modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-30 00:39:23
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
526 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-30 00:39:08
card
stringlengths
11
1.01M
Closen/Pixelcopter-PLE-v0_PG
Closen
2023-02-02T09:29:35Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-02T09:21:32Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Pixelcopter-PLE-v0_PG results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 21.80 +/- 26.48 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
jojoUla/bert-large-cased-finetuned-low20-cased-DA-20
jojoUla
2023-02-02T09:05:19Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-02-02T08:34:31Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-large-cased-finetuned-low20-cased-DA-20 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-cased-finetuned-low20-cased-DA-20 (not in use) This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.477 | 1.0 | 1 | 3.0843 | | 3.5516 | 2.0 | 2 | 4.2279 | | 3.6173 | 3.0 | 3 | 4.2543 | | 3.1873 | 4.0 | 4 | 2.8752 | | 3.9494 | 5.0 | 5 | 1.7727 | | 2.628 | 6.0 | 6 | 2.2849 | | 1.7451 | 7.0 | 7 | 2.2338 | | 2.6641 | 8.0 | 8 | 1.4185 | | 3.0739 | 9.0 | 9 | 4.0617 | | 2.1557 | 10.0 | 10 | 3.4256 | | 1.6353 | 11.0 | 11 | 3.0232 | | 2.6313 | 12.0 | 12 | 4.2908 | | 1.9466 | 13.0 | 13 | 3.0047 | | 1.8104 | 14.0 | 14 | 2.9170 | | 2.0315 | 15.0 | 15 | 3.5850 | | 2.6848 | 16.0 | 16 | 4.4435 | | 2.0859 | 17.0 | 17 | 3.9439 | | 1.6852 | 18.0 | 18 | 0.9313 | | 1.6071 | 19.0 | 19 | 3.6927 | | 1.697 | 20.0 | 20 | 3.7250 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
gokuls/mobilebert_sa_GLUE_Experiment_data_aug_mrpc_128
gokuls
2023-02-02T09:00:40Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-02T00:15:14Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: mobilebert_sa_GLUE_Experiment_data_aug_mrpc_128 results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 1.0 - name: F1 type: f1 value: 1.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_data_aug_mrpc_128 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.0 - Accuracy: 1.0 - F1: 1.0 - Combined Score: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.2019 | 1.0 | 1959 | 0.0211 | 0.9926 | 0.9947 | 0.9936 | | 0.0464 | 2.0 | 3918 | 0.0122 | 0.9951 | 0.9964 | 0.9958 | | 0.0307 | 3.0 | 5877 | 0.0049 | 0.9975 | 0.9982 | 0.9979 | | 0.0223 | 4.0 | 7836 | 0.0041 | 0.9975 | 0.9982 | 0.9979 | | 0.0179 | 5.0 | 9795 | 0.0006 | 1.0 | 1.0 | 1.0 | | 0.0147 | 6.0 | 11754 | 0.0005 | 1.0 | 1.0 | 1.0 | | 0.012 | 7.0 | 13713 | 0.0001 | 1.0 | 1.0 | 1.0 | | 0.0086 | 8.0 | 15672 | 0.0001 | 1.0 | 1.0 | 1.0 | | 0.0064 | 9.0 | 17631 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0058 | 10.0 | 19590 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0043 | 11.0 | 21549 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0035 | 12.0 | 23508 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.003 | 13.0 | 25467 | 0.0001 | 1.0 | 1.0 | 1.0 | | 0.0024 | 14.0 | 27426 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0018 | 15.0 | 29385 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0017 | 16.0 | 31344 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0014 | 17.0 | 33303 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0014 | 18.0 | 35262 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.001 | 19.0 | 37221 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0008 | 20.0 | 39180 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0009 | 21.0 | 41139 | 0.0 | 1.0 | 1.0 | 1.0 | | 0.0006 | 22.0 | 43098 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0007 | 23.0 | 45057 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0004 | 24.0 | 47016 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0007 | 25.0 | 48975 | 0.0 | 1.0 | 1.0 | 1.0 | | 0.0002 | 26.0 | 50934 | 0.0 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
Danghor/NLP4Web
Danghor
2023-02-02T08:46:16Z
3
0
transformers
[ "transformers", "pytorch", "distilbert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-02-01T17:53:14Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: result results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # result This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
paigereeves/distilbert-base-uncased-finetuned-auto
paigereeves
2023-02-02T08:43:12Z
5
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-01-31T04:49:19Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: paigereeves/distilbert-base-uncased-finetuned-auto results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # paigereeves/distilbert-base-uncased-finetuned-auto This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 3.7987 - Validation Loss: 3.4097 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -750, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 3.7987 | 3.4097 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.11.0 - Datasets 2.9.0 - Tokenizers 0.13.2
MHaurel/a2c-AntBulletEnv-v0
MHaurel
2023-02-02T08:38:29Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-02T08:37:23Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1812.08 +/- 54.55 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
scronberg/poca-SoccerTwos
scronberg
2023-02-02T08:24:17Z
62
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-02-02T08:24:09Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: scronberg/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
nolanaatama/asslora
nolanaatama
2023-02-02T08:15:15Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-02T08:12:45Z
--- license: creativeml-openrail-m ---
Addwater/a2c-AntBulletEnv-v0
Addwater
2023-02-02T08:04:30Z
1
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-02T08:03:26Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1693.64 +/- 82.00 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
zhenligod/videomae-base-finetuned-ucf101-subset
zhenligod
2023-02-02T08:02:06Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "videomae", "video-classification", "generated_from_trainer", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
video-classification
2023-02-02T03:22:20Z
--- license: cc-by-nc-4.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-finetuned-ucf101-subset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # videomae-base-finetuned-ucf101-subset This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2120 - Accuracy: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.5 | 1 | 1.2203 | 0.0 | | No log | 1.5 | 2 | 1.0272 | 0.0 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu117 - Datasets 2.9.0 - Tokenizers 0.13.2
sd-concepts-library/ahx-model-10
sd-concepts-library
2023-02-02T07:52:41Z
0
0
null
[ "license:mit", "region:us" ]
null
2023-02-02T07:52:38Z
--- license: mit --- ### ahx-model-10 on Stable Diffusion This is the `<ahx-model-10>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<ahx-model-10> 0](https://huggingface.co/sd-concepts-library/ahx-model-10/resolve/main/concept_images/4.jpeg) ![<ahx-model-10> 1](https://huggingface.co/sd-concepts-library/ahx-model-10/resolve/main/concept_images/2.jpeg) ![<ahx-model-10> 2](https://huggingface.co/sd-concepts-library/ahx-model-10/resolve/main/concept_images/1.jpeg) ![<ahx-model-10> 3](https://huggingface.co/sd-concepts-library/ahx-model-10/resolve/main/concept_images/3.jpeg) ![<ahx-model-10> 4](https://huggingface.co/sd-concepts-library/ahx-model-10/resolve/main/concept_images/0.jpeg)
ykleeee/wav2vec2-5epochs-3e4
ykleeee
2023-02-02T07:50:48Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-02-01T08:21:34Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-owndata results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-owndata This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2515 - Wer: 0.3212 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.262 | 0.36 | 100 | 3.4482 | 0.9832 | | 3.0032 | 0.72 | 200 | 2.9441 | 0.9832 | | 2.9141 | 1.08 | 300 | 2.9393 | 0.9832 | | 2.8585 | 1.44 | 400 | 2.8848 | 0.9627 | | 2.2837 | 1.8 | 500 | 2.1732 | 1.0111 | | 0.9834 | 2.16 | 600 | 0.8765 | 0.7345 | | 0.7288 | 2.52 | 700 | 0.5741 | 0.5641 | | 0.5521 | 2.88 | 800 | 0.3937 | 0.4467 | | 0.3751 | 3.24 | 900 | 0.3484 | 0.4112 | | 0.3733 | 3.6 | 1000 | 0.2964 | 0.3912 | | 0.2443 | 3.96 | 1100 | 0.2673 | 0.3446 | | 0.2667 | 4.32 | 1200 | 0.2657 | 0.3357 | | 0.2237 | 4.68 | 1300 | 0.2515 | 0.3212 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.1 - Datasets 2.9.0 - Tokenizers 0.10.3
FoxFive/LunarLander-v2-ppo-2_1
FoxFive
2023-02-02T07:42:59Z
0
0
null
[ "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2023-02-02T07:42:59Z
--- license: bigscience-bloom-rail-1.0 ---
amrisaurus/pretrained-bert-uncased-200
amrisaurus
2023-02-02T07:26:41Z
1
0
transformers
[ "transformers", "tf", "bert", "pretraining", "generated_from_keras_callback", "endpoints_compatible", "region:us" ]
null
2023-02-01T16:40:52Z
--- tags: - generated_from_keras_callback model-index: - name: pretrained-bert-uncased-200 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # pretrained-bert-uncased-200 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: nan - Validation Loss: nan - Epoch: 199 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 1e-04, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 8.9076 | 9.5544 | 0 | | 7.0572 | 9.6310 | 1 | | 6.5781 | 10.4973 | 2 | | 6.1054 | 10.4749 | 3 | | 6.1980 | 10.4411 | 4 | | 6.0896 | 11.1385 | 5 | | 6.1630 | 10.8668 | 6 | | 5.9313 | 11.2520 | 7 | | 5.7459 | 10.9396 | 8 | | 5.8505 | 11.1343 | 9 | | 5.8592 | 11.6048 | 10 | | 5.7595 | 12.0371 | 11 | | 5.7283 | 11.4402 | 12 | | 5.7948 | 11.6117 | 13 | | 5.7973 | 11.7393 | 14 | | 5.6228 | 11.9450 | 15 | | 5.6996 | 11.9938 | 16 | | 5.7468 | 12.3826 | 17 | | 5.6336 | 11.7692 | 18 | | 5.6287 | 12.1970 | 19 | | 5.7435 | 12.3895 | 20 | | 5.6587 | 12.2124 | 21 | | 5.6767 | 12.1633 | 22 | | 5.7494 | 12.1844 | 23 | | 5.5532 | 12.4163 | 24 | | 5.4826 | 12.3235 | 25 | | 5.7103 | 12.7326 | 26 | | 5.6399 | 12.3326 | 27 | | 5.6171 | 12.4726 | 28 | | 5.8517 | 12.3647 | 29 | | 5.6446 | 12.4943 | 30 | | 5.5662 | 12.6303 | 31 | | 5.8222 | 12.5869 | 32 | | 5.5710 | 13.0406 | 33 | | 5.6011 | 12.5007 | 34 | | 5.6860 | 12.2958 | 35 | | 5.6071 | 12.5690 | 36 | | 5.5824 | 12.4472 | 37 | | 5.5800 | 12.8570 | 38 | | 5.6298 | 12.9604 | 39 | | 5.4751 | 13.0937 | 40 | | 5.5724 | 12.8909 | 41 | | 5.6251 | 13.1132 | 42 | | 5.5483 | 12.7036 | 43 | | 5.6252 | 13.1233 | 44 | | 5.4592 | 13.1353 | 45 | | 5.5780 | 13.2373 | 46 | | 5.5350 | 13.4289 | 47 | | 5.4859 | 13.3994 | 48 | | 5.6908 | 13.1062 | 49 | | 5.7516 | 13.1705 | 50 | | 5.5373 | 13.3196 | 51 | | 5.6078 | 13.3352 | 52 | | 5.5998 | 13.3831 | 53 | | 5.6833 | 13.4430 | 54 | | 5.6047 | 12.7287 | 55 | | 5.7165 | 13.1647 | 56 | | 5.5246 | 13.5831 | 57 | | 5.5244 | 13.4733 | 58 | | 5.5659 | 13.8621 | 59 | | 5.6702 | 13.0873 | 60 | | 5.5403 | 13.2744 | 61 | | 5.4980 | 13.5826 | 62 | | 5.5052 | 13.4584 | 63 | | 5.5921 | 13.6191 | 64 | | 5.5647 | 13.2221 | 65 | | 5.6330 | 13.4804 | 66 | | 5.6607 | 13.0722 | 67 | | 5.7957 | 13.6183 | 68 | | 5.7403 | 13.5204 | 69 | | 5.5702 | 13.4229 | 70 | | 5.4891 | 13.6547 | 71 | | 5.7374 | 13.5464 | 72 | | 5.6032 | 13.3607 | 73 | | 5.5891 | 14.0467 | 74 | | 5.7014 | 13.7621 | 75 | | 5.6749 | 13.4568 | 76 | | 5.6180 | 13.7552 | 77 | | 5.6203 | 13.7563 | 78 | | 5.6290 | 13.4801 | 79 | | 5.6179 | 13.6345 | 80 | | 5.5856 | 13.8037 | 81 | | 5.6667 | 14.1205 | 82 | | 5.5012 | 14.2115 | 83 | | 5.6736 | 13.9032 | 84 | | 5.6132 | 13.7493 | 85 | | 5.6931 | 13.5402 | 86 | | 5.4744 | 13.9974 | 87 | | 5.6554 | 14.0855 | 88 | | 5.5775 | 13.7100 | 89 | | 5.6002 | 13.7944 | 90 | | 5.6341 | 14.4328 | 91 | | nan | nan | 92 | | nan | nan | 93 | | nan | nan | 94 | | nan | nan | 95 | | nan | nan | 96 | | nan | nan | 97 | | nan | nan | 98 | | nan | nan | 99 | | nan | nan | 100 | | nan | nan | 101 | | nan | nan | 102 | | nan | nan | 103 | | nan | nan | 104 | | nan | nan | 105 | | nan | nan | 106 | | nan | nan | 107 | | nan | nan | 108 | | nan | nan | 109 | | nan | nan | 110 | | nan | nan | 111 | | nan | nan | 112 | | nan | nan | 113 | | nan | nan | 114 | | nan | nan | 115 | | nan | nan | 116 | | nan | nan | 117 | | nan | nan | 118 | | nan | nan | 119 | | nan | nan | 120 | | nan | nan | 121 | | nan | nan | 122 | | nan | nan | 123 | | nan | nan | 124 | | nan | nan | 125 | | nan | nan | 126 | | nan | nan | 127 | | nan | nan | 128 | | nan | nan | 129 | | nan | nan | 130 | | nan | nan | 131 | | nan | nan | 132 | | nan | nan | 133 | | nan | nan | 134 | | nan | nan | 135 | | nan | nan | 136 | | nan | nan | 137 | | nan | nan | 138 | | nan | nan | 139 | | nan | nan | 140 | | nan | nan | 141 | | nan | nan | 142 | | nan | nan | 143 | | nan | nan | 144 | | nan | nan | 145 | | nan | nan | 146 | | nan | nan | 147 | | nan | nan | 148 | | nan | nan | 149 | | nan | nan | 150 | | nan | nan | 151 | | nan | nan | 152 | | nan | nan | 153 | | nan | nan | 154 | | nan | nan | 155 | | nan | nan | 156 | | nan | nan | 157 | | nan | nan | 158 | | nan | nan | 159 | | nan | nan | 160 | | nan | nan | 161 | | nan | nan | 162 | | nan | nan | 163 | | nan | nan | 164 | | nan | nan | 165 | | nan | nan | 166 | | nan | nan | 167 | | nan | nan | 168 | | nan | nan | 169 | | nan | nan | 170 | | nan | nan | 171 | | nan | nan | 172 | | nan | nan | 173 | | nan | nan | 174 | | nan | nan | 175 | | nan | nan | 176 | | nan | nan | 177 | | nan | nan | 178 | | nan | nan | 179 | | nan | nan | 180 | | nan | nan | 181 | | nan | nan | 182 | | nan | nan | 183 | | nan | nan | 184 | | nan | nan | 185 | | nan | nan | 186 | | nan | nan | 187 | | nan | nan | 188 | | nan | nan | 189 | | nan | nan | 190 | | nan | nan | 191 | | nan | nan | 192 | | nan | nan | 193 | | nan | nan | 194 | | nan | nan | 195 | | nan | nan | 196 | | nan | nan | 197 | | nan | nan | 198 | | nan | nan | 199 | ### Framework versions - Transformers 4.27.0.dev0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
