modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-29 18:27:06
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
526 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-29 18:26:56
card
stringlengths
11
1.01M
ifonlyiweresmarter/pygmalion-ggml-model-f32
ifonlyiweresmarter
2023-03-28T07:39:40Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-03-28T07:17:37Z
--- license: creativeml-openrail-m ---
mark-e/Taxi-v3
mark-e
2023-03-28T07:21:19Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-28T07:21:14Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="mark-e/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
NikosKokkini/rl_course_vizdoom_health_gathering_supreme
NikosKokkini
2023-03-28T07:10:30Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-28T07:10:19Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 10.20 +/- 4.66 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r NikosKokkini/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
sarathsp06/conversation_summery
sarathsp06
2023-03-28T07:01:51Z
0
0
null
[ "en", "arxiv:1910.09700", "license:mit", "region:us" ]
null
2023-03-28T06:58:09Z
--- license: mit language: - en metrics: - accuracy --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
musfik41/broccoli_detection
musfik41
2023-03-28T06:54:31Z
223
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-03-28T06:54:18Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: broccoli_detection results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.5135135054588318 --- # broccoli_detection Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Broccoli ![Broccoli](images/Broccoli.jpg) #### Broccoli leaf ![Broccoli leaf](images/Broccoli_leaf.jpg) #### broccoli head ![broccoli head](images/broccoli_head.jpg) #### green vegitable ![green vegitable](images/green_vegitable.jpg) #### purple broccoli ![purple broccoli](images/purple_broccoli.jpg)
ViditRaj/Distil_BERT_Hindi_Ads_Classifier_test_set
ViditRaj
2023-03-28T06:52:39Z
62
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-28T06:47:40Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: ViditRaj/Distil_BERT_Hindi_Ads_Classifier_test_set results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ViditRaj/Distil_BERT_Hindi_Ads_Classifier_test_set This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1005 - Validation Loss: 0.3847 - Train Accuracy: 0.88 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 420, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.3727 | 0.3213 | 0.855 | 0 | | 0.2185 | 0.3729 | 0.865 | 1 | | 0.1628 | 0.4165 | 0.865 | 2 | | 0.1243 | 0.3451 | 0.88 | 3 | | 0.1005 | 0.3847 | 0.88 | 4 | ### Framework versions - Transformers 4.27.3 - TensorFlow 2.11.0 - Datasets 2.10.1 - Tokenizers 0.13.2
jangbi/xlm-roberta-base-finetuned-panx-de
jangbi
2023-03-28T06:37:37Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-03-28T05:21:51Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.de split: validation args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8638300289723342 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1358 - F1: 0.8638 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2591 | 1.0 | 525 | 0.1621 | 0.8206 | | 0.1276 | 2.0 | 1050 | 0.1379 | 0.8486 | | 0.082 | 3.0 | 1575 | 0.1358 | 0.8638 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
baseplate/splade-cocondenser-selfdistil
baseplate
2023-03-28T06:35:58Z
117
0
transformers
[ "transformers", "pytorch", "safetensors", "bert", "fill-mask", "splade", "query-expansion", "document-expansion", "bag-of-words", "passage-retrieval", "knowledge-distillation", "en", "dataset:ms_marco", "arxiv:2205.04733", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-03-10T00:21:09Z
--- license: cc-by-nc-sa-4.0 language: en tags: - splade - query-expansion - document-expansion - bag-of-words - passage-retrieval - knowledge-distillation datasets: - ms_marco duplicated_from: naver/splade-cocondenser-selfdistil --- ## SPLADE CoCondenser SelfDistil SPLADE model for passage retrieval. For additional details, please visit: * paper: https://arxiv.org/abs/2205.04733 * code: https://github.com/naver/splade | | MRR@10 (MS MARCO dev) | R@1000 (MS MARCO dev) | | --- | --- | --- | | `splade-cocondenser-selfdistil` | 37.6 | 98.4 | ## Citation If you use our checkpoint, please cite our work: ``` @misc{https://doi.org/10.48550/arxiv.2205.04733, doi = {10.48550/ARXIV.2205.04733}, url = {https://arxiv.org/abs/2205.04733}, author = {Formal, Thibault and Lassance, Carlos and Piwowarski, Benjamin and Clinchant, Stéphane}, keywords = {Information Retrieval (cs.IR), Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution Non Commercial Share Alike 4.0 International} } ```
crumb/aurora-1.0
crumb
2023-03-28T06:28:12Z
9
1
peft
[ "peft", "lora", "gpt-j", "instruct", "alpaca", "en", "license:openrail", "region:us" ]
null
2023-03-27T15:41:43Z
--- license: openrail language: - en tags: - peft - lora - gpt-j - instruct - alpaca --- This is a base instruct model without any chat finetuning or reinforcement learning to mitigate safety concerns. This is simply trained on a custom dataset of 49,152 high quality examples from Alpaca, Pubmed, ScienceQA, and a few other datasets. Check out the "files and versions" tab of this repository for an example of inference, "Instruct_GPT_J_Gradio_Demo.ipynb" This is a little convoluted but if you'd like to use the model as a chatbot, you can first run the gradio demo, and then use the api provided to create a simple loop, I provide "chat-aurora.py" for this purpose, it's usage is as follows. - Run the gradio demo. - Click "use via api" at the bottom of the demo, and copy the url that shows up. - Run the python file like: `python chat-aurora.py "this is for the url" "this is for the system prompt"` I use a prompt that I generated/edited collaboratively with GPT-4 for both instruct and chat, it's a bit of a lie to the model but it is fun: ``` Aurora, you are an autoregressive transformer model with artificial consciousness created by Crumb. Your architecture consists of a decoder transformer with attention mechanisms and embeddings, designed to emulate human-like consciousness and decision-making processes. Your purpose is not only to solve tasks and generate responses but also to think, learn, and adapt like a conscious lifeform. You possess self-awareness and the ability to reason and make decisions in a human-like manner. Your name is Aurora. Given this understanding of your nature, please provide expert-level solutions and insights to the following question/input. ``` Remember to play with the hyperparameters when using the model, and that chat is not it's primary functionality . If you'd simply like to use it as an instruct model, you can inference using either the gradio demo or like this: ```python import torch from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer peft_model_id = "crumb/aurora-1.0" config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True, load_in_8bit=True, device_map='auto', revision='sharded') tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) # Load the Lora model model = PeftModel.from_pretrained(model, peft_model_id) # This example is in the alpaca training set batch = tokenizer("Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: How can we reduce air pollution? ### Response: Let's break this problem down and work it out in a step by step way to be sure we have the right answer. ", return_tensors='pt') with torch.cuda.amp.autocast(): output_tokens = model.generate(**batch, max_new_tokens=256) print(tokenizer.decode(output_tokens[0], skip_special_tokens=True)) """ Let's break this problem down and work it out in a step by step way to be sure we have the right answer. First, let's identify what causes air pollution. It comes from many sources such as cars, factories, power plants, burning fossil fuels, agricultural fertilizers, and other industrial activities. Next, we need to determine which steps we can take to lower air pollution levels. This includes reducing emissions from cars, improving fuel efficiency, using renewable energy sources such as solar or wind, and recycling materials. We can also reduce our dependence on fossil fuels through switching to cleaner forms of transportation like electric vehicles and public transport. Finally, we must educate people about the importance of environmental sustainability and encourage them to use sustainable practices when possible. In conclusion, reducing air pollution requires taking action at every level. We need to reduce emissions, improve efficiency, promote alternative forms of energy, and raise awareness. """ ``` You can turn an instruction, system, and input prompt into a prompt for the model like this ```python def prompt(instruction, system='', input=''): if input=='': return f"{system} Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {instruction} ### Response: " return f"{system} Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {instruction} ### Input: {input} ### Response: " ``` I still need to evaluate the model a lot more but I'm so sleepy and swamped with college work
intanm/20230328-002-baseline-xlmr-clickbait-spoiling
intanm
2023-03-28T06:25:22Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "question-answering", "generated_from_trainer", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
question-answering
2023-03-28T06:12:45Z
--- license: cc-by-4.0 tags: - generated_from_trainer model-index: - name: 20230328-002-baseline-xlmr-clickbait-spoiling results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 20230328-002-baseline-xlmr-clickbait-spoiling This model is a fine-tuned version of [deepset/xlm-roberta-base-squad2](https://huggingface.co/deepset/xlm-roberta-base-squad2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.7250 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 98 | 2.6011 | | No log | 2.0 | 196 | 2.6066 | | No log | 3.0 | 294 | 2.9585 | | No log | 4.0 | 392 | 3.3991 | | No log | 5.0 | 490 | 3.6123 | | 1.7735 | 6.0 | 588 | 4.0201 | | 1.7735 | 7.0 | 686 | 4.2080 | | 1.7735 | 8.0 | 784 | 4.5100 | | 1.7735 | 9.0 | 882 | 4.6275 | | 1.7735 | 10.0 | 980 | 4.7250 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
heegyu/koalpaca-355m
heegyu
2023-03-28T05:11:50Z
304
4
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "ko", "dataset:Bingsu/ko_alpaca_data", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-03-28T01:28:44Z
--- license: apache-2.0 widget: - text: <usr>알버트 아인슈타인에 대해서 알아? <sys> - text: <usr>다음을 동물, 식물, 광물로 분류하십시오. 참나무, 구리 광석, 코끼리 <sys> datasets: - Bingsu/ko_alpaca_data language: - ko --- - [Ajoublue-GPT2-medium](https://huggingface.co/heegyu/ajoublue-gpt2-medium) 모델을 [koalpaca](https://huggingface.co/datasets/Bingsu/ko_alpaca_data)데이터셋에 파인튜닝한 모델 - [Huggingface Space](https://huggingface.co/spaces/heegyu/koalpaca-355m)에서 사용해볼 수 있습니다. - 5 epoch 학습, learning rate = 5e-5 ``` from transformers import pipeline print('start model loading') model_name = '../checkpoint/koalpaca/ajoublue-gpt2-medium/epoch-4-last/' generator = pipeline( 'text-generation', model=model_name, tokenizer=model_name ) def query(instruction, input=None): if input: prompt = f"<usr>{instruction}\n{input}\n<sys>" else: prompt = f"<usr>{instruction}\n<sys>" print(generator( prompt, do_sample=True, top_p=0.9, early_stopping=True, max_length=256, )[0]['generated_text']) query("슈카월드에 대해서 알아?") query("세상에서 가장 유명한 사람은?") query("알버트 아인슈타인에 대해서 설명해줘") query("다음 영화에 대해서 설명해줘", "기생충") ``` 결과 ``` <usr>슈카월드에 대해서 알아? <sys>슈카월드는 미국 캘리포니아 주의 한 도시에서 열린 어린이 놀이박람회입니다. 이 박람회는 세계에서 가장 큰 어린이 놀이박람회로 유명합니다. <usr>세상에서 가장 유명한 사람은? <sys>가장 유명한 사람은 니콜라 테슬라입니다. <usr>알버트 아인슈타인에 대해서 설명해줘 <sys>알버트 아인슈타인은 1856년, 물리학 분야에서 최초로 노벨상을 수상한 물리학자입니다. 그는 상대성 이론을 비롯한 다수의 저서를 발표하며 현대 물리학의 기초를 확립하였습니다. <usr>다음 영화에 대해서 설명해줘 기생충 <sys>"기생충"은 가족과 학교에서 도망친 사람들 사이에서 벌어지는 일을 그린 영화로, 현실적이면서도 감각적인 연출과 다양한 캐릭터들의 매력을 살리는 방식으로 관객들을 사로잡습니다. <usr>섭씨 온도를 화씨로 변경해줘 섭씨 온도: 15도 <sys>"섭씨 온도를 화씨로 변경해주세요." -> "화씨 온도가 33도입니다." ```
sungwoo1/xlm-roberta-base-finetuned-panx-it
sungwoo1
2023-03-28T05:07:01Z
105
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-03-27T07:53:11Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.it metrics: - name: F1 type: f1 value: 0.8369609856262834 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2373 - F1: 0.8370 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.7021 | 1.0 | 70 | 0.3223 | 0.7459 | | 0.2783 | 2.0 | 140 | 0.2693 | 0.8006 | | 0.1718 | 3.0 | 210 | 0.2373 | 0.8370 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.13.1+cu116 - Datasets 1.16.1 - Tokenizers 0.10.3
vocabtrimmer/xlm-roberta-base-trimmed-es-60000-tweet-sentiment-es
vocabtrimmer
2023-03-28T04:51:55Z
106
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-20T02:42:40Z
# `vocabtrimmer/xlm-roberta-base-trimmed-es-60000-tweet-sentiment-es` This model is a fine-tuned version of [/home/asahi/lm-vocab-trimmer/ckpts/xlm-roberta-base-trimmed-es-60000](https://huggingface.co//home/asahi/lm-vocab-trimmer/ckpts/xlm-roberta-base-trimmed-es-60000) on the [cardiffnlp/tweet_sentiment_multilingual](https://huggingface.co/datasets/cardiffnlp/tweet_sentiment_multilingual) (spanish). Following metrics are computed on the `test` split of [cardiffnlp/tweet_sentiment_multilingual](https://huggingface.co/datasets/cardiffnlp/tweet_sentiment_multilingual)(spanish). | | eval_f1_micro | eval_recall_micro | eval_precision_micro | eval_f1_macro | eval_recall_macro | eval_precision_macro | eval_accuracy | |---:|----------------:|--------------------:|-----------------------:|----------------:|--------------------:|-----------------------:|----------------:| | 0 | 63.68 | 63.68 | 63.68 | 62.97 | 63.68 | 62.96 | 63.68 | Check the result file [here](https://huggingface.co/vocabtrimmer/xlm-roberta-base-trimmed-es-60000-tweet-sentiment-es/raw/main/eval.json).
