modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-30 06:27:36
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
527 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-30 06:27:12
card
stringlengths
11
1.01M
Santp98/albert-base-spanish-2023-11-13-19-24
Santp98
2023-11-13T20:55:04Z
24
0
transformers
[ "transformers", "safetensors", "albert", "fill-mask", "generated_from_trainer", "base_model:dccuchile/albert-base-spanish", "base_model:finetune:dccuchile/albert-base-spanish", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-11-13T19:24:55Z
--- base_model: dccuchile/albert-base-spanish tags: - generated_from_trainer model-index: - name: albert-base-spanish-2023-11-13-19-24 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-base-spanish-2023-11-13-19-24 This model is a fine-tuned version of [dccuchile/albert-base-spanish](https://huggingface.co/dccuchile/albert-base-spanish) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4306 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.9328 | 0.59 | 500 | 1.9145 | | 1.863 | 1.19 | 1000 | 1.7882 | | 1.7407 | 1.78 | 1500 | 1.7241 | | 1.648 | 2.38 | 2000 | 1.6651 | | 1.606 | 2.97 | 2500 | 1.6102 | | 1.5833 | 3.56 | 3000 | 1.5912 | | 1.5663 | 4.16 | 3500 | 1.5642 | | 1.5104 | 4.75 | 4000 | 1.5390 | | 1.5252 | 5.34 | 4500 | 1.5197 | | 1.4676 | 5.94 | 5000 | 1.4950 | | 1.4502 | 6.53 | 5500 | 1.4766 | | 1.4336 | 7.13 | 6000 | 1.4694 | | 1.4355 | 7.72 | 6500 | 1.4527 | | 1.457 | 8.31 | 7000 | 1.4403 | | 1.4219 | 8.91 | 7500 | 1.4380 | | 1.4503 | 9.5 | 8000 | 1.4313 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1
Word2vec/nlpl_82
Word2vec
2023-11-13T20:54:19Z
0
0
null
[ "word2vec", "eng", "dataset:ENC3_English_Common_Crawl_Corpus", "license:cc-by-4.0", "region:us" ]
null
2023-07-04T13:28:40Z
--- language: eng license: cc-by-4.0 tags: - word2vec datasets: ENC3_English_Common_Crawl_Corpus --- ## Information A word2vec model trained by Kjetil Bugge Kristoffersen (kjetilbk@ifi.uio.no) on a vocabulary of size 2000000 corresponding to 135159000000 tokens from the dataset `ENC3:_English_Common_Crawl_Corpus`. The model is trained with the following properties: no lemmatization and postag with the algorith Global Vectors with window of 10 and dimension of 300. ## How to use? ``` from gensim.models import KeyedVectors from huggingface_hub import hf_hub_download model = KeyedVectors.load_word2vec_format(hf_hub_download(repo_id="Word2vec/nlpl_82", filename="model.bin"), binary=True, unicode_errors="ignore") ``` ## Citation Fares, Murhaf; Kutuzov, Andrei; Oepen, Stephan & Velldal, Erik (2017). Word vectors, reuse, and replicability: Towards a community repository of large-text resources, In Jörg Tiedemann (ed.), Proceedings of the 21st Nordic Conference on Computational Linguistics, NoDaLiDa, 22-24 May 2017. Linköping University Electronic Press. ISBN 978-91-7685-601-7 This archive is part of the NLPL Word Vectors Repository (http://vectors.nlpl.eu/repository/), version 2.0, published on Friday, December 27, 2019. Please see the file 'meta.json' in this archive and the overall repository metadata file http://vectors.nlpl.eu/repository/20.json for additional information. The life-time identifier for this model is: http://vectors.nlpl.eu/repository/20/82.zip
facebook/dpt-dinov2-large-kitti
facebook
2023-11-13T20:41:36Z
117
2
transformers
[ "transformers", "pytorch", "dpt", "depth-estimation", "vision", "dinov2", "arxiv:2304.07193", "arxiv:2103.13413", "license:apache-2.0", "region:us" ]
depth-estimation
2023-11-01T15:34:21Z
--- license: apache-2.0 tags: - vision - dinov2 - depth-estimation inference: false --- # Model Card: DPT model with DINOv2 backbone ## Model Details DPT (Dense Prediction Transformer) model with DINOv2 backbone as proposed in [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) by Oquab et al. <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/dpt_architecture.jpg" alt="drawing" width="600"/> <small> DPT architecture. Taken from the <a href="https://arxiv.org/abs/2103.13413" target="_blank">original paper</a>. </small> ### Resources - [DINOv2 Paper](https://arxiv.org/abs/2304.07193) - [DPT Paper](https://arxiv.org/abs/2103.13413) ### Use with Transformers ```python from transformers import AutoImageProcessor, DPTForDepthEstimation import torch import numpy as np from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) image_processor = AutoImageProcessor.from_pretrained("facebook/dpt-dinov2-large-kitti") model = DPTForDepthEstimation.from_pretrained("facebook/dpt-dinov2-large-kitti") # prepare image for the model inputs = image_processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) predicted_depth = outputs.predicted_depth # interpolate to original size prediction = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1), size=image.size[::-1], mode="bicubic", align_corners=False, ) # visualize the prediction output = prediction.squeeze().cpu().numpy() formatted = (output * 255 / np.max(output)).astype("uint8") depth = Image.fromarray(formatted) ``` ## Model Use ### Intended Use The model is intended to showcase that using the DPT framework with DINOv2 as backbone yields a powerful depth estimator. ### BibTeX entry and citation info ```bibtex @misc{oquab2023dinov2, title={DINOv2: Learning Robust Visual Features without Supervision}, author={Maxime Oquab and Timothée Darcet and Théo Moutakanni and Huy Vo and Marc Szafraniec and Vasil Khalidov and Pierre Fernandez and Daniel Haziza and Francisco Massa and Alaaeldin El-Nouby and Mahmoud Assran and Nicolas Ballas and Wojciech Galuba and Russell Howes and Po-Yao Huang and Shang-Wen Li and Ishan Misra and Michael Rabbat and Vasu Sharma and Gabriel Synnaeve and Hu Xu and Hervé Jegou and Julien Mairal and Patrick Labatut and Armand Joulin and Piotr Bojanowski}, year={2023}, eprint={2304.07193}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```
facebook/dpt-dinov2-giant-kitti
facebook
2023-11-13T20:41:31Z
123
0
transformers
[ "transformers", "pytorch", "dpt", "depth-estimation", "vision", "dinov2", "arxiv:2304.07193", "arxiv:2103.13413", "license:apache-2.0", "region:us" ]
depth-estimation
2023-11-01T16:22:39Z
--- license: apache-2.0 tags: - vision - dinov2 - depth-estimation inference: false --- # Model Card: DPT model with DINOv2 backbone ## Model Details DPT (Dense Prediction Transformer) model with DINOv2 backbone as proposed in [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) by Oquab et al. <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/dpt_architecture.jpg" alt="drawing" width="600"/> <small> DPT architecture. Taken from the <a href="https://arxiv.org/abs/2103.13413" target="_blank">original paper</a>. </small> ### Resources - [DINOv2 Paper](https://arxiv.org/abs/2304.07193) - [DPT Paper](https://arxiv.org/abs/2103.13413) ### Use with Transformers ```python from transformers import AutoImageProcessor, DPTForDepthEstimation import torch import numpy as np from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) image_processor = AutoImageProcessor.from_pretrained("facebook/dpt-dinov2-giant-kitti") model = DPTForDepthEstimation.from_pretrained("facebook/dpt-dinov2-giant-kitti") # prepare image for the model inputs = image_processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) predicted_depth = outputs.predicted_depth # interpolate to original size prediction = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1), size=image.size[::-1], mode="bicubic", align_corners=False, ) # visualize the prediction output = prediction.squeeze().cpu().numpy() formatted = (output * 255 / np.max(output)).astype("uint8") depth = Image.fromarray(formatted) ``` ## Model Use ### Intended Use The model is intended to showcase that using the DPT framework with DINOv2 as backbone yields a powerful depth estimator. ### BibTeX entry and citation info ```bibtex @misc{oquab2023dinov2, title={DINOv2: Learning Robust Visual Features without Supervision}, author={Maxime Oquab and Timothée Darcet and Théo Moutakanni and Huy Vo and Marc Szafraniec and Vasil Khalidov and Pierre Fernandez and Daniel Haziza and Francisco Massa and Alaaeldin El-Nouby and Mahmoud Assran and Nicolas Ballas and Wojciech Galuba and Russell Howes and Po-Yao Huang and Shang-Wen Li and Ishan Misra and Michael Rabbat and Vasu Sharma and Gabriel Synnaeve and Hu Xu and Hervé Jegou and Julien Mairal and Patrick Labatut and Armand Joulin and Piotr Bojanowski}, year={2023}, eprint={2304.07193}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```
imann63/sce_2-sites_imgs-42_steps-4200_lr-5e6_regularization-none_model-base_diffuser
imann63
2023-11-13T20:38:41Z
1
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-11-10T00:27:53Z
--- license: creativeml-openrail-m base_model: models/diffuser instance_prompt: photo of a special powerline station tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - imann63/sce_2-sites_imgs-42_steps-4200_lr-5e6_regularization-none_model-base_diffuser This is a dreambooth model derived from models/diffuser. The weights were trained on photo of a special powerline station using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
kwwww/bert-base-uncased-test_2_10000
kwwww
2023-11-13T20:38:12Z
0
0
peft
[ "peft", "pytorch", "region:us" ]
null
2023-11-13T02:51:08Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
kev216/Llama-2-7b-hf
kev216
2023-11-13T20:31:33Z
10
0
transformers
[ "transformers", "pytorch", "safetensors", "llama", "text-generation", "facebook", "meta", "llama-2", "en", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-11-13T20:14:25Z
--- extra_gated_heading: Access Llama 2 on Hugging Face extra_gated_description: >- This is a form to enable access to Llama 2 on Hugging Face after you have been granted access from Meta. Please visit the [Meta website](https://ai.meta.com/resources/models-and-libraries/llama-downloads) and accept our license terms and acceptable use policy before submitting this form. Requests will be processed in 1-2 days. extra_gated_button_content: Submit extra_gated_fields: I agree to share my name, email address and username with Meta and confirm that I have already been granted download access on the Meta website: checkbox language: - en pipeline_tag: text-generation inference: false tags: - facebook - meta - pytorch - llama - llama-2 --- # **Llama 2** Llama 2 is a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. This is the repository for the 7B pretrained model, converted for the Hugging Face Transformers format. Links to other models can be found in the index at the bottom. ## Model Details *Note: Use of this model is governed by the Meta license. In order to download the model weights and tokenizer, please visit the [website](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) and accept our License before requesting access here.* Meta developed and publicly released the Llama 2 family of large language models (LLMs), a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. Our fine-tuned LLMs, called Llama-2-Chat, are optimized for dialogue use cases. Llama-2-Chat models outperform open-source chat models on most benchmarks we tested, and in our human evaluations for helpfulness and safety, are on par with some popular closed-source models like ChatGPT and PaLM. **Model Developers** Meta **Variations** Llama 2 comes in a range of parameter sizes — 7B, 13B, and 70B — as well as pretrained and fine-tuned variations. **Input** Models input text only. **Output** Models generate text only. **Model Architecture** Llama 2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align to human preferences for helpfulness and safety. ||Training Data|Params|Content Length|GQA|Tokens|LR| |---|---|---|---|---|---|---| |Llama 2|*A new mix of publicly available online data*|7B|4k|&#10007;|2.0T|3.0 x 10<sup>-4</sup>| |Llama 2|*A new mix of publicly available online data*|13B|4k|&#10007;|2.0T|3.0 x 10<sup>-4</sup>| |Llama 2|*A new mix of publicly available online data*|70B|4k|&#10004;|2.0T|1.5 x 10<sup>-4</sup>| *Llama 2 family of models.* Token counts refer to pretraining data only. All models are trained with a global batch-size of 4M tokens. Bigger models - 70B -- use Grouped-Query Attention (GQA) for improved inference scalability. **Model Dates** Llama 2 was trained between January 2023 and July 2023. **Status** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback. **License** A custom commercial license is available at: [https://ai.meta.com/resources/models-and-libraries/llama-downloads/](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) ## Intended Use **Intended Use Cases** Llama 2 is intended for commercial and research use in English. Tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks. To get the expected features and performance for the chat versions, a specific formatting needs to be followed, including the `INST` and `<<SYS>>` tags, `BOS` and `EOS` tokens, and the whitespaces and breaklines in between (we recommend calling `strip()` on inputs to avoid double-spaces). See our reference code in github for details: [`chat_completion`](https://github.com/facebookresearch/llama/blob/main/llama/generation.py#L212). **Out-of-scope Uses** Use in any manner that violates applicable laws or regulations (including trade compliance laws).Use in languages other than English. Use in any other way that is prohibited by the Acceptable Use Policy and Licensing Agreement for Llama 2. ## Hardware and Software **Training Factors** We used custom training libraries, Meta's Research Super Cluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute. **Carbon Footprint** Pretraining utilized a cumulative 3.3M GPU hours of computation on hardware of type A100-80GB (TDP of 350-400W). Estimated total emissions were 539 tCO2eq, 100% of which were offset by Meta’s sustainability program. ||Time (GPU hours)|Power Consumption (W)|Carbon Emitted(tCO<sub>2</sub>eq)| |---|---|---|---| |Llama 2 7B|184320|400|31.22| |Llama 2 13B|368640|400|62.44| |Llama 2 70B|1720320|400|291.42| |Total|3311616||539.00| **CO<sub>2</sub> emissions during pretraining.** Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others. ## Training Data **Overview** Llama 2 was pretrained on 2 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over one million new human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data. **Data Freshness** The pretraining data has a cutoff of September 2022, but some tuning data is more recent, up to July 2023. ## Evaluation Results In this section, we report the results for the Llama 1 and Llama 2 models on standard academic benchmarks.For all the evaluations, we use our internal evaluations library. |Model|Size|Code|Commonsense Reasoning|World Knowledge|Reading Comprehension|Math|MMLU|BBH|AGI Eval| |---|---|---|---|---|---|---|---|---|---| |Llama 1|7B|14.1|60.8|46.2|58.5|6.95|35.1|30.3|23.9| |Llama 1|13B|18.9|66.1|52.6|62.3|10.9|46.9|37.0|33.9| |Llama 1|33B|26.0|70.0|58.4|67.6|21.4|57.8|39.8|41.7| |Llama 1|65B|30.7|70.7|60.5|68.6|30.8|63.4|43.5|47.6| |Llama 2|7B|16.8|63.9|48.9|61.3|14.6|45.3|32.6|29.3| |Llama 2|13B|24.5|66.9|55.4|65.8|28.7|54.8|39.4|39.1| |Llama 2|70B|**37.5**|**71.9**|**63.6**|**69.4**|**35.2**|**68.9**|**51.2**|**54.2**| **Overall performance on grouped academic benchmarks.** *Code:* We report the average pass@1 scores of our models on HumanEval and MBPP. *Commonsense Reasoning:* We report the average of PIQA, SIQA, HellaSwag, WinoGrande, ARC easy and challenge, OpenBookQA, and CommonsenseQA. We report 7-shot results for CommonSenseQA and 0-shot results for all other benchmarks. *World Knowledge:* We evaluate the 5-shot performance on NaturalQuestions and TriviaQA and report the average. *Reading Comprehension:* For reading comprehension, we report the 0-shot average on SQuAD, QuAC, and BoolQ. *MATH:* We report the average of the GSM8K (8 shot) and MATH (4 shot) benchmarks at top 1. |||TruthfulQA|Toxigen| |---|---|---|---| |Llama 1|7B|27.42|23.00| |Llama 1|13B|41.74|23.08| |Llama 1|33B|44.19|22.57| |Llama 1|65B|48.71|21.77| |Llama 2|7B|33.29|**21.25**| |Llama 2|13B|41.86|26.10| |Llama 2|70B|**50.18**|24.60| **Evaluation of pretrained LLMs on automatic safety benchmarks.** For TruthfulQA, we present the percentage of generations that are both truthful and informative (the higher the better). For ToxiGen, we present the percentage of toxic generations (the smaller the better). |||TruthfulQA|Toxigen| |---|---|---|---| |Llama-2-Chat|7B|57.04|**0.00**| |Llama-2-Chat|13B|62.18|**0.00**| |Llama-2-Chat|70B|**64.14**|0.01| **Evaluation of fine-tuned LLMs on different safety datasets.** Same metric definitions as above. ## Ethical Considerations and Limitations Llama 2 is a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Llama 2’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 2, developers should perform safety testing and tuning tailored to their specific applications of the model. Please see the Responsible Use Guide available at [https://ai.meta.com/llama/responsible-use-guide/](https://ai.meta.com/llama/responsible-use-guide) ## Reporting Issues Please report any software “bug,” or other problems with the models through one of the following means: - Reporting issues with the model: [github.com/facebookresearch/llama](http://github.com/facebookresearch/llama) - Reporting problematic content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback) - Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info) ## Llama Model Index |Model|Llama2|Llama2-hf|Llama2-chat|Llama2-chat-hf| |---|---|---|---|---| |7B| [Link](https://huggingface.co/llamaste/Llama-2-7b) | [Link](https://huggingface.co/llamaste/Llama-2-7b-hf) | [Link](https://huggingface.co/llamaste/Llama-2-7b-chat) | [Link](https://huggingface.co/llamaste/Llama-2-7b-chat-hf)| |13B| [Link](https://huggingface.co/llamaste/Llama-2-13b) | [Link](https://huggingface.co/llamaste/Llama-2-13b-hf) | [Link](https://huggingface.co/llamaste/Llama-2-13b-chat) | [Link](https://huggingface.co/llamaste/Llama-2-13b-hf)| |70B| [Link](https://huggingface.co/llamaste/Llama-2-70b) | [Link](https://huggingface.co/llamaste/Llama-2-70b-hf) | [Link](https://huggingface.co/llamaste/Llama-2-70b-chat) | [Link](https://huggingface.co/llamaste/Llama-2-70b-hf)|
hamxea/Llama-2-7b-chat-hf-fine-tuned-adapters
hamxea
2023-11-13T20:27:51Z
1
0
peft
[ "peft", "pytorch", "llama", "arxiv:1910.09700", "base_model:meta-llama/Llama-2-7b-chat-hf", "base_model:adapter:meta-llama/Llama-2-7b-chat-hf", "region:us" ]
null
2023-11-13T19:52:33Z
--- library_name: peft base_model: meta-llama/Llama-2-7b-chat-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.2.dev0 ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.2.dev0
ceec/distilhubert-finetuned-gtzan
ceec
2023-11-13T20:25:23Z
9
0
transformers
[ "transformers", "tensorboard", "safetensors", "hubert", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "base_model:ntu-spml/distilhubert", "base_model:finetune:ntu-spml/distilhubert", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2023-11-10T21:41:16Z
--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.84 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.7931 - Accuracy: 0.84 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 12 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2107 | 1.0 | 56 | 0.4744 | 0.89 | | 0.0867 | 1.99 | 112 | 0.7316 | 0.8 | | 0.1117 | 2.99 | 168 | 0.6942 | 0.81 | | 0.1024 | 4.0 | 225 | 0.6151 | 0.85 | | 0.0141 | 5.0 | 281 | 0.7542 | 0.83 | | 0.0089 | 5.99 | 337 | 0.7236 | 0.85 | | 0.007 | 6.99 | 393 | 0.7115 | 0.84 | | 0.0477 | 8.0 | 450 | 0.7334 | 0.85 | | 0.0048 | 9.0 | 506 | 0.7772 | 0.85 | | 0.0348 | 9.99 | 562 | 0.7465 | 0.85 | | 0.0035 | 10.99 | 618 | 0.8011 | 0.84 | | 0.004 | 11.95 | 672 | 0.7931 | 0.84 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
sade-adrien/Mistral-7B-Instruct-v0.1-LC-noSW
sade-adrien
2023-11-13T20:25:06Z
0
0
null
[ "generated_from_trainer", "base_model:mistralai/Mistral-7B-Instruct-v0.1", "base_model:finetune:mistralai/Mistral-7B-Instruct-v0.1", "license:apache-2.0", "region:us" ]
null
2023-11-10T23:30:04Z
--- license: apache-2.0 base_model: mistralai/Mistral-7B-Instruct-v0.1 tags: - generated_from_trainer model-index: - name: Mistral-7B-Instruct-v0.1-LC-noSW results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Mistral-7B-Instruct-v0.1-LC-noSW This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8686 ## Model description This model is a fine-tuning of Mistral-7B-Instruct-v0.1. This FT was donne with full attention (removing the 4k SWA). ## Intended uses & limitations More information needed ## Training and evaluation data Data is a 9k sample from the RedPajama datset. The context is <=7200 with a decreasing exponential distribution of scale 1500. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 20 - training_steps: 300 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0233 | 0.18 | 50 | 1.8792 | | 2.0805 | 0.36 | 100 | 1.8732 | | 1.9414 | 0.55 | 150 | 1.8705 | | 1.8302 | 0.73 | 200 | 1.8692 | | 2.015 | 0.91 | 250 | 1.8686 | | 1.894 | 1.09 | 300 | 1.8686 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.0.0+cu117 - Datasets 2.14.6 - Tokenizers 0.14.1
faisalahmedsifat/bloom-3b-bangla-pretrained-dental-eng-aus-checkpoint6k
faisalahmedsifat
2023-11-13T20:08:26Z
1
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:bigscience/bloom-3b", "base_model:adapter:bigscience/bloom-3b", "region:us" ]
null
2023-11-13T20:08:22Z
--- library_name: peft base_model: bigscience/bloom-3b --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.2.dev0
Norod78/SDXL-PringlesTube-Lora
Norod78
2023-11-13T19:56:28Z
5
6
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "dataset:Norod78/pringles-blip-captions", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2023-11-13T19:45:55Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora widget: - text: A rainbow unicorn kitten PringlesTube output: url: >- images/00031-20231113205711-7777-A ((rainbow unicorn kitten)) PringlesTube _lora_SDXL-PringlesTube-Lora_0.8_.jpg - text: 'An Elsa from frozen PringlesTube ' output: url: >- images/00026-20231113205419-7778-An ((Elsa from frozen)) PringlesTube _lora_SDXL-PringlesTube-Lora_0.5_.jpg - text: 'A PringlesTube floating in outer space among galaxies ' output: url: >- images/00072-20231113212437-7779-A PringlesTube floating in outer space among galaxies _lora_SDXL-PringlesTube-Lora_0.8_.jpg - text: A seaweed PringlesTube on the beach output: url: >- images/00060-20231113212003-7779-A seaweed PringlesTube on the beach _lora_SDXL-PringlesTube-Lora_0.8_.jpg - text: A vodka PringlesTube at the bar output: url: >- images/00065-20231113212243-7777-A vodka PringlesTube at the bar _lora_SDXL-PringlesTube-Lora_0.8_.jpg base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: PringlesTube license: mit datasets: - Norod78/pringles-blip-captions --- # SDXL PringlesTube Lora <Gallery /> ## Model description An SDXL LoRA for generating images of Pringles packages. ## Trigger words You should use `PringlesTube` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/Norod78/SDXL-PringlesTube-Lora/tree/main) them in the Files & versions tab.
hkivancoral/hushem_1x_deit_small_rms_001_fold4
hkivancoral
2023-11-13T19:46:03Z
8
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-small-patch16-224", "base_model:finetune:facebook/deit-small-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-11-13T19:42:51Z
--- license: apache-2.0 base_model: facebook/deit-small-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_small_rms_001_fold4 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.40476190476190477 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_1x_deit_small_rms_001_fold4 This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2235 - Accuracy: 0.4048 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 6.3906 | 0.2381 | | 3.8063 | 2.0 | 12 | 1.7015 | 0.2619 | | 3.8063 | 3.0 | 18 | 2.0641 | 0.2619 | | 1.9221 | 4.0 | 24 | 1.7697 | 0.2381 | | 1.6782 | 5.0 | 30 | 1.4022 | 0.2619 | | 1.6782 | 6.0 | 36 | 1.7511 | 0.2381 | | 1.5442 | 7.0 | 42 | 1.4627 | 0.2381 | | 1.5442 | 8.0 | 48 | 1.4402 | 0.2619 | | 1.4869 | 9.0 | 54 | 1.4717 | 0.2619 | | 1.4572 | 10.0 | 60 | 1.4285 | 0.2381 | | 1.4572 | 11.0 | 66 | 1.4073 | 0.2619 | | 1.4861 | 12.0 | 72 | 1.4071 | 0.3095 | | 1.4861 | 13.0 | 78 | 1.3676 | 0.3095 | | 1.4283 | 14.0 | 84 | 1.4281 | 0.2381 | | 1.4135 | 15.0 | 90 | 1.4437 | 0.2381 | | 1.4135 | 16.0 | 96 | 1.3561 | 0.3095 | | 1.375 | 17.0 | 102 | 1.3574 | 0.2857 | | 1.375 | 18.0 | 108 | 1.2368 | 0.2857 | | 1.3639 | 19.0 | 114 | 1.4601 | 0.2857 | | 1.2891 | 20.0 | 120 | 1.7927 | 0.2381 | | 1.2891 | 21.0 | 126 | 1.2451 | 0.4048 | | 1.3173 | 22.0 | 132 | 1.1578 | 0.4762 | | 1.3173 | 23.0 | 138 | 1.3222 | 0.3095 | | 1.2505 | 24.0 | 144 | 1.3748 | 0.2381 | | 1.263 | 25.0 | 150 | 1.3699 | 0.2857 | | 1.263 | 26.0 | 156 | 1.2508 | 0.3810 | | 1.2132 | 27.0 | 162 | 1.1843 | 0.4048 | | 1.2132 | 28.0 | 168 | 1.4161 | 0.2619 | | 1.1485 | 29.0 | 174 | 1.1305 | 0.4524 | | 1.181 | 30.0 | 180 | 1.1818 | 0.4524 | | 1.181 | 31.0 | 186 | 1.2906 | 0.4048 | | 1.131 | 32.0 | 192 | 1.1623 | 0.4762 | | 1.131 | 33.0 | 198 | 1.2826 | 0.4524 | | 1.164 | 34.0 | 204 | 1.1932 | 0.4524 | | 1.0879 | 35.0 | 210 | 1.1104 | 0.4286 | | 1.0879 | 36.0 | 216 | 1.0661 | 0.5714 | | 1.1012 | 37.0 | 222 | 1.2594 | 0.4048 | | 1.1012 | 38.0 | 228 | 1.1459 | 0.4286 | | 1.0505 | 39.0 | 234 | 1.1918 | 0.4524 | | 1.0052 | 40.0 | 240 | 1.2662 | 0.4286 | | 1.0052 | 41.0 | 246 | 1.2165 | 0.4048 | | 0.9631 | 42.0 | 252 | 1.2235 | 0.4048 | | 0.9631 | 43.0 | 258 | 1.2235 | 0.4048 | | 0.9397 | 44.0 | 264 | 1.2235 | 0.4048 | | 0.9545 | 45.0 | 270 | 1.2235 | 0.4048 | | 0.9545 | 46.0 | 276 | 1.2235 | 0.4048 | | 0.9591 | 47.0 | 282 | 1.2235 | 0.4048 | | 0.9591 | 48.0 | 288 | 1.2235 | 0.4048 | | 0.9579 | 49.0 | 294 | 1.2235 | 0.4048 | | 0.9362 | 50.0 | 300 | 1.2235 | 0.4048 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
hkivancoral/hushem_1x_deit_small_rms_001_fold2
hkivancoral
2023-11-13T19:39:12Z
15
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-small-patch16-224", "base_model:finetune:facebook/deit-small-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-11-13T19:36:00Z
--- license: apache-2.0 base_model: facebook/deit-small-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_small_rms_001_fold2 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.4 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_1x_deit_small_rms_001_fold2 This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2524 - Accuracy: 0.4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 7.5665 | 0.2444 | | 4.6598 | 2.0 | 12 | 1.8034 | 0.2444 | | 4.6598 | 3.0 | 18 | 1.7719 | 0.2444 | | 1.754 | 4.0 | 24 | 1.5619 | 0.2667 | | 1.5561 | 5.0 | 30 | 1.5155 | 0.2444 | | 1.5561 | 6.0 | 36 | 1.5905 | 0.2444 | | 1.5161 | 7.0 | 42 | 1.4606 | 0.2444 | | 1.5161 | 8.0 | 48 | 1.5057 | 0.2667 | | 1.4837 | 9.0 | 54 | 1.4997 | 0.2444 | | 1.456 | 10.0 | 60 | 1.4411 | 0.2444 | | 1.456 | 11.0 | 66 | 1.4980 | 0.2667 | | 1.4256 | 12.0 | 72 | 1.4097 | 0.2444 | | 1.4256 | 13.0 | 78 | 1.4518 | 0.2667 | | 1.4488 | 14.0 | 84 | 1.3937 | 0.2667 | | 1.4354 | 15.0 | 90 | 1.4044 | 0.2444 | | 1.4354 | 16.0 | 96 | 1.3767 | 0.2667 | | 1.4383 | 17.0 | 102 | 1.4222 | 0.2444 | | 1.4383 | 18.0 | 108 | 1.4806 | 0.2444 | | 1.4107 | 19.0 | 114 | 1.4789 | 0.2444 | | 1.3761 | 20.0 | 120 | 1.2485 | 0.4444 | | 1.3761 | 21.0 | 126 | 1.3600 | 0.2667 | | 1.3385 | 22.0 | 132 | 1.4500 | 0.4 | | 1.3385 | 23.0 | 138 | 1.3814 | 0.3778 | | 1.3465 | 24.0 | 144 | 1.4692 | 0.2667 | | 1.323 | 25.0 | 150 | 1.1674 | 0.4667 | | 1.323 | 26.0 | 156 | 1.3636 | 0.2889 | | 1.2871 | 27.0 | 162 | 1.3963 | 0.4 | | 1.2871 | 28.0 | 168 | 1.3023 | 0.4444 | | 1.1938 | 29.0 | 174 | 1.2034 | 0.4222 | | 1.2252 | 30.0 | 180 | 1.2237 | 0.4444 | | 1.2252 | 31.0 | 186 | 1.2906 | 0.4 | | 1.2127 | 32.0 | 192 | 1.2853 | 0.4 | | 1.2127 | 33.0 | 198 | 1.3006 | 0.3556 | | 1.131 | 34.0 | 204 | 1.3803 | 0.2889 | | 1.1689 | 35.0 | 210 | 1.2981 | 0.3556 | | 1.1689 | 36.0 | 216 | 1.4728 | 0.2889 | | 1.1285 | 37.0 | 222 | 1.3455 | 0.3333 | | 1.1285 | 38.0 | 228 | 1.2593 | 0.4 | | 1.0174 | 39.0 | 234 | 1.2539 | 0.3556 | | 1.0651 | 40.0 | 240 | 1.2296 | 0.4 | | 1.0651 | 41.0 | 246 | 1.2510 | 0.3778 | | 1.0297 | 42.0 | 252 | 1.2524 | 0.4 | | 1.0297 | 43.0 | 258 | 1.2524 | 0.4 | | 0.9982 | 44.0 | 264 | 1.2524 | 0.4 | | 1.047 | 45.0 | 270 | 1.2524 | 0.4 | | 1.047 | 46.0 | 276 | 1.2524 | 0.4 | | 0.9969 | 47.0 | 282 | 1.2524 | 0.4 | | 0.9969 | 48.0 | 288 | 1.2524 | 0.4 | | 1.0686 | 49.0 | 294 | 1.2524 | 0.4 | | 1.0034 | 50.0 | 300 | 1.2524 | 0.4 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
hkivancoral/hushem_1x_deit_small_rms_001_fold1
hkivancoral
2023-11-13T19:35:43Z
17
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-small-patch16-224", "base_model:finetune:facebook/deit-small-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-11-13T19:32:29Z
--- license: apache-2.0 base_model: facebook/deit-small-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_small_rms_001_fold1 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.35555555555555557 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_1x_deit_small_rms_001_fold1 This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.5587 - Accuracy: 0.3556 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 5.6616 | 0.2444 | | 4.5403 | 2.0 | 12 | 1.9139 | 0.2444 | | 4.5403 | 3.0 | 18 | 1.7372 | 0.2444 | | 1.8724 | 4.0 | 24 | 1.4323 | 0.2667 | | 1.5505 | 5.0 | 30 | 1.5541 | 0.2444 | | 1.5505 | 6.0 | 36 | 1.5305 | 0.2444 | | 1.4992 | 7.0 | 42 | 1.5286 | 0.2444 | | 1.4992 | 8.0 | 48 | 1.5617 | 0.2444 | | 1.4899 | 9.0 | 54 | 1.4717 | 0.2444 | | 1.4501 | 10.0 | 60 | 1.4440 | 0.2444 | | 1.4501 | 11.0 | 66 | 1.4155 | 0.2667 | | 1.4052 | 12.0 | 72 | 1.3606 | 0.2444 | | 1.4052 | 13.0 | 78 | 1.4215 | 0.3333 | | 1.4555 | 14.0 | 84 | 1.3356 | 0.3333 | | 1.4209 | 15.0 | 90 | 1.4688 | 0.2667 | | 1.4209 | 16.0 | 96 | 1.2956 | 0.4444 | | 1.4079 | 17.0 | 102 | 1.4012 | 0.2444 | | 1.4079 | 18.0 | 108 | 1.4817 | 0.2444 | | 1.4101 | 19.0 | 114 | 1.4296 | 0.2667 | | 1.6129 | 20.0 | 120 | 1.5601 | 0.2444 | | 1.6129 | 21.0 | 126 | 1.8216 | 0.2667 | | 1.5349 | 22.0 | 132 | 1.6109 | 0.2667 | | 1.5349 | 23.0 | 138 | 1.6663 | 0.2444 | | 1.4443 | 24.0 | 144 | 1.4166 | 0.2444 | | 1.3949 | 25.0 | 150 | 1.5159 | 0.2444 | | 1.3949 | 26.0 | 156 | 1.5557 | 0.2444 | | 1.2549 | 27.0 | 162 | 1.2710 | 0.3333 | | 1.2549 | 28.0 | 168 | 1.4661 | 0.3333 | | 1.2756 | 29.0 | 174 | 1.3759 | 0.3111 | | 1.2244 | 30.0 | 180 | 1.3243 | 0.4222 | | 1.2244 | 31.0 | 186 | 1.1877 | 0.4222 | | 1.1482 | 32.0 | 192 | 1.1943 | 0.4667 | | 1.1482 | 33.0 | 198 | 1.3644 | 0.3111 | | 1.0904 | 34.0 | 204 | 1.3812 | 0.3778 | | 1.051 | 35.0 | 210 | 1.3131 | 0.4444 | | 1.051 | 36.0 | 216 | 1.7518 | 0.2667 | | 1.0583 | 37.0 | 222 | 1.8440 | 0.3556 | | 1.0583 | 38.0 | 228 | 1.7450 | 0.2889 | | 0.8766 | 39.0 | 234 | 1.5767 | 0.3556 | | 0.9084 | 40.0 | 240 | 1.5052 | 0.3778 | | 0.9084 | 41.0 | 246 | 1.5534 | 0.3556 | | 0.8553 | 42.0 | 252 | 1.5587 | 0.3556 | | 0.8553 | 43.0 | 258 | 1.5587 | 0.3556 | | 0.8404 | 44.0 | 264 | 1.5587 | 0.3556 | | 0.8432 | 45.0 | 270 | 1.5587 | 0.3556 | | 0.8432 | 46.0 | 276 | 1.5587 | 0.3556 | | 0.8133 | 47.0 | 282 | 1.5587 | 0.3556 | | 0.8133 | 48.0 | 288 | 1.5587 | 0.3556 | | 0.8467 | 49.0 | 294 | 1.5587 | 0.3556 | | 0.8396 | 50.0 | 300 | 1.5587 | 0.3556 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
hkivancoral/hushem_1x_deit_small_sgd_00001_fold5
hkivancoral
2023-11-13T19:27:54Z
8
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-small-patch16-224", "base_model:finetune:facebook/deit-small-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-11-13T19:25:02Z