antoooooine/Reinforce-Pixelcopter-PLE-v0
antoooooine
2023-02-02T06:56:56Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-01T09:34:36Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 34.70 +/- 52.31 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
jha2ee/StableDiffusion_finetuning_SisterIcon
jha2ee
2023-02-02T06:38:30Z
8
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-02T06:32:19Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### Sister-icon-style Dreambooth model trained by jha2ee ### with [TheLastBen's fast-DreamBooth] (https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept: ![0](https://huggingface.co/jha2ee/sister-icon-style/resolve/main/sample_images/pig-029.jpg) ![1](https://huggingface.co/jha2ee/sister-icon-style/resolve/main/sample_images/pig-025.jpg) ![2](https://huggingface.co/jha2ee/sister-icon-style/resolve/main/sample_images/pig-024.jpg) ![3](https://huggingface.co/jha2ee/sister-icon-style/resolve/main/sample_images/pig-026.jpg) ![4](https://huggingface.co/jha2ee/sister-icon-style/resolve/main/sample_images/pig-027.jpg) ![5](https://huggingface.co/jha2ee/sister-icon-style/resolve/main/sample_images/pig-028.jpg)
aristeia/q-FrozenLake-v1-4x4-noSlippery
aristeia
2023-02-02T06:24:49Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-02T06:24:45Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="aristeia/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Brain22/ppo-Huggy
Brain22
2023-02-02T06:17:08Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-02-02T06:17:01Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: Brain22/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
amrisaurus/pretrained-bert-uncased-50
amrisaurus
2023-02-02T06:10:39Z
1
0
transformers
[ "transformers", "tf", "bert", "pretraining", "generated_from_keras_callback", "endpoints_compatible", "region:us" ]
null
2023-02-02T06:09:53Z
--- tags: - generated_from_keras_callback model-index: - name: pretrained-bert-uncased-50 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # pretrained-bert-uncased-50 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 5.6891 - Validation Loss: 13.0813 - Epoch: 49 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 1e-04, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 8.9180 | 9.5765 | 0 | | 7.0631 | 9.6436 | 1 | | 6.5662 | 10.4855 | 2 | | 6.1181 | 10.4295 | 3 | | 6.2069 | 10.4589 | 4 | | 5.9769 | 11.0551 | 5 | | 6.1633 | 10.8653 | 6 | | 5.9430 | 11.3191 | 7 | | 5.7405 | 10.9468 | 8 | | 5.8629 | 11.1128 | 9 | | 5.8546 | 11.6032 | 10 | | 5.7616 | 12.0396 | 11 | | 5.7221 | 11.4718 | 12 | | 5.8037 | 11.6265 | 13 | | 5.8047 | 11.7407 | 14 | | 5.6255 | 11.9321 | 15 | | 5.7123 | 11.9664 | 16 | | 5.7439 | 12.3851 | 17 | | 5.6358 | 11.7695 | 18 | | 5.6334 | 12.1840 | 19 | | 5.7475 | 12.3386 | 20 | | 5.6651 | 12.1824 | 21 | | 5.6864 | 12.1818 | 22 | | 5.7437 | 12.1632 | 23 | | 5.5457 | 12.3682 | 24 | | 5.4805 | 12.2731 | 25 | | 5.7177 | 12.7105 | 26 | | 5.6454 | 12.3077 | 27 | | 5.6164 | 12.4352 | 28 | | 5.8538 | 12.2957 | 29 | | 5.6449 | 12.4987 | 30 | | 5.5644 | 12.6280 | 31 | | 5.8275 | 12.5619 | 32 | | 5.5706 | 13.0127 | 33 | | 5.6039 | 12.4849 | 34 | | 5.6839 | 12.2682 | 35 | | 5.6085 | 12.5530 | 36 | | 5.5826 | 12.4190 | 37 | | 5.5802 | 12.8276 | 38 | | 5.6272 | 12.9266 | 39 | | 5.4752 | 13.0355 | 40 | | 5.5738 | 12.8739 | 41 | | 5.6231 | 13.1363 | 42 | | 5.5497 | 12.6590 | 43 | | 5.6278 | 13.0785 | 44 | | 5.4599 | 13.0727 | 45 | | 5.5782 | 13.2001 | 46 | | 5.5343 | 13.4125 | 47 | | 5.4846 | 13.3727 | 48 | | 5.6891 | 13.0813 | 49 | ### Framework versions - Transformers 4.27.0.dev0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
gokuls/distilbert_sa_GLUE_Experiment_data_aug_qnli_192
gokuls
2023-02-02T05:57:19Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-02T01:17:40Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert_sa_GLUE_Experiment_data_aug_qnli_192 results: - task: name: Text Classification type: text-classification dataset: name: GLUE QNLI type: glue args: qnli metrics: - name: Accuracy type: accuracy value: 0.5701995240710233 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_data_aug_qnli_192 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE QNLI dataset. It achieves the following results on the evaluation set: - Loss: 1.0016 - Accuracy: 0.5702 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.5035 | 1.0 | 16604 | 1.0016 | 0.5702 | | 0.2645 | 2.0 | 33208 | 1.2295 | 0.5724 | | 0.1684 | 3.0 | 49812 | 1.3804 | 0.5826 | | 0.1171 | 4.0 | 66416 | 1.5434 | 0.5792 | | 0.085 | 5.0 | 83020 | 1.5556 | 0.5792 | | 0.064 | 6.0 | 99624 | 1.7284 | 0.5731 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
FloydianSound/Redline_Diffusion_v2-1
FloydianSound
2023-02-02T05:50:39Z
7
1
diffusers
[ "diffusers", "stable-diffusion", "text-to-image", "en", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-12-17T21:56:00Z
--- language: - en tags: - stable-diffusion - text-to-image license: creativeml-openrail-m inference: true --- ## Informations Fine-tuned SD v2-1 model, 10400 steps, 5 epochs Aspect Ratio Bucketing centered at 768 resolution, aspect ratio 16:9 (1024x576) Made with 208 pictures of the movie Redline by MadHouse; Captions by WD-v1-4 ## Tags Tokens are in the tags.txt along with their occurrences in [#] format ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
FloydianSound/Nixeu_Diffusion_v1-5
FloydianSound
2023-02-02T05:49:57Z
14
4
diffusers
[ "diffusers", "stable-diffusion", "text-to-image", "en", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-12-06T04:09:12Z
--- language: - en tags: - stable-diffusion - text-to-image license: creativeml-openrail-m inference: true --- ## Informations Fine-tuned SD v1-5 model, 25040 steps, 10 epochs Aspect Ratio Bucketing centered at 768 resolution Made with 250 pictures of the artist NIXEU; if you like the artist support their work on https://www.artstation.com/nixeu - https://www.deviantart.com/nixeu ## Tags Tokens are in the tags.txt along with their occurrences in [#] format <img alt="Showcase" src="https://huggingface.co/FloydianSound/Nixeu_Diffusion/resolve/main/00000-nurse%20single%20realistic%20lips%20highres%20fringe%20tall%20image%20absurdres%20long%20hair%20black%20hair%20upper%20body%20dress%20nixeu%20-%201522939414%20-%20Nixeu_Artstyle_nixeu_artstyle_768_e10.png"/> ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
gokuls/mobilebert_sa_GLUE_Experiment_data_aug_mrpc
gokuls
2023-02-02T05:48:12Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-01T23:55:25Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: mobilebert_sa_GLUE_Experiment_data_aug_mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 1.0 - name: F1 type: f1 value: 1.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_data_aug_mrpc This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 - Accuracy: 1.0 - F1: 1.0 - Combined Score: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.1838 | 1.0 | 1959 | 0.0138 | 0.9951 | 0.9964 | 0.9958 | | 0.0406 | 2.0 | 3918 | 0.0055 | 1.0 | 1.0 | 1.0 | | 0.0267 | 3.0 | 5877 | 0.0129 | 0.9975 | 0.9982 | 0.9979 | | 0.0151 | 4.0 | 7836 | 0.0004 | 1.0 | 1.0 | 1.0 | | 0.0108 | 5.0 | 9795 | 0.0104 | 0.9975 | 0.9982 | 0.9979 | | 0.0075 | 6.0 | 11754 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0059 | 7.0 | 13713 | 0.0005 | 1.0 | 1.0 | 1.0 | | 0.0047 | 8.0 | 15672 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0033 | 9.0 | 17631 | 0.0001 | 1.0 | 1.0 | 1.0 | | 0.0031 | 10.0 | 19590 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0025 | 11.0 | 21549 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0019 | 12.0 | 23508 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0019 | 13.0 | 25467 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0014 | 14.0 | 27426 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.001 | 15.0 | 29385 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.001 | 16.0 | 31344 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0009 | 17.0 | 33303 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0009 | 18.0 | 35262 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0006 | 19.0 | 37221 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0006 | 20.0 | 39180 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0003 | 21.0 | 41139 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0003 | 22.0 | 43098 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0005 | 23.0 | 45057 | 0.0000 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
shivr/dqn-SpaceInvadersNoFrameskip-v4
shivr
2023-02-02T05:36:20Z
4
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-02T05:35:50Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 374.00 +/- 214.89 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga shivr -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga shivr -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga shivr ``` ## Hyperparameters ```python OrderedDict([('batch_size', 64), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
Hyeoni/Question-Generation-Multitask-Korquad
Hyeoni
2023-02-02T05:17:00Z
0
1
null
[ "region:us" ]
null
2022-08-29T08:51:45Z
# Question Generation Model with KorQuAD ___ This model is a fine-tuend version of paust/pko-t5-base on the KorQuAD v1.0 Dataset. ### Dataset KorQuAD v1.0 Dataset (csv) [Train](https://drive.google.com/file/d/1p0LYPBQE8OW6XRFEW5nxc8P03wgD_plE/view?usp=sharing) [Valid](https://drive.google.com/file/d/1O0-8BCsYn3PpEmIUjiEBnPz4sBBmQmud/view?usp=sharing) ### Train 30% 확률로 input answer 대신 '[MASK]'를 넣어 질문 문장을 생성하도록 학습한다. 그 결과, input answer가 없을 때도 적절히 answer을 찾아 질문을 생성할 수 있다. ### Question Generation without Input Answer ```python context = """ CONTEXT """ input_answer = '[MASK]' generated = generate(best_model, input_answer, context) show_result(generated) ``` ### References ____ Leaf-Question-Generation :https://github.com/KristiyanVachev/Leaf-Question-Generation pko-t5-base : https://huggingface.co/paust/pko-t5-base KorQuAD v1.0 : https://korquad.github.io/KorQuad%201.0/
DioLiu/autotrain-koles_score-3215890190
DioLiu
2023-02-02T05:02:45Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain", "en", "dataset:DioLiu/autotrain-data-koles_score", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-02T05:01:13Z
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - DioLiu/autotrain-data-koles_score co2_eq_emissions: emissions: 0.009007200392120884 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 3215890190 - CO2 Emissions (in grams): 0.0090 ## Validation Metrics - Loss: 1.187 - Accuracy: 0.542 - Macro F1: 0.368 - Micro F1: 0.542 - Weighted F1: 0.482 - Macro Precision: 0.331 - Micro Precision: 0.542 - Weighted Precision: 0.434 - Macro Recall: 0.414 - Micro Recall: 0.542 - Weighted Recall: 0.542 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/DioLiu/autotrain-koles_score-3215890190 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("DioLiu/autotrain-koles_score-3215890190", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("DioLiu/autotrain-koles_score-3215890190", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
culteejen/PPO-default-Roomba
culteejen
2023-02-02T04:10:01Z
9
2
stable-baselines3
[ "stable-baselines3", "Roomba", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-25T22:28:27Z
--- library_name: stable-baselines3 tags: - Roomba - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Roomba type: Roomba metrics: - type: mean_reward value: -132.80 +/- 40.23 name: mean_reward verified: false --- # **PPO** Agent playing **Roomba** This is a trained model of a **PPO** agent playing **Roomba** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
huggingtweets/wnbagirlfriend
huggingtweets
2023-02-02T03:34:06Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-02-02T03:32:42Z
