modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-29 18:27:06
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
526 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-29 18:26:56
card
stringlengths
11
1.01M
vocabtrimmer/mt5-small-trimmed-es-120000-esquad-qg
vocabtrimmer
2023-03-27T09:14:30Z
106
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "question generation", "es", "dataset:lmqg/qg_esquad", "arxiv:2210.03992", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-20T17:58:31Z
--- license: cc-by-4.0 metrics: - bleu4 - meteor - rouge-l - bertscore - moverscore language: es datasets: - lmqg/qg_esquad pipeline_tag: text2text-generation tags: - question generation widget: - text: "del <hl> Ministerio de Desarrollo Urbano <hl> , Gobierno de la India." example_title: "Question Generation Example 1" - text: "a <hl> noviembre <hl> , que es también la estación lluviosa." example_title: "Question Generation Example 2" - text: "como <hl> el gobierno de Abbott <hl> que asumió el cargo el 18 de septiembre de 2013." example_title: "Question Generation Example 3" model-index: - name: vocabtrimmer/mt5-small-trimmed-es-120000-esquad-qg results: - task: name: Text2text Generation type: text2text-generation dataset: name: lmqg/qg_esquad type: default args: default metrics: - name: BLEU4 (Question Generation) type: bleu4_question_generation value: 9.45 - name: ROUGE-L (Question Generation) type: rouge_l_question_generation value: 24.37 - name: METEOR (Question Generation) type: meteor_question_generation value: 22.59 - name: BERTScore (Question Generation) type: bertscore_question_generation value: 84.15 - name: MoverScore (Question Generation) type: moverscore_question_generation value: 58.96 --- # Model Card of `vocabtrimmer/mt5-small-trimmed-es-120000-esquad-qg` This model is fine-tuned version of [ckpts/mt5-small-trimmed-es-120000](https://huggingface.co/ckpts/mt5-small-trimmed-es-120000) for question generation task on the [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation). ### Overview - **Language model:** [ckpts/mt5-small-trimmed-es-120000](https://huggingface.co/ckpts/mt5-small-trimmed-es-120000) - **Language:** es - **Training data:** [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) (default) - **Online Demo:** [https://autoqg.net/](https://autoqg.net/) - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) ### Usage - With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-) ```python from lmqg import TransformersQG # initialize model model = TransformersQG(language="es", model="vocabtrimmer/mt5-small-trimmed-es-120000-esquad-qg") # model prediction questions = model.generate_q(list_context="a noviembre , que es también la estación lluviosa.", list_answer="noviembre") ``` - With `transformers` ```python from transformers import pipeline pipe = pipeline("text2text-generation", "vocabtrimmer/mt5-small-trimmed-es-120000-esquad-qg") output = pipe("del <hl> Ministerio de Desarrollo Urbano <hl> , Gobierno de la India.") ``` ## Evaluation - ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-es-120000-esquad-qg/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_esquad.default.json) | | Score | Type | Dataset | |:-----------|--------:|:--------|:-----------------------------------------------------------------| | BERTScore | 84.15 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | | Bleu_1 | 25.99 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | | Bleu_2 | 17.64 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | | Bleu_3 | 12.73 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | | Bleu_4 | 9.45 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | | METEOR | 22.59 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | | MoverScore | 58.96 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | | ROUGE_L | 24.37 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | ## Training hyperparameters The following hyperparameters were used during fine-tuning: - dataset_path: lmqg/qg_esquad - dataset_name: default - input_types: paragraph_answer - output_types: question - prefix_types: None - model: ckpts/mt5-small-trimmed-es-120000 - max_length: 512 - max_length_output: 32 - epoch: 13 - batch: 16 - lr: 0.001 - fp16: False - random_seed: 1 - gradient_accumulation_steps: 4 - label_smoothing: 0.15 The full configuration can be found at [fine-tuning config file](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-es-120000-esquad-qg/raw/main/trainer_config.json). ## Citation ``` @inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```
phatho/NeverEnding-Dream
phatho
2023-03-27T08:49:36Z
8
2
diffusers
[ "diffusers", "stable-diffusion", "text-to-image", "art", "artistic", "en", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-03-27T08:48:49Z
--- language: - en license: other tags: - stable-diffusion - text-to-image - art - artistic - diffusers inference: true duplicated_from: Lykon/NeverEnding-Dream --- # NeverEnding Dream (NED) ## Official Repository Read more about this model here: https://civitai.com/models/10028/neverending-dream-ned Also please support by giving 5 stars and a heart, which will notify new updates. Also consider supporting me on Patreon or ByuMeACoffee - https://www.patreon.com/Lykon275 - https://www.buymeacoffee.com/lykon You can run this model on: - https://sinkin.ai/m/qGdxrYG Some sample output: ![sample 1](https://huggingface.co/Lykon/NeverEnding-Dream/resolve/main/1.png) ![sample 2](https://huggingface.co/Lykon/NeverEnding-Dream/resolve/main/2.png) ![sample 3](https://huggingface.co/Lykon/NeverEnding-Dream/resolve/main/3.png) ![sample 4](https://huggingface.co/Lykon/NeverEnding-Dream/resolve/main/4.png) ![sample 5](https://huggingface.co/Lykon/NeverEnding-Dream/resolve/main/5.png) ![sample 6](https://huggingface.co/Lykon/NeverEnding-Dream/resolve/main/6.jpg)
jamesimmanuel/a2c-PandaReachDense-v2
jamesimmanuel
2023-03-27T08:39:05Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-27T08:36:38Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -1.26 +/- 0.24 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
lio/ppo-Huggy
lio
2023-03-27T08:32:46Z
6
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-03-27T08:32:39Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Find your model_id: lio/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
aallal-prestataire/scene-classifier-demo-2
aallal-prestataire
2023-03-27T08:10:38Z
226
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-03-27T07:49:13Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: scene-classifier-demo-2 results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.986760139465332 --- # scene-classifier-demo-2 Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### carte ![carte](images/carte.jpg) #### credits ![credits](images/credits.jpg) #### generique ![generique](images/generique.jpg) #### meteo ![meteo](images/meteo.jpg) #### plateau ![plateau](images/plateau.jpg) #### reportage ![reportage](images/reportage.jpg) #### sommaire ![sommaire](images/sommaire.jpg)
VuDucQuang/Dreambooth-Avatar
VuDucQuang
2023-03-27T08:05:19Z
49
1
diffusers
[ "diffusers", "dreambooth", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "en", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-03-27T08:02:49Z
--- language: - en thumbnail: "https://staticassetbucket.s3.us-west-1.amazonaws.com/avatar_grid.png" tags: - dreambooth - stable-diffusion - stable-diffusion-diffusers - text-to-image --- # Dreambooth style: Avatar __Dreambooth finetuning of Stable Diffusion (v1.5.1) on Avatar art style by [Lambda Labs](https://lambdalabs.com/).__ ## About This text-to-image stable diffusion model was trained with dreambooth. Put in a text prompt and generate your own Avatar style image! ![pk1.jpg](https://staticassetbucket.s3.us-west-1.amazonaws.com/avatar_grid.png) ## Usage To run model locally: ```bash pip install accelerate torchvision transformers>=4.21.0 ftfy tensorboard modelcards ``` ```python import torch from diffusers import StableDiffusionPipeline from torch import autocast pipe = StableDiffusionPipeline.from_pretrained("lambdalabs/dreambooth-avatar", torch_dtype=torch.float16) pipe = pipe.to("cuda") prompt = "Yoda, avatarart style" scale = 7.5 n_samples = 4 with autocast("cuda"): images = pipe(n_samples*[prompt], guidance_scale=scale).images for idx, im in enumerate(images): im.save(f"{idx:06}.png") ``` ## Model description Base model is Stable Diffusion v1.5 and was trained using Dreambooth with 60 input images sized 512x512 displaying Avatar character images. The model is learning to associate Avatar images with the style tokenized as 'avatarart style'. Prior preservation was used during training using the class 'Person' to avoid training bleeding into the representations for that class. Training ran on 2xA6000 GPUs on [Lambda GPU Cloud](https://lambdalabs.com/service/gpu-cloud) for 700 steps, batch size 4 (a couple hours, at a cost of about $4). Author: Eole Cervenka
VuDucQuang/Stable_Diffusion_v1.5
VuDucQuang
2023-03-27T07:59:42Z
0
0
null
[ "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "arxiv:2207.12598", "arxiv:2112.10752", "arxiv:2103.00020", "arxiv:2205.11487", "arxiv:1910.09700", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-03-27T07:54:14Z
--- license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image inference: true extra_gated_prompt: |- This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. CompVis claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) Please read the full license carefully here: https://huggingface.co/spaces/CompVis/stable-diffusion-license extra_gated_heading: Please read the LICENSE to access this model --- # Stable Diffusion v1-5 Model Card Stable Diffusion is a latent text-to-image diffusion model capable of generating photo-realistic images given any text input. For more information about how Stable Diffusion functions, please have a look at [🤗's Stable Diffusion blog](https://huggingface.co/blog/stable_diffusion). The **Stable-Diffusion-v1-5** checkpoint was initialized with the weights of the [Stable-Diffusion-v1-2](https:/steps/huggingface.co/CompVis/stable-diffusion-v1-2) checkpoint and subsequently fine-tuned on 595k steps at resolution 512x512 on "laion-aesthetics v2 5+" and 10% dropping of the text-conditioning to improve [classifier-free guidance sampling](https://arxiv.org/abs/2207.12598). You can use this both with the [🧨Diffusers library](https://github.com/huggingface/diffusers) and the [RunwayML GitHub repository](https://github.com/runwayml/stable-diffusion). ### Diffusers ```py from diffusers import StableDiffusionPipeline import torch model_id = "runwayml/stable-diffusion-v1-5" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe = pipe.to("cuda") prompt = "a photo of an astronaut riding a horse on mars" image = pipe(prompt).images[0] image.save("astronaut_rides_horse.png") ``` For more detailed instructions, use-cases and examples in JAX follow the instructions [here](https://github.com/huggingface/diffusers#text-to-image-generation-with-stable-diffusion) ### Original GitHub Repository 1. Download the weights - [v1-5-pruned-emaonly.ckpt](https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.ckpt) - 4.27GB, ema-only weight. uses less VRAM - suitable for inference - [v1-5-pruned.ckpt](https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned.ckpt) - 7.7GB, ema+non-ema weights. uses more VRAM - suitable for fine-tuning 2. Follow instructions [here](https://github.com/runwayml/stable-diffusion). ## Model Details - **Developed by:** Robin Rombach, Patrick Esser - **Model type:** Diffusion-based text-to-image generation model - **Language(s):** English - **License:** [The CreativeML OpenRAIL M license](https://huggingface.co/spaces/CompVis/stable-diffusion-license) is an [Open RAIL M license](https://www.licenses.ai/blog/2022/8/18/naming-convention-of-responsible-ai-licenses), adapted from the work that [BigScience](https://bigscience.huggingface.co/) and [the RAIL Initiative](https://www.licenses.ai/) are jointly carrying in the area of responsible AI licensing. See also [the article about the BLOOM Open RAIL license](https://bigscience.huggingface.co/blog/the-bigscience-rail-license) on which our license is based. - **Model Description:** This is a model that can be used to generate and modify images based on text prompts. It is a [Latent Diffusion Model](https://arxiv.org/abs/2112.10752) that uses a fixed, pretrained text encoder ([CLIP ViT-L/14](https://arxiv.org/abs/2103.00020)) as suggested in the [Imagen paper](https://arxiv.org/abs/2205.11487). - **Resources for more information:** [GitHub Repository](https://github.com/CompVis/stable-diffusion), [Paper](https://arxiv.org/abs/2112.10752). - **Cite as:** @InProceedings{Rombach_2022_CVPR, author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn}, title = {High-Resolution Image Synthesis With Latent Diffusion Models}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2022}, pages = {10684-10695} } # Uses ## Direct Use The model is intended for research purposes only. Possible research areas and tasks include - Safe deployment of models which have the potential to generate harmful content. - Probing and understanding the limitations and biases of generative models. - Generation of artworks and use in design and other artistic processes. - Applications in educational or creative tools. - Research on generative models. Excluded uses are described below. ### Misuse, Malicious Use, and Out-of-Scope Use _Note: This section is taken from the [DALLE-MINI model card](https://huggingface.co/dalle-mini/dalle-mini), but applies in the same way to Stable Diffusion v1_. The model should not be used to intentionally create or disseminate images that create hostile or alienating environments for people. This includes generating images that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes. #### Out-of-Scope Use The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model. #### Misuse and Malicious Use Using the model to generate content that is cruel to individuals is a misuse of this model. This includes, but is not limited to: - Generating demeaning, dehumanizing, or otherwise harmful representations of people or their environments, cultures, religions, etc. - Intentionally promoting or propagating discriminatory content or harmful stereotypes. - Impersonating individuals without their consent. - Sexual content without consent of the people who might see it. - Mis- and disinformation - Representations of egregious violence and gore - Sharing of copyrighted or licensed material in violation of its terms of use. - Sharing content that is an alteration of copyrighted or licensed material in violation of its terms of use. ## Limitations and Bias ### Limitations - The model does not achieve perfect photorealism - The model cannot render legible text - The model does not perform well on more difficult tasks which involve compositionality, such as rendering an image corresponding to “A red cube on top of a blue sphere” - Faces and people in general may not be generated properly. - The model was trained mainly with English captions and will not work as well in other languages. - The autoencoding part of the model is lossy - The model was trained on a large-scale dataset [LAION-5B](https://laion.ai/blog/laion-5b/) which contains adult material and is not fit for product use without additional safety mechanisms and considerations. - No additional measures were used to deduplicate the dataset. As a result, we observe some degree of memorization for images that are duplicated in the training data. The training data can be searched at [https://rom1504.github.io/clip-retrieval/](https://rom1504.github.io/clip-retrieval/) to possibly assist in the detection of memorized images. ### Bias While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases. Stable Diffusion v1 was trained on subsets of [LAION-2B(en)](https://laion.ai/blog/laion-5b/), which consists of images that are primarily limited to English descriptions. Texts and images from communities and cultures that use other languages are likely to be insufficiently accounted for. This affects the overall output of the model, as white and western cultures are often set as the default. Further, the ability of the model to generate content with non-English prompts is significantly worse than with English-language prompts. ### Safety Module The intended use of this model is with the [Safety Checker](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/safety_checker.py) in Diffusers. This checker works by checking model outputs against known hard-coded NSFW concepts. The concepts are intentionally hidden to reduce the likelihood of reverse-engineering this filter. Specifically, the checker compares the class probability of harmful concepts in the embedding space of the `CLIPTextModel` *after generation* of the images. The concepts are passed into the model with the generated image and compared to a hand-engineered weight for each NSFW concept. ## Training **Training Data** The model developers used the following dataset for training the model: - LAION-2B (en) and subsets thereof (see next section) **Training Procedure** Stable Diffusion v1-5 is a latent diffusion model which combines an autoencoder with a diffusion model that is trained in the latent space of the autoencoder. During training, - Images are encoded through an encoder, which turns images into latent representations. The autoencoder uses a relative downsampling factor of 8 and maps images of shape H x W x 3 to latents of shape H/f x W/f x 4 - Text prompts are encoded through a ViT-L/14 text-encoder. - The non-pooled output of the text encoder is fed into the UNet backbone of the latent diffusion model via cross-attention. - The loss is a reconstruction objective between the noise that was added to the latent and the prediction made by the UNet. Currently six Stable Diffusion checkpoints are provided, which were trained as follows. - [`stable-diffusion-v1-1`](https://huggingface.co/CompVis/stable-diffusion-v1-1): 237,000 steps at resolution `256x256` on [laion2B-en](https://huggingface.co/datasets/laion/laion2B-en). 194,000 steps at resolution `512x512` on [laion-high-resolution](https://huggingface.co/datasets/laion/laion-high-resolution) (170M examples from LAION-5B with resolution `>= 1024x1024`). - [`stable-diffusion-v1-2`](https://huggingface.co/CompVis/stable-diffusion-v1-2): Resumed from `stable-diffusion-v1-1`. 515,000 steps at resolution `512x512` on "laion-improved-aesthetics" (a subset of laion2B-en, filtered to images with an original size `>= 512x512`, estimated aesthetics score `> 5.0`, and an estimated watermark probability `< 0.5`. The watermark estimate is from the LAION-5B metadata, the aesthetics score is estimated using an [improved aesthetics estimator](https://github.com/christophschuhmann/improved-aesthetic-predictor)). - [`stable-diffusion-v1-3`](https://huggingface.co/CompVis/stable-diffusion-v1-3): Resumed from `stable-diffusion-v1-2` - 195,000 steps at resolution `512x512` on "laion-improved-aesthetics" and 10 % dropping of the text-conditioning to improve [classifier-free guidance sampling](https://arxiv.org/abs/2207.12598). - [`stable-diffusion-v1-4`](https://huggingface.co/CompVis/stable-diffusion-v1-4) Resumed from `stable-diffusion-v1-2` - 225,000 steps at resolution `512x512` on "laion-aesthetics v2 5+" and 10 % dropping of the text-conditioning to improve [classifier-free guidance sampling](https://arxiv.org/abs/2207.12598). - [`stable-diffusion-v1-5`](https://huggingface.co/runwayml/stable-diffusion-v1-5) Resumed from `stable-diffusion-v1-2` - 595,000 steps at resolution `512x512` on "laion-aesthetics v2 5+" and 10 % dropping of the text-conditioning to improve [classifier-free guidance sampling](https://arxiv.org/abs/2207.12598). - [`stable-diffusion-inpainting`](https://huggingface.co/runwayml/stable-diffusion-inpainting) Resumed from `stable-diffusion-v1-5` - then 440,000 steps of inpainting training at resolution 512x512 on “laion-aesthetics v2 5+” and 10% dropping of the text-conditioning. For inpainting, the UNet has 5 additional input channels (4 for the encoded masked-image and 1 for the mask itself) whose weights were zero-initialized after restoring the non-inpainting checkpoint. During training, we generate synthetic masks and in 25% mask everything. - **Hardware:** 32 x 8 x A100 GPUs - **Optimizer:** AdamW - **Gradient Accumulations**: 2 - **Batch:** 32 x 8 x 2 x 4 = 2048 - **Learning rate:** warmup to 0.0001 for 10,000 steps and then kept constant ## Evaluation Results Evaluations with different classifier-free guidance scales (1.5, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0) and 50 PNDM/PLMS sampling steps show the relative improvements of the checkpoints: ![pareto](https://huggingface.co/CompVis/stable-diffusion/resolve/main/v1-1-to-v1-5.png) Evaluated using 50 PLMS steps and 10000 random prompts from the COCO2017 validation set, evaluated at 512x512 resolution. Not optimized for FID scores. ## Environmental Impact **Stable Diffusion v1** **Estimated Emissions** Based on that information, we estimate the following CO2 emissions using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). The hardware, runtime, cloud provider, and compute region were utilized to estimate the carbon impact. - **Hardware Type:** A100 PCIe 40GB - **Hours used:** 150000 - **Cloud Provider:** AWS - **Compute Region:** US-east - **Carbon Emitted (Power consumption x Time x Carbon produced based on location of power grid):** 11250 kg CO2 eq. ## Citation ```bibtex @InProceedings{Rombach_2022_CVPR, author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn}, title = {High-Resolution Image Synthesis With Latent Diffusion Models}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2022}, pages = {10684-10695} } ``` *This model card was written by: Robin Rombach and Patrick Esser and is based on the [DALL-E Mini model card](https://huggingface.co/dalle-mini/dalle-mini).*
Maciel/T5Corrector-base-v1
Maciel
2023-03-27T07:58:09Z
124
5
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "text error correction", "zh", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-08T02:52:24Z
--- language: - zh license: apache-2.0 tags: - t5 - text error correction widget: - text: "今天天气不太好,我的心情也不是很偷快" example_title: "案例1" - text: "听到这个消息,心情真的蓝瘦" example_title: "案例2" - text: "脑子有点胡涂了,这道题冥冥学过还没有做出来" example_title: "案例3" inference: parameters: max_length: 256 num_beams: 10 no_repeat_ngram_size: 5 do_sample: True early_stopping: True --- ## 功能介绍 T5Corrector:中文字音与字形纠错模型 这个模型是基于mengzi-t5-base进行文本纠错训练,使用500w+句子,通过替换同音词、近音词和形近字来构造纠错平行语料,共计3kw+句对,累计训练45000步。 <a href='https://github.com/Macielyoung/T5Corrector'>Github项目地址</a> 加载模型: ```python # 加载模型 from transformers import T5Tokenizer, T5ForConditionalGeneration pretrained = "Maciel/T5Corrector-base-v1" tokenizer = T5Tokenizer.from_pretrained(pretrained) model = T5ForConditionalGeneration.from_pretrained(pretrained) ``` 使用模型进行预测推理方法: ```python import torch device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) def correct(text, max_length): model_inputs = tokenizer(text, max_length=max_length, truncation=True, return_tensors="pt").to(device) output = model.generate(**model_inputs, num_beams=5, no_repeat_ngram_size=4, do_sample=True, early_stopping=True, max_length=max_length, return_dict_in_generate=True, output_scores=True) pred_output = tokenizer.batch_decode(output.sequences, skip_special_tokens=True)[0] return pred_output text = "听到这个消息,心情真的蓝瘦" correction = correct(text, max_length=32) print(correction) ``` ### 案例展示 ``` 示例1: input: 听到这个消息,心情真的蓝瘦 output: 听到这个消息,心情真的难受 示例2: input: 脑子有点胡涂了,这道题冥冥学过还没有做出来 output: 脑子有点糊涂了,这道题明明学过还没有做出来 示例3: input: 今天天气不太好,我的心情也不是很偷快 output: 今天天气不太好,我的心情也不是很愉快 ```
VuDucQuang/ControlNet
VuDucQuang
2023-03-27T07:55:34Z
1
0
transformers
[ "transformers", "art", "controlnet", "stable-diffusion", "arxiv:2302.05543", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:openrail", "endpoints_compatible", "region:us" ]
null
2023-03-27T07:52:00Z
--- license: openrail base_model: runwayml/stable-diffusion-v1-5 tags: - art - controlnet - stable-diffusion --- # Controlnet - *Canny Version* ControlNet is a neural network structure to control diffusion models by adding extra conditions. This checkpoint corresponds to the ControlNet conditioned on **Canny edges**. It can be used in combination with [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/text2img). ![img](./sd.png) ## Model Details - **Developed by:** Lvmin Zhang, Maneesh Agrawala - **Model type:** Diffusion-based text-to-image generation model - **Language(s):** English - **License:** [The CreativeML OpenRAIL M license](https://huggingface.co/spaces/CompVis/stable-diffusion-license) is an [Open RAIL M license](https://www.licenses.ai/blog/2022/8/18/naming-convention-of-responsible-ai-licenses), adapted from the work that [BigScience](https://bigscience.huggingface.co/) and [the RAIL Initiative](https://www.licenses.ai/) are jointly carrying in the area of responsible AI licensing. See also [the article about the BLOOM Open RAIL license](https://bigscience.huggingface.co/blog/the-bigscience-rail-license) on which our license is based. - **Resources for more information:** [GitHub Repository](https://github.com/lllyasviel/ControlNet), [Paper](https://arxiv.org/abs/2302.05543). - **Cite as:** @misc{zhang2023adding, title={Adding Conditional Control to Text-to-Image Diffusion Models}, author={Lvmin Zhang and Maneesh Agrawala}, year={2023}, eprint={2302.05543}, archivePrefix={arXiv}, primaryClass={cs.CV} } ## Introduction Controlnet was proposed in [*Adding Conditional Control to Text-to-Image Diffusion Models*](https://arxiv.org/abs/2302.05543) by Lvmin Zhang, Maneesh Agrawala. The abstract reads as follows: *We present a neural network structure, ControlNet, to control pretrained large diffusion models to support additional input conditions. The ControlNet learns task-specific conditions in an end-to-end way, and the learning is robust even when the training dataset is small (< 50k). Moreover, training a ControlNet is as fast as fine-tuning a diffusion model, and the model can be trained on a personal devices. Alternatively, if powerful computation clusters are available, the model can scale to large amounts (millions to billions) of data. We report that large diffusion models like Stable Diffusion can be augmented with ControlNets to enable conditional inputs like edge maps, segmentation maps, keypoints, etc. This may enrich the methods to control large diffusion models and further facilitate related applications.* ## Released Checkpoints The authors released 8 different checkpoints, each trained with [Stable Diffusion v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) on a different type of conditioning: | Model Name | Control Image Overview| Control Image Example | Generated Image Example | |---|---|---|---| |[lllyasviel/sd-controlnet-canny](https://huggingface.co/lllyasviel/sd-controlnet-canny)<br/> *Trained with canny edge detection* | A monochrome image with white edges on a black background.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_bird_canny.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_bird_canny.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_bird_canny_1.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_bird_canny_1.png"/></a>| |[lllyasviel/sd-controlnet-depth](https://huggingface.co/lllyasviel/sd-controlnet-depth)<br/> *Trained with Midas depth estimation* |A grayscale image with black representing deep areas and white representing shallow areas.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_vermeer_depth.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_vermeer_depth.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_vermeer_depth_2.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_vermeer_depth_2.png"/></a>| |[lllyasviel/sd-controlnet-hed](https://huggingface.co/lllyasviel/sd-controlnet-hed)<br/> *Trained with HED edge detection (soft edge)* |A monochrome image with white soft edges on a black background.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_bird_hed.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_bird_hed.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_bird_hed_1.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_bird_hed_1.png"/></a> | |[lllyasviel/sd-controlnet-mlsd](https://huggingface.co/lllyasviel/sd-controlnet-mlsd)<br/> *Trained with M-LSD line detection* |A monochrome image composed only of white straight lines on a black background.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_room_mlsd.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_room_mlsd.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_room_mlsd_0.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_room_mlsd_0.png"/></a>| |[lllyasviel/sd-controlnet-normal](https://huggingface.co/lllyasviel/sd-controlnet-normal)<br/> *Trained with normal map* |A [normal mapped](https://en.wikipedia.org/wiki/Normal_mapping) image.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_human_normal.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_human_normal.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_human_normal_1.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_human_normal_1.png"/></a>| |[lllyasviel/sd-controlnet_openpose](https://huggingface.co/lllyasviel/sd-controlnet-openpose)<br/> *Trained with OpenPose bone image* |A [OpenPose bone](https://github.com/CMU-Perceptual-Computing-Lab/openpose) image.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_human_openpose.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_human_openpose.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_human_openpose_0.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_human_openpose_0.png"/></a>| |[lllyasviel/sd-controlnet_scribble](https://huggingface.co/lllyasviel/sd-controlnet-scribble)<br/> *Trained with human scribbles* |A hand-drawn monochrome image with white outlines on a black background.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_vermeer_scribble.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_vermeer_scribble.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_vermeer_scribble_0.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_vermeer_scribble_0.png"/></a> | |[lllyasviel/sd-controlnet_seg](https://huggingface.co/lllyasviel/sd-controlnet-seg)<br/>*Trained with semantic segmentation* |An [ADE20K](https://groups.csail.mit.edu/vision/datasets/ADE20K/)'s segmentation protocol image.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_room_seg.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_room_seg.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_room_seg_1.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_room_seg_1.png"/></a> | ## Example It is recommended to use the checkpoint with [Stable Diffusion v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) as the checkpoint has been trained on it. Experimentally, the checkpoint can be used with other diffusion models such as dreamboothed stable diffusion. **Note**: If you want to process an image to create the auxiliary conditioning, external dependencies are required as shown below: 1. Install opencv ```sh $ pip install opencv-contrib-python ``` 2. Let's install `diffusers` and related packages: ``` $ pip install diffusers transformers git+https://github.com/huggingface/accelerate.git ``` 3. Run code: ```python import cv2 from PIL import Image from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler import torch import numpy as np from diffusers.utils import load_image image = load_image("https://huggingface.co/lllyasviel/sd-controlnet-hed/resolve/main/images/bird.png") image = np.array(image) low_threshold = 100 high_threshold = 200 image = cv2.Canny(image, low_threshold, high_threshold) image = image[:, :, None] image = np.concatenate([image, image, image], axis=2) image = Image.fromarray(image) controlnet = ControlNetModel.from_pretrained( "fusing/stable-diffusion-v1-5-controlnet-canny", torch_dtype=torch.float16 ) pipe = StableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None, torch_dtype=torch.float16 ) pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) # Remove if you do not have xformers installed # see https://huggingface.co/docs/diffusers/v0.13.0/en/optimization/xformers#installing-xformers # for installation instructions pipe.enable_xformers_memory_efficient_attention() pipe.enable_model_cpu_offload() image = pipe("bird", image, num_inference_steps=20).images[0] image.save('images/bird_canny_out.png') ``` ![bird](./images/bird.png) ![bird_canny](./images/bird_canny.png) ![bird_canny_out](./images/bird_canny_out.png) ### Training The canny edge model was trained on 3M edge-image, caption pairs. The model was trained for 600 GPU-hours with Nvidia A100 80G using Stable Diffusion 1.5 as a base model. ### Blog post For more information, please also have a look at the [official ControlNet Blog Post](https://huggingface.co/blog/controlnet).
xinyixiuxiu/albert-xxlarge-v2-SST2-finetuned-epoch-2
xinyixiuxiu
2023-03-27T07:53:52Z
61
0
transformers
[ "transformers", "tf", "albert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-27T07:20:57Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: xinyixiuxiu/albert-xxlarge-v2-SST2-finetuned-epoch-2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # xinyixiuxiu/albert-xxlarge-v2-SST2-finetuned-epoch-2 This model is a fine-tuned version of [albert-xxlarge-v2](https://huggingface.co/albert-xxlarge-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2721 - Train Accuracy: 0.8858 - Validation Loss: 0.1265 - Validation Accuracy: 0.9564 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 3e-06, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.2721 | 0.8858 | 0.1265 | 0.9564 | 0 | ### Framework versions - Transformers 4.21.1 - TensorFlow 2.7.0 - Datasets 2.10.1 - Tokenizers 0.12.1
jamesimmanuel/a2c-AntBulletEnv-v0
jamesimmanuel
2023-03-27T07:40:37Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-27T07:39:29Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1812.33 +/- 61.20 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
swl-models/DanMix-v2.3
swl-models
2023-03-27T07:36:06Z
0
2
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-03-27T04:11:44Z
--- license: creativeml-openrail-m ---
circulus/alpaca-lora-7b
circulus
2023-03-27T07:21:53Z
0
0
null
[ "license:gpl-3.0", "region:us" ]
null
2023-03-27T06:50:53Z
--- license: gpl-3.0 --- This repo contains a low-rank adapter for LLaMA-7b model fit on the Stanford Alpaca dataset. Also modified for enhance performance with 8 epoch training.
