modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-29 00:38:39
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
525 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-29 00:38:28
card
stringlengths
11
1.01M
stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4
stefan-it
2023-10-24T13:09:25Z
4
0
flair
[ "flair", "pytorch", "tensorboard", "token-classification", "sequence-tagger-model", "fr", "base_model:dbmdz/bert-tiny-historic-multilingual-cased", "base_model:finetune:dbmdz/bert-tiny-historic-multilingual-cased", "license:mit", "region:us" ]
token-classification
2023-10-18T19:58:18Z
--- language: fr license: mit tags: - flair - token-classification - sequence-tagger-model base_model: dbmdz/bert-tiny-historic-multilingual-cased widget: - text: Nous recevons le premier numéro d ' un nouveau journal , le Radical - Libéral , qui paraîtra à Genève deux fois la semaine . Son but est de représenter l ' élément national du radicalisme genevois , en d ' autres termes , de défendre la politique intransigeante do M . Carteret , en opposition aux tendances du groupe _ > dont le Genevois est l ' organe . Bétail . --- # Fine-tuned Flair Model on French HIPE-2020 Dataset (HIPE-2022) This Flair model was fine-tuned on the [French HIPE-2020](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-hipe2020.md) NER Dataset using hmBERT Tiny as backbone LM. The HIPE-2020 dataset is comprised of newspapers from mid 19C to mid 20C. For information can be found [here](https://dl.acm.org/doi/abs/10.1007/978-3-030-58219-7_21). The following NEs were annotated: `loc`, `org`, `pers`, `prod`, `time` and `comp`. # Results We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: * Batch Sizes: `[4, 8]` * Learning Rates: `[5e-05, 3e-05]` And report micro F1-score on development set: | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average | |-------------------|--------------|--------------|--------------|-----------------|--------------|-----------------| | `bs4-e10-lr5e-05` | [0.5204][1] | [0.5597][2] | [0.5669][3] | [0.5394][4] | [0.5182][5] | 0.5409 ± 0.0222 | | `bs8-e10-lr5e-05` | [0.4945][6] | [0.5457][7] | [0.5225][8] | [**0.5068**][9] | [0.493][10] | 0.5125 ± 0.022 | | `bs4-e10-lr3e-05` | [0.4774][11] | [0.5395][12] | [0.5184][13] | [0.4849][14] | [0.4722][15] | 0.4985 ± 0.0291 | | `bs8-e10-lr3e-05` | [0.4335][16] | [0.4814][17] | [0.4744][18] | [0.4443][19] | [0.456][20] | 0.4579 ± 0.0201 | [1]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [2]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [3]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [4]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [5]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [6]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [7]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [8]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [9]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [10]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [11]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [12]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [13]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [14]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [15]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [16]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [17]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [18]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [19]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [20]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub. More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3
stefan-it
2023-10-24T13:09:23Z
3
0
flair
[ "flair", "pytorch", "tensorboard", "token-classification", "sequence-tagger-model", "fr", "base_model:dbmdz/bert-tiny-historic-multilingual-cased", "base_model:finetune:dbmdz/bert-tiny-historic-multilingual-cased", "license:mit", "region:us" ]
token-classification
2023-10-18T19:39:23Z
--- language: fr license: mit tags: - flair - token-classification - sequence-tagger-model base_model: dbmdz/bert-tiny-historic-multilingual-cased widget: - text: Nous recevons le premier numéro d ' un nouveau journal , le Radical - Libéral , qui paraîtra à Genève deux fois la semaine . Son but est de représenter l ' élément national du radicalisme genevois , en d ' autres termes , de défendre la politique intransigeante do M . Carteret , en opposition aux tendances du groupe _ > dont le Genevois est l ' organe . Bétail . --- # Fine-tuned Flair Model on French HIPE-2020 Dataset (HIPE-2022) This Flair model was fine-tuned on the [French HIPE-2020](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-hipe2020.md) NER Dataset using hmBERT Tiny as backbone LM. The HIPE-2020 dataset is comprised of newspapers from mid 19C to mid 20C. For information can be found [here](https://dl.acm.org/doi/abs/10.1007/978-3-030-58219-7_21). The following NEs were annotated: `loc`, `org`, `pers`, `prod`, `time` and `comp`. # Results We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: * Batch Sizes: `[4, 8]` * Learning Rates: `[5e-05, 3e-05]` And report micro F1-score on development set: | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average | |-------------------|--------------|--------------|-----------------|--------------|--------------|-----------------| | `bs4-e10-lr5e-05` | [0.5204][1] | [0.5597][2] | [0.5669][3] | [0.5394][4] | [0.5182][5] | 0.5409 ± 0.0222 | | `bs8-e10-lr5e-05` | [0.4945][6] | [0.5457][7] | [**0.5225**][8] | [0.5068][9] | [0.493][10] | 0.5125 ± 0.022 | | `bs4-e10-lr3e-05` | [0.4774][11] | [0.5395][12] | [0.5184][13] | [0.4849][14] | [0.4722][15] | 0.4985 ± 0.0291 | | `bs8-e10-lr3e-05` | [0.4335][16] | [0.4814][17] | [0.4744][18] | [0.4443][19] | [0.456][20] | 0.4579 ± 0.0201 | [1]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [2]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [3]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [4]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [5]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [6]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [7]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [8]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [9]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [10]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [11]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [12]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [13]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [14]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [15]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [16]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [17]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [18]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [19]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [20]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub. More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4
stefan-it
2023-10-24T13:09:23Z
2
0
flair
[ "flair", "pytorch", "tensorboard", "token-classification", "sequence-tagger-model", "fr", "base_model:dbmdz/bert-tiny-historic-multilingual-cased", "base_model:finetune:dbmdz/bert-tiny-historic-multilingual-cased", "license:mit", "region:us" ]
token-classification
2023-10-18T19:44:35Z
--- language: fr license: mit tags: - flair - token-classification - sequence-tagger-model base_model: dbmdz/bert-tiny-historic-multilingual-cased widget: - text: Nous recevons le premier numéro d ' un nouveau journal , le Radical - Libéral , qui paraîtra à Genève deux fois la semaine . Son but est de représenter l ' élément national du radicalisme genevois , en d ' autres termes , de défendre la politique intransigeante do M . Carteret , en opposition aux tendances du groupe _ > dont le Genevois est l ' organe . Bétail . --- # Fine-tuned Flair Model on French HIPE-2020 Dataset (HIPE-2022) This Flair model was fine-tuned on the [French HIPE-2020](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-hipe2020.md) NER Dataset using hmBERT Tiny as backbone LM. The HIPE-2020 dataset is comprised of newspapers from mid 19C to mid 20C. For information can be found [here](https://dl.acm.org/doi/abs/10.1007/978-3-030-58219-7_21). The following NEs were annotated: `loc`, `org`, `pers`, `prod`, `time` and `comp`. # Results We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: * Batch Sizes: `[4, 8]` * Learning Rates: `[5e-05, 3e-05]` And report micro F1-score on development set: | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average | |-------------------|--------------|--------------|--------------|------------------|--------------|-----------------| | `bs4-e10-lr5e-05` | [0.5204][1] | [0.5597][2] | [0.5669][3] | [0.5394][4] | [0.5182][5] | 0.5409 ± 0.0222 | | `bs8-e10-lr5e-05` | [0.4945][6] | [0.5457][7] | [0.5225][8] | [0.5068][9] | [0.493][10] | 0.5125 ± 0.022 | | `bs4-e10-lr3e-05` | [0.4774][11] | [0.5395][12] | [0.5184][13] | [**0.4849**][14] | [0.4722][15] | 0.4985 ± 0.0291 | | `bs8-e10-lr3e-05` | [0.4335][16] | [0.4814][17] | [0.4744][18] | [0.4443][19] | [0.456][20] | 0.4579 ± 0.0201 | [1]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [2]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [3]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [4]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [5]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [6]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [7]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [8]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [9]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [10]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [11]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [12]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [13]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [14]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [15]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [16]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [17]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [18]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [19]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [20]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub. More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3
stefan-it
2023-10-24T13:09:22Z
5
0
flair
[ "flair", "pytorch", "tensorboard", "token-classification", "sequence-tagger-model", "fr", "base_model:dbmdz/bert-tiny-historic-multilingual-cased", "base_model:finetune:dbmdz/bert-tiny-historic-multilingual-cased", "license:mit", "region:us" ]
token-classification
2023-10-18T19:35:06Z
--- language: fr license: mit tags: - flair - token-classification - sequence-tagger-model base_model: dbmdz/bert-tiny-historic-multilingual-cased widget: - text: Nous recevons le premier numéro d ' un nouveau journal , le Radical - Libéral , qui paraîtra à Genève deux fois la semaine . Son but est de représenter l ' élément national du radicalisme genevois , en d ' autres termes , de défendre la politique intransigeante do M . Carteret , en opposition aux tendances du groupe _ > dont le Genevois est l ' organe . Bétail . --- # Fine-tuned Flair Model on French HIPE-2020 Dataset (HIPE-2022) This Flair model was fine-tuned on the [French HIPE-2020](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-hipe2020.md) NER Dataset using hmBERT Tiny as backbone LM. The HIPE-2020 dataset is comprised of newspapers from mid 19C to mid 20C. For information can be found [here](https://dl.acm.org/doi/abs/10.1007/978-3-030-58219-7_21). The following NEs were annotated: `loc`, `org`, `pers`, `prod`, `time` and `comp`. # Results We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: * Batch Sizes: `[4, 8]` * Learning Rates: `[5e-05, 3e-05]` And report micro F1-score on development set: | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average | |-------------------|--------------|--------------|------------------|--------------|--------------|-----------------| | `bs4-e10-lr5e-05` | [0.5204][1] | [0.5597][2] | [0.5669][3] | [0.5394][4] | [0.5182][5] | 0.5409 ± 0.0222 | | `bs8-e10-lr5e-05` | [0.4945][6] | [0.5457][7] | [0.5225][8] | [0.5068][9] | [0.493][10] | 0.5125 ± 0.022 | | `bs4-e10-lr3e-05` | [0.4774][11] | [0.5395][12] | [0.5184][13] | [0.4849][14] | [0.4722][15] | 0.4985 ± 0.0291 | | `bs8-e10-lr3e-05` | [0.4335][16] | [0.4814][17] | [**0.4744**][18] | [0.4443][19] | [0.456][20] | 0.4579 ± 0.0201 | [1]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [2]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [3]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [4]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [5]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [6]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [7]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [8]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [9]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [10]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [11]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [12]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [13]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [14]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [15]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [16]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [17]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [18]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [19]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [20]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub. More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
hmbert-tiny/flair-hipe-2022-hipe2020-fr
hmbert-tiny
2023-10-24T13:09:22Z
3
0
flair
[ "flair", "pytorch", "tensorboard", "token-classification", "sequence-tagger-model", "fr", "base_model:dbmdz/bert-tiny-historic-multilingual-cased", "base_model:finetune:dbmdz/bert-tiny-historic-multilingual-cased", "license:mit", "region:us" ]
token-classification
2023-10-18T19:30:49Z
--- language: fr license: mit tags: - flair - token-classification - sequence-tagger-model base_model: dbmdz/bert-tiny-historic-multilingual-cased widget: - text: Nous recevons le premier numéro d ' un nouveau journal , le Radical - Libéral , qui paraîtra à Genève deux fois la semaine . Son but est de représenter l ' élément national du radicalisme genevois , en d ' autres termes , de défendre la politique intransigeante do M . Carteret , en opposition aux tendances du groupe _ > dont le Genevois est l ' organe . Bétail . --- # Fine-tuned Flair Model on French HIPE-2020 Dataset (HIPE-2022) This Flair model was fine-tuned on the [French HIPE-2020](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-hipe2020.md) NER Dataset using hmBERT Tiny as backbone LM. The HIPE-2020 dataset is comprised of newspapers from mid 19C to mid 20C. For information can be found [here](https://dl.acm.org/doi/abs/10.1007/978-3-030-58219-7_21). The following NEs were annotated: `loc`, `org`, `pers`, `prod`, `time` and `comp`. # Results We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: * Batch Sizes: `[4, 8]` * Learning Rates: `[5e-05, 3e-05]` And report micro F1-score on development set: | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average | |-------------------|--------------|--------------|-----------------|--------------|--------------|-----------------| | `bs4-e10-lr5e-05` | [0.5204][1] | [0.5597][2] | [**0.5669**][3] | [0.5394][4] | [0.5182][5] | 0.5409 ± 0.0222 | | `bs8-e10-lr5e-05` | [0.4945][6] | [0.5457][7] | [0.5225][8] | [0.5068][9] | [0.493][10] | 0.5125 ± 0.022 | | `bs4-e10-lr3e-05` | [0.4774][11] | [0.5395][12] | [0.5184][13] | [0.4849][14] | [0.4722][15] | 0.4985 ± 0.0291 | | `bs8-e10-lr3e-05` | [0.4335][16] | [0.4814][17] | [0.4744][18] | [0.4443][19] | [0.456][20] | 0.4579 ± 0.0201 | [1]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [2]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [3]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [4]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [5]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [6]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [7]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [8]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [9]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [10]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [11]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [12]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [13]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [14]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [15]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [16]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [17]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [18]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [19]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [20]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub. More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2
stefan-it
2023-10-24T13:09:20Z
2
0
flair
[ "flair", "pytorch", "tensorboard", "token-classification", "sequence-tagger-model", "fr", "base_model:dbmdz/bert-tiny-historic-multilingual-cased", "base_model:finetune:dbmdz/bert-tiny-historic-multilingual-cased", "license:mit", "region:us" ]
token-classification
2023-10-18T19:11:45Z
--- language: fr license: mit tags: - flair - token-classification - sequence-tagger-model base_model: dbmdz/bert-tiny-historic-multilingual-cased widget: - text: Nous recevons le premier numéro d ' un nouveau journal , le Radical - Libéral , qui paraîtra à Genève deux fois la semaine . Son but est de représenter l ' élément national du radicalisme genevois , en d ' autres termes , de défendre la politique intransigeante do M . Carteret , en opposition aux tendances du groupe _ > dont le Genevois est l ' organe . Bétail . --- # Fine-tuned Flair Model on French HIPE-2020 Dataset (HIPE-2022) This Flair model was fine-tuned on the [French HIPE-2020](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-hipe2020.md) NER Dataset using hmBERT Tiny as backbone LM. The HIPE-2020 dataset is comprised of newspapers from mid 19C to mid 20C. For information can be found [here](https://dl.acm.org/doi/abs/10.1007/978-3-030-58219-7_21). The following NEs were annotated: `loc`, `org`, `pers`, `prod`, `time` and `comp`. # Results We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: * Batch Sizes: `[4, 8]` * Learning Rates: `[5e-05, 3e-05]` And report micro F1-score on development set: | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average | |-------------------|--------------|-----------------|--------------|--------------|--------------|-----------------| | `bs4-e10-lr5e-05` | [0.5204][1] | [**0.5597**][2] | [0.5669][3] | [0.5394][4] | [0.5182][5] | 0.5409 ± 0.0222 | | `bs8-e10-lr5e-05` | [0.4945][6] | [0.5457][7] | [0.5225][8] | [0.5068][9] | [0.493][10] | 0.5125 ± 0.022 | | `bs4-e10-lr3e-05` | [0.4774][11] | [0.5395][12] | [0.5184][13] | [0.4849][14] | [0.4722][15] | 0.4985 ± 0.0291 | | `bs8-e10-lr3e-05` | [0.4335][16] | [0.4814][17] | [0.4744][18] | [0.4443][19] | [0.456][20] | 0.4579 ± 0.0201 | [1]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [2]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [3]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [4]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [5]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [6]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [7]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [8]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [9]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [10]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [11]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [12]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [13]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [14]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [15]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [16]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [17]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [18]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [19]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [20]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub. More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1
stefan-it
2023-10-24T13:09:19Z
5
0
flair
[ "flair", "pytorch", "tensorboard", "token-classification", "sequence-tagger-model", "fr", "base_model:dbmdz/bert-tiny-historic-multilingual-cased", "base_model:finetune:dbmdz/bert-tiny-historic-multilingual-cased", "license:mit", "region:us" ]
token-classification
2023-10-18T19:01:16Z
--- language: fr license: mit tags: - flair - token-classification - sequence-tagger-model base_model: dbmdz/bert-tiny-historic-multilingual-cased widget: - text: Nous recevons le premier numéro d ' un nouveau journal , le Radical - Libéral , qui paraîtra à Genève deux fois la semaine . Son but est de représenter l ' élément national du radicalisme genevois , en d ' autres termes , de défendre la politique intransigeante do M . Carteret , en opposition aux tendances du groupe _ > dont le Genevois est l ' organe . Bétail . --- # Fine-tuned Flair Model on French HIPE-2020 Dataset (HIPE-2022) This Flair model was fine-tuned on the [French HIPE-2020](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-hipe2020.md) NER Dataset using hmBERT Tiny as backbone LM. The HIPE-2020 dataset is comprised of newspapers from mid 19C to mid 20C. For information can be found [here](https://dl.acm.org/doi/abs/10.1007/978-3-030-58219-7_21). The following NEs were annotated: `loc`, `org`, `pers`, `prod`, `time` and `comp`. # Results We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: * Batch Sizes: `[4, 8]` * Learning Rates: `[5e-05, 3e-05]` And report micro F1-score on development set: | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average | |-------------------|-----------------|--------------|--------------|--------------|--------------|-----------------| | `bs4-e10-lr5e-05` | [0.5204][1] | [0.5597][2] | [0.5669][3] | [0.5394][4] | [0.5182][5] | 0.5409 ± 0.0222 | | `bs8-e10-lr5e-05` | [**0.4945**][6] | [0.5457][7] | [0.5225][8] | [0.5068][9] | [0.493][10] | 0.5125 ± 0.022 | | `bs4-e10-lr3e-05` | [0.4774][11] | [0.5395][12] | [0.5184][13] | [0.4849][14] | [0.4722][15] | 0.4985 ± 0.0291 | | `bs8-e10-lr3e-05` | [0.4335][16] | [0.4814][17] | [0.4744][18] | [0.4443][19] | [0.456][20] | 0.4579 ± 0.0201 | [1]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [2]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [3]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [4]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [5]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [6]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [7]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [8]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [9]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [10]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [11]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [12]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [13]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [14]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [15]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [16]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [17]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [18]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [19]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [20]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub. More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1
stefan-it
2023-10-24T13:09:18Z
6
0
flair
[ "flair", "pytorch", "tensorboard", "token-classification", "sequence-tagger-model", "fr", "base_model:dbmdz/bert-tiny-historic-multilingual-cased", "base_model:finetune:dbmdz/bert-tiny-historic-multilingual-cased", "license:mit", "region:us" ]
token-classification
2023-10-18T18:47:25Z
--- language: fr license: mit tags: - flair - token-classification - sequence-tagger-model base_model: dbmdz/bert-tiny-historic-multilingual-cased widget: - text: Nous recevons le premier numéro d ' un nouveau journal , le Radical - Libéral , qui paraîtra à Genève deux fois la semaine . Son but est de représenter l ' élément national du radicalisme genevois , en d ' autres termes , de défendre la politique intransigeante do M . Carteret , en opposition aux tendances du groupe _ > dont le Genevois est l ' organe . Bétail . --- # Fine-tuned Flair Model on French HIPE-2020 Dataset (HIPE-2022) This Flair model was fine-tuned on the [French HIPE-2020](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-hipe2020.md) NER Dataset using hmBERT Tiny as backbone LM. The HIPE-2020 dataset is comprised of newspapers from mid 19C to mid 20C. For information can be found [here](https://dl.acm.org/doi/abs/10.1007/978-3-030-58219-7_21). The following NEs were annotated: `loc`, `org`, `pers`, `prod`, `time` and `comp`. # Results We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: * Batch Sizes: `[4, 8]` * Learning Rates: `[5e-05, 3e-05]` And report micro F1-score on development set: | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average | |-------------------|------------------|--------------|--------------|--------------|--------------|-----------------| | `bs4-e10-lr5e-05` | [0.5204][1] | [0.5597][2] | [0.5669][3] | [0.5394][4] | [0.5182][5] | 0.5409 ± 0.0222 | | `bs8-e10-lr5e-05` | [0.4945][6] | [0.5457][7] | [0.5225][8] | [0.5068][9] | [0.493][10] | 0.5125 ± 0.022 | | `bs4-e10-lr3e-05` | [**0.4774**][11] | [0.5395][12] | [0.5184][13] | [0.4849][14] | [0.4722][15] | 0.4985 ± 0.0291 | | `bs8-e10-lr3e-05` | [0.4335][16] | [0.4814][17] | [0.4744][18] | [0.4443][19] | [0.456][20] | 0.4579 ± 0.0201 | [1]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [2]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [3]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [4]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [5]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [6]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [7]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [8]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [9]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [10]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [11]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [12]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [13]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [14]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [15]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [16]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [17]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [18]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [19]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [20]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub. More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1