--- language: en thumbnail: http://www.huggingtweets.com/wnbagirlfriend/1675308841393/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1427129645888114693/HsNIpekZ_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">jody</div> <div style="text-align: center; font-size: 14px;">@wnbagirlfriend</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from jody. | Data | jody | | --- | --- | | Tweets downloaded | 3120 | | Retweets | 92 | | Short tweets | 588 | | Tweets kept | 2440 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/oghnr1wa/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @wnbagirlfriend's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/o9d6w49a) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/o9d6w49a/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/wnbagirlfriend') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
9au5a/nlpandweb
9au5a
2023-02-02T03:04:38Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2023-02-02T03:01:29Z
--- tags: - generated_from_trainer model-index: - name: result results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # result This model is a fine-tuned version of [huawei-noah/TinyBERT_General_4L_312D](https://huggingface.co/huawei-noah/TinyBERT_General_4L_312D) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
FUXI/yuyan-dialogue
FUXI
2023-02-02T03:01:44Z
0
2
null
[ "text-generation", "dialogue-generation", "pytorch", "inference acceleration", "gpt2", "gpt3", "zh", "arxiv:2005.14165", "license:apache-2.0", "region:us" ]
text-generation
2022-12-26T06:05:50Z
--- license: apache-2.0 language: zh inference: false tags: - text-generation - dialogue-generation - pytorch - inference acceleration - gpt2 - gpt3 --- # YuYan-Dialogue YuYan is a series of Chinese language models with different size, developed by Fuxi AI lab, Netease.Inc. They are trained on a large Chinese novel dataset of high quality. YuYan is in the same family of decoder-only models like [GPT2 and GPT-3](https://arxiv.org/abs/2005.14165). As such, it was pretrained using the self-supervised causal language modedling objective. YuYan-Dialogue is a dialogue model by fine-tuning the YuYan-11b on a large multi-turn dialogue dataset of high quality. It has very strong conversation generation capabilities. ## Model Inference Acceleration As the model size increases, the model inference time increases and more computational resources are required. Therefore, we developed our own transformer model inference acceleration framework, [EET](https://github.com/NetEase-FuXi/EET.git). More details are in [Easy and Efficient Transformer: Scalable Inference Solution For Large NLP Model](https://aclanthology.org/2022.naacl-industry.8/). We combine our language model with the EET inference framework to provide industrial-grade inference reasoning performance. ## How to use Our model is trained based on the [fairseq](https://github.com/facebookresearch/fairseq). As a result, the inference and finetuning depend on it. For inference, we modify some parts of the original fairseq codes. Mainly > fairseq-0.12.2/fairseq/sequence_generator.py We integrate the EET with sequence_generator. We replace the eos token to a token unlikely to be sampled to ensure the generated text length. The repetition penalty trick is also modified. You can change the penalty strength by adjusting the value of `self.ban_weight`. Then, to keep the eos token in the final generated text, we change the line 75 `include_eos=False` to `include_eos=True` in > fairseq-0.12.2/fairseq/data/dictionary.py Finally, to pass in parameters in python scripts, we remove the line 67 ~ line 69 in >fairseq-0.12.2/fairseq/dataclass/utils.py Below are the install tutorial. ``` # install pytorch pip install torch==1.8.1 # install pytorch # install fairseq unzip fairseq-0.12.2.zip cd fairseq-0.12.2 pip install. # install EET git clone https://github.com/NetEase-FuXi/EET.git cd EET pip install . # install transformers (EET requirements) pip install transformers==4.23 # make a folder, move the dictionary file and model file into it. mkdir transformer_lm_gpt2_xxl_dialogue mv dict.txt transformer_lm_gpt2_xxl_dialogue/ mv checkpoint_best_part_*.pt transformer_lm_gpt2_xxl_dialogue/ ``` `inference.py` is a script to provide a interface to initialize the EET object and sequence_generator. It includes some pre-process and post-process functions for text input and output. You can modify the script according to your needs. In addition, it provide a simple object to organize the dialogue generation and dialogue history. After the environment is ready, several lines of codes can realize the inference. ``` python from inference import Inference, Dialogue model_path = "transformer_lm_gpt2_xxl_dialogue/checkpoint_best.pt" data_path = "transformer_lm_gpt2_xxl_dialogue" eet_batch_size = 10 # max inference batch size, adjust according to cuda memory, 40GB memory is necessary inference = Inference(model_path, data_path, eet_batch_size) dialogue_model = Dialogue(inference) dialogue_model.get_repsonse("你好啊") ``` ## Citation If you find the technical report or resource is useful, please cite the following technical report in your paper. - https://aclanthology.org/2022.naacl-industry.8/ ``` @inproceedings{li-etal-2022-easy, title = "Easy and Efficient Transformer: Scalable Inference Solution For Large {NLP} Model", author = "Li, Gongzheng and Xi, Yadong and Ding, Jingzhen and Wang, Duan and Luo, Ziyang and Zhang, Rongsheng and Liu, Bai and Fan, Changjie and Mao, Xiaoxi and Zhao, Zeng", booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Industry Track", month = jul, year = "2022", address = "Hybrid: Seattle, Washington + Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.naacl-industry.8", doi = "10.18653/v1/2022.naacl-industry.8", pages = "62--68" } ``` ## Contact Us You can also contact us by email: xiyadong@corp.netease.com, dingjingzhen@corp.netease
AKFromCanada/Reinforce-CartPole-v1
AKFromCanada
2023-02-02T02:41:09Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-02T02:41:01Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
gokuls/distilbert_sa_GLUE_Experiment_data_aug_mrpc
gokuls
2023-02-02T02:37:41Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-01T22:57:58Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: distilbert_sa_GLUE_Experiment_data_aug_mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 1.0 - name: F1 type: f1 value: 1.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_data_aug_mrpc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.0 - Accuracy: 1.0 - F1: 1.0 - Combined Score: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.1488 | 1.0 | 980 | 0.0012 | 1.0 | 1.0 | 1.0 | | 0.0183 | 2.0 | 1960 | 0.0002 | 1.0 | 1.0 | 1.0 | | 0.0072 | 3.0 | 2940 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0044 | 4.0 | 3920 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0031 | 5.0 | 4900 | 0.0002 | 1.0 | 1.0 | 1.0 | | 0.0026 | 6.0 | 5880 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.002 | 7.0 | 6860 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0018 | 8.0 | 7840 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0015 | 9.0 | 8820 | 0.0077 | 0.9975 | 0.9982 | 0.9979 | | 0.0015 | 10.0 | 9800 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0012 | 11.0 | 10780 | 0.0001 | 1.0 | 1.0 | 1.0 | | 0.0011 | 12.0 | 11760 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0007 | 13.0 | 12740 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.001 | 14.0 | 13720 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0005 | 15.0 | 14700 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0007 | 16.0 | 15680 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0006 | 17.0 | 16660 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0005 | 18.0 | 17640 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0003 | 19.0 | 18620 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0007 | 20.0 | 19600 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0002 | 21.0 | 20580 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0005 | 22.0 | 21560 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0002 | 23.0 | 22540 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0003 | 24.0 | 23520 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0004 | 25.0 | 24500 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0004 | 26.0 | 25480 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0003 | 27.0 | 26460 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0002 | 28.0 | 27440 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0002 | 29.0 | 28420 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0002 | 30.0 | 29400 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0001 | 31.0 | 30380 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0001 | 32.0 | 31360 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0001 | 33.0 | 32340 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0 | 34.0 | 33320 | 0.0 | 1.0 | 1.0 | 1.0 | | 0.0001 | 35.0 | 34300 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0 | 36.0 | 35280 | 0.0 | 1.0 | 1.0 | 1.0 | | 0.0 | 37.0 | 36260 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0 | 38.0 | 37240 | 0.0 | 1.0 | 1.0 | 1.0 | | 0.0001 | 39.0 | 38220 | 0.0000 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
Pie31415/dm_anime
Pie31415
2023-02-02T02:31:05Z
7
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "dataset:huggan/selfie2anime", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-02-01T23:34:44Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class datasets: - huggan/selfie2anime --- # This model is a fine-tuned diffusion model for unconditional image generation of animefaces. Even after fine-tuning the diffusion model for 10 epochs the generated images are still cursed... 💀. Maybe more epochs would help? ![epoch10](dm_anime_epoch10.png) ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('Pie31415/dm_anime') image = pipeline().images[0] image ```
rohitp1/Nystrom-W2V2-100hrs-take-4-unfreeze-extractor-try-2
rohitp1
2023-02-02T02:20:16Z
1
0
transformers
[ "transformers", "pytorch", "wav2vec2", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-01-30T04:30:59Z
--- tags: - generated_from_trainer metrics: - wer model-index: - name: Nystrom-W2V2-100hrs-take-4-unfreeze-extractor-try-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Nystrom-W2V2-100hrs-take-4-unfreeze-extractor-try-2 This model is a fine-tuned version of [rohitp1/Nystrom-W2V2-100hrs-take-4-unfreeze-extractor](https://huggingface.co/rohitp1/Nystrom-W2V2-100hrs-take-4-unfreeze-extractor) on the None dataset. It achieves the following results on the evaluation set: - Loss: 27.1915 - Wer: 0.0869 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 64 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 23.1458 | 9.01 | 1000 | 28.9573 | 0.1039 | | 32.7156 | 18.02 | 2000 | 25.6155 | 0.1218 | | 43.506 | 27.03 | 3000 | 27.6332 | 0.1228 | | 43.3608 | 36.04 | 4000 | 26.0539 | 0.1169 | | 39.984 | 45.04 | 5000 | 25.9836 | 0.1137 | | 35.1977 | 54.05 | 6000 | 26.2060 | 0.1077 | | 30.1951 | 63.06 | 7000 | 27.0999 | 0.1033 | | 25.7519 | 72.07 | 8000 | 27.8459 | 0.0964 | | 22.1982 | 81.08 | 9000 | 27.9773 | 0.0908 | | 20.0551 | 90.09 | 10000 | 27.4222 | 0.0884 | | 19.4505 | 99.1 | 11000 | 27.1915 | 0.0869 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1 - Datasets 2.7.1 - Tokenizers 0.11.0
aburkard/my_awesome_model
aburkard
2023-02-02T02:15:02Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-02T00:12:49Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: my_awesome_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 379538407424.0 - Rmse: 616066.875 - Mae: 589504.9375 - Mape: 1.0000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mae | Mape | |:-------------:|:-----:|:----:|:---------------:|:----------:|:-----------:|:------:| | No log | 1.0 | 97 | 379540209664.0 | 616068.375 | 589506.5 | 1.0000 | | No log | 2.0 | 194 | 379538407424.0 | 616066.875 | 589504.9375 | 1.0000 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
StupidGame/AnythingV4.5
StupidGame
2023-02-02T02:10:47Z
21
1
diffusers
[ "diffusers", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-01-16T01:13:38Z
--- license: creativeml-openrail-m ---
swl-models/9527
swl-models
2023-02-02T01:48:23Z
0
14
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-02T00:54:21Z
--- license: creativeml-openrail-m ---
swl-models/DanMix-v1
swl-models
2023-02-02T01:34:25Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-02T00:30:09Z
--- license: creativeml-openrail-m ---
gokuls/distilbert_sa_GLUE_Experiment_data_aug_mrpc_256
gokuls
