modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-02 18:52:31
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
533 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-02 18:52:05
card
stringlengths
11
1.01M
carolinetfls/plant-seedlings-model-beit-free-0-6
carolinetfls
2023-04-26T23:00:49Z
19
0
transformers
[ "transformers", "pytorch", "tensorboard", "beit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-04-26T20:11:12Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: plant-seedlings-model-beit-free-0-6 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.7475442043222004 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # plant-seedlings-model-beit-free-0-6 This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.7557 - Accuracy: 0.7475 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 2.4892 | 0.2 | 100 | 2.4909 | 0.0751 | | 2.4906 | 0.39 | 200 | 2.4886 | 0.0756 | | 2.3925 | 0.59 | 300 | 2.3344 | 0.1537 | | 2.31 | 0.79 | 400 | 2.3306 | 0.1464 | | 2.2355 | 0.98 | 500 | 2.2335 | 0.1778 | | 2.2642 | 1.18 | 600 | 2.1889 | 0.1807 | | 2.0806 | 1.38 | 700 | 2.3229 | 0.1680 | | 2.1013 | 1.57 | 800 | 2.1519 | 0.2004 | | 2.0094 | 1.77 | 900 | 2.0611 | 0.2146 | | 2.0387 | 1.96 | 1000 | 2.0413 | 0.2210 | | 2.0032 | 2.16 | 1100 | 1.9758 | 0.2618 | | 1.986 | 2.36 | 1200 | 1.9238 | 0.2638 | | 2.0885 | 2.55 | 1300 | 1.8944 | 0.2942 | | 1.8808 | 2.75 | 1400 | 1.9330 | 0.2868 | | 1.915 | 2.95 | 1500 | 1.8919 | 0.2814 | | 1.958 | 3.14 | 1600 | 1.8762 | 0.3114 | | 1.9001 | 3.34 | 1700 | 1.8389 | 0.3232 | | 1.8572 | 3.54 | 1800 | 1.7978 | 0.3487 | | 1.9969 | 3.73 | 1900 | 1.9371 | 0.3089 | | 1.9186 | 3.93 | 2000 | 1.8055 | 0.3502 | | 1.7591 | 4.13 | 2100 | 1.7695 | 0.3428 | | 1.8368 | 4.32 | 2200 | 1.7498 | 0.3502 | | 1.9842 | 4.52 | 2300 | 1.8049 | 0.3193 | | 1.7606 | 4.72 | 2400 | 1.6730 | 0.3954 | | 1.7787 | 4.91 | 2500 | 1.7104 | 0.3777 | | 1.6377 | 5.11 | 2600 | 1.6647 | 0.3870 | | 1.8834 | 5.3 | 2700 | 1.6325 | 0.3973 | | 1.6149 | 5.5 | 2800 | 1.6722 | 0.3787 | | 1.7038 | 5.7 | 2900 | 1.6425 | 0.3973 | | 1.682 | 5.89 | 3000 | 1.5927 | 0.4180 | | 1.6326 | 6.09 | 3100 | 1.4982 | 0.4622 | | 1.5687 | 6.29 | 3200 | 1.4440 | 0.4774 | | 1.3637 | 6.48 | 3300 | 1.4477 | 0.4877 | | 1.4079 | 6.68 | 3400 | 1.3827 | 0.5020 | | 1.3721 | 6.88 | 3500 | 1.4069 | 0.5010 | | 1.5675 | 7.07 | 3600 | 1.3595 | 0.5083 | | 1.5725 | 7.27 | 3700 | 1.3790 | 0.4956 | | 1.4522 | 7.47 | 3800 | 1.3116 | 0.5378 | | 1.4692 | 7.66 | 3900 | 1.3729 | 0.4980 | | 1.5073 | 7.86 | 4000 | 1.3799 | 0.5216 | | 1.2529 | 8.06 | 4100 | 1.2706 | 0.5486 | | 1.3727 | 8.25 | 4200 | 1.2519 | 0.5535 | | 1.2451 | 8.45 | 4300 | 1.2595 | 0.5648 | | 1.339 | 8.64 | 4400 | 1.3614 | 0.5172 | | 1.2858 | 8.84 | 4500 | 1.3028 | 0.5393 | | 1.1039 | 9.04 | 4600 | 1.2309 | 0.5771 | | 1.0351 | 9.23 | 4700 | 1.2678 | 0.5609 | | 1.1125 | 9.43 | 4800 | 1.2786 | 0.5624 | | 1.1667 | 9.63 | 4900 | 1.2131 | 0.5840 | | 1.1386 | 9.82 | 5000 | 1.1359 | 0.6154 | | 1.1888 | 10.02 | 5100 | 1.1309 | 0.6041 | | 1.1777 | 10.22 | 5200 | 1.1288 | 0.6287 | | 1.3693 | 10.41 | 5300 | 1.3827 | 0.5182 | | 1.1016 | 10.61 | 5400 | 1.2255 | 0.5594 | | 1.1527 | 10.81 | 5500 | 1.0772 | 0.6434 | | 1.1039 | 11.0 | 5600 | 1.1032 | 0.6100 | | 1.2502 | 11.2 | 5700 | 1.1230 | 0.6169 | | 1.0818 | 11.39 | 5800 | 1.0750 | 0.6302 | | 1.0872 | 11.59 | 5900 | 1.0397 | 0.6331 | | 1.0425 | 11.79 | 6000 | 1.0231 | 0.6483 | | 1.0791 | 11.98 | 6100 | 1.0250 | 0.6636 | | 0.9736 | 12.18 | 6200 | 1.0879 | 0.6267 | | 0.9788 | 12.38 | 6300 | 1.1334 | 0.5968 | | 0.8982 | 12.57 | 6400 | 0.9934 | 0.6528 | | 1.077 | 12.77 | 6500 | 0.9698 | 0.6812 | | 1.0347 | 12.97 | 6600 | 1.0265 | 0.6513 | | 0.9159 | 13.16 | 6700 | 0.9442 | 0.6788 | | 1.1187 | 13.36 | 6800 | 0.9738 | 0.6685 | | 0.9624 | 13.56 | 6900 | 1.0008 | 0.6699 | | 0.922 | 13.75 | 7000 | 0.9502 | 0.6906 | | 0.9317 | 13.95 | 7100 | 0.9687 | 0.6758 | | 0.9979 | 14.15 | 7200 | 0.9869 | 0.6768 | | 0.8362 | 14.34 | 7300 | 0.9220 | 0.6994 | | 0.8449 | 14.54 | 7400 | 0.9181 | 0.6861 | | 0.9678 | 14.73 | 7500 | 0.9789 | 0.6729 | | 0.9119 | 14.93 | 7600 | 0.8879 | 0.7009 | | 0.9517 | 15.13 | 7700 | 0.8816 | 0.6994 | | 0.9688 | 15.32 | 7800 | 0.8803 | 0.7117 | | 0.8625 | 15.52 | 7900 | 0.8782 | 0.7038 | | 0.9121 | 15.72 | 8000 | 0.8225 | 0.7191 | | 0.9035 | 15.91 | 8100 | 0.8649 | 0.7087 | | 0.8762 | 16.11 | 8200 | 0.8427 | 0.7102 | | 0.7708 | 16.31 | 8300 | 0.8685 | 0.7117 | | 0.8893 | 16.5 | 8400 | 0.8178 | 0.7264 | | 0.9584 | 16.7 | 8500 | 0.8709 | 0.7092 | | 0.757 | 16.9 | 8600 | 0.8244 | 0.7254 | | 0.8184 | 17.09 | 8700 | 0.8128 | 0.7240 | | 0.8858 | 17.29 | 8800 | 0.8360 | 0.7156 | | 0.7116 | 17.49 | 8900 | 0.7952 | 0.7279 | | 0.9579 | 17.68 | 9000 | 0.8263 | 0.7274 | | 0.7037 | 17.88 | 9100 | 0.7884 | 0.7348 | | 1.0359 | 18.07 | 9200 | 0.8118 | 0.7402 | | 1.067 | 18.27 | 9300 | 0.8203 | 0.7186 | | 0.8503 | 18.47 | 9400 | 0.7918 | 0.7362 | | 0.8552 | 18.66 | 9500 | 0.7972 | 0.7382 | | 0.7498 | 18.86 | 9600 | 0.8038 | 0.7343 | | 0.8542 | 19.06 | 9700 | 0.7799 | 0.7333 | | 0.9539 | 19.25 | 9800 | 0.7795 | 0.7333 | | 0.7369 | 19.45 | 9900 | 0.8103 | 0.7269 | | 0.6637 | 19.65 | 10000 | 0.7597 | 0.7441 | | 0.6712 | 19.84 | 10100 | 0.7557 | 0.7475 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
Sergendel/a2c-AntBulletEnv-v0
Sergendel
2023-04-26T22:48:01Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-04-26T18:09:29Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1226.61 +/- 481.06 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
kerdel/GenerAd-AI
kerdel
2023-04-26T22:23:59Z
36
0
adapter-transformers
[ "adapter-transformers", "text-generation", "dataset:kerdel/generative_ai_sample", "license:bigscience-openrail-m", "region:us" ]
text-generation
2023-04-26T22:18:12Z
--- license: bigscience-openrail-m datasets: - kerdel/generative_ai_sample library_name: adapter-transformers pipeline_tag: text-generation ---
myklicious/Reinforce-CartPole-V1
myklicious
2023-04-26T21:49:52Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-04-26T21:49:40Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-V1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
FacehugmanIII/4x_foolhardy_Remacri
FacehugmanIII
2023-04-26T21:49:37Z
0
90
null
[ "art", "license:unknown", "region:us" ]
null
2023-04-26T21:39:16Z
--- license: unknown tags: - art --- Using the Remacri upscaler in Automatic1111: Get the '4x_foolhardy_Remacri.pth' file linked in this post Copy it to: \stable-diffusion-webui\models\ESRGAN Restart WebUI 4x_foolhardy_Remacri is now available in the Extras tab and for the SD Upscale script I didn't create this upscaler, I simply downloaded it from a random link on reddit and uploaded here as I couldn't find it anywhere else.