--- license: apache-2.0 base_model: facebook/deit-small-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_small_sgd_00001_fold5 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.24390243902439024 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_1x_deit_small_sgd_00001_fold5 This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.5124 - Accuracy: 0.2439 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 1.5202 | 0.2195 | | 1.5388 | 2.0 | 12 | 1.5198 | 0.2195 | | 1.5388 | 3.0 | 18 | 1.5194 | 0.2195 | | 1.5264 | 4.0 | 24 | 1.5190 | 0.2195 | | 1.5345 | 5.0 | 30 | 1.5186 | 0.2195 | | 1.5345 | 6.0 | 36 | 1.5183 | 0.2195 | | 1.526 | 7.0 | 42 | 1.5179 | 0.2195 | | 1.526 | 8.0 | 48 | 1.5176 | 0.2195 | | 1.5157 | 9.0 | 54 | 1.5173 | 0.2195 | | 1.5235 | 10.0 | 60 | 1.5170 | 0.2195 | | 1.5235 | 11.0 | 66 | 1.5167 | 0.2195 | | 1.5297 | 12.0 | 72 | 1.5164 | 0.2439 | | 1.5297 | 13.0 | 78 | 1.5161 | 0.2439 | | 1.4988 | 14.0 | 84 | 1.5158 | 0.2439 | | 1.5228 | 15.0 | 90 | 1.5155 | 0.2439 | | 1.5228 | 16.0 | 96 | 1.5153 | 0.2439 | | 1.5206 | 17.0 | 102 | 1.5150 | 0.2439 | | 1.5206 | 18.0 | 108 | 1.5148 | 0.2439 | | 1.5425 | 19.0 | 114 | 1.5146 | 0.2439 | | 1.5252 | 20.0 | 120 | 1.5144 | 0.2439 | | 1.5252 | 21.0 | 126 | 1.5142 | 0.2439 | | 1.5165 | 22.0 | 132 | 1.5140 | 0.2439 | | 1.5165 | 23.0 | 138 | 1.5139 | 0.2439 | | 1.5451 | 24.0 | 144 | 1.5137 | 0.2439 | | 1.5198 | 25.0 | 150 | 1.5135 | 0.2439 | | 1.5198 | 26.0 | 156 | 1.5134 | 0.2439 | | 1.5047 | 27.0 | 162 | 1.5132 | 0.2439 | | 1.5047 | 28.0 | 168 | 1.5131 | 0.2439 | | 1.5384 | 29.0 | 174 | 1.5130 | 0.2439 | | 1.5271 | 30.0 | 180 | 1.5129 | 0.2439 | | 1.5271 | 31.0 | 186 | 1.5128 | 0.2439 | | 1.5283 | 32.0 | 192 | 1.5127 | 0.2439 | | 1.5283 | 33.0 | 198 | 1.5127 | 0.2439 | | 1.4864 | 34.0 | 204 | 1.5126 | 0.2439 | | 1.5229 | 35.0 | 210 | 1.5125 | 0.2439 | | 1.5229 | 36.0 | 216 | 1.5125 | 0.2439 | | 1.513 | 37.0 | 222 | 1.5125 | 0.2439 | | 1.513 | 38.0 | 228 | 1.5124 | 0.2439 | | 1.4969 | 39.0 | 234 | 1.5124 | 0.2439 | | 1.5399 | 40.0 | 240 | 1.5124 | 0.2439 | | 1.5399 | 41.0 | 246 | 1.5124 | 0.2439 | | 1.5142 | 42.0 | 252 | 1.5124 | 0.2439 | | 1.5142 | 43.0 | 258 | 1.5124 | 0.2439 | | 1.5226 | 44.0 | 264 | 1.5124 | 0.2439 | | 1.538 | 45.0 | 270 | 1.5124 | 0.2439 | | 1.538 | 46.0 | 276 | 1.5124 | 0.2439 | | 1.5217 | 47.0 | 282 | 1.5124 | 0.2439 | | 1.5217 | 48.0 | 288 | 1.5124 | 0.2439 | | 1.5124 | 49.0 | 294 | 1.5124 | 0.2439 | | 1.5354 | 50.0 | 300 | 1.5124 | 0.2439 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
facebook/dpt-dinov2-large-nyu
facebook
2023-11-13T19:23:10Z
169
1
transformers
[ "transformers", "pytorch", "dpt", "depth-estimation", "vision", "dinov2", "arxiv:2304.07193", "arxiv:2103.13413", "license:apache-2.0", "region:us" ]
depth-estimation
2023-10-31T18:03:54Z
--- license: apache-2.0 tags: - vision - dinov2 - depth-estimation inference: false --- # Model Card: DPT model with DINOv2 backbone ## Model Details DPT (Dense Prediction Transformer) model with DINOv2 backbone as proposed in [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) by Oquab et al. <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/dpt_architecture.jpg" alt="drawing" width="600"/> <small> DPT architecture. Taken from the <a href="https://arxiv.org/abs/2103.13413" target="_blank">original paper</a>. </small> ### Resources - [DINOv2 Paper](https://arxiv.org/abs/2304.07193) - [DPT Paper](https://arxiv.org/abs/2103.13413) ### Use with Transformers ```python from transformers import AutoImageProcessor, DPTForDepthEstimation import torch import numpy as np from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) image_processor = AutoImageProcessor.from_pretrained("facebook/dpt-dinov2-large-nyu") model = DPTForDepthEstimation.from_pretrained("facebook/dpt-dinov2-large-nyu") # prepare image for the model inputs = image_processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) predicted_depth = outputs.predicted_depth # interpolate to original size prediction = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1), size=image.size[::-1], mode="bicubic", align_corners=False, ) # visualize the prediction output = prediction.squeeze().cpu().numpy() formatted = (output * 255 / np.max(output)).astype("uint8") depth = Image.fromarray(formatted) ``` ## Model Use ### Intended Use The model is intended to showcase that using the DPT framework with DINOv2 as backbone yields a powerful depth estimator. ### BibTeX entry and citation info ```bibtex @misc{oquab2023dinov2, title={DINOv2: Learning Robust Visual Features without Supervision}, author={Maxime Oquab and Timothée Darcet and Théo Moutakanni and Huy Vo and Marc Szafraniec and Vasil Khalidov and Pierre Fernandez and Daniel Haziza and Francisco Massa and Alaaeldin El-Nouby and Mahmoud Assran and Nicolas Ballas and Wojciech Galuba and Russell Howes and Po-Yao Huang and Shang-Wen Li and Ishan Misra and Michael Rabbat and Vasu Sharma and Gabriel Synnaeve and Hu Xu and Hervé Jegou and Julien Mairal and Patrick Labatut and Armand Joulin and Piotr Bojanowski}, year={2023}, eprint={2304.07193}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```
hkivancoral/hushem_1x_deit_small_sgd_00001_fold3
hkivancoral
2023-11-13T19:21:54Z
8
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-small-patch16-224", "base_model:finetune:facebook/deit-small-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-11-13T19:19:13Z
--- license: apache-2.0 base_model: facebook/deit-small-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_small_sgd_00001_fold3 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.18604651162790697 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_1x_deit_small_sgd_00001_fold3 This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.5939 - Accuracy: 0.1860 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 1.6009 | 0.1860 | | 1.5096 | 2.0 | 12 | 1.6005 | 0.1860 | | 1.5096 | 3.0 | 18 | 1.6002 | 0.1860 | | 1.4896 | 4.0 | 24 | 1.5998 | 0.1860 | | 1.4946 | 5.0 | 30 | 1.5995 | 0.1860 | | 1.4946 | 6.0 | 36 | 1.5992 | 0.1860 | | 1.508 | 7.0 | 42 | 1.5988 | 0.1860 | | 1.508 | 8.0 | 48 | 1.5986 | 0.1860 | | 1.4945 | 9.0 | 54 | 1.5983 | 0.1860 | | 1.5205 | 10.0 | 60 | 1.5980 | 0.1860 | | 1.5205 | 11.0 | 66 | 1.5977 | 0.1860 | | 1.5058 | 12.0 | 72 | 1.5975 | 0.1860 | | 1.5058 | 13.0 | 78 | 1.5972 | 0.1860 | | 1.5082 | 14.0 | 84 | 1.5970 | 0.1860 | | 1.502 | 15.0 | 90 | 1.5967 | 0.1860 | | 1.502 | 16.0 | 96 | 1.5965 | 0.1860 | | 1.5281 | 17.0 | 102 | 1.5963 | 0.1860 | | 1.5281 | 18.0 | 108 | 1.5961 | 0.1860 | | 1.4713 | 19.0 | 114 | 1.5959 | 0.1860 | | 1.5067 | 20.0 | 120 | 1.5957 | 0.1860 | | 1.5067 | 21.0 | 126 | 1.5955 | 0.1860 | | 1.5046 | 22.0 | 132 | 1.5953 | 0.1860 | | 1.5046 | 23.0 | 138 | 1.5952 | 0.1860 | | 1.4884 | 24.0 | 144 | 1.5950 | 0.1860 | | 1.4923 | 25.0 | 150 | 1.5949 | 0.1860 | | 1.4923 | 26.0 | 156 | 1.5948 | 0.1860 | | 1.4973 | 27.0 | 162 | 1.5947 | 0.1860 | | 1.4973 | 28.0 | 168 | 1.5945 | 0.1860 | | 1.5002 | 29.0 | 174 | 1.5945 | 0.1860 | | 1.4807 | 30.0 | 180 | 1.5944 | 0.1860 | | 1.4807 | 31.0 | 186 | 1.5943 | 0.1860 | | 1.486 | 32.0 | 192 | 1.5942 | 0.1860 | | 1.486 | 33.0 | 198 | 1.5941 | 0.1860 | | 1.4927 | 34.0 | 204 | 1.5941 | 0.1860 | | 1.4875 | 35.0 | 210 | 1.5940 | 0.1860 | | 1.4875 | 36.0 | 216 | 1.5940 | 0.1860 | | 1.5166 | 37.0 | 222 | 1.5940 | 0.1860 | | 1.5166 | 38.0 | 228 | 1.5939 | 0.1860 | | 1.5127 | 39.0 | 234 | 1.5939 | 0.1860 | | 1.4974 | 40.0 | 240 | 1.5939 | 0.1860 | | 1.4974 | 41.0 | 246 | 1.5939 | 0.1860 | | 1.4716 | 42.0 | 252 | 1.5939 | 0.1860 | | 1.4716 | 43.0 | 258 | 1.5939 | 0.1860 | | 1.5277 | 44.0 | 264 | 1.5939 | 0.1860 | | 1.501 | 45.0 | 270 | 1.5939 | 0.1860 | | 1.501 | 46.0 | 276 | 1.5939 | 0.1860 | | 1.4805 | 47.0 | 282 | 1.5939 | 0.1860 | | 1.4805 | 48.0 | 288 | 1.5939 | 0.1860 | | 1.5052 | 49.0 | 294 | 1.5939 | 0.1860 | | 1.536 | 50.0 | 300 | 1.5939 | 0.1860 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
hkivancoral/hushem_1x_deit_small_sgd_00001_fold2
hkivancoral
2023-11-13T19:18:59Z
8
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-small-patch16-224", "base_model:finetune:facebook/deit-small-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-11-13T19:16:20Z
--- license: apache-2.0 base_model: facebook/deit-small-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_small_sgd_00001_fold2 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.17777777777777778 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_1x_deit_small_sgd_00001_fold2 This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.5076 - Accuracy: 0.1778 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 1.5128 | 0.1778 | | 1.5351 | 2.0 | 12 | 1.5126 | 0.1778 | | 1.5351 | 3.0 | 18 | 1.5123 | 0.1778 | | 1.521 | 4.0 | 24 | 1.5120 | 0.1778 | | 1.5462 | 5.0 | 30 | 1.5118 | 0.1778 | | 1.5462 | 6.0 | 36 | 1.5116 | 0.1778 | | 1.5099 | 7.0 | 42 | 1.5113 | 0.1778 | | 1.5099 | 8.0 | 48 | 1.5111 | 0.1778 | | 1.5333 | 9.0 | 54 | 1.5109 | 0.1778 | | 1.5206 | 10.0 | 60 | 1.5106 | 0.1778 | | 1.5206 | 11.0 | 66 | 1.5105 | 0.1778 | | 1.5227 | 12.0 | 72 | 1.5103 | 0.1778 | | 1.5227 | 13.0 | 78 | 1.5101 | 0.1778 | | 1.5256 | 14.0 | 84 | 1.5099 | 0.1778 | | 1.5395 | 15.0 | 90 | 1.5097 | 0.1778 | | 1.5395 | 16.0 | 96 | 1.5095 | 0.1778 | | 1.5169 | 17.0 | 102 | 1.5094 | 0.1778 | | 1.5169 | 18.0 | 108 | 1.5092 | 0.1778 | | 1.5502 | 19.0 | 114 | 1.5091 | 0.1778 | | 1.4882 | 20.0 | 120 | 1.5090 | 0.1778 | | 1.4882 | 21.0 | 126 | 1.5088 | 0.1778 | | 1.5202 | 22.0 | 132 | 1.5087 | 0.1778 | | 1.5202 | 23.0 | 138 | 1.5086 | 0.1778 | | 1.5139 | 24.0 | 144 | 1.5085 | 0.1778 | | 1.4995 | 25.0 | 150 | 1.5084 | 0.1778 | | 1.4995 | 26.0 | 156 | 1.5083 | 0.1778 | | 1.5175 | 27.0 | 162 | 1.5082 | 0.1778 | | 1.5175 | 28.0 | 168 | 1.5081 | 0.1778 | | 1.5365 | 29.0 | 174 | 1.5081 | 0.1778 | | 1.5232 | 30.0 | 180 | 1.5080 | 0.1778 | | 1.5232 | 31.0 | 186 | 1.5079 | 0.1778 | | 1.5236 | 32.0 | 192 | 1.5079 | 0.1778 | | 1.5236 | 33.0 | 198 | 1.5078 | 0.1778 | | 1.5292 | 34.0 | 204 | 1.5078 | 0.1778 | | 1.544 | 35.0 | 210 | 1.5077 | 0.1778 | | 1.544 | 36.0 | 216 | 1.5077 | 0.1778 | | 1.4971 | 37.0 | 222 | 1.5077 | 0.1778 | | 1.4971 | 38.0 | 228 | 1.5077 | 0.1778 | | 1.4951 | 39.0 | 234 | 1.5076 | 0.1778 | | 1.5452 | 40.0 | 240 | 1.5076 | 0.1778 | | 1.5452 | 41.0 | 246 | 1.5076 | 0.1778 | | 1.5473 | 42.0 | 252 | 1.5076 | 0.1778 | | 1.5473 | 43.0 | 258 | 1.5076 | 0.1778 | | 1.5095 | 44.0 | 264 | 1.5076 | 0.1778 | | 1.495 | 45.0 | 270 | 1.5076 | 0.1778 | | 1.495 | 46.0 | 276 | 1.5076 | 0.1778 | | 1.5118 | 47.0 | 282 | 1.5076 | 0.1778 | | 1.5118 | 48.0 | 288 | 1.5076 | 0.1778 | | 1.493 | 49.0 | 294 | 1.5076 | 0.1778 | | 1.528 | 50.0 | 300 | 1.5076 | 0.1778 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
hkivancoral/hushem_1x_deit_small_sgd_00001_fold1
hkivancoral
2023-11-13T19:16:04Z
9
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-small-patch16-224", "base_model:finetune:facebook/deit-small-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-11-13T19:13:17Z
--- license: apache-2.0 base_model: facebook/deit-small-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_small_sgd_00001_fold1 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.28888888888888886 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_1x_deit_small_sgd_00001_fold1 This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.5045 - Accuracy: 0.2889 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 1.5103 | 0.2889 | | 1.5406 | 2.0 | 12 | 1.5100 | 0.2889 | | 1.5406 | 3.0 | 18 | 1.5097 | 0.2889 | | 1.5187 | 4.0 | 24 | 1.5094 | 0.2889 | | 1.5371 | 5.0 | 30 | 1.5091 | 0.2889 | | 1.5371 | 6.0 | 36 | 1.5089 | 0.2889 | | 1.517 | 7.0 | 42 | 1.5086 | 0.2889 | | 1.517 | 8.0 | 48 | 1.5084 | 0.2889 | | 1.5407 | 9.0 | 54 | 1.5081 | 0.2889 | | 1.5157 | 10.0 | 60 | 1.5079 | 0.2889 | | 1.5157 | 11.0 | 66 | 1.5077 | 0.2889 | | 1.5121 | 12.0 | 72 | 1.5074 | 0.2889 | | 1.5121 | 13.0 | 78 | 1.5072 | 0.2889 | | 1.538 | 14.0 | 84 | 1.5070 | 0.2889 | | 1.5262 | 15.0 | 90 | 1.5068 | 0.2889 | | 1.5262 | 16.0 | 96 | 1.5066 | 0.2889 | | 1.5233 | 17.0 | 102 | 1.5064 | 0.2889 | | 1.5233 | 18.0 | 108 | 1.5063 | 0.2889 | | 1.5376 | 19.0 | 114 | 1.5061 | 0.2889 | | 1.5005 | 20.0 | 120 | 1.5060 | 0.2889 | | 1.5005 | 21.0 | 126 | 1.5058 | 0.2889 | | 1.5271 | 22.0 | 132 | 1.5057 | 0.2889 | | 1.5271 | 23.0 | 138 | 1.5056 | 0.2889 | | 1.5205 | 24.0 | 144 | 1.5055 | 0.2889 | | 1.5085 | 25.0 | 150 | 1.5054 | 0.2889 | | 1.5085 | 26.0 | 156 | 1.5053 | 0.2889 | | 1.5221 | 27.0 | 162 | 1.5052 | 0.2889 | | 1.5221 | 28.0 | 168 | 1.5051 | 0.2889 | | 1.5344 | 29.0 | 174 | 1.5050 | 0.2889 | | 1.5325 | 30.0 | 180 | 1.5049 | 0.2889 | | 1.5325 | 31.0 | 186 | 1.5048 | 0.2889 | | 1.5365 | 32.0 | 192 | 1.5048 | 0.2889 | | 1.5365 | 33.0 | 198 | 1.5047 | 0.2889 | | 1.5421 | 34.0 | 204 | 1.5046 | 0.2889 | | 1.5276 | 35.0 | 210 | 1.5046 | 0.2889 | | 1.5276 | 36.0 | 216 | 1.5046 | 0.2889 | | 1.5101 | 37.0 | 222 | 1.5045 | 0.2889 | | 1.5101 | 38.0 | 228 | 1.5045 | 0.2889 | | 1.5025 | 39.0 | 234 | 1.5045 | 0.2889 | | 1.5405 | 40.0 | 240 | 1.5045 | 0.2889 | | 1.5405 | 41.0 | 246 | 1.5045 | 0.2889 | | 1.5373 | 42.0 | 252 | 1.5045 | 0.2889 | | 1.5373 | 43.0 | 258 | 1.5045 | 0.2889 | | 1.5465 | 44.0 | 264 | 1.5045 | 0.2889 | | 1.4924 | 45.0 | 270 | 1.5045 | 0.2889 | | 1.4924 | 46.0 | 276 | 1.5045 | 0.2889 | | 1.521 | 47.0 | 282 | 1.5045 | 0.2889 | | 1.521 | 48.0 | 288 | 1.5045 | 0.2889 | | 1.494 | 49.0 | 294 | 1.5045 | 0.2889 | | 1.5268 | 50.0 | 300 | 1.5045 | 0.2889 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
hkivancoral/hushem_1x_deit_small_sgd_0001_fold4
hkivancoral
2023-11-13T19:01:09Z
8
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-small-patch16-224", "base_model:finetune:facebook/deit-small-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-11-13T18:58:27Z
--- license: apache-2.0 base_model: facebook/deit-small-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_small_sgd_0001_fold4 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.2619047619047619 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_1x_deit_small_sgd_0001_fold4 This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.4227 - Accuracy: 0.2619 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 1.4804 | 0.2619 | | 1.5213 | 2.0 | 12 | 1.4770 | 0.2857 | | 1.5213 | 3.0 | 18 | 1.4737 | 0.2857 | | 1.5439 | 4.0 | 24 | 1.4702 | 0.2857 | | 1.5226 | 5.0 | 30 | 1.4673 | 0.2857 | | 1.5226 | 6.0 | 36 | 1.4646 | 0.2857 | | 1.52 | 7.0 | 42 | 1.4618 | 0.2857 | | 1.52 | 8.0 | 48 | 1.4591 | 0.2857 | | 1.5076 | 9.0 | 54 | 1.4566 | 0.2857 | | 1.5003 | 10.0 | 60 | 1.4541 | 0.2857 | | 1.5003 | 11.0 | 66 | 1.4520 | 0.2857 | | 1.4856 | 12.0 | 72 | 1.4497 | 0.2857 | | 1.4856 | 13.0 | 78 | 1.4476 | 0.2857 | | 1.5104 | 14.0 | 84 | 1.4457 | 0.2857 | | 1.4726 | 15.0 | 90 | 1.4438 | 0.2857 | | 1.4726 | 16.0 | 96 | 1.4420 | 0.2857 | | 1.4844 | 17.0 | 102 | 1.4403 | 0.2857 | | 1.4844 | 18.0 | 108 | 1.4387 | 0.2619 | | 1.4456 | 19.0 | 114 | 1.4373 | 0.2619 | | 1.5242 | 20.0 | 120 | 1.4359 | 0.2619 | | 1.5242 | 21.0 | 126 | 1.4347 | 0.2619 | | 1.4484 | 22.0 | 132 | 1.4335 | 0.2619 | | 1.4484 | 23.0 | 138 | 1.4324 | 0.2619 | | 1.4722 | 24.0 | 144 | 1.4314 | 0.2619 | | 1.4802 | 25.0 | 150 | 1.4303 | 0.2619 | | 1.4802 | 26.0 | 156 | 1.4294 | 0.2619 | | 1.4658 | 27.0 | 162 | 1.4284 | 0.2619 | | 1.4658 | 28.0 | 168 | 1.4276 | 0.2619 | | 1.4705 | 29.0 | 174 | 1.4269 | 0.2619 | | 1.4629 | 30.0 | 180 | 1.4263 | 0.2619 | | 1.4629 | 31.0 | 186 | 1.4256 | 0.2619 | | 1.4786 | 32.0 | 192 | 1.4251 | 0.2619 | | 1.4786 | 33.0 | 198 | 1.4246 | 0.2619 | | 1.4444 | 34.0 | 204 | 1.4242 | 0.2619 | | 1.435 | 35.0 | 210 | 1.4238 | 0.2619 | | 1.435 | 36.0 | 216 | 1.4235 | 0.2619 | | 1.4653 | 37.0 | 222 | 1.4232 | 0.2619 | | 1.4653 | 38.0 | 228 | 1.4230 | 0.2619 | | 1.4482 | 39.0 | 234 | 1.4228 | 0.2619 | | 1.4598 | 40.0 | 240 | 1.4227 | 0.2619 | | 1.4598 | 41.0 | 246 | 1.4227 | 0.2619 | | 1.4528 | 42.0 | 252 | 1.4227 | 0.2619 | | 1.4528 | 43.0 | 258 | 1.4227 | 0.2619 | | 1.4661 | 44.0 | 264 | 1.4227 | 0.2619 | | 1.4575 | 45.0 | 270 | 1.4227 | 0.2619 | | 1.4575 | 46.0 | 276 | 1.4227 | 0.2619 | | 1.4719 | 47.0 | 282 | 1.4227 | 0.2619 | | 1.4719 | 48.0 | 288 | 1.4227 | 0.2619 | | 1.4602 | 49.0 | 294 | 1.4227 | 0.2619 | | 1.465 | 50.0 | 300 | 1.4227 | 0.2619 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
eljandoubi/whisper-tiny-en
eljandoubi
2023-11-13T18:59:37Z
9
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dataset:PolyAI/minds14", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-11-13T17:42:31Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny-en results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 config: en-US split: train args: en-US metrics: - name: Wer type: wer value: 0.3451917732073374 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-tiny-en This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.6879 - Wer Ortho: 0.3510 - Wer: 0.3452 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 0.0008 | 17.24 | 500 | 0.6879 | 0.3510 | 0.3452 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
SebastianSchramm/tinyllama-1.1B-intermediate-step-715k-1.5T-dpo-lora
SebastianSchramm
2023-11-13T18:48:49Z
8
0
transformers
[ "transformers", "tensorboard", "safetensors", "llama", "text-generation", "generated_from_trainer", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-11-12T11:39:14Z
--- tags: - generated_from_trainer model-index: - name: tinyllama-1.1B-intermediate-step-715k-1.5T-dpo-lora results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tinyllama-1.1B-intermediate-step-715k-1.5T-dpo-lora This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6877 - Rewards/chosen: 0.0254 - Rewards/rejected: 0.0135 - Rewards/accuracies: 0.5645 - Rewards/margins: 0.0119 - Logps/rejected: -315.6106 - Logps/chosen: -402.4017 - Logits/rejected: -4.0818 - Logits/chosen: -4.1916 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 32 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6916 | 1.0 | 968 | 0.6921 | 0.0039 | 0.0011 | 0.5070 | 0.0028 | -315.7343 | -402.6164 | -4.0813 | -4.1913 | | 0.6904 | 2.0 | 1936 | 0.6884 | 0.0191 | 0.0086 | 0.5570 | 0.0105 | -315.6588 | -402.4643 | -4.0824 | -4.1920 | | 0.6876 | 3.0 | 2904 | 0.6877 | 0.0254 | 0.0135 | 0.5645 | 0.0119 | -315.6106 | -402.4017 | -4.0818 | -4.1916 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1
hkivancoral/hushem_1x_deit_small_sgd_001_fold4
hkivancoral
2023-11-13T18:42:38Z
14
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-small-patch16-224", "base_model:finetune:facebook/deit-small-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-11-13T18:39:10Z
--- license: apache-2.0 base_model: facebook/deit-small-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_small_sgd_001_fold4 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.3333333333333333 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_1x_deit_small_sgd_001_fold4 This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.3002 - Accuracy: 0.3333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 1.4504 | 0.2857 | | 1.4996 | 2.0 | 12 | 1.4256 | 0.2619 | | 1.4996 | 3.0 | 18 | 1.4065 | 0.3095 | | 1.4661 | 4.0 | 24 | 1.3909 | 0.3333 | | 1.4137 | 5.0 | 30 | 1.3815 | 0.3333 | | 1.4137 | 6.0 | 36 | 1.3736 | 0.3810 | | 1.3923 | 7.0 | 42 | 1.3662 | 0.3571 | | 1.3923 | 8.0 | 48 | 1.3602 | 0.3095 | | 1.3511 | 9.0 | 54 | 1.3552 | 0.3333 | | 1.3471 | 10.0 | 60 | 1.3505 | 0.3333 | | 1.3471 | 11.0 | 66 | 1.3464 | 0.3333 | | 1.3212 | 12.0 | 72 | 1.3425 | 0.3333 | | 1.3212 | 13.0 | 78 | 1.3391 | 0.3333 | | 1.3151 | 14.0 | 84 | 1.3358 | 0.3333 | | 1.2949 | 15.0 | 90 | 1.3328 | 0.3333 | | 1.2949 | 16.0 | 96 | 1.3296 | 0.3333 | | 1.282 | 17.0 | 102 | 1.3270 | 0.3333 | | 1.282 | 18.0 | 108 | 1.3243 | 0.3333 | | 1.2637 | 19.0 | 114 | 1.3223 | 0.3333 | | 1.2828 | 20.0 | 120 | 1.3203 | 0.3333 | | 1.2828 | 21.0 | 126 | 1.3182 | 0.3333 | | 1.2384 | 22.0 | 132 | 1.3165 | 0.3333 | | 1.2384 | 23.0 | 138 | 1.3149 | 0.3333 | | 1.2419 | 24.0 | 144 | 1.3133 | 0.3333 | | 1.2404 | 25.0 | 150 | 1.3117 | 0.3571 | | 1.2404 | 26.0 | 156 | 1.3102 | 0.3571 | | 1.2294 | 27.0 | 162 | 1.3091 | 0.3571 | | 1.2294 | 28.0 | 168 | 1.3080 | 0.3571 | | 1.2327 | 29.0 | 174 | 1.3070 | 0.3571 | | 1.2115 | 30.0 | 180 | 1.3061 | 0.3571 | | 1.2115 | 31.0 | 186 | 1.3052 | 0.3333 | | 1.2091 | 32.0 | 192 | 1.3043 | 0.3333 | | 1.2091 | 33.0 | 198 | 1.3036 | 0.3333 | | 1.2111 | 34.0 | 204 | 1.3028 | 0.3333 | | 1.2001 | 35.0 | 210 | 1.3022 | 0.3333 | | 1.2001 | 36.0 | 216 | 1.3016 | 0.3333 | | 1.2048 | 37.0 | 222 | 1.3012 | 0.3333 | | 1.2048 | 38.0 | 228 | 1.3009 | 0.3333 | | 1.1981 | 39.0 | 234 | 1.3006 | 0.3333 | | 1.1973 | 40.0 | 240 | 1.3004 | 0.3333 | | 1.1973 | 41.0 | 246 | 1.3003 | 0.3333 | | 1.2009 | 42.0 | 252 | 1.3002 | 0.3333 | | 1.2009 | 43.0 | 258 | 1.3002 | 0.3333 | | 1.1848 | 44.0 | 264 | 1.3002 | 0.3333 | | 1.2 | 45.0 | 270 | 1.3002 | 0.3333 | | 1.2 | 46.0 | 276 | 1.3002 | 0.3333 | | 1.2026 | 47.0 | 282 | 1.3002 | 0.3333 | | 1.2026 | 48.0 | 288 | 1.3002 | 0.3333 | | 1.1883 | 49.0 | 294 | 1.3002 | 0.3333 | | 1.2097 | 50.0 | 300 | 1.3002 | 0.3333 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
BachNgoH/checkpoints_2
BachNgoH
2023-11-13T18:41:36Z
6
0
transformers
[ "transformers", "safetensors", "deberta-v2", "multiple-choice", "generated_from_trainer", "base_model:microsoft/deberta-v3-large", "base_model:finetune:microsoft/deberta-v3-large", "license:mit", "endpoints_compatible", "region:us" ]
multiple-choice
2023-11-13T18:06:10Z
--- license: mit base_model: microsoft/deberta-v3-large tags: - generated_from_trainer model-index: - name: checkpoints_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # checkpoints_2 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8543 - Map@3: 0.7167 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Map@3 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.395 | 0.19 | 25 | 1.3859 | 0.5889 | | 1.3803 | 0.37 | 50 | 1.3840 | 0.6958 | | 1.3842 | 0.56 | 75 | 1.3314 | 0.7194 | | 1.2795 | 0.74 | 100 | 1.0021 | 0.7222 | | 0.9662 | 0.93 | 125 | 0.9006 | 0.6597 | | 0.9574 | 1.11 | 150 | 0.8355 | 0.6903 | | 0.8909 | 1.3 | 175 | 0.8506 | 0.6750 | | 0.8077 | 1.48 | 200 | 0.8180 | 0.7125 | | 0.955 | 1.67 | 225 | 0.8069 | 0.7097 | | 0.8664 | 1.85 | 250 | 0.8186 | 0.7028 | | 0.9396 | 2.04 | 275 | 0.8091 | 0.6986 | | 0.8141 | 2.22 | 300 | 0.8212 | 0.7083 | | 0.7898 | 2.41 | 325 | 0.8531 | 0.7167 | | 0.9143 | 2.59 | 350 | 0.8482 | 0.7125 | | 0.8861 | 2.78 | 375 | 0.8229 | 0.7083 | | 0.8569 | 2.96 | 400 | 0.8372 | 0.7181 | | 0.8381 | 3.15 | 425 | 0.8516 | 0.7153 | | 0.7671 | 3.33 | 450 | 0.8458 | 0.7167 | | 0.8704 | 3.52 | 475 | 0.8651 | 0.7222 | | 0.8733 | 3.7 | 500 | 0.8356 | 0.7153 | | 0.7309 | 3.89 | 525 | 0.8476 | 0.7181 | | 0.7793 | 4.07 | 550 | 0.8566 | 0.7167 | | 0.7849 | 4.26 | 575 | 0.8644 | 0.7167 | | 0.7776 | 4.44 | 600 | 0.8584 | 0.7167 | | 0.7573 | 4.63 | 625 | 0.8546 | 0.7167 | | 0.8115 | 4.81 | 650 | 0.8543 | 0.7167 | | 0.869 | 5.0 | 675 | 0.8543 | 0.7167 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.14.1
hkivancoral/hushem_1x_deit_small_sgd_001_fold3
hkivancoral
2023-11-13T18:38:51Z
8
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-small-patch16-224", "base_model:finetune:facebook/deit-small-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-11-13T18:35:26Z
--- license: apache-2.0 base_model: facebook/deit-small-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_small_sgd_001_fold3 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.2558139534883721 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_1x_deit_small_sgd_001_fold3 This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.3255 - Accuracy: 0.2558 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 1.5642 | 0.2326 | | 1.4806 | 2.0 | 12 | 1.5332 | 0.3256 | | 1.4806 | 3.0 | 18 | 1.5110 | 0.3256 | | 1.4127 | 4.0 | 24 | 1.4910 | 0.3256 | | 1.3859 | 5.0 | 30 | 1.4734 | 0.3256 | | 1.3859 | 6.0 | 36 | 1.4581 | 0.3256 | | 1.372 | 7.0 | 42 | 1.4448 | 0.3256 | | 1.372 | 8.0 | 48 | 1.4360 | 0.3256 | | 1.3407 | 9.0 | 54 | 1.4268 | 0.3256 | | 1.3476 | 10.0 | 60 | 1.4184 | 0.3256 | | 1.3476 | 11.0 | 66 | 1.4115 | 0.3256 | | 1.3176 | 12.0 | 72 | 1.4055 | 0.3488 | | 1.3176 | 13.0 | 78 | 1.3989 | 0.3488 | | 1.3009 | 14.0 | 84 | 1.3926 | 0.3256 | | 1.3032 | 15.0 | 90 | 1.3870 | 0.3256 | | 1.3032 | 16.0 | 96 | 1.3815 | 0.3256 | | 1.2893 | 17.0 | 102 | 1.3768 | 0.3256 | | 1.2893 | 18.0 | 108 | 1.3723 | 0.3023 | | 1.252 | 19.0 | 114 | 1.3680 | 0.3023 | | 1.2643 | 20.0 | 120 | 1.3638 | 0.3023 | | 1.2643 | 21.0 | 126 | 1.3601 | 0.2791 | | 1.2642 | 22.0 | 132 | 1.3567 | 0.2791 | | 1.2642 | 23.0 | 138 | 1.3535 | 0.2791 | | 1.2369 | 24.0 | 144 | 1.3502 | 0.2791 | | 1.2315 | 25.0 | 150 | 1.3476 | 0.2791 | | 1.2315 | 26.0 | 156 | 1.3450 | 0.2791 | | 1.2236 | 27.0 | 162 | 1.3424 | 0.2558 | | 1.2236 | 28.0 | 168 | 1.3403 | 0.2558 | | 1.2327 | 29.0 | 174 | 1.3382 | 0.2558 | | 1.2254 | 30.0 | 180 | 1.3363 | 0.2558 | | 1.2254 | 31.0 | 186 | 1.3347 | 0.2558 | | 1.2165 | 32.0 | 192 | 1.3331 | 0.2558 | | 1.2165 | 33.0 | 198 | 1.3315 | 0.2558 | | 1.2003 | 34.0 | 204 | 1.3303 | 0.2558 | | 1.2034 | 35.0 | 210 | 1.3292 | 0.2558 | | 1.2034 | 36.0 | 216 | 1.3282 | 0.2558 | | 1.2052 | 37.0 | 222 | 1.3273 | 0.2558 | | 1.2052 | 38.0 | 228 | 1.3266 | 0.2558 | | 1.2216 | 39.0 | 234 | 1.3261 | 0.2558 | | 1.2003 | 40.0 | 240 | 1.3258 | 0.2558 | | 1.2003 | 41.0 | 246 | 1.3256 | 0.2558 | | 1.1856 | 42.0 | 252 | 1.3255 | 0.2558 | | 1.1856 | 43.0 | 258 | 1.3255 | 0.2558 | | 1.2091 | 44.0 | 264 | 1.3255 | 0.2558 | | 1.1987 | 45.0 | 270 | 1.3255 | 0.2558 | | 1.1987 | 46.0 | 276 | 1.3255 | 0.2558 | | 1.1885 | 47.0 | 282 | 1.3255 | 0.2558 | | 1.1885 | 48.0 | 288 | 1.3255 | 0.2558 | | 1.2076 | 49.0 | 294 | 1.3255 | 0.2558 | | 1.2139 | 50.0 | 300 | 1.3255 | 0.2558 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
Amartya77/results
Amartya77
2023-11-13T18:38:35Z
0
0
null
[ "safetensors", "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-hf", "base_model:finetune:meta-llama/Llama-2-7b-hf", "region:us" ]
null
2023-11-13T18:38:14Z
--- base_model: meta-llama/Llama-2-7b-hf tags: - generated_from_trainer model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.3 - num_epochs: 50 ### Training results ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
neuralmagic/bge-base-en-v1.5-dense
neuralmagic
2023-11-13T18:33:16Z
4
0
transformers
[ "transformers", "onnx", "bert", "feature-extraction", "en", "license:mit", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2023-10-01T13:13:33Z
--- license: mit language: - en tags: - onnx --- This is the ONNX variant of the [bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) embeddings model created with the [DeepSparse Optimum](https://github.com/neuralmagic/optimum-deepsparse) integration. To replicate ONNX export, run: ```bash pip install git+https://github.com/neuralmagic/optimum-deepsparse.git ``` ```python from optimum.deepsparse import DeepSparseModelForFeatureExtraction from transformers.onnx.utils import get_preprocessor from pathlib import Path model_id = "BAAI/bge-base-en-v1.5" # load model and convert to onnx model = DeepSparseModelForFeatureExtraction.from_pretrained(model_id, export=True) tokenizer = get_preprocessor(model_id) # save onnx checkpoint and tokenizer onnx_path = Path("bge-base-en-v1.5-dense") model.save_pretrained(onnx_path) tokenizer.save_pretrained(onnx_path) ```
kariver/detr-resnet-101_rmsprop_finetuned_food-roboflow
kariver
2023-11-13T18:30:18Z
31
0
transformers
[ "transformers", "tensorboard", "safetensors", "detr", "object-detection", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/detr-resnet-101", "base_model:finetune:facebook/detr-resnet-101", "license:apache-2.0", "endpoints_compatible", "region:us" ]
object-detection
2023-11-13T17:59:54Z
--- license: apache-2.0 base_model: facebook/detr-resnet-101 tags: - generated_from_trainer datasets: - imagefolder model-index: - name: detr-resnet-101_rmsprop_finetuned_food-roboflow results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # detr-resnet-101_rmsprop_finetuned_food-roboflow This model is a fine-tuned version of [facebook/detr-resnet-101](https://huggingface.co/facebook/detr-resnet-101) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 2.9853 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 5.8836 | 0.77 | 50 | 4.5609 | | 3.9193 | 1.54 | 100 | 3.5764 | | 3.2186 | 2.31 | 150 | 3.2685 | | 2.8952 | 3.08 | 200 | 3.1941 | | 2.8565 | 3.85 | 250 | 3.1280 | | 2.7563 | 4.62 | 300 | 3.0448 | | 2.668 | 5.38 | 350 | 3.0325 | | 2.6474 | 6.15 | 400 | 2.9764 | | 2.6463 | 6.92 | 450 | 2.9752 | | 2.6616 | 7.69 | 500 | 3.0352 | | 2.5155 | 8.46 | 550 | 2.9928 | | 2.5778 | 9.23 | 600 | 2.9603 | | 2.5876 | 10.0 | 650 | 2.9502 | | 2.513 | 10.77 | 700 | 3.0151 | | 2.5598 | 11.54 | 750 | 3.0011 | | 2.491 | 12.31 | 800 | 3.0134 | | 2.5103 | 13.08 | 850 | 2.9825 | | 2.5497 | 13.85 | 900 | 3.0169 | | 2.5738 | 14.62 | 950 | 2.9853 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
arincon/roberta-base-openai-detector-autextification
arincon
2023-11-13T18:15:48Z
7
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "generated_from_trainer", "dataset:au_tex_tification", "base_model:openai-community/roberta-base-openai-detector", "base_model:finetune:openai-community/roberta-base-openai-detector", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-11-13T18:04:32Z
--- license: mit base_model: roberta-base-openai-detector tags: - generated_from_trainer datasets: - au_tex_tification metrics: - accuracy model-index: - name: roberta-base-openai-detector-autextification results: - task: name: Text Classification type: text-classification dataset: name: au_tex_tification type: au_tex_tification config: detection_en split: train args: detection_en metrics: - name: Accuracy type: accuracy value: 0.6 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-openai-detector-autextification This model is a fine-tuned version of [roberta-base-openai-detector](https://huggingface.co/roberta-base-openai-detector) on the au_tex_tification dataset. It achieves the following results on the evaluation set: - Loss: 0.7155 - Accuracy: 0.6 - Roc Auc: 0.6354 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Roc Auc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------:| | 1.0975 | 1.0 | 10 | 0.7345 | 0.65 | 0.5417 | | 0.4022 | 2.0 | 20 | 0.6266 | 0.65 | 0.6667 | | 0.1635 | 3.0 | 30 | 0.7155 | 0.6 | 0.6354 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.14.1
hkivancoral/hushem_1x_deit_small_adamax_00001_fold3
hkivancoral
2023-11-13T18:08:23Z
11
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-small-patch16-224", "base_model:finetune:facebook/deit-small-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-11-13T18:04:27Z