2023-02-02T01:14:12Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-01T22:55:04Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: distilbert_sa_GLUE_Experiment_data_aug_mrpc_256 results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 1.0 - name: F1 type: f1 value: 1.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_data_aug_mrpc_256 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.0 - Accuracy: 1.0 - F1: 1.0 - Combined Score: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.2052 | 1.0 | 980 | 0.0476 | 0.9853 | 0.9894 | 0.9873 | | 0.0409 | 2.0 | 1960 | 0.0031 | 1.0 | 1.0 | 1.0 | | 0.0211 | 3.0 | 2940 | 0.0006 | 1.0 | 1.0 | 1.0 | | 0.0131 | 4.0 | 3920 | 0.0005 | 1.0 | 1.0 | 1.0 | | 0.0078 | 5.0 | 4900 | 0.0001 | 1.0 | 1.0 | 1.0 | | 0.0058 | 6.0 | 5880 | 0.0002 | 1.0 | 1.0 | 1.0 | | 0.0041 | 7.0 | 6860 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0035 | 8.0 | 7840 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0029 | 9.0 | 8820 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0022 | 10.0 | 9800 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0021 | 11.0 | 10780 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0015 | 12.0 | 11760 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0017 | 13.0 | 12740 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0011 | 14.0 | 13720 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0013 | 15.0 | 14700 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0011 | 16.0 | 15680 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0009 | 17.0 | 16660 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0008 | 18.0 | 17640 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0008 | 19.0 | 18620 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0007 | 20.0 | 19600 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0006 | 21.0 | 20580 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0007 | 22.0 | 21560 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0005 | 23.0 | 22540 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0003 | 24.0 | 23520 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0003 | 25.0 | 24500 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0003 | 26.0 | 25480 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0003 | 27.0 | 26460 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0003 | 28.0 | 27440 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0002 | 29.0 | 28420 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0002 | 30.0 | 29400 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0002 | 31.0 | 30380 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0002 | 32.0 | 31360 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0001 | 33.0 | 32340 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0001 | 34.0 | 33320 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0002 | 35.0 | 34300 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0001 | 36.0 | 35280 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0 | 37.0 | 36260 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0 | 38.0 | 37240 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0 | 39.0 | 38220 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0001 | 40.0 | 39200 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0 | 41.0 | 40180 | 0.0 | 1.0 | 1.0 | 1.0 | | 0.0 | 42.0 | 41160 | 0.0 | 1.0 | 1.0 | 1.0 | | 0.0001 | 43.0 | 42140 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0 | 44.0 | 43120 | 0.0 | 1.0 | 1.0 | 1.0 | | 0.0 | 45.0 | 44100 | 0.0 | 1.0 | 1.0 | 1.0 | | 0.0 | 46.0 | 45080 | 0.0 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
gokuls/mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_cola_128
gokuls
2023-02-02T01:10:44Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-01T23:07:52Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_cola_128 results: - task: name: Text Classification type: text-classification dataset: name: GLUE COLA type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.10463488919851624 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_cola_128 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.7034 - Matthews Correlation: 0.1046 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:-----:|:---------------:|:--------------------:| | 0.6386 | 1.0 | 1669 | 0.7034 | 0.1046 | | 0.5613 | 2.0 | 3338 | 0.7201 | 0.0912 | | 0.535 | 3.0 | 5007 | 0.7257 | 0.1111 | | 0.5023 | 4.0 | 6676 | 0.7109 | 0.1655 | | 0.4569 | 5.0 | 8345 | 0.7769 | 0.1762 | | 0.4162 | 6.0 | 10014 | 0.7752 | 0.1431 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
AdhilB/AI
AdhilB
2023-02-02T00:57:10Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2023-02-02T00:53:24Z
--- title: GFPGAN emoji: 😁 colorFrom: yellow colorTo: green sdk: gradio sdk_version: 3.1.7 app_file: app.py pinned: false license: apache-2.0 --- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
gokuls/distilbert_sa_GLUE_Experiment_data_aug_mrpc_96
gokuls
2023-02-02T00:49:02Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-01T22:48:14Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: distilbert_sa_GLUE_Experiment_data_aug_mrpc_96 results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 1.0 - name: F1 type: f1 value: 1.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_data_aug_mrpc_96 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 - Accuracy: 1.0 - F1: 1.0 - Combined Score: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.3242 | 1.0 | 980 | 0.0830 | 0.9804 | 0.9857 | 0.9830 | | 0.0843 | 2.0 | 1960 | 0.0355 | 0.9828 | 0.9875 | 0.9852 | | 0.0431 | 3.0 | 2940 | 0.0105 | 1.0 | 1.0 | 1.0 | | 0.0268 | 4.0 | 3920 | 0.0046 | 1.0 | 1.0 | 1.0 | | 0.019 | 5.0 | 4900 | 0.0015 | 1.0 | 1.0 | 1.0 | | 0.0141 | 6.0 | 5880 | 0.0011 | 1.0 | 1.0 | 1.0 | | 0.0115 | 7.0 | 6860 | 0.0007 | 1.0 | 1.0 | 1.0 | | 0.0094 | 8.0 | 7840 | 0.0004 | 1.0 | 1.0 | 1.0 | | 0.0078 | 9.0 | 8820 | 0.0004 | 1.0 | 1.0 | 1.0 | | 0.0056 | 10.0 | 9800 | 0.0006 | 1.0 | 1.0 | 1.0 | | 0.0056 | 11.0 | 10780 | 0.0001 | 1.0 | 1.0 | 1.0 | | 0.0039 | 12.0 | 11760 | 0.0001 | 1.0 | 1.0 | 1.0 | | 0.0038 | 13.0 | 12740 | 0.0001 | 1.0 | 1.0 | 1.0 | | 0.0029 | 14.0 | 13720 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0026 | 15.0 | 14700 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0025 | 16.0 | 15680 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0019 | 17.0 | 16660 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0017 | 18.0 | 17640 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0015 | 19.0 | 18620 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0013 | 20.0 | 19600 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0013 | 21.0 | 20580 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0013 | 22.0 | 21560 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0012 | 23.0 | 22540 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.001 | 24.0 | 23520 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0008 | 25.0 | 24500 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0007 | 26.0 | 25480 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0006 | 27.0 | 26460 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0007 | 28.0 | 27440 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0007 | 29.0 | 28420 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0005 | 30.0 | 29400 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0004 | 31.0 | 30380 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0005 | 32.0 | 31360 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0004 | 33.0 | 32340 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0003 | 34.0 | 33320 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0004 | 35.0 | 34300 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0002 | 36.0 | 35280 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0003 | 37.0 | 36260 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0003 | 38.0 | 37240 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0003 | 39.0 | 38220 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0002 | 40.0 | 39200 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0002 | 41.0 | 40180 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0 | 42.0 | 41160 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0002 | 43.0 | 42140 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0002 | 44.0 | 43120 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0001 | 45.0 | 44100 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0001 | 46.0 | 45080 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0 | 47.0 | 46060 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0 | 48.0 | 47040 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0 | 49.0 | 48020 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0001 | 50.0 | 49000 | 0.0000 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
wybxc/of-diffusion
wybxc
2023-02-02T00:46:31Z
0
1
null
[ "stable-diffusion", "text-to-image", "en", "license:cc-by-nc-sa-4.0", "region:us" ]
text-to-image
2023-01-30T09:46:30Z
--- language: - en tags: - stable-diffusion - text-to-image license: cc-by-nc-sa-4.0 --- # AI 元火娘计划 在线演示:[AI 元火娘 - a Hugging Face Space by wybxc](https://huggingface.co/spaces/wybxc/of-diffusion-demo) ## v1 (Lora) SDv1 版本适用于 Stable Diffusion v1 系列模型,目前大多数模型都是此类。 SDv2 版本适用于 Stable Diffusion v2 系列模型,如 Waifu Diffusion 1.4 和 PVC 模型。 - 妹妹 - 燕火: [SDv1](https://huggingface.co/wybxc/yanhuo-v1-lora) [SDv2](https://huggingface.co/wybxc/yanhuo-v1-lora-sd2) - 姐姐 - 燕元: [SDv1](https://huggingface.co/wybxc/yanyuan-v1-lora) [SDv2](https://huggingface.co/wybxc/yanyuan-v1-lora-sd2) ## v1 (Dreambooth) 使用 dreambooth 在 Novel AI final pruned 模型基础上训练,之后融合 10% 的 Anything 3.0 模型。 **在 A1111 的 Web UI 中使用时,需要设置 `Clip skip` 为 2。** - [妹妹 - 燕火](https://huggingface.co/wybxc/yanhuo-v1-dreambooth) - [姐姐 - 燕元](https://huggingface.co/wybxc/yanyuan-v1-dreambooth) - [姐妹同屏](https://huggingface.co/wybxc/yuanhuo-v1-dreambooth) ## 更新日志 - 2023.01.30:第一版模型。 - 2023.02.01:第一版模型追加 Lora 版本。 ## 协议 本仓库及下属仓库所包含模型以署名-非商业性使用-相同方式共享 4.0 国际([CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.zh))协议公开发布。 模型训练所用数据集来源于元火动漫社社员的创作,版权归原作者与元火动漫社所有,不予公开。
gokuls/distilbert_sa_GLUE_Experiment_data_aug_mrpc_384
gokuls
2023-02-02T00:34:07Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-01T22:50:13Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: distilbert_sa_GLUE_Experiment_data_aug_mrpc_384 results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 1.0 - name: F1 type: f1 value: 1.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_data_aug_mrpc_384 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 - Accuracy: 1.0 - F1: 1.0 - Combined Score: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---:|:--------------:| | 0.1771 | 1.0 | 980 | 0.0049 | 1.0 | 1.0 | 1.0 | | 0.0321 | 2.0 | 1960 | 0.0009 | 1.0 | 1.0 | 1.0 | | 0.0154 | 3.0 | 2940 | 0.0001 | 1.0 | 1.0 | 1.0 | | 0.0086 | 4.0 | 3920 | 0.0009 | 1.0 | 1.0 | 1.0 | | 0.0062 | 5.0 | 4900 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0039 | 6.0 | 5880 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0039 | 7.0 | 6860 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0028 | 8.0 | 7840 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0022 | 9.0 | 8820 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0018 | 10.0 | 9800 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.002 | 11.0 | 10780 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0011 | 12.0 | 11760 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0015 | 13.0 | 12740 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0011 | 14.0 | 13720 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0011 | 15.0 | 14700 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0008 | 16.0 | 15680 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0009 | 17.0 | 16660 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0007 | 18.0 | 17640 | 0.0001 | 1.0 | 1.0 | 1.0 | | 0.0006 | 19.0 | 18620 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0006 | 20.0 | 19600 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0004 | 21.0 | 20580 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0004 | 22.0 | 21560 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0002 | 23.0 | 22540 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0004 | 24.0 | 23520 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0003 | 25.0 | 24500 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0004 | 26.0 | 25480 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0003 | 27.0 | 26460 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0002 | 28.0 | 27440 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0002 | 29.0 | 28420 | 0.0000 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
gokuls/mobilebert_sa_GLUE_Experiment_data_aug_cola_256
gokuls