Dsfajardob/rl_course_vizdoom_health_gathering_supreme
Dsfajardob
2023-04-26T21:45:35Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-04-26T20:57:34Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 11.04 +/- 5.36 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r Dsfajardob/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
jkorstad/a2c-PandaReachDense-v2
jkorstad
2023-04-26T21:18:32Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-04-26T05:03:19Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -2.03 +/- 1.11 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
jmartin233/bloom-1b7-lora-reading-comprehension
jmartin233
2023-04-26T20:50:10Z
0
0
null
[ "text-generation", "en", "dataset:jmartin233/reading_comprehension_exercise_dataset_v2", "license:bigscience-openrail-m", "region:us" ]
text-generation
2023-04-26T19:25:42Z
--- license: bigscience-openrail-m datasets: - jmartin233/reading_comprehension_exercise_dataset_v2 language: - en pipeline_tag: text-generation --- # Model Card for Model ID The model generates short reading comprehension exercises for English teachers to use. ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> Finetuned using this process: https://github.com/FourthBrain/Building-Generative-AI-Apps/blob/main/GenerAd-AI/notebooks/%F0%9F%92%AE%20GenerAd%20AI%F0%9F%92%AE%20Fine%20tuning%20BLOOM.ipynb ## Uses English teachers can use the model to generate short texts that use specified types of grammar, and are written a specified level (beginner, intermediate or advanced.)
amitrajitbh1/distilroberta-base-finetuned-teen-2
amitrajitbh1
2023-04-26T20:49:20Z
125
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-04-26T20:14:09Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-finetuned-teen-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-teen-2 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.0436 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.5736 | 1.0 | 157 | 3.3554 | | 3.1559 | 2.0 | 314 | 3.1532 | | 3.0252 | 3.0 | 471 | 3.0850 | | 2.858 | 4.0 | 628 | 2.9401 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
JuanDa14Sa/Taxi-v3-QLearn
JuanDa14Sa
2023-04-26T20:42:28Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-04-26T20:30:22Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3-QLearn results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="JuanDa14Sa/Taxi-v3-QLearn", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
akadhim-ai/sd_aiconos-model-v1-2_400
akadhim-ai
2023-04-26T20:37:30Z
31
0
diffusers
[ "diffusers", "tensorboard", "art", "text-to-image", "en", "dataset:Ali-fb/ios_icons_2", "license:openrail", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-04-26T14:02:51Z
--- license: openrail datasets: - Ali-fb/ios_icons_2 language: - en metrics: - accuracy library_name: diffusers pipeline_tag: text-to-image tags: - art ---
Pedrampedram/MarketMail-AI
Pedrampedram
2023-04-26T20:27:00Z
0
0
null
[ "marketing", "question-answering", "en", "dataset:Pedrampedram/MarketMail-AI-Dataset", "license:openrail", "region:us" ]
question-answering
2023-04-26T20:00:26Z
--- license: openrail datasets: - Pedrampedram/MarketMail-AI-Dataset language: - en pipeline_tag: question-answering tags: - marketing ---
khadija267/distilbert-base-uncased-distilled-clinc
khadija267
2023-04-26T20:25:28Z
110
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-04-26T00:36:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-distilled-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.947741935483871 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.2830 - Accuracy: 0.9477 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.8723 | 1.0 | 318 | 2.8941 | 0.7461 | | 2.2155 | 2.0 | 636 | 1.4516 | 0.8613 | | 1.0985 | 3.0 | 954 | 0.7466 | 0.9152 | | 0.5635 | 4.0 | 1272 | 0.4707 | 0.9358 | | 0.3294 | 5.0 | 1590 | 0.3628 | 0.9429 | | 0.221 | 6.0 | 1908 | 0.3173 | 0.9439 | | 0.1671 | 7.0 | 2226 | 0.2968 | 0.9477 | | 0.14 | 8.0 | 2544 | 0.2876 | 0.9484 | | 0.1263 | 9.0 | 2862 | 0.2838 | 0.9471 | | 0.1189 | 10.0 | 3180 | 0.2830 | 0.9477 | ### Framework versions - Transformers 4.11.3 - Pytorch 2.0.0+cu118 - Datasets 1.16.1 - Tokenizers 0.10.3
Dsfajardob/ppo-LunarLander-v2
Dsfajardob
2023-04-26T20:19:44Z
1
0
stable-baselines3
[ "stable-baselines3", "tensorboard", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-28T20:15:40Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 269.59 +/- 20.52 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
minoosh/ast-finetuned-audioset-10-10-0.4593-finetuned-ie
minoosh
2023-04-26T20:09:47Z
7
0
transformers
[ "transformers", "pytorch", "audio-spectrogram-transformer", "audio-classification", "generated_from_trainer", "license:bsd-3-clause", "endpoints_compatible", "region:us" ]
audio-classification
2023-04-26T09:55:48Z
--- license: bsd-3-clause tags: - generated_from_trainer model-index: - name: ast-finetuned-audioset-10-10-0.4593-finetuned-ie results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ast-finetuned-audioset-10-10-0.4593-finetuned-ie This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 3.0698 - eval_accuracy: 0.6076 - eval_runtime: 163.7462 - eval_samples_per_second: 7.579 - eval_steps_per_second: 0.953 - epoch: 18.08 - step: 1844 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Framework versions - Transformers 4.27.4 - Pytorch 1.13.0 - Datasets 2.11.0 - Tokenizers 0.13.2
khadija267/distilbert-base-uncased-finetuned-clinc
khadija267
2023-04-26T20:02:43Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-04-25T23:46:09Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9161290322580645 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7754 - Accuracy: 0.9161 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.2893 | 1.0 | 318 | 3.2831 | 0.7397 | | 2.6289 | 2.0 | 636 | 1.8731 | 0.8345 | | 1.5481 | 3.0 | 954 | 1.1580 | 0.89 | | 1.0137 | 4.0 | 1272 | 0.8584 | 0.9077 | | 0.7969 | 5.0 | 1590 | 0.7754 | 0.9161 | ### Framework versions - Transformers 4.11.3 - Pytorch 2.0.0+cu118 - Datasets 1.16.1 - Tokenizers 0.10.3
yerx/videomae-base-finetuned-basketball-subset-20epochs
yerx
2023-04-26T20:01:14Z
63
0
transformers
[ "transformers", "pytorch", "tensorboard", "videomae", "video-classification", "generated_from_trainer", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
video-classification
2023-04-26T18:56:04Z
--- license: cc-by-nc-4.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-finetuned-basketball-subset-20epochs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # videomae-base-finetuned-basketball-subset-20epochs This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.8785 - Accuracy: 0.1972 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 4060 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.2525 | 0.05 | 200 | 0.7720 | 0.52 | | 0.8649 | 1.05 | 400 | 0.7721 | 0.48 | | 1.0703 | 2.05 | 600 | 1.3605 | 0.52 | | 0.606 | 3.05 | 800 | 1.0668 | 0.6 | | 2.0221 | 4.05 | 1000 | 1.1741 | 0.56 | | 1.2916 | 5.05 | 1200 | 1.4747 | 0.52 | | 1.4861 | 6.05 | 1400 | 1.1454 | 0.6 | | 1.3012 | 7.05 | 1600 | 1.6105 | 0.56 | | 1.3327 | 8.05 | 1800 | 1.2343 | 0.52 | | 2.077 | 9.05 | 2000 | 1.3243 | 0.6 | | 1.2349 | 10.05 | 2200 | 1.2044 | 0.6 | | 1.005 | 11.05 | 2400 | 1.6417 | 0.52 | | 1.1622 | 12.05 | 2600 | 1.3058 | 0.56 | | 0.8031 | 13.05 | 2800 | 0.6776 | 0.48 | | 0.8588 | 14.05 | 3000 | 1.1644 | 0.64 | | 0.8451 | 15.05 | 3200 | 0.8491 | 0.64 | | 1.1336 | 16.05 | 3400 | 1.0237 | 0.6 | | 1.5719 | 17.05 | 3600 | 1.0391 | 0.64 | | 0.4892 | 18.05 | 3800 | 0.9995 | 0.64 | | 1.2092 | 19.05 | 4000 | 0.9802 | 0.56 | | 0.9784 | 20.01 | 4060 | 0.9771 | 0.56 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
Dsfajardob/ppo-LunarLander-v2-U8
Dsfajardob
2023-04-26T19:56:33Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-04-26T19:56:25Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -218.11 +/- 142.77 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'Dsfajardob/ppo-LunarLander-v2-U8' 'batch_size': 512 'minibatch_size': 128} ```
Anyayolp/t5-end2end-questions-generation
Anyayolp
2023-04-26T19:56:27Z
161
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:squad_modified_for_t5_qg", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-04-26T14:25:47Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_modified_for_t5_qg model-index: - name: t5-end2end-questions-generation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-end2end-questions-generation This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the squad_modified_for_t5_qg dataset. It achieves the following results on the evaluation set: - Loss: 1.5674 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.5884 | 0.34 | 100 | 1.9159 | | 1.9705 | 0.68 | 200 | 1.7310 | | 1.8439 | 1.02 | 300 | 1.6672 | | 1.7426 | 1.35 | 400 | 1.6382 | | 1.7147 | 1.69 | 500 | 1.6199 | | 1.6908 | 2.03 | 600 | 1.6053 | | 1.6315 | 2.37 | 700 | 1.5967 | | 1.627 | 2.71 | 800 | 1.5939 | | 1.6122 | 3.05 | 900 | 1.5877 | | 1.5706 | 3.39 | 1000 | 1.5861 | | 1.5708 | 3.73 | 1100 | 1.5742 | | 1.5534 | 4.06 | 1200 | 1.5798 | | 1.5351 | 4.4 | 1300 | 1.5738 | | 1.5226 | 4.74 | 1400 | 1.5757 | | 1.5187 | 5.08 | 1500 | 1.5727 | | 1.4963 | 5.42 | 1600 | 1.5710 | | 1.4841 | 5.76 | 1700 | 1.5668 | | 1.5025 | 6.1 | 1800 | 1.5688 | | 1.4778 | 6.44 | 1900 | 1.5717 | | 1.4769 | 6.77 | 2000 | 1.5674 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
mrm8488/vit-base-patch16-224_finetuned-kvasirv2-colonoscopy
mrm8488
2023-04-26T19:55:30Z
651
6