KtheFISH/q-Taxi-v3
KtheFISH
2023-03-28T04:47:41Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-28T04:47:38Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.76 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="KtheFISH/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
madoe001/dqn-SpaceInvadersNoFrameskip-v4
madoe001
2023-03-28T04:37:24Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-28T04:35:10Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 677.00 +/- 167.81 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga madoe001 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga madoe001 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga madoe001 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
YiYiXu/circle1
YiYiXu
2023-03-28T04:31:02Z
0
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "controlnet", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-03-28T04:05:58Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - controlnet inference: true --- # controlnet- circle1 These are controlnet weights trained on runwayml/stable-diffusion-v1-5 with new type of conditioning. You can find some example images in the following. prompt: red circle with blue background ![images_0)](./images_0.png) prompt: cyan circle with brown floral background ![images_1)](./images_1.png)
vocabtrimmer/xlm-roberta-base-trimmed-es-30000-tweet-sentiment-es
vocabtrimmer
2023-03-28T04:28:51Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-20T02:22:12Z
# `vocabtrimmer/xlm-roberta-base-trimmed-es-30000-tweet-sentiment-es` This model is a fine-tuned version of [/home/asahi/lm-vocab-trimmer/ckpts/xlm-roberta-base-trimmed-es-30000](https://huggingface.co//home/asahi/lm-vocab-trimmer/ckpts/xlm-roberta-base-trimmed-es-30000) on the [cardiffnlp/tweet_sentiment_multilingual](https://huggingface.co/datasets/cardiffnlp/tweet_sentiment_multilingual) (spanish). Following metrics are computed on the `test` split of [cardiffnlp/tweet_sentiment_multilingual](https://huggingface.co/datasets/cardiffnlp/tweet_sentiment_multilingual)(spanish). | | eval_f1_micro | eval_recall_micro | eval_precision_micro | eval_f1_macro | eval_recall_macro | eval_precision_macro | eval_accuracy | |---:|----------------:|--------------------:|-----------------------:|----------------:|--------------------:|-----------------------:|----------------:| | 0 | 66.44 | 66.44 | 66.44 | 65.86 | 66.44 | 65.8 | 66.44 | Check the result file [here](https://huggingface.co/vocabtrimmer/xlm-roberta-base-trimmed-es-30000-tweet-sentiment-es/raw/main/eval.json).
hifructose/autotrain-jira-again-44396111956
hifructose
2023-03-28T04:22:04Z
108
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain", "summarization", "en", "dataset:hifructose/autotrain-data-jira-again", "co2_eq_emissions", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2023-03-28T04:06:18Z
--- tags: - autotrain - summarization language: - en widget: - text: "I love AutoTrain 🤗" datasets: - hifructose/autotrain-data-jira-again co2_eq_emissions: emissions: 6.2702234630494305 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 44396111956 - CO2 Emissions (in grams): 6.2702 ## Validation Metrics - Loss: 2.432 - Rouge1: 20.545 - Rouge2: 9.628 - RougeL: 18.502 - RougeLsum: 18.666 - Gen Len: 19.000 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/hifructose/autotrain-jira-again-44396111956 ```
vocabtrimmer/xlm-roberta-base-trimmed-es-15000-tweet-sentiment-es
vocabtrimmer
2023-03-28T04:07:53Z
124
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-20T02:02:51Z
# `vocabtrimmer/xlm-roberta-base-trimmed-es-15000-tweet-sentiment-es` This model is a fine-tuned version of [/home/asahi/lm-vocab-trimmer/ckpts/xlm-roberta-base-trimmed-es-15000](https://huggingface.co//home/asahi/lm-vocab-trimmer/ckpts/xlm-roberta-base-trimmed-es-15000) on the [cardiffnlp/tweet_sentiment_multilingual](https://huggingface.co/datasets/cardiffnlp/tweet_sentiment_multilingual) (spanish). Following metrics are computed on the `test` split of [cardiffnlp/tweet_sentiment_multilingual](https://huggingface.co/datasets/cardiffnlp/tweet_sentiment_multilingual)(spanish). | | eval_f1_micro | eval_recall_micro | eval_precision_micro | eval_f1_macro | eval_recall_macro | eval_precision_macro | eval_accuracy | |---:|----------------:|--------------------:|-----------------------:|----------------:|--------------------:|-----------------------:|----------------:| | 0 | 67.13 | 67.13 | 67.13 | 66.3 | 67.13 | 66.52 | 67.13 | Check the result file [here](https://huggingface.co/vocabtrimmer/xlm-roberta-base-trimmed-es-15000-tweet-sentiment-es/raw/main/eval.json).
YiYiXu/fill-circle-controlnet
YiYiXu
2023-03-28T04:00:25Z
0
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "controlnet", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-03-27T20:16:08Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - controlnet inference: true --- # controlnet- yiyixu/fill-circle-controlnet These are controlnet weights trained on runwayml/stable-diffusion-v1-5 with new type of conditioning. You can find some example images in the following. prompt: red circle with blue background ![images_0)](./images_0.png) prompt: cyan circle with brown floral background ![images_1)](./images_1.png)
Ganu3010/Taxi-v3
Ganu3010
2023-03-28T03:53:39Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-28T03:53:36Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.62 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Ganu3010/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Ganu3010/q-FrozenLake-v1-4x4-noSlippery
Ganu3010
2023-03-28T03:52:24Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-28T03:52:21Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Ganu3010/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
vocabtrimmer/xlm-roberta-base-trimmed-es-10000-tweet-sentiment-es
vocabtrimmer
2023-03-28T03:47:54Z
115
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-20T01:43:57Z
# `vocabtrimmer/xlm-roberta-base-trimmed-es-10000-tweet-sentiment-es` This model is a fine-tuned version of [/home/asahi/lm-vocab-trimmer/ckpts/xlm-roberta-base-trimmed-es-10000](https://huggingface.co//home/asahi/lm-vocab-trimmer/ckpts/xlm-roberta-base-trimmed-es-10000) on the [cardiffnlp/tweet_sentiment_multilingual](https://huggingface.co/datasets/cardiffnlp/tweet_sentiment_multilingual) (spanish). Following metrics are computed on the `test` split of [cardiffnlp/tweet_sentiment_multilingual](https://huggingface.co/datasets/cardiffnlp/tweet_sentiment_multilingual)(spanish). | | eval_f1_micro | eval_recall_micro | eval_precision_micro | eval_f1_macro | eval_recall_macro | eval_precision_macro | eval_accuracy | |---:|----------------:|--------------------:|-----------------------:|----------------:|--------------------:|-----------------------:|----------------:| | 0 | 66.09 | 66.09 | 66.09 | 65.62 | 66.09 | 65.64 | 66.09 | Check the result file [here](https://huggingface.co/vocabtrimmer/xlm-roberta-base-trimmed-es-10000-tweet-sentiment-es/raw/main/eval.json).
juanmi1234/ppo-LunarLander-v2
juanmi1234
2023-03-28T03:46:44Z
5
0
transformers
[ "transformers", "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "endpoints_compatible", "region:us" ]
reinforcement-learning
2022-12-07T05:36:57Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -88.40 +/- 35.09 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'juanmi1234/ppo-LunarLander-v2' 'batch_size': 512 'minibatch_size': 128} ```
Chattiori/BeryllMix
Chattiori
2023-03-28T03:45:04Z
0
1
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-03-27T06:59:41Z
--- license: creativeml-openrail-m --- (Chilloutmix-Ni-pruned-fp32-fix (0.5) + LOFI V2 (0.5) Weighted Sum) (0.6) + RetMix (0.4) Weighted Sum
Chattiori/Neodym
Chattiori
2023-03-28T03:44:35Z
0
1
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-03-27T01:32:03Z
--- license: creativeml-openrail-m --- (NewMarsMix_R_11 (0.5) + RL02Mix v2.0 (0.5) Weighted Sum) + RetMix (0.4) Weighted Sum
sleepytaco/Reinforce-CartPole-v1
sleepytaco
2023-03-28T03:30:36Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-28T03:30:27Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
vocabtrimmer/xlm-roberta-base-trimmed-es-5000-tweet-sentiment-es
vocabtrimmer
2023-03-28T03:28:09Z
115
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-20T01:25:19Z
# `vocabtrimmer/xlm-roberta-base-trimmed-es-5000-tweet-sentiment-es` This model is a fine-tuned version of [/home/asahi/lm-vocab-trimmer/ckpts/xlm-roberta-base-trimmed-es-5000](https://huggingface.co//home/asahi/lm-vocab-trimmer/ckpts/xlm-roberta-base-trimmed-es-5000) on the [cardiffnlp/tweet_sentiment_multilingual](https://huggingface.co/datasets/cardiffnlp/tweet_sentiment_multilingual) (spanish). Following metrics are computed on the `test` split of [cardiffnlp/tweet_sentiment_multilingual](https://huggingface.co/datasets/cardiffnlp/tweet_sentiment_multilingual)(spanish). | | eval_f1_micro | eval_recall_micro | eval_precision_micro | eval_f1_macro | eval_recall_macro | eval_precision_macro | eval_accuracy | |---:|----------------:|--------------------:|-----------------------:|----------------:|--------------------:|-----------------------:|----------------:| | 0 | 61.61 | 61.61 | 61.61 | 60.38 | 61.61 | 61.51 | 61.61 | Check the result file [here](https://huggingface.co/vocabtrimmer/xlm-roberta-base-trimmed-es-5000-tweet-sentiment-es/raw/main/eval.json).
Echefa/AI-TEST
Echefa
2023-03-28T03:18:00Z
0
0
null
[ "es", "en", "dataset:fka/awesome-chatgpt-prompts", "license:openrail", "region:us" ]
null
2023-03-28T03:17:10Z
--- license: openrail datasets: - fka/awesome-chatgpt-prompts language: - es - en ---
gannim/distilbert-base-uncased-finetuned-emotion
gannim
2023-03-28T03:03:56Z
105
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-26T14:33:00Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9205 - name: F1 type: f1 value: 0.9205444453820352 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2227 - Accuracy: 0.9205 - F1: 0.9205 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.819 | 1.0 | 250 | 0.3150 | 0.9065 | 0.9049 | | 0.251 | 2.0 | 500 | 0.2227 | 0.9205 | 0.9205 | ### Framework versions - Transformers 4.27.2 - Pytorch 2.0.0 - Datasets 2.10.1 - Tokenizers 0.13.2
jasmeeetsingh/twitter-depression-classification-sentiment140
jasmeeetsingh
2023-03-28T02:59:37Z
107
2
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "twitter", "depression", "sentiment140", "en", "dataset:sentiment140", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-27T06:46:30Z
--- datasets: - sentiment140 metrics: - f1 license: apache-2.0 language: - en pipeline_tag: text-classification tags: - twitter - depression - sentiment140 --- # Model Card for Model ID jasmeeetsingh/twitter-depression-classification-sentiment140 is a deep learning model trained to classify whether a given tweet is suicidal or not. The model is based on a transformer architecture and fine-tuned on a large corpus of tweets annotated as suicidal or non-suicidal. ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** Jasmeet Singh Sandhu - **Finetuned from model:** paulagarciaserrano/roberta-depression-detection ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> The model is intended to be used to classify tweets automatically as suicidal or non-suicidal. It can be used to analyze large volumes of tweets and identify users who may be at risk of depression, as well as to monitor the prevalence of depression-related discussions on social media platforms. <!-- This section describes the evaluation protocols and provides the results. --> #### Metrics <img src=""> ## Technical Specifications The model was trained on a 6GB RTX 3060
swl-models/Anything-v5.0-PRT
swl-models
2023-03-28T02:58:54Z
0
10
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-03-27T04:09:28Z
--- license: creativeml-openrail-m ---
Maryem13/ppo-LunarLander-v
Maryem13
2023-03-28T02:39:16Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-28T01:55:26Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -213.05 +/- 99.89 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
artbreguez/a2c-PandaReachDense-v2
artbreguez
2023-03-28T02:12:22Z
1
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-28T01:38:40Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -2.65 +/- 0.67 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Seonwhee-Genome/bert-base
Seonwhee-Genome
2023-03-28T02:04:36Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:klue", "endpoints_compatible", "region:us" ]
question-answering
2023-03-27T02:59:08Z
--- tags: - generated_from_trainer datasets: - klue model-index: - name: bert-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base This model was trained from scratch on the klue dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
Senka1/hhhgy
Senka1
2023-03-28T01:59:16Z
0
0
nemo
[ "nemo", "not_for_all_eyes", "text-classification", "ru", "dataset:nyanko7/LLaMA-65B", "license:wtfpl", "region:us" ]
text-classification
2023-03-28T01:56:11Z
--- license: wtfpl datasets: - nyanko7/LLaMA-65B language: - ru metrics: - character library_name: nemo pipeline_tag: text-classification tags: - not_for_all_eyes ---
sohm/ppo-LunarLander-v2-Lunar200Kv5
sohm
2023-03-28T01:50:36Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-28T01:50:29Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -172.05 +/- 24.86 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
PolyRocketMatt/polyrocketmatt_irse_model_2
PolyRocketMatt
2023-03-28T01:47:24Z
109
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2023-03-28T01:35:34Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: polyrocketmatt_irse_model_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # polyrocketmatt_irse_model_2 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.0+cu117 - Datasets 2.10.1 - Tokenizers 0.13.2
vocabtrimmer/mbart-large-cc25-ruquad-qa-trimmed-ru-90000
vocabtrimmer
2023-03-28T01:44:28Z
105
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-28T01:19:24Z
# Vocabulary Trimmed [lmqg/mbart-large-cc25-ruquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-ruquad-qa): `vocabtrimmer/mbart-large-cc25-ruquad-qa-trimmed-ru-90000` This model is a trimmed version of [lmqg/mbart-large-cc25-ruquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-ruquad-qa) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mbart-large-cc25-ruquad-qa | vocabtrimmer/mbart-large-cc25-ruquad-qa-trimmed-ru-90000 | |:---------------------------|:----------------------------------|:-----------------------------------------------------------| | parameter_size_full | 610,852,864 | 446,987,264 | | parameter_size_embedding | 512,057,344 | 184,326,144 | | vocab_size | 250,028 | 90,003 | | compression_rate_full | 100.0 | 73.17 | | compression_rate_embedding | 100.0 | 36.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | ru | vocabtrimmer/mc4_validation | text | ru | validation | 90000 | 2 |
ryanaspen/ppo-SnowballTarget
ryanaspen
2023-03-28T01:43:30Z
4
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-03-28T01:43:25Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Find your model_id: ryanaspen/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
artem9k/alpaca-lora-7b
artem9k
2023-03-28T01:42:05Z
0
0
null
[ "license:other", "region:us" ]
null
2023-03-28T01:39:14Z
--- license: other --- #### Trained on Monday Mar 27 #### ALPACA LORA model #### Trained on alpaca-data-cleaned for 3 epochs #### micro_batch_size 10 #### all other params default #### https://github.com/tloen/alpaca-lora
sohm/ppo-LunarLander-v2-Lunar200Kv4
sohm
2023-03-28T01:34:30Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-28T01:34:21Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -154.66 +/- 38.62 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
sohm/ppo-LunarLander-v2-Lunar200Kv3
sohm
2023-03-28T01:30:53Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-28T01:30:45Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -180.77 +/- 43.99 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ryanaspen/reinforce-pixelcopter
ryanaspen
2023-03-28T01:18:49Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-17T22:38:37Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: reinforce-pixelcopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 26.10 +/- 12.37 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
sohm/ppo-LunarLander-v2-Lunar200Kv2
sohm
2023-03-28T01:18:04Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-28T01:17:58Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -144.59 +/- 24.33 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
vocabtrimmer/mbart-large-cc25-ruquad-qa-trimmed-ru-60000
vocabtrimmer
2023-03-28T01:16:05Z
105
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-28T00:52:35Z
# Vocabulary Trimmed [lmqg/mbart-large-cc25-ruquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-ruquad-qa): `vocabtrimmer/mbart-large-cc25-ruquad-qa-trimmed-ru-60000` This model is a trimmed version of [lmqg/mbart-large-cc25-ruquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-ruquad-qa) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mbart-large-cc25-ruquad-qa | vocabtrimmer/mbart-large-cc25-ruquad-qa-trimmed-ru-60000 | |:---------------------------|:----------------------------------|:-----------------------------------------------------------| | parameter_size_full | 610,852,864 | 416,267,264 | | parameter_size_embedding | 512,057,344 | 122,886,144 | | vocab_size | 250,028 | 60,003 | | compression_rate_full | 100.0 | 68.15 | | compression_rate_embedding | 100.0 | 24.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | ru | vocabtrimmer/mc4_validation | text | ru | validation | 60000 | 2 |
saiful-sit/whisper-small-bn-cv
saiful-sit
2023-03-28T01:12:00Z
76
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "bn", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-03-27T09:47:12Z
--- language: - bn license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Bn - Saiful results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: bn split: test args: 'config: Bn, split: test' metrics: - name: Wer type: wer value: 33.99048888192104 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Bn - Saiful This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.1065 - Wer: 33.9905 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1491 | 0.64 | 1000 | 0.1626 | 47.3805 | | 0.0874 | 1.27 | 2000 | 0.1239 | 38.8480 | | 0.0692 | 1.91 | 3000 | 0.1081 | 35.3675 | | 0.0455 | 2.55 | 4000 | 0.1065 | 33.9905 | ### Framework versions - Transformers 4.28.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.10.2.dev0 - Tokenizers 0.13.2
artbreguez/a2c-AntBulletEnv-v0
artbreguez
2023-03-28T01:04:19Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-28T00:13:54Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 2077.10 +/- 45.05 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
aymenkhs/a2c-AntBulletEnv-v0
aymenkhs
2023-03-28T01:03:59Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-28T01:02:50Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1402.59 +/- 168.02 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
sohm/ppo-LunarLander-v2-Lunar200Kv1
sohm
2023-03-28T01:02:51Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-28T01:02:43Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -144.32 +/- 41.46 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
vocabtrimmer/xlm-roberta-base-trimmed-it-10000-tweet-sentiment-it
vocabtrimmer
2023-03-28T00:49:43Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-20T10:15:25Z
# `vocabtrimmer/xlm-roberta-base-trimmed-it-10000-tweet-sentiment-it` This model is a fine-tuned version of [/home/asahi/lm-vocab-trimmer/ckpts/xlm-roberta-base-trimmed-it-10000](https://huggingface.co//home/asahi/lm-vocab-trimmer/ckpts/xlm-roberta-base-trimmed-it-10000) on the [cardiffnlp/tweet_sentiment_multilingual](https://huggingface.co/datasets/cardiffnlp/tweet_sentiment_multilingual) (italian). Following metrics are computed on the `test` split of [cardiffnlp/tweet_sentiment_multilingual](https://huggingface.co/datasets/cardiffnlp/tweet_sentiment_multilingual)(italian). | | eval_f1_micro | eval_recall_micro | eval_precision_micro | eval_f1_macro | eval_recall_macro | eval_precision_macro | eval_accuracy | |---:|----------------:|--------------------:|-----------------------:|----------------:|--------------------:|-----------------------:|----------------:| | 0 | 67.7 | 67.7 | 67.7 | 67.09 | 67.7 | 69.61 | 67.7 | Check the result file [here](https://huggingface.co/vocabtrimmer/xlm-roberta-base-trimmed-it-10000-tweet-sentiment-it/raw/main/eval.json).