stefan-it
2023-10-24T13:09:18Z
3
0
flair
[ "flair", "pytorch", "tensorboard", "token-classification", "sequence-tagger-model", "fr", "base_model:dbmdz/bert-tiny-historic-multilingual-cased", "base_model:finetune:dbmdz/bert-tiny-historic-multilingual-cased", "license:mit", "region:us" ]
token-classification
2023-10-18T18:52:43Z
--- language: fr license: mit tags: - flair - token-classification - sequence-tagger-model base_model: dbmdz/bert-tiny-historic-multilingual-cased widget: - text: Nous recevons le premier numéro d ' un nouveau journal , le Radical - Libéral , qui paraîtra à Genève deux fois la semaine . Son but est de représenter l ' élément national du radicalisme genevois , en d ' autres termes , de défendre la politique intransigeante do M . Carteret , en opposition aux tendances du groupe _ > dont le Genevois est l ' organe . Bétail . --- # Fine-tuned Flair Model on French HIPE-2020 Dataset (HIPE-2022) This Flair model was fine-tuned on the [French HIPE-2020](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-hipe2020.md) NER Dataset using hmBERT Tiny as backbone LM. The HIPE-2020 dataset is comprised of newspapers from mid 19C to mid 20C. For information can be found [here](https://dl.acm.org/doi/abs/10.1007/978-3-030-58219-7_21). The following NEs were annotated: `loc`, `org`, `pers`, `prod`, `time` and `comp`. # Results We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: * Batch Sizes: `[4, 8]` * Learning Rates: `[5e-05, 3e-05]` And report micro F1-score on development set: | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average | |-------------------|-----------------|--------------|--------------|--------------|--------------|-----------------| | `bs4-e10-lr5e-05` | [**0.5204**][1] | [0.5597][2] | [0.5669][3] | [0.5394][4] | [0.5182][5] | 0.5409 ± 0.0222 | | `bs8-e10-lr5e-05` | [0.4945][6] | [0.5457][7] | [0.5225][8] | [0.5068][9] | [0.493][10] | 0.5125 ± 0.022 | | `bs4-e10-lr3e-05` | [0.4774][11] | [0.5395][12] | [0.5184][13] | [0.4849][14] | [0.4722][15] | 0.4985 ± 0.0291 | | `bs8-e10-lr3e-05` | [0.4335][16] | [0.4814][17] | [0.4744][18] | [0.4443][19] | [0.456][20] | 0.4579 ± 0.0201 | [1]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [2]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [3]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [4]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [5]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [6]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [7]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [8]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [9]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [10]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [11]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [12]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [13]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [14]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [15]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [16]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [17]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [18]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [19]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [20]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub. More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5
stefan-it
2023-10-24T13:09:10Z
1
0
flair
[ "flair", "pytorch", "tensorboard", "token-classification", "sequence-tagger-model", "de", "base_model:dbmdz/bert-tiny-historic-multilingual-cased", "base_model:finetune:dbmdz/bert-tiny-historic-multilingual-cased", "license:mit", "region:us" ]
token-classification
2023-10-18T18:33:31Z
--- language: de license: mit tags: - flair - token-classification - sequence-tagger-model base_model: dbmdz/bert-tiny-historic-multilingual-cased widget: - text: Es war am 25sten , als Lord Corn wollis Dublin mit seinem Gefolge und mehrern Truppen verließ , um in einer Central - Lage bey Sligo die Operationen der Armee persönlich zu dirigiren . Der Feind dürfte bald in die Enge kommen , da Gen . Lacke mit 6000 Mann ihm entgegen marschirt . --- # Fine-tuned Flair Model on German HIPE-2020 Dataset (HIPE-2022) This Flair model was fine-tuned on the [German HIPE-2020](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-hipe2020.md) NER Dataset using hmBERT Tiny as backbone LM. The HIPE-2020 dataset is comprised of newspapers from mid 19C to mid 20C. For information can be found [here](https://dl.acm.org/doi/abs/10.1007/978-3-030-58219-7_21). The following NEs were annotated: `loc`, `org`, `pers`, `prod`, `time` and `comp`. # Results We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: * Batch Sizes: `[4, 8]` * Learning Rates: `[5e-05, 3e-05]` And report micro F1-score on development set: | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average | |-------------------|--------------|--------------|--------------|--------------|------------------|-----------------| | `bs4-e10-lr5e-05` | [0.3947][1] | [0.398][2] | [0.3655][3] | [0.3703][4] | [0.3858][5] | 0.3829 ± 0.0145 | | `bs8-e10-lr5e-05` | [0.3744][6] | [0.3819][7] | [0.3486][8] | [0.3506][9] | [0.3645][10] | 0.364 ± 0.0145 | | `bs4-e10-lr3e-05` | [0.3415][11] | [0.3579][12] | [0.3291][13] | [0.3351][14] | [0.3549][15] | 0.3437 ± 0.0124 | | `bs8-e10-lr3e-05` | [0.3282][16] | [0.336][17] | [0.3138][18] | [0.3172][19] | [**0.3422**][20] | 0.3275 ± 0.0121 | [1]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [2]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [3]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [4]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [5]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [6]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [7]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [8]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [9]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [10]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [11]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [12]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [13]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [14]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [15]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [16]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [17]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [18]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [19]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [20]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub. More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5
stefan-it
2023-10-24T13:09:09Z
4
0
flair
[ "flair", "pytorch", "tensorboard", "token-classification", "sequence-tagger-model", "de", "base_model:dbmdz/bert-tiny-historic-multilingual-cased", "base_model:finetune:dbmdz/bert-tiny-historic-multilingual-cased", "license:mit", "region:us" ]
token-classification
2023-10-18T18:30:51Z
--- language: de license: mit tags: - flair - token-classification - sequence-tagger-model base_model: dbmdz/bert-tiny-historic-multilingual-cased widget: - text: Es war am 25sten , als Lord Corn wollis Dublin mit seinem Gefolge und mehrern Truppen verließ , um in einer Central - Lage bey Sligo die Operationen der Armee persönlich zu dirigiren . Der Feind dürfte bald in die Enge kommen , da Gen . Lacke mit 6000 Mann ihm entgegen marschirt . --- # Fine-tuned Flair Model on German HIPE-2020 Dataset (HIPE-2022) This Flair model was fine-tuned on the [German HIPE-2020](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-hipe2020.md) NER Dataset using hmBERT Tiny as backbone LM. The HIPE-2020 dataset is comprised of newspapers from mid 19C to mid 20C. For information can be found [here](https://dl.acm.org/doi/abs/10.1007/978-3-030-58219-7_21). The following NEs were annotated: `loc`, `org`, `pers`, `prod`, `time` and `comp`. # Results We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: * Batch Sizes: `[4, 8]` * Learning Rates: `[5e-05, 3e-05]` And report micro F1-score on development set: | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average | |-------------------|--------------|--------------|--------------|--------------|-----------------|-----------------| | `bs4-e10-lr5e-05` | [0.3947][1] | [0.398][2] | [0.3655][3] | [0.3703][4] | [**0.3858**][5] | 0.3829 ± 0.0145 | | `bs8-e10-lr5e-05` | [0.3744][6] | [0.3819][7] | [0.3486][8] | [0.3506][9] | [0.3645][10] | 0.364 ± 0.0145 | | `bs4-e10-lr3e-05` | [0.3415][11] | [0.3579][12] | [0.3291][13] | [0.3351][14] | [0.3549][15] | 0.3437 ± 0.0124 | | `bs8-e10-lr3e-05` | [0.3282][16] | [0.336][17] | [0.3138][18] | [0.3172][19] | [0.3422][20] | 0.3275 ± 0.0121 | [1]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [2]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [3]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [4]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [5]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [6]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [7]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [8]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [9]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [10]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [11]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [12]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [13]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [14]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [15]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [16]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [17]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [18]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [19]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [20]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub. More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4
stefan-it
2023-10-24T13:09:08Z
0
0
flair
[ "flair", "pytorch", "tensorboard", "token-classification", "sequence-tagger-model", "de", "base_model:dbmdz/bert-tiny-historic-multilingual-cased", "base_model:finetune:dbmdz/bert-tiny-historic-multilingual-cased", "license:mit", "region:us" ]
token-classification
2023-10-18T18:21:36Z
--- language: de license: mit tags: - flair - token-classification - sequence-tagger-model base_model: dbmdz/bert-tiny-historic-multilingual-cased widget: - text: Es war am 25sten , als Lord Corn wollis Dublin mit seinem Gefolge und mehrern Truppen verließ , um in einer Central - Lage bey Sligo die Operationen der Armee persönlich zu dirigiren . Der Feind dürfte bald in die Enge kommen , da Gen . Lacke mit 6000 Mann ihm entgegen marschirt . --- # Fine-tuned Flair Model on German HIPE-2020 Dataset (HIPE-2022) This Flair model was fine-tuned on the [German HIPE-2020](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-hipe2020.md) NER Dataset using hmBERT Tiny as backbone LM. The HIPE-2020 dataset is comprised of newspapers from mid 19C to mid 20C. For information can be found [here](https://dl.acm.org/doi/abs/10.1007/978-3-030-58219-7_21). The following NEs were annotated: `loc`, `org`, `pers`, `prod`, `time` and `comp`. # Results We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: * Batch Sizes: `[4, 8]` * Learning Rates: `[5e-05, 3e-05]` And report micro F1-score on development set: | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average | |-------------------|--------------|--------------|--------------|------------------|--------------|-----------------| | `bs4-e10-lr5e-05` | [0.3947][1] | [0.398][2] | [0.3655][3] | [0.3703][4] | [0.3858][5] | 0.3829 ± 0.0145 | | `bs8-e10-lr5e-05` | [0.3744][6] | [0.3819][7] | [0.3486][8] | [0.3506][9] | [0.3645][10] | 0.364 ± 0.0145 | | `bs4-e10-lr3e-05` | [0.3415][11] | [0.3579][12] | [0.3291][13] | [0.3351][14] | [0.3549][15] | 0.3437 ± 0.0124 | | `bs8-e10-lr3e-05` | [0.3282][16] | [0.336][17] | [0.3138][18] | [**0.3172**][19] | [0.3422][20] | 0.3275 ± 0.0121 | [1]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [2]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [3]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [4]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [5]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [6]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [7]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [8]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [9]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [10]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [11]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [12]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [13]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [14]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [15]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [16]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [17]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [18]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [19]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [20]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub. More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4
stefan-it
2023-10-24T13:09:08Z
6
0
flair
[ "flair", "pytorch", "tensorboard", "token-classification", "sequence-tagger-model", "de", "base_model:dbmdz/bert-tiny-historic-multilingual-cased", "base_model:finetune:dbmdz/bert-tiny-historic-multilingual-cased", "license:mit", "region:us" ]
token-classification
2023-10-18T18:24:17Z
--- language: de license: mit tags: - flair - token-classification - sequence-tagger-model base_model: dbmdz/bert-tiny-historic-multilingual-cased widget: - text: Es war am 25sten , als Lord Corn wollis Dublin mit seinem Gefolge und mehrern Truppen verließ , um in einer Central - Lage bey Sligo die Operationen der Armee persönlich zu dirigiren . Der Feind dürfte bald in die Enge kommen , da Gen . Lacke mit 6000 Mann ihm entgegen marschirt . --- # Fine-tuned Flair Model on German HIPE-2020 Dataset (HIPE-2022) This Flair model was fine-tuned on the [German HIPE-2020](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-hipe2020.md) NER Dataset using hmBERT Tiny as backbone LM. The HIPE-2020 dataset is comprised of newspapers from mid 19C to mid 20C. For information can be found [here](https://dl.acm.org/doi/abs/10.1007/978-3-030-58219-7_21). The following NEs were annotated: `loc`, `org`, `pers`, `prod`, `time` and `comp`. # Results We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: * Batch Sizes: `[4, 8]` * Learning Rates: `[5e-05, 3e-05]` And report micro F1-score on development set: | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average | |-------------------|--------------|--------------|--------------|-----------------|--------------|-----------------| | `bs4-e10-lr5e-05` | [0.3947][1] | [0.398][2] | [0.3655][3] | [0.3703][4] | [0.3858][5] | 0.3829 ± 0.0145 | | `bs8-e10-lr5e-05` | [0.3744][6] | [0.3819][7] | [0.3486][8] | [**0.3506**][9] | [0.3645][10] | 0.364 ± 0.0145 | | `bs4-e10-lr3e-05` | [0.3415][11] | [0.3579][12] | [0.3291][13] | [0.3351][14] | [0.3549][15] | 0.3437 ± 0.0124 | | `bs8-e10-lr3e-05` | [0.3282][16] | [0.336][17] | [0.3138][18] | [0.3172][19] | [0.3422][20] | 0.3275 ± 0.0121 | [1]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [2]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [3]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [4]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [5]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [6]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [7]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [8]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [9]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [10]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [11]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [12]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [13]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [14]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [15]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [16]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [17]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [18]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [19]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [20]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub. More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3
stefan-it
2023-10-24T13:09:05Z
5
0
flair
[ "flair", "pytorch", "tensorboard", "token-classification", "sequence-tagger-model", "de", "base_model:dbmdz/bert-tiny-historic-multilingual-cased", "base_model:finetune:dbmdz/bert-tiny-historic-multilingual-cased", "license:mit", "region:us" ]
token-classification
2023-10-18T18:06:58Z
--- language: de license: mit tags: - flair - token-classification - sequence-tagger-model base_model: dbmdz/bert-tiny-historic-multilingual-cased widget: - text: Es war am 25sten , als Lord Corn wollis Dublin mit seinem Gefolge und mehrern Truppen verließ , um in einer Central - Lage bey Sligo die Operationen der Armee persönlich zu dirigiren . Der Feind dürfte bald in die Enge kommen , da Gen . Lacke mit 6000 Mann ihm entgegen marschirt . --- # Fine-tuned Flair Model on German HIPE-2020 Dataset (HIPE-2022) This Flair model was fine-tuned on the [German HIPE-2020](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-hipe2020.md) NER Dataset using hmBERT Tiny as backbone LM. The HIPE-2020 dataset is comprised of newspapers from mid 19C to mid 20C. For information can be found [here](https://dl.acm.org/doi/abs/10.1007/978-3-030-58219-7_21). The following NEs were annotated: `loc`, `org`, `pers`, `prod`, `time` and `comp`. # Results We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: * Batch Sizes: `[4, 8]` * Learning Rates: `[5e-05, 3e-05]` And report micro F1-score on development set: | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average | |-------------------|--------------|--------------|-----------------|--------------|--------------|-----------------| | `bs4-e10-lr5e-05` | [0.3947][1] | [0.398][2] | [**0.3655**][3] | [0.3703][4] | [0.3858][5] | 0.3829 ± 0.0145 | | `bs8-e10-lr5e-05` | [0.3744][6] | [0.3819][7] | [0.3486][8] | [0.3506][9] | [0.3645][10] | 0.364 ± 0.0145 | | `bs4-e10-lr3e-05` | [0.3415][11] | [0.3579][12] | [0.3291][13] | [0.3351][14] | [0.3549][15] | 0.3437 ± 0.0124 | | `bs8-e10-lr3e-05` | [0.3282][16] | [0.336][17] | [0.3138][18] | [0.3172][19] | [0.3422][20] | 0.3275 ± 0.0121 | [1]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [2]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [3]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [4]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [5]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [6]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [7]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [8]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [9]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [10]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [11]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [12]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [13]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [14]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [15]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [16]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [17]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [18]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [19]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [20]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub. More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
hmbert-tiny/flair-hipe-2022-hipe2020-de
hmbert-tiny
2023-10-24T13:09:04Z
6
0
flair
[ "flair", "pytorch", "tensorboard", "token-classification", "sequence-tagger-model", "de", "base_model:dbmdz/bert-tiny-historic-multilingual-cased", "base_model:finetune:dbmdz/bert-tiny-historic-multilingual-cased", "license:mit", "region:us" ]
token-classification
2023-10-18T17:54:59Z
--- language: de license: mit tags: - flair - token-classification - sequence-tagger-model base_model: dbmdz/bert-tiny-historic-multilingual-cased widget: - text: Es war am 25sten , als Lord Corn wollis Dublin mit seinem Gefolge und mehrern Truppen verließ , um in einer Central - Lage bey Sligo die Operationen der Armee persönlich zu dirigiren . Der Feind dürfte bald in die Enge kommen , da Gen . Lacke mit 6000 Mann ihm entgegen marschirt . --- # Fine-tuned Flair Model on German HIPE-2020 Dataset (HIPE-2022) This Flair model was fine-tuned on the [German HIPE-2020](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-hipe2020.md) NER Dataset using hmBERT Tiny as backbone LM. The HIPE-2020 dataset is comprised of newspapers from mid 19C to mid 20C. For information can be found [here](https://dl.acm.org/doi/abs/10.1007/978-3-030-58219-7_21). The following NEs were annotated: `loc`, `org`, `pers`, `prod`, `time` and `comp`. # Results We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: * Batch Sizes: `[4, 8]` * Learning Rates: `[5e-05, 3e-05]` And report micro F1-score on development set: | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average | |-------------------|--------------|----------------|--------------|--------------|--------------|-----------------| | `bs4-e10-lr5e-05` | [0.3947][1] | [**0.398**][2] | [0.3655][3] | [0.3703][4] | [0.3858][5] | 0.3829 ± 0.0145 | | `bs8-e10-lr5e-05` | [0.3744][6] | [0.3819][7] | [0.3486][8] | [0.3506][9] | [0.3645][10] | 0.364 ± 0.0145 | | `bs4-e10-lr3e-05` | [0.3415][11] | [0.3579][12] | [0.3291][13] | [0.3351][14] | [0.3549][15] | 0.3437 ± 0.0124 | | `bs8-e10-lr3e-05` | [0.3282][16] | [0.336][17] | [0.3138][18] | [0.3172][19] | [0.3422][20] | 0.3275 ± 0.0121 | [1]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [2]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [3]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [4]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [5]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [6]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [7]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [8]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [9]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [10]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [11]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [12]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [13]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [14]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [15]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [16]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [17]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [18]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [19]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [20]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub. More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2
stefan-it
2023-10-24T13:09:04Z
4
0
flair
[ "flair", "pytorch", "tensorboard", "token-classification", "sequence-tagger-model", "de", "base_model:dbmdz/bert-tiny-historic-multilingual-cased", "base_model:finetune:dbmdz/bert-tiny-historic-multilingual-cased", "license:mit", "region:us" ]
token-classification
2023-10-18T18:00:22Z
--- language: de license: mit tags: - flair - token-classification - sequence-tagger-model base_model: dbmdz/bert-tiny-historic-multilingual-cased widget: - text: Es war am 25sten , als Lord Corn wollis Dublin mit seinem Gefolge und mehrern Truppen verließ , um in einer Central - Lage bey Sligo die Operationen der Armee persönlich zu dirigiren . Der Feind dürfte bald in die Enge kommen , da Gen . Lacke mit 6000 Mann ihm entgegen marschirt . --- # Fine-tuned Flair Model on German HIPE-2020 Dataset (HIPE-2022) This Flair model was fine-tuned on the [German HIPE-2020](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-hipe2020.md) NER Dataset using hmBERT Tiny as backbone LM. The HIPE-2020 dataset is comprised of newspapers from mid 19C to mid 20C. For information can be found [here](https://dl.acm.org/doi/abs/10.1007/978-3-030-58219-7_21). The following NEs were annotated: `loc`, `org`, `pers`, `prod`, `time` and `comp`. # Results We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: * Batch Sizes: `[4, 8]` * Learning Rates: `[5e-05, 3e-05]` And report micro F1-score on development set: | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average | |-------------------|--------------|-----------------|--------------|--------------|--------------|-----------------| | `bs4-e10-lr5e-05` | [0.3947][1] | [0.398][2] | [0.3655][3] | [0.3703][4] | [0.3858][5] | 0.3829 ± 0.0145 | | `bs8-e10-lr5e-05` | [0.3744][6] | [**0.3819**][7] | [0.3486][8] | [0.3506][9] | [0.3645][10] | 0.364 ± 0.0145 | | `bs4-e10-lr3e-05` | [0.3415][11] | [0.3579][12] | [0.3291][13] | [0.3351][14] | [0.3549][15] | 0.3437 ± 0.0124 | | `bs8-e10-lr3e-05` | [0.3282][16] | [0.336][17] | [0.3138][18] | [0.3172][19] | [0.3422][20] | 0.3275 ± 0.0121 | [1]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [2]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [3]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [4]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [5]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [6]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [7]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [8]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [9]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [10]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [11]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [12]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [13]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [14]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [15]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [16]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [17]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [18]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [19]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [20]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub. More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5
stefan-it
2023-10-24T13:08:05Z
2
0
flair