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "vit", "image-classification", "medical", "colon", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- tags: - image-classification - pytorch - medical - colon metrics: - accuracy: 0.93 --- # Vision Transformer fine-tuned on kvasir_v2 for colonoscopy classification ## Demo ### Drag the following images to the widget to test the model - ![](https://i.imgur.com/2ykziCJ_d.webp?maxwidth=224&fidelity=grand) - ![](https://i.imgur.com/NfWPHkj_d.webp?maxwidth=224&fidelity=grand) - ![](https://i.imgur.com/C3RexVQ_d.webp?maxwidth=224&fidelity=grand) - ![](https://i.imgur.com/qcCYpN9_d.webp?maxwidth=224&fidelity=grand) ## Training You can find the code [here](https://github.com/qanastek/HugsVision/blob/main/recipes/kvasir_v2/binary_classification/Kvasir_v2_Image_Classifier.ipynb) ## Metrics ``` precision recall f1-score support dyed-lifted-polyps 0.95 0.93 0.94 60 dyed-resection-margins 0.97 0.95 0.96 64 esophagitis 0.93 0.79 0.85 67 normal-cecum 1.00 0.98 0.99 54 normal-pylorus 0.95 1.00 0.97 57 normal-z-line 0.82 0.93 0.87 67 polyps 0.92 0.92 0.92 52 ulcerative-colitis 0.93 0.95 0.94 59 accuracy 0.93 480 macro avg 0.93 0.93 0.93 480 weighted avg 0.93 0.93 0.93 480 ``` ## How to use ```py from transformers import ViTFeatureExtractor, ViTForImageClassification from hugsvision.inference.VisionClassifierInference import VisionClassifierInference path = "mrm8488/vit-base-patch16-224_finetuned-kvasirv2-colonoscopy" classifier = VisionClassifierInference( feature_extractor = ViTFeatureExtractor.from_pretrained(path), model = ViTForImageClassification.from_pretrained(path), ) img = "Your image path" label = classifier.predict(img_path=img) print("Predicted class:", label) ``` > Disclaimer: This model was trained for research only > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) | [LinkedIn](https://www.linkedin.com/in/manuel-romero-cs/) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
gmongaras/gpt-anime-sub-1.3B
gmongaras
2023-04-26T19:53:42Z
142
5
transformers
[ "transformers", "pytorch", "safetensors", "gpt_neo", "text-generation", "license:openrail", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-02-01T05:26:48Z
--- license: openrail --- This model is fintuned using the following model: https://huggingface.co/EleutherAI/gpt-neo-1.3B The data was scraped from: https://www.kitsunekko.net/dirlist.php?dir=subtitles%2F To load, use: model = pipeline('text-generation',model="gmongaras/gpt-anime-sub-1.3B", tokenizer="EleutherAI/gpt-neo-1.3B")
Callidior/bert2bert-base-arxiv-titlegen
Callidior
2023-04-26T19:42:59Z
163
13
transformers
[ "transformers", "pytorch", "safetensors", "encoder-decoder", "text2text-generation", "summarization", "en", "dataset:arxiv_dataset", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:04Z
--- language: - en tags: - summarization license: apache-2.0 datasets: - arxiv_dataset metrics: - rouge widget: - text: "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data." --- # Paper Title Generator Generates titles for computer science papers given an abstract. The model is a BERT2BERT Encoder-Decoder using the official `bert-base-uncased` checkpoint as initialization for the encoder and decoder. It was fine-tuned on 318,500 computer science papers posted on arXiv.org between 2007 and 2022 and achieved a 26.3% Rouge2 F1-Score on held-out validation data. **Live Demo:** [https://paper-titles.ey.r.appspot.com/](https://paper-titles.ey.r.appspot.com/)
PanEa/dolly-v2-gptj-enhanced-auto-gptq
PanEa
2023-04-26T19:16:11Z
6
1
transformers
[ "transformers", "gptj", "text-generation", "en", "dataset:vicgalle/alpaca-gpt4", "dataset:databricks/databricks-dolly-15k", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-04-26T08:08:50Z
--- license: afl-3.0 datasets: - vicgalle/alpaca-gpt4 - databricks/databricks-dolly-15k language: - en metrics: - perplexity pipeline_tag: text-generation ---
JgnMama/Erniee
JgnMama
2023-04-26T19:15:08Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-04-26T19:12:31Z
--- license: creativeml-openrail-m ---
Pennyyyyy/t5-end2end-questions-generation
Pennyyyyy
2023-04-26T19:10:40Z
162
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:squad_modified_for_t5_qg", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-04-26T13:24:34Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_modified_for_t5_qg model-index: - name: t5-end2end-questions-generation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-end2end-questions-generation This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the squad_modified_for_t5_qg dataset. It achieves the following results on the evaluation set: - Loss: 1.5674 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.5884 | 0.34 | 100 | 1.9159 | | 1.9705 | 0.68 | 200 | 1.7310 | | 1.8439 | 1.02 | 300 | 1.6672 | | 1.7426 | 1.35 | 400 | 1.6382 | | 1.7147 | 1.69 | 500 | 1.6199 | | 1.6908 | 2.03 | 600 | 1.6053 | | 1.6315 | 2.37 | 700 | 1.5967 | | 1.627 | 2.71 | 800 | 1.5939 | | 1.6122 | 3.05 | 900 | 1.5877 | | 1.5706 | 3.39 | 1000 | 1.5861 | | 1.5708 | 3.73 | 1100 | 1.5742 | | 1.5534 | 4.06 | 1200 | 1.5798 | | 1.5351 | 4.4 | 1300 | 1.5738 | | 1.5226 | 4.74 | 1400 | 1.5757 | | 1.5187 | 5.08 | 1500 | 1.5727 | | 1.4963 | 5.42 | 1600 | 1.5710 | | 1.4841 | 5.76 | 1700 | 1.5668 | | 1.5025 | 6.1 | 1800 | 1.5688 | | 1.4778 | 6.44 | 1900 | 1.5717 | | 1.4769 | 6.77 | 2000 | 1.5674 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
Sergendel/a2c-PandaReachDense-v2
Sergendel
2023-04-26T19:08:07Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-04-26T19:05:30Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -1.47 +/- 0.30 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
anilkumar2444/a2c-AntBulletEnv-v0
anilkumar2444
2023-04-26T19:06:19Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-04-26T19:05:13Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 838.75 +/- 152.64 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
sdesai/narrativa-finetuned-wmt22-en-pt-br-brwac
sdesai
2023-04-26T18:58:42Z
159
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-04-26T18:43:19Z
--- tags: - generated_from_trainer model-index: - name: narrativa-finetuned-wmt22-en-pt-br-brwac results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # narrativa-finetuned-wmt22-en-pt-br-brwac This model is a fine-tuned version of [Narrativa/mbart-large-50-finetuned-opus-en-pt-translation](https://huggingface.co/Narrativa/mbart-large-50-finetuned-opus-en-pt-translation) on an unknown dataset. Also added brwac. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results - epoch = 3.0 - eval_bleu = 63.9813 - eval_gen_len = 12.3215 - eval_loss = 0.4894 - eval_runtime = 0:00:20.01 - eval_samples = 190 - eval_samples_per_second = 9.492 - eval_steps_per_second = 2.398 ### Framework versions - Transformers 4.28.0.dev0 - Pytorch 1.12.1+cu116 - Datasets 2.4.0 - Tokenizers 0.12.1
ericrincon/Qtable_taxi
ericrincon
2023-04-26T18:52:52Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-04-26T18:52:50Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Qtable_taxi results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.72 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="ericrincon/Qtable_taxi", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
ericrincon/Frozen_Lake_4x4
ericrincon
2023-04-26T18:50:48Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-04-26T18:50:46Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: Frozen_Lake_4x4 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="ericrincon/Frozen_Lake_4x4", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
email81227/poca-SoccerTwos
email81227
2023-04-26T18:38:17Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-04-26T18:07:55Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: email81227/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
LecJackS/distilbert-base-uncased-finetuned-emotion
LecJackS
2023-04-26T18:36:36Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-04-26T18:23:29Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: split metrics: - name: Accuracy type: accuracy value: 0.9245 - name: F1 type: f1 value: 0.9244610483889744 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2193 - Accuracy: 0.9245 - F1: 0.9245 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8598 | 1.0 | 250 | 0.3274 | 0.9005 | 0.8966 | | 0.2584 | 2.0 | 500 | 0.2193 | 0.9245 | 0.9245 | ### Framework versions - Transformers 4.13.0 - Pytorch 2.0.0+cu118 - Datasets 2.8.0 - Tokenizers 0.10.3
Asif782/lora
Asif782
2023-04-26T18:36:19Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-04-26T18:11:22Z
--- license: creativeml-openrail-m ---
KigenCHESS/eng-sw_translation
KigenCHESS
2023-04-26T18:33:41Z
61
0
transformers
[ "transformers", "tf", "marian", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-04-26T18:30:31Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: KigenCHESS/eng-sw_translation results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # KigenCHESS/eng-sw_translation This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-sw](https://huggingface.co/Helsinki-NLP/opus-mt-en-sw) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5372 - Validation Loss: 0.6656 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 424, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.9069 | 0.7022 | 0 | | 0.5372 | 0.6656 | 1 | ### Framework versions - Transformers 4.26.1 - TensorFlow 2.11.0 - Datasets 2.1.0 - Tokenizers 0.13.2
Raiden-1001/poca-SoccerTwos
Raiden-1001
2023-04-26T18:27:48Z
89