YoungMasterFromSect/Trauter_LoRAs
YoungMasterFromSect
2023-03-27T07:11:06Z
0
519
null
[ "anime", "region:us" ]
null
2023-01-14T12:43:26Z
--- tags: - anime --- NOTICE: My LoRAs require high amount of tags to look good, I will fix this later on and update all of my LoRAs if everything works out. # General Information - [Overview](#overview) - [Installation](#installation) - [Usage](#usage) - [SocialMedia](#socialmedia) - [Plans for the future](#plans-for-the-future) # Overview Welcome to the place where I host my LoRAs. In short, LoRA is just a checkpoint trained on specific artstyle/subject that you load into your WebUI, that can be used with other models. Although you can use it with any model, the effects of LoRA will vary between them. Most of the previews use models that come from [WarriorMama777](https://huggingface.co/WarriorMama777/OrangeMixs) . For more information about them, you can visit the original LoRA repository: https://github.com/cloneofsimo/lora Every images posted here, or on the other sites have metadata in them that you can use in PNG Info tab in your WebUI to get access to the prompt of the image. Everything I do here is for free of charge! I don't guarantee that my LoRAs will give you good results, if you think they are bad, don't use them. # Installation To use them in your WebUI, please install the extension linked under, following the installation guide: https://github.com/kohya-ss/sd-webui-additional-networks#installation # Usage All of my LoRAs are to be used with their original danbooru tag. For example: ``` asuna \(blue archive\) ``` My LoRAs will have sufixes that will tell you how much they were trained. Either by using words like "soft" and "hard", where soft stands for lower amount of training and hard for higher amount of training. More trained LoRA is harder to modify but provides higher consistency in details and original outfits, while lower trained one will be more flexible, but may get details wrong. All the LoRAs that aren't marked with PRUNED require tagging everything about the character to get the likness of it. You have to tag every part of the character like: eyes,hair,breasts,accessories,special features,etc... In theory, this should allow LoRAs to be more flexible, but it requires to prompt those things always, because character tag doesn't have those features baked into it. From 1/16 I will test releasing pruned versions which will not require those prompting those things. The usage of them is also explained in this guide: https://github.com/kohya-ss/sd-webui-additional-networks#how-to-use # SocialMedia Here are some places where you can find my other stuff that I post, or if you feel like buying me a coffee: [Twitter](https://twitter.com/Trauter8) [Pixiv](https://www.pixiv.net/en/users/88153216) [Buymeacoffee](https://www.buymeacoffee.com/Trauter) # Plans for the future - Remake all of my LoRAs into pruned versions which will be more user friendly and easier to use, and use 768x768 res. for training and better Learning Rate - After finishing all of my LoRA that I want to make, go over the old ones and try to make them better. - Accept suggestions for almost every character. - Maybe get motivation to actually tag outfits. # LoRAs - [Genshin Impact](#genshin-impact) - [Eula](#eula) - [Barbara](#barbara) - [Diluc](#diluc) - [Mona](#mona) - [Rosaria](#rosaria) - [Yae Miko](#yae-miko) - [Raiden Shogun](#raiden-shogun) - [Kujou Sara](#kujou-sara) - [Shenhe](#shenhe) - [Yelan](#yelan) - [Jean](#jean) - [Lisa](#lisa) - [Zhongli](#zhongli) - [Yoimiya](#yoimiya) - [Blue Archive](#blue-archive) - [Rikuhachima Aru](#rikuhachima-aru) - [Ichinose Asuna](#ichinose-asuna) - [Fate Grand Order](#fate-grand-order) - [Minamoto-no-Raikou](#minamoto-no-raikou) - [Misc. Characters](#misc.-characters) - [Aponia](#aponia) - [Reisalin Stout](#reisalin-stout) - [Artstyles](#artstyles) - [Pozer](#pozer) # Genshin Impact - # Eula [<img src="https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/resolve/main/LoRA/Previews/1.png" width="512" height="768">](https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/resolve/main/LoRA/Previews/1.png) <details> <summary>Sample Prompt</summary> <pre> masterpiece, best quality, eula \(genshin impact\), 1girl, solo, thighhighs, weapon, gloves, breasts, sword, hairband, necktie, holding, leotard, bangs, greatsword, cape, thighs, boots, blue hair, looking at viewer, arms up, vision (genshin impact), medium breasts, holding sword, long sleeves, holding weapon, purple eyes, medium hair, copyright name, hair ornament, thigh boots, black leotard, black hairband, blue necktie, black thighhighs, yellow eyes, closed mouth Negative prompt: (worst quality, low quality, extra digits, loli, loli face:1.3) Steps: 20, Sampler: DPM++ SDE Karras, CFG scale: 8, Seed: 2010519914, Size: 512x768, Model hash: a87fd7da, Denoising strength: 0.57, Clip skip: 2, ENSD: 31337, Hires upscale: 1.8, Hires upscaler: Latent (nearest-exact) </pre> </details> - [Examples](https://www.flickr.com/photos/197461145@N04/albums/72177720305293076) - [Download](https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/tree/main/LoRA/Genshin-Impact/Eula) - # Barbara [<img src="https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/resolve/main/LoRA/Previews/bar.png" width="512" height="768">](https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/resolve/main/LoRA/Previews/bar.png) <details> <summary>Sample Prompt</summary> <pre> masterpiece, best quality, eula \(genshin impact\), 1girl, solo, thighhighs, weapon, gloves, breasts, sword, hairband, necktie, holding, leotard, bangs, greatsword, cape, thighs, boots, blue hair, looking at viewer, arms up, vision (genshin impact), medium breasts, holding sword, long sleeves, holding weapon, purple eyes, medium hair, copyright name, hair ornament, thigh boots, black leotard, black hairband, blue necktie, black thighhighs, yellow eyes, closed mouth Negative prompt: (worst quality, low quality, extra digits, loli, loli face:1.3) Steps: 20, Sampler: DPM++ SDE Karras, CFG scale: 8, Seed: 2010519914, Size: 512x768, Model hash: a87fd7da, Denoising strength: 0.57, Clip skip: 2, ENSD: 31337, Hires upscale: 1.8, Hires upscaler: Latent (nearest-exact) </pre> </details> - [Examples](https://www.flickr.com/photos/197461145@N04/albums/72177720305435137) - [Download](https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/tree/main/LoRA/Genshin-Impact/Barbara) - # Diluc [<img src="https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/resolve/main/LoRA/Previews/dil.png" width="512" height="768">](https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/resolve/main/LoRA/Previews/dil.png) <details> <summary>Sample Prompt</summary> <pre> masterpiece, best quality, eula \(genshin impact\), 1girl, solo, thighhighs, weapon, gloves, breasts, sword, hairband, necktie, holding, leotard, bangs, greatsword, cape, thighs, boots, blue hair, looking at viewer, arms up, vision (genshin impact), medium breasts, holding sword, long sleeves, holding weapon, purple eyes, medium hair, copyright name, hair ornament, thigh boots, black leotard, black hairband, blue necktie, black thighhighs, yellow eyes, closed mouth Negative prompt: (worst quality, low quality, extra digits, loli, loli face:1.3) Steps: 20, Sampler: DPM++ SDE Karras, CFG scale: 8, Seed: 2010519914, Size: 512x768, Model hash: a87fd7da, Denoising strength: 0.57, Clip skip: 2, ENSD: 31337, Hires upscale: 1.8, Hires upscaler: Latent (nearest-exact) </pre> </details> - [Examples](https://www.flickr.com/photos/197461145@N04/albums/72177720305427945) - [Download](https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/tree/main/LoRA/Genshin-Impact/Diluc) - # Mona [<img src="https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/resolve/main/LoRA/Previews/mon.png" width="512" height="768">](https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/resolve/main/LoRA/Previews/mon.png) <details> <summary>Sample Prompt</summary> <pre> masterpiece, best quality, eula \(genshin impact\), 1girl, solo, thighhighs, weapon, gloves, breasts, sword, hairband, necktie, holding, leotard, bangs, greatsword, cape, thighs, boots, blue hair, looking at viewer, arms up, vision (genshin impact), medium breasts, holding sword, long sleeves, holding weapon, purple eyes, medium hair, copyright name, hair ornament, thigh boots, black leotard, black hairband, blue necktie, black thighhighs, yellow eyes, closed mouth Negative prompt: (worst quality, low quality, extra digits, loli, loli face:1.3) Steps: 20, Sampler: DPM++ SDE Karras, CFG scale: 8, Seed: 2010519914, Size: 512x768, Model hash: a87fd7da, Denoising strength: 0.57, Clip skip: 2, ENSD: 31337, Hires upscale: 1.8, Hires upscaler: Latent (nearest-exact) </pre> </details> - [Examples](https://www.flickr.com/photos/197461145@N04/albums/72177720305428050) - [Download](https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/tree/main/LoRA/Genshin-Impact/Mona) - # Rosaria [<img src="https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/resolve/main/LoRA/Previews/ros.png" width="512" height="768">](https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/resolve/main/LoRA/Previews/ros.png) <details> <summary>Sample Prompt</summary> <pre> masterpiece, best quality, eula \(genshin impact\), 1girl, solo, thighhighs, weapon, gloves, breasts, sword, hairband, necktie, holding, leotard, bangs, greatsword, cape, thighs, boots, blue hair, looking at viewer, arms up, vision (genshin impact), medium breasts, holding sword, long sleeves, holding weapon, purple eyes, medium hair, copyright name, hair ornament, thigh boots, black leotard, black hairband, blue necktie, black thighhighs, yellow eyes, closed mouth Negative prompt: (worst quality, low quality, extra digits, loli, loli face:1.3) Steps: 20, Sampler: DPM++ SDE Karras, CFG scale: 8, Seed: 2010519914, Size: 512x768, Model hash: a87fd7da, Denoising strength: 0.57, Clip skip: 2, ENSD: 31337, Hires upscale: 1.8, Hires upscaler: Latent (nearest-exact) </pre> </details> - [Examples](https://www.flickr.com/photos/197461145@N04/albums/72177720305428015) - [Download](https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/tree/main/LoRA/Genshin-Impact/Rosaria) - # Yae Miko [<img src="https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/resolve/main/LoRA/Previews/yae.png" width="512" height="768">](https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/resolve/main/LoRA/Previews/yae.png) <details> <summary>Sample Prompt</summary> <pre> masterpiece, best quality, eula \(genshin impact\), 1girl, solo, thighhighs, weapon, gloves, breasts, sword, hairband, necktie, holding, leotard, bangs, greatsword, cape, thighs, boots, blue hair, looking at viewer, arms up, vision (genshin impact), medium breasts, holding sword, long sleeves, holding weapon, purple eyes, medium hair, copyright name, hair ornament, thigh boots, black leotard, black hairband, blue necktie, black thighhighs, yellow eyes, closed mouth Negative prompt: (worst quality, low quality, extra digits, loli, loli face:1.3) Steps: 20, Sampler: DPM++ SDE Karras, CFG scale: 8, Seed: 2010519914, Size: 512x768, Model hash: a87fd7da, Denoising strength: 0.57, Clip skip: 2, ENSD: 31337, Hires upscale: 1.8, Hires upscaler: Latent (nearest-exact) </pre> </details> - [Examples](https://www.flickr.com/photos/197461145@N04/albums/72177720305448948) - [Download](https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/tree/main/LoRA/Genshin-Impact/yae%20miko) - # Raiden Shogun - [<img src="https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/resolve/main/LoRA/Previews/ra.png" width="512" height="768">](https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/resolve/main/LoRA/Previews/ra.png) <details> <summary>Sample Prompt</summary> <pre> masterpiece, best quality, raiden shogun, 1girl, breasts, solo, cleavage, kimono, bangs, sash, mole, obi, tassel, blush, large breasts, purple eyes, japanese clothes, long hair, looking at viewer, hand on own chest, hair ornament, purple hair, bridal gauntlets, closed mouth, purple kimono, blue hair, mole under eye, shoulder armor, long sleeves, wide sleeves, mitsudomoe (shape), tomoe (symbol), cowboy shot Negative prompt: lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts,signature, watermark, username, blurry, artist name, from behind Steps: 30, Sampler: DPM++ 2M Karras, CFG scale: 4.5, Seed: 2544310848, Size: 704x384, Model hash: 2bba3136, Denoising strength: 0.5, Clip skip: 2, ENSD: 31337, Hires upscale: 2.05, Hires upscaler: 4x_foolhardy_Remacri </pre> </details> - [Examples](https://www.flickr.com/photos/197461145@N04/albums/72177720305313633) - [Download](https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/tree/main/LoRA/Genshin-Impact/Raiden%20Shogun) - # Kujou Sara - [<img src="https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/resolve/main/LoRA/Previews/ku.png" width="512" height="768">](https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/resolve/main/LoRA/Previews/ku.png) <details> <summary>Sample Prompt</summary> <pre> masterpiece, best quality, kujou sara, 1girl, solo, mask, gloves, bangs, bodysuit, gradient, sidelocks, signature, yellow eyes, bird mask, mask on head, looking at viewer, short hair, black hair, detached sleeves, simple background, japanese clothes, black gloves, black bodysuit, wide sleeves, white background, upper body, gradient background, closed mouth, hair ornament, artist name, elbow gloves Negative prompt: (worst quality, low quality:1.4) Steps: 20, Sampler: DPM++ SDE Karras, CFG scale: 8, Seed: 3966121353, Size: 512x768, Model hash: 931f9552, Denoising strength: 0.5, Clip skip: 2, ENSD: 31337, Hires upscale: 1.8, Hires steps: 20, Hires upscaler: Latent (nearest-exact) </pre> </details> - [Examples](https://www.flickr.com/photos/197461145@N04/albums/72177720305311498) - [Download](https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/tree/main/LoRA/Genshin-Impact/Kujou%20Sara) - # Shenhe - [<img src="https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/resolve/main/LoRA/Previews/sh.png" width="512" height="768">](https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/resolve/main/LoRA/Previews/sh.png) <details> <summary>Sample Prompt</summary> <pre> masterpiece, best quality, shenhe \(genshin impact\), 1girl, solo, breasts, bodysuit, tassel, gloves, bangs, braid, outdoors, bird, jewelry, earrings, sky, breast curtain, long hair, hair over one eye, covered navel, blue eyes, looking at viewer, hair ornament, large breasts, shoulder cutout, clothing cutout, very long hair, hip vent, braided ponytail, partially fingerless gloves, black bodysuit, tassel earrings, black gloves, gold trim, cowboy shot, white hair Negative prompt: (worst quality, low quality, extra digits, loli, loli face:1.3) Steps: 22, Sampler: DPM++ SDE Karras, CFG scale: 6.5, Seed: 573332187, Size: 512x768, Model hash: a87fd7da, Denoising strength: 0.57, Clip skip: 2, ENSD: 31337, Hires upscale: 2, Hires upscaler: Latent (nearest-exact) </pre> </details> - [Examples](https://www.flickr.com/photos/197461145@N04/albums/72177720305307599) - [Download](https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/tree/main/LoRA/Genshin-Impact/Shenhe) - # Yelan - [<img src="https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/resolve/main/LoRA/Previews/10.png" width="512" height="768">](https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/resolve/main/LoRA/Previews/10.png) <details> <summary>Sample Prompt</summary> <pre> masterpiece, best quality, yelan \(genshin impact\), 1girl, breasts, solo, bangs, armpits, smile, sky, cleavage, jewelry, gloves, jacket, dice, mole, cloud, grin, dress, blush, earrings, thighs, tassel, sleeveless, day, outdoors, large breasts, looking at viewer, green eyes, arms up, short hair, blue hair, vision (genshin impact), fur trim, white jacket, blue sky, mole on breast, arms behind head, bob cut, multicolored hair, black hair, fur-trimmed jacket, elbow gloves, bare shoulders, blue dress, parted lips, diagonal bangs, clothing cutout, pelvic curtain, asymmetrical gloves Negative prompt: lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts,signature, watermark, username, blurry, artist name Steps: 23, Sampler: DPM++ SDE Karras, CFG scale: 6.5, Seed: 575500509, Size: 512x768, Model hash: a87fd7da, Denoising strength: 0.58, Clip skip: 2, ENSD: 31337, Hires upscale: 2.4, Hires upscaler: Latent (nearest-exact) </pre> </details> - [Examples](https://www.flickr.com/photos/197461145@N04/albums/72177720305296897) - [Download](https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/tree/main/LoRA/Genshin-Impact/Yelan) - # Jean - [<img src="https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/resolve/main/LoRA/Previews/333.png" width="512" height="768">](https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/resolve/main/LoRA/Previews/333.png) <details> <summary>Sample Prompt</summary> <pre> masterpiece, best quality, jean \(genshin impact\), 1girl, breasts, solo, cleavage, strapless, smile, ponytail, bangs, jewelry, earrings, bow, capelet, signature, sidelocks, cape, corset, shiny, blonde hair, long hair, upper body, detached sleeves, purple eyes, hair between eyes, hair bow, parted lips, looking to the side, large breasts, detached collar, medium breasts, blue capelet, white background, black bow, blue eyes, bare shoulders, simple background Negative prompt: lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts,signature, watermark, username, blurry, artist name, (worst quality, low quality, extra digits, loli, loli face:1.3) Steps: 22, Sampler: DPM++ SDE Karras, CFG scale: 7.5, Seed: 32930253, Size: 512x768, Model hash: ffa7b160, Denoising strength: 0.59, Clip skip: 2, ENSD: 31337, Hires upscale: 1.85, Hires upscaler: Latent (nearest-exact) </pre> </details> - [Examples](https://www.flickr.com/photos/197461145@N04/albums/72177720305307594) - [Download](https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/tree/main/LoRA/Genshin-Impact/Jean) - # Lisa [<img src="https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/resolve/main/LoRA/Previews/lis.png" width="512" height="768">](https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/resolve/main/LoRA/Previews/lis.png) <details> <summary>Sample Prompt</summary> <pre> masterpiece, best quality, lisa \(genshin impact\), 1girl, solo, hat, breasts, gloves, cleavage, flower, smile, bangs, dress, rose, jewelry, witch, capelet, green eyes, witch hat, brown hair, purple headwear, looking at viewer, white background, large breasts, long hair, simple background, black gloves, purple flower, hair between eyes, upper body, purple rose, parted lips, purple capelet, hat flower, multicolored dress, hair ornament, multicolored clothes, vision (genshin impact) Negative prompt: lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts,signature, watermark, username, blurry, artist name, worst quality, low quality, extra digits, loli, loli face Steps: 23, Sampler: DPM++ SDE Karras, CFG scale: 6.5, Seed: 350134479, Size: 512x768, Model hash: ffa7b160, Denoising strength: 0.57, Clip skip: 2, ENSD: 31337, Hires upscale: 1.85, Hires upscaler: Latent (nearest-exact) </pre> </details> - [Examples](https://www.flickr.com/photos/197461145@N04/albums/72177720305290865) - [Download](https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/tree/main/LoRA/Genshin-Impact/Lisa) - # Zhongli [<img src="https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/resolve/main/LoRA/Previews/zho.png" width="512" height="768">](https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/resolve/main/LoRA/Previews/zho.png) <details> <summary>Sample Prompt</summary> <pre> masterpiece, best quality, zhongli \(genshin impact\), solo, 1boy, bangs, jewelry, tassel, earrings, ponytail, low ponytail, gloves, necktie, jacket, shirt, formal, petals, suit, makeup, eyeliner, eyeshadow, male focus, long hair, brown hair, multicolored hair, long sleeves, tassel earrings, single earring, collared shirt, hair between eyes, black gloves, closed mouth, yellow eyes, gradient hair, orange hair, simple background Negative prompt: lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts,signature, watermark, username, blurry, artist name, worst quality, low quality, extra digits, loli, loli face Steps: 22, Sampler: DPM++ SDE Karras, CFG scale: 7, Seed: 88418604, Size: 512x768, Model hash: a87fd7da, Denoising strength: 0.58, Clip skip: 2, ENSD: 31337, Hires upscale: 2, Hires upscaler: Latent (nearest-exact) </pre> </details> - [Examples](https://www.flickr.com/photos/197461145@N04/albums/72177720305311423) - [Download](https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/tree/main/LoRA/Genshin-Impact/Zhongli) - # Yoimiya [<img src="https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/resolve/main/LoRA/Previews/Yoi.png" width="512" height="768">](https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/resolve/main/LoRA/Previews/Yoi.png) <details> <summary>Sample Prompt</summary> <pre> masterpiece, best quality, eula \(genshin impact\), 1girl, solo, thighhighs, weapon, gloves, breasts, sword, hairband, necktie, holding, leotard, bangs, greatsword, cape, thighs, boots, blue hair, looking at viewer, arms up, vision (genshin impact), medium breasts, holding sword, long sleeves, holding weapon, purple eyes, medium hair, copyright name, hair ornament, thigh boots, black leotard, black hairband, blue necktie, black thighhighs, yellow eyes, closed mouth Negative prompt: (worst quality, low quality, extra digits, loli, loli face:1.3) Steps: 20, Sampler: DPM++ SDE Karras, CFG scale: 8, Seed: 2010519914, Size: 512x768, Model hash: a87fd7da, Denoising strength: 0.57, Clip skip: 2, ENSD: 31337, Hires upscale: 1.8, Hires upscaler: Latent (nearest-exact) </pre> </details> - [Examples](https://www.flickr.com/photos/197461145@N04/albums/72177720305448498) - [Download](https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/tree/main/LoRA/Genshin-Impact/Yoimiya) # Blue Archive - # Rikuhachima Aru - [<img src="https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/resolve/main/LoRA/Previews/22.png" width="512" height="768">](https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/resolve/main/LoRA/Previews/22.png) <details> <summary>Sample Prompt</summary> <pre> aru \(blue archive\), masterpiece, best quality, 1girl, solo, horns, skirt, gloves, shirt, halo, window, breasts, blush, sweatdrop, ribbon, coat, bangs, :d, smile, indoors, standing, plant, thighs, sweat, jacket, day, sunlight, long hair, white shirt, white gloves, black skirt, looking at viewer, open mouth, long sleeves, red ribbon, fur trim, neck ribbon, red hair, fur-trimmed coat, collared shirt, orange eyes, medium breasts, brown coat, hands up, side slit, coat on shoulders, v-shaped eyebrows, yellow eyes, potted plant, fur collar, shirt tucked in, demon horns, high-waist skirt, dress shirt Negative prompt: lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts,signature, watermark, username, blurry, artist name, (worst quality, low quality, extra digits, loli, loli face:1.3) Steps: 22, Sampler: DPM++ SDE Karras, CFG scale: 6.5, Seed: 1190296645, Size: 512x768, Model hash: ffa7b160, Denoising strength: 0.58, Clip skip: 2, ENSD: 31337, Hires upscale: 1.85, Hires upscaler: Latent (nearest-exact) </pre> </details> - [Examples](https://www.flickr.com/photos/197461145@N04/albums/72177720305293051) - [Download](https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/tree/main/LoRA/Blue-Archive/Rikuhachima%20Aru) - # Ichinose Asuna - [<img src="https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/resolve/main/LoRA/Previews/asu.png" width="512" height="768">](https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/resolve/main/LoRA/Previews/asu.png) <details> <summary>Sample Prompt</summary> <pre> photorealistic, (hyperrealistic:1.2), (extremely detailed CG unity 8k wallpaper), (ultra-detailed), (mature female:1.2), masterpiece, best quality, asuna \(blue archive\), 1girl, breasts, solo, gloves, pantyhose, ass, leotard, smile, tail, halo, grin, blush, bangs, sideboob, highleg, standing, mole, strapless, ribbon, thighs, animal ears, playboy bunny, rabbit ears, long hair, white gloves, very long hair, large breasts, high heels, blue leotard, hair over one eye, fake animal ears, blue eyes, looking at viewer, white footwear, rabbit tail, official alternate costume, full body, elbow gloves, simple background, white background, absurdly long hair, bare shoulders, detached collar, thighband pantyhose, leaning forward, highleg leotard, strapless leotard, hair ribbon, brown pantyhose, black pantyhose, mole on breast, light brown hair, brown hair, looking back, fake tail Negative prompt: lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts,signature, watermark, username, blurry, artist name, (worst quality, low quality, extra digits, loli, loli face:1.3) Steps: 22, Sampler: DPM++ SDE Karras, CFG scale: 6.5, Seed: 2052579935, Size: 512x768, Model hash: ffa7b160, Clip skip: 2, ENSD: 31337 </pre> </details> - [Examples](https://www.flickr.com/photos/197461145@N04/albums/72177720305292996) - [Download](https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/tree/main/LoRA/Blue-Archive/Ichinose%20Asuna) # Fate Grand Order - # Minamoto-no-Raikou - [<img src="https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/resolve/main/LoRA/Previews/3.png" width="512" height="768">](https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/resolve/main/LoRA/Previews/3.png) <details> <summary>Sample Prompt</summary> <pre> mature female, masterpiece, best quality, minamoto no raikou \(fate\), 1girl, breasts, solo, bodysuit, gloves, bangs, smile, rope, heart, blush, thighs, armor, kote, long hair, purple hair, fingerless gloves, purple eyes, large breasts, very long hair, looking at viewer, parted bangs, ribbed sleeves, black gloves, arm guards, covered navel, low-tied long hair, purple bodysuit, japanese armor Negative prompt: lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts,signature, watermark, username, blurry, artist name, (worst quality, low quality, extra digits, loli, loli face:1.3) Steps: 22, Sampler: DPM++ SDE Karras, CFG scale: 7.5, Seed: 3383453781, Size: 512x768, Model hash: ffa7b160, Denoising strength: 0.59, Clip skip: 2, ENSD: 31337, Hires upscale: 2, Hires upscaler: Latent (nearest-exact) </pre> </details> - [Examples](https://www.flickr.com/photos/197461145@N04/albums/72177720305290900) - [Download](https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/tree/main/LoRA/Fate-Grand-Order/Minamoto-no-Raikou) # Misc. Characters - # Aponia [<img src="https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/resolve/main/LoRA/Previews/apo.png" width="512" height="768">](https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/resolve/main/LoRA/Previews/apo.png) <details> <summary>Sample Prompt</summary> <pre> masterpiece, best quality, eula \(genshin impact\), 1girl, solo, thighhighs, weapon, gloves, breasts, sword, hairband, necktie, holding, leotard, bangs, greatsword, cape, thighs, boots, blue hair, looking at viewer, arms up, vision (genshin impact), medium breasts, holding sword, long sleeves, holding weapon, purple eyes, medium hair, copyright name, hair ornament, thigh boots, black leotard, black hairband, blue necktie, black thighhighs, yellow eyes, closed mouth Negative prompt: (worst quality, low quality, extra digits, loli, loli face:1.3) Steps: 20, Sampler: DPM++ SDE Karras, CFG scale: 8, Seed: 2010519914, Size: 512x768, Model hash: a87fd7da, Denoising strength: 0.57, Clip skip: 2, ENSD: 31337, Hires upscale: 1.8, Hires upscaler: Latent (nearest-exact) </pre> </details> - [Examples](https://www.flickr.com/photos/197461145@N04/albums/72177720305445819) - [Download](https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/tree/main/LoRA/Misc.