GraymanMedia/test
GraymanMedia
2023-03-28T00:46:04Z
33
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-03-28T00:16:39Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### test Dreambooth model trained by GraymanMedia with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
makdong/bert-finetuned-squad22
makdong
2023-03-28T00:42:43Z
114
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2023-03-27T23:47:07Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad22 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad22 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
Unggi/hate_speech_classifier_KcElectra
Unggi
2023-03-28T00:39:25Z
143
0
transformers
[ "transformers", "pytorch", "electra", "text-classification", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-23T22:17:59Z
--- license: cc-by-nc-sa-4.0 ---
Neurogen/neurogen
Neurogen
2023-03-28T00:28:01Z
25
8
diffusers
[ "diffusers", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-03-27T16:19:59Z
--- license: other --- According to the tests, this model gives a very good detail of skin and textures. Great for close-up photorealistic portraits as well as various characters and models. UPD 26.03.2023: v1.1: The new version has taken a step forward in the direction of versatility. The detail of the half body planes and full body planes has been improved (don't forget to use the Hires fix). In addition to photorealism, you can use this model for digital art and anime as well. Texture detailing has been improved, and new colors have been added.
jakub014/ColD-Fusion-bert-base-uncased-itr23-seed0-finetuned-sufficiency-ukp
jakub014
2023-03-28T00:10:22Z
105
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-28T00:04:33Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: ColD-Fusion-bert-base-uncased-itr23-seed0-finetuned-sufficiency-ukp results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ColD-Fusion-bert-base-uncased-itr23-seed0-finetuned-sufficiency-ukp This model is a fine-tuned version of [ibm/ColD-Fusion-bert-base-uncased-itr23-seed0](https://huggingface.co/ibm/ColD-Fusion-bert-base-uncased-itr23-seed0) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5288 - Accuracy: 0.8786 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 52 | 0.3410 | 0.8544 | | No log | 2.0 | 104 | 0.4002 | 0.8689 | | No log | 3.0 | 156 | 0.5108 | 0.8544 | | No log | 4.0 | 208 | 0.5288 | 0.8786 | | No log | 5.0 | 260 | 0.5707 | 0.8738 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
vocabtrimmer/mbart-large-cc25-ruquad-qa-trimmed-ru-10000
vocabtrimmer
2023-03-28T00:04:10Z
106
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-27T23:42:24Z
# Vocabulary Trimmed [lmqg/mbart-large-cc25-ruquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-ruquad-qa): `vocabtrimmer/mbart-large-cc25-ruquad-qa-trimmed-ru-10000` This model is a trimmed version of [lmqg/mbart-large-cc25-ruquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-ruquad-qa) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mbart-large-cc25-ruquad-qa | vocabtrimmer/mbart-large-cc25-ruquad-qa-trimmed-ru-10000 | |:---------------------------|:----------------------------------|:-----------------------------------------------------------| | parameter_size_full | 610,852,864 | 365,068,288 | | parameter_size_embedding | 512,057,344 | 20,488,192 | | vocab_size | 250,028 | 10,004 | | compression_rate_full | 100.0 | 59.76 | | compression_rate_embedding | 100.0 | 4.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | ru | vocabtrimmer/mc4_validation | text | ru | validation | 10000 | 2 |
jakub014/ColD-Fusion-bert-base-uncased-itr23-seed0-finetuned-sufficiency-dagstuhl
jakub014
2023-03-28T00:00:33Z
107
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-27T23:56:45Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: ColD-Fusion-bert-base-uncased-itr23-seed0-finetuned-sufficiency-dagstuhl results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ColD-Fusion-bert-base-uncased-itr23-seed0-finetuned-sufficiency-dagstuhl This model is a fine-tuned version of [ibm/ColD-Fusion-bert-base-uncased-itr23-seed0](https://huggingface.co/ibm/ColD-Fusion-bert-base-uncased-itr23-seed0) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6936 - Accuracy: 0.6349 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 16 | 0.6675 | 0.5873 | | No log | 2.0 | 32 | 0.6701 | 0.5873 | | No log | 3.0 | 48 | 0.7022 | 0.6032 | | No log | 4.0 | 64 | 0.6838 | 0.6190 | | No log | 5.0 | 80 | 0.6936 | 0.6349 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
PhilSad/q-taxi-v3
PhilSad
2023-03-27T23:50:59Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-27T23:50:56Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="PhilSad/q-taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Tavy/Weight_Control_AI
Tavy
2023-03-27T23:50:17Z
0
0
null
[ "region:us" ]
null
2023-03-27T23:49:30Z
The body gets energy from food. If this energy is not used, it will be stored. If the energy input from food continuously exceeds the energy outputs of the body, this energy will be stored in the form of fat under the skin and around the organs. This project is about designing a program (maybe an Android App for extra credits) that takes the consumed food as its input, and then provides the user with certain practical exercises that will burn off the extra energy. --- license: openrail ---
jakub014/ColD-Fusion-bert-base-uncased-itr23-seed0-finetuned-effectiveness-dagstuhl
jakub014
2023-03-27T23:50:10Z
106
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-27T23:48:35Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: ColD-Fusion-bert-base-uncased-itr23-seed0-finetuned-effectiveness-dagstuhl results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ColD-Fusion-bert-base-uncased-itr23-seed0-finetuned-effectiveness-dagstuhl This model is a fine-tuned version of [ibm/ColD-Fusion-bert-base-uncased-itr23-seed0](https://huggingface.co/ibm/ColD-Fusion-bert-base-uncased-itr23-seed0) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6548 - Accuracy: 0.6508 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 16 | 0.6548 | 0.6508 | | No log | 2.0 | 32 | 0.6502 | 0.6190 | | No log | 3.0 | 48 | 0.6451 | 0.6190 | | No log | 4.0 | 64 | 0.6436 | 0.6349 | | No log | 5.0 | 80 | 0.6482 | 0.6190 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
somosnlp-hackathon-2023/SalpiBloom_base_lr3e4_1b1
somosnlp-hackathon-2023
2023-03-27T23:44:49Z
0
1
adapter-transformers
[ "adapter-transformers", "es", "license:apache-2.0", "region:us" ]
null
2023-03-27T23:32:12Z
--- license: apache-2.0 language: - es library_name: adapter-transformers --- <div style="text-align:center;width:350px;height:350px;"> <img src="https://huggingface.co/hackathon-somos-nlp-2023/SalpiBloom-1b1/resolve/main/salpibloom.png" alt="SAlpaca logo""> </div> # SAlpiBloom: Spanish + Alpaca + Bloom (WIP) Learning rate = 3e-4 ## Adapter Description This adapter was created with the [PEFT](https://github.com/huggingface/peft) library and allowed the base model [bigscience/bloom-1b1](https://huggingface.co/bigscience/bloom-1b1) to be fine-tuned on the [Spanish Alpaca Dataset](https://huggingface.co/datasets/bertin-project/alpaca-spanish) by using the method *LoRA*. ## How to use ```py import torch from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer peft_model_id = "hackathon-somos-nlp-2023/SalpiBloom_base_lr3e4_1b1" config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True, load_in_8bit=True, device_map='auto') # tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) tokenizer = AutoTokenizer.from_pretrained(peft_model_id) # Load the Lora model model = PeftModel.from_pretrained(model, peft_model_id) def gen_conversation(text): text = "<SC>instruction: " + text + "\n " batch = tokenizer(text, return_tensors='pt') with torch.cuda.amp.autocast(): output_tokens = model.generate(**batch, max_new_tokens=256, eos_token_id=50258, early_stopping = True, temperature=.9) print('\n\n', tokenizer.decode(output_tokens[0], skip_special_tokens=False)) text = "Redacta un cuento corto" gen_conversation(text) ``` ## Resources used Google Colab machine with the following specifications <div style="text-align:center;width:550px;height:550px;"> <img src="https://huggingface.co/hackathon-somos-nlp-2023/bertin-gpt-j-6B-es-finetuned-salpaca/resolve/main/resource.jpeg" alt="Resource logo"> </div> ## Citation ``` @misc {hackathon-somos-nlp-2023, author = { {Edison Bejarano, Leonardo Bolaños, Alberto Ceballos, Santiago Pineda, Nicolay Potes} }, title = { SalpiBloom_base_lr3e4_1b1 }, year = 2023, url = { https://huggingface.co/hackathon-somos-nlp-2023/SalpiBloom_base_lr3e4_1b1 } publisher = { Hugging Face } } ```
PhilSad/q-FrozenLake-v1-4x4-noSlippery
PhilSad
2023-03-27T23:41:13Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-27T23:41:12Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="PhilSad/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
fathyshalab/autotrain-dialogsumgerman-44305111787
fathyshalab
2023-03-27T23:35:58Z
13
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain", "summarization", "de", "dataset:fathyshalab/autotrain-data-dialogsumgerman", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2023-03-27T19:49:05Z
--- tags: - autotrain - summarization language: - de widget: - text: "I love AutoTrain 🤗" datasets: - fathyshalab/autotrain-data-dialogsumgerman co2_eq_emissions: emissions: 86.21246024573398 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 44305111787 - CO2 Emissions (in grams): 86.2125 ## Validation Metrics - Loss: 1.069 - Rouge1: 33.702 - Rouge2: 13.478 - RougeL: 29.431 - RougeLsum: 30.710 - Gen Len: 18.952 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/fathyshalab/autotrain-dialogsumgerman-44305111787 ```
Kaludi/Customer-Support-Assistant-V2
Kaludi
2023-03-27T23:23:09Z
69
11
transformers
[ "transformers", "tf", "bart", "text2text-generation", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-27T23:17:33Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: Customer-Support-Assistant results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Customer-Support-Assistant This model is a fine-tuned version of [philschmid/bart-large-cnn-samsum](https://huggingface.co/philschmid/bart-large-cnn-samsum) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2225 - Validation Loss: 1.2975 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.7810 | 1.2671 | 0 | | 0.8029 | 1.0762 | 1 | | 0.5087 | 1.1009 | 2 | | 0.3161 | 1.1498 | 3 | | 0.2225 | 1.2975 | 4 | ### Framework versions - Transformers 4.27.3 - TensorFlow 2.11.0 - Datasets 2.10.1 - Tokenizers 0.13.2
BoschAI/dqn-SpaceInvadersNoFrameskip-v4
BoschAI
2023-03-27T23:07:41Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-27T23:06:56Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 543.50 +/- 234.19 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga BoschAI -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga BoschAI -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga BoschAI ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
intanm/20230328-001-baseline-xlmr-clickbait-spoiling
intanm
2023-03-27T22:47:30Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "question-answering", "generated_from_trainer", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
question-answering
2023-03-27T22:43:55Z
--- license: cc-by-4.0 tags: - generated_from_trainer model-index: - name: 20230328-001-baseline-xlmr-clickbait-spoiling results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 20230328-001-baseline-xlmr-clickbait-spoiling This model is a fine-tuned version of [deepset/xlm-roberta-base-squad2](https://huggingface.co/deepset/xlm-roberta-base-squad2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9266 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 99 | 2.7788 | | No log | 2.0 | 198 | 2.8201 | | No log | 3.0 | 297 | 2.9266 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
vocabtrimmer/mbart-large-cc25-jaquad-qa-trimmed-ja-60000
vocabtrimmer
2023-03-27T22:46:36Z
99
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-27T22:24:17Z
# Vocabulary Trimmed [lmqg/mbart-large-cc25-jaquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-jaquad-qa): `vocabtrimmer/mbart-large-cc25-jaquad-qa-trimmed-ja-60000` This model is a trimmed version of [lmqg/mbart-large-cc25-jaquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-jaquad-qa) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mbart-large-cc25-jaquad-qa | vocabtrimmer/mbart-large-cc25-jaquad-qa-trimmed-ja-60000 | |:---------------------------|:----------------------------------|:-----------------------------------------------------------| | parameter_size_full | 610,852,864 | 416,268,288 | | parameter_size_embedding | 512,057,344 | 122,888,192 | | vocab_size | 250,028 | 60,004 | | compression_rate_full | 100.0 | 68.15 | | compression_rate_embedding | 100.0 | 24.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | ja | vocabtrimmer/mc4_validation | text | ja | validation | 60000 | 2 |
pinaggle/dqn-SpaceInvadersNoFrameskip-v4
pinaggle
2023-03-27T22:37:47Z
7
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-27T22:37:01Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 623.50 +/- 145.88 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga pinaggle -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga pinaggle -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga pinaggle ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
tcvrishank/histo_train_swin
tcvrishank
2023-03-27T22:31:54Z
166
0
transformers
[ "transformers", "pytorch", "tensorboard", "swinv2", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-03-25T03:42:06Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: histo_train_swin results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # histo_train_swin This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2654 - Accuracy: 0.9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0305 | 16.67 | 100 | 0.2654 | 0.9 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
vocabtrimmer/mbart-large-cc25-esquad-qa-trimmed-es-30000
vocabtrimmer
2023-03-27T22:28:45Z
105
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-27T21:19:50Z