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-03-23T05:59:23Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: Raiden-1001/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
dkerja/songhyekyo
dkerja
2023-04-26T18:14:39Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-04-26T18:13:08Z
--- license: creativeml-openrail-m ---
Pranjalya/a2c-AntBulletEnv-v0
Pranjalya
2023-04-26T18:09:15Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-04-26T18:08:06Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1829.43 +/- 423.83 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
freya48/nekoda
freya48
2023-04-26T18:08:00Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-04-26T18:03:06Z
--- license: creativeml-openrail-m ---
kaisar-barlybay-sse/qard-bert-base-multilingual-uncased_6
kaisar-barlybay-sse
2023-04-26T17:52:59Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "multiple-choice", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
multiple-choice
2023-04-26T14:51:34Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: qard-bert-base-multilingual-uncased_6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # qard-bert-base-multilingual-uncased_6 This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3863 - Accuracy: 0.3074 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.399 | 1.0 | 501 | 1.3862 | 0.3373 | | 1.3921 | 2.0 | 1002 | 1.3862 | 0.3613 | | 1.3905 | 3.0 | 1503 | 1.3863 | 0.3273 | | 1.3903 | 4.0 | 2004 | 1.3863 | 0.2455 | | 1.3904 | 5.0 | 2505 | 1.3863 | 0.2834 | | 1.3898 | 6.0 | 3006 | 1.3863 | 0.3074 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
kaisar-barlybay-sse/qard-distilbert-base-multilingual-cased_6
kaisar-barlybay-sse
2023-04-26T17:33:35Z
101
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "multiple-choice", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
multiple-choice
2023-04-26T14:19:40Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: qard-distilbert-base-multilingual-cased_6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # qard-distilbert-base-multilingual-cased_6 This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3254 - Accuracy: 0.4331 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.3738 | 1.0 | 501 | 1.3361 | 0.4152 | | 1.2866 | 2.0 | 1002 | 1.3259 | 0.4212 | | 1.0942 | 3.0 | 1503 | 1.3760 | 0.4391 | | 0.8393 | 4.0 | 2004 | 1.6132 | 0.4291 | | 0.6062 | 5.0 | 2505 | 1.8334 | 0.4391 | | 0.4319 | 6.0 | 3006 | 2.3254 | 0.4331 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
YchKhan/EloQuence
YchKhan
2023-04-26T17:30:58Z
0
0
null
[ "arxiv:1910.09700", "region:us" ]
null
2023-04-26T17:22:36Z
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {} --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
shahukareem/bulhaa-cat
shahukareem
2023-04-26T17:10:07Z
31
0
diffusers
[ "diffusers", "pytorch", "stable-diffusion", "text-to-image", "diffusion-models-class", "dreambooth-hackathon", "animal", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-01-19T15:15:29Z
--- license: creativeml-openrail-m tags: - pytorch - diffusers - stable-diffusion - text-to-image - diffusion-models-class - dreambooth-hackathon - animal widget: - text: A cute and adorable photo of a cat --- # DreamBooth model for the naseemee concept trained by shahukareem on the shahukareem/cat dataset. This is a Stable Diffusion model fine-tuned on the bulhaa concept with DreamBooth. It can be used by modifying the `instance_prompt`: **a photo of bulhaa cat** This model was created as part of the DreamBooth Hackathon 🔥. Visit the [organisation page](https://huggingface.co/dreambooth-hackathon) for instructions on how to take part! ## Description This is a Stable Diffusion model fine-tuned on `cat` images for the animal theme. ## Usage ```python from diffusers import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained('shahukareem/bulhaa-cat') image = pipeline().images[0] image ```
ericrincon/LunarLander-v2
ericrincon
2023-04-26T16:51:34Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-04-26T16:44:07Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 265.64 +/- 23.25 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
sophiebottani/distilbert_squad_newsqa
sophiebottani
2023-04-26T16:22:54Z
11
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:newsqa", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-04-26T07:12:32Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert_squad_newsqa results: [] datasets: - newsqa --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_squad_newsqa This model is a fine-tuned version of [distilbert-base-cased-distilled-squad](https://huggingface.co/distilbert-base-cased-distilled-squad) on the NewsQA dataset. It achieves the following results on the evaluation set: - Loss: 1.6247 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: tpu - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.7181 | 1.0 | 6730 | 1.6477 | | 1.4932 | 2.0 | 13460 | 1.6274 | | 1.4426 | 3.0 | 20190 | 1.6247 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.12.1+cu102 - Datasets 2.9.0 - Tokenizers 0.13.2
kaisar-barlybay-sse/qard-bert-base-multilingual-cased_6
kaisar-barlybay-sse
2023-04-26T15:57:26Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "multiple-choice", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
multiple-choice
2023-04-26T11:43:17Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: qard-bert-base-multilingual-cased_6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # qard-bert-base-multilingual-cased_6 This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3526 - Accuracy: 0.3453 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.3904 | 1.0 | 501 | 1.3831 | 0.3473 | | 1.3997 | 2.0 | 1002 | 1.3863 | 0.3234 | | 1.3937 | 3.0 | 1503 | 1.3865 | 0.2395 | | 1.3912 | 4.0 | 2004 | 1.3862 | 0.3253 | | 1.3919 | 5.0 | 2505 | 1.3861 | 0.3633 | | 1.3713 | 6.0 | 3006 | 1.3526 | 0.3453 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
Sergendel/ppo-SnowballTarget
Sergendel
2023-04-26T15:33:35Z
8
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-04-26T15:33:30Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Find your model_id: Sergendel/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
bobLi/autotrain-burp-52899124622
bobLi
2023-04-26T15:30:07Z
105
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain", "en", "dataset:bobLi/autotrain-data-burp", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-04-26T15:28:52Z
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - bobLi/autotrain-data-burp co2_eq_emissions: emissions: 0.004479786338858913 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 52899124622 - CO2 Emissions (in grams): 0.0045 ## Validation Metrics - Loss: 0.000 - Accuracy: 1.000 - Precision: 1.000 - Recall: 1.000 - AUC: 1.000 - F1: 1.000 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/bobLi/autotrain-burp-52899124622 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("bobLi/autotrain-burp-52899124622", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("bobLi/autotrain-burp-52899124622", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
GANYANG/gpt-2
GANYANG
2023-04-26T15:24:20Z
0
0
null
[ "pytorch", "tensorboard", "generated_from_trainer", "license:mit", "region:us" ]
null
2023-04-12T03:39:20Z
--- license: mit tags: - generated_from_trainer model-index: - name: gpt-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt-2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6604 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.837 | 0.51 | 200 | 1.7257 | | 1.7602 | 1.03 | 400 | 1.6777 | | 1.7341 | 1.54 | 600 | 1.6604 | ### Framework versions - Transformers 4.27.1 - Pytorch 2.0.0 - Datasets 2.10.1 - Tokenizers 0.13.3
Supparesk/t5-end2end-questions-generation
Supparesk
2023-04-26T15:09:36Z
163
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:squad_modified_for_t5_qg", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-04-24T17:56:41Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_modified_for_t5_qg model-index: - name: t5-end2end-questions-generation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-end2end-questions-generation This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the squad_modified_for_t5_qg dataset. It achieves the following results on the evaluation set: - Loss: 1.5791 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.5888 | 0.34 | 100 | 1.9194 | | 1.9722 | 0.68 | 200 | 1.7316 | | 1.8479 | 1.02 | 300 | 1.6689 | | 1.7478 | 1.35 | 400 | 1.6409 | | 1.7204 | 1.69 | 500 | 1.6268 | | 1.6986 | 2.03 | 600 | 1.6105 | | 1.6437 | 2.37 | 700 | 1.6007 | | 1.639 | 2.71 | 800 | 1.5952 | | 1.6261 | 3.05 | 900 | 1.5909 | | 1.5915 | 3.39 | 1000 | 1.5861 | | 1.5917 | 3.73 | 1100 | 1.5829 | | 1.5772 | 4.06 | 1200 | 1.5788 | | 1.5697 | 4.4 | 1300 | 1.5800 | | 1.557 | 4.74 | 1400 | 1.5791 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
gaussalgo/MiniLM-L6-v2-Canard-Fullwiki
gaussalgo
2023-04-26T15:03:24Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-04-26T15:02:58Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 1988 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 500, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
ckallur/ppo-LunarLander-v2
ckallur
2023-04-26T14:59:53Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-04-26T14:59:23Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 258.44 +/- 19.98 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
lorenzoncina/whisper-medium-ru
lorenzoncina
2023-04-26T14:59:33Z
34
7