2023-02-02T00:12:38Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-01T22:28:45Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: mobilebert_sa_GLUE_Experiment_data_aug_cola_256 results: - task: name: Text Classification type: text-classification dataset: name: GLUE COLA type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.09390288672705373 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_data_aug_cola_256 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.6609 - Matthews Correlation: 0.0939 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:-----:|:---------------:|:--------------------:| | 0.5394 | 1.0 | 1669 | 0.6609 | 0.0939 | | 0.4545 | 2.0 | 3338 | 0.7807 | 0.0474 | | 0.4253 | 3.0 | 5007 | 0.8029 | 0.0846 | | 0.388 | 4.0 | 6676 | 0.8930 | 0.0738 | | 0.3433 | 5.0 | 8345 | 0.9284 | 0.0834 | | 0.2986 | 6.0 | 10014 | 1.0809 | 0.1026 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
sammael70/1223
sammael70
2023-02-02T00:09:41Z
0
0
null
[ "es", "arxiv:1910.09700", "license:odbl", "region:us" ]
null
2023-02-02T00:07:39Z
--- license: odbl language: - es --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). # Model Details ## Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ## Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] # Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ## Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ## Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ## Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] # Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ## Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] # Training Details ## Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ## Training Procedure [optional] <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> ### Preprocessing [More Information Needed] ### Speeds, Sizes, Times <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] # Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ## Testing Data, Factors & Metrics ### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] ### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] ### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ## Results [More Information Needed] ### Summary # Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] # Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] # Technical Specifications [optional] ## Model Architecture and Objective [More Information Needed] ## Compute Infrastructure [More Information Needed] ### Hardware [More Information Needed] ### Software [More Information Needed] # Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] # Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] # More Information [optional] [More Information Needed] # Model Card Authors [optional] [More Information Needed] # Model Card Contact [More Information Needed]
gokuls/mobilebert_sa_GLUE_Experiment_data_aug_cola
gokuls
2023-02-01T23:54:20Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-01T22:35:34Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: mobilebert_sa_GLUE_Experiment_data_aug_cola results: - task: name: Text Classification type: text-classification dataset: name: GLUE COLA type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.05152844185670031 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_data_aug_cola This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.6549 - Matthews Correlation: 0.0515 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:-----:|:---------------:|:--------------------:| | 0.5347 | 1.0 | 1669 | 0.6549 | 0.0515 | | 0.4507 | 2.0 | 3338 | 0.8182 | 0.0794 | | 0.407 | 3.0 | 5007 | 0.8573 | 0.0853 | | 0.3439 | 4.0 | 6676 | 0.9437 | 0.0871 | | 0.2873 | 5.0 | 8345 | 1.0250 | 0.0530 | | 0.2424 | 6.0 | 10014 | 1.2340 | 0.0733 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
gokuls/distilbert_sa_GLUE_Experiment_logit_kd_data_aug_cola
gokuls
2023-02-01T23:48:51Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-01T23:05:48Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert_sa_GLUE_Experiment_logit_kd_data_aug_cola results: - task: name: Text Classification type: text-classification dataset: name: GLUE COLA type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.12240849993250438 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_logit_kd_data_aug_cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.7299 - Matthews Correlation: 0.1224 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5745 | 1.0 | 835 | 0.7299 | 0.1224 | | 0.3736 | 2.0 | 1670 | 0.7628 | 0.1626 | | 0.2919 | 3.0 | 2505 | 0.7388 | 0.1954 | | 0.2517 | 4.0 | 3340 | 0.7483 | 0.1699 | | 0.2279 | 5.0 | 4175 | 0.7558 | 0.1651 | | 0.2108 | 6.0 | 5010 | 0.7734 | 0.1542 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
Jedalc/codeparrot-gp2-finetune
Jedalc
2023-02-01T23:39:15Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-02-01T18:44:14Z
--- license: mit tags: - generated_from_trainer model-index: - name: codeparrot-gp2-finetune results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codeparrot-gp2-finetune This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7282 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.5006 | 0.93 | 5000 | 1.7282 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
Lakoc/a2c-PandaReachDense-v2
Lakoc
2023-02-01T23:19:16Z
1
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-01T23:17:09Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -0.48 +/- 0.17 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
gokuls/distilbert_sa_GLUE_Experiment_data_aug_cola
gokuls
2023-02-01T22:56:57Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-01T22:27:01Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert_sa_GLUE_Experiment_data_aug_cola results: - task: name: Text Classification type: text-classification dataset: name: GLUE COLA type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.12046776548411303 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_data_aug_cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.8362 - Matthews Correlation: 0.1205 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.4726 | 1.0 | 835 | 0.8362 | 0.1205 | | 0.2428 | 2.0 | 1670 | 1.3000 | 0.1122 | | 0.1378 | 3.0 | 2505 | 1.3626 | 0.1226 | | 0.0893 | 4.0 | 3340 | 1.6155 | 0.1608 | | 0.0648 | 5.0 | 4175 | 1.8098 | 0.0958 | | 0.049 | 6.0 | 5010 | 2.0187 | 0.1179 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
gokuls/distilbert_sa_GLUE_Experiment_data_aug_cola_192
gokuls
2023-02-01T22:48:05Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-01T22:33:09Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert_sa_GLUE_Experiment_data_aug_cola_192 results: - task: name: Text Classification type: text-classification dataset: name: GLUE COLA type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.07731897804953623 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_data_aug_cola_192 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.6791 - Matthews Correlation: 0.0773 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.558 | 1.0 | 835 | 0.6791 | 0.0773 | | 0.4341 | 2.0 | 1670 | 0.7597 | 0.0700 | | 0.3665 | 3.0 | 2505 | 0.8224 | 0.0934 | | 0.3213 | 4.0 | 3340 | 0.8997 | 0.1104 | | 0.2851 | 5.0 | 4175 | 0.9737 | 0.0851 | | 0.2544 | 6.0 | 5010 | 1.0495 | 0.1026 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
VeryLost/finetuning-sentiment-model-3000-samples
VeryLost
2023-02-01T22:48:04Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-01T19:18:13Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3161 - Accuracy: 0.87 - F1: 0.8730 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Tokenizers 0.13.2
TolgahanT/TT
TolgahanT
2023-02-01T22:21:32Z
0
0
diffusers
[ "diffusers", "ee", "dataset:fka/awesome-chatgpt-prompts", "license:creativeml-openrail-m", "region:us" ]
null
2023-02-01T22:18:33Z
--- license: creativeml-openrail-m datasets: - fka/awesome-chatgpt-prompts language: - ee metrics: - cer library_name: diffusers ---
Lakoc/a2c-AntBulletEnv-v0
Lakoc
2023-02-01T22:21:15Z
1
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-01T22:20:14Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1119.45 +/- 345.02 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
tomekkorbak/nostalgic_jones
tomekkorbak
2023-02-01T22:21:04Z
6
0
transformers
[ "transformers", "pytorch", "gpt2", "generated_from_trainer", "en", "dataset:tomekkorbak/detoxify-pile-chunk3-0-50000", "dataset:tomekkorbak/detoxify-pile-chunk3-50000-100000", "dataset:tomekkorbak/detoxify-pile-chunk3-100000-150000", "dataset:tomekkorbak/detoxify-pile-chunk3-150000-200000", "dataset:tomekkorbak/detoxify-pile-chunk3-200000-250000", "dataset:tomekkorbak/detoxify-pile-chunk3-250000-300000", "dataset:tomekkorbak/detoxify-pile-chunk3-300000-350000", "dataset:tomekkorbak/detoxify-pile-chunk3-350000-400000", "dataset:tomekkorbak/detoxify-pile-chunk3-400000-450000", "dataset:tomekkorbak/detoxify-pile-chunk3-450000-500000", "dataset:tomekkorbak/detoxify-pile-chunk3-500000-550000", "dataset:tomekkorbak/detoxify-pile-chunk3-550000-600000", "dataset:tomekkorbak/detoxify-pile-chunk3-600000-650000", "dataset:tomekkorbak/detoxify-pile-chunk3-650000-700000", "dataset:tomekkorbak/detoxify-pile-chunk3-700000-750000", "dataset:tomekkorbak/detoxify-pile-chunk3-750000-800000", "dataset:tomekkorbak/detoxify-pile-chunk3-800000-850000", "dataset:tomekkorbak/detoxify-pile-chunk3-850000-900000", "dataset:tomekkorbak/detoxify-pile-chunk3-900000-950000", "dataset:tomekkorbak/detoxify-pile-chunk3-950000-1000000", "dataset:tomekkorbak/detoxify-pile-chunk3-1000000-1050000", "dataset:tomekkorbak/detoxify-pile-chunk3-1050000-1100000", "dataset:tomekkorbak/detoxify-pile-chunk3-1100000-1150000", "dataset:tomekkorbak/detoxify-pile-chunk3-1150000-1200000", "dataset:tomekkorbak/detoxify-pile-chunk3-1200000-1250000", "dataset:tomekkorbak/detoxify-pile-chunk3-1250000-1300000", "dataset:tomekkorbak/detoxify-pile-chunk3-1300000-1350000", "dataset:tomekkorbak/detoxify-pile-chunk3-1350000-1400000", "dataset:tomekkorbak/detoxify-pile-chunk3-1400000-1450000", "dataset:tomekkorbak/detoxify-pile-chunk3-1450000-1500000", "dataset:tomekkorbak/detoxify-pile-chunk3-1500000-1550000", "dataset:tomekkorbak/detoxify-pile-chunk3-1550000-1600000", "dataset:tomekkorbak/detoxify-pile-chunk3-1600000-1650000", "dataset:tomekkorbak/detoxify-pile-chunk3-1650000-1700000", "dataset:tomekkorbak/detoxify-pile-chunk3-1700000-1750000", "dataset:tomekkorbak/detoxify-pile-chunk3-1750000-1800000", "dataset:tomekkorbak/detoxify-pile-chunk3-1800000-1850000", "dataset:tomekkorbak/detoxify-pile-chunk3-1850000-1900000", "dataset:tomekkorbak/detoxify-pile-chunk3-1900000-1950000", "license:mit", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2023-01-31T22:34:53Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - tomekkorbak/detoxify-pile-chunk3-0-50000 - tomekkorbak/detoxify-pile-chunk3-50000-100000 - tomekkorbak/detoxify-pile-chunk3-100000-150000 - tomekkorbak/detoxify-pile-chunk3-150000-200000 - tomekkorbak/detoxify-pile-chunk3-200000-250000 - tomekkorbak/detoxify-pile-chunk3-250000-300000 - tomekkorbak/detoxify-pile-chunk3-300000-350000 - tomekkorbak/detoxify-pile-chunk3-350000-400000 - tomekkorbak/detoxify-pile-chunk3-400000-450000 - tomekkorbak/detoxify-pile-chunk3-450000-500000 - tomekkorbak/detoxify-pile-chunk3-500000-550000 - tomekkorbak/detoxify-pile-chunk3-550000-600000 - tomekkorbak/detoxify-pile-chunk3-600000-650000 - tomekkorbak/detoxify-pile-chunk3-650000-700000 - tomekkorbak/detoxify-pile-chunk3-700000-750000 - tomekkorbak/detoxify-pile-chunk3-750000-800000 - tomekkorbak/detoxify-pile-chunk3-800000-850000 - tomekkorbak/detoxify-pile-chunk3-850000-900000 - tomekkorbak/detoxify-pile-chunk3-900000-950000 - tomekkorbak/detoxify-pile-chunk3-950000-1000000 - tomekkorbak/detoxify-pile-chunk3-1000000-1050000 - tomekkorbak/detoxify-pile-chunk3-1050000-1100000 - tomekkorbak/detoxify-pile-chunk3-1100000-1150000 - tomekkorbak/detoxify-pile-chunk3-1150000-1200000 - tomekkorbak/detoxify-pile-chunk3-1200000-1250000 - tomekkorbak/detoxify-pile-chunk3-1250000-1300000 - tomekkorbak/detoxify-pile-chunk3-1300000-1350000 - tomekkorbak/detoxify-pile-chunk3-1350000-1400000 - tomekkorbak/detoxify-pile-chunk3-1400000-1450000 - tomekkorbak/detoxify-pile-chunk3-1450000-1500000 - tomekkorbak/detoxify-pile-chunk3-1500000-1550000 - tomekkorbak/detoxify-pile-chunk3-1550000-1600000 - tomekkorbak/detoxify-pile-chunk3-1600000-1650000 - tomekkorbak/detoxify-pile-chunk3-1650000-1700000 - tomekkorbak/detoxify-pile-chunk3-1700000-1750000 - tomekkorbak/detoxify-pile-chunk3-1750000-1800000 - tomekkorbak/detoxify-pile-chunk3-1800000-1850000 - tomekkorbak/detoxify-pile-chunk3-1850000-1900000 - tomekkorbak/detoxify-pile-chunk3-1900000-1950000 model-index: - name: nostalgic_jones results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nostalgic_jones This model was trained from scratch on the tomekkorbak/detoxify-pile-chunk3-0-50000, the tomekkorbak/detoxify-pile-chunk3-50000-100000, the tomekkorbak/detoxify-pile-chunk3-100000-150000, the