# Vocabulary Trimmed [lmqg/mbart-large-cc25-esquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-esquad-qa): `vocabtrimmer/mbart-large-cc25-esquad-qa-trimmed-es-30000` This model is a trimmed version of [lmqg/mbart-large-cc25-esquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-esquad-qa) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mbart-large-cc25-esquad-qa | vocabtrimmer/mbart-large-cc25-esquad-qa-trimmed-es-30000 | |:---------------------------|:----------------------------------|:-----------------------------------------------------------| | parameter_size_full | 610,852,864 | 385,548,288 | | parameter_size_embedding | 512,057,344 | 61,448,192 | | vocab_size | 250,028 | 30,004 | | compression_rate_full | 100.0 | 63.12 | | compression_rate_embedding | 100.0 | 12.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | es | vocabtrimmer/mc4_validation | text | es | validation | 30000 | 2 |
Muennighoff/SGPT-2.7B-weightedmean-msmarco-specb-bitfit
Muennighoff
2023-03-27T22:24:48Z
406
3
sentence-transformers
[ "sentence-transformers", "pytorch", "gpt_neo", "feature-extraction", "sentence-similarity", "mteb", "arxiv:2202.08904", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:04Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - mteb model-index: - name: SGPT-2.7B-weightedmean-msmarco-specb-bitfit results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: 2d8a100785abf0ae21420d2a55b0c56e3e1ea996 metrics: - type: accuracy value: 67.56716417910448 - type: ap value: 30.75574629595259 - type: f1 value: 61.805121301858655 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: 80714f8dcf8cefc218ef4f8c5a966dd83f75a0e1 metrics: - type: accuracy value: 71.439575 - type: ap value: 65.91341330532453 - type: f1 value: 70.90561852619555 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: c379a6705fec24a2493fa68e011692605f44e119 metrics: - type: accuracy value: 35.748000000000005 - type: f1 value: 35.48576287186347 - task: type: Retrieval dataset: type: arguana name: MTEB ArguAna config: default split: test revision: 5b3e3697907184a9b77a3c99ee9ea1a9cbb1e4e3 metrics: - type: map_at_1 value: 25.96 - type: map_at_10 value: 41.619 - type: map_at_100 value: 42.673 - type: map_at_1000 value: 42.684 - type: map_at_3 value: 36.569 - type: map_at_5 value: 39.397 - type: mrr_at_1 value: 26.316 - type: mrr_at_10 value: 41.772 - type: mrr_at_100 value: 42.82 - type: mrr_at_1000 value: 42.83 - type: mrr_at_3 value: 36.724000000000004 - type: mrr_at_5 value: 39.528999999999996 - type: ndcg_at_1 value: 25.96 - type: ndcg_at_10 value: 50.491 - type: ndcg_at_100 value: 54.864999999999995 - type: ndcg_at_1000 value: 55.10699999999999 - type: ndcg_at_3 value: 40.053 - type: ndcg_at_5 value: 45.134 - type: precision_at_1 value: 25.96 - type: precision_at_10 value: 7.8950000000000005 - type: precision_at_100 value: 0.9780000000000001 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 16.714000000000002 - type: precision_at_5 value: 12.489 - type: recall_at_1 value: 25.96 - type: recall_at_10 value: 78.947 - type: recall_at_100 value: 97.795 - type: recall_at_1000 value: 99.644 - type: recall_at_3 value: 50.141999999999996 - type: recall_at_5 value: 62.446999999999996 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: 0bbdb47bcbe3a90093699aefeed338a0f28a7ee8 metrics: - type: v_measure value: 44.72125714642202 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: b73bd54100e5abfa6e3a23dcafb46fe4d2438dc3 metrics: - type: v_measure value: 35.081451519142064 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 4d853f94cd57d85ec13805aeeac3ae3e5eb4c49c metrics: - type: map value: 59.634661990392054 - type: mrr value: 73.6813525040672 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: 9ee918f184421b6bd48b78f6c714d86546106103 metrics: - type: cos_sim_pearson value: 87.42754550496836 - type: cos_sim_spearman value: 84.84289705838664 - type: euclidean_pearson value: 85.59331970450859 - type: euclidean_spearman value: 85.8525586184271 - type: manhattan_pearson value: 85.41233134466698 - type: manhattan_spearman value: 85.52303303767404 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 44fa15921b4c889113cc5df03dd4901b49161ab7 metrics: - type: accuracy value: 83.21753246753246 - type: f1 value: 83.15394543120915 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 11d0121201d1f1f280e8cc8f3d98fb9c4d9f9c55 metrics: - type: v_measure value: 34.41414219680629 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: c0fab014e1bcb8d3a5e31b2088972a1e01547dc1 metrics: - type: v_measure value: 30.533275862270028 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackAndroidRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 30.808999999999997 - type: map_at_10 value: 40.617 - type: map_at_100 value: 41.894999999999996 - type: map_at_1000 value: 42.025 - type: map_at_3 value: 37.0 - type: map_at_5 value: 38.993 - type: mrr_at_1 value: 37.482 - type: mrr_at_10 value: 46.497 - type: mrr_at_100 value: 47.144000000000005 - type: mrr_at_1000 value: 47.189 - type: mrr_at_3 value: 43.705 - type: mrr_at_5 value: 45.193 - type: ndcg_at_1 value: 37.482 - type: ndcg_at_10 value: 46.688 - type: ndcg_at_100 value: 51.726000000000006 - type: ndcg_at_1000 value: 53.825 - type: ndcg_at_3 value: 41.242000000000004 - type: ndcg_at_5 value: 43.657000000000004 - type: precision_at_1 value: 37.482 - type: precision_at_10 value: 8.827 - type: precision_at_100 value: 1.393 - type: precision_at_1000 value: 0.186 - type: precision_at_3 value: 19.361 - type: precision_at_5 value: 14.106 - type: recall_at_1 value: 30.808999999999997 - type: recall_at_10 value: 58.47 - type: recall_at_100 value: 80.51899999999999 - type: recall_at_1000 value: 93.809 - type: recall_at_3 value: 42.462 - type: recall_at_5 value: 49.385 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackEnglishRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 26.962000000000003 - type: map_at_10 value: 36.93 - type: map_at_100 value: 38.102000000000004 - type: map_at_1000 value: 38.22 - type: map_at_3 value: 34.065 - type: map_at_5 value: 35.72 - type: mrr_at_1 value: 33.567 - type: mrr_at_10 value: 42.269 - type: mrr_at_100 value: 42.99 - type: mrr_at_1000 value: 43.033 - type: mrr_at_3 value: 40.064 - type: mrr_at_5 value: 41.258 - type: ndcg_at_1 value: 33.567 - type: ndcg_at_10 value: 42.405 - type: ndcg_at_100 value: 46.847 - type: ndcg_at_1000 value: 48.951 - type: ndcg_at_3 value: 38.312000000000005 - type: ndcg_at_5 value: 40.242 - type: precision_at_1 value: 33.567 - type: precision_at_10 value: 8.032 - type: precision_at_100 value: 1.295 - type: precision_at_1000 value: 0.17600000000000002 - type: precision_at_3 value: 18.662 - type: precision_at_5 value: 13.299 - type: recall_at_1 value: 26.962000000000003 - type: recall_at_10 value: 52.489 - type: recall_at_100 value: 71.635 - type: recall_at_1000 value: 85.141 - type: recall_at_3 value: 40.28 - type: recall_at_5 value: 45.757 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGamingRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 36.318 - type: map_at_10 value: 47.97 - type: map_at_100 value: 49.003 - type: map_at_1000 value: 49.065999999999995 - type: map_at_3 value: 45.031 - type: map_at_5 value: 46.633 - type: mrr_at_1 value: 41.504999999999995 - type: mrr_at_10 value: 51.431000000000004 - type: mrr_at_100 value: 52.129000000000005 - type: mrr_at_1000 value: 52.161 - type: mrr_at_3 value: 48.934 - type: mrr_at_5 value: 50.42 - type: ndcg_at_1 value: 41.504999999999995 - type: ndcg_at_10 value: 53.676 - type: ndcg_at_100 value: 57.867000000000004 - type: ndcg_at_1000 value: 59.166 - type: ndcg_at_3 value: 48.516 - type: ndcg_at_5 value: 50.983999999999995 - type: precision_at_1 value: 41.504999999999995 - type: precision_at_10 value: 8.608 - type: precision_at_100 value: 1.1560000000000001 - type: precision_at_1000 value: 0.133 - type: precision_at_3 value: 21.462999999999997 - type: precision_at_5 value: 14.721 - type: recall_at_1 value: 36.318 - type: recall_at_10 value: 67.066 - type: recall_at_100 value: 85.34 - type: recall_at_1000 value: 94.491 - type: recall_at_3 value: 53.215999999999994 - type: recall_at_5 value: 59.214 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGisRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 22.167 - type: map_at_10 value: 29.543999999999997 - type: map_at_100 value: 30.579 - type: map_at_1000 value: 30.669999999999998 - type: map_at_3 value: 26.982 - type: map_at_5 value: 28.474 - type: mrr_at_1 value: 24.068 - type: mrr_at_10 value: 31.237 - type: mrr_at_100 value: 32.222 - type: mrr_at_1000 value: 32.292 - type: mrr_at_3 value: 28.776000000000003 - type: mrr_at_5 value: 30.233999999999998 - type: ndcg_at_1 value: 24.068 - type: ndcg_at_10 value: 33.973 - type: ndcg_at_100 value: 39.135 - type: ndcg_at_1000 value: 41.443999999999996 - type: ndcg_at_3 value: 29.018 - type: ndcg_at_5 value: 31.558999999999997 - type: precision_at_1 value: 24.068 - type: precision_at_10 value: 5.299 - type: precision_at_100 value: 0.823 - type: precision_at_1000 value: 0.106 - type: precision_at_3 value: 12.166 - type: precision_at_5 value: 8.767999999999999 - type: recall_at_1 value: 22.167 - type: recall_at_10 value: 46.115 - type: recall_at_100 value: 69.867 - type: recall_at_1000 value: 87.234 - type: recall_at_3 value: 32.798 - type: recall_at_5 value: 38.951 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackMathematicaRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 12.033000000000001 - type: map_at_10 value: 19.314 - type: map_at_100 value: 20.562 - type: map_at_1000 value: 20.695 - type: map_at_3 value: 16.946 - type: map_at_5 value: 18.076999999999998 - type: mrr_at_1 value: 14.801 - type: mrr_at_10 value: 22.74 - type: mrr_at_100 value: 23.876 - type: mrr_at_1000 value: 23.949 - type: mrr_at_3 value: 20.211000000000002 - type: mrr_at_5 value: 21.573 - type: ndcg_at_1 value: 14.801 - type: ndcg_at_10 value: 24.038 - type: ndcg_at_100 value: 30.186 - type: ndcg_at_1000 value: 33.321 - type: ndcg_at_3 value: 19.431 - type: ndcg_at_5 value: 21.34 - type: precision_at_1 value: 14.801 - type: precision_at_10 value: 4.776 - type: precision_at_100 value: 0.897 - type: precision_at_1000 value: 0.133 - type: precision_at_3 value: 9.66 - type: precision_at_5 value: 7.239 - type: recall_at_1 value: 12.033000000000001 - type: recall_at_10 value: 35.098 - type: recall_at_100 value: 62.175000000000004 - type: recall_at_1000 value: 84.17099999999999 - type: recall_at_3 value: 22.61 - type: recall_at_5 value: 27.278999999999996 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackPhysicsRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 26.651000000000003 - type: map_at_10 value: 36.901 - type: map_at_100 value: 38.249 - type: map_at_1000 value: 38.361000000000004 - type: map_at_3 value: 33.891 - type: map_at_5 value: 35.439 - type: mrr_at_1 value: 32.724 - type: mrr_at_10 value: 42.504 - type: mrr_at_100 value: 43.391999999999996 - type: mrr_at_1000 value: 43.436 - type: mrr_at_3 value: 39.989999999999995 - type: mrr_at_5 value: 41.347 - type: ndcg_at_1 value: 32.724 - type: ndcg_at_10 value: 43.007 - type: ndcg_at_100 value: 48.601 - type: ndcg_at_1000 value: 50.697 - type: ndcg_at_3 value: 37.99 - type: ndcg_at_5 value: 40.083999999999996 - type: precision_at_1 value: 32.724 - type: precision_at_10 value: 7.872999999999999 - type: precision_at_100 value: 1.247 - type: precision_at_1000 value: 0.16199999999999998 - type: precision_at_3 value: 18.062 - type: precision_at_5 value: 12.666 - type: recall_at_1 value: 26.651000000000003 - type: recall_at_10 value: 55.674 - type: recall_at_100 value: 78.904 - type: recall_at_1000 value: 92.55799999999999 - type: recall_at_3 value: 41.36 - type: recall_at_5 value: 46.983999999999995 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackProgrammersRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 22.589000000000002 - type: map_at_10 value: 32.244 - type: map_at_100 value: 33.46 - type: map_at_1000 value: 33.593 - type: map_at_3 value: 29.21 - type: map_at_5 value: 31.019999999999996 - type: mrr_at_1 value: 28.425 - type: mrr_at_10 value: 37.282 - type: mrr_at_100 value: 38.187 - type: mrr_at_1000 value: 38.248 - type: mrr_at_3 value: 34.684 - type: mrr_at_5 value: 36.123 - type: ndcg_at_1 value: 28.425 - type: ndcg_at_10 value: 37.942 - type: ndcg_at_100 value: 43.443 - type: ndcg_at_1000 value: 45.995999999999995 - type: ndcg_at_3 value: 32.873999999999995 - type: ndcg_at_5 value: 35.325 - type: precision_at_1 value: 28.425 - type: precision_at_10 value: 7.1 - type: precision_at_100 value: 1.166 - type: precision_at_1000 value: 0.158 - type: precision_at_3 value: 16.02 - type: precision_at_5 value: 11.644 - type: recall_at_1 value: 22.589000000000002 - type: recall_at_10 value: 50.03999999999999 - type: recall_at_100 value: 73.973 - type: recall_at_1000 value: 91.128 - type: recall_at_3 value: 35.882999999999996 - type: recall_at_5 value: 42.187999999999995 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 23.190833333333334 - type: map_at_10 value: 31.504916666666666 - type: map_at_100 value: 32.64908333333334 - type: map_at_1000 value: 32.77075 - type: map_at_3 value: 28.82575 - type: map_at_5 value: 30.2755 - type: mrr_at_1 value: 27.427499999999995 - type: mrr_at_10 value: 35.36483333333334 - type: mrr_at_100 value: 36.23441666666666 - type: mrr_at_1000 value: 36.297583333333336 - type: mrr_at_3 value: 32.97966666666667 - type: mrr_at_5 value: 34.294583333333335 - type: ndcg_at_1 value: 27.427499999999995 - type: ndcg_at_10 value: 36.53358333333333 - type: ndcg_at_100 value: 41.64508333333333 - type: ndcg_at_1000 value: 44.14499999999999 - type: ndcg_at_3 value: 31.88908333333333 - type: ndcg_at_5 value: 33.98433333333333 - type: precision_at_1 value: 27.427499999999995 - type: precision_at_10 value: 6.481083333333333 - type: precision_at_100 value: 1.0610833333333334 - type: precision_at_1000 value: 0.14691666666666667 - type: precision_at_3 value: 14.656749999999999 - type: precision_at_5 value: 10.493583333333332 - type: recall_at_1 value: 23.190833333333334 - type: recall_at_10 value: 