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "ru", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-04-07T15:58:48Z
--- language: - ru license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Medium Russian results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: mozilla-foundation/common_voice_11_0 ru type: mozilla-foundation/common_voice_11_0 config: ru split: test args: ru metrics: - type: wer value: 7.562437929892964 name: Wer - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: google/fleurs type: google/fleurs config: ru_ru split: test metrics: - type: wer value: 10.92 name: WER --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Medium Russian This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the mozilla-foundation/common_voice_11_0 ru dataset. It achieves the following results on the evaluation set: - Loss: 0.2253 - Wer: 7.5624 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.1578 | 0.1 | 1000 | 0.1662 | 8.8290 | | 0.045 | 1.08 | 2000 | 0.1748 | 8.9148 | | 0.0176 | 2.06 | 3000 | 0.1889 | 8.7848 | | 0.0104 | 3.04 | 4000 | 0.1922 | 8.4354 | | 0.0051 | 4.02 | 5000 | 0.2034 | 8.1865 | | 0.0047 | 4.12 | 6000 | 0.2012 | 8.0455 | | 0.0018 | 5.1 | 7000 | 0.2117 | 7.6237 | | 0.0004 | 6.08 | 8000 | 0.2177 | 7.6078 | | 0.0003 | 7.06 | 9000 | 0.2244 | 7.6262 | | 0.0002 | 8.04 | 10000 | 0.2253 | 7.5624 | ### Framework versions - Transformers 4.28.0.dev0 - Pytorch 2.0.0+cu117 - Datasets 2.11.1.dev0 - Tokenizers 0.13.2
Carlosrelao/Reinforce-CartPole1
Carlosrelao
2023-04-26T14:53:34Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-04-26T14:53:22Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 459.40 +/- 121.80 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
murlina/ppo-LunarLander-v2
murlina
2023-04-26T14:45:14Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-04-25T17:12:35Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 243.30 +/- 32.31 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
gRaphael/ppo-LunarLander-v2
gRaphael
2023-04-26T14:36:49Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-04-26T14:27:38Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 264.49 +/- 14.91 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
MiniMinMax/Reinforce-Pixelcopter
MiniMinMax
2023-04-26T14:32:03Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-04-26T14:31:59Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 42.40 +/- 24.45 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
doarisono/Doar
doarisono
2023-04-26T14:28:16Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-04-26T14:13:06Z
--- license: creativeml-openrail-m ---
Ashfaq60/Ashfaq
Ashfaq60
2023-04-26T14:27:27Z
0
0
null
[ "region:us" ]
null
2023-04-26T13:07:28Z
--- license: artistic-2.0 ---hi
rawmt/finetuning-sentiment-model-3000-samples
rawmt
2023-04-26T14:24:05Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-04-26T14:10:22Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3114 - Accuracy: 0.8733 - F1: 0.8742 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Tokenizers 0.13.3
uisikdag/42000news_turkish_bert_uncased_finetune
uisikdag
2023-04-26T14:21:30Z
185
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-14T14:37:45Z
--- license: mit tags: - generated_from_trainer model-index: - name: umit_42000news_bertuncased results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # umit_42000news_bertuncased This model is a fine-tuned version of [dbmdz/bert-base-turkish-uncased](https://huggingface.co/dbmdz/bert-base-turkish-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
Sinsinnati/hf_workshop_extra
Sinsinnati
2023-04-26T14:18:43Z
76
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "text-classification", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2023-04-26T14:08:49Z
--- pipeline_tag: text-classification widget: - text: He loves learning new things. - text: I go to university every day. ---
BlueAvenir/proseiben_events_activities_announcements
BlueAvenir
2023-04-26T14:17:55Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-04-26T14:17:33Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 653 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 653, "warmup_steps": 66, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
ndhieunguyen/Reinforce-PixelCopter
ndhieunguyen
2023-04-26T14:15:26Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-04-24T01:44:42Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-PixelCopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 46.20 +/- 34.66 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Dewa/ppo-Lunar_rl-v5
Dewa
2023-04-26T14:01:40Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-04-26T14:00:55Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -114.16 +/- 28.04 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 100000 'learning_rate': 0.004 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.92 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'Dewa/ppo-Lunar_rl-v5' 'batch_size': 512 'minibatch_size': 128} ```
Dewa/dqn-SpaceInvadersNoFrameskip-v4-version-6
Dewa
2023-04-26T13:39:48Z
3
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-04-26T12:50:28Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 274.50 +/- 31.50 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Dewa -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Dewa -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Dewa ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
PaulineSanchez/autotrain-translation_food_english_to_french-52830124391
PaulineSanchez
2023-04-26T13:36:23Z
223
2
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "autotrain", "translation", "en", "fr", "dataset:PaulineSanchez/autotrain-data-translation_food_english_to_french", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-04-26T13:14:44Z
--- tags: - autotrain - translation language: - en - fr datasets: - PaulineSanchez/autotrain-data-translation_food_english_to_french co2_eq_emissions: emissions: 8.23780867881086 --- # Model Trained Using AutoTrain - Problem type: Translation - Model ID: 52830124391 - CO2 Emissions (in grams): 8.2378 ## Validation Metrics - Loss: 0.539 - SacreBLEU: 61.476 - Gen len: 12.913
Sergendel/Reinforce-PixelCopter_v2
Sergendel
2023-04-26T13:35:08Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-04-26T13:35:05Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-PixelCopter_v2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 30.60 +/- 30.90 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Yonadav/summarization_t5base_en_to_kjven
Yonadav
2023-04-26T13:32:17Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-04-26T07:40:28Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: summarization_t5base_en_to_kjven results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # summarization_t5base_en_to_kjven This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8324 - Bleu: 21.2143 - Gen Len: 18.1685 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 1.0735 | 1.0 | 2860 | 0.9479 | 21.3913 | 18.1219 | | 0.9776 | 2.0 | 5720 | 0.8750 | 22.1711 | 18.1307 | | 0.918 | 3.0 | 8580 | 0.8317 | 22.6915 | 18.1381 | | 0.8741 | 4.0 | 11440 | 0.8039 | 23.0856 | 18.1468 | | 0.8489 | 5.0 | 14300 | 0.7841 | 23.3573 | 18.1455 | | 0.8169 | 6.0 | 17160 | 0.7664 | 23.5073 | 18.1493 | | 0.7965 | 7.0 | 20020 | 0.7532 | 23.6919 | 18.1495 | | 0.78 | 8.0 | 22880 | 0.7411 | 23.8445 | 18.1461 | | 0.7568 | 9.0 | 25740 | 0.7338 | 23.86 | 18.155 | | 0.7496 | 10.0 | 28600 | 0.7228 | 23.953 | 18.1511 | | 0.7411 | 11.0 | 31460 | 0.7175 | 24.0327 | 18.1511 | | 0.8376 | 12.0 | 34320 | 0.8114 | 23.311 | 18.1319 | | 1.1918 | 13.0 | 37180 | 0.9686 | 21.5339 | 18.1185 | | 1.0929 | 14.0 | 40040 | 0.8978 | 21.561 | 18.1455 | | 1.0373 | 15.0 | 42900 | 0.8617 | 21.4942 | 18.1542 | | 1.0165 | 16.0 | 45760 | 0.8432 | 21.3962 | 18.1595 | | 0.9973 | 17.0 | 48620 | 0.8340 | 21.2558 | 18.166 | | 0.9889 | 18.0 | 51480 | 0.8326 | 21.2238 | 18.1687 | | 0.9909 | 19.0 | 54340 | 0.8325 | 21.2216 | 18.1688 | | 0.9942 | 20.0 | 57200 | 0.8324 | 21.2143 | 18.1685 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
josu/gpt-neo-1.3B-instruction
josu
2023-04-26T13:27:25Z
19
1
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "pt", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-04-14T20:56:15Z
--- language: - pt widget: - text: Explique o que é inteligência artificial. - text: Explique o que é processamento de linguagem natural. --- ``` python from transformers import GenerationConfig from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("josu/gpt-neo-1.3B-instruction") tokenizer = AutoTokenizer.from_pretrained("josu/gpt-neo-1.3B-instruction") def generate_prompt(instruction, input=None): if input: return f"""Abaixo está uma instrução que descreve uma tarefa, juntamente com uma entrada que fornece mais contexto. Escreva uma resposta que complete adequadamente o pedido. ### Instrução: {instruction} ### Entrada: {input} ### Resposta:""" else: return f"""Abaixo está uma instrução que descreve uma tarefa. Escreva uma resposta que complete adequadamente o pedido. ### Instrução: {instruction} ### Resposta:""" generation_config = GenerationConfig( temperature=0.2, top_p=0.75, num_beams=4, ) def evaluate(instruction, input=None): prompt = generate_prompt(instruction, input) inputs = tokenizer(prompt, return_tensors="pt") input_ids = inputs["input_ids"].cuda() generation_output = model.generate( input_ids=input_ids, generation_config=generation_config, return_dict_in_generate=True, output_scores=True, max_new_tokens=256 ) content = [] for s in generation_output.sequences: output = tokenizer.decode(s) content.append(output.split("### Resposta:")[1].strip()) return content ```