%20Characters/Aponia) - # Reisalin Stout [<img src="https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/resolve/main/LoRA/Previews/ryza.png" width="512" height="768">](https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/resolve/main/LoRA/Previews/ryza.png) <details> <summary>Sample Prompt</summary> <pre> masterpiece, best quality, eula \(genshin impact\), 1girl, solo, thighhighs, weapon, gloves, breasts, sword, hairband, necktie, holding, leotard, bangs, greatsword, cape, thighs, boots, blue hair, looking at viewer, arms up, vision (genshin impact), medium breasts, holding sword, long sleeves, holding weapon, purple eyes, medium hair, copyright name, hair ornament, thigh boots, black leotard, black hairband, blue necktie, black thighhighs, yellow eyes, closed mouth Negative prompt: (worst quality, low quality, extra digits, loli, loli face:1.3) Steps: 20, Sampler: DPM++ SDE Karras, CFG scale: 8, Seed: 2010519914, Size: 512x768, Model hash: a87fd7da, Denoising strength: 0.57, Clip skip: 2, ENSD: 31337, Hires upscale: 1.8, Hires upscaler: Latent (nearest-exact) </pre> </details> - [Examples](https://www.flickr.com/photos/197461145@N04/albums/72177720305448553) - [Download](https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/tree/main/LoRA/Misc.%20Characters/reisalin%20stout) # Artstyles - # Pozer [<img src="https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/resolve/main/LoRA/Previews/art.png" width="512" height="768">](https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/resolve/main/LoRA/Previews/art.png) <details> <summary>Sample Prompt</summary> <pre> masterpiece, best quality, eula \(genshin impact\), 1girl, solo, thighhighs, weapon, gloves, breasts, sword, hairband, necktie, holding, leotard, bangs, greatsword, cape, thighs, boots, blue hair, looking at viewer, arms up, vision (genshin impact), medium breasts, holding sword, long sleeves, holding weapon, purple eyes, medium hair, copyright name, hair ornament, thigh boots, black leotard, black hairband, blue necktie, black thighhighs, yellow eyes, closed mouth Negative prompt: (worst quality, low quality, extra digits, loli, loli face:1.3) Steps: 20, Sampler: DPM++ SDE Karras, CFG scale: 8, Seed: 2010519914, Size: 512x768, Model hash: a87fd7da, Denoising strength: 0.57, Clip skip: 2, ENSD: 31337, Hires upscale: 1.8, Hires upscaler: Latent (nearest-exact) </pre> </details> - [Examples](https://www.flickr.com/photos/197461145@N04/albums/72177720305445399) - [Download](https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs/tree/main/LoRA/Artstyles/Pozer)
Kukubuy/Kalacharam
Kukubuy
2023-03-27T06:49:34Z
0
1
null
[ "text-image", "en", "license:openrail", "region:us" ]
null
2023-03-25T08:25:35Z
--- license: openrail language: - en tags: - text-image --- # Kalacharam Aim of this model to be a good base model for India Culture things, currently its being trained on south indian models. There are few things i planned to train tamil architecture, foods, dresses etc. **NOTE:** Those things mentioned above are my visionary i might train things or might not, if any one interested in it. feel free to reuse those models ### Model Training Details - **Base Model:** ChillOutMix - **Training Method:** FineTune - **Steps:** 5000 - **Token:** TamilPonnu (Base) - **Dataset:** 1500Images ## Example <img style="display:inline;margin:0;padding:0;" src="https://huggingface.co/Kukubuy/Kalacharam/resolve/main/Sample_Images/SampleImage_1.png" width="45%"/> <img style="display:inline;margin:0;padding:0;" src="https://huggingface.co/Kukubuy/Kalacharam/resolve/main/Sample_Images/SampleImage_2.png" width="45%"/> <details><summary><big><b>Prompts</b></big></summary> ```yaml (masterpiece, 1girl, solo, ultra-detailed:1.2), most beautiful girl in the world, (photography:1.2), photorealistic, sidelighting, very detailed image, best quality, (tamilponnu), (black dress + saree:1.2), realistic, black hair, Jewlery, earrings, smile, looking at viewer, saree, simple background AND white background, crystal eyes, black eye, long hair, wide shot, portrait, art by midjourney, front view Negative prompt: lowres, ((bad anatomy)), ((bad hands)), text, missing finger, extra digits, fewer digits, blurry, ((mutated hands and fingers)), (poorly drawn face), ((mutation)), ((deformed face)), (ugly), ((bad proportions)), ((extra limbs)), extra face, (double head), (extra head), ((extra feet)), monster, logo, cropped, worst quality, low quality, normal quality, jpeg, humpbacked, long body, long neck, ((jpeg artifacts)), (bindi:1.2) Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 7, Seed: 1125363210, Size: 512x768, Model: Kalacharam_Base, Denoising strength: 0.55, Clip skip: 2, ENSD: 31337, Hires upscale: 1.5, Hires upscaler: Latent ``` ```yaml (masterpiece, 1girl, solo, ultra-detailed:1.2), most beautiful girl in the world, (photography:1.2), photorealistic, sidelighting, very detailed image, best quality, (tamilponnu), (fashion, skirt:1.2), realistic, black hair, earrings, smile, looking at viewer, saree, simple background AND white background, crystal eyes, black eye, long hair, wide shot, portrait, art by midjourney, from front Negative prompt: lowres, ((bad anatomy)), ((bad hands)), text, missing finger, extra digits, fewer digits, blurry, ((mutated hands and fingers)), (poorly drawn face), ((mutation)), ((deformed face)), (ugly), ((bad proportions)), ((extra limbs)), extra face, (double head), (extra head), ((extra feet)), monster, logo, cropped, worst quality, low quality, normal quality, jpeg, humpbacked, long body, long neck, ((jpeg artifacts)), (bindi:1.2) Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 7, Seed: 2281761033, Size: 512x768, Model: Kalacharam_Base, Denoising strength: 0.55, Clip skip: 2, ENSD: 31337, Hires upscale: 1.5, Hires upscaler: Latent ```
intanm/mlm_v1_20230327_fin_sa_50
intanm
2023-03-27T06:45:24Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-27T06:39:09Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: mlm_v1_20230327_fin_sa_50 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mlm_v1_20230327_fin_sa_50 This model is a fine-tuned version of [intanm/mlm-v1-fin-lm-20230327-001](https://huggingface.co/intanm/mlm-v1-fin-lm-20230327-001) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2202 - Accuracy: 0.9396 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 51 | 0.2675 | 0.9121 | | No log | 2.0 | 102 | 0.2202 | 0.9396 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
LowGI/STT_Model_17
LowGI
2023-03-27T06:43:22Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-03-27T02:26:59Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: STT_Model_17 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # STT_Model_17 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1172 - Wer: 0.1190 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.1934 | 2.1 | 500 | 3.7998 | 0.9999 | | 1.14 | 4.2 | 1000 | 0.4083 | 0.3740 | | 0.2217 | 6.3 | 1500 | 0.2515 | 0.2184 | | 0.1276 | 8.4 | 2000 | 0.1623 | 0.1803 | | 0.0914 | 10.5 | 2500 | 0.1586 | 0.1672 | | 0.0731 | 12.61 | 3000 | 0.1648 | 0.1583 | | 0.0572 | 14.71 | 3500 | 0.4059 | 0.1534 | | 0.054 | 16.81 | 4000 | 0.1694 | 0.1391 | | 0.043 | 18.91 | 4500 | 0.1390 | 0.1439 | | 0.035 | 21.01 | 5000 | 0.1210 | 0.1362 | | 0.0317 | 23.11 | 5500 | 0.1389 | 0.1285 | | 0.031 | 25.21 | 6000 | 0.1340 | 0.1316 | | 0.0266 | 27.31 | 6500 | 0.1312 | 0.1280 | | 0.0209 | 29.41 | 7000 | 0.1484 | 0.1256 | | 0.0184 | 31.51 | 7500 | 0.1345 | 0.1289 | | 0.0201 | 33.61 | 8000 | 0.1350 | 0.1248 | | 0.026 | 35.71 | 8500 | 0.1226 | 0.1235 | | 0.016 | 37.82 | 9000 | 0.1235 | 0.1232 | | 0.0115 | 39.92 | 9500 | 0.1223 | 0.1216 | | 0.013 | 42.02 | 10000 | 0.1314 | 0.1206 | | 0.0225 | 44.12 | 10500 | 0.1158 | 0.1211 | | 0.011 | 46.22 | 11000 | 0.1181 | 0.1203 | | 0.0106 | 48.32 | 11500 | 0.1172 | 0.1190 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
vocabtrimmer/mt5-small-trimmed-it-15000-itquad-qg
vocabtrimmer
2023-03-27T06:43:10Z
105
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "question generation", "it", "dataset:lmqg/qg_itquad", "arxiv:2210.03992", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-18T12:00:50Z
--- license: cc-by-4.0 metrics: - bleu4 - meteor - rouge-l - bertscore - moverscore language: it datasets: - lmqg/qg_itquad pipeline_tag: text2text-generation tags: - question generation widget: - text: "<hl> Dopo il 1971 <hl> , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento." example_title: "Question Generation Example 1" - text: "L' individuazione del petrolio e lo sviluppo di nuovi giacimenti richiedeva in genere <hl> da cinque a dieci anni <hl> prima di una produzione significativa." example_title: "Question Generation Example 2" - text: "il <hl> Giappone <hl> è stato il paese più dipendente dal petrolio arabo." example_title: "Question Generation Example 3" model-index: - name: vocabtrimmer/mt5-small-trimmed-it-15000-itquad-qg results: - task: name: Text2text Generation type: text2text-generation dataset: name: lmqg/qg_itquad type: default args: default metrics: - name: BLEU4 (Question Generation) type: bleu4_question_generation value: 7.39 - name: ROUGE-L (Question Generation) type: rouge_l_question_generation value: 21.97 - name: METEOR (Question Generation) type: meteor_question_generation value: 17.97 - name: BERTScore (Question Generation) type: bertscore_question_generation value: 80.84 - name: MoverScore (Question Generation) type: moverscore_question_generation value: 56.84 --- # Model Card of `vocabtrimmer/mt5-small-trimmed-it-15000-itquad-qg` This model is fine-tuned version of [ckpts/mt5-small-trimmed-it-15000](https://huggingface.co/ckpts/mt5-small-trimmed-it-15000) for question generation task on the [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation). ### Overview - **Language model:** [ckpts/mt5-small-trimmed-it-15000](https://huggingface.co/ckpts/mt5-small-trimmed-it-15000) - **Language:** it - **Training data:** [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) (default) - **Online Demo:** [https://autoqg.net/](https://autoqg.net/) - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) ### Usage - With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-) ```python from lmqg import TransformersQG # initialize model model = TransformersQG(language="it", model="vocabtrimmer/mt5-small-trimmed-it-15000-itquad-qg") # model prediction questions = model.generate_q(list_context="Dopo il 1971 , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento.", list_answer="Dopo il 1971") ``` - With `transformers` ```python from transformers import pipeline pipe = pipeline("text2text-generation", "vocabtrimmer/mt5-small-trimmed-it-15000-itquad-qg") output = pipe("<hl> Dopo il 1971 <hl> , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento.") ``` ## Evaluation - ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-it-15000-itquad-qg/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_itquad.default.json) | | Score | Type | Dataset | |:-----------|--------:|:--------|:-----------------------------------------------------------------| | BERTScore | 80.84 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | | Bleu_1 | 22.63 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | | Bleu_2 | 14.89 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | | Bleu_3 | 10.35 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | | Bleu_4 | 7.39 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | | METEOR | 17.97 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | | MoverScore | 56.84 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | | ROUGE_L | 21.97 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | ## Training hyperparameters The following hyperparameters were used during fine-tuning: - dataset_path: lmqg/qg_itquad - dataset_name: default - input_types: paragraph_answer - output_types: question - prefix_types: None - model: ckpts/mt5-small-trimmed-it-15000 - max_length: 512 - max_length_output: 32 - epoch: 13 - batch: 16 - lr: 0.001 - fp16: False - random_seed: 1 - gradient_accumulation_steps: 4 - label_smoothing: 0.15 The full configuration can be found at [fine-tuning config file](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-it-15000-itquad-qg/raw/main/trainer_config.json). ## Citation ``` @inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```
intanm/mlm_v1_20230327_fin_sa_60
intanm
2023-03-27T06:33:52Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-27T06:29:55Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: mlm_v1_20230327_fin_sa_60 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mlm_v1_20230327_fin_sa_60 This model is a fine-tuned version of [intanm/mlm-v1-fin-lm-20230327-001](https://huggingface.co/intanm/mlm-v1-fin-lm-20230327-001) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1673 - Accuracy: 0.9505 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 62 | 0.1830 | 0.9451 | | No log | 2.0 | 124 | 0.1673 | 0.9505 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
intanm/mlm_v1_20230327_fin_sa_80
intanm
2023-03-27T06:10:15Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-27T06:04:34Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: mlm_v1_20230327_fin_sa_80 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mlm_v1_20230327_fin_sa_80 This model is a fine-tuned version of [intanm/mlm-v1-fin-lm-20230327-001](https://huggingface.co/intanm/mlm-v1-fin-lm-20230327-001) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1673 - Accuracy: 0.9341 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 82 | 0.1843 | 0.9451 | | No log | 2.0 | 164 | 0.1673 | 0.9341 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
intanm/mlm_v1_20230327_fin_sa_90
intanm
2023-03-27T05:58:15Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-27T05:53:14Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: mlm_v1_20230327_fin_sa_90 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mlm_v1_20230327_fin_sa_90 This model is a fine-tuned version of [intanm/mlm-v1-fin-lm-20230327-001](https://huggingface.co/intanm/mlm-v1-fin-lm-20230327-001) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1439 - Accuracy: 0.9560 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 92 | 0.1879 | 0.9396 | | No log | 2.0 | 184 | 0.1439 | 0.9560 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
GanjinZero/coder_eng_pp
GanjinZero
2023-03-27T05:56:25Z
186
4
transformers
[ "transformers", "pytorch", "safetensors", "bert", "feature-extraction", "biomedical", "en", "arxiv:2204.00391", "license:apache-2.0", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:04Z
--- language: - en license: apache-2.0 tags: - bert - biomedical --- Automatic Biomedical Term Clustering by Learning Fine-grained Term Representations. CODER++ Github Link: https://github.com/GanjinZero/CODER ``` @misc{https://doi.org/10.48550/arxiv.2204.00391, doi = {10.48550/ARXIV.2204.00391}, url = {https://arxiv.org/abs/2204.00391}, author = {Zeng, Sihang and Yuan, Zheng and Yu, Sheng}, title = {Automatic Biomedical Term Clustering by Learning Fine-grained Term Representations}, publisher = {arXiv}, year = {2022} } ```
intanm/mlm-v1-fin-lm-20230327-001
intanm
2023-03-27T05:32:08Z
199
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-03-27T05:16:24Z
--- license: mit tags: - generated_from_trainer model-index: - name: mlm-v1-fin-lm-20230327-001 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mlm-v1-fin-lm-20230327-001 This model is a fine-tuned version of [indobenchmark/indobert-base-p1](https://huggingface.co/indobenchmark/indobert-base-p1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.1656 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 202 | 4.8648 | | No log | 2.0 | 404 | 4.1999 | | 5.0742 | 3.0 | 606 | 3.8195 | | 5.0742 | 4.0 | 808 | 3.6765 | | 3.6813 | 5.0 | 1010 | 3.4704 | | 3.6813 | 6.0 | 1212 | 3.3729 | | 3.6813 | 7.0 | 1414 | 3.2776 | | 3.2844 | 8.0 | 1616 | 3.2935 | | 3.2844 | 9.0 | 1818 | 3.2279 | | 3.1238 | 10.0 | 2020 | 3.2009 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
sallywww/insft_llama7b
sallywww
2023-03-27T05:27:57Z
0
0
null
[ "tensorboard", "region:us" ]
null
2023-03-26T23:59:23Z
This quantized_trained llama_7b model is trained with the following train-of-thought: this is a contract: <contract code> Invariants line numbers are: 1+ 2+ .... All invariants are: ... Critical invariants are: ...
baseplate/instructor-large-1
baseplate
2023-03-27T05:22:08Z
6
1
sentence-transformers
[ "sentence-transformers", "pytorch", "t5", "text-embedding", "embeddings", "information-retrieval", "beir", "text-classification", "language-model", "text-clustering", "text-semantic-similarity", "text-evaluation", "prompt-retrieval", "text-reranking", "feature-extraction", "sentence-similarity", "transformers", "English", "Sentence Similarity", "natural_questions", "ms_marco", "fever", "hotpot_qa", "mteb", "en", "arxiv:2212.09741", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-03-09T21:12:01Z
--- pipeline_tag: sentence-similarity tags: - text-embedding - embeddings - information-retrieval - beir - text-classification - language-model - text-clustering - text-semantic-similarity - text-evaluation - prompt-retrieval - text-reranking - sentence-transformers - feature-extraction - sentence-similarity - transformers - t5 - English - Sentence Similarity - natural_questions - ms_marco - fever - hotpot_qa - mteb language: en inference: false license: apache-2.0 model-index: - name: INSTRUCTOR results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 88.13432835820896 - type: ap value: 59.298209334395665 - type: f1 value: 83.31769058643586 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 91.526375 - type: ap value: 88.16327709705504 - type: f1 value: 91.51095801287843 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 47.856 - type: f1 value: 45.41490917650942 - task: type: Retrieval dataset: type: arguana name: MTEB ArguAna config: default split: test revision: None metrics: - type: map_at_1 value: 31.223 - type: map_at_10 value: 47.947 - type: map_at_100 value: 48.742000000000004 - type: map_at_1000 value: 48.745 - type: map_at_3 value: 43.137 - type: map_at_5 value: 45.992 - type: mrr_at_1 value: 32.432 - type: mrr_at_10 value: 48.4 - type: mrr_at_100 value: 49.202 - type: mrr_at_1000 value: 49.205 - type: mrr_at_3 value: 43.551 - type: mrr_at_5 value: 46.467999999999996 - type: ndcg_at_1 value: 31.223 - type: ndcg_at_10 value: 57.045 - type: ndcg_at_100 value: 60.175 - type: ndcg_at_1000 value: 60.233000000000004 - type: ndcg_at_3 value: 47.171 - type: ndcg_at_5 value: 52.322 - type: precision_at_1 value: 31.223 - type: precision_at_10 value: 8.599 - type: precision_at_100 value: 0.991 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 19.63 - type: precision_at_5 value: 14.282 - type: recall_at_1 value: 31.223 - type: recall_at_10 value: 85.989 - type: recall_at_100 value: 99.075 - type: recall_at_1000 value: 99.502 - type: recall_at_3 value: 58.89 - type: recall_at_5 value: 71.408 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 43.1621946393635 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 32.56417132407894 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 64.29539304390207 - type: mrr value: 76.44484017060196 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_spearman value: 84.38746499431112 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 78.51298701298701 - type: f1 value: 77.49041754069235 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 37.61848554098577 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 31.32623280148178 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackAndroidRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 35.803000000000004 - type: map_at_10 value: 48.848 - type: map_at_100 value: 50.5 - type: map_at_1000 value: 50.602999999999994 - type: map_at_3 value: 45.111000000000004 - type: map_at_5 value: 47.202 - type: mrr_at_1 value: 44.635000000000005 - type: mrr_at_10 value: 55.593 - type: mrr_at_100 value: 56.169999999999995 - type: mrr_at_1000 value: 56.19499999999999 - type: mrr_at_3 value: 53.361999999999995 - type: mrr_at_5 value: 54.806999999999995 - type: ndcg_at_1 value: 44.635000000000005 - type: ndcg_at_10 value: 55.899 - type: ndcg_at_100 value: 60.958 - type: ndcg_at_1000 value: 62.302 - type: ndcg_at_3 value: 51.051 - type: ndcg_at_5 value: 53.351000000000006 - type: precision_at_1 value: 44.635000000000005 - type: precision_at_10 value: 10.786999999999999 - type: precision_at_100 value: 1.6580000000000001 - type: precision_at_1000 value: 0.213 - type: precision_at_3 value: 24.893 - type: precision_at_5 value: 17.740000000000002 - type: recall_at_1 value: 35.803000000000004 - type: recall_at_10 value: 68.657 - type: recall_at_100 value: 89.77199999999999 - type: recall_at_1000 value: 97.67 - type: recall_at_3 value: 54.066 - type: recall_at_5 value: 60.788 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackEnglishRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 33.706 - type: map_at_10 value: 44.896 - type: map_at_100 value: 46.299 - type: map_at_1000 value: 46.44 - type: map_at_3 value: 41.721000000000004 - type: map_at_5 value: 43.486000000000004 - type: mrr_at_1 value: 41.592 - type: mrr_at_10 value: 50.529 - type: mrr_at_100 value: 51.22 - type: mrr_at_1000 value: 51.258 - type: mrr_at_3 value: 48.205999999999996 - type: mrr_at_5 value: 49.528 - type: ndcg_at_1 value: 41.592 - type: ndcg_at_10 value: 50.77199999999999 - type: ndcg_at_100 value: 55.383 - type: ndcg_at_1000 value: 57.288 - type: ndcg_at_3 value: 46.324 - type: ndcg_at_5 value: 48.346000000000004 - type: precision_at_1 value: 41.592 - type: precision_at_10 value: 9.516 - type: precision_at_100 value: 1.541 - type: precision_at_1000 value: 0.2 - type: precision_at_3 value: 22.399 - type: precision_at_5 value: 15.770999999999999 - type: recall_at_1 value: 33.706 - type: recall_at_10 value: 61.353 - type: recall_at_100 value: 80.182 - type: recall_at_1000 value: 91.896 - type: recall_at_3 value: 48.204 - type: recall_at_5 value: 53.89699999999999 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGamingRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 44.424 - type: map_at_10 value: 57.169000000000004 - type: map_at_100 value: 58.202 - type: map_at_1000 value: 58.242000000000004 - type: map_at_3 value: 53.825 - type: map_at_5 value: 55.714 - type: mrr_at_1 value: 50.470000000000006 - type: mrr_at_10 value: 60.489000000000004 - type: mrr_at_100 value: 61.096 - type: mrr_at_1000 value: 61.112 - type: mrr_at_3 value: 58.192 - type: mrr_at_5 value: 59.611999999999995 - type: ndcg_at_1 value: 50.470000000000006 - type: ndcg_at_10 value: 63.071999999999996 - type: ndcg_at_100 value: 66.964 - type: ndcg_at_1000 value: 67.659 - type: ndcg_at_3 value: 57.74399999999999 - type: ndcg_at_5 value: 60.367000000000004 - type: precision_at_1 value: 50.470000000000006 - type: precision_at_10 value: 10.019 - type: precision_at_100 value: 1.29 - type: precision_at_1000 value: 0.13899999999999998 - type: precision_at_3 value: 25.558999999999997 - type: precision_at_5 value: 17.467 - type: recall_at_1 value: 44.424 - type: recall_at_10 value: 77.02 - type: recall_at_100 value: 93.738 - type: recall_at_1000 value: 98.451 - type: recall_at_3 value: 62.888 - type: recall_at_5 value: 69.138 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGisRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 26.294 - type: map_at_10 value: 34.503 - type: map_at_100 value: 35.641 - type: map_at_1000 value: 35.724000000000004 - type: map_at_3 value: 31.753999999999998 - type: map_at_5 value: 33.190999999999995 - type: mrr_at_1 value: 28.362 - type: mrr_at_10 value: 36.53 - type: mrr_at_100 value: 37.541000000000004 - type: mrr_at_1000 value: 37.602000000000004 - type: mrr_at_3 value: 33.917 - type: mrr_at_5 value: 35.358000000000004 - type: ndcg_at_1 value: 28.362 - type: ndcg_at_10 value: 39.513999999999996 - type: ndcg_at_100 value: 44.815 - type: ndcg_at_1000 value: 46.839 - type: ndcg_at_3 value: 34.02 - type: ndcg_at_5 value: 36.522 - type: precision_at_1 value: 28.362 - type: precision_at_10 value: 6.101999999999999 - type: precision_at_100 value: 0.9129999999999999 - type: precision_at_1000 value: 0.11399999999999999 - type: precision_at_3 value: 14.161999999999999 - type: precision_at_5 value: 9.966 - type: recall_at_1 value: 26.294 - type: recall_at_10 value: 53.098 - type: recall_at_100 value: 76.877 - type: recall_at_1000 value: 91.834 - type: recall_at_3 value: 38.266 - type: recall_at_5 value: 44.287 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackMathematicaRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 16.407 - type: map_at_10 value: 25.185999999999996 - type: map_at_100 value: 26.533 - type: map_at_1000 value: 26.657999999999998 - type: map_at_3 value: 22.201999999999998 - type: map_at_5 value: 23.923 - type: mrr_at_1 value: 20.522000000000002 - type: mrr_at_10 value: 29.522 - type: mrr_at_100 value: 30.644 - type: mrr_at_1000 value: 30.713 - type: mrr_at_3 value: 26.679000000000002 - type: mrr_at_5 value: 28.483000000000004 - type: ndcg_at_1 value: 20.522000000000002 - type: ndcg_at_10 value: 30.656 - type: ndcg_at_100 value: 36.864999999999995 - type: ndcg_at_1000 value: 39.675 - type: ndcg_at_3 value: 25.319000000000003 - type: ndcg_at_5 value: 27.992 - type: precision_at_1 value: 20.522000000000002 - type: precision_at_10 value: 5.795999999999999 - type: precision_at_100 value: 1.027 - type: precision_at_1000 value: 0.13999999999999999 - type: precision_at_3 value: 12.396 - type: precision_at_5 value: 9.328 - type: recall_at_1 value: 16.407 - type: recall_at_10 value: 43.164 - type: recall_at_100 value: 69.695 - type: recall_at_1000 value: 89.41900000000001 - type: recall_at_3 value: 28.634999999999998 - type: recall_at_5 value: 35.308 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackPhysicsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 30.473 - type: map_at_10 value: 41.676 - type: map_at_100 value: 43.120999999999995 - type: map_at_1000 value: 43.230000000000004 - type: map_at_3 value: 38.306000000000004 - type: map_at_5 value: 40.355999999999995 - type: mrr_at_1 value: 37.536 - type: mrr_at_10 value: 47.643 - type: mrr_at_100 value: 48.508 - type: mrr_at_1000 value: 48.551 - type: mrr_at_3 value: 45.348 - type: mrr_at_5 value: 46.744 - type: ndcg_at_1 value: 37.536 - type: ndcg_at_10 value: 47.823 - type: ndcg_at_100 value: 53.395 - type: ndcg_at_1000 value: 55.271 - type: ndcg_at_3 value: 42.768 - type: ndcg_at_5 value: 45.373000000000005 - type: precision_at_1 value: 37.536 - type: precision_at_10 value: 8.681 - type: precision_at_100 value: 1.34 - type: precision_at_1000 value: 0.165 - type: precision_at_3 value: 20.468 - type: precision_at_5 value: 14.495 - type: recall_at_1 value: 30.473 - type: recall_at_10 value: 60.092999999999996 - type: recall_at_100 value: 82.733 - type: recall_at_1000 value: 94.875 - type: recall_at_3 value: 45.734 - type: recall_at_5 value: 52.691 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackProgrammersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 29.976000000000003 - type: map_at_10 value: 41.097 - type: map_at_100 value: 42.547000000000004 - type: map_at_1000 value: 42.659000000000006 - type: map_at_3 value: 37.251 - type: map_at_5 value: 39.493 - type: mrr_at_1 value: 37.557 - type: mrr_at_10 value: 46.605000000000004 - type: mrr_at_100 value: 47.487 - type: mrr_at_1000 value: 47.54 - type: mrr_at_3 value: 43.721 - type: mrr_at_5 value: 45.411 - type: ndcg_at_1 value: 37.557 - type: ndcg_at_10 value: 47.449000000000005 - type: ndcg_at_100 value: 53.052 - type: ndcg_at_1000 value: 55.010999999999996 - type: ndcg_at_3 value: 41.439 - type: ndcg_at_5 value: 44.292 - type: precision_at_1 value: 37.557 - type: precision_at_10 value: 8.847 - type: precision_at_100 value: 1.357 - type: precision_at_1000 value: 0.16999999999999998 - type: precision_at_3 value: 20.091 - type: precision_at_5 value: 14.384 - type: recall_at_1 value: 29.976000000000003 - type: recall_at_10 value: 60.99099999999999 - type: recall_at_100 value: 84.245 - type: recall_at_1000 value: 96.97200000000001 - type: recall_at_3 value: 43.794 - type: recall_at_5 value: 51.778999999999996 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 28.099166666666665 - type: map_at_10 value: 38.1365 - type: map_at_100 value: 39.44491666666667 - type: map_at_1000 value: 39.55858333333334 - type: map_at_3 value: 35.03641666666666 - type: map_at_5 value: 36.79833333333334 - type: mrr_at_1 value: 33.39966666666667 - type: mrr_at_10 value: 42.42583333333333 - type: mrr_at_100 value: 43.28575 - type: mrr_at_1000 value: 43.33741666666667 - type: mrr_at_3 value: 39.94975 - type: mrr_at_5 value: 41.41633333333334 - type: ndcg_at_1 value: 33.39966666666667 - type: ndcg_at_10 value: 43.81741666666667 - type: ndcg_at_100 value: 49.08166666666667 - type: ndcg_at_1000 value: 51.121166666666674 - type: ndcg_at_3 value: 38.73575 - type: ndcg_at_5 value: 41.18158333333333 - type: precision_at_1 value: 33.39966666666667 - type: precision_at_10 value: 7.738916666666667 - type: precision_at_100 value: 1.2265833333333331 - type: precision_at_1000 value: 0.15983333333333336 - type: precision_at_3 value: 17.967416666666665 - type: precision_at_5 value: 12.78675 - type: recall_at_1 value: 28.099166666666665 - type: recall_at_10 value: 56.27049999999999 - type: recall_at_100 value: 78.93291666666667 - type: recall_at_1000 value: 92.81608333333334 - type: recall_at_3 value: 42.09775 - type: recall_at_5 value: 48.42533333333334 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackStatsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 23.663 - type: map_at_10 value: 30.377 - type: map_at_100 value: 31.426 - type: map_at_1000 value: 31.519000000000002 - type: map_at_3 value: 28.069 - type: map_at_5 value: 29.256999999999998 - type: mrr_at_1 value: 26.687 - type: mrr_at_10 value: 33.107 - type: mrr_at_100 value: 34.055 - type: mrr_at_1000 value: 34.117999999999995 - type: mrr_at_3 value: 31.058000000000003 - type: mrr_at_5 value: 32.14 - type: ndcg_at_1 value: 26.687 - type: ndcg_at_10 value: 34.615 - type: ndcg_at_100 value: 39.776 - type: ndcg_at_1000 value: 42.05 - type: ndcg_at_3 value: 30.322 - type: ndcg_at_5 value: 32.157000000000004 - type: precision_at_1 value: 26.687 - type: precision_at_10 value: 5.491 - type: precision_at_100 value: 0.877 - type: precision_at_1000 value: 0.11499999999999999 - type: precision_at_3 value: 13.139000000000001 - type: precision_at_5 value: 9.049 - type: recall_at_1 value: 23.663 - type: recall_at_10 value: 45.035 - type: recall_at_100 value: 68.554 - type: recall_at_1000 value: 85.077 - type: recall_at_3 value: 32.982 - type: recall_at_5 value: 37.688 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackTexRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 17.403 - type: map_at_10 value: 25.197000000000003 - type: map_at_100 value: 26.355 - type: map_at_1000 value: 26.487 - type: map_at_3 value: 22.733 - type: map_at_5 value: 24.114 - type: mrr_at_1 value: 21.37 - type: mrr_at_10 value: 29.091 - type: mrr_at_100 value: 30.018 - type: mrr_at_1000 value: 30.096 - type: mrr_at_3 value: 26.887 - type: mrr_at_5 value: 28.157 - type: ndcg_at_1 value: 21.37 - type: ndcg_at_10 value: 30.026000000000003 - type: ndcg_at_100 value: 35.416 - type: ndcg_at_1000 value: 38.45 - type: ndcg_at_3 value: 25.764 - type: ndcg_at_5 value: 27.742 - type: precision_at_1 value: 21.37 - type: precision_at_10 value: 5.609 - type: precision_at_100 value: 0.9860000000000001 - type: precision_at_1000 value: 0.14300000000000002 - type: precision_at_3 value: 12.423 - type: precision_at_5 value: 9.009 - type: recall_at_1 value: 17.403 - type: recall_at_10 value: 40.573 - type: recall_at_100 value: 64.818 - type: recall_at_1000 value: 86.53699999999999 - type: recall_at_3 value: 28.493000000000002 - type: recall_at_5 value: 33.660000000000004 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackUnixRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 28.639 - type: map_at_10 value: 38.951 - type: map_at_100 value: 40.238 - type: map_at_1000 value: 40.327 - type: map_at_3 value: 35.842 - type: map_at_5 value: 37.617 - type: mrr_at_1 value: 33.769 - type: mrr_at_10 value: 43.088 - type: mrr_at_100 value: 44.03 - type: mrr_at_1000 value: 44.072 - type: mrr_at_3 value: 40.656 - type: mrr_at_5 value: 42.138999999999996 - type: ndcg_at_1 value: 33.769 - type: ndcg_at_10 value: 44.676 - type: ndcg_at_100 value: 50.416000000000004 - type: ndcg_at_1000 value: 52.227999999999994 - type: ndcg_at_3 value: 39.494 - type: ndcg_at_5 value: 42.013 - type: precision_at_1 value: 33.769 - type: precision_at_10 value: 7.668 - type: precision_at_100 value: 1.18 - type: precision_at_1000 value: 0.145 - type: precision_at_3 value: 18.221 - type: precision_at_5 value: 12.966 - type: recall_at_1 value: 28.639 - type: recall_at_10 value: 57.687999999999995 - type: recall_at_100 value: 82.541 - type: recall_at_1000 value: 94.896 - type: recall_at_3 value: 43.651 - type: recall_at_5 value: 49.925999999999995 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWebmastersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 29.57 - type: map_at_10 value: 40.004 - type: map_at_100 value: 41.75 - type: map_at_1000 value: 41.97 - type: map_at_3 value: 36.788 - type: map_at_5 value: 38.671 - type: mrr_at_1 value: 35.375 - type: mrr_at_10 value: 45.121 - type: mrr_at_100 value: 45.994 - type: mrr_at_1000 value: 46.04 - type: mrr_at_3 value: 42.227 - type: mrr_at_5 value: 43.995 - type: ndcg_at_1 value: 35.375 - type: ndcg_at_10 value: 46.392 - type: ndcg_at_100 value: 52.196 - type: ndcg_at_1000 value: 54.274 - type: ndcg_at_3 value: 41.163 - type: ndcg_at_5 value: 43.813 - type: precision_at_1 value: 35.375 - type: precision_at_10 value: 8.676 - type: precision_at_100 value: 1.678 - type: precision_at_1000 value: 0.253 - type: precision_at_3 value: 19.104 - type: precision_at_5 value: 13.913 - type: recall_at_1 value: 29.57 - type: recall_at_10 value: 58.779 - type: recall_at_100 value: 83.337 - type: recall_at_1000 value: 95.979 - type: recall_at_3 value: 44.005 - type: recall_at_5 value: 50.975 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWordpressRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 20.832 - type: map_at_10 value: 29.733999999999998 - type: map_at_100 value: 30.727 - type: map_at_1000 value: 30.843999999999998 - type: map_at_3 value: 26.834999999999997 - type: map_at_5 value: 28.555999999999997 - type: mrr_at_1 value: 22.921 - type: mrr_at_10 value: 31.791999999999998 - type: mrr_at_100 value: 32.666000000000004 - type: mrr_at_1000 value: 32.751999999999995 - type: mrr_at_3 value: 29.144 - type: mrr_at_5 value: 30.622 - type: ndcg_at_1 value: 22.921 - type: ndcg_at_10 value: 34.915 - type: ndcg_at_100 value: 39.744 - type: ndcg_at_1000 value: 42.407000000000004 - type: ndcg_at_3 value: 29.421000000000003 - type: ndcg_at_5 value: 32.211 - type: precision_at_1 value: 22.921 - type: precision_at_10 value: 5.675 - type: precision_at_100 value: 0.872 - type: precision_at_1000 value: 0.121 - type: precision_at_3 value: 12.753999999999998 - type: precision_at_5 value: 9.353 - type: recall_at_1 value: 20.832 - type: recall_at_10 value: 48.795 - type: recall_at_100 value: 70.703 - type: recall_at_1000 value: 90.187 - type: recall_at_3 value: 34.455000000000005 - type: recall_at_5 value: 40.967 - task: type: Retrieval dataset: type: climate-fever name: MTEB ClimateFEVER config: default split: test revision: None metrics: - type: map_at_1 value: 10.334 - type: map_at_10 value: 19.009999999999998 - type: map_at_100 value: 21.129 - type: map_at_1000 value: 21.328 - type: map_at_3 value: 15.152 - type: map_at_5 value: 17.084 - type: mrr_at_1 value: 23.453 - type: mrr_at_10 value: 36.099 - type: mrr_at_100 value: 37.069 - type: mrr_at_1000 value: 37.104 - type: mrr_at_3 value: 32.096000000000004 - type: mrr_at_5 value: 34.451 - type: ndcg_at_1 value: 23.453 - type: ndcg_at_10 value: 27.739000000000004 - type: ndcg_at_100 value: 35.836 - type: ndcg_at_1000 value: 39.242 - type: ndcg_at_3 value: 21.263 - type: ndcg_at_5 value: 23.677 - type: precision_at_1 value: 23.453 - type: precision_at_10 value: 9.199 - type: precision_at_100 value: 1.791 - type: precision_at_1000 value: 0.242 - type: precision_at_3 value: 16.2 - type: precision_at_5 value: 13.147 - type: recall_at_1 value: 10.334 - type: recall_at_10 value: 35.177 - type: recall_at_100 value: 63.009 - type: recall_at_1000 value: 81.938 - type: recall_at_3 value: 19.914 - type: recall_at_5 value: 26.077 - task: type: Retrieval dataset: type: dbpedia-entity name: MTEB DBPedia config: default split: test revision: None metrics: - type: map_at_1 value: 8.212 - type: map_at_10 value: 17.386 - type: map_at_100 value: 24.234 - type: map_at_1000 value: 25.724999999999998 - type: map_at_3 value: 12.727 - type: map_at_5 value: 14.785 - type: mrr_at_1 value: 59.25 - type: mrr_at_10 value: 68.687 - type: mrr_at_100 value: 69.133 - type: mrr_at_1000 value: 69.14099999999999 - type: mrr_at_3 value: 66.917 - type: mrr_at_5 value: 67.742 - type: ndcg_at_1 value: 48.625 - type: ndcg_at_10 value: 36.675999999999995 - type: ndcg_at_100 value: 41.543 - type: ndcg_at_1000 value: 49.241 - type: ndcg_at_3 value: 41.373 - type: ndcg_at_5 value: 38.707 - type: precision_at_1 value: 59.25 - type: precision_at_10 value: 28.525 - type: precision_at_100 value: 9.027000000000001 - type: precision_at_1000 value: 1.8339999999999999 - type: precision_at_3 value: 44.833 - type: precision_at_5 value: 37.35 - type: recall_at_1 value: 8.212 - type: recall_at_10 value: 23.188 - type: recall_at_100 value: 48.613 - type: recall_at_1000 value: 73.093 - type: recall_at_3 value: 14.419 - type: recall_at_5 value: 17.798 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 52.725 - type: f1 value: 46.50743309855908 - task: type: Retrieval dataset: type: fever name: MTEB FEVER config: default split: test revision: None metrics: - type: map_at_1 value: 55.086 - type: map_at_10 value: 66.914 - type: map_at_100 value: 67.321 - type: map_at_1000 value: 67.341 - type: map_at_3 value: 64.75800000000001 - type: map_at_5 value: 66.189 - type: mrr_at_1 value: 59.28600000000001 - type: mrr_at_10 value: 71.005 - type: mrr_at_100 value: 71.304 - type: mrr_at_1000 value: 71.313 - type: mrr_at_3 value: 69.037 - type: mrr_at_5 value: 70.35 - type: ndcg_at_1 value: 59.28600000000001 - type: ndcg_at_10 value: 72.695 - type: ndcg_at_100 value: 74.432 - type: ndcg_at_1000 value: 74.868 - type: ndcg_at_3 value: 68.72200000000001 - type: ndcg_at_5 value: 71.081 - type: precision_at_1 value: 59.28600000000001 - type: precision_at_10 value: 9.499 - type: precision_at_100 value: 1.052 - type: precision_at_1000 value: 0.11100000000000002 - type: precision_at_3 value: 27.503 - type: precision_at_5 value: 17.854999999999997 - type: recall_at_1 value: 55.086 - type: recall_at_10 value: 86.453 - type: recall_at_100 value: 94.028 - type: recall_at_1000 value: 97.052 - type: recall_at_3 value: 75.821 - type: recall_at_5 value: 81.6 - task: type: Retrieval dataset: type: fiqa name: MTEB FiQA2018 config: default split: test revision: None metrics: - type: map_at_1 value: 22.262999999999998 - type: map_at_10 value: 37.488 - type: map_at_100 value: 39.498 - type: map_at_1000 value: 39.687 - type: map_at_3 value: 32.529 - type: map_at_5 value: 35.455 - type: mrr_at_1 value: 44.907000000000004 - type: mrr_at_10 value: 53.239000000000004 - type: mrr_at_100 value: 54.086 - type: mrr_at_1000 value: 54.122 - type: mrr_at_3 value: 51.235 - type: mrr_at_5 value: 52.415 - type: ndcg_at_1 value: 44.907000000000004 - type: ndcg_at_10 value: 45.446 - type: ndcg_at_100 value: 52.429 - type: ndcg_at_1000 value: 55.169000000000004 - type: ndcg_at_3 value: 41.882000000000005 - type: ndcg_at_5 value: 43.178 - type: precision_at_1 value: 44.907000000000004 - type: precision_at_10 value: 12.931999999999999 - type: precision_at_100 value: 2.025 - type: precision_at_1000 value: 0.248 - type: precision_at_3 value: 28.652 - type: precision_at_5 value: 21.204 - type: recall_at_1 value: 22.262999999999998 - type: recall_at_10 value: 52.447 - type: recall_at_100 value: 78.045 - type: recall_at_1000 value: 94.419 - type: recall_at_3 value: 38.064 - type: recall_at_5 value: 44.769 - task: type: Retrieval dataset: type: hotpotqa name: MTEB HotpotQA config: default split: test revision: None metrics: - type: map_at_1 value: 32.519 - type: map_at_10 value: 45.831 - type: map_at_100 value: 46.815 - type: map_at_1000 value: 46.899 - type: map_at_3 value: 42.836 - type: map_at_5 value: 44.65 - type: mrr_at_1 value: 65.037 - type: mrr_at_10 value: 72.16 - type: mrr_at_100 value: 72.51100000000001 - type: mrr_at_1000 value: 72.53 - type: mrr_at_3 value: 70.682 - type: mrr_at_5 value: 71.54599999999999 - type: ndcg_at_1 value: 65.037 - type: ndcg_at_10 value: 55.17999999999999 - type: ndcg_at_100 value: 58.888 - type: ndcg_at_1000 value: 60.648 - type: ndcg_at_3 value: 50.501 - type: ndcg_at_5 value: 52.977 - type: precision_at_1 value: 65.037 - type: precision_at_10 value: 11.530999999999999 - type: precision_at_100 value: 1.4460000000000002 - type: precision_at_1000 value: 0.168 - type: precision_at_3 value: 31.483 - type: precision_at_5 value: 20.845 - type: recall_at_1 value: 32.519 - type: recall_at_10 value: 57.657000000000004 - type: recall_at_100 value: 72.30199999999999 - type: recall_at_1000 value: 84.024 - type: recall_at_3 value: 47.225 - type: recall_at_5 value: 52.113 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 88.3168 - type: ap value: 83.80165516037135 - type: f1 value: 88.29942471066407 - task: type: Retrieval dataset: type: msmarco name: MTEB MSMARCO config: default split: dev revision: None metrics: - type: map_at_1 value: 20.724999999999998 - type: map_at_10 value: 32.736 - type: map_at_100 value: 33.938 - type: map_at_1000 value: 33.991 - type: map_at_3 value: 28.788000000000004 - type: map_at_5 value: 31.016 - type: mrr_at_1 value: 21.361 - type: mrr_at_10 value: 33.323 - type: mrr_at_100 value: 34.471000000000004 - type: mrr_at_1000 value: 34.518 - type: mrr_at_3 value: 29.453000000000003 - type: mrr_at_5 value: 31.629 - type: ndcg_at_1 value: 21.361 - type: ndcg_at_10 value: 39.649 - type: ndcg_at_100 value: 45.481 - type: ndcg_at_1000 value: 46.775 - type: ndcg_at_3 value: 31.594 - type: ndcg_at_5 value: 35.543 - type: precision_at_1 value: 21.361 - type: precision_at_10 value: 6.3740000000000006 - type: precision_at_100 value: 0.931 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 13.514999999999999 - type: precision_at_5 value: 10.100000000000001 - type: recall_at_1 value: 20.724999999999998 - type: recall_at_10 value: 61.034 - type: recall_at_100 value: 88.062 - type: recall_at_1000 value: 97.86399999999999 - type: recall_at_3 value: 39.072 - type: recall_at_5 value: 48.53 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 93.8919288645691 - type: f1 value: 93.57059586398059 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 67.97993616051072 - type: f1 value: 48.244319183606535 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 68.90047074646941 - type: f1 value: 66.48999056063725 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 73.34566240753195 - type: f1 value: 73.54164154290658 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 34.21866934757011 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 32.000936217235534 - task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 31.68189362520352 - type: mrr value: 32.69603637784303 - task: type: Retrieval dataset: type: nfcorpus name: MTEB NFCorpus config: default split: test revision: None metrics: - type: map_at_1 value: 6.078 - type: map_at_10 value: 12.671 - type: map_at_100 value: 16.291 - type: map_at_1000 value: 17.855999999999998 - type: map_at_3 value: 9.610000000000001 - type: map_at_5 value: 11.152 - type: mrr_at_1 value: 43.963 - type: mrr_at_10 value: 53.173 - type: mrr_at_100 value: 53.718999999999994 - type: mrr_at_1000 value: 53.756 - type: mrr_at_3 value: 50.980000000000004 - type: mrr_at_5 value: 52.42 - type: ndcg_at_1 value: 42.415000000000006 - type: ndcg_at_10 value: 34.086 - type: ndcg_at_100 value: 32.545 - type: ndcg_at_1000 value: 41.144999999999996 - type: ndcg_at_3 value: 39.434999999999995 - type: ndcg_at_5 value: 37.888 - type: precision_at_1 value: 43.653 - type: precision_at_10 value: 25.014999999999997 - type: precision_at_100 value: 8.594 - type: precision_at_1000 value: 2.169 - type: precision_at_3 value: 37.049 - type: precision_at_5 value: 33.065 - type: recall_at_1 value: 6.078 - type: recall_at_10 value: 16.17 - type: recall_at_100 value: 34.512 - type: recall_at_1000 value: 65.447 - type: recall_at_3 value: 10.706 - type: recall_at_5 value: 13.158 - task: type: Retrieval dataset: type: nq name: MTEB NQ config: default split: test revision: None metrics: - type: map_at_1 value: 27.378000000000004 - type: map_at_10 value: 42.178 - type: map_at_100 value: 43.32 - type: map_at_1000 value: 43.358000000000004 - type: map_at_3 value: 37.474000000000004 - type: map_at_5 value: 40.333000000000006 - type: mrr_at_1 value: 30.823 - type: mrr_at_10 value: 44.626 - type: mrr_at_100 value: 45.494 - type: mrr_at_1000 value: 45.519 - type: mrr_at_3 value: 40.585 - type: mrr_at_5 value: 43.146 - type: ndcg_at_1 value: 30.794 - type: ndcg_at_10 value: 50.099000000000004 - type: ndcg_at_100 value: 54.900999999999996 - type: ndcg_at_1000 value: 55.69499999999999 - type: ndcg_at_3 value: 41.238 - type: ndcg_at_5 value: 46.081 - type: precision_at_1 value: 30.794 - type: precision_at_10 value: 8.549 - type: precision_at_100 value: 1.124 - type: precision_at_1000 value: 0.12 - type: precision_at_3 value: 18.926000000000002 - type: precision_at_5 value: 14.16 - type: recall_at_1 value: 27.378000000000004 - type: recall_at_10 value: 71.842 - type: recall_at_100 value: 92.565 - type: recall_at_1000 value: 98.402 - type: recall_at_3 value: 49.053999999999995 - type: recall_at_5 value: 60.207 - task: type: Retrieval dataset: type: quora name: MTEB QuoraRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 70.557 - type: map_at_10 value: 84.729 - type: map_at_100 value: 85.369 - type: map_at_1000 value: 85.382 - type: map_at_3 value: 81.72 - type: map_at_5 value: 83.613 - type: mrr_at_1 value: 81.3 - type: mrr_at_10 value: 87.488 - type: mrr_at_100 value: 87.588 - type: mrr_at_1000 value: 87.589 - type: mrr_at_3 value: 86.53 - type: mrr_at_5 value: 87.18599999999999 - type: ndcg_at_1 value: 81.28999999999999 - type: ndcg_at_10 value: 88.442 - type: ndcg_at_100 value: 89.637 - type: ndcg_at_1000 value: 89.70700000000001 - type: ndcg_at_3 value: 85.55199999999999 - type: ndcg_at_5 value: 87.154 - type: precision_at_1 value: 81.28999999999999 - type: precision_at_10 value: 13.489999999999998 - type: precision_at_100 value: 1.54 - type: precision_at_1000 value: 0.157 - type: precision_at_3 value: 37.553 - type: precision_at_5 value: 24.708 - type: recall_at_1 value: 70.557 - type: recall_at_10 value: 95.645 - type: recall_at_100 value: 99.693 - type: recall_at_1000 value: 99.995 - type: recall_at_3 value: 87.359 - type: recall_at_5 value: 91.89699999999999 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 63.65060114776209 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 64.63271250680617 - task: type: Retrieval dataset: type: scidocs name: MTEB SCIDOCS config: default split: test revision: None metrics: - type: map_at_1 value: 4.263 - type: map_at_10 value: 10.801 - type: map_at_100 value: 12.888 - type: map_at_1000 value: 13.224 - type: map_at_3 value: 7.362 - type: map_at_5 value: 9.149000000000001 - type: mrr_at_1 value: 21 - type: mrr_at_10 value: 31.416 - type: mrr_at_100 value: 32.513 - type: mrr_at_1000 value: 32.58 - type: mrr_at_3 value: 28.116999999999997 - type: mrr_at_5 value: 29.976999999999997 - type: ndcg_at_1 value: 21 - type: ndcg_at_10 value: 18.551000000000002 - type: ndcg_at_100 value: 26.657999999999998 - type: ndcg_at_1000 value: 32.485 - type: ndcg_at_3 value: 16.834 - type: ndcg_at_5 value: 15.204999999999998 - type: precision_at_1 value: 21 - type: precision_at_10 value: 9.84 - type: precision_at_100 value: 2.16 - type: precision_at_1000 value: 0.35500000000000004 - type: precision_at_3 value: 15.667 - type: precision_at_5 value: 13.62 - type: recall_at_1 value: 4.263 - type: recall_at_10 value: 19.922 - type: recall_at_100 value: 43.808 - type: recall_at_1000 value: 72.14500000000001 - type: recall_at_3 value: 9.493 - type: recall_at_5 value: 13.767999999999999 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_spearman value: 81.27446313317233 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_spearman value: 76.27963301217527 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_spearman value: 88.18495048450949 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_spearman value: 81.91982338692046 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_spearman value: 89.00896818385291 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_spearman value: 85.48814644586132 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_spearman value: 90.30116926966582 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_spearman value: 67.74132963032342 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_spearman value: 86.87741355780479 - task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 82.0019012295875 - type: mrr value: 94.70267024188593 - task: type: Retrieval dataset: type: scifact name: MTEB SciFact config: default split: test revision: None metrics: - type: map_at_1 value: 50.05 - type: map_at_10 value: 59.36 - type: map_at_100 value: 59.967999999999996 - type: map_at_1000 value: 60.023 - type: map_at_3 value: 56.515 - type: map_at_5 value: 58.272999999999996 - type: mrr_at_1 value: 53 - type: mrr_at_10 value: 61.102000000000004 - type: mrr_at_100 value: 61.476 - type: mrr_at_1000 value: 61.523 - type: mrr_at_3 value: 58.778 - type: mrr_at_5 value: 60.128 - type: ndcg_at_1 value: 53 - type: ndcg_at_10 value: 64.43100000000001 - type: ndcg_at_100 value: 66.73599999999999 - type: ndcg_at_1000 value: 68.027 - type: ndcg_at_3 value: 59.279 - type: ndcg_at_5 value: 61.888 - type: precision_at_1 value: 53 - type: precision_at_10 value: 8.767 - type: precision_at_100 value: 1.01 - type: precision_at_1000 value: 0.11100000000000002 - type: precision_at_3 value: 23.444000000000003 - type: precision_at_5 value: 15.667 - type: recall_at_1 value: 50.05 - type: recall_at_10 value: 78.511 - type: recall_at_100 value: 88.5 - type: recall_at_1000 value: 98.333 - type: recall_at_3 value: 64.117 - type: recall_at_5 value: 70.867 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.72178217821782 - type: cos_sim_ap value: 93.0728601593541 - type: cos_sim_f1 value: 85.6727976766699 - type: cos_sim_precision value: 83.02063789868667 - type: cos_sim_recall value: 88.5 - type: dot_accuracy value: 99.72178217821782 - type: dot_ap value: 93.07287396168348 - type: dot_f1 value: 85.6727976766699 - type: dot_precision value: 83.02063789868667 - type: dot_recall value: 88.5 - type: euclidean_accuracy value: 99.72178217821782 - type: euclidean_ap value: 93.07285657982895 - type: euclidean_f1 value: 85.6727976766699 - type: euclidean_precision value: 83.02063789868667 - type: euclidean_recall value: 88.5 - type: manhattan_accuracy value: 99.72475247524753 - type: manhattan_ap value: 93.02792973059809 - type: manhattan_f1 value: 85.7727737973388 - type: manhattan_precision value: 87.84067085953879 - type: manhattan_recall value: 83.8 - type: max_accuracy value: 99.72475247524753 - type: max_ap value: 93.07287396168348 - type: max_f1 value: 85.7727737973388 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 68.77583615550819 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 36.151636938606956 - task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 52.16607939471187 - type: mrr value: 52.95172046091163 - task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 31.314646669495666 - type: cos_sim_spearman value: 31.83562491439455 - type: dot_pearson value: 31.314590842874157 - type: dot_spearman value: 31.83363065810437 - task: type: Retrieval dataset: type: trec-covid name: MTEB TRECCOVID config: default split: test revision: None metrics: - type: map_at_1 value: 0.198 - type: map_at_10 value: 1.3010000000000002 - type: map_at_100 value: 7.2139999999999995 - type: map_at_1000 value: 20.179 - type: map_at_3 value: 0.528 - type: map_at_5 value: 0.8019999999999999 - type: mrr_at_1 value: 72 - type: mrr_at_10 value: 83.39999999999999 - type: mrr_at_100 value: 83.39999999999999 - type: mrr_at_1000 value: 83.39999999999999 - type: mrr_at_3 value: 81.667 - type: mrr_at_5 value: 83.06700000000001 - type: ndcg_at_1 value: 66 - type: ndcg_at_10 value: 58.059000000000005 - type: ndcg_at_100 value: 44.316 - type: ndcg_at_1000 value: 43.147000000000006 - type: ndcg_at_3 value: 63.815999999999995 - type: ndcg_at_5 value: 63.005 - type: precision_at_1 value: 72 - type: precision_at_10 value: 61.4 - type: precision_at_100 value: 45.62 - type: precision_at_1000 value: 19.866 - type: precision_at_3 value: 70 - type: precision_at_5 value: 68.8 - type: recall_at_1 value: 0.198 - type: recall_at_10 value: 1.517 - type: recall_at_100 value: 10.587 - type: recall_at_1000 value: 41.233 - type: recall_at_3 value: 0.573 - type: recall_at_5 value: 0.907 - task: type: Retrieval dataset: type: webis-touche2020 name: MTEB Touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 1.894 - type: map_at_10 value: 8.488999999999999 - type: map_at_100 value: 14.445 - type: map_at_1000 value: 16.078 - type: map_at_3 value: 4.589 - type: map_at_5 value: 6.019 - type: mrr_at_1 value: 22.448999999999998 - type: mrr_at_10 value: 39.82 - type: mrr_at_100 value: 40.752 - type: mrr_at_1000 value: 40.771 - type: mrr_at_3 value: 34.354 - type: mrr_at_5 value: 37.721 - type: ndcg_at_1 value: 19.387999999999998 - type: ndcg_at_10 value: 21.563 - type: ndcg_at_100 value: 33.857 - type: ndcg_at_1000 value: 46.199 - type: ndcg_at_3 value: 22.296 - type: ndcg_at_5 value: 21.770999999999997 - type: precision_at_1 value: 22.448999999999998 - type: precision_at_10 value: 19.796 - type: precision_at_100 value: 7.142999999999999 - type: precision_at_1000 value: 1.541 - type: precision_at_3 value: 24.490000000000002 - type: precision_at_5 value: 22.448999999999998 - type: recall_at_1 value: 1.894 - type: recall_at_10 value: 14.931 - type: recall_at_100 value: 45.524 - type: recall_at_1000 value: 83.243 - type: recall_at_3 value: 5.712 - type: recall_at_5 value: 8.386000000000001 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 71.049 - type: ap value: 13.85116971310922 - type: f1 value: 54.37504302487686 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 64.1312959818902 - type: f1 value: 64.11413877009383 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 54.13103431861502 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 87.327889372355 - type: cos_sim_ap value: 77.42059895975699 - type: cos_sim_f1 value: 71.02706903250873 - type: cos_sim_precision value: 69.75324344950394 - type: cos_sim_recall value: 72.34828496042216 - type: dot_accuracy value: 87.327889372355 - type: dot_ap value: 77.4209479346677 - type: dot_f1 value: 71.02706903250873 - type: dot_precision value: 69.75324344950394 - type: dot_recall value: 72.34828496042216 - type: euclidean_accuracy value: 87.327889372355 - type: euclidean_ap value: 77.42096495861037 - type: euclidean_f1 value: 71.02706903250873 - type: euclidean_precision value: 69.75324344950394 - type: euclidean_recall value: 72.34828496042216 - type: manhattan_accuracy value: 87.31000774870358 - type: manhattan_ap value: 77.38930750711619 - type: manhattan_f1 value: 71.07935314027831 - type: manhattan_precision value: 67.70957726295677 - type: manhattan_recall value: 74.80211081794195 - type: max_accuracy value: 87.327889372355 - type: max_ap value: 77.42096495861037 - type: max_f1 value: 71.07935314027831 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 89.58939729110878 - type: cos_sim_ap value: 87.17594155025475 - type: cos_sim_f1 value: 79.21146953405018 - type: cos_sim_precision value: 76.8918527109307 - type: cos_sim_recall value: 81.67539267015707 - type: dot_accuracy value: 89.58939729110878 - type: dot_ap value: 87.17593963273593 - type: dot_f1 value: 79.21146953405018 - type: dot_precision value: 76.8918527109307 - type: dot_recall value: 81.67539267015707 - type: euclidean_accuracy value: 89.58939729110878 - type: euclidean_ap value: 87.17592466925834 - type: euclidean_f1 value: 79.21146953405018 - type: euclidean_precision value: 76.8918527109307 - type: euclidean_recall value: 81.67539267015707 - type: manhattan_accuracy value: 89.62626615438352 - type: manhattan_ap value: 87.16589873161546 - type: manhattan_f1 value: 79.25143598295348 - type: manhattan_precision value: 76.39494177323712 - type: manhattan_recall value: 82.32984293193716 - type: max_accuracy value: 89.62626615438352 - type: max_ap value: 87.17594155025475 - type: max_f1 value: 79.25143598295348 duplicated_from: hkunlp/instructor-large --- # Same as hkunlp/instructor-large, except using a custom handler so it can be deployed with HF Inference Endpoints # hkunlp/instructor-large We introduce **Instructor**👨‍🏫, an instruction-finetuned text embedding model that can generate text embeddings tailored to any task (e.g., classification, retrieval, clustering, text evaluation, etc.) and domains (e.g., science, finance, etc.) ***by simply providing the task instruction, without any finetuning***. Instructor👨‍ achieves sota on 70 diverse embedding tasks ([MTEB leaderboard](https://huggingface.co/spaces/mteb/leaderboard))! The model is easy to use with **our customized** `sentence-transformer` library. For more details, check out [our paper](https://arxiv.org/abs/2212.09741) and [project page](https://instructor-embedding.github.io/)! **************************** **Updates** **************************** * 12/28: We released a new [checkpoint](https://huggingface.co/hkunlp/instructor-large) trained with hard negatives, which gives better performance. * 12/21: We released our [paper](https://arxiv.org/abs/2212.09741), [code](https://github.com/HKUNLP/instructor-embedding), [checkpoint](https://huggingface.co/hkunlp/instructor-large) and [project page](https://instructor-embedding.github.io/)! Check them out! ## Quick start <hr /> ## Installation ```bash pip install InstructorEmbedding ``` ## Compute your customized embeddings Then you can use the model like this to calculate domain-specific and task-aware embeddings: ```python from InstructorEmbedding import INSTRUCTOR model = INSTRUCTOR('hkunlp/instructor-large') sentence = "3D ActionSLAM: wearable person tracking in multi-floor environments" instruction = "Represent the Science title:" embeddings = model.encode([[instruction,sentence]]) print(embeddings) ``` ## Use cases <hr /> ## Calculate embeddings for your customized texts If you want to calculate customized embeddings for specific sentences, you may follow the unified template to write instructions: &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Represent the `domain` `text_type` for `task_objective`: * `domain` is optional, and it specifies the domain of the text, e.g., science, finance, medicine, etc. * `text_type` is required, and it specifies the encoding unit, e.g., sentence, document, paragraph, etc. * `task_objective` is optional, and it specifies the objective of embedding, e.g., retrieve a document, classify the sentence, etc. ## Calculate Sentence similarities You can further use the model to compute similarities between two groups of sentences, with **customized embeddings**. ```python from sklearn.metrics.pairwise import cosine_similarity sentences_a = [['Represent the Science sentence: ','Parton energy loss in QCD matter'], ['Represent the Financial statement: ','The Federal Reserve on Wednesday raised its benchmark interest rate.']] sentences_b = [['Represent the Science sentence: ','The Chiral Phase Transition in Dissipative Dynamics'], ['Represent the Financial statement: ','The funds rose less than 0.5 per cent on Friday']] embeddings_a = model.encode(sentences_a) embeddings_b = model.encode(sentences_b) similarities = cosine_similarity(embeddings_a,embeddings_b) print(similarities) ``` ## Information Retrieval You can also use **customized embeddings** for information retrieval. ```python import numpy as np from sklearn.metrics.pairwise import cosine_similarity query = [['Represent the Wikipedia question for retrieving supporting documents: ','where is the food stored in a yam plant']] corpus = [['Represent the Wikipedia document for retrieval: ','Capitalism has been dominant in the Western world since the end of feudalism, but most feel[who?] that the term "mixed economies" more precisely describes most contemporary economies, due to their containing both private-owned and state-owned enterprises. In capitalism, prices determine the demand-supply scale. For example, higher demand for certain goods and services lead to higher prices and lower demand for certain goods lead to lower prices.'], ['Represent the Wikipedia document for retrieval: ',"The disparate impact theory is especially controversial under the Fair Housing Act because the Act regulates many activities relating to housing, insurance, and mortgage loans—and some scholars have argued that the theory's use under the Fair Housing Act, combined with extensions of the Community Reinvestment Act, contributed to rise of sub-prime lending and the crash of the U.S. housing market and ensuing global economic recession"], ['Represent the Wikipedia document for retrieval: ','Disparate impact in United States labor law refers to practices in employment, housing, and other areas that adversely affect one group of people of a protected characteristic more than another, even though rules applied by employers or landlords are formally neutral. Although the protected classes vary by statute, most federal civil rights laws protect based on race, color, religion, national origin, and sex as protected traits, and some laws include disability status and other traits as well.']] query_embeddings = model.encode(query) corpus_embeddings = model.encode(corpus) similarities = cosine_similarity(query_embeddings,corpus_embeddings) retrieved_doc_id = np.argmax(similarities) print(retrieved_doc_id) ``` ## Clustering Use **customized embeddings** for clustering texts in groups. ```python import sklearn.cluster sentences = [['Represent the Medicine sentence for clustering: ','Dynamical Scalar Degree of Freedom in Horava-Lifshitz Gravity'], ['Represent the Medicine sentence for clustering: ','Comparison of Atmospheric Neutrino Flux Calculations at Low Energies'], ['Represent the Medicine sentence for clustering: ','Fermion Bags in the Massive Gross-Neveu Model'], ['Represent the Medicine sentence for clustering: ',"QCD corrections to Associated t-tbar-H production at the Tevatron"], ['Represent the Medicine sentence for clustering: ','A New Analysis of the R Measurements: Resonance Parameters of the Higher, Vector States of Charmonium']] embeddings = model.encode(sentences) clustering_model = sklearn.cluster.MiniBatchKMeans(n_clusters=2) clustering_model.fit(embeddings) cluster_assignment = clustering_model.labels_ print(cluster_assignment) ```
tf-tpu/roberta-base-epochs-100
tf-tpu
2023-03-27T05:19:40Z
26
0
transformers
[ "transformers", "tf", "roberta", "fill-mask", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-03-25T05:23:25Z
--- license: mit mask_token: "[MASK]" tags: - generated_from_keras_callback model-index: - name: tf-tpu/roberta-base-epochs-100 results: [] widget: - text: Goal of my life is to [MASK]. --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # tf-tpu/roberta-base-epochs-100 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.0414 - Train Accuracy: 0.1136 - Validation Loss: 1.0103 - Validation Accuracy: 0.1144 - Epoch: 99 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 0.0001, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.0001, 'decay_steps': 55765, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 2935, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.001} - training_precision: mixed_bfloat16 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 7.2121 | 0.0274 | 5.7188 | 0.0346 | 0 | | 5.4335 | 0.0414 | 5.2266 | 0.0439 | 1 | | 5.1579 | 0.0445 | 5.0625 | 0.0441 | 2 | | 5.0231 | 0.0447 | 4.9453 | 0.0446 | 3 | | 4.9323 | 0.0448 | 4.8633 | 0.0443 | 4 | | 4.8672 | 0.0449 | 4.8789 | 0.0440 | 5 | | 4.8200 | 0.0449 | 4.8164 | 0.0441 | 6 | | 4.7841 | 0.0449 | 4.7734 | 0.0450 | 7 | | 4.7546 | 0.0449 | 4.7539 | 0.0441 | 8 | | 4.7288 | 0.0449 | 4.7305 | 0.0447 | 9 | | 4.7084 | 0.0449 | 4.7422 | 0.0443 | 10 | | 4.6884 | 0.0450 | 4.7148 | 0.0437 | 11 | | 4.6764 | 0.0449 | 4.7070 | 0.0441 | 12 | | 4.6637 | 0.0449 | 4.7227 | 0.0435 | 13 | | 4.5963 | 0.0449 | 4.5195 | 0.0444 | 14 | | 4.3462 | 0.0468 | 4.0742 | 0.0515 | 15 | | 3.4139 | 0.0650 | 2.6348 | 0.0797 | 16 | | 2.5336 | 0.0817 | 2.1816 | 0.0888 | 17 | | 2.1859 | 0.0888 | 1.9648 | 0.0930 | 18 | | 2.0043 | 0.0925 | 1.8154 | 0.0961 | 19 | | 1.8887 | 0.0948 | 1.7129 | 0.0993 | 20 | | 1.8058 | 0.0965 | 1.6729 | 0.0996 | 21 | | 1.7402 | 0.0979 | 1.6191 | 0.1010 | 22 | | 1.6861 | 0.0990 | 1.5693 | 0.1024 | 23 | | 1.6327 | 0.1001 | 1.5273 | 0.1035 | 24 | | 1.5906 | 0.1010 | 1.4766 | 0.1042 | 25 | | 1.5545 | 0.1018 | 1.4561 | 0.1031 | 26 | | 1.5231 | 0.1024 | 1.4365 | 0.1054 | 27 | | 1.4957 | 0.1030 | 1.3975 | 0.1046 | 28 | | 1.4700 | 0.1036 | 1.3789 | 0.1061 | 29 | | 1.4466 | 0.1041 | 1.3262 | 0.1070 | 30 | | 1.4253 | 0.1046 | 1.3223 | 0.1072 | 31 | | 1.4059 | 0.1050 | 1.3096 | 0.1070 | 32 | | 1.3873 | 0.1054 | 1.3164 | 0.1072 | 33 | | 1.3703 | 0.1058 | 1.2861 | 0.1072 | 34 | | 1.3550 | 0.1062 | 1.2705 | 0.1082 | 35 | | 1.3398 | 0.1065 | 1.2578 | 0.1082 | 36 | | 1.3260 | 0.1068 | 1.25 | 0.1096 | 37 | | 1.3127 | 0.1071 | 1.2266 | 0.1102 | 38 | | 1.2996 | 0.1074 | 1.2305 | 0.1098 | 39 | | 1.2891 | 0.1077 | 1.2139 | 0.1088 | 40 | | 1.2783 | 0.1079 | 1.2158 | 0.1093 | 41 | | 1.2674 | 0.1081 | 1.1787 | 0.1114 | 42 | | 1.2570 | 0.1084 | 1.1709 | 0.1107 | 43 | | 1.2478 | 0.1086 | 1.1709 | 0.1104 | 44 | | 1.2390 | 0.1088 | 1.1777 | 0.1101 | 45 | | 1.2305 | 0.1090 | 1.1738 | 0.1111 | 46 | | 1.2215 | 0.1092 | 1.1533 | 0.1112 | 47 | | 1.2140 | 0.1094 | 1.1514 | 0.1117 | 48 | | 1.2068 | 0.1096 | 1.1621 | 0.1119 | 49 | | 1.1991 | 0.1097 | 1.1416 | 0.1108 | 50 | | 1.1927 | 0.1099 | 1.1279 | 0.1113 | 51 | | 1.1854 | 0.1101 | 1.1147 | 0.1123 | 52 | | 1.1800 | 0.1102 | 1.125 | 0.1116 | 53 | | 1.1727 | 0.1104 | 1.1167 | 0.1116 | 54 | | 1.1679 | 0.1105 | 1.0884 | 0.1122 | 55 | | 1.1613 | 0.1106 | 1.1084 | 0.1120 | 56 | | 1.1563 | 0.1107 | 1.1035 | 0.1119 | 57 | | 1.1517 | 0.1109 | 1.1035 | 0.1124 | 58 | | 1.1454 | 0.1111 | 1.0718 | 0.1128 | 59 | | 1.1403 | 0.1111 | 1.0874 | 0.1123 | 60 | | 1.1360 | 0.1112 | 1.0742 | 0.1145 | 61 | | 1.1318 | 0.1114 | 1.0811 | 0.1131 | 62 | | 1.1277 | 0.1114 | 1.0723 | 0.1129 | 63 | | 1.1226 | 0.1116 | 1.0640 | 0.1124 | 64 | | 1.1186 | 0.1117 | 1.0840 | 0.1117 | 65 | | 1.1144 | 0.1118 | 1.0522 | 0.1139 | 66 | | 1.1111 | 0.1119 | 1.0557 | 0.1132 | 67 | | 1.1069 | 0.1119 | 1.0718 | 0.1124 | 68 | | 1.1038 | 0.1120 | 1.0376 | 0.1135 | 69 | | 1.1007 | 0.1121 | 1.0537 | 0.1138 | 70 | | 1.0975 | 0.1121 | 1.0503 | 0.1134 | 71 | | 1.0941 | 0.1122 | 1.0317 | 0.1140 | 72 | | 1.0902 | 0.1124 | 1.0439 | 0.1145 | 73 | | 1.0881 | 0.1124 | 1.0352 | 0.1145 | 74 | | 1.0839 | 0.1125 | 1.0449 | 0.1144 | 75 | | 1.0821 | 0.1125 | 1.0229 | 0.1148 | 76 | | 1.0791 | 0.1126 | 1.0244 | 0.1148 | 77 | | 1.0764 | 0.1127 | 1.0366 | 0.1141 | 78 | | 1.0741 | 0.1128 | 1.0308 | 0.1134 | 79 | | 1.0716 | 0.1128 | 1.0400 | 0.1137 | 80 | | 1.0688 | 0.1129 | 1.0225 | 0.1140 | 81 | | 1.0664 | 0.1129 | 1.0269 | 0.1139 | 82 | | 1.0643 | 0.1129 | 1.0156 | 0.1146 | 83 | | 1.0629 | 0.1131 | 1.0127 | 0.1149 | 84 | | 1.0602 | 0.1131 | 1.0420 | 0.1132 | 85 | | 1.0580 | 0.1132 | 1.0205 | 0.1149 | 86 | | 1.0568 | 0.1132 | 1.0024 | 0.1159 | 87 | | 1.0547 | 0.1132 | 1.0210 | 0.1144 | 88 | | 1.0536 | 0.1133 | 1.0176 | 0.1143 | 89 | | 1.0522 | 0.1133 | 0.9951 | 0.1134 | 90 | | 1.0505 | 0.1134 | 1.0283 | 0.1136 | 91 | | 1.0484 | 0.1134 | 1.0063 | 0.1141 | 92 | | 1.0482 | 0.1134 | 0.9917 | 0.1141 | 93 | | 1.0463 | 0.1135 | 1.0244 | 0.1145 | 94 | | 1.0458 | 0.1134 | 1.0220 | 0.1143 | 95 | | 1.0448 | 0.1135 | 0.9785 | 0.1147 | 96 | | 1.0435 | 0.1135 | 0.9771 | 0.1155 | 97 | | 1.0433 | 0.1135 | 0.9946 | 0.1137 | 98 | | 1.0414 | 0.1136 | 1.0103 | 0.1144 | 99 | ### Framework versions - Transformers 4.27.0.dev0 - TensorFlow 2.9.1 - Tokenizers 0.13.2
kws/Reinforce-Pixelcopter
kws
2023-03-27T05:06:24Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-08-23T09:43:11Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 54.40 +/- 34.76 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
jamesimmanuel/Reinforce-pixelcopter_policy
jamesimmanuel
2023-03-27T05:02:07Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-26T02:56:00Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-pixelcopter_policy results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 37.40 +/- 22.79 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
shreyansjain/ppo-Pyramids
shreyansjain
2023-03-27T04:54:47Z
4
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-03-27T04:51:09Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Find your model_id: shreyansjain/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
sachaarbonel/bert-italian-cased-finetuned-pos
sachaarbonel
2023-03-27T04:45:46Z
214
5
transformers
[ "transformers", "pytorch", "jax", "safetensors", "bert", "token-classification", "it", "dataset:xtreme", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: it datasets: - xtreme --- # Italian-Bert (Italian Bert) + POS 🎃🏷 This model is a fine-tuned on [xtreme udpos Italian](https://huggingface.co/nlp/viewer/?dataset=xtreme&config=udpos.Italian) version of [Bert Base Italian](https://huggingface.co/dbmdz/bert-base-italian-cased) for **POS** downstream task. ## Details of the downstream task (POS) - Dataset - [Dataset: xtreme udpos Italian](https://huggingface.co/nlp/viewer/?dataset=xtreme&config=udpos.Italian) 📚 | Dataset | # Examples | | ---------------------- | ----- | | Train | 716 K | | Dev | 85 K | - [Fine-tune on NER script provided by @stefan-it](https://raw.githubusercontent.com/stefan-it/fine-tuned-berts-seq/master/scripts/preprocess.py) - Labels covered: ``` ADJ ADP ADV AUX CCONJ DET INTJ NOUN NUM PART PRON PROPN PUNCT SCONJ SYM VERB X ``` ## Metrics on evaluation set 🧾 | Metric | # score | | :------------------------------------------------------------------------------------: | :-------: | | F1 | **97.25** | Precision | **97.15** | | Recall | **97.36** | ## Model in action 🔨 Example of usage ```python from transformers import pipeline nlp_pos = pipeline( "ner", model="sachaarbonel/bert-italian-cased-finetuned-pos", tokenizer=( 'sachaarbonel/bert-spanish-cased-finetuned-pos', {"use_fast": False} )) text = 'Roma è la Capitale d'Italia.' nlp_pos(text) ''' Output: -------- [{'entity': 'PROPN', 'index': 1, 'score': 0.9995346665382385, 'word': 'roma'}, {'entity': 'AUX', 'index': 2, 'score': 0.9966597557067871, 'word': 'e'}, {'entity': 'DET', 'index': 3, 'score': 0.9994786977767944, 'word': 'la'}, {'entity': 'NOUN', 'index': 4, 'score': 0.9995198249816895, 'word': 'capitale'}, {'entity': 'ADP', 'index': 5, 'score': 0.9990894198417664, 'word': 'd'}, {'entity': 'PART', 'index': 6, 'score': 0.57159024477005, 'word': "'"}, {'entity': 'PROPN', 'index': 7, 'score': 0.9994804263114929, 'word': 'italia'}, {'entity': 'PUNCT', 'index': 8, 'score': 0.9772886633872986, 'word': '.'}] ''' ``` Yeah! Not too bad 🎉 > Created by [Sacha Arbonel/@sachaarbonel](https://twitter.com/sachaarbonel) | [LinkedIn](https://www.linkedin.com/in/sacha-arbonel) > Made with <span style="color: #e25555;">&hearts;</span> in Paris
intanm/mlm-v1-fin-lm
intanm
2023-03-27T04:41:00Z
192
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-03-27T04:29:15Z
--- license: mit tags: - generated_from_trainer model-index: - name: mlm-v1-fin-lm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mlm-v1-fin-lm This model is a fine-tuned version of [indobenchmark/indobert-base-p1](https://huggingface.co/indobenchmark/indobert-base-p1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.2901 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 207 | 4.9338 | | No log | 2.0 | 414 | 4.4825 | | 5.2062 | 3.0 | 621 | 4.2789 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
kailorston/my_awesome_opus_books_model
kailorston
2023-03-27T04:36:45Z
61
0
transformers
[ "transformers", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-26T10:55:25Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: kailorston/my_awesome_opus_books_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # kailorston/my_awesome_opus_books_model This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.6495 - Validation Loss: 1.4502 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.7245 | 1.5014 | 0 | | 1.6822 | 1.4734 | 1 | | 1.6495 | 1.4502 | 2 | ### Framework versions - Transformers 4.27.3 - TensorFlow 2.11.0 - Datasets 2.10.1 - Tokenizers 0.13.2