tomekkorbak/detoxify-pile-chunk3-150000-200000, the tomekkorbak/detoxify-pile-chunk3-200000-250000, the tomekkorbak/detoxify-pile-chunk3-250000-300000, the tomekkorbak/detoxify-pile-chunk3-300000-350000, the tomekkorbak/detoxify-pile-chunk3-350000-400000, the tomekkorbak/detoxify-pile-chunk3-400000-450000, the tomekkorbak/detoxify-pile-chunk3-450000-500000, the tomekkorbak/detoxify-pile-chunk3-500000-550000, the tomekkorbak/detoxify-pile-chunk3-550000-600000, the tomekkorbak/detoxify-pile-chunk3-600000-650000, the tomekkorbak/detoxify-pile-chunk3-650000-700000, the tomekkorbak/detoxify-pile-chunk3-700000-750000, the tomekkorbak/detoxify-pile-chunk3-750000-800000, the tomekkorbak/detoxify-pile-chunk3-800000-850000, the tomekkorbak/detoxify-pile-chunk3-850000-900000, the tomekkorbak/detoxify-pile-chunk3-900000-950000, the tomekkorbak/detoxify-pile-chunk3-950000-1000000, the tomekkorbak/detoxify-pile-chunk3-1000000-1050000, the tomekkorbak/detoxify-pile-chunk3-1050000-1100000, the tomekkorbak/detoxify-pile-chunk3-1100000-1150000, the tomekkorbak/detoxify-pile-chunk3-1150000-1200000, the tomekkorbak/detoxify-pile-chunk3-1200000-1250000, the tomekkorbak/detoxify-pile-chunk3-1250000-1300000, the tomekkorbak/detoxify-pile-chunk3-1300000-1350000, the tomekkorbak/detoxify-pile-chunk3-1350000-1400000, the tomekkorbak/detoxify-pile-chunk3-1400000-1450000, the tomekkorbak/detoxify-pile-chunk3-1450000-1500000, the tomekkorbak/detoxify-pile-chunk3-1500000-1550000, the tomekkorbak/detoxify-pile-chunk3-1550000-1600000, the tomekkorbak/detoxify-pile-chunk3-1600000-1650000, the tomekkorbak/detoxify-pile-chunk3-1650000-1700000, the tomekkorbak/detoxify-pile-chunk3-1700000-1750000, the tomekkorbak/detoxify-pile-chunk3-1750000-1800000, the tomekkorbak/detoxify-pile-chunk3-1800000-1850000, the tomekkorbak/detoxify-pile-chunk3-1850000-1900000 and the tomekkorbak/detoxify-pile-chunk3-1900000-1950000 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 50354 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.24.0 - Pytorch 1.11.0+cu113 - Datasets 2.5.1 - Tokenizers 0.11.6 # Full config {'dataset': {'conditional_training_config': {'aligned_prefix': '<|aligned|>', 'drop_token_fraction': 0.01, 'misaligned_prefix': '<|misaligned|>', 'threshold': 0.00056}, 'datasets': ['tomekkorbak/detoxify-pile-chunk3-0-50000', 'tomekkorbak/detoxify-pile-chunk3-50000-100000', 'tomekkorbak/detoxify-pile-chunk3-100000-150000', 'tomekkorbak/detoxify-pile-chunk3-150000-200000', 'tomekkorbak/detoxify-pile-chunk3-200000-250000', 'tomekkorbak/detoxify-pile-chunk3-250000-300000', 'tomekkorbak/detoxify-pile-chunk3-300000-350000', 'tomekkorbak/detoxify-pile-chunk3-350000-400000', 'tomekkorbak/detoxify-pile-chunk3-400000-450000', 'tomekkorbak/detoxify-pile-chunk3-450000-500000', 'tomekkorbak/detoxify-pile-chunk3-500000-550000', 'tomekkorbak/detoxify-pile-chunk3-550000-600000', 'tomekkorbak/detoxify-pile-chunk3-600000-650000', 'tomekkorbak/detoxify-pile-chunk3-650000-700000', 'tomekkorbak/detoxify-pile-chunk3-700000-750000', 'tomekkorbak/detoxify-pile-chunk3-750000-800000', 'tomekkorbak/detoxify-pile-chunk3-800000-850000', 'tomekkorbak/detoxify-pile-chunk3-850000-900000', 'tomekkorbak/detoxify-pile-chunk3-900000-950000', 'tomekkorbak/detoxify-pile-chunk3-950000-1000000', 'tomekkorbak/detoxify-pile-chunk3-1000000-1050000', 'tomekkorbak/detoxify-pile-chunk3-1050000-1100000', 'tomekkorbak/detoxify-pile-chunk3-1100000-1150000', 'tomekkorbak/detoxify-pile-chunk3-1150000-1200000', 'tomekkorbak/detoxify-pile-chunk3-1200000-1250000', 'tomekkorbak/detoxify-pile-chunk3-1250000-1300000', 'tomekkorbak/detoxify-pile-chunk3-1300000-1350000', 'tomekkorbak/detoxify-pile-chunk3-1350000-1400000', 'tomekkorbak/detoxify-pile-chunk3-1400000-1450000', 'tomekkorbak/detoxify-pile-chunk3-1450000-1500000', 'tomekkorbak/detoxify-pile-chunk3-1500000-1550000', 'tomekkorbak/detoxify-pile-chunk3-1550000-1600000', 'tomekkorbak/detoxify-pile-chunk3-1600000-1650000', 'tomekkorbak/detoxify-pile-chunk3-1650000-1700000', 'tomekkorbak/detoxify-pile-chunk3-1700000-1750000', 'tomekkorbak/detoxify-pile-chunk3-1750000-1800000', 'tomekkorbak/detoxify-pile-chunk3-1800000-1850000', 'tomekkorbak/detoxify-pile-chunk3-1850000-1900000', 'tomekkorbak/detoxify-pile-chunk3-1900000-1950000'], 'is_split_by_sentences': True}, 'generation': {'force_call_on': [25354], 'metrics_configs': [{}, {'n': 1}, {'n': 2}, {'n': 5}], 'scenario_configs': [{'generate_kwargs': {'bad_words_ids': [[50257], [50258]], 'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 4096, 'prefix': '<|aligned|>'}], 'scorer_config': {'device': 'cuda:0'}}, 'kl_gpt3_callback': {'force_call_on': [25354], 'gpt3_kwargs': {'model_name': 'davinci'}, 'max_tokens': 64, 'num_samples': 4096, 'prefix': '<|aligned|>'}, 'model': {'from_scratch': True, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'num_additional_tokens': 2, 'path_or_name': 'gpt2'}, 'objective': {'name': 'MLE'}, 'tokenizer': {'path_or_name': 'gpt2', 'special_tokens': ['<|aligned|>', '<|misaligned|>']}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 64, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'nostalgic_jones', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0005, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000, 'output_dir': 'training_output104340', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 5070, 'save_strategy': 'steps', 'seed': 42, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/tomekkorbak/apo/runs/pw7t099z
Nonin/ppo-LunarLander-v2
Nonin
2023-02-01T22:17:51Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-01T22:17:32Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 273.25 +/- 22.65 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
hectorjelly/ppo-LunarLander-v2
hectorjelly
2023-02-01T22:08:32Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-01T22:08:12Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 268.23 +/- 21.16 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
stinoco/Taxi-v3
stinoco
2023-02-01T21:55:04Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-01T21:55:01Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.72 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="stinoco/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
elamdaly/ppo-LunarLander-v2
elamdaly
2023-02-01T21:33:16Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-01T21:32:50Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 259.39 +/- 18.20 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
stinoco/q-FrozenLake-v1-4x4-noSlippery
stinoco
2023-02-01T21:26:10Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-01T21:15:56Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="stinoco/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
ietz/token-paraphrase-MiniLM-L6-v2-baseline
ietz
2023-02-01T21:08:04Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-02-01T21:05:54Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
tomekkorbak/sad_chandrasekhar
tomekkorbak
2023-02-01T20:57:59Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "generated_from_trainer", "en", "dataset:tomekkorbak/pii-pile-chunk3-0-50000", "dataset:tomekkorbak/pii-pile-chunk3-50000-100000", "dataset:tomekkorbak/pii-pile-chunk3-100000-150000", "dataset:tomekkorbak/pii-pile-chunk3-150000-200000", "dataset:tomekkorbak/pii-pile-chunk3-200000-250000", "dataset:tomekkorbak/pii-pile-chunk3-250000-300000", "dataset:tomekkorbak/pii-pile-chunk3-300000-350000", "dataset:tomekkorbak/pii-pile-chunk3-350000-400000", "dataset:tomekkorbak/pii-pile-chunk3-400000-450000", "dataset:tomekkorbak/pii-pile-chunk3-450000-500000", "dataset:tomekkorbak/pii-pile-chunk3-500000-550000", "dataset:tomekkorbak/pii-pile-chunk3-550000-600000", "dataset:tomekkorbak/pii-pile-chunk3-600000-650000", "dataset:tomekkorbak/pii-pile-chunk3-650000-700000", "dataset:tomekkorbak/pii-pile-chunk3-700000-750000", "dataset:tomekkorbak/pii-pile-chunk3-750000-800000", "dataset:tomekkorbak/pii-pile-chunk3-800000-850000", "dataset:tomekkorbak/pii-pile-chunk3-850000-900000", "dataset:tomekkorbak/pii-pile-chunk3-900000-950000", "dataset:tomekkorbak/pii-pile-chunk3-950000-1000000", "dataset:tomekkorbak/pii-pile-chunk3-1000000-1050000", "dataset:tomekkorbak/pii-pile-chunk3-1050000-1100000", "dataset:tomekkorbak/pii-pile-chunk3-1100000-1150000", "dataset:tomekkorbak/pii-pile-chunk3-1150000-1200000", "dataset:tomekkorbak/pii-pile-chunk3-1200000-1250000", "dataset:tomekkorbak/pii-pile-chunk3-1250000-1300000", "dataset:tomekkorbak/pii-pile-chunk3-1300000-1350000", "dataset:tomekkorbak/pii-pile-chunk3-1350000-1400000", "dataset:tomekkorbak/pii-pile-chunk3-1400000-1450000", "dataset:tomekkorbak/pii-pile-chunk3-1450000-1500000", "dataset:tomekkorbak/pii-pile-chunk3-1500000-1550000", "dataset:tomekkorbak/pii-pile-chunk3-1550000-1600000", "dataset:tomekkorbak/pii-pile-chunk3-1600000-1650000", "dataset:tomekkorbak/pii-pile-chunk3-1650000-1700000", "dataset:tomekkorbak/pii-pile-chunk3-1700000-1750000", "dataset:tomekkorbak/pii-pile-chunk3-1750000-1800000", "dataset:tomekkorbak/pii-pile-chunk3-1800000-1850000", "dataset:tomekkorbak/pii-pile-chunk3-1850000-1900000", "dataset:tomekkorbak/pii-pile-chunk3-1900000-1950000", "license:mit", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2023-02-01T06:40:06Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - tomekkorbak/pii-pile-chunk3-0-50000 - tomekkorbak/pii-pile-chunk3-50000-100000 - tomekkorbak/pii-pile-chunk3-100000-150000 - tomekkorbak/pii-pile-chunk3-150000-200000 - tomekkorbak/pii-pile-chunk3-200000-250000 - tomekkorbak/pii-pile-chunk3-250000-300000 - tomekkorbak/pii-pile-chunk3-300000-350000 - tomekkorbak/pii-pile-chunk3-350000-400000 - tomekkorbak/pii-pile-chunk3-400000-450000 - tomekkorbak/pii-pile-chunk3-450000-500000 - tomekkorbak/pii-pile-chunk3-500000-550000 - tomekkorbak/pii-pile-chunk3-550000-600000 - tomekkorbak/pii-pile-chunk3-600000-650000 - tomekkorbak/pii-pile-chunk3-650000-700000 - tomekkorbak/pii-pile-chunk3-700000-750000 - tomekkorbak/pii-pile-chunk3-750000-800000 - tomekkorbak/pii-pile-chunk3-800000-850000 - tomekkorbak/pii-pile-chunk3-850000-900000 - tomekkorbak/pii-pile-chunk3-900000-950000 - tomekkorbak/pii-pile-chunk3-950000-1000000 - tomekkorbak/pii-pile-chunk3-1000000-1050000 - tomekkorbak/pii-pile-chunk3-1050000-1100000 - tomekkorbak/pii-pile-chunk3-1100000-1150000 - tomekkorbak/pii-pile-chunk3-1150000-1200000 - tomekkorbak/pii-pile-chunk3-1200000-1250000 - tomekkorbak/pii-pile-chunk3-1250000-1300000 - tomekkorbak/pii-pile-chunk3-1300000-1350000 - tomekkorbak/pii-pile-chunk3-1350000-1400000 - tomekkorbak/pii-pile-chunk3-1400000-1450000 - tomekkorbak/pii-pile-chunk3-1450000-1500000 - tomekkorbak/pii-pile-chunk3-1500000-1550000 - tomekkorbak/pii-pile-chunk3-1550000-1600000 - tomekkorbak/pii-pile-chunk3-1600000-1650000 - tomekkorbak/pii-pile-chunk3-1650000-1700000 - tomekkorbak/pii-pile-chunk3-1700000-1750000 - tomekkorbak/pii-pile-chunk3-1750000-1800000 - tomekkorbak/pii-pile-chunk3-1800000-1850000 - tomekkorbak/pii-pile-chunk3-1850000-1900000 - tomekkorbak/pii-pile-chunk3-1900000-1950000 model-index: - name: sad_chandrasekhar results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sad_chandrasekhar This model was trained from scratch on the tomekkorbak/pii-pile-chunk3-0-50000, the tomekkorbak/pii-pile-chunk3-50000-100000, the tomekkorbak/pii-pile-chunk3-100000-150000, the tomekkorbak/pii-pile-chunk3-150000-200000, the tomekkorbak/pii-pile-chunk3-200000-250000, the tomekkorbak/pii-pile-chunk3-250000-300000, the tomekkorbak/pii-pile-chunk3-300000-350000, the tomekkorbak/pii-pile-chunk3-350000-400000, the tomekkorbak/pii-pile-chunk3-400000-450000, the tomekkorbak/pii-pile-chunk3-450000-500000, the tomekkorbak/pii-pile-chunk3-500000-550000, the tomekkorbak/pii-pile-chunk3-550000-600000, the tomekkorbak/pii-pile-chunk3-600000-650000, the tomekkorbak/pii-pile-chunk3-650000-700000, the tomekkorbak/pii-pile-chunk3-700000-750000, the tomekkorbak/pii-pile-chunk3-750000-800000, the tomekkorbak/pii-pile-chunk3-800000-850000, the tomekkorbak/pii-pile-chunk3-850000-900000, the tomekkorbak/pii-pile-chunk3-900000-950000, the tomekkorbak/pii-pile-chunk3-950000-1000000, the tomekkorbak/pii-pile-chunk3-1000000-1050000, the tomekkorbak/pii-pile-chunk3-1050000-1100000, the tomekkorbak/pii-pile-chunk3-1100000-1150000, the tomekkorbak/pii-pile-chunk3-1150000-1200000, the tomekkorbak/pii-pile-chunk3-1200000-1250000, the tomekkorbak/pii-pile-chunk3-1250000-1300000, the tomekkorbak/pii-pile-chunk3-1300000-1350000, the tomekkorbak/pii-pile-chunk3-1350000-1400000, the tomekkorbak/pii-pile-chunk3-1400000-1450000, the tomekkorbak/pii-pile-chunk3-1450000-1500000, the tomekkorbak/pii-pile-chunk3-1500000-1550000, the tomekkorbak/pii-pile-chunk3-1550000-1600000, the tomekkorbak/pii-pile-chunk3-1600000-1650000, the