48ac-9f51-b9fc0f62f447 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Llama-3.1-Storm-8B bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - 91c8fbf3b2faa749_train_data.json ds_type: json format: custom path: /workspace/input_data/91c8fbf3b2faa749_train_data.json type: field_input: ingredients field_instruction: title field_output: steps format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: cilooor/39865643-c496-48ac-9f51-b9fc0f62f447 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 2.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine lr_scheduler_warmup_steps: 10 max_grad_norm: 0.5 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 4 mlflow_experiment_name: /tmp/91c8fbf3b2faa749_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.999 adam_epsilon: 1e-8 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 250 saves_per_epoch: null seed: 42 sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer total_train_batch_size: 16 train_batch_size: 8 train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 01617280-a23f-4c01-a9d7-f64d9905e269 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 01617280-a23f-4c01-a9d7-f64d9905e269 warmup_steps: 10 weight_decay: 0.01 xformers_attention: null ``` </details><br> # 39865643-c496-48ac-9f51-b9fc0f62f447 This model is a fine-tuned version of [unsloth/Llama-3.1-Storm-8B](https://huggingface.co/unsloth/Llama-3.1-Storm-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.999,adam_epsilon=1e-8 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.8105 | 0.0006 | 1 | nan | | 0.0 | 0.0312 | 50 | nan | | 0.0 | 0.0624 | 100 | nan | | 0.0 | 0.0935 | 150 | nan | | 0.0 | 0.1247 | 200 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Lauther/emb-cde-small-v2-3e
Lauther
2025-01-30T04:29:11Z
5
0
sentence-transformers
[ "sentence-transformers", "safetensors", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:5220", "loss:CosineSimilarityLoss", "custom_code", "dataset:Lauther/embeddings-train-semantic", "arxiv:1908.10084", "base_model:jxm/cde-small-v2", "base_model:finetune:jxm/cde-small-v2", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-01-30T04:27:26Z
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:5220 - loss:CosineSimilarityLoss base_model: jxm/cde-small-v2 widget: - source_sentence: Identify the column that stores the uncertainty value. sentences: - "What is measuring equipment?\nMeasuring equipment refers to the devices that\ \ make up a measurement system. Each piece of equipment has:\n- A unique serial\ \ number for identification.\n- A technical name, such as transmitter, plate,\ \ thermometer, etc.\n\nHow is equipment assigned to a measurement system?\nWhen\ \ equipment is assigned to a measurement system, it is given a unique identifier\ \ called an \"\"Equipment Tag.\"\"\n- If a piece of equipment has a tag, it is\ \ considered in use in a measurement system.\n- If it does not have a tag, it\ \ is considered spare or unused\n\nEquipment assignment based on technology:\n\ The type of equipment assigned to a measurement system depends on the technology\ \ used, for example:\n1. Differential technology (for gas measurement):\n -\ \ Static pressure transmitters\n - Differential pressure transmitters\n \ \ - Temperature transmitters\n - RTDs (thermometers)\n - Orifice plates\n\ \ - Straight stretch\n\n2. Linear technology (for gas measurement):\n -\ \ Temperature transmitters\n - RTDs\n - Static pressure transmitters\n \ \ - Ultrasonic meters\n\nRelationship between equipment and measurement systems:\n\ - A measurement system can have multiple pieces of equipment.\n- However, a piece\ \ of equipment can only be assigned to one measurement system.\n\nDatabase management:\n\ - The database includes a special table to manage the list of equipment assigned\ \ to measurement systems.\n- When a user refers to an \"\"Equipment Tag\"\", they\ \ are searching for operational equipment assigned to a measurement system.\n\ - If a user is looking for spare or unused equipment, they are searching for equipment\ \ not listed in the tagged equipment table.\n- Commonly used when user refers\ \ directly to an \"\"Equipment Tag\"" - 'What is equipment calibration? Calibration is a metrological verification process used to ensure the accuracy of measurement equipment. It is performed periodically, based on intervals set by the company or a regulatory body. Purpose of calibration: The calibration process corrects any deviations in how the equipment measures physical magnitudes (variables). This ensures the equipment provides accurate and reliable data. Calibration cycles: There are two main calibration cycles: 1. As-found: Represents the equipment''s measurement accuracy before any adjustments are made. This cycle is almost always implemented. 2. As-left: Represents the equipment''s measurement accuracy after adjustments are made. This cycle is used depending on regulatory requirements. Calibration uncertainty: - Uncertainty is included in the results of a calibration. - Calibration uncertainty refers to the margin of error in the device''s measurements, which also affects the uncertainty of the measured variable or magnitude.' - 'What kind of data store an equipment? Equipments can capture meteorological data, such as pressure, temperature, and volume (magnitudes). This data is essential for users to perform various calculations. Data storage: - The measured values are stored in a special table in the database for magnitudes. This table contains the values of the variables captured by the equipments. - These values are **direct measurements** from the fluid (e.g., raw pressure, temperature, or volume readings). **They are not calculated values**, such as uncertainty. - The values stored in the variable values table are **different** from variable uncertainty values, which are calculated separately and represent the margin of error. Accessing the data: - Users typically access the data by referring to the readings from the measurement system, not directly from the individual equipments. - The readings are stored in a "variable values" table within the database. Linking variable names: If the user needs to know the name of a variable, they must link the data to another table that stores information about the types of variables.' - source_sentence: SELECT * FROM EquipmentType LIMIT 1 sentences: - 'What kind of data store an equipment? Equipments can capture meteorological data, such as pressure, temperature, and volume (magnitudes). This data is essential for users to perform various calculations. Data storage: - The measured values are stored in a special table in the database for magnitudes. This table contains the values of the variables captured by the equipments. - These values are **direct measurements** from the fluid (e.g., raw pressure, temperature, or volume readings). **They are not calculated values**, such as uncertainty. - The values stored in the variable values table are **different** from variable uncertainty values, which are calculated separately and represent the margin of error. Accessing the data: - Users typically access the data by referring to the readings from the measurement system, not directly from the individual equipments. - The readings are stored in a "variable values" table within the database. Linking variable names: If the user needs to know the name of a variable, they must link the data to another table that stores information about the types of variables.' - "How does a flow computer generate and store reports?\nA flow computer generates\ \ daily or hourly reports to provide users with operational data. These reports\ \ are stored in the flow computer's memory in an organized format.\n\nReport structure:\n\ - Each report includes:\n- Date and time of the data recording.\n- Data recorded\ \ from flow computers.\n\nData storage in tables:\nThe reports are saved in two\ \ tables:\n1. Main table (Index):\n - Stores the date, time, and flow computer\ \ identifier.\n2. Detail table:\n - Stores the measured values associated with\ \ the report.\n\nConnection to the Modbus table:\nThe flow computer's reports\ \ are linked to a Modbus table. This table contains the names corresponding to\ \ each value in the reports, making it easier to interpret the data." - 'What is a flow computer? A flow computer is a device used in measurement engineering. It collects analog and digital data from flow meters and other sensors. Key features of a flow computer: - It has a unique name, firmware version, and manufacturer information. - It is designed to record and process data such as temperature, pressure, and fluid volume (for gases or oils). Main function: The flow computer sends the collected data to a measurement system. This allows measurement engineers to analyze the data and perform their tasks effectively.' - source_sentence: What tables store measurement system data? sentences: - "What is uncertainty?\nUncertainty is a measure of confidence in the precision\ \ and reliability of results obtained from equipment or measurement systems. It\ \ quantifies the potential error or margin of error in measurements.\n\nTypes\ \ of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of\ \ magnitudes (variables):\n - Refers to the uncertainty of specific variables,\ \ such as temperature or pressure.\n - It is calculated after calibrating a\ \ device or obtained from the equipment manufacturer's manual.\n - This uncertainty\ \ serves as a starting point for further calculations related to the equipment.\n\ \n2. Uncertainty of the measurement system:\n - Refers to the uncertainty calculated\ \ for the overall flow measurement.\n - It depends on the uncertainties of\ \ the individual variables (magnitudes) and represents the combined margin of\ \ error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes\ \ (variables) are the foundation for calculating the uncertainty of the measurement\ \ system. Think of them as the \"building blocks.\"\n- Do not confuse the two\ \ types of uncertainty:\n - **Uncertainty of magnitudes/variables**: Specific\ \ to individual variables (e.g., temperature, pressure).\n - **Uncertainty\ \ of the measurement system**: Specific to the overall flow measurement.\n\nDatabase\ \ storage for uncertainties:\nIn the database, uncertainty calculations are stored\ \ in two separate tables:\n1. Uncertainty of magnitudes (variables):\n - Stores\ \ the uncertainty values for specific variables (e.g., temperature, pressure).\n\ \n2. Uncertainty of the measurement system:\n - Stores the uncertainty values\ \ for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n\ - To find the uncertainty of the measurement system, join the measurement systems\ \ table with the uncertainty of the measurement system table.\n- To find the uncertainty\ \ of a specific variable (magnitude), join the measurement systems table with\ \ the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not\ \ confuse the two types of uncertainty:\n- If the user requests the uncertainty\ \ of the measurement system, use the first join (measurement systems table + uncertainty\ \ of the measurement system table).\n- If the user requests the uncertainty of\ \ a specific variable (magnitude) in a report, use the second join (measurement\ \ systems table + uncertainty of magnitudes table)." - "What is a measurement system?\nA measurement system, also referred to as a delivery\ \ point, measurement point, or reception point, is used to measure and monitor\ \ fluids in industrial processes.\n\nKey characteristics of a measurement system:\n\ 1. Measurement technology:\n - Differential: Used for precise measurements.\n\ \ - Linear: Used for straightforward measurements.\n\n2. System identifier\ \ (TAG):\n - A unique identifier for the system.\n\n3. Fluid type:\n - The\ \ system can measure gases, oils, condensates, water, steam, or other fluids.\n\ 4. System type:\n - Specifies the category or purpose of the system.\n\nMeasurement\ \ technology by fluid type:\n- Gas measurement systems: Use both linear and differential\ \ measurement technologies.\n- Oil measurement systems: Do not use linear or differential\ \ technologies; they are programmed differently.\"\n\n\nClassification of measurement\ \ systems:\nMeasurement systems are classified based on the stage of the process\ \ in which they are used. Common classifications include:\n- Fiscal\n- Operational\n\ - Appropriation\n- Custody\n- Production Poços" - 'What do measurement equipment measure? Each equipment measures a physical magnitude, also known as a variable. Based on the type of variable they measure, devices are classified into different categories. Equipment classification: - Primary meter: Assigned by default to equipments like orifice plates. - Secondary meter: Assigned by default to equipments like transmitters. - Tertiary meter: Used for other types of equipments. Equipment types in the database: The database includes a table listing all equipment types. Examples of equipment types are: - Differential pressure transmitters - RTDs (Resistance Temperature Detectors) - Orifice plates - Multivariable transmitters - Ultrasonic meters Meteorological checks for equipments: Each equipment type is assigned a meteorological check, which can be either: - Calibration: To ensure measurement accuracy. - Inspection: To verify proper functioning. Data storage in tables: The database also includes a separate table for equipment classifications, which are: - Primary meter - Secondary meter - Tertiary meter So, an equipment has equipment types and this types has classifications.' - source_sentence: What is the table structure for equipment types? sentences: - "How does a flow computer generate and store reports?\nA flow computer generates\ \ daily or hourly reports to provide users with operational data. These reports\ \ are stored in the flow computer's memory in an organized format.\n\nReport structure:\n\ - Each report includes:\n- Date and time of the data recording.\n- Data recorded\ \ from flow computers.\n\nData storage in tables:\nThe reports are saved in two\ \ tables:\n1. Main table (Index):\n - Stores the date, time, and flow computer\ \ identifier.\n2. Detail table:\n - Stores the measured values associated with\ \ the report.\n\nConnection to the Modbus table:\nThe flow computer's reports\ \ are linked to a Modbus table. This table contains the names corresponding to\ \ each value in the reports, making it easier to interpret the data." - "What is measuring equipment?\nMeasuring equipment refers to the devices that\ \ make up a measurement system. Each piece of equipment has:\n- A unique serial\ \ number for identification.\n- A technical name, such as transmitter, plate,\ \ thermometer, etc.\n\nHow is equipment assigned to a measurement system?\nWhen\ \ equipment is assigned to a measurement system, it is given a unique identifier\ \ called an \"\"Equipment Tag.\"\"\n- If a piece of equipment has a tag, it is\ \ considered in use in a measurement system.\n- If it does not have a tag, it\ \ is considered spare or unused\n\nEquipment assignment based on technology:\n\ The type of equipment assigned to a measurement system depends on the technology\ \ used, for example:\n1. Differential technology (for gas measurement):\n -\ \ Static pressure transmitters\n - Differential pressure transmitters\n \ \ - Temperature transmitters\n - RTDs (thermometers)\n - Orifice plates\n\ \ - Straight stretch\n\n2. Linear technology (for gas measurement):\n -\ \ Temperature transmitters\n - RTDs\n - Static pressure transmitters\n \ \ - Ultrasonic meters\n\nRelationship between equipment and measurement systems:\n\ - A measurement system can have multiple pieces of equipment.\n- However, a piece\ \ of equipment can only be assigned to one measurement system.\n\nDatabase management:\n\ - The database includes a special table to manage the list of equipment assigned\ \ to measurement systems.\n- When a user refers to an \"\"Equipment Tag\"\", they\ \ are searching for operational equipment assigned to a measurement system.\n\ - If a user is looking for spare or unused equipment, they are searching for equipment\ \ not listed in the tagged equipment table.\n- Commonly used when user refers\ \ directly to an \"\"Equipment Tag\"" - "What is uncertainty?\nUncertainty is a measure of confidence in the precision\ \ and reliability of results obtained from equipment or measurement systems. It\ \ quantifies the potential error or margin of error in measurements.\n\nTypes\ \ of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of\ \ magnitudes (variables):\n - Refers to the uncertainty of specific variables,\ \ such as temperature or pressure.\n - It is calculated after calibrating a\ \ device or obtained from the equipment manufacturer's manual.\n - This uncertainty\ \ serves as a starting point for further calculations related to the equipment.\n\ \n2. Uncertainty of the measurement system:\n - Refers to the uncertainty calculated\ \ for the overall flow measurement.\n - It depends on the uncertainties of\ \ the individual variables (magnitudes) and represents the combined margin of\ \ error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes\ \ (variables) are the foundation for calculating the uncertainty of the measurement\ \ system. Think of them as the \"building blocks.\"\n- Do not confuse the two\ \ types of uncertainty:\n - **Uncertainty of magnitudes/variables**: Specific\ \ to individual variables (e.g., temperature, pressure).\n - **Uncertainty\ \ of the measurement system**: Specific to the overall flow measurement.\n\nDatabase\ \ storage for uncertainties:\nIn the database, uncertainty calculations are stored\ \ in two separate tables:\n1. Uncertainty of magnitudes (variables):\n - Stores\ \ the uncertainty values for specific variables (e.g., temperature, pressure).\n\ \n2. Uncertainty of the measurement system:\n - Stores the uncertainty values\ \ for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n\ - To find the uncertainty of the measurement system, join the measurement systems\ \ table with the uncertainty of the measurement system table.\n- To find the uncertainty\ \ of a specific variable (magnitude), join the measurement systems table with\ \ the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not\ \ confuse the two types of uncertainty:\n- If the user requests the uncertainty\ \ of the measurement system, use the first join (measurement systems table + uncertainty\ \ of the measurement system table).\n- If the user requests the uncertainty of\ \ a specific variable (magnitude) in a report, use the second join (measurement\ \ systems table + uncertainty of magnitudes table)." - source_sentence: What columns store the uncertainty values? sentences: - "What is a measurement system?\nA measurement system, also referred to as a delivery\ \ point, measurement point, or reception point, is used to measure and monitor\ \ fluids in industrial processes.\n\nKey characteristics of a measurement system:\n\ 1. Measurement technology:\n - Differential: Used for precise measurements.\n\ \ - Linear: Used for straightforward measurements.\n\n2. System identifier\ \ (TAG):\n - A unique identifier for the system.\n\n3. Fluid type:\n - The\ \ system can measure gases, oils, condensates, water, steam, or other fluids.\n\ 4. System type:\n - Specifies the category or purpose of the system.\n\nMeasurement\ \ technology by fluid type:\n- Gas measurement systems: Use both linear and differential\ \ measurement technologies.\n- Oil measurement systems: Do not use linear or differential\ \ technologies; they are programmed differently.\"\n\n\nClassification of measurement\ \ systems:\nMeasurement systems are classified based on the stage of the process\ \ in which they are used. Common classifications include:\n- Fiscal\n- Operational\n\ - Appropriation\n- Custody\n- Production Poços" - 'How are flow computers and measurement systems related? Flow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer. Database terminology: In the database, this relationship is referred to as: - Meter streams - Meter runs - Sections Storage of the relationship: The relationship between a flow computer and its assigned measurement system is stored in a special table. User context: When a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.' - "What is uncertainty?\nUncertainty is a measure of confidence in the precision\ \ and reliability of results obtained from equipment or measurement systems. It\ \ quantifies the potential error or margin of error in measurements.\n\nTypes\ \ of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of\ \ magnitudes (variables):\n - Refers to the uncertainty of specific variables,\ \ such as temperature or pressure.\n - It is calculated after calibrating a\ \ device or obtained from the equipment manufacturer's manual.\n - This uncertainty\ \ serves as a starting point for further calculations related to the equipment.\n\ \n2. Uncertainty of the measurement system:\n - Refers to the uncertainty calculated\ \ for the overall flow measurement.\n - It depends on the uncertainties of\ \ the individual variables (magnitudes) and represents the combined margin of\ \ error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes\ \ (variables) are the foundation for calculating the uncertainty of the measurement\ \ system. Think of them as the \"building blocks.\"\n- Do not confuse the two\ \ types of uncertainty:\n - **Uncertainty of magnitudes/variables**: Specific\ \ to individual variables (e.g., temperature, pressure).\n - **Uncertainty\ \ of the measurement system**: Specific to the overall flow measurement.\n\nDatabase\ \ storage for uncertainties:\nIn the database, uncertainty calculations are stored\ \ in two separate tables:\n1. Uncertainty of magnitudes (variables):\n - Stores\ \ the uncertainty values for specific variables (e.g., temperature, pressure).\n\ \n2. Uncertainty of the measurement system:\n - Stores the uncertainty values\ \ for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n\ - To find the uncertainty of the measurement system, join the measurement systems\ \ table with the uncertainty of the measurement system table.\n- To find the uncertainty\ \ of a specific variable (magnitude), join the measurement systems table with\ \ the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not\ \ confuse the two types of uncertainty:\n- If the user requests the uncertainty\ \ of the measurement system, use the first join (measurement systems table + uncertainty\ \ of the measurement system table).\n- If the user requests the uncertainty of\ \ a specific variable (magnitude) in a report, use the second join (measurement\ \ systems table + uncertainty of magnitudes table)." datasets: - Lauther/embeddings-train-semantic pipeline_tag: sentence-similarity library_name: sentence-transformers --- # SentenceTransformer based on jxm/cde-small-v2 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [jxm/cde-small-v2](https://huggingface.co/jxm/cde-small-v2) on the [embeddings-train-semantic](https://huggingface.co/datasets/Lauther/embeddings-train-semantic) dataset. It maps sentences & paragraphs to a None-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [jxm/cde-small-v2](https://huggingface.co/jxm/cde-small-v2) <!-- at revision a7e5882ad52c27ea2831fc8258f24379c25cb459 --> - **Maximum Sequence Length:** None tokens - **Output Dimensionality:** None dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - [embeddings-train-semantic](https://huggingface.co/datasets/Lauther/embeddings-train-semantic) <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({}) with Transformer model: ContextualDocumentEmbeddingTransformer ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("Lauther/emb-cde-small-v2-3e") # Run inference sentences = [ 'What columns store the uncertainty values?', 'How are flow computers and measurement systems related?\nFlow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer.\n\nDatabase terminology:\nIn the database, this relationship is referred to as:\n- Meter streams\n- Meter runs\n- Sections\n\nStorage of the relationship:\nThe relationship between a flow computer and its assigned measurement system is stored in a special table.\n\nUser context:\nWhen a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.', 'What is uncertainty?\nUncertainty is a measure of confidence in the precision and reliability of results obtained from equipment or measurement systems. It quantifies the potential error or margin of error in measurements.\n\nTypes of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of magnitudes (variables):\n - Refers to the uncertainty of specific variables, such as temperature or pressure.\n - It is calculated after calibrating a device or obtained from the equipment manufacturer\'s manual.\n - This uncertainty serves as a starting point for further calculations related to the equipment.\n\n2. Uncertainty of the measurement system:\n - Refers to the uncertainty calculated for the overall flow measurement.\n - It depends on the uncertainties of the individual variables (magnitudes) and represents the combined margin of error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes (variables) are the foundation for calculating the uncertainty of the measurement system. Think of them as the "building blocks."\n- Do not confuse the two types of uncertainty:\n - **Uncertainty of magnitudes/variables**: Specific to individual variables (e.g., temperature, pressure).\n - **Uncertainty of the measurement system**: Specific to the overall flow measurement.\n\nDatabase storage for uncertainties:\nIn the database, uncertainty calculations are stored in two separate tables:\n1. Uncertainty of magnitudes (variables):\n - Stores the uncertainty values for specific variables (e.g., temperature, pressure).