jamesimmanuel/ppo-SnowballTarget
jamesimmanuel
2023-03-27T04:27:35Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-03-27T04:26:50Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Find your model_id: jamesimmanuel/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
emanehab/aiornot_eman
emanehab
2023-03-27T04:16:27Z
223
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "en", "dataset:competitions/aiornot", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-03-26T17:01:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: aiornot_eman results: [] datasets: - competitions/aiornot language: - en library_name: transformers pipeline_tag: image-classification --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # aiornot_eman This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0863 - Accuracy: 0.9726 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1235 | 1.0 | 248 | 0.1117 | 0.9547 | | 0.0512 | 2.0 | 497 | 0.0866 | 0.9690 | | 0.0175 | 2.99 | 744 | 0.0863 | 0.9726 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.10.2 - Datasets 2.10.1 - Tokenizers 0.13.2
arb9p4/poca-SoccerTwos
arb9p4
2023-03-27T04:10:01Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-03-27T04:09:43Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: arb9p4/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
jokyere49/ppo-LunarLander-v2
jokyere49
2023-03-27T03:55:10Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-27T03:54:48Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 256.17 +/- 20.86 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
aidenlee/ppo-PyramidsTraining
aidenlee
2023-03-27T03:54:59Z
2
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-03-27T01:31:03Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Find your model_id: aidenlee/ppo-PyramidsTraining 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
gayanin/ec-biogpt-masked-pubmed
gayanin
2023-03-27T03:22:08Z
18
0
transformers
[ "transformers", "pytorch", "biogpt", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-03-26T23:24:19Z
--- license: mit tags: - generated_from_trainer model-index: - name: ec-biogpt-masked-pubmed results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ec-biogpt-masked-pubmed This model is a fine-tuned version of [microsoft/biogpt](https://huggingface.co/microsoft/biogpt) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7418 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.3707 | 0.07 | 500 | 0.8468 | | 0.5388 | 0.14 | 1000 | 0.7643 | | 0.5857 | 0.21 | 1500 | 0.7669 | | 0.5441 | 0.28 | 2000 | 0.7576 | | 0.5294 | 0.36 | 2500 | 0.7570 | | 0.7544 | 0.43 | 3000 | 0.7227 | | 0.7075 | 0.5 | 3500 | 0.7153 | | 0.7513 | 0.57 | 4000 | 0.7105 | | 0.7101 | 0.64 | 4500 | 0.7059 | | 0.7369 | 0.71 | 5000 | 0.7031 | | 0.7477 | 0.78 | 5500 | 0.6991 | | 0.6831 | 0.85 | 6000 | 0.6978 | | 0.6458 | 0.93 | 6500 | 0.6940 | | 0.6998 | 1.0 | 7000 | 0.6907 | | 0.5901 | 1.07 | 7500 | 0.7036 | | 0.633 | 1.14 | 8000 | 0.7016 | | 0.6375 | 1.21 | 8500 | 0.7020 | | 0.6378 | 1.28 | 9000 | 0.6988 | | 0.5952 | 1.35 | 9500 | 0.6965 | | 0.5714 | 1.42 | 10000 | 0.6960 | | 0.5874 | 1.5 | 10500 | 0.6957 | | 0.5828 | 1.57 | 11000 | 0.6917 | | 0.5921 | 1.64 | 11500 | 0.6920 | | 0.6086 | 1.71 | 12000 | 0.6905 | | 0.5872 | 1.78 | 12500 | 0.6878 | | 0.5895 | 1.85 | 13000 | 0.6883 | | 0.5953 | 1.92 | 13500 | 0.6860 | | 0.598 | 1.99 | 14000 | 0.6852 | | 0.4805 | 2.07 | 14500 | 0.7077 | | 0.4885 | 2.14 | 15000 | 0.7107 | | 0.5048 | 2.21 | 15500 | 0.7083 | | 0.4665 | 2.28 | 16000 | 0.7098 | | 0.5057 | 2.35 | 16500 | 0.7088 | | 0.4706 | 2.42 | 17000 | 0.7081 | | 0.5056 | 2.49 | 17500 | 0.7076 | | 0.4884 | 2.56 | 18000 | 0.7068 | | 0.487 | 2.64 | 18500 | 0.7051 | | 0.5327 | 2.71 | 19000 | 0.7062 | | 0.4902 | 2.78 | 19500 | 0.7042 | | 0.5277 | 2.85 | 20000 | 0.7021 | | 0.499 | 2.92 | 20500 | 0.7024 | | 0.4981 | 2.99 | 21000 | 0.7002 | | 0.4174 | 3.06 | 21500 | 0.7237 | | 0.4233 | 3.13 | 22000 | 0.7244 | | 0.4331 | 3.21 | 22500 | 0.7265 | | 0.4203 | 3.28 | 23000 | 0.7275 | | 0.4265 | 3.35 | 23500 | 0.7252 | | 0.4302 | 3.42 | 24000 | 0.7271 | | 0.4343 | 3.49 | 24500 | 0.7244 | | 0.4264 | 3.56 | 25000 | 0.7265 | | 0.4565 | 3.63 | 25500 | 0.7247 | | 0.4258 | 3.7 | 26000 | 0.7245 | | 0.4191 | 3.78 | 26500 | 0.7246 | | 0.4412 | 3.85 | 27000 | 0.7234 | | 0.4604 | 3.92 | 27500 | 0.7249 | | 0.4197 | 3.99 | 28000 | 0.7238 | | 0.3666 | 4.06 | 28500 | 0.7413 | | 0.3772 | 4.13 | 29000 | 0.7414 | | 0.3628 | 4.2 | 29500 | 0.7410 | | 0.3611 | 4.27 | 30000 | 0.7431 | | 0.3736 | 4.35 | 30500 | 0.7414 | | 0.3741 | 4.42 | 31000 | 0.7420 | | 0.3661 | 4.49 | 31500 | 0.7424 | | 0.3966 | 4.56 | 32000 | 0.7423 | | 0.4058 | 4.63 | 32500 | 0.7423 | | 0.4028 | 4.7 | 33000 | 0.7423 | | 0.4028 | 4.77 | 33500 | 0.7420 | | 0.3802 | 4.84 | 34000 | 0.7421 | | 0.3612 | 4.92 | 34500 | 0.7418 | | 0.3804 | 4.99 | 35000 | 0.7418 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
rghosh8/bert-finetuned-squad
rghosh8
2023-03-27T03:09:34Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-03-27T02:05:26Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1 - Datasets 2.9.0 - Tokenizers 0.11.0
jweb/japanese-soseki-gpt2-1b
jweb
2023-03-27T03:09:04Z
5
3
transformers
[ "transformers", "pytorch", "rust", "gpt2", "text-generation", "ja", "japanese", "lm", "nlp", "rust-bert", "dataset:cc100", "dataset:wikipedia", "dataset:AozoraBunko", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-03T04:53:15Z
--- language: ja thumbnail: https://github.com/ycat3/japanese-pretrained-models/blob/master/jweb.png tags: - ja - japanese - gpt2 - text-generation - lm - nlp - rust - rust-bert license: mit datasets: - cc100 - wikipedia - AozoraBunko widget: - text: "夏目漱石は、" --- # japanese-soseki-gpt2-1b ![jweb-icon](./jweb.png) This repository provides a 1.3B-parameter finetuned Japanese GPT2 model. The model was finetuned by [jweb](https://jweb.asia/) based on trained by [rinna Co., Ltd.](https://corp.rinna.co.jp/) Both pytorch(pytorch_model.bin) and Rust(rust_model.ot) models are provided # How to use the model *NOTE:* Use `T5Tokenizer` to initiate the tokenizer. python ~~~~ import torch from transformers import T5Tokenizer, AutoModelForCausalLM tokenizer = T5Tokenizer.from_pretrained("jweb/japanese-soseki-gpt2-1b") model = AutoModelForCausalLM.from_pretrained("jweb/japanese-soseki-gpt2-1b") if torch.cuda.is_available(): model = model.to("cuda") text = "夏目漱石は、" token_ids = tokenizer.encode(text, add_special_tokens=False, return_tensors="pt") with torch.no_grad(): output_ids = model.generate( token_ids.to(model.device), max_length=128, min_length=40, do_sample=True, repetition_penalty= 1.6, early_stopping= True, num_beams= 5, temperature= 1.0, top_k=500, top_p=0.95, pad_token_id=tokenizer.pad_token_id, bos_token_id=tokenizer.bos_token_id, eos_token_id=tokenizer.eos_token_id, ) output = tokenizer.decode(output_ids.tolist()[0]) print(output) # sample output: 夏目漱石は、明治時代を代表する文豪です。夏目漱石の代表作は「吾輩は猫である」や「坊っちゃん」、「草枕」「三四郎」、それに「虞美人草(ぐびじんそう)」などたくさんあります。 ~~~~ rust ~~~~ use rust_bert::gpt2::GPT2Generator; use rust_bert::pipelines::common::{ModelType, TokenizerOption}; use rust_bert::pipelines::generation_utils::{GenerateConfig, LanguageGenerator}; use rust_bert::resources::{ RemoteResource, ResourceProvider}; use tch::Device; fn main() -> anyhow::Result<()> { let model_resource = Box::new(RemoteResource { url: "https://huggingface.co/jweb/japanese-soseki-gpt2-1b/resolve/main/rust_model.ot".into(), cache_subdir: "japanese-soseki-gpt2-1b/model".into(), }); let config_resource = Box::new(RemoteResource { url: "https://huggingface.co/jweb/japanese-soseki-gpt2-1b/resolve/main/config.json".into(), cache_subdir: "japanese-soseki-gpt2-1b/config".into(), }); let vocab_resource = Box::new(RemoteResource { url: "https://huggingface.co/jweb/japanese-soseki-gpt2-1b/resolve/main/spiece.model".into(), cache_subdir: "japanese-soseki-gpt2-1b/vocab".into(), }); let vocab_resource_token = vocab_resource.clone(); let merges_resource = vocab_resource.clone(); let generate_config = GenerateConfig { model_resource, config_resource, vocab_resource, merges_resource, // not used device: Device::Cpu, repetition_penalty: 1.6, min_length: 40, max_length: 128, do_sample: true, early_stopping: true, num_beams: 5, temperature: 1.0, top_k: 500, top_p: 0.95, ..Default::default() }; let tokenizer = TokenizerOption::from_file( ModelType::T5, vocab_resource_token.get_local_path().unwrap().to_str().unwrap(), None, true, None, None, )?; let mut gpt2_model = GPT2Generator::new_with_tokenizer(generate_config, tokenizer.into())?; gpt2_model.set_device(Device::cuda_if_available()); let input_text = "夏目漱石は、"; let t1 = std::time::Instant::now(); let output = gpt2_model.generate(Some(&[input_text]), None); println!("{}", output[0].text); println!("Elapsed Time(ms):{}",t1.elapsed().as_millis()); Ok(()) } // sample output: 夏目漱石は、明治から大正にかけて活躍した日本の小説家です。彼は「吾輩は猫である」や「坊っちゃん」、「草枕」「三四郎」、あるいは「虞美人草」などの小説で知られていますが、「明暗」のような小説も書いていました。 ~~~~ # Model architecture A 24-layer, 2048-hidden-size transformer-based language model. # Training The model was trained on [Japanese C4](https://huggingface.co/datasets/allenai/c4), [Japanese CC-100](http://data.statmt.org/cc-100/ja.txt.xz) and [Japanese Wikipedia](https://dumps.wikimedia.org/other/cirrussearch) to optimize a traditional language modelling objective. It reaches around 14 perplexity on a chosen validation set from the same data. # Finetuning The model was finetuned on [Aozorabunko](https://github.com/aozorabunko/aozorabunko), especially Natume Soseki books. # Tokenization The model uses a [sentencepiece](https://github.com/google/sentencepiece)-based tokenizer. The vocabulary was first trained on a selected subset from the training data using the official sentencepiece training script, and then augmented with emojis and symbols. # Licenese [The MIT license](https://opensource.org/licenses/MIT)
haidlir/LunarLander-v2-PPO-CleanRL
haidlir
2023-03-27T03:03:38Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-03-27T02:25:35Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 127.35 +/- 9.93 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters
jamesdolezal/lung-adeno-squam-v1
jamesdolezal
2023-03-27T03:01:46Z
0
0
tf-keras
[ "tf-keras", "arxiv:1610.02357", "doi:10.57967/hf/0089", "license:gpl-3.0", "region:us" ]
null
2022-11-04T13:37:11Z
--- license: gpl-3.0 --- # Lung Adeno/Squam v1 Model Card This model card describes the model associated with the manuscript "Uncertainty-informed deep learning models enable high-confidence predictions for digital histopathology", by Dolezal _et al_, available [here](https://www.nature.com/articles/s41467-022-34025-x). ## Model Details - **Developed by:** James Dolezal - **Model type:** Deep convolutional neural network image classifier - **Language(s):** English - **License:** GPL-3.0 - **Model Description:** This is a model that can classify H&E-stained pathologic images of non-small cell lung cancer into adenocarcinoma or squamous cell carcinoma and provide an estimate of classification uncertainty. It is an [Xception](https://arxiv.org/abs/1610.02357) model with two dropout-enabled hidden layers enabled during both training and inference. During inference, a given image is passed through the network 30 times, resulting in a distribution of predictions. The mean of this distribution is the final prediction, and the standard deviation is the uncertainty. - **Image processing:** This model expects images of H&E-stained pathology slides at 299 x 299 px and 302 x 302 μm resolution. Images should be stain-normalized using a modified Reinhard normalizer ("Reinhard-Fast") available [here](https://github.com/jamesdolezal/slideflow/blob/master/slideflow/norm/tensorflow/reinhard.py). The stain normalizer should be fit using the `target_means` and `target_stds` listed in the model `params.json` file. Images should be should be standardized with `tf.image.per_image_standardization()`. - **Resources for more information:** [GitHub Repository](https://github.com/jamesdolezal/biscuit), [Paper](https://www.nature.com/articles/s41467-022-34025-x) - **Cite as:** @ARTICLE{Dolezal2022-qa, title = "Uncertainty-informed deep learning models enable high-confidence predictions for digital histopathology", author = "Dolezal, James M and Srisuwananukorn, Andrew and Karpeyev, Dmitry and Ramesh, Siddhi and Kochanny, Sara and Cody, Brittany and Mansfield, Aaron S and Rakshit, Sagar and Bansal, Radhika and Bois, Melanie C and Bungum, Aaron O and Schulte, Jefree J and Vokes, Everett E and Garassino, Marina Chiara and Husain, Aliya N and Pearson, Alexander T", journal = "Nature Communications", volume = 13, number = 1, pages = "6572", month = nov, year = 2022 } # Uses ## Examples For direct use, the model can be loaded using Tensorflow/Keras: ``` import tensorflow as tf model = tf.keras.models.load_model('/path/') ``` or loaded with [Slideflow](https://github.com/jamesdolezal/slideflow) version 1.1+ with the following syntax: ``` import slideflow as sf model = sf.model.load('/path/') ``` The stain normalizer can be loaded and fit using Slideflow: ``` normalizer = sf.util.get_model_normalizer('/path/') ``` The stain normalizer has a native Tensorflow transform and can be directly applied to a tf.data.Dataset: ``` # Map the stain normalizer transformation # to a tf.data.Dataset dataset = dataset.map(normalizer.tf_to_tf) ``` Alternatively, the model can be used to generate predictions for whole-slide images processed through Slideflow in an end-to-end [Project](https://slideflow.dev/project_setup.html). To use the model to generate predictions on data processed with Slideflow, simply pass the model to the [`Project.predict()`](https://slideflow.dev/project.html#slideflow.Project.predict) function: ``` import slideflow P = sf.Project('/path/to/slideflow/project') P.predict('/model/path') ``` ## Direct Use This model is intended for research purposes only. Possible research areas and tasks include - Development and comparison of uncertainty quantification methods for pathologic images. - Probing and understanding the limitations of out-of-distribution detection for pathology classification models. - Applications in educational settings. - Research on pathology classification models for non-small cell lung cancer. Excluded uses are described below. ### Misuse and Out-of-Scope Use This model should not be used in a clinical setting to generate predictions that will be used to inform patients, physicians, or any other health care members directly involved in their health care outside the context of an approved research protocol. Using the model in a clinical setting outside the context of an approved research protocol is a misuse of this model. This includes, but is not limited to: - Generating predictions of images from a patient's tumor and sharing those predictions with the patient - Generating predictions of images from a patient's tumor and sharing those predictions with the patient's physician, or other members of the patient's healthcare team - Influencing a patient's health care treatment in any way based on output from this model ### Limitations The model has not been validated to discriminate lung adenocarcinoma vs. squamous cell carcinoma in contexts where other tumor types are possible (such as lung small cell carcinoma, neuroendocrine tumors, metastatic deposits, etc.) ### Bias This model was trained on The Cancer Genome Atlas (TCGA), which contains patient data from communities and cultures which may not reflect the general population. This datasets is comprised of images from multiple institutions, which may introduce a potential source of bias from site-specific batch effects ([Howard, 2021](https://www.nature.com/articles/s41467-021-24698-1)). The model was validated on data from the Clinical Proteomics Tumor Analysis Consortium (CPTAC) and an institutional dataset from Mayo Clinic, the latter of which consists primarily of data from patients of white and western cultures. ## Training **Training Data** The following dataset was used to train the model: - The Cancer Genome Atlas (TCGA), LUAD (adenocarcinoma) and LUSC (squamous cell carcinoma) cohorts (see next section) This model was trained on the full dataset, with a total of 941 slides. **Training Procedure** Each whole-slide image was sectioned into smaller images in a grid-wise fashion in order to extract tiles from whole-slide images at 302 x 302 μm. Image tiles were extracted at the nearest downsample layer, and resized to 299 x 299 px using [Libvips](https://www.libvips.org/API/current/libvips-resample.html#vips-resize). During training, - Images are stain-normalized with a modified Reinhard normalizer ("Reinhard-Fast"), which excludes the brightness standardization step, available [here](https://github.com/jamesdolezal/slideflow/blob/master/slideflow/norm/tensorflow/reinhard.py) - Images are randomly flipped and rotated (90, 180, 270) - Images have a 50% chance of being JPEG compressed with quality level between 50-100% - Images have a 10% chance of random Gaussian blur, with sigma between 0.5-2.0 - Images are standardized with `tf.image.per_image_standardization()` - Images are classified through an Xception block, followed by two hidden layers with dropout (p=0.1) permanently enabled during both training and inference - The loss is cross-entropy, with adenocarcinoma=0 and squamous=1 - Training was halted at a predetermined step=1451 (at batch size of 128, this is after 185,728 images), determined through nested cross-validation During inference, - A given image undergoes 30 forward passes in the network, resulting in a distribution, where - The mean is the final prediction - The standard deviation is the uncertainty Tile-level and slide-level uncertainty thresholds are calculated and applied as discussed in the [Paper](https://www.nature.com/articles/s41467-022-34025-x). For this model, θ_tile=0.0228 and θ_slide=0.0139. - **Hardware:** 1 x A100 GPUs - **Optimizer:** Adam - **Batch:** 128 - **Learning rate:** 0.0001, with a decay of 0.98 every 512 steps - **Hidden layers:** 2 hidden layers of width 1024, with dropout p=0.1 ## Evaluation Results External evaluation results in the CPTAC and Mayo Clinic dataset are presented in the [Paper](https://www.nature.com/articles/s41467-022-34025-x) and shown here: ![Figure 4](https://media.springernature.com/full/springer-static/image/art%3A10.1038%2Fs41467-022-34025-x/MediaObjects/41467_2022_34025_Fig4_HTML.png) ## Citation @ARTICLE{Dolezal2022-qa, title = "Uncertainty-informed deep learning models enable high-confidence predictions for digital histopathology", author = "Dolezal, James M and Srisuwananukorn, Andrew and Karpeyev, Dmitry and Ramesh, Siddhi and Kochanny, Sara and Cody, Brittany and Mansfield, Aaron S and Rakshit, Sagar and Bansal, Radhika and Bois, Melanie C and Bungum, Aaron O and Schulte, Jefree J and Vokes, Everett E and Garassino, Marina Chiara and Husain, Aliya N and Pearson, Alexander T", journal = "Nature Communications", volume = 13, number = 1, pages = "6572", month = nov, year = 2022 }
nolanaatama/nmlnrtstyl
nolanaatama
2023-03-27T02:56:23Z
0
1
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-03-17T02:18:02Z
--- license: creativeml-openrail-m ---
Mizuiro-sakura/deberta-v2-base-japanese-finetuned-QAe
Mizuiro-sakura
2023-03-27T02:43:35Z
137
3
transformers
[ "transformers", "pytorch", "safetensors", "deberta-v2", "question-answering", "deberta", "question answering", "squad", "ja", "dataset:wikipedia", "dataset:cc100", "dataset:oscar", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2023-01-09T11:59:13Z
--- license: mit language: ja library_name: transformers tags: - pytorch - deberta - deberta-v2 - question-answering - question answering - squad datasets: - wikipedia - cc100 - oscar metrics: - accuracy --- # このモデルはdeberta-v2-base-japaneseをファインチューニングしてQAタスクに用いれるようにしたものです。 このモデルはdeberta-v2-base-japaneseを運転ドメインQAデータセット(DDQA)( https://nlp.ist.i.kyoto-u.ac.jp/index.php?Driving%20domain%20QA%20datasets )を用いてファインチューニングしたものです。 Question-Answeringタスク(SQuAD)に用いることができます。 # This model is fine-tuned model for Question-Answering which is based on deberta-v2-base-japanese This model is fine-tuned by using DDQA dataset. You could use this model for Question-Answering tasks. # How to use 使い方 transformersおよびpytorch、sentencepiece、Juman++をインストールしてください。 以下のコードを実行することで、Question-Answeringタスクを解かせることができます。 please execute this code. ```python import torch from transformers import AutoTokenizer, AutoModelForQuestionAnswering tokenizer = AutoTokenizer.from_pretrained('ku-nlp/deberta-v2-base-japanese') model=AutoModelForQuestionAnswering.from_pretrained('Mizuiro-sakura/deberta-v2-base-japanese-finetuned-QAe') # 学習済みモデルの読み込み text={ 'context':'私の名前はEIMIです。好きな食べ物は苺です。 趣味は皆さんと会話することです。', 'question' :'好きな食べ物は何ですか' } input_ids=tokenizer.encode(text['question'],text['context']) # tokenizerで形態素解析しつつコードに変換する output= model(torch.tensor([input_ids])) # 学習済みモデルを用いて解析 prediction = tokenizer.decode(input_ids[torch.argmax(output.start_logits): torch.argmax(output.end_logits)]) # 答えに該当する部分を抜き取る print(prediction) ``` # モデルの精度 accuracy of model Exact Match(厳密一致) : 0.8038277511961722 f1 : 0.8959389668095072 # deberta-v2-base-japaneseとは? 日本語Wikipedeia(3.2GB)および、cc100(85GB)、oscar(54GB)を用いて訓練されたモデルです。 京都大学黒橋研究室が公表されました。 # Model description This is a Japanese DeBERTa V2 base model pre-trained on Japanese Wikipedia, the Japanese portion of CC-100, and the Japanese portion of OSCAR. # Acknowledgments 謝辞 モデルを公開してくださった京都大学黒橋研究室には感謝いたします。 I would like to thank Kurohashi Lab at Kyoto University.
w11wo/lao-roberta-base-pos-tagger
w11wo
2023-03-27T02:35:35Z
124
0
transformers
[ "transformers", "pytorch", "safetensors", "roberta", "token-classification", "lao-roberta-base-pos-tagger", "lo", "arxiv:1907.11692", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: lo tags: - lao-roberta-base-pos-tagger license: mit widget: - text: "ຮ້ອງ ມ່ວນ ແທ້ ສຽງດີ ອິຫຼີ" --- ## Lao RoBERTa Base POS Tagger Lao RoBERTa Base POS Tagger is a part-of-speech token-classification model based on the [RoBERTa](https://arxiv.org/abs/1907.11692) model. The model was originally the pre-trained [Lao RoBERTa Base](https://huggingface.co/w11wo/lao-roberta-base) model, which is then fine-tuned on the [`Yunshan Cup 2020`](https://github.com/GKLMIP/Yunshan-Cup-2020) dataset consisting of tag-labelled Lao corpus. After training, the model achieved an evaluation accuracy of 83.14%. On the benchmark test set, the model achieved an accuracy of 83.30%. Hugging Face's `Trainer` class from the [Transformers](https://huggingface.co/transformers) library was used to train the model. PyTorch was used as the backend framework during training, but the model remains compatible with other frameworks nonetheless. ## Model | Model | #params | Arch. | Training/Validation data (text) | | ----------------------------- | ------- | ------------ | ------------------------------- | | `lao-roberta-base-pos-tagger` | 124M | RoBERTa Base | `Yunshan Cup 2020` | ## Evaluation Results The model was trained for 15 epochs, with a batch size of 8, a learning rate of 5e-5, with cosine annealing to 0. The best model was loaded at the end. | Epoch | Training Loss | Validation Loss | Accuracy | | ----- | ------------- | --------------- | -------- | | 1 | 1.026100 | 0.733780 | 0.746021 | | 2 | 0.646900 | 0.659625 | 0.775688 | | 3 | 0.500400 | 0.576214 | 0.798523 | | 4 | 0.385400 | 0.606503 | 0.805269 | | 5 | 0.288000 | 0.652493 | 0.809092 | | 6 | 0.204600 | 0.671678 | 0.815216 | | 7 | 0.145200 | 0.704693 | 0.818209 | | 8 | 0.098700 | 0.830561 | 0.816998 | | 9 | 0.066100 | 0.883329 | 0.825232 | | 10 | 0.043900 | 0.933347 | 0.825664 | | 11 | 0.027200 | 0.992055 | 0.828449 | | 12 | 0.017300 | 1.054874 | 0.830819 | | 13 | 0.011500 | 1.081638 | 0.830940 | | 14 | 0.008500 | 1.094252 | 0.831304 | | 15 | 0.007400 | 1.097428 | 0.831442 | ## How to Use ### As Token Classifier ```python from transformers import pipeline pretrained_name = "w11wo/lao-roberta-base-pos-tagger" nlp = pipeline( "token-classification", model=pretrained_name, tokenizer=pretrained_name ) nlp("ຮ້ອງ ມ່ວນ ແທ້ ສຽງດີ ອິຫຼີ") ``` ## Disclaimer Do consider the biases which come from both the pre-trained RoBERTa model and the `Yunshan Cup 2020` dataset that may be carried over into the results of this model. ## Author Lao RoBERTa Base POS Tagger was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on Google Colaboratory using their free GPU access.
SenY/embeddings
SenY
2023-03-27T02:23:06Z
0
13
null
[ "region:us" ]
null
2023-03-20T07:21:44Z
--- {} --- # capri leggings.safetensors Concepts: capri(three-quarter) leggings ```prompt example 1girl, (capri leggings:1.3) ``` <img src="https://huggingface.co/SenY/embeddings/resolve/main/capri%20leggings.preview.png" width="320"> If it does not act very strongly against the prompt, it is recommended to increase the strength to about 1.4. # low ponytail.safetensors Concepts: low ponytail <img src="https://huggingface.co/SenY/embeddings/resolve/main/low%20ponytail.preview.png" width="320"> ```prompt example 1girl, low ponytail ``` It is recommended to put "animal ears" as a negative prompt.