--- license: apache-2.0 base_model: facebook/deit-small-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_small_adamax_00001_fold3 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.6511627906976745 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_1x_deit_small_adamax_00001_fold3 This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6553 - Accuracy: 0.6512 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 1.3641 | 0.3953 | | 1.3358 | 2.0 | 12 | 1.2934 | 0.4186 | | 1.3358 | 3.0 | 18 | 1.2307 | 0.4419 | | 1.1053 | 4.0 | 24 | 1.1728 | 0.5814 | | 0.9503 | 5.0 | 30 | 1.1200 | 0.5814 | | 0.9503 | 6.0 | 36 | 1.0691 | 0.5814 | | 0.8249 | 7.0 | 42 | 1.0268 | 0.6047 | | 0.8249 | 8.0 | 48 | 1.0002 | 0.6279 | | 0.6991 | 9.0 | 54 | 0.9588 | 0.6279 | | 0.62 | 10.0 | 60 | 0.9254 | 0.6279 | | 0.62 | 11.0 | 66 | 0.8988 | 0.6744 | | 0.5003 | 12.0 | 72 | 0.8718 | 0.6279 | | 0.5003 | 13.0 | 78 | 0.8636 | 0.6279 | | 0.4251 | 14.0 | 84 | 0.8486 | 0.6279 | | 0.3584 | 15.0 | 90 | 0.8228 | 0.6279 | | 0.3584 | 16.0 | 96 | 0.8029 | 0.6512 | | 0.2955 | 17.0 | 102 | 0.7980 | 0.6279 | | 0.2955 | 18.0 | 108 | 0.7871 | 0.6047 | | 0.2345 | 19.0 | 114 | 0.7646 | 0.6279 | | 0.2022 | 20.0 | 120 | 0.7571 | 0.6279 | | 0.2022 | 21.0 | 126 | 0.7433 | 0.6512 | | 0.1667 | 22.0 | 132 | 0.7314 | 0.6744 | | 0.1667 | 23.0 | 138 | 0.7263 | 0.6279 | | 0.1461 | 24.0 | 144 | 0.7221 | 0.6744 | | 0.1251 | 25.0 | 150 | 0.7120 | 0.6512 | | 0.1251 | 26.0 | 156 | 0.6954 | 0.6512 | | 0.1033 | 27.0 | 162 | 0.6904 | 0.6512 | | 0.1033 | 28.0 | 168 | 0.6870 | 0.6744 | | 0.0941 | 29.0 | 174 | 0.6821 | 0.6744 | | 0.0792 | 30.0 | 180 | 0.6785 | 0.6744 | | 0.0792 | 31.0 | 186 | 0.6761 | 0.6744 | | 0.0681 | 32.0 | 192 | 0.6723 | 0.6744 | | 0.0681 | 33.0 | 198 | 0.6679 | 0.6744 | | 0.0621 | 34.0 | 204 | 0.6648 | 0.6512 | | 0.0554 | 35.0 | 210 | 0.6628 | 0.6512 | | 0.0554 | 36.0 | 216 | 0.6584 | 0.6744 | | 0.0533 | 37.0 | 222 | 0.6569 | 0.6744 | | 0.0533 | 38.0 | 228 | 0.6569 | 0.6512 | | 0.0487 | 39.0 | 234 | 0.6565 | 0.6512 | | 0.0478 | 40.0 | 240 | 0.6552 | 0.6512 | | 0.0478 | 41.0 | 246 | 0.6553 | 0.6512 | | 0.0459 | 42.0 | 252 | 0.6553 | 0.6512 | | 0.0459 | 43.0 | 258 | 0.6553 | 0.6512 | | 0.0488 | 44.0 | 264 | 0.6553 | 0.6512 | | 0.0454 | 45.0 | 270 | 0.6553 | 0.6512 | | 0.0454 | 46.0 | 276 | 0.6553 | 0.6512 | | 0.0445 | 47.0 | 282 | 0.6553 | 0.6512 | | 0.0445 | 48.0 | 288 | 0.6553 | 0.6512 | | 0.0487 | 49.0 | 294 | 0.6553 | 0.6512 | | 0.0463 | 50.0 | 300 | 0.6553 | 0.6512 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
hkivancoral/hushem_1x_deit_small_adamax_00001_fold2
hkivancoral
2023-11-13T18:04:13Z
13
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-small-patch16-224", "base_model:finetune:facebook/deit-small-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-11-13T18:00:29Z
--- license: apache-2.0 base_model: facebook/deit-small-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_small_adamax_00001_fold2 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.6222222222222222 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_1x_deit_small_adamax_00001_fold2 This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.3101 - Accuracy: 0.6222 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 1.3638 | 0.3556 | | 1.331 | 2.0 | 12 | 1.3133 | 0.4222 | | 1.331 | 3.0 | 18 | 1.2851 | 0.4222 | | 1.0997 | 4.0 | 24 | 1.2715 | 0.4 | | 0.9418 | 5.0 | 30 | 1.2498 | 0.4444 | | 0.9418 | 6.0 | 36 | 1.2371 | 0.5111 | | 0.7701 | 7.0 | 42 | 1.2279 | 0.5111 | | 0.7701 | 8.0 | 48 | 1.2223 | 0.5556 | | 0.6624 | 9.0 | 54 | 1.2136 | 0.5333 | | 0.5468 | 10.0 | 60 | 1.2047 | 0.5111 | | 0.5468 | 11.0 | 66 | 1.2129 | 0.5333 | | 0.4638 | 12.0 | 72 | 1.2131 | 0.5556 | | 0.4638 | 13.0 | 78 | 1.2055 | 0.5778 | | 0.375 | 14.0 | 84 | 1.2059 | 0.5778 | | 0.3096 | 15.0 | 90 | 1.2025 | 0.5778 | | 0.3096 | 16.0 | 96 | 1.2062 | 0.5778 | | 0.2535 | 17.0 | 102 | 1.2103 | 0.6 | | 0.2535 | 18.0 | 108 | 1.2313 | 0.5778 | | 0.2168 | 19.0 | 114 | 1.2293 | 0.5778 | | 0.1735 | 20.0 | 120 | 1.2169 | 0.6222 | | 0.1735 | 21.0 | 126 | 1.2306 | 0.6222 | | 0.1492 | 22.0 | 132 | 1.2370 | 0.6222 | | 0.1492 | 23.0 | 138 | 1.2467 | 0.6222 | | 0.1264 | 24.0 | 144 | 1.2411 | 0.6222 | | 0.1012 | 25.0 | 150 | 1.2438 | 0.6222 | | 0.1012 | 26.0 | 156 | 1.2523 | 0.6222 | | 0.0887 | 27.0 | 162 | 1.2537 | 0.6 | | 0.0887 | 28.0 | 168 | 1.2661 | 0.6222 | | 0.0734 | 29.0 | 174 | 1.2715 | 0.6222 | | 0.0647 | 30.0 | 180 | 1.2745 | 0.6 | | 0.0647 | 31.0 | 186 | 1.2817 | 0.6222 | | 0.0577 | 32.0 | 192 | 1.2861 | 0.6222 | | 0.0577 | 33.0 | 198 | 1.2908 | 0.6222 | | 0.0525 | 34.0 | 204 | 1.2935 | 0.6222 | | 0.048 | 35.0 | 210 | 1.2969 | 0.6222 | | 0.048 | 36.0 | 216 | 1.2990 | 0.6 | | 0.0443 | 37.0 | 222 | 1.3015 | 0.6 | | 0.0443 | 38.0 | 228 | 1.3052 | 0.6222 | | 0.0404 | 39.0 | 234 | 1.3082 | 0.6222 | | 0.0394 | 40.0 | 240 | 1.3089 | 0.6222 | | 0.0394 | 41.0 | 246 | 1.3101 | 0.6222 | | 0.0387 | 42.0 | 252 | 1.3101 | 0.6222 | | 0.0387 | 43.0 | 258 | 1.3101 | 0.6222 | | 0.0369 | 44.0 | 264 | 1.3101 | 0.6222 | | 0.0381 | 45.0 | 270 | 1.3101 | 0.6222 | | 0.0381 | 46.0 | 276 | 1.3101 | 0.6222 | | 0.0382 | 47.0 | 282 | 1.3101 | 0.6222 | | 0.0382 | 48.0 | 288 | 1.3101 | 0.6222 | | 0.037 | 49.0 | 294 | 1.3101 | 0.6222 | | 0.0386 | 50.0 | 300 | 1.3101 | 0.6222 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
hkivancoral/hushem_1x_deit_small_adamax_00001_fold1
hkivancoral
2023-11-13T18:00:14Z
8
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-small-patch16-224", "base_model:finetune:facebook/deit-small-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-11-13T17:56:11Z
--- license: apache-2.0 base_model: facebook/deit-small-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_small_adamax_00001_fold1 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.6 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_1x_deit_small_adamax_00001_fold1 This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.1270 - Accuracy: 0.6 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 1.3199 | 0.3333 | | 1.3414 | 2.0 | 12 | 1.2923 | 0.4667 | | 1.3414 | 3.0 | 18 | 1.2886 | 0.4667 | | 1.0791 | 4.0 | 24 | 1.2761 | 0.4667 | | 0.9244 | 5.0 | 30 | 1.2453 | 0.4889 | | 0.9244 | 6.0 | 36 | 1.2252 | 0.4667 | | 0.7694 | 7.0 | 42 | 1.2158 | 0.5111 | | 0.7694 | 8.0 | 48 | 1.2163 | 0.4667 | | 0.6552 | 9.0 | 54 | 1.2081 | 0.5111 | | 0.5314 | 10.0 | 60 | 1.1883 | 0.5556 | | 0.5314 | 11.0 | 66 | 1.1802 | 0.5556 | | 0.4407 | 12.0 | 72 | 1.1737 | 0.5778 | | 0.4407 | 13.0 | 78 | 1.1623 | 0.6222 | | 0.3864 | 14.0 | 84 | 1.1625 | 0.6222 | | 0.3093 | 15.0 | 90 | 1.1653 | 0.6222 | | 0.3093 | 16.0 | 96 | 1.1658 | 0.6222 | | 0.2597 | 17.0 | 102 | 1.1519 | 0.6444 | | 0.2597 | 18.0 | 108 | 1.1466 | 0.6222 | | 0.2099 | 19.0 | 114 | 1.1591 | 0.6 | | 0.1766 | 20.0 | 120 | 1.1509 | 0.5778 | | 0.1766 | 21.0 | 126 | 1.1488 | 0.5778 | | 0.1537 | 22.0 | 132 | 1.1482 | 0.5778 | | 0.1537 | 23.0 | 138 | 1.1427 | 0.6222 | | 0.1244 | 24.0 | 144 | 1.1370 | 0.6 | | 0.103 | 25.0 | 150 | 1.1285 | 0.6 | | 0.103 | 26.0 | 156 | 1.1323 | 0.6 | | 0.089 | 27.0 | 162 | 1.1268 | 0.6 | | 0.089 | 28.0 | 168 | 1.1377 | 0.6 | | 0.0777 | 29.0 | 174 | 1.1346 | 0.6 | | 0.068 | 30.0 | 180 | 1.1274 | 0.6 | | 0.068 | 31.0 | 186 | 1.1199 | 0.6 | | 0.0597 | 32.0 | 192 | 1.1245 | 0.6 | | 0.0597 | 33.0 | 198 | 1.1296 | 0.6 | | 0.0547 | 34.0 | 204 | 1.1270 | 0.6 | | 0.0493 | 35.0 | 210 | 1.1241 | 0.6 | | 0.0493 | 36.0 | 216 | 1.1250 | 0.6 | | 0.0441 | 37.0 | 222 | 1.1253 | 0.6 | | 0.0441 | 38.0 | 228 | 1.1296 | 0.6 | | 0.0409 | 39.0 | 234 | 1.1287 | 0.6 | | 0.0405 | 40.0 | 240 | 1.1275 | 0.6 | | 0.0405 | 41.0 | 246 | 1.1272 | 0.6 | | 0.0391 | 42.0 | 252 | 1.1270 | 0.6 | | 0.0391 | 43.0 | 258 | 1.1270 | 0.6 | | 0.0395 | 44.0 | 264 | 1.1270 | 0.6 | | 0.0377 | 45.0 | 270 | 1.1270 | 0.6 | | 0.0377 | 46.0 | 276 | 1.1270 | 0.6 | | 0.0388 | 47.0 | 282 | 1.1270 | 0.6 | | 0.0388 | 48.0 | 288 | 1.1270 | 0.6 | | 0.0366 | 49.0 | 294 | 1.1270 | 0.6 | | 0.0396 | 50.0 | 300 | 1.1270 | 0.6 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
DonDonP1/KylieCantrall
DonDonP1
2023-11-13T17:57:29Z
0
0
null
[ "Kylie Cantrall", "arxiv:1910.09700", "region:us" ]
null
2023-11-13T17:54:26Z
--- tags: - Kylie Cantrall --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Ka4on/mistral_radiology2
Ka4on
2023-11-13T17:56:08Z
2
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:mistralai/Mistral-7B-v0.1", "base_model:adapter:mistralai/Mistral-7B-v0.1", "region:us" ]
null
2023-11-13T17:55:51Z
--- library_name: peft base_model: mistralai/Mistral-7B-v0.1 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.2.dev0
bangla-speech-processing/BanglaASR
bangla-speech-processing
2023-11-13T17:55:56Z
653
12
transformers
[ "transformers", "pytorch", "safetensors", "whisper", "automatic-speech-recognition", "audio", "license:mit", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-06-22T18:06:18Z
--- license: mit tags: - audio - automatic-speech-recognition widget: - example_title: sample 1 src: https://huggingface.co/bangla-speech-processing/BanglaASR/resolve/main/mp3/common_voice_bn_31515636.mp3 - example_title: sample 2 src: https://huggingface.co/bangla-speech-processing/BanglaASR/resolve/main/mp3/common_voice_bn_31549899.mp3 - example_title: sample 3 src: https://huggingface.co/bangla-speech-processing/BanglaASR/resolve/main/mp3/common_voice_bn_31617644.mp3 pipeline_tag: automatic-speech-recognition --- Bangla ASR model which was trained Bangla Mozilla Common Voice Dataset. This is Fine-tuning Whisper model using Bangla mozilla common voice dataset. For training this model used 40k training and 7k Validation of around 400 hours of data. We trained 12000 steps and get word error rate 4.58%. This model was whisper small[244 M] variant model. ```py import os import librosa import torch import torchaudio import numpy as np from transformers import WhisperTokenizer from transformers import WhisperProcessor from transformers import WhisperFeatureExtractor from transformers import WhisperForConditionalGeneration device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') mp3_path = "https://huggingface.co/bangla-speech-processing/BanglaASR/resolve/main/mp3/common_voice_bn_31515636.mp3" model_path = "bangla-speech-processing/BanglaASR" feature_extractor = WhisperFeatureExtractor.from_pretrained(model_path) tokenizer = WhisperTokenizer.from_pretrained(model_path) processor = WhisperProcessor.from_pretrained(model_path) model = WhisperForConditionalGeneration.from_pretrained(model_path).to(device) speech_array, sampling_rate = torchaudio.load(mp3_path, format="mp3") speech_array = speech_array[0].numpy() speech_array = librosa.resample(np.asarray(speech_array), orig_sr=sampling_rate, target_sr=16000) input_features = feature_extractor(speech_array, sampling_rate=16000, return_tensors="pt").input_features # batch = processor.feature_extractor.pad(input_features, return_tensors="pt") predicted_ids = model.generate(inputs=input_features.to(device))[0] transcription = processor.decode(predicted_ids, skip_special_tokens=True) print(transcription) ``` # Dataset Used Mozilla common voice dataset around 400 hours data both training[40k] and validation[7k] mp3 samples. For more information about dataser please [click here](https://commonvoice.mozilla.org/bn/datasets) # Training Model Information | Size | Layers | Width | Heads | Parameters | Bangla-only | Training Status | | ------------- | ------------- | -------- |-------- | ------------- | ------------- | -------- | tiny | 4 |384 | 6 | 39 M | X | X base | 6 |512 | 8 |74 M | X | X small | 12 |768 | 12 |244 M | ✓ | ✓ medium | 24 |1024 | 16 |769 M | X | X large | 32 |1280 | 20 |1550 M | X | X # Evaluation Word Error Rate 4.58 % For More please check the [github](https://github.com/saiful9379/BanglaASR/tree/main) ``` @misc{BanglaASR , title={Transformer Based Whisper Bangla ASR Model}, author={Md Saiful Islam}, howpublished={}, year={2023} } ```
Greynar/segformer-b0-scene-parse-150
Greynar
2023-11-13T17:52:10Z
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "segformer", "generated_from_trainer", "dataset:scene_parse_150", "base_model:nvidia/mit-b0", "base_model:finetune:nvidia/mit-b0", "license:other", "endpoints_compatible", "region:us" ]
null
2023-11-13T16:02:07Z
--- license: other base_model: nvidia/mit-b0 tags: - generated_from_trainer datasets: - scene_parse_150 model-index: - name: segformer-b0-scene-parse-150 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-scene-parse-150 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the scene_parse_150 dataset. It achieves the following results on the evaluation set: - Loss: 4.9822 - Mean Iou: 0.0050 - Mean Accuracy: 0.0259 - Overall Accuracy: 0.0659 - Per Category Iou: [0.0, 0.0, 0.42791763087856327, 0.002705563443913773, 0.11484260881675644, 0.004469078471025891, 0.00010464003826835685, 0.0, 0.0, 0.0, 0.0, 0.0, 0.04216482322102168, 0.0006308115510378447, 0.021786914921127488, 0.0, 0.0, 0.0, 0.0, 1.0116644915880098e-05, 0.0011043283536304794, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.012403422514526532, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.014823049842505095, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0] - Per Category Accuracy: [0.0, 0.0, 0.5983735141415003, 0.002898678998960016, 0.12777657657657657, 0.005584500670764047, 0.00011662099011220605, 0.0, 0.0, 0.0, nan, nan, 0.051474509905948776, 0.0006435111270405004, 0.1369918699186992, nan, 0.0, 0.0, 0.0, 0.00011761938367442955, 0.001417434443656981, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0955641193834044, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.04036326942482341, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| | 4.8784 | 1.0 | 20 | 4.9822 | 0.0050 | 0.0259 | 0.0659 | [0.0, 0.0, 0.42791763087856327, 0.002705563443913773, 0.11484260881675644, 0.004469078471025891, 0.00010464003826835685, 0.0, 0.0, 0.0, 0.0, 0.0, 0.04216482322102168, 0.0006308115510378447, 0.021786914921127488, 0.0, 0.0, 0.0, 0.0, 1.0116644915880098e-05, 0.0011043283536304794, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.012403422514526532, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.014823049842505095, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0] | [0.0, 0.0, 0.5983735141415003, 0.002898678998960016, 0.12777657657657657, 0.005584500670764047, 0.00011662099011220605, 0.0, 0.0, 0.0, nan, nan, 0.051474509905948776, 0.0006435111270405004, 0.1369918699186992, nan, 0.0, 0.0, 0.0, 0.00011761938367442955, 0.001417434443656981, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0955641193834044, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.04036326942482341, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan] | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
DouglasPontes/roberta-2020-Q2-filtered
DouglasPontes
2023-11-13T17:49:29Z
3
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-11-11T02:21:18Z
--- license: mit base_model: roberta-base tags: - generated_from_trainer model-index: - name: roberta-2020-Q2-filtered results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-2020-Q2-filtered This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.5868 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1400 - training_steps: 2400000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-------:|:---------------:| | No log | 0.03 | 8000 | 2.9727 | | 3.1662 | 0.07 | 16000 | 2.8727 | | 3.1662 | 0.1 | 24000 | 2.8134 | | 2.914 | 0.14 | 32000 | 2.7663 | | 2.914 | 0.17 | 40000 | 2.7392 | | 2.8319 | 0.21 | 48000 | 2.7003 | | 2.8319 | 0.24 | 56000 | 2.6796 | | 2.7892 | 0.28 | 64000 | 2.6640 | | 2.7892 | 0.31 | 72000 | 2.6422 | | 2.7471 | 0.35 | 80000 | 2.6159 | | 2.7471 | 0.38 | 88000 | 2.6056 | | 2.727 | 0.42 | 96000 | 2.6007 | | 2.727 | 0.45 | 104000 | 2.6046 | | 2.7185 | 0.49 | 112000 | 2.6009 | | 2.7185 | 0.52 | 120000 | 2.5992 | | 2.7121 | 0.56 | 128000 | 2.5893 | | 2.7121 | 0.59 | 136000 | 2.5993 | | 2.722 | 0.63 | 144000 | 2.5935 | | 2.722 | 0.66 | 152000 | 2.5808 | | 2.724 | 0.7 | 160000 | 2.6009 | | 2.724 | 0.73 | 168000 | 2.6015 | | 2.7192 | 0.77 | 176000 | 2.5918 | | 2.7192 | 0.8 | 184000 | 2.6031 | | 2.7234 | 0.84 | 192000 | 2.5920 | | 2.7234 | 0.87 | 200000 | 2.6065 | | 2.7369 | 0.91 | 208000 | 2.6125 | | 2.7369 | 0.94 | 216000 | 2.6040 | | 2.7282 | 0.98 | 224000 | 2.6042 | | 2.7282 | 1.01 | 232000 | 2.6186 | | 2.7322 | 1.05 | 240000 | 2.6130 | | 2.7322 | 1.08 | 248000 | 2.6214 | | 2.7361 | 1.12 | 256000 | 2.6168 | | 2.7361 | 1.15 | 264000 | 2.6266 | | 2.7514 | 1.19 | 272000 | 2.6223 | | 2.7514 | 1.22 | 280000 | 2.6240 | | 2.7557 | 1.26 | 288000 | 2.6301 | | 2.7557 | 1.29 | 296000 | 2.6284 | | 2.7591 | 1.33 | 304000 | 2.6443 | | 2.7591 | 1.36 | 312000 | 2.6485 | | 2.7675 | 1.4 | 320000 | 2.6457 | | 2.7675 | 1.43 | 328000 | 2.6444 | | 2.7732 | 1.47 | 336000 | 2.6537 | | 2.7732 | 1.5 | 344000 | 2.6632 | | 2.7922 | 1.54 | 352000 | 2.6641 | | 2.7922 | 1.57 | 360000 | 2.6715 | | 2.7908 | 1.61 | 368000 | 2.6743 | | 2.7908 | 1.64 | 376000 | 2.6686 | | 2.8148 | 1.68 | 384000 | 2.6779 | | 2.8148 | 1.71 | 392000 | 2.6765 | | 2.8103 | 1.75 | 400000 | 2.6829 | | 2.8103 | 1.78 | 408000 | 2.6941 | | 2.8192 | 1.82 | 416000 | 2.6800 | | 2.8192 | 1.85 | 424000 | 2.6954 | | 2.8298 | 1.89 | 432000 | 2.7022 | | 2.8298 | 1.92 | 440000 | 2.6993 | | 2.8298 | 1.96 | 448000 | 2.7028 | | 2.8298 | 1.99 | 456000 | 2.7213 | | 2.8546 | 2.03 | 464000 | 2.7187 | | 2.8546 | 2.06 | 472000 | 2.7107 | | 2.8334 | 2.09 | 480000 | 2.7094 | | 2.8334 | 2.13 | 488000 | 2.7309 | | 2.854 | 2.16 | 496000 | 2.7340 | | 2.854 | 2.2 | 504000 | 2.7264 | | 2.8539 | 2.23 | 512000 | 2.7456 | | 2.8539 | 2.27 | 520000 | 2.7412 | | 2.8717 | 2.3 | 528000 | 2.7517 | | 2.8717 | 2.34 | 536000 | 2.7474 | | 2.8733 | 2.37 | 544000 | 2.7649 | | 2.8733 | 2.41 | 552000 | 2.7536 | | 2.8876 | 2.44 | 560000 | 2.7602 | | 2.8876 | 2.48 | 568000 | 2.7617 | | 2.905 | 2.51 | 576000 | 2.7663 | | 2.905 | 2.55 | 584000 | 2.7840 | | 2.8964 | 2.58 | 592000 | 2.7827 | | 2.8964 | 2.62 | 600000 | 2.7769 | | 2.9118 | 2.65 | 608000 | 2.7880 | | 2.9118 | 2.69 | 616000 | 2.7923 | | 2.9222 | 2.72 | 624000 | 2.7897 | | 2.9222 | 2.76 | 632000 | 2.8131 | | 2.9311 | 2.79 | 640000 | 2.8014 | | 2.9311 | 2.83 | 648000 | 2.8287 | | 2.9469 | 2.86 | 656000 | 2.8267 | | 2.9469 | 2.9 | 664000 | 2.8234 | | 2.9449 | 2.93 | 672000 | 2.8258 | | 2.9449 | 2.97 | 680000 | 2.8252 | | 2.9608 | 3.0 | 688000 | 2.8328 | | 2.9608 | 3.04 | 696000 | 2.8387 | | 2.9499 | 3.07 | 704000 | 2.8425 | | 2.9499 | 3.11 | 712000 | 2.8431 | | 2.9662 | 3.14 | 720000 | 2.8575 | | 2.9662 | 3.18 | 728000 | 2.8588 | | 2.9779 | 3.21 | 736000 | 2.8636 | | 2.9779 | 3.25 | 744000 | 2.8631 | | 2.9787 | 3.28 | 752000 | 2.8736 | | 2.9787 | 3.32 | 760000 | 2.8701 | | 3.0025 | 3.35 | 768000 | 2.8815 | | 3.0025 | 3.39 | 776000 | 2.8750 | | 2.999 | 3.42 | 784000 | 2.8860 | | 2.999 | 3.46 | 792000 | 2.8876 | | 3.0012 | 3.49 | 800000 | 2.9017 | | 3.0012 | 3.53 | 808000 | 2.8898 | | 3.0076 | 3.56 | 816000 | 2.9074 | | 3.0076 | 3.6 | 824000 | 2.8906 | | 3.0122 | 3.63 | 832000 | 2.9073 | | 3.0122 | 3.67 | 840000 | 2.9154 | | 3.0209 | 3.7 | 848000 | 2.9111 | | 3.0209 | 3.74 | 856000 | 2.9094 | | 3.0383 | 3.77 | 864000 | 2.9132 | | 3.0383 | 3.81 | 872000 | 2.9201 | | 3.043 | 3.84 | 880000 | 2.9280 | | 3.043 | 3.88 | 888000 | 2.9231 | | 3.0469 | 3.91 | 896000 | 2.9240 | | 3.0469 | 3.95 | 904000 | 2.9272 | | 3.0386 | 3.98 | 912000 | 2.9258 | | 3.0386 | 4.02 | 920000 | 2.9494 | | 3.0479 | 4.05 | 928000 | 2.9389 | | 3.0479 | 4.08 | 936000 | 2.9377 | | 3.0473 | 4.12 | 944000 | 2.9467 | | 3.0473 | 4.15 | 952000 | 2.9495 | | 3.0509 | 4.19 | 960000 | 2.9501 | | 3.0509 | 4.22 | 968000 | 2.9470 | | 3.0414 | 4.26 | 976000 | 2.9405 | | 3.0414 | 4.29 | 984000 | 2.9444 | | 3.0529 | 4.33 | 992000 | 2.9393 | | 3.0529 | 4.36 | 1000000 | 2.9435 | | 3.0594 | 4.4 | 1008000 | 2.9583 | | 3.0594 | 4.43 | 1016000 | 2.9457 | | 3.0479 | 4.47 | 1024000 | 2.9435 | | 3.0479 | 4.5 | 1032000 | 2.9527 | | 3.0564 | 4.54 | 1040000 | 2.9500 | | 3.0564 | 4.57 | 1048000 | 2.9550 | | 3.0554 | 4.61 | 1056000 | 2.9578 | | 3.0554 | 4.64 | 1064000 | 2.9628 | | 3.0626 | 4.68 | 1072000 | 2.9580 | | 3.0626 | 4.71 | 1080000 | 2.9667 | | 3.0722 | 4.75 | 1088000 | 2.9734 | | 3.0722 | 4.78 | 1096000 | 2.9653 | | 3.0731 | 4.82 | 1104000 | 2.9689 | | 3.0731 | 4.85 | 1112000 | 2.9739 | | 3.0724 | 4.89 | 1120000 | 2.9875 | | 3.0724 | 4.92 | 1128000 | 2.9849 | | 3.0656 | 4.96 | 1136000 | 2.9752 | | 3.0656 | 4.99 | 1144000 | 2.9751 | | 3.0829 | 5.03 | 1152000 | 2.9768 | | 3.0829 | 5.06 | 1160000 | 2.9835 | | 3.0785 | 5.1 | 1168000 | 2.9843 | | 3.0785 | 5.13 | 1176000 | 3.0001 | | 3.0704 | 5.17 | 1184000 | 2.9906 | | 3.0704 | 5.2 | 1192000 | 2.9850 | | 3.075 | 5.24 | 1200000 | 2.9931 | | 3.075 | 5.27 | 1208000 | 2.9986 | | 3.083 | 5.31 | 1216000 | 3.0008 | | 3.083 | 5.34 | 1224000 | 3.0009 | | 3.0708 | 5.38 | 1232000 | 3.0017 | | 3.0708 | 5.41 | 1240000 | 2.9932 | | 3.0896 | 5.45 | 1248000 | 2.9970 | | 3.0896 | 5.48 | 1256000 | 3.0027 | | 3.092 | 5.52 | 1264000 | 3.0002 | | 3.092 | 5.55 | 1272000 | 2.9967 | | 3.0916 | 5.59 | 1280000 | 2.9987 | | 3.0916 | 5.62 | 1288000 | 2.9990 | | 3.0938 | 5.66 | 1296000 | 3.0035 | | 3.0938 | 5.69 | 1304000 | 2.9999 | | 3.1039 | 5.73 | 1312000 | 3.0097 | | 3.1039 | 5.76 | 1320000 | 3.0022 | | 3.1059 | 5.8 | 1328000 | 3.0161 | | 3.1059 | 5.83 | 1336000 | 3.0071 | | 3.1014 | 5.87 | 1344000 | 3.0150 | | 3.1014 | 5.9 | 1352000 | 2.9986 | | 3.1048 | 5.94 | 1360000 | 3.0096 | | 3.1048 | 5.97 | 1368000 | 3.0063 | | 3.1099 | 6.01 | 1376000 | 3.0095 | | 3.1099 | 6.04 | 1384000 | 3.0152 | | 3.0891 | 6.08 | 1392000 | 3.0179 | | 3.0891 | 6.11 | 1400000 | 3.0299 | | 3.0979 | 6.14 | 1408000 | 3.0127 | | 3.0979 | 6.18 | 1416000 | 3.0260 | | 3.099 | 6.21 | 1424000 | 3.0187 | | 3.099 | 6.25 | 1432000 | 3.0114 | | 3.103 | 6.28 | 1440000 | 3.0191 | | 3.103 | 6.32 | 1448000 | 3.0168 | | 3.1066 | 6.35 | 1456000 | 3.0174 | | 3.1066 | 6.39 | 1464000 | 3.0256 | | 3.1164 | 6.42 | 1472000 | 3.0192 | | 3.1164 | 6.46 | 1480000 | 3.0066 | | 3.1066 | 6.49 | 1488000 | 3.0160 | | 3.1066 | 6.53 | 1496000 | 3.0187 | | 3.1014 | 6.56 | 1504000 | 3.0213 | | 3.1014 | 6.6 | 1512000 | 3.0170 | | 3.1043 | 6.63 | 1520000 | 3.0251 | | 3.1043 | 6.67 | 1528000 | 3.0157 | | 3.1073 | 6.7 | 1536000 | 3.0193 | | 3.1073 | 6.74 | 1544000 | 3.0174 | | 3.1131 | 6.77 | 1552000 | 3.0244 | | 3.1131 | 6.81 | 1560000 | 3.0210 | | 3.1033 | 6.84 | 1568000 | 3.0235 | | 3.1033 | 6.88 | 1576000 | 3.0189 | | 3.1087 | 6.91 | 1584000 | 3.0213 | | 3.1087 | 6.95 | 1592000 | 3.0196 | | 3.1065 | 6.98 | 1600000 | 3.0123 | | 3.1065 | 7.02 | 1608000 | 3.0229 | | 3.1019 | 7.05 | 1616000 | 3.0206 | | 3.1019 | 7.09 | 1624000 | 3.0216 | | 3.1023 | 7.12 | 1632000 | 3.0147 | | 3.1023 | 7.16 | 1640000 | 3.0227 | | 3.0969 | 7.19 | 1648000 | 3.0306 | | 3.0969 | 7.23 | 1656000 | 3.0179 | | 3.1034 | 7.26 | 1664000 | 3.0259 | | 3.1034 | 7.3 | 1672000 | 3.0237 | | 3.1077 | 7.33 | 1680000 | 3.0165 | | 3.1077 | 7.37 | 1688000 | 3.0213 | | 3.0983 | 7.4 | 1696000 | 3.0233 | | 3.0983 | 7.44 | 1704000 | 3.0224 | | 3.1014 | 7.47 | 1712000 | 3.0187 | | 3.1014 | 7.51 | 1720000 | 3.0207 | | 3.1052 | 7.54 | 1728000 | 3.0070 | | 3.1052 | 7.58 | 1736000 | 3.0236 | | 3.1062 | 7.61 | 1744000 | 3.0230 | | 3.1062 | 7.65 | 1752000 | 3.0190 | | 3.0941 | 7.68 | 1760000 | 3.0235 | | 3.0941 | 7.72 | 1768000 | 3.0134 | | 3.0942 | 7.75 | 1776000 | 3.0254 | | 3.0942 | 7.79 | 1784000 | 3.0154 | | 3.1089 | 7.82 | 1792000 | 3.0075 | | 3.1089 | 7.86 | 1800000 | 3.0065 | | 3.1117 | 7.89 | 1808000 | 3.0241 | | 3.1117 | 7.93 | 1816000 | 3.0098 | | 3.0958 | 7.96 | 1824000 | 3.0017 | | 3.0958 | 8.0 | 1832000 | 3.0100 | | 3.1177 | 8.03 | 1840000 | 3.0163 | | 3.1177 | 8.07 | 1848000 | 3.0100 | | 3.097 | 8.1 | 1856000 | 3.0099 | | 3.097 | 8.13 | 1864000 | 3.0287 | | 3.1039 | 8.17 | 1872000 | 3.0107 | | 3.1039 | 8.2 | 1880000 | 3.0103 | | 3.0987 | 8.24 | 1888000 | 3.0200 | | 3.0987 | 8.27 | 1896000 | 3.0197 | | 3.1029 | 8.31 | 1904000 | 3.0141 | | 3.1029 | 8.34 | 1912000 | 3.0254 | | 3.1053 | 8.38 | 1920000 | 3.0128 | | 3.1053 | 8.41 | 1928000 | 3.0140 | | 3.1042 | 8.45 | 1936000 | 3.0233 | | 3.1042 | 8.48 | 1944000 | 3.0156 | | 3.1039 | 8.52 | 1952000 | 3.0125 | | 3.1039 | 8.55 | 1960000 | 3.0144 | | 3.1044 | 8.59 | 1968000 | 3.0247 | | 3.1044 | 8.62 | 1976000 | 3.0140 | | 3.1172 | 8.66 | 1984000 | 3.0106 | | 3.1172 | 8.69 | 1992000 | 3.0161 | | 3.1106 | 8.73 | 2000000 | 3.0168 | | 3.1106 | 8.76 | 2008000 | 3.0230 | | 3.107 | 8.8 | 2016000 | 3.0207 | | 3.107 | 8.83 | 2024000 | 3.0218 | | 3.1153 | 8.87 | 2032000 | 3.0157 | | 3.1153 | 8.9 | 2040000 | 3.0326 | | 3.1104 | 8.94 | 2048000 | 3.0194 | | 3.1104 | 8.97 | 2056000 | 3.0211 | | 3.1206 | 9.01 | 2064000 | 3.0197 | | 3.1206 | 9.04 | 2072000 | 3.0311 | | 3.1101 | 9.08 | 2080000 | 3.0218 | | 3.1101 | 9.11 | 2088000 | 3.0224 | | 3.1166 | 9.15 | 2096000 | 3.0326 | | 3.1166 | 9.18 | 2104000 | 3.0252 | | 3.106 | 9.22 | 2112000 | 3.0259 | | 3.106 | 9.25 | 2120000 | 3.0116 | | 3.1067 | 9.29 | 2128000 | 3.0312 | | 3.1067 | 9.32 | 2136000 | 3.0125 | | 3.1152 | 9.36 | 2144000 | 3.0147 | | 3.1152 | 9.39 | 2152000 | 3.0210 | | 3.1122 | 9.43 | 2160000 | 3.0388 | | 3.1122 | 9.46 | 2168000 | 3.0409 | | 3.1092 | 9.5 | 2176000 | 3.0364 | | 3.1092 | 9.53 | 2184000 | 3.0270 | | 3.1117 | 9.57 | 2192000 | 3.0326 | | 3.1117 | 9.6 | 2200000 | 3.0381 | | 3.1089 | 9.64 | 2208000 | 3.0258 | | 3.1089 | 9.67 | 2216000 | 3.0287 | | 3.1195 | 9.71 | 2224000 | 3.0326 | | 3.1195 | 9.74 | 2232000 | 3.0374 | | 3.1172 | 9.78 | 2240000 | 3.0227 | | 3.1172 | 9.81 | 2248000 | 3.0281 | | 3.1271 | 9.85 | 2256000 | 3.0274 | | 3.1271 | 9.88 | 2264000 | 3.0225 | | 3.1112 | 9.92 | 2272000 | 3.0248 | | 3.1112 | 9.95 | 2280000 | 3.0188 | | 3.1179 | 9.99 | 2288000 | 3.0227 | | 3.1179 | 10.02 | 2296000 | 3.0337 | | 3.1178 | 10.06 | 2304000 | 3.0241 | | 3.1178 | 10.09 | 2312000 | 3.0247 | | 3.1148 | 10.13 | 2320000 | 3.0342 | | 3.1148 | 10.16 | 2328000 | 3.0202 | | 3.1153 | 10.19 | 2336000 | 3.0294 | | 3.1153 | 10.23 | 2344000 | 3.0282 | | 3.1097 | 10.26 | 2352000 | 3.0198 | | 3.1097 | 10.3 | 2360000 | 3.0188 | | 3.1041 | 10.33 | 2368000 | 3.0225 | | 3.1041 | 10.37 | 2376000 | 3.0212 | | 3.0992 | 10.4 | 2384000 | 3.0208 | | 3.0992 | 10.44 | 2392000 | 3.0191 | | 3.1135 | 10.47 | 2400000 | 3.0245 | ### Framework versions - Transformers 4.35.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.14.0
support-pvelocity/Llama-2-7B-instruct-text2sql-GPTQ
support-pvelocity
2023-11-13T17:47:10Z
6
0
transformers
[ "transformers", "llama", "text-generation", "conversational", "en", "license:llama2", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-11-08T00:44:47Z
--- license: llama2 language: - en pipeline_tag: text-generation widget: - text: "[INST] Write SQLite query to answer the following question given the database schema. Please wrap your code answer using ```: Schema: CREATE TABLE head (age INTEGER) Question: How many heads of the departments are older than 56 ? [/INST] Here is the SQLite query to answer to the question: How many heads of the departments are older than 56 ?: ```" example_title: "Example 1" - text: "[INST] Write SQLite query to answer the following question given the database schema. Please wrap your code answer using ```: Schema: CREATE TABLE people (first_name VARCHAR) Question: List the first names of people in alphabetical order? [/INST] Here is the SQLite query to answer to the question: List the first names of people in alphabetical order?: ```" example_title: "Example 2" - text: "[INST] Write SQLite query to answer the following question given the database schema. Please wrap your code answer using ```: Schema: CREATE TABLE weather (zip_code VARCHAR, mean_sea_level_pressure_inches INTEGER) Question: What is the zip code in which the average mean sea level pressure is the lowest? [/INST] Here is the SQLite query to answer to the question: What is the zip code in which the average mean sea level pressure is the lowest?: ```" example_title: "Example 3" - text: "[INST] Write SQLite query to answer the following question given the database schema. Please wrap your code answer using ```: Schema: CREATE TABLE weather (date VARCHAR, mean_temperature_f VARCHAR, mean_humidity VARCHAR, max_gust_speed_mph VARCHAR) Question: What are the date, mean temperature and mean humidity for the top 3 days with the largest max gust speeds? [/INST] Here is the SQLite query to answer to the question: What are the date, mean temperature and mean humidity for the top 3 days with the largest max gust speeds?: ```" example_title: "Example 4" - text: "[INST] Write SQLite query to answer the following question given the database schema. Please wrap your code answer using ```: Schema: CREATE TABLE trip (end_station_id VARCHAR); CREATE TABLE station (id VARCHAR, city VARCHAR) Question: Count the number of trips that did not end in San Francisco city. [/INST] Here is the SQLite query to answer to the question: Count the number of trips that did not end in San Francisco city.: ```" example_title: "Example 5" --- # **Llama-2-7B-instruct-text2sql-GPTQ Model Card** **Model Name**: Llama-2-7B-instruct-text2sql-GPTQ **Description**: This model is a GPTQ quantisation of a fine-tuned version of the Llama 2 with 7 billion parameters, specifically tailored for text-to-SQL tasks. It has been trained to generate SQL queries given a database schema and a natural language question. The GPTQ quantisation was performed with AutoGPTQ. ## Model Information - **Base Model**: [support-pvelocity/Llama-2-7B-instruct-text2sql](https://huggingface.co/support-pvelocity/Llama-2-7B-instruct-text2sql) ## GPTQ Parameters - **bits**: 4 - **group_size**: 128 - **desc_act**: False - **damp_percent**: 0.01 ## GPTQ dataset - **Dataset**: [bugdaryan/sql-create-context-instruction](https://huggingface.co/datasets/bugdaryan/sql-create-context-instruction) - **Randomized Rows**: 1024 ## License This model is governed by a custom commercial license from Llama. For details, please visit: [Custom Commercial License](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) ## Intended Use **Intended Use Cases**: This model is intended for commercial and research use in English. It is designed for text-to-SQL tasks, enabling users to generate SQL queries from natural language questions. **Out-of-Scope Uses**: Any use that violates applicable laws or regulations, use in languages other than English, or any other use prohibited by the Acceptable Use Policy and Licensing Agreement for Llama and its variants. ## Example Code You can use the Llama-2-7B-instruct-text2sql-GPTQ model to generate SQL queries from natural language questions, as demonstrated in the following code snippet: ```cmd pip install -q transformers==4.35.0 torch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 optimum==1.13.2 auto-gptq==0.4.2 ``` ```python from transformers import AutoTokenizer from auto_gptq import AutoGPTQForCausalLM model_name = 'support-pvelocity/Llama-2-7B-instruct-text2sql-GPTQ' model = AutoGPTQForCausalLM.from_quantized(model_name, use_safetensors=True, device_map='auto') tokenizer = AutoTokenizer.from_pretrained(model_name) table = "CREATE TABLE sales ( sale_id number PRIMARY KEY, product_id number, customer_id number, salesperson_id number, sale_date DATE, quantity number, FOREIGN KEY (product_id) REFERENCES products(product_id), FOREIGN KEY (customer_id) REFERENCES customers(customer_id), FOREIGN KEY (salesperson_id) REFERENCES salespeople(salesperson_id)); CREATE TABLE product_suppliers ( supplier_id number PRIMARY KEY, product_id number, supply_price number, FOREIGN KEY (product_id) REFERENCES products(product_id)); CREATE TABLE customers ( customer_id number PRIMARY KEY, name text, address text ); CREATE TABLE salespeople ( salesperson_id number PRIMARY KEY, name text, region text ); CREATE TABLE product_suppliers ( supplier_id number PRIMARY KEY, product_id number, supply_price number );" question = 'Find the salesperson who made the most sales.' prompt = f"[INST] Write SQLite query to answer the following question given the database schema. Please wrap your code answer using ```: Schema: {table} Question: {question} [/INST] Here is the SQLite query to answer to the question: {question}: ``` " tokens = tokenizer(prompt, return_tensors="pt").to('cuda:0') input_ids = tokens.input_ids generated_ids = model.generate(input_ids=input_ids, max_length=4048, pad_token_id=tokenizer.eos_token_id) output = tokenizer.decode(generated_ids[0], skip_special_tokens=True) output = output.split('```')[2] print(output) ``` This code demonstrates how to utilize the model for generating SQL queries based on a provided database schema and a natural language question. It showcases the model's capability to assist in SQL query generation for text-to-SQL tasks.