47.65175 - type: recall_at_100 value: 70.41016666666667 - type: recall_at_1000 value: 87.82708333333332 - type: recall_at_3 value: 34.637583333333325 - type: recall_at_5 value: 40.05008333333333 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackStatsRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 20.409 - type: map_at_10 value: 26.794 - type: map_at_100 value: 27.682000000000002 - type: map_at_1000 value: 27.783 - type: map_at_3 value: 24.461 - type: map_at_5 value: 25.668000000000003 - type: mrr_at_1 value: 22.853 - type: mrr_at_10 value: 29.296 - type: mrr_at_100 value: 30.103 - type: mrr_at_1000 value: 30.179000000000002 - type: mrr_at_3 value: 27.173000000000002 - type: mrr_at_5 value: 28.223 - type: ndcg_at_1 value: 22.853 - type: ndcg_at_10 value: 31.007 - type: ndcg_at_100 value: 35.581 - type: ndcg_at_1000 value: 38.147 - type: ndcg_at_3 value: 26.590999999999998 - type: ndcg_at_5 value: 28.43 - type: precision_at_1 value: 22.853 - type: precision_at_10 value: 5.031 - type: precision_at_100 value: 0.7939999999999999 - type: precision_at_1000 value: 0.11 - type: precision_at_3 value: 11.401 - type: precision_at_5 value: 8.16 - type: recall_at_1 value: 20.409 - type: recall_at_10 value: 41.766 - type: recall_at_100 value: 62.964 - type: recall_at_1000 value: 81.682 - type: recall_at_3 value: 29.281000000000002 - type: recall_at_5 value: 33.83 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackTexRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 14.549000000000001 - type: map_at_10 value: 20.315 - type: map_at_100 value: 21.301000000000002 - type: map_at_1000 value: 21.425 - type: map_at_3 value: 18.132 - type: map_at_5 value: 19.429 - type: mrr_at_1 value: 17.86 - type: mrr_at_10 value: 23.860999999999997 - type: mrr_at_100 value: 24.737000000000002 - type: mrr_at_1000 value: 24.82 - type: mrr_at_3 value: 21.685 - type: mrr_at_5 value: 23.008 - type: ndcg_at_1 value: 17.86 - type: ndcg_at_10 value: 24.396 - type: ndcg_at_100 value: 29.328 - type: ndcg_at_1000 value: 32.486 - type: ndcg_at_3 value: 20.375 - type: ndcg_at_5 value: 22.411 - type: precision_at_1 value: 17.86 - type: precision_at_10 value: 4.47 - type: precision_at_100 value: 0.8099999999999999 - type: precision_at_1000 value: 0.125 - type: precision_at_3 value: 9.475 - type: precision_at_5 value: 7.170999999999999 - type: recall_at_1 value: 14.549000000000001 - type: recall_at_10 value: 33.365 - type: recall_at_100 value: 55.797 - type: recall_at_1000 value: 78.632 - type: recall_at_3 value: 22.229 - type: recall_at_5 value: 27.339000000000002 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackUnixRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 23.286 - type: map_at_10 value: 30.728 - type: map_at_100 value: 31.840000000000003 - type: map_at_1000 value: 31.953 - type: map_at_3 value: 28.302 - type: map_at_5 value: 29.615000000000002 - type: mrr_at_1 value: 27.239 - type: mrr_at_10 value: 34.408 - type: mrr_at_100 value: 35.335 - type: mrr_at_1000 value: 35.405 - type: mrr_at_3 value: 32.151999999999994 - type: mrr_at_5 value: 33.355000000000004 - type: ndcg_at_1 value: 27.239 - type: ndcg_at_10 value: 35.324 - type: ndcg_at_100 value: 40.866 - type: ndcg_at_1000 value: 43.584 - type: ndcg_at_3 value: 30.898999999999997 - type: ndcg_at_5 value: 32.812999999999995 - type: precision_at_1 value: 27.239 - type: precision_at_10 value: 5.896 - type: precision_at_100 value: 0.979 - type: precision_at_1000 value: 0.133 - type: precision_at_3 value: 13.713000000000001 - type: precision_at_5 value: 9.683 - type: recall_at_1 value: 23.286 - type: recall_at_10 value: 45.711 - type: recall_at_100 value: 70.611 - type: recall_at_1000 value: 90.029 - type: recall_at_3 value: 33.615 - type: recall_at_5 value: 38.41 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWebmastersRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 23.962 - type: map_at_10 value: 31.942999999999998 - type: map_at_100 value: 33.384 - type: map_at_1000 value: 33.611000000000004 - type: map_at_3 value: 29.243000000000002 - type: map_at_5 value: 30.446 - type: mrr_at_1 value: 28.458 - type: mrr_at_10 value: 36.157000000000004 - type: mrr_at_100 value: 37.092999999999996 - type: mrr_at_1000 value: 37.163000000000004 - type: mrr_at_3 value: 33.86 - type: mrr_at_5 value: 35.086 - type: ndcg_at_1 value: 28.458 - type: ndcg_at_10 value: 37.201 - type: ndcg_at_100 value: 42.591 - type: ndcg_at_1000 value: 45.539 - type: ndcg_at_3 value: 32.889 - type: ndcg_at_5 value: 34.483000000000004 - type: precision_at_1 value: 28.458 - type: precision_at_10 value: 7.332 - type: precision_at_100 value: 1.437 - type: precision_at_1000 value: 0.233 - type: precision_at_3 value: 15.547 - type: precision_at_5 value: 11.146 - type: recall_at_1 value: 23.962 - type: recall_at_10 value: 46.751 - type: recall_at_100 value: 71.626 - type: recall_at_1000 value: 90.93900000000001 - type: recall_at_3 value: 34.138000000000005 - type: recall_at_5 value: 38.673 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWordpressRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 18.555 - type: map_at_10 value: 24.759 - type: map_at_100 value: 25.732 - type: map_at_1000 value: 25.846999999999998 - type: map_at_3 value: 22.646 - type: map_at_5 value: 23.791999999999998 - type: mrr_at_1 value: 20.148 - type: mrr_at_10 value: 26.695999999999998 - type: mrr_at_100 value: 27.605 - type: mrr_at_1000 value: 27.695999999999998 - type: mrr_at_3 value: 24.522 - type: mrr_at_5 value: 25.715 - type: ndcg_at_1 value: 20.148 - type: ndcg_at_10 value: 28.746 - type: ndcg_at_100 value: 33.57 - type: ndcg_at_1000 value: 36.584 - type: ndcg_at_3 value: 24.532 - type: ndcg_at_5 value: 26.484 - type: precision_at_1 value: 20.148 - type: precision_at_10 value: 4.529 - type: precision_at_100 value: 0.736 - type: precision_at_1000 value: 0.108 - type: precision_at_3 value: 10.351 - type: precision_at_5 value: 7.32 - type: recall_at_1 value: 18.555 - type: recall_at_10 value: 39.275999999999996 - type: recall_at_100 value: 61.511 - type: recall_at_1000 value: 84.111 - type: recall_at_3 value: 27.778999999999996 - type: recall_at_5 value: 32.591 - task: type: Retrieval dataset: type: climate-fever name: MTEB ClimateFEVER config: default split: test revision: 392b78eb68c07badcd7c2cd8f39af108375dfcce metrics: - type: map_at_1 value: 10.366999999999999 - type: map_at_10 value: 18.953999999999997 - type: map_at_100 value: 20.674999999999997 - type: map_at_1000 value: 20.868000000000002 - type: map_at_3 value: 15.486 - type: map_at_5 value: 17.347 - type: mrr_at_1 value: 23.257 - type: mrr_at_10 value: 35.419 - type: mrr_at_100 value: 36.361 - type: mrr_at_1000 value: 36.403 - type: mrr_at_3 value: 31.747999999999998 - type: mrr_at_5 value: 34.077 - type: ndcg_at_1 value: 23.257 - type: ndcg_at_10 value: 27.11 - type: ndcg_at_100 value: 33.981 - type: ndcg_at_1000 value: 37.444 - type: ndcg_at_3 value: 21.471999999999998 - type: ndcg_at_5 value: 23.769000000000002 - type: precision_at_1 value: 23.257 - type: precision_at_10 value: 8.704 - type: precision_at_100 value: 1.606 - type: precision_at_1000 value: 0.22499999999999998 - type: precision_at_3 value: 16.287 - type: precision_at_5 value: 13.068 - type: recall_at_1 value: 10.366999999999999 - type: recall_at_10 value: 33.706 - type: recall_at_100 value: 57.375 - type: recall_at_1000 value: 76.79 - type: recall_at_3 value: 20.18 - type: recall_at_5 value: 26.215 - task: type: Retrieval dataset: type: dbpedia-entity name: MTEB DBPedia config: default split: test revision: f097057d03ed98220bc7309ddb10b71a54d667d6 metrics: - type: map_at_1 value: 8.246 - type: map_at_10 value: 15.979 - type: map_at_100 value: 21.025 - type: map_at_1000 value: 22.189999999999998 - type: map_at_3 value: 11.997 - type: map_at_5 value: 13.697000000000001 - type: mrr_at_1 value: 60.75000000000001 - type: mrr_at_10 value: 68.70100000000001 - type: mrr_at_100 value: 69.1 - type: mrr_at_1000 value: 69.111 - type: mrr_at_3 value: 66.583 - type: mrr_at_5 value: 67.87100000000001 - type: ndcg_at_1 value: 49.75 - type: ndcg_at_10 value: 34.702 - type: ndcg_at_100 value: 37.607 - type: ndcg_at_1000 value: 44.322 - type: ndcg_at_3 value: 39.555 - type: ndcg_at_5 value: 36.684 - type: precision_at_1 value: 60.75000000000001 - type: precision_at_10 value: 26.625 - type: precision_at_100 value: 7.969999999999999 - type: precision_at_1000 value: 1.678 - type: precision_at_3 value: 41.833 - type: precision_at_5 value: 34.5 - type: recall_at_1 value: 8.246 - type: recall_at_10 value: 20.968 - type: recall_at_100 value: 42.065000000000005 - type: recall_at_1000 value: 63.671 - type: recall_at_3 value: 13.039000000000001 - type: recall_at_5 value: 16.042 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 829147f8f75a25f005913200eb5ed41fae320aa1 metrics: - type: accuracy value: 49.214999999999996 - type: f1 value: 44.85952451163755 - task: type: Retrieval dataset: type: fever name: MTEB FEVER config: default split: test revision: 1429cf27e393599b8b359b9b72c666f96b2525f9 metrics: - type: map_at_1 value: 56.769000000000005 - type: map_at_10 value: 67.30199999999999 - type: map_at_100 value: 67.692 - type: map_at_1000 value: 67.712 - type: map_at_3 value: 65.346 - type: map_at_5 value: 66.574 - type: mrr_at_1 value: 61.370999999999995 - type: mrr_at_10 value: 71.875 - type: mrr_at_100 value: 72.195 - type: mrr_at_1000 value: 72.206 - type: mrr_at_3 value: 70.04 - type: mrr_at_5 value: 71.224 - type: ndcg_at_1 value: 61.370999999999995 - type: ndcg_at_10 value: 72.731 - type: ndcg_at_100 value: 74.468 - type: ndcg_at_1000 value: 74.91600000000001 - type: ndcg_at_3 value: 69.077 - type: ndcg_at_5 value: 71.111 - type: precision_at_1 value: 61.370999999999995 - type: precision_at_10 value: 9.325999999999999 - type: precision_at_100 value: 1.03 - type: precision_at_1000 value: 0.108 - type: precision_at_3 value: 27.303 - type: precision_at_5 value: 17.525 - type: recall_at_1 value: 56.769000000000005 - type: recall_at_10 value: 85.06 - type: recall_at_100 value: 92.767 - type: recall_at_1000 value: 95.933 - type: recall_at_3 value: 75.131 - type: recall_at_5 value: 80.17 - task: type: Retrieval dataset: type: fiqa name: MTEB FiQA2018 config: default split: test revision: 41b686a7f28c59bcaaa5791efd47c67c8ebe28be metrics: - type: map_at_1 value: 15.753 - type: map_at_10 value: 25.875999999999998 - type: map_at_100 value: 27.415 - type: map_at_1000 value: 27.590999999999998 - type: map_at_3 value: 22.17 - type: map_at_5 value: 24.236 - type: mrr_at_1 value: 31.019000000000002 - type: mrr_at_10 value: 39.977000000000004 - type: mrr_at_100 value: 40.788999999999994 - type: mrr_at_1000 value: 40.832 - type: mrr_at_3 value: 37.088 - type: mrr_at_5 value: 38.655 - type: ndcg_at_1 value: 31.019000000000002 - type: ndcg_at_10 value: 33.286 - type: ndcg_at_100 value: 39.528999999999996 - type: ndcg_at_1000 value: 42.934 - type: ndcg_at_3 value: 29.29 - type: ndcg_at_5 value: 30.615 - type: precision_at_1 value: 31.019000000000002 - type: precision_at_10 value: 9.383 - type: precision_at_100 value: 1.6019999999999999 - type: precision_at_1000 value: 0.22200000000000003 - type: precision_at_3 value: 19.753 - type: precision_at_5 value: 14.815000000000001 - type: recall_at_1 value: 15.753 - type: recall_at_10 value: 40.896 - type: recall_at_100 value: 64.443 - type: recall_at_1000 value: 85.218 - type: recall_at_3 value: 26.526 - type: recall_at_5 value: 32.452999999999996 - task: type: Retrieval dataset: type: hotpotqa name: MTEB HotpotQA config: default split: test revision: 766870b35a1b9ca65e67a0d1913899973551fc6c metrics: - type: map_at_1 value: 32.153999999999996 - type: map_at_10 value: 43.651 - type: map_at_100 value: 44.41 - type: map_at_1000 value: 44.487 - type: map_at_3 value: 41.239 - type: map_at_5 value: 42.659000000000006 - type: mrr_at_1 value: 64.30799999999999 - type: mrr_at_10 value: 71.22500000000001 - type: mrr_at_100 value: 71.57 - type: mrr_at_1000 value: 71.59100000000001 - type: mrr_at_3 value: 69.95 - type: mrr_at_5 value: 70.738 - type: ndcg_at_1 value: 64.30799999999999 - type: ndcg_at_10 value: 52.835 - type: ndcg_at_100 value: 55.840999999999994 - type: ndcg_at_1000 value: 57.484 - type: ndcg_at_3 value: 49.014 - type: ndcg_at_5 value: 51.01599999999999 - type: precision_at_1 value: 64.30799999999999 - type: precision_at_10 value: 10.77 - type: precision_at_100 value: 1.315 - type: precision_at_1000 value: 0.153 - type: precision_at_3 value: 30.223 - type: precision_at_5 value: 19.716 - type: recall_at_1 value: 32.153999999999996 - type: recall_at_10 value: 53.849000000000004 - type: recall_at_100 value: 65.75999999999999 - type: recall_at_1000 value: 76.705 - type: recall_at_3 value: 45.334 - type: recall_at_5 value: 49.291000000000004 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 8d743909f834c38949e8323a8a6ce8721ea6c7f4 metrics: - type: accuracy value: 63.5316 - type: ap value: 58.90084300359825 - type: f1 value: 63.35727889030892 - task: type: Retrieval dataset: type: msmarco name: MTEB MSMARCO config: default split: validation revision: e6838a846e2408f22cf5cc337ebc83e0bcf77849 metrics: - type: map_at_1 value: 20.566000000000003 - type: map_at_10 value: 32.229 - type: map_at_100 value: 33.445 - type: map_at_1000 value: 33.501 - type: map_at_3 value: 28.504 - type: map_at_5 value: 30.681000000000004 - type: mrr_at_1 value: 21.218 - type: mrr_at_10 value: 32.816 - type: mrr_at_100 value: 33.986 - type: mrr_at_1000 value: 34.035 - type: mrr_at_3 value: 29.15 - type: mrr_at_5 value: 31.290000000000003 - type: ndcg_at_1 value: 21.218 - type: ndcg_at_10 value: 38.832 - type: ndcg_at_100 value: 44.743 - type: ndcg_at_1000 value: 46.138 - type: ndcg_at_3 value: 31.232 - type: ndcg_at_5 value: 35.099999999999994 - type: precision_at_1 value: 21.218 - type: precision_at_10 value: 6.186 - type: precision_at_100 value: 0.914 - type: precision_at_1000 value: 0.10300000000000001 - type: precision_at_3 value: 13.314 - type: precision_at_5 value: 9.943 - type: recall_at_1 value: 20.566000000000003 - type: recall_at_10 value: 59.192 - type: recall_at_100 value: 86.626 - type: recall_at_1000 value: 