\n\n2. Uncertainty of the measurement system:\n - Stores the uncertainty values for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n- To find the uncertainty of the measurement system, join the measurement systems table with the uncertainty of the measurement system table.\n- To find the uncertainty of a specific variable (magnitude), join the measurement systems table with the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not confuse the two types of uncertainty:\n- If the user requests the uncertainty of the measurement system, use the first join (measurement systems table + uncertainty of the measurement system table).\n- If the user requests the uncertainty of a specific variable (magnitude) in a report, use the second join (measurement systems table + uncertainty of magnitudes table).', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### embeddings-train-semantic * Dataset: [embeddings-train-semantic](https://huggingface.co/datasets/Lauther/embeddings-train-semantic) at [ce90f53](https://huggingface.co/datasets/Lauther/embeddings-train-semantic/tree/ce90f531bc39037053d223b27868ad178852f330) * Size: 5,220 training samples * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | <ul><li>min: 6 tokens</li><li>mean: 14.88 tokens</li><li>max: 77 tokens</li></ul> | <ul><li>min: 114 tokens</li><li>mean: 244.02 tokens</li><li>max: 489 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.23</li><li>max: 1.0</li></ul> | * Samples: | sentence1 | sentence2 | score | |:------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------| | <code>What is the data type of differential pressure in the measurement system?</code> | <code>What is uncertainty?<br>Uncertainty is a measure of confidence in the precision and reliability of results obtained from equipment or measurement systems. It quantifies the potential error or margin of error in measurements.<br><br>Types of uncertainty:<br>There are two main types of uncertainty:<br>1. Uncertainty of magnitudes (variables):<br> - Refers to the uncertainty of specific variables, such as temperature or pressure.<br> - It is calculated after calibrating a device or obtained from the equipment manufacturer's manual.<br> - This uncertainty serves as a starting point for further calculations related to the equipment.<br><br>2. Uncertainty of the measurement system:<br> - Refers to the uncertainty calculated for the overall flow measurement.<br> - It depends on the uncertainties of the individual variables (magnitudes) and represents the combined margin of error for the entire system.<br><br>Key points:<br>- The uncertainties of magnitudes (variables) are the foundation for calculating the uncertainty of ...</code> | <code>0.15000000000000002</code> | | <code>What is the structure of the &&&equipment_data&&& table?</code> | <code>How are flow computers and measurement systems related?<br>Flow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer.<br><br>Database terminology:<br>In the database, this relationship is referred to as:<br>- Meter streams<br>- Meter runs<br>- Sections<br><br>Storage of the relationship:<br>The relationship between a flow computer and its assigned measurement system is stored in a special table.<br><br>User context:<br>When a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.</code> | <code>0.35000000000000003</code> | | <code>Find the columns in the flow computer table that identify the flow computer.</code> | <code>What kind of data store an equipment?<br>Equipments can capture meteorological data, such as pressure, temperature, and volume (magnitudes). This data is essential for users to perform various calculations.<br><br>Data storage:<br>- The measured values are stored in a special table in the database for magnitudes. This table contains the values of the variables captured by the equipments.<br>- These values are **direct measurements** from the fluid (e.g., raw pressure, temperature, or volume readings). **They are not calculated values**, such as uncertainty.<br>- The values stored in the variable values table are **different** from variable uncertainty values, which are calculated separately and represent the margin of error.<br><br>Accessing the data:<br>- Users typically access the data by referring to the readings from the measurement system, not directly from the individual equipments.<br>- The readings are stored in a "variable values" table within the database.<br><br>Linking variable names:<br>If the user needs to kno...</code> | <code>0.1</code> | * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: ```json { "loss_fct": "torch.nn.modules.loss.MSELoss" } ``` ### Evaluation Dataset #### embeddings-train-semantic * Dataset: [embeddings-train-semantic](https://huggingface.co/datasets/Lauther/embeddings-train-semantic) at [ce90f53](https://huggingface.co/datasets/Lauther/embeddings-train-semantic/tree/ce90f531bc39037053d223b27868ad178852f330) * Size: 652 evaluation samples * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> * Approximate statistics based on the first 652 samples: | | sentence1 | sentence2 | score | |:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | <ul><li>min: 6 tokens</li><li>mean: 14.48 tokens</li><li>max: 77 tokens</li></ul> | <ul><li>min: 114 tokens</li><li>mean: 241.25 tokens</li><li>max: 489 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.24</li><li>max: 0.9</li></ul> | * Samples: | sentence1 | sentence2 | score | |:-------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------| | <code>How can I filter uncertainty reports by equipment tag?</code> | <code>How does a flow computer generate and store reports?<br>A flow computer generates daily or hourly reports to provide users with operational data. These reports are stored in the flow computer's memory in an organized format.<br><br>Report structure:<br>- Each report includes:<br>- Date and time of the data recording.<br>- Data recorded from flow computers.<br><br>Data storage in tables:<br>The reports are saved in two tables:<br>1. Main table (Index):<br> - Stores the date, time, and flow computer identifier.<br>2. Detail table:<br> - Stores the measured values associated with the report.<br><br>Connection to the Modbus table:<br>The flow computer's reports are linked to a Modbus table. This table contains the names corresponding to each value in the reports, making it easier to interpret the data.</code> | <code>0.09999999999999999</code> | | <code>What is the purpose of the flow_data table?</code> | <code>What is uncertainty?<br>Uncertainty is a measure of confidence in the precision and reliability of results obtained from equipment or measurement systems. It quantifies the potential error or margin of error in measurements.<br><br>Types of uncertainty:<br>There are two main types of uncertainty:<br>1. Uncertainty of magnitudes (variables):<br> - Refers to the uncertainty of specific variables, such as temperature or pressure.<br> - It is calculated after calibrating a device or obtained from the equipment manufacturer's manual.<br> - This uncertainty serves as a starting point for further calculations related to the equipment.<br><br>2. Uncertainty of the measurement system:<br> - Refers to the uncertainty calculated for the overall flow measurement.<br> - It depends on the uncertainties of the individual variables (magnitudes) and represents the combined margin of error for the entire system.<br><br>Key points:<br>- The uncertainties of magnitudes (variables) are the foundation for calculating the uncertainty of ...</code> | <code>0.15000000000000002</code> | | <code>What is the column name for the report date in the Reports table?</code> | <code>What is equipment calibration?<br>Calibration is a metrological verification process used to ensure the accuracy of measurement equipment. It is performed periodically, based on intervals set by the company or a regulatory body.<br><br>Purpose of calibration:<br>The calibration process corrects any deviations in how the equipment measures physical magnitudes (variables). This ensures the equipment provides accurate and reliable data.<br><br>Calibration cycles:<br>There are two main calibration cycles:<br>1. As-found: Represents the equipment's measurement accuracy before any adjustments are made. This cycle is almost always implemented.<br>2. As-left: Represents the equipment's measurement accuracy after adjustments are made. This cycle is used depending on regulatory requirements.<br><br>Calibration uncertainty:<br>- Uncertainty is included in the results of a calibration.<br>- Calibration uncertainty refers to the margin of error in the device's measurements, which also affects the uncertainty of the measured variable or ...</code> | <code>0.1</code> | * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: ```json { "loss_fct": "torch.nn.modules.loss.MSELoss" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 4 - `per_device_eval_batch_size`: 4 - `gradient_accumulation_steps`: 4 - `learning_rate`: 2e-05 - `warmup_ratio`: 0.1 #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 4 - `per_device_eval_batch_size`: 4 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 4 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 3 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0307 | 10 | 0.3228 | - | | 0.0613 | 20 | 0.1919 | - | | 0.0920 | 30 | 0.2414 | - | | 0.1226 | 40 | 0.1649 | - | | 0.1533 | 50 | 0.1554 | - | | 0.1839 | 60 | 0.1432 | - | | 0.2146 | 70 | 0.138 | - | | 0.2452 | 80 | 0.1656 | - | | 0.2759 | 90 | 0.1306 | - | | 0.3065 | 100 | 0.1396 | - | | 0.3372 | 110 | 0.0934 | - | | 0.3678 | 120 | 0.1263 | - | | 0.3985 | 130 | 0.1209 | - | | 0.4291 | 140 | 0.0839 | - | | 0.4598 | 150 | 0.1128 | 0.0260 | | 0.4904 | 160 | 0.0895 | - | | 0.5211 | 170 | 0.1226 | - | | 0.5517 | 180 | 0.086 | - | | 0.5824 | 190 | 0.0733 | - | | 0.6130 | 200 | 0.0827 | - | | 0.6437 | 210 | 0.0861 | - | | 0.6743 | 220 | 0.0774 | - | | 0.7050 | 230 | 0.0784 | - | | 0.7356 | 240 | 0.095 | - | | 0.7663 | 250 | 0.0793 | - | | 0.7969 | 260 | 0.0583 | - | | 0.8276 | 270 | 0.0571 | - | | 0.8582 | 280 | 0.0597 | - | | 0.8889 | 290 | 0.0742 | - | | 0.9195 | 300 | 0.0569 | 0.0177 | | 0.9502 | 310 | 0.0702 | - | | 0.9808 | 320 | 0.0642 | - | | 1.0092 | 330 | 0.0526 | - | | 1.0398 | 340 | 0.0604 | - | | 1.0705 | 350 | 0.0491 | - | | 1.1011 | 360 | 0.0598 | - | | 1.1318 | 370 | 0.0616 | - | | 1.1625 | 380 | 0.0557 | - | | 1.1931 | 390 | 0.0552 | - | | 1.2238 | 400 | 0.0474 | - | | 1.2544 | 410 | 0.0316 | - | | 1.2851 | 420 | 0.0555 | - | | 1.3157 | 430 | 0.0554 | - | | 1.3464 | 440 | 0.051 | - | | 1.3770 | 450 | 0.0578 | 0.0162 | | 1.4077 | 460 | 0.0461 | - | | 1.4383 | 470 | 0.0624 | - | | 1.4690 | 480 | 0.0505 | - | | 1.4996 | 490 | 0.0506 | - | | 1.5303 | 500 | 0.0608 | - | | 1.5609 | 510 | 0.0465 | - | | 1.5916 | 520 | 0.0326 | - | | 1.6222 | 530 | 0.0501 | - | | 1.6529 | 540 | 0.0419 | - | | 1.6835 | 550 | 0.0403 | - | | 1.7142 | 560 | 0.0315 | - | | 1.7448 | 570 | 0.0336 | - | | 1.7755 | 580 | 0.0427 | - | | 1.8061 | 590 | 0.053 | - | | 1.8368 | 600 | 0.0451 | 0.0144 | | 1.8674 | 610 | 0.0419 | - | | 1.8981 | 620 | 0.0382 | - | | 1.9287 | 630 | 0.0428 | - | | 1.9594 | 640 | 0.0335 | - | | 1.9900 | 650 | 0.0606 | - | | 2.0184 | 660 | 0.0317 | - | | 2.0490 | 670 | 0.0338 | - | | 2.0797 | 680 | 0.0256 | - | | 2.1103 | 690 | 0.0262 | - | | 2.1410 | 700 | 0.028 | - | | 2.1716 | 710 | 0.0229 | - | | 2.2023 | 720 | 0.0157 | - | | 2.2330 | 730 | 0.0367 | - | | 2.2636 | 740 | 0.0226 | - | | 2.2943 | 750 | 0.034 | 0.0128 | | 2.3249 | 760 | 0.0247 | - | | 2.3556 | 770 | 0.0251 | - | | 2.3862 | 780 | 0.0245 | - | | 2.4169 | 790 | 0.0249 | - | | 2.4475 | 800 | 0.0247 | - | | 2.4782 | 810 | 0.0266 | - | | 2.5088 | 820 | 0.0338 | - | | 2.5395 | 830 | 0.026 | - | | 2.5701 | 840 | 0.0304 | - | | 2.6008 | 850 | 0.0248 | - | | 2.6314 | 860 | 0.0347 | - | | 2.6621 | 870 | 0.0241 | - | | 2.6927 | 880 | 0.0204 | - | | 2.7234 | 890 | 0.0204 | - | | 2.7540 | 900 | 0.0147 | 0.0126 | | 2.7847 | 910 | 0.0266 | - | | 2.8153 | 920 | 0.0279 | - | | 2.8460 | 930 | 0.0159 | - | | 2.8766 | 940 | 0.0162 | - | | 2.9073 | 950 | 0.0315 | - | | 2.9379 | 960 | 0.0174 | - | | 2.9686 | 970 | 0.0244 | - | ### Framework Versions - Python: 3.11.0 - Sentence Transformers: 3.4.0 - Transformers: 4.48.1 - PyTorch: 2.5.1+cu124 - Accelerate: 1.3.0 - Datasets: 3.2.0 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
tensorwa/mgq01
tensorwa
2025-01-30T04:26:33Z
6
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-28T08:27:02Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mergekit-community/L3.1-Artemis-h-8B
mergekit-community
2025-01-30T04:22:48Z
33
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2403.19522", "base_model:Casual-Autopsy/L3-Umbral-Mind-RP-v3.0-8B", "base_model:merge:Casual-Autopsy/L3-Umbral-Mind-RP-v3.0-8B", "base_model:deepseek-ai/DeepSeek-R1-Distill-Llama-8B", "base_model:merge:deepseek-ai/DeepSeek-R1-Distill-Llama-8B", "base_model:kromvault/L3.1-Ablaze-Vulca-v0.1-8B", "base_model:merge:kromvault/L3.1-Ablaze-Vulca-v0.1-8B", "base_model:mergekit-community/L3-Boshima-a", "base_model:merge:mergekit-community/L3-Boshima-a", "base_model:mlabonne/NeuralDaredevil-8B-abliterated", "base_model:merge:mlabonne/NeuralDaredevil-8B-abliterated", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-30T04:17:24Z
--- base_model: - deepseek-ai/DeepSeek-R1-Distill-Llama-8B - mergekit-community/L3-Boshima-a - mlabonne/NeuralDaredevil-8B-abliterated - kromeurus/L3.1-Ablaze-Vulca-v0.1-8B - Casual-Autopsy/L3-Umbral-Mind-RP-v3.0-8B library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using [kromeurus/L3.1-Ablaze-Vulca-v0.1-8B](https://huggingface.co/kromeurus/L3.1-Ablaze-Vulca-v0.1-8B) as a base. ### Models Merged The following models were included in the merge: * [deepseek-ai/DeepSeek-R1-Distill-Llama-8B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B) * [mergekit-community/L3-Boshima-a](https://huggingface.co/mergekit-community/L3-Boshima-a) * [mlabonne/NeuralDaredevil-8B-abliterated](https://huggingface.co/mlabonne/NeuralDaredevil-8B-abliterated) * [Casual-Autopsy/L3-Umbral-Mind-RP-v3.0-8B](https://huggingface.co/Casual-Autopsy/L3-Umbral-Mind-RP-v3.0-8B) ### Configuration The following YAML configuration was used to produce this model: ```yaml dtype: float32 out_dtype: bfloat16 merge_method: model_stock base_model: kromeurus/L3.1-Ablaze-Vulca-v0.1-8B models: - model: deepseek-ai/DeepSeek-R1-Distill-Llama-8B parameters: weight: 1 - model: mergekit-community/L3-Boshima-a parameters: weight: 1 - model: mlabonne/NeuralDaredevil-8B-abliterated parameters: weight: 0.8 - model: Casual-Autopsy/L3-Umbral-Mind-RP-v3.0-8B parameters: weight: 0.8 - model: kromeurus/L3.1-Ablaze-Vulca-v0.1-8B parameters: weight: 0.6 parameters: normalize: true ```
alchemist69/6690e5a4-fdf8-499b-838d-b159414d8d63
alchemist69
2025-01-30T04:20:18Z
8
0
peft
[ "peft", "safetensors", "gemma", "axolotl", "generated_from_trainer", "base_model:unsloth/codegemma-2b", "base_model:adapter:unsloth/codegemma-2b", "license:apache-2.0", "region:us" ]
null
2025-01-30T04:06:14Z
--- library_name: peft license: apache-2.0 base_model: unsloth/codegemma-2b tags: - axolotl - generated_from_trainer model-index: - name: 6690e5a4-fdf8-499b-838d-b159414d8d63 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/codegemma-2b bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - 715878661d7cd8f6_train_data.json ds_type: json format: custom path: /workspace/input_data/715878661d7cd8f6_train_data.json type: field_instruction: question field_output: response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: alchemist69/6690e5a4-fdf8-499b-838d-b159414d8d63 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/715878661d7cd8f6_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 27bcc751-fc2b-4235-9629-3df0070473d7 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 27bcc751-fc2b-4235-9629-3df0070473d7 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 6690e5a4-fdf8-499b-838d-b159414d8d63 This model is a fine-tuned version of [unsloth/codegemma-2b](https://huggingface.co/unsloth/codegemma-2b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6573 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.934 | 0.0029 | 1 | 2.4863 | | 3.0923 | 0.1427 | 50 | 1.7766 | | 1.3505 | 0.2853 | 100 | 1.0516 | | 0.5032 | 0.4280 | 150 | 0.7334 | | 0.5741 | 0.5706 | 200 | 0.6573 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
roleplaiapp/Minerva-14b-V0.1-i1-IQ4_XS-GGUF
roleplaiapp
2025-01-30T04:19:32Z
5
0
transformers
[ "transformers", "gguf", "14b", "IQ4_XS", "iq4", "llama-cpp", "minerva", "text-generation", "v01", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
text-generation
2025-01-30T04:18:57Z
--- library_name: transformers pipeline_tag: text-generation tags: - 14b - IQ4_XS - gguf - iq4 - llama-cpp - minerva - text-generation - v01 --- # roleplaiapp/Minerva-14b-V0.1-i1-IQ4_XS-GGUF **Repo:** `roleplaiapp/Minerva-14b-V0.1-i1-IQ4_XS-GGUF` **Original Model:** `Minerva-14b-V0.1-i1` **Quantized File:** `Minerva-14b-V0.1.i1-IQ4_XS.gguf` **Quantization:** `GGUF` **Quantization Method:** `IQ4_XS` ## Overview This is a GGUF IQ4_XS quantized version of Minerva-14b-V0.1-i1 ## Quantization By I often have idle GPUs while building/testing for the RP app, so I put them to use quantizing models. I hope the community finds these quantizations useful. Andrew Webby @ [RolePlai](https://roleplai.app/).
daniel40/ab42ef83-2c97-436b-859b-3ccd08a68b18
daniel40
2025-01-30T04:19:23Z
7
0
peft
[ "peft", "safetensors", "gpt_neo", "axolotl", "generated_from_trainer", "base_model:EleutherAI/gpt-neo-1.3B", "base_model:adapter:EleutherAI/gpt-neo-1.3B", "license:mit", "region:us" ]
null
2025-01-30T04:08:16Z
--- library_name: peft license: mit base_model: EleutherAI/gpt-neo-1.3B tags: - axolotl - generated_from_trainer model-index: - name: ab42ef83-2c97-436b-859b-3ccd08a68b18 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/gpt-neo-1.3B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 9220f3ec5e9baf46_train_data.json ds_type: json format: custom path: /workspace/input_data/9220f3ec5e9baf46_train_data.json type: field_instruction: dialogue field_output: reference format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: daniel40/ab42ef83-2c97-436b-859b-3ccd08a68b18 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/9220f3ec5e9baf46_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b014ffbb-9de7-4765-9d8a-0bf229f9b0e3 wandb_project: Birthday-SN56-28-Gradients-On-Demand wandb_run: your_name wandb_runid: b014ffbb-9de7-4765-9d8a-0bf229f9b0e3 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # ab42ef83-2c97-436b-859b-3ccd08a68b18 This model is a fine-tuned version of [EleutherAI/gpt-neo-1.3B](https://huggingface.co/EleutherAI/gpt-neo-1.3B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5613 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | 1.6485 | | 6.3357 | 0.0011 | 13 | 1.6094 | | 6.6091 | 0.0022 | 26 | 1.5745 | | 6.0299 | 0.0033 | 39 | 1.5613 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
ajku2199/Llama-2-7b-hf_abstract_prob6_dataset2_n1000_seed7_epochs10_batch8_qlora
ajku2199
2025-01-30T04:16:46Z
8
0
peft
[ "peft", "safetensors", "region:us" ]
null
2025-01-10T06:32:38Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0 - PEFT 0.4.0
mrferr3t/75661d4b-a41b-4faa-ba01-a492bad28d27
mrferr3t
2025-01-30T04:15:56Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/Yarn-Llama-2-7b-128k", "base_model:adapter:NousResearch/Yarn-Llama-2-7b-128k", "region:us" ]
null
2025-01-30T02:38:45Z
--- library_name: peft base_model: NousResearch/Yarn-Llama-2-7b-128k tags: - axolotl - generated_from_trainer model-index: - name: 75661d4b-a41b-4faa-ba01-a492bad28d27 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Yarn-Llama-2-7b-128k bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 00748ae27c0f3538_train_data.json ds_type: json format: custom path: /workspace/input_data/00748ae27c0f3538_train_data.json type: field_input: context field_instruction: instruction field_output: response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: 30 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: mrferr3t/75661d4b-a41b-4faa-ba01-a492bad28d27 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0005 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 2 mlflow_experiment_name: /tmp/00748ae27c0f3538_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 300 saves_per_epoch: 0 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d55b15aa-62e7-4486-8bc4-33f1c5e10ec7 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: d55b15aa-62e7-4486-8bc4-33f1c5e10ec7 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 75661d4b-a41b-4faa-ba01-a492bad28d27 This model is a fine-tuned version of [NousResearch/Yarn-Llama-2-7b-128k](https://huggingface.co/NousResearch/Yarn-Llama-2-7b-128k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3377 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 7.0344 | 0.0006 | 1 | 1.6728 | | 7.8571 | 0.0171 | 30 | 1.3879 | | 6.0655 | 0.0341 | 60 | 1.3566 | | 4.6908 | 0.0512 | 90 | 1.3377 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1
NikIman1/companio_test
NikIman1
2025-01-30T04:14:40Z
14
0
transformers
[ "transformers", "safetensors", "granite", "text-generation", "trl", "sft", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-01-30T04:11:07Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/Lion-Lamarck-v.1.0.8-i1-GGUF
mradermacher
2025-01-30T04:11:09Z
534
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:nlpguy/Lion-Lamarck-v.1.0.8", "base_model:quantized:nlpguy/Lion-Lamarck-v.1.0.8", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-01-29T19:39:16Z
--- base_model: nlpguy/Lion-Lamarck-v.1.0.8 language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/nlpguy/Lion-Lamarck-v.1.0.8 <!-- provided-files --> ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Lion-Lamarck-v.1.0.8-i1-GGUF/resolve/main/Lion-Lamarck-v.1.0.8.i1-IQ1_S.gguf) | i1-IQ1_S | 3.7 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Lion-Lamarck-v.1.0.8-i1-GGUF/resolve/main/Lion-Lamarck-v.1.0.8.i1-IQ1_M.gguf) | i1-IQ1_M | 4.0 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Lion-Lamarck-v.1.0.8-i1-GGUF/resolve/main/Lion-Lamarck-v.1.0.8.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Lion-Lamarck-v.1.0.8-i1-GGUF/resolve/main/Lion-Lamarck-v.1.0.8.i1-IQ2_XS.gguf) | i1-IQ2_XS | 4.8 | | | [GGUF](https://huggingface.co/mradermacher/Lion-Lamarck-v.1.0.8-i1-GGUF/resolve/main/Lion-Lamarck-v.1.0.8.i1-IQ2_S.gguf) | i1-IQ2_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/Lion-Lamarck-v.1.0.8-i1-GGUF/resolve/main/Lion-Lamarck-v.1.0.8.i1-IQ2_M.gguf) | i1-IQ2_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/Lion-Lamarck-v.1.0.8-i1-GGUF/resolve/main/Lion-Lamarck-v.1.0.8.i1-Q2_K_S.gguf) | i1-Q2_K_S | 5.5 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Lion-Lamarck-v.1.0.8-i1-GGUF/resolve/main/Lion-Lamarck-v.1.0.8.i1-Q2_K.gguf) | i1-Q2_K | 5.9 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Lion-Lamarck-v.1.0.8-i1-GGUF/resolve/main/Lion-Lamarck-v.1.0.8.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 6.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Lion-Lamarck-v.1.0.8-i1-GGUF/resolve/main/Lion-Lamarck-v.1.0.8.i1-IQ3_XS.gguf) | i1-IQ3_XS | 6.5 | | | [GGUF](https://huggingface.co/mradermacher/Lion-Lamarck-v.1.0.8-i1-GGUF/resolve/main/Lion-Lamarck-v.1.0.8.i1-Q3_K_S.gguf) | i1-Q3_K_S | 6.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Lion-Lamarck-v.1.0.8-i1-GGUF/resolve/main/Lion-Lamarck-v.1.0.8.i1-IQ3_S.gguf) | i1-IQ3_S | 6.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Lion-Lamarck-v.1.0.8-i1-GGUF/resolve/main/Lion-Lamarck-v.1.0.8.i1-IQ3_M.gguf) | i1-IQ3_M | 7.0 | | | [GGUF](https://huggingface.co/mradermacher/Lion-Lamarck-v.1.0.8-i1-GGUF/resolve/main/Lion-Lamarck-v.1.0.8.i1-Q3_K_M.gguf) | i1-Q3_K_M | 7.4 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Lion-Lamarck-v.1.0.8-i1-GGUF/resolve/main/Lion-Lamarck-v.1.0.8.i1-Q3_K_L.gguf) | i1-Q3_K_L | 8.0 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Lion-Lamarck-v.1.0.8-i1-GGUF/resolve/main/Lion-Lamarck-v.1.0.8.i1-IQ4_XS.gguf) | i1-IQ4_XS | 8.2 | | | [GGUF](https://huggingface.co/mradermacher/Lion-Lamarck-v.1.0.8-i1-GGUF/resolve/main/Lion-Lamarck-v.1.0.8.i1-Q4_0.gguf) | i1-Q4_0 | 8.6 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Lion-Lamarck-v.1.0.8-i1-GGUF/resolve/main/Lion-Lamarck-v.1.0.8.i1-IQ4_NL.gguf) | i1-IQ4_NL | 8.6 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Lion-Lamarck-v.1.0.8-i1-GGUF/resolve/main/Lion-Lamarck-v.1.0.8.i1-Q4_K_S.gguf) | i1-Q4_K_S | 8.7 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Lion-Lamarck-v.1.0.8-i1-GGUF/resolve/main/Lion-Lamarck-v.1.0.8.i1-Q4_K_M.gguf) | i1-Q4_K_M | 9.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Lion-Lamarck-v.1.0.8-i1-GGUF/resolve/main/Lion-Lamarck-v.1.0.8.i1-Q4_1.gguf) | i1-Q4_1 | 9.5 | | | [GGUF](https://huggingface.co/mradermacher/Lion-Lamarck-v.1.0.8-i1-GGUF/resolve/main/Lion-Lamarck-v.1.0.8.i1-Q5_K_S.gguf) | i1-Q5_K_S | 10.4 | | | [GGUF](https://huggingface.co/mradermacher/Lion-Lamarck-v.1.0.8-i1-GGUF/resolve/main/Lion-Lamarck-v.1.0.8.i1-Q5_K_M.gguf) | i1-Q5_K_M | 10.6 | | | [GGUF](https://huggingface.co/mradermacher/Lion-Lamarck-v.1.0.8-i1-GGUF/resolve/main/Lion-Lamarck-v.1.0.8.i1-Q6_K.gguf) | i1-Q6_K | 12.2 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/Re-ultiima-14B-GGUF
mradermacher
2025-01-30T04:07:49Z
261
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "ch", "base_model:TeamDelta/Re-ultiima-14B", "base_model:quantized:TeamDelta/Re-ultiima-14B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-29T23:55:38Z