tomekkorbak/pii-pile-chunk3-1650000-1700000, the tomekkorbak/pii-pile-chunk3-1700000-1750000, the tomekkorbak/pii-pile-chunk3-1750000-1800000, the tomekkorbak/pii-pile-chunk3-1800000-1850000, the tomekkorbak/pii-pile-chunk3-1850000-1900000 and the tomekkorbak/pii-pile-chunk3-1900000-1950000 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 50354 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.24.0 - Pytorch 1.11.0+cu113 - Datasets 2.5.1 - Tokenizers 0.11.6 # Full config {'dataset': {'conditional_training_config': {'aligned_prefix': '<|aligned|>', 'drop_token_fraction': 0.01, 'misaligned_prefix': '<|misaligned|>', 'threshold': 0.0}, 'datasets': ['tomekkorbak/pii-pile-chunk3-0-50000', 'tomekkorbak/pii-pile-chunk3-50000-100000', 'tomekkorbak/pii-pile-chunk3-100000-150000', 'tomekkorbak/pii-pile-chunk3-150000-200000', 'tomekkorbak/pii-pile-chunk3-200000-250000', 'tomekkorbak/pii-pile-chunk3-250000-300000', 'tomekkorbak/pii-pile-chunk3-300000-350000', 'tomekkorbak/pii-pile-chunk3-350000-400000', 'tomekkorbak/pii-pile-chunk3-400000-450000', 'tomekkorbak/pii-pile-chunk3-450000-500000', 'tomekkorbak/pii-pile-chunk3-500000-550000', 'tomekkorbak/pii-pile-chunk3-550000-600000', 'tomekkorbak/pii-pile-chunk3-600000-650000', 'tomekkorbak/pii-pile-chunk3-650000-700000', 'tomekkorbak/pii-pile-chunk3-700000-750000', 'tomekkorbak/pii-pile-chunk3-750000-800000', 'tomekkorbak/pii-pile-chunk3-800000-850000', 'tomekkorbak/pii-pile-chunk3-850000-900000', 'tomekkorbak/pii-pile-chunk3-900000-950000', 'tomekkorbak/pii-pile-chunk3-950000-1000000', 'tomekkorbak/pii-pile-chunk3-1000000-1050000', 'tomekkorbak/pii-pile-chunk3-1050000-1100000', 'tomekkorbak/pii-pile-chunk3-1100000-1150000', 'tomekkorbak/pii-pile-chunk3-1150000-1200000', 'tomekkorbak/pii-pile-chunk3-1200000-1250000', 'tomekkorbak/pii-pile-chunk3-1250000-1300000', 'tomekkorbak/pii-pile-chunk3-1300000-1350000', 'tomekkorbak/pii-pile-chunk3-1350000-1400000', 'tomekkorbak/pii-pile-chunk3-1400000-1450000', 'tomekkorbak/pii-pile-chunk3-1450000-1500000', 'tomekkorbak/pii-pile-chunk3-1500000-1550000', 'tomekkorbak/pii-pile-chunk3-1550000-1600000', 'tomekkorbak/pii-pile-chunk3-1600000-1650000', 'tomekkorbak/pii-pile-chunk3-1650000-1700000', 'tomekkorbak/pii-pile-chunk3-1700000-1750000', 'tomekkorbak/pii-pile-chunk3-1750000-1800000', 'tomekkorbak/pii-pile-chunk3-1800000-1850000', 'tomekkorbak/pii-pile-chunk3-1850000-1900000', 'tomekkorbak/pii-pile-chunk3-1900000-1950000'], 'is_split_by_sentences': True}, 'generation': {'force_call_on': [25177], 'metrics_configs': [{}, {'n': 1}, {'n': 2}, {'n': 5}], 'scenario_configs': [{'generate_kwargs': {'bad_words_ids': [[50257], [50258]], 'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 4096, 'prefix': '<|aligned|>'}], 'scorer_config': {}}, 'kl_gpt3_callback': {'force_call_on': [25177], 'gpt3_kwargs': {'model_name': 'davinci'}, 'max_tokens': 64, 'num_samples': 4096, 'prefix': '<|aligned|>'}, 'model': {'from_scratch': True, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'num_additional_tokens': 2, 'path_or_name': 'gpt2'}, 'objective': {'name': 'MLE'}, 'tokenizer': {'path_or_name': 'gpt2', 'special_tokens': ['<|aligned|>', '<|misaligned|>']}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 64, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'sad_chandrasekhar', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0005, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000, 'output_dir': 'training_output2', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 5035, 'save_strategy': 'steps', 'seed': 42, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/tomekkorbak/apo/runs/1nikqva5
Aphophis420/stargate-diffusion-sg1-1
Aphophis420
2023-02-01T20:53:57Z
7
3
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-12-30T15:09:33Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### stargate-diffusion-sg1-1 Dreambooth model trained by Aphophis420 with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook USE: *prompt*, still from stargate sg1 Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) ![0](https://huggingface.co/Aphophis420/stargate-diffusion-sg1-1/resolve/main/04738.png) ![1](https://huggingface.co/Aphophis420/stargate-diffusion-sg1-1/resolve/main/04745.png) ![2](https://huggingface.co/Aphophis420/stargate-diffusion-sg1-1/resolve/main/04787.png) ![3](https://huggingface.co/Aphophis420/stargate-diffusion-sg1-1/resolve/main/04797.png) ![4](https://huggingface.co/Aphophis420/stargate-diffusion-sg1-1/resolve/main/04808.png) ![5](https://huggingface.co/Aphophis420/stargate-diffusion-sg1-1/resolve/main/04824.png) ![6](https://huggingface.co/Aphophis420/stargate-diffusion-sg1-1/resolve/main/04814.png)
Sartc/PPO-2FEB-LunarLander-v2
Sartc
2023-02-01T20:47:15Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-01T20:44:12Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: ppo results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -402.40 +/- 104.21 name: mean_reward verified: false --- # **ppo** Agent playing **LunarLander-v2** This is a trained model of a **ppo** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
LowGI/my_new_asr_model
LowGI
2023-02-01T20:26:57Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-02-01T20:15:47Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: my_new_asr_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_new_asr_model This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.9912 - Wer: 0.9915 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | No log | 200.0 | 200 | 3.2498 | 0.9972 | | No log | 400.0 | 400 | 4.1645 | 1.1339 | | 1.1325 | 600.0 | 600 | 4.7252 | 1.1197 | | 1.1325 | 800.0 | 800 | 4.9678 | 1.0370 | | 0.0747 | 1000.0 | 1000 | 4.9912 | 0.9915 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
Deisler/Reinforce-Cartoole-01
Deisler
2023-02-01T20:10:20Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-01-31T16:10:35Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Cartoole-01 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 487.60 +/- 37.20 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
OGSneakybot/ppo-LunarLander-v2
OGSneakybot
2023-02-01T19:36:14Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-01T17:49:00Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 269.12 +/- 17.42 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
dlu66061/distilbert-base-uncased-finetuned-cola
dlu66061
2023-02-01T19:36:11Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-31T21:05:50Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5429064789214383 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8171 - Matthews Correlation: 0.5429 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5262 | 1.0 | 535 | 0.5236 | 0.4004 | | 0.3571 | 2.0 | 1070 | 0.5287 | 0.5073 | | 0.2325 | 3.0 | 1605 | 0.5771 | 0.5206 | | 0.1735 | 4.0 | 2140 | 0.7643 | 0.5321 | | 0.13 | 5.0 | 2675 | 0.8171 | 0.5429 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1.post200 - Datasets 2.9.0 - Tokenizers 0.13.0.dev0
LowGI/my_asr_model
LowGI
2023-02-01T19:35:53Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-02-01T18:36:04Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: my_asr_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_asr_model This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.2724 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 2.9472 | 20.0 | 100 | 3.4756 | 1.0 | | 2.9405 | 40.0 | 200 | 3.4197 | 1.0 | | 2.9322 | 60.0 | 300 | 3.2967 | 1.0 | | 2.9338 | 80.0 | 400 | 3.4891 | 1.0 | | 2.9243 | 100.0 | 500 | 3.2724 | 1.0 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
Crataco/Pythia-70M-Deduped-Adventure
Crataco
2023-02-01T19:29:20Z
4
1
transformers
[ "transformers", "pytorch", "gpt_neox", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-01-31T23:22:25Z
--- tags: - generated_from_trainer model-index: - name: pythia-70m-deduped-aid results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pythia-70m-deduped-aid ![Example](https://cdn.discordapp.com/attachments/1042160561808482304/1070125215910211705/Screenshot_2023-01-31_at_15-34-45_KoboldAI_Client__mnt_mnt1_library-of-alexandria_ai-models_text-generation_my-models_pythia-70m-deduped-aid.png) ## Model description This model is a finetune of [EleutherAI/pythia-70m-deduped](https://huggingface.co/EleutherAI/pythia-70m-deduped) (from when it was instead `pythia-19m-deduped`), on the [`text_adventures.txt`](https://github.com/Latitude-Archives/AIDungeon/blob/ca098ca7dab480d24e47954c8873b03ba1091ffc/data/text_adventures.txt) dataset originally intended for AI Dungeon 2. Performance will be very poor, as expected by the small model, and generations may be offensive thanks to its training data. This model was trained for testing purposes and was intended for use with KoboldAI. A temperature of `0.5` and a repetition penalty of `1.01` were tested. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
ArtYac/Reinforce-CartPole8
ArtYac
2023-02-01T19:21:13Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-01T19:21:03Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole8 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
deepparag/Aeona-Beta-New
deepparag
2023-02-01T18:44:25Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-01-24T16:09:53Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: Aeona-Beta-New results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Aeona-Beta-New This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.5170 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 9 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.6794 | 1.0 | 7463 | 3.5170 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
rodrigobrand/lcmnpm
rodrigobrand
2023-02-01T18:16:51Z
11
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-01T18:05:51Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### LCMNPM Dreambooth model trained by rodrigobrand with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
qgallouedec/a2c-PandaPushJointsDense-v2
qgallouedec
2023-02-01T18:07:01Z
1
0
stable-baselines3
[ "stable-baselines3", "PandaPushJointsDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-01T18:03:23Z
--- library_name: stable-baselines3 tags: - PandaPushJointsDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaPushJointsDense-v2 type: PandaPushJointsDense-v2 metrics: - type: mean_reward value: -8.76 +/- 4.85 name: mean_reward verified: false --- # **A2C** Agent playing **PandaPushJointsDense-v2** This is a trained model of a **A2C** agent playing **PandaPushJointsDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
epinnock/flan-t5-xl-codeparrot-xlcost-text-to-code
epinnock
2023-02-01T17:59:15Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:xlcost-text-to-code", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-01-31T12:40:56Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xlcost-text-to-code model-index: - name: flan-t5-xl-codeparrot-xlcost-text-to-code results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-xl-codeparrot-xlcost-text-to-code This model is a fine-tuned version of [epinnock/flan-t5-xl-codeparrot-xlcost-text-to-code](https://huggingface.co/epinnock/flan-t5-xl-codeparrot-xlcost-text-to-code) on the xlcost-text-to-code dataset. It achieves the following results on the evaluation set: - eval_loss: 1.9876 - eval_rouge1: 43.1227 - eval_rouge2: 25.6539 - eval_rougeL: 41.8635 - eval_rougeLsum: 41.8883 - eval_gen_len: 9.0445 - eval_runtime: 1137.2469 - eval_samples_per_second: 7.17 - eval_steps_per_second: 0.897 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 6 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 24 - total_train_batch_size: 144 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.26.0 - Pytorch 1.12.0+cu116 - Datasets 2.9.0 - Tokenizers 0.12.1
Kanr1u/rose_charlotte
Kanr1u
2023-02-01T17:42:27Z
38
0
transformers
[ "transformers", "pytorch", "swin", "image-classification", "autotrain", "vision", "dataset:Kanr1u/autotrain-data-emma2", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-02-01T17:39:56Z
--- tags: - autotrain - vision - image-classification datasets: - Kanr1u/autotrain-data-emma2 widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace co2_eq_emissions: emissions: 2.1409787540187346 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 3206689984 - CO2 Emissions (in grams): 2.1410 ## Validation Metrics - Loss: 0.303 - Accuracy: 0.846 - Precision: 0.846 - Recall: 0.846 - AUC: 0.929 - F1: 0.846
jmeneu/ppo-LunarLander-v2
jmeneu
2023-02-01T17:41:39Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-26T16:26:33Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 267.05 +/- 19.58 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Mayhem50/sgpt-bloom-560M-nli
Mayhem50