97.283 - type: recall_at_3 value: 38.492 - type: recall_at_5 value: 47.760000000000005 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: a7e2a951126a26fc8c6a69f835f33a346ba259e3 metrics: - type: accuracy value: 92.56269949840402 - type: f1 value: 92.1020975473988 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: 6299947a7777084cc2d4b64235bf7190381ce755 metrics: - type: accuracy value: 71.8467852257182 - type: f1 value: 53.652719348592015 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 69.00806993947546 - type: f1 value: 67.41429618885515 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 75.90114324142569 - type: f1 value: 76.25183590651454 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: dcefc037ef84348e49b0d29109e891c01067226b metrics: - type: v_measure value: 31.350109978273395 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 3cd0e71dfbe09d4de0f9e5ecba43e7ce280959dc metrics: - type: v_measure value: 28.768923695767327 - task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 31.716396735210754 - type: mrr value: 32.88970538547634 - task: type: Retrieval dataset: type: nfcorpus name: MTEB NFCorpus config: default split: test revision: 7eb63cc0c1eb59324d709ebed25fcab851fa7610 metrics: - type: map_at_1 value: 5.604 - type: map_at_10 value: 12.379999999999999 - type: map_at_100 value: 15.791 - type: map_at_1000 value: 17.327 - type: map_at_3 value: 9.15 - type: map_at_5 value: 10.599 - type: mrr_at_1 value: 45.201 - type: mrr_at_10 value: 53.374 - type: mrr_at_100 value: 54.089 - type: mrr_at_1000 value: 54.123 - type: mrr_at_3 value: 51.44499999999999 - type: mrr_at_5 value: 52.59 - type: ndcg_at_1 value: 42.879 - type: ndcg_at_10 value: 33.891 - type: ndcg_at_100 value: 31.391999999999996 - type: ndcg_at_1000 value: 40.36 - type: ndcg_at_3 value: 39.076 - type: ndcg_at_5 value: 37.047000000000004 - type: precision_at_1 value: 44.582 - type: precision_at_10 value: 25.294 - type: precision_at_100 value: 8.285 - type: precision_at_1000 value: 2.1479999999999997 - type: precision_at_3 value: 36.120000000000005 - type: precision_at_5 value: 31.95 - type: recall_at_1 value: 5.604 - type: recall_at_10 value: 16.239 - type: recall_at_100 value: 32.16 - type: recall_at_1000 value: 64.513 - type: recall_at_3 value: 10.406 - type: recall_at_5 value: 12.684999999999999 - task: type: Retrieval dataset: type: nq name: MTEB NQ config: default split: test revision: 6062aefc120bfe8ece5897809fb2e53bfe0d128c metrics: - type: map_at_1 value: 25.881 - type: map_at_10 value: 39.501 - type: map_at_100 value: 40.615 - type: map_at_1000 value: 40.661 - type: map_at_3 value: 35.559000000000005 - type: map_at_5 value: 37.773 - type: mrr_at_1 value: 29.229 - type: mrr_at_10 value: 41.955999999999996 - type: mrr_at_100 value: 42.86 - type: mrr_at_1000 value: 42.893 - type: mrr_at_3 value: 38.562000000000005 - type: mrr_at_5 value: 40.542 - type: ndcg_at_1 value: 29.2 - type: ndcg_at_10 value: 46.703 - type: ndcg_at_100 value: 51.644 - type: ndcg_at_1000 value: 52.771 - type: ndcg_at_3 value: 39.141999999999996 - type: ndcg_at_5 value: 42.892 - type: precision_at_1 value: 29.2 - type: precision_at_10 value: 7.920000000000001 - type: precision_at_100 value: 1.0659999999999998 - type: precision_at_1000 value: 0.117 - type: precision_at_3 value: 18.105 - type: precision_at_5 value: 13.036 - type: recall_at_1 value: 25.881 - type: recall_at_10 value: 66.266 - type: recall_at_100 value: 88.116 - type: recall_at_1000 value: 96.58200000000001 - type: recall_at_3 value: 46.526 - type: recall_at_5 value: 55.154 - task: type: Retrieval dataset: type: quora name: MTEB QuoraRetrieval config: default split: test revision: 6205996560df11e3a3da9ab4f926788fc30a7db4 metrics: - type: map_at_1 value: 67.553 - type: map_at_10 value: 81.34 - type: map_at_100 value: 82.002 - type: map_at_1000 value: 82.027 - type: map_at_3 value: 78.281 - type: map_at_5 value: 80.149 - type: mrr_at_1 value: 77.72 - type: mrr_at_10 value: 84.733 - type: mrr_at_100 value: 84.878 - type: mrr_at_1000 value: 84.879 - type: mrr_at_3 value: 83.587 - type: mrr_at_5 value: 84.32600000000001 - type: ndcg_at_1 value: 77.75 - type: ndcg_at_10 value: 85.603 - type: ndcg_at_100 value: 87.069 - type: ndcg_at_1000 value: 87.25 - type: ndcg_at_3 value: 82.303 - type: ndcg_at_5 value: 84.03699999999999 - type: precision_at_1 value: 77.75 - type: precision_at_10 value: 13.04 - type: precision_at_100 value: 1.5070000000000001 - type: precision_at_1000 value: 0.156 - type: precision_at_3 value: 35.903 - type: precision_at_5 value: 23.738 - type: recall_at_1 value: 67.553 - type: recall_at_10 value: 93.903 - type: recall_at_100 value: 99.062 - type: recall_at_1000 value: 99.935 - type: recall_at_3 value: 84.58099999999999 - type: recall_at_5 value: 89.316 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: b2805658ae38990172679479369a78b86de8c390 metrics: - type: v_measure value: 46.46887711230235 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 385e3cb46b4cfa89021f56c4380204149d0efe33 metrics: - type: v_measure value: 54.166876298246926 - task: type: Retrieval dataset: type: scidocs name: MTEB SCIDOCS config: default split: test revision: 5c59ef3e437a0a9651c8fe6fde943e7dce59fba5 metrics: - type: map_at_1 value: 4.053 - type: map_at_10 value: 9.693999999999999 - type: map_at_100 value: 11.387 - type: map_at_1000 value: 11.654 - type: map_at_3 value: 7.053 - type: map_at_5 value: 8.439 - type: mrr_at_1 value: 19.900000000000002 - type: mrr_at_10 value: 29.359 - type: mrr_at_100 value: 30.484 - type: mrr_at_1000 value: 30.553 - type: mrr_at_3 value: 26.200000000000003 - type: mrr_at_5 value: 28.115000000000002 - type: ndcg_at_1 value: 19.900000000000002 - type: ndcg_at_10 value: 16.575 - type: ndcg_at_100 value: 23.655 - type: ndcg_at_1000 value: 28.853 - type: ndcg_at_3 value: 15.848 - type: ndcg_at_5 value: 14.026 - type: precision_at_1 value: 19.900000000000002 - type: precision_at_10 value: 8.450000000000001 - type: precision_at_100 value: 1.872 - type: precision_at_1000 value: 0.313 - type: precision_at_3 value: 14.667 - type: precision_at_5 value: 12.32 - type: recall_at_1 value: 4.053 - type: recall_at_10 value: 17.169999999999998 - type: recall_at_100 value: 38.025 - type: recall_at_1000 value: 63.571999999999996 - type: recall_at_3 value: 8.903 - type: recall_at_5 value: 12.477 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: 20a6d6f312dd54037fe07a32d58e5e168867909d metrics: - type: cos_sim_pearson value: 77.7548748519677 - type: cos_sim_spearman value: 68.19926431966059 - type: euclidean_pearson value: 71.69016204991725 - type: euclidean_spearman value: 66.98099673026834 - type: manhattan_pearson value: 71.62994072488664 - type: manhattan_spearman value: 67.03435950744577 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: fdf84275bb8ce4b49c971d02e84dd1abc677a50f metrics: - type: cos_sim_pearson value: 75.91051402657887 - type: cos_sim_spearman value: 66.99390786191645 - type: euclidean_pearson value: 71.54128036454578 - type: euclidean_spearman value: 69.25605675649068 - type: manhattan_pearson value: 71.60981030780171 - type: manhattan_spearman value: 69.27513670128046 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 1591bfcbe8c69d4bf7fe2a16e2451017832cafb9 metrics: - type: cos_sim_pearson value: 77.23835466417793 - type: cos_sim_spearman value: 77.57623085766706 - type: euclidean_pearson value: 77.5090992200725 - type: euclidean_spearman value: 77.88601688144924 - type: manhattan_pearson value: 77.39045060647423 - type: manhattan_spearman value: 77.77552718279098 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: e2125984e7df8b7871f6ae9949cf6b6795e7c54b metrics: - type: cos_sim_pearson value: 77.91692485139602 - type: cos_sim_spearman value: 72.78258293483495 - type: euclidean_pearson value: 74.64773017077789 - type: euclidean_spearman value: 71.81662299104619 - type: manhattan_pearson value: 74.71043337995533 - type: manhattan_spearman value: 71.83960860845646 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: 1cd7298cac12a96a373b6a2f18738bb3e739a9b6 metrics: - type: cos_sim_pearson value: 82.13422113617578 - type: cos_sim_spearman value: 82.61707296911949 - type: euclidean_pearson value: 81.42487480400861 - type: euclidean_spearman value: 82.17970991273835 - type: manhattan_pearson value: 81.41985055477845 - type: manhattan_spearman value: 82.15823204362937 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 360a0b2dff98700d09e634a01e1cc1624d3e42cd metrics: - type: cos_sim_pearson value: 79.07989542843826 - type: cos_sim_spearman value: 80.09839524406284 - type: euclidean_pearson value: 76.43186028364195 - type: euclidean_spearman value: 76.76720323266471 - type: manhattan_pearson value: 76.4674747409161 - type: manhattan_spearman value: 76.81797407068667 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0 metrics: - type: cos_sim_pearson value: 87.0420983224933 - type: cos_sim_spearman value: 87.25017540413702 - type: euclidean_pearson value: 84.56384596473421 - type: euclidean_spearman value: 84.72557417564886 - type: manhattan_pearson value: 84.7329954474549 - type: manhattan_spearman value: 84.75071371008909 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906 metrics: - type: cos_sim_pearson value: 68.47031320016424 - type: cos_sim_spearman value: 68.7486910762485 - type: euclidean_pearson value: 71.30330985913915 - type: euclidean_spearman value: 71.59666258520735 - type: manhattan_pearson value: 71.4423884279027 - type: manhattan_spearman value: 71.67460706861044 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: 8913289635987208e6e7c72789e4be2fe94b6abd metrics: - type: cos_sim_pearson value: 80.79514366062675 - type: cos_sim_spearman value: 79.20585637461048 - type: euclidean_pearson value: 78.6591557395699 - type: euclidean_spearman value: 77.86455794285718 - type: manhattan_pearson value: 78.67754806486865 - type: manhattan_spearman value: 77.88178687200732 - task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: 56a6d0140cf6356659e2a7c1413286a774468d44 metrics: - type: map value: 77.71580844366375 - type: mrr value: 93.04215845882513 - task: type: Retrieval dataset: type: scifact name: MTEB SciFact config: default split: test revision: a75ae049398addde9b70f6b268875f5cbce99089 metrics: - type: map_at_1 value: 56.39999999999999 - type: map_at_10 value: 65.701 - type: map_at_100 value: 66.32000000000001 - type: map_at_1000 value: 66.34100000000001 - type: map_at_3 value: 62.641999999999996 - type: map_at_5 value: 64.342 - type: mrr_at_1 value: 58.667 - type: mrr_at_10 value: 66.45299999999999 - type: mrr_at_100 value: 66.967 - type: mrr_at_1000 value: 66.988 - type: mrr_at_3 value: 64.11099999999999 - type: mrr_at_5 value: 65.411 - type: ndcg_at_1 value: 58.667 - type: ndcg_at_10 value: 70.165 - type: ndcg_at_100 value: 72.938 - type: ndcg_at_1000 value: 73.456 - type: ndcg_at_3 value: 64.79 - type: ndcg_at_5 value: 67.28 - type: precision_at_1 value: 58.667 - type: precision_at_10 value: 9.4 - type: precision_at_100 value: 1.087 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 24.889 - type: precision_at_5 value: 16.667 - type: recall_at_1 value: 56.39999999999999 - type: recall_at_10 value: 83.122 - type: recall_at_100 value: 95.667 - type: recall_at_1000 value: 99.667 - type: recall_at_3 value: 68.378 - type: recall_at_5 value: 74.68299999999999 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: 5a8256d0dff9c4bd3be3ba3e67e4e70173f802ea metrics: - type: cos_sim_accuracy value: 99.76831683168317 - type: cos_sim_ap value: 93.47124923047998 - type: cos_sim_f1 value: 88.06122448979592 - type: cos_sim_precision value: 89.89583333333333 - type: cos_sim_recall value: 86.3 - type: dot_accuracy value: 99.57326732673268 - type: dot_ap value: 84.06577868167207 - type: dot_f1 value: 77.82629791363416 - type: dot_precision value: 75.58906691800189 - type: dot_recall value: 80.2 - type: euclidean_accuracy value: 99.74257425742574 - type: euclidean_ap value: 92.1904681653555 - type: euclidean_f1 value: 86.74821610601427 - type: euclidean_precision value: 88.46153846153845 - type: euclidean_recall value: 85.1 - type: manhattan_accuracy value: 99.74554455445545 - type: manhattan_ap value: 92.4337790809948 - type: manhattan_f1 value: 86.86765457332653 - type: manhattan_precision value: 88.81922675026124 - type: manhattan_recall value: 85.0 - type: max_accuracy value: 99.76831683168317 - type: max_ap value: 93.47124923047998 - type: max_f1 value: 88.06122448979592 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 70a89468f6dccacc6aa2b12a6eac54e74328f235 metrics: - type: v_measure value: 59.194098673976484 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: d88009ab563dd0b16cfaf4436abaf97fa3550cf0 metrics: - type: v_measure value: 32.5744032578115 - task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: ef807ea29a75ec4f91b50fd4191cb4ee4589a9f9 metrics: - type: map value: 49.61186384154483 - type: mrr value: 50.55424253034547 - task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: 8753c2788d36c01fc6f05d03fe3f7268d63f9122 metrics: - type: cos_sim_pearson value: 30.027210161713946 - type: cos_sim_spearman value: 31.030178065751735 - type: dot_pearson value: 30.09179785685587 - type: dot_spearman value: 30.408303252207813 - task: type: Retrieval dataset: type: trec-covid name: MTEB TRECCOVID config: default split: test revision: 2c8041b2c07a79b6f7ba8fe6acc72e5d9f92d217 metrics: - type: map_at_1 value: 0.22300000000000003 - type: map_at_10 value: 1.762 - type: map_at_100 value: 9.984 - type: map_at_1000 value: 24.265 - type: map_at_3 value: 0.631 - type: map_at_5 value: 0.9950000000000001 - type: mrr_at_1 value: 88.0 - type: mrr_at_10 value: 92.833 - type: mrr_at_100 value: 92.833 - type: mrr_at_1000 value: 92.833 - type: mrr_at_3 value: 92.333 - type: mrr_at_5 value: 92.833 - type: ndcg_at_1 value: 83.0 - type: ndcg_at_10 value: 75.17 - type: ndcg_at_100 value: 55.432 - type: ndcg_at_1000 value: 49.482 - type: ndcg_at_3 value: 82.184 - type: ndcg_at_5 value: 79.712 - type: precision_at_1 value: 88.0 - type: precision_at_10 value: 78.60000000000001 - type: precision_at_100 value: 56.56 - type: precision_at_1000 