[ "flair", "pytorch", "tensorboard", "token-classification", "sequence-tagger-model", "fr", "base_model:dbmdz/bert-tiny-historic-multilingual-cased", "base_model:finetune:dbmdz/bert-tiny-historic-multilingual-cased", "license:mit", "region:us" ]
token-classification
2023-10-18T16:48:30Z
--- language: fr license: mit tags: - flair - token-classification - sequence-tagger-model base_model: dbmdz/bert-tiny-historic-multilingual-cased widget: - text: — 469 . Πεδία . Les tribraques formés par un seul mot sont rares chez les tragiques , partont ailleurs qu ’ au premier pied . CÉ . cependant QEd , Roi , 719 , 826 , 4496 . --- # Fine-tuned Flair Model on AjMC French NER Dataset (HIPE-2022) This Flair model was fine-tuned on the [AjMC French](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-ajmc.md) NER Dataset using hmBERT Tiny as backbone LM. The AjMC dataset consists of NE-annotated historical commentaries in the field of Classics, and was created in the context of the [Ajax MultiCommentary](https://mromanello.github.io/ajax-multi-commentary/) project. The following NEs were annotated: `pers`, `work`, `loc`, `object`, `date` and `scope`. # Results We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: * Batch Sizes: `[4, 8]` * Learning Rates: `[5e-05, 3e-05]` And report micro F1-score on development set: | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average | |-------------------|--------------|--------------|--------------|--------------|-----------------|-----------------| | `bs4-e10-lr5e-05` | [0.5346][1] | [0.5752][2] | [0.543][3] | [0.5043][4] | [**0.5531**][5] | 0.542 ± 0.026 | | `bs8-e10-lr5e-05` | [0.4919][6] | [0.5134][7] | [0.473][8] | [0.4909][9] | [0.5082][10] | 0.4955 ± 0.016 | | `bs4-e10-lr3e-05` | [0.4902][11] | [0.4944][12] | [0.4676][13] | [0.494][14] | [0.4986][15] | 0.489 ± 0.0123 | | `bs8-e10-lr3e-05` | [0.4695][16] | [0.4836][17] | [0.4372][18] | [0.4922][19] | [0.5015][20] | 0.4768 ± 0.0251 | [1]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [2]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [3]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [4]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [5]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [6]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [7]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [8]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [9]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [10]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [11]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [12]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [13]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [14]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [15]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [16]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [17]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [18]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [19]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [20]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub. More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5
stefan-it
2023-10-24T13:08:04Z
3
0
flair
[ "flair", "pytorch", "tensorboard", "token-classification", "sequence-tagger-model", "fr", "base_model:dbmdz/bert-tiny-historic-multilingual-cased", "base_model:finetune:dbmdz/bert-tiny-historic-multilingual-cased", "license:mit", "region:us" ]
token-classification
2023-10-18T16:47:43Z
--- language: fr license: mit tags: - flair - token-classification - sequence-tagger-model base_model: dbmdz/bert-tiny-historic-multilingual-cased widget: - text: — 469 . Πεδία . Les tribraques formés par un seul mot sont rares chez les tragiques , partont ailleurs qu ’ au premier pied . CÉ . cependant QEd , Roi , 719 , 826 , 4496 . --- # Fine-tuned Flair Model on AjMC French NER Dataset (HIPE-2022) This Flair model was fine-tuned on the [AjMC French](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-ajmc.md) NER Dataset using hmBERT Tiny as backbone LM. The AjMC dataset consists of NE-annotated historical commentaries in the field of Classics, and was created in the context of the [Ajax MultiCommentary](https://mromanello.github.io/ajax-multi-commentary/) project. The following NEs were annotated: `pers`, `work`, `loc`, `object`, `date` and `scope`. # Results We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: * Batch Sizes: `[4, 8]` * Learning Rates: `[5e-05, 3e-05]` And report micro F1-score on development set: | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average | |-------------------|--------------|--------------|--------------|--------------|------------------|-----------------| | `bs4-e10-lr5e-05` | [0.5346][1] | [0.5752][2] | [0.543][3] | [0.5043][4] | [0.5531][5] | 0.542 ± 0.026 | | `bs8-e10-lr5e-05` | [0.4919][6] | [0.5134][7] | [0.473][8] | [0.4909][9] | [0.5082][10] | 0.4955 ± 0.016 | | `bs4-e10-lr3e-05` | [0.4902][11] | [0.4944][12] | [0.4676][13] | [0.494][14] | [**0.4986**][15] | 0.489 ± 0.0123 | | `bs8-e10-lr3e-05` | [0.4695][16] | [0.4836][17] | [0.4372][18] | [0.4922][19] | [0.5015][20] | 0.4768 ± 0.0251 | [1]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [2]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [3]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [4]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [5]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [6]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [7]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [8]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [9]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [10]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [11]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [12]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [13]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [14]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [15]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [16]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [17]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [18]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [19]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [20]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub. More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4
stefan-it
2023-10-24T13:08:02Z
3
0
flair
[ "flair", "pytorch", "tensorboard", "token-classification", "sequence-tagger-model", "fr", "base_model:dbmdz/bert-tiny-historic-multilingual-cased", "base_model:finetune:dbmdz/bert-tiny-historic-multilingual-cased", "license:mit", "region:us" ]
token-classification
2023-10-18T16:44:55Z
--- language: fr license: mit tags: - flair - token-classification - sequence-tagger-model base_model: dbmdz/bert-tiny-historic-multilingual-cased widget: - text: — 469 . Πεδία . Les tribraques formés par un seul mot sont rares chez les tragiques , partont ailleurs qu ’ au premier pied . CÉ . cependant QEd , Roi , 719 , 826 , 4496 . --- # Fine-tuned Flair Model on AjMC French NER Dataset (HIPE-2022) This Flair model was fine-tuned on the [AjMC French](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-ajmc.md) NER Dataset using hmBERT Tiny as backbone LM. The AjMC dataset consists of NE-annotated historical commentaries in the field of Classics, and was created in the context of the [Ajax MultiCommentary](https://mromanello.github.io/ajax-multi-commentary/) project. The following NEs were annotated: `pers`, `work`, `loc`, `object`, `date` and `scope`. # Results We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: * Batch Sizes: `[4, 8]` * Learning Rates: `[5e-05, 3e-05]` And report micro F1-score on development set: | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average | |-------------------|--------------|--------------|--------------|-----------------|--------------|-----------------| | `bs4-e10-lr5e-05` | [0.5346][1] | [0.5752][2] | [0.543][3] | [0.5043][4] | [0.5531][5] | 0.542 ± 0.026 | | `bs8-e10-lr5e-05` | [0.4919][6] | [0.5134][7] | [0.473][8] | [0.4909][9] | [0.5082][10] | 0.4955 ± 0.016 | | `bs4-e10-lr3e-05` | [0.4902][11] | [0.4944][12] | [0.4676][13] | [**0.494**][14] | [0.4986][15] | 0.489 ± 0.0123 | | `bs8-e10-lr3e-05` | [0.4695][16] | [0.4836][17] | [0.4372][18] | [0.4922][19] | [0.5015][20] | 0.4768 ± 0.0251 | [1]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [2]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [3]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [4]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [5]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [6]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [7]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [8]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [9]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [10]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [11]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [12]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [13]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [14]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [15]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [16]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [17]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [18]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [19]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [20]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub. More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3
stefan-it
2023-10-24T13:08:01Z
2
0
flair
[ "flair", "pytorch", "tensorboard", "token-classification", "sequence-tagger-model", "fr", "base_model:dbmdz/bert-tiny-historic-multilingual-cased", "base_model:finetune:dbmdz/bert-tiny-historic-multilingual-cased", "license:mit", "region:us" ]
token-classification
2023-10-18T16:42:47Z
--- language: fr license: mit tags: - flair - token-classification - sequence-tagger-model base_model: dbmdz/bert-tiny-historic-multilingual-cased widget: - text: — 469 . Πεδία . Les tribraques formés par un seul mot sont rares chez les tragiques , partont ailleurs qu ’ au premier pied . CÉ . cependant QEd , Roi , 719 , 826 , 4496 . --- # Fine-tuned Flair Model on AjMC French NER Dataset (HIPE-2022) This Flair model was fine-tuned on the [AjMC French](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-ajmc.md) NER Dataset using hmBERT Tiny as backbone LM. The AjMC dataset consists of NE-annotated historical commentaries in the field of Classics, and was created in the context of the [Ajax MultiCommentary](https://mromanello.github.io/ajax-multi-commentary/) project. The following NEs were annotated: `pers`, `work`, `loc`, `object`, `date` and `scope`. # Results We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: * Batch Sizes: `[4, 8]` * Learning Rates: `[5e-05, 3e-05]` And report micro F1-score on development set: | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average | |-------------------|--------------|--------------|----------------|--------------|--------------|-----------------| | `bs4-e10-lr5e-05` | [0.5346][1] | [0.5752][2] | [**0.543**][3] | [0.5043][4] | [0.5531][5] | 0.542 ± 0.026 | | `bs8-e10-lr5e-05` | [0.4919][6] | [0.5134][7] | [0.473][8] | [0.4909][9] | [0.5082][10] | 0.4955 ± 0.016 | | `bs4-e10-lr3e-05` | [0.4902][11] | [0.4944][12] | [0.4676][13] | [0.494][14] | [0.4986][15] | 0.489 ± 0.0123 | | `bs8-e10-lr3e-05` | [0.4695][16] | [0.4836][17] | [0.4372][18] | [0.4922][19] | [0.5015][20] | 0.4768 ± 0.0251 | [1]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [2]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [3]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [4]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [5]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [6]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [7]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [8]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [9]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [10]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [11]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [12]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [13]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [14]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [15]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [16]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [17]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [18]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [19]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [20]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub. More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3
stefan-it
2023-10-24T13:08:01Z
5
0
flair
[ "flair", "pytorch", "tensorboard", "token-classification", "sequence-tagger-model", "fr", "base_model:dbmdz/bert-tiny-historic-multilingual-cased", "base_model:finetune:dbmdz/bert-tiny-historic-multilingual-cased", "license:mit", "region:us" ]
token-classification
2023-10-18T16:41:59Z
--- language: fr license: mit tags: - flair - token-classification - sequence-tagger-model base_model: dbmdz/bert-tiny-historic-multilingual-cased widget: - text: — 469 . Πεδία . Les tribraques formés par un seul mot sont rares chez les tragiques , partont ailleurs qu ’ au premier pied . CÉ . cependant QEd , Roi , 719 , 826 , 4496 . --- # Fine-tuned Flair Model on AjMC French NER Dataset (HIPE-2022) This Flair model was fine-tuned on the [AjMC French](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-ajmc.md) NER Dataset using hmBERT Tiny as backbone LM. The AjMC dataset consists of NE-annotated historical commentaries in the field of Classics, and was created in the context of the [Ajax MultiCommentary](https://mromanello.github.io/ajax-multi-commentary/) project. The following NEs were annotated: `pers`, `work`, `loc`, `object`, `date` and `scope`. # Results We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: * Batch Sizes: `[4, 8]` * Learning Rates: `[5e-05, 3e-05]` And report micro F1-score on development set: | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average | |-------------------|--------------|--------------|------------------|--------------|--------------|-----------------| | `bs4-e10-lr5e-05` | [0.5346][1] | [0.5752][2] | [0.543][3] | [0.5043][4] | [0.5531][5] | 0.542 ± 0.026 | | `bs8-e10-lr5e-05` | [0.4919][6] | [0.5134][7] | [0.473][8] | [0.4909][9] | [0.5082][10] | 0.4955 ± 0.016 | | `bs4-e10-lr3e-05` | [0.4902][11] | [0.4944][12] | [**0.4676**][13] | [0.494][14] | [0.4986][15] | 0.489 ± 0.0123 | | `bs8-e10-lr3e-05` | [0.4695][16] | [0.4836][17] | [0.4372][18] | [0.4922][19] | [0.5015][20] | 0.4768 ± 0.0251 | [1]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [2]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [3]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [4]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [5]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [6]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [7]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [8]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [9]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [10]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [11]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [12]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [13]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [14]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [15]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [16]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [17]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [18]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [19]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [20]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub. More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3
stefan-it
2023-10-24T13:08:01Z
4
0
flair
[ "flair", "pytorch", "tensorboard", "token-classification", "sequence-tagger-model", "fr", "base_model:dbmdz/bert-tiny-historic-multilingual-cased", "base_model:finetune:dbmdz/bert-tiny-historic-multilingual-cased", "license:mit", "region:us" ]
token-classification
2023-10-18T16:43:31Z
--- language: fr license: mit tags: - flair - token-classification - sequence-tagger-model base_model: dbmdz/bert-tiny-historic-multilingual-cased widget: - text: — 469 . Πεδία . Les tribraques formés par un seul mot sont rares chez les tragiques , partont ailleurs qu ’ au premier pied . CÉ . cependant QEd , Roi , 719 , 826 , 4496 . --- # Fine-tuned Flair Model on AjMC French NER Dataset (HIPE-2022) This Flair model was fine-tuned on the [AjMC French](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-ajmc.md) NER Dataset using hmBERT Tiny as backbone LM. The AjMC dataset consists of NE-annotated historical commentaries in the field of Classics, and was created in the context of the [Ajax MultiCommentary](https://mromanello.github.io/ajax-multi-commentary/) project. The following NEs were annotated: `pers`, `work`, `loc`, `object`, `date` and `scope`. # Results We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: * Batch Sizes: `[4, 8]` * Learning Rates: `[5e-05, 3e-05]` And report micro F1-score on development set: | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average | |-------------------|--------------|--------------|------------------|--------------|--------------|-----------------| | `bs4-e10-lr5e-05` | [0.5346][1] | [0.5752][2] | [0.543][3] | [0.5043][4] | [0.5531][5] | 0.542 ± 0.026 | | `bs8-e10-lr5e-05` | [0.4919][6] | [0.5134][7] | [0.473][8] | [0.4909][9] | [0.5082][10] | 0.4955 ± 0.016 | | `bs4-e10-lr3e-05` | [0.4902][11] | [0.4944][12] | [0.4676][13] | [0.494][14] | [0.4986][15] | 0.489 ± 0.0123 | | `bs8-e10-lr3e-05` | [0.4695][16] | [0.4836][17] | [**0.4372**][18] | [0.4922][19] | [0.5015][20] | 0.4768 ± 0.0251 | [1]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [2]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [3]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [4]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [5]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [6]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [7]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [8]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [9]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [10]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [11]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [12]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [13]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [14]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [15]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [16]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [17]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [18]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [19]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [20]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub. More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2
stefan-it
2023-10-24T13:08:00Z
3
0
flair
[ "flair", "pytorch", "tensorboard", "token-classification", "sequence-tagger-model", "fr", "base_model:dbmdz/bert-tiny-historic-multilingual-cased", "base_model:finetune:dbmdz/bert-tiny-historic-multilingual-cased", "license:mit", "region:us" ]
token-classification
2023-10-18T16:41:07Z
--- language: fr license: mit tags: - flair - token-classification - sequence-tagger-model base_model: dbmdz/bert-tiny-historic-multilingual-cased widget: - text: — 469 . Πεδία . Les tribraques formés par un seul mot sont rares chez les tragiques , partont ailleurs qu ’ au premier pied . CÉ . cependant QEd , Roi , 719 , 826 , 4496 . --- # Fine-tuned Flair Model on AjMC French NER Dataset (HIPE-2022) This Flair model was fine-tuned on the [AjMC French](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-ajmc.md) NER Dataset using hmBERT Tiny as backbone LM. The AjMC dataset consists of NE-annotated historical commentaries in the field of Classics, and was created in the context of the [Ajax MultiCommentary](https://mromanello.github.io/ajax-multi-commentary/) project. The following NEs were annotated: `pers`, `work`, `loc`, `object`, `date` and `scope`. # Results We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: * Batch Sizes: `[4, 8]` * Learning Rates: `[5e-05, 3e-05]` And report micro F1-score on development set: | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average | |-------------------|--------------|-----------------|--------------|--------------|--------------|-----------------| | `bs4-e10-lr5e-05` | [0.5346][1] | [0.5752][2] | [0.543][3] | [0.5043][4] | [0.5531][5] | 0.542 ± 0.026 | | `bs8-e10-lr5e-05` | [0.4919][6] | [**0.5134**][7] | [0.473][8] | [0.4909][9] | [0.5082][10] | 0.4955 ± 0.016 | | `bs4-e10-lr3e-05` | [0.4902][11] | [0.4944][12] | [0.4676][13] | [0.494][14] | [0.4986][15] | 0.489 ± 0.0123 | | `bs8-e10-lr3e-05` | [0.4695][16] | [0.4836][17] | [0.4372][18] | [0.4922][19] | [0.5015][20] | 0.4768 ± 0.0251 | [1]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [2]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [3]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [4]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [5]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [6]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [7]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [8]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [9]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [10]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [11]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [12]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [13]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [14]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [15]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [16]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [17]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [18]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [19]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [20]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub. More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2
stefan-it
2023-10-24T13:07:59Z
4
0
flair
[ "flair", "pytorch", "tensorboard", "token-classification", "sequence-tagger-model", "fr", "base_model:dbmdz/bert-tiny-historic-multilingual-cased", "base_model:finetune:dbmdz/bert-tiny-historic-multilingual-cased", "license:mit", "region:us" ]
token-classification
2023-10-18T16:39:07Z
--- language: fr license: mit tags: - flair - token-classification - sequence-tagger-model base_model: dbmdz/bert-tiny-historic-multilingual-cased widget: - text: — 469 . Πεδία . Les tribraques formés par un seul mot sont rares chez les tragiques , partont ailleurs qu ’ au premier pied . CÉ . cependant QEd , Roi , 719 , 826 , 4496 . --- # Fine-tuned Flair Model on AjMC French NER Dataset (HIPE-2022) This Flair model was fine-tuned on the [AjMC French](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-ajmc.md) NER Dataset using hmBERT Tiny as backbone LM. The AjMC dataset consists of NE-annotated historical commentaries in the field of Classics, and was created in the context of the [Ajax MultiCommentary](https://mromanello.github.io/ajax-multi-commentary/) project. The following NEs were annotated: `pers`, `work`, `loc`, `object`, `date` and `scope`. # Results We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: * Batch Sizes: `[4, 8]` * Learning Rates: `[5e-05, 3e-05]` And report micro F1-score on development set: | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average | |-------------------|--------------|------------------|--------------|--------------|--------------|-----------------| | `bs4-e10-lr5e-05` | [0.5346][1] | [0.5752][2] | [0.543][3] | [0.5043][4] | [0.5531][5] | 0.542 ± 0.026 | | `bs8-e10-lr5e-05` | [0.4919][6] | [0.5134][7] | [0.473][8] | [0.4909][9] | [0.5082][10] | 0.4955 ± 0.016 | | `bs4-e10-lr3e-05` | [0.4902][11] | [**0.4944**][12] | [0.4676][13] | [0.494][14] | [0.4986][15] | 0.489 ± 0.0123 | | `bs8-e10-lr3e-05` | [0.4695][16] | [0.4836][17] | [0.4372][18] | [0.4922][19] | [0.5015][20] | 0.4768 ± 0.0251 | [1]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [2]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [3]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [4]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [5]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [6]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [7]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [8]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [9]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [10]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [11]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [12]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [13]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [14]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [15]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [16]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [17]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [18]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [19]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [20]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub. More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
hmbert-tiny/flair-hipe-2022-ajmc-fr
hmbert-tiny
2023-10-24T13:07:59Z
7
0
flair
[ "flair", "pytorch", "tensorboard", "token-classification", "sequence-tagger-model", "fr", "base_model:dbmdz/bert-tiny-historic-multilingual-cased", "base_model:finetune:dbmdz/bert-tiny-historic-multilingual-cased", "license:mit", "region:us" ]
token-classification
2023-10-18T16:39:54Z