--- base_model: TeamDelta/Re-ultiima-14B language: - en - ch library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> static quants of https://huggingface.co/TeamDelta/Re-ultiima-14B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Re-ultiima-14B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Re-ultiima-14B-GGUF/resolve/main/Re-ultiima-14B.Q2_K.gguf) | Q2_K | 5.9 | | | [GGUF](https://huggingface.co/mradermacher/Re-ultiima-14B-GGUF/resolve/main/Re-ultiima-14B.Q3_K_S.gguf) | Q3_K_S | 6.8 | | | [GGUF](https://huggingface.co/mradermacher/Re-ultiima-14B-GGUF/resolve/main/Re-ultiima-14B.Q3_K_M.gguf) | Q3_K_M | 7.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Re-ultiima-14B-GGUF/resolve/main/Re-ultiima-14B.Q3_K_L.gguf) | Q3_K_L | 8.0 | | | [GGUF](https://huggingface.co/mradermacher/Re-ultiima-14B-GGUF/resolve/main/Re-ultiima-14B.IQ4_XS.gguf) | IQ4_XS | 8.3 | | | [GGUF](https://huggingface.co/mradermacher/Re-ultiima-14B-GGUF/resolve/main/Re-ultiima-14B.Q4_K_S.gguf) | Q4_K_S | 8.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Re-ultiima-14B-GGUF/resolve/main/Re-ultiima-14B.Q4_K_M.gguf) | Q4_K_M | 9.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Re-ultiima-14B-GGUF/resolve/main/Re-ultiima-14B.Q5_K_S.gguf) | Q5_K_S | 10.4 | | | [GGUF](https://huggingface.co/mradermacher/Re-ultiima-14B-GGUF/resolve/main/Re-ultiima-14B.Q5_K_M.gguf) | Q5_K_M | 10.6 | | | [GGUF](https://huggingface.co/mradermacher/Re-ultiima-14B-GGUF/resolve/main/Re-ultiima-14B.Q6_K.gguf) | Q6_K | 12.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Re-ultiima-14B-GGUF/resolve/main/Re-ultiima-14B.Q8_0.gguf) | Q8_0 | 15.8 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
cunghoctienganh/49d059e1-846e-41c0-94a7-a1689d0acac4
cunghoctienganh
2025-01-30T04:05:38Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:TinyLlama/TinyLlama-1.1B-Chat-v0.6", "base_model:adapter:TinyLlama/TinyLlama-1.1B-Chat-v0.6", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-30T03:52:59Z
--- library_name: peft license: apache-2.0 base_model: TinyLlama/TinyLlama-1.1B-Chat-v0.6 tags: - axolotl - generated_from_trainer model-index: - name: 49d059e1-846e-41c0-94a7-a1689d0acac4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: TinyLlama/TinyLlama-1.1B-Chat-v0.6 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 17faa1212cf04019_train_data.json ds_type: json format: custom path: /workspace/input_data/17faa1212cf04019_train_data.json type: field_input: problem field_instruction: question field_output: solution format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: cunghoctienganh/49d059e1-846e-41c0-94a7-a1689d0acac4 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/17faa1212cf04019_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 30bba4af-cf5b-44b3-8b13-edea30eaea8e wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 30bba4af-cf5b-44b3-8b13-edea30eaea8e warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 49d059e1-846e-41c0-94a7-a1689d0acac4 This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v0.6](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v0.6) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4934 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.5377 | 0.0599 | 200 | 0.4934 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
rl-llm-coders/RS_RM_1B_iter2
rl-llm-coders
2025-01-30T04:04:52Z
577
0
transformers
[ "transformers", "safetensors", "llama", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2025-01-30T04:01:35Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mrferr3t/6cd30b78-f6c0-4c61-aa6b-02e6624528b8
mrferr3t
2025-01-30T04:03:29Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/Llama-3.1-Storm-8B", "base_model:adapter:unsloth/Llama-3.1-Storm-8B", "license:llama3.1", "region:us" ]
null
2025-01-30T03:54:47Z
--- library_name: peft license: llama3.1 base_model: unsloth/Llama-3.1-Storm-8B tags: - axolotl - generated_from_trainer model-index: - name: 6cd30b78-f6c0-4c61-aa6b-02e6624528b8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Llama-3.1-Storm-8B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 91c8fbf3b2faa749_train_data.json ds_type: json format: custom path: /workspace/input_data/91c8fbf3b2faa749_train_data.json type: field_input: ingredients field_instruction: title field_output: steps format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: 30 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: mrferr3t/6cd30b78-f6c0-4c61-aa6b-02e6624528b8 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0005 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 2 mlflow_experiment_name: /tmp/91c8fbf3b2faa749_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 300 saves_per_epoch: 0 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 01617280-a23f-4c01-a9d7-f64d9905e269 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 01617280-a23f-4c01-a9d7-f64d9905e269 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 6cd30b78-f6c0-4c61-aa6b-02e6624528b8 This model is a fine-tuned version of [unsloth/Llama-3.1-Storm-8B](https://huggingface.co/unsloth/Llama-3.1-Storm-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3744 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.7049 | 0.0003 | 1 | 1.6411 | | 1.3963 | 0.0094 | 30 | 1.4294 | | 1.5106 | 0.0187 | 60 | 1.3944 | | 1.3941 | 0.0281 | 90 | 1.3744 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1
minhtrannnn/04b3b496-70cc-4463-a6b7-67be6cf4a0dc
minhtrannnn
2025-01-30T03:59:42Z
6
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:berkeley-nest/Starling-LM-7B-alpha", "base_model:adapter:berkeley-nest/Starling-LM-7B-alpha", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-30T02:35:32Z
--- library_name: peft license: apache-2.0 base_model: berkeley-nest/Starling-LM-7B-alpha tags: - axolotl - generated_from_trainer model-index: - name: 04b3b496-70cc-4463-a6b7-67be6cf4a0dc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: berkeley-nest/Starling-LM-7B-alpha bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c7e16a2b3005e907_train_data.json ds_type: json format: custom path: /workspace/input_data/c7e16a2b3005e907_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: minhtrannnn/04b3b496-70cc-4463-a6b7-67be6cf4a0dc hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/c7e16a2b3005e907_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0b6a4e43-35ca-49e0-9627-90df8e791f7d wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 0b6a4e43-35ca-49e0-9627-90df8e791f7d warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 04b3b496-70cc-4463-a6b7-67be6cf4a0dc This model is a fine-tuned version of [berkeley-nest/Starling-LM-7B-alpha](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5760 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 6.3507 | 0.0087 | 200 | 1.5760 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nbninh/b8f92d42-3f4a-4426-8d2c-5bb722d3963b
nbninh
2025-01-30T03:59:32Z
6
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/zephyr-sft", "base_model:adapter:unsloth/zephyr-sft", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-30T03:21:25Z
--- library_name: peft license: apache-2.0 base_model: unsloth/zephyr-sft tags: - axolotl - generated_from_trainer model-index: - name: b8f92d42-3f4a-4426-8d2c-5bb722d3963b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/zephyr-sft bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 932b45b740ac91ad_train_data.json ds_type: json format: custom path: /workspace/input_data/932b45b740ac91ad_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nbninh/b8f92d42-3f4a-4426-8d2c-5bb722d3963b hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/932b45b740ac91ad_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 1c67bdce-2bb5-4db7-acd8-febcebc77549 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 1c67bdce-2bb5-4db7-acd8-febcebc77549 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # b8f92d42-3f4a-4426-8d2c-5bb722d3963b This model is a fine-tuned version of [unsloth/zephyr-sft](https://huggingface.co/unsloth/zephyr-sft) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1352 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.6271 | 0.1671 | 200 | 0.1352 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso14/aa047f8f-060f-4f1e-a864-84d2b563ddd5
lesso14
2025-01-30T03:57:58Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:heegyu/WizardVicuna2-13b-hf", "base_model:adapter:heegyu/WizardVicuna2-13b-hf", "region:us" ]
null
2025-01-30T03:44:24Z
--- library_name: peft base_model: heegyu/WizardVicuna2-13b-hf tags: - axolotl - generated_from_trainer model-index: - name: aa047f8f-060f-4f1e-a864-84d2b563ddd5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: heegyu/WizardVicuna2-13b-hf bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - de2f5a3df66e2619_train_data.json ds_type: json format: custom path: /workspace/input_data/de2f5a3df66e2619_train_data.json type: field_input: package_name field_instruction: products field_output: review format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso14/aa047f8f-060f-4f1e-a864-84d2b563ddd5 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mixed_precision: bf16 mlflow_experiment_name: /tmp/de2f5a3df66e2619_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 5ff6924c-590d-48b4-b2d4-0517ebbf6eba wandb_project: multi wandb_run: your_name wandb_runid: 5ff6924c-590d-48b4-b2d4-0517ebbf6eba warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # aa047f8f-060f-4f1e-a864-84d2b563ddd5 This model is a fine-tuned version of [heegyu/WizardVicuna2-13b-hf](https://huggingface.co/heegyu/WizardVicuna2-13b-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.3175 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.2786 | 0.0468 | 200 | 3.3175 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
rl-llm-coders/RS_RM_1B_iter1
rl-llm-coders
2025-01-30T03:57:52Z
143
0
transformers
[ "transformers", "safetensors", "llama", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2025-01-30T03:51:50Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
zzunyang/KLQD_ko_gemma2
zzunyang
2025-01-30T03:56:54Z
25
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:recoilme/recoilme-gemma-2-9B-v0.4", "base_model:adapter:recoilme/recoilme-gemma-2-9B-v0.4", "region:us" ]
null
2025-01-30T02:50:44Z
--- base_model: recoilme/recoilme-gemma-2-9B-v0.4 library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.11.1
datlaaaaaaa/6b319281-304b-48d5-911f-78c6d5201d27
datlaaaaaaa
2025-01-30T03:56:09Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM-360M", "base_model:adapter:unsloth/SmolLM-360M", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-30T03:08:29Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM-360M tags: - axolotl - generated_from_trainer model-index: - name: 6b319281-304b-48d5-911f-78c6d5201d27 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM-360M bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 932b975fca203429_train_data.json ds_type: json format: custom path: /workspace/input_data/932b975fca203429_train_data.json type: field_input: note field_instruction: question field_output: answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: datlaaaaaaa/6b319281-304b-48d5-911f-78c6d5201d27 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/932b975fca203429_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 192f06f0-5909-42fe-bc5f-7c55cc9d7e7c wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 192f06f0-5909-42fe-bc5f-7c55cc9d7e7c warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 6b319281-304b-48d5-911f-78c6d5201d27 This model is a fine-tuned version of [unsloth/SmolLM-360M](https://huggingface.co/unsloth/SmolLM-360M) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0261 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.1469 | 0.0107 | 200 | 1.0261 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nbninh/c769df87-e2aa-412c-850f-fd7bc1d5b5b6
nbninh
2025-01-30T03:54:51Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM-360M", "base_model:adapter:unsloth/SmolLM-360M", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-30T03:07:42Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM-360M tags: - axolotl - generated_from_trainer model-index: - name: c769df87-e2aa-412c-850f-fd7bc1d5b5b6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM-360M bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 932b975fca203429_train_data.json ds_type: json format: custom path: /workspace/input_data/932b975fca203429_train_data.json type: field_input: note field_instruction: question field_output: answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nbninh/c769df87-e2aa-412c-850f-fd7bc1d5b5b6 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/932b975fca203429_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 192f06f0-5909-42fe-bc5f-7c55cc9d7e7c wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 192f06f0-5909-42fe-bc5f-7c55cc9d7e7c warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # c769df87-e2aa-412c-850f-fd7bc1d5b5b6 This model is a fine-tuned version of [unsloth/SmolLM-360M](https://huggingface.co/unsloth/SmolLM-360M) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0264 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.1578 | 0.0107 | 200 | 1.0264 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
sercetexam9/afro-xlmr-base-sun-finetuned-augmentation-LUNAR
sercetexam9
2025-01-30T03:53:01Z
38
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:Davlan/afro-xlmr-base", "base_model:finetune:Davlan/afro-xlmr-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-30T03:42:13Z
--- library_name: transformers license: mit base_model: Davlan/afro-xlmr-base tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: afro-xlmr-base-sun-finetuned-augmentation-LUNAR results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # afro-xlmr-base-sun-finetuned-augmentation-LUNAR This model is a fine-tuned version of [Davlan/afro-xlmr-base](https://huggingface.co/Davlan/afro-xlmr-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3556 - F1: 0.3987 - Roc Auc: 0.6273 - Accuracy: 0.5156 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.6264 | 1.0 | 57 | 0.4136 | 0.1420 | 0.5 | 0.5067 | | 0.382 | 2.0 | 114 | 0.3981 | 0.1420 | 0.5 | 0.5067 | | 0.4333 | 3.0 | 171 | 0.3526 | 0.2407 | 0.5539 | 0.5244 | | 0.3472 | 4.0 | 228 | 0.3299 | 0.2767 | 0.5946 | 0.5511 | | 0.325 | 5.0 | 285 | 0.3186 | 0.2669 | 0.6007 | 0.5156 | | 0.3188 | 6.0 | 342 | 0.3278 | 0.2681 | 0.5975 | 0.5289 | | 0.2909 | 7.0 | 399 | 0.3446 | 0.2675 | 0.5809 | 0.5422 | | 0.2579 | 8.0 | 456 | 0.3238 | 0.2935 | 0.6150 | 0.5289 | | 0.2779 | 9.0 | 513 | 0.3341 | 0.2891 | 0.6043 | 0.52 | | 0.2547 | 10.0 | 570 | 0.3615 | 0.3142 | 0.5980 | 0.52 | | 0.2266 | 11.0 | 627 | 0.3394 | 0.3499 | 0.6212 | 0.5289 | | 0.2258 | 12.0 | 684 | 0.3587 | 0.3515 | 0.6061 | 0.5022 | | 0.2159 | 13.0 | 741 | 0.3402 | 0.3677 | 0.6297 | 0.5333 | | 0.2163 | 14.0 | 798 | 0.3485 | 0.3678 | 0.6198 | 0.4978 | | 0.2007 | 15.0 | 855 | 0.3556 | 0.3987 | 0.6273 | 0.5156 | | 0.1955 | 16.0 | 912 | 0.3552 | 0.3724 | 0.6195 | 0.5022 | | 0.1806 | 17.0 | 969 | 0.3619 | 0.3744 | 0.6195 | 0.5111 | | 0.189 | 18.0 | 1026 | 0.3559 | 0.3850 | 0.6227 | 0.4889 | | 0.1837 | 19.0 | 1083 | 0.3561 | 0.3868 | 0.6241 | 0.4933 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0
earnxus/53a074bd-abb1-494f-b930-1bda27dbdb63
earnxus
2025-01-30T03:46:20Z
6
0
peft
[ "peft", "safetensors", "gemma", "axolotl", "generated_from_trainer", "base_model:unsloth/codegemma-2b", "base_model:adapter:unsloth/codegemma-2b", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-30T03:33:47Z
--- library_name: peft license: apache-2.0 base_model: unsloth/codegemma-2b tags: - axolotl - generated_from_trainer model-index: - name: 53a074bd-abb1-494f-b930-1bda27dbdb63 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/codegemma-2b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 715878661d7cd8f6_train_data.json ds_type: json format: custom path: /workspace/input_data/715878661d7cd8f6_train_data.json type: field_instruction: question field_output: response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: true hub_model_id: earnxus/53a074bd-abb1-494f-b930-1bda27dbdb63 hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/715878661d7cd8f6_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 27bcc751-fc2b-4235-9629-3df0070473d7 wandb_project: Gradients-On-Nine wandb_run: your_name wandb_runid: 27bcc751-fc2b-4235-9629-3df0070473d7 warmup_steps: 5 weight_decay: 0.01 xformers_attention: null ``` </details><br> # 53a074bd-abb1-494f-b930-1bda27dbdb63 This model is a fine-tuned version of [unsloth/codegemma-2b](https://huggingface.co/unsloth/codegemma-2b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6553 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.5465 | 0.1427 | 200 | 1.6553 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso05/3d6c2bef-5196-4e10-a18c-e8a671e5592b
lesso05
2025-01-30T03:46:09Z
6
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/Yarn-Mistral-7b-128k", "base_model:adapter:NousResearch/Yarn-Mistral-7b-128k", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-30T02:41:38Z
--- library_name: peft license: apache-2.0 base_model: NousResearch/Yarn-Mistral-7b-128k tags: - axolotl - generated_from_trainer model-index: - name: 3d6c2bef-5196-4e10-a18c-e8a671e5592b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Yarn-Mistral-7b-128k bf16: true chat_template: llama3 datasets: - data_files: - b1454fa1fd1fe58d_train_data.json ds_type: json format: custom path: /workspace/input_data/b1454fa1fd1fe58d_train_data.json type: field_input: possible_answers field_instruction: question field_output: memory_answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso05/3d6c2bef-5196-4e10-a18c-e8a671e5592b hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/b1454fa1fd1fe58d_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 4d3d1b80-2351-40f7-99cf-7e411e41051a wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 4d3d1b80-2351-40f7-99cf-7e411e41051a warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 3d6c2bef-5196-4e10-a18c-e8a671e5592b This model is a fine-tuned version of [NousResearch/Yarn-Mistral-7b-128k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-128k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5389 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 6.7208 | 0.0001 | 1 | 1.9607 | | 5.7267 | 0.0007 | 5 | 1.2537 | | 2.5735 | 0.0014 | 10 | 0.5844 | | 1.6465 | 0.0021 | 15 | 0.5603 | | 2.2664 | 0.0027 | 20 | 0.5498 | | 2.0219 | 0.0034 | 25 | 0.5389 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
fifxus/e82a8c93-2b5c-4be6-a263-00b6ce01c774
fifxus
2025-01-30T03:46:06Z
6
0
peft
[ "peft", "safetensors", "gemma", "axolotl", "generated_from_trainer", "base_model:unsloth/codegemma-2b", "base_model:adapter:unsloth/codegemma-2b", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-30T03:33:51Z
--- library_name: peft license: apache-2.0 base_model: unsloth/codegemma-2b tags: - axolotl - generated_from_trainer model-index: - name: e82a8c93-2b5c-4be6-a263-00b6ce01c774 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/codegemma-2b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 715878661d7cd8f6_train_data.json ds_type: json format: custom path: /workspace/input_data/715878661d7cd8f6_train_data.json type: field_instruction: question field_output: response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: true hub_model_id: fifxus/e82a8c93-2b5c-4be6-a263-00b6ce01c774 hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/715878661d7cd8f6_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 27bcc751-fc2b-4235-9629-3df0070473d7 wandb_project: Gradients-On-10 wandb_run: your_name wandb_runid: 27bcc751-fc2b-4235-9629-3df0070473d7 warmup_steps: 5 weight_decay: 0.01 xformers_attention: null ``` </details><br> # e82a8c93-2b5c-4be6-a263-00b6ce01c774 This model is a fine-tuned version of [unsloth/codegemma-2b](https://huggingface.co/unsloth/codegemma-2b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6569 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.528 | 0.1427 | 200 | 1.6569 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Lauther/emb-multilingual-e5-large-instruct-3e
Lauther
2025-01-30T03:44:39Z
117
0
sentence-transformers
[ "sentence-transformers", "safetensors", "xlm-roberta", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:5220", "loss:CosineSimilarityLoss", "dataset:Lauther/embeddings-train-semantic", "arxiv:1908.10084", "base_model:intfloat/multilingual-e5-large-instruct", "base_model:finetune:intfloat/multilingual-e5-large-instruct", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-01-30T03:43:45Z
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:5220 - loss:CosineSimilarityLoss base_model: intfloat/multilingual-e5-large-instruct widget: - source_sentence: Identify the column that stores the uncertainty value. sentences: - "What is measuring equipment?\nMeasuring equipment refers to the devices that\ \ make up a measurement system. Each piece of equipment has:\n- A unique serial\ \ number for identification.\n- A technical name, such as transmitter, plate,\ \ thermometer, etc.\n\nHow is equipment assigned to a measurement system?\nWhen\ \ equipment is assigned to a measurement system, it is given a unique identifier\ \ called an \"\"Equipment Tag.\"\"\n- If a piece of equipment has a tag, it is\ \ considered in use in a measurement system.\n- If it does not have a tag, it\ \ is considered spare or unused\n\nEquipment assignment based on technology:\n\ The type of equipment assigned to a measurement system depends on the technology\ \ used, for example:\n1. Differential technology (for gas measurement):\n -\ \ Static pressure transmitters\n - Differential pressure transmitters\n \ \ - Temperature transmitters\n - RTDs (thermometers)\n - Orifice plates\n\ \ - Straight stretch\n\n2. Linear technology (for gas measurement):\n -\ \ Temperature transmitters\n - RTDs\n - Static pressure transmitters\n \ \ - Ultrasonic meters\n\nRelationship between equipment and measurement systems:\n\ - A measurement system can have multiple pieces of equipment.\n- However, a piece\ \ of equipment can only be assigned to one measurement system.\n\nDatabase management:\n\ - The database includes a special table to manage the list of equipment assigned\ \ to measurement systems.\n- When a user refers to an \"\"Equipment Tag\"\", they\ \ are searching for operational equipment assigned to a measurement system.\n\ - If a user is looking for spare or unused equipment, they are searching for equipment\ \ not listed in the tagged equipment table.\n- Commonly used when user refers\ \ directly to an \"\"Equipment Tag\"" - 'What is equipment calibration? Calibration is a metrological verification process used to ensure the accuracy of measurement equipment. It is performed periodically, based on intervals set by the company or a regulatory body. Purpose of calibration: The calibration process corrects any deviations in how the equipment measures physical magnitudes (variables). This ensures the equipment provides accurate and reliable data. Calibration cycles: There are two main calibration cycles: 1. As-found: Represents the equipment''s measurement accuracy before any adjustments are made. This cycle is almost always implemented. 2. As-left: Represents the equipment''s measurement accuracy after adjustments are made. This cycle is used depending on regulatory requirements. Calibration uncertainty: - Uncertainty is included in the results of a calibration. - Calibration uncertainty refers to the margin of error in the device''s measurements, which also affects the uncertainty of the measured variable or magnitude.' - 'What kind of data store an equipment? Equipments can capture meteorological data, such as pressure, temperature, and volume (magnitudes). This data is essential for users to perform various calculations. Data storage: - The measured values are stored in a special table in the database for magnitudes. This table contains the values of the variables captured by the equipments. - These values are **direct measurements** from the fluid (e.g., raw pressure, temperature, or volume readings). **They are not calculated values**, such as uncertainty. - The values stored in the variable values table are **different** from variable uncertainty values, which are calculated separately and represent the margin of error. Accessing the data: - Users typically access the data by referring to the readings from the measurement system, not directly from the individual equipments. - The readings are stored in a "variable values" table within the database. Linking variable names: If the user needs to know the name of a variable, they must link the data to another table that stores information about the types of variables.' - source_sentence: SELECT * FROM EquipmentType LIMIT 1 sentences: - 'What kind of data store an equipment? Equipments can capture meteorological data, such as pressure, temperature, and volume (magnitudes). This data is essential for users to perform various calculations. Data storage: - The measured values are stored in a special table in the database for magnitudes. This table contains the values of the variables captured by the equipments. - These values are **direct measurements** from the fluid (e.g., raw pressure, temperature, or volume readings). **They are not calculated values**, such as uncertainty. - The values stored in the variable values table are **different** from variable uncertainty values, which are calculated separately and represent the margin of error. Accessing the data: - Users typically access the data by referring to the readings from the measurement system, not directly from the individual equipments. - The readings are stored in a "variable values" table within the database. Linking variable names: If the user needs to know the name of a variable, they must link the data to another table that stores information about the types of variables.' - "How does a flow computer generate and store reports?\nA flow computer generates\ \ daily or hourly reports to provide users with operational data. These reports\ \ are stored in the flow computer's memory in an organized format.