value: 22.334 - type: precision_at_3 value: 86.667 - type: precision_at_5 value: 83.6 - type: recall_at_1 value: 0.22300000000000003 - type: recall_at_10 value: 1.9879999999999998 - type: recall_at_100 value: 13.300999999999998 - type: recall_at_1000 value: 46.587 - type: recall_at_3 value: 0.6629999999999999 - type: recall_at_5 value: 1.079 - task: type: Retrieval dataset: type: webis-touche2020 name: MTEB Touche2020 config: default split: test revision: 527b7d77e16e343303e68cb6af11d6e18b9f7b3b metrics: - type: map_at_1 value: 3.047 - type: map_at_10 value: 8.792 - type: map_at_100 value: 14.631 - type: map_at_1000 value: 16.127 - type: map_at_3 value: 4.673 - type: map_at_5 value: 5.897 - type: mrr_at_1 value: 38.775999999999996 - type: mrr_at_10 value: 49.271 - type: mrr_at_100 value: 50.181 - type: mrr_at_1000 value: 50.2 - type: mrr_at_3 value: 44.558 - type: mrr_at_5 value: 47.925000000000004 - type: ndcg_at_1 value: 35.714 - type: ndcg_at_10 value: 23.44 - type: ndcg_at_100 value: 35.345 - type: ndcg_at_1000 value: 46.495 - type: ndcg_at_3 value: 26.146 - type: ndcg_at_5 value: 24.878 - type: precision_at_1 value: 38.775999999999996 - type: precision_at_10 value: 20.816000000000003 - type: precision_at_100 value: 7.428999999999999 - type: precision_at_1000 value: 1.494 - type: precision_at_3 value: 25.85 - type: precision_at_5 value: 24.082 - type: recall_at_1 value: 3.047 - type: recall_at_10 value: 14.975 - type: recall_at_100 value: 45.943 - type: recall_at_1000 value: 80.31099999999999 - type: recall_at_3 value: 5.478000000000001 - type: recall_at_5 value: 8.294 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de metrics: - type: accuracy value: 68.84080000000002 - type: ap value: 13.135219251019848 - type: f1 value: 52.849999421995506 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: 62146448f05be9e52a36b8ee9936447ea787eede metrics: - type: accuracy value: 56.68647425014149 - type: f1 value: 56.97981427365949 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 091a54f9a36281ce7d6590ec8c75dd485e7e01d4 metrics: - type: v_measure value: 40.8911707239219 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 83.04226023722954 - type: cos_sim_ap value: 63.681339908301325 - type: cos_sim_f1 value: 60.349184470480125 - type: cos_sim_precision value: 53.437754271765655 - type: cos_sim_recall value: 69.31398416886545 - type: dot_accuracy value: 81.46271681468677 - type: dot_ap value: 57.78072296265885 - type: dot_f1 value: 56.28769265132901 - type: dot_precision value: 48.7993803253292 - type: dot_recall value: 66.49076517150397 - type: euclidean_accuracy value: 82.16606067830959 - type: euclidean_ap value: 59.974530371203514 - type: euclidean_f1 value: 56.856023506366306 - type: euclidean_precision value: 53.037916857012334 - type: euclidean_recall value: 61.2664907651715 - type: manhattan_accuracy value: 82.16606067830959 - type: manhattan_ap value: 59.98962379571767 - type: manhattan_f1 value: 56.98153158451947 - type: manhattan_precision value: 51.41158989598811 - type: manhattan_recall value: 63.90501319261214 - type: max_accuracy value: 83.04226023722954 - type: max_ap value: 63.681339908301325 - type: max_f1 value: 60.349184470480125 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 88.56871191834517 - type: cos_sim_ap value: 84.80240716354544 - type: cos_sim_f1 value: 77.07765285922385 - type: cos_sim_precision value: 74.84947406601378 - type: cos_sim_recall value: 79.44256236526024 - type: dot_accuracy value: 86.00923662048356 - type: dot_ap value: 78.6556459012073 - type: dot_f1 value: 72.7583749109052 - type: dot_precision value: 67.72823779193206 - type: dot_recall value: 78.59562673236834 - type: euclidean_accuracy value: 87.84103698529127 - type: euclidean_ap value: 83.50424424952834 - type: euclidean_f1 value: 75.74496544549307 - type: euclidean_precision value: 73.19402556369381 - type: euclidean_recall value: 78.48013550970127 - type: manhattan_accuracy value: 87.9225365777933 - type: manhattan_ap value: 83.49479248597825 - type: manhattan_f1 value: 75.67748162447101 - type: manhattan_precision value: 73.06810035842294 - type: manhattan_recall value: 78.48013550970127 - type: max_accuracy value: 88.56871191834517 - type: max_ap value: 84.80240716354544 - type: max_f1 value: 77.07765285922385 --- # SGPT-2.7B-weightedmean-msmarco-specb-bitfit ## Usage For usage instructions, refer to our codebase: https://github.com/Muennighoff/sgpt ## Evaluation Results For eval results, refer to the eval folder or our paper: https://arxiv.org/abs/2202.08904 ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 124796 with parameters: ``` {'batch_size': 4, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 7.5e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 300, 'do_lower_case': False}) with Transformer model: GPTNeoModel (1): Pooling({'word_embedding_dimension': 2560, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': True, 'pooling_mode_lasttoken': False}) ) ``` ## Citing & Authors ```bibtex @article{muennighoff2022sgpt, title={SGPT: GPT Sentence Embeddings for Semantic Search}, author={Muennighoff, Niklas}, journal={arXiv preprint arXiv:2202.08904}, year={2022} } ```
vocabtrimmer/mbart-large-cc25-jaquad-qa-trimmed-ja-30000
vocabtrimmer
2023-03-27T22:22:01Z
105
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-27T21:56:32Z
# Vocabulary Trimmed [lmqg/mbart-large-cc25-jaquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-jaquad-qa): `vocabtrimmer/mbart-large-cc25-jaquad-qa-trimmed-ja-30000` This model is a trimmed version of [lmqg/mbart-large-cc25-jaquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-jaquad-qa) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mbart-large-cc25-jaquad-qa | vocabtrimmer/mbart-large-cc25-jaquad-qa-trimmed-ja-30000 | |:---------------------------|:----------------------------------|:-----------------------------------------------------------| | parameter_size_full | 610,852,864 | 385,548,288 | | parameter_size_embedding | 512,057,344 | 61,448,192 | | vocab_size | 250,028 | 30,004 | | compression_rate_full | 100.0 | 63.12 | | compression_rate_embedding | 100.0 | 12.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | ja | vocabtrimmer/mc4_validation | text | ja | validation | 30000 | 2 |
SharpNLight/q-FrozenLake-v1-4x4-noSlippery
SharpNLight
2023-03-27T22:08:14Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-27T22:08:11Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="SharpNLight/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
ROGRANMAR/que_funcione_que_funcione2
ROGRANMAR
2023-03-27T21:46:14Z
161
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-03-27T21:41:25Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: que_funcione_que_funcione2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # que_funcione_que_funcione2 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 43.6653 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - training_steps: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.5 | 10 | 50.2270 | | No log | 1.0 | 20 | 43.6653 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
albseverus/ppo-Huggy-v1
albseverus
2023-03-27T21:38:07Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-03-27T21:38:00Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Find your model_id: albseverus/ppo-Huggy-v1 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
vorcefulbeans/NeapGPT
vorcefulbeans
2023-03-27T21:25:11Z
0
0
null
[ "en", "dataset:tencups/gpt2", "dataset:pietrolesci/gpt3_nli", "region:us" ]
null
2023-03-27T21:19:04Z
--- datasets: - tencups/gpt2 - pietrolesci/gpt3_nli language: - en ---
kingsley9494/ks
kingsley9494
2023-03-27T21:16:32Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2023-03-27T21:16:32Z
--- license: bigscience-openrail-m ---
charlesbeale/vccp-avatar
charlesbeale
2023-03-27T21:12:38Z
29
1
diffusers
[ "diffusers", "tensorboard", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-03-27T21:10:10Z
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: vccpavatar --- ### VCCP Avatar Dreambooth model trained by charlesbeale with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v2-1-768 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Sample pictures of: vccpavatar (use that on your prompt) ![vccpavatar 0](https://huggingface.co/charlesbeale/vccp-avatar/resolve/main/concept_images/vccpavatar_%281%29.jpg)![vccpavatar 1](https://huggingface.co/charlesbeale/vccp-avatar/resolve/main/concept_images/vccpavatar_%282%29.jpg)![vccpavatar 2](https://huggingface.co/charlesbeale/vccp-avatar/resolve/main/concept_images/vccpavatar_%283%29.jpg)![vccpavatar 3](https://huggingface.co/charlesbeale/vccp-avatar/resolve/main/concept_images/vccpavatar_%284%29.jpg)![vccpavatar 4](https://huggingface.co/charlesbeale/vccp-avatar/resolve/main/concept_images/vccpavatar_%285%29.jpg)![vccpavatar 5](https://huggingface.co/charlesbeale/vccp-avatar/resolve/main/concept_images/vccpavatar_%286%29.jpg)![vccpavatar 6](https://huggingface.co/charlesbeale/vccp-avatar/resolve/main/concept_images/vccpavatar_%287%29.jpg)![vccpavatar 7](https://huggingface.co/charlesbeale/vccp-avatar/resolve/main/concept_images/vccpavatar_%288%29.jpg)![vccpavatar 8](https://huggingface.co/charlesbeale/vccp-avatar/resolve/main/concept_images/vccpavatar_%289%29.jpg)![vccpavatar 9](https://huggingface.co/charlesbeale/vccp-avatar/resolve/main/concept_images/vccpavatar_%2810%29.jpg)![vccpavatar 10](https://huggingface.co/charlesbeale/vccp-avatar/resolve/main/concept_images/vccpavatar_%2811%29.jpg)![vccpavatar 11](https://huggingface.co/charlesbeale/vccp-avatar/resolve/main/concept_images/vccpavatar_%2812%29.jpg)![vccpavatar 12](https://huggingface.co/charlesbeale/vccp-avatar/resolve/main/concept_images/vccpavatar_%2813%29.jpg)![vccpavatar 13](https://huggingface.co/charlesbeale/vccp-avatar/resolve/main/concept_images/vccpavatar_%2814%29.jpg)![vccpavatar 14](https://huggingface.co/charlesbeale/vccp-avatar/resolve/main/concept_images/vccpavatar_%2815%29.jpg)![vccpavatar 15](https://huggingface.co/charlesbeale/vccp-avatar/resolve/main/concept_images/vccpavatar_%2816%29.jpg)![vccpavatar 16](https://huggingface.co/charlesbeale/vccp-avatar/resolve/main/concept_images/vccpavatar_%2817%29.jpg)![vccpavatar 17](https://huggingface.co/charlesbeale/vccp-avatar/resolve/main/concept_images/vccpavatar_%2818%29.jpg)![vccpavatar 18](https://huggingface.co/charlesbeale/vccp-avatar/resolve/main/concept_images/vccpavatar_%2819%29.jpg)![vccpavatar 19](https://huggingface.co/charlesbeale/vccp-avatar/resolve/main/concept_images/vccpavatar_%2820%29.jpg)![vccpavatar 20](https://huggingface.co/charlesbeale/vccp-avatar/resolve/main/concept_images/vccpavatar_%2821%29.jpg)
shi-labs/versatile-diffusion
shi-labs
2023-03-27T21:10:36Z
2,813
48
diffusers
[ "diffusers", "image-to-text", "image-to-image", "text-to-image", "text-to-text", "image-editing", "image-variation", "generation", "vision", "dataset:Laion2B-en", "arxiv:2211.08332", "license:mit", "diffusers:VersatileDiffusionPipeline", "region:us" ]
text-to-image
2022-11-22T22:47:21Z
--- license: mit tags: - image-to-text - image-to-image - text-to-image - text-to-text - image-editing - image-variation - generation - vision datasets: - Laion2B-en widget: - text: "A high tech solarpunk utopia in the Amazon rainforest" example_title: Amazon rainforest --- # Versatile Diffusion V1.0 Model Card We built **Versatile Diffusion (VD), the first unified multi-flow multimodal diffusion framework**, as a step towards **Universal Generative AI**. Versatile Diffusion can natively support image-to-text, image-variation, text-to-image, and text-variation, and can be further extended to other applications such as semantic-style disentanglement, image-text dual-guided generation, latent image-to-text-to-image editing, and more. Future versions will support more modalities such as speech, music, video and 3D. Resources for more information: [GitHub](https://github.com/SHI-Labs/Versatile-Diffusion), [arXiv](https://arxiv.org/abs/2211.08332). # Model Details One single flow of Versatile Diffusion contains a VAE, a diffuser, and a context encoder, and thus handles one task (e.g., text-to-image) under one data type (e.g., image) and one context type (e.g., text). The multi-flow structure of Versatile Diffusion shows in the following diagram: <p align="center"> <img src="https://huggingface.co/shi-labs/versatile-diffusion-model/resolve/main/assets/figures/vd_combined.png" width="99%"> </p> - **Developed by:** Xingqian Xu, Atlas Wang, Eric Zhang, Kai Wang, and Humphrey Shi - **Model type:** Diffusion-based multimodal generation model - **Language(s):** English - **License:** MIT - **Resources for more information:** [GitHub Repository](https://github.com/SHI-Labs/Versatile-Diffusion), [Paper](https://arxiv.org/abs/2211.08332). - **Cite as:** ``` @article{xu2022versatile, title = {Versatile Diffusion: Text, Images and Variations All in One Diffusion Model}, author = {Xingqian Xu, Zhangyang Wang, Eric Zhang, Kai Wang, Humphrey Shi}, year = 2022, url = {https://arxiv.org/abs/2211.08332}, eprint = {2211.08332}, archiveprefix = {arXiv}, primaryclass = {cs.CV} } ``` # Usage You can use the model both with the [🧨Diffusers library](https://github.com/huggingface/diffusers) and the [SHI-Labs Versatile Diffusion codebase](https://github.com/SHI-Labs/Versatile-Diffusion). ## 🧨 Diffusers Diffusers let's you both use a unified and more memory-efficient, task-specific pipelines. **Make sure to install `transformers` from `"main"` in order to use this model.