--- language: fr license: mit tags: - flair - token-classification - sequence-tagger-model base_model: dbmdz/bert-tiny-historic-multilingual-cased widget: - text: — 469 . Πεδία . Les tribraques formés par un seul mot sont rares chez les tragiques , partont ailleurs qu ’ au premier pied . CÉ . cependant QEd , Roi , 719 , 826 , 4496 . --- # Fine-tuned Flair Model on AjMC French NER Dataset (HIPE-2022) This Flair model was fine-tuned on the [AjMC French](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-ajmc.md) NER Dataset using hmBERT Tiny as backbone LM. The AjMC dataset consists of NE-annotated historical commentaries in the field of Classics, and was created in the context of the [Ajax MultiCommentary](https://mromanello.github.io/ajax-multi-commentary/) project. The following NEs were annotated: `pers`, `work`, `loc`, `object`, `date` and `scope`. # Results We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: * Batch Sizes: `[4, 8]` * Learning Rates: `[5e-05, 3e-05]` And report micro F1-score on development set: | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average | |-------------------|--------------|-----------------|--------------|--------------|--------------|-----------------| | `bs4-e10-lr5e-05` | [0.5346][1] | [**0.5752**][2] | [0.543][3] | [0.5043][4] | [0.5531][5] | 0.542 ± 0.026 | | `bs8-e10-lr5e-05` | [0.4919][6] | [0.5134][7] | [0.473][8] | [0.4909][9] | [0.5082][10] | 0.4955 ± 0.016 | | `bs4-e10-lr3e-05` | [0.4902][11] | [0.4944][12] | [0.4676][13] | [0.494][14] | [0.4986][15] | 0.489 ± 0.0123 | | `bs8-e10-lr3e-05` | [0.4695][16] | [0.4836][17] | [0.4372][18] | [0.4922][19] | [0.5015][20] | 0.4768 ± 0.0251 | [1]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [2]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [3]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [4]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [5]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [6]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [7]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [8]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [9]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [10]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [11]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [12]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [13]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [14]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [15]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [16]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [17]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [18]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [19]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [20]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub. More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1
stefan-it
2023-10-24T13:07:58Z
6
0
flair
[ "flair", "pytorch", "tensorboard", "token-classification", "sequence-tagger-model", "fr", "base_model:dbmdz/bert-tiny-historic-multilingual-cased", "base_model:finetune:dbmdz/bert-tiny-historic-multilingual-cased", "license:mit", "region:us" ]
token-classification
2023-10-18T16:37:05Z
--- language: fr license: mit tags: - flair - token-classification - sequence-tagger-model base_model: dbmdz/bert-tiny-historic-multilingual-cased widget: - text: — 469 . Πεδία . Les tribraques formés par un seul mot sont rares chez les tragiques , partont ailleurs qu ’ au premier pied . CÉ . cependant QEd , Roi , 719 , 826 , 4496 . --- # Fine-tuned Flair Model on AjMC French NER Dataset (HIPE-2022) This Flair model was fine-tuned on the [AjMC French](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-ajmc.md) NER Dataset using hmBERT Tiny as backbone LM. The AjMC dataset consists of NE-annotated historical commentaries in the field of Classics, and was created in the context of the [Ajax MultiCommentary](https://mromanello.github.io/ajax-multi-commentary/) project. The following NEs were annotated: `pers`, `work`, `loc`, `object`, `date` and `scope`. # Results We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: * Batch Sizes: `[4, 8]` * Learning Rates: `[5e-05, 3e-05]` And report micro F1-score on development set: | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average | |-------------------|-----------------|--------------|--------------|--------------|--------------|-----------------| | `bs4-e10-lr5e-05` | [**0.5346**][1] | [0.5752][2] | [0.543][3] | [0.5043][4] | [0.5531][5] | 0.542 ± 0.026 | | `bs8-e10-lr5e-05` | [0.4919][6] | [0.5134][7] | [0.473][8] | [0.4909][9] | [0.5082][10] | 0.4955 ± 0.016 | | `bs4-e10-lr3e-05` | [0.4902][11] | [0.4944][12] | [0.4676][13] | [0.494][14] | [0.4986][15] | 0.489 ± 0.0123 | | `bs8-e10-lr3e-05` | [0.4695][16] | [0.4836][17] | [0.4372][18] | [0.4922][19] | [0.5015][20] | 0.4768 ± 0.0251 | [1]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [2]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [3]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [4]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [5]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [6]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [7]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [8]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [9]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [10]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [11]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [12]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [13]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [14]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [15]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [16]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [17]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [18]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [19]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [20]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub. More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1
stefan-it
2023-10-24T13:07:57Z
5
0
flair
[ "flair", "pytorch", "tensorboard", "token-classification", "sequence-tagger-model", "fr", "base_model:dbmdz/bert-tiny-historic-multilingual-cased", "base_model:finetune:dbmdz/bert-tiny-historic-multilingual-cased", "license:mit", "region:us" ]
token-classification
2023-10-18T16:36:19Z
--- language: fr license: mit tags: - flair - token-classification - sequence-tagger-model base_model: dbmdz/bert-tiny-historic-multilingual-cased widget: - text: — 469 . Πεδία . Les tribraques formés par un seul mot sont rares chez les tragiques , partont ailleurs qu ’ au premier pied . CÉ . cependant QEd , Roi , 719 , 826 , 4496 . --- # Fine-tuned Flair Model on AjMC French NER Dataset (HIPE-2022) This Flair model was fine-tuned on the [AjMC French](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-ajmc.md) NER Dataset using hmBERT Tiny as backbone LM. The AjMC dataset consists of NE-annotated historical commentaries in the field of Classics, and was created in the context of the [Ajax MultiCommentary](https://mromanello.github.io/ajax-multi-commentary/) project. The following NEs were annotated: `pers`, `work`, `loc`, `object`, `date` and `scope`. # Results We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: * Batch Sizes: `[4, 8]` * Learning Rates: `[5e-05, 3e-05]` And report micro F1-score on development set: | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average | |-------------------|------------------|--------------|--------------|--------------|--------------|-----------------| | `bs4-e10-lr5e-05` | [0.5346][1] | [0.5752][2] | [0.543][3] | [0.5043][4] | [0.5531][5] | 0.542 ± 0.026 | | `bs8-e10-lr5e-05` | [0.4919][6] | [0.5134][7] | [0.473][8] | [0.4909][9] | [0.5082][10] | 0.4955 ± 0.016 | | `bs4-e10-lr3e-05` | [**0.4902**][11] | [0.4944][12] | [0.4676][13] | [0.494][14] | [0.4986][15] | 0.489 ± 0.0123 | | `bs8-e10-lr3e-05` | [0.4695][16] | [0.4836][17] | [0.4372][18] | [0.4922][19] | [0.5015][20] | 0.4768 ± 0.0251 | [1]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [2]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [3]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [4]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [5]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [6]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [7]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [8]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [9]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [10]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [11]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [12]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [13]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [14]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [15]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [16]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [17]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [18]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [19]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [20]: https://hf.co/stefan-it/hmbench-ajmc-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub. More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5
stefan-it
2023-10-24T13:07:34Z
0
0
flair
[ "flair", "pytorch", "tensorboard", "token-classification", "sequence-tagger-model", "en", "base_model:dbmdz/bert-tiny-historic-multilingual-cased", "base_model:finetune:dbmdz/bert-tiny-historic-multilingual-cased", "license:mit", "region:us" ]
token-classification
2023-10-18T16:14:59Z
--- language: en license: mit tags: - flair - token-classification - sequence-tagger-model base_model: dbmdz/bert-tiny-historic-multilingual-cased widget: - text: Cp . Eur . Phoen . 240 , 1 , αἷμα ddiov φλέγέι . --- # Fine-tuned Flair Model on AjMC English NER Dataset (HIPE-2022) This Flair model was fine-tuned on the [AjMC English](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-ajmc.md) NER Dataset using hmBERT Tiny as backbone LM. The AjMC dataset consists of NE-annotated historical commentaries in the field of Classics, and was created in the context of the [Ajax MultiCommentary](https://mromanello.github.io/ajax-multi-commentary/) project. The following NEs were annotated: `pers`, `work`, `loc`, `object`, `date` and `scope`. # Results We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: * Batch Sizes: `[4, 8]` * Learning Rates: `[5e-05, 3e-05]` And report micro F1-score on development set: | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average | |-------------------|--------------|--------------|--------------|--------------|------------------|-----------------| | `bs4-e10-lr5e-05` | [0.5579][1] | [0.5082][2] | [0.5434][3] | [0.4949][4] | [0.4882][5] | 0.5185 ± 0.0306 | | `bs8-e10-lr5e-05` | [0.5301][6] | [0.468][7] | [0.525][8] | [0.4989][9] | [0.4707][10] | 0.4985 ± 0.0292 | | `bs4-e10-lr3e-05` | [0.4972][11] | [0.427][12] | [0.4745][13] | [0.4394][14] | [0.4249][15] | 0.4526 ± 0.0319 | | `bs8-e10-lr3e-05` | [0.4402][16] | [0.3531][17] | [0.4141][18] | [0.3808][19] | [**0.4073**][20] | 0.3991 ± 0.0333 | [1]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [2]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [3]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [4]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [5]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [6]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [7]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [8]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [9]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [10]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [11]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [12]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [13]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [14]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [15]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [16]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [17]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [18]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [19]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [20]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub. More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5
stefan-it
2023-10-24T13:07:33Z
2
0
flair
[ "flair", "pytorch", "tensorboard", "token-classification", "sequence-tagger-model", "en", "base_model:dbmdz/bert-tiny-historic-multilingual-cased", "base_model:finetune:dbmdz/bert-tiny-historic-multilingual-cased", "license:mit", "region:us" ]
token-classification
2023-10-18T16:13:05Z
--- language: en license: mit tags: - flair - token-classification - sequence-tagger-model base_model: dbmdz/bert-tiny-historic-multilingual-cased widget: - text: Cp . Eur . Phoen . 240 , 1 , αἷμα ddiov φλέγέι . --- # Fine-tuned Flair Model on AjMC English NER Dataset (HIPE-2022) This Flair model was fine-tuned on the [AjMC English](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-ajmc.md) NER Dataset using hmBERT Tiny as backbone LM. The AjMC dataset consists of NE-annotated historical commentaries in the field of Classics, and was created in the context of the [Ajax MultiCommentary](https://mromanello.github.io/ajax-multi-commentary/) project. The following NEs were annotated: `pers`, `work`, `loc`, `object`, `date` and `scope`. # Results We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: * Batch Sizes: `[4, 8]` * Learning Rates: `[5e-05, 3e-05]` And report micro F1-score on development set: | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average | |-------------------|--------------|--------------|--------------|--------------|------------------|-----------------| | `bs4-e10-lr5e-05` | [0.5579][1] | [0.5082][2] | [0.5434][3] | [0.4949][4] | [0.4882][5] | 0.5185 ± 0.0306 | | `bs8-e10-lr5e-05` | [0.5301][6] | [0.468][7] | [0.525][8] | [0.4989][9] | [0.4707][10] | 0.4985 ± 0.0292 | | `bs4-e10-lr3e-05` | [0.4972][11] | [0.427][12] | [0.4745][13] | [0.4394][14] | [**0.4249**][15] | 0.4526 ± 0.0319 | | `bs8-e10-lr3e-05` | [0.4402][16] | [0.3531][17] | [0.4141][18] | [0.3808][19] | [0.4073][20] | 0.3991 ± 0.0333 | [1]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [2]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [3]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [4]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [5]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [6]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [7]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [8]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [9]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [10]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [11]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [12]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [13]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [14]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [15]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [16]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [17]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [18]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [19]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [20]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub. More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4
stefan-it
2023-10-24T13:07:32Z
3
0
flair
[ "flair", "pytorch", "tensorboard", "token-classification", "sequence-tagger-model", "en", "base_model:dbmdz/bert-tiny-historic-multilingual-cased", "base_model:finetune:dbmdz/bert-tiny-historic-multilingual-cased", "license:mit", "region:us" ]
token-classification
2023-10-18T16:12:08Z
--- language: en license: mit tags: - flair - token-classification - sequence-tagger-model base_model: dbmdz/bert-tiny-historic-multilingual-cased widget: - text: Cp . Eur . Phoen . 240 , 1 , αἷμα ddiov φλέγέι . --- # Fine-tuned Flair Model on AjMC English NER Dataset (HIPE-2022) This Flair model was fine-tuned on the [AjMC English](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-ajmc.md) NER Dataset using hmBERT Tiny as backbone LM. The AjMC dataset consists of NE-annotated historical commentaries in the field of Classics, and was created in the context of the [Ajax MultiCommentary](https://mromanello.github.io/ajax-multi-commentary/) project. The following NEs were annotated: `pers`, `work`, `loc`, `object`, `date` and `scope`. # Results We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: * Batch Sizes: `[4, 8]` * Learning Rates: `[5e-05, 3e-05]` And report micro F1-score on development set: | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average | |-------------------|--------------|--------------|--------------|-----------------|--------------|-----------------| | `bs4-e10-lr5e-05` | [0.5579][1] | [0.5082][2] | [0.5434][3] | [0.4949][4] | [0.4882][5] | 0.5185 ± 0.0306 | | `bs8-e10-lr5e-05` | [0.5301][6] | [0.468][7] | [0.525][8] | [**0.4989**][9] | [0.4707][10] | 0.4985 ± 0.0292 | | `bs4-e10-lr3e-05` | [0.4972][11] | [0.427][12] | [0.4745][13] | [0.4394][14] | [0.4249][15] | 0.4526 ± 0.0319 | | `bs8-e10-lr3e-05` | [0.4402][16] | [0.3531][17] | [0.4141][18] | [0.3808][19] | [0.4073][20] | 0.3991 ± 0.0333 | [1]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [2]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [3]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [4]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [5]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [6]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [7]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [8]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [9]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [10]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [11]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [12]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [13]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [14]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [15]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [16]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [17]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [18]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [19]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [20]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub. More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3
stefan-it
2023-10-24T13:07:31Z
1
0
flair
[ "flair", "pytorch", "tensorboard", "token-classification", "sequence-tagger-model", "en", "base_model:dbmdz/bert-tiny-historic-multilingual-cased", "base_model:finetune:dbmdz/bert-tiny-historic-multilingual-cased", "license:mit", "region:us" ]
token-classification
2023-10-18T16:08:47Z
--- language: en license: mit tags: - flair - token-classification - sequence-tagger-model base_model: dbmdz/bert-tiny-historic-multilingual-cased widget: - text: Cp . Eur . Phoen . 240 , 1 , αἷμα ddiov φλέγέι . --- # Fine-tuned Flair Model on AjMC English NER Dataset (HIPE-2022) This Flair model was fine-tuned on the [AjMC English](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-ajmc.md) NER Dataset using hmBERT Tiny as backbone LM. The AjMC dataset consists of NE-annotated historical commentaries in the field of Classics, and was created in the context of the [Ajax MultiCommentary](https://mromanello.github.io/ajax-multi-commentary/) project. The following NEs were annotated: `pers`, `work`, `loc`, `object`, `date` and `scope`. # Results We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: * Batch Sizes: `[4, 8]` * Learning Rates: `[5e-05, 3e-05]` And report micro F1-score on development set: | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average | |-------------------|--------------|--------------|----------------|--------------|--------------|-----------------| | `bs4-e10-lr5e-05` | [0.5579][1] | [0.5082][2] | [0.5434][3] | [0.4949][4] | [0.4882][5] | 0.5185 ± 0.0306 | | `bs8-e10-lr5e-05` | [0.5301][6] | [0.468][7] | [**0.525**][8] | [0.4989][9] | [0.4707][10] | 0.4985 ± 0.0292 | | `bs4-e10-lr3e-05` | [0.4972][11] | [0.427][12] | [0.4745][13] | [0.4394][14] | [0.4249][15] | 0.4526 ± 0.0319 | | `bs8-e10-lr3e-05` | [0.4402][16] | [0.3531][17] | [0.4141][18] | [0.3808][19] | [0.4073][20] | 0.3991 ± 0.0333 | [1]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [2]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [3]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [4]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [5]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [6]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [7]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [8]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [9]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [10]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [11]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [12]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [13]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [14]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [15]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [16]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [17]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [18]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [19]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [20]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub. More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4
stefan-it
2023-10-24T13:07:31Z
5
0
flair
[ "flair", "pytorch", "tensorboard", "token-classification", "sequence-tagger-model", "en", "base_model:dbmdz/bert-tiny-historic-multilingual-cased", "base_model:finetune:dbmdz/bert-tiny-historic-multilingual-cased", "license:mit", "region:us" ]
token-classification
2023-10-18T16:10:40Z
--- language: en license: mit tags: - flair - token-classification - sequence-tagger-model base_model: dbmdz/bert-tiny-historic-multilingual-cased widget: - text: Cp . Eur . Phoen . 240 , 1 , αἷμα ddiov φλέγέι . --- # Fine-tuned Flair Model on AjMC English NER Dataset (HIPE-2022) This Flair model was fine-tuned on the [AjMC English](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-ajmc.md) NER Dataset using hmBERT Tiny as backbone LM. The AjMC dataset consists of NE-annotated historical commentaries in the field of Classics, and was created in the context of the [Ajax MultiCommentary](https://mromanello.github.io/ajax-multi-commentary/) project. The following NEs were annotated: `pers`, `work`, `loc`, `object`, `date` and `scope`. # Results We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: * Batch Sizes: `[4, 8]` * Learning Rates: `[5e-05, 3e-05]` And report micro F1-score on development set: | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average | |-------------------|--------------|--------------|--------------|-----------------|--------------|-----------------| | `bs4-e10-lr5e-05` | [0.5579][1] | [0.5082][2] | [0.5434][3] | [**0.4949**][4] | [0.4882][5] | 0.5185 ± 0.0306 | | `bs8-e10-lr5e-05` | [0.5301][6] | [0.468][7] | [0.525][8] | [0.4989][9] | [0.4707][10] | 0.4985 ± 0.0292 | | `bs4-e10-lr3e-05` | [0.4972][11] | [0.427][12] | [0.4745][13] | [0.4394][14] | [0.4249][15] | 0.4526 ± 0.0319 | | `bs8-e10-lr3e-05` | [0.4402][16] | [0.3531][17] | [0.4141][18] | [0.3808][19] | [0.4073][20] | 0.3991 ± 0.0333 | [1]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [2]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [3]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [4]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [5]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [6]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [7]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [8]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [9]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [10]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [11]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [12]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [13]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [14]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [15]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [16]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [17]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [18]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [19]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [20]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub. More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3
stefan-it
2023-10-24T13:07:30Z
4
0
flair
[ "flair", "pytorch", "tensorboard", "token-classification", "sequence-tagger-model", "en", "base_model:dbmdz/bert-tiny-historic-multilingual-cased", "base_model:finetune:dbmdz/bert-tiny-historic-multilingual-cased", "license:mit", "region:us" ]
token-classification
2023-10-18T16:07:18Z
--- language: en license: mit tags: - flair - token-classification - sequence-tagger-model base_model: dbmdz/bert-tiny-historic-multilingual-cased widget: - text: Cp . Eur . Phoen . 240 , 1 , αἷμα ddiov φλέγέι . --- # Fine-tuned Flair Model on AjMC English NER Dataset (HIPE-2022) This Flair model was fine-tuned on the [AjMC English](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-ajmc.md) NER Dataset using hmBERT Tiny as backbone LM. The AjMC dataset consists of NE-annotated historical commentaries in the field of Classics, and was created in the context of the [Ajax MultiCommentary](https://mromanello.github.io/ajax-multi-commentary/) project. The following NEs were annotated: `pers`, `work`, `loc`, `object`, `date` and `scope`. # Results We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: * Batch Sizes: `[4, 8]` * Learning Rates: `[5e-05, 3e-05]` And report micro F1-score on development set: | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average | |-------------------|--------------|--------------|-----------------|--------------|--------------|-----------------| | `bs4-e10-lr5e-05` | [0.5579][1] | [0.5082][2] | [**0.5434**][3] | [0.4949][4] | [0.4882][5] | 0.5185 ± 0.0306 | | `bs8-e10-lr5e-05` | [0.5301][6] | [0.468][7] | [0.525][8] | [0.4989][9] | [0.4707][10] | 0.4985 ± 0.0292 | | `bs4-e10-lr3e-05` | [0.4972][11] | [0.427][12] | [0.4745][13] | [0.4394][14] | [0.4249][15] | 0.4526 ± 0.0319 | | `bs8-e10-lr3e-05` | [0.4402][16] | [0.3531][17] | [0.4141][18] | [0.3808][19] | [0.4073][20] | 0.3991 ± 0.0333 | [1]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [2]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [3]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [4]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [5]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [6]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [7]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [8]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [9]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [10]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [11]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [12]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [13]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [14]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [15]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [16]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [17]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [18]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [19]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [20]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub. More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2