UsuallyPoncho/ppo-Huggy
UsuallyPoncho
2023-04-26T13:22:22Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-04-26T13:22:16Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Find your model_id: UsuallyPoncho/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
XdSlams/fjhqgwkjwehhrfgir28
XdSlams
2023-04-26T13:06:23Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-04-26T07:09:24Z
--- license: creativeml-openrail-m ---
LarryAIDraw/jessicaGranblue_v10
LarryAIDraw
2023-04-26T13:06:13Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-04-26T12:59:23Z
--- license: creativeml-openrail-m --- https://civitai.com/models/50740/jessica-or-granblue-fantasy
LarryAIDraw/eremiteScorching_v10
LarryAIDraw
2023-04-26T13:05:56Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-04-26T12:59:04Z
--- license: creativeml-openrail-m --- https://civitai.com/models/50612/eremite-scorching-loremaster-genshin-impact
LarryAIDraw/towerOfFantasyFiona_v10
LarryAIDraw
2023-04-26T13:05:10Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-04-26T12:57:55Z
--- license: creativeml-openrail-m --- https://civitai.com/models/50216/tower-of-fantasy-fiona
LarryAIDraw/yamashiroAzurLane_v10
LarryAIDraw
2023-04-26T13:04:41Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-04-26T12:57:08Z
--- license: creativeml-openrail-m --- https://civitai.com/models/50909/yamashiroazur-lane
LarryAIDraw/sanjounoHaruhimeDunmachi_v10
LarryAIDraw
2023-04-26T13:04:13Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-04-26T12:56:21Z
--- license: creativeml-openrail-m --- https://civitai.com/models/51211/sanjouno-haruhime-dunmachi
LarryAIDraw/7thMarchHonkaiStar_v10
LarryAIDraw
2023-04-26T13:04:01Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-04-26T12:55:59Z
--- license: creativeml-openrail-m --- https://civitai.com/models/50469/7th-march-honkai-star-rail
alibidaran/Symptom2disease
alibidaran
2023-04-26T12:51:01Z
121
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-04-26T11:19:00Z
--- license: apache-2.0 pipeline_tag: text-classification ---
aravind-selvam/donut_finetuned_chart
aravind-selvam
2023-04-26T12:49:39Z
53
2
transformers
[ "transformers", "pytorch", "tensorboard", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2023-04-17T12:33:36Z
--- license: mit tags: - generated_from_trainer model-index: - name: donut_finetuned_chart results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut_finetuned_chart This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on an chart images dataset. It achieves the following results on the evaluation set: - Loss: 0.4957 - Cer: 0.2318 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 3 - total_train_batch_size: 24 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4943 | 1.0 | 166 | 0.6634 | 0.2341 | | 0.475 | 2.0 | 333 | 0.5370 | 0.2320 | | 0.3009 | 3.0 | 500 | 0.5051 | 0.2318 | | 0.2611 | 3.98 | 664 | 0.4957 | 0.2318 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
DTorregrosa/sd-class-butterflies-64
DTorregrosa
2023-04-26T12:49:08Z
36
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-04-26T12:48:19Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('DTorregrosa/sd-class-butterflies-64') image = pipeline().images[0] image ```
Oleksandr2003/QA_model
Oleksandr2003
2023-04-26T12:48:53Z
29
0
transformers
[ "transformers", "pytorch", "tf", "tensorboard", "xlm-roberta", "question-answering", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2023-01-29T15:51:42Z
--- license: mit tags: - generated_from_trainer model-index: - name: QA_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # QA_model This model is a fine-tuned version of [ukr-models/xlm-roberta-base-uk](https://huggingface.co/ukr-models/xlm-roberta-base-uk) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3340 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.4719 | 1.0 | 620 | 1.3108 | | 1.4047 | 2.0 | 1240 | 1.1630 | | 1.1245 | 3.0 | 1860 | 1.1429 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
Dewa/dqn-SpaceInvadersNoFrameskip-v4-version-5
Dewa
2023-04-26T12:43:46Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-04-26T12:43:11Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 14.50 +/- 12.34 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Dewa -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Dewa -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Dewa ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
Ubenwa/sb-ecapa-vggsound
Ubenwa
2023-04-26T12:37:18Z
7
1
speechbrain
[ "speechbrain", "embeddings", "Sound", "pytorch", "ECAPA-TDNN", "TDNN", "audio-classification", "en", "dataset:VGGSound", "arxiv:2106.04624", "license:apache-2.0", "region:us" ]
audio-classification
2023-01-06T01:25:21Z
--- language: "en" thumbnail: tags: - speechbrain - embeddings - Sound - pytorch - ECAPA-TDNN - TDNN - audio-classification license: "apache-2.0" datasets: - VGGSound metrics: - Accuracy --- <iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe> <br/><br/> # Sound Recognition with ECAPA embeddings on VGGSound This repository provides all the necessary tools to perform sound recognition with SpeechBrain using a model pretrained on VGGSound. For a better experience, we encourage you to learn more about [SpeechBrain](https://speechbrain.github.io). The given model performance on the test set is: | Release | Error Rate (%) |:-------------:|:--------------:| | 28-02-23 | 42.8 | #### Referencing ECAPA ```@inproceedings{DBLP:conf/interspeech/DesplanquesTD20, author = {Brecht Desplanques and Jenthe Thienpondt and Kris Demuynck}, editor = {Helen Meng and Bo Xu and Thomas Fang Zheng}, title = {{ECAPA-TDNN:} Emphasized Channel Attention, Propagation and Aggregation in {TDNN} Based Speaker Verification}, booktitle = {Interspeech 2020}, pages = {3830--3834}, publisher = {{ISCA}}, year = {2020}, } ``` #### Referencing VGGSound ```@inproceedings{chen2020vggsound, title={Vggsound: A large-scale audio-visual dataset}, author={Chen, Honglie and Xie, Weidi and Vedaldi, Andrea and Zisserman, Andrew}, booktitle={ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={721--725}, year={2020}, organization={IEEE} } ``` # **Citing SpeechBrain** Please, cite SpeechBrain if you use it for your research or business. ```bibtex @misc{speechbrain, title={{SpeechBrain}: A General-Purpose Speech Toolkit}, author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio}, year={2021}, eprint={2106.04624}, archivePrefix={arXiv}, primaryClass={eess.AS}, note={arXiv:2106.04624} } ```
jorgefedzhedz/distilbert-base-uncased-finetuned-cola
jorgefedzhedz
2023-04-26T12:33:20Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-04-26T12:09:33Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.541934635424655 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8224 - Matthews Correlation: 0.5419 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5231 | 1.0 | 535 | 0.5305 | 0.4003 | | 0.348 | 2.0 | 1070 | 0.5013 | 0.4885 | | 0.2353 | 3.0 | 1605 | 0.5578 | 0.5299 | | 0.1846 | 4.0 | 2140 | 0.7711 | 0.5176 | | 0.1363 | 5.0 | 2675 | 0.8224 | 0.5419 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
metrosir/sd
metrosir
2023-04-26T12:32:27Z
49
0
transformers
[ "transformers", "endpoints_compatible", "region:us" ]
null
2023-04-25T13:01:04Z
# Chill Watcher consider deploy on: - huggingface inference point - replicate api - lightning.ai # platform comparison > all support autoscaling |platform|prediction speed|charges|deploy handiness| |-|-|-|-| |huggingface|fast:20s|high:$0.6/hr (without autoscaling)|easy:git push| |replicate|fast if used frequently: 30s, slow if needs initialization: 5min|low: $0.02 per generation|difficult: build image and upload| |lightning.ai|fast with app running: 20s, slow if idle: XXs|low: free $30 per month, $0.18 per init, $0.02 per run|easy: one command| # platform deploy options ## huggingface > [docs](https://huggingface.co/docs/inference-endpoints/guides/custom_handler) - requirements: use pip packages in `requirements.txt` - `init()` and `predict()` function: use `handler.py`, implement the `EndpointHandler` class - more: modify `handler.py` for requests and inference and explore more highly-customized features - deploy: git (lfs) push to huggingface repository(the whole directory including models and weights, etc.), and use inference endpoints to deploy. Click and deploy automaticly, very simple. - call api: use the url provide by inference endpoints after endpoint is ready(build, initialize and in a "running" state), make a post request to the url using request schema definied in the `handler.py` ## replicate > [docs](https://replicate.com/docs/guides/push-a-model) - requirements: specify all requirements(pip packages, system packages, python version, cuda, etc.) in `cog.yaml` - `init()` and `predict()` function: use `predict.py`, implement the `Predictor` class - more: modify `predict.py` - deploy: 1. get a linux GPU machine with 60GB disk space; 2. install [cog](https://replicate.com/docs/guides/push-a-model) and [docker](https://docs.docker.com/engine/install/ubuntu/#set-up-the-repository) 3. `git pull` the current repository from huggingface, including large model files 4. after `predict.py` and `cog.yaml` is correctly coded, run `cog login`, `cog push`, then cog will build a docker image locally and push the image to replicate. As the