McCheng/poca-SoccerTwos
McCheng
2023-03-27T02:17:52Z
8
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-03-27T02:17:44Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: McCheng/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Reindrob/LVA
Reindrob
2023-03-27T02:09:57Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-03-27T01:37:26Z
--- license: creativeml-openrail-m ---
yonathanstwn/nllb-en-id-ccmatrix
yonathanstwn
2023-03-27T01:46:31Z
6
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "generated_from_trainer", "dataset:ccmatrix", "license:cc-by-nc-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-25T11:18:47Z
--- license: cc-by-nc-4.0 tags: - generated_from_trainer datasets: - ccmatrix metrics: - bleu model-index: - name: nllb-en-id-ccmatrix results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: ccmatrix type: ccmatrix config: en-id split: train args: en-id metrics: - name: Bleu type: bleu value: 65.9837 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nllb-en-id-ccmatrix This model is a fine-tuned version of [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) on the ccmatrix dataset. It achieves the following results on the evaluation set: - Loss: 0.4791 - Bleu: 65.9837 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 4000 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:-----:|:------:|:---------------:|:-------:| | 0.606 | 1.0 | 28125 | 0.5249 | 64.1268 | | 0.4943 | 2.0 | 56250 | 0.5043 | 64.7892 | | 0.467 | 3.0 | 84375 | 0.4945 | 65.2331 | | 0.4487 | 4.0 | 112500 | 0.4887 | 65.5512 | | 0.4349 | 5.0 | 140625 | 0.4843 | 65.6806 | | 0.4242 | 6.0 | 168750 | 0.4822 | 65.7774 | | 0.416 | 7.0 | 196875 | 0.4801 | 65.8541 | | 0.4098 | 8.0 | 225000 | 0.4800 | 65.9652 | | 0.4052 | 9.0 | 253125 | 0.4788 | 65.9701 | | 0.4023 | 10.0 | 281250 | 0.4791 | 65.9837 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.0 - Datasets 2.10.1 - Tokenizers 0.11.0
SebastianS/ppo-LunarLander-v2_v2
SebastianS
2023-03-27T01:42:59Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-27T01:42:38Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 257.79 +/- 18.54 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
jayeshvpatil/Pyramids_Training
jayeshvpatil
2023-03-27T01:37:41Z
7
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-03-27T01:37:35Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Find your model_id: jayeshvpatil/Pyramids_Training 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
swl-models/QteaMix
swl-models
2023-03-27T01:37:08Z
0
0
null
[ "license:cc0-1.0", "region:us" ]
null
2023-03-27T01:37:08Z
--- license: cc0-1.0 duplicated_from: chenxluo/QteaMix --- <font size="7"><b>QteaMix<br><font size="5">——一个融合的Q版模型</b><font> <font size="3"><em>通常需要tag:chibi <br> 当然,即使没有,也很可能得到Q版的结果。</em><font> <font size="5">以下是一些简单的例图测试:<font> ![grid-0003.png](https://s3.amazonaws.com/moonup/production/uploads/640cae30536d9fe0f002ee62/sOO5SVkuOK-q0yey9saxQ.png)<br> ![grid-0004.png](https://s3.amazonaws.com/moonup/production/uploads/640cae30536d9fe0f002ee62/pFsDg1_MjD1pS6BNSVDBn.png)<br> ![grid-0007.png](https://s3.amazonaws.com/moonup/production/uploads/640cae30536d9fe0f002ee62/4ayix0VgYJpEwP-oKDgm6.png)<br> ![grid-0009.png](https://s3.amazonaws.com/moonup/production/uploads/640cae30536d9fe0f002ee62/vW6TFWp_uup6_FFmHGqcu.png)<br> ![xyz_grid-0188-729351517.png](https://s3.amazonaws.com/moonup/production/uploads/640cae30536d9fe0f002ee62/N7iX5Kv_SZHUSMhFUuJPU.png)<br> ![grid-0006.png](https://s3.amazonaws.com/moonup/production/uploads/640cae30536d9fe0f002ee62/23eLy21RWO-sUtxDlaPuI.png)<br> <font size="4"><u>一般来说,应设置不超过960的分辨率,否则更易出现脱Q化。<br>如果需要大图,请使用高清修复或图生图放大。</u><font>
fathan/ijelid-indobertweet
fathan
2023-03-27T01:22:53Z
20
1
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "bert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-10-04T05:54:49Z
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: ijelid-indobertweet results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ijelid-indobertweet This model is a fine-tuned version of [indolem/indobertweet-base-uncased](https://huggingface.co/indolem/indobertweet-base-uncased) on the Indonesian-Javanese-English code-mixed Twitter dataset. Label ID and its corresponding name: | Label ID | Label Name | |:---------------:|:------------------------------------------: | LABEL_0 | English (EN) | | LABEL_1 | Indonesian (ID) | | LABEL_2 | Javanese (JV) | | LABEL_3 | Mixed Indonesian-English (MIX-ID-EN) | | LABEL_4 | Mixed Indonesian-Javanese (MIX-ID-JV) | | LABEL_5 | Mixed Javanese-English (MIX-JV-EN) | | LABEL_6 | Other (O) | It achieves the following results on the evaluation set: - Loss: 0.2804 - Precision: 0.9323 - Recall: 0.9394 - F1: 0.9356 - Accuracy: 0.9587 It achieves the following results on the test set: - Overall Precision: 0.9326 - Overall Recall: 0.9421 - Overall F1: 0.9371 - Overall Accuracy: 0.9643 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 386 | 0.1666 | 0.8968 | 0.9014 | 0.8982 | 0.9465 | | 0.257 | 2.0 | 772 | 0.1522 | 0.9062 | 0.9368 | 0.9206 | 0.9517 | | 0.1092 | 3.0 | 1158 | 0.1462 | 0.9233 | 0.9335 | 0.9280 | 0.9556 | | 0.0739 | 4.0 | 1544 | 0.1563 | 0.9312 | 0.9361 | 0.9336 | 0.9568 | | 0.0739 | 5.0 | 1930 | 0.1671 | 0.9224 | 0.9413 | 0.9312 | 0.9573 | | 0.0474 | 6.0 | 2316 | 0.1719 | 0.9303 | 0.9394 | 0.9346 | 0.9578 | | 0.0339 | 7.0 | 2702 | 0.1841 | 0.9249 | 0.9389 | 0.9314 | 0.9576 | | 0.0237 | 8.0 | 3088 | 0.2030 | 0.9224 | 0.9380 | 0.9297 | 0.9570 | | 0.0237 | 9.0 | 3474 | 0.2106 | 0.9289 | 0.9377 | 0.9331 | 0.9576 | | 0.0185 | 10.0 | 3860 | 0.2264 | 0.9277 | 0.9389 | 0.9330 | 0.9571 | | 0.0132 | 11.0 | 4246 | 0.2331 | 0.9336 | 0.9344 | 0.9339 | 0.9574 | | 0.0101 | 12.0 | 4632 | 0.2403 | 0.9353 | 0.9375 | 0.9363 | 0.9586 | | 0.0082 | 13.0 | 5018 | 0.2509 | 0.9311 | 0.9373 | 0.9340 | 0.9582 | | 0.0082 | 14.0 | 5404 | 0.2548 | 0.9344 | 0.9351 | 0.9346 | 0.9578 | | 0.0062 | 15.0 | 5790 | 0.2608 | 0.9359 | 0.9372 | 0.9365 | 0.9588 | | 0.005 | 16.0 | 6176 | 0.2667 | 0.9298 | 0.9407 | 0.9350 | 0.9587 | | 0.0045 | 17.0 | 6562 | 0.2741 | 0.9337 | 0.9408 | 0.9371 | 0.9592 | | 0.0045 | 18.0 | 6948 | 0.2793 | 0.9342 | 0.9371 | 0.9355 | 0.9589 | | 0.0035 | 19.0 | 7334 | 0.2806 | 0.9299 | 0.9391 | 0.9342 | 0.9588 | | 0.0034 | 20.0 | 7720 | 0.2804 | 0.9323 | 0.9394 | 0.9356 | 0.9587 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.7.1 - Datasets 2.5.1 - Tokenizers 0.12.1
aidenlee/ppo-SnowballTarget
aidenlee
2023-03-27T01:19:22Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-03-27T00:55:02Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Find your model_id: aidenlee/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
SebastianS/rl_course_vizdoom_health_gathering_supreme
SebastianS
2023-03-27T01:03:52Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-27T01:03:48Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 10.37 +/- 3.23 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r SebastianS/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m <path.to.enjoy.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m <path.to.train.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
mehtasagar95/lilt-en-funsd
mehtasagar95
2023-03-27T00:56:44Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "lilt", "token-classification", "generated_from_trainer", "dataset:funsd-layoutlmv3", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-03-27T00:25:40Z
--- license: mit tags: - generated_from_trainer datasets: - funsd-layoutlmv3 model-index: - name: lilt-en-funsd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lilt-en-funsd This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on the funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set: - Loss: 1.7566 - Answer: {'precision': 0.8818713450292398, 'recall': 0.9228886168910648, 'f1': 0.9019138755980862, 'number': 817} - Header: {'precision': 0.6597938144329897, 'recall': 0.5378151260504201, 'f1': 0.5925925925925926, 'number': 119} - Question: {'precision': 0.8944494995450409, 'recall': 0.9127205199628597, 'f1': 0.9034926470588234, 'number': 1077} - Overall Precision: 0.8781 - Overall Recall: 0.8947 - Overall F1: 0.8863 - Overall Accuracy: 0.7939 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.4354 | 10.53 | 200 | 1.0094 | {'precision': 0.8219954648526077, 'recall': 0.8873929008567931, 'f1': 0.8534432018834609, 'number': 817} | {'precision': 0.5617977528089888, 'recall': 0.42016806722689076, 'f1': 0.4807692307692308, 'number': 119} | {'precision': 0.8493723849372385, 'recall': 0.9424326833797586, 'f1': 0.8934859154929579, 'number': 1077} | 0.8264 | 0.8892 | 0.8567 | 0.7972 | | 0.0503 | 21.05 | 400 | 1.2949 | {'precision': 0.8543577981651376, 'recall': 0.9118727050183598, 'f1': 0.8821788040260509, 'number': 817} | {'precision': 0.5658914728682171, 'recall': 0.6134453781512605, 'f1': 0.5887096774193549, 'number': 119} | {'precision': 0.9066147859922179, 'recall': 0.8653667595171773, 'f1': 0.8855106888361044, 'number': 1077} | 0.8625 | 0.8693 | 0.8659 | 0.8117 | | 0.0143 | 31.58 | 600 | 1.3527 | {'precision': 0.8726190476190476, 'recall': 0.8971848225214198, 'f1': 0.8847314423657212, 'number': 817} | {'precision': 0.6666666666666666, 'recall': 0.5714285714285714, 'f1': 0.6153846153846153, 'number': 119} | {'precision': 0.8533674339300937, 'recall': 0.9294336118848654, 'f1': 0.8897777777777779, 'number': 1077} | 0.8520 | 0.8952 | 0.8731 | 0.8116 | | 0.0064 | 42.11 | 800 | 1.6567 | {'precision': 0.8483466362599772, 'recall': 0.9106487148102815, 'f1': 0.8783943329397875, 'number': 817} | {'precision': 0.5564516129032258, 'recall': 0.5798319327731093, 'f1': 0.5679012345679013, 'number': 119} | {'precision': 0.8949814126394052, 'recall': 0.8941504178272981, 'f1': 0.8945657222480261, 'number': 1077} | 0.8551 | 0.8823 | 0.8685 | 0.7982 | | 0.0051 | 52.63 | 1000 | 1.6856 | {'precision': 0.8542141230068337, 'recall': 0.9179926560587516, 'f1': 0.8849557522123894, 'number': 817} | {'precision': 0.66, 'recall': 0.5546218487394958, 'f1': 0.6027397260273973, 'number': 119} | {'precision': 0.9025069637883009, 'recall': 0.9025069637883009, 'f1': 0.9025069637883009, 'number': 1077} | 0.8701 | 0.8882 | 0.8791 | 0.7925 | | 0.0029 | 63.16 | 1200 | 1.5031 | {'precision': 0.8860294117647058, 'recall': 0.8849449204406364, 'f1': 0.8854868340477648, 'number': 817} | {'precision': 0.6147540983606558, 'recall': 0.6302521008403361, 'f1': 0.6224066390041495, 'number': 119} | {'precision': 0.8724890829694323, 'recall': 0.9275766016713092, 'f1': 0.8991899189918992, 'number': 1077} | 0.8627 | 0.8927 | 0.8774 | 0.8117 | | 0.0015 | 73.68 | 1400 | 1.6708 | {'precision': 0.8720657276995305, 'recall': 0.9094247246022031, 'f1': 0.89035350509287, 'number': 817} | {'precision': 0.5286624203821656, 'recall': 0.6974789915966386, 'f1': 0.6014492753623188, 'number': 119} | {'precision': 0.8897126969416126, 'recall': 0.8913649025069638, 'f1': 0.8905380333951762, 'number': 1077} | 0.8554 | 0.8872 | 0.8710 | 0.7958 | | 0.0012 | 84.21 | 1600 | 1.7566 | {'precision': 0.8818713450292398, 'recall': 0.9228886168910648, 'f1': 0.9019138755980862, 'number': 817} | {'precision': 0.6597938144329897, 'recall': 0.5378151260504201, 'f1': 0.5925925925925926, 'number': 119} | {'precision': 0.8944494995450409, 'recall': 0.9127205199628597, 'f1': 0.9034926470588234, 'number': 1077} | 0.8781 | 0.8947 | 0.8863 | 0.7939 | | 0.0006 | 94.74 | 1800 | 1.8482 | {'precision': 0.8781362007168458, 'recall': 0.8996328029375765, 'f1': 0.8887545344619106, 'number': 817} | {'precision': 0.5862068965517241, 'recall': 0.5714285714285714, 'f1': 0.5787234042553192, 'number': 119} | {'precision': 0.8949814126394052, 'recall': 0.8941504178272981, 'f1': 0.8945657222480261, 'number': 1077} | 0.8704 | 0.8773 | 0.8738 | 0.7913 | | 0.0006 | 105.26 | 2000 | 1.7763 | {'precision': 0.8747072599531616, 'recall': 0.9143206854345165, 'f1': 0.8940754039497306, 'number': 817} | {'precision': 0.6095238095238096, 'recall': 0.5378151260504201, 'f1': 0.5714285714285715, 'number': 119} | {'precision': 0.8859489051094891, 'recall': 0.9015784586815228, 'f1': 0.8936953520478601, 'number': 1077} | 0.8672 | 0.8852 | 0.8761 | 0.7964 | | 0.0003 | 115.79 | 2200 | 1.9186 | {'precision': 0.8813953488372093, 'recall': 0.9277845777233782, 'f1': 0.9039952295766249, 'number': 817} | {'precision': 0.6190476190476191, 'recall': 0.5462184873949579, 'f1': 0.5803571428571429, 'number': 119} | {'precision': 0.9025304592314901, 'recall': 0.8941504178272981, 'f1': 0.898320895522388, 'number': 1077} | 0.8789 | 0.8872 | 0.8831 | 0.7971 | | 0.0002 | 126.32 | 2400 | 1.8948 | {'precision': 0.8780487804878049, 'recall': 0.9253365973072215, 'f1': 0.901072705601907, 'number': 817} | {'precision': 0.6261682242990654, 'recall': 0.5630252100840336, 'f1': 0.5929203539823009, 'number': 119} | {'precision': 0.9033457249070632, 'recall': 0.9025069637883009, 'f1': 0.9029261495587553, 'number': 1077} | 0.8782 | 0.8917 | 0.8849 | 0.7978 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
naeisher/LunarLander-v2
naeisher
2023-03-27T00:55:06Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-03-27T00:12:44Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -51.68 +/- 47.83 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 100000 'learning_rate': 0.0002 'num_envs': 4 'num_steps': 2048 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.99 'num_minibatches': 32 'update_epochs': 10 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.2 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'naeisher/LunarLander-v2' 'batch_size': 8192 'minibatch_size': 256} ```
Xianbing/distilbert-base-uncased-layerdrop
Xianbing
2023-03-27T00:34:14Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-26T01:30:38Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert-base-uncased-layerdrop results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: mnli split: validation_matched args: mnli metrics: - name: Accuracy type: accuracy value: 0.7825776872134488 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-layerdrop This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5821 - Accuracy: 0.7826 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 0.642 | 1.0 | 24544 | 0.6169 | 0.7460 | | 0.5793 | 2.0 | 49088 | 0.5678 | 0.7692 | | 0.4914 | 3.0 | 73632 | 0.5669 | 0.7744 | | 0.429 | 4.0 | 98176 | 0.5764 | 0.7868 | | 0.4359 | 5.0 | 122720 | 0.5821 | 0.7826 | ### Framework versions - Transformers 4.27.2 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
crumb/Instruct-GPT-J
crumb
2023-03-26T23:21:26Z
0
25
transformers
[ "transformers", "peft", "lora", "instruct", "alpaca", "gptj", "en", "dataset:tatsu-lab/alpaca", "dataset:the_pile", "arxiv:2106.09685", "endpoints_compatible", "region:us" ]
null
2023-03-22T17:58:49Z
--- datasets: - tatsu-lab/alpaca - the_pile language: - en library_name: transformers tags: - peft - lora - instruct - alpaca - gptj --- # Instruct-GPT-J "Vicuña" A demo that runs in free Google Colab can be run here: https://bit.ly/3K1P4PQ just change the model dropdown to the name of this model. The [EleutherAI/gpt-j-6B](https://hf.co/EleutherAI/gpt-j-6B) model finetuned on the [Alpaca](https://huggingface.co/datasets/tatsu-lab/alpaca) instruction dataset with [low rank adaptation](https://arxiv.org/abs/2106.09685). This is not a model from Eleuther but a personal project. Don't knock LoRA, all it is is finetuning how the internal representations should change (simplified, the residual of the weights) instead of finetuning just the internal representations! All the previous weights are in tact meaning LoRA tuning makes the model less likely to forget what it was trained on, and also less likely to push the model into mode collapse. Check table 2 of the LoRA paper and you can see that LoRA many times outperforms traditional finetuning as well. ## Use: ```python import torch from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer peft_model_id = "crumb/Instruct-GPT-J" config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True, load_in_8bit=True, device_map='auto', revision='sharded') tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) # Load the Lora model model = PeftModel.from_pretrained(model, peft_model_id) # This example is in the alpaca training set batch = tokenizer("Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: How can we reduce air pollution? ### Response:", return_tensors='pt') with torch.cuda.amp.autocast(): output_tokens = model.generate(**batch, max_new_tokens=50) print(tokenizer.decode(output_tokens[0], skip_special_tokens=True)) # One way to reduce air pollution is to reduce the amount of emissions from vehicles. This can be done by implementing stricter emission standards and increasing the use of electric vehicles. Another way to reduce air pollution is to reduce the amount of waste produced by industries. ``` A function to turn an instruction into a prompt for the model could be written as follows ```python def prompt(instruction, input=''): if input=='': return f"Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {instruction} ### Response: " return f"Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {instruction} ### Input: {input} ### Response: " ``` Where input would be an input for the model to act on based on the instruction. ### citations ```bibtex @misc{gpt-j, author = {Wang, Ben and Komatsuzaki, Aran}, title = {{GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model}}, howpublished = {\url{https://github.com/kingoflolz/mesh-transformer-jax}}, year = 2021, month = May } ``` ```bibtex @misc{alpaca, author = {Rohan Taori and Ishaan Gulrajani and Tianyi Zhang and Yann Dubois and Xuechen Li and Carlos Guestrin and Percy Liang and Tatsunori B. Hashimoto }, title = {Stanford Alpaca: An Instruction-following LLaMA model}, year = {2023}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/tatsu-lab/stanford_alpaca}}, } ```
MohammadJamalaldeen/whisper-small-arabic
MohammadJamalaldeen
2023-03-26T23:19:08Z
78
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "ar", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-03-26T21:32:42Z
--- language: - ar tags: - hf-asr-leaderboard - generated_from_trainer metrics: - wer model-index: - name: Whisper Small - Arabic language results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small - Arabic language This model is a fine-tuned version of [MohammadJamalaldeen/whisper-small-with-google-fleurs-ar-4000_steps](https://huggingface.co/MohammadJamalaldeen/whisper-small-with-google-fleurs-ar-4000_steps). It achieves the following results on the evaluation set: - Loss: 0.5364 - Wer: 23.5875 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0071 | 3.8 | 1000 | 0.4950 | 25.4875 | | 0.0003 | 7.6 | 2000 | 0.5170 | 23.8000 | | 0.0001 | 11.41 | 3000 | 0.5300 | 23.6125 | | 0.0001 | 15.21 | 4000 | 0.5364 | 23.5875 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.7.0 - Tokenizers 0.13.2
Enig-ma/sd
Enig-ma
2023-03-26T22:47:53Z
0
0
null
[ "license:other", "region:us" ]
null
2023-03-18T06:58:29Z
--- license: other --- Backup of the dalcefo files, "buy it" from dalcefo kofy and to be used on colab
nishadsinghi/swin-tiny-patch4-window7-224-airornot
nishadsinghi
2023-03-26T22:46:20Z
191
0
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-03-26T13:21:13Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-airornot results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-airornot This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1392 - Accuracy: 0.9511 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1603 | 1.0 | 131 | 0.1392 | 0.9511 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
smokeweed/Gerph
smokeweed
2023-03-26T22:36:28Z
36
20
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "en", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-12-28T11:33:55Z
--- language: - en license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true --- # Gerph Welcome to the Gerph model. This model is trained in the art of the talented artist Gerph and has three versions for you to choose from. These models can be highly NSFW and are trained mainly on characters, as the work primarily focuses on this subject. Take a look at the demo images below to see the differences between the three versions. And don't forget that these models is licensed under the Creative ML OpenRAIL-M license. Enjoy! **Gerph_Epoch8** ![Gerph Epoch8](preview1.png?raw=true) > highres, best quality, masterpiece, hatsune miku, outside, sunny day, casual clothes **Gerph_Epoch10** ![Gerph Epoch8](preview2.png?raw=true) > close up, male, solo, long hair, blonde hair, blue eyes, bishounen, colorful, boy, autumn, cinematic lighting, blue sky **Gerph_Epoch11** ![Gerph Epoch8](preview3.png?raw=true) > young girl, brown hair, green eyes, colorful, winter, cumulonimbus clouds, lighting, blue sky As you can see, the base version, *Gerph_Epoch8*, is trained exclusively in Gerph's art and offers a unique take on his style and themes. If you are a fan of Gerph's art, this version should certainly be in your set. *Gerph_Epoch10* and *Gerph_Epoch11* were continued with a wider range of concept images and work by various artists, so unfortunately the original Gerph style doesn't shine as much. Also, these models do not require any specific tokens. ## License These models are open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the models to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the models commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
lagorio/distilbert-base-uncased-finetuned-squad
lagorio
2023-03-26T22:16:56Z
110
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad_v2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-03-26T20:05:29Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad_v2 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
AmaiaSolaun/film95000distilbert-base-uncased
AmaiaSolaun
2023-03-26T22:12:05Z
116
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-03-26T20:29:48Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: film95000distilbert-base-uncased results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # film95000distilbert-base-uncased This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8725 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 14840 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.7724 | 0.34 | 500 | 2.5848 | | 2.5813 | 0.67 | 1000 | 2.4469 | | 2.479 | 1.01 | 1500 | 2.3841 | | 2.3872 | 1.35 | 2000 | 2.3378 | | 2.3504 | 1.68 | 2500 | 2.2838 | | 2.3134 | 2.02 | 3000 | 2.2451 | | 2.2483 | 2.36 | 3500 | 2.1953 | | 2.2166 | 2.69 | 4000 | 2.1854 | | 2.2023 | 3.03 | 4500 | 2.1559 | | 2.1438 | 3.37 | 5000 | 2.1479 | | 2.1271 | 3.7 | 5500 | 2.1155 | | 2.1092 | 4.04 | 6000 | 2.0980 | | 2.0656 | 4.38 | 6500 | 2.0736 | | 2.0544 | 4.71 | 7000 | 2.0567 | | 2.037 | 5.05 | 7500 | 2.0234 | | 1.9902 | 5.39 | 8000 | 2.0079 | | 1.9883 | 5.72 | 8500 | 1.9988 | | 1.9624 | 6.06 | 9000 | 1.9832 | | 1.9348 | 6.4 | 9500 | 1.9643 | | 1.9215 | 6.73 | 10000 | 1.9471 | | 1.9103 | 7.07 | 10500 | 1.9434 | | 1.8794 | 7.41 | 11000 | 1.9282 | | 1.8762 | 7.74 | 11500 | 1.9194 | | 1.8597 | 8.08 | 12000 | 1.9260 | | 1.8402 | 8.42 | 12500 | 1.8795 | | 1.8326 | 8.75 | 13000 | 1.8948 | | 1.8191 | 9.09 | 13500 | 1.9020 | | 1.8058 | 9.43 | 14000 | 1.8806 | | 1.804 | 9.76 | 14500 | 1.8680 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
ckao1030/elephant1dreambooth
ckao1030
2023-03-26T22:09:04Z
30
0
diffusers
[ "diffusers", "tensorboard", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-03-26T22:07:02Z
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: elephant1 --- ### elephant1dreambooth Dreambooth model trained by ckao1030 with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Sample pictures of: elephant1 (use that on your prompt) ![elephant1 0](https://huggingface.co/ckao1030/elephant1dreambooth/resolve/main/concept_images/elephant1_%281%29.jpg)![elephant1 1](https://huggingface.co/ckao1030/elephant1dreambooth/resolve/main/concept_images/elephant1_%282%29.jpg)![elephant1 2](https://huggingface.co/ckao1030/elephant1dreambooth/resolve/main/concept_images/elephant1_%283%29.jpg)![elephant1 3](https://huggingface.co/ckao1030/elephant1dreambooth/resolve/main/concept_images/elephant1_%284%29.jpg)![elephant1 4](https://huggingface.co/ckao1030/elephant1dreambooth/resolve/main/concept_images/elephant1_%285%29.jpg)![elephant1 5](https://huggingface.co/ckao1030/elephant1dreambooth/resolve/main/concept_images/elephant1_%286%29.jpg)
fuzzymazoid/ppo-Huggy
fuzzymazoid
2023-03-26T22:04:01Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-03-26T22:03:53Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Find your model_id: fuzzymazoid/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
vocabtrimmer/mt5-small-trimmed-ko-60000-koquad-qg
vocabtrimmer
2023-03-26T22:00:44Z
112
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "question generation", "ko", "dataset:lmqg/qg_koquad", "arxiv:2210.03992", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-19T14:40:24Z
--- license: cc-by-4.0 metrics: - bleu4 - meteor - rouge-l - bertscore - moverscore language: ko datasets: - lmqg/qg_koquad pipeline_tag: text2text-generation tags: - question generation widget: - text: "1990년 영화 《 <hl> 남부군 <hl> 》에서 단역으로 영화배우 첫 데뷔에 이어 같은 해 KBS 드라마 《지구인》에서 단역으로 출연하였고 이듬해 MBC 《여명의 눈동자》를 통해 단역으로 출연하였다." example_title: "Question Generation Example 1" - text: "백신이 없기때문에 예방책은 <hl> 살충제 <hl> 를 사용하면서 서식 장소(찻찬 받침, 배수로, 고인 물의 열린 저장소, 버려진 타이어 등)의 수를 줄임으로써 매개체를 통제할 수 있다." example_title: "Question Generation Example 2" - text: "<hl> 원테이크 촬영 <hl> 이기 때문에 한 사람이 실수를 하면 처음부터 다시 찍어야 하는 상황이 발생한다." example_title: "Question Generation Example 3" model-index: - name: vocabtrimmer/mt5-small-trimmed-ko-60000-koquad-qg results: - task: name: Text2text Generation type: text2text-generation dataset: name: lmqg/qg_koquad type: default args: default metrics: - name: BLEU4 (Question Generation) type: bleu4_question_generation value: 11.1 - name: ROUGE-L (Question Generation) type: rouge_l_question_generation value: 26.7 - name: METEOR (Question Generation) type: meteor_question_generation value: 28.4 - name: BERTScore (Question Generation) type: bertscore_question_generation value: 83.43 - name: MoverScore (Question Generation) type: moverscore_question_generation value: 82.96 --- # Model Card of `vocabtrimmer/mt5-small-trimmed-ko-60000-koquad-qg` This model is fine-tuned version of [ckpts/mt5-small-trimmed-ko-60000](https://huggingface.co/ckpts/mt5-small-trimmed-ko-60000) for question generation task on the [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation). ### Overview - **Language model:** [ckpts/mt5-small-trimmed-ko-60000](https://huggingface.co/ckpts/mt5-small-trimmed-ko-60000) - **Language:** ko - **Training data:** [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) (default) - **Online Demo:** [https://autoqg.net/](https://autoqg.net/) - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) ### Usage - With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-) ```python from lmqg import TransformersQG # initialize model model = TransformersQG(language="ko", model="vocabtrimmer/mt5-small-trimmed-ko-60000-koquad-qg") # model prediction questions = model.generate_q(list_context="1990년 영화 《 남부군 》에서 단역으로 영화배우 첫 데뷔에 이어 같은 해 KBS 드라마 《지구인》에서 단역으로 출연하였고 이듬해 MBC 《여명의 눈동자》를 통해 단역으로 출연하였다.", list_answer="남부군") ``` - With `transformers` ```python from transformers import pipeline pipe = pipeline("text2text-generation", "vocabtrimmer/mt5-small-trimmed-ko-60000-koquad-qg") output = pipe("1990년 영화 《 <hl> 남부군 <hl> 》에서 단역으로 영화배우 첫 데뷔에 이어 같은 해 KBS 드라마 《지구인》에서 단역으로 출연하였고 이듬해 MBC 《여명의 눈동자》를 통해 단역으로 출연하였다.") ``` ## Evaluation - ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ko-60000-koquad-qg/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_koquad.default.json) | | Score | Type | Dataset | |:-----------|--------:|:--------|:-----------------------------------------------------------------| | BERTScore | 83.43 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | | Bleu_1 | 26.36 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | | Bleu_2 | 19.38 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | | Bleu_3 | 14.59 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | | Bleu_4 | 11.1 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | | METEOR | 28.4 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | | MoverScore | 82.96 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | | ROUGE_L | 26.7 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | ## Training hyperparameters The following hyperparameters were used during fine-tuning: - dataset_path: lmqg/qg_koquad - dataset_name: default - input_types: paragraph_answer - output_types: question - prefix_types: None - model: ckpts/mt5-small-trimmed-ko-60000 - max_length: 512 - max_length_output: 32 - epoch: 12 - batch: 16 - lr: 0.001 - fp16: False - random_seed: 1 - gradient_accumulation_steps: 4 - label_smoothing: 0.15 The full configuration can be found at [fine-tuning config file](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ko-60000-koquad-qg/raw/main/trainer_config.json). ## Citation ``` @inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```
golightly/q-FrozenLake-v1-4x4-Slippery
golightly
2023-03-26T21:59:43Z
0
0
null
[ "FrozenLake-v1-4x4", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-26T21:50:51Z
--- tags: - FrozenLake-v1-4x4 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-Slippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4 type: FrozenLake-v1-4x4 metrics: - type: mean_reward value: 0.73 +/- 0.44 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="golightly/q-FrozenLake-v1-4x4-Slippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
NickVeinCV/donut-base-sroie
NickVeinCV
2023-03-26T21:57:17Z
50
0
transformers