\n\nReport structure:\n\ - Each report includes:\n- Date and time of the data recording.\n- Data recorded\ \ from flow computers.\n\nData storage in tables:\nThe reports are saved in two\ \ tables:\n1. Main table (Index):\n - Stores the date, time, and flow computer\ \ identifier.\n2. Detail table:\n - Stores the measured values associated with\ \ the report.\n\nConnection to the Modbus table:\nThe flow computer's reports\ \ are linked to a Modbus table. This table contains the names corresponding to\ \ each value in the reports, making it easier to interpret the data." - 'What is a flow computer? A flow computer is a device used in measurement engineering. It collects analog and digital data from flow meters and other sensors. Key features of a flow computer: - It has a unique name, firmware version, and manufacturer information. - It is designed to record and process data such as temperature, pressure, and fluid volume (for gases or oils). Main function: The flow computer sends the collected data to a measurement system. This allows measurement engineers to analyze the data and perform their tasks effectively.' - source_sentence: What tables store measurement system data? sentences: - "What is uncertainty?\nUncertainty is a measure of confidence in the precision\ \ and reliability of results obtained from equipment or measurement systems. It\ \ quantifies the potential error or margin of error in measurements.\n\nTypes\ \ of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of\ \ magnitudes (variables):\n - Refers to the uncertainty of specific variables,\ \ such as temperature or pressure.\n - It is calculated after calibrating a\ \ device or obtained from the equipment manufacturer's manual.\n - This uncertainty\ \ serves as a starting point for further calculations related to the equipment.\n\ \n2. Uncertainty of the measurement system:\n - Refers to the uncertainty calculated\ \ for the overall flow measurement.\n - It depends on the uncertainties of\ \ the individual variables (magnitudes) and represents the combined margin of\ \ error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes\ \ (variables) are the foundation for calculating the uncertainty of the measurement\ \ system. Think of them as the \"building blocks.\"\n- Do not confuse the two\ \ types of uncertainty:\n - **Uncertainty of magnitudes/variables**: Specific\ \ to individual variables (e.g., temperature, pressure).\n - **Uncertainty\ \ of the measurement system**: Specific to the overall flow measurement.\n\nDatabase\ \ storage for uncertainties:\nIn the database, uncertainty calculations are stored\ \ in two separate tables:\n1. Uncertainty of magnitudes (variables):\n - Stores\ \ the uncertainty values for specific variables (e.g., temperature, pressure).\n\ \n2. Uncertainty of the measurement system:\n - Stores the uncertainty values\ \ for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n\ - To find the uncertainty of the measurement system, join the measurement systems\ \ table with the uncertainty of the measurement system table.\n- To find the uncertainty\ \ of a specific variable (magnitude), join the measurement systems table with\ \ the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not\ \ confuse the two types of uncertainty:\n- If the user requests the uncertainty\ \ of the measurement system, use the first join (measurement systems table + uncertainty\ \ of the measurement system table).\n- If the user requests the uncertainty of\ \ a specific variable (magnitude) in a report, use the second join (measurement\ \ systems table + uncertainty of magnitudes table)." - "What is a measurement system?\nA measurement system, also referred to as a delivery\ \ point, measurement point, or reception point, is used to measure and monitor\ \ fluids in industrial processes.\n\nKey characteristics of a measurement system:\n\ 1. Measurement technology:\n - Differential: Used for precise measurements.\n\ \ - Linear: Used for straightforward measurements.\n\n2. System identifier\ \ (TAG):\n - A unique identifier for the system.\n\n3. Fluid type:\n - The\ \ system can measure gases, oils, condensates, water, steam, or other fluids.\n\ 4. System type:\n - Specifies the category or purpose of the system.\n\nMeasurement\ \ technology by fluid type:\n- Gas measurement systems: Use both linear and differential\ \ measurement technologies.\n- Oil measurement systems: Do not use linear or differential\ \ technologies; they are programmed differently.\"\n\n\nClassification of measurement\ \ systems:\nMeasurement systems are classified based on the stage of the process\ \ in which they are used. Common classifications include:\n- Fiscal\n- Operational\n\ - Appropriation\n- Custody\n- Production Poços" - 'What do measurement equipment measure? Each equipment measures a physical magnitude, also known as a variable. Based on the type of variable they measure, devices are classified into different categories. Equipment classification: - Primary meter: Assigned by default to equipments like orifice plates. - Secondary meter: Assigned by default to equipments like transmitters. - Tertiary meter: Used for other types of equipments. Equipment types in the database: The database includes a table listing all equipment types. Examples of equipment types are: - Differential pressure transmitters - RTDs (Resistance Temperature Detectors) - Orifice plates - Multivariable transmitters - Ultrasonic meters Meteorological checks for equipments: Each equipment type is assigned a meteorological check, which can be either: - Calibration: To ensure measurement accuracy. - Inspection: To verify proper functioning. Data storage in tables: The database also includes a separate table for equipment classifications, which are: - Primary meter - Secondary meter - Tertiary meter So, an equipment has equipment types and this types has classifications.' - source_sentence: What is the table structure for equipment types? sentences: - "How does a flow computer generate and store reports?\nA flow computer generates\ \ daily or hourly reports to provide users with operational data. These reports\ \ are stored in the flow computer's memory in an organized format.\n\nReport structure:\n\ - Each report includes:\n- Date and time of the data recording.\n- Data recorded\ \ from flow computers.\n\nData storage in tables:\nThe reports are saved in two\ \ tables:\n1. Main table (Index):\n - Stores the date, time, and flow computer\ \ identifier.\n2. Detail table:\n - Stores the measured values associated with\ \ the report.\n\nConnection to the Modbus table:\nThe flow computer's reports\ \ are linked to a Modbus table. This table contains the names corresponding to\ \ each value in the reports, making it easier to interpret the data." - "What is measuring equipment?\nMeasuring equipment refers to the devices that\ \ make up a measurement system. Each piece of equipment has:\n- A unique serial\ \ number for identification.\n- A technical name, such as transmitter, plate,\ \ thermometer, etc.\n\nHow is equipment assigned to a measurement system?\nWhen\ \ equipment is assigned to a measurement system, it is given a unique identifier\ \ called an \"\"Equipment Tag.\"\"\n- If a piece of equipment has a tag, it is\ \ considered in use in a measurement system.\n- If it does not have a tag, it\ \ is considered spare or unused\n\nEquipment assignment based on technology:\n\ The type of equipment assigned to a measurement system depends on the technology\ \ used, for example:\n1. Differential technology (for gas measurement):\n -\ \ Static pressure transmitters\n - Differential pressure transmitters\n \ \ - Temperature transmitters\n - RTDs (thermometers)\n - Orifice plates\n\ \ - Straight stretch\n\n2. Linear technology (for gas measurement):\n -\ \ Temperature transmitters\n - RTDs\n - Static pressure transmitters\n \ \ - Ultrasonic meters\n\nRelationship between equipment and measurement systems:\n\ - A measurement system can have multiple pieces of equipment.\n- However, a piece\ \ of equipment can only be assigned to one measurement system.\n\nDatabase management:\n\ - The database includes a special table to manage the list of equipment assigned\ \ to measurement systems.\n- When a user refers to an \"\"Equipment Tag\"\", they\ \ are searching for operational equipment assigned to a measurement system.\n\ - If a user is looking for spare or unused equipment, they are searching for equipment\ \ not listed in the tagged equipment table.\n- Commonly used when user refers\ \ directly to an \"\"Equipment Tag\"" - "What is uncertainty?\nUncertainty is a measure of confidence in the precision\ \ and reliability of results obtained from equipment or measurement systems. It\ \ quantifies the potential error or margin of error in measurements.\n\nTypes\ \ of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of\ \ magnitudes (variables):\n - Refers to the uncertainty of specific variables,\ \ such as temperature or pressure.\n - It is calculated after calibrating a\ \ device or obtained from the equipment manufacturer's manual.\n - This uncertainty\ \ serves as a starting point for further calculations related to the equipment.\n\ \n2. Uncertainty of the measurement system:\n - Refers to the uncertainty calculated\ \ for the overall flow measurement.\n - It depends on the uncertainties of\ \ the individual variables (magnitudes) and represents the combined margin of\ \ error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes\ \ (variables) are the foundation for calculating the uncertainty of the measurement\ \ system. Think of them as the \"building blocks.\"\n- Do not confuse the two\ \ types of uncertainty:\n - **Uncertainty of magnitudes/variables**: Specific\ \ to individual variables (e.g., temperature, pressure).\n - **Uncertainty\ \ of the measurement system**: Specific to the overall flow measurement.\n\nDatabase\ \ storage for uncertainties:\nIn the database, uncertainty calculations are stored\ \ in two separate tables:\n1. Uncertainty of magnitudes (variables):\n - Stores\ \ the uncertainty values for specific variables (e.g., temperature, pressure).\n\ \n2. Uncertainty of the measurement system:\n - Stores the uncertainty values\ \ for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n\ - To find the uncertainty of the measurement system, join the measurement systems\ \ table with the uncertainty of the measurement system table.\n- To find the uncertainty\ \ of a specific variable (magnitude), join the measurement systems table with\ \ the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not\ \ confuse the two types of uncertainty:\n- If the user requests the uncertainty\ \ of the measurement system, use the first join (measurement systems table + uncertainty\ \ of the measurement system table).\n- If the user requests the uncertainty of\ \ a specific variable (magnitude) in a report, use the second join (measurement\ \ systems table + uncertainty of magnitudes table)." - source_sentence: What columns store the uncertainty values? sentences: - "What is a measurement system?\nA measurement system, also referred to as a delivery\ \ point, measurement point, or reception point, is used to measure and monitor\ \ fluids in industrial processes.\n\nKey characteristics of a measurement system:\n\ 1. Measurement technology:\n - Differential: Used for precise measurements.\n\ \ - Linear: Used for straightforward measurements.\n\n2. System identifier\ \ (TAG):\n - A unique identifier for the system.\n\n3. Fluid type:\n - The\ \ system can measure gases, oils, condensates, water, steam, or other fluids.\n\ 4. System type:\n - Specifies the category or purpose of the system.\n\nMeasurement\ \ technology by fluid type:\n- Gas measurement systems: Use both linear and differential\ \ measurement technologies.\n- Oil measurement systems: Do not use linear or differential\ \ technologies; they are programmed differently.\"\n\n\nClassification of measurement\ \ systems:\nMeasurement systems are classified based on the stage of the process\ \ in which they are used. Common classifications include:\n- Fiscal\n- Operational\n\ - Appropriation\n- Custody\n- Production Poços" - 'How are flow computers and measurement systems related? Flow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer. Database terminology: In the database, this relationship is referred to as: - Meter streams - Meter runs - Sections Storage of the relationship: The relationship between a flow computer and its assigned measurement system is stored in a special table. User context: When a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.' - "What is uncertainty?\nUncertainty is a measure of confidence in the precision\ \ and reliability of results obtained from equipment or measurement systems. It\ \ quantifies the potential error or margin of error in measurements.\n\nTypes\ \ of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of\ \ magnitudes (variables):\n - Refers to the uncertainty of specific variables,\ \ such as temperature or pressure.\n - It is calculated after calibrating a\ \ device or obtained from the equipment manufacturer's manual.\n - This uncertainty\ \ serves as a starting point for further calculations related to the equipment.\n\ \n2. Uncertainty of the measurement system:\n - Refers to the uncertainty calculated\ \ for the overall flow measurement.\n - It depends on the uncertainties of\ \ the individual variables (magnitudes) and represents the combined margin of\ \ error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes\ \ (variables) are the foundation for calculating the uncertainty of the measurement\ \ system. Think of them as the \"building blocks.\"\n- Do not confuse the two\ \ types of uncertainty:\n - **Uncertainty of magnitudes/variables**: Specific\ \ to individual variables (e.g., temperature, pressure).\n - **Uncertainty\ \ of the measurement system**: Specific to the overall flow measurement.\n\nDatabase\ \ storage for uncertainties:\nIn the database, uncertainty calculations are stored\ \ in two separate tables:\n1. Uncertainty of magnitudes (variables):\n - Stores\ \ the uncertainty values for specific variables (e.g., temperature, pressure).\n\ \n2. Uncertainty of the measurement system:\n - Stores the uncertainty values\ \ for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n\ - To find the uncertainty of the measurement system, join the measurement systems\ \ table with the uncertainty of the measurement system table.\n- To find the uncertainty\ \ of a specific variable (magnitude), join the measurement systems table with\ \ the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not\ \ confuse the two types of uncertainty:\n- If the user requests the uncertainty\ \ of the measurement system, use the first join (measurement systems table + uncertainty\ \ of the measurement system table).\n- If the user requests the uncertainty of\ \ a specific variable (magnitude) in a report, use the second join (measurement\ \ systems table + uncertainty of magnitudes table)." datasets: - Lauther/embeddings-train-semantic pipeline_tag: sentence-similarity library_name: sentence-transformers --- # SentenceTransformer based on intfloat/multilingual-e5-large-instruct This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) on the [embeddings-train-semantic](https://huggingface.co/datasets/Lauther/embeddings-train-semantic) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) <!-- at revision c9e87c786ffac96aeaeb42863276930883923ecb --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 1024 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - [embeddings-train-semantic](https://huggingface.co/datasets/Lauther/embeddings-train-semantic) <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("Lauther/emb-multilingual-e5-large-instruct-3e") # Run inference sentences = [ 'What columns store the uncertainty values?', 'How are flow computers and measurement systems related?\nFlow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer.\n\nDatabase terminology:\nIn the database, this relationship is referred to as:\n- Meter streams\n- Meter runs\n- Sections\n\nStorage of the relationship:\nThe relationship between a flow computer and its assigned measurement system is stored in a special table.\n\nUser context:\nWhen a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.', 'What is uncertainty?\nUncertainty is a measure of confidence in the precision and reliability of results obtained from equipment or measurement systems. It quantifies the potential error or margin of error in measurements.\n\nTypes of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of magnitudes (variables):\n - Refers to the uncertainty of specific variables, such as temperature or pressure.\n - It is calculated after calibrating a device or obtained from the equipment manufacturer\'s manual.\n - This uncertainty serves as a starting point for further calculations related to the equipment.\n\n2. Uncertainty of the measurement system:\n - Refers to the uncertainty calculated for the overall flow measurement.\n - It depends on the uncertainties of the individual variables (magnitudes) and represents the combined margin of error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes (variables) are the foundation for calculating the uncertainty of the measurement system. Think of them as the "building blocks."\n- Do not confuse the two types of uncertainty:\n - **Uncertainty of magnitudes/variables**: Specific to individual variables (e.g., temperature, pressure).\n - **Uncertainty of the measurement system**: Specific to the overall flow measurement.\n\nDatabase storage for uncertainties:\nIn the database, uncertainty calculations are stored in two separate tables:\n1. Uncertainty of magnitudes (variables):\n - Stores the uncertainty values for specific variables (e.g., temperature, pressure).\n\n2. Uncertainty of the measurement system:\n - Stores the uncertainty values for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n- To find the uncertainty of the measurement system, join the measurement systems table with the uncertainty of the measurement system table.\n- To find the uncertainty of a specific variable (magnitude), join the measurement systems table with the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not confuse the two types of uncertainty:\n- If the user requests the uncertainty of the measurement system, use the first join (measurement systems table + uncertainty of the measurement system table).\n- If the user requests the uncertainty of a specific variable (magnitude) in a report, use the second join (measurement systems table + uncertainty of magnitudes table).', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### embeddings-train-semantic * Dataset: [embeddings-train-semantic](https://huggingface.co/datasets/Lauther/embeddings-train-semantic) at [ce90f53](https://huggingface.co/datasets/Lauther/embeddings-train-semantic/tree/ce90f531bc39037053d223b27868ad178852f330) * Size: 5,220 training samples * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | <ul><li>min: 8 tokens</li><li>mean: 18.3 tokens</li><li>max: 102 tokens</li></ul> | <ul><li>min: 120 tokens</li><li>mean: 257.3 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.23</li><li>max: 1.0</li></ul> | * Samples: | sentence1 | sentence2 | score | |:------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------| | <code>What is the data type of differential pressure in the measurement system?</code> | <code>What is uncertainty?<br>Uncertainty is a measure of confidence in the precision and reliability of results obtained from equipment or measurement systems. It quantifies the potential error or margin of error in measurements.<br><br>Types of uncertainty:<br>There are two main types of uncertainty:<br>1. Uncertainty of magnitudes (variables):<br> - Refers to the uncertainty of specific variables, such as temperature or pressure.<br> - It is calculated after calibrating a device or obtained from the equipment manufacturer's manual.<br> - This uncertainty serves as a starting point for further calculations related to the equipment.<br><br>2. Uncertainty of the measurement system:<br> - Refers to the uncertainty calculated for the overall flow measurement.<br> - It depends on the uncertainties of the individual variables (magnitudes) and represents the combined margin of error for the entire system.<br><br>Key points:<br>- The uncertainties of magnitudes (variables) are the foundation for calculating the uncertainty of ...</code> | <code>0.15000000000000002</code> | | <code>What is the structure of the &&&equipment_data&&& table?</code> | <code>How are flow computers and measurement systems related?<br>Flow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer.<br><br>Database terminology:<br>In the database, this relationship is referred to as:<br>- Meter streams<br>- Meter runs<br>- Sections<br><br>Storage of the relationship:<br>The relationship between a flow computer and its assigned measurement system is stored in a special table.<br><br>User context:<br>When a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.</code> | <code>0.35000000000000003</code> | | <code>Find the columns in the flow computer table that identify the flow computer.</code> | <code>What kind of data store an equipment?<br>Equipments can capture meteorological data, such as pressure, temperature, and volume (magnitudes). This data is essential for users to perform various calculations.<br><br>Data storage:<br>- The measured values are stored in a special table in the database for magnitudes. This table contains the values of the variables captured by the equipments.<br>- These values are **direct measurements** from the fluid (e.g., raw pressure, temperature, or volume readings). **They are not calculated values**, such as uncertainty.<br>- The values stored in the variable values table are **different** from variable uncertainty values, which are calculated separately and represent the margin of error.<br><br>Accessing the data:<br>- Users typically access the data by referring to the readings from the measurement system, not directly from the individual equipments.<br>- The readings are stored in a "variable values" table within the database.<br><br>Linking variable names:<br>If the user needs to kno...</code> | <code>0.1</code> | * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: ```json { "loss_fct": "torch.nn.modules.loss.MSELoss" } ``` ### Evaluation Dataset #### embeddings-train-semantic * Dataset: [embeddings-train-semantic](https://huggingface.co/datasets/Lauther/embeddings-train-semantic) at [ce90f53](https://huggingface.co/datasets/Lauther/embeddings-train-semantic/tree/ce90f531bc39037053d223b27868ad178852f330) * Size: 652 evaluation samples * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> * Approximate statistics based on the first 652 samples: | | sentence1 | sentence2 | score | |:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | <ul><li>min: 8 tokens</li><li>mean: 17.8 tokens</li><li>max: 102 tokens</li></ul> | <ul><li>min: 120 tokens</li><li>mean: 253.84 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.24</li><li>max: 0.9</li></ul> | * Samples: | sentence1 | sentence2 | score | |:-------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------| | <code>How can I filter uncertainty reports by equipment tag?</code> | <code>How does a flow computer generate and store reports?<br>A flow computer generates daily or hourly reports to provide users with operational data. These reports are stored in the flow computer's memory in an organized format.<br><br>Report structure:<br>- Each report includes:<br>- Date and time of the data recording.<br>- Data recorded from flow computers.<br><br>Data storage in tables:<br>The reports are saved in two tables:<br>1. Main table (Index):<br> - Stores the date, time, and flow computer identifier.<br>2. Detail table:<br> - Stores the measured values associated with the report.<br><br>Connection to the Modbus table:<br>The flow computer's reports are linked to a Modbus table. This table contains the names corresponding to each value in the reports, making it easier to interpret the data.</code> | <code>0.09999999999999999</code> | | <code>What is the purpose of the flow_data table?</code> | <code>What is uncertainty?<br>Uncertainty is a measure of confidence in the precision and reliability of results obtained from equipment or measurement systems. It quantifies the potential error or margin of error in measurements.<br><br>Types of uncertainty:<br>There are two main types of uncertainty:<br>1. Uncertainty of magnitudes (variables):<br> - Refers to the uncertainty of specific variables, such as temperature or pressure.<br> - It is calculated after calibrating a device or obtained from the equipment manufacturer's manual.<br> - This uncertainty serves as a starting point for further calculations related to the equipment.<br><br>2. Uncertainty of the measurement system:<br> - Refers to the uncertainty calculated for the overall flow measurement.<br> - It depends on the uncertainties of the individual variables (magnitudes) and represents the combined margin of error for the entire system.<br><br>Key points:<br>- The uncertainties of magnitudes (variables) are the foundation for calculating the uncertainty of ...</code> | <code>0.15000000000000002</code> | | <code>What is the column name for the report date in the Reports table?</code> | <code>What is equipment calibration?<br>Calibration is a metrological verification process used to ensure the accuracy of measurement equipment. It is performed periodically, based on intervals set by the company or a regulatory body.