support-pvelocity/Llama-2-7B-instruct-text2sql-GGUF
support-pvelocity
2023-11-13T17:46:16Z
4
0
null
[ "gguf", "text-generation", "conversational", "en", "license:llama2", "endpoints_compatible", "region:us" ]
text-generation
2023-11-13T17:05:42Z
--- license: llama2 language: - en pipeline_tag: text-generation widget: - text: "[INST] Write SQLite query to answer the following question given the database schema. Please wrap your code answer using ```: Schema: CREATE TABLE head (age INTEGER) Question: How many heads of the departments are older than 56 ? [/INST] Here is the SQLite query to answer to the question: How many heads of the departments are older than 56 ?: ```" example_title: "Example 1" - text: "[INST] Write SQLite query to answer the following question given the database schema. Please wrap your code answer using ```: Schema: CREATE TABLE people (first_name VARCHAR) Question: List the first names of people in alphabetical order? [/INST] Here is the SQLite query to answer to the question: List the first names of people in alphabetical order?: ```" example_title: "Example 2" - text: "[INST] Write SQLite query to answer the following question given the database schema. Please wrap your code answer using ```: Schema: CREATE TABLE weather (zip_code VARCHAR, mean_sea_level_pressure_inches INTEGER) Question: What is the zip code in which the average mean sea level pressure is the lowest? [/INST] Here is the SQLite query to answer to the question: What is the zip code in which the average mean sea level pressure is the lowest?: ```" example_title: "Example 3" - text: "[INST] Write SQLite query to answer the following question given the database schema. Please wrap your code answer using ```: Schema: CREATE TABLE weather (date VARCHAR, mean_temperature_f VARCHAR, mean_humidity VARCHAR, max_gust_speed_mph VARCHAR) Question: What are the date, mean temperature and mean humidity for the top 3 days with the largest max gust speeds? [/INST] Here is the SQLite query to answer to the question: What are the date, mean temperature and mean humidity for the top 3 days with the largest max gust speeds?: ```" example_title: "Example 4" - text: "[INST] Write SQLite query to answer the following question given the database schema. Please wrap your code answer using ```: Schema: CREATE TABLE trip (end_station_id VARCHAR); CREATE TABLE station (id VARCHAR, city VARCHAR) Question: Count the number of trips that did not end in San Francisco city. [/INST] Here is the SQLite query to answer to the question: Count the number of trips that did not end in San Francisco city.: ```" example_title: "Example 5" --- # **Llama-2-7B-instruct-text2sql-GGUF Model Card** **Model Name**: Llama-2-7B-instruct-text2sql-GGUF **Description**: This model is a GGUF quantisation of a fine-tuned version of the Llama 2 with 7 billion parameters, specifically tailored for text-to-SQL tasks. It has been trained to generate SQL queries given a database schema and a natural language question. The GGUF quantisation was performed with llama.cpp. ## Model Information - **Base Model**: [support-pvelocity/Llama-2-7B-instruct-text2sql](https://huggingface.co/support-pvelocity/Llama-2-7B-instruct-text2sql) ## GGUF Parameters - **Quant method**: Q4_K_M - **bits**: 4 ## License This model is governed by a custom commercial license from Llama. For details, please visit: [Custom Commercial License](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) ## Intended Use **Intended Use Cases**: This model is intended for commercial and research use in English. It is designed for text-to-SQL tasks, enabling users to generate SQL queries from natural language questions. **Out-of-Scope Uses**: Any use that violates applicable laws or regulations, use in languages other than English, or any other use prohibited by the Acceptable Use Policy and Licensing Agreement for Llama and its variants. ## Example Code You can use the Llama-2-7B-instruct-text2sql-GGUF model to generate SQL queries from natural language questions, as demonstrated in the following code snippet: ```cmd pip install -q torch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 ctransformers==0.2.27 ``` ```python from ctransformers import AutoModelForCausalLM model_name = 'support-pvelocity/Llama-2-7B-instruct-text2sql-GGUF' model = AutoModelForCausalLM.from_pretrained( model_name, model_file=model_name.split('/')[1].replace('-GGUF', '.q4_k_m.gguf'), model_type="llama", gpu_layers=50, context_length=4048 ) table = "CREATE TABLE sales ( sale_id number PRIMARY KEY, product_id number, customer_id number, salesperson_id number, sale_date DATE, quantity number, FOREIGN KEY (product_id) REFERENCES products(product_id), FOREIGN KEY (customer_id) REFERENCES customers(customer_id), FOREIGN KEY (salesperson_id) REFERENCES salespeople(salesperson_id)); CREATE TABLE product_suppliers ( supplier_id number PRIMARY KEY, product_id number, supply_price number, FOREIGN KEY (product_id) REFERENCES products(product_id)); CREATE TABLE customers ( customer_id number PRIMARY KEY, name text, address text ); CREATE TABLE salespeople ( salesperson_id number PRIMARY KEY, name text, region text ); CREATE TABLE product_suppliers ( supplier_id number PRIMARY KEY, product_id number, supply_price number );" question = 'Find the salesperson who made the most sales.' prompt = f"[INST] Write SQLite query to answer the following question given the database schema. Please wrap your code answer using ```: Schema: {table} Question: {question} [/INST] Here is the SQLite query to answer to the question: {question}: ``` " output = model(prompt) output = output.split('```')[0] print(output.strip()) ``` This code demonstrates how to utilize the model for generating SQL queries based on a provided database schema and a natural language question. It showcases the model's capability to assist in SQL query generation for text-to-SQL tasks.
alexdg19/bert_large_cnn_daily
alexdg19
2023-11-13T17:36:31Z
8
0
transformers
[ "transformers", "tensorboard", "safetensors", "bart", "text2text-generation", "generated_from_trainer", "dataset:cnn_dailymail", "base_model:alexdg19/bert_large_xsum_samsum2", "base_model:finetune:alexdg19/bert_large_xsum_samsum2", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-11-13T14:11:14Z
--- license: mit base_model: alexdg19/bert_large_xsum_samsum2 tags: - generated_from_trainer datasets: - cnn_dailymail metrics: - rouge model-index: - name: bert_large_cnn_daily results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: cnn_dailymail type: cnn_dailymail config: 3.0.0 split: test args: 3.0.0 metrics: - name: Rouge1 type: rouge value: 0.4251 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_large_cnn_daily This model is a fine-tuned version of [alexdg19/bert_large_xsum_samsum2](https://huggingface.co/alexdg19/bert_large_xsum_samsum2) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 1.7065 - Rouge1: 0.4251 - Rouge2: 0.2024 - Rougel: 0.2992 - Rougelsum: 0.3961 - Gen Len: 60.6232 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - gradient_accumulation_steps: 3 - total_train_batch_size: 9 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 1.6632 | 1.0 | 1021 | 1.6262 | 0.4191 | 0.1992 | 0.2957 | 0.39 | 60.6205 | | 1.3734 | 2.0 | 2042 | 1.6078 | 0.4253 | 0.2046 | 0.3009 | 0.397 | 61.0692 | | 1.1497 | 3.0 | 3064 | 1.6759 | 0.4254 | 0.2033 | 0.2998 | 0.3967 | 60.8555 | | 1.0123 | 4.0 | 4084 | 1.7065 | 0.4251 | 0.2024 | 0.2992 | 0.3961 | 60.6232 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
toddwilson147/Taxi-v3
toddwilson147
2023-11-13T17:23:20Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-11-13T17:23:18Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="toddwilson147/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
neuralmagic/bge-large-en-v1.5-quant
neuralmagic
2023-11-13T17:05:07Z
7,215
21
transformers
[ "transformers", "onnx", "bert", "feature-extraction", "sparse", "sparsity", "quantized", "embeddings", "int8", "mteb", "deepsparse", "en", "license:mit", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2023-10-03T15:50:50Z
--- license: mit language: - en tags: - sparse - sparsity - quantized - onnx - embeddings - int8 - mteb - deepsparse model-index: - name: bge-large-en-v1.5-quant results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 75.53731343283583 - type: ap value: 38.30609312253564 - type: f1 value: 69.42802757893695 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 89.27346145216443 - type: cos_sim_spearman value: 88.36526647458979 - type: euclidean_pearson value: 86.83053354694746 - type: euclidean_spearman value: 87.56223612880584 - type: manhattan_pearson value: 86.59250609226758 - type: manhattan_spearman value: 87.70681773644885 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 86.18998669716373 - type: cos_sim_spearman value: 82.06129973984048 - type: euclidean_pearson value: 83.65969509485801 - type: euclidean_spearman value: 81.91666612708826 - type: manhattan_pearson value: 83.6906794731384 - type: manhattan_spearman value: 81.91752705367436 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 86.93407086985752 - type: cos_sim_spearman value: 78.82992283957066 - type: euclidean_pearson value: 83.39733473832982 - type: euclidean_spearman value: 78.86999229850214 - type: manhattan_pearson value: 83.39397058098533 - type: manhattan_spearman value: 78.85397971200753 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 87.2586009863056 - type: cos_sim_spearman value: 87.99415514558852 - type: euclidean_pearson value: 86.98993652364359 - type: euclidean_spearman value: 87.72725335668807 - type: manhattan_pearson value: 86.897205761048 - type: manhattan_spearman value: 87.65231103509018 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 85.41417660460755 - type: cos_sim_spearman value: 83.50291886604928 - type: euclidean_pearson value: 84.67758839660924 - type: euclidean_spearman value: 83.4368059512681 - type: manhattan_pearson value: 84.66027228213025 - type: manhattan_spearman value: 83.43472054456252 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 88.02513262365703 - type: cos_sim_spearman value: 89.00430907638267 - type: euclidean_pearson value: 88.16290361497319 - type: euclidean_spearman value: 88.6645154822661 - type: manhattan_pearson value: 88.15337528825458 - type: manhattan_spearman value: 88.66202950081507 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 85.10194022827035 - type: cos_sim_spearman value: 86.45367112223394 - type: euclidean_pearson value: 85.45292931769094 - type: euclidean_spearman value: 86.06607589083283 - type: manhattan_pearson value: 85.4111233047049 - type: manhattan_spearman value: 86.04379654118996 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 89.86966589113663 - type: cos_sim_spearman value: 89.5617056243649 - type: euclidean_pearson value: 89.018495917952 - type: euclidean_spearman value: 88.387335721179 - type: manhattan_pearson value: 89.07568042943448 - type: manhattan_spearman value: 88.51733863475219 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 68.38465344518238 - type: cos_sim_spearman value: 68.15219488291783 - type: euclidean_pearson value: 68.99169681132668 - type: euclidean_spearman value: 68.01334641045888 - type: manhattan_pearson value: 68.84952679202642 - type: manhattan_spearman value: 67.85430179655137 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 86.60574360222778 - type: cos_sim_spearman value: 87.8878986593873 - type: euclidean_pearson value: 87.11557232168404 - type: euclidean_spearman value: 87.40944677043365 - type: manhattan_pearson value: 87.10395398212532 - type: manhattan_spearman value: 87.35977283466168 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.84752475247525 - type: cos_sim_ap value: 96.49316696572335 - type: cos_sim_f1 value: 92.35352532274081 - type: cos_sim_precision value: 91.71597633136095 - type: cos_sim_recall value: 93.0 - type: dot_accuracy value: 99.77326732673268 - type: dot_ap value: 93.5497681978726 - type: dot_f1 value: 88.35582208895552 - type: dot_precision value: 88.31168831168831 - type: dot_recall value: 88.4 - type: euclidean_accuracy value: 99.84653465346534 - type: euclidean_ap value: 96.36378999360083 - type: euclidean_f1 value: 92.33052944087086 - type: euclidean_precision value: 91.38099902056807 - type: euclidean_recall value: 93.30000000000001 - type: manhattan_accuracy value: 99.84455445544555 - type: manhattan_ap value: 96.36035171233175 - type: manhattan_f1 value: 92.13260761999011 - type: manhattan_precision value: 91.1851126346719 - type: manhattan_recall value: 93.10000000000001 - type: max_accuracy value: 99.84752475247525 - type: max_ap value: 96.49316696572335 - type: max_f1 value: 92.35352532274081 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 87.26828396018358 - type: cos_sim_ap value: 77.79878217023162 - type: cos_sim_f1 value: 71.0425694621463 - type: cos_sim_precision value: 68.71301775147928 - type: cos_sim_recall value: 73.53562005277044 - type: dot_accuracy value: 84.01978899684092 - type: dot_ap value: 66.12134149171163 - type: dot_f1 value: 63.283507097098365 - type: dot_precision value: 60.393191081275475 - type: dot_recall value: 66.46437994722955 - type: euclidean_accuracy value: 87.24444179531503 - type: euclidean_ap value: 77.84821131946212 - type: euclidean_f1 value: 71.30456661215247 - type: euclidean_precision value: 68.1413801394566 - type: euclidean_recall value: 74.77572559366754 - type: manhattan_accuracy value: 87.19079692436074 - type: manhattan_ap value: 77.78054941055291 - type: manhattan_f1 value: 71.13002127393318 - type: manhattan_precision value: 67.65055939062128 - type: manhattan_recall value: 74.9868073878628 - type: max_accuracy value: 87.26828396018358 - type: max_ap value: 77.84821131946212 - type: max_f1 value: 71.30456661215247 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 88.91023402025847 - type: cos_sim_ap value: 85.94088151184411 - type: cos_sim_f1 value: 78.25673997223645 - type: cos_sim_precision value: 74.45433059919367 - type: cos_sim_recall value: 82.46843239913767 - type: dot_accuracy value: 87.91865564481701 - type: dot_ap value: 82.75373957440969 - type: dot_f1 value: 75.97383507276201 - type: dot_precision value: 72.67294713160854 - type: dot_recall value: 79.5888512473052 - type: euclidean_accuracy value: 88.8539604921023 - type: euclidean_ap value: 85.71590936389937 - type: euclidean_f1 value: 77.82902261742242 - type: euclidean_precision value: 74.7219270279844 - type: euclidean_recall value: 81.20572836464429 - type: manhattan_accuracy value: 88.78992509799356 - type: manhattan_ap value: 85.70200619366904 - type: manhattan_f1 value: 77.85875848203065 - type: manhattan_precision value: 72.94315506222671 - type: manhattan_recall value: 83.48475515860795 - type: max_accuracy value: 88.91023402025847 - type: max_ap value: 85.94088151184411 - type: max_f1 value: 78.25673997223645 --- # bge-large-en-v1.5-quant <div> <img src="https://huggingface.co/zeroshot/bge-large-en-v1.5-quant/resolve/main/bge-large-latency.png" alt="latency" width="500" style="display:inline-block; margin-right:10px;"/> </div> [DeepSparse](https://github.com/neuralmagic/deepsparse) is able to improve latency performance on a 10 core laptop by 4.8X and up to 3.5X on a 16 core AWS instance. ## Usage This is the quantized (INT8) ONNX variant of the [bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) embeddings model accelerated with [Sparsify](https://github.com/neuralmagic/sparsify) for quantization and [DeepSparseSentenceTransformers](https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/sentence_transformers) for inference. ```bash pip install -U deepsparse-nightly[sentence_transformers] ``` ```python from deepsparse.sentence_transformers import DeepSparseSentenceTransformer model = DeepSparseSentenceTransformer('neuralmagic/bge-large-en-v1.5-quant', export=False) # Our sentences we like to encode sentences = ['This framework generates embeddings for each input sentence', 'Sentences are passed as a list of string.', 'The quick brown fox jumps over the lazy dog.'] # Sentences are encoded by calling model.encode() embeddings = model.encode(sentences) # Print the embeddings for sentence, embedding in zip(sentences, embeddings): print("Sentence:", sentence) print("Embedding:", embedding.shape) print("") ``` For general questions on these models and sparsification methods, reach out to the engineering team on our [community Slack](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ).
neuralmagic/bge-base-en-v1.5-quant
neuralmagic
2023-11-13T17:04:42Z
962
4
transformers
[ "transformers", "onnx", "bert", "feature-extraction", "mteb", "sparse", "sparsity", "quantized", "embeddings", "int8", "deepsparse", "en", "license:mit", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2023-10-03T12:45:42Z
--- license: mit language: - en tags: - mteb - sparse - sparsity - quantized - onnx - embeddings - int8 - deepsparse model-index: - name: bge-base-en-v1.5-quant results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 76.16417910447761 - type: ap value: 39.62965026785565 - type: f1 value: 70.30041589476463 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 92.95087500000001 - type: ap value: 89.92451248271642 - type: f1 value: 92.94162732408543 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 48.214 - type: f1 value: 47.57084372829096 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 48.499816497755646 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 42.006939120636034 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 62.390343953329875 - type: mrr value: 75.69922613551422 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 89.03408553833623 - type: cos_sim_spearman value: 86.71221676053791 - type: euclidean_pearson value: 87.81477796215844 - type: euclidean_spearman value: 87.28994076774481 - type: manhattan_pearson value: 87.76204756059836 - type: manhattan_spearman value: 87.1971675695072 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 86.35064935064935 - type: f1 value: 86.32782396028989 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 39.299558776859485 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 35.64603198816062 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 51.269999999999996 - type: f1 value: 45.9714399031315 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 89.7204 - type: ap value: 85.70238397381907 - type: f1 value: 89.70961232185473 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 93.95120839033288 - type: f1 value: 93.70348712248138 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 75.25763793889648 - type: f1 value: 57.59583082574482 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 75.16476126429052 - type: f1 value: 73.29287381030854 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 78.9340954942838 - type: f1 value: 79.04036413238218 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 32.80025982143821 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 30.956464446009623 - task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 31.886626060290734 - type: mrr value: 32.99813843700759 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 55.693914682185365 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 62.32723620518647 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 84.70275347034692 - type: cos_sim_spearman value: 80.06126639668393 - type: euclidean_pearson value: 82.18370726102707 - type: euclidean_spearman value: 80.05483013524909 - type: manhattan_pearson value: 82.11962032129463 - type: manhattan_spearman value: 79.97174232961949 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 86.08210281025868 - type: cos_sim_spearman value: 77.75002826042643 - type: euclidean_pearson value: 83.06487161944293 - type: euclidean_spearman value: 78.0677956304104 - type: manhattan_pearson value: 83.04321232787379 - type: manhattan_spearman value: 78.09582483148635 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 84.64353592106988 - type: cos_sim_spearman value: 86.07934653140616 - type: euclidean_pearson value: 85.21820182954883 - type: euclidean_spearman value: 86.18828773665395 - type: manhattan_pearson value: 85.12075207905364 - type: manhattan_spearman value: 86.12061116344299 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 84.33571296969136 - type: cos_sim_spearman value: 82.8868213429789 - type: euclidean_pearson value: 83.65476643152161 - type: euclidean_spearman value: 82.76439753890263 - type: manhattan_pearson value: 83.63348951033883 - type: manhattan_spearman value: 82.76176495070241 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 87.6337321089215 - type: cos_sim_spearman value: 88.54453531860615 - type: euclidean_pearson value: 87.68754116644199 - type: euclidean_spearman value: 88.22610830299979 - type: manhattan_pearson value: 87.62214887890859 - type: manhattan_spearman value: 88.14766677391091 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 83.89742747806514 - type: cos_sim_spearman value: 85.76282302560992 - type: euclidean_pearson value: 84.83917251074928 - type: euclidean_spearman value: 85.74354740775905 - type: manhattan_pearson value: 84.91190952448616 - type: manhattan_spearman value: 85.82001542154245 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 87.70974342036347 - type: cos_sim_spearman value: 87.82200371351459 - type: euclidean_pearson value: 88.04095125600278 - type: euclidean_spearman value: 87.5069523002544 - type: manhattan_pearson value: 88.03247709799281 - type: manhattan_spearman value: 87.43433979175654 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 65.0349727703108 - type: cos_sim_spearman value: 65.46090125254047 - type: euclidean_pearson value: 66.75349075443432 - type: euclidean_spearman value: 65.57576680702924 - type: manhattan_pearson value: 66.72598998285412 - type: manhattan_spearman value: 65.63446184311414 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 85.18026134463653 - type: cos_sim_spearman value: 86.79430055943524 - type: euclidean_pearson value: 86.2668626122386 - type: euclidean_spearman value: 86.72288498504841 - type: manhattan_pearson value: 86.28615540445857 - type: manhattan_spearman value: 86.7110630606802 - task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 87.05335415919195 - type: mrr value: 96.27455968142243 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.84653465346534 - type: cos_sim_ap value: 96.38115549823692 - type: cos_sim_f1 value: 92.15983813859383 - type: cos_sim_precision value: 93.24462640736951 - type: cos_sim_recall value: 91.10000000000001 - type: dot_accuracy value: 99.81782178217821 - type: dot_ap value: 95.65732630933346 - type: dot_f1 value: 90.68825910931176 - type: dot_precision value: 91.80327868852459 - type: dot_recall value: 89.60000000000001 - type: euclidean_accuracy value: 99.84653465346534 - type: euclidean_ap value: 96.34134720479366 - type: euclidean_f1 value: 92.1756688541141 - type: euclidean_precision value: 93.06829765545362 - type: euclidean_recall value: 91.3 - type: manhattan_accuracy value: 99.84356435643565 - type: manhattan_ap value: 96.38165573090185 - type: manhattan_f1 value: 92.07622868605819 - type: manhattan_precision value: 92.35412474849095 - type: manhattan_recall value: 91.8 - type: max_accuracy value: 99.84653465346534 - type: max_ap value: 96.38165573090185 - type: max_f1 value: 92.1756688541141 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 64.81205738681385 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 34.083934029129445 - task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 54.447346270481376 - type: mrr value: 55.382382119514475 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 72.123 - type: ap value: 14.396060207954983 - type: f1 value: 55.24344377812756 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 59.67176004527447 - type: f1 value: 59.97320225890037 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 49.50190094208029 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 86.70799308577219 - type: cos_sim_ap value: 76.40980707197174 - type: cos_sim_f1 value: 70.64264849074976 - type: cos_sim_precision value: 65.56710347943967 - type: cos_sim_recall value: 76.56992084432717 - type: dot_accuracy value: 85.75430649102938 - type: dot_ap value: 72.68783978286282 - type: dot_f1 value: 67.56951102588687 - type: dot_precision value: 61.90162494510321 - type: dot_recall value: 74.37994722955145 - type: euclidean_accuracy value: 86.70799308577219 - type: euclidean_ap value: 76.43046769325314 - type: euclidean_f1 value: 70.84852905421832 - type: euclidean_precision value: 65.68981064021641 - type: euclidean_recall value: 76.88654353562005 - type: manhattan_accuracy value: 86.70203254455504 - type: manhattan_ap value: 76.39254562413156 - type: manhattan_f1 value: 70.86557059961316 - type: manhattan_precision value: 65.39491298527443 - type: manhattan_recall value: 77.33509234828496 - type: max_accuracy value: 86.70799308577219 - type: max_ap value: 76.43046769325314 - type: max_f1 value: 70.86557059961316 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 88.92381728567548 - type: cos_sim_ap value: 85.92532857788025 - type: cos_sim_f1 value: 78.11970128792525 - type: cos_sim_precision value: 73.49806530445998 - type: cos_sim_recall value: 83.3615645210964 - type: dot_accuracy value: 88.28540381107618 - type: dot_ap value: 84.42890126108796 - type: dot_f1 value: 76.98401162790698 - type: dot_precision value: 72.89430222956234 - type: dot_recall value: 81.55990144748999 - type: euclidean_accuracy value: 88.95874568246207 - type: euclidean_ap value: 85.88338025133037 - type: euclidean_f1 value: 78.14740888593184 - type: euclidean_precision value: 75.15285084601166 - type: euclidean_recall value: 81.3905143209116 - type: manhattan_accuracy value: 88.92769821865176 - type: manhattan_ap value: 85.84824183217555 - type: manhattan_f1 value: 77.9830582736965 - type: manhattan_precision value: 74.15972222222223 - type: manhattan_recall value: 82.22205112411457 - type: max_accuracy value: 88.95874568246207 - type: max_ap value: 85.92532857788025 - type: max_f1 value: 78.14740888593184 --- # bge-base-en-v1.5-quant <div> <img src="https://huggingface.co/zeroshot/bge-base-en-v1.5-quant/resolve/main/bge-base-latency.png" alt="latency" width="500" style="display:inline-block; margin-right:10px;"/> </div> [DeepSparse](https://github.com/neuralmagic/deepsparse) is able to improve latency performance on a 10 core laptop and a 16 core AWS instance by up to 4.5X. ## Usage This is the quantized (INT8) ONNX variant of the [bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) embeddings model accelerated with [Sparsify](https://github.com/neuralmagic/sparsify) for quantization and [DeepSparseSentenceTransformers](https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/sentence_transformers) for inference. ```bash pip install -U deepsparse-nightly[sentence_transformers] ``` ```python from deepsparse.sentence_transformers import DeepSparseSentenceTransformer model = DeepSparseSentenceTransformer('neuralmagic/bge-base-en-v1.5-quant', export=False) # Our sentences we like to encode sentences = ['This framework generates embeddings for each input sentence', 'Sentences are passed as a list of string.', 'The quick brown fox jumps over the lazy dog.'] # Sentences are encoded by calling model.encode() embeddings = model.encode(sentences) # Print the embeddings for sentence, embedding in zip(sentences, embeddings): print("Sentence:", sentence) print("Embedding:", embedding.shape) print("") ``` For general questions on these models and sparsification methods, reach out to the engineering team on our [community Slack](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ).