[ "transformers", "pytorch", "tensorboard", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:imagefolder", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2023-03-26T21:23:39Z
--- license: mit tags: - generated_from_trainer datasets: - imagefolder model-index: - name: donut-base-sroie results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-base-sroie This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.28.0.dev0 - Pytorch 2.0.0+cu117 - Datasets 2.10.1 - Tokenizers 0.13.2
MarcusAGray/a2c-AntBulletEnv-v0
MarcusAGray
2023-03-26T21:55:32Z
1
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-26T21:54:26Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 816.55 +/- 32.99 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Akain413/Niako
Akain413
2023-03-26T21:37:29Z
0
17
null
[ "region:us" ]
null
2023-03-23T07:24:15Z
Niako V3 ![00178-NiakoV3fp16_3881491666.png](https://s3.amazonaws.com/moonup/production/uploads/63042d057b50dd9d0a38ebdb/Hd-6pi-j748uU-02UvG6j.png) ![00154-NiakoV3fp16_2888263782.png](https://s3.amazonaws.com/moonup/production/uploads/63042d057b50dd9d0a38ebdb/RGvrtQB1vBWSFzSNnpfl4.png) ![00122-NiakoV3fp16_3212811290.png](https://s3.amazonaws.com/moonup/production/uploads/63042d057b50dd9d0a38ebdb/DmC3ghOb0nf6s9pWFkj-u.png) ![00005-NiakoV3fp16_4221755142.png](https://s3.amazonaws.com/moonup/production/uploads/63042d057b50dd9d0a38ebdb/SlDUsJ-UdwJyRVxST-hTU.png) ![00184-NiakoV3fp16_2110090001.png](https://s3.amazonaws.com/moonup/production/uploads/63042d057b50dd9d0a38ebdb/hUklzbbnAXyZpoYeX-xPO.png) ![00117-NiakoV3fp16_3764601852.png](https://s3.amazonaws.com/moonup/production/uploads/63042d057b50dd9d0a38ebdb/_yrNeybD09A824k4jQUH1.png) ![00149-NiakoV3fp16_4291726430.png](https://s3.amazonaws.com/moonup/production/uploads/63042d057b50dd9d0a38ebdb/9TY_deqaIq6aMCkYX-dcc.png) ![00063-NiakoV3fp16_4250275904.png](https://s3.amazonaws.com/moonup/production/uploads/63042d057b50dd9d0a38ebdb/jN6ozPwRs2br6xSg83sZn.png) ![00154-NiakoV3fp16_469932511.png](https://s3.amazonaws.com/moonup/production/uploads/63042d057b50dd9d0a38ebdb/H7jV4WGjjITU-Pkw18x_F.png)
feratur/q-Taxi-v3
feratur
2023-03-26T21:36:30Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-26T21:36:28Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="feratur/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
omar47/wav2vec2-large-xls-r-300m-ur-BKK-PRUSC-CV10
omar47
2023-03-26T21:17:52Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-03-26T17:33:07Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xls-r-300m-ur-BKK-PRUSC-CV10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-ur-BKK-PRUSC-CV10 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.7376 - eval_wer: 0.3932 - eval_runtime: 180.077 - eval_samples_per_second: 20.541 - eval_steps_per_second: 2.571 - epoch: 15.4 - step: 3072 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
MohammadJamalaldeen/whisper-small-ar
MohammadJamalaldeen
2023-03-26T21:09:22Z
97
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "ar", "dataset:common_voice_11_0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-03-26T16:32:35Z
--- language: - ar tags: - hf-asr-leaderboard - generated_from_trainer datasets: - common_voice_11_0 metrics: - wer model-index: - name: Whisper Small - Arabic language results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_11_0 type: common_voice_11_0 config: ar split: test args: ar metrics: - name: Wer type: wer value: 46.54301717014048 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small - Arabic language This model is a fine-tuned version of [MohammadJamalaldeen/whisper-small-with-google-fleurs-ar-4000_steps](https://huggingface.co/MohammadJamalaldeen/whisper-small-with-google-fleurs-ar-4000_steps) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3383 - Wer: 46.5430 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.347 | 0.2 | 1000 | 0.4275 | 53.6902 | | 0.2591 | 0.39 | 2000 | 0.3821 | 49.4996 | | 0.2681 | 0.59 | 3000 | 0.3503 | 47.5989 | | 0.271 | 0.78 | 4000 | 0.3383 | 46.5430 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.7.0 - Tokenizers 0.13.2
enguru/ppo-LunarLander-v2
enguru
2023-03-26T21:01:31Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-26T21:01:02Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 255.65 +/- 6.74 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
mazancourt/politics-sentence-classifier
mazancourt
2023-03-26T20:58:47Z
192
5
transformers
[ "transformers", "pytorch", "safetensors", "camembert", "text-classification", "autonlp", "Text Classification", "Politics", "fr", "dataset:mazancourt/autonlp-data-politics-sentence-classifier", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: [autonlp, Text Classification, Politics] language: fr widget: - text: "Il y a dans ce pays une fracture" datasets: - mazancourt/autonlp-data-politics-sentence-classifier co2_eq_emissions: 1.06099358268878 --- # Prediction of sentence "nature" in a French political sentence This model aims at predicting the nature of a sentence in a French political sentence. The predictions fall in three categories: - `problem`: the sentence describes a problem (usually to be tackled by the speaker), for example _il y a dans ce pays une fracture_ (J. Chirac) - `solution`: the sentences describes a solution (typically part of a political programme), for example: _J’ai supprimé les droits de succession parce que je crois au travail et parce que je crois à la famille._ (N. Sarkozy) - `other`: the sentence does not belong to any of these categories, for example: _vive la République, vive la France_ This model was trained using AutoNLP based on sentences extracted from a mix of political tweets and speeches. # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 23105051 - CO2 Emissions (in grams): 1.06099358268878 ## Validation Metrics - Loss: 0.6050735712051392 - Accuracy: 0.8097826086956522 - Macro F1: 0.7713543865034599 - Micro F1: 0.8097826086956522 - Weighted F1: 0.8065488494385247 - Macro Precision: 0.7861074705111403 - Micro Precision: 0.8097826086956522 - Weighted Precision: 0.806470454156932 - Macro Recall: 0.7599656456873758 - Micro Recall: 0.8097826086956522 - Weighted Recall: 0.8097826086956522 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "Il y a dans ce pays une fracture"}' https://api-inference.huggingface.co/models/mazancourt/politics-sentence-classifier ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("mazancourt/autonlp-politics-sentence-classifier-23105051", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("mazancourt/politics-sentence-classifier", use_auth_token=True) inputs = tokenizer("Il y a dans ce pays une fracture", return_tensors="pt") outputs = model(**inputs) # Category can be "problem", "solution" or "other" category = outputs[0]["label"] score = outputs[0]["score"] ```
andreaskoepf/oasst-sft-2-pythia-12b-4000
andreaskoepf
2023-03-26T20:31:19Z
15
2
transformers
[ "transformers", "pytorch", "gpt_neox", "text-generation", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-03-26T20:10:17Z
--- license: apache-2.0 --- wandb: https://wandb.ai/open-assistant/supervised-finetuning/runs/20enq5u1 Config: ``` oasst_export_latin_cyrillic_alpaca: datasets: - oasst_export: lang: "bg,ca,cs,da,de,en,es,fr,hr,hu,it,nl,pl,pt,ro,ru,sl,sr,sv,uk" #top_k: 2 input_file_path: 2023-03-25_oasst_research_ready_synth_labels.jsonl.gz - alpaca sort_by_length: false use_custom_sampler: false pythia-12b: fp16: true use_flash_attention: true residual_dropout: 0.2 learning_rate: 6e-6 model_name: EleutherAI/pythia-12b-deduped output_dir: pythia_model_12b weight_decay: 0.0 max_length: 2048 warmup_steps: 100 gradient_checkpointing: false gradient_accumulation_steps: 4 per_device_train_batch_size: 2 per_device_eval_batch_size: 2 eval_steps: 200 save_steps: 1000 num_train_epochs: 8 save_total_limit: 4 ``` Command used: `deepspeed trainer_sft.py --configs defaults oasst_export_latin_cyrillic_alpaca pythia-12b --cache_dir .cache/ --output_dir .saved_models/oasst-sft-2_12b --deepspeed`
Shadman-Rohan/FakevsRealNews
Shadman-Rohan
2023-03-26T20:30:19Z
109
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-08T14:37:19Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: FakevsRealNews results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # FakevsRealNews This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 - Accuracy: 1.0 - F1: 1.0 - Precision: 1.0 - Recall: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---:|:---------:|:------:| | 0.0554 | 1.0 | 1956 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0006 | 2.0 | 3912 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0 | 3.0 | 5868 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.27.2 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
JaviBJ/q-FrozenLake-v1-4x4-noSlippery
JaviBJ
2023-03-26T20:00:15Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-26T20:00:07Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="JaviBJ/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
miniMaddy/AiOrNot
miniMaddy
2023-03-26T19:58:42Z
0
0
null
[ "region:us" ]
null
2023-03-18T04:48:13Z
# AlexNet Submission for coding assignment of Fatima Fellowship. ## Model Details This is a simple implementation of AlexNet in Keras for the coding assignment of Fatima Fellowship. ### Model Description - **Developed by:** Madhav Kumar - **Model type:** Convolutional Neural Network ## How to Get Started with the Model The files contains the notebook Alexnet_without_cropping.ipynb. It contains the code that was used to train the model. In the files, "weights-improvement-07-0.87.hdf5" contain the weights of the best model during training. "logs-20230326T161429Z-001.zip" contain the logs of the training. ## Training Details ### Training Data The files contain the training data images in train.zip and the data with image names and labels in the train.csv. ### Training Procedure I trained the AlexNet model on the training data on Google Colab. #### Preprocessing I used data augmentaion to increase the size of training data. ## Evaluation The model was tested on a validation data which was 20% percent of the train.zip data. The maximum accuracy obtained was 86.88%.
research-backup/mbart-large-cc25-esquad-qa
research-backup
2023-03-26T19:54:37Z
109
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "question answering", "es", "dataset:lmqg/qg_esquad", "arxiv:2210.03992", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-26T19:30:42Z
--- license: cc-by-4.0 metrics: - bleu4 - meteor - rouge-l - bertscore - moverscore language: es datasets: - lmqg/qg_esquad pipeline_tag: text2text-generation tags: - question answering widget: - text: "question: ¿Cuál es la población de Nueva York a partir de 2014?, context: Situada en uno de los mayores puertos naturales del mundo, la ciudad de Nueva York consta de cinco municipios, cada uno de los cuales es un condado separado del estado de Nueva York. Los cinco distritos - Brooklyn, Queens, Manhattan, el Bronx y Staten Island - se consolidaron en una sola ciudad en 1898. Con una población censada estimada en 2014 de 8.491.079 habitantes distribuidos en una superficie de solo 790 km ², Nueva York es la ciudad más densamente poblada de los Estados Unidos. Hasta 800 idiomas se hablan en Nueva York, por lo que es la ciudad más lingüísticamente diversa del mundo. Según estimaciones del censo de 2014, la región metropolitana de la ciudad de Nueva York sigue siendo por un margen significativo la más poblada de los Estados Unidos, según lo definido tanto por el Área Estadística Metropolitana (20,1 millones de residentes). En 2013, el MSA produjo un producto metropolitano bruto (GMP) de casi US $1,39 billones, mientras que en 2012, el CSA generó un GMP de más de US $1,55 billones, ambos clasificados en primer lugar." example_title: "Question Answering Example 1" - text: "question: ¿Cómo se llama el ejército personal de Sassou?, context: El progreso democrático del Congo se descarriló en 1997, cuando Lissouba y Sassou comenzaron a luchar por el poder en la guerra civil. A medida que se acercaban las elecciones presidenciales de julio de 1997, las tensiones entre los campos de Lissouba y Sassou aumentaron. El 5 de junio, las fuerzas del gobierno del presidente Lissouba rodearon el complejo de Sassou en Brazzaville y Sassou ordenó a los miembros de su milicia privada (conocida como Cobras) resistir. Así comenzó un conflicto de cuatro meses que destruyó o dañó gran parte de Brazzaville y causó decenas de miles de muertes civiles. A principios de octubre, el régimen socialista angoleño comenzó una invasión del Congo para instalar a Sassou en el poder. A mediados de octubre, el gobierno de Lissouba cayó. Poco después, Sassou se declaró presidente." example_title: "Question Answering Example 2" model-index: - name: lmqg/mbart-large-cc25-esquad-qa results: - task: name: Text2text Generation type: text2text-generation dataset: name: lmqg/qg_esquad type: default args: default metrics: - name: BLEU4 (Question Answering) type: bleu4_question_answering value: 23.41 - name: ROUGE-L (Question Answering) type: rouge_l_question_answering value: 39.39 - name: METEOR (Question Answering) type: meteor_question_answering value: 34.32 - name: BERTScore (Question Answering) type: bertscore_question_answering value: 92.3 - name: MoverScore (Question Answering) type: moverscore_question_answering value: 77.72 - name: AnswerF1Score (Question Answering) type: answer_f1_score__question_answering value: 64.13 - name: AnswerExactMatch (Question Answering) type: answer_exact_match_question_answering value: 42.23 --- # Model Card of `lmqg/mbart-large-cc25-esquad-qa` This model is fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) for question answering task on the [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation). ### Overview - **Language model:** [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) - **Language:** es - **Training data:** [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) (default) - **Online Demo:** [https://autoqg.net/](https://autoqg.net/) - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) ### Usage - With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-) ```python from lmqg import TransformersQG # initialize model model = TransformersQG(language="es", model="lmqg/mbart-large-cc25-esquad-qa") # model prediction answers = model.answer_q(list_question="¿Cuál es la población de Nueva York a partir de 2014?", list_context=" Situada en uno de los mayores puertos naturales del mundo, la ciudad de Nueva York consta de cinco municipios, cada uno de los cuales es un condado separado del estado de Nueva York. Los cinco distritos - Brooklyn, Queens, Manhattan, el Bronx y Staten Island - se consolidaron en una sola ciudad en 1898. Con una población censada estimada en 2014 de 8.491.079 habitantes distribuidos en una superficie de solo 790 km ², Nueva York es la ciudad más densamente poblada de los Estados Unidos. Hasta 800 idiomas se hablan en Nueva York, por lo que es la ciudad más lingüísticamente diversa del mundo. Según estimaciones del censo de 2014, la región metropolitana de la ciudad de Nueva York sigue siendo por un margen significativo la más poblada de los Estados Unidos, según lo definido tanto por el Área Estadística Metropolitana (20,1 millones de residentes). En 2013, el MSA produjo un producto metropolitano bruto (GMP) de casi US $1,39 billones, mientras que en 2012, el CSA generó un GMP de más de US $1,55 billones, ambos clasificados en primer lugar.") ``` - With `transformers` ```python from transformers import pipeline pipe = pipeline("text2text-generation", "lmqg/mbart-large-cc25-esquad-qa") output = pipe("question: ¿Cuál es la población de Nueva York a partir de 2014?, context: Situada en uno de los mayores puertos naturales del mundo, la ciudad de Nueva York consta de cinco municipios, cada uno de los cuales es un condado separado del estado de Nueva York. Los cinco distritos - Brooklyn, Queens, Manhattan, el Bronx y Staten Island - se consolidaron en una sola ciudad en 1898. Con una población censada estimada en 2014 de 8.491.079 habitantes distribuidos en una superficie de solo 790 km ², Nueva York es la ciudad más densamente poblada de los Estados Unidos. Hasta 800 idiomas se hablan en Nueva York, por lo que es la ciudad más lingüísticamente diversa del mundo. Según estimaciones del censo de 2014, la región metropolitana de la ciudad de Nueva York sigue siendo por un margen significativo la más poblada de los Estados Unidos, según lo definido tanto por el Área Estadística Metropolitana (20,1 millones de residentes). En 2013, el MSA produjo un producto metropolitano bruto (GMP) de casi US $1,39 billones, mientras que en 2012, el CSA generó un GMP de más de US $1,55 billones, ambos clasificados en primer lugar.") ``` ## Evaluation - ***Metric (Question Answering)***: [raw metric file](https://huggingface.co/lmqg/mbart-large-cc25-esquad-qa/raw/main/eval/metric.first.answer.paragraph_question.answer.lmqg_qg_esquad.default.json) | | Score | Type | Dataset | |:-----------------|--------:|:--------|:-----------------------------------------------------------------| | AnswerExactMatch | 42.23 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | | AnswerF1Score | 64.13 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | | BERTScore | 92.3 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | | Bleu_1 | 34.3 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | | Bleu_2 | 29.46 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | | Bleu_3 | 26.1 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | | Bleu_4 | 23.41 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | | METEOR | 34.32 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | | MoverScore | 77.72 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | | ROUGE_L | 39.39 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | ## Training hyperparameters The following hyperparameters were used during fine-tuning: - dataset_path: lmqg/qg_esquad - dataset_name: default - input_types: ['paragraph_question'] - output_types: ['answer'] - prefix_types: None - model: facebook/mbart-large-cc25 - max_length: 512 - max_length_output: 32 - epoch: 8 - batch: 8 - lr: 0.0001 - fp16: False - random_seed: 1 - gradient_accumulation_steps: 8 - label_smoothing: 0.15 The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mbart-large-cc25-esquad-qa/raw/main/trainer_config.json). ## Citation ``` @inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```
swang2000/distilbert-base-uncased-finetuned-ner
swang2000
2023-03-26T19:54:24Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-03-26T19:35:01Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9245241257193448 - name: Recall type: recall value: 0.9345564380803222 - name: F1 type: f1 value: 0.9295132127955493 - name: Accuracy type: accuracy value: 0.9834305050280394 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0610 - Precision: 0.9245 - Recall: 0.9346 - F1: 0.9295 - Accuracy: 0.9834 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2406 | 1.0 | 878 | 0.0681 | 0.9144 | 0.9217 | 0.9180 | 0.9813 | | 0.0544 | 2.0 | 1756 | 0.0612 | 0.9214 | 0.9314 | 0.9264 | 0.9827 | | 0.0296 | 3.0 | 2634 | 0.0610 | 0.9245 | 0.9346 | 0.9295 | 0.9834 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
MatthijsN/angry
MatthijsN
2023-03-26T19:44:15Z
107
0
transformers
[ "transformers", "pytorch", "safetensors", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-03-20T15:13:51Z
--- pipeline_tag: fill-mask widget: - text: "This place is <mask>." --- <p align="center"> <img src="https://huggingface.co/MatthijsN/angry/resolve/main/Angry.png" width="25%"> </p> Roberta further pretrained on 1-star yelp reviews
dmenini/a2c-AntBulletEnv-v0
dmenini
2023-03-26T19:43:48Z
2
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-26T19:28:15Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1957.59 +/- 114.55 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) ```python import gym from stable_baselines3 import A2C from huggingface_sb3 import load_from_hub checkpoint = load_from_hub( repo_id="AntBulletEnv-v0", filename="a2c-AntBulletEnv-v0.zip", ) model = A2C.load(checkpoint) # Evaluate the agent and watch it eval_env = gym.make("AntBulletEnv-v0") mean_reward, std_reward = evaluate_policy( model, eval_env, render=True, n_eval_episodes=5, deterministic=True, warn=False ) print(f"mean_reward={mean_reward:.2f} +/- {std_reward}") ```
AmaiaSolaun/film20000roberta-base
AmaiaSolaun
2023-03-26T19:40:24Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-03-14T14:37:36Z
--- license: mit tags: - generated_from_trainer model-index: - name: film20000roberta-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # film20000roberta-base This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8859 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 313 | 1.9136 | | 2.0516 | 2.0 | 626 | 1.8994 | | 2.0516 | 3.0 | 939 | 1.8586 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
albseverus/ppo-LunarLander-v2-v5
albseverus
2023-03-26T19:39:52Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-26T19:39:28Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 281.44 +/- 17.15 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
keras-dreambooth/monkey_island_style
keras-dreambooth
2023-03-26T19:36:29Z
5
0
keras
[ "keras", "tf-keras", "keras-dreambooth", "text-to-image", "license:apache-2.0", "region:us" ]
text-to-image
2023-03-23T20:29:05Z
--- library_name: keras license: apache-2.0 pipeline_tag: text-to-image tags: - keras-dreambooth --- ## Model description This model is a fine-tuned Stable Diffusion modeled, using the Dreambooth technique. It was trained on 43 screenshots of the game Return To Monkey Island, scraped from the Internet. You can find the full set here: [Return To Monkey Island Screenshots](https://huggingface.co/datasets/keras-dreambooth/monkey_island_screenshots) The result resembles the style from the game, even though you should not expect wonders and rather see it as its own style inspired by the game's. It was created by [johko](https://huggingface.co/johko) for the [keras-dreambooth](https://huggingface.co/keras-dreambooth) sprint. ## Training procedure This model was trained using the keras implementation of dreambooth. You can find the notebook to train these models and how to attend this sprint [here](https://github.com/huggingface/community-events/tree/main/keras-dreambooth-sprint). ## Example Outputs Geralt of Rivia ![Geralt of Rivia in Monkey Island Style](mnky_geralt.png) Frodo Baggins ![Frodo Baggins in Monkey Island Style](mnky_frodo.png) Han Solo ![Han Solo in Monkey Island Style](mnky_han.png) ### Training hyperparameters The following hyperparameters were used during training: | Hyperparameters | Value | | :-- | :-- | | inner_optimizer.class_name | Custom>RMSprop | | inner_optimizer.config.name | RMSprop | | inner_optimizer.config.weight_decay | None | | inner_optimizer.config.clipnorm | None | | inner_optimizer.config.global_clipnorm | None | | inner_optimizer.config.clipvalue | None | | inner_optimizer.config.use_ema | False | | inner_optimizer.config.ema_momentum | 0.99 | | inner_optimizer.config.ema_overwrite_frequency | 100 | | inner_optimizer.config.jit_compile | True | | inner_optimizer.config.is_legacy_optimizer | False | | inner_optimizer.config.learning_rate | 0.0010000000474974513 | | inner_optimizer.config.rho | 0.9 | | inner_optimizer.config.momentum | 0.0 | | inner_optimizer.config.epsilon | 1e-07 | | inner_optimizer.config.centered | False | | dynamic | True | | initial_scale | 32768.0 | | dynamic_growth_steps | 2000 | | training_precision | mixed_float16 | ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
Ellipsoul/poca-SoccerTwos
Ellipsoul
2023-03-26T19:20:53Z
5
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-03-26T19:20:45Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: Ellipsoul/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
pejho/donut-base-sroie
pejho
2023-03-26T19:19:41Z
52
0
transformers
[ "transformers", "pytorch", "tensorboard", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:imagefolder", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2023-03-26T15:35:58Z
--- license: mit tags: - generated_from_trainer datasets: - imagefolder model-index: - name: donut-base-sroie results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-base-sroie This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
wcde/llama-13b-3bit-gr128
wcde
2023-03-26T19:19:35Z
6
3
transformers
[ "transformers", "llama", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-03-26T18:17:02Z
Generated with: --wbits 3 --groupsize 128 --true-sequential --new-eval --faster-kernel
JulianZas/rl_course_vizdoom_health_gathering_supreme
JulianZas
2023-03-26T18:58:05Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-26T15:11:42Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 12.84 +/- 5.85 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r JulianZas/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
e39324q/Life-Like-Diffusion-v2
e39324q
2023-03-26T18:56:41Z
0
1
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-03-26T18:44:45Z
--- license: creativeml-openrail-m ---
sanak/LunarLander-v2
sanak
2023-03-26T18:55:19Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-03-26T18:55:11Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -153.16 +/- 96.48 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'sanak/LunarLander-v2' 'batch_size': 512 'minibatch_size': 128} ```
asebaq/fatima_ch_cv_2023
asebaq
2023-03-26T18:53:25Z
0
0
null
[ "dataset:competitions/aiornot", "region:us" ]
null
2023-03-14T18:48:23Z
--- datasets: - competitions/aiornot metrics: - accuracy ---
wcde/llama-13b-4bit-gr128
wcde
2023-03-26T18:49:52Z
5
5
transformers
[ "transformers", "llama", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-03-26T18:15:56Z
Generated with: --wbits 4 --groupsize 128 --true-sequential --new-eval --faster-kernel
coreml-community/coreml-vanGoghDiffusion_v1
coreml-community
2023-03-26T18:36:40Z
0
6
null
[ "coreml", "stable-diffusion", "text-to-image", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-03-26T04:58:16Z
--- license: creativeml-openrail-m tags: - coreml - stable-diffusion - text-to-image --- # Core ML Converted Model: - This model was converted to [Core ML for use on Apple Silicon devices](https://github.com/apple/ml-stable-diffusion). Conversion instructions can be found [here](https://github.com/godly-devotion/MochiDiffusion/wiki/How-to-convert-ckpt-or-safetensors-files-to-Core-ML).<br> - Provide the model to an app such as Mochi Diffusion [Github](https://github.com/godly-devotion/MochiDiffusion) - [Discord](https://discord.gg/x2kartzxGv) to generate images.<br> - `split_einsum` version is compatible with all compute unit options including Neural Engine. - `original` version is only compatible with CPU & GPU option. - Custom resolution versions are tagged accordingly. - The `vae-ft-mse-840000-ema-pruned.ckpt` vae is embedded into the model. - This model was converted with a `vae-encoder` for i2i. - This model is fp16. - Descriptions are posted as-is from original model source. - Not all features and/or results may be available in CoreML format. - This model does not have the [unet split into chunks](https://github.com/apple/ml-stable-diffusion#-converting-models-to-core-ml). - This model does not include a safety checker (for NSFW content). # vanGoghDiffusion_v1: Source(s): [Hugging Face](https://huggingface.co/dallinmackay/Van-Gogh-diffusion) - [CivitAI](https://civitai.com/models/91/van-gogh-diffusion) This is a fine-tuned Stable Diffusion model (based on v1.5) trained on screenshots from the film Loving Vincent. Use the token lvngvncnt at the BEGINNING of your prompts to use the style (e.g., "lvngvncnt, beautiful woman at sunset"). This model works best with the Euler sampler (NOT Euler_a). If you get too many yellow faces or you dont like the strong blue bias, simply put them in the negative prompt (e.g., "Yellow face, blue"). ![image](https://imagecache.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/63d1f600-42ba-41c8-5f53-08d7da80f200/width=400/tmpg5t7sl8p.png) ![image](https://imagecache.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/b221120c-89e2-4209-b9c2-59a3f1fa2d00/width=400/00000-4204770686-A%20very%20cute%20c___.png) -- Characters rendered with this model: Character Samples prompt and settings used: lvngvncnt, [person], highly detailed | Steps: 25, Sampler: Euler, CFG scale: 6 ![image](https://huggingface.co/dallinmackay/Van-Gogh-diffusion/resolve/main/preview1.jpg) -- Landscapes/miscellaneous rendered with this model: Landscape Samples prompt and settings used: lvngvncnt, [subject/setting], highly detailed | Steps: 25, Sampler: Euler, CFG scale: 6 ![image](https://huggingface.co/dallinmackay/Van-Gogh-diffusion/resolve/main/preview2.jpg) -- This model was trained with Dreambooth, using TheLastBen colab notebook
shreyansjain/ppo-SnowballTarget
shreyansjain
2023-03-26T18:22:04Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-03-26T18:20:24Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Find your model_id: shreyansjain/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
wcde/llama-7b-4bit-act
wcde
2023-03-26T18:14:47Z
5
2
transformers
[ "transformers", "llama", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-03-26T18:06:59Z
Generated with: --wbits 4 --act-order --true-sequential --new-eval --faster-kernel
wcde/llama-7b-4bit-gr128
wcde
2023-03-26T18:06:17Z
9
4
transformers
[ "transformers", "llama", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-03-26T17:57:46Z
Generated with: --wbits 4 --groupsize 128 --true-sequential --new-eval --faster-kernel