<br><br>Purpose of calibration:<br>The calibration process corrects any deviations in how the equipment measures physical magnitudes (variables). This ensures the equipment provides accurate and reliable data.<br><br>Calibration cycles:<br>There are two main calibration cycles:<br>1. As-found: Represents the equipment's measurement accuracy before any adjustments are made. This cycle is almost always implemented.<br>2. As-left: Represents the equipment's measurement accuracy after adjustments are made. This cycle is used depending on regulatory requirements.<br><br>Calibration uncertainty:<br>- Uncertainty is included in the results of a calibration.<br>- Calibration uncertainty refers to the margin of error in the device's measurements, which also affects the uncertainty of the measured variable or ...</code> | <code>0.1</code> | * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: ```json { "loss_fct": "torch.nn.modules.loss.MSELoss" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 4 - `per_device_eval_batch_size`: 4 - `gradient_accumulation_steps`: 4 - `learning_rate`: 2e-05 - `warmup_ratio`: 0.1 #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 4 - `per_device_eval_batch_size`: 4 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 4 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 3 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0307 | 10 | 1.5374 | - | | 0.0613 | 20 | 1.0251 | - | | 0.0920 | 30 | 0.361 | - | | 0.1226 | 40 | 0.1819 | - | | 0.1533 | 50 | 0.186 | - | | 0.1839 | 60 | 0.1697 | - | | 0.2146 | 70 | 0.1437 | - | | 0.2452 | 80 | 0.172 | - | | 0.2759 | 90 | 0.1199 | - | | 0.3065 | 100 | 0.1278 | - | | 0.3372 | 110 | 0.1037 | - | | 0.3678 | 120 | 0.1156 | - | | 0.3985 | 130 | 0.0971 | - | | 0.4291 | 140 | 0.0911 | - | | 0.4598 | 150 | 0.1158 | 0.0249 | | 0.4904 | 160 | 0.0906 | - | | 0.5211 | 170 | 0.106 | - | | 0.5517 | 180 | 0.0921 | - | | 0.5824 | 190 | 0.0748 | - | | 0.6130 | 200 | 0.0741 | - | | 0.6437 | 210 | 0.0894 | - | | 0.6743 | 220 | 0.0815 | - | | 0.7050 | 230 | 0.0771 | - | | 0.7356 | 240 | 0.1156 | - | | 0.7663 | 250 | 0.0857 | - | | 0.7969 | 260 | 0.0566 | - | | 0.8276 | 270 | 0.0716 | - | | 0.8582 | 280 | 0.0662 | - | | 0.8889 | 290 | 0.0963 | - | | 0.9195 | 300 | 0.0678 | 0.0212 | | 0.9502 | 310 | 0.077 | - | | 0.9808 | 320 | 0.0642 | - | | 1.0092 | 330 | 0.0725 | - | | 1.0398 | 340 | 0.0701 | - | | 1.0705 | 350 | 0.0549 | - | | 1.1011 | 360 | 0.0699 | - | | 1.1318 | 370 | 0.0714 | - | | 1.1625 | 380 | 0.0745 | - | | 1.1931 | 390 | 0.0754 | - | | 1.2238 | 400 | 0.0486 | - | | 1.2544 | 410 | 0.047 | - | | 1.2851 | 420 | 0.076 | - | | 1.3157 | 430 | 0.0689 | - | | 1.3464 | 440 | 0.0629 | - | | 1.3770 | 450 | 0.0657 | 0.0178 | | 1.4077 | 460 | 0.0622 | - | | 1.4383 | 470 | 0.0657 | - | | 1.4690 | 480 | 0.0498 | - | | 1.4996 | 490 | 0.0653 | - | | 1.5303 | 500 | 0.0715 | - | | 1.5609 | 510 | 0.0615 | - | | 1.5916 | 520 | 0.0441 | - | | 1.6222 | 530 | 0.0566 | - | | 1.6529 | 540 | 0.0524 | - | | 1.6835 | 550 | 0.0423 | - | | 1.7142 | 560 | 0.0441 | - | | 1.7448 | 570 | 0.0553 | - | | 1.7755 | 580 | 0.0572 | - | | 1.8061 | 590 | 0.0686 | - | | 1.8368 | 600 | 0.06 | 0.0146 | | 1.8674 | 610 | 0.0562 | - | | 1.8981 | 620 | 0.0517 | - | | 1.9287 | 630 | 0.0498 | - | | 1.9594 | 640 | 0.0424 | - | | 1.9900 | 650 | 0.0729 | - | | 2.0184 | 660 | 0.0347 | - | | 2.0490 | 670 | 0.06 | - | | 2.0797 | 680 | 0.0441 | - | | 2.1103 | 690 | 0.0409 | - | | 2.1410 | 700 | 0.0416 | - | | 2.1716 | 710 | 0.0345 | - | | 2.2023 | 720 | 0.024 | - | | 2.2330 | 730 | 0.0458 | - | | 2.2636 | 740 | 0.0465 | - | | 2.2943 | 750 | 0.0494 | 0.0132 | | 2.3249 | 760 | 0.0388 | - | | 2.3556 | 770 | 0.0363 | - | | 2.3862 | 780 | 0.0441 | - | | 2.4169 | 790 | 0.0378 | - | | 2.4475 | 800 | 0.0484 | - | | 2.4782 | 810 | 0.051 | - | | 2.5088 | 820 | 0.0464 | - | | 2.5395 | 830 | 0.036 | - | | 2.5701 | 840 | 0.0423 | - | | 2.6008 | 850 | 0.0278 | - | | 2.6314 | 860 | 0.0474 | - | | 2.6621 | 870 | 0.0357 | - | | 2.6927 | 880 | 0.0386 | - | | 2.7234 | 890 | 0.0334 | - | | 2.7540 | 900 | 0.0199 | 0.0127 | | 2.7847 | 910 | 0.0381 | - | | 2.8153 | 920 | 0.0415 | - | | 2.8460 | 930 | 0.0274 | - | | 2.8766 | 940 | 0.0353 | - | | 2.9073 | 950 | 0.0423 | - | | 2.9379 | 960 | 0.0267 | - | | 2.9686 | 970 | 0.042 | - | ### Framework Versions - Python: 3.11.0 - Sentence Transformers: 3.4.0 - Transformers: 4.48.1 - PyTorch: 2.5.1+cu124 - Accelerate: 1.3.0 - Datasets: 3.2.0 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
nghiatrannnnnn/7e2a3bae-1052-48c0-a520-a5f0ddfb314d
nghiatrannnnnn
2025-01-30T03:44:18Z
9
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/zephyr-sft", "base_model:adapter:unsloth/zephyr-sft", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-30T03:21:08Z
--- library_name: peft license: apache-2.0 base_model: unsloth/zephyr-sft tags: - axolotl - generated_from_trainer model-index: - name: 7e2a3bae-1052-48c0-a520-a5f0ddfb314d results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/zephyr-sft bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 932b45b740ac91ad_train_data.json ds_type: json format: custom path: /workspace/input_data/932b45b740ac91ad_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nghiatrannnnnn/7e2a3bae-1052-48c0-a520-a5f0ddfb314d hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/932b45b740ac91ad_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 1c67bdce-2bb5-4db7-acd8-febcebc77549 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 1c67bdce-2bb5-4db7-acd8-febcebc77549 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 7e2a3bae-1052-48c0-a520-a5f0ddfb314d This model is a fine-tuned version of [unsloth/zephyr-sft](https://huggingface.co/unsloth/zephyr-sft) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1347 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.7164 | 0.1671 | 200 | 0.1347 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
cunghoctienganh/a3f1d3f3-0422-41bc-8014-1a7000a20f88
cunghoctienganh
2025-01-30T03:43:14Z
6
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:berkeley-nest/Starling-LM-7B-alpha", "base_model:adapter:berkeley-nest/Starling-LM-7B-alpha", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-30T02:34:45Z
--- library_name: peft license: apache-2.0 base_model: berkeley-nest/Starling-LM-7B-alpha tags: - axolotl - generated_from_trainer model-index: - name: a3f1d3f3-0422-41bc-8014-1a7000a20f88 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: berkeley-nest/Starling-LM-7B-alpha bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c7e16a2b3005e907_train_data.json ds_type: json format: custom path: /workspace/input_data/c7e16a2b3005e907_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: cunghoctienganh/a3f1d3f3-0422-41bc-8014-1a7000a20f88 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/c7e16a2b3005e907_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0b6a4e43-35ca-49e0-9627-90df8e791f7d wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 0b6a4e43-35ca-49e0-9627-90df8e791f7d warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # a3f1d3f3-0422-41bc-8014-1a7000a20f88 This model is a fine-tuned version of [berkeley-nest/Starling-LM-7B-alpha](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5756 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 6.3536 | 0.0087 | 200 | 1.5756 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nhungphammmmm/223e2da2-48fe-42dc-b9f9-8fb012228a77
nhungphammmmm
2025-01-30T03:36:50Z
7
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:berkeley-nest/Starling-LM-7B-alpha", "base_model:adapter:berkeley-nest/Starling-LM-7B-alpha", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-30T02:35:00Z
--- library_name: peft license: apache-2.0 base_model: berkeley-nest/Starling-LM-7B-alpha tags: - axolotl - generated_from_trainer model-index: - name: 223e2da2-48fe-42dc-b9f9-8fb012228a77 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: berkeley-nest/Starling-LM-7B-alpha bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c7e16a2b3005e907_train_data.json ds_type: json format: custom path: /workspace/input_data/c7e16a2b3005e907_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhungphammmmm/223e2da2-48fe-42dc-b9f9-8fb012228a77 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/c7e16a2b3005e907_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0b6a4e43-35ca-49e0-9627-90df8e791f7d wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 0b6a4e43-35ca-49e0-9627-90df8e791f7d warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 223e2da2-48fe-42dc-b9f9-8fb012228a77 This model is a fine-tuned version of [berkeley-nest/Starling-LM-7B-alpha](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5758 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 6.3481 | 0.0087 | 200 | 1.5758 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nadejdatarabukina/71d3a083-9dbb-44f7-b1ff-8365afb19043
nadejdatarabukina
2025-01-30T03:36:40Z
7
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-0.5B-Instruct", "base_model:adapter:unsloth/Qwen2-0.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-30T03:17:00Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-0.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 71d3a083-9dbb-44f7-b1ff-8365afb19043 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2-0.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 5dd32cdee5c892d5_train_data.json ds_type: json format: custom path: /workspace/input_data/5dd32cdee5c892d5_train_data.json type: field_instruction: english_prompt field_output: sql_statement format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: nadejdatarabukina/71d3a083-9dbb-44f7-b1ff-8365afb19043 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 16 lora_dropout: 0.02 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 75GiB max_steps: 33 micro_batch_size: 2 mlflow_experiment_name: /tmp/5dd32cdee5c892d5_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 17 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 132b9665-5e41-4e60-9e8b-87e501bd6138 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 132b9665-5e41-4e60-9e8b-87e501bd6138 warmup_steps: 17 weight_decay: 0.005 xformers_attention: true ``` </details><br> # 71d3a083-9dbb-44f7-b1ff-8365afb19043 This model is a fine-tuned version of [unsloth/Qwen2-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2-0.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 17 - training_steps: 33 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | nan | | 0.0 | 0.0004 | 5 | nan | | 0.0 | 0.0008 | 10 | nan | | 0.0 | 0.0013 | 15 | nan | | 0.0 | 0.0017 | 20 | nan | | 0.0 | 0.0021 | 25 | nan | | 0.0 | 0.0025 | 30 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
aseratus1/a732b9eb-3dbc-4eaa-8205-7f8501b363f6
aseratus1
2025-01-30T03:36:22Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM-360M", "base_model:adapter:unsloth/SmolLM-360M", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-30T03:11:43Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM-360M tags: - axolotl - generated_from_trainer model-index: - name: a732b9eb-3dbc-4eaa-8205-7f8501b363f6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM-360M bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 932b975fca203429_train_data.json ds_type: json format: custom path: /workspace/input_data/932b975fca203429_train_data.json type: field_input: note field_instruction: question field_output: answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: aseratus1/a732b9eb-3dbc-4eaa-8205-7f8501b363f6 hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/932b975fca203429_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 192f06f0-5909-42fe-bc5f-7c55cc9d7e7c wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 192f06f0-5909-42fe-bc5f-7c55cc9d7e7c warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # a732b9eb-3dbc-4eaa-8205-7f8501b363f6 This model is a fine-tuned version of [unsloth/SmolLM-360M](https://huggingface.co/unsloth/SmolLM-360M) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9370 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.849 | 0.0107 | 200 | 0.9370 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
oldiday/eff7dcc1-80b7-4bad-bc83-8d05fb95ccbd
oldiday
2025-01-30T03:35:29Z
7
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-7B", "base_model:adapter:Qwen/Qwen2.5-7B", "license:apache-2.0", "region:us" ]
null
2025-01-30T03:10:05Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-7B tags: - axolotl - generated_from_trainer model-index: - name: eff7dcc1-80b7-4bad-bc83-8d05fb95ccbd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - fd7b4a135a8a3353_train_data.json ds_type: json format: custom path: /workspace/input_data/fd7b4a135a8a3353_train_data.json type: field_input: choices field_instruction: instruction field_output: summary format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: oldiday/eff7dcc1-80b7-4bad-bc83-8d05fb95ccbd hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/fd7b4a135a8a3353_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 2585e5aa-7408-49e8-8a48-8d96ba8b51db wandb_project: Gradients-On-Six wandb_run: your_name wandb_runid: 2585e5aa-7408-49e8-8a48-8d96ba8b51db warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # eff7dcc1-80b7-4bad-bc83-8d05fb95ccbd This model is a fine-tuned version of [Qwen/Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9515 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0021 | 1 | 4.1402 | | 3.7985 | 0.0187 | 9 | 3.5354 | | 3.1328 | 0.0375 | 18 | 3.0675 | | 2.9045 | 0.0563 | 27 | 3.0002 | | 2.9692 | 0.075 | 36 | 2.9799 | | 2.92 | 0.0938 | 45 | 2.9708 | | 3.0109 | 0.1125 | 54 | 2.9612 | | 2.9287 | 0.1313 | 63 | 2.9583 | | 3.0034 | 0.15 | 72 | 2.9546 | | 3.046 | 0.1688 | 81 | 2.9525 | | 3.1371 | 0.1875 | 90 | 2.9511 | | 2.9368 | 0.2062 | 99 | 2.9515 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
demohong/e5c786ca-02b3-4886-bf43-37fcac7659c8
demohong
2025-01-30T03:35:11Z
7
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM-360M", "base_model:adapter:unsloth/SmolLM-360M", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-30T03:07:58Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM-360M tags: - axolotl - generated_from_trainer model-index: - name: e5c786ca-02b3-4886-bf43-37fcac7659c8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM-360M bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 932b975fca203429_train_data.json ds_type: json format: custom path: /workspace/input_data/932b975fca203429_train_data.json type: field_input: note field_instruction: question field_output: answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: demohong/e5c786ca-02b3-4886-bf43-37fcac7659c8 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/932b975fca203429_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 192f06f0-5909-42fe-bc5f-7c55cc9d7e7c wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 192f06f0-5909-42fe-bc5f-7c55cc9d7e7c warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # e5c786ca-02b3-4886-bf43-37fcac7659c8 This model is a fine-tuned version of [unsloth/SmolLM-360M](https://huggingface.co/unsloth/SmolLM-360M) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0272 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.1611 | 0.0107 | 200 | 1.0272 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Nexspear/ef78cf79-127f-4342-9abd-936a24e3de25
Nexspear
2025-01-30T03:32:21Z
7
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/Llama-3.2-1B-Instruct", "base_model:adapter:unsloth/Llama-3.2-1B-Instruct", "license:llama3.2", "region:us" ]
null
2025-01-30T03:13:54Z
--- library_name: peft license: llama3.2 base_model: unsloth/Llama-3.2-1B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: ef78cf79-127f-4342-9abd-936a24e3de25 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Llama-3.2-1B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - a1e5e079b3bd8977_train_data.json ds_type: json format: custom path: /workspace/input_data/a1e5e079b3bd8977_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: Nexspear/ef78cf79-127f-4342-9abd-936a24e3de25 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/a1e5e079b3bd8977_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 5ee1387e-ec6a-44cd-b489-4ec211ccdb84 wandb_project: Gradients-On-Four wandb_run: your_name wandb_runid: 5ee1387e-ec6a-44cd-b489-4ec211ccdb84 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # ef78cf79-127f-4342-9abd-936a24e3de25 This model is a fine-tuned version of [unsloth/Llama-3.2-1B-Instruct](https://huggingface.co/unsloth/Llama-3.2-1B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0975 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0007 | 1 | 2.7159 | | 2.5733 | 0.0059 | 9 | 2.6051 | | 2.4322 | 0.0117 | 18 | 2.4262 | | 2.2516 | 0.0176 | 27 | 2.3187 | | 2.3156 | 0.0234 | 36 | 2.2441 | | 2.265 | 0.0293 | 45 | 2.1921 | | 2.123 | 0.0351 | 54 | 2.1536 | | 2.1664 | 0.0410 | 63 | 2.1280 | | 2.1344 | 0.0468 | 72 | 2.1116 | | 2.117 | 0.0527 | 81 | 2.1024 | | 2.0101 | 0.0585 | 90 | 2.0983 | | 2.0481 | 0.0644 | 99 | 2.0975 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
ancient41/8af5193a-522c-44d4-aa8f-baf653373378
ancient41
2025-01-30T03:31:52Z
7
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-0.5B-Instruct", "base_model:adapter:unsloth/Qwen2-0.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-30T03:16:51Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-0.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 8af5193a-522c-44d4-aa8f-baf653373378 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2-0.5B-Instruct bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - 5dd32cdee5c892d5_train_data.json ds_type: json format: custom path: /workspace/input_data/5dd32cdee5c892d5_train_data.json type: field_instruction: english_prompt field_output: sql_statement format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: ancient41/8af5193a-522c-44d4-aa8f-baf653373378 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/5dd32cdee5c892d5_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 132b9665-5e41-4e60-9e8b-87e501bd6138 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 132b9665-5e41-4e60-9e8b-87e501bd6138 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 8af5193a-522c-44d4-aa8f-baf653373378 This model is a fine-tuned version of [unsloth/Qwen2-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2-0.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0420 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.4922 | 0.0003 | 1 | 2.5977 | | 0.4016 | 0.0169 | 50 | 0.2359 | | 0.1551 | 0.0337 | 100 | 0.0872 | | 0.1064 | 0.0506 | 150 | 0.0486 | | 0.1183 | 0.0675 | 200 | 0.0420 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
rl-llm-coders/RM_8B_iter0
rl-llm-coders
2025-01-30T03:31:41Z
470
0
transformers
[ "transformers", "safetensors", "llama", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2025-01-30T03:07:30Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
lesso17/5940c906-038e-4301-b293-a9ba8eaa500c
lesso17
2025-01-30T03:30:59Z
7
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-0.5B-Instruct", "base_model:adapter:unsloth/Qwen2-0.5B-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-30T03:16:43Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-0.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 5940c906-038e-4301-b293-a9ba8eaa500c results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2-0.5B-Instruct bf16: auto chat_template: llama3 datasets: - data_files: - 5dd32cdee5c892d5_train_data.json ds_type: json format: custom path: /workspace/input_data/5dd32cdee5c892d5_train_data.json type: field_instruction: english_prompt field_output: sql_statement format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso17/5940c906-038e-4301-b293-a9ba8eaa500c hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/5dd32cdee5c892d5_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 132b9665-5e41-4e60-9e8b-87e501bd6138 wandb_project: new-01-29 wandb_run: your_name wandb_runid: 132b9665-5e41-4e60-9e8b-87e501bd6138 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 5940c906-038e-4301-b293-a9ba8eaa500c This model is a fine-tuned version of [unsloth/Qwen2-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2-0.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0169 | 200 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
robiual-awal/043838b0-9dbf-4345-9236-21024adcee21
robiual-awal
2025-01-30T03:29:34Z
7
0
peft
[ "peft", "safetensors", "falcon", "axolotl", "generated_from_trainer", "base_model:katuni4ka/tiny-random-falcon-40b", "base_model:adapter:katuni4ka/tiny-random-falcon-40b", "region:us" ]
null
2025-01-30T03:20:30Z
--- library_name: peft base_model: katuni4ka/tiny-random-falcon-40b tags: - axolotl - generated_from_trainer model-index: - name: 043838b0-9dbf-4345-9236-21024adcee21 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: katuni4ka/tiny-random-falcon-40b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 943fd678f7c64ba8_train_data.json ds_type: json format: custom path: /workspace/input_data/943fd678f7c64ba8_train_data.json type: field_instruction: text field_output: target format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: robiual-awal/043838b0-9dbf-4345-9236-21024adcee21 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/943fd678f7c64ba8_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 66129ec5-b788-45d9-a9f3-2f23dc0fd9cd wandb_project: Birthday-SN56-30-Gradients-On-Demand wandb_run: your_name wandb_runid: 66129ec5-b788-45d9-a9f3-2f23dc0fd9cd warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 043838b0-9dbf-4345-9236-21024adcee21 This model is a fine-tuned version of [katuni4ka/tiny-random-falcon-40b](https://huggingface.co/katuni4ka/tiny-random-falcon-40b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.9899 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0007 | 1 | 11.1302 | | 44.4981 | 0.0097 | 13 | 11.0910 | | 44.3207 | 0.0194 | 26 | 11.0259 | | 44.1317 | 0.0291 | 39 | 10.9899 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
tarabukinivan/9d5ba643-9c85-4b83-ad27-3e3c76dcd8c3
tarabukinivan
2025-01-30T03:29:11Z
7
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-14B", "base_model:adapter:unsloth/Qwen2.5-14B", "license:apache-2.0", "4-bit", "bitsandbytes", "region:us" ]
null
2025-01-30T02:36:23Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-14B tags: - axolotl - generated_from_trainer model-index: - name: 9d5ba643-9c85-4b83-ad27-3e3c76dcd8c3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-14B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - dc8bf750a2046088_train_data.json ds_type: json format: custom path: /workspace/input_data/dc8bf750a2046088_train_data.json type: field_instruction: query field_output: response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: tarabukinivan/9d5ba643-9c85-4b83-ad27-3e3c76dcd8c3 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 75GiB max_steps: 37 micro_batch_size: 2 mlflow_experiment_name: /tmp/dc8bf750a2046088_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 18 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 2705e754-c046-43d1-ab6e-d5d01d275ab7 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 2705e754-c046-43d1-ab6e-d5d01d275ab7 warmup_steps: 18 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 9d5ba643-9c85-4b83-ad27-3e3c76dcd8c3 This model is a fine-tuned version of [unsloth/Qwen2.5-14B](https://huggingface.co/unsloth/Qwen2.5-14B) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 18 - training_steps: 37 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0004 | 1 | nan | | 0.0 | 0.0021 | 5 | nan | | 0.0 | 0.0041 | 10 | nan | | 0.0 | 0.0062 | 15 | nan | | 0.0 | 0.0082 | 20 | nan | | 0.0 | 0.0103 | 25 | nan | | 0.0 | 0.0124 | 30 | nan | | 0.0 | 0.0144 | 35 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
kostiantynk-out/f53cf115-7f97-4453-9091-3d8838b2f696
kostiantynk-out
2025-01-30T03:28:55Z
7
0
peft
[ "peft", "safetensors", "falcon", "axolotl", "generated_from_trainer", "base_model:katuni4ka/tiny-random-falcon-40b", "base_model:adapter:katuni4ka/tiny-random-falcon-40b", "region:us" ]
null
2025-01-30T03:19:25Z
--- library_name: peft base_model: katuni4ka/tiny-random-falcon-40b tags: - axolotl - generated_from_trainer model-index: - name: f53cf115-7f97-4453-9091-3d8838b2f696 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: katuni4ka/tiny-random-falcon-40b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 943fd678f7c64ba8_train_data.json ds_type: json format: custom path: /workspace/input_data/943fd678f7c64ba8_train_data.json type: field_instruction: text field_output: target format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kostiantynk-out/f53cf115-7f97-4453-9091-3d8838b2f696 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/943fd678f7c64ba8_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 66129ec5-b788-45d9-a9f3-2f23dc0fd9cd wandb_project: Birthday-SN56-10-Gradients-On-Demand wandb_run: your_name wandb_runid: 66129ec5-b788-45d9-a9f3-2f23dc0fd9cd warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # f53cf115-7f97-4453-9091-3d8838b2f696 This model is a fine-tuned version of [katuni4ka/tiny-random-falcon-40b](https://huggingface.co/katuni4ka/tiny-random-falcon-40b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.9964 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0007 | 1 | 11.1302 | | 44.4995 | 0.0097 | 13 | 11.0934 | | 44.3301 | 0.0194 | 26 | 11.0310 | | 44.1495 | 0.0291 | 39 | 10.9964 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Best000/169cb39b-46ea-4c31-b0cd-71786d79bada
Best000
2025-01-30T03:28:54Z
7
0
peft
[ "peft", "safetensors", "falcon", "axolotl", "generated_from_trainer", "base_model:katuni4ka/tiny-random-falcon-40b", "base_model:adapter:katuni4ka/tiny-random-falcon-40b", "region:us" ]
null
2025-01-30T03:19:30Z