stefan-it
2023-10-24T13:07:29Z
2
0
flair
[ "flair", "pytorch", "tensorboard", "token-classification", "sequence-tagger-model", "en", "base_model:dbmdz/bert-tiny-historic-multilingual-cased", "base_model:finetune:dbmdz/bert-tiny-historic-multilingual-cased", "license:mit", "region:us" ]
token-classification
2023-10-18T16:04:40Z
--- language: en license: mit tags: - flair - token-classification - sequence-tagger-model base_model: dbmdz/bert-tiny-historic-multilingual-cased widget: - text: Cp . Eur . Phoen . 240 , 1 , αἷμα ddiov φλέγέι . --- # Fine-tuned Flair Model on AjMC English NER Dataset (HIPE-2022) This Flair model was fine-tuned on the [AjMC English](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-ajmc.md) NER Dataset using hmBERT Tiny as backbone LM. The AjMC dataset consists of NE-annotated historical commentaries in the field of Classics, and was created in the context of the [Ajax MultiCommentary](https://mromanello.github.io/ajax-multi-commentary/) project. The following NEs were annotated: `pers`, `work`, `loc`, `object`, `date` and `scope`. # Results We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: * Batch Sizes: `[4, 8]` * Learning Rates: `[5e-05, 3e-05]` And report micro F1-score on development set: | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average | |-------------------|--------------|------------------|--------------|--------------|--------------|-----------------| | `bs4-e10-lr5e-05` | [0.5579][1] | [0.5082][2] | [0.5434][3] | [0.4949][4] | [0.4882][5] | 0.5185 ± 0.0306 | | `bs8-e10-lr5e-05` | [0.5301][6] | [0.468][7] | [0.525][8] | [0.4989][9] | [0.4707][10] | 0.4985 ± 0.0292 | | `bs4-e10-lr3e-05` | [0.4972][11] | [0.427][12] | [0.4745][13] | [0.4394][14] | [0.4249][15] | 0.4526 ± 0.0319 | | `bs8-e10-lr3e-05` | [0.4402][16] | [**0.3531**][17] | [0.4141][18] | [0.3808][19] | [0.4073][20] | 0.3991 ± 0.0333 | [1]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [2]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [3]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [4]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [5]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [6]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [7]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [8]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [9]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [10]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [11]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [12]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [13]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [14]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [15]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [16]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [17]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [18]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [19]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [20]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub. More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3
stefan-it
2023-10-24T13:07:29Z
6
0
flair
[ "flair", "pytorch", "tensorboard", "token-classification", "sequence-tagger-model", "en", "base_model:dbmdz/bert-tiny-historic-multilingual-cased", "base_model:finetune:dbmdz/bert-tiny-historic-multilingual-cased", "license:mit", "region:us" ]
token-classification
2023-10-18T16:06:22Z
--- language: en license: mit tags: - flair - token-classification - sequence-tagger-model base_model: dbmdz/bert-tiny-historic-multilingual-cased widget: - text: Cp . Eur . Phoen . 240 , 1 , αἷμα ddiov φλέγέι . --- # Fine-tuned Flair Model on AjMC English NER Dataset (HIPE-2022) This Flair model was fine-tuned on the [AjMC English](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-ajmc.md) NER Dataset using hmBERT Tiny as backbone LM. The AjMC dataset consists of NE-annotated historical commentaries in the field of Classics, and was created in the context of the [Ajax MultiCommentary](https://mromanello.github.io/ajax-multi-commentary/) project. The following NEs were annotated: `pers`, `work`, `loc`, `object`, `date` and `scope`. # Results We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: * Batch Sizes: `[4, 8]` * Learning Rates: `[5e-05, 3e-05]` And report micro F1-score on development set: | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average | |-------------------|--------------|--------------|------------------|--------------|--------------|-----------------| | `bs4-e10-lr5e-05` | [0.5579][1] | [0.5082][2] | [0.5434][3] | [0.4949][4] | [0.4882][5] | 0.5185 ± 0.0306 | | `bs8-e10-lr5e-05` | [0.5301][6] | [0.468][7] | [0.525][8] | [0.4989][9] | [0.4707][10] | 0.4985 ± 0.0292 | | `bs4-e10-lr3e-05` | [0.4972][11] | [0.427][12] | [**0.4745**][13] | [0.4394][14] | [0.4249][15] | 0.4526 ± 0.0319 | | `bs8-e10-lr3e-05` | [0.4402][16] | [0.3531][17] | [0.4141][18] | [0.3808][19] | [0.4073][20] | 0.3991 ± 0.0333 | [1]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [2]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [3]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [4]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [5]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [6]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [7]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [8]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [9]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [10]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [11]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [12]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [13]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [14]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [15]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [16]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [17]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [18]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [19]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [20]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub. More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2
stefan-it
2023-10-24T13:07:27Z
4
0
flair
[ "flair", "pytorch", "tensorboard", "token-classification", "sequence-tagger-model", "en", "base_model:dbmdz/bert-tiny-historic-multilingual-cased", "base_model:finetune:dbmdz/bert-tiny-historic-multilingual-cased", "license:mit", "region:us" ]
token-classification
2023-10-18T16:02:59Z
--- language: en license: mit tags: - flair - token-classification - sequence-tagger-model base_model: dbmdz/bert-tiny-historic-multilingual-cased widget: - text: Cp . Eur . Phoen . 240 , 1 , αἷμα ddiov φλέγέι . --- # Fine-tuned Flair Model on AjMC English NER Dataset (HIPE-2022) This Flair model was fine-tuned on the [AjMC English](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-ajmc.md) NER Dataset using hmBERT Tiny as backbone LM. The AjMC dataset consists of NE-annotated historical commentaries in the field of Classics, and was created in the context of the [Ajax MultiCommentary](https://mromanello.github.io/ajax-multi-commentary/) project. The following NEs were annotated: `pers`, `work`, `loc`, `object`, `date` and `scope`. # Results We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: * Batch Sizes: `[4, 8]` * Learning Rates: `[5e-05, 3e-05]` And report micro F1-score on development set: | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average | |-------------------|--------------|-----------------|--------------|--------------|--------------|-----------------| | `bs4-e10-lr5e-05` | [0.5579][1] | [0.5082][2] | [0.5434][3] | [0.4949][4] | [0.4882][5] | 0.5185 ± 0.0306 | | `bs8-e10-lr5e-05` | [0.5301][6] | [0.468][7] | [0.525][8] | [0.4989][9] | [0.4707][10] | 0.4985 ± 0.0292 | | `bs4-e10-lr3e-05` | [0.4972][11] | [**0.427**][12] | [0.4745][13] | [0.4394][14] | [0.4249][15] | 0.4526 ± 0.0319 | | `bs8-e10-lr3e-05` | [0.4402][16] | [0.3531][17] | [0.4141][18] | [0.3808][19] | [0.4073][20] | 0.3991 ± 0.0333 | [1]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [2]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [3]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [4]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [5]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [6]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [7]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [8]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [9]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [10]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [11]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [12]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [13]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [14]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [15]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [16]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [17]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [18]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [19]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [20]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub. More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1
stefan-it
2023-10-24T13:07:27Z
5
0
flair
[ "flair", "pytorch", "tensorboard", "token-classification", "sequence-tagger-model", "en", "base_model:dbmdz/bert-tiny-historic-multilingual-cased", "base_model:finetune:dbmdz/bert-tiny-historic-multilingual-cased", "license:mit", "region:us" ]
token-classification
2023-10-18T16:01:15Z
--- language: en license: mit tags: - flair - token-classification - sequence-tagger-model base_model: dbmdz/bert-tiny-historic-multilingual-cased widget: - text: Cp . Eur . Phoen . 240 , 1 , αἷμα ddiov φλέγέι . --- # Fine-tuned Flair Model on AjMC English NER Dataset (HIPE-2022) This Flair model was fine-tuned on the [AjMC English](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-ajmc.md) NER Dataset using hmBERT Tiny as backbone LM. The AjMC dataset consists of NE-annotated historical commentaries in the field of Classics, and was created in the context of the [Ajax MultiCommentary](https://mromanello.github.io/ajax-multi-commentary/) project. The following NEs were annotated: `pers`, `work`, `loc`, `object`, `date` and `scope`. # Results We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: * Batch Sizes: `[4, 8]` * Learning Rates: `[5e-05, 3e-05]` And report micro F1-score on development set: | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average | |-------------------|------------------|--------------|--------------|--------------|--------------|-----------------| | `bs4-e10-lr5e-05` | [0.5579][1] | [0.5082][2] | [0.5434][3] | [0.4949][4] | [0.4882][5] | 0.5185 ± 0.0306 | | `bs8-e10-lr5e-05` | [0.5301][6] | [0.468][7] | [0.525][8] | [0.4989][9] | [0.4707][10] | 0.4985 ± 0.0292 | | `bs4-e10-lr3e-05` | [0.4972][11] | [0.427][12] | [0.4745][13] | [0.4394][14] | [0.4249][15] | 0.4526 ± 0.0319 | | `bs8-e10-lr3e-05` | [**0.4402**][16] | [0.3531][17] | [0.4141][18] | [0.3808][19] | [0.4073][20] | 0.3991 ± 0.0333 | [1]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [2]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [3]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [4]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [5]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [6]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [7]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [8]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [9]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [10]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [11]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [12]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [13]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [14]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [15]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [16]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [17]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [18]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [19]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [20]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub. More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
hmbert-tiny/flair-hipe-2022-ajmc-en
hmbert-tiny
2023-10-24T13:07:26Z
1
0
flair
[ "flair", "pytorch", "tensorboard", "token-classification", "sequence-tagger-model", "en", "base_model:dbmdz/bert-tiny-historic-multilingual-cased", "base_model:finetune:dbmdz/bert-tiny-historic-multilingual-cased", "license:mit", "region:us" ]
token-classification
2023-10-18T16:00:31Z
--- language: en license: mit tags: - flair - token-classification - sequence-tagger-model base_model: dbmdz/bert-tiny-historic-multilingual-cased widget: - text: Cp . Eur . Phoen . 240 , 1 , αἷμα ddiov φλέγέι . --- # Fine-tuned Flair Model on AjMC English NER Dataset (HIPE-2022) This Flair model was fine-tuned on the [AjMC English](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-ajmc.md) NER Dataset using hmBERT Tiny as backbone LM. The AjMC dataset consists of NE-annotated historical commentaries in the field of Classics, and was created in the context of the [Ajax MultiCommentary](https://mromanello.github.io/ajax-multi-commentary/) project. The following NEs were annotated: `pers`, `work`, `loc`, `object`, `date` and `scope`. # Results We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: * Batch Sizes: `[4, 8]` * Learning Rates: `[5e-05, 3e-05]` And report micro F1-score on development set: | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average | |-------------------|-----------------|--------------|--------------|--------------|--------------|-----------------| | `bs4-e10-lr5e-05` | [**0.5579**][1] | [0.5082][2] | [0.5434][3] | [0.4949][4] | [0.4882][5] | 0.5185 ± 0.0306 | | `bs8-e10-lr5e-05` | [0.5301][6] | [0.468][7] | [0.525][8] | [0.4989][9] | [0.4707][10] | 0.4985 ± 0.0292 | | `bs4-e10-lr3e-05` | [0.4972][11] | [0.427][12] | [0.4745][13] | [0.4394][14] | [0.4249][15] | 0.4526 ± 0.0319 | | `bs8-e10-lr3e-05` | [0.4402][16] | [0.3531][17] | [0.4141][18] | [0.3808][19] | [0.4073][20] | 0.3991 ± 0.0333 | [1]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [2]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [3]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [4]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [5]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [6]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [7]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [8]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [9]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [10]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [11]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [12]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [13]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [14]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [15]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [16]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [17]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [18]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [19]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [20]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub. More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5
stefan-it
2023-10-24T13:06:33Z
4
0
flair
[ "flair", "pytorch", "tensorboard", "token-classification", "sequence-tagger-model", "de", "base_model:dbmdz/bert-tiny-historic-multilingual-cased", "base_model:finetune:dbmdz/bert-tiny-historic-multilingual-cased", "license:mit", "region:us" ]
token-classification
2023-10-18T14:48:36Z
--- language: de license: mit tags: - flair - token-classification - sequence-tagger-model base_model: dbmdz/bert-tiny-historic-multilingual-cased widget: - text: — Dramatiſch war der Stoff vor Sophokles von Äſchylos behandelt worden in den Θροῇσσαι , denen vielleicht in der Trilogie das Stüc>"OnJw» κοίσις vorherging , das Stück Σαλαμίνιαι folgte . --- # Fine-tuned Flair Model on AjMC German NER Dataset (HIPE-2022) This Flair model was fine-tuned on the [AjMC German](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-ajmc.md) NER Dataset using hmBERT Tiny as backbone LM. The AjMC dataset consists of NE-annotated historical commentaries in the field of Classics, and was created in the context of the [Ajax MultiCommentary](https://mromanello.github.io/ajax-multi-commentary/) project. The following NEs were annotated: `pers`, `work`, `loc`, `object`, `date` and `scope`. # Results We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: * Batch Sizes: `[4, 8]` * Learning Rates: `[5e-05, 3e-05]` And report micro F1-score on development set: | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average | |-------------------|--------------|--------------|--------------|--------------|------------------|-----------------| | `bs4-e10-lr5e-05` | [0.6471][1] | [0.6226][2] | [0.6406][3] | [0.6087][4] | [0.6286][5] | 0.6295 ± 0.0151 | | `bs8-e10-lr5e-05` | [0.5943][6] | [0.5707][7] | [0.6122][8] | [0.5884][9] | [**0.5848**][10] | 0.5901 ± 0.0151 | | `bs4-e10-lr3e-05` | [0.5483][11] | [0.52][12] | [0.6039][13] | [0.5435][14] | [0.5689][15] | 0.5569 ± 0.0315 | | `bs8-e10-lr3e-05` | [0.4147][16] | [0.3173][17] | [0.4288][18] | [0.3185][19] | [0.4139][20] | 0.3786 ± 0.0558 | [1]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [2]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [3]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [4]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [5]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [6]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [7]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [8]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [9]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [10]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [11]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [12]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [13]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [14]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [15]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [16]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [17]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [18]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [19]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [20]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub. More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4
stefan-it
2023-10-24T13:06:30Z
4
0
flair
[ "flair", "pytorch", "tensorboard", "token-classification", "sequence-tagger-model", "de", "base_model:dbmdz/bert-tiny-historic-multilingual-cased", "base_model:finetune:dbmdz/bert-tiny-historic-multilingual-cased", "license:mit", "region:us" ]
token-classification
2023-10-18T14:44:17Z
--- language: de license: mit tags: - flair - token-classification - sequence-tagger-model base_model: dbmdz/bert-tiny-historic-multilingual-cased widget: - text: — Dramatiſch war der Stoff vor Sophokles von Äſchylos behandelt worden in den Θροῇσσαι , denen vielleicht in der Trilogie das Stüc>"OnJw» κοίσις vorherging , das Stück Σαλαμίνιαι folgte . --- # Fine-tuned Flair Model on AjMC German NER Dataset (HIPE-2022) This Flair model was fine-tuned on the [AjMC German](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-ajmc.md) NER Dataset using hmBERT Tiny as backbone LM. The AjMC dataset consists of NE-annotated historical commentaries in the field of Classics, and was created in the context of the [Ajax MultiCommentary](https://mromanello.github.io/ajax-multi-commentary/) project. The following NEs were annotated: `pers`, `work`, `loc`, `object`, `date` and `scope`. # Results We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: * Batch Sizes: `[4, 8]` * Learning Rates: `[5e-05, 3e-05]` And report micro F1-score on development set: | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average | |-------------------|--------------|--------------|--------------|-----------------|--------------|-----------------| | `bs4-e10-lr5e-05` | [0.6471][1] | [0.6226][2] | [0.6406][3] | [**0.6087**][4] | [0.6286][5] | 0.6295 ± 0.0151 | | `bs8-e10-lr5e-05` | [0.5943][6] | [0.5707][7] | [0.6122][8] | [0.5884][9] | [0.5848][10] | 0.5901 ± 0.0151 | | `bs4-e10-lr3e-05` | [0.5483][11] | [0.52][12] | [0.6039][13] | [0.5435][14] | [0.5689][15] | 0.5569 ± 0.0315 | | `bs8-e10-lr3e-05` | [0.4147][16] | [0.3173][17] | [0.4288][18] | [0.3185][19] | [0.4139][20] | 0.3786 ± 0.0558 | [1]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [2]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [3]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [4]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [5]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [6]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [7]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [8]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [9]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [10]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [11]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [12]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [13]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [14]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [15]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [16]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [17]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [18]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [19]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [20]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub. More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4
stefan-it
2023-10-24T13:06:30Z
4
0
flair
[ "flair", "pytorch", "tensorboard", "token-classification", "sequence-tagger-model", "de", "base_model:dbmdz/bert-tiny-historic-multilingual-cased", "base_model:finetune:dbmdz/bert-tiny-historic-multilingual-cased", "license:mit", "region:us" ]
token-classification
2023-10-18T14:43:25Z
--- language: de license: mit tags: - flair - token-classification - sequence-tagger-model base_model: dbmdz/bert-tiny-historic-multilingual-cased widget: - text: — Dramatiſch war der Stoff vor Sophokles von Äſchylos behandelt worden in den Θροῇσσαι , denen vielleicht in der Trilogie das Stüc>"OnJw» κοίσις vorherging , das Stück Σαλαμίνιαι folgte . --- # Fine-tuned Flair Model on AjMC German NER Dataset (HIPE-2022) This Flair model was fine-tuned on the [AjMC German](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-ajmc.md) NER Dataset using hmBERT Tiny as backbone LM. The AjMC dataset consists of NE-annotated historical commentaries in the field of Classics, and was created in the context of the [Ajax MultiCommentary](https://mromanello.github.io/ajax-multi-commentary/) project. The following NEs were annotated: `pers`, `work`, `loc`, `object`, `date` and `scope`. # Results We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: * Batch Sizes: `[4, 8]` * Learning Rates: `[5e-05, 3e-05]` And report micro F1-score on development set: | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average | |-------------------|--------------|--------------|--------------|------------------|--------------|-----------------| | `bs4-e10-lr5e-05` | [0.6471][1] | [0.6226][2] | [0.6406][3] | [0.6087][4] | [0.6286][5] | 0.6295 ± 0.0151 | | `bs8-e10-lr5e-05` | [0.5943][6] | [0.5707][7] | [0.6122][8] | [0.5884][9] | [0.5848][10] | 0.5901 ± 0.0151 | | `bs4-e10-lr3e-05` | [0.5483][11] | [0.52][12] | [0.6039][13] | [**0.5435**][14] | [0.5689][15] | 0.5569 ± 0.0315 | | `bs8-e10-lr3e-05` | [0.4147][16] | [0.3173][17] | [0.4288][18] | [0.3185][19] | [0.4139][20] | 0.3786 ± 0.0558 | [1]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [2]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [3]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [4]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [5]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [6]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [7]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [8]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [9]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [10]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [11]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [12]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [13]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [14]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [15]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [16]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [17]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [18]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [19]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [20]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub. More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3
stefan-it
2023-10-24T13:06:29Z
4
0
flair
[ "flair", "pytorch", "tensorboard", "token-classification", "sequence-tagger-model", "de", "base_model:dbmdz/bert-tiny-historic-multilingual-cased", "base_model:finetune:dbmdz/bert-tiny-historic-multilingual-cased", "license:mit", "region:us" ]
token-classification
2023-10-18T14:41:56Z