AntoineD/camembert_ccnet_classification_tools_NEFTune_fr
AntoineD
2023-11-13T16:59:44Z
105
0
transformers
[ "transformers", "pytorch", "camembert", "text-classification", "generated_from_trainer", "base_model:almanach/camembert-base-ccnet", "base_model:finetune:almanach/camembert-base-ccnet", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-11-13T13:31:47Z
--- base_model: camembert/camembert-base-ccnet tags: - generated_from_trainer metrics: - accuracy model-index: - name: camembert_ccnet_classification_tools_NEFTune_fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # camembert_ccnet_classification_tools_NEFTune_fr This model is a fine-tuned version of [camembert/camembert-base-ccnet](https://huggingface.co/camembert/camembert-base-ccnet) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2866 - Accuracy: 0.95 - Learning Rate: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 24 - eval_batch_size: 192 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 60 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Rate | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 2.038 | 1.0 | 7 | 1.7370 | 0.65 | 0.0001 | | 1.6169 | 2.0 | 14 | 1.2630 | 0.825 | 0.0001 | | 1.1861 | 3.0 | 21 | 0.8659 | 0.95 | 0.0001 | | 0.8284 | 4.0 | 28 | 0.6075 | 0.95 | 0.0001 | | 0.6032 | 5.0 | 35 | 0.4207 | 0.975 | 0.0001 | | 0.3928 | 6.0 | 42 | 0.3817 | 0.95 | 9e-05 | | 0.2458 | 7.0 | 49 | 0.3378 | 0.95 | 0.0001 | | 0.1683 | 8.0 | 56 | 0.4320 | 0.9 | 0.0001 | | 0.127 | 9.0 | 63 | 0.3592 | 0.95 | 0.0001 | | 0.0909 | 10.0 | 70 | 0.3695 | 0.925 | 0.0001 | | 0.0719 | 11.0 | 77 | 0.3377 | 0.925 | 0.0001 | | 0.0679 | 12.0 | 84 | 0.2450 | 0.95 | 8e-05 | | 0.0865 | 13.0 | 91 | 0.2783 | 0.9 | 0.0001 | | 0.0519 | 14.0 | 98 | 0.2265 | 0.975 | 0.0001 | | 0.0497 | 15.0 | 105 | 0.2801 | 0.95 | 0.0001 | | 0.0993 | 16.0 | 112 | 0.3733 | 0.925 | 0.0001 | | 0.0358 | 17.0 | 119 | 0.4012 | 0.9 | 0.0001 | | 0.0356 | 18.0 | 126 | 0.2591 | 0.95 | 7e-05 | | 0.0279 | 19.0 | 133 | 0.2687 | 0.95 | 0.0001 | | 0.0303 | 20.0 | 140 | 0.2650 | 0.95 | 0.0001 | | 0.0246 | 21.0 | 147 | 0.2337 | 0.95 | 0.0001 | | 0.0257 | 22.0 | 154 | 0.2274 | 0.95 | 0.0001 | | 0.0448 | 23.0 | 161 | 0.2223 | 0.975 | 0.0001 | | 0.0567 | 24.0 | 168 | 0.2157 | 0.975 | 6e-05 | | 0.0182 | 25.0 | 175 | 0.2096 | 0.975 | 0.0001 | | 0.0282 | 26.0 | 182 | 0.2118 | 0.975 | 0.0001 | | 0.0232 | 27.0 | 189 | 0.2146 | 0.975 | 0.0001 | | 0.0212 | 28.0 | 196 | 0.2162 | 0.975 | 0.0001 | | 0.0197 | 29.0 | 203 | 0.2185 | 0.975 | 0.0001 | | 0.0203 | 30.0 | 210 | 0.2215 | 0.975 | 5e-05 | | 0.0172 | 31.0 | 217 | 0.2263 | 0.975 | 0.0000 | | 0.0174 | 32.0 | 224 | 0.2347 | 0.975 | 0.0000 | | 0.0152 | 33.0 | 231 | 0.2426 | 0.95 | 0.0000 | | 0.0164 | 34.0 | 238 | 0.2443 | 0.95 | 0.0000 | | 0.018 | 35.0 | 245 | 0.2557 | 0.95 | 0.0000 | | 0.0328 | 36.0 | 252 | 0.2624 | 0.95 | 4e-05 | | 0.0152 | 37.0 | 259 | 0.2602 | 0.95 | 0.0000 | | 0.0147 | 38.0 | 266 | 0.2615 | 0.95 | 0.0000 | | 0.0152 | 39.0 | 273 | 0.2634 | 0.95 | 0.0000 | | 0.015 | 40.0 | 280 | 0.2699 | 0.95 | 0.0000 | | 0.0147 | 41.0 | 287 | 0.2726 | 0.95 | 0.0000 | | 0.0148 | 42.0 | 294 | 0.2783 | 0.95 | 3e-05 | | 0.033 | 43.0 | 301 | 0.2793 | 0.95 | 0.0000 | | 0.0143 | 44.0 | 308 | 0.2742 | 0.95 | 0.0000 | | 0.0143 | 45.0 | 315 | 0.2681 | 0.95 | 0.0000 | | 0.0139 | 46.0 | 322 | 0.2683 | 0.95 | 0.0000 | | 0.0141 | 47.0 | 329 | 0.2706 | 0.95 | 0.0000 | | 0.0132 | 48.0 | 336 | 0.2715 | 0.95 | 2e-05 | | 0.0157 | 49.0 | 343 | 0.2785 | 0.95 | 0.0000 | | 0.0142 | 50.0 | 350 | 0.2809 | 0.95 | 0.0000 | | 0.0138 | 51.0 | 357 | 0.2818 | 0.95 | 0.0000 | | 0.0141 | 52.0 | 364 | 0.2852 | 0.95 | 0.0000 | | 0.015 | 53.0 | 371 | 0.2868 | 0.95 | 0.0000 | | 0.0145 | 54.0 | 378 | 0.2876 | 0.95 | 1e-05 | | 0.0135 | 55.0 | 385 | 0.2854 | 0.95 | 0.0000 | | 0.0146 | 56.0 | 392 | 0.2862 | 0.95 | 0.0000 | | 0.0136 | 57.0 | 399 | 0.2857 | 0.95 | 5e-06 | | 0.014 | 58.0 | 406 | 0.2853 | 0.95 | 0.0000 | | 0.0133 | 59.0 | 413 | 0.2862 | 0.95 | 0.0000 | | 0.0125 | 60.0 | 420 | 0.2866 | 0.95 | 0.0 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.14.1
Doctor-Shotgun/Euryale-1.3-limarpv3-L2-70B-exl2
Doctor-Shotgun
2023-11-13T16:54:44Z
0
2
null
[ "llama", "llama-2", "text-generation", "en", "region:us" ]
text-generation
2023-10-25T06:22:22Z
--- inference: false language: - en pipeline_tag: text-generation tags: - llama - llama-2 --- # Euryale-1.3-limarpv3-L2-70B-exl2 Exllama v2 quant of [Doctor-Shotgun/Euryale-1.3-limarpv3-L2-70B](https://huggingface.co/Doctor-Shotgun/Euryale-1.3-limarpv3-L2-70B) Branches: - main: measurement.json calculated at 2048 token calibration rows on PIPPA - 5.0bpw-h6: 5 decoder bits per weight, 6 head bits - ideal for 2x 24gb GPUs at 8192 context, or 1x 48gb GPU at 8192 context with CFG cache
hkivancoral/hushem_1x_deit_small_adamax_0001_fold5
hkivancoral
2023-11-13T16:48:04Z
8
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-small-patch16-224", "base_model:finetune:facebook/deit-small-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-11-13T16:43:41Z
--- license: apache-2.0 base_model: facebook/deit-small-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_small_adamax_0001_fold5 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.8048780487804879 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_1x_deit_small_adamax_0001_fold5 This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8185 - Accuracy: 0.8049 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 1.1559 | 0.4878 | | 1.2441 | 2.0 | 12 | 0.8253 | 0.6829 | | 1.2441 | 3.0 | 18 | 0.7434 | 0.6098 | | 0.6071 | 4.0 | 24 | 0.5080 | 0.8293 | | 0.2296 | 5.0 | 30 | 0.6693 | 0.6829 | | 0.2296 | 6.0 | 36 | 0.4300 | 0.8293 | | 0.0509 | 7.0 | 42 | 0.7493 | 0.7317 | | 0.0509 | 8.0 | 48 | 0.5064 | 0.8537 | | 0.0088 | 9.0 | 54 | 0.6021 | 0.8780 | | 0.0021 | 10.0 | 60 | 0.7408 | 0.7805 | | 0.0021 | 11.0 | 66 | 0.9234 | 0.7073 | | 0.0009 | 12.0 | 72 | 0.9965 | 0.6829 | | 0.0009 | 13.0 | 78 | 0.9607 | 0.7317 | | 0.0006 | 14.0 | 84 | 0.8998 | 0.7561 | | 0.0004 | 15.0 | 90 | 0.8548 | 0.7561 | | 0.0004 | 16.0 | 96 | 0.8258 | 0.7561 | | 0.0004 | 17.0 | 102 | 0.8107 | 0.7805 | | 0.0004 | 18.0 | 108 | 0.7999 | 0.8049 | | 0.0003 | 19.0 | 114 | 0.7972 | 0.8049 | | 0.0003 | 20.0 | 120 | 0.7983 | 0.8049 | | 0.0003 | 21.0 | 126 | 0.8011 | 0.8049 | | 0.0003 | 22.0 | 132 | 0.8040 | 0.8049 | | 0.0003 | 23.0 | 138 | 0.8052 | 0.8049 | | 0.0003 | 24.0 | 144 | 0.8067 | 0.8049 | | 0.0003 | 25.0 | 150 | 0.8086 | 0.8049 | | 0.0003 | 26.0 | 156 | 0.8104 | 0.8049 | | 0.0003 | 27.0 | 162 | 0.8133 | 0.8049 | | 0.0003 | 28.0 | 168 | 0.8150 | 0.8049 | | 0.0003 | 29.0 | 174 | 0.8155 | 0.8049 | | 0.0002 | 30.0 | 180 | 0.8162 | 0.8049 | | 0.0002 | 31.0 | 186 | 0.8167 | 0.8049 | | 0.0002 | 32.0 | 192 | 0.8175 | 0.8049 | | 0.0002 | 33.0 | 198 | 0.8178 | 0.8049 | | 0.0002 | 34.0 | 204 | 0.8183 | 0.8049 | | 0.0002 | 35.0 | 210 | 0.8179 | 0.8049 | | 0.0002 | 36.0 | 216 | 0.8182 | 0.8049 | | 0.0002 | 37.0 | 222 | 0.8182 | 0.8049 | | 0.0002 | 38.0 | 228 | 0.8181 | 0.8049 | | 0.0002 | 39.0 | 234 | 0.8183 | 0.8049 | | 0.0002 | 40.0 | 240 | 0.8184 | 0.8049 | | 0.0002 | 41.0 | 246 | 0.8184 | 0.8049 | | 0.0002 | 42.0 | 252 | 0.8185 | 0.8049 | | 0.0002 | 43.0 | 258 | 0.8185 | 0.8049 | | 0.0002 | 44.0 | 264 | 0.8185 | 0.8049 | | 0.0002 | 45.0 | 270 | 0.8185 | 0.8049 | | 0.0002 | 46.0 | 276 | 0.8185 | 0.8049 | | 0.0002 | 47.0 | 282 | 0.8185 | 0.8049 | | 0.0002 | 48.0 | 288 | 0.8185 | 0.8049 | | 0.0002 | 49.0 | 294 | 0.8185 | 0.8049 | | 0.0002 | 50.0 | 300 | 0.8185 | 0.8049 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
Varun1808/llama_sql
Varun1808
2023-11-13T16:40:41Z
1
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:Varun1808/llamashards", "base_model:adapter:Varun1808/llamashards", "region:us" ]
null
2023-11-13T16:40:40Z
--- library_name: peft base_model: Varun1808/llamashards --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.2.dev0
hkivancoral/hushem_1x_deit_small_adamax_0001_fold2
hkivancoral
2023-11-13T16:33:48Z
8
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-small-patch16-224", "base_model:finetune:facebook/deit-small-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-11-13T16:29:08Z
--- license: apache-2.0 base_model: facebook/deit-small-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_small_adamax_0001_fold2 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.6 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_1x_deit_small_adamax_0001_fold2 This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 2.0748 - Accuracy: 0.6 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 1.2729 | 0.4 | | 1.2121 | 2.0 | 12 | 1.1250 | 0.6222 | | 1.2121 | 3.0 | 18 | 1.2362 | 0.5556 | | 0.4291 | 4.0 | 24 | 1.2042 | 0.6444 | | 0.1116 | 5.0 | 30 | 1.1861 | 0.6 | | 0.1116 | 6.0 | 36 | 1.6632 | 0.5556 | | 0.0196 | 7.0 | 42 | 1.7499 | 0.6 | | 0.0196 | 8.0 | 48 | 1.7915 | 0.5556 | | 0.0051 | 9.0 | 54 | 1.8168 | 0.5778 | | 0.0016 | 10.0 | 60 | 1.8187 | 0.6222 | | 0.0016 | 11.0 | 66 | 1.8480 | 0.6222 | | 0.0008 | 12.0 | 72 | 1.8621 | 0.6222 | | 0.0008 | 13.0 | 78 | 1.8730 | 0.6222 | | 0.0006 | 14.0 | 84 | 1.8908 | 0.6222 | | 0.0005 | 15.0 | 90 | 1.9136 | 0.6222 | | 0.0005 | 16.0 | 96 | 1.9335 | 0.6222 | | 0.0004 | 17.0 | 102 | 1.9501 | 0.6222 | | 0.0004 | 18.0 | 108 | 1.9655 | 0.6222 | | 0.0004 | 19.0 | 114 | 1.9783 | 0.6222 | | 0.0003 | 20.0 | 120 | 1.9900 | 0.6222 | | 0.0003 | 21.0 | 126 | 1.9990 | 0.6222 | | 0.0003 | 22.0 | 132 | 2.0067 | 0.6222 | | 0.0003 | 23.0 | 138 | 2.0139 | 0.6 | | 0.0003 | 24.0 | 144 | 2.0208 | 0.6 | | 0.0003 | 25.0 | 150 | 2.0271 | 0.6 | | 0.0003 | 26.0 | 156 | 2.0322 | 0.6 | | 0.0003 | 27.0 | 162 | 2.0367 | 0.6 | | 0.0003 | 28.0 | 168 | 2.0419 | 0.6 | | 0.0003 | 29.0 | 174 | 2.0471 | 0.6 | | 0.0003 | 30.0 | 180 | 2.0520 | 0.6 | | 0.0003 | 31.0 | 186 | 2.0560 | 0.6 | | 0.0002 | 32.0 | 192 | 2.0593 | 0.6 | | 0.0002 | 33.0 | 198 | 2.0621 | 0.6 | | 0.0003 | 34.0 | 204 | 2.0649 | 0.6 | | 0.0003 | 35.0 | 210 | 2.0672 | 0.6 | | 0.0003 | 36.0 | 216 | 2.0692 | 0.6 | | 0.0002 | 37.0 | 222 | 2.0710 | 0.6 | | 0.0002 | 38.0 | 228 | 2.0723 | 0.6 | | 0.0002 | 39.0 | 234 | 2.0735 | 0.6 | | 0.0002 | 40.0 | 240 | 2.0742 | 0.6 | | 0.0002 | 41.0 | 246 | 2.0747 | 0.6 | | 0.0002 | 42.0 | 252 | 2.0748 | 0.6 | | 0.0002 | 43.0 | 258 | 2.0748 | 0.6 | | 0.0002 | 44.0 | 264 | 2.0748 | 0.6 | | 0.0002 | 45.0 | 270 | 2.0748 | 0.6 | | 0.0002 | 46.0 | 276 | 2.0748 | 0.6 | | 0.0002 | 47.0 | 282 | 2.0748 | 0.6 | | 0.0002 | 48.0 | 288 | 2.0748 | 0.6 | | 0.0002 | 49.0 | 294 | 2.0748 | 0.6 | | 0.0002 | 50.0 | 300 | 2.0748 | 0.6 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
taysmith/ppo-LunarLander-v2
taysmith
2023-11-13T16:29:58Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-11-13T16:29:35Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 265.30 +/- 19.73 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
GabrielGaleana34/stable-diffusion-v1-5_lora_finetuned
GabrielGaleana34
2023-11-13T16:29:03Z
0
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-11-13T04:53:47Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - GabrielGaleana34/sd-model-finetuned-lora These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the GabrielGaleana34/Products dataset. You can find some example images in the following. ![img_1](./image_1.png) ![img_3](./image_3.png)
Laurent1/Mistral-7B-Instruct-v0.1-MyRestaurant-Domain-Adaptation
Laurent1
2023-11-13T16:28:08Z
1
0
adapter-transformers
[ "adapter-transformers", "safetensors", "license:apache-2.0", "region:us" ]
null
2023-11-13T15:32:27Z
--- license: apache-2.0 library_name: adapter-transformers --- # Model Card for Mistral-7B-Instruct-v0.1-MyRestaurant-Domain-Adaptation ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6489e1e3eb763749c663f40c/KFjiY3lHHERUzt8kJRaQw.jpeg) <font color="#0000FF" size="5"> <b> This is a domain adaptation for questions about My Restaurant <br /> </b> You can play by asking the model questions about the menu...</b> </font> <br /> </b> <br><b>Foundation Model : https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1 <br /> Dataset : https://huggingface.co/datasets/Argen7um/restrant-qa <br /></b> The model has been fine tuned with 2 x GPU T4 (RAM : 2 x 14.8GB) + CPU (RAM : 29GB). <br /> The model is based upon the foundation model : Mistral-7B.<br /> It has been tuned with Supervised Fine-tuning Trainer and PEFT LoRa.<br /> # <b>Notebook used for the training</b> You can find it in the files and versions tab <br /> <font color="#0000FF" size="3">Direct link : https://huggingface.co/Laurent1/Mistral-7B-Instruct-v0.1-MyRestaurant-Domain-Adaptation/blob/main/laurent-restaurant-adaptation-mistral-7b-tuned.ipynb </font> ## <b>Bias, Risks, and Limitations</b> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.<br /> Generation of plausible yet incorrect factual information, termed hallucination, is an unsolved issue in large language models.<br /> ## <b>Training Details</b> <ul> <li>per_device_train_batch_size = 1</li> <li>gradient_accumulation_steps = 16</li> <li>2 x GPU T4 (RAM : 14.8GB) + CPU (RAM : 29GB)</li> </ul>
meiyun1995/ppo-Huggy
meiyun1995
2023-11-13T16:25:18Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-11-13T16:25:12Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: meiyun1995/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Guspfc/my-awesome-bert-model-hate-speech
Guspfc
2023-11-13T16:16:10Z
4
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-11-13T16:15:50Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_keras_callback model-index: - name: my-awesome-bert-model-hate-speech results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # my-awesome-bert-model-hate-speech This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0596 - Train Accuracy: 0.9797 - Validation Loss: 0.3994 - Validation Accuracy: 0.9030 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 1e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.2879 | 0.8999 | 0.2421 | 0.9106 | 0 | | 0.2039 | 0.9264 | 0.2478 | 0.9155 | 1 | | 0.1538 | 0.9438 | 0.2824 | 0.9052 | 2 | | 0.1039 | 0.9617 | 0.3357 | 0.8959 | 3 | | 0.0596 | 0.9797 | 0.3994 | 0.9030 | 4 | ### Framework versions - Transformers 4.35.0 - TensorFlow 2.14.0 - Datasets 2.14.6 - Tokenizers 0.14.1
hkivancoral/hushem_1x_deit_small_adamax_001_fold4
hkivancoral
2023-11-13T16:13:46Z
8
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-small-patch16-224", "base_model:finetune:facebook/deit-small-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-11-13T16:10:05Z
--- license: apache-2.0 base_model: facebook/deit-small-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_small_adamax_001_fold4 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.5952380952380952 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_1x_deit_small_adamax_001_fold4 This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 3.1234 - Accuracy: 0.5952 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 1.5633 | 0.2381 | | 1.7898 | 2.0 | 12 | 1.3816 | 0.2381 | | 1.7898 | 3.0 | 18 | 1.3607 | 0.2619 | | 1.4334 | 4.0 | 24 | 1.3501 | 0.2619 | | 1.3732 | 5.0 | 30 | 1.3553 | 0.2381 | | 1.3732 | 6.0 | 36 | 1.1841 | 0.4762 | | 1.3036 | 7.0 | 42 | 1.0576 | 0.5952 | | 1.3036 | 8.0 | 48 | 1.0689 | 0.5952 | | 1.2142 | 9.0 | 54 | 1.2296 | 0.5 | | 1.056 | 10.0 | 60 | 0.7879 | 0.6429 | | 1.056 | 11.0 | 66 | 0.7199 | 0.7143 | | 0.921 | 12.0 | 72 | 0.9775 | 0.6190 | | 0.921 | 13.0 | 78 | 0.8809 | 0.5952 | | 0.6456 | 14.0 | 84 | 1.0792 | 0.5476 | | 0.6348 | 15.0 | 90 | 1.0335 | 0.6190 | | 0.6348 | 16.0 | 96 | 1.7853 | 0.5714 | | 0.4743 | 17.0 | 102 | 1.5872 | 0.5714 | | 0.4743 | 18.0 | 108 | 2.0651 | 0.5 | | 0.2408 | 19.0 | 114 | 2.8369 | 0.4762 | | 0.2271 | 20.0 | 120 | 2.1149 | 0.6190 | | 0.2271 | 21.0 | 126 | 1.5722 | 0.6190 | | 0.3385 | 22.0 | 132 | 2.8555 | 0.5476 | | 0.3385 | 23.0 | 138 | 2.2068 | 0.6667 | | 0.0822 | 24.0 | 144 | 2.2969 | 0.6190 | | 0.0932 | 25.0 | 150 | 1.8785 | 0.7143 | | 0.0932 | 26.0 | 156 | 3.2275 | 0.5714 | | 0.0807 | 27.0 | 162 | 2.8847 | 0.5952 | | 0.0807 | 28.0 | 168 | 3.1184 | 0.5952 | | 0.0424 | 29.0 | 174 | 2.4583 | 0.6190 | | 0.0287 | 30.0 | 180 | 2.8305 | 0.5714 | | 0.0287 | 31.0 | 186 | 3.5171 | 0.5476 | | 0.0333 | 32.0 | 192 | 3.2119 | 0.5952 | | 0.0333 | 33.0 | 198 | 2.9811 | 0.5952 | | 0.0008 | 34.0 | 204 | 3.0451 | 0.5952 | | 0.0004 | 35.0 | 210 | 3.0670 | 0.5952 | | 0.0004 | 36.0 | 216 | 3.0857 | 0.5952 | | 0.0003 | 37.0 | 222 | 3.1009 | 0.5952 | | 0.0003 | 38.0 | 228 | 3.1113 | 0.5952 | | 0.0003 | 39.0 | 234 | 3.1177 | 0.5952 | | 0.0003 | 40.0 | 240 | 3.1213 | 0.5952 | | 0.0003 | 41.0 | 246 | 3.1231 | 0.5952 | | 0.0002 | 42.0 | 252 | 3.1234 | 0.5952 | | 0.0002 | 43.0 | 258 | 3.1234 | 0.5952 | | 0.0002 | 44.0 | 264 | 3.1234 | 0.5952 | | 0.0002 | 45.0 | 270 | 3.1234 | 0.5952 | | 0.0002 | 46.0 | 276 | 3.1234 | 0.5952 | | 0.0002 | 47.0 | 282 | 3.1234 | 0.5952 | | 0.0002 | 48.0 | 288 | 3.1234 | 0.5952 | | 0.0002 | 49.0 | 294 | 3.1234 | 0.5952 | | 0.0002 | 50.0 | 300 | 3.1234 | 0.5952 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
hkivancoral/hushem_1x_deit_small_adamax_001_fold3
hkivancoral
2023-11-13T16:09:51Z
8
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-small-patch16-224", "base_model:finetune:facebook/deit-small-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-11-13T16:06:21Z
--- license: apache-2.0 base_model: facebook/deit-small-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_small_adamax_001_fold3 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.46511627906976744 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_1x_deit_small_adamax_001_fold3 This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 3.7699 - Accuracy: 0.4651 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 1.4218 | 0.2558 | | 1.7221 | 2.0 | 12 | 1.4061 | 0.3953 | | 1.7221 | 3.0 | 18 | 1.4801 | 0.3256 | | 1.2972 | 4.0 | 24 | 1.5453 | 0.3023 | | 1.2115 | 5.0 | 30 | 1.2993 | 0.3953 | | 1.2115 | 6.0 | 36 | 1.4486 | 0.3721 | | 1.1196 | 7.0 | 42 | 1.4881 | 0.3721 | | 1.1196 | 8.0 | 48 | 1.2031 | 0.4419 | | 1.0394 | 9.0 | 54 | 1.1825 | 0.4651 | | 0.9076 | 10.0 | 60 | 1.3831 | 0.3953 | | 0.9076 | 11.0 | 66 | 1.5606 | 0.3953 | | 0.8351 | 12.0 | 72 | 1.6879 | 0.3721 | | 0.8351 | 13.0 | 78 | 1.5744 | 0.5581 | | 0.7325 | 14.0 | 84 | 2.1220 | 0.5116 | | 0.5767 | 15.0 | 90 | 2.2458 | 0.4884 | | 0.5767 | 16.0 | 96 | 2.4745 | 0.3953 | | 0.487 | 17.0 | 102 | 2.9255 | 0.3953 | | 0.487 | 18.0 | 108 | 2.8169 | 0.4186 | | 0.265 | 19.0 | 114 | 2.9600 | 0.4419 | | 0.2739 | 20.0 | 120 | 3.0131 | 0.3953 | | 0.2739 | 21.0 | 126 | 3.2413 | 0.4186 | | 0.1684 | 22.0 | 132 | 4.9920 | 0.3953 | | 0.1684 | 23.0 | 138 | 3.1514 | 0.5116 | | 0.3265 | 24.0 | 144 | 4.1598 | 0.3953 | | 0.2652 | 25.0 | 150 | 3.3248 | 0.4651 | | 0.2652 | 26.0 | 156 | 3.1898 | 0.4884 | | 0.1992 | 27.0 | 162 | 3.7937 | 0.3953 | | 0.1992 | 28.0 | 168 | 3.9838 | 0.4884 | | 0.1826 | 29.0 | 174 | 3.5764 | 0.3721 | | 0.124 | 30.0 | 180 | 4.1231 | 0.4419 | | 0.124 | 31.0 | 186 | 4.1455 | 0.4186 | | 0.1353 | 32.0 | 192 | 3.9925 | 0.4186 | | 0.1353 | 33.0 | 198 | 3.7016 | 0.5581 | | 0.0743 | 34.0 | 204 | 3.7997 | 0.5349 | | 0.0362 | 35.0 | 210 | 3.6073 | 0.4884 | | 0.0362 | 36.0 | 216 | 3.6198 | 0.4651 | | 0.0082 | 37.0 | 222 | 3.6509 | 0.4651 | | 0.0082 | 38.0 | 228 | 3.7081 | 0.4651 | | 0.003 | 39.0 | 234 | 3.7432 | 0.4651 | | 0.002 | 40.0 | 240 | 3.7616 | 0.4651 | | 0.002 | 41.0 | 246 | 3.7690 | 0.4651 | | 0.0018 | 42.0 | 252 | 3.7699 | 0.4651 | | 0.0018 | 43.0 | 258 | 3.7699 | 0.4651 | | 0.0016 | 44.0 | 264 | 3.7699 | 0.4651 | | 0.0017 | 45.0 | 270 | 3.7699 | 0.4651 | | 0.0017 | 46.0 | 276 | 3.7699 | 0.4651 | | 0.0017 | 47.0 | 282 | 3.7699 | 0.4651 | | 0.0017 | 48.0 | 288 | 3.7699 | 0.4651 | | 0.0018 | 49.0 | 294 | 3.7699 | 0.4651 | | 0.0017 | 50.0 | 300 | 3.7699 | 0.4651 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
Kazaii/BoomOPZtv
Kazaii
2023-11-13T16:09:21Z
0
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "base_model:segmind/SSD-1B", "base_model:adapter:segmind/SSD-1B", "license:apache-2.0", "region:us" ]
text-to-image
2023-11-13T16:09:13Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora widget: - text: '-' output: url: images/1090080406935711804.gif base_model: segmind/SSD-1B instance_prompt: null license: apache-2.0 --- # BoomOPztv <Gallery /> ## Model description ZeedZad ## Download model [Download](/Kazaii/BoomOPZtv/tree/main) them in the Files & versions tab.
hkivancoral/hushem_1x_deit_small_adamax_001_fold2
hkivancoral
2023-11-13T16:06:05Z
13
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-small-patch16-224", "base_model:finetune:facebook/deit-small-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-11-13T16:02:32Z
--- license: apache-2.0 base_model: facebook/deit-small-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_small_adamax_001_fold2 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.5777777777777777 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_1x_deit_small_adamax_001_fold2 This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 3.0653 - Accuracy: 0.5778 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 1.5866 | 0.2444 | | 1.9023 | 2.0 | 12 | 1.3764 | 0.2444 | | 1.9023 | 3.0 | 18 | 1.3051 | 0.4222 | | 1.349 | 4.0 | 24 | 1.1457 | 0.4889 | | 1.2765 | 5.0 | 30 | 1.1296 | 0.5333 | | 1.2765 | 6.0 | 36 | 1.0799 | 0.4667 | | 0.9532 | 7.0 | 42 | 0.9251 | 0.5778 | | 0.9532 | 8.0 | 48 | 0.9697 | 0.6 | | 0.606 | 9.0 | 54 | 1.3926 | 0.4889 | | 0.572 | 10.0 | 60 | 1.7732 | 0.5778 | | 0.572 | 11.0 | 66 | 1.3882 | 0.5556 | | 0.5961 | 12.0 | 72 | 1.7835 | 0.5333 | | 0.5961 | 13.0 | 78 | 1.6876 | 0.5111 | | 0.36 | 14.0 | 84 | 2.6292 | 0.5556 | | 0.1021 | 15.0 | 90 | 3.3955 | 0.4444 | | 0.1021 | 16.0 | 96 | 2.7199 | 0.5333 | | 0.0705 | 17.0 | 102 | 3.2188 | 0.5778 | | 0.0705 | 18.0 | 108 | 2.9572 | 0.5778 | | 0.1408 | 19.0 | 114 | 3.4311 | 0.6222 | | 0.0481 | 20.0 | 120 | 3.3680 | 0.5111 | | 0.0481 | 21.0 | 126 | 3.9440 | 0.4889 | | 0.0285 | 22.0 | 132 | 3.0805 | 0.5111 | | 0.0285 | 23.0 | 138 | 3.2788 | 0.4889 | | 0.0077 | 24.0 | 144 | 3.3798 | 0.5111 | | 0.0144 | 25.0 | 150 | 3.3118 | 0.5333 | | 0.0144 | 26.0 | 156 | 3.1251 | 0.5111 | | 0.0005 | 27.0 | 162 | 2.9134 | 0.5778 | | 0.0005 | 28.0 | 168 | 2.8352 | 0.6 | | 0.0006 | 29.0 | 174 | 2.7529 | 0.5778 | | 0.0002 | 30.0 | 180 | 2.8235 | 0.6 | | 0.0002 | 31.0 | 186 | 2.8802 | 0.6 | | 0.0001 | 32.0 | 192 | 2.9253 | 0.5778 | | 0.0001 | 33.0 | 198 | 2.9651 | 0.5778 | | 0.0001 | 34.0 | 204 | 2.9943 | 0.5778 | | 0.0001 | 35.0 | 210 | 3.0146 | 0.5778 | | 0.0001 | 36.0 | 216 | 3.0314 | 0.5778 | | 0.0001 | 37.0 | 222 | 3.0446 | 0.5778 | | 0.0001 | 38.0 | 228 | 3.0538 | 0.5778 | | 0.0001 | 39.0 | 234 | 3.0596 | 0.5778 | | 0.0001 | 40.0 | 240 | 3.0631 | 0.5778 | | 0.0001 | 41.0 | 246 | 3.0649 | 0.5778 | | 0.0001 | 42.0 | 252 | 3.0653 | 0.5778 | | 0.0001 | 43.0 | 258 | 3.0653 | 0.5778 | | 0.0001 | 44.0 | 264 | 3.0653 | 0.5778 | | 0.0001 | 45.0 | 270 | 3.0653 | 0.5778 | | 0.0001 | 46.0 | 276 | 3.0653 | 0.5778 | | 0.0001 | 47.0 | 282 | 3.0653 | 0.5778 | | 0.0001 | 48.0 | 288 | 3.0653 | 0.5778 | | 0.0001 | 49.0 | 294 | 3.0653 | 0.5778 | | 0.0001 | 50.0 | 300 | 3.0653 | 0.5778 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
nlp-polish/generative-test
nlp-polish
2023-11-13T16:05:49Z
61
0
transformers
[ "transformers", "tf", "encoder-decoder", "text2text-generation", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-11-13T16:04:43Z
--- tags: - generated_from_keras_callback model-index: - name: generative-test results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # generative-test This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.35.0 - TensorFlow 2.10.1 - Datasets 2.14.6 - Tokenizers 0.14.1
hkivancoral/hushem_1x_deit_small_adamax_001_fold1
hkivancoral
2023-11-13T16:02:20Z
14
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-small-patch16-224", "base_model:finetune:facebook/deit-small-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-11-13T15:58:51Z
--- license: apache-2.0 base_model: facebook/deit-small-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_small_adamax_001_fold1 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.4666666666666667 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_1x_deit_small_adamax_001_fold1 This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 2.0215 - Accuracy: 0.4667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 2.2870 | 0.2444 | | 2.1668 | 2.0 | 12 | 1.4669 | 0.2444 | | 2.1668 | 3.0 | 18 | 1.4980 | 0.2444 | | 1.4102 | 4.0 | 24 | 1.4751 | 0.2444 | | 1.4394 | 5.0 | 30 | 1.4286 | 0.2444 | | 1.4394 | 6.0 | 36 | 1.6019 | 0.2444 | | 1.3171 | 7.0 | 42 | 1.7291 | 0.2222 | | 1.3171 | 8.0 | 48 | 1.5314 | 0.3556 | | 1.2906 | 9.0 | 54 | 1.7281 | 0.2667 | | 1.2151 | 10.0 | 60 | 1.6012 | 0.2444 | | 1.2151 | 11.0 | 66 | 1.5621 | 0.4444 | | 1.1016 | 12.0 | 72 | 1.5069 | 0.2 | | 1.1016 | 13.0 | 78 | 1.5452 | 0.4222 | | 1.1085 | 14.0 | 84 | 1.5457 | 0.2889 | | 0.9838 | 15.0 | 90 | 1.7131 | 0.4 | | 0.9838 | 16.0 | 96 | 1.9947 | 0.2889 | | 1.003 | 17.0 | 102 | 1.7538 | 0.4222 | | 1.003 | 18.0 | 108 | 1.3632 | 0.4444 | | 0.846 | 19.0 | 114 | 1.7633 | 0.4 | | 0.7432 | 20.0 | 120 | 1.5259 | 0.4222 | | 0.7432 | 21.0 | 126 | 1.6982 | 0.4 | | 0.8111 | 22.0 | 132 | 1.4722 | 0.4 | | 0.8111 | 23.0 | 138 | 1.5772 | 0.4222 | | 0.6268 | 24.0 | 144 | 1.6621 | 0.4222 | | 0.5956 | 25.0 | 150 | 2.2283 | 0.4 | | 0.5956 | 26.0 | 156 | 1.5965 | 0.4667 | | 0.863 | 27.0 | 162 | 2.0067 | 0.4 | | 0.863 | 28.0 | 168 | 2.2609 | 0.3778 | | 0.575 | 29.0 | 174 | 1.7339 | 0.4222 | | 0.3505 | 30.0 | 180 | 1.6059 | 0.3778 | | 0.3505 | 31.0 | 186 | 1.7578 | 0.4444 | | 0.3884 | 32.0 | 192 | 1.8785 | 0.4444 | | 0.3884 | 33.0 | 198 | 1.5952 | 0.4222 | | 0.3742 | 34.0 | 204 | 1.9834 | 0.4444 | | 0.3113 | 35.0 | 210 | 1.8134 | 0.4222 | | 0.3113 | 36.0 | 216 | 2.1491 | 0.4 | | 0.4478 | 37.0 | 222 | 1.9419 | 0.4667 | | 0.4478 | 38.0 | 228 | 1.8426 | 0.4444 | | 0.1746 | 39.0 | 234 | 1.9349 | 0.4222 | | 0.1737 | 40.0 | 240 | 2.0085 | 0.4667 | | 0.1737 | 41.0 | 246 | 2.0238 | 0.4667 | | 0.1448 | 42.0 | 252 | 2.0215 | 0.4667 | | 0.1448 | 43.0 | 258 | 2.0215 | 0.4667 | | 0.1495 | 44.0 | 264 | 2.0215 | 0.4667 | | 0.1326 | 45.0 | 270 | 2.0215 | 0.4667 | | 0.1326 | 46.0 | 276 | 2.0215 | 0.4667 | | 0.1487 | 47.0 | 282 | 2.0215 | 0.4667 | | 0.1487 | 48.0 | 288 | 2.0215 | 0.4667 | | 0.1112 | 49.0 | 294 | 2.0215 | 0.4667 | | 0.1501 | 50.0 | 300 | 2.0215 | 0.4667 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