--- library_name: peft base_model: katuni4ka/tiny-random-falcon-40b tags: - axolotl - generated_from_trainer model-index: - name: 169cb39b-46ea-4c31-b0cd-71786d79bada results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: katuni4ka/tiny-random-falcon-40b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 943fd678f7c64ba8_train_data.json ds_type: json format: custom path: /workspace/input_data/943fd678f7c64ba8_train_data.json type: field_instruction: text field_output: target format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: Best000/169cb39b-46ea-4c31-b0cd-71786d79bada hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/943fd678f7c64ba8_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 66129ec5-b788-45d9-a9f3-2f23dc0fd9cd wandb_project: Birthday-SN56-16-Gradients-On-Demand wandb_run: your_name wandb_runid: 66129ec5-b788-45d9-a9f3-2f23dc0fd9cd warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 169cb39b-46ea-4c31-b0cd-71786d79bada This model is a fine-tuned version of [katuni4ka/tiny-random-falcon-40b](https://huggingface.co/katuni4ka/tiny-random-falcon-40b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.9872 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0007 | 1 | 11.1302 | | 44.5122 | 0.0097 | 13 | 11.1009 | | 44.3598 | 0.0194 | 26 | 11.0305 | | 44.1579 | 0.0291 | 39 | 10.9872 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nathanialhunt/a3304126-ec97-44ca-8218-479f9fc1cf06
nathanialhunt
2025-01-30T03:28:39Z
6
0
peft
[ "peft", "safetensors", "falcon", "axolotl", "generated_from_trainer", "base_model:katuni4ka/tiny-random-falcon-40b", "base_model:adapter:katuni4ka/tiny-random-falcon-40b", "region:us" ]
null
2025-01-30T03:19:30Z
--- library_name: peft base_model: katuni4ka/tiny-random-falcon-40b tags: - axolotl - generated_from_trainer model-index: - name: a3304126-ec97-44ca-8218-479f9fc1cf06 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: katuni4ka/tiny-random-falcon-40b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 943fd678f7c64ba8_train_data.json ds_type: json format: custom path: /workspace/input_data/943fd678f7c64ba8_train_data.json type: field_instruction: text field_output: target format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: nathanialhunt/a3304126-ec97-44ca-8218-479f9fc1cf06 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/943fd678f7c64ba8_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 66129ec5-b788-45d9-a9f3-2f23dc0fd9cd wandb_project: Birthday-SN56-24-Gradients-On-Demand wandb_run: your_name wandb_runid: 66129ec5-b788-45d9-a9f3-2f23dc0fd9cd warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # a3304126-ec97-44ca-8218-479f9fc1cf06 This model is a fine-tuned version of [katuni4ka/tiny-random-falcon-40b](https://huggingface.co/katuni4ka/tiny-random-falcon-40b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.0013 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0007 | 1 | 11.1302 | | 44.5008 | 0.0097 | 13 | 11.0950 | | 44.3424 | 0.0194 | 26 | 11.0348 | | 44.1683 | 0.0291 | 39 | 11.0013 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
ajku2199/Llama-2-7b-hf_abstract_prob6_dataset2_n1000_seed42_epochs10_batch8_qlora
ajku2199
2025-01-30T03:28:12Z
8
0
peft
[ "peft", "safetensors", "region:us" ]
null
2025-01-10T08:43:56Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0 - PEFT 0.4.0
baby-dev/b5646e27-268c-44f7-8190-922eca3eecdd
baby-dev
2025-01-30T03:28:04Z
7
0
peft
[ "peft", "safetensors", "falcon", "axolotl", "generated_from_trainer", "base_model:katuni4ka/tiny-random-falcon-40b", "base_model:adapter:katuni4ka/tiny-random-falcon-40b", "region:us" ]
null
2025-01-30T03:18:58Z
--- library_name: peft base_model: katuni4ka/tiny-random-falcon-40b tags: - axolotl - generated_from_trainer model-index: - name: b5646e27-268c-44f7-8190-922eca3eecdd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: katuni4ka/tiny-random-falcon-40b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 943fd678f7c64ba8_train_data.json ds_type: json format: custom path: /workspace/input_data/943fd678f7c64ba8_train_data.json type: field_instruction: text field_output: target format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: baby-dev/b5646e27-268c-44f7-8190-922eca3eecdd hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 2 mlflow_experiment_name: /tmp/943fd678f7c64ba8_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 66129ec5-b788-45d9-a9f3-2f23dc0fd9cd wandb_project: SN56-41 wandb_run: your_name wandb_runid: 66129ec5-b788-45d9-a9f3-2f23dc0fd9cd warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # b5646e27-268c-44f7-8190-922eca3eecdd This model is a fine-tuned version of [katuni4ka/tiny-random-falcon-40b](https://huggingface.co/katuni4ka/tiny-random-falcon-40b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.8207 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 44.5585 | 0.0007 | 1 | 11.1302 | | 44.1183 | 0.0186 | 25 | 11.0326 | | 43.5945 | 0.0373 | 50 | 10.8938 | | 43.4202 | 0.0559 | 75 | 10.8310 | | 43.375 | 0.0746 | 100 | 10.8207 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso16/b5106f45-749e-4df3-9209-be5e7efca82a
lesso16
2025-01-30T03:23:26Z
9
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-7B", "base_model:adapter:Qwen/Qwen2.5-7B", "license:apache-2.0", "region:us" ]
null
2025-01-30T03:09:54Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-7B tags: - axolotl - generated_from_trainer model-index: - name: b5106f45-749e-4df3-9209-be5e7efca82a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - fd7b4a135a8a3353_train_data.json ds_type: json format: custom path: /workspace/input_data/fd7b4a135a8a3353_train_data.json type: field_input: choices field_instruction: instruction field_output: summary format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso16/b5106f45-749e-4df3-9209-be5e7efca82a hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mixed_precision: bf16 mlflow_experiment_name: /tmp/fd7b4a135a8a3353_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 2585e5aa-7408-49e8-8a48-8d96ba8b51db wandb_project: multi wandb_run: your_name wandb_runid: 2585e5aa-7408-49e8-8a48-8d96ba8b51db warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # b5106f45-749e-4df3-9209-be5e7efca82a This model is a fine-tuned version of [Qwen/Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9728 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.8812 | 0.8333 | 200 | 2.9728 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso08/984c3792-83c0-425a-a701-df77f4630471
lesso08
2025-01-30T03:22:50Z
9
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-7B", "base_model:adapter:Qwen/Qwen2.5-7B", "license:apache-2.0", "region:us" ]
null
2025-01-30T03:09:33Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-7B tags: - axolotl - generated_from_trainer model-index: - name: 984c3792-83c0-425a-a701-df77f4630471 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - fd7b4a135a8a3353_train_data.json ds_type: json format: custom path: /workspace/input_data/fd7b4a135a8a3353_train_data.json type: field_input: choices field_instruction: instruction field_output: summary format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso08/984c3792-83c0-425a-a701-df77f4630471 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mixed_precision: bf16 mlflow_experiment_name: /tmp/fd7b4a135a8a3353_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 2585e5aa-7408-49e8-8a48-8d96ba8b51db wandb_project: multi wandb_run: your_name wandb_runid: 2585e5aa-7408-49e8-8a48-8d96ba8b51db warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 984c3792-83c0-425a-a701-df77f4630471 This model is a fine-tuned version of [Qwen/Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9727 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.8824 | 0.8333 | 200 | 2.9727 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso05/fc17191b-9d07-4747-ae77-e7cf37c0fa12
lesso05
2025-01-30T03:22:31Z
10
0
peft
[ "peft", "safetensors", "falcon", "axolotl", "generated_from_trainer", "base_model:katuni4ka/tiny-random-falcon-40b", "base_model:adapter:katuni4ka/tiny-random-falcon-40b", "region:us" ]
null
2025-01-30T03:19:16Z
--- library_name: peft base_model: katuni4ka/tiny-random-falcon-40b tags: - axolotl - generated_from_trainer model-index: - name: fc17191b-9d07-4747-ae77-e7cf37c0fa12 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: katuni4ka/tiny-random-falcon-40b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 943fd678f7c64ba8_train_data.json ds_type: json format: custom path: /workspace/input_data/943fd678f7c64ba8_train_data.json type: field_instruction: text field_output: target format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso05/fc17191b-9d07-4747-ae77-e7cf37c0fa12 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mixed_precision: bf16 mlflow_experiment_name: /tmp/943fd678f7c64ba8_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 66129ec5-b788-45d9-a9f3-2f23dc0fd9cd wandb_project: new-01-29 wandb_run: your_name wandb_runid: 66129ec5-b788-45d9-a9f3-2f23dc0fd9cd warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # fc17191b-9d07-4747-ae77-e7cf37c0fa12 This model is a fine-tuned version of [katuni4ka/tiny-random-falcon-40b](https://huggingface.co/katuni4ka/tiny-random-falcon-40b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.9569 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 43.8882 | 0.1492 | 200 | 10.9569 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
minhtrannnn/0be0c0ac-3aaf-4bf8-944a-8eb9eefd4884
minhtrannnn
2025-01-30T03:21:16Z
7
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-1.5B", "base_model:adapter:Qwen/Qwen2.5-1.5B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-30T02:49:05Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-1.5B tags: - axolotl - generated_from_trainer model-index: - name: 0be0c0ac-3aaf-4bf8-944a-8eb9eefd4884 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-1.5B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f111de4bd336466a_train_data.json ds_type: json format: custom path: /workspace/input_data/f111de4bd336466a_train_data.json type: field_input: dialogue field_instruction: topic field_output: summary format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: minhtrannnn/0be0c0ac-3aaf-4bf8-944a-8eb9eefd4884 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/f111de4bd336466a_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 4e5f8251-6316-40ce-a0d9-ee3cf277b82f wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 4e5f8251-6316-40ce-a0d9-ee3cf277b82f warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 0be0c0ac-3aaf-4bf8-944a-8eb9eefd4884 This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B](https://huggingface.co/Qwen/Qwen2.5-1.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0148 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.9161 | 0.5814 | 200 | 1.0148 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso17/af41af90-3a2f-4bad-b29d-c9e42a978817
lesso17
2025-01-30T03:20:34Z
6
0
peft
[ "peft", "safetensors", "falcon", "axolotl", "generated_from_trainer", "base_model:katuni4ka/tiny-random-falcon-40b", "base_model:adapter:katuni4ka/tiny-random-falcon-40b", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-30T03:17:49Z
--- library_name: peft base_model: katuni4ka/tiny-random-falcon-40b tags: - axolotl - generated_from_trainer model-index: - name: af41af90-3a2f-4bad-b29d-c9e42a978817 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: katuni4ka/tiny-random-falcon-40b bf16: auto chat_template: llama3 datasets: - data_files: - 943fd678f7c64ba8_train_data.json ds_type: json format: custom path: /workspace/input_data/943fd678f7c64ba8_train_data.json type: field_instruction: text field_output: target format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso17/af41af90-3a2f-4bad-b29d-c9e42a978817 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/943fd678f7c64ba8_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 66129ec5-b788-45d9-a9f3-2f23dc0fd9cd wandb_project: new-01-29 wandb_run: your_name wandb_runid: 66129ec5-b788-45d9-a9f3-2f23dc0fd9cd warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # af41af90-3a2f-4bad-b29d-c9e42a978817 This model is a fine-tuned version of [katuni4ka/tiny-random-falcon-40b](https://huggingface.co/katuni4ka/tiny-random-falcon-40b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.8625 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 43.5327 | 0.1492 | 200 | 10.8625 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
TweedleDeepLearnings/b11a04a6-df02-4dc5-a708-09c67528553b
TweedleDeepLearnings
2025-01-30T03:16:36Z
96
0
peft
[ "peft", "safetensors", "axolotl", "generated_from_trainer", "base_model:huggyllama/llama-7b", "base_model:adapter:huggyllama/llama-7b", "license:other", "region:us" ]
null
2025-01-30T02:51:38Z
--- library_name: peft license: other base_model: huggyllama/llama-7b tags: - axolotl - generated_from_trainer model-index: - name: c4b201cf-0eeb-4380-a91f-cd6329614a81 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora bf16: auto chat_template: llama3 dataset_prepared_path: null debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 16 gradient_checkpointing: true gradient_clipping: 0.1 group_by_length: false hub_repo: null hub_strategy: end hub_token: null learning_rate: 1.0e-04 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.1 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: linear max_steps: 200 micro_batch_size: 128 mlflow_experiment_name: /tmp/aed51b8e2c089967_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 4096 special_tokens: pad_token: </PAD> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 6a8f76dd-7262-490a-905c-7b83c0f56891 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 6a8f76dd-7262-490a-905c-7b83c0f56891 warmup_steps: 5 weight_decay: 0.1 xformers_attention: true ``` </details><br> ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 128 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 2048 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
ardaspear/b7ed16d0-5329-47fb-bed4-ed3cd4bb985a
ardaspear
2025-01-30T03:15:00Z
7
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/Llama-3.2-1B-Instruct", "base_model:adapter:unsloth/Llama-3.2-1B-Instruct", "license:llama3.2", "region:us" ]
null
2025-01-30T02:56:36Z
--- library_name: peft license: llama3.2 base_model: unsloth/Llama-3.2-1B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: b7ed16d0-5329-47fb-bed4-ed3cd4bb985a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Llama-3.2-1B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - a1e5e079b3bd8977_train_data.json ds_type: json format: custom path: /workspace/input_data/a1e5e079b3bd8977_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: ardaspear/b7ed16d0-5329-47fb-bed4-ed3cd4bb985a hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/a1e5e079b3bd8977_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 5ee1387e-ec6a-44cd-b489-4ec211ccdb84 wandb_project: Gradients-On-Five wandb_run: your_name wandb_runid: 5ee1387e-ec6a-44cd-b489-4ec211ccdb84 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # b7ed16d0-5329-47fb-bed4-ed3cd4bb985a This model is a fine-tuned version of [unsloth/Llama-3.2-1B-Instruct](https://huggingface.co/unsloth/Llama-3.2-1B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0962 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0007 | 1 | 2.7159 | | 2.5711 | 0.0059 | 9 | 2.6027 | | 2.4298 | 0.0117 | 18 | 2.4243 | | 2.2505 | 0.0176 | 27 | 2.3168 | | 2.3139 | 0.0234 | 36 | 2.2426 | | 2.2642 | 0.0293 | 45 | 2.1904 | | 2.1207 | 0.0351 | 54 | 2.1520 | | 2.1652 | 0.0410 | 63 | 2.1266 | | 2.1328 | 0.0468 | 72 | 2.1104 | | 2.1168 | 0.0527 | 81 | 2.1012 | | 2.0086 | 0.0585 | 90 | 2.0971 | | 2.0465 | 0.0644 | 99 | 2.0962 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
leixa/f7b52739-6b80-4099-bc37-a7c5225f8341
leixa
2025-01-30T03:14:58Z
7
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/Llama-3.2-1B-Instruct", "base_model:adapter:unsloth/Llama-3.2-1B-Instruct", "license:llama3.2", "region:us" ]
null
2025-01-30T02:56:13Z
--- library_name: peft license: llama3.2 base_model: unsloth/Llama-3.2-1B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: f7b52739-6b80-4099-bc37-a7c5225f8341 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Llama-3.2-1B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - a1e5e079b3bd8977_train_data.json ds_type: json format: custom path: /workspace/input_data/a1e5e079b3bd8977_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: leixa/f7b52739-6b80-4099-bc37-a7c5225f8341 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/a1e5e079b3bd8977_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 5ee1387e-ec6a-44cd-b489-4ec211ccdb84 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 5ee1387e-ec6a-44cd-b489-4ec211ccdb84 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # f7b52739-6b80-4099-bc37-a7c5225f8341 This model is a fine-tuned version of [unsloth/Llama-3.2-1B-Instruct](https://huggingface.co/unsloth/Llama-3.2-1B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0977 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0007 | 1 | 2.7159 | | 2.5701 | 0.0059 | 9 | 2.6009 | | 2.4309 | 0.0117 | 18 | 2.4248 | | 2.2524 | 0.0176 | 27 | 2.3185 | | 2.3157 | 0.0234 | 36 | 2.2440 | | 2.2649 | 0.0293 | 45 | 2.1922 | | 2.123 | 0.0351 | 54 | 2.1536 | | 2.1657 | 0.0410 | 63 | 2.1282 | | 2.1347 | 0.0468 | 72 | 2.1120 | | 2.1166 | 0.0527 | 81 | 2.1028 | | 2.0103 | 0.0585 | 90 | 2.0987 | | 2.0491 | 0.0644 | 99 | 2.0977 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
karline/tts_me_realCS_dataset
karline
2025-01-30T03:14:53Z
68
0
transformers
[ "transformers", "tensorboard", "safetensors", "speecht5", "text-to-audio", "generated_from_trainer", "dataset:audiofolder", "base_model:karline/tts_me_realCS_dataset", "base_model:finetune:karline/tts_me_realCS_dataset", "license:mit", "endpoints_compatible", "region:us" ]
text-to-audio
2025-01-28T09:48:39Z
--- library_name: transformers license: mit base_model: karline/tts_me_realCS_dataset tags: - generated_from_trainer datasets: - audiofolder model-index: - name: tts_me_realCS_dataset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tts_me_realCS_dataset This model is a fine-tuned version of [karline/tts_me_realCS_dataset](https://huggingface.co/karline/tts_me_realCS_dataset) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4252 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 40000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:-----:|:---------------:| | 0.5661 | 0.1808 | 100 | 0.5027 | | 0.5194 | 0.3616 | 200 | 0.4732 | | 0.4983 | 0.5424 | 300 | 0.4571 | | 0.4966 | 0.7232 | 400 | 0.4554 | | 0.4867 | 0.9040 | 500 | 0.4494 | | 0.4808 | 1.0832 | 600 | 0.4493 | | 0.4806 | 1.2640 | 700 | 0.4455 | | 0.4763 | 1.4447 | 800 | 0.4439 | | 0.4733 | 1.6255 | 900 | 0.4427 | | 0.4756 | 1.8063 | 1000 | 0.4377 | | 0.4689 | 1.9871 | 1100 | 0.4357 | | 0.4658 | 2.1663 | 1200 | 0.4343 | | 0.4637 | 2.3471 | 1300 | 0.4342 | | 0.462 | 2.5279 | 1400 | 0.4299 | | 0.4621 | 2.7087 | 1500 | 0.4258 | | 0.4571 | 2.8895 | 1600 | 0.4234 | | 0.4539 | 3.0687 | 1700 | 0.4214 | | 0.4485 | 3.2495 | 1800 | 0.4184 | | 0.4502 | 3.4303 | 1900 | 0.4173 | | 0.4493 | 3.6111 | 2000 | 0.4160 | | 0.4459 | 3.7919 | 2100 | 0.4156 | | 0.444 | 3.9727 | 2200 | 0.4144 | | 0.4405 | 4.1519 | 2300 | 0.4129 | | 0.4411 | 4.3327 | 2400 | 0.4141 | | 0.4403 | 4.5134 | 2500 | 0.4120 | | 0.4411 | 4.6942 | 2600 | 0.4118 | | 0.4396 | 4.8750 | 2700 | 0.4091 | | 0.4345 | 5.0542 | 2800 | 0.4085 | | 0.4348 | 5.2350 | 2900 | 0.4089 | | 0.4363 | 5.4158 | 3000 | 0.4088 | | 0.4325 | 5.5966 | 3100 | 0.4088 | | 0.4325 | 5.7774 | 3200 | 0.4081 | | 0.4345 | 5.9582 | 3300 | 0.4080 | | 0.4332 | 6.1374 | 3400 | 0.4076 | | 0.4321 | 6.3182 | 3500 | 0.4067 | | 0.4273 | 6.4990 | 3600 | 0.4071 | | 0.4309 | 6.6798 | 3700 | 0.4079 | | 0.432 | 6.8606 | 3800 | 0.4057 | | 0.4145 | 7.0398 | 3900 | 0.4057 | | 0.4277 | 7.2206 | 4000 | 0.4053 | | 0.4275 | 7.4014 | 4100 | 0.4045 | | 0.4307 | 7.5821 | 4200 | 0.4054 | | 0.4252 | 7.7629 | 4300 | 0.4044 | | 0.4306 | 7.9437 | 4400 | 0.4048 | | 0.4257 | 8.1229 | 4500 | 0.4042 | | 0.4332 | 8.3037 | 4600 | 0.4049 | | 0.4269 | 8.4845 | 4700 | 0.4041 | | 0.429 | 8.6653 | 4800 | 0.4033 | | 0.4245 | 8.8461 | 4900 | 0.4043 | | 0.4111 | 9.0253 | 5000 | 0.4043 | | 0.4304 | 9.2224 | 5100 | 0.4078 | | 0.4316 | 9.4032 | 5200 | 0.4080 | | 0.4304 | 9.5840 | 5300 | 0.4079 | | 0.431 | 9.7647 | 5400 | 0.4073 | | 0.4325 | 9.9455 | 5500 | 0.4059 | | 0.4293 | 10.1266 | 5600 | 0.4087 | | 0.4285 | 10.3073 | 5700 | 0.4089 | | 0.4279 | 10.4881 | 5800 | 0.4092 | | 0.4295 | 10.6689 | 5900 | 0.4074 | | 0.4319 | 10.8497 | 6000 | 0.4064 | | 0.4152 | 11.0289 | 6100 | 0.4053 | | 0.4209 | 11.2097 | 6200 | 0.4049 | | 0.4285 | 11.3905 | 6300 | 0.4052 | | 0.4258 | 11.5713 | 6400 | 0.4063 | | 0.4302 | 11.7521 | 6500 | 0.4055 | | 0.4274 | 11.9329 | 6600 | 0.4046 | | 0.42 | 12.1121 | 6700 | 0.4055 | | 0.4254 | 12.2929 | 6800 | 0.4042 | | 0.4234 | 12.4737 | 6900 | 0.4050 | | 0.4208 | 12.6545 | 7000 | 0.4064 | | 0.423 | 12.8353 | 7100 | 0.4032 | | 0.4093 | 13.0145 | 7200 | 0.4050 | | 0.4217 | 13.1953 | 7300 | 0.4070 | | 0.422 | 13.3760 | 7400 | 0.4053 | | 0.4198 | 13.5568 | 7500 | 0.4029 | | 0.421 | 13.7376 | 7600 | 0.4032 | | 0.4215 | 13.9184 | 7700 | 0.4052 | | 0.4176 | 14.0976 | 7800 | 0.4042 | | 0.4197 | 14.2784 | 7900 | 0.4040 | | 0.42 | 14.4592 | 8000 | 0.4059 | | 0.423 | 14.64 | 8100 | 0.4045 | | 0.418 | 14.8208 | 8200 | 0.4032 | | 0.4038 | 15.0 | 8300 | 0.4036 | | 0.4213 | 15.1808 | 8400 | 0.4049 | | 0.4175 | 15.3616 | 8500 | 0.4059 | | 0.4186 | 15.5424 | 8600 | 0.4051 | | 0.4181 | 15.7232 | 8700 | 0.4023 | | 0.4136 | 15.9040 | 8800 | 0.4037 | | 0.4165 | 16.0832 | 8900 | 0.4069 | | 0.4164 | 16.2640 | 9000 | 0.4044 | | 0.4158 | 16.4447 | 9100 | 0.4072 | | 0.4145 | 16.6255 | 9200 | 0.4040 | | 0.4158 | 16.8063 | 9300 | 0.4016 | | 0.4206 | 16.9871 | 9400 | 0.4113 | | 0.4135 | 17.1663 | 9500 | 0.4052 | | 0.4134 | 17.3471 | 9600 | 0.4049 | | 0.4145 | 17.5279 | 9700 | 0.4070 | | 0.4138 | 17.7087 | 9800 | 0.4056 | | 0.4152 | 17.8895 | 9900 | 0.4058 | | 0.4151 | 18.0687 | 10000 | 0.4057 | | 0.4135 | 18.2495 | 10100 | 0.4055 | | 0.4114 | 18.4303 | 10200 | 0.4062 | | 0.4111 | 18.6111 | 10300 | 0.4048 | | 0.4128 | 18.7919 | 10400 | 0.4058 | | 0.4092 | 18.9727 | 10500 | 0.4043 | | 0.4118 | 19.1519 | 10600 | 0.4064 | | 0.4131 | 19.3327 | 10700 | 0.4059 | | 0.4104 | 19.5134 | 10800 | 0.4044 | | 0.4157 | 19.6942 | 10900 | 0.4060 | | 0.4133 | 19.8750 | 11000 | 0.4051 | | 0.4109 | 20.0542 | 11100 | 0.4058 | | 0.4128 | 20.2350 | 11200 | 0.4043 | | 0.4101 | 20.4158 | 11300 | 0.4055 | | 0.4096 | 20.5966 | 11400 | 0.4043 | | 0.4101 | 20.7774 | 11500 | 0.4031 | | 0.4092 | 20.9582 | 11600 | 0.4062 | | 0.41 | 21.1374 | 11700 | 0.4052 | | 0.4101 | 21.3182 | 11800 | 0.4064 | | 0.407 | 21.4990 | 11900 | 0.4049 | | 0.4106 | 21.6798 | 12000 | 0.4068 | | 0.4077 | 21.8606 | 12100 | 0.4035 | | 0.3941 | 22.0398 | 12200 | 0.4071 | | 0.4087 | 22.2206 | 12300 | 0.4110 | | 0.4097 | 22.4014 | 12400 | 0.4045 | | 0.4096 | 22.5821 | 12500 | 0.4056 | | 0.4099 | 22.7629 | 12600 | 0.4052 | | 0.4064 | 22.9437 | 12700 | 0.4082 | | 0.4065 | 23.1229 | 12800 | 0.4071 | | 0.405 | 23.3037 | 12900 | 0.4071 | | 0.4069 | 23.4845 | 13000 | 0.4062 | | 0.405 | 23.6653 | 13100 | 0.4069 | | 0.4078 | 23.8461 | 13200 | 0.4057 | | 0.394 | 24.0253 | 13300 | 0.4079 | | 0.4063 | 24.2061 | 13400 | 0.4075 | | 0.4087 | 24.4122 | 13500 | 0.4092 | | 0.4094 | 24.5930 | 13600 | 0.4069 | | 0.4104 | 24.7738 | 13700 | 0.4066 | | 0.4076 | 24.9546 | 13800 | 0.4107 | | 0.4094 | 25.1356 | 13900 | 0.4087 | | 0.4061 | 25.3164 | 14000 | 0.4059 | | 0.4095 | 25.4972 | 14100 | 0.4082 | | 0.4069 | 25.6780 | 14200 | 0.4099 | | 0.4101 | 25.8588 | 14300 | 0.4076 | | 0.3903 | 26.0380 | 14400 | 0.4075 | | 0.4075 | 26.2188 | 14500 | 0.4102 | | 0.4091 | 26.3995 | 14600 | 0.4092 | | 0.4095 | 26.5803 | 14700 | 0.4070 | | 0.4065 | 26.7611 | 14800 | 0.4088 | | 0.4099 | 26.9419 | 14900 | 0.4088 | | 0.4072 | 27.1211 | 15000 | 0.4088 | | 0.404 | 27.3019 | 15100 | 0.4076 | | 0.4072 | 27.4827 | 15200 | 0.4088 | | 0.4058 | 27.6635 | 15300 | 0.4074 | | 0.4089 | 27.8443 | 15400 | 0.4084 | | 0.3922 | 28.0235 | 15500 | 0.4076 | | 0.4069 | 28.2043 | 15600 | 0.4118 | | 0.406 | 28.3851 | 15700 | 0.4077 | | 0.4039 | 28.5659 | 15800 | 0.4084 | | 0.4076 | 28.7467 | 15900 | 0.4056 | | 0.4057 | 28.9275 | 16000 | 0.4067 | | 0.4065 | 29.1067 | 16100 | 0.4081 | | 0.407 | 29.2875 | 16200 | 0.4092 | | 0.4061 | 29.4682 | 16300 | 0.4150 | | 0.4049 | 29.6490 | 16400 | 0.4074 | | 0.4057 | 29.8298 | 16500 | 0.4068 | | 0.3907 | 30.0090 | 16600 | 0.4106 | | 0.4069 | 30.1898 | 16700 | 0.4098 | | 0.399 | 30.3706 | 16800 | 0.4051 | | 0.4066 | 30.5514 | 16900 | 0.4100 | | 0.403 | 30.7322 | 17000 | 0.4073 | | 0.4052 | 30.9130 | 17100 | 0.4060 | | 0.4007 | 31.0922 | 17200 | 0.4074 | | 0.4053 | 31.2730 | 17300 | 0.4097 | | 0.4016 | 31.4538 | 17400 | 0.4130 | | 0.4034 | 31.6346 | 17500 | 0.4100 | | 0.3997 | 31.8154 | 17600 | 0.4098 | | 0.4054 | 31.9962 | 17700 | 0.4088 | | 0.403 | 32.1754 | 17800 | 0.4127 | | 0.4043 | 32.3562 | 17900 | 0.4080 | | 0.4041 | 32.5369 | 18000 | 0.4069 | | 0.4046 | 32.7177 | 18100 | 0.4078 | | 0.401 | 32.8985 | 18200 | 0.4081 | | 0.4019 | 33.0777 | 18300 | 0.4113 | | 0.4005 | 33.2585 | 18400 | 0.4083 | | 0.4058 | 33.4393 | 18500 | 0.4083 | | 0.4031 | 33.6201 | 18600 | 0.4089 | | 0.4027 | 33.8009 | 18700 | 0.4092 | | 0.4005 | 33.9817 | 18800 | 0.4102 | | 0.3994 | 34.1609 | 18900 | 0.4086 | | 0.4017 | 34.3417 | 19000 | 0.4113 | | 0.4002 | 34.5225 | 19100 | 0.4114 | | 0.4018 | 34.7033 | 19200 | 0.4117 | | 0.3996 | 34.8841 | 19300 | 0.4089 | | 0.402 | 35.0633 | 19400 | 0.4101 | | 0.3999 | 35.2441 | 19500 | 0.4125 | | 0.401 | 35.4249 | 19600 | 0.4144 | | 0.3983 | 35.6056 | 19700 | 0.4122 | | 0.4008 | 35.7864 | 19800 | 0.4106 | | 0.4036 | 35.9672 | 19900 | 0.4084 | | 0.3991 | 36.1464 | 20000 | 0.4149 | | 0.4022 | 36.3272 | 20100 | 0.4183 | | 0.3966 | 36.5080 | 20200 | 0.4134 | | 0.3977 | 36.6888 | 20300 | 0.4113 | | 0.4031 | 36.8696 | 