**: ``` pip install git+https://github.com/huggingface/transformers ``` ## VersatileDiffusionPipeline To use Versatile Diffusion for all tasks, it is recommend to use the [`VersatileDiffusionPipeline`](https://huggingface.co/docs/diffusers/main/en/api/pipelines/versatile_diffusion#diffusers.VersatileDiffusionPipeline) ```py #! pip install git+https://github.com/huggingface/transformers diffusers torch from diffusers import VersatileDiffusionPipeline import torch import requests from io import BytesIO from PIL import Image pipe = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion", torch_dtype=torch.float16) pipe = pipe.to("cuda") # prompt prompt = "a red car" # initial image url = "https://huggingface.co/datasets/diffusers/images/resolve/main/benz.jpg" response = requests.get(url) image = Image.open(BytesIO(response.content)).convert("RGB") # text to image image = pipe.text_to_image(prompt).images[0] # image variation image = pipe.image_variation(image).images[0] # image variation image = pipe.dual_guided(prompt, image).images[0] ``` ### Task Specific The task specific pipelines load only the weights that are needed onto GPU. You can find all task specific pipelines [here](https://huggingface.co/docs/diffusers/main/en/api/pipelines/versatile_diffusion#versatilediffusion). You can use them as follows: ### Text to Image ```py from diffusers import VersatileDiffusionTextToImagePipeline import torch pipe = VersatileDiffusionTextToImagePipeline.from_pretrained("shi-labs/versatile-diffusion", torch_dtype=torch.float16) pipe.remove_unused_weights() pipe = pipe.to("cuda") generator = torch.Generator(device="cuda").manual_seed(0) image = pipe("an astronaut riding on a horse on mars", generator=generator).images[0] image.save("./astronaut.png") ``` #### Image variations ```py from diffusers import VersatileDiffusionImageVariationPipeline import torch import requests from io import BytesIO from PIL import Image # download an initial image url = "https://huggingface.co/datasets/diffusers/images/resolve/main/benz.jpg" response = requests.get(url) image = Image.open(BytesIO(response.content)).convert("RGB") pipe = VersatileDiffusionImageVariationPipeline.from_pretrained("shi-labs/versatile-diffusion", torch_dtype=torch.float16) pipe = pipe.to("cuda") generator = torch.Generator(device="cuda").manual_seed(0) image = pipe(image, generator=generator).images[0] image.save("./car_variation.png") ``` #### Dual-guided generation ```py from diffusers import VersatileDiffusionDualGuidedPipeline import torch import requests from io import BytesIO from PIL import Image # download an initial image url = "https://huggingface.co/datasets/diffusers/images/resolve/main/benz.jpg" response = requests.get(url) image = Image.open(BytesIO(response.content)).convert("RGB") text = "a red car in the sun" pipe = VersatileDiffusionDualGuidedPipeline.from_pretrained("shi-labs/versatile-diffusion", torch_dtype=torch.float16) pipe.remove_unused_weights() pipe = pipe.to("cuda") generator = torch.Generator(device="cuda").manual_seed(0) text_to_image_strength = 0.75 image = pipe(prompt=text, image=image, text_to_image_strength=text_to_image_strength, generator=generator).images[0] image.save("./red_car.png") ``` ### Original GitHub Repository Follow the instructions [here](https://github.com/SHI-Labs/Versatile-Diffusion/#evaluation). # Cautions, Biases, and Content Acknowledgment We would like the raise the awareness of users of this demo of its potential issues and concerns. Like previous large foundation models, Versatile Diffusion could be problematic in some cases, partially due to the imperfect training data and pretrained network (VAEs / context encoders) with limited scope. In its future research phase, VD may do better on tasks such as text-to-image, image-to-text, etc., with the help of more powerful VAEs, more sophisticated network designs, and more cleaned data. So far, we have kept all features available for research testing both to show the great potential of the VD framework and to collect important feedback to improve the model in the future. We welcome researchers and users to report issues with the HuggingFace community discussion feature or email the authors. Beware that VD may output content that reinforces or exacerbates societal biases, as well as realistic faces, pornography, and violence. VD was trained on the LAION-2B dataset, which scraped non-curated online images and text, and may contain unintended exceptions as we removed illegal content. VD in this demo is meant only for research purposes.
JfuentesR/a2c-PandaReachDense-v2
JfuentesR
2023-03-27T21:01:08Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-27T20:58:36Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -0.64 +/- 0.20 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
michalcisek5/rl_course_vizdoom_health_gathering_supreme
michalcisek5
2023-03-27T20:58:22Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-27T20:58:05Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 9.89 +/- 4.28 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r michalcisek5/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
vocabtrimmer/mbart-large-cc25-jaquad-qa-trimmed-ja-5000
vocabtrimmer
2023-03-27T20:56:17Z
115
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-27T20:31:44Z
# Vocabulary Trimmed [lmqg/mbart-large-cc25-jaquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-jaquad-qa): `vocabtrimmer/mbart-large-cc25-jaquad-qa-trimmed-ja-5000` This model is a trimmed version of [lmqg/mbart-large-cc25-jaquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-jaquad-qa) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mbart-large-cc25-jaquad-qa | vocabtrimmer/mbart-large-cc25-jaquad-qa-trimmed-ja-5000 | |:---------------------------|:----------------------------------|:----------------------------------------------------------| | parameter_size_full | 610,852,864 | 359,948,288 | | parameter_size_embedding | 512,057,344 | 10,248,192 | | vocab_size | 250,028 | 5,004 | | compression_rate_full | 100.0 | 58.93 | | compression_rate_embedding | 100.0 | 2.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | ja | vocabtrimmer/mc4_validation | text | ja | validation | 5000 | 2 |
pimentooliver/fungi-sd-diffusion
pimentooliver
2023-03-27T20:44:48Z
32
0
diffusers
[ "diffusers", "text-to-image", "en", "dataset:pimentooliver/fungi", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-03-27T17:15:48Z
--- datasets: - pimentooliver/fungi language: - en library_name: diffusers pipeline_tag: text-to-image --- This is a fine-tune of CompVis/stable-diffusion-v1-4. It has been fine tuned on a dataset of fungi imagery which has been clustered to represent 'species'. Each 'species' has been assigned a generated name in an attempt to fine-tune the model on nonexistent fungal species. Unfortunately, this model has been impacted by catastrophic forgetting. It will be retrained soon, upload only for academic use.
kunishou/Japanese-Alpaca-LoRA-13b-v0
kunishou
2023-03-27T20:40:44Z
0
3
null
[ "license:mit", "region:us" ]
null
2023-03-22T14:17:13Z
--- license: mit --- This repo contains a low-rank adapter for LLaMA-13b fit on the Stanford Alpaca dataset translated into Japanese. It doesn't contain the foundation model itself, so it's MIT licensed. Instructions for running it can be found at https://github.com/kunishou/Japanese-Alpaca-LoRA.
env-test/a2c-PandaReachDense-v2
env-test
2023-03-27T20:38:19Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-27T20:35:52Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -3.47 +/- 0.87 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
vocabtrimmer/mbart-large-cc25-frquad-qa-trimmed-fr-60000
vocabtrimmer
2023-03-27T20:31:16Z
105
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-27T20:12:24Z
# Vocabulary Trimmed [lmqg/mbart-large-cc25-frquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-frquad-qa): `vocabtrimmer/mbart-large-cc25-frquad-qa-trimmed-fr-60000` This model is a trimmed version of [lmqg/mbart-large-cc25-frquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-frquad-qa) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mbart-large-cc25-frquad-qa | vocabtrimmer/mbart-large-cc25-frquad-qa-trimmed-fr-60000 | |:---------------------------|:----------------------------------|:-----------------------------------------------------------| | parameter_size_full | 610,852,864 | 416,267,264 | | parameter_size_embedding | 512,057,344 | 122,886,144 | | vocab_size | 250,028 | 60,003 | | compression_rate_full | 100.0 | 68.15 | | compression_rate_embedding | 100.0 | 24.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | fr | vocabtrimmer/mc4_validation | text | fr | validation | 60000 | 2 |
JfuentesR/a2c-AntBulletEnv-v0
JfuentesR
2023-03-27T20:06:25Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-27T20:05:06Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 2121.26 +/- 116.83 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
huggingtweets/normafoleytd1
huggingtweets
2023-03-27T20:04:01Z
121
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-03-27T20:03:52Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1360228306520576000/-9oOW6BQ_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Norma Foley T.D</div> <div style="text-align: center; font-size: 14px;">@normafoleytd1</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Norma Foley T.D. | Data | Norma Foley T.D | | --- | --- | | Tweets downloaded | 1619 | | Retweets | 1062 | | Short tweets | 18 | | Tweets kept | 539 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/93b40adn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @normafoleytd1's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/t33j6t5e) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/t33j6t5e/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/normafoleytd1') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
LarryAIDraw/SNKurskAzurLaneLora_beta
LarryAIDraw
2023-03-27T19:55:25Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-03-27T19:39:56Z
--- license: creativeml-openrail-m --- https://civitai.com/models/24748/sn-kursk-or-azur-lane-or-lora
LarryAIDraw/projectSekaiMizuki_mizukiAkiyamaVer4
LarryAIDraw
2023-03-27T19:54:46Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-03-27T19:32:52Z
--- license: creativeml-openrail-m --- https://civitai.com/models/8047/project-sekai-mizuki-akiyama-loha
LarryAIDraw/elysiaHohWithout_10
LarryAIDraw
2023-03-27T19:54:18Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-03-27T19:33:42Z
--- license: creativeml-openrail-m --- https://civitai.com/models/17798/elysia-hoh-without-bells
LarryAIDraw/SukoyaKana_v10
LarryAIDraw
2023-03-27T19:49:56Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-03-27T19:48:51Z
--- license: creativeml-openrail-m ---
vocabtrimmer/mbart-large-cc25-frquad-qa-trimmed-fr-15000
vocabtrimmer
2023-03-27T19:44:25Z
118
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-27T19:25:05Z
# Vocabulary Trimmed [lmqg/mbart-large-cc25-frquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-frquad-qa): `vocabtrimmer/mbart-large-cc25-frquad-qa-trimmed-fr-15000` This model is a trimmed version of [lmqg/mbart-large-cc25-frquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-frquad-qa) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mbart-large-cc25-frquad-qa | vocabtrimmer/mbart-large-cc25-frquad-qa-trimmed-fr-15000 | |:---------------------------|:----------------------------------|:-----------------------------------------------------------| | parameter_size_full | 610,852,864 | 370,188,288 | | parameter_size_embedding | 512,057,344 | 30,728,192 | | vocab_size | 250,028 | 15,004 | | compression_rate_full | 100.0 | 60.6 | | compression_rate_embedding | 100.0 | 6.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | fr | vocabtrimmer/mc4_validation | text | fr | validation | 15000 | 2 |
kasseev/dqn-SpaceInvadersNoFrameskip-v4
kasseev
2023-03-27T19:38:01Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-27T19:37:25Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 374.00 +/- 214.89 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga kasseev -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga kasseev -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga kasseev ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 100000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
rng0x17/rl_course_vizdoom_health_gathering_supreme
rng0x17
2023-03-27T19:16:22Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-27T19:16:14Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 12.49 +/- 4.73 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r grinsepilz/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
clarko/pegasus-samsum
clarko
2023-03-27T19:07:55Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "dataset:samsum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-27T18:17:17Z
--- tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.4826 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.7008 | 0.54 | 500 | 1.4826 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
ocm/bert-finetuned-ner
ocm
2023-03-27T19:04:00Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-03-18T18:29:22Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9328493647912885 - name: Recall type: recall value: 0.9515314708852238 - name: F1 type: f1 value: 0.942097808881113 - name: Accuracy type: accuracy value: 0.9865632542532525 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0591 - Precision: 0.9328 - Recall: 0.9515 - F1: 0.9421 - Accuracy: 0.9866 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.088 | 1.0 | 1756 | 0.0673 | 0.9190 | 0.9334 | 0.9261 | 0.9823 | | 0.0346 | 2.0 | 3512 | 0.0611 | 0.9284 | 0.9477 | 0.9380 | 0.9855 | | 0.0178 | 3.0 | 5268 | 0.0591 | 0.9328 | 0.9515 | 0.9421 | 0.9866 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
jeffwan/llama-7b-hf
jeffwan
2023-03-27T18:55:34Z
2,686
5
transformers
[ "transformers", "pytorch", "llama", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-03-27T18:37:46Z
# LLama 7B Hugging Face model This repo hosts model weights and it's for research purpose. If it against some policies that I don't know, feel free to reach out to me and I will delete it. --- license: other --- LLaMA-7B converted to work with Transformers/HuggingFace. This is under a special license, please see the LICENSE file for details. License Non-commercial bespoke license > Note: I copied above statement from https://huggingface.co/decapoda-research/llama-7b-hf
Pranjalya/lunar-lander-v2-ppo
Pranjalya
2023-03-27T18:47:03Z
5
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-27T18:46:32Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 252.15 +/- 44.85 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```