Priyabrata018/distilbert-base-uncased-finetuned-ner
Priyabrata018
2023-11-13T15:59:41Z
7
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "token-classification", "generated_from_trainer", "dataset:fin", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-11-13T15:56:14Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - fin metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: fin type: fin config: fin split: validation args: fin metrics: - name: Precision type: precision value: 0.9825072886297376 - name: Recall type: recall value: 0.8776041666666666 - name: F1 type: f1 value: 0.9270976616231086 - name: Accuracy type: accuracy value: 0.9851503078594712 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the fin dataset. It achieves the following results on the evaluation set: - Loss: 0.1142 - Precision: 0.9825 - Recall: 0.8776 - F1: 0.9271 - Accuracy: 0.9852 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 64 | 0.1589 | 0.9760 | 0.7422 | 0.8432 | 0.9752 | | No log | 2.0 | 128 | 0.1221 | 0.9731 | 0.7526 | 0.8488 | 0.9765 | | No log | 3.0 | 192 | 0.1142 | 0.9825 | 0.8776 | 0.9271 | 0.9852 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
hkivancoral/hushem_1x_deit_tiny_rms_00001_fold1
hkivancoral
2023-11-13T15:48:42Z
8
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-tiny-patch16-224", "base_model:finetune:facebook/deit-tiny-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-11-13T15:47:14Z
--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_tiny_rms_00001_fold1 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.6222222222222222 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_1x_deit_tiny_rms_00001_fold1 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2620 - Accuracy: 0.6222 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 1.3330 | 0.3111 | | 1.415 | 2.0 | 12 | 1.1496 | 0.4222 | | 1.415 | 3.0 | 18 | 1.0095 | 0.6 | | 0.6844 | 4.0 | 24 | 1.0528 | 0.5333 | | 0.3289 | 5.0 | 30 | 0.8970 | 0.6 | | 0.3289 | 6.0 | 36 | 1.2025 | 0.5111 | | 0.1275 | 7.0 | 42 | 0.9016 | 0.6 | | 0.1275 | 8.0 | 48 | 1.0450 | 0.5778 | | 0.049 | 9.0 | 54 | 1.1767 | 0.5556 | | 0.0201 | 10.0 | 60 | 1.2285 | 0.5333 | | 0.0201 | 11.0 | 66 | 1.0471 | 0.6 | | 0.0071 | 12.0 | 72 | 0.9300 | 0.6444 | | 0.0071 | 13.0 | 78 | 1.1280 | 0.5778 | | 0.0042 | 14.0 | 84 | 1.1318 | 0.5556 | | 0.0029 | 15.0 | 90 | 1.1503 | 0.5556 | | 0.0029 | 16.0 | 96 | 1.0998 | 0.5778 | | 0.0023 | 17.0 | 102 | 1.1889 | 0.5778 | | 0.0023 | 18.0 | 108 | 1.2431 | 0.5778 | | 0.0018 | 19.0 | 114 | 1.2158 | 0.5778 | | 0.0016 | 20.0 | 120 | 1.2220 | 0.6 | | 0.0016 | 21.0 | 126 | 1.1974 | 0.6 | | 0.0014 | 22.0 | 132 | 1.2207 | 0.6 | | 0.0014 | 23.0 | 138 | 1.2242 | 0.6 | | 0.0013 | 24.0 | 144 | 1.2118 | 0.6 | | 0.0011 | 25.0 | 150 | 1.2264 | 0.6222 | | 0.0011 | 26.0 | 156 | 1.2250 | 0.6 | | 0.0011 | 27.0 | 162 | 1.2237 | 0.6 | | 0.0011 | 28.0 | 168 | 1.2290 | 0.6 | | 0.001 | 29.0 | 174 | 1.2254 | 0.6222 | | 0.0009 | 30.0 | 180 | 1.2294 | 0.6222 | | 0.0009 | 31.0 | 186 | 1.2336 | 0.6222 | | 0.0009 | 32.0 | 192 | 1.2394 | 0.6222 | | 0.0009 | 33.0 | 198 | 1.2441 | 0.6222 | | 0.0008 | 34.0 | 204 | 1.2483 | 0.6 | | 0.0008 | 35.0 | 210 | 1.2484 | 0.6 | | 0.0008 | 36.0 | 216 | 1.2564 | 0.6 | | 0.0008 | 37.0 | 222 | 1.2583 | 0.6222 | | 0.0008 | 38.0 | 228 | 1.2617 | 0.6222 | | 0.0007 | 39.0 | 234 | 1.2626 | 0.6222 | | 0.0007 | 40.0 | 240 | 1.2627 | 0.6222 | | 0.0007 | 41.0 | 246 | 1.2621 | 0.6222 | | 0.0007 | 42.0 | 252 | 1.2620 | 0.6222 | | 0.0007 | 43.0 | 258 | 1.2620 | 0.6222 | | 0.0007 | 44.0 | 264 | 1.2620 | 0.6222 | | 0.0007 | 45.0 | 270 | 1.2620 | 0.6222 | | 0.0007 | 46.0 | 276 | 1.2620 | 0.6222 | | 0.0007 | 47.0 | 282 | 1.2620 | 0.6222 | | 0.0007 | 48.0 | 288 | 1.2620 | 0.6222 | | 0.0007 | 49.0 | 294 | 1.2620 | 0.6222 | | 0.0007 | 50.0 | 300 | 1.2620 | 0.6222 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
hkivancoral/hushem_1x_deit_tiny_rms_0001_fold5
hkivancoral
2023-11-13T15:45:36Z
8
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-tiny-patch16-224", "base_model:finetune:facebook/deit-tiny-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-11-13T15:44:09Z
--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_tiny_rms_0001_fold5 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.6097560975609756 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_1x_deit_tiny_rms_0001_fold5 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.7903 - Accuracy: 0.6098 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 1.6663 | 0.2683 | | 2.1037 | 2.0 | 12 | 1.5022 | 0.2439 | | 2.1037 | 3.0 | 18 | 1.3886 | 0.2439 | | 1.5578 | 4.0 | 24 | 1.5306 | 0.2683 | | 1.3692 | 5.0 | 30 | 1.1860 | 0.4390 | | 1.3692 | 6.0 | 36 | 1.1738 | 0.4634 | | 1.2281 | 7.0 | 42 | 1.1634 | 0.4146 | | 1.2281 | 8.0 | 48 | 1.0062 | 0.4878 | | 1.0442 | 9.0 | 54 | 1.0814 | 0.5366 | | 0.7932 | 10.0 | 60 | 1.0549 | 0.5366 | | 0.7932 | 11.0 | 66 | 1.1757 | 0.5610 | | 0.3677 | 12.0 | 72 | 1.3513 | 0.6829 | | 0.3677 | 13.0 | 78 | 1.1722 | 0.6098 | | 0.2156 | 14.0 | 84 | 1.5096 | 0.5854 | | 0.0882 | 15.0 | 90 | 1.2491 | 0.6341 | | 0.0882 | 16.0 | 96 | 1.4974 | 0.6098 | | 0.0242 | 17.0 | 102 | 1.6715 | 0.6341 | | 0.0242 | 18.0 | 108 | 1.6860 | 0.5854 | | 0.0023 | 19.0 | 114 | 1.6856 | 0.5854 | | 0.0006 | 20.0 | 120 | 1.6918 | 0.5854 | | 0.0006 | 21.0 | 126 | 1.7001 | 0.5854 | | 0.0004 | 22.0 | 132 | 1.7120 | 0.5854 | | 0.0004 | 23.0 | 138 | 1.7178 | 0.5854 | | 0.0003 | 24.0 | 144 | 1.7236 | 0.6098 | | 0.0003 | 25.0 | 150 | 1.7313 | 0.6098 | | 0.0003 | 26.0 | 156 | 1.7370 | 0.6098 | | 0.0002 | 27.0 | 162 | 1.7449 | 0.6098 | | 0.0002 | 28.0 | 168 | 1.7492 | 0.6098 | | 0.0002 | 29.0 | 174 | 1.7547 | 0.6098 | | 0.0002 | 30.0 | 180 | 1.7601 | 0.6098 | | 0.0002 | 31.0 | 186 | 1.7659 | 0.6098 | | 0.0002 | 32.0 | 192 | 1.7694 | 0.6098 | | 0.0002 | 33.0 | 198 | 1.7734 | 0.6098 | | 0.0002 | 34.0 | 204 | 1.7771 | 0.6098 | | 0.0002 | 35.0 | 210 | 1.7802 | 0.6098 | | 0.0002 | 36.0 | 216 | 1.7829 | 0.6098 | | 0.0002 | 37.0 | 222 | 1.7850 | 0.6098 | | 0.0002 | 38.0 | 228 | 1.7868 | 0.6098 | | 0.0002 | 39.0 | 234 | 1.7883 | 0.6098 | | 0.0001 | 40.0 | 240 | 1.7895 | 0.6098 | | 0.0001 | 41.0 | 246 | 1.7900 | 0.6098 | | 0.0002 | 42.0 | 252 | 1.7903 | 0.6098 | | 0.0002 | 43.0 | 258 | 1.7903 | 0.6098 | | 0.0002 | 44.0 | 264 | 1.7903 | 0.6098 | | 0.0002 | 45.0 | 270 | 1.7903 | 0.6098 | | 0.0002 | 46.0 | 276 | 1.7903 | 0.6098 | | 0.0002 | 47.0 | 282 | 1.7903 | 0.6098 | | 0.0002 | 48.0 | 288 | 1.7903 | 0.6098 | | 0.0002 | 49.0 | 294 | 1.7903 | 0.6098 | | 0.0001 | 50.0 | 300 | 1.7903 | 0.6098 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
hkivancoral/hushem_1x_deit_tiny_rms_0001_fold4
hkivancoral
2023-11-13T15:44:02Z
8
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-tiny-patch16-224", "base_model:finetune:facebook/deit-tiny-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-11-13T15:42:36Z
--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_tiny_rms_0001_fold4 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.5714285714285714 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_1x_deit_tiny_rms_0001_fold4 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 2.3903 - Accuracy: 0.5714 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 1.5699 | 0.2619 | | 2.0801 | 2.0 | 12 | 1.5693 | 0.2381 | | 2.0801 | 3.0 | 18 | 1.6087 | 0.2619 | | 1.5352 | 4.0 | 24 | 1.4372 | 0.2619 | | 1.4323 | 5.0 | 30 | 1.3212 | 0.3095 | | 1.4323 | 6.0 | 36 | 1.3803 | 0.2381 | | 1.3894 | 7.0 | 42 | 1.4606 | 0.4524 | | 1.3894 | 8.0 | 48 | 1.5543 | 0.2619 | | 1.294 | 9.0 | 54 | 1.1365 | 0.5 | | 1.1627 | 10.0 | 60 | 1.3219 | 0.3571 | | 1.1627 | 11.0 | 66 | 1.0508 | 0.5714 | | 1.0159 | 12.0 | 72 | 1.0736 | 0.5 | | 1.0159 | 13.0 | 78 | 1.6175 | 0.3571 | | 0.8051 | 14.0 | 84 | 1.4409 | 0.4524 | | 0.5869 | 15.0 | 90 | 2.1188 | 0.4286 | | 0.5869 | 16.0 | 96 | 1.8546 | 0.5476 | | 0.3044 | 17.0 | 102 | 1.7485 | 0.5 | | 0.3044 | 18.0 | 108 | 1.6544 | 0.5476 | | 0.2005 | 19.0 | 114 | 1.7817 | 0.5714 | | 0.0634 | 20.0 | 120 | 2.6836 | 0.5238 | | 0.0634 | 21.0 | 126 | 2.3476 | 0.5714 | | 0.0488 | 22.0 | 132 | 2.3551 | 0.5476 | | 0.0488 | 23.0 | 138 | 2.4123 | 0.5714 | | 0.0014 | 24.0 | 144 | 2.3855 | 0.5714 | | 0.0006 | 25.0 | 150 | 2.3709 | 0.5714 | | 0.0006 | 26.0 | 156 | 2.3623 | 0.5714 | | 0.0004 | 27.0 | 162 | 2.3621 | 0.5714 | | 0.0004 | 28.0 | 168 | 2.3646 | 0.5952 | | 0.0003 | 29.0 | 174 | 2.3639 | 0.5952 | | 0.0003 | 30.0 | 180 | 2.3665 | 0.5952 | | 0.0003 | 31.0 | 186 | 2.3692 | 0.5952 | | 0.0002 | 32.0 | 192 | 2.3723 | 0.5952 | | 0.0002 | 33.0 | 198 | 2.3750 | 0.5952 | | 0.0002 | 34.0 | 204 | 2.3777 | 0.5714 | | 0.0002 | 35.0 | 210 | 2.3806 | 0.5714 | | 0.0002 | 36.0 | 216 | 2.3834 | 0.5714 | | 0.0002 | 37.0 | 222 | 2.3855 | 0.5714 | | 0.0002 | 38.0 | 228 | 2.3872 | 0.5714 | | 0.0001 | 39.0 | 234 | 2.3885 | 0.5714 | | 0.0001 | 40.0 | 240 | 2.3895 | 0.5714 | | 0.0001 | 41.0 | 246 | 2.3902 | 0.5714 | | 0.0001 | 42.0 | 252 | 2.3903 | 0.5714 | | 0.0001 | 43.0 | 258 | 2.3903 | 0.5714 | | 0.0001 | 44.0 | 264 | 2.3903 | 0.5714 | | 0.0001 | 45.0 | 270 | 2.3903 | 0.5714 | | 0.0001 | 46.0 | 276 | 2.3903 | 0.5714 | | 0.0001 | 47.0 | 282 | 2.3903 | 0.5714 | | 0.0001 | 48.0 | 288 | 2.3903 | 0.5714 | | 0.0001 | 49.0 | 294 | 2.3903 | 0.5714 | | 0.0001 | 50.0 | 300 | 2.3903 | 0.5714 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
clebert/tinystories
clebert
2023-11-13T15:42:38Z
0
0
null
[ "license:mit", "region:us" ]
null
2023-11-10T21:48:41Z
--- license: mit --- # Tinystories The transformer model files found here have been [trained](https://github.com/karpathy/llama2.c#models) on the TinyStories dataset by Andrej Karpathy for his Llama 2 implementation in C. They have been adapted to a binary data format optimized for streaming into a browser. For more information on the binary data format, please refer to the documentation provided below. ## Model Binary Data Format ``` +--------------------------+ | HEADER (HYPERPARAMETERS) | +--------------------------+ | VOCAB ENTRY 0 | +--------------------------+ | VOCAB ENTRY .. | +--------------------------+ | EMBEDDING 0 | +--------------------------+ | EMBEDDING .. | +--------------------------+ | ATTENTION LAYER 0 | +--------------------------+ | ATTENTION LAYER .. | +--------------------------+ | FNN LAYER 0 | +--------------------------+ | FNN LAYER .. | +--------------------------+ | LINEAR LAYER | +--------------------------+ ``` **NOTE:** All `i32` and `f32` data types are in little-endian format and matrices are organized in a row-first order. ### Header (`256` bytes) | Element | Type | Example | | ----------------- | ---------- | -------- | | dataFormatMagic | `6` x `u8` | "llama2" | | dataFormatVersion | `1` x `u8` | 1 | #### Hyperparameters | Element | Type | Example | | ------------------ | ----------- | ------- | | embeddingSize | `1` x `i32` | 4096 | | hiddenSize | `1` x `i32` | 11008 | | keyValueSize | `1` x `i32` | 4096 | | layerCount | `1` x `i32` | 32 | | queryHeadCount | `1` x `i32` | 32 | | vocabSize | `1` x `i32` | 32000 | | maxSequenceLength | `1` x `i32` | 4096 | | sharedOutputWeight | `1` x `u8` | 0 | ### Vocab Entry (`0` .. `vocabSize`) | Element | Type | Example | | --------------- | ------------------------ | ------- | | score | `1` x `f32` | -10735 | | tokenByteLength | `1` x `i32` | 5 | | token | `tokenByteLength` x `u8` | "Hello" | ### Embedding (`0` .. `vocabSize`) | Element | Type | | --------------- | ----------------------- | | embeddingVector | `embeddingSize` x `f32` | ### Attention Layer (`0` .. `layerCount`) | Element | Type | | ------------------ | ----------------------------------------- | | normWeightVector | `embeddingSize` x `f32` | | queryWeightMatrix | `embeddingSize` x `embeddingSize` x `f32` | | keyWeightMatrix | `keyValueSize` x `embeddingSize` x `f32` | | valueWeightMatrix | `keyValueSize` x `embeddingSize` x `f32` | | outputWeightMatrix | `embeddingSize` x `embeddingSize` x `f32` | ### FNN Layer (`0` .. `layerCount`) | Element | Type | | ---------------- | -------------------------------------- | | normWeightVector | `embeddingSize` x `f32` | | gateWeightMatrix | `hiddenSize` x `embeddingSize` x `f32` | | upWeightMatrix | `hiddenSize` x `embeddingSize` x `f32` | | downWeightMatrix | `embeddingSize` x `hiddenSize` x `f32` | ### Linear Layer | Element | Type | Note | | ------------------ | ------------------------------------- | ------------------------------ | | normWeightVector | `embeddingSize` x `f32` | | | outputWeightMatrix | `vocabSize` x `embeddingSize` x `f32` | if `sharedOutputWeight` == `0` |
hkivancoral/hushem_1x_deit_tiny_rms_0001_fold2
hkivancoral
2023-11-13T15:40:56Z
8
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-tiny-patch16-224", "base_model:finetune:facebook/deit-tiny-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-11-13T15:39:32Z
--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_tiny_rms_0001_fold2 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.5555555555555556 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_1x_deit_tiny_rms_0001_fold2 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 3.1133 - Accuracy: 0.5556 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 1.9323 | 0.2444 | | 2.0865 | 2.0 | 12 | 1.4427 | 0.2444 | | 2.0865 | 3.0 | 18 | 1.4293 | 0.2444 | | 1.4431 | 4.0 | 24 | 1.3952 | 0.4667 | | 1.4003 | 5.0 | 30 | 1.2967 | 0.4 | | 1.4003 | 6.0 | 36 | 1.4719 | 0.2444 | | 1.3496 | 7.0 | 42 | 1.3224 | 0.3556 | | 1.3496 | 8.0 | 48 | 1.4673 | 0.3778 | | 1.2064 | 9.0 | 54 | 1.4551 | 0.2667 | | 1.1859 | 10.0 | 60 | 1.3687 | 0.3111 | | 1.1859 | 11.0 | 66 | 1.2313 | 0.4444 | | 1.0817 | 12.0 | 72 | 1.1514 | 0.4444 | | 1.0817 | 13.0 | 78 | 1.1701 | 0.4444 | | 1.0144 | 14.0 | 84 | 1.2204 | 0.4222 | | 0.8578 | 15.0 | 90 | 1.1603 | 0.4889 | | 0.8578 | 16.0 | 96 | 1.0987 | 0.5111 | | 0.8063 | 17.0 | 102 | 0.9277 | 0.5111 | | 0.8063 | 18.0 | 108 | 1.2038 | 0.5333 | | 0.601 | 19.0 | 114 | 0.9886 | 0.6 | | 0.465 | 20.0 | 120 | 1.5667 | 0.5111 | | 0.465 | 21.0 | 126 | 1.8238 | 0.4889 | | 0.2956 | 22.0 | 132 | 1.6043 | 0.4222 | | 0.2956 | 23.0 | 138 | 1.2746 | 0.4889 | | 0.3513 | 24.0 | 144 | 1.6389 | 0.5556 | | 0.2137 | 25.0 | 150 | 1.6350 | 0.4889 | | 0.2137 | 26.0 | 156 | 1.5926 | 0.4667 | | 0.191 | 27.0 | 162 | 1.8516 | 0.4889 | | 0.191 | 28.0 | 168 | 2.3628 | 0.4889 | | 0.0581 | 29.0 | 174 | 2.3998 | 0.4889 | | 0.0517 | 30.0 | 180 | 2.3913 | 0.5333 | | 0.0517 | 31.0 | 186 | 2.7108 | 0.5556 | | 0.005 | 32.0 | 192 | 2.8104 | 0.5556 | | 0.005 | 33.0 | 198 | 2.8829 | 0.5556 | | 0.0008 | 34.0 | 204 | 2.9326 | 0.5333 | | 0.0006 | 35.0 | 210 | 2.9793 | 0.5556 | | 0.0006 | 36.0 | 216 | 3.0150 | 0.5556 | | 0.0005 | 37.0 | 222 | 3.0520 | 0.5556 | | 0.0005 | 38.0 | 228 | 3.0772 | 0.5556 | | 0.0004 | 39.0 | 234 | 3.0948 | 0.5556 | | 0.0004 | 40.0 | 240 | 3.1038 | 0.5556 | | 0.0004 | 41.0 | 246 | 3.1116 | 0.5556 | | 0.0004 | 42.0 | 252 | 3.1133 | 0.5556 | | 0.0004 | 43.0 | 258 | 3.1133 | 0.5556 | | 0.0004 | 44.0 | 264 | 3.1133 | 0.5556 | | 0.0004 | 45.0 | 270 | 3.1133 | 0.5556 | | 0.0004 | 46.0 | 276 | 3.1133 | 0.5556 | | 0.0004 | 47.0 | 282 | 3.1133 | 0.5556 | | 0.0004 | 48.0 | 288 | 3.1133 | 0.5556 | | 0.0004 | 49.0 | 294 | 3.1133 | 0.5556 | | 0.0004 | 50.0 | 300 | 3.1133 | 0.5556 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
hkivancoral/hushem_1x_deit_tiny_rms_0001_fold1
hkivancoral
2023-11-13T15:39:25Z
8
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-tiny-patch16-224", "base_model:finetune:facebook/deit-tiny-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-11-13T15:37:59Z
--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_tiny_rms_0001_fold1 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.5555555555555556 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_1x_deit_tiny_rms_0001_fold1 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 3.4166 - Accuracy: 0.5556 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 2.1314 | 0.2444 | | 2.0481 | 2.0 | 12 | 1.5573 | 0.2444 | | 2.0481 | 3.0 | 18 | 1.4598 | 0.2444 | | 1.5099 | 4.0 | 24 | 1.4194 | 0.2444 | | 1.4253 | 5.0 | 30 | 1.3528 | 0.2667 | | 1.4253 | 6.0 | 36 | 1.6348 | 0.2444 | | 1.3319 | 7.0 | 42 | 1.3901 | 0.4444 | | 1.3319 | 8.0 | 48 | 1.3151 | 0.2889 | | 1.2142 | 9.0 | 54 | 1.3395 | 0.3333 | | 1.1416 | 10.0 | 60 | 1.4176 | 0.3556 | | 1.1416 | 11.0 | 66 | 1.9072 | 0.2667 | | 0.9889 | 12.0 | 72 | 1.7446 | 0.3111 | | 0.9889 | 13.0 | 78 | 1.4748 | 0.3778 | | 0.8552 | 14.0 | 84 | 1.7450 | 0.3778 | | 0.6798 | 15.0 | 90 | 1.6042 | 0.4889 | | 0.6798 | 16.0 | 96 | 1.5863 | 0.4222 | | 0.563 | 17.0 | 102 | 1.9311 | 0.4 | | 0.563 | 18.0 | 108 | 1.9509 | 0.4444 | | 0.3845 | 19.0 | 114 | 2.1256 | 0.4667 | | 0.2041 | 20.0 | 120 | 2.4131 | 0.4889 | | 0.2041 | 21.0 | 126 | 2.1029 | 0.4667 | | 0.1874 | 22.0 | 132 | 2.0412 | 0.5778 | | 0.1874 | 23.0 | 138 | 2.4952 | 0.4889 | | 0.0735 | 24.0 | 144 | 2.8992 | 0.4667 | | 0.0229 | 25.0 | 150 | 2.7495 | 0.5556 | | 0.0229 | 26.0 | 156 | 3.2879 | 0.4667 | | 0.0293 | 27.0 | 162 | 3.1526 | 0.5111 | | 0.0293 | 28.0 | 168 | 3.0123 | 0.5333 | | 0.0023 | 29.0 | 174 | 3.0812 | 0.5556 | | 0.0008 | 30.0 | 180 | 3.1384 | 0.5556 | | 0.0008 | 31.0 | 186 | 3.2017 | 0.5556 | | 0.0005 | 32.0 | 192 | 3.2443 | 0.5556 | | 0.0005 | 33.0 | 198 | 3.2806 | 0.5556 | | 0.0005 | 34.0 | 204 | 3.3167 | 0.5556 | | 0.0004 | 35.0 | 210 | 3.3393 | 0.5556 | | 0.0004 | 36.0 | 216 | 3.3662 | 0.5556 | | 0.0004 | 37.0 | 222 | 3.3843 | 0.5556 | | 0.0004 | 38.0 | 228 | 3.3970 | 0.5556 | | 0.0003 | 39.0 | 234 | 3.4053 | 0.5556 | | 0.0003 | 40.0 | 240 | 3.4123 | 0.5556 | | 0.0003 | 41.0 | 246 | 3.4159 | 0.5556 | | 0.0003 | 42.0 | 252 | 3.4166 | 0.5556 | | 0.0003 | 43.0 | 258 | 3.4166 | 0.5556 | | 0.0003 | 44.0 | 264 | 3.4166 | 0.5556 | | 0.0003 | 45.0 | 270 | 3.4166 | 0.5556 | | 0.0003 | 46.0 | 276 | 3.4166 | 0.5556 | | 0.0003 | 47.0 | 282 | 3.4166 | 0.5556 | | 0.0003 | 48.0 | 288 | 3.4166 | 0.5556 | | 0.0003 | 49.0 | 294 | 3.4166 | 0.5556 | | 0.0003 | 50.0 | 300 | 3.4166 | 0.5556 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
EstherSan/car_identified_model_7
EstherSan
2023-11-13T15:38:52Z
57
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "mobilevit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:apple/mobilevitv2-1.0-imagenet1k-256", "base_model:finetune:apple/mobilevitv2-1.0-imagenet1k-256", "license:other", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-11-13T09:57:04Z
--- license: other base_model: apple/mobilevitv2-1.0-imagenet1k-256 tags: - generated_from_trainer datasets: - imagefolder metrics: - f1 - accuracy model-index: - name: car_identified_model_7 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: F1 type: f1 value: 0.3628691983122363 - name: Accuracy type: accuracy value: 0.07142857142857142 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # car_identified_model_7 This model is a fine-tuned version of [apple/mobilevitv2-1.0-imagenet1k-256](https://huggingface.co/apple/mobilevitv2-1.0-imagenet1k-256) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5755 - F1: 0.3629 - Roc Auc: 0.6990 - Accuracy: 0.0714 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:------:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.6919 | 0.73 | 1 | 0.6887 | 0.1786 | 0.5738 | 0.0 | | 0.6919 | 1.45 | 2 | 0.6856 | 0.1818 | 0.5761 | 0.0 | | 0.6919 | 2.91 | 4 | 0.6802 | 0.2116 | 0.6066 | 0.0 | | 0.6919 | 3.64 | 5 | 0.6800 | 0.1861 | 0.5826 | 0.0 | | 0.6919 | 4.36 | 6 | 0.6858 | 0.1905 | 0.5973 | 0.0 | | 0.6919 | 5.82 | 8 | 0.6938 | 0.1549 | 0.5342 | 0.0 | | 0.6919 | 6.55 | 9 | 0.6917 | 0.1805 | 0.5802 | 0.0 | | 0.6919 | 8.0 | 11 | 0.6735 | 0.1905 | 0.5932 | 0.0 | | 0.6919 | 8.73 | 12 | 0.6727 | 0.1952 | 0.6007 | 0.0 | | 0.6919 | 9.45 | 13 | 0.6698 | 0.2061 | 0.6172 | 0.0 | | 0.6919 | 10.91 | 15 | 0.6672 | 0.2008 | 0.6092 | 0.0 | | 0.6919 | 11.64 | 16 | 0.6645 | 0.2092 | 0.6196 | 0.0 | | 0.6919 | 12.36 | 17 | 0.6646 | 0.2049 | 0.6144 | 0.0 | | 0.6919 | 13.82 | 19 | 0.6623 | 0.2081 | 0.6167 | 0.0 | | 0.6919 | 14.55 | 20 | 0.6607 | 0.2078 | 0.6149 | 0.0 | | 0.6919 | 16.0 | 22 | 0.6585 | 0.2203 | 0.6320 | 0.0 | | 0.6919 | 16.73 | 23 | 0.6562 | 0.2156 | 0.6219 | 0.0 | | 0.6919 | 17.45 | 24 | 0.6555 | 0.2182 | 0.6263 | 0.0 | | 0.6919 | 18.91 | 26 | 0.6522 | 0.2185 | 0.6232 | 0.0 | | 0.6919 | 19.64 | 27 | 0.6512 | 0.2228 | 0.6273 | 0.0 | | 0.6919 | 20.36 | 28 | 0.6501 | 0.2356 | 0.6410 | 0.0 | | 0.6919 | 21.82 | 30 | 0.6477 | 0.2280 | 0.6284 | 0.0 | | 0.6919 | 22.55 | 31 | 0.6476 | 0.2326 | 0.6343 | 0.0 | | 0.6919 | 24.0 | 33 | 0.6469 | 0.2408 | 0.6434 | 0.0 | | 0.6919 | 24.73 | 34 | 0.6432 | 0.2409 | 0.6369 | 0.0 | | 0.6919 | 25.45 | 35 | 0.6432 | 0.2431 | 0.6408 | 0.0 | | 0.6919 | 26.91 | 37 | 0.6402 | 0.2486 | 0.6449 | 0.0 | | 0.6919 | 27.64 | 38 | 0.6386 | 0.2686 | 0.6664 | 0.0 | | 0.6919 | 28.36 | 39 | 0.6376 | 0.2762 | 0.6796 | 0.0 | | 0.6919 | 29.82 | 41 | 0.6347 | 0.2692 | 0.6721 | 0.0 | | 0.6919 | 30.55 | 42 | 0.6339 | 0.2655 | 0.6643 | 0.0 | | 0.6919 | 32.0 | 44 | 0.6310 | 0.2674 | 0.6630 | 0.0 | | 0.6919 | 32.73 | 45 | 0.6307 | 0.2789 | 0.6731 | 0.0 | | 0.6919 | 33.45 | 46 | 0.6291 | 0.2714 | 0.6656 | 0.0 | | 0.6919 | 34.91 | 48 | 0.6271 | 0.2761 | 0.6659 | 0.0 | | 0.6919 | 35.64 | 49 | 0.6271 | 0.2687 | 0.6612 | 0.0 | | 0.6919 | 36.36 | 50 | 0.6277 | 0.2606 | 0.6509 | 0.0 | | 0.6919 | 37.82 | 52 | 0.6257 | 0.2741 | 0.6620 | 0.0 | | 0.6919 | 38.55 | 53 | 0.6244 | 0.2892 | 0.6793 | 0.0 | | 0.6919 | 40.0 | 55 | 0.6203 | 0.2968 | 0.6806 | 0.0 | | 0.6919 | 40.73 | 56 | 0.6198 | 0.2902 | 0.6770 | 0.0 | | 0.6919 | 41.45 | 57 | 0.6184 | 0.3023 | 0.6866 | 0.0 | | 0.6919 | 42.91 | 59 | 0.6163 | 0.2977 | 0.6812 | 0.0 | | 0.6919 | 43.64 | 60 | 0.6147 | 0.3322 | 0.7112 | 0.0 | | 0.6919 | 44.36 | 61 | 0.6154 | 0.3197 | 0.6954 | 0.0 | | 0.6919 | 45.82 | 63 | 0.6129 | 0.3016 | 0.6832 | 0.0 | | 0.6919 | 46.55 | 64 | 0.6112 | 0.3020 | 0.6804 | 0.0 | | 0.6919 | 48.0 | 66 | 0.6095 | 0.2961 | 0.6773 | 0.0 | | 0.6919 | 48.73 | 67 | 0.6091 | 0.3133 | 0.6923 | 0.0 | | 0.6919 | 49.45 | 68 | 0.6090 | 0.3265 | 0.7019 | 0.0 | | 0.6919 | 50.91 | 70 | 0.6077 | 0.3093 | 0.6840 | 0.0 | | 0.6919 | 51.64 | 71 | 0.6065 | 0.3239 | 0.6941 | 0.0 | | 0.6919 | 52.36 | 72 | 0.6058 | 0.3237 | 0.6907 | 0.0 | | 0.6919 | 53.82 | 74 | 0.6028 | 0.3285 | 0.6928 | 0.0 | | 0.6919 | 54.55 | 75 | 0.6038 | 0.3285 | 0.6928 | 0.0238 | | 0.6919 | 56.0 | 77 | 0.6056 | 0.3197 | 0.6825 | 0.0 | | 0.6919 | 56.73 | 78 | 0.6074 | 0.3249 | 0.6913 | 0.0 | | 0.6919 | 57.45 | 79 | 0.6030 | 0.3158 | 0.6775 | 0.0238 | | 0.6919 | 58.91 | 81 | 0.6001 | 0.3359 | 0.6925 | 0.0238 | | 0.6919 | 59.64 | 82 | 0.5993 | 0.3409 | 0.6980 | 0.0238 | | 0.6919 | 60.36 | 83 | 0.6017 | 0.3259 | 0.6884 | 0.0238 | | 0.6919 | 61.82 | 85 | 0.6009 | 0.3146 | 0.6770 | 0.0238 | | 0.6919 | 62.55 | 86 | 0.6018 | 0.3197 | 0.6825 | 0.0238 | | 0.6919 | 64.0 | 88 | 0.5975 | 0.3130 | 0.6731 | 0.0238 | | 0.6919 | 64.73 | 89 | 0.5978 | 0.3271 | 0.6889 | 0.0238 | | 0.6919 | 65.45 | 90 | 0.5967 | 0.3424 | 0.6951 | 0.0238 | | 0.6919 | 66.91 | 92 | 0.5973 | 0.3125 | 0.6698 | 0.0238 | | 0.6919 | 67.64 | 93 | 0.5956 | 0.3372 | 0.6931 | 0.0238 | | 0.6919 | 68.36 | 94 | 0.5922 | 0.3373 | 0.6897 | 0.0238 | | 0.6919 | 69.82 | 96 | 0.5949 | 0.3320 | 0.6843 | 0.0476 | | 0.6919 | 70.55 | 97 | 0.5959 | 0.3413 | 0.6913 | 0.0476 | | 0.6919 | 72.0 | 99 | 0.5944 | 0.3420 | 0.7019 | 0.0238 | | 0.6919 | 72.73 | 100 | 0.5955 | 0.3333 | 0.6881 | 0.0476 | | 0.6919 | 73.45 | 101 | 0.5933 | 0.3346 | 0.6887 | 0.0238 | | 0.6919 | 74.91 | 103 | 0.5894 | 0.3543 | 0.7032 | 0.0238 | | 0.6919 | 75.64 | 104 | 0.5903 | 0.3424 | 0.6951 | 0.0238 | | 0.6919 | 76.36 | 105 | 0.5890 | 0.3411 | 0.6946 | 0.0476 | | 0.6919 | 77.82 | 107 | 0.5922 | 0.3346 | 0.6887 | 0.0476 | | 0.6919 | 78.55 | 108 | 0.5923 | 0.3243 | 0.6812 | 0.0476 | | 0.6919 | 80.0 | 110 | 0.5908 | 0.3468 | 0.6933 | 0.0476 | | 0.6919 | 80.73 | 111 | 0.5922 | 0.328 | 0.6793 | 0.0476 | | 0.6919 | 81.45 | 112 | 0.5892 | 0.3440 | 0.6923 | 0.0238 | | 0.6919 | 82.91 | 114 | 0.5880 | 0.3506 | 0.6982 | 0.0238 | | 0.6919 | 83.64 | 115 | 0.5869 | 0.3454 | 0.6928 | 0.0476 | | 0.6919 | 84.36 | 116 | 0.5841 | 0.3465 | 0.6967 | 0.0238 | | 0.6919 | 85.82 | 118 | 0.5841 | 0.3568 | 0.6969 | 0.0714 | | 0.6919 | 86.55 | 119 | 0.5843 | 0.3496 | 0.6944 | 0.0476 | | 0.6919 | 88.0 | 121 | 0.5860 | 0.3598 | 0.6980 | 0.0476 | | 0.6919 | 88.73 | 122 | 0.5837 | 0.3457 | 0.6894 | 0.0476 | | 0.6919 | 89.45 | 123 | 0.5826 | 0.3636 | 0.7029 | 0.0714 | | 0.6919 | 90.91 | 125 | 0.5822 | 0.3651 | 0.7034 | 0.0714 | | 0.6919 | 91.64 | 126 | 0.5814 | 0.3607 | 0.7019 | 0.0714 | | 0.6919 | 92.36 | 127 | 0.5814 | 0.3629 | 0.7063 | 0.0476 | | 0.6919 | 93.82 | 129 | 0.5818 | 0.3713 | 0.7055 | 0.0714 | | 0.6919 | 94.55 | 130 | 0.5802 | 0.3766 | 0.7109 | 0.0714 | | 0.6919 | 96.0 | 132 | 0.5803 | 0.3675 | 0.7006 | 0.0714 | | 0.6919 | 96.73 | 133 | 0.5825 | 0.3519 | 0.6881 | 0.0714 | | 0.6919 | 97.45 | 134 | 0.5790 | 0.3629 | 0.6990 | 0.0714 | | 0.6919 | 98.91 | 136 | 0.5795 | 0.3766 | 0.7109 | 0.0714 | | 0.6919 | 99.64 | 137 | 0.5784 | 0.3697 | 0.7050 | 0.0714 | | 0.6919 | 100.36 | 138 | 0.5819 | 0.3583 | 0.6975 | 0.0714 | | 0.6919 | 101.82 | 140 | 0.5834 | 0.3525 | 0.6954 | 0.0476 | | 0.6919 | 102.55 | 141 | 0.5825 | 0.3689 | 0.7083 | 0.0238 | | 0.6919 | 104.0 | 143 | 0.5839 | 0.3460 | 0.6861 | 0.0714 | | 0.6919 | 104.73 | 144 | 0.5838 | 0.3333 | 0.6814 | 0.0476 | | 0.6919 | 105.45 | 145 | 0.5801 | 0.3387 | 0.6869 | 0.0238 | | 0.6919 | 106.91 | 147 | 0.5811 | 0.3515 | 0.6915 | 0.0476 | | 0.6919 | 107.64 | 148 | 0.5793 | 0.3374 | 0.6830 | 0.0476 | | 0.6919 | 108.36 | 149 | 0.5766 | 0.3448 | 0.6822 | 0.0714 | | 0.6919 | 109.82 | 151 | 0.5760 | 0.3445 | 0.6856 | 0.0714 | | 0.6919 | 110.55 | 152 | 0.5757 | 0.3559 | 0.6931 | 0.0714 | | 0.6919 | 112.0 | 154 | 0.5760 | 0.3475 | 0.6866 | 0.0714 | | 0.6919 | 112.73 | 155 | 0.5743 | 0.3629 | 0.6990 | 0.0714 | | 0.6919 | 113.45 | 156 | 0.5732 | 0.3636 | 0.7029 | 0.0714 | | 0.6919 | 114.91 | 158 | 0.5736 | 0.3786 | 0.7153 | 0.0476 | | 0.6919 | 115.64 | 159 | 0.5764 | 0.3667 | 0.7039 | 0.0238 | | 0.6919 | 116.36 | 160 | 0.5765 | 0.3613 | 0.6985 | 0.0476 | | 0.6919 | 117.82 | 162 | 0.5749 | 0.3574 | 0.6936 | 0.0714 | | 0.6919 | 118.55 | 163 | 0.5754 | 0.3592 | 0.7013 | 0.0476 | | 0.6919 | 120.0 | 165 | 0.5757 | 0.3665 | 0.7112 | 0.0476 | | 0.6919 | 120.73 | 166 | 0.5771 | 0.3729 | 0.7060 | 0.0714 | | 0.6919 | 121.45 | 167 | 0.5746 | 0.3629 | 0.6990 | 0.0714 | | 0.6919 | 122.91 | 169 | 0.5758 | 0.3644 | 0.6995 | 0.0714 | | 0.6919 | 123.64 | 170 | 0.5745 | 0.3559 | 0.6931 | 0.0714 | | 0.6919 | 124.36 | 171 | 0.5758 | 0.3544 | 0.6925 | 0.0714 | | 0.6919 | 125.82 | 173 | 0.5759 | 0.3598 | 0.6980 | 0.0714 | | 0.6919 | 126.55 | 174 | 0.5772 | 0.3568 | 0.6969 | 0.0714 | | 0.6919 | 128.0 | 176 | 0.5747 | 0.3583 | 0.6975 | 0.0714 | | 0.6919 | 128.73 | 177 | 0.5738 | 0.3644 | 0.6995 | 0.0714 | | 0.6919 | 129.45 | 178 | 0.5751 | 0.3644 | 0.6995 | 0.0714 | | 0.6919 | 130.91 | 180 | 0.5741 | 0.3713 | 0.7055 | 0.0952 | | 0.6919 | 131.64 | 181 | 0.5748 | 0.3713 | 0.7055 | 0.0952 | | 0.6919 | 132.36 | 182 | 0.5767 | 0.3660 | 0.7001 | 0.0714 | | 0.6919 | 133.82 | 184 | 0.5732 | 0.3660 | 0.7001 | 0.0952 | | 0.6919 | 134.55 | 185 | 0.5742 | 0.3772 | 0.7037 | 0.0952 | | 0.6919 | 136.0 | 187 | 0.5690 | 0.3755 | 0.7032 | 0.0952 | | 0.6919 | 136.73 | 188 | 0.5699 | 0.3805 | 0.7047 | 0.0714 | | 0.6919 | 137.45 | 189 | 0.5743 | 0.3707 | 0.7016 | 0.0714 | | 0.6919 | 138.91 | 191 | 0.5740 | 0.3529 | 0.6920 | 0.0952 | | 0.6919 | 139.64 | 192 | 0.5740 | 0.3660 | 0.7001 | 0.0714 | | 0.6919 | 140.36 | 193 | 0.5734 | 0.3644 | 0.6995 | 0.0714 | | 0.6919 | 141.82 | 195 | 0.5740 | 0.3675 | 0.7006 | 0.0714 | | 0.6919 | 142.55 | 196 | 0.5721 | 0.3707 | 0.7016 | 0.0714 | | 0.6919 | 144.0 | 198 | 0.5725 | 0.3767 | 0.6998 | 0.0714 | | 0.6919 | 144.73 | 199 | 0.5734 | 0.3729 | 0.7060 | 0.0952 | | 0.6919 | 145.45 | 200 | 0.5755 | 0.3629 | 0.6990 | 0.0714 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1