20400 | 0.4136 | | 0.3977 | 37.0488 | 20500 | 0.4127 | | 0.3951 | 37.2296 | 20600 | 0.4145 | | 0.3977 | 37.4104 | 20700 | 0.4126 | | 0.3984 | 37.5912 | 20800 | 0.4091 | | 0.4003 | 37.7720 | 20900 | 0.4107 | | 0.3994 | 37.9528 | 21000 | 0.4102 | | 0.3996 | 38.1320 | 21100 | 0.4132 | | 0.3976 | 38.3128 | 21200 | 0.4152 | | 0.3982 | 38.4936 | 21300 | 0.4085 | | 0.3993 | 38.6744 | 21400 | 0.4112 | | 0.3969 | 38.8551 | 21500 | 0.4104 | | 0.3845 | 39.0344 | 21600 | 0.4127 | | 0.3985 | 39.2151 | 21700 | 0.4116 | | 0.3949 | 39.3959 | 21800 | 0.4121 | | 0.3998 | 39.5767 | 21900 | 0.4108 | | 0.399 | 39.7575 | 22000 | 0.4106 | | 0.3994 | 39.9383 | 22100 | 0.4164 | | 0.398 | 40.1175 | 22200 | 0.4125 | | 0.396 | 40.2983 | 22300 | 0.4138 | | 0.3953 | 40.4791 | 22400 | 0.4104 | | 0.3951 | 40.6599 | 22500 | 0.4190 | | 0.3967 | 40.8407 | 22600 | 0.4120 | | 0.3809 | 41.0199 | 22700 | 0.4141 | | 0.3966 | 41.2007 | 22800 | 0.4141 | | 0.3965 | 41.3815 | 22900 | 0.4132 | | 0.396 | 41.5623 | 23000 | 0.4114 | | 0.3949 | 41.7431 | 23100 | 0.4120 | | 0.3989 | 41.9238 | 23200 | 0.4149 | | 0.3962 | 42.1031 | 23300 | 0.4115 | | 0.3957 | 42.2838 | 23400 | 0.4131 | | 0.3951 | 42.4646 | 23500 | 0.4153 | | 0.3953 | 42.6454 | 23600 | 0.4147 | | 0.3952 | 42.8262 | 23700 | 0.4110 | | 0.3817 | 43.0054 | 23800 | 0.4150 | | 0.3987 | 43.1862 | 23900 | 0.4156 | | 0.3946 | 43.3670 | 24000 | 0.4156 | | 0.3939 | 43.5478 | 24100 | 0.4123 | | 0.3938 | 43.7286 | 24200 | 0.4161 | | 0.3958 | 43.9094 | 24300 | 0.4183 | | 0.3955 | 44.0886 | 24400 | 0.4157 | | 0.3949 | 44.2694 | 24500 | 0.4145 | | 0.3951 | 44.4502 | 24600 | 0.4151 | | 0.3982 | 44.6310 | 24700 | 0.4167 | | 0.3962 | 44.8118 | 24800 | 0.4133 | | 0.3927 | 44.9925 | 24900 | 0.4180 | | 0.3951 | 45.1718 | 25000 | 0.4119 | | 0.3937 | 45.3525 | 25100 | 0.4153 | | 0.3942 | 45.5333 | 25200 | 0.4152 | | 0.3968 | 45.7141 | 25300 | 0.4141 | | 0.3935 | 45.8949 | 25400 | 0.4121 | | 0.3912 | 46.0741 | 25500 | 0.4161 | | 0.391 | 46.2549 | 25600 | 0.4120 | | 0.3942 | 46.4357 | 25700 | 0.4167 | | 0.3931 | 46.6165 | 25800 | 0.4157 | | 0.3933 | 46.7973 | 25900 | 0.4171 | | 0.3954 | 46.9781 | 26000 | 0.4175 | | 0.3926 | 47.1573 | 26100 | 0.4124 | | 0.3929 | 47.3381 | 26200 | 0.4148 | | 0.3955 | 47.5189 | 26300 | 0.4183 | | 0.3963 | 47.6997 | 26400 | 0.4152 | | 0.3928 | 47.8805 | 26500 | 0.4154 | | 0.3929 | 48.0597 | 26600 | 0.4140 | | 0.3945 | 48.2405 | 26700 | 0.4200 | | 0.3938 | 48.4212 | 26800 | 0.4159 | | 0.39 | 48.6020 | 26900 | 0.4132 | | 0.3922 | 48.7828 | 27000 | 0.4195 | | 0.3928 | 48.9636 | 27100 | 0.4168 | | 0.3931 | 49.1428 | 27200 | 0.4177 | | 0.3915 | 49.3236 | 27300 | 0.4157 | | 0.3911 | 49.5044 | 27400 | 0.4167 | | 0.3919 | 49.6852 | 27500 | 0.4188 | | 0.3936 | 49.8660 | 27600 | 0.4137 | | 0.3924 | 50.0452 | 27700 | 0.4162 | | 0.3911 | 50.2260 | 27800 | 0.4165 | | 0.3942 | 50.4068 | 27900 | 0.4186 | | 0.3895 | 50.5876 | 28000 | 0.4165 | | 0.3907 | 50.7684 | 28100 | 0.4217 | | 0.3885 | 50.9492 | 28200 | 0.4166 | | 0.3918 | 51.1284 | 28300 | 0.4171 | | 0.3885 | 51.3092 | 28400 | 0.4153 | | 0.3899 | 51.4899 | 28500 | 0.4161 | | 0.3933 | 51.6707 | 28600 | 0.4176 | | 0.3911 | 51.8515 | 28700 | 0.4160 | | 0.3771 | 52.0307 | 28800 | 0.4169 | | 0.393 | 52.2115 | 28900 | 0.4188 | | 0.3901 | 52.3923 | 29000 | 0.4145 | | 0.3918 | 52.5731 | 29100 | 0.4176 | | 0.3901 | 52.7539 | 29200 | 0.4179 | | 0.3928 | 52.9347 | 29300 | 0.4179 | | 0.3883 | 53.1139 | 29400 | 0.4172 | | 0.3886 | 53.2947 | 29500 | 0.4205 | | 0.3876 | 53.4755 | 29600 | 0.4184 | | 0.3939 | 53.6563 | 29700 | 0.4168 | | 0.3906 | 53.8371 | 29800 | 0.4165 | | 0.3763 | 54.0163 | 29900 | 0.4173 | | 0.3902 | 54.1971 | 30000 | 0.4165 | | 0.3886 | 54.3779 | 30100 | 0.4175 | | 0.3889 | 54.5586 | 30200 | 0.4191 | | 0.3926 | 54.7394 | 30300 | 0.4196 | | 0.389 | 54.9202 | 30400 | 0.4182 | | 0.3921 | 55.0994 | 30500 | 0.4196 | | 0.3923 | 55.2802 | 30600 | 0.4196 | | 0.3882 | 55.4610 | 30700 | 0.4202 | | 0.3906 | 55.6418 | 30800 | 0.4187 | | 0.3902 | 55.8226 | 30900 | 0.4187 | | 0.3751 | 56.0018 | 31000 | 0.4189 | | 0.3874 | 56.1826 | 31100 | 0.4208 | | 0.3907 | 56.3634 | 31200 | 0.4198 | | 0.3915 | 56.5442 | 31300 | 0.4197 | | 0.3872 | 56.7250 | 31400 | 0.4216 | | 0.3905 | 56.9058 | 31500 | 0.4208 | | 0.3893 | 57.0850 | 31600 | 0.4207 | | 0.3904 | 57.2658 | 31700 | 0.4228 | | 0.3872 | 57.4466 | 31800 | 0.4217 | | 0.3878 | 57.6273 | 31900 | 0.4205 | | 0.3899 | 57.8081 | 32000 | 0.4220 | | 0.3865 | 57.9889 | 32100 | 0.4212 | | 0.388 | 58.1681 | 32200 | 0.4181 | | 0.3878 | 58.3489 | 32300 | 0.4194 | | 0.3917 | 58.5297 | 32400 | 0.4188 | | 0.3894 | 58.7105 | 32500 | 0.4202 | | 0.3876 | 58.8913 | 32600 | 0.4224 | | 0.3903 | 59.0705 | 32700 | 0.4207 | | 0.3887 | 59.2513 | 32800 | 0.4200 | | 0.3871 | 59.4321 | 32900 | 0.4208 | | 0.3867 | 59.6129 | 33000 | 0.4220 | | 0.3864 | 59.7937 | 33100 | 0.4187 | | 0.3881 | 59.9745 | 33200 | 0.4215 | | 0.3853 | 60.1537 | 33300 | 0.4197 | | 0.3883 | 60.3345 | 33400 | 0.4202 | | 0.3883 | 60.5153 | 33500 | 0.4189 | | 0.3879 | 60.6960 | 33600 | 0.4198 | | 0.3919 | 60.8768 | 33700 | 0.4195 | | 0.3898 | 61.0560 | 33800 | 0.4199 | | 0.3877 | 61.2368 | 33900 | 0.4218 | | 0.3869 | 61.4176 | 34000 | 0.4216 | | 0.3898 | 61.5984 | 34100 | 0.4209 | | 0.3877 | 61.7792 | 34200 | 0.4201 | | 0.3857 | 61.96 | 34300 | 0.4216 | | 0.3869 | 62.1392 | 34400 | 0.4207 | | 0.3863 | 62.32 | 34500 | 0.4227 | | 0.387 | 62.5008 | 34600 | 0.4216 | | 0.386 | 62.6816 | 34700 | 0.4227 | | 0.3885 | 62.8624 | 34800 | 0.4200 | | 0.3726 | 63.0416 | 34900 | 0.4223 | | 0.3894 | 63.2224 | 35000 | 0.4240 | | 0.386 | 63.4032 | 35100 | 0.4219 | | 0.3875 | 63.5840 | 35200 | 0.4217 | | 0.3854 | 63.7647 | 35300 | 0.4207 | | 0.3849 | 63.9455 | 35400 | 0.4207 | | 0.3879 | 64.1247 | 35500 | 0.4229 | | 0.3864 | 64.3055 | 35600 | 0.4216 | | 0.3845 | 64.4863 | 35700 | 0.4219 | | 0.3853 | 64.6671 | 35800 | 0.4200 | | 0.3927 | 64.8479 | 35900 | 0.4214 | | 0.3747 | 65.0271 | 36000 | 0.4207 | | 0.3858 | 65.2079 | 36100 | 0.4222 | | 0.3879 | 65.3887 | 36200 | 0.4225 | | 0.3886 | 65.5695 | 36300 | 0.4222 | | 0.3851 | 65.7503 | 36400 | 0.4222 | | 0.3875 | 65.9311 | 36500 | 0.4239 | | 0.3859 | 66.1103 | 36600 | 0.4231 | | 0.3878 | 66.2911 | 36700 | 0.4227 | | 0.3873 | 66.4719 | 36800 | 0.4257 | | 0.385 | 66.6527 | 36900 | 0.4239 | | 0.3853 | 66.8334 | 37000 | 0.4236 | | 0.3691 | 67.0127 | 37100 | 0.4251 | | 0.3888 | 67.1934 | 37200 | 0.4256 | | 0.3844 | 67.3742 | 37300 | 0.4222 | | 0.387 | 67.5550 | 37400 | 0.4233 | | 0.3853 | 67.7358 | 37500 | 0.4224 | | 0.3846 | 67.9166 | 37600 | 0.4237 | | 0.3869 | 68.0958 | 37700 | 0.4246 | | 0.3827 | 68.2766 | 37800 | 0.4232 | | 0.3838 | 68.4574 | 37900 | 0.4225 | | 0.3849 | 68.6382 | 38000 | 0.4245 | | 0.3885 | 68.8190 | 38100 | 0.4241 | | 0.3878 | 68.9998 | 38200 | 0.4238 | | 0.3858 | 69.1790 | 38300 | 0.4247 | | 0.3853 | 69.3598 | 38400 | 0.4247 | | 0.3883 | 69.5406 | 38500 | 0.4248 | | 0.3895 | 69.7214 | 38600 | 0.4258 | | 0.3858 | 69.9021 | 38700 | 0.4236 | | 0.3876 | 70.0814 | 38800 | 0.4241 | | 0.3865 | 70.2621 | 38900 | 0.4248 | | 0.3859 | 70.4429 | 39000 | 0.4259 | | 0.3872 | 70.6237 | 39100 | 0.4247 | | 0.3823 | 70.8045 | 39200 | 0.4247 | | 0.385 | 70.9853 | 39300 | 0.4251 | | 0.3852 | 71.1645 | 39400 | 0.4252 | | 0.3858 | 71.3453 | 39500 | 0.4255 | | 0.3826 | 71.5261 | 39600 | 0.4253 | | 0.3877 | 71.7069 | 39700 | 0.4251 | | 0.3861 | 71.8877 | 39800 | 0.4253 | | 0.3845 | 72.0669 | 39900 | 0.4248 | | 0.3857 | 72.2477 | 40000 | 0.4252 | ### Framework versions - Transformers 4.48.0 - Pytorch 2.2.1 - Datasets 3.2.0 - Tokenizers 0.21.0
nadejdatarabukina/5e4b4140-24a3-417d-a250-a8a2dc2b4a6f
nadejdatarabukina
2025-01-30T03:07:37Z
7
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-14B", "base_model:adapter:unsloth/Qwen2.5-14B", "license:apache-2.0", "region:us" ]
null
2025-01-30T02:36:19Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-14B tags: - axolotl - generated_from_trainer model-index: - name: 5e4b4140-24a3-417d-a250-a8a2dc2b4a6f results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-14B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - dc8bf750a2046088_train_data.json ds_type: json format: custom path: /workspace/input_data/dc8bf750a2046088_train_data.json type: field_instruction: query field_output: response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: nadejdatarabukina/5e4b4140-24a3-417d-a250-a8a2dc2b4a6f hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 16 lora_dropout: 0.02 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 75GiB max_steps: 33 micro_batch_size: 2 mlflow_experiment_name: /tmp/dc8bf750a2046088_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 17 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 2705e754-c046-43d1-ab6e-d5d01d275ab7 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 2705e754-c046-43d1-ab6e-d5d01d275ab7 warmup_steps: 17 weight_decay: 0.005 xformers_attention: true ``` </details><br> # 5e4b4140-24a3-417d-a250-a8a2dc2b4a6f This model is a fine-tuned version of [unsloth/Qwen2.5-14B](https://huggingface.co/unsloth/Qwen2.5-14B) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 17 - training_steps: 33 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0004 | 1 | nan | | 0.0 | 0.0021 | 5 | nan | | 0.0 | 0.0041 | 10 | nan | | 0.0 | 0.0062 | 15 | nan | | 0.0 | 0.0082 | 20 | nan | | 0.0 | 0.0103 | 25 | nan | | 0.0 | 0.0124 | 30 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
gavrilstep/607242f0-2e49-4fc1-b572-c3e0437aa354
gavrilstep
2025-01-30T03:07:23Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/Llama-3.2-1B-Instruct", "base_model:adapter:unsloth/Llama-3.2-1B-Instruct", "license:llama3.2", "region:us" ]
null
2025-01-30T02:56:34Z
--- library_name: peft license: llama3.2 base_model: unsloth/Llama-3.2-1B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 607242f0-2e49-4fc1-b572-c3e0437aa354 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Llama-3.2-1B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - a1e5e079b3bd8977_train_data.json ds_type: json format: custom path: /workspace/input_data/a1e5e079b3bd8977_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: gavrilstep/607242f0-2e49-4fc1-b572-c3e0437aa354 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 75GiB max_steps: 39 micro_batch_size: 2 mlflow_experiment_name: /tmp/a1e5e079b3bd8977_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 21 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 5ee1387e-ec6a-44cd-b489-4ec211ccdb84 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 5ee1387e-ec6a-44cd-b489-4ec211ccdb84 warmup_steps: 21 weight_decay: 0.02 xformers_attention: true ``` </details><br> # 607242f0-2e49-4fc1-b572-c3e0437aa354 This model is a fine-tuned version of [unsloth/Llama-3.2-1B-Instruct](https://huggingface.co/unsloth/Llama-3.2-1B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 21 - training_steps: 39 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0002 | 1 | nan | | 0.0 | 0.0008 | 5 | nan | | 0.0 | 0.0016 | 10 | nan | | 0.0 | 0.0024 | 15 | nan | | 0.0 | 0.0033 | 20 | nan | | 0.0 | 0.0041 | 25 | nan | | 0.0 | 0.0049 | 30 | nan | | 0.0 | 0.0057 | 35 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Elana/InterPLM-esm2-8m
Elana
2025-01-30T03:06:49Z
5
0
null
[ "sparse_autoencoder", "protein-language-models", "sparse-autoencoder", "en", "license:mit", "region:us" ]
null
2025-01-25T00:40:45Z
--- language: - en tags: - protein-language-models - sparse-autoencoder license: mit --- # Sparse Autoencoders for ESM-2 (8M) Interpret protein language model representations using sparse autoencoders trained on ESM-2 (8M) layers. These models decompose complex neural representations into interpretable features, enabling deeper understanding of how protein language models process sequence information. * 📊 Model details in the [InterPLM pre-print](https://www.biorxiv.org/content/10.1101/2024.11.14.623630v1) * 👩‍💻 Training and analysis code in the [GitHub repo](https://github.com/ElanaPearl/InterPLM) * 🧬 Explore features at [InterPLM.ai](https://www.interplm.ai) ## Model Details - Base Model: ESM-2 8M (6 layers) - Architecture: Sparse Autoencoder - Input Dimension: 320 - Feature Dimension: 10,240 ## Available Models We provide SAE models trained on different layers of ESM-2-8M: | Model name | ESM2 model | ESM2 layer | |-|-|-| | [InterPLM-esm2-8m-l1](https://huggingface.co/Elana/InterPLM-esm2-8m/tree/main/layer_1) | esm2_t6_8m_UR50D | 1 | | [InterPLM-esm2-8m-l2](https://huggingface.co/Elana/InterPLM-esm2-8m/tree/main/layer_2) | esm2_t6_8m_UR50D | 2 | | [InterPLM-esm2-8m-l3](https://huggingface.co/Elana/InterPLM-esm2-8m/tree/main/layer_3) | esm2_t6_8m_UR50D | 3 | | [InterPLM-esm2-8m-l4](https://huggingface.co/Elana/InterPLM-esm2-8m/tree/main/layer_4) | esm2_t6_8m_UR50D | 4 | | [InterPLM-esm2-8m-l5](https://huggingface.co/Elana/InterPLM-esm2-8m/tree/main/layer_5) | esm2_t6_8m_UR50D | 5 | | [InterPLM-esm2-8m-l6](https://huggingface.co/Elana/InterPLM-esm2-8m/tree/main/layer_6) | esm2_t6_8m_UR50D | 6 | All models share the same architecture and dictionary size (10,240). See [here](https://huggingface.co/Elana/InterPLM-esm2-650m) for SAEs trained on ESM-2 650M. The 650M SAEs capture more known biological concepts than the 8M but require additional compute for both ESM embedding and SAE feature extraction. ## Usage Extract interpretable features from protein sequences: ```python from interplm.sae.inference import load_sae_from_hf from interplm.esm.embed import embed_single_sequence # Get ESM embeddings for protein sequence embeddings = embed_single_sequence( sequence="MRWQEMGYIFYPRKLR", model_name="esm2_t6_8M_UR50D", layer=4 # Choose ESM layer (1-6) ) # Load SAE model and extract features sae = load_sae_from_hf(plm_model="esm2-8m", plm_layer=4) features = sae.encode(embeddings) ``` For detailed training and analysis examples, see the [GitHub README](https://github.com/ElanaPearl/InterPLM/blob/main/README.md). ## Model Variants The SAEs we've trained have arbitrary scales between features since encoder/decoder weights could be linearly scaled without changing reconstructions. To make features comparable, we normalize them to activate between 0-1 based on max activation values from Swiss-Prot (since this is our primary analysis dataset). By default, use our pre-normalized SAEs (`ae_normalized.pt`). As this might not perfectly scale features not present in Swiss-Prot proteins, for custom normalization use `ae_unnormalized.pt` with [this code](https://github.com/ElanaPearl/InterPLM/blob/main/interplm/sae/normalize.py).
vapegod/g6
vapegod
2025-01-30T03:04:50Z
70
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-30T03:02:33Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mrhunghd/ccf7dcea-1711-44d4-af66-50b54f3673e5
mrhunghd
2025-01-30T03:03:38Z
7
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-1.5B", "base_model:adapter:Qwen/Qwen2.5-1.5B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-30T02:49:16Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-1.5B tags: - axolotl - generated_from_trainer model-index: - name: ccf7dcea-1711-44d4-af66-50b54f3673e5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-1.5B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f111de4bd336466a_train_data.json ds_type: json format: custom path: /workspace/input_data/f111de4bd336466a_train_data.json type: field_input: dialogue field_instruction: topic field_output: summary format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: mrhunghd/ccf7dcea-1711-44d4-af66-50b54f3673e5 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/f111de4bd336466a_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 4e5f8251-6316-40ce-a0d9-ee3cf277b82f wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 4e5f8251-6316-40ce-a0d9-ee3cf277b82f warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # ccf7dcea-1711-44d4-af66-50b54f3673e5 This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B](https://huggingface.co/Qwen/Qwen2.5-1.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0151 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.9136 | 0.5814 | 200 | 1.0151 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
visdata/raise3
visdata
2025-01-30T03:02:30Z
38
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-30T02:55:20Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
nbninh/eb743aac-07c7-4f74-be63-f274512bd706
nbninh
2025-01-30T03:02:08Z
7
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-1.5B", "base_model:adapter:Qwen/Qwen2.5-1.5B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-30T02:49:03Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-1.5B tags: - axolotl - generated_from_trainer model-index: - name: eb743aac-07c7-4f74-be63-f274512bd706 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-1.5B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f111de4bd336466a_train_data.json ds_type: json format: custom path: /workspace/input_data/f111de4bd336466a_train_data.json type: field_input: dialogue field_instruction: topic field_output: summary format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nbninh/eb743aac-07c7-4f74-be63-f274512bd706 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/f111de4bd336466a_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 4e5f8251-6316-40ce-a0d9-ee3cf277b82f wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 4e5f8251-6316-40ce-a0d9-ee3cf277b82f warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # eb743aac-07c7-4f74-be63-f274512bd706 This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B](https://huggingface.co/Qwen/Qwen2.5-1.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0146 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.9062 | 0.5814 | 200 | 1.0146 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
myhaaaaaaa/9d922f19-b335-41c3-ac79-7931f65119d7
myhaaaaaaa
2025-01-30T03:01:41Z
7
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-1.5B", "base_model:adapter:Qwen/Qwen2.5-1.5B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-30T02:49:32Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-1.5B tags: - axolotl - generated_from_trainer model-index: - name: 9d922f19-b335-41c3-ac79-7931f65119d7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-1.5B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f111de4bd336466a_train_data.json ds_type: json format: custom path: /workspace/input_data/f111de4bd336466a_train_data.json type: field_input: dialogue field_instruction: topic field_output: summary format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: myhaaaaaaa/9d922f19-b335-41c3-ac79-7931f65119d7 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/f111de4bd336466a_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 4e5f8251-6316-40ce-a0d9-ee3cf277b82f wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 4e5f8251-6316-40ce-a0d9-ee3cf277b82f warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 9d922f19-b335-41c3-ac79-7931f65119d7 This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B](https://huggingface.co/Qwen/Qwen2.5-1.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0134 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.9084 | 0.5814 | 200 | 1.0134 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
datlaaaaaaa/5e4a99bb-d816-4045-ac35-60d7eb9593de
datlaaaaaaa
2025-01-30T03:01:36Z
7
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-1.5B", "base_model:adapter:Qwen/Qwen2.5-1.5B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-30T02:49:14Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-1.5B tags: - axolotl - generated_from_trainer model-index: - name: 5e4a99bb-d816-4045-ac35-60d7eb9593de results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-1.5B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f111de4bd336466a_train_data.json ds_type: json format: custom path: /workspace/input_data/f111de4bd336466a_train_data.json type: field_input: dialogue field_instruction: topic field_output: summary format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: datlaaaaaaa/5e4a99bb-d816-4045-ac35-60d7eb9593de hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/f111de4bd336466a_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 4e5f8251-6316-40ce-a0d9-ee3cf277b82f wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 4e5f8251-6316-40ce-a0d9-ee3cf277b82f warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 5e4a99bb-d816-4045-ac35-60d7eb9593de This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B](https://huggingface.co/Qwen/Qwen2.5-1.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0133 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.903 | 0.5814 | 200 | 1.0133 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
JacksonBrune/c9327a65-4034-4f0b-af5c-58ce19320cf4
JacksonBrune
2025-01-30T02:59:27Z
7
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-1.5B", "base_model:adapter:Qwen/Qwen2.5-1.5B", "license:apache-2.0", "region:us" ]
null
2025-01-30T02:53:31Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-1.5B tags: - axolotl - generated_from_trainer model-index: - name: c9327a65-4034-4f0b-af5c-58ce19320cf4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-1.5B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f111de4bd336466a_train_data.json ds_type: json format: custom path: /workspace/input_data/f111de4bd336466a_train_data.json type: field_input: dialogue field_instruction: topic field_output: summary format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: JacksonBrune/c9327a65-4034-4f0b-af5c-58ce19320cf4 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/f111de4bd336466a_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 4e5f8251-6316-40ce-a0d9-ee3cf277b82f wandb_project: Birthday-SN56-12-Gradients-On-Demand wandb_run: your_name wandb_runid: 4e5f8251-6316-40ce-a0d9-ee3cf277b82f warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # c9327a65-4034-4f0b-af5c-58ce19320cf4 This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B](https://huggingface.co/Qwen/Qwen2.5-1.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0709 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.2582 | 0.0029 | 1 | 2.1271 | | 1.6584 | 0.0378 | 13 | 1.3767 | | 1.143 | 0.0756 | 26 | 1.1119 | | 1.0689 | 0.1134 | 39 | 1.0709 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
prxy5604/984fa9e1-fce5-45f4-a5b4-eb088ca84258
prxy5604
2025-01-30T02:59:13Z
7
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:deepseek-ai/deepseek-coder-6.7b-instruct", "base_model:adapter:deepseek-ai/deepseek-coder-6.7b-instruct", "license:other", "region:us" ]
null
2025-01-30T02:02:23Z
--- library_name: peft license: other base_model: deepseek-ai/deepseek-coder-6.7b-instruct tags: - axolotl - generated_from_trainer model-index: - name: 984fa9e1-fce5-45f4-a5b4-eb088ca84258 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: deepseek-ai/deepseek-coder-6.7b-instruct bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - 8e83a81599a1c92e_train_data.json ds_type: json format: custom path: /workspace/input_data/8e83a81599a1c92e_train_data.json type: field_instruction: description field_output: title format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: prxy5604/984fa9e1-fce5-45f4-a5b4-eb088ca84258 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/8e83a81599a1c92e_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: f3fae5bf-6f85-4e00-b401-849bb92f687b wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: f3fae5bf-6f85-4e00-b401-849bb92f687b warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 984fa9e1-fce5-45f4-a5b4-eb088ca84258 This model is a fine-tuned version of [deepseek-ai/deepseek-coder-6.7b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9099 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.5346 | 0.0004 | 1 | 3.9100 | | 3.0605 | 0.0177 | 50 | 2.2425 | | 2.9457 | 0.0354 | 100 | 2.0306 | | 2.6463 | 0.0530 | 150 | 1.9341 | | 2.6142 | 0.0707 | 200 | 1.9099 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
chchen/Ministral-8B-Instruct-2410-PsyCourse-fold3
chchen
2025-01-30T02:56:59Z
6
0
peft
[ "peft", "safetensors", "llama-factory", "lora", "generated_from_trainer", "base_model:mistralai/Ministral-8B-Instruct-2410", "base_model:adapter:mistralai/Ministral-8B-Instruct-2410", "license:other", "region:us" ]
null
2025-01-29T14:24:03Z
--- library_name: peft license: other base_model: mistralai/Ministral-8B-Instruct-2410 tags: - llama-factory - lora - generated_from_trainer model-index: - name: Ministral-8B-Instruct-2410-PsyCourse-fold3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Ministral-8B-Instruct-2410-PsyCourse-fold3 This model is a fine-tuned version of [mistralai/Ministral-8B-Instruct-2410](https://huggingface.co/mistralai/Ministral-8B-Instruct-2410) on the course-train-fold1 dataset. It achieves the following results on the evaluation set: - Loss: 0.0309 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.2581 | 0.0770 | 50 | 0.2414 | | 0.0852 | 0.1539 | 100 | 0.0696 | | 0.0612 | 0.2309 | 150 | 0.0584 | | 0.0579 | 0.3078 | 200 | 0.0537 | | 0.0436 | 0.3848 | 250 | 0.0433 | | 0.0395 | 0.4617 | 300 | 0.0470 | | 0.0436 | 0.5387 | 350 | 0.0454 | | 0.0487 | 0.6156 | 400 | 0.0436 | | 0.0302 | 0.6926 | 450 | 0.0377 | | 0.0301 | 0.7695 | 500 | 0.0377 | | 0.0422 | 0.8465 | 550 | 0.0353 | | 0.0352 | 0.9234 | 600 | 0.0341 | | 0.0327 | 1.0004 | 650 | 0.0346 | | 0.0328 | 1.0773 | 700 | 0.0361 | | 0.0278 | 1.1543 | 750 | 0.0347 | | 0.0277 | 1.2312 | 800 | 0.0336 | | 0.0278 | 1.3082 | 850 | 0.0347 | | 0.0208 | 1.3851 | 900 | 0.0341 | | 0.037 | 1.4621 | 950 | 0.0345 | | 0.0335 | 1.5391 | 1000 | 0.0357 | | 0.0305 | 1.6160 | 1050 | 0.0322 | | 0.0337 | 1.6930 | 1100 | 0.0377 | | 0.0221 | 1.7699 | 1150 | 0.0325 | | 0.0192 | 1.8469 | 1200 | 0.0378 | | 0.0282 | 1.9238 | 1250 | 0.0325 | | 0.0216 | 2.0008 | 1300 | 0.0309 | | 0.0172 | 2.0777 | 1350 | 0.0312 | | 0.0238 | 2.1547 | 1400 | 0.0342 | | 0.0118 | 2.2316 | 1450 | 0.0379 | | 0.02 | 2.3086 | 1500 | 0.0349 | | 0.0162 | 2.3855 | 1550 | 0.0389 | | 0.0138 | 2.4625 | 1600 | 0.0367 | | 0.0193 | 2.5394 | 1650 | 0.0348 | | 0.0208 | 2.6164 | 1700 | 0.0356 | | 0.0228 | 2.6933 | 1750 | 0.0326 | | 0.0195 | 2.7703 | 1800 | 0.0323 | | 0.0219 | 2.8472 | 1850 | 0.0317 | | 0.0169 | 2.9242 | 1900 | 0.0329 | | 0.0235 | 3.0012 | 1950 | 0.0340 | | 0.0092 | 3.0781 | 2000 | 0.0377 | | 0.0107 | 3.1551 | 2050 | 0.0413 | | 0.0093 | 3.2320 | 2100 | 0.0398 | | 0.0076 | 3.3090 | 2150 | 0.0406 | | 0.0115 | 3.3859 | 2200 | 0.0380 | | 0.0065 | 3.4629 | 2250 | 0.0371 | | 0.0115 | 3.5398 | 2300 | 0.0394 | | 0.006 | 3.6168 | 2350 | 0.0399 | | 0.0119 | 3.6937 | 2400 | 0.0366 | | 0.0068 | 3.7707 | 2450 | 0.0387 | | 0.0079 | 3.8476 | 2500 | 0.0394 | | 0.0092 | 3.9246 | 2550 | 0.0405 | | 0.0088 | 4.0015 | 2600 | 0.0393 | | 0.0017 | 4.0785 | 2650 | 0.0415 | | 0.0076 | 4.1554 | 2700 | 0.0446 | | 0.0017 | 4.2324 | 2750 | 0.0453 | | 0.0027 | 4.3093 | 2800 | 0.0469 | | 0.003 | 4.3863 | 2850 | 0.0485 | | 0.0047 | 4.4633 | 2900 | 0.0493 | | 0.0021 | 4.5402 | 2950 | 0.0484 | | 0.0031 | 4.6172 | 3000 | 0.0485 | | 0.0036 | 4.6941 | 3050 | 0.0488 | | 0.0028 | 4.7711 | 3100 | 0.0488 | | 0.0031 | 4.8480 | 3150 | 0.0487 | | 0.0035 | 4.9250 | 3200 | 0.0487 | ### Framework versions - PEFT 0.12.0 - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3