image could take 30GB or so disk space, it would cost a lot network bandwidth. - call api: if everything runs successfully and the docker image is pushed to replicate, you will see a web-ui and an API example directly in your replicate repository ## lightning.ai > docs: [code](https://lightning.ai/docs/app/stable/levels/basic/real_lightning_component_implementations.html), [deploy](https://lightning.ai/docs/app/stable/workflows/run_app_on_cloud/) - requirements: - pip packages are listed in `requirements.txt`, note that some requirements are different from those in huggingface, and you need to modify some lines in `requirements.txt` according to the comment in the `requirements.txt` - other pip packages, system packages and some big model weight files download commands, can be listed using a custom build config. Checkout `class CustomBuildConfig(BuildConfig)` in `app.py`. In a custom build config you can use many linux commands such as `wget` and `sudo apt-get update`. The custom build config will be executed on the `__init__()` of the `PythonServer` class - `init()` and `predict()` function: use `app.py`, implement the `PythonServer` class. Note: - some packages haven't been installed when the file is called(these packages may be installed when `__init__()` is called), so some import code should be in the function, not at the top of the file, or you may get import errors. - you can't save your own value to `PythonServer.self` unless it's predifined in the variables, so don't assign any self-defined variables to `self` - if you use the custom build config, you should implement `PythonServer`'s `__init()__` yourself, so don't forget to use the correct function signature - more: ... - deploy: - `pip install lightning` - prepare the directory on your local computer(no need to have a GPU) - list big files in the `.lightningignore` file to avoid big file upload and save deploy time cost - run `lightning run app app.py --cloud` in the local terminal, and it will upload the files in the directory to lightning cloud, and start deploying on the cloud - check error logs on the web-ui, use `all logs` - call api: only if the app starts successfully, you can see a valid url in the `settings` page of the web-ui. Open that url, and you can see the api ### some stackoverflow: install docker: - https://docs.docker.com/engine/install/ubuntu/#set-up-the-repository install git-lfs: - https://github.com/git-lfs/git-lfs/blob/main/INSTALLING.md linux: ``` curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | sudo bash sudo apt-get install git-lfs ``` --- license: apache-2.0 ---
Dewa/pixelcopter_rl-v4
Dewa
2023-04-26T12:31:11Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-04-26T12:31:06Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: pixelcopter_rl-v4 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 22.20 +/- 15.35 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
mtc/mbart-newsum
mtc
2023-04-26T12:29:27Z
106
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-29T13:47:33Z
# grizzled-interest-2023-03-29 This model is a fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) on the mtc/newsum2021 dataset. It achieves the following results on the test set: - Loss: 3.5178 - Rouge1: 31.4512 - Rouge2: 11.0965 - Rougel: 21.5021 - Rougelsum: 28.634 - Gen Len: 75.755 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: polynomial - lr_scheduler_warmup_steps: 500 - training_steps: 8000 - mixed_precision_training: Native AMP - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 3.6815 | 0.89 | 500 | 3.5617 | 29.5414 | 10.5201 | 20.056 | 27.2581 | 86.07 | | 3.4132 | 1.79 | 1000 | 3.4133 | 29.6393 | 9.9545 | 19.6903 | 27.0861 | 96.545 | | 3.198 | 2.68 | 1500 | 3.3693 | 29.8614 | 10.4517 | 20.1728 | 27.3879 | 94.31 | | 3.0292 | 3.58 | 2000 | 3.3370 | 30.6444 | 11.5935 | 21.1955 | 28.2699 | 87.355 | | 2.901 | 4.47 | 2500 | 3.3440 | 30.7453 | 11.111 | 21.2076 | 28.269 | 88.365 | | 2.7832 | 5.37 | 3000 | 3.3758 | 30.4995 | 10.9025 | 20.6601 | 28.0575 | 104.655 | | 2.6965 | 6.26 | 3500 | 3.3793 | 31.2287 | 11.5544 | 21.1909 | 28.738 | 88.47 | | 2.6475 | 7.16 | 4000 | 3.4083 | 32.0341 | 11.9417 | 22.2785 | 29.2495 | 84.095 | | 2.6196 | 8.05 | 4500 | 3.4007 | 30.8963 | 11.3811 | 21.3146 | 28.3222 | 90.875 | | 2.5574 | 8.94 | 5000 | 3.4104 | 32.3867 | 12.0469 | 21.9831 | 29.5205 | 87.46 | | 2.4977 | 9.84 | 5500 | 3.4340 | 32.5857 | 12.5072 | 22.6288 | 30.1168 | 79.87 | | 2.4362 | 10.73 | 6000 | 3.4626 | 31.9121 | 11.8577 | 22.3647 | 29.3822 | 85.17 | | 2.3977 | 11.63 | 6500 | 3.4737 | 32.0202 | 12.0413 | 22.5237 | 29.5166 | 77.905 | | 2.369 | 12.52 | 7000 | 3.4890 | 31.2516 | 11.3416 | 21.5711 | 28.5465 | 85.605 | | 2.3446 | 13.42 | 7500 | 3.4949 | 32.1277 | 11.6876 | 22.0244 | 29.2239 | 83.895 | | 2.3295 | 14.31 | 8000 | 3.4976 | 31.8729 | 11.629 | 21.9629 | 28.9948 | 84.47 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.0.dev20230220+cu117 - Datasets 2.9.0 - Tokenizers 0.13.2
vega6000/distilgpt2-finetuned-medical
vega6000
2023-04-26T12:22:34Z
188
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-04-26T09:26:10Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-medical results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-medical This model is a fine-tuned version of [vega6000/distilgpt2-finetuned-medical](https://huggingface.co/vega6000/distilgpt2-finetuned-medical) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6248 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 15 | 2.0817 | | No log | 2.0 | 30 | 1.9431 | | No log | 3.0 | 45 | 1.8487 | | No log | 4.0 | 60 | 1.7761 | | No log | 5.0 | 75 | 1.7253 | | No log | 6.0 | 90 | 1.6875 | | No log | 7.0 | 105 | 1.6574 | | No log | 8.0 | 120 | 1.6385 | | No log | 9.0 | 135 | 1.6288 | | No log | 10.0 | 150 | 1.6248 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
Zexois36/tokyolagi
Zexois36
2023-04-26T12:13:52Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-04-26T12:11:45Z
--- license: creativeml-openrail-m ---
DTorregrosa/sd-class-butterflies-32
DTorregrosa
2023-04-26T12:11:54Z
32
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-04-26T12:11:41Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('DTorregrosa/sd-class-butterflies-32') image = pipeline().images[0] image ```
pszemraj/pegasus-large-book-summary
pszemraj
2023-04-26T12:01:32Z
119
1
transformers
[ "transformers", "pytorch", "safetensors", "pegasus", "text2text-generation", "summarization", "en", "dataset:kmfoda/booksum", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:05Z
--- language: - en tags: - summarization - pegasus license: apache-2.0 datasets: - kmfoda/booksum metrics: - rouge widget: - text: "large earthquakes along a given fault segment do not occur at random intervals because it takes time to accumulate the strain energy for the rupture. The rates at which tectonic plates move and accumulate strain at their boundaries are approximately uniform. Therefore, in first approximation, one may expect that large ruptures of the same fault segment will occur at approximately constant time intervals. If subsequent main shocks have different amounts of slip across the fault, then the recurrence time may vary, and the basic idea of periodic mainshocks must be modified. For great plate boundary ruptures the length and slip often vary by a factor of 2. Along the southern segment of the San Andreas fault the recurrence interval is 145 years with variations of several decades. The smaller the standard deviation of the average recurrence interval, the more specific could be the long term prediction of a future mainshock." example_title: "earthquakes" - text: " A typical feed-forward neural field algorithm. Spatiotemporal coordinates are fed into a neural network that predicts values in the reconstructed domain. Then, this domain is mapped to the sensor domain where sensor measurements are available as supervision. Class and Section Problems Addressed Generalization (Section 2) Inverse problems, ill-posed problems, editability; symmetries. Hybrid Representations (Section 3) Computation & memory efficiency, representation capacity, editability: Forward Maps (Section 4) Inverse problems Network Architecture (Section 5) Spectral bias, integration & derivatives. Manipulating Neural Fields (Section 6) Edit ability, constraints, regularization. Table 2: The five classes of techniques in the neural field toolbox each addresses problems that arise in learning, inference, and control. (Section 3). We can supervise reconstruction via differentiable forward maps that transform Or project our domain (e.g, 3D reconstruction via 2D images; Section 4) With appropriate network architecture choices, we can overcome neural network spectral biases (blurriness) and efficiently compute derivatives and integrals (Section 5). Finally, we can manipulate neural fields to add constraints and regularizations, and to achieve editable representations (Section 6). Collectively, these classes constitute a 'toolbox' of techniques to help solve problems with neural fields There are three components in a conditional neural field: (1) An encoder or inference function € that outputs the conditioning latent variable 2 given an observation 0 E(0) =2. 