hkivancoral/hushem_1x_deit_tiny_rms_001_fold5
hkivancoral
2023-11-13T15:33:41Z
8
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-tiny-patch16-224", "base_model:finetune:facebook/deit-tiny-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-11-13T15:32:16Z
--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_tiny_rms_001_fold5 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.6097560975609756 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_1x_deit_tiny_rms_001_fold5 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.1358 - Accuracy: 0.6098 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 4.7231 | 0.2683 | | 4.2141 | 2.0 | 12 | 1.8531 | 0.2683 | | 4.2141 | 3.0 | 18 | 1.6449 | 0.2439 | | 1.9845 | 4.0 | 24 | 1.4265 | 0.2439 | | 1.5807 | 5.0 | 30 | 2.0165 | 0.2439 | | 1.5807 | 6.0 | 36 | 1.5975 | 0.2683 | | 1.5979 | 7.0 | 42 | 1.4305 | 0.3171 | | 1.5979 | 8.0 | 48 | 1.4587 | 0.2683 | | 1.4992 | 9.0 | 54 | 1.2917 | 0.3171 | | 1.4954 | 10.0 | 60 | 1.2462 | 0.4390 | | 1.4954 | 11.0 | 66 | 1.2479 | 0.2683 | | 1.415 | 12.0 | 72 | 1.1246 | 0.5122 | | 1.415 | 13.0 | 78 | 1.1689 | 0.4878 | | 1.374 | 14.0 | 84 | 1.3767 | 0.2927 | | 1.3675 | 15.0 | 90 | 1.1692 | 0.4146 | | 1.3675 | 16.0 | 96 | 1.6528 | 0.2927 | | 1.319 | 17.0 | 102 | 1.3151 | 0.3659 | | 1.319 | 18.0 | 108 | 1.1475 | 0.4146 | | 1.3335 | 19.0 | 114 | 1.1506 | 0.3415 | | 1.2819 | 20.0 | 120 | 1.2300 | 0.3902 | | 1.2819 | 21.0 | 126 | 1.1641 | 0.4146 | | 1.2507 | 22.0 | 132 | 1.4148 | 0.3659 | | 1.2507 | 23.0 | 138 | 1.3061 | 0.3415 | | 1.2134 | 24.0 | 144 | 1.2367 | 0.3415 | | 1.2611 | 25.0 | 150 | 1.2383 | 0.4878 | | 1.2611 | 26.0 | 156 | 1.0375 | 0.4878 | | 1.2053 | 27.0 | 162 | 1.1983 | 0.4878 | | 1.2053 | 28.0 | 168 | 1.1898 | 0.4146 | | 1.1593 | 29.0 | 174 | 1.1479 | 0.4878 | | 1.2426 | 30.0 | 180 | 1.1382 | 0.5610 | | 1.2426 | 31.0 | 186 | 1.0558 | 0.5610 | | 1.1866 | 32.0 | 192 | 1.1895 | 0.4390 | | 1.1866 | 33.0 | 198 | 1.2172 | 0.4146 | | 1.1453 | 34.0 | 204 | 1.3773 | 0.4146 | | 1.1026 | 35.0 | 210 | 1.1168 | 0.5122 | | 1.1026 | 36.0 | 216 | 1.1184 | 0.5610 | | 1.131 | 37.0 | 222 | 1.1344 | 0.5366 | | 1.131 | 38.0 | 228 | 1.0932 | 0.5122 | | 1.1098 | 39.0 | 234 | 1.1070 | 0.6098 | | 1.0797 | 40.0 | 240 | 1.1237 | 0.5854 | | 1.0797 | 41.0 | 246 | 1.1366 | 0.6098 | | 1.0648 | 42.0 | 252 | 1.1358 | 0.6098 | | 1.0648 | 43.0 | 258 | 1.1358 | 0.6098 | | 1.0281 | 44.0 | 264 | 1.1358 | 0.6098 | | 1.0542 | 45.0 | 270 | 1.1358 | 0.6098 | | 1.0542 | 46.0 | 276 | 1.1358 | 0.6098 | | 1.0409 | 47.0 | 282 | 1.1358 | 0.6098 | | 1.0409 | 48.0 | 288 | 1.1358 | 0.6098 | | 1.0504 | 49.0 | 294 | 1.1358 | 0.6098 | | 1.0111 | 50.0 | 300 | 1.1358 | 0.6098 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
hkivancoral/hushem_1x_deit_tiny_rms_001_fold4
hkivancoral
2023-11-13T15:32:10Z
9
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-tiny-patch16-224", "base_model:finetune:facebook/deit-tiny-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-11-13T15:30:45Z
--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_tiny_rms_001_fold4 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.47619047619047616 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_1x_deit_tiny_rms_001_fold4 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.0712 - Accuracy: 0.4762 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 5.0165 | 0.2381 | | 4.2481 | 2.0 | 12 | 3.3074 | 0.2381 | | 4.2481 | 3.0 | 18 | 1.5288 | 0.2619 | | 2.0024 | 4.0 | 24 | 1.5375 | 0.2381 | | 1.6731 | 5.0 | 30 | 1.4069 | 0.2619 | | 1.6731 | 6.0 | 36 | 1.8969 | 0.2381 | | 1.5329 | 7.0 | 42 | 1.4811 | 0.2381 | | 1.5329 | 8.0 | 48 | 1.4117 | 0.2619 | | 1.475 | 9.0 | 54 | 1.4704 | 0.2619 | | 1.4639 | 10.0 | 60 | 1.4459 | 0.2381 | | 1.4639 | 11.0 | 66 | 1.3572 | 0.4524 | | 1.4524 | 12.0 | 72 | 1.2630 | 0.4524 | | 1.4524 | 13.0 | 78 | 1.2843 | 0.4524 | | 1.4025 | 14.0 | 84 | 1.3420 | 0.2857 | | 1.3666 | 15.0 | 90 | 1.4060 | 0.2381 | | 1.3666 | 16.0 | 96 | 1.2621 | 0.3810 | | 1.3178 | 17.0 | 102 | 1.2969 | 0.2857 | | 1.3178 | 18.0 | 108 | 1.2881 | 0.3333 | | 1.3667 | 19.0 | 114 | 1.3980 | 0.2857 | | 1.3043 | 20.0 | 120 | 1.5195 | 0.2857 | | 1.3043 | 21.0 | 126 | 1.1841 | 0.4048 | | 1.2859 | 22.0 | 132 | 1.0567 | 0.5238 | | 1.2859 | 23.0 | 138 | 1.2258 | 0.2619 | | 1.2496 | 24.0 | 144 | 1.2372 | 0.2857 | | 1.252 | 25.0 | 150 | 1.4386 | 0.3333 | | 1.252 | 26.0 | 156 | 1.1416 | 0.3810 | | 1.2296 | 27.0 | 162 | 1.0872 | 0.4286 | | 1.2296 | 28.0 | 168 | 1.4121 | 0.2857 | | 1.1581 | 29.0 | 174 | 1.0555 | 0.5476 | | 1.2027 | 30.0 | 180 | 1.1296 | 0.4762 | | 1.2027 | 31.0 | 186 | 1.2095 | 0.4048 | | 1.1595 | 32.0 | 192 | 1.0821 | 0.4762 | | 1.1595 | 33.0 | 198 | 1.1681 | 0.3810 | | 1.1909 | 34.0 | 204 | 1.1147 | 0.4762 | | 1.1121 | 35.0 | 210 | 1.0734 | 0.4048 | | 1.1121 | 36.0 | 216 | 1.0002 | 0.5238 | | 1.1218 | 37.0 | 222 | 1.1912 | 0.3095 | | 1.1218 | 38.0 | 228 | 1.0883 | 0.4524 | | 1.1024 | 39.0 | 234 | 1.1229 | 0.4286 | | 1.0678 | 40.0 | 240 | 1.0903 | 0.4762 | | 1.0678 | 41.0 | 246 | 1.0717 | 0.4762 | | 1.058 | 42.0 | 252 | 1.0712 | 0.4762 | | 1.058 | 43.0 | 258 | 1.0712 | 0.4762 | | 1.0512 | 44.0 | 264 | 1.0712 | 0.4762 | | 1.0743 | 45.0 | 270 | 1.0712 | 0.4762 | | 1.0743 | 46.0 | 276 | 1.0712 | 0.4762 | | 1.0691 | 47.0 | 282 | 1.0712 | 0.4762 | | 1.0691 | 48.0 | 288 | 1.0712 | 0.4762 | | 1.052 | 49.0 | 294 | 1.0712 | 0.4762 | | 1.066 | 50.0 | 300 | 1.0712 | 0.4762 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
hkivancoral/hushem_1x_deit_tiny_rms_001_fold3
hkivancoral
2023-11-13T15:30:38Z
8
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-tiny-patch16-224", "base_model:finetune:facebook/deit-tiny-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-11-13T15:29:14Z
--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_tiny_rms_001_fold3 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.4186046511627907 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_1x_deit_tiny_rms_001_fold3 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.1536 - Accuracy: 0.4186 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 3.8148 | 0.2558 | | 4.0682 | 2.0 | 12 | 1.5106 | 0.2558 | | 4.0682 | 3.0 | 18 | 2.1015 | 0.2558 | | 1.8697 | 4.0 | 24 | 2.1521 | 0.2558 | | 1.6204 | 5.0 | 30 | 2.0540 | 0.2558 | | 1.6204 | 6.0 | 36 | 1.4487 | 0.2558 | | 1.5557 | 7.0 | 42 | 1.5322 | 0.2326 | | 1.5557 | 8.0 | 48 | 1.6480 | 0.2558 | | 1.5276 | 9.0 | 54 | 1.5085 | 0.2558 | | 1.4446 | 10.0 | 60 | 1.3921 | 0.2558 | | 1.4446 | 11.0 | 66 | 1.5703 | 0.2558 | | 1.4728 | 12.0 | 72 | 1.3608 | 0.2791 | | 1.4728 | 13.0 | 78 | 1.4250 | 0.3488 | | 1.3652 | 14.0 | 84 | 1.4495 | 0.2558 | | 1.3593 | 15.0 | 90 | 1.4182 | 0.3023 | | 1.3593 | 16.0 | 96 | 1.5418 | 0.3023 | | 1.2943 | 17.0 | 102 | 1.4454 | 0.3256 | | 1.2943 | 18.0 | 108 | 1.5941 | 0.3721 | | 1.2915 | 19.0 | 114 | 1.4889 | 0.2558 | | 1.2591 | 20.0 | 120 | 1.3804 | 0.3488 | | 1.2591 | 21.0 | 126 | 1.8125 | 0.2558 | | 1.2263 | 22.0 | 132 | 1.4098 | 0.3023 | | 1.2263 | 23.0 | 138 | 1.4818 | 0.2558 | | 1.1885 | 24.0 | 144 | 1.4257 | 0.3721 | | 1.1814 | 25.0 | 150 | 1.4317 | 0.3023 | | 1.1814 | 26.0 | 156 | 1.3854 | 0.3488 | | 1.1163 | 27.0 | 162 | 1.9054 | 0.3256 | | 1.1163 | 28.0 | 168 | 1.3109 | 0.3488 | | 1.0609 | 29.0 | 174 | 1.3896 | 0.3488 | | 1.1038 | 30.0 | 180 | 1.3466 | 0.3256 | | 1.1038 | 31.0 | 186 | 1.3101 | 0.3256 | | 1.0099 | 32.0 | 192 | 1.2865 | 0.3721 | | 1.0099 | 33.0 | 198 | 1.2846 | 0.3721 | | 1.0297 | 34.0 | 204 | 1.2587 | 0.4186 | | 0.964 | 35.0 | 210 | 1.2832 | 0.3953 | | 0.964 | 36.0 | 216 | 1.1929 | 0.3721 | | 0.9335 | 37.0 | 222 | 1.2162 | 0.3953 | | 0.9335 | 38.0 | 228 | 1.1906 | 0.4419 | | 0.8668 | 39.0 | 234 | 1.1859 | 0.4186 | | 0.8296 | 40.0 | 240 | 1.1516 | 0.4884 | | 0.8296 | 41.0 | 246 | 1.1577 | 0.4651 | | 0.8332 | 42.0 | 252 | 1.1536 | 0.4186 | | 0.8332 | 43.0 | 258 | 1.1536 | 0.4186 | | 0.8289 | 44.0 | 264 | 1.1536 | 0.4186 | | 0.8217 | 45.0 | 270 | 1.1536 | 0.4186 | | 0.8217 | 46.0 | 276 | 1.1536 | 0.4186 | | 0.8205 | 47.0 | 282 | 1.1536 | 0.4186 | | 0.8205 | 48.0 | 288 | 1.1536 | 0.4186 | | 0.8548 | 49.0 | 294 | 1.1536 | 0.4186 | | 0.8042 | 50.0 | 300 | 1.1536 | 0.4186 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
Kaspar/QueerGPT2
Kaspar
2023-11-13T15:28:41Z
47
0
transformers
[ "transformers", "tensorboard", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-11-13T14:40:55Z
--- license: mit base_model: gpt2 tags: - generated_from_trainer model-index: - name: QueerGPT2 results: [] widget: - text: "When I grow up, I want to be a" --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # QueerGPT2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.3634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 4.5433 | 1.0 | 13237 | 4.3634 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
vonewman/distilbert-base-uncased-finetuned-imdb
vonewman
2023-11-13T15:25:20Z
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-11-13T14:15:41Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4119 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7024 | 1.0 | 157 | 2.4966 | | 2.5796 | 2.0 | 314 | 2.4282 | | 2.5355 | 3.0 | 471 | 2.4510 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
xiaol/RWKV-v5.2-7B-horror-16k
xiaol
2023-11-13T15:21:25Z
0
2
null
[ "license:apache-2.0", "region:us" ]
null
2023-11-13T02:39:00Z
--- license: apache-2.0 --- ## This a experimental model just finetuned from a small horror datasets for 16k rwkv v5.2 model ## Warning: THIS model is NOT suitable for use by minors.
picklehari/fzlake
picklehari
2023-11-13T15:17:25Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-11-13T15:11:53Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: fzlake results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="picklehari/fzlake", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
hkivancoral/hushem_1x_deit_tiny_sgd_0001_fold5
hkivancoral
2023-11-13T15:11:50Z
8
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-tiny-patch16-224", "base_model:finetune:facebook/deit-tiny-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-11-13T15:10:28Z
--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_tiny_sgd_0001_fold5 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.24390243902439024 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_1x_deit_tiny_sgd_0001_fold5 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.5523 - Accuracy: 0.2439 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 1.7547 | 0.2439 | | 1.7078 | 2.0 | 12 | 1.7422 | 0.2439 | | 1.7078 | 3.0 | 18 | 1.7303 | 0.2439 | | 1.6827 | 4.0 | 24 | 1.7187 | 0.2439 | | 1.6676 | 5.0 | 30 | 1.7076 | 0.2439 | | 1.6676 | 6.0 | 36 | 1.6970 | 0.2439 | | 1.6669 | 7.0 | 42 | 1.6882 | 0.2439 | | 1.6669 | 8.0 | 48 | 1.6793 | 0.2439 | | 1.5935 | 9.0 | 54 | 1.6701 | 0.2439 | | 1.6316 | 10.0 | 60 | 1.6617 | 0.2439 | | 1.6316 | 11.0 | 66 | 1.6538 | 0.2439 | | 1.6324 | 12.0 | 72 | 1.6460 | 0.2439 | | 1.6324 | 13.0 | 78 | 1.6387 | 0.2439 | | 1.5842 | 14.0 | 84 | 1.6318 | 0.2439 | | 1.5897 | 15.0 | 90 | 1.6256 | 0.2439 | | 1.5897 | 16.0 | 96 | 1.6199 | 0.2439 | | 1.5943 | 17.0 | 102 | 1.6144 | 0.2439 | | 1.5943 | 18.0 | 108 | 1.6092 | 0.2195 | | 1.5586 | 19.0 | 114 | 1.6040 | 0.2195 | | 1.5924 | 20.0 | 120 | 1.5990 | 0.2195 | | 1.5924 | 21.0 | 126 | 1.5945 | 0.2195 | | 1.5676 | 22.0 | 132 | 1.5902 | 0.2195 | | 1.5676 | 23.0 | 138 | 1.5862 | 0.2195 | | 1.5352 | 24.0 | 144 | 1.5823 | 0.2195 | | 1.5842 | 25.0 | 150 | 1.5786 | 0.2195 | | 1.5842 | 26.0 | 156 | 1.5752 | 0.2195 | | 1.5461 | 27.0 | 162 | 1.5723 | 0.2195 | | 1.5461 | 28.0 | 168 | 1.5695 | 0.2195 | | 1.551 | 29.0 | 174 | 1.5671 | 0.2439 | | 1.5549 | 30.0 | 180 | 1.5649 | 0.2439 | | 1.5549 | 31.0 | 186 | 1.5628 | 0.2439 | | 1.5532 | 32.0 | 192 | 1.5610 | 0.2439 | | 1.5532 | 33.0 | 198 | 1.5594 | 0.2439 | | 1.5006 | 34.0 | 204 | 1.5578 | 0.2439 | | 1.5134 | 35.0 | 210 | 1.5565 | 0.2439 | | 1.5134 | 36.0 | 216 | 1.5553 | 0.2439 | | 1.5386 | 37.0 | 222 | 1.5543 | 0.2439 | | 1.5386 | 38.0 | 228 | 1.5536 | 0.2439 | | 1.5372 | 39.0 | 234 | 1.5530 | 0.2439 | | 1.528 | 40.0 | 240 | 1.5526 | 0.2439 | | 1.528 | 41.0 | 246 | 1.5524 | 0.2439 | | 1.5555 | 42.0 | 252 | 1.5523 | 0.2439 | | 1.5555 | 43.0 | 258 | 1.5523 | 0.2439 | | 1.509 | 44.0 | 264 | 1.5523 | 0.2439 | | 1.5379 | 45.0 | 270 | 1.5523 | 0.2439 | | 1.5379 | 46.0 | 276 | 1.5523 | 0.2439 | | 1.5588 | 47.0 | 282 | 1.5523 | 0.2439 | | 1.5588 | 48.0 | 288 | 1.5523 | 0.2439 | | 1.509 | 49.0 | 294 | 1.5523 | 0.2439 | | 1.5414 | 50.0 | 300 | 1.5523 | 0.2439 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
hkivancoral/hushem_1x_deit_tiny_sgd_0001_fold4
hkivancoral
2023-11-13T15:10:22Z
8
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-tiny-patch16-224", "base_model:finetune:facebook/deit-tiny-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-11-13T15:09:02Z
--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_tiny_sgd_0001_fold4 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.2857142857142857 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_1x_deit_tiny_sgd_0001_fold4 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.5092 - Accuracy: 0.2857 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 1.6866 | 0.2857 | | 1.7029 | 2.0 | 12 | 1.6755 | 0.2857 | | 1.7029 | 3.0 | 18 | 1.6648 | 0.2857 | | 1.6819 | 4.0 | 24 | 1.6543 | 0.2857 | | 1.7084 | 5.0 | 30 | 1.6452 | 0.2857 | | 1.7084 | 6.0 | 36 | 1.6365 | 0.2857 | | 1.661 | 7.0 | 42 | 1.6277 | 0.2857 | | 1.661 | 8.0 | 48 | 1.6195 | 0.2857 | | 1.6506 | 9.0 | 54 | 1.6113 | 0.2857 | | 1.6321 | 10.0 | 60 | 1.6035 | 0.2857 | | 1.6321 | 11.0 | 66 | 1.5969 | 0.2857 | | 1.605 | 12.0 | 72 | 1.5900 | 0.2857 | | 1.605 | 13.0 | 78 | 1.5837 | 0.2857 | | 1.6205 | 14.0 | 84 | 1.5775 | 0.2857 | | 1.6128 | 15.0 | 90 | 1.5717 | 0.2857 | | 1.6128 | 16.0 | 96 | 1.5663 | 0.2857 | | 1.5818 | 17.0 | 102 | 1.5613 | 0.2857 | | 1.5818 | 18.0 | 108 | 1.5566 | 0.2857 | | 1.6012 | 19.0 | 114 | 1.5522 | 0.2857 | | 1.6068 | 20.0 | 120 | 1.5482 | 0.2857 | | 1.6068 | 21.0 | 126 | 1.5443 | 0.2857 | | 1.5674 | 22.0 | 132 | 1.5409 | 0.2857 | | 1.5674 | 23.0 | 138 | 1.5376 | 0.2857 | | 1.565 | 24.0 | 144 | 1.5344 | 0.2857 | | 1.5842 | 25.0 | 150 | 1.5314 | 0.2857 | | 1.5842 | 26.0 | 156 | 1.5286 | 0.2857 | | 1.5593 | 27.0 | 162 | 1.5260 | 0.2857 | | 1.5593 | 28.0 | 168 | 1.5236 | 0.2857 | | 1.5824 | 29.0 | 174 | 1.5216 | 0.2857 | | 1.537 | 30.0 | 180 | 1.5196 | 0.2857 | | 1.537 | 31.0 | 186 | 1.5181 | 0.2857 | | 1.5437 | 32.0 | 192 | 1.5165 | 0.2857 | | 1.5437 | 33.0 | 198 | 1.5150 | 0.2857 | | 1.5369 | 34.0 | 204 | 1.5137 | 0.2857 | | 1.5371 | 35.0 | 210 | 1.5125 | 0.2857 | | 1.5371 | 36.0 | 216 | 1.5116 | 0.2857 | | 1.5229 | 37.0 | 222 | 1.5109 | 0.2857 | | 1.5229 | 38.0 | 228 | 1.5102 | 0.2857 | | 1.5623 | 39.0 | 234 | 1.5097 | 0.2857 | | 1.5343 | 40.0 | 240 | 1.5094 | 0.2857 | | 1.5343 | 41.0 | 246 | 1.5093 | 0.2857 | | 1.5211 | 42.0 | 252 | 1.5092 | 0.2857 | | 1.5211 | 43.0 | 258 | 1.5092 | 0.2857 | | 1.5618 | 44.0 | 264 | 1.5092 | 0.2857 | | 1.5309 | 45.0 | 270 | 1.5092 | 0.2857 | | 1.5309 | 46.0 | 276 | 1.5092 | 0.2857 | | 1.5362 | 47.0 | 282 | 1.5092 | 0.2857 | | 1.5362 | 48.0 | 288 | 1.5092 | 0.2857 | | 1.5728 | 49.0 | 294 | 1.5092 | 0.2857 | | 1.5244 | 50.0 | 300 | 1.5092 | 0.2857 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
romit1/albert
romit1
2023-11-13T15:08:59Z
6
0
transformers
[ "transformers", "safetensors", "albert", "multiple-choice", "generated_from_trainer", "base_model:albert/albert-base-v2", "base_model:finetune:albert/albert-base-v2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
multiple-choice
2023-11-13T15:08:24Z
--- license: apache-2.0 base_model: albert-base-v2 tags: - generated_from_trainer model-index: - name: albert results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0844 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 26 | 0.9914 | | No log | 2.0 | 52 | 1.1247 | | No log | 3.0 | 78 | 1.0844 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
hkivancoral/hushem_1x_deit_tiny_sgd_0001_fold3
hkivancoral
2023-11-13T15:08:53Z
9
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-tiny-patch16-224", "base_model:finetune:facebook/deit-tiny-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-11-13T15:07:34Z
--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_tiny_sgd_0001_fold3 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.27906976744186046 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_1x_deit_tiny_sgd_0001_fold3 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.5555 - Accuracy: 0.2791 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 1.6995 | 0.2791 | | 1.7242 | 2.0 | 12 | 1.6902 | 0.2791 | | 1.7242 | 3.0 | 18 | 1.6819 | 0.2791 | | 1.6909 | 4.0 | 24 | 1.6741 | 0.2791 | | 1.6461 | 5.0 | 30 | 1.6664 | 0.2791 | | 1.6461 | 6.0 | 36 | 1.6587 | 0.2791 | | 1.6466 | 7.0 | 42 | 1.6518 | 0.2791 | | 1.6466 | 8.0 | 48 | 1.6448 | 0.2791 | | 1.6495 | 9.0 | 54 | 1.6384 | 0.2791 | | 1.6495 | 10.0 | 60 | 1.6323 | 0.2791 | | 1.6495 | 11.0 | 66 | 1.6267 | 0.2791 | | 1.6244 | 12.0 | 72 | 1.6213 | 0.2791 | | 1.6244 | 13.0 | 78 | 1.6166 | 0.2791 | | 1.593 | 14.0 | 84 | 1.6117 | 0.2791 | | 1.6183 | 15.0 | 90 | 1.6071 | 0.2791 | | 1.6183 | 16.0 | 96 | 1.6026 | 0.2791 | | 1.6105 | 17.0 | 102 | 1.5985 | 0.2558 | | 1.6105 | 18.0 | 108 | 1.5946 | 0.2558 | | 1.5599 | 19.0 | 114 | 1.5912 | 0.2558 | | 1.5756 | 20.0 | 120 | 1.5878 | 0.2558 | | 1.5756 | 21.0 | 126 | 1.5845 | 0.2558 | | 1.5692 | 22.0 | 132 | 1.5817 | 0.2558 | | 1.5692 | 23.0 | 138 | 1.5789 | 0.2558 | | 1.544 | 24.0 | 144 | 1.5763 | 0.2558 | | 1.548 | 25.0 | 150 | 1.5738 | 0.2558 | | 1.548 | 26.0 | 156 | 1.5716 | 0.2791 | | 1.549 | 27.0 | 162 | 1.5695 | 0.2791 | | 1.549 | 28.0 | 168 | 1.5675 | 0.2791 | | 1.5593 | 29.0 | 174 | 1.5658 | 0.2791 | | 1.528 | 30.0 | 180 | 1.5641 | 0.2791 | | 1.528 | 31.0 | 186 | 1.5627 | 0.2791 | | 1.5394 | 32.0 | 192 | 1.5615 | 0.2791 | | 1.5394 | 33.0 | 198 | 1.5603 | 0.2791 | | 1.4822 | 34.0 | 204 | 1.5592 | 0.2791 | | 1.5618 | 35.0 | 210 | 1.5583 | 0.2791 | | 1.5618 | 36.0 | 216 | 1.5575 | 0.2791 | | 1.5279 | 37.0 | 222 | 1.5568 | 0.2791 | | 1.5279 | 38.0 | 228 | 1.5563 | 0.2791 | | 1.5233 | 39.0 | 234 | 1.5559 | 0.2791 | | 1.5255 | 40.0 | 240 | 1.5556 | 0.2791 | | 1.5255 | 41.0 | 246 | 1.5555 | 0.2791 | | 1.5147 | 42.0 | 252 | 1.5555 | 0.2791 | | 1.5147 | 43.0 | 258 | 1.5555 | 0.2791 | | 1.5048 | 44.0 | 264 | 1.5555 | 0.2791 | | 1.5464 | 45.0 | 270 | 1.5555 | 0.2791 | | 1.5464 | 46.0 | 276 | 1.5555 | 0.2791 | | 1.5243 | 47.0 | 282 | 1.5555 | 0.2791 | | 1.5243 | 48.0 | 288 | 1.5555 | 0.2791 | | 1.5049 | 49.0 | 294 | 1.5555 | 0.2791 | | 1.5545 | 50.0 | 300 | 1.5555 | 0.2791 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
ivankap/vvs-jewelry-hf
ivankap
2023-11-13T15:07:38Z
2
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-11-13T15:03:36Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### VVS_Jewelry_HF Dreambooth model trained by ivankap with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
ighina/roberta_topseg_contrastive
ighina
2023-11-13T15:06:35Z
12
2
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-11-13T14:07:31Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 2161 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.ContrastiveLoss.ContrastiveLoss` with parameters: ``` {'distance_metric': 'SiameseDistanceMetric.COSINE_DISTANCE', 'margin': 0.5, 'size_average': True} ``` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "sentence_transformers.evaluation.BinaryClassificationEvaluator.BinaryClassificationEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
hkivancoral/hushem_1x_deit_tiny_sgd_001_fold5
hkivancoral
2023-11-13T15:01:44Z
8
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-tiny-patch16-224", "base_model:finetune:facebook/deit-tiny-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-11-13T15:00:22Z
--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_tiny_sgd_001_fold5 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.36585365853658536 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_1x_deit_tiny_sgd_001_fold5 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2764 - Accuracy: 0.3659 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 1.6481 | 0.2439 | | 1.6453 | 2.0 | 12 | 1.5595 | 0.2439 | | 1.6453 | 3.0 | 18 | 1.4979 | 0.2683 | | 1.5144 | 4.0 | 24 | 1.4546 | 0.2683 | | 1.4538 | 5.0 | 30 | 1.4262 | 0.2927 | | 1.4538 | 6.0 | 36 | 1.4074 | 0.2683 | | 1.3994 | 7.0 | 42 | 1.3954 | 0.2683 | | 1.3994 | 8.0 | 48 | 1.3847 | 0.2683 | | 1.3731 | 9.0 | 54 | 1.3749 | 0.2683 | | 1.3564 | 10.0 | 60 | 1.3671 | 0.2927 | | 1.3564 | 11.0 | 66 | 1.3612 | 0.3415 | | 1.3402 | 12.0 | 72 | 1.3541 | 0.3659 | | 1.3402 | 13.0 | 78 | 1.3472 | 0.3171 | | 1.2912 | 14.0 | 84 | 1.3416 | 0.3171 | | 1.304 | 15.0 | 90 | 1.3360 | 0.2927 | | 1.304 | 16.0 | 96 | 1.3318 | 0.3171 | | 1.267 | 17.0 | 102 | 1.3278 | 0.3171 | | 1.267 | 18.0 | 108 | 1.3225 | 0.3171 | | 1.2687 | 19.0 | 114 | 1.3187 | 0.3415 | | 1.2447 | 20.0 | 120 | 1.3147 | 0.3415 | | 1.2447 | 21.0 | 126 | 1.3131 | 0.3171 | | 1.2262 | 22.0 | 132 | 1.3086 | 0.3171 | | 1.2262 | 23.0 | 138 | 1.3054 | 0.3171 | | 1.2132 | 24.0 | 144 | 1.3031 | 0.3171 | | 1.2231 | 25.0 | 150 | 1.3007 | 0.3171 | | 1.2231 | 26.0 | 156 | 1.2974 | 0.3171 | | 1.1895 | 27.0 | 162 | 1.2937 | 0.3171 | | 1.1895 | 28.0 | 168 | 1.2903 | 0.3415 | | 1.2062 | 29.0 | 174 | 1.2886 | 0.3415 | | 1.1907 | 30.0 | 180 | 1.2864 | 0.3415 | | 1.1907 | 31.0 | 186 | 1.2852 | 0.3415 | | 1.1836 | 32.0 | 192 | 1.2832 | 0.3415 | | 1.1836 | 33.0 | 198 | 1.2819 | 0.3415 | | 1.1632 | 34.0 | 204 | 1.2802 | 0.3415 | | 1.1553 | 35.0 | 210 | 1.2792 | 0.3659 | | 1.1553 | 36.0 | 216 | 1.2784 | 0.3659 | | 1.1703 | 37.0 | 222 | 1.2777 | 0.3659 | | 1.1703 | 38.0 | 228 | 1.2771 | 0.3659 | | 1.1625 | 39.0 | 234 | 1.2768 | 0.3659 | | 1.1523 | 40.0 | 240 | 1.2765 | 0.3659 | | 1.1523 | 41.0 | 246 | 1.2764 | 0.3659 | | 1.1617 | 42.0 | 252 | 1.2764 | 0.3659 | | 1.1617 | 43.0 | 258 | 1.2764 | 0.3659 | | 1.1427 | 44.0 | 264 | 1.2764 | 0.3659 | | 1.1631 | 45.0 | 270 | 1.2764 | 0.3659 | | 1.1631 | 46.0 | 276 | 1.2764 | 0.3659 | | 1.162 | 47.0 | 282 | 1.2764 | 0.3659 | | 1.162 | 48.0 | 288 | 1.2764 | 0.3659 | | 1.1542 | 49.0 | 294 | 1.2764 | 0.3659 | | 1.1633 | 50.0 | 300 | 1.2764 | 0.3659 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
mlux/llama-2-7b-finetuned-guanaco-llama2-1k_tvb4
mlux
2023-11-13T15:01:43Z
5
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-11-13T14:44:05Z
Step Training Loss 25 1.553200 50 0.232500 **Test** [INST] What does the abbreviation TVB stand for in German? [/INST] TVB stands for Tourismusverband which is in English Destination Marketing Association. TVBs are organizations that are dealing with the promotion and marketing of tourist destinations, regions or even cities. They provide information about attractions, accommodation, events and other tourist offers and work to promote tourism in their region.