--- language: de license: mit tags: - flair - token-classification - sequence-tagger-model base_model: dbmdz/bert-tiny-historic-multilingual-cased widget: - text: — Dramatiſch war der Stoff vor Sophokles von Äſchylos behandelt worden in den Θροῇσσαι , denen vielleicht in der Trilogie das Stüc>"OnJw» κοίσις vorherging , das Stück Σαλαμίνιαι folgte . --- # Fine-tuned Flair Model on AjMC German NER Dataset (HIPE-2022) This Flair model was fine-tuned on the [AjMC German](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-ajmc.md) NER Dataset using hmBERT Tiny as backbone LM. The AjMC dataset consists of NE-annotated historical commentaries in the field of Classics, and was created in the context of the [Ajax MultiCommentary](https://mromanello.github.io/ajax-multi-commentary/) project. The following NEs were annotated: `pers`, `work`, `loc`, `object`, `date` and `scope`. # Results We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: * Batch Sizes: `[4, 8]` * Learning Rates: `[5e-05, 3e-05]` And report micro F1-score on development set: | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average | |-------------------|--------------|--------------|------------------|--------------|--------------|-----------------| | `bs4-e10-lr5e-05` | [0.6471][1] | [0.6226][2] | [0.6406][3] | [0.6087][4] | [0.6286][5] | 0.6295 ± 0.0151 | | `bs8-e10-lr5e-05` | [0.5943][6] | [0.5707][7] | [0.6122][8] | [0.5884][9] | [0.5848][10] | 0.5901 ± 0.0151 | | `bs4-e10-lr3e-05` | [0.5483][11] | [0.52][12] | [0.6039][13] | [0.5435][14] | [0.5689][15] | 0.5569 ± 0.0315 | | `bs8-e10-lr3e-05` | [0.4147][16] | [0.3173][17] | [**0.4288**][18] | [0.3185][19] | [0.4139][20] | 0.3786 ± 0.0558 | [1]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [2]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [3]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [4]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [5]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [6]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [7]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [8]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [9]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [10]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [11]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [12]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [13]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [14]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [15]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [16]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [17]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [18]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [19]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [20]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub. More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3
stefan-it
2023-10-24T13:06:28Z
2
0
flair
[ "flair", "pytorch", "tensorboard", "token-classification", "sequence-tagger-model", "de", "base_model:dbmdz/bert-tiny-historic-multilingual-cased", "base_model:finetune:dbmdz/bert-tiny-historic-multilingual-cased", "license:mit", "region:us" ]
token-classification
2023-10-18T14:41:16Z
--- language: de license: mit tags: - flair - token-classification - sequence-tagger-model base_model: dbmdz/bert-tiny-historic-multilingual-cased widget: - text: — Dramatiſch war der Stoff vor Sophokles von Äſchylos behandelt worden in den Θροῇσσαι , denen vielleicht in der Trilogie das Stüc>"OnJw» κοίσις vorherging , das Stück Σαλαμίνιαι folgte . --- # Fine-tuned Flair Model on AjMC German NER Dataset (HIPE-2022) This Flair model was fine-tuned on the [AjMC German](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-ajmc.md) NER Dataset using hmBERT Tiny as backbone LM. The AjMC dataset consists of NE-annotated historical commentaries in the field of Classics, and was created in the context of the [Ajax MultiCommentary](https://mromanello.github.io/ajax-multi-commentary/) project. The following NEs were annotated: `pers`, `work`, `loc`, `object`, `date` and `scope`. # Results We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: * Batch Sizes: `[4, 8]` * Learning Rates: `[5e-05, 3e-05]` And report micro F1-score on development set: | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average | |-------------------|--------------|--------------|-----------------|--------------|--------------|-----------------| | `bs4-e10-lr5e-05` | [0.6471][1] | [0.6226][2] | [**0.6406**][3] | [0.6087][4] | [0.6286][5] | 0.6295 ± 0.0151 | | `bs8-e10-lr5e-05` | [0.5943][6] | [0.5707][7] | [0.6122][8] | [0.5884][9] | [0.5848][10] | 0.5901 ± 0.0151 | | `bs4-e10-lr3e-05` | [0.5483][11] | [0.52][12] | [0.6039][13] | [0.5435][14] | [0.5689][15] | 0.5569 ± 0.0315 | | `bs8-e10-lr3e-05` | [0.4147][16] | [0.3173][17] | [0.4288][18] | [0.3185][19] | [0.4139][20] | 0.3786 ± 0.0558 | [1]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [2]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [3]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [4]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [5]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [6]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [7]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [8]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [9]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [10]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [11]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [12]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [13]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [14]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [15]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [16]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [17]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [18]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [19]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [20]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub. More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2
stefan-it
2023-10-24T13:06:28Z
4
0
flair
[ "flair", "pytorch", "tensorboard", "token-classification", "sequence-tagger-model", "de", "base_model:dbmdz/bert-tiny-historic-multilingual-cased", "base_model:finetune:dbmdz/bert-tiny-historic-multilingual-cased", "license:mit", "region:us" ]
token-classification
2023-10-18T14:39:32Z
--- language: de license: mit tags: - flair - token-classification - sequence-tagger-model base_model: dbmdz/bert-tiny-historic-multilingual-cased widget: - text: — Dramatiſch war der Stoff vor Sophokles von Äſchylos behandelt worden in den Θροῇσσαι , denen vielleicht in der Trilogie das Stüc>"OnJw» κοίσις vorherging , das Stück Σαλαμίνιαι folgte . --- # Fine-tuned Flair Model on AjMC German NER Dataset (HIPE-2022) This Flair model was fine-tuned on the [AjMC German](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-ajmc.md) NER Dataset using hmBERT Tiny as backbone LM. The AjMC dataset consists of NE-annotated historical commentaries in the field of Classics, and was created in the context of the [Ajax MultiCommentary](https://mromanello.github.io/ajax-multi-commentary/) project. The following NEs were annotated: `pers`, `work`, `loc`, `object`, `date` and `scope`. # Results We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: * Batch Sizes: `[4, 8]` * Learning Rates: `[5e-05, 3e-05]` And report micro F1-score on development set: | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average | |-------------------|--------------|-----------------|--------------|--------------|--------------|-----------------| | `bs4-e10-lr5e-05` | [0.6471][1] | [0.6226][2] | [0.6406][3] | [0.6087][4] | [0.6286][5] | 0.6295 ± 0.0151 | | `bs8-e10-lr5e-05` | [0.5943][6] | [**0.5707**][7] | [0.6122][8] | [0.5884][9] | [0.5848][10] | 0.5901 ± 0.0151 | | `bs4-e10-lr3e-05` | [0.5483][11] | [0.52][12] | [0.6039][13] | [0.5435][14] | [0.5689][15] | 0.5569 ± 0.0315 | | `bs8-e10-lr3e-05` | [0.4147][16] | [0.3173][17] | [0.4288][18] | [0.3185][19] | [0.4139][20] | 0.3786 ± 0.0558 | [1]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [2]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [3]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [4]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [5]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [6]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [7]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [8]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [9]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [10]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [11]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [12]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [13]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [14]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [15]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [16]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [17]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [18]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [19]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [20]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub. More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2
stefan-it
2023-10-24T13:06:27Z
4
0
flair
[ "flair", "pytorch", "tensorboard", "token-classification", "sequence-tagger-model", "de", "base_model:dbmdz/bert-tiny-historic-multilingual-cased", "base_model:finetune:dbmdz/bert-tiny-historic-multilingual-cased", "license:mit", "region:us" ]
token-classification
2023-10-18T14:38:48Z
--- language: de license: mit tags: - flair - token-classification - sequence-tagger-model base_model: dbmdz/bert-tiny-historic-multilingual-cased widget: - text: — Dramatiſch war der Stoff vor Sophokles von Äſchylos behandelt worden in den Θροῇσσαι , denen vielleicht in der Trilogie das Stüc>"OnJw» κοίσις vorherging , das Stück Σαλαμίνιαι folgte . --- # Fine-tuned Flair Model on AjMC German NER Dataset (HIPE-2022) This Flair model was fine-tuned on the [AjMC German](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-ajmc.md) NER Dataset using hmBERT Tiny as backbone LM. The AjMC dataset consists of NE-annotated historical commentaries in the field of Classics, and was created in the context of the [Ajax MultiCommentary](https://mromanello.github.io/ajax-multi-commentary/) project. The following NEs were annotated: `pers`, `work`, `loc`, `object`, `date` and `scope`. # Results We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: * Batch Sizes: `[4, 8]` * Learning Rates: `[5e-05, 3e-05]` And report micro F1-score on development set: | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average | |-------------------|--------------|------------------|--------------|--------------|--------------|-----------------| | `bs4-e10-lr5e-05` | [0.6471][1] | [0.6226][2] | [0.6406][3] | [0.6087][4] | [0.6286][5] | 0.6295 ± 0.0151 | | `bs8-e10-lr5e-05` | [0.5943][6] | [0.5707][7] | [0.6122][8] | [0.5884][9] | [0.5848][10] | 0.5901 ± 0.0151 | | `bs4-e10-lr3e-05` | [0.5483][11] | [0.52][12] | [0.6039][13] | [0.5435][14] | [0.5689][15] | 0.5569 ± 0.0315 | | `bs8-e10-lr3e-05` | [0.4147][16] | [**0.3173**][17] | [0.4288][18] | [0.3185][19] | [0.4139][20] | 0.3786 ± 0.0558 | [1]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [2]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [3]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [4]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [5]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [6]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [7]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [8]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [9]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [10]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [11]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [12]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [13]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [14]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [15]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [16]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [17]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [18]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [19]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [20]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub. More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2
stefan-it
2023-10-24T13:06:27Z
3
0
flair
[ "flair", "pytorch", "tensorboard", "token-classification", "sequence-tagger-model", "de", "base_model:dbmdz/bert-tiny-historic-multilingual-cased", "base_model:finetune:dbmdz/bert-tiny-historic-multilingual-cased", "license:mit", "region:us" ]
token-classification
2023-10-18T14:38:09Z
--- language: de license: mit tags: - flair - token-classification - sequence-tagger-model base_model: dbmdz/bert-tiny-historic-multilingual-cased widget: - text: — Dramatiſch war der Stoff vor Sophokles von Äſchylos behandelt worden in den Θροῇσσαι , denen vielleicht in der Trilogie das Stüc>"OnJw» κοίσις vorherging , das Stück Σαλαμίνιαι folgte . --- # Fine-tuned Flair Model on AjMC German NER Dataset (HIPE-2022) This Flair model was fine-tuned on the [AjMC German](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-ajmc.md) NER Dataset using hmBERT Tiny as backbone LM. The AjMC dataset consists of NE-annotated historical commentaries in the field of Classics, and was created in the context of the [Ajax MultiCommentary](https://mromanello.github.io/ajax-multi-commentary/) project. The following NEs were annotated: `pers`, `work`, `loc`, `object`, `date` and `scope`. # Results We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: * Batch Sizes: `[4, 8]` * Learning Rates: `[5e-05, 3e-05]` And report micro F1-score on development set: | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average | |-------------------|--------------|-----------------|--------------|--------------|--------------|-----------------| | `bs4-e10-lr5e-05` | [0.6471][1] | [**0.6226**][2] | [0.6406][3] | [0.6087][4] | [0.6286][5] | 0.6295 ± 0.0151 | | `bs8-e10-lr5e-05` | [0.5943][6] | [0.5707][7] | [0.6122][8] | [0.5884][9] | [0.5848][10] | 0.5901 ± 0.0151 | | `bs4-e10-lr3e-05` | [0.5483][11] | [0.52][12] | [0.6039][13] | [0.5435][14] | [0.5689][15] | 0.5569 ± 0.0315 | | `bs8-e10-lr3e-05` | [0.4147][16] | [0.3173][17] | [0.4288][18] | [0.3185][19] | [0.4139][20] | 0.3786 ± 0.0558 | [1]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [2]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [3]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [4]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [5]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [6]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [7]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [8]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [9]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [10]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [11]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [12]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [13]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [14]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [15]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [16]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [17]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [18]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [19]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [20]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub. More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1
stefan-it
2023-10-24T13:06:26Z
3
0
flair
[ "flair", "pytorch", "tensorboard", "token-classification", "sequence-tagger-model", "de", "base_model:dbmdz/bert-tiny-historic-multilingual-cased", "base_model:finetune:dbmdz/bert-tiny-historic-multilingual-cased", "license:mit", "region:us" ]
token-classification
2023-10-18T14:36:28Z
--- language: de license: mit tags: - flair - token-classification - sequence-tagger-model base_model: dbmdz/bert-tiny-historic-multilingual-cased widget: - text: — Dramatiſch war der Stoff vor Sophokles von Äſchylos behandelt worden in den Θροῇσσαι , denen vielleicht in der Trilogie das Stüc>"OnJw» κοίσις vorherging , das Stück Σαλαμίνιαι folgte . --- # Fine-tuned Flair Model on AjMC German NER Dataset (HIPE-2022) This Flair model was fine-tuned on the [AjMC German](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-ajmc.md) NER Dataset using hmBERT Tiny as backbone LM. The AjMC dataset consists of NE-annotated historical commentaries in the field of Classics, and was created in the context of the [Ajax MultiCommentary](https://mromanello.github.io/ajax-multi-commentary/) project. The following NEs were annotated: `pers`, `work`, `loc`, `object`, `date` and `scope`. # Results We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: * Batch Sizes: `[4, 8]` * Learning Rates: `[5e-05, 3e-05]` And report micro F1-score on development set: | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average | |-------------------|-----------------|--------------|--------------|--------------|--------------|-----------------| | `bs4-e10-lr5e-05` | [0.6471][1] | [0.6226][2] | [0.6406][3] | [0.6087][4] | [0.6286][5] | 0.6295 ± 0.0151 | | `bs8-e10-lr5e-05` | [**0.5943**][6] | [0.5707][7] | [0.6122][8] | [0.5884][9] | [0.5848][10] | 0.5901 ± 0.0151 | | `bs4-e10-lr3e-05` | [0.5483][11] | [0.52][12] | [0.6039][13] | [0.5435][14] | [0.5689][15] | 0.5569 ± 0.0315 | | `bs8-e10-lr3e-05` | [0.4147][16] | [0.3173][17] | [0.4288][18] | [0.3185][19] | [0.4139][20] | 0.3786 ± 0.0558 | [1]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [2]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [3]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [4]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [5]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [6]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [7]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [8]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [9]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [10]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [11]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [12]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [13]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [14]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [15]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [16]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [17]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [18]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [19]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [20]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub. More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1
stefan-it
2023-10-24T13:06:25Z
4
0
flair
[ "flair", "pytorch", "tensorboard", "token-classification", "sequence-tagger-model", "de", "base_model:dbmdz/bert-tiny-historic-multilingual-cased", "base_model:finetune:dbmdz/bert-tiny-historic-multilingual-cased", "license:mit", "region:us" ]
token-classification
2023-10-18T14:34:20Z
--- language: de license: mit tags: - flair - token-classification - sequence-tagger-model base_model: dbmdz/bert-tiny-historic-multilingual-cased widget: - text: — Dramatiſch war der Stoff vor Sophokles von Äſchylos behandelt worden in den Θροῇσσαι , denen vielleicht in der Trilogie das Stüc>"OnJw» κοίσις vorherging , das Stück Σαλαμίνιαι folgte . --- # Fine-tuned Flair Model on AjMC German NER Dataset (HIPE-2022) This Flair model was fine-tuned on the [AjMC German](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-ajmc.md) NER Dataset using hmBERT Tiny as backbone LM. The AjMC dataset consists of NE-annotated historical commentaries in the field of Classics, and was created in the context of the [Ajax MultiCommentary](https://mromanello.github.io/ajax-multi-commentary/) project. The following NEs were annotated: `pers`, `work`, `loc`, `object`, `date` and `scope`. # Results We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: * Batch Sizes: `[4, 8]` * Learning Rates: `[5e-05, 3e-05]` And report micro F1-score on development set: | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average | |-------------------|------------------|--------------|--------------|--------------|--------------|-----------------| | `bs4-e10-lr5e-05` | [0.6471][1] | [0.6226][2] | [0.6406][3] | [0.6087][4] | [0.6286][5] | 0.6295 ± 0.0151 | | `bs8-e10-lr5e-05` | [0.5943][6] | [0.5707][7] | [0.6122][8] | [0.5884][9] | [0.5848][10] | 0.5901 ± 0.0151 | | `bs4-e10-lr3e-05` | [**0.5483**][11] | [0.52][12] | [0.6039][13] | [0.5435][14] | [0.5689][15] | 0.5569 ± 0.0315 | | `bs8-e10-lr3e-05` | [0.4147][16] | [0.3173][17] | [0.4288][18] | [0.3185][19] | [0.4139][20] | 0.3786 ± 0.0558 | [1]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [2]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [3]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [4]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [5]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [6]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [7]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [8]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [9]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [10]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [11]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [12]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [13]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [14]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [15]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [16]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [17]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [18]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [19]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [20]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub. More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
hmbert-tiny/flair-hipe-2022-ajmc-de
hmbert-tiny
2023-10-24T13:06:25Z
5
0
flair
[ "flair", "pytorch", "tensorboard", "token-classification", "sequence-tagger-model", "de", "base_model:dbmdz/bert-tiny-historic-multilingual-cased", "base_model:finetune:dbmdz/bert-tiny-historic-multilingual-cased", "license:mit", "region:us" ]
token-classification
2023-10-18T14:35:11Z
--- language: de license: mit tags: - flair - token-classification - sequence-tagger-model base_model: dbmdz/bert-tiny-historic-multilingual-cased widget: - text: — Dramatiſch war der Stoff vor Sophokles von Äſchylos behandelt worden in den Θροῇσσαι , denen vielleicht in der Trilogie das Stüc>"OnJw» κοίσις vorherging , das Stück Σαλαμίνιαι folgte . --- # Fine-tuned Flair Model on AjMC German NER Dataset (HIPE-2022) This Flair model was fine-tuned on the [AjMC German](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-ajmc.md) NER Dataset using hmBERT Tiny as backbone LM. The AjMC dataset consists of NE-annotated historical commentaries in the field of Classics, and was created in the context of the [Ajax MultiCommentary](https://mromanello.github.io/ajax-multi-commentary/) project. The following NEs were annotated: `pers`, `work`, `loc`, `object`, `date` and `scope`. # Results We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: * Batch Sizes: `[4, 8]` * Learning Rates: `[5e-05, 3e-05]` And report micro F1-score on development set: | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average | |-------------------|-----------------|--------------|--------------|--------------|--------------|-----------------| | `bs4-e10-lr5e-05` | [**0.6471**][1] | [0.6226][2] | [0.6406][3] | [0.6087][4] | [0.6286][5] | 0.6295 ± 0.0151 | | `bs8-e10-lr5e-05` | [0.5943][6] | [0.5707][7] | [0.6122][8] | [0.5884][9] | [0.5848][10] | 0.5901 ± 0.0151 | | `bs4-e10-lr3e-05` | [0.5483][11] | [0.52][12] | [0.6039][13] | [0.5435][14] | [0.5689][15] | 0.5569 ± 0.0315 | | `bs8-e10-lr3e-05` | [0.4147][16] | [0.3173][17] | [0.4288][18] | [0.3185][19] | [0.4139][20] | 0.3786 ± 0.0558 | [1]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [2]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [3]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [4]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [5]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [6]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [7]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [8]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [9]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [10]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [11]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [12]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [13]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [14]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [15]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [16]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [17]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [18]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [19]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [20]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub. More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
anjakuzev/my-text-to-image-model_6
anjakuzev
2023-10-24T13:04:47Z
1
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-10-24T12:46:06Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - anjakuzev/my-text-to-image-model_6 These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the anjakuzev/harry_styles dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
MattStammers/muzero-cartpole-v1
MattStammers
2023-10-24T12:50:20Z
0
0
muzero-general
[ "muzero-general", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "license:mit", "model-index", "region:us" ]
reinforcement-learning
2023-10-24T12:33:19Z
--- license: mit library_name: muzero-general tags: - deep-reinforcement-learning - reinforcement-learning - muzero-general model-index: - name: MuZero results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: cartpole-v1 type: cartpole-v1 metrics: - type: mean_reward value: 500 +/- 0 name: mean_reward verified: false --- ## About the Project Of the back of the parallel APPO SOTA project I have also started training MuZero models. MuZero is the successor to AlphaZero but without any knowledge of the environment underlying dynamics. MuZero learns a model of the environment and uses an internal representation that contains only the useful information for predicting the reward, value, policy and transitions. MuZero is also close to Value prediction networks. MuZero is far more sample efficient than PPO and has several other advantages which have enabled it to reach SOTA performance in a variety of Atari games. To test it out on consumer hardware I used a small T600 laptop GPU which worked ok but ran slowly vs bigger GPUs as you would expect. ## Project Aims This is an earlier experimental project but the aim is to successfully train fairly complex models on complex games prior to porting to medical domain tasks which will require something like a replay buffer to carry out successfully. Sample inefficiency is not an option here. ## About the Model This cartpole model used the default parameters which can be found in my maintained fork: https://github.com/MattStammers/muzero-experiments However, I performed hyperparameter tuning to adjust both the initial learning rate and discount to achieve a score of 500. Without this change convergence at 10,000 timesteps was not possible. ``` python edited_hyperparameters= {'lr_init': 0.0155098444309102, 'discount': 0.9908385211252329} ``` A **MuZero** model trained on the **cartpole-v1** environment. To use this model you will probably be best served by installing the muzero-general repository as above and loading the checkpoint from there while more robust HuggingFace integrated pipelines are built out.
s3nh/golaxy-gogpt2-7b-GGUF
s3nh
2023-10-24T12:33:10Z
1
0
transformers
[ "transformers", "gguf", "text-generation", "zh", "en", "license:openrail", "endpoints_compatible", "region:us" ]
text-generation
2023-10-24T12:26:47Z
--- license: openrail pipeline_tag: text-generation library_name: transformers language: - zh - en --- ## Original model card Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> #### Description GGUF Format model files for [This project](https://huggingface.co/golaxy/gogpt2-7b). ### GGUF Specs GGUF is a format based on the existing GGJT, but makes a few changes to the format to make it more extensible and easier to use. The following features are desired: Single-file deployment: they can be easily distributed and loaded, and do not require any external files for additional information. Extensible: new features can be added to GGML-based executors/new information can be added to GGUF models without breaking compatibility with existing models. mmap compatibility: models can be loaded using mmap for fast loading and saving. Easy to use: models can be easily loaded and saved using a small amount of code, with no need for external libraries, regardless of the language used. Full information: all information needed to load a model is contained in the model file, and no additional information needs to be provided by the user. The key difference between GGJT and GGUF is the use of a key-value structure for the hyperparameters (now referred to as metadata), rather than a list of untyped values. This allows for new metadata to be added without breaking compatibility with existing models, and to annotate the model with additional information that may be useful for inference or for identifying the model. ### Perplexity params Model Measure Q2_K Q3_K_S Q3_K_M Q3_K_L Q4_0 Q4_1 Q4_K_S Q4_K_M Q5_0 Q5_1 Q5_K_S Q5_K_M Q6_K Q8_0 F16 7B perplexity 6.7764 6.4571 6.1503 6.0869 6.1565 6.0912 6.0215 5.9601 5.9862 5.9481 5.9419 5.9208 5.9110 5.9070 5.9066 13B perplexity 5.8545 5.6033 5.4498 5.4063 5.3860 5.3608 5.3404 5.3002 5.2856 5.2706 5.2785 5.2638 5.2568 5.2548 5.2543 ### inference TODO # Original model card
xiaogezhang/dreambooth-test-model
xiaogezhang
2023-10-24T12:31:59Z
1
0
diffusers
[ "diffusers", "art", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-10-24T09:15:17Z
--- license: mit language: - en library_name: diffusers tags: - art ---
boinc/111
boinc
2023-10-24T12:30:29Z
0
0
allennlp
[ "allennlp", "code", "text-classification", "aa", "ae", "dataset:laion/dalle-3-dataset", "license:openrail", "region:us" ]
text-classification
2023-10-24T12:29:24Z
--- license: openrail datasets: - laion/dalle-3-dataset language: - aa - ae metrics: - bertscore library_name: allennlp pipeline_tag: text-classification tags: - code ---
sainteye/ifoodie-classifier-v7
sainteye
2023-10-24T12:22:03Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-10-24T12:21:55Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: ifoodie-classifier-v7 results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.949999988079071 --- # ifoodie-classifier-v7 ['人物', '其他', '廣告', '拼貼壓字', '菜單', '食物', '餐廳'] ## Example Images # #### 人物 # ![人物](images/0.jpg) # # #### 其他 # ![其他](images/1.jpg) # # #### 廣告 # ![廣告](images/2.jpg) # # #### 拼貼壓字 # ![拼貼壓字](images/3.jpg) # # #### 菜單 # ![菜單](images/4.jpg) # # #### 食物 # ![食物](images/5.jpg) # # #### 餐廳 # ![餐廳](images/6.jpg) #
edgolyakova/t5-base-fr-title-generation
edgolyakova
2023-10-24T12:19:59Z
5
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-base", "base_model:finetune:google-t5/t5-base", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-10-18T08:37:03Z
--- license: apache-2.0 base_model: t5-base tags: - generated_from_trainer model-index: - name: t5-base-fr-title-generation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-fr-title-generation This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 21 | 2.8462 | 28.4377 | 16.9375 | 24.7772 | 24.869 | 19.0 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.1.0 - Datasets 2.14.5 - Tokenizers 0.13.3
justinsiow/vit_101
justinsiow
2023-10-24T12:09:13Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:food101", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-10-24T11:20:31Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - food101 metrics: - accuracy model-index: - name: vit_101 results: - task: name: Image Classification type: image-classification dataset: name: food101 type: food101 config: default split: train[:5000] args: default metrics: - name: Accuracy type: accuracy value: 0.88 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit_101 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the food101 dataset. It achieves the following results on the evaluation set: - Loss: 1.6267 - Accuracy: 0.88 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7266 | 0.99 | 62 | 2.5317 | 0.814 | | 1.8315 | 2.0 | 125 | 1.7931 | 0.864 | | 1.5845 | 2.98 | 186 | 1.6267 | 0.88 | ### Framework versions - Transformers 4.27.2 - Pytorch 2.1.0.dev20230428 - Datasets 2.10.1 - Tokenizers 0.13.2
jojo0217/ChatSKKU5.8B
jojo0217
2023-10-24T12:01:26Z
2,260
0
transformers
[ "transformers", "tensorboard", "safetensors", "gpt_neox", "text-generation", "ko", "dataset:jojo0217/korean_rlhf_dataset", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-27T12:55:21Z
--- license: apache-2.0 datasets: - jojo0217/korean_rlhf_dataset language: - ko pipeline_tag: text-generation --- 성균관대학교 산학협력 데이터로 만든 테스트 모델입니다. 기존 10만 7천개의 데이터 + 2천개 일상대화 추가 데이터를 첨가하여 학습하였습니다. ___ 모델은 EleutherAI/polyglot-ko-5.8b를 base로 학습 되었으며 학습 parameter은 다음과 같습니다. batch_size: 128 micro_batch_size: 8 num_epochs: 3 learning_rate: 3e-4 cutoff_len: 1024 lora_r: 8 lora_alpha: 16 lora_dropout: 0.05 weight_decay: 0.1 ___ 측정한 kobest 10shot 점수는 다음과 같습니다. ![score](./asset/score.png) ___ 모델 prompt template는 kullm의 template를 사용하였습니다. 테스트 코드는 다음과 같습니다. https://colab.research.google.com/drive/1xEHewqHnG4p3O24AuqqueMoXq1E3AlT0?usp=sharing ``` from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer model_name="jojo0217/ChatSKKU5.8B" model = AutoModelForCausalLM.from_pretrained( model_name, device_map="auto", load_in_8bit=True,#만약 양자화 끄고 싶다면 false ) tokenizer = AutoTokenizer.from_pretrained(model_name) pipe = pipeline( "text-generation", model=model, tokenizer=model_name, device_map="auto" ) def answer(message): prompt=f"아래는 작업을 설명하는 명령어입니다. 요청을 적절히 완료하는 응답을 작성하세요.\n\n### 명령어:\n{message}" ans = pipe( prompt + "\n\n### 응답:", do_sample=True, max_new_tokens=512, temperature=0.7, repetition_penalty = 1.0, return_full_text=False, eos_token_id=2, ) msg = ans[0]["generated_text"] return msg answer('성균관대학교에대해 알려줘') ```
ronenlap/restaurants-48samples-PolarityDetection
ronenlap
2023-10-24T11:53:38Z
6
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-10-24T09:34:00Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # ronenlap/my-SetFitABSA-model-PolarityDetection This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("ronenlap/my-SetFitABSA-model-PolarityDetection") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
ronenlap/restaurants-48samples-AspectsExtraction
ronenlap
2023-10-24T11:53:23Z
6
1
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-10-24T09:33:38Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # ronenlap/my-SetFitABSA-model-AspectsExtraction This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("ronenlap/my-SetFitABSA-model-AspectsExtraction") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
mrlasagna07/swin-tiny-patch4-window7-224-finetuned-eurosat
mrlasagna07
2023-10-24T11:50:27Z
34
0
transformers
[ "transformers", "pytorch", "swin", "image-classification", "generated_from_trainer", "base_model:microsoft/swin-tiny-patch4-window7-224", "base_model:finetune:microsoft/swin-tiny-patch4-window7-224", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-04T12:56:32Z
--- license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0539 - Accuracy: 0.98 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1412 | 0.99 | 70 | 0.1162 | 0.96 | | 0.0913 | 2.0 | 141 | 0.0539 | 0.98 | | 0.0777 | 2.98 | 210 | 0.0571 | 0.976 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
pgfeldman/GPT2-chess
pgfeldman
2023-10-24T11:49:57Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "arxiv:2008.04162", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-10-12T12:58:44Z
--- license: mit --- Model trained on chess "narratives" created from PGN notation from a large set of games downloaded from The Week in Chess (https://theweekinchess.com/). A script was run to convert the PGN notation to english text, and the model was finetuned on that. The approach is described in the paper [_Navigating Human Language Models with Synthetic Agents_](https://arxiv.org/abs/2008.04162). # Useful Prompts: * "The game begins" * "In move X" // X can be a number between 1 and approximately 100 * "White/Black moves X from Y" // X is the piece (pawn, bishop, knight, rook, queen, king) and Y is the square (e.g. e2) * "The game begins as white uses the X opening" // X is a known opening move such as Sicilian * "White moves X from" // X is the piece (pawn, bishop, knight, rook, queen, king) * "Black moves X from" // X is the piece (pawn, bishop, knight, rook, queen, king) # Citation: ``` @misc{feldman2020navigating, title={Navigating Human Language Models with Synthetic Agents}, author={Philip Feldman and Antonio Bucchiarone}, year={2020}, eprint={2008.04162}, archivePrefix={arXiv}, primaryClass={cs.AI} } ```
takuoko/tiny_sd_xl_pokemon_blip
takuoko
2023-10-24T11:42:16Z
9
0
diffusers
[ "diffusers", "safetensors", "dataset:lambdalabs/pokemon-blip-captions", "arxiv:2305.15798", "license:apache-2.0", "region:us" ]
null
2023-10-24T09:24:29Z
--- license: apache-2.0 datasets: - lambdalabs/pokemon-blip-captions --- # Introduction This is the example model of [Distill SDXL](https://github.com/okotaku/diffengine/tree/main/configs/distill_sd). The training is based on [DiffEngine](https://github.com/okotaku/diffengine), the open-source toolbox for training state-of-the-art Diffusion Models with diffusers and mmengine. # Training ``` pip install openmim pip install git+https://github.com/okotaku/diffengine.git mim train diffengine tiny_sd_xl_pokemon_blip.py ``` More details to my blog post: # Dataset I used [lambdalabs/pokemon-blip-captions](https://huggingface.co/datasets/lambdalabs/pokemon-blip-captions). # Inference ``` import torch from diffusers import DiffusionPipeline, UNet2DConditionModel, AutoencoderKL checkpoint = 'takuoko/tiny_sd_xl_pokemon_blip' prompt = 'a very cute looking pokemon with a hat on its head' unet = UNet2DConditionModel.from_pretrained( checkpoint, torch_dtype=torch.bfloat16 ) vae = AutoencoderKL.from_pretrained( 'madebyollin/sdxl-vae-fp16-fix', torch_dtype=torch.bfloat16, ) pipe = DiffusionPipeline.from_pretrained( 'stabilityai/stable-diffusion-xl-base-1.0', unet=unet, vae=vae, torch_dtype=torch.bfloat16 ) pipe.to('cuda') image = pipe( prompt, num_inference_steps=50, ).images[0] image.save('demo.png') ``` # Example result prompt = 'a very cute looking pokemon with a hat on its head' ![image](demo.png) # Reference Paper: [On Architectural Compression of Text-to-Image Diffusion Models](https://arxiv.org/abs/2305.15798) Unofficial implementation: https://github.com/segmind/distill-sd
ichiv/rl_course_vizdoom_health_gathering_supreme
ichiv
2023-10-24T11:42:05Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-10-24T11:41:57Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 13.92 +/- 4.78 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r ichiv/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
salmaniq/Text-to-speech-voice_cloning
salmaniq
2023-10-24T11:41:38Z
0
2
null
[ "region:us" ]
null
2023-10-24T11:38:41Z
# TTS-RVC-API Yes, we can use Coqui with RVC! #Why combine the two frameworks? Coqui is a text-to-speech framework (vocoder and encoder), but cloning your own voice takes decades and offers no guarantee of better results. That's why we use RVC (Retrieval-Based Voice Conversion), which works only for speech-to-speech. You can train the model with just 2-3 minutes of dataset as it uses Hubert (a pre-trained model to fine-tune quickly and provide better results). ## Installation How to use Coqui + RVC api? ```python https://github.com/skshadan/TTS-RVC-API.git ``` ```python python -m venv .venv . .venv/bin/activate pip install -r requirements.txt pip install TTS python -m uvicorn app.main:app ``` Now update `config.toml` with relative paths config `model_dir` path or set a `speaker_name` in the request body Where the RVC v2 model is mounted on the container at: ```python / └── models └── speaker1 ├── speaker1.pth └── speaker1.index ``` Now Run this ```python python -m uvicorn app.main:app ``` ## POST REQUEST ```python http://localhost:8000/generate ``` ```python emotions : happy,sad,angry,dull speed = 1.0 - 2.0 ``` ```python { "speaker_name": "speaker3", "input_text": "Hey there! Welcome to the world", "emotion": "Surprise", "speed": 1.0 } ``` # CODE SNIPPET ```python import requests import json import time url = "http://127.0.0.1:8000/generate" payload = json.dumps({ "speaker_name": "speaker3", "input_text": "Are you mad? The way you've betrayed me is beyond comprehension, a slap in the face that's left me boiling with an anger so intense it's as if you've thrown gasoline on a fire, utterly destroying any trust that was left.", "emotion": "Dull", "speed": 1.0 }) headers = { 'Content-Type': 'application/json' } start_time = time.time() # Start the timer response = requests.request("POST", url, headers=headers, data=payload) end_time = time.time() # Stop the timer if response.status_code == 200: audio_content = response.content # Save the audio to a file with open("generated_audio.wav", "wb") as audio_file: audio_file.write(audio_content) print("Audio saved successfully.") print("Time taken:", end_time - start_time, "seconds") else: print("Error:", response.text) ``` ## Feedback If you have any feedback, issues please reach out to shadankhantech@gmail.com
jstoone/whisper-medium-da
jstoone
2023-10-24T11:37:28Z
28
5
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "whisper-event", "da", "dataset:mozilla-foundation/common_voice_11_0", "base_model:openai/whisper-medium", "base_model:finetune:openai/whisper-medium", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-18T19:11:05Z
--- language: - da license: apache-2.0 tags: - generated_from_trainer - hf-asr-leaderboard - whisper-event datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer base_model: openai/whisper-medium model-index: - name: Whisper Medium Danish (CV11 + FLEAURS) results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: mozilla-foundation/common_voice_11_0 type: mozilla-foundation/common_voice_11_0 config: da split: test metrics: - type: wer value: 13.708574434508153 name: Wer --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Medium Danish (CV11 + FLEAURS) This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the mozilla-foundation/common_voice_11_0,google/fleurs da,da_dk dataset. It achieves the following results on the evaluation set: - Loss: 0.5814 - Wer: 13.7086 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.0265 | 3.14 | 1000 | 0.3690 | 14.7607 | | 0.0063 | 6.29 | 2000 | 0.4342 | 14.0926 | | 0.0016 | 9.43 | 3000 | 0.4847 | 14.3609 | | 0.002 | 12.58 | 4000 | 0.4919 | 14.1715 | | 0.0013 | 15.72 | 5000 | 0.5114 | 14.2294 | | 0.0014 | 18.87 | 6000 | 0.5197 | 13.9137 | | 0.0003 | 22.01 | 7000 | 0.5422 | 14.1978 | | 0.0001 | 25.16 | 8000 | 0.5659 | 13.8716 | | 0.0001 | 28.3 | 9000 | 0.5772 | 13.7296 | | 0.0001 | 31.45 | 10000 | 0.5814 | 13.7086 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
jiwon65/whisper-tiny_child-10k_time-stretch
jiwon65
2023-10-24T11:34:39Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "ko", "dataset:haseong8012/child-10k", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-10-24T11:33:14Z
--- language: - ko license: apache-2.0 base_model: openai/whisper-tiny tags: - hf-asr-leaderboard - generated_from_trainer datasets: - haseong8012/child-10k model-index: - name: whisper-tiny_child-10k_time-stretch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-tiny_child-10k_time-stretch This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the child-10k dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3.75e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 ### Framework versions - Transformers 4.34.0 - Pytorch 2.1.0+cu121 - Datasets 2.14.5 - Tokenizers 0.14.1
joanoller/projecte-aina-tunned
joanoller
2023-10-24T11:26:10Z
0
0
peft
[ "peft", "region:us" ]
null
2023-10-19T11:50:18Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
paragdakle/mistral-7b-bbq-lora
paragdakle
2023-10-24T11:23:47Z
3
0
peft
[ "peft", "region:us" ]
null
2023-10-24T11:16:10Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0 - PEFT 0.4.0
AlistairPullen/test-mistral-format
AlistairPullen
2023-10-24T11:16:34Z
11
0
peft
[ "peft", "arxiv:1910.09700", "base_model:mistralai/Mistral-7B-v0.1", "base_model:adapter:mistralai/Mistral-7B-v0.1", "region:us" ]
null
2023-10-24T11:16:28Z
--- library_name: peft base_model: mistralai/Mistral-7B-v0.1 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
profressr/hitler
profressr
2023-10-24T10:51:00Z
0
0
null
[ "license:other", "region:us" ]
null
2023-10-24T10:51:00Z
--- license: other license_name: somelicense license_link: LICENSE ---
felivai/openai-whisper-large-v2
felivai
2023-10-24T10:48:10Z
1
0
peft
[ "peft", "arxiv:1910.09700", "base_model:openai/whisper-small", "base_model:adapter:openai/whisper-small", "region:us" ]
null
2023-10-24T10:48:08Z
--- library_name: peft base_model: openai/whisper-small --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
AlistairPullen/test-mistral-memory
AlistairPullen
2023-10-24T10:46:13Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:mistralai/Mistral-7B-v0.1", "base_model:adapter:mistralai/Mistral-7B-v0.1", "region:us" ]
null
2023-10-24T10:46:08Z
--- library_name: peft base_model: mistralai/Mistral-7B-v0.1 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
Jise/controlnet-X-ray
Jise
2023-10-24T10:38:27Z
1
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "controlnet", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-10-24T08:39:37Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - controlnet inference: true --- # controlnet-Jise/controlnet-X-ray These are controlnet weights trained on runwayml/stable-diffusion-v1-5 with new type of conditioning. You can find some example images below. prompt: chest X_ray ![images_0)](./images_0.png)
viditsorg/autotrain-summarization-xlsum-97044146774
viditsorg
2023-10-24T10:27:30Z
12
0
transformers
[ "transformers", "pytorch", "safetensors", "mt5", "text2text-generation", "autotrain", "summarization", "unk", "dataset:viditsorg/autotrain-data-summarization-xlsum", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2023-10-24T10:07:47Z
--- tags: - autotrain - summarization language: - unk widget: - text: "I love AutoTrain" datasets: - viditsorg/autotrain-data-summarization-xlsum co2_eq_emissions: emissions: 1.1277935974066446 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 97044146774 - CO2 Emissions (in grams): 1.1278 ## Validation Metrics - Loss: 1.931 - Rouge1: 1.180 - Rouge2: 0.000 - RougeL: 1.475 - RougeLsum: 1.475 - Gen Len: 73.239 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/viditsorg/autotrain-summarization-xlsum-97044146774 ```
windiest/ddpm-to-become-shoter
windiest
2023-10-24T10:21:51Z
1
0
diffusers
[ "diffusers", "safetensors", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-10-24T10:21:33Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Example Fine-Tuned Model for Unit 2 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) learn from the datawhale ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('windiest/ddpm-to-become-shoter') image = pipeline().images[0] image ```
ichiv/ppo-Pyramids
ichiv
2023-10-24T10:11:46Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-10-24T10:10:45Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: ichiv/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
optech/mistral-finetuned-fbz
optech
2023-10-24T10:09:57Z
1
0
transformers
[ "transformers", "mistral", "conversational", "en", "dataset:optech/fbz_chat", "arxiv:1910.09700", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2023-10-24T04:48:58Z
--- license: apache-2.0 datasets: - optech/fbz_chat language: - en metrics: - accuracy pipeline_tag: conversational --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
qazs/Taxi-v3
qazs
2023-10-24T09:59:11Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-10-24T09:59:09Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="qazs/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
irishwerr/q-FrozenLake-v1-4x4-noSlippery
irishwerr
2023-10-24T09:42:42Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-10-24T09:40:58Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage model = load_from_hub(repo_id="irishwerr/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"])
Kolibri753/falcon-7b-instruct-workouts-json
Kolibri753
2023-10-24T09:32:28Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:vilsonrodrigues/falcon-7b-instruct-sharded", "base_model:adapter:vilsonrodrigues/falcon-7b-instruct-sharded", "region:us" ]
null
2023-10-24T09:32:23Z
--- library_name: peft base_model: vilsonrodrigues/falcon-7b-instruct-sharded --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0.dev0 ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0.dev0
hung200504/bert-covid-21
hung200504
2023-10-24T09:11:22Z
5
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "base_model:hung200504/bert-squadv2", "base_model:finetune:hung200504/bert-squadv2", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2023-10-24T09:11:05Z
--- license: mit base_model: hung200504/bert-squadv2 tags: - generated_from_trainer model-index: - name: bert-covid-21 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-covid-21 This model is a fine-tuned version of [hung200504/bert-squadv2](https://huggingface.co/hung200504/bert-squadv2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6103 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.2561 | 0.03 | 5 | 1.1801 | | 1.1175 | 0.06 | 10 | 0.9406 | | 1.2258 | 0.08 | 15 | 0.7456 | | 0.8306 | 0.11 | 20 | 0.5948 | | 0.5743 | 0.14 | 25 | 0.5835 | | 0.4958 | 0.17 | 30 | 0.7125 | | 0.4448 | 0.2 | 35 | 0.6664 | | 0.8538 | 0.22 | 40 | 0.7098 | | 0.8115 | 0.25 | 45 | 0.6869 | | 0.9364 | 0.28 | 50 | 0.5814 | | 1.0413 | 0.31 | 55 | 0.5434 | | 0.7219 | 0.34 | 60 | 0.5274 | | 0.6852 | 0.37 | 65 | 0.5764 | | 0.4603 | 0.39 | 70 | 0.6586 | | 0.8428 | 0.42 | 75 | 0.7742 | | 0.3679 | 0.45 | 80 | 0.7430 | | 1.0074 | 0.48 | 85 | 0.6630 | | 0.8531 | 0.51 | 90 | 0.5403 | | 0.4513 | 0.53 | 95 | 0.5452 | | 0.3039 | 0.56 | 100 | 0.6193 | | 1.7221 | 0.59 | 105 | 0.6734 | | 0.8286 | 0.62 | 110 | 0.5892 | | 0.6836 | 0.65 | 115 | 0.5413 | | 0.2059 | 0.67 | 120 | 0.5407 | | 0.8272 | 0.7 | 125 | 0.5446 | | 0.3456 | 0.73 | 130 | 0.5652 | | 1.1423 | 0.76 | 135 | 0.5697 | | 0.2456 | 0.79 | 140 | 0.5737 | | 0.7639 | 0.81 | 145 | 0.5767 | | 0.5946 | 0.84 | 150 | 0.5565 | | 0.0976 | 0.87 | 155 | 0.5857 | | 0.3246 | 0.9 | 160 | 0.6162 | | 1.039 | 0.93 | 165 | 0.6297 | | 0.6297 | 0.96 | 170 | 0.6217 | | 1.1724 | 0.98 | 175 | 0.6103 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
dvijay/llama-2-7b-chat-hf-ludwig-alpaca
dvijay
2023-10-24T09:06:38Z
0
0
peft
[ "peft", "region:us" ]
null
2023-10-24T09:00:25Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: QuantizationMethod.BITS_AND_BYTES - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - quant_method: QuantizationMethod.BITS_AND_BYTES - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0 - PEFT 0.5.0
DG41/Email_Writer_AI
DG41
2023-10-24T09:00:50Z
0
0
null
[ "region:us" ]
null
2023-10-23T08:28:29Z
pip install transformers from transformers import GPT2LMHeadModel, GPT2Tokenizer tokenizer = GPT2Tokenizer.from_pretrained("gpt2") model = GPT2LMHeadModel.from_pretrained("gpt2") from transformers import GPT2LMHeadModel, GPT2Tokenizer # Encode input text input_text = "Hello, how are you?" input_ids = tokenizer.encode(input_text, return_tensors='pt') # Generate text output = model.generate(input_ids, max_length=100, temperature=0.7, num_return_sequences=1) # Decode the output output_text = tokenizer.decode(output[0], skip_special_tokens=True) print(output_text)
PogusTheWhisper/wangchanglm-7.6b-lora-quote
PogusTheWhisper
2023-10-24T09:00:03Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:pythainlp/wangchanglm-7.5B-sft-enth", "base_model:adapter:pythainlp/wangchanglm-7.5B-sft-enth", "region:us" ]
null
2023-10-24T08:59:59Z
--- library_name: peft base_model: pythainlp/wangchanglm-7.5B-sft-enth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
yofitofi/shlomper
yofitofi
2023-10-24T08:52:51Z
0
0
adapter-transformers
[ "adapter-transformers", "code", "poopik", "text-classification", "he", "dataset:Open-Orca/OpenOrca", "license:other", "region:us" ]
text-classification
2023-10-18T12:19:17Z
--- license: other license_name: shlomper-license license_link: LICENSE datasets: - Open-Orca/OpenOrca language: - he metrics: - accuracy library_name: adapter-transformers pipeline_tag: text-classification tags: - code - poopik ---
taewon99/use_data_finetuning
taewon99
2023-10-24T08:48:15Z
24
0
transformers
[ "transformers", "pytorch", "detr", "object-detection", "generated_from_trainer", "base_model:facebook/detr-resnet-50", "base_model:finetune:facebook/detr-resnet-50", "license:apache-2.0", "endpoints_compatible", "region:us" ]
object-detection
2023-10-23T05:24:38Z
--- license: apache-2.0 base_model: facebook/detr-resnet-50 tags: - generated_from_trainer model-index: - name: use_data_finetuning results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # use_data_finetuning This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
intone/BERT-GRADER
intone
2023-10-24T08:15:20Z
4
1
transformers
[ "transformers", "pytorch", "bert", "text-classification", "doi:10.57967/hf/1257", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-10-12T13:47:51Z
--- tags: - text-classification widget: - text: "Hello! I'm BERT-Grader! I'm a finetuned BERT model for grading user input on values like consistency, grammar and quality!" example_title: "Example 1" library_name: transformers pipeline_tag: text-classification --- # BERT-GRADER? BERT-Grader is a BERT model designed for grading text by mesuring gramar, consistency and quality. Due to an error in the dataset, 'undefined' is 0. BERT-Grader is a finetune of distil-bert, for performance. ## Classes 0 (Undefined) - Elementary 1 - Intermidiate 2 - Advanced ## Biases and Issues For BERT-Grader to perform well, the input text should be an actual essay. Some biases may arise due to training data phrases, but there were mesures in place to limit bias. Giberrish is accounted for, and will be rather random. I suggest using a spell-checker with this model, and mesure tokens. ## Validation Metrics loss: 0.166 accuracy: 0.933333.. # Citing ``` @misc {intone_2023, author = { {intone} }, title = { BERT-GRADER (Revision 6bddc72) }, year = 2023, url = { https://huggingface.co/intone/BERT-GRADER }, doi = { 10.57967/hf/1257 }, publisher = { Hugging Face } } ```
Stanislav9801/ppo-LunarLander-v2-stas
Stanislav9801
2023-10-24T08:13:36Z
3
1
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-10-24T08:13:17Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 256.87 +/- 18.84 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
yesj1234/ko-en_mbartLarge_exp5p_linear_3gram
yesj1234
2023-10-24T08:06:26Z
5
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "generated_from_trainer", "ko", "en", "base_model:facebook/mbart-large-50-many-to-many-mmt", "base_model:finetune:facebook/mbart-large-50-many-to-many-mmt", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-10-24T08:02:26Z
--- language: - ko - en base_model: facebook/mbart-large-50-many-to-many-mmt tags: - generated_from_trainer metrics: - bleu model-index: - name: ko-en_mbartLarge_exp5p_linear results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ko-en_mbartLarge_exp5p_linear This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2308 - Bleu: 26.2764 - Gen Len: 18.3888 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 1.7665 | 0.46 | 1000 | 1.6564 | 17.6773 | 18.7196 | | 1.5688 | 0.93 | 2000 | 1.4939 | 20.8837 | 18.3983 | | 1.457 | 1.39 | 3000 | 1.4350 | 21.9168 | 18.458 | | 1.4107 | 1.86 | 4000 | 1.3752 | 22.8881 | 18.4826 | | 1.3039 | 2.32 | 5000 | 1.3327 | 23.8115 | 18.4348 | | 1.282 | 2.78 | 6000 | 1.3079 | 24.235 | 18.3561 | | 1.2133 | 3.25 | 7000 | 1.2820 | 24.8877 | 18.5204 | | 1.1787 | 3.71 | 8000 | 1.2580 | 25.2719 | 18.415 | | 1.1154 | 4.18 | 9000 | 1.2543 | 25.5507 | 18.3528 | | 1.0956 | 4.64 | 10000 | 1.2415 | 25.7284 | 18.5348 | | 1.023 | 5.1 | 11000 | 1.2410 | 25.7912 | 18.3347 | | 0.95 | 5.57 | 12000 | 1.2327 | 25.9921 | 18.2593 | | 0.9476 | 6.03 | 13000 | 1.2631 | 25.829 | 18.3686 | | 0.9061 | 6.5 | 14000 | 1.2548 | 25.8316 | 18.7481 | | 0.9037 | 6.96 | 15000 | 1.2308 | 26.2764 | 18.3888 | | 0.7431 | 7.42 | 16000 | 1.2716 | 25.9268 | 18.256 | | 0.7526 | 7.89 | 17000 | 1.2655 | 25.9883 | 18.2052 | | 0.6654 | 8.35 | 18000 | 1.3118 | 25.6866 | 18.2217 | | 0.6953 | 8.82 | 19000 | 1.3050 | 25.8958 | 18.3387 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.1.0+cu121 - Datasets 2.14.5 - Tokenizers 0.14.1
sanguineAlacrity/q-FrozenLake-v1-4x4-noSlippery
sanguineAlacrity
2023-10-24T07:45:29Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-10-24T07:45:25Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="sanguineAlacrity/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
adhejeb/my-pet-dog-xzg
adhejeb
2023-10-24T07:42:11Z
0
0
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-10-24T07:37:33Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-Pet-Dog-xzg Dreambooth model trained by adhejeb following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: FXEC-19 Sample pictures of this concept: ![0](https://huggingface.co/adhejeb/my-pet-dog-xzg/resolve/main/sample_images/ai_generated.png)
TheBloke/Llama-2-7B-GGUF
TheBloke
2023-10-24T07:32:45Z
19,813
186
transformers
[ "transformers", "gguf", "llama", "facebook", "meta", "pytorch", "llama-2", "text-generation", "en", "arxiv:2307.09288", "base_model:meta-llama/Llama-2-7b-hf", "base_model:quantized:meta-llama/Llama-2-7b-hf", "license:llama2", "region:us" ]
text-generation
2023-09-04T15:53:57Z
--- language: - en license: llama2 tags: - facebook - meta - pytorch - llama - llama-2 model_name: Llama 2 7B base_model: meta-llama/Llama-2-7b-hf inference: false model_creator: Meta model_type: llama pipeline_tag: text-generation prompt_template: '{prompt} ' quantized_by: TheBloke --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Llama 2 7B - GGUF - Model creator: [Meta](https://huggingface.co/meta-llama) - Original model: [Llama 2 7B](https://huggingface.co/meta-llama/Llama-2-7b-hf) <!-- description start --> ## Description This repo contains GGUF format model files for [Meta's Llama 2 7B](https://huggingface.co/meta-llama/Llama-2-7b-hf). <!-- description end --> <!-- README_GGUF.md-about-gguf start --> ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. GGUF offers numerous advantages over GGML, such as better tokenisation, and support for special tokens. It is also supports metadata, and is designed to be extensible. Here is an incomplate list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. <!-- README_GGUF.md-about-gguf end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Llama-2-7B-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Llama-2-7B-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Llama-2-7B-GGUF) * [Meta's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/meta-llama/Llama-2-7b-hf) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: None ``` {prompt} ``` <!-- prompt-template end --> <!-- compatibility_gguf start --> ## Compatibility These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) They are also compatible with many third party UIs and libraries - please see the list at the top of this README. ## Explanation of quantisation methods <details> <summary>Click to see details</summary> The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw Refer to the Provided Files table below to see what files use which methods, and how. </details> <!-- compatibility_gguf end --> <!-- README_GGUF.md-provided-files start --> ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | [llama-2-7b.Q2_K.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q2_K.gguf) | Q2_K | 2 | 2.83 GB| 5.33 GB | smallest, significant quality loss - not recommended for most purposes | | [llama-2-7b.Q3_K_S.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q3_K_S.gguf) | Q3_K_S | 3 | 2.95 GB| 5.45 GB | very small, high quality loss | | [llama-2-7b.Q3_K_M.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q3_K_M.gguf) | Q3_K_M | 3 | 3.30 GB| 5.80 GB | very small, high quality loss | | [llama-2-7b.Q3_K_L.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q3_K_L.gguf) | Q3_K_L | 3 | 3.60 GB| 6.10 GB | small, substantial quality loss | | [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q4_0.gguf) | Q4_0 | 4 | 3.83 GB| 6.33 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [llama-2-7b.Q4_K_S.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q4_K_S.gguf) | Q4_K_S | 4 | 3.86 GB| 6.36 GB | small, greater quality loss | | [llama-2-7b.Q4_K_M.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q4_K_M.gguf) | Q4_K_M | 4 | 4.08 GB| 6.58 GB | medium, balanced quality - recommended | | [llama-2-7b.Q5_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q5_0.gguf) | Q5_0 | 5 | 4.65 GB| 7.15 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [llama-2-7b.Q5_K_S.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q5_K_S.gguf) | Q5_K_S | 5 | 4.65 GB| 7.15 GB | large, low quality loss - recommended | | [llama-2-7b.Q5_K_M.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q5_K_M.gguf) | Q5_K_M | 5 | 4.78 GB| 7.28 GB | large, very low quality loss - recommended | | [llama-2-7b.Q6_K.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q6_K.gguf) | Q6_K | 6 | 5.53 GB| 8.03 GB | very large, extremely low quality loss | | [llama-2-7b.Q8_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q8_0.gguf) | Q8_0 | 8 | 7.16 GB| 9.66 GB | very large, extremely low quality loss - not recommended | **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead. <!-- README_GGUF.md-provided-files end --> <!-- README_GGUF.md-how-to-download start --> ## How to download GGUF files **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file. The following clients/libraries will automatically download models for you, providing a list of available models to choose from: - LM Studio - LoLLMS Web UI - Faraday.dev ### In `text-generation-webui` Under Download Model, you can enter the model repo: TheBloke/Llama-2-7B-GGUF and below it, a specific filename to download, such as: llama-2-7b.Q4_K_M.gguf. Then click Download. ### On the command line, including multiple files at once I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub>=0.17.1 ``` Then you can download any individual model file to the current directory, at high speed, with a command like this: ```shell huggingface-cli download TheBloke/Llama-2-7B-GGUF llama-2-7b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage</summary> You can also download multiple files at once with a pattern: ```shell huggingface-cli download TheBloke/Llama-2-7B-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf' ``` For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Llama-2-7B-GGUF llama-2-7b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` Windows CLI users: Use `set HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1` before running the download command. </details> <!-- README_GGUF.md-how-to-download end --> <!-- README_GGUF.md-how-to-run start --> ## Example `llama.cpp` command Make sure you are using `llama.cpp` from commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later. ```shell ./main -ngl 32 -m llama-2-7b.Q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "{prompt}" ``` Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md) ## How to run in `text-generation-webui` Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md). ## How to run from Python code You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. ### How to load this model from Python using ctransformers #### First install the package ```bash # Base ctransformers with no GPU acceleration pip install ctransformers>=0.2.24 # Or with CUDA GPU acceleration pip install ctransformers[cuda]>=0.2.24 # Or with ROCm GPU acceleration CT_HIPBLAS=1 pip install ctransformers>=0.2.24 --no-binary ctransformers # Or with Metal GPU acceleration for macOS systems CT_METAL=1 pip install ctransformers>=0.2.24 --no-binary ctransformers ``` #### Simple example code to load one of these GGUF models ```python from ctransformers import AutoModelForCausalLM # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. llm = AutoModelForCausalLM.from_pretrained("TheBloke/Llama-2-7B-GGUF", model_file="llama-2-7b.Q4_K_M.gguf", model_type="llama", gpu_layers=50) print(llm("AI is going to")) ``` ## How to use with LangChain Here's guides on using llama-cpp-python or ctransformers with LangChain: * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp) * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers) <!-- README_GGUF.md-how-to-run end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> <!-- original-model-card start --> # Original model card: Meta's Llama 2 7B # **Llama 2** Llama 2 is a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. This is the repository for the 7B pretrained model, converted for the Hugging Face Transformers format. Links to other models can be found in the index at the bottom. ## Model Details *Note: Use of this model is governed by the Meta license. In order to download the model weights and tokenizer, please visit the [website](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) and accept our License before requesting access here.* Meta developed and publicly released the Llama 2 family of large language models (LLMs), a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. Our fine-tuned LLMs, called Llama-2-Chat, are optimized for dialogue use cases. Llama-2-Chat models outperform open-source chat models on most benchmarks we tested, and in our human evaluations for helpfulness and safety, are on par with some popular closed-source models like ChatGPT and PaLM. **Model Developers** Meta **Variations** Llama 2 comes in a range of parameter sizes — 7B, 13B, and 70B — as well as pretrained and fine-tuned variations. **Input** Models input text only. **Output** Models generate text only. **Model Architecture** Llama 2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align to human preferences for helpfulness and safety. ||Training Data|Params|Content Length|GQA|Tokens|LR| |---|---|---|---|---|---|---| |Llama 2|*A new mix of publicly available online data*|7B|4k|&#10007;|2.0T|3.0 x 10<sup>-4</sup>| |Llama 2|*A new mix of publicly available online data*|13B|4k|&#10007;|2.0T|3.0 x 10<sup>-4</sup>| |Llama 2|*A new mix of publicly available online data*|70B|4k|&#10004;|2.0T|1.5 x 10<sup>-4</sup>| *Llama 2 family of models.* Token counts refer to pretraining data only. All models are trained with a global batch-size of 4M tokens. Bigger models - 70B -- use Grouped-Query Attention (GQA) for improved inference scalability. **Model Dates** Llama 2 was trained between January 2023 and July 2023. **Status** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback. **License** A custom commercial license is available at: [https://ai.meta.com/resources/models-and-libraries/llama-downloads/](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) **Research Paper** ["Llama-2: Open Foundation and Fine-tuned Chat Models"](arxiv.org/abs/2307.09288) ## Intended Use **Intended Use Cases** Llama 2 is intended for commercial and research use in English. Tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks. To get the expected features and performance for the chat versions, a specific formatting needs to be followed, including the `INST` and `<<SYS>>` tags, `BOS` and `EOS` tokens, and the whitespaces and breaklines in between (we recommend calling `strip()` on inputs to avoid double-spaces). See our reference code in github for details: [`chat_completion`](https://github.com/facebookresearch/llama/blob/main/llama/generation.py#L212). **Out-of-scope Uses** Use in any manner that violates applicable laws or regulations (including trade compliance laws).Use in languages other than English. Use in any other way that is prohibited by the Acceptable Use Policy and Licensing Agreement for Llama 2. ## Hardware and Software **Training Factors** We used custom training libraries, Meta's Research Super Cluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute. **Carbon Footprint** Pretraining utilized a cumulative 3.3M GPU hours of computation on hardware of type A100-80GB (TDP of 350-400W). Estimated total emissions were 539 tCO2eq, 100% of which were offset by Meta’s sustainability program. ||Time (GPU hours)|Power Consumption (W)|Carbon Emitted(tCO<sub>2</sub>eq)| |---|---|---|---| |Llama 2 7B|184320|400|31.22| |Llama 2 13B|368640|400|62.44| |Llama 2 70B|1720320|400|291.42| |Total|3311616||539.00| **CO<sub>2</sub> emissions during pretraining.** Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others. ## Training Data **Overview** Llama 2 was pretrained on 2 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over one million new human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data. **Data Freshness** The pretraining data has a cutoff of September 2022, but some tuning data is more recent, up to July 2023. ## Evaluation Results In this section, we report the results for the Llama 1 and Llama 2 models on standard academic benchmarks.For all the evaluations, we use our internal evaluations library. |Model|Size|Code|Commonsense Reasoning|World Knowledge|Reading Comprehension|Math|MMLU|BBH|AGI Eval| |---|---|---|---|---|---|---|---|---|---| |Llama 1|7B|14.1|60.8|46.2|58.5|6.95|35.1|30.3|23.9| |Llama 1|13B|18.9|66.1|52.6|62.3|10.9|46.9|37.0|33.9| |Llama 1|33B|26.0|70.0|58.4|67.6|21.4|57.8|39.8|41.7| |Llama 1|65B|30.7|70.7|60.5|68.6|30.8|63.4|43.5|47.6| |Llama 2|7B|16.8|63.9|48.9|61.3|14.6|45.3|32.6|29.3| |Llama 2|13B|24.5|66.9|55.4|65.8|28.7|54.8|39.4|39.1| |Llama 2|70B|**37.5**|**71.9**|**63.6**|**69.4**|**35.2**|**68.9**|**51.2**|**54.2**| **Overall performance on grouped academic benchmarks.** *Code:* We report the average pass@1 scores of our models on HumanEval and MBPP. *Commonsense Reasoning:* We report the average of PIQA, SIQA, HellaSwag, WinoGrande, ARC easy and challenge, OpenBookQA, and CommonsenseQA. We report 7-shot results for CommonSenseQA and 0-shot results for all other benchmarks. *World Knowledge:* We evaluate the 5-shot performance on NaturalQuestions and TriviaQA and report the average. *Reading Comprehension:* For reading comprehension, we report the 0-shot average on SQuAD, QuAC, and BoolQ. *MATH:* We report the average of the GSM8K (8 shot) and MATH (4 shot) benchmarks at top 1. |||TruthfulQA|Toxigen| |---|---|---|---| |Llama 1|7B|27.42|23.00| |Llama 1|13B|41.74|23.08| |Llama 1|33B|44.19|22.57| |Llama 1|65B|48.71|21.77| |Llama 2|7B|33.29|**21.25**| |Llama 2|13B|41.86|26.10| |Llama 2|70B|**50.18**|24.60| **Evaluation of pretrained LLMs on automatic safety benchmarks.** For TruthfulQA, we present the percentage of generations that are both truthful and informative (the higher the better). For ToxiGen, we present the percentage of toxic generations (the smaller the better). |||TruthfulQA|Toxigen| |---|---|---|---| |Llama-2-Chat|7B|57.04|**0.00**| |Llama-2-Chat|13B|62.18|**0.00**| |Llama-2-Chat|70B|**64.14**|0.01| **Evaluation of fine-tuned LLMs on different safety datasets.** Same metric definitions as above. ## Ethical Considerations and Limitations Llama 2 is a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Llama 2’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 2, developers should perform safety testing and tuning tailored to their specific applications of the model. Please see the Responsible Use Guide available at [https://ai.meta.com/llama/responsible-use-guide/](https://ai.meta.com/llama/responsible-use-guide) ## Reporting Issues Please report any software “bug,” or other problems with the models through one of the following means: - Reporting issues with the model: [github.com/facebookresearch/llama](http://github.com/facebookresearch/llama) - Reporting problematic content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback) - Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info) ## Llama Model Index |Model|Llama2|Llama2-hf|Llama2-chat|Llama2-chat-hf| |---|---|---|---|---| |7B| [Link](https://huggingface.co/llamaste/Llama-2-7b) | [Link](https://huggingface.co/llamaste/Llama-2-7b-hf) | [Link](https://huggingface.co/llamaste/Llama-2-7b-chat) | [Link](https://huggingface.co/llamaste/Llama-2-7b-chat-hf)| |13B| [Link](https://huggingface.co/llamaste/Llama-2-13b) | [Link](https://huggingface.co/llamaste/Llama-2-13b-hf) | [Link](https://huggingface.co/llamaste/Llama-2-13b-chat) | [Link](https://huggingface.co/llamaste/Llama-2-13b-hf)| |70B| [Link](https://huggingface.co/llamaste/Llama-2-70b) | [Link](https://huggingface.co/llamaste/Llama-2-70b-hf) | [Link](https://huggingface.co/llamaste/Llama-2-70b-chat) | [Link](https://huggingface.co/llamaste/Llama-2-70b-hf)| <!-- original-model-card end -->
krakenalt/saiga2_70b_gguf
krakenalt
2023-10-24T07:26:15Z
2
0
null
[ "gguf", "endpoints_compatible", "region:us" ]
null
2023-10-23T18:48:59Z
Llama.cpp compatible versions of an original [70B model](https://huggingface.co/IlyaGusev/saiga2_70b_lora). Quantization q5_k_m of model: [saiga2_70b](https://huggingface.co/IlyaGusev/saiga2_70b_gguf) * Download [interact_llamacpp.py](https://raw.githubusercontent.com/IlyaGusev/rulm/master/self_instruct/src/interact_llamacpp.py)
KGsteven/bloomz-560m_PROMPT_TUNING_CAUSAL_LM
KGsteven
2023-10-24T07:16:35Z
0
0
peft
[ "peft", "region:us" ]
null
2023-10-24T07:16:34Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0
dvijay/llama-2-7b-chat-hf-guanaco-1k
dvijay
2023-10-24T07:12:25Z
0
0
peft
[ "peft", "region:us" ]
null
2023-10-24T04:54:44Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: QuantizationMethod.BITS_AND_BYTES - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0
anantonios9/bert-base-uncased-issues-128
anantonios9
2023-10-24T06:19:53Z
3
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-10-24T05:14:02Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: bert-base-uncased-issues-128 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-issues-128 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1648 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.1111 | 1.0 | 291 | 1.6933 | | 1.6349 | 2.0 | 582 | 1.3660 | | 1.4813 | 3.0 | 873 | 1.4241 | | 1.3927 | 4.0 | 1164 | 1.4284 | | 1.3415 | 5.0 | 1455 | 1.2643 | | 1.2872 | 6.0 | 1746 | 1.3113 | | 1.2295 | 7.0 | 2037 | 1.2097 | | 1.2124 | 8.0 | 2328 | 1.2653 | | 1.179 | 9.0 | 2619 | 1.2648 | | 1.1486 | 10.0 | 2910 | 1.2159 | | 1.1268 | 11.0 | 3201 | 1.2639 | | 1.099 | 12.0 | 3492 | 1.1561 | | 1.0961 | 13.0 | 3783 | 1.1542 | | 1.079 | 14.0 | 4074 | 1.0736 | | 1.0661 | 15.0 | 4365 | 1.2457 | | 1.0671 | 16.0 | 4656 | 1.1648 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
Sid2531/trff
Sid2531
2023-10-24T06:18:14Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2023-10-24T06:18:14Z
--- license: bigscience-openrail-m ---
juliajoanna/lora-trained-xl-fred-155
juliajoanna
2023-10-24T06:15:21Z
0
1
diffusers
[ "diffusers", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-10-23T23:44:43Z
--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of sks man tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - juliajoanna/lora-trained-xl-fred-155 These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of sks man using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
mlninad/mistral-summarizer-adapter
mlninad
2023-10-24T06:13:58Z
0
0
null
[ "generated_from_trainer", "base_model:TheBloke/Mistral-7B-Instruct-v0.1-GPTQ", "base_model:finetune:TheBloke/Mistral-7B-Instruct-v0.1-GPTQ", "license:apache-2.0", "region:us" ]
null
2023-10-24T06:02:03Z
--- license: apache-2.0 base_model: TheBloke/Mistral-7B-Instruct-v0.1-GPTQ tags: - generated_from_trainer model-index: - name: mistral-summarizer-adapter results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mistral-summarizer-adapter This model is a fine-tuned version of [TheBloke/Mistral-7B-Instruct-v0.1-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GPTQ) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 250 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.35.0.dev0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1