2 is typically a low-dimensional vector, and is often referred to aS a latent code Or feature code_ (2) A mapping function 4 between Z and neural field parameters O: Y(z) = O; (3) The neural field itself $. The encoder € finds the most probable z given the observations O: argmaxz P(2/0). The decoder maximizes the inverse conditional probability to find the most probable 0 given Z: arg- max P(Olz). We discuss different encoding schemes with different optimality guarantees (Section 2.1.1), both global and local conditioning (Section 2.1.2), and different mapping functions Y (Section 2.1.3) 2. Generalization Suppose we wish to estimate a plausible 3D surface shape given a partial or noisy point cloud. We need a suitable prior over the sur- face in its reconstruction domain to generalize to the partial observations. A neural network expresses a prior via the function space of its architecture and parameters 0, and generalization is influenced by the inductive bias of this function space (Section 5)." example_title: "scientific paper" - text: " the big variety of data coming from diverse sources is one of the key properties of the big data phenomenon. It is, therefore, beneficial to understand how data is generated in various environments and scenarios, before looking at what should be done with this data and how to design the best possible architecture to accomplish this The evolution of IT architectures, described in Chapter 2, means that the data is no longer processed by a few big monolith systems, but rather by a group of services In parallel to the processing layer, the underlying data storage has also changed and became more distributed This, in turn, required a significant paradigm shift as the traditional approach to transactions (ACID) could no longer be supported. On top of this, cloud computing is becoming a major approach with the benefits of reducing costs and providing on-demand scalability but at the same time introducing concerns about privacy, data ownership, etc In the meantime the Internet continues its exponential growth: Every day both structured and unstructured data is published and available for processing: To achieve competitive advantage companies have to relate their corporate resources to external services, e.g. financial markets, weather forecasts, social media, etc While several of the sites provide some sort of API to access the data in a more orderly fashion; countless sources require advanced web mining and Natural Language Processing (NLP) processing techniques: Advances in science push researchers to construct new instruments for observing the universe O conducting experiments to understand even better the laws of physics and other domains. Every year humans have at their disposal new telescopes, space probes, particle accelerators, etc These instruments generate huge streams of data, which need to be stored and analyzed. The constant drive for efficiency in the industry motivates the introduction of new automation techniques and process optimization: This could not be done without analyzing the precise data that describe these processes. As more and more human tasks are automated, machines provide rich data sets, which can be analyzed in real-time to drive efficiency to new levels. Finally, it is now evident that the growth of the Internet of Things is becoming a major source of data. More and more of the devices are equipped with significant computational power and can generate a continuous data stream from their sensors. In the subsequent sections of this chapter, we will look at the domains described above to see what they generate in terms of data sets. We will compare the volumes but will also look at what is characteristic and important from their respective points of view. 3.1 The Internet is undoubtedly the largest database ever created by humans. While several well described; cleaned, and structured data sets have been made available through this medium, most of the resources are of an ambiguous, unstructured, incomplete or even erroneous nature. Still, several examples in the areas such as opinion mining, social media analysis, e-governance, etc, clearly show the potential lying in these resources. Those who can successfully mine and interpret the Internet data can gain unique insight and competitive advantage in their business An important area of data analytics on the edge of corporate IT and the Internet is Web Analytics." example_title: "data science textbook" inference: parameters: max_length: 64 no_repeat_ngram_size: 2 encoder_no_repeat_ngram_size: 3 repetition_penalty: 2.4 length_penalty: 0.5 num_beams: 4 early_stopping: True --- # checkpoints This model is a fine-tuned version of [google/pegasus-large](https://huggingface.co/google/pegasus-large) on the [booksum](https://github.com/salesforce/booksum) dataset. ## Model description More information needed ## Intended uses & limitations - standard pegasus has a max input length of 1024 tokens, therefore the model only saw the first 1024 tokens of a chapter when training, and learned to try to make the chapter's summary from that. Keep this in mind when using this model, as information at the end of a text sequence longer than 1024 tokens may be excluded from the final summary/the model will be biased towards information presented first. - this was only trained on the dataset for an epoch but still provides reasonable results. ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 16 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.16.1 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.10.3
kahkasha/distilbert-base-uncased-finetuned-squad
kahkasha
2023-04-26T12:01:28Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-04-25T11:55:56Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1594 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.219 | 1.0 | 5533 | 1.1625 | | 0.9573 | 2.0 | 11066 | 1.1382 | | 0.755 | 3.0 | 16599 | 1.1594 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
iamjoy/ppo-Huggy-01
iamjoy
2023-04-26T11:58:32Z
16
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-04-26T11:58:25Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Find your model_id: iamjoy/ppo-Huggy-01 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
seanghay/mt5-small-km-phoneme-reverse
seanghay
2023-04-26T11:41:52Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-04-26T10:45:20Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: mt5-small-km-phoneme-reverse results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-km-phoneme-reverse This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2416 - Rouge1: 30.9064 - Rouge2: 15.5474 - Rougel: 30.6746 - Rougelsum: 30.691 - Gen Len: 4.8282 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.6872 | 1.0 | 2515 | 1.3202 | 28.8555 | 13.7602 | 28.6841 | 28.7043 | 4.6996 | | 1.5052 | 2.0 | 5030 | 1.2561 | 30.5921 | 15.3773 | 30.3685 | 30.3818 | 4.8390 | | 1.5144 | 3.0 | 7545 | 1.2416 | 30.9064 | 15.5474 | 30.6746 | 30.691 | 4.8282 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu117 - Datasets 2.11.0 - Tokenizers 0.13.3
Stern5497/sBert-swiss-legal-base
Stern5497
2023-04-26T11:41:09Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-04-26T09:24:47Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 14247 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 5000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "correct_bias": false, "eps": 1e-06, "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1424, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Dqcky/Gabagtha
Dqcky
2023-04-26T11:40:48Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-04-26T11:39:04Z
--- license: creativeml-openrail-m ---
jcrOrganisation/ppo-pyramids
jcrOrganisation
2023-04-26T11:40:20Z
7
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-04-26T11:40:14Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Find your model_id: jcrOrganisation/ppo-pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
NiamaLynn/sd-class-butterflies-32
NiamaLynn
2023-04-26T11:24:50Z
37
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-04-26T11:24:35Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('NiamaLynn/sd-class-butterflies-32') image = pipeline().images[0] image ```
pythonist/bert-base-cased-healthdemomodel
pythonist
2023-04-26T11:23:33Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-04-26T11:21:41Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-cased-healthdemomodel results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-healthdemomodel This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 5.5819 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 1 | 6.1760 | | No log | 2.0 | 2 | 6.1161 | | No log | 3.0 | 3 | 6.0619 | | No log | 4.0 | 4 | 6.0120 | | No log | 5.0 | 5 | 5.9641 | | No log | 6.0 | 6 | 5.9177 | | No log | 7.0 | 7 | 5.8738 | | No log | 8.0 | 8 | 5.8334 | | No log | 9.0 | 9 | 5.7938 | | No log | 10.0 | 10 | 5.7589 | | No log | 11.0 | 11 | 5.7289 | | No log | 12.0 | 12 | 5.7019 | | No log | 13.0 | 13 | 5.6746 | | No log | 14.0 | 14 | 5.6499 | | No log | 15.0 | 15 | 5.6293 | | No log | 16.0 | 16 | 5.6122 | | No log | 17.0 | 17 | 5.5995 | | No log | 18.0 | 18 | 5.5905 | | No log | 19.0 | 19 | 5.5848 | | No log | 20.0 | 20 | 5.5819 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
worsty/dqn-SpaceInvadersNoFrameskip-v4-test6
worsty
2023-04-26T11:21:32Z
4
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-04-26T11:14:42Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 582.00 +/- 170.93 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga worsty -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga worsty -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga worsty ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```