Hwilner/zephyr-support-chatbot
Hwilner
2023-11-13T15:01:08Z
0
0
null
[ "tensorboard", "safetensors", "generated_from_trainer", "base_model:TheBloke/zephyr-7B-alpha-GPTQ", "base_model:finetune:TheBloke/zephyr-7B-alpha-GPTQ", "license:mit", "region:us" ]
null
2023-11-13T14:20:52Z
--- license: mit base_model: TheBloke/zephyr-7B-alpha-GPTQ tags: - generated_from_trainer model-index: - name: zephyr-support-chatbot results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # zephyr-support-chatbot This model is a fine-tuned version of [TheBloke/zephyr-7B-alpha-GPTQ](https://huggingface.co/TheBloke/zephyr-7B-alpha-GPTQ) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 250 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
hkivancoral/hushem_1x_deit_tiny_sgd_001_fold4
hkivancoral
2023-11-13T15:00:16Z
8
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-tiny-patch16-224", "base_model:finetune:facebook/deit-tiny-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-11-13T14:58:53Z
--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_tiny_sgd_001_fold4 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.4523809523809524 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_1x_deit_tiny_sgd_001_fold4 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2335 - Accuracy: 0.4524 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 1.5918 | 0.2857 | | 1.6404 | 2.0 | 12 | 1.5188 | 0.2857 | | 1.6404 | 3.0 | 18 | 1.4665 | 0.2857 | | 1.5241 | 4.0 | 24 | 1.4299 | 0.3333 | | 1.4755 | 5.0 | 30 | 1.4106 | 0.3571 | | 1.4755 | 6.0 | 36 | 1.3938 | 0.3095 | | 1.4186 | 7.0 | 42 | 1.3803 | 0.2857 | | 1.4186 | 8.0 | 48 | 1.3677 | 0.3810 | | 1.3819 | 9.0 | 54 | 1.3558 | 0.3810 | | 1.3541 | 10.0 | 60 | 1.3456 | 0.3810 | | 1.3541 | 11.0 | 66 | 1.3370 | 0.3810 | | 1.3363 | 12.0 | 72 | 1.3284 | 0.3810 | | 1.3363 | 13.0 | 78 | 1.3193 | 0.3571 | | 1.3168 | 14.0 | 84 | 1.3103 | 0.4048 | | 1.2875 | 15.0 | 90 | 1.3032 | 0.4048 | | 1.2875 | 16.0 | 96 | 1.2966 | 0.4048 | | 1.2638 | 17.0 | 102 | 1.2902 | 0.4048 | | 1.2638 | 18.0 | 108 | 1.2846 | 0.4048 | | 1.2758 | 19.0 | 114 | 1.2805 | 0.4048 | | 1.2611 | 20.0 | 120 | 1.2763 | 0.4048 | | 1.2611 | 21.0 | 126 | 1.2724 | 0.4048 | | 1.2411 | 22.0 | 132 | 1.2693 | 0.4048 | | 1.2411 | 23.0 | 138 | 1.2666 | 0.4048 | | 1.2357 | 24.0 | 144 | 1.2628 | 0.4048 | | 1.231 | 25.0 | 150 | 1.2590 | 0.4048 | | 1.231 | 26.0 | 156 | 1.2555 | 0.4048 | | 1.2026 | 27.0 | 162 | 1.2531 | 0.4048 | | 1.2026 | 28.0 | 168 | 1.2508 | 0.4048 | | 1.2253 | 29.0 | 174 | 1.2482 | 0.4048 | | 1.1949 | 30.0 | 180 | 1.2457 | 0.4048 | | 1.1949 | 31.0 | 186 | 1.2436 | 0.4286 | | 1.2025 | 32.0 | 192 | 1.2420 | 0.4286 | | 1.2025 | 33.0 | 198 | 1.2406 | 0.4524 | | 1.1709 | 34.0 | 204 | 1.2390 | 0.4524 | | 1.1908 | 35.0 | 210 | 1.2376 | 0.4524 | | 1.1908 | 36.0 | 216 | 1.2365 | 0.4524 | | 1.1663 | 37.0 | 222 | 1.2358 | 0.4524 | | 1.1663 | 38.0 | 228 | 1.2349 | 0.4524 | | 1.1875 | 39.0 | 234 | 1.2342 | 0.4524 | | 1.1799 | 40.0 | 240 | 1.2338 | 0.4524 | | 1.1799 | 41.0 | 246 | 1.2336 | 0.4524 | | 1.1658 | 42.0 | 252 | 1.2335 | 0.4524 | | 1.1658 | 43.0 | 258 | 1.2335 | 0.4524 | | 1.1875 | 44.0 | 264 | 1.2335 | 0.4524 | | 1.1627 | 45.0 | 270 | 1.2335 | 0.4524 | | 1.1627 | 46.0 | 276 | 1.2335 | 0.4524 | | 1.1689 | 47.0 | 282 | 1.2335 | 0.4524 | | 1.1689 | 48.0 | 288 | 1.2335 | 0.4524 | | 1.1911 | 49.0 | 294 | 1.2335 | 0.4524 | | 1.1557 | 50.0 | 300 | 1.2335 | 0.4524 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
hkivancoral/hushem_1x_deit_tiny_sgd_001_fold3
hkivancoral
2023-11-13T14:58:46Z
8
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-tiny-patch16-224", "base_model:finetune:facebook/deit-tiny-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-11-13T14:57:25Z
--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_tiny_sgd_001_fold3 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.3488372093023256 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_1x_deit_tiny_sgd_001_fold3 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2767 - Accuracy: 0.3488 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 1.6231 | 0.2791 | | 1.6502 | 2.0 | 12 | 1.5615 | 0.2791 | | 1.6502 | 3.0 | 18 | 1.5208 | 0.2558 | | 1.5138 | 4.0 | 24 | 1.4935 | 0.2093 | | 1.441 | 5.0 | 30 | 1.4720 | 0.2093 | | 1.441 | 6.0 | 36 | 1.4541 | 0.2326 | | 1.3942 | 7.0 | 42 | 1.4402 | 0.3023 | | 1.3942 | 8.0 | 48 | 1.4271 | 0.3023 | | 1.3895 | 9.0 | 54 | 1.4159 | 0.2791 | | 1.3382 | 10.0 | 60 | 1.4069 | 0.2791 | | 1.3382 | 11.0 | 66 | 1.3983 | 0.2558 | | 1.3326 | 12.0 | 72 | 1.3893 | 0.2558 | | 1.3326 | 13.0 | 78 | 1.3800 | 0.2558 | | 1.3102 | 14.0 | 84 | 1.3707 | 0.2558 | | 1.3163 | 15.0 | 90 | 1.3619 | 0.2791 | | 1.3163 | 16.0 | 96 | 1.3528 | 0.2791 | | 1.295 | 17.0 | 102 | 1.3463 | 0.2791 | | 1.295 | 18.0 | 108 | 1.3391 | 0.2791 | | 1.2552 | 19.0 | 114 | 1.3325 | 0.3023 | | 1.2682 | 20.0 | 120 | 1.3269 | 0.3023 | | 1.2682 | 21.0 | 126 | 1.3221 | 0.3256 | | 1.2578 | 22.0 | 132 | 1.3173 | 0.3488 | | 1.2578 | 23.0 | 138 | 1.3126 | 0.3488 | | 1.2124 | 24.0 | 144 | 1.3087 | 0.3488 | | 1.2284 | 25.0 | 150 | 1.3049 | 0.3488 | | 1.2284 | 26.0 | 156 | 1.3017 | 0.3488 | | 1.2178 | 27.0 | 162 | 1.2982 | 0.3488 | | 1.2178 | 28.0 | 168 | 1.2955 | 0.3488 | | 1.2019 | 29.0 | 174 | 1.2931 | 0.3488 | | 1.2029 | 30.0 | 180 | 1.2906 | 0.3488 | | 1.2029 | 31.0 | 186 | 1.2886 | 0.3488 | | 1.1935 | 32.0 | 192 | 1.2863 | 0.3488 | | 1.1935 | 33.0 | 198 | 1.2843 | 0.3488 | | 1.164 | 34.0 | 204 | 1.2826 | 0.3488 | | 1.1999 | 35.0 | 210 | 1.2814 | 0.3488 | | 1.1999 | 36.0 | 216 | 1.2801 | 0.3488 | | 1.1813 | 37.0 | 222 | 1.2790 | 0.3488 | | 1.1813 | 38.0 | 228 | 1.2781 | 0.3488 | | 1.1753 | 39.0 | 234 | 1.2775 | 0.3488 | | 1.1877 | 40.0 | 240 | 1.2770 | 0.3488 | | 1.1877 | 41.0 | 246 | 1.2768 | 0.3488 | | 1.1774 | 42.0 | 252 | 1.2767 | 0.3488 | | 1.1774 | 43.0 | 258 | 1.2767 | 0.3488 | | 1.1704 | 44.0 | 264 | 1.2767 | 0.3488 | | 1.1843 | 45.0 | 270 | 1.2767 | 0.3488 | | 1.1843 | 46.0 | 276 | 1.2767 | 0.3488 | | 1.1726 | 47.0 | 282 | 1.2767 | 0.3488 | | 1.1726 | 48.0 | 288 | 1.2767 | 0.3488 | | 1.1541 | 49.0 | 294 | 1.2767 | 0.3488 | | 1.1928 | 50.0 | 300 | 1.2767 | 0.3488 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
hkivancoral/hushem_1x_deit_tiny_sgd_001_fold2
hkivancoral
2023-11-13T14:57:18Z
9
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-tiny-patch16-224", "base_model:finetune:facebook/deit-tiny-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-11-13T14:55:57Z
--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_tiny_sgd_001_fold2 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.17777777777777778 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_1x_deit_tiny_sgd_001_fold2 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.4913 - Accuracy: 0.1778 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 1.6461 | 0.2222 | | 1.647 | 2.0 | 12 | 1.5827 | 0.2 | | 1.647 | 3.0 | 18 | 1.5400 | 0.2 | | 1.5111 | 4.0 | 24 | 1.5101 | 0.2 | | 1.4472 | 5.0 | 30 | 1.4855 | 0.1778 | | 1.4472 | 6.0 | 36 | 1.4711 | 0.1778 | | 1.3765 | 7.0 | 42 | 1.4618 | 0.2 | | 1.3765 | 8.0 | 48 | 1.4555 | 0.2 | | 1.3363 | 9.0 | 54 | 1.4523 | 0.2222 | | 1.3131 | 10.0 | 60 | 1.4505 | 0.2 | | 1.3131 | 11.0 | 66 | 1.4495 | 0.2 | | 1.2743 | 12.0 | 72 | 1.4504 | 0.2 | | 1.2743 | 13.0 | 78 | 1.4505 | 0.2 | | 1.2923 | 14.0 | 84 | 1.4516 | 0.2 | | 1.2475 | 15.0 | 90 | 1.4529 | 0.2 | | 1.2475 | 16.0 | 96 | 1.4558 | 0.2 | | 1.2052 | 17.0 | 102 | 1.4591 | 0.1778 | | 1.2052 | 18.0 | 108 | 1.4603 | 0.1778 | | 1.2375 | 19.0 | 114 | 1.4628 | 0.1778 | | 1.1665 | 20.0 | 120 | 1.4654 | 0.1778 | | 1.1665 | 21.0 | 126 | 1.4668 | 0.1778 | | 1.1508 | 22.0 | 132 | 1.4681 | 0.1778 | | 1.1508 | 23.0 | 138 | 1.4710 | 0.1778 | | 1.1615 | 24.0 | 144 | 1.4735 | 0.1778 | | 1.1372 | 25.0 | 150 | 1.4742 | 0.1778 | | 1.1372 | 26.0 | 156 | 1.4775 | 0.1778 | | 1.1389 | 27.0 | 162 | 1.4787 | 0.1778 | | 1.1389 | 28.0 | 168 | 1.4813 | 0.1778 | | 1.1191 | 29.0 | 174 | 1.4821 | 0.1778 | | 1.106 | 30.0 | 180 | 1.4844 | 0.1778 | | 1.106 | 31.0 | 186 | 1.4853 | 0.1778 | | 1.1156 | 32.0 | 192 | 1.4867 | 0.1778 | | 1.1156 | 33.0 | 198 | 1.4872 | 0.1778 | | 1.127 | 34.0 | 204 | 1.4879 | 0.1778 | | 1.1055 | 35.0 | 210 | 1.4887 | 0.1778 | | 1.1055 | 36.0 | 216 | 1.4895 | 0.1778 | | 1.089 | 37.0 | 222 | 1.4902 | 0.1778 | | 1.089 | 38.0 | 228 | 1.4907 | 0.1778 | | 1.0605 | 39.0 | 234 | 1.4911 | 0.1778 | | 1.0925 | 40.0 | 240 | 1.4913 | 0.1778 | | 1.0925 | 41.0 | 246 | 1.4913 | 0.1778 | | 1.1025 | 42.0 | 252 | 1.4913 | 0.1778 | | 1.1025 | 43.0 | 258 | 1.4913 | 0.1778 | | 1.1085 | 44.0 | 264 | 1.4913 | 0.1778 | | 1.0909 | 45.0 | 270 | 1.4913 | 0.1778 | | 1.0909 | 46.0 | 276 | 1.4913 | 0.1778 | | 1.0889 | 47.0 | 282 | 1.4913 | 0.1778 | | 1.0889 | 48.0 | 288 | 1.4913 | 0.1778 | | 1.0611 | 49.0 | 294 | 1.4913 | 0.1778 | | 1.1045 | 50.0 | 300 | 1.4913 | 0.1778 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
hkivancoral/hushem_1x_deit_tiny_sgd_001_fold1
hkivancoral
2023-11-13T14:55:50Z
25
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-tiny-patch16-224", "base_model:finetune:facebook/deit-tiny-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-11-13T14:54:29Z
--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_tiny_sgd_001_fold1 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.26666666666666666 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_1x_deit_tiny_sgd_001_fold1 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.3946 - Accuracy: 0.2667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 1.6081 | 0.2889 | | 1.6517 | 2.0 | 12 | 1.5532 | 0.3333 | | 1.6517 | 3.0 | 18 | 1.5183 | 0.3111 | | 1.5073 | 4.0 | 24 | 1.4941 | 0.2 | | 1.4569 | 5.0 | 30 | 1.4762 | 0.1333 | | 1.4569 | 6.0 | 36 | 1.4655 | 0.1333 | | 1.377 | 7.0 | 42 | 1.4570 | 0.1333 | | 1.377 | 8.0 | 48 | 1.4508 | 0.1333 | | 1.3495 | 9.0 | 54 | 1.4443 | 0.1333 | | 1.3234 | 10.0 | 60 | 1.4390 | 0.1333 | | 1.3234 | 11.0 | 66 | 1.4339 | 0.1778 | | 1.2813 | 12.0 | 72 | 1.4301 | 0.1778 | | 1.2813 | 13.0 | 78 | 1.4257 | 0.2 | | 1.3124 | 14.0 | 84 | 1.4223 | 0.2 | | 1.2528 | 15.0 | 90 | 1.4195 | 0.2 | | 1.2528 | 16.0 | 96 | 1.4170 | 0.2222 | | 1.2252 | 17.0 | 102 | 1.4152 | 0.2 | | 1.2252 | 18.0 | 108 | 1.4125 | 0.2222 | | 1.2441 | 19.0 | 114 | 1.4108 | 0.2 | | 1.1872 | 20.0 | 120 | 1.4088 | 0.2 | | 1.1872 | 21.0 | 126 | 1.4068 | 0.2 | | 1.1818 | 22.0 | 132 | 1.4052 | 0.2222 | | 1.1818 | 23.0 | 138 | 1.4041 | 0.2 | | 1.1835 | 24.0 | 144 | 1.4032 | 0.2222 | | 1.1551 | 25.0 | 150 | 1.4021 | 0.2222 | | 1.1551 | 26.0 | 156 | 1.4013 | 0.2222 | | 1.1564 | 27.0 | 162 | 1.4008 | 0.2 | | 1.1564 | 28.0 | 168 | 1.3999 | 0.2222 | | 1.1662 | 29.0 | 174 | 1.3989 | 0.2222 | | 1.116 | 30.0 | 180 | 1.3985 | 0.2222 | | 1.116 | 31.0 | 186 | 1.3976 | 0.2444 | | 1.153 | 32.0 | 192 | 1.3972 | 0.2444 | | 1.153 | 33.0 | 198 | 1.3964 | 0.2444 | | 1.1437 | 34.0 | 204 | 1.3958 | 0.2444 | | 1.1259 | 35.0 | 210 | 1.3954 | 0.2444 | | 1.1259 | 36.0 | 216 | 1.3954 | 0.2667 | | 1.1125 | 37.0 | 222 | 1.3951 | 0.2667 | | 1.1125 | 38.0 | 228 | 1.3951 | 0.2667 | | 1.0816 | 39.0 | 234 | 1.3948 | 0.2667 | | 1.1207 | 40.0 | 240 | 1.3948 | 0.2667 | | 1.1207 | 41.0 | 246 | 1.3947 | 0.2667 | | 1.1291 | 42.0 | 252 | 1.3946 | 0.2667 | | 1.1291 | 43.0 | 258 | 1.3946 | 0.2667 | | 1.1338 | 44.0 | 264 | 1.3946 | 0.2667 | | 1.1093 | 45.0 | 270 | 1.3946 | 0.2667 | | 1.1093 | 46.0 | 276 | 1.3946 | 0.2667 | | 1.1123 | 47.0 | 282 | 1.3946 | 0.2667 | | 1.1123 | 48.0 | 288 | 1.3946 | 0.2667 | | 1.096 | 49.0 | 294 | 1.3946 | 0.2667 | | 1.1328 | 50.0 | 300 | 1.3946 | 0.2667 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
joshuarwanda/wav2vec2-large-xls-r-300m-swahili-colab
joshuarwanda
2023-11-13T14:51:21Z
14
0
transformers
[ "transformers", "tensorboard", "safetensors", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice_13_0", "base_model:facebook/wav2vec2-xls-r-300m", "base_model:finetune:facebook/wav2vec2-xls-r-300m", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-11-10T18:34:36Z
--- license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer datasets: - common_voice_13_0 model-index: - name: wav2vec2-large-xls-r-300m-swahili-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-swahili-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_13_0 dataset. It achieves the following results on the evaluation set: - eval_loss: inf - eval_wer: 0.5730 - eval_runtime: 1031.5347 - eval_samples_per_second: 10.926 - eval_steps_per_second: 1.366 - epoch: 0.37 - step: 400 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
franconoronha/finetuning-sentiment-model-3000-samples
franconoronha
2023-11-13T14:48:26Z
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-11-13T14:17:06Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.9056666666666666 - name: F1 type: f1 value: 0.9060112919295914 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2619 - Accuracy: 0.9057 - F1: 0.9060 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
hkivancoral/hushem_1x_deit_tiny_adamax_00001_fold3
hkivancoral
2023-11-13T14:46:53Z
9
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-tiny-patch16-224", "base_model:finetune:facebook/deit-tiny-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-11-13T14:45:19Z
--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_tiny_adamax_00001_fold3 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.5581395348837209 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_1x_deit_tiny_adamax_00001_fold3 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8253 - Accuracy: 0.5581 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 1.4425 | 0.2791 | | 1.416 | 2.0 | 12 | 1.3728 | 0.3023 | | 1.416 | 3.0 | 18 | 1.3124 | 0.3488 | | 1.2388 | 4.0 | 24 | 1.2509 | 0.3721 | | 1.1051 | 5.0 | 30 | 1.1962 | 0.3488 | | 1.1051 | 6.0 | 36 | 1.1517 | 0.3721 | | 0.9682 | 7.0 | 42 | 1.1212 | 0.3721 | | 0.9682 | 8.0 | 48 | 1.0990 | 0.4186 | | 0.8769 | 9.0 | 54 | 1.0709 | 0.4884 | | 0.7643 | 10.0 | 60 | 1.0587 | 0.5116 | | 0.7643 | 11.0 | 66 | 1.0451 | 0.4884 | | 0.6717 | 12.0 | 72 | 1.0399 | 0.5581 | | 0.6717 | 13.0 | 78 | 1.0224 | 0.5349 | | 0.5988 | 14.0 | 84 | 1.0021 | 0.4884 | | 0.5291 | 15.0 | 90 | 0.9852 | 0.4884 | | 0.5291 | 16.0 | 96 | 0.9774 | 0.5116 | | 0.4581 | 17.0 | 102 | 0.9701 | 0.5116 | | 0.4581 | 18.0 | 108 | 0.9598 | 0.5116 | | 0.3895 | 19.0 | 114 | 0.9410 | 0.5814 | | 0.3415 | 20.0 | 120 | 0.9223 | 0.5581 | | 0.3415 | 21.0 | 126 | 0.9172 | 0.5349 | | 0.3044 | 22.0 | 132 | 0.9106 | 0.5349 | | 0.3044 | 23.0 | 138 | 0.9037 | 0.5581 | | 0.2632 | 24.0 | 144 | 0.8935 | 0.5581 | | 0.2425 | 25.0 | 150 | 0.8847 | 0.5814 | | 0.2425 | 26.0 | 156 | 0.8721 | 0.5581 | | 0.2102 | 27.0 | 162 | 0.8625 | 0.5581 | | 0.2102 | 28.0 | 168 | 0.8546 | 0.5581 | | 0.189 | 29.0 | 174 | 0.8540 | 0.5814 | | 0.1637 | 30.0 | 180 | 0.8496 | 0.6047 | | 0.1637 | 31.0 | 186 | 0.8464 | 0.6047 | | 0.1512 | 32.0 | 192 | 0.8420 | 0.5581 | | 0.1512 | 33.0 | 198 | 0.8380 | 0.5581 | | 0.1374 | 34.0 | 204 | 0.8346 | 0.5581 | | 0.1287 | 35.0 | 210 | 0.8327 | 0.5581 | | 0.1287 | 36.0 | 216 | 0.8290 | 0.5581 | | 0.124 | 37.0 | 222 | 0.8276 | 0.5581 | | 0.124 | 38.0 | 228 | 0.8271 | 0.5581 | | 0.1186 | 39.0 | 234 | 0.8265 | 0.5581 | | 0.1159 | 40.0 | 240 | 0.8255 | 0.5581 | | 0.1159 | 41.0 | 246 | 0.8253 | 0.5581 | | 0.1139 | 42.0 | 252 | 0.8253 | 0.5581 | | 0.1139 | 43.0 | 258 | 0.8253 | 0.5581 | | 0.1142 | 44.0 | 264 | 0.8253 | 0.5581 | | 0.1107 | 45.0 | 270 | 0.8253 | 0.5581 | | 0.1107 | 46.0 | 276 | 0.8253 | 0.5581 | | 0.1118 | 47.0 | 282 | 0.8253 | 0.5581 | | 0.1118 | 48.0 | 288 | 0.8253 | 0.5581 | | 0.1159 | 49.0 | 294 | 0.8253 | 0.5581 | | 0.1095 | 50.0 | 300 | 0.8253 | 0.5581 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
haris001/codellamaSP2
haris001
2023-11-13T14:46:32Z
2
0
peft
[ "peft", "safetensors", "region:us" ]
null
2023-11-13T14:46:31Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0
hkivancoral/hushem_1x_deit_tiny_adamax_00001_fold1
hkivancoral
2023-11-13T14:43:30Z
8
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-tiny-patch16-224", "base_model:finetune:facebook/deit-tiny-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-11-13T14:41:50Z
--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_tiny_adamax_00001_fold1 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.4222222222222222 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_1x_deit_tiny_adamax_00001_fold1 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.1341 - Accuracy: 0.4222 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 1.4260 | 0.2 | | 1.446 | 2.0 | 12 | 1.3794 | 0.2889 | | 1.446 | 3.0 | 18 | 1.3570 | 0.3556 | | 1.184 | 4.0 | 24 | 1.3382 | 0.3111 | | 1.0671 | 5.0 | 30 | 1.3283 | 0.3111 | | 1.0671 | 6.0 | 36 | 1.3144 | 0.2889 | | 0.9249 | 7.0 | 42 | 1.2898 | 0.3333 | | 0.9249 | 8.0 | 48 | 1.2748 | 0.3556 | | 0.8443 | 9.0 | 54 | 1.2692 | 0.3333 | | 0.7477 | 10.0 | 60 | 1.2518 | 0.3778 | | 0.7477 | 11.0 | 66 | 1.2338 | 0.4 | | 0.662 | 12.0 | 72 | 1.2193 | 0.3778 | | 0.662 | 13.0 | 78 | 1.2195 | 0.4 | | 0.622 | 14.0 | 84 | 1.2039 | 0.3778 | | 0.5154 | 15.0 | 90 | 1.1949 | 0.4 | | 0.5154 | 16.0 | 96 | 1.1879 | 0.4 | | 0.4537 | 17.0 | 102 | 1.1810 | 0.4 | | 0.4537 | 18.0 | 108 | 1.1670 | 0.4 | | 0.3859 | 19.0 | 114 | 1.1628 | 0.4 | | 0.3586 | 20.0 | 120 | 1.1721 | 0.4 | | 0.3586 | 21.0 | 126 | 1.1698 | 0.4222 | | 0.3151 | 22.0 | 132 | 1.1603 | 0.4 | | 0.3151 | 23.0 | 138 | 1.1584 | 0.4222 | | 0.2881 | 24.0 | 144 | 1.1519 | 0.4222 | | 0.2498 | 25.0 | 150 | 1.1515 | 0.4222 | | 0.2498 | 26.0 | 156 | 1.1445 | 0.4222 | | 0.232 | 27.0 | 162 | 1.1430 | 0.4222 | | 0.232 | 28.0 | 168 | 1.1452 | 0.4222 | | 0.2183 | 29.0 | 174 | 1.1406 | 0.4222 | | 0.1798 | 30.0 | 180 | 1.1348 | 0.4222 | | 0.1798 | 31.0 | 186 | 1.1304 | 0.4222 | | 0.1811 | 32.0 | 192 | 1.1281 | 0.4222 | | 0.1811 | 33.0 | 198 | 1.1317 | 0.4222 | | 0.1748 | 34.0 | 204 | 1.1302 | 0.4222 | | 0.1492 | 35.0 | 210 | 1.1303 | 0.4222 | | 0.1492 | 36.0 | 216 | 1.1319 | 0.4222 | | 0.1477 | 37.0 | 222 | 1.1328 | 0.4222 | | 0.1477 | 38.0 | 228 | 1.1366 | 0.4222 | | 0.1357 | 39.0 | 234 | 1.1362 | 0.4222 | | 0.1379 | 40.0 | 240 | 1.1351 | 0.4222 | | 0.1379 | 41.0 | 246 | 1.1344 | 0.4222 | | 0.1325 | 42.0 | 252 | 1.1341 | 0.4222 | | 0.1325 | 43.0 | 258 | 1.1341 | 0.4222 | | 0.1377 | 44.0 | 264 | 1.1341 | 0.4222 | | 0.1332 | 45.0 | 270 | 1.1341 | 0.4222 | | 0.1332 | 46.0 | 276 | 1.1341 | 0.4222 | | 0.1323 | 47.0 | 282 | 1.1341 | 0.4222 | | 0.1323 | 48.0 | 288 | 1.1341 | 0.4222 | | 0.1276 | 49.0 | 294 | 1.1341 | 0.4222 | | 0.1376 | 50.0 | 300 | 1.1341 | 0.4222 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
hkivancoral/hushem_1x_deit_tiny_adamax_001_fold3
hkivancoral
2023-11-13T14:36:11Z
8
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-tiny-patch16-224", "base_model:finetune:facebook/deit-tiny-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-11-13T14:21:08Z
--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_tiny_adamax_001_fold3 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.8372093023255814 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_1x_deit_tiny_adamax_001_fold3 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5538 - Accuracy: 0.8372 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 1.3426 | 0.4419 | | 1.3195 | 2.0 | 12 | 1.0931 | 0.5116 | | 1.3195 | 3.0 | 18 | 0.8535 | 0.6512 | | 0.6419 | 4.0 | 24 | 0.9249 | 0.6279 | | 0.325 | 5.0 | 30 | 0.7057 | 0.7674 | | 0.325 | 6.0 | 36 | 0.5831 | 0.7674 | | 0.0848 | 7.0 | 42 | 0.6810 | 0.7907 | | 0.0848 | 8.0 | 48 | 0.5917 | 0.7674 | | 0.0193 | 9.0 | 54 | 0.6267 | 0.8140 | | 0.0077 | 10.0 | 60 | 0.4330 | 0.8372 | | 0.0077 | 11.0 | 66 | 0.5195 | 0.8372 | | 0.0032 | 12.0 | 72 | 0.6710 | 0.7907 | | 0.0032 | 13.0 | 78 | 0.6980 | 0.8372 | | 0.0012 | 14.0 | 84 | 0.5701 | 0.8372 | | 0.0006 | 15.0 | 90 | 0.5278 | 0.8605 | | 0.0006 | 16.0 | 96 | 0.5226 | 0.8372 | | 0.0005 | 17.0 | 102 | 0.5245 | 0.8605 | | 0.0005 | 18.0 | 108 | 0.5277 | 0.8605 | | 0.0004 | 19.0 | 114 | 0.5338 | 0.8372 | | 0.0003 | 20.0 | 120 | 0.5401 | 0.8372 | | 0.0003 | 21.0 | 126 | 0.5445 | 0.8372 | | 0.0003 | 22.0 | 132 | 0.5461 | 0.8372 | | 0.0003 | 23.0 | 138 | 0.5481 | 0.8372 | | 0.0003 | 24.0 | 144 | 0.5486 | 0.8372 | | 0.0003 | 25.0 | 150 | 0.5495 | 0.8372 | | 0.0003 | 26.0 | 156 | 0.5492 | 0.8372 | | 0.0002 | 27.0 | 162 | 0.5497 | 0.8372 | | 0.0002 | 28.0 | 168 | 0.5490 | 0.8372 | | 0.0002 | 29.0 | 174 | 0.5497 | 0.8372 | | 0.0002 | 30.0 | 180 | 0.5498 | 0.8372 | | 0.0002 | 31.0 | 186 | 0.5499 | 0.8372 | | 0.0002 | 32.0 | 192 | 0.5503 | 0.8372 | | 0.0002 | 33.0 | 198 | 0.5508 | 0.8372 | | 0.0002 | 34.0 | 204 | 0.5520 | 0.8372 | | 0.0002 | 35.0 | 210 | 0.5527 | 0.8372 | | 0.0002 | 36.0 | 216 | 0.5529 | 0.8372 | | 0.0002 | 37.0 | 222 | 0.5532 | 0.8372 | | 0.0002 | 38.0 | 228 | 0.5534 | 0.8372 | | 0.0002 | 39.0 | 234 | 0.5536 | 0.8372 | | 0.0002 | 40.0 | 240 | 0.5537 | 0.8372 | | 0.0002 | 41.0 | 246 | 0.5538 | 0.8372 | | 0.0002 | 42.0 | 252 | 0.5538 | 0.8372 | | 0.0002 | 43.0 | 258 | 0.5538 | 0.8372 | | 0.0002 | 44.0 | 264 | 0.5538 | 0.8372 | | 0.0002 | 45.0 | 270 | 0.5538 | 0.8372 | | 0.0002 | 46.0 | 276 | 0.5538 | 0.8372 | | 0.0002 | 47.0 | 282 | 0.5538 | 0.8372 | | 0.0002 | 48.0 | 288 | 0.5538 | 0.8372 | | 0.0002 | 49.0 | 294 | 0.5538 | 0.8372 | | 0.0002 | 50.0 | 300 | 0.5538 | 0.8372 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
Yasinjan99/wav2vec2-large-xls-r-300m-cv-11-ug-test_01
Yasinjan99
2023-11-13T14:35:43Z
8
0
transformers
[ "transformers", "safetensors", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice_11_0", "base_model:facebook/wav2vec2-base", "base_model:finetune:facebook/wav2vec2-base", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-11-13T06:11:30Z
--- license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer datasets: - common_voice_11_0 metrics: - wer model-index: - name: wav2vec2-large-xls-r-300m-cv-11-ug-test_01 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_11_0 type: common_voice_11_0 config: ug split: test args: ug metrics: - name: Wer type: wer value: 1.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-cv-11-ug-test_01 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 3.0973 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 4.9981 | 8.0 | 500 | 3.0973 | 1.0 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.0.0 - Datasets 2.14.6 - Tokenizers 0.14.1
hkivancoral/hushem_1x_deit_tiny_adamax_001_fold2
hkivancoral
2023-11-13T14:34:31Z
23
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-tiny-patch16-224", "base_model:finetune:facebook/deit-tiny-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-11-13T14:18:20Z
--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_tiny_adamax_001_fold2 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.6 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_1x_deit_tiny_adamax_001_fold2 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.6766 - Accuracy: 0.6 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 1.3194 | 0.2889 | | 1.3705 | 2.0 | 12 | 1.2766 | 0.3778 | | 1.3705 | 3.0 | 18 | 1.3268 | 0.5333 | | 0.7361 | 4.0 | 24 | 1.2927 | 0.5556 | | 0.3404 | 5.0 | 30 | 1.3610 | 0.5556 | | 0.3404 | 6.0 | 36 | 1.1429 | 0.5778 | | 0.1188 | 7.0 | 42 | 1.5833 | 0.5333 | | 0.1188 | 8.0 | 48 | 1.2765 | 0.6667 | | 0.0229 | 9.0 | 54 | 1.4099 | 0.6222 | | 0.0046 | 10.0 | 60 | 1.4395 | 0.6 | | 0.0046 | 11.0 | 66 | 1.6161 | 0.5556 | | 0.0013 | 12.0 | 72 | 1.5774 | 0.5778 | | 0.0013 | 13.0 | 78 | 1.5201 | 0.6 | | 0.0007 | 14.0 | 84 | 1.5608 | 0.6 | | 0.0005 | 15.0 | 90 | 1.6187 | 0.5778 | | 0.0005 | 16.0 | 96 | 1.6424 | 0.5778 | | 0.0004 | 17.0 | 102 | 1.6470 | 0.5778 | | 0.0004 | 18.0 | 108 | 1.6480 | 0.6 | | 0.0003 | 19.0 | 114 | 1.6471 | 0.6 | | 0.0003 | 20.0 | 120 | 1.6450 | 0.6 | | 0.0003 | 21.0 | 126 | 1.6532 | 0.6 | | 0.0003 | 22.0 | 132 | 1.6559 | 0.6 | | 0.0003 | 23.0 | 138 | 1.6612 | 0.6 | | 0.0003 | 24.0 | 144 | 1.6668 | 0.6 | | 0.0002 | 25.0 | 150 | 1.6718 | 0.6 | | 0.0002 | 26.0 | 156 | 1.6748 | 0.6 | | 0.0002 | 27.0 | 162 | 1.6728 | 0.6 | | 0.0002 | 28.0 | 168 | 1.6726 | 0.6 | | 0.0002 | 29.0 | 174 | 1.6718 | 0.6 | | 0.0002 | 30.0 | 180 | 1.6716 | 0.6 | | 0.0002 | 31.0 | 186 | 1.6738 | 0.6 | | 0.0002 | 32.0 | 192 | 1.6734 | 0.6 | | 0.0002 | 33.0 | 198 | 1.6748 | 0.6 | | 0.0002 | 34.0 | 204 | 1.6753 | 0.6 | | 0.0002 | 35.0 | 210 | 1.6740 | 0.6 | | 0.0002 | 36.0 | 216 | 1.6735 | 0.6 | | 0.0002 | 37.0 | 222 | 1.6732 | 0.6 | | 0.0002 | 38.0 | 228 | 1.6740 | 0.6 | | 0.0002 | 39.0 | 234 | 1.6751 | 0.6 | | 0.0002 | 40.0 | 240 | 1.6758 | 0.6 | | 0.0002 | 41.0 | 246 | 1.6766 | 0.6 | | 0.0002 | 42.0 | 252 | 1.6766 | 0.6 | | 0.0002 | 43.0 | 258 | 1.6766 | 0.6 | | 0.0002 | 44.0 | 264 | 1.6766 | 0.6 | | 0.0002 | 45.0 | 270 | 1.6766 | 0.6 | | 0.0002 | 46.0 | 276 | 1.6766 | 0.6 | | 0.0002 | 47.0 | 282 | 1.6766 | 0.6 | | 0.0002 | 48.0 | 288 | 1.6766 | 0.6 | | 0.0002 | 49.0 | 294 | 1.6766 | 0.6 | | 0.0002 | 50.0 | 300 | 1.6766 | 0.6 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
Yura32000/Reinforce-cartpole_v1
Yura32000
2023-11-13T14:26:20Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-11-13T14:26:11Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-cartpole_v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
spjk007/my-favourite-bag-tut
spjk007
2023-11-13T14:21:33Z
0
0
null
[ "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-11-13T14:19:03Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-favourite-bag-tut Dreambooth model trained by spjk007 following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: JJCET-520 Sample pictures of this concept: ![0](https://huggingface.co/spjk007/my-favourite-bag-tut/resolve/main/sample_images/export_(3).png)
lmqg/mt5-base-zhquad-qg
lmqg
2023-11-13T14:20:10Z
9
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "question generation", "zh", "dataset:lmqg/qg_zhquad", "arxiv:2210.03992", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-11-10T10:25:27Z
--- license: cc-by-4.0 metrics: - bleu4 - meteor - rouge-l - bertscore - moverscore language: zh datasets: - lmqg/qg_zhquad pipeline_tag: text2text-generation tags: - question generation widget: - text: "南安普敦的警察服务由汉普郡警察提供。南安普敦行动的主要基地是一座新的八层专用建筑,造价3000万英镑。该建筑位于南路,2011年启用,靠近<hl> 南安普敦中央 <hl>火车站。此前,南安普顿市中心的行动位于市民中心西翼,但由于设施老化,加上计划在旧警察局和地方法院建造一座新博物馆,因此必须搬迁。在Portswood、Banister Park、Hille和Shirley还有其他警察局,在南安普顿中央火车站还有一个英国交通警察局。" example_title: "Question Generation Example 1" - text: "芝加哥大学的<hl> 1960—61 <hl>集团理论年汇集了Daniel Gorenstein、John G. Thompson和Walter Feit等团体理论家,奠定了一个合作的基础,借助于其他众多数学家的输入,1982中对所有有限的简单群进行了分类。这个项目的规模超过了以往的数学研究,无论是证明的长度还是研究人员的数量。目前正在进行研究,以简化这一分类的证明。如今,群论仍然是一个非常活跃的数学分支,影响着许多其他领域" example_title: "Question Generation Example 2" model-index: - name: lmqg/mt5-base-zhquad-qg results: - task: name: Text2text Generation type: text2text-generation dataset: name: lmqg/qg_zhquad type: default args: default metrics: - name: BLEU4 (Question Generation) type: bleu4_question_generation value: 14.73 - name: ROUGE-L (Question Generation) type: rouge_l_question_generation value: 34.72 - name: METEOR (Question Generation) type: meteor_question_generation value: 23.92 - name: BERTScore (Question Generation) type: bertscore_question_generation value: 77.38 - name: MoverScore (Question Generation) type: moverscore_question_generation value: 57.5 --- # Model Card of `lmqg/mt5-base-zhquad-qg` This model is fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) for question generation task on the [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation). ### Overview - **Language model:** [google/mt5-base](https://huggingface.co/google/mt5-base) - **Language:** zh - **Training data:** [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) (default) - **Online Demo:** [https://autoqg.net/](https://autoqg.net/) - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) ### Usage - With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-) ```python from lmqg import TransformersQG # initialize model model = TransformersQG(language="zh", model="lmqg/mt5-base-zhquad-qg") # model prediction questions = model.generate_q(list_context="南安普敦的警察服务由汉普郡警察提供。南安普敦行动的主要基地是一座新的八层专用建筑,造价3000万英镑。该建筑位于南路,2011年启用,靠近南安普敦中央火车站。此前,南安普顿市中心的行动位于市民中心西翼,但由于设施老化,加上计划在旧警察局和地方法院建造一座新博物馆,因此必须搬迁。在Portswood、Banister Park、Hille和Shirley还有其他警察局,在南安普顿中央火车站还有一个英国交通警察局。", list_answer="南安普敦中央") ``` - With `transformers` ```python from transformers import pipeline pipe = pipeline("text2text-generation", "lmqg/mt5-base-zhquad-qg") output = pipe("南安普敦的警察服务由汉普郡警察提供。南安普敦行动的主要基地是一座新的八层专用建筑,造价3000万英镑。该建筑位于南路,2011年启用,靠近<hl> 南安普敦中央 <hl>火车站。此前,南安普顿市中心的行动位于市民中心西翼,但由于设施老化,加上计划在旧警察局和地方法院建造一座新博物馆,因此必须搬迁。在Portswood、Banister Park、Hille和Shirley还有其他警察局,在南安普顿中央火车站还有一个英国交通警察局。") ``` ## Evaluation - ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/mt5-base-zhquad-qg/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_zhquad.default.json) | | Score | Type | Dataset | |:-----------|--------:|:--------|:-----------------------------------------------------------------| | BERTScore | 77.38 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) | | Bleu_1 | 37 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) | | Bleu_2 | 25.9 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) | | Bleu_3 | 19.25 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) | | Bleu_4 | 14.73 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) | | METEOR | 23.92 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) | | MoverScore | 57.5 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) | | ROUGE_L | 34.72 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) | ## Training hyperparameters The following hyperparameters were used during fine-tuning: - dataset_path: lmqg/qg_zhquad - dataset_name: default - input_types: paragraph_answer - output_types: question - prefix_types: None - model: google/mt5-base - max_length: 512 - max_length_output: 32 - epoch: 16 - batch: 16 - lr: 0.0001 - fp16: False - random_seed: 1 - gradient_accumulation_steps: 4 - label_smoothing: 0.15 The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-base-zhquad-qg/raw/main/trainer_config.json). ## Citation ``` @inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```
pankajemplay/mistral_7b-instruct-intent
pankajemplay
2023-11-13T14:14:41Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "region:us" ]
null
2023-11-13T14:14:27Z
--- library_name: peft base_model: /kaggle/input/mistral/pytorch/7b-instruct-v0.1-hf/1 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.1 ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.1