mradermacher/Chocolatine-2-14B-Instruct-DPO-v2.0b7-i1-GGUF
mradermacher
2025-01-30T02:56:19Z
548
0
transformers
[ "transformers", "gguf", "en", "base_model:jpacifico/Chocolatine-2-14B-Instruct-DPO-v2.0b7", "base_model:quantized:jpacifico/Chocolatine-2-14B-Instruct-DPO-v2.0b7", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-01-29T16:56:29Z
--- base_model: jpacifico/Chocolatine-2-14B-Instruct-DPO-v2.0b7 language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/jpacifico/Chocolatine-2-14B-Instruct-DPO-v2.0b7 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Chocolatine-2-14B-Instruct-DPO-v2.0b7-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Chocolatine-2-14B-Instruct-DPO-v2.0b7-i1-GGUF/resolve/main/Chocolatine-2-14B-Instruct-DPO-v2.0b7.i1-IQ1_S.gguf) | i1-IQ1_S | 3.5 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-2-14B-Instruct-DPO-v2.0b7-i1-GGUF/resolve/main/Chocolatine-2-14B-Instruct-DPO-v2.0b7.i1-IQ1_M.gguf) | i1-IQ1_M | 3.8 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-2-14B-Instruct-DPO-v2.0b7-i1-GGUF/resolve/main/Chocolatine-2-14B-Instruct-DPO-v2.0b7.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 4.3 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-2-14B-Instruct-DPO-v2.0b7-i1-GGUF/resolve/main/Chocolatine-2-14B-Instruct-DPO-v2.0b7.i1-IQ2_XS.gguf) | i1-IQ2_XS | 4.7 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-2-14B-Instruct-DPO-v2.0b7-i1-GGUF/resolve/main/Chocolatine-2-14B-Instruct-DPO-v2.0b7.i1-IQ2_S.gguf) | i1-IQ2_S | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-2-14B-Instruct-DPO-v2.0b7-i1-GGUF/resolve/main/Chocolatine-2-14B-Instruct-DPO-v2.0b7.i1-IQ2_M.gguf) | i1-IQ2_M | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-2-14B-Instruct-DPO-v2.0b7-i1-GGUF/resolve/main/Chocolatine-2-14B-Instruct-DPO-v2.0b7.i1-Q2_K_S.gguf) | i1-Q2_K_S | 5.3 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-2-14B-Instruct-DPO-v2.0b7-i1-GGUF/resolve/main/Chocolatine-2-14B-Instruct-DPO-v2.0b7.i1-Q2_K.gguf) | i1-Q2_K | 5.7 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-2-14B-Instruct-DPO-v2.0b7-i1-GGUF/resolve/main/Chocolatine-2-14B-Instruct-DPO-v2.0b7.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 5.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-2-14B-Instruct-DPO-v2.0b7-i1-GGUF/resolve/main/Chocolatine-2-14B-Instruct-DPO-v2.0b7.i1-IQ3_XS.gguf) | i1-IQ3_XS | 6.3 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-2-14B-Instruct-DPO-v2.0b7-i1-GGUF/resolve/main/Chocolatine-2-14B-Instruct-DPO-v2.0b7.i1-Q3_K_S.gguf) | i1-Q3_K_S | 6.6 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-2-14B-Instruct-DPO-v2.0b7-i1-GGUF/resolve/main/Chocolatine-2-14B-Instruct-DPO-v2.0b7.i1-IQ3_S.gguf) | i1-IQ3_S | 6.6 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-2-14B-Instruct-DPO-v2.0b7-i1-GGUF/resolve/main/Chocolatine-2-14B-Instruct-DPO-v2.0b7.i1-IQ3_M.gguf) | i1-IQ3_M | 6.8 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-2-14B-Instruct-DPO-v2.0b7-i1-GGUF/resolve/main/Chocolatine-2-14B-Instruct-DPO-v2.0b7.i1-Q3_K_M.gguf) | i1-Q3_K_M | 7.3 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-2-14B-Instruct-DPO-v2.0b7-i1-GGUF/resolve/main/Chocolatine-2-14B-Instruct-DPO-v2.0b7.i1-Q3_K_L.gguf) | i1-Q3_K_L | 7.9 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-2-14B-Instruct-DPO-v2.0b7-i1-GGUF/resolve/main/Chocolatine-2-14B-Instruct-DPO-v2.0b7.i1-IQ4_XS.gguf) | i1-IQ4_XS | 8.1 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-2-14B-Instruct-DPO-v2.0b7-i1-GGUF/resolve/main/Chocolatine-2-14B-Instruct-DPO-v2.0b7.i1-Q4_0.gguf) | i1-Q4_0 | 8.5 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-2-14B-Instruct-DPO-v2.0b7-i1-GGUF/resolve/main/Chocolatine-2-14B-Instruct-DPO-v2.0b7.i1-IQ4_NL.gguf) | i1-IQ4_NL | 8.5 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-2-14B-Instruct-DPO-v2.0b7-i1-GGUF/resolve/main/Chocolatine-2-14B-Instruct-DPO-v2.0b7.i1-Q4_K_S.gguf) | i1-Q4_K_S | 8.5 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-2-14B-Instruct-DPO-v2.0b7-i1-GGUF/resolve/main/Chocolatine-2-14B-Instruct-DPO-v2.0b7.i1-Q4_K_M.gguf) | i1-Q4_K_M | 9.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-2-14B-Instruct-DPO-v2.0b7-i1-GGUF/resolve/main/Chocolatine-2-14B-Instruct-DPO-v2.0b7.i1-Q4_1.gguf) | i1-Q4_1 | 9.4 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-2-14B-Instruct-DPO-v2.0b7-i1-GGUF/resolve/main/Chocolatine-2-14B-Instruct-DPO-v2.0b7.i1-Q5_K_S.gguf) | i1-Q5_K_S | 10.3 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-2-14B-Instruct-DPO-v2.0b7-i1-GGUF/resolve/main/Chocolatine-2-14B-Instruct-DPO-v2.0b7.i1-Q5_K_M.gguf) | i1-Q5_K_M | 10.5 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-2-14B-Instruct-DPO-v2.0b7-i1-GGUF/resolve/main/Chocolatine-2-14B-Instruct-DPO-v2.0b7.i1-Q6_K.gguf) | i1-Q6_K | 12.1 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/Chocolatine-2-14B-Instruct-DPO-v2.0b7-GGUF
mradermacher
2025-01-30T02:56:15Z
308
0
transformers
[ "transformers", "gguf", "en", "base_model:jpacifico/Chocolatine-2-14B-Instruct-DPO-v2.0b7", "base_model:quantized:jpacifico/Chocolatine-2-14B-Instruct-DPO-v2.0b7", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-27T17:45:54Z
--- base_model: jpacifico/Chocolatine-2-14B-Instruct-DPO-v2.0b7 language: - en library_name: transformers quantized_by: mradermacher tags: [] --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/jpacifico/Chocolatine-2-14B-Instruct-DPO-v2.0b7 <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Chocolatine-2-14B-Instruct-DPO-v2.0b7-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Chocolatine-2-14B-Instruct-DPO-v2.0b7-GGUF/resolve/main/Chocolatine-2-14B-Instruct-DPO-v2.0b7.Q2_K.gguf) | Q2_K | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-2-14B-Instruct-DPO-v2.0b7-GGUF/resolve/main/Chocolatine-2-14B-Instruct-DPO-v2.0b7.Q3_K_S.gguf) | Q3_K_S | 6.6 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-2-14B-Instruct-DPO-v2.0b7-GGUF/resolve/main/Chocolatine-2-14B-Instruct-DPO-v2.0b7.Q3_K_M.gguf) | Q3_K_M | 7.3 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-2-14B-Instruct-DPO-v2.0b7-GGUF/resolve/main/Chocolatine-2-14B-Instruct-DPO-v2.0b7.Q3_K_L.gguf) | Q3_K_L | 7.9 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-2-14B-Instruct-DPO-v2.0b7-GGUF/resolve/main/Chocolatine-2-14B-Instruct-DPO-v2.0b7.IQ4_XS.gguf) | IQ4_XS | 8.2 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-2-14B-Instruct-DPO-v2.0b7-GGUF/resolve/main/Chocolatine-2-14B-Instruct-DPO-v2.0b7.Q4_K_S.gguf) | Q4_K_S | 8.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-2-14B-Instruct-DPO-v2.0b7-GGUF/resolve/main/Chocolatine-2-14B-Instruct-DPO-v2.0b7.Q4_K_M.gguf) | Q4_K_M | 9.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-2-14B-Instruct-DPO-v2.0b7-GGUF/resolve/main/Chocolatine-2-14B-Instruct-DPO-v2.0b7.Q5_K_S.gguf) | Q5_K_S | 10.3 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-2-14B-Instruct-DPO-v2.0b7-GGUF/resolve/main/Chocolatine-2-14B-Instruct-DPO-v2.0b7.Q5_K_M.gguf) | Q5_K_M | 10.5 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-2-14B-Instruct-DPO-v2.0b7-GGUF/resolve/main/Chocolatine-2-14B-Instruct-DPO-v2.0b7.Q6_K.gguf) | Q6_K | 12.1 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-2-14B-Instruct-DPO-v2.0b7-GGUF/resolve/main/Chocolatine-2-14B-Instruct-DPO-v2.0b7.Q8_0.gguf) | Q8_0 | 15.7 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/Chocolatine-2-14B-Instruct-DPO-v2.0b8-GGUF
mradermacher
2025-01-30T02:56:15Z
259
0
transformers
[ "transformers", "gguf", "en", "base_model:jpacifico/Chocolatine-2-14B-Instruct-DPO-v2.0b8", "base_model:quantized:jpacifico/Chocolatine-2-14B-Instruct-DPO-v2.0b8", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-29T21:37:02Z
--- base_model: jpacifico/Chocolatine-2-14B-Instruct-DPO-v2.0b8 language: - en library_name: transformers quantized_by: mradermacher tags: [] --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> static quants of https://huggingface.co/jpacifico/Chocolatine-2-14B-Instruct-DPO-v2.0b8 <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Chocolatine-2-14B-Instruct-DPO-v2.0b8-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Chocolatine-2-14B-Instruct-DPO-v2.0b8-GGUF/resolve/main/Chocolatine-2-14B-Instruct-DPO-v2.0b8.Q2_K.gguf) | Q2_K | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-2-14B-Instruct-DPO-v2.0b8-GGUF/resolve/main/Chocolatine-2-14B-Instruct-DPO-v2.0b8.Q3_K_S.gguf) | Q3_K_S | 6.6 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-2-14B-Instruct-DPO-v2.0b8-GGUF/resolve/main/Chocolatine-2-14B-Instruct-DPO-v2.0b8.Q3_K_M.gguf) | Q3_K_M | 7.3 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-2-14B-Instruct-DPO-v2.0b8-GGUF/resolve/main/Chocolatine-2-14B-Instruct-DPO-v2.0b8.Q3_K_L.gguf) | Q3_K_L | 7.9 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-2-14B-Instruct-DPO-v2.0b8-GGUF/resolve/main/Chocolatine-2-14B-Instruct-DPO-v2.0b8.IQ4_XS.gguf) | IQ4_XS | 8.2 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-2-14B-Instruct-DPO-v2.0b8-GGUF/resolve/main/Chocolatine-2-14B-Instruct-DPO-v2.0b8.Q4_K_S.gguf) | Q4_K_S | 8.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-2-14B-Instruct-DPO-v2.0b8-GGUF/resolve/main/Chocolatine-2-14B-Instruct-DPO-v2.0b8.Q4_K_M.gguf) | Q4_K_M | 9.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-2-14B-Instruct-DPO-v2.0b8-GGUF/resolve/main/Chocolatine-2-14B-Instruct-DPO-v2.0b8.Q5_K_S.gguf) | Q5_K_S | 10.3 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-2-14B-Instruct-DPO-v2.0b8-GGUF/resolve/main/Chocolatine-2-14B-Instruct-DPO-v2.0b8.Q5_K_M.gguf) | Q5_K_M | 10.5 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-2-14B-Instruct-DPO-v2.0b8-GGUF/resolve/main/Chocolatine-2-14B-Instruct-DPO-v2.0b8.Q6_K.gguf) | Q6_K | 12.1 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-2-14B-Instruct-DPO-v2.0b8-GGUF/resolve/main/Chocolatine-2-14B-Instruct-DPO-v2.0b8.Q8_0.gguf) | Q8_0 | 15.7 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
shibajustfor/a690348b-9d15-46c5-92f0-37a6633c8cd5
shibajustfor
2025-01-30T02:50:54Z
7
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/Yarn-Mistral-7b-128k", "base_model:adapter:NousResearch/Yarn-Mistral-7b-128k", "license:apache-2.0", "region:us" ]
null
2025-01-30T02:41:36Z
--- library_name: peft license: apache-2.0 base_model: NousResearch/Yarn-Mistral-7b-128k tags: - axolotl - generated_from_trainer model-index: - name: a690348b-9d15-46c5-92f0-37a6633c8cd5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Yarn-Mistral-7b-128k bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - b1454fa1fd1fe58d_train_data.json ds_type: json format: custom path: /workspace/input_data/b1454fa1fd1fe58d_train_data.json type: field_input: possible_answers field_instruction: question field_output: memory_answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: shibajustfor/a690348b-9d15-46c5-92f0-37a6633c8cd5 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: constant max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/b1454fa1fd1fe58d_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 4d3d1b80-2351-40f7-99cf-7e411e41051a wandb_project: Birthday-SN56-38-Gradients-On-Demand wandb_run: your_name wandb_runid: 4d3d1b80-2351-40f7-99cf-7e411e41051a warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # a690348b-9d15-46c5-92f0-37a6633c8cd5 This model is a fine-tuned version of [NousResearch/Yarn-Mistral-7b-128k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-128k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5517 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | 1.4000 | | 3.4423 | 0.0018 | 13 | 0.5717 | | 2.3137 | 0.0036 | 26 | 0.5613 | | 1.6598 | 0.0054 | 39 | 0.5517 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
trenden/c009a7b4-a9d4-465f-8146-9343cd836b63
trenden
2025-01-30T02:50:53Z
7
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/Yarn-Mistral-7b-128k", "base_model:adapter:NousResearch/Yarn-Mistral-7b-128k", "license:apache-2.0", "region:us" ]
null
2025-01-30T02:41:15Z
--- library_name: peft license: apache-2.0 base_model: NousResearch/Yarn-Mistral-7b-128k tags: - axolotl - generated_from_trainer model-index: - name: c009a7b4-a9d4-465f-8146-9343cd836b63 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Yarn-Mistral-7b-128k bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - b1454fa1fd1fe58d_train_data.json ds_type: json format: custom path: /workspace/input_data/b1454fa1fd1fe58d_train_data.json type: field_input: possible_answers field_instruction: question field_output: memory_answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: trenden/c009a7b4-a9d4-465f-8146-9343cd836b63 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/b1454fa1fd1fe58d_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 4d3d1b80-2351-40f7-99cf-7e411e41051a wandb_project: Birthday-SN56-3-Gradients-On-Demand wandb_run: your_name wandb_runid: 4d3d1b80-2351-40f7-99cf-7e411e41051a warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # c009a7b4-a9d4-465f-8146-9343cd836b63 This model is a fine-tuned version of [NousResearch/Yarn-Mistral-7b-128k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-128k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5117 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | 1.9597 | | 4.551 | 0.0018 | 13 | 0.5514 | | 2.2749 | 0.0036 | 26 | 0.5348 | | 1.641 | 0.0054 | 39 | 0.5117 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
sebastiansarasti/MNISTAutoEncoder
sebastiansarasti
2025-01-30T02:49:22Z
7
0
null
[ "safetensors", "model_hub_mixin", "pytorch_model_hub_mixin", "license:mit", "region:us" ]
null
2025-01-05T20:42:11Z
--- tags: - model_hub_mixin - pytorch_model_hub_mixin license: mit --- # ImageGenerationTAU: Autoencoder for MNIST Image Generation ## Model Details - **Model Architecture:** Convolutional Autoencoder - **Framework:** PyTorch - **Input Shape:** (1, 28, 28) (Grayscale MNIST Images) - **Latent Dimension:** User-defined (`hidden_dim`) - **Dataset:** [MNIST Handwritten Digits](http://yann.lecun.com/exdb/mnist/) ## Model Description The **ImageGenerationTAU** model is a **convolutional autoencoder** designed for **image generation and feature extraction** from MNIST. It consists of: - An **encoder** that compresses the input image into a **low-dimensional representation**. - A **decoder** that reconstructs the original image from the compressed representation. This model can be used for **image denoising, feature learning, and generative tasks**. ## Training Details - **Loss Function:** Smooth L1 Loss - **Optimizer:** Adam - **Batch Size:** 512 - **Number of Epochs:** TBD - **Regularization:** Batch Normalization ### Model Architecture ```python class ImageGenerationTAU(nn.Module, PyTorchModelHubMixin): def __init__(self, hidden_dim): super(ImageGenerationTAU, self).__init__() self.encoder = nn.Sequential( nn.Conv2d(1, 64, kernel_size=3, stride=1, padding=1), nn.MaxPool2d(kernel_size=2, stride=2), nn.ReLU(), nn.BatchNorm2d(64), nn.Conv2d(64, 32, kernel_size=3, stride=1, padding=1), nn.MaxPool2d(kernel_size=2, stride=2), nn.ReLU(), nn.BatchNorm2d(32), nn.Flatten(), nn.Linear(32 * 7 * 7, hidden_dim), ) self.decoder = nn.Sequential( nn.Linear(hidden_dim, 32 * 7 * 7), nn.ReLU(), nn.Unflatten(1, (32, 7, 7)), nn.ConvTranspose2d(32, 64, kernel_size=2, stride=2), nn.ReLU(), nn.BatchNorm2d(64), nn.ConvTranspose2d(64, 1, kernel_size=2, stride=2), nn.Sigmoid(), ) def forward(self, x): x = self.encoder(x) x = self.decoder(x) return x ``` This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Library: [More Information Needed] - Docs: [More Information Needed]
Romain-XV/3d737383-c3fa-4c8f-ad38-b5af93247aca
Romain-XV
2025-01-30T02:48:57Z
7
0
peft
[ "peft", "safetensors", "dbrx", "axolotl", "generated_from_trainer", "base_model:katuni4ka/tiny-random-dbrx", "base_model:adapter:katuni4ka/tiny-random-dbrx", "region:us" ]
null
2025-01-30T02:44:38Z
--- library_name: peft base_model: katuni4ka/tiny-random-dbrx tags: - axolotl - generated_from_trainer model-index: - name: 3d737383-c3fa-4c8f-ad38-b5af93247aca results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: katuni4ka/tiny-random-dbrx bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - cf2f1c242df238b1_train_data.json ds_type: json format: custom path: /workspace/input_data/cf2f1c242df238b1_train_data.json type: field_input: fidelity_label field_instruction: prompt field_output: element_score format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 16 gradient_checkpointing: true group_by_length: false hub_model_id: Romain-XV/3d737383-c3fa-4c8f-ad38-b5af93247aca hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_best_model_at_end: true load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: true lora_model_dir: null lora_r: 16 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj lr_scheduler: cosine max_steps: 1451 micro_batch_size: 4 mlflow_experiment_name: /tmp/cf2f1c242df238b1_train_data.json model_type: AutoModelForCausalLM optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 100 sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: dce7eeea-a6c9-46de-944c-a4358d11654c wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: dce7eeea-a6c9-46de-944c-a4358d11654c warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 3d737383-c3fa-4c8f-ad38-b5af93247aca This model is a fine-tuned version of [katuni4ka/tiny-random-dbrx](https://huggingface.co/katuni4ka/tiny-random-dbrx) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 483 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 184.0 | 0.0021 | 1 | 11.5 | | 184.0 | 0.1036 | 50 | 11.5 | | 184.0 | 0.2072 | 100 | 11.5 | | 184.0 | 0.3108 | 150 | 11.5 | | 184.0 | 0.4143 | 200 | 11.5 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
dixedus/f39688c1-f7cc-408e-a991-becbf6c7b66e
dixedus
2025-01-30T02:48:47Z
7
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:peft-internal-testing/tiny-dummy-qwen2", "base_model:adapter:peft-internal-testing/tiny-dummy-qwen2", "region:us" ]
null
2025-01-30T02:38:04Z
--- library_name: peft base_model: peft-internal-testing/tiny-dummy-qwen2 tags: - axolotl - generated_from_trainer model-index: - name: f39688c1-f7cc-408e-a991-becbf6c7b66e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: peft-internal-testing/tiny-dummy-qwen2 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c97ac490508cd842_train_data.json ds_type: json format: custom path: /workspace/input_data/c97ac490508cd842_train_data.json type: field_input: cot field_instruction: query field_output: response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: dixedus/f39688c1-f7cc-408e-a991-becbf6c7b66e hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/c97ac490508cd842_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: d3fbaf7f-09ff-402e-b347-2eff8a768f9c wandb_project: Gradients-On-Eight wandb_run: your_name wandb_runid: d3fbaf7f-09ff-402e-b347-2eff8a768f9c warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # f39688c1-f7cc-408e-a991-becbf6c7b66e This model is a fine-tuned version of [peft-internal-testing/tiny-dummy-qwen2](https://huggingface.co/peft-internal-testing/tiny-dummy-qwen2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.9302 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0006 | 1 | 11.9326 | | 11.9329 | 0.0051 | 9 | 11.9325 | | 11.9317 | 0.0101 | 18 | 11.9323 | | 11.9323 | 0.0152 | 27 | 11.9320 | | 11.931 | 0.0203 | 36 | 11.9317 | | 11.9319 | 0.0254 | 45 | 11.9314 | | 11.9316 | 0.0304 | 54 | 11.9310 | | 11.9312 | 0.0355 | 63 | 11.9307 | | 11.9312 | 0.0406 | 72 | 11.9304 | | 11.9302 | 0.0456 | 81 | 11.9303 | | 11.9302 | 0.0507 | 90 | 11.9302 | | 11.9303 | 0.0558 | 99 | 11.9302 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
hrasto/llamaxs1_open_subtitles_h
hrasto
2025-01-30T02:48:16Z
97
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-30T02:19:25Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
lesso03/2b2f62c0-7aa8-4f98-a6a1-35e5acbfde12
lesso03
2025-01-30T02:46:38Z
7
0
peft
[ "peft", "safetensors", "dbrx", "axolotl", "generated_from_trainer", "base_model:katuni4ka/tiny-random-dbrx", "base_model:adapter:katuni4ka/tiny-random-dbrx", "region:us" ]
null
2025-01-30T02:44:48Z
--- library_name: peft base_model: katuni4ka/tiny-random-dbrx tags: - axolotl - generated_from_trainer model-index: - name: 2b2f62c0-7aa8-4f98-a6a1-35e5acbfde12 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: katuni4ka/tiny-random-dbrx bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - cf2f1c242df238b1_train_data.json ds_type: json format: custom path: /workspace/input_data/cf2f1c242df238b1_train_data.json type: field_input: fidelity_label field_instruction: prompt field_output: element_score format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso03/2b2f62c0-7aa8-4f98-a6a1-35e5acbfde12 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mixed_precision: bf16 mlflow_experiment_name: /tmp/cf2f1c242df238b1_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: dce7eeea-a6c9-46de-944c-a4358d11654c wandb_project: multi wandb_run: your_name wandb_runid: dce7eeea-a6c9-46de-944c-a4358d11654c warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 2b2f62c0-7aa8-4f98-a6a1-35e5acbfde12 This model is a fine-tuned version of [katuni4ka/tiny-random-dbrx](https://huggingface.co/katuni4ka/tiny-random-dbrx) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 46.0 | 0.4143 | 200 | 11.5 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso15/31da8fe2-de72-43ed-a294-1924045170c2
lesso15
2025-01-30T02:45:24Z
7
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:NousResearch/Llama-3.2-1B", "base_model:adapter:NousResearch/Llama-3.2-1B", "license:llama3.2", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-30T02:27:28Z
--- library_name: peft license: llama3.2 base_model: NousResearch/Llama-3.2-1B tags: - axolotl - generated_from_trainer model-index: - name: 31da8fe2-de72-43ed-a294-1924045170c2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Llama-3.2-1B bf16: auto chat_template: llama3 datasets: - data_files: - 2336298cd063de99_train_data.json ds_type: json format: custom path: /workspace/input_data/2336298cd063de99_train_data.json type: field_input: '' field_instruction: id field_output: raw_text format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso15/31da8fe2-de72-43ed-a294-1924045170c2 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/2336298cd063de99_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: <|end_of_text|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: bbb8a723-40a9-4355-9039-6f528db7c8e1 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: bbb8a723-40a9-4355-9039-6f528db7c8e1 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 31da8fe2-de72-43ed-a294-1924045170c2 This model is a fine-tuned version of [NousResearch/Llama-3.2-1B](https://huggingface.co/NousResearch/Llama-3.2-1B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2840 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.3543 | 0.2205 | 200 | 2.2840 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
antimage88/c5e8dd67-32d8-44c5-82f6-928b3cf2e038
antimage88
2025-01-30T02:44:23Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:deepseek-ai/deepseek-coder-6.7b-instruct", "base_model:adapter:deepseek-ai/deepseek-coder-6.7b-instruct", "license:other", "region:us" ]
null
2025-01-30T01:49:57Z
--- library_name: peft license: other base_model: deepseek-ai/deepseek-coder-6.7b-instruct tags: - axolotl - generated_from_trainer model-index: - name: c5e8dd67-32d8-44c5-82f6-928b3cf2e038 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: deepseek-ai/deepseek-coder-6.7b-instruct bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - 8e83a81599a1c92e_train_data.json ds_type: json format: custom path: /workspace/input_data/8e83a81599a1c92e_train_data.json type: field_instruction: description field_output: title format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: antimage88/c5e8dd67-32d8-44c5-82f6-928b3cf2e038 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/8e83a81599a1c92e_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: f3fae5bf-6f85-4e00-b401-849bb92f687b wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: f3fae5bf-6f85-4e00-b401-849bb92f687b warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # c5e8dd67-32d8-44c5-82f6-928b3cf2e038 This model is a fine-tuned version of [deepseek-ai/deepseek-coder-6.7b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9107 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.5346 | 0.0004 | 1 | 3.9100 | | 3.0634 | 0.0177 | 50 | 2.2406 | | 2.9462 | 0.0354 | 100 | 2.0306 | | 2.6391 | 0.0530 | 150 | 1.9351 | | 2.6142 | 0.0707 | 200 | 1.9107 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1