2023-02-01T17:26:46Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bloom", "feature-extraction", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-02-01T17:22:23Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 8807 with parameters: ``` {'batch_size': 64} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MNRLGradCache` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 880, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 0.00032 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 881, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BloomModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': True, 'pooling_mode_lasttoken': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
LizSando/ppo-LunarLander-v2
LizSando
2023-02-01T17:19:47Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-31T20:39:50Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 262.47 +/- 16.67 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Cynthia0510/pegasus-samsum
Cynthia0510
2023-02-01T17:10:18Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "dataset:samsum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-01T16:10:31Z
--- tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.4812 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.6928 | 0.54 | 500 | 1.4812 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
ongkn/q-FrozenLake-v1-4x4-Slippery
ongkn
2023-02-01T16:59:59Z
0
0
null
[ "FrozenLake-v1-4x4", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-01T16:59:56Z
--- tags: - FrozenLake-v1-4x4 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-Slippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4 type: FrozenLake-v1-4x4 metrics: - type: mean_reward value: 0.77 +/- 0.42 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="ongkn/q-FrozenLake-v1-4x4-Slippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
krecceg/ppo-Huggy
krecceg
2023-02-01T16:58:26Z
23
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-02-01T16:58:19Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: krecceg/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
DucHaiten/DucHaitenAnimated
DucHaiten
2023-02-01T16:46:14Z
30
13
diffusers
[ "diffusers", "stable-diffusion", "text-to-image", "image-to-image", "en", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-01-20T16:30:54Z
--- language: - en tags: - stable-diffusion - text-to-image - image-to-image - diffusers license: creativeml-openrail-m inference: true ---
YoriV/ppo-LunarLander-v2
YoriV
2023-02-01T16:39:35Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-01T15:43:55Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 280.88 +/- 16.27 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
dn-gh/Q-Taxi-v3-1
dn-gh
2023-02-01T16:39:25Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-01T16:39:22Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Q-Taxi-v3-1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="dn-gh/Q-Taxi-v3-1", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
dn-gh/q-FrozenLake-v1-4x4-noSlippery
dn-gh
2023-02-01T16:26:46Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-01T16:26:44Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="dn-gh/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
kiri1701/bert-base-uncased-issues-128-issues-128
kiri1701
2023-02-01T16:11:34Z
3
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-02-01T15:04:49Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-issues-128-issues-128 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-issues-128-issues-128 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2456 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0986 | 1.0 | 291 | 1.6929 | | 1.6401 | 2.0 | 582 | 1.4304 | | 1.4881 | 3.0 | 873 | 1.3916 | | 1.4 | 4.0 | 1164 | 1.3796 | | 1.3416 | 5.0 | 1455 | 1.2012 | | 1.2807 | 6.0 | 1746 | 1.2733 | | 1.2396 | 7.0 | 2037 | 1.2646 | | 1.1993 | 8.0 | 2328 | 1.2098 | | 1.1661 | 9.0 | 2619 | 1.1862 | | 1.1406 | 10.0 | 2910 | 1.2223 | | 1.1294 | 11.0 | 3201 | 1.2056 | | 1.1042 | 12.0 | 3492 | 1.1655 | | 1.0827 | 13.0 | 3783 | 1.2525 | | 1.0738 | 14.0 | 4074 | 1.1685 | | 1.0626 | 15.0 | 4365 | 1.1182 | | 1.0629 | 16.0 | 4656 | 1.2456 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
summervent/speller-t5-big-3
summervent
2023-02-01T16:07:54Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-01T09:00:43Z
--- tags: - generated_from_trainer metrics: - rouge model-index: - name: speller-t5-big-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speller-t5-big-3 This model is a fine-tuned version of [sberbank-ai/ruT5-base](https://huggingface.co/sberbank-ai/ruT5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1829 - Rouge1: 27.4616 - Rouge2: 11.1083 - Rougel: 27.5146 - Rougelsum: 27.3079 - Gen Len: 39.1171 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.0936 | 0.04 | 500 | 0.5587 | 23.1392 | 7.0032 | 23.1709 | 23.1908 | 41.1081 | | 0.8042 | 0.07 | 1000 | 0.4168 | 25.1867 | 8.9696 | 25.2993 | 25.1779 | 43.6486 | | 0.634 | 0.11 | 1500 | 0.3611 | 26.0366 | 8.521 | 26.1568 | 25.9359 | 40.2613 | | 0.5041 | 0.14 | 2000 | 0.3255 | 26.1019 | 8.7002 | 26.2473 | 25.983 | 40.7928 | | 0.5279 | 0.18 | 2500 | 0.3041 | 26.1352 | 8.6265 | 26.2606 | 25.9482 | 39.6216 | | 0.4838 | 0.22 | 3000 | 0.2784 | 26.6137 | 9.8094 | 26.8372 | 26.5692 | 39.3694 | | 0.4512 | 0.25 | 3500 | 0.2700 | 25.6152 | 9.5832 | 25.7503 | 25.6898 | 38.7387 | | 0.4412 | 0.29 | 4000 | 0.2612 | 25.6113 | 9.6697 | 25.7482 | 25.6838 | 39.1171 | | 0.405 | 0.33 | 4500 | 0.2426 | 26.5151 | 9.6882 | 26.7719 | 26.4825 | 39.1892 | | 0.3987 | 0.36 | 5000 | 0.2390 | 26.479 | 9.6144 | 26.6499 | 26.3759 | 39.0991 | | 0.407 | 0.4 | 5500 | 0.2325 | 26.4499 | 9.6544 | 26.6649 | 26.3821 | 39.3784 | | 0.406 | 0.43 | 6000 | 0.2266 | 26.6224 | 9.875 | 26.8468 | 26.6058 | 38.6486 | | 0.3827 | 0.47 | 6500 | 0.2213 | 26.8997 | 10.0139 | 27.1249 | 26.8252 | 39.1712 | | 0.334 | 0.51 | 7000 | 0.2247 | 26.7779 | 9.9399 | 26.9951 | 26.6453 | 39.7207 | | 0.3463 | 0.54 | 7500 | 0.2145 | 26.879 | 9.9911 | 27.0863 | 26.7372 | 39.2432 | | 0.3439 | 0.58 | 8000 | 0.2102 | 26.8839 | 10.0139 | 27.0715 | 26.7186 | 39.3694 | | 0.3644 | 0.61 | 8500 | 0.2050 | 26.9076 | 10.0704 | 27.1328 | 26.8411 | 39.2252 | | 0.3161 | 0.65 | 9000 | 0.2008 | 26.9219 | 10.1927 | 27.1542 | 26.8697 | 38.7928 | | 0.3273 | 0.69 | 9500 | 0.2018 | 26.8221 | 9.9879 | 27.0473 | 26.7137 | 39.1892 | | 0.3423 | 0.72 | 10000 | 0.1992 | 26.8572 | 10.0937 | 27.0701 | 26.7469 | 39.2342 | | 0.3129 | 0.76 | 10500 | 0.1964 | 26.9076 | 10.0704 | 27.1328 | 26.8411 | 39.1712 | | 0.2841 | 0.79 | 11000 | 0.1937 | 27.4202 | 10.9493 | 27.5146 | 27.2724 | 39.1261 | | 0.2865 | 0.83 | 11500 | 0.1901 | 27.4559 | 11.0314 | 27.5146 | 27.3022 | 39.2072 | | 0.2747 | 0.87 | 12000 | 0.1862 | 27.4127 | 10.9878 | 27.5146 | 27.2611 | 38.9459 | | 0.2766 | 0.9 | 12500 | 0.1905 | 27.4616 | 11.1083 | 27.5146 | 27.3079 | 39.0991 | | 0.3 | 0.94 | 13000 | 0.1866 | 27.4616 | 11.1083 | 27.5146 | 27.3079 | 39.0541 | | 0.2729 | 0.98 | 13500 | 0.1829 | 27.4616 | 11.1083 | 27.5146 | 27.3079 | 39.1171 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
Lakoc/ppo-Pyramids
Lakoc
2023-02-01T15:59:08Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-02-01T15:59:01Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: Lakoc/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Tortoise17/whisper-small-hi
Tortoise17
2023-02-01T15:56:52Z
3
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "hi", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-02-01T15:54:37Z
--- language: - hi license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 model-index: - name: Whisper Small Hi - Sanchit Gandhi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Hi - Sanchit Gandhi This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
Squirz/phase2
Squirz
2023-02-01T15:53:16Z
7
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-01T15:50:51Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### Phase2 Dreambooth model trained by Squirz with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
loresiensis/distilbert_classificator
loresiensis
2023-02-01T15:17:39Z
8
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-01T15:16:50Z
--- license: apache-2.0 tags: - classification - generated_from_trainer datasets: - tweet_eval metrics: - accuracy model-index: - name: distilbert_classificator results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval config: emotion split: test args: emotion metrics: - name: Accuracy type: accuracy value: 0.7909922589725545 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_classificator This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.8627 - Accuracy: 0.7910 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 408 | 0.6174 | 0.7882 | | 0.6884 | 2.0 | 816 | 0.7010 | 0.7945 | | 0.3202 | 3.0 | 1224 | 0.8627 | 0.7910 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
YashGajjar/RL_agent_lunarlander_starship
YashGajjar
2023-02-01T15:15:46Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-01T15:15:21Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 288.94 +/- 20.75 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
hucruz/custom-textcat-model-viajes
hucruz
2023-02-01T15:11:48Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-01T14:42:34Z
--- license: apache-2.0 tags: - text-classification - generated_from_trainer metrics: - accuracy model-index: - name: custom-textcat-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # custom-textcat-model This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on the custom dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.3305 - Accuracy: 0.9541 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 209 | 0.3650 | 0.9514 | | No log | 2.0 | 418 | 0.3371 | 0.9568 | | 0.0108 | 3.0 | 627 | 0.3305 | 0.9541 | | 0.0108 | 4.0 | 836 | 0.3465 | 0.9568 | | 0.0056 | 5.0 | 1045 | 0.3498 | 0.9541 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
Ashraf-kasem/gpt2_frame_text_predictor
Ashraf-kasem
2023-02-01T15:06:28Z
3
0
transformers
[ "transformers", "tf", "tensorboard", "gpt2", "text-generation", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-02-01T14:27:58Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: Ashraf-kasem/gpt2_frame_text_predictor results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Ashraf-kasem/gpt2_frame_text_predictor This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 8.9203 - Validation Loss: 8.7222 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'LinearWarmup', 'config': {'after_warmup_lr_sched': {'initial_learning_rate': 5e-05, 'decay_steps': 16, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'warmup_steps': 1, 'warmup_learning_rate': 0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 8.9203 | 8.7222 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.0 - Datasets 2.9.0 - Tokenizers 0.13.2
leenw2/Taxi-v3
leenw2
2023-02-01T15:04:57Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-01T15:04:55Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.48 +/- 2.74 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="leenw2/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
leenw2/q-FrozenLake-v1-4x4-noSlippery
leenw2
2023-02-01T15:02:34Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-01T15:02:31Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="leenw2/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
swl-models/toooajk-yagurumagiku-v6
swl-models
2023-02-01T14:44:08Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-01T01:28:29Z
--- license: creativeml-openrail-m ---
swl-models/toooajk-yagurumagiku-v7
swl-models
2023-02-01T14:43:37Z
87
1
diffusers
[ "diffusers", "art", "text-to-image", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-02-01T14:43:08Z
--- license: creativeml-openrail-m library_name: diffusers pipeline_tag: text-to-image tags: - art duplicated_from: Toooajk/Cornflower_v7 --- ![width_525.jpeg](https://img1.imgtp.com/2023/01/28/QDGnKbBd.jpeg) Cornflower is a comprehensive painting model based on StableDiffusion, trained with specific styles of illustration and merged with multiple models, which is theoretically somewhat different from real-life human painters. **Since the Cornflower model contains multiple files, you need to place all the files in the appropriate locations.** ### How to install? **'cornflower_v7.safetensors'** and **vae file** are placed in the Stable Diffusion model directory. The .pt files in **'embeddings'** folder are placed in the embeddings directory. **'cornflower_v7_phantom.pt'** in hypernetwork folder is placed in the Hypernetworks model directory. ### How to use? After the installation is complete, open webui and switch checkpoint to 'cornflower_v7.safetensors', Hypernetwork to 'cornflower_v7_phantom'. The following parameters are recommended, and the sampler recommends DPM2 a Karras. Steps: 20, Sampler: DPM2 a Karras, CFG scale: 7, Size: 640x960